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Laszlé Kalmar

(1905—1976)

It was an irreplaceable loss to Hungarian science that Professor Laszlo Kalmir,
a member of the Hungarian Academy of Sciences unexpectedly died on August 2,
1976.

He was born in a small Hungarian village, Als6-Bogatpuszta, on March 27,
1905. He started to be interested in mathematics as a high school student. In 1922
he won the first prize of a mathematical contest organized by the Lorind Eo&tvds
Mathematical and Physical Society for the high school graduates of that year.

After studying mathematics and physics at Budapest University, he received
his doctor’s degree in mathematics at the same university. For a few months he
worked as a physicist in a radio tube factory.

From 1930 to 1947 he was an assistant of F. Riesz and A. Haar in Szeged, and
in 1947 he was appointed professor of mathematics. Until his retirement in 1975
he headed the Department of Computer Science and the Laboratory of Cybernetics
of Szeged University as well as the Research Group on Mathematical Logic and
Automata Theory of the Hungarian Academy of Sciences. Besides, he was a member
of several national and international committees and was on the editorial board of
numerous international periodicals. He taught and researched at Szeged University
until his death.

Professor Kalméar had been among the editors of our Acta for thirty years and
in his youth he had the duties of a technical editor. Many of the present editors
were his students. '

He was elected a corresponding member of the Hungarian Academy of Sciences
in 1948, and a member in 1961. He was awarded the Kossuth prize in 1950 and the
State prize in 1975.

The preponderant part of his mathematical activity falls in the field of mathe-
matical logic, in several branches of which he achieved basic results. Much of his
work is related to the decision problem of logic. For instance, he proved that Church’s
theorem is just a special case of Gddel’s theorem on relative undecidability. Another
significant result of his is a counterexample to a hypothesis of Schréter that intended
to support Church’s thesis.

1A



222

His ability to see the basic points of a newly acquainted proof led him more
than once to essential simplifications of the original reasoning. 1t is enough to men-
tion the ingenious simplification of Gentzen’s proof of the consistency of the arith-
metics of integers. This result was included in the fundamental work of Hilbert and
Bernays: Grundlagen der Mathematik.

He was the first in Hungary to realize the use of mathematical logic in sciences
and in practice. In the middle 50’s he initiated the teaching and research of computer
science and cybernetics in Hungary. His own results in these fields contributed to
the theory of programming languages. He also obtained interesting results that
have applications in medical diagnostics and linguistics. With his manifold ability
to conceive the new he also won others for computer science and cybernetics. He
raised numerous problems which he did not elaborate himself but made it possible
for others to start working in computer science.

Besides his main research areas he obtained many results in analytic number
theory, analysis, algebra, and the theory of games.

He always felt obliged to popularize mathematical logic and computer science.
He wrote several papers and gave lectures to achieve this goal, and much helped
to organize the scientific life in Hungary; in particular we owe him for the foundation
of the Laboratory of Cybernetics and of the Research Group on Mathematical
Logic and Automata Theory at Szeged University.

We honour the memory of Professor Laszl6 Kalmar, the mathematician, the
teacher and the man.

The Editors
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Diagonalization of matrices over H>

BELA SZ.-NAGY
Homage 1o the memory of F. Riesz (1880—1956)

By H* we mean the Banach algebra of bounded holomorphic functions u(4)
on the disc |A|<1, with the sup-norm ||u||.,. For the relevant fundamental notions
and facts (inner functions and their canonical representation, inner factor of a non-
zero u€ H*, largest common inner divisor Au,, and least common inner multiple

Vu, (if it exists), of a family {u,} of inner functions, etc.) we refer e.g. to [4], Chapter
I11. 1t is convenient to define A v, for any family {v,} of elements of H*: this is the

largest common inner divisor of the v, whenever not all v, are zero, and 0 otherwise,
Note that the operations A, V are defined up to constant factors of modulus 1.

Matrices over H* naturally occur in the theory of unitary equivalence, similarity,
or quasi-similarity models of certain types of operators on Hilbert space, as made
clear e.g. by the investigations of Sz.-Nacy—Fo1as [4], [5], [7). It was in particular
the paper [5] first establishing a Jordan model theory for operators of class C, which
pointed out the need for a diagonalization theory of matrices over H*. This tas(
was achieved, for finite rectangular matrices over H*, by NORDGREN [3]. The clas-
sical equivalence theory cannot be applied here since the algebra H* does not possess
all properties required. However, by introducing a convenient generalization of the
notion of equivalence for matrices, called quasi-equivalence, Nordgren was able
to extend the classical results Lo this case. Sz(cs [10] gave an analysis of the abstract
algebraic background of Nordgren’s theory.

The results of [3] were applied in [1], [2], [8] to obtain Jordan models for some
classes of operators on Hilbert space, namely to contractions 7" with finite defect
indices and of class C, (i.e. such that 7*"-0).

The aim of the present paper is to extend the Nordgren diagonalization theory.
The key to this extension is the Main Lemma (Sec.2) which establishes a remarkable
property of H*. It can be applied to solve the diagonalization problem for finite

Received November 1, 1975,
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224 B. Sz.-Nagy

and semi-finite matrices over 7> as well, and also Lo gel some insight into the case
of (doubly) infinite matrices (Sec.3). The full solution of the problem of infinite
matrices would, however, require further study because of the convergence difliculties
which there arise.

The concluding Sec. 4 indicates how the matrix diagonalization resulls can be
applied to obtain a Jordan model of operators 7€ C., with al least one finite defect
index, thus generalizing the results of [8] and [2].

1. Preliminaries

For convenience of reference we begin with some more or less known lemmas.

Lemma 1. Let w be an inner function and let p,,, q,(0€A) be inner divisors of @
such that p,+ q,=o for each a€ A. Then,

Apa " V du = @.
o (4
Poof. ¢" =V g, is divisible by each ¢,; hence there exist inner functions v, such
o

that ¢"¥ p,=wv,. Since ¢V is a divisor of w, we have p,=(w/q")- v, for all «. Then
w/q" is a divisor of p*=/p, also. Therefore, we have
a

w/p* | q¥.
On the other hand, we have w/p*=(w/pg) (ps/p")=qs+(Ps/p"), and hence
gp | (@/p") for every B€ A, and therefore,

q" | o/p*.
The two relations yield the result we wished to prove.

Corollary. Under the hypotheses of Lemma 1 we have
Va.=w ifandonly if Ap,=1.

Lemma 2. (M. SHERMAN, cf. [6]) Let f;, f€ H* and let w be an inner function.
Then for every complex number t, with the exception of at most countable many values,
we have

o A(fi+tf) = oAANf.

Proof. Letg,, g,€H™ be any pair linearly equivalent (with constant coefficients)
to the pair f;, fa. Then gy Ag,=£,\fz, and hence

(1.1) oA\gN\gs = N[N f.
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Applying Lemma 1 to the inner function e and to its inner divisors p,=wAg, and
4,=w/p, (@=1, 2) we get, taking account of (1.1),

4Ny = o [0) _ o
1 PiADs oA\giA\gs oMNiNfy
By the corollary of Lemma 1, applied with this  in place of w, we obtain that

Qg1 A Rgs = 1.

Consider now the one parameter family of functions h,=f,+1f;. For t,#t,
the pair 4, , h, is linearly equivalent to the pair £ , f;,. Hence, the family of functions

@ / 0 ol
oAb,  oNfilfy
consists of pairwise prime inner divisors of Q.

Now, it follows from the canonical representation of the inner function Q
(by its zeros in the unit disc and the corresponding singular measure on the unit
circle) that no family of pairwise prime inner divisors of Q can contain more than
countably many non-constant elements. Thus, for all values of the parameter ¢,
with the possible exception of a countable set of values, we have

oAl = oA fiMN Sz

(= Q).

(t complex parameter)

This concludes the proof.

Lemma 3. Let £ be a family of inner functions such that
() wy, e €F imply uNus€ S,
(ii) 31€1£ [u(Ae)| =0 for some point Ay, |A|<1.

Then u' =\ u exists and every sequence u, minimizing |u(Ao)| has a subsequence con-
weF

verging to u' in the unit disc |A|<1.
For a proof, based on the Vitali—Montel theorem, ¢f. [6] or [7], Lemma 1.

2. Main Lemma

The following lemma on functions in H* is related to a theorem on Hilbert
space operators, proved in [7] (Theorem 1). We present here a direct proof, using
elements of the proof of the operator theoretic theorem in [7]. (Although we shall
only use in this paper the case when w;=w for all i, the general case is considered
in view of possible further applications.)

Mam LeMMA. Let fy, € H®, || ful .=M (i, k=1,2,...), and let o; (i=1,2,...)
be inner functions. Suppose that

(2.1) wiAﬁlAﬁgA... =1 (l = 1, 2, ...).
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Then there exists a numerical sequence {Xy, Xg, ...y, with %|x| as small as we wish,
such that

(2.2) o Nfat+ X fat+ s fis+..) =1 (i=12,..)
Proof. a) Consider the linear transformations
rp:ll+H> (i=1,2,..)
defined for x=(x;, X,, ...) €/1 by
ryx = ‘12' Xy Siws

clearly, ||r;x].,=M |x|;. Denote by R, the range of r; in H*.
Condition (2.1) is obviously equivalent to

/\ (@Ag)=1 (i=1,2,.)

gER,
and this in its turn is equivalent, by the corollary of Lemma 1, to
; :
2.3 ——=w, ((=12,..).
@3) ayR, w\g v )

Choose a point Ay, |4|<1, different from the zeros of the functions w,, w,, ...;
thus

2.4) |e0;(A0)] = py = 0;
and define
@) v = inf | (Ao)| (i=1,2,.).

Clearly, v;=|w;(A)|=p; thus the family of functions

I = R
‘ {iA ge‘}

satisfies condition (ii) in Lemma 3. It also satisfies condition (i). For, if g,, g,€.%
then by linearity of /* and #; we have g, #g,€ R, for all values of the complex para-
meter . Now, by Lemma 2 we have w;A(g;+1g:)=(w;Ag)A(w;\g;) for all ¢ with
the possible exception of countable many, and for a non-exceptional value of ¢ we
have by Lemma 1

; W ; .
o\g;  oN\gs  0;\Ng1+18s)°

thus condition (i) holds true for each .%,.
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Fix i and consider a sequence {g,} minimizing in (2.5); by virtue of Lemma 3 we
can choose this sequence even so that

w; w;
2.6 —t ——— vpointwise in || <1, as n —> oo,
:9) w\g, ny: w;\g P g

By Lemma 1 and by (2.3), this limit equals
o/ A (@Ag), ie .
gER,

Thus we have, in particular,

= |lw;(A)| = p; forall i

T w;
2.7 V= L i o)

b) Next we assert that the infimum v; in (2.5) is attained for every value of i.
Moreover, we assert that there exists an x=(x;, X, ...y €/}, independent of i, such
that, for every 7, the infimum v; is attained for g;=r,x, that is,

=W = lwi(A‘O)l’ I(wi/\rix)(j’o)l =1 (l = la 2: "')'

()| =

w; /\r X
By the maximum principle this implies w;,Ar;x=1, i.e.
(2.8) oNX1fat+Xe S+ ) =1 (=1,2,..).

To prove our assertion suppose the contrary, i.e., that for every x¢€/! we have

(/‘I'O) = Ky

co/\rx

for at least one subscript i, or equlvalently, that /! is the union of the subsets
1 Py
= u+—= } (Gj=12..).

Let us show that each of these subsets is closed.
To this effect consider a sequence of vectors x,€ay; (i, j fixed), converging in /*
to a limit x; then

/\r x (/10)

0y = {x:xell,

g =rx,, g=rx satisfy |g,—gl”=[n|lx,—x[L >0 (n— )
and therefore we have, in particular,
2.9) g, — g pointwise in |A| < 1.
Passing, if necessary, to a subsequence we can also assume, by virtue of the Vitali—

Montel theorem, that

w g . .
2.10 Wt SRR t ointwise for |A| <! as n—->
Q) R th Har Y D |41 ,
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where p and ¢ are analytic for |A|<1; clearly | p|..=1 and |¢|.. =M sup |x,l;-
Note that, in particular,

T [O]] l
@2.11) lp(Ao)| = lim wi/\g"(ﬂo)i = mt
From (2.9) and (2.10) we infer

8 s .
ind Q) = > omtwise, as n —
—— & ™ P8, i wi/\gn iq P s o

and hence, pg=w,;q, p°g°=w;q°, where the superscript © indicates inner factor.

(O]
wi\g,

It follows that

is an inner divisor of p°, and hence
w;\g

(2.12)

otz 0| = 1P°G0)] = oGl

because the outer factor p’=p/p° has the same norm || « ||, as p, thus |p’(A)|=1 for
|A|<1. From (2.11) and (2.12) we infer that x€o;;: o0;; is closed.

Thus /* is the union of the closed subsets o;; (7, j=1, 2, ...). By virtue of the
Baire category theorem, at least one of the sets o;; must contain a ball

={x:Ilx—xll <o} in I,

that is, there exist a subscript i and a number y; greater than y;, such that

(2.13) = yu; forall ger4.

w/\g

On the other hand, on account of the equality v;=pu; we have v,<p;, and there-
fore there exists y€/* such that

<y for h=ry.

w;
(2.14) ‘m (Ao)
Set fo="r; x, and apply Lemma 2 to obtain that there exists £, 0<¢<g/|| yl;, such that

; ; w;

0N ot th) — ah fov YN

As we have fy+th=r;(x,+1ty)Er; 8, the function at the left hand side of (2.15) has,
by (2.13), absolute value =p;. The function at the right hand side of (2.15), being

(2.15)

an inner multiple of the function

, is majorized in absolute value by the latter
function everywhere in the unit disc; thus by (2.14) the function at the right hand
side of (2.15) has at the point 4, absolute value < ;.
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So we have arrived at a contradiction. This proves our assertion stated at the
-beginning of part b) of the proof, namely that there exists an x€/* satisfying (2.8).

c) In the last step of our proof we shall again refer to the (Sherman) Lemma 2.
Let x=(x;, X2, ...)€I* be any vector for which (2.8) holds, i.e. such that
ohp; =1 for ¢;=xfut+xfot... (E=1,2,..).
Then by Lemma 2 we also have
oM@+ ) = oheNfu=1Afa=1 (=12,..)

for all values of the complex parameter ¢, with the possible exception of countably
many values. Given =0, if we choose # not exceptional for any i, and moreover diffe-
rent from —x,; and sufficiently large, we will have

ONfatXofotXafpt.)=1 (=12,

with x,=x,/(x,+£) and 3 |x.|<e.
2

This completes the proof of the Main Lemma.

When referring to the Main Lemma we shall mean its following direct corollary:

Let ay, be a (finite, semi-finite, or infinite) rectangular matrix over H™, with
lawll =M, and let 0 be an inner function. Then there exists a numerical sequence
(X9 X3y ...y, With > |x;| as small as we wish, such that, for every value of i, we have

G+ Kol t+ Xaigt+ ... = i+ (anAaphagh...),
where ¢ H, hbAw=1.

3. Quasi-equivalence and diagonalization of matrices over H*

1. Let A(n, m) (1=n=o0, | =m=-co) be the set of n)Xm matrices 4=[ay] over.
H*, for which

3.0) > Ikz Gag (VP = M3 G (M=0)

i

holds for |A|<1 and for any square-summable sequence of complex numbers &, i.e.
whose values 4 (1) (J4|<1) are operators from (complex euclidean) m-space E,, into-
n-space E,, bounded by the constant M,

I4]le. = sup |[AA)]| = M.
1Al=<1

By A4(n) (1=n= ) we denote the set of matrices X=X () in .#(n, n) for which.
X ()~ exists (JA|<1) and also belongs to (n, n).
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Finally, for a given inner function @ we denote by A, (n) the set of matrices
X¢€A(n, n) which have a scalar multiple ¢ prime to w, that is, for which there exists
X?€M(n, n) such that

X X=XX=¢@-1,, pcH>, ¢#0, opho=1

{1, is the unit matrix of order n).

It is clear that #'(n)C A, (n), and that a finite product of elements of .4, (n)
.also belongs to A, (n).

Let A, BEM#(n, m). We call A, B equivalent if there exist matrices XeA (n),
Y€ '(m) such that

(3.2) XA = BY,

and we call them w-equivalent if there exist X€A,(n), YeN,(m) satisfying (3.2).

Equivalence implies w-equivalence, but not conversely. Both are symmetric.
“This is obvious for equivalence, while for w-equivalence it can be shown as follows:
If X'X=XX"=¢-1,, Y'Y=YY"={-I,, pAw=1, yAw=1, then (3.2) implies:

A+ @Y = pAY® = X*XAY*® = X°BYY*® = X°ByiI,, = yX°- B,
‘where @Y*€AN, (m) and Y XA, (n) because
oY Y=oyl =Y -0Y* oYyAo=1,

.and similarly for X*, — Clearly, both kinds of equivalence are transitive.

In case 4, B are w-equivalent for every inner w, they are called quasi-equivalent.

These concepts were introduced by NORDGREN [3]; see also SzGcs [10].

“Determinant divisors” &, and “invariant factors” &, of a matrix A€.#(n, m)
are defined, for all (finite) integers k, 1=k=min {n, m}, as in the classical case,
namely:

D, = Ndet AD, where AW runs over the set of all square submatrices of 4 of
.order k (thus 9, =0 iff all these submatrices have determinant 0, and ;=0 implies
Dy+1=0);

8,=9,/%,_,, with the conventions Z,=1 and &,=0 if ,_.,=0.

Lemma 4. If A, BEM#(n, m) are w-equivalent, then

3.3) DD\ D(B), D(B)fD(4) *k=1,2,..),
where oy, B, are inner functions prime to w. If A, B are even quasi-equivalent, then
{3.4) 2,(4)=9,B) k=1,2,..).

Proof. Suppose X€AH,(n) and YeA,(m) satisty (3.2). If ¢ and ¢ are their
.corresponding scalar multiples, prime to w, then we deduce from (3.2) that

(3.5) X°BY = ¢+.A, XAY® =y -B.
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As the Cauchy—Binet multiplication rule for minors extends to the present case,
we get from (3.5), first, that 9, (4)=0 iff 9,(B)=0. Next, if Z,(4) and P,(B) are
non-zero, and therefore inner functions, we deduce that

(3.6) 2.(B)|¢* D (4) and D(4)|¥*D(B), V

and we have only to observe that ¢* and y/* are also prime to .

If A, B are quasi-equivalent and if for fixed & such that 2,(4) and 9,(B) are
non-zero we choose w=9,(4) 9,(B), then ¢* and Y* are prime to D,(4) and 9, (B),
so that (3.6) implies 9, (B)|%,(4) and 2,(4)|2,(B), i.e. (3.4).

2. For later use we introduce the following notations:
Let u={0, uy, us, ...) be a sequence of length » (finite or infinite) of functions
in H* satisfying
lul = sup (2 LD < oo

and let C(u) and R(u) respectively denote the square matrices whose first column
or the first row is given by this sequence and all other entries are 0, These matrices
obviously belong to . (n, m), with || C(®)|| .. =[| R(#)].. =[l%| .. ; moreover the matrices
I+ C(u), I+ R(u) belong to A(n) because

(I£Cw)(IFCw) =1, (I£Rw)(IFRW)=L

Every diagonal (square) matrix D=diag (w,, Wy, ...) of order n whose diagonal
entries are inner functions and have a common inner multiple w, belongs to A, (%)
for every w such that wAw=1; indeed,

Do =1 and D°D =DD*=wl, where D*=diag i, i, ]
Wy Wy

Finally, observe that if 4,, 4, are w-equivalent to A, A7, then A=A4,D A4, is
w-equivalent to 4’=A,@DA;. Indeed, if X,, ¥, and X;, Y, are operators for A,, 4,
and A,, A7, with the respective scalar multiples ¢, Vo, and ¢,, ¥, , prime to w, then
X=X,®X,, Y=Y,® Y, will correspond to the pair 4, A’, and setting

X =01 X§DpoX{, Y=y, YjDY, Y7

we see that X, ¥ have the scalar multiples @, « ¢,, and ¥, - i, , respectively, which are
also prime to .

3. We are now able to prove:

1) Here we use the fact that if {u,} is a system of inner functions and f is a function in L>= such
that fu,€ H for all « then f« A u,€H*; cf. Proposition IIL 1, 5 in [4], This fact implies, namely,
o«

that if w is inner, if v is in H*, and if wloy, for all «, then wl(v- A u,,) (set f=wv).
®
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Theorem 1. Let A=[a)¢ M (n, m), | Snzs oo, 1 SmM= oo, and let r be an integer,
1=r=min {n, m}. Then, for any given inner function ®, A is w-equivalent to a matrix
of the form

diag [éol(A)9 LALE ] éDr(A), Ar]
where A€M (n,, m,) (r+n,=n, ¥+m,=m), and we have
éD:l.(A) I£2(A) I v |épr(A)jAr‘

Proof. The case A==0 being trivial we can assume 4740 so that @,(4) is an
inner function. From (3.1) it follows, in particular, that |ay|.=|4l. (=M).

Denote by w, the product of the given inner function @ by the non-zero (and
hence, inner) terms of the sequence Z;(A), ..., Z,(4). Then any A€ H*® prime to w,
is prime to w as well as to each of these determinant divisors of A4.

By virtue of the Main Lemma there exists a numerical sequence (xy, X, ...)

of length m, with x;=1 and 3 |x;| as small as we wish, such that
2

(EN) I =)kZ XxQy, = hi'k/\ Ay, hEH>, hiw,=1 (i=1,2,..,n).
=1 =1

Then
pAE 12 l%’ Xeayl* = MZkZ' % |? = M”2
for some M’ (as close to M as we wish) and for all 4, [A|<1. Hence, |la.=M".
Appling the Main Lemma again we can choose a numerical sequence (y;, s, ...)

m
of length n, with ;=1 and > |y| as small as we wish, such that
2
n n
na=HW-\a, WcH>, Ko, =1.
i=1 i=1

Observe that there is an inner function #” such that »”Aw,=1 and
Aai = /.\(h,--é\a,-k) = h”' Aca,k. 2)
We have, therefore, |

3.9) 2 na=h-9,(4), where h=nh, hh\o,=1.

2) Set b;=A a,, and b=A b;: then b=D,(4) and A (b,/b)=1. We have
k i i
b
pow= Nk =) (# —bi]].b = Wb,
Since ;A@,=1, we have

b b
Ao, = A [(hi Ti]Awr] = /i\(—biAwr] =1

The author is indepted to Prof. T. Anpo for this proof and also for some other useful re-
marks he has made when reading the manuscript.



Diagonalization of matrices over H* 233

Form the matrices C,(x) and R,(y) associated with the sequences x=
=(0, Xz, X3, ...) and y={(0, y,, ys, ...y according to Subsection 2. From (3.7) and
(3.8) we deduce that the matrix

(39) A = [az{k] = (In +Rn(y))A(Im+Cm(x))

has the leading entry ay,=h - 9, (4), while aj, =ay, for i, k=2. As I+R, and I+C,,
are invertible, 4 is equivalent to A’, and therefore, by Lemma 4,
2,(4) =9,4") forevery k,
in particular 2, (4)|4".
Now, we set

D(4) ap a1 .
AP = ay  hay hag, ...

(g, hag, hag i

and observe that
A’ -diag(1, h, b, ...),, = diag(h, 1,1, ...), - A”;
as a consequence, 4’ is w,-equivalent to 4”.

Next, form the matrices C,(#) and R, (v) associated with the sequences u=
={0, ty, U, ...y and v=(0, vy, vy, ...), Where u,=aj/D,(4) and v,=a}/P (A).
Because 9, (4) is an inner function, we have |u.. =|d}|l.. and |v].. =] @} ] .., where
dy={0, ay,, a3, ...) and a; =(0, ajy, aj,, ...). Hence, the matrices I,—C,(u) and
I,—R,,(v) belong to A (n) and A '(m), respectively, so that A” is equivalent to

A" = (In —C”(M)A” (Im _Rm (1)))
This matrix has the form

A" = [@10(’4) 121] (= dlag [gl(A)9 Al])’

where A, €M (n,, m)) (n=1+n,, m=1+m,). Note that D, (4), which divides 4’, also
divides 4” (see the explicit form of A4”) and therefore will divide 4™ as well. We
conclude that 4 is w,-equivalent to diag [2,(4), 4,], and D;(4)|4;.

Now apply the same argument to 4, in place of 4, and continue this procedure
r times. Recalling the last remark in Subsection 2 we conclude that 4 is w,-equivalent
to a matrix of the form

(3.10) A® = diag (64, Oy, ..., 6,, 4,),
where A,€.4#(n,, m,) (#+n.=n, r+m,=m), and
@3.11) 01|6¢|...|6,] 4,, each §, inner or zero.

The concluding arguments are essentially the same as in [3], p.308. By (3.6),
o,-equivalence of 4 and A® implies

D (A) | oy D (AD), D (AD) | Y+ D (), @y, Yy Prime to w,.
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Since ¢y, is then prime to %, (4) for k=1, ..., r, we infer D, (4) |D,(4?), and hence
D (A") =0, » D, (A) with o inner, k=1, ..., r. Thus o+ D, (A) | 1, » D,(4), and there-
fore, oy |y, whenever 9, (A)s0.

Let j denote the largest among the integers k=1, 2, ..., » for which Z,(4) is
non-zero. Then we have for k=1, ..., j:

(3.12) gk(A(r)) = “k . @k(A)’ Oy innel‘, otk/\a),. = l,

and hence,
Om1* Di—1(A) |04+ D (A), with op = 1.

Now, &, is prime to 9, (4) so we infer o4 |0y, i.e. op/oy_q is inner. From (3.12) we
have

(3.13) 6 (AD) = (/- & (4) (k=1,..., ).

On the other hand, it readily follows from (3.10) and (3.11) that &,(4®)=6,
(k=1, ..., r), and therefore, by (3.13) and (3.11),
(3.149) (00 -) G (A) | Ok 41/08) B2 (A) (k= 1,...,j~1).

Since &, 41 is prime to w,, o..1/0y is prime to &,(A). Therefore, (3.14) implies
6(A) | Bi41(4)

for k=1, ...,j—1 (and then for all k).
Finally, combining (3.10) and (3.14) we sce that

AN =2Z. diag [épl(A)a teey éD:-(A)a Ar]a

where Z=diag [0;/0tg, ttaf0ty, ..., ®;/05_4, 1, 1, ...] (n terms); note that Z has a; as a
scalar multiple, o;Aw,=1. Also note that (x;/o;..)&;(4)=&(A")=6;|4,, and
hence &,(4)| 4, for k=1,...,r.

This concludes the proof of Theorem 1.

4. Consider now the case of 4€.#(n, m), where at least one of n, m is finite;
it is no restriction of generality to suppose that m is finite and m=n= oo,

Applying Theorem 1 with »=m we obtain that 4 is w-equivalent to the diagonal
nXm matrix formed from the invariant factors of 4. Now, this matrix does not
depend on the choice of w. Therefore, we have:

Theorem 2. Every matrix A€M (n, m), with m finite and with m=n=oo, is
quasi-equivalent to the diagonal nX m matrix

diag [épl(AL *te é»m (A)]a
and we have 8,(A)|85(A)|... |8, (A).
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4. Jordan models of operators of class C,,

1. Let 4, B be nXm matrix valued inner functions over H*, ) with m finite and
n possibly infinite, m=n= <, and suppose 4, B are quasi-equivalent. The condition
for A4, B to be inner implies that all determinant divisors are non-zero; in particular,,

o= @",(A) = @m (‘B)

is a (scalar valued) inner function.
Choose @, ®*€.#(n, n) and ¥, P*€ M (m, m) such that
@4.1) &4 =BY, ¢°P=PP*=¢l,, VYV =YVV"=Vyl,, ¢, primeto o.
Let S(4), S(B) be the operators defined on the Hilbert spaces $(4)=H:© AHZ,,
$(B)=H:o BH® by
S(Au = Pgqy(xu) for u€H(4),  SB)u= Pgw(xu) for u€H(B),
and set

4.2) Xu = Pgpy®u for ucH(A).
Then the operator X: £(4)—~$ (B) satisfies
“4.3) S(B)X = XS(4),

and is injective. These facts follow by the same arguments as in [8], Sec. 2, by giving
the role of ¥ and det ¥ to ¥* and , respectively.
Using the relation #4=BY we get

(4.4) X9H(4) = Pgp) 2H(A) = Py PH-
Since PH2D PP Ho=0H?, (4.4) implies
4.5) X9 (A)D Py (0 Hy).

Set now w;=w- ¢°, ¢° being the inner factor of ¢, and choose @,, ¥, etc.,.
correspondingly. So we get X; such that

(4.5, X19(A) D Py ) (01 Hp).
As ¢, is prime to ¢, by Beurling’s theorem @H? and ¢, H> together span H2. Asa
result, the ranges of X and X, together span $(B).

2. In some special cases (but not always, ¢f. [8], Sec. 3) we can choose X such
that its range alone spans $(B); i.e. that X be a quasi-affinity. Such is the case if"

n=m(< ), or more generally, if Bz[l(g)l], where B, is a square matrix of order m,
and 0 is the /X m zero matrix, where
n=m+l, 0s[= oo,
#) That is, 4 and B are isometry valued a. e. on the unit circle.

4) H2=H?(E,) is the Hardy—Hilbert space of E,-vector valued analytic functions in the unit
disc; and x(A)=4.
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For [/ finite, ¢f. [2]. The following generalization of the proof given in [2] applies to
I infinite as well.

Choose @, ¥ to satisfy (4.1) with w=9,,(B)==det B, and partition the matrices
@ and &° in the form

I 1210 L
o) e

m 1

Equations (4.1) are equivalent to the following ones:

QI'A = ‘BIT’ @214 = 0,
(4.6) | 2,01+ Q,Dy = @l,, D12y = @l,, Py =01, $,2,=0, ,Q,=0, pAw=1,

PO = PP = l,, YAo =1.

Clearly, ®,¢4(l, n), with | @], =] P|... Let
B, = BB}
be the canonical factorization of the bounded analytic function {E,, E,, $,(4)} into
its outer factor {E,, &, #;(1)} and inner factor {§, E,, #3(1)}, where § is some
auxiliary Hilbert space; cf. [4], Chapter V. By taking d=dim § we can assume
& =E,; then
€ M(dyn) and BS€M(I, d).

As &, is outer, &, H, is dense in Hj, and therefore &, H2= @3 &, H? is dense
in @3 H. On the other hand we have, by (4.6), ®,H: > ®,Q, H; =¢H;. Therefore,
@.7 DS H; D o°HP  (¢° is the inner factor of ¢).

On account of this inclusion, for every u€ H; there exists a v€ Hj such that #3v=¢°u;
the map u—~v defines an isometry W: H} - H; which intertwines the natural unilateral
shifts on these spaces, i.e.

(4-8) SdW = WS'.

This implies that /=d; ¢f. [8], Theorem 5/6.

The inclusion
(4.9) SQH? = WP HE = &, Hoc HP

shows that @5 is an isometry from Hj into H;, which obviously intertwines S, and S,
in the reverse order, and therefore, d=/.

Thus d=I, and hence ®,€.4(l, n), P5€M(, 1), and Q,PSc.M(m, ). Therefore,
both

@ = B}] and & =[Q, Q,P3]
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are in . (n, n). Moreover, it easily follows from (4.6) that (4.1) holds true for &, &
in place of @, 9. Indeed, we have, e.g.

Q&1+ Q, 85 0,=0, &+ Q, B, =0,
dﬁé-deig = (@g)* Dy 0, qjg = (qﬁzo)* P @g = @l;, etc.

The rest of the argument is similar to the one in [2]. We regard H? as the direct
sum A2 @ H? and set R=BH>+ BH?. Since we have

m*
$H:> 8°Hy = oH; D 9H,®0 and BH; = B, Hy®{0} D (det By) H; & {0},
and since ¢ is prime to det By, it follows from Beurling’s theorem that
%o Hie{0).

From the fact that 9 includes ®H%={®, u® ®,u: u€ H? it now follows that ;M also
includes {0} @; H,, and hence,
9N o {0} HE e
Thus, =H>.
Now, for the operator X associated with @ in the sense of (4.1) we have, by (4.4),
X% (4) =Py N, and hence the closure of the range of X equals Py H, ie. H(B).
Thus X is a quasi-affinity.

3. Applying Theorem 2 and the above results to the characteristic matrix function

@€ (n, m) of a contraction T on $, of class C.y, with defect indices
dim [[-T*T)2H]~ =m, dim[I-TT*2H]~ = n,

where m=< < while (m=)n=es, and to the diagonal nXm matrix formed by e,=
=&,(0) (k=1, ..., m), we conclude as in [§] and [2]:

Theorem 3. The “Jordan operator” J=S(e,)D...DS(e)DS, on $H,=
=9H(e,)D...®H (e) ® H; (I=n—m) is completely injection-similar to T. More precisely,
there exist injections

X: 99, Y:9,-9 (i=12)
JX=XT, TY;=Y,J (i=1,2),

such that

and the range of X is dense in $); while the ranges of Y, and Y, together span $.
The problem concerning uniqueness of the model can be dealt with as in [8].

Problems. 1. In [9], the existence of a unique quasi-similar Jordan model
@ S (my) (my, inner, my.q|m,, k=1,2,...) has been proved for every contraction
3

T¢ C, with minimal function m,=my;. In the general case the relation of the func-
tions my, to the invariant factors of the characteristic matrix of T remains to be eluci-
dated.

“A
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2. It also remains to be¢ investigated under which conditions Theorem 1 can
be sharpened so that quasi-equivalence is established to the diagonal matrix formed
only by the invariant factors.

References

{11 B. Moore, ITII — E. A. NorDGEN, On quasi-equivalence and quasi-similarity, Acta Sei, Math.,
34 (1973), 311—316.

[2] B. Moore, III — E. A. NorRDGREN, Remark on the Jordan model for contractions of class C.,,
Acta Sci. Math., 37 (1975), 307—312,

{31 E. A. NorRDGREN, On quasi-equivalence of matrices over H*, Acta Sci. Math., 34 (1973),
301310,

[4] B. Sz.-NAGY-—C. Folas, Harmonic analysis of operators on Hilbert space, North Holland/
Akadémiai Kiadé (Amsterdam/Budapest, 1970).

[5] B. Sz.-NaGgy-—C. Foias, Modéle de Jordan pour une classe d’opérateurs de I’espace de Hilbert,
Acta Sci. Math., 31 (1970), 91—115.

[6] B. Sz.-NaGy—C. Foias, Local characterization of operators of class C,, J. Functional Anal.,
8 (1971), 76—81.

71 B. Sz.-Nagy—C. Foias, Compléments a I’étude des opérateurs de classe C,, Acta Sci. Math.,
31 (1970), 287—296.

[8] B. Sz.-NaGcy—C. Foias, Jordan model for contractions of class C.o, Acta Sci. Math., 36 (1974),
305—322.

{91 H. Bercovici—C. Foias—B. Sz.-NAGy, Compléments 4 I’étude des opérateurs de classe Co. III,
Acta Sci. Math., 37 (1975), 313-—322.

[10] J. Sziics, Diagonalization theorems for matrices over certain domains, Acta Sci. Math., 36

(1974), 193—201,

BOLYAI INSTITUTE
ARADI VERTANUK TERE 1
6720 SZEGED, HUNGARY



Acta Sci, Math., 38 (1976), 239—251

On differentiation

LEON W. COHEN
Homage to the memory of F. Riesz

The ideas developed by F. RiEsz in his proof [1] that a monotonic function is
almost everywhere differentiable are used here to prove:

Theorem 1. If f and ¢ increase on an open interval (a, b) then df]de is finite
except on a subset of (a, b) of p,-measure zero.

Theorem 2. If the increasing function f is absolutely continuous relative to the
increasing function ¢ on (a, b) then

fo=)—fad) = [ dfdpdu,. )

(a,b)

This closes a gap left by the Radon—Nikodym theorem, The obvious definition

. f()—f(x)
1 dflde|, = lim ————=<
0 fidol: = Jm P(»)—o(x)
can not be used for Theorem 1 as the following example shows. Let f(x) be —1 for
x<0, 0 for x=0, 1 for x>0, and let @(x) be —1 for x<0 and 1 for x=0.
Then df]doly, by (1), does not exist and p,,({0})=2. However

f)—f©) _
ok =) ~

This suggests that df]do be defined as the common value, if it exists, of the upper and

lower derivates of f relative to ¢.
For any real function f on (a, b) and all I=(u, v)C(q, b) let f(I)=f(v)—f ().

Received September 19, 1975,

1) These theorems seem to by be a part of the oral mathematical tradition but diligent inquiry
by the author did not disclose any written record of their proofs.

The author is indebted to the referee for refinements and improvements of his manuscript,

pil
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Definition. Let fand ¢ be real functions on (a, b), x€(a, b) and assume that
¢ (I)#0 for sufliciently small I containing x. Set

D, f(x) =sup inf f(DjeI), D°f(x)=inf sup f(De()).
x€J x¢lcJ xeJ x¢lct

If D, f(x) =d(x)=D°/(x) let df|do],=d(x).
In the manner of Riesz, we consider the Dini derivates of frelative to ¢.

Definition. If fand ¢ are functions on (a, b) and x€(g, b) let

_ o S —f(x) . () —=fx)
DL = o a<1?£x p(y)—o )’ DEf ) _;il£ 33'3 p(y)—o(x)’

_ .o S =f(x) i S(»)—f(x)
Drfe) = 3213 xf;ip o(»)—ox)’ DR7 ) ;E,t; xily"é’p o(y)—ox)’

provided that the denominators do not vanish. If the four derivates have a common
value let if be d,, f(x). The following two statements are immediate consequences of
the definitions.

Proposition 1. df/dp|,=d(x) if and only if for all sequences of open intervals
(> Vi) containing x such that y—x,—~0

o S =, ) _
h"m ? () — (%) =46y

Corollary. (a) If f(x+), f(x=), ¢(x+), ¢(x—) are finite and ¢ (x+)7#¢p(x—)
then df|do|,, is finite. (b) If f and ¢ increase on (a,b) and ¢ is not continuous at
x€(a, b) then 0=df[dp|,< + .

Proposition 2. y-lv]vlc:pf(iyy)):_{p%

Proposition 3. If ¢ increases on (a, b) and d, f(x) is finite then df|dp|,=
=d,, f(x).

Proof. For any ¢>0 there is some =0 such that if x—6<)’'<x<y"<x+6
then

M dpf(x)—e& <

=d(x) if and only if d,, f(x)=d(x).

SOV fO) =)
p0N)—0(x)’ () —0x)
Consider the points P’(¢ (), f(»")s P(¢(x), (%)), P"(¢ ("), f(¥") in the (¢,f)-
plane and the slopes S’, S, S” of P’P, P’P”, PP” respectively. Since ¢ increases on
(a, b) it follows from (1) that the strict inequalities ¢ (3") <@ (x)<¢(»”) hold. Hence

<d,f(x)+e.

min {S’, $”} = S = max {S’, $"}.
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Consequently
d, f(x)—¢& = D, f(x) = D*f(x) = d, f(x)+& for all &= 0.
The conclusion follows from. the definition of df/doy|,.

It is convenient to fix some notation. We use f'and ¢ for increasing functions on
aclosed interval [a, b]. For x€(a, b)

P (x) = sup @ (), @°(x) =yi§£ ?(»), E(p) = {xlo*(x) < p°(x)}.

y<x

Then on (a, b), ¢* and ¢® increase, p*=@=0¢°, *=0¢* E®=¢° and, if (x, y)#0,
(x, y)—E(¢p) is uncountable since E(¢) is the countable set of discontinuities of ¢.

The exceptional set E(f, ¢)

The sets
EPR(f9) = {x€(a, b)IDP*f2(x) < DF"fe(x)},

ESL(f?) = {x€(a, D)IDE* f*(x) < DE*f*(0)};
Efl(f9) = {x€(a, DIDF f*(x) =+ =},

modeled on the similar sets in [1], are called the Riesz sets.
The set C(¢), next to be defined, is determined by the intervals on which ¢ is
constant, Let

CG={le() =¢®)} and A =infC,, o.=supC, for x€(a,b).

The sets C, are disjoint and contain x. The set of non-empty (4,, ¢,) is countable.
Let these open intervals be (4, g,) and let [4,, g,] be their closures, and set

C(p) = U4, N (a, b).

Proposition 4. If x€(a, b)—C(9) and a<x'<x<x"<b, p(¥)<o(x)<@*").

Proof. Otherwise x’€C, or x"€C,. Ineither case (,, 0,) %0 and x€[4,, ¢,]C
c C(¢), contrary to hypothesis.

The exceptional set for £ and ¢ on [a, b] is
E(f, ¢) = E(f/)UE(p)UC(@)UELR(fOUELL(fHUEE.(fO).

Proposition 5. If x€(a, b)—(E(f; ¢)—E(¢)), then 0=df[dp|,< + .
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Proof, Consider x€(a, b)—E(f, ¢) and a<x"<x<x"<b. Since x¢E(/HU
U E(p) U C(p) we infer from Proposition 4
SR S () = 0(x) SFAH3) = () =2 (x) = A7) =f (") =),
P*(x) = o (x) = 02(x) < ¢*(x) = ¢ (x) = ¢2(x) < P*(x") = o (x") = P (x”);
and hence,
= SO~ x) _ fR-fE) SR )
= PR - oD 0@ = - )
0= L0 —f1x) _ f&)~f&) _ o) ~/'()
FEO-FE = 90— = PE) P
0 = Df*fe(x) = Dff(x) = DLf(x) = DEf*(x) =+,
0 = DPf*(x) = D? f(x) = D§ f(x) = DEf(x) =+ .
Since the Riesz sets exclude x it follows from their defining inequalities and (1) that
0 = DPf() = DES() = DEA(X) = DR f(x) = DFF() < +oo.
By Proposition 3,

-|-oo

< oo

Therefore,

¢y

) 0 = dfldgl, <+ for xé(a, b)—E(f, ¢).
By the Corollary to Proposition 1
3) 0= dfdol, = DLW | ror xeE@)

9°(x) —9*(x)
The conclusion follows from (2), (3).

Toward p,(E(f, ¢) —E(9))=0

We summarize the properties of measure which play a role in what follows.
For an increasing function ¢ defined on an open interval I of R and any A/, let

Ho(4) = inf{"Z eINAc UL, I, = (a,, b)c[a,, blcT).

Proposition 6. For A, [a,b,], (x,y), (x, ], [x, ], {x} and A, subsets of I
we have:
(a) ”(p(A) = mf{"Z' (P(In)lAC L"J Ina In = (am bn)’ s b,,QEE((P)}-

(0) #,((x: »)) = G*(1)—0°(x),  po((%, ¥]) = 92 (¥) —0 (),
to (%, YD = @2(p)—@*(x).

© n,({x)) = 0°(x) —*(x).

(d) If p,(4,) =0 for neN, p,(U 4,)=0.
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Proposition 7. If ¢, § increase on I then p,(A)=p,(A) for all ACI if and
only if
1)) E(p)=E@W) and ¢@(x)—y(x) is constant on I—E(9p).

Proof. Assume (1). Then, by Proposition 6(a), u,(4)=p, (4) for Ac I, Conver-
sely, the latter equality implies E(¢)=E () by Proposition 6(c) and then, choosing

a€l—E(p), o(x)—@@=p,(a, x)=py(la, XD=¢ (x)—y (a) for x€I—E(p), x>a,
and a similar argument applies if x€I—E(p), x<a, by Proposition 6(b).

Corollary. For all ACI, py.(A)=p,(A)=pye(A).

Proposition 8, p,((E(S)U C(p))—E(¢))=0.

Proof., By the definition of C(¢),

(ENUC(@)—E@)< (E(N)—E@)U (U (s 0)U ({4, 04ln€ N} —E(9))).
The first and last sets are countable and ¢ is continuous at each of their points.
Since for each n, ¢ is constant on (4,, 0,), ¥*(L)=0¢*(e,) for all n. The result now
follows from Proposition 6(d).

The ‘rising sun’ theorem [1] is used as a lemma to show that the three Riesz
sets are of p,-measure zero.

Lemma. If g is a real functionon [a, b], g(@)=g(a+), g0)=g(b-), and g(x) =
=max {g(x+), g(x—)} for a<x<b, then there are sequences (ay,b,), (c,,d,) of
disjoint subintervals of (a, b) such that

{x€(a, b)lg(y) = g(x) for some y€(a, x)} = U (a4, by,
{x€(a, b)lg(y) = g(x) for some y€(x, b)} = EJ (Cn> dy)s

g(an) = g(bn _): g(C,, +) = g(d,,) for all n.

Proposition 9. If f, ¢ increase on [a, b], fla)=f@a+), f=/% o®)=¢(®-),
0 =0% t=0, and g=f—t¢ then g satisfies the hypotheses of the Lemma.

Proof. Since p*=¢p=0¢% f*=f=f° on (a, b), we have for x€(a, b)
g(x+) = f(x) —t9?(x) = f(x) —to (x) = g(x),

g(x—) = f4(x) —to*(x) = f(x) —to(x) = g(x).

A similar argument applies for x=a and x=b.
In applying the Lemma to the Riesz sets we use Proposition 9 and the fact that
f®=f¢, p**=¢* The next proposition may be called the Riesz covering theoremy
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Proposition 10. If f=f¢, p=¢* on J=(a, B)=(x, B) and
E = {x€J|Dff(x) < u<v<Dff(x)}

then there are NCJ and a countable set S of disjoint subintervals of J such that
u
Bp(N) =0, S covers E~N, 1‘2(/)(1) = —@()).
s v

Proof. If x¢E there is some y€(a, x) such that (f(x)—/(»))/ (¢ ) —¢ () <u.
Hence
8&(») =) —up(y) = f(x) —up(x) = g,(x).

Since g,=f-—u¢ satisfies the hypothesis of Proposition 9, it follows from the Lemma
that there are disjoint I,=(a,, b,)CJ, n€N, such that, since p=¢* and f(b,—)=
=f*(bw),

M Ec UL, g(an)=f(a)—up (@)= f*b)—up ) = g,0bu-)

Hence "

) FHb)~f (@) = u(py)—9 (@) = up(L), neN.

For each n there is a sequence b, ,€I,—E(¢@) such that b, ,}b,. Let b, g=a,, I,

=(by,p-15 by, p)>» N'={b,, ,|n, pEN}. Then
3) wu,(N)=0,1,,, npcN, aredisjoint, E~N'c )1, ,cULcJ.
n,p n

n,p W

Since fincreases and b, =a, for all n

S, ) = ;’ (f By, ) =S (b, p-1)) = Tim (b, ;) —f (@) = f*(By) —f(@)-

By (2), (3), since ¢ increases,

@ S,y = 2 (F*(b)—f(ay) = u o(L) = up(J).

n,p n

For each n,p if x€¢ ENI,, there is some y€(x, b, ,) such that (f(»)—f(x))/
[(¢(»)— @ (x))>v. Now
&) =F(3)—vp(y) = f(x)—v9(x) = g,().

Since g,=f—v¢ satisfies the hypothesis of Proposition 9 it follows from the Lemma
that there is a sequence of disjoint I, ,, ,y=(Cu, p, m> %4, p,m) <1, SUch that, since f=f"

and (4 (Cﬂy p,m + ) = (pe (c") 1 '")’

En In,pc U In,p,m9 f(cn, p,m)_v(Pe(cn,p,m) éf(dn,p,m)—v(p(dn,p,m)'
Hence

(5) v((P(dn,p,m)_(Pc(cu,p,m)) éf(lu,p,m)a n, p, me N.
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For all n, p, m there is a sequence c, ,, . ,€1, p,u—E(@) such that c, , . €y p -

Let ¢,,p,m,0=%,p,m> In,p,m,a=(Cn,p,m,q> Cn,p,m,q-1) a0d
N" = {en, pm, alns P> M, gEN}.
Then
© te(N") =0, I, ,mq 7 p,m,qgeN, are disjoint,

_(N,UN”)C U Inp,m,qc U nmeUIn,p'

n,p,m,q By py n, p

Since ¢,,p,m,qtCu, p,m AN Cy p om0 =y, p,m
2 (p(In,p,m,q) = Z((p(c",p,m,tr'l)_go(c'hp,m,q))
a q

(7 i
=0 (dn,p,m) - ]1;11 (P(cn,p,m,q) =0 (dn,p,m) - (pc(cn,p,m)'

Since fincreases it follows from (4), (5), (6), (7) that
(8) v Z’ gD(I n,p, "l,q) - 2 f( n,p,m "ZI: f(Iﬂ,p) é ugo('])'

sy Py M, q n,p,m

Let N=N'UN" and S={L,, ,, .1, p, m, g¢N}. By (3), (6), (8), N and S satisfy
the required conditions.

Proposition 11. p,.(Efx(f9)=0.

Proof. E"’];”e (f9 is the union of the countable set of

E],= {xcJ = (a, b)|DF*fe(x) < u <v < DF'fe(x)}, u,v rational.

We note that f0=£?, p*=@** and show that for k€N there are N,CJ and a countable
set 8, of disjoint open subintervals of J such that

k
{k} por(N) =0, S, covers EJ,—N,, IEZS’ o) = [%] o(J).
k

By Proposition 10 with (&, f)=(a, b) there are Ny, S; satisfying {l1}. Assume that
N, and S, satisfy {k}. Let I,, p€N, be the intervals of S,. By Proposition 10 with
(a, p)=1, there are M,C 1, and a countable set T, of disjoint open subintervals of 7,
such that

p»(M,) =0, T, covers E; ,N1,—M,, IZT’ go(I)é%q;(Ip), PEN.
€ P

Let ]V}(+1:NkU(U Mp) and Sk+1=U Tp. Then uq);"(Nk-l-l):O’ Sk+1 COVers E;{,v“"‘
14 p
—Nj4q and

k+1
n=zyem =[] o

2 o= ,,2

168,41 IET

P

Thus Ny 41, Si4q satisfy {k+1}, and therefore, {k} is satisfied for all k€ N.
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Lot N= y N.. Then p,4(N)=0, S covers EJ ,—N for all k and, since limy (u/v)*
@ (J)=0, ppa(Ey] ,)=0 for all rational u, v. Hence uq,,x(E,"fg( f9)=0

Proposition 12. p,e(E?(f%)=0.

Proof. Let T(x)=-x for x€R. Let h(T(x))=—f(x), ¥(T(x))=—0¢(x).
"Then h, ¥ increase on (T'(0), T'()) h®=: —f*, Y*= —¢?, and for all 4Ac(T(), T(a)),
Moo (T1(A4))=pt,4(A). Since T(y)<T(x) if and only if x<y,

WTW)~HTE) _ f)=-f()
V(IO -Y(TH®)  e(x)—0 ()

if either difference quotient is finite. Hence
Eg5.(f%) = T(BY3 (h)).

By Proposition 11, py4(Efz (1)) =0. Hence p,q(E?;(f*)=0.

Proposition 13. p,.(EZ"..(f9)=0.

Proof. For each meN let

= {x€(a, DIDEf(x) = m}.
Then E,, ., CE,C(a, b) for all m. If x¢ E,, there is some y€ (x, b) such that
8u() =2 () =mp*(y) > f2 () ~m* (x) = g ().

By Proposition 9 and the Lemma there is a sequence of disjoint I,=(c,, d,)C(a, b)
such that, since f¢(c,+)=/*(c,),

E,cUI,, f%c,)—mo*(c,+) =f%(d,)—mo*(d,), pEN.
p

For each p there is a sequence ¢, ,€ I, —E(¢) such that c, ,ic,. Let c,, dp, Ly o=
=(Cp,q>Cp,q-1) and N—{cM|p,q€N} Then [,tq,a,(N) 0, E,—NC U <UILc
p,q p

C(a, b) for all m,

m 2o, )=mZ > (¢* 0= =0*(cp.d) =m 3 (0*(d,) —0*(c, ) =
=2 (f"( L) —f(cp)) =f((@, b)) <+
Hence, ,,(E,)=1*((a, b))/m for all m. Since E§..(f)C Q E,c(a, D),
0 = pipa(BRE. (/) = lim ppa(Ep) = 0.
Theorem 1. If fand ¢ increase an (a, b) there is some A1 such that

0 =dfldo|, <+ for x€A and ji,((a,b)—4)=0,
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Proof. By representing (@, b) as a union of countably many closed subintervals,
we may consider one of them and assume that f and ¢ increase on [a, b]. By the
definition of the exceptional set E(f, ¢)

E(f, ) —E@)=((E(HUC(p) —E(@)) U EL R (fOUELL(fH UER . (f).

Since E(¢) is the set of discontinuities of ¢, ¢?*, ¢ and p=¢*=¢® on (a, b)—E(p)
it follows from Proposition 7 that p,,, fi,4, /e ate identical measures.

Let A=(a, b)—(E( /s ®)—E(p)). The conclusion follows from Propositions
6,8,11,12, 13,

Toward Theorem 2

FuBINT's theorem [2] on the derivative of a function represented by a convergent
series of increasing functions is extended in the following proposition,

Proposition 14. Iff,, n€N, and ¢ increase on (a, b) and
2 [i(x) =f(x) is finite on (a, b)
n

then there is some AC (a, b) such that p,((a, b)—A4)=0 and
' 2 dfldol, = dfldel, for x€A.

The proof is so close to that of Fubini for the case where ¢ (x)=x that it is
omitted.

Similarly, Lebesgue’s density theorem may be generalized. It is convenient to say
that a sequence of open intervals (x,, y,) determines x if x€ (x;, y;,) for all k and
li’}'n (%—2)=0.

Definition. Let ¢ increase on an open interval /CR. The p,-density of a set
A at xel is A(A4, x) if for all sequences (x;, y;) which determine x

lim l’l(p(A n (xk’ yk]) — A (A, x).
N (CA)
Proposition 15. If Ac(a, b)Cla, bICI is a p,-measurable set then there is
some DC A such that

A(x, ) =1 for x€D and p,(A—D)=0.

Proof. There is by Proposition 6(d) an open set G, for n€N such that
AcG,c (a, b) and p,(G,)<p,(4)+1/2". Let

J&) = p,(AN(a, x]), ¥ (x) = 9?(x)—¢%(a), x€(a,b),
fi(®) = p,(G,N (@, x]) x€(a,b), neN.
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Then f, v, f,, increase on (a, b). Since
0 =/£,(0)—f(x) = 1, (G, — )N (@ x]) = pp (G, —A) < 1/2
.ft‘l(.y) ’“f(y)"‘(fl‘z(x) ....f(x)) R ﬂ(p((Gn_'A)n (x’ J’]) =0 for x< y

it follows from Theorem 1 and Proposition 14 that there is some Dc A4 such that
¢) 0= 3 dfy/dpl,—dfldp|) <-+e, x€D, and py(4-D)=0.

and

For x€ D and any sequence (xy, ) Which determines x, there is some &, , such that
(%%, ]G, for k=k, .. Then by Theorem 1, Proposition 1 and Proposition 6

.f;l (yk) _.f;l(xk) — hm qu (Gnm (xk, yk]) =1

" (ff./dlﬁlx:]l,{n VoG - R e Gy " x€D, neEN,
0= > (—-dfldy|,) <+ for xeD.

Hence "

@) dfjdy|, =1 for xeD.

Since E(¢)=E(p%)=E ) and ¢ (x) —y (x)=¢%(a) for x€(a, b)—E(p), it follows
from Proposition 7 that p,(4—D)=p, (4—D)=0. Hence by (2)

_ — 1 S —f(x) T Nqo(An(xksYIc]):
L= b = B =06 = (G rd) A4
for xeD, p,(A—D)=0.

Proposition 16. If ¢ increases on an open interval ICR, f is p,-integrable
on [a, bl I and

Fx)= [fdy, for x€(ab)

(a, x]
there is some AC (a, b) such that
dFldo|,=f(x) for x€A and p,((a,b)—A)=0.

Proof. It is assumed, without loss of generality, that fis positive. There is a
sequence of compact C,C(a, b) such that

C,cC,;, and fis continous on C,, for n€N,
lim g, ((a,5)~C;) = 0, lim [ fap,= [ fdu, <+
C, (a, b)
For neN let f,(x)=f(x) for x€C,, and f,(x)=0, for xc(a,b)—C,, and set
A;=JC,. Then
SAf on Ay, p((@ b)—As) = lim p,(4,—C;) = 0.
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Let
F,(9)= [ fuds, for neN, x€(a,b).

(a,x]

Since £, and f, ., —f; are positive on 4,, F, and F,,,—F, increase on (a, b). By the
monotonic convergence theorem

Fl(x)+2 (Fn+1(x) _Fn(x))
= f fldu.erZ( S Frvrding— f fudu,)

(a, %] (a, x]
= lim /f,,duq, = f lim f,,du(,, = F(x) <4<, x€(a,D).
. (a, x] {(a, x]

Hence by Theorem 1 and the generalized Fubini theorem, Proposition 14, there is

some A, 4, such that
0= an/d(plx, dF/d(Plx <+ oo,

0)) lim dF,[dyp|, = dFldp|, for x€d, and p,(4;—A4,) =0.

Consider x€A4,. There is a sequence (x;,y,) which determines x such that
Xy, V1.4 E (@) for all k. Then

n(yk) Fn(xk)
p—plmy O "N

Since ¢ is continuous at each x,, y,, by Proposition 6
G - to(Cees 7i]) = 0(7) —@ () for all k.

On the compact set C,([xy, y], f is continuous and f=f,. Hence there are x, ,
yn,kecnn[xk: yk]a SUCh that

@ dF,/dp|, = lim

“ S @) =f(2) =f(py,) for zeC,N[x, ), n, keN.
Since y,—x; >0

®) lim f(%,,,) = f(x) = im f(y,,) for x€C,.

By (3), 4)

fGx X ) “¢(Cp;m (xka yk]) (¢ (yk) qo(xk)) 1 j' f(lllq,

”(p ((xk s yk] [eMalEPA |

_ EO0-F() _ RN
= O —p Gy =IO TG S mkeN.

By the density theorem, Proposition 15, for each » there is some D,c C, such that

: Ko (Cn n (xlw yk])
6 Iim 22— =1 for x¢D, and C,—D,) =0
2 N (CEN) #e(Ca=D
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By (2), (%), (6)

@) dF,/do|, = f(x) for x€A,ND,, neN.
Since p,4(4,—C,)—0, there are n; such that u¢(A1~C,,)<l/2J for jeN. Let
D=U N D,
k Jj=k

Since D, ©C, 4y and py(Cyy— Dyy) =0 for all j,
AI_D = ﬂ U (Al_DuJ)C U (Al_'cnj)u U (CnJ "'"Dnj)’
k Jjek Jj=k JjEk

ty(r=D) 5 3 py(dy=C,) < 312! = /2%, keN.
Jjek j=k
Hence p,(A4;—D)=0. Let A=A,ND. If x€A then, for some k and all j=k,
x€A,ND,;. By (1), (7)
®) dFjdg|, = limdF, dg], = f(x) for xeA.

Since A=A,NDcC A, A,C(a, b)

0= 1y((@ B)—A) = pty((@, b~ As)+

9
o + iy (41— A2)+ sy (A, — A) = py (4, —D) = 0.

By (8), (9), A4 satisfies the required conditions.

Theorem 2. Let f, ¢ increase on an open interval ICR and let f be absolutely
continuous with respect to @, i.e., p(A)=0 for all ACI such that p,(4)=0. Then

F(b=)—flad) = f dfjdo|.dy, for all (a, b)CL
(a,b)

Proof. Consider the measures p,, p1,. By the theorem SAxs (f3], p. 33) calls
the Lebesgue decomposition theorem there are, for any (a, b)c I, some HcC(a, b)
such that p,(H)=0 and a positive function g, u,-integrable on (g, b), such that

pr((a, x]) = f gdu,+ps(HN (a,x]) for all x€(a,b).
(a,x]
Since fis absolutely continuous with respect to ¢ and p, (H)=0, p(HN(a, x])=0
for all x¢€ (a, b). Hence
V) =p((axl) = [ gdu, for x€(a,b).
(a,x]

By Proposition 16 there is some 4, (a, b) such that

dylde|, = g(x) for x€A, and p,((a,b)—A4,) =0.
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Since fincreases on [ there is, by Theorem 1, some A,C (a, b) such that
0 = dfldp|, <+ for x€d, and p,((a, b)—A4,) = 0.

Let A=A,NA,. For x€A there is a sequence (X, ¥,)C (a, b), determining x and!
such that x;, y,€(a, b)—(E(p) U E(f)). By Proposition 6

SO —fCa) = uy ((xka J’k]) =y (y)—v(x) for all k.
By Proposition 1

S =S (x) = lim 'ﬁ(J’k) - (x)
o()—00) Tk o()—o(x)

0 = p,((a, b)—A) = po((a, b)—4,)+p,((a, b)—4,) = 0.

py((a, x]) = f dfldo|.du, for x¢€(a,Db).

(a,x]

dfldel. = lim = dyfdp|, = g(x), x€A,

and

Hence

There are sequences ay, b,€(a, b)— E(f) such that a;<b, and a,ja, b,tb. Now
fO)—f@) = ps((@-bd) = [ dfidol.dp, forall k.

(ay, by
Hence
fo-)—fap) =lim [ dfjdel.du, = [ dfldel.du,.
(3 byl (a,b)
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Lebesgue-type decomposition of positive operators

T. ANDO

1. Infroduction

Our main concerns in this paper are bounded (linear) positive, i.e. non-negative
definite, operators on a Hilbert space $. Given a positive operator 4, we say a positive
operator C to be A-absolutely continuous if there exists a sequence {C,} of positive
operators such that C,tC and C,=a,4 for some «,=0 (n=1,2,...). Here C,tC
means that C;=C,=C;=... and C, converges strongly to C. A positive operator C
is said to be A-singular if 0=D=4 and 0=D=C imply D=0. These definitions are
motivated by the corresponding notions in measure theory (cf. [3]). In accordance
with a well-known theorem of measure theory (cf. [3] § 32), by an A-Lebesgue de-
composition of a positive operator B we shall mean a decomposition B=B,+ B,
into positive operators such that B, and B, are 4-absolutely continuous and A4-singu-
lar, respectively.

In a recent paper [1] ANDERSON and TRAPP proved that given a (closed) sub-
space G, each positive operator B is written uniquely as a sum of two positive opera-
tors B=C+ D such that ran(C*2)S® and ran (D) NG = {0}. Here C*2 is the positive
square-root of C, and “‘ran” stays for “range”. If ran(4)=®, that is, if 4 has closed
range, then ran(CY?)S® implies C=ad for some =0 while ran(DY?)N G = {0} is
equivalent to the A-singularity of D (see § 3). The above cited result shows that
A-Lebesgue decomposition is always guaranteed and is unique in case 4 has closed
range,
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254 T. Ando

The purpose of this paper is to construct an 4-Lebesgue decomposition for each
positive operator and to find a condition for the uniqueness of A-Lebesgue de-
compositions,

2. Lebesgue decomposition

Let us recall a useful binary operation in the class £ of all positive operators,
which is defined and called parallel addition by ANDERSON and TraPP [1]. The
parallel sum A: B of two positive operators 4 and B is determined by the formula:

((4: BYh, B) = inf {(4g, )+(BUi—g), h—g)}.

The expression on the right side defines really a positive operator. For, define a new
scalar product on the direct sum HD$ by

(g®k, &' ®K') = (Ag, g")+(Bk, k).

Let & be the associated Hilbert space and & the closure of the manifold
{g®k:g+k=0}. The expression is equal to {((/—P)(0dh), 0dk) where P is the
projection from & onto 6.

Obviously, 4, B=A:B=0, and A,=A4, implies A,: B=A,: B. Now since (n4):B
increases along with » and is bounded by B from above, we can introduce an opera-
tion [A] in the class & by the formula:

[4]B = Jim (nd): B,

where lim means strong limit, Since (n4):B4[A]B and (nd):B=nA, by definition
[A]1B is A-absolutely continuous and [4]B=B. Remark that the operation [A] is
monotone in the sense that B,=B, implies [4]B;=[A]B,. This operation is not
additive.

The above definition is motivated by a consideration of ANDERSON and TrAPP
([1]; Theorem 12) as well as a proof of the Lebesgue decomposition theorem in
measure theory (cf. [3]; § 32).

Lemma 1. Let A and B be positive operators. Then B is A-absolutely conti-
nuous if and-only if [A] B=B.

Proof. As remarked above, [4] B is always A-absolutely continuous. Suppose
that B is A-absolutely continuous. Then by definition there exists a sequence {B,}
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such that B,tB and B,=a, A for some.a, >0, The definition of parallel addition
y1elds w1th the convention 0/0=0, that

AU Ct

. ((nd): By, 1) = inf {(ndg, &)+ (B, (h—g), h— g)} . b
= (Buh, B+ inf {((n4 {rB,,()g, g) ~2|(B,.g, W)}

= (Byh, h)_l_girelg Aigg{lz((nA—l—B,,,)g, g) *2A|(Bmga h)l} :

(Bmh h) sup I(Bmga h)l

‘ ‘ N 7 e (nd+B,)g, 8)’
hence
0= Bm hs h) - (((nA) . Bm)ha h)

.

(-Bmgs g) (Bm h’ h)
=su =—" (Bmh
aeg (n“ml_*'l)( m&> g) I’l+0€,,,( )

This implies
B, = lim (nd): B, = [4]B,. B

Now since by the monotonity of the operation [A']
B =[A]B = [4]B,, = B,,

taking the limit of B,, we have B=[A]B. This completes the proof.

Theorem 2. Let A be a positive operator. Then for each positive operator B the

decomposition
= [4]B+(B—[A4]B)

b
!

is an A-Lebesgue decomposition with A-absolutely continuous [A]B and A-singular
B—[A]B. Moreover [A]B is the maximum of all A-absolutely continuous positive
operators C with C=B.

Proof. The operator [A]B is A-absolutely continuous and [4]B=B. If a posi-
tive operator C is A-absolutely continuous and C= B, the monotonity of [4] and
Lemma 1 imply that C=[4]C=[A4] B. Therefore [A] B has the maximum property in
question. It remains to show the A-singularity of B—[A]B. Suppose that 0=D=4
and 0=D=B—[4]B. Since D is obviously A-absolutely continuous, by definition
so is the sum [4] B+D. On the other hand, the maximum property of [4]B implies
[A]B+D=[A]B, hence D=0. Thus B—[A]B is A-singular by definition. This com-
pletes the proof,

Corollary 3. Let A and B be positive operators. Then B is A-singular if and only
if [41B=0.

3%
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3. Characterization of absolute continuity

Some order relations between two positive operators can be expressed in terms
of their range spaces., Here a basic tool is supplied by the following lemma due to
DouGLAS ([2] Theorem 2.1).

Lemma 4. For bounded linear operators S and T the following conditions are
mutually equivalent:

(a) ran (S)ESran (7),

(b) There exists =0 such thai S$S*=aTT¥,

(c) There exists a bounded linear operator R such that S=TR. Here R is uniquely
determined under the additional requirement that R* vanishes on the orthocomple-
ment of ran (T™*).

When applied to the square roots of positive operators 4 and B, Lemma 4
yields that ran (BY2)Cran (4'2) is equivalent to the existence of & =0 such that B=aA,
a condition stronger than the A4-absolute continuity of B. Lemma 4 shows further
that ran (4% Nran (B*?)= {0} implies the 4-singularity of B. Conversely, in view of
the general forinula

ran (4Y%) N ran (BY2) = ran ((4 : B)'"%)

([1] Theorem 11) and the inequality 0=4:B=A4, B, the A-singularity of B implies

ran (44%) Nran (BY%)={0}. Our purpose in this section is to find a characterization

of A-absolute continuity in this direction.

Theorem 5. Let A and B be positive operators. Then B is A-absolutely conti-
nuous if and only if the linear manifold {h: B*h¢c ran (44%)} is dense in .

Proof. Suppose that the linear manifold D= {h: BY*hcran (4*?)} is densein $.

Since the orthocomplement of the kernel of 4% coincides with ran (44/2)~, the closure
of ran (4%?), the correspondence 4+—>g from D to ran(4"%)~, defined by BY2h=A42g,
determines a linear operator T with domain ®. As easily follows from the bound-
edness of 4*and BY? ([2] Theorem 2.1), T'is closed. Now since T is a densely defined
closed operator, its adjoint 7* is a densely defined closed operator (cf. [4]; V, § 3.1).
Since AY*TS B2 by definition, the boundedness of 4% and B2 yields T*4"?= B2,
Let T*=VSbe the polar decomposition of T* (cf. [4]; VI, § 2,7); S is an (unbounded)
.positive self-adjoint operator whose domain coincides with that of 7* and V is a
partial isometry with initial space ran(S)~ and final space ran (7*)~. Then ran (4%?)
is included in the domain of S, and for all 2€$

ISAY2h||2 = (Bh, h).

Consider the spectral representation

S= [ AdEQ) and let So=[AdEQ) (n=1,2,..).
0 0



Lebesgue-type decomposition of positive operators 257

Then we can readily verify that A*2S24Y24 B and 42 S2A4"?=n24, hence B is A4-
absolutely continuous.

Suppose conversely that B is A-absolutely continuous. Then by definition there
exists a sequence {B,} such that B, t B and B,=«, 4 for some o, =0. By Lemma 4 for
each 7 there exists a bounded 11near operator R, such that BY2= 2R, and R} vanishes
on the orthocomplement of ran(4Y?). Then B,=B,,, implies R,R¥=R, R, ;.
Let D denote the linear manifold of all g with sup | R¥g|| < o, and define a functional
¢ on D by the formula

o (g) = SllpllRi:‘gII2 lim | R;g|*.

The functional ¢ is closed in the sense that if g,€D, lim g,=h and if
lim ¢(g,—g,)=0, then 2€D and 11m ¢ (h—g,)=0. Further, s1nce by definition

n, m-»oco

of {B,}, for all K€D
sup IRy A h|? = sap |1Bi/*A]|* = (Bh, h) < =

and since every R¥ vanishes on the orthocomplement of ran(4'%), the linear manifold
Dincludes the dense set ran (4% +($ S ran (4Y2)). Thus ¢ is densely defined, closed
and expressed as the limit of the bounded quadratic forms || R} g||2. Now in view of a
theorem on quadratic forms ([4]; VI, § 2,6) there exists an (unbounded) positive self-
adjoint operator S such that its domain coincides with D and || Sg||2=¢ (g). Then we
have for all h€$H

ISAY2h||2 = (Bh, k) = || B**4]|%,
hence there exists a partial isometry ¥ with initial space ran (BY%)~ such that SAY?=
= VB2, This implies 425 B2V *, and consequently

V*(®D) C {h: B'2h¢ ran (41/?)}.
Since D is dense in $and Vis a partial isometry with initial space ran(BY%)~, we can
conclude

ran (BY2)~ C {h: BY2h€ ran (4%},

Finally since BY? vanishes on the orthocomplement of ran (BY2), the subspace
{h: B*?hcran (4*)}~ includes this orthocomplement, too, hence coincides with the
whole space §. This completes the proof.

4, Uniqueness condition

Let A be a positive operator. Then A-absolute continuity is additive in the sense
that the sum of two positive operators is A4-absolutely continuous whenever both
summands are so. A-singularity is not always additive while it is hereditary in the
sense that A-singularity of the sum of two positive operators implies A-singularity of
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both summands. 4-absolu{e¢ continuity.is not always hereditary. These diserepancies
can cause non-uniqueness in 4-Lebesgue decomposition. ; Vo

Let us say a positive aperator B to be A-strongly continuous if B=oaA for some
«=0, or equivalently, as is remarked in § 3, if ran (BY*)Sran(4Y%). Then A-strong
continuity is additive as well as hereditary. Coo :

Theorem 6. Let A be'q positive opetatbt Then a positive opérator' B admits a
unique A-Lebesgue decomposition if and only if [A] B is A-st)ongly continyous, that is,
[A]B=oaA for some a=0.

Proof. Suppose that [4]B is A-strongly continuous and take an arbitrary
A-Lebesgue decomposition B=C+ D with A-absolutely continuous C and 4-singular
D. Theorem 2 implies D =[A]B—C=0. The positive operator [4]B—C is A-strongly
continuous as well as A-singular so that it must be equal to 0. Therefore B admits a
unique A-Lebesgue decomposition. .

Suppose conversely that [4]B is not 4-strongly continuous. Then by Lemma 1,
Lemma 4 and Theorem 5 the linear manifold D= {h; (4] B)"*h€ran (4%} is dense
in $ but not closed. As in the proof of Theorem 5 there exists a closed operator with
domain D, so that there exists a (bounded) positive operator S with ran (S)=2
(cf. [2]; Theorem 1.1). We may assume Szé—; 1. Since ran (S) is not closed and
[4] B0 by assumption, there exists a separable (closed) subspace G such that SP=
=PS, ([4]1B)- P=P-([4]B)+#0 and ran(SP) is not closed, where P is the ortho-
projection onto ®. Then in view of a theorem of voN NEUMANN ([2] Theorem 3.6)
there exists a unitary operator U, on the separable Hilbert space ® snch that

ran (SP)N ran (U,SP) = {0}.

Let us define a unitary operator U on $ by U=U, P+(I— P). Then it follows from the
properties of G and U, that
DNU*D) S HO6.

Consider the positive operators defined by
D = ([4]B)2U*S*U([4]B)* and. C = [d4]B—D.

First we shall show that C is 4-absolutely continuous. Since
1B = C = (A1BYBU* (I —S)U(AIBY = - (413,

by Lemma 4 (cf. [2]; Corollary 2.1.1) there exists a bounded 1nvert1ble operator R
such that CY2R=([4]B)"2. Then we have

1

{h: C2h¢ ran (4%} = R(D).
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Since D is dense in § and R is invertible, R(D) is dense in £ too, so that the above
relation implies the 4-absolute continuity of C by Theorem 5.

Let us prove "that D is not A4-absolutely continuous. Suppose the contrary,
Then Theorem 5 implies that ran (D%2) Nran (4'/?) is dense in ran (D*2), On the other
hand, by Lemma 4 and definition of D we have

ran (DY?) N ran (44%),= ran (([A]B)2U*S) N ran (4'/2).

Take an arbitrary & such that ([4] B)Y2U *Shcran (4*%). This requirement is equivalent
to U*SheD by the definition of ®. Since ran (S)="D, it follows that

(41B)2U*She [A1BY (DN U* (D)) S (4]1B)*($6 6).
Since $© & reduces [4] B, we can conclude
ran (DY) ran (41/%) € HO 6.

Finally since P commutes with S, U and [4]B, the subspace & reduces D2 and
DY*(®) > {0} according to ([A]B)P50. Therefore the above inclusion relation leads
to a contradiction that ran(DY2)Nran(4%2) is not dense in ran(D'?),

Now consider a decomposition B=C,+ D,, where C,=C+[4]{D+(B—[4]B)}
and D;=B—C,. This is an A4-Lebesgue decomposition. In fact, obviously C; is
positive A-absolutely continuous while D, is positive 4-singular by Theorem 2,
because

D, = {D+(B—[4]B)} —[4]1{D+(B—[4]B)}.

Finally C; does not coincide with [4]B. For otflerwise the relation
[41{D+(B—[A]B)} = [A]B—C = D

would imply the 4-absolute continuity of D by Theorem 2, which is a contradiction.
Thus B admits an A-Lebesgue decomposition different from the one given in Theo-
rem 2, This completes the proof of the theorem.

Corollary 7. The following conditions for a positive operator A are mutually
equivalent:
(a) ran}(A) is closed,
(b) A-absolute continuity is hereditary,
(c) Each positive operator admits a unique A-Lebesgue decomposition.

Proof. (a)=(b) is immediate, because under the closedness of ran (4) it is
easy to prove the equivalence of A-absolute continuity and A-strong continuity.
(b)=>(c) is proved just as in the first part of the proof of Theorem 6. (c)=>(a): Let P
be the orthoprojection onto the closure of ran (4). Then obviously P is A-absolutely
continuous. Now (¢) implies by Theorem 6 that P=aAd for some oz=0, which is
equivalent to the closedness of ran (4). This completes the proof,
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Strongly reductive operators are normal

CONSTANTIN APOSTOL, CIPRIAN FOIA§ and DAN VOICULESCU

An operator on a Hilbert space § is called reductive if every subspace £1) in-

variant for T is also invariant for T* (i.e. £ is reducing T). By a theorem of DYER,,
PEDERSEN and PORCELLI [4] every reductive operator is normal if and only if every
operator has a (non-trivial) invariant subspace. Therefore the study of reductive:
operators might shed some light into the intricate structure of general operators.
In particular it looked instructive to study a natural subclass of reductive operators.
[6]), [2]. Let us recall that an operator T on § is called strongly reductive if

er(0) = sup {|(/—P)T*P|: |(I—-P)TP| < 6}

tends to 0 for 6\ 0; P runs through the family ¢ of orthogonal projections in £.
Concerning this concept, the following was proved by HarrisoN [6] (Cor. 2.4. and
Thm. 3.8).

Proposition. If T is strongly reductive then its spectrum o (T) neither divides
the (complex) plane nor has interior (in the plane). These conditions on ¢(T) imply,.
in case T is normal, that T is strongly reductive.

The aim of this short Note is to supplement these results with the following..

Theorem. Every strongly reductive operator is normal.

We wilt divide the proof of this theorem in several steps:

1. Lemma. Let T be a strongly reductive operator on $ and let X be an operator
on some space K such that | X— UjTUj‘lll—»O (j—=<°) where U; (j=1,2,...) are
unitary operators from § onto K. Then X is also strongly reductive.

Proof. For 6=>0 let P€Z, be such that |(/— P)XP||<d. Denote T;=U; TUJ-‘l'
and take j large enough such that | X—T;| <6—|(/—P)XP|. Then for P;= Uj‘IPUJ-;

Received February 28, 1976.

1) All the spaces involved are complex Hilbert spaces; the subspaces will be always considered.
linear and closed. Also all operators will be linear, continuous, and mapping Hilbert spaces into.
Hilbert spaces.
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-we have P;€#; and ||(I—P;) TP;|| <4 so that
I(I-P)X*P| = |X*—T}| +|(I-P)T}P| =
| = | X=T;| +|(I=P)T*P;| = | X~T}| +&7(6),
~whence (letting j—~ o), |(I—P) X *P|| =¢.().

2. Lemma. Let T be a strongly reducttve operator on a separable space $.
‘Then T*T—TT* is compacr

Proof. Let # be the C*-algebra w1th unity, generated in the Calkm algebra
C(9)?) by the image T of T. Let moreover g be a faithful C *-representation of % on a
-separable Hilbert space ,. %) By virtue of [8], Thm. 1.3, we can take the operator
.X in Lemma 1 of the form X=Ta®o(T)®o(T); therefore this operator is strongly
‘reductive, henceforth reductive. But if P denotes the orthogonal projection of
HDH,D9, onto (06~ e(T)h: hESjo} then (/— P)XP=0, thus also [|[(/—P)X*P| =
"Whence we easily infer that o(T) *o(DYa=0(T)o(T)*h for all h€$H,, ie. Q(T*T—

————’
—TT%=0, T*T—-TT*= T*T- TT*=0.

3. Lemma. Let T be a strongly reductive operator.on §. Then, if dim H=>1,
.there exists a (non-trivial) subspace of ©, invariant for T (thus also reducing T).

Proof. Since, if dim $<e<- then T is obviously normal and if dim$H=>§,
‘then T is obviously reduced by separable subspaces of §, it remains to consider only
:the case dim $=¥,. In this case, the properties of ¢(T") (yielded by Harrison’s Pro-
position) together with the spectral characterization of quasitriangular operators [3],
“Thm. 5.4, imply that T is quasi-triangular. Therefore if || p(T)| || p’(ﬁ” for some
‘polynomial p(4), the existence of (nohftrivial)' subspaces reducing T is already estab-
Jlished in [2]. Thus we can assume that h B -

(1) () = 12D = 2l
-for all polynomials p(4). But in virtue of Lemma 2, T'is normal in C(9), thus
) eI = 1pleean(= max{p(D)]: Aea(TH}),

“where a(T)(Ca(T)) neither separates the plane nor has interior. By (1), (2) and by
virtue of the classical theorem of LAVRENTIEV [5], Ch. II, 8.7, the map p|,ipy—p(T)
‘extends to an isometric algebraic map of C(¢(T)) in L($). Consequently, if (T

%) This is the quotient C*-algebra C($)=L(9)/K(H), where L($) denotes the algebra of all
operators on £ while X($) denotes the ideal of all compact operators on 5 We shall denote the
«element X+ K($) (X€L(H)) in C(H) by X. :

%) The existence of such a representation follows easily from the: separabxhty of .@ and the
«classical Gelfand — Naimark theorem [7], Ch. V., § 24, Sec. 2. .
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reduces to a single point A, then T=4, if not then taking two continuous functions
f and g on o(T) not vanishing identically and such that fg=0 we have f(T)=0,
£(D)#0, f(T)g(T)=0, and T leaves invariant the (non-trivial) null-spaces of f(T)
and g(7).

4. We are now in state to achieve the proof of the theorem. As in the proof of
TLemma 3 we can assume that §) is separable. Also we can discard from § the largest
reducing subspace £ of $ on which T[€ is normal (see [1]). Therefore, in case T
is not normal we can assume that for any subspace £ 9, reducing 7, the operator
T|2 is not normal; it follows that for such subspaces & we have dim 8=g,. Using
ithese facts together with Lemma 3 we can prove that for any maximal totally ordered
family & of invariant subspaces & for T and for every 8,€.% the continuity properties

VIR:KR T K, REF) =R, = N {K: ] D K, KeF}

‘hold. Moreover, {0} and $ belong to &#. As T is (strongly) reductive the subspaces &
teduce T, and therefore, C=T*T—TT?* too. Since T is not normal, C=0. On the
-other hand, by Lemma 2 the operator C is compact so that it has a finite dimensional
non-zero eigen-subspace £. Then the corresponding orthogonal projection P, is
reduced by each R€F. Consequently, F'={RNL: KCF} has the same continuity
properties as &. This contradicts the finite dimensionality of 2.
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On thin operators relative to an ideal
in a von Neumann algebra

BRUCE A. BARNES

§ 1. Introduction

Let 4 be a von Neumann algebra, let Z be the center of 4, and let X be a proper
closed ideal of 4 with the property that if 7€ 4 and TK= {0}, then T=0. The set of
thin operators of A relative to K, denoted 3y, is the set of operators of the form X+ T
where X¢€Z and T€K. In the case where 4= B(9), the algebra of all bounded linear
operators on a Hilbert space §, and K=K(9), the closed ideal of compact operators
in B(9), this definition is due to R. DouGLAs and C. PEARCY [6]. Let 8, be the col-
lection of all projections in K. If P, Q€6g, then PV Q¢€0¢. This follows from [11,
Lemma 2.1] where the proof is given for the more general case when A4 is an AW *-
algebra. Thus 6y is upward directed in the usual ordering of projections (P=Q
means PQ=0QP=P). In [6], DoucLAS and PEARCY characterized the thin operators
in B(9) relative to K(9) as the set of all operators T that satisfy

lim |PTP~TP| =0
Pcoy

[6, Theorem 2]. Also in [6], they related the 5 function of A. BRowN and C. PEARCY
[4], [10}, to

lim sup ||PTP—TP|.

Peog .

They asked if there is a suitable extension of these results to the case where 4 is a
general von Neumann algebra. ‘ _

In aseries of papers[7],[8] C. OLsEN proved the Douglas—Pearcy characterization
of the thin operators in the general case. Also, she conjectured {8, p. 572]. that the
distance from T€ A4 to I is given by

glerpx sup | PTP—TPj.

Received July 29, 1975, revised March 20, 1976.
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That this conjecture holds when 4=B($) and K=K ($) was proved by C. APOSTOL,
C. Fouay, and L. ZsiD6 in [1].

In [2], for 4 a von Neumann algebra or a C *-factor, C. AposroL and L. Zsip6
made a systematic study of the relationship between the distance of an element T€ 4
from 3, the n function evaluated at 7, and the norm of the inner derivation induced.
onAbyT.

In this paper we make three contributions to this circle of ideas. First, in § 2 we
give a new proof that when A4 is a von Neumann algebra, then 7€ 4 is in 3, if and
only if

lim |TP—PT| = 0.
Peby

We note in this connection that C. OLSEN proves [8, Theorem 2] that it is always the
case that
}!lerglx sup |PTP—-TP|| = p‘é‘& sup |TP = PT|.

Our proof depends only on elementary arguments, and is considerably shorter than
the proof by OLSEN in [7], [8]. Second, in § 3 we introduce a nonspatial form of the n
function of BROWN and PEARcY [4], [10]. The generalized function # is defined on A
using pure states of 4, and is completely independent of any particular representation
of 4 as a von Neumann algebra of operators on a Hilbert space. We prove some of
the elementary. properties of # in § 3. Then in § 4 we prove that n(7T) measures the
distance from T to 3. This is a generalization of [1, Lemma 1.1]. Third, in § 4 we
prove the conjecture of C. Olsen that the distance from T to Jg is given by

Phe%ic sup |[TP—PT|| =1]1Erglxsup |PTP—TP}.

This result provides another proof of the Douglas—Pearcy—Olsen characterization
-of 3. .

At this point we introduce some notation. Throughout this paper 4, Z, K, 0,
and J; will be as stated at the beginning of this §. The identity operator in A4 is denoted
by 1. If B is a subalgebra of 4 and P is a projection in A4, then B,=PBP. Also, if
T€A, then Tp=PTP. The distance of T€A4 from a subspace BC A is denoted
d(T, B), i.e.,

. d(T, B) = inf {|T+ S| : S¢B}.

The set of pure states of A4 is denoted P,. If a€ P, then let @, be the irreducible
representation determined by «, and let , be the corresponding representation space.
The inner product of vectors &, 7€ 9, is denoted by (¢, ).

If POy, then let

A(P) = {a€Py: a(K) = {0} and «(P) = 0}.
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The collection 4(P) plays. an important role in later sections. Now we verify that.
A(P) is nonempty. For assume that PeOg. If AP=K, then K(I—P)={0}. This.
implies that P=1I, a contradiction. Thus, APCK and AP=K. By [5, Théoréme
2.9.5] there exists a maximal left ideal M of A4 such that APC M and K¢ M. By
this same result it follows that there exists « € P, such that oz(AP) {0} and a(K) # {0}..
Therefore a€ 4 (P). :

§ 2. The characterization of the thin operators

In this § we give a new proof of the Douglas—Pearcy—Olsen characterization of’
3k [6], [7], [8]. The main tool in the proof is a result of the present author [3, Lemma
6.1]. Before proving the characterization, we state this result.

2.1. Assume a€P, and T, €4, 1=k=m. Then there exists a sequence of non-
zero projections {E,}C A such that for 1=k=m,

lim | E, T, E, —o(T) E,Jl = 0.
This result is established in [3] using completely elementary arguments.

Theorem 2.2. T€3, if and only if lim |TP—PT| =0.
. Peoy

v

Proof. If T€3J, then it is straigthforward to prove
o - e 1!?3],( |TP—PT]| = 0;

see the proof of [7, Proposition 2.1]. We prove the converse. Assume that (1)
holds. Let ¢=0 be arbitrary. Choose Q€0, such that Pcf,, P=Q implies that
|TP— PT||<e¢. Assume R€0; and R=(J— Q). Then R+ Q€0 and R+-Q=Q. Thus, by
the choice of Q, we have |T(R+Q)—(R+Q)T||<¢ and |TQ—QT | <e. Therefore,.
TR— RT{ <2e. This proves

) if Re€B; and R=171-Q, then |[TR—RT| < 2.

Let o be any pure state of 4 such that «(K)={0}. Then « restricts to'a pure state of
Aj_g. Let S be any operator in 4. Consider the elements of 4;_,, Ty=T;_,.
T,=S;_¢, and T;=(TS);_o. Applying (2.1) to the operators T €A4;_ 4, 1=k=3,
we have that there exists a sequence of nonzero projections {E,} in 4,_, such that
for k 1,2,3

IE,TLE,—a(TYE] ~0 as n— .

Note that since ¢(Q)=0, we have a(R;_p)=ua(R) for all R¢A. Therefore, o
(3) [IE,,TE,,—O((T)E,,” g 0’ ”E,SE,,—OC(S)E"“ - 05 ”En TSE,,—&(TS)E"” - 0.
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Now E,KE, is a nonzero closed ideal in the von Neumann algebra E, AE,. Therefore
for each n we can choose a nonzero projection F,€E,KE,CK. Thus F,sE,=[-Q
for each n=1. It follows immediately from (2) that

) \TF,—F,T| < 2¢ (nz=1)).
Since F,=E, for all n, we have by (3) that

(5 |F,TF,—«(T)F,| -0, |F,SF,—a(S)F,|—+0, [F,TSF,—a(TS)F,| —0.
Now,
[o(T)a(S) —a(TS)| = (T (S)F, —a(TS)F,)| =

= |F,TSF,—a(TS)F,|| +||F,TSF,— F,TF,SF,| +||F,TF,SF,—a(T)x(S)F,|.

The first and third terms of the sum on the right hand side of this inequality abproach
zero by (5). Also, '

|F.TSF, — F,TF,SF,|| = |[F,T(I- F)SF,|| = |F,T-TFJ||S| = 2&{ S|
for all n=1, by (4). Therefore, |a(T)a(S) —a(TS)|<2¢| S|, and since e=>0 is arbitrary,
oa(TS) = a(T)a(S).
.A. similar proof shows that for all Se4,
a(ST) = a(S)a(T) = «(TS).

Thus (ST —T7S)=0 for all S€4 and all a€ P, with a(K)={0}. Therefore T commu-
tes with 4 modulo X, i.e. the natural quotient map of 4 onto 4/K maps T into the
center of A/K. Then by [5, Exercise 7, p. 259], T€3¢.

§ 3. The nonspatial from of the y function

In [4], A. BrROwN and C. PEARCY define a function # on the von Neumann
algebra 4= B(9) relative to the ideal K of compact operators by the formula

Q) n(T) =,,iEnofK(SUP{IIT5*(T€, &)¢ll: &9, Il =1, PE = 0})

If £€9, £ =1, then let w, be the pure state of B(H) given by w(T)=(T¢, £). Ob-
serve that

ITE —(TE, OEI? = 0 (T*T) —|w(T)|*

In this case, {w,: £€H, |&] =1} is exactly the set of pure states & of 4 with the pro-
perty that a(K) > {0}. If ac P, and P€0y, then we use the notations

Q) v T)=(T*"T)~(T)F)? (TeA), A(P)={a€P,: a(K)5> {0}, «(P) = 0}.
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Recall from the Introduction that A(P) is nonempty With the notation above the
formula in (1) takes the form

©) n(T) = jof (sup{y(x, T7): ac4(P)}).
Now 6 is an upward directed set. For a fixed T €A, the net

P —sup{y(a, T) : a€A(P)}
is decreasing on 6. Thus,

n(T) = }}gg}( (sup {y(@, T) : a€A(P)}).

In general, if 4 is a von Neumann algebra and K is a closed ideal of 4, then the
definitions in (2) and (3) make sense. In particular, (3) is a generalized nonspatial
expression of the useful # function of Brown and Pearcy. At times, in order to indi-
cate the dependence of the function 5 on the ideal K, we write ng in place of #. In this
§ we derive the elementary properties of the function #, while in the next §, we show
that n, (T) measures the distance of an operator T¢ 4 from the thin operators rela-
tive to K.

Since for any «€ P, we have y(a, TR =a(T*T)=| T3 it follows that

3.1 n(T) =|T| (TcA).
Next we show that

3.2) T—-nT) isa sem_inorm on A.

That n(AT)=|A{n(T), T€A, /. a scalar, is obvious. Since « is a positive functional on
A, we have

@ a((C+By*(C+B))2 = a(C*C)2 +a(B*B)'",
for all C, B€ A. Also, note that
(o, T) = a((T* —a(T))(T—a(T) D).

Thus, setting C=T—a(T)I and B=S—a(S)Iin (4), we have y(x, T+ S)<y(oz )+
+ 7(e, S). Therefore,

su(p)y(a, T+8) = ( sup y (e, T)+ sup 7(a, S)).
a€ AP

Taking limits over P€0; we have n(T+ S)=n(T)+n(S).
(3.3) If T€¢A and S€K, then n(T+S)=n(T).

To prove (3.3) first observe that #(P)=0 whenever P€0. Since 7 is a seminorm,
it follows that if L is any finite linear combination of projections in 8, then n(L)=0.

4A
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Now assume that S€K. Let ¢=0 be arbitrary. Choose L, a finite linear combination
of projections in 6 such that | S—L||<e¢. Then

n(S) = (S)—nL) =n(S-L) = |S-L| <e.
Thus, #(§)=0. Then n(T)—n(S)=n(T+ S)=n(T)+n(S)=n(T).
(3.9 n(T+X) =n(T) (T€4d, XcZ).

To prove (3.4), assume that a€P,, T€A, and X€Z. Form the irreducible represen-
tation (@,, 9,), and choose £€9, | €] =1, such that

2(8) = (D,(8)¢, &) (S A).
Then &,(X) is the scalar a(X) times the identity operator on H,. Therefore
A(TX) = (@ (T) P, (X)¢, &) = ¢(X)(Po(T)E, &) = a(X)a(T).
P, T+X)? = ((T*+ X*)T+ X))~ |a(T+X) 2 =
= a(T* T)+a(T)a(X)+a(T)a(X) + [t (X) P — (2(T) +2 (X)) (2(T) + (X)) =
= (T T)— |a(T)F = (e, T)™
Therefore n(T+ X)=n(T).

Thus,

§ 4. The distance from the thin operators

Throughout this §, A4 is a von Neumann algebra and X is a closed ideal of 4 with
the property that if 7¢ 4 and TK= {0}, then T=0. When 4 is represented spatially,
this property of K is equivalent to the property that X is weak operator dense in A.
In this § we prove the following theorem.

Theorem 4.1. Let A and K be as above. Then
nx(T) = lim sup |TP—PT| = d(T, 3y).
PEog
The first equality in this statement generalizes a result of R. DouGLAs and C. PeEARCY
in [6], and the second equality is a conjecture of C. OLSEN [8. p. 572].

We prove Theorem 4.1 in several steps. The first of these, the next proposition,
is a direct generalization of [6, Theorem 1].

Proposition 4.2 n(T)=}!irgx sup IIPT(I—P)ll.
€0x
Proof. Let u equal the lim sup on the right hand side of the equality above.

Fix P€0y. Then
. (U-P)T*PT(I—-P)EK,_p.
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The;e exists f€ P, such that (/—P)=1, and
) B(T*PT) = B((I-P)T*PT(I-P)) = | PT(I-P)|.
Note that if PT(I— P)=0, then $(K)= {0}. Also,

@ B(T* (1~ P)T)~ |B(T)[* = B(T*(I-P)T)~|B((I~P)T)| = 0.
Adding (1) and (2) we have
7B, TY* = B(T*T)—|B(T) = |PT(I—P)]*
Therefore,
sup {y(, T) : a€ 4(P)} = | PT(I—P)}.

Taking the lim sup over P€ 6, on both sides of this inequality, it follows that n (T)=p.

Conversely, let § >0 be arbitrary. Fix Pc0,. We proceed to find Q€0 such that
Q=P and

1eT(I-Q) = n(T)—0o.

Then this suffices to prove the inequality u=#n (7).

Assume o€ A(P) is such that

(o, Ty_p) = n(Ty_p)—06.

Denote by o, the restriction of o to A;_p. Then a, is a pure state of 4;_p. Form the
irreducible representation ((D,o, 5,0) of A4;_p. Choose 265,0, izl=1, such that
%(S) = (Po(S)2, 2) (SEA;_p).

Let w=®,(T;-p)z—0y(T;_p)z. Then

Iwl? = “o((I—P)T*(I—P)T(I—P))—|°‘0(T1—P)|2 = y(a, T_p)>
Observe that w1z in §, . Then by Kadison’s Transitivity Theorem [5, Théoréme
2.8.3] there exists a selfadjoint operator S€ K, _p such that &, (S)z Oand @, (S)w—
=w. Then @, (5*)z=0 and &, (S)w=w. Using the spectral resolution of the iden-
tity for S%, it 1s not difficult to show that there exists a sequence of projections {R,}C

C K, _p such that
P, (R)z=0 and &, (R)w —w.

Then
o2 ((I—P)T*R,T(I-P)) = (®,,((I—P)T*R,T(I-P))z, 2)
= “(pao(Rn) ¢ao(TI —P)ZHZ = l |¢ao(Rn)((pao(TI—P)z - aO(TI-P)Z)l |2
= || @y (RIWII? —~ [[W]|%
Therefore

o%((I~P)T*R,T(I-P)) — |wl2, |IWli* = y(a, T7_p)* = (n(T;_p) —5)*.
Set R=R,, for some m so large that

oo((I~P)T*R,, T(I—P)) > ((T;_p) — )

4*
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Now we have :
a(T*RT) = a((T*RT);_p) = a((I~P)T*RT(I-P)).
Also, by (3.3), 7(T;-p)=n(T). Thus PR=RP=0, and a(T*RT)> (n(T)—5)% Let
Q=P+R. Then Q=P and a(Q)=0. Finally
IQT(I-Q)|I = a((I-QT*QT(I-Q)) = «(T*QT) = a(T*RT) > (n(T) -0}~
This completes the proof of the proposition.
If T¢€Ad, X¢Z, and J€K, then by (3.3) and (3.4) we have n(T)=n(T+X+J).

1t follows using (3.1) that q(T)=||T+X+J||. Therefore n(T)=d(T, Ig).
We state this result as a lemma.

Lemma 4.3. ng(T)=d(T, 3g).

Our aim now is to prove the reverse of the inequality appearing in Lemma 4.3.
First we need a technical result. Let I" be the set of all primitive ideals B of 4 such
that K¢ B. For BET, let ng be the natural quotient map of 4 onto 4/B. We show that

@4 IS|l = sup [ms(S)I  (S€A).
Ber

Let @ be the map from A into the C*-direct product of the C*-algebras 4/B,
BeT, given by
Q(S) = (TCB(S))BET'

Since () (BNK)={0}, @ is anisomorphism on K. If S¢4 and S0, then there exists
Ber

JEK such that SJ0. Then ®(SJ)=0, so $(S5)=0. Thus &, is a *-isomorphism of

A, and therefore, an isometry. This proves (4.4).

Lemma 4.5. ng(T)=d(T, 3y).

Proof. Let 4 be the set of all € P, such that «(K)={0}. Assume Tc€A4. We
prove

) supy(e, T) = d(T, 2).
acd

Assume a€4, and let (&,, $,) be the irreducible representation of 4 determined by a.
If £€9,, [El=1, let
W (S) = (P (S)¢, &) (SeA).

By definition [9, p. 216}, w, is representable by (®,, $,). Then by [9, Lemma (4.5.8)] the
*-representation of A associated with w, is unitarily equivalent to (&,, $,). Thus,
w, is a pure state of 4 [9, Theorem (4.6.4)]. Since &,(K) acts irreducibly on $,,
we have w,€4. Let Dy and D, r be the inner derivations determined by T on 4,
and by 9,(T) on B(9,), respectively. Observe that

Y@y, T) = [|D,(T)E ~(2.(T)¢E, EHEN.
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Then by [2, Corollary 1.3]

1
(2) sup ')’((Dg, T) = 3 "Da,T"'
$€EH,, IZI=1

Let £=0 be arbitrary. Choose S€ 4, ||S] =1, such that

N TS—ST| = |Dr|l —e.
Then by (2)

1
3 sup _ p(wg, T) = 5 || 9. (TS —ST)|.
2E€ Dy, IEI=1 :

Let B, be the primitive ideal that is the kernel of &,, and let =, be the natural quotient
map of 4 onto 4/B,. If R¢ 4, then || ®,(R)|| =||r,(R)]. Therefore by (4.4)

iRl = sup ||lm,(R)l| = sup || D, (R)Il.
a€d acd )
Applying this equality to (3), we have
1 1 1
supy(a, T) = = sup | P (TS —ST)|| = = |TS—ST|| = = (| D7l —¢).
a€d _ 2 ac4 2 2
This proves that
1
supy(a, 7) = = [Drll.
a€4
Then by [12, Corollary, p. 148]
sup y(a, T) = d(T, Z).
ac4

This completes the proof of (1).
Now fix Pe€8x. The center of 4;_p is Z;_p. Applying (1) to the algebra 4,.,
and the element (/— P)T(I— P), we have

sup y(o, T) = d((I-P)T(I—-P), Z;_»).
a € A(P)

d((I-P)T(I—P), Z;_p) = jof |(I-P)T(I-P)+(I- P)X(I-F)|

Also,

= d(T, 3y).
Therefore, ng (T =d(T, 3g).
By [8, Theorem 2]

A sup \PTU—-P)| = Aim sup |TP—PT}.

This equality in conjunction with Proposition 4.2, Lemma 4.3, and Lemma 4.5,

proves Theorem 4.1. ,
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Corollary 4.6. Let A and K be as before. Then the following are equivalent

Jor TeA:
I}iergl (TP—PT|| =0, ng(T)=0, and Te€3g.

Acknowledgement. The author acknowledges with thanks the many constructive
suggestions made by the referee. These suggestlons resulted in significant improve-
ments in this paper.
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Jordan model for some operators

HARI BERCOVICI

“ The aim of this Note is to find the Jordan model of a C, operator whose cha-
racteristic function coincides with e, (z)= =exp [A —] where 4 is a bounded posi-

tive operator acting on a separable Hilbert space K. This problem was proposed by
C. Foias for =L2(0, 1) and the operator 4 defined by (4f)(x)=xf(x), f€L2(0, 1).

1. Preliminaries

We will frequently use the following assertion. If ‘7, T” are two quasisimilar
completely non-unitary contractions, méEéH™, R=(ranm(T))” and R'=
=(ran m(T”))~, then T|R and T”|R’ are also quasisimilar (cf. [2]).

Let us recall that if the operator T is acting on $, lts multlphcny ur is dcﬁned

as the minimum cardinality of a subset M H such that V T"M=%.If T and T’
are quasisimilar, then u; =ur (cf 3.
Proposition A. (cf. [4], [5], [1]) Let T be a C, operator acting on.a separable

Hilbert space. Then there exists a sequence {m.);_, of inner functions suchythat:
(1) m; ., divides m; for each j,

(2) T is quasisimilar to 6"9 S(m));
ji=1

3) my=my;
- (@) n=pr (E).
The sequence {m j}j=1 is umquer determmed by conditions (1) and (2)

The operator @ S(m,) is called the Jordan model of 7. An operator of the form
j=1 : '

é S(m;), for which (1) holds, is called a Jordan operator.
j=1

Received December 15, 1975.
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Let us recall that with each inner function {&, &, @(z)} in the unit disc we can
associate the operator S(©) acting on the space

(1.1 9(0) = H*(K)© OHX(R),
defined by
1.2) . S(®)u = Pgg)(zu(2)), ucH(O).

If the function {K, K, @ (2)} is pure, then it coincides with the characteristic function
of the contraction S(8) (cf. [2]). '

If is obvious that if / is an at most countable set and for each i€/, {&],, &;, ©,(2)}
is an inner function in the unit disc, then the function {R, &, @ (z)}, where K= EB ]
and @(2)= @ ©;(2), is also inner and we have

3 S(6) = § S(6).

2. The Jordan model of S(e,)

Let 4 be a positive operator on the separable Hilbert space !, with spectral
measure E. We can then define an inner function {&, &, e,(2)} by the formula:

z+1 3
@.1) e(z) = exp [A _1] = [ e2)dE, a=|A4l,
0
where we use the notation:
2.2) e,(2) = exp [z ;l_}] .

As e (0)=exp (—A), it is easy to see that the function e, is pure if and only if
ker 4={0}.

Lemma 1. The characteristic function of

S(ey)|(rane,(S(ey))~, =0,

is {R, Ry, e4,(2)), where K=E((, |4I)] and 4,=(A—1D)R,. Thus S(e,) is a
Co operator and its minimal function is e 4, .

Proof. We first show that
(2.3) (ran e,(S(en))” = e HA(R)O e, HXA(K)
where
(2.9) A; = AE((0, 1))+ 1E((r, | Al]).



Jordan model for some operators 217

Indeed we have
(ran e'(S(eA)))_ = (P.s(eA) erﬁ(e,q))_ = (Ps(eA)e,Hz(R))' =
= (e HX(R) + e, HX(R))~ O e, HA(R).

The operator of multiplication by e, on H2(f) may be represented as a product
€44, Where A =(tI— A) E((0, t]), thus e, HX(R)Ce,, H2(R) and from (2.5) we infer

(2.6) (ran e,(S(e,)))” C e, HX(R)O e  HA(KR).
Now, for uc H*(R) we have
equ = e E((0, M) u+e E((t, |AI)u,
thus e, H2(R)C e, H2(]) + ¢, H3(]) and from (2.5) we infer
ey HA(R)O e HA(R) (ran ¢,(S(e,)) .
This inclusion and (2.6) prove the equality (2.3).

Now let us remark that the operator R: $H(e,)—+9(e,) defined by Ru=e,u is
isometric,

R9(es) = e, HA(R)O e, HA(R,) = e, H*(R)O e, HA(R) = (ran e,(S(ey))~

and RS(e,)=S(es)R. Thus S(e,)|(ran e,(S(e,))™ is unitarily equivalent so S(e,)
and the lemma follows if we remark that ker 4,={0}, that is e, is pure.

2.5)

Lemma 2. We have Hs( ,=Rank 4.

Proof. We may suppose without loss of generality that kér A={0}. If Rank 4=
=n-<oo, A is represented, for an adequate choice of the basis in &, by the matrix

L 0..0
0 tz."'o , hzt=...=t1,>0.
0 0..1,

1t follows that S(e,) is unitarily equivalent to the Jordan operator 6"9 S(e,j); thus.
j=1
S(e,) is of multiplicity .
Conversely, let us suppose that S(e,) is of mhltiplicity n- oo, We show first that

_ the spectrum ¢ (4) consists of at most n points. If ¢(4) contains more than n points '
we can find 0—t°<t, <t,,+1—|]A|l such that E((t,, 441])#0, i=0,1,

Because A= @ AIE((1;, tHl])R- ea A;, we have S(e,)= EB S(es)- From Lemma 1
and Proposmon A it follows that S(e 4,) is quasisimilar to a Jordan operator

S(e,)®..., where s;=[A4l€(, tiq
Thus S(e,) is quasisimilar to

T = S(e,)DS(es, )P...®S(e;)D...
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8p>Sy-1>...>5,>0 (T may not be a Jordan operator). It is clear that up=n+1
-and this contradicts the equallty Br=HUse y=n. Thus &(4), consits of at most n
points, say

a(A) {tl,t,,.. t,} r;>12 '>rk>0 k = n).

Each 7, is an elgenvalue of A4 say of multiplicity. n,(= ). Because 4 = @ AE({z}) &,

it follows that S(e,) is unitarily équivalent to

k n;
@) 88 se).

i=1\j=1
Now, the operator (2.7) is of finite mliltiplicity if and only if n;<os, i=1, ..., k,
and then its multiplicity equals n;+n3+4-... +n,=Rank 4. The lemma follows.

.., Lemma 3. Let S= é..S(mj) b,e‘.q Jordan operator of infinite multiplicity and
A S, Lot ST D , ,

let T be a C, operator acting on a separable Hilbert space with the property that m;
divides m; for each j. T he_n. the .[ordan.model of T®S is S..

- Proof. ' Let .S'= 69 S(m) be the Jordan. model of T@S For each Jy

-(T@S)l(ran m,(TéBS))' is’ quasxsxmxlar to ~§’|(ran m,(S )™, thus it 'has " finite
multlphclty It follows that, for sufficiently large i, mJ(S(m‘)) 0, thus m; divi-
des m, From_ the hypothe51s it follows that m; divides mj for each J- Now,
(TEB S)I(ran mT(TEBS))‘ . and S’ (ran mT(S’))“ are quasxslmllar Because
(TEB S)[(ran mp(T® S)) S’[(ran mT(S ))' are umtarlly equivalent to @ S(m;/my),
@ S(m/my) respectively, from the umqueness assertion of Proposmon A it follows
J_

that m,/mT—m imy, m; mj for each j.

The lemma is proved

Let us put
@8 ty= mf{t dim E((t ||A||])R < oo}
‘Then a(4)N (%, || 4]]] contains only eigenvalues of finite multiplicity. Let {t,}
n,=dim E((to, | A]) ] =, 1, =1, =..., be these eigenvalues, each one. being counted

according its multiplicity. So we are able ‘to state the main result of this paper:

. Theorem. The Jordan model of S(e,) is: -

@ @ Ste) i o= dmE(e, MR = =i

® (& s@)o(@ se) 7 n<-
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Proof. We have the relation A=A’ea(e§ t,] (here ¢, is considered as a multi- »
j=1
plication operator on a 1-dimensional Hilbert space), thus S(e,)=S(e,)®

@(é S(e,j)]. If n,=<o, the conditions of Lemma 3 are satisfied for T=S(e,.)
Jj=1
and S= @ S(e,), ‘thus (a) follows.

j=1

Let us suppose that n,<oo. Then, if E’ denotes the spectral measure of 4,
we have dim ran E’((t, t,]) =  for each t<t,=||4’|. From Lemmas 1 and 2 it follows
that for each t<#,=| 4’|l the operator S(e,)|(ran e,(S(e,)))” is of infinite multi-

plicity. Let S=S(e,)®(B S(e,)), fr=1'=1*=..., be the Jordan model of S(ey).
i=1

If ¥=t<t, for some j, it follows that S|(ran e (S)) is of finite multiplicity, thus
S(e,)|(ran e,(S(e,-)))~ is of finite multiplicity, a contradiction. It follows that ¢/ =t¢,
for each j, thus S{e,) is quasisimilar to

(3 50)s(3,50)

The last operator is a Jordan operator and the theorem follows from the uniqueness
assertion of Proposition A.

- Remark. If A acts on a finite dimensional Hilbert space we have n,=Rank 4,

t,=0, and the Jordan model has the form é S(e,j). Thus our theorem is verified
. j=1

1in this case also.
Example. Let 4 be defined by (4f)(x) = x-f(x) on K=L2?(0, 1). Then 4| =1
and A has no eigenvalues. It follows that the Jordan model of S(e,) is é S(ey).
i=1
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On intertwining dilations

ZOIA CEAUSESCU

Introduction. Let 7, T’ be two contractions on the Hilbert space $ and §’,
and U, U’ their isometric dilations on & and K, respectively. For an operator
AEL(®’, H) (the space of all bounded operators from §” into ) intertwining T and
T’ (ie. TA=AT’) let us call an intertwining dilation of A any operator BEL(R'; &)
satisfying: PgyB|$'=A, UB=BU’ and B(R'©H')c RO $H. If, moreover, B satisfies
| Bll=[lA]l it will be called an exact intertwining dilation of A. It is known that for any
operator A4 intertwining 7 and T~ there exists at least one exact intertwining dilation
(see Th. 2. 3 of [3]).

In the present paper we are concerned with the problem of uniqueness of such
an exact intertwining dilation. We reduce this problem to the similar problem for the
Hahn—Banach extensions of continuous functionals on some adequate quotient
spaces of projective tensor products.?)

Our main result is contained in Section 3. Thus we show that if an operator
intertwining two contractions has a unique exact intertwining dilation, then all the
operators which are “dominated” (in the sense of Definition 3.1) by it have the
same property (see Th. 3.2). As an illustrative example, in the last section, an
application of the above theorem to Hankel operators is given.

I take this opportunity to express my gratitude to Prof. C. Foias, for many
helpful discussions. Also I thank Prof. B. Sz.-Nagy for his useful remarks on the
first version of this paper.

1. Let & and ® be two Hilbert spaces. We shall denote by 8*® & the subspace of
L(8; ®) consisting of operators ¢ which admit a representation of the form

m T= Z'k}‘®g,-, ‘where kiR, g;€6, 1=j=mn,
j=1

that is, ’

) (k) = ,gl' k, kg, (keER).

Received December 18, 1975, revised March 5, 1976.
1) This reduction already was done in some more or less particular cases (see for instance [6]).
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We shall use the notation | - |, for the nuclear norm on 8*®6:

© i = int{ Zikdigl: = Shioe).

The space R*® ® endowed with thls norm will be denoted by R*®(B
An immediate result is expressed by the following

Lemma 1.1, For a subspace $ of & the space H* QR can be identified with the
subspace L of R*R® consisting of those 1€ R* QG for which

4 71809 =0.
~ On account of Lemma 1.1 we may and will identify $*®® with the subspace £

defined by (4), of K*®®. We shall denote by R*®(5 and 5*@@ the completions
of R*®® and $*R G, respectively. ‘
Let us recall some well known properties (see [7]) of the completion of projective

tensor product.

(i) Every element 7 of R*(é)@ is the sum of an absolutely convergent series;
n

= Skieg, and I =inf{ Sikilgl: = 3 kos).

n=0

(ii) The dual of R*(é)(ﬁ is realized as the space L(G®; K).

Also, we shall consider operators U on &, T on §, and Z on ®, and assume
that § is a subspace of & invariant for U*, and U*|$=T"*.

We denote by [Z, U] the operator on L(K; ®), defined by
(5) [Z, UYW =ZV-VU for Ve L(K; G).

Note that *®@6® and $*®6G are invariant for [Z, U], and in virtue of the
condition T*=U*|$ we have

[z, U]|9*®@6 =[Z, T]|$*®6

(where [Z, T] is defined on L($; ®) in the same way as [Z, U] is on L(K; ®)). The
operators [Z, T] and [Z, U] can be extended continuously to 5*@6 and R*é(ﬁ,

respectively. Now, denote
(6) Ry = (12, UV)K* & B))~, Ry =(Z, TIH*Q 6))"
where the closures are taken in the spaces R*®6 and &*é)(ﬁ, respectively. We shall

n
consider the quotients modulo Ry and R, of the nuclear norms on K*QG and
T

sj*(é(ﬁ, respectively; thus, if Y and ¢ denote the canonical epimorphism

w:a’@@» (R*;é@)/mu, ?:9"®6 - (H* R 6)/R;
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then
W@l = inf e+l e O 6) and lo@I = inf lr+ul.(€9* ® 6).

Since, Ry > Ry, we infer that

©) ' W@ = le@l for res5*§>fﬁ.

Lemma 1.2. (i) The dual of the Banach space (R*é(ﬁ)/?tv is isometric-iso-
morphic to the subspace "
{BEL(®; &) : UB = BZ} of L(6G;S8),
(it) The dual of the Banach space (5*??(5)/911 is isometric-isomorphic to the

subspace
{A€L(6; 9): TA = AZ} of L(G; 9H).

Proof. (i): Firstly, let us observe that {BEL(®; K): UB=BZ} is isometric—
isomorphic to Ry, where we denote by R the orthogonal of Ry i.e.

K& = {fe(]* ® 6): fI1Ry = 0}.

Indeed, since L(6; &) is isometric-isomorphic to (R*é(ﬁ)’, for any BEL(®; &)
with the property UB=BZ there is a unique f from (R*é(‘b)’ with the properties.

(@) f(k*®8) = (Bg, k) (kcK, g€®) and (b) [ S]] =1BI.
But, for this fand for any k€K, g€ ®, we also have:
f(Z, UJ(k*®g)) = (BZg, k)— (UBg, k) =
Since the set {[Z, Ul(k*®g): k€&, g€®} spans Ry, it results readily f[R,=0.
Conversely, since L(®; 8)=(K*®6)’, for any f¢(]*®6G)" with f|Ry=0,

there exists a unique B¢L(®; K) satisfying conditions (a), (b) above; moreover,.

we have
((UB-B2)g, k) =f(1Z, Ul(k*®g)) =0 for any k€S8, g€6.

Thus, the operator B has also the property UB=BZ.

Now, statement (i) of the Lemma results from the following general fact::
If X is a Banach space and ) is a subspace of X, then the orthogonal 9+ of P is.
isometric-isomorphic to the dual of the quotient space X/9).

(ii): The proof is analogous to that of (i), due to the similar definition for the~.

space 35*®(5 and thus for ($* ®®)/RT too.
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Lemma 1.3. The foliowing two statements are equivalent:
(P,) For any ACL(®, S) satisfing the condition TA=AZ, there exists at least one
" exact mtertwmmg dilation BcL(®; K) of A.

(Py) For any 1€9H* @‘5, we have ||y (D) =l @I

Proof. First, we notice that, on account of Lemma 1.2, (P,) is equivalent to:
(P;) For any fe((H*®6)/Ry) there exists an “extension” fe((R*Q6)/Ry) of

f(ie. b ()=fo(z) for all teﬁ*é(ﬁ) such that:

LAl =111l (or equivalently, | fll = |l fol). _

Indeed, if (P,) holds then, in virtue of Lemma 1.2, for fe((sj*é(ﬁ)/ R;) there
is fe((ﬁ*éos)/m,,)' such that || fil=| f|| and /¥ (h*®g)=fo(h*®g) for all hcH and
2€6®. Since, for €9 ®03 there are the representations 7= Z‘h*@g,, where the

series %h*@g,, is absolutely convergent, and since f, f, o, ¢, are continuous, we

.also have

fo(r) =fib(x) for all 1655*? .
"The converse iﬁplication (Py)=(Py) is, by Lemma 1.2, even more obvious.
Now, we assume that (P;) holds. Let us take 7,6 H*®@©® with ¢(7,)=0. There
exists fe((ﬁ*é@)/ Ry) with the properties: )
| 171 = fell =1, fo(eo) = Il
For this f there exists, according to (P)), fe((ﬁ*gﬁ(ﬁ)/ Ry) such that

IAA=1fl=1 and fp(x) =fo(x) (z€ Sj*(? ®).
‘Thus, by (7), ' )
lo (ol = A (z) = 1711 @)l = 1Y Il = @ ().

If ¢ (z0)=0 then, by (7), 0=|¥ (z)l| =ll¢ (zo)]| =0. Consequently, we obtain |¢(z)| =
=(y @)| for all T€H* @(5

Let us now assume that |@ ()| —"l[l(‘t)“ for all t¢H* ®(5 This means that the

.continuous canonical epimorphism
(5" ® 6) = (5* & 6)/Rr ~ (5* Q 6)/Ry = ¥(5* @ 6)

is an isometry. Therefore, we can identify (5*@05)/ R, with the subspace (5*@&'))/ Ry
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of (R*é(ﬁ)/fﬁu. Now, the implication (Py)=(P;) follows from the Hahn—Banach

Theorem. ‘

It is known that if T'is a contraction on $, U a minimal isometric dilation of T
on R, and Z an isometry on ®, then assertion (P,) of Lemma 1.3 is true (cf. [5] Prop.
I 2.2). Thus we have '

Theorem 1.1. Let T be a contraction on , U a minimal isometric dilation of T,
and Z an isometry on ®. Then,

&* & GI(Z, TI$* B 6))-
is linear canonically isometric to the image of 5*@@ in
& ® B)([Z, UJR* @ &),

2. In the sequel we shall only treat the case considered in Theorem 1.1; that is,
T is a contraction on §, U is a minimal isometric dilation of T on &, and Z is an iso-
metry on 6.

Remark 2.1. Let AcL(®; $H) satisfy TA=AZ. In order that 4 should have
a unique intertwining dilation BEL(®; K) with || B|| =] 4] it is necessary and suffi-
cient that the functional f¢(($*®®)/R,) (where ($*®G)/R, is identified with

(5*@(5)/ Ry, in virtue of Theorem 1.1), corresponding to A4 by: fiy (h*®g)=(4g, h),
have a unique norm-preserving extension to the space (S\*é@)/ﬂtu. On the other

hand, a well-known consequence of the classical proof of the Hahn—Banach Theorem
is that a functional f¢(($*®®)/R,) of norm 1 has a unique norm-preserving exten-

sion to (R*é)@)/‘ﬁu if an only if for any 7¢ Sj*é(ﬁ,
sup {Re f(i) =1t~ 1l : 1,€(H* @ G)Ry} =
= inf {|[ty+ 1] — Re f(t5) : 1:€ (H* Q G)/Ry}.

(Here, as in the sequel, we set =y (z) for 1ER*®(5). Hence, we easily infer the

T
following sufficient and necessary condition for that an A€L(®; 9), || 4] =1, satisfy-
ing TA=AZ have a unique exact intertwining dilation.

For any ¢=0 and roe(ﬁ*é(ﬁ)\(g*é(ﬁ) there exists 1,, 7,€ 53*<§§>® satisfying
T j &4 . ®
(®) 22+ 2all = |22 —Foll + £+ %ol < Re f(21+ 1) +e.

5A
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3. We introduce the following definition for contractions on Hilbert spaces:

Definition 3.1. Let A4,;, A,€L($;;Ha) be two contractions., We say that
A, Harnack-dominates A, if for some positive constants C, C’ we have:

©) ID4hll = ClID 4 bl and  |[(4;—Ahl = C’||D 4,

for all h¢$,. Here D, , D, are the defect operators of 4,, 4y, i.e. DA‘=(1’—-A?‘Ai)1’2
(i=1,2).

Remark 3.1. Let us introduce, for the contractions 4,, 4,€L(9,, 9H,), the
following isometries:

- Ai ‘62
A": D : 51 ind @ . (i=1,2),
41 SA[ .

where D, =D, $, (=1, 2). Then, conditions (9) of Definition 3.1 are plainly equi-
valent to the following: There exists a bounded operator

52 52
K:o - &
D, D,
such that
h, hy . .
(10) K ol = [0 for all h,€$H,, and A, = KA;.

Remark 3.2. We note that, if $, and §, coincide, then the equivalence relation
for contractions on ), defined by: 4, Harnack-dominates A4,, and 4, Harnack-do-
minates 4, coincides with the Harnack-equivalence as defined in [4], p. 362. '

For two operators 4;, 4;€L(®; $), intertwining T and Z, denote by f4, /4,

the functionals E((Sj*(é)(ﬁ)/ﬂiv)’, corresponding to 4; and A,, respectively, and by
F, , F,, the functionals 6(55*@(5)’, satisfying F, |R,=F, |R,=0, ‘which corres-
pond to f, , f,, by virtue of the isometric-isomorphism
((9* ® B)RuY = Ry.
n
Lemma 3.1. Let A,, A,€¢L{®;9) be two operators intertwining T and Z,
I4:)l =114, =1, and such that A, Harnack-dominates A,. Then,

lzl.—Re F, (1) =& (for some e>0 and 1€H* ® 6)

implies .
Re F, (1) = Re F (1) +2e(|K[E—1).

(K is the bounded operator satisfying (10), which exists by Remark 3.1.)
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Proof. Let rég*é(ﬁ be such' that ﬂlltl.l,,—Re F4, (1) = ¢ for some £¢>0. There

‘exists a representation of 1, say-

1= h®g, .
A néEN
with

lgal =1, XAl <o, and |l = F Il < tha+e
neEN neEN

Since F, (i, ®g,)=(4:8,, h,) (i=1, 2), and since F,, are continuous it result that the
series Y (A;g,, h,) (i=1, 2) are absolutely convergent, and
neN .

FA,(T) =n§\1 (Aign’ hn)

Consequently,
2 k|| — > Re(4,8,, h,) = 2e.
negN neN

Now let us notice that

4.8,
I-Re(4, gn,f,.)——“[ Dig
1O6n

= S g Fil?

where ﬁ,——”—hﬁ and f,= [ "] (n€N). Since 4, Harnack-dominates 4, in virtue of

Remark 3.1 we also have

4> gn—foll2 = | K(A1 8, — fI? = | K |21 4, £, — flI2
Therefore

1 A
Re (418,, 1) —Re (4:8,, h) = 5 (IK[* =141 8, —fIE R, (neN).
Whence,

. 1 -
Re F,,()—ReFo(@) = (KIP-1) 3 - Idrgu=Full il = -
= (IKl*-1) Z’ [Ilh,.ll —Re(4,8,, )] < 2e(|K|>—1).
‘We may now state and prove our main theorem concermng the uniqueness of

exact intertwining dilation.

. Theorem 3.1. Let A,, A,€L(G;9) be operators with the properties: TA;=
=A,Z, TA,=A,Z, | A, =\4.\=1, A, Harnack-dominates A,. Then, if A, has a
unique exact intertwining dilation so has A,.

" Proof. By Remark 2.1, we must show that if the functional fAIE((ﬁ*é)(B)/ Ry)

defined by A, satisfies condition (8), then the functional ane((Sj*(é(Y))/ Ry) defined
by A,, also satisfies it.

5%
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Assume that for ¢=>0 and tOE(R*é(B)\(ﬁ*é(B) we have

1 121+ Tall S[12r —toll +It2+toll < Ref, (1 +1t) +¢
for some 1;, 1,€H*®G. Since [t =[le @I =(¢ @) for all t€¢H*R G, there exists
7" € R, such that '
It +te+7 e < l@(ra+ 1)l +& = {[E1 + 1o +&.
Denote 17, =1,+1" and note that

2.+l = l#,+%.[ and ng(tl+ié) =fA‘(i'1+'tz)-
Then, from (11) we readily infer that

ey +72llx < Re fy, (}1+13) +2¢ = Re F (11 +73) + 26
Consequently, in virtue of Lemma 3.1, it follows

Re FA1(71+T;) =Re FA2(71 +12)+2e(IK|2—-1)
or, equivalently,
Re f,, (11 +1,) = Re f, (11 +12) + 2e(|K[|*—1).

Whence it results that f, satisfies the condition
1 —toll +lIta+%oll < Refy, (t1+15) +26(1K[|2~1).
Thus, we can conclude that £, satisfies (8) too.

As a corollary of the previous theorem we have the following more general
result:

Theorem 3.2. Let T, T’ be two contractions on the Hilberts spaces § and ',
respectively. Moreover let Ay, A,€ L($’; ) satisfy the conditions:

TA,=A,T’, TA;=A,T", A, =4, =1, A, Harnack-dominates A, Then, if A,
has a unique exact intertwining dilations so has A,.

Indeed, denoting by Z the minimal isometric dilation of T” it is known (see [5],
Th. 2.3). that all exact intertwining dilations of A4; (i=1, 2) are obtained as exact
intertwining dilations of the operators B;=4,Pg (i=1, 2) intertwining T and Z.

4. Let T, T’ be two contractions on the Hilbert space $ and §’, and let U, U’
be their minimal isometric dilations on the spaces & and K&, respectively.

Theorem 4.1. Let By, B,c L(8; ) have the properties. || By|| =||B,|| =1, UB,=
=B U’, PB,(I-P")=0 (i=1, 2) where, P=Pg, P’=Pg4. B, Harnack-dominates By,
and let Ay, A,€L(H’; H) be the operators A;=PB,|Y’ (i=1,2). Then, if B, is an
exact intertwining dilation of Ay, then A, is an exact intertwining dilation of Ay; more-
over, if By is the unique exact intertwiﬁing dilation for A,, so is B, for A,.

Proof. First, by hypothesis we observe that PB;=A; P’ and 4, is intertwining T
and T’. Thus, B; is an intertwining dilation of 4; (i=1, 2).
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Now, in order to prove that B, is an exact intertwining dilation for 4, if B, is so
for A,, it suffices to show that || 4, =1.
Clearly, we have (by definition of 4,) ||4,]|=1.
For the converse inequality we observe that, since B, Harnack-dominates B,,
i.e. | Dp k'l =ClDp k| and [(B;—B)k'|=C’||Dg k’|| with C, C’>0, we have for
Key'
I(1=P) B = |(1=P)Byi||+{|(1 = P)(By—BYH'|| = | Dy, Wl +1(B.—BYH || =

= D, K+ C | Dp, Kl = (1+C)[ID 4, Kl
and therefore,
1D, K112 = |Dg, K12+ |(1 = P) B [}2 = (C2+ (14 C'))|D 4 H 12 = C"|\D 4, K13,
for any W€ 9.
Since | 4,]| =1, we infer from this inequality that | 4,[|=1 too, thus B, is an exact
intertwining dilation of 4,.
The above relation with the following one:

(A:—ADK|| = (B~ BoK'|| = C’||Dp, || = C’||D | (WEH)

means that 4; Harnack-dominates 4,. Now the second statement of this theorem can
be obtained by referring to Theorem 3.2,

Lemma 4.1. Let By, B,¢ L(R; R), |Bill=|1B:l|=1 be of the form B,=B,8S;
where S; are strict contractions (i=1, 2). Then B,, B, Harnack-dominate each other.

Proof. Consider the decomposition & =R,@® & for which

B, Py, = B, Py, = B, and S;= B;Py; = B;(1—Py,)
and note that
D5, k12 = (Ikgli2— | Bokoll2) + (K1l 2 —11:S;: k1) =

= |kIE =1 Sikil®* = A= ||SP) | k1ll%, where kg = Pgyk’, ki = Pak'.
Whence, by taking C=max {(1—|5,]|2)~"2, (1| S,)|?)~"/?} it follows
| Pes Kl = C|Dp k’|| for all k’¢ &'.
Therefore, we have ||(By—B)k’|| =S, — Sy|l|1 4l SC’]lD,, K’| and also
1D, k'lI* = IK"1* — | Bokoll® — | Sakil|2 = [| D g, k"2 + (Il Skl I Sukeall) (I S k1l + 1Sz k1)
= || Dg, K12+ 118y — Sell (1l Sall + 11 Sell) 131125 '

hence | Ds, k'IISC”IIDB k’| for all k€K, where C’, C” are constants.
Thus 31 Hamack-dommates B,. By symmetry B, also Hamack-dommates B,.
Theorem 4.1 and Lemma 4.1 have the following

Corollary 4.1. Let By, B,¢L(8; &) be two operators as in Lemma 4.1,
intertwining U and U’ and such that: B;(R 09 )CKROH (i=1,2). Then, B, is an
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exact intertwining dilation of A;=PgyB,|Y’, if and-only if B, is an exact intertwining
dilation of A,=PyB,|$’; moreover, B, is the unique exact mtertwmmg dilation for
4, if and only sz2 is so for A,. : - :

In virtue of Theorems 2 .and.5 of [2], we also have the following corollary of
Theorem 4.1, concerning the Hankel operators.?) ‘

Corollary 4.2. Let F,, F2€L°° €, ¥ (€, 35- separable Hilbert spaces) have the
properties: )

I Al =|Fyl=1,

F,(t)=F;(t) whenever max {||F;(¢)|, | Fa(¢)||}>1—0 for some fixed 6, 0<0<1-

Then, if one of these functions is a minifunction for its Hankel operator, then so is
the other. Moreover if one of them is the unique minifunction of its Hankel operator
s is the other. :

Proof. Set o={r€[0, 1]: max {| F,(t){, [ Fa(t)l}>1— —0}, and £,=y,L*(€), &=
=X, ll\aL (€) where y, is the characteristic function of ¢. Then L2(€)= 20@2
Also, denoting by B, the operators: f—F, f from L2(€) to L3({) (i=1, 2), we observe
that _ , , } .
By Py, = By Py, B2 C x, LX(§) and BiL; C ypo,1n0 LA(E)-

Thus the operators B; can be written B;=B,® S; where

By=B;Py,, S;=B;P, and [Sf<1 (i=1,2).
Now Corollary 4.2 follows at once by Corollary 4.1,
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Universal quasinilpotent operators

DOMINGO A. HERRERO

" 1. Introduction. Let $ be a complex Hilbert space of (topological) dimension
h and let #(9) be the algebra of all (bounded linear) operators in . Given T in
.9(53), let L ()= {WTW‘ W is invertible in £($)} (“similarity orbit” of 7).
What is £(T)", the norm-closure of &(T)? In this note it will be shown that the
snmxlarlty orbit of a quasinilpotent perator could be surpnsmgly large. The norm-
closure of the set /(H)={Q€ L (H): Q is nilpotent} was completely characterized
in [1] (separable case) and [11] (non-separable case); it was shown, in particular,
that every quasinilpotent operator belongs to A($H)~. Since A'(H)~ is invariant
under similarities, it readily follows that $(Q)~ must be contained in A($)~ for
every quasinilpotent operator Q. The main result says that the converse molus1on 1S
also true for a suitably chosen Q.

- First of all, consider the finite dimensional case. Assume that T is a mlpotent
operator on a Hilbert space § of dimension n (0 <n< ). Then there exists an ortho-
normal basis {e,, ..., e,} with respect to which T can be written as a matrix T=
=(t;)} x=1» Where t;,=0 for all j=k (i.e., an upper triangular matrix with 0's in
the diagonal). Given e>0, let T,=(¢t;, )} y=1, Where t =t if k=j+1or¢t; ;.,70
and t; ;4 .=¢ if k=j+1 and ¢; ;,,=0. Clearly, |T—T,[|=e and T, is similar to its
Jordan form, given by the matrix Q,,=(J;41,,), Where &, denotes the Kronecker
delta. Since ¢ can be chosen arbitrarily small, we have arrived to the following result:

Lemma 1. Let § be an n-dimensional Hilbert space (0<n<oo) and let Q,,=
=(0;+1,1) (with respect to some ONB). Then ¥(Q,,)~ coincides with the set of all
nilpotent operators in 9.

" 2. The ideal of compact operators. Let X (5) denote the 1deal of compact opera-
tors on a Hilbert space $ of infinite dimension A.

Lemma 2. The compact quasinilpotent operator K, &[é l/nQ,,,,)GBO,' wizere
An=1
0 is the zero operator acting on a subspace of dimension h (~ means “unitarily
equivalent to”) has the property: $(K,)~ = {KeA(9): K is quasinilpotent).

Received September 13, 1975.
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Proof. Let K be a compact quasinilpotent operator. Then $=$,®%H,, where
Do, 1 reduce K, dim H,=x, and K|$H,=0 (the vertical bar denotes restriction).
Now it is clear that, by a trivial modification of the proof given by R. G. DOUGLAS
in [8] for the case when $ is separable, it can be shown that X is a norm limit of finite
rank nilpotents. On the other hand, we already know that the set of all compact
quasinilpotents is closed in £ ($) (see, e.g., [12]). Thus, in order to complete the proof
we only have to show that $(K,,)~ actually contains every finite rank nilpotent.

Let F be a finite rank nilpotent in .£($). Then there exists a finite dimensional
subspace $, of dimension n, 0<n< o, reducing F such that F|$ =0. Up to a unitary
transformation (of § onto itself) we can obviously assume that $, is the space of Q,,.
Hence, F|9,€%(Q,,)~ (use Lemma 1).

Since K,,=(1/n)Q,,®K, (with respect to the decomposition H=9,DH}),
where K, is a quasinilpotent operator acting on $7, it follows from [16] that
(1/n) Q, 80 £(K,;)". Since Q, and (1/n) Q, are similar, we conclude that F€ #(K,,)~.

O

This result suggests the following

Definition 1. A (necessarily quasinilpotent, but not nilpotent) operator
0.(#) satisfying the equality £[Q,(#)]” ={Q€#: Q is quasinilpotent} for a given
closed bilateral ideal # of £(H) will be called a universal quasinilpotent for the
ideal #.

Let K be an arbitrary compact quasinilpotent, but not nilpotent, operator.
Then ([8]) there exists a vector x€§ such that K"x=0 for all n=0,1,2,.... Let

$ be the (closed) subspace spanned by {K"x};>, and let
_ Ky Ky
s

be the matrix representation of K with respect to the orthogonal decomposition
H9=9H,09<. Clearly, K;; and K,, are quasinilpotent operators, so that we can pro-
ceed as in [12] in order to show that K;,®0¢¥(K)~. Assuming that K, is similar
to a compact weighted shift with non-zero weights, it is not difficult to prove (by.
using the arguments of {12] and the proof of Lemma 2) that K;, and, a fortiori, K are
compact universal quasinilpotents. This suggests the following

Conjecture 1. A compact quasinilpotent operator is either nilpotent or a com-
pact universal quasinilpotent.

The above observations reduce this conjecture to the analysis of those compact
quasinilpotents having a cyclic vector.
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3. Similarity orbits of certain normal operators. Our next step will be a partial
characterization of the set ()~ for the case when N is a normal operator. (A more:
complete description of this case will be given in an oncoming article {13].)

The closed bilateral ideals of £($) have been completely characterized by several
authors ([3; 6; 14]): Let a be a cardinal number such that tioéaéh:dim $ and let
5, be the norm-closure of the set of all operators T in £($) such that dim (TH)~ <a..
Then £, is a closed bilateral ideal of 2($) and every such proper (non-zero) ideal
has this form. The weighted spectrum of A€ £(9) corresponding to #, is the spectrum
A,(A) of the canonical projection of 4 in the quotient algebra Z£($)/.#,; namely,
ARO(A)=E (A) is the usual Calkin essential spectrum of 4, and A4,(A) is the heavy
spectrum (i.e., the one corresponding to the largest ideal). For the analysis of these
weighted spectra, as well as for the definition and properties of the approximate
nullity §(A) of an operator A, the reader is referred to [4; 11]. We recall that, in the
separable case, the condition 6(A—A)=56(1—A4*) (where A* denotes the adjoint of
the operator A) for all complex A is equivalent to saying that if (1—A4) is a semi-
Fredholm operator, then its index is 0, i.e., 4 is a bi-quasitriangular operator in the
sense of [1; 2].

Theorem 1. Let N be a normal operator such that A(N) (the spectrum of N)
is a perfect set and coincides with A,(N). Then S (N)~ contains every operator
AL (D) such that A(A)=A,(4A)=A(N) and 6(A—A)=56(A—4*) for all complex A.

Let 4 be as in Theorem 1. By using the results of {2, Theorem 2.2] and [11] we:
can see that, given e>0, there exists an operator A4’ satisfying the same hypotheses as.
A such that ||4—A4"[|<e and ‘

N
AI

Q

0T,

N T N L
0 N L= 0 L], T=[0 Ty, L=[0 L‘].
0 0L, z

(All these matrices of operators are referred to suitable orthogonal direct sum de-
compositions of the underlying spaces.) It readily follows that L also satisfies the
hypotheses of Theorem 1. Therefore, by [11; 18], L is a norm limit of algebraic oper~
ators with spectra contained in A(N); furthermore, by an easy approximation argu-
ment, L can be actually approximated in the norm by operators which are similar to
normal operators with finite spectrum contained in A(N). Thus, in order to complete:
the proof of Theorem 1 it will be enough to prove the following weaker version of it:

Theorem 1’. Let N be a normal operator in £(9) such that A(N)=A,(N)
is a perfect set, let T: '’ —$ be an arbitrary continuous linear mapping from a Hilbert
space ', dim H’'=h=h, and let M, WEL(H"), where M is normal with a finite
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.spectrum contained in. A(N) and W is invertible. T hen F(N)~ contains every operator
in L(9) unitarily equwalent to
‘ ' [N T ]
0 wWMw—

( thh respect to the orthogonal dtrect sum decomposmon [3) @33’ )
The proof will be given in a series of lemmas

"' Lemma 3. Let N be as in Theorem 1 and let' 2.€ A(N). If
U - N T
o - A~ u'].
( -zdentzty on 9’), then AE.SP(N)‘

" Proof. Clearly, we can translate N by a multlple of the 1dent1ty and .assume
that A=0. According to the characterization of the norm closure of #(N)=
={UNU™': U is unitary} given in [12] (see also [7]), %(N)~ (which is obviously
.contained in $(N)~) contains every normal operator N’ ~ N&(’, where 0’ denotes
the zero operator in %’ >

" Case I: K’ is finite.
‘In this case A4 is a compact perturbation of an operator N’ as above and the
result follows from [10, Lemma 1].

Case II: Ro=h <h. _
Proceeding as in [11], it is possible to find an orthogonal direct sum decomposi-
tion H=9H,DH”, such that dim $”=#’, dim H,=4 and

NI/ T/l
[0 0'] N°®[0” o']

w1th respect to HDH D", where Ny L(H,), N'€L(H") are normal operators
satlsfymg A(Ng)=A,(N))=A(N")=A,.(N")= A(N).
ThlS reduces our problem to

Case r: ¥ =h.

. Given ¢>0, we can find an ¢/, 0<¢’<min {, 1} such that if do={1: |A|=¢}
and 4g=1{A: |A|<e}, then 4;NA(N) and [A;NA(N)]~ are nonempty perfect sets.
To. s:mplify the notation, we can directly assume that ¢’=¢ and O<e<1. Let E(-)
be the spectral measure of N; then E(4,)9=9, and E(4;) H=$, are complementary
.h-dimensional .orthogonal reducing subspaces.of N and N can be written as N=
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=N,®N;, where N,€ZL(H) and NOE.S’(S:‘)O) W1th respect to this' decomposition.

Then we can also write
0 7,
-5 w7

0 0 0
with respect to H,SH, DY’

- . Combining T, with an isometry .V from $, onto $’ and using the polar decom-
position of VT, it is not difficult to see that $, and $” can be written as orthogonal
direct sums $;=9,,09,, and H'=9H.0H;, where dim $;,=dim Hg,=dim H, =
=dim $,=h and T,H,CH,, and T, H, < Hgp. Therefore, we can write To="T,, B Ty,
where Ty, (To) =T:19, (94, resp.) and

v, o
B=|0o N T.oT,|.
0 0 090

Letd,={A: g;.1=|A|<¢;}, j=1,2, 3,4, be such that [4;N A(Ng)] is perfécffor.
all j and 0=85<84<83<82<8 <g =€ Proceeding as in the first part of the proof,

we van decompose = @ $; and Ny= @ N; in such a way that N;€Z(9))

and A(N;)=[4; ﬂA(No)]' Now choose arbltrary normal operators M,;€.2(9g.),
ML (Hp), ML (H) and ML (H;) such that M;~N;, j=1,2,3,4. Since
AMINAM)=AMYNA(M,)=0, it follows from ROSENBUML’S Corollary ([15,
Corollary 0.15]) that the operators M, & M, and M,® M, are similar to

M, T2a] -Mz_ sz]
| o M| ™ o m)
réspectively. Hence, ) . :

N, 0 0
M, T. M, T. 0 e
R:N‘)@ 01 A;]@ 02 A;b] 1 0 M1®Mg Tza@Tgb =
8 210 0 MM,
Ny 0 0
= O M1®M2 T2 ’

0 0 MM

is similar to N. Thus, if X=—N;'T; and

I 0 X N, 0 T,—X(M;oM)
W={0 I 0}, then WRW =0 M,®oM, = - T,
0 0 1 0 0 MM,
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Since |B— WRW ™| = || X (M@ M,)|| + || No— My @ M, || + | My ® M, || = | Ny -
AT +2e+e=¢|T| +2e+e2<(3+]|T|)eand WRW ~1is similar to N, we conclude
that dist [4, $(N)]<(3+{T|)e, whence the result follows. O

Lemma 4. Lemma 3 remains true if N is replaced by WNW ™2, for some inver-
tible W.

Proof. Clearly, #(N)"=%(WNW~")~ and therefore it is enough to show

that if
-1 3
A~ [WNW T’]’
0 A
then 4€L(N)™.
By Lemma 3, every operator 4’€.#($) such that
, [N w—r
A [0 Al ]

belongs to ¥ (N)~.
On the other hand,

w ol[N w—r]l[w o] _[wNw— T
o rjfo ir Jjor] —| o arl’
Since #(N)™ is invariant under similarities ([12]), it readily follows that
AP (N)~. O
Lemma 5. Let N be as in Theorem 1, let {A,, ..., 1.} be a finite subset of A(N),
let I; be the identity operator on a Hilbert space §; of dimension h;=h, and let M=
= é Ail; € L(9'), where H'= é 9;. Then S (N)~ contains every operator A€ Z(9)
j=1 Jj=1
unitarily equivalent to
N T
0 M|’

(With respect to the orthogonal direct sum HB$H".)

Proof. This follows by induction over m. For m=1, it is the result of Lemma 3.
Assume that the result is true for m=n and let m=n+1. Set M=M,DA,.17,+1,

where M,= é'ijlj; then
j=1
N T, T,
[N T no Tt [N T, ] [N T,
=10 M, 0 =" "1 1" where N,= B
0 M 0 0 }»"+1I"+1 0 }'n+1]n+1 0 Mn
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(The first matrix corresponds to the decomposition HPY’, the second one to HS
e(éﬁj)@ﬁnﬂ and the third one to [Sbea[éﬁj)]@%mq; the matrix of N, cor-
A 2

responds to the decomposition 5@(@5 I
By our inductive hypothesis, there exists an operator N, €% [S,SEB[@ 55,]]

similar to N, such that |N,—N,| is smaller than an arbitrarily small given &¢>0.
On the other hand, by Lemma 4,
[N; Toia ]
0 )*n+11n+1

can be approximated in the norm by operators similar to N,.
Since

n+1 n+l —_ N,,—N,: @OH ,
[o Aminl, ] [o AHHIM] (Mo = Ne) @00
dist [4, #(N)]=||N,— N)| <e, whence the result follows. a

Proof of Theorem 1’. The last step of the proof is very similar to that of
Lemma 4. Indeed, observe that if M is chosen as in Lemma 5 and W is an invertible
operator in .Z(9’), then

| B [ R e

N Tw
0 M

Since

can be uniformly approximated by operators similar to N (Lemma 5) and #(N)~
invariant under similarities ([12]), we are done. O

4. The main result. The following result is our goal.

Theorem 2. For every dimension h={, there exists a universal quasinilpotent
operator Q,, € Z(9), dim H=h.

.Proof. The proof combines the result of Theorem 1 with an argument due to
N. SaLiNaS ([5, Theorem 3.2]). Let H, € £(9) be an hermitian operator such that
A(H)=A,(H)=I[0, 1/k] (k=1, 2, ...). According to [9; 11], there exists a sequence
{Rin}oo., of nilpotent operators such that [|H,— Ry, <1/n, n=1, 2, .... By [16], there
also exist nilpotent operators R}, similar to Ry,, such that | R, | <1/(k - n).

Let Q,, be an arbitrary quasinilpotent operator in # (%), unitarily equivalent to

16 R,,. Proceeding as in the proof of Lemma 2, we can see that & (Q.»)~ contains
=1
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every operator unitarily équivalent to R;, @0 (for every fixed pair of values k and n).
A fortiori, every Hy ~ H, @0 belongs to #(Q,,)".

Let Q be an arbitrary quasinilpotent operator in £ ($). It follows from [2; 10; 11]
that there exists an operator Q, unitarily equivalent to

Hy T
0 L}

where A(L)c A(H;)=A,(H;)=[0, 1/k], such that ||Q — Q,|| <2/k. Since, by Theorem
1, Q€L (H,) L (Q,)~ for k=1,2,..., it is easy to see that Q belongs to
y(Quh)_ too. a

5. Universal quasinilpotents for other closed bilateral ideals of £(9). Let 7,
. be a non-zero proper closed bilateral ideal of £ (%). Does there always exist a uni-
versal quasinilpotent for #,? The answer is NO. Indeed, the existence of such uni-
versal operator depends on the cardinal a. Fol]owing [4; 6], we shall say that « is

No-regular if it cannot be written in the form a= 2’ o, (= sup o,) for a sequence

{o,}2., of cardinal numbers strictly smaller than a; « is called No-irregular in the
converse case. Now the complete answer to the above question is given by the
following

Theorem 3. Let dim $=h=R, and let #,, Ro=a=h, be a proper closed
bilateral ideal of £(9). If neither

(i) a=§,., for some ordinal v, or

(ii) o is Re-irregular,
then there exists a universal quasinilpotent operator K,=K,(a; h) for Z,.

On the other hand, if o is an Ry-regular limit cardinal, then & (K)~ C #; for some
cardinal B strictly smaller than o, and therefore there is no universal quaszmlpotent
operator for ¢,.

Proof. Lemma 2 takes care of the case when a=4¥,, so we can restrict our
attention to the case a=>%&,. We shall need the following auxiliary result.

Lemma 6. Let Ro<a=h=dim . Then the closure of the set of all nilpotent
operators in §#, coincides with £,0\N(9)~. In particular, this set contains every quasz-
mlpotent element of 4.

Proof. Let Te Z,NA(H)~. Then there exist two sequencés of operators,
{T,: dim (7,9)" =a,<a}, and {Q,:0,€A(9)} such that |T—T,| +|T—-Q,l<1/n.
Proceeding as in [11] we can find a subspace $, of dimension «,=max {«,, 8} re-
~ ducing T, and Q,, such that 7, |9} =0. Clearly, ||T,19,— @, |9l =T, — Qul <2/n.
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Let R,,=(Q,, [9)D(019}). It readily follows that R,€#, and that R»=0. if"
Q" =0, i.e., R, is a nilpotent element of #,. Moreover, |T—R,|={T— T+
+||T,— R,||<3/n. Hence T is a norm limit of nilpotent elements of £,. Therefore
L NN (D)” < {Q€F,: Q is nilpotent}~. Since the converse inclusion is trivial, .we
have proved the first statement, the second one follows from [11]. g

Now we are in a position to finish the proof of Theorem 3. By Lemma 6, it will
be enough to show that if a=>¥,, then F(K,)~ contains £,N A (D), for a sultable‘
K.€%,.

If « satisfies (i), £, = {T€Z(9): dim (TH)~=§,} ([6; 14]) and the result follows.
as in Theorem 2; in fact, if K€ ¢, is nilpotent, then H=9H,DH,, where H,, H; reduce:
K, dim $,=8, and K|9,=0. If Q,6L(9,) is the operator defined in Theorem 2,
then it readily follows that K€ #(Q,®0)~, and K,=0,90€ 4, is the solution to our

problem. It o satisfies (ii); write H= é 9,, where dim $,=a,<a and 2”' oc";a,
n=1 - n=1

and define Ku=[é (1/n) Q,, ], where Q,, is the universal quasinilpotent of Theo-
n=1 n n

rem 2 in dimension «a,. Clearly, K, is a quasinilpotent element of #,. Now the argu-
ments of the proof of Theorem 2 and the results of [11] show that &(K,)~ actually
contains every nilpotent operator of # for every cardinal f<«, and Lemma 3 and
its proof show that &(K,)~ also contains every nilpotent of 7,.

Let o be an R,-regular limit cardinal. Then, #,={T€.2($): dim (TH)~ <o} and,
given K¢ #,, there exists a cardinal f<a such that dim (K$)~<pf ([4]). Hence,
&(K)~c #, and this ideal is properly contained in #,. Thus, if T€4,\ ¢, and
Ac #, is unitarily equivalent to

o o)
00}

then A2=0, and A cannot belong to &#(K)~. Therefore, there is no universal quasi-
nilpotent operator for #,. O
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A remark on convergence systems in measure

1. JOO

1. Preliminaries

Denote by §=S5(0, 1) the set of Lebesgue measurable almost everywhere finite
functions on the interval (0, 1) with the complete metrizable topology of convergence
in measure. In this paper “lim” will mean “limit in measure”, unless stated other-
wise explicitly. )

Let T=|¢ ;[ be a matrix, not necessarily with rows of finite length, such that

(1) lti,jl =K (15]: 1’ 2:'“)9 lim ti,j= 1 (J: 13 25"')'
Here and in the sequel K will denote some absolute constant not necessarily the same
at each occurrence.

Finally, let B be a Banach space of sequences a={a,, as, ...} of real numbers such

that for a€ B we have
(2)' tail = ”a”B= a(N17 N2) = {0’ * 481 05 an,s aN1+1, cory ONgs 0, 0: “'}EBw
N111_1}1° la(Ny, Np)llz = 0;

furthermore, if aj is a bounded double sequence of reals (7, j=1, 2, ...) such that
lim ¢i=1(j=1,2,...) then we have
3) ‘ a = {a.e, azél, ...}€ B, il_l)m la—all; =0 forall acB.

For example /, is such a space for 1=p<e-o,
The sequence {f,}c S is called a T convergence system in measure for B if the
limit

- ‘ % N
4) T'(a) = Jim lim @) of @)= 3t ;a;f;
i—>oco0 —~ 00 Jj=1

Received October 16, 1975,
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exists for all @€ B. In the special case, when #, ;=0 for i<j and =1 otherwise, {f,}
is simply called a convergence system in measure for B,

Furthermore, the sequence {f,}< S is said to be almost orthonormal on the inter-
val (0, 1) if for every =0 there exist a Lebesgue measurable set E,c (0, 1), a constant
M, depending only on &, and an orthonormal system {i,(e, x)} on (0, 1) such that
mes E,=1-¢ and

f;,(X) = My, (e, x) (x€E,n=1,2,..).

It is obvious that an almost orthonormal system is a convergence system in
measure for /,. In [2] NIKISIN proved the converse statement,

In [3] TaNDORI proved the following generalization of NikiSin’s result: If {f,}c S
is a (C, 1) convergence system in measure for /,, that is if

i i i
2 l_g]ajfj = 24,;9f;
Jj=1 ! Jj=1

converges in measure on (0, 1) as n— oo, for every a€l,, then {f,} is almost ortho-
normal.

Later on TANDORI [4] generalized this statement even to any summation method
generated by a matrix [, ;| having rows of finite lengths and satisfying conditions.
in (1).

In this paper we prove a theorem by which Tandori’s general result follows
from Niki§in’s. Namely, in section 2 we are going to prove:

Theorem. Under conditions (1), (2), (3) the system {f,} (CS) is a T convergence
system in measure for B if and only if it is a convergence system in measure for B.

2.
We need the following Banach—Steinhaus type result.

Lemma. (See, e.g. [1] p. 52.) Let E be a Banach space, F a metrizable topologi-
cal vector space, and L, continuous linear operators on E with values in F, converging
at all points of E. Then the limit operator is also continuous and linear.

In proving the Theorem first suppose {f,}<S is a T convergence system in
measure for B. Apply the Lemma twice, first for fixed i to the sequence {r'} of
operators in (4), which are continuous on account (3). Denoting by 7, the limit
operators and applying the Lemma to this sequence we obtain that the linear operator
T in (4) is continuous. Let a€ B be arbitrary. We have to prove the existence of the
limit

N

I\],j_{ljo 2 a;fj

=
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According to the completeness of S it is enough to prove that

. NZ
Nl,l}{}:}m j=2]'\/‘1 a;f; =0.
But this follows from the continuity of 7" at the zero element of B, using
Ny
T(a(Ny, Np) = j=ZJ'V1 a;f;.

Conversely, suppose {f} is a convergence system in measure for B. Then we
obtain similarly that the linear operator

N
L) = lim 24f;
J=

j» this shows that
lim L(d") = L(lim ') = L(a).

is continuous. Using (3) for &=

This completes the proof.
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A remark on convergence of orthogonal series

1. JOO and K. TANDORI

1. Let S denote the set of Lebesgue nieasurable, almost everywhere finite
functions on the interval (0, 1). Let T=|¢, ;g be a matrix such that.

M = K= oo), (,7=0,1,..), hm nt,; = 1 (7=0,1,..)

and let ¥ = {/x (x)g be é’,sethncg of fu'nctions belonging to S. A series

o = S

is said to be T summable in measure (almost everywhere) if the series

1,(x) =k§ Lt () (=0,1,..)

converge in measure (almost everywhere) and the sequence {f,(x)}; converges in
measure (almost everywhere) to a function belonging to S. o

‘The system fis said to be a T convergence system.in measure (T convergence
system) for I, if for every c¢={c, )y €/; the series (2) is T summable in measure (T
summable almost everywhere).

The system fis said to be a convergence system in measure (almost everywhere)
for I, if c€ % implies the convergence of the series (2) in measure (almost everywhere).

JoO [3] proved ‘d general theorem which contains the following statement as a
special case:

Let T be a matrix satisfying conditions (1). If the system f is a T convergence
system in measure for Iy, then it is also a convergence system in measure for l,.

2, A natural question is whether a similar statement is true for almost every-'
where convergence. ; :

In this note we give a negatlve answer to this question.

Received January 3, 1976.
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Let v={v,};’ be a strictly increasing sequence of non-negative integers, v,=0.
We call T, the summation process generated by a matrix ||, .|| of the form

tl'k=1 (k=0, 1,...,V,~), t,-'k=0 (k=vi+1’ vi+2,v--) (i=0, l,...).

The 7 summation is said to be equivalent to T, summation if for every c€/; and
for every orthonormal system ¢ = {p,(x)};’ on (0, 1) the orthogonal series

6) - Zaa®

is T summable almost everywhere if and only if it is 7, summable almost every-
where. (We recall the fact that, e.g., (C, 1) summability is equivalent to T,
summability; see e.g. Avgxits [1], p. 118.)

After this preparation, our statement is:

Theorem. Let v be a sequence of indices such that "@ (v,,,;l—ﬁ,,)——‘—oo. Let T
be a summation process equivalent to T,. Then there exists an orthonormal system
& ={p, (%)) on (0, 1), which is a T convergence system for I, but is not a convergence
system for l,, indeed there exists a sequence c€ly such that the series (3) diverges almost
everywhere.

We remark that the system & in our Theorem is obtained by a rearrangement of
the Walsh system {w,(x)}7’. Using ideas of F. MORicz [4] it is easy to see that one
can obtain an orthonormal system, with similar properties, also by rearrangement of
the trigonometrical system {1, cos 2xx, sin 2zx, ...}.

\

3. The proof of the Theorem. Let r,(x) =sign sin 2"nx be the n® Rademacher
function (n= ...). The Walsh functions are defined as follows. Let wy(x)=
=ryx). Ifnisa natural number and n=2%14 . 42~ 0=k, <...<k,; k; mtegers) is
its diadic expansion then define

Wa(X) = ey 2(X) ... ’k,..+1(x)-

We shall use a Theorem of BILLARD [2] which states that the Walsh system is a
convergence system for /,. We also need the following lemma which is proved essen-
tially in TANDORI [5).

Lemma. Let m=2 be an arbitrary natural number. Then there exists @ sum

of the form
Sp(x) = Z' a(mywy(x) (I(m) < p(m+1)),

where u(m)=2*", such that

@ fyma

Slm
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| furthermore, it has a rearrangement

s (m) ) . .
S:l (x) = ,g;- ak;(m) (m) wk,(m)(x)
such that

©) " max Z’ (M Wem ()| =1 (x€0,1/49\D),

1=j=l(m)|{

where D denotes the set of diadic numbers.

Consider the sum '

‘am(x) = Fom+1y 1'(x) ¢ Sm(x)-

According to the definition of Walsh functions, ¢,,(x) has the form
u(m+1)+(m)

@ =" 3 " b(mwx) (I(m) < p(m+1)).

k=p(m+1)+1
Our Lemma shows that

1
5
2 = -
6) of oi(x)dx = -
furthermore, ¢,,(x) has a rearrangement

i(m)
om(x) ='§ bk,(m)(m) wk,(m){(x)1
such that

)

2 biymy (M Wiy (x)| = 1 (x €(0,1/4)\\ D).

Now we define the system & in our Theorem. First let {n.}2 beastrictly increas-
ing sequence of indices such that

Va1 = Vo = p(mE+1) (m=2,3,..);
such a sequence exists accordmg to our assumption concerning v. For all m(=2)
consider the sum o,:(x). It is obvious by the definition that in the case m=7i the
same Walsh functions do not occur in both 6,.:(x) and 6:(x) with coefficients dif-
ferent from zero. Further it is easy to see that the sum 6,5(x), ..., 6,:(x) are built
from Walsh functions wy(x), ..., Wa(may1y—2(%). .
Consider the rearrangement of the sum 6,.(x):

15151("’)

i(m?)

Oma(x) = Z bk,(m2)(m )wk,(,,,a)(x)
Let

(pv,.m+l(x) = wk,(m’)(x) (l =1,.., [(m2))
Let

Q= U fa(m?): 1= 1,y I}, 2= {0, 1,1\,
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and denote the elements of Q, in the order of magnitude by ¢,, ¢, .... At last 'lét
ri, ry, ... be those indices, in order of magmtude, for which the funcuon 0y (x) are
not yet defined. Next let _

o, () =w,(x) (i=1,2.)

So we have defined an orthonormal system ¢= {(pk(x)}o on (0, 1) which is a re-:
arrangement of the Walsh system {w,(x)};".
Let c={c, )i €I, be arbitrary. According to the definition of the functions ¢, (x),

oo e Vn,+1m?)

2 e @r(x) = Zc,,¢.,(x)+m§ =Z cjpi(x) =

®)

oo l(m’

2 Cri q.(x)+ 2 Z cvn +lwk(m”)(x)_‘ 21+22

m=2.l=1

™

The sum 3, is a Walsh expansion in [, thus, according to Billard’s theorem, it con-.
verges almost everywhere on (0, 1).
On the other hand, for all m

(m?) p((m+1)3+1)
Cv,. -Hwh(m‘)(x) = Z 9] wl(x)9
=1 ™ 1=p(m2+1)+1
where .
1(m?) . u((n+1)2+1) ”
2 Cop +1 = 2 .
=1 " I=p(m2+1)+1
Now set v

dy=cz 4 for k=v,+j; j=1,...,1(m%, and d, =0 otherwise.

Obviously, d= {d}s €1, and theAv},h partial sum of the series

D= S' d, @i (x)
k=0 :

is equal to the u(m2+ 1)+I1(m2)™ partial sum of the series

2 am)

for some m. Apply Billard’s theorem again to obtam that the sequence of the v
partial sums of the series 2, converges almost. everywhere. Using (8) we obtain
thath the sequence of the v partial sums of the series (3) also converges almost
everywhere. This shows that the system & is a 7 convergence system for /,. (We use
our assumption for T that it is equivalent to 7,.) ..

On the other hand, consider the series

©) S mga,a‘,[’x_%]. DR

th



A remark on convergence of orthogonal series 309

From the definition of the system @ and from (6) it follows that (9) is an /,-expansion.
in ¢:

m;: Os [x - %I] = g a0 (x) (a)5el).

But it is clear from (7) that this series diverges almost everywhere on (0, 1). So our
Theorem is proved.
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Commutants and bicommutants of operators of class C,

BELA SZ-NAGY and CIPRIAN FOIAS
Dedicated to P. R. Halmos on his 60th birthday

Introduction .

By operator we mean a linear and bounded one. For any operator T on a Hilbert
space $ we consider the following weakly (or equivalently, strongly) closed sub-
algebras of Z(9):

sf::  the subalgebra generated by 7 and T;

{TY: the commutant of T;

{T}”: the bicommutant of T;

& the subalgebra consisting of those X€{T} for which LatX>Lat T

' (i.e. X leaves invariant every subspace of § invariant for T).
If T is a completely non-unitary contraction on $ we also define:

Hy:  the set of operators on $ which admit a representation X=v(T) 'u(T)
with functions u, v€ H* such that v(T) is a quasi-affinity (i.e. an operator
with zero kernel and dense range).

From this definition it readily follows:

(0) HMc{TY’, cof. [H], Chapter IV.

We shall consider operators T of class C,, i.e. completely non-unitary contrac-
tions such that w(T)=0 for some inner function w; among these functions w there is
a minimal one, denoted by m,. For T€C, and v€ H* the operator v(T) is a quasi-
affinity if and only if vAm =1 (i.e. if v and m; have no non-constant inner divisor);
<f. [H], Proposition III. 4.7. '

For T€C, we have equality in (0), i.e.

) A ={T}Y for TeC,.

Received October 30, 1975.
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This was proved in [2] if the underlying space $ is separable, by using the “Jordan
model” of operators of class C,. A subsequent extension of the Jordan model to
the non-separable case, given in [3], yields, by the same proof, the validity of (1)
for non-separable $ also.

In Sections 1 and 2 of the present paper we shall prove the inclusions

2 : o M for TG,
3) | .?TC./VT for T¢ Co
As a consequence of (l) (2), (3) and of the trivial mclusron & ¥y we deduce
{TY = MmcdrcLrcHr={T} for TeC,.
So we establish the following:
Theorem. For any operator T of class Co we have
-ﬂr = gr = {T} = Nr.

For operators T of class C, with finite defect indices (classes Co(N); N=1,2, . )
these results were proved in the recent paper [4] by Wu (Theorems 3.2 and 3.3).
It was this paper that suggested the present investigation. The proofs we are going to
give for the general case employ quite different arguments as those in [4].

1. Proof of ;.C oy

Let T€C, on %. Suppose there is an XA, which is not contained in &/ . This
means that there exist ,, ..., 1,€9 and £>0 such that

(1.1 2" N\ Xh;—p(T)h;l|>= & for all polynomials p.
Setting = A o o
H= elag T =.§;3T’ X = eléx, b= elbh,.,
(1.1) can also be expressed as
(1.2) IXb—p(T)hj = ¢ for all polynomials p.
As X¢; there exist u, v€ H™ such that vAmp=1, v(T)X=u(T), and hence,

(1.3) (DX = u(T).
Denote by H,, the cyclic subspace for T generated by b and define
(1.4) K = (k€ H: »(T)k€Hy}.
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Clearly, K is invariant for T and T,=T[K is of class C,. Its minimal function.is
“a divisor of my (=my) so we.also have vAmg =1. Thus, o(T) is a quasi-affinity
on K and so it has dense range in K. As by definition (1.4)

v(T)K = v(T)KCH,
we infer that : ‘

as | KCH,. | .
Now, by (1.3) we have v(T)Xh=u(T)h € H,, and therefore Xh¢K; thﬁs, by (1.5),
Xhe H,.
This implies that there is a polynomialﬁ such that
IXh—p(T)b|} < e.

This contradicts (1.2), and hence achieves the proof.

2. Proof of £ C A7

Let T€C, on . By [2], Proposition 2, we have
T > S(maG,

where m=m, and G is the restriction of T to some invariant subspace ®, i.e. there
exists a quasi-affinity

4:95(mo6 -9
such that )
2.1  TA = A(S(m)&)G).

Here, as usual, S(m) denotes the compression of the canonical shift on H? to the
subspace $(m)=H2SmH?2

Consider the cyclic vector e for S(m), given by e= 1 —m(0)m, and an arbitrarily
chosen vector g€®, and set

2.2) b= A((1—ed1g),
¢ being a numerical parameter to be fixed later. Further, set
$c=V Th, T,=T|$, and m = my,.
From (2.1) and (2.2) we deduce :
w(T)hy = A(W(S(m)ed0) for all weH=;

hence T, has the same minimal function as S(m), i.e. my=m=my.
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-While it may happen that m, is a proper inner divisor of m,, it follows from a
lemma due to M. SHERMAN that the values ¢ for which m, is a proper divisor of
mq are exceptional, thatis, couritable many; ¢f. [1]. Let 7 be-a non-exceptional value
of ¢, different from O and 1; thus m,=m,, 0151,

Let X€.%,. Then X$,C$, and X |$,¢ {T,}, for all ¢. Since 7, is a C, class oper-
ator with cyclic vector 4,, every operator in its commutant is a function of T, of
the “Nevanlinna class” A7, (¢f. [H], Chapter 1V, and [1], Théoreme 2) Thus there
exist functions u,, v,€ H* such that .

(2.3) v,Am,=1 and  v(T)Xh = u(T)h,;

in particular,

2.9 voAmyr =1, v,Amp=1.
Set
@.5) X’ = v0o(T) X — up(T);

X’ also belongs to %, and by (2.3) we have

(2.6) X'hy=0 and u(T)X'h,=u(T)h, for u = vou,—u,v,.

Hence, X’h,=X"((1 —t) hy+th,)=1X"h, and :
0,(T) - tus(T) hy = t(v,u))(T)hy

w(M DX h, {ul(T)v,(T)X'h. = 0T (T, = oy NT)((1 =) o+ thy)
so we have
( _t)(vlu;)(T)hQ = t(”xu;_%“r')(T)hl-

By (2.1) and (2.2), and since A is injective, this implies
(1 =0+ (04)(S(M))e®0 = 01 - (v,uy —v:14,)(G) g;

so we have for any #50, 1, and in particular for t=1:
@7 )(S(m)e =0, (v,u;—v,u)(G)g = 0.

The first equation (2.7) implies v,u, émH™. Since mg|lm we infer (v,u.)(G)=0.
Comparing this with the second equation (2.7) we deduce

v.(G)u1(G) g = (v:u41)(G)g = 0.
On account of (2.4), v,(T) is a quasi<affinity so its restriction v,(G) is injective;
thus u, (G)g=0. Hence,
u(T)h, = ui(T)A0Dg) = Au;(S(m)SG) (08 g) = 40 1(G)g) =0,

and therefore, by (2.6), v;(T) X’ h;=0. Now, the subspace $, being invariant for T is
also invariant for X’; thus X’ 4, €$,. But v, Am; =1 by (2.3), and thus v, (7)) =v,(T)|9,
is a quasi-affinity on $,, and in particular injective, so we conclude X’ h,=0.
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Combining this result with the equation X’ ,=0, see (2.6), and recalling that by-
its definition (2.5) the operator X’ is independent of the choice of g in ® we readily
conclude that X’ 4=0, X’ =0, and therefore

(T)X—uy(T) =0 (voAmyp = 1),
that is, X€ A%,
This concludes the proof.
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On the strong approximation of Fourier series

L. LEINDLER

" 1. Let f(x) be a continuous and 2zn-periodic functﬁon and let

(1.1) f(x) ~ -a2—°+ S’ (a, cos nx+ b, sin nx)
n=1

be its Fourier series. Let s,(x)=s,(f; x) and o} (x)=0,(f; x) denote the n-th partial
sum and the (C, «)-mean of (1.1}, and let f(x), §,(x), 6%(x) denote the conjugate
functions, respectively.

In [2] we investigated among others the means

n—-1 1p
V(£ 2, s x)={; 2, leto- f(x){"} ,

n k=n—24

where 2={A,} is a nondecreasing sequence of integers such that ;=1 and 4,,, —-4,=1,
and p=0. Such a mean is called a “generalized strong de la Vallée Poussion mean”,
or briefly, a strong (V, A)-mean.

In [2] we proved the following theorems:

Theorem A. If n=0(4,) and p=>0, then
(12) Vn(f: A" D, x) = 0‘(En—}.,,)

polds uniformly, where E,=E,(f) denotes the best approximation of f by trigonometric
holynomials of order at most n.

Theorem B. Suppose that f(x) r times derivable and f®¢Lip a (0<aSl),
and that n=0(A,). Then for any p=0

1
| O[W) Jor (r+o)p <1,
(1.3) Vu(fidp; %)= ( . e
O[nr+a 1+log —l"-i-l) ] for (r+o)p =1,
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uniformly. The same estimate holds for V,(f, A, p; x). Furthermore, if (r+a)p=1
(O<a< =1), then there exist functions f,(x) and fo(x) such that their r-th derivatives
exist and belong to Lip a, moreover, both

1p
4 n
E.m:Vn(fu/{aPsO) and EVn(f2,Aapso) are =7+—;[1+108m] ’

where ¢(=0) is independent of n.

In this paper we generalize these results. Among others we omit the restriction
n=0(4,), but then the estimations will not be necessarily best possible, and show
that there exists a function f, such that both £ and /"’ belong to the class Lip 1
and the estimations (1.3) are best possible for the means V,( fy, 4, p; X) also. Further-
more we show that if 0<a<1 then the partial sums in the means V,(f, 4, p; x) can
be replaced by (C, f)-means of negative order.

More precisely we prove the following theorems:

Theorem 1. For any positive p we have
n i/p
(1.4 Voo 23 %) = O|(3) " Eucs,
uniformly.

Theorem 2. If fM¢Lip o (0<a=1), then for any p>0

0 [(—%}w —;'IT;] Jor (r+a)p<1,

15) Vu(fihpix)=14 o[ 1 n__
(1.3)  Va(fi 4, p; %) lo[—gﬁ(lﬂogm] ] for (r+a)p=1,
1
0(1"-1/;:(”_/1"_‘_1)7_'”“) for (r+a)p=>1,

holds uniformly. The same estimate also holds for V,(f, 4, p; x).
Theorem 3. Suppose that O<oa=1, p=>0, and n=0(4,). Then there exists f,
such that £ and f{ belong to the class Lip a, and still

dn="-* if (r+9)p=<1,

—r—a" n e ; —
(1.6) EV,,(fO,A,p; 0)= 14dn (1+logm] if (r+o)p=1,
dn=Y?(n—),+1)Mp-r-a if (r+a)p=>1,
where d=d(A, p)=0.
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Theorem 4. Suppose that f¢Lipa for some O<a~<1, that B> —1/2 and that the
positive number p satisfies the inequality pp=> —1. Then we have, uniformly,

n)ir 1

0[(7,) ;«']

1 n 1/?_ Ap

(1.7 A—"Mz_lnlaf(x)—f(x)l"] = 0[ 1 +1og#+1]

O(A7Y/7 (n— A, + 1)V/7-%)

according as ap is <1, =1, 0r >1.

In what follows || - || and [:] denote supremum norm and integral part, respec-
tively, and w( f; 8) denotes the modulus of continuity of f.

Finally we improve one part of the following theorem of SzABaDOS [7]:

Theorem C. If O0<p-<1 and r={[1/pl, then the condition

(1.8) =K

2 I ) -fCP

implies that £~ (x) is continuous and

: ye) 1
o(f-1: By = O[h[logi) ] if ;—r,

O(h) otherwise.
We have the following

Theorem 5. If O<p<1 and 1/p—r=0=0, then condition (1.8) implies that
S is continuous and

(1.9) o(fO,h) =0 [h“ (log -}1;]”"']] .

In connection with these results we formulate the following

Conjecture. *).If O<p<1 and 1/p=r+a, then condition (1.8) implies that

(1.10) o(fC-V; =0 [hlog%] if a=0,
and ‘
a.11) ' o(fO;h) =0 if a=D0.

*) Added in proof: This conjecture has been verified by the author.

7*
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Finally we remark that the estimations (1.10) and (1.11) are, in general, best
possible. Namely, if 1/p=r+a and r is an odd integer, then the function .

= sinnx

flx) = 2 A
has (r—1)-th and r-th derivatives such that if «=0 then

Zi gz— forall n=z=6,

f(r—l) [ ] _f(r-l)(o)

(see [5], pp. 224—227); and since
cos nx

0 =+ 3L @>0),

the inequality w (£, h)z=c h*(c=>0) is obvious. Furthermore a standard computation
(see e.g. [5], pp. 225—226) shows that for this function f;, (1.8) holds.
2, To prove our theorems we require three lemmas.

Lemma 1. ([2], Lemma 2) If g€L(0, 27) and |g(x)| =M for all x, then, for
any q=0, we have

1 Zm’ s (g5 x)|1 = CIMe.
m =y

Lemma 2. (I3), Lémma) If f€Lipy, O<y<]1, 6d>—1/2, and if the positive
number p satisfies the inequality pS>—1, then we have for any n(=1)

2n '
% 2 oS x)—a3*(f; x)F = O(n~7?).
Lémma 3. ([2], estimate (6), p. 150 )We have for any g=0 and n
1 2n 1/q
h(f, q; x) = [~n— 2 s (f, x) —f(x)lq]- = O(E,).
3. Proof of Theorem 1. Let T} denote the trigonometric polynomial of

best approximation to f of order at most m. From the definition of s, it is clear that
if v=m then s5,(f—T%; x)=s,(f; x)— T, (x). Using this we have

1 n—1 1/p 2P 1/p
L3 @] = > 2 (80T, 9+ T )| =
3.1 n—1 1p
G.1) = 21+1/p[{;l -% =Z_' ls, (f— n-}.,. x)lp} +En-;.,.]-

Applying Lemma 1 (with g=f—T;_, and ¢= p) we immediately obtain the statement
of Theorem 1. . , .
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Proof of Theorem 2. By the well- known theorem of Jackson the assumption
fO¢cLip a (0<a=1) implies that

E(f)=0(n""9) and E,(f)=0(n"").
Hence, by Lemma 3, we obtain that
(3.2) hn(f; D; x) = 0(""—1) and hn(f: D; x) = O(n—r—a).

If 2™ =pn—1,<2™*! and 2™ <n=2"™"" then, by (3.2), we have

1 n—-1 my 2mtl-q
5 _Z' Isy (X)—f(x)l"s— _Z' 2' =S =
0(1) Z' 2m(1-p(r+a)) = 2’1
Now \ e
315 0(1) - 2ma-re 4 = 0[_;'-",(—1“] if p(r+a) <1,

SisoM)—+ (m2 my) = 0[,{1 [1+1og _ZnH)J, if p(r+a) =1,

Zl — 0(/1;. 1(n_,1n+1)1 p(r+a))’ . if p(r+a) > 1.

Whence (1.5) obviously follows.
The proof for f runs similarly.

Proof of Theorem 3. Set

o=yt fcos(5-2"—~D)x  cos(5-2"+ x|}
f°(")"’,.=21 e &g Ge2r=Iyl T (B-2+1y] ]

In [4] (Theorem 1) it is proved that £ and £ belong to the class Lip a if a=1,
furthermore in [1] this statement in the case « < 1 with an odd r is verified. Thus we only
have to show that £{P¢Lip « if r is an even integer and O<a~1. In this case

n+ +1

f")( )= Z.( )M f [cos(5-2"—1)x_cos(5-2"+l)x] =
n=1 2 i1y ) . !
n+ =41
= 35 R,

where ||R,(x)|=2. Thus, if 4-2"=n<4.2"*!, then

1
B = O@ -5 Dl =2 5 20 = [n]
which implies £”¢Lip « (0<a<I). - ' '
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=

is bounded or not. First we investigate the bounded case. Let n=12.2™ and let

1
my=max (n—4,,22-2""1), my=max(m,, 23-2™"!) and m,=max [m,, n— [A" + ]]
Then

1 a—1 . te
Vn(ﬁh A', Y 0) = {T 2 |sv(0) _f(')(o)’p} =
n ven—2,
{ my—1 gm+l 1 v}llp
+ .
Ay v::zn'nl vzn:. N {oy-16iem 41 i
Hence, by n=0(4,), it follows that
my~1] 1 2';-*l ° gmel 11°
|-=Zn'|1 N foy—f5iemiy 1l (m, 1 pam,30.2m iy 1l
1 P 1
= (my—my) "";W(”—mz) = di(p, AY(my—m)) e
and ‘ B
m | ] g+l [ 4 1 4 1
vé,.', T iy Biem 1 1| = (2 FmT(n—'fts) = do(p. D) (ma—me) —

Thus we obtain that

1

1jp
v, (f;)a » P 0) = ds(P: j') [(m3 ml) l,, (a+r)p] = dd(p1 ’1) ’t,+a ’

which proves the statements of (1.6) under the assumption that the sequence

{n— 31.} is bounded.

If —)‘1—1} is not bounded, then we may suppose that there exist infinitely
n—

many n with 4-2"<n=4.2"*! and 4.2*=n—1,+4<4.2*! such that m>u+2.

Then

] m-1  agitl:

Vn(f09 A) D, 0)" = 2.— ._2 L 42: IS‘,(O) —A(O)lp =
(3.3) n i=pu+1 v=4-21+1

1] m-=t 13.gi~1 m—1

2. OO =7 3 L

=
Ay i=eht vert T~
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I, can be estimated as follows

23.2{-2 1 at 1 14 23.2{ -3 { l at 1 14
AN RPN ) R P )

= ‘d2(p, '-)2'.(1 =(r+a)p)

i)

= dy(p, 2"

2i(r + a)p

Hence and from (3.3) we obtain that
-1

1o
Vn(.ﬁ)’ )" p; 0) da(P, r) [ 2 2i(l—(' +¢)p)] ’
n i=p+1
whence (1.6) can be deduced by an easy calculation. ‘
The proof of Theorem 3 is thus completed.

Proof of Theorem 4. It is clear that

L3 we-ror=E 3 (@ -dr o —ron =
(3.4) 'n k=n—4, n k=n—4i,

=1t 2
It is known (see e.g. [1] Theorem 3) that f(x)€Lip « implies »

of 1)~ () = O~ (B> -,

whence
(3.5) 3, =0 [—1 > k"P] :
}‘u k=n—4, *
Furthermore,
1 n/2 ]
3.6) 2= T [I‘_Z_l1 +k_2/2 lof (x)—af* ()P = 3+ ¢ Y
By Lemma 2 )
G.7) S.=0 [711_ nl-ap]
and if 2u§n—z,,<'2u+l and 2<n/2=2%*1 then
py 2em+l
3.8 Ds=— 2 3 lof(x)— a,‘;’“(x)ll’ = T 2 2m(1~ep)
i n m=p k=2m n m=u

Collecting the estimates (3.4), (3.5), (3.6), (3.7) and (3.8) an easy calculation
gives the statements of (1.7), which is the required proof.

b
1) ¥, where a and b are not integers, means a sum over all integers between g and b; if b<a

nz=a

then the sum means zero.
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Proof of Theorem 5. The proof runs on analogous lines as that.of Szaba-
dos. Using the Lebesgue’s estimate and (1.8) we obtain

Z' 5i(x) —f ()| =

Ep=

n+1

= K- (E,log np=>,

2n -
- kZ |5 ) = P [ (x) =S ()PP
whence, by a standard computation (see inequality (8) in [7)),

(3.9) EP:= O(n~'(log n*~¥)
follows. Using the estimate ([6], Theorem 8, p. 61)

E(f®) =K 3 kE(),
k=[n/2)
(3.9) implies that

E(f™) =0 M} ,

nl!

whence, according to the inequality ([6], Theorem 4, p. 59)

o h = Kh 3 E(f)

we get :
1/p-1 1/p-1
w0 (fO, h) Kh zﬂl’l— = K [log—ﬁ]

which completes the proof.
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Probability inequalities‘ of eXponential type
and laws of the interated logarithm

F. MORICZ

Introduction

Let &, &,, ..., &, be random variables (in abbrev1atlon rv); they need not be
independent or identically distributed. Set :

k
Sk = 2 éi and Mn =1m£lx ISkl' .
i=1 - =k=n .

Further, for each vector (&,11, Epass ---s Epar) Of k consecutive &s, let Fy denote:
the joint distribution function.and let ' C

: b+k :
Sb,k = 2 &i = Spar—S (Sb,o =0)

i=b+1

- My = max {|S; 4], [Sy, ), ey 1Sy 4l}-

Thus S;=S,,, and M,=M, ,. Set F,=F, ,. The concern of this paper is to provide
bounds on E {exp (A1M,)} in terms of given bounds on E{exp (4|S;, )}, where 1>0.

We emphasize that it is not assumed that the {s are independent. The only
restrictions on the dependence will be those imposed on the assumed bounds for
E{exp (1|S,,:)}- In point of fact, these assumed bounds are guaranteed under
suitable dependence restriction (e.g., mutual independence, martingale differences,.
weak multiplicativity, or the like). :

Bounds on E{exp (AM,)} are of use in denvmg convergence propertles of S,
as n—eco, For development of such results under various dependence restrictions,
the theorems. of this paper reduce the problem of placing appropriate bounds on
E{exp (AM,)} to the typically easier problem of placmg appropriate . bounds on:

E{exp (A]Sy,:D}-

and
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The proof of our main result (Theorem 1) is based on the “bisection” technique
«of BILLINGSLEY [1; p. 102] and the treatment is in a setting close to that of SERFLING
i[9]. The use of Theorem 1 simplifies and extends the method of SERFLING [1Q] to
-obtain results such as laws of the iterated logarithm, convergence rates thereof,
-etc. under probability inequalities of exponential type. For generalities concerning
-different convergence properties the reader is sent to our main reference [10].

Another extension of Serfling’s method based on the study of the moment inequal-
ities of type E|S, ,|* with a fixed v>0 is dealt with in [6]. :

§ 1. The main result

In the following the function g(F, ;) denotes a non-negative functional depending
©on the joint distribution function of &yiys Eorayeens Eptne Examples are: g(F, )=K"

where a=>0, or g(F, )= ;’ a® where {a;} is a sequence of numbers. (In most

«cases aj is the finite variance of £,, but this plays no role in our results.) In the sequel
«C, Cy, Cy, ... denote positive constants; b, k, /, n non-negative integers and 1 a
posmve real number.

Theo rem 1. Suppose that there exists a non-negative function g(F, ) satisfying

(L.1) 8(Fy )+ 8(Fyve,) = g(Fpud) (all b=0, k=1, I=1)
.such that .

(1.2) E{e!Sol} = Cer'9Fon) (all b= 0, k= 1,2 > 0).
Then .

(13) E{eM) = 8Cet™ s (all n= 1, 1 > 0).

In ’fheorem 1 the bounds may involve parameters of the joint distribution
function of &,, &,, ..., &,, a flexibility particularly useful with non-identically distrib-
nuted rv. :

Proof. We are to find two constants C; and C; not less then 1, for which
(1.4) . E{eM.} = CeH0F)  (n=1, 4 > 0).

‘The proof goes by induction on n. The result is trivial for n=1. Assume now as
induction hypotheses that the result holds for each integer less than n. The function
£(F,) being non-negative and non-decreasing in n, we may assume g(F,)>0. There
-exists an integer A, 1 =h=n, such that

(1.5) | g(Fy_y) =1g(F,) < g(Fy),
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where g(F,_,) on the left is 0 if A=1. Then (1.1) and (1.5) imply

‘ 1
(1.6) g(Fyu-) = 8(Fo,0) —8(Fo,0) < 5 8(F)-
It is obvious that for.1=k<h we have

1Sl = M.o‘.hflﬁ
and for h=k=n o
[Si| = ISh|+Mh n—h-

Also, for ISkSn and 1>0 we have

L AlS = MS,,|+[0g(e‘-Mo ho 1+e‘-Mo. n~h)
Therefore,
AM, = ﬂ.ls,,l-{—log (e"MO,h—l-f-eth,n-h)’ )
whence '

My = ISl (oMo, n-1 + e*Mn, n-1)

for'all 1>0; Let p-and ¢ be positive numbers with 1/p+1/g=1, whose values will be
determined later on. Usmg Holder’s and then Minkowski’s mequalmes we find that

E {e"Mn} = E{eplls,,l}llp E {(ezno.,,_l 4-e*Mn,n- ..)q}l/q =

(1.7
=E {epa\ls,.l}llp ( E {quM,,’ A 1}1/‘1 +E {quM,,_ e h}l/q)'

Since h—1<n, we may apply the induction hypothesis to the rv &, s, ..., §4-y
and conctude by (1.4) that

(1.8) E{e#™Mo,n-1}1/1 = C}1et€a#9Fn-0) = Clltexp [‘;- qcmg(F)]‘
the last inequality following by (1.5). We note that if ~=1, then (1.8) is obvious.
If the indices in (1.2) are restricted to b=h, 1=k=n—b, then only the rv

Ehi1s Enrey ..., &, are involved. Since n—h<n, the mductnon hypothesis applies to
Ehe1s Envas .- Eq- Hence (1.4) yields

(1.9) E{etnn-n}t/t = CH1C1#9F 1 n) = CHexp [3 gCo A g (F,).

where the last inequality follows by (1.6). (If h=n, (1.9) is trivial.)
Finally, (1.2) implies

(1.10) E{epi.ls,_l}llp = CVperra(F,) < CV/perrtg(F,)
Combining inequalities (1.7)—(1.10), we arrive at

E{e*Ma} = 2CMPCHaexp[(p+3 qCo) A2 (F).
Assuming 1 <g<2, and consequently p>2, we have

2CVPCH = C, and p+i9Ci=C,
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provided

2
(1.11) - GEYC ad G= ﬁ.
Choosing, for example, g=3/2 and p=3, the smallest C; and C, satisfying (1.11)
are given by C;=8C and C,=12, as they are given in (1.3). This completes the
induction step and the proof of Theorem 1.

Although the specific values of C, and C, will have no importance for us, the
best value (provided by the above proof) of C, may be taken as C,=6-+4 V2.
(Namely, the expression 2p/(2—g) attains its minimum on (2, «) at p=2+ﬁ.)

The extension of the validity of Theorem 1, when 42 in the exponents on the
right of (1.2) and (1.3) is replaced by a polynomial in 4, say r(A), is of interest in
itself and may be of use in some applications.

. Theorem 2. Suppose that there exist a non-negative function g(F,,) satisfying
(1.1) and a polynomial

r(@) = 3@
i=]

of at least first degree, strictly positive for A=0, such that

(1.12) E{eSonl) = Ce@stFod (all b=0, k= 1, A > 0).
Then
(1.13) | E{etMa) = CeSrtuta (all nz 1, A > 0),

where C, and C, are constants depending only on r(2).

_Proo:f. The proof of Theorem 2 runs along the same lines as that of Theorem I.
The same sort of argument that yielded (1.8)—(1.10) shows that

 E{estMon-ijn = Claexp [% Car(al)g(F)].

E{erhnn-ipis = Clexp |- Cura g ()],

and

E{eplls,.l}l/l) = Cllp exp [;} r(p,l)g(Fn)] .

Combining inequality '(1.7) with the last three ones, we arrive at

(1.19) E{e*Mn} §:2C""C}_"1 exp [[%.r(pl)—i-ila C, r(ql)]g(F,,)) .
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Now we have to choose g<2 (p g/(g—1)) and the constants C,,- C2 in such
a way that

(1.15) 2CVreCle = ¢,
and
(1.16) —r(pl)+ L Car(ql) Cor(d)

hold for all A=0. Condition (1.15) does not cause any dlﬁiculty On the other hand,
(1.16) requires some arguments. Writing

50 = Go[r ) =5 rlah |~ 1o,

we will prove the existence of ¢ and C, such that s(1) =0 for all 1=0.
First we notice that from the assumption on r(1) it immediately follows that
o,>0 and ¢ =0. Then we show that |

1 1
(1.17) r(d) ——Zr(ql) = —Zr(,l)
for all 1=-0, provided ¢ is sufficiently close to 1. Inequality (1.17) is equivalent to
2
(1.18) t(d) = 3r(,1)——q—r(q/1) =0

for all 1>0. We consider only those ¢’s for which g™ '=3/2 minus a small positive
number, say let g""'=5/4. A simple reasoning gives that if

1 m—1

A= max[l,‘ e ;;; |ai|]

or v
0<ix= min[l, ——%—] |
C 2 2 ol
i=l+1
then (1.18) is true. Since ,
: . CHm (D) =r(d)

q—+1+0

uniformly on each finite segment, hence we can choose ¢, 1<q and ¢q™~'=5/4, such
that (1.18) holds for all 1=0. Thus we can-and do fix g=>1 for whlch (1 17) is satisfied.
Let p=q/(g—1) and return to the study of s(4). -
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The behaviour of s(1) for A large enough is determined by the coefficient of 1™,
Hence we have to choose C, such that

am(CZ—_; Cg™= 1 —p"~) >0,
ie.,

2pm—1

This choice implies s(4)=0 for sufficiently large 2, say 1=4,.

In case when 4 is small enough, the coefficient of A'is decisive for the sign of
5(4). In order to ensure that s(1)=0 for sufficiently small 4, say 0<A=4,, we have
to require that

2pl—1
C2 > —2_—qu .
But condition (1.]9) implies this, it suffices to keep in mind only that m=/, p>2,
g>1, and ¢"'<2.

Thus it remains to deal with the case 1,=A=A,. Since the polynomial r(4)

has no zero on 0<A< o, it follows that

= i
1 Aogl;él/ior(/l)

is a positive number. Further, set

R, = max —l—r(pzl).

P amA=4g p

Taking into account that (1.17) holds for all 1>0, we have

1
s(4) E%Czr(/l)—%r(p/l) = ‘4_C2r1_Rp =0

for every A in [Ag, Ao] provided C.=4R,/r,. If, in addition, C, fulfills (1.19) then
we can conclude that s(4)=0, and consequently, (1.16) is satisfied for all A=0.
Finally, if C;=27C then (1.15) is also satisfied.

Continuing our reasoning with (1.14), by (1.15) and (1.16) we arrive at the
desired (1.13). Thus we finished the proof of Theorem 2.

Before coming to the applications, we make a remark on the validity of Theo-
rems 1 and 2. Viewing the proofs, it is striking that we use no full power of a proba-
bility space. In fact, Holder’s and Minkowski’s inequalities were applied only,
which are available in any measure space (X, 4, u). Hence Theorems 1 and 2 are
valid on (X, A4, u) taking integrals over X with respect to y in place of the expectations
on the left-hand sides of the corresponding inequalities. :
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§ 2. Laws of the iterated logarithm as consequences
of a probability inequality of exponential type for S, ,

Now we will discuss the stochastic convergence properties of S, under restrictions.
of type (1.2). The following result, which expresses a form of the law of the iterated:
logarithm, certainly has a broad scope of application.

Theorem 3. Suppose that there exist a positive number K and a sequence {a}
of numbers such that

t

.1 E{e¥Snu) = Cexp(;KA%43,) (@l b=0, k=1, 1> 0),
where '
b+k 1/2
(2.2a) Ay = [ 2> a?] and A,= Ay, = (n— =)
i=b+1 i

Then it follows a law of the iterated logarithm with K, i.e.

. IS,
@3 P{h’,ﬂfl’p GRATloglog Ape = ' = 1

We note that the conclusion of Theorem 3 in the special case g;=1, A2=n>
was proved by SERFLING [10, Theorem 4. 1] for uniformly bounded rv, |&|=B;
having the following properties:

(i) for any v=2 there exists a constant C, such that

(2.4) EIS, ) =Cn" (all b=0, n= 1),
(ii) the inequality

2
P{S,| > y} = 2exp {—2—;2—"} @i n=1)

holds for any y=>0.
The following theorem provides information on the rate of convergence in (2.3)..

Theorem 4. Suppose that (2.1) holds, where
(2.2b) A, —~ o and a,=o0(4,) (n~ ).
Then. for each 0=2K, we have

. a; | S -
25) 2 Fiogd,” {fn @ATToglog A2 = ‘} =

If the factor (@ loglog 4,)"? in the expression (2.5) is replaced by a rougher
factor (log 4,)* with an «=>0, then an essentially better rate of convergence depending.
on a can be achieved, as the following theorem shows.
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Theorem 5. Suppose that (2.1) and (2 2b) hold T hen settmg

MR }
P, =Pisup——-—— =1
{kEE A (log 4p)*

we have for each choice of O0<a~<1/2 and >0

< ai(log 4, '
» R A
Jor a=1/2 and >0

a;

3 e Pa < =
< A£+(2K /K n 4

.and for a=1/2 and f=0
S AP, < o
n

It is instructive to compare Theorem 5 with a result of SERFLING [10, Corollary
5.3.1], which reads as follows: Suppose that in the special case a;=1, A2=n, we have
{2.4) for all v=>2. Then

1 154
e {225 e (log b 1} ==

holds fot: each choice of a0 and 0<pB<1.

The results stated in Theorems 3—S5 are obtained by adaption of more or less
standard arguments [2], [4], and [7] making use of Theorem l. More precisely,
bounds on E {exp (AM, )} are of use in deriving bounds on the tail distribution of
M, . By Chebyshev’s inequality, (2.1) implies

2
r(2.6) P{IS,,! = y} = P{ells.J = e"ll‘} = Cexp [% KA2A?,—}.y] =C exp [_%A?,]’

if s chosen‘as A=y/KA. Here and in the sequel y denotes a positive number. Further,
.also by Chebyshev’s inequality, (2.1) implies via Theorem 1 that

Q2.7 P{M, , = y} = 8Cexp [——zﬁk—].

The proofs below are based on the bounds (2.7) on the tail distribution .of
M, ;, which is of interest in its own right, too. An extra factor of 8 in the coefficient
-on‘the right-hand side of (2.7) will not matter for our purposes, and the bounds we
-derive will decrease with increasing y slowly enough that passing from ) to y%/12
in the exponent will have no important effect.
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Proof of Theorem 3. We have to prove that, for any 8=>2K, with proba-

bility 1 we have
ISa| = (645 loglog A})"

for all n large enough. It is clear that this implies (2.3).
Let =1 be a fixed number and define a sequence of integers 1 =n,=n,=... in
the following way:

2.8 Al

'lk—

=6t<dA2 (k=1,2,..; 4,=0).

This is possible by (2.2a), and obviously nk——oo as koo,
Set

6 — \ 2 2y1/2
= 5% and pu(n) = (04%loglog A3)V2

By the above assumption y=1. Then (2.6) provides

P{|S,| = n(n)} = Cexp(—7yloglog 4) =
By (2.8) we get 2

o cC =1
kZ P{|S,| = u(ny} émkgl-k—v =

C
(log 43 )y

where Z, means that the summation is taken orily once for equal 7}s. In virtue of the

Borel—Cantelli lemma, this yields with probability 1 that
(2.9 Sn| = (642 loglog A2 )2

for all k large enough. !
For an arbitrary n, either n=n, or n,‘<n<n,,+1 for some k. If ny<n<n,,,,
consider
S, Sy #(n) | 1S.—S,| A(n)
W)~ m() ) R wm)

where

a(m) = (12042, _loglog A2)Y? and v, = myy—n,.

Pres Ve =

Since u(n) is non-decreasing, it follows that

|Snl lSnkl [Sn —Snk‘ ﬁ(nk)

. = +— .
u(), — u(m) — A(n)  u(n)
We will show that with probability 1 '

|S,,—S,,k| Mﬂk vie—1
2.11) max — ==
( me<n<nm . ll(nk) 'l“(nk)

(2.10)
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for all k large enough. To this effect, utilize (2.7). Then
P{Mnk.vk -1 = ﬂ(nk)} = 8cexp (_y log logA )'
As above, this implies ,
‘kZ”'P {Mnk, Vk'—l E ﬁ(nk)} < oo’
where Z" means that the summation is extended to such k’s that m,<n,.,—1.

By the Borel—Cantelli lemma we get the wanted (2. 11)
Owing to'(2.8) we have 4} >d* and :

A'z'ln"k"'l = An;‘“-l AZ = 6"(5_1).
ﬁ(nk) _.Vl—zAn,‘,vk-l
p(ny) Ay,

The right-most member here can be made as small as needed if 6 — 1. Hence, combin-
ing (2.9)—(2.11) it follows that, for any £=0, with probability 1

[S,] = [(0+¢)42log log A2]V2

" Thus

= [12(5~ )P,

holds for all n large enough. Since 8+¢ may be chosen arbitrarily close to 2K, the
conclusion of Theorem 3 is proved.

Proof of Theorem 4, Let =1 be a fixed number. We will show that
(2.2b) implies the existence of a strictly increasing sequence {n,} of positive integers
such that

(2.12) =42 <o
for all k large enough.‘Otherwise, for infinitely many n’s, we have
CAZ< 81 and A2, = ok+2

with suitable k’s. This gives that

Ga _ A 8051
Aﬁ+1 A,’;.,.l St+2 F

1

for infinitely many »’s, which contradicts (2.2b).

In proving the convergeénce of the series (2.5), we make use of the convergence
part of the following assertion, applied widely in the theory of numerical series:
Let d;=0 be the terms of a divergent series with partial sums D,. Then the series

. d
- 2 D g Dy
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converges or diverges according as £¢=0 or ¢=0. Hence it is enough to demonstrate
that

_ ' . Sy } Ca
@1 P=F {?L’E’ Gafloglog AN ' = Tog iy

with an appropriate £=0. -
To this effect, let us fix a number 6, so that

(2.19) E 2K<6,<6.

Let ky=ky(n) be deﬁned by m <n=n, ,,. We may assume that n, and consequently
k, are large enrough, so that (2. 12) is satlsﬁed It is obvious that

S _ 15 }
2.15) P, §k=2k'oQk . where Q, = P{n,‘gxlgar):i“ @F Toglog A" = 1¢.

It can be ea'sily checked that

l nx ' ISI I
(2.16) ngp{w_l}ﬂ’{"kggnxmw_n} 01+ Q2 x>

where, for the sake of brevity, we put
1/2
ag(n) = AzloglogA2 and n—[ [ ] ][ .

Repeating the argument that yielded (2.9) in the proof of Theorem 3, we can
establish with ease by (2.6) that

C
(log A2y’

where y,=0,/2K. By (2.14) we have y,>1. Thus, using (2.12), we find that

01,1 = Cexp(—y,loglog 43) =

c =1 1 C

(2 17) k=2klo Ql = (log 5)71 k=2k' k" = (‘)11——1)(10g 5)'yl(k _1)71_1 =
. 271"1C ‘ 211—1C

= - D0og oy kot 2n " — (—1logd(Qog AD—*
provided ky+2= 2(k0—1) 1e ko=4, which we may assume without loss of gen-
erality. '
Leét us now deal with the series S’ Q.- By (2.7) it is bounded from above by
the series = '

8C S’ exp

k=kg

n2AZ, loglog A2
T2, —4%) )

e+

8‘
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and therefore also by

8¢ 5 [ nt loglogAﬁk] sC
expl——————| =
R W PTeos ) 2 Ty
with y,=n2/12(6%2—1), since by (2.12)
A2, 5 1

Ryl o iy

M1

‘Since 6 may be chosen arbitrary close to 1, fix =1 in such a way that y,>1. Then
the same sort of argument that yielded (2.17) shows that

2.18 '3 mC
18) V k=2k'° Qi = (yo—1) log é (log 4227t~

Putting together (2.15)—(2.18), we arrive at (2.13) with e=min (y,, y,)—1.

This completes the proof of Theorem 4.

The proof of Theorem 5 runs along the same lines as that of Theorem 4. We
only notice that after the application of (2.6) and (2.7) we have to use the following
elementary inequalities:

C(logx)™ if 0<a<3 and =0,

exp {—y(log x)*} ={ x~7 if a=3
Cx~# if «>% and B=>0,
where x=2 and C depend only on «, § and y=0.

In the sequel as a particular case, consider a sequence {¢;} of weakly multiplicative
rv, i.e., we assume that

(2.19) Wo=( 2 EY0,0,--0.))P<= (r=4,6,..),

1=i)<ipg<...<i,

L]

where the summation is extended over all integers satisfying only the condition
1=i<i,<...<i,, and further

W =0() (r— ).
This is a generalization of the concept of multiplicativity defined by
(2.20) E{0y0 . 0.} =0 (1Sii<ip<..<i;r=46,..).

The condition (2.20) is stronger than (2.19). Even the former includes the case of a
sequence of martingale differences and the case of mutually independent rv and
special varieties thereof (see REVESZ [7]).
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We proved in [5, Lemma 3] that (2.1) is valid with a definite X for uniformly
bounded sequences of weakly multiplicative rv. More precisely, the following
result holds: Let {¢;} be a sequence of rv such that

(2.21) o)) = B(< =) (i=1,2,..)
and
(2.22) Tim sup WX = W(< o).

r—co

Then for every y>0 there exists a constant C, such that for every sequence {a;} of
numbers we have '

[
E{eMSonl} = C,exp[3 (B2 + W2+ A248;] (all =0, k=1, 1> 0),

where

btk o b+k
Spx = 2 a0, and Ag = 2 a.
i=b+1 ; isb+1

Hence, via Theorems 3—5, we obtain

Corollary 1. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (2.2a). Then there follows a law of the iterated
logarithm for {&;=a,¢;} with K=B*+ W2, ie., .

' . i§1 a;9;
g {"fli“p RGBT WY Alloglog 4,172 1} =1

Corollary 2. Let {¢,} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (2.2b). Then, for each 0>2(B*+ W?), we have

k
az 1_21' a:i(pi
2 Jrog A, {5;‘5’ @Az loglog A — 1} =

Corollary 3. Under the conditions of Corollary 2 we have

k.
2, a;p;
= . 1} e
kzn Ak(log Ak)a

5 a,z,(long,,)” P{sup
n A"
Jor each choice of a=0 and =0,
Corollaries 1 and 2 were proved by the present author [5] in another way, and
the latter one under somewhat more restricted conditions stipulated on {a;}. Laws
of the iterated logarithm, convergence rates in them was proved for multiplicative
rv in the special case @, = 1, A;=n, by SERFLING [8].
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§ 3. Strong convergence and complete convergence

A trivial consequence of the laws of the iteréted.logarithm is the strong law of
large numbers, i.e., under conditions (2.1) and (2.2a) it follows that

S,
G.1) P{F—» } 1.

It is of interest to obtain information on the rate of convergence in (3.1). Besides,
‘'we will give a condition on the sequence {c,} of numbers that

S P{M = e}
n=1 Cn

converge for every e>0, which is referred to as {S,,/c,,} converges completely to zero
in the sense of Hsu and RoOBBINS [3].

Theorem 6. Suppose that there exist a positive number K and a sequence
{a;} of numbers such that (2.1) holds. Furthermore, suppose that with some B=0
we have . :

'(3.2) A, =Cn? (n=ny) and a,=o0(4,) (i~ ).

Then, for each =0, we have
@3 - zerfppllad-

Jor any positive g <exp (¢*/2K); in particular,

ZA:,‘P{sup 'A’z‘l = a} < oo
n kzn

Jor any a=0.

Proof. We use the following elementary iﬂeqﬁalities: A
(i) If 0<u<1, §=>1, and k is a positive integer, then

(3.4 W 4 s w (1Y),
Indeed, if we substitute #** by v then (3.4) becomes
v+H? 4%+ = u(l—v’f‘)‘l,
‘where 0<v<1. Now, if §=1+n with an >0, theﬁ |
v+ +v"’+ = v+ ottt oy = p(l—v7)7,

whlch makes (3.4) evident.
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(i) If 0<w<1 and f=>0 then the series
w+w2"+w3"+

is convergent. Th1s is clear by Bernoulli’s mequahty, accordmg to which n =g (n—1).
After these prehmmanes let us fix sl<a S0 that o<exp (¢2/2K) and fix §>1 in
such a way that -

& ’ £—8
(35) 0 < €Xp [2K52] and g = W .

Then define a strictly mcreasmg sequence {nk} of integers by (2 12) as we did in the
proof of Theorem 4.
By (ii) and (3:5) it is enough to prove that

| » — | k| 2 2
(3.6) I, = P{’fgg yr: = <C5exp 2K52A

for all n large enough. Towards this end, let e, <n§nk +17 We obviously have

g e

K=ty me=<i=moa Af k=k,
- S, = 1

+ 2> P{ max '———-— =g—¢g = Ji+ /. .
k=kq Me=I=nmy m‘ L"g S Ay

Applying (2.6) with y=81Aﬁk gives

SLH=C 2' exp[———Az] C 2’ exp[ 821;]

k=kq k=kg
while the application of (2.7) with y=(¢—¢,) Aﬁk and (3.5) leads us to

[ (e—&,)* 45,

= U —
J. =8C 2 exp 2AKCIE = Aﬁk)] =

k=ky

oo 3 (8—81)25k ] 825"]
§8Ck=2k'oexp[ 24K = 1) _8Ck2k’oexp T
where we used that by (2.12) - ,
o . p = g

s eyl

A2

B +1

To sum up,

I, =J+ C Gl
= -
n 1 J2 9 kZ,:o CXp 2 K
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Now making use of (3.4) with v=exp (—¢?/2K) and of (2.12), we get that

1,=9Cexp [——i 5“0] [1 —exp [—-—si o (6— 1)]]-_1
"= 2K 2K -
(.7

= lSCexp[ 2K62 A% ﬂ] = 18Cexp[ 2K52 Aﬁ] ,
provided

exp [—— Sro(6— 1)] =7

which is the case if n (and a fortiori k) is large enough.
Observe that (3.6) and (3.7) coincide if C; is taken to 18C. This completes the
proof of Theorem 6.

Finally, we consider the question of norming S, in such a way that §,/c, con-
verge completely to zero. The following theorem may be derived.

Theorem 7. Suppose that there exist a positive number K and a sequence
{a,} of numbers such that (2.1) holds. Furthermore, suppose that with some =0
we have (3.2). Then M,[(A%log A,)*g(n), and hence also S,/(4%log A,)*g(n),
converges completely to 0 if g(n)—> oo as n— oo,

Proof. Let e=0 be given. Then we obtain immediately by (2.7) that

M, e2g%(n)log A4, -
> =,,2P{(A,"f]ogA,,)l/2g(n §8}§8C"2'exp[———-——g (23:Kg ]=8C"2'A,l »,

where v, =¢%g%(n)/24K. Taking into account (3.2), it follows that
2 =8C3nFn <o,

since fv, with g(n) tends to « as n—<, Here we suppose that C,=1, but this does
not bother generality. The proof of Theorem 7 is ready.

Condition (3.2) stipulated on the growth of 4,, plays a crucial role in the proofs
of Theorems 6 and 7. Namely, (3.2) ensures the convergence of the series > g
for 0<g<1 (in the proof of Theorem 6) and that of the series > A;#™ for g(n)—~oo
(in the proof of Theorem 7), which fail if, for example, 4,=logn, g=1/2, and
g(n)=loglog n. Of course, it might be some relaxation of (3.2) using another tech-
nique, but we are unable to do so.

Confining attention to a uniformly bounded sequence of weakly multiplicative
rv, we get the following
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Corollary 4. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Let
{a;} be a sequence of numbers with (3.2). Then, for each ¢=>0, we have

-

Corollary 5. Let {¢;} be a sequence of rv satisfying (2.21) and (2.22). Under
conditions (3.2) we have
.

We note that Theorem 6 in the special case g;= 1, A2=n, was proved by SERFLING
[10, Theorem 5.2). Furthermore, Corollaries 4 and 5 were proved also by SERFLING
[8] for sequences of uniformly bounded multiplicative rv and for g;=1. The proofs
given above essentially differ from those of Serfling, since in the case of general
sequences {a;} (satisfying merely (3.2)) not only (2.6) but also (2.7) are employed.

> Q“:P{SUP o5
n k=n Ak

k
2, 4;9;

Jor any g<exp [¢¥/2(B2+ W?2)).

1
2 { (AZTog Ay () 126

k
2, ;0
i=1

provided g(n)—~o> as n— oo,
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Spectral mapping iheorems'. for s‘e,mig'roups.of ope_rators

B. NAGY

1. Introduction and notations

Spectral mapping theorems for essential spectra have been investigated by
B. GramscH and D. LAy [1] even in the case if T'is a closed unbounded linear operator
with nonvoid resolvent set. However, their results do not apply to the essential
spectra of semigroups of linear operators, for in this case the mapping f is not
locally holomorphic on a neighborhood of the extended spectrum of T. The aim of
this paper is to extend the results of [1] to semigroups of linear operators in Banach
spaces.

Let X, Y denote complex Banach spaces, B(X Y) the space of bounded linear
operators from X to Y and set B(X)=B(X, X). We shall always assume that the
semigroup {T'(t), t>0}CB(X) is of class (4), and additional restrictions will be
explicitly stated (cf. [2, pp. 321—323]). 4 will denote the infinitesimal generator
of T(¢).

Let ¥ be a closed linear operator with domam D(V)c X and range R(V)CX.

“Suppose that the resolvent set ¢(¥) of ¥ is nonvoid. The nullity of ¥, n(¥) is the
dimension of the kernel N (V). The defect of V, d(V) is the algebraic dimension of the
quotient vector space X/R(V). The index of V, ind (V) is n(V)—d(V), where co—
is undefined. The ascent of ¥, a(¥) is the smallest nonnegative integer p such
that N(V?)=N(V?*%), The descent of ¥, e(V) is the smallest nonnegative integer ¢
with R(V9)=R(V?*). If no such p or g exist, set a(V)= e or e(¥)= o, respectively.

A comprehensive survey of the essential spectra of ¥ has been given in (1.
To unify notation, we shall define them by means of regularity sets G; (i=1, 2, ..., 11)
as follows VeG, if and only if

Received October 8, 1975.
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G, : VeB(X),

G, : ind (V)=0and a(V)=e(V)< <o,

G, : ind (V)=0,

G, : ind (V) is finite,

G; : n(V)<e and R(V)=R(P) for some P=P*cB(X),
Gy : d(V)<o and N(V)=R(P) for some P=P2¢B(X),
G, : n(V)<e< and R(¥) is closed,

GS : d(V)< bt}

G, : G,UGg,

Gyo: R(V) is closed, -

Gu: a(V)<eand e(V)<eo,

We shall omit nbmenclature, for it is not unified in the literature. It is clear that
the following relations hold:

G,C Gy
GchchacG4c[ CcGyCGyy.
n G;C G,
Gy .

We remark that the following example shows that in general we do not have
B(X)N Gy, < Gy,.

Example. Put X=L and for x=(x,x,,...)€X define Vx=(0, x,,
0,1/3x;3,0,1/5x;,0, ...). Then ¥ is compact and dim R(¥V)= o, hence R(¥) is not
closed. Further ¥'2=0, thus a(¥V)=2, and e(¥V)=2, contrary to the required contain-
ment relation.

The essential spectrum s5;(¥) is the set of complex numbers ¢ such that
V—c=V~-cl¢G; (i=2,3,...,11; for i=1 we get the spectrum of V). We emphasize
that 5;(V) is a subset of the proper complex plane (i=1, 2, ..., 11), contrary to the
definitions of [1, pp. 30—31]. In what follows we intend to prove mapping theorems
of the type

exp [ts;(A)]cs; [T(B)],

which is well-known for i=1. Theorem 10 will show that the converse relations as a
rule cannot be expected to be true.

We remark that a projection operator will always be understood to belong to
B(X), X* will denote the adjoint space of X and V* the adjoint of the operator V.

From the method of the proofs it will be seen that, according to the results of
[9, pp. 285—286]), some spectral mapping theorems for essential spectra of cosine
operator functions can be proved by a similar method. In this connection we take
the opportunity to note that Theorem 3 in [9, p. 285] has been misstated, and the
following should be substituted for it. The author apologizes for the error.
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Theorem 3. [9) If C is a cosine operator function, A its generator and s¢R,
thench {s V;(—A)}CO'{C (8)}. Further, if a is complex number and a* — A has the spectral
property P, (v=1, 2, 3), then so does ch(as)—C(s).

The proof remains unchanged.

2. Spectral mapping theorems

Let 7(¢) be a semigroup of class (4), and 4 its infinitesimal generator. In what
follows we will heavily rely on the definitions and results of the operational calculus
and spectral theory as developed in [2, Chapters 15, 16). The most relevant results
are summarized in the following lemma (cf. [2, Theorem 16.6.1]).

Lemma 1. Let ¢ be a real-valued Borel measurable submultiplicative function
on [0, =) with ¢(0)=1. Suppose g€ F(p), A< @, then the linear operator F(g; A)
defined by

©o

F(g; A)x=f T(?)xdg(t)

o .
Jor xEXl(A):{xEX ; ,E{ﬂ. T(t)x=x} has a unibue bounded linear extension F(g)€
€ B(X). Moreover, the complex function

oo

flg; o) = [ edg(t)

is defined and holomorphic for Re c<w0=lim t~'log @ (1). Suppose a<S(p),

A<, c€s;(A). Then there exist a submulttplzcatwe o’ such that A< ¢, (@) F(¢’),
and an element b€ F(¢’) such that

M F(a)—f(a; c) = (A —c) F(b),

@ [F(a)—f(a; O)]x = F(b)(A—c)x for xeD(A).
The most important special case is described in
Lemma 2. For every t=0 and ¢ complex,

3) T(t)~e* =(A—c)F,

@ [T(t)—e]x = F(A—~c)x for xeD(A),

where FeB(X), and for xc X;(A)

®)) Fx = Fix = e f e sT(s)xds.

Further, if T(t) is of class (1, A), then (5) holds Sor every xc X.
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Proof. A closer inspection of the proof of [2, Theorem 16.6.1] shows.that if
a=e, ie. F(@)=T(1), f(a; c)=e", then (1) and (2) hold for every complex ¢; and
F=F(b) is given by (5) for x€X;(4). Moreover, if T(z) is of class (1, A), then the
right side of (5) is defined for every x€ X, and

| e T@xds]| = [ le-=11T (@l dslix) = Kij=]-
0 ’ .

Thus the operators on both sides of (5) are bounded and coincide on the dense set
X1(4), hence on all of X.

"Remark. In what follows we will prove theorems of the following type
c€s;(A4) implies e €5,(T(¢)) for 1>0, or equivalently,
6) " T(t)—e"cG; implies A—c€G, (t>0).

Since for every complex number ¢ the operator B=A —c is the infinitesimal generator
of the semigroup S(t1)=e™“T(?) of the same class (see [2, pp. 357—359]), we may
. and will restrict ourselves in the statements and proofs to the case ¢=0 in (6). For a
fixed ¢=0 we shall often write, for the sake of brevity,

7 : V=T@W-1 V,=FA.
Theorem 1. If T(t)—1€G,, then A€G,.

Proof. To avoid trivialities we assume dim X=oo, Since V> FA, therefore
N(A)c N(V), hence n(A)<oo By assumption, there is a prOJectlon P of X onto
N (V) 1.e.

X=PX®(I-P)X=NV)pX’,

where P=71. R(V) is closed, thus for xe¢ X
Vx| = ¢-dist(x, N(V)) = gllx—n]|,
where ¢=0 and n€ N(V). Hence

Vx| = (I-P)x| = ¢'lI-P)x]. -

=T-F Pn I

For xeD(A) we get |[F|-|Axl=|Vxl|=q'[|[(/—P)x|. The equality F=0 would
imply N(V)=2X, a contradiction, thus for x¢ D(4) X’ we have

®) I4x] = rix|| = r-dist(x, N(4|X")) (= 0),

where A|X” denotes the restriction of A4 to D(4)NX’. The set X'=(I—P)X is a
closed subspace of X, hence A|X’ is a closed operator. By (8), A4]X’ has closed
range, and again [3, Lemma 333] yields that R(A) is closed, hence 4€G,.



Spectral mapping theorems for semigroups of operators 347

Theorem 2. T(t)—1€Gg implies A€Gy. .

Proof ‘Since R(V)=R(AF)CR(4), we obtam codim R(A)Scodlm R(V),
i.e. d(4)=d(V), and the assertion follows 1mmed1ately
From these results we obtain the following

Corollary 1. T(t)—I€G; implies A€G, (i=4,9).
Theorem 3. If T(t) is of class (1, A) and T(t)—1€G,,, then A€G,;.

Proof. Since D(V)=X, the assumption implies that a(V)=e(V)=p, by
[5, Theorem 5.41—E). If p=0, then 1€ ¢(T(¢)), hence 4¢G,cGy,, by [2, Theorem
16.7.1}. If p=0, then [4, Theorem 2.1] yields that 1 is a pole of the resolvent operator-
R(c; T(1)) of order p. Then there exists a deleted neighborhood U of 0 in the complex
plane such that cc U implies e”*€o(T(¢)). The relations (3) and (4) yield then for
c€ U that .

) ’ . R(c; 4) = R(e“ T(t))F
Here we have emphasized that F,=F depends on ¢, by (5), and made use of the
fact that R(e®*; T(t)) commutes with F,.

Since (5) holds for every x€X, it is easily seen that F, is holomorphic on the
whole complex plane, and (9) gives that R(c; ,:4) is holomorphic in U. Moreover,

c p+1 , '
since linol -1 = t~P~1=0, there is a positive number ¢ such that in a deleted:
=0 e’ — .
neighborhood Uyc U of zero
(10) et R(e; D) < glet =P+ [R(es TO)| - IF).

1 is a pole of the resolvent of T(t) of order p and || F,|| is locally bounded, hence-
the left side of (10) converges to 0, if c—~0. But then ¢=0 is a regular point or a pole-
of order =p of R(c; A), and we obtain from [5, Theorem 5.8-A] thdt a(4)=e(4)=
=m=p. Thus A€G,,, and the proof is complete. ‘

The following related result may also be interesting.

Theorem 4. If T() is of class (4) and a(T(t)~I)=k=<oo, then a(A)=k.

Proof. From (3) and (4) AFDFA, hence F'A'x=V'x for every x€D(A"),
r=1. Suppose now x€D(4**Y), 4*+1x=0, then V¥ x= Fk+!4**+1x=0, By assump-
tion, we obtain F*A*x=V*x=0, and we have to show that y=A4*x=0.

We know that Ay=0, and [2, Corollary 3, p. 347] yields that T(s)y=y for every

s>0, hence yéXl(A) and, by (5), Fy= f T(s)ydx=t-y. We obtain sxmﬂarly that
t*y=F*y=F*A*x=0, hence 4*x=0, thus a(A)=k.
Theorem 5. If T(t) is of class (1, A) and T(¢)~-1€G,, then A€G,.
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Proof. By assumption, V€G,,, hence the proof of Theorem 3 yields that
a(A)=e(4)=m<-os, Moreover, if m=0, then 4€G,cG,, and if m=0, then 0 is a
boundary point of s;(4). Supposing the latter, we also establish that V€G,, hence
A€G,, by Corollary 1. Consequently, [4, Theorem 2.9] yields that n(4)=d(4) <o,
hence A€G,.

Concerning the regularity set G;, our result is not quite general. We shall call a
projection P€B(X) an A-projection, if P[D(A)]cD(A).

Theorem 6. If n(T(t)—I)<o and there is an A-projection P of X onto
R(T(t)—1), then A€G;.

Proof. By assumption, with the notation C=(/—P) X we have
X =PX®(I-P)X=RF)®C.
Since P is an A-projection, we obtain
(1) D(4) = [R(V)ND(A)]@[CN D(4)],

whére the members of the direct sum are closed sets in the induced topology of the
subset D(A4)c X. Since A4 is closed, D(A4) becomes a Banach space D under the norm

x| = x| +14x] (x€D).

Tt iseasily seen that each set closed in the induced topology of D(4) is also closed in D.

From (3) we see that R(F)cD, hence R(Vy)=R(FA)cR(V)ND. Further,
if yeR(V)ND, i.e. y=Vx€D, then we can construct a sequence {x,} D such that
Vox,—~Vx (here = denotes convergence in D, and —~ will denote convergence in X).
Indeed, for k=w, put x,=kR(k; A)x€D, then x,—~x (k—+o), hence Vyx,—~Vx
because V,CV€B(X). On the other hand AVyx,=kAVR(k; A)x=kAR(k; A)y=
=kR(k; A)Ay—~AVx, as asserted, hence R(¥,) is D-dense in R(V)ND.

It is clear that A€ B(D, X) and, since for x€X |Fx|=| Fx| +| Vx| =(K,+ K| x|,
‘we establish that F€ B(X, D). By assumption, V'€ B(X) has property (4) as defined
by B. Yoop [6, p. 600}: R(V) is closed and n(V)< <. Since AF=V, [6, Theorem 3.5]
yields that F has property (4). Since V€G,, Theorem 1 gives that A4 also has property
(A). Since V,=FA, we have V,€B(D), and [6, Theorem 3.4] implies that ¥, has
property (4), hence R(V,) is closed in D, consequently R(V)=R(V)ND.

We obtain from (11)
(12) D = R(Fy)®lCN D]
where the members of the direct sum are closed sets in D. Hence there exists a pro-

jection Qe B(D) of D onto R(V,). Since Vy=FA, [6, Theorem 5.1] yields that there
«exists a projection R€ B(X) of X onto R(A) and n(A4) < oo, thus the proof is finished.

Theorem 7. T(t)—I€Gg implies A€G,.
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Proof. By assumption, there exists a projection Q of X onto N(V); here
Q€B(X, N(V)). An inspection of the proof of [2, Theorem 16.7.2] yields that there
always exists a projection PEB(N(¥)) of N(V) onto N(4), hence R=PQ¢B(X),
and the range of R is N(4). For every x€ X we have R*x=PQ(PQx)=P*Qx=Rx,
hence R is a projection of X onto N(A). Further, ¥¢€Gg, thus Theorem 2 implies
A€G.

Concerning the essential spectrum s;, we have a positive result merely in the
case A€ B(X). It is nevertheless remarkable, because in general there is no contain-
ment relation between sy0(f(4)) and f(s,5(4)), if f is a complex-valued function
which is locally holomorphic on an open set containing s,(4), see [1, p. 29]. (In
our case f(z)=e".)

Theorem 8. Suppose T(t) is a uniformly continuous group of operators, i.e.
A€BX). If T(t)—1€G,o for some t£0, then ACG,,.

Proof. Clearly we may and will assume ¢=0. Since 4€B(X), thus ¥=FA4 and
F(A(X)) is closed. Since F is continuous, the inverse image A(X)+N(F)=
=R(A)+N(F) is closed in X. We show that N(F)c R(A).

Let M denote N(¥) and, according to the proof of [2, Theorem 16.7. 2], define
the projections J,€ B(M) by

t )
J.x =11 fe‘z"""'T(s)xds (xeM).
s ,

Then J,(M)=N(4—c,), where c¢,=2mirt™* (r integer). Since s5,(4) is compact,
there is a positive integer k such that J,=0 for |r|>k, thus formula (16.7.5) of
[2, p. 468] reduces to !

X '
(13) x= J Jx for xeM.

r=—k
[ 4
By (5) (with ¢=0), Fx= [T(s)xds=tJyx for x€M, thus the fact that N(F)c M
0
implies N(F)=N(J,). Hence for xé N(F), (13) yields

(19 x—Z'Jx (r #0).
For r=0 we have J,(M)=N(A-c)={x€X; x=Ac'x} CR(A), thus from (14)
we obtain N(F)C R(A), hence A€Gy, and the proof is completed.

1t is remarkable that in general no similar mapping theorem holds for the
essential spectrum s,. More exactly, we have

Theorem 9. There is a Bdnach space X and an A€B(X) such that c€sy(A)
Jor some complex c, while e"¢s3(T(t)) for some t=0 (here T(t) denotes the group
generated by A).

9 A
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-Proof. For every real number s define

5. ' P4 (L+i)s

K is the Founer transform of some kEL,( — oo, oo), ie.

K@) = f e‘“k(t) dt

~(see e.g., [8, pp. 13—14]). Let X denote L (0 o) (pal), or. any other of the spaces
in (6.4) of [8, p. 38]. Define A€B(X) by . .

A0 = [ k(-x)ds,

then [|A]=]kl,. If z is a complex number such that z;éK(s) for —eco=gs= oé,;thefl
(16) v= v(z)=—‘—§]; f dsarg(K(s)—z)=ind(A—z),
moreover, v=0 implies z€g(4), v>0 1mp]1es n(d— z) v and d(4=2)= 0 whlle
v<0 implies n(4—2)=0 and d(4—z)= —v (see [8, p. 61] and [7, p.-109]).

Put ck=% (2k—1) (k integer), r=8r, then {c,} is the set of all complex solutions

of the equation ¢ =—1. From (15) and (16) we see that because of the properties

Of K (S) ) . . o :

17 n(A—c) =96y and d(4d—c) = 6y,

where J is the Kronecker symbol. :
Let T(z) be the group generated by A, then T'(¢) is continuous in the uniform

operator topology. [2, Theorem 16.7.2] yields that N (T(r)+1) is the closed hnear
subspace generated by {N (4—c)} hence by (17)

18) n(T(r)+1)=n(d—cy) = 1.
From (17) we see that R(4—¢) is closed, because d(4—c,)<-<o for every k.
A result of GramscH and LAy ({1, p. 22] for o, and f(z)=¢") then le]dS that
d(T(r)+1) <o, hence R(T(r)+1) is closed. Then we have
(19) n(d*—¢) = d(d—c) and d(T()+1) = n(T¢)*+1).

A*€B(X*), hence it generates the uniformly continuous group {7'(t)*}cB(X™).
Applying [2, Theorem 16.7.2] now to the adjoint group, we obtain from (17) and
19 that

(20) d(T(r)-;- 1) =n(T(r)*+1) = n(A*—c,) =1,
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hence, by (18), ind (T(r)+1)=0. From (17) we obtain ind (4 —cg)=1, thus ¢,€s5(4),
though e®’= —14 s3(T(r)). The proof is complete.

Remark. Some of the theorems and proofs obviously extend to the more
general situation described in Lemma 1. Others apparently do not. o

According to the results of GrRamscH and Lay [1], if A€B(X), then some of
the theorems above admit a converse in the well-known sense. However, we have

Theorem 10. There exist a strongly continuous group T(t) and a complex p
such that p€s,(T(1)) for i=1,2, ..., 11, whereas c€o(A) for every complex ¢ with
e€=p.

Proof. We can take the example of [2, p. 469], and put X=1I,, T(t){b,}=
={e"™b,}. Then T(r) is a strongly continuous group. It is shown there that if
pE Ca(T(l)) (the nonvoid continuous spectrum), then every c is an element of g(4).
Moreover, with the notation U=T(1)—p the set R(U) is not closed, hence p€s;(T(1))
for i=1,2, ..., 10. Since U is 1—1 and R(U)#X, we have a(U)=0, e(U)=0. But
then e(U)= = (see [5, pp. 272—273]), hence p€s,, (T(1)).
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Note on an embeddmg theorem

J NEMETH

Let ¢=¢, (p>1) be a nonnegative increasing function on [0, ) with the
following properties: :

Mf and _qix_)‘ 'as X — oo,
x xP

: 1
The set of measurable functions f on [0, 1] for which f o(lf))dx <

will be denoted by ¢ (L). -
If f€<p(L) the “modulus of continuity of f with respect to ¢’ will be defined by

O.ﬁ—sm>¢U'NUﬁ+mfﬂﬂDﬂ)(OsésD

where @ (x) denotes the inverse functlon of go(x). Given a function 7] and a non-
decreasing continuous function w with w(0)=0, H, = H;’("’ will denote the collection
of functions f(x) satisfying the condition '

0,3, ) = 0((5)).
LEINDLER [2] gave a sufficient condition for H®®c (L) A(L), where A(x) is a
“slowly increasing™ function. Namely he proved the following:

Theorem A, ([2], Theorem 1) Let féq)(L) (go=<p,,,p§1) and let {/1,‘} be a
nonnegative monotonic sequence of numbers 'such‘ that

1)

e A A
Snerol.

Received Scp_;embef 5, 1975. A

1) K and K, denote either absolute constants or constants depending on certain functions and
numbers which are not necessary to specify; K(a, 8) and X, («, f) denote positive constants depending
only on the indicated parameters. These constants are not necessarily the same at each occurrence.
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where e=(@[p +1]+2)~;2) and let A(x)=2'?" % Then
0 ghfelid)

implies f€p (L) A(L) and
J oo 4N dx = k(. D] 3206y (1.1)) + [ oti7)

In the present paper we are going to prove that for certain functions w(8)
condition (1) is also a necessary for

HpOPco(L)A(L).
More precisely, we prove the following

Theorem. Let w(6) be a nondecreasing, ‘contindqus Sunction with w(0)=0,
Jor which the limit '

@ o im w(h)

1.

exists, and let {/1,‘} be a nonnegative monotonic sequence of numbers sausfymg
2a=KA, for any k. Then a necessary and sufficient condition for

® , Hp® (L) A(L)
is that ’ N

where A(x) means the same as in Theorem A.
1. We make use of the following:

Lemma ([3), Lemma 13). Let A(u) be a nonnegative nondecreasmg funcuon on
[0, oo) such that A(u®)=KA(u) for any ue[O oo) and let B(u) be a nonnegatwe
Sunction on [0, l] Then

f Bu)A(B(u))du < ~ implies f B(u)A[ ]du < oo,

%) Ly] denotes the integral part of y.

%) z‘ , where a and b are not necessarily integers, means a sum over alli mtegers between aand b.

1
%) In the. proof we shall use instead of (2) only the condmon > <l m( )
. R r=o o) '

,. Where p is

from the definition of the function =¢,.
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2. Proof of the Theorem

The sufficiency of (4) was p'rox;;ed in LEINDLER [2].
The necessity of (4) will be proved indirectly.

Suppose that
| ;oo (%]]
() B Sl VL1 N

n—l n

but (3) holds. Then we can construct a function f, leading to a contradiction.
The construction of this function is similar to that of LEINDLER {1} made in the
case ¢ (x)=x?. We define f,(x) as follows
0 if x=3. 227778,
fi(® = lo if x=0, x€[3,1], x=2",
linear on [27"71, 3-2“"“2] '[~3-2"""2 2"']

(n=1,2,...), where g,,=¢[2"“( ( ( ))—(p( 2”1 )] First we show that

So)EHZ?D, Let
(6) ’ he(2—*-3 2"‘ 2] k22
Then _ . . y ,
1—h . ' B 8k 1-—h) - S :
[ o(lfslt+m—fi@)dr = Lf +h'f -]{P(lfo(t'+ B ~f@®)dt = L+ 1.
0 3 ..
We have ' .

4k

L=k [ o) dx= K [ o(h))dx =

=3 [ el = k o2 =

n=k g-n-1

-5 3l w( wm w{ )= e

Next we prove that for any k:
L 1
@ - Zo|Sa(zo(ofF)))| = &elo(5)|
n=0 2 2
To prove (7). we mention first of al_l that by (2) and (5)

o(3)
® fim —2

mom !
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w(h/2)
< g=<1, then we have
w(h)

olofz=)) = rofo(3)

which by A,.=K; 4, implies the contrary of (5).
By (8) we may assume that there exists a positive number a such that 0<a<1
and that for any n=n, :

()] w[———l ]SPVZ-aw ——]]
2r-1) — )
Hence by ¢ (kx)=kP¢@(x) (k=>1), we have

ool <2eofef2)

or

an ,, »-1g [w[2n1_1)] =02 [w (2_1]]

Since §(kx)= Vk @ (x) for k=1 we have by (11)

w ol s freleld))

and consequently

o elrefola)) < 32elole(d))

Since ¢ (kx)=ko(x) for k=1, we obtain by (13),

- <p[2;*1 [2"-1 ( [2,,1 1])]] %(p[_g;@(zn(p(w[_;;)])].
2-ntig [2;,:1 @ (2n—1¢(w(2—,1_—1]]]] = “'2‘"¢[§¢[2n¢ (“’(2—1]]]]

which implies (7), since 0<a<1.
Having (7) we can estimate J,. Since
fo@+h)—fo(D]| = h-2"*3(0,+0,-p) if 27" 1=t=2"", l=n=k-1,

we have

follows, For, if hm

III\

-1 -n

= [ olfrh—fO)di= 3 [ ollfilt+D—fu)d =

= ~1

= K(p) Zk'2‘"<p [2k Q,.} Ki(o) Zk'2‘"<p > ¢(2" ( (21]}]] =

n=0

= %00 [o(3]] = Kool 00);
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and hence,

Sr(x)€HZ.
Finally we prove that A

Jox)¢ (L) A(D).

By (5)

1

y M’[“’ (—)]

(14) 2———————-»00,33 N-—»oo

n=1 n
Using (14) and A,,=K, A,, furthermore that for any N there exists an integer N,
1 1 1
such that ¢ [ (N )] —ZZ @ [ [N)] , an easy computation gives that
(1% §A(2")¢(Q,)2”" —~oo as p oo

Indeed, if 2*>N,, we have

Sroofd)) =2 S o o) 2o )
=2 S o o) -2x o 2]

2{2" 3 Akk‘1¢[w(71€-)]—2K1A(2”)(p( (21")]]+K2_

[t

A

IIA

In=1 k=2"~1+1

=2 -'é; ) [w (—2"1—1)] . 2,2“ Akk“l—; 2K, A(2% o [co (7)]]+ K, =
=2 ;" Ko [w an 1)] P 2+1/1k1;—1—2K1A(2")<p [w (2—1“]]]+K3 =

Il/\

k|3 oo, 2. a0 lo( )|+ o=
=K, ;2_:<p [a) [31]] (A@) = A @) =A@ ¢ [w (2—1“]]]+ Ky =
BEONNTITISIN

i
=K, ;; AN e(e,) 27"+ K;,

which proves (15) by (14).
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It is clear that for any m

1,,...f+11¢(|f°(x)l)’1 [%] dx.l=- Zm' 7_n¢(|fo(x)l)A [—xl-)dx =

= 34@) [ o(h@)ds = K 2 A@)o)2,
and thus, by (15), we get
a 0 [e(hha [—,‘;] dx = .

Since A,a=K;4;, we have
a7 AW = K A), | '
thus, by (16) and applying our Lemma, we obtain

. ,
(18) o [ e(@NAe( D) dx = .

. [} . R ) .
Using (17) and the properties of the function ¢, we have
(19) | Alp(®) = K A(x),
whence by (18) aqd,(19)

1 - o
[ (@A) S dx = <
follows, that is, . | N
‘ fito(DAEL).

The proof ;}_f, our, Theorem is completed.
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Derivations and translations on lattices

' JUHANI NIEMINEN

* 1. Introduction. Let S be a meet-semilattice and ¢ a single-valued mapping

of S into itself. ¢ is called a meet-translation on S [3] if (xAy)=p(x)Ay for each

pair of elements x, y€S. If S=L is a lattice and (p a smgle-valued mapping of L
mto L such that .

C eVp) = p(Ve() and @ (xhy) = (@EANEOINS)

for-each pair x, y€L, then ¢ is called a derwatton on L [5]. As shown by SZASZ in
[5], a single-valued mapping on a lattice L is a derivation on L if and only if it is a
meet-translation as well as an endomorphism on L. :

- Each meet-translation ¢ on S has the followmg properties [3]: p(x)=x,
(p((p(x)) o(x), and x= y=>(p(x)5(p(y) Moreover, in a lattice L the fixedelements
of o, i.e. the elements t=¢(¢), constltute an ideal K, of L [4] As shown in [4], X,
determmes @ uniquely. ‘

“In this note we shall 1llummate the dependence of ¢ from the propernes of the
1deal K,. ‘

A smgle-valued mapping ¢ of a Jom-sermlattxce | 4 mto itself is called a join-
translation on V, if ¢ (x\V y)=¢(x)V y for each pair x, y€'V. The results on translations
in the papers [1]—[4] are given in terms of Jom-translatlons As we shall consider’
here meet-translations, we always use the dual of the corresponding result obtained
in the papers [1]—][4].

i

" 2. Derivations on lattices. We denote by J (L) the lattlce of all 1deals ofa
Iattxce L;(z]= {xlxsz x, zEL}

Theorem 1. An ideal I of a Iattzce L generates a meet-translatwn go on L suck
thatI K, if and only if for each yeL there is an element keL such that IN(y]= (k).

Proof. If I=K,fora meet-translation @ on L, then IA(y]=(¢ ( y)] for each yeL

*Received September 25, 1975.
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Conversely, let TA(y]=(k] for each y€ L. We put ¢(y)=k and show that ¢ is
a meet-translation on L. Obviously ¢ is single-valued and K,=1. IA(xAy]=
=(IA(x])A(y]; thus ¢ (xAy)=¢(x)Ay and the theorem follows.

Theorem 2. Let D be anideal of a lattice L generating a meet-translation ¢ on L.
Then ¢ is a derivation on L if and only if DA((yIV (x])=(DA()V(DA(]) for each
pair of elements x, y€L. :

Proof. As D generates a meet-translation ¢ on L, DA(y]=(k] for each
yeL. Let the condition of the theorem be valid for the elements x, y€L.
Then DA(xV y]=(D/\(x])V(D/\(y]), whence ¢(xVy)=o@(x)Ve(y). Furthermore,
DAxA=(DAGDAOGI=(DAGNAK={(DACHAOGRV{DA)A(x]} which im-
plies that ¢ (xAy)=(@ (x)Ay)V (¢ (P)Ax).

" Conversely, let ¢ be a derivation on L and K, the ideal generating it. Accordmg
to the properties of ¢, K,A(x]=(¢(x)]. So (p(xV =0 x)Ve(y) implies that
K,AxVy=(e(xVy)]=(e (x)]V (e (M) =(K, A=)V (K, (»]). This completes the proof.

An element x of a lattice L is called distributive, if xA(yVz)=(xAy)V(xAz)
for each pair y, z€ L. The following lemma shows that the condition of Theorem
2 reduces to the distributivity of D in the lattice S (L). .

Lemma 1. Let T be an ideal of a lattice L such that TA((x]V( y])—‘
=(TADV(TA () for each two elements x, ye L. Then TA(IV K)= (T/\I)V(T/\K)
for each two elements I, KEJ (). '

Proof. Asis well known it is sufficient to show that TA(IV K)S(TAI)V (T/\K)
Let x¢ TA(IVK), i.e. x€T and x=iVk for some ic] and k€K. Then (x]E (i]V (k]
and x€(x]=TAKIS(TAG)V(TAK)S(TAIV(TAK), and the lemma follows.

The lattice S(L) of a modular lattice L is modular. Already the relation
TAUIN K)=(TAIV (TAK) implies the neutrality of T in a modular lattice [6, Thm.,
103 and its corollary). So we can write

Corollary 1. A4 meet-translation ¢ on a modular lattice L is a derwatwn on L

if and only if K, is a neutral element of the lattice #(L). .

By the join of two derivations. ¢ and X on a lattice L we mean the mapping

@(x)VA(x) on L and by the meet the mapping ¢ (x)AA(x). In the following we con-

sider some conditions under which the join and meet defined above are also de-
rivations on L.

Theorem 3. The meet of two derivations @ and A on a lattice L is aIway's\;z
derivation on L. Moreover, the join of ¢ and A is a derivation on L if K, and K, are
neutral ideals of L.

Proof. (K,AK)Ax]1=(K,ADA(KA(])=(¢(x)AA(x)] and so K;AK, gen-
erates a meet-translation which is @(x)AA(x). Further, (K,AK)A(xVy]l=
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=K, A {K;A(xVyl}, and by applying now K; and K, sequently, (K,AK,)A(xVy]=
={(K,AKQNGDV{(K,AKIA(]},  whence  @(xVy)AL(xVy)=(o(x)ALF))A-
V((p (»AL(y)). This means that the meet of A and ¢ is a join-endomorphism, too,
and the first assertion follows.

Let the ideals K, and K; be neutral and let us consider the ideal K,V K.
K,V KIA ] =(K,AGE)V(KAE)=(e )]V (A(x)] =(9(x)VA(x)]. Thus the ideal
K,V K; generates a meet-translation B(x)=A(x)V ¢(x) on L. The join of two neutral
ideals is also a neutral ideal, and so (K,V K)A(xVy]={(K,V KA (]} V{(K,V K)HA
A(y]}. Hence B(x) is a join-endomorphism on L and also a derivation on L.

In [5, Thm. 3] SzAsz has shown that the product @i of two derivations on a
lattice L is always a derivation, and moreover, i(x)=¢(1(x))=p(x)AA(x).

As shown by SzAsz {5, Thm. 2], the derivations of a lattice L are exactly those
meet-translations of L that are also endomorphisms on L. As immediate corollary
of the construction of KOLIBIAR in [1, Thm. 1], we can write

Theorem 4. On a modular lattice L there is a one-to-one 'correspondcnce

between meet-translations ¢ and congruence relations 0, having the property
- (i) There is in L a neutral ideal T such that every rest class modulo 0, contains
exactly one element of T.

The congruence relation 8, relating to the meet-translatton ¢ and the meet-transiation
@q relating to the congruence relation 0,, are charactenzed by (ii) and (iii), respectively:

(i) X8,y =0 (x)=0(»), x, y€L;

(iii) @o(x)=x"€T for which x6,x".

Now we can prove an extension of [2, Thrh. 1]

Theorem 5. Let L be a modular lattice. The set of all congruence relations
0, relating to the derivations ¢ on L constitutes a sublattice of the lattice (L) of all
congruence relations on L.

Proof. According to Theorem 4, x0,y=(x]AK,=(y]AK,, for each derivation
¢ on L. As L is modular, for each derivation ¢ on L the ideal K, is a neutral element of
J(L) (Corollary 1). Hence, for any two derivations ¢ and 2 on L the mappings
o(x)VA(x) and @(x)AA(x) are derivations on L, too (Theorem 3). Let B(x)=
=@ (x)AL(x). We prove 6,=0,V 8, by showing that 1) 6,V0,=80,, and 2) 6,V0,=
=0,.

1) x8,y=(xIAK,=(VAK,=(IANKAK)=(VIANK,AK ) =x0gy, and  so
0,=0;. Similarly we see that 8, =6, whence 6,V 0,=6;.

2) Let x0,y(XIAKAK,=(VAKAK,<=xA@(x)AL(X)=yAe(y)Ai(y). On
the other hand, xA@(x)8,xA@(x)AA(x), and moreover, x0,xA\@(x). Hence,
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x(0,V0,)xAp(x)AA(x). Similarly we. see”that y(6, V09yA¢(y)/\A(y), and by
combining these results we obtain x(8,V 6,)y. Thus 6,V 0,=6,. :

Let a(x)=¢(x)VA(x); we prove that 6,=8,A8, by showing that 3) 0,%0 /\P
and 4) 6,=6,A0,.

3) Let x(0,A0)y<x0,y and x6,y e (xJAK,=(IAK, and (x]AK;= (y]/\K,,:»
= (x)A K,V K)=(IN(K,V K;)<>x0,y. Thus 6,=06 o0,

4) Let x0,y=(xX]AN K,V K;)= (y]/\(K VK,1)=>(x]/\(K VKDAK, —(x]/\K =
=N K, VKIANK,=(¥]JAK,, dand so xO,y. Similarly we set. that x0,y, too. Con-’
sequently, x(0,A6,)y, which lmphes the desired result.

‘.

A meet-translation ¢ on a lattice L s called a weak derwatwn onL,ifo(e (x)V y) =
=@ (x)V o () for each two elements x, y€L.” -

1

Theorem 6. Let M be an ideal of a lattice L generating a ’meet-transla’tﬂién'
@ on LT hen @ is a weak derivation on L lf and only if MA((x]V( y)=(MA (x])V
V(M A( 1) for each two elements x, y€L and x€M.

The proof follows the lines of that of Theorem 2, and hence we omit it. Further
the proof of the following lemma is analogous to that of Lemma 1, and hence it
is omitted. . - L

Lemma 2. Let T be an zdeal of a lattice L such that TA((x]V (¥))=(TAx])V
V(TA(¥]) for each two elements x,y€L, x€T. Then TA(IVK)= (T/\I)V(T/\K)
Jor each two elements I, Ke #(L), ICT.

- As-shown by SzAsz {4, Thms. 4 and 5], the dlstrlbutmty and modulanty of
a lattice L can be characterized by derivations and weak derivations of L, respectively.
It is interesting to see that these characterizations reduce the distributivity:(the
modularity) of L to the distributivity (the modularity) of S(L), as one can deduce
from Theorem 2 and Lemma 1, and from Theorem 6 and Lemma 2, respectively.-

- 3. Meet-translations on meet-semilattices. In this section we shall show a corinec-
tion between meet-translations on meet-semilattices and lattices. We shall considei
meet-semilattices only, and hence we shall use the brief expression semilattice in=
stead of meet-semilattice. Note that in S a nonvoid set I is an ideal if (i) x€I and
r=x imply r€l, and (i) x, y€I imply xAy€l S is up-directed if for each’ pair
X, y€ S there is an element k¢ S such that k=x, y. In particular, if S is up—dlrected
then IA Jis an ideal of Sfor each two ideals 7and J of S. '

Theorem 7. Let S be an up-directed semilattice and ¢ a meet-trans)ééioé
on S. Then ¢ generates a meet-translation ¢° on the lattice (L) of all ideals of S
defined as follows: ¢ (I)= {x|x = @ (y); yeI€ S(S)}.

Proof. At first we show that @?(J) is an ideal: of S. Let xE(p’(I) and r=x:
Then there exists an y€7 such that r=x=¢@(y), and so re¢?(l). Let a,bE(p“(I)
Thus aAbz=¢ (¥ )N (3)=0(¥a\ys), Where y,Ay,€1; therefore aAb€@®(l). i
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Clearly ¢? is a single-valued mapping on #(S); thus it remains to show that
O (UN)=¢?(DAJ. Let x€@?(INJ). Then there is an element y€IAJ such that
x=Z@(y). On the other hand, y=iAj with some i€ and j¢J, and ¢ ()= (iAj)=
=@@)\j. Thus xz=@(@()Aj with ¢(i)€@?(l) and jeJ, whence x€@?(I)AJ. This
shows that p? (IAJ)E p? (DA J.

Let now x€@?(IDAJ. Then x=rAj for some r€¢?(l) and j¢J. Furthermore,
there exists an i€l such that r=¢(#), and so x=¢@(@)Aj=¢(EAJ), where iAjeINJ.
Therefore, x€@?(IAJ), and the relation ¢?(I)AJS@?(TAJ) holds. Consequently,
" (INJ)=¢? () \J, and the theorem follows.

Let [z)={x|x=z, x, z€ S}. The validity of the following assertion is obvious..

Theorem 8. A meet-translation ¢ on F(S) is generated by a meet-translation
Aon S, ie. @=2%, if and only if for each x€ S there is an element k€ S such that

¢ ([x)=[k)-
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On the volume functioni of parallel sets

L. L. STACHO

1. Introduction

In 1959 B. Sz.-NAGY [1] proved the following theorem and its corollary:

Sz.-Nagy’s Theorem. Given an arbitrary compact set G in the plane with
k connected components, if G, denotes the parallel set of G of radius t then the
function area(G,)—nkt? is concave on (0, =). '

Corollary. For any bounded plane set A'the function area A, is everywhere
differentiable on (0, <) except for a countable set of values of t. This means that the
length of the parallel curves exists in the Minkowski sense for all t=0 outside of some
countable subset of (0, =°). :

The above geometrical interpretation is base:d on

Pucci’s Theorem. For any subset S df Euclidean n-space E" derivability
of the function V(t)=vol (S,) at the point r=0 implies that the n—1 dimensional
surface area of the boundary of S, exists in the Minkowski sense and equals V' (r).

We remark that Sz.-Nagy’s Theorem and its Corollary played a central role
in proving the estimations of E. MakAI [3] and L. E. PAYNE—H. F. WEINBERGER
[4) for the foundamental frequency of planar membranes; [4] points also to the
connections between Sz.-Nagy’s Theorem and the isoperimetric theorem in 2 di-
mensions.

It is a natural problem to find generalizations of Sz.-Nagy’s Theorem to higher
dimensions that enables us to extend the Corollary and the results in mathematical
physics mentioned above. The question is by no means trivial on account of dif-
ficulties of global differential geometrical type.

In the present paper we shall show in Theorem 1 of Section 2 that an inequality
‘of M. KNESER [5] concerning parallel sets directly yields a simple integral repre-
sentation of the volume function of parallel sets, which makes it possible to gen-
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eralize in some sense the Corollary to n dimensions and very likely opens a way
of obtaining estimations concerning 3 or more dimensional vibrating bodies anal-
ogous to, but probably weaker than, those for the 2 dimensional case treated in
[3] and [4].

However Theorem 1 in Section 2 does not imply the isoperimetric theorem.
The main reason is the strongly local character of Kneser’s inequality as shown
by Lemma 5 in Section 3. Nevertheless Theorem 1 gives an idea for a new proof
of less local type and a generalization of Kneser’s inequality, and is suitable to
extend Pucci’s Theorem too. This will be the subject of Theorem 4 in Section 4
and Theorem 2 in Section 3, respectively.

2. Concavity properties of the volume function of parallel sets

Throughout this work we consider bounded subsets of E” for an arbitrary fixed
n. Let d denote the distance function'). Recall that the parallel set of radius ¢ of
any set A4 in E" is defined by 4,={p€E": d(p, A)<t} for t>0. For A fixed, the
volume of A, is a non-negative monotone increasing continuous function on (0, ).
Our fundamental point is the following inequality

Kneser’s Lemma. [S]IfACE", b=a>0,and A=1 then
vol (A;,\4,,) = 1" vol (4,\ 4,).

(For a new proof, also applying to a more general case, sce Theorem 4
in Section 4.)

Definition. We say that a continuous function f defined on some subin-
terval I of (0, =) is of Kneser type (or a Kneser function) if it satisfies

) f(Ab)—f(1a) = 2"[f(b)—f(a)]
forall a, b€ I with b=aand for 1=1.

Lemma 1. Let f be a Kneser function on I and let a, b be two fixed points of
1 with a<b and f(a)=f(b). Then the restriction of f to the interval [b, =)\ 1 is con-
cave and monotone decreasing.’ ‘

Proof. Let A>1, x,€1, and x,=A*x, for k=1,2,.... Examine the behaviour
of frestricted to the sequence {x,, x;, ...} 1. Let

P = )= DV~ %) (k=1,2,..).

1) le. for p, g€ E” and AS E™ the values d(p, q) and d(p, A) are the distances between the points
P, g and between the point p and the set A, respectively.
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Then by (1) we have
Pr+1 = ln_lyk (k = 19 29 )'
In particular, if f(x)=f(x,_,) holds for some i then
EVNEVin =V = ... ‘ . ,
This means that the function fl, . . ' . ,is monotone decreasing and
concave. Now let xo=a and A=(b/a)* " for some natural number m. Since f(a)=
= f(b), there exists at least one index i with 1=i=2" for which f(x)=f(x;_,).
Therefore with the notation ‘
Qn={a”?"p*": j= 0, j+k = 2N 1 (m =12,..)
we obtain that for any m the functlon f IQ is monotone decreasing and concave.
Since @,£0,&... and U 0,, is dense in [b eo)ﬂ] we have .by the contmulty
of f that the statement of the lemma holds. )
Lemma 2. For any Kneser funcnon fwe have that
(i) fis absolutely continuous,
(i) f7(¢) exists outside of a countable subset of dom f,

(iii) the left and right hand side derivatives of f (f ) and f) exist at every
inner point of dom f, and f7) =f),

(iv) £ and £ are continuous from the left and from the right, respectively.

Proof. Let a, and b, be arbitrarily chosen inner points of dom f with a,<B5,.
Clearly, it suffices to prove that the function g defined by

) = f@O)—1"[f(bo) —f (ao)]/(b" a)
is concave on [b,, =) Ndom f

Observe that g(e,)=g(b,) and that g also satlsﬁes (1). Then the previous lemma
shows that g|,, .., is concave, which completes the proof..

Theorem 1. If f is a function of Kneser type and aEdom f then there exists
a monotone decreasing function a such that

2 (= fr""oc(t)dt-i—f(a) forall tcdom f.

Or, which is the same, there exists a concave Sunction » such that (2) holds with dx (1)
| in place of a(1)dr. ‘ -

1
Proof. By Lemma 2 we have f(t)—f(a)= f S (1) dr. Therefore the only
thing we have to prove is that the function f*)(¢)-1*~" is monotone decreasing.

10*
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Let tedom f, A=1 and 4=0. Then (1) implies that

S@+h)—f@) = 27"[f(At+Ah) —f(A1)],
ie. Lf@+h)—f(Olh = 2—+1 LA+ k) — £ A0/ ().

Thus for A\0 we have f(t)=2'""f(it) which estableshes fH (1)l ~"=
=f ) (At)(At)'~". The proof is complete.

Remark. Relation (2) characterizes the functions of Kneser type i.e., as it
can be easily seen, if any function f defined on a subinterval of (0, =) is of the form
(2), with o monotone decreasing, then f is a Kneser function.

Corollary. For all monotone increasing Kneser functions we have
&) fla+iy)—fla+ix) = 2*[f(a+y)—f(a+x)]
ifa+x, a+ix, a+y, a+lycdom f with a=>0, A=1 and y=x=0.

Proof. By Theorem 1 there exists a monotone decreasing function a such that
fa+y)—fla+x) = 7yf"‘1a(f)dr = f[fx(ff)]""‘al(o')(y—X) do
atx 0
where 7,(0)=0-(a+y)+(1 —0) - (a+x) and «, (¢6)=a(7,(0)).
Similarly, with the same function a,
fla+iy)—fla+ix) = of [22(o))" "t ae(0) 4 - (y —x) do

where 7,(0) =0+ (a+4y)+(1 —0) - (a+Ax) and &y()=0a(7;(0)).
Since a, x, y=0 and 1=1, we have 1,(0)=7,(0) if o€[0, 1]. Therefore ()=
=a,(0) for a€[0, 1]. But on the other hand we have a,, a,, 1 -7,=0, consequently

At (0o (@) (Y —x) = [14(0)] 0z (0) A+ (y —X)
for all a€[0, 1], which implies the statement.

Lemma 3. Let f,—~f, be a convergent sequence of Kneser functions defined on a
common interval I. Then for any t€l we have

S = fimy f90) = lim, f9(0) = £
Proof. The relation Fm, f<(1)=lim, fCP() is trivial.
‘Proof of £)(¢)=lim, £)(t): We know that the functions
“@ o) =08 k=0,1,..)
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are monotone decreasing on I and satisfy

() A = [Tlu@dtf@, k=01, ...

Now assume the contrary of the statement, i.e. that for some £=0 and for a
subsequence ky, k,, ... of subscripts we have lim, o (t)—ao(t)>¢ for some t¢l
Since the left hand side derivatives of Kneser functions are continuous from the
left, by the definitions of the functions &, and ‘since they are monotone decreasing,
we obtain that there exists =0 such that

o, () = ap(r)+¢/2 for z€[t—5,7] and i=1,2,....

Therefore for every subscript i we have

V@£t =D = /(0 ~1ot~=8)] = [ " o () —2(@]de = (g2) [o1dr =
t—90 ' t—4

= const > 0

in contradiction to the fact that f,—f;.
The proof of lim, £ =) goes analogously.

Lemma 4. Suppose that f,,f;, ... are Kneser functions on the domain I and
suppose that the series J fi(t) converge for all tel. Then, if fo= 3 fi, we have
k=1 k=1

ﬁ.(“(t)=k2”' 9 and fo(")(t)=k5; SEN) for all inner points t of 1.
=1 =

Remark. Since obviously f, is now also a Kneser function on I, the derivate
numbers f{(¢) and f{*(¢) exist for all inner points ¢ of 1.

Proof. As in the proof of Lemma 3 the functions f;, f;, ... can be represented
in the form (5) where o, o, ... are defined by (4). Since the functions a,, a,, ...

are monotone decreasing and continuous from the left, then if Z'ozk (¢) also exists
on I the function S(t)= Z o, (2) is also monotone decreasing and contmuous from

the left, which shows by (5) that B(@)=0,(¢) in the interior of 1. Now let ¢ be any inner
point of 1. By our Remark and Lemma 2 we can choose a pair of points a, be7
with a<t<b where f; (a) and f; () exist. Then we have

© 0= Zm@-n0ls Zm@-a®] (m=12.).

On the other hand we have by Lemma 3 that Za,‘(a) and Za,‘(b) exist.

This fact and (6) ensure the existence of Zak(t) wh:ch comp]etes the proof of:
Lemma 4.
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3. An extension of Pucci’s Theorem

In this and the next section we shall discuss some geometrical applications of
the above results on Kneser functions. Recall that the n—1 dimensional Minkowski
measure of any set SCE" is defined to equal y;rAr(l)vol (S,)/(2¢) if this limit exists.

(In the contrary case we say that S is not Minkowski measurable in n—1 dimensions.)
We shall denote the n—1 dimensional Minkowski measure simply by u.

Definition. Let X and A4 be subsets of E". We say that X is metrically associ-
ated with A if for any p€ X there exists a point g€ 4 (the closure of 4) so that d(p, )=
=d(p, A) and all inner points of the straight line segment joining p with ¢
belong to X.

Remark. Itis obvious that the parallel sets of a set 4 are metrically associated
with 4. Unions and intersections of sets metrically associated with 4 are also metric-
ally associated with A.

Lemma 5. Let ACE" and let X be a measurable set metrically associated with
A. Then the function f(t)=vol (4,NX) is of Kneser type.

Remark. We can omit the proof of Lemma 5 since its statement was essentially
proved by M. KNeseR ([5] p. 254).

Theorem 2. Let A be any bounded subset of E". Then w(0A,) 2 esists for all
t=0, and denoting V(t)=vol (4,) we have

u(o4) = 5 OO+

Proof. It is enough to con51der the case t—l i.e. it suffices to see that

104y -'—[V( ’(1)+V‘+’(1)]

Introduce the extended real valued function h: E” ~[0, o] which is defined as
follows: For any point x€ E" let 4(x) be the least upper bound of all numbers / for
which there exist points p€ 4 and g€ E™ such that I=d(p, g)=d(q, A) and the point
x lies on the closed straight line segment joining p with g.

It follows directly from this definition that the inverse images A~'(a) for any
a&[— o, o] are metrically associated with 4. Furthermore, it is easy to observe that
the sets A~ ([a, =) are closed, and therefore if B is any Borel subset of [ — <o, o] then
h~'(B) is measurable and metrically associated with 4.

Let us define the following functions on (0, e):

%) For any set SSE” the symbol 85 denotes its boundary. e
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For any Borel subset B of [ — =, =] lét ¥ be the function
Vg (t)= vol (4,N h~1(B)).
Now by Lemma 5 we have that all the functions ¥ are of Kneser type.

Next, let us examine the behavior of vol ((94,),) for £\0.
It is well-known that the sets (94,), can be represented in the form

(04D, = [ \A,_IN\Y (@) (2€(0, 1))
Y@®)={p:1>d(p,d)>1—t and d(p,dd;) > t}.
By Lemma 2 the only thing we have to prove is that
© lim =1 vol (Y() = 0. .

where

For this we only need to observe that
O Y(2) € h74([0, D)N (4\4;_,) for t€(0,1).

The inclusions Y(t)S 4,\ 4,_, are obvious. Now suppose that for some point
Xx€Y(t) we have A(x)z1. This means by definition of A(x) that for some g€ E”
and p€A the point x lies on the closed segment between p and g and d(p, ¢)=
=d(q, A)=1 holds. Therefore there is a point § on the closed segment pq lying at a
distance 1 from p, and we have '
® 1 = d@, 4) = 4@ p)
&) dg,x) = d(g, p)—d(x,p) =1-d(x,4) = 1.
But (9) contradicts the fact implied by (8) that (jeaAl, since by x€Y (t) we have
d(x, d4,)>t. Thus we have proved .

By (7) we have

0 = vol (Y(9) = Vo,1y(1) — V0. p(1 =1) = .Zl {V[l_l,‘l_'
Consequently, by Lemma 4,
(10) 0= limr ol (Y() = 2 V["

1 —V 1 - .
i

k+1

, )(1)
k k+1
holds. However, any function V[,, 5 is constant for ¢>b, therefore the right hand
side of inequality (10) equals O which proves (6) and the théorem itself.
Beside this generalization of Pucci’s Theorem we mention here as.a consequence
of Section 2 concerning the Minkowski measurability of the boundary of parallel
sets the following approximation theorem:

- Theorem 3. Let {A*};, be a sequence of non-empty bounded subsets of E"
tending in Hausdorff distance to a bounded set Ay.%) Then the relation lim; p(0A¥) =
=u(dAL) holds for all t€(0, =) except for a countable subset of (0, ).

%) The Hausdorff distance between X, ?gE" is defined by inf{6=>0: XSY, and YSX,).



372 L. L. Stacho

Proof. For k=0, 1, 2, ... let ¥,(¢) denote the volume function of the parallel
sets of the set 4* and let ¢, be the HausdorfT distance of A* from A°. Since obviously
A 41 S A E A} 11y Whenever t>g,+1/k, by the continuity of ¥, we have

Vi) =Vo(®) for t=0 and k — .
Then Lemma 3 implies that for all points ¢ where V’(¢) exists,

k@AY = 2 OO KD~ ¥ () = 1049

holds if k — o which completes the proof.

4. A new proof and a generalization of Kneser’s Lemma

Theorem 1 has a simple geometrical interpretation which enables us to give a
new proof to Kneser’s Lemma.

Let 4 be an arbitrary bounded subset of E" and let f(f)=vol (4,). We have
to prove that fis a Kneser function.

Observe that it suffices to prove Kneser’s Lemma for sets 4 consisting of
merely finitely many points, since the general case can be obtained from here by the
following simple approximation procedure: Choose any countable subset {p,, p, ...}
of A, dense in A, and take the functions f,(1)=vol ({p1, s, ..., pi}y) k=1,2,..).
Since obviously f,—f for k— <, we have that if f;, f;, ... are functions of Kneser
type then so is f too.

Thus let A={p,, ..., p}. In order to simplify the notations, we consider through-
out this section a fixed point z as the origin of E” and all the points p of the
space E™ will be identified with the vector of the directed line segment zp. Further let
K?® denote the open unit ball of centre z in E".

Then A4, can be written in the form of the following Minkowski sum:

an 4= A+ = U) (p+K) = U [D,0 (i 1K)
. i=1 i=1

where D; denotes the Dirichlet cell of p; with respect to {p,, ..., p,) i.e.

Di={p:dp,pp=dlp,p) if j=i and d(p,p)=>dlp,p) if j=1i}
(G=1,2,..,k).

Since D,, ..., D, are pairwise disjoint convex figures (not necessarily bounded
polyhedra), (11) implies that '

(12) vol (4,) = Zk vol [D;N (p; +1K%)] = Zk' farea [D;No(p;+1K%}dr.
. i==1 ie=1 0
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Observe that any cell D, is starshaped from the point p; (implied by convexity
of D), and therefore the angles consisting of the rays issued from p; and joining p;
with the points of the figure D;Nd(p;+tK°") on the sphere give a monotone decreas--
ing set valued function of the variable 7. Consequently, the functions «; defined by

o; () = A "area[D;N H(p;+tK%D] (i=1,...,k)
X .
are monotone decreasing. Thus for a(r)= 3 o(7) we have by (12) that f()=
t i=1

=vol (4,)= f " 1o (t) dr which means that f is a Kneser function. Qu.ed.
0

The application of Dirichlet cells enables us to extend Kneser’s Lemma as.
follows: '

Theorem 4. Let K be an arbitrary open bounded central symmetrical convex
figure of E" and let ACE” be also bounded. Then the function V(t)=vol (4+1K)
is of Kneser type.

Proof. It is easy to see that it suffices to restrict our attention to the case of
A={p,, ..., px} as above. We may assume without any loss of generality that z is the
centre of K. Introduce the function ¢: E"XE"—[0, =) defined as follows: For
x, y€E™ let o(x, y) be equal to the unique coeﬂicxent o for which the inclusion.
y€0(x+0K) holds.

Since now we have that (—1)K=K, the functlon ¢ will be a translation in--
variant metric on E", i.e.

(13) o(x,») =0 .if and only if x =y,
(149) o(x, »)+e(yu) = o(x,u), ‘
(15 o(x,»)+e(y,u) = o(x,u) if y belongs to the closed segment xu.
In this case it is convenient to consider
Di={p:e(p.P)=olp,py) if j=i and e(p;,p)>e(p,p) if j>i}

(i=1, ..., k). Then for the same reason as by which (12) was obtained we have
k
V() = 2 vol [D:N (p;+1K)].
i=1

On ‘the other hand, one can prove that any figure D; is starshaped with respect.
to the point p;.

In fact. Fix an arbltrary index 7, and let peD;, B€[0, 1], and g=p;+ 8- (p—p,)“
We have to point out that g€ D;, i.e.

(16) e(g.p)=olpi,q if j=i
a7 o(pj, 9 =o0(q, p) if j=1i
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‘Let e.g. j=i. Then by (14) and (15) we have

18 ' e(g, p)+e(p.p) = 2(g, Py,
(19) e(pis 9)+e(q,p) = ¢(pi> P
By the definition of D;, relation p€.D; implies that

(20) o(p;, p) = o(pi, P)-

But (18), (19) and (20) immediately yield (16). The way to obtain (17) is .,mnlar
Now the fact that D, is a starshaped domain with respect to p; can be formulated
in terms of Minkowski sums as

(21) (1—p)-p:+BD; S D; for any Bel0,1]:

From here it easily follows that the function S(e)=vol [D,N(p;+1K)] is of Kneser
type. In order to prove this let b=a=0 and A=L. We have to see that

vol [D;N {p;+(AbK\AaK)}] = A" vol [D;N {p;+(bK \aK)}].

For this it suffices to prove that the homothetic image of the set D, {p; +(AbK\1aK)}
from the point p; with coefficient A7 is included in D;N {p;+(bK\aK)}. Or which
is the same, we have to prove .

[8Di+(1 =ApIN{pi+(bK\aK) S DN {pi+(bK\aK)}
for B=A"1(€[0, 1]). But this is a dlgect corollary of (21).

Remark. It is not hard to see that no analogue of Lemma 5 holds in this
-generality if we replace 4, by 4+¢K where K denotes a central symmetrical convex
figure and if we replace the metric d of E" by the metric ¢ defined in the above prodf
in terms of K. This fact clearly shows the essential differences between the original
.and the present proof of Kneser’s Lemma.
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Decomposable elements and 1deals in semigroups

G. SZASZ

1. Introduction. An element d [or an ideal' D] of a semigroup S is called decom-
posable if there exist elements a, b [ideals 4, B] in S such that d=ab [D=A4B].
In particular, an ideal D of S is called idempotent if D®=D; it is said to be
left- [right-] reproduced if D=SD [D=DS] and it is said to be reproduced if SD=
=D=DS ([3]). A semigroup in which every element is decomposable will be called
a semigroup with decomposable elements and the analogous terminology will be used
for the semigroups in which every ideal (or principél ideal) is decomposable or re-
produced, and so on (cf. [5]). -

Let 2, [9,, 2] denote the class of semigroups w1th decomposable elements
[principal ideals _ideals]. Then S€2; implies. S€2, and the latter implies S¢2,,
obviously. Concerning -the converse implications,. our earlier investigations give,
as direct consequences, the following results:

(i) S€D, implies S€Z, if S'is commutative 4], Lemma 7); 1)

(i) S€9, implies SED; if S is finite and commutative ([6] Theorem 2).

It will be shown in Section 2 that neither (i) nor (ii) remains true if we omit (any one)
of the conditions written there; consequently, 2,592,5%;. ~

An ideal 4 of a semigroup S is called I-pure ([2]) if

1) AﬂXS X4 and AﬂSX AX

for any ideal X of § and it is said to be weakiy prime if X YC 4 implies X €4 or
YS A for each pair X, Y of ideals of S. Let 2[4, £] denote the class of semigroups
with I-pure [reproduced, idempotent] ideals. By Theorems 9—11 of 2], PNA=5.
In Section 3 we improve this result by showing N 2,=.%. Finally, in Section 4 we
prove that any weakly prlme decomposable 1dea1 1s reproduced at least from
one side. - - : o S -

" For the notations and concepts not- deﬁned here, see [l]

" Received December 1, 1975 revised March 25 1976."
3) The analogous problem for prime ideals has been solved in' [3] Satz 1.
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2. On the classes 2,, 2, and 2; of semigroups. The following example was
constructed by Andras Botos (Szeged). Consider the semigroup S generated by the
set {8, 81, &2, 85} and subject to the generating relations

8 =285, 8 =288 8 =g8, & =&

S'is obviously decomposable. Let 4 and B be any ideals of S such that J(g, g,) S A4B.
Then g,g,€ AB and the generating relations imply g,€A4, g,€B. It follows that
£1808:€AB, too. But g,g.2,¢4 J(g,8,) whence J(g,g,)CAB. Thus we have got

Proposition 1. There exist semigroups with decomposable elements that are
‘not semigroups with decomposable principal ideals.

It remains to solve the problem whether the class 2,\9, contains also finite
semigroups or not.

Let C denote the additive semigroup of all complex numbers a4 bi with =0,
b=0 and a+b0. Then every element and, consequently, every principal ideal of
C is decomposable. The set

I={u+vi:uz=1orv=1}
is an ideal of C. Lgt A and B be ideals of C such that IS4+ B. Then 1€ 4+ B.
Since the number 1 can be decomposed in C only into the sum of two positive real
numbers less than 1, there exists an g,€A4 with a,<1. Similarly, i€ 4+ B implies

the existence of a byi€ B with by<1. It follows that 4-+ B contains an element a,+ byi
of C with a,, b,<1. Hence Ic A+ B and we have got

Proposition 2. There exist (infinite) commutative semigroups with de-
composable principal ideals that are not semigroups with decomposable ideals.
Consider, finally, the semigroup F= {0, a, b, ¢} in which

be=b, ca=a, cc=c and xy=0 for any other pairs x, y€F.
It is a semigroup with decomposable principal ideals:
JO)={0}=J(©O)-J©0), JB)={0,b}=J(})-F,
J@={0,a} = F-J{a}, J(c)=F=F2

The set P={0, a, b} is an ideal of F, too. Let 4, B be any ideals of F such that PS 4B.
Then a¢ AB and b€ AB, implying c€ A and c€ B, respectively. It follows, by J(c)=F,
that A=B=F. Hence PC AB and we have proved:

Proposition 3. There exist (non-commutative) finite semigroups with de-
composable principal ideals that are not semigroups with decomposable ideals.
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Remark. A semigroup N with 0 is called nilpotent if there exists a positive
integer 7 such that N"={0}. Let S be a semigroup with decomposable elements.
Then S=S%=8%=.... It follows that S cannot be nilpotent if |S|>1. -

3. I-pure ideals in semigroups with decomposable elements. In order to improve

the result

) POR =S,

mentioned in the introduction, we begin with

Theorem 1. Any I-pure ideal of a semigroup with decomposable elements is
idempotent.

Proof. Let A be an I-pure ideal of the semigroup. Applying the first equation
in (1) for X=S and the second one for X=4 we get AN S%>=S54 and SA=4% i.e.

ANSE = A2
(without making any restriction for S). If, m partlcular §%2=S5, then A=ANS=
=AM S%= A2 Thus the theorem is proved.

Remark. Zero semigroups Z with |[Z |$1 furnish trivial examples for semi-
groups in which every ideal is I-pure but none of the elements except the 0 is de-
composable. :

Theorem 2. The classes P, 9D, and f of semigroups satisfy the equation
PNG,=S. '

Proof. Clearly, #(%,S.# by Theorem 1. Thus, (2) implies S=PNRS
EPNG.CPND,C4, ie. I=PND,, as asserted.
4, On decomposable ideals. In this section we prove

Theorem 3. Let A be a decomposable ideal of a semigroup S. If A is weakly
prime, too, then it is left- or right-reproduced.

Proof. Let X, Y be ideals of S such that A=XY. Then ASX and ASY.
If A is weakly prime, too, then at least one of the converse inclusions X& A4 and
YE A is true as well. In the first case X=A, whence we get

AS S A =AY S A4S,

i.e. 4=A4S. Similarly, in the second case we get 4=S4.
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Unitary subsemigroups in commutative semlgroups

G szAsz

1. Introduction. We use the terminology and notations of [1]. In particular, a
subset U of a semigroup S will be called left [right] unitary if, for each u€U and
S€ S, use U [suc U] implies s€ U; a subset whlch is both left and right unitary will be:
called unitary.

In this paper we deal only with commutatlve semigroups. C]carly, the terms.
“left unitary”, “right unitary” and “unitary” have the same meaning in this case.

2. Connections with a special congruence relation. Let S be a commutative
semigroup and R a subsemigroup of S. Define aggpb (a, b€ S) to mean that there
exists an x¢R such that ax=»bx. It is well-known that g is a congruence on S.
T. TAMURA and H. B. HAMILTON discussed in [4] the case when R is cofinal in §
(that is, to each s€ S there exists an 7€ R such that sr€ R). A part of their results can
be formulated as follows: If R is a cofinal subsemlgroup of the commutative semigroup
S, then

() R is included in a gg-class (i.e., xog y Jor each x, y€R), but

(i) R is itself a pg-class if and only if it is unitary. '

Now we show that (i) and (ii) remain true if cofinality is replaced by the condition
"that R is a subsemilattice of S. We recall that a semilattice is a commutative semi-
group every element of which is idempotent.

Theorem 1. Let S be a commutative semigroup and R a subsemilattice of S.
Then xpgry for each pair x, y€R.

Proof. For any elements X, y of R we have x-xy=y-xy and xy€R. Hence
xpry indeed.
Before formulating the analogue of (u) we prove a more general proposmon'

Theorem 2. Let S be a commutative semigroup and Ra unitary subsemigroup
in S. Then uppa (a€ R) implies u€ R (i.e., R is the union of some gg-classes).

Received December 1, 1975, revised February 15, 1965.
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Proof. Let acR, u€S and ugga. Then there exists an x€R such that xu=
=xa€R. Since R is unitary, u€R,

Theorem 3. Let S be a commutative semigroup and R a subsemilattice of S.
Then R is a gg-class if and only if it is unitary.

Proof. If R is unitary, then it is a gg-class by Theorems 1 and 2. Conversely,
:suppose that R is a gg-class and ax=» with a, b€ R. Then ax=a?x =ab and therefore
xggb. Since R is a gg-class, we conclude that x€ R. This means that R is unitary,
indeed.

3. Unitary subsemilattices in semilattices. A subsemilattice F of a semilattice
S is called a filter if, for any elements e€ F and s€ S; es=e implies s€ F. By the fol-
lowing theorem the filters and the unitary subalgebras will be identified in semi-
lattices: »

Theorem 4. The following assertions concerning a subsemilattice R of a semi-
dattice S are equivalent:
(A) R is a og-class;
(B) R is afilter;
-(C) R is unitary.

Proof. Since (A) and (C) are equivalent by Theorem 3, we have only to show
~ ithat (B) and (C) are also equivalent. '
Let ax=b with a, b€R. Then b=ax?=>bx. Assuming (B), we get x<R. This
means that (B) implies (C). '
Let a=as with a€R, s€S. Assuming (C), we get s€R. This means that (C)
implies (B), too. ' '

In the rest of this paper we point to a prominent role of unitary subsemilattices.
Let S and X be semilattices with identity elements e and &, respectively. Let, further,
.a® (a, b¢ S) denote a mapping of §X S into Z. Define a multiplication in $XZ by
‘the rule

10)) (a, @)o(b, B) = (ab, a®«p).

‘The resulting grupoid, denoted by So Z, is a (degenerated) Rédeian skew product
of § and Z in the sense of [2]. It was shown in [3] that So X is a semilattice if and
only if *=56" and

(2) a® =g

for each a, b€ S. Now we prove
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Theorem 5. Let S and X be semilattices with the identity elements e and
g, respectively. If their Rédeian skew product So X is a semilattice, too, then the set

I'={(e,0): aeZ}
is a subsemilattice of So X such that

(i) I is unitary and isomorphic with X ;
(ii) So Z/gr is isomorphic with S.

Proof. By (1), I' is a subalgebra of So Z. Property (i) can be derived immedia-
tely from (1) and (2). As for (ii), (@, @) g (b, f) means that there exists an (e, 7)
such that (a, @)o (e, y)=(b, B)o (e, y) which implies a=5b. Conversely, a=5b implies
(a, ) or (b, B) for arbitrary «, B€Z because (a, @)o (e, af)=(a, a°uf)=(b, b°uf)=
=(b, B)o(e, af) in this case. Thus (ii) is proved, too.

t
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Sur la connexion naturelle a torsion nulle

J. SZENTHE

L’étude systématique des espaces homog’cries réductifs et de leurs connexions
invariantes a été lancée par K. NoMizu dans son travail fondamental [7). Parmi les
possibles connexions affines invariantes d’un espace homogeéne réductif, la connexion
naturelle 4 torsion nulle est d’importance particuliére pour ses propriétés favorables.
Soit en effet M=G/H un espace homogéne, n: G—~M la projection canonique et
g=m} une structure réductive de M. Une connexion affine invariante 2 torsion
nulle de M est dite naturelle, si toutes les trajectoires d’origine o=n(H) des sous-,
groupes a 1 paramétre qui sont définis par éléments de m sont des géodésiques de la
connexion ([5], II. p. 197--200). En général, cette définition n’est pas simplifiable.
En effet, il y a des espaces homogenes qui n’admettent pas des structures réductives,
mais qui ont des connexions affines invariantes a torsion nulle dont toutes les géo-
désiques sont des trajectoires ([8] et [4], p. 102—115). Le but de ce travail est de
montrer qu’une simplification de la définition est pourtant possible dans un cas
important. En effet, le théoréme suivant sera prouvé en supposant quelque condition
de differentiabilité: Soit G un groupe de Lie connexe, HC G un sous-groupe compact
connexe et M=G/|H I’espace homogéne correspondant. Soit donnée une comnexion
affine invariante 4 torsion nulle de M telle que toutes ses géodésiques sont des
trajectoires. Il y a alors une structure réductive de M telle que la connexion donnée
est sa connexion naturelle. Pour démontrer ce théoréme quelques préparations
semblent €tre convenables. Donc une classification des trajectoires d’un espace
homogene sera donnée d’abord et quelques observations générales seront faites
ensuite sur les connexions affines invariantes dont toutes les géodésiques sont des
trajectoires. Le théoréme ci-dessus sera une conséquence directe des résultats ainsi
obtenus.
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1. Classification des trajectoires

Soient G un groupe de Lie connexe, H. HC G un sous-groupe fermé connexe et
M =G/H I'espace quotient correspondant formé par les classes 4 gauche de H dans G.
Soit n: G—~ M la projection canonique et a: G X M — M 'action naturelle de G sur M.
On considére M muni de la structure unique de variété analytique pour que = et o
sont des applications analytiques. L’algebre de Lie g de G sera identifiée avec I'espace
tangent 7,G de G en I’élément neutre e€G et par conséquent l'algébre de Lie  de H
sera identifiée avec le sous-espace correspondant de 7,G.

Si ¢: R—~G est un sous-groupe & 1 parametre et si m€ M, on appelle I'application
t—a(@(2), m), T€R la trajectoire d'origine m de ¢. En particulier, si o=mn(e), on a
évidemment a(¢(7), 0)=no¢(1), T€R. Une trajectoire est banale, si m=a(¢ (1), m)
pour tout T€R.

Etant donnée une trajectoire non-banale = o d’origine o, il existe évidemment
un >0 tel que mo¢ est injective sur [—2e, 2¢] et par suite nop([—¢, g]=CC
cC’'=no@([—2e,2¢]) sont des arcs de M. Soit L(¢@;¢) I'ensemble des éléments
g€G tels que si Y: R—~G est un sous-groupe 4 1 parametre avec g=y(7,) les élé-
ments Y (t)€G pour |t]=|t,| transforment C en un arc qui est contenu dans 'in-
térieur de C’. Soit ensuite B le filtre des voisinages de ¢ dans G et B’ le systeme
des ensembles VN L(p; €) ou VB,

Proposition 1. L'ensemble P des éléments de G, qui sont engendrés par élé-
ments de L(p; &) est un sous-groupe de G. Il existe exactement une topologie sur P qul
rend P un groupe topologique et B’ une base de filtre des voisinages de e dans P.

Démonstration. Il résulte de la définition de L(¢; ¢) que L(¢; &)~ =L(gp; ¢).
Alors, ’ensemble P des éléments de G qui sont engendrés par éléments de L(gp; €)
est un sous-groupe de G.

La deuxiéme assertion de la proposition sera prouvée en montrant que les
conditions pour une base de filtre ([3], p. 4—5) sont satisfaites par B’.

1. Quel que soit U’e€®W’, il existe V'¢B’ tel que V' -V'cU’. En effet U'=
=UNL(p; €) ot UcB et par conséquent il y a un Ve B tel que V- V< U. En vertu de
sa définition L(¢p; &) est 'union de sours-arcs de sous-groupes 3 1 paramétre et par
suite il a y un voisinage W de e dans G formé également par sous-arcs de sous-groupes
3 1 paramétre et tel que L(p;e)=W L(p;e). On voit facilement que W peut
étre tellement choisi que L(¢; €)= WN P soit aussi valable. Soit W un voisinage de e
dans G tel que W.-WcW. Alors on a (WNL(p;e)-(WNL(p;e)cWNP=
=L(gp; ¢). I en résulte que pour V=FVNW et pour V'=VNL(p;e)ona V' -V'c
cUNL(p; e)=U". ~

11*
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2. Quel que soit U’e®’, il existe V'€V’ tel que V' ~'cU’. En effet, U'=
=UNL(p; &) ou UEDB et par suite il y a un voisinage symétrique V de e dans G tel
que VcU. Alors, pour ¥’'=VNL(p;e)ona V' 1=p’'cU’.

3. L’élément neutre e appartient évidemment & tout ensemble de B’.

4. Quelsquesoient a€ P et U’ €W, il existe ¥’ € B’ tel que V' cala’~". Parce que
U'=UNL(p;€) ot UcB, il y a un VEB tel que Vcala ™. Si y:R—~G est un
sous-groupe a 1 parameétre qui a un sous-arc appartenant 3 L(p; ¢), il existe évidem-
ment un- 7,>0 tel que a~ 'Y (V)acL(p;¢e) et W(r)€L(p; ) pour |t|=|te|. Soit L’
Punion des tels éléments y/(7) pour tous les sous-groupes . Ona alors L' c aL(¢;e)a™".
D’autre part, on,voit facilement que il y a un voisinage W de e dans G tel qué
WNL(p;e)=L". Soit V=VNW et V'=V L(p;¢). Par conséquent, on a V’'=
=VNWNL(p; )cVNL' calUa*NaL(p; &)a~ =al’a™™

Proposition 2. P est un sous-groupe de Lie connexe de G.

. Démonstration. Ftant évidemment un; groupe localement compact connexe
qui n’a pas de sous-groupes petits, P est un groupe de Lie. Comme les sous-groupes
a 1 parametre de P sont aussi eaux de G, on voit que P est un sous-groupe de Lie
de G. ’

Les deux propositions précédentes nous conduisent & une notion fondamentale,
En effet, étant donnée une trajectoire non-banale on appelle P le sous-groupe corres-
pondant a la trajectoire no@ dans G. Si le sohs—groupe a 1 paramétre ¢: R—~G est
défini par X€g—h, I’algébre de Lie de P qui est une sous-algébre de g sera notée par
Px- On peut étendre la définition ci-dessus au cas général. En effet, soit H,CG le
sous-groupe d’isotropie en n(g)=mecM et soit n,,: G—~G/H,, la projection canonique
correspondante. En identifiant G/H,, avec M on a a(¢(z), m)=a(e(1), n(g))=
=n(p®)g)=n(p()gH)=n,(p()gHg *)=n,00(1), 7€R. Le sous-groupe corres-
pondant & &, 0@ sera appelé le sous-groupe correspondant & la trajectoire

v—~a(@(z), m), €R dans G.

|
Lemme 1. Si PCG est le sous-groupe correspondant a la trajectoire n o, on
an(P)={nop(7)|lt€R}. B "

Démonstration. Ilest évident que ¢ est un sous-groupe 2 1 paramétre de P et
en conséquence on a {r o (t)[t€R}cn(P). Par contre, si g€P, il existe un sous-
groupe a 1 paramétre de P et en conséquence on a {n o ¢(1)|t€R} cz(P). Par contre,
si g€P, il existe un sous-groupe a 1 paramétre y: R—~P tel que g=y(&;) pour un
£.€R. En vertu d’assertions ci-dessus il y a un 6=>0 tel que Y (£)€L(g; €) pour
|¢|=06. Par suite, n-yY(E)=a(f(&),0€C c{nop()|tcR} pour [{|=d. Alors,
n(g)e{n oy (O)|EER} = {n o (7)[t€R} en vertu de Panalycité de nog et de moy.
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" Soit T,m: g—+ToM P'application linéaire tangente & = en e et LC Ty M un sous-
espace de dimension 1, alors {,={Y|T.nY€L, Y€g} est un sous-espace de g. Si
Xeg—bhet T,nXcL, on a pycf, en vertu du lemme précédent. '

Lemme 2. Soit X€{,—b et soit a une sous-algébre de g telle que X€acCH,.
OnaacCpy.

Démonstration. Soit ACG le sous-groupe connexe défini par a et soit fixé
un systtme de coordonnées canoniques de la deuxiéme espéce ([9], p. 302—307) sur
un voisinage V de e dans 4 de facon que g=¢(1o),(7y)...{ () pour g€V, ou
(ty, Ty -.-- 7,) sont les coordonnées de g et {;, ..., ,:R—~ANH sont des sous-
groupes & 1 paramétre qui définissent le systtme de coordonnées. Si ¢ (7), g€ V sont
tels que {,(1).. L (n)@(@DEV, on a {i(r)..L(m) e (D)= (1)1 (z).. Li(ry) et par
conséquent a(g, 70 (1) =m(p (@)1 (). L (T @ (D) =71(0 () 9 () (7). L (7)) =
=no@(ty+1’). Cela montre qu’il y a un voisinage ¥’ ¥ de e dans A4 tel que V'c
cL(p; ¢). Alors, AC P et par conséquent aCpy.

Corollaire. Soient o', a”C{, sous-algébres de g qui sont maximales dans §,
mais ne sont pas des sous-algébres de ). Alors on a ou bien o’ =a” ou bien a’ N a”Ch.

Démonstration. 1l suffit évidemment de considérer le cas oit a’>a”. Pour un
raisonnement indirect supposons qu’il y a un Y€a’Na” tel que Y¢h. Alors, en vertu
du lemme précédent on a o', a”Cpyf,. Mais a’, a” éntant des sous-algébres maxi-
males dans {;, cela entraine a’=a”=py ce qui contredit la supposition. Par suite
aNa’ch. -

Soit Ie sous-groupe a4 1 parameétre ¢: R—~G défini par X€g—h et soit PCG le
sous-groupe correspondant a la trajectoire m - ¢. Soient gy 'algébre de Lie du sous-
groupe Q=HN P et [X] le sous-espace de dimension 1 engendré par X. Alors, en
conséquence du Lemme 1 on a la décomposition en somme directe de sous-espaces
vectoriels py=[X]1®qx qui sera appelée la décomposition d’isotropie de py en o.
Il en résulte que pour Z€qy on a [Z, X]=xX+Z’ ol #€R et Z’€qy. L’inverse de
cette assertion, exprimé par le lemme suivant, se montrera utile dans la suite.

Lemme 3. Soit Xcg—b et qC§ une sous-algébre qui est maximale par rapport
a la propriété que pour Zeéqon al[Z, X1=xX+2Z ott x€R et Z'€q. On a alors q=qy.

Démonstration. Soit p=[X]®q qui est évidemment une sous-algébre de
g et soit L=T,n([X]). Donc X¢pcf, et par conséquent on a

[X]®q = pCpx = [X]Day,

en vertu 'du Lemme 2. On en conclut qcqy et la maximalité de q entraine q=qy.
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Pour g€G, on définit par t—a(g, mo@ (1)), T€R la transformée de la trajectoire
noQ par g. '

Lemme 4. La transformée de la trajectoire mo@ par g€G est la trajectoire
d'origine n(g) du sous-groupe a | paramétre y=ad(g)p: R—~G. Le sous-groupe qui
correspond a cette trajectoire dans G est ad (g) P. '

Démonstration. Puisque ¢ (t)=gp(x)g™", on a go(t)=y¥(r)g et par con-
séquent a(g, mo@(7))=n(ge())=n(¥ (7)g)=a(¥ (), =(g)), T€R, ce qui prouve la
premiére assertion. Le sous-groupe qui correspond & cette derniére trajectoire est par
définition celui qui correspond a x,,0f ou m=n(g). Si ¢ est défini par X€g—Bh,
on a la décomposition px=[X]Dgy. Soit T,ad(g): g—~g la restriction 4 g=T,G de
Papplication tangente linéaire & I'automorphisme ad(g):G—-G. Alors, on a
T.ad (g)px=T,ad ([X]1DT,ad (g)qx. Mais ¢ est défini par T,ad (g)X et
T,ad (g)qx<h,, ol b, dest l'algébre de Lie de H,. On en conclut en vertu du
Lemme 3 que T,ad (g)py est l'algebre de Lie du sous-groupe P, correspondant a
7, Y. Puisque le sous-groupe correspondant 4 une trajectoire est connexe selon
la Proposition 2, cela entraine P,=ad (g) P.

Corollaire. Si g=¢ (&) et m=n(g), Ile sous-groupe correspondant 4 T, 0@
est P méme, mais la décomposition d'isotropie de p en m est p=[X]|®T,ad (g)q.

Démonstration. Parce que 7:,,,0(p(t)=7r((p(r)g)=7r(g(p(r))=a(g, no@(7)),
7€R et g€ P, le sous-groupe correspondant 3 7, 0¢ est P en vertu du Lemme. En
conséquence de X=T,ad (g)X, la décompdsition d’isotropie de x en m est y=
=[X1®(pNb,), mais pNh, =T, ad () (pNh) =T, ad (ga.

Proposition 3. Si g€P, on a a(g,noqo(t))-—noq)(x(r)) 7€R o x: R—R
est une bijection analytique.

Démonstration. Si géP, on a a(g moe(®))=n(ge())en(P)c
c{rnop(&)|EcR} pour T€R selon le Lemme 1. La trajectoire n o ¢ étant non-triviale,
soit £, le moins grand nombre positif tel que rop(€)=nop(0), s’il y a des tels
nombres; autrement soit &y=oo. Si £y=oo, il y a exactement un £€R a4 un 7€R tel
que no@(&)=a(g, toe(r)); dans ce cas soit x(r)=¢, t€R. L’application »: R—R
ainsi définie est évidemment un homoémorphisme. Si &,< =, soit d’abord g dans le
voisinage L(¢; ¢€) de e dans P. Alors il y a une suite strictement croissante {t;|i¢Z}
telle que «(g, 7 o @ (z;))=0 pour tout 7,, i€ Z et que I'application o—u(g, m,¢ (1;+0)),
1,=7,+0<T7;,, est injective pour i€Z. Par conséquent, pour tout o tel que

=1;40<T;4y, il existe exactement un 0=£<¢, tel que o (€)=a(g, nop(r;+0));
dans ce cas soit %(1; +0)=if,+ & pour 1,=1,+ 0 <1, et i€Z. L’application »x: R—-R
ainsi définie est évidement un homéomorphisme. Si £;<eo et g€ P est arbitraire,
il existe, en vertu de la Proposition 2, un go€ L(¢; €) et un entier non-négatif / tels que
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g=gb. On peut évidement montrer dans ce cas I’existence d’'un homéomorphisme
#:R~R en utilisant le résultat précédent. On voit facilement que x est analitique
dans tous les cas considérés en vertu du théoréme des fonctions implicites.

A compte de la proposition précédente, les éléments de P seront appelés auto-
morphismes de la trajectoire m o ¢. Si pour un g€ P on a en particulier a(g, 7o ¢ (1))=
=nop(At+u), T€R ou A, u€R, Iélément g sera appelé un automorphisme linéaire
de la trajectoire mo@. Dans le cas particulier ou A=1 I’élément g sera appelé un
automorphisme affin de la trajectoire m o, et dans le cas oit =1 et u=0 I’élément
g sera appelé un automorphisme identique de la trajectoire wo¢. Si tous les éléments
de P sont des automorphismes linéaires de o ¢, on dit que 7 o @ est une trajectoire
linéaire de I’espace homogéne M. Si tous les éléments de P sont des automorphismes
affines de mo¢@, on dit que mo¢ est une trajectoire affine de M. Si HNP=Q= {e}
la trajectoire 7 o ¢ est dite simple.

Lemme 5. La trajectoire o est linéaire, si le sous-groupe F={p(z)[t€R}
de G est laissé invariant par tout automorphisme ad (q): G—+G, q€Q.

Démonstration. En effet ad (g)¢: R—~G est un sous-groupe 2 1 parameétre
de G. En vertu de ’hypothése du Lemme on a donc ad (g)¢ (1)=¢ (A1), 7€R, ol A ne
dépend que de g€Q. Si g€P, on a évidemment g=op(u)g ot ucR et gcQ. Alors,
go(W=9(Wqe@=0 W (ad(g)e(1))g=@(u)p(ir)g et par conséquent on a
a(g, mop())=nop(it+u), 1€R. Donc, nop est une trajectoire linéaire de M.

Corollaire. Si l'espace homogéne M=G/H admet une structure réductive
g=m@b et le sous-groupe da 1 paramétre ¢:R—~G est défini par Xcm—{0}, la
trajectoire 7 o @ est linéaire.

Démonstration. Si g€Q, on a T, ad (g) X€m parce que Qc H. D’autre part,
on a T,ad (g)X¢cpy parce que QCP. 11 en résulte que T,ad () XeEmNpy=[X].
Par conséquent, T, ad (g) X=2X ou A€R. On en conclut que la hypotheése du lemme
précédent est satisfaite. '

Proposition 4. Etant donné Xcg—, soit a% =H et soit o, défini successivement
pour tout i naturel par

ok = {Z|Zeqli* et [Z,X] = AX+2Z* o A€R et Z*€qi ).

Alors, h=0q% Dy D... D94 D ... est une suite de sous-algébres de g. Si j est le plus
petit nombre tel que a%=q5t%, on a qy=qx o qx=bhNpy.

Démonstration. En supposant que g% ' est une sous-algébre de g, soient

zZ’, Z”qu et [Z/, X}=XX+Z*, [Z2/, X]=2"X+Z** o X, \"€R et Z*, Z**¢qii .
Par conséquent pour &, n€R on a [EZ'+nZ”, X]=(@N +nA" ) X+EZ X +nZ ¥,
ce qui montre que £Z'+nZ"€qy. De plus [[2°Z"), X |=[2Z’,1Z2"X]]-[Z",(Z’, X]] =
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=N"Z*—NZ**+[Z', Z2**]-[Z",Z*] entraine que [Z’, Z”]€qk. Alors, g% est
également une sous-algébre de g. Soit L=T,n([X]), alors 'hypothése ¢}=qi*?
entraine que [X]®qj est une sous-algébre de q telle que X¢[X]dgicf,. Donc,
[X]®aq} < px en vertu du Lemme 2 et par conséquent g5 hMNp x =0y . D’autre part, la
définition de g} entralne que qyC g} pour tout entier non-négatif i. Alors, en parti-
culier qyCq%.

A compte de la proposition précédente = o ¢ sera appelée une trajectoire princi-
pale de I’espace homogéne M, si qx=q). Onvoit facilement que wo ¢ est une tra-
Jjectoire principale si et seulement si tous les éléments g€ G qui laissent fixés le point
o et le sous-espace de dimension 1 [T,z X]c T, M, sont des automorphismes de 7 o ¢.

Lemme 6. Si l'espace homogéne M=G|H admet une structure réductive g=
=mab et le sous-groupe a 1 paramétre ¢ est défini par Xem—{0}, la trajectoire
T o est principale.

Démonstration. Si Z€gk, on a [Z, X]=AX+Z* ol A€R et Z*ch. Mais
[Z, X]em, parce que q}h. Il en résulte que Z*=0 et par conséquent on a qx=q}.

Lemme 7. Soient ¢,y: R—~G sous-groupes & 1 paramétre qui sont définis
respectivement par X, Yég—h ot Z=Y—XCh et soit mo@ une trajectoire affine
principale. Alors, 7 oy est une trajectoire principale si et seulement si Z est un élément
du normalisateur de qy dans 1.

Démonstration. Parce que Y—X=2Z¢h, on a évidemment qx=qy. Mais
T o ¢ étant principale, on a g} =qy. Par conséquent gy > qy. Donc, il suffit de montrer
que qyCqy, si et seulement si Z est un élément du normalisateur de qy dans §.
Soit U€qy, alors [U, Y]=[U, X+Z]=Z*+[U, Z] ol Z*€qx. Donc, moy est une
trajectoire principale si et seulement si [U, Z]€qy pour tout U€qy.

2. Géodésiques de connexions affines inveriantes

Soit L(M) la variété analytique formée par les repéres linéaires de I’espace
homogeéne M=G/H et ¢: L(M)—~M la projection canonique. Soit

B: GXL(M)-~—L(M)

laction de G sur L(M), qui est induite par Paction naturelle o«: GXM—~M. Si
X¢g, le champ de vecteurs de Killing dans le sens plus general correspondant par
Paction o sur M & X sera noté par X’ et le champ de vecteurs de Killing corres-
pondant par I’action § sur L(M) & X sera noté par X”. Si réL(M) et m=¢(r),
soit »,: T,, M—R" I'application qui rend a un vecteur v€ 7,, M ses coordonnées par
rapport 4 r ou n=dim M. Soit §: TL(M)—R" la 1-formenon caique du fibré
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@: L(M)—~M. Alors on a 3(w)=wx,0T,0(w) pour weT,L(M) ol T,p est Papplica-
tion linéaire tangente a ¢ en r. Si g€G, soit a,: M—~M transforimation définie par
m—a (g, m), meM et soit Ta;: TM~TM Vapplication linéaire tangente i a,.
Soit ro€L(M) fixé de fagon que g(rg)=o0 et soit 1:H—~GL(n; R) 'homomorp-
hisme de groupes de Lie défini par h—x,0T,a, 0%, pour h¢H, ou *o=2%, et
Toa, est la restriction de To, a TyM. Soit T.: h-gl (n; R) 'homomorphisme
d’algébres de Lie qui est Dlapplication linéaire tangente 4 : en e. Comme
ayom=mnoad(k), on en conclut que 1(h)oxyoT,n=x,0T,noT, ad (h) pour heH.
Mais il en résulte que T.1(U)3(V,)=2x,(U, V];) pour Uch et Vcg ol ¥, estla
valeur du champ V" en r, et [U, V], est la valeur du champ [U, V'] en o.

Soit w la 1-forme canonique d’une connexion affine invariante de M et soit
A:g~gl (n, R) I'application linéaire correspondante qui est définie par X—w(X, )=
=A(X) pour X€g ou X, est la valeur du champ X” en r,. On sait que A satisfait

aux conditions suivantes:

1° A(Z)=T,.1Z pour Zch,

2° A(Z, X)) =[A(Z), A(X)] pour Z€D et pour X€g.

De plus, on sait que a toute application linéaire A:g—gl (n; R) qui satisfait aux
-deux conditions précédentes il y a exectement une connexion affine invariante de M
qui la définit comme ci-dessus ([5], II, p. 186—190).

S’il y a une connexion affine invariante sur Pespace homogéne M=G/H la
transformation «,: M —~M est affine pour tout g€ G et par conséquent la transformée
d’une géodésique est également une géodésique. Il en résulte édviemment le

Lemme 8. Pour qu'une trajectoire de l'espace homogéne M=G/H soit une
géodésique d’une connexion affine invariante de M, il est nécessaire que cette trajectoire
soit linéaire et principale.

Le lemme suivant reproduit une observation utile de R. VosyLius et A. DREI-
MANAS [9]. La démonstration que nous en allons donner est plus détailliée, mais
-essenticllement la méme que 1’originelle.

Lemme 9. Soit M=G/H un espace homogéne qui admet une structure réductive
g=ma®Y et soit donnée une connexion affine invariante a torsion nulle de M telle que
toutes ses géodésiques sont des trajectoires. De plus, soit &: m—Y une application
homogéne telle que la trajectoire d’origine o définie par X +&(X) est une géodésique
pour tout Xewm—{0}. Alors, on a

AGIE) = 5 10 Ton{(X, FIHXAY, EX+ T -1X, EX)] - [¥, £)

pour X, Yemou A: g—gl (n; R) est l'application linéaire correspondante a la connexion
donnée.
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Démonstration. Soient @, ¥, x: R—G les sous-groupes a 1 parameétre qui sont
définis respectivement par X+E(X), Y+E(Y), X+ Y+E(X+Y) ol X, Yem—{0}.
Alors, les trajectoires m o, oy sont des géodésiques et 7 oy est ou une géodésique
ou une application banale. Ensuite, les trajectoires d’origine r,€ L(M) de o, ¥, ¥
sont des «lifts » de mog, moy, moy. Donc, en vertu d’'un théoréme fondamental
(1], p, 104—105) on a

(X" +EX) +o(X” +E(X)))9(X") =0,
(Y7 +E(X) +o(Y"+E(X)))9 (") =0,
(X"+Y"+EX+YY +o(X"+Y" +EX+Y))NI X" +Y") =0

le long des trajectoires correspondantes dans L(M) pour la 1-forme o de la connexion
donnée. 1l en résulte qu’au point r€ L(M) on a

(X// +O)(X”))|9(Y”) +(Y//‘+w(Y’/))9(X’,) _—
—((X) +0(EX)NHX) = (E¥) +o (X)) +

+(é(X+Y)”+w(é(X+Y)‘”))3(X” +Y”) =0.
Puisque la connexion envisagée est a torsion nulle on a (X"+w(X”))3(Y")—
—(Y"+o(Y"))$(X")— (3[X”, Y"])=0 partout sur la variété L(M), en vertu de la
premiére équation de structure. Par conséquent, au point ro€ L(M) on a

2X"+0 (X))~ (EX) +o(EX) )X —(EX) +oEX)NIX ) +
+(EX+Y) +o(E(X+Y)NIX"+Y)—-3(X", Y"]) = 0.
Mais en vertvertu de faits fondamentaux ([5],I,p:. 225—-236yona U"HU")=Lyp3(U")=
=Ly U Y+I Ly U”)=0 partout sur L(M) pour tout Ucg. On en conclut que
2a)(X/I)9(Y//) — Y//S(X”) — X//S(Y//) —_ w(é (X+ Y)I/)S(X”_‘_ Y”) + 9([X//’ Y//]) +
+w(E(X))3(X")+w(E(Y)")9(Y”) subsiste au point ry€ L(M). Mais Y"8(X")=
—Lp3(X") =Ly HX)+3Lp Xy=93(Y”, X”]), et de méme, X"3(¥Y")=
=8([X”, Y"]). De plus, on utilise le fait déja cité ci-dessus que o (Uy)3(Vy)=
=T 1 (U)3(Vy )=x,([U, V3]) pour Uch et pour Vcg. Par conséquent, on a
20(X) (7)) = %o ([X, Y +[X+Y, E(X+Y))— X, S (XD —[Y, E(X)k),
en vertu du fait que [U”, V”]=[V, U]” pour U, Veg ([5], II. p. 189); mais I’égalité
ainsi obtenue équivaut évidemment a ’assertion du lemme.
Corollaire 1. Si l'espace homogéne M=G/H admet une structure réductive

g=maY et le sous-groupe a 1 paramétre ¢ est défini par Xém—{0}, la trajectoire
n o est affine.

Démonstration. En effet, soit v la 1-forme de la connexion naturelle a torsion
nulle correspondant a la structure réductive g=me}. Si Z€qy est fixé, il y a une
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application homogene &: m—} qui satisfait 4 ’hypothése du lemme précédent pour

o=v et qui est telle que &(X)=2Z. On a alors v(X,)3(X,)=xy0T.n([X, é(X)])
selon le lemme. D’autre part, on a v(X, )9(X, )=0 d’aprés la définition de la con-
nexion naturelle a torsion nulle. Il en résulte que [Z, X]=[¢(X), X]=0; mais
Z¢€qy étant arbitrairement fixé, cela montre que la trajectoire % o ¢ est affine.

Corollaire 2. Soit M=G/H un espace homogéne qui admet une structure
réductive g=mao¥ et soit donnée une connexion affine invariante a torsion nulle de M
telle que toutes ses géodésiques sont des trajectoires. La connexion donnée est la con-
nexion naturelle a torsion nulle d’une structure réductive de M si les conditions sui-
vantes sont satisfaites:

1. Il y a une application linéaire &: m~Y telle que la trajectoire d’origine o-du
sous-groupe & 1 parameétre défini par X +&(X) est une géodésique pour tout X ¢ m—{0}.

2, 0n aT,ad (h)EX)=E(T, ad (h) X) pour h€ H et Xem.

Demonstratlon m' ={X+£(X)|Xcm} est alors un sous-espace complé-
mentaire & dans g et la décomposition

g =m'®bh
est évidemment une structure réductive de M. On démontrera que la connexion
donnée est la connexion naturelle 4 torsion nulle correspondant & la structure ré-

ductive g=m’@}. Soient U, Ve, alors, il y a X, Yém tels que U=X+E(X) et
V=Y+4£(Y). D’aprés le lemme précédent et par la linéarité de €, on a

AU=LXNS(V-L(M)) = A)SFH A X)) (7y) =
= l%oOTeﬂ([U—é(X), V=(@N+U—E(X), SNV —E(X), (X)) =

= —;—xooTe (U, V] - 2[¢(X), V).

11 en résulte évidemment que A(U)S(V,)=1/2x,0T.n([U, ¥]) pour U, Vem'.
Alors, la connexion donnée est la connexion naturelle & torsion nulle de la structure
réductive g=m"@b par un résultat fondamental ([4], II. p. 190—200).

Lemme 10. Soient G un groupe de Lie connexe, HC G un sous-groupe compact
connexe et g=mb une structure réductive de l'espace homogéne M=G/H. De plus,
soit donnée une connexion affine invariante de M telle que toutes ses géodésiques sont
des trajectoires de sous-groupes a 1 paramétre de G. Alors, il y a une application
&: m—Y telle que les conditions suivantes sont satisfaites:

1. la trajectoire d'origine o du sous-groupe @ 1 paramétre défini par X+ E(X) est

une géodésique de la connexion donnée pour tout Xc¢m—{0};

2. onaT,ad (B)EX)=E(T, ad (B) X) pour tout h€ H et X€m.

De plus, I'application £ est linéaire si elle est differentiable en 0€m.
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Démonstration. Soit K:hXh~b la forme de Killing de 'algétbre de Lie
compacte b et soit h munie du produit intérieur défini par — K. Il y a alors un complé-
ment orthogonal ny dans f de la sous-algébre qx correspondant & un Xcm—{0}.
En plus, soit ¢} le centralisateur de qx dans [ et soit 3y le complément orthogonal de
cx=¢; 1y dans ny. Donc, on a les décompositions suivantes de § en sommes di-
rectes de sous-espaces vectoriels:

h=ny®qx = Cylt@‘gx@‘k-

Le fait que le normalisateur de q; dans § est ¢x®Paqy ([5], p. 66—70) se montrera
trés substantiel dans ce qui suit. La trajectoire d’origine ¢ du sous-groupe & 1 para-
métre défini par X€¢ M — {0} est principale et affine selon le Lemme 6 et le Corollaire
1 du Lemme 9. Dong, pour que la trajectoire d’origine ¢ du sous-group & 1 paramétre
défini par X+Z soit principale il faut et il suffit qu’on ait Z€¢;@qy, en vertu du
Lemme. 7. D’autre part on sait par la Proposition 4 que Z’, Z”€ ¢y P qy definissent la
méme trajectoire principale si et seulement si Z’ et Z” sont élements de la méme
classe C+qy pour un Cécy. De plus, les géodésiques de la connexion donnée sont
trajectoires principales en conséquence du Lemme 8. On en conclut qu’il y a exacte-
ment un Cy€cy tel que la trajectoire d’origine o du sous-groupe & 1 paramétre est la
géodésique de la connexion donnée qui a o pour son origine et T,nX pour vecteur
tangent en ce point. Soit &(X)=Cy si X€m—{0} et soit £(0)=0. On montrera dans
ce qui suit que Papplication &: m - ainsi définie satisfait & chacun des deux conditions
posées ci-dessus. :

D’abord, on obtiendra des représentations de trajectoires dans des systémes
de coordonnées convenablement choisis. Alors, il existe un voisinage W’ de 0 dans
it tel que la restriction ¢ de o exp 3 W’ est un diffeomorphisme. Donc, I'application
¢ définit un systtme de coordonnées de I’espace M. De plus, soient Xc¢m— {0} et
Zch fixés; dans ce cas, il y a des fonctions analytiques U(r)€m, V() ch définies dans
un voisinage de 0 dans R telles qu'on a

exp (1(X+2Z)) = exp (U (v)) exp (V' (7))

si 7 est dans ce voisinage. Donc, la trajectoire moexp (t(X+Z)), t€R est représentée
par la fonction U(7) dans le systéme de coordonnées défini par ¢. On va étudier la
dépendance de la fonction U(z) du choix de Z dans b pour un Xém—{0} fixé. On a
évidemment, par la formule de Taylor,

U(x) = D'U(0)z JF%D2 U@©)w2+0(), ou U(x) = o(1?),

V(x) = D'V (0)z +%D2 V(0)r2+7(x), ot P(x) =o(x?)
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pour un voisinage de 0 dans R. D’autre part, soit application
‘ H:GXG—~G
définie par la multiplication dans le groupe G. Par suite, on définit une applicaﬁon
analytique @ d’un voisinage de (0, 0) dans g X g par
(A, B) - 9(4, B) = exp~* I (exp A, exp B)..
En utilisant la formule de Taylor, on obtient ([9], p. 380—387) que dans un voisi-
nage de (0, 0) dans gXg on a
(4, B) = A+B+Q(4, B)+ $(4, B)
ou Q: gXg—g est une application bilinéaire et I'application & est petite de troisiéme

ordre. Il en résulte en vertu des observations précédentes que pour un voisinage de
OdansRona

1(X+2Z) = U@ +V (@) +Q(UG), V() + S(U), V(1)) =
= (D'U(0)+D*V(0) 7+ [% DﬁU(0)+—;— D2V(0)'+ Q(D*U(0), D' V(O))) 124+ R(7)

ou R(1)=0(1?). En introduisant la décomposition Q=0Q’+Q” de Q par rapport 3
la décomposition g=ma@}, on en conclut en vertu de lanalyticité des fonctions

considérées que
X =D'U(©), Z= D),

0= -—12-D2 U@)+Q'(D'U©0), D'V(0)), 0= -;—DzV(0)+Q”(D1 U(), DlV(O)),
0 = R(®).
Par conséquent, on obtient que I’équation suivante est valable:

S DUO+Q'(X,2) = 0.

Mais cette équation exprime une dépendence de la fonction U(z) du choix de Z dans
b pour un Xem—{0} fixé.

En utilisant les observations précedentes, on peut indiquer Pensemble des Z¢h
tels que la trajectoire = oexp (t(X+Z)), T€R soit représentée par la fonction

URR)= X1

dans un voisinage de 0 dans R. En effet, la trajectoire considerée est principale en
vertu du Lemme 6 et par conséquent, 'ensemble envisagé est q,. D’autre part, on a
DEU(0)=0 et par conséquent les éléments Z de Pensemble envisagé satifont a
I’équation

Q(X,Z2)=0
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en vertu des observations précédentes. Par contre, tous les Z€lh qui satisfont & cette
équation sont éléments de I’ensemble envisagé. En effet, D2U(0)=0 entraine que la
dérivée covariante Vp:y4, D' U(0) est zéro quand on la calcule par la connexion
naturelle a torsion nulle de la structure réductive g=mal parce que le systéme de
coordonnées défini par ¢ est normal pour cette connexion. Par conséquent,
Vpiy D U(t)=0 pour tout t considéré parce que U(r) représente une trajectoire.
Donc, U(t) représente une géodésique de la connexion naturelle & torsion nulle
de la structure réductive g=mab. Alors, U(t)=X7 dans un voisinage de 0 dans R.
Par suite, ’
ax = {Z|Q'(X,Z) = 0, Z¢ b}

est valable.

Soit maintenant U(r) une fonction qui.représente une trajectoire principale
quelconque pour un X¢m—{0} fixé. En ce cas, I’ensemble des Z¢h qui conduisent
4 la méme fonction U(z) est identique a I’ensemble des solutions de I’équation

—;—_DZU(O)+Q'(X, Z)=0.

En effet, I'ensemble des Z¢€bh qui conduisent 4 la fonction donnée U(z) est C +qy
ou Ce€cy est uniquement défini en conséquence du Lemme 7. De plus, ’ensemble des
solutions de 1’équation envisagée est C+qy puisque 1’application Q" est bilinéaire.
En particulier, soit U(z) la fonction qui représente la trajectoire qui est une géodésique
de la connexion donnée. En ce cas, I’ensemble des solutions de I’équation

LDVOZ X, Z) =0

est Pensemble £ (X)+qx en vertu de la définition de Papplication &.

Pour obtenir d’autres conséquences des observations précédentes, on considére
Pappliation &¢: TyM—~M qui est la restriction du Papplication exponentielle de la
connexion donnée & ’espace tangent ToM. 1 y a évidemment un voisinage W de 0
dans Ty M tel que la restriction de g~ og” 3 W est un difféomorphisme

W -w
ol W’ estle voisinage de 0 dans m considéré déja en ce qui précéde. En vertu du fait

que la fonction U(r) correspondant & Z=£(X) représente une géodésique de la
connexion donnée il existe un vecteur tangent v€ Ty M tel qu’on a

U(t) = e(tv)

pour tout 7 dans un voisinage de 0 dans R. Donc, par la régle de dérivation des’
fonctions composées on a

X = DU(0) = D*e(0)v, D2U(0) = D*e(0)(v, v).
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Par conséquent, il y a une application bilinéaire symétrique
A:mXm-—-m

telle qu'on a DEU(0)=2A4(X, X) pour la fonction U(r) qui représente la géodésique
de la connexion donnée qui a o pour origine et T,nX pour vecteur tangent en o.
Alors, 'ensemble des solutions Z de ’équation

AX, X)+0'(X, 2) =0

pour Xem—{0} fixé, est £(X)+qy. Donc, on a obtenu la suivante conséquence
importante des observations précédentes: La fonction

Z——K(Z,2), Z¢}

restreinte 3 I’ensemble des solutions de 1'équation A(X, X)+Q’(X, Z)=0 a exacte-
ment une valeur minimale qui est atteinte pour Z=£(X).

On choisit une base de I’algeébre de Lie g compatible avec la décomposition
g=meh et telle que sa partie dans | soit orthonormée pour le produit intérieur
défini par — K. Soient m=dim G et n=dim M. Pour les coordonnées correspondantes
4 la base choisie on a alors

X=Xy X0,0,...,0), Z=(0,...,0,Zyr1,.... Z,),

é(X) = (07 ""0’ én+1(Xls (] Xn)’ ARE ] fm(Xls sty Xn))9
~KZ2= 3 7,
k=n+1

Q’(X,Z)=[2" S dXZe..3 3 qrmzk]-,

i=1 k=n+1 i=1 k=n+1

n - n
A(A’, X) = ( 2 ainXj, vevs Z a?inXjJ.
L7=1 i j=1

En remaniant la proposition précédente on obtient donc la suivante: La fonction

m
>, Z} assujettie aux conditions
K=1

n n
F(Zyi1s s Zy) =12 a; X, X;+ 3 3 quXZ, =0, I=1,..,n
,i=1

i=1 k=n+1

ou (Xi, ..., X;)#(0, ..., 0) est fixé, admet exactement une valeur minimale qui
est atteinte pour Z, =&, (X7, ..., X,), k=n+1, ..., m. On considére la fonction

Q(Zn-l"l’ ...,Zm) =k 2 ZE+ ZILE(Z".{.I, ooy Zm)

=n+1
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ou 4y, ..., 4, sont les multiplicateurs de Lagrange uniquement définis. On sait par la
théorie des valeurs extrémes relatives que le systéme d’équations

0P

—=22k+2)-124£kX;=0 (k=n+1,...,m),
0Z, =1  i=1
FZpsrs s Z) =0 (I=1,...,n)

admet exactement une solution, donnée par Z,=¢&.(X,, ..., X,), k=n+l,...,m
Par une substitution évidente on obtient le systéme d’équations

1 & n m
2 ainX 2 2[ 2 Z q:kq.l]kA,;Xj]}'l=0 (r=1,..., n).
i, j=1 =1 \i,j=1 k=n+1

Ce systtme définit uniquement les 4, et on voit facilement que si 'onles considére
comme fonctions de (X, ..., X,), ces fonctions 1,(X, ..., X,), [=1,...,n, sont
analytiques dans m — {0}. Par conséquent, les fonictions &, (X, ..., X,). k=n+1, ....m
sont aussi analytiques dans le domaine m—{0}. Mais, substitution dans le systéme
d’équations ' '

22+ 30 2 quX; =0 (k =n+1,..,m
1=1 k=1 ,
montre que les fonctions &, (X, ..., X,), k=n;|+1, ..., m sont linéaires. Par suite,
I’application &: m—} est linéaire.

Il reste encore a montrer que l’apphcatlon ¢ satisfait 4 la seconde conditon
posée. En effet, ’application

T,ad(h):g ~g
est un automorphisme d’algébre de Lie g pou;r tout A€ H. Par conséquent, on a
Craax = Tead (h) (cx)
pour Xcém—{0} et A€ H. Il en résulte en particuiier que
T.ad (B E(X)€er,0amx-

D’autre part, la transformation «,: M M applique les géodésiques en des géodésiques
et par suite la trajectoire

aomoexp (t(X+E(X))) = moad (h)oexp (t(X +£(X))) =
- = moexp (1(T. ad (H)(X+£(X)))),
est une géodésique. Cela entraine en vertu des observations précédentes, que

T, ad () ¢(X)€¢(T. ad (M) X) +0r,0a iy x-
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Par conséquent, on a
T.ad (h)&(X) = ¢(T, ad (h)X)

pour tout Xcm— {0} et h€ H. Donc, la seconde condition est aussi vérifiée.
Les raisonnements ci-dessus ont €té faits en vue d’obtenir le suivant

Theoreme. Soient G un groupe de Lie connexe, H un sous-groupe compact
connexe de G et soit donnée une connexion affine invariante a torsion nulle de l'espace
homogeéne M=G/[H telle que toutes ses géodésiques sont des trajectoires et que & est
differentiable en 0cm. Alors, il y a une structure réductive de M telle que sa conne-
xion naturelle a torsion nulle est la connexion donnée.

Démonstration. Puisque le sous-groupe H est compact, 'espace homogéne
M admet une structure réductive g=m@@}. Donc, en conséquence du Lemme 10 il y
a une application ¢: m—1 qui satisfait & chacune des deux conditions posées dans le
Corollaire 2 du Lemme 9. Selon ce corollaire il y a donc une structure réductive
ga=m’&h de M dont la connexion naturelle & torsion nulle est la connexion donnée.
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On some recurrence equations in a Banach algebra

LAJOS TAKACS

1. Introduction. The aim of this paper is to find the solutions of the recurrence
equations

(1) fi=L{fisig}+ L {8 £,-1}
and .

0] fo=L{fic18}+ L foo1 82},
and the solution of the system of recurrence equations
3 U, = L{u,_1h,+0, 15}
)] v, = L*{u,_1hs+v,_1h,}

where fy, 81, &2, U, Vo> My Hs, s, By are elements of a Banach algebra R, L is a pro-
jection in R, and L+L* is the identity transfo:rmation in R. The solutions of these
recurrence equations make it possible to determine the stochastic laws of the fluc-
tuations of the partial sums for a sequence of independent and identically distributed
real random variables and for a semi-Markov sequence of real random variables.
This paper generalizes and extends some earlier results of the author [11].

2. Preliminaries. Let R be a Banach algebra of elements f, f;, f;, .... We denote
by 0 the zero element and by e the identity element of R. Denote by || f|| the norm
of fand let |e|=1.

Throughout this paper we shall consider transformations T in R which satisfy

the following conditions:
(i) The transformation T is a bounded linear transformation of R into itself.
(ii) The transformation T is a projection, that is,

T2{f} =T{f} for all f.

Received July 10, 1975.
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(iii) If either T{f;}=f; or T{f;}=0 for i=1, 2, then
T{ffe} =T{}T{f}

We note that (iii) can be expressed in the following equivalent form:

® T{fif} = T{AT{L}+T{T{A} S} -T{AT{£}

for all f; and f;.

The norm of T is defined as the smallest nonnegative number |T|| for which
IT{fH=|T| |If] for all fER. If T is not the zero transformation, then (ii) implies
that | T|| =1.

We define

(©) *{f} =f-T{f}

for any T and f. If T statisfies the conditions (i), (ii), (iii), then T* too satisfies these
conditions. We have |T*|=1+|T||.

It will be convenient to introduce here some useful definitions which we shall
need later. Let us suppose that ay=b,=e and a,=T {a,_,g} and b,=T*{gb,_,} for
n=1,2,... where g€R. For a nonzero transformation T let us define u(T) as the
largest nonnegative number for which

laallel” <
0

n=

whenever |g||lg]l <u(T) and g€R. Similarly for a nonzero transformation T* let
us define fi(T*) as the largest nonnegative number for which

é’)llb,.lllel" < o
whenever |g] ||gl| <Z(T*) and g¢R. Obviously

) ' T~ =p@ =1 and [TH'=aT)=1

If | T|| =0, then we write u(T)=-co and if [T*]| =0, then we write i(T*)=-oc. Letus
define

®) ¢(T) = min (u(T), Z(T*)),
and
© y(T) = min (e(T), ¢(T*)).

We note that if R is a commutative Banach algebra, and if T satisfies (i), (ii),
(iii), then ¢(T)=1. If R is a commutative Banach algebra, then we can prove by
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mathematical induction that

na, =k§"; an—kT{gk}

forn=1,2,.... Hence .
(10) nlia, =TI k%' las-ll (&)

for n=1, 2, .... By (10) it follows by induction that

tad = ("M gan

for n=0, 1, 2, .... This implies that u(T)=1. Since ,u(T*)>l also holds, by (7) and (8)
we obtain that c(T)-l

3. The method of factorization. In solving various recurrence equations in
the space R we shall use the method of factonzatlon It seems the method of facto-
rization in Banach spaces was used for the ﬁrst time in 1956 by P. Masani {6]. See
also G. BAXTER [1], [2] and I. C. GOHBERG [4].

Let (o) be an element of R for {g|<r where r is some positive real number.
We say that the element k(@) can be represented by a Taylor series about ¢=0 in the
circle {gl<rif

h(o) = 2; h, 0"

and

z,;llh,.ll lol" < =

for |o|<r.

Let us suppose that T is a transformatlon in R which satisfies (i), (ii) and (iii).
We shall consider various elements 4(g) of R for |e|<r which satisfy one of the fol-
lowing two properties.

Property (a). The element A(g) has an inverse (A%, h(0)=e, T{h(0)—e}=
=h(g)—e, T{h(e)]*—e}=[r(0)] 2—e, h(0) and [h(0)]™* can be represented by
a Taylor series about ¢=0.

Property (b). The element /(@) has an inverse [#(0)]™?, h(0)=e, T* {h(0)—e}=
=h(e)—e, T* {[h(0)] " —e}=[h(0)]"*—e, h(0) and [h(g)]~* can be represented by
a Taylor series about ¢=0.

The method of factorization is based on the following theorem.

Theorem 1. If g€R and if |o| gl <c(T), then there exist two elements g+ (0)€R
and g~ (0)€R such that

an e—o0g =g (a)g(0)
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where g* (o) satisfies (a) and g~ (o) satisfies (b). The elements g* (@) and g~ (@) are
uniquely determined by (a), (b) and (11).

Proof. First, we shall construct two elements g* (o) and g~ (¢) which satisfy
(@), (b) and (11). Let us suppose that ay=b,=e and a,=T {a,-,8} and b,=T* {gb,_,}
for n=1, 2, .... Then

(12) | a@ = 3 a¢'cR
for Jo| llgl <u(T) and
) b(o) = S’ byo"€R

for |o| Jgll <@ (T*). From the definitions of a(g) and b(g) it follows immediately that
a(0)=b0)=e, T{a(o)—e}=a(o)—e, ¢T{ale)g}=a(e)—e, T*{b(e)—e}=b(0)—e
and oT* {gb(@)}=b(0)—e.

Now we shall prove that

(14) (e—0g8)b(0)a(o) = b(0)a(e)(e—0g) = e
and
15) . a(o)(e—og)b(e) = e

for |o| gl <c(T). If we take into consideration that T {a(g)(e—gg)}=T{e} and
T*{(e—o0g) b(¢)}=T* {e}, then by (5) it follows that

T{b()a(e)(e—eg)} = T {e}
T*{(e—0g)b(0)a(0)} = T*{e}.
If we add these two equations, then we get

(16) b(g)a(e) = e+eT {b(0)a(e)g}+oT*{gb(e)a(0)}-
If |o]llgll<c(T), then b(g)a(¢)€R and in the above equation we can write that

be)a(e) = i 7ac”

and

where y,€R for n=0, 1, 2, ... . By forming the coefficient of ¢" in (16), we get

(17 Yo =T {1n-18}+T*{gVn-1}
for n=1, 2, .... Since y,=e, it follows from (17) by induction that y,=g" for n=
=1, 2, .... This implies (14).
By (5) it follows also that
T{a(0)(e—0g)b(0)} =T{e} and T*{a(e)(e—0g)b(e)} =T"{e}.

If we add these two equations, then we get (15).
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We can conclude from (14) and (15) that [a(0)]™! and [6(@)] ! exist and

(18) [a(@)]™* = (e—0g)b(0)
and _
1 [6(0)]~* = a(0)(e—0g)
for |o| lgll <c(T).

If we define
(20) g*(e) = [a(0)]!
and
(21 g (0) =[b(a)]™

for |g| gl <c(T), then g* (¢) and g~ (o) satisfy (a), (b) and (11).

It remains to show that g*(g) and g~ (g) are uniquely determined by (a), (b)
and (11). This fact will be proved as a consequence of Theorem 3.

In exactly the same way as we proved Theorem 1 we can prove the following
theorem too. ‘

Theorem 2. If g€R and if |o| gl <c(T*) then there exist two elements h* (0)€R
and h~ (g)€R such that )
(22) e—eg = h=(0)h*(0)

where h* (0) satisfies (a) and h~ (o) satisfies (b). The elements h* (o) and h™ () are
uniquely determined by (a), (b) and (22).
If we suppose that co=d,=e, ¢,=T{gc,-,} and d,=T*{d,_,g} for n=1,2, ...,

@3) c(o) = gc; 0"
and ‘
@4 d@ = 3 de"

then in Theorem 2 we can write that 2+ (¢)=[c()]* and &~ (¢)=[d(0)]~*.
We note that if R is a commutative Banach algebra, then (12), (13), (23) and (24)
can be expressed in the following explicit forms

a() = c() = exp{—T{log(e—0g)}} and b(e) = d(o) = exp {—T*{log (¢ —02)}}
where

g"o"
n

togle—09) == 3 & for ollgl <1 and exp()=e+ 3L

for any f€R.
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4, Some linear transformations in R. In this section we shall consider traps-
formations L which satisfy conditions (i), (ii), (iii) and can be represented in the form

25 L{f}=T{/}~a(f)e

where T is a given transformation satisfying (i), (ii), (iii) and a(f) is a complex (or
real) functional on R.

We can prove that L satisfies the above conditions if and only if «(f) satisfies
one of the following three sets of conditions: (1) a(f)=0, (2) a(cf)=ca(f) forany
constant ¢, a(fi+f)=a(f)+e(f), «(T{fP=a(f), «(T{A}T{LD=a(a(S)
a(@e=T{e}, la(NI=ITIZ| S, 3) a(¢f)=ca(f) for any constant ¢, a(f,+/)=
=a(fD)+a(f), «T*{fH=a(f), «(T*{A})T*{f)=—a(a(fD), ale)e=T"{e},
e (OI=NT*E AN

Later we shall prove that for any L defined by (25) we have
(26) cL) = ¢(T)
where ¢(T) is defined by (8).

We shall state here a few general relations which can be deduced from (5). In
agreement with (6) we define L* {f}=f—L {f} for any f.

For any f€R we have

(27 T{T{e}f} = T{e}T{f} and T{fT{e}} = T{f}T{e}.

By (25) and (27) it follows that if f€R, y€R and T {y}=T {e}, then

(28) L{fi} =L{L{/}y} and L{yf}=L{HL{S}},

and if f€R, y€R and T* {y}=T"*{e}, then

(29) L} = L*{L*{f}y} and L*{yf}=L*{yL*{/}}.
If f€R, 7,€R (i=1, 2) and T {y,}=T{e} (i=1, 2), then we have

(30) L{y.L{/}7} = L{nfr} and L{nL*{f}n.}=0.

The first equation follows from the repeated applications of (28). The second follows
from the first one.
If f¢R, y,€R (i=1, 2) and T*{y;}=T*{e} (i=1, 2), then we have

(31 L*{hL*{f}Vz} = L*{y,fy:} and L*{?1L {f})’z} =0.

The first equation follows from the repeated applications of (29). The second follows
from the first one.

Now we shall consider the solutions of the three recurrence equations stated
in the Introduction.

5. The first recurrence equation. Let us consider the recurrence equation (1)
for n=1, 2, ... where f,€R, g:1€R, g,¢R and L satisfies the conditions (i), (ii), (iii)
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and can be represented in the form of (25). Obviously, f,€R for n=1, 2, ... and our
aim is to determine £, for n=1, 2, .... )
Denote by r(L) the largest nonnegative number for which

'Zollf..ll lel" < <=
whenever g;€R, g,¢R and

(32) lel max (llg.l, &l < r(L).

The inequalities ‘ :
LI+~ = r@) = (@)

obviously hold; however, later we shall prove that
(33) r(L) = o(L) = e(T)

where ¢(T) is defined by (8). ‘
If (32) is satisfied, then :

(34) F@) = 3 fe
belongs to R, and if we multiply (1) by ¢" and add for n=1, 2, ..., then we obtain that
(35) " L{F(e)(e—ogD}+L*{(e—0g) F()} = /o
Conversely, if
(36) F@= 3 /e

belongs to R for |g|<r where r is some positive number, and if (36) satisfies (35),
then by forming the coefficient of o® for n=0, 1, 2, ..., we obtain that f;*=f, and
1 (n=1,2,..) satisfies the same recurrence formulz as f, (n=1, 2, ...). Thus neces-
sarily f,F=f, for n=0. :

We shall demonstrate that F(g) can always be determined by using the method
of factorization. Let us assume that

37 e—og; = gi*(0)gi (0)

for |o}llgill <c(T) and i=1, 2 where g;"(¢) and g; (@) satisfy the properties (a) and (by
respectively. We have already proved that such a factorization always exists. By
using the factorization (37) which depends only on T, we can determine F(g) not
only for L=T but for any L satisfying (i), (ii), (iii) and (25).

Theorem 3. If f,€R, g,€R, g,€R and
fo = L{fi1g}+ L g2 fuo1)
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Jor n=1,2, ..., and if (32) is satisfied, then (34) belongs to R and we have
(38) F(o) = [85 (1 [L{gz ()foler (1"} +L*{lg5 ()] fogi ()}] I8 ()]
where g;t (0) and g7 (o) satisfy (2), (b) and (37).

Proof. If F(p) is defined by (38), then it can be represented in the form of
(36). Since T{g7 ()}=T{lg; (@1"}=T{e} and T*{g;" (@}=T*{(g;" (A *}=T*{e}
for i=1, 2, by (30) and (31) we obtain that

{(39) L{F(0)(e—eg)} = L{f}
.and
{(40) L*{(e—0g) F(0)} = L*{ fo}-

If we add (39) and (40), then we get (35). Thus we can conclude that (34) can be
-expressed in the form of (38). This completes the proof of the theorem.
We note that if L=T and f;=e, then (38) reduces to

F(o) = [gz (@) gl (@]

Now let us suppose that in Theorem 3 we have g, =wg and g,=zg where g€R
.and w and z are complex (or real) numbers. In this case by using the factorization
in Theorem 1 we can choose g (0)=g™" (gw), g7 (0)=8 (gw), g7 (9)=¢" (g2), and
8z (@)=g (¢z) in Theorem 3. Then by (38) we get

F(0) = [g=(e2)] [ L{g~(e2)folg (w1} +L*{[g* (e fog * (ew)}] {g T (ow)] "
(41)

for || max (Jwl, [z[) gl <r(L). If, in particular, L=T and f,=e, then (41) reduces to

(42) F(o) =g (e2)) g (ew) ™™

Now we are going to prove that in Theorem 1 g* (o) and g~ (g) are uniquely
-determined by the properties (a) and (b) and by (11).

If w=1 and z=0 in (42), then the right-hand side becomes [g¥(g)]”*. On the
.other hand in this case by (12) we have F(g)=a(g). Accordingly, g* (0)=[a(0)]™*
necessarily holds. In a similar way, if w=0 and z=1 in (42), then the right-hand side
becomes [g~(g)]™*. On the other hand in this case by (13) we have F(¢)=5(0).
Accordingly, g~ (0)=[b(e)]™" necessarily holds. This proves that in Theorem 1 g* (o)
and g~ (g) are uniquely determined by the properties (a) and (b) and by (11), and
that (20) and (21) necessarily hold.

Having been established that g (¢) and g7 (¢) (i=1, 2) are uniquely determined
in (38) we can express g;"(¢) and g7 (¢) by formulas (18) and (19) and [g;" (¢)] *
and [g7 (@)]* by formulas (12) and (13). Proceeding in this way we can conclude
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from (38) that
“43) r(L) = ¢(T)

necessarily holds. Since evidently r(L)=c(L), by (43) we have c¢(T)=c(L). If we
interchange the roles of L and T, then it follows that c(L)=¢(T) also holds. This
proves that (26) and (33) are indeed true.
In particular, it follows from (26) and (33) that if L is defined by (25), and if
u(D=1 and i(T*)=1, then r(L)=c(L)=1 regardless of the values of |[L| and [[L*|.
If, instead of (1), we consider the recurrence formula

44) . S = L{gi fu-}+ L o182}

for n=1, 2, ... where f,€R, g,€R, g,€R and L satisfies the conditions (i), (ii), (iii)
and can be represented in the form of (25), and if |o| max (|g,ll, lg.[) <r(L™), then

F(o) = an

belongs to R and can be determined again by the method of factorization. Let us
suppose that '

e—og; = hi () hi* (0)

for |g| llgll <c{T*) and i=1, 2 where h;" (o) satisfies property (a) and 4; (g) satisfies
property (b). In this case we have

(45)  F(0) = [hf (@17 [L{lAr ()" fo hi (@)} +L* (A () folAF ()]~} [45 (]!
whenever |o| max (flg,ll, [lgzl)<r@L7).

Note. If R is a commutatiile Banach algebra and if f=e, then (38) and (45)
reduce to
F(g) = exp {—L{log(e—og)}—L*{log (e—0g2)}}

for |o| max (llgll, llg2l)<1. In some particular cases this last result was demonstrated
in 1952 by F. PoLrLACzEK [9] and in 1958 by J. G. WENDEL [12].

6. The second recurrence equation. Let us consider the recurrence equation (2)
for n=1, 2, ... where f,€R, g,€R, g,€R and L satisfies the conditions (i), (ii), (iii)
and can be represented in the form of (25). Obvxously f+€R for n=1,2, ... and our
aim is to determine f, for n=1, 2, .

Denote by r*(L) the largest nonnegatlve number for which

(46) ._Zo I flllel" < o
whenever g,€R, g:€R and

@1 lol max (lgd, I al) < r*(L).
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We shall prove that for every L

(48) yD3=r'L) =1
where y(T) is defined by (9). Actually, we shall prove that if
(49) lel[min (llg4]l, g2l + g1 — gall] < »(T)

then (46) is satisfied and this implies (48).
If (47) is satisfied, then

(50) F(o) = 20 1"
belongs to R, and if we multiply (2) by ¢” and add for n=1, 2, ..., then we obtain that
(51) L{F(0)(e—eg)}+L*{F(0)(e—eg2)} = fo.
Conversely, if
(52) : Flo = 2 f'¢"
n=

belongs to R for |g|<r where r is some positive number, and if (52) satisfies (51),
then f,*=f, for all n=0.

The generating function (50) can be determined by the method of factorization.
Let us apply Theorem 1 to (e—gg,) " (e— 0g,) =e— 0(e—0g2) "' (g, —g.) and Theorem
2 to (e—og) tle—pg)=e—o(e—o0g)  (go—g1). If (49) is satisfied, then we can
write that ’

(53) (e—0g) M e—0g) = g* ()8 (0
where g* () and g™ (¢) satisfy the properties (a) and (b) respectively.
Theorem 4. If fo€R, g,€R, 2,€R and

fo=L{fis18}+ L fi-180}
Jorn=1,2, ..., and if (49) is satisfied, then (50) belongs to R and we have
(54) F(o) = [L{flg~ (@17 }+L*{fog*(}] [g* ()] " (e—0g2)*
where g™ (@) and g~ (o) satisfy (a), (b) and (53).
Proof. If F(g) is given by (54), then it can be represented in the form of (52)
and by nsing (30) and (31) we can prove that (54) satisfies (51). This proves the the-
orem.

In a similar way as we proved (53) we can prove that if (49) is satisfied, then we
can write that .

(55) (e—0g)(e—ega)™! = h=(2)h*(0)

where /(o) and A~ (o) satisfy the properties (a) and (b) respectively. By using (55)
we can prove the following result.
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If /,¢R, g.€R, g,€R and

(56) Jo= L{gl.f;t—l}+L*{g2f;l—1}
for n=1, 2, ..., and if (49) is satisfied, then

FlQ = 2 /e
n=
belongs to R and we have

(57 F(o) = (e—ng)—l[h+(Q)]_1[L{[A—(Q)]_lﬁ)}+L*{h+(0)fo}]

where A% (g) and A~ (o) satisfy (), (b) and (55).

If, in particular, L=T and f,=e in (54), then we get F(o)=[gT (o)l "' (e—ogs) .
Thus g* (g) can also be determined by the recurrence formula (2). If, in particular,
L=T and f,=e in (57), then we get F(o)=(e—ogz) "t [h* (0)]* and thus 4+ () can
also be determined by the recurrence formula (56).

7. A system of recurrence equations. In this section we shall demonstrate that
the system of recurrence equations (3) and (4) can be solved by using Theorem 4 if
we apply it to a new Banach algebra S associated with R. Let us denote by S the
space of matrices '

_ |/ fe
¢ = f]
where f;;€R for i, j=1, 2. In S let us define the operations of addition, multiplication
and multiplication by a complex (or real) constant according to the rules of matrix
algebra and according to the rules established in R. Define the norm of f either by

Iflls = max (|| ful +||f12i|, Il fall +11 S22l
I€lls = max (|| fuull +1| falls | fasll +1I foell)-

We can easily see that S is a noncommutative Banach algebra with zero element
and identity element ,
] e 0
[e e] and [0 e]’
respectively.
If T is a transformation in R which satisfies (i), (ii), and (iii), then let us extend

the definition of T to S in such a way that we form T element by element for an
f given by (58), that is

or alternately by

T{f}= [T{fij}]ij=1,z-
We can easily see that T satisfies (i), (ii) and (iii) in the space S too.
Now let us consider the system of recurrence equations (3) and (4) for n=1,2, ...
where #,€R, v,€R, hER (i=1, 2, 3,4) and L satisfies the conditions (i), (ii), (iii)
and can be represented in the form of (25). We can express (3) and (4) in the following
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matrix form

U, 0, . Upo1 Up-a hl 6 *{ U1 Uy 0 h3

[0 o]‘L“ 6 8 “h O]}“‘ 6 o llo A
for n=1, 2, .... This equation is of type (2). If we épply Theorem 4 to the Banach
algebra S, then

Sle e

can be determined by (54).
If, instead of (3) and (4), we consider the recurrence equations

U, = L{hlun-1+hzvn—1}
_and
Un = L*{haun—1+h4vn—1}

for n=1, 2, ..., then we can write that

S | S [ R

for n=1, 2, .... This equation is of type (56). The solution of (59) can be obtained
by (57) if we apply it to the Banach algebra S.

By introducing a Banach algebra of finite or countably infinite matrices with
elements belonging to R, we can solve a finite or a countably infinite system of recur-
rence equations in R.

In the next two sections we shall define two Banach algebras R, and R,, and
theree transformations T, T,, T, satisfying (i), (i) and (iii). If we apply Theorem
3 and Theorem 4 to these Banach algebras, then we can determine the distributions
of several random variables depending on the partial sums of a sequence of independ-
ent and identically distributed random variables and of a semi-Markov sequence
of real random variables. In particular, we can find the distributions of the maximal
partial sum, the ordered partial sums, the number of positive partial sums, the number
of changes of sign in the successive partial sums, and the subscript of the first positive
partial sum. These applications will be discussed in a subsequent paper.

8. A commutative Banach algebra R,. Let us define R, as the space of functions
@ (s) defined for Re (s)=0 on the complex plane which can be represented in the form

(60) P(s) = E{fe~""}

where 7 is a real random variable and { is a complex (or real) random variable for
which E{|{|}<<c. Let us define in R, the operations to be the pointwise addition,
multiplication and multiplication by a complex (or real) constant. The zero element
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of R, is 0, and the identity element of R, is 1. Let us define the norm of @(s)€R, by
1 = inf E4I2)

by where the infimum is taken for all admissible { in the representation (60).
We can easily prove that R, is a commutative Banach algebra.
Now we shall consider some transformations in R, which satisfy (i), (i) and (iii).-
If ®(s)€R, is given by (60), then let us define

(61) P*(s) = E{le—""}

for Re(s)=0 and

(62) O7(s) = E{{(e™*"—e™")}

for Re(s)=0 where 7 =max (0, ). We have &* (s)€R;, &~ (s)€R, and
(63) D(s) = PH()+ D (s)

for Re(s)=0, |®* (s)|=| @] for Re(s)=0 and |®~ (s)|=2| @} for Re(s)=0.

The function @ (s) is regular for Re(s) =0, continuous and bounded for Re(s)=
=0 and &% (0)=&(0).

The function @~ (s) is reqular for Re(s)<0, continuous and bounded for Re(s)=
=0 and ¢~ (0)=0.

By Liouville’s theorem it follows that the above properties uniquely determine:
@7 (s) and @ (s) in the representation (63).

If ®(s)€R,, then for Re(s)=>0 we have

2(2)
z(s—2)

P | .8
P+(s) = 3¢(0)+£1_{132—m:L!
where L,={z:z=iy, —co<y= —g<g=y< oo}. See reference [11].
For any event A let us define 6(4) as the indicator variable of A4, that is, 8 (4)=1F
if A occurs and 3(4)=0 if 4 does not occur.’
Now we define three transformations T, T,, T, in R, which satisfy the conditions.
(1), (ii) and (iii). If &(s)€R, is given by (60), then let

(64) T{®(s)} = ¢*(s) = E{le™""},

(65) To{P(5)} = ¢*(s) —P*(o0) = E{{e~*"6( > 0)}
and

(66) T {&(s)} = &+(9)+ 8 (— =) = E{e~15(n = 0)).

We define T*, T and T by (6). We can easily see that these transformations satisfy
(i), (i), (i), T =[Toll =T, =ITgll =T =1 and |T*|=2.

If L is any one of the transformations T, T,, T,, defined by (64), (65), and (66}
respectively, then L {®(s)} can be represented in the form of (25), that is,

L{2(s)} = T{®(9)}—a(P)
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where T{®(s)} is defined by (64), and a(P)=0 for L=T, o(P)=D* () for L=T,,
and a(®)=— P~ (— <o) for L=T,. If L is any one of the transformations (64), (65),
(66), then by (7), (8) and (26) we have ¢(L)=1 and ¢(L*)=1.

If we assume that T is given by (64), then we can formulate the following version
.of Theorem 1.

Theorem 5. If Y(s)ER, and if |o| ¥l <1, then there exist two functions
WYt (s, 0)€R, and Yy~ (s, 0)€R, such that

(67) 1—gy(s) =¥*(s, QY (s, 0

for Re(s)=0 where Y™ (s, ) satisfies property (o) and Y~ (s, o) satisfies property (B)
stated below.

Property (). The function Y (s, @) is regular for Re(s)=0, continuous, bounded
and free from zeros for Re(s)=0..

Property (B). The function ¥~ (s, @) is regular for Re(s)<O0, continuous, bounded
.and free from zeros for Re(s)=0.

Proof. If Y * (s, o) satisfies (), and ¥~ (s, o) satisfies (8), then we say that (67)
is a factorization of 1—g¥(s). Such a factorization always exists. For example, if

(68) ¥ (s, @) = Cre) exp {T {log [l —e¥ ()}
for Re(s)=0 and |¢| |¢¥| <1, and
(69) ¥=(s, 0) = Cy(0) exp {T*{log[1 — oy ()]}

for Re(s)=0and |g||¥| <1, where C,(9) C,(0)=1, then (&), (8) and (67) are satisfied.
‘Conversely, it follows from Liouville’s théorem that conditions («), (8) and (67)
.determine ¥* (s, ¢) and ¥~ (s, @) up to a nonvanishing factor depending only on g.
"Thus (68) and (69) are the general forms of ¥ (s, 0) are Y~ (s, o) respectively.

If in (68) and (69) we choose C,(g) and C,(g) in an appropriate way, then we
-can easily see that y* (s, @) and y~ (s, ¢) satisfy properties (a) and (b) too.

If we want to solve a recurrence equation of type (1) in the space R, then instead
.of (11) we can use the factorization (67). Since in (38) only the product C,(¢) C,(0)=1
.appears, therefore it does not matter how we choose C;(g¢) and C,(p) in (68) and (69).

Let us mention one example specifically. Let

Up(s) = WLA{U,_1 ()Y ()}+ 2L {Uy_1 (5} (5)}

for n=1, 2, ... where Uy(s)€R,, Y (s)€R,, w and z are complex (or real) numbers,
and L is any one of the transformations (64), (65), (66). If |¢| max (|wl, |z]) |¥| <1,
then

UG @ = ZU6)e"
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belongs to R; and by Theorem 3 we have
UGs, @) = [L{U()¥ (s, e2)[¥ (s, ew)] "+
+ LU *(s, ow)[¥ ¥ (s, 021} [ *(s, ew)] Y (s, @2)]
where ¥ ¥ (s, ¢) and ¥~ (s, ) are determined by Theorem 5 or by (68) and (69), re-
spectively.

Finally, we note that in properties («) and () the requirement of boundedness
can be replaced by the weaker conditions Islli_g;no [logyt (s, 9)]/s=0 (Re (s) %0) and
|sl|i.£§° [log ¥~ (s, 0)]/s=0 (Re (5)=0), respectively.

9. A noncommutative Banach algebra R,. Let I be a fixed finite or countably
infinite set. We consider complex (or real) matrices A=[g;;], i€, j€I, for which
M{A} = sup 2 'aul = .
iel jeI
We shall denote by 0 the zero matrix all Qf .whose elements are zeros, and by I
the identity matrix. (I=[d;;], i€/, j€I, where 8;;=1 for i=j and 6,;=0 for i=j) If
M {A}<o, M{B}<c and AB=BA=I, then we say that A and B are inverse ma-

trices and write B=A"1,

We say that a matrix function A(s)=[a;;(s)], i€1, j€l, is continuous, or regular,
or bounded on a set"D according to whether every a,;(s) is continuous on D, or every
a;;(s) is regular on D, or M {A(s)} <K for s€ D where K is a positive constant.

Let R, be the space of all matrix functions

(70) ®(s) = [B;;()], jex
defined for Re(s)=0 on the complex plane such that 7 is a fixed countable set, &,;(s)€
€R, and

(7)) 1@l = sup 2> [1®llr, < <.
il jer

We define the norm of ®(s) by (71). Let us define the operations of addition, multi-
plication and multiplication by a complex (or real) constant in R, according to the
rules of matrix algebra. We can easily see that R, is a noncommutative Banach
algebra with zero elemen: 0 and identity element L

If d(5)€R, is given by (70), then let
®*(s) = [D3] (S)L jer

D(s) = [P, jer
for Re(s)=0 where &/ (s) is defined by (61) and &;;(s) by (62).
Obviously, ®* (s)eRz, ~(s)€R, and
(72) D(s) = H(s)+P(s)

for Re (s)=0 and

13 A
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for Re(s)=0. We have M{®@*(s)}=||®| for Re(s)=0 and M {®~ (s)}=2(®| for
Re(s)=0. .

The matrix function @ (s) is regular for Re(s)=0, continuous and bounded for
Re(s)=0 and @+ (0)=®(0). '

The matrix function ®~ (s) is regular for Re(s)<0, continuous and bounded for
Re(s)=0and @~ (0)=0. '

By Liouville’s theorem it follows that the above properties uniquely determine
@ (5) and ®~ (s) in the representation (72).

Now let us extend the definition of the transformations (64), (65), (66) from the
space R, to the space R, in such a way that we form these transformations element
by element for ®(s)€R,, that is,

(73) T{®(s)} = P*(s),

(74) To{®(5)} = @*(s) — D (),
and

(75) T {®()} = P+ P (— ).

We define T*, Ty, T; by (6). We can easily see that these transformations satisfy (i),
(i), (i), [Tl =[Tell =T =Tl =T{ll=1 and | T*|=2.

If L is any one of the transformations (73), (74), (75) and if ®(s)€R,, then
L{C®(5)}=CL{®(s)} and L{®(s)C}=L{®(s)}C for any constant matrix C for
which M {C}< . Furthermore, L {®(s)} can be represented in the following form
(76) ‘ L{®(s)} = T{®(s)} ~a(P) :
where T{®(s)} is defined by (73), a(®)=0 for L=T, a(®)=®" (=) for L=T,,
and a(®)= —~® (— ) for L=T,. If L is any one of the transformations (73), (74),
(75), then by (7), (8) and (26) we have ¢(L)=1 and c(L*)=1.

If we assume that T is defined by (73), then we can formulate the following
version of Theorem 1.

Theorem 6. If WY(s)€ER, and if lo||¥|l<1, then there exist two matrices
WY+ (s, 0)ER, and ¥ (s, 0)€R, such that

(77 I-o¥(s) =¥*(s, ¥~ (5, 0)

Jor Re(s)=0 where ¥ (s, 0) satisfies property («) and W~ (s, ) satisfies property ()
stated below.

Property («). The matrix Y (s, 0) has an inverse [¥™ (s, 0)] " for Re(s)=0, and-
Y¥+(s, 0) and [W* (s, 0))~" are bounded and continuous for Re(s)=0 and regular for
Re(s)=0. ‘
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Property (B). The matrix ¥~ (s, 0) has an inverse [¥~ (s, 0)]~* for Re(s)=0, and
Y= (s, 0) and [W~ (s, 0)]~! are bounded and continuous for Re(s)=0 and regular for
Re(s)<0.

Proof. The factorization (77) satisfying («) and (f) always exists. By the method
described in the proof of Theorem 1 we can construct two matrices A (s, ¢) and B(s, @)
such that

1-0¥(s) = [AGs, 9] [B(s, @]

for Re(s)=0 and A(s, @) sansﬁes (a) and B(s, g) satisfies (b).

If we define
(78) ¥*(s, 0) = [A(s, @)]_ICI(Q)
for Re(s)=0 and ‘
(79 ¥ (s, 0) = C,(a)[B(s, Q]

for Re(s)=0 where M {C,(¢)}< <, M{C,;(g)}<< and C;(0)C;(0)=I, then all the
properties stated in Theorem 6 are satisfied. Conversely, it follows from Liouville’s
theorem that conditions (a), (8) and (77) determine W* (s, ¢) and ¥~ (s, @) up to
a matrix factor independent of s. This implies that (78) and (79) are the general forms
of W* (s, 0) and ¥~ (s, @) respectively.

In a similar way as we proved Theorem 6, we can prove a corresponding version
of Theorem 2.

If we want to solve recurrence equations of type (1) and (2) in the space R,,
then instead of (11), we can use the factorization (77). Since in (38) and in (54) only
the product C,(9)C,(0)=1I appears, it is immatérial how we choose C,(¢) and C,(g)
" in (78) and (79). We can easily see that although in (76) «(®) is a matrix, not a scalar,
we can use formulas (38) and (54) unchangeébly Recurrence equations of types
(44) and (56) in the space R, can be solved in a sumlar way by using an analogous
version of Theorem 6. .

Let us mention one example specefically. Let

U,(s) = wL{U,_1()¥ (9} + zL*{U,-1(s) ¥ ()}
for n=1, 2, ... where U,(s)€R,, ¥(s)€R,, w and z are complex (or real) numbers,
and L is any one of the transformations (73), (74), (75). If |o| [min (|w|, |z])+|w—2z]] -
- ||¥|| <1, then
UGs, 0) = ;; U,(s)e"
belongs to R, and by Theorem 4 we have
U(s, @) = [L{Up(s)[¥ (s, ow, ¢2)] "} +
+ L {Uo(s) ¥ (s, 0w, 02)}] - [+ (5, 0w, 02)] [T~ 02¥ ()]
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where

M—ez¥ ()] X —ow¥(s)] = ¥*(s, ow, 02)¥ (5, ow, 02)
for Re(s)=0 and ¥ (s, ow, 0z) satisfies property («) and ¥~ (s, ow, 0z) satisfies
property (B) in Theorem 6.

We note that in the case of finite matrices the method of matrix factorization
has already been used in several fields of mathematics, namely, in the theory of
systems of integral equations, in the theory of linear prediction of multivariate sta-
tionary stochastic processes and in the theory of Markov chains. We refer to the
works of G. D. BIRKHOFF [3], N. WIENER [13], P. Masani [6], N. WIENER and P. Ma-
SANI [14], I. C. GoHBERG and M. G. KREIN [5], M. D. MILLER [7],[8] and E. L. PREs-
MAN [10].
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On a property of strictly logarithmic concave functions

V. A. TOMILENKO

1. Introduction. In the work [1] by A. Prékopa the following theorem was
proved. ‘

Theorem 1. Let f(x, y) be a function of n+m variables, where x is an n-compo-
nent and y is an m-component vector. Suppose that f is logarithmic concave in R**™
and let A be a convex subset of R™. Then the function

Ix) = [ f(x;y)dy

is logarithmic concave in the entire space R".

The main result of this work is a similar statement for strictly logarithmic concave
functions. :

Let f be a non-negative logarithmic concave function in R"*™. We denote

D= {z¢R™™: f(2) = 0}, D(x) = {y€R™: f(x,5) >0}, B={xcR": I(x)> O}

The sets D(x) (x€R"), D and B are convex in R", R**™ and R", respectively. The
relative interior of a convex set CC R is denoted by riC (see [2] p. 57) and the closure
of C by C. The basic theorem of this work is -

Theorem 2. Let f(x, y) be a function of n+m variables where x¢R", y€R™.
Suppose f is logarithmic concave in R"*™ and strictly logarithmic concave in ri D,
and let A be convex subset of the space R™. If the sets D(x)C R™ are bounded
Jfor every x€R", then the function I is logarithmic concave in the entire space R”
and strictly logarithmic concave in ri B, ' :

~ The first part of this statement is just Theorem 1. We shall begin with proving
the strictly logarithmic concavity of the function I in ri B with subsidiary statements.

In this work the terminology has been taken from [2].

2. Auxiliary statements. We define the function g: R"*™ — R as follows
8(2) =-Inf(2), z=(x,y)eR™*™

Received June 13, 1975.
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Under the conditions imposed on f, g is a proper convex function with effective
domain
dom g = {z€R"*™: g(2) < «} = D.
We denote
1 (z) = limsup f(v), v, zER™.
Lemma 1. For all z¢ R**™
' (clg)(2) = —Inf,(2),

where cl g is the closure of the convex function g.
Proof. From the definition of cl g ([2] p. 67—68) and g we have
(cl g)(2) = liminf g(v) = liminf[—In f(v)] = —lim sup ln £(v).

The continuity and strict monotonicity of the logarithm implies that
lim sup In £(v) = In [lim sup f(v)] = In £, (2).

g4

The lemma is proved.
Corollary 1. The function f* is logarithmic concave in R"*™,

Corollary 2. The function f agrees with f, in R**™ except perhaps at relative
boundary points of a convex set D.
Corollaries 1 and 2 follow from Theorem 7.4 [2] and Lemma 1.

Lemma 2. If f is upper semi-continuous on the closed bounded set D R*, then
there exists zy€ D such that

sup f(2) = f(2o).
z€D

Proof. Let sup f(z)=C and &,>0, ¢,~0 as n—~. Then one can find a se-
quence {z,}c D szuecgl that for n=1, 2, ...
' f(z)) = C—s,.
‘Since D is a bounded closed set without loss of generality we may assume that

Z,~2Zy as n—oo, z,€D, and |z,—z)| =¢, for n=1,2, ...

Hence the inequality
) - osup - f(D)=f(z)>C—e¢, n=12 .

29—zl <e,,
is valid. Taking into account the upper semi-continuity of the function f we get
from (1) that ~ L
f(zp) =lim sup f(z2)=C.

n—-oco |z—zg|<e,

Thus f(z,)=C. The lemma is proved.
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Lemma 3. Let z;, Z,€R*™ and O0<A<1. If f is strictly logarithmic concave
in riDC R"™ and Az, +(1 —A)z,€ri D, then the inequality

@ [z + (=D z) = fi(z) /i 7*(22)

is valid.

Proof. Two cases are possible. }

(i) One of the points, either z, or z,, does not belong to D. In this case inequal-
ity (2) is obviously correct.

(ii) Let z,, z,€D. Let us draw a straight line / across the points z; and z, and
choose some point z€INri D. Let qo(ﬂ)=g(yzl-{-(l—u)zg). Then cl¢ is a proper
strictly convex function on [0, 1]. From Theorems 7.4 and 7.5 of [2] it follows that
(cl9) ()=o) for pe (0, 1) and

@ @)(1) = lim v+ (L —¥)g) = lim g(vz,+(1—9)2) = (cl )z,
(e 9)(O) = lim (o —vp) = lim g(vz+(1 —)2) = (cl £)(2),

'where z=p,z; + (1 — ;) 2,. This means that the function cl g is strictly convex on the
set 1N D, that is

3) (©l g)(Azy +(1—2)z,) < Al (@) +(1 (el g)z), 0<i<1.

From (3) and Lemma | it can be seen, that inequality (2) is true. The lemma
is proved. : :

Corollary 3. Let z,, z,€ R**™ and O<li<1. If f is strictly logarithmic concave
inti DC R"™™ and Az, +(1 —A)z,€1i D, then we have the inequality

Sz +(1=1)z) = fA(2) 1~ *(zo).
Q ) .
Lemma 4. If x,6ri B, y,€int D(x,), then zy=(xyyo)€ri D.

Proof. Let P be the projection (x, y) »x from R™*™ onto R". It can be shown that
Bc PD and if B is not empty then the dimension of the set B agrees with that of PD.
Hence ri BCri(PD) and the point (xo, yO)Erl D by Theorem 6.8 of [2]. The lemma is
proved.

3 Proof of Theorem 2. We denote

D, (x) = {yeR™: f, (x, y)>0}

For all x¢ri B the sets D(x) and D « (x) have the same closure and the same interior
(see Corollary 2).
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Let x;, x,€r11 B,0<A<1 and xy=Ax; +(1 — 2)x,. We define the functions f;
and f; as follows:

L) =fi(x, ) if y€A, and f,(y) =0 otherwise;
£0) =f(x:,y) if ycA, and f,(y) =0 otherwise.

For given y€R™ and 4, 0<A<1, we shall denote by S(y; 4) the set of points
(u, v) such that u, v€R™, Au+(1—2A)v=y. .
It can be shown that for all y€ R™

sup ﬂ(xla u)f*}_l(xz’ U) = sup fll(u)le_l(v)
S(y; 4) SO0

and for y€ AND(x,)
sup fi(W)f3~*(@) = 0.
S A

Since f, is logarithmic concave in R"*™ (Corollary 1), the following inequality
will be valid for all y€ R™: '

f*(xm y) = Sup f’lf'(xla u)f}-l(xz, l?).
S(a;y)

We shall prove that for all y€int D(x,) we have
(4) f* (xo’ y) = Ss(yu'lz)f:(Xh u)j;‘l-).(xg, U).

Suppose on the contrary that there could be found a yy€int D(x,) such that

Sy (X0, yo) = sup fi(xy, ) fa* (xg, 0).
S(o; 1)

In this case f,, (xq, ¥o) =0 as (x,, yp)€ri D (Lemma 4). According to Lemma 2 there
exists a point (uy, v,) € S(y,; A) such that

u€D(x), vy€D(xy) and S (%05 ¥o) = S (xy, ug) fi = (x, v).

We have got a contradiction to Lemma 3. So, for all y€int D (x,) inequality (4) is valid.
From the definition of the function I and from Corollary 2 we get

lcxo)=1f oy = [ filx, y)dy.

AND(xp)
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Taking into account (4) and Theorem 3 of [1] we obtain:

[ fGndy= [ sup fiGa, iAo, v)dy =

AND(xg) AND(xy) S5 4
= [ sup @A @dy= [ swp LA O)dy=
DxpnA S0: 4 Rn SG;A)

=[ A0 D[ [0 =] [ ALY [ AGLd]=

R T ORm ANDexy) AND(xy)

= [TCe)P [T (xl

The theorem is proved. '

Corollary 4. Let x;, x,€R" and 0<i< 1. If Ax;+(1—2)x,€ri B, then the
inequality
% 1(2x,+(1—2) x5) > [L(x)P I (P4
is valid. ;

Proof. It follows from Theorem 2 and Corollary 3.

In conclusion the author expresses his gratitude to G. G. Pestov for his help
in carrying out the present work.
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Similarity invariants for a class of nilpotent operators

L. R. WILLIAMS

In this note, all Hilbert spaces will be understood to be complex. If $ is a Hilbert
space, we denote by £(9) the algebra of all bounded linear operators on . If A4
belbngs to £(9) and there is a positive integer n such that 4"=0 and A"~'£0, then
we say A is a nilpotent operator of order n. If n is a positive integer, then the nilpotent
operator acting on the direct sum of r copies of $ and defined by the nX»n matrix
(4,1 G, j=1, ..., n), where ‘

Aja=1g for i=1,..,n-1 and A;; = 0g for all other entries,

is called a Jordan block operator of order n. (By definition, Oy, the zero operator
on $, is a Jordan block operator or order one.) Let m be a positive integer. Suppose
95 .- O are Hilbert spaces and ny, ..., n, are positive integers. Let $, be the
direct sum of n, copies of $, and J, be the Jordan block operator of order n, acting
on $,,k=1,2,...,m. An operator of the form J,®...¢J, actmg on H,P...HH,
is called a Jordan operator.

Recall that if &, and &, are Hilbert spaces and X: & —&, is a bounded linear
transformation such that kernel X=kernel X *= {0}, then X is called a quasiaffinity.
If 4,€L2(R,), 4,6L(K,), and there exists a quasiaffinity X: &, — &, such that X4,=
A, X, then we say A4, is a quasiaffine transform of A,. If A, and A4, are quasiaffine
transforms of each other, i.e., if there exist quasiaffinities X: & ~&, and ¥: &, - &,
such that XA,=A4,X and YA,=A,Y, then 4, and A, are said to be quasisimilar.
Recall also that if there exists an invertible bounded linear transformation Z: &, -~ K,
such that Z4,=A4,Z, then 4, and 4, are said to be similar.

* It is a well-known theorem of linear algebra that every mlpotent operator on
a finite dimensional Hilbert space is similar to a Jordan operator. Since every Jordan
operator clearly has closed range, one cannot expect this theorem to be true on an

Received November 5, 1975.

This note is a part of the author’s Ph. D. thesis written at the University of Michigan under
the direction of Professor C. Pearcy. '
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infinite dimensional Hilbert space, but ArosToL, DouGLAS, and Foias [1] recently
proved that the following weakened version of the theorem is valid on any Hilbert
space.

Theorem 1. Every nilpotent operator on a Hilbert space of arbitrary dimension
is quasisimilar to a Jordan operator.

The purpose of this note is two-fold. In the first place, we present below a proof
of Theorem 1 that is somewhat simpler than the argument in [1). Secondly, essentially
the same proof establishes the following result.

Theorem 2. A nilpotent operator T on a Hilbert space is similar to a Jordan
operator if and only if the range of T* is closed, k=1,2, ....

It will be convenient to use the following notation. If &, and K, are Hilbert
spaces, A belongs to £(K;), and B: ],—~8, is a bounded linear transformation,
then we let M (A4, B) denote the operator

5 3
00
in (K, ®K,). If 4: ], ~K, is a bounded linear transformation, then we denote by

K(A) the kernel of 4 and by R(A) the range of 4.
We begin with the following lemma.

Lemma 1. Suppose J is a Jordan operator acting on a Hilbert space $, and
suppose there are a Hilbert space K and an isometry V: & —$ such that R(V)= 9 R(J).
Then the operator M(J, V) in L(HDKR) is unitarily equivalent to a Jordan operator.

Proof. To say that J is a Jordan operator on $ means that there exist Hilbert
spaces $,, ..., D, and positive integers n,, ..., n,, such that if we let H, be the direct
sum of n, copies of $,; and J, be the Jordan block operator of order n, on H, (k=
=1,2,...,m), then H=9H;D...DH, and J=J,®...®J,. Let H, =9H,OR(J)), i.e.
9, =00.. 0089, (k=1,2,...,m). It is easy to verify that R(V)=H0R(J)=
=9H,0...09,. Let U, be the natural Hilbert space isomorphism of §, onto $,.
Define W,: 9,—~9, by setting W, x=U,x for each x in §,. Let U=U,8...0U,
and W=W,®...@W,,. Define Vy: 8 ~R (V) by setting Vyx=FVx for each x€ K. The
linear transformations U: $,®...89,,~R (V) and V,: K R (V) are unitary. Hence
the linear transformation

16U, : SO R ~ HB(H,:5...09H,)
is unitary and

(15U VM, VY150 UV = M{J, VVU) = M(J, W),
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Furthermore, the operator

M@I,W) in 2H5D(H:0...0 Hu)

is unitarily equivalent to the operator

MU, W)D...0MJU,, W) in 2(5:99)9. D(5n® Hn)).

Thus, in order to complete the proof, it suffices to show that the operators M (J, W)
(k=1,2, ..., m) are Jordan block operators. In order to do this, we observe that
Wi De=9r =%D...09H, is defined by the n, X1 matrix all of whose entries are
0, except the last, which is 1 5, Hence it is clear that the operator M(J,, W,) is the
Jordan block operator of order #,+1 on the direct sum of n +1 copies of $,. Thus
the proof is complete.

Lemma 2. Suppose T is a nilpotent operator of order n>1 on a Hilbert space
$. Then there exist Hilbert spaces &, and K, a nilpotent operator A of order n—1
in 8(8K,), and a bounded linear transformation B: R, —~ R, such that T is unitarily equiva-
lent to the operator M (A4, B) in (K, ®K,) and such that (R(A)+R(B))” =8K,. Fur-
thermore, if each R(T*) is closed (k=1,2, ...), then R(4") is closed (k=1,2,...), and in
this case R(A)+R(B)=8K,.

Proof. Let & =R(7)~ and K, = HSR(T)~. The operator T is clearly unitarily
equivalent to some operator M (4, B) in (], ®K,;) where R(A)+RB)=R(T).
Hence we have (R(4)+R(B))”=SK,. An elementary calculation shows that 4 is
a nilpotent operator of order n—1. If R(T*) is closed, k=1, 2, ..., then it is clear
that R(4)+R(B)=K, and it follows easily that R([M (4, B)]")=R(4*" )P0 (k=
=1, 2, ...). Hence R(4") is closed, k=1, 2, ..., and the proof is complete.

Lemma 3. Suppose T is a nilpotent operator on a Hilbert space $ [and R(T%)
is closed (k=1,2,...)]. Then T is a quasiaffine transform of [similar to] a Jordan
operator.

Proof. We prove the lemma by induction on the order n of T. If n=1, then T
is the zero operator on $ and hence, by definition, T is a Jordan operator. So we
assume n>1 and that the lemma is true for all nilpotent operators of order n—1.
According to Lemma 2, T is unitarily equivalent to an operator M (4, B) in £(]; B K,)
for some Hilbert spaces &, and K,, where 4 is a nilpotent operator of order n—1
and (R(4)+R(B))™ =8, [R(4)+R(B)=K, and each R(4*).is closed]. Thus, by the
induction hypothesis, there exist a Jordan operator J on a Hilbert space $, and
a quasiaffinity [an invertible bounded linear transformation] X: &, -8R, such that
XA=JX. The bounded linear transformation X@1, : R, 0K, ~Hy® R, is a quasi-
affinity [is invertible] and (X®1,)M(4, B)=M(J, C) Xel xy) Where C=XB:
K~ H,. It is easy to verify that (R(J))+R(C))™ =9 [R)+R(C)=9H,).
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We observe that R(J) is closed since J is a Jordan operator. Let E be the ortho-
gonal projection onto R(J). Then, of course, R(EC)c R(J). It follows from a theo-
rem of R. G. DouGLAs ([2], Theorem 1) that there exists a bounded linear transfor-
mation Y: K, — 9, such that EC=JY. The operator

[1,30 Y
0 1,
in L(HoBK,) is invertible and

[1,30,}' J C]_[JD lg, Y
A0 . 14J10 0) 10 0){0 14
where D=—-JY+C=—-EC+C=(l —E)C A straight forward calculation shows
that R(D)™=9H,©R(J) [R(D)= 550691(1)]
Let 8;=%,0K8(D), ], =RK(D), and let Dy: K;—~H, be defined by D,x=Dx for

each x in 8. The operator M (J, D) in £(H,DRK,) is unitarily equivalent to the opera-
tor

J D, 0
00 0
00 0

in £(H,PK;BR,). So in order to complete the proof of the lemma, it suffices to
show that the operator M (J, D,) in L(H,DK,) is a quasiaffine transform of [similar
to] a Jordan operator. We observe that & (Dy)=(0) and R(D;)~ =H,©R() [R(Dy) =
=9HO0N(J)). Write Dy=VP, the polar decomposition of D,. It follows that V:
K39, is an isometry and R(V)=R(Dy)~ = H,© R(J). The operator P in L(K,)
is a quasiaffinity [an invertible operator] since P is positive and K& (P)=(0) [and R(P)
is closed]. Hence the operator 1 5, D P in L(HyDK,) is a quasiaffinity [an invertible
operator] and (14 ®P)M (J, D)=M{U, V) (1 5, DP). The operator J and the linear
transformation V satisfy the hypotheses of Lemma 1. Thus the operator M(J, V)
is unitarily equivalent to a Jordan operator, and hence the proof is complete.

Corollary 1. Every nilpotent operator on a Hilbert space is quasisimilar to its
adjoint.

Proof. Suppose T is a nilpotent operator. By Lemma 3, there exist a quasi-
affinity X and a Jordan operator J such that XT=JX. Then T*X*=X*J* Since
every Jordan operator is unitarily equivalent to its adjoint, we have UJ=J*U where
U is a unitary operator. Combining these equations, we get (X *UX)T=T*(X*UX).
Hence T is a quasiaffine transform of 7'*. The same argument applied to T* shows
that T* is a quasiaffine transform of T. Hence T and T* are quasisimilar.

Corollary 2. If T is a nilpotent operator on a Hilbert space and each R(T¥)
is closed (k=1, 2, ...), then T is similar to its adjoint. .
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Proof. By Lemma 3, there exist an invertible bounded linear transformation
X and a Jordan operator J such that XT=JX. Now proceed as in the proof of Corol-
lary 1 to obtain the equation (X * UX)T=T*(X*UX) where U is a unitary operator..
Hence T and T are similar.

Proof of Theorem 1. Suppose T is a nilpotent operator on a Hilbert space..
Then T* is also a nilpotent operator. Thus, according to Lemma 3, there exist quasi--
affinities X and Y and Jordan operators J; and J, such that XT=J, X and YT*=J,Y.
Then T*X*=X*J; and TY*=Y*J;. Since J, and J, are Jordan operators, we have:
UJ,=J;U and VJ,=J;V where U and ¥ are unitary operators. Combining these
equations, we get T(Y*VYX*U)=(Y*VYX*U)J;. Hence T and J, are quasisimilar..

Proof of Theorem 2. Let T be a nilpotent operator on a Hilbert space..
If T is similar to a Jordan operator J, then T* is similar to J* for each positive integer
k. It is clear that R(J¥) is closed (k=1, 2, ) Hence R(T%) is closed, k=1,2,.....
On the other hand if R(T) is closed (k=1, 2, ...), then we can conclude from Lemma
3 that T is similar to a Jordan operator.

Foias and PEARCY [3] proved that every nilpotent operator acting on a separable‘-
Hilbert space is quasisimilar to a compact operator. Below we give a different proof’
of this theorem based on the following lemma.

Lemma 4. If T is a nilpotent operator on a separable Hilbert space $, then there
exist a compact quasiaffinity Z and a compact operator K in L(9) such that ZT=KZ.

Proof. We prove the lemma by induction on the order n of T. If n=1, then T is.
the zero operator on $ and the result is obvious. So we assume n>1 and that the:
lemma is true for all nilpotent operators of order n—1 acting on a separable Hilbert
space. According to Lemma 2, the operator T is unitarily equivalent to an operator
M(4, B) in 2(] ®dRK,) for some separable Hilbert spaces ], and K,, where 4 is.
a nilpotent operator of order n—1 in £(8K,). Thus by the induction hypothesis, there
exist a compact quasiaffinity Z, and a compact operator K in £(&,) such that Z,4 =
K,Z,. Write Z,B=UP, the polar decomposition of Z,B. The operator P in £(R,)
is positive and compact. Hence P'? is compact. Let P be any compact quasiaffinity
in 2(K(P"?)). We define a compact quasiaffinity P, on K, by setting Ppx=Px for
each x in R(PY?) and Pyx=PY2x for each x in K, K(PY?). Clearly P=PY2P,. The
operator Z,& P, is a compact quasiaffinity and the operator M(K,, UP"?) is com-
pact. An easy calculation shows that (Z,®P,)M (A4, By=M(K,, UP'?) (Z,®P,),
and hence the proof is complete. ‘

Theorem 3. Every nilpotent operator on a separable Hilbert space is quasisimilar
to a compact operator.
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Proof. Suppose T is a nilpotent operator on a separable Hilbert space. Accord-
ing to Lemma 4, there exist a (compactf quasiaffinity Z and a compact operator
K such that ZT=KZ. Then T*Z*=Z*K™*. The operator K is necessarily nilpotent.
Thus, by applying Corollary 1 to T and K, we can obtain quasiaffinities X and ¥
such that TX=XT* and YK=K*Y. Combining these equations, we get T(XZ*Y)=
=(XZ*Y)K. Hence T and K are quasisimilar.
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M. Aigner, Kombinatorik I. Grundiagen und Zihltheorie (Hochschultext), XVII+409 pages.
Springer-Verlag, Berlin—Heidelberg—New York, 1975.

The foundations of Combinatotics have developed very rapidly in the past years, A few de-
cades ago combinatorics meant a collection of various enumeration problems, and there existed
(as a separate discipline) several graph theoretical, statistical, geometrical results, problems and
puzzles of combinatorial nature. We are witnessing the arousal of new notions, methods and theories
of large unifying und theorem-proving power. Such are matroid theory (combinatorial geometries),
the functional analysis treatment of generating functions, the theory of Moebius functions, catego-
rial and lattice theoretical methods — just to mention those treated in the first volume of this nice
book. In the light of these theories the enumerative and the “structural” parts of combinatorics
turn out to be much closer related than thought before.

This book reflects these new changes. Although its subtitle is “Foundations and Enumeration”,
it treats parts of combinatorics which are of “structural” nature but play an important role in the
enumerative theory as well (e.g. lattice theory or matroids). It is a first, and successful, attempt to
present modern combinatorics and its relations to modern mathematics (algebra, functional analysis,
category theory) in a textbook form. It goes into the material in a considerable depth (treating e.g,
the Pélya Method), and remains easily readable and elegant. There are about 375 exercises, some of
which contain further theoretical material.

It is the significance and novelty of this presentation that makes some criticism in order here.
One, if not the most important, goal in deriving (sometimes rather complicated-looking) formulas
and generating functions is to obtain asymptotic results, Pdlya’s famous paper, for example, carries
through such a program: it derives generating functions and then, by the methods of function theory,
obtains asymptotical formulas. The development in the methods for the first part of such an investi-
gation has caused a tendency of forgetting the second, and I miss a mention of this in this book too,

L. Lovdsz (Szeged)

"E.M. Alfsen, Compact Convex Sets and Boundary Integrals (Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 56),IX 4210 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1971.

In the preface of his book the author says that “the integral representation theorems of Choquet
and Bishop—de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch
in infinite-dimensional convexity”. Although it has long been clear that convexity arguments are
very fruitful in functional analysis, only with the advent of Choquet’s theory a couple of decades
ago did a comprehensive theory of infinite dimensional convex sets begin to exist. Now the original
proofs of the basic results, initially considered technically difficult, are very much simplified. “Choquet

14 A
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Theory provides a unified approach to integral representations in fields as diverse as potential theory,
probability, function algebras, operator theory, group representations and ergodic theory.” The book
under review is an up to date introduction to Choquet Theory. It can be used as a text book for
graduate students as well as a reference book for the working mathematician. It also tries to stimulate
further study of the finer structure of infinite dimensional compact convex sets.

The book consists of two chapters, Chapter 1: “Representations of Points by Boundary Measu-
res”. The paragraphs are: Distinguished Classes of Functions on a Compact Convex Set; Weak
Integrals, Moments and Barycenters; Comparison of Mcasures on a Compact Convex Set ; Choquet’s
Theorem; Abstract Boundaries Defined by Cones of Functions; Unilatcral Representation Theorems
with Application to Simplicial Boundary Measures. Chapter II: “Structure of Compact Convex
Sets”. The paragraphs in this chapter are: Order-unit and Base-norm Spaces; Elementary Embedding
Theorems; Choquet Simplexes ; Bauer Simplexes and the Dirichlet Problem of the Extreme Boundary;
Order Ideals, Faces, and Parts; Split-faces and Facial Topology; The Concept of Center for 4(K);
Existence and Uniqueness of Maximal Central Measures Representing Points of an Arbitrary Com-
pact Convex Set.

As prerequisite, only some basic knowledge of functional analysis and integration theory is
assumed on the part of the reader.
Jozsef Szlics (Szeged)

R. Alletsee, G, Umhauer, Assembler I, II, III, Springer-Verlag, Berlin—Heidelberg—New
York, 1974. 126, 150, 170 pages.

The books are useful for teaching or learning the IBM Assembly programming language.
The student has to have only a limited preliminary knowledge about computer’s hardware. Decimal,
binary, floating point arithmetical, logical and branching machine instructions, furthermore the
data and storage definition statements are treated. The Assembler instructions and the logical input/
output macro instructions are not fully described. When finishing the course the student can write
programs of one segment and one section with simple input/output activity. Numerous examples
and excercises help to understand the notions and language elements. Test controls in the paragraphs
qualify the books for using in assembler courses as a teacher’s manual.
Arpdd Makay (Szeged)

William Arveson, An Invitation to C*-Algebras (Graduate Texts in Mathematics, Vol. 39),
X +106 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976.

This excellent book conveys to the reader the fundamentals of the representation theory of
separable postliminal C*-algebras, which are called by the author, after Kaplansky, GCR (genera-
lized completely continuous representation) algebras. A GCR algebra is a C*-algebra A4 having the
following property: for every (two sided and closed) ideal J of 4 the quotient C*-algebra 4/J contains
a non-zero C*-algebra B such that the range of every irreducible * -representation of B on a Hilbert
space consists of compact operators. It is known and proved in the book that the spectrum A of a
separable GCR algebra A bears a standard Borel structure which makes it possible to uniquely
decompose every separable, nondegenerate * -representation 7z of A4 asa direct integral of “ortho-
gonal copies’ of irreducible representations: 7= f gm(é)é du(&), where u is a finite positive Borel

measure on A and m is an integral (possibly infinite) valued non-negative measurable function on
A (m(&) is the multiplicity of ¢ in 7 and the decomposition is unique up to the equivalence class
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of ). The complete proof of this last assertion is the main achievement of the book. It might seem
so that the GCR property of A4 is a very strict stipulation. However, it is mentioned in the preface
and text proper that “to this day no one has given a concrete parametric description of even the
irreducible representations of any C*-algebra which is not GCR” and “there is mathematical evi-
dence which strongly suggests that no one ever will’, Thus, in spite of its specialization, the book is
complete in this respect.

If the idea of a proof is clear in a special case, then the generalization is relegated to the exer-
cises. There are four chapters. Chapter ! contains the rudiments of the theory of C™*-algebras.
The second chapter deals with multiplicity theory, typé I von Neumann algebras, and type I repr, sen-
tations of C*-algebras. It gives the multiplicity theory of normal operations of C*-algebras, It gives
that all representations of a GCR algebra are type I. Chapter 3 is a nice introduction to polish spaces,
standard and analytic Borel structures and cross sections, Chapter 4 uses the results of the preceding
chapter to prove the decomposition theorem for representations of (separable) GCR algebras. It also
contains a section on elementary reduction theory, just enough to prove the decomposition theorem.
There is a bibliography and index.

The text tries to serve a large variety of readers: different subject matters are treated as inde-
pendently as possible. Only the knowledge of the basic results of functional analysis, measure theory,
and Hilbert space are assumed.

Jozsef Sziics (Szeged)

Alan Baker, Transcendental Number Theory, X+ 147 pages, Cambridge University Press, 1975.

The book under review provides “a comprehensive account of the recent major discoveries’
in the theory of transcendental numbers. At the beginning the author discusses the historical aspects
of the theory and gives a survey of the subject as it existed around the turn of the century. The text
includes among others the latest theories relating to linear forms in the logarithms of algebraic
numbers, Schmidt’s generalization of the Thue-Siegel-Roth theorem, Shidlovsky’s work on Siegel’s
E-functions and SprindZuk’s solution to the Mahler conjecture. As proofs in the subject are usually
long and intricate, the author felt necessary to select for detailed treatment only those that led to
fundamental results and wide application.

“The test has arisen from lectures delivered in Cambridge, America and elsewhere, and it has
also formed the substance of an Adams Prize essay.”

Jozsef Sziics (Szeged)

Raymond Balbes—Philip Dwinger, Distributive Lattices, XIII4-294 pages, Columbia, Missouri,
University of Missouri Press, 1974,

The theory of distributive lattices is one of the oldest branches of lattice theory. The connections
of distributive lattices and other fields of mathematics, especially topology, algebra and logic are the
sources of a number of deep and important results. However, for a long time the theory consisted of
separate topics; the general methods to handle distributive lattices originated from universal algebra
and category theory, and have been developed only in the last two decades. The authors of this book
are among the eminent specialists in those researches leading to this development. Their book under
review presents the theory of distributive lattices in the framework of a homogeneous theory based on
topology, univeral algebra and category theory, The book is excellent and up-to-date.

From the Preface: “In Chapter I all those elements of univeral algebra and category theory
which the reader will need — and in addition, some notions of set theory — are presented... The
fundamental theory of distributive lattices is developed in Chapters II—VIL. Some highlights in
these chapters are the prime ideal theory, the representation theory, free algebras, coproducts and

144
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extension theorcms.., The special classes of distributive lattices which are discussed in this book are
pseudocomplemented distributive lattices (Chapter VIII), Heyting algebras (Chapter IX), Post
algebras (Chapter X), de Morgan algebras and Lukasiewicz algebras (Chapter XI). Finally Chapter
X1 is entirely devoted to complete and «-complete distributive lattices, which may satisfy a higher
degree of distributivity.”
There are numerous exercises scattered throughout the book. The book is addressed to graduate
students and to those mathematicians who work in the field or want to become acquainted with it.
We may add that this book is useful and enjoyable for anybody who studies lattice theory or is
interested in the applications of universal algebra and category theory.
A. P. Huhn (Szeged)

Anatole Beck, Contlnuons Flows in the Plane (IDie Grundlehren der mathematischen Wissen-
schaften in Einzeldarstellungen, Band 201) X462 pages, Springer-Verlag, Berlin—Heidelberg—
New York, 1974.

The study of continuous flows is an idealization of dynamical systems such as aerodynamics,
hydrodynamics, electrodynamics etc. We imagine in the plane some sort of idealized particles which
change position as time passes and after a time ¢ the particle which was at x will be transposed
to the position ¢(#, x). After the definition of the moving points, fixed points, endpoints, stagnation
points, regular and singular points, spirals, etc., the author gives a very geometrical description of the
orbits. One of the basic results, the Gate Theorem, which simplifies the analysis of the orbits of any
flow in the plane, is a generalization, in a sense, of the Jordan Curve Theorem.

If a flow ¢ is related to the flow w in such a way that every w-orbit is contained in a ¢-
orbit, we call w a reparametrization of ¢. An important category of reparametrizations is the re-
parametrization by flow multiplers. In several chapters the author describes the important properties
of these reparametrizations: canonical reparametrization, time measure of a quasi-reparametrization,
algebraic combinations, etc. Every flow in the plane can be considered as a flow in the sphere which
has - as fixed point, every continuous flow in the sphere has at least one fixed point, thus the theories
of flows in the plane and in the sphere are equivalent. In the chapters 6 and 7 the author concentrate
on the problems: Given a flow ¢ on the boundary of a region, when does a continuous extension
of this flow onto the given region exist? Let F be a compact subset of the sphere, and Y a subset
of F. When does a continuous flow exist with fixpoints F and with stagnation points ¥?

Let A and B be regions on the plane and ¢ aflow on 4. Then for every homeomorphism f
from A onto B this homeomorphism defines a flow f@ on B. If fo is reparametrization of a
flow y on B by a flow multiplier, then we say that ¢ and w are conjugate. It is examined in
the last part of the book, when are the flows homeomorphic and when are they conjugate, The.basic
result of these analyses are the homeomorphism with an annular flow of standard type, the Theory
of Kaplan and Markus, and the examination of the Kaplan diagramm.

The book only assumes a level of preparation equaivalent to first-year graduate courses, and it
does not require any special knowledge of topology or differential equations. The work intended to
sérve as an introduction to the field of dynamics, particularly to readers with analytic training.

Z. I. Szabo (Szeged)
Norman Biggs, Finite Groups of Automorphisms (London Mathematical Society Lecture Notes
Series 6), 117 pages, Cambridge University Press, 1971.

Since the beginnings of group theory, many important finite groups (especially, many simple
ones) have been defined as automorphism groups of certain combinatorial structures, This book
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leads the reader through the main ideas of the development of this interrelation, starting with Galois
and concluding with the quite recent discovery of new sporadic simple groups.

Chapter 1 is a brief introduction to permutation group theory.

Chapter 2 is devoted to the finite spaces and the finite linear groups. The simplicity of the pro-
jective linear groups and their relationship to projective geometries is shown. The symplectic, ort-
hogonal and unitary groups are also introduced.

Chapter 3 introduces the — (v, k, 4) designs. For symmetric designs (when the numbers of
points and blocks are equal), the Bruck-Ryser-Chowla theorem is derived. Then, transitive extensions
of permutation groups and extensions of designs are studied. The Mathieu groups and the corres-
ponding designs are introduced this way (following Witt’s treatment),

Chapter 4 is concerned with automorphism groups of distance transitive graphs. (A graph
G=(V, E) is distance-transitive if, given x,...,x,€¥V such that the distances d(x,,x;) and
d(x,, xs) are equal, there is an automorphism «¢ Aut G such that ox;=x3. ax,=x,. The “inter-
section matrix” contains the information'on the numerical regularity properties of such a graph,
A beautiful theory, provoding very restrictive necessary conditions on the existence of distance-
{ransitive graphs with given intersection matrix in terms of eigenvectors of this matrix is developed.
In the case when these conditions are fulfilled, the matrix is said to be feasible. The feasibility in the
case of diameter 2 and the absence of triangles is studied in detail. Then, the problem of realizability
of feasible matrices with small parameters is investigated. Finally, as a coronation of the material
presented, a distance-transitive, triangle free graph of degree 22 with any two non-adjacent vertices
having 6 common neighbors is constructed, hence the celebrated rank 3 simple group of Higman
and Sims. !

As an Appendix, a list of parameters of new sporadic simple groups and another list of the
feasibility and of the status of realizability of intersection matrices of distance transitive graphs of
diameter 2 and degree = 16 is added. The literature mentions 10 books and 13 papers.

The book requires introductory linear algebra and group theory courses only. The seléction
of material as well as its presentation are excellent. It should be a pleasure for mathematicians
interested in combinatorics, linear algebra and group theory to read the book, and to base (advanced)
courses on it (as did the reviewer).

’ ’ L. Babai (Budapest),

Norman Biggs, Algebraic Graph Theory (Cambridge Tracts in Mathematics, 67), vii+ 170 pages,
Cambridge University Press, 1974,

The term “algebraic’ in the title refers to classical algebraic techniques (determinants, matrices,
polynomials, groups). The book exhibits some important areas of graph theory where applications
of such techniques have proved particularly fruitful, Classical results of Kirchhoff, Cayley, Whitney
as well as the striking development of the last few decades are répresented in a unified treatment,

In Part I (““Linear algebra and graph theory”’), the basic concepts are introduced (incidence and
adjacency matrices, characteristic polynomial, spectrum of a graph I'). The circuit- and cutset-spaces
(the homology of I') and the complexity (the number of spanning trees) are discussed. Various ex»
pansions of determinants, related to I', in terms of certain subgraphs, conclude Part 1.

Part II (“Colouring problems’) starts with inequalities, bounding the chromatic number in
terms of the spectrum of I, Among others a highly non-trivial lower bound, due to A. J. Hoffman,
is derived.

The rest of Part IL is devoled to the study of the chromatic polynomial of I'. For u a positive
integer this is the number of colorings of the vertices of I' by colors chosen from the set {1, ..., 4}
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such that adjacent vertices have different colors, which turns out to be a polynomial in «. Several
expansions in terms of various families of subgraphs are derived. The useful “logarithmic trans-
formation’’ is introduced and applied to obtain a multiplicative expansion, depending on a restricted
family of subgraphs, The deepest result of Part II is Tutte’s identity, relating the Tutte-polynomial of
I’ (defined in terms of certain spanning trees) to the rank polynomial (defined in terms of ranks and
co-ranks of subgraphs). This is then applied to obtain another expansion of the chromatic polynomial,
in terms of these trees.

The central concept investigated in Part III (“Symmetry and regularity of graphs”) is that of
automorphisms of I, I' is t«transitive (¢=1) if for any two paths of length ¢, and any directions
given on them, there is an automorphism « of I" mapping one onto an other, An elegant proof of
Tutte’s deep theorem is given, stating that i I" Is a trivalent t-transitive graph, then t=5. A 5-tran-
sitive trivalent graph is also exhibited, By a covering graph construction, infinitely many such graphs
are obtained from a single one.

Next, distance-transitive graphs are introduced (see the above review on Biggs’ “Finite Groups
of Automorphisms™). I" is called distance-regular if for any two vertices # and v, the number sy,
of vertices w having distance # from u and distance i from v depends only on the distance j
between u and v. A distance-transitive graph is clearly distance-regular. Powerful matrix techniques
are developed to handle distance-regularity. Part III ends with the beautiful theory of (%, g)-graphs,
also known as Moore-graphs or cages (these are graphs of degree & and girth g, whose cardinality
attains a certain trivial lower bound on the number of vertices). The main result, obtained by in-
vestigation of the multiplicities of eigenvalues of the adjacency matrix, is the following: for k, g=3,
a (k, g)-graph exists only if either g€{3,4,6,8,12}, or g=5 and ke{3,7,57}).

The bibliography contains 80 items.

A great deal of material is included in the form of well-chosen examples and results at the end
of each of the 23 chapters.

The most valuable feature of the book is the concise, clear, exceptionally aesthetic presentation
of a really exciting material, almost no part of which has yet appeared in book form. Most proofs
represent essential simplifications of the original ones.

The reader is assumed to have a moderate knowledge of matrix theory and the basic concepts
of graph and group theory only. It appeals to mathematicians in any field, and probably it will
soon become one of the fundamental works. Everyone interested in graph theory, combinatorics
and applications of matrix techniques should read the book.

L. Babai and P, Komjdth (Budapest)

Kai Lai Chung, Elementary Probability Theory with Stochastic Processes (Undergraduate Texts
in Mathematics), X+ 325 pages, New York—Heidelberg—Berlin, Springer-Verlag, 1974.

This is the fir st volume of a new series and if the continuation will be so good as the beginning
then this series will again be a new Springer-Verlag success. It is intended to be a very elementary
introduction written by one of the outstanding experts of the field. A good deal of it does not even
preassume calculus, but by brilliant organization, the author has succeeded in covering a wide range
of topics, giving a real insight into the subject and preparing the reader for more advanced books.
There are cight chapters: Set; Probability; Counting; Random variables; Conditioning and inde-
pendence; Mean, variance and transformation; Poisson and normal distributions; From random
walk to Markov chains; and three brief appendices: Borel fields and general random variables;
Stirling’s formula and DeMoivre-Laplace’s theorem; Martingale. The body of each chapter also
contains stimulating examples and at the end of each there are interesting classical and new problems
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for which solutions are also given at the end of the book. The emphasis is always on essential pro-
babilistic reasoning, the style is inviting and at places humorous and all this is kept in good balance
by the special intellectual power of the author. It can also stand up as a fine belletristic composition.
Indeed, it is a book of great individuality,

S. Csorgd (Szeged)

N. S. M. Coxeter, Regular Complex Polytopes, X185 pages, Cambridge University Press,
Cambridge, 1974.

The very attentively constructed work gives a step by step introduction to the theme, beginning
with plane and solid kinematics, through the geometrial description of the sixteen regular polytopes
in four dimensional real Euclidean space and of finite multiplicative quaternion groups thereafter.
(Chapters 1—7.) Meanwhile several devices and ideas which play central roles in the main Chapters
are presented, such as free patterns, Cayley diagrams, the extended Schiéfli symbol, flags, Petrie
polygons, Schwarz triangles, binary polyhedral groups, finite multiplicative quaternion groups etc.

In order to review the main sections of the book, let the corresponding part from the Preface
be quoted: “The complete list of finite reflection groups in unitary n-space was complied in 1957
by Shephard and Todd, who found that there are many more of them in the plane than in any higher
space. Chapter 10 checks their results (in the two dimensional case) by a new method: examining alt
the finite groups of unitary transformations and picking out those that are generated by reflections,
In particular those that are generated by two reflections are the symmetry groups of the regular comp-
lex polygons. These are enumerated in Chapter 11, Somewhat surprisingly, it is possible to make
real drawings of these imaginary figures, and in many cases such a drawing of one complex polygot
serves as a Cayley diagram for the symmetry group of another, Chapters 12 and 13 deal with regular
polytopes and honeycombs, using definitions suggested by Peter McMullen. There are interesting
connections with certain projective configurations such as the 27 lines on the cubic surface. A re-
markable presentation is found for the simple group of order 25920."’

This book is an interesting and delectable reading both for research mathematicians and for
students familiar with the material of the standard courses of elementary geometry and algebra.
Most of the sections end with exercises; the solutions can be found at the end of the book. The
beautiful presentation and the numerous figures also deserve special attention,

L. Stachd (Szeged)

Claude Dellacherie, Capacités et processus stochastiques (Ergebnisse der Mathematik und ihrer
Grenzgebiete, 67) IX 155 pages, Berlin—Heidelberg—New York, Springer-Verlag, 1972.

It is not an unfrequent opinion among mathematicians that the ptimary objects of probability
theory are the distributions, and the sample space with its o-fields constitutes only the necessary
technical background. To avoid cumbrous measurability proofs some specialists prefer assuming
sufficiently rich o-fields to be given.

The author of the present book, a prominent member of the Strasbourg workshop of proba-
bility, does not share this opinion, On the contrary he shows that measurability properties of random
processes with respect to some adequately defined o-fields illuminate essential features of the pro-
cesses and have deep connection with their sample path properties. The elegant general theory of
stochastic processes elaborated in the book presents many classical questions (e.g. martingale de-
compositions) from a new unified view-pont. It can serve as a basis for a unified theory of stochastic
integrals and can find important applications in statistics (filtration) of processes.

The book is divided into two parts. The first one contains the theory of Choquet capacity,
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ihe major tool of measurability proofs. This part bears intorest not only for probabilists but for anyone
working in measure theory. In the second part the main purpose of the book, the general thbon y
of stochastic processes, is presented.

The whole exposition is brilliantly visual, its language is clear and easy-flowing.

D, Vermes (Szeged)

Joost Engelfriet, Simple Program Schemes and Formal Languages (Lecture Notes in Computer
Science, Vol. 20), VI+254 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1974.

The aim of this book, as the author writes in the introduction, is “to fit a part of program
scheme theory into a formal language theoretic framework in such a way that

(1) semantic properties of program schemes can be translated into syntactic properties of
formal languages, and

(2) results from formal language theory need only to be ‘rephrased’ in order to be applicable
to program schemes.”’

The book consists of three parts. In Part I formal languages are viewed as program schemes,
called L-schemes. This is followed by the introduction of the following classes of program schemes:
Tanov schemes, recursive systems of Ianov schemes, procedure parameter schemes, and p-terms.
The classes of L-schemes equivalent to these classes of program schemes are also given.

In Part IT general properties of L-schemes, such as equivalence, semantic determinism and
semantic regularity, are studied.

The general theory of L-schemes developed in Part II is used in Part III for investigating some
specific problems concerning program schemes. Among the topics studied in Part III are the de-
cidability of certain program scheme properties, translation of program schemes and program schemes
with markers.

The book is self-contained with respect to the theory of program schemes The reader is assu-
med to be familiar with the basic concepts of elementary set theory and elementary algebra as well
as formal language theory.

The presentation of the material is very clear. The book is a valuable contribution to the litera~
ture of theoretical computer science.

Ferenc Gécseg (Szeged)

P. Erdés—J. Spencer, Probabilistic Methods in Combinatorics, 106 pages, Akadémiai Kiado,
Budapest, 1974.

This book describes a powerful method to prove theorems of combinatorial nature. The method,
developed mainly by Erdds, is based on the following idea: often the existence of a certain structrure
with some properties can be proved by selecting a structure at random and then showing that the
probability that it has the desired property is positive. The method is, thus, non-constructive; some-
what surprisingly, it often gives much better results then any known constructive method.

The book illustrates the technique by solving a variety of combinatorial problems, some,of
very fundamental nature (e.g. Ramsey’s Theorem, graph and hypergraph coloring etc.). In exercises
several further results are listed, giving a good survey of the most recent status of these important
researches. Several unsolved problems are stated as well. The treatment is elementary, it does not
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require any knowledge of probability theory, but it does require much computational skill in esti-
mating binomial coefficients and in other techniques of “asymptotics’’, ‘

It seems that the probabilistic method (with necessary modifications) may have a much wider
range of application then found so far. Therefore, this nice book is most recommended to everyone
learning, or working in, combinatorics or neighboring areas,

L. Lovdsz (Szeged)

Wendell H. Fleming—Raymond Richel, Deterministic and stochastic control theory (Applications
of Mathematics, 1), 222 pages, New York—Heidelberg—Berlin, Springer-Verlag, 1975.

Control theory is generally referred to as a modern discipline of applied mathematics though
its fundamental problem “How to reach a goal in the best possible way?’’ is older then mankind
itself, To have a well-posed problem clearly one has to define the goal of the activity and to say
what is ment by the word “best’’ (i.e. to specify an expense function). But the very essence of the prob-
lem is determined by the possible ways of reaching the aim., The processes by which we can achieve
our purpose determine our restricted freedom in the choice and we have to make the best possible
compromise, i.e. to use the optimal strategy. Also the underlying processes serve as a basis for the
classification of control problems into classes like deterministic, stochastic continuous, discontinuouys
probleims, etc, ’

The first half of the present book contains a well-written self-contained exposition of deter-
ministic control problems governed by ordinary differential equations. (Calculus of variations,
Pontrjagin’s principle, dynamic programming, existence and continuity of optimal strategies.)
The proofs are detailed, many examples help understanding the presented material and its appli-
cations.

In contrast with the deterministic problems, no closed, rounded up theory exists as yet for
stochastic control, not even for the control of diffusion processes, the subject of the second half of
ihe book, So this part aims rather to introduce the reader into this rapidly developing field (up to
its stage at about 1970), and to enable him to solve concrete problems. The authors start with a list
of definitions and (in part rather deep) theorems from the theory of Markov processes and partial
differential equations, necessary for the further development. Proofs are omitted but several examples.
and precise references support the reader not to get bored: The last chapter contains one, (the authors’
own) approach to optimal control of diffusion processes via partial differential equations. It culini~
nales in a sufficient optimality condition and an existence theorem, which enable them to solve the
{inear regulator problem, the permanent example in stochastic control, The Kalman-Bucy filter
and the separation principle for linear systems are presented as well. .

An extensive bibliography helps the orientation in recent literature.

D. Vermes (Szeged)

Dale Husemoller, Fibre Bundles (Graduate Text in Mathematics, 20), Second edition, 327 pages,,
Springer-Verlag, New York—Heidelberg—Berlin, 1974,

This book contains important chaptexs of the theory of fibre bundles. The author concentrates
on the work of Milnor, Hirzebruch, Bott, Adams, Hopf, Chern, Stiefel, Whitney, Grothendieck
Atiyah, Toda, etc. In this second edition the author has added a section on the Adams conjuncture
and an appendix on the suspension theorems.

, The book consists of three parts. Part I contains tlie general theory of fibre bundles; the Milnor
construction of a universal fibre bundle for any topological group is also given. Part II gives the ele-
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ments of K-theory, namely stability properties of vector bundles, relative K-theory, Bott periodicity
in the complex case, Clifford algebras, thc Adams oprations and representations, representation rings
of classical groups, the Hopf invariant, vector fields on the sphere and stable homotopy. The proof
of Atiyah on the nonexistence of elements with Hopf invariant 1 is also presented and the proof of
the vector field problem is sketched. A systematic development of characteristic classes and their
applications to manifolds is given in Part IIT and is based on the approach of Hirzbruch as modified
by Grothendieck.
Reading the book claims a certain knowledge from topology and the theory of differentiable

manifolds, It is a very instructive reading due in part (o the large number of exercises and examples.

Z., 1. Szabo (Szeged)

John G. Kcmeny—J. Laurie Sneii, Finite Markov Chains (Undergraduate Texts in Mathematics),
I1X+210 pages, New York—-Heidelberg—Berlin, Springer-Verlag, 1976.

This book is a reprint of the 1960 edition published by D. Van Nostrand, Princeton, N. J.,
in the University Series in Higher Mathematics. No changes have been made of the first edition.
It is a complete treatment of the theory of finite Markov chains and it has already proved its vitality
in the last sixteen years. Suitable as an undergraduate introduction to probability theory or it can
«certainly replace a course in matrix calculus. Applications to learning theory and other socio-eco-
nomic models (and to diffusion, genetics, sports, the Land of Oz and anything) are given. For a
detailed review from such an authority as K. L. Chung see MR 22 (1961) #5998,

S. Csorgd (Szeged)

Rudolph Kurth, Eiements of Anaiytical Dynamics (International Series in Pure and Applied
Mathematics, Vol. 105), VIII{181 pages, Pergamon Press, Oxford—New York—Toronto—
‘Sydney—Paris—Frankfurt, 1976.

This is a useful and easily readable textbook on analytical mechanics serving as a preparatory
course to a profound study of topological dynamics for graduate students of mathematics. The
reader is supposed to be familiar with some knowledge of calculus, general topology and differential
‘geometry only. The mathematical structures occurring in the treatment of analytical dynamics are
discussed in detail (e.g. the notion of differentiable manifold, elements of the theory of differential
equations and of the calculus of variations). After the study of the Hamilton-Jacobi theory, Noether's
theorem and the Liapunov stability theory the chapter “Jacobi's Geometric Interpretation of Dyna-
mics” follows, which is a short introduction to Riemannian, Lagrangian and Finsler geometry.

P. T. Nagy (Szeged)

H. Elton Lacey, The isometric theory of classical Banach spaces (Die Grundlehren der mathe-
matischen Wissenschaften in Einzeldarstellungen, Band 208), X272 pages, Springer-Verlag, Ber-
jin—Heidelberg—New York, 1974.

The main purpose of this book is to investigate structural questions for classical Banach spaces.
A Banach space is called classical, if it is either linearly isometric to an L'(x) space (real or complex)
for some measure x and some 1=p=- or its dual space is linearly isometric to an L(x) space;
in the last case we say that the space is an L*-predual space. Various necessary and sufficient condi-
tions are given for a Banach space to be a classical one. They are framed in terms of conditions on
ithe norm, conditions on the dual spaces and on subspaces. In the investigation the vector latticé
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structure of classical spaces plays a basic role. The book is divided into 7 Chapters, Chapters 1 and 2
summarize the fundamental definitions and theorems concerning partially ordered Banach spaces,
topology and regular Borel measures. Chapter 3 deals with the algebraic and Banach space characte-
rization of the space of continuous functions. Chapter 4 contains embedding theorems for classical
sequence spaces into continuous function spaces. Chapter 5 is devoted to representation theorems
for spaces of type LP(x). Chapter 6 contains characterizations of abstract LP spaces and measure
algebras (abstract LP spaces are Banach lattices with p-additive norm). Chapter 7 gives character-
izations of Ll-predual spaces.
All the chapters end with exercises and some open problems. General topology, Banach spaces,
and measure theory are assumed as prerequisites.
L. Gehér (Szeged)

Ernst G. Manes, Algebraic Theories (Graduate Text in Mathematics, No. 26), 356 pages,
Springer-Verlag, New York—Heidelberg—Berlin, 1976.

The following assignments are natural and often applied in mathematics: to each set .S, assign
its power set 2%; to each element e, assign the onec-element set {¢} (in this way one “inserts”
S into 28); to each pair of relations, assign their relation-theoretical product (note that a relation
between sets S and T'may be considered as a mapping of S into 2T). Formation of power set, insertion
ang product are connected by a few very simple laws; the same laws are observable, e.g., between
formation of the free group F(S) over S, insertion of free generators, and product of (homo)mor-
phisms of free groups into one another (such a morphism of F(S) into F(T) may be considered
as amapping of S into F(T)). These assignments and laws lead to the notion of an algebraic theory;
they furnish the “data’” and “axioms” of this notion.

The above examples use the category of sets; however, algebraic theories can be defined over
any category, The book we are concerned with develops a general theory of algebraic theories. This is
the content of its main chapter, preceded by two big preparatory ones which are interesting also on
their own right, The first of them presents a modern introduction to equational theory of algebras
where infinitary operations are also allowed. The second chapter bears the attractive title “Trade
Secrets of Category Theory”’, and, together with®ome paragraphs of the first chapter, it can serve as
a mini-monograph on category theory for pure mathematicians. The last chapter deals with appli-
cations of algebraic theories to the following areas: topological dynamics, minimal realization of
systems, theory of fuzzy automata. Since algebraic theories can be found in many further circuam-
stances of algebra, topology and automata theory, the acquaintance with the third (main) chapter
will be useful for everybody who is engaged in investigations in these fields.

The book is well-organized and well-readable; its style unites informality and exactness. The
author helps the regder in several ways: every section is followed by historical notes and many exer-
cises of various strength, while the entire book has useful indices and an abundant bibliography.

B. Csdkdny (Szeged)

P. McMullen—G. C. Shephard, Convex polytopes and the Upper Bound Conjecture (London
Mathematical Society Lecture Notes Series 3), IV +184 pages, Cambridge University Press, 1971.

An outstanding problem in the theory of convex polytopes has been the Upper Bound Conjec-
ture, describing which polytope (in d dimensions and with » vertices) has the largest possible num-
ber of faces. These notes were already in print when P, McMullen, one of the authors, succeeded to
prove this famous conjecture. The solution was added to the book as a last chapter.
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The book is devoted to the study of the combinatorial structure of convex polytopes. It describes
the basic methods in this area: polarity, the Dehn-Sommerville questions, Gale diagrans, shellitig.
Many of these find their application in the solution of the upper bound conjecture. Although :in
great lines the presentation follows Gritnbaum’s well-known book “Convex Polytopes’ (Wlley,
1967), there are sevetal divergences, e.g. in the treatment of the support properties and in the proof
of the Dehn-Sommerville equations. Also the authors manage to write up the material in a compact,
and yet easily readable way. This book is well advised to all who want to learn, or do 1esemch in,
the theory of convex polytopes.

L. Lovdsz (Szeged)
i,

G. Pickert, Projektive Ebenen, Zweite Auflage (Die Grundlehren der mathematischen Wissen-
schaften, Band 80), IX+- 371 Seiten, Springer-Verlag, Berlin—Heidelberg—New York, 1975.

The first edition of this book in 1955 was the earliest in the mathematical literature giving a
systematic treatment of the new domain of mathematics, called theory of projective planes, developed
from the 1930’s. The present book had a great effect encouraging the growth of the interest on this
subject even beyond the area of foundation of geometries.

It is well known that the structure of projective planes has a greater variety then the strocture
of projective spaces, namely, Desargues’s Theorem is not necessarily valid. Projective planes can be
coordinatized by various not necessarily associative and distributive algebraic structures. Hence the
projective planes provide models for algebraic structures, so they are useful in the study of questions
of algebraic nature.

For the description of the structure of projective planes constructions and results from the
geometry of webs (Geometrie der Gewebe) are used. This theory was introduced by Blaschke’s
school in the 1930’s in connection with topological questions of differential geometry and developed
later in algebraic and differential geometrical directions. A geometric web is three families of littes
in the plane such that exactly one line of each family passes through each point. Very useful tools
of the characterization of webs are the so-called “closure conditions’’, which are equivalent to identi—
ties for the coordinates of the plane.

The theory and classification of the finite and topological projective planes has made a very
intensive progress in the last decades. The finite planes serve as standard models for combmatonal
geometries, and the planes with topological and differentiable structures have a great interest in topo-
logical and differential geometry.

The book consists of 12 Chapters. The Chapters 1—2 serve as an introduction to the incidence
structures and the theory of webs. Chapters 3—9 and 11 deal with planes satisfying various geometri-
cal conditions and with algebraic investigations on the corresponding coordinate structures. In
Chapters 10 and 11 a short introduction to the theory of topological and finite planes is given.

The book is recommended to mathematicians doing research in geometry, algebra or combina-
torics and interested in problems connected with the theory of projective planes.

P. T. Nagy (Szeged)

G. Pélya—G. Szegd, Problems and Theorems in Analysis, Volumes I and II, (Die Grundlehren
der mathematischen Wissenschaften in Einzeldarstellungen, Band 193 and 216), XIX 389 and XI+
391 pages respectively, Springer-Verlag, Berlin—Heidelbere—New York, 1972 and 1976.

A number of mathematicians has been brought up with the help of the famous and excellent
problem-book Aufgaben und Lehrsitze aus der Analysis. The present book is not only an English
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translation of the German original. The original text has been enlarged by many new problems and
there are some other changes. All the alterations amount to less than ten per cent of the text. The
book also contains the solutions of the problems, which is of great help to the reader. These books
are recommended to students and research workers who are interested in classical analysis problems.

L. Gehér (Szeged)

W. Rinow, Lehrbuch der Topologie, 724 pages, VEB Deutscher Verlag der Wissenschaften,
Berlin, 1975.

The main text of this book is based on lectures in topology which have been held by the author
since 1950 at Greifswald University. In accordance with this fact it is aimed to be a university text-
book. The selection and style of the text show Professor Rinow’s natural turn for the methods of
instruction. In contrast with most modern topology books the text comprises general, combinatorial
and algebréic topology, The book is divided into fifteen chapters. The first seven chapters lead the
reader along the most significant parts of general topology, discussing all the usual concepts and
problems like tracing and comparison of topologies, relativization, convergence, continuity of
mappings, separation, compactness, metrization, uniform structures, etc. Chapter VIII gives a glance
into combinatorial methods in topology and applies these to give a proof for the classical domain
invariance theorem in Buclidean spaces. Chapter IX is devoted to a short survey of dimension theory.
Chapter X introduces the concept of homotopy, studies mappings in spheres and proves the domain
invariance theorem again. Jordan curve theorem and Schoenfliess theorem are also proved. The
chapter ends with a short investigation into surface topology. The last five chapters deal with various
homologies and cohomologies, with the connection between homologies and homotopy and with
duality theorems,

The book is recommended to students and to anyone taking interest in topology.

L. Gehér (Szege)

C. P, Rourke and B. J. Sanderson, Iutroduction to Piecewise-Linear Topology (Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 69), VIII+123 pages, Springer-Verlag, Berlin—Heidel-
berg—New York, 1972,

This book is an excellent introduction to modern geometric topology, treating the continuous
and smooth topology as a unified subject. The generalization of many results of smooth topology
is made possible by the application of the new technique of geometric topology, called the piece-
wise-linear (p.l.) topology.

Chapters 1—5 (Polyhedra and p.l. maps; Complexes; Regular neighbourhoods; Pairs of
polyhedra and isotopies; General position and applications) serve as an undergraduate introductory
course to p.l. topology. Here familiarity with the elementary notions of point-set topology is assumed
only.

Chapters 6—7 (Handle theory; Applications) give an account of Smale’s handle theory in a
piecewise linear setting and of its applications to the Poincaré conjecture and the k-cobordisim theo-
theorem. Originally, this theory was developed using the technique of differentiable topology, in
spite of the fact that these problems are of continuous topological nature.

The results of algebraic topology which are used are collected in Appendices. A bibliography

of research papers is also included.
P. T. Nagy (Szeged)
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S. Bouncrlstlano, C. P. Rourke and B, J. Sanderson, A Geomeliric Approach to Society (London
Mathematical Sociely Lecture Note Series 18), VI4-149 pages. Cambridge University Press, Cam-
bridge—London—New York—Melbourne 1976.

From the introduction: “The purpose of these notes is Lo give a geometrical (reatment of gene-
ralised homology andgcohomology (heories. The central idea is that of a ‘mock bundle’, which is the
geometric cocycle of a general cobordism theory, and the main new result is that any homology theory
is a generalised bordism theory. Thus every theory has both cycles and cocycles; the cycles are mani-
folds, with a patiern of singularities depending on the theory, and the cocycles are mock bundles
with the same ‘manifolds’ as fibres.”

In Chapter I the transition from functor on cell complexes to homotopy functor on polyhedra
is axiomatised, the mock bundles of Chapter II being the principal example. In Chapter 11, the sim-
plest case of mock bundles, corresponding to p.l. (piecewise linear) cobordism, is treated, but the
definitions and proofs all generalise to the more complicated setting of later chapters. Chapter IIT
gives the geometric treatment of coefficients, where again only the simplest case, p.l. bordism, is
treated. A geometric proof of functoriality for coefficients is given in this case. Chapter IV extends
the previous work to a generalised bordism theory and includes the ‘killing’ process and a discussion
of functoriality for coefficients in general (similar results to Hilton’s treatment being obtained).
Chapter V extends to the equivariant case and discusses the Z, operations on p.l. cobordism in
detail. Chapter VI discusses sheaves, which work nicely in the cases when coefficients are functorial
(for ‘good’ theories or for 2-torsion free abelian groups) and finally Chapter VII proves that a ge-
neral theory is geometric.

P. T. Nagy (Szeged,

Joe Rosen, Symmetry discovered. Concepts and Applications in Nature aud Science, 138 pages,
Cambridge University Press, Cambridge—London—New York—Melbourne, 1975.

This book, written with an excellent sense of didactics, introduces the reader to the examination
of symmetry of geometrical objects, nature and science in a very light and witty style. Rosen
starts his voyage of discovering the world of symmetry by explaining what symmetry is, and where
and how to find it.

In the first part of the book the author describes the symmetry groups of forms in planar and
3-dimensional spaces with many examples and figures. But symmetry is not restricted to geometrical
constructions alone. The author shows that physical operations are often symmetrical in nature,
and he also gives an insight into symmetry provided by science and technology.

Reading the present work requires no special mathematical preparation. The reader is playfally
introduced into the basic concepts and terminology of symmetry. For the readers who wish to pursue
specific topics the author has supplied many references.

Z. I. Szabd (Szeged)

G. Segal, New Devclopments in Topology, (London Mathematical Society Lecture Note Series
11), 128 pages, Cambridge University Press, 1974.

In June 1972 a Symposium in Algebraic Topology was held in Oxford. The main theme of thls
Symposium was the K-theory: The present book contains eleven treatises on K-theory written by
participants, based on their lectures. The familiarity of the reader with modern algebraic topology
is required.

L. Gehér (Szeged)
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D. J. Simms—N. M. J. Woodbouse, Lectures on Geometric Quantization (Lecture Notes in
Physics, Vol. 53), II4+166 pages, Berlin—Heidelberg—New York, Springer-Verlag, 1976.

TFhese lectures are written in the spirit of the geometric quantization programme of B, Kostant
and J.-M. Sourian. The aim of this programme is to formulate the procedure of quantization in
differential geometric language. The systems of classical mechanics are modelled by symplectic
geometries and Hamiltonian systems. The procedure of quantization is a construction of a Hilbert
space H on which each classical observable (that is, each smooth function on the symplectic manifold
M) is represented as an Hermitian operator in such a way that the Poisson bracket of classical
observables is represented by the commutator of the corresponding operators. In the simplest
case, the Hilbert space H consists of complex valued functions on the manifold M. In the case
of more complicated systems (e.g. particles with internal degrees of freedom) H is constructed
from the sections of a certain Hermitian line bundle over M. The described process of quantization
is illustrated by very interesting examples.

The treatment assumes an experience in differential geometrical technique, especially in exterior:
calculus. In appendices a brief survey of the underlying mathematical theory is given: fibre bundles,
Chern characteristic classes, and Lie algebra cohomology theory.

P. T. Nagy (Szeged)

Frank Spitzer, Principles of Random Walk (Graduate Texts in Mathematics 34), second edition,
XII14-408 pages, New York—Heidelberg—Berlin, Springer-Verlag, 1976.

This is the second edition of a book (the first one was published by D. Van Nostrand, Princeton,
N.1., in the University Series in Higher Mathematics, 1964) which can be safely called a classic.
Classic, not in the sense that it would be old, but that it is fundamental and belongs to the group of
best books ever published in probability theory. For an extensive and through-going review on the
real mathematical content of the first edition we refer to MR 30(1965)# 1521 by T. Watanabe. The
book presents a complete and nearly self-contained treatment of random walk and certainly covers
almost all major topics in the theory up to 1964, From the author’s preface: *“In this edition a large
number of errors have been corrected, an occasional proof has been streamlined, and a number of
references are made to recent progress’”. These new references (placed in brackets and footnotes)
are to a supplementary bibliography, which contains 26 new items, and make the book again up-to-
date. Tt is written mainly for probabilists and the prerequisite is, as described in the preface to the
first edition, “some solid experience and interest in analysis, say, in two or three of the following
areas: probability theory, real variables and measure, analytic functions, Fourier analysis, differential
and integral operators’. It has served as the main source for research in this area in the last twelve
years, and it certainly will maintain this role for a long time to come.

S. Csdrgd (Szegedy

Zhe-Xian Wan, Lie Algébras (International Series of Monographs in Pure and Applied Mathe-
matics, Vol. 104), VIII+228 pages, Pergamon Press, Oxford—New York—Toronto—Sydney—
Braunschweig, 1975.

This book is based on a series of lectures given in the seminar on Lie groups at the Institute of
Mathematics of Academia Sinica (Peking) during the years 1961—1963. The purpose of the book
“is to supply an elementary background to the theory of Lie algebras, together with sufficient material
to provide a reasonable overview of the subject”. In accord with its introductory character the book
deals only with algebras over the complex field,

Chapters 1—4 present an introduction to the general theory of Lie algebras (nilpotency and
solvability, Cartan subalgebras, Cartan’s criterions). Chapters 5—8 deal with the structure and classi-
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fication theory of semisimple Lie algebras and with their automorphisms, Chapters 911 serve as an
introduetion to the representation theory of semisimple Lie algebras. Chapters 12—-15 contain se-
lected topics on representation theory. Chapter 15 is devoted to the real forms of complex semisimple
Lie algebras.

‘ The book is well organized, the presentation is concise but always clear and well-readable,
its format is nice.

' P. T. Nagy (Szeged)

Bertramn A. F. Wehrfritz, Infinlte iincar groups (Ergebnisse der Mathematik und ihrer Grenz-
Sebiete, Band 76), XtV +-229 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1973,

A linear group is a group of invertible matrices with entries in a commutative field. Their
study started in the early years of this century with the work of Burnside and Schur. In the last
twently years infinite linear groups have been used increasingly in the theory of abstract groups.
On the one hand, much of the work on linear groups is hard to read for group theorists, and on the
other hand, many results on linear groups appeared under purely group-theoretic titles. The book
under review is the first to gather all this material together.

Infinite linear groups are useful in group theory in several ways. First of all, they arise via the
automorphism groups of certain types of abelian groups: free abelian groups of finite rank, torsion-
free abelian groups of finite rank and divisible abelian p-groups of finite rank. Thanks to Mal’cev,
infinite linear groups play, in these days, a central role in the theory of soluble groups satisfying
various rank conditions and in the theory of the automorphism groups of these groups. It is a
recent result, that “the automorphism groups of certain finitely generated soluble (in particular
finitely generated metabelian) groups contain significant factors isomorphic to groups of
automorphisms of finitely generated modules over certain commutative Noetherian rings”.
Linear groups also arise via the following theorem of Mal’cev: a group G is isomorphic
to some linear group of degree » if and only if each of its finitely generated subgroups is isomorphic
to0 a linear group of degree n. If one has some information about which linear groups are isomorphic
to the finitely generated subgroups of G, then one can sometimes find a concrete linear group that
isisomorphicto G. “This led to very important characterizations of certain groups such as PSL(2, F)
over locally flnite fields F, which now play a crucial role in the theory of locally finite groups™.
In the author’s opinion “to date we have only scratched the surface of the applications of infinite
linear groups to locally finite groups.”

Linear groups are also important in that they form a relatively accessible class of highly non-
irivial, highly non-soluble groups, and, consequently, it is relatively easy to test conjectures on
them. Moreover, it is quite common to solve a general problem for the linear case flrst. On the
other hand, it sometimes happens that one ad-hoc knows that a group is isomorphic or related to a
certain linear group.

The arrangement of the book is the following: the fundamentals are given in chapters 1, 5, 6,
and, to some extent, 2. The basic material is split into two parts in order to present the theories
of soluble linear groups and finitely generated linear groups in Chapters 3 and 4, before the reader
gets bored. Roughly speaking, Chapter 1 is the ring theoretic and Chapters 5 and 6 are the geometric
introduction. The rest of the 14 Chapters is devoted to the study of Jordan decomposition in linear
groups, structure theorems for locally nilpotent linear groups, upper central series, locally super-
soluble linear groups, periodic linear groups, groups of automorphisms of finitely generated modules
over commutative rings, algebraic groups over algebraically closed flelds. “Suggestions for Further
Reading’’, a Bibliography, and Index close the book.

Jozsef Szlics (Szeged)
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