
ACTA U N I V E R S I T A T I S S Z E G E D I E N S I S 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 

B. C S Á K Á N Y 
G. F O D O R 
F. G É C S E G 
L. K A L M Á R 

A 3 I U V A N T I B U S 

I. K O V Á C S 
L. L E I N D L E R 
I. P E Á K 
L. P I N T É R 
G. P O L L Á K 

R E D I G I T 

B. S Z . - N A G Y 

L. R É D E I 
G. SOÓS 
J. S Z E N T H E 
K. T A N D O R I 

T O M U S 32 

F A S C . 3—4 

SZEGED, 1971 
I N S T I T U T U M BOLYAIANUM U N I V E R S I T A T I S S Z E G E D I E N S I S 



A JÓZSEF ATTILA TUDOMÁNYEGYETEM KÖZLEMÉNYEI 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 
C S Á K Á N Y B É L A 
F O D O R G É Z A 
G É C S E G F E R E N C 
K A L M Á R L Á S Z L Ó 

K O V Á C S I S T V Á N 
L E I N D L E R L Á S Z L Ó 
P E Á K I S T V Á N 
P I N T É R L A J O S 
P O L L Á K G Y Ö R G Y 

R É D E I L Á S Z L Ó 
S O Ó S G Y U L A 
S Z E N T H E J Á N O S 
T A N D O R I K Á R O L Y 

K Ö Z R E M Ű K Ö D É S É V E L S Z E R K E S Z T I 

S Z Ő K E F A L V I - N A G Y B É L A 

32 . K Ö T E T 

3—4. F Ü Z E T 

S Z E G E D , 1971. D E C E M B E R 

J Ó Z S E F A T T I L A T U D O M Á N Y E G Y E T E M B O L Y A I I N T É Z E T E 



ACTA U N I V E R S I T A T I S S Z E G E D I E N S I S 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 
A D 1 U V A N T I B U S 

B. C S Á K Á N Y .1. K O V Á C S L. R É D E I 
G. F O D O R L. L E I N D L E R G. SOÓS 
F. G É C S E G . I. P E Á K J. S Z E N T H E 
L. K A L M Á R L. P I N T É R K . T A N D O R I 

G. P O L L Á K 

R E D I G I T 

B. S Z . - N A G Y 

T O M U S 32 

1971 

I N S T I I U T U M 

SZEGED, 1971 
BOLYA IANUM U N I V E R S I T A T I S S Z E G E D I E N S I S 



A JÓZSEF ATTILA TUDOMÁNYEGYETEM KÖZLEMÉNYEI 

ACTA 
SCIENTIARUM 

MATHEMATICARUM 

C S Á K Á N Y B É L A 
F O D O R G É Z A 
G É C S E G F E R E N C 
K A L M Á R L Á S Z L Ó 

K O V Á C S I S T V Á N 
L E I N D L E R L Á S Z L Ó 
P E Á K I S T V Á N 
P I N T É R L A J O S 
P O L L Á K G Y Ö R G Y 

R É D E I L Á S Z L Ó 
SOÓS G Y U L A 
S Z E N T H E J Á N O S 
T A N D O R I K Á R O L Y 

K Ö Z R E M Ű K Ö D É S É V E L S Z E R K E S Z T I 

S Z Ő K E F A L V I - N A G Y B É L A 

32 . K Ö T E T 

1971 

SZEGED, 1971. D E C E M B E R 

J Ó Z S E F A T T I L A T U D O M Á N Y E G Y E T E M B O L Y A I I N T É Z E T E 



TOMUS XXXII — 1971 — 32. KÖTET 

P.ig. 
Adeniran, Т. M., Some absolute topological properties under monotone unions 221—222 
Baker, I. N., The value distribution of composite entire functions • 87—90 
Baker, J. A., D'Alenibert's functional equation in Banach algebras 225—234 
Бродский, В. M., Гохберг, И. 1Д. и Крейн, М. Г., О характеристических функциях об-

ратимого оператора 141—164 
Бродский, В. М., Теоремы умножения и деления характеристических функций об-

ратимого оператора 165—175 
Brown, A. and Реагсу, С., Compact restrictions of operators 271—282 
Davis, Ch. and Foias, C., Operators with bounded characteristic function and their /-dila-

tion 127—139 
Embry, M. R., A connection between commutativity and separation of spectra of operators 255—259 
Foias, C. and Davis, Ch., Operators with bounded characteristic function and their /-uni-

tary dilation 127—139 
Foias, C. and Sz. Nagy, В., Vecteurs cycliques et commutativité des commutants 177—183 
Freud, G., On an extremum problem for polynomials 287—296 
Fuchs, W. H. J. and Gross, F., Generalization of a theorem of A. and C. Rényi on periodic 

func t i ons 8 3 — 8 6 
Gilfeather, F., On the Suzuki structure theory for non self-adjoint operators on Hilbert 

space 239—249 
Gilfeather, F„ Weighted bilateral shifts of class Col 251—254 
Гохберг, И. Ц., Бродский, В. М. и Крейн, М. Г., О характеристических функциях 

обратимого оператора 141 —164 
Gross, F. and Fuchs, YV. H. J., Generalization of a theorem of A. and C. Rényi on periodic 

functions 83—86 
Gupta, D. P., Degree of approximation by Cesáro means of Fourier—Laguerre expansions 255—259 
Hatvani, L., On the stability of the zero solution of certain second order non-linear dif-

ferential equations 1—9 
Helton, J. W., Operators unitary in an indefinite metric and linear fractional transform-

ations 261—266 
Hess, P., A re/nark on the cosine of linear operators 267—269 
Hoover, Т. В., Hyperinvariant subspaces for «-normal operators 109—119 

, Крейн, M. Г., Бродский, В. M. и Гохберг, И. Ц., О характеристических функциях 
обратимого оператора 141—164 

Lajos; S. and Szász, F., Bi-ideals in associative rings 185—193 
Lee Sin-min, On axiomatic characterization of ¿"-semirings 337—343 
van Leeuwen, L. C. A., Remarks on endomorphism rings of torsion free abelian groups . . . 345—350 
Leindler, L., On the strong approximation of orthogonal series . . . . . . ' . 41 —50 
Lenard, A., Probabilistic version of Trotter's exponential product formula in Banach 

algebras 101—107 



I 

Lindner, Ch. C., Extending mutually orthogonal partial latin squares 283—285 
Losonczi, L., Über eine neue Klasse von Mittelwerten 71—81 
Mitrovic, D., A new proof of the formulas involving the distributions <S+ and <5~ 291—294 
Nakata, S., On the divergence of rearranged Fourier series of square integrable functions, 59—70 
Ncmeth, J., Generalizations of the Hardy—Littlewood inequality 295—299 
Pearcy, C. and Brown, A., Compact restrictions of operators 271—282 
Prékopa, A., Logarithmic concave measures with application to stochastic programming 301—316 
Radjavi, H. and Rosenthal, P., Hyperinvariant subspaces for spectral and »-normal oper-

ators 121—126 
Rhoades, B. E., Spectra of some Hausdorff operators 91—100 
Rosenthal, P. and Radjavi, H., Hyperinvariant subspaces for spectral and «-normal oper-

ators 121—126 
Steinfeld, O., Über die regulären duo-Elemente in Gruppoid Verbänden 327—331 
Szász, F. A., On minimal biideals of rings 333—336 
Szász, F. A. and Lajos, S., Bi-ideals in associative rings 185—193 
Sz.-Nagy, B.,and Foiaç, C., Vecteurs cycliques et commutativité des commutants 177—183 
Tandori, K., Über die unbedingte Konvergenz der Orthogonalreihen 11—40 
Tandori, K., Über das Maximum der Summen orthogonaler Funktionen 317—326 
Weinert, H. J., Bemerkung zu einem von F. Szász angegebenen Ring 223—224 
Wiegandt, R., Local and residual properties in bicategories 195—205 
Williams, G. B., S-objects in an abelian category 351—358 

B I B L I O G R A P H I E 

E. ARTIN, Galoische Theorie — G. ASSER, Einführung in die mathematische Logik — L. M . 

BLUMENTHAL and K . MENGER, Studies in geometry — Functional Analysis and Rela-
ted Fields, Proceedings of Conference in honor of Professor M . S T O N E — J . C. BURKILL 

and H . BURKILL, A second course in mathematical analysis — H . BUSEMANN, Recent 
synthetic differential geometry — O . BOTTEMA, R. Î. DJORDJEVIC, R. P . JANIC, 

D . S. MITRINOVIC, P . M . VASIC, Geometric inequalities — K . CHANDRASEKHARAN, 

Arithmetical functions — A. H . CLIFFORD and G. B . PRESTON, The algebraic theory 
of semigroups. Vol: LI — F. M . H A L L , An introduction to abstract algebra — F. H A U S -

DORFF, Nachgelassene Schriften. Bände I, I I : Studien und Referate — C. A. HAYES 

and C . Y. PAUC, Derivation and martingales — H. P . K Ü N Z I and W. OETTLI, Nicht-
lineare Optimierung: Neuere Verfahren — G. HELMBF.RG, Introduction to spectral the-
ory in Hilbert space — P . LORENZEN, Formale Logik — I. J. M A D D O X , Elements of 
functional analysis — J . L. MERCIER, An introduction to tensor calculus — J . P . 

SERRE, Abelian /-adic representations and elliptic curves — C. A. ROGERS, Hausdorflf 
measures — I. SINGER, Bases in Banach spaces. I — L. TAKÂCS, Combinatorial meth-
ods in the theory of stochastic processes 207—220 

Z. S. HARRIS, Mathematical structures of language — P. ROSENSTIEHL and J . MOTHES, 

Mathematics in management: the language of sets, statistics and variables — S.' A. 
NAIMPALLY and B. D . W A R R A C K , Proximity spaces — J. STOER and C H . WITZGALL, 

Convexity and optimization in finite dimensions. I — H . STÖRMER, Semi-Markoff-
Prozesse mit endlich vielen Zuständen — F . FERSCHL, Markovketten — F . B A R -

THOLOMES und G. HOTZ, Homomorphismen und Reduktionen linearer Sprachen — 
P. F . B Y R D and M. D . FRIEDMAN, Handbook of elliptic integrals for engineers and 
scientists — D . S. MITRINOVIÉ and P. M . VASIC, Analytic inequalities 359—364 

Livres reçus par la rédaction 365—368 



Some absolute topological properties 
under monotone unions 

By TINUOYE M. ADENIRAN in Zaria (Nigeria)*) 

1. D e f i n i t i o n . A property P is said to be absolute under monotone unions 
(aumu) in a class # of topological spaces if, for any given Y and Xt (i= 1,2, ...) 

oo 
in c€, with J j C J i + 1 , the fact that each Xt has property P implies that U 
also has property P. 1 - 1 

Connectedness and arcwise (path) connectedness are absolute under monotone 
unions in the class e€a of all topological spaces. But local connectedness and discon-
nectedness are not so; as an example illustrating the former, consider the Warsaw 

71 
circle W, consisting of the curve sin— ( 0 < x ^ l ) , the interval ( — 1, + 1 ) of the y 

x 
axis and a simple curve joining the points (0, —1) and (1,0). Take as Xn the set 

W— \(x,y):y = sin —, 0 < i g - ; 
I X n\ 

then each Xt is locally connected but U Xt = W is not so. For an example illustrat-
i = l 

ing the latter, let P be the set of irrationals in E1 and let Q = {ri, > •••} 
enumeration of E1 — P. Let Pj = PI) {ri; r2, . . . , Each Pf is disconnected, but 

U P, = E1 is not. This last example also shows that the property of being 0-dimension-
;=i 
al is not aumu in the class of all topological spaces. 

By restricting <8a to the class of countable metric spaces, disconnectedness 
is aumu i n ^ 0 . This is a simple consequence of the well-known fact, that any non-void 
connected metric space has at least a continuum number of points. 

A further example for a property which is aumu is the property of being F„ 
in the class # a . But the property of being Gs is not aumu in c€a. This is well known, 
nevertheless we shall give a simple counter-example: 

Consider the real line El. A finite set of rationals is trivially Gd, but the set 
Q of rationals is not Gd in E1. This follows easily f rom the Baire category theorem 
and f rom the fact that Q is a set of first category in itself. 

*) The paper was substantially revised, with the author's subsequent consent, by L . G E H E R . 
(The Editor.) 

1 A 
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2. The reader can easily see that a monotone union of T0 -spaces is a T0 -space. 
In this section we shall show that the property of being Ti is also aumu in any class 
^ while any separation axiom beyond this is not. We state the first assertion as 

T h e o r e m 1. The property of being a Tx -space is aumu in any class <S. 
P r o o f . Let Y be a topological space with the sequence {A';: A" ; cA' i + ,} of 

subsets of Y such that each X, is . Let X = U Xi and let x, y be two distinct 
; = I 

points of X. Then there exists, for some j£Z+, XjCX such that x,y£Xj. Since 
Xj,is r , t he r e exist open sets U\ K' in A^such that V',y£V',y$ V. Further-
more there exist open sets U, V in X such that UPiXj = U' and VC\Xj = V. 
Since x£ U'\ U, similarly y£ V. x£Xj and x$ V' imply that x$V, similarly y$U. 
We have thus found sets U, V open in X with * £ U, y £ V, x $ V and y$U. By defini-
tion, this entails that X is 7 \ and the theorem is proved. 

C o r o l l a r y . Let {X^. Xt (zXi+ t \ be a sequence of spaces such that each Xi is 

T2 (regular, Tychonojf, normal). Then |J Xi is at least Tx. 
;=i 

T h e o r e m 2. The property of being T2 is not aumu in (€a. 
P r o o f . Let / be the open unit interval (0, 1), and let 

( i ) xk = ( 0 x / ) u ( i x / ) u | - y x / ] u - u f 1 

Each Xk is a finite union of open intervals in E2 and since each / is T2, each Xk is 
OO 

also T2. So let X = \J X,. Topologize X as follows: On ^ - ( 0 X / ) use the usual 
i = 1 

topology on E1. For a neighbourhood of a point x in OX/, take an open interval 
f l ) 1 

in J of 0 X / containing x and all the —X7 with — < s, where s is an arbitrary 
[ j ) J 

positive real. Now let Pi and P2 be two distinct points of OX/ . It is easy to see that 
any open subset of X containing Py meets any other containing P2; we cannot 
therefore have two disjoint open sets containing Pt and P2 respectively; hence 
X — U Xi is not T2. — The same example shows: 

¡=i 
T h e o r e m 3. Any separation axiom implying T2 is not aumu in (€a. 
Each Xk in (1) is metrizable, but X is not normal, and therefore not metrizable. 

So we have: 
T h e o r e m 4. Metrizabiiity is not aumu in i?„. 

References 
[ 1 ] J. D U G U N D J I , Topology ( 1 9 6 6 ) . 

[ 2 ] W . H u R E W i c z a n d H . W A L L M A N , Dimension Theory ( P r i n c e t o n , 1 9 4 1 ) . 
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Bemerkung zu einem von F. Szász angegebenen Ring 

Von HANNS JOACHIM WEINERT in Clausthal (BRD) 

In [3], Satz 3 gibt F. SzÄsz einen assoziativen Ring A mit folgenden Eigen-
schaften an: 

I) A hat zwei modulare nilpotente Rechtsideale R, und R2, deren Durchschnitt 
nicht modular in A ist (vgl. [1], § 28, Seite 123). 

II) Das Jacobsonsche Radikal J von A ist ein maximales modulares Rechts-
ideal von A mit J2 t^ 0 und J3 = 0 . 

Dabei definiert F. SzÄsz diesen Ring A als Algebra über dem Primkörper K2 

der Charakteristik 2 durch folgende Multiplikationstafel der vier Basiselemente a, 
b, c und d: 

• a b c d 

a a a-Vb+c a cl 

b a + b + d b c b 

c c . b c a + c + d 

d a d b + c + d d 

Es wird behauptet, daß der Ring A nicht monomial im Sinne von REDEI [2], § 66 ist 
(vgl. auch [4], § 4). Gegenstand dieser kurzen Note ist zu zeigen, daß dieser Ring 
doch eine monomia/e Basis über K2 besitzt und mit ihrer Hilfe die Behauptungen I) 
und II) und auch die Assoziativität von A sehr leicht nachzuweisen sind. 

Mit {a, b, c, d} bilden auch die folgenden vier Elemente eine Basis des Vektor-
raumes A über K2: 

a = a, ß = a + b + c + d, y = a + c, ö = a+d. 

Aus (1) folgt die Multiplikationstafel 
• OL ß y <5 

ot a ß 0 5 

ß ß 0 0 0 

y y 0 0 0 

Ő 0 0 ß 0 
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und umgekehrt. Damit ist {a,ß,y,ö} monomiale Basis1) von A über K2. (2) ist 
sogar im wesentlichen die Strukturtafel einer Halbgruppe mit Nullelement 
H= {oc, ß, y, S, 0}, die etwa durch folgende Transformationen auf der Menge 
X={],2, 3, 4} realisiert werden kann: 

( 1 2 3 4) ( 1 2 3 4) ( 1 2 3 4 ) . ( 1 2 3 4 ) . 
H l 2 4 4 ' ^ 2 4 4 4 ' H 4 4 2 4 ' H 3 4 4 4 ' ° 

1 2 3 4) 
4 4 4 4 

Aber auch ohne eine solche Darstellung prüft man die Assoziativität bei (2) leichter 
als bei (1). 

B e w e i s v o n I). = 0} und R2 = {ß + y, 0} sind nach (2) Rechtsideale 
von A, mit a als Linkseinselement modulo Rí und a-\-_5 als Linkseinselement mo-
dulo R2. Weiter gilt R\ = R\ = 0. Der Durchschnitt y? , r iÄ 2 = 0 ist aber kein 
modulares Rechtsideal, da A wegen Ay~$y kein Linkseinselement besitzt. 

B e w e i s v o n II). Der von {ß, y, ö} erzeugte Unterraum J von R ist nach (2) 
zweiseitiges Ideal, aus Anzahlgründen maximales Rechtsideal und wegen a 2 = a 
modular. Wegen A/J^K2 ist J das Radikal von A. Aus (2) ersieht man J2 = {0, ß} 
und / 3 = 0. 

Literaturverzeichnis 

[1] A. KERTÉSZ, Vorlesungen über Artinsche Ringe (Budapest, 1968). 
[2 ] L. RÉDEI, Algebra. I (Leipzig, 1 9 5 9 ; Budapest, 1 9 6 7 ) . 
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(Eingegangen am !4. April 1970) 

J) Es existieren weitere monomiale Basen von A über K„, doch ist es nicht möglich, die erzeu-
genden Elemente y — a + c und ß+y — b + dder Rechtsideale bzw. R„ (vgl. Beweis von 1)) zusam-
men in eine monomiale Basis aufzunehmen. 



D'Alembert's functional equation in Banach algebras 

By JOHN A. BAKER in Waterloo (Ontario, Canada) 

1. Suppose B is a Banach algebra and / : R-+ B ( R denotes the field of real 
numbers) such that 

(1) f{s + t ) + f { s - t ) = 2f{s)f{t) 

for all s, t £ R. S . K U R E P A [6] has shown that if B has identity e, / ( 0 ) = e, and / is 
measurable then there exists a unique b £ B such that 

s2b s4b2 
f ( s ) = e + —+ — +... 

for all s£R. Note that if b = a2 for some a£B then f ( s ) = ^{exp(sa)-f-exp( — sa)} = 
= cosh(sa) for all sZR. In this paper we consider the problem of finding the solu-
tions of (1) on (0, » ) and without the assumption that B has an identity. The main 
result is that if / : (0, °°)—B satisfies (1) for j > / > 0 and if (lim / ( / ) exists then 
there exists j,b,c£B such that j2 =j, jb = bj = b, cj — c, jc = 0 and f{s) = 

s2b sAb2 \ f s3b s5b2 ) . 
= j'H 1 1— + c J/-I 1 h--- for all 5 > 0 . This result is 

2 ! 4 ! J { 3 ! 5 ! 

analogous to a result concerning the functional equation / ( j + ?) = f ( s ) f ( t ) which 
can be found on page 2 8 3 of the book of H I L L E and PHILLIPS [4] . Also included in 
the present paper are certain general results concerning (1) when the domain is 
an Abelian group and the range is an associative algebra over the rationals. Some 
regularity properties are also included in cases when topologies are present. 

.2. We begin by deriving some general properties of solutions of (1). Let G 
be an additive Abelian group, let B be an associative algebra over the field of rational 
numbers and suppose / : G—B satisfies (1) for all s,t£G. 

Let j=f(0). Then, putting s = t — 0 in (1) we find 

(2) j2=j. 
With t = 0 in (1) we have 
(3) f(s)=f(s)j 
for all J £ G. 
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Now let g and h be the even and odd parts o f / respectively; that is, 2g(s) = 
= f ( s ) + f ( - s ) , 2h(s ) = f ( s ) - f ( - s ) for all s£G. Letting i ^ O in (1) we find 

(4) g=jf-

Thus g — jg+jh and so, since g and jg are even, 

(5) jh = 0. 
From (4) and (2) it follows that 
(6) jg=j2f=jf=g-
Now (3) implies 
(7) gj=g 
and 
(8) hj = h. 
Thus, by (7) and (5), 
(9) g(s)h(t)=(g(s)j)h(t) = g(s){jh(t)) = 0 

and similarly, by (5) and (8), .;••• 

(10) h(s)h(t)=0 

for all s,t£G. Using (4), (1) and (9) we conclude that 

g(s + t) + g(s-t) = j ( f ( s + t ) + f ( s - t j ) = 2 j f ( s ) f ( t ) = 2 g(s)f(t) = 

(11) =2g(s)g(t) + 2g(s)h{t) = 2g(s)g(t) for all s,t£G. 

I f / ( 0 ) = 0 then, by ( 3 ) , / = 0 . If yVO then j is an identity for the subalgebra 
B' = {x£B: jx = xj = x} and, f rom (6) and (7), g(s)£B' for all s£G. Thus g can be 
considered as a mapping of G into B' which is a solution of (11), or (1) and g(0)=j, 
the identity of B'. 

From (9) and (10) we find 

h(s + t)+h(s-t) = f ( s + t ) + f ( s - t ) - g ( s + t ) - g ( s - t ) = 

(12) =2f{s)f{t)-2g{s)g(t) = 2h(s)g(t) for all s,t£G. 

3. In this section we impose topologies on G and B and consider some regularity 
properties of solutions of (1). 

P r o p o s i t i o n 1. Let G be a locally compact Abelian group, let B be a Banach 
algebra and suppose f\G—B satisfies (1) for all s,t£G. If f is strongly measurable 
on a set of positive, finite Haar measure, then the mapping t -*/(2i) is continuous 
at 0. 

P r o o f . Suppose / is strongly measurable on a measurable set A of positive 
finite Haar measure. Then / is the pointwise limit almost everywhere on A of a 
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sequence of countably valued measurable functions (see [4] page 72). As in the 
complex valued case, the theorems of Egorov and Lusin can be proved (see [3] 
pages 158—160) and we conclude that there exists a compact subset K of A of 
positive Haar measure such that the restriction of / to K is continuous. It follows 
that / i s uniformly continuous on K. (See [7] page 256.) 

Since K has positive finite Haar measure there exists a neighborhood V of 
0 6 C such that ' 

Kr\(K + v)n(K-v) 0 

whenever v£V. (See [2] page 296.) 
Let e > 0 and M = ma\ {||/(/)|| :t£K). Since / is uniformly continuous on K 

there exists a symmetric neighborhood U of O f G such that || f{s)~/(Oil < e/4Af 
provided s,t(LK and s~t£U. Now 

/(2v) +f(2u) = 2f(u + v)f(u - v) 
and so 

|| /(2v) - / ( 0 ) | | = 2|| f(u + v)f(u + v) -f(u)f(u)|| S 

^ 2|| f(u + o)|| || f(u - v) - / ( « ) | | + 2|| f(u)\\ || /(« + v) -/(U)||. 

If v6 VH U then there exists u6K such that u + v6K and u — v£K so that v€ VD U 
implies || f(2v) -/(0)11 < £• 

C o r o l l a r y . If in addition to the hypotheses of Proposition 1 it is assumed that 
the mapping / — 2/ is a bicontinuous automorphism of G, then f is continuous at 0. 

P r o p o s i t i o n 2. Let X be a Hausdorjf linear topological space, B a Banach 
algebra and suppose f:X-*B satisfies (1) for all s,t£X. If f is continuous at 0, then f 
is continuous everywhere. 

P r o o f . Replace s by nt in (1) where n is a positive integer to find that 

/((«4-1)/) - 2 / (« / ) / (0 - / ( ( « - 0 0 

for all t£X and « = 1,2, ... . Since / is continuous at 0, / is bounded on an open 
neighborhood U of 0 6 X. Hence, by induct ion , / i s bounded on nU for n = 1,2,3, ... . 

But X =[} nU and thus / is bounded in a neighborhood of each point of A'since 
n=i 

each nU is open. We know that 

lim = Um/(s)/(0 =/(,)/(0) =f(s) 

for all s£X by (1) and (3). S u p p o s e / i s not continuous at some fixed s£X. Then 
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there exists i / > 0 and a net { / „ } c l such that tx-~ 0 and 

11/(^ + 0 - / ( ^ ) 1 1 — d for all a. 
But then, by (1) and (3), 

II f ( s + 2 0 - / ( 5 ) 1 1 = || As + 2Q + / 0 ' ) - 2f(s + O - 2f(s) + 2f(s + Oil = 

- II {2f(s + 0 / ( 0 - 2f(s + 0 / ( 0 ) } - 2 { / ( .v) - / ( * + 0 } l ! s 

s 211 f ( s ) - f ( s + Oil - 211 f ( s + O { / ( O - / (0 ) } | | 

for all a. S i n c e / i s bounded in a neighborhood of s and / is continuous at 0, 
lim || f{s + O { / ( O - / (0 )} | | - 0. Hence a 

lim sup 11/(5 + 2 0 - / ( 5 ) 1 1 S 2d. 
a 

It follows by induction that 

lim sup II/(* + 2 * 0 - / ( * ) l l = 2kd a 

for each k= 1,2, ... which contradicts the fact that / i s bounded in a neighborhood 
of s. Thus, by contradiction, / is continuous at every s£X. 

C o r o l l a r y . If B is a Banach algebra, f : R"-+B satisfies (1) for all s, t£R" and 
i f f is measurable on a set of positive, finite, n-dimensional Lebesgue measure, then f is 
continuous. 

P r o o f . This follows from the corollary to Proposition 1 and Proposition 2. 

4. The theorem of this section, which generalizes a theorem of S . K U R E P A [6], 
is the main result of this paper. In its proof we use several properties of a Riemann-
type integral for vector valued functions for which we omit the elementary proofs. 
If [a, b] is a compact interval, if A" is a Banach space and / : [a, b] — X is continuous, 
then / is uniformly continuous on [a, b]. As in the real valued case one can prove 
the existence of a unique x£X which has the following property: To each e > 0 

n 
there corresponds ¿ > 0 such that ||x— ^ {tk — tk_ f{s,)\\ < e provided a = t ^ 

t = i 
= i and l ^ - ^ . j l < 5 for k = 1, 2, . . . , n. 

b 
We write x = J f(t)dt and call this vector the integral of / over [a,b]. 

a 

L e m m a . Let X be a Banach space and let 0 < a ^ Suppose that (p\ (0,a) — X 
is continuous, (p'(t) exists, and ||<p'(OII ^ M< °° for Then 

(i) lim (p(t) = oc exists; 

(ii) i f . \\m^<p'{t) = P exists, we have P— lirn^ -j-(<p(?) — a). 



D'Alembert 's functional equation 229 

P r o o f , (i) Suppose {/„}r=i = ( 0 , a) and / „ ^ 0 as Then 

,'m 

\\<P(tn)-<P(tm)\\ = || j (p\t)dt\\ = M\tn-tm\ - 0 as n, m -
tn 

Thus a = Jim(p(in) exists since X is complete. If {s„}~=1 ^ ( 0 , a) and sn -+0 as n — <=o 

then of — l im<p(s) exists. Letting u„ = t„ fo r n even and u„=sn for n odd we find 
/1 CO N / 

a = lim (p(t„) = lim q>(u„) = lim <p(s„) = a. 
n n a 

Hence l im<p(0 exists and is equal to a . 
1 - 0 + 

i<p'(t) if 0 < i < a , 
(ii) Let <P(0 = .j. ^ Then i>: [0, a)—X is continuous and 

s e s c 

J<&{t) dt = f $(t)dt + f (p'(t)dt = f<P(t)dt + <p(s)-<p(E) 
0 O n 0 

s 

whenever 0 < e < s Letting s — 0 + we conclude <p(s) — a = J <P(t)dt for 0 -=a 
and so 0 

s 

— ((p(s)-a) = — f$(t)dt - <i>(0) = P as 5 0 + . 
S S 0 

T h e o r e m . Let B be a Banach algebra and let f : (0, B be such that 

f ( s + t ) + f ( s - t ) = 2 f ( s ) f ( t ) 

whenever s > / > 0 . If lirn^ f ( t ) = j exists then j2 =j and there exist elements b, c£B 

such that jb = bj = b, cj = c, jc = 0 and 

_ f . s2b s4b2 1 { . s3b s5b2 ) 

for all s > 0 . Conversely, with such j, b, and c, if f is defined by (13) for all s£R then 
f satisfies (1) for all s, t£R. 

P r o o f . We begin by proving the first assertion. Putt ing s = 2t in (1) we find 

(14) / ( 3 0 + / ( 0 = 2 / ( 2 0 / ( 0 

for all ?=>0. If we let r— 0 + in (14) we conclude that j2 =j. 

Since (lim f(t) e x i s t s , / i s bounded on an interval of the form (0, a) f o r some 
a > 0 . But then (14) i m p l i e s / i s bounded on (0, (3/2)a). By induction one can prove 
that / is bounded on any finite subinterval of (0, 
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We now aim to show that 

( I s ) f(').i=m 

for all / > 0 . To this end let q>(t) = f { t ) - f ( t ) j for / > 0 . Since j2 =j = ,lim / ( / ) 

we have lim (p(t) = 0. Also, whenever 0, (p(s + t) + (p(s — t) = 2 f ( s ) f ( t ) — 
- 2 m m j = 2 № < p ( t ) . i f u>v>o, 

<P(«) + <K») = 2 / 
u + v 

<p 
u — v 

Fix 0 and let M = sup ( | | / (0 I I : 0 < / < a } . Let £ > 0 and choose <5>0 such that 
0 < i < < 5 implies ||</>(011 < e / 4 M . Then if 0 < y < M < a and u — v < 25, 

so that 
II(p(u) + <p(Oil s 2M(e/4M) = e/2 

M + y 
<P(v)~<P 

<p(u) + <p 
u + v + <p(v) + <p 

u + v 

We have shown that <p is uniformly continuous on (0, a) for any 0 and hence <p 
is continuous. Thus, for any 

2<p(s) =flim (p(s+t) + <p(s-t) = \im 2f(s)(p(t) = 0, 

which proves (15). 
The next step in the proof consists of showing that / i s continuous. Let a > 0 

and M = { | | / (0II : 0 < i < a } . If 0 < v < u c a then by (1) and (15) 

f{u)+f{v)-2f 2 /1 " r 1 / 
u - v ) 0 f M + u 1 . 
— R 2 F R ^ Y 

S 2 M 

Thus for every e > 0 there exists 5 > 0 such that 

u + v (16) f(u)+f(v)-2f 

whenever 0 < U , v<a and 0 < |M — D| < 5. 
Now s u p p o s e / i s not continuous at s where 0 -< s < a. Then there exist d > 0 and 

a sequence {/„} converging to 0 such that | | / ( j + i„)—/(Oil S dfor each n = 1, 2, ... . 
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Hence 

\\f(s + 2Q-№\\ = \\As + 2tn)+f(s)-2f(s + tn) + 2f(s + t„)-2f(s)\\ ^ 

^2\\f(s + tn)-f(s)\\-\\f(s + 2tn)+f(sy-2f(s + 0\l 

for each « = 1 , 2 , . . . . But, by (16), 

lim | | /(5 + 2/„) + / ( 5 ) - 2f(s + / J = 0 
co 

so that 
lim sup \\f{s + 2t^—f{s)\\ s 2d. n— co 

As in the proof of Proposition 2, this' contradicts the boundedness o f / in a neigh-
borhood of s. Thus / is continuous at s. Since a was arbitrary, / is continuous on 
(0, 

Now define F(s)= . Then F is continuous on [0, oo), 
[ j for 5 = 0 

(17) F{s + t) + F(s-t) = 2F(s)F(t) 
whenever i S / 5 0 and 
(18) Fj=F. 

Motivated by the consideration in section 2 we let G—jF and H = F—G. 
Then 

(19) G (0) = jF(0) —j2—j and H(0) = F(0)~G(0) = 0, 

G and H are continuous on [0, «>) and, by (18), 
(20) jG = G = Gj, jH = 0 and Hj = H. 
Therefore, by (20), 
(21) G(s)H(t) = (G(s)j)H(t) = G(s)(jH(t)) = 0 
and 
(22) . H(s)H(t)=(H(s)j)H(t) = H(s)(jH(t)) = 0 for all 5 , 0 . 

Let B' = {x£B: xj=jx=x}. Then B' is a closed subalgebra of B and is thus 
a Banach algebra. Furthermore, j is the identity of B'. Also note that, by (20), 
G: [0, and, f rom (21), 

(23) G(s + t) + G(s-t) = 2jF(s)F(t) = 2G(s)G(t) 
provided s ^ t ^ O . 

Let a > 0 . If O - ^ s ^ a ^ s then, by (23), 

e e 

J G(s + t) + G(s-t)dt = 2 G(s) f G{t)dt. 
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e £ 
But £lim+ (l/e) j G(t)dt = G(0)=j so for sufficiently small e > 0 , JG(t)dt has an 

o o 
£ 

inverse in B'. We fix e > 0 and let y - 1 = j G(t)dt to deduce that G(s) = 
o 

j r s + c ' s ^ 

= - j J G(t)dt - J G{t)dt I y for all 5 It follows that G has continuous deriv-
es S—E ' 

atives of every order on (a, and, since a was arbitrary, G has continuous deriv-
atives of every order on (0, °=>). 

Differentiating (23) with respect to t we find 

G\s + t ) - G \ s - t ) = 2G{s)G\t) 

whenever 0. With sufficiently small s > 0 , 

J im (?'(/) = J im ^ G ( 5 ) - ' [ G ' ( 5 + 0 - G ' ( 5 - 0 ] - 0. 

By the lemma, 

(24) G"(0) = lim G V - G < ® = 0. 

F rom (23) it follows that 

(25) . G"(s + t) + G"(s-t) = 2G(s)G"(t) 

for 0. Thus for sufficiently small 

J i m G"(t) = J i m y [ G ( j ) - 1 ] [ G " ( i + / ) + C " ( i - 0 ] = G i s ) " 1 « / " ^ . 

It follows from the lemma that G' is continuously d i f ferent ia te on [0, ®=>). If we 
let b = C"(0) £ B' and let / - 0 + in (25) we find that 

(26) G"{s) = G(s)b 

for all 5 > 0. Since b 6 B', (26) also holds if s=0. 
From (26), (24) and (19) it follows that 

t u t 

G(<) =j+f J G{s)bdsdu = j+ J (t — s)G(s)b ds 
0 0 0 

for all 0. By iteration one finds 
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for all 0. The last term on the right tends to 0 as /7 — =° for any fixed / > 0 , so 

t2b t*b2 

(27) G{t) =] + — + — +••• 

for all / s 0 since this series converges absolutely. Also note that bj=jb — b since 

We now solve for H. From (17) and (23), 

H(s + t) + H(s-t) = 2F(s)F(t)-2G(s)G(t) 

and then, in view of (21) and (22), we find 

(28) H(s + t) + H(s-t) = 2H(s)G(t) for s^t^O. 

As with G, we deduce from (28) that H has continuous derivatives of every 
order on (0, Differentiating (27) twice with respect to t and letting t-*0+ we 
find 
(29) H"(s)=H(s)b for all ,v>0. 

Now since lim H"(s) = lim H(s)b = 0 it follows from the lemma that 

lim H'(s) = c exists. Another application of the lemma proves that H'(0) = c 
exists and c = lim H'(s). 

As with G, we deduce from (28), (19), and the fact that //'(()) = c that for all 
0 

( s3b ssb2 

(30) H ( s ) = + y + 

From (20) we find that jc = 0 and cj = c. 
We have thus shown that / satisfies (13) for all 0. 
To prove the converse let j, b, c£ B such that jb=bj = b, cj = c and jc = 0. Define 

G\ R~B by (27) and H\ R^B by (30) and let f ( s ) = G(s)+H(s) for all s£R. 
Note that bc = (bj)c = b(jc) = 0 and thus 

(31) G(s)H(t) = H(s)H(t) = 0 

for all s, t£R. It is not difficult to verify directly that G satisfies (23) for all s, t£R. 
Note that H = cG' so that 

(32) H(s + t) + H(s-t) = cG'Cy + O + c G ' C y - / ) = 2cG\s)G(t) = 2H(s)G(t) 

for all s,t£R. Thus by (23), (31) and (32) 

f ( s + t ) + f ( s - t ) = 2G(s)G{t) + 2H(s)G(t) = 

= 2[G(s) + H(s)][G(t) + H(t)] = 2 f ( s ) f ( t ) for all s,t£R. 
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This completes the proof of the theorem. 
The following corollary follows directly from the corollary to Proposition 2 

and the above theorem. 

Corollary. Let B be a Banach algebra and suppose f : R^ Bis such that (1) is true 
for all s, t € R. Then f is measurable on a set of positive Lebesgue measure if and only 
if f has the form (13) for constants j, b, c£B satisfying j2 = j, jb = bj = b, cj — c and 
cj = 0. 

R e m a r k s . Many authors have considered equation (1), often called D'Alem-
bert's equation (see [1]). K A N N A P P A N [5] has shown that the general solution of (1) 
among complex valued functions defined on an Abelian group G is of the form 
f ( s ) = 2 {m(s) + m( — 5)} where m is a complex valued function defined on G 
and satisfying m(s + t) = m(s)m(t) for all s,t^G. S O V A [8] has considered the 
strongly continuous solutions of (1) where / is defined on (0, and has values 
in the Banach algebra of bounded operators on a Banach space and succeeded in 
proving an analogue of the Hille—Yosida theorem in the theory of semi-groups of 
operators. 
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A connection between commutativity and separation 
of spectra of operators 

By M A R Y R. EMBRY in Charlotte (North Carolina, U.S.A.) 

1. Introduction. Recent results indicate that there is a basic connection be-
tween the commutativity of certain operators on a Banach space and the spectra 
of those operators. In [2] it was shown that if A is an operator on a complex Banach 
space and cr(A) D <j(e2niklnA) = 0 for k = ],...,n — l, then A and A" commute with 
the same operators. This result was strongly generalized in [3] as follows: if / i s 
holomorphic on a neighborhood of a(A),f is 1 — 1 on a (A) and / ' ( z J ^ O o n 

then A and f(A) commute with the same operators. In this paper we generalize the 
results of [2] for the case n = 2 by considering two operators A and £ such that 
a(A)f]a(B) = 0-

2. Notation and terminology. We shall consider a Banach algebra 3fi with an 
identity element / and elements A, B, X, ...;<j(A) is the spectrum of A. In case 
J 1 is the algebra of continuous linear operators on a Hilbert space we use the standard 
notation: if then A* is the (Hilbert space) adjoint of A, Re A = (A + A*)/2, 
a n d I m A = (A—A*)/2I. I n t h i s c a s e w e s a y t h a t is normal if AA*=A*A a n d 

A is unitary if A A* =A*A =/. 

3. The theorem. In [4, Theorem 3.1] it was proved that if a(A)f]a(B) = 0 , 
then for each Y in 3S there exists a unique solution to the equation BX—XA = Y. 
In particular, BX—XA = 0 only in case ^ = 0. We use this result to prove: 

T h e o r e m . If o(A) f l o(B) = 0, then X commutes with each of A and B if 
and only if X commutes with each of A+B and AB. 

P r o o f . One of the implications is obvious. Assume that X commutes with 
A+B and AB. Then 

A ( A X - X A ) - ( A X - X A ) B = A 2 X - A X ( A + B) + X(AB) = 

= A2X—A(A+B)X + (AB)X = 0. 
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Thus by [4, Theorem 3. 1], we have AX—XA = 0. It is now obvious that 
BX-XB = 0 also. 

The hypothesis of the theorem, calling for a separation of the spectrum of A 

and the spectrum of B, is dictated by the example of the operators A = — B = 

on two-dimensional complex Banach space. In this case A+B = AB = 0. 

4. Applications. We list below a few of the general applications of our theorem 
and then concentrate on the applications to operators on Hilbert space. 

C o r o l l a r y 1. If a (A) f l a(B) = 0, then A and B commute if and only if 
A+B and AB commute. 

P r o o f . A and B commute if and only if A + B commutes with each of A and B. 
Apply the theorem with X = A+B. 

C o r o l l a r y 2. ([2] and [3]) If a (A) Her ( — A) = 0, then X commutes with A 
if and only if X commutes with A2. 

P r o o f . Apply the theorem with B = — A. 
The next result is applicable to any invertible element of 38 of norm less than 1. 

C o r o l l a r y 3. If A is invertible and A(A)D(t(A-1) = 0, then X commutes 
with A if and only if X commutes with A+ A~l. 

P r o o f . Apply the theorem with B = A~l. 
Other general algebraic applications are obvious. 

In Corollaries 4—8 we assume that $ is the Banach algebra of continuous 
linear operators on a Hilbert space. 

The first application to operators on Hilbert space is obtained by choosing 
B = A*. 

C o r o l l a r y 4. If a(A)C\a(A*) — 0, then X commutes with each of A and A* 
if and only if X commutes with each of Re A and A A*. 

A special result of Corollary 4 is obtained by choosing A ^ R e A. 

C o r o l l a r y 5. If a (A) D(r (A*)—0, then A is normal if and only if Re A 
commutes with A A*. 

This last corollary is reminiscent of the result in [1, Theorem 1]: A is normal 
if and only if each of AA* and A*A commutes with Re A. The restriction on the 
spectrum of A in Corollary 5 thus reduces the number of commutativity relations 
required to force A to be normal. 

Another consequence of Corollary 4 is obtained by assuming that A is unitary. 



Commutativity and separation of spectra 237 

C o r o l l a r y 6. If A is unitary and o(A) Pi o(A*) = 0, then X commutes with 
A if and only if X commutes with Re A. 

If the Hilbert space under consideration is finite dimensional and A is any 
unitary operator, then it follows f rom Corollary 6 that some unit multiple of A, 
say ewA, is such that an operator A'commutes with Re (e'°A) if and only if ^ c o m -
mutes with Im (e'°A). 

C o r o l l a r y 7. If either Re A or Im A is invertible, then X commutes with 
each of A and A* if and only if X commutes with each of A and (Re A) • (Im A). 

P r o o f . Under the hypothesis, we have <r(Re A) H <r(i Im A) = 0. Apply the 
theorem with At=ReA and B,=iImA. 

As a final application consider Corollary 7 with X=A to give an equivalent 
condition for the normality of an operator A. 

C o r o l l a r y 8. If either Re A or Jin A is invertible, then A is normal if and 
only if A commutes with (Re / l)-(Im A). 
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On the Suzuki structure theory for non self-adjoint 
operators on Hilbert space 

By F. GILFEATHER in Honolulu (Hawaii, U.S.A.)') 

Throughout this paper all Hilbert spaces will be complex and all operators 
considered on them will be linear and bounded. Let A be an operator and p(z, z) 
a complex non-commutative polynomial in z and z. In Section 1 we shall give a 
complete structure theorem for the operator A whenever p(A, A*) is compact. The 
theorems in Section 1 are based on the structure of the W*-algebra generated by 
A and they will include the results of N . S U Z U K I [14 ] , who developed this theory 
for an operator A with Im A compact, and also the generalizations of Suzuki's 
work by H. B E H N C K E [1] and [2] and the author [8] . In Section 2 we shall give an 
application of this theory to the study of non self-adjoint spectral operators on 
Hilbert space. By using C*-algebra techniques, one can also obtain many of the 
results in this paper. In particular, Lemma 4 in [1] and its generalization to non-
separable spaces play a role in the C*-algebra development analogous to the role of 
Proposition 1 in the f-F*-algebra approach presented here. 

If A is an operator on a Hilbert space, we shall denote by the W*-or von 
Neumann algebra generated by A, that is, the smallest weakly closed algebra con-
taining A and / and closed under the operation of taking adjoints. The set of all 
operators which commute with every operator in R{A) is called the commutant 
of R(A) and is denoted by R(A)'. N. SuzuKt [14] called an operator primary if 
i?04) is a factor, that is, if its center Z(A) = consists of the scalar 
multiples of the identity. For the terminology, notation and basic results on von 
Neumann algebras we refer to J . DIXMIER [6]. 

*) This paper was prepared while the author was an Office of Naval Research Postdoctoral 
Associate at Indiana University (1969—70). This work represents generalizations of parts of the 
author's Ph. D. thesis which was directed by N.. S U Z U K I . 
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1. Structure theorems 

In this section we prove the following main structure theorem. 

T h e o r e m I. Let A be an operator on a Hilbert space H andp(z, z) be a non-
commutative complex polynomial for which p(A, A*) is a compact operator. Then 
there exists a unique sequence of central projections {/',}"=0 (11 = <*>) in R(A) so that 

n 
A A g @ ^ ® Aj, 

1 = 1 

where A0=AP0H satisfies p(z, z)2) , At = A\PtH are primary operators with 
p{An A*) compact and non-zero, and K = HQP0H is separable. 

We are interested in studying this theorem in the special cases where p(z, z) is 
one of the following polynomials: 1) p(z,z) = z — z, 2) p(z,z) = zz—zz), 
3) p(z, z) = zzz — zz2, 4) p(z, z) = 1 — zz, and 5) p(z, z) — z — zzz. Case 1) has 
been studied by M. S. BRODSKII and M. S. Livsic [3], and N. SU Z U K I 'S original 
work also concerns it. The cases 2) and 3) have been studied by H . BEHNCKE [ I ] 

and [2]; and case 3) by A. B R O W N [4]. BEHNCKE obtained his structure by using 
C*-algebra methods while Suzuki's original work is based on ^ - a l g e b r a i c 
techniques. Case 4) has been studied by B . S Z . - N A G Y and C. FOIA§ if T is a con-
traction and by the author [8], where results analogous to Theorem 1 appear. 

The proof of the theorem will be based on a proposition f rom the theory of 
von Neumann algebras. Let M be a von Neumann algebra and T be an operator 
in M. The support of T is the projection P on f*H and P£ M. The central support 
of T is the smallest projection F£Z = MPlM'°which majorizes P. If / is a family 
of operators in M we say that F is the central support of # if it is the smallest pro-
jection in Z which majorizes the support of each T £ f . A non-zero projection 
QdM is called minimal if it is an a tom in the lattice of projections in M, that is, 
whenever R is a non-zero projection in M such that R = Q, then R = Q. 

P r o p o s i t i o n 1. Let M be a von Neumann algebra such that A*/ V/ - Wm 
has central support I. 3) Then the lattice of projections in Z (the center of M) is atomic, 
that is, each non-zero P^Z majorizes a non-zero minimal projection Q£Z. 

P r o o f . Let O^P^Z. If PT=0 for each T ^ M , then {I-P)T = T for each 
Hence I—P would majorize the central support of and / ^ I— P which 

implies that P = 0. Thus there is a T(Le£M such that i>7V0. Furthermore we may 
assume that T=T* and PT=T. By the spectral decomposition of the compact 

2) We say that the operator 7"satisfies p(z, z) if p(T,T*) = 0. 
3) is l:ho two sided ideal of compact operators in H. 
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selfadjoint operator T, we may conclude that E = PE?i 0, where E is the spectral 
projection on an eigenspace corresponding to a non-zero eigenvalue of T. E is 
finite dimensional since T is compact and the eigenvalue associated with E is non-
zero. It is easy to show that £ £ M (Proposition 1 in [14]). Since E is a finite dimen-
sional projection in M we may choose a projection El so that 0 <EiSE and 
Ei is a minimum non-zero projection in M ( £ , may be chosen so that 
0 ^ d i m ( £ , / / ) = min { d i m ( E H ) : F£M and O^FsE}). If we let Q be the central 
support of £ , 6 M, then we shall show that Q is a non-zero minimal projection in 
Z which is majorized by P. Since P s £ , , it is clear that P^Q. Let R£Z such that 
R ^ Q . If 7?£, = 0 , then ( £ ) - / ? ) £ , = £ , ; hence Q ^ Q - R , which implies that 
R= 0. Since £ , is a minimal projection in M, if REt ^ 0, then we have that REt — £ j . 
Because R is a central projection, we obtain the inequality 0 ^ R = Q = R, and 
hence R = Q. Therefore we have shown that Q is a minimal projection in Z. 

Using this proposition we now prove Theorem 1. 
P r o o f . First we describe the subspace HQP0 H which occurs in the statement 

n 
of the theorem. Let w(A, A*) — ]J Ak'A*'"' be a word in A and A*, that is, kt 

i= 1 
and 777,- are non-negative integers, possibly zero, and n is any positive integer. Denote 
by Ji the subspace of H generated by {w(A, A*)x: x£p(A, A*)H and w(A, A*) 
is any word in A and A*}. The image of a compact operator is a separable sub-
space; hence p(A, A*)H is separable and thus the separability of Ji follows from 
the construction of Ji. It is also clear that Ji is invariant under A and A* and hence 
Ji reduces A, that is, if Q is the projection on Ji, then Q 6 R(A)'. Let Tbe an arbitrary 
operator in R{A)' and y^Ji be of the form w(A, A*)x, where x—p(A, A*)z. Then 
Ty = Tw(A, A*)x—w(A, A*)Tx = w(A, A*)p(A, A*)Tz£Ji; thus Ji is invariant 
under T£R(A)'. Since R(A)* = R ( A ) , we may conclude that Q £R{A)" = R{A) and 
therefore that Q£Z(A) = R{A)f\R{A)'. 

Denote by P0 the central projection /— Q and by A0 the restriction of A to 
P0. Next we shall show that p(A0, AD = 0 . If x^H0 = P0H, then x = (I-Q)x 
a n d p ( A 0 , A * ) x = Qp(A0,A*0)x = Qp(A0, A*)(I-Q)x = Q(i-Q)p(A0, A*)x = 0 . 
Furthermore, since Q is a central projection in R(A), Ji is generated as before, 
with A replaced by AQ. If we denote by AQ the .operator A\QH, then HQH0 = Ji 
is generated by words in AQ and Aq acting on p(AQ, Aq). 

The algebra R(A)Q = {T\QH: R{A)} is equal to R(AQ) and Z(A)Q = Z(AQ) 
[6]. By our remarks above, the identity operator on QH is the central support of 
the set of operators consisting of p(AQ, Aq) multiplied by words in AQ and Aq. 
Each of these operators is compact and thus /Q is the central support of ^ r <_A q ) . 
By Proposition 1, the lattice of projections in Z(R(Aq)) is a complemented atomic 
lattice. By Zorn's lemma we may choose a maximal family {£•,}"=! ( « S ° ° ) of mu-
tually orthogonal minimal projections in Z(Aq). This family is countable since 
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QH = Jl is separable and 2 Pi=IQ since the family is maximal. Because Z(AQ) = 
/ = i 

.'= Z(A)q there are projections {Q,}"=ICZ(A) such that Qi\Qff = Pi- If we define 
Pi = QiQ, then Pi\QN=Pi and is a family of mutually orthogonal minimal 

n 
projections in Z(A) with the property that 

i= 1 
Since Pl is minimal projection in Z(A), it follows that Ap is primary. Since 

p(Ap ,A* )=p(A, A*)\PiH, it is clear that p(Ap , Ap) is compact; however, we 
must show that p(AP/, Ap ) ^ 0. If we assume that p(APj, APj) = 0 for some . / 5 1 , 
then w(Ap , A* )p(Ap,, A*)= 0, for any word w(Ap., A*)= f[Ak>A*m<. We would j j j J J J i = 1 " 
then have that {0} = w(APj, A*)p(APj, A*p)PjH = Pj(w{A, A*)p(A, A*)H; thus it 
would follow that PjQ = 0. Therefore PjLQ, which is a contradiction, since Ps is 
non-zero and Pj S Q. 

R e m a r k 1. The argument given in the paragraph above is valid if P j is any 
projection in R(A)'. That is, if TV is a reducing space of A on which p(A\N, /4*|yV)=:0, 
then NcP0 H. 

R e m a r k 2. The central support P of an operator T £ M is also the central 
support of T* and P also majorizes the projection on the smallest reducing space 
of T which contains TH. Thus we see that Q, as defined in the proof of Theorem 1, 
is the central support of p{A, A*). 

For each / S 1 , we have that 0 ¿¿piAj, A f ) and thus the dimension o f p ( A n Af)Hi 

(7/; = P ; / / ) is S i . Therefore, if p(A, A*) is itself of finite rank, then the decomposi-
tion given in Theorem 1 is finite. 

C o r o l l a r y 1. Let A be an operator and p(z, z) anonmmutative polynomial for 
which p (A, A*) has finite rank. Then the decomposition in Theorem 1 is finite, that is, 
the index n in Theorem 1 is finite. 

P r o o f . The decomposition of A given by Theorem 1 has the property that 
dim (p{A, A*)H) = A*)H) and for / s 0 dim (p(A„ A*)H) ^ 0 . 

In some cases we may wish to consider more than one non-commutative poly-
nomial of z and z. We can then extend the above idea so as to include this situa-
tion. For simplicity we shall only consider the case of two non-commutative poly-
nomials. 

P r o p o s i t i o n 2. Let A be an operator and p(z,z) and q(z, z) be commutative 
polynomials. Then there exists unique central projections, P, ( / = 1 , 2 , 3, 4) in R(A) 
such that A = AlQA2@A3QA4, where A1 = A\P^ H satisfies p and q, A2 satisfies 
p and has no reducing subspace on which it satisfies q, A 3 satisfies q and has no 
reducing subspace on which it satisfies p, and A4 has no reducing space on which it 
satisfies either p or q. 
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P r o o f . Let Ql be the central support of p(A, A*) and Q2 the central support 
of q(A,A*). Let Qv-Q2 = P4', then by Remark 1 A4 = A\P4H has no reducing 
space on which A4 satisfies either p or q. Let Q3 be the central support of the set 
{ / > ( / M * ) , ? 0 M * ) } , t h a t i s g 3 = QZ + QI-QIQI-VPI =I-Q3,P2 = Q3-QI, 
and P3. = Q3 — Q2, then {P^, P2,P3, P4i satisfy the conclusion of the proposi-
tion. 

R e m a r k . As a special case of Proposition 2 we may consider only one poly-
nomial p{z,z). In this case we decompose A into A0@A1 where p(A0, A*o)—0. 
By the remark following the proof of Theorem 1, we note that Hlt the space on 
which Ax is defined, is generated by {w(A, A*)p(A, A*)H: w(A, A*) is any word 
in A and A*}. This result is known in some special cases. Livsic and BRODSKII [3] 
call an operator simple if it has no reducing space on which it is selfadjoint. In 
this case H^ is generated by {A"(A-A*)H\ « = 0, 1, 2, ...} and A\Ht is called the 
simple part of A. HALMOS [9] calls an operator abnormal if it has no reducing space 
on which it is normal. Finally B. S Z . - N A G Y and C . FOIA§ use the terminology com-
pletely non-unitary for contractions with no reducing spaces on which they are 
unitary. This latter notation seems the most descriptive of the situation. 

If we combine Theorem 1 and Proposition 2 we obtain the form that the structure 
theorem takes in many of its applications. 

T h e o r e m . 2 . Let A be an operator andp{z,z) and q(z, z) be two non-commuta-
tive polynomials such that p(A, A*) is compact. Then there exists unique centra! pro-
jections {P;}"= 1 (/2 = °=) in R{A) so that 

A = A1®A2@A3® 2®a>, 
¡S 4 

where A ^ A ^ ^ , p(A1} A*)=q(A1, A*)=0, p(A2,A2)= 0, A2 has no reducing 
space on which q(A2, A f ) = 0, q(A3, A3) = 0, and A3 has no reducing subspaces on 
which p(A3, Aj)=0, A. (/ = 4) are primary operators with p(An A f ) compact, and 
each Ai (i&4) has no reducing subspace on which q(An A*) = 0 or p(An A*) = 0. 

P r o o f . From Proposition 2 we obtain the projections Pl} P2, and P3. Apply-
ing Theorem 1 to the operator Ap and the algebra R(APJ we complete the de-
composition of A. 

We now turn to the structure of primary operators A for which p(A, A*) is 
compact and non-zero. Here the algebraic character of the operator plays the impor-
tant role. This fact was first noticed by SUZUKI for primary operators with compact 
imaginary parts. The following proposition is essentially a restatement of Proposi-
tion 2 in [14]. Let A be a primary operator a n d p ( z , z) a non-commutative polynomial 
for which p(A, A*) is compact and non-zero. The projections on proper subspaces 
of Re (p(A, /1*)) and Im (p(A, A*)) corresponding to non-zero proper values have 
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finite rank and belong to R(A). Since at least one such projection exists and is non-
zero, we have that R{A) contains finite dimensional projections and hence R(A) 
contains minimal projections. Therefore the von Neumann algebra R(A) is a factor 
of type / and the dimension n of a minimal projection in R(A) is uniquely determined. 
The number n is a unitary invariant for A and is called the multiplicity of A. 

P r o p o s i t i o n 3. Let A be a primary operator and p(z, z) a non-commutative 
polynomial for which p(A, A*) is compact and non-zero, if n is the multiplicity of A, 
then R(A)' (the commutant of R(A)) is of type I„. 

The proof is similar to the proof of Proposition 2 in [14]. 
The type of algebra generated by an operator has been studied by many authors. 

As a corollary to Proposition 3, we have the following result. 

P r o p o s i t i o n 4. If A is an operator and p(z, z) is a non-commutative polynomial 
for which p(A, A*) is compact, then R{A) is a type I algebra if and only if A0 (given 
by Theorem 1) generates an algebra of type I. 

Now for special cases we can determine certain operators that generate type / 
algebras. 

C o r o l l a r y 2. Let A be an operator for which p(A, A*) is compact. Then A. 
generates a type I von Neumann algebra if 

i) p(z,z) = z—z, ii) p(z,z) = zz — zz, or iii) p(z,z) = 1 — zz. 

P r o o f . This result is known for case i) (SUZUKI [14]) and case ii) (BEHNCKE [1]). 
Case iii) follows since an isometry generates a type I von Neumann algebra. 

R e m a r k . C A R L PEARCY gives examples of partial isometric operators which 
do not generate type I von Neumann algebras [10]. Hence for p(z,z) = z—zzz 
and an operator A such that p(A, A*) is compact, the algebra R(A) need not be 
type I. 

Now we complete the algebraic structure of operators A for which p(A, A*) 
is compact and non-zero. We shall show that when the operator A is also primary, 
then it is just the direct sum of n copies of an irreducible operator V with the proper-
ties that p(V, V*) is compact and non-zero. The following theorem is similar to Theo-
rem 3 in [14] where the case p(z,z) = z — z was considered. 

T h e o r e m 3. Let A be a primary operator andp(z, z) a non-commutative poly-
nomial such that p(A, A*) is compact and non-zero. If m is the multiplicity of A, then 
A is unitarily equivalent to an operator V®Im, where V is an irreducible operator 
with p(V, V*) compact and non-zero and Im is the identity operator on an m-dimensional 
Hilbert space. 
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P r o o f . A von Neumann algebra of type Iam is spatially isomorphic to (K)<g> 
® {A/,,,}, where ££{K) is the algebra of all bounded operators on an a-dimensional 
Hilbert space K and ?Jm are the scalar multiples of the identity operator /„, on an 
»¡-dimensional Hilbert space [6]. Thus A is unitarily equivalent to an operator of 
the form V®Im£JZ'(K)®{XIm}. One can then show that V must be irreducible. 

If p(z, z) is a non-commutative polynomial, we say that the operator A has 
p-rank r if rank p(A, A*) is r. Using strictly algebraic ideas we obtain the following 
two corollaries of Theorem 3. 

C o r o l l a r y 3. If A is a primary operator with p-rank r and multiplicity m 
then A is unitarily equivalent to V®Im and the p-rank of V is n where r = n-m. 

C o r o l l a r y . 4. Let A be a primary operator with p-rank r. If the multiplicity 
of A is 1 and r is a prime number, then A is either irreducible or else A is unitarily 
equivalent to V®Ir, in which case the p-rank of V is 1. 

We wish to illustrate this theory with examples using the specific non-commuta-
tive polynomials mentioned at the beginning of this section. Operators A with 
A—A* compact have been extensively studied by various authors; see [3] and [14]. 
In this case A is uniquely decomposed by central projections in R(A) as 

A = (n S »), 
i = i 

where A0 is a self adjoint operator and each At ( / = 1 ) is a primary operator with 
Im Aj compact. By theorem 3 each Al — Ff(g>/„ , Vi is irreducible with Im 
compact and non-zero, and These results are due to N . S U Z U K I [14] . 

Following Suzuki's original work, H . BEHNCKE [1] used the theory of ^ - a l -
gebras to prove the analogous theorem when p(z) = zz — zz. If A* A—A A*-is compact 
then A is uniquely decomposed by central projections in R(A) as 

n 
A0® 2®Ai (n oo), 

/=1 

where A0 is normal, each At is primary with A^Af — A^* compact and each Ai = 
— where V-t is irreducible VfVi — Vyf is compact and non-zero, and 

/7; < OO. 

Using the polynomial p(z, z) = zzz — zz2 and q(z, z) = zz — zz and Theorem 2y 

we can obtain the decomposition given by H . BEHNCKE in [2] whenever p(A, A*) 
is compact. 

For contraction operators A with p(A,A*) = I —A*A compact the algebraic 
decomposition has been given by the author [8]. If we consider the polynomials 
p(z,z) = 1—zz and q(z,z) = 1 — zz and an operator ,4 for which p(A, A*) is 
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compact, then Theorems 2 and 3 give the following unique central decomposition. 

n 
A = A0®Al@A2® Z®Ai 

/ = 3 

where A0 is unitary, Ax is a forward unilateral shift, A2 is a backward unilateral 
shift and each Ax ( / S 3 ) is a primary operator. Furthermore, for / S 3 , Ai = K,.<8)/„., 
where is irreducible, I—V*Vi is compact and non-zero, /7;<<*>, and Vt is comple-
tely non-isometric. 

2. Applications 

In this section we give an application of Theorem 1 based on the theory of 
spectral operators [7]. The results of this section give striking examples of how 
the algebraic decomposition of an operator can be used to determine its exact 
structure. 

J. S C H W A R T Z [12] and N. S U Z U K I [15] have determined a structure theorem for 
the spectral operator A whenever A —A* is compact. We will give the analogous 
result whenever: i) A*A—AA*, ii) I — A*A, or iii) AA*A — A*A2 is compact. This 
will correspond to three specific uses of Theorem 1. 

In what follows we shall use several results concerning the Calkin algebra 
associated with ££{H). The algebra is the compact operators in .£?(H)) 
is a B* algebra with involution * and it is called the Calkin algebra associated with 
H. If A denotes the image of A in then (A)* = A* and <r(A)cza(A). For 
details concerning this algebra we refer to [5]. 

The following lemma gives conditions on a spectral operator A which imply 
that the quasinilpotent part is compact or equivalently, that the operator A is a 
scalar type operator in &'(H)/Cg. 

L e m m a 1. Let A be a spectral operator with the canonical decomposition 
A = S + N, where S is a scalar type operator and N is a quasinilpotent operator. 
Then N is compact if any of the following operators i) A* A—A A*, ii) A*— A, iii) 
I —A*A, or iv) AA*A—A*A2 is compact. 

P r o o f . Since A = S + N, we have A = S + $ as the canonical decomposi-
tion of A in £'(H)/<£. In cases i) and ii) we clearly have that A is normal. Since the 
decomposition into scalar and quasinilpotent parts is unique, we may conclude 
that N=0 and therefore N is compact. Part i) was proven by S C H W A R T Z in [12]. 

In the case iii), A is an isometry. It can be shown directly that isometric spectral 
operators are normal. 

In case iv) we are considering an operator A=B such that BB*B — B*B2 = 0. 
A . B R O W N [4] has completely characterized these operators; he shows that B —• VD, 
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where V is an isometry, D s O and VD—DV. Again one can directly show that a 
spectral operator B satisfying iv) is normal. However in case iii) and iv) the operatcr 
A is also subnormal. 

J. STAMPFLI has shown [ 1 3 ] that in a separable Hilbert space every subnormal 
spectral operator is normal. His proof is independent of separability and hence 
can be used here. Hence in either iii) or iv) we may conclude that 7V = 0 and there-
fore N is compact. 

Now we present the main theorem of this section. 

T h e o r e m 4. Let A be a spectral operator on a Hilbert space H. Whenever at 
least one of the operators i) A* A —AA*, ii) A*—A;iii) I — A*A, or iv) AA*A — A*A2 

is compact, then A decomposes into the algebraic direct sum 

A = A0+ jt + ttJi + Nd (« S on H = H0+ ¿'+ //,•; 
¡= i /=1 

where {//,},=0 are invariant subspaces for A, A0=A\H0 is scalar, I. is the identity 
operator on / / , , /, + /V;) = A \ Hi, ^¡£a(A), Nt is a compact quasinilpotent operator 
and HJVjU —0 if n = co. Furthermore in the cases ii) and iii) we also have, that respec-
tively, A0 is similar to a self-adjoint operator with Im Af -»-0 if n = and A 0 is similar 

n 
to a unitary operator with /.¡j —-1 if n = °°. Finally, the non-scalar summand 2 + Hi 

1 = 1 
is separable. 

P r o o f . Let A be a spectral operator with canonical decomposition A = S-hN 
where N is compact. Let R be the invertible operator for which RSR'1 is normal 
and let B = RAR-\ T = RSR-\ and L = RNR~l. Now L is also compact and 
T is normal, so that B = f and B*B — BB* is compact. 

Using the polynomial p{z,z) = zz — zz. in Theorem 1, the operator B de-
composes as 

B = 2*o© 2®Bi (« 3= «,), with H = H0© 2®Hh 
i = i i = i 

where B0 = B\H0 is normal and Bi = B\Ht is a primary operator (z 'Sl) . 
Each Bi ( r ' S l ) is also a spectral operator and has the canonical decomposi-

tion Bi — Ti + Li. Since T, L£R{B)' and the decomposition of B was by central 
projections in R(B), the operator Tt is T\Ht and L, is L\Ht. Each Ti is normal and 
belongs to the center of the algebra R{B^. Since Bt is a primary operator, we may 
conclude that T^XJi for some scalar )H (/,• is the identity operator on //,). Because 
{Xi} = o{T?)C2(j{T) = a(B) = o(A), we note that A;£<r(A). Therefore B is decomposed 

M 
as B = BQ@ 2®(hh+Ld furthermore, since L is compact, ||L,|| 

¡=1 
if rt = oo. . . 



248 F. Gilfeather 

If A satisfies any of the conditions i)—iv), we have by Lemma 1 that N is compact. 
Therefore, A has the decomposition given above. Now we shall discuss the special 
cases ii) and iii). In either case O{B)—O(A)^>O(B0) and A(A) = A(B)Z>A(B0). In 
case ii), A (A) is real and hence B0 is a normal operator with A(B0) real, that is, 
B0 is self adjoint and Im (B0) is compact. By reordering, in the above decomposition, 
and redenoting B0 as the selfadjoint part of B0, we obtain in case ii): 

B = B0® 2®(KH + LD (« S 
1 = 1 

where B0 is selfadjoint, Tm A,—0 and ||Z.;||—0 if N = °°. In case a particular 
arises from the previous B0 we simply define LT = 0. Now if we premultiply by R 

and postmultiply by R-1 we obtain the desired result 

A = A0+ ¿ + + ( « ; = - ) on H = H0+Z + Hh 
;= i i = i 

where A0 . is a scalar operator with real spectrum, Im 1, - 0 and ||7V,|| —0 if /7 = ^ . 
In case iii) we may proceed as in case ii). Since spectral isometries are unitary, 

it follows that A is unitary; thus CR(A)CI {z: \z\= I.} and A(B)a {z: \z\ = 1}. Thus 
B0 is a normal operator with A(B0) on the boundary of the unit disk. Hence B0 = 
= U@ where U is a unitary operator, {A,} = (t(B0)\{Z: |z| = 1}, and is 
the identity operator on the eigenspace corresponding to A;. We may redenote B0 

as the unitary part of B0 and obtain the decomposition: 

B = B0® ¿ © ( A ^ + 4-) 
1 = 1 

where B0 is unitary and ||L;|| —0 if = The set {2,} does not have limit points 
in the set {z: \z\< 1}, since da(A)cz(r(A) U (isolated eigenvalues of A of finite multi-
plicity} [II]; therefore, we conclude that —1 if « = 

By premultiplying by R and postmultiplying by i ? - 1 we finally obtain that: 

A =A0+ 2 + ( V i + N,) (/7 ^ - ) on H = H0 + 2 + Q-ih + 
i= 1 1 = 1 

where A0 is a scalar type operator with a{A0) lying on the circumference of the 
unit circle, — 1 and H./VJ —0 if n = <*>. 

R e m a r k . The use here of Theorem 1 is similar to that made by N . SUZUKI 

in the case ii) [15]. However, the use of the spectral properties of an operator A 
and A are details that differ from the proof of ii) in [15]. This Theorem for case 
ii) was originally given by J. SCHWARTZ using completely different methods. 
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R e m a r k . By the argument given in the first part of the proof, we see that 
the decomposition in the theorem holds for any spectral operator with compact 
quasinilpotent part. 
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Weighted bilateral shifts of class C01 

By FRANK G1LFEATHER in Honolulu (Hawaii, U.S.A.) •) 

In this paper all operators are bounded operators on separable Hilbert spaces. 
B. S Z . - N A G Y and C. FOIA§ have developed a classification theory for contraction 
operators ( | | r | | ^ 1 ) which is based on the asymptotic behavior of the operator and 
its adjoint [6; Chapter II, Section 4]. A contraction operator T on H is called type 
C 0 1 if 0 for all h^H and T*nh-1>0 for each h£H, h^O. For complete details 
of this classification theory we refer the reader to [6], Chapter II, Section 4. 

Some properties of the operators in C 0 1 are known. Whenever T£C01 and 
the rank of I—T*T is finite, then the rank of I—TT* is strictly smaller than the 
rank of I— T*T; cf. [6], Proposition I. 2. 1 and Theorems II. 1. 1—2. Hence it 
follows f rom [6], Theorem VI. 4. 1, that op(T) includes the whole open unit disk D. 

A contraction T is called a weak contraction if I—T*T is of trace class and 
if o{T) D. In [6], Chapter VIII, the structure of weak contractions is extensively 
developed. Our examples shall show that this structure cannot be extended to the 
Schatten class <Zp for any p> 1; cf. [1], X. 1. 9. 

In this note we present examples of contraction operators in the class C 0 1 

which have no point spectrum. Example 1 will show that the spectrum can lie on 
the circumference of the unit disk and the point spectrum can be empty even when 
J—T*T is an ®p operator with p> 1. Furthermore the example will give realiza-
tions of C 0 1 operators for which T has a cyclic vector. Examples will be in C 0 1 

with a(T) — D. Specifically all the examples will have in common the following 
properties: 

(i) T is irreducible, 
(ii) ap(T*) = ap(T) = 0, 
(iii) T has a cyclic vector, 
(iv) T* has no invariant subspaces on which it is an isometry. 

') This work was done while the author was an Office of Naval Research Postdoctoral Associate 
at Indiana University. The author acknowleges that these results are examples for questions raised 
b y C . F O I A ? . ' 
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The examples will be generated by weighted bilateral shifts. Let H be a 
separable Hilbert space and {e„} (n = 0, + 1 , ± 2 , ...) an orthonormal basis. Let 
T be the operator which maps en onto co„e„+1 (n = 0, + 1 , ± 2 , ...), where a>„ is a 
complex number. The set {co„} is called the weights of T. T is a contraction iff 

for every n. The following proposition determines the class to which T 
belongs. 

P r o p o s i t i o n . Let T be a weighted bilateral shift with weights {a>„} such that 
T is a contraction. 

a) T£C0. if and only if either (i) for every positive integer N there exists an 
n>N such that w„ = 0. or (ii) for some subsequence {«,} of positive integers with 
a>„ T̂ O the infinite product [J |co„J diverges. 

b) T^Ct. if and only if each « ¡ ^ 0 and the infinite product [J |ai,| converges. 
¡s o 

The proof of this proposition is straightforward and appears in [2], Chapter II. 
As a corollary of this result we determine when T is a C0 i contraction. 
C o r o l l a r y . Let T be a weighted bilateral shift with weights (OJ„} such that 

T is a contraction. Then T£.C0l if and only if for all n = 0, ±1, ... , 

(i) ]J oj; diverges, and (ii) JJ |co;| converges. 
i u i^n 

R e m a r k . If we assume that co^O for all i, then T£C0i if and only if J] |co,-| 
i s 0 

converges and ] J Icod diverges, 
i s o 

Now we shall present the first example. 

E x a m p l e 1. Let T be the weighted bilateral shift with weights 

\i n- 1 
H n 

CO„ = \ n2— 1 

if n > 1, 

if n <— 1, and 

1 otherwise. 

The operator T is in the class Coi, has properties (i)—(iv) and furthermore I—T*T 
is an <Zp operator for /) > 1. 

First we shall show that T£Col. Since all the weights are less than or equal 
(n-

to 1 we conclude that | |71 ^ l . T h e infinite product J J has its partial pro-
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ducts converging to zero. By the proposition we can conclude that T£C0.. The 
1 . n 2 - 1 

series 2 — i s convergent and hence the infinite product J ] does convergence. 
n2 n2 

From our corollary and the remark following it, we have T£C01. Furthermore 
the products fik = / / OJ; are convergent and have the property that -»0 as /(->•+<». 

isle 
Now we shall discuss the properties (i)—(iv). Properties (i) and (iv) are easily 

shown. That T is irreducible can be deduced from a result due to R. L. ICELLEY 

[3], Problem 129. Assume that T* has an invariant subspace on which it is an iso-
metry and h is any non-zero vector in that subspace. Since {e„} is an orthonormal 

oo oo / 11 — 1 \ 
basis, we have, h = 2 akeu a n d T*"h = 2 \ II <°i-n\ek-„- F ° r n lai 'ge 

/c=-<=° / {=-= \i = o / 

Jl^t-
1 = 0 

9-1. When this enough (n ^ 4) and for some lc with ak / 0, we will have 

happens, then \\T*"h\\ ^ ||/>||. Thus we reach a contradiction to our assumption 
that T* had an invariant subspace on which T* was an isometry. For p >-1 the 

sum 2 (1 ~ mf)" is j u s t the sum 2 W~ T* T)e,\\p. By our choice of co,, this sum 

is finite whenever p> 1, and hence T belongs to the Schatten class <3 . 
The convergence properties of the weights will enable us to show property (ii). 

As we mentioned in the introduction, of most interest is the property that op(T) = 0. 
It follows from [5], Theorem 5, that o(T)= {A: |A| = 1}. Therefore since T i s a com-
pletely non-unitary contraction, we have ap(T) = aP(T*) = 0. However this is easy 
to see by directly calculating the spectral radius of T~l. From our definition of 
T it follows that | | r _" | | ^ n ( n > 1) and hence the spectral radius of T~1 is 1. Since 
the spectral radius of T and T~1 is 1 we must have that a{T) c. {A: |A| = 1}. 

In order to show (iii) we shall construct the cyclic vector using the criterion 
for a cyclic vector of the simple bilateral shift (that is, all weights are 1 and the 
multiplicity is 1) [4], p. 114. In order to do this we first show that the simple bi-
lateral shift is quasi affine to T. We have already mentioned that /?„ = JJ coi is 

imn 
defined for all n. If we define Xi to be the operator which maps en to P„e„, then X 
is an injective selfadjoint operator on H. For each vector e„ we have TXe„ = Tj3n en = 
• - co„/i„e„ ¡-1 = /i,H 1ell+1=Xen+1=XSe„, where S is the simple bilateral shift. Let 

/ b e a cyclic vector for S. Thus s p a n { r , ^ f } = span{Z5" ,/} = Z s p a n { S " 7 } = / / 
and Xf is a cyclic vector for T. 

If we choose different weights we can construct an example of a C 0 1 operator 
with properties (i)—(iv) and with the additional property that a{T) = {X\|A|sl}. 

3 A 
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E x a m p l e 2. Let T be the weighted bilateral shift with weights 

n2- 1 
n2 

(o. = J_ 
k 

if n < - 1, 

if n — k3, k >- 1, and 

1 otherwise. 

Then T belongs to C0l, has properties (i)—(iv) and the property that a(T) is the closed 
unit disk. 

That T is in C 0 1 and satisfies (i) and (iv) is clear. To see that T has a cyclic 
vector we proceed exactly as in the proof of Example 1. R . L. KELLEY has shown 
that o(T) is connected [5], p. 354. Since o{T) has circular symmetry [3], p. 75, we have 
that t r ( r ) = : { A : | A | s l } . To show property (ii) let us assume that k£ap{T). T is 
completely non-unitary, hence Since all the weights are non-zero we also 
know that 0$o-p(r) . Let h=Iane„ be an eigenvector for eigenvalue X of T. By 
matching the corresponding Fourier coefficients of Th and Xh, we obtain for all n 

( * ) co„_ian_1 = Âoc„. 

If o f 0 =0, then h = 0 since our weights are all non-zero. For « > 0 we obtain from 
( * ) that 

If we let n +1 = k3, then 
an + 1=X-k3(k O-^ô'ao-

This sequence does not converge to zero whenever |A|<1. Hence {a„} cannot be 
the Fourier coefficients of a vector h£H. By this contradiction we conclude that 
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Degree of approximation by Cesaro means 
of Fourier—Laguerre expansions 

By D. P. GUPTA in Allahabad (India) 

1„ The Fourier—Laguerre expansipn of a function f(x) GL[0, » ] is given by 

( 1 . 1 ) / ( x ) ~ 2 ' a j V i x ) , 
11 = 0 

wheie 

(1. 2) r ( « + 1 ) (n + a) a„ = J e~*x*f(x)LW(x) dx, K ' o 

and L(f (x) denotes the Laguerre polynomials of order « > — 1, defined by the 
generating function 

(1. 3) 2 W(x)co" (1 CO)-"-1 exp ] . 
n=o l I—co) 

The »th Cesaro sum of order lc of the series 

(1. 4) J I $ \ t ) 
n = 0 

is, by definition, the coefficient of r" in the expression 

(1-r)-"-1 2 L^(t)r" = (1 - r)~u~ *(1 -r)-"~1 exp 
n=o 

and is therefore equal to L^+k+l\t). 
In this paper we shall discuss the order of Cesaro means of the series (1. 1) 

at the point x = 0 . On account of the relation L^f (0) — | /Z ^ a j , we have 

(1. 5) J fl„LW(0) = {r(a + 1 ) } - 1 2 f e-H«f{t)LP{t)dt 
11 = 0 11 = 0 o 

(see SZEGO [7], p. 269). Using the Cesaro means of the series (1.4), we find that the 
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nth Cesáro means of order k of the series (1. 5) are given by 

(1.6) <7^(0) = {A^r^ + l)}-1 J e-t°f(t)Li"+k^>(t)clt, 

where A (k) e n 
The Cesáro summability of the series ( 1 . 5 ) has been studied by KOGBETLIANTZ 

[2] and SZEGÓ [6]. It has been shown by SZEGŐ [6] and [7], p. 270, that i f f ( x ) is con-
tinuous at x = 0 and if 

(1. 7) f e-x'2x-k-i,3\f(x)\dx < co, 
i 

then the series (1. 1) is (C, /t)-summable at the point x ^ O with the sum/(0) , provided 
that k > a + 1/2. 

In Theorem I of this paper we estimate the order of Cesáro means of the series 
(1. 5) after replacing the continuity condition in Szegő's theorem by a much lighter 
condition. Similar results for Fourier-trigonometric series and for ultraspherical 
series on a sphere were established by OBRECHKOFF [3], [4]. In Theorem II we prove 
an extension of Theorem I by introducing a parameter p thus arriving at a deeper 
insight into the behaviour of Cesáro means. Such extensions in the case of Fourier-
trigonometric series were given by W A N G [8] and SUNOUCHI [5], while the author 
[1] has earlier studied such a problem for the ultraspherical series on a sphere. 

T h e o r e m I. If 

( 1 . 8 ) F ( , ) = f ^ - d u = o [ l ó g j ) 

and 

i 
then 

ff«'t>(0) = o(log/7)) 

provided that k > a. + 1 /2. 

2. In the proof of the theorem we shall require the following order estimates 
and asymptotic values of the Laguerre functions given by SZEGŐ [7], pp. 1 7 5 and 2 3 9 . 

Order estimates. If a is an arbitrary real number, and cand a> are fixed positive 
constants, and n - » , then. 

IX-a/2-1/4 0(^/2-1/4^ i f c j n ^ x ^ a ) , 

( 2 - 1 ) L " ) { x ) = \0{,f). if 0 sx^c/n. 
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Asymptotic property.*) If a and X are arbitrary real numbers, a > 0 and 0 < 77 < 4, 
then for n °° 

(2. 2) max e ~ */2 | L « (x) | - nQ, 

where 

(2. 3) Q -{ 
max (A—1/2, a/2—1/4) if a s x ( 4 - rf)n, 
max (X —1/3, a/2 —1/4) if x s a, 

and the maximum at the left hand member of (2, 2) is taken in the respective interval 
pointed out in (2. 3). 

(3.1) < ' ( 0 ) = { ^ ) r ( a + l )} - 1 

3. P r o o f of T h e o r e m I. From (1. 6), 

1 ¡11 1 ~ 

/ + /+/ Lo 1/11 1 

Using the order estimate (2. 1) we find that**) 

1 In 

h+h+h-

1/n 
/ j = 0{n~k) J' e-tty\f(t)\n0l+k+iclt = 0(nx+1) f i|/(0| dt = 

0ù 0 

1 In 
= 0(na+i)[taF(t)]yn+ OQi«+i) f ta~lF(t)dt = 

(3.2) 

= 0 ( / f + ') t"o\t log 

= o(log/7) + 0(77 a + 1 ) log 

Un f ^ 
+ O (»A + ') J O log y j dt = 

1 t a+ 1 

a + 1 
dt 

1/» 

0 t ( a + 1 ) •> a + . 

= o(log77) + o(log77) + o ( l ) = û ( log«) . 

In I2, we make use of the first estimate of L"(x) given in (2. 1) and we obtain 

itf »I 
*) If ¿„T^O and the sequence has finite positive limits of determination, we write a,,~6, 

\b„\ 
**) Condition (1.8) implies that 

F(l)= j |/(H)| du = oit log—j . 
ft ^ ' 
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0{n~k) f e-'ta\f(t)\n<a+k+l)l2-li4t-i'+k+i)'2-1iAdt = 
1 In 

(3 .3) 0[n-k+i«+k+1)/2-1/4] / r / 2 " t / 2 - 3 / 4 1 / ( 0 1 i/i -
1 In 

- k / 2 + l / 4 n - x / 2 + k/2- I/*] / W 2 U = 0 ( 1 ) / + / 
i /« ' It/« a 

a i 

= 0 ( l ) o ( l o g w ) + O ( l ) / - J ^ - i / i = o ( l o g « ) + <?(!) = o(log/7). 

Finally, from (2. 2) and (1. 9), 

/3 = 0{n~k) f e-'t"\f{t)\\L^k^\t)\dt = 
1 

(3 .4) 

0 ( n " * ) / e - » / 2 i a - f c - l / 3 | / ( / ) | 0 ( « k ) i / f = 0 ( 1 ) = o( logw). 

The theorem gets proved on account of (3. 1), (3. 2), (3. 3) and (3. 4). 

4. An additional parameter p, — m a y be introduced into the theo 
rem proved above so as to obtain a still finer result : 

T h e o r e m I I . If 

P + I 

(t - 0, -1 < oo), 

and if 

J g - i / 2 , « - * - 1 / 3 j y ^ i ^ < 00> 

1 

then = 0[(log n)p+ *], provided that k > a + 1/2. 
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P r o o f . A s in the p r o o f of T h e o r e m I, we b r e a k the i n t eg ra l i n t o h + h + h -
/ 3 gets d i sposed off exact ly as be fo re . C o m i n g t o IL, we h a v e 

l/'l ! / » , „ , 
Ji = 0(n~k) f e-<t"\f(t)\n*+k+1 dt = 0(nx+1) J J i ^ - t 1 * ' d t = 

0 

O C « ^ 1 ) 
( u J(=o 0 v, u J 

1 I« , xP+1 

o [ ( l o g « ) " + 1 ] + o ( « ' + 1 ) / ta | l o g —J dt = o [ ( l o g / j ) p + 1 ] . 

T h e e s t ima te f o r / 2 is immed ia t e ly o b t a i n e d f r o m (3 .3 ) . T h i s c o m p l e t e s t h e p r o o f . 

I a m g ra t e fu l t o P ro f . R . S. M I S H R A f o r h is k i n d adv ice d u r i n g t h e p r e p a r a t i o n 
of t he p a p e r a n d to t he re fe ree f o r his va luab le sugges t ion r e g a r d i n g t h e p r e s e n t a -
t i on . 
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Operators unitary in an indefinite metric 
and linear fractional transformations 

By J. WILLIAM HELTON in Stony Brook (N.Y., U.S.A.)*) 

Introduction 

There is a close connection [2] between unitary operators on a Hilbert space 
with an indefinite metric and linear fractional transformations defined on the unit 
ball of a certain operator algebra (general symplectic maps). Invariant subspace 
problems for indefinite metric-unitary operators are equivalent to fixed point pro-
blems for general symplectic maps. In this note we define three natural classes of 
general symplectic maps — elliptic, hyperbolic, and parabolic. A linear fractional 
transformation of the disk onto itself in the complex plane is elliptic if and only 
if it hasafixed point in theinter ior of the disk. Weprove that this is true for general 
symplectic maps. We also prove a basic inequality (6). We illustrate the strength 
of these two fundamental facts by giving a new proof of a generalized version [1] 
of N A I M A R K ' S Theorem [3] that every commuting family of unitary operators on 
a Pontryagin space has an invariant maximal positive subspace. 

Background 

The notation to be used in this paper is the same as the notation in [1]. We 
describe it briefly in this section. 

The bilinear form Q( , ) on a complex Hilbert space N is called an indefinite 
inner product on H provided that H is the direct sum of two orthogonal subspaces 
H+, H_ with respect to which Q{ , ) has the representation 

(1) Q{x,y) ={E+x,y)-{E_x,y) 

where E+ are the orthogonal projections of H onto H±, and x, y are two vectors 
in H. A closed subspace P of H which contains only vectors p for which Q(p,p) = 0 

*) Partially supported by N.S.F. Grant No. GP12549 
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is called positive. A maximal positive subspace is positive and not properly contained 
in any positive subspace of H. If S is a subspace we let 5" = {q\ Q(s, q) = 0 if 5}. 
An operator U on H which satisfies Q(Ux, Uy) = Q{x, y) for all JC, y in H is called 
Q-unitary. Let B denote the set of operators f rom H+ into H_ with norm ^ 1. 

The following facts are well known [1] [4] [5]. There is a natural one-one cor-
respondence between maximal positive subspaces P of H and operators J in B 
such that P = (I + J)H+ ; we write P~J. 

If U is a g-unitary operator, then the matrix for U with respect to H+, H_ 
has the form 

[(1 -J*J)~i* /*(!-//*)-*«»] 
[J(l-J*J)-hl/ (1 -JJ*)-i<p J' 

where ip and cp are unitary operators on H+ and / / _ respectively and J is an operator 
f rom H+ to / / _ with norm S i . The map g : B—B defined by 

(3) %{K) = ( 1 - / / * ) - * [ # + <pK][<p +J*cpK]-i(\-J*J^ 

for all AT£B has the property 

(4) if P~K, then UP~%(K). 

If U is any g-unitary operator with this property we write U ~ 5 and say that 
U corresponds to If U ~ g and g , then V is a scalar multiple of U. Any 
map 5 that arises f rom a Q-unitary operator in the manner described above is 
called general symplectic. The set of all general symplectic maps is a group under 
composition and is denoted by {S l . Note that if g is defined by equation (3), then 
5(0) = 7 . 

A simple inequality 

Suppose that B with | | £ ] | < 1 , suppose that and set / = 5 ( 0 ) . The 
elementary identity J = (1 —JJ*)~V(1 - / V ) 1 combined with the definition (3) 
of 5 yields 

g (K)-J= (1 - JJ*)-* {[# + cpK] № + J*<pK]~1 -/}(1 - J*J)i 

= (l-JJ*)-i{J\l/ + (pK-Jil/-JJ*(pK}[iJ/ + J*(pK]-1(l-J*J)i 
and hence 
(5) %(K)-%(0) = (l-JJ*)i<pK[ilt + J*<pK]-1(l-J*J)i. 

Since | | j q < 1 the inequality ||[<J/ + J*cpK~1 ]| | S {1 H l ^ l l } - 1 is valid and equation 
(5) implies that 

| | 0 r ( K ) * - g ( O ) * | | S 1 1 ( 1 - I I ^ I K l - l l ^ l l } - 1 1 1 ( 1 - 7 V ) * * | | 

s ^"ii^iiii-iiAriij-^iw^-iiafio)*«2}*. 
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Now we extend this to a more general inequality. Suppose that M £ B and 
| | M | | < 1 . There is a map such that (5(0) = M (c.f. Lemma 1. 1 [6]) and it 
is easy to see that | |© _ 1 (^ ) ] | < 1 since ||A^||<1. Since is a group, g o S ^ ^ ; 
thus if we substitute g o © f ° r $ and ©"^(A") for A'into the above inequality we get 

mK)x - 5 (M)xJ | s n I I © - 1 (K)II {1 - II©-1 (K)\\}~1 { W 2 - ||g(M).Y||2}±. 

In other words 

(6) | | g f ( ^ ) x - g i ( M ) * | | ^ c { | | x | | 2 - | | g ( M W | 2 p 

where c is a constant independent of g and of x. 

Three classes of maps in 

Let g N ( g " denote the l i t e r a t e of the map g ( g _ 1 ) in for JV=0, 1,2, ... . 
The set B° = { M £ B : ||M|| < 1} is called the interior of B. 

D e f i n i t i o n . Suppose that g is in An operator M in B° will be called a 
uniformly elliptic [£], a uniformly parabolic [P], or a uniformly hyperbolic [7/] 
point for g provided that 

[£] there is a number a < l such that | |g± N (A/) | | < a for all N. 

[/>] %±N(M) is invertible for large N, | | [ g ± N (M) ] - 1 | | - 1 , and | | g w ( M ) -

- ( T W ( M ) | | - 0 . 

[H] g ± i V ( M ) is invertible for large N, | | [ 5 ± , V ( M ) ] - 1 | | - 1 , and there is a <5>0,so 

that | | [S w (M)-2 f - A r (M)]x | | S <5||x|| for all N and all x£H+. 

T h e o r e m I. A map g i h a s a uniformly elliptic, parabolic, or hyperbolic 
point if and only if every operator M in B° is a uniformly elliptic, parabolic, or hyper-
bolic point for g . 

P r o o f . Elliptic case: Suppose that M £ B ° is not a uniformly elliptic point for g . 
Then there is a sequence of vectors x N w i t h ||x,v|| = 1 such that ||g iy(M)x iV | | — 1. 
If K e B ° , then inequality (6) implies that | [ ( A " ) — g'v(A/)x iV|| - 0 . Therefore 
l l g ^ A O x J - 1 , and so K is not an elliptic point for g . 

Parabolic Gase: Suppose that M is a uniformly parabolic point for g . If AT£B0, 
then inequality (6) implies that II<5±JV(AT> — <y±jVC^)l! - 0 and thus %±N{K) is in-
vertible for large N and ||[g±iV(A:)]-1 | | - 1 . Furthermore, 

| | S № ) - $ № ) | | s | | g ^ / 0 - g " ( M ) i i + | | g " ( M ) - g - * ( M ) | | + 
(7) 

+ l l ( T W - r » ( / 0 | | . 
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Inequality (6) and the fact that M is a uniformly parabolic point for 0r imply that 
the right hand side of inequality (7) converges to 0. Therefore K is a uniformly 
parabolic point of F. 

The Hyperbolic Case is proved similarly. 

D e f i n i t i o n . A map ' s called uniformly elliptic, parabolic or hyper-
bolic if and only if it has a uniformly elliptic, parabolic or hyperbolic point, respec-
tively. 

Fixed point theorems 

T h e o r e m II. A map 5 '•'>' uniformly elliptic if and only if 5 has a fixed 
point in the interior of B. 

P r o o f . The following is a consequence of Theorem 6. 1 [5] due to R. S. PHIL-

LIPS: 

(8) If U is a g-unitary operator, then ||£/±JV|| < M for all N if and only if U has an 
invariant maximal positive subspace P with the property P + P' = H. 

We now pro \e the equivalence of the Theorem II and (8). Suppose that U corres-
ponds to 5 as in (4) with the matrix representation for U given by (2). Since U is 
Q-unitary, U~' = [E+ — E_]U*[E+ — £ _ ] and an easy computation shows that for 
x £ H + and y £ H _ we have 

\\U-{[x+y}\\2 = -J*J)-ix-il/*0-J*JriJ*y\\2 + 

+ ||-<p*(l -JJ*)~iJx + q>*(\ -JJ*yiy\\2 = 

= 11(1 -J*J)-t[x-J*y][\2+ 11(1 -JJ*)-l[y-Jx]\\2 

where 7 = 5 ( 0 ) . Consequently 

1 - |li/-iV||2 s o ^ 
i - I W 11 11 l - w 

Thus U ± N is uniformly bounded if and only if ||g±JV(0)|| S « < 1 and hence if and 
only if 5 ¡ s uniformly elliptic. Now Lemma 6. 3 [5] says that a maximal positive 
subspace P has the property P + P' = H if and only if and | |y| | < 1 . These 
last two facts when combined with the fact that the g-unitary operator U corres-
ponding to g has an invariant maximal positive subspace P if and only if the con-
traction J corresponding to P is fixed by 5 imply that Theorem II and statement 
(8) are equivalent. 

It is not known if hyperbolic and parabolic maps have fixed points. We shall 
now consider commuting families of general symplectic maps. Suppose S? is a sub-
group of and RY, = {U: U corresponds to 5 and 5 6 The group H commuta-
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tive if and only if the group F y is scalar commutative (cf. sec. la. [2]) i.e. if U, V i P y 
then there is a number ft with \[}\ = 1 such that UV = PVU. A scalar commutative 
group Sf of operators is called full if a U^S? whenever and a is a scalar with 
joe] = 1. The group if will be called elliptic if for each x£H there is a number a(x) -c 1 
such that | |g(0)x|| ^a (x) | | x | | for all the group ST will be called uniformly 
elliptic if a(x) < a < 1 for all x £ H. 

T h e o r e m III. A commuting group if of general symplectic maps is uniformly 
elliptic if and only if if has a fixed point in the interior of B. 

P r o o f . We must prove statement (8) not for a single g-uni tary map U but 
for a scalar commuting family r ^ of Q-unitary operators. Tt is clear f rom the original 
proof of (8) in [5] that any group F of £>-unitary operators has an invariant positive 
subspace P with P + P' = H if and only if there is a bounded invertible operator 
B such that BUB~' is unitary for each U^F. The proof of Theorem II implies that 
if is uniformly elliptic if and only if ry is uniformly bounded. Thus we need only 
prove 

L e m m a . If T is a full, scalar commuting group of operators which is uniformly 
bounded, then i is similar to a group of unitary operators. 

P r o o f . The proof in the case where F is commutative involves finding an 
invariant mean on F. The case at hand requires just a slight modification of this. 
Although r is not commutative, r/T = r modulo the circle group T is commutative. 
Thus there is an invariant mean on r/T (for instance see [1]). For fixed x,y£H 
the function / o n r/T defined byf(U) = (Ux, Uy) where OeT/T and C/gT is any 
element in the equivalence class U is bounded. Thus we may define a bilinear form 
( , )' on it by 

(x,y)' = m { f ) . 

Since m is an invariant mean each C/gT is unitary with respect to ( , ) ' and it is 
easy to see that ||x||' = / ( x , x ) ' is equivalent to the original norm on H. The lemma is 
immediate f rom this. 

Inequality (6) yields the following lemma for the non-elliptic case. 

T h e o r e m IV. If if is a commutative group of maps in which, is not elliptic 
and if for each 5 g ¿f the operator g(0) is compact, then rr/ has a non-trivial positive 
invariant subspace. 

P r o o f . The condition g(0) is compact is equivalent to g being continuous 
in the weak operator topology (cf. [3] and the author 's Stanford dissertation). 

Since Sf is not elliptic there is a sequence and a vector x such that 
|| 5A (0)x|| — 1. Since B is compact in the weak operator topology we may assume 
that g i V ( 0 i n the weak operator topology. If then ® [ g N ( 0 ) ] - © ( 7 ) 
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in the weak operator topology; however by inequality (6) 

II © (&N(0))x - frv(OWI = II (© (0))x - iyA. (0)x\\ - 0. 

Thus (o(T)x = Tx. Let p = x + Tx, let U be a Q-unitary operator which corres-
ponds to (5, and let P~T. Then p ~ x + Tx£P and property (4) implies that 
p = x + ©(?>£ UP. Therefore p£S = f | VP and S is non-trivial. The form of 

u e / > 

S implies that it is invariant under operators in Fy and that S is positive. 

Spaces with H+ finite dimensional (Pontryagin spaces) 

We give a new proof of:' 

T h e o r e m . If H+ is finite dimensional and if Sf is a commutative subgroup of 
, then Sf has a fixed point. 

P r o o f . Let P be a subspace of H which is maximal with respect to being po-
sitive and invariant under F y . By Naimark's arguments in [4] it suffices to prove 
that r y restricted to P' or to an appropriate modification of P' has a non-trivial 
invariant positive subspace. In effect it suffices for us to prove that r y has a non-
trivial invariant positive subspace. 

Since H+ is finite dimensional either is uniformly elliptic or Fy is not elliptic. 
Theorem III and Theorem IV imply that r y has a non-trivial invariant positive sub-
space in either case. 
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A remark on the cosine of linear operators 

By PETER HESS in Chicago (Illinois, U.S.A.) 

1 . In their recent note [ 2 ] , K . G U S T A F S O N and B . Z W A H L E N proved that an 
unbounded linear operator Tacting in a pre-Hilbert space has cosine zero. It is our 
purpose to show that this statement can be extended to the case of unbounded 
linear mappings T f rom a complex (real) normed vector space X into a normed 
vector space Y, provided there is given a sesquilinear form Q: XX Y — C(R) such 
that 
(1) I C K ^ j O N I W I \\y\\ 

for all x£X, y£ Y. The cosine of a mapping T f rom X to Y with respect to Q is then 
defined by 

where the infimum is taken over all x in the domain D(T), with x^O, Tx^O. 

T h e o r e m . If to the linear operator T: D(T) (z X Y there exists a sesquilinear 
form Q such that cosQ(T) > 0 , then T is bounded. 

The proof of the theorem is devided into two parts. We first introduce the 
concept of quasi-boundedness, which is due to F. E. B R O W D E R and the writer, and 
which turned out to be extremely useful in the study of nonlinear mappings of 
monotone type [1]. The mapping T is said to be quasi-bounded with respect to the 
form Q, if f r o m the boundedness of the sequence {x„}czD(T) together with the 
boundedness of the sequence {Q(x„, 7x„)} it follows that {Txn} remains bounded. 
We prove that for an operator T which is homogeneous of some positive degree k 
(i.e. D(T) a cone and T(fix)=i.ikT(x) for 0, x£D(T)), quasi-boundedness 
implies boundedness. This observation allows us to give a proof of the theorem 
which seems to be more transparent even in the particular situation discussed in [2]. 

A closing example shows that the existence of a form Q with cosQ ( T ) > 0 is not 
necessary for the boundedness of a linear mapping T. 

2. We shall preface the proof of the theorem with the following 
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Le m m a . Let the mapping T\ D{T) c Ji-^ Y be homogeneous of degree k>- 0, 
and suppose there exists a sesquilinear form Q such that T is quasi-bounded with 
respect to Q. Then T maps bounded sets in X onto bounded sets in Y. 

P r o o f . For A > 0 , let 

/(A) = sup {117*11: «€/>(n ||u|| Si, \Q(u, Tu)\^X). 

Because of the quasi-boundedness of T, f is a well-defined increasing function. We 
observe that for X S 1, 

k 

№ s ) J ^ f { i). 
Hence 

k 

For xeD(T) with \\x\\S\ we set A = | Q ( x , Tx)| and get 

k_ 

F-vll sf(\Q(x,Tx)\) s | |7*| |<+<</(l)+/(l) . 

This estimate implies the boundedness of T, q.e.d. 

P r o o f of t h e T h e o r e m . In virtue of the lemma, it suffices to prove that T 
is quasi-bounded with respect to Q. 

Assume that {X„}CLD{T) is a sequence with ||x„|| S c , \Q(xn, Tx„)\^C, but 
IIJatJI-oo. Since ||x„|| | |7jcJ cosQ (T) 3= \Q(x„, Txn)\^c, we infer tha t 1 ) _v„-0. We 
construct a bounded sequence {un}c:D{T) such that Q(un, Tx„)= 0 and {Tu„} is 
bounded. For this purpose, let a and b be linearly independent vectors of D{T) 
with ||a|| =| |6 | | = I,2) and for each n set un = a„a + P„b, where a„ and /?„ are solu-
tions of the equations |an |2 + |A,|2 = 1, anQ(a, Tx„)+P„Q(b, Tx„) = 0. The func-
tion g: [a, ji\ — g(a, /?) = \\aa + pb\\ is continuous, hence it admits its supremum 
and infimum on the (compact) unit sphere |a|2 + |/?|2 = 1. Because of the linear 
independence of a and b, the infimum is positive. Consequently there exists y > 0 
such that y-1 S||w„|| S y for all n. In addition, ||7mJ S || Ta\\ +1| Tb\\. Setting w„ = 
= x„ + und D(T), we obtain 

16(h>., Tw„)| ^ |Q(x„, Tx„)| +1Q(un, Txn)\ + |Q(xn, Tun)\ + |Q(un, Tu„)\ 
II "'J \ \ T w J - | K I M M H F * J I - r « / j | 

where the right hand side converges to 0 as » — since the numerator remains 

*) We use the symbols " - • " and to denote strong and weak convergence, respectively. 
2) If D(T) is one dimensional, the theorem is trivial. 
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bounded and the denominator tends to + We are thus led to a contradiction to 
the assumption COSQ (7") >-0, q.e.d. 

That cosQ (Y) =>0 for some form Q is not necessary for the boundedness of the 
linear mapping T, is shown by the following 

E x a m p l e . Let T be a bounded linear operator from X to Y, and suppose there 
exists a sequence {x„}c D(T) with ||x„|| = l, xn0, Txn y^0, such that the linear 
span of {Txn} has finite dimension. Then cos e (7") = 0 for each form Q. 
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Compact restrictions of operators 

By ARLEN BROWN1) and CARL PEARCY in Bloomington (Indiana, U.S.A.) 

1. Introduction. The purpose of this note is to set forth a definitive version of 
a theorem concerning operators on Hilbert space, and to discuss some consequences 
of that theorem that seem not to have been noticed before now. The theorem asserts 
that, unless an operator is, in a sense, nearly invertible, then it is "very small" on 
an infinite dimensional subspace. This fact has already been noted several times 
in the literature in one form or another (see, for example, [15, § 1 . 2 ] ; the main 
special case is valid even on Banach spaces [9, III. 1. 9]; for a version of the theorem 
valid in an infinite factor see [6], and the only thing in § 2 that can claim to be new 
is the manner in which we construe the notion of "very small". The results recounted 
in §§ 3—5 have greater claim to novelty. 

Throughout this paper all Hilbert spaces will be complex, separable, and, unless 
the contrary possibility is explicitly stated, infinite dimensional. Furthermore, oper-
ators are always bounded, linear transformations from one Hilbert space into another. 
If .W is a Hilbert space, then the algebra of all operators T f rom yif into Jtjf will 
be denoted by ü ? ( J f ) . We shall have occasion to refer to various ideáls of operators, 
and we take this opportunity to remind the reader of the basic facts concerning the 
ideal structure of i f ( M f ) . (By ideal we shall always mean two-sided ideal. Recall 
that is assumed to be infinite dimensional; otherwise is simple.) 

In the first place, every ideal 3 in satisfies the condition 

g c 3 c f f , 
where g denotes the ideal of operators of finite rank and d the ideal of all compact 
operators. From this it is immediately apparent that (£ is the only proper norm-closed 
ideal in <£(№). Non-closed ideals exist in great abundance, however, and have 
been completely described. Indeed, if C denotes the collection of all sequences 
{An}~=1 of non-negative real numbers that tend to zero, then there is a simple one-
to-one, inclusion preserving correspondence between the ideals 3 in and the 
subsets J of C, called ideal sets, that satisfy the following conditions: 

') The research for this paper was supported in part by the National Science Foundation. 

4* 
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i) if {A,,} is a sequence in / , and if n is any permutation of the positive integers, 
then {An(n)} is also in J, 

ii) if {A„} and are in J, then so is {A„+/<„}, 
iii) if {A„} is in J, and if for all n, then {/(„} is also in J. 

The precise nature of this correspondence is as follows: if T belongs to 3 then 
\T\=(T*T)i does too, and, since | r | is compact, its eigenvalues (counting multi-
plicities) can be arranged in a sequence belonging to C. The set of all sequences 
{A,,} so obtained from the various operators forms the ideal set J of 3 . Con-
versely, if J is an ideal set in C, and if we say of an operator T on ffl that it belongs 
to J if, when the eigenvalues of | r | are arranged in a sequence, that sequence belongs 
to J, then the set of all operators belonging to J forms an ideal 3 , of which J is 
clearly the ideal set. (These results are due originally to VON NEUMANN; a good 
account of them may be found in [5] or [7].) Note that under this correspondence 
the entire set C is the ideal set of the maximum ideal (E of all compact operators, 
and that the ideal set of the ideal $ of operators of finite rank is the set F of finitely 
non-zero sequences. Note also that these facts free the discussion of ideals in i f ( J ? ) 
from the Hilbert space ffl. When, in the sequel, we refer to an ideal 3 in i f ( j f ) and 
then to the "same" ideal on another space J f , what is meant, of course, is that ideal 
in i f ( j f ) having the same ideal set as 3 . Moreover, the correspondence between 
ideal sets and operators can be extended even to operators f rom one space to another. 
Let J be an ideal set of sequences and let 3 be its associated ideal, and suppose 
given an operator T mapping one Hilbert space J f into another space JT. Then 
we shall say that T is affiliated with 3 if, when the eigenvalues of \T\=(T*T)* 
are arranged in a sequence, that sequence belongs to J. (When and JT do coincide, 
affiliation reduces to set membership.) Note that if T: № — JT is affiliated with 3 
in this sense, then it continues to be true that T* ¿T -*JSC is also. Similarly, it is easy 
to show that if T\ and T2 both map J f into J f and if both are affiliated with 3 , 
then TY + T2 is too, and that if T: — i s affiliated with 3 and if S L : jT — J i ^ , 

so that the product SVTS2 is defined, then StTS2 is also affiliated 
with 3 . 

2. Operators with small restrictions. The following theorem is the central tool 
of the paper. 

T h e o r e m 2. 1. Let J4? and J f be Hilbert spaces, and let T be an operator mapping 
№ into . Suppose that there does not exist a finite dimensional subspace 
such that T\3>L is bounded below. Then for any prescribed ideal 3 other than the ideal 

of operators of finite rank, and for any rj greater than zero, there exists an infinite 
dimensional subspace i f c ,3f such that the restriction T0 = T\i?(T0: i f — J f ) is 
affiliated with 3 and satisfies the condition | | ro | | <>7. 
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Before proving the theorem, it is advantageous to establish a working criterion 
for determining when an operator is affiliated with a given ideal. 

L e m m a 2. 2. Let № and .5f be Hilbert spaces. Then a necessary and sufficient 
condition for an operator T: ffl c/f to be affiliated with a given ideal 3 is that there 
exist an orthonormal basis {e„} in and an orthonormal sequence {/„} in such 
that Ten = /.„f, for all n, where {|A„|} belongs to the ideal set of 3 . 

P r o o f . If the criterion is satisfied, then \T\e„ = \k„\en for all n, so the condition 
is clearly sufficient. On the other hand, if T is affiliated with 3 , then there exists 
an or thonormal basis {e„} in 2/e such that \T\en=Xnen for all n, where {A„} is in the 
ideal set of 3 . But then, if W denotes the partial isometry in the polar resolution of 
T, so that T= W\T\, and if we s e t / „ = Wen, then {/„} is an or thonormal sequence 
in J f , and Ten = l„fn. • 

P r o o f of T h e o r e m 2. 1. If T has an infinite dimensional null space, we 
may simply set T0 = 0. Otherwise, let T—W\T\ be the polar resolution of T as 
above, and let £ denote the spectral measure of |T | . Then, according to our assump-
tions, no projection £([0, e)) ( s > 0 ) has finite rank, while £({0}) does have finite 
rank. Hence £((0 , e)) has infinite rank for every positive e, and it follows at once 
that for every positive e there exists 5, 0 < ( 5 < e , such that £((<5, e)) has rank greater 
than one. 

Now let {?.„} be any one fixed sequence in the ideal set / of 3 satisfying the 
conditions 0 < A „ + 1 for every n. (Such sequences exist since J^F; see 
[4 ,Lemma 1. l j ^ W e s e t e j and determine <5, ,0<£>j < e , s u c h t h a t £ , = £ ( ( 5 1 , E 1 ) ) 
has rank exceeding one. Next, define e2 = d vf \X 2 and choose 82 so that 0<c>2 < e 2 

and so that £ 2 = £((<52, e2)) has rank exceeding one. Continuing in this fashion, 
we obtain an infinite sequence of spectral projections £„ such that, for every n, 
Jln=En{^f) has dimension at least two and such that || \T\ \ J i n \ I n each 
subspace Jtn we select a pair of orthogonal unit vectors e„ and f„ in such a way that 
the plane [e„,/„] contains the vector |T|e„, and write 

I T\en = <xne„ + pnf„. 

Then 0 < a „ = ( | 7 > „ , e„)sX„ and for all -n. 
Finally, let JS? denote the subspace spanned by the sequence {en}, and set 

A = \T\ {Se-.g^yf, so that T0 = T\& is given by T0=WA. Since the vectors Te„ 
are all orthogonal and less than q in norm, it is obvious that ||7"0|| is also less than 
i]. On the other hand, if P denotes the (orthogonal) projection of ¿4? onto i f , then 
PA and (1 —P)A, regarded as mappings f rom i f to Jf", both clearly satisfy the cri-
terion of Lemma 2. 2. But then, of course, A = PA + ( 1 — P)A and T0~ WA are 
also affiliated with 3 . • 
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The hypotheses of Theorem 2. 1 are formulated as they are in order to facilitate 
the proof of the theorem, not with a view to applications. We pause to list some 
alternate versions of the condition imposed on T. 

L e m m a 2. 3. The following conditions are equivalent for any operator 
T: X - X . 2 ) 

i) T is bounded below on the orthocomplement of some finite dimensional 
subspace. 

ii) The null space of T is finite dimensional and the range of T is dosed. 
iii) There exists an operator S: C/f — such that ST is a projection of finite 

co-rank. 
iv) T is semi-Fredho/m with index less than + 
v) There exists no orthonormal sequence {e„}^=l such that | | 7 e J —0. 

In the special case = the conclusion of the main theorem can also be 
reformulated in a useful manner. The following is an immediate consequence of 
Theorem 2. 1, f rom which, in turn, the latter may easily be deduced. 

C o r o l l a r y 2. 4. Let T be an operator in i£(?/C) and suppose that the range 
of T is not dosed, or that the null space of T is infinite dimensional. Let 3 be any 
ideal other than the ideal Jy, and lét rj be a positive number. Then there exists a de-
composition ./i = i£ i£L of № into infinite dimensional subspaces with respect to 
which the matrix representation of T has the form 

where K and L are both affiliated with 3 and have norm less than IJ. 

P r o o f . From the proof of Theorem 2. 1 it is clear that both the subspace i £ 
constructed there and its orthocomplement are infinite dimensional. Everything 
else is obvious. • 

3. Subspaces that are nearly invariant. I f 3 is any ideal in i f ( ^ f ) , then the quotient 
algebra i£{M')IZs is clearly a *-algebra. Moreover, for the norm-closed ideal C 
of all compact operators the quotient algebra is even a C*-algebra with respect to 
the quotient norm. As is customary, we shall refer to this algebra as the Calkin 
algebra over . If T is an operator in ), we denote by T the residue class 
of T in the Calkin algebra. 

2 ) This lemma is but a part of a more encompassing theorem due to J. P. WILLIAMS [14, Theo-
rem (1. 1)], which generalizes some results of W O L F [15]. The authors wish to take this opportunity 
to express this gratitude to WILLIAMS for a number of stimulating and enlightening conversations 
on this point as well as on other related subjects. 



Compact restrictions of operators 275 

T h e o r e m 3. 1. Let T be an operator i f (J^), and let 3 be any ideal other than 
g. Then there exists a scalar X and a decomposition of into infinite dimensional 
subspaces i f and J?1 such that the corresponding matrix representation of T has 
the form 

[X + K 
0) I L *J 

where K and L are both affiliated with 3 . Moreover, the decomposition can be so 
arranged that the norms of K and L are less than any prescribed positive i]. 

P r o o f . The residue class T of T in the Calkin algebra over ffl has non-empty 
spectrum a by the Gelfand—Mazur Theorem, and in a there are points k such that 
f — X has no left inverse. (These are the points of the left essential spectrum in the 
terminology of [14]. For example, any complex number in the topological boundary 
of o is such a X.) But then T — X fails to satisfy the criterion of Lemma 2. 3, and the 
theorem follows. • 

As the proof of Theorem 3. 1 shows, the choice of X is quite independent of 
3 and of r\. It may be noted that X can be taken to be any scalar in the boundary 
of the spectrum of T itself, other than an isolated eigenvalue of finite multiplicity, 
since such points automatically survive in the spectrum of f ; see, for instance, 
[10, Theorem 2]. It may also be noted that Theorem 3. I, as well as Corollaries 
3. 2, 3. 5, and 3. 6, are definitely false for 3 = g . Finally, if i f and i f x are both 
identified with the same space j<f (as they may be whenever convenience so dictates), 
then the entries in (1) will all be in i f ( y f ) , and K and L will be actual members of 
the ideal 3 on X . 

Theorem 3. 1 may be paraphrased by saying that the residue class of T modulo 
3 has the form 

(o *)• 

In this formulation, however, the matrix entries are to be interpreted merely as 
the components in the Pierce decomposition of the residue class of T relative to a 
non-zero, Hermitian idempotent; residue classes modulo 3 cannot, in general, be 
realized spatially as operators. 

C o r o l l a r y 3. 2. For any operator T in i f and for any ideal 3 in i f p f ) 
other than 5% there exists an infinite dimensional subspace ££ with infinite dimensional 
orthocomplement i f - 1 such that i f is invariant under T modulo 3 , i.e., such that 
(l-P)TP^^s, where P denotes the projection of J f onto i f . 

Note, in particular, that Corollary 3. 2 solves in the affirmative the invariant 
subspace problem in the Calkin algebra. (For another representation of i f ( ^ f ) 
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having the same property the reader may consult [1].) The following result exploits 
the metrical aspect of Theorem 3. 1. 

C o r o l l a r y 3. 3. For any operator T in i f ( X ) and any positive number »/ there 
exists an operator R such that \\T— /?|| < >] and such that R possesses an infinite 
dimensional invariant subspace i f having infinite dimensional orthocomplement. Like-
wise, for any positive integer p, there exists an operator Rp that is within r\ of T in 
norm and possesses a p-dimensiona! invariant subspace. 

P r o o f . By Theorem 3. 1 there exists an infinite dimensional subspace i f with 
infinite dimensional orthocomplement such that the corresponding matrix represen-
tation has the form (1) with the property that ||£|| </ ; . To obtain a suitable operator 
R we have but to define 

In order to construct Rp we choose bases {e„} and { f n } in i f and i f 1 , respectively. 
It is then a simple matter, since K and L are compact, to find p basis vectors en 

such that, if S? denotes the subspace they span, then ||(T— < rj. Then the 
matrix of Rp may be obtained by replacing all the off-diagonal entries in the corres-
pondings columns by zero's. • 

In the special case of a seminormal operator the preceding results can be improved 
in a natural but significant manner. First, a lemma. 

L e m m a 3 .4 . Let S and T be two operators from into , and suppose 
that S is metrically dominated by T, i.e., that || Sx\\ S||lAi| for every x in 2/C. Then 
S is affiliated with every ideal with which T is. 

P r o o f . It is clear that l^l is metrically dominated by \T\. The lemma follows 
via a straightforward application of the minimax principle, or alternatively, via 
[8, Theorem 1]. • 

T h e o r e m 3. 5. Let T be a seminormal operator in i f {№), and let 3 be any 
ideal other than Then there exists a scalar X and a decomposition of Jf into infinite 
dimensional subspaces i f and i f 1 such that the corresponding matrix representation 
of T has the form 

R—T-

(2) 
X+K M 

L * 

where K, L, and M all are affiliated with 3 . Moreover, the decomposition can be 
so arranged that the norms of K, L, and M are all less than any prescribed positive r\. 
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P r o o f . We may suppose that T is hyponormal. Let J f be decomposed as 
in Theorem 3. 1, in such a way that, in the matrix representation (I), the operator 

(f S) 
has norm less than tj. Since K and L are affiliated with 3 , it follows, as we have 
seen, that (T-X)|if: i f — J f is affiliated with 3 and has norm less than t/. Since 
T — X is hyponormal along with T, this implies in turn, by Lemma 3. 4, that (T—X)*\£f 
is also affiliated with 3 and has norm less than tj. Since the matrix of (T—X)* is 

(K* L*) 
\M* * ) 

it follows, finally, that M and M* are affiliated with 3 and have norm less than tj. • 
Here again, as was the case in Theorem 3. 1, the result may be interpreted 

matricially if we are careful not to attribute undue spatial significance to the matrix 
entries. It says that if 3 = ^ 5 , and if T is seminormal, then the residue class of T 
modulo 3 has the form 

<3> (i S ) . 
(In this connection see also [14, Theorem (4. 2)].) 

C o r o l l a r y 3. 6. If T is a seminormal operator in i f ( j ^ ) , and if 3 is any ideal 
in i f O f ) other than g , then there exists an infinite dimensional subspace i f , with 
infinite dimensional orthocomplement, such that i f is reducing for T modulo 3 , i.e., 
such that TP — PT where P denotes the projection of 2/C onto i f . 

C o r o l l a r y 3. 7. For any seminormal operator T in i f ( : / f ) and any positive 
number tj there exists an operator R such that |j T — R\\ < t] and such that R possesses 
an infinite dimensional reducing subspace with infinite dimensional orthocomplement. 
Likewise, for any positive integer p, there exists an operator Rp that is within r\ of T 
in norm and possesses a p-dimensional reducing subspace. 

The proofs of Corollaries 3. 6 and 3. 7 are straightforward analogs of those 
of Corollaries 3. 2 and 3. 3, and will be omitted. The finite dimensional part of 
Corollary 3. 7 is essentially due to S T A M P F U [12] , who states the result in the case 
p = ]. We owe to the same paper the observation that Corollary 3. 7 remains valid 
if T merely differs f rom a seminormal operator by a compact operator. (The same 
may also be said, of course, of Corollary 3. 3.) 

Theorem 3. 5 yields at least one other interesting result. Indeed, a glance at (3) 
reveals the validity of the following assertion. 
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C o r o l l a r y 3. 8. If T is a seminormal operator in i f ( X ) , and if 3 is any ideal 
other than Jy. then there exists on infinite dimensional subspace i f such that, for every 
X in i f ( j * f ) , the commutator C = TX — XT has the property that its compression 
PC\Se to i f belongs.to 3 . 

In particular, this shows that 0 belongs to the (essential) numerical range of 
C (see [ 1 3 ] ) , thus recapturing a result of C. R . P U T N A M [11] . 

4. Operators congruent to scalars. In this section we give several criteria for 
an operator in i f ( ¿ f ) to be congruent to a complex number modulo one or another 
of the ideals in i f ( X ) . 

T h e o r e m 4. 1. Let T be an operator in i f ( X ) and let 3 be an ideal. Then a 
necessary and sufficient condition for T to be congruent to a scalar modulo 3 is that, 
for any two orthogonal subspaces Jt and Jf in 2/C, 

(C) PjrTP n £ 3 , where P u and Pjr denote the (orthogonal) projections of onto 
Jt and , respectively. 

P r o o f . The necessity of the condition is evident. To prove sufficiency, con-
sider first the case 3 ^ 5 - According to Theorem 3. 1, there exist subspaces i f and 
if-1-, both infinite dimensional, with respect to which T has the form 

r / ?) 
with K and L affiliated with 3 . Moreover, X is also affiliated with 3 because of (C). 
Hence, T is congruent modulo 3 to the matrix 

Now let V be an isometry of i f 1 onto i f , and use the map 1 © V to identify X 
with Under this unitary equivalence, T' is carried onto the operator 

?J 
where Y0 = VYV*. Clearly T" continues to satisfy (C), so that if Jt and JV denote, 
respectively, the subspaces { ( x , x ) : x £ i f } and {(x, — x): x £ i f } , then P^T"PM must 
belong to 3 . But for any vector (x, j ) in i f © i f we have Pr(x,y) = %(x—y,y—x), 
so that 

PjrT'Xx, x) = i ((;. - y 0)x, ( r 0 - A)x). 

It follows at once that 7 0 is congruent to A modulo 3 , and hence that T" and T' 
are too. 
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It remains to consider the case 3 = 5- If T satisfies (C) with 3 = then, by 
what has already been shown, T is congruent to some k modulo every ideal 3 ^ g 
(clearly the same k in each case), so that T—• k belongs to the intersection of all 
the ideals 3 ^ g . Since this intersection is known to be equal to $ (see [4]), the theo-
rem follows. • 

A second criterion is given by the following corollary. 

C o r o l l a r y 4. 2. A necessary and sufficient condition for an operator T in 
3? ( f f ) to be congruent to some scalar modulo a given ideal 3 is that for every infinite 
dimensional subspace if with infinite dimensional complement, the compression P^.TISC 
of T to g should be congruent modulo 3 to some scalar. 

Proo i f . Once again, it is clear that the condition is necessary. The proof will 
be completed by showing that an operator T satisfying the hypothesis of the corol-
lary also satisfies condition (C) of Theorem 4. 1. Accordingly, let Ji and Jf be 
orthogonal subspaces of 2?. Clearly we may assume both Ji and Jf to be infinite 
dimensional, since otherwise P/TP a is automatically in Write Ji — J i ^ J l ^ , 
where Jt l and Ji 2 are both infinite dimensional, and consider the compression of 
T to The hypothesis assures us that this compression is congruent to 
some scalar modulo 3 , whence, by Theorem 4. 1, PxTPMi must belong to 3 . Si-
milarly, PjSrTPJl2 belongs to 3 , f rom which it follows immediately that PXTPM 

does so too. • 

Our third and final criterion is one that 'has already essentially been noted by 
C A L K I N (see [5 , Theorem 2 . 9 ] ) but our proof is completely different f rom his. 

T h e o r e m 4. 3. A necessary and sufficient condition for an operator T in {?/£) 
to be congruent to a scalar modulo an ideal 3 is that TX — XT should belong to 3 
for every X in if(«?f). 

P r o o f . As before, the condition is clearly necessary, and we verify its suffi-
ciency by showing that an operator that satisfies it also satisfies condition (C). 
Let Ji and Jf be orthogonal subspaces of ^C (infinite dimensional as before), and 
let W be any partial isometry with initial space and final space Ji. Then 
(.'TW- WT)PJt belongs to 3 along with TW- WT, and since W\Ji=0, this implies 
that WTPM belongs to 3 . But then so does P_rWTPM = WPYTPU and therefore, 
finally, W* WPrTPM = PXTPU. • 

It may be noted that in the special case 3 = (£ all three of these results yield 
criteria for an operator no t , to be a commutator [3]. This observation, Theorem 
4. 3, and also the final result of § 3 all suggest that the ideas of the present note have 
interesting ramifications into commutator theory. In the next and final section we 
explore these connections in some depth. 
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5. Applications to commutator theory. As has just been noted, it is shown in 
[3] that an operator T in i f ( X ) is a commutator if and only if it is not congruent 
to a non-zero scalar modulo the ideal (L On the other hand, in the earlier paper [2] 
it was shown, using considerably more elementary techniques, that every operator 
on ye © ye of the form 

where Kx and K2 are compact operators, is a commutator. Considering this fact, 
together with Theorem 3. 1, and taking adjoints if necessary, we immediately obtain 
the following result. 

T h e o r e m 5. 1. Every non-Fredholm operator in i f (ye) is a commutator. 

This theorem prompts the following question: how far is it possible to proceed 
with the solution of the commutator problem, using only the techniques of [2] 
and the results of § 2? in other words, h o w far can one proceed without use of 
the sophisticated results of [3]; in particular, without introduction of the ^-function 
and the standard form for operators of class (F)? 

It is almost certain that one should not expect much success with the Fredholm 
operators of index zero, since the non-commutators in i f ( X ) are Fredholm of 
index zero, while, at the same time, there are many Fredholm operators of index 
zero that are commutators, e.g., the invertible operators of class (F). Thus it is 
reasonable to limit attention to Fredholm operators of index different from zero. 
Operating under the above named restrictions, we are able to prove the following 
suggestive result. 

T h e o r e m 5. 2. Every partial isometry in i f (ye) that is a Fredholm operator 
of index different from zero is a commutator. 

P r o o f . Note first that consideration of adjoints shows that it suffices to deal 
with the case in which the given partial isometry W has negative index. In this case 
there exists an operator F of finite rank (possibly zero) such that V + F is an iso-
metry, and such that the ranges of F and W are orthogonal. The isometry W+ F 
can be written uniquely as IV+F = U@S, where U is a unitary operator on a 
^-dimensional s u b s p a c e X o f ye (0 S k S tf 0), while S is a unilateral shift of multi-
plicity m ( 0 < m < x 0 ) acting on the space J { = y e Q X . Suppose, temporarily, 
that m = I, and let {en}^L1 be an orthonormal basis in J l such that S e „ = e n + 1 for 
all n. Reordering this basis as 

{ex, e3, e2„ -1, ...', e2, eA, ..., e2„, ...} 
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we obtain a unitary isomorphism of Jl onto a Hilbert space Jf Q.Jf, which carries S 
onto an operator matrix of the form 

where S0 is unitarily equivalent with 5. A similar device shows that, no matter 
what the multiplicity m may be, S is always unitarily equivalent with (4), where 
.S0 is unitarily equivalent with S itself. It follows easily that W+F = U®S is 
unitarily equivalent with an operator matrix 

acting on a Hilbert space where U l is the direct sum of a unitary operator 
and the zero operator on an infinite dimensional space, while Sl is an isometry 
and B\ is a co-isometry. (If A: = 0, then ( / , = 0, if k is finite, then has finite rank, 
and, if /c = K0 , then Sl has infinite defect.) Now the unitary isomorphism tp of 
J f onto gP®3f> that carries W+F = U@S onto (5) also carries F onto some 
matrix, — say the matrix 

Clearly each Ft ( / = 1 , 2 , 3 , 4 ) is of finite rank, and clearly also the given partial 
isometry W is unitarily equivalent via cp with an operator W0 having the matrix 

Since the range of W is orthogonal in J f to the range of F, it follows easily that 
the null space in SP of S1 — Fl is contained in the null space of F4. Since 5 , —Fl 

is a semi-Fredholm operator, this implies that there exists an operator Y of finite 
rank in ££(SP} such that Y(Sl—F2) = F4 (see [8, Theorem 1]). We now apply a 
similarity transformation to (6) as follows: 

(4) 

(Z 
{ * o j ' 

where Z = XJv — Fi — (S \ — F2)Y. Since Ul has infinite dimensional null space 
(no matter what k is) and since Fx + ( 5 L — F2)Y has finite rank, it is easily seen that 
Z has an infinite dimensional null space too. Hence Z is a commutator (this fol-
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lows, f o r ins tance , f r o m T h e o r e m 5. 1), say Z = [А, В] . C o n s i d e r n o w the t w o o p e r a t o r 

ma t r i ce s 

m ( i ? ) - ( 5 o r ) . 

where R a n d T r e m a i n t o be d e t e r m i n e d . Ca l cu l a t i on s h o w s t h a t t he c o m m u t a t o r 

of the o p e r a t o r s in (8) is t he o p e r a t o r m a t r i x 

(g\ ( z 0 4 - i m 

Since A m a y be rep laced by a n y t r ans l a t e A + X w i t h o u t c h a n g i n g a n y of these cal-
cu la t ions , we m a y ce r ta in ly a r r a n g e f o r A — 1 to be inver t ib le , w h e r e u p o n it b e c o m e s 
a t r ivial i ty t o solve f o r R a n d T in (9) so as t o m a k e (9) e q u a l t o (7). T h u s fV0 is 
s imi lar t o a c o m m u t a t o r , a n d the t h e o r e m is p r o v e d . • 
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Extending mutually orthogonal partial latin squares 

By CHARLES C. LINDNER in Auburn (Alabama, U.S.A.) 

1. Introduction 

By an nXn (partial) latin square is meant an nXn array such that (in some 
subset of the n2 cells of the array) each of the cells is occupied by an integer f rom 
the set {1,2, . . . , « } and such that no integer from this set occurs in any row or 
column more than once. We will also refer to an nXn (partial) latin square as a 
finite (partial) latin square. By an infinite latin square is meant a countably infinite 
array of rows and columns such that each positive integer occurs exactly once in 
each row and column. 

If P is a finite (partial) latin square we will denote by Sp the set of all cells which 
are occupied in P. If P and Q are (partial) latin squares of the same size, by (P, Q) 
is meant the set {(/?,7, qu)\ (i,j)£SPd SQ}. If Pand Q are finite (partial) latin squares 
and \(P, 0 | = I^PHSQI we say that P and Q are orthogonal and write PA.Q. 
If P and Q are infinite latin squares we say that P and Q are orthogonal provided 
that (P, Q) = ZXZ (where Z is the set of all positive integers) and every pair of 
cells in different rows and columns are occupied by the same symbol in at most 
one of P and Q. As above if P and Q are orthogonal infinite latin squares we write 
PLQ. 

In this paper the term latin square will mean either a finite or infinite latin 
square. 

If {Pj} i€/ is a collection of mutually orthogonal latin squares of the same size 
we say that this collection is a complete set of mutually orthogonal latin squares 
provided that every pair of cells in different rows and columns are occupied by the 
same symbol in exactly one member of the collection. We note that if the latin squares 
in this collection are finite and based on N = {1,2, . . . , « } then 1= {1, 2, . . . , «— 1}. 
If the latin squares are infinite then I is the set of positive integers. 

In this paper we prove the following theorem. 

T h e o r e m . A finite collection of mutually orthogonal nXn partial latin squares 
can be embedded in a complete set of mutually orthogonal infinite latin squares. 
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The following ideas are used in the proof. 
By a plane we will always mean a set n which is the union of two disjoint sets 

2P and i f (the elements of which are called points and lines) and a relation I f rom 
to i f called incidence. If (P, /) £ / we will say that the point P is on or belongs 

to the line / and that / contains P. If (P, I) and (P, k)£l we will say that the lines 
/ and k intersect in the point P. With this convention we make the following de-
finitions. 

For the notion of a partial plane, projective plane, and affine plane, the reader 
is referred to [1]. 

If n l and 712 are partial planes we say that 7t, is explicitly contained in n2 and 
write n L < n 2 if and only if the following conditions are satisfied. 

(i) The points and lines of n1 are contained in n 2 . 
(ii) If the points P, Q and the line / are in 71!. and if P and Q belong to / in 

7i2 they belong to I in n l . 
(iii) If the lines I, k and the point P are in n^ and the lines I and k intersect in 

P in 7r2 they intersect in P in 7Tj. 

2. Proof of the Theorem 

Let Pi, P2, ..., P, be a collection of mutually orthogonal nXn partial latin 
squares. We define a partial plane n0 in which there are points P¡j ( i , j = 1,2, . . . , n) 
and lines ¡¡j (/ = 1, . . . , t; j = 1, . . . , » ) , where the point Prs belongs to the line lu 

if and only if in P, the cell (r, s) is occupied by j. We now successively define partial 
planes 7ii, 7i2, and TT3 SO that 7RO<7RJ < 7 I 2 < 7 R 3 as follows. 

The points of 7i| are the points of n0 and the lines are those of n0 along with 
the following lines. For each set of points {Pn , Pn, ..., Pin) (i= 1, 2, . . . , n) we 
define a line /^-containing exactly these points. For each set of points {pxi, P2i, ..., Pni} 
( / = 1 , 2 , . . . , « ) we define a line containing exactly these points. For every pair 
of points not already belonging to one of the above lines we define a line containing 
exactly these two points. 

The lines of 7t2 are those in 7Tj and the points are those in 7tj along with the fol-
lowing points. For the set of lines {h i , . . . , hn} define a point H belonging to exactly 
these lines. For the set of lines {uj, . . . , v„} define a point V belonging to exactly 
these lines. For each set of lines { / a , / ; 2 , . . . , /,„} ( / = 1 , 2, . . . , t) define a point L{ 

belonging to exactly these lines. For each pair of lines not intersecting in one of 
the above points define a point belonging to exactly these two lines. 

The points of 7i3 are those in 7r2 and the lines of 7i3 are the lines of %2 along 
with the following lines. For the set of points {H, V,LX,L2, ..., L,} define a line 

containing exactly these points. For every pair of points not contained in one 
of the above lines define a line containing exactly these two points. 
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From the definition of n 0 , n x , n 2 , and n 3 it follows that n 0 < n l < r i 2 < n 3 . 
In [1] M . H A L L has shown that if n is a partial plane there is a projective plane n 
such that 7t<7r'. In case n is finite, Hall's theorem leads to a countably infinite 
containing plane. 

Let n be a countably infinite projective plane such that n 3 < n . Then 7i0<7r. 
We now remove from n the line along with the points belonging to this line to 
obtain an affine plane n*. Among the points removed f rom n are the points 
H, V, L2, ..., L, so that in n* the lines hl,...,h„\ vy, ...,vn', and ln,...,lin 

(i = 1, ..., t) are parallel. Let X denote the pencil of lines in n* containing the /;'s, 
"¥ the pencil containing the u's, and 0"t ( / = 1 , 2 , ...), the other pencils with the 
requirement that the lines I n , . . . , / ,„ belong to Label the lines in each pencil 
with the positive integers with the additional proviso that in 2tC the line ht is labeled 
i, in "V the line is labeled /, and in 3PK, k = 1, 2, . . . , / the line labeled lki is labeled 
i. Now construct a collection of infinite latin squares C l 5 C2, . . . , C f , ... as follows. 
In Ck the cell (/, /) is occupied by x if and only if the line labeled x in 2PK contains 
the point of intersection of the lines labeled i and j in j f and "V respectively. It is 
routine matter to check that the collection C l 5 C2, ••• obtained in this manner is 
in fact a complete set of mutually orthogonal infinite latin squares and is embedded 
in the upper left-hand corner of C, (i = 1, 2, . . . , i)-

This completes the proof of the theorem. 
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On an extremum problem for polynomials 

By GEZA FREUD in Budapest 

Recently, P . T U R A N [8] treated the problem to determine lower bounds of the 
expression 

M „ ( / 7 ) = i n f s u p | / > ( . Y ) [ X " + £?(*)] 1 
e£P„-t * £ [ - ! , + 1] 

for fixed but arbitrary values of the natural number n, where P„-i is the set of poly-
nomials of degree « — 1 at most, and p(x) is a given polynomial. In the present paper 
we consider the problem for arbitrary bounded functions p(;c)sO; our estimates 
are sharper than those of T U R A N [8] and cover some of ELBERT'S results [4] , [5] , too. 

T h e o r e m I. For an arbitrary bounded function p(JC) S0 

( 1 ) 2"Mn(p)^G{p*) ( « = 1 , 2 , . . . ) 
and 
(2) m x 2 " M n ( p ) ^ 2 G ( p % 

«—CO 

where p* is the upper limit function of p and2'3) 

(3) , G(p*) = E X P J ^ / log/?*(cos0) i / (?J . 

') If p(x) is unbounded but M„(p) is finite for n s m, then there exists a nonnegative polynomial 
of minimal degree n„(x) = x"' + Q(X) (e€/>,„-1) for which n0p is bounded. Clearly M„(p) = 
= M„-„,(n0p) and we have3) G(n„p*) = G(n0)G(p*) = 2"mG(p r ) , so that (I) and (2) are valid even 
if p(x) is unbounded. 

2) The integral in (3) is defined, because p* is bounded, positive and (as an upper limit function) 
semicontinuous from above, but it may take the value — in this case we set G(p*) =0. 

3) If p(x)=p*{x) = \x — bi\P'\x — b2\^1...\x-bk\^kt where 6,, b2, ..., bk are arbitrary complex 
numbers, /?,, ..., f!k are real numbers and /?,s0 if ¿ ¡€[ - 1, +1], then we have 

G(p*) = 2-k f f i \bj+yZpi\ 

(see BERNSTEIN [i]); this is the case treated by T U R A N [ 8 ] and E L B E R T [4] , [5 ] . . , : . , . 

5' 
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P r o o f o f (1). We have4) Mn(p) = M„(p*). If l ogp* (cos 0) (1) is satisfied 
in a trivial way, for its right hand side is zero. So we may assume log p* (cos 0) 

For an arbitrary but fixed £ > 0 we take a i j /„(x) = x"-\—£Pn for which 

(4) p*(x)\<P„(x)\ M„(p+) + s = M„(p) + e. 

By a well-known theorem of G. S Z E G Ő [7], the function 

<p (z) = exp { I / logp* (cos 0) ¿0} (|z| s 1) 

belongs to H1 and satisfies \<p(e'e)\ =p* (cos 0) a.e. Applying (4) to x = cos 0 = 
= i- (eie + e~ie) we find that 

F(z) = 2"z"iA„ 
1 1 

J H I 
<p(z) £ Hl 

has for a.e. boundary values not exceeding 2n[Mn(p*) + e] in modulus. As a conse-
quence of the maximum principle is applicable; so we obtain 

G(p*) = cp(0) = F(0) vrai max |F(e'®)| s 2*[MH(j>*) + e] = 2"[M„(p) + e] 
e 

and for e —0 we get (1). Q.e.d. 

P r o o f o f (2). Since p*, as an upper limit funct ion, is bounded and semi-
cont inuous f r o m above, there exists a decreasing sequence {ps(x)} of nonvanish-
ing continuous functions such that 

' l im = />*(* ) ( * € [ - l , + 1 ] ) . 

Since p*(x)Sps(x), we have M„(p) = Mn(p*)^M„(ps), so that by a theorem of 
B E R N S T E I N [ 2 ] 

imi 2"Mn(p) ^ lim 2 ' M M = 2G( P s ) . 
00 n— 0 0 

Now, if log p* (cos 0) £ L, we obtain (2) f r o m (3) by an application of Lebesgue's 
theorem on bounded convergence, taking j — If log p* (cos 9) $ L, we get f r o m 
(3) by an indirect application of Fatou 's lemma lim G(ps)= 0 ; this completes the 
proof of (2). 

4) P r o o f : For an arbitrary £=-0 there exists a e€P„- i such that sup A"+c(x)| ^ 

S Mn{p) + £; we conclude that for every sequence xk—x 1, +1]) we have 

Jirn {p(xk) \xZ + <p(xk)\} S M„(p) + e, 

i.e. by continuity of X" + Q(X), p*(x) + £>(*)] S Mn(p) + e so that Mn(p*) S Mn(p) + e. In turn, 
f r o m p ^ p * it follows M„(p)sM,(p') , and these two results imply M„(p) = Mn(p'). 
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T h e o r e m IT. For an arbitrary function p(x) £ 0 and an arbitrary pair of natural 
numbers n<r, 

(5) TMn(p)m^2'Mr(p). 

Conversely, for an arbitrary <5>0 and arbitrary natural number n there exists a con-
tinuous function s(x) =s(n, S; x) > 0 such that 

(6) 2"Mn(s) < ^ - 2 r M r { s ) = (1-H5)G(5) (r = » + 1,/I + 2, . . .). 

P r o o f of (6). The Chebyshev polynomial Tr_n satisfies | r r _ „ ( x ) | ^ l 
( * £ [ — 1, +1 ] ) and has the leading coefficient So we have 

Mr(p)^ inf sup \p(x)2-r + "+1Tr_n(x)[x" + Q(x)}\ = 
eiPn-i *€[- i , + H 

= 2~r+n+1 Mn(p\Tr_n\) s 2 - ' + " + 1 M „ ( / > ) , 

and multiplying by 2 r _ 1 we get the desired inequality (4). 

P r o o f of (6). Let a=-1 and = | l — — | . By a result of BERNSTEIN 

([3], pp. 11—14) we have 2rMr(sa) = 2G(sa) (r = n+ 1, n + 2, . . .) and 
_2 

1 + (a — i a z — 1) 

To prove (6) we need only to observe that 

_2 

l + (a-]/a2-i) 

and take s = sa for a sufficiently near to 1. 

2 "Mn(sa) = — 

= 1 

T h e o r e m III. For an arbitrary natural number n and arbitrary large A>0 
there exists a continuous function pA {x) > 0 for which 

(7) 2"Mn{pA) > A lim2rMr(pA). 
OO 

R e m a r k . This result is a consequence of an earlier theorem of ELBERT [5] . 

In the shorter proof what follows we make use of another idea of ELBERT, which 
is reproduced here with his permission. 

3 /3" ( x lm 

P r o o f o f T h e o r e m III. Let a = —T=>\, b=——< 1, and i ( x ) = 1 > 
2 / 2 2 v J { a) 

where m is a natural integer to be specified later. By Bernstein's theorem3) 
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W e h a v e f u r t h e r b y t h e t r a n s f o r m a t i o n x = b£ 

M A i ) = m i n m a x 1 lxn + o ( x ) | s m i n m a x 
" w e € P „ . , M s i l a) 1 1 e € P „ - , | * | s 6 

w h e r e 

= emm_imax|l--5| \b" ? + Q* {£)\ = b"M„(tb), 

,„(x) = \ l - - x \ . 

A p p l y i n g T h e o r e m I I a n d t h e n B e r n s t e i n ' s t h e o r e m 3 ) w e o b t a i n 

2 " M „ ( 0 s b"2"M„(lb) ^ l im 2 ' M r ( t „ ) = 

= 2 * 

a i / a2 

J + 1 / T 7 - ' 
= 2-

F r o m (7} a n d (8) we ge t 
2"Mn(t) ^ tr_ ( 9 Ï» 

l im 2 r M r ( t ) ~ 4 8 

F o r a fixed v a l u e o f n t h e r igh t h a n d s ide e x c e e d s by a s u i t a b l e c h o i c e o f m, a n y l a rge 

A > 0 . Q . e . d . 
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A new proof of the formulas involving the distributions 
8+ and 8-

By DRAGlSA MITROVlC in Zagreb (Yugoslavia) 

1. Introduction Throughout in this paper, (0_x) will mean for any fixed a > 0 

the linear space of all (C°°)-functions q> on R such that <p<p)(0 = O [jTp] 

p — 0, 1, ... (as | / | — oo). (Cl a) will mean the space of all continuous linear functionals 
on (6-x) . For basic facts concerning the space (Ox) and its dual (0'A) we refer to [2] 
and [7].. 

The purpose of this note is to give a new proof of the formulas (4) (utilized 
constantly in quantum mechanics) by a direct and short method, based upon the 
well known formulas of J. P L E M E L J . 

An entirely different technique is described in [2, pp. 60—66], and for other 
distributional spaces in [1, pp. 155—156], [3, pp. 49—50], [4, pp. 975—976], [5, pp. 
426—427], and [9, pp. 85—86]. 

2. Lemmas. We begin with a lemma on the distribution Vp — and recall a 
theorem of Plemelj. ' 

First of all let us observe that the linear form 8:<p—(p(0) is continuous on 
(CLJ since 

\(5,<p)\ S M m a x { ( l + | / | ) > ( / ) | } . 

If cpn converges in (CLa) to zero as « — then (8, q>„) tends to zero. Thus 8 is a distri-
bution in (01 a). 

In [2, p. 62] it is proved by means of the distribution that Vp- | - is a 

distribution in (01a). In the following this will be proved directly. 
1 

L e m m a 1. The linear form V p — defined by 
t 

0 , ( v p l . ^ - v p / i i a r f - l g , jjap.*. 
is a distribution in (Cla). 
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P r o o f . For each ) the limit (1) exists. The argument is the same as 
in the case of the test functions that belong to the space {£$). Observe that the 

integrand is o\—i—| for large |i |. On the other hand, for each s > 0 the linear 
f o r m l l ' l " ' J 

w = 
\t\se 

is a distribution in (01 ) defined on R. In fact, we can write 

max{(H-| i | )« |9)(0 |}. 

Now suppose that <pn converges in (©_„) to zero as n — Then the sequence of num-

bers —j , tends to zero. 

By the theorem on the convergence of distributions in it follows that 
11 1 

the limit (1) defines a distribution, that is, 

tends to zero. 

— converges to Vp— in (0 l a ) as 8 
t le t 

L e m m a 2 (J. Plemelj). Let f be a function on R / « C satisfying the (Holder) 

condition H on every compact subset of R, and with f{t) = O | p p j for !arge I' | 

for some /. > 0 . If z tends from D+ = {z| Im (z) > 0 } or from D~ = {z\lm (z) < 0 } to a 
point a £ R , then the integral 

F(z) = ^ f ^ - d t w 2ni t - z 
converges to the limits 

respectively, where the singular integral is taken as the Cauchy principal value (with 
respect to the point a). 

3. The Theorem. If 

(3) = lim f -^4-dt w \ >v/ 2ni Jm t+is 
then 

(4) ' -

in the sense of (01J. 
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P r o o f . First we prove, independently of the relations (4), that the linear forms 
<5* are distributions in (0'_J. 

Note that for each e > 0 the integrals in (3) converge because the integrands 

are O I — I . Also, for each e > 0 , the linear forms 1 ' • |a+ 1 1 ' 

( 5 ) 9 * / M * 
t + lE 

are distributions. In fact, identifying the distributions with the functions 

1 
t — _ . 

t + w 
to which they correspond, we have 

TdbfT' 9 < f — f d±= 
2 +e2 max{(l + | / | ) > ( O I } . 

The integral being convergent, the rest of the argument is obvious f rom what has 
been shown in Lemma I . 

Now let us consider the integral of the Cauchy type 

m = f 7 = 7 ? ' 

Note that is holomorphic in D+ = {z\z — x + ie} ( e > 0 ) and in D~ = {z\z'=x — ze} 
(e>0) . Every function <pG(<iLJ is bounded on Rand , being a (C°°)-function, satisfies 
with each of its derivatives condition H on every compact subset of R. The range 
of the distributions (5) coincides with the range of the function 0 for z = +/e, 
respectively. The limits (3) are equal with the limits of <p(z) as z approaches to the 
point a = 0 along the imaginary axis from D+ and D~, respectively. By Lemma 2 
the limits 

< 5 ± , <p) = l i m 1 . , ( p ) = l i m (p(±ie) 

exist for every (p Applying the theorem on the convergence of distributions, 
it follows that d + and <5~ are actually distributions in 

At the same time we have 

This implies the relations (4). The proof is complete. 
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R e m a r k 1. Let <5(a) be a d i s t r i b u t i o n de f ined by (S(a),(p) = (p(a), a £ R ( f o r a ; = 0 , 

8(a) — Le t V p , <5(+(, be t he d i s t r i b u t i o n s d e d u c e d f r o m (1) a n d (3) if in 

p lace of t h e t e r m s t, t — ie, t + is we set t — a, t — a —is, t—a + ie, respect ively. In 
th i s case, t h e s a m e m e t h o d gives 

R e m a r k 2. Since P l eme l j ' s t h e o r e m is val id in a c o m p l e x B a n a c h space ([6]), 
it is poss ib le t o der ive t he s a m e f o r m u l a s if &± a r e v e c t o r - v a l u e d d i s t r i b u t i o n s ( c o m p a r e 
wi th [8, p p . 659—661]) . 
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Generalizations of the Hardy—Little wood inequality 

By JÓZSEF NÉMETH in Szeged 

i= 1 

1 . G . H . H A R D Y (see for instance [3] , p. 2 3 9 ) proved the following 
n 

T h e o r e m A. If 0 (w = l , 2, ...) and Au = then 
oo t \p CO 

(1) 

n= 1 \P~ 1 ) "= t 

unless all an vanish. The constant is best possible. 
This result was generalized by H A R D Y and L I T T L E W O O D [2] as follows: 

T h e o r e m B. Suppose /?=-0, c is real (but not necessarily positive), and Ian is 
a series of positive terms. Set 

II OO 
A in = 2 ak and A„„=2^k-

(i=l k=n 
If p> I we have 

(2) £ n'cA1n^K2 n~c{na„y with O L , *) 
n=1 n— 1 

(3) 2 2 n~c(nany with c < 1; 
n=1 n=1 

and if p<-\ we have 

(4) 2 n~cA%^K2 n-c(na„y with C>L, 
n~ 1 n=1 

(5) 2 n c a K 2 n-c(nany with c< 1. 
n=l n=1 

Theorem A was generalized by H A R D Y ( [4 ] , p. 273—275), and then by G. M. 
PETERSON and G. S. DAVIES ([7], [8]), in such a way that the arithmetic means of an 

*) K denotes a positive absolute constant, not necessarily the same at each occurrence. 
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in ( 1 ) are replaced by more general sums. M . IZUMI, S . IZUMI and G . M . PETERSON 

([5]) gave further generalizations, notably they proved inequalities of type 

~ f H 1 P » 
(6) 2 c H , j ( n ) \ z n, m 

n=l lm=l J n=1 

under certain conditions on the matrix (c,„ „), the sequence {/(«)}, and p. 
Theorem B was generalized by L. LEINDLER ([6]), who replaced in (2)—(5) 

the sequence {« _ c} by an arbitrary sequence {A,,}; for instance he proved the inequality 

(7) 2 ¿ J W 
«=1 n=1 \m=n ) 

with p S i and A„=~0. 
In the present paper we intend to generalize and to combine these results. 

2. We use the following definitions: 

a) denotes that the matrix C = (c„,v) satisfies the conditions: 

cm,v>0 (v^m), c,„ jV= 0 ( v > w ) (m, v= 1, 2, ...), and 

(8) O c ^ s ^ * ) (Osv^n^m). 
Cn, V 

b) C £ M 2 denotes that c„, v>-0 ( v g r a ) , c , „ v = 0 ( v < w ) (m, v = l , 2 , ...), and 

(9) n 2 ( O S K S m s v ) . 
R̂T, V 

c) C £ M 3 denotes that cv „,=>0 ( v S m ) , and cv m = 0 ( v < m ) (v, «7 = 1,2, ...), 

(10) o < £I±HL ^ ( v s « s m s 0 ) . 
-̂v, n 

d) C £ M 4 denotes that £•„_„, > 0 ( v S m ) , and cv m = 0 ( v > m ) (v, «7 = 1,2, ...), 

(11) ( O ^ v s m s f l ) . 
^V, it 

3. We prove the following 

T h e o r e m . Let a„s0 and A„>0 (« = 1, 2, ...) be given, and let C = (cmk) be a 
triangular matrix. 

(a) If and /?£ 1, then 

(12) Z K \ 2 cn,mam\ 
«=1 Vm=l 7 n=l \m=n ) 

*) Ni denote positive absolute constants (7=1, 2, 3, 4). 
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(b) If C£M3 and p ^ l , then 

\P c* ( m 
(13) 2 Ц 2 c„,ma A S J V f < ' - V 2 ¿¿Г" 2 Kcm.n I apn 

m= 1 \л = т ) m=l v«= 1 

(c) If C £ M2 and 0 < / > S l , then 

n=l 
(14) -2cn,vav \ ^ N^-v-pP 2 2 Ск,Л\ «л-

u = 1 

p 

(d) If C£Ma and 0 < / 7 = s l , ?/гел 

CO ( m )p / « V 
(15) 

m= 1 V«=l / m=l V.n = m J 

4. We remark that this theorem implies LEINDLER'S theorem [6], further if 
Am = cm>m/ (

1
m^pand we write cm „ / ( m ) instead of elements of the matrix C, then asser-

tion (a) includes Theorem 3 of [5], and in the case K—f{nf and ckn—f(lc)aki„, asser-
tion (d) reduces to Theorem 5 of [7]. 

5. We require the following lemmas: 

L e m m a 1. ([7], Lemma 1) If p> 1 and z„SO (n — 1, 2, ...) then 

[ - )> - [ * V - 1 

\ 2 *k Ms p 2 4 \ 2 zA • 

The proofs of the following lemmas are similar to that of Lemma 1. 

L e m m a 2. If < 1 and zy > 0 , z„ ё 0 (n = 2, 3, ...) then 

Л )P N ( К " JP - I 
2 zk\ ^P2zk\ 2 4 • 
i= l ) k= 1 ) 

L e m m a 3. //" 0 </>-= 1 and z „ § 0 (« = 1 ,2 , . . . ) then for every natural number N, 
for which zN > 0, 

(N Y N ( N "jP-1 

2zk\ =p2zkI 2 z v | k = n \v=k 

L e m m a 4. If p> 1 and z „ g 0 (« = 1, 2, ...) then for every natural number N 

2 zk\ ^ P 2 zk \ 2 • k=n ) k = n (v=k J 

6. Proof of Theorem. For p = 1 the assertions are obvious; we have only to 
interchange the order of the summations. Further we may assume that not all a„ 
vanish. (Otherwise the theorem is evident.) 
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P r o o f of i n e q u a l i t y (12). By Lemma 1 we obtain for C = (cmk)£M1 

N ( n \P N n I m "»P-1 

2 ¿ J 2" Cn,m"m ^ P 2 K 2 cn,mam 2 c„,kak S 

11= t V/l=l ) 11= 1 m = 1 \k=l ) 

N ll C m "JP-1 N ( m "jP-1 N ^ N1~lP 2 K 2 c„>mam 2 cm,kak\ = JV?"lp 2 2 cm,kak\ a,„ 2 Kcn,m-

n=l ,„= 1 V*=l / m = l U = l ) n=m 

Hence, using Holder 's inequality, we have ' 

N ( 11 1P I ¿ V i m )P] lll ( N ( N )P 1 >/P 
2 U 2c„,maJ S w r v 2 2 cm,kak\ 2 ¿tn-p\ 2 Kc„, J a'm\ 

n= 1 (m=l J lm=l U=1 / J lm=l \n = m ) ) which, by a standard computat ion, gives assertion (a). 

P r o o f of i n e q u a l i t y (13). By Lemma 4 we have for C — (cm k)£M3 

N ( N |P N N 
2 ¿ J 2 cn,,„a„\ S p 2 K 2 cn,ma„ m=l \n = m ) . m=l n = m 

N V - l 
2cVrmaA • 

\v=n 

N N [ 1» "|P-1 1» [ » "|P-1 n 
NP3~X-p 2^m2Cn,ma„\ 2c\,naA = ^ - ' / > 2 2<v,„«v °n 2Cn,mKi S 

tn — Í n—m Vv = « ) . /1=1 \v=/i / m=i 

— ^ r {N C N y i 1/9 f AT f n y 1 1/P 

2 j [ 2 cv,„«vj J [ 2 ^ " p [ m 2 m J • 

This gives assertion (b). 

P r o o f of i n e q u a l i t y (14). Using Lemma 3 with an index N fo r which aN>0 
we obtain 

N ( N ")P N N ( N "|P-1 
2 2 cn,viv\ ^ P 2 ^n 2 cn,vav\ 2 c»,kak\ ^ 

/1=1 Vv = 'l ) 11=1 v = n \k = v ) 

N N ( N " \ P - 1 N ( N " | P - 1 V 

^ Ni'P-p 2 . K 2 c„,vav \2cv,kak\ = N\'p-p 2 \ 2 cv,kak\ : av2Vn,v 
n= 1 v=n = v / v = 1 Vk = v 1 - ) n=l 

Hence, using Holder 's inequality ([.1], p. 19) we have ' 

JV ( ,V V f N (, N I T ' 4 f N ( v 1P l"" 
2 ^ 2 c „ , v « v - A 1 i - " P \ 2 ^ 2c,,kak\ 2 / ' p 2 Kcn,A a»\ . n= I \»=n ) lv=l U = v ) ) lv=l \n= 1 f t 

Hence we obtain (14). 
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P r o o f o f i n e q u a l i t y (15). W e m a y a s s u m e t h a t at T^O. U s i n g L e m m a 2 

we h a v e 

H e n c e we get t he r e q u i r e d i nequa l i t y (15), a n d we h a v e c o m p l e t e d o u r p r o o f . 
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Logarithmic concave measures with application to 
stochastic programming 

/ 

By ANDRÁS PRÉKOPA in Budapest*) 

1. Introduction. The problem we are dealing with in the present paper arose 
in stochastic programming. A wide class of stochastic programming decision rules 
(see [8], [9]) lead to non-linear optimization problems where concavity or quasi-
concavity of some functions is desirable. Let us consider the following special de-
cision problem of this kind for illustration: 

Minimize / ( x ) subject to the constraints: 

(1.1) P{g1(x)^p1,...,gm{x)^pm)^p, A 1 ( x ) s O , . . . , M x ) S O . -

Here 0!, . . . , Pm are random variables, p is a prescribed probability (0 < 1) and 
> Sm (X), hi (x), . . . , hM(x), — / ( x ) are concave funct ions 1 ) in the entire space 

R", where the vectors x are taken from. If we want to solve Problem (1. 1) numerically 
then the first thing is to discover the type of the function of the variable x£Rn: 

(1. 2) h{x) =P{gl (x) M i , . - , *„(x) S / U -

If this is concave or at least quasi-concave then the numerical solution of Problem 
(1. 1) is hopeful. We are interested in random variables . . . , P,„ having a continuous 
joint probability distribution. Examples show that in the most frequent and practi-
cally interesting cases we cannot expect that the function (1. 2) is concave. Surpris-
ingly, however, a special kind of quasi-concavity holds for a wide class of joint 
probability distributions of the random variables pi,...,pm. Notably, we show 
that under some conditions log/i(x) is a concave function in the entire space R". 
This unexpectedly good behaviour of function (1.2) and problem (1. 1) will result 
very likely in a frequent application of this and related models. 

*) This research was supported in part by the Institute of Economic Planning (Budapest). 
') From the point of view of numerical solution it is enough to suppose that /ii(x), ..., AM(x) 

are quasi-concave. A function h(x) defined in a convex set L is quasi-concave if for any x t , x2€£, 
and 0<A-= 1 we have /¡(AXi+(l - A)x2) min {/i(Xi), h(x2)}. 

6 A 
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The main theorem in our paper is Theorem 2 which is proved in Section 3. 
The basic tools for the proof of this theorem are an integral inequality and the 
Brunn—Minkowski theorem for convex combinations of two convex sets. The integral 
inequality states that for any measurable non-negative functions / , g we have 

(1.3) / s u p f(x)g(y) clt : ( j p {x) dxf ( / g 2 (>•) dy)". 
- c o x + y = 21 ' - c o 

This will be proved in Section 2. 
Let A and B be two convex sets of the space R". The Minkowski combination 

A+B of A and B, and the multiple XA of A (for a real number X) are defined by 
A+B = {a + b |a£/4 , b £ 5 } and XA — {Xa\a£A}. 

T h e o r e m of B r u n n . If A and Bare bounded convex sets in R" and 0 < A < l , 
then we have 

— J. J. 
(1.4) n" {XA + (1 ~X)B}^ Xn" {A} + (1 - X) n" {B}, 

where ¡.i denotes Lebesgue measure. 

This theorem is sharpened by the 

T h e o r e m of B r u n n — M i n k o w s k i . If the conditions of the theorem of Brunn 
are fulfilled, moreover both A and B are closed and have positive Lebesgue measures, 
then equality holds in (1.4) if and only if A and B are homothetic. 

Our main theorem contains an inequality similar to that of Brunn. Instead 
of Lebesgue measure more general measures are involved. Let P be a probability 
measure 2 ) defined on the Borel sets of R". We say that the measure P is logarithmic 
concave if for every convex sets A, B of R" we have 

(1.5) P{XA + {\-X)B) ^ {P{A}Y{P{B}y->- ( 0 < A < 1 ) . 

In section 4 we show, that many well-known multivariate probability distributions 
have this property because they satisfy the conditions of the main theorem. 

Inequality (1. 5) has an important consequence, namely that the P measure 
of the parallel shifts of a convex set is a logarithmic concave function of the shift 
vector. This will be shown in Section 3. 

As for the practical applications of the theory presented in this paper the reader 
is referred to the detailed study [9]. 

2) We restrict ourselves to finite measures and, having in mind the applications of our theory, 
we consider probability measures. The finiteness condition, however, can be dropped as it will be 
clear from the proofs. 
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2. An integral inequality. In this section we prove the inequality (1.3). We 
formulate it now in the form of a theorem. 

T h e o r e m 1. Let f g be two non-negative Lebesgue measurable functions defined 
on the real line Rl. Then the function 

(2. 1) r(t) = sup f(x)g(y) 
x+y=2t 

is also measurable and we have 

(2. 2) f r(t)dt s ( j > ( x ) dxf ( / g 2 ( y ) dyf 

(where the value is also allowed for the integrals). 

P r o o f . First we prove the assertion for such functions f g which are constant 
on the subintervals 

Kl- r ' 2 ) n — 2 n— 1 ] n- 1 Kl- n ' n j ' n n J ' n 

of the interval [0, 1] and vanish elsewhere. Let at, ...,a„ and bx, ...,bn denote 
the values of / and g on these subintervals, respectively. Then we have 

f r(t) dt = [A2 + max (A2, A3)+ ••• + max(^ 2 „_ A2n) + A2n] , 

where 
(2.3) 

and 

Am = max a^; (m — 2, 3, . . . ,2«) , 
i + j = lit 

1 SI , J S N 

n ( n 

¡ f 2 { x ) d x ^ - Z a l fg2(y)dy = - 2 b l 
$ n ,= . $ «,= 1 

Thus the inequality to be proved reduces to the inequality 

(2.4) -~[A2 + max (A2, A3)+ ••• + max (A2n-i, A2„) + A2n] S 

for any sequences of non-negative numbers a,,...,a„; bl,...,b„. 
First we consider the case 

(2.5) bt ^b2 S ••• *zb„. 

This implies A2 ^ A 3 ^ A 2 n . - ft is enough to prove (2.4) for the special case, 
a, —bi = 1. We prove then that 

a a 
(2 .6 ) . 2A2 + A3+--+A2„_i+-A2n S Zaf + Z t i 
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which is stronger than the required inequality because 

Let us arrange the numbers a2, ..., a„, b2, ..., b„ according to their order of magni-
tude. We may suppose that the first number is a2• If some a's are equal we keep 
among these the original ordering and the same is done to the b\s. If a^bj for 
some z > 2 a n d y > 1 then the ordering between these two numbers is bj, a,. Let ar 

be the first among a3, ...,a„ which is smaller than or equal to b2. It is possible, 
of course, tha t such an ar does not exist, i.e. an>b2. In this case a„6m_„ ^ 
S b2bm-„ ^ b^_n (m = n + 2, ..., In), thus (2.6) follows then f r o m the relations 

A2 = a1b1 = l, Am am_^by = am_l & afn_l (m = 3, ..., n+l), Am^anbm^„ 
(m = n + 2, ...,2ri). In the case that ar exists the following reasoning applies. We 
associate with each b j the 

nearest a to the lef t : let fljy) be this number . Similarly, 
we associate with each ap the nearest b to the lef t : ' le t Z>9(p) be this number . 
We have 

aHj)bj — bj ( . /=2 , . . . , « ) , apbg(p)^a2
p (p = r, ..., n). 

It is easy to see tha t for any j and p satisfying 2 ^ n, r ^ p ^ n, the relation i ( j ) +j 
^ p + q{p) holds. In fact there is no ap between ai(j) and bj. Consequently ap is 
either to the right f r o m bj in which case we have q(p)^j, p>i{j) or p ^ / ( / ) in 
which case,<7(/>)</'. A second remark is that the numbers i( j ) + j ( / = 2 , . . . , « ) are 
different f r o m each other and the same holds for the n u m b e r s p + q(p) (p~r, ...,«). 
F r o m these we conclude that 

A3 + A4+-+A2n S A2
3 + -+A? + Ar+1 + -+A2n s 

S a2
2+- +a2.y + 2 «A(P) + 2 aHj)bj ^ a2

2 + - + a2_t + 2 "1+ 2 b). 
p = r j = 2 p = r j = 2 

This proves (2 .6) because A2—a1bi = \. 
N o w we prove that if we per form independent permutat ions on the numbers 

(2. 5) then the left hand side of (2. 4) becomes the smallest at the original non-
increasing ordering. Let us consider the following scheme (illustrated in the case 
n — 3): 

a1bl A2 

atb2 a2bi A3 

(2 .7) atb 3 a2b2 a3bi A4 

a2b3 a3b2 As 

a3b3 A6 
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with the row maxima at the right hand side. If in the sequence al; ..., a„ we inter-
change a ; and ûj- then this means in the scheme (2. 7) that the fth and y'th northeast-
southwest rows are interchanged. The situation is similar if we interchange bt and 
bj in the sequence b1,...,b„. Under such transformations the horizontal rows 
interchange some elements. The following assertion is true, however. The /cth largest 
horizontal row maximum in the original scheme is not larger then the £:th largest 
horizontal row maximum of another scheme obtained f rom the original by some 
(independent) permutations of the skew rows. In other terms, if B2, ...,B2n are 
the horizontal row maxima of the transformed scheme and B \ , B2n denote the 
same numbers but arranged according to their magnitude, i.e. B2^B3 S -- = B2n, 
then 
(2.8) Ai^.Bf (i = 2, ..., 2n). 

In (2. 8) we already took into account that A 2 ^ A 3 S - - - S A 2 n . To prove this state-
ment, suppose that the A:th largest horizontal row maximum in the original scheme 
is realized by the element apbq. Then in the rectangle 

a1b1 a2bl...apbl 

(2.9) - atb 2 a2b2...apb2 

aibq a2bq...apbq 

which stands skew in the scheme, all numbers are greater than or equal to apbq. 
We remark that k = p + q — 1. Now it is easy to see that under any permutations 
of the skew rows of the original scheme, the numbers (2. 9) cannot be condensed 
into less than k = p + q —I rows. This means 

B*k + x^Ak+i(=apbq) {k=\,...,2n-\\ 

which are the required inequalities. 
We arrived at the final step of the proof of the inequality (2. 4). From relation 

(2. 8) we conclude 
2II 2 n 2 n 

A2+2 A, *b*2+ 2Bt = B*2+ 2Bh 
1=2 1=2 /=2 

On the other hand we have for an arbitrary sequence of numbers B2, ...,B 

B*2+B2 + -+B2n = S B2+max(B2,Bi) + --+max(B2ll_1,B2n) + B2 

In » 

where B2 is the largest among B2, ...,B2n. Hence it follows for our non-negative 
numbers 

A2 + A2n+ 2! max(A^ Ai+l) 
J_ 

: ~4 
I 

~4 

¿2 + 

B2+B2n+ 2 max(B„Bl+1) 
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This means that the left hand side of (2. 4) is the smallest at the original permuta-
tions of the sequences a t,...,a„; bl,...,b„. 

If f , g are cont inuous funct ions in some closed intervals and are equal to 0 
elsewhere then these can be uniformly approximated by such funct ions for which 
we already proved the integral inequality (2. 2). Thus (2. 2) holds for these functions 
f , g too. 

If / and g are cont inuous on the entire real line then first we define 

f , ( x ) =f(x) if \x\^T, and fr(x) = 0 otherwise, 

gT(y)=g(y) i f \)'\ = T> and g r ( j ) = 0 otherwise. 
It follows that 

r{t) = sup f(x)g(y) £ max fr{x)gr{y) = rT(t). 
x+y=2l x+y=2t 

So we have 
OO OO OO CO 

j r{t)dtS / rT(t)c/t^( f .fr2(x)dxy{ f g2
T{y)dy]\ 

and hence we infer that (2. 2) also holds. 
Let us now prove the theorem for arbitrary non-negative Lebesgue measurable 

functions. I t is enough to consider funct ions which are bounded and equal to zero 
outside the interval [0, 1]. We may also suppose that b o t h / a n d g have a finite number 
of different values. In fact every measurable bounded funct ion can be uniformly 
approximated by such functions with arbitrary precision. 

The measurability of r(t) — sup f(x)g(y) will be proved as follows. The 
x+y=2t 

space R 2 can be subdivided into a finite number of disjoint rectangular Lebesgue 
measurable sets E{, ..., EN each of which has the proper ty that the function of two 
variables f(x)g(y) is constant on it. The sets 

H, = {t\2t = x+y, (:x,y)£Ei} (i=\,...,N) 

are clearly measurable. If E{, ..., EN are arranged so that the values of f(x)g(y) 
follow each other according to the order of magnitude where the largest value is 
the first, then r{t) is constant on the sets 

U Hj (/= 1, ...,N-\), and HN, 
j=i+1 

which proves the measurability of r{t). 
Let F be the class of functions defined on [0, 1] consisting of all non-negative 

step functions and all funct ions which can be obtained in the following way: take any 
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non-negative step function h(x), any sequence of intervals ii, I2, ... with finite sum 
of lengths and define 

(2.10) k(x) = 0 if x e U A, and k(x) — h(x) otherwise. 
k= 1 

This class of functions has the property that for any pair f g in F, inequality (2. 2) 
holds. This statement is trivial for step functions. If / and g are in F and one of 
them or both are not step functions then 

fix) = Jim f ( x ) , g(y) = Jim gi(y), 
l - *oo t— CO 

where f , are defined so that on the right hand side of (2. 10) we put h—f resp. 
i 

h = g and write U Ik instead of (J lk. It follows that 
k=1 t = l 

sup f(x)g{y) = max f(x)g(y) = lim max Mx)g,(y), 
x + y=2t x + y=2t i —~ x + y=2t 

whence we conclude 
i i 

J sup f(x)g(y)dt = lim J max f{x)gXy)dt =5 
0 x+y=2l o x + y=2t 

1 1 1 1 

= dxY ( J ' s f ( y ) dy)^ ( / / 2 ( . v ) c/x)- (Jg2(y)dyy. 
' °° o o o o 

As the next and final step in the proof we show that every Lebesgue measurable 
and finitely valued function defined in [0, 1] is the limit in measure of a sequence 
of functions f £ F ( / = 1 , 2 , ...), where 

(2.11) f i ( x ) S f ( x ) (0^*3=1; 1=1,2, . . . ) . 

To prove this we denote by dx, ...,d„ (d{ <•••<£/„) the values of the function f 
and by Di, . . . , D„ those measurable sets where / t a k e s on these values. Let us cover 
Dj = [0, l ] \ £ j by a sequence of intervals 

/ / / > , / , « > , . . . ( / = 1 , 2 , . . . ; j = 1 , ..., «), 

where the sum of the lengths of these intervals tends to the Lebesgue measure of 
D j as / — «>. Let us define f in the following manner 

(2.12) ft{x) = dj if x i V W 0 = 1 , . . . , » ) and / , (* ) = 0 otherwise. 

For every / = 1 , 2 , ... we have f £ F , (2. 11) is fulfilled, and the sequence (2. 12) 
converges to / in measure. 
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If the sequence (/ = 1,2, ...) is defined in a similar way in connection with g 
then we conclude 

i i 

/ sup f{x)g{y)dt^ f sup fi(x)gi(y)dt s 
0 x+y = 2t o x+y = 2t 

1 1 1 1 

S ( f f H x ) d x } i ( f g H y ) d y } i - { f f 2 ( x ) d x ) i d g \ y ) d y ) i . 
0 0 0 0 

This completes the proof of Theorem 1. 

3. The main theorems. The main result of this paper is the following 

T h e o r e m 2. Let Q(x) be a convex function defined on the entire n-dimensional 
space R". Suppose that Q(x) ^a, where a is some real number. Let ip(z) be a function 
defined on the infinite interval [a, =•=). Suppose that I]J (z) is non-negative, non-increasing, 
differentiable, and — i¡/'(z) is logarithmic concave3). Consider the function f ( x ) = \p(Q(xj) 
(x£Rn) and suppose that it is a probability density4), i.e. 

(3.1) J f ( x ) d x = l . 
R" 

Denote by P { C } the integral of / ( x ) over the measurable subset C of R". Jf A and 
B are any two convex sets in R", then the following inequality holds: 

(3.2) P{XA+{l-X)B) a (P{><})A(P{£})1-'1 ( 0 - = A < l ) . 

R e m a r k 1. Condition (3. 1) implies that t/r(z) — 0 as z - « > , Otherwise / ( x ) 
would have a positive lower bound contradicting the finiteness of the integral (3. 1). 

R e m a r k 2. We supposed that Q(x) is bounded f rom below. Dropping this 
assumption and allowing z to vary on the entire real line, where we suppose that 
i f / ( z ) satisfies the same conditions as before, we can deduce f rom the other assump-
tions of Theorem 2 that Q(x) is bounded f rom below. 

For if Q(x) were unbounded f rom below then for every real number b the set 

(3.3) {x\Q(x)^b} 

would be unbounded and convex. Consequently the Lebesgue measure of (3. 3) 
would equal infinity. Now the function \j/(z) cannot vanish everywhere because of 

-1) A function h(x) defined on a convex set A" is said to be logarithmic concave if for any x, y£K 
and we have h(/.x+(\ -À)y) S [A(x)]*[A(y)]1"^. 

") It would be enough to suppose that the integral of / (x ) is finite on the entire space R". 
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(3. 1). Thus if 2 ( x ) is unbounded from below then / ( x ) is greater than or equal 
to a positive number on a set of infinite Lebesgue measure. This contradicts (3. 1). 

R e m a r k 3. We may allow Q(x) to take on the value In this case we 
require that ip(°°) — 0. 

P r o o f of T h e o r e m 2. Consider the one parameter family of sets 

( 3 . 4 ) E(v) = {x | / ( x ) £ » } = {x | Q(x)^il/~1 (v)} ( O > 0 ) , 

and the corresponding Lebesgue measures F(v) = n{E(v)} (v>0) . As the integral 
o f / ( x ) is finite over the entire space R" it follows that the measures F(v) are finite 
for every v. Furthermore all non-empty sets E(v) ( u > 0 ) are convex, thus they must 
be bounded as well. Finally, the sets (3. 4) are closed because Q{x) is continuous. 
The integral o f / ( x ) on R" can be expressed, in the form 

( 3 . 5 ) J f ( x ) dx — — f v dF(v) = f F(v) dv, 
R" 0 0 

where we have used partial integration and the following formulas 

F(v) = 0(u > i¡/ (a)), lim vF(v) = 0. 

The first relation is trivial, the proof of the second relation is given below. For any 
e > 0 we have 

oo oo oo oo 

- J vdF(v) a - F vdF(v) = EF(E) + F F(v)dv S / F(v)dv. 
0 E 8 £ 

Thus the integral on the right hand side of (3. 5) is finite. Taking this into account 
we see f rom the line above that lim eF(e) exists. This limit cannot be positive 

as J Fiv)dv is finite, 
o 

Let us introduce the notations 

*((;) = {x | <2(x)St,}, L(v)=n{K(v)} (-=«,<„<=<,), 

where ¡J. is again the symbol of Lebesgue measure. Then, for every Eiv) = 
= K{[j/~1iv)) and Fiv) — L(il/~1 iv)). Using this notation we can rewrite (3.5) in 
the form 

J9fix) dx = F Fiv)dv = J L{ip~iiv))dv. 
R" O O . 
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Applying the transformation z = ij/~i(v) and observing that i / ' - 1 (0) = we ob-
tain that 

f / ( x ) d x = f L(z)[-y(z)]dz. 
R" a 

The above reasoning can be applied for an arbitrary measurable subset C of 
R" with the difference that instead of E(v), K(v) we have to work with the intersec-
tions E(v) H C and K(v)f)C. Introducing the notation L(C, v) = / j № ) i l C } , we 
can write 

(3- 6) J f ( x ) dx=f L{C, z)[-ij/'(z)]dz. 
C a 

By the convexity of the function Q(x) we have for any u, Sa, v2 =a and 0 < A < I, 

(3. 7) K(kvi + ( 1 -k)v2) 3 AK(vt) + (1 -k)K{v2). 

Let A and B be any convex sets in R". Considering the Minkowski sum kA+{\ — k)B 
with the same k as in (3. 7), it is easy to see that 

A"(At>j + ( 1 — k)v2)n[kA + ( 1 — k)B] =3 k[K{vi)f}A] + {\-k)[K{v2)^B}. 

By the Theorem of Brunn, 

(3. 8) \_L{kA +.(1 -k)B, kvt + ( 1 -k)v2]^ £ k[L(A, +(| ~k)[L(B, p2)]T . 

We shall use the following consequence of (3 .8) : 

(3. 9) L(kA + ( l - k ) B , kv, + ( 1 -k)u2) £ [L{A, vt)]l[L(B, 

The function — i¡/'(z) is logarithmic concave in the interval z 5 a ; hence for any 
v, v2 Sa we have 

(3.10) ~ r { U » i + v 2 ) ) S [ - * ' ( » , ) ] * [ - ^ ' ( i n -

putting k = \ in (3. 9) and multiplying the inequalities (3.9), (3. 10) we obtain 

L (A A + i B, i i>, v2) "i + i o2)] ^ 

£ {L(A, v^-ri^W {L(B, V2)[-V{V2W • 

It follows from this that 

(3.11) L { \ A + \ B , z ) [ - ^ { z ) ] ^ sup 
V1+U2=2z 
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Now we apply Theorem I for the functions on the right hand side of (3. 11). First 
taking into account (3. 11) we conclude the following result 

/ LGA + ±B,z)[-y(z)]dz* 
a 

s / sup {L(A,vl)[-r(v1)]}i{L(B,v2)[-r(v2)]}i'dz^ 
a v U} = 2z 

S { / HA.vM-rivMdvtfiJuB, v2)[-r(v2)]du2y. 
a a 

In view of (3. 6) this means 

p a A + i B} = f f(x)dx s [ f / ( x ) dxf [ J f ( x ) dxf = [P{/f}]S[P{S}]>. 
IA+IB A B 

(3.12) 

Thus inequality (3. 2) is proved for X = \ . 
The assertion for the case of an arbitrary A can be deduced from here by a 

continuity argument. First we remark that if Ax, A2, A3, A4 are arbitrary convex 
sets in R" then (3. 12) implies 

P{kA,+iA2 + iA2 + -\AA} = P&QA^AJ+WtAt + ltAJ}^ 

A similar inequality holds for any convex sets C,- ( / = 1, . . . , 2N), where N is a positive 
integer. Define the sets 

A, = A ( / = 1 , . . . J ) , B=B (i=\,...,k), 

where we suppose that j + k is a power of 2, furthermore 

(3.13) lim —r- = X. j,k~~ j + k 

Let j + k = 2N. It follows that 

¡Ai + -+Aj + Bl + - + Bk \ _ J j A { + ••• + Aj , k B.+ .+B.l _ 
1 2N [2N j ' 2N k J 

(3-14) . 
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because A and B are convex sets. On the other hand we have 

P{2^lAl + ...+Aj + Bl + ...+Bk)}^[nP{A^\ F / Z M } ] 2 = 

(3.15) 1 J 1 = 1 ] 

= (P{A})J2'N (P{B})k2~N. 

Compar ing (3. 14) and (3. 15) we conclude 

(3-16) P ^ A + ^ B } s C P { A } y 2 ' \ P { B } f 2 - \ 

Taking into account (3. 16) and the continuity in X of the funct ion P{XA + (1 — X)B), 
we see that (3. 2) holds for arbitrary 0 < A < 1 . Thus the proof of Theorem 2 is 
complete. 

T h e o r e m 3. Let f ( x ) = i//(Q(x)) be a probability density in R" satisfying the 
conditions of Theorem 2 and A a R" a convex set. Then the function 

(3 .17) h(t) = P{A+i) (t £Rn) 

is logarithmic concave in R". 

P r o o f . Let t 1 ; t 2 be arbitrary vectors in R" and let 0 < A < 1 . Then we have 

XiA + tJ + il-XXA+tJ = A + VU+il-X)^]. 

In fact if x£A, y£A then 

¿ ( x + t J + O - A X y + t , ) = [Ax + (1 — A)y] + [Atx + (1 — A)t2] 

and we supposed that A is convex. Thus by Theorem 2 

P{A + [Atj + (1 — A)t2]} = P { A ( ^ + t 1 ) + ( l - A ) ( ^ + t 2 )} S 

^{PiA+t^YiPiA+tjy-i, 
which means that 

h{Xt, + { 1 - A ) t 2 ) S [Mt . j lH/Ktz) ] 1 - ' . 

T h e o r e m 4. Let F(x) be a continuous multivariate probability distribution func-
tion the probability density of which is of the form f i x ) = ij/(Q (x)) and satisfies the 
conditions of Theorem 2. Then Fix) is a logarithmic concave function in R". 

P r o o f . Apply Theorem 3 to the set A = {z|z^0} and take into account that 
Fix) = for x^R". 
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4. Examples of probability measures satisfying the conditions of Theorem 1. The 
most important multivariate probability distribution is the normal distribution. 
Its density is given by 

( 4 . 1 ) / 0 0 = 1 _ e - i ( x - n . ) ' C - ' ( x - m ) ( x ^ R " ) , 

( 2 * ) T | C | t 

where mGi?" is an arbitrary vector and C is a positive definite matrix the determinant 
of which is denoted by |C| . Vectors are considered as column matrices as well and 
the prime means transpose. This function satisfies the conditions of Theorem 2. 
In fact / ( x ) can be written as 

/ 0 0 = « H e o o ) (x € R") 
with 

(4.2) \j/(z) = Ke~z* ( z s O ) and Q(x) = -y (x —m)'C _ 1 (x —m) 
1/« 

where a is any fixed number satisfying l ^ a s 2 further K is the constant standing 
on the right hand side in (4. 1). That i j / ( z ) has the required property, is trivial. Only 
Q(x) needs a remark. It is well known that a function 

(x'Dx)2 (x<=Rn) 

is convex in the entire space provided D is positive semidefinite. This implies the 
convexity of g ( x ) in (4. 2). 

Three further probability distributions will be discussed. In all cases we shall 
show that the probability densities are logarithmic concave in the entire space R". 

The probability density f ( X ) of the Wishart distribution is defined by 

N - p - 2 
\Y\ 2 „ - i S p C - i * 

f { X ) = |A| 
N-1 P(P-1) 

2 2 "n 4 [Cf 

if X is positive definite, and f ( X ) = 0 otherwise. Here C and A' are pXp matrices, 
C i s fixed and positive definite while A'contains the variables. In view of the symmetry 
of the matrix, the number of independent variables is n — % p(p + 1 ) . We suppose 
that N S p + 2. It is well known that the set of positive definite5) pXp matrices 
is convex in the n = %p(p+ l)-dimensional space. 

') Any positive definite (or semi-definite) matrix is supposed to be symmetrical in this paper. 
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We show that f ( X ) is logarithmic concave on this set6) . To this it is enough 
to remark that for any 1 and any pair X2 of positive definite matrices 
the inequality 

(4.3) \Ml+(\-X)X2\ £ M T . I W 1 

holds, where we have a strict inequality if X, ¿¿X2 (see [1]). 
The multivariate beta distribution has the probability density f ( X ) defined by 

/•fy\ =
 C("< ' P)C("2>P) |^ | + („ 1 _p- l ) | / _^ | i ( - . 2 -p -J ) 

J( ; C(ni+n2,p) 1 1 1 1 

if X and I—X are positive definite, and f ( X ) — 0 otherwise (see [7]), where 

pk p(p- 1) p ( , • . , 

I is the unit matrix, / and X are of order pXp, p is a positive integer. We suppose 
that n i £ p + 1, rt2 S p + I. The number of independent variables of the function 
f { X ) is equal to n = - j p ( p + 1). 

It is clear that the set of positive definite matrices A' for which I — X is also 
positive definite, is convex. The func t ion / (X) is zero outside this set and is logarithmic 
concave on this set which can be seen very easily on the basis of (4. 3). 

Finally we consider the Dirichlet distribution (see e.g. [11]) the probability 
density of which is given by the formula 

/ ( x ) = x£ , - 1 ( 1 - ^ . . . - *„)'., 

if JC,->0 (i —],..., n), xt H \-x„ < 1, and / ( x ) = 0 otherwise. Here we have set 

K = + +Pn+») _ j ^ g ] 0 g a r j t hm of this function in the positivity domain is 
r{p\) ••• r(pn+l) 

(4. 4) log/ (x) = log K+ % (Pi ~ 1) log x, + (p„ + , - 1) log (1 - a- t - • • • - xn). 
' = 1 

We suppose that pt=\ ( / = 1, . . . , « + 1 ) . This implies that the function (4.4) is 
concave. In fact the second term is trivially concave while log (1 — — xn) 
is an increasing and concave function of a linear function. Hence the assertion. 

5. Application to stochastic programming. Let us now return to Problem (1.1) 
and consider the ^-function in the first constraint which is given separately in (I. 2). 
We show if the random variables /?,, ...,/?,„ have a continuous joint distribution 

6) If a function is logarithmic concave on a convex set and equal to zero elsewhere then the 
function is logarithmic concave in the entire space. 
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satisfying the conditions of Theorem 2, then the function h(x) is logarithmic concave 
in the entire space R". We recall that the functions g, (x),... ,gm(x) are supposed to 
be concave in R". 

Let x, y £ R n and 0 < A < I . In view of the concavity of the functions 
g,(x), (x) we have 

(1 - A ) y ) s ¿£,(x) + (l - A ) s , ( y ) (/ = 1 , ..., m). 

The function /"{/?, S z , , . . . , / ? m Sz m } of the variables z , , ...,z„, is logarithmic con-
cave by Theorem 4, and also a probability distribution function ; hence it is monotonie 
non-decreasing in all variables. Taking these into account we conclude 

A(Ax + (l - A ) y ) = P{g,(Ax + ( l - A ) y ) ë pit ...,gm{lx + ( l - A ) y ) s /?,„} s 

ë P{Ág¡ ( x ) - ( l -/.)g, (y) íé /?,, . . . ,4' ,„(x) + (l -/),?,„(>') ^ / U s 

^ [/>te,(x) s /?,, ...,g„,(x) s Pm}Y'[P{si (y) s pi,.r,gm(y) ^ O ' " " = 

= [/Kx)] ;[My)]'- ;-, 
what was to be proved. 

Considering Problem (1. 1), we may take the logarithm of both sides of the 
first constraint. Then we obtain a convex programming problem. For some reason 
we may leave it in the original form (the computational solution may prefer this 
form), then we have a quasi-convex programming problem because a logarithmic 
concave function is always quasi-concave. Any of these versions can be solved by 
non-linear programming methods (see e.g. [4], [81, [12]). We emphasize again that this 
short remark concerning the application of the theory presented in this paper is just 
for illustration and to disclose the origin of the problem. 
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Über das Maximum der Summen orthogonaler Funktionen 

Von KÄROLY TANDORI in Szeged 

1. I m folgenden betrachten wir orthonormierte Systeme {<p„(X)}~ im Grund-
intervall (0, 1). Für eine reelle Zahlenfolge {fl„}~ setzen wir 

• l ifo}; H l = s u p j J^sup |fl;cp;(x) + . . - : ' ; 

und 

I I K ) ; ^ I I =
|

s y P K { i ( ^ P ,\ai(Pi(x) + -- +aJ<pj{x)\y-d^ , 

wobei das Supremum über alle orthonormierten Systeme {<pn(*)}i°> bzw. über alle 
orthonormierten Systeme mit 

(1) \<Pn(x)\sK ( O ^ x S l ; n = 1 , 2 , . . . ) 

zu bilden ist ( K ^ 1). Offensichtlich ist ||{a„}; S| |{a„}; Hl ( ^ = 1 ) - Es ist eine 
Frage, ob auch eine Ungleichung 

| | K } ; H I ^ C{K)\\{a„Y, K\\ (K> 1) 

gilt, mit einer nur von K abhängigen Konstanten C(K). (Im folgenden bezeichnen 
C j (K ) , C2 (K ) , ... gewisse nur von K abhängige positive Konstanten, C t , C 2 , ... 
sind aber positive absolute Konstanten.) Dieses Problem ist noch ungelöst; nur 
sind gewisse Teilresultate bekannt. Der Wert ||{aB};J?||, bzw. ||{a„}; H | hängt 
nähmlich von der Anordnung der Folge {a„} ab, und fü r gewisse Anordnungen 
ist eine solche Ungleichung gültig. In einer vorigen Arbeit [2] haben wir bewie-
sen, daß 

s u p | | K } ; H I s C ^ s u p U K } ; * ! ! ( * > 1 ) , p p 

wobei sup das Supremum für jede Anordnung der Folge {a„\ bedeutet. In dieser p 
Note werden wir Folgendes beweisen: 

7 A 



318 K . Tandori 

Satz. Für jede Folge fo}~ gilt 

inf HK}; ~ | | s c 2 ( Ä ) i n f «{«„}; (Ä>1) , p p 

wobei inf bedeutet, daß das Infimum für jede Anordnung der Folge {an} gebildet wird, p 

2. Unsere Behauptung folgt aus dem folgenden Hilfssatz. 

H i l f s s a t z I. Für jede Folge fo}7 von 0 verschiedenen Zahlen und für jedes 
N gilt • 

„2 , , -2 
(2) Z fln

2log2
+

 a ' + J m ^ C 3 ( K ) \ \ { a n } l ^ ; K r ( K > \ ) , 

wobei foft(JV) die Folge fo, . . . , ov(JV), 0, . . .} bezeichnet, v(N) = 1 + 3 2 + ••• +32 , v 

ist, weiterhin die Funktion log+ x folgenderweise definiert wird: 

flog x, x^2, 
l 0 g + J C = { l «W5/. 

(Man bezeichnet mit log den Logarithmus mit der Basis 2.) 
Wegen der offensichtlich gültigen Ungleichung 

i ^ f s lifo}; tf || 
n=i ) 

können wir ohne Beschränkung der Allgemeinheit fo}€/2 annehmen. Da der Wert 
l i fo}; °o||, bzw. | | f o} ; AT|| nur von den Koeffizienten an^-0 abhängt, können wir 
an9i0 (n = l , 2, ...) voraussetzen. Dann folgt aus (2) offensichtlich 

Z r f i o g l a i + - + a " + - g c 3 ( * ) l l f o } r ; / q 
n= 1 0 „ 

und hieraus: 

(3) ZalW+ + g C 3 (A , ) inf | | fo}r ;^l l ( * > ! ) • 
n= i an P 

(Eine ähnliche Abschätzung haben wir für || fo}; Hl schon in der Arbeit [3] bewiesen.) 
Es sei foj eine Anordnung von fo}, für die |a„J a . . . a \a„k\ a . . . besteht. 

Dann ist 

V 2, 2 a\+-+al+- v 2 , 2 < + - + < + • 2 a l log2
+ - 2 — = 2 < log2

+ — k= 1 
(4) 
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Weiterhin, in der Arbeit [4] haben wir bewiesen, d a ß 

Aus (3), (4) und (5) erhalten wir die Behauptung unseres Satzes. 

3. Es soll nun der Hilfssatz I bewiesen werden, Ohne Beschränkung der All-
gemeinheit können wir a „ > 0 (« = 1,2, . . . , v(N-)) annehmen. {a„J ( £ = 1 , . . . , v(N)) 
bezeichne eine Anordnung der Folge {ß„}v

1
(,V), fü r die a„t £ a „ besteht. Es sei 

Zk (k = 1, . . . , N) die Menge der Indizes mit v(k — \)<ISv(k), und Z 0 = {«,}. 
Die Elemente von Zk bezeichnen wir in natürlicher Anordnung mit m, (k), . . . , m32k(k) 
(ml(k)<---<m32k(k)). Wir setzen 

¿>„=mina,„ (nC_Zk\ k = 0, ..., N). 
mgZk 

D a n n ist { ¿ „ l ^ ' eine Folge von positiven Zahlen mit b„^a„ (« = 1, . . . , v(N)). 
Es sei weiterhin 

ß„= mjn a,„ (n£Zk\k=\,...,N), ßn,=ani. mt Zk_, 

D a n n ist anSßn (n = 1, . . . , v(7V)). 
Nach dem Hilfssatz I der Arbeit [3] gilt also 

(6) 
V<N) „ 2 , -t-n2 

(6) Z a l l o g i a ' + t H m 

n = 1  an 

2 ßl + ßv(N) 
ßl 

D a 
2 ßl=32 2 bl bl (k=l, ...,N) 

ist, erhalten wir durch eine einfache Rechnung 

2 ßl iog2
+ = z 2 ßl iog2

+ s «=i P„ t=o«ezk P„ 

Aus (6) und (7) folgt 
vOV) 2 , 
2 a>„ log* ^ 
«= l 1=1 °n 

'v(W) 
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Nach dem Hilfssatz H der Arbeit [5] gilt 

| | { c B } ; * J | = s C 4 ( * ) | | K } ; j q ( k | s K [ ; « = 1 , 2 , ...\K>\), 

und so ist 

(9) I K M i ^ ^ l I s Q ^ i i K K ^ ^ n ( * > i ) . 

Wir werden nun die Abschätzung 
v(N) 1.2, ,1.2 

(10) 2 bl log2
+ , 2

+ 0 v W ^C5(K)llfojiw ;KII 1) 
«=1 °n 

beweisen. Aus (8), (9) und (10) erhalten wir die Behauptung des Hilfssatzes I. 

4. Zum Beweis von (10) können wir ohne Beschränkung der Allgemeinheit 

v(N) 
(11) i 

n = 1 
annehmen. 

Wir werden erstens den folgenden bekannten, in wesentlichen von M E N C H O F F 

[1] stammenden Hilfssatz (siehe [5], Hilfssatz VI) anwenden. 

H i l f s s a t z IL Es sei K> I, = 2) eine natürliche Zahl und 1 S c S p / 4 . Dann gibt 
es ein in (0, 1) orthonormiertes System von Treppenfunktionen ht(c,p\ x) (/= 1, p2) 
mit folgenden Eigenschaften: es gilt \h, (c, p; x)| S K (0 S x S 1 ; / = 1, ...,p2)', es gibt 
ein Intervall E(c.i(0, 1)) mit mes (E)^C6(K)c~1 derart, daß für x£E ein Index 
m(x)(<p2) mit ht(c,p;x)^0 (/= 1, ..., w(x)) und 

2 hl(c,p-,x)^C1{K))lcp\ogp 
i=i 

existiert. 

Es sei 7o = ( - l , 0 ) , 4 = 1 ^ , ^ ( ^ = 1 , ...,7V) und / = ( 1 , 2) . Wir werden 

e i n i n ( —1, 2) orthonormiertes System von Treppenfunktionen (*)(« = 1, ..., v(N)) 
mit folgenden Eigenschaften definieren: 

a) es gilt | t n ( x ) \ s K ( 0 ^ x 3 = 1 ; w ^ U Z,J , 

b) im Falle x ^ l , o ( 0 ^ l o ^ k ) ist iA„(x) = 0 {«€ U Z ( \ Z , 0 j 

c) weiterhin besteht ^B i(j t) = l ( x £ ( - l , 0 ) ) , und für jedes gibt es 
eine meßbare Menge E t [ Q I ) ) mit 

mes ( £ , ) S C 6 ( / S 0 ^ T T 
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derart, daß für x£Et mit geeignetem Indizes v(x) (1 S v (x ) s32 ' ) 

> W , / 3 2 ' 

2 ¿WotfWoto s i 1 Ci{K)lV 2' Z b2
mii() /=1 r ;=1 

besteht (k = \, ..., N). 
Wir setzen 

1 ( * . € ( - 1 , 0 ) , 

' 0 sonst. 

Es sei k0 (0^ko-<N) eine ganze Zahl. Wir nehmen an, daß die Treppenfunktionen 

i/jn(x)^n£ U Z , j derart definiert sind, daß sie in ( — 1,2) ein orthonormiertes 

System bilden, und a), b), c) für k=k0 erfüllt sind. 
Wir wenden den Hilfssatz II im Falle c = \,p = Ako+i an. Die so erhaltenen Funk-

tionen, bzw. die so erhaltene Menge bezeichnen wir mit / m (x) (m = 1, . . . , 16 i o + 1) , 
bzw. mit E. Es sei f ( x ) eine in (0, 1) definierte Funktion und H eine Untermenge 
von (0, 1). Ist 7=(<3,/?) ein endliches Intervall, dann setzen wir 

0 sonst, 

weiterhin bezeichne H(I) diejenige Menge, die aus H durch die Transformation 
y = (b — ä)x + a entsteht. 

Wir setzen 

(*) = *; (4o+i-;*) (n = m(i_m«o^+s(k0+\),s=], ..., 2 ' ° + 1 ; i = 1, \6k°+1). 

Nach dem obigen gelten offensichtlich 

(12) f f ö ( x ) d x = - ^ (n£Zk0+l), 
- l z 

I 

(13) a„tm = f (x)i}mO) dx S (n,m£Zko+i), 

I 

(14) / $ „ ( * ) > L ( x ) dx = 0 (n, me Zk0+1|n - m \ > 2*°+ '). 
- l 

Der folgende Hilfssatz ist bekannt. ( S . M E N C H O F F [1] . ) 

H i l f s s a t z III. Es seien d und q positive ganze Zahlen, 0 c / < q . Zu jedem 
Indexpaar (i,j) mit 1 S i ' S q , 1 =j = q und \i—j\ = d soll eine von Null verschiedene 
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Zahl ct-ij zugeordnet werden; wir bezeichnen mit Bd das Maximum der absoluten 
Beträge der Zahlen a, y. In jedem Intervall (u, v) mit 

v — u> 2 Bd 

können dann Treppenfunktionen q>t(x) (/ = 1, q) mit folgenden Eigenschaften defi-
niert werden: 

|<p,(x)| = l ( t f < x < u ; / = 1 , . . . , q), 
V 

f ^.(x)<p,(x)</x = - a u ( ¡ / - / I = 1 S / S tf, 1 == q), 
u 

V 

f <Pi(x)qiJ(x)dx = 0 (/ ^ ./, \i—j\ ^ d, 1 S i ^ q, 1 ^ j q). 
u 

Auf Grund von (12), (13) und (14), durch Anwendung dieses Hilfssatzes können 
wir Treppenfunktionen $ m ( k o + i ) ( x ) (i= 1, ... , 3 2 t o + 1 ) mit folgenden Eigenschaften 
angeben: 

[1 (x<E(l,2)) 
(15) l W i , W I = { 0 \ s o n s t ( / = 1, 32k°+ ), 

2 

(16) J^„(x)^m(x)dx = -«„_m (n^m; n,m£Zko + 1). 
I 

Da die Funktionen ^„(x) in (—1,2) Treppenfunktionen sind, können wir eine 
Einteilung des Intervalls J auf paarweise disjunkte Intervalle Jr (r= 1, . . . , Q) derart 
angeben, daß jede Funktion ipn(x) in jedem Intervall Jr ( l S / ' S g ) konstant ist; 
die zwei Hälften von Jr bezeichnen wir mit J'r, bzw. mit J" (r = l, . . . , Q). Dann 
setzen wir 

(17) iA„(x) = I [¿„(x) + i tM; x)- J j (•/;'; *)) (n6 zt0+,), 
wobei 

(18) D2 — f (*) dx + J $2
n (x) dx 

' , < 0 + , J 

ist. 
i/i„(x) (n£Zk + 1 ) sind offensichtlich Treppenfunktionen. Wegen (16), (17) und 

0 I k0+l \ 
(18) bilden die Funktionen ip„(x ) \n£ U Z, ein orthor.ormiertes System in ( — I, 2). 

Auf Grund von (12) und (15) gilt 

(19) 

und so besteht 

(20) \ip„(x)\^K für - 1 S X S 2 ; « e Z , o + 1 . 
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Auf Grund der Definition von ip„(x) gilt auch 

(21) ^„(*) = 0 für n € Z t o + 1 ; x £ ( - l , 1), x 4 / k o + i -

Auf Grund des Hilfssatzes II, weiterhin der Definition von b„ und ipn(x), aus (19) 
folgt mit Eko+l=E(Iko+1)(QIko+i) 

v(.v) 1 
(22) 2 bmi(ko + 1^mi(ko+i)(x) £ • min am4k<>+1 - l o g 4 t o + 1 • 2fco+1 = 

/=i y.2 

= / 2 C 7 ( A : ) ] / 2 ^ " 2 1 ^ , t o + 1 ) f e + l), für xÇEko+l 
i = t 

mit geeigneten Indizes v(x) (1 S v ( x ) ^ 3 2 i : o + 1 ) , und mit 

(23) mes(Ek0+l)s C6(K) ^¿rr. 

Aus (20), (21), (22) und (23) ergibt sich, daß a), b) und c) im Falle k = k0 + 1 (fco+l \ 

« € U Z, l von Treppenfunkt ionen 
erfüllt werden. Das Funktionensystem U Z , j mit den erwähnten Eigen-

schaften erhalten wir also durch Indukt ion. 

Aus b) und c) bekommen wir leicht 

2 

[ ( max \biil/i(x)+-- +bj<j/j(x)\)2dx £ 
_1 (lS.SySv(iV) ) 

(24) 

S bl + CUK)C6(K) i ( 2 bl\ k2 £ c8(K)\bl + 2 ( 2 bl) k-
k=l \nZ7.k ) l. k=l ("iZk ) 

Aus (11) folgt 

(25) T T — 32fc («£Z f c) . 
^n 

Wir bezeichnen mit M die Menge derjenigen Indizes k (l ^ k ^ N ) , für die 

-^^32« (n£Zk) bi 

besteht, und M' sei die Menge der übrigen Indizes k (1 ^ k ^ N ) . D a n n setzen wir 

(26) 2 bl l o g i ^ = bl iog
2

+ ± + 2 f Z bl l o g i + 2 { 2 bl iog
2

+ . 
n=l °n kiM\niZk 0„J kZM'VnZ zk o„) 
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Da x log — für 0 c c < — eine monoton wachsende Funktion ist, auf Grund von 
x 2 

(25), weiterhin aus der Definition von M und M' erhalten wir 

1 ' 
2 Z b 2 \ o g 2 M + z [ Z b 2

n 
O n ) k£M'\niZk t £ m V» e zk 

2 I T 

(27) 
= 2 1 ( z ¿ > g 2 4 r | + Z f 2 b2

n\og2~) ä 

k£M\n iZk °n ) kiM'Kni Z k 0„ ) 

kiM\ni Z k kiM'\n£Zk ) 

kiM kiM\niZk ) k= 1 n(. zk ) Ist Z>2 dann gilt wegen ( I I ) 

ist aber dann gilt 

b l l o g l - ^ ^ b l ^ , 

1 

¿ „ V o g i - ^ s C , . 

1. 

bl log i TT- s C8bni < C, 

Also ist 

(28) 

Weiterhin folgt aus (11) 

(29) b2
ni+2 ( 2[b2n)k2 

k=l \niZk ) 

Aus (26), (27), (28) und (29) erhalten wir 

v(JV) , N 

(30) 2 1 b2 l eg i S c 1 0 bi + 2 { 2 b2„) k2 

N = 1 °n L » I Z T ) 

Aus (24) und (30) ergibt sich 

2 fv(N) , \ 
(31) J( max \biti(x)+-+bjiPJ(x)\)2dx^C9(K) \2b2\og2

+-rY \. 

Wegen gibt es eine Konstante C10(K) ( 0 < C l o ( A ) < 1), für die 

3 , - ( i - c 1 0 ( * ) ) * : 2 = 1 
Cl0(K) 



Über das Max imum der Summen orthogonaler Funktionen 325 

erfüllt ist. Wir setzen 

<P„(x) 
AcBK)-1) { x a ° ' C l o i K ) ) ) ' 

Krn((Ci0(K),l);x) {x£(C10(K), 1)), 

0 1 sonst 

(« = 1, ..., v(N)), wobei r„(x) = sign sin 2"nx die n-te Rademachersche Funktion 
bezeichnet. Die Funktionen (pn(x) bilden in (0, 1) ein durch K beschränktes ortho-
normiertes System. Weiterhin folgt aus (31) 

/ ( max \bi(Pi(x)+-+bj(Pj(x)\)2cix^C11(K)Z b2
n\og\-^. 

0 1 SiSjSv(jV) n= 1 On 

Daraus erhalten wir endlich wegen 

l 

| |{Ä„}iW;^ll2 = sup f ( max \bi(pi(x)+-+bj(pj(x)\)2dx 
\VJSKS V1S/SJSV0V) 

die Behauptung des Hilfssatzes I. 

5. B e m e r k u n g . Aus (3), auf Grund eines Satzes der Arbeit [5] folgt die fol-
gende Behauptung. 

Es sei K> 1. Ist 

2 , a 2 log+ -2 
n=l  an 

dann gibt es ein orthonormiertes System {<?„(*)} mit (1), für welches die Reihe 

- C'n (Pll ( x ) 
in (0, 1) fast überall divergiert. 

Für nicht notwendigerweise beschränkte Systeme wurde dies in der Arbeit [3] 
bewiesen. 
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Über die regulären duo-Elemente in Gruppoid-Verbänden 

Von OTTO STEINFELD in Budapest 

Ein assoziativer Ring (eine Halbgruppe) A heißt regulär, wenn für jedes Element 
a von A gilt: 

a£aAa. 

Die folgende Charakterisierung stammt von L. K O V Á C S [ 2 ] : Ein assoziativer 
Ring (eine Halbgruppe) A ist dann und nur dann regulär, wenn für jedes Linksideal 
L und Rechtsideal R von A 

RL = Rf\L 
gilt. 

Unter einem duo-Ring (einer duo-Halbgruppe) verstehen wir einen assoziativen 
Ring (eine Halbgruppe), dessen (deren) alle einseitigen Ideale zweiseitige Ideale 
sind1). 

In den Arbeiten [3] , [4] , hat S . LAJOS die regulären duo-Ringe (-Halbgruppen) 
folgenderweise charakterisiert: Für einen assoziativen Ring (eine Halbgruppe) A 
sind die folgenden Bedingungen äquivalent: 

(a) A ist regulär und duo; 
(ß) der Durchschnitt und das Produkt irgendwelcher Linksideale L1 und L2 

von A stimmen überein, und dasselbe gilt für irgendwelche Rechtsideale und 
R2von A; 

(y) für alle Linksideale L und Rechtsideale R von A besteht Li)R = LR. 
Wir werden diese Charakterisierungen für die Elemente gewisser teilweise ge-

ordneten Gruppoide verallgemeinern. 
Ein teilweise geordnetes Gruppoid ( L ; s ) nennen wir einen Gruppoid-Verband, 

wenn L bezüglich seiner teilweise Ordnung S einen vollständigen Verband (Z,; A, V ) 
bildet, in dem die Bedingungen 

(1) a2 Sa (für jedes a£L) 

Diese Begriffe sind englisch "duo ring" bzw. "duo semigroup'" genannt. Siehe E. H. FELLER 

[ 1 ] u n d S . L A J O S [4] . 
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und 
(2) O- e = e - 0 = 0 

erfüllt sind, wobei 0 und e das kleinste bzw. das größte Element von L bezeichnen. 
Mit L bezeichnen wir stets einen Gruppoid-Verband. 

Wir sagen, daß das Element b von L ein Absorbent des Elementes a von L ist, 
wenn 
(3) b ^ a 
und 
(4) a b ^ b , b a S b -

bestehen. Das Element b heißt ein Linksabsorbent (Rechtsabsorbent) von a, wenn 
(3) und (4 t ) [(3) und (42)] gelten. 

Ein Element k von L heißt ein Quasiabsorbent von a(£L), wenn 

(5) k^a und kahak S k 
bestehen. 

Diese Begriffe wurden in unserer Arbeit [5] definiert. 

B e h a u p t u n g 1. Der Durchschnitt rhl eines Rechtsabsorbenten r und eines 
Linksabsorbenten l.des Elementes a von L ist ein Quasiabsorbent von a. 

B e i s p i e l e 1. Definiert man das Produkt 2J-C der Unterringe B, C eines 
assoziativen Ringes A als denjenigen Unterring von A, der durch alle Elemente 
bc {b£B\ c£C) erzeugt ist, so bildet die Menge aller Unterringe von A einen Grup-
poid-Verband Ll bezüglich dieser Multiplikation und des mengentheoretischen Ent-
haltenseins. Der aus dem Nullelement bestehende Unterring von A ist das kleinste 
Element des Gruppoid-Verbandes Lv, und A ist sein größtes Element. Die Links-, 
Rechts- und Quasiabsorbenten des Elementes A von L sind die Links-, Rechts- und 
Quasiidealen des Ringes A. 

2. Es sei H 0 eine Halbgruppe mit Nullelement 0. Ähnlich zu dem vorigen 
Beispiel bildet die Menge aller Unterhalbgruppen mit 0 von H0 einen Gruppoid-
Verband L2 - Die Links-, Rechtsund Quasiideale von H0 werden in L2 die Links-, 
Rechtsund Quasiabsorbenten des Elementes H0 von L2. 

Ein Element a des Gruppoid-Verbandes L heißt duo-Element, wenn alle Links-
absorbenten und alle Rechtsabsorbenten von a Absorbenten von a sind. 

Von jetzt an schreiben wir je eine bedingte Assoziativitäts- bzw. Distributivitäts-
regel vor, die zu unseren Untersuchungen nötig sind. 

V o r a u s s e t z u n g (A). Sind k t , k2 und k3 Quasiabsorbenten des Elementes a 
von L, so sei 

(klk2)k3 = k1(k2k3). 
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V o r a u s s e t z u n g (D„). Für das Element a von L seien die Distributivitäts-
regeln 

kl(k2\/ k2a) = /c, k2\ki(k2a) und = k2kl\/(k2a)k1, 

kl(k2\Zak2) = ktk2\/ k^akj und (k2\/ak2)kl = k2ky\/ (ak^ky 

für alle Qüasiabsorbenten ky und k2 von a erfüllt. 
Es ist nicht schwer zu zeigen, daß die Voraussetzungen (A) und (D„) in den 

Gruppoid-Verbänden Lv und L2 erfüllt sind. 

V o r a u s s e t z u n g (K). Für jeden Rechtsabsorbenten r und Linksabsorbenten / 
des Elementes a von L gelte rl = rAI. 

In der Arbeit [5] haben wir ein Element a von L regulär genannt, falls a die 
Voraussetzungen- (A), (D„) und (K) erfüllt. 

Der folgende Satz verallgemeinert und ergänzt die erwähnten Ergebnisse von 
S. Lajos [3], [4]. 

S a t z . Sind die Voraussetzungen (A) und (D„) für das Element a des Gruppoid-
Verbandes L erfüllt, so sind die folgenden Bedingungen äquivalent: 

(i) a ist regulär und duo; 
(ii) für jede Qüasiabsorbenten k t , k2 von a gilt kt 

(iii) für jede Linksabsorbenten lx, l2 und Rechtsabsorbenten r{, r2 von a bestehen 
h^h = und rlAr2 = rlr2

-, 

(iv) für jeden Qüasiabsorbenten k von a gelten 

(kyka)2 = kVak und (k\Jak)2 =k\Jka\ 

(v) für jeden Linksabsorbenten l und Rechtsabsorbenten r gilt Ihr = Ir. 

Zum Beweis des Satzes benützen wir die folgende Umkehrung der Behauptung 1. 

B e h a u p t u n g 2. Jeder Quasiabsorbent k des regulären Elementes a von L ist 
in der Form 

k = rM = rl 

darstellbar, wo r und l einen geeigneten Rechtsabsorbenten bzw. Linksabsorbenten von 
a bezeichnen. 

B e w e i s . Infolge der Voraussetzungen (A) und (D„) bezeichnen die Elemente 
/ = k\Jak und r = k\/ka den durch den Qüasiabsorbenten k erzeugten Links-
absorbenten bzw. Rechtsabsorbenten von a. (Siehe die Arbeit [5].) Andererseits 
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besteht wegen der Voraussetzungen (K), (A), (D„) und wegen (5) 

k S (k\/-ka)A(ky ak) = rAI = rl = (kykä){k\Jak) = 

= k2\J (ka)kV k(ak)V (ka)(ak) == kaAak k, 

woraus Behauptung 2 folgt. 

Bewe i s d e s S a t z e s . (i)=>(ii). Nach Behauptung 2 bestehen kt = rlAll und 
k2 — r2A¡2 mit geeigneten Rechtsabsorbenten r , , r2 und Linksabsorbenten l i , l2 

von a. Da das Element a duo ist, sind die Quasiabsorbenten kA = rlAll und k2 = 
= r2Al2 von a Absorbenten von a. Dieses und die Voraussetzung (K) implizieren (ii). 

Die Implikationen (ii)=>(iii) und (ii)=>(v) gelten trivialerweise. 
• (ü)=>.(iv). Infolge (ii) gilt ka = ak — aAk — k für jeden Quasiabsorbenten k 

von a, woraus wieder wegen (ii) 

(k\J ka)2 = k\J ka = k = k\J ak und (k\l ak)2 = k\J ak = k = kV ka 

folgen. 
Wir haben noch die Implikationen (iii)=>(i), (iv)=>(i) und (v)=>(i) zu zeigen. 
(iii)=>(i). Im F a l l e / 2 = a f o l g t / , a = / j A a = /, aus(iii), d .h. jederLinksabsorbent 

/, von a ist ein Rechtsabsorbent von a. Ähnlich sieht man ein, daß jeder Rechts-
absorbent r2 von a ein Linksabsorbent von a ist. So ist a ein duo-Element von L. 
Dieses und Bedingung (iii) sichern die Regularität des Elementes a. 

Ganz ähnlich kann man die Implikation (v)=>(i) einsehen. 
(¡v)=>(i). Ist / ein Linksabsorbent von a, so bekommt man aus (iv) 

la S Nla = (Nal)2 ^ l2 ri I. 

Dieses bedeutet, daß / ein Rechtsabsorbent von a ist. 
Dualerweise sieht man ein, daß jeder Rechtsabsorbent von a auch ein Links-

absorbent von a ist. 
Um die Regularität von a zu zeigen, betrachten wir einen Rechtsabsorbenten r 

und einen Linksabsorbenten / von a. Da das Element a duo ist, sind die Elemente r, 
1 und rAl Absorbenten von a. So bekommt man 

rAI = (rAl)V(rAI)a = (rAl)Wa(rAI). 

Dieses und Bedingung (iv) implizieren rAI — (rAl)2 S rl, womit die Regularität 
von a bewiesen ist. 

Damit ist der Beweis beendet. 

B e m e r k u n g . Spezialisiert man den Satz für die regulären duo-Ringe und 
duo-Halbgruppen, so liefern die Bedingungen (ii) und (iv) nach unserem Wissen 
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n e u e C h a r a k t e r i s i e r u n g e n dieser S t r u k t u r k l a s s e n . W i r m ö c h t e n hier n u r d a s f o l g e n d e 
K o r o l l a r e r w ä h n e n : 

Ein assoziativer Ring (eine Halbgruppe) A ist dann und nur dann regulär und duo, 
wenn jede Quasiideale Kx, K2 von A die Bedingung Kx H K2 = K2 erfüllen. 
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On minimal biideals of rings 

By FERENC A. SZÁSZ in Budapest 

In this paper by a ring we always mean an associative ring (cf. N . JACOBSON [4 ] ) . 

For arbitrary subsets C and D of a ring A the product CD will mean the subgroup 
generated by all products c-d with c £ C and d£D. By a biideal B of a ring A we 
understand a subring B of A satisfying the condition BAB^B. 

Obviously, every one-sided ideal is a biideal. The biideals for semigroups are 
special cases of the (m, «)-ideals, introduced by S. LAJOS [5]. The concept of biideal 
for semigroups was introduced by R. A. G O O D and D. R. H U G H E S [3] (in addition 
A. H . C L I F F O R D — G . B. PRESTON [2]). For biideals of rings we refer the reader to 
[7], whose Proposition 3 asserts that for any biideal B and any subset T of a ring A 
the products BT and TB are again biideals of A. Biideals of rings occurred earlier 
also in the author's papers [9] and [10]. Obviously, any biideal i? of a two-sided regular 
ring A is, by B^BA = AB = BA(~)AB = BA, AB = BABQB, a two-sided ideal of A 
(cf. S . LAJOS and the author [6]). Important particular cases of biideals are the quasi-
ideals which were studied for rings by O. STEINFELD [8]. The quasiideal Q of a ring 
A is in fact a submodule satisfying QADAQ Q Q. 

J . CALAIS [1] gave an example of a biideal, which is a product of two quasi-
ideals, but which itself is not a quasiideal. But it is still an open problem whether 
there exists a ring A having a minimal biideal B such that B2 — 0 and B is not a quasi-
ideal of A. 

In this paper we are interested in minimal biideals of rings. 

T h e o r e m 1. If the biideal B of a ring A is a division ring, then B is a minimal 
biideal of A. 

P r o o f . Assume that C is an arbitrary biideal of A satisfying CQB. Then 
CACQC implies CBC Q C and thus C is also a biideal of B. Consequently, by Theo-
rem 1 of [7] C is a left ideal of a right ideal of B. But the division ring B has only 
trivial left ideals and right ideals, and therefore either C = 0 or C = B. Consequently 
B is a minimal biideal of A. 

Conversely, we have also the following 

8 A 
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T h e o r e m 2. For any minimal biideal B of a ring A the following holds: either 
B2 =0, or B is a division ring. 

P r o o f . By Proposition 3 of [7], B2 is a biideal of A, and by the assumed mini-
mality of B, we have either B2=0 or B2=B. We assume B2=B which implies 
B3 ~B. 

First we prove the existence of the two-sided unity element of the subring B 
and then we show that B is a division ring. 

We note that the definition of the biideal B of a ring A implies that the set S 
of all elements xby (b runs over B, x and y are fixed elements of B) coincides with 
the subring generated by the set S. 

Since B3 = B, there exist elements b1,b2£B with biBb2 ^ 0. B being a subring, 
by Proposition 3 of [7] we have blBb2-B and, by 0^B = B2 = biBb2blBb2, 
obviously b2by 9^0, too. Since b1Bb2—B, there exist two elements b3, b4£B satisfy-
ing bl—b1b3b2 and b2 = b1b4.b2, whence 

0¥ib2bi=b1b4b2blb3b2 = blb4(b2bi) = (b2bl)b3b2eBb2blf]b2blB 

follows. Bb2b1QB, b2biBQB being true, Propositions 1 and 3 of [7] imply that 
Bb2b1 f]b2b1Bis also a biideal of A which is contained in B. Thus the fact b2bl9*0 
and the minimality of B give B — Bb2bif]b2b1B. Consequently, there exist four 
further elements b5, b6, b1 and b8 of B satisfying 

bl=b5b2bl=b2b1b69i0 and b2=b1b2bi—b2blb8?±0. 

As for the element e=b5b2b1b8, since Z ^ ^ O and we first observe 
that 

09ie = b5b2blb8=bibs=b5b2 

and ' 
e2 = (b5b2)(b1b8) = eiB 

hold. Furthermore e = e3 £eBeQB, thus Proposition 3 of [7] and the minimality 
of B imply B — eBe. 

Therefore e is the two-sided unity element of the subring B. 
Let ebe be any nonzero element of eBe. Then B' = eBe, ebe is contained in eBe. 

Furthermore, since e 3 • ebe 0, by virtue of Proposition 3 of [7], and the minimality 
of B, B' is a nonzero biideal of A, consequently B'=B. Thus there exists an element 
eb'e£B satisfying eb'e-ebe = e. 

Therefore B is a division ring indeed, which completes the proof. 

T h e o r e m 3. If a minimal biideal B of a ring A contains an element b such that 
b is neither a left divisor of zero, nor a right divisor of zero in A, then A must have a 
two-sided unity element. 
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P r o o f . Evidently b3 ¿¿0. Then, since b3 £bAb<=B, in virtue of Proposition 3 
of [7] and the minimality of B we have bAb — B. Hence there exists an element a £A 
such that b = bab holds. Then for any x £ A and y £ A, by making use of the two-sided 
cancelling rule concerning b, we obtain f rom xb = xbab and by — baby that x = xba 
and y = aby. Consequently e = ba is a right unity element and f=ab a left unity 
element of A, therefore e=fe=f is the two-sided unity element of the ring. 

T h e o r e m 4. If R is a minimal right ideal and L a minimal left ideal of a ring A, 
then either RL = 0 or RL is a minimal biideal of A. 

P r o o f . Assume RL^O. If B' is a biideal of A satisfying 0?±B'cB = RL, 
then f rom B'czRLQR we conclude that B'AQR. The minimality of R also im-
plies B'A=R, because in the case B'A= 0 the biideal B' is also a nontrivial right 
ideal of A which is contained in R. Similarly one also has L — AB' and thus the 
contradiction 

B = RL = B'A-AB'QB'AB'QB'czB 

completes the proof of Theorem 4. 
In some special cases the converse statement to Theorem 4 also holds. In fact 

we have 

T h e o r e m 5. Any minimal biideal B of a ring A without nonzero nilpotent 
ideals can be represented in the form B = RL, where R is a minimal right ideal and L 
is a minimal left ideal of A. 

P r o o f . By virtue of BAB*=.B and Proposition 3 of [7] we have BAB = B. In 
fact, in case BAB — Q, the right ideal BA is nilpotent, consequently BA = 0, B2 = 0, 
B = 0, which is impossible. Therefore B = BABAB, which, by virtue of BABABQ 
QBA2B<^ BAB, implies B — BA • AB. 

We shall prove that R=BA is a minimal right ideal, and L = AB is a minimal 
left ideal of A. 

If R' is a right ideal of A satisfying OczR'cR, then by Proposition 3 of [7] 
B' = R'AB is a biideal of A such that B'^BAAB^B holds. By the minimality of 
B we have either B'=0 or B' = B. But B'= 0 implies R'AR'QR'ABA =B'A = 0, 
{R'A)2 = 0, R'A = 0, (R')2=0, R' = 0, which is impossible. Therefore B' = B, con-
sequently B = R'AB^R', BAQR'AQR'czBA. This is a contradiction, and thus 
the verification of the minimality of the right ideal R — BA is complete. For L = AB 
the proof is similar; j 

T h e o r e m 6. Any ring A without nonzero nilpotent ideals and with minimum 
condition on principal right ideals is a sum of minimal biideals of A. 

8* 
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P r o o f . By [9] we have A = — where Rx are minimal right ideals and 
ß 

Lß minimal left ideals of A. Then A —A2 — Z^LR, and Theorem 4 implies Theo-

rem 6. 
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Axiomatic characterization of ^-semirings 

By LEE S1N-MIN in Winnipeg (Canada) 

In memoriam A. Renyi 

§ 1. Introduction 

J . P L O N K A [4] introduced the concept of a sum of a join-direct system of algebras 
and showed that if we form a sum of a non-trivial join-direct system of algebras in 
an equational class the new algebra satisfies only those regular equations which are 
satisfied in all algebras of the direct system. 

Now if we take the equational class SR of all associative rings and form all 
possible sums of join-direct systems over it, we obtain an equational class of 
additively commutative semirings. By a semiring (R , + , o ) we mean a universal 
algebra with two associative operations + and o , such that o is distributive with 
respect to + . It is additively commutative if (/?, + ) is a commutative semigroup. 

It is not true that all the additively commutative semirings can be obtained 
by sums of joint-direct systems over associative rings. 

In this note we give a simple axiomatic characterization of those semirings R 
which are in and we call them r-semirings. Every ¿-semiring has a unique 
way of representation as a sum of join-direct system of rings. 

§ 2. Basic concepts and lemmas 

Let (/ , s ) be a join-semilattice, with join denoted by V. 
A system U = ((/, = ), {/? (} i e /, {<?,;},Sj) is called a join-direct system of as-

sociative rings if it is a direct system of associative rings whose underlying index 
set is a join-semilattice and 

(i) for each / £ / , (Rt, o ; ) is an associative ring and RiDRj = 0 for i ^ j . 

(ii) If i s j in 1, then ( p j j - . R ^ R j is a ring homomorphism, subject to the conditions: 
. (a) (pu(x) = x for all x in (b) i S j ^ k in / , then (/>jk<Pij — (pik-



338 Lee Sin-min 

Any join-direct system U of associative rings gives us an additively commutative 
semiring R as follows: 

Set R = U Ri and define + and o on R by 
i i l 

x + y = <Plk(x)+k(pjk(y) and xoy = (pik(x)ok<pJk(y) if x^Rt, ycRj, and k = i\Jj. 

Then (R, + , o ) is an additively commutative semiring. We shall call it the sum 
of U and denote it by R = S(U). 

Now let us define a unary operation * on R by setting *x = — x if x£Rt, where 
— x is the additive inverse of x in R^ 

It can be seen that * has the following properties, for all x and y in R: 

(1) *(**) = *. (2) x + (*x) + x = x, (3) *(x+j>) = (*x) + (*j>), 

(4) xo(*y) = ( * x ) o j = *(xo^), (5) (x + (*x))oj; = x + ( * x ) + j + (*;>). 

Now we can state our main theorem. 

T h e o r e m 1. A semiring (R, +, o ) is a I-semiring if and only if: 

(A) (R , + , o ) is additively commutative and 

(B) a unary operation *: R — R can be defined satisfying the above conditions (1)—(5). 

To demonstrate it, we shall need the following 

L e m m a 1. Let R be a semiring satisfying conditions (A) and (B) of the above 
theorem. Then we have, for all x and y in R, 

(a) xo(y + (*y)) = (y + (*y)) o x = (x + (*x)) oy=yo(x + (*x)), 

(b) if x + ( * x ) + j + (*j0 = y + (*>•), then x o ( y + (*y)) = y + (*y), 

(c) if x + (*x) = y + (*y), then x o (y + (*y)) = y + 

P r o o f , (a) follows immediately by interchanging the variables x and y in 
(5), using commutativity of + and distributivity of o with respect to + . (b) is 
trivial and (c) follows f rom (2) and (b). 

L e m m a 2. Let R be a semiring satisfying the conditions (A) and (B) of the 
theorem. Let E(R) = {x + (*x) |x£i?}. Then E(R) is the set of all additive idempo-
tents of R, and all elements of E(R) are multiplicative idempotents. Furthermore, 
if we define S on E(R) by setting a^b if and only if a+ b — b for a, b£ E(R), then 
(E(R); g ) is a join-semilattice. 
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P r o o f . Let x£R, then 

(* + O ) ) + (x + (*x)) - (x + (*x) + x) + (*x) = x + (*x) by (2), 

therefore x + (*x) is an additive idempotent. 
Conversely, suppose e is an additive idempotent in R. Then by (2), e = e + e + 

+ (*e) = e + (*e) is in E(R). 
Observe *(x + (*x)) = (*x)+(*(*x)) = ( * x ) + x = x + (*x), and by Lemma 

1 (b) we have x o ( x + (*x)) — x + (*x), (*x)o(x + (*x)) = x + (*x). Therefore 
x o (x + (*x)) + (*x) o (x + (*x)) = x + ( * x ) + x + (**) and then [x + (*x)] o 
° [ x + (*x)] = x + (*x). Therefore x + (*x) is a multiplicative idempotent. Clearly 
under the relation E(R) becomes a partially ordered set. Let e,f£E(R). We 
claim that e+f ••= eV/. Since 

e + (e+f) = (e + e)+f= e+f 

we have e S e+f. S imi la r ly , / S e+f. Suppose e,f^g in E(R). Then e+g — g, 
f+g = g. Thus (e+g) + ( f + g ) = g+g so (e+f)+g = g. Therefore, e+f ^ g. 
This shows e V / = e+f. Hence (E(R); is a join-semilattice. 

§ 3. Proof of the theorem 

The necessity of the conditions (A) and (B) was proved in § 2. 
Now suppose we have a semiring R which satisfies the conditions of the theorem. 

Define a relation = on R as follows: x=y if and only if x + (*x) = + 

Clearly = is an equivalence and therefore partitions R into disjoint classes. 
It is clear that each class contains one and only one element of E(R). Therefore, 
we denote the class containing an element a of E(R) by Ra. Define + a and oa on 
Ra by restricting the operations 4- and o of RtoRa. 

We want to show that (Ra, +a, oB) is an associative ring with a as its zero. 
First we show that Ra is closed under +„ and oa. Let x,y£Ra, then 

x + (*x) = y + (*y) = a. Thus ( x + )>)+(*(*+>')) = x + (*x) + y + (*y) = a + a = a, 
(xoj ;) + (*(xoj/)) = ( X O J ) + ( * X ) O J = (x + ( * x ) ) O J = x + (*x) by Lemma 1(c). 
Therefore x+y, x o y£Ra. Moreover, it is clear that *x£Ra. 

To see that (Ra, +a) is an abelian group with zero a, let x£Ra. Then 

x+a = x + (x + (*x)) = x and x + (*x) = a. 

Hence (R a , + a , ofl) is an associative ring. 
Now for each a^b in E(R), define a map <pab: Ra^Rb by (pab{x) = x + b for 

all x in Ra. Then 
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I) <pab is a ring homomorphism. Let x,yiRa. Then 

<Pab(*+y) = x+y + b = (x + b) + (y + b) = (pah(x) + b<pab(y) 
and 

<Pab{x)° b<Pab(y) = {x + b)o(y + b) = x o y + b o y + x o b + b o b 

= xoy + boy + box + bob (by Lemma l'(a)) 

= xo'y + bo(x+y) + b (by Lemma 2) 

= xoy + b + b (by Lemma 1(b)) 

= xoy + b = (pab(xoy). 

II) (paaix) = x + a — x + x + (*x) = x for all x in Ra. 

III) If a^b^c in E(R), then <pbc<pab = q>ac because 

<Pbc{<Pab(x)) = <pbc(x + b) = (x + b) + c = x + c = (pac(x) for all x in Ra. 

The proof will be complete if we show that 

R = S(((E(R); =§>, { < P a h U h ) ) -

Clearly R = U Ra. Define operations © and O on R as follows: for x, y in R 
o£E(R) 

x@y = <pac(x)+c(pbc(y) and xoy = (pac(x)oc(pbc(y) if x£Ra, y<iRb, c = a + b. 

We want to show that © = + and 0 = 0 . 

Let x, y£R, x£Ra, yZRb, c — a + b. We have 

= (pac(x)+cq>bc{y) = (x + c) + (y + c) = x+y + c = 

= x+y + a + b = (x + a) + (y + b) = (paa{x) + (pbb(y) = x+y. 
Also 

= <pac0c<pbc(y) = (x + c)o(y + c) = xoy + coy + xoc + coc = 

= xoy + c + c + c (by Lemma 1 (b)) = xoy + c. 

N o w X O y £ R c f o r 

+ = + = ( x - f - ( * . x ) ) o j ; 

= (x + f x ) ) + (j> + ("») = a + b = c (Condition (5)). 

Therefore xOy = cpcc(x°y) = xoy. Hence 

R = S(((E(R), ==>, {/?a}aeE(R), {<PabUb}). 

C o r o l l a r y . The class of all I-semirings form an equational class of semirings 
and it includes the class of all associative rings as an equational subclass. 
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§ 4. Some remarks on ¿-semirings 

R e m a r k 1. It is clear that every ¿-semiring is an additively regular semiring, 
i.e., a semiring such that the equation a + x + a — a always has a solution (cf. [1]). 
However, not all additively commutative and additively regular semirings are ¿-semi-
rings. 

Consider the 3-element additively commutative and additively regular semi-
ring R with the following tables: 

+ a b c o a b c 

a a c c a b b b 

b c b c b b b b 

c c c c c b b b 

The only possible unary operation *: /?— R which can be defined that satisfies 
condition (B) (1)—(4) is: 

*a = a, *b=b, *c = c. 

However (a + (*a))ob ^ a + (*a) + b + (*b). 
R e m a r k 2. Additively regular semirings arise naturally if we consider the 

endomorphism semiring of a ¿-semimodule over a ring R. 
By a ¿-semimodule we mean a system (M, + , {/ f l}„€R , *) where: 
(1) (M, + ) is a commutative semigroup, 
(2) for each a£R, fa:M — M satisfies: 

fa(x+y) =fa(x)+fa(y), fa + b(x) =fa(x)+fb(x), faoh(x) = f a ( f b ( x j ) , 

(3) *: M — M satisfies: 

* ( * * ) = * , / , ( * * ) = * ( / r « ) , * ( x + y ) = 0 0 + 0 0 . 

X + *X + X = X, fr(x + (*x)) = x + (*x). 

The concept of ¿-semimodule is the generalization of the usual left /?-module. 
In [3], it was shown that every ¿-semimodule M is a sum of join-direct system of 
/?-modules, i.e. M = S(((E(M)- {Ma}aeE{M), { (¡/ab}amb)), where £ ( ^ ) i s t h e s e t 
of all idempotents of M and Ma is 7?-module for each a^E(M). iJ/ab: Ma—Mb is 
a module homomorphism which takes x to x + b for all x in Mb. 

A mapping cp: M — M is called an /?-endomorphism of M if for x,y^M and 
a£R we have 

q>(x+y) - (p(x) + <p(y), (p{fa{x))=fa{(p{x% <p(*x) = *(q>(x)). 



342 Lee Sin-min 

Let E n d R ( M ) denote the set of all i?-endomorphisms of M. 
For <p, \j/ £ E n d R ( M ) we define: 

(<P + '/0 (*) = <p(x) + >P (x), ( » (x) = * (<p (*)), (cp o ,/,) (x) = (p(iP (x)). 

Then (End K (M) , + , o ) is an additively commutative semiring and * satisfies 
conditions (1)—(4) of Theorem 1. 

T h e o r e m 2. Let A = (End R (M) , + , o ) be the endomorphism semiring of a 
I-semimodule M. A is a S-semiring if and only if M is an R-module and in this case 
A is a ring. 

P r o o f . The if part is straightforward. Suppose A is a Z-semiring then for 
each cp,\j/£A we have {(p +(*(p))oij/ = (p + (*cp) + 

Now let x £ M then we have 

((<p+C<p))of){x) = (cp + Ccpj) OK*)) = <p{<Hx))+C<p)(<P(x)) = 

= (cpo^W + icpoMCx) = (<po<lJ)(x + *x), 

(p+ (>) + * + (**))(*) = cp(x) + ( » ( x ) + ip(x) + (*ip)(x) = 

= (&+*) (X) + (cp + <A) (*x) = (<p + ils)(x + *x). 

This implies the restrictions cp + \j/\£(M) and cp o are equal. 
Now if E(M) has more than 2 elements, say a Sb, consider the following two 

.R-endomorphisms of M 

(p1(x)—a, (p2(x)—b for every x£M. 

Then (cpL + <p2)(x) = a + b = b and (q>1 o(p2)(x) = (pi((p2(x)) = (pt(b) — a 
for every x£M. Therefore (pl+q>2 ^ <pi°(p2 011 E(M): a contradiction. Thus 
\E(M)\ = 1 which implies that M is an i?-module. 

R e m a r k 3. S. M. YUSUF [6] called an additively commutative semiring whose 
additive semigroup is an inverse semigroup an additively inversive hemiring. 

If we take away (4) and (5) in condition (B) of Theorem 1, we obtain an 
axiomatic characterization of additively inversive hemirings. This implies im-
mediately that the class of all additively inversive hemirings is an equational class 
which contains the class of ^-semirings as an equational subclass. 

Since (4) always holds in additively inversive hemiring, if we consider T-semi-
rings as algebras of type <2, 2, 1), they can be defined by the following independent 
axioms: 1) (R, + , o ) is an additively commutative semiring, 2) = 
3) *(*+J>) = + 4) x + (*x) + x = x, 5) + = x + + 
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R e m a r k 4. Let R be a ¿-semiring. If we define a map f:R2—R by setting 
f(x,y) = x+y + (*y), then it can be checked that / is a partition function of R (for 
the terminology see [4]). By Theorem 2 of [4], it induces a sum-representation of R. 
This representation is essentially the same as the one we obtained in the proof of 
Theorem 1, and by Theorem 1 of [5] this is the only possible sum-representation 
of R by rings. 

The author wishes to express his appreciation to Professors G . G R Á T Z E R , V . D L A B 

and C. R. P L A T T for their very helpful criticisms of the paper. 
Added in proof Consider ¿-semirings as algebras of <2,2,1), one can show 

that the lattice of equational subclasses of ¿-semirings is isomorphic to the direct 
product of the lattice of equational subclasses of associative rings and the two 
element chain. The following problem is still unsolved: what is the lattice of 
equational subclasses of additively inverse hemirings? 
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Remarks on endomorphism rings of torsion-free abelian groups; 

By L. C. A. van LEEUWEN in Delft (Holland) 

1. The commutativity of the endomorphism ring 

In this paper we study endomorphism rings of torsion-free abelian groups. 
In [2], Problem 46(a) F U C H S asks to determine all abelian groups with commutative 
endomorphism ring. Later F U C H S has shown the following [3]. Call a family of 
groups Gz(oi.£l) a rigid system if H o m ( G a , C ^ ) = 0 or a subgroup of the rationals 
according as a ^ p or To every cardinal m, less than the first inaccessible 
aleph, there exists a rigid system consisting of 2"' torsion-free groups of cardinal-
ity m. . 

The groups in a rigid system are obviously always indecomposable and they 
have commutative endomorphism rings. So the question arises: if the endomor-
phism ring of a torsion-free abelian group G is commutative, is G then indecompos-
able? It is easy to construct a counter-example. Let px, p2 be different primes. Gp 

is the group of the rationals whose denominators are powers of p i i GPi is similar 
with respect to p2 • Then {CPi , CP2} is a rigid system and E(G)si E(Gp ) +E(GPi) 
(ring-direct sum), since Gp_ is a fully invariant subgroup of G — GPi+Gf (direct 
sum) ( / = 1 , 2 ) . Hence E{G) is commutative, but G = GPi + GP:i is decomposable. 

Conversely, assume that G is an indecomposable group. Is E(G) then a com-
mutative ring? For well-known indecomposable groups, such as the group Z of 
integers, the group Q of rationals, the group Z(p) of />-adic integers, any pure sub-
group G of Z(p), this is true. However, one can construct a counter-example as 
follows: 

Let R be the ring of integer quaternions i.e. elements of the form a0+ali + 
+ a2j + aik with a^Z (/ = 0 , 1 , 2 , 3 ) and i2 =j2 = k2 = — 1, ij = k= —ji, ik = 
= —j = —ki, jk = i = — kj with obvious addition and multiplication. R is a reduced, 
torsion-free ring of rank 4 . By a theorem of C O R N E R [1] every reduced torsion-free 
ring A of finite rank n is isomorphic to the endomorphism ring E{G) of some 
reduced, torsion-free group G of rank In. Hence R is isomorphic to the endo-
morphism ring E(G) of some reduced, torsion-free group G of rank 8. 
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Since R has no zero-divisors, the same is true for E(G). Hence 0 and 1 are the 
only idempotents in £(G) . But this implies that G is indecomposable, for if G — Gl + G2 

for subgroups GI,G2, then the projections n¡:G~*G¡, ¿ = 1,2, are orthogonal 
idempotents of E(G) whose sum nl+n2 — 1. So we get either 7TJ — 1, 712 —- 0 OF 
Tij== 0, Ti2 — 1 which means either G2= 0 or G ^ O . Hence G is indecomposable, 
but E(G)^iR is not commutative. Thus we have to impose stronger conditions 
on the group G in order that its ring of endomorphisms be commutative. We recall 
f r om [4]: 

D e f i n i t i o n 1. (cf. [4], definition 2. 1) For groups G and H, we say that 

(i) G is quasi-contained in H {GQ.H) if nG^H for some non-zero integer n; 
(ii) G is quasi-equal to H (G=H) if GQH and HQG; 
(iii) G is quasi-decomposable if there exist non-zero independent groups A and B 

such that G = A+B; 
(iv) G is strongly indecomposable if G is not quasi-decomposable. 

Now suppose that G is a torsion-free group of rank 2. Then G is strongly in-
decomposable or G — Gi + Cz, Gy=G2, or G = Gt+G2, G¡ of incomparable 
types, or G = S + B, type B < type S. 

Let E(G) be the ring of endomorphisms of G. Then E(G) is a torsion-free ring 
and QE(G) is the minimal g-a lgebra containing E{G). QE(G) can be characterized 
as the set of linear t ransformation <£ of QG (minimal g-a lgebra containing G) 
such that n$(G)QG for some H ? 0 in Z . 

The algebra QE(G) is the ring of quasi-endomorphisms of G and will be denoted 
by E(G). Now if G is strongly indecomposable then E(G) is a quadrat ic number 

field, Q, or the ring of 2 X 2 triangular matrices | a, b £ g j with equal diagonal 

elements. In all cases E(G) is commutative, hence E(G), which is a subring of E(G), 
is commutative. Hence: 

If G is a strongly indecomposable group of rank 2, then E(G) is commutative. 

Although the condition of strong indecomposability of G is sufficient for the 
commutativity of E(G) it is not necessary, as may be seen f r o m G = G1 + G2, G¡ 
of incomparable types (cf. first counter-example). We can extend this result to 
torsion-free groups of prime rank, in case G is irreducible. 

D e f i n i t i o n 2. A group G is irreducible if it has no proper non-trivial pure 
fully invariant subgroups (cf. [4], definition 5. 1). 

Now let G be a strongly indecomposable group of prime rank. If G is irreducible, 
then E(G) is commutative. By Corollary 5. 6 [4], E(G) = T is a division ring and by 
Theorem 5. 5, [/":£?] = rank G=p ( p a prime). 



Remarks on endomorphism rings 347 

Now let F be the center of r, then [F:Q] = [r:F][F:Q]=p; but [r:F]=n2, 
so n2\p which implies n = 1, hence F = F or E(C) = r is commutative. Then E(G), 
as a subring of E(G), is commutative. For irreducible groups G of prime rank, 
REID [4] has shown that G is either strongly indecomposable or equal to a direct 
sum of isomorphic rank one groups. Hence for these groups indecomposability 
implies strongly indecomposability. Hence: 

T h e o r e m 1. Let G be an irreducible, indecomposable torsion-free group of prime 
rank. Then E(G) is commutative. 

One might ask whether strong indecomposability is always sufficient for com-
mutativity of the endomorphism ring. The answer is no and the counter-example 
is again the ring R of integer quaternions. As we have seen, RsiE(G), where G is 
a reduced torsion-free group of rank 8. Now the ring E(G) of quasi-endomorphisms 
of G is the quaternion field F with basis 1, i, j, k over Q. 

Since F is a field it is a local ring, that is, a ring R with identity such that R/J(R) 
is a division ring, where J(R) is the Jacobson radical of R. 

By Corollary 4. 3 [4], a torsion-free group G of finite rank is strongly inde-
composable if and only if E(<7) is a local ring. Since F = E(G) is such a ring, it fol-
lows that G is strongly indecomposable. However, E(G)^R is not commutative. 

For the class of irreducible groups of prime rank we have seen that they are 
either strongly indecomposable or equal to a direct sum of isomorphic rank one 
groups.-Now assume that G is such a group and E(G) is commutative. Then the 
number of direct summands in a direct sum representation of G cannot be greater 
than one. i 

Hence G is strongly indecomposable or G is a rank one group. A rank one 
group is clearly strongly indecomposable. Hence, if we use Theorem 1, we get: 

T h e o r e m 2. Let G be an irreducible group of prime rank. Then E(G) is com-
mutative if and only if G is strongly indecomposable. 

If we omit the condition that the rank of G should be prime, we have the fol-
lowing result: 

T h e o r e m 3. Let G be an irreducible group of finite rank k, such that k is square 
free. Then E(G) is commutative if and only if G is strongly indecomposable. 

P r o o f . Assume E(G) is commutative, then E(G) is commutative. Since G is 
irreducible, E ( G ) = rm where T is a division algebra, m is the number of strongly 
indecomposable summands in a quasi-decomposition of G and m[r : g ] = r ank (? 
[4]. Since r ,„ is commutative, it follows that m — \, E(G) = T and G is strongly in-
decomposable. Conversely, assume that G is strongly indecomposable. Since G is 
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irreducible, G has a quasi-decomposition G = 2 G, with each G, strongly in-
;= 1 

decomposable [4]. It follows that m = 1 and E ( G ) = T is a division ring. Moreover 
[ r : g ] = rank G = k. Since the dimension of f over its center must be a square divid-
ing k, this dimension is 1 and E(G) = T is commutative. Hence E(G) is commutative. 
Note that Theorem 2 is a special case of Theorem 3. 

From [4] we use the 

D e f i n i t i o n 3. Let G be a torsion-free group of finite rank. Let S be the pure 
subgroup of G generated by the collection of non-zero minimal pure fully invariant 
subgroups of G. We call S the pseudo-socle of G. 

R E I D [4] has shown that G = S if and only if E(G) is semi-simple. So we inve-
stigate the commutativity of E{G) under the condition that the radical of E(G) is 
zero. First we remark that the quasidecomposition of a torsion-free group of finite 
rank is essentially unique i.e. if G has finite rank then any quasi-decomposit ion of 
G has only finitely many summands and if 

i 2 ^ = 0 = 2 ^ , 
i i= i «?... j=i 

with the Hi and Kj strongly indecomposable ( / = 1 , ...,s; j— 1, . . . , / ) , then s = t 
and for some permutation n of {1, 2, . . . , t } we have K j is quasi-isomorphic to 
0 " = 1 , . . . , f) [4]. 

j 
T h e o r e m 4. Let G be a torsion-free group offinite rank with E(G) semi-simple, 

but not simple. Then E(G) is commutative if and only if in any quasi-decomposition 
of G the summands have commutative endomorphism rings. 

P r o o f . Assume E(G) is commutative, then E(G) is commutative. Since E(G) 
has D.C.C. on right ideals and is semi-simple, we get E(G) ^ A t - { — + A m (direct 
sum), where A,• is a field ( / = 1, . . . , m). Identify E(G) with this direct s u m and write 

m 

E(G) = 2ftE(G), where Ai—ftE{G) ( / = 1 , . . . , m) and f induces the projection 
i= 1 

o f E ( G ) onto A¡. To this decomposition o f E ( G ) there corresponds a quasi-decomposi-
m 

tion of G =i ZGfi with E(G/j) = / ; E ( G ) f =A,, so that E ( G f ) is a field. Hence 
i = l 

Gf is strongly indecomposable ( / = 1, . . . , m) ([4], Corollary 4. 3). Hence any quasi-
decomposition of G has m strongly indecomposable summands and each of these 
summands has a commutative quasi-endomorphism ring and therefore a commuta-
tive endomorphism ring. 

Conversely, assume that the condition for G with respect to quasi-decompos-
ability is satisfied. Since E(G) has D.C.C. on right ideals and is semi-simple, it 
may be identified with a finite direct sum of matrix rings over division rings: E(G) = 
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= ¿ljH M „ (Wedderburn). This implies there is a set {e1; . . . , e„} of non-zero 
mutually orthogonal idempotents of E(G) whose sum is the identity in E(G):1 = 

n 
e1+e2-\— +e„. Then there is a quasi-decomposition G = Ge{ of G, which 

¡=i 
corresponds to the direct decomposition of E(G) ([4], Theorem 3. 1). Now E(Ge,) s 
= e ;E(G)e; = zl;e; = zl;, since is the unit element for Ah so that At must be com-

mutative. Hence E(G) is commutative and therefore E(G) is commutative. This 
completes the proof of the theorem. 

From the semi-simplicity of E(G) one easily derives that the components Get 

in a quasi-decomposition of G have a semi-simple quasi-endomorphism ring E(Ge ;), 
since the radical of eiE(G)ei ( s iE(Ge ; ) ) is e-^e,, where N is the radical of E(G). 
Hence Theorem 4 reduces the case of groups G of finite rank with E(G) semi-simple 
but not simple to the case of strongly indecomposable groups G of finite rank 
with E(G) semisimple but not simple. 

Next assume that G is a strongly indecomposable group with semi-simple 
E(G). Then E(G) is a division algebra ([4], Corollary 4. 3). Now we have the 
following sufficient condition in order that E(G) be commutative: G has a com-
mutative E(G) if G has a non-zero minimal pure fully invariant subgroup P, whose 
rank k is square-free. 

(Note that the case G = P or G is irreducible is contained in Theorem 3.) 
Indeed, if the condition is satisfied, then rank P = [E(G):Q] =k, k square-free. 

Since the dimension of E(G) over its center must be a square dividing k, E(G) is 
commutative and an algebraic number field. Hence E(G) is commutative. 

The condition is satisfied if the rank of G is 2 or 3. If G is irreducible, G—P 
and the rank of G is square-free. If G is not irreducible, there exists a minimal non-
zero pure fully invariant subgroup P in G, distinct f rom G, and the rank of P is 1 
or 2. Hence the condition is satisfied. 

2. The Jacobson radical 

All the groups G considered here are torsion-free groups of finite rank. So 
E(G) always satisfies the D.C.C. for right ideals. It is well known that under this 
condition G is strongly indecomposable if and only if E ( G ) | J V is a division ring, 
where N is the Jacobson radical of E(G) (Corollary 4. 3, [4]), i.e. E(G) is a local ring. 

We prove now 

T h e o r e m 5. Let G be a torsion-free group such that E(G) satisfies the D.C.C. 
on right ideals. Then the Jacobson radical of E(G)( = J(E(G})) is zero implies that 
the Jacobson radical of E ( G ) ( = / ( E ( G ) ) ) is zero i.e. E ( G ) is semi-simple. 

9 A 
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P r o o f . Since E(G) satisfies D.C.C. for right ideals, y(E(G)) coincides with 
the union of all left nilpotent ideals in E(G) and ./(E(G)) is nil. Hence ./(E(G)) is 
a pure ideal in E(G), since the nil radical of a torsion-free ring is a pure ideal ([2], 
p. 271). It follows that nil radical of E(G) = E{G)C\ nil radical of E(G), according 
to the correspondence between pure ideals in E(G) and E(G). So we get nil radical 
of E(G) = £(G) n y ( E ( G ) ) and then £ ( G ) n y ( E ( G ) ) g J{E(G)). 

Now suppose J(E(G))= 0 and let <p£J(E(Gj). Then <p£E(C), so Bn^O^Z 
such that nq>£E(G). Also nq> e J (E(G)) , hence n<p £J(E(G)) H E(G) £ J (E(G)) = 0, 
so nq> = 0, which implies (p= 0, since E(G) is torsion-free.. Hence y ( E ( G ) ) = 0 . This 
completes the proof of Theorem 5. 

Since E(G) is semi-simple if and only if G = S, it follows immediately: 

C o r o l l a r y . Let G be a torsion-free group of finite rank. If the Jacobson radical 
j(E(Gj) of the endomorphism ring E(G) is zero, then G = S. 

One may ask whether J(E(G)) = 0 is a necessary condition in order that 
y(E(G)) = 0. This is not the case as may be seen from the following example. Let 
G = Z(p) be the group of p-adic integers. Then E(G) = Z(p) and E(G) = .£(/?), the 
p-adic number field. Hence / ( E ( G ) ) = 0 , but J(E(G))=pZ(p), so J(E{G))^0. Of 
course, if E(G) satisfies D.C.C. on right ideals, then nil radical of E(G)=J(E(G)) = 
= E(G)r\J(E(G)). Hence J(E(G)) = 0 if and only if y(E(G)) = 0 in this case. 
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S-objects in an abelian category 

By GEORGE B. WILLIAMS in St. Paul (Minnesota, U.S.A.) 

1. Introduction 

An abelian group G is an S -group if whenever K is a direct summand of G, 
then G == ( /©.£[1] . G is an ID -group if G has an isomorphic proper direct summand 
[2]. In this paper we extend these concepts to an arbitrary abelian category with 
the emphasis on S-objects. Section 2 contains a few general properties of S-objects. 
In section 3 we investigate the relation of S-objects to ID-objects. We show that 
an ID-object in a C3-category (i.e., satisfies the Grothendieck axiom A. B. 5) con-
tains a non-zero S-object and we give a condition such that an S-object A in a complete 
C 3 -category is isomorphic to an interdirect sum of countably many copies of A. 
In the last section we restrict our discussion to the category of abelian groups. 
We show several cases of a cancellation property for S-groups^and conclude with the 
result that an abelian group whose torsion subgroup is an ID-group has a non-zero 
direct summand which is an S-group. 

Throughout this paper A will denote an abelian category and A an arbitrary 
object in A. The word group will mean abelian group. Most of the notation is based 
on M I T C H E L L [6] with some taken from F U C H S [4] and the two main resource papers 
[1] and [2]. 

The author wishes to express his gratitude to his thesis advisor R . A. BEAUMONT 

for his advice and assistance. The material in this paper is taken from the author 's 
doctoral dissertation. 

2. S-objects 

(2. 1) D e f i n i t i o n . An object A £ A is an S-object if whenever B is a direct 
summand of A, then A s; A®B. 

Theorem 2. 3, based on a similar result for direct sums of groups [1, Th. 3, p. 74] 
gives two large classes of S-objects. 
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(2. 2) L e m m a . Let A be complete (cocomplete). If A — X -4,- ( © A,), where 
i< at i < to 

Aj = A for each i, then A is an S-object. 

P r o o f . Suppose A = B@L. Then ,4,-= where B^B and L,==L 
for all i. Hence A= X A-= X (5 ;ff iL,) = ( X £,•)©( X L , . ) = B 0 f f i ( X Bi+i)® 

/<a> /<co /<co ' /-co i<oj 
© ( X £ ; ) = f l o © ( X (£i+1©Z.,)) = £© x Ai = B@A. Therefore, A is an S-object. 

/-< CO I <0) /-SCO 
Dually, is an S-object if A = © A-t. 

i < CO. 

(2 .3) T h e o r e m . Lei A complete (cocomplete). If A = X ffi 5;.), >v/?ere 

\A \ and B; = B for each X, then A is an S-object. 

P r o o f . Partition the index set A into disjoint subsets At such that |/1,| = |/1| 
for all i. Then A = X Bk ^ X ( X B,) = X A-t where At = X Bx 9= A for 

A6/1 V'S/lf / '<<» 'S/li 

each /. Therefore A is an S-object by Lemma 2. 2. 
Dually, /1 is an S-object if A — © Bk. , 

K A P L A N S K Y [5 , p. 12] raises three questions which he notes might be appropriate 
to consider for any specific structure of groups. It follows directly from the definition 
that test problems I and II are satisfied by S-objects in an arbitrary A. 

(2. 4) P r o p o s i t i o n . (Kaplansky's test problems I and II.) Let A and B be S-ob-
jects in A then: I. A isomorphic to a direct summand of B and B isomorphic to a direct 
summand of A implies A = B, and II. A® A = B@B implies A =B. 

For an S-object A, it is obvious that A = © , 4 for any /?<(u since A = A®A. 
n 

However, A ^ © A in general as the following example shows. 
No 

(2. 5) E x a m p l e . Let P = X Z where Z is the additive group of tjie integers. 
No 

Then P is an S-group by Theorem 2. 3 and © P == © ( Z f f i / 5 ) = ( © Z ) ©(©/>) . 
No No No No 

N U N K E [7 , Th. 5 , p. 6 9 ] shows that every direct summand of a product of copies of Z 

is a product of copies of Z. Thus P ^ © P. No . 

3. ID-objects 

Many of the results in this section are extensions and applications to S-objects 
of the results and techniques in [2]. 

(3. 1) D e f i ni t i o n . An object A £ A is called an ID-object if A has an isomorphic 
proper direct summand. 
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(3 .2) L e m m a . If A 0 is an S-object, then A is an ID-object. 

(3 .3) L e m m a . An object A <¿ A is an ID-object if and only if there exist 
<p, \¡/ £ [A, A] such that ij/cp = lA and cpip ^ lA. ([A, A] is the set of all morphisms f rom 
A to A in A.) 

P r o o f . Let A be an JD-object, then A = B@L, L?±0, and there is an iso-
morphism (Pi'.A >=>B. Let q> = uB(Pi where uB is the injection of B into the coproduct. 
Let i¡/:B®L—A be the unique m a p defined by the definition of coproduct such 
that \j/uB=<pYl and tj/uL = 0. Then \j/(p = ij/uB(pl = (p'[l (Pi = lA and (pij/(A) = B so 
<pi¡/?±\A. 

Conversely, if ij/cp = IA, then ç is a monomorphism and the exact sequence 
0 —A/(p(A) —0 splits so that A = <p(A) © A/<p(A) = <p(A)® Ker \¡/ [6, Prop. 
19. 1*, p. 32]. But (pi/j \A implies Ker ij/ 0. Therefore, A is isomorphic to a proper 
direct summand cp(A). 

Thus, JD-objects can be studied by means of the following definition. 

(3.4) D e f i n i t i o n . An ID-system is a triple (A;(p,\¡/) where A£A and 
(p, i/»€[J4, A] such that \¡j(p — lA. 

Since any S-object A is an ID-object it determines an ID-system. An S-object 
actually determines a set of distinct ID-systems. This is shown in the following 
characterization of S-objects. 

(3. 5) P r o p o s i t i o n . Let B be a representative set of non-isomorphic direct 
summands of A. A is an S-object if and only if there exists a set {(<pB, i//B) : 5 € B} c 
c [A,A]X[A,A] such that \¡JB(pB=\A and Ker i K = B for all B£ B. 

P r o o f . We need to show first that B is a set. If if is a direct summand of A, 
then the projection onto B followed by the injection of B into A is a morphism 
yB€[A, A] such that yB(A)^B. Thus if C ^ B as subobjects, yB(A)^k yc(A) so yB^yc-
Therefore, B . is in one-to-one correspondence with a class of distinct morphisms in 
[A, A]. Since [A, A] is a set, B is a set. 

If A is an S-object and A — B®M, 5 £ B , then there is an isomorphism 
a : A@B>^>A. Let u: A -*A®B be the injection of A into the coproduct and p the 
projection onto A. Define <pB — au and \¡/B=pcn~í. Then i¡/B(pB = pa~1au=pu=lA 

and Ker ipB Ker p = B. 
1 Conversely, let A = B'®M and 2?ÇB such that B^B' as subobjects of A. 
ij/B(pB = \A, so cpB\s monic and A = <pB(A)® Ker tj/B as in Lemma 3. 3. But ç>B(A) s¡A 
and Ker I ¡ / B ^ B ^ B ' SO A ^ A® B'. Therefore, A is an S-object. 

(3. 6) T h e o r e m . Let A be C3, A an ID-object in A, then A contains a non-zero 
S-object. 
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P r o o f . Since A is an ID-object, there is an ID-system (A; (p, for A such 
that K . e r t / ^ 0 . Let / / = K e r ^ . Then by repeatedly applying (p to A, A splits as 
A = H®cp(A) = H®(p(H)®<p2(A) =••• , where q>"(A)^A and cp"(H) ^ H for all 
/?<o> (q>°(H) = M). Then {q>"(H): n < « } is a set of subobjects of A such that 
m f "' 1 
© (p"(H ) is a direct summand of A for every m<co . Clearly •{ 0 <p"(//): w<co> 

n = 0 l n = 0 J 

is a direct system and lim ( © <p"(//)j = © (p"(H) (see [6, p. 48, Example 1]). 
m<tu vi = 0 / n< u> 

But lim ( © <?"(//)) = u <P'\H) a A by [6, Prop. 1.2, p. 82] since A is C 3 . 
m < a) \/i = 0 J ll< a) 

Therefore, (& (p"(H) is a subobject of A and by Theorem 2 . 3 it is an S-object. 
IK to 

(3. 7) C o r o l l a r y . Let A be C 3 , A an S-object. Then A contains an S-object iso-
morphic to © A. 

No 

P r o o f . Since A s A®A, let (A;cp,4/> be an ID-system for A such that 
H = Ker i/y = /1. Then (p"(H)^H^A and © <pn(H) © A so the results follows 

IK to No 

from Theorem 3. 6 and its proof. 
By imposing additional hypotheses we are able to extend the conclusion in 

3. 7 such that an S-object is isomorphic to an interdirect sum of countably many 
copies of itself. In Theorem 3. 9 we let (pmA — p| <p"(A). This intersection exists 

n<to 

since we assume A to be complete. 

(3. 8) D e f i n i t i o n . Let A be complete C 3 with {A,: / ( / ¡ c A . An object A£A 
is called an interdirect sum of the A, if 

© A;(zAcz X Ai 
iil iil 

(3.9) T h e o r e m . Let A be complete C3. If A is an S-object with ID-system 
(A;(p,ij/) where Ker i// = A and if <p'"A is a direct summand of A, then A is iso-
morphic to an interdirect sum of countably many copies of A. 

P r o o f . Let / / = Ker \j/ and K=(pwA. From the proof of Theorem 3. 6 we have 
© (pn(H)c:A and 

n<" (*) A = H®cp(H)®---®(p"(H)®<p"+l(A). 

Thus let a„\ A -~<p"(H) be the projection defined by ( * ) and let p„: X <pn{H) —(?"(//) 
n <C£) 

be the projection from the product. Then by the definition of product there exists a 
unique a : A^ X <p"(H) such that pnoc = oin for all n<co. Let Z, = I m a . 

n <10 
Now from ( * ) we see that Ker a„ = / / © • • • ©<pn_1 (H)®(pn+l(A). 

m 
Thus H Ker a„ = <pm+'(A), and f] K e r a „ = f | <p"(A) = (paA. 

n=0 n<ia /k a) 
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Thus, by an exercise in M I T C H E L L [6, Ex. 8, p. 37] Ker a = (paA = K. Since <pwA 
is a direct summand by hypothesis, A = K®L. 

Claim A = L. A — H®<p(A) by (*) and K<^(p(A) by definition. Thus, by the 
modular law [3, p. 103, Exercise A] <p(A) = A D(p(A) = K®[LP\q>(A)] implies 
A = H® K®[L H (p(A)] so that L 3= A/K H@[Lh(p(A)]. Now H^A and A 
an S-object implies H®K ^ A®K is A ^ H. Hence A = K® H ®[LP\q>(A)} =s 
s //©[in <p (/!)] = L. 

Finally, we need to show that 0 </>"(//) cr L. Let P„ and y„ be the injection of 
n < a> 

cpn(H) into A and X (p"(H) respectively. Then aP„ = yn since pjxf5n = ajfin is the 
n<w 

identity on <p"(H) if j=n and is 0 if j^n and similary for p}y„. Thus a restricted 
to © <p"(H) is the natural map <5: ©•<?"(//) — X q>"(H). By hypothesis and 

n<oi n<m n<ta 

[6, Cor. 1.3, p. 83], A is C 2 , thus ^ is a monomorphism. Since a factors through 
L we have © (p"(H)c:Lc: X (p"(H). 

n<w n<ta 
Since <p"(H) = A for all n <co, L is isomorphic to an interdirect sum of count-

ably many copies of A. Since A^L, the proof is complete. 

4. Applications to abelian groups 

In this section we restrict our attention to the category of abelian groups. 
We start with a cancellation property for S-groups. This follows the standard pattern 
of considering the reduced and divisible cases separately. 

(4. 1) P r o p o s i t i o n . Suppose G is an S-group, G = K®L, Kfinitely generated, 
then G = L. v 

P r o o f . G an S-group implies G K@G so that K®G 9= K®L. Thus G^L 
by [8, Cor. 8, p. 900]. 

(4. 2) T h e o r e m . Let G be a reduced p-group, G an S-group, and G = K®L 
where K contains no non-zero S-group, then G ~ L. 

P r o o f . Suppose K is infinite and let B be a basic subgroup for K. Then K 
infinite implies \B\ = m^#0 so that B[p\ ^Q)C(p) is an S-group. Thus K is finite 

m 
and therefore finitely generated. By Proposition 4. 1, G = L. 

(4. 3) C o r o l l a r y . Let Tbe a reduced torsion group, Tan S-group, and T = K®L 
where K contains no non-zero S-group, then T^L. 

P r o o f . T = © Tp and each Tp is an S-group [1, Cor. 2, p. 72]. Also T = K®L 
pi" 

implies Tp — Kp®Lp and Kp contains no non-zero S-group since K contains no 
non-zero S-group. Thus Theorem 4. 2 implies T p ^ L p and so T ^ L . 
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The conditions in Theorem 4 . 2 are not sufficient to guarantee that G is an 
S-group. That is, the following is an example of a group G such that if G = K@L 
and K contains no non-zero S-groups, then however, G is not an S-group. 

( 4 . 4 ) E x a m p l e . By Z I P P I N [9, p. 9 8 — 9 9 ] , there is a reduced countable p-group 
G such that f(G, n) = $0, n<a>, and f(G,a>)= 1 where f(G, n) is the « t h Ulm in-
variant of G. If G = K®L where K contains no non-zero S-group, then, as in 4. 2, 
K is finite so that f(K, n) is finite for n < c o and f{K,(o) = 0. By the properties of 
Ulm invariants and by U L M ' S theorem [5, p. 2 7 ] , it follows that G^L. However, 
G is not an S-group since f(G, co )= l [1, Th. 2, p. 73]^ 

(4. 5) T h e o r e m . Let D be a divisible group, D an S-group, and D = K® L 
where K contains no non-zero S-groups, then D = L. 

P r o o f . By [1, Th. 2, p. 73] the torsion free rank of D is zero or infinite and 
the p-rank of D is zero or infinite for each p£n. Now K is also divisible and if its 
torsion free rank were infinite or if its /»-rank were infinite for any p, K would contain 
an S-group by Theorem 2. 3 (or [1, Th. 3, p. 74]). Thus, the torsion free rank of L 
and the p-rank of L for each p must be the same as the corresponding rank of D. 
Therefore, D = L. 

We can now prove the general torsion case by splitting the group into its divis-
ible and reduced components and applying 4. 3 and 4. 5. We also need the fact 
that a group is an S-group if and only if its reduced and divisible components are 
both S-groups [1, Cor. 1, p. 72]. . 

(4. 6) T h e o r e m . Let T be a torsion group, T an S-group, and T = K@L where 
K contains no non-zero S-groups, then T = L. 

We next note that for groups Theorem 3. 9 has a special interpretation [see 2]. 

(4.7) P r o p o s i t i o n . If G is an S-group with ID-system (G; <p, \jj) where 
Ker ij/ = G and if cp"' G is a direct summand of G, then G is isomorphic to a total shift 
invariant subgroup of X G. 

• No 

The following gives a more involved example than Theorem 2. 3 of an S-group 
and demonstrates a simple application of Proposition 4. 7 (and thus of Theorem 3. 9). 

(4. 8) E x a m p l e . Let P = X Z and F — 0 Z where Z is the additive group 
No No 

of the integers. P and F are both S-groups by Theorem 2. 3. We will show that 
P® F is also an S-group. 

Suppose P@F = A®B. Let q> be the projection of P®F onto F. Letting 
cpA be the restriction of <p to A we get the exact sequence 0 — Ker (pA-*A—~F where 
(pA(A) is free since it is a subgroup of a free group. Since A/K.er cpA ^ (pA(A), we 
have A = Ker q>A®L, where L is free [4, Th. 9. 2, p. 38]. Clearly L has countable 
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rank. Now, Ker tpA = AC\P and A Pi P is a direct summand of P©Fsince P® F — 
= A@B = Af)P®L®B. Thus ADP c. P implies P = AnP®PC)(L@B) by 
the modular law. So A = AClP®L where AHP is a direct summand of P and 
hence a product of copies of Z [7, Th. 5, p. 69]. Therefore, A ^ © Z, A =P, A = F, 

Tl 
or A 3= P®F. Tn any case, P®F®A s= P®F so P®F is an S-group. 

Let G = ( © Z , )©( X Z'j) where Z ^ Z ^ Z ] for all i and j. Then G ^ P®F 
i < 0} j < to 

and so is an S-group. It is obvious that G is an interdirect sum of countably many 
copies of Z. With 4. 7 we can also show that G is isomorphic to a total shift inva-
riant subgroup of X G. Define <p:G —G by (p(Zi) = Z2i and (p{Z'j) = Z'2j, then 

No 

G = [ ( © Z 2 J ( © ) X Z ^ ) ] f f i [ ( © Z 2 l W ) f f i ( X Z ^ - i ) ] = (p(G)®H 
i <o) j-<o / <cu j<co 

and (pn{G) = ( © X Zj" , ) so q>mG = 0 and is thus a direct summand of G 
i < to j < a 

and Proposition 4. 7 applies. 
Clearly if an object ^ has a direct summand which is an S-object, A is an ID-

object. We conclude with the converse for torsion groups. 4. 10 may also be considered 
a special case of Theorem 3. 6. 

(4. 9) L e m m a . If a reduced p-group G is an ID-group, then G has a non-zero 
direct summand which is a bounded S-group. 

P r o o f . By [2, Th. 2. 9, p. 23], G an ID-group implies f(G, n) is infinite for some 
integer «. Thus B„ = © C(pn) is an S-group (B„ is the nth component of a basic 

f(G,n) 
subgroup for G). But B„ is bounded and is a direct summand of G. 

(4. 10) T h e o r e m . If GT is an ID-group, then G has a non-zero direct summand 
which is an S-group. (GT is the maximum torsion subgroup of G.) 

P r o o f . Since GT is an ID-group, by [2, Th. 2. 6, p. 23] (G T ) p is an ID-group 
for some p. Let (G T ) p = Dp®Rp where Dp is divisible and Rp is reduced. Then, 
by [2, Th. 2.8, p. 23], Dp or Rp is an ID-group. If Dp is an ID-group, Dp has infinite 
/»-rank and is thus an S-group by [1, Th. 3, p. 74]. Dp is also a direct summand of 
G since it is divisible. If Rp is an ID-group, then by Lemma 4. 9, Rp has a non-zero 
direct summand K which is a bounded S-group. Since Rp is pure, in G, K is also 
pure in G and is a direct summand of G by [5, Th. 7, p. 18]. 
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Zelling S. Harris, Mathematical structures of language (Interscience Tracts in Pure and Applied 
Mathematics, No. 21), IX-!-230 pages, New York—London—Sydney—Toronto, Interscience 
Publishers, John Wiley and Sons, 1968. — 112 s. 

The book is an expansion of á lecture given by the author at the Courant Institute of Mathe-
matical Sciences. It does not attempt to present a unified treatment of what is called mathematical 
linguistics; such a treatment at today's stage of development of the subject could probably not be 
given. Rather, the book is a report on the author's own work. 

The pursued aim is not to build an elegant nnathematical theory which has some relevance 
to linguistics; rather, to define a mathematical structure that comes as close to describing natural 
languages as seems possible at the present time. The main result of the book is, as the author claims, 
the definition of such a structure. The structure finally arrived at is rather complicated: it has a family 
of primitive arguments and five finite families of operators acting on primitive arguments or opera-
tors. This is, however, not unexpected if we consider how complicated a natural language really is. 

Once such a structure has been defined, one can prove theorems about it. The extent how far 
these theorems are interpretable as true properties of natural languages may be a good check of how 
close the given structure comes to describing natural languages. Also, the study of related mathemati-
cal structures should be inspiring for linguistics. 

The book is written in a lucid style, with many illustrating examples from the English language. 
Its chapter headings are: 1. Introduction. 2. Properties of language relevant to a mathematical for-
mulation. 3. Sentence forms. 4. Sentence transformations. 5. Structures defined by transformations. 
6. Regularizaron beyond language. 7. The abstract system. 8. The interpretation. The book ends 
with an Index. At the end of the Introduction a list of works is given that contain more detailed 
information about parts of the material. 

Anita Maté (Szeged) 

P. Roscnstiehl and J. Mothes, Mathematics in management: the language of sets, statistics and 
variables, translated from French, xvi + 392 pages, Amsterdam, North—Holland, 1968. 

The traditional approach to teaching mathematics in high-school is to provide a basis for those 
wanting to continue their studies in engineering or science. As a result, up to quite recently, most 
other people gladly severed all ties with mathematics as something irrelevant to their lives at the age 
of eighteen. Yet, it was proven quite some time ago, that the applications of mathematics are 
not restricted to engineering and science. In particular, efficient business management cannot live 
without them. 

Of course, there are specialists in applications of mathematics to business and industry, and 
business administrators and managers need not have such a specialized knowledge. What they need 
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is an overall picture of where and how to apply mathematics to problems in management. This will 
enable them to judge when they should invoke the help of specialists; and, in fact, without such 
a knowledge, they may have extreme difficulty in communicating their problems to the mathemati-
cian. 

This was kept in mind when, in the beginning of the 1960s, l'Ecole des Hautes Etudes Commer-
ciales started to include a new course in mathematics in its programme. The French original of this 
book (Mathématiques de l'action, Dunod, Paris, 1968) is based on the experience gathered from this 
course during several years. This should by itself be a guarantee of the quality of the book. 

As it should seem clear from what has been said so far, this book is intended for people whose 
main interest is not science. This does not mean that low standards of mathematical precision are 
applied. In fact, the material is presented in a clear and rigorous way. A great number of illustrating 
examples and excercises are given; many of these help one to grasp the relevancy of the discussed 
material to problems encountered in management. 

The contents of the book can be best illustrated by the chapter and section headings: 1. Subsets 
and partitions of a finite set (1. Elements and sets. 2. The set 3P(E) of the subsets of a finite set E. 3. 
Boolean algebra. 4. Partitions of a finite set). II. Organisation, classification and enumeration (1. 
General remarks on the statistics of a set. 2. The genealogy of simplexes. 3. Compartments and ob-
jects. 4. Morphisms). III. Events and probability (i. The language of events. 2. Probability: a measure 
of events. 3. Numerical estimation of probabilities). IV. Random variables (I. Discrete random vari-
ables. 2. Continuous random variables. 3. Two-dimensional random rariables). V. Common proba-
bilistic models (I. Discrete models. 2. Continuous models. 3. Confrontation of the observations and 
the model). 

Each chapter ends with a summary, practical excercises with solutions, and the description of 
one of more fields o/ applications. The book ends with a few tables useful in statistics and a subject 
index. 

As the above description of the contents shows, the special considerations in the preparations 
of this book do not make its scope so limited as it would seem natural. The book should be useful 
to everyone who directly or indirectly may be confronted with applications of mathematics, including 
those interested in various branches of science. A further volume is planned on programming. 

Attila Maté (Szeged) 

S. A. Naimpally—B. D. Warrack, Proximity spaces (Cambridge Tracts in Mathematics and 
Mathematical Physics, No. 59), X + 1 2 8 pages, Cambridge University Press, 1970. 

The idea of using the relation of "nearness" of two subsets of a space as a basic tool of introducing 
a structure goes back to a congress talk of F. Riesz in 1908. However, this idea was not systematically 
developed earlier than the work of V. A. Efremovic (1952), who defined proximity spaces axiomati-
cally. Since that time, the theory of these spaces produced interesting and deep results and found 
important applications, so that a monograph on this subject fills a serious gap in the literature of 
general topology. 

The authors divided the book into four chapters preceded by a short account on historical 
background. The first of them presents basic definitions and facts, the second gives the theory of 
Smirnov compactification (with the help of the method of clusters). In the third chapter we find the 
most important interrelationships between proximity and uniformity, including some generalized 
concepts of uniformity (Alfsen—Njâstad uniformities, contiguities). The main subject of the final 
chapter is a survey of various kinds of generalized proximities and further generalizations of uni-
formities (syntopogenous spaces of the referee, generalized topological spaces of D. Doicinov, se-
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quential proximitcs of S.G. Mrowka, generalized proximities of S. Leader, M. W. Lodato, W. J.Pervin, 
generalized uniformities of C. J. Mozzochi, etc.); a similar subject (local proximity) was previously 
presented in Chapter 2. Each chapter is followed by a series of references to the fairly, complete 
bibliography standing at the end of the volume. 

This monograph is very useful for a reader .interested in modern developments of general to-
pology. Although nothing else is postulated than basic knowledge from the theory of topological 
spaces, it is advantageous to be familiar with the theory of uniform structures because some con-
cepts (e. g. that of a uniformly continuous mapping) are used without a definition. The referee 
suc;ecded in finding only a very small number of misprints and errors. 

A. Csaszdr (Budapest) 

Josef Stoer—Christoph Witzgall, Convexity and optimization in finite dimensions. I (Die Grund-
lehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 163), 1X + 293 pages, 
Berlin—Heidelberg—New York, Springer-Verlag, 1970. — DM 54, — 

This book provides an excellent summary of mathematical'results which are basic for the linear 
and nonlinear continuous variable programming in finite dimensions. The results of the various 
authors are discussed in the frame of a unified theory in a clear, elegant manner. The book consists 
of six chapters. Chapter 1 is devoted to the algorithmic solution of linear inequalities originated by 
Fourier. Farkas' theorem, the main transposition theorems, the duality theorem of linear program-
ming and the complementary slackness theorems are deduced from the theory obtainable from the 
elimination procedure. Chapter 2 contains the basic theory of convex polyhedra. Beyond the classi-
cal results of Minkowski, Farkas, Caratheodory, Motzkin, Weyl, attention is paid to the important 
later results, among which we mention the combinatorial type Gale diagram characterizing the face 
structure of convex polyhedra: Chapter 3 deals with convex sets, their topological, combinatorial, 
extremal properties, supporting sets, separation and fixed point theorems. Chapter 4 deals with the 
properties of convex functions, the conjugate function theory of Fenchel and various generalizations 
of convexity. Chapters 5 and 6 are devoted respectively to the strongly'related duality theory and 
saddle point theorems. Fenchel's duality theorem was generalized by Rockafellar and this is again 
generalized in Chapter 5 and then the previous theorems (proved by Gale, Kuhn, Tucker for linear 
programs and Dennis, Dorn, Eisenberg and Cottle for nonlinear programs) are shown to be special 
cases of this one. A similar line is followed in Chapter 6. The'classical theorems of von Neumann and 
Kakutani were generalized by Sion while this generalization is extended in this book to the noncompact 
case. This contains as a special case the Kuhn—Tucker saddle point theorem. A direct approach to 
the Kuhn—Tucker theory and explanation of its connection with classical calculus is also given. In the 
foreword the authors promise to treat the algorithms of convex optimization in a subsequent vol-
ume. 

A. Prekopa (Budapest) 

H. Stürmer, Semi-Markoff-Prozesse mit endlich vielen Zuständen (Lecture Notes in Operations 
Research and Mathematical Systems, Vol. 34), VII+126 Seiten, Berlin—Heidelberg—New York, 
Springer Verlag, 1970. — DM ] 2, — 

Der Begriff der Semi-Markoff-Prozesse wurde von R. P Y K E eingeführt. Diese Prozesse sind 
durch endlich viele oder abzählbar unendlich viele Zustände, durch die Übergangswahrscheinlich-
keiten und durch die Verteilungsfunktionen für die Zustandsdauern angegeben und enthalten als 
Spezialfälle die Klasse der Erneuerungsprozesse, die Klasse der Markoff-Ketten und der Markoff-
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Prozesse mit stetigem Zeitparameter. Die Semi-Markoff-Prozesse sind besonders geeignet zur 
Beschreibung einer großen Anzahl von Zufallsvorgängen in Natur, Wirtschaft und Technik; man 
kann z. B. sie für die Betrachtung der Wachstumspozesse, der Lagerhaltungs- und Warteschlangen-
probleme oder der Probleme der Zuverlässigkeit von Systemen anwenden. 

Im ersten Teil des Buches wird ein Abriß der Erneuerungstheorie angegeben; die Ergebnisse 
der Erneuerungstheorie liefern nämlich die wesentlichen mathematischen Hilfsmittel für die Behand-
lung der Semi-Markoff-Prozesse. Im zweiten Teil werden die für die verschiedenen Anwendungen 
wichtigsten Resultate der Theorie der Semi-Markoff-Prozesse hergeleitet. Nur die Semi-Markoff-
Prozesse mit endlich vielen Zuständen werden diskutiert; diese haben nämlich für die Anwendungen 
besondere Bedeutung, und diese kann man mit den einfachen Mitteln des Matrizenkalkuls behan-
deln. Die Betrachtungsweise ist sehr klar und das Buch eignet sich vorzüglich dafür, daß man daraus 
eine Übersicht über diese für die Anwendungen wichtige Theorie gewinnt. 

K. Tandori (Szeged) 

F. Ferschl, Markovketten (Lecture Notes in Operations Research and Mathematical Systems, 
Vol. 35), VI + 168 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1970. — D M 14,— 

Dieses Buch ist die Ausarbeitung einer Vorlesung, die in den Jahren 1969'—70 für Studenten 
der Volkswirtschaft gehalten wurde. Die wichtigsten Grundbegriffe und Ergebnisse der Theorie von 
Markovketten mit abzählbar unendlich vielen Zuständen und ihre wichtigsten Anwendungen in der 
Volkswirtschaft (Theorie der Warteschlangen, Erneuerungstheorie, Ruinprobleme) werden kurz, 
aber klar zusammengefaßt. Die Titel der einzelnen Kapitel sind die folgenden: Die Definition 
stochastischer Prozesse; Die Definition von Markovketten; Übergangswahrscheinlichkeiten; Die 
graphentheoretische Analyse von Markovketten; Das Rückkerverhalten von Markovketten; Statio-
näre- und Gleichgewichtsverteilungen; Transienz- und Rekurrenzkriterien; Algebraische Methoden 
zur Berechnung der Übergangswahrscheinlichkeiten. Am Anfang der einzelnen Kapitel — wo es 
notwendig ist — werden die entsprechenden Hilfsmittel (z. B. Hilfsmittel aus der Wahrscheinlich-
keitstheorie, aus der Graphentheorie, aus der Reihentheorie) betrachtet. Es ist erwähnenswert, 
daß der Verfasser zur Einführung der verschiedenen Zustände der Markovketten die Begriffe von 
gerichteten Graphen und von der Theorie der Relationen anwendet. Mit dieser Betrachtungsmethode 
wird es möglich, die verschiedenen Begriffe klar einzuführen; diese abstrakte Betrachtungsmethode 
ist aber nur für Mathematiker interessant. Das Buch betrachtet ausführlicher auch die Methoden 
der Matrizenrechnung, und so gibt es praktisch handhabbare Rechenmethode für die Bestimmung 
der Potenzen von stochastischen Matrizen. Am Ende des Buches gibt es ein Literaturverzeichnis, 
in welchem die wichtigsten Werke über Markovketten kurz rezensiert werden. 

K. Tandori (Szeged) 

F. Bartholomes and G. Hotz, Homomorphismen und Reduktionen linearer Sprachen (Lecture 
Notes in Operations Research and Mathematical Systems, Vol. 32), XII+ 143 Seiten, Berlin—Hei-
delberg—New York, Springer-Verlag, 1970. 

Es ist bekannt, daß man die linearen Chomsky-Sprachen als direkte Verallgemeinerungen der 
endlichen Automaten betrachten kann, im Sinne, daß die durch endliche Automaten darstellbaren 
Mengen genau mit den Satzmengen der einseitig linearen Sprachen zusammenfallen. Auf Grund 
dieser Tatsache darf man erwarten, daß sich eine ganze Reihe von Ergebnissen der Theorie von end-
lichen Automaten auf lineare Sprachen übertragen läßt. Das Hauptziel dieser Monographie ist die 
Realisation dieses Programms dadurch, daß man zu jeder linearen Sprache eine endlich erzeugte 



Bibliographie 363 

Kategorie zuordnet, deren Objekte und Morphismen Wortmengen mit einer ganz speziellen Struktur 
bzw. die Klassen gewisser Ableitungen dieser Sprache sind. Die systematische Anwendung der Metho-
den der Theorie von Kategorien gestattet einen Überblick darüber, welche Sätze über lineare 
Sprachen rein algebraischer und welche spezifisch sprachentheoretischer Natur sind. 

In § 1 wird es gezeigt, daß jede durch endliche Automaten darstellbare Menge als Satzmenge 
einer linkslinearen Sprache auftritt. § 2 enthält gewisse spezielle kategorien-theoretische Vorberei-
tungen. Hier wird es sich zeigen, daß eine umkehrbar eindeutige Beziehung zwischen den aus der 
Automatentheorie bekannten normalen Standardereignissen und den endlich erzeugten freien Kate-
gorien existiert. In §§3 und 4 werden der Homomorphiesatz und der Begriff des Reduktionsver-
bandes der endlichen Automaten auf die linearen Sprachen übertragen und nachher für endlich 
erzeugte freie Kategorien formuliert. § 5 enthält Untersuchungen über die Homomorphismen und 
Reduktionen der linearen Sprachen. Die Reduktionen sind im wesentlichen surjektive Funktoren 
zwischen den den linearen Sprachen zugeordneten freien Kategorien. In § 6 findet man einige Bemer-
kungen über die lokal eindeutigen und eindeutigen linearen Sprachen. 

/ . Peák (Szeged) 

Paul F. Byrd—Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists 
(Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 67), XVI+ 358 
Seiten, zweite, verbesserte Auflage, Berlin—Heidelberg—New York, Springer-Verlag, 1971. 

Die erste Auflage dieses Buches erschien 1971. Der vorliegenden zweiten, verbesserten Auflage 
ist eine ergänzende Bibliographie hinzugefügt, die mehrere Hinweise auf die numerischen Näherungs-
methoden und auf die entsprechenden Algorithmen für Rechenapparaten.enthält. Das Buch umfaßt 
umgefähr 3000 verschiedene Formeln und im Appendix mehrere Werttabellen, die die Auswertung 
von elliptischen Integralen erleichtern. Die entsprechenden Beweise sind nicht diskutiert, nur die 
notwendigen Begriffe und die Formeln sind mitgeteilt. So its dieses Buch in erster Reihe für die-
jenigen Fachleute brauchbar, die in ihrer Tätigkeit nicht-elementare Integrale auswerten sollen. 

Károly Tandori (Szeged) 

D. S. Mitrinovic, in Cooperation with P. M. Vasic, Analytic inequalities (Die Grundlehrender 
mathematischen Wissenschaften in Einzeldarstellungen, Band 165), XII+ 400 pages, Berlin—Heidel-
berg—New York, Springer-Verlag, 1970. 

From the author's introduction: "If it is true that 'all analysts spend half their time hunting 
through the literature for inequalities which they want to use and cannot prove', we may expect 
that 'Analytic inequalities' will b: of same help to them." 

The aim of the present monograph is mainly to collect inequalities not dealt with in the classical 
work "Inequalities" by Hardy, Littlewood, and Pólya, and the book "Inequalities" by Beckenbach 
and Bellman. Some overlap was of course inevitable. However, as is claimed in the preface, even in 
the presentation of classical inequalities new facts have been added. 

The collection is very rich, although it was impossible to strive for completeness. Where proofs 
or details could not be included for lack of space, references are given to original works. The first 
part, entitled "Introduction", concentrates on convex functions. The author considers the second 
part, entitled "General inequalities", the main part of the book. It is subdivided into twenty seven 
sec:ions, some of which are further subdivided. 

Studied her." are, among many other topics: Young's and Holder's inequality, the inverse of 
H3lc'e's inequality dus to Dias, Goldman, and Metcalf, inequalities involving means, the /.-method 
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of Mitrinovic and Vasic, which may be used to connect various, seemingly unrelated inequalities, 
Steffenson's and Turán's inequalities, integral inequalities involving derivatives, and inequalities 
for vector norms. The third part, entitled "Particular inequalities", collects over 450 special results. 

This collection should be very useful as a reference book for any research mathematician in 
analysis, but it may be useful to other people, like engineers, physicists, statisticians, etc., who might 
encounter inequalities in their works, and students may also benefit from parts of the book. 

Attila Máté (Szeged) 
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