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Nilpotent groups and automorphisms*) 
J O H N D A U N S and KARL HEINRICH HOFMANN 1 ) in New Orleans (Louisiana, U.S.A.) 

I. First an arbitrary endomorphism A X V-*Ai X Vt of semi-direct products 
AXV,AiXV1 of arbitrary groups A, V, Ai,V1 is described by four functions 
/ j : A -*-A1,f2 : V—At, : A —- Vlf and c2 : F— Vt. Under additional hypotheses, 
automorphisms of A X V leaving the subgroup 1 X V< A X V invariant are studied. 

II. If K is any field, set V=K". Let A be the group of all upper triangular 
matrices a = ||a,y|| (0 si,jsn; a^ £ K; a^ — 0 for au ^ 0). Form the semi-
direct product AXV: 

(P, w) (a, v) = (pa, woe + v) (a, p £ A; v, w € K"); 

wa = (vf1, ..., wn)\\au\\, (a = ||fly|| £A; w = (wL, ..., w„)$.K"). 

Secondly, the general methods of I are used to compute the. automorphism group 
Aut AXV. Modulo all the inner automorphisms, there is exactly one non-inner 
automorphism a: AXV--AXV with a(l X V) ^ 1 X V; <r is found explicitly. 

III. The quotients of the descending central series of the commutator subgroup 
N = [A X.V, AXV] are A'-vector spaces. Lastly, all normal subgroups W<\ N whose 
image in each quotient of the descending central series is a one dimensional vector 
space are determined. 

The automorphism group Aut AXV of the holomorph A X V of a group V 
has received considerable attention (see [6], [7], [11] and [12]). In all of the above 
papers, those automorphisms of AX V which leave the normal subgroup 1 X V<] 
<1 AX V invariant, play a significant role. Suppose V is any abelian o-group which 
is divisible by 2 and A+ the group of all order preserving transformations of V. 
[t has been shown (see [HARVEY; Theorem 2. 1, p. 24]), that if A + can be ordered 
n any manner whatever so that it becomes an o-group, then: 

(i) 1 X F i s o-characteristic in the o-holomorph A+' X V; 
(ii) every o-automorphism of A + XV is inner. 

*) Research supported by N.S.F. Grant Number GP-6219. 
') Research Fellow of the Alfred P. Sloan Foundation 
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Let A and V be as in II of the introduction with K an ordered field. Let A + <M 
be all with «¡¡>0 for / = 1 , . . . ,n . If V—K" is ordered lexicographically, 
t h e n ^ + is a group of order preserving transformations of V. Now take AT.to be the 
rationals. Then A+ is precisely all order preserving transformations of V. Since 
clearly A + can be naturally ordered so that it becomes an o-group, any automorphism 
a of A+ X V which does not leave 1 X V invariant satisfies: 

(i) a does not preserve the order of V; 
(ii) a is not inner. 

If j V < M + X F is the commutator subgroup of A+XV, then the quotients of the 
descending central series of N are vector spaces. Since the image of 1 X V in each 
quotient is a one dimensional vector space, if a is any automorphism of A+XV, 
a (I XV) should have the same property. These considerations were the motivation 
for classifying all normal subgroups W<.Ar with one dimensional images in each 
quotient. If in the above example K is taken as the reals, then the group of all order 
preserving transformations of V consists of matrices having zeroes below the 
diagonal, strictly positive entries on the diagonal, and rational-linear (in general 
discontinuous) linear maps of K into K as the entries above the diagonal. Due to 
our inability to handle such groups, this note deals with groups of the above general 
kind, where the entries of the matrices are in an arbitrary field ^ ( somet imes assumed 
to be not of characteristic 2). 

1. Automorphisms of semi-direct products 

The main objective of this first section is to determine all those automorphisms 
F of a semi-direct product A X V of two groups A and V having the property that 

x V] — 1 X V. Most of the propositions are established in greater generality 
than later needed. In fact, for the most part it is not even necessary to assume that 
V is abelian — let alone a vector space, or even a finite dimensional one. However, 
it has to be assumed that A is a group of automorphisms of V and that the inner 
automorphisms by elements of V belong to A. 

1 .1 . N o t a t i o n . If A and V are any groups, then an action of A on V is a map 
A X F— V, (v, a) — VOL, with the properties 

(v + w, a) = VOL + wa and (v, aft) = (va)f), (a, fi 6 A; v,w£ V). 

Although written additively, V is not assumed to be abelian. With respect to any 
fixed action of A on V, the semi-direct product AXV will be written as follows: 

(a, v) OS, w) = (a/?, vp + w) (a, p 6 A; v,w £ V). 

The identity elements of V and A will be denoted by 0 and 1. Inner automorphisms 
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and commutators in any group will always be written as P* = a~ l f i a and [a, /?] = 
= a~1P~1afi. If Ai, Vy are two other such groups, then the functions f , c; ( / = 1 , 2) 
are defined by 

F[(*, 0)] = ( / i (a) , c1(a)), F[( l , D)] = (f2(v), c2(v)) '(« € A, v£ V). 

If / : B-+ A is any homomorphism of any group B into A, then a map x: B-+V 
is a crossed homomorphism with respect to f provided (ap)x = (<xx)f(fi) + [h holds 
for all a, P 6 B. It is inner if there is a y £ V for which ax — —yf{a) +y for all a £ B. 

For any arbitrary group V, Aut V will denote the group of all automorphisms 
of V. The centralizer and normalizer of a subgroup A in Aut V will be denoted 
•by C(A^ Aut K) and N(A < Aut V) = {7^ Aut AT= TAT'1 =A). Every 
element v£ V gives rise to an inner automorphism u g A u t V. 

R e m a r k . If A acts on an abelian group V, the crossed homomorphisms 
form a group Zl(A, V) under pointwise addition. The inner automorphisms form 
a subgroup B1(A, V). The factor group ZX(A, V)/B1(A, V) is the first cohomology 
group of A with respect to the given action of A on V. 

In the next proposition Cj and c2 are crossed homomorphisms with respect 
to f and / 2 . Note that equation (iv) implies that A leaves the kernel of f2 invariant. 

P r o p o s i t i o n 1.2. Let F: AXV—A1XV1 and fh ch i—1,2, be as above 
arbitrary semi-direct products. Then the following hold for all a, p£A and v, w £ V: 

(i) F[(a, D)] = ( / , ( a ) f 2 ( v ) , Cl(a)f2(v) + c2(v)); 
(ii) / 1 and /2 are homomorphisms; 

(iii) c1(a/0 = c1(a)/1(/0 + c,( /0; C2(v+w) = c2(v)f2(w) + c2{wy, . 
(iv) f2(nfi)^J\(Jirf2(W)ft(P); 
(V) c2(wP) = - Cl(p)f2(wp) + c.iwWfi) + Cl(P). 

Conversely, if / 1 , /2 > c1 > and c2 are any functions satisfying (ii)—(v), then F 
defined by equation (i) is an endomorphism.. 

P r o o f . As an illustration, (iv) and (v) will be proved. The proofs of (i)—(iii) 
are similar and even simpler. Computing F[(P, 0)]F[(1, wP)] and F[(\, w)]F[(P, 0)] 
by (i) and then equating the first and second components, we obtain 

(iv)f2(wp)=f2(w)MH\ 
(V) cx(p)f2(wp) + c2(wp) = C2(uO/1(/i) + Cl(/J). 

Since it is not clear that (ii)—(v) are all the relations that interrelate the functions 
/ ; , c;, the proof of the converse will be indicated. Equation (i) shows that 

F[(ap, vp + w)] = ( / , (aP)f2(vP + w), c^afi/M + w) + c2(vp + w)), 

/"[(a, i>)] F[(p,w)] = { f W M M p m w ) , cAx)f2(v)f(P)f2(w) + 

+ C2(v)fl (P)fzM + C, (P)f2(w) + C2(w)). 
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By (iv) and (ii) the first components of the above two equations are equal. Use 
of (iv) and (iii) gives that 

cMViWWfiW = cl(ap)f2(vli + W)~ci(p)f2(vp + W). 

Thus it only remains to show that 

c2(pfl + tv) = - c № f № + w) + C2(v)MP)f2(w) + CL03)/2( IV) + c2(w). 

But this follows from (iii) and (v), since 

c2{Vp+w) = [ - C l mM)+cMm)+cm/iM+c2(w). 

From now on, three simplifications will be assumed throughout. First V= V l , 
A=At; secondly A will be taken in ^4QjAut V; and thirdly, only automorphisms 
F of A X V will be considered. 

The proof given in [HARVEY; p. 7] of the next corollary for the case when V 
is abelian generalizes to non-abelian V. 

C o r o l l a r y 1.3. If T: A — F is a crossed homomorphism with z(A) Q center V, 
then 

F: A X V~A X V, F[(a, »)] - (a, a r + v) ((a, v)£AxV) 

is an automorphism of AX V leaving 1 X V elementwise fixed. Conversely, every 
automorphism of A XV leaving IXV elementwise fixed is necessarily of the above 
form. Furthermore, suppose r(a) =.—ya+y, for all a £A and some y center K 
Then /"[(a, w)] - (a, « ! + «) = (0, y)'Ha, i>)(0, j>) for (a, v) € A X V. 

Note that the converse of (i) of the next corollary is also true, i.e., f2 = 1 if 
and only if F t l X P I i l X K . 

C o r o l l a r y 1.4. In Proposition 1 .2 assume V=Vl,A=Ai, and that F is 
an automorphism of AX V onto itself Suppose F[\XV]^\XV. Then 

( 0 /2=1 , 
(ii) fM)=A, 

(iii) c2 is an injective homomorphism. 

C o r o l l a r y 1.5. Let T: V—V be defined by vT=c2(v) for all v£V. Assume that: 
(a) F: A X V-+A X V is an automorphism, 
(b) F[1 X V] = 1 X V, 
(c) {v\veV}CA. 

Then: 
( 0 / 2 = 1; 

(ii) / 1 is an isomorphism of A onto A; F~1 [(«, 0)] = (/j~1 (a), 0) for all a£A; 
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(iii) / - • [ ( 1, »)]=(1, vT'1) for all v£V\ 

(i v ) f 1 ( p ) = T - * p T J M - 1 ; 

(v) T~1AT=TAT~1=A; T£N(A < Aut V). 

P r o o f . Conclusions (i)—(iv) are immediate consequences of Proposition 1. 2. 
It follows from (iii), (iv), and (c) that T~1ATQA and TAT_1QA and hence T~1AT= 
= TAT~i=A. 

The next lemma shows how to construct automorphisms of A X V which leave 
1 X V invariant. 

L e m m a 1.6. Consider any group V (not assumed to be abelian) and any sub-
group A Q Aut V. 

(i) For any S£N(A<Aut V) and any yeV, the map F\ AXV^AXV 
defined by 

F[(fi, vi')] = (P\ - y p + wS+y) {HA, u-€ V) 

is an automorphism. 
(ii) For S and y as in (i), 

(S, j ) € Aut VX V and F[{fi, w)]=(S, y)'1^, w)(S, y). 

Thus the automorphism in (i) is inner if and only if S£ A. 

(iii) In addition assume that {v\v€V}QA and let Tf_ Aut V. Then T extends 
to an automorphism F: AXV -+AXV if and only if T£ N(A < Aut V). 

P r o o f , (i) and (ii). Conclusion (ii) proves (i). (iii) If T is obtained from an 
automorphism F of A X V by /"[(I, t>)] = ( l , vT) for v£ V, then by Corollary 1. 5 (v) 
T€ N(A~= Aut V). Conversely, if T£ N(A < Aut V), then the map F[(0,w)] = 
— (flT, wT) for (/?, w)£A X V is an automorphism by (i) of this lemma. 

From now on the group V will be abelian, later a vector space, and, finally, 
a finite dimensional one. The following lemma is well known (see [HARVEY; p. 11)]; 
its proof is omitted. 

L e m m a 1.7. Let V be any abelian group, A ^ Aut V any subgroup, and ft: A — A 
a homomorphism of A into A. Assume that: 

(a) The map 2: V-* V, v—2v, is an isomorphism of V onto V; 

(b) 2€A; 

(c) / , ( 2 ) = 2. 
Then every crossed homomorphism % with respect to the action f u is inner. In fact, 
ax = — yf\(u)+y, where y, = —2x. 
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D e f i n i t i o n 1. 8. Consider a vector space V over a field K and a field auto-
morphism n'.K^K. Any /^-basis {u(A)|A6 A}, where A is an indexing set, defines 
a map p: V-~V by: 

if v = I{k{X)v(X)\k(X)£K, A£/l}, define vp = Ik(X)nv{A). 

Suppose ^ ^ A u t Vis any subgroup having the property that 

A = {/ i - 1ci / i |a€^} = {/ia/l_ 1 |a 6 4̂}-

Then an automorphism p: A XV-*AX V may be defined by 

0?, w)fL=(r,(hl w) (Pe A, we v). 

The subgroup of Aut V consisting of all /(-linear automorphisms of V will be 
denoted by AutK V. 

R e m a r k s 1. If in the above definition a£A is /(-linear, then so is pr1ap. 
The matrix with respect to the basis {v{l)\l£A} of p~*ap is obtained by applying 
¡.i to each entry of the matrix of a. 

2. The automorphism p depends upon the choice of basis; whether 
p£N(A< Aut V) may also depend upon the choice of the basis. 

L e m m a 1. 9. Consider a vector space V over a field K and a subgroup A Q Aut V. 
Let E\ V-+V be the identity map. Assume that 

(a) F: AX V—A X V is an automorphism; 
(b) F [ 1 X K ] = 1 X F ; 
(c) C(A < Aut V) = {kE\k £ K\ {0}}. 

Then: 
(i) There is a (bijective) field automorphism ju: K^K such that 

(cu)T=(cfr1)(vT) (vdKceK). 

(ii) In addition assume that for some choice of basis in V, p £ N (A < Aut V). 
Then the automorphism Fop: AXV-~AXV satisfies: 

Fop[(l,v)]=(\,vpT), (cv)(pT) — c(vpT) (viV,c£K). 

P r o o f (i) It follows from equation (v) of Proposition 1. 2, that for any P £ A , 
w £ V, and c 6 K, we have 

wP(cE)T= w T f m f c E ) , w(cE)(iT= wTf(cE)f(p). 

Since by Corollary 1. 5 (ii) the map T is surjective, it follows that fl(P)f\(cE)— 
=fi(cE)fi(P) and fl(cE)£C{A < A u t V). Thus there is a map v: K-*K such that 
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fi(cE) = (cv)E. I t is easily seen that v is an injective homomorphism. There is a 
similar m a p ¡ i \ K - + K associated with the automorphism Fwhich satisfies 
v o n = n o v = identity. Thus v and n are epimorphic and v = j t - 1 . Conclusion (ii) 
follows immediately. 

2. Automorphisms of linear groups 

In this section the general facts about automorphisms of semi-direct products 
developed in section 1 are used to find the automorphism groups of a certain class 
of groups. The next definition gives this class of groups as well as various subgroups 
which will be of ma jo r interest th roughout the rest of the discussion. 

D e f i n i t i o n 2. 1. Let K be an arbitrary field and G the group of all •(« + 1) X 
X (« + 1 ) upper triangular matrices P with entries f rom K of the form 

P = \\aij\\ ( O ^ / . y ^ n ) ; atJ = 0 if / > / ; au^0 
for all /. 

Two normal subgroups NczG1cG of G are defined by: 

N={P£G\au = l, / = 0, ..., «}; Gi = {P£G\a00 = 1}. 

The normal subgroups T and T 1 of G are defined by : 
r = {P € N\atj = 0 for i j, except in the first row and the last column}, 

r 1 = { P £ N \ a i j = 0 for /'</', except in the first two rows and the last column}. 
Let a£/sT be any scalar. Two normal subgroups B1 and B1(a) of N are defined as 
follows: 

B1 ={P£N\aij = 0 for unless / = 0}, 

^ ( a ) = {PZN\aiJ = 0 for / < / unless / = 0, or ( / , / ) = ( I , n ) ' a n d aln = aa01}. 

The groups B1 and N are normal in G. Note that B1(0) = B1. For a ^ O , B\ol) is 
normal in N but not i nG 1 . By taking transposes of all elements of 5 1 , 5 1 ( a ) , r 1 a round 
the second diagonal, we obtain three other groups Bs, /?,(«), i l . The subgroup 
of G consisting of all diagonal matrices is denoted by D. The element of D whose 
diagonal entries are ..., A„ will be denoted by diag (A0, ..., A„). Set D1 — G1 f]D. 

If N0 = N = [G,G] and Nj = , N],j= 1, . . . , « - 1 ; then N is a group 
of nilpotency class n having the same descending and ascending central series 

[G, G]=N — N0 D ... D7V„_1 = 1. 

The group^ Nj consists precisely of all matrices having j strings of zeroes parallel 
to the main diagonal. The entries of a matrix in the ( ; ' + l ) - s t string parallel to the 
main diagonal will be referred to as the (j+ l)-st layer. The center jV„_t of N will 
be denoted by Z for simplicity. The usual matrix unit with all zeroes except for 
a one in the /7-th row and <7-th column will be denoted by Epq, 0 S / ? , q^n. For 
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j' = 0, . . . ,« , there is an isomorphism oij of A'-vector spaces 

rj.j : K"~JNj/Nj+ j, 
n-j 

ccj[(xl,...,x„_j)] = 1+ 2 xtEt-liJ+i. 
<=i 

For the reader's convenience we include schematic diagrams showing the forms 
of the elements in the various groups where the a t j 6 K are arbitrary 

1 «01 «02 «0,« - 1 «On 1 a0 1 «02 «0 1 «On 

B I • BHa) : 
0 1 0 0 a«o i B 

0 0 0 1 0 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 1 

1 «01 «02 «0>n 1 «01 «02 «0, n — 1 . «On 
0 1 0 «1 ,n 0 1 «12 « i > n - l «In 

r: r 1 : 0 0 1 0 «2 n 
0 0 0 1 «n - 1, n 0 0 0 1 «n-l ,n 
0 0 0 0 1 0 0 0 0 1 

1 0 0 
0 1 0 

0 0 0 
0 0 0 

0 0 
0 0 x2 

0 0 
0 0 

0 xn_j 

0 1 

Nj+1iNjlNj+lU=0,...,n-l). 

Figure 1. 

Let n be any integer; set V=K". Let A be the group of all nXn matrices a 
with zeroes below the diagonal, arbitrary elements above the diagonal and non-
zero elements on the diagonal. Elements of V are viewed as row vectors and in 
A XV, A acts on these by right multiplication. The group AXV can be identified 
as a subgroup of the general linear group Gl(n + I, K) as follows: 

a = 

«11 «12 

0 «22 

0 0 

(a, v) = 

«1» 
a 2 n 

a„„ 

1 v 

0 a 

v = (a01,a02,...,a0„) (a £A,v£V); 

a00 a01 a0 n 

0 a n aln 

0 0 a„„ 

£Gl(n+~\,K); 

(a, v)(a', v') = («a', VOL' + v'), 
1 V 1 v' 1 VOL + V' 

0 a 0 a ' 0 aa' 
(cc'eA,v'£V). 
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Sometimes G1=AXV will be viewed as a matrix subgroup of Gl(n + 1 , K ) and 
denoted by G1, whereas at other times, when in our considerations its semi-direct 
product structure plays an important role, it will be written as a semi-direct product 
AXV. In case K is an ordered field, the normal subgroup of G consisting of all 
matrices with strictly positive entries on the diagonal will be denoted by G + ; set 
G + 1 = G 1 n G + , D1 = D^G1, and D + 1 = Z ) 1 n G + . Similarly A+ will consist of 
all a having strictly positive diagonal entries. Thus just as A X V can be identified 
with G1, so A+ XV can be identified with G + 1 . 

Next some automorphisms of G1 and G + 1 are defined. If ¡x\ K-+K is any 
field automorphism, then ¡1: V — V will always be defined with respect to the natural 
basis by • 

v[i = (o1n, ..., iy<) (vlt ..., vn)eK". 

Let V denote the subgroup of Aut A X V consisting of all automorphisms F: A X F— 
^AXV such that the restriction /"|1 X F£Aut K V, where AutK V was the group 
of all AT-linear isomorphisms of V. 

For the remainder of this definition suppose now that AT is an ordered field. 
The subgroup of all fi obtained from order preserving automorphisms will be denoted 
by U. The element F; = /— 2En^G (i = 0, 1, ..., n) defines an automorphism 
F ; : G + 1 - G + 1 by 

Fi(g)^Fi-1gFi (g£G+1; / = 0 , 1 , . . . , « ) . 

Note that Ft6G1 for / = 1 , . . . ,« , that F0^GK However, F0 = -Fi...Fn and hence 
F0=Fl...Fn. The Ft, ...,F„ generate a subgroup J5" of A u t , 4 + X V. The group 
of inner automorphisms of Aut A+ X V will be denoted by J. 

The objective is to find all automorphisms of G + 1 . 

P r o p o s i t i o n 2.2. Consider the group G + 1 =A+ XV of Definition 2. 1 arid 
any automorphism F: A+ X V-»A+ X V such that F[\xV] = \xV. Let c2: V-*V 
be defined by ^[(1, v)] = (l, c2(v)) for v£ V. Then: 

(i) There is an order preserving field automorphism ¡x: K-+K such that 

FKl>c«)]=(l J (c / i - 1 )c 2 (B)) (c£K, vc V). 

(ii) If T: V^V is defined by Fofi[(], ,;)] = (!, vT) (vi V), then 
T£N(A+ < A u t V)—A. 

(iii) There is a y£V such that for any (a, vj £A + X V, 

Fop[(tt, v)] — (aT, -yaT + vT+y) 

(iv) V = OF J. 

1 y -1 1 V 1 y 
0 T 0 a 0 T 
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P r o o f , (i) First, it is easy to see that C(A + < Aut V) are the scalar operators. 
The automorphisms n and ¡x~ l given by Lemma 1 .9 (i) clearly preserve the order 
of K. (ii) It is well known and easy to prove that J V ^ + ^ A u t ^ V) = A. In order 
to show that T£ AutK V, take c^K and (vl} ..., v„)£ V. Then 

(1, (cv)T) = F [ ( l , (cv)fl] = (CA<)(»/I)] = (1, cc2(vp)) = { 1, c{vT)). 

Thus T£kutK V and it follows f r o m Corollary 1. 5 (v) that T£N(A + < A u t K V). 
(iii) By Proposit ion 1. 2 there are functions / , , f2 = \, q , c2 = T corresponding 

to the automorphism Fop such that 

Fop[(a, v)] = ( / , ( a ) , c ,(a) + oT) (a, v)£AX V. 

By Corollary 1. 5 (iv), / 1 ( a ) = 7 , _ 1 a 7 ' for a £ A . By Lemma 1. 7, c t is of the form 
c i ( a ) = — yotT +y for some j G V. Then the above equat ion becomes 

Fop[(ot!v)]=(ctT, -yaT+ vT+y). 

(iv) The automorphism F can be realized as an inner au tomorphism by the ele-
ments (l,y)£A+ X V and (T,§)£AXV as follows: 

Fop[(a, »)] = (T, y)~\a, v){T, y) = (1, y)~\T, 0 ) " J ( a , v)(T, 0)(1, y) 

((a,v)eAXV). 

However, (T, 0) equals a product of some of Fx, ..., F„ t imes an element of A + X V. 
Thus V = SFJ. 

R e m a r k . The last Proposit ion 2. 2 remains valid verbatim if A+ is replaced 
by A throughout . 

The second step in determining the au tomorphism group of G + 1 is to show 
that any automorphism F: G 1 - G 1 maps either F(Bi)=£1 or F(Bi) = Bl. Since 
the previous Proposit ion 2. 2 completely determines all au tomorphisms F: G 1 - • G 1 

satisfying F(B1)=B1, the final step will be the construction of an au tomorphism 
o:Gl-*Gl satisfying a(Bl) = Bl. The next definition and sequence of lemmas 
is needed in order t o accomplish the second step. 

D e f i n i t i o n 2 . 3 . For 0 S p < x S n , let Apsi be the set of all Ucr̂ H 6JV with 
axp = 0 for + l and for —1. 

R e m a r k s . 1. The group Apx is abelian and A^^G1. 
2. It can be shown that Ap p+l ( O S J J S A - 1 ) is a maximal normal abelian 

subgroup of N. I t is our conjecture that there are no others. 
3. Note that / f 0 1 = 5 \ An^Un = B1\ also A0JQBi and AlnQBi for all j and i. 
4. If J — x - p - 1 , then Nj-iCApx^Nji Apx=Nj if and only if A0n = Nn^i = Z . 
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Suppose ||aa/j|| € TV; with apx T̂ O where x—p — l=j, Osjsn — l. Suppose 
i and j satisfy i^p and x ^ j . The next sequence of lemmas will show that by inner 
automorphisms from G1, ||i7a/,|| can be transformed into I+cEwhere c£K. 
In the diagram below, |jaa/,!| has non-trivial entries in the triangular region in the 
upper right hand corner. The group Apx consists of all elements having non-trivial 
entries in the rectangle region inside the triangular region. The j-th layer is repres-
ented by the line connecting ( 0 , x — p ) and (n — x+p, n) entries. 

0 1 y.—p x n 
0 1 0 
1 0 1 

tfpX 

n 0 0 1 

Figure 2. 

The next lemma describes the types of elements that can be constructed by 
application of inner automorphisms. 

L e m m a 2 .4 . Let \\Pij\\, K, 0 ^ / , j^n, be any matrix. 
(i) If \\fij\\ is defined by 

W i - W ^ i l - c E ^ W f r M I + c E J (0 S p , q ^ n \ 

then WPijW is obtained from \\Pij\\ by subtracting c times the q-th row from the p-th 
row and adding c-times the p-th column to the q-th column.. 

(ii) / / S = diag(A0 , where A0, ..., A„ £ K \ { 0 } , and if | | j8y | |S= 
= -||, then = A,~ (0 - /, j = n). 

(iii) If 5 = diag (1, A, A2, ..., A"), and if S - ' l l / y S = ||#,||, then P:,j+X= P,,j+JJ 
(j< = 0, ..., n —j); i.e. is obtained from \\Pij\\ by multiplying the j-th layer 
of ||Pu\\ by V. 

R e m a r k . The inner automorphism by the diagonal element S in (iii) of the 
above Lemma 2.4 induces scalar multiplication by AJ+l on N j I N J + 1 = K " ~ J . If the 
ground field K does not contain all the y'-th roots of its elements for then 
t may be impossible to obtain all scalar multiplications on Nj/Nj+i f rom inner 

automorphisms. The following fact will not be later used. If </=diag (1, A, A2, ..., 
..., 1, A, A2, ..., A"~J) and if (p0, J + 1, ..., ft-.-i,») is the ( . /+l) -s t layer of .||jjly||, 
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then M 0 j + i , . . . , W j - 1 . 2 j , V + 1 P j , 2 j + i , . . . , V + 1 P « - j - i . « ) i s t h e O ' + O - s t layer 
of d - ' W t j U 

I ^ £< 
L e m m a 2. 5. Let P = (0^i,jSn) be any matrix of the form P= | ^ ^ 

where B is (j+\)X(j+l), C is (j+\)X(n-j), D is ( n - j ) X ( n - j ) , and where 
B and D have inverses B'1, D~l. For a£K set d(j, /.)= E00 +...+ En + 
+ ¿(EJ+1J+1 + ...+EJ. Then: 

B~ i - B - ' C D - 1 

( 0 = 0 D - 1 

B AC 

0 D 
(ii) d(j,X)~1Pd(j, X) 

(iii) [P, d(j, X)] = P-1 d(j, X)-1 Pd(j, X) 
I (2. — \)B~iC 
0 I 

(iv) If B has ones on the diagonal, zeroes below and if the last t rows of 
B are those of the identity matrix, then the last t rows of B~1C are those of C. 

P r o o f . Conclusions (i), (ii), and (iii) are immediate, while (iv) is a consequence 
of (i) with D an t X t matrix. 

L e m m a 2. 6. For any subgroup W<\ G1, if for some j, Nj D W contains an element 
||fl^|| with ap.,?±0 for p and x satisfying x—p— 1 = j, then there is an element\\a"j\\ £ 
£Apxnw with a;x?i 0. 

P r o o f . Applying the previous Lemma 2 . 5 with j = x — l , w e get a matrix 
P = \\o'ap\\ as follows 

I ( / l - l ) f i - l C 

0 / 
(t~V)apx. 

Due to the fact that f rom the /j-th row on (and including the p-th row) the entries 
of B are those of the identity matrix, also the matrices B~iC and C agree in the 
p-th and all subsequent rows. Lemma 2. 5 will be applied a second time to with 
j = p ; in the decomposition 

Pi = 
B, C, 

0 £>, 
C , is 0 > + l ) X ( n - p ) -

Bj = 7 a n d columns/) 4-1 to x — 1 inclusive of Cj are zero. For K let P2 = ||fly|| (zApit 

be defined by 
/ ( A t - l ) C , 
0 I 

P2 = [Pl,d(p,Xl)] = (^-lKA-l )apx. 
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The />-th row of P2 f rom the x-th column on inclusive is that of P multiplied by 
(Xt — 1)(A — 1): (In fact, the same is true for the rowsp , ..., x — 1.) 

The proof of the next lemma follows from Lemma 2. 4. It should be observed 
that the next two lemmas require the use of inner automorphisms from N but not 
f rom G1. 

L e m m a 2. 7. If c£K and P = \\axp\\ £ Apx are arbitrary then: 
(i) The inner automorphism, by I+cEip (O^i^p— 1) subtracts c times the 

p-th row from the i-th (with the exception that the (i,p) entry remains unchanged). 
(ii) The inner automorphism by I+cEyj, x + l ^ j S n , adds c-times the x-th 

column to the j-th (except for the (x,j) entry which remains unchanged). 
(iii) Consequently, if apx # 0, and if at, a2£K are any non-zero scalars, then 

|laai,|| can be transformed by inner automorphisms from N into elements Q, Ql, and Q2 

of the form 

Q = I+apxEpx +T, T = ZibijE^iSp-\;x + l Sj}, 

Qi = ^+apxEpx + alE„iX+1 + T, Q2 = I+apxEpx+a2Ep_ Ux+ T. 
L e m m a 2. 8. If j|aa/.|i €Apx is an element with apx?±0, then the normal subgroup 

of N generated by \\a^\\ is precisely Apx. 

P r o o f . It suffices to show that the subgroup of ./V generated by contains 
all elements of the form I + c E ¡ j , where 0 a n d i ^ x , p S j . By application 
of inner automorphisms f rom N, can be transformed into elements Q, Qlt 

and Q2 as in the last Lemma 2. 7. But then 

Q-'Qi = I+aiEp x + 1, Q-lQz =I + a2Ep_Ux (au a2 €K; a, *0, a2 ^0). 

It is now clear that by a finite number of applications of the above process, the 
element I + c E i j can be obtained. 

The previous lemmas imply the next proposition. It is false if the hypothesis 
that W<\ G1 is weakened to W<\ N. (See Figure 2.) 

P r o p o s i t i o n 2 .9 . For a subgroup JV<iGl, if for some ] = 0, . . . , « — 1, the 
group Nj Pi W contains an element Wa^W with apx^ 0 for p and x satisfying x —p — 1 =j, 
then ApxQ W. In particular, if £ Wand if for some i andj, a^ ^ 0, then I+cE:j£ W 

for all c^K. 

R e m a r k . The previous Proposition 2. 9 has the following interesting conse-
quence. Suppose W<gN, JV<Gl, and \\a^\\iW. If | | 6 J | is obtained f rom | | a j | 
by replacing all a^^O, c/.<fi, with arbitrary scalars baP, then also £ W. 

C o r o l l a r y 2. 10. If F: G1 — G1 is any automorphism, then either F(Bl) = B1 

or F(B1)=B1. 
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P r o o f . If F(Bl)%r, let j be the smallest integer such that NjC\F{Bl) 
contains an element Ha^H with a^^O, x—p — \=j, and with p?±0, x^n. Then 
the second center of N isNn_2<=ApxQ F(Bi). Thus thenilpotencyclass of G1jF(Bi 

^n — 2, whereas class of Gl/Bl is n — l. This is a contradiction, since G^B1^ 
s G ' / ^ f i 1 ) . Thus FiB^QT. Since F induces an automorphism on N j N y , there 
is an ||fla/)|| £F{Bl) with either 0 or Thus either B^FiB1) or 
B^FiB1). If B1QF(B1), but B1 F(B1), then by the last Proposit ion 2. 9, F(Bl) 
would have to contain a group of the form ^ „ " w i t h l g p . However, then F(Bl) 
would not be abelian. A similar argument applies if BlQF(B1) and Bi7iF(Bi). 

The last step in determining the group of automorphisms of Gl is to construct 
an automorphism a:G1-»G1 such that a(B1) = Bi. 

2.11. H o m o m o r p h i s m s o f s e m i - d i r e c t p r o d u c t s . The group Bx is 
embedded in a semi-direct product KX Si <1 G1 consisting of all (k, b) of the fo rm: 

b) V b 
0 k 

bo 
£ K n 

(OTiAeA-; (k,b)(k',b') = {kk',bk'+ b')\ (A', b')dKX B^). 

Similarly B1 is embedded in another semi-direct product KXB1 O G 1 consisting 
of all [k, a] 

1 a 
[k, a] = d i ag ( l , k, ..., k) 

(a = (« , , . . . , «„ ) !£*"; 0 * k£K; [k, a] [k', a'] = [kk, a' + k'a], [k', a'UKXB1)' 

The map KXBt -+KXB1, (k, b)-*[k, b] is an isomorphism. 
The group G is a direct product G = K®G1. Define a map p: G —G1 by: 

g = \\aijHG,p(g) = \\auaoo1\\=aoolI\\alj\\. 

Note that both G1 and G are semi-direct products G = DXN and G1=DlXN. 

D e f i n i t i o n 2. 12. An anti-automorphism x': G-*G is defined by transposing 
around the second diagonal, i .e. by 

g = ||fly|| € G, x'{g) = ||&y||; bij = an_it 

( 0 A n automorphism x:G-*G is defined by x(g) = x'(g~l) for g£G. 
Thirdly, by use of the map p of 2 .11, a m a p a: G —G1 is defined by a(g) =p[o{g)],g£G. 

The matrix with zeroes everywhere but ones on the second diagonal will be 
denoted by P. A superscript t denotes the transpose of a matr ix; —t denotes the 
inverse of the transpose. 
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R e m a r k s . 1. It is asserted that x'(g) = Pg'P, x(g) = Pg~'P, ^(Vfe))-1 

(g(LG). For any matrix g, the matrix Pg is obtained simply by rotat ing g hundred 
eighty degrees about its horizontal axis" of symmetry. Similarly, gP is obtained by 
rotating g hundred eighty degrees about its vertical axis of symmetry. Thus PgP 
is obtained by transposing g about both of its diagonals, the order being immaterial. 
Thus x'(g) = Pg'P. The other two equations follow f rom the fact that P2 = I. 

2. Since G = DXN and G1 = D1XN are semi-direct products, for g=dn\ 
n£N,d = diag (A0, ..., ;.„), ).i £ K; <j(g) =p[x(d)]x(n), where p[x{d)} = diag (1, ANA,..., 

ANAO 1). Thus all elements of the form diag (1, A, A 2,..., A") (A^K) are left invariant 
by cr. 

The main properties of the map a are given by the next proposition. 

P r o p o s i t i o n 2. 13. Let the notation be as in 2. 11 and 2. 12. Then: 
(i) For any g = \\aiJ\\eG, a(g) — (a„„I)Pg~'P. 

(ii) The restriction a\G1:Gi->-G1 is an automorphism. 
(i i i) < j ( K X B 1 ) = K X B 1 . 

(iv) There does not exist an M£Gl(n + l; K) such that for all h £ G1, 

o(h) = M~lhM or o(h) — M~ih~tM. 

P r o o f . Conclusions (i)—(iii) are easily verified using the formula for a given 
in Remark 2 above. For g = diag ( 1 , A 1 , . . . , I J n ^ G 1 , with n£N, determinant g = 
= {AI...A„_l)~iA"„. Thus (iv) follows. 

Finally, we are in a position to combine Propositions 2. 2, 2. 9, and 2. 13 to 
find all automorphisms of G + 1 . 

T h e o r e m I. Let K be any ordered field and G + 1 =A+ XV; Fh / = 0, ...,«; 
$F, /¡, U, and J as in Definition 2. 1 and as in 2. 12. Then: 

(i) <r2 = 1; & is abelian; FQ=Fl...Fn\ F?= 1; a ^ i V =-F„_ ( (/ = 0 , . . . , « ) . 
(ii) The following subgroups of Aut A + X V are semi-direct products: 

{<r} X M X J, FX J, {<r} X J T J \ 

kutA+XV=U®{o}X[PXJ]: 
In particular, 

Aut A+XV TJ , , ^ 

P r o o f . Conclusion (i) is clear, (i) Since F t F j = FjF { , O ^ / j ' S « , and since 
F0 = — FY...F„, it follows that !F is abelian and that F0=F1...FN. The geometric 
characterization of PFT and FTP shows that PFT— FN_IP, I=0, . . . , « . For 
S = H I | € G + i , 

f.Hs)] = Fi{annI){Pg-,P)Fi = (a„nI)P(Fn _ ¡gF„ -¡)~'P = ofo-Kg)]. 

Thus a~1Fi<j =Fn-i, i = 0, ...,n — i. Thus (i) follows; it immediately implies (ii). 
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The situation becomes somewhat simpler if the group A + of the last theorem 
is replaced by A as is done in the next corollary. Its proof is an immediate consequence 
of the remark following Proposition 2. 2. ' 

C o r o l l a r y 2. 14. For any field K, let Gl = AX V, ji, and a be as in 2. 1 and 
2. 12. Let UQAut AXV be the subgroup generated by all ¡1; J denotes the group 
of inner automorphisms of A XV. Then: 

( 0 ° 2 = l > _ . 
(ii) {cr} XJ is a semi-direct product; Aut AX V= u ®{ff} X / . 

3. Subgroups whose images in the quotients of a central series are one dimensional 

In the notation of the previous section 

is both the descending and ascending central series of N; NJINj_l^K"~J, 
j= 0, ..., «— 1. The objective of this section is to characterize all normal subgroups 
W Q N such that each ( w r \ N j ) N j + l I N j + l is a one dimensional A'-vector space. 

D e f i n i t i o n 3. 1. A subgroup P F g N is called K-linear, if it has the property 
that for any k £ K and P£ W, if Pk is the matrix obtained by multiplying every 
non-diagonal entry of P by k, then Pk£ W. For any subgroup JVQN, (which is 
not assumed to be Af-linear) the rank of (Wr\NJ)Nj+1/NJ+1,j = 0,...,n — l,, is 
defined as the number of linearly independent elements over K that it contains. 

E x a m p l e . Let n = 4 and let a, b, c, d, e£K be arbitrary constants. The most 
general abelian subgroup M of N consists of all (x, y, z) where for any x, y,z£K, 

ay + dx z 
cx by + ex 
1 bx ' 
0 1 

Since two elements (x, y, z) and (x', y', z') 6 M multiply according to the rule 

(x, y, z) (x', / , z') = (x + x', y + y' + cxx'f z"), 

(where z" = z + z ' + ab(xy' + x'y) + (ae + db)xx'), it follows that for O^k^K, the 
map M—M, P --Pk is not a homomorphism. However, this map is in general 
for any n a homomorphism for all the normal abelian subgroups of N considered 
here. 

L e m m a 3.2 . (i) If WQN is a subgroup such that (WC\Nj)Nj+{INjJrl 

is a K-vector space for all j — 0, ..., n— 1, then W is K-linear. 

(x, y, z) 

1 ax 
0 1 
0 0 
0 0 
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(ii) Let n be the nilpotency class of Gl and suppose that K contains the j-th roots 
of all of its elements for Then if W is a normal subgroup of G' and WczN, 
then W is K-linear. 

P r o o f . Conclusion (i) is easily proved; (ii) follows from (i) and Lemma 2. 4 (iii). 
The subgroup W in the next lemma need not be ^-linear. 

L e m m a 3. 3. Suppose WQN is any subgroup such that: 

(a) W is invariant under inner automorphisms from TiTi; 

(b) (Wr\Nj)NJ+lINJ + 1 is of rank at most one for all j = 0, ..., « —1. 
Then WgT. . . 

P r o o f . For n = \, N^=T. Assuming the lemma to be true for 1, . . . , « — 1, 
it will be proved for groups Wcz N of (n + 1)X(« + 1 ) matrices. Replacing A'' by 
N/Bi and W by WBJB1 and using induction, we obtain that WB1lB1Qr/Bl. 
Thus WQTi. Similarly, WQT1. Thus WQT^r1. Suppose there is a g£W 
of the form 

8 = 

1 a z 
s bt 

b 
1 

a - ( a t , ...,an_2) 
b2 

b = 
bn-1 

For arbitrary c, k^K we have 

(/ -kEa- ,„)(/- cE01)g(I+ cE01)(I+kEn.Un) 

(aj, bjdK; O^seK). 

1 a a^y — cs z0 

by + ks 
b 

• 1 

(where z0=z — cb1 +kan_1). Since c and k are arbitrary, there are elements h,f£W 
of the form 

1 a 0 Zj 1 a fl„_! z2 

h— s by / = 0 
b b 
1 1 

Then 
(bl,a„^l,zl,z2^K; bi ^ 0, an„l ^ 0). 

1 -a (a^s-a^J 
— s 

Z3 

( i 
-b 

1 

16 A 
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(where z 3 — -z-{a1bl + ... + a„-lbn_i) — aisbn^i), and 

g-'h^ 

1 0 0 
0 

z 4 

-bi 
0 
1 

g-'f J 

1 0 - a „ _ ! z5 

0 
0 
1 

for some z 4 , z5£K. Thus 5 = 0 and WQT. 

N o t a t i o n 3 .4 . Consider a subgroup W with ZQWQT. Its elements will 
be written as [a; z; b], where 

1 a z 
f 

b! 

[a;z; b] = 0 I b a - (a j , .. b = ; aj, bidK 
0 0 1 b„-1 

Then the elements of WfZ and BijZ are canonically of the form [a; 0; b] and 
[a; 0; 0]. There is a homomorphism n1: W/Z—BX/Z defined by nx{[a\ 0; b]) = 
= [a; 0; 0]. Similar remarks apply to TT1 and 2?i/Z. Note that 

[a;z\b]~l =[-a\ a-b-z; —b], a-b = aib1 + ... +on_16„_1) 

[a; 0; b]~l = [-a; 0; -b] in B^Z. 

Note that hypothesis (b) of the next lemma implies that ZQ W. 

L e m m a 3. 5. Suppose the subgroup WQN satisfies: 
(a) W is invariant under inner automorphisms from r1T1.; 
(b) (fVr\Nj)Nj+iINJ+1 is a one dimensional K-vector space, j — 0, ...,«— 1. 
(c) There exists [a; z: b]£ IV with a , ^0. 

Then: 
(i) 7i1 is a bijective isomorphism. 

(ii) There exist linear functionals f \ K"'1 —K, / = 1, ...,«— 1, such that every 
element of W is of the form 

'l t z 
lf,z-,f(t)} 0 I f ( t ) 

0 0 1 

/ i ( 0 

fn-iU) 
6 K" 

P r o o f , (i) In order to show that n l is surjective, it suffices to show that for 
any q in l^q^n — 1, there is an element W of the form 

w = [(0, ...,0,cq,0, ...,0);z;6] 
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for some Or£c q£K. For any c£K, the element ( / + c a f ' F ^ ) - 1 [a; z;b](I+cqa1Elq) 
has the same entries as [a; z; b], except in positions (0, q) and (1, n), where (0, q) 
entry =aq + c (q = 2, . . . , « — 1) and (1,«) entry =b1—ca'[1bq. Thus there are 
u, m"1, r, ru_1 6 W of the form 

M = t (f l i ,0 , ..., 0); 0; (b[, b2, . . - A - , ) ] , 

K - 1 = [ ( - a i , 0 , . . . , 0); fli^i; (•—¿i, - ¿ 2 . •••> ~ V i ) ] , 

r=[(alt 0, ... 0 , c „ 0 , . . . , 0 ) ; 0 ; ( 6 I > 6 2 , . . . , 6 1 1 _ 1 ) ] , 

r w - ^ K O , . . . 0 , c , , 0 , . . . , 0 ) ; z ; ( 5 1 , 0 , . . . , 0 ) ] , 

where 0 ¿ ¿ c q £ K and where, in fact, b\, b'[, 5 l s and z are 

¿>i=61+flr1 + + b"i = b'i-cqaT1bq, 

Bi = ~b"i+bi = - c ^ b g , z = -cqbq. 

Since kernel nl = {[0; 0; bWb^K"-1}, the hypothesis (b) with n\W) = B1jZ imply 
that n1 is a bijective isomorphism. 

(ii) Since an arbitrary element [ i ;0 ; b] 6 WjZ with t, b£ K"~1 is uniquely deter-
mined by its first component t, the functions / 1 ; . . . , / „ _ K " ~ 1 — K are uniquely 
defined by setting ( f ^ t ) , ...,fn-l(t))=b. Let f:K"-i^K"~i be the map f ( t ) = 
= ( / i ( 0 , . . . , / . - i ( 0 ) - Since for any t,t'iK»~\ [t; 0; f ( f ) W , 0; fit')] = 
= [/ + / ' ; 0 ; / ( 0 + / ( / ' ) ] = [t + t'-,0-,f{t + t')], we have f{t + t')=f(t)+f(t'). Since 
by assumption (b) and Lemma 3. 2 (i) the group W is A'-linear, it follows that for 
any c£K and any [t; 0 ; f ( t ) ] £ W / Z , [ct; 0; cf(t)]£W/Z. But [ct; 0; cf(t)] = 
= [ct\ 0 ; f ( c t ) ] ; thus f(ct) = cf(t) and the f\ are ^-linear func t iona l / , : K"~' -+K. 

R e m a r k . The assumption (b) of the last Lemma 3. 5 in conjunction with 
Lemma 3. 3 implies that W^T. Assumption (b) of the last Lemma 3. 5 guarantees 
that there is an element [a; z; W with either ax =^0 or b1 # 0 . Thus hypothesis 
(c) is no real restriction but merely a notational convenience. 

L e m m a 3. 6. Assume that the subgroup W^LN satisfies (b) and (c) of the 
previous Lemma 3. 5 and that in addition W<\N. Then: 

(i) There are a, P£K such that every element of W is of the form 
[tiziiati + ptz, -pt.,0, . . . ,0)] (A, . . . . f ^ K * " - 1 (z£K); 

(ii) If characteristic K = 2, W is abelian. 
(iii) If characteristic K 2, and if in addition W is abelian, then ft = 0 and 

W = B1( a). 

P r o o f , (i) Let [t; z;f(t)]£ W be an arbitrary element with, t€K"'1 and z£K 
For c£K and any indices / and r satisfying — r<iSn — 1, let z'£K 
be defined by 
(1) [t'l z';f(t')) = {I—cEi-r, /)[/; z ; / ( 0 ] ( / + c ^ _ r , ; ) . 
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The inner automorphism has only changed the (0,/), (i — r ,n) , and (0, n) entries 
in the manner indicated in the following diagram: 

i n 

tl + Ct,-r z 

f i - r { t ) - c f M 

Figure 3. 

Thus t j = t j for j ^ i and = + c/ ;_ r. Then equation (1) shows that 

fi-xn=fi-xt)-cm) 

which in turn- implies that 

/ ¡ ( 0 = - / ¡ - r ( 0 , ..., 0, U_r, 0, ..., 0) ( 0 ^ i - r ^ i ^ r i ) , 

where tt_r is in the i'-th position. Suppose / ^ 3 ; for r = 1, 2 the above becomes 

(2) r = 1: №) = - / , _ ! ( 0 , . . . ,0 , 0, . . . ,0), 

/• = 2: /,(/') = —/¡-2(0, ..., 0, 2 ,0 , ..., 0). 
/ 

where and /,_2 are in the /-th position. Since for arbitrary _ x , / ¡ _ 2 £ K , 
/ ¡ ^ ( O , . . , 0, / , . „ 0 , . . , 0 ) = y i . 2 ( 0 , . . . ,0 , i , . 2 l 0 0), it follows that both 
of these are identically zero for all choices of ti-1, /¡_2 6 K; consequently / ¡ s 0 
for ¿ S 3 . The equation fk(t') =fk(t), k^i — r implies that 

M 0 , ...,<>,/,_„ 0, . . . , 0 ) = 0 ( ^ / - r . l s ^ B ) , 

where the /¡_r is in the /-th position. Take a fixed k, l ^ k s n and r — 1; then the 
above equation holds for all /' except i = k +1 and / = 1 . Since fk is linear and t,-rdK 
is arbitrary, this implies that 

/»(>)=/*(>!. • 1) =/*(>i, 0, . . . , 0 , 4 + 1 , 0 , . . . ,0), 
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where the tk+l is in the (k + l)-st position. In particular, for k = 1 there are a, P£K 
such that fi(t) = ati+pt2. But now equation (2) with i — 2 becomes f2(t) = 
= —f(0, tlt0,..., 0) = Thus (i) has been proved. 

(ii) and (iii) If [/; z;f(t)] and [ t ' ; z';f(t')] are arbitrary elements of W, then 
a necessary and sufficient condition that they commute is that 2P(t1t2 — tit2) = 0. 

C o r o l l a r y 3. 7. If K0, AT,, ..., Kn are any multiplicative subgroups of K -. {0}, 
let G(K0, Kt, ..., K„) denote the subgroup of G consisting of all matrices ||ay|| with 
a a f Ki (/ = 0, 1, . . . ,«) . Suppose the subgroup W<\N satisfies the hypotheses of the 
last Lemma 3. 6. Then a. = P = 0 and W=Bl if either one of the following two conditions 
hold: 

(i) K0=KV = ...=Kn_1 ={1}, 
(ii) K0=K2 = ...=Kn = {l}; K^{\},{\, - 1 } . 

In particular, if IV<1 G[, then W=B\ 

P r o o f . Let i/(>i) = d iag ( l , ..., l , k , 1, ..., 1) where is located in the 
*-th row and column. Let w = [ f , z \ ( a t l + p t 2 , —ptl,0,...,Q)]£W, where 
t<iKn~\zdK. Then 

d(n)~lwd(n) = [f,kz-,(kaLti+kpt2, -fit^O, ..., 0)], 

diir'wdii) = [(.iti,t2, ...,t,y,z(k-i*tl +k-ipt2, -pt„0, ...,0)]. 

Thus att +pt2 -k(ati + Pt2), k^ 1 for all t2 £K implies that a = P = 0. Similarly, 
A(aij + pt2) — k~i(ati + pt2) and k2-1^0 also implies that tx = P = 0. 

The next lemma is proved by tedious but straightforward computations; its proof 
is omitted. 

L e m m a 3.8 . For any constant a£K, Bl(a) and Bt(a) are maximal normal 
abelian subgroups of N; B1 and Bt are maximal normal abelian subgroups of G1 . 

The results of this section are summarized in the next theorem. 

T h e o r e m II. Let the notation be as in 2. 1 and 3. 4. Suppose WQN is a sub-
group satisfying: 

(a) W<\N, (b) (WnNj)Nj+1jNj+1 is a one dimensional K-vector space-
for each / = 0, ..., n — \. Then WQT and consequently there exists an. element 
[a; z; b]£tV with either ai or bt ^0. Assume: 

(c) [a;z;b]d W^a^O. 
Then: 

(i) There exist a, PiK such that W consists of all elements of the form 

[f,z-,(atx+pt2, - p t „ 0, . . . ,0)] (teK"~\zdK). 

(ii) If characteristic K = 2, W is abelian. 



246 J. Dauns and K. H. Hofmann: Nilpotent groups and automorphisms 

(iii) If characteristic and if W is abelian, then necessarily / ? = 0 and 
W = B\a). 

(iv) If in addition to (a), (b), and (c), W also satisfies (d) W<\ G1, then W=B\ 
In particular, W is abelian. In the other case when bl9i 0, the obvious analogues of 
(¡)—(iv) hold. 

(v) For any a £ K (a = 0 is not excluded), fi'(a) and Bx(rj) are maximal normal 
abelian groups of N; B1 and Bl are maximal normal abelian subgroups of' Gl. 
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Square extensions of finite rings 
By L. C. A. VAN LEEUWEN in Chicago (Illinois, U.S.A.)*) 

Let R and S be rings. We say that a ring T is an extension of S by R if S is 
an ideal in T and TjS is isomorphic to R. Let us call an extension T of S by R 
a square extension, if S = T2, where T2 is the ideal in T generated by all products 
of elements of T. Now TIT2 is a zero-ring, so in order that there exist a square extension 
of S by R, R must be a zero-ring. Henceforth we assume that R is a zero-ring and 
moreover that R is a finite ring. On the other hand, if S2 is the ideal in S generated 
by all products of elements in S, then S/S2 is a zero-ring. We assume that S/S2 

is also finite. Our problem is to find necessary and sufficient conditions for the 
existence of a square extension of S by R. We shall reduce this problem to the 
case in which the additive group of S is a finite abelian elementary /»-group and 
S is a zero-ring. In Theorem 4 we get the result that there does not exist a split 
square extension of S by R. Next we get a partial result on the existence of non-
split square extensions of S by R (Theorem 5). Finally we determine all rings of 
order 8, which may occur either as a square extension of a ring of order 4 or as 
a square extension of a ring of order 2. 

First we note that the ideal S2 of S is an ideal riot only in S, but also in every 
extension of S, since S2 is a characteristic subring of S. 

T h e o r e m 1. T is a square extension of S by R if and only if T/S2 is a square 
extension of SjS2 by R. 

P r o o f . From the isomorphism T/S^ T/S2/S/S2 it follows that Tis an extension 
of S by R if and only if TjS2 is an extension of S/S2 by R. Now suppose T2 = S, 
then (T/S2)2 = T2IS2 = SIS2. Conversely, if 5/ S2 =(T/ S2)2, then S/S2 =T2/S2 

and hence S — T2. This theorem reduces the problem to the case in which S is a 
finite zero-ring. 

If S = (0), then every extension T of S by R is a square extension because R 
is a zero-ring. Therefore, we assume that S is a non-trivial finite zero-ring. At this 

*) This research has been supported by the National Science Foundation (GP-6539). 
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point we want to summarize the theory of extensions of S by R, where R and S 
are finite zero-rings. Let T h e an extension of S by R, so that T/S^R. Let cp: T—R 
be the epimorphism whose kernel is S. An element u of T is called a representative 
of u<iR if <p(u) = u. Let ( z n ..., z,) be a basis of the additive group R+ of R and 
let mi be the order of z(. An /-tuple ( z , , . . . ,z ( ) is called a representative set of 
the basis if each zt is a representative of z f . As the products z ;a, az ; (a £ S) are all 
in S, the mappings a—z^a, a—aZi are endomorphisms of S'+ , which will be denoted 
by ih(zi) and rir(zd resp. Thus r\t(z?)a = zta and arjr(zd=azi-

It is clear that if we choose another representative of z ;£7?, for instance z-, 
then z\a =zta and az\ = azh as z- = z; (mod S) and S i s a zero-ring. Hence the induced 
endomorphisms are completely determined by the element zf £ R. So we get a set of 21 
endomorphisms of S+ and we divide them into pairs: (^¡(zj), qr(zt)), (r/,(z2), flr(z2)), 
..., (tji(z,), t]r(zi))- Each of these pairs is a double homothet ism of S, since S 
is a zero-ring and the endomorphisms ^¡(z,) and f?r(zi) a r e commuting. As T is an 
associative ring these double homothetisms are pairwise related (cf. [2]). Now we 
consider the mapp ing : z ; -»^(z,) = (^(zf), >/r(z;)), which associates with each 
Z i £ R the corresponding double homothetism of S and we extend q by linearity. 
We claim that t} is a homomorphism of R into a maximal ring D of related double 
homothetisms of S. First we remark that if z ; and Zj are arbitrary representatives 
in T then IiZjdS, as <p(zizj) = (p(z^(p(z}) = z^zj = 0, Hence z^zfi) = 
= r],(Zi)(r],(Zj)a) = 0 for all a 6 S. This implies rh(Zi)t]i(Zj) = zero-endomorphism 
for all z i ; Z j£R . In the same way it can be shown that f] r(Zi) lr( z j )= zero-endo-
morphism for all z ; , Z j£R . As the product of the double homothetisms 
(>7i0;)> >1r(zi))(>1i(zj), 1r(Zj)) = (hizdhizj), riXz^Xzj)) = (0, 0) in D, it follows 
that the mapping q maps R homomorphically into a ring D; the homomorphic 
image >i(R) is a zero-subring of a maximal ring of related double homothetisms 
of S. As we saw earlier each product z^zj £ S; we define zlzj = {zi, zj) for all i, j 
with 1 S / S / , 1 =,/' = /; the elements {z„ Zj} are called a multiplicative factor set. 
Finally we know that w ^ G S , as (p(mizl)=mizi = 0. So we get another set of 
elements mizi=bi in S. 

It is easy to check that the homomorphism rj, the multiplicative factor set 
{zh Zj} and the set {¿¡} have the following properties: 

(1) {z„ 0} ={0, zj} = 0, if 0 is a representative of Oei?. 
(2) >1i(zd{zj, zk) = {zh Zj}i]r(zk), 
(3) (bi)riAzj)=mi{zi,zJ}, 
(4) r]l(zj)(bi)-ml{zJ, Z(}, for all zh zj; zk£R, b^ S, m; as integers. 
Hence given an extension T of S by R, T determines with the representative 

set (z l s . . . . ,z , ) a homomorphism 77 of R into a maximal ring of related double 
homothetisms of S, a multiplicative factor set {zb zk} and a set {6;} (bt £ S), such 
that the properties (1)—(4) are satisfied. 
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Conversely, assume that R and S are given finite zero-rings and that t]: R — D is a 
given homomorphism of R into a; maximal ring D of related double homothetisms 
of S. Let the functions {zh Zj} of RXR into S and the set {¿>,} (b^S) be given 
for all i,j with l s / s / , 1 Sj^.l, such that (1)—(4) hold. Consider the set of all 

i i i 
symbols 2 n^i + s, s£ S. Define equality by: 2 "¡¿¡ + 3 — 2 uizi + v 

;>= i ;= i >"= I 

if and only if rti = Ui for all ¡'and s = v. Define addition by: ^2 "¡Z; + s t<iZj + u j = 
i 

= 2 (ni + ui)Zi + s + v> where mizi = bi and the sum is reduced mod /m,z,-. Define 
i=l 

multiplication by: 

(' - Y( ' - ' ' ' ' 

2 «; z,+j \ \ 2 u-i z-+v = 2 2 "i ui izi, zJ} + 2 ni (ii(zdv) + 2 us (sir(Zj))-
¡=i M i = i ¡ = i j = i ¡=i i 

( 

It is easy to check that the set T of all symbols 2 nizi + s with the addition and 
i= 1 

multiplication just defined is a ring. Now T2<^S, hence S is an ideal in T and 
i i 

T/S^R under 2nizi+S~* 2'hzi- Further ztv = ^¡(z^v £ S, vz{ = v>jr(Zi) 6 S for 
¡=i ¡=i 

all v£ S, hence the double homothetisms t](z^) = (r]l{z^, rjr(z¡)) S are induced 
by inner double homothetisms (zlt, z,v) of T. So T i s an extension of S by R which, 
with, the representative set z ; , induces the given homomorphism /7. Since z tZj = 
— {zh Zj\ for all /', j and = bt for all /, T has, with the same representative 
set z ;, the multiplicative factor set {zh z,} and the additive set 

We call an extension T of S by R combined with the homomorphism /7: R-+D, 
where D is some maximal ring of related double homothetisms of S, an ^-extension 
of S by R. 

Let T be any ^-extension of S by R which has, for the representative set zh 

the multiplicative factor set {z;, z,} and the additive set {¿¡}. Another representative 
set of T/S may be: z\, z'2, . . . ,z[ , where z'i = zi + \pZl, 1/^.€5 for / = 1, ..., I. Then 
z-Xj = (z ; +1p z ) ( z j+ ipZJ) = {z;, zj} + //¡(z,)(1j/zj) + (i/'r>/r(z.) and = m f a +1¡/z) = 
= bi + mi\j/zr Hence the new factor sets are 

(5) {zu Zj}' = {zh zj} + n,(zd (IAZ,) + ( « A M z j ) 
and 
(6) b't = bi + mi\l/zr 

We shall call two factor sets {z;, Zj}, {¿¡} and {zi; Zj}', {b]' equivalent if 
there exists a mapping 1j/: R — = 0) such that (5) and (6) hold. Hence any 
two factor sets corresponding to the same ^-extension of S by R are equivalent. 
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On the other hand, we shall call two ^-extensions T and T' of S by R equivalent 
(and write T') if there exists an isomorphism a: T—T' such that a is the identity 
on S and <p = cup', where cp: T-+R and q>': T' —R are the epimorphisms whose 
kernels are S. With these definitions we get the result: Let 7\ and T2 be two t]-
extensions of S by R. Then Tl ~ T2 if and only if, for some choice of representative 
sets in Tt resp. T2, the corresponding factor sets {zh Zj}L, {b^, resp. {zh Zj}2 {6,}2 

are equivalent More explicitly, if Tk, with representative set {z,}*, has the factor 
set {zf, Zj)k, {b)k (k — 1, 2), then the isomorphism a: Ti~*T2 is given by 

i = Z "¡(¿di+s+Z "dz,, where \j/:R-~S (>p0= 0) is a mapping 
V;=i / ¡ = 1 ¡=i 
such that (5) and (6) hold for i¡/ and the factor sets. The proof is straightforward. 

A n //-extension T of S by R is said to be a splitting extension over S if and only 
if, for some choice of representative set, all {zi; Zj} are 0 and all bt are 0. Also, 
T=S@R (ringtheoretical direct sum) if and only if T is a 0-extension of S by 
R (/7 = 0) and, for some choice of representative set, all {z„ Zj} are 0 and all b-t 

are 0. The direct sum extension is a zero-ring, since R and S are supposed to 
be zero-rings. 

Let J be an ^-extension of S by R. A subring AT of S is an ideal in J if and only 
if K is invariant under the double homothet isms of S, which occur as images in 
rj: R--D. N o w the ri(zt) = (^(z,), /?r(z;)) are double homothet isms of K and T\K 
is an ^ - ex t ens ion of S/Kby R. If r\: R-+D is such that r\(z;)= (rh(zi),t]r(zi)) then r f : 
R-+D*, where D* is a maximal ring of related double homothet isms of 
S/K, is defined by ri\zt) =(>lt(zi), ^ f e ) ) , where tfizdis+K^^zds + K and 

+ K)ri*(Zi) =srir(Zi) + K. Since K is invariant in rj(R), this definition does not 
depend on the particular choice of a representative s in s + It is easy to 
show that 1*(Zi)—(rif(Zi), rj*(Zi)) is a double homothet ism of S/K and that any 
two of such double homothet isms are related. It can be shown also that rf is a 
homomorph ic mapping. Hence rj*: R—D* is a homomorph i sm of R into a 
maximal ring of related double homothet isms of S/K. If T has the representative 
set z^ / = 1, . . . , / , then a representative set of T\K is the set zt+K, i= 1, ... /. 
We have (z ; + K) (zj + K) = {zh z j + K and mi(zi + K) = bi + K, hence the corres-
ponding factor sets are {zh ZJ} + K and bi + K for all /', j with More-
over (zi + K)(g+K)=vl(zfc + K=ti*(z,)(s + K) and (s + K)(zi + K)=sflr(zl) + K= 
= (5 + K)t]*(Zi), hence rj* is induced by inner double homothet isms of TIK. 

The following lemma is obvious now; in fact the proof is similar to that of 
Theorem 1. 

L e m m a 1. If T is an rj-square extension of S by R then, for each subring K 
of S invariant under the double homothetisms in r](R), TjK is an r]*-square extension 
of S/K by R. 
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Le m m a 2. Suppose that S = Sl@ S2 (direct sum) and the orders ql, and c/2 

of S\ resp. S2 are relatively prime. If there exist r\' resp. t]"-square extensions of 
Si resp. S2 by R, then there exists an (/)' -f >f')-square extension of S by R. 

P r o o f . Let {z;, Zj}', b\ resp. {zi; z,}", b" be factor sets is Sx resp. S2 for an 
f/'-resp. ^"-extension of St resp. S2 by R. Here t]': R->-D1 is a homomorphism 
of R into a maximal ring of related double homothetisms of Sl and r\"\ R^D2 

is a homomorphism of R into a maximal ring of related double homothetisms 
of S2. Extend the double homothetisms >?'(zi) = (rli(zd> ¥r(zd) of by letting 
them act trivially on S2. Then define '}!(z,)(s1+s2) = fjl'(zi)sl and (s1 +s2)/j/

r(zi) = 
= s1r]'r(Z[) for all (^i'(Zi), rj'r(zi)) in rj'(R) and all s^SSV and all s2£S2. Similarly, 
extend the double homothetisms ri"(zi) = (%(zi), t]"(zi)) of $2 by letting them act 
trivially on Si. Then define ri'{(zi)(sl+s2) = ifl'(zl)s2 and (.v, + s2)rj"(zi) —s2ilr(zd 
for all (r]J(Zi), rj"(zd) in t]"(R) and all sti 6 5 l and all s2ZS2. It is easy to show now 
that both the extended ij'(z;) and the extended i]"(Zi) are double homothetisms 
of S. Moreover the double homothetisms i?'(zi) a n d >?"(z;) of S are related double 
homothetisms. It follows that the sum t]'(z^ + ti"'(z;) is again a double homothetism 
of S, ([1]). We define now: + r]"(zi)=t1'(zi) + n"(zd for all z^R and extend 
tj' +tj" by linearity. Thus t]' + t]"(zi) is that double homothetism of S which is the 
sum of tfizj) and r]"(z,). More explicitly: i]' + rj"{zf) = (i]i(z,) + fi'r(zd + >l'i(zi))> 
where (rjl (z;) + ^'(z;)) ( i t + s2) = rfx 0 , ) C*i + s2) + n'iXzd Oi + s2) = r\\(z,-)^ + m(zi)s2 

for all and all s2£S2 and a similar formula holds for rj'r(Zi) + rj^(zi). Then 
r\' + rj": R-*D is a homomorphic mapping of R into a maximal ring D of related 
double homothetisms of S, as the extended if and r\" are homomorphisms of R 
into D. Here we may take D = Dl®D2. In order to construct an rj' + >7"-square 
extension of S by R, we use the sets {z;, Zj}' + {zh Zj}", b\ + b" in S as factor sets. 
As {zh Zj}', b\ with rf and {zh Zj}", b'[ with r\" both satisfy the conditions (1)—(4), 
it follows that {z;, Zj}' + {zh Zj}", b\ + b'[ together with if + if satisfy the conditions 
(1)—(4). Hence we have obtained an if + ^"-extension T of 5 = 5 1 © S ' 2 by R. 
Now we have to prove that T2—S. First we remark that S2 is mapped into itself 
under rj' +r]". As T is an tj' + ^"-extension of 5" by 7? it follows that tjS2 is an t]*-
extension of S/S2 by R, (Lemma 1). The corresponding factor set is {zh Zj}' + S2, 
b'i + S2. Now since {z;, zf}', b\ corresponds to an ^'-square extension of Sl by R, 
it follows that T/S2 is a square extension of S/S2 by R. So ( T / S 2 ) 2 = S/S2 and 
in the same way (Tj5J2 = 5 / S t . As T is an t]'+ ^"-extension of S by R with 
the factor set {zh ZJ}' + {zh ZJ}", b[ -f b{', it is clear that T2<^S. So we have to 
prove SQT2. From (TIS2)2 = S/S2 = Sl it follows that, if is a given element 
of S1} there exists an element af_T2 such that = a (mod S2). From (T/SJ2 = 
= S'/S,

1 = S2 it follows that, if s2 is a given element of S2, there exists an element 
b £ T2 such that s2 = b (mod S^). Then q2sl =q2a(mod q2S2 =0 ) , so q2Sx£T2. 



252 L. C. A. van Leeuwen 

As the order of J , is relatively prime to q2 it follows that ^ £ T 2 . Similarly g1s2 = 
= qxb (mod q{5] = 0 ) , so qis2^T 2. As the o rder .o f s2 is relatively pr ime to qj 
it follows that S2£T

2. F rom SX £ T 2 , s2 6 T 2 for all sl£SI,S2£S2 it follows that 
S{ + S2 = SQT

2. Then T 2 = S and T is an T]' + R]"-square extension of S by R. 
We apply the lemmas 1 and 2 in the following theorem: 

T h e o r e m 2. Let R and S be finite zero-rings. There exists a Square extension 
T of S by R if and only if for each prSylow subgroup A{ of S (pt a prime), there 
exists a square extension of A{ by R. 

P r o o f . Let 5 = / i 1 © . . . © y 4 t , where the prSylow subgroup At has the order 
/?f< / = 1 , ...,k. Now the orders p\l, p2\ ...,plk are relatively prime. Thus, if 
there exist square extensions of A1;A2, ...,Ak by R, then there exists a square 
extension T of S by R by the preceding Lemma 2. 

Conversely let us suppose that T is a square extension of S by R. N o w the 
AT are characteristic subrings of S, i.e. they are invariant under all double homo-
thetisms of S. Hence the direct sum A^ © . . . j j © . . . © AK is a charac-
teristic subring of S. Therefore T!Al®...(3Al-i®Ai+x@...®Ak is a square 
extension of S/AL © . . . ® A I + L © . . . ®AK = AT by R (Lemma 1). This theorem 
reduces the problem to the case in which S + is a finite abelian p-group. 

T h e o r e m 3. Let S+ be a finite abelian p-group, and S a zero-ring. Let R be 
a finite zero-ring. T is a square extension of S by R if and only if T/pS is a square 
extension of S/pS by R. 

P r o o f . First we remark t h a t p S i s a characteristic subring of S, for if a = (ai, a2) 
is an arbitrary double homothet ism of S, then <xl(ps)=pal(s) and (ps)u2=p(s)ix2 

for all s£S. Hence T is a square extension of S by R implies TjpS is a square 
extension of SjpS by R (Lemma 1). Conversely, suppose TjpS is a square extension 
of SjpS by R. Then T/pS/S/pS=•= T/S^R and T is an extension of S by R. F rom 
(T/pS)2 = S/pS it follows that, if b is a given element in T2, there exists an element 
s£S such that b = s ( m o d / ? S ) . Thus T2QS. Conversely, if s is a given element 
in S, there exists an element a£T2 such that i i f l ( m o d ^ S ) . Then ps =a0+p2st, 
where a0 =pa£T2 and i j £ S, p2st ~al +p3s2, where ax 6 T2, s2 € S, ...,pk~isk-2 = 
= a k - 2 J r P k s k - \ = a k - 2 ^ - T 2 , if we assume that pkS = 0. Tracing back we find 
ps£T2 and as s is an arbitrary element in S we have pSQT2. But this implies 
(:T/pS)2 = T2/pS = S/pS, hence S = T2. T is a square extension of S by R. We note 
that S+/(pS)+ is an elementary abelian /?-group and therefore we have reduced 
the problem to the case where S+ is an elementary abelian / j -group of finite rank. 

Let tj: R—D be a fixed homomorphism of R into a maximal ring of related 
double homothet isms of S. We consider the set of all elements of the form 
rji(r)s, s'r}r(r)i where t](r) = (/?,(/'), lXr)) i s a fixed element of t](R) and j is a variable 
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element in S, s' is a variable element in S, independent of s. Then let 5* be the 
subring of S, generated by all Sll(r) for r£R, which is denoted by S* — (Sn(r)). 
Finally, if T is an extension of 5 by R, then M will denote the multiplicative factor 
set for some choice of representative set in T, i.e. M = ({z;, ZJ), 1 ^ / s / , 1 S / ^ / ) . 
Now we can prove: 

L e m m a 3. T is a square rj-extension of S by R if and only if S is generated 
by M and S*: S = (M, S*). 

P r o o f . It is sufficient to show that, given an /y-extension T of S by R, 
(M, S*) = T2. Let us assume that this has been proved. Then if T is a square 
^-extension of S by R we get T2 = S=(M, S*). Conversely, if S = {M, S*) for some 
»/-extension T of S by R, then, as (M, S*) = T2, we get T2 = S and T i s a square 
ij-extension of S by R. Now we are going to prove that T2 = (M, S*) for a given 
//-extension T of 5 by R. For the multiplication in T we have: 

( 2 "¿i + 5 ]' ( 2 UjZj + v) = 2 2 »i«j izh zj} + 2»i(h0i)v) + 2 Uj(st]r(Zj)) 
V=i ' V= 1 ' i=lj=i i = l j= l 

where ( z j , . . . , z,) is a representative set of the basis (zx, ..., z,) in J?, s,v£S and nh Uj 
are integers for Thus T2<^(M,.S*). Now the generators of (M, S*) 
are the elements {zh Zj} of M and all elements of the form t],(zi)v, st]r{zj) where 
z;, z j £ ( z i , ..., z,) i n l a n d v,s£S. As {z;, zJ}=z izJ-, t]l(zi)v = ziv and sr]r(zj)=szj 
it follows that all generators of (M, S*> belong to T2, hence (M, S*)QT2. Then 
(M,S*)=T2. 

Next we investigate the »/-extensions of S by R which are splitting extensions 
over S. First we consider the case where S+ is an elementary abelian /7-group of 
rank 1. We prove: 

L e m m a 4. Let S+ = (0, a, ...,(p — l)o) be an elementary abelian p-group 
of rank 1. S is' a zero-ring, i.e. a2 — 0. Let R+ be the direct sum of I cyclic groups 
(z;) of order mhi= 1, ...,/. R is a zero-ring, i.e. z^zj = 0 for all i,j with l ^ i s l , 
1 =./ = /. Then there does not exist a splitting square rj-extension T of S by R, whatever 
i] may be. 

P r o o f . Let T be an ^-extension of S by R with representative set ( z 1 ; . . . , z(). 

Addition and multiplication in T are performed according to: ^ 2 «¡Z;4- .raj + 

+ \ 2 UiZi + va] = 2 (ni + Ui)Zi + (s+v)a, with «; + «,• reduced mod m^i— 1, . . . , / ) 
v = i / ¡=1 

and s + v reduced mod/7; 2 nizi + J f l j [ 2 uizi + — 2 niv{h(zda) + 
1 ' . 1 - 1 

+ 2 ujs(ar]r(Zj)), if we assume that T is a splitting extension over S. But then 
j = t 
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0 = a(zf) = (azi)zi=(atjXzi)),?Xzi)> which implies that at]Xzi) = 0. So we get 
ar\Xz ¡ ) = 0 for all z; with i=\,...,l. Similarly ^,(z,)a = 0 for all zf with / = 1 , . . . , / . 
Hence T i s a zero-ring and T 2 ^ S , as SV(0) . In this case there exists no splitting 
square //-extension T of 5 by R. 

T h e o r e m 4. Let R and S be finite zero-rings. Let rj: R—D be an arbitrary 
homomorphism of R into a maximal ring of related double homothetism of S. Then 
there does not exist an rj-square extension T of S by R, such that T splits 
over S. 

P r o o f . It is sufficient to show that there does not exist an //-square extension 
T of S by R, such that T splits over S for the case that S+ is an elementary abelian 
//-group of finite rank. Let us assume that this has been proved. First let a finite 
abelian //-group, not elementary, S a zero-ring and R a finite zero-ring. Then 
pS (¿¿0, S) is a characteristic subring of S. Suppose T i s an //-square extension 
of S by R which splits over S. Then, by Lemma 1, T/pS is an //*-square extension 
of S/pS by R and from the results preceding Lemma 1, it is easy to see that TjpS 
splits over S/pS. But S/pS is an elementary abelian //-group, hence by assumption 
there does not exist an //*-square extension of SjpS which splits over S/pS. So 
we get that there does not exist an //-square extension T of S by R which splits 
over 5 in case S+ is a finite abelian //-group and R and S are finite zero-rings. Next 
let S+ be an arbitrary finite abelian group and 5 a zero-ring. Let S+ = AV ©... ®Ak, 
where the//¡-Sylow subgroup A-t has the order p*>, i = 1, ... k, and the// ; are primes. 
Suppose T i s an //-square extension of S by R, which splits over S. Then, again by 
Lemma 1, T/Ax © . . . ®Ai+1 © . . . ®Ak is an /7*-square extension of SjA^ © ...ffi 

...®Ai_1®Ai+l®...@Ak = Ai by R, which splits over A-^l^i^k. But A? 
is a finite abelian //¡-group, hence there does not exist an ;/*-square extension T of 
Ai by R which splits over Ax. This contradiction implies that there does not exist 
an //-square extension T of S by R which splits over S, if R and S are finite zero-
rings. 

Now S+ is supposed to be an elementary abelian //-group of finite rank and 
we are going to prove that there does not exist an //-square extension T of S by 
R which splits over 5 whatever t] may be. For a split extension, for some choice 
of representative set, {zh ZJ} = 0 and bt = 0 for all i and j, 1 S / S / , Hence 
T is an //-square extension of S by R which splits over S if and only if S = S* = 
= (S,l(r)\r£R) (Lemma 3). Now suppose that T is an //-square extension of S by 
R which splits over S. Since S— /?(/?)^0, where r](R) is the image of R 
in the homomorphical mapping //: R-+D. Since R is generated by the zb 1 S / S / , 
it is clear that ij(R) is generated by the pairs (Ah 1 ^ / S / , • where ^ ¡ = / 7^ ) , 
Bi = nXzd> s u c h that //(z;) = (//,(z;), riXzd) is the double homothetism of 5 correspond-
ing to ztdR. The 2/ endomorphisms Ah Bj have the properties: 
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(i) AiAk = 0, BjB, = 0 for all i,j,k,t with i^i, k,j, i s / ; 
(ii) AtBj = BjAi for all i,j with l S / ' j S / . 

In particular both the At and Bj are nilpotent endomorphisms such that Af = 0 
and Bj = 0 for all i,j with Since //(/?) ^ 0, at least one of these endo-
morphisms is ?£0, say A v j i 0 . Now consider the set = 6 >S}. Then 
AtS is a subring of S, as A^i + Ats2 =A1(s\ + s2) and (/41i1)(y4152) = 0. Moreover 
AyS is invariant under Aly At; B±, ..., B,, as Ai(A1S)=0 (i), BJ(A1S) = 
=A1(BJS)QA1S for all Ah B} (ii) with This means AXS is a subring 
of S invariant under the double homothetisms of t](R). Further AxS^0, as At 

and AyS^S. If A X S = S then A1s = A1 (Ais')=0 for every and this would 
imply Ax = 0 which is a contradiction. By Lemma 1, as T is an //-square extension 
of by R, TjAx S is an //^-square extension of S/A, S by R, where //* is induced by rj. 
In fact, r f \ R—D*, D* a maximal ring of related double homothetisms of SIAtS, 
is such that //*(zf) = (//^(z,), //i(z;)), where, by definition, rif(zi)(s + A1S) = 
= t1i(zi)s + A1S and (s + A, 5)/,*(z;) = stjr(zd - M t S. Since S= S* = (Sn{r)\r^R), 
it follows from the definition of /^(z;), that SIAlS = (SIAlS)* = (SIA1S,l*(r)\r£R). 
Hence T/AyS is an //^-square extension of S/A1S. by R, which splits over 5/^415. 
As AlS?±0, and AyS^ S, the dimension of S/A1S is less than r and greater than 0, 
if we consider S+ as an /--dimensional vector space over the prime Galois field 
F=GF(p). By Lemma 4, there does not exist an //-square extension T of S by R, 
which splits over S, in case S+ has dimension 1. So, by induction on the dimension 
of S, it follows that there does not exist an //-square extension T of S by R which 
splits over S whatever // may be. This completes the proof of Theorem 4. 

Next we investigate the existence of 0-square extensions of S by R i.e. extensions 
where the homomorphism //:i?—Z> is the zero-homomorphism. Here we get the 
result: 

T h e o r e m 5. Let S be a zero-ring and S+ an elementary abelian p-group of 
i 

finite rank r. Let R be a finite zero-ring, where R+= 2 ®zi> O (z;) = «7,:, 1 S S / . 
>= I 

Then there exists a 0-square extension T of S by R if and only if the following conditions 
are satisfied: (i) l2^r; (ii) if (n—\)2 <.r^n2 for some n with l^Sn^l, then p\mt 

for at least n integers m,{\ ^¡i-ll). 

P r o o f . Let T be a 0-square extension of S by R. Then T2 — S and S is generated 
by M, for some choice of representative set (Lemma 3). As 5 has rank r, the number 
of generators of S in M is greater than or equal to r. Since 0(M) = l2, it follows 
that l2^r. As rj(R)= 0 we must have MI{ZH ZJ} = 0 and M ^ Z J , z;} = 0 for a fixed 
Zi and all Zj, 1 S y ' s / ((3) and (4)). But if {z;, z}) =^0 then it has order p, hence p\mi 
if {zj, z;} ^ 0 for any Zj. Likewise if {zj, z,} ̂ 0 for any Zj then /?[/«;. The question 
is now: how many different elements z;( £ R) have the property that either {zh z}} ^ 0 
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or {zj, z ^ 0 for at least one Zj(£R)l Now let (n — l ) 2 < r S n 2 for some n with. 
l ^ n ^ l , and let B be a basis of S in M. Since (n — l ) 2 < r = 0(B), there are more 
than (n — l)2 elements {zf, Zj} in M ( l S / S / , 1 ^ / s / ) which are not equal to 0, 
i.e. the elements of the basis B. It is clear now that the minimal number of different 
z,(£ 7?) which occur either as a first or as a second component in at least one element 
in B is n. Hence p\nti for at least n integers mt (1 S / S / ) . 

Conversely suppose the conditions (i) and (ii) are satisfied. We define functions 
{zh Zj} of RXR into S for the basic elements of R in the following way. First let 
{zh 0}={0, Zj} = 0 for all zhzj with 1 =§/=£/ and 1 S j ^ l . We know rSl2, 
hence we may suppose that (n — l)2<r^n2 for some n with l^n^l. We denote 
r = (n — l )2 + v, where 1 ̂  u ̂  2n — 1. Now S has rank r and let , . . s r ) be a basis 
of S. From (ii) we infer that there are n integers, say m l , . . . ,m„, such that piny 
for all i with 1 ^ / ^ 7 7 . Then set {z1 ; z 1 } = j 1 , {zj , z2}=s2, ..., {z1 ; z„_j} = 
= I j {z2 ) zl} =sn> • ••> {z2 , Zn- l} ~s2n-2 v ••> {zn- 1 ; zl} =Sn2- 3/1 + 3 > •••» {zn- 1> zn- l} = 

=i ( „_ 1 ) 2 and set {zh z„} and/or {z„, z,} equal to j ( „ _ 1 ) 2 + 1 , ..., j r for v 
functions {z ;,z„} and/or {zn,z;} with 1 s / s n . Then set all other {z;, z7} = 0. 
It is clear now that S is generated by the set of all {z;, zy} with l^i^n and 1 ^ j ^ n . 
If we put t](R) — 0 then the conditions (1)—(4) are satisfied for the functions 
{zhzj} (1 1 ̂ jml) and an arbitrary set b^S (l^i^l). Hence T is an 

i 
0-extension of S by R, if we define T as the set of all symbols 2nizi + s >h 

¡=1 

integers) with the addition and multiplication: 2 + + [ 2 uizi + — 

= 2 (ni+zi)zi+s+v> where mizi = bi(€S) for l ^ i ^ l , | 2 "izi + ^ 2 u,zi+v] = 

i i 
= 2 2 niuj{zi> zj}- As S~(M), it follows, that T is a 0-square extension of S 

¡=1.7 = 1 
by R, which completes the proof of Theorem 5. 

Now we determine the rings T which may occur as a square extension of a ring S 
of order 2 by a ring R of order 4. Both S and R are supposed to be zero-rings. Let 
S+—(0,a) with 2a = 0 and a2 = 0. Let J?+ = (z 1 )©(z 2 ) be the direct sum of two cyclic 
groups ( z j and (z2) both of order 2 and z2 = z1z2=z2z1=z2 = 0. Now the endomor-
phism ring of S+ consists of the zero-endomorphism and the identity mapping. Hence 
in this case we must have rj(R)= 0, so that there are only 0-square extensions of S b y R 
possible. As the conditions of Theorem 5 are satisfied "there exist 0-square extensions 
of S by R. There are 2 cases: (i) 2 z 1 = 2 z 2 = 0 , which means bi=b2=0 in S. (ii) 
at least one of b t and b 2 ^ 0. 

(i) In this case the elements a, zY and z 2 all have order 2 and we get T+ — 
= ( a ) © ( z 1 ) © ( z 2 ) is of typus (2 ,2 ,2) . As i](R)= 0, azl = az2=zia=z2a — 0. 
If { Z l , Z l H zi> z2}> iz2> zi} a n d {z 2 , z 2 } are 0, then T2 — (0) which contradicts 
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that T2 = S. Hence we must have at least one of the four elements (zL, z j , {zx, z2} 
{z2, Zj] and {z2 ,z2} equal to a. We get 15 different rings T with multiplications: 

a z 2 a z i Z2 a z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

z i 0 0 0 z l 0 a 0 0 ß a 

z 2 0 0 a z
2 0 0 0 z 2 0 a a 

a Zl z 2 a z i Z2 a z i z
2 

a 0 0 0 a 0 0 0 a 0 0 0 

z i 0 0 a 0 a 0 z i 0 a a 

z 2 0 a a z
2 0 0 a z 2 0 a 0 

a Zl z 2 a z i z 2 Ö z i z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 a 0 0 a a z l 0 0 0 

0 a a z 2 0 0 a Z2 0 a 0 

a z 2 a z i z
2 

a Z 1 z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 0 0 Z 1 0 0 a z i 0 0 a 

0 a a z 2 0 0 0 z 2 0 0 a 

a z2 a Zl z i a z 2 

a 0 0 0 a 0 0 0 a 0 0 0 

Zl 0 a 0 0 a a z i 0 0 a 

Z2 0 a 0 z 2 0 0 0 z 2 0 a 0 

Thus we get 15 non-equivalent 0-square extensions T of S by R. 
(ii) In this case at least one of the elements z, and z2 is of order 4, and T+ is 

of typus (2, 4), say T+ = ( z 1 )©(z 2 ) where 0(zt) = 2 and 0(z2)=4. For the multipli-
cation in T one has again: z2=kta, z1z2 = k2ct, z2z1=k3a, z\=kA a where 

17 A 
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1, i— 1, 2, 3, 4. Hence we get the same multiplication tables as in case (i), 
if we omit the first row and the first column. Thus we find 15 non-equivalent 0-
square extensions T of S by R. Next we suppose S to be a zero-ring of order 2 as 
above and R'h = (z) a cyclic group of order 4. R is a zero-ring i.e. z2 — 0. Again 
r\(R) = 0 so there are only 0-square extensions of S by R possible and by Theorem 5 
there are such extensions. As z2 = 0 or a, we get {z, z}—0 or a. But if {z, z} = 0 
then T2= (0), contradiction. So we must have {z,z}=a. We have two possibilities 
for the addition according to 4z — 0 or a, which means b~ 0 or a. If b = 0, then 
Ty =(a)®(z) is of typus (2, 4), if b — a, then T+ = (z) is a cyclic group of order 8. 
Thus we get 2 non-equivalent 0-square extensions T of S by R. Finally we want 
to discuss the rings T which may occur as a square extension of a ring S of order 4 
by a ring R of order 2. Both R and S are supposed to be zero-rings. Let S+ ={ai) © 
©(a2) be the direct sum of two cyclic groups (a,) and (a2) each of order 2 and 
a\~ava2 —a2= a2=0. Let R + = (0, z) with 2z = 0 and z 2 = 0 . As the condition (i) 
of Theorem 5 is not satisfied in this case ( / = 1 , r=2), there do not exist 0-square 
extensions of S by R now. The nilpotent endomorphisms in the endomorpbismring 
of S+ are: .v1: a1 -*-0, a2 -»-0; s2' a1 -*-0, a2-^a1; s3: a1 ->-a2, a2 ->-0; s4: ->-a1 + a2; 
a2-"a1+a2. So the possible double homothetisms are (.s^, .vj , (s1,s2), , s3), 
(^i , .v4), (s2, Si), {sz,s2), (.s'3, .s'i), (.?3 ,s3), (.f4, .?4), which may occur as the 

element (/fi(z), >jr(z)) in t](R). For z2 = {z, z} as well as for 2 z = b we may choose 
0, a1, a2 or a1 + a2. But as 2{z, z) = 0 we must have (b)r\r(z) = rj1(z) (b) = 0, ((3) and 
(4)). Then we distinguish the following cases: 

(i) Let b = ai. Then (^¡(z), =(,s'2, s2) for a square extension of S by R. 
As S*=(S,,(,.)>=(0, ci]) we must have {z,z}=a2 or al+a2 for a square extension 
of S by R (Lemma 3). Since j / ;( z)—vX2)= s2 the condition (2) is satisfied. The additive 
group T+ of a square extension T of S by R has the form: T+ = ( z ) © ( a 2 ) where 
(z) has order 4 and a2 has order 2. So T+ is of typus (2,4). For the multiplication 
in T one has: a\ = 0 , za2 = s2a2 = aY; a2z—a2s2 = ai and z 2 = a2 or at + a2. Hence 
one gets 2 non-equivalent ^-square extensions T of S by R. 

(ii) Let b=a2. Then we must take (t]t(z), q,.(z)) = (^3, .s'3) for a square extension 
of S by R. As S* = (£„(,.)) = (0, a2) we must have {z, z)=a1 or aL + a2 (Lemma 3). 
Since f7;(z) = rir(z) = s3 the condition (2) is satisfied. The additive group T+ of a 
square extension T of S by R has the form: T+ = ( z ) © ( a 1 ) where (z) has order 
4 and ai has order 2. So T+ is of typus (2, 4). For the multiplication in T one has : 
a2 = 0, zai =^3«! —a2, a1z=a1s3 = a2 and z2=ai or at + a2. Hence one gets 
2 non-equivalent ^-square extensions T of S by R. 

(iii) Let b = av + a2. Now we must have (^¡(z), ii,.(z)) = (,s'4, s 4 ) for a square 
extension of S by R. As S*=(S,l(r)) = (0, av + a2) we must have {z,z}=a1 or a2, 
(Lemma 3). Since fj,(z) = ^ , . (z )=j 4 the condition (2) is satisfied. The additive group 
T+ of a square extension T of S by R has the fo rm: T+ =(z)®(ai), where (z) 
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has order 4 and ax has order 2. So T+ is of typus (2, 4). For the multiplication 
in T o n e has: a2 = 0, zax = sAax = «! + a2, a1z = a1s4 = a1 + a2 and •z2 = a1 or a2. 
Hence one gets 2 non-equivalent //-square extensions T of S by R. 

(iv) Let ¿ = 0. Then the conditions (3) and (4) are satisfied. For a square 
extension T of S by R we need only satisfy condition (2): rj,(z){z, z} ={z, z}//r(z). 
We have again different cases: 

(iv. a) Let {z,z} = aL. Now we must have (/7/(z), //r(z)) = (s3, s3) or (i4,.y4). 
In both cases the condition (2) is satisfied. So we get 2 rings ^ e a c h of which has an 
additive group T+= (ai)@(a2)®(z) of typus (2 ,2 ,2) . Hence there are 2 square 
extensions T of S by R, an //'-square extension where //'(z) = (s3 , s3) and an //"-
square extension where //"(z) = ( r 4 , J4). 

(iv. b) Let {z, z) = a2. Then we must have (//,(z), rjr(z)) = (s2, s2) or (s4 , s4). 
In both cases the condition (2) is satisfied. Thus we get 2 rings T each of which 
Has an additive group T+ = (a1)@(a2)@(z) of typus (2, 2, 2). So there are 2 square 
extensions T of S by R, an //'-square extension for //'(z) = (tf2, s2) and an //"-square 
extension for rj"(z) = ( i 4 , sA). 

(iv. c) Let {z,z}=al+a2. Here we must have (//;(z), rir(z)) = (s2, s2) or 
( j 3 , s3). In both cases the condition (2) is satisfied. Again we get 2 rings T each of 
which has as an additive group =(a 1 ) f f i (a 2 ) f f i (z) of typus (2 ,2 ,2) . Therefore 
we get 2 square extensions T of S" by R, an //-square extension where //(z) = (s2, s2) 
and an //'-square extension where z/'(z) = (y3, i 3 ) . 

(iv. d) Let {z, z} = 0. Now we would get a square extension T of £ by R which 
splits over S which is impossible by Theorem 4. Hence there do not exist square 
extensions in this case. 

There is a second class of rings T which may occur as a square extension of 
a ring S of order 4 by a ring R of order 2. Now we put S+ = (a) is a cyclic group 
of order 4 and a2 = 0 (S is a zero-ring). Again R+=(0, z) with 2z = 0 and z2 — 0. 
The nilpotent endomorphism in the endomorphismring of are: J 1 : a - ' 0 , and 
s2.a-*la. So the pairs (sl,sl), {si,s2), ( ^ » ^ i ) a n d is2ts2) m a y occur as the 
element (//¡(z), //r(z)) i n The elements z2 = {z, z} and 2z—b in an extension 
To f S b y R must satisfy the conditions (3) and (4), i.e. (b)rjr(z) —2{z, zj and /y,(z)(b) = 
= 2{z, z}, (b€ S, {z, z } £ S ) . This implies that if 6 = 0 or b=2a, then { z , z } = 0 
or {z, zj = 2a. In either case T2 = (0) or T2=(0, 2a) and T ^ S, so T i s not a square 
extension of S by R. Hence we must have b = a or b = 3a. By the conditions (3) 
and (4) we get square extensions if we take (z/,(z), rjr{z)) = (s2, s2) and { z , z } = a 
or 3a, (cf. also Lemma 3). The condition (2) is satisfied. 

(i) Let {z, zj = a and b = a resp. b = 3a. Let 7\ be an //-extension of S by R 
with factor set {z, z} = a, b=a and let T2 be an. //-extension of S by R with factor 
set {z, z}'=a, b' = 3a. Then T, ~T2 as the conditions (5) and (6) are satisfied for 
i¡/z = a. Here (//((z), rjr(z)) = (s2, s2) and 7 \ and T2 have the same additive group. 
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T+ = (z) which is a cyclic group of order 8. As S = (M, S*} both for Ty and T2, we 
get 2 equivalent //-square extensions of S by R (Lemma 3). 

(ii) Let {z, z} = 3a and b=a resp. b = 3a. In the same way as in case (i) we 
get 2 equivalent »/-square extensions Tt and T2 of S by R, where 7 | resp. T2 has 
the factor set (3a, a) resp. (3a, 3a). Both Ti and T2 have again the additive group 
T+ = (z) (cyclic of order 8). 

R e m a r k . Our results obtained in Theorems 1, 2.and 3 and Lemmas 1, 2 and 
3 are quite analogous to the corresponding Theorems and Lemmas in the paper: 
H . ONISHI , Commutator extensions of finite groups Mich. Math. J., 1 3 ( 1 9 6 6 ) , 

1 1 9 — 1 2 6 , if one replaces "commutator extension" by "square extension". In fact, 
the results of O N I S H I for finite groups led us to consider the situation for finite rings. 
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Über die Struktur der Hauptidealhalbgruppen. I 
Von L. MEGYESI und G. POLLÄK in Szeged 

§ 1. Einleitung. Vorbereitungen 

Unter einer Hauptidealhalbgruppe verstehen wir eine Halbgruppe H, deren sämt-
liche Rechts -und Linksideale durch ein Element erzeugt sind. Die Untersuchung 
solcher Halbgruppen wird in drei Stufen durchgeführt: zuerst beschäftigen wir 
uns mit der Struktur „im Grossen", d.h., wir zeigen, daß die Green'sche Relation 
J (bei G R E E N s. [3]) in einer Hauptidealhalbgruppe eine Kongruenz ist, und 
beschreiben dann die Faktorhalbgruppe im zweiten Schritt wird dasselbe 
bezüglich der Relation & (bei G R E E N 3?) gemacht; endlich wird die Operation 
zwischen Elementen der Ü-Klassen untersucht. In diesem ersten Teil werden die 
ersten zwei Fragen erledigt. 

Die .Terminologie stimmt meistens mit der von [2] überein. Eine Abweichung 
findet nur im Falle der Green'schen ^f-Klassen statt, die wir .S-Klassen nennen 
wollen, da sie in derselben Beziehung mit den Quasiidealen stehen, wie die ¡£-, M-
und ./-Klassen mit den Links-, Rechts-, bzw. zweiseitigen Idealen. Die Green'schen 
Klassen werden wir durch L, R, I, Q usw. bezeichnen, die ein- und zweiseitigen 
Ideale durch L, R, I usw. In einer beliebigen Halbgruppe H wird für a£H die 
a enthaltende </-Klasse durch I (ä), das von a erzeugte Ideal durch. I (ä) bezeichnet. 
I(a) >I{b) bedeutet I(a) Z) I(A). Für die verwandten Begriffe werden analoge Be-
zeichnungen gebraucht. 

Die ein- und zweiseitigen Idealverbände einer Hauptidealhalbgruppe ist sehr 
einfach zu beschreiben: 

1 . 1 . ( L Y A P I N [4] ) . Dann und nur dann sind sämtliche ideale (Linksideale, Rechts-
ideale) einer Halbgruppe durch ein Element erzeugt, wenn die Relation I c z l ' ( L c L ' , 
R c R ' ) eine duale Wohlordnung ist. 

In [4] ist diese Tatsache nur für zweiseitige Ideale formuliert, der Beweis ist 
aber natürlich allgemeingültig. 

Aus 1. 1 folgt, daß man die Ideale und auch die Rechts- und Linksideale mit 
Ordnungszahlen so numerieren kann, daß IxZ)Iß (La-DLe , R ^ R ^ ) äquivalent 
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mit ist. Die zugehörigen Green'schen Klassen werden ebenso numeriert, 
also I c t > ~ I l ! ^ a < ß usw. Dabei laufen die Indizes der Ideale, der Links- und der 
Rechtsideale im allgemeinen verschiedene Mengen durch, nämlich die Menge 
der Ordnungszahlen, die kleiner als y, yt bzw. yr sind. Es ist klar, daß y^yt, y^yr. 

D a aus L ( 6 ) 2 L ( A ) in jeder Hauptidealhalbgruppe 1 ( 6 ) 3 1 ( A ) folgt, so gilt 
in Hauptidealhalbgruppen wegen 1. 1 auch 

1.2. In einer Hauptidealhalbgruppe folgt aus I(A) 31(6) stets auch L(A) 3 L(b). 

Die duale Aussage besteht natürlich auch. Von jetzt an werden wir aus dualen 
Aussagen immer nur eine, formulieren. 

§ 2. Die Faktorhalbgruppe HjJ 

Unser Zweck ist die Existenz der im Titel des Paragraphen genannten Halb-
gruppe zu beweisen. Dazu brauchen wir aber noch weitere Vorbereitungen. 

Eine . / -Klasse I der Hauptidealhalbgruppe H nennen wir geschichtet, falls 
I aus mehr als einer ü?-Klasse besteht. Später werden wir sehen, daß dieser Begriff 
selbstdual ist. Zunächst möchten wir zeigen: 

S a t z 1. Eine geschichtete J-Klasse der Hauptidealhalbgruppe H ist eine Unter-
halbgruppe der letzteren. 

D e m Beweis schicken wir einige Hilfssätze voraus. 

2. 1. In einer beliebigen Halbgruppe H ist die Abbildung L — L a { a £ H ) des 
Linksidealuerbandes in Sich monoton und aus 

(1) L c L ' , L d c L c L ' a 

folgt die Existenz eines L" mit 

L c L " c L' , L"ö = L. 

(Diese Tatsache ist ein Spezialfall einer viel allgemeineren mengentheoretischen 
Tatsache.) Die erste Behauptung ist trivial und wohlbekannt. Gilt ferner (1), so 
bezeichnen wir den Rechtsquotienten L. 'A = {x\xa£ L } durch L 0 und es sei 
L " = L0 H L ' . Offenbar gilt L"aQ L . Andererseits gibt es wegen L C L ' a für 
jedes 5g L ein b£L' mit ba = E; da somit auch 6 £ L 0 gilt, ist b£~L", also L Q L"a, 
was zu beweisen war. 

Für unseren Fall ergibt 2. 1 den Spezialfall 

2 . 2 . Gelten in der Hauptidealhalbgruppe H die Gleichungen L/1A = LA, L)1 + VÖ = 
= L A + / J , so ist ßSv. Aus L A 6 = L A , L ^ L , , folgt im speziellen Lßb3Lfl. 

In der Tat, nach 2. 1 wird die Menge {L i I + ? } o s ? s : v auf die Menge {La+l )}0S) ;S<, 
abgebildet. 
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2. 3. Gibt es unter den JSF-Klassen, die in der J-Klasse I einer Halbgruppe H 
enthalten sind, eine maximale, sei denn L0, so gibt es für jedes L<=I ein af^H1 mit 
L a ^ L 0 (d.h. L a = I ) . 

Ist nämlich L QI, x £ L, y £ L0, so gibt es Elemente b, a £ H1 derart, daß y = bxa. 
Offensichtlich ist L(xa) ^ L(bxa) = L0 , aber wegen xa£l und der Maximalität 
von L0 m u ß hier die Gleichheit statthaben. Es gilt also xa£L0, dann aber auch 
La £ L0. 

Im Falle einer Hauptidealhalbgruppe H bedeutet dies, daß für eine geschichtete 
. / -Klasse 4 mit 1 , , = ^ , und für L ^ I a stets ein a£_H existiert, so daß L^a^L^ 
(d.h. L(,A = I J . Ein solches Element werden wir ein Vergrößerungselement für 

oder für L„ nennen. 

2. 4. Sei Ia eine J-Klasse der Hauptidealhalbgruppe H. Gilt xy£la+l für ein 
x£Ia und ein y (LH, so gilt auch I„y Q 1 . 

Wäre nämlich I„yz)Ia+1, dann hätten wir I a % I a + l . - y , folglich I f f D l f f + 1 . ' J 3 

=>I»+i. d.h. 
(2) I ^ L * , I<t+i •' y = L«+v) I<t+i = L*+?, 0 < v < £ 

(hier ist 1,,+x; = x £ Ä } ) . D a n n könnte man aber nach 2 . 3 ein 
b£H derart finden, daß I„yb = Lxyb = L a gilt. Andererseits wäre 

K+vyb ü b g I f f + 1 = 

was aber wegen 2 . 2 und (2) unmöglich ist. Somit m u ß tatsächlich IayQla+1 

bestehen. 
Es gilt endlich 

2. 5. Ist in der Hauptidealhalbgruppe H 

I<r — I f f + 1 = L a + i , £ ^ 1, 
so ist £ ein Limeszahl. 

Dies folgt aus dem folgenden bekannten Satz: 

2 . 6 (LYAPIN [4] , S . 2 3 3 — 2 3 4 . ) . Sei I das durch die J-Klasse I erzeugte Ideal. 
Ist jL U (I \ I ) ein Linksideal für eine -Klasse LQI, so ist es ein Linksideal für alle 
&-Klassen mit L^I. 

Wäre nun £ = t] + 1 , so wäre 

K+n = Lx+n(JIa+l = Lx+tlU(la\Ia) 

ein Linksideal, also z.B. auch L=LX U I f f + 1 wäre ein solches; dann hätte aber 
das Linksideal L U L a + , kein erzeugendes Element. 

Jetzt können wir zum Beweis des Satzes übergehen. 
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Nehmen wir an, daß die geschichtete . / -Klasse I a keine Halbgruppe ist. D a n n 
gibt es Elemente x,y£la derart , daß xy£Ia+1 ist. Nach 2 . 4 ist dann Iay^la+1 

und jetzt nach dem Dualen desselben Hilfssatzes zIaQIa+i fü r jedes z£Ia, d.h. 

(3) i l i W 

Betrachten wir das Linksideal 

L = { x l l ^ c l j , 

(es ist sogar ein Ideal) und es sei L = L ( a ) . Wir zeigen zunächst, daß l a a Q \ ( f + i 

ist (also auch I ^ L ^ ^ + j ) . Im Falle L = Iff ist das trivial. Ist dagegen L d I , , 
so gibt es für jedes ein x€H mit xa—y, d.h. 

(4) (I a.-d)a=la. 

Wegen der Definition von a besteht auch 

(5) M c l f f , 

also fü r L e i = I „ . ' a muß wegen (4) und (5) .Le i=3l„ gelten. Ist noch L(a) o L S l , 
so gilt wieder (L e i . • a)a = L9 l und LC2 ^ L p , . - a r D L e i . Setzt man diesen Prozess 
fort , so erhält man eine Linksidealkette 

^ e i c c . . . , 

die in endlich vielen Schritten abbrechen muß. Dies geschieht, sobald L C n 2 L ( a ) 
ist. Dann haben wir 

I(J = L£>1a = L ? 2 a 2 = . . . = L e n a n , 

also wegen L i n auch a " + 1 € I , . Folglich gilt nach (3) l„an+i und dasergibt , 
daß es eine kleinste k ( 0 S k ^ n ) existiert, so d a ß l a a k + 1 Wäre dabei k>0, 
so hätten wir 

D a n n wäre aber xaZ I B + 1 fü r X € L < J A ' [ \ I ( T + 1 ) und "xa$.la+1 fü r x £ L ( I \ I ( T a ' c , im 
Widerspruch mit 2. 4. Somit m u ß gelten. 

Nehmen wir nun ein beliebiges Element b$L und es sei wieder I < T =L a . 
Wegen lab = la und 2. 2 müßen fü r die Linksideale 

Lao = LaZ>, = L a + 1 6 , . . . , L I m = L a + m 6 , . . . 

die Ungleichungen a ; S a + i gelten. D a L.oc = L 7 offensichtlich gleichbedeutend 

( m \ m 

U l i ( J L; für m = 0, 1, 2, ... . , = o ' i=0 
m 

Dann.s ind aber die Mengen Mm= U I j U I ^ ! Rechtsideale, da 
1 = 0 

(m | m 

U A i U W i U £ i U i . + i = A / . 1=0 ) ¡=0 
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für und MmbQ I f f + 1 für bd L besteht. Dabei ist M 0 < ^ M i d M 1 ( Z . . . wegen 
2. 5 eine unendliche wachsende Rechtsidealkette, im Widerspruch mit 1.1. Dies 
vollendet den Beweis von Satz 1. 

Nehmen wir zwei Elemente a,b$Iff+1. Ist ab£Iff+1 d.h. L (a )R(6 )g I f f + 1 , 
so gibt es wegen Ia f l L (a) ?±0,IaP\ R(b) ^ 0 auch Elemente a', b' £ Ia mit a'b' £ I„+1. 
Dies ergibt 

2. 7. Ist 1„ geschichtet, so ist H\Ia+1 eine Halbgruppe (d.h. I f f + 1 ein Primideal). 

Wir brauchen noch weitere Hilfssätze. 

2. 8. Für jede ¡¿-Klasse einer geschichteten J-Klasse Ia gibt es ein Vergröße-
rungselement in Ia. 

Nach Satz 1 ist für ein beliebiges x £ l a noch L ^ D I ^ , . Nach 2 . 3 existiert 
dann ein a£H' mit Lßxa—Ia. Somit ist xa ein Yergrösserungselement und x a d f . 

2.9 . Für jedes a£H gibt es in I„ ein Lß, so daß LMa ^ \„. 

Im entgegengesetzten Falle wäre nämlich LMa = l a für L(, I„ + , , I f f + 1 a g J f f + 1 

im Widerspruch mit 2. 2. 

2. 10. Ist 
I CT = La, La + 13lC T + 1 , 

so sind H\La+1 und La Teilhalbgruppen. 

Es genügt das erste zu zeigen, da Lx = n ( i / \ L a + 1 ) ist. Sind aber 
a, a'£H\Lx+1, aa'£~La+1, so hat man 

(6) I f f a ' g L ( a ) f l ' c L a + 1 . 

Andererseits gibt es nach 2. 8 in Ia ein b mit Iab = Ia. Da dann b£L(a'),: d.h. b=xa' 
ist, so besteht 

la = \b = \„xa' i laa', 
im Widerspruch mit (6). 

2.11. I„a = für jedes a £ H\~LX+,. 

Für b£ hat man nämlich ba£Ea, also \aa = L(b)a = L(Aa) = \„. 

S a t z 2. Eine geschichtete J*-Klasse Ia kann keine 0t,-Klasse sein. 
Es sei wieder und nehmen wir ein a£La. Nach 2. 9 gibt es ein L ^ c / , , 

so daß I y z ^ I , , und nach 2. 8 gibt es ein b£la mit Lflb = l„. Wäre nun R(a)=R(b), 
so gälte a = bx, also L(x)^Lat, d;h. x£H\Lx+1. Hieraus folgt aber wegen 2. 11 

L„ö = L^x = \ax = I,, 

im Widerspruch mit dem Wahl von 
Dieser Satz besagt, daß der Begriff der geschichteten ./-Klasse selbstdual ist. 
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Somit sind die dualen Aussagen von 2. 5, 2. 8, 2. 9, 2. 10 und 2. 11 auch gültig. 
Die duale Definition der geschichteten ./-Klassen werden wir im folgenden als 
gleichberechtigte mit der früher angegebenen anschauen. 

Jetzt ist schon alles bereit für den Beweis des ersten Hauptresultats: 

S a t z 3. In einer Hauptidealhalbgruppe H ist die Green'sehe Relation J> eine 
Kongruenz. 

Wir haben IeI„QIx für beliebige Q, G und passendes X zu zeigen. Wir unter-
scheiden zwei Fälle. 

. a) Weder IQ, noch I„ sind geschichtet. Dann ist I0 = Lß, Ia = Rv, also nach [5], 
Lemma 1 ist IeIa sogar in einer einzigen ^-Klasse enthalten, 

b) I„ ist geschichtet. Wir behaupten, daß dann immer 

(7) min ( / , , / „ ) • 

Desteht. Sei nämlich IQ daß größte unter den ./-Klassen, für welche (7) nicht erfüllt 
ist. Es kann nicht IQ^Ia sein, da dann IQIaQI„ besteht und (7) aus 2. 7 folgt. Es 
ist also IE < I„. Dabei ist IE nicht geschichtet, sonst konnte man Q und С vertauschen 
und das vorige Argument träte wieder in Kraf t . Wir haben also Ie=Lx, und wegen 
Iea%Ie für а a „ 

d . h . 
(8) 1даГ\1е — 0. 

Andererseits gibt es wegen L(a)>Lx für jedes b£lQ ein x f f f m i t xa = b. Dabei 
kann x wegen (8) nicht in Ia liegen, aber auch x d / « , ist unmöglich, da 
für diese Ц nach der Annahme 

• / j ö g / j / . g / j , 

gilt und trivialerweise auch I ^ I „ ausgeschloßen ist. Dieser Widerspruch vollendet 
den Beweis, da der Fall, wo IQ geschichtet ist, durch Dualisieren des betrachteten 
Falles entsteht. 

Es ist klar, daß ein homomorphes Bild einer Hauptidealhalbgruppe wieder 
eine solche ist. H/J ist also eine Hauptidealhalbgruppe, in welcher jede . / -Klasse 
aus einem Element besteht. Die so beschaffene Halbgruppen sind leicht zu beschrei-
ben: 

Nehmen wir eine transfinite Folge f — (n0, •••,»„, •••)a<z, deren Glieder natür-
liche Zahlen und Symbole sind und x S 1 ist. Jedem а < x ordnen wir eine zyklische 
Halbgruppe Ha der Ordnung na zu, welche im Falle eines endlichen na auch den 
Index n„ hat, und es sei НвГ)На = 0 für q^g. Für Elemente verschiedener Ha 

definieren wir die Multiplikation durch 

(9) (ha he =) he ha = hmax (h0 € He, ha € HJ. 

Dann ist # f = U H„ offensichtlich eine kommutative Halbgruppe. 
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S a t z 4. i / f ist eine Hauptidealhalbgruppe, in der jede J-Klasse ein Element 
hat, und jede Hauptidealhalbgruppe mit dieser Eigenschaft ist einer //f isomorph. 

In der Tat, betrachten wir ein Ideal I von // f und sei er der kleinste Index, 
für welchen I f l Ha ^ 0 , a das erzeugende Element von Ha( = («)), und k der kleinste 
Exponent für welchen ak 61. Da die höheren Potenzen von a Mehrfachen von 
ak sind und nach (9) dasselbe für sämtliche Elemente der HQ mit o x r gilt, so ist 

I = I(A<<) = ( U He)\JHaak{Jak. 
a<Q<x 

Umgekehrt, sei H eine Hauptidealhalbgruppe, in welcher jede . /-Klasse aus 
einem Element besteht. Der Ordnungstypus der Idealkette von H soll y sein und 
/iff(cr < y) soll das einzige Element der . /-Klasse I„ bedeuten. Ferner, definiere man 
die folgenden Ordnungszahl mengen: A sei die Menge der Ordnungszahlen / . (< y) 
vom zweiten Typus und 

r = {<j\<j = Z + \,h\ = h£, A=AUr. 

Endlich, für beliebiges er < y bezeichne er' das Maximum von A unter er: 

a'-^a, a'£A, 

a ' = > c < T . 

Ein solches o ' gibt es offensichtlich. Auch ist es klar, daß dann a in der Form 

<j = o' + k - 1 

darstellbar ist, wo k eine natürliche Zahl bedeutet. Wir zeigen, daß dann 

K = hk., 
gilt und auch (9) für g < c ' besteht. 

Nehmen wir an, daß dies für jedes r < er schon bewiesen ist. Ist dabei <r $ A 
(also <7 = ^ + 1 und k> 1), so gibt es ein hn£Hm\ihnh^ = hG, t] minimal. Wegen der 
Induktionsannahme gilt (9) für statt h„ und für £> <er', also muß sein. 
Wäre aber t] x r ' , so hätten wir hk.—h„,h^ =h^ =hkf1, also auch h\ =h^, d.h. a = £ + 
+ l£A, entgegen unserer Annahme. Somit ist t] = (j' und h„ = ha'h^ = hk.. Ist ferner 
Q <<?' so gilt 

hah„ = hQh„. hs = h„. = ha 

und ebenso die duale Gleichung. 
Es sei nun a£Ä, q<g. Wieder gibt es ein hn mit hjin=ha. Wir wollen zeigen, 

daß rj = a ist. Dazu genügt es einzusehen, daß h e h z ^ h a für Ist dies falsch 
und z.B. G S T, so ist jedenfalls T' S g, da sonst heht =hz besteht. Dann ist aber he. =hz, 
und 

hehx = h[. = //t'+,_i 

für ein /<ct). Ist dabei o£A, so ist wegen auch r ' - f / — 1 < a . Ist dagegen 
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a ^ r , <r = £ + l , dann ist h\=hi und hiJi)t = hfh{x = hix = h0 und auch 

also hjia = ha. Somit ist unsere Behauptung bewiesen. 
Sind nun cro( = 0), <t1, ..., ax, ... die Elemente der Menge A, der Größe nach 

geordnet, so besteht die zyklische Halbgruppe = (hCrj) nach den Obigen aus den 
Elementen ha mit ax^o Dabei besteht nach dem Gezeigten auch (9). Ist 
also iix = o(Hx) endlich, so ist h"/*1 ^ h l

a , mit l<nx, da sonst die verschiedenen 
Elemente hl

a, und h"l . /-äquivalent wären, im Widerspruch mit der Voraussetzung 
über H. Der Index von Hx ist hiermit nx. Dies bedeutet aber Hz=Hu wo 
f = (« 0 , ...)a„zA ist. 

§ 3. Die Kongruenzrelation £L 

Wir erinnern den Leser, daß die Relation SL durch definiert ist. 
Wir zeigen sogleich: 

S a t z 5. In einer Hauptidealhalbgruppe H ist 2. eine Kongruenz. 
Es sei aä.a', b2.b'\ wir wollen abQa'b' zeigen. Betrachten wir das Element ab'. 

Trivialerweise gilt 
(10) abMab' 

Ferner gibt es Elemente x, y mit b' = bx, b = b'y. Wegen L(6)=L(6') ist L(6)x= 
= L (b ' ) . Für Lx^L(b) gilt also LaxQLx. .mit S L ( b ) . Andererseits haben wir 
cxy = c für c£L(b), also Lxxy — Lx und somit Lx, yC\ 'Lx^0, also Lx-yQLx 

(eigentlich sogar Lx-y = Lx). Dies bedeutet aber, daß die Abbildung LX-~LX- eine 
ein-eindeutige Abbildung der Menge der ü?-Klassen von L(6) in sich ist. Da dabei 
diese Abbildung nach 2. 1 monoton und „stetig" (im Sinne von (1)) ist, ferner 
überführt sie L(b) (die maximale -Klasse von L(6)) in sich, muß sie die identische 
Abbildung sein. U.a. gilt L(ab)xQL(ab), also ab'SCab. Mit (10) zusammen ergibt 
dies ab2.ab'. 

Ein düaler Gedankengang führt zu ab'2.a'b', also 

ab£ab'2a'b', 
was zu beweisen war. 

Im § 2 haben wir erhalten, daß jede geschichtete . /-Klasse I„ der Hauptideal-
halbgruppe H selber eine Halbgruppe ist. Nach einem Satz von C L I F F O R D [1] , den man 
auf die REES'sche Faktorhalbgruppe H ß a + , anwendet, ist I a sogar einfach. Es kann 
aber vorkommen, daß sie schon keine Hauptidealhalbgruppe ist. Nimmt man doch 
statt H die Halbgruppe HjS,, d.h. eine Hauptidealhalbgruppe, in welcher die 
Klassen je ein Element haben, so sind in dieser sie geschichteten . /-Klassen schon 
einfache Hauptidealhalbgruppen. Die folgenden Überlegungen dienen zur Be-
gründung dieser Behauptung. 
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Im folgenden, wie vorher, sei I„ eine geschichtete . / -Klasse und I a = R ß = Lx . 
Wir bemerken zuerst, daß es nach dem Dualen von 2 .11 für a 6 Rß ein e £ \„ (also 
e£ 4 ) mit ae = a gibt. Dann gilt natürlich xe = x für alle x£L(a). Ein solches e 
nennen wir ein äußeres Rechtseinselement für L(a). Bezeichnen wir durch Lc das 
maximale Linksideal, für welches ein äußeres Rechtseinselement e in gibt; nach 
dem gesagten gilt I ( r 2 L e 3 l f f + 1 . Wegen / / e 3 L £ ist klar. 

3. 1. Hat die Sß-Klasse Re einen nichtleeren Durchschnitt mit \ L£, so besteht 
Re aus einer einzigen ¿1-Klasse. 

In der Tat, es sei a,b£la, a@tb, aber nicht aS£b. Bestimmtheitshalber sei 
L(a)>L(b); dann genügt es a£ L£ zu zeigen. Nach aS%b gibt es Elemente x, y mit 
ax = b, by = a, d.h. axy = a. Dabei muß x 6 sein, da sonst nach 2 .11 Iax = L a x = L a 

und nach 2. 2 L ( a x ) s L ( a ) wäre, was der Annahme widerspricht. Dann ist aber 
xy£ Ia ein äüßeres Rechtseinselement für L(a), also L ( a ) ^ L £ , was zu beweisen 
war. 

Aus 3. 1 folgt unmittelbar 

3. 2. Für ocSyu<£ ist Lp die Vereinigungsmenge von SM-Klassen. 

Jetzt können wir beweisen 

3. 3. H sei eine Hauptidealhalbgruppe, I„ eine geschichtete Jf-Klasse in H. 
Für a£l„, b$Ia gilt ab2.a. 

Zuerst zeigen wir abtfta, oder, was dasselbe ist, Rüb Q R„ für R0 c fa. Für Q = ß 
(d.h. Re = Iff) folgt dies aus dem Dualen von 2. 10. Nehmen wir an, daß Re die 
maximale ^2-Klasse ist, für welche R„b 3= Re ist. Da dann 

i<e <?<s 

ist, muß Reb D Re gelten, also es gibt ein a£Ra mit ab £ Re. Wäre nun Re ^ L£, so 
wäre Re nach 3. 1 eine Ü-Klasse und dann folgt aus a£Re, ab£Re wegen des be-
kannten Lemma von G R E E N (S. [3]), daß R„b = Ra ist. Deshalb muß RB G Lc sein. 
Dann ist aber ae = a fü r ein beliebiges a£Re und wegen e £ R(b) gibt es ein x mit 
bx — e, abx = a, also ab0ta, und damit Rab Q R„. 

U m abä'a zu zeigen, bemerken wir, daß dies für L(a) >LC schon aus dem 
gezeigten folgt, da für solche a nach 3. 2 ab<Ma=>ab£'a. Für a£Lc haben wir 
wie oben a = ae = abx. Es sei LxbQLx, für a S e . Wie beim Beweis von Satz 5, erhalten 
wir dann, daß La — die identische Abbildung für die La S Le ist, also auch 
ab£L(a) besteht. Dies vollendet den Beweis. 

Aus dem bewiesenen folgt unmittelbar 

S a t z 6. Besteht in der geschichteten J-Klasse I„ jede 2,-Klasse aus einem 
Element, so ist Ia eine Hauptidealhalbgruppe. 
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In der Tat, nach 2. 10 und Satz 1 ist H\Iff+1 eine Halbgruppe. Es ist leicht 
zu sehen, daß es sogar eine Hauptidealhalbgruppe ist und ihre einseitigen Ideale 
genau die Untermengen der F o r m L \ L f f + 1 bzw. R \ I F F + 1 sind, wo L ( R ) ein belie-
biges Links- (Rechts-) ideal mit ( R D I j + 1 ) ist. Nach 3. 3 müßen die durch 

erzeugten rechtsseitigen Hauptideale in # \ I f f + 1 und in I a zusammenfallen, 
da die von a verschiedenen rechtsseitigen Vielfachen von a nur durch Multiplikation 
mit einem x£Ia entstehen können. D a aber jedes Rechtsideal die Vereinigung 
rechtsseitiger Hauptideale ist, sind die Rechtsideale in H \ I f f + 1 und J„ die gleiche, 
d.h. nur die Hauptideale. Das Duale folgt aus dem Dualen von 3. 3. 

Betrachten wir jetzt eine Hauptidealhalbgruppe H, in der jede Ü-Klasse aus 
einem Element besteht und nehmen wir ein b£H, welches in einer nichtgeschichteten 
. / -Klasse enthalten ist (und somit das einzige Element der letzteren ist). Liegt eine 
Potenz b" von b in einer geschichteten . / -Klasse Ia, so gilt nach 3. 3 b"a = ab" = a 
für jedes a£la, also b" ist das Einselement von I„. 

Nehmen wir eine einfache Hauptidealhalbgruppe E mit Einselement, deren 
jede Ü-Klasse aus einem Element besteht, und eine zyklische Halbgruppe Z , die 
eine Periode der Länge 1 hat, d.h., für deren erzeugendes Element z die Gleichung 
z " + 1 = z " (n = o(Z)) gilt. Eine Idealerweiterung von Z durch E nennen wir eine 
Halbgruppe vom Typ Z o E , falls z" gleich dem Einselement von E ist und folglich 
zx = xz = x für x£E gilt. Aus den oben gesagten erhielt man leicht: 

S a t z 7. Jede Hauptidealhalbgruppe H, in der sämtliche 2,-Klassen aus je einem 
Element bestehen, läßt sich als die Vereinigung U Нг einer wohlgeordneten Menge 

ihrer Unterhalbgruppen Hx darstellen, wo jede Hx zu einem der folgenden Typen 
gehört: 

a) unendliche zyklische Halbgruppen, 
b) endliche zyklische Halbgruppen mit einer Periode der Länge 1, 
c) einfache Hauptidealhalbgruppen, in denen die ¿¿-Klassen aus einem Element 

bestehen, 
d) Halbgruppen vom Typ ZoE, 

und das Produkt von Elementen aus verschiedenen Hx durch (9) definiert ist. Um-
gekehrt, jede so beschaffene Halbgruppe ist eine Hauptidealhalbgruppe mit 2,-Klassen 
aus je einem Element. 
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On oscillation of the number of primes in an arithmetical progression 

By I. KÂTAI in Budapest 

1 . J . E . LITTLEW'OOD [1] proved — in the contrary to an assertion of R I E M A N N — 

that, for a suitable sequence x\ < x'2 < ... of integers, the inequality 

holds. SKEWES [2] has obtained an upper bound for the first x for which the difference 
TI(X) — li x is positive, namely exp exp exp exp ( 7 , 7 0 5 ) . Later S . K N A P O W S K I [3] 

— using the ideas of P. T U R A N — gave another proof of this fact. In the last year, 
S . L E H M A N [4] gave a better upper bound, namely 1 , 6 5 - 1 0 1 1 6 5 . 

Recently S . K N A P O W S K I and P . T U R A N gave an explicit, localized Q ± estimation 
for the difference n(x, 4, 1) — \ li x, where, in general, n(x, k, I) denotes the number 
of primes in the arithmetical progression = / (mod k) not exceeding x. 

The investigation of the oscillation behavior of n(x, 4,3) — £ li x is a simpler 
case. However, for this we need another method. 

In the following, c, c0, c 1 ; ..., <5 will denote explicitly calculable numerical 
constants (e. c. n. c.), not the same in every place, e^x) means ex and ev(x) = 
= e1(ev_1(x)), further l o g 1 x = l o g x and Iogv x = log (logv_j x). Throughout the 
paper the letter p is preserved for primes. 

We shall prove the following 

T h e o r e m 1. For every T > c 0 we have 

n(x, 4, 3) — y l ix n(x, 4, 3) — y l i x 
max — > 5 , min -= 

T^xmT* y x / l o g x t ^ x s t " y x / l o g x ' 

where <5 and e0 are e. e. n. positive constants and x = (2 + i^S)2. 

In their papers [5] , [6] K N A P O W S K I and T U R A N dealt with the oscillation behavior 
of the functions 

a(x) — 2 log p-e-px- % log p-e~px, 
pHii(mod8) p = ¡2 (mod 8) 

b(x)= 2 e-px- 2 e~px' 
p = h (mod 8) P = h (mod 8) 
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In [5] they proved that if 0 <<><<:!, then for (mod 8) we have 

max a ( x ) > - F = e 1 - 2 2 — w . fa 1 ( log 2 ( l /<5) J ' 

where cx is an e. c. n. c. In [6] they proved that for 12 = 3, 5, 7 ( / r ^ /2) we have 

max 
i d [ l o g 2 ( l / 5 ) 

The authors remarked: "To the more difficult problem of one-sided theorems 
(for b(x)) we hope to return." This problem seems still to be open. 

F r o m our Theorem 5 it follows that, for and for all ^ 1 (mod 8), 
the inequality 

max 

holds, where x = (2 + / J ) 2 . 
W e formulate now some theorems the proofs of which are similar to the proof 

of Theorem 1. 
Let Nk(l) denote the number of solutions of the congruence x2 = / (mod k). 

For the moduli k in 
( A ) 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 9 , 2 4 , 

the position of the zeros of L(s, y) for all % (mod k) is known in the neighbourhood 
of the real line. Especially, it was proved by HASELGROVE, that the L(s, y) are non-
vanishing on the real line in the critical strip. 

T h e o r e m 2. For k in (A) and for all of those pairs l t , l2 for which Nk(lt) = 
= Nk(l2), 11 (mod k), we have 

TZ(X, k, l { ) - n ( x , k,l2) n(x, k,h)-N(x, k,l2) max — o, min — — < — o, 
T&XTST» yxj l ogx rsxssr« yxj l ogx 

if T>c, where x = (2-f-/3)2, c and 5 are e. c. n. positive constants. 

T h e o r e m 3. For all k in (A) and for all I for which Nk(l) = 0, we have the in-
equalities 

n(x, k, I) — n (x, k , l ) - ^ X 

m f l Y i „,,-„ <PW r * max — > o, min : -c—o, 
rsigp yx/logx TmxST" Yxj l ogx 

whenever T>c, where 5 and c are e. c. positive numerical constants. 
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Let 

a(x,k,l) = 2 -e-"*, s(x)= 
p = l(modk) n = 2 lOgn 

The following assertions hold. 

T h e o r e m 4. For every k in (A) and for all I for which Nk(l)=0, we have 

/• I A S<X> • ( 1 A 

max — x 5 , min — — < — o 
TSXST" yx / l ogx T^XST" yx / logx 

ifT> c, where x = (2 + i?>)2, further c and 5 are e. c. positive numerical constants. 

T h e o r e m 5. For every k in (A) and all /,, l2 for which N^f ) = Nk(l2), 
(mod k), we have 

ff(x, / : , / , ) - f f ( x , k,l2) m a x — : $ 
TSXST" y x / l o g x 

ifT>c, where x = (2 + /3)2, further c and 5 are positive e. c. n. c. 

The method of the proofs of our Theorems is the same as was elaborated for 
the omega-estimation of M(x)= 2 Kn) in my dissertation [7] and in the paper [8]. 

However, we use here an idea of RODOSSKY in a deeper form [9]. 

2. Some lemmas. 

L e m m a 1. If 

«=1 n 

is absolutely convergent for a0, then 

(TO) 

For the proof see [9]. 

L e m m a 2. [9] For 0 < « S l and 

( 2 . 2 ) - i - J x « - 1 l o g x . e 1 | - ^ ^ J r f * = 2^7RUE1(A2u) + 0 ( l ) . 

18 A 
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L e m m a 3. [9] Let « S i and y, z be defined by 

(2.3)-(2.4) 

The following inequalities hold: 

\ogy = 2 u \ l - ^ ] , logz = 2 w i l + ^ - j . 

(2.5) 

y 

¿ / * - 1 / 2 logx-e, 

(2.6) 

oo 

j x - ^ l o g x . e ^ - ^ d x ^ c e ^ . 

L e m m a 4. Let 

(2.7) R(u) 

Then 

l 
e^iv2u)dw. • 

|i?(w)| > — e ^ w / 4 ) , if 
\u 

P r o o f . Using the well-known formula 

log 5 

oo 

-du (Re j > 0) 

d u e t o EULER, w e o b t a i n t h a t 

CO 

= ilh. f f h 
in J J 

(2) 0 

dv ei(w2 u) dw = 

dv_ 
v 

Since 

dv 
c and 

the inequality 

v2 D I dv 
RMM I e l \ - — + - \ — = R(u) + 0(l) 
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holds. Substituting e1(v) = x we obtain 

thus . 
2 

R^u) S 2u(log2)~2 J e i ( - ^ f ^ ) logx-x-^dx 

y 

S CM(1 o g z ) _ 2 /M e!(u/4) s «^(M/4) • w~1/2, C > 0 . 

(See Lemmas 2, 3 and (2. 4).) Hence the assertion follows. 
F r o m Lemma 4 one can deduce the following 

L e m m a 5. Let 

(2.8) J(u) = ^ / log (iv - i ) T(w) (w2«) </m>. 
Vtt J 

(2) 

|/(w)| > ce2(ul4)u~1/2, c > 0. 

P r o o f . Let L denote the broken line with vertices• 1 — 1 — i -2 , 1/4 — z-2, 
1 /4 + i- 2, l + i-2,l+i- °o. Let r(co) = T ® + (p(co). So the inequalities 

(2 .9) \(p(co)\^c\w— 1/2|, |log (w —i)(p(w)|<c|vv —-j|3/4 

hold on the line L. Let now 

J(u) = ' ^ z ) / jog _ ^ ^ (,v2 ^ ^ + [ e i (lv
2
 M) log(w - L) i/vv. 

\n J \n J 
(2) L 

From (2. 9) it follows that the absolute value of second integral is majorized by 
c e ^ u f t j u ' F o r the first integral we use Lemma 4, and we obtain the assertion 
stated in Lemma 5. 

3. Let us now introduce the following notat ions: 

(3.1M3.2) / ( i ) = 2 P~'l g(s)= \ f ^ g f " 1 ; 
p = 3 (mod 4) ^ n = 2 1 

(3.3) T i ) = / ( * ) - * ( * ) = 2— 
n= 2 n 

where the coefficients a„ of \F(.j) are defined by 

( 3 4 ) a = i 1 - K l o g n ) " 1 , if n = / ? = - 1 (mod 4), p prime, 
" I — "j(log n)~ 1 otherwise. 
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Let C(J) be the Riemann zeta-function and let 

( - 1 ) " 
L{s,y) = Z 

n =o (2« + l ) s . 
We have evidently that 

(3.5) m = * - l o g W L + h i s ) , 

where h(s) is a function represented by an absolutely convergent Dirichlet series 
in the halfplane Re s > 1 / 3 and hence regular. 

Further we have - C ( f ) and so ^ ( g ( j ) + l o g ( * - l ) ) = . 

Since the right hand side is an integral function, so is g(s) + log (sr— 1) regular 
on the whole plane. Hence it follows that F(s) is regular at the point s = 1. Further 
it is known that in the domain 0 < < 7 < 1, O^t S 10, 24 the function L(s, x) has 
a unique simple zero, namely at the point 

(3.6) 6 = } + i-6,02... = i + i-y. 

In this domain C(s) is npn-vanishing. 
Let now 

(3.7) /(T) = - % fr(w + ix)e1(\v2u)dw, . 
\n J 

(2) 

where x is a real number. 
We shall now give an upper estimation for (3. 7) in the special cases x = 0 

and T = }>. 

Let r denote the broken line with vertices 1, 5 —/•=«; 1,5—4/; 0,4 — 4/'; 
0,4 + 4/; 1,5 + 4/; 1 ,5+ /•«>. For the estimation of 7(0) we transform the integration 
line in (3. 7) to T and we obtain 

(3.8) |/(0)| < cei(0,\6-u). 

Choose now x = y. Then the function T^iv + iy) has a logarithmic singularity at the 
point w = 1/2 and 

. F(w + iy) = - log ( w - £ ) + 7^(110, 

where F^w) is a regular function on the broken line f and on the right hand side of T. 
So we have 

I(y) = l-$-JFiei(";2 ")dw~'4=r / l o g ( M ' ~ j ) e i (M'2u)dw = P(")-*(")• 
r (2) 
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For P(u) we have the estimation |/>(M)|<CE1(0, 16M). F rom Lemma 4 

cei (w/4) 
TOI 

1/(7)1 = 

. iu 

ce, (M/4) 
follows. So we have 

(3.9) 

4. Let now 

(4.1) A(x)=Za„,. 

where the an are defined by (3. 4). It is evident, tha t 

(4.2) 7i(x,4, 3) — ¿ l i x = A(x) + 0(\) 

F r o m Lemma 1 it follows that the /(T) in (3. 7) can be represented as 

n = 2 

By partial integration follows: 

log 2 « 
Au 

— IT log n 

(4.3) /(T) = 
Jog2 x 

+ i t | ex |——— ix l o g x | i / x . 

Let fur ther / ( t , 1, y), I(x, y, z), I(x, z, denote the integral on the right h a n d 
side extended for the intervals [l,j>], [y, z], [z, respectively. Let the values y, z 
be choosen as in (2.3) , (2 .4) . Using the trivial estimation ^ ( x ^ - ^ c x ^ o g x ) " 1 

we have 
y 

= c(-l + |t |) 

| / (T ,1 ,J ) | < CY ( logx) 
2 

y 
log2 X 

l ogx 
2M + M 4M 

1 
l o g y 

= J ' - ' " { ' - i n } * 

and by partial integration, 

log 2 

1 ' 6 t [JSlÉJLldx^ cu-'e^ujA). 
l o g x 4M 

Hence 
(4.3) | / (T,1,J0 | ^ C U + I T D K - ^ G / M ) 
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follows. Using similar computations we obtain 

( 4 . 4 ) |7(R,Z, °O)| < c ( l + | T | ) M _ 1 £,(M/4). 

Let now assume that for a fixed positive <5 one of the inequalities 

r l / 2 ' 
(4.5) 

(4.6) 

max \A(x) — 8, 
iogx 

{ xi/2 

min L4(x) + <5-
^ a x s z l l o S * . 

iO, 

holds. Using this assumption we obtain such an inequality for I(y) and 7(0) which 
contradicts (3. 8), (3. 9). 

Indeed, we have 

A{x)±8 
xl'2 

l o g * 

x 
l o g * . 

2 u + 

+ 8 

Using the inequality 

/ - 1 / 2 

l o g * 
logx-

2 u 
+ h 

l og* 
2m 

: c ( l + | t | ) 
l o g x 

2M 

and our assumption, i.e. that one of the functions 

• A(x)±8^~ 
logx 

has constant sign on the interval [y, z], we have 

\I(x,y,z)\^c(l + \x\)I(0,y,z) + c8(l + \ x \ ) J ^ e l [ - l ^ } d x . 

For the integral on the right hand side we have 

i ' 

by Lemma 2. Hence 

|7(t, y, z)I < c ( l + |T|) |7(0, y, z)| + c8( 1 + | i | )e t (u /4 )u - i 
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and by (4. 3), (4. 4) 

(4.7) № \ < c ( l + M ) { | / ( 0 ) | ^ ^ + ^ } . 

Let now x — y. Taking into account the inequalities (3. 8), (3. 9) we get 

CyW1'2 e^ujA) < c2e1(0)l6u) + Sc2u-1,2ei(u/4) + c3u-i e^u/4), 

where c ^ O . This is impossible if d^cjc2 and u is sufficiently large. Hence it 
follows that the inequalities cannot hold, i.e. we have 

,4 (x) logx c . A(x) l og* . 
max • > 5, min — — o, 

\X ySxrSz \X 
if w > c . 

Taking into account that 

A{x) = n(x, 4 , 3 ) - l l i x + 0 ( l ) , 

and that z=yx Theorem 1 follows. 

5. In this section we give a sketch of Theorem 5 in the special case k = 8 
We shall use the following generalization of Lemma 1. 

L e m m a 6. Let 
oo 

(5.1) h(s) = Jx~sdA(x) 
i 

absolutely and uniformly convergent in the half plane cr xr^^O). Then 

(5.2) J e , dA(x) = jh(w)ei (w2u)dw. 
i w 

The proof of this Lemma is very similar to that of Lemma 1 and so can be 
omitted. 

Let l t , l2 be two different among the numbers 3, 5, 7, further let ep be defined 
by the relation 

1, if p = 4 (mod 8), 
(5.3) ep= - 1 , if /> = /2 (mod8), 

0 otherwise, 
and let 

(5.4) —(5.5) g(s) = s(x) = a{x,%,h)-a{x,%,l2) = 2ep<rp/*. 
p P p 
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Using a well-known relation we have 

OO CO 1 OO . 

(5. 6) r(s)g(s) = J f ' 1 2ePe-»dy = j - ^ d x = J +J = l(s) + h(s). 

0 0 o x 

Here the function l(s) is regular in the halfplane Re s=o>~0 and | l (s) | < c if a s 1 /10, 
because | i ( x ) | < c in the interval O ^ x s l . Using now Lemma 6 with 

0 0 

(5.7) dA(x) = - ^ d x , h ( s ) = j ^ d x , 

1 
we obtain 

(5.8) J e , = y = r f h(W + h ) e i ( ^ u ) d W . 
1 7 1 (2) 

Let us now introduce the following notat ions: 
b 

(5.9) l(i, a,b) — J e , - « log x j s(x) 

f: 

dx 

(5.10) K(x) = - j L [h(w + h) e, (wzu) dw. 
yn J 

In the proof an essential role is played by some numerical data due to P. C . 
HASELGROVE ( s e e S . K N A P O W S K I a n d P . T U R A N [5] , p . 2 5 4 ) . L e t 

L(s, X i m J ? { (g B + i ) . + (8» + 3)s ~~ (8n + 5)s ~ (8n + 7 ) s } ' 

L(s, tifij {(4„+1)s - (4„ + 3)s}' 

L(s, X3)MZo {(gw + 1)s - (gM + 3), ~ (8m + 5y + (8„ + 7)s} • 

Then in the domain 
0 < f f < l , | * | S l 2 

the zeros of L(s, Xi) are 

i ± i - 4 , 8 9 9 . . . , i ± / - 7 , 6 2 8 . . . , ¿ ± / - 1 0 , 806... 
those of L(s, X2) 

i ± 2-6,020.. . , i ±2-10 ,243 . . . , 
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and those of L(s, /3) 
¿±¿ •3 ,576 . . . , i -± i -7 ,434 . . „ ± ± / . 9 , 5 0 3 . . . . 

In particular, they are simple and different f rom each other. 
We shall use that for the function g(s) in (5. 4) 

( 5 . 1 1 ) = 2 (X ( / 0 - X ( / 2 ) ) l o g L ( S , X ) + « ( * ) , 
4 X (mod 8) 

where the function u(s) has an absolutely convergent Dirichlet series representation 
in the halfplane i t > } , because 3 , 5 , 7 are quadratic 'non-residues mod 8. So 
we have 

(5.12) = Z ( z ( / i ) - z ( / 2 ) ) l o g £ ( j , *) + »(*), 
1 X (mod 8) 

where v(s) is a regular and bounded function in the strip £ < c < 10. Transforming 
the integration line in (5.10) to the broken line r (see (3.8)) we have 

(5:13) |AT(0)| -='cc,(0,16«). 

Choose x = y where \ + iy is the first singularity of g(.y) in the upper halfplane 
( l m s > 0 ) . Using Lemma 5 instead of Lemma 4 we have 

(5.14) l^(y)! =-cM-1^2e1(M/4), c > 0 . 

Let now y, z be chosen as in (2. 3), (2. 4) and assume tha t one of the inequalities 

(5.15)-(5.16) max | i - ^ H S 0, min i j (* ) + 5 ¡ - 6 - 1 is 0 
y^x7sz{ logx) ysxszi l o g * J 

be satisfied with a positive 8. Using a similar argument as in the section 4, we can 
deduce f rom this assumption the inequality 

(5.17) |/(T, 1, CO)|<c(1 + |T|){|/(0, 1, ^ l + S u - ^ e ^ u / ^ + u- 'e^u/A)}. 

Taking into account that /(T, 1, ^)=K(z) and choosing T — y, the inequality (5.17) 
contradicts the inequalities (5.13), (5.14) for a sufficiently small positive <5 and 
for w > c . So the inequalities (5.15)—(5.16) for this <5 cannot hold and hence the. 
assertion follows. 
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Quasitriangular operators 

By P. R. HALMOS in Ann Arbor (Michigan, U.S.A.)*) 

Every square matrix with complex entries is unitarily equivalent to a triangular 
one. In other words, if A is an operator on a finite-dimensional Hilbert space H, 
then there exists an increasing sequence {M„} of subspaces such that dim Mn = n 
( « = 0, ..., d i m / / ) , and such that each M„ is invariant under A. On a Hilbert space 
of dimension the appropriate definition is this: A is triangular if there exists an 
increasing sequence {M„} of finite-dimensional subspaces whose union spans H 
such that each Mn is invariant under A. It is easy, but not obviously desirable, 
to fill in the dimension gaps, and hence to justify the added assumption that 
dim M„ = n (« = 0, 1, 2, ...). 

In many considerations of invariant subspaces ( M c M ) it is convenient 
to treat their projections instead (AE = EAE). In terms of projections a necessary 
and sufficient condition that an operator 4 on a separable Hilbert space H be 
triangular is that 

(A) there exists an increasing sequence {£„} of projections of finite rank such 
that En — 1 (strong topology) and such that AEn — EnAEn = 0 for all n. 

This formulation suggests an asymptotic generalization of itself. An operator A is 
quasitriangular if 

(zl,) there exists an increasing sequence {£•„} of projections of finite rank such 
that En — 1 (strong topology) and such that \\AEn — EnAEn||—0. 

(Informally: E„ is approximately invariant under A.) The concept (but not the name) 
has been seen before; it plays a central role in the proofs of the Aronszajn—Smith 
theorem [1] on the existence of invariant subspaces for compact operators, and 
in the proofs of its various known generalizations [2], [3], [5]. 

*) Research supported in part by a grant from the National Science Foundation. 
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It is interesting and useful to examine a variant of the condition (A,); the 
variant requires that 

(A 2) there exists a sequence {£„} of projections of finite rank such that En-+\ 
(strong topology) and such that \\AEn — EnAE„\\ —0. 

The only difference between Ai and A2 is that the latter does not require the 
sequence {£„} to be increasing. 

There is still another pertinent condition. The set of all projections of finite 
rank, ordered by range inclusion, is a directed set. Since E — \\AE—EAE\\ is a net 
on that directed set, it makes sense to say that 

(A0) \\mmi\\AE-EAE\\ = 0. 

What it means is that for every positive number e and for every projection E0 of 
finite rank there exists a projection E of finite rank such that E0^E and 
\\AE-EAE\\<e. 

The purpose of this paper is to initiate a study of quasitriangular operators. 
The study begins with the observation that approximately invariant projections 
that are large (in the sense of having large ranks) always exist (Section 1). The main 
result is the characterization of quasitriangular operators; it asserts (for separable 
spaces) that the conditions A 0 , A 1 , and A2 are mutually equivalent (Section 2). 
This characterization is applied to show that there exist operators that are not 
quasitriangular. On the other hand the set of quasitriangular operators is quite 
rich (Section 3); it is closed under the formation of polynomials, it is closed in the 
norm topology of operators, it is closed under the formation of countable direct 
sums, and it contains, for example, all operators of the form N + A " where A^is normal 
and K is compact. The paper concludes with a few questions (Section 4). Sample: 
is it true for every operator A that either A or A* is quasitriangular? 

Section 1 

Sequences of approximately invariant projections that are not required to be 
"large" always exist. A precise statement is this: for each operator A there exists 
a sequence {£„} of non-zero projections of finite rank such that ]\AE„ —E„AE„\\ —0; 
in fact the E„'s can be chosen to have rank 1. The proof is immediate f rom the existence 
of approximate eigenvalues and eigenvectors. Let A be a scalar and {e„} a sequence 
of unit vectors such that \\Ae„ — Xen\\ —0. If the projections En are defined by E„f= 
= (/» en)en, then 

(AEn - EnAEn)f= ( f en)(Aen - (Aen, en))en. 

Since (Ae„,e„)-A, it follows that \\AEn-EnAEn\\ - 0 . 
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Since every operator has approximately invariant projections of rank 1, it is 
tempting to conclude, via the formation of finite spans, that every operator on an 
infinite-dimensional Hilbert space has approximately invariant projections of 
arbitrarily large finite ranks. The theory of approximate invariance turns out, 
however, to be surprisingly delicate. It is, for instance, not true that the span of 
two approximate eigenvectors is approximately invariant. More precisely, there 
exists a 3 X 3 matrix A and there exist two projections F and G of rank 1 such that 
F is invariant under A, G is nearly invariant under A, but if E=FyG, then 
\\AE-EAE\\ = \. In detail: put 

A = 

let F be the projection onto (0, 1, 0), and let G be the projection onto (a, b, 0), 
where \a\2 + \b\2 = 1 and a is "small" (but not 0). It is easy to verify that 

0 0 o' [ W 2 ab* 0' 1 0 o 1 

F= 0 1 0 , G = a*b \b\2 0 , E= 0 1 0 

,0 0 0, 0 0 0, ,0 0 0, 

\\AF-FAF\\=0, \\AG-GAG\\ = \a\, and \\AE-EAE\\ = \. 

This example, informal in its interpretation of "nearly invariant", can be 
used to construct an example of two sequences of approximately invariant projections, 
in the precise technical sense, such that the sequence of their spans is not approxi-
mately invariant, as follows. Let H be the direct sum HY © H2 © . . . of 3-dimensional 
spaces such as played a role in the preceding paragraph, and let the operator A 
on H be the direct sum Ax ®A2 © . . . of the corresponding operators. Let F„ be the 
direct sum projection whose summand with index n is the previous F and whose 
other summands are 0; let Gn be the direct sum projection whose summand with 

index n is the previous G with a = — and whose other summands are 0. It follows 
n 

that \\AFn-F„AFJ={) for all n, \}AGn - GnAG„\\ - 0 , and, if En = Fn\IGn, then 
\\AEn-EnAEn\\=\. 

It is slightly surprising that, despite the evidence of the preceding example, 
approximately invariant projections of arbitrarily large ranks always exist. 

T h e o r e m 1. If A is an operator on an infinite-dimensional Hilbert space, e is 
a positive number, and n is a positive integer, then there exists a projection E of rank 
n such that \\AE — EAE\\ < e . 

P r o o f . For h — 1, the result was derived f rom the existence of approximate 
eigenvectors. The idea of the inductive proof that follows is that although near 
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invariance is not preserved by the formation of spans, it is preserved by the formation 
of orthogonal spans. Given e and n, assume the result for n, and let F be a 
projection of rank n such that \\AF— FAF\\<E/2. Since the compression of A 
to ran (1 — F) (i.e., the restriction of (1 — F)A(\ — F) to ran (1 — F)) has approxi-
mately invariant projections of rank 1, it follows that there exists a projection G 
of rank 1 such that G ± F and 

||(1 - F)A (1 - F)G - G(1 - F)A( 1 - F)G|| < a/2. 

(Find G on ran (1 — F) first and then extend it by definining it to be 0 on ran F.) 
Since G(1 — F) = (1 — F)G = G, the last inequality is equivalent to 

110 — — G ) A G \ \ <e /2 . 

If E = F+G, then E is a projection of rank n + 1 and 

\\AE-EAE\\ = \\(\-E)AE\\ = ||(1 - F ) ( l - G ) A ( F + G ) \ \ = 

= ||(1 - G)(l - F)AF+ (1 - /00 - G)AG\\ ^ ||(1 - F)AF\\ +1|(1 - F)(l - G)AG\\^e. 

Section 2 

It is trivial that the definition of quasitriangularity ( A i m p l i e s the weakened, 
form (d 2 ) (obtained from ( ¿ j ) by omitting the word "increasing"). It is also quite 
easy to prove that if, on a separable Hilbert space, lim inf \\AE—EAE\\ = 0 (A0), 

E-* X 
then A is quasitriangular (¿Ij). Indeed, let {e1,e2,...} be an orthonormal basis 
for the space. By (A0) there exists a projection Et of finite rank such that ej £ran E, 
and \\AEY — ElAEi\\ < 1. Again, by (A0), there exists a projection E2 of finite rank 
such that Et ^ E2, • e2 6 ran E2, and \\AE2— E2AE2 In general, inductively, 
use(<d0)toget aprojection En+i of finite rank such that En^En+l, eh+1£ ran Ea+1, 

and \\AEn+l — En+iAEn+i\\ < — i - r . Conclusion: {£„} is an increasing sequence 
/7 + 1 

of projections of finite rank such that En~* 1 and such that \\AE„—E„AEn||—0; 
in other words A is quasitriangular, as promised. 

The non-trivial implication along these lines is the one from (A2) to {A^). The 
proof depends on a lemma according to which if two projections have the same 
finite rank and are near, then there is a "small" unitary operator that transforms 
one onto the other. (For unitary operators "small" means "near to 1".) A possible 
quantitative formulation goes as follows. 

Lemma 1. If E and F are projections of the same finite rank such that || E — F\\~ 
= e<l, then the infimum of ||1— W\\, extended over all unitary operators W such 
that W*EW= F, is not more than 2e*. 
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The lemma can be improved, but the improvement takes considerably more 
work and for present purposes it is not needed. A trivial improvement is to drop 
the assumption that E and F have the same rank and recapture it f rom the known 
result [7, p. 58] that the inequality \\E—^11 < 1 implies rank E — rank F. Another 
qualitative improvement is to drop the assumption that the ranks are finite and 
pay for it by introducing partial isometries instead of unitary operators. The best 
kind of improvement is quantitative; the estimate 2e* can be sharpened to 
2*[1 — (1 — £2)*]*. For a discussion of such results and references to related earlier 
work see [4]. Conjecturally the sharpened estimate is best possible, but the proof 
of that does not seem to be in the literature. 

P r o o f . The equality of rank E and rank /"implies the existence of a unitary 
operator IV0 such that W%EW0 = F. Write E, F, and W0 as operator matrices, 

according to the decomposition 1 =E+(\ — E), so that, for instance, (q q] • 

I f W o = ^c t h e n w ° = {B* i>*) ' a n d t h e r e f o r e 

IT* IT, (A*A + C*C A*B + C*D) {1 0 W%W o = 
\B*A+D*C B*B + D*DJ (0-1, 

(A* A YL*^ 

D* A D*D ' 

B A B B) 
Since the norm of each entry of a matrix is dominated by the norm of the matrix, 
it follows that 

\\C*C^=\\1-A*A\\^B a n d || 1 ~D*D\\ = \\B*B\\ ^ e. 

Observe next that if U and V are unitary operators on ran E and ran (1 — E) 

respectively, and if Wt = ^ , then IV, commutes with E, and, therefore, Wl fV0 

transforms E onto F (just as W0 does). The purpose of the rest of the proof is to 
choose U and V so as to make ||1 — W1W0\\ small. Since 

f l -UA - U B ) 
-VC 1 — VDI' 

•\-wtw0 = 

and since the norm of a matrix is dominated by the square root of the sum of the 
squares of the norms of its entries, it is sufficient to prove that by appropriate choices 
of U and V the entries of the last written matrix can be made to have small norms. 
The off-diagonal entries of 1 — JVt W0 are easy to estimate: 

\\-VC\\2=\\C\\2=\\C*C\\^s and || - UB\\2 = \\B\\2 = \\B*B\\ == e. 

In these estimates U and V are arbitrary unitary operators; it is only in the next step 
that they have to be chosen so as to make something small. 
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Observe that since the ranks of E and F are finite, the lemma loses no generality 
if it is stated for finite-dimensional spaces only; the infinite-dimensional case is 
recaptured by applying the finite-dimensional lemma to E and F restricted to 
ran E V ran F and extending the resulting unitary operator by defining it to be the 
identity on the orthogonal complement of ran E V ran F. In the finite-dimensional 
case A is the product of a unitary operator and (A*A)* (polar decomposition); 
let U be the inverse of the unitary factor. With this choice 1 — UA becomes 1 —P, 
where P = (A* A)*. Since ^ 1, so that O ^ P 2 1, it follows that 

. ==1— P2, and hence that 

| | 1 - C M | | = II1 -^11 351| 1 ~P2\\ = II l-A*A\\. 

A similar argument for D produces a unitary V such that ||1 — VD\\ —D*D\\. 
Conclusion: 

\\l — W i W q W 2 ^ 2(e + e2) S 4e, 

and the proof of the lemma is complete. 
The ground is now prepared for the proof of the principal result. 

T h e o r e m 2. If {£„} is a sequence of projections of finite rank such that £„ — 1 
(strong topology) and such that \\AE„ — E„AE„\\ — 0, then lim inf \\AE — EAE\\ = 0. 

P r o o f . It is to be proved that if e > 0 and if E0 is a projection with 
rank E0 = n0< °o, then there exists a projection E of finite rank such that E0^E 
and \\AE—EAE\\ < e. 

Let 5 be a temporarily indeterminate positive number; it will be specified, 
in terms of e, later. Suppose that {e1 ; ..., e„0} is an orthonormal basis for ran E0. 
The two limiting assumptions imply the existence of a positive integer n such that 
\\ej-Enej\\<5lYiro ( ; = 1, ..., n0) and \\AE„-E„AEn||<<5. The first of these in-
equalities implies that if d is sufficiently small, then the set {E n e Y , ..., Ene„0} is linearly 
independent. (The proof is easy and is omitted here; it is explicitly carried out in 
[6].) Let F0 be the projection (of rank n0) onto their span; note that F0^En. (The 
n here used will remain fixed from now on.) 

no 
If / i r a n i ' o , so t h a t / = 2 then 

} = i 

Wf-FofV = II ZZj(ej-Enej)\\2 ^ (21^1 • \\ej-Enej ||)2 S 
. j j 

j j 
and therefore 

P T o - ^ o l l ^ <5-
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This shows that E0 is approximately dominated by F0; what is needed for the rest 
of the proof is the stronger assertion that E0 is approximately equal to F0. 

By definition, ran F0 is spanned by the vectors F0ej( = Enej), j=l, ..., n0; 
it follows tha t ran F 0 = ran F0E0. In other words, the restriction of F0 to ran E0 

maps ran E0 onto ran F0. Call that restriction T; then T is a linear t ransformat ion 
f r o m a space of dimension n 0 onto a space of dimension n 0 , and, consequently, 
T is invertible. Since the spaces involved are finite-dimensional, the t ransformat ion 
T~l is bounded, but that is not enough informat ion ; what is needed is an effective 
estimate of | | r _ 1 | | . Tha t turns out to be easy to get. I f / £ r a n £ 0 , then 

II Fo/l l S ll/H - | | / - F 0 / | | S ll/H - ¿ll/H = ( 1 - ¿ ) ] | / l l , 

and therefore || r _ 1 | | s 1 . 
l — o 

The inequality \\E0 — F0E0\\ S<5 shows that F0 is near to E0 on ran E0; the 
next step is to show tha t F0 is near to E0 on r a n ± E 0 . Suppose therefore tha t 

/_L ran E0, i.e., that E0f= 0, and write g = T~1F0f. Since g £ ran E0, it follows 

that F0g=Tg = F 0 f , or F0E0g=F0f; note that ||*|| 35 y ^ 11/11- Since \\F0f- E0g\\ s 

35 ||F0f-F0E0g\\ +1| F0E0g-E0g\\ S ¿ | | Y ^ W f W , it follows that 

II FofW2 = ( F 0 f , / ) ^ I F 0 f - E0g, f ) | + |(E0g,/)l ^ WfW2 

((E0g,f) = 0 because £ 0 / = 0 ) , and hence that 
1/2 

| | F 0 ( 1 - F 0 ) | | S I j ^ ' 

This inequality together with \\E0 — FqFoH S 5 yields 

( (5 V / 2 

IIFo-FollS^ + ^ ^ j =y. 

Lemma 1 is now applicable. Choose 5 small enough to make sure that y < 1 
and conclude that there exists a unitary operator W such that JV*E0 W= F0 and 
| | 1 - W\\s2fy. Write E=WEnW*. Since F0^En, it follows that E0^E; all that 
remains is to verify that E can be forced to be within e of being invariant under A. 
T h a t is easy; since 

\\AE-EAE\\ = \\A(WEnW*)-(WEnW*)A(WEnW*)\\, 

and since the right hand term depends continuously on W, it follows that if W is 
chosen sufficiently near to 1 (i.e., if 5 is chosen sufficiently small), then the right 

19 A 
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hand term can be made arbitrarily near to \\AEn — EnAEJ, within e/2 of it, say. 
Since \\AEn — EnAEn^<5, it might now be necessary to make <5 a little smaller 
still, so as to guarantee <5<e/2; after this modification it will follow that , indeed, 
\\AE-EAE\\<E. 

The first definition of quasitriangularity (zlj) is quite hard ever to disprove; 
how does one show that there does not exist a sequence with the required propert ies? 
Theorem 2 makes the job easier. For an example suppose that {e0, el, e2, ...} 
is an or thonormal basis and let U be the corresponding unilateral shift. The prop-
erties of U that will be needed are tha t it is an isometry (U*U= 1) whose adjoint 
has a non-trivial kernel (U*e0= 0). 

T h e o r e m 3. The unilateral shift is not quasitriangular. 

P r o o f . Let E0 be the projection (of rank 1) onto e0. The proof will show 
that if £ is a projection of finite r ank such that E0^E (i.e., e 0 £ r a n E), then 
[| UE— EUE\\ = 1. 

Put D = UE-EUE = (\-E)UE. Clearly | |Z>| |^1; the problem is to prove 
the reverse inequality. Observe tha t D*D=EU*{\-E)-(\-E)UE=EU*UE~ 
EU*EUE=E-(EUE)*(EUE). The finite-dimensional space ra nE reduces 
both E and EUE, and on its or thogonal complement both those operators vanish. 
It follows that if T is the restriction of EUE to ran E, then ||D*D|| = || 1 - T*T\\; 
the symbol " 1 " here refers, of course, to the identity operator on ran E. 

Now use the assumption that e0 £ ran E and observe that T*e0 = EU*Ee0 = 
=EU*eo = 0. Since T* is an operator on a finite-dimensional space and has a non-
trivial kernel, the same is t rue of T*T. (The falsity of this implication on infinite-
dimensional spaces is shown by U itself.). If / is a unit vector in ker T*T, then 
||(1 - T*T)f\\ = 1, and therefore || 1 - T*T\\ m 1; the proof of the theorem is complete. 

Section 3 

It is not difficult, to see that a polynomial in a quasitr iangular operator is 
quasitr iangular. Suppose indeed that {E„} is a sequence of projections such tha t 
\\AEn — EnAEn\\ —0, and let p be a polynomial. Since AE„—EnAE„ is linear in A, 
it is sufficient to prove the assertion for monomials, p(z) = zk, and that can be done 
by induction. The case k = 1 is covered by the hypothesis. (Note icidentally tha t 
constant terms can come and go with impuni ty: (A + X)En — En(A + X)E„ = AE„— 
E„AE„.) The induction step f rom k to k + 1 is implied by the identi ty: 

(1 - En) Ak+1 En = ((1 - En) Ak+1 En - (1 - En)AEnA"En) + (1 - En)AEnAk En = 

= (1 - En)A{{ 1 - En)AkE„) + ((1 - En)AE„)AkE„. 
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W. B. ARVESON has proved that an operator similar to a quasitriangular one is 
also quasitriangular. The result of the preceding paragraph and ARVESON'S result are 
closure properties of the set of all quasitriangular operators. The next two results 
are of the same k ind . 

T h e o r e m 4. A countable direct sum of quasitriangular operators is quasi-
triangular. 

P r o o f . Suppose that for each j( —1,2,3, ...) A(j) is an operator and {E(„r>} 
is a sequence of projections of finite rank such that \\AU)E<-,J) — E^A&Eyw -» 0 
as « — °o. Write A = A(1) @A(2) © . . . . For each fixed k, find nk so that \\AU)Ej,J)-

-E' n
j ) A U ) E t

n
i ) | | < ~ when 1 ^ j s k and n^nk; write Ek = E^©... ©E™ ©0©0©.... 

The Ek's are projections of finite rank. Since E(„J
k
} -<-1 as k °o (strong topology) 

for each j, it follows that 

£*</(1),/(2),/(3), ..'.> - </(1>,/<2\/(3>, .••> 

whenever the vector ( / ( 1 ) , / ( 2 ) , / ( 3 ) , . . .) is finitely non-zero. The boundedness of 
the sequence { E J implies that Ek — 1 (strong topology). Since \\AEk — EkAEk|| = 

= m a x { \ \ A U ) E № - E ^ A ^ E ^ : j= 1, ..., k} < ^ , the proof is complete. 

T h e o r e m 5. The set of quasitriangular operators is closed in the norm topology. 

P r o o f . Suppose that An is quasitriangular and ¡\A„ — A\\ —0. Given a positive 
number e and a projection E0 of finite rank, find n0 so that \\A — Ano\\ < s /3 , and 
then find a projection E of finite rank such that E0^E and \\A„0E — EA„0E\\ c e / 3 . 
It follows that \\AE-EAE\\^\\AE-AnoE\\+UnoE-EAnoE\\ + \\EAnaE-EAE\\^z. 

Theorem 4 implies (and it is obvious anyway) that (on a separable Hilbert 
space, as always) every diagonal operator is quasitriangular. Since every normal 
operator is in the closure of the set of diagonal operators, Theorem 5 implies that 
every normal operator is quasitriangular. 

A similar application of Theorem 5 shows that every compact operator is 
quasitriangular; what is needed is the easy observation that every operator of finite 
rank is quasitriangular. For compact operators, however, more is t rue; not only 
does there exist a well behaved sequence of projections, but in fact all " large" 
sequences are well behaved. That is: if A is compact and if {£„} is a sequence of 
projections such that En — 1 (strong topology), then \\AE„ — E„AEn\\ -»0. The following 
formulation in terms of the directed set of projections of finite rank is more elegant; 
the assertion is that lim inf can be replaced by lim. 

L e m m a 2. If A is compact, then lim \\AE — EAE\\=Q. 
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P r o o f . Given a positive number e, find an operator F of finite rank such that 
\\A — -F|| <e /2 , and then find a projection E0 of finite rank such that FE0 — EQF= F. 
If E is a projection of finite rank such that E0 ^ E, then 

\\AE~EAE\\ S \\AE-FE\\+\\FE-EFE\\+\\EFE-EAE\\ < e. 

Lemma 2 implies that an operator of the form A + K , where A is quasitriangular 
and K is compact, is quasitriangular; in particular so is every operator of the form 
N+K, where .N is normal and K is compact. 

Still other quasitriangular operators of interest have arisen in the various 
generalizations of the Aronszajn—Smith theorem on invariant subspaces of compact 
operators. Thus, for instance, a crucial step in the treatment of polynomially compact 
operators [5] is the proof that every polynomially compact operator with a cyclic 
vector is quasitriangular. In their generalization of the invariant subspace theorem 
for polynomially compact operators, ARVESON and F E L D M A N [2] need and prove 
the statement that every quasinilpotent operator with a cyclic vector is quasitriangular. 

Section 4 

Quasitriangular operators first arose in connection with the invariant subspace 
problem, but their status in that connection is still not settled. 

Q u e s t i o n 1. Does every quasitriangular operator have a non-trivial invariant 
subspace ? 

Experience with compact and polynomially compact operators suggests that 
the answer to Question I is yes. On the other hand, if the answer is yes, then it follows 
that every quasinilpotent operator has a non-trivial invariant subspace. Since it 
is a not unreasonable guess that the general invariant subspace question is equivalent 
to the one for quasinilpotent operators, and since the answer to the general invariant 
subspace question is more likely no than yes, the compact and polynomially compact 
experience comes under suspicion. 

PETER R O S E N T H A L suggested a more concrete way of connecting Question 1 

with quasinilpotent operators. It is quite a reasonable conjecture that the spectrum of 
every unicellular operator is a singleton. (An operator is unicellular if its lattice 
of invariant subspaces is a chain.) Every transitive operator is obviously unicellular. 
(An operator is transitive if it has no non-trivial invariant subspaces.) The truth of 
the conjecture would imply therefore that, except for an additive scalar, every 
transitive operator is quasinilpotent, and hence, once again, an affirmative answer 
to Question 1 would imply an affirmative answer to the general invariant subspace 
question. 
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Q u e s t i o n 2. If the direct sum of. two operators is quasitriangular, are both 
summands quasitriangular ? 

This question is due to C A R L PEARCY. He has proved that if A © 0 is quasi-
triangular, then A must be, but the general case is open. An interesting related 
question concerns the unilateral shift U: is U®U* quasitriangular? If the answer 
to Question 2 is yes, then the answer to this question about U must be no. What 
is known, as a special case of PEARCY'S result, is that U® 0 is not quasitriangular. 

Q u e s t i o n 3. Is it true for every operator that either it or its adjoint is quasi-
triangular? 

The only example presented above of an operator that is not quasitriangular 
is the unilateral shift U; a glance at the matrix of U proves that U* is quasitriangular. 
If the answer to Question 3 is yes, then Question 1 is equivalent to the general in-
variant subspace question. Since U®U* is unitarily equivalent to its own adjoint, 
it follows that an affirmative answer to Question 3 would imply that U® U* is quasi-
triangular, and, therefore, that the answer to Question 2 is no. There are other 
interesting and unknown special cases of Question 3. Thus, for instance, by an 
improvement of the argument that proved that U is not quasitriangular, P E A R C Y 

has obtained a large class of operators that are not quasitriangular; one of them 
is 3U+ U*. It is not known whether the adjoint of that operator is quasitriangular. 
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A characterization of thin operators 

By R. G. DOUGLAS and CARL PEARCY in Ann Arbor (Michigan, U.S.A.) 

Let § be a separable, infinite dimensional, complex Hilbert space, and let 
JS?(§) denote the algebra of all bounded, linear operators on § . In [2], H A L M O S 

initiated the study of the class of quasitriangular operators on § . These operators 
may be defined as follows. Let 0 denote the directed set consisting of all finite 
dimensional (orthogonal) projections in i ? ( § ) under the usual ordering (P = Q 
if and only if (Px, x)^(Qx, x) for all For a fixed A ££?(%>), the map 
P — \\PAP — AP\\ is a net on SP, and A is quasitriangular provided 

lim 'mf^PAP — AP^ = 0. 

(The definition of quasitriangularity given in [2] is actually somewhat different. 
That the above is an equivalent definition is [2, Theorem 2].) Among the quasi-
triangular operators are the operators of the form X + C where A is a scalar and 
C is a compact operator. In this note we call such operators A + C thin operators. 
Among the quasitriangular operators are also the operators A that satisfy 

(H) lim IIP/1P —/4P|| = 0. 

H A L M O S has conjectured that an operator has property ( H ) if and only if it is thin. 
The purpose of this note to prove that conjecture. 

To accomplish this, we first obtain an interesting characterization of the //-
function of B R O W N and P E A R C Y [1] in terms of the nets P — \\PAP — AP\\. Recall 
that the //-function is defined on SC(§>) by the equation 

t](A) = lim [ sup \\Ax — (Ax, x)x| |] . 
PZ& x6( l -P)S 

11*11 = 1 

T h e o r e m 1. For every A£ J5f(§), 

i](A*) = lim sup \\PAP — AP\\. 
Pi» 

P r o o f . It clearly suffices to prove that 

ri(A) = l i m s u p | | / M ( l - P ) | | 
Pi» 
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for every A £ Jf(§>), since then 

rj(A*) = l imsup ||Py4*(l — P)|| = lim sup ||(1 -P)AP\\. 

Thus let A <E .£?($) be fixed, and let 

l imsup 11^ (1 -^ )11 = a. 
Pi» 

Let also e > 0 and P o £0> be given. Then, by definition, there exists P s u c h 
that P^PQ and 1 ^ , 4 ( 1 - P J H > a - e . It follows that there is a unit vector 
, y € ( l - P i ) 5 such that \\PiA(\-Pi)y\\^a.-e. Since Ay can be written as Ay = 
= [Ay-(Ay, y)y] + (Ay, y)y and Pty = 0, we have 

\\Ay~(Ay, y)y\\ ^\\P,Ay\\ - P , ) j | | 

Since t](A) can be written as 

r/(A) = lim sup[ sup \\Ax-(Ax,x)x\\], 
P i . ® x i ( l - P ) % 

11*11 = i 

we have shown that tj(A)^a. 
To complete the proof, we show that a^>i(A). Let <5 > 0 and a finite dimensional 

projection P2 be given. It suffices to exhibit a finite dimensional projection Q^P2 

and a unit vector z in the range of 1 — Q such that \\QA(l — Q)z\\ >q(A) — 6-
To find such a projection Q and such a vector z, we proceed as follows. The 
definition of t\(A) guarantees that there exists a projection P3 6 0> such that for every 
finite dimensional projection P s P 3 , there exists a unit vector xp in the range of 
(1 — P) such that \\Axp — (Axp, xp)xp\\> rj(A) — S. Choose P 4 s P 2 , P 3 , and let 
z( = xPA) be a unit vector in the range of (1 — P4) such that \\Az — (Az, z)z|| > r](A) — 5. 
Finally, let Q be the finite dimensional projection that is the supremum of P 4 and the 
one dimensional projection whose range is Az — (Az,z)z. Since z is perpendicular to 
the range of P 4 and also to the vector Az — (Az, z)z, z is perpendicular to the range 
of Q. In other words, z is a unit vector in the range of 1 — Q, and the inequality 

|| QA{ 1 - Q)z\\ = || QAz\\ = || Q[Az - (Az, z)z] + Q(Az, z)z|| = | \ A z - (Az, z)z|| > n(A) - 5 

completes the proof. 

T h e o r e m 2. An operator A £¿£(9j) has property (H) if and only, if A is thin. 

P r o o f . Clearly A is thin if and only if A* is thin, and according to [1, Theorem 1], 
A* is thin if and only if ij(A*) — 0. Finally, f rom Theorem 1 we see that rj(A*)=0 
if and only if 

lim sup ||(1 —P)AP l| = 0, 

or, what is the same thing, if and only if A has property (H) . 



Thin operators 297 

We conclude this note by observing that the problem treated above makes 
sense in any von Neumann algebra. To be specific, let si be any von Neumann 
algebra, let J be any uniformly closed ideal in si, and let 3P denote the directed 
set of projections in J. It is not hard to see that every operator of the form A =A + J, 
where satisfies 

Mm^PAP—AP\\ = 0. 
PÎP 

Is the converse true? 
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^ On the power-bounded operators of Sz.-Nagy and Foias 
By J O H N A. R. HOLBROOK in San Diego (California, U.S.A.) *) 

1 . In [6] SZ.-NAGY and FOIA§ considered, for each Q > 0 , the class C E of operators 
T on a given complex Hilbert space $ having the following property: for some 
Hilbert space ft containing § as a subspace and some unitary operator U on ft, 
T" = QP^U" {n = 1 , 2 , 3 , . . . ) , where denotes the orthogonal projection of 
S\ onto It had been shown previously that C 1 ={T: | |R | | S 1} (see SZ.-NAGY [5]) 

and that C 2 = {T: 1} (see BERGER [1]), where W(T) denotes the "numerical 
radius" of T, namely sup {\{Th, h)\: h£§> and It seemed natural to us 
to introduce the functions we defined on the space i>?($>) of operators on § in such 
a way that (a) we is homogeneous (w„(zT) = \z\we(Tj), and (b) w„(T) ^ \<=>T£C„. 
In this way we obtain a family of "operator radii" which includes the familiar norms 
| |- | |( = M'1(-)) and w( ' ) ( = w 2 (0) and which has a number of.interesting properties. 
Recently we received f rom J. P. WILLIAMS a preprint of [8] where he, too, introduces 
the functions w , stressing properties different f rom those which concern us here. 

One can, of course, show that WE(T
N)-^(WQ(T))

N for all and all « ^ 1 
(recall the "power inequality" W{T N)^(W(T)) N of BERGER); here however we shall 
deal with somewhat different kinds of multiplicative behavior in the operator radi i . 
we(-) (see § 4 and § 6 below). A basic result of this nature is the inequality i v e ( r ( rS ) s 
^ vt'„(7,)it'<T(S), holding whenever T and S double commute. 

We shall also show that another well-known "operator radius", namely the 
spectral radius v(-) may be adjoined in a natural way to our family {vf£,(-)}13>o; 
in fact, if we let WM{T) = lim W.(T), we find that WJT) = V(T). This result, 

and others concerning the relationship between v(T) and ive(T) are discussed in § 5. 
These techniques may be applied to yield information about the classes C A 

themselves. We shall see, for example, that although SZ.-NAGY and FOIA§ have 
shown that (J CE does not contain every "power-bounded" operator (see [6], § 4), 

e> 0 
nevertheless U CG is dense in the class of all power-bounded operators. 

e>o 

*) Research partially supported by grant No. AF-AFOSR 1322—67. 
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2. We shall use the following two characterizations of the classes Ce. Both 
of these theorems are immediate consequences of the Theorem of [6] (or of its proof) 

For and e > 0 define Te(ri) as follows: 

7 » = - ± - T " i f > i = l , 2 , . . . ; Ta(0) = I; Te(n) = I (T*)~" if n = - 1 , - 2 , . . . . 

T h e o r e m 2. 1. Given o > 0 and ,£?(£)) we have T^Ce i f , and only i f , 
OO 

2 r^e'"e r c ( « ) s 0 for every 0 and r such that 0 s . r < l . It is understood that the 
n= -co 

series converges absolutely, i.e., 2 '•'"'II^OOH -= 00 > whenever 
» = — CO 

T h e o r e m 2 . 2 . Given o > 0 and we have T f , Ca i f , and only i f , 
v(T) ^ 1 , and for each h £ £> and each complex z such that |z| < 1, 

( * ) R e ( ( / - z r ) M ) s l - { ) 1 - y j W-zT)h\\\ 

If Q = 2, the condition on the spectral radius is redundant '). 

As S Z . - N A G Y and FOIAÇ point out in [6], it is a simple matter to use Theorem 2 . 2 

to derive the earlier results of S Z . - N A G Y and B E R G E R that ^ = {3": | | R | | S L } and 
Ci — {T'- w(T) ^ 1}. 

3. For each p > 0 , we define the function wB on =§?(§) as follows: 

, (70 = inf |m: m > 0 , - ^ - 7 6 C e J . 

T h e o r e m 3.1. wg(-) has the following properties: 
(1) W e ( T ) ^ co; 

( 2 ) » V C ( R ) > 0 unless T=0; in fact, we(T)^— | | R | | ; 

(3) we{zT) = \z\we(T)-
( 4 ) W E ( 7 0 S L ~ R € C E . 

P r o o f . To prove (1) we need only show that, for some u > 0 , vT£Ce. However, 
if 0 s = r < l and z = rei0, 

2 r\'\eM{vT)Q{n) = 7 - — Re 2 i^Tf S 1 - — 2 (»11 r I D " I 1 ^ 0 

«= 8 n=i ( Q 71=1 ) 

provided i>||r|| is sufficiently small. For such v, then, by Theorem 2. 1, vT£CQ. 

') By a recent result, it is actually redundant for any o; cf. CH. DAVIS, The shell of a 
Hilbert-space operator, Acta Sci. Math., 29 (1968), 69—86 (Prop. 8. 3). 
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- Q so that (2) follows once we observe that, if 0 < w < —1171, we have — T 
Q u 

we cannot have T=QPSIU for any unitary operator U . 

For the proofs of (3) and (4) we shall need the following result: T£Cg and 
|z| S 1 =>zT£ Ce. To see this note if that T£ Cg we have a unitary operator U on ft 3 § 
such that T" = QP^U" (« = 1 , 2 , 3 , . . .); thus {zTf = QP^(zUf. But, if |z |=§l, then 
||z 171| S 1 so that zU£Cl for the new space ft; letting V be a unitary operator on 
fttoft such that {zU)n = PstVn, we see that (with the obvious interpretation) 
{ZT)" = QP^V\ SO that, indeed, zT£Ce. 

Recalling Theorem 2.1, it is clear that 0£Cg for every and it follows 
easily that w e(0) = 0. Thus (3) certainly holds when | z | = 0 . Turning to the case 
where | z | > 0 , write z = reie and observe that, by the result of the last paragraph, 
we can assert that, for every S £&(!£)), e ' e S £ C e C e . We may thus perform 
the following calculation: 

|z| we (T) = r ( i n f j u : u > 0 , 1 T 6 CeJ j = 

= inf.jra: u > 0, rT£ CeJ = inf jra: u > 0, ~ rew CeJ = 

= inf jw: U > 0, ^ zT£ CeJ = we(zT). 

The implication (<=) in (4) is immediate f rom the definition of we. To prove 

(=>) assume that wg(T)^0 and observe that we always have un > 0 such that Cg 
un 

and un\we{T); it follows easily, using Theorem 2. 2, that ^ l i m i j T£Cg, i.e., that 

— [ I f wg(T){=\wg(T)\)^\, we conclude that 

Finally, if WE(T) = 0, then T= O by (2), and, as noted earlier, we always have 
0£Ce. Q.e.d. 

For £> = 1 and Q = 2, of course, vve(0 is actually a no rm; more generally we 
have the following result. 

T h e o r e m 3. 2. The function vve is a norm on whenever 

P r o o f . Equivalently, we must show that Cg is a convex body in =Sf(§) whenever 
g g 2 . Suppose, then, that T, S£CQ; by Theorem 2. 2 we have, for every h £ § 
and complex z such that | z | < l , 

Re((I-zT)h,h) ^ ( l - y ) W~zT)hf 
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and an analogous inequality for 5. It follows that, if X, / / ^ 0 and X + p = 1, we have 
R»' 

Re ((I-z(XT+nS))h, / / ) i ? ( l - f ) [X\\(I — zT)h\\2 +• ft\\(I - z S)h\\2]. 

For any x, j£J£> we have X\\x\\2 + /i||y\\2 ^\\Xx + [iy\\2, as the following calculation 
shows: A\\x\\2 + n\\y\\2-\\Ax + w\\2 = {X-A2)||x||2 + -n2)\\y\\2-2Xn Re (x, y)* 
^X(l-X)\\x\\2 + (l-fi)n\\y\\2-2Xn\\x\\-\\y\\ =^¿(11x11 - | | j | | ) 2 ^ 0 . Since ^ 2 , we 

have — - | j 5 0 ; thus 

R e ( ( / - z ( A T + / i S ) ) M ) ^ ( l - f ) \\X(I — zT)h + ii(I—zS)h\\2 = 

= [ l - | ] | | ( / - z ( A r + ^ ) ) / i | | 2 . 

Using Theorem 2. 2 again, we conclude that XT+ ¡.iS^Ce. Q.e.d. 
As a by-product of the results of § 6, we shall see that we(-) fails to be a norm 

whenever ¡ j > 2. 

4. In this section we discusss some of the basic inequalities governing the operator 
radii ii^.)'-

The following theorem comes as no surprise; it is simply a generalization of 
BERGER'S proof of the "power inequality" w(T") S ( IV(T))n (a conjecture of HALM OS ) . 

T h e o r e m 4.1. For each o > 0 and we have we(Tk)^(wQ(T))k 

(k = 1,2, 3, ...). 

P r o o f . By Theorem 3.1, we(>) is homogeneous so that we need only show 
that u'e(7") ^ 1 =*wQ(Tk) ^ 1, or equivalently that T£ Ca =>Tk 6 Ce. But if V is a unitary 
operator on such that T" = QPS)ZJn, then ( T k ) n = gPSl(Uk)" and V is unitary. 
Q.e.d. 

In the next theorem we derive a different sort of inequality concerning the 
behavior of the ive with respect to operator multiplication. 

T h e o r e m 4 .2 . If g, i7>0 and T, S€<£?(§), we have wea(TS)^wL)(T)-wa(S) 
provided T and S double commute (i.e., TS= ST and TS* = S*T). 

P r o o f . Again it is clear, using Theorem 3.1 ((3) and (4)), that we need only 
show that TS£CQa whenever T£CB and S£Ca and T, S double commute. 

oo co 

By Theorem 2.1 we have Z r'"''ein0TL>(n)^O and Z r'^ein0Sa{n)^O in 
/1 = — oo /1 = — oo 

the sense described in that theorem. Now it is not hard to prove (see [4], Theorem 3.3) 

that if, in the appropriate sense, Z r^e'"eAn ^ O and Z r^ein0Bn ^ O, then we 
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also have 2trMein9j4„Bn^O, provided AnBm=B,„An for all choices of n and m. 
— oo 

Since T and S double commute we may apply this result to conclude that 

ZrWein9Te{n)Sa(n) = 0. 
Finally, we note that, for every n, Te(n)SJn) = (TS)e„(n) so that, using Theorem 

2.1 once more, we indeed have TS£Cea. Q.e.d. 
In connection with the essential fact of the last theorem — namely that T£Ce, 

S£Ca and T, S double commute imply TS^CQ„ — we wish to mention another 
proof of this result, sent to us recently by Professor SZ.-NAGY, see [5*]. In that proof the 
"unitary gff-dilation" for TS is given explicitly in the form UV where U and V are 
commuting unitary g-and cr-dilations of T and S respectively, constructed simultane-
ously on a space 

If 0 — 2, a = l in the theorem just proved we obtain the inequality w(TS)S 
Svf(T)- | |S | | (if T, S double commute). This result occurs in [4], where a number 
of proofs of the inequality are discussed. 

At this point it is important to determine the value of wQ(I) for each 
2 

T h e o r e m 4 .3 . For g S l , tve(/) = l ; for 0<£>-<l , we{I)= 1. 
Q 

P r o o f . We must determine for which values M>0 we have Using 

Theorem 2. 2 we see that it is necessary and sufficient that 

o 4 - î H ' - Ï l - i -
u 

2 

whenever | z | < l and that v ^ / j s l . The last condition implies that, in any case, 

« ë l . 

Rewriting (*) in the form | l — j s Re — — j , we see that we must consider 

the values of Reu> _ 1 where w lies inside the circle c, of radius — centered at 1. 
u 

Since ~ — 1 ' t is clear that, inverting in the unit circle, we obtain a circle (or 

half-plane) c2 having ( l + as its most westerly point. Thus, the additional 

condition imposed on u by (*) is ~ "§) — + > ^ ^ holds automatically 

2 
f 0 and otherwise reduces to u = 1. 

e 
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Thus / f C e « « £ m a x — l j so that, indeed, tvfl(/) = m a x | l , - ^ — l j . Q.e.d. 

It should be pointed out that the theorem above is included in a result of DURSZT 
(see [3, Theorem 1]) which, upon introducing the functions amounts to the 
evaluation of we(T) for any normal T. In § 5, on the other hand, we shall see that 
Theorem 4 . 3 combined with some general inequalities yields the theorem of DURSZT 
in a somewhat extended form. 

We can now prove some preliminary results concerning the behavior of wa(T) 
for fixed T as Q varies. 

T h e o r e m 4. 4. Suppose T££?(§>) and 0 T h e n we(T)^we{T) and 

we(T) — — l j wi,'(T). Thus we{T) is continuous and non-increasing as q increases. 

P r o o f . Simply combine. Theorems 4. 2 and 4. 3 as follows: 

M T ) = "Vjq e {IT) s 1 v ( / ) . we(T) = 1 . we{T); 
U J e 

= ^ [ J t j ^ c ^ ) ^ ( / ) • wt.(T) = _ 1 j . wB.(T). Q .e . d. 

In view of Theorem 3.1, the fact that we{T) is non-increasing as q increases 
implies that C T O C S whenever Q'>Q. In [6] ( § 3 ) SZ.-NAGY and FOIA§ discuss the 
problem of determining when these inclusions are strict. In essence, they consider 

the operator A defined by the matrix ^J (relative to an or thonormal basis) 

on a 2-dimensional subspace of § (and vanishing on the orthogonal complement) 
and show that QA 6 CE+1 \ C e _ e whenever e > 0 and Q^ 1, and that 

^ G ^ A g C0 \ C^ E ^wheneve r E > 0 and {?<1. Actually, as DURSZT was the first 

to point out (see [3, Theorem 2]), we can show that QA£Ce\Ce-E for every ¡ ? > 0 
and e > 0 , so that the classes Ce fo rm a strictly increasing scale (as Q increases). By 
Theorem 3.1, it is sufficient to show that Wb(QA) = 1 and we_£(i?yl) > 1; but it is 

clear that we(A)= — , for every £?>0, by means of the following observation, which 

we shall have occasion to use several times again. 

T h e o r e m 4. 5. Suppose T€&($),\\T\\ = \, and T2 = 0. Then, for every (?>0, 

P r o o f . As )v1(7,) = ||7,|| = 1 we have T i Q , i.e., for some unitary operator 
i / o n f t = > $ we have T" = PS>U"(n = 1 , 2 ,3 , . . . ) . Since T2 = 0, (QT)" = QT" (n = 1 ,2 , 
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3, ...), so that we have ( g T ) n = gPi)U" (n = 1 , 2 ,3 , ...), i.e., QT^Cs. Thus 

we(gT)^\ and we(T)^~ . But, by Theorem 3.1 (2), wa(T) 1= -1|T\\ = - . Q.e.d. 
Q Q Q 

As we have noted above, we have as an immediate consequence the following 
fact. 

C o r o l l a r y 4.6 (DURSZT). Provided $ is at least 2-dimensional, we have 
z> C0 strictly whenever o' >Q ( > 0 ) . 

5. In this section we discuss the relationship between the spectral radius v(T) 
and the operator radii we(T). 

Since we(T) decreases with increasing Q and is always non-negative, we may 
define, for each r<Ei?($>), wJT) = lim w„(T). 

Q-+ oo 

• T h e o r e m 5.1. For every T ^ S f ^ ) , wJJ') = v(T). 
T ( T \ 

P r o o f . We have — - s o that, by Theorem 2 .2 , v — s i ; thus 

v(T)^we(T) for every Q.. 
On the other hand, suppose that v(T) < 1. For some s > 1 we also have v(sT) < 1 

and since, by the spectral radius formula, | | (sr)n | | " — v(sT), we see that for some 

B< °o we have ^ J5 (« = 1,2, 3, ...). Thus, if | z | < l , Z(zT)» 
CO ^ . . 

i Z n = Af(<oo) . It follows that if we have, setting z=reie, 
n=l J 

2 rl"l e'"8 Te(n) = / + —• R e ¿ ( z T ) " s 1 - — 
= -oo Q \ n = 1 J I. 6 

Z(zT)n 1 - — M / a o 
Q ) 

as soon as g ^ 2 M . 

Using Theorem 2.1, it is clear that, whenever v(7 ,)-=l, there is some g such 

that T£C0, i.e., w e ( r ) S l . Now if v(T)^0, and e > 0 we have v — j = 
1 

l + s : 1 so that, for some g, we j g 1, i.e., (1 + e)v(r) SH'e(7")( S v(T)).. 

Clearly, then, w„(T) = v(T) in this case. If v ( 7 ) = 0 , then for any n v ( « r ) = 0 < l 

so that for some g w0{nT)^\, i.e., w„(T)^ — . Thus wJT) = 0 ( = v(7*)j. Q.e.d. 
n 

An operator T in any one of the operator classes Ce is "power bounded", 
i.e., the sequence { | |T" | | } r IS bounded; in fact, U7"1!! = | | E P S I / " | | ^g. SZ.-NAGY and 
FOIA§ show, however, by constructing an example (see [6], §4), that there are power-
bounded operators not lying in any of the classes Ce. Nevertheless, we have the 
following result. 
20 A 



306 * J. A. R. Holbrook 

T h e o r e m 5. 2. The family of power-bounded operators U C8 is dense (with 
e>0 

respect to the ordinary operator norm) in the class of all power-bounded operators. 

P r o o f . If T is power-bounded the v ( r ) = lim | | r " | | " S l . Thus, for any r 
such that we have v ( / T ) < 1 and hence, by Theorem 5.1, there is some 
g such that we(rT)s 1, i.e., rT£Ce, hence the assertion follows. 

If r<E .£?(§) and w(T) = || T||, then we actually have v (J ) = w ( r ) = | | r | | , i.e. 
w1(T) = w2(T)=>v(T) = wi(T). We may even replace 1 and 2 in the above statement 
by any distinct values of Q. Indeed, we have the following: 

T h e o r e m 5. 3. If T i s such that weo(T) > v(T), then we(T) is strictly 
decreasing at g 0 , i.e., Q>o0=>w0(T) < wil0(T). 

P r o o f . We may assume that w c o ( r ) = l and v ( T ) < l , and prove that, if 
Q>Qo> w e ( r ) < l . By Theorems 3.1 and 2. 2 we have T^.CQ0 and hence, for each 
/ / £ $ and complex z such that | z | < l , 

(*) Re((/— zT)h, h) S (l-^-)\\(I-zT)h\\2. 

Now a = i n f ( | | ( I—zT)h \ \ 2 : | z |< . l , / / £ § , ||ft|| = l ) > 0 , since we would otherwise 
have hn£§> and complex z„ such that ||/7B||=1, |zn |<=l, and ||(7—z„T)hn\\ — 0; by 
passing to a subsequence we could 

assume that z„->-z0, and it is easy to see that 
\\(I—z0T)h„\\ -»0 in this case: thus we would have l /z0 in the spectrum of T, contra-
dicting the assumption that v ( r ) < l : If we choose b > 1 such that, whenever |z| < 1 and ||/?|| = 1, we have 

g - g o 
2 ' 2 

and 

|Re ( ( / - zbT) h, h) - Re ( ( / - zT) h, h)\ 

l - | | | | ( / - z i r ) / / | | 2 - | l - | - | | | ( / - z r ) / , | | : g - g o « 

it is easy to see that ( * ) implies 

R e ( ( / - z W ) M ) S (l - f ) I \ ( I - z b T ) h \ \ 2 

for all such z and h. But this inequality is independent of the value-of \\h\\, so that, 
by Theorem 2. 2, we have bT£Ce provided we have chosen 6 ( > 1 ) small enough 

so that, in addition, v(bT)^ 1. In this case wa(bT)r=\, i.e., Q.e.d. 

The following theorem finds its natural place in this section. 

T h e o r e m 5. 4. For any and Q>0 we have we(T)^we(I)v(T). 
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This result follows upon recalling Theorem 2. 2 and the fact that T has an 
approximate eigenvalue A such that |A|.= v(T). 

By Theorem 4. 2 we have we(T)S wQ(I)w{(T) and this combined with the last 
theorem and our evaluation of we(I) (i.e., Theorem 4. 3) yields the following extension 
of a theorem of D U R S Z T (see [3, Theorem 1]). The extension is implicit in D U R S Z T ' S 

work, and has also been pointed out by BERGER and STAMPFLI (see [2, Theorem 6]). 

T h e o r e m 5.5. For any T such that v(T) = \\T\\ (such T have been 
called "normaloid" operators, and include, of course, the normal operators) we have 

we(T)=\\T\\we(l) = — —1|, if 0< 1, 
8 

imi 

lliril, if g s l . 

6. Upon considering the "power inequality" of Theorem 4.1 one naturally 
asks to what extent the operator radii we(-) are multiplicative, i.e., under what conditions 
do we have an inequality of the following type: we(TS)^we(T)- we(S). Although 
it does not seem possible, except in very special cases, to derive the power inequality 
f rom a more general inequality involving a pair of operators we shall describe 
here some results along these lines. 

Let us first observe that in the case where T and S may be quite unrelated, 
and in the case where they are assumed to double commute, the problem may be 
settled in a fairly satisfactory way. 

T h e o r e m 6.1. For any T, S€£?(§>) and q^I we have we(TS) S Q2we(T)-we{S)\ 
this result is best possible, provided § is at least 2-dimensional. 

P r o o f . Using Theorems 4. 4 and 3.1 (2) we have at once w ^ T S y ^ w ^ T S ) ^ 
SWl(T)Wi(S)^(ewe(T))(ewe(S)). ' 

On the other hand, if dim ( § ) ^ 2 we may define operators A and B on some 

2-dimensional subspace by the matrices (relative to an orthonormal basis) ^ ^ j 

and respectively, and require that A and B vanish on the orthogonal 

complement. By Theorem 4. 5, wg(A) = we(B) = — . Now AB corresponds to the 
Q -

matrix ^ so that w¿AB) = v(AB) = 1, and hence we(AB) = \ whenever g S l . 

This example shows that the inequality of the theorem cannot be improved. Q.e.d. 

T h e o r e m 6. 2. If T, S£ .§?(£ ) and T and S double commute, then we(TS)s 
= Qw

e(T)we(S) for all o > 0 . This result is best possible, at least if dim (§) 
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P r o o f . Using Theorems 4 . 2 and 3.1 (2) we have t v e ( r S ) ^ u ' 1 ( 7 , ) w e ( S ) ^ 

On the other hand, if dim we may define operators C and D on some 
4-dimensional subspace by the matrices (relative to an orthonormal basis) 

respectively, and require that C and D vanish 

on the orthogonal complement. It is easy to verify that C and D double commute 

0 0 0 f 

0 1 0 o ' 0 0 1 o" 
0 0 0 0 

and 
0 Ö 0 1 

0 0 0 1 
and 

0 0 0 0 

0 0 0 0. 0 0 0 0. 

and that CD corresponds to the matrix 
0 0 0 0 
0 0 0 0 
0 0 0 0 

Applying Theorem 4. 5, 

for every g > 0 . It follows that our in-we see that iv (C) = we{D) = we(CD) = -

equality cannot be improved. Q.e.d. 
When we simply assume that T and S commute, the situation is much less 

clear. Since »;1(.) = ||-|| and w„(-) = v(-), we have w ^ T S J ^ w ^ ^ - w ^ S ) and, 
provided T a n d S commute, w„(TS)rSw„(T)-w«,(S). The case of n'2(-) ( = "'(•)) 
is settled by the following theorem, which also shows that the constant in Theorem 
6.1 can be improved if we assume T and S commute, at least when 

T h e o r e m 6. 3. If T, T and S commute, and wQ{-) is a norm (and 
. hence, by Theorem 3 .2 , whenever QS 2), then we(TS) == 2we(T)ii'e(S). This result 

is best possible for Q = 2, at least if dim($)s4. 

P r o o f . We may assume that n>e(7*) = we(S) = 1 and prove that we(TS)^2. 
In the following calculation we use both the assumption that ii>e(-) is a norm and 
the "power inequality" of Theorem 4.1 : 

we(TS) = we(i[(T+ S)1 - (T— S)2]) = 

^ ib'e((T+ S)2) + we((T- S)2)] S i[K(r+ S))2+(wa(T- S))2] S 

^ i [{»>e(T) + W0(S))2 + (W B (T) + UV,(S))2] = 2. 

To see that the inequality u>2(r.S)s2M>2(7>it>2(S) cannot be improved (if 
dim ( § ) S 4 ) , recall that, by Theorem 6. 2, the inequality is best possible even under 
the assumption that T and 5 double commute. Q.e.d. 

C o r o l l a r y 6. 4. For q^2, »ve(«) fails to be a norm on .£?(£)). 

P r o o f . Compare Theorems 6. 3 and 6. 2. Q.e.d. 
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The following theorem shows that Theorem 6. 3 can be much improved if 
one of the operators is normal. 

T h e o r e m 6. 5. Suppose T and S are commuting operators in B.?(§) and that 
T is normal. Then, for all q> 0, w„(TS) ^ ne(r)wi?(5). 

P r o o f . Since S commutes with the normal operator T, FUGLEDE'S theorem 
(see ROSENBLUM [7] for a slick proof) tells us that S1 and T double commute. Hence, 
by Theorem 4 .2 , vi>e(JS')^w1(r)ive(S'). But, as T is normal, v ( r ) = | | r | | ( = w^T)), 
so that for all Q>0 w ^ ^ w ^ T ) . Thus w e ( J 5 ) S tve(T)we(S). Q.e.d. 

While it does not seem clear whether or not the inequalities of Theorems 6. 2 
and 4 . 2 can be extended to the case where the operators merely commute, it is 
usually possible to say something more in this case than in the case where the operators 
are quite arbitrary. Our final theorem is a rather curious example of a result of this 
nature. Note that for arbitrary T, S££?($>) we have, for g S l , ^ ( r S ) S || S 
S | | r | | - | | 5 | | S e w e ( r ) - | | S ' | | (we have used Theorems 4 . 4 and 3.1(2)); furthermore 
we can actually have equality under these conditions (consider the operators A and 
B introduced in the proof of Theorem 6.1). Of course, if T and S double commute, 
Theorem 4. 2 tells that w e(7 ,5')SH' e(r) ' | |5 ' | | . Whether or not we can say the same 
if T and S merely commute, we do have the following improvement over the case 
where T and S may be completely unrelated. 

T h e o r e m 6. 6. Suppose £ > 1 , and T and S are commuting operators in 
Then provided T^O and S^O, we(TS)<Qwe(T)-\\S\\. 

P r o o f . Since, as we have noted above, we have w e ( r S ) S ||TS\\ S || r | | • ||S|| S 
= evvc(r)-| |S||, the theorem could fail only if we had we(7\S) = ||:TS||. In this case, 
by Theorem 5. 3, WE(TS) = v(TS); but this is impossible because, since T and S 
commute, we would have WQ{TS) = V(TS)^V(T)-V(S)^WE(T)-\\S\\, as well as 
W

E(TS) = QWQ(T)• || S | | . Q . e . d . 
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A remark on a class of power-bounded operators in Hilbert space 
By VASILE ISTRAJESCU in Bucharest (Roumania) 

The notion of unitary dilation was generalized by S Z . - N A G Y and C . F O I A § [1] , [2] 

by considering the classes Ce of operators T in Hilbert spaces 'H whose powers 
admit a representation 

J"" = {?• pr U" (n = 1 , 2 , 3 , . . . ) 

where U is a unitary operator in some Hilbert space H1 z> H. 
H . L A N G E R has proposed the following further generalization: if A is a positive 

self-adjoint operator, ml^A^MI, where m > 0 , consider the class CA of operators 
whose powers admit a representation 

QT"Q=prUn (n = 1 , 2 , 3 , . . . ) 

where Q=A~i and U is a unitary operator in some Hilbert space H1 SiH\ see [2], 
p. 54. 

The aim of this note is to prove the following 

T h e o r e m . CA is a increasing function of A in the sense that Ai^A2 implies 
cAi<gcAl. 

P r o o f . We use the following characterization of CA indicated by H . L A N G E R 

(see [2], p. 54): T£CA if and only if 
1° the spectrum of T lies in the closed unit disc, 

2° (Ah, h) - Re (z(A -T) Th, h) + \z\2((A - 2i)Th, Th) = 0 for |z| s 1 and h € H. 
The relation 2° can be written in the fo rm: 

((A — I)h, h) + (h, li) — 2Re (z(A — I)Th, h) — |z|2||Th\\2 + \z\2((A — I)Th, Th)^0 

or, equivalently, 

\\h\\2 - \z\2\\Th\\2 + ((A —I)(I—2T)h, (I—zT)ti) SO. 

Since the left-hand side is an increasing function of the self-adjoint operator A, 
the theorem is proved. 
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C o r o l l a r y 1. If TÇ_CAthen TÇ_C\]A\V 

This follows from the fact that 

C o r o l l a r y 2. Every operator T in CA is similar to a contraction. 
This follows f rom Corollary 1 and the theorem of [3]. 

C o r o l l a r y 3. There exist power-bounded operators which do not belong to any 
class CA. ' • 

Indeed in [1] there is given a power-bounded operator which belongs to none 
of the classes CB, thus it belongs to none of the classes CA, either. 
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A problem on lacunary series 

By R. K A U F M A N in Urbana (Illinois, U.S.A.) 

The limiting distributions of lacunary trigonometric sums 

(1) SN(t) = UN)-* ¿cos (ykt) 
k = 1 

where l s y 1 , gyksyk+1 were considered, by SALEM and ZYGMUND [3J. 

who showed that, over any fixed set of positive Lebesgue measure, SN tends in 
law to the normal, or Gaussian, distribution of mean 0 and variance 1. HELSON 
and KAHANE [1] showed that certain consequences of lacunarity persist if the 
Lebesgue measure is replaced by a Baire probability measure whose Fourier— 
Stieltjes transform meets the condition fi(u) = 0(\u\~x) for some oe>0. The nearest 
metric analogue of this is 

(2) p([a,a + h])^Mhfi for all a, and /?>0, 

where fi and M = M(P) are positive constants; In this case nothing like the Salem— 
Zygmund result is necessarily valid, even if (2) holds for every However, if 
we treat the coefficients yk as functions of a variable x, we can obtain a similar 
result, at least in a special case-. 

T h e o r e m . For x > l , let yk=xk, that is , 

' SN(t) = QN)~? ¿ c o s ( x * i ) . 
k = 1 

Then for almost all x>2 
eo ' -

lim f e ~ a s " ^ n ( d t ) = ( - o o < ; . < o o ) . 
N-*oo V 

— CO 

1. L e m m a . There exist a number ¿ > 0 , depending only on ft, and a number 
M' depending only on M and fi (cf. (2)) with the property: For any real function 
fix), Osxsl, of class C2, with f"^r>0, 

1 °° . 
I = f JeWnidt)' 

0 — oo 

2 
dx ^ M'r~s. 
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P r o o f . The inner integral can be written 

J Je'i'-^fWn(dt)n(ds) 
— oo — oo 

so 
OO OO 1 oo oo 

1= f f J e^'-^Mdxfi(dt) fi(ds) = f f h(t-s) n(dt) n(ds). 

- O O - M 0 — CO — oo 

By VAN DER C O R P U T ' S lemma [2] 

\h(t-s)\^C\r(t-s)\~i (-oo<i, f<oo), • 
for an absolute constant C; clearly als.o |/z| S 1. Let r, > 0 so that 

• <» S + IJ 

f f n(dt)n(s)=. J J-n(dt)n(ds) ^ 2Mr,». 
| r - s | 3> i s —if 

For every choice of t] > 0 we find 

Choosing >7 = f - 1 / 1 + 2/* we obtain 

( 2 M + C ) r - « 1 + 2 ' t . 

2. If cl, ..., cN are real numbers, then N N 1 J 
exp 

N 
2Ck 

• k=l . 
• 2 ( i -ick)2\ \ - ~ c l 

k=1 fc=l I ^ 
s 2' 2 | c t | 3 2 ( l + c k

2 ) 3 / 2 . 
k—1 k=1 

Hence 

e x p ( - / ^ , ( 0 ) = + J ( i - i X Q N ) - 1 c o s ( x * 0 ) 2 ( 1 - 1 2 J V " " c o s 2 ^ ; ) ) -

(The symbols (9 and o always refer to a bound, uniform for any interval — B ^ X ^ B ) . 
Using the formula cos 2v = 2 cos2 v — 1, we see that the second factor converges 
in /¿-measure to e ~ i k 2 , provided 

22 
1 Sj<kmN 

J cos (2xJ t) cos(2xkt) jit (dt) 

or 

J cos(2xJ t ± 2xk t) ¡x (dt) 

But by the lemma and the Schwarz inequality 

22 
1Sj<kSS 

9 + 1 

2 f f COS (2xJ t±2xkt)fi(dt) 
i rsj<kJ _t 
2 

= o(N2). 

o-

dx < oo 
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for any </> 1. Here we applied the lemma to the functions 2xk ± 2xJ (1 
whose derivatives are easily estimated. It follows that the convergence of the second 
factor takes place for almost all 

3. Set 

/ * ( * ) • = / n[\-mN)-*cos(xkt)Mdt). 

First, we estimate the sum of the terms involving a single cosine, or a product of 
two cosines. The first kind give a sum 

n 0(N-*) [ co&(x*t)n(dt) 
*=1 JL 

and the second 
oo 

2 2 OiN-1) f cos(xkt±xJt)fi(dt). 
1 S j < k S N J L -

We already dealt with integrals similar to these, and showed that the sums converge 
to 0 for almost all x > l . 

From now on we assume 

so that if 0 < ky -«=...< kr are integers (2 s r), 

d2 

(pj* + xk-1 ± ... ± xkl) S Aqk' 

for some A~A(q)>0. 
Consider now the part of JN(x) involving products of exactly m cosines, 

We divide this further according to the largest power of x involved, 
and obtain 

2 - 2 ' i ^ r l 0(BmN-*m) f cos(±xk»>t±...±xkit)n(dt). 

(The number B is chosen so that 
By the lemma and the inequality on the second derivative, there is an 0, 1) 

such that 
9 + 1 ~ 

f f cos(txk'"±...±txk>)n(dt) dx = 0(rkm). 

Thus the integral of the modulus of that part of JN(x) not already disposed of, 
is of the order of magnitude 

N N I V _ 1 

<p{N) = 2 N-*«(2By 2 \ \ 
. m= 3 k = m { m — 1 

N k I fr 

rk^ 2 2 rkN~im(2B)m 

k = 3 m = 3 \ m 
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By T A Y L O R ' S f o r m u l a 

2(2BN-*y | hs ~(2BN~*)3 2 (2BN~i)'"-3 k m(m-\)(m-2) 
m = 3 \m) b „,=3 {m) 

T h u s q>(N)<z 2 N-%rkk3(l + 2BN~i)k. I f N is so la rge t h a t (1 + 2BN~$) r < ri, 
k = 3 

(p(N)«N~i. Since < co; JN(x)T-0 f o r a l m o s t all [q, q + 1], a n d t h e p r o o f 
is comple t e . 
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On general multiplication of infinite series 
By L. G. PAL in Budapest 

1 

The most general definition of the product of two infinite series can be obtained 
as follows: 

D e f i n i t i o n 1, Let us denote by N t h e set of all pairs (k, I) of positive integers, 
and let K be a sequence Nl, Nz, • ••, Nm, ... of finite, mutually disjoint subsets 

CO 

of N such that N— (J Nm. Given two infinite series 
m = 1 

(1.1) A = 2ak and- B=2bi 
ji= I ¡=i 

we call the series 

(1.2) C=2cm = 2{ 2 ckb,) . 
m= 1 m= 1 (MKiVm 

the product of the series (1.1) obtained by the method corresponding to the sequence n, 
or simply by the method (n), and we denote it by E bx) or shortly by 
n(A, B). 

D e f i n i t i o n 2. The method (7t) will be called perfect if for any two convergent 
series (1. 1),- the product series n(A, B) also converges and its sum is equal to the 
product of the sums of the factor series. 

D e f i n i t i o n 3. The method (re) will be said to have property (resp. M2) 
if for any series A and B the convergence oF.A (resp. B) and the absolute convergence 
of B (resp. A) implies the convergence of n(A, B), its sum being equal to the product 
of the sums of the factor series. 

D e f i n i t i o n 4. If a method (n) has both properties Ml and M2 we will say 
that it has the Mertens property. 

') In the sequel the series £ak, Sb„ £cm, ... will be denoted by the corresponding capital letters 
A, B, C, ... independently of their convergence or divergence. 
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D e f i n i t i o n 5. The method (n) will be said to have the Abel property, if for 
any convergent series A and B the convergence of n(A, B) implies that the sum 
of n(A, B) is equal to the product of the sums of A and B. 

R . R A D O [1] has given necessary and sufficient conditions for a method (n) 
to be perfect. R A D O considers merely methods with sets N M consisting of one element. 
For the general case of definition 1 the perfectness and the Mertens property were 
characterized by A . A L E X I E W I C Z [2] in necessary and sufficient form. 

Although the theorems of A L E X I E W I C Z solve the convergence problem of a 
method (n) — apart from the Abel property — in the classical sense, there arises the 
following question: 

If we pass over the classical view of convergence, i. e. if we agree that the 
"convergence" of a series Icn means that the series I ± cn is convergent with 
the probability 1 taking at random the signs of its terms, then how can we modify 
the theorems of A L E X I E W I C Z , and how we stand with the problem of the Abel property? 

We can formulate our problem — due to RADEMACHER [3] , KOLMOGOROFF 

and K H I N T C H I N E [4] — analytically in the following manner: 
If {rn(i)}"=1 denotes the system of the Rademacher functions i.e. if 

(1.3) r„(t) = sign (sin 2"nt) (n = 1 , 2 , 3 , . . . ) 

in the interval 0 S t s 1, then for a given method (n) what can we say about the 
convergence of the series 

(1.4) n(A{x),B(y))^ 2 ( 2 ^ V f c W o O O ) 
m=i (t,/)6ivm 

at the points (x,y) of the unit square Q = {(x, y); O S x S 1, O S y S 1}, assuming 
that the factor series 

(1.5) A(x) = 2 akrk(x) and B(y) = £ b,r,(y) 
k=1 ¡=1 

are convergent almost everywhere in [0, 1], i.e. assuming that the conditions 
and Ibf < °o are fulfilled? 

In section 2 we shall prove that every method (n) possesses the Mertens property 
in the above sense. 

In section 3 we shall show that every method (7:) becomes perfect if we put 
the terms of the product series into brackets in suitable form, and at the same time 
we mention a conjecture in the theory of Walsh series, which is essentially equivalent 
to the perfectness of every method (71). 

Finally in section 4 we prove that every method (n) has the Abel property. 
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T h e o r e m 1. If the conditions 

(2.1) 2 k 
k=l 

and 2 b i < 0 ° 
i=i 

hold, then the product series (1. 4) of the series (1.5) — generated by an arbitrary 
given method (n) — converges almost everywhere on the unit square Q. 

P r o o f . First of all we cite a lemma — discovered by Z Y G M U N D and M A R -

CINKIEWICZ [5] — which will be used in the sequel. 

L e m m a 1. If the functions of an orthonormal system {ip„(x)}„°l, in L2(0, 1) 
are stochastically independent') with the integral mean 0, then for any finite coefficient 
system {ct}E = 1 the following inequality is true: 

(2.2) 

1 

/ Max 2 CkVk(x) 
0 (1 S«iS<) 

k= 1 
d x ^ 8 

1 

/ 
2 ck<Pk(x) dx = 8 

k= 1 

In order to prove the convergence of the series (1. 4) it is enough to show that 
under the conditions (2.1) the series 

(2.3) n*(A(x),B(yj)= 2 akbirk(x)r,(y), 
ft, l ) £ N * 

arising f rom (1. 4) by omitting brackets 2), converges almost everywhere on Q, too. 
Let us consider for each index n the subseries 

(2.4) sn(x, y) = 2 a„b. 
m= 1 v ( n , m ) r«<XK( B ,m)0) 

') A system {/k(.r)}j = i of measurable functions defined on the interval [0,1] will be called 
stochastically independent if for an arbitrary given system of intervals fk=(a.k,/}k) ( f c= l , . . . , « ) the 
equality 

î i H E{fk S 7k}l = ¡J m (E{fk £ /,}) 
U=1 / k= 1 

is valid, where E{fkzlk} means the set of all xe [0,1] for which the inequalities a k ^ P k hold 
and m(H\ denotes thé Lebesgue measure of the set H. 

A sequence of functions {/„W}n" i(x€[0,1]) is stochastically independent, if any finite subse-
quence of it is stochastically independent in the above sense. 

From these definitions follows that any rearrangement {/„ }r= i of a stochastically independent 
k 

system {/„(*)}„"=! remains stochastically independent. 
2) N* means the sequence of all elements of N= {(k, /)} generated by the decomposition (J N,„ = 

m= 1 
=N of the method (n). 
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which contains — in unaltered order — all the terms of (2. 3) having the factor 

Since the sequence {¿>v(„ m)}~= 1 is a permutation of the original sequence 
{ft,}," i (generated by the method (n)), therefore we get f rom the second condition 
of (2.1) that 

OO CO CO 

2 alt>l(n<m) = al 2 6v(n,m) = a\ 2 bf<°° 
m— l m=1 (=1 

is valid for each index n. 
This inequality guarantees for each n the existence of such a sequence 

<2.5) 1 < m\n) < m(
2
n) <... < m\n) < mflt < ..., 

for which the inequalities 

are true, and therefore, using for each n the notation = 1 we get f rom (2.1) 
the following estimate: 

CO 1 / 111. 

a = 2 2V 2 anbHn,m) = Qi+O2 = n=lj=0< m=m< 

<2.6) - 2 
n=l 

2 an bl (",I") + 22 n = 1 j= 1 

" i v . - l Ï 
2 an bl(n, m) J 

/ (") 1 \-i-oo Wlj —1 T o o i oo j eo 

^ 2 k l 2 ' ¿v2(„,m) + ' 2 k l ™ 2 ^ № 2 k l + f * Y c -
n=l m =1 n= 1 j= 1 ^ 11=1 

where A', B' and C" mean the sums of the convergent series la2, lb}, and 14~", 
respectively 3). 

Secondly we construct f rom the series (2. 4) by the help of the sequences (2. 5) 
the following series 

CO "'j'Vl — 1 oo 

y ) = 2 2 , an K in, m) r„{x) rv (n_ , „ ) ( } ' ) = 2 f j " } (*• y)> 
J = 0 0 

and let us denote for each pair (/, n) of indices a general segment of F$"\x, y) by 

= J a„bH,Km)rn{x)rv{n<m){y) ( m j ^ v S f . S m W , - ! ) . ' 

3) (2. 6) shows that the condition Z'\a„\~ was only used for the estimate i 2 i < ~ , and that 
the weaker condition oo is enough to ensure the validity of 
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Taking into account that for each n and for each x£ [0 , 1] the inequalities 
| r „ ( x ) | ^ l hold, we get for each quartet ( j , n, v, /f) of indices and for each point 
(x, y)£Q the following inequality: 

(2.7) 

>i 
2 anbv(n, m)'~v(n 
m = v 

,m)(y) 

^ 2Max 

(m'/^JmiVt-l) 
2 anbV(n, 

•nf 
m) («, m) (y) = 25(/> (y). 

Since the Rademacher functions {/-v((l> m)(y)}„=x evidently satisfy the conditions 
of Lemma 1, so the functions S^Hy) satisfy, according to (2.2), the following 
integral inequalities: 

(2.8) 
r , i - 1 

J[d (j">(y)] 2dym 8 2 <tlbl(nimy 

Introducing the non-negative functions 

Af(x,y) = 2S<j">(y) 

defined for each pair ( j , n) of indices in the unit square Q, we can deduce f rom (2. 7 
and (2. 8) the following two properties: 

(2.9a) \{F)"> (x, y)}»\ s A'j n> (x, y) for each pair (j, n) of indices, 

•JV.-i P (* P mJ + t"" 1 

(2.9 b) J J [A<"> (x, y)} 2 dx dy = 4 J [<5 j"> (y)] 2 dy ^ 32 2 ««b2  

n n 
(n, m)-

Using the Schwarz inequality and the rearrangement theorem of series with 
positive terms [6] we get f rom (2. 6) and (2. 9b) that 

2 2 fjAy>(x,y)dxdy\ s 2 2 ff{A'/Hx,y)} 2dxdv 

oo CO ( n n "̂2" oo CO ~~ 1 
= 2 2\J [Ar(x,y)Ydxdy\ == / 3 2 2 2 2 «2 *?<„,„> = Y32Q< co, 

and so, in consequence of the Beppo Levi theorem, the series 

(2.10) 

converges almost everywhere on Q. 

2 2 A=1j+n=X 

21 A 
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Finally writing consecutive indices in the series (2.3) we get that each segment 

(2.11) 2 <Pr(x,yY 
I = p 

of the series 

(2.12) 2<P^x,y) = 2 akbi>'k(x)ri(y) = n*(d(x), B(y)) 
t=l (k,l)£N* 

is a sum of finitely many {Fj"Hx, y)}v, because we preserved the order of the terms 
of (2. 12) when forming the series (2. 4). Choosing therefore the lower index p in 
(2. 11) so large that among the terms of the sum 

p-1 
• 2 < P r ( x , y ) 
1 = 1 

every term a ^ ^ x y ^ y ) of the finite sum 

M 
2 2 F f ( x , y ) A=1j+n=A 

occurs, then we get by (2. 9a) f rom the convergence of the series (2. 10): 

2<p*(x,y) ^ 2 [ 2 ¿ j - W j U o 
A = M + 1 V j + n = A ) 

when p and q — which proves the convergence of the series (2. 12), q.e.d. 

3. 

Let be given two sequences { a j r = i and {bt}r= i satisfying the condit ions 

(3.1) and 2 b f « ~ , 
k-1 1 = 1 

respectively, and let us consider a given method (7t) defined in Definition 1. 
Since the product series 

<2aZ,2b?)=.z\ 2 rib}] = (2al){2bj) 
m=l Ufc.DEiVm ) 

converges [6], there exists an increasing sequence {wv}~_ x of indices, such tha t 

co (mv+ l — l 
(3 :2) 2 2 2 <*kbf \ = / i < o o ( m 0 = i ) 

v = 0 \m = mv (k,l)£Nm ) 
holds. 
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In the light of this fact let us put into brackets the terms of the product series 

v n{A(x),B(y)) = 2 \ 2 ^bM^niy)] 
m= 1 \(k,0£Nm J 

of the almost everywhere convergent Rademacher series I akrk(x) and I b f ^ y ) 
by the help of the sequence {mv}v°l0, i.e. we consider the series 

°o lmv+ l — 1 
n*(A(x),B(y)) = Z \ 2 Z akbii"k(x)rl(y) 

v —0 L m = mv Ck,l)£Nm v = 0 

We assert that last series converges absolutely almost everywhere on the unit 
square Q. For our purpose it is enough to observe that the functions 

(3. 3) RkJ(x, y) = rk(x)rl(y) (k = \,2, ...; 1=1,2, ...) 

are or thonormal on Q and so by Schwarz inequality we get f rom (3. 2) that 

¿ 0 / M ( * . y) Idx dy - Z 0 [ f f ^ ( x , y ) d x dy\ = A, 

which proves our assertion and the following 

T h e o r e m 2. If the conditions (3. 1) are fulfilled, then for every method (n) 
we can choose an increasing sequence of indices such that the associated product series 

AZ±c*k,Z±bl) = 2 
v - 0 

mv+i — 1 
2 2 (±aj{±bd m = mv (k,l)£Nm 

converges absolutely for almost all signings of the factor series. 

N o t e . If the functions (3.3) had been stochastically independent on Q, then 
applying the two-dimensional form of Lemma 1 we should have proved f rom (3. 2) 
the perfectness of every method (%) in the strict sense. 

In the sequel we indicate a rather interesting problem in the theory of Walsh 
series, which is essentially equivalent to the problem of the perfectness of general 
methods ('n). 

To this end we introduce a convenient form of a famous transformation due to 
F . RIESZ [7], [8]. 

Before all we co-ordinate the unit interval I=I0={t; O ^ i S l } with the unit 
square Q = Q0 = {(*, y); O s x s 1, O ^ j S 1}, in sign: 

0°) Io-Qo-

In the first step we decompose the interval I 0 by the points i , f to four 
closed intervals IiA, 7 t 2 , 71>3 , 7 l 4 , and similarly we divide the square go by the 
help of the straight lines and y = i into four congruent closed subsquares 

Ql,2> 8l,3> Q 1,4-
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In the case of the intervals {/lj4}fc=i the increasing order of the second index 
k corresponds to the increasing direction of the variable i £ / 0 and in the case of 
the subsquares the increasing order of the second index ' i s indicated by 
the scheme in figure 1, i.e. the subsquares {ô],*}*=i are represented by figure 2, 
and we order^ the elements of the systems { / i , Jk= i and { ô i , J t = i mutually to 
each other, in sign 

1°) h U - Q i . k (A: = 1 , 2 , 3 , 4 ) . 

—X 

Figure 1 

V <y=x 

V 
'R13 

/ R12 

/ 
R11 

/ 

\ 

\ 

I K ^ - . 

J 11 I 12 / f 3 , 

/ 
Figure 2 

y " 

11 10 7 6 

9 12 5 ' a 

3 2 15 /4 

1 4 13 16 

.1 2 3 4 5 S 7 S 9 10 11 12 13 15 16. 

Figure 3 

Next we decompose each interval resp. each quar ter Ql k, into four con-
gruent and closed subintervals, resp. subsquares, and we denote the so created systems 
by 

( 3 . 4 ) / 2 > l , / 2 . 2 . - ^ 2 ,165 6 2 , 1 > 2 2 , 2 ) •••> 6 2 , 1 6 -
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In (3. 4) the increasing order of the second indices of the intervals {I2,k}k=i 
corresponds to the increasing direction of the variable t, and the second indices 
of the squares {Q2,k}ki i a r e given so, that the one-to-one mapping . 

2°) h . k - Q z . k ( * = 1 ,2 , . . . , 1 6 ) 

has the following two propert ies: 
a) if I2 i c / j t then Q2,i<zQ1 k , 
P) if the squares Q2 n, Q2 m, Q2 p, Q2 r are subsquares of a square Qlk, 

then the increasing order of the second indices is as indicated by the direction scheme 
in Figure 1. 

The mapping 2°) is illustrated by figure 3, where only the second indices are 
written out in the corresponding subintervals and subsquares. 

I terating the steps 0°), 1°), 2°) periodically we get a sequence J of intervals 

(3.5) J = { / 0 ; / i , i ,T i , 2> 7 1 3 , / 1 ) 4 ; . . . , 7 n l , / „ ; 2 • • • } 

and a sequence 2 of squares 

(3.6) 2 = {Qo\8l.l,8l, 2,81.3,81.4; -,8n. l . f in , 2, . 

for which the one-to-one mapping of the elements 

(3.7) Ink 8n,k (» = 0 , 1 , 2 , . . . , k = 1,2, . . . , 4") 

has the following three propert ies: 
4" 4 " 

(I) for each index « ( = 1 , 2 , . . . ) , \ j l „ . k = l 0 and U 0 n , * = G o > ' 
k=1 k=1 

(II) for each pair (n, k) of indices there exists such an index /, for which' 
(3.8) l and in this case Q „ . k ^ 8 n - i , i is valid, and conversely if 
Qn.k^8n-i,i^then 7B j f cc /„_!,,; 

(I l l ) m(In k) = m(Qn k), i.e. (3 .7) preserves the measure. 
The mapping (3. 7) of the sequences (3. 5) and (3. 6) generates a correspondence 

between the points of the unit interval 7 and the unit square Q in the following way: 
D e f i n i t i o n 6. To each value t£l let correspond the point (or points) 

T{t) = (x, y) £ Q for which 

(3.9) n o =-(x,y) = n a . v ( n ) , if t= n / n , v W , 4 ) 

") If t is not dyadic rational, then the subsequence {/„, v(„>},r= 1 of (3. 5) is uniquely determined 
by t, and so T(t) = (x, y)tQ is also uniquely determined. 
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and conversely to each point (x,y)£Q let correspond the point (or points) 
f(x> У)= {€ I f ° r which 

(3.10) V(x,y) = t= П / „ . „ о , if (x,y)= f\Q„tll(n). 
n=1 n=1 

Considering the properties (I)—(III) of the mapping (3. 7) it is easy to see the 
validity of 

T h e o r e m 3. The transformations (3. 9) and (3. 10) are inverse of one another 
apart from sets of measure zero, and both of them are measure preserving trans-
formations. 

D e f i n i t i o n 7. The functions / ( / ) ( ? £ / ) and g(x, y) ((x,y)£Q) will be called 
equivalent, in sign 
(3-11) f(t)^g{x,y), 

if for almost all pairs of corresponding points (t = V(x, у), (x, y) = T(t)) the 
equality f(t)—g(x, y) holds. 

Theorem 3 has the following two corollaries: 

T h e o r e m 4. The function f ( t ) is measurable resp. integrable on I if and only 
if the equivalent function g(x, y) is measurable resp. integrable on Q, and in the 
latter case 

i 

J7(0 d t = f f six, y) dxdy. 
0 . , e 

T h e o r e m 5. If the elements of the sequences {g t(x, y)}k= i ((•*, y)£Q) and 
{fk(0}Г=1 (l £-0 are term by term equivalent in the sense of definition 1, then the 

CO oo 

series ZSkix, y) converges almost everywhere on Q if and only if the series 2fk(0 
k= 1 k=i 

is convergent almost everywhere on I. 

Finally considering our direction scheme in figure 1, it is easy to see by induction 
the following. 

T h e o r e m 6. If {г„(0}>Г= i denotes the system of the Rademacher functions, 
then for the functions of two variables 

вк(х,у) = rk(x); a,(x,y) = r¡(y) (к = 1 ,2 , . . . / = 1, 2, ...) 

defined on Q, the following relations are true: 

Qk(x, у) ^ r2k(t) and ffi(x, y) r2](t)r2l_, ( / ) (к =, 1, 2 , . . . / = 1 , 2 , . . . ) 

in the sense of Definition 7. 
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By means of Theorems 5 and 6 we can join the theory of multiplication of 
infinite series with the theory of Walsh series [9]. 

In defining the functions of the Walsh system it is convenient to follow 
PALEY'S modification [ 1 0 ] : 

D e f i n i t i o n 8. If K(i)}n°°=i denotes the system of Rademacher functions 
defined in (1. 3) then the Walsh functions {iv„(/)}r=o are given in the following fo rm: 

w0(t)=l, 
(3.12) 

w„(0 = ',v1+i(0',va+i(0-',vk+i(0 
for n = 2"' + 2"2 + ... + 2Vk, where the integers v, are uniquely determined by vi+1< v,-. 

D e f i n i t i o n 9. Let {vv„.(i)}r= i be such a subsequence, of the sequence 
{w„(0}/T=o of the Walsh functions, whose elements have, at most three factors 
in'_the Paley representation (3.12), i.e. whose elements can be written in the 
form 

= rVl + i ( 0 r V 2 + i ( 0 r » i + i ( 0 -

Conjecture. If 2cf < 0 ° then the lacunary Walsh series 

(3.13) 2 n ( 0 
¡=i 

converges unconditionally 5) almost ewerywhere. 

T h e o r e m 7. Let the sequences {ak}0°=1 and {¿¡}r=i Satisfy the conditions 
(3. 1) and let us consider an arbitrary method (it) defined in Definition 1. If the above 
conjecture is true then the product series 

(3.14) n(Zakrk(x):2blrl(y))= J 2 akb,rk(x) rt(y)} 
m= 1 V(Ic,0€iVm ) 

converges almost everywhere on the unit square Q. 

P r o o f . F rom the conditions (3. 1) it follows that the sum 

i f 2 albl 

converges, and according to the theorems 5 and 6 the series (3. 14) is equiconvergent 
with the Walsh series 

2 2 akbi ( 0 m= 1 \(fc, l)£Nm 

which is a rearranged and associated series of type (3. 13). 

5) i. e. the series (3.13) converges by any rearrangement of its terms apart from a set of 
measure zero (which set may depend of course on the rearrangement in question). 
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N o t e . The conjecture is true in that special, case, when in (3. 13) the indices 
Hi are in an increasing order ; more generally the following theorem is true [11]: 

T h e o r e m 8. If denotes such a subsequence of the sequence 

{w>„(x)}7=o whose elements have at most N factors in Paley's representation (3. 12), 
where N is an arbitrary but fixed natural number, then the convergence of the series 
Icf involves the convergence almost everywhere of the lacunary Walsh series 

(3.15) 2 ^ \ ( x ) . 

P r o o f . In order to prove the theorem it is enough to show that the following 
assertion is t rue: 

OO 
If for a given Walsh series 2 cnwn{x) the coefficients satisfy the condition 

n = o 
2 cl < oo and if the elements of the monotonically increasing sequence nk have a 
dyadic expression of the form 

(3.16) nk = 2v' + 2^+ ...+2V>, 

I being limited by an arbi t rary chosen but fixed natural number N, then the 
partial sums 

nic 

A = 0 

converge almost everywhere. 
We can get the proof of the last assertion f rom a lemma of L. L E I N D L E R [ 1 2 ] 

applying it to the Walsh system whose Lebesgue constants are known [13]. 

L e m m a 2. If {«J is a positive non-decreasing sequence of indices and {(pjx)}™=0 

is such an orthonormal System on the interval [a, b] whose Lebesgue functions 

Lnk(x) 

D 

= i 
2<Pi(x)<Pi ( " ) 

¡=0 
du 

are uniformly bounded on a set Ec [a, b], then the condition 2cf °° implies that 
tfie subsequence 

nk 
snk(x) = 2ci9i(x) 

>•=0 

of the partial sums of the orthogonal series 2ci(Pi(x) ' s almost everywhere convergent 
on the set E. 

If the or thonormal system {(pn(x)} is the Walsh system {w„(x)}~=0, then 
we can apply the above lemma in a very convenient fo rm to the case of the index 
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sequence (3. 16). In fact, N. J. F I N E [13] showed that the Lebesgue functions 
of the Walsh system do not depend on x and have the following explicit form 

L„(x) = Ln = l - Z 2^-v) 
1 Sp<rSI 

if H = 2v>+2V2 + ... + 2v<. Consequently, for the indices (3. 16) we have L„k^l^N 
and therefore our theorem is proved. 

4 

T h e o r e m 9. If the conditions 

and 

hold, and if the general product series 

(4.1) n(A.(x),B(y)) = z I 2 ^ V f c W n O O 

of the almost everywhere convergent series 
& 

• ° ° 0 0 

(4.2) A(x)= Z w d x ) and B(y) = 2 V , 0 0 
k= 1 (=1 

converges almost everywhere on the unit square Q to the sum S(x, y), then 
S(x, y) = A(x)B(y) almost everywhere on Q. 

P r o o f . Since the rectangular product 

oo j m m— 1 
2 2 (*) ri(y) + Z akbmrk(x) r„, (y) m= I V/= 1 k=l 

of the series (4. 2) converges almost everywhere on Q to the sum A(x)B(y), and 
since the product series (4. 1) is, according to (3. 3), such an orthogonal series on Q 
for which the square sum of its coefficients is finite, so the theorem is an immediate 
consequence of the Riesz—Fischer theorem. 
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On a problem of summability of orthogonal series 
By FERENC MÓRICZ and KÁROLY TANDORI in Szeged 

Introduction 

Let {<i>fc(.>0} (A: — 0, 1, ...) be an orthonormal system on the finite interval {a, b). 
We shall denote by sn{x) the «-th partial sum of the orthogonal series 

oo 

(1) Zak<Pk(x)-k = 0 

Let T=(aik) (i,k=0, 1, ...) be a double infinite matrix of numbers. The sum 

Uix) = 2 ¿¡kSk(x) ( / = 0 , 1 , . . . ) 
k = 0 

is called the /-th T-mean of the series (1), provided that the series on the right-hand 
side converges. We say that the series (1) is T-summable to the sum s at the point 
x0( £ (a, b)) if ?;(*o) exists for all / (perhaps [except finitely many o f ' them), and 
lim ?j(x0) = s. A ^-summation process is said to be permanent if lim s„ = s implies 

j —• oo n - + co 

.lim t i = s . The necessary and sufficient conditions for the permanence of asummat ion 
'-»CO 

process are known. (See ALEXITS [1] , p. 6 5 . ) 

For any given orthonormal system {(pk(x)} and for any summation matrix 
T we shall consider the following functions 

Li(T; {<pk} ;x)= 2 «¡J 2 (Pi(x) <M0 d< = \ 2 \ 2 aik<Pk(x) 
J k = 0 U = o ) J \l = 0\k = l ) 

dt. 

provided they exist. The function L^T; {cpk}; x) is called the /'-th Lebesgue function 
of the orthonormal system. {(pk(x)} concerning the T-summation process. The 
order of magnitude of the Lebesgue functions may, in many cases, be decisive 
for the convergence problems. 

In particular, taking 

«tt = 7 ^ J (£ = 0 , 1 , . . . , / ) , a,* = 0 (k = / + 1 , i + 2,...) ( / = 0 , 1 , . . . ) , 
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we obtain the classical (C, l ) -summation process. Now, we have 

b 

A.((C, 1 );{cpk};x)=J ¿ J i - t I y <Pk(x)<pk(t) dt. 

In this case K A C Z M A R Z [3] has proved the following theorem: 

Let {<pk(x)} be an arbitrary orthonormal system in (a, b). If {¡ik} is a positive, 
non-decreasing number sequence for which the relation 

(2) s u p / W ( c , D ; f a } ; x ) , x < o o 
v(x) J VV(X) 

a 

holds, where the sup is taken over all the measurable functions v(x) assuming only 
integer values, then 

oo 

Zaïtik^™ 
k= 0 

implies thé (C, \)-summability of the orthogonal series (1) almost everywhere. 

It is obvious tha t the condit ion (2) is equivalent to the following one : 

i V-i 

K A C Z M A R Z formulated this theorem under the condit ion requiring somewhat 
more than (2), namely 

Li ((C, 1) ; {cpk} ; x) = 0(Pi) ( a ^ x ^ b), 

however, the above sharper assertion can also be obtained f r o m his proof . 

K A C Z M A R Z [3] has generalized the above theorem also for the ( C , / ? > 0)-
summation. (In this case, we have 

«¡t = (£ = 0 , 1 , . . , , / ) , «tt = 0(fc = i + l , i + 2 , . . . ) (/ = 0 , 1 , . . . ) , 

where = J (See also T A N D O R I [8].) 

S U N O U C H I [7] and LEINDLER [4] have transferred these results to the Riesz 
summation of orthogonal series, ( in this case 

•«tt = A - V ~ A * (^ = 0 , 1 , . . . , / ) , alk = 0 (k = i + l,i + 2,. . . ) ( / = 0 , 1 , . . . ) , 
Ai+1 
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where {¿¡} is a positive, strictly increasing sequence of numbers with A 0 = 0 and 

To our knowledge, no analogous theorem for other summation processes 
is yet proved. The following problem can be quite naturally raised: if for any 
^-summation process the condition 

b 

v(x) J Vv(x) 
a 

or the stronger one 

(3) Ll(T;{q>k};x) = 0(jid (a^xmb) 

is fulfilled, is then the orthogonal series (1) under the condition 2 a h k < 0 0 with 
k = 0 

the concerning process summable almost everywhere? 
oo 

EFIMOV [2] has essentially showed that, under the condition ( 3 ) , 2 all-Lk <03 

k = o 
with does not imply the almost everywhere T'-summability of the orthogonal 

series 2 ak<Pk(x) f ° r every permanent ^-summation process. In his proof, however, 
k = o 

the condition is very important one. 
In this paper we give a construction in which the condition is not 

essential. We are going to deal only with the important special case nk = 1 (k= 0, 1, ...). 
Our theorem reads as follows: 

T h e o r e m . There exist an orthonormal system in (0, 1), a coefficient 

sequence {ck}, and a permanent T-summation process such that 2 cl °° ancf the 
k=0 

relation 
b 

(4) sup J LHx)(T; {(pk};x)dx <°o 
• w a 

holds, where the sup is taken over all the measurable functions V(.Y) assuming only 
integer values, but the orthogonal series 

(5) 2 ckcpk(x) 
k = 0 

is not T-summable almost everywhere in (0, 1). 

The proof of our theorem will be accomplished by a direct construction. The 
T-summation process occurring in the theorem can be chosen as it was found by 
M E N C H O F F [6] and applied to clarify another question. 
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It is an open question to prove this theorem under the following stronger con-
dition instead of (4) : 

Li(T-,{<pk}-,x) = 0( 1) ( O ë x ë l ) . 

This problem seems to be difficult. 

§ 1. Lemmas 

We require two lemmas to prove our theorem. In the following C 1 , C 2 , ... 
will denote positive absolute constants. 

L e m m a 1. Let n be a natural number. Then there exist an orthonormal system 
{CO,(A')} ( / = 0, 1 , . . . , 2 2 " — 1 ) of step-functions in ( 0 , 1 ) , a coefficient sequence {A,} 

(1 = 0, 1, ..., 22"— 1), and a simple set E(Q(0, 1)) ') with the following properties: 
the integral of each function ca,(x) extended over (0, 1) vanishes, . 

(6) 

(7) 

> 2 " . 

1 

• 2 b f ^ i , 
1 = 0 

2 ^ - 1 
2 CO/(X)OJ,(0 

1 = 0 
dt s 1 (0 s x s 1), 

(8) 

and 

(9) max 
,2» 2Z - 1 

№ 

2b,m,(x) 
1 = 0 

-,2) 

if X<IE. 

P r o o f . This lemma have been essentially proved in an earlier paper of TAN-
DORI [9]. For the sake of completeness, we give its proof in detail here also. 

Let rn(x) = sign sin 2"nx be the 'n- th Rademacher function (» = 0 , 1 , . . . ) . Let 
be w0(x) = l in (0,1); if fcsl and 2V'+2V2 + ...+2V? (vx < v 2 < . . . < vp) is the 
dyadic representation of k, then let us put wfc(x) = rVl + 1(x)rV2+1(x)...rVj>+i(x). 
The Walsh functions tvft(x) (k = 0, 1, ...) defined in this manner are step-functions, 
orthogonal and obviously normed. It is known (see e.g. ALEXITS [ 1], p. 188) that 
for all natural numbers N 

i 
2 n - 1 
2 wk(x)wk(t) dt^\. 
k = 0 

(10) 
1 

£2»-I(M;*) = J 

') A set E will be said simple if it is the union of finitely many, non-overlapping intervals. 
'2) \E\ denotes the Lebesgue measure of the set E. 
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Let a be a natural number and let us consider the functions 

<pa *) = ff2 ( l +rk ( ¿ + 2 ^ ) '•*(*)) (I = 0> 1> •••> 2 " - 1 ) . 

It is obvious that the functions <pa(//2"; x) are linear combinations of the Walsh 
functions w0(x), w2(x), ..., w2a-.2(x) a n d that the following equalities are true: 

<pAYa>X 

1 T 7 1 + 1 
1 If y ^ X ^ ^ r or 

1 / 1 / + 1 

0 elsewhere; 

and 

M I 
dx 

- > a - l 

J _ _ l / + 1 1 
2" 2a

 2 ' 

Now let us consider the following functions: 

<Pl(0;x) = (p2(0;x); 

= r3(x)q>2(0;x), = -r3(x)r1(x)(p2(0;x); 

^l(2;x) = r4(x)(p3(0;x), $ 2 ( 2 ; x) = -r^x) «P1(2; x), 

:$3(2;x) = r5(x)cp3 x j , <P4(2;x) = -r^x) <£3(2; x); 

generally, 

1(*; *) = r2 +2*_ 1+j(x) 2 <P2 + 2U-2+[jl2pl IX) ( j = 0, 1, ... , 2*" 1 - 1), 3) 

where the points xt denote the left-hand side endpoints of the subintervals of 
(0,£), in which the function (PJ+l(k — 1; x) is positive, and finally 

<P2j(k;x) = -rl(x)<P2J_i(k;x) ( j = 1,2,...,2k~1). 

It is clear that for an arbitrary natural number « ( s 2 ) the functions <f>r(/c; x) 
= 1, ..., « —1; r = l , 2, ..., 2*) possess the following properties: these functions 

are also linear combinations of the Walsh functions, namely 

(11) *r(k;x) = 2bfak)w,,liirik)(x) (n(l,r,k) < n{2,r,k) < ...); 

3) [a] denotes the integer part of a. 
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the different functions <I>r(k; x) have no common Walsh function in their 
representation (11); in this representation of the function <Pr(k; x)(k = 0, 1, . . . , « — 1; 
r = 1 ,2 , . . . , 2fc) only some of the Walsh functions >t>0(*), ^ ( x ) , ..., w2 2 " - ' + 2 2 " - 2 + I_ 1 (X) 
occur; furthermore, the inequality 

I 
2k f 

(12) 2 $?(k;x)dx?El (k = 0 , 1 , . . . , n — 1) 

0 

is satisfied. 
Now, let us consider the following sum: 

Sn(xj= <P1(0;x)+"2 2 2~\$2j+l(k;x) + 2$2U+1)(k;x)) = 

Jt=l j = 0 

2 2 " - 1
 + 2 2 " - 2 + l - l 

1 = 0 
On account of (12) we get 

1 
r 2 2 " - ,

 + 2 2 " - 2 + l - l 
(13) \S2

n(x)dx = 2 bf(n)^5n. 
J 1=0 
0 

Finally, set us arrange the terms <Pj(k; x) of the sum Sn(x) by recurrence with 
respect to k: let 

s^S,,-, x) = <^(0; x) + $i(l-,x) + 2$i(l;x), 

s2(S„; x) = <Z>!(0; x) + ^ ( 1 ; x) + <^(2; x) + 2# 2 (2 ; x) + 

+ 2 ^ 2 ( l ; x ) + i ) 3 ( 2 ; x ) + 2<f 4(2;x) , 

and so on. In general, f rom s^S,,; x) we obtain sll+1(Sn; x) in such a manner that 
for every term <P2J+1(p.;xj and 3>2C/+1)(/i; x) (j=0, 1, ..., 2 " _ 1 — 1) we look for 
the place where they occur in s^(Sni x), and then immediately after them we insert 
the 

sums <I>22j+ i(jj. + 1; x) + 2<?2
2j+2(Ai H~ 1 > and (&22j+3(P-+1 j •"•) 1 > •*)> • 

respectively. Now, let us choose the set E that is the set of the points of the interval 
(0,£) at which w , ( x ) ^ 0 ( / = 0 , 1, ..., 22"-'+ 22"-2+1 - 1 ) (i.e. apart f rom a finite 
number of the dyadically rational points). It is clear that this £ is a simple set and 
|£ | = i . From the definition of <t>r(k'> x) we get that the maximum of the partial 
sums of the prescribed rearrangement of the sum 5"„(x) will equal n in the points 
of E. If we substitute the representations (11) in the above rearrangement of Sn(x) 
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and label the occurring Walsh functions, in this order, by the subscript (/ = 0, 1, ... 
..., 22"'1 + 22'"2+i — 1) then we have 

2 2 „ - I + 2 2 „ - 2 + 1 _ 1 

S„0) = 2 bnt(n)wnt(x). 
i = 0 

Then the above assertion may be written as follows: 

(14) 

Now we put 

max 
2 " - » . , 2 " - 2 + l . 1SSS2z +2 

Zbni(n)wni(x) 
i = 0 

= n (xiE). 

©«W = M * ) (' = 0 ,1 , + 1), 

ÖJ,(jc)= (/ = 22"'1 + 22"'2+1,..., 22" — 1); 

b,M b,= 
i5n 

0' = 0 , 1 , . . . , 22"~1 -f-22 + 1 — 1), 

b, = 0 (/ = 2 2 " - ' + 2 2 " - 2 + 1 , . . . , 2 2 " - l ) . 

This is possible as 2 2 " _ ' + 2 2 " " 2 + 1 - l s 2 2 " - l . Finally, we set 

1 

rof(x) = 

<u,(2x) if x g 0, 
2 I ' 

- û 5 , ( 2 * - l ) if 
1 

0 elsewhere, 

0' = 0, 1, . . . , 2 2 " —1). Furthermore, let E be the set arising f rom E as the result 
of the linear t ransformation of the interval (0, 1) into the subinterval (0, 

I t is obvious that E is a simple set and the assertion (8) is satisfied. We can 
easily see that the function system {«¡(x)} (/ = 0, 1, ..., 22" —1) is a rearrangement 
of the Walsh functions (wf(x)} (/ = 0, 1, ..., 2 2 " - 1). F rom (10) we have 

i 
|22"_1 

dt ^ 1 ( O S i S 1). /1 y œ,{x)co,(t) 
1 = 0 

Hence, by a simple calculation we get that assertion (7) is also satisfied. Further-
more, by virtue of (13) and (14), the inequalities (6) and (9) hold. Finally, taking 
into account the construction of co,(x) it is obvious that 

I 

Ja>i(x)dx = 0 ( / = 0 ,1 , . . . , 2 2 " - l ) . 

The proof is thus completed. 

22 A 
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L e m m a 2. Let n be a natural number, X real number such that 0 ' < A < 1 , 
furthermore, let be arbitrary, mutually disjoint subintervals of the interval 
(0, 1) for which |/2| = 1111 and |/3| ^ |/, | are satisfied. Then there exist an orthonormal 
system {{¡/k(x)} (k = I, 2, ...,2.22") of step-functions in (0, 1), a coefficient sequence 
{dk} (k= 1,2, ...,2.22"), and a simple set F{Q/,) having the following properties: 
the integral of each function *jtk{x) extended over (0, 1) vanishes, 

(15) 

(16) 

2 2 di S 1 (dk = 0 if k = 22"+ 1 , . . . , 2.22"), 
k = 1 

(17) m a x 
lSs<2 2 " 

2 'Ik <l*k(x) 
k= 1 

&C2]/(1 if xeF; 

for the Lebesgue functions of this system the following upper estimates hold: 

(18) 
1 

L 2 a » ( 0 M ; * ) = / 2M*)M0 k=l 
dt S 

C3X ^ (*€/,), 

c 5 / / | / 3 | ( * e / 3 ) , 
0 elsewhere; 

(19) L 2 2 2 „ ( { « M ; X ) ^ 

C6X (*£/,), 

c 7 / / | / 2 | ( x i / 2 ) , 

1 ( * 6 / 3 ) , 
0 elsewhere; 

furthermore, for the function 

1 

k= 1 it = 2 2 " + l 
dt (1 ^i-=22") 

ive /itfue a/jo the following upper estimate: 

(20) 

with 

Ki(x) S 

C 8 A + £ j / | / 3 | / l / | / , | . ( * € / , ) , 

C 9 L „ / ) / | 7 ^ ( X € / 2 ) , 

0 elsewhere 

Ln= m a x /.¡({co,} 
0SiS2 2 - 1 , 

O S l S l 
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the functions (ot(x) occurring here are defined by Lemma 1. (As the functions (Oi{x) 
are uniformly bounded, L„ is a finite number for every n.) 

P r o o f . Let f(x) be an arbitrary function defined in the interval (0, 1), further-
more, let I=(a, b) be an arbitrary subinterval of (0, 1) and H an arbitrary subset 
of (0, 1). Now, we proceed f rom the interval (0, 1) to the interval I by means of the 
linear tarnsformation y — (x — a)l(b — a) ( a S x S i , O i j ' S l ) , and put 

/ ( / ; * ) = 4SJ 
0 elsewhere; 

let H(I) be the set into which H is carried over by this linear transformation. 
Let {&),(*)} (/ = 0, 1, ..., 22" — 1), {6,} (/ = 0, 1, ..., 22" - 1) and E denote the 

corresponding orthonormal system, the coefficient sequence, and the simple set 
occurring in Lemma 1, respectively. 

Let us put 

for l S / ^ 2 2 " , 

H o " ' d> f o r 2 2 " + l s / s 2 . 2 2 " ; 

furthermore, F ^ E i l J . It then follows from (6) and (8) that (15) and (16) are fulfilled. 
The functions \jtk{x) are defined as follows: for k — \, 2, ..., 22" let us set 

Ux)=m œk~i(l1 ; x)+ikiœk-i(l2 ;-Y)+?én i(/3 : x)> 

and for k = 22" + l , , . : ,2.22" 

By a simple calculation we get f rom these definitions that the functions ^ ( x ) 
form an orthonormal system in (0, 1). If x g . F t h e n there exists y £ E such that 

Mx) = -j^==a>k_, (y) (k =1,2,..., 22"), 

thus the correctness of (17) follows from (9). On account of Lemma 1, it is clear that 

i 

¡ M x ) d x = 0 (k = 1 , 2 , . . . , 2.22"). 

It remains to be proved that the inequalities (18), (19) and (20) are also satisfied. 
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First of all, we remark that the functions \j/k(x) vanish outside the set U / 2 U / 3 . 
According to the definition of the functions \pk(x), by calculating the integrals on 
the right-hand side, we obtain for 

£ 2 2»({>M;*) = 
/ 217 ,1 (H+/) 

(21) 
/1 /2 Ii 

2 2" 
2 <»k-l(Il\x)\jjk(t) k= 1 

dt 

/ l - A 2 

\h\ + 
|/3 

]/2 I A 1 1 / 2 1 / 1 / ]/2\h\ /217 l)/ 
2 2 " - I 
2 « / ( ; ' ) « ( ( ' ) 

1=0 
dt?) 

for x £ / 2 

L22 n(tyk};x) = 

(22) 

j \ — A2 

№ (/+A/) 
/1 /2 /3 

2 2 " 

2 C0*-1 (I2ix)ipk(t) k= 1 
dt 

_ / l — A2 

and for x Ç / 3 

L22»(№k};x) 

(23) 

' A . / l - A 2 | / 3 | ] f 

YziTTi № f 1 2 | + № J / 

2 2 % 1 

(=0 

/ 2 | / 3 ¡/•/•/I 1 Ii Ii h 
X-1 (h',x)ipk(t) dt = 

1 A l r l / l — A2 | / 3 | 
| / , | + - ! - = = t | / 2 | + - 1 31 

J ^ l l t ^ l / . l 1 ] / 2 | / 2 / 2 I / ; H 22"-1 
2 £ U / ( / ' ) < ö / ( 0 

1 = 0 
dt. 

By paying attention to (7), f rom (21), (22) and (23) we obtain the estimate (18) 
Now we treat the Lebesgue function L 2« ({"M ; We also distinguish three 

subcases as above. If x Ç / , , we get 

(24) 
/ . /2 /3 

2 i 
1 

dt 

2A 

/ 2 | / i | I / 2 1 / ! I / 2 1 / 2 1 
l A I + ^ T ^ I ^ L ) / 

2 ' / l — A2 2 ^ - 1 

1 = 0 
d f , 

") Let y, y and y" denote the image points into which the points xilx, A€ / 2 and xili are 
carried over by the corresponding linear transformations transferring the intervals / , , /2 and I3 

into the interval (0,1), respectively. 
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if .T£/2 then 

(25) 
h h h 

2 Î - U x ) U t ) 
k = 1 

dt 

/ l - X 2 f 2X . 2/1-A2 

; | / 2 | / 2 l 1 /217 , | ' | / t l + / 2 | / 2 | | / ; 
2 2 ' « « ( Z ) ® , ( 0 dt-

and if xÇ7 3 then 

¿ 2 . 2 2 » ( { M ; * ) = ( / + / + / ) 

(26) 
/1 h 13 

2.2^ 
2 Mx)M0 k= 1 

dt = 

2 | / 3 | 
2 | / 3 | / ' 2 W / ' ) œ , ( 0 

( = 0 
dt. 

By virtue of (7), (24), (25) and (26) we have also the estimate (19). 
The validity of (20) follows in a similar way as before. According to the definition 

of the function Ri(x), we have for x £ / i • 

= 

/l /2 /3 

2.2 i - i 

k=2i +1 
dt = 

(27) — ii 
/217,1 11 

X IT . / 1-A2 , 
t | 7 2 | 

/217,111/217,1' /21721 )/ 2 2 " - ! 

2 Q>i(.y) a>t(t) dt + 

+ M V - ] 

f o r X £ I 2 

i 

/ 

o 

2 ^ - 1 
2 © | 0 0 © | ( 0 - 2 e> i00a> , (0 
( = 0 f=i 

i / i j ; 

il Î2 /3 
2 M x ) M O + ' 2 

(28) 
j\-X2\{ X , , , /1-12 

. / 2 ^ U / f j ^ l I W )/ 2 2 V ( / ) ^ ( 0 
1 = 0 

dt = 

+ fel1731/ / 2 | 7 3 | 

2Z — 1 
2 ® I ( / ) ® I ( 0 - 2 © K / W O 
1=0 • l = i 

ÄJ; 
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and finally for x £ / 3 

* ' w = ( / + / + / ) 
I, h 

>2"-

' 2 M * ) M 0 + 2 Mx)M0 
4=1 k = 22"+l 

dt = 

(29) 2 
il\I3\ 11/21/, I ' / 2 | I2 )/ 2 «/(/>/(0 - 2 2 10Jt{y") 01,(0 

1 = 0 l = i 
dt + 

+ \r3 
/ 2 1 / 3 

1 

I 2 2LCO, 0 0 M O dt). 

Taking into consideration that | / 2 | < 1, | / 3 | < 1 and 1, f rom (27), (28) and 
(29) we obtain the estimate (20). This completes the proof of Lemma 2. 

§ 2. Proof of the theorem 

Let {v„} and {/V,,} (n = 2, 3, ...) be the following sequences of natural numbers : 

v„ = 22"8 (/7 = 2 , 3 , . . . ) , 

N2 = 0, Nn = 2 2vf (« = 3 , 4 , . . . ) . 

Define the matrix T={<xik} (/, A- = 0, 1 ,2 , ...) occurring in our theorem as follows: 

<*oo = 1' <*ojt = 0 (Ac = 1 , 2 , . . . ) , 

and in general, for an arbitrary natural number « ( S 2 ) we distinguish three subcases: 
if N„<i<N„+ v„ then we put 

« ¡ ¡ = 2 , «¡,iv„+i-(i-Ar„) = 2. ait = 0 otherwise; 
if i — Nn + v„ then 

a i , i v„+v„= l ) a i t = 0 otherwise; 

and finally if N„ + v„< i ^ Nn + l then 

a i , N„+1 = 1> aik = 0 otherwise. 

F rom the definition of the matrix T it immediately foliows that the conditions 

a i k s 0 (/', A: = 0 , 1 , 2 , . . . ) ; l i m a № = 0 (A: = 0 , 1 , 2 , . . . ) ; i-¥ CO 

2 * i k = 1 (/ = 0 , 1 , 2 , . . . ) 
k = 0 

are satisfied. Therefore, on account of a theorem (see e.g. ALEXITS [1], p. 65) we 
infer the permanence of the T-summation process. 
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To define the orthonormal system {<pt(x)} (k = 0, 1,2, ...) and the coefficient 
sequence { c j (k = 0, 1,2, ...) occurring in our theorem we apply induction. The 
construction is similar to that of TANDORI [10]. 

Let A„ = l/« (« = 2 ,3 , ...) be. First of all, let us consider three sequences of 
subintervals {^(n)}, {/2(«)} and {/3(«)} of the interval (0, 1) so that the conditions 

(30) 

(31) 

/ i W n / j W ^ O ( / V i ; « = 2 , 3 , . . . ) ; 

(32) / , ( « ) , 

(33) 

/ ¡ ( « ' ) n / ; ( « " ) = 0 (i= 2, 3 ; n ^ n" 

I2(n')C\I3(n") = 0 ( « ' , « " = 2 , 3 , . . . ) ; 

2m + 1 — « 2 ' " + 1 —« + 11 

2, 3 , . . . ) ; 

(2m < f i s 2 ' m + 1 . 1» = 0 , 1 , 2 , . . . ) ; 

n=2 

where Ln is defined in Lemma 2, and 

(34) 
Ln«i\h(n)\ 

• V | / , ( » ) | 
(« = 2 , 3 , . . . ) 

should be satisfied. It is obvious that both intervals I2(n) and /3(«) can be chosen 
in accordance with these requirements. 

From (31) we can easily see that every point x of (0,1) belongs to at most one of alt 
the subintervals/2(«) and/ 3 (n) . Furthermore, by (32) it follows that every point x £ (0,1) 
lies in / t («) for infinitely many values of rt, and for every non-negative integer m 
there exists a uniquely determined natural number nm(x) for which 2" '<«m(x) — 2 m + 1 

and x ^ l ^ n j ^ x ) ) . By the definition of {l„} we get immediately that 

(35) y, k 
ra = 0 

n m (x) 2 2 m = 0 ^ 

1 2. 

Now we are going to construct a system {<pk(x)} (k = 0, 1, 2, ...) of orthonormal 
step-functions in (0, 1), a coefficient sequence {ct} (k = 0, 1, 2, ...), and a sequence 
of simple subsets G „ ( ^ f («)) (« = 2, 3, ...) in (0, 1) so that the following relations 
should be satisfied: 

N „ ± v „ I 

I a n d ck = 0 for k = N„ + v„+l,...,Nn+l (« = 2 ,3 , . . . ) ; 
k = N „ + 1 « 

(36) 2 c> 

(37) 

(38) max 
N „ < i ^ N „ + v „ 

2 ck(pk(x) 
k = N „ + 1 

\G„\ - - y - , 

S C 2 « if X € G „ (« = 2 , 3 , . . . ) ; 
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furthermore, 
î 

(39) 

(40) 

(41) 

/ 
о 

î 

/ 

¿V„ + v„ 

2 <Pk(x)<Pk(t) 
* = <v„+ 1 

N„+ i 
2 <Pk(x)<Pk(t) 

fc = iV„ + 1 

dt s 

с 3 я „ 

dt s 

С 4 / У К 2 И 

С 5 / / | / з ( « ) 1 
0 

сйя„ 
c , / / | / 2 ( « ) | 

И М « ) ) , 
( х е / 2 ( « ) ) , (« = 2 , 3 , . . . ) ; 

elsewhere; 

( * е л О О ) , 

( * € / 2 ( n ) ) , (11 = 2 , 3 , - . . . ) ; . 

{ х а м ) , 
elsewhere; 

х) 

1 

2" % ( * ) < М 0 + 2 (Pk(x)(pk(t) fc = JV„+l fc = iV„+v„+l 
dt 

[ C 8 A„ + J V / j / з ( л ) | / / l / i (;J)| 

C 9 ¿ „ e / / | / 2 ( « ) | 

C10Z.„e/|/|73(W)| 
0 

(a- € / i ( n ) ) , ' 

{xihin)), 

{хам), 
elsewhere 

( # „ < / . < 7V„ + v„; n = 2 , 3 , . . . ) . 

We notice that, on account of (34) and (41), the estimate 

( * € / i ( « ) ) , 

(42) 5 | ( и ; ж) s С9ь*Ц\ш\ 
Cl0Ln*/f\ÏM\ 
о 

( * € / а ( и ) ) , 

( * € / 3 ( л ) ) , 
elsewhere 

( ^ n < / < ^ B + v„; /3 = 2 , 3 , . . . ) 
also follows. 

Let <Po.(*) = 1 and c0 = 0 be. We apply Lemma 2 with N = 26, L — K2 and 7( = /¡(2) 
( / '=1, 2, 3) (on account of (30) it is permissible). We get the orthonormal system 

k(x)} (k = 1, 2, ..., 2v2), the coefficient sequence {¿4} (£ = 1, 2, ..., 2v2), and the 
simple set F satisfying (15)—(20). Now we write 

<Pk(x) = фк(х), ck = -j- (k= 1,2, ...,N3), and G2=F. 

According to Lemma 2 the step-functions cpk(x) (k = 0, 1, ..., N3) are orthonormal, 
and the relations (36)—(41) hold for n = 2. 

Now, n 0 ( s 2 ) being arbitrary, we assume [that the step-functions <pk(x) 
{k = Q,\,...,Nno+i), the. coefficients ck {k = 0, 1, ..., Nng+1), and the simple sets 

( n = 2, 3, ..., «0) a r e already determined such that these functions 
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are orthogonal and normed in (0, 1) and that the requirements (36)—(41) are satisfied 
for each integer / i g n 0 . We are going to construct the functions, coefficients, and 
simple set corresponding to w0 + l so that these also satisfy (36)—(41). 

We can divide the intervals I^Hq +1 ) , /2(«0 + 0 a n d ^ ( " o + O i n t o a finite 
number of mutually disjoint subintervals 

("o + 1) = U 4 ( 1 ) , h ( " o + 1) = U "4(2) , / 3 ( « o + 1) = U / . ( 3 ) 
• i= l i= l i= l 

on which every function (pk(x) (£ = 0, 1, ..., N„a+l) remains constant, and every 
set G„n/ , ( /7 0 + 1 ) (" = 2 ,3 , . . . ,n 0 ) c a n be represented as the union of some inter-
vals /¡(1). 

We begin with applying Lemma 1 with n = (n0 + I)6. We get the functions 
( ^ ( x H / ^ O , 1, . . . , 2 2 ( " 0 + 1 ) 6 - l ) . Next applying Lemma 2 with n = (n0+ I)6, A = A„0+l 

and /¡ = /¡(«0 + 1) 0 = 1 ,2 ,3) , we obtain the functions \j/k(x) (£ = 1,2, . . . ,2v„0 + 1)> 

the coefficients dk ( £ = 1 , 2 , ..., 2v„0+1), and the simple set F n o + l . Let us put 

Œ 1/91/Vxn I ^ 1 ( / i ( 1 ) ; x)+J™,**!™ 2 : , m ; x)+ ) / 2 | / 1 ( « 0 + 1)1 ;= i y 2 | / 2 ( « o + 1)1 ¡=1 

1/1 _ ; 2 92 1 

n <H 

91 
cu„ «0-1 

n̂o 
" l / 2 | / 2 ( « 0 + l ) | ¿ t l -v , / 2 | / 3 ( „ 0 + i ) | i = 1 

( / = 1 , 2 , . . . , v n o + 1 ) . 

It is clear that the functions <pt(x) (k = N„0+1 + 1, ..., N„0 + 2) are also step-functions. 
By virtue of Lemma 1 and the definition, we can easily prove that the functions 
q>k(x) (£ = 0, 1, ..:, Nno + 2) are orthonormal in (0, 1). 

Let -us put 

Cw»o+i+» = - ^ f I ( ^ = l , 2 , . . . , 2 v „ o + 1 ) . 

From (16) it follows that (36) is satisfied for n=n0 + 1. Finally, we set • 

G n o + 1 = U E i U l ) ) . 
i = 1 

It is obvious that <j„0+1 is a simple set, and on account of Lemma 1, (37) holds for 
n = « o + l-
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If x£Gno+l then there exists a point j £ . F „ 0 + 1 such that 

( PN n o ± l +k(x ) = ^ k ( y ) = 1 , 2 , . . . , 2 v „ 0 + i ) . 

Taking into consideration of the definition of the coefficients ck and (17), we obtain 
(38) for n = «o + 1. 

According to the definition of the funct ions <pk(x) (Nno+i<ksNno+2) and 
the proof of Lemma 2, if x£(0, 1) then for an appropriately chosen y we have 

i 

/ iVno+l + l'/>0+l I r b i o + l 
2 <pk(x)(pk(t)\dt = 2 «MjOMO 

k = Nn0+l + 1 I J \ 1=1 
dt. 

To show this, let I^HQ + 1 ) U/2(/?0 + 1) U/ 3 (« 0 + 1 ) be fixed. Then by simple 
integral transformations we get that the left-hand side equals. 

+ 1 

/ 2 1 / , K + DI 1 / 
•rid) 

vno+l 

i = I 

dt + 

+ 
l / l — J Z q2 i 1 Ano+ 1 X" 

. / 2 | / 2 ( « 0 + l ) | 

+ 

1 /1 
Jl(2) 

vna+l 
2 M k ) © , - , ( 4 ( 2 ) ; 0 
1=1 

dt + 

/ 2 | / 3 K + 1)I I /1 
J I(3) 

"no+l 

1=1 
dt = 

YW 

i 
^•no+l / 

1 ( « 0 + 1 ) 1 J 

vno+l 
2 < M j ' ) « / - . ( 0 

1=1 
dt 2 \Ji( 1)1 + 

+ 
/2 [ / 2 ( / i 0 .+ l) | / "iro + l 

1=1. 
dt 2 \j-m+ 

i 

+ 
/2 |7 3(«6 + 1)| / vno+l 

2 * , ( y ) a > , - i ( 0 
i= i 

dt 2 I 4 (3 ) | = 
¡=1 

( / - / • / ! 
•flOlO+l) J2(no+l) J3(no+l) 

Here we took into consideration that 

"no+l 
2 M y W ) 
1=1 

1 

/
K o + 1 

2 M y ) M t ) 
I i=i 

dt. 

2 1 4 ( 1 ) 1 = \ h ( n 0 + 1 ) | , 2 I4(2)[ = \ h ( n 0 + 1 ) | , 2 [4(3)1 = | / 3 («o + i)l-
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Similarly, we have also the following equations: 
. i 

/ 

N„o+2 
2 <Pk(.x)<Pk(.0 

K = t1„ 0 + 1 + l 
dt - / 

2 V - 1 0 + 1 

2 Mx)Mt) 
, i=i 

dt, 

and 

/ " n o + l + i ' 
2 <pk(x)<pk(0 + 

Nno+2~i 

k = N n o + l + 1 ' = Jvno + l + v/io + l + 1 
dt = 

1 

/ i 2 v n o + l - ' 
2My)Mt)+ 2 hiy)U 0 
1 = 1 ' = v « 0 + l + 1 ' 

dt (i = 1 , 2 , . . . , V „ 0 + 1 - 1 ) ; 

here ^ € / i ( « 0 + l). y t h Q h + )>£h("o + 1) and M l M K + l) according to 
3 '=1 

xÇ^Ozo + l), xÇ/ 2 (« 0 + l), x6 / 3 («o + l) and LU;("o + l)> respectively. By (18), 
;= i 

(19) and (20) we get (39), (40) and (41) also for n = n 0 + 1. 
Thus we obtained the orthonormal system {%(*)}, the coefficient sequence 

{ck}, and the sequence of simple sets {G„} by induction, which fulfil the requirements 
(36)—(41). 

Let us consider the sets 

Hm= '¡J Gn (m = 1 , 2 , . . . ) . 
n = 2"'+l 

By virtue of the definition of the intervals I ^ n ) and (36), we have 

(43) H m \ = (m = 1 , 2 , . . . ) . ' 

According to the definition of the sets G„, it can easily be seen that the sets Hm 

are stochastically independent. Applying the Borel—Cantelli lemma we get 

| Em = 1. 

If x£ H m ^ m then the inequality (38) is satisfied for infinitely many values of m 
m-*oo 

and hence 

(44) lim max 
1 Nn<iSN„ + v„ 2 Ck<Pk(x) k = N„+ 1 

holds almost everywhere. 
As to the Lebesgue functions 

l 

2 (pk(x)(pk(t) k = 0 
dt 
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of the system {<pfc(x)} with i = N„ and /' = Nn + v„, we have 
i 

LNn({<pk};x)^ 1 + Д J 2 <Pk(x)(PkQ) 
ft = jVr - | + 1 

dt, 

as (p0(x) = 1. From the definition of the intervals /¡(n) (i = 1, 2, 3; n = 2, 3, ...), 
by (35) and (40), it follows 

(45) LN,({(Pk};x) ^ 

C , 2 (*<t 0 2 ( / 2 ( O U / 3 ( / ) ) ) , 

C 1 3 / / | / 2 (P )I . (xa2(p)), 

• с ,* ( х е ш ) (n = 2 , 3 , . . . ) . 

It follows exactly in the same way as before that 
i 

Z - , V „ + V „ ( { < P J ; ^ ) = 1 + Д / 
iVr 
2 1 <p*(0 

к = - 1 + 1 

1 

/ 

N„ + v„ 
Z <Pk(x)(pk(t) k = N„+1 

dt, 

and taking into consideration (35) and (39), we get the estimate 

C , 5 (*<t G 2 ( / 2 ( 0 U / 3 ( / ) ) ) , 
(46) ci6li\h{p)\ {халР% 

У с 1 П 1 ] / \ ш \ { х а м ) (и = 2 , з , . . . ) . 

Hence and by (45) and (46), in virtue of (33), we obtain that 
л. i 

X oo. 

. Furthermore, (36) implies 2 c k < 0 ° - Denote by ¡¡(x) the ;'-th partial sum -of the 
k= 0 

series ( 5 ) . On account of a theorem of LEINDLER [5] it follows that { ¿ ^ ( X ) } and 
{.yjV„ + v„(A')} converge almost everywhere. 

The above mentioned theorem of LEINDLER reads as follows: 

Let {<Pj((*)} (/< = 0 , 1, ...) be an arbitrary orthonormal system in (a,b). If for 
a monotone increasing sequence {«,} of indices the inequality 

L„XWk}lx) = 0(l) (a^x^b) 

holds, then under the condition 2ak<-°° nr-th partial sums of the orthogonal 
k= 0 

series (1) converge almost everywhere. 
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A more detailed analysis of L E I N D L E R ' S proof shows that the assertion remains 
valid under the weaker condition : 

sup L„r({(pk};x)eL(a,b). 
r 

Let us denote by /¡(x) the /-th 7-mean of the orthogonal series (5). If Nn < i < 
-<N„ + v„ then on account of the definition of the matrix T and the sequence {ck}, 
we have . i 

h(x) = $Si(x) + isNn+1_i(x) = iJ^W + i 2 ckq>k(x) + lrsNn+Vn(x). 
k = Nn+ 1 

Hence, if we pay attention to (44), it follows f rom the convergence of {5,Vn(.\')} and 

K „ + v » } t h a t 
l im | i f(x) | = <*= 

almost everywhere. Thus the orthogonal series (5) is not 7-summable almost every-
where in (0, 1). 

To accomplish the proof of our theorem, we have to show that for the Lebesgue 
functions concerning the .T-summation the relation (4) is satisfied. 

. If Nn + vn^i^Nn+1 then 

{cpk}; x)=LNn+l({(pk}; x) and L(T; {cpk}; x)=LNn+v£{(pk}; x), 

respectively, thus in virtue of (45) and (46) the following estimate 

C , 8 ( * i ( U ( / 2 ( / ) U / 3 ( / ) ) ] , 

(47) \ C l 9 i m m (xa2\p% 

•C2oliVM\ ( x t i M ) 

(N„ + Vn^isNn+i; n = 2 , 3 , . . . ) 
is true. 

Finally, let Nn<i< N„ + v„ be, i.e. i = Nn +j (1 v„). Then 
l 

N„ + j W„+l-J 
2 <Pk(x)<pk(t)+ 2 <pk(x)(pk(t) k=0 fc=0 

dt. 

A simple calculation shows 
i . 

L{T; J 2 <Pk(x) (pkO) dt + i 

(48) 

1 

J 
,k = 0 

Nn + j Nn+,-j 

1 

/ Nn + v„ 

2 <Pk(x)(pk(t) k= 0 
dt + 

2 <Pk(x)(pk(t)+ 2 9k(x)(Pk(0 
k = N„+ 1 fc = iV„ + v„ + 1 

dt = 

j(U-,XWk}-,x) + LNn+J{(pk} ; .Y) + Sj(n; x)). 
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B y v i r t u e o f (42) we ge t 

(49) Sj(n;x) ш 
(*<Е Д ( / 2 ( 0 U / 3 ( / ) ) ) , 

(1 « = 2 , 3 , . . . ) . 

F r o m t h e inequa l i t i e s (45), (46), (48) a n d (49) it f o l l o w s 

C2L (.rtf G2(A(/)U/3(/))), 

(50) { П } ; х ) S • с 2 2 Ь р ^ Ш 1 ( х Ш р ) ) , ' 

( ? V „ < / < j V „ + v„; « = 2 , 3 , . . . ) . 

( H e r e we a g a i n t o o k i n t o c o n s i d e r a t i o n t h a t f o r eve ry n . ) F r o m (47) a n d (50) 

we i n f e r t h a t 
i ( ~ ) 

. / s u p Ц ( Т ; {<pk}; x) dx ^ С2A 1 + 2 LneЦ\ГМ + / 1 Ш 1 ) 
0 ' V и=2 ) 

h o l d s . H e n c e o n a c c o u n t of (33) we o b t a i n t h a t (4) is fu l f i l l ed . 
W e h a v e t h u s c o m p l e t e d t h e p r o o f o f o u r t h e o r e m . 
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Berichtigung zur Arbeit 
„Über die starke Summation von Fourierreihen"*) 

Von KÄROLY TANDORI in Szeged 

Der Beweis des Satzes I dieser Arbeit ist falsch. Mit der dort angewandten 
Methode kann man nur die folgende, ziemlich komplizierte Behauptung beweisen: 

Ist f ( t ) nach 1 periodisch und in [0, 1] Lebesgue-integrierbar, so gibt es für fast 

alle Punkte x 6 [0, 1] eine positive Intervallfunktion <PX(I) mit ZJ 
n = 0 

derart, daß für 0<A;<o= und 0 -»0 gilt: 

2h u + k 
(1) f \f(x + u)—f(x)\ du f \f(x + v)-f(x)\dv = o(h20((h,2h])) + o(hk), 

h u-k 

undzwar gleichmäßig in Bezug auf k. 

Ähnlicherweise, wie in der erwähnten Arbeit, kann bewiesen werden, daß 
aus (1) die //2-Summierbarkeit der Fourierreihe von f ( t ) in dem Punkt x folgt. 

(Eingegangen am 28. März 1968) 

( ( 2 n + i ' 2»] ) ' 

*) Acta Sei. Math., 1 6 ( 1 9 5 5 ) , 6 5 — 7 3 . 
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C. A. Rogers, Packing and covering, VIII+111 pages, Cambridge University Press, 1964. 

The study of packing and covering problems represents the most developed branch of discrete 
geometry whose results find direct applications in the theory of numbers, in the analysis, in the 
theory of information, and in other branches of mathematics. 

The first monograph dealing with packing and covering is FEJES TÓTH'S well-known discrete 
geometry book (Lagerungen in der Ebene auf der Kugel und im Raum, Berlin—Göttingen—Heidel-
berg, 1953) in which the author confined his attention mainly to packing and covering in two and 
three-dimensional space of constant curvature. Some results on this subject are treated also in his 
recent book Regular Figures (Oxford—London—New York—Paris, 1964). 

The vaste literature of packing and covering, to which, many well-known mathematicians 
(including COXETER, DELAUNAY, DIRICHLET, FEJES T Ó T H , GAUSS, H L A W K A , LAGRANGE, M I N K O W S K I , 
ROGERS, SEGRE, T H U E , VORONOI) have contributed, has reached the point where a systematization 
into a theory has become possible, indeed necessary. We can be grateful to Professor ROGERS, who 
has himself enriched the theory with many beautiful results, that he has undertaken the task to 
write this monograph. 

The book treats mainly problems in n-dimensional Euclidean space, where n is larger than 3, 
and the packing and covering system is formed by a finite or countably infinite system of translates 
of a single set which will usually be convex. In the introduction the author gives an excellent histori-
cal Outline of the subject. In the succeeding chapters he gives a systematic (but by no means exhaus-
tive) account of the general results of the subject and their derivations. For a closer idea about the 
content of this part let us mention the titles of the chapters: 1. Packing and covering densities; 2. 
The existence of reasonably dense packings; 3. The existence of reasonably economical coverings; 
4. The existence of reasonably dense lattice packings; 5. The existence of reasonably economical 
lattice coverings; 6. Packings of simplices cannot be very dense; 7. Packings of spheres cannot be 
very dense; 8. Coverings with spheres cannot be very economical. 

The author uses in his work an analytical method and only one diagram illustrates the book, 
in contrary to FEJES T Ó T H who gives preference to the syntetical method, richly illustrating his 
works. 

ROGERS'S monograph is thus a useful complement to FEJES TÓTH'S discrete geometry mono-
graph. It is written with great care, is easy to read, and its economical and logical structure is quite 
excellent. 

J. Molnár (Bamako—Budapest) 

L. Rédei, The theory of finitely generated commutative semigroups, XIII+350 pages, Budapest, 
Akadémiai Kiadó, 1965. 

This book is a translation of the original German text edited in 1963 by Teubner Verlag and 
Akádémiai Kiadó. The theory contained in this monograph has become a well-known and separate 
part of the theory of algebraic semigroups. We can omit to give here a detailed report on the work 
as there are such thorough references at disposal as those of E. A. BEHRENS ( M R , 2 8 (1964), 5130) 
or St. SCHWARZ (Acta Sci. Math., 2 5 (1964), 175—176). One can hope that the English edition 
rendering this original and important topic available for a wider class of researchmen will start 
new investigations in this field, concerning especially some possible generalizations, links with other 
parts of semigroup theory and the application of RÉDEI'S results to special classes of semigroups. 

G. Pollák (Szeged) 

23 A 
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A. F. Timan, Theory of approximation of functions of a real variable, X I I + 631 pages, Hindustan 
Publishing Corporation (India), Delhi-7, 1966. 

The present book is a translation from the Russian original, published in 1960 by "Fizmatgiz", 
Moscow. It presents a detailed account of the new results of the theory of approximation. As the 
author points out in the foreword, this monograph systematically investigates the relationship 
between the various structural properties of real functions and the character of their possible ap-
proximation by polynomials or other simple functions. The investigations carried out in this book 
,are based on the classical approximation theorem of WEIERSTRASS, the concept of TSCHEBYSCHEFF 
of the best approximation and the converse theorem of BERNSTEIN on the existence of a function 
with a given sequence of best approximation. The chapter headings give a more detailed outline of 
the presentation:!. WEIERSTRASS'S theorem. — I I . The best approximation. — I I I . Certain compact 
classes of functions and their structural characteristics. This chapter includes properties of various 
moduli of continuity, properties of various classes of analytic functions, quasi-analytic classes of 
functions, and properties of conjugate functions. — IV. Certain properties of algebraic polynomials 
and transcendental integral functions of exponential type. Here we find interpolation formulae, 
WIENER—PALEY'S theorem, some extremal properties of polynomials and transcendental integral 
functions. — V..Direct theorems of the constructive theory of functions. — VI. Converse theorems. 
Constructive characteristics of certain classes of functions. — VII. Additional theorems on the 
connection between the best approximations of functions and their structural properties. — V I I I . 
Linear processes of approximation of functions by polynomials. Certain estimates connected with 
them. — IX. Certain deductions from the theory of functions and functional analysis. This includes 
basic theorems without proof. 

At the end of each chapter there is a section which contains various problems and theorems 
supplementing the material of the main text. 

There is a useful Bibliography (containing some 350 items) and a detailed Index. 
The book is well-organized and the presentation is clear. 

L. Leiitdler (Szeged) 

Ralph Abraham and Joel Robbin, Transversal Mappings and Flows, X + 1 6 1 pages, W. A. Ben-
jamin, Inc., New York—Amsterdam, 1967. 

Since the initiative work of G. REEB, S . SMALE and R . THOM the qualitative theory of ordinary 
differential equations has merged into a rapidly developing new theory. This process has been 
marked by the application of differential topology. It has commenced by considering a system of 
first order ordinary differential equations as a vector field on a differentiable manifold and the 
solutions of the system as the flows of the latter. The successes of this process, however, were mainly 
due to the fact that, roughly speaking, the vector fields of a compact differentiable manifold form an 
(infinite-dimensional) differentiable manifold, which fact proves to be very useful when dealing 
with questions of the qualitative theory. An exposition of the fundamental ideas and results of the 
new theory, originating from this process, is the goal of this book. 

The first chapter is a review of differential theory. Definitions and basic theorems are given, 
while in some cases for the proof the reader is referred to DIEUDONNE'S Foundations of Modern 
Analysis or to L A N G ' S Introduction to Differentiable Manifolds. It contains an original result, the 
converse of TAYLOR'S theorem, and the exposition is remarkable in various respects. 

The second chapter deals with the topologies of spaces of vector bundle sections and contains 
a proof of the smoothness of the evaluation map. The latter theorem prepares for the application 
of transversality technique which has been introduced by R. T H O M and is applied here systemati-
cally. 

The third chapter contains a proof of the SMALE'S Density Theorem concerning the regular 
values of the so-called FREDHOLM mappings. It is obtained as the last one in a sequence of fundamental 
theorems, each implied by the preceding one. These theorems are: the Rough Composition Theorem 
of KNESER and GLAESER, and the Density Theorems of METIVIER, SARD and SMALE. 

The basic facts of transversality theory are given in the fourth chapter. l t contains the Openness 
and Isotopy Theorems of THOM and the Density Theorem of ABRAHAM. 

The fundamental concepts and theorems of the theory of vector fields and their flows are given 
in the fifth chapter. These are formulated both traditionally and in terms of transversality by which 
the adequacy of this new technique becomes evident. 
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Pseudocharts for closed orbits, the FLOQUET normal form and a proof of the Stable Mani-
fold Theorem of SMALE, are the topics discussed in the sixth chapter. 

A new proof of the theorem of S . SMALE and I . K U P K A on generic properties of flows is given 
in the seventh chapter. By the application of transversality technique it is easier than the original 
one. Important tools of this proof are a theorem of A . TARSKI and A . SEIDENBERG on the structure 
of semialgebraic sets and the perturbation theory of vector fields. 

From the Appendices the first two provide some perequisites, the third, however, is an original 
research article by A L KELLEY on stable, center-stable, center-unstable, and unstable manifolds. 

The above material up to now has been accessible mainly in research papers. The authors ' 
se f-contained exposition is worked out carefully, with the intent to attain a maximum of clarity. 
It serves not only to arouse interest in, but also to yield a very readable introduction into this develop-
ing modern subject. 

J. Szenthe (Szeged) 

H. Halberstam—K. F. Roth, Sequences, Vol. 1, XX+291 pages, Oxford, Clarendon Press> 
1966. 

The arithmetical properties of special integer sequences (e. g. the distribution of prime numbers 
in arithmetical progressions, the additive properties of the sequence of squares) are extensively studied 
in number theory. Many of these properties hold for all or for wide classes of integer sequences. 
The main theme of this book is the study of those general arithmetical properties which are satisfied 
for extensive classes of such sequences. 

In Chapters I, II, and III general laws related to the addition of sequences are established. 
Chapter I deals with the density relationship. This chapter contains among others the theorems of 
M A N N , D Y S O N , VAN der CORPUT, BESICOVICH, ERDŐS on the Schnirelmann density and their asymp-
t o t e and p-adic analogues, the theorem of LINNIK on the essential components. Chapter II contains 
th 2 theorem of ERDŐS and FUCHS. Concerning the number of representations of integers as the sum 
of two summands taken from a given set, this theorem investigates the discrepancy of the asymptotic 
of the mean value of this number. Chapter III is devoted to the treatment of the probability methods 
which serve to prove existence theorems for integer sequences with a given growth of the representa-
tion function. 

Chapter. IV gives a very good account of the sieve methods of V. B R U N and A . SELBERG, and 
of the large sieve. 

Chapter V deals with some interesting properties of integer sequences which depend on the 
multiplicative s t ruc ture of the integers. Results of ERDŐS, ERDŐS—DAVENPORT, BESICOVITCH, a n d 
others, concerning primitív sequences and sets of multiples are treated. 

The style is clear, the authors are masters of their subject. 
Imre Kátai (Budapest) 

The Theory of Groups, Proceedings of the International Conference held at the Australian Natio-
nal University Canberra, 10—20 August, 1965. Edited by L. G. Kovács and B. H . Neumann, XVII + 
397 pages, Gordon and Breach Science Publishers, New York—London—Paris, 1967. 

This volume contains more than half a hundred articles which represent all the essential 
branches of current research in group theory. To make more perceptible the tendencies of develop-
ment, we list the authors and indicate the results of the more important papers, in the following 
o r l e r : 1) Simple groups, 2) Varieties of groups, 3) Some purely group-theoretical problems, 
4) Connections between groups and other algebraic systems. 

1. W. FEIT deals with groups having a cyclic Sylow subgroup. Z. J A N K O proves that a non-
trivial simple group with abelian 2-Sylow subgroups having no doubly transitive permutation 
representation coincides with the Janko new simple group. R. REE in his article deals with classi-
fication of involutions in some Chevalley groups and computes the centralizers of these elements. 

2. W. BRISLEY investigates varieties generated by all the proper factors of a critical group. 
N . D . G U P T A proves some theorems on metabelian groups contained in certain varieties. G . H I G -
MAN'S paper deals with the form of functions, describing orders of relatively free groups. His other 
article applies the theory of the representation of the general linear groups to varieties of /»-groups. 
L . G . KOVÁCS and M . F. NEWMAN study varieties in which every proper subvariety is a Cross 
variety. J . D . M A C D O N A L D shows that if critical P-groups generate the same variety then this holds 
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for the sets öf their proper factors too. H A N N A NEUMANN summarizes some developments in the 
field of varieties of groups. In SHEILA OATES' paper we find some investigations on the number 
of generators of a simple group. SOPHIE PICCARD gives an analysis of the notion of group, free 
modulo n. P . M . WEICHSEL studies finite critical /»-groups which generate join-irreducible varieties. 

3. CHRISTINE W. AYOUB studies the minimum number of conjugate classes which a finite 
/»-group can possess. REINHOLD BAER takes part in the volume with three articles. He analyzes 
the interrelations between the properties characterizing nilpotent groups in the finite case. He 
characterizes also the polycyclic groups and the noetherian groups possessing a polycyclic sub-
group of finite index. In his third paper he discovers some parallelism between theories of artinian 
and noetherian groups. G. BAUMSLAG gives a review on the present status of the theory of finitely 
presented groups. H. S. M. COXETER describes some geometric aspects of the isomorphism between 
the Lorentz group and the group of homographies. J. D . D I X O N proves a theorem of Schur— 
Zassenhaus type. T . H A W K E S introduces and investigates the notion of /-Prefrattini subgroup. 
K . A . HIRSCH presents some results of his student B . WEHRFRITZ, e. g., the proof of the conjugacy 
of Sylow subgroups in any periodic linear group. N. ITO proves that a nonsolvable transitive permu-
tation group of degree p — where p is a Fermat prime — containing an odd permutation coincides 
with the symmetric group of degree p. O . H. KEGEL gives a characterization of finite super-
groups. R . STEINBERG treats the Galois cohomology of linear algebraic groups. G. SZEKERES deter-
mines all finite metabelian groups with two generators. O . TAMASCHKÉ presents a generalized cha-
racter theory of finite groups. G. E. WALL constructs a counter-example for a conjecture of 
D . R . HUGHES. H. WIELANDT gives a survey on subnormal and relatively maximal subgroups 
and states some problems. In his other article he deals with automorphisms of doubly transitive 
permutation groups and as application he obtains a special case of SCHREIER'S conjecture on the 
automorphism group of a finite simple group. G. Z A P P A introduces and studies the notion of 
the Hall S-partition of a group. 

4. L. W. ANDERSON and R. P. HUNTER give conditions for the minimal two-sided ideal of 
a compact connected semigroup to be a group. Their other paper deals also with certain groups 
connected with the semigroup theory. A . L. S . CORNER gives a characterization of endomorphism 
rings of countable reduced torsion-free abelian groups as topological rings. L. FUCHS lists the most 
useful properties of orderable groups and indicates some unsolved problems. M. H A L L Jr. presents 
some applications of block designs to group theory. F . LOONSTRA investigates the ordered set of 
abelian extensions of an abelian group. P. J. LORIMER generalizes the notion of characteristic for any 
finite projective plane in a manner eliminating the disadvantages of the earlier generalization. 
K. W . WESTON presents an interesting connection between group and ring theory. H . SCHWERDT-
FEGER investigates groups which may be considered as a slightly modified projective plane. 

From this list it is clear that this valuable book will be useful for all algebraists interested 
in group theory. 

B. Csákány (Szeged) 

Hans Hermes, Einführung in die Verbandstheorie (Die Grundlehren der mathematischen Wissen-
schaften in Einzeldarstellungen, Band 73), XII+209 Seiten, zweite, erweiterte Auflage, Springer-
Verlag, Berlin—Heidelberg—New York, 1967. 

Die vorliegende zweite Auflage hat den Charakter und den Aufbau der ersten behalten, sie 
wurde aber mit einigen neuen Paragraphen ergänzt. (Vgl. die Besprechung der ersten Auflage in 
diesen Acta, 16 (1955), 275.) So werden Erzeugungs- und Entscheidungsverfahren für die in ver-
schiedenen, durch Gleichungssysteme definierbaren Verbandsklassen gültigen Termgleichungen 
angegeben (§26, 27); es werden die klassischen und die intuitionistischen Aussagenstrukturen, 
sowie ihre Beziehungen zu den dualen Primidealen der Booleschen bzw. pseudo-Booleschen (d. h., 
nach unten beschränkten relativ pseudokomplementären) Verbände behandelt (§28, 29; „duales ' 
Primideal" wird hier einfach „Primideal" genannt); zur Vorbereitung der letzten dient ein Paragraph 
über die pseudo-Booleschen Verbände, in dem — unter anderem — gezeigt wird, daß diese Ver-
bandsklasse durch ein Gleichungssystem definierbar ist; ferner werden die Kongruenzrelationen 
in Verbänden eingehender behandelt (§31,32; hier findet man z .B. den Funayama — Nakaya-
maschen Satz, hinreichende Bedingungen für die Komplementarität des Kongruenzverbandes 
und den Satz von HASHIMOTO über die Beziehung zwischen den Kongruenzrelationen und den 
Idealen). Übrigens wurde der Text der ersten Auflage nur stellenweise abändert; Beispiel 8.4 und 
Abbildung 19.1 B wurden berichtigt. 

G. Szász (Nyíregyháza) 



Bibliographie 357 

Proceedings of Symposia in Pure Mathematics, vol. X. Singular integrals, VI + 375 pages, 
American Mathematical Society, Providence, Rhode Island, 1967. 

This volume, edited by A. P. CALDERÓN, contains the material of the Symposium on Singular 
Integrals and their Applications held at the University of Chicago, in Chicago, April 20—22, 1966. 
The rich and deep material is dedicated to Professor ANTONI ZYGMUND in celebration of his sixty-
fifth anniversary and in recognition of his decisive contribution to the field of singular integrals. 

The volume consists of twenty papers written by outstanding authors, furthermore, of an 
author and subject index. The papers, in general, deal with integral transformations of the form 

. / ( * ) = P.V. j.f{x-y)K(y)dy = lim f f(x-y)K(y)dy 

(?. V. means "principal value") or of similar types and with their various applications, where 

x=(xi,x2, ...,x„), y=(yl,y2,---,yn) are points of the real «-dimensional Euclidean space, 

l-'c| = ( and the kernel K{y) fulfils certain conditions of homogeneity and integrability. 

The purpose of the paper of B . BAJSANSKI and R. COIFMAN is to prove the boundedness of 
t ie maximal operator associated with some singular integrals considered by A . P. CALDERÓN. 
The paper of A . P. CALDERÓN presents the development of the algebraic formalism of singular 
integral operators as sketched in his earlier papers. In their joint paper-A. P. CALDERÓN, MARY 
WEISS, and A . ZYGMUND investigate the existence of singular integrals and show that, under 
certain conditions, the singular integrals are operators of weak type ( 1 , 1 ) . M . V . CORDES treats 
some properties of the m a p p i n g / - / in L2. E . B . FABES and H . JODEIT, JR . introduce so-called 
parabolic singular integral operators and apply such operators to boundary value problems for 
F arabolic equations. E . B . FABES and N. M . RIVIERE, continuing their earlier investigations, extend 
same results of CALDERÓN and ZYGMUND to the case of kernels with mixed homogeneity. K. O. 
FRIEDRICHS and P. D. LAX deal with symmetrizable differential operators, LARS HÖRMANDER 
v/ith pseudo-differential operators and hypoelliptic equations, M . JODEIT, JR . with symbols of 
parabolic singular integrals, B . F R A N K JONES, JR . with applications of singular integrals to the 
solution of boundary value problems for the heat equation. Then the further papers follow: P A U L 
KRÉE: A Class of Singular Integrals. Pseudo-differential Operators on Non-quasi-analytic Function 
Spaces, P . D . LAX and L. NIRENBERG: A Sharp Inequality for Pseudo-differential and Difference 
Operators, J. E. LEWIS: Mixed Estimates for Singular Integrals and an Application to Initial Value 
Problems in Parabolic Differential Equations, UMBERTO N E R I : Singular Integral Operators on 
Manifolds, JOHN C. POLKING: Boundary Value Problems for Parabolic Systems of Partial Diffe-
rential Equations, CORA SADOSKY and MISCHA COTLAR: On quasi-homogeneous Bessel Potential 
Operators, R. T. SEELEY: Complex Powers of an Elliptic Operator, Elliptic Singular Integral 
Equations, E. M. STEIN: Singular Integrals, Harmonic Functions, and Differentiability Properties 
cf Functions of Several Variables, RICHARD L. WHEEDEN: Hypersingular Integrals and Summa-
bility of Fourier Integrals and Series. 

The above enumeration shows that this volume, which is very rich in its material, gives a 
comprehensive view of the modern, developing and important theory of singular integrals. 

F. Móricz—K. Tandori (Szeged) 

Olivier Dimon Kellogg, Foundations of Potential Theory (Die Grundlehren der Mathematischen 
V/issenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, 
Eand XXXI) I X + 384 pages, Berlin—Heidelberg—New York, Springer-Verlag, 1967. 

This book is the reprint from the first edition of 1929. The first edition was reviewed by 
F . RIESZ in these Acta, 5 ( 1 9 3 0 — 3 2 ) , 1 3 7 — 1 3 8 . 

D. E. Men'sov, Limits of indeterminacy in measure of trigonometric and orthogonal series (Pro-
ceedings of the Steklov Institute of Mathematics, number 99 (1967)), 67 pages, American Mathema-
tical Society, Providence, Rhode Island, 1968. 

This book is the translation by R. P . BOAS of the Russian original. It contains the proof of 
three, very general and complicated theorems concerning the lower and upper limits in measure, 
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or in other words, the limits of indeterminacy in measure, of measurable functions. The first two 
theorems — somewhat in a less general form — have been published by the author earlier. (On 
limits of indeterminacy with respect to measure and limit functions of trigonometric and ortho-
gonal series, Doki. Akad. Nauk SSSR, 160 (1965), 1254—1256.) These results are based on the 
author's earlier investigations related to convergence in measure of trigonometric series (On con-
vergence in measure of trigonometric series, Trudy Mat. Inst. Steklov, 32 (1950), 1—99; On the 
limit functions of trigonometric series, Trudy Moskov. Mat. Obsc., 7 (1958), 291—334) as well 
as on the results of A. A. T A L A L J A N (Limit functions of series in bases of the space Lp, Mat. Sbor-
nik 56 (98) (1962), 353—374), and at the same time they are improvements of those. The theorems 
in this book essentially assert that the limits of indeterminacy in measure of the sequences of partial 
sums of series with respect to a complete orthogonal system, or more generally, to a normalized 
basis in L p ( p > 1), and of series of arbitrary measurable terms, have many properties in coramon i 

F. Móricz—K. Tandori (Szeged) 

Pál Révész, The Laws of Large Numbers, 176 pages, Akadémiai Kiadó, Budapest, 1967. 

The laws of large numbers have always occupied an important position in the history ot the 
calculus of probability, referring to both theoretical and practical applications. Although there 
exists already a huge literature on this subject, there appeared no monograph which would syste-
matically elaborate all known laws. The present work fills this gap, giving a general survey of the 
results and the most important methods of proof in this field. Occasionally, when the proof of 
a theorem requires very special methods, it is omitted. Several open questions are also mentioned. 

To define exactly the field of the laws of large numbers seems to be very difficult. We can 
say, in an attempt to obtain a definition, that a law of large numbers asserts the convergence, in 
a certain sense, of the average 

"n = >1 

of the random variables , ... to a random variable // (p. 8). By making use of different modes 
of convergence, different types of the laws of large numbers can be obtained. Three kinds of con-
vergence are considered in the book: stochastic convergence (or convergence in measure), con-
vergence with probability 1 (or convergence almost everywhere), and mean convergence. Accord-
ing to this, mainly, the weak laws, the strong laws, and the mean laws of large numbers are studied. 

In connection with the laws of large numbers the author investigates the rate of convergence. 
Hence, the laws of the iterated logarithm are also treated in the book. 

Theorems on the convergence of a series of the form Zck£k , where {£,,} is a sequence of random 
variables and {ck} is a sequence of real numbers, cannot be considered as a law of large numbers. 
However, this class of theorems is occasionally also studied because the convergence of a series 
of the above form immediately implies a law of large numbers by using the Kronecker lemma. 

The book contains eleven chapters with a complete bibliography and author index. . 
In Chapter 0 the author has collected the most important definitions and theorems without 

proof which are applied in the book. The reader should be familiar with the most fundamental 
results and concepts of probability, stochastic processes, measure theory, ergodic theory, functional 
analysis, etc. 

Chapter 1 deals with the special concepts and general theorems of the laws of large numbers. 
Chapter 2 is devoted to the laws of large numbers of independent random variables. The 

author presents some fundamental results of KOLMOGOROV such as the Kolmogorov inequality, 
the so-called three series theorem, another theorem that gives a necessary and sufficient con-
dition for the weak law of large numbers, etc. One virtue of the book is that there are occasionally 
given more essentially different proofs of the same theorem, e. g. the gap method and the method 
of high moments for the proof of the strong laws of large numbers. The end of this chapter studies 
the asymptotical properties of weighted averages, and the case of convergence to +<*>. 

Chapter 3 contains the author's own results that are analogues of some theorems of the 
previous chapter for the case in which the random variables are not independent but only strongly 
multiplicative. These investigations are based on an inequality, also due to him, which can be 
considered as a generalization of the Rademacher—Mensov inequality, well-known in the theory 
of orthogonal series. 

Chapter 4 discusses the laws of large numbers for stationary sequences by making use of 
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the results of ergodic theory. The difficulties from the special point of view of probability lie in the 
investigation of the condition of ergodicity. This investigation seems to be very difficult and not 
quite solved. 

The main problem of Chapter 5 is the following one: under what conditions can we find a 
subsequence of an arbitrary sequence of random variables obeying a law of large numbers? 
Among others, the author investigates this question in the case of Walsh functions {w„(x)} (and, 
presents the analogous results related to the sequence (sin nx}), and he proves that if we consider 
a subsequence w„k(x) (resp. sin nkx) for which nk+ Jnk^q>\ then we can obtain practically the 
same results as for independent sequences. The main result of this chapter, due also to the author, 
asserts that from any sequence of uniformly bounded random variables we can choose a subsequence 
which has properties similar to those of an independent system. 

After presenting the fundamental theorem of symmetrically dependent random variables, the 
results of Chapter 4 concerning the strong laws of large numbers are sharpened in Chapter 6. 
At the end of this chapter the author discusses the connection between the equinormed strongly 
multiplicative systems and the quasi-multiplicative systems. 

Chapter 7 deals with the laws of large numbers of Markov chains. The laws of large numbers 
as well as the limit theorems for non-homogeneous Markov chains are based on the different 
kinds of measures of ergodicity. The author introduces some of them, and several theorems are 
mentioned. 

Chapter 8 contains some general laws of large numbers which are not related to any concrete 
class of stochastic processes. In this chapter there are no restrictions on the kind of dependence, 
only on the strength of it. After introducing the notion of mixing for a sequence of random variables, 
general theorems are treated. 

Up to the Chapter 9 random variables taking values on the real line occur. In general, 
similar results can be obtained for random variables taking values in a finite dimensional Banach 
space. The situation is not much more complicated if the values of the random variables are in 
a Hilbert space. The real difficulty is in the treatment of the random variables taking values in 
a Banach space. The author follows the treatment of BECK. 

In general, a law of large numbers states that the average of the first n terms of a sequence 
of random variables is practically constant if n is large enough. In many practical applications 
the number of the experiments (i. e. the integer n) depends on chance. Chapter 10 deals with the 
questions of the sum of a random number of independent random variables. 

The results of the previous chapters are applied in Chapter 11 to number theory, to statistics, 
and to information theory. To begin with, two classes of expansions of the numbers x € [0, 1] 
are studied: the first is the so-called Cantor series, the second is a very general expansion introduced 
by RÉNYI. In connection with this second expansion only the case of the continued fractions is 
treated in detail. As regards applications in statistics, the book investigates the estimation of the 
distribution and of the density functions. 

The book is well-readable and, in spite of its relatively short extent, the most important 
results of the laws of large numbers are presented, in it with complete proofs. 

F. Móricz (Szeged) 

Pál Révész, Die Gesetze der grossen Zahlen (Lehrbücher und Monographien aus dem Gebiete 
der exakten Wissenschaften, Mathematische Reihe, Band 35), 176 Seiten, Birkhäuser-Verlag, Basel 
und Akadémiai Kiadó, Budapest, 1968. 

The German edition is the translation of the English original, reviewed above. 

András Ádám, Truth functions and the problem of their realization by two-terminal graphs, 
206 pages, 34 figures and 11 tables, Akadémiai Kiadó, Budapest, 1968. 

The concept of truth functions appeared firstly in mathematical logic, mainly by studying 
the simplest functions such as negation, disjunction, conjunction, and equivalence. The functions 
in question are called frequently Boolean functions too, for the logician BOOLE investigated them 
firstly systematically. The discovery of the applicability of these functions to engineering and cyber-
netics has given rise to the development of a self-reliant theory. 

The author gives a systematic survey on the main directions of the theory of truth functions 
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from a mathematician's point of view. According to this, the author mentions only in short remarks 
the technical origine or significance of the matter presented. 

The book is divided into two parts; it contains ten chapters, an appendix, bibliography, and 
indices of names and subjects: For the convenience of the reader, the symbols which are used in 
the book are also summarized. The first part treats the theory of truth functions considered 
from the point of view of "discrete analysis", the second one deals with the problem of their 
realization by two-terminal graphs, mainly by using graph-theoretical methods. 

The content of the book is almost self-contained; the presupposed knowledge of the reader 
does not exceed some fundamental notions and results of mathematics (lying mainly in the theories 
of sets, numbers and groups). 

The majority of the results contained in the book has appeared solely in the original articles 
of several authors; only a small part of them was already elaborated in books. Such results also 
occur which have never been published before. A virtue of the book is the fact that the proofs 
presented are always given in a complete form, and this makes the subject more readable than 
in the original publications. 

In Chapter 1 the fundamental concepts of this topics are considered. § 5 contains an unpub-
lished theorem of T. B A K O S that is useful for the design of logical machines, more precisely, for 
the planning of technically advantageous enumeration of the places of the definition of a truth 
function. 

Chapter 2 is devoted to the presentation of the fundamental researches of QUINE on prime 
implicants and disjunctive normal forms of minimal length. These results have an important 
applicability to the problems of simplification of electrical networks. The author presents two 
aigoritms of QUINE to determine all the prime implicants of a truth function, and a further method 
to find all the representation of a truth function by irredundant disjunctive normal forms. The 
end of this chapter contains some results of the author on relations between repetition-free super-
positions of truth functions and prime implicants. 

Chapter 3 treats interrelations between conjunctive and disjunctive normal forms in order 
to reach all prime implicants of a truth function in a more economical way than in the preceding 
chapter. From the theoretical point of view the theorem of NELSON, from the view-point of practical 
applications the method of VOISHVILLO solve completely the problem of finding all the prime 
implicants starting with an arbitrary conjunctive normal form of a truth function. 

Chapter 4 deals with the characterization of the systems of truth functions which are function-
ally complete concerning superposition. In §§14—15 the functionally complete systems of truth 
functions, in §§ 16—17 the complete systems of certain special automata consisting of a function 
and a non-negative integer number expressing time delay are considered. 

Chapter 5 is devoted-to the questions of uniqueness of the "deepest" decomposition by 
repetition-free superpositions. The main result is due to KUZNETSOV whose theorem asserts that 
if a truth function is given, then its deepest repetition-free superpositional decompositions are 
necessarily "almost conciding" with each other. 

Chapter 6 deals with numerical questions, particularly, with the number of certain sets 
consisting of truth functions. The author presents three permutation groups in connection with 
the set of the truth functions of n variables, and discusses the following problem: What is the 
number of classes of the essentially different truth functions? The "essentially different" is meant 
in three distinct senses, namely, two truth functions belong to the same class if one of them is 
originated from the other either by applying a permutation of its variables or by substituting some 
variables by their negatives or by applying simultaneously both previous processes. The treatment 
of this subject is based chiefly upon the results of G . PÓLYA. 

Chapter 7 presents notions and results concerning linearly separable functions, i. e. treats 
the possibility of assigning real numbers to the variables of a truth function in such a manner 
that the function value is true exactly if the sum of the numbers, assigned to the true variables, 
exceeds a given threshold. 

The first part of Chapter 8 presents general preliminaries of graph theory. The author deals 
in detail with the questions of series-parallel decomposition of 2-graphs (2-graphs always means a 
strongly connected two-terminal graph), of canonical decomposition of indecomposable 2-graphs, 
etc. The results of §§ 38—39 are due to the author. Introducing the notion of completable and 
separating pair of edges and that of quasi-series decomposition, he gives a new method of building 
üp 2-graphs from simpler ones. 

In Chapter 9 the author introduces several concepts of realization of truth functions: (i) by 
functional elements, (ii) by 2-graphs that is attributed to SHESTAKOV and SHANNON, (iii) by three-
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terminal graphs that was proposed by L. KALMÁR. In the rest the repetition-free realization of 
truth functions by 2-gra"phs is studied. § 45 contains some own results of the author concerning 
the problem of existence, after introducing the notion of the quasi-series decomposition of truth 
functions. The chapter ends with the result of TRAHTENBROT on the solution of the problem of 
unicity. 

Chapter 10 mentions some aspects of the problem of optimal realization containing two 
t h e o r e m s of LUNTS. 

In the Appendix the author mentions some possibilities of the future development by present-
ing the notion of stochastic truth functions introduced by J O H N VON N E U M A N N . 

The book will be useful both for the theoretical-minded mathematicians who either want 
to make research in the theory of truth functions or to be thoroughly acquainted with the more 
essential results of this topic, and expectably also for scientists, well-educated in mathematics, 
who may apply the theory of truth functions in their work. 

F. Móricz (Szeged) 

K. Reidemeister, Vorlesungen über Grundlagen der Geometrie (Die Grundlehren der mathema-
tischen Wissenschaften in Einzeldarstellungen, Band 32.), berichtigter Nachdruck, X+147 Seiten, 
Berlin—Heidelberg—New York, Springer-Verlag, 1968. 

Seit Erscheinung der Originalausgabe (für ihre Besprechung siehe: diese Acta, 5 (1930—32), 
S. 250) hat sich die Grundidee des Buches, bei der Begründung der ebenen affinen Geometrie 
dem Begriff der Gewebe eine Hauptrolle zu erteilen, bekanntlich als fruchtbar erwiesen. Die für 
die Grundlagen der Geometrie Interessierten werden also sicher diesen Nachdruck begrüssen. 
Durch Hinweise auf die nach 1930 erschienene Literatur werden die inzwischen erreichten Ergeb-
nisse und die Anhaltspunkte zu aktuellen Forschungsfragen angegeben. 

J. Szenthe (Szeged) 



362 Bibliographie 

LIVRES REÇUS PAR LA RÉDACTION 

E. Artin—J. Tate, Class field theory, XXVI+259 pages, New York—Amsterdam, W. A. Benjamin, 
1967. — $ 3,95. 

W. M. Babitsch—M. B. Kapilewitsch—S. G. Michlin—G. I. Natanson—P. M. Ries—L. N. Slobo-
dezki—M. Smirnow, Lineare Differentialgleichungen der mathematischen Physik (Matematische 
Lehrbücher und Monographien. I. Abteilung. Mathematische Lehrbücher, Bd. 14), XIV+ 
348 Seiten, Berlin, Akademie-Verlag, 1967. — D M 38,— 

Ju. M. Berezanskii, Expansions in eigenfunctions,of selfadjoint operators (Translations of Mathema-
tical Monographs, Vol. 17), IX+809 pages, Providence, American Mathematical Society, 
1968. 

H. Boerner, Darstellungen von Gruppen. Mit Berücksichtigung der Bedürfnisse der modernen Physik 
(Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 74), 
2., Überarb. Aufl., XIV+ 317 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 
1967. — DM 58,— 

P. L. Butzer—H. Berens, Semi-groups of operators and approximation (Die Grundlehren der mathe-
matischen Wissenschaften in Einzeldarstellungen, Bd. 145), XII + 318 pages, Berlin—Heidel-
berg—New York, Springer-Verlag, 1967. — DM 56,— 

A. H. Clifford—G. B. Preston, The algebraic theory of semi-groups, Vol. II (Mathematical Surveys, 
7), X V + 350 pages, Providence, American Mathematical Society, 1967. — $ 13,70. 

M. Deuring, Algebren (Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 41), 2. korrigierte 
Aufl., VIII+143 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1968. — DM 24,— 

H. G. Garnir—M. De Wilde—J. Schmets, Analyse fonctionnelle. Théorie constructive des espaces 
linéaires à semi-normes. Tome I. Théorie générale (Lehrbücher und Monographien aus dem 
Gebiete der exakten-Wissenschaften. Mathematische Reihe, Bd. 36), X + 562 pages, Basel— 
Stuttgart, Birkhäuser-Verlag, 1968. — Sfr. 94,— 

H. Grauert—W, Fischer, Differential- und Integralrechnung. II: Differentialrechnung in mehreren 
Veränderlichen. Differentialgleichungen (Heidelberger Taschenbücher, Bd. 36), XII + 216 
Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1968. — DM 12,80. 

W. Hahn, Stability of motion (Die Grundlehren der mathematischen Wissenschaften in Einzel-
darstellungen, Bd. 138), X1I+446 pages, Berlin—Heidelberg—New York, Springer-Verlag, 
1967. — DM 72,— 

G. Hamel, Theoretische Mechanik. Eine einheitliche Einführung in die gesamte Mechanik (Die Grund-
lehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 57), berichtiger Nach-
druck, XVI+796 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1967. — DM 84,— 

B. Huppert, Endliche Gruppen I. (Die Grundlehren der mathematischen Wissenschaften in Ein-
zeldarstellungen, Bd. 134), XII+793 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 
1967. — DM 156,— 

F. Klein, Elementarmathematik vom höheren Standpunkte aus. 1. Band ^Arithmetik, Algebra, Analysis, 
4. Auflage, ausgearbeitet von E. Hellinger, 1925; 2. Band: Geometrie, 3. Auflage, ausgearbeitet 
von E. Hellinger, 1925; 3. Band: Präzisions- und Approximationsmathematik, 3. Auflage, aus-
gearbeitet von C. H. Müller, 1928 (Die Grundlehren der mathematischen Wissenschaften in 
Einzeldarstellungen, Bd. 14—16), Berlin, Verlag von Julius Springer, Nachdruck 1968. — 
DM24,— 24,—.19,80. 
Vorlesungen über höhere Geometrie (Die Grundlehren der mathematischen Wissenschaften 
in Einzeldarstellungen, Bd. 22), 3. Auflage, bearbeitet, herausgegeben von W. Blaschke. VIII+ 
405 Seiten, Berlin, Verlag von Julius Springer, 1926. Nachdruck 1968. — DM 28,— 
Vorlesungen über nicht-euklidische Geometrie (Die Grundlehren der mathematischen Wissen-
schaften in Einzeldarstellungen, Bd. 26), für den Druck neu bearbeitet von W. Rosemann. 

. XII+326 Seiten, Berlin, Verlag von Julius Springer, 1928. Nachdruck 1968. — DM24,— 
Ju. V. Linnik, Statistical problems with nuisance parameters (Translations of Mathematical Mono-

graphs, Vol. 20), IX+258 pages, Providence, American Mathematical Society, 1968. — $ 12,— 
S. Mandelbrojt, Fonctions entières et transformées de Fourier. Applications (Publications of the Mathe-

matical Society of Japan, 10), VIII+61, pages, The Mathematical Society of Japan, 1967. 
— $3,— 

Mathematical Aspects of Computer Science (Proceedings of Symposia in Applied Mathematics, 
Vol. 19), VI+224 pages, Providence, American Mathematical Society, 1967. — $6,80. 

R. Nevanlinna, Uniformisierung (Die Grundlehren der mathematischen Wissenschaften in Einzel-
darstellungen, Bd. 64), 2. Auflage, X+391 Seiten, Berlin—Heidelberg—New York, Springer-
Verlag, 1967. — DM 49,50. 



Bibliographie 363 

D. G. Northcott, Lessons on rings, modules and multiplicities, XIV+444 pages, Cambridge, 
University Press, 1968. — 90 s. 

L . S. Pontrjagin, A course in ordinary differential equations (International Monographs Series. 
International Monographs on Advanced Mathematics and Physics), X + 3 3 3 pages, Delhi, 
Hisdustan Publ. Co., 1967. — $ 6,— 

Proceedings of the Steklov Institute of Mathematics, Nr. 74. Difference methods for solutions of 
problems of mathematical physics. I, edited by N. N. Janenko, VIII+ 188 pages, Providence, 
American Mathematical Society, 1967. — $ 7,50. 

Proceedings United States—Japan Seminar on Differential and Functional Equations, University of 
Minnesota, Minneapolis, June 26—30, 1967. Edited by W. A. Harris,Jr.—YasutakaSibuya, 
XVIII+ 585 pages, New York—Amstèrdam, W. A. Benjamin, Inc., 1967. — $8,50. 

R. Sauer—I. Szabó, Mathematische Hilfsmittel des Ingenieurs, Teil I, III (Die Grundlehren der 
mathematischen Wissenschaften in Einzeldarstellungen, Bd. 139, 141), XVI+496; XIX+535 
Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1967—1968. — DM88,— +98,— 

I. Schur, Vorlesungen über Invariantentheorie (Die Grundlehren der mathematischen Wissenschaften 
in Einzeldarstellungen, Bd. 143), bearbeitet und herausgegeben von H. Grunsky, X+134 
Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1968. — DM 32,— 

K. Schütte, Vollständige Systeme modaler und intuitionistischer Logik (Ergebnisse der Mathematik 
und ihrer Grenzgebiete, Bd. 42), VIII+ 87 Seiten, Berlin—Heidelberg—New York, Springer-
Verlag, 1968. — DM 24,— 

G.B. Seligmen, Modular Lie Algebras (Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 
40), IX+165 Seiten, Berlin—Heidelberg—New York, Springer-Verlag, 1967. — DM 39,— 

Séminaire Bourbaki, Volume 1966/1967. Exposés 313—330, New York—Amsterdam, W. A. Ben-
jamin, Inc., 1968. — S 16,— 

Studien zur Theorie der quadratischen Formen (Lehrbücher und Monographien aus dem Gebiete 
der exakten Wissenschaften. Mathematische Reihe, Bd. 34), herausgegeben von B. L. van der 
Waerden—H. Gross, 254 Seiten, Basel—Stuttgart, Birkhäuser-Verlag, 1968. — Sfr. 36,— 

Studies in Mathematical Statistics. Theory and applications, edited by K. Sarkadi and I. Vincze, 
210 pages, Budapest, Akadémiai Kiadó, 1968. 

Theory of Graphs (Proceedings of the Colloquium held at Tihany, Hungary), ed. by P. Erdős and 
G. Katona, 370 pages, Budapest, Akadémiai Kiadó, 1968. 

F. Trêves, Locally convex spaces and linear partial differential equations (Die Grundlehren der mathe-
matischen Wissenschaften in Einzeldarstellungen, Bd. 146), XII+121 pages, Berlin—Heidel-
berg—New York, Springer-Verlag, 1967. — DM 36,— 







INDEX - TARTALOM 

J. Dauns and K. H. Hofmann, Nilpotent groups and automorphisms 225 
L. C. A. van Leeuwen, Square extensions of finite rings : : . . . . 247 
L. Megyesi und G. Pollák, Uber die Struktur der Hauptidealhalbgruppen. I 261 
I. Kátai, On oscillation of the number of primes in an arithmetical progression 271 
P. R. Halmos, Quasitriangular operators 283 
R. G. Douglas and C. Pearcy, A characterization of thin operators 295 
J. A. R. Holbrook, On the power-bounded operators of Sz.-Nagy and Foiaç 299 
V. Isträfescu, A remark on a class of power-bounded operators in Hilbert space . . : . . . 311 

R. Kaufman, A problem on lacunary series 313 
L. G. Pál, On general multiplication of infinite series 317 
F. Móricz and K. Tandori, On a problem of summability of orthogonal series 331 
K. Tandori, Berichtigung zur Arbeit „Über die starke Summation von Fourierreihen" . . . 351 
Bibliographie 353 
Livres reçus par la rédaction 362 

ACTA SCIENTIARUM MATHEMATICARUM 
SZEGED (HUNGARIA), ARADI VÉRTANÚK TERE 1 

On peut s'abonner à l'entreprise de commerce des livres et journaux 
„Kultúra" (Budapest I., Fő utca 32). 

INDEX: 26024 

68-5967 — Szegedi Nyomda 

Feleifis szerkesztő és kiadó: Szőkefalvi-Nagy Béla 
A kézirat nyomdába érkezett: 1968. május hó 
Megjelenés: 1968. december hó 

Példányszám: 1000. Terjedelem: 12,25 (A/5) ív 
Készült monószedéssel, íve; magasnyomással, az MSZ 
5601-24 és az MSZ 5602-55 szabvány szerint 


