
Volume 21 Number 3

A C T A

C Y B E R N E T I C A

Editor-in-Chief. János Csirik (Hungary)

Managing Editor. Csanád Imreh (Hungary)

Assistant to the Managing Editor. Atti la Tanács (Hungary)

Associate Editors:

Luca Aceto (Iceland)

Mátyás Arató (Hungary)

Hans L. Bodlaender (The Netherlands)

Horst Bunke (Switzerland)

Tibor Csendes (Hungary)

János Demetrovics (Hungary)

Bálint Dömölki (Hungary)

Zoltán Ésik (Hungary)

Zoltán Fülöp (Hungary)

Ferenc Gécseg (Hungary)

Jozef Gruska (Slovakia)

Tibor Gyimóthy (Hungary)

Helmut Jürgensen (Canada)

Zoltán Kato (Hungary)

Alice Kelemenová (Czech Republic)

László Lovász (Hungary)

Gheorghe Páun (Romania)

András Prékopa (Hungary)

Arto Salomaa (Finland)

László Varga (Hungary)

Heiko Vogler (Germany)

Gerhard J. Woeginger (The Netherlands)

Szeged, 2014

A C T A C Y B E R N E T I C A

Informat ion for authors. Acta Cybernetica publishes only original papers in the field

of Computer Science. Manuscripts must be written in good English. Contributions are

accepted for review with the understanding that the same work has not been published

elsewhere. Papers previously published in conference proceedings, digests, preprints are

eligible for consideration provided that the author informs the Editor at the time of

submission and that the papers have undergone substantial revision. If authors have used

their own previously published material as a basis for a new submission, they are required

to cite the previous work(s) and very clearly indicate how the new submission offers

substantively novel or different contributions beyond those of the previously published

work(s). Each submission is peer-reviewed by at least two referees. The length of the

review process depends on many factors such as the availability of an Editor and the time

it takes to locate qualified reviewers. Usually, a review process takes 6 months to be

completed. There are no page charges. An electronic version of the puplished paper is

provided for the authors in PDF format.

Manuscr ipt Formatt ing Requirements . All submissions must include a title page

with the following elements:

• title of the paper

• author name(s) and affiliation

• name, address and email of the corresponding author

• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.

References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your

submission as one single PostScript or PDF file including all elements of the manuscript

(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by

email as a single attachment to either the most competent Editor, the Managing Editor,

or the Editor-in-Chief. In addition, your email has to contain the information appearing

on the title page as plain ASCII text. When your paper is accepted for publication, you

will be asked to send the complete electronic version of your manuscript to the Managing

Editor. For technical reasons we can only accept files in D-T^X format.

Subscription Informat ion. Acta Cybernetica is published bv the Institute of Infor-

matics, University of Szeged. Hungary. Each volume consists of four issues, two issues

are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft

within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are

available upon request from the publisher. Printed issues are delivered by surface mail

in Europe, and by air mail to overseas countries. Claims for missing issues are accepted

within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged

P.O. Box 652. H-6701 Szeged, Hungary

Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above informations along with the contents of past issues are available

at the Acta Cybernetica homepage http://www.inf.u-szeged.hu/actacybernetica/ .

mailto:acta@inf.u-szeged.hu
http://www.inf.u-szeged.hu/actacybernetica/

E D I T O R I A L B O A R D

Editor-in-Chief: Jänos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csirik@inf.u-szeged.hu

Managing Editor: Csanád Imreh
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
cimreh@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács

Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf .u-szeged. hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf.u-szeged.hu

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fu lop@ inf. u-szeged. h u

mailto:csirik@inf.u-szeged.hu
mailto:cimreh@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:hansb@cs.uu.nl
mailto:bunke@iam.unibe.ch
mailto:csendes@inf.u-szeged.hu
mailto:demetrovics@sztaki.hu
mailto:ze@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@ inf. u-szeged. h u

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyi mot hy@i nf. u-szeged. h u

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@inf.u-szeged.hu

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

Andráis Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J . Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:gruska@savba.sk
mailto:helmut@csd.uwo.ca
mailto:kato@inf.u-szeged.hu
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:Heiko.Vogler@tu-dresden.de
mailto:gwoegi@win.tue.nl

SYMPOSIUM ON

PROGRAMMING LANGUAGES

AND SOFTWARE TOOLS

(S P L S T T 3)

Selected Papers from the Symposium

Guest Editor:

Äkos Kiss

Department of Software Engineering

University of Szeged

Szeged, Hungary

akiss@inf.u-szeged.hu

mailto:akiss@inf.u-szeged.hu

Preface

This special issue contains papers on topics of the 13th Symposium on Pro-

gramming Languages and Software Tools (SPLST'13). The series started in 1989

in Szeged, Hungary, and since then, by tradition, it has been organized every sec-

ond year in Hungary, Finland, and Estonia, with participants coming from all over

Europe. The thirteenth edition of the symposium was back again in Szeged on

August 26-27, 2013, organized by the Department of Software Engineering of the

University of Szeged. The purpose of the SPLST has always been to provide a

forum for software scientists to present and discuss recent researches and develop-

ments related to programming languages, software tools, and methods for software

development. At SPLST'13, there were 20 accepted talks in sections on program

analysis, formal verification, software evolution and maintenance, and web tech-

nologies. In addition, an invited talk was presented jointly by Hassan Charaf and

László Lengyel (Budapest University of Technology and Economics). After the

symposium, the authors of selected talks were invited to revise and extend their

papers for publication in Acta Cybernetica. Following a review process, 9 were

accepted for publication, which are presented in this special issue.

Akos Kiss

Guest Editor

289

Acta Cybernetica 21 (2014) 291-306.

Lively3D: Building a 3D Desktop Environment as a

Single Page Application

Jari-Pekka Voutilainen* Anna-Liisa Mattila* and Tommi Mikkonen*

Abstract

The Web has rapidly evolved from a simple document browsing and dis-

tribution environment into a rich software platform, where desktop-style ap-

plications are treated as first class citizens. Despite the associated technical

complexities and limitations, it is not unusual to find complex applications

that build on the web as their only platform, with no traditional installable

application for the desktop environment - such systems are simply accessed

via a web page that is downloaded inside the browser and once loading is

completed, the application will begin its execution immediately. With the

recent standardization efforts, including HTML5 and WebGL in particular,

compelling, visually rich applications are increasingly supported by the the

browsers. In this paper, we demonstrate the new facilities of the browser as

a visualization tool, going beyond what is expected of traditional web appli-

cations. In particular, we demonstrate that with mashup technologies, which

enable combining already existing content from various sites into an inte-

grated experience, the new graphics facilities unleashes unforeseen potential

for visualizations.

Keywords: web apps, visualization, window management, 3D UI

1 Introduction

Over the few recent years, the Web has evolved from a simple document browsing

and distribution environment into a rich software platform, which is capable of

hosting desktop-style applications. Moreover, these applications are increasingly

often treated as first class citizens.

The document-centric origins of the Web are still visible in many areas. Conse-

quently, it has been traditionally considered difficult to compose truly interactive

web applications. A partial solution has been to use plug-in components or browser

extensions, such as Adobe Flash or Microsoft Silverlight, but such binary or com-

pany specific technologies do not fit well to the ideals of the open web, advocating

web applications that are built using technologies that are open, accessible and as

'Department of Pervasive Computing, Tampere University of Technology, E-mail:
(jari-pekka.voutilainen, anna-1iisa.mattila, tommi.mikkonen}®tut.fi

292 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

interoperable as possible to avoid vendor-specific lock-in. As a manifestation of this

attitude, it is not unusual for complex applications to use the web as their only

platform. In other words, despite the technical difficulties and limitations, there is

no traditional installable application for the desktop - the system is simply accessed

via a web page that is downloaded inside the browser, whose runtime resources are

then used by the application. We believe that the transition of applications from

the desktop computer to the web has only started, and the variety, number, and

importance of web applications will be constantly rising during the next several

years to come.

In comparison to desktop applications, the benefits of web applications are

many. Web applications are easy to adopt, because they need neither installation

nor updating - one simply enters the URL into the browser and the latest version

is always run. Furthermore, web applications are easy and cheap to publish and

maintain; there is no need for intermediates like shops or distributors. Furthermore,

in comparison to conventional desktop applications, web applications have a whole

new set of features available, like online collaboration, user created content, shared

data, and distributed workspace. Finally, with the whole content of the web acting

as the data repository, the new application development opportunities, unleashed

by the newly introduced facilities of the web technologies that make the browser

increasingly capable platform for running interactive applications, are increasing

the potential of the web as an application platform.

In this paper, we demonstrate the new facilities of the web as an information

visualization tool, going beyond what is expected of browser based applications.

Moreover, we demonstrate that together with mashup technologies, which enable

combining already existing content from various sites into an integrated, usually

more compelling experience, the new graphics facilities results in unforeseen po-

tential for visualization of context-specific data. Together with data science, the

approach can be generalized to increasingly complex systems, which simplifies data

consumption tremendously.

The rest of the paper is structured as follows. In Section 2, we discuss the

evolution of the web and the main phases that can be identified in the process, and

briefly address two important web standards - HTML5 and WebGL - and their role

in the development of new types of web applications, building on already available

resources. In Section 3, we introduce our technical contribution, Lively3D, which

is a host environment that is capable of integrating multiple applications within

single 3D-scene and visualize the environment in three different ways. In Section 4,

we discuss development issues related to Lively3D's 3D user interface and introduce

a redesigned version of Lively3D's UI. In Section 5 final conclusions are drawn.

2 Background

The World Wide Web has undergone a number of evolutionary phases [6]. In the

first phase, web pages were truly pages, and navigation between pages was based

simply on hyperlinks - a new web page was loaded from the web server each time

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 293

the user clicked on a link. These pages were truly page-structured documents that

contained primarily text with some interspersed static images, without animation

or any interactive content, which were only introduced in the second phase, as web

pages became increasingly interactive, created by using animated graphics and plug-

in components. In this phase, the JavaScript scripting language enabled building

animated, interactive content with technologies primarily associated with the Web

only. Moreover, as a part of the transition to this phase, the Web started moving

in directions that were unforeseen by its designers. Web sites started behaving

more like multimedia presentations rather than page-structured documents, content

mashups and web site cross-linking became increasingly popular.

Today, the browser is increasingly used as a platform for real applications, with

services such as Google Docs with its desktop-like interactions paving the way

towards more complex systems. We expect that as more and more data becomes

available online, the capabilities of the browser will be increasingly often harnessed

to filter and further process the data into a form that can be more easily consumed.

In this context, two recent initiatives form an important perspective. These are the

open web, perhaps best manifested in Mozilla Manifesto1, which centers around the

idea that the web that is a global public resource that must remain open, accessible,

interoperable and secure, and open data, which according to Wikipedia2, builds on

the idea that certain data should be freely available to everyone to use and republish

as they wish, without restrictions from copyrights, patents, or other mechanisms of

control.

To support the above initiatives, the need to use plugins is being seriously

challenged by two recently introduced technologies, HTML5 and WebGL, as already

pointed out in [5]. These new technologies provide support for creating desktop-

like applications that run inside the browser (HTML5) and enable direct access

to graphics facilities from web pages (WebGL). This, together with already well-

known techniques for mashupping, are paving the way towards the next generation

of web applications, with increasing capabilities for modeling and visualizing data

and conceptual information.

The forthcoming HTML5 standard3 complements the capabilities of the existing

HTML standard with numerous new features. Although HTML5 is a general-

purpose web standard, many of the new features are aimed squarely at making

the Web a better place for desktop-style web applications. There are numerous

additions when compared to the earlier versions of the HTML specification. To

begin with, the new standard will extend the set of available markup tags with

important new elements. These new elements make it possible, e.g., to embed

audio and video directly into web pages. This will eliminate the need to use plug-

in components such as Flash for such types of media. The HTML5 standard will

also introduce various new interfaces and APIs that will be available for JavaScript

applications.

1 http: //www. mozilla.org/about/manifesto.html
2http://en. wikipedia.org/wiki/Open_data
3http://www. w3.org/TR/html5/

http://en
http://www

294 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

WebGL4 is a cross-platform web standard for hardware accelerated 3D graphics

API developed by Mozilla, Khronos Group, and a consortium of additional compa-

nies including Apple, Google and Opera. The main feature that WebGL brings to

the Web is the ability to display 3D graphics natively in the web browser without

any plug-in components. WebGL is based on OpenGL ES 2.05, and it uses the

OpenGL shading language GLSL. WebGL runs in the HTML5's canvas element,

and WebGL data is generally accessible through the web browser's Document Ob-

ject Model (DOM) interface. A comprehensive JavaScript API is provided to open

up OpenGL programming capabilities to JavaScript programmers.

As a technical detail, it is important to notice that the WebGL API is imple-

mented at a lower level compared to the equivalent OpenGL APIs. This increases

the software developers' burden as they have to implement some commonly used

OpenGL functionality themselves. To make it easier and faster to use WebGL,

several additional JavaScript frameworks and APIs have been introduced, includ-

ing Three.js6, Copperlicht7, GLGE8 , SceneJS9, and SpiderGL10. Such frameworks

introduce their own JavaScript API through which the lower-level WebGL API is

used. The goal of these libraries is to hide the majority of technical details and

thus make it simpler to write applications using the framework APIs. Further-

more, these WebGL frameworks provide functions for performing basic 2D and 3D

rendering operations such as drawing a rotating cube on the canvas. The more

advanced libraries also have functions for performing animations, adding lighting

and shadows, calculating the level of detail, collision detection, object selection,

and so forth.

3 Lively3D: Host environment for web apps

The goal of the Lively 3D proof-of-concept design was to create a 3D environment

in which applications of different kind - including data processing, visualization,

and interactive applications in particular - can be embedded as separate elements

within a single environment running inside the browser. Furthermore, the design is

based on using facilities that are commonly used in the web already, implying that

to a large extent it is possible to immediately reuse already existing content in the

system.

4http://www.khronos.org/webgl/
5http://www.khronos.org/opengles
6http://threejs.org/
7http: //www. ambiera.com/copperlicht/
8http://www.glge.org/
9http://scenejs.org/

10http://spidergl.org/

http://www.khronos.org/webgl/
http://www.khronos.org/opengles
http://threejs.org/
http://www.glge.org/
http://scenejs.org/
http://spidergl.org/

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 295

3.1 Overview

Web app, by simple definition11, is an application utilizing web and [web] browser

technologies to accomplish one or more tasks over a network, typically through

[web] browser. Canvas application is a subset of web app, which uses a single

canvas html element12 as its graphical interface.

Lively3D13 is a web application framework, where embedded canvas applica-

tions are displayed inside a three dimensional windowing environment. Individual

applications embedded in the system can thus be composed using the Canvas API,

offered by HTML5. In general, this enables the creation of graphically rich small

apps that are capable of interacting with the user in a desktop like fashion.

The conceptual idea of Lively3D is based on previous project The Lively Ker-

nel[5]. Lively Kernel was 2D window manager and IDE that was executed in the

browser. Similar frameworks and tools have been developed by others like Ventus14

and SproutCore15.

The Lively3D framework itself is implemented with GLGE16 , a WebGL library

by Paul Brunt, which abstracts numerous implementation details of WebGL from

the developer. Embedding the applications to the framework was designed in such

a way that the developer of a canvas application needs to implement minimal

interfaces towards the Lively3D system in order to integrate the application within

the environment. Existing canvas applications are easily converted to Lively3D app

by wrapping the existing code to the Lively3D interfaces.

In addition to the applications, the 3D environment that displays the applica-

tions can be redefined using Lively3D interfaces. The applications and different 3D

environments are deployed in a shared Dropbox folder, so that multiple developers

can collaborate in implementing applications and environments without constantly

updating the files on the server hosting Lively3D.

Lively3D is implemented as Single-Page Application (SPA) where the whole

application is loaded with a single page load. This provides the user interface and

the basic mechanics of 3D environments. SPA design was selected, so that appli-

cations can interact with the windowing environment and the whole state of the

environment is stored within the JavaScript namespace. The design of Lively3D

was considerably affected by the browser security model, which limits the possi-

bilities of resource usage. The security model denies access both to the local file

system and external resources in different domain with its Same-origin policy17.

The policy is upheld in Lively3D with server-side proxies, so that the browser sees

all the content in same domain. The main components of the system are illustrated

in Figure 1. All components are designed with easy-to-use interfaces and require

minimal knowledge of inner working of the framework.

11 http: //web.appstorm .net/general/opinion / what-is-a-web-app-heres-our-definition /
12 http://www.w3.org/wiki/HTML/Elements/canvas
13 http: //lively 3d.cs.tut.fi /
14http://www.rlamana.es/ventus/
15http://sproutcore.com/
16http://www. glge.org/
17 http://www.w3.org/Security/wiki/Same.Origin_Policy

http://www.w3.org/wiki/HTML/Elements/canvas
http://www.rlamana.es/ventus/
http://sproutcore.com/
http://www
http://www.w3.org/Security/wiki/Same.Origin_Policy

296 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

Browser
Apps 3D

Scene

Lively3D
GLGE

/-"Application server"\ z"' Hosting service
Node.js

MongoDB

PHP
Proxy

Dropbox API

Dropbox

Figure 1 : Structure of the Lively3D framework

Applications and 3D scenes are developed in JavaScript using Lively3D API, de-

ployed to Dropbox using the official Dropbox client, and downloaded into Lively3D

through PHP or Node.js proxies, depending on the situation. The Lively3D API

provides resource loaders, which enable deployment of application and 3D-scene

specific resources to the Dropbox so that complete applications and 3D scenes can

be downloaded through the server hosting Lively3D, thus in essence circumventing

browser security restrictions.

When a new 3D scene is designed and implemented, the developer has to define

the essential functions that are called by the Lively3D environment, similarly to

many other graphical user interface frameworks. These functions enable redefining

how the system interacts with the user, including mouse interaction, the creation

of 3D objects in the GLGE system that represents the application, and automatic

updates of the scene between frames. Additionally, the initial state of the scene

is defined in GLGE's XML format, which can be generated with 3D modeling

software, like Blender (http://www.blender.org/) for example.

3.2 Lively3D apps

A Lively3D app consists of canvas application and its data structures in Lively3D

host environment. Usable existing web apps are limited to canvas applications,

because Lively3D is implemented in WebGL and the WebGL specification permits

the use of canvas, image and video html-elements as the only source for textures

within the 3D-environment. Most of the data structures are provided by Lively3D,

but some conventions must be followed when converting existing canvas application

to Lively3D app.

Since web apps are usually developed with expectancy that the app will be the

only app in web page, the app structure can be pretty much anything the developer

desires. But since Lively3D is implemented in Single Page Application paradigm,

Lively3D apps are separated from each other with simulated namespaces as much

as the browser model permits.

To achieve the above goal, each canvas application must have clearly separated

initialization code. Additionally all the browser elements the app uses, must be

created dynamically with a single canvas-element functioning as the only graphical

element of the application. To mitigate these restrictions Lively3D offers API for

canvas applications, which is presented in figure 2. In the following, we briefly list

the most important features of the API.

http://www.blender.org/

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 297

Lively3D

AddApplication

LoadResources

AllowAppStart

Application User Interface
Mandatory

GetCanvas Resource
Handlers

SetLivelyApp Resources
Loaded

Optional

Open Close

GetState SetState

ShowMessage

ShowHTML

Figure 2: Lively3D API for applications.

To convert existing application to Lively3D app, the application must implement

mandatory function of the figure. To embed the converted app to environment, the

initialization code of the app must start the embedding process with calling the

AddApplication-function. The process is presented in Figure 3.

Livelv3D App Livelv3D

AddApplication

3D En onment

C T
GetCanvas

I T
SetLivelyApp

Applnit

Initialization

Add 3D Object

LoadResources

ResourcesLoaded

Resource
Handling AllowAppStart

Enable App

Tl

Figure 3: Sequence for embedding new Lively3D app.

As illustrated in the above figures, each application must implement a few

mandatory functions and call Lively3D functions in certain order to advance the

integration with the environment. During the integration, the canvas app is created

and hidden with CSS-styling.

The Lively3D framework creates 3D objects representing the app and texturizes

298 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

them with the canvas element. Additionally to the mandatory functions, apps can

provide optional functions which react to events like opening and closing the ap-

plication within the environment. These function have default functionalty if they

are unimplemented, but when the developer decides to provide them, they define

what happens to the application status during the different events. Additionally,

the inner state of the application can be serialized and de-serialized to developer's

desired format.

Since the canvas element is defined as the only graphical element allowed for

Lively3D Apps, the API also provides user interface functions to display messages

and HTML in Lively3D provided dialogs. This provides consistent user interface,

since Lively 3D itself is rendered in a full browser window and possibilities of dis-

playing text or other web interface elements within the environment are limited due

to the WebGL specification. Figure 4 illustrates the existing canvas application in

the left and the conversion to Lively3D app in the right with another app in the

same environment.

Figure 4: Conversion of existing application.

3.3 Redefining the 3D environment

As is common in various 3D applications, including in particular the genre of com-

puter games, the visualization in our system is based on so-called scene graph, a

generic tree-like data structure containing a collection of nodes. Nodes in the scene

graph may have many children but most often they only need a single parent. In

this structure, any operation performed to the parent is further propagated to its

children. This flexible data structure enables numerous different visualizations,

where the parent-children role can be benefited from.

The 3D environments in Lively3D are implemented dynamically, so that user

can load new environments and change between them at will. As default only one

environment is initialized in Lively3D and after adding more environments, the

process of switching between environments is presented in Figure 5. Closing the

applications and rebinding the events is done, so that the environment is in known

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 299

Figure 5: Sequence of switching environment.

initial state. Changing of the 3D-objects is required since GLGE allows 3D-object

to be present only in one scene at a time.

In our experiment, we have created three different ways to visualize a scene

graph where the children are applications and the root node is the 3D environment

hosting the children. Example host environments include a conventional desktop, a

planetary system where applications rotate a sun like in a solar system, and a true

3D virtual world, where applications move in a 3D terrain. These are introduced

in the following in more detail, together with a set of screen shots to demonstrate

their visual appearance.

Desktop. The conventional desktop consists of three dimensional room, cubes

that represent closed applications, and planes that act as individual applications,

Figure 6: Visualizing the system as a conventional desktop.

300 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

\

Figure 7: Visualizing the system as a solar system.

with the ability to execute JavaScript code, render to the screen, and so forth. A

screenshot of the desktop environment, with three opened and two closed applica-

tions, is presented in Figure 6. The scene mimics all traditional desktop features,

including dragging applications within the desktop and application interaction with

opening, closing, maximizing and minimizing them with mouse controls.

Solar system. The solar system scene modifies the presentation of applica-

tions. In this scene, applications are presented as spheres that revolve around the

central sun. Each revolving sphere generates a white trace in accordance to its

path, and the trace is removed when the trace reaches maximum length. Each

sphere uses the texture of the application canvas it is representing, and therefore

each sphere has a different look within the scene. An example scene with 4 ap-

plications is demonstrated in Figure 7. Application windows retain their default

functionality with dragging around, maximizing, minimizing, and so on. When an

application that has been moved around is closed, the application returns to its po-

sition revolving around the central sun, in comparison to the conventional desktop

scene where the application simply retains its current position.

Vir tua l world. The 3D virtual world scene goes even further from the con-

ventional desktop. The only thing retained from the desktop concept are the appli-

cation windows, and the only remaining controls for the windows are opening and

closing the application, which then of course can introduce more controls within the

application. The world itself consists of three dimensional terrain, where the user

can wander around using the keyboard and the mouse. In this setting, applications

are presented as spheres that roam the terrain in random directions, with their

textures simplified to single image for performance reasons - experiences where ap-

plication textures were used quickly showed that the resources of the test computer

would no longer be adequate for such cases. Using this visualization, the 3D terrain

and seven sample application spheres are illustrated in Figure 8. The right side of

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 301

Lit?"5«»

Figure 8: Visualizing the system as a 3D virtual world.

the figure illustrates application canvases within the world.

All of the above visualizations are based on the same JavaScript code, with

the only difference being the rendering strategy associated with the scene graph.

Consequently, in all of these systems applications are runnable, and can in fact run

even when they are inactive and being managed by the different host environments,

except when explicitly disabled for performance reasons.

4 Refactoring Lively3D U I

In this section, we introduce some early experiences regarding the relation between

the Lively3D framework and widget libraries commonly used in desktop applica-

tions. To summarize problems, the original implementation was built directly on

primitives emerging from WebGL, whereas the refactored version is geared towards

widget libraries in its architecture.

4.1 Identified Problems

As a part of the process of designing the Lively3D framework, it became obvious

that its architecture would benefit from more abstract programming concepts, in

particular when considering the programming of the 3D UI. WebGL is a low ab-

straction level tool and 3D-engines building upon it only hide the rendering details

from programmer. In particular such libraries lack essential concepts known from

desktop application development.

As a concrete example, let us examine Lively3D's application window. The

application window is a composition of three different 3D objects - title bar, window

content and close button. These 3D objects are grouped together and aligned so

that they appear as a window that is a solid object.

The background is that WebGL provides tools to create the 3D objects, align

and group those, but there is no tools for creating a WIMP 1 8 elements such as

titled window which can be dragged from the title bar and closed from the close

18Windows, Icons, Menus, and Pointer

302 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

button. However the natural abstraction of application window is an UI widget

which has predefined look and feel, not a group of geometries which application

logic is responsible for, which was the case in our original implementation.

Most of the 3D engines built for WebGL lack also necessary event handling

capabilities. Using e.g. GLGE there is no way to bind an event listener to a 3D

object. Determining which event happened and which object receives the event

is responsibility of an application developer. In Lively3D the event handling for

3D UI is mixed into Lively3D application logic. In Lively3D there is a main event

handler which catches all events for the Lively3D canvas, determines which object

receives the event and executes functionality related to that object.

For instance, if the user clicks the close button of a window, Lively3D's main

event handler will receive the event and calculate collision detection based on the

mouse position to determine if the mouse hit any 3D objects. After finding the 3D

object the event handler has to deduce which kind of object was hit and execute

operations related to that object. In the window's close buttons case the operation

would be to hide the group of 3D objects that forms the window.

In Lively 3D there are only two kinds of 3D widgets - application windows and

application icons - which receives only restricted amount of events so Lively3D has

fairly simple 3D UI. However if we wish to add some new interactive 3D content

to Lively3D we would need to refactor quite a lot of Lively3D code to get that

done. Simple 3D UIs can be built using low abstraction level tools however the UI

definition and logic becomes easily a mess of glut and glue solutions which makes

it hard to maintain and develop the application further.

4.2 Revisiting the Design

Motivated by the above observations we created WebWidget3D, a 3D widget library

for WebGL [3]. The idea of the library is to provide some predefined reusable 3D

widgets and tools for building custom 3D widgets. WebWidget3D provides event

system which enables binding mouse and keyboard events directly to 3D widgets.

The framework also introduces predefined controls e.g. drag control and roll control

which can be bind to any widget and fly control for moving camera in the 3D

scene. The current implementation of WebWidget3D uses Three.js 3D engine for

rendering, although 3D engine can be changed due specialized adapter component.

WebWidget3D provides predefined widgets and abstraction for creating widgets

but it does not force the 3D world to consist of only 3D widgets. WebWidget3D

content can be mixed with content (e.g. 3D objects, visual effects, animations,

physics, etc.) provided by the 3D engine used with WebWidget3D.

We redesigned and reimplemented Lively3D's desktop UI using WebWidget3D

to see how much refactoring would affect to Lively3D's complexity. The imple-

mentation is divided to two parts, 1) widget building blocks out of which complete

widgets can be built (Table 1), and 2) a reduced set of ready-to-use widgets that

can be used to create complete applications (Table 2). Figure 9 illustrates the

revisited implementation.

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 303

Table 1: Building blocks of revised Lively 3D design

Component Description

GuiObject Basic event handling capabilities.

Widget Numerous commonly needed facilities for creating

applications. Base class for new widgets.

Text Simple string handling functionality.

Group Abstraction of a container that can have other com-

ponents as its children. Container can also have a

3D object representation.

Application Corresponds to an application; receives events.

Widget

Table 2: Widgets used in Lively3D

Description

Grid window

Titled window

Menu window

Dialog window

Instance of a Group that is represented as a 3D grid

plane. The grid window widget can be rotated in 3D

space with the mouse.

Instance of class Group. Contains three instances of

Widget class as a title bar, a close button, and for

representing the window content.

Menu composed of multiple choice buttons. Individ-

ual choices are represented as cuboids.

Dialog composed of title text, multiple text fields and

multiple action buttons.

s«v.

lo»d Son*

Switch sen.

Togal« M»«*

c

sy*"
{or too«'

Figure 9: Reimplemented Lively3D

304 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

4.3 Evaluation

In general, our work supports the conclusions of [2], where architecture related

aspects of traditional applications are used as a driver for the design of apps that

re run inside web pages. The goal of such designs, commonly referred to as single

page web applications, is to support reuse and modifications in the long run, thus

sharing the goals of more traditional software systems. Above, we reuse the design

paradigm that is mature in the field of desktops, but to some extent missing from

web design.

To evaluate the design, using WebWidget3D and its predefined widgets we were

able to reduce the amount of JavaScript code lines by 26% [3]. In addition, using

the library liberates developers to focus on solving application specific problems

by allowing them to overlook numerous details that remain similar in different

applications.

We also replaced Lively3D's 2D UI (menus and dialogs) with corresponding 3D

UI widgets. This design reduced the number of code lines of HTML and CSS but

on the other hand increased lines of code of JavaScript code.

5 Conclusions

Lively3D framework presents architecture to download and execute different appli-

cations within same environment. Although similar windowing environments have

been developed and studied for years like Compiz/Beryl19, our experiment runs on

top of the browser. This approach has the advantage of the cloud, so that the user

does not need to install anything else except the browser to execute the environ-

ment and the applications. This approach also works in different platforms from

desktop Windows and Linux to mobile phones.

Our prototype demonstrates that integrating individual applications in a single

web page is possible and achievable without complex structures from the application

developer. However, one of the main goals - using existing content, preferably

complete web sites in the system as applications - turned out to be unreachable.

Due to the WebGL specification limitations, the use of existing content as textures

is limited to image, video, and canvas elements, whereas in order to render existing

web pages within 3D environment, the WebGL specification should to support

IFrames as a source for textures. Currently, this option is associated with security

issues - using the WebGL API gives loaded applications a direct access to the

host devices hardware - which must be resolved before extending the rendering

capabilities. Until then, applications are limited to the functionality of canvas

element to produce graphics.

Additional security issues also emerge. Applications share the same JavaScript

namespace which causes problems with variable overwriting. Even though each

application has a simulated private namespace, variables might bleed through to

the global namespace if the variable is missing var keyword. Applications can ac-

19http://www.compiz.org

http://www.compiz.org

Lively 3D: Building a 3D Desktop Environment as a Single Page Application 305

cess global variables and overwrite them, including Lively3D namespace, other used

JavaScript libraries and even browsers' default JavaScript functionality. This espe-

cially causes accidental problems with generic JavaScript libraries, since they are

usually bound in $ variable, which is overwritten when new library is loaded and ba-

sic functionality of the environment brakes down as result. These problems could be

fixed with proper process model where each application has its own private names-

pace and rendering context. There has been an emergence of JavaScript frameworks

like Require.js20 and browserify21 that encapsulate parts of the JavaScript code to

separate modules, this could be used as a pattern to fix some of the problems of

Lively3D.

The Single Page Application paradigm has its advantages and disadvantages.

Even though applications are in the same JavaScript namespace, this could be

leveraged so that applications could communicate with each other. To enable this,

the environment would need common JavaScript interfaces for application commu-

nications. Current implementation does not provide documented APIs for this.

One of the goals of Lively3D was minimal overhead code while embedding ex-

isting applications. We consider that this requirement was achieved quite well,

although comprehensive analysis between converted applications is useless since

amount of overhead code depends on coding conventions. In Lively3D most of

the application initialization must be done dynamically in JavaScript code, as op-

posed to convential browser where HTML tags can handle some of the resource

downloading. The minimal overhead code amounts to about 50 lines of extra code.

In the course of the design, we were alarmed by the fact that the circumvention

of security restrictions became one of the key design drivers in the experiment. In

this field, the problems arise from the combination of the current "one size fits

all" browser security model and the general document-oriented nature of the web

browser. Decisions about security are determined primarily by the site (origin) from

which the web document is loaded, not by the specific needs of the document or

application. Such problems could be alleviated by introducing a more fine-grained

security model, e.g., a model similar to the comprehensive security model of the

Java SE platform [1] or the more lightweight, permission-based, certificate-based

security model introduced by the MIDP 2.0 Specification for the Java Platform,

Micro Edition (Java ME) [4]. As already pointed out in [6], the biggest challenges in

this area are related to standardization, as it is difficult to define a security solution

that would be satisfactory to everybody while retaining backwards compatibility.

Finally, there are numerous new methodological issues associated with the tran-

sition. The transition from conventional applications to web applications will result

in a shift away from static programming languages such as C, C++ or C # towards

dynamic programming languages. Since mainstream software developers are often

unaware of the fundamental development style differences between static and dy-

namic programming languages, they need to be educated about the evolutionary,

exploratory programming style associated with dynamic languages. Furthermore,

20http://requirejs.org/
21 http: //browserify.org/

http://requirejs.org/

306 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen

techniques associated with dealing with big data - data sets that are too large to

work with using on-hand database management tools - data mining, and mashup

development will be increasingly important.

To conclude, when considering the humble beginnings of the web browser as a

simple document viewing and distribution environment, and the fact that program-

matic capabilities on the Web were largely an afterthought rather than a carefully

designed feature, the transformation of the Web into an extremely popular software

deployment platform is amazing. This transformation is one of the most profound

changes in the modern history of computing and software engineering.

In this paper, we are demonstrating the effect of new ways to visualize content

in a fashion where the browser's new extensions are based on new web protocols

rather than plugins, which has been the traditional way to create richer media inside

the browser. Since no plugins that commonly introduce restrictions associated with

their proprietary origins, the new technologies are manifesting the open web and

open data. This, together with open data that is be available to everyone to freely

use and republish as they wish without mechanisms of control, in turn liberates the

developers to create increasingly compelling applications, building on the facilities

that already exist in the web as well as their own innovative ideas.

References

[1] Gong, Li and Ellison, Gary. Inside Java(TM) 2 Platform Security: Architecture,

API Design, and Implementation. Pearson Education, 2nd edition, 2003.

[2] Kuuskeri, Janne. Engineering web applications: Architectural principles for web

software. Tampere University of Technology, 2014.

[3] Mattila, Anna-Liisa and Mikkonen, Tommi. Designing a 3d widget library for

webgl enabled browsers. In Proceedings of the 28th Annual ACM Symposium

on Applied Computing, SAC '13, pages 757-760, New York, NY, USA, 2013.

ACM.

[4] Riggs, Roger, Huopaniemi, Jyri, Taivalsaari, Antero, Patel, Mark, and Uotila,

Aleksi. Programming Wireless Devices with the Java 2 Platform, Micro Edition.

Sun Microsystems, Inc., Mountain View, CA, USA, 2 edition, 2003.

[5] Taivalsaari, Antero, Mikkonen, Tommi, Anttonen, Matti, and Salminen, Arto.

The death of binary software: End user software moves to the web. In Pro-

ceedings of the 2011 Ninth International Conference on Creating, Connecting

and Collaborating Through Computing, C5 '11, pages 17-23, Washington, DC,

USA, 2011. IEEE Computer Society.

[6] Taivalsaari, Antero, Mikkonen, Tommi, Ingalls, Dan, and Palacz, Krzysztof.

Web browser as an application platform. In Proceedings of the 2008 Sfth Eu-

romicro Conference Software Engineering and Advanced Applications, SEAA

'08, pages 293-302, Washington, DC, USA, 2008. IEEE Computer Society.

Acta Cybernetica 21 (2014) 307-330.

Asymptotic Proportion of Hard Instances

of the Halting Problem

Antti Valmari*

Abstract

Although the halting problem is undecidable, imperfect testers that fail

on some instances are possible. Such instances are called hard for the tester.

One variant of imperfect testers replies "I don't know" on hard instances,

another variant fails to halt, and yet another replies incorrectly "yes" or

"no". Also the halting problem has three variants: does a given program halt

on the empty input, does a given program halt when given itself as its input,

or does a given program halt on a given input. The failure rate of a tester

for some size is the proportion of hard instances among all instances of that

size. This publication investigates the behaviour of the failure rate as the size

grows without limit. Earlier results are surveyed and new results are proven.

Some of them use C++ on Linux as the computational model. It turns out

that the behaviour is sensitive to the details of the programming language

or computational model, but in many cases it is possible to prove that the

proportion of hard instances does not vanish.

Keywords: halting problem, three-way tester, generic-case tester, approxi-

mating tester

1 Introduction

Turing proved in 1936 that undecidability exists by showing that the halting prob-

lem is undecidable [10]. Rice extended the set of known undecidable problems to

cover all questions of the form "does the partial function computed by the given

program have property X", where X is any property that at least one computable

partial function has and at least one does not have [7]. For instance, X could

be "returns 1 for all syntactically correct C + + programs and 0 for all remaining

inputs." In other words, it may be impossible to find out whether a given weird-

looking program is a correct C + + syntax checker. These results are basic material

in such textbooks as [3].

On the other hand, imperfect halting testers are possible. For any instance

of the halting problem, a three-way tester eventually answers "yes", "no", or "I

•Tampere University of Technology, Department of Mathematics, PO Box 553, FI-33101 Tam-
pere, FINLAND, E-mail: Antti.Valmariatut.fi

308 Antti Valmari

don't know". If it answers "yes" or "no", then it must be correct. We say that

the "I don't know" instances are hard instances for the tester. Also other kinds of

imperfect testers have been introduced, as will be discussed in Section 2.1.

Assume that T\ is a tester. By Turing's proof, it has a hard instance I\. If I\

is a halting instance, then let be "if the input is I\, then reply 'yes', otherwise

run T\ and return its reply". If I\ is non-halting, then let TI be "if the input is

J i , then reply 'no', otherwise run T\ and return its reply". By construction, T2

is a tester with one fewer hard instances than T\ has. By Turing's proof, also T2

has a hard instance. Let us call it I2 • It is hard also for T\. This reasoning can

be repeated without limit, yielding an infinite sequence T\, T2, ... of testers and

/1, I2, . . . of instances such that U is hard for Ti, . . . , Tj but not for X)+1,

Therefore, every tester has an infinite number of hard instances, but no instance is

hard for all testers.

A program that answers "I don't know" for every program and input is a three-

way tester, although it is useless. A much more careful tester simulates the given

program on the given input at most 99 steps, where n is the joint size of the

program and its input. If the program stops by then, then the tester answers

"yes". If the program repeats a configuration (that is, a complete description of

the values of variables, the program counter, etc.) by then, then the tester answers

"no". Otherwise it answers "I don't know". With this theoretically possible but

in practice unrealistic tester, any hard halting instance has a finite but very long

running time.

The proofs by Turing and Rice may leave the hope that only rare artificial

contrived programs yield hard instances. One could dream of a three-way tester

that answers very seldom "I don't know". This publication analyses this issue,

by surveying and proving results that tell how the proportion of hard instances

behaves when the size of the instances grows without limit.

Section 2 presents the variants of the halting problem and imperfect testers sur-

veyed, together with some basic results and notation. Earlier research is discussed

in Section 3. The section contains some proofs to bring results into the framework

of this publication. Section 4 presents some new results in the case that a program

has many copies of all big sizes, or information can be packed densely inside the

program. It is not always assumed that the program has access to the information.

A natural example of such information is dead code, such as i f (l==0)then{ . . .}.

In Section 5, results are derived for C++ programs with inputs from files. Section 6

briefly concludes this publication.

This publication is a significantly extended version of [12, 13]. The papers [12,

13] are otherwise essentially the same, but three proofs were left out from [13]

because of lack of space. In the present publication, Theorems 4 and 6 and Corol-

laries 2 and 4 are new results lacking from [12, 13]. Furthermore, [12, 13] incorrectly

claimed the opposite of Theorem 6. The present publication fixes this error and

also a small error in Proposition 4.

Asymptotic Proportion of Hard Instances of the Halting Problem 309

2 Concepts and Notation

2.1 Variants of the Halting Problem

The literature on hard instances of the halting problem considers at least three

variants of the halting problem:

E does the given program halt on the empty input [2],

S does the given program halt when given itself as its input [6, 8], and

G does the given program halt on the given input [1, 4, 9].

Each variant is undecidable. Variant G has a different notion of instances from

others: program-input pairs instead of just programs. A tester for G can be trivially

converted to a tester for E or S, but the proportion of hard program-input pairs

among all program-input pairs of some size is not necessarily the same as the

similar proportion with the input fixed to the empty one or to the program itself.

The literature also varies on what the tester does when it fails. Three-way

testers, that is, the "I don't know" answer is used implicitly by [6], as it discusses

the union of two decidable sets, one being a subset of the halting and the other of

the non-halting instances. In generic-case decidability [8], instead of the "I don't

know" answer, the tester itself fails to halt. Yet another idea is to always give a

"yes" or "no" answer, but let the answer be incorrect for some instances [4, 9].

Such a tester is called approximating. One-sided results, where the answer is either

"yes" or "I don't know", were presented in [1, 2]. For a tester of any of the three

variants, we say that an instance is easy if the tester correctly answers "yes" or

"no" on it, otherwise the instance is hard.

These yield altogether nine different sets of testers, which we will denote with

three-way(X), generic(X), and approx(X), where X is E, S, or G. Some simple facts

facilitate carrying some results from one variant of testers to another.

Propos i t i on 1. For any three-way tester there is a generic-case tester that has pre-

cisely the same easy "yes"-instances, easy "no"-instances, hard halting instances,

and hard non-halting instances.

There also is an approximating tester that has precisely the same easy "yes"-

instances, at least the same easy "no"-instances, precisely the same hard halting

instances, and no hard non-halting instances; and an approximating tester that has

at least the same easy "yes"-instances, precisely the same easy "no"-instances, no

hard halting instances, and precisely the same hard non-halting instances.

Proof. A three-way tester can be trivially converted to the promised tester by

replacing the "I don't know" answer with an eternal loop, the reply "no", or the

reply "yes". •

Propos i t i on 2. For any generic-case tester there is a generic-case tester that

has at least the same "yes "-instances, precisely the same "no "-instances, no hard

halting instances, and precisely the same hard non-halting instances.

310 Antti Valmari

Proof. In parallel with the original tester, the instance is simulated. (In Turing

machine terminology, parallel simulation is called "dovetailing".) If the original

tester replies something, the simulation is aborted. If the simulation halts, the

original tester is aborted and the reply "yes" is returned. •

Propos i t i o n 3. For any i €E N and tester T, there is a tester Ti that answers

correctly "yes" or "no" for all instances of size at most i, and similarly to T for

bigger instances.

Proof. Because there are only finitely many instances of size at most i, there is a

finite bit string that lists the correct answers for them. If n < i, Ti picks the answer

from it and otherwise calls T. (We do not necessarily know what bit string is the

right one, but that does not rule out its existence.) •

2.2 Notation

We use £ to denote the set of characters that are used for writing programs and

their inputs. It is finite and has at least two elements. There are |£|n character

strings of size n. If a and ¡3 are in £*, then a C /3 denotes that a is a prefix of /3,

and a C (3 denotes proper prefix. The size of a is denoted with |a|.

A set A of finite character strings is self-delimiting if and only if membership

in A is decidable and no member of A is a proper prefix of a member of A. The

shortlex ordering of any set of finite character strings is obtained by sorting the

strings in the set primarily according to their sizes and strings of the same size in

the lexicographic order.

Not necessarily all elements of £* are programs. The set of programs is denoted

with II, and the set of all (not necessarily proper) prefixes of programs with T. So

II C T. For tester variants E and S, we use p(n) to denote the number of programs

of size n. Then p(n) = |£n fl II|. For tester variant G, p(n) denotes the number

of program-input pairs of joint size n. We will later discuss how the program and

its input are paired into a single string. The numbers of halting and non-halting

(a.k.a. diverging) instances of size n are denoted with h(n) and d(n), respectively.

We have p(n) = h{n) + d(n).

If T is a tester, then hT(n), hr(n), dT(n), and dr{n) denote the number of

its easy halting, hard halting, easy non-halting, and hard non-halting instances of

size n, respectively. Obviously hT[n) + hr(n) = h(n) and dT(n) + dr{n) = d(n).

The smaller hr{n) and dr{n) are, the better the tester is. The failure rate of T is

(hT(n) + dT{n))/p(n).

When referring to all instances of size at most n, we use capital letters. So, for

example, P(n) = £ " = 0 p (i) and DT(n) = dT(i).

Asymptotic Proportion of Hard Instances of the Halting Problem 311

3 Related Work

3.1 Early Results by Lynch

Nancy Lynch [6] used Godel numberings for discussing programs. In essence, it

means that each program has at least one index number (which is a natural number)

from which the program can be constructed, and each natural number is the index

of some program.

Although the index of an individual program may be smaller than the index

of some shorter program, the overall trend is that indices grow as the size of the

programs grows, because otherwise we would run out of small numbers. On the

other hand, if the mapping between the programs and indices is 1-1, then the

growth cannot be faster than exponential. This is because p(n) < |E|n. With

real-life programming languages, the growth is exponential, but (as we will see in

Section 5.2) the base of the exponent may be smaller than |E|.

To avoid confusion, we refrain from using the notation HT, etc., when discussing

results in [6], because the results use indices instead of sizes of programs, and their

relationship is not entirely straightforward. Fortunately, some results of [6] can

be immediately applied to programming languages by using the shortlex Godel

numbering. The shortlex Godel number of a program is its index in the shortlex

ordering of all programs.

The first group of results of [6] reveals that a wide variety of situations may be

obtained by spreading the indices of all programs sparsely enough and then filling

the gaps in a suitable way. For instance, with one Godel numbering, for each three-

way tester, the proportion of hard instances among the first i indices approaches 1

as i grows. With another Godel numbering, there is a three-way tester such that

the proportion approaches 0 as i grows. There even is a Godel numbering such

that as i grows, the proportion oscillates in the following sense: for some three-way

tester, it comes arbitrarily close to 0 infinitely often and for each three-way tester,

it comes arbitrarily close to 1 infinitely often.

In its simplest form, spreading the indices is analogous to defining a new lan-

guage SpaciousC++ whose syntax is identical to that of C++ but the semantics

is different. If the first \n/2J characters of a SpaciousC++ program of size n are

space characters, then the program is executed like a C++ program, otherwise it

halts immediately. This does not restrict the expressiveness of the language, be-

cause any C++ program can be converted to a similarly behaving SpaciousC++

program by adding sufficiently many space characters to its front. However, it

makes the proportion of easily recognizable trivially halting instances overwhelm.

A program that replies "yes" if there are fewer than \n/2J space characters at the

front and "I don't know" otherwise, is a three-way tester. Its proportion of hard

instances vanishes as the size of the program grows.

As a consequence of this and Proposition 3, one may choose any failure rate

above zero and there is a three-way tester for SpaciousC++ programs with at most

that failure rate. Of course, this result does not tell anything about how hard

it is to test the halting of interesting programs. This is the first example in this

312 Antti Valmari

publication of what we call an anomaly stealing the result. That is, a proof of a

theorem goes through for a reason that has little to do with the phenomenon we

are interested in.

Indeed, the first results of [6] depend on using unnatural Godel numberings.

They do not tell what happens with untampered programming languages. Even

so, they rule out the possibility of a simple and powerful general theorem that

applies to all models of computation. They also make it necessary to be careful

with the assumptions that are made about the programming language.

To get sharper results, optimal Godel numberings were discussed in [6]. They

do not allow distributing programs arbitrarily. A Godel numbering is optimal if

and only if for any Godel numbering, there is a computable function that maps it

to the former such that the index never grows more than by a constant factor.1

The most interesting sharper results are opposite to what was obtained without the

optimality assumption. To apply them to programming languages, we first define

a programming language version of optimal Godel numberings.

Definit ion 1. A programming language is end-of-file data segment, if and only if

each program consists of two parts in the following way. The first part, called the

actual program, is written in a self-delimiting language (so its end can be detected).

The second part, called the data segment, is an arbitrary character string that

extends to the end of the file. The language has a construct via which the actual

program can read the contents of the data segment.

The data segment is thus a data literal in the program, packed with maximum

density. It is not the same thing as the input to the program.

Coro l la ry 1. For each end-of-file data segment language,

3c > 0 : 3T € three-way(S) : Vn e N : > c a n d

P\Jl)

3c > 0 : VT e three-way(S) : 3n r € N : Vn > nT : + >
v ' ~ P(n)

Proof. Let £ be the end-of-file data segment language, and let Q be any Godel

numbering. Consider the following program P in £ . Let a and d be the sizes of

its actual program and data segment. The actual program reads the data segment,

interpreting its content as a number i in the range from |s|_! + 1 to i ^ p r - •

Then it simulates the zth program in Q. The shortlex index of P is at most i' =

E]=o ^ |S|a+d+1- We have i § j f r + l < ¿.yielding |E|d-l < |E|»-i-|E| + l ,

so |E|d < |E|z, thus i' < |E|a+2i. The shortlex numbering of £ is thus an optimal

Godel numbering. From this, Proposition 6 in [6] gives the claims. •

1The definition in [6] seems to say that the function must be a bijection. We believe that this
is a misprint, because each proof in [6] that uses optimal Godel numberings obviously violates it.

Asymptotic Proportion of Hard Instances of the Halting Problem 313

A remarkable feature of the latter result compared to many others in this pub-

lication is that c is chosen before T. That is, there is a positive constant that only

depends on the programming language (and not on the choice of the tester) such

that all testers have at least that proportion of hard instances, for any big enough

n. On the other hand, the proof depends on the programming language allowing

to pack raw data very densely. Real-life programming languages do not satisfy

this assumption. For instance, C++ string literals " . . . " cannot pack data densely

enough, because the representation of " inside the literal (e.g., \" or \042) requires

more than one character.

Because of Proposition 3, "3nT € N" cannot be moved to the front of "VT £

three-way(S)".

The result cannot be generalized to hr, dr, and p, because the following

anomaly steals it. We can change the language by first adding 1 or 01 to the

beginning of each program 7r and then declaring that if the size of l7r or 0l7r is

odd, then it halts immediately, otherwise it behaves like n. This trick does not

invalidate optimality but introduces infinitely many sizes for which the proportion

of hard instances is 0.

3.2 Results on Domain-Frequent Programming Languages

In [4], the halting problem was analyzed in the context of programming languages

that are frequent in the following sense:

Definit ion 2. A programming language is (a) frequent (b) domain-frequent, if

and only if for every program ir, there are n,eN and cn > 0 such that for every

n > nn, at least cnp(n) programs of size n (a) compute the same partial function

as IT (b) halt on precisely the same inputs as N.

Instead of "frequent", the word "dense" was used in [4], but we renamed the

concept because we felt "dense" a bit misleading. The definition says that programs

that compute the same partial function are common. However, the more common

they are, the less room there is for programs that compute other partial functions,

implying that the smallest programs for each distinct partial function must be

distributed more sparsely. "Dense" was used for domain-frequent in [9].

Any frequent programming language is obviously domain-frequent but not nec-

essarily vice versa. On the other hand, even if a theorem in this field mentions

frequency as an assumption, the odds are that its proof goes through with domain-

frequency. Whether a real-life programming language such as C++ is domain-

frequent, is surprisingly difficult to find out. We will discuss this question briefly

in Section 4.1.

As an example of a frequent programming language, BF was mentioned in [4].

Its full name starts with "brain" and then contains a word that is widely considered

inappropriate language, so we follow the convention of [4] and call it BF. Information

on it can be found on Wikipedia under its real name. It is an exceptionally simple

programming language suitable for recreational and illustrational but not for real-

life programming purposes. In essence, BF programs describe Turing machines with

314 Antti Valmari

a read-only input tape, write-only output tape, and one work tape. The alphabet of

each tape is the set of 8-bit bytes. However, BF programs only use eight characters.

As a side issue, a non-trivial proof was given in [4] that only a vanishing pro-

portion of character strings over the eight characters are BF programs. That is,

limn_Kx, p(n)/8n exists and is 0. It trivially follows that if all character strings over

the 8 characters are considered as instances and failure to compile is considered as

non-halting, then the proportion of hard instances vanishes as n grows.

The only possible compile-time error in BF is that the square brackets [and]

do not match. Most, if not all, real-life programming languages have parentheses

or brackets that must match. So it seems likely that compile-time errors dominate

also in the case of most, if not all, real-life programming languages. Unfortunately,

this is difficult to check rigorously, because the syntax and other compile-time rules

of real-life programming languages are complicated. Using another, simpler line of

argument, we will prove the result for both C++ and BF in Section 5.1.

In any event, if the proportion of hard instances among all character strings

vanishes because the proportion of programs vanishes, that is yet another example

of an anomaly stealing the result. It is uninteresting in itself, but it rules out the

possibility of interesting results about the proportion of hard instances of size n

among all character strings of size n. Therefore, from now on, excluding Section 5.1,

we focus on the proportion of hard instances among all programs or program-input

pairs.

In the case of program-input pairs, the results may be sensitive to how the

program and its input are combined into a single string that is used as the input of

the tester. To avoid anomalous results, it was assumed in [4, 9] that this "pairing

function" has a certain property called "pair-fair". The commonly used function

x + (x + y) (x + y +1)/2 is pair-fair. To use this pairing function, strings are mapped

to numbers and back via their indices in the shortlex ordering of all finite character

strings.

A proof was sketched in [9] that, assuming domain-frequency and pair-fairness,

VT e approx(G) : 3c r > 0 : 3nT G N : Vn > nT : M") + > Ct

p{n)

That is, the proportion of wrong answers does not vanish. However, this leaves open

the possibility that for any failure rate c > 0, there is a tester that fares better than

that for all big enough n. This possibility was ruled out in [4], assuming frequency

and pair-fairness. (It is probably not important that frequency instead of domain-

frequency was assumed.) That is, there is a positive constant such that for any

tester, the proportion of wrong answers exceeds the constant for infinitely many

sizes of instances:

3c > 0 : VT e approx(G) : Vn0 € N : 3n > n0 : M ") + < * r (n) > c

p(n)

The third main result in [4], adapted and generalized to the present setting, is the

following. We present its proof to obtain the generalization and to add a detail

Asymptotic Proportion of Hard Instances of the Halting Problem 315

that the proof in [4] lacks, that is, how T,j is made to halt for "wrong sizes".

Generic-case testers are not mentioned, because Proposition 2 gave a related result

for them.

T h e o r e m 1. For each programming model and variant E, S, G of the halting

problem,

Vc > 0 : 3TC e approx(X) : Vn0 € N : 3n > n0 : ^ Z k M < c A i ^ M = 0 and
p{n) p(n)

Vc > 0 : 3TC e three-way(X) : Vrz0 G N : 3n > n0 : h'T c}T^ < c .
p(n)

Proof. Let C = [T/c~|. Consider the family Tij of the programs of the following

kind, where t 6 N, j € N, and 0 < i < C. If n < j , Tij answers "no" in the

case of approximating and "I don't know" in the case of three-way testers. If

n > j , Tij simulates all instances of size n until \ip(n)/C\ of them have halted.

If the simulation stage terminates, then if the given instance is among those that

halted, TIJ answers "yes", otherwise TL } answers "no" or "I don't know". Thus an

approximating Tij has dr, ¡(n) — 0.

We prove next that some Tij is the required tester. Let in = [Ch(n)/p(n)\.

Then inp(n)/C < h(n) < (in + 1)p{n)/C. When n > j , the simulation stage of

TINJ terminates and the proportion of hard halting instances of TTNJ is less than

1 ¡C < c. Some 0 < i < C is the in for infinitely many values of n. Furthermore,

there is a smallest such i. We denote it with i'. There also is a j such that when
n > J, then in > i'. With these choices, Ti'j always halts. •

For a small enough c and the approximating tester Tc in Theorem 1,(1) implies

that the failure rate of Tc oscillates, that is, does not approach any limit as n —> oo.

This observation is directly obtainable from Lemma 23 in [4].

3.3 Results on Turing Machines

For Turing machines with one-way infinite tape and randomly chosen transition

function, the probability of falling off the left end of the tape before halting or re-

peating a state approaches 1 as the number of states grows [2]. The tester simulates

the machine until it falls off the left end, halts, or repeats a state. If falling off the

left end is considered as halting, then the proportion of hard instances vanishes as

the size of the machine grows. This can be thought of as yet another example of

an anomaly stealing the result.

Formally, 3T € three-way(X) : limn_+00(/ix(^) + dT(n))/p(n) = 0, that is,

3T e three-way(X) : Vc > 0 : 3nc € N : Vn > nc : M ") + <M") < c _
p(n)

Here X may be E, S, or G. Although E was considered in [2], the proof also ap-

plies to S and G. Comparing the result to Theorem 2 in Section 4.1 reveals that

316 Antti Valmari

the representation of programs as transition functions of Turing machines is not

domain-frequent.

On the other hand, independently of the tape model, the proportion does not

vanish exponentially fast [8]. Like in [2], the proportion is computed on the transi-

tion functions, and not on some textual representations of the programs. The proof

relies on the fact that any Turing machine has many obviously similarly behaving

copies of bigger and bigger sizes. They are obtained by adding new states and tran-

sitions while keeping the original states and transitions intact. So the new states

and transitions are unreachable. They are analogous to dead code. These copies

are not common enough to satisfy Definition 2, but they are common enough to

rule out exponentially fast vanishing. Generic-case decidability was used in [8], but

the result applies also to three-way testers by Proposition 1.

The results in [1] are based on using weighted running times. For every positive

integer k, the proportion of halting programs that do not halt within time k + c is

less than 2~ k, simply because the proportion of times greater than k + c is less than

2~ k. The publication presents such a weighting that c is a computable constant.

Assume that programs are represented as self-delimiting bit strings on the input

tape of a universal Turing machine. The smallest three-way tester of variant E that

answers "yes" or "no" up to size n and "I don't know" for bigger programs, is of

size n ± O(l) [11].

4 Programming Languages with Assumptions

4.1 Domain-Frequent Languages

The assumption that the programming language is domain-frequent (Definition 2)

makes it possible to use a small variation of the standard proof of the non-existence

of halting testers, to prove that each halting tester of variant S has a non-vanishing

set of hard instances. For three-way and generic-case testers, one can also say some-

thing about whether the hard instances are halting or not. Despite its simplicity,

as far as we know, the following result has not been presented in the literature.

However, see the comment on [9] in Section 3.2.

Theo r em 2. If the programming language is domain-frequent, then

VT e three-way(S) : 3cT > 0 : 3nT € N : Vn > nT : > cT A ^ i M > C t

p{n) p(n)

VT € generic(S) : 3cT > 0 : 3 n r £ N : Vn > nT : > cT , and
p{n)

VT £ approx(S) : 3cT > 0 : 3 n r £ N : Vn > nT : M ") + <*r(n) > C t _

p(n)

Proof. Let the execution of X with an input y be denoted with X(y). For any

T, consider the program PT that first tries its input x with T. If T(x) replies

Asymptotic Proportion of Hard Instances of the Halting Problem 317

"yes", then PT{X) enters an eternal loop. If T(x) replies "no", then PT{X) halts

immediately. The case that T(x) replies "I don't know" is discussed below. If T(x)

fails to halt, then PT(X) cannot continue and thus also fails to halt.

By the definition of domain-frequent, there are CT > 0 and UT € N such that

when n > nr, at least crpln) programs halt on precisely the same inputs as PT- Let

P' be any such program. Consider PT(P')- I F T{P') answers "yes", then PT (P ')

fails to halt. Then also P'(P') fails to halt. Thus "yes" cannot be the correct

answer for T(P'). A similar reasoning reveals that also "no" cannot be the correct

answer for T(P'). So P' is a hard instance for T.

Nothing more is needed to prove the claim for approximating testers. In the

case of generic-case testers, the hard instances make T and thus PT fail to halt, so

they are non-halting instances.

In the case of three-way testers, all hard instances can be made halting in-

stances by making PT halt when T replies "I don't know". This proves the claim

hr{n)/p(n) > CT- The claim dT{n)/p{n) > CT is proven by making PT enter an

eternal loop when T replies "I don't know". These two proofs may yield different

CT values, but the smaller one of them is suitable for both. Similarly, the bigger of

their TIT values is suitable for both. •

The second claim of Theorem 2 lacks a /ir(rc) part. Indeed, Proposition 2 says

that with generic-case testers, hx{n) can be made 0. With approximating testers,

/ir(n) can be made 0 at the cost of dr(^) becoming d(n), by always replying "yes".

Similarly, dx(rc) can be made 0 by always replying "no".

The next theorem applies to testers of variant E and presents some results

similar to Theorem 2. To our knowledge, it is the first theorem of its kind that

applies to the halting problem on the empty input. It assumes not only that many

enough equivalent copies exist but also that they can be constructed. On the other

hand, its equivalence only pays attention to the empty input.

Definit ion 3. A programming language is computably empty-frequent if and only

if there is a decidable equivalence relation between programs such that

• for each program ir, there are cn > 0 and n , £ N such that for every n > n,r,

at least c*p(n) programs of size n are equivalent to ir, and

• for each programs IT and ir', if TT fa ir', then either both or none of ir and ir'

halt on the empty input.

If ir « ir', we say that ir' is a cousin of ir.

It can be easily seen from [4] that BF is computably empty-frequent.

Theorem 3. If the programming language is computably empty-frequent, then

VT € three-way(E): 3cT > 0 : 3nT € N : Vn > nT : ^ ^ > cT .
p(n)

The result also holds for generic-case testers but not for approximating testers.

318 Antti Valmari

Proof. Given any three-way tester T, consider a program Pt that behaves as fol-

lows. First it constructs its own code and stores it in a string variable. Hard-wiring

the code of a program inside the program is somewhat tricky, but it is well known

that it can be done. With Godel numberings, the same can be obtained with

Kleene's second recursion theorem.

Then PT starts constructing its cousins of all sizes and tests each of them with

T. By the assumption, there are CT > 0 and ny € N such that for every n > TIT,

PT has at least CTP(TI) cousins of size n. If T ever replies "yes", then PT enters an

eternal loop and thus does not continue testing its cousins. If T ever replies "no",

then PT halts immediately. If T replies "I don't know", then PT tries the next

cousin.

If T ever replies "yes", then PT fails to halt on the empty input. By definition,

also the tested cousin fails to halt on the empty input. So the answer "yes" would be

incorrect. Similarly, if T ever replies "no", that would be incorrect. So T must reply

"I don't know" for all cousins of PT- They are thus hard instances for T. Because

there are infinitely many of them, PT does not halt, so they are non-halting.

To prove the result for generic-case testers, it suffices to run the tests of the

cousins in parallel, that is, go around a loop where each test that has been started

is executed one step and the next test is started. If any test ever replies "yes" or

"no", PT aborts all tests that it has started and then does the opposite of the reply.

A program that always replies "no" is an approximating tester with dr (^) = 0

for every n G N. •

The results in this section and Section 3.2 motivate the question: are real-life

programming languages domain-frequent? For instance, is C++ domain-frequent?

Unfortunately, we have not been able to answer it. We try now to illustrate why it

is difficult.

Given any C++ program, it is easy to construct many longer programs that

behave in precisely the same way, by adding space characters, line feeds (denoted

with -a), comments, or dead code such as i f (0 !=0){ . . .} . It is, however, hard to

verify that many enough programs are obtained in this way. For instance, it might

seem that many enough programs can be constructed with string literals. We now

provide evidence that suggests (but does not prove) that it fails.

Any program of size n can be converted to (|E| — 3)fc identically behaving

programs of size n + k + 12 by adding {char*s="<7";} to the beginning of some

function, where a G (E\ {", \,-e})k. (The purpose of { and } is to hide the variable

s, so that it does not collide with any other variable with the same name.) More

programs are obtained by including escape codes such as \" to a.

However, it seems that this is a vanishing instead of at least a positive constant

proportion when k —• oo. In the absence of escape codes, it certainly is a vanishing

proportion. This is because one can add {char*s="<7" , * t= "p " ; } instead, where

+ |p| = k — 6. Without escape codes, this yields (k — 5)(|E| — 3)fc-6 programs.

When k -+ oo, (|E| - 3) k / ((k - 5)(|E| - 3)fc~6) = (|E| - 3) 6/{k - 5) -+ 0.

That is, although string literals can represent information rather densely, they

do not constitute the densest possible way of packing information into a C++

Asymptotic Proportion of Hard Instances of the Halting Problem 319

program (assuming the absence of escape codes). A pair of string literals yields

an asymptotically strictly denser packing. Similarly, a triple of string literals is

denser still, and so on. Counting the programs in the presence of escape codes is

too difficult, but it seems likely that the phenomenon remains the same.

So string literals do not yield many enough programs. It seems difficult to first

find a construct that does yield many enough programs, and then prove that it

works.

4.2 End-of-file Data Segment Languages

In this section we prove a theorem that resembles Theorem 3, but relies on different

assumptions and has a different proof.

We say that a three-way tester is n-perfect if and only if it does not answer "I

don't know" when the size of the instance is at most n. The following lemma is

adapted from [11].

L e m m a 1. Each programming language has a constant e such that the size of each

n-perfect three-way tester of variant E or S is at least n — e.

Proof. Let Tn be any n-perfect three-way tester of variant E or S. Consider a

program P that constructs character strings x in shortlex order and tests them

with Tn until Tn(x) replies "I don't know". If Tn(x) replies "yes", P simulates x

before trying the next character string. When simulating x, P gives it the empty

input in the case of variant E and x as the input in the case of S. The reply "I don't

know" eventually comes, because otherwise Tn would be a true halting tester. As

a consequence, P eventually halts. Before halting, P simulates at least all halting

programs of size at most n.

The time consumption of any simulated execution is at least the same as the

time consumption of the corresponding genuine execution. So the execution of P

cannot contain properly a simulated execution of P. P does not read any input,

so it does not matter whether it is given itself or the empty string as its input.

Therefore, the size of P is bigger than n. Because the only part of P that depends

on n is Tn, there is a constant e such that the size of Tn is at least n — e. •

In any everyday programming language, space characters can be added freely

between tokens. Motivated by this, we define that a blank character is a character

that, for any program, can be added to at least one place in the program without

affecting the meaning of the program.

Theorem 4. Let X be E or S. If the programming language is end-of-file data

segment and has a blank character, then

VT € three-way(X) : 3c r > 0 : 3nT € N : Vn > nT : > cT A ^ ^ > cT .
P(n) p(n)

Proof. Assume first that tester T is a counter-example to the /ir-claim. That is,

for every c > 0, T has infinitely many values of n such that hr(n)/p(n) < c.

320 Antti Valmari

If T uses its data segment, let the use be replaced by the use of ordinary con-

stants, liberating the data segment for the use described in the sequel. Let Tt,m

be the following program. Here k is a constant inside Tk,m represented by ©(log A;)

characters, and m is the content of the data segment of Tfc,m interpreted as a natu-

ral number m in base |E|. Let a and d be the sizes of the actual program and data

segment of Tjt,m. We have a = ©(log k). Let x be the input of Tk,m-

The program Tk.m first computes n := k + d. If |x| < n, then 7/tjm adds blank

characters to x, to make its size n. Next, if |x| > n, then Tk.m replies "I don't

know" and halts. Otherwise Tk,m gives x (which is now of size precisely n) to T.

If T(x) replies "yes" or "no", then Tk,m gives the reply as its own reply and halts.

Otherwise Tk,m constructs each character string y of size n and tests it with T.

Tk,m simulates in parallel those y for which T{y) returns "I don't know" until m of

them have halted (with y or the empty string as the input, as appropriate). Then

it aborts those that have not halted. If x is among those that halted, then Tk,m

replies "yes", otherwise Tt,m replies "no".

For each k € N, there are infinitely many values of n such that hr(n)/p(n) <

|E|~*. For any such n we have hr(n) <p(n)|E|-fc < |E|n|E|_fc. So n- k characters

suffice for representing hr{n). Therefore, there is Tjt,m such that d = n — k and

m = hr{n). It is an n-perfect three-way tester of size a + d = d + ©(log A:) =

n — k + ©(log A:). A big enough k yields a contradiction with Lemma 1.

The proof of the dy-claim is otherwise similar, but Tt,m counts the number v

of those y for which T(y) returns "I don't know", and simulates the y until v — m

of them have halted. The fix-claim and dx-claim are combined into a single claim

by choosing the smaller ct and bigger nj provided by their proofs. •

4.3 End-of-file Dead Segment Languages

In this section we show that if dead information can be added extensively enough,

a tester of variant E with an arbitrarily small positive failure rate exists, but the

opposite holds for variant S. The reason for the result on variant E is that as the

size of the programs grows, a bigger and bigger proportion of programs consists

of copies of smaller programs. This phenomenon is so strong that to obtain the

desired failure rate, it suffices to know the empty-input behaviour of all programs

up to a sufficient size.

An end-of-file dead segment language is defined otherwise like end-of-file data

segment language (Definition 1), but the actual program cannot read the data seg-

ment. This is the situation with any self-delimiting real-life programming language,

whose compiler stops reading its input when it has read a complete program. Any

end-of-file dead segment language is frequent and computationally domain-frequent.

Theo rem 5. For each end-of-file dead segment language,

Vc > 0 : 3TC € three-way(E) : Vn € N : ^ (") + ¿tc (n) ^ ^

p(n)

The result also holds with approximating and generic-case testers.

Asymptotic Proportion of Hard Instances of the Halting Problem 321

Proof. Let r(n) denote the number of programs whose dead segment is not empty.

We have r(n) < p(n) < |E|U, so r(n)|E|"n < 1. For each n € N, r(n + 1) =

|E|p(n) > |E|r(n). So r(n)|E|_n grows as n grows. These imply that there is £

such that r(n)|E|_" —» £ from below when n -» oo.

Because there are programs, £ > 0. For every c > 0 we have £c > 0, so there is

nc G N such that r(nc)|E|_"c >£-£c. On the other hand, p(n) = r(n + 1)/|E| <

f|E|". These imply p(nc - l)|E|n-n=+1/p(n) = r(nc)|E|"-n<=/p(n) > 1 - c. Here

p(nc — l)|E|n-nc+1 is the number of those programs of size n whose actual program

is of size less than nc.

The behaviour of a program on the empty input only depends on its actual

program. Let na be the size of the actual program. Consider a three-way tester

that looks the answer from a look-up table if na < nc and replies "I don't know"

if na > nc (cf. Proposition 3). It has (hT (n) + dT(n))/p(n) > 1 — c, implying the

claim.

Proposition 1 generalizes the result to approximating and generic-case testers.

•
The above proof exploited the fact that the correct answer for a long program

is the same as the correct answer for a similarly behaving short program. This does

not work for testers of variant S, because the short and long program no longer get

the same input, since each one gets itself as its input. Although the program does

not have direct access to its dead segment, it gets it via the input. This changes

the situation to the opposite of the previous theorem.

Theo rem 6. For each end-of-file dead segment language,

3c > 0 : VT G three-way(S) : Vn0 € N : 3n > n0 : > c A > c ,
p(n) p(n)

3c > 0 : VT G generic(S) : Vn0 G N : 3n > n0 : > c , and
p(n)

3c > 0 : VT G approx(S) : Vn0 G N : 3n > n0 : ^(n)+dT(n) ^ £ _

p(n)

Proof. We prove first the claims on three-way and generic-case testers.

Let us recall the overall idea of the proof of Theorem 2. In that proof, for

any tester T, a program PT was constructed that gives its input x to T. If T(x)

replies "yes", then PT{X) enters an eternal loop. If T(x) replies "no", then PT{X)

halts immediately. To prove that a three-way tester has many hard (a) halting (b)

non-halting instances, in the case of the "I don't know" reply, PT(X) was made to

(a) halt immediately (b) enter an eternal loop. All programs that halt on the same

inputs as PT were shown to be hard instances for T. For each n that is greater than

a threshold that may depend on T, the existence of at least crp(n) such programs

was proven, where CT may depend on T but not on n.

We now apply the same idea, but, to get a result where the same constant c

applies to all testers T, we no longer construct a separate program PT for each T.

322 Antti Valmari

Instead, we construct a single program P, which obtains T from the size of the

input of P. (A similar idea appears in [4].) To discuss this, for any i > 0, let P,

be the program whose shortlex index is i. Let ¿(¿) — i — s(i) + 1, where s(i) is the

biggest square number that is at most i. The essence of S(i) is that as i gets the

values 1, 2, 3, . . . , S(i) gets each value 1, 2, 3, . . . infinitely many times.

One more idea needs to be explained before discussing the details of P. Let

E be partitioned to Ei and E2 of sizes [^ J and Let na be the size of the

actual program of P. For each n > na, by modifying the dead segment, |E|n_n°

programs are obtained that have the same actual program as P. For i G {1,2}, let

11* be the set of those of them whose dead segment ends with a character in E*. We

have IIEI"-"» < |IIi| < |n2 |. Because 0 < p(n) < |E|n, by choosing c = ||E|-n-

we get i|E| n~ n ' /p(n) > c.

The program P first checks that its input x is a program with a non-empty dead

segment. If it is not, then P halts immediately. Otherwise, P constructs Ps(\x\)

by going through all character strings in the shortlex order until <5(|x|) programs

have been found. Then P constructs every program y that has the same size, has

the same actual program, and belongs to the same n , as x. Then P executes the

Ps(\x\){y) parallel until any of the following happens.

If any Ps(|xp(2/) replies "yes", then P enters an eternal loop. If any Ps(\x\){y)
replies "no", then P aborts the remaining P<5(|xp(y) and halts. If every Ps(\x\){y)
replies "I don't know", then P halts if x € IIi , and enters an eternal loop if x G 112-

If none of the above ever happens, then P fails to halt.

Recall that na is the size of the actual program of P. For any tester T, there

are infinitely many n such that n > na and P<5(n) is T. For any such n, there are

|E|n_"° programs P' of size n that have the same actual program as P. Let P "

be any of them. The execution of P(P") starts P5 (n)(P') for at least ||E|n"n-

distinct P'. If Ps{n)(P') replies "yes", then T claims that P'(P') halts. Then also

P(P') halts, because P halts on the same inputs as P', since they have the same

actual program. Furthermore, P(P") halts, because P only looks at the size, actual

program, and 11,-class of its input, and P" and P ' agree on them. But the halting

of P(P") is in contradiction with the behaviour of P described above. Therefore,

no P5(„)(P') can reply "yes". For a similar reason, none of them replies "no" either.

In conclusion, all at least ||E|n_rao distinct P' are hard instances for T. If T is

a three-way tester, it replies "I don't know" for all of them. Depending on whether

P" € IIi or P " € II2, they are hard halting or hard non-halting instances. If T is a

generic-case tester, it halts on none of these hard instances. Therefore, also P (P")

and P" (P") fail to halt. So they all are hard non-halting instances.

In the case of approximating testers, P is modified such that it lets all Ps(\x\)(y)
run into completion and counts the "yes"- and "no"-replies that they give. If the

majority of the replies are "no", then P halts, otherwise P enters an eternal loop.

For the same reasons as above, P(P") halts if and only if P(P') halts if and only

if P'(P') halts. So at least half of the replies are wrong. •

Finally, we prove a corollary of the above theorem that deals with the halting

problem itself, not with imperfect testers. Imperfect testers are used in the proof

Asymptotic Proportion of Hard Instances of the Halting Problem 323

of the corollary, but not in the statement of the corollary.

L e m m a 2. Let X be any of E, S, and G, and let f be any total computable function

from natural numbers to integers. If

3c > 0 : VT € three-way(X) : Vn0 € N : 3n > n0 : > c ,
p(n)

h(n)-f(n) ,
then lim — does not exist.

n—>00 p(n)

Proof. Assume that limn-^ooCiC71) — f{n))/p{n) = x and c > 0. Let i = f— log2 c].

There is an x, of the form m + bj2~l such that m is an integer, bj € (0,1}

when 1 < j < i + 1, and Xj < x < x, + 2~ I _1 . There also is no such that when

n > no, then x* < (h(n) — f{n))/p(n) < x< + 2~ l.

A tester T that disobeys the formula is obtained as follows. If n < no, T replies

"I don't know". If n > no, T simulates all instances of size n until \x,p(n)] + / (n)

have halted. If the given instance is among those that halted, then T replies "yes"

and otherwise "I don't know". We have hr{n)/p(n) < 2~ l < c. •

Coro l l a ry 2. Consider variant S of the halting problem and any end-of-file dead

segment language. Then lim^oo h(n)/p(n) does not exist.

The proof of Lemma 2 can be modified to approximating testers with (hr{n) +

dT(n))/p(n) > c. By (1), the limit fails to exist also in the framework of [4].

5 CH—|- without Comments and with Input

5.1 The Effect of Compile-Time Errors

We first show that among all character strings of size n, those that are not C++

programs — that is, those that yield a compile-time error — dominate overwhelm-

ingly, as n grows. In other words, a random character string is not a C++ program

except with vanishing probability. The result may seem obvious until one realizes

that a C++ program may contain comments and string literals which may contain

almost anything. We prove the result in a form that also applies to BF.

C++ is not self-delimiting. After a complete C++ program, there may be, for

instance, definitions of new functions that are not used by the program. This is

because a C++ program can be compiled in several units, and the compiler does

not check whether the extra functions are needed by another compilation unit.

Even so, if n is a C++ program, then irO is definitely not a C++ program and not

even a prefix of a C++ program. Similarly, if n is a BF program, then 7r] is not a

prefix of a BF program.

Propos i t i o n 4. If for every TT € II there is c£ E such that ire T, then

lim ^-r- = 0 .
n—>oo |£|n

324 Antti Valmari

Proof. Let q(n) = |£n n T|. Obviously 0 < p{n) < q{n) < |£| n.

Assume first that for every e > 0, there is ne € N such that p(n)/q(n) < e

for every n > n£. Because 0 < p(n)/|E|n < p(n)/q(n), we get p(n)/|E|n —> 0 as

n oo.

In the opposite case there is e > 0 such that p{n)/q(n) > e for infinitely many

values of n. Let they be n\ < ri2 < Because 7rc is not a prefix of any program,

q(rii +1) < |E|q(ni)—p(rii) < (|E| —e)q(rii). For the remaining values of n, obviously

q(n + 1) < |E|g(n). These imply that when n > we have 0 < p(n)/|£|™ <

g(n)/|£|n < q{ni)/|E|n< < (1 - e/^) 1 -+ 0 when i -+ oo, which happens when

n —t oo. •

Consider a tester T that replies "no" if the compilation fails and "I don't know"

otherwise. If compile-time error is considered as non-halting, then Proposition 4

implies that hT(n) —> 0, fix(ra) 0, dT(n) 1, and dr{n) 0 when n oo. As

we pointed out in Section 3.2, this is yet another instance of an anomaly stealing

the result.

5.2 The C + + Language Model

The model of computation we study in this section is program-input pairs, where

the programs are written in C++, and the inputs obey the rules stated by the

Linux operating system. Furthermore, E is the set of all 8-bit bytes. To make firm

claims about details, it is necessary to fix some language and operating system.

The validity of the details below has been checked with C++ and Linux. Most

likely many other programming languages and operating systems could have been

used instead.

There are two deviations from the real everyday programming situation. First,

of course, it must be assumed that unbounded memory is available. Otherwise

everything would be decidable. (However, at any instant of time, only a finite

number of bits are in use.) Second, it is assumed that the programs do not contain

comments. This assumption needs a discussion.

Comments are information that is inside the program but ignored by the com-

piler. They have no effect to the behaviour of the compiled program. We show

next that most long C++ programs consist of a shorter C++ program and one or

more comments.

L e m m a 3. There are at most (|£| — l) 7 1 comment-less C++ programs of size n.

Proof. Everywhere inside a C++ program excluding comments, it is either the case

that Q or the case that the new line character cannot occur next. That is, for

every character string a, either a® or a*j is not a prefix of any comment-less C + +

program. •

(Perhaps surprisingly, there indeed are places that are outside comments and

where any byte except -j can occur.)

Asymptotic Proportion of Hard Instances of the Halting Problem 325

Lemma 4. Ifn > 16, then there are at least ((|E| —1)4 + 1)(" 1 C + + programs

of size n.

Proof. Let A = E \ {*}, and let m = [n/4 - 4J = |"(n - 19)/4]. Consider the

character strings of the form

i n t main(){/*«/?*/}

where a consists of (n mod 4) space characters and ¡3 is any string of the form

P1P2 • • • Pm, where Pi £ A 4 U {*//*} for 1 < i < m. Each such string is a syn-

tactically correct C++ program of size n. Their number is ((|E| — l)4 + l) m >

((|£| - l)4 + l)(n-19)/4 . •

Corollary 3. The proportion of comment-less C++ programs among all C++

programs of size n approaches 0, when n -+ 00.

Proof. Let s = |E| — 1. By Lemmas 3 and 4, the proportion is at most

s n/(s 4 + 1) (" - 1 9 > / 4 = s 1 9 (s 4 / (s 4 + 1)) (" - 1 9) / 4 0, when n 00. •

As a consequence, although comments are irrelevant for the behaviour of pro-

grams, they have a significant effect on the distribution of long C++ programs.

To avoid the risk that they cause yet another anomaly stealing the result, we re-

strict ourselves to C++ programs without comments. This assumption does not

restrict the expressive power of the programming language, but reduces the number

of superficially different instances of the same program.

The input may be any finite string of bytes. This is how it is in Linux. Although

not all such inputs can be given directly via the keyboard, they can be given by

directing the so-called standard input to come from a file. There is a separate test

construct in C++ for detecting the end of the input, so the end of the input need

not be distinguished by the contents of the input. There are 256n different inputs

of size n.

The sizes of a program and input are the number of bytes in the program and

the number of bytes in the input file. This is what Linux reports. The size of an

instance is their sum. Analogously to Section 4.1, the size of a program is additional

information to the concatenation of the program and the input. This is ignored by

our notion of size. However, the notion is precisely what programmers mean with

the word. Furthermore, the convention is similar to the convention in ordinary (as

opposed to self-delimiting) Kolmogorov complexity theory [5].

Lemma 5. With the C++ programming model in Section 5.2, p(n) < |Ejn+1.

Proof. By Lemma 3, the number of different program-input pairs of size n is at

most

¿ (i £ i - D i E r < = i E r £ (] 5 b i) ' < , =

¿=0 ¿=0 |2j| ¿=0
•

326 Antti Valmari

5.3 Proportions of Hard Instances

The next theorem says that with halting testers of variant G and comment-less

C++, the proportions of hard halting and hard non-halting instances do not vanish.

Theo rem 7. With the C++ programming model in Section 5.2,

VT G three-way(G) : 3cx > 0 : 3n x G N: Vn > nT : > C x A > C x .
p(n) p(n)

Proof. We prove first the /ix(n)/p(n) > c x part and then the d x (n) /p(n) > CT

part. The results are combined by picking the bigger n x and the smaller c x .

There is a program P x that behaves as follows. First, it gets its own size np

from a constant in its program code. The constant uses some characters and thus

affects the size of P x . However, the size of a natural number constant m is ©(log m)

and grows in steps of zero or one as m grows. Therefore, by starting with m = 1

and incrementing it by steps of one, it eventually catches the size of the program,

although also the latter may grow.

Then P x reads the input, counting the number of the characters that it gets

with n* and interpreting the string of characters as a natural number x in base

|E|. We have 0 < x < |E|n', and any natural number in this range is possible. Let

n = np + Hi.

Next P x constructs every program-input pair of size n and tests it with T. In

this way P x gets the number hT(n) of easy halting pairs of size n.

Then P x constructs again every pair of size n. This time it simulates each of

them in parallel until hT(n) + x of them have halted. Then it aborts the rest and

halts. It halts if and only if hT(n) + x < h(n). (It may be helpful to think of x as

a guess of the number of hard halting pairs.)

Among the pairs of size n is P x itself with the string that represents x as the

input. We denote it with (Px , x). The time consumption of any simulated execution

is at least the same as the time consumption of the corresponding genuine execution.

So the execution of (Px , x) cannot contain properly a simulated execution of (P x , x).

Therefore, either (Px , x) does not halt, or the simulated execution of (P x , x) is still

continuing when (P x ,x) halts. In the former case, h(n) < hT(n) +x. In the latter

case (Px ,x) is a halting pair but not counted in hT(n) + x, so h(n) > hT(n) + x.

In both cases, x ^ h{n) — hT(n).

As a consequence, no natural number less than |E|n< is fix(n). So fix(n) >

]E|ni = |E|n_n". By Lemma 5, p(n) < |£|n+1. So for any n > np, we have

hT(n)/p(n) > lEI-^-j.

The proof of the dx(n)/p(n) > c x part is otherwise similar, except that P x

continues simulation until p(n) - dT(n) - x pairs have halted. (Now x is a guess

of dx (n) , yielding a guess of h(n) by subtraction.) The program F x gets p(n) by

counting the pairs of size n whose program part is compilable. It turns out that

p(n) — dT(n) - x ^ h(n), so x cannot be d x (n) , yielding d x (n) > |E|nL •

Next we adapt the second main result in [4] to our present setting, with a

Asymptotic Proportion of Hard Instances of the Halting Problem 327

somewhat simplified proof and obtaining the result also for three-way and generic-

case testers.

Theorem 8. With the C++ programming model in Section 5.2,

3c > 0 : VT £ three-way(G) : Vn0 € N : 3n > n0 : ^ ^ > c A ^ ^ > c ,

p{n) p(n)

3c > 0 : VT £ generic(G) : Vn0 £ N : 3n > n0 : ^ r ^ > c , and

p(n)

3c > 0 : VT £ approx(G) : Vn0 £ N : 3n > n0 : M ") + dr(n) > c .
p(n)

Proof. The proof follows the same strategy as the proof of Theorem 6, but differs

in some technical details.

To prove the claim for three-way testers, for any character string a, let lb(a) = 0

if a is the empty string, and otherwise lb(a) is the value of the least significant bit

of the last character of a. For any character strings a and ß, let a ~ ß if and

only if |q| = \ß\ and lb(a) = lb(/3). For any size n greater than 0, has two

equivalence classes, each containing |£|n/2 character strings. For any i > 0, let Pi

be the program whose shortlex index is i.

There is a program P that behaves as follows. We denote its execution on input

a with P(a). Please observe that if a ~ /3, then P(ß) behaves in the same way as

P(a).

First P(a) finds the program Ps(\a\), where 6(i) = i — s(i) + 1, where s(i) is the

biggest square number that is at most i.

Then P{A) goes through, in the shortlex order, all [|£|'a /2] character strings ß

such that a ~ ß, until any of the termination conditions mentioned below occurs or

P(a) has gone through all of them. For each ß, it runs Pä(|q|) o n ß- We denote this

with Prf(|Q|)(j3). If P<5(|q|)(/3) fails to halt, then P(A>) never returns from it and thus

fails to halt. If Psna\){ß) halts replying "yes", then P(A) enters an eternal loop,

thus failing to halt. If Pi(|Q|)(/3) halts replying "no", then P(A) halts immediately.

If P 4 (H)G8) halts replying "I don't know", then P{A) tries the next ß. It is not

important what P(A) does if Pa"(|«|)(/3) halts replying something else.

If Pä(|q|)(/Ö) halted replying "I don't know" for every ß such that a ~ ß, then

P(a) checks whether lb(a) = 0. If yes, then P(a) enters an eternal loop, otherwise

P(a) halts.

Now let T(Q, 7) be any three-way tester that tests whether program Q halts on

the input 7 . How the two components Q and 7 of the input of T are encoded into

one input string is not important. There is a program that has P hard-coded into

a string constant, inputs ß, calls T(P,ß), and gives its reply as its own reply. Let

i be the shortlex index of this program, so the program is Pt.

There are infinitely many positive integers j such that S(j) = i. Let j be

such, and let a be any character string of size j. So Ps([a\) is Pi- If, during the

execution of P(a), Pi(ß) ever replies "yes" or "no", then the same happens during

328 Antti Valmari

the execution of P(ß), because P(ß) behaves in the same way as P(a) (the fact that

Pi{ß) was called implies a ~ ß). But that would be incorrect by the construction

of P. Therefore, T(P, ß) replies "I don't know" for every ß of size j.
As a consequence, T has at least |Ep hard instances of size |P| + j . If j > 0,

then half of them are halting and the other half non-halting, thanks to the lb(a) = 0

test near the end of P. By Lemma 5, p(n) < |E|n+1. So if n = \P\+j > |P|, then

The program P does not depend on n, so letting c = 1/(2|E|'P'+1) we have the

claim.

The proof for generic-case testers is otherwise similar, but the /3 are tried in

parallel and T(P, /3) fails to halt for every (3 of size j. All hard instances are

non-halting. The P for approximating testers lets each Pj(|Q|)(/3) continue until

completion, counts the numbers of the "yes"- and "no"-replies they yield, and then

does the opposite of the majority of the replies. •

Application of Lemma 2 to this result yields the following.

Corollary 4. With the C++ programming model in Section 5.2, l im,,-^ h(n)/p(n)

does not exist.

6 Conclusions

This study did not cover all combinations of a programming model, variant of the

halting problem, and variant of the tester. So there is a lot of room for future work.

The results highlight what was already known since [6]: the programming model

has a significant role. With some programming models, a phenomenon of secondary

interest dominates the distribution of programs, making hard instances rare. Such

phenomena include compile-time errors and falling off the left end of the tape of a

Turing machine.

Many results were derived using the assumption that information can be packed

very densely in the program or the input file. Sometimes it was not even neces-

sary to assume that the program could use the information. It sufficed that the

assumption allowed to make many enough similarly behaving longer copies of an

original program. Intuition suggests that if the program can access the information,

testing halting is harder than in the opposite case. A comparison of Theorem 5 to

Theorem 6 supports this intuition.

Corollaries 2 and 4 and the comment after Corollary 2 tell that the proportion

of all (not just hard) halting instances has no limit with end-of-file dead segment

languages and variant S of the halting problem, with the C++ model and variant

G, and in the framework of [4]. It must thus oscillate irregularly as the size of the

program grows — irregularly because of Lemma 2. This is not a property of various

notions of imperfect halting testers, but a property of the halting problem itself.

hr(n) |S|"~lp l 1 _
p(n) ~ 2|E|n + 1 ~ 2|E|lpl+1

> and
dT(n) 1

p(n) ~ 2|E|lpl+1 '

Asymptotic Proportion of Hard Instances of the Halting Problem 329

Acknowledgements

I thank professor Keijo Ruohonen for helpful discussions, and the anonymous re-

viewers of SPLST '13 and Acta Cybernetica for their helpful comments. The latter

pointed out that Proposition 4 had been formulated incorrectly.

References

[1] Calude, C. S. and Stay, M. A. Most programs stop quickly or never halt.

Advances in Applied Mathematics, 40:295-308, 2008.

[2] Hamkins, J. D. and Miasnikov, A. The halting problem is decidable on a set of

asymptotic probability one. Notre Dame Journal of Formal Logic, 47(4):515-

524, 2006.

[3] Hopcroft, J. E. and Ullman, J . D. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1979.

[4] Köhler, S., Schindelhauer, C., and Ziegler, M. On approximating real-world

halting problems. In Liskiewicz, M. and Reischuk, R., editor, Proc. 15th Fun-

damentals of Computation Theory, Lecture Notes in Computer Science 3623,

pages 454-466, 2005. Springer.

[5] Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity and Its

Applications. Springer-Verlag, 2008.

[6] Lynch, N. Approximations to the halting problem. Journal of Computer and

System Sciences, 9:143-150, 1974.

[7] Rice, H. G. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society 74:358-366, 1953.

[8] Rybalov, A. On the strongly generic undecidability of the halting problem.

Theoretical Computer Science, 377:268-270, 2007.

[9] Schindelhauer, C. and Jakoby, A. The non-recursive power of erroneous com-

putation. In Pandu Rangan, C., Raman, V., and Ramanujam, R., editors,

Proc. 19th Foundations of Software Technology and Theoretical Computer Sci-

ence, Lecture Notes in Computer Science 1738, pages 394-406, 1999. Springer.

[10] Turing, A. M. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society ser. 2, 42:230-

265, 1937.

[11] Valmari, A. Sizes of up-to-n halting testers. In Halava, V., Karhumáki, J., and

Matiyasevich, Y., editors, Proceedings of the Second Russian Finnish Sympo-

sium on Discrete Mathematics, TUCS Lecture Notes 17, pages 176-183, Turku,

Finland, 2012.

330 Antti Valmari

[12] Valmari, A. The asymptotic behaviour of the proportion of hard instances of

the halting problem (extended version). Computer Science Research Reposi-

tory arXiv:1307.7066, 2013.

[13] Valmari, A. The asymptotic behaviour of the proportion of hard instances

of the halting problem. In Kiss, A., editor, Proceedings of SPLST '13, 13th

Symposium on Programming Languages and Software Tools, pages 170-184,

Szeged, Hungary, 2013.

Acta Cybernetica 21 (2014) 331-352.

Runtime Exception Detection in Java Programs

Using Symbolic Execution*

István Kádárj Péter Hegedűs! and Rudolf Ferenc*

Abstract

Most of the runtime failures of a software system can be revealed during

test execution only, which has a very high cost. In Java programs, runtime

failures are manifested as unhandled runtime exceptions.

In this paper we present an approach and tool for detecting runtime ex-

ceptions in Java programs without having to execute tests on the software.

We use the symbolic execution technique to implement the approach. By

executing the methods of the program symbolically we can determine those

execution branches that throw exceptions. Our algorithm is able to generate

concrete test inputs also that cause the program to fail in runtime.

We used the Symbolic PathFinder extension of the Java PathFinder as

the symbolic execution engine. Besides small example codes we evaluated

our algorithm on three open source systems: jEdit, ArgoUML, and log4j. We

found multiple errors in the logfj system that were also reported as real bugs

in its bug tracking system.

Keywords: Java runtime exception, symbolic execution, rule checking

1 Introduction

Nowadays, it is a big challenge of the software engineering to produce huge, reliable

and robust software systems. About 40% of the total development costs go for

testing [13], and the maintenance activities, particularly bug fixing of the system

also require a considerable amount of resources [20]. Our purpose is to develop a

new method and tool, which supports this phase of the software engineering lifecycle

with detecting runtime exceptions in Java programs, and finding dangerous parts

in the source code, that could behave as time-bombs during further development.

The analysis will be done without executing the program in a real environment.

Runt ime exceptions in the Java programming language are the instances of class

java.lang.RuntimeException, which represent a sort of runtime error, for example

"This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-0038 and
the TÁMOP 4.2.4. A/2-11-1-2012-0001 European grant.

1 University of Szeged, Department of Software Engineering Árpád tér 2. H-6720 Szeged,
Hungary, El-mail: {ikadarlhpeterlferencj8inf.u-szeged.hu

332 István Kádár, Péter Hegedűs, and Rudolf Ferenc

an invalid type cast, an array over indexing, or division by zero. These exceptions

are dangerous because they can cause a sudden stop of the program, as they do

not have to be handled by the programmer explicitly.

Exploration of these exceptions is done by using a technique called symbolic

execution [12]. When a program is executed symbolically, it is not executed on

concrete input data but input data is handled as symbolic variables. When the ex-

ecution reaches a branching condition containing a symbolic variable, the execution

continues on both branches. This way, all of the possible branches of the program

will be executed in theory. Java PathFinder (JPF) [10] is a software model checker

which is developed at NASA Ames Research Center. In fact, Java PathFinder is

a Java virtual machine that executes Java bytecode in a special way. Symbolic

PathFinder (SPF) [14] is an extension of JPF, which can perform symbolic execu-

tion of Java bytecodes. The presented work is based on these tools.

The paper explains how the detection of runtime exceptions of the Java pro-

gramming language was implemented using Java PathFinder and symbolic execu-

tion. Concrete input parameters of the method resulting a runtime exception are

also determined. It is also described how the number of execution branches, and the

state space have been reduced to achieve a better performance. The implemented

tool called Jpf Checker has been tested on real life projects, the log4j, ArgoUML,

and jEdit open source systems. We found multiple errors in the log4j system that

were also reported as real bugs in its bug tracking system. The performance of the

tool is acceptable since the analysis was finished in a couple of hours even for the

biggest system used for testing.

The remainder of the paper is organized as follows. We give a brief introduction

to symbolic execution in Section 2. After that in Section 3 we present our approach

for detecting runtime exceptions. Section 4 discusses the results of the implemented

algorithm on different small examples and real life open source projects. Section 5

collects the works that related to ours. Finally, we conclude the paper and present

some future work in Section 6.

2 Symbolic Execution

During its execution, every program performs operations on the input data in a

defined order. Symbolic execution [12] is based on the idea that the program is

operated on symbolic variables instead of specific input data, and the output will

be a function of these symbolic variables. A symbolic variable is a set of the

possible values of a concrete variable in the program, thus a symbolic state is a set

of concrete states. When the execution reaches a selection control structure (e.g.

an if statement) where the logical expression contains a symbolic variable, it cannot

be evaluated, its value might be also true and false. The execution continues on

both branches accordingly. This way we can simulate all the possible execution

branches of the program.

During symbolic execution we maintain a so-called path condition (PC). The

path condition is a quantifier-free logical formula with the initial value of true, and

Runtime Exception Detection in Java Programs Using Symbolic Execution 333

1. i n t x , y , d i s t ;
2
3 . i f (x > y) {
4 . d i s t = x - y ;
5 . > e l s e t
6 . d i s t = y - x ;
7 . >
8 . i f (d i s t < 0)
9 . w r i t e (" E r r o r ") ;

(a)

PC: imc. x - X, y - Y
T '

PC: true, X > Y
false

PC: X > Y, dist = X-Y
t

PC: X > Y, dist= X-Y < 0
false

•» X Y * X - > " . t . X - Y ' X-1 •« " C t X - r Y A Y - X
ssrite("Errc>r") END ~

PC: X < Y, dist - Y-X
i

PC: X < Y, dist = Y-X < 0
. false

. X V Y-X M PC: X < Y * Y-X > 0,
uriteCError") END

(b)

Figure 1: (a) Sample code that determines the distance of two integers on the number line

(b) Symbolic execution tree of the sample code handling variable x and y symbolically

its variables are the symbolic variables of the program. If the execution reaches a

branching condition that depends on one or more symbolic variables, the condition

will be appended to the current PC with the logical operator AND to indicate

the true branch, and the negation of the condition to indicate the false branch.

With such an extension of the PC, each execution branch will be linked to a unique

formula over the symbolic variables. In addition to maintaining the path condition,

symbolic execution engines make use of the so called constraint solver programs.

Constraint solvers are used to solve the path condition by assigning values to the

symbolic variables that satisfy the logical formula. Path condition can be solved at

any point of the symbolic execution. Practically, the solutions serve as test inputs

that can be used to run the program in such a way that the concrete execution

follows the execution path for which the PC was solved.

All of the possible execution paths define a connected and acyclic directed graph

called symbolic execution tree. Each point of the tree corresponds to a symbolic

state of the program. An example is shown in Figure 1.

Figure 1 (a) shows a sample code that determines the distance of two integers

x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with

the corresponding symbolic execution tree. We handle x and y symbolically, their

symbols are X and Y respectively. The initial value of the path condition is true.

Reaching the first if statement in line 3, there are two possibilities: the logical ex-

pression can be true or false; thus the execution branches and the logical expression

and its negation is added to the PC as follows:

true A X >Y X >Y, and true A -i(X >Y)=>X <Y

The value of variable dist will be a symbolic expression, X-Y on the true branch

and Y-X on the false one. As a result of the second if statement (line 8) the

execution branches, and the appropriate PCs are appended again. On the true

branches we get the following PCs:

X >Y AX -Y <0=>X >Y AX <Y,

X<Y/\Y — X<0=sX<Y/\X>Y

334 István Kádár, Péter Hegedűs, and Rudolf Ferenc

configuration
•it*

Java program
(system under test)

Java PathFinder

Opttauit it stem

report

Figure 2: Java PathFinder as a virtual machine itself runs on a JVM, while performing a

verification of a Java program

It is clear that these formulas are unsolvable, we cannot specify such X and Y

that satisfy the conditions. This means that there are no such x and y inputs with

which the program reaches the write ("Error") statement. As long as the PC is

unsatisfiable at a state, the sub-tree starting from that state can be pruned, there

is no sense to continue the controversial execution.

It is impossible to explore all the symbolic states. It takes unreasonably long

time to execute all the possible paths. A solution for this problem can be e.g. to

limit the depth of the symbolic execution tree or the number of states which, of

course, inhibit to examine all the states. The next subsection describes what are

the available techniques in Symbolic PathFinder to address this problem.

2.1 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) [10] is a highly customizable execution environment that

aims at verifying Java programs. In fact, JPF is nothing more than a Java Virtual

Machine which interprets the Java bytecode in a special way to be able to verify

certain properties. It is difficult to determine what kind of errors can be found and

which properties can be checked by JPF, it depends primarily on its configuration.

The system has been designed from the beginning to be easily configurable and

extendable. One of its extensions is Symbolic PathFinder (SPF) [14] that provides

symbolic execution of Java programs by implementing a bytecode instruction set

allowing to execute the Java bytecode according to the theory of symbolic execution.

JPF (and SPF) itself is implemented in Java, so it also have to run on a virtual

machine, thus JPF is actually a middleware between the standard JVM and the

bytecode. The architecture of the system is illustrated on Figure 2.

To start the analysis we have to make a configuration file with .jpf extension in

which we specify different options as key-value pairs. The output is a report that

contains e.g. the found defects. In addition to the ability of handling logical, integer

and floating-point type variables as symbols, SPF can also handle complex types

symbolically with the lazy initialization algorithm [11], and allows the symbolic

execution of multi-threaded programs too.

SPF supports multiple constraint solvers and defines a general interface to com-

municate them. Cvc3 is used to solve linear formulas, choco can handle non-linear

Runtime Exception Detection in Java Programs Using Symbolic Execution 335

logical formulas too, while IASolver use interval arithmetic techniques to satisfy

the path condition. Among the supported constraint solvers, CORAL proved to

be the most effective in terms of the number of solved constraints and the perfor-

mance [19].

To reduce the state space of the symbolic execution SPF offers a number of

options. We can specify the maximum depth of the symbolic execution tree, and the

number of elementary formulas in the path condition can also be limited. Further

possibility is that with options symbolic.minint, symbolic.maxint, symbolic.minreal,

and symbolic, maxreal we can restrict the value ranges of the integer and floating

point types. With the proper use of these options the state space and the time

required for the analysis can be reduced significantly.

3 Detection of Runt ime Exceptions

We developed a tool that is able to automatically detect runtime exceptions in an

arbitrary Java program. This section explains in detail how this analysis program,

the JPF checker works.

To check the whole program we use symbolic execution, which is performed by

Symbolic PathFinder. However, we do not execute the whole program symbolically

to discover all of the possible paths, instead we symbolically execute the methods

of the program one by one. Starting the analysis from the main method has several

drawbacks. For example, the state space would be too large and we would need

to cut it when the execution reaches the defined maximal depth in the symbolic

execution tree. Our approach results in a significant reduction in the state space

of the symbolic execution.

An important question is which variables to be handled symbolically. In general,

execution of a method mainly depends on the actual values of its parameters and the

referred external variables. Thus, these are the inputs of a method that should be

handled symbolically to generally analyze it. Currently, we handle the parameters

and data members of the class of the analyzed method symbolically.

Our goal is not only to indicate the runtime exceptions a method can throw (its

type and the line causing the exception), but also to determine a parameterization

that leads to throwing those exceptions. In addition, we determine this parameter-

ization not only for the analyzed method which is at the bottom of the call stack,

but for all the other elements in the call stack (i.e. recursively for all the called

methods).

Our work can be divided into two steps:

1. It is necessary to create a runtime environment which is able to iterate through

all the methods of a Java program, and start their symbolic execution using

Symbolic PathFinder.

2. We need a JPF extension which is built on its listener mechanism, and which

is able to indicate potential runtime exceptions and related parameterization

while monitoring the execution.

336 István Kádár, Péter Hegedűs, and Rudolf Ferenc

Jsr
Explorer

Figure 3: Architecture of the runtime environment

3.1 The Runt ime Environment

The concept of the developers of Symbolic PathFinder was to start running the

program in normal mode like in a real life environment, than at given points, e.g.

at more complex or problematic parts in the program switch to symbolic execution

mode [15]. The advantage of this approach is that, since the context is real, it

is more likely to find real errors. E.g. the values of the global variables are all

set, but if these variables are handled symbolically we can examine cases that

never occur during a real run. A disadvantage is that it is hard to explore the

problematic points of a program, it requires prior knowledge or preliminary work.

Another disadvantage is that you have to run the program manually namely, that

the control reach those methods which will be handled symbolic by the SPF.

In contrast, the tool we have developed is able to execute an arbitrary method

or all methods of a program symbolically. The advantage of this approach is that

the user does not have to perform any manual runs, the entire process can be

automated. Additionally, the symbolic state space also remains limited since we

do not execute the whole program symbolically, but their parts separately. The

approach also makes it possible to analyze libraries that do not have a main method

such as log4j. One of the major disadvantages is the that we back away from the

real execution environment, which may lead to false positive error reports.

For implementing such an execution environment we have to achieve somehow

that the control flow reaches the method we want to analyze. However, due to the

nature of the virtual machine, JPF requires the entry point of the program, which

is the class containing the main method. Therefore, we generate a driver class for

each method containing a main method that only passes the control to the method

we want to execute symbolically and carries out all the related tasks. Invoking

the method is done using the Java Reflection API. We also have to generate a

JPF configuration file that specifies, among others, the artificially created entry

point and the method we want to handle symbolically. After creating the necessary

files, we have to compile the generated Java class and finally, to launch Symbolic

PathFinder.

The architecture of the system is illustrated in Figure 3. The input jar file

is processed by the JarExplorer, which reads all the methods of the classes from

the jar file and creates a list from them. The elements of the list is taken by the

Generator one by one. It generates a driver class and a JPF configuration file for

Runtime Exception Detection in Java Programs Using Symbolic Execution 337

1. exceptionThrownO {
2. exception = getPendingExceptionO ;

3. if (isInstanceOfRuntimeException(exception)) {
4. pc = getCurrentPcO ;

5. solve(pc);

6. summary = new FoundExceptionSummary();

7. summary.setExceptionType(exception);
8. summary.setThrownFrom(exception);
9. summary.setParameterization(parsePc(pc, analyzedMethod));

10. invocationChain = buildlnvocationChainO ;

11. foreach(Method m : invocationChain) {
12. summary.addStackTraceElement(m, parsePc(pc, m));

13. >

14. foundExceptions.add(summary);

15. }
16.>

Figure 4: Pseudo code of the exceptionThrown event

each method. After the generation is complete, we start the symbolic execution.

3.2 Implementing a Listener Class

During functioning, JPF sends notifications about certain events. This is real-

ized with so-called listeners, which are based on the observer design pattern. The

registered listener objects are notified about and can react to these events. JPF

can send notifications of almost every detail of the program execution. There are

low-level events such as execution of a bytecode instruction, as well as high-level

events such as starting or finishing the search in the state space. In JPF, basically

two listener interfaces exist: the SearchListener and VMListener interface. While

the former includes the events related to the state space search, the latter reports

the events of the virtual machine. Because these interfaces are quite large and the

specific listener classes often implement both of them, adapter classes are intro-

duced that implement these interfaces with empty method bodies. Therefore, to

create our custom listener we derived a class from this adapter and implemented

the necessary methods only.

Our algorithm for detecting runtime exceptions is briefly summarized below. By

performing symbolic execution of a method all of its paths are executed, including

those that throw exceptions. When an exception occurs, namely when the virtual

machine executes an ATHROW bytecode instruction, JPF triggers and exception-

Thrown event. Thus, we implemented the exceptionThrown method in our listener

class. Its pseudo code is shown in Figure 4.

First, we acquire the thrown Exception object (line 2), then we decide whether it

is a runtime exception (i.e. whether it is an instance of the class RuntimeException)

(line 3). If it is, we request the path condition related to the actual path and

338 István Kádár, Péter Hegedűs, and Rudolf Ferenc

use the constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9 set

up a summary report that contains the type of the thrown exception, the line

that throws it and a parameterization which causes this exception to be thrown.

The parameterization is constructed by the parsePC() method, which assigns the

satisfactory solutions of the path condition to the method parameters. Lines 10-13

take care of collecting and determining parameterization for the methods in the

call stack. If the source code does not specify any constraint for a parameter on the

path throwing an exception (i.e. the path condition does not contain the variable),

then there is no related solution. This means that it does not matter what the

actual value of that parameter is, as it does not affect the execution path, and the

method is going to throw an exception due to the values of other parameters. In

such cases parsePc() method assigns the value "any" to these parameters.

It is also possible that a parameter has a concrete value. Figure 5 illustrates such

an example. When we start the symbolic execution of method x(), its parameter a

is handled symbolically. As x() calls y() its parameter a is still a symbol, but b is

a concrete value (42). In a case like this, parsePc() have to get the concrete value

from the stack of the actual method.

We note that the presented algorithm reports any runtime exceptions regardless

of the fact whether it is caught by the program or not. The reason of this is that

we think that relying on runtime exceptions is a bad coding practice and a runtime

exception can be dangerous even if it is handled by the program. Nonetheless, it

would be easy to modify our algorithm to detect uncaught exceptions only.

4 Results

The developed tool was tested in a variety of ways. The section describes the re-

sults of these test runs. We analyzed manually prepared example codes containing

instructions that cause runtime exceptions on purpose; then we performed analysis

on different open-source software to show that our tool is able to detect runtime

exceptions in real programs, not just in artificially made small examples. The sub-

ject systems are the log4j (h t tp : / / logg ing .apache .org/ log4 j /) logging library,

the ArgoUML modeling tool (h t tp : / / a rgomnl . t i g r i s .o rg /) , and the jEdit text

editor program (http://www.jedit .org/) . We prove the validity of the detected

exceptions by the bug reports, found in the bug tracking systems of these projects,

that describe program faults caused by those runtime exceptions that are also found

by the developed tool.

1. void x(int a) {

2. short b = 42;

3. y(a, b);

4. >

5. void yCint a, short b) {

6.
7. throw new NullPointerExceptionO;

8 .
9. }

Figure 5: An example call with both symbolic and concrete parameters

http://logging.apache.org/log4j/
http://argomnl.tigris.org/
http://www.jedit.org/

Runtime Exception Detection in Java Programs Using Symbolic Execution 339

20. public void run(int x, int y) {

public class Example5 { 21. if (y > 10) {
22. int [] arr = new int [5] ;

8. void callRun(int x, int y) { 23. for (int i = 0; i < x; i++) {

9. Integer i = null; 24. arr [i] = i;

10. if (x > 6) { 25. >
11. int b = 9; 26. J else {

12. run(b, y); 27. Integer i = null;

13. i = Integer.valueOf (b); 28. if (y < 5) {
14. System.out.printIn(i) ; 29. i = Integer.valueOf(4);

15. J- else { 30. i. f loatValueO ;

16. i = Integer.valueOf(3); 31. } else {

17. System.out.println(i); 32. System.out.printlnC

18. > 33. i.floatValueO) ;

19. > 34. >
35. >
36. »

Figure 6: Manually prepared example code with the analysis of method callRun()

4.1 Manually Prepared Examples

A small manually prepared example code is shown on Figure 6. The method under

test is callRun() which calls method run() in line 12. Running our algorithm on

this code gives two hits: the first is an ArraylndexOutOfBoundsException, the

second is a NullPointerException. The first exception is thrown by method run()

at line 24. A parametrization leading to this exception is callRun(7, 11). Method

run() will be called only if x > 6 (line 10) that is satisfied by 7 and it is called

with the concrete value 9 and symbol y. At this point there is no condition for y.

Method run() can reach line 24 only if y > 10, the indicated value 11 is obtained

by satisfying this constraint. Throwing of the ArraylndexOutOfBoundsException

is due to the fact that in line 22 we declare a 5-element array but the following for

loop runs from 0 to x. The value of x at this point is 9 which leads to an exception.

The train of thought is similar in the case of the second exception. The problem

is that variable i created in line 27 initialized only in line 29 to a value different form

null, but not in the else block, therefore line 33 throws a NullPointerException.

This requires that the value of y not to be greater than 10 and not to be less than

5. These restrictions are satisfied by e.g. 5, and value 7 for x is necessary to invoke

run(). So the parametrizations are callRun(7, 5) and run(9, 5). The analysis is

finished in less than a second.

A second example code is presented in Figure 7. The resulting report refers to

an ArithmeticException, which is thrown at line 39 and the stack trace highlights

that the problematic method is expandf) which is invoked at line 30 by run(). The

control flow reaches line 30 only if variable b is false. For example, if n is -999,

and check has the value true, as the parameter list in the error report included,

b will be false and the expand() method on the else branch will be executed. At

340 István Kádár, Péter Hegedűs, and Rudolf Ferenc

3. public class Example3 {

8. public void run(int n,
boolean check, A a) {

9. boolean b = check && n >« 0;
10. int max = Integer.MIN.VALUE;
11. i f (b) {
12. i f (a != null) {
13. int 1 = n;
14. int r = 2*n + 1;
15. i f (a. getMember O > 120) {
16. i f (1 <= a.getMemberO) {
17. max = a.getMemberO;
18. > else {
19. max = 1;
20. >
21. i f (r > max) {
22. max = r;
23. >
24. while (max < n) {
25. max = expand(n, 0);
26. >
27. >
28. >
29. > else {
30. max = expand(n, 0);
31. >
32. System, out .printlnC'Maximum"
33. + value: " + max);
34. >

Figure 7: Manually prepared example

35. private int expand(int n, int m) {
36. double res = count(m);
37. i f (res > n) {
38. do {
39. res = n / res;
40. res -= 2;
41. > while (res >= 0);
42. return n + m;
43. > else {
44. return (int)res;
45. >
46. >
47.
48. private int count(int 1) {
49. int count = 1;
50. for (int i»100; i>0; i—) {
51. i f (i '/. 3 == 0) {
52. count++;
53. >
54. >
55. return count;
56. >
57.
58. >

1. public class A extends Letter {
2.
3. public int member;
4.
5. public int getMember() {
6. return member;
7. >
8 .
9. >

with the analysis of method run()

line 36, variable res has a concrete value because method count() will be executed.

It can be seen that res is definitely a non-negative integer, thus the condition at

line 37 is true if n=-999. Then the loop begins to execute, and variable res will

be reduced to 0 after a number of iterations, leading to a division by 0 fault. In

the report, the third parameter of the examined run() method is "any". That is

because this parameter does not play a role in whether or not the program runs

onto the discussed ArithmeticException.

Line 25 in method run() also calls expandf), but there is no corresponding error

report. In fact, due to the instructions at lines 13-23, the condition at line 24 is

always false, thus this expandf) call will never be executed. Actually, line 25 is

unreachable code.

Runtime Exception Detection in Java Programs Using Symbolic Execution 341

Figure 8: (a)Number of methods examined in the programs and the number of JPF or

SPF faults (b) Number of successfully analyzed methods and the number of defective

methods (c) Analysis time

4.2 Analysis of Open-source Systems

Analysis of log4j 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a

desktop computer with an Intel Core i5-540M 2.53 GHz processor and 8 GB of

memory. In all three cases the analysis was done by executing all the methods of

the release jar files of the projects symbolically.

Figure 8 (a) displays the number of methods we analyzed in the different pro-

grams. We started analyzing 1242 methods in log4j of which only 757 were success-

ful, in 474 cases the analysis stopped due to the failure of the Java PathFinder (or

Symbolic PathFinder). There are a lot of methods in ArgoUML which also could

not be analyzed, more than half of the checks ended with failure. In case of jEdit

the ratio is very similar. Unfortunately, in general JPF stopped with a variety of

error messages.

Despite the frequent failures of JPF, our tool indicated a fairly large number

of runtime exceptions in all three programs. Figure 8 (b) shows the number of

successfully analyzed methods and the methods with one or more runtime excep-

tions. The hit rate is the highest for log4j and despite its high number of methods,

relatively few exceptions were found in ArgoUML.

The analysis times are shown in Figure 8 (c). Analysis of log4j completed within

an hour, while analysis of ArgoUML, that contains more than 7500 methods, took

3 hours and 42 minutes. Although jEdit contains fewer methods than ArgoUML,

its full analysis were more time-consuming. The performance of our algorithm is

acceptable, especially considering that the analysis was performed on an ordinary

desktop PC not on a high-performance server. However, it can be assumed that

the analysis time would grow with less failed method analysis.

It is important to note, that not all indicated exceptions are real errors. This is

because the analysis were performed in an artificial execution environment which

might have introduced false positive hits. When we start the symbolic execution of

a method we have no information about the circumstances of the real invocation.

All parameters and data members are handled symbolically, that is, it is considered

342 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class SimpleLayout extends Layout {

58. public String format(LoggingEvent event) {

59.

60. sbuf.setLength(O);

61. sbuf .append(event .getLevelO .toStringO) ;
62. sbuf.append(" - ");

63. sbuf .append(event.getRenderedMessageO);
64. sbuf.append(LINE.SEP);

65. return sbuf .toStringO ;

66. >

}

public class LoggingEvent implements java.io.Serializable {

transient public Priority level;

255. public Level getLevelO {

256. return (Level) level;
257. >

>

public class Level extends Priority implements Serializablei

>

Figure 9: Method org.apache.log4j.SimpleLayout.format() and its environment.

that their value can be anything although it is possible that a particular value of a

variable never occurs.

Despite the fact that not all the reported exceptions are real program errors

they are definitely representing real risks. During the modification of the source

code there are inevitably changes that introduce new errors. These errors often

appear in form of runtime exceptions (i.e. in places where our algorithm found

possible failures). So the majority of the reported exceptions do not report real

errors, but potential sources of danger that should be paid special attention.

In the following, we are going to show some interesting faults found by our tool

in the above systems.

The first example method is org. apache. logfj.SimpleLayout,format() of log4j,

which is shwon in Figure 9. In this method three possible runtime exceptions are

found by the tool. The first two are NullPointerExceptions, both thrown at line

61. The produced report says that the first NPE will be thrown if the parameter

is null, and the second when this parameter differs from null. In the first case,

when the parameter is null, expression event. getLevel() causes the exception, since

a method of a null reference cannot be called. When parameter event is not null,

the code gets the level data member and calls its toString() method. The second

NullPointerException is caused by the fact that the requested level data member

Runtime Exception Detection in Java Programs Using Symbolic Execution 343

public class FindDialog extends ArgoDialog ... { ... }
class PredicateMType extends PredicateType {

727. public static PredicateType create(Object cO, Object cl, Object c2) {
728. Class [] classes = new Class [3];

729. classes[0] = (Class) cO;

730. classes[1] = (Class) cl;

731. classes[2] = (Class) c2;
732. return new PredicateMType(classes);

733. >

>

Figure 10: Method org.argouml.ui.PredicateMType.createQ

can also be null, thus using operator '.' may raise the exception.

The third exception is a ClassCastException. As shown, at line 256 in class

LoggingEvent there is a type cast which tries to convert the level member which

has a type Priority to a Level object. According to the listing in the bottom of

Figure 9, class Level is a descendant of class Priority, thus the cast at line 256 is a

downcast, which is incorrect in case the dynamic type of the member is not Level.

Three possible ClassCastExceptions are revealed in method PredicateMType.

createf) that is depicted in Figure 10. Lines 729, 730 and 731 cast down the three

parameters from Object to Class without performing any type check. The first

entry in the report says that ereatefnull, null, .'null) parametrization can lead to

an exception thrown at line 731. If cO and cl parameters are null, lines 729 and

730 are executed without any problem, because casting a null reference to any

class is permitted in Java. It is important that this does not mean that cO and cl

have to be necessarily null, the report just gives a sample parametrization which

leads the execution to the exception. As long as the third parameter is not null a

ClassCastException can be raised. Of course, to achieve this it is necessary that the

parameter type is different from Class. Parametrization create (null, .'null, "any")

leads to potential fault at line 730. The reasoning is similar to the previous one: if

cO is null and cl is non-null (and of course it is not a Class) ClassCastException

will be thrown. The third parameter is completely irrelevant. In case of the third

ClassCastException, occurring at line 729, the values of cl and c2 do not matter.

The last example is a tiny method, MRUFileManager.getFile() shown in Fig-

ure 11. At line 98, getFilef) checks whether the index parameter is less then the

size of the _mruFileList LinkedList. If so, the return value is the corresponding

element of the LinkedList, otherwise null. Our report shows that the index can be

a negative number, too. This case is not handled, and LinkedList.get() will throw

an IndexOutOfBoundsException if method getField() is called for example with

-999. Calling getField() with a negative number seems unreasonable and of course

it is, but possible.

344 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class MRUFileManager {

private LinkedList _mruFileList;

public int sizeO {
return _mruFileList.sizeO ;

>
97. public Object getFile(int index) {

98. if (index < sizeO) {
99. return _mruFileList.get(index);

100. >
101.

102. return null;

103. >

>

Figure 11: Method org.apache.log4j.lf5.viewer.configure.MRUFileManager.getFile()

4.3 Real Errors

In this subsection a few defects are presented which are reported in bug tracking

systems, and caused by runtime exceptions found also by our tool. The first affected

bug1 reports the termination of an application using log4j version 1.2.14 caused by a

NullPointerException. The reporter got the Exception from line 59 of Throwableln-

formation.java thrown by method org. apache. log4j.spi. Throwablelnformation.get-

ThrowableStrRep() as shown in the given stack trace. The code of the method and

the problematic line detected by our analysis is shown in Figure 12.

The problem here is that the initialization of the throwable data member of class

Throwablelnformation is omitted, its value is null causing a NullPointerException

at line 59. This causes that the log() method of log4j can also throw an exception

which should never happen. Our tool found other errors as well which demonstrate

its strength of being capable of detecting real bugs.

The next exception is also a NullPointerException, which occurred in log4j

1.2.15. The bug report2 explains that the runtime exception causing the halt comes

form method org.apache.log4j.NDC.remove(), at line 377. Figure 13 shows the

corresponding piece of code. The fault here is that the ht static data member is

null. Although the data member is initialized as Figure 13 shows, it is possible

that during the execution its value is set to null. The report in the log4j bug

tracking system sheds light to this. The reporter also mentions that according

to his observations, the other methods of class NDC, which use the ht member,

first check whether it is null or not, but in method remove() there is no such

investigation.

1https://issues.apache.org/bugzilla/show_bug.cgi?id=44038
2https://issues.apache.org/bugzilla/show_bug.cgi?id=45335

https://issues.apache.org/bugzilla/show_bug.cgi?id=44038
https://issues.apache.org/bugzilla/show_bug.cgi?id=45335

Runtime Exception Detection in Java Programs Using Symbolic Execution 345

public class Throwablelnformation implements java.io.Serializable {

private transient Throwable throwable;

54. public String[] getThrowableStrRepO {

55. if(rep != null) {

56. return (StringG) rep.clone();

57. > else {

58. VectorWriter vw = new VectorWriter();
59. throwable.printStackTrace(vw);

60. rep = vw.toStringArrayO ;

61. return rep;
62. >
63. >

>

Figure 12: Method org.apache.log4j.spi.Throwablelnformation.getThrowableStrRepO

We describe one more error that was also found in log4j version 1.2.153. The

error is at line 312 of the class org.apache.log4j.net.SyslogAppender. The line is

inside the method append() in which there is a NullPointerException again. The

code snippet is shown in Figure 14.

The reason of this runtime error is that the layout data member, which is

inherited from class AppenderSkeleton, stays uninitialized. Our report also includes

a ClassCastException thrown by method getLevel() at line 294. This fault is the

same that we already described explaining Figure 9 in the previous subsection.

5 Related Work

In this section we present works that are related to our research. First, we introduce

some well-known symbolic execution engines, then we show the possible applications

of the symbolic execution. We also summarize the problems that have been solved

successfully by Symbolic PathFinder that we used for implementing our approach.

Finally, we present the existing approaches and techniques for runtime exception

detection.

The idea of symbolic execution is not new, the first publications and execution

engines appeared in the 1970's. One of the earliest work is by King that lays down

the fundamentals of symbolic execution [12] and presents the EFFIGY system that

is able to execute PL/I programs symbolically. Even though EFFIGY handles

only integers symbolically, it is an interactive system with which the user is able

to examine the process of symbolic execution by placing breakpoints and saving

and restoring states. Another work from the 1970's by Boyer et al. presents a

similar system called SELECT [1] that can be used for executing LISP programs

3https: //issues.apache.org/bugzilla/show_bug.cgi?id=46271

346 István Kádár, Péter Hegedűs, and Rudolf Ferenc

public class NDC {

static Hashtable ht = new HashtableO;

374. static

375. public

376. void remove() {

377. ht.remove(Thread.currentThread()) ;

378.

379. // Lazily remove dead-thread references in ht.

380. lazyRemoveO;

381. >

>

Figure 13: Source code of method org.apache.log4j.NDC.removeQ

symbolically. The users are allowed to define conditions for variables and return

values and get back whether these conditions are satisfied or not as an output. The

system can be applied for test input generation; in addition, for every path it gives

back the path condition over the symbolic variables.

Starting from the last decade the interest about the technique is constantly

growing, numerous programs have been developed that aim at dynamic test in-

put generation using symbolic execution. The EXE (Execution generated Execu-

tions) [3] presented by Cadar et al. at the Stanford University is an error checking

tool made for generating input data on which the program terminates with failure.

The input generation is done by the STP built-in constraint solver that solves the

path condition of the path causing the failure. EXE achieved promising results

on real life systems. It found errors in the package filter implementations of BSD

and Linux, in the udhcpd DHCP server and in different Linux file systems. The

runtime detection algorithm presented in this work solves the path condition to

generate test input data similarly to EXE. The basic difference is that for running

EXE one needs to declare the variables to be handled symbolically while for Jpf

Checker there is no need for editing the source code before detection.

The DART [7] (Directed Automata Random Testing) by Godefroid et al. tries

to eliminate the shortcomings of the symbolic execution e.g. when it is unable

to handle a condition due to its unlinear nature. DART executes the program

with random or predefined input data and records the constraints defined by the

conditions on the input variables when it reaches a conditional statement. In the

next iteration taking into account the recorded constraints it runs the program

with input data that causes a different execution branch of the program. The goal

is to execute all the reachable branches of the program by generating appropriate

input data. The CUTE and jCUTE systems [16] by Sen and Agha extend DART

with multithreading and dynamic data structures. The advantage of these tools is

that they are capable of handling complex mathematical conditions due to concrete

Runtime Exception Detection in Java Programs Using Symbolic Execution 347

public abstract class AppenderSkeleton {

protected Layout layout;

>
public class SyslogAppender extends AppenderSkeleton {

SyslogQuietWriter sqw;

private boolean layoutHeaderChecked = false;

291. public

292. void append(LoggingEvent event) {

293.

294. if(!isAsSevereAsTbreshold(event.getLevel()))

295. return;

296.

297. / / W e must not attempt to append if sqw is null.

298. if(sqw == null) {

299. errorHandler.error("No syslog host is set for SyslogAppedender"

300. + named " + this.name + ".");

301. return;

302. >

303.

304. if (!layoutHeaderChecked) {

305. if (layout != null && layout .getHeaderO != null) {

306. sendLayoutMessage(layout.getHeaderO) ;

307. >

308. layoutHeaderChecked = true;

309. >

310.

311.

312. String packet = layout.format(event);

313. String hdr = getPacketHeader(event.timeStamp);

314.

315. if(facilityPrinting II hdr.lengthO > 0) {

316. StringBuffer buf = new StringBuffer(hdr);

317. if(facilityPrinting) {

318. buf.append(facilityStr);

319. }

320. buf.append(packet);

321. packet = buf. toStringO ;

322. >

Figure 14: Source code of method org.apache.log4j.net.SyslogAppender.append()

348 István Kádár, Péter Hegedűs, and Rudolf Ferenc

executions. This can be also achieved in Jpf Checker by using the concolic execution

of SPF; however, symbolic execution allows a more thorough examination of the

source code. Further description and comparison of the above mentioned tools can

be found e.g. in the work of Coward [4].

There are also approaches and tools for generating test suites for .NET programs

using symbolic execution. Pex [21] is a tool that automatically produces a small test

suite with high code coverage for .NET programs using dynamic symbolic execution,

similar to path-bounded model-checking. Jamrozik et al. introduce an extension

of the previous approach called augmented dynamic symbolic execution [9], which

aims to produce representative test sets with DSE by augmenting path conditions

with additional conditions that enforce target criteria such as boundary or muta-

tion adequacy, or logical coverage criteria. Experiments with the Apex prototype

demonstrate that the resulting test cases can detect up to 30% more seeded defects

than those produced with Pex.

Song et al. applied the symbolic execution to the verification of networking

protocol implementations [18]. The SymNV tool creates network packages with

which a high coverage can be achieved in the source code of the daemon, therefore

potential rule violations can be revealed according to the protocol specifications.

The SAFELI tool [6] by Fu and Qian is a SQL injection detection program

for analyzing Java web applications. It first instruments the Java bytecode then

executes the instrumented code symbolically. When the execution reaches a SQL

query the tool prepares a string equation based on the initial content of the web

input components and the built-in SQL injection attack patterns. If the equation

can be solved the calculated values are used as inputs which the tool verifies by

sending a HTML form to the server. According to the response of the server it can

decide whether the found input can be a real attack or not.

The main application of the Java PathFinder and its symbolic execution exten-

sion is the verification of the internal projects in NASA. Bushnell et al. describes

the application of Symbolic PathFinder in TSAFE (Tactical Separation Assisted

Flight Environment) [2] that verifies the software components of an air control and

collision detection system. The primary target is to generate useful test cases for

TSAFE that simulates different wind conditions, radar images, flight schedules, etc.

The detection of design patterns can be performed using dynamic approaches

as well as with static program analysis. With the help of a monitoring software

the program can be analyzed during manual execution and conclusions about the

existence of different patterns can be made based on the execution branches. In his

work, von Detten [22] applied symbolic execution with Symbolic PathFinder sup-

plementing manual execution. This way, more execution branches can be examined

and the instances found by traditional approaches can be refined.

Ihantola [8] describes an interesting application of JPF in education. He gen-

erates test inputs for checking the programs of his students. His approach is that

functional test cases based on the specification of the program and their outcome

(successful or not) is not enough for educational purposes. He generates test cases

for the programs using symbolic execution. This way the students can get feedbacks

like "the program works incorrectly if variable a is larger than variable b plus 10".

Runtime Exception Detection in Java Programs Using Symbolic Execution 349

Sinha et al. deal with localizing Java runtime errors [17]. The introduced

approach aims at helping to fix existing errors. They extract the statement that

threw the exception from its stack trace and perform a backward dataflow analysis

starting from there to localize those statements that might be the root causes of

the exception.

The work of Weimer and Necula [23] focuses on proving safe exception handling

in safety critical systems. They generate test cases that lead to an exception by

violating one of the rules of the language. Unlike Jpf Checker they do not generate

test inputs based on symbolic execution but solving a global optimization problem

on the control flow graph (CFG) of the program.

The JCrasher tool [5] by Csallner and Smaragdakis takes a set of Java classes as

input. After checking the class types it creates a Java program which instantiates

the given classes and calls each of their public methods with random parameters.

This algorithm might detect failures that cause the termination of the system such

as runtime exceptions. The tool is capable of generating JUnit test cases and can

be integrated to the Eclipse IDE. Similarly to Jpf Checker JCrasher also creates a

driver environment but it can analyze public methods only and instead of symbolic

execution it generates random data which is obviously not feasible for examining

all possible execution branches.

6 Conclusions and Future Work

The introduced approach for detecting runtime exceptions works well not just on

small, manually prepared examples but it is able to find runtime exceptions which

are the causes of some documented runtime failures (i.e. there exists an issue for

them in the bug tracking system) in real world systems also. However, not all the

detected possible runtime exceptions will actually cause a system failure. There

might be a large number of exceptions that will never occur running the system

in real environment. Nonetheless, the importance of these warnings should not be

underrated since they draw attention to those code parts that might turn to real

problems after changing the system. Considering these possible problems could help

system maintenance and contributes to achieving a better quality software. As we

presented in Section 4 the analysis time of real world systems are also acceptable,

therefore our approach and tool can be applied in practice.

Unfortunately the Java PathFinder and its Symbolic PathFinder extension -

which we used for implementing our approach - contain a lot of bugs. It made the

development very troublesome, but the authors at the NASA were really helpful.

We contacted them several times and got responses very quickly; they fixed some

blocker issues particularly for our request. Although JPF and SPF have several

bugs, it is under constant development and becoming more and more stable.

The achieved results are very promising and we continue the development of

our tool. Our future plan is to eliminate the false positive and those hits that are

irrelevant. We would also like to provide more details about the environment of the

method in which the runtime exception is detected. The implemented tool gives

350 István Kádár, Péter Hegedűs, and Rudolf Ferenc

only the basic information about the reference type parameters whether they are

null or not, and we cannot tell anything about the values of the member variables

of the class playing a role in a runtime exception. These improvements of the

algorithm are also in our future plans.

The presented approach is not limited to runtime exception detection. We plan

to utilize the potentials of the symbolic execution by implementing other types of

error and rule violation checkers. E.g. we can detect some special types of infinite

loops, dead or unused code parts, or even SQL injection vulnerabilities.

References

[1] Boyer, Robert S., Elspas, Bernard, and Levitt, Karl N. SELECT - a Formal

System for Testing and Debugging Programs by Symbolic Execution. In Pro-

ceedings of the International Conference on Reliable Software, pages 234-245,

New York, NY, USA, 1975. ACM.

[2] Bushnell, D., Giannakopoulou, D., Mehlitz, P., Paielli, R., and Pâsâreanu, Co-

rina S. Verification and Validation of Air Traffic Systems: Tactical Separation

Assurance. In Aerospace Conference, 2009 IEEE, pages 1-10, 2009.

[3] Cadar, Cristian, Ganesh, Vijay, Pawlowski, Peter M., Dill, David L., and

Engler, Dawson R. EXE: Automatically Generating Inputs of Death. In

Proceedings of the 13th ACM Conference on Computer and Communications

Security, CCS '06, pages 322-335, New York, NY, USA, 2006. ACM.

[4] Coward, P. David. Symbolic Execution Systems - a Review. Software Engi-

neering Journal, 3(6):229-239, November 1988.

[5] Csallner, Christoph and Smaragdakis, Yannis. JCrasher: an Automatic Ro-

bustness Tester for Java. Software Practice and Experience, 34(11):1025-1050,

September 2004.

[6] Fu, Xiang and Qian, Kai. SAFELI: SQL Injection Scanner Using Symbolic

Execution. In Proceedings of the 2008 Workshop on Testing, Analysis, and

Verification of Web Services and Applications, TAV-WEB '08, pages 34-39,

New York, 2008. ACM.

[7] Godefroid, Patrice, Klarlund, Nils, and Sen, Koushik. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLD I '05, pages

213-223, New York, NY, USA, 2005. ACM.

[8] Ihantola, Petri. Test Data Generation for Programming Exercises with Sym-

bolic Execution in Java PathFinder. In Proceedings of the 6th Baltic Sea

Conference on Computing Education Research, Baltic Sea '06, pages 87-94,

New York, 2006. ACM.

Runtime Exception Detection in Java Programs Using Symbolic Execution 351

[9] Jamrozik, Konrad, Fraser, Gordon, Tillman, Nikolai, and Halleux, Jonathan.

Generating Test Suites with Augmented Dynamic Symbolic Execution. In

Tests and Proofs, volume 7942 of Lecture Notes in Computer Science, pages

152-167. Springer Berlin Heidelberg, 2013.

[10] Java PathFinder Tool-set. h t tp : / /babe l f i sh .a rc .nasa .gov / t rac / jp f .

[11] Khurshid, Sarfraz, Pasareanu, Corina S., and Visser, Willem. Generalized

Symbolic Execution for Model Checking and Testing. In Proceedings of the

9th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS'03, pages 553-568, Berlin, Heidelberg, 2003.

Springer-Verlag.

[12] King, James C. Symbolic Execution and Program Testing. Communications

of the ACM, 19(7):385-394, July 1976.

[13] Pressman, Roger S. Software Engineering: A Practitioner's Approach.

McGraw-Hill Science/Engineering/Math, November 2001.

[14] Pasareanu, Corina S. and Rungta, Neha. Symbolic PathFinder: Symbolic

Execution of Java Bytecode. In Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering, ASE '10, pages 179-180, New

York, NY, USA, 2010. ACM.

[15] Pasareanu, Corina S., Mehlitz, Peter C., Bushnell, David H., Gundy-Burlet,

Karen, Lowry, Michael, Person, Suzette, and Pape, Mark. Combining Unit-

level Symbolic Execution and System-level Concrete Execution for Testing

NASA Software. In Proceedings of the 2008 International Symposium on Soft-

ware Testing and Analysis, ISSTA '08, pages 15-26, New York, NY, USA,

2008. ACM.

[16] Sen, Koushik and Agha, Gul. CUTE and jCUTE: Concolic Unit Testing and

Explicit Path Model-checking Tools. In Proceedings of the 18th International

Conference on Computer Aided Verification, CAV'06, pages 419-423, Berlin,

2006. Springer-Verlag.

[17] Sinha, Saurabh, Shah, Hina, Gorg, Carsten, Jiang, Shujuan, Kim, Mijung,

and Harrold, Mary Jean. Fault Localization and Repair for Java Runtime

Exceptions. In Proceedings of the 18th International Symposium on Software

Testing and Analysis, ISSTA '09, pages 153-164, New York, NY, USA, 2009.

ACM.

[18] Song, JaeSeung, Ma, Tiejun, Cadar, Cristian, and Pietzuch, Peter. Rule-Based

Verification of Network Protocol Implementations Using Symbolic Execution.

In Proceedings of the 20th IEEE International Conference on Computer Com-

munications and Networks (ICCCN'll), pages 1-8, 2011.

http://babelfish.arc.nasa.gov/trac/jpf

352 István Kádár, Péter Hegedűs, and Rudolf Ferenc

[19] Souza, Matheus, Borges, Mateus, d'Amorim, Marcelo, and Päsäreanu, Co-

rina S. CORAL: Solving Complex Constraints for Symbolic Pathfinder. In

Proceedings of the Third International Conference on NASA Formal Methods,

NFM' l l , pages 359-374, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] Tassey, G. The Economic Impacts of Inadequate Infrastructure for Software

Testing. Technical report, National Institute of Standards and Technology,

2002.

[21] Tillmann, Nikolai and De Halleux, Jonathan. Pex: White Box Test Generation

for .NET. In Proceedings of the 2nd International Conference on Tests and

Proofs, TAP'08, pages 134-153, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] von Detten, Markus. Towards Systematic, Comprehensive Trace Generation

for Behavioral Pattern Detection Through Symbolic Execution. In Proceedings

of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools, PASTE '11, pages 17-20, New York, NY, USA, 2011. ACM.

[23] Weimer, Westley and Necula, George C. Finding and Preventing Run-time

Error Handling Mistakes. In Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Appli-

cations, OOPSLA '04, pages 419-431, New York, NY, USA, 2004. ACM.

Acta Cybernetica 21 (2014) 353-366.

VOSD: A General-Purpose Virtual Observatory

over Semantic Databases*

Gergő Gombosj Tamás Matuszkaj Balázs Pinczel!

Gábor Ráczj and Attila Kiss1'

Abstract

E-Science relies heavily on manipulating massive amounts of data for re-

search purposes. Researchers should be able to contribute their own data

and methods, thus making their results accessible and reproducible by others

worldwide. They need an environment which they can use anytime and any-

where to perform data-intensive computations. Virtual observatories serve

this purpose. With the advance of the Semantic Web, more and more data is

available in Resource Description Framework based databases. It is often de-

sirable to have the ability to link data from local sources to these public data

sets. We present a prototype system, which satisfies the requirements of a

virtual observatory over semantic databases, such as user roles, data import,

query execution, visualization, exporting result, etc. The system has special

features which facilitate working with semantic data: visual query editor, use

of ontologies, knowledge inference, querying remote endpoints, linking remote

data with local data, extracting data from web pages.

Keywords: virtual observatory, semantic web, e-Science, data sharing,

linked data

1 Introduction

E-Science is based on the interconnection of enormous amounts of data collected

from various scientific fields. These massive data sets can be used for conducting

researches, during which it is often desirable that researchers can share their own

data and methods, thus making the results of the research accessible and repro-

ducible by anyone. The idea of virtual observatories coming from J im Gray and

Alex S. Szalay serves this purpose [8]. A system like this expands the possibilities

of combining data coming from various different instruments. Virtual observatories

"This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). We are grate-
ful to Zsófia Mészáros and Zoltán Vincellér for helpful discussion and comments.

^Eötvös Loránd University, Budapest, Hungary, E-mail: {ggombos, tomintt, vie, gabee33,
kiss}®inf.elte.hu

354 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

can also be used to teach and demonstrate the basic research principles of various

scientific fields (for example, astronomy or computer science). The researchers must

have access to these constantly growing amounts of data, in order to be able to use

them in various research projects. Another important requirement is to be able to

publish the results. The Internet provides an excellent opportunity to satisfy the

criteria mentioned above [8]. The primary motivation for creating virtual observa-

tories is to facilitate making new discoveries, and to provide a solution for carrying

out data-intensive computations remotely. To access remote data, web services can

be used [19].

The basic principles of science have been extended with a fourth paradigm.

A thousand years ago, experimental results and observations defined science. In

the last few hundred years, it shifted towards a theoretical approach, focusing on

creating and generalizing models. During the last few decades, simulating complex

phenomena with computers were becoming more and more common. Nowadays,

researchers have to deal with large amounts of data, usually coming from sensors,

telescopes, particle accelerators, etc. The data is processed using software solutions,

and the extracted knowledge is stored in databases. Analyzing or visualizing the

results needs further software support [7, 11].

A possible way to manage the data available on the Internet is to use the

Semantic Web [4]. The Semantic Web aims for creating a "web of data": a large

distributed knowledge base, which contains the information of the World Wide Web

in a format which is directly interpretable by computers. The goal of this web of

linked data is to allow better, more sensible methods for information search, and

knowledge inference. To achieve this, the Semantic Web provides a data model and

its query language. The data model called the Resource Description Framework

(RDF) [14] uses a simple conceptual description of the information: we represent

our knowledge as statements in the form of subject-predicate-object (or entity-

attribute-value) triples. This way our data can be seen as a directed graph, where

a statement is an edge labeled with the predicate, pointing from the subject's node

to the object's node. The query language called SPARQL [17] formulates the

queries as graph patterns, thus the query results can be calculated by matching

the pattern against the data graph. Furthermore, there are numerous databases

which contain theoretical and experimental results of various scientific experiments

in the field of computer science, biology, chemistry, etc. There is a quite complex

collection of these kinds of data maintained by the Linked Data Community [5].

This collection contains dataseis and ontologies which are at least 1000 lines in

length, and which contain links to each other.

In this paper, we present a prototype system, which fulfills the standard re-

quirements of a virtual observatory, such as handling user roles, bulk loading data,

answering queries, visualization, and storing results. In addition, we extended the

system with special semantic technologies. We use the SPARQL language to formu-

late queries, aided by a visual SPARQL editor. Ontologies can be used to describe

the hierarchy of complex conceptual systems, and to carry out knowledge inference.

The system implements a tool, which helps its users to convert the data found on

the web to the formats of the Semantic Web. We also provide a SPARQL endpoint

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 355

to enable remote querying of the knowledge base. The query results can be ex-

ported to various common semantic data formats. We demonstrated the flexibility

of the system by implementing two different database backends.

The structure of the paper is as follows. After the introductory Section 1, we

outline preliminaries in Section 2. Afterwards, we present the high-level architec-

ture of our virtual observatory in Section 3. Then, in Section 4, we describe the

main functionality of the system. Then, we show some possible use cases of our

system in Section 5, followed by the conclusion and our future plans in Section 6.

2 Preliminaries

As we mentioned in the introduction, the Semantic Web [4] provides various tech-

niques to manage the data available on the Internet. This section gives insight into

the basic concepts of Semantic Web that are necessary for understanding what our

system is capable of and how it works. The main technologies that are used in our

system are the following: Resource Description Framework (RDF), RDF Schema

(RDFS), SPARQL query language, Web Ontology Language (OWL). In the formal

discussion we follow the concepts and notations introduced in [16].

The Resource Description Framework is a description language, where the in-

formation is represented by RDF triples. Informally an RDF triple consists of a

subject, a predicate, and an object; or alternatively it consists of an entity, a prop-

erty, and the value of that property of the described entity. This representation

form is similar to natural language sentences. For example the sentence 'Eötvös

Loránd University is located in Budapest.' can be translated into the triple (Eötvös

Loránd University, location, Budapest). Three kinds of terms are distinguished:

IRIs represent entities (e.g. http://dbpedia.org/resource/ELTE) or relations (e.g.

http://dbpedia.org/ontology/location)-, literals can only occur as value of a property;

blank nodes are the terms that do not represent real world entities, they just help

to construct complex values, for example, mail addresses which consist of multiple

parts such as postal code, city, street and number. Below is the formal definition

of RDF triples (Definition 1).

Definit ion 1. Let I , B, and L (IRIs, Blank Nodes, Literals) be pairwise disjoint

sets. An RDF triple is a (vi,v2, V3) 6 (I U B) x I x (J U B U L), where v\ is the

subject, t>2 is the predicate and is the object. A finite set of RDF triples is called

an RDF graph or RDF dataset.

The RDF Schema is a data-modeling vocabulary built on the top of RDF for

defining concepts, properties and constraints which are essential for organizing the

knowledge represented by triples. The Web Ontology Language also enables us

to define concept and property hierarchies, however, it is a computational logic-

based language. Therefore logical constraints and rules can be expressed in order

to verify the consistency of that knowledge or to make implicit knowledge explicit.

The formal definition of an ontology is presented in Definition 2, based on [20].

http://dbpedia.org/resource/ELTE
http://dbpedia.org/ontology/location)-

356 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

D e f i n i t i o n 2. An ontology is a structure O : = (C,<C,P,P), where C and P

are two disjoint sets. The elements of C and P are called classes and properties,

respectively. A partial order <c on C is called class hierarchy and a function

a: P —> C x C is a signature of a property. For a property p £ P, its domain

and its range can be defined in the following: dom(p) := (&{p)) and range(p) :=

TT2(a{p)), where ir is the projection operation. Let C\,C2 £ C be two classes; if

Ci <c C2, then c\ is a subclass of C2 and C2 is a superclass of c\.

SPARQL is a query language for retrieving and manipulating RDF data. It

is an SQL-like declarative language; the queries are based on pattern matching,

where the patterns are in the form of triples, though they can contain variables as

well. Most of the keywords and their meanings are the same, such as SELECT,

WHERE, LIMIT. However, there are some new keywords in SPARQL, for example,

OPTIONAL means optional pattern matching, or FILTER that defines constraints

for the variables. Definition 3 gives the abstract syntax of the filter conditions and

Definition 4 presents the abstract syntax of the SPARQL expressions.

D e f i n i t i o n 3. Let V be the set of distinct variables over (/ U B U i) . The variables

are distinguished by a question mark. Let I X , IY £ V be variables and c,d £

(Llil) be a literal and an IRI constant, respectively. We define the filter conditions

recursively as follows. The IX = c, IX =IY, c = d, bound(IX), i s I R I (I X) ,

isLiteral(IX), and isBlank(IX) are atomic filter conditions. Thereafter, ifR\,R2

are filter conditions, then ->Ri, R\ A J?2 and R\ V TO are filter conditions as well.

D e f i n i t i o n 4. A SPARQL expression is built up recursively in the following way:

1. the triple t £ (7 U V) x (I U V) x (L U IU V) is a SPARQL expression,

2. if Q\, Q2 are SPARQL expressions, and R is a filter condition,

then Qi FILTER R, Qi UNION Q2, Q1 OPT Q2, and Q1 AND Q2 are SPARQL

expressions as well.

The discussion of formal semantics of SPARQL is out of the scope of this paper.

Set and multiset semantics are described in [16].

3 Architecture of the Virtual Observatory over

Semantic Databases

The VOSD system was built using the Java EE platform. Figure 3 summarizes the

main architectural elements of the system. As typical Java EE applications, VOSD

consists of three major parts: a frontend, a business logic, and a database layer.

Frontend is an interface for users, while backend contains the business logic which

operates over the database.

As the Figure 3 shows, the basis of the system is an application server which

is an Oracle WebLogic Application Server in our case. On the frontend side, our

system uses the Java Server Faces (JSF) technology, which is a complete framework

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 357

for Java EE. This framework contains some basic elements, such as text boxes,

message bars or pageable dynamic tables. In addition, it can handle file upload,

even multiple files at once, error messages, user interactions. As JSF pages are

supported by web browsers, the clients of the system can be various devices, for

example, mobile phones, tablets, laptops. Besides the JSF pages, the system is also

available via a REST webservice, to access the uploaded semantic models. This

makes it possible to build different kind of applications over the system as you can

see in Section 5 or in [13].

Clients Application Server Databases

Figure 1: The architecture of the Virtual Observatory over Semantic Databases

On the backend side, two different databases are available by default. The first

one is an Oracle l l g R2 database which supports the managing of semantic models

and provides a Jena Adapter API for Java applications to use these features. Using

the built-in semantic support, we can, for example, perform knowledge inference

at the database level which can be much more faster than using a third-party

tool. The second database is the PostgreSQL, which is a widely-used open-source

relational database, however, it has no built-in semantic support. We chose this

one to demonstrate how the already existing technologies can be applied to handle

semantic data, and how efficient these two different solutions can be. On the top

of PostrgeSQL, Jena is used to map RDF data model to the relational model.

4 Functionality

In this section, we present the main functions of our system. Users can upload

their own data sets in various formats. Then they can browse and query the

uploaded datasets. A visual query editor is provided to facilitate the construction

of syntactically correct SPARQL queries and the queries can be saved and re-used.

Two third-party visualizer tools are integrated into our system to help understand

and explore the structure of data sets. In addition, we offer a tool, which is able to

extract RDF triples from semi-structured web pages. Last but not least, to support

the collaboration of researchers, our system provides user group management. Users

can share their own data sets and their own saved queries within groups or they

can make their work publicly available for every user.

358 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

4.1 Data Loading

There are two ways to load data into the system. One works by uploading a file

containing the semantic data, the other requires a URL pointing to a resource on

the Internet which contains the data. There are various RDF serialization formats

for RDF which can be used with the system, such as RDF/XML, N3, Turtle, and N-

Triples. The most wide-spread is the RDF/XML, which represents the RDF graph

as an XML document. This format is easier for computers to read, since there are

numerous tools available for processing and transforming XML. The other formats

store the data using a more human-readable serialization. The simplest one is the

N-TYiples [1], which is simply the enumeration of the RDF triples (the edges of the

RDF graph) separated with a dot. The Turtle [2] serialization allows more struc-

tures to simplify the expressions. For example, we can use prefix abbreviations to

eliminate long, repeating IRIs, thus reducing the file size significantly. Furthermore,

we have the option to group triples sharing the same subject, without repeating

the common subject for all triples. This works similarly, if both the subject and

the predicates are the same, and only the objects vary. This, too, helps to reduce

the file size. Literals in Turtle can have language tags, or data type information

added to them. Notation 3 [3] (or N3) allows further simplifications to make the

serialization of complex statements easier.

4.2 Querying and Saving Results

Another main function of the system is querying the already loaded data. The

SPARQL [17] language is used to express queries over semantic data sets. The

language is similar to the well-known SQL language. The (SELECT) clause defines

a projection of the variables, the values for which we would like to see in the result

set. The WHERE clause defines the criteria the data must satisfy in order to appear

as a result. This is basically a graph pattern that has to match the data graph.

The simplest queries contain only triples in the graph pattern. The FILTER clause

lets us provide further filtering conditions for the nodes. For example, if we have

numeric nodes, we can use arithmetic operators on them to restrict the values to a

given range. If we have string nodes, we can filter for their values as well. IRIs, and

string nodes can be filtered using regular expressions, too. By default, all edges in

the graph pattern of the WHERE clause have to match the data. However, we have

the option to define optional matching criteria with the OPTIONAL keyword. If

parts of the graph pattern are optional, then we can have rows in the result set which

satisfy only the non-optional parts, with null values for the variables appearing only

in the optional parts. This is useful when some information is not given for all of

our individuals. For example, if we have an address book with addresses for all

contacts and phone numbers for some of them, we can ask the phone numbers

in the optional part. Without the OPTIONAL keyword, we would only get the

contacts with both an address and a phone number.

The advantage of the Semantic Web is that we can link our data with knowledge

from other sources. In queries, the SERVICE keyword allows querying remote data

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 359

sets. The keyword requires a URL to a SPARQL endpoint, and a graph pattern that

has to match the remote data. The most well-known data set is the DBpedia [6],

which contains a subset of the knowledge of Wikipedia in semantic form. Data sets

linked with DBpedia can be found in the LOD cloud [5].

Another useful feature of the semantic web is knowledge inference, which lets us

extract new information based on what we already know. Computing inferred data

may take long time, thats why our system offers two options regarding inference.

One option is to run the query using only the data already available to us as facts, or

we can enable inference - meaning slower query execution. There are multiple ways

to carry out inference. For example, we can use the relationship information given

in ontologies to generate new information. Another option is to use user-specified

rules. A rule consists of a head (a new triple holding the new information) and a

body (a condition that has to be satisfied in order for the rule to activate). The

simplest example is the grandparent relationship (if x is parent of y, and y is parent

of z, then x is grandparent of z). We can save the query results using the already

mentioned formats: RDF/XML, N3, TURTLE, and also CSV.

4.3 Visual SPARQL Editor

With the spreading of the Semantic Web technologies, using SPARQL becomes

more and more inevitable, since this declarative language is the standard tool to

express queries over RDF data sets. VisualQuery is a visual query editor program,

which allows us to build a SPARQL query using graphs and supplementary forms.

PREFIX rdf:<http://www.W3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbpo:<http://dbpedia.org/ontologv/>
PREFIX foaI:<http://xmlns.com/toar/0.l/>
SELECT ?lname /birthplace FdeathPiace
WHERE{

'Iperson foaf:name ?lname.
SERVICE <http://dbpedia.org/Fparql> {

/[-person foahname Frname.
'rperson rdhtype dbpo:Person.
Zrperson dbporbirthpiace /birthplace.
Zrperson dbpo:deathPlace /deathplace.

>
FILTER (str(/lname)=Ftr(/rname))

Figure 2: An example SPARQL query both in graphic and textual form which finds

additional information on DBpedia about locally stored famous people

Graphic representation has various advantages. Firstly, using this approach, it

is easier to see and understand the relationship of the individual elements, thus,

the meaning of the query can clearly be seen as demonstrated in Figure 2 where

the graphic and textual representation of the same query are shown. Secondly, we

can quickly and easily modify the components and parameters defining the query.

This way, we can improve or refine the query step-by-step. Thirdly, because the

http://www.W3.org/1999/02/22-rdf-syntax-ns%23
http://dbpedia.org/ontologv/
http://xmlns.com/toar/0.l/
http://dbpedia.org/Fparql

360 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

visual representation is language-independent, the co-operative work of researchers

speaking different languages is supported. Another advantage of the program is

that it performs various checks during editing, which helps preventing syntactical

errors, for example:

• literal nodes can not have outgoing edges - they can not be subjects in a

• only variables or IRI nodes can be edges - blank nodes and literals can not,

• variables in the head of a CONSTRUCT-type query must appear at least

once in the WHERE clause.

What makes this solution different from similar programs - like iSparql [15] or

LuposDate [9] - is the distinction of visual elements by type, and the built-in checks

based on this distinction.

4.4 Visualizations

We mentioned earlier that the semantic data can be seen as a directed graph.

Subjects and objects are the nodes, and the predicates are the edges of the graph.

Visualizing this graph helps us interpret the data. More graph visualization tools

are available, and some can visualize the semantic data. We integrated two third-

party visualizer tools into the system, that is seen on Figure 3.

One of them is Cytoscape Web [18], which allows us to display the semantic

graph of locally stored models using various built-in layouts, such as a tree or circle.

It is an open-source, interactive, customizable tool. It is a simple version of the

Cytoscape for the web and it is reusable. The application uses Flex/Actionscript

with JavaScript API, so rendering happens on the clients' computer. The user can

visualize own models and the public models. However, the models can contain large

amounts of data, and visualizing these models are resource-intensive, so we have to

limit the edges.

triple.

(a) RelFinder (b) Cytoscape

Figure 3: Vizualization tools

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 361

Another visualization tool integrated into the system is RelFinder [10], which

searches connections among IRIs. To find connections, it runs SPARQL queries on

an endpoint. The relations among the IRIs can be paths via common predicates.

RelFinder first finds the shortest path, and adds its nodes to the graph. After that

it tries to find longer paths. We can specify the maximum depth of the search.

The program uses Flex/ActionScript for the display that provides various tools to

create animations. We configured this tool to work on the semantic data of the

virtual observatory, and the users can search their own models.

4.5 Extracting Semantic Data from the Web

Nowadays, we can easily find all kinds of information using the web. There are

numerous sites which specialize in collecting and organizing knowledge about one

specific topic. For example, we can find websites collecting information about hard-

ware components, reviews about movies, historical weather data, recipe collection,

etc. These websites usually operate using a database of their own, and the web

pages displayed to us are generated dynamically using the stored data. However,

the databases are usually not using semantic technologies, moreover, they are often

not public, so the only way for us to access the data is to visit the web pages.

Fortunately, extracting data from the web pages does not always require complex

text processing and text mining, because the consistent structure of the documents

can be utilized to extract the information we are interested in. The structure is

almost always consistent on all pages of a web site. For example, on a site collecting

recipes, the structure can be the following: the name of the dish is always the title

of a section, and it is followed by some additional information (always in the same

order), such as the name of the uploader, the difficulty and the required time to

prepare the meal. After this, we have a bullet-point list of the ingredients, and

finally, there is a numbered list of the steps in the recipe. If we know this structure,

we can utilize it to extract all recipes from all pages of the site.

To help users in extracting data from sites like these, we created a browser

extension that allows them to define the structure using one example page of a web

site. Based on the structure information created this way, our virtual observatory

is capable to extract the required information from all pages that use the same

document structure. The tool can be downloaded and installed from the web front

end of our virtual observatory. Then, visiting the desired website, the user can mark

the sections to be extracted using selection with the mouse. To extract information

about all entities (e.g. all recipes) on the same page, the user only needs to annotate

the first occurrence by binding variables to the parts of interest (e.g. the name of

the dish and the list of ingredients). These variables can be used to formulate

an RDF template, which - during the extraction phase - gets instantiated for each

entity on all similar-structured pages of the website, with the appropriate extracted

values in place of the variables.

The inner model for the annotation and the extraction is based on the DOM

(Document Object Model) tree of the web page. When the user marks the first

occurrence of an entity for extraction, the corresponding node in the DOM tree is

362 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

marked as an anchor. Variables are defined relative to an anchor, by the (possibly

empty) path that leads from the anchor to the node bound to the variable. Dur-

ing the extraction phase, occurrences of the repeating structure will be traversed

by iterating over those sibling nodes of the anchor which have the same type (i.e.

HTML tag). In each iteration, the appropriate variables are evaluated by following

their defined path, staring from the current sibling. To handle repeating structure

inside a repeating structure (e.g. ingredients as list items inside recipes), the an-

chors can be nested, resulting in a nested iteration during the extraction phase.

Figure 4 shows an example model with two anchors (one of them nested), and two

variables.

Figure 4: Part of an annotated DOM tree with two anchors and two variables.

The model described in the previous paragraph is automatically created and

updated in the background, whenever the user marks an area for extraction or

binds a variable to an element on the page. This way, no knowledge of DOM trees

and paths are required to use the tool: the model for the data extraction can be

created in a user-friendly way, using selection by mouse and a few clicks in the drop-

down menu of the browser extension. The created model is saved as an XML file,

which contains the structure information (anchors, variables, and paths between

them) and the RDF template. The virtual observatory takes this file and a list of

URLs as input, extracts the information from the specified web pages, and saves

the extracted data to a semantic model.

4.6 Collaboration of Researchers

One of the most important purposes for virtual observatories is to collect infor-

mation originating from various different sources, and to support their integration.

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 363

Our system allows users to upload their own data and share it with others. We ap-

plied a multi-level permission system based on user groups. Every user can create

groups, and invite other users to them. This way, research groups can be organized.

Then, we have two possibilities to share the models containing our data. We can

make the model publicly available to every other user, or we can give right to one or

more groups to access our model. While the first possibility gives read-only access,

in the latter case the group members can have write rights, too. In this case, they

can load their own data into the model.

It is also possible to publish queries. This can be useful in several cases: if

other researchers would like to use our data, we can help their work by providing

example queries, which illustrate the inner structure and relationships of the data.

We can formulate basic queries, which can be further refined or specialized later.

5 Use Cases

In this section we describe two use cases that show the advantages of our system.

The first one sums up how an application can be built on the top of data that is

collected from heterogeneous sources, and how our system can be used to develop

and manage such applications. The second example presents how we use the system

in the education, how the functions and tools help the students to get familiar with

the basic principles of the Semantic Web.

5.1 O C R Application

The first application is useful in the field of tourism. The main function of the

program is to recognize text on street signs with OCR methods, based on pictures

taken with mobile phones. Its purpose is to provide extra information about the

famous people whose name can be found in the extracted texts. The extra infor-

mation comes from various data sources converted to semantic format (Hungarian

Electronic Library, various online encyclopedias [12]), joined with other public data

sets (DBpedia, GeoNames). A user group created for this purpose allows the col-

laboration between the users. The group has access to the data sets described

above. One member of the group was given the task to collect information about

the famous people appearing in street names, and then upload them to a model.

He then shared the model inside the group. Another member had the same task,

but he had to use an online encyclopedia as the data source. He added his data to

the shared model. Meanwhile, a third member worked on linking the data in the

model to data available in DBPedia, using SPARQL queries. He stored the results

in a new, local model, to make it faster to access. (His work was not influenced

by the fact that in the meantime, new data has been added to the model.) He

also published the queries and the new model to the group. The members of the

group created a virtual model over the models mentioned. (A virtual model is not

materialized, but it contains the union of the data found in other models, and it

is supported by an index structure.) This step was important, because it allowed

364 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

us to access the data as a single model. Then, using the REST API of our virtual

observatory, we were able to run queries from a mobile application.

5.2 Use in Education

We use the virtual observatory during teaching the basic principles of the Semantic

Web, within the Modern Databases course. The students of the course are added

to a new group, and we share previously loaded models and queries with them. The

models contain small data sets, so they could be viewed with the visualization tools,

and the students could easily understand their structure. From week to week, they

are introduced to the features of the SPARQL language, by solving typical tasks

together. The new features can easily be demonstrated with the visual SPARQL

editor, since the graphical representation speaks for itself. In some cases, the results

of the exercises can be used in practical scenarios. For example, the family tree

of a royal family can be created, if each student creates a model with the family

tree of a selected king. During their work, they get to know the basic semantic

serialization formats (RDF/XML, N3, etc.) and the results can be published to a

common group.

6 Conclusion and Future Work

In the paper, we presented a prototype system, which fulfills the requirements of a

virtual observatory, and helps the collaboration of researchers by letting them work

using the same shared data and queries. We used the data model of the Semantic

Web, thus the data sets in the virtual observatory can easily be linked to each

other and to public data sets. We provided several features which can facilitate

the use of the system, such as advanced data and query sharing, visual query

building and editing, data visualization, and web data extraction. The system

can run on top of any standard relational database system, but if the underlying

database has some support for storing and handling semantic data (like Oracle

databases), it can make use of those functions as well. We also presented real world

use cases, where the existence of the system helped our work on other projects and

in education. We are currently working on incorporating the ability to build and

maintain bisimulation-based structure indexes, and utilize them in query evaluation

to achieve better performance. Another feature in development is the visualization

of SPARQL query plans. During further work, we would like to extend the system

to be able to work using a Hadoop cluster as backend. In this solution, data storage

and query execution would be distributed, thus the efficiency of the data-intensive

computations would increase. Our other plans include enhanced visualization, such

as the ability to plot geographic locations on a map, and to create charts and

diagrams to help the better understanding of the data.

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 365

References

[1] Beckett, D. RDF 1.1 N-triples. W3C Recommendation, 2014.

http://www.w3.org/TR/n-triples/

[2] Beckett, D., Berners-Lee, T., Prud'hommeaux, E. and Carothers, G. RDF

1.1 Turtle - Terse RDF Triple Language W3C Recommendation, 2014.

http://www.w3.org/TR/turtle/

[3] Berners-Lee, T. and Connolly, D. Notation3 (N3): A readable RDF syntax

W3c Team Submission, 2011. http://www.w3.org/TeamSubmission/n3/

[4] Berners-Lee, T., Hendler, J. and Lassila, O. The semantic web. Scientific

American, 284(5): 28-37, 2001.

[5] Bizer, C., Heath, T. and Berners-Lee, T. Linked data-the story so far. Inter-

national journal on semantic web and information systems 5(3): 1-22, 2009.

[6] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.

and Hellmann, S. DBpedia - A crystallization point for the Web of Data.

Web Semantics: Science, Services and Agents on the World Wide Web 7(3):

154-165, 2009.

[7] Brase, J. and Blümel., I. Information supply beyond text: non-textual infor-

mation at the German National Library of Science and Technology (TIB) -

challenges and planning. Interlending & Document Supply, 38(2): 108-117,

2010.

[8] Gray, J. and Szalay, A. The world-wide telescope. Communications of the

ACM, 45(11): 50-55, 2002.

[9] Groppe, J., Groppe, S., Schleifer, A. and Linnemann, V. LuposDate: A se-

mantic web database system. In Proceedings of the 18th ACM conference on

Information and knowledge management, pages 2083-2084. ACM, 2009.

[10] Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T. Relfinder:

Revealing relationships in rdf knowledge bases. In Semantic Multimedia, pages

182-187. Springer, 2009.

[11] Hey, T., Tansley, S. and Tolle, K. M. The fourth paradigm: data-intensive

scientific discovery. Microsoft Research, Redmond, 2009.

[12] Hungarian Electronic Library http://mek.oszk.hu/indexeng.phtml

[13] Gombos, G., Matuszka, T., Pinczel, B., Rácz, G., Kiss, A. and Gaizer, T.

A Semantic Browser for Enterprise Information Systems on Mobile Platform

In Proceedings of the 12th International Scientific Conference on Informat-

ics'2013, pages 246-251. 2013.

http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/turtle/
http://www.w3.org/TeamSubmission/n3/
http://mek.oszk.hu/indexeng.phtml

366 G. Gombos, T. Matuszka, B. Pinczel, G. Ra.cz, and A. Kiss

[14] Manola, F., Miller, E. and McBride, B. RDF 1.1 Primer. W3C Recommenda-

tion, 2014. http://www.w3.org/TR/rdfll-primer/

[15] OAT Interactive SPARQL (iSPARQL) Query Builder

http://oat.openlinksw.com/isparql/index.html

[16] Pérez, J., Arenas, M. and Gutierrez, C. Semantics and Complexity of

SPARQL. In The Semantic Web-ISWC 2006, pages 30-43. Springer, 2006.

[17] Prud'hommeaux, E. SPARQL 1.1 Query Language W3C Recommendation,

2013. http://www.w3.org/TR/sparqlll-query/

[18] Shannon, P., Markiel, A., Ozier, 0., Baliga, N. S., Wang, J. T., Ramage,

D., Ideker, T. Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome research, 13(11): 2498-2504, 2003.

[19] Szalay, A. S., Budavári, T., Malik, T., Gray, J. and Thakar, A. R. Web services

for the virtual observatory. In Astronomical Telescopes and Instrumentation,

pages 124-132. International Society for Optics and Photonics, 2002.

[20] Volz, R., Kleb, J. and Mueller, W . Towards Ontology-based Disambiguation

of Geographical Identifiers. In 13, 2007.

http://www.w3.org/TR/rdfll-primer/
http://oat.openlinksw.com/isparql/index.html
http://www.w3.org/TR/sparqlll-query/

Acta Cybernetica 21 (2014) 367-366.

Monitoring Evolution of Code Complexity and

Magnitude of Changes

Vard Antinyan* Miroslaw Staron* Jörgen Hansson?

Wilhelm MedingJ Per Osterströmj and Anders Henriksson*

Abstract

Complexity management has become a crucial activity in continuous soft-

ware development. While the overall perceived complexity of a product grows

rather insignificantly, the small units, such as functions and files, can have

noticeable complexity growth with every increment of product features. This

kind of evolution triggers risks of escalating fault-proneness and deteriorat-

ing maintainability. The goal of this research was to develop a measurement

system which enables effective monitoring of complexity evolution. An action

research has been conducted in two large software development organizations.

We have measured three complexity and two change properties of code for two

large industrial products. The complexity growth has been measured for five

consecutive releases of the products. Different patterns of growth have been

identified and evaluated with software engineers in industry. The results show

that monitoring cyclomatic complexity evolution of functions and number of

revisions of files focuses the attention of designers to potentially problematic

files and functions for manual assessment and improvement. A measurement

system was developed at Ericsson to support the monitoring process.

Keywords: complexity, metrics, risk, lean, agile, correlation, measurement

systems, code, change, revision

1 Introduction

Actively managing software complexity has become an important aspect of continu-

ous software development. It is generally accepted that software products developed

in a continuous manner are getting more and more complex over time. Evidence

shows that the rising complexity drives to deteriorating quality of software [2,3].

The continuous increase of code base and growing complexity can lead to large,

virtually unmaintainable source code if left unmanaged.

'Computer Science and Engineering, University of Gothenburg | Chalmers, E-mail:
{vard.antinyan,miroslaw.staron,j örgen.hansson}Schalmers.se

'Ericsson, E-mail: {wilhelm.meding.per.osterstromjSericsson.com
'Volvo Group Truck Technology, El-mail: anders.J.henrikssonflvolvo.com

368 Vard Antinyan et a 1.

A number of metrics have been suggested to measure various aspects of software

complexity and evolution over development time [7]. Those metrics has been accom-

panied with a number of studies indicating how adequately the proposed metrics

relate to software quality [6, 17]. Complexity and change metrics have been used

extensively in recent years for assessing the maintainability and fault-proneness of

software code [4]. Despite the considerable amount of research conducted for inves-

tigating the influence of complexity on software quality, little results can be found

on how to effectively monitor and prevent complexity growth. Therefore a question

remains:

How to monitor code complexity and changes effectively when delivering feature

increments to the main code branch?

The aim of this research was to develop method and tool support for actively

monitoring complexity evolution and drawing the attention of industries' software

engineers to the potentially problematic trends of growing complexity. In this

paper we focus on the level of self-organized software development teams who often

deliver code to the main branch for further testing, integration with hardware, and

ultimate deployment to end customers. We address this question by conducting a

case study at two companies, which develop software according to Agile and Lean

principles. The studied companies are Ericsson which develops telecom products

and Volvo Group Truck Technology (GTT) which develops electronic control units

(ECU) for trucks.

Our results show that using two complementary measures, McCabes cyclomatic

complexity of functions and number of revisions of files supports teams in decision

making, when delivering code to the main branch. The evaluation shows that

monitoring trends in these measures draws attention of the self-organized Agile

teams to a handful of functions and files. These functions and files are manually

assessed, and the team formulates decisions before the delivery on whether they

can cause problems.

2 Related Work

Cont inuous software evolution: A set of measures useful in the context of

continuous deployment can be found in the work of Fritz [8], in the context of

market driven software development. The metrics presented by Fritz measure such

aspects as continuous integration as pace of delivery of features to the customers.

These metrics complement the two indicators presented in this paper with business

perspective which is important for product management.

The delivery strategy, which is an extension of the concept of continuous deploy-

ment, has been found as one of the three key aspects important for Agile software

development organizations in a survey of 109 companies by Chow and Cao [5]. The

indicator presented in this paper is a means of supporting organizations in their

transition towards achieving efficient delivery processes.

Ericssons realization of the Lean principles combined with Agile development

was not the only one recognized in literature. Perera and Fernando [14] presented

Monitoring Evolution of Code Complexity and Magnitude of Changes 369

another approach. In their work they show the difference between the traditional

and Lean-Agile way of working. Based on our observations, the measures and their

trends at Ericsson were similar to those observed by Perera and Fernando.

Measurement systems: The concept of an early warning measurement system

is not new in engineering. Measurement instruments are one of the cornerstones

of engineering. In this paper we only consider computerized measurement systems

i.e. software products used as measurement systems. The reasons for this are: the

flexibility of measurement systems, the fact that we work in the software field, and

similarity of the problems e.g. concept of measurement errors, automation, etc.

An example of a similar measurement system is presented by Wisell [21] where the

concept of using multiple measurement instruments to define a measurement system

is also used. Although differing in domains of applications these measurement

systems show that concepts which we adopt from the international standards (like

[11]) are successfully used in other engineering disciplines. We use the existing

methods from the ISO standard to develop the measurement systems for monitoring

complexity evolution.

Lowler and Kitchenham [12] present a generic way of modeling measures and

building more advanced measures from less complex ones. Their work is linked

to the TychoMetric [15] tool. The tool is a very powerful measurement system

framework, which has many advanced features not present in our framework (e.g.

advanced ways of combining metrics). A similar approach to the TychoMetrics

way of using metrics was presented by Garcia et al. [9]. Despite their complexity,

both the TychoMetric tool and Garcias approach can be seen as alternatives in the

context of advanced data presentation or advanced statistical analysis over time.

Our research is a complement to [13] and [15]. We contribute by showing how the

minimal set of measures can be selected and how the measurement systems can be

applied regularly in large software organizations.

Meyer [10, pp. 99-122] claims that the need for customized measurement sys-

tems for teams is one of the most important aspects in the adoption of metrics

at the lowest levels in the organization. Meyers claims were also supported by

the requirements that the customization of measurement systems and development

of new ones should be simple and efficient in order to avoid unnecessary costs in

development projects. In our research we simplify the ways of developing Key

Performance Indicators exemplified by a 12-step model of Parmenter [13] in the

domain of software development projects.

3 Design of the Study

This case study was conducted using action research approach [1,16]. The re-

searchers were part of the companys operations and worked directly with product

development units. The role of Ericsson in the study was .the development of the

method and its initial evaluation, whereas the role of Volvo GTT was to evaluate

the method in a new context.

370 Vard Antinyan et a 1.

3.1 Studied Organizations

Ericsson: The organization and the project within Ericsson developed large prod-

ucts for mobile packet core network. The number of the developers in the projects

was up to a few hundreds. Projects were executed according to the principles of

Agile software development and Lean production system, referred to as Stream-

line development within Ericsson [20]. In this environment, different development

teams were responsible for larger parts of the development process compared to

traditional processes: design teams, network verification and integration, testing,

etc.

Volvo GTT : The organization which we worked with at Volvo GTT developed

ECU software for trucks. The collaborating unit developed software for two ECUs

and consisted of over 40 designers, business analysts and testers at different levels.

The development process was in the transaction from traditional to Agile.

3.2 Units of Analysis

During our study we analyzed two different products software for a telecom prod-

uct at Ericsson and software for two ECUs at Volvo GTT.

Ericsson: The product was a large telecommunication product composed by over

two million lines of code with several tens of thousands C functions. The product

had a few releases per year with a number of service releases in-between them. The

product has been in development for a number of years.

Volvo GTT : The product was an embedded software system serving as one of the

main computer nodes for a product line of trucks. It consisted of a few hundred

thousand lines of code and several thousand C functions. The analyses that were

conducted at Ericsson were replicated at Volvo GTT under the same conditions and

using the same tools. The results were communicated with designers of the software

product after the data was analyzed. At Ericsson the developed measurement sys-

tem ran regularly whereas at Volvo the analysis was done semi-automatically, that

is, running the measurement system whenever feedback was needed for designers.

3.3 Reference Group

During this study we had the opportunity to work with a reference group at Ericsson

and a designer at Volvo GTT. The aim of the reference group was to support the

research team with expertise in the product domain and to validate the intermediate

findings as prescribed by the principles of Action research. The group interacted

with researchers on a bi-weekly meeting basis for over 8 months. At Ericsson the

reference group consisted of a product manager, a measurement program leader,

two designers, one operational architect and one research engineer. At Volvo GTT

we worked with one designer.

Monitoring Evolution of Code Complexity and Magnitude of Changes 371

3.4 Measures in the Study

Table 1 presents the complexity measures, change measures and deltas of complex-

ity measures over time. The definitions of measures and their deltas are provided

also.

Table 1: Metrics and their definitions

Complex i ty

Measures

Abbrev . Defini t ion

McCab's

cyclomatic

complexity of

a function

M The number of linearly independent paths in

the control flow graph of a function, measured

by calculating the number of " if ' , "while",

"for", "switch", "break", tokens

Structural

Fan — out

Fan — out The number of invocations of functions found

in a specified function

Maximum

Block Depth

MBD The maximum level of nesting found in a func-

tion

Cyclomatic

complexity of

a file

Mf The sum of all functions M in a file

Change

Measures

Abbrev . Def ini t ion

Number of re-

visions of a file

NR The number of check-ins of files in a speci-

fied code integration branch and its all sub-

branches in a specified time interval

Number of de-

signers of a file

ND The number of developers that do check-in of

a file on a specified code integration branch

and all of its sub-branches during a specified

time interval

Deltas of

Complex i ty

Measures

Abbrev . Defini t ion

Complexity

deltas of a

function

AM,

AFan — out,

A MBD

The increase or decrease of M, Fan-out and

MBD measures of a function during a speci-

fied time interval.

3.5 Research Method

According to the principles of action research we adjusted the process of our research

with the operations of the company. We conducted the study according to the

following pre-defined process:

372 Vard Antinyan et a 1.

• Obtain access to the source code of the products and their different releases

• Calculate complexity measures of all functions and change measures of all

files in the code

• Calculate the complexity deltas of all functions through five releases of both

products

• Sort the functions by complexity delta through five releases

• Identify possible patterns of complexity change

• Identify drivers for complexity changes for functions with functions having

highest overall delta

• Correlate measures to explore their dependencies and select measures for

monitoring complexity and changes

• Develop a measurement system (according to ISO 15939) for monitoring com-

plexity and changes

• Monitor and evaluate the measurement system for five weeks

The overall complexity change of function is calculated by:

Overal l de l ta = |AA/ i_ 2 | + |AM 2 _ 3 | + | A M 3 _ 4 | + | A M 4 _ 5 | .

| A M j . j | is the absolute value of change of M of a function between i and j releases.

Overall complexity change of Fan-out and MBD is calculated the same way.

4 Analysis and Results

In this section we explore the main scenarios of complexity evolution. We carry out

correlation analysis of collected measures in order to understand their dependencies

and chose measures for monitoring.

4.1 Evolution of the Studied Measures Over Time

Exploring different types of changes of complexity, we categorized changes into 5

groups.

1. Group 1 - Functions that are newly created and become complex in current

release and functions that existed but disappeared in current release.

2. Group 2 - Functions that are re-implemented in current release.

3. Group 3 - Functions that have significant change of complexity between two

releases due to development or maintenance.

Monitoring Evolution of Code Complexity and Magnitude of Changes 373

4. Group 4 - Test functions, which are regularly generated, destroyed and re-

generated for unit testing.

5. Group 5 - functions that have minor complexity changes between two releases.

Group 1 and group 5 functions were observed to be the most common. They

appeared regularly in every release. Engineers of the reference group charac-

terized their existence as expected result of software evolution. Group 2 func-

tions were re-implementation of already existing function. The existed functions

were re-implemented with different name and the old one was destroyed. Af-

ter re-implementation the new functions could be named as the old one. Re-

implementation usually took place when major software changes were happening:

In this case re-implementation of a function sometimes could be more efficient than

modification. Figure 1 shows the cyclomatic complexity evolution of top 200 func-

tions through five releases of products. Each line on the figure represents a C

function.

Telecom Product Automotive Product

Figure 1: Evolution of M of functions

In Figure 1 re-implemented functions are outlined by elliptic and old ones by

round lines. In reality the number of re-implemented functions are small (about

1%), however considering the big magnitude of complexity change of them, many

of them ended-up in the top 200 functions in the picture, giving an impression that

they are relatively many. Figure 2 similarly presents the evolution of Fan-out in

the products. Group 3 functions are outlined by elliptic line in Figure 2.

Group 3 functions were usually designed for parsing a huge amount of data and

translating them into another format. As the amount and type of data is changed

the complexity of the function also changes. Finally the Group 5 functions were unit

test implementations. These functions were destroyed and regenerated frequently

in order to update running unit tests. Figure 3 presents the MBD evolution of

products. As nesting depth of blocks can be relatively shallow, many lines in Figure

3 overlap each other thus creating an impression that there are few functions. We

observed that functions in group 1, ones were created, stayed complex over time.

These functions are outlined with a rectangular line in Figure 3.

374 Vard Antinyan et a 1.

Telecom Product Automotive Product

Figure 3: Evolution of MBD of functions

Figure 2: Evolution of Fan-out of functions

Telecom Product Automotive Product

The statistics of functions of all groups are represented in Table 2. The table

shows how all functions, that had complexity change, are distributed in groups. We

would like to mention that the number of all functions in telecom product is about

65000 and in automotive product about 10000, however only top 200 functions out

of those are presented in the figures. This might result in disproportional visual

relationship between the relation of different groups of functions in the table and

in the figures as the figures contains only top 200 functions.

Table 2: The distribution of functions with complexity delta in groups

Group Group 1 Group 2 Group 3 Group 4 Group 5

Percentage 27% 1% 1% 1% 70%

We observed the change of complexity for both long time intervals (between

releases) and for short time intervals (between weeks). Figure 4 shows how the

complexity of functions changes over weeks. The initial complexity of functions

is provided under column M in the figure. We can see the week numbers on the

Monitoring Evolution of Code Complexity and Magnitude of Changes 375

top of the columns, and every column shows the complexity growth of functions in

that particular week. Under column we can see the overall delta complexity per

function that is the sum of weekly deltas per function.

Filename Function name M Total: AM w!306 wl307 w!308 w!309 W1310 w!311 w!312
file 1 function 1 14 0 0 0 0 0 0 0 0
file 2 function 2 15 15 0 0 0 0 0 15 0
file 2 function 3 1 0 0 0 0 0 0 0 0
file 3 function 4 10 5 4 -9 11 -11 10 0 0
file 4 function 5 11 3 0 0 0 0 11 0 0
file 5 function 6 58 13 17 0 11 -11 0 0 -4
file 5 function 7 22 22 0 0 0 0 0 0 22
file 6 function 8 20 20 0 0 0 18 2 0 0
file 6 function 9 17 17 0 0 0 17 0 0 0
file 7 function 10 11 11 0 0 0 11 0 0 0
file 8 function 11 13 13 0 0 0 0 13 0 0
file 9 function 12 28 28 0 28 0 0 0 0 0
file 10 function 13 12 12 0 0 0 12 0 0 0

Figure 4: Visualizing complexity evolution of functions over weeks

The fact that the complexity of functions fluctuates irregularly was interesting

for the designers, as the fluctuations indicate active modifications of functions,

which might be due to new feature development or represent defect removals with

multiple test-modify-test cycles. Functions 4 and 6 are such instances illustrated

in Figure 4. Monitoring the complexity evolution through short time intervals we

observed that very few functions are having significant complexity increase. For

example in a week period the number of functions that have complexity increase

AM > 10 can vary between 5-10 while overall number of functions reaches a few

tens of thousands in the product.

4.2 Correlation analyses

The correlation analyses of measures were conducted in order to eliminate de-

pendent measures and select a minimal amount of measures for monitoring. The

correlation analysis results of complexity measures for the two software products

are presented in Table 3. The visual presentation of the relationship of complexity

measures is presented in Figure 5. As the table illustrates there is a strong corre-

lation between M and Fan-out for the telecom product and M and MBD for the

automotive product. There is a moderate correlation between M and MBD for the

telecom product. Generally designers of reference group concluded that monitoring

the cyclomatic complexity among all complexity measures is good enough as there

was a moderate or strong correlation between three complexity measures. M was

chosen because of two reasons:

376 Vard Antinyan et a 1.

1. MBD is rather a characteristic of a block of code than a whole function. It is

a good complementary measure but it cannot characterize the complexity of

a whole function.

2. Fan-out seemed to be a weaker indicator of complexity than M because it

rather showed the vulnerability of a function towards other functions that

are in that function.

Considering aforementioned conclusions M was chosen among complexity measures

to be monitored.

Table 3: Correlation of complexity measures

Telecom / Au tomot ive MBD M

M 0.41 / 0.69

Fan-out 0.34 / 0.20 0.76 / 0.26

Correlogarm of Complexity Measures - Telecom Correlogarm of Complexity Measures - Automotive

.iii I iiii:

i ;:.
S I ,

. 1

I I I
• i : i I

l:

I I I j ! i • •
M MBD

Figure 5: Correlogram of complexity measures

NR and ND are measures that indicate the magnitude of changes. Previously a

few studies have shown that change metrics are good indicators of problematic areas

of code, as observed Shihab [18]. The measurement entity of NR and ND is a file.

Therefore in order to understand how change measures correlates to complexity we

decided to define the M measure for files (Table 1). Table 4 presents the correlation

analysis results for ND, NR and M/ measures.

An important observation was the strong correlation between the number of

designers and the number of revisions for the telecom product (Table 4). At the

beginning of this study the designers of the reference group at Ericsson believed

that a developer of a file might check-in and check-out the file several times which

probably is not a problem. The real problem, they thought, could be when many

designers modify a file simpultaneously. Nonetheless, a strong correlation between

the two measures showed that they are strongly dependent, and many revisions

Monitoring Evolution of Code Complexity and Magnitude of Changes 377

is mainly caused by many designers modifying a file in a specified time interval

(Figure 6).

Table 4: Correlation of change and complexity measures

Telecom / Au tomot i ve My ND

ND 0.40 / 0.37

NR 0.46 / 0.72 0.92 / 0.41

Correlogram of Chang« Metrics and Complexity - Telecom Correlogram of Change Metrics and Complexity - Automotive

Z . . • .

ML = • •
M File ND

Figure 6: Correlogram of change and complexity measures

In case of automotive product correlation of ND and NR was moderate which

can be due to small number of designers who have rather firmly assigned develop-

ment areas and usually change the same code. Moderate correlation between M j

and NR for the telecom product indicates that complex files are prone to changes.

There are always simple files that are changed often due to development.

Considering the correlation analysis results we designed a measurement system

at Ericsson for monitoring code complexity and magnitude of changes over time.

The description of design and application of measurement system is discussed in

the next section.

4.3 Design of the Measurement System

Based on the results that we obtained from investigation of complexity evolution

and correlation analyses, we designed two indicators based on M and NR measures.

These indicators capture the increase of functions complexity and highlight the files

with highest change magnitude over time. These indicators were designed according

to ISO/IEC 15959. The design of complexity indicator is presented in Table 5. The

other indicator based on NR is defined in the same way: the files that had NR >

20 during last week development time period should be identified and reviewed.

The measurement system was provided as a gadget with the necessary information

updated on a weekly basis (Figure 7). The measurement system relies on a previous

m* i I M i s

378 Vard Antinyan et a 1.

study carried out at Ericsson [19]. For instance the total number of files with more

than 20 revisions since last week is 5 (Figure 7). The gadget provides the link to

the source file where the designers can find the list of files or functions and the

color-coded tables with details.

We visualized the NR and A M measures using tables as depicted in Figure 4.

As in Streamline development the development team merged builds to the main

code branch in every week it was important for the team to be notified about

functions with drastically increased complexity (over 20).

Table 5: Measurement system design based on ISO/IEC 15939 standard

Information Need Monitor cyclomatic complexity evolution over development

time

Measurable Con-

cept

Complexity change of delivered source code

Entity Source code function

Attribute Complexity of C functions

Base Measures Cyclomatic complexity number of C functions M

Measurement

Method

Count cyclomatic number per C function according to the

algorithm in CCCC tool

Type of measure-

ment method

Objective

Scale Positive integers

Unit of measure-

ment

Execution paths over the C/C++ function

Derived Measure The growth of cyclomatic complexity number of a C function

in one week development time period

Measurement Func-

tion

Subtract old cyclomatic number of a function from new one:

A M = M(weeki)M(weeki-i)
Indicator Complexity growth: The number of functions that exceeded

McCabe complexity of 20 during the last week

Model Calculate the number of functions that exceeded cyclomatic

number 20 during last week development period

Decision Criteria If there are functions that exceeded M number 20 then soft-

ware designers should review these functions refactor if neces-

sary

5 Threats to Validity

In this paper we evaluate the validity of our results based on the framework de-

scribed by Wohlin et al. [22]. The framework is recommended for empirical studies

in software engineering.

The main external validity threat is the fact that our results come for an ac-

tion research. However, since two companies from different domains (telecom and

Monitoring Evolution of Code Complexity and Magnitude of Changes 379

No. of files and

functions

2013-08-26

No of func. AM > 20

2

No of func. NR > 20

5

Source data

Figure 7: Information product for monitoring M and NR metrics over time

automotive) were involved, we believe that the results can be generalized to more

contexts than just one specific type of software development.

The main internal validity threat is related to the construct of the study and

the products. In order to minimize the risk of making mistakes in data collection

we communicated the results with reference groups at both companies to validate

them.

The limit 20 for cyclomatic number established as a threshold in this study does

not have any firm empirical or theoretical support. It is rather an agreement of

developers of large software systems. We suggest that this threshold can vary from

product to product. The number 20 is a preliminary established number taking into

account the number of functions that can be handled on weekly basis by developers.

The main construct validity threats are related to how we identify the names

of functions for comparing their complexity numbers over time. There are several

issues emerging in this operation. Namely, what happens if a function has changed

its list of arguments or what happens if a function is moved to another file? Should

this be regarded as the same function before and after changing the list of arguments

or the position? We disregarded the change of argument list however this can be

argued.

Finally the main threat to conclusion validity is the fact that we do not use

inferential statistics to monitor relation between the code characteristics and project

properties, e.g. number of defects. This was attempted during the study but the

data in defect reports could not be mapped to individual files. This might be a

thread for jeopardizing the reliability of such an analysis. Therefore we chose to

rely on the most skilled designers perception of how fault-prone and unmaintainable

the delivered code is.

380 Vard Antinyan et a 1.

6 Conclusions

In continuous software development quick feedbacks on developed code complexity

is crucial. With small software increments there is a risk that the complexity of

units of code can grow to an unmanageable level. In this paper we explored how

complexity evolves, by studying two software products one telecom product at

Ericsson and one automotive product at Volvo GTT. We identified that in short

periods of time a few out of tens of thousands functions have significant complexity

increase. We also concluded that the self-organized teams should be able to make

the final assessment whether the potentially problematic is indeed problematic.

By analyzing correlations between three complexity and two change metrics we

concluded that it is enough to use two measures, McCabe complexity and number

of revisions, to draw attention of the teams to potentially problematic code for

review and improvement.

The automated support for the teams was provided in form of a MS Sidebar

gadget with the indicators and links to statistics and trends with detailed complex-

ity development data. The measurement system was evaluated by using it on an

ongoing project and communicating the results with software engineers in industry.

In our further work we intend to study how the teams formulate the decisions

and monitor their implementation.

Acknowledgment

The authors thank the companies for their support in the study. This research has

been carried out in the Software Centre, Chalmers, University of Gothenburg and

Ericsson, Volvo Group Truck Technology.

References

[1] Baskerville, R.L. A Critical Perspective on Action Research as a Method for

Information Systems Research. Journal of Information Technology, 1996(11),

235-246.

[2] Boehm, B. A view of 20th and 21st century software engineering. Paper pre-

sented at the Proceedings of the 28th international conference on Software

engineering, 2006.

[3] Bosch, Jan. From integration to composition: On the impact of software

product lines, global development and ecosystems. Journal of Systems and

Software, 83(1), 67-76. doi: http://dx.doi.Org/10.1016/j.jss.2009.06.051

[4] Catal, Cagatay. A systematic review of software fault predic-

tion studies. Expert Systems with Applications, 36(4), 7346-7354. doi:

http://dx.doi.Org/10.1016/j.eswa.2008.10.027

http://dx.doi.Org/10.1016/j.jss.2009.06.051
http://dx.doi.Org/10.1016/j.eswa.2008.10.027

Monitoring Evolution of Code Complexity and Magnitude of Changes 381

Chow, Tsun. A survey study of critical success factors in agile software

projects. Journal of Systems and Software, 2008, 81(6), 961-971.

Fenton, Norman E. A critique of software defect prediction models. Software

Engineering, IEEE Transactions on, 1999, 25(5), 675-689.

Fenton, Norman E. Software metrics (Vol. 1): Chapman and Hall London,

1991.

Fitz, Timothy. Continuous Deployment at IMVU: Doing the impossible fifty

times a day. from http://timothyfitz.wordpress.com/2009/02/10/continuous-

deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

Garcia, F. Managing Software Process Measurement: A Meta-model Based

Approach. Information Sciences, 2007, 177(2), 2570-2586.

Harvard Business School. Harvard business review on measuring corporate

performance. Boston, MA: Harvard Business School Press, 1998.

International Bureau of Weights and Measures. International vocabulary of

basic and general terms in metrology = Vocabulaire international des termes

fondamentaux et gnraux de mtrologie (2nd ed.). Genve, Switzerland: Interna-

tional Organization for Standardization, 1993.

Lawler, J. Measurement modeling technology. IEEE Software, 2003, 20(3),

68-75.

Parmenter, David. Key performance indicators : developing, implementing,

and using winning KPIs. Hoboken, N.J.: John Wiley and Sons, 2003

Perera, G. I. U. S. Enhanced agile software development - hybrid paradigm

with LEAN practice. Paper presented at the International Conference on In-

dustrial and Information Systems (ICIIS), 2007.

Predicate Logic. TychoMetrics. Retrieved 2008-06-30, 2008, from

http://www.predicatelogic.com

Sandberg, Anna. Agile Collaborative Research: Action Principles for Industry-

Academia Collaboration. IEEE Software, 2011, 28(4), 74-83.

Shepperd, Martin. A critique of cyclomatic complexity as a software metric.

Software Engineering Journal, 3(2), 30-36.

Shihab, Emad. An industrial study on the risk of software changes. Paper

presented at the Proceedings of the ACM SIGSOFT 20th International Sym-

posium on the Foundations of Software Engineering, 2012.

Developing measurement systems: an industrial case study. Journal of Soft-

ware Maintenance and Evolution: Research and Practice, 23(2), 89-107. doi:

10.1002/smr.470

http://timothyfitz.wordpress.com/2009/02/10/continuous-
http://www.predicatelogic.com

382 Vard Antinyan et a 1.

[20] Tomaszewski, Piotr. From Traditional to Streamline Development - Opportu-

nities and Challenges. Software Process Improvement and Practice, 2007(1),

1-20. doi: 10.1002/spip.355

[21] Wisell, David. Considerations when Designing and Using Virtual Instruments

as Building Blocks in Flexible Measurement System Solutions. Paper presented

at the IEEE Instrumentation and Measurement Technology Conference, 2007.

[22] Wohlin, Claes. Experimentation in Software Engineering: An Introduction.

Boston MA: Kluwer Academic Publisher, 2000.

Acta Cybernetica 21 (2014) 383-366.

Service Composition for End-Users

Otto Hylli* Samuel Lahtinen? Anna Ruokonen* and Kari Systà*

Abstract

RESTful services are becoming a popular technology for providing and consuming
cloud services. The idea of cloud computing is based on on-demand services and
their agile usage. This implies that also personal service compositions and workflows
should be supported. Some approaches for RESTful service compositions have been
proposed. In practice, such compositions typically present mashup applications, which
are composed in an ad-hoc manner. In addition, such approaches and tools are mainly
targeted for programmers rather than end-users. In this paper, a user-driven approach
for reusable RESTful service compositions is presented. Such compositions can be
executed once or they can be configured to be executed repeatedly, for example, to get
newest updates from a service once a week.

Keywords: service composition, REST, web, W A D L

1 Introduction

Use of internet-based services is a routine activity for millions of users. However, the

services are often silos and users do not have means to operate and manage their content

across the services. Even average PC users can transfer content between applications, but

nothing similar is possible for the Internet services they use. In this paper we propose an

approach that allows end-users to create compositions for the purpose of combing several

internet services or resources.

In service-oriented approaches dominant in the enterprise services, the focus is on the

definition of service interfaces and service behavior. Service-oriented architecture (SOA)

aims at loosely coupled, reusable, and composable services provided for a service con-

sumer. SOA can be implemented by Web services, which is a technology enabling appli-

cation integration. Web services can be used for composing high level composite services

and business processes. Business processes are often realized as a service orchestration

implemented, for example, as WS-BPEL based processes [3], WS-BPEL is targeted for

composing operation-centric Web services utilizing WSDL and SOAP [20,21]. WS-BPEL

is close to a programming language defining the logic for a service orchestration. Thus, it

is mostly used by IT developers.

"Department of Pervasive Computing, Tampere University of Technology, E-mail:
{otto.hylli,samuel.lahtinen,anna.ruokonen,kari.systa}@tut.fi

384 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

In cloud-based systems, resources are provided to the user as services via the Internet.

On the other hand, the services are accessible anywhere and through several devices. Com-

pared to basic Internet-based service delivery, cloud adds elastic provisioning and release

of computing capabilities. Cloud computing and SOA share similar interests on service

reuse and service composition. Moreover cloud computing emphasizes on-demand ser-

vices, which means that services should be ready for use at any time when needed. This

also applies for service configurations. Thus, service configuration and composition should

be enabled on-line.

Compared to business processes, typical on-demand processes for end-users are per-

sonal, simpler, and their lifetime is shorter than traditional business processes. Thus, on-

demand processes are often characterized as instant service compositions and service con-

figurations. Such processes are typically defined by the end-user instead of the developer

of the cloud services. Due to instant nature of the on-demand processes, their usage and

specification should be as simple as possible and require no installation of process devel-

opment and management tools.

An end-user driven approach for WS-BPEL-based business process development has

been proposed in [18]. The approach is targeted for providing a method for easy sketching

of service orchestrations. In the proposed approach, a set of scenarios, given as UML

sequence diagrams, are synthesized into a process description. However, in the context

of cloud computing and on-demand processes, the use of UML modeling and standalone

tools is not a proper solution.

Usually, software services in the cloud are targeted for multiple users and they pro-

vide a programmable interface, most often a Representational State Transfer (REST) API.

REST is a resource-oriented architectural style developed for distributed environments

such as for Web and HTTP based applications [5], RESTful services provide an unified

interface (GET, PUT, POST, DELETE) for data manipulation. Thus, composition of such

services often includes combining resources and is characterized as mashup-type of devel-

opment. Some guidelines for mashup development have been proposed (e.g. [14]). Thus

the WB-BPEL-based approach is not applicable for cloud-based services and mashups.

Composing and orchestration of RESTful services is still lacking tool vendor indepen-

dent practices and description languages. Thus, the development is often done more in an

ad-hoc manner.

SaaS applications are often targeted for end-users. They are self-contained and contain

user-interfaces, business rules, and possibly some metadata.

A recent trend is cloud mashups, which combine resources from multiple services

into a single service or application [19]. The provider of these service compositions can

enhance the cloud's capabilities by offering new functionalities, which make use of existing

cloud services, to clients.

In this paper, a novel approach for developing personal service compositions is pre-

sented. The approach is targeted for the end-user and allows composition of RESTful

cloud services. The approach includes tackling the following issues: (1) easy sketching

of service compositions using a simple visual language, (2) a mechanism to export/save

composite descriptions for future usage i.e. reusable composite descriptions, and (3) an

engine for executing the service compositions, once or repeatedly. The implementation

of the approach called Aino service composer is currently under development. The Aino

Service Composition for End-Users 385

service composer includes a web browser based editor, which can be used to create sim-

ple on-demand service compositions. An earlier version of the tool description has been

published in [9].

The rest of the paper is organized as follows. In Section 2, we describe the overall

approach and related components. In Section 3, two use cases for end-user driven service

composition are presented. Aino service composer is described in Section 4. In Section 5,

related work and topics are discussed. In Section 6, conclusions and plan for future work

are presented.

2 User-driven approach for service composition

In this paper, an end-user driven approach for defining personal service compositions is

presented. The main goal of the approach is on easy design of service compositions, which

requires minimal technical knowledge. The service composition is created by using GUI

widgets, which are generated based on an imported service description. Widgets present

individual resources and they can be dragged and dropped on the canvas. The user can

draw dataflow pipes to connect the widgets. Incoming and outgoing dataflows are mapped

to REST methods (e.g. outgoing dataflow for GETting a resource presentation).

The implementation of the approach called Aino service composer consists of two

components, designer Ilmarinen and engine Sampo. Ilmarinen is a client side application

for creating and editing compositions and it is run in a web browser. Sampo is a server side

application, which is an engine for running the service compositions. The composition de-

scription is given in XML-based format, called Aino description. As a service description

format, the approach is based on WADL descriptions [22]. It defines the resources, i.e.,

URIs, methods, and parameters. That is, while the Aino description specifies the service

logic, the WADL description describes the service interface.

Sampo also plays a role of a service registry. Once a service is registered in Sampo,

it can be used as a constituent service for future applications. One reason for providing

a centralized registry, instead of letting the user search from the web, is that for RESTful

services there is no agreement on one service description format. In case a third-party

service does not have a compatible WADL description, it can be created afterwards and

registered to Sampo. Thus, the approach allows using services, which do not natively

provide a WADL description, as reusable constituents.

The approach includes the following steps:

(1) query services from the service registry,

(2) select services to be used as a part of the composition,

(3) composition described as a data flow between services, and

(4) send the composition description to the server engine to be executed.

The main steps are shown in Fig. 1. It also shows the relations between the main

components of the system and descriptions, Aino and WADL, which are used for importing

and exporting data (i.e. service and composition descriptions).

386 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

llmarinen (composition designer)

Services (2) create composition

• (4) export composition

I (2) return descriptions

Sampo I
composition

storage

Aino
description

(5) exectute composition

Figure 1: The main steps of the approach

3 Use cases

The following two use cases illustrate the possibilities offered by service compositions

for regular internet users. They show how after encountering a normally labor intensive

internet based task including multiple services, a user can pretty easily create a service

composition that takes care of the task.

3.1 Use case 1: Photos from Twitter to Flickr selectively

An avid Twitter1 user has been sending many photos taken with his smart phone directly

to Twitter. The user wants a better way to organize and share his photos so he opens an ac-

count in Flickr2 which enables him to save photos to different albums, associate keywords

to them and decide which photos are public. Uploading all his photos manually to Flickr

would be tedious for the user. He would have to go through his Twitter time line, download

each photo to his computer and then upload it to Flickr.

To automate the upload process the user wants to create a service composition with

Aino service composer. He opens the composition designer llmarinen and chooses that he

wants to get photos. llmarinen shows him a list of services from where he can get photos

and he chooses Twitter. From Twitter he chooses that he wants photos from one user which

in this case is himself. He also indicates that all photos shouldn't be fetched, instead he

will select the ones he wants. Then the user tells llmarinen that he wants to upload the

photos selected in the previous step. From the services list shown by llmarinen he chooses

Flickr as the upload target. Additionally he specifies that he wants to choose for each photo

1 www.twitter.com
2 www.flickr.com

http://www.twitter.com
http://www.flickr.com

Service Composition for End-Users 387

whether it is private or public. Lastly, he tells Ilmarinen that he wants to delete photos and

chooses Twitter. He specifies that from Twitter he wants to delete those photos he has

marked as private for Flickr.

When he executes the composition the execution engine Sampo first asks him to autho-

rize Sampo's use of his Twitter and Flickr accounts. Authorization will be done by using

OAuth [10] which means that the user authenticates to both services which then give ac-

cess tokens to Sampo. Sampo will store these access tokens for later use if the user wants it

so that next time a service composition using these services is run the user doesn't need to

authenticate to the services. He just has to log in to Sampo. When the actual execution has

started Sampo will first show the user all his photos from Twitter and asks him to choose

those he wants. After that Sampo shows the user his previously chosen photos and asks

which of them he wants to be private in Flickr. After the execution has finished Sampo

shows the user a execution results summary which tells that the execution was a success

and shows how many photos were processed in each step.

3.2 Use case 2: Affordable reading

An enthusiastic book reader uses the Goodreads3 service to support her hobby. Goodreads

is an online community for readers where users can search for books, rate and review

them. Users can also categorize books in their profile by adding them to different shelves.

One of these shelves is to-read where the user has been adding interesting books, which

she has found through Goodreads' recommendation system. She wants to buy some new

reading from her to-read shelf but due to her current poor economic situation she wants it

to be as cheap as possible. Searching for each book's price from her favorite online book

retailer Amazon4 and then comparing the prices manually would be time consuming so

she decides to create a service composition to make the process quicker.

The user opens the service composition designer Ilmarinen and chooses that she wants

information about books. Ilmarinen gives the user a list of services that deal with books.

The user chooses Goodreads and indicates that she wants the content of a particular user's,

in this case hers, particular shelf. Ilmarinen asks the user to input the name of the user

and the name of the shelf which in this case are the user's Goodreads user name and to-

read. Next the user tells Ilmarinen that she wants online shopping services. From the

service list she chooses amazon.com. She specifies that she wants product information

about the books from the previous step. Lastly she tells Ilmarinen that she wants the results

in ascending order by price. When this composition is run the result is a table containing

book information from Amazon including the price and a link to the Amazon product page

where the book can be bought.

4 Implementation

The prototype implementation of the Aino service composer consists of two main compo-

nents: Designer Ilmarinen and engine Sampo. Sampo executes the service compositions,

3 www.goodreads.com
4 www.amazon.com

http://www.goodreads.com
http://www.amazon.com

388 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

ilmarinen

I

Sampo
(service registry)

Service
description

WADL

Service
description

WADL

Web browser

Sampo
Execution III

.1

Service composition
In execution

Sampo
(execution engine)

Composition 1 Composition 2
(Aino) (Aino)

Figure 2: High level architecture of the Aino service composer

stores the service descriptions and offers Ilmarinen access to the information. The sepa-

ration of the two main componets allows their more independent development. Figure 2

illustrates the high-level architecture of the Aino service composer. The user uses browser-

based Ilmarinen to create service compositions. A service composition is a service. Its

interface is defined as a WADL document and its execution instructions are defined with

the Aino composition description language. Both XML documents are stored in Sampo.

The user interacts with engine component Sampo which is used to execute the composi-

tions. The execution and possible user interaction related to the execution is again done in

a browser based UI.

4.1 Service description

All the constituent services, as well as the service composition, are described with WADL

documents. WADL description defines the service, provided methods and their parameters,

as well as data types. The data types can also be defined as separate XML schema files.

An example of a simple service description is shown below. It has a partial definition of

Twitter's get user timeline method which returns a specified number of tweets from the

given user.

<?xml version="1.8" encodirig="UTF-8"?>
«application»

«grammars»«/grammars»
«resources base="https://api.twitter.com/1.1">

«resource path="statuses/user_timeline.json">
«method href="getTimeline"/>

«/resource»
«/resources»
«method name="GET" id="getTimeline">

«request»
«param name="screen_name" style="query" type="xsd:string" /»
«param name="count" style="query" type="xsd:integer" />

«/request»
«response»

«representation mediaType="application/json" /»
«/response»

https://api.twitter.com/1.1

Service Composition for End-Users 389

</method>
</application>

4.2 Engine Sampo

Engine Sampo is used in two ways, as a service registry and as an engine to execute the

service compositions. Services can be added in the service registry as WADL descriptions.

It provides the basic functionality for registration of the services, i.e. API for adding,

removing, and searching the services. When a new WADL is added to Sampo the part of

the categorization of the service and the resources can be done automatically based on the

WADL and an expert user, who understands rest services and WADL, can complete the

information and extend the suggested categorizations.

The given metadata is used to offer Ilmarinen lists of the services. For instance, the user

can ask to get a list of services related to pictures. Thanks to the metadata Ilmarinen only

needs to process WADLs of the services user adds to her composition instead of processing

every WADL.

The other part of Sampo provides a REST interface for adding and executing Aino

descriptions. The service composition execution uses Aino and the corresponding WADL

descriptions for getting the required information on the services and their API. The engine

uses this information to invoke correct API calls to the services and combine the tasks to

create the complete composite service.

Sampo contains a user interface for handling the compositions. The user can parame-

terize the composition and define time intervals of execution. In case of a recurring task the

service page can be used to start and stop the compositions and change their time intervals.

For instance, one could define a service composition that is launched weekly.

Sampo implements simple basic services, for example, for displaying images and news

feeds. These are available as components in Ilmarinen and can be added to a service

composition in similar fashion as external services.

Sampo is implemented as a Java based web application with the Spring framework5.

Sampo's implementation is ongoing work. Features that require work include making

Sampo work with a creater number of data types and implementing metadata editing for

services.

4.3 Designer Ilmarinen

Ilmarinen is a client side application, which provides a graphical interface for creating the

service compositions. The user is provided a simple visual environment for defining the

service composition. The composition is done partially in a guided manner. A screenshot

of an early prototype version of the tool is shown in Figure 3. The user can choose the

services e.g. Twitter, BBC Program guide, Weather) she wants based on the service cat-

egory (e.g. Social media, file storage, picture, program guides). For the services the user

can define the interaction and the resources related to the interaction.

In the service composition key elements are the services and data flow between them.

After adding a service one can see the input and output possibilities offered by it. These

5http://projects.spring.io/spring-framework/

http://projects.spring.io/spring-framework/

390 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

inputs and outputs are parameterized and services are connected to each other using them.

When the user has finished, Ilmarinen generates the Aino description. This is exported

to Sampo engine for execution. The composition is stored in Sampo and can be accessed

directly using a corresponding link. That allows the users to access and execute the com-

positions directly without using Ilmarinen. This also enables sharing service compositions

among different users.

Figure 3: Screenshot of Prototype of Ilmarinen

4.4 Composite description language Aino

Descriptions written in Aino language define the services and resources involved in the

composition and the dataflow. A dataflow from one service to another means by getting

resource presentation from one service with GET methods and using it as an input to an-

other service using PUT, POST, or GET methods. Services can provide three types of

resources: resource out (for GETting a representation), resource in (for PUTting or POST-

ing), and resource in/out (for PUTting or POSTing and GETting). For data manipulation,

control nodes, such as merge and select nodes, are used.

The dataflow can be modeled as an acyclic graph structure, which consists of resources,

control nodes, and dataflow connections between them. Control nodes are used for manip-

ulating resource representations, e.g. transforming or filtering data.

In addition to resource, control nodes and dataflow connections, the dataflow includes

definition of method calls that are executed when the composition is run. These method

calls to the services are presented as GET, PUT, POST, and DELETE elements in the

XML description. In addition, the composite service can receive method calls from other

compositions using this as a service or from user agent initiation. These are presented as

onPUT, onGET, onPOST, and onDELETE elements. Corresponding request and response

message types (including data types) are described in the services' WADL documents.

Service Composition for End-Users 391

These activities corresponding to REST operations are the same, which are used in BPEL

for REST [16] proposal.

Figure 4: Aino language structure

To enable importing and exporting of compositions, Aino descriptions are transformed

in XML format. The structure of Aino language is given in Figure 4. It is explained

in detail using an example Aino description given below. The given description presents

an example of sending links from Twitter tweets to Instapaper6. Instapaper is a service

where users can add links to articles they found from the web that they want to read later.

Resources part defines two resources, Twitter's user timeline and instapaper's add, which

participate in the composition. User timeline returns the desired bumber of tweets from

the specified user. Rs WADL was an example in section 4.1. Instapaper's add resource

adds the link in the url parameter to the account whose username and password are in the

respective parameters.

The example composition consists of a receive message and two message invocations.

Execution starts when the client invokes GET method on the composite resource (onGET

element). Execution continues with a sequence of two invocations. First the composite

service invokes GET method on Twitter and second it invokes POST method on Instapaper.

<?xml version="1.8" encoding="UTF-8"?>
«description name="tweetlinks2instapaper" >
<doc>Send links from the 18 most recent tweets from the specified user to Instapaper.</doc>
<services>

«service name = "twitter" id="52d" />
«service name = "instapaper" id="52f" />

«/services?

6 www.instapaper.com

http://www.instapaper.com

392 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

<resources>
/resource uri="https://api.twitter.com/1.l/statuses/user_timeline.json"

resource_id ="rl" service_id = "52d" />
<resource uri="https://www.instapaper.com/api/add" resource_id ="r2" service_id = "52f" />

</resources>

<variables>
/variable name="twitterparams" type="variableset" >

/variable name="screen_name" type="string" open = "true" />
/variable name="count" type="integer" value="18" />

//variables
/variable name="links" type="linklist" />
/variable name-"instapaperparams" type="variableset" >

/variable name="username" type="string" value = "john.smith0gmail.com" />
/variable name="password" type="string" value="passwordl23" />
/variable name="urls" type="variablereference" value="links" />

//variables
//variables*

/dataflows
zonGETs

/requestsz/requests
zresponseslinksz/responses
zresource_idsr_comp//resource_ids
/sequences

/GETs
zrequeststwitterparamsz/requests
zresponseslinksz/responses
/re source_i dsrl//resource_i ds

z/GETs
/POSTS

zrequestsinstapaperparamsz/requests
zresponsesz/responses
zresource_idsr2//resource_ids

z/POSTs
//sequences

z/onGETs
//dataflows
//descriptions

Variables are used for storing and manipulating message values. For example, the

given code listing defines three variables, which correspond to input and output message

types of the used GET and POST methods. The variables twitterparams and instapaper-

params are of the type variableset which means that they contain multiple variables. These

variables contain the parameters for the requests to the services. This is indicated in the

Aino description by putting them into the request elements of the service call. The member

variables of these sets screenname, count, username and password correspond directly to

parameters defined in services' WADLs. So for example Twitter's user timeline method

has a parameter named screenname. The variable links contains a list of links. Links

from the Twitter method call's response are saved to this variable. How this information

is extracted from the response is explained in section 4.5. The links variable is also the

response of the composition which means that it will be shown to the user. The variable

is also one of the request parameters for Instapaper because of the variable reference in

the instapaperparams. Because Instapaper's api doesn't support sending multiple links in

one request, the execution engine has to make multiple post requests but this detail doesn't

matter to the Aino description.

screenname is initialized, when the user fills in the required input data, when she

https://api.twitter.com/1.l/statuses/user_timeline.json
https://www.instapaper.com/api/add

Service Composition for End-Users 393

decides to run the composition (see Figure 5). A control interface is used for specifying

process instance specific information, such as initial value of process variables and repeti-

tion information, which is not part of Aino description.

Sampo beta

tweetiinks2instapaper

Send links from the 10 most recent tweets from the specified user to instapaper.
Twitter account the links are loaded from can be changed by giving screenname.

sbsSoittorasia screenname

G m n only once

Repeat interval: Begin time: Begin date:

weekly - 16:0000 j [7312014

1 | Cancel [j OK

Figure 5: A Control User Interface for the service Compositions

4.5 Data processing

One challenge in combining different internet services into compositions are the different

ways the services represent the same data. Many services deal with the same kind of

data, e.g. photos or status updates. However, these services represent this data in different

ways. One uses XML in representing its resources while another uses JSON. Even if

both services in a composition use the same format the schema would very probably be

different. Below is an example of how Twitter and Facebook represent a status update.

Both service's status update contains the name of the poster, time of the posting and the

actual content of the status. They have different names for these attributes and they also

have a different time format for the posting time. In addition, each service has additional

service specific information about the status update which is not shown here.

Facebook:
{

"id":"281192866592832",
"from":{

"name":"Otto Hylli",
"id":"18883825396838"

"message":"Hello, world.",
"updated_time":"2812-85-15T28:35:25+8888",

}

Twitter:
{

"text": "Hello, world",
"id": 377326766385573888,

394 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

"user": {
"id": 918838997,
"name": "Otto Hylli"

>,
"created_at": "Hon Aug 16 17:45:23 +8888 2813"

Our solution for this problem is to define a set of generic data types that internet ser-

vices provide and consume. These types include among others status update, photo, link,

location and product. For each data type we define a group of attributes that this kind of

data generally has. For instance, a status update has the name of the poster, the content of

the status update, and the time of the posting. For a service that returns representations that

correspond to a certain data type the representation needs to be mapped to the data type.

For example, in Twitter's and Facebook's cases mapping information tells how to build a

status object from the JSON. For instance, Where in JSON the posting time of the update

is and what the format of the time information is. This means that we need mechanisms to

locate the interesting data from a structured document.

For locating the desired information from the representation we use XPath [23] for

XML representations and JsonPath [6] for JSON. XPath is a language for addressing spe-

cific parts of a XML document. It is based on XPath expressions which select the specified

nodes from the XML. JsonPath is a similar system for JSON. XPath and JsonPath based

data processing information can be added by an expert user directly to a service's WADL

or to the service's metadatain the service registry. In both cases the metadata will contain

the required formatting information such as the time format used. For instance, Twitter's

time format can be represented with this pattern string: E MMM d H:m:s Z y. The pattern

format used is from the standard Java class used in the implementation to parse dates.

In the WADL XPath or JsonPath information is located inside the representation ele-

ment of a resource's method's response. The information itself is contained in the param

elements. The parameter's name is a keyword that tells what kind of information it con-

tains, e.g. the author of a status update. The path attribute of the parameter contains the

XPath or JSONPath expression itself. The example below shows the representation ele-

ments for Twitter's and Facebook's methods that return a list of status updates. A more

refined description of the generic data types and service metadata that uses them will be

published in [8].

Twitter:

«representation mediaType="application/json"?
«param name="status_text" type="xsd:string" path="$[*].text" />
«param name="status_creator" type="xsd:string" path="S[*].user.name" />
«param name="status_posted" type="xsd:string" path="$[*].createcLat" />

«/representation?

Facebook:
«representation mediaType="application/json"?

«param name="status_text" type="xsd:string" path="J[*].message" /?
«param name="status_creator" type="xsd:string" path="$[*].from.name" /?
«param name="status_posted" type="xsd:string" path="J[*],updated_time" /?

«/representation?

Service Composition for End-Users 395

5 Related work

The idea of cloud computing is based on on-demand services, which are provided as SaaS

applications. In the cloud, traditional business process management tools are already avail-

able as SaaS. However, they are targeted for design and management of structured business

processes. Requirements for on-demand processes differ from traditional BPM. The ideal

solution is to provide an easy and instant mechanism to support execution of personal and

dynamic processes, which utilize existing SaaS applications available on the cloud.

5.1 Tools for mashup development

Ad-hoc processes are often expected to live only for a short time. The lack of documenta-

tion and proper design might make them single-use only. Thus, they may not be reusable

and flexible, but they always need to be recomposed.

JOpera [15] is an Eclipse-based tool build for composing SOAP/WSDL and RESTful

Web services. For software developers it provides many useful features such as process

modeling, debugging and execution. For composing RESTful services JOpera uses BPEL

for REST [16]. BPEL for REST is an extension to WS-BPEL to support compositions

of RESTful Web services. The approach does not rely on usage of WSDL or other ser-

vice descriptions. Resources are defined in the BPEL for REST description as a resource

construct, which defines the resource URI and supported operations.

In [13], Marino et al. present HTML5-based prototype tool support for mashup de-

velopment. They present a visual language for service composition. However, the paper

is missing details on the user interface and tool usage. Also, details on the composition

description are not given.

In [1], Aghee et al. discuss different types of mashups enabled by HTML5. A case

example includes a location sensitive mobile mashup. The mashup runs natively in a mo-

bile device and uses the GPS sensor build-in the device. In addition, it uses external Web

APIs. Location data is sent to a server, which executes API calls to external services.

This enables sharing the application between several uses. Mobile mashups enable use of

real-time data gathered from the sensors in a mobile phone, e.g. real-time navigation.

Bottaro et al. present a simple visual language for composing location-based services

[4], The user uses a repository of web widgets. Widgets are dragged and dropped to build

UI for the application. The application logic is defined by drawing connections between

data widgets.

In [7], Gronvall et al. present ongoing work on user-centric service composition. GUI

elements are prototypes of service invocations, which can be chained to compose data

flows among services. They present a lightweight tool support for composing simple dy-

namic workflows, such as for combining SMS, email, and calendar services. Instead of

modeling complicated workflows, the emphasis is on the user experience.

In EzWeb project [11,12], a service-oriented platform for end-user mashup develop-

ment has been built. The idea is to provide gadgets (e.g. Twitter, Flickr) the user could

add to her "application page" creating a set of different applications and web services.

The user can also define dataflow between the gadgets by connecting "events" the gadgets

could give, e.g., an image url could be connected to another image displayer gadget that is

396 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

able to show the picture. All these gadgets are implemented for EzWeb environment. That

is, implementation of their user interface, the way of communicating with servers, their

events and event slots, are specific for the EzWeb environment. In our approach, the aim

is to provide means to compose existing services together and execute these compositions.

Thus, our target is to support composition of any third party services by introducing their

service descriptions to our system.

5.2 Describing service compositions

Some approaches for modeling and describing RESTful service compositions have been

proposed. Guidelines for UML modeling of RESTful service compositions is presented

in [17] by Rauf et al. The static resource structure is modeled using class diagrams. The

behavioral specification of the composite service is given using state chart diagrams.

In [24,25], Zhao et al. discuss formal describing of RESTful services and resources as

well as RESTful composite services. Their main interests is on supporting automatic ser-

vice compositions. For service compositions they present a logic-based synthesis approach

utilizing linear-logic and pii-calculus.

In [2], Alarcon et al. state that many of the recent service composition approaches rely

on operation-based models and neglect hypermedia characteristics of REST. As a solution

for composing RESTful services, they present a hypermedia-driven approach realized by

using resource linking language (ReLL) for service description. The approach aims to

support machine-clients by enabling automatic retrieving of resources from a web site.

For describing the composite resources PetriNets are used. As an example of a composite

resource, a social network application was presented.

6 Conclusions

Cloud computing is based on on-demand services, which should be available as needed.

Similarly, it should also enable on-demand service compositions. In this paper, an end-

user driven approach for personal service composition has been presented. The proposed

tool support i.e. Aino service composer includes a composition designer running in a

web browser and a server-side engine for storing and executing service compositions. The

designer is designed for the end-users and it is used for creating personal service compo-

sitions. It focuses on end-user concepts and aims to hide complicated and unnecessary

information, e.g. service descriptions, which are handled by the engine. Instead of han-

dling data types, the user is allowed to use concepts such as a picture or a photo gallery.

The presented use cases concentrate on combining social media services into a composite

service. Also, the user is allowed to define repeatable executions for checking updates

from the services.

To characterize the approach, it is designed for cloud environment providing a browser-

based tool for building service compositions. It is based on WADL descriptions, which are

also used for generating GUI widgets for the end-user. In addition, it enables defining

RESTful workflows as a composite service.

Service Composition for End-Users 397

Our future work includes finalizing the implementation and conducting case studies on

applying the approach utilizing the developed tool support. Our future plans also include

experimenting the tool usage with novice users.

References

[1] Aghaee, S. and Pautasso, C. Mashup development with HTML5. In Proceedings

of the 3rd and 4th International Workshop on Web APIs and Services Mashups,

Mashups '09/' 10, pages 10:1-10:8, New York, NY, USA, 2010. ACM.

[2] Alarcon, R., Wilde, E„ and Bellido, J. Hypermedia-driven RESTful service com-

position. In Proceedings of the 2010 international conference on Service-oriented

computing, ICSOC' 10, pages 111-120, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y„ Klein, J., Leymann, F,

Liu, K., Roller, D„ Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S.

Business Process Execution Language for Web Services Version 1.1, May 2003.

http://www.ibm.com/developerworks/.

[4] Bottaro, A., Marino, E„ Milicchio, F., Paoluzzi, A., Rosina, M., and Spini, F. Visual

programming of location-based services. In Proceedings of the 2011 international

conference on Human interface and the management of information - Volume Part /,

HI' 11, pages 3-12, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Fielding, R.T. REST: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[6] Goessner, S. Jsonpath - xpath for json. http://goessner.net/articles/JsonPath/.

[7] Gronvall, E„ Ingstrup, M., Plpger, M., and Rasmussen, M. Rest based service compo-

sition: Exemplified in a care network scenario. In Costagliola, G., Ko, A.J., Cypher,

A., Nichols, J., Scaffidi, C„ Kelleher, C„ and Myers, B.A., editors, VL/HCC, pages

251-252. IEEE, 2011.

[8] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Resource description for end-

user driven service compositions. Submitted to 2nd International Workshop on Per-

sonalized Web Tasking (PWT 2014), 2014.

[9] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Service composition for

end-users. In 13th Symposium on Programming Languages and Software Tools

(SPLST'13), page pp.15,2013.

[10] Internet Engineering Task Force (IETF), http://tools.ietf.org/html/rfc6749. The OAuth

2.0 Authorization Framework, 2012.

[11] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.J. EzWeb/FAST: Reporting on a

successful mashup-based solution for developing and deploying composite applica-

tions in the "upcoming ubiquitous SOA". In Mobile Ubiquitous Computing, Systems,

http://www.ibm.com/developerworks/
http://goessner.net/articles/JsonPath/
http://tools.ietf.org/html/rfc6749

398 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

Services and Technologies, 2008. UBICOMM '08. The Second International Confer-

ence on, pages 488^95,2008.

[12] Lizcano, D„ Soriano, J„ Reyes, M., and Hierro, J.J. EzWeb/FAST: reporting on

a successful mashup-based solution for developing and deploying composite appli-

cations in the upcoming web of services. In Proceedings of the 10th International

Conference on Information Integration and Web-based Applications &• Services, ii-

WAS '08, pages 15-24, New York, NY, USA, 2008. ACM.

[13] Marino, E„ Spini, F., Minuti, F., Rosina, M., Bottaro, A., and Paoluzzi, A. HTML5

visual composition of rest-like web services. In 4th IEEE International Conference

on Software Engineering and Service Science (ICSESS 2013), 2013. To appear.

[14] Mikkonen, T. and Salminen, A. Towards a reference architecture for mashups. In

Proceedings of the 2011th Confederated international conference on On the move

to meaningful internet systems, OTM' 11, pages 647-656, Berlin, Heidelberg, 2011.

Springer-Verlag.

[15] Pautasso, C. Composing RESTful services with JOpera. In International Conference

on Software Composition 2009, volume 5634, pages 142-159, Zurich, Switzerland,

July 2009. Springer.

[16] Pautasso, C. RESTful web service composition with BPEL for REST. Data KnowI.

Eng., 68(9):851-866, September 2009.

[17] Rauf, I., Ruokonen, A., Systa, T., and Porres, I. Modeling a composite RESTful web

service with UML. In Proceedings of the Fourth European Conference on Software

Architecture: Companion Volume, ECSA ' 10, pages 253-260, New York, NY, USA,

2010. ACM.

[18] Ruokonen, A., Pajunen, L., and Systa, T. Scenario-driven approach for business

process modeling. Web Services, IEEE International Conference on, 0:123-130,

2009.

[19] Singhal, M., Chandrasekhar, S„ Ge, T., Sandhu, R„ Krishnan, R„ Ahn, G-J., and

Bertino, E. Collaboration in multicloud computing environments: Framework and

security issues. Computer, 46(2):76-84,2013.

[20] W3C, http://www.w3.org/TR/wsdl. Web Services Description Language (WSDL) 1.1,

2001.

[21] W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 7.2,2007. Last

visited December 2011.

[22] W3C, http://www.w3.org/Submission/wadl/. Web Application Description Language

(WADL), 2009.

[23] W3C, http://www.w3.org/. XML Path Language (XPath) 2.0 (Second Edition), 2010.

http://www.w3.org/TR/wsdl
http://www.w3.org/
http://www.w3.org/Submission/wadl/
http://www.w3.org/

Service Composition for End-Users 399

[24] Zhao, H. and Doshi, P. Towards automated RESTful web service composition. In

Web Services, 2009. ICWS 2009. IEEE International Conference on, pages 189-196,

July.

[25] Zhao, X., Liu, E., Clapworthy, G.J., Ye, N„ and Lu, Y. RESTful web service com-

position: Extracting a process model from linear logic theorem proving. In Next

Generation Web Services Practices (NWeSP), 2011 7th International Conference on,

pages 398-403, Oct.

Acta Cybernetica 21 (2014) 401-366.

Extensions to the CEGAR Approach on Petri Nets*

Ákos Hajduí András Vörösj Tamás Barthaf and Zoltán Mártonka*

Abstract

Formal verification is becoming more prevalent and often compulsory in

the safety-critical system and software development processes. Reachability

analysis can provide information about safety and invariant properties of the

developed system. However, checking the reachability is a computationally

hard problem, especially in the case of asynchronous or infinite state systems.

Petri nets are widely used for the modeling and verification of such systems.

In this paper we examine a recently published approach for the reachability

checking of Petri net markings. We give proofs concerning the completeness

and the correctness properties of the algorithm, and we introduce algorithmic

improvements. We also extend the algorithm to handle new classes of prob-

lems: submarking coverability and reachability of Petri nets with inhibitor

arcs.

Keywords: Petri Nets, reachability analysis, abstraction, CEGAR

1 Introduction

The development of complex, distributed systems, and safety-critical systems in

particular, requires mathematically precise verification techniques in order to prove

the suitability and faultlessness of the design. Formal modeling and analysis meth-

ods provide such tools. However, one of the major drawbacks of formal methods

is their computation and memory-intensive nature: even for relatively simple dis-

tributed, asynchronous systems the state space and the set of possible behaviors

can become unmanageably large and complex, or even infinite.

This problem also appears in one of the most popular modeling formalisms,

Petri nets. Petri nets have a simple structure, which makes it possible to use

strong structural analysis techniques based on the so-called state equation. As

structural analysis is independent of the initial state, it can handle even infinite

'This work was partially supported by the European Union and the European Social Fund
through the project FuturICT.hu (grant no. TAMOP-4.2.2.C-11/1/KONV-2012-0013) of VIKING
Zrt Balatonfured.

t Department of Measurement and Information Systems, Budapest University of Technology
and Economics, Budapest, Hungary. E-mail: vori0mit.bme.hu

^Institute for Computer Science and Control, MTA SZTAKI, Budapest, Hungary.

402 Ákos Hajdú, András Vörös, Tamás Bartha, and Zoltán Mártonka

state problems. Unfortunately, its pertinence to practical problems, such as reach-

ability analysis, has been limited. Recently, a new algorithm [13] using Counter-

Example Guided Abstraction Refinement (CEGAR) extended the applicability of

state equation based reachability analysis.

Our paper improves this new algorithm in several important ways. The authors

of the original CEGAR algorithm have not published proofs for the completeness

of their algorithm and the correctness of a heuristic used in the algorithm. In this

paper we analyze the correctness and completeness of their work as well as our

extensions. We prove the lack of correctness in certain situations by a counterex-

ample, and provide corrections to overcome this problem. We also prove that the

algorithm is incomplete due to its iteration strategy. We describe algorithmic im-

provements that extend the set of decidable problems, and that effectively reduce

the search space. We extend the applicability of the approach even further: we pro-

vide solutions to handle Petri nets with inhibitor arcs, and the so-called submarking

coverability problem. At the end of our paper we demonstrate the efficiency of our

improvements by measurements.

2 Background

In this section we introduce the background of our work. First, we present Petri

nets (Section 2.1) as the modeling formalism used in our work. Then we introduce

the counterexample guided abstraction refinement method and its application for

the Petri net reachability problem (Section 2.2).

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, providing

both structural and dynamical analysis. Formally, a Petri net is a tuple PN =

(P, T, E, W), where P is the set of places, T is the set of transitions, with P ^ 0 ^ T

and P n T = 0, E C (P x T) U (T x P) is the set of arcs and W : E Z + is the

weight function assigning weights w~(pj,U) to the edge (P j ,U) € E and w+{pj,ti)

to the edge (U,pj) G E [9].

A marking of a Petri net is a mapping m : P —\ Zq . A place p contains k tokens

under a marking m if m(p) = k. The initial marking is usually denoted by mo-

A transition t; € T is enabled in a marking m, if rn{pj) > w~(pj, £,) holds

for each pj G P with (P j ,U) G E. An enabled transition t, can fire, consuming

w~(pj,ti) tokens from places pj G P with (P j , t i) G E and producing w+(pj,ti)

tokens in places pj G P with (U,P j) G E. The firing of a transition i , in a marking

m is denoted by m[ti)m' where m' is the marking after firing £,.

A word ex G T* is a firing sequence. A firing sequence is realizable in a marking

m and leads to m', (denoted by m[<j)m'), if either m = m' and o is an empty

word, or there exists a realizable firing sequence w G T*, a transition ti G T, and a

marking m" such that m[w)m"[ti)m'. The Parikh image of a firing sequence o is a

vector p(cr) : T —> Zq , where p(cr)(U) is the number of the occurrences of t, in a.

Extensions to the CEGAR Approach on Petri Nets 403

Petri nets can be extended with inhibitor arcs to become a tuple P N i =

(PN,I), where I C (P x T) is the set of inhibitor arcs. There is an extra con-

dition for a transition f* G T with inhibitor arcs to be enabled: for each pj G P, if

(Pj,U) G I , then m(pj) = 0 must hold. Petri nets extended with inhibitor arcs are

Turing complete [10].

Reachabi l i ty problem. A marking m' is reachable from m if there exists a

realizable firing sequence o G T*, for which to[<t)to' holds. The set of all reachable

markings from the initial marking m 0 of a Petri net PN is denoted by R(PN, m0) .

The aim of the reachability problem is to check if TO' G R(PN, TOO) holds for a given

marking TO'.

We define a predicate as a linear inequality on markings of the form Am > b,

where A is a matrix and b is a vector of coefficients [6]. The aim of the submarking

coverability problem is to find a reachable marking TO' G R(PN, to0), for which the

given predicate Am' > b holds.

The reachability problem is decidable [8], but it is at least EXPSPACE-hard

[7]. Using inhibitor arcs, the reachability problem in general is undecidable [3],

State equat ion. The incidence matrix of a Petri net is a matrix C|p|X|T|i where

C(i,j) = w+(pi,tj) - w~(pi,tj). Let to and to' be markings of the Petri net, then

the state equation takes the form to + Cx = to'. Any vector x G (Zq) ' t ' fulfilling

the state equation is called a solution. Note that for any realizable firing sequence

a leading from to to to', the Parikh image of the firing sequence fulfills the equation

m + Cp(<r) = to'. On the other hand, not all solutions of the state equation are

Parikh images of a realizable firing sequence. Therefore, the existence of a solution

for the state equation is a necessary but not sufficient criterion for the reachability.

A solution x is called realizable if a realizable firing sequence o exists with p(<r) = x.

T-invariants. A vector x G (Zq) I t ' is called a T-invariant if Cx = 0 holds. A

realizable T-invariant represents the possibility of a cyclic behavior in the modeled

system, since its complete occurrence does not change the marking. However,

during firing the transitions of the invariant, some intermediate markings can be

interesting for us.

Solut ion space. Each solution x of the state equation TO + Cx = TO', can be

written as the sum of a base vector and the linear combination of T-invariants [13],

which can formally be written as x = b + JT niVi, where b is a base vector and n*

is the coefficient of the T-invariant y,.

2.2 The C E G A R approach

Counterexample guided abstraction refinement (CEGAR) is a general approach for

analyzing systems with large or infinite state spaces. The CEGAR method works

404 Ákos Hajdú, András Vörös, Tamás Bartha, and Zoltán Mártonka

on an abstraction of the original model, which has a less detailed state space repre-

sentation. During the iteration steps, the CEGAR method refines the abstraction

using the information from the explored part of the state space. When applying CE-

GAR on the Petri net reachability problem [13], the initial abstraction is the state

equation. Solving the state equation is an integer linear programming problem [5],

for which the ILP solver tool can yield one solution, minimizing a target function

of the variables. Since the algorithm seeks the shortest firing sequences leading to

the target marking, it minimizes the function f(x) = X R t x(t). The feasibility of

the state equation is a necessary, but not sufficient criterion for reachability, so the

following situations are possible:

• If the state equation is infeasible, the necessary criterion does not hold, thus

the target marking is not reachable.

• If the state equation has a solution which is realizable by some firing sequence,

the target marking is reachable.

• If the state equation has an unrealizable solution, it is a counterexample and

the abstraction has to be refined.

The purpose of the abstraction refinement is to exclude counterexamples from

the solution space without losing any realizable solutions. For this purpose, the

CEGAR approach uses linear inequalities over transitions, called constraints.

Constraints. Two types of constraints were defined by Wimmel and Wolf [13]:

• Jump constraints have the form \ti\ < n, where n £ Z+ , ti £ T and \ti\

represents the firing count of the transition t,. Jump constraints can be used

to switch between base vectors, exploiting their pairwise incomparability.

• Increment constraints have the form — n> where n, £ Z, n £ Zq ,

and ti € T. Increment constraints can be used to reach non-base solutions.

As an example, consider the Petri net in Figure 1(a) with the reachability prob-

lem (1,0,1,0) £ R{PN, (0,0,1,0)). There are two base vectors for this problem:

(1,0,0) (firing i0) and (0,1,1) (firing t\ and t2). The ILP solver yields the solution

(1,0,0) first, which is unrealizable, but using the jump constraint |t0| < 1, the ILP

solver can be forced to produce the realizable solution (0,1,1). Consider now the

Petri net in Figure 1(b) with the reachability problem (1,0,1) £ R{PN, (0,0,1)).

The only base vector for this problem is the vector (1,0,0) (firing to), which is

unrealizable. Using an increment constraint |fi| > 1, the ILP solver can be forced

to add the T-invariant {ti,¿2} to the new solution (1,1,1), which is realizable by

the firing sequence a = (ii, ¿2)-

2.2.1 Part ia l solutions

Given a Petri net PN = (P, T, E, W) and a reachability problem m' £ R(PN, m0),

a partial solution is a tuple ps = (C, x, a, r), where:

Extensions to the CEGAR Approach on Petri Nets 405

O R
P 2 t2 P1

Figure 1: Example nets for jump and increment constraints

• C is the set of (jump and increment) constraints, together with the state

equation they define the ILP problem,

• x is the minimal solution satisfying the state equation and the constraints in

• o G T* is a maximal realizable firing sequence, with p(cr) < x, i.e., each

transition can fire as many times as it is included in the solution vector x and

if it is enabled it must fire,

• r = x — p(cr) is the remainder vector.

Generat ing part ial solutions. Partial solutions can be produced from a solu-

tion vector x (and a constraint set C) by firing as many transitions as possible. For

this purpose, the algorithm uses a "brute force" method. The algorithm builds a

tree with markings as nodes and occurrences of transitions as edges. The root of

the tree is the initial marking mo, and there is an edge labeled by t between nodes

mi and m 2 if mi [t)m2 holds. On each path leading from the root of the tree to a

leaf, each transition f¿ can occur at most x(f¿) times. Each path to a leaf represents

a maximal firing sequence, thus a new partial solution. Even though the tree can

be traversed only storing one path in the memory at a time using depth-first search,

the size of the tree can grow exponentially. Some optimizations to reduce the size

of the tree are presented later in this section.

A partial solution is called a full solution if r = 0 holds, thus p(er) = x, which

means that <r realizes the solution vector x. For each realizable solution x of the

state equation there exists a full solution [13]. This full solution can be reached by

continuously expanding the minimal solution of the state equation with constraints.

Consider now a partial solution ps = (C, x, cr. r), which is not a full solution,

i.e., r / 0. This means that some transitions could not fire enough times. There

are three possible situations in this case:

1. x may be realizable by another firing sequence o', thus a full solution ps' =

(C, x, o', 0) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions can

be obtained.

C

406 Ákos Hajdú, András Vörös, Tamás Bartha, and Zoltán Mártonka

3. For transitions t £ T with r(t) > 0 increment constraints can be added to

increase the token count in the input places of t, while the final marking m!

must be unchanged. This can be achieved by adding new T-invariants to

the solution. These T-invariants can "borrow" tokens for transitions in the

remainder vector.

2.2.2 Generat ing constraints

J u m p constraints. Each base vector of the solution space can be reached by

continuously adding jump constraints to the minimal solution [13]. In order to

reach non-base solutions, increment constraints are needed, but they might conflict

with previous jump constraints. Jump constraints are only needed to obtain a

different base solution vector. However, after the computation of the base solution,

jump constraints can be transformed into equivalent increment constraints [13].

Increment constraints. Let ps = {C,x,cr,r) be a partial solution with r > 0.

This means that some transitions (in r) could not fire enough times. The algorithm

uses a heuristic to find the places and number of tokens needed to enable these

transitions. If a set of places actually needs n (n > 0) tokens, the heuristic estimates

a number from 1 to n. If the estimate is too low, this method can be applied again,

converging to the actual number of required tokens. The heuristic consists of the

following three steps:

1. First, the algorithm builds a dependency graph [11] to collect the transitions

and places that are of interest. These are transitions that could not fire,

and places that disable these transitions. Each source SCC1 of the depen-

dency graph has to be investigated, because it cannot get tokens from other

components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for each

source SCC. There are two sets of transitions, Ti C T and X.t C T. If one

transition in Ti becomes fireable, it may enable all the other transitions of

the SCC, while transitions in X i cannot activate each other, therefore their

token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC

from the information about the places and their token requirements. These

constraints will force transitions (with r(t) = 0) to produce tokens in the given

places. Since the final marking is left unchanged, a T-invariant is added to

the solution vector.

When applying the new constraint c, three situations are possible depending on

the T-invariants in the Petri net:

1 Source strongly connected component, i.e., one without incoming edges from other compo-
nents.

Extensions to the CEGAR Approach on Petri Nets 407

• If the state equation and the set of constraints become infeasible, this partial

solution cannot be extended to a full solution, therefore it can be skipped.

• If the ILP solver can produce a solution x + y (with y being a T-invariant),

new partial solutions can be found. If none of them helps getting closer to a

full solution, the algorithm can get into an infinite loop, but no full solution is

lost. A method to avoid this non-termination phenomenon will be discussed

later in this section.

• If there is a new partial solution ps' where some transitions in the remainder

vector could fire, this method can be repeated.

Theorem 1. (Reachability of solutions) [13] If the reachability problem has a so-

lution, a realizable solution of the state equation can be reached by continuously

adding constraints, transforming jumps before increments.

2.2.3 Opt imizat ions

Wimmel and Wolf [13] also presented some methods for optimization. The following

are important for our work:

• S tubborn set: The stubborn set method [11] investigates conflicts, concur-

rency and dependencies between transitions, and reduces the search space by

filtering the transitions. The stubborn set method usually leads to a search

tree with lower degree.

• Subtree omission: When a transition has to fire more than once (x(i) > 1),

the stubborn set method may not provide an efficient reduction. The same

marking is often reached by firing sequences that are only different in the order

of transitions. During the abstraction refinement, only the final marking of

the firing sequence is important. If a marking m' is reached by firing the

same transitions as in a previous path, but in a different order, the subtree

after m' was already processed. Therefore, it is no longer of interest.

• Fi l tering T-invariants: After adding a T-invariant y to the partial solu-

tion ps = (C,x,o,r), all the transitions of y may fire without enabling any

transition in r, yielding a partial solution ps' = (C',x + y,o',r). The final

marking and remainder vector of ps' is the same as in ps, therefore the same

T-invariant y is added to the solution vector again, which can prevent the

algorithm from terminating. However, during firing the transitions of y, the

algorithm could get closer to enabling a transition in r. These intermediate

markings should be detected, and be used as new partial solutions.

3 Theoretical results

In this section we present our theoretical results with regard to the correctness and

completeness of the original algorithm.

408 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka

3.1 Correctness

Although Theorem 1 states that a realizable solution can be reached using con-

straints, we found that in some special cases the heuristic used for generating

increment constraints can overestimate the required number of tokens for proving

reachability. We prove the incorrectness by a counterexample, for which the original

algorithm [13] gives an incorrect answer.

Consider the Petri net in Figure 2 with the reachability problem (0,1,0,0,1,

0,0,2) G R(PN, (1,0,0,0,0,0,0,2)), i.e., we want to move the token from p0 to

Pi and p4. The example was constructed so that the target marking is reachable

by the firing sequence crs = (£i, £21 £o, £5. £6, £3, £7, £4)1 realizing the solution vector

x , = (1,1,1,1,1,1,1,1).

The CEGAR algorithm does the following steps. First, it finds the minimal so-

lution vector xo — (1,0,1,1,1,0,0,0), i.e., it tries to fire the transitions to, £2, £3, £4-
From these transitions only to is enabled, therefore the only partial solution is

ps0 = (0,Xo, op = (t0),r0 = (0,0,1,1,1,0,0,0)). At this point the algorithm looks

for an increment constraint. The dependency graph contains transitions £2, £3, £4
(since they could not fire) and places PO , P2 ,P3 (because they disable the previous

transitions). The only source SCC is the set containing one place po with zero

tokens (because £0 has consumed one token from there). The algorithm estimates

that three tokens are needed in po, where only £1 can produce tokens. Therefore,

the T-invariant {£1, £5,£6,£7} is added twice to the solution vector. This invari-

ant is constructed so that for each of its firing, a token has to be produced in

places P2 ,P3,P4, which token can no longer be removed. In the target marking only

one token can be present in these places, therefore the algorithm cannot find any

realizable solution, which yields the incorrect answer "not reachable".

Notice that the problem is the over-estimation of tokens required in p0 . Without

forcing t0 to fire, the algorithm could get a better estimation. This would imply

that the invariant {£1, £5, to, £7} is added only once to the solution vector, producing

the realizable solution xa. The problem is that the algorithm always tries to find

P7 £J PO t0 P I

Figure 2: Counterexample for correctness

Extensions to the CEGAR Approach on Petri Nets 409

maximal firing sequences, though some transitions would not be practical to fire

(to in the example above). Due to this, the estimated number of tokens needed in

the final marking of the firing sequence may not be correct.

3.1.1 Detect ing over-estimation

Our improved algorithm counts the maximal number of tokens in each place during

the firing sequence of the partial solution into a vector m m a x . If the final marking

is not the maximal regarding a SCC, the algorithm might have over-estimated the

required number of tokens. This can be detected by ordering the intermediate

markings. Formally: an over-estimation can occur if a place p exists in a SCC, for

which mmax(p) > m'{p) holds, where ml is the final marking of the firing sequence.

If such situation occurs and we do not find a full solution, we say that the problem

cannot be decided. Moreover, we also developed a new method that tries to find

solutions in such situations. Our first idea was to forget the original estimation (n)

and estimate one instead. However, we found that over-estimation is not a problem

in most cases: the algorithm still finds a realizable solution, but not the minimal.

Estimating one means a slow convergence to the actual number of missing tokens,

so at first we always try with the estimation n, but if no full solution is found under

that subtree, we backtrack and start a new search with n = 1. This new approach

can handle the counterexample presented in Figure 2. After no full solution is

found by adding the T-invariant {fi, to,tj} twice, we backtrack to pso and try

to produce only one token in po- This implies that the {ti,ts,te, ¿7} is added only

once to the solution vector, yielding the realizable solution xs.

This way we can not only detect the possibility of over-estimation, but we

can also find the solution in most cases. However, this method also has some

limitations, which we present with the following example. Consider the Petri net in

Figure 3 with the reachability problem (1,0,1,1) € R(PN, (0,1,0,1)), i.e., moving

the token from pi to p2 and producing a token in po- A possible solution is the

vector xs = (1,1,1,1), realized by the firing sequence os = (¿3, ¿i> ¿2)-

t2 P2 t0

Pi

Figure 3: Example on the limitations of the new approach

The algorithm does the following steps. It finds that the minimal solution is

xo = (1,1,0,0), i.e., firing to and t,\. Only t\ is enabled, thus one partial solution

ps0 = (0, xo, cto = (ti), ro = (1,0,0,0)) can be found. The marking reached by a0

is (0,0,1,1), where n = 1 token is missing from pi (to enable to). None of the

410 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka

transitions can produce tokens in pi , so the algorithm cannot find any constraint.

The algorithm detects over-estimation because pi had one token before firing t\.

Even so, a new search cannot be started, since the original estimation is also n = 1.

The problem is that the heuristic tries to produce tokens in a place (p4), which

lacks tokens in the final marking, but had the required number of tokens at some

point of the firing sequence (00). Without forcing fy to fire, a token would be

missing from p2, where the T-invariant {t2, £3} could help. Finding the solution in

such situations is an aim of our future work.

3.2 Completeness

To our best knowledge, the completeness of the algorithm has neither been proved

nor disproved yet. When we examined the iteration strategy of the abstraction

loop, we found a whole subclass of nets that cannot be solved with this strategy.

As an example, consider the Petri net in Figure 4 with the reachability problem

(1,1,0,0) G R(PN, (0,1,0,0)), i.e., we want to produce a token in p0. We con-

structed the net so that the firing sequence os = (ti,ti,t2,t3,t3,to,t\,t2, £5) solves

the problem. The main concept of this example is that we lend an extra token in

pi indirectly using the T-invariant {¿4, is}•

When applying the algorithm on this problem, the minimal solution vector is

xo = (1,0,0,0,0,0), i.e., firing to- Since to is not enabled, the only partial solution is

ps0 = (0, xo, CTQ = (),ro = (1,0,0,0,0,0)). The algorithm finds that an additional

token is required in pi and only t3 can satisfy this need. With an increment

constraint ci : |t3| > 1, the T-invariant {t i , t 2 , t 3} is added to the new solution

vector x\ = (1,1,1,1,0,0), giving us one partial solution psi = ({cij.aq.cri =

(¿1 t ^ 3) 1 = r0). Firing the invariant {f i , f2 , t3} does not help getting closer to

enabling £0, since no extra token can be "borrowed" from the previous T-invariant.

The iteration strategy of the original algorithm does not recognize the fact that an

extra token could be produced in p3 (using £4) and then moved in p4 , therefore it

cannot decide reachability.

<1 P2

U

t3 P3 h

Figure 4: Counterexample of completeness

Extensions to the CEGAR Approach on Petri Nets 411

4 Algorithmic contributions

In this section we present our algorithmic contributions. In Section 4.1 we show

some classes of problems, for which the original algorithm cannot decide reachabil-

ity, but our improved algorithm solves these problems. In Section 4.2 we present two

extensions of the algorithm, solving submarking coverability problems and handling

Petri nets with inhibitor arcs.

4.1 Improvements

In the previous section we proved that the algorithm is incomplete, but during

our work we found some opportunities to extend the set of decidable problems.

Moreover, we developed a new termination criterion, which we prove to be correct,

i.e., no realizable solution is lost using this criterion.

4.1.1 New ordering of the intermediate markings

When a partial solution ps = (C, x, cr, r) is skipped using the T-invariant filtering

optimization, the original algorithm checks if it was closer to enabling a transi-

tion t in the remainder during the firing sequence o. This is done by "counting

the minimal number of missing tokens for firing t in the intermediate markings

occurring" [13]. We found that this criterion is not general enough: in some cases

the total number of missing tokens may not be less, but they are missing from

different places, where additional tokens can be produced. In our new approach,

we use the following definition:

Def in i t i on 1. An intermediate marking mi is considered to be better than the final

marking m', if there is a transition t £ T, r(t) > 0 and place p with (p, t) £ E, for

which the following criterion holds:

m'(p) < w~(p,t) A mfip) > m'(p). (1)

The left inequality in the expression means that in the final marking t is disabled

by the insufficient amount of tokens in p. This condition is important, because we

do not want to consider places that already have enough tokens to enable t. The

right inequality means that p has more tokens in the intermediate marking mi

compared to the final marking m!.

Theorem 2. Definition 1 is a total ordering between the intermediate markings

occurring in the firing sequence cr of a partial solution and the final marking reached

by <7.

Proof. We first show that Definition 1 includes the original ordering of the inter-

mediate markings. When the original criterion holds, the total number of missing

tokens for enabling t at the marking mi is less than at m'. This means that at least

one place p must exist, which disables t, but mfip) > m'(p), thus (1) must hold.

Furthermore, Definition 1 also recognizes markings that are pairwise incomparable,

because if there is at least one place p with lesser tokens missing, (1) holds. •

412 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka

Coro l l a ry 1. The new ordering of intermediate markings extends the set of decid-

able problems.

Definition 1 is more general than the original criterion, hence it does not reduce

the set of decidable problems. On the other hand, we give an example when the orig-

inal criterion prevents the algorithm from finding the solution. Consider the Petri

net in Figure 5 with the reachability problem (1,0,0,1) € R(PN, (0,1,0,1)), i.e.,

moving the token from p\ to po- The minimal solution vector is XQ = (1,0,0,0,0),

i.e., firing t0, which is disabled by p2, therefore the only partial solution is pso =

(0,xo,cro = (),r0 = (1,0,0,0,0)). The algorithm looks for increment constraints

and finds that only t\ can produce tokens in p2. Consequently, the T-invariant

{ti,t2} is added to the solution vector x\ = (1,1,1,0,0). There is one partial so-

lution psi = ({|fi| > l},2Li,<7i = {t\,t2),ri = ro) for xx, where the T-invariant is

fired, but t0 still could not fire. This partial solution is skipped by the T-invariant

filtering optimization, and in all of the intermediate markings of <T\, totally one

token is missing from the input places of to. By using the original criterion, the

algorithm terminates, leaving the problem as undecided. By using Definition 1, less

tokens are missing from p2 after firing t\ than in the final marking. Continuing from

here, to is disabled by pi, where t3 can produce tokens, therefore the T-invariant

{t3. t.i} is added to the new solution vector x2 = (1,1,1,1,1). A full solution is

found for x2 by the realizable firing sequence o2 = {t\,t3,t(h t2, tf).

P3 t3

P2

Figure 5: Example net depicting the usefulness of the new ordering

4.1.2 T-invariant filtering and subtree omission

Using T-invariant filtering and subtree omission optimizations together can prevent

the algorithm from finding realizable solutions. The order of transitions in the firing

sequence of a partial solution does not matter, except in one case. When a partial

solution is skipped, the algorithm checks for an intermediate marking that was

closer to firing a transition in the remainder vector. By using subtree omission,

intermediate markings can be lost.

As an example consider the Petri net in Figure 6 with the reachability problem

(1,0,0,0,3) £ R(PN, (0,0,0,0,3)), i.e., we want to produce a token in p0• A

Extensions to the CEGAR Approach on Petri Nets 413

possible solution is the vector xs = (1,1,1,2,2,3,3) realized by the firing sequence
as = {to,te,to,ti,t4,t2,to,t\,to,to,t5,te,,to).

Figure 6: An example where the order of transitions matter

Here we present only the interesting points during the execution of the algo-

rithm. As a minimal solution, the algorithm tries to fire to, but it is disabled by the

places p\,pi,po- The algorithm searches for increment constraints. All the three

places are in different SCCs, so the algorithm first tries to enable to by borrowing

a single token for all three places. By the T-invariant {¿i,£2, - • •,£e} a token is

carried through places PI,P2,P3, which does not enable TO, but there are interme-

diate markings in which the enabling of to is closer. Continuing from any of these

intermediate markings, another token is borrowed in the places P\,P2,P3, but to is

not enabled yet. Here comes the different order of transitions into view:

• If the two tokens are carried through places P\,P2,P3 together, there are

intermediate markings that are closer to firing to, because previously two

tokens were missing, but now only one. Continuing from these markings a

third token is borrowed in places P\,P2,P3, enabling f0 and yielding a full

solution.

• If the two tokens are carried through places P\,P2,P3 separately (i.e., a token

is carried through the places, while the other is left in p4, and this procedure is

repeated), there are no intermediate markings of interest, because two tokens

are still missing to enable to- In this case the algorithm will not find the full

solution.

The order of transitions is non-deterministic, thus it is unknown which order

will be omitted. Therefore, in our approach we reproduce all the possible firing

sequences without subtree omission when a partial solution is skipped, and check

for intermediate markings in the full tree. Although this may yield a computational

overhead in some cases, we might lose full solutions otherwise.

4.1.3 New terminat ion criterion

We have developed a new termination criterion, which can efficiently cut the search

space without losing any full solutions. When generating increment constraints for

a partial solution ps, as a first step the algorithm finds the set of places P' C P

414 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka

where tokens are needed. Then it estimates the number of tokens required (n).

At this point, our new criterion checks if there exists a marking m', for which the

following inequalities hold:

The first inequality ensures that at least n tokens are present in the places of P',

while the others guarantee that the number of tokens in each place is non-negative.

These inequalities define a submarking coverability problem. Using the ILP solver,

we can check if the modified form of the state equation (which we discuss in Section

4.2.1) holds for this problem. If the state equation does not hold, it is a proof that

no such marking is reachable where the required number of tokens are present in

the places of P'. Thus, ps can be omitted without losing full solutions.

This approach can also extend the set of decidable problems compared to the

former algorithm. Consider the Petri net in Figure 7 with the reachability problem

(1,1,0) G R(PN, (1,0,0)), i.e., firing i0 to produce a token in p\. The algorithm

would add the T-invariant , ¿2} again and again to enable io- Using T-invariant

filtering we cannot decide whether there is no full solution or the algorithm lost it.

Using our new approach we can prove that no marking exist, where two tokens are

present in po, therefore no full solution exists.

4.2 Extensions

In this section we present two extensions of the CEGAR approach: solving sub-

marking coverability problems and handling Petri nets with inhibitor arcs.

4.2.1 Submark ing coverability problem

In Section 2 we introduced predicates of the form Am' > b, where A is a matrix

and b is a vector of coefficients. In order to use the state equation, this condition

on places must be transformed to a condition on transitions.

At first we substitute m' in the predicate Am' > b with the state equation

mo + Cx = m', which results inequalities of the form {AC):x > b — Atoq. This set

m'(pi) > n

(2) Pi€P'

Vpj £ P : m'ipj) > 0.

Figure 7: Example net for the new filtering criterion

Extensions to the CEGAR Approach on Petri Nets 415

of inequalities can be solved as an ILP problem for transitions. The extended algo-

rithm uses this modified form of the state equation, and expands it with additional

(jump or increment) constraints.

4.2.2 Petr i nets w i th inhib i tor arcs

The main problem with inhibitor arcs is that they do not appear in any form in

the state equation, which is used as an abstraction. Therefore, a solution vector

may be unrealizable because inhibitor arcs disable some transitions. In this case

tokens must be removed from some places. Our strategy is to add transitions to

the solution vector, which consume tokens from such places. Increment constraints

are suitable for this purpose, but they have to be generated in a different way:

1. The first step is to construct a dependency graph similar to the original one.

The graph consists of transitions that could not fire due to inhibitor arcs and

places that disable these transitions. The arcs of the graph have an opposite

meaning: an arc from a place to a transition means that the place disables the

transition, while the other direction means that firing the transition would

decrease the number of tokens in the place. Each source SCC of the graph is

interesting, because tokens cannot be consumed from them by another SCC.

2. The second step is to estimate the minimal number of tokens to be removed

from each source SCC. There are two sets of transitions as well, T) C T and

Xi C T. If one transition in T, becomes fireable, it may enable all the others

in the SCC, while the needs of transitions in X i must be fulfilled at once.

3. The third step is to construct an increment constraint for each source SCC,

by firing transitions (with r(t) = 0) to consume the required number of tokens

from the place of the SCC.

When a partial solution is not a full solution, and there are transitions disabled

by inhibitor arcs, the previous algorithm is used to generate the constraint. If there

are transitions disabled by normal arcs as well, both the original algorithm and the

modified version must be used, taking the union of the generated constraints.

Inhibitor arcs also affect some of the optimization methods:

• Stubborn sets currently do not support inhibitor arcs.

• Using T-invariant filtering, an intermediate marking is now of interest when

it has less tokens in a place, which is connected by inhibitor arc to a transition

that cannot fire.

• Our new termination criterion is extended to check whether a reachable mark-

ing exists where the required number of tokens are removed.

5 Evaluation

We implemented our algorithm in the PetriDotNet [1] framework to evaluate its

performance. The run-time results can be seen in Table 1, where TO refers to

416 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka

Table 1: Measurement results for well-known benchmark problems

Mode l S A R A Saturat ion O u r a lgor i thm

CP-NR 10 0,2 s - 0,5 s

CP_NR 25 I l l s - 2s

CP_NR 50 TO - 16s

MAPK 0,2 s - I s

Kanban 1000 0,2 s TO I s

FMS 1500 0,5 s TO 5s

SlottedRing 50 - 4s 433 s

DPhil 50 - 0,5 s 45 s

an unacceptable run-time (> 600 seconds). The measured models are published

in [4, 12, 13]. The numbers in the model names represent the parameters. We

also measured a highly asynchronous, infinite state space consumer-producer model

constructed by us (CP_NR in the table).

We compared our solution to the original algorithm, which is implemented in

the SARA tool [2]. Our implementation is developed in the C # programming

language, while the original is in C/C++. This causes a constant speed penalty

for our algorithm. Moreover, our algorithm examines more partial solutions, which

also yields computational overhead. However, the algorithmic improvements we

introduced in this paper significantly reduce the computational effort for certain

models (see the consumer-producer model). In addition, our algorithm can in many

cases decide a problem that the original one cannot.

We also compared our algorithm to the well-known saturation-based model

checking algorithm [4], implemented in our framework [12]. The lesson learned is

that if the ILP solver can produce results efficiently (Kanban and FMS models), the

CEGAR approach is faster by an order of magnitude than the saturation algorithm.

When the size of the model makes the integer linear programming task difficult, it

dominates the run-time, and saturation wins the comparison.

6 Conclusions

The theoretical results presented in this paper are twofold. On one hand, we proved

the incompleteness of the iteration strategy of the original CEGAR approach by

constructing a counterexample. We also presented a counterexample that proved

the incorrectness of a heuristic used in the original algorithm. We corrected this

deficiency by improving the algorithm to detect such situations. On the other hand,

our algorithmic improvements reduce the search space, and enable the algorithm to

solve the reachability problem for certain, previously unsupported classes of Petri

nets. In addition, we extended the algorithm to solve two new types of problems,

namely submarking coverability and handling Petri nets with inhibitor arcs. We

demonstrated the efficiency of our improvements with measurements.

Extensions to the CEGAR Approach on Petri Nets 417

References

Homepage ol the PetriDotNet framework.

http://petridotnet.inl.mit.bme.hu/. [Online; accessed 03-10-2014],

Homepage ol the Sara model checker.

http://service-technology.org/sara/index.html. [Online; accessed 03-10-2014],

Chrzastowski-Wachtel, Piotr. Testing Undecidability ol the Reachability in

Petri nets with the Help ol 10th Hilbert Problem. In Application and Theory of

Petri Nets 1999, volume 1639 ol Lecture Notes in Computer Science. Springer.

Ciardo, G., Marmorstein, R., and Siminiceanu, R. Saturation unbound. In

Proc. Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 379-393. Springer, 2003.

Dantzig, George B. and Thapa, Mukund N. Linear programming 1: introduc-

tion. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

Esparza, Javier, Melzer, Stephan, and Silakis, Joseph. Verification of safety

properties using integer programming: Beyond the state equation, 1997.

Lipton, R.J . The Reachability Problem Requires Exponential Space. Research

report, Yale University, Dept. of Computer Science. 1976.

Mayr, Ernst W. An algorithm for the general Petri net reachability prob-

lem. In Proceedings of the Thirteenth Annual ACM Symposium on Theory of

Computing, STOC '81, pages 238-246, New York, NY, USA, 1981. ACM.

Murata, Tadao. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541-580, April 1989.

Peterson, James Lyle. Petri Net Theory and the Modeling of Systems. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1981.

Valmari, Antti and Hansen, Henri. Can stubborn sets be optimal? In Appli-

cations and Theory of Petri Nets, volume 6128 of Lecture Notes in Computer

Science, pages 43-62. Springer, 2010.

Vörös, A., Bartha, T., Darvas, D., Szabó, T., Jámbor, A., and Horváth, A.

Parallel saturation based model checking. In ISPDC, Cluj Napoca, 2011. IEEE

Computer Society.

Wimmel, Harro and Wolf, Karsten. Applying CEGAR to the Petri net state

equation. In Proc. Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), pages 224-238. Springer, 2011.

http://petridotnet.inl.mit.bme.hu/
http://service-technology.org/sara/index.html

Acta Cybernetica 21 (2014) 419-437.

Designing and Implementing Control Flow Graph

for Magic 4th Generation Language

Richárd Dévai* Judit Jász* Csaba Nagy* and Rudolf Ferenc*

Abstract

A good compiler which implements many optimizations during its compi-

lation phases must be able to perform several static analysis techniques such

as control flow or data flow analysis. Besides compilers, these techniques

are common for static analyzers as well to retrieve information from source

code, for example for code auditing, quality assurance or testing purposes.

Implementing control flow analysis requires handling many special structures

of the target language. In our paper we present our experiences in imple-

menting control flow graph (CFG) construction for a special 4th generation

language called Magic. While we were designing and implementing the CFG

for this language, we identified differences compared to 3rd generation lan-

guages mostly because of the unique programming technique of Magic (e.g.

data access, parallel task execution, events). Our work was motivated by our

industrial partner who needed precise static analysis tools (e.g. for quality

assurance or testing purposes) for this language. We believe that our experi-

ences for Magic, as a representative of 4GLs, might be generalized for other

languages too.

1 Introduction

Control flow analysis is a common technique to determine the control flow of a

program via static analysis. The outcome of this analysis is the Control Flow Graph

(CFG), which describes the control relations between certain source code elements

of the application. A CFG is a directed graph: its nodes are usually basic blocks

representing the statements of the code that are executed after each other without

any jumps. These basic blocks are connected with directed edges representing the

jumps in the control flow. A CFG is a useful tool for code optimization techniques

(e.g. unreachable code elimination, loop optimization or dead code elimination).

The first publications of using control flow analysis are from the 70s [1] and 80s [4,

10, 21], but since then most of the compilers have implemented this kind of analysis

to construct a CFG and implement optimization phases by using it.

*FrontEndART Software Ltd, E-mail: devai8frontendeLrt.com
t Department of Software Engineering, University of Szeged, Hungary, E-mail:

{j asy,ncsaba,f erenc}8inf.u-szeged.hu

420 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

Although the basic structure of a CFG is quite common, the methods con-

structing it for applications are rather language dependent. Identifying control

dependencies in special structures of the target language may result in special al-

gorithms. Moreover, some program elements or applications may require minor

modifications in the structure of the CFG (e.g. nodes like entry nodes).

In our paper, we present our experiences in implementing Control Flow Graph

construction for a special language called Magic. This language is a so-called 4th

generation language [22] because the programmer does not write source code in the

traditional way, but he or she implements the application 'at a higher level' with

the help of an application development environment (Magic xpa1). This unique

programming technique has many differences compared to 3GLs which are the most

common languages today (Java, C, C++, C# , etc.). Due to the programming

style of Magic, we had to revise traditional concepts like program components,

expressions and variables during the design of a CFG for Magic applications.

The main contributions of this paper are (1) development of a CFG construc-

tion technique for applications developed in Magic xpa, (2) identification of CFG

implementation differences in a 4GL context as opposed to 3GLs.

Our work was motivated by our industrial partner who needed a tool set to

perform precise static analysis for code auditing and to support their testing pro-

cesses. In the case of code auditing, the CFG is an important input for static code

checker algorithms, while in the case of testing, the CFG is an input for algorithms

which generate test scripts for automatic UI testing. Our experiences in Magic, as a

representative of 4GLs could provide a good basis to implement CFG construction

for other 4GLs too.

2 Related work

Control flow is a widely used information container for example in the compiler

programs of 3GLs. The method of a CFG construction is well defined in [17]. We

need to discover and identify the statements, and define basic blocks by selecting

leader statements. Key steps are to define the structures to handle control passing,

and the elements for those items of logic which implicitly influence the behavior of

the control flow.

Control flow analysis has many applications, such as program transformations

or source code optimizations in compilers2 [11], rule checkers of analyzer tools [6,

7, 20], security checkers [5], test input generator tools3 [25], or program slicing [23].

Program dependence analysis approaches are also based upon control dependencies

computed by control flow analysis [9].

The implementation of control flow analysis might differ for different languages.

There are many papers published about dealing with higher-order languages (e.g.

Scheme), for instance the work of Ashley et al. [2] and the PhD thesis of Ayers [3]

'Magic Software Enterprises Website: http://vww.magicsoftwaire.com
2GCC Internals Online Documentation: http://gcc.gnu.org/onlinedocs/gccint/
3Prasoft Products: http://www.parasoft.com/jsp/products.jsp

http://vww.magicsoftwaire.com
http://gcc.gnu.org/onlinedocs/gccint/
http://www.parasoft.com/jsp/products.jsp

Designing and Implementing Control Flow Graph... 421

both summing up further works too [10, 21]. An extensive investigation had been

done for functional languages too, which was recently summed up by Midtgaard in

a survey [16].

However, CFG solutions for 4GLs are really limited. E.g. ABAP, the program-

ming language of SAP is a popular 4GL and there are only few published flow

analysis techniques which mostly deal with workflow analysis [13, 24].

In our previous work [19] we implemented a reverse engineering tool set for

Magic and we found a real need to adapt some of these techniques to the language.

Besides our work, Magic Optimizer4, as a code auditing tool also shows this ne-

cessity. This tool checks for violations of coding rules (i.e. 'best practices'), and

it is able to perform optimization checks and further analyses to give an extended

overview of every part of a Magic application.

3 Specialties of a Magic Application

In the early 80's Magic Software Enterprises introduced a 4th generation language,

called Magic. The main concept was to write an application in a higher level meta

language (using already existing solutions for instance for data handling and user

management) and let an application generator engine create the final application.

A Magic application was runnable on popular operating systems such as DOS

and Unix, so applications were easily portable. Magic evolved and new versions

were released, uniPaaS and lately Magic xpa. Latest releases support modern

technologies such as RIA, SO A and mobile development.

The unique meta model language of Magic contains instructions at a higher

level of abstraction, closer to business logic. When one develops an application in

Magic, he or she actually programs the Magic Runtime Application Environment

(MRE) using its meta model. This meta model is what really makes Magic a Rapid

Application Development and Deployment tool.

Magic comes with many GUI screens and report editors as it was invented to

develop business applications for data manipulation and reporting. The most im-

portant elements of Magic are the various entity types of business logic, namely

the data tables. A table has its columns which are manipulated by a number of

programs (consisting of subtasks) binded to forms, menus and help screens. These

items may also implement functional logic using logic statements, e.g. for select-

ing variables (virtual variables or table columns), updating variables, conditional

statements.

The main building blocks of a Magic application are defined in repositories. For

example in the Data Sources repository one can define Data Objects. These are

essentially the descriptions of the tables in a database. Using these objects Magic

is able to handle several database management systems.

The logic of an application is implemented in the programs stored in the Pro-

grams Repository. Programs are the core elements of an application. These are

executable entities with several sub tasks. Programs or their tasks interact with

4Magic xpa tools: http://www.magic-optimizer.com/

http://www.magic-optimizer.com/

422 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

the user through forms to show the results of the implemented logic. Forms are

also parts of tasks or programs.

Developers can edit a program with the help of the different views. The main

views are the followings:

Da t a View. Declares which Data Objects are bound to the programs. The binding

generally means some variable declaration, where these declarations can be

real or virtual. A real declaration connects a variable to a data table column,

while a virtual declaration stores some precomputed data.

Logic View. Defines Logic Units of a program. A task has a predefined evaluation

order determined bz so-called execution levels, and Logic Units are the parts

of a task to handle the different execution levels. E.g. Task Prefix is the first

Logic Unit which is executed to initialize a task. Actually, Logic Units are

the units where the developer can write 'code' like in a 3GL. We can define

statements here to perform calculations, manipulate data, call sub tasks, etc.

Statements appear as Logic Lines in the Logic Unit.

Form View. Defines the properties of a window (e.g. title, size and position).

Elements of a window can be typical UI elements such as controls or menus.

A window is represented by a Form Entry in which we can use many built-in

controls or our custom controls too.

As it can be seen, a Magic 4GL application differs from the programs developed

in lower level languages. Developers can concentrate on implementing the business

logic and the rest is done by Magic xpa.

4 Control flow graph construction

In this section, we discuss the main definitions and steps of the control flow con-

struction for 3rd generation languages and introduce the specialties of the control

flow graph construction for Magic as a representative of 4GLs.

4.1 Definitions and general steps

A control flow graph is a graph representation of the computation and the control

flow in a program, as it can be seen in an example in Figure 1. The nodes of a

CFG are basic blocks represented by rectangles. Each basic block represents a set

of statements that are executed after each other sequentially. Branching can only

exist at the end of blocks, after the execution of their last encapsulated statement.

The first step in the control flow creation is to determine the starting points of

basic blocks [17]. These statements are called as leaders, and a leader can be:

• the first statement of a program,

• any statement that is the target of a conditional or unconditional branch

statement,

Designing and Implementing Control Flow Graph... 423

Control Flow Graph

Figure 1: CFG of a simple conditional structure.

• any statement that immediately follows a conditional or unconditional branch

statement,

• any statement that immediately follows a method invocation statement5.

If we know the sequence of statements in a program and the leaders of basic

blocks, we can determine the blocks by enumerating their statements from one

leader to another, but not including the next leader or the end of the program.

Compilers and source code analyzers first construct an intermediate representation

of the source code, called abstract syntax tree (AST) that implicitly describes

the sequence of statements. With the traversal of the AST we can determine

the sequence of statements, and if we want to build the control flow with finer

granularity, we can examine the evaluation order of the expressions. We will discuss

finer representations under the examination of Magic expressions and call types in

Section 5.

In general, the control flow information of methods, procedures or the subrou-

tines of a program are represented individually. Due to technical reasons, each of

these has two special kinds of basic blocks. The Entry block represents the entering

of a procedure, while the Exit block represents the returning from a called proce-

dure. The potential control flows among procedures are represented as call edges.

A connected control flow graph of a procedure with the call information gives the

so-called interprocedural control flow graph (ICFG) of a program. Figure 2 shows

an example of the ICFG, where call edges are represented as arrow-headed dashed

lines between the call site and the Entry block of the called procedure, and the

Exit block and the return statement in the caller ICFG component. In some cases,

detecting procedure boundaries is not an easy task, and a call target or a branch

instruction cannot be determined unambiguously. The earlier situation commonly

appears in binary codes [12], while the later is typical in the presence of function

pointers or virtual function calls in higher level languages. The problems appeared

in 4GLs are discussed in the rest of this section.

5 Method invocations should not be basic block boundaries in all cases only if we need compute
some summarized information at the call sites in our connected application.

424 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

Program Interprocedural C F G

y

Figure 2: Example ICFG.

4.2 Challenges in Magic

Like compiler programs or other software analyzer tools do it, our first step is

also to create an intermediate representation of a Magic application. We call this

representation the Magic Abstract Syntax Graph (ASG)and its structure is defined

by the Magic Schema [18]. The ASG allows us to traverse and process every

required element of a Magic application in a well-defined hierarchical graph format

through an API to determine the execution order of Magic statements. Nodes of the

ASG have all the necessary attributes that can affect the control flow. E.g. ASG

contains the propagation information of Event Handlers, which can terminate the

execution of other event handlers, or the wait attribute of Raise Event, which

determines the execution point of the given event.

Developing an application in Magic requires a unique way of thinking since

the programming language is unique itself. However this programming language

preserves some of the main characteristics of procedural languages. Mostly, the

main logic of an application can be programmed in a procedural way via control

statements in programs and their subtasks. Programs can call each other and they

can call their subtasks. Also, tasks can use variables for their computations, and

they can have branches within their statements. These structures of the language

make it possible to adapt the CFG construction of 3GLs to Magic 4GL. For example,

for every potential target of the call sites of Magic (task, event handler, developer

function) we make an intraprocedural control flow graph and we connect these

graphs by call edges to get the ICFG. However, there are some structures in the

language which make harder to construct the CFG of an application. Here, we

discuss the challenges which we face in later sections.

Tasks architecture has a special event-based execution system. There are

different task types for different operations. For example, online tasks interact

with the user and batch tasks run in background without any user interaction.

Each task type has its own levels (e.g. task, record) and the developer can operate

these with the so-called Logic Units. A user action or a state change in a program

Designing and Implementing Control Flow Graph... 425

can trigger predefined events that are also handled by the Logic Units of tasks. So,

the statements (Logic Lines) of these Logic Units get executed if a certain event

triggers them. The most challenging step to construct the CFG of a Magic program

is to discover every circumstance that can change the flow of the control among

Logic Units and Logic Lines. We have to understand and represent the effect of

property changes which can influence the behavior of execution, and represent it in

a well describing form.

A Raise Event Logic Line raises an event which is later handled by an

Event Logic Un i t . When an event is raised, the MRE immediately looks for

the last available handler in the given task, and gives the control to the handler.

This is the simplest case, the synchronous case. However, we could raise events

asynchronously; or set the scope of handlers as they could be handled by parent

tasks too, or only by the task which raised them; or every matching handler could

terminate the chain of handlers if propagate property is set to 'no'. Describing the

proper event handler chains within the CFG requires a complex traversal of logic

units in the task hierarchy with respect to the influencing attributes. Our model is

limited to those events which are raised by a code element or a form item.

D a t a access is supported with a rich toolset in Magic to access databases.

Magic provides support to many database management systems (RDBMSs) by

handling connection, transactions and generation of queries. In general, we can

choose from two options to perform our transactions. In the Physical mode other

DB users see our changes in RDBMS log and we use the locking system of the

DB server. In the Deferred mode Magic xpa is responsible for storing our changes

and committing them when we have assembled our transaction within a running

task. Besides the transactional modes, we have to select the method of update

process for the records we use in the transactions. Different strategies give us

opportunity to handle concurrency and integrity on record updates. During the

creation of the CFG we have to handle the different event handlers based on the

selected transaction mode and update strategy.

Parallel task execution makes it possible to execute more programs in par-

allel. Parallel programs run in an isolated context where every loaded component

of the main application are reloaded within the new context. In such context, a

parallel program has its own copy of memory tables and its own database con-

nections with some limitations (e.g. it cannot store data in the main program or

communicate directly with other running programs). Tasks can raise asynchronous

events in the context of another program to communicate, or they can use shared

variables through proper functions in expressions. Parallel processes can run in

Single or Multiple instance modes. In the Single mode the context is the same for

each instance of the task, while the Multiple mode uses different contexts for each

task. At the CFG construction we have to simulate all hidden data copying and

the parallel execution of statements.

Forms have many uses during a program execution. In each case, we have

to build the CFG according to the current use of forms. In a form a user can

manipulate variable data, which appear in the running program as an assignment

instruction, or the user can affect the running program behavior too.

426 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

5 Implementation details

The process of CFG building has several phases. First, with the traversal of the

ASG we determine the sequence of statements and the evaluation order of expres-

sions. During evaluation we collect information about calls, then we determine

basic block leaders and finally, we build up the basic blocks for later processes. In

our representation, each call site is a block boundary.

To determine the execution order of the contained statements and form elements

of an analyzed code, we traverse its ASG from the root node step by step in the tree

hierarchy and we refine the control flow information among the sub components. In

each step, we define the execution order of the composed nodes of an investigated

ASG node and we augment the execution sequence with additional expressions

or statements, if it is needed. We do this since many semantic elements of a

programming language do not appear explicitly in the source code and so in its

ASG representation. Due to the hierarchical traversal, the control flow information

of descendant nodes is refined after the traversal of their ancestors.

Rectangles in the figures of this section represent nodes, or groups of ASG nodes.

Parallelograms denote branches where the possible flow of control depends on an

attribute of Logic Units, Logic Lines, controls, variables, etc. Black arrows de-

note the control edges of the CFG, while dashed lines represent the call edges among

the intraprocedural CFG components. Since in our representation call instructions

are basic block boundaries, we represent each call with two virtual nodes called

Ca l l S i te and Return Si te . In some cases, we introduce solutions of alternative

program versions with the help of one figure. To distinguish the variations of these

versions, we use black branching points on the paths where the behaviors of the

different versions are differ.

In the following sections, we discuss the cases where we could create general

algorithms to process group of nodes with the same base type. Finally we intro-

duce some special solutions where the general algorithms are not able to describe

precisely the real evaluation order of the descendants of the analyzed ASG node.

5.1 General algorithms

Tasks in the ASG represent either programs or their sub tasks. The final repre-

sentation of a Task is influenced by the implementations of its Logic Units, and

its variables, but first we have to concentrate only on the skeleton of the tasks,

since the finer control flows of Logic Units are determined in later steps of the

traversal.

When we reach a Task node in the traversal, first we create an intraprocedural

CFG context for the Task node. Our second step is to collect the sequence of logic

units that take part in the execution process of the task. These nodes axe the

child nodes of the Task node in the ASG. Task, Group, and Record are subtypes of

the Logic Unit, but of course, the existence of these elements are only optional in

each Task. Pref ix and Su f f i x are sub categories of previous Logic Uni t subtypes

controlled by an attribute. The subtype and the selected attribute value determine

Designing and Implementing Control Flow Graph... 427

Incoming Control Edges

Logic Unit

Common Logic Lines

Queued Raise Events

\
a

Outgoing Control Edges

Figure 3: Evaluated control flow of a Batch Task and a Logic Unit.

the exact execution point and order of these Logic Units. So, we nominate the

diversity of Logic Units with the addition of subtypes to their names as it can be

seen in Figure 3.

We do not connect every Logic Unit subtype in this step, only the Task, Group

and Record. For the Event and Function subtypes of the Logic Unit we associate

a distinct intraprocedural CFG and handle them separately since these kinds of

Logic Units can be triggered several times from distinct points.

Generated source codes and behaviors of MRE are different from the structure

that we can see in Magic xpa while developing a Task, because variable declara-

tions and initializations are also parts of the execution of logic, but defined in a

separated view as we showed it in Section 3. The creations of variables and default

value assignments are at the start point of a task execution. These commands are

gathered by the Record Main node.

While Task and Group logic units have only two subcategories, Prefix, Suffix

and Record logic units logically have three distinct in a loop of control. Each

execution round of Record logic units could have an initialization part that does

not appear in the code explicitly. Since it has an important effect on the control

flow, we insert a virtual Record I n i t node into the flow of execution. If we do

not find any initialization during the investigation of variables in the traversal of

the record unit, or the task is not in 'write' mode and the initializations use real

variables only, we can delete this Logic Unit from the CFG at the end of the

traversal of the Task. During the traversal, we collect available data about Forms,

their associated Controls and the logic related to them and map this information to

a suitable structure of statements. This data is represented by the Form Entry node

in the figure between the Record logic units as they handle the data initialization,

pre- and post-processing of a record of a table. In the last step, we investigate the

return expression node of the Task, and if it exits we connect it as the last item

\ Incoming Call Edges

428 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

Incoming Contol Edges Incoming Contol Edges

Figure 4: Control flow of Raise Events.

before the Exit block of the Task.

On the left side of Figure 3, we can see the execution order of a Batch Task or

a Browse Task. This task contains variables, implements all possible Logic Unit

subtypes, and defines a return expression.

After visiting all the nodes of a Task, we are able to build up its basic blocks

and determine the control and call edges among them. With this information we

can derive the exact execution order of the statements and expressions.

Each Logic Un i t consists of Logic Lines. Generally, Logic Lines have two

distinct kinds. First, the execution of the logic line does not depend on its properties

or on the execution of other logic lines; we handle them as they can run sequentially

in the order of appearance until further checks. We refer to these as Common Logic

Lines. The second kind is the so-called Raise Event with an attribute called

wait that we have to observe. With the Raise Event nodes we determine the

asynchronously executed Queued Raise Events according to Figure 3, if the value

of the wait attribute is 'no'. The wait attribute of the Raise Event can have a

'yes' or 'no' boolean constant value or the result of a boolean expression. Since

the execution of these lines depend on the value of the wait attribute, we have

two distinct cases. If this value is logically true the raise events are synchronous

otherwise they Eire asynchronous. An illustration can be seen in Figure 4.

The execution of a Logic Line depends on a condition. If this condition evalu-

ates to true, the flow of control goes into the statement, which describes the exact

behavior of the logic line. Although this part of the evaluation of the logic lines is

general, the behavior of the distinct subtypes of Logic Lines can be very different

as we can see in the next section.

5.2 Specific algorithms

As it was mentioned in the last subsection, the Funct ion and Event Logic Un i t

nodes are different from other logic units, but similar to each other. Since the exe-

cution of these units depend on their context, and their execution can be triggered

from different points of the program, it is better to handle them in a similar way

as we handled the Task nodes. Hence, for these nodes we created intraprocedural

Designing and Implementing Control Flow Graph... 429

Incoming Call Edges

Outgoing Call Edges 3

Figure 5: CFG of Function Logic Unit.

CFG representations which are callable from distinct program points. Next, we

collect Logic Lines which are variable declarations from their contained Logic

Lines, because they are not necessarily in order before all other Logic Lines, but

executed collectively at the beginning of the execution of the Logic Unit. Next

we have to perform an algorithm like we performed for Logic Units. The differ-

ence between Function and Event Logic Units is that the former could define a

Return Expression declared by an attribute of the Logic Unit which is executed

before the Queued Raise Events as it is shown in Figure 5.

Logic Lines are evaluated through the traversal by specific evaluators. These

elements of logic are much more unique from the point of view of control flow

processing than the Tasks and Logic Units. We introduce some of these to show

the variety and the complexity of their processing.

A Block node is implemented by a Logic Line pair. A Wh i l e Block with

its related End Block declare the start and the end of the Block. These two

encapsulate the body of the Block. When we find a While Block in the ASG,

we have to search its terminating End Block node, because they are not connected

directly in the ASG. The condition of a While Block can be a 'yes' or 'no' constant

or an Expression. Nesting Block nodes make it harder to carry out this task. The

left hand side of Figure 6 shows the evaluation of a while structure. The structure

of an I f Block is similar to the structure of a While Block. First, we have to

search the corresponding End Block and Else Blocks for each I f Block node.

The multiple selection is implemented by the optional condition argument of an

Else Block node.

The right side of Figure 6 shows a Call logic line which implements a call based

on a Magic generated identifier of a program, a sub task or a public name, etc.

A Ca l l logic line node has an optional argument list and could receive a return

value. The passed-by-reference arguments are updated after the control is given

back to the Return Site. To implement this behavior in the CFG, we have to

create update nodes for them. Before the actual call, we insert a Ca l l S i te node

into the CFG, while after the execution of the Exit Block of the called CFG we

430 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

Incoming Control Edges

While Block'

Incoming Control Edges

\Condit ion\ Expression

Call

\ Conditlon*~"~~" * Expression

Contained Logic Lines

End Block

Outgoing Control E d g e s * ,

Outgoing Control Edges

Figure 6: CFG of a While block and a general Call logic line.

nominate the return with a Return S i te node.

Select Logic Lines defined in the Data View are separated from the code.

Semantically these Select Logic Lines are executed in the Record Main and

Record I n i t Logic Units during of a given task. Hence, handling expressions of

Select Logic Lines is similar to the way we handle normal Logic Line types.

All Expressions of Magic are arranged into subtypes by categories in our

ASG representation. An Expression can be a literal, a unary or binary operation

or a Function Call that refers to a built-in function or Function Logic Units.

L i t e ra l s can make a reference to an identifier, a resource or a component, or they

can contain a constant value.

The control flow of a Function Ca l l can be built-up as a simpler Ca l l Logic

Line, the only difference is that its arguments cannot be passed by reference.

5.3 Associated control structures of Form logic

One primary motivation of our work was to support the UI testing of Magic appli-

cations, so it is essential to represent control dependencies arising via UI elements

such as controls of Forms as they provide the main interface for user interactions.

Magic programs basically follow a strongly event driven model and most of the

events are generated by the UI elements of Forms.

In Magic, the structure of the UI or the layout of Forms and controls is readily

available in the ASG, so thanks to the language, the connection between Controls

and their related logic is also available (e.g. relation between an edit box and its

related variable; or relation between a menu and the task to be executed). Based

on this information, we can extend the CFG with UI elements and their control

relations, so we can get a better view of the control flow than in an event-based

context.

There have been several attempts to develop techniques for the generation of

Designing and Implementing Control Flow Graph... 431

automated GUI tests with less or more success by abstract state machines, but most

of the techniques are ad hoc, and mostly manual; in addition, there is also a great

potential in modeling event interactions with directed graphs e.g. by modeling the

event flows of applications as noted in [15]. Similarly, we represent events in the

CFG as there is a great number of events built into Magic.

There are several control types which we group into the following two logical

classes based on the control structures that we handle them with:

Groupi: Push But tons , Sub Forms, Menus, Sub Menus and Context menus

Group2'- Input controls such as Ed i t boxes and Lists, Radio Buttons and Check

Boxes

Groupi contains items which are responsible for process control and embedding,

while items of Group2 handle input data and could be wrapped into a validation

context.

Sub Forms are useful to integrate a task form into the form of another task

while maintaining the subform's task data handling and record cycle activities as

independent of the parent task. This is a good solution for reusing data, logic and

also their GUI parts.

Input controls (e.g. edit boxes) are useful for setting the value of a Real or

Vir tua l Variable. These controls take input data to change the values of variables

and there are several kinds of validators and programming logic (e.g. logic units)

to handle their usage.

Menus can be used to navigate between different programs in an application

through calls and events, so they provide access to a large variety of functionalities.

Push Buttons are good for triggering events to place several crucial behavior

just in front of the user to ease navigation, and give an opportunity to stress the

operations which should be emphasized. E.g. it is possible, but rather unusual to

use a context menu in a calculator application to add numbers.

In a form the simple behaviour would be that all the controls are related to

each other, since the sequence of control invocations is undetermined and we need

to represent all possible sequences (e.g. imagine the user pushing the buttons

randomly). Representing this would radically increase the number of edges in the

CFG, so for simplicity, we introduce the so-called entry nodes which virtually join

all the controls in a Form. A Form can have multiple exit points depending on

which Su f f ix follows the Form in the program.

In Figure 7. we see the CFG part of a form structure with an example entry

node, which we introduced before. The controls like Edit Box could be surrounded

with different types of validation logic. In the case of Group2 controls, there is one-

to-one correspondence established by the language for variables, so to each Control

a Variable with a Variable Logic Unit that is responsible for handling the changes

of its value will be assigned. These Logic Units either receive the original value and

the new one, or only one of them and they do an initialization, validation or checking

step.

432 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

Figure 7: CFG context of a Form Entry and its encapsulated controls.

Menus, Push Buttons and Sub Forms are different as they are responsible for

navigation and encapsulation. Menus can mainly possess two different types of

behavior as they can trigger events, or they can call other Programs. To represent

this behaviour, we created a virtual Logic Unit called Form Logic Unit . The

purpose of this virtual logic unit is to group together virtual raise event statements

and call the statements which are stored in the ASG under the corresponding task.

These virtual raise event statement simulate how the control of a form can actually

raise an event in the control flow (see the Form Logic Unit node in Figure 7).

Such a logic unit can have incoming control edges from Group2 controls.

Push Buttons are similarly handled as Menus except that they cannot call other

tasks only raise an event.

A Sub Forms is an embedded form in another main Form. The content of the

Sub Form is provided by a sub task of the task of its main form. In order to

represent this structure in the CFG, Sub Forms are connected through a task Ca l l

to their main Form.

Program control can leave the form context through events related to task ter-

mination or user actions. This is symbolized by outgoing control edges in Figure 7.

6 Evaluation

We implemented our technique in C++ and verified it through result validations

and performance tests. For this verification we created a testbed with 105 Magic

applications which were specifically designed to implement special control struc-

tures in Magic. We created a simple batch script to construct the ASG and then

the CFG for each application in this testbed. Then, we manually compared the

constructed CFGs to the program code. To perform this comparison, we exported

the constructed CFG to graphML format which can be easily visualized with yED6 .

6yED Graph Editor: http://wwv.yworks.com/eii/products_yed_about.html

http://wwv.yworks.com/eii/products_yed_about.html

Designing and Implementing Control Flow Graph... 433

ICFG: 121 : TasleCallerTask

Entry

^control
BasicBlock: 5

ndkRecordLogicUnit: rlukMain: 157
ndkSelect: 123
ndkColumnRef: 159

^control

BasicBlock: 4

ndkEndBlock: 126

j control
BasicBlock: 6

ndkRecordLogicUnit: rlukPreflx : 161

control

Exit

control
1

control call

BasicBlock: 3
ndkBlock: bkWhile : 124
ndkExprRef: 164
ndkVariableRef: 165
ndkCallTask: CallableTask: 125 call

ICFG: 117: Task:CallableTask

Entry

rcontrol

BasicBlock: 3

ndkRecordLogicUnit: rlukMain: 142
ndkSelect: 119
ndkColumnRef: 144
ndkSelect: 120
ndkColumnRef: ' :146_

"^control

Exit

Figure 8: Visualized ICFG by generated graphML dump.

An exported picture of a sample graphML can be seen in Figure 8. The original

code contains an infinite While Block. This information is shown in the figure

too, where basic block with id 4 is unreachable. This information could be easily

retrieved by API calls during the traversal of the CFG. Of course, in this case this

possibly malformed control structure is recognized by Magic xpa too, it warns the

programmer about the existence of the infinite loop. The example of the figure

contains a call from the body of the While Block. This call also appeared in

our ICFG. We compared all the resulting dumps with the original source code

manually, and we found that each ICFG gave a good description of the possible

execution paths of the original code.

After manually evaluating all the constructed CFGs of the testbed, we evaluated

our implementation on a larger application too (the demo application released with

Magic xpa). Not only did we construct the CFG and check its consistency, but

with profiling we gathered run-time statistics of our algorithms too.

To verify the usability of our algorithms, we ran our implementation on an Intel

XENON E5450 @ 3GHz 32 GB Windows Server 2008. As performance results

on a medium sized sample project with nearly 200.000 nodes and about 500.000

attributes we got a 0,598 seconds runtime of the ICFG computation. The ICFG

computation was carried out in an affordable time, so it was adaptable in any

approaches based on this information.

7 Limitations of the approach

Besides the shown advantages of our technique, there are a few limitations too.

Here we describe two main limitations.

Our event handling does not handle all the possible specialties of a Magic ap-

434 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

plication. Currently, the implementation is able to follow the events that are raised

and handled inside the code with a raise event statement or a certain logic unit.

The internal events of Magic xpa (such as hotkeys) are not yet supported unless

raised by a raise event statement.

Our recent CFG model does not support the representation of parallel task

executions given by section 4.2. To improve our model, we should investigate

previous work about the limitations and possible application forms of CFG for

parallelism support e.g. [14].

8 Summary and Future Work

In our paper, we presented an application of CFG concepts for a specific 4th gener-

ation language, Magic 4GL. We used a static analysis approach to gain information

from the generated Magic source code and to build a CFG with fine granularity.

We created a reusable library for further use of our model which makes it possible

to perform further analyses and process the CFG and ICFG structures which we

created. We created a textual and an XML based graphML dump to make it easy

to get an overview of the processed information.

Our evaluation showed that the approach implemented is applicable for middle-

sized Magic applications. The method presented had an affordable space require-

ment and it constructed the CFG fast enough to analyze large projects too.

Besides, we showed that implementing control flow analysis for a higher-level

language, such as Magic, was possible via adapting 3GL techniques, but the unique

structures of the language may result in special methods and structures in the

CFG as well. For example, the use of Events enabled us to gather more precise

information compared to 3GLs where these structures are mostly dynamic.

Conceptually, the presented technique could be applied to other 4GLs too. The

core elements of the CFG should be the same in a language independent way (e.g.

UI handling), but special constructs of the language should require special solutions

(e.g. events and raise event handling and the task record loop).

We applied our work in a research project which was carried out in cooperation

with our industrial partner to automatically generate test cases and test input for a

GUI test automation tool for Magic [8]. Additionally, we targeted the development

of a trace analyser tool to support coverage measurement purposes based on our

CFG solution. In this project, we created a path analyser and generator tool for

traversing the CFG and generating potential execution paths for the test scripts.

As we expected, the growth of path space was exponential [15], so we had to

apply several pre-filtering techniques over the CFG before or during the generation,

although post-filtering was also possible, it was inefficient or very limited. We

created an XML based filtering technique where we could select a sub-component

of the CFG with the help of the work flow descriptions of the application analyzed

(a work flow described a certain functionality with its related programs and tasks).

After the filtering we could execute the script generator tool to create test cases for

the Magic XPA application that we analyzed. Our results were promising, hence

Designing and Implementing Control Flow Graph... 435

our CFG technique seemed to be useful in supporting automatic UI testing with

test script generation and validation via test coverage measurements.

Acknowledgements

This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-

0039.

References

[1] Allen, Frances E. Control flow analysis. SIGPLAN Not., 5(7):1-19, July 1970.

[2] Ashley, J. M. and Dybvig, Ft. K. A practical and flexible flow analysis for

higher-order languages. ACM Trans. Program. Lang. Syst., 20(4):845-868,

July 1998.

[3] Ayers, Andrew Edward. Abstract analysis and optimization of Scheme. PhD

thesis, Cambridge, MA, USA, 1993.

[4] Cousot, P. Semantic foundations of program analysis. In Muchnick, S.S.

and Jones, N.D., editors, Program Flow Analysis: Theory and Applications,

chapter 10, pages 303-342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1981.

[5] D., Anupam, J., Somesh, L., Ninghui, Melski, D., and Reps, T. Analysis tech-

niques for information security. Synthesis Lectures on Information Security,

Privacy, and Trust, 2(1):1-164, 2010.

|6] Ferenc, Rudolf, Beszédes, Árpád, and Gyimóthy, Tibor. Fact Extraction and

Code Auditing with Columbus and SourceAudit. In Proceedings of the 20th

International Conference on Software Maintenance (ICSM 200f), page 513.

IEEE Computer Society, September 2004.

[7] Ferenc, Rudolf, Beszédes, Árpád, Tarkiainen, Mikko, and Gyimóthy, Tibor.

Columbus - Reverse Engineering Tool and Schema for C++. In Proceedings

of the 18th International Conference on Software Maintenance (ICSM 2002),

pages 172-181. IEEE Computer Society, October 2002.

[8] Fritsi, Dániel, Nagy, Csaba, Ferenc, Rudolf, and Gyimóthy, Tibor. A lay-

out independent GUI test automation tool for applications developed in

Magic/uniPaaS. In Proceedings of the 12th Symposium on Programming Lan-

guages and Software Tools (SPLST 2011), pages 248-259, 2011.

[9] Horwitz, S., Pfeiffer, P., and Reps, T. Dependence analysis for pointer vari-

ables. SIGPLAN Not., 24(7):28-40, June 1989.

436 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc

[10] Jones, Neil D. Flow analysis of lambda expressions (preliminary version). In

Proceedings of the 8th Colloquium on Automata, Languages and Programming,

pages 114-128, London, UK, UK, 1981. Springer-Verlag.

[11] Kennedy, K. and Allen, J . R . Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[12] Kiss, Ákos, Jász, Judit, Lehotai, Gábor, and Gyimóthy, Tibor. Interprocedural

static slicing of binary executables. In Proc. Third IEEE International Work-

shop on Source Code Analysis and Manipulation, pages 118-127, September

2003.

[13] Kowalkiewicz, M., Lu, R., Bäuerle, S., Krümpelmann, M., and Lippe, S. Weak

dependencies in business process models. In Abramowicz, Witold and Fensel,

Dieter, editors, Business Information Systems, volume 7 of Lecture Notes in

Business Information Processing, pages 177-188. Springer Berlin Heidelberg,

2008.

[14] Lam, M.S . and Wilson, R. P. Limits of control flow on parallelism. SIGARCH

Comput. Archit. News, 20(2):46-57, April 1992.

[15] Memon, Atif M. An event-flow model of gui-based applications for testing:

Research articles. Softw. Test. Verif. Reliab., 17(3): 137-157, September 2007.

[16] Midtgaard, Jan. Control-flow analysis of functional programs. ACM Comput.

Surv., 44(3):10:1-10:33, June 2012.

[17] Muchnick, Steven S. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.

[18] Nagy, Csaba, Vidács, László, Ferenc, Rudolf, Gyimóthy, Tibor, Kocsis, Ferenc,

and Kovács, István. Complexity measures in 4GL environment. In Proceed-

ings of the 2011 international conference on Computational science and Its

applications - Volume Part V, pages 293-309. Springer-Verlag, 2011.

[19] Nagy, Csaba, Vidács, László, Ferenc, Rudolf, Gyimóthy, Tibor, Kocsis, Ferenc,

and Kovács, István. Solutions for reverse engineering 4GL applications, recov-

ering the design of a logistical wholesale system. In Proceedings of the 15th

European Conference on Software Maintenance and Reengineering (CSMR),

pages 343 -346, 2011.

[20] Rech, J. and Schäfer, W. Visual support of software engineers during de-

velopment and maintenance. SIGSOFT Softw. Eng. Notes, 32(2):l-3, March

2007.

[21] Shivers, O. Control flow analysis in scheme. SIGPLAN Not., 23(7):164-174,

June 1988.

Designing and Implementing Control Flow Graph... 437

[22] The Institute of Electrical and Eletronics Engineers. IEEE standard glossary

of software engineering terminology. IEEE Standard, September 1990.

[23] Tip, Frank. A survey of program slicing techniques. Journal of Programming

Languages, 3(3):121-189, September 1995.

[24] Vanhatalo, Jussi, Völzer, Hagen, and Leymann, Frank. Faster and more fo-

cused control-flow analysis for business process models through sese decompo-

sition. In Krämer, BerndJ., Lin, Kwei-Jay, and Narasimhan, Priya, editors,

Service-Oriented Computing - ICSOC 2007, volume 4749 of Lecture Notes in

Computer Science, pages 43-55. Springer Berlin Heidelberg, 2007.

[25] Visser, W. and Päsäreanu, C. S. and Khurshid, S. Test Input Generation with

Java PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97-107, July 2004.

Acta Cybernetica 21 (2014) 439-437.

Code Coverage Measurement Framework for
Android Devices*

Ferenc Horváth* Szabolcs Bognár* Tamás Gergely* Róbert Rácz*

Árpád Beszédes* and Vladimir Marinkovic*

Abstract

Software testing is a very important activity in the software development

life cycle. Numerous general black- and white-box techniques exist to achieve

different goals and there are a lot of practices for different kinds of soft-

ware. The testing of embedded systems, however, raises some very special

constraints and requirements in software testing. Special solutions exist in

this field, but there is no general testing methodology for embedded systems.

One of the goals of the C IRENE project was to fill this gap and define a

general testing methodology for embedded systems that could be specialized

to different environments. The project included a pilot implementation of

this methodology in a specific environment: an Android-based Digital TV

receiver (Set-Top-Box).

In this pilot, we implemented method level code coverage measurement

of Android applications. This was done by instrumenting the applications

and creating a framework for the Android device that collected basic infor-

mation from the instrumented applications and communicated it through the

network towards a server where the data was finally processed. The result-

ing code coverage information was used for many purposes according to the

methodology: test case selection and prioritization, traceability computation,

dead code detection, etc.

The resulting methodology and toolset were reused in another project

where we investigated whether the coverage information can be used to de-

termine locations to be instrumented in order to collect relevant information

about software usability.

In this paper, we introduce the pilot implementation and, as a proof-of-

concept, present how the coverage results were used for different purposes.

Keywords : coverage, embedded, traceability, Android

*Part of this work was done in the Cross-border ICT Research Network (CIRENE) project
(project number is HUSRB1002/214/044) supported by the Hungary-Serbia IPA Cross-border
Co-operation Programme, co-financed by the European Union. This research was partially
supported by the Hungarian national grant GOP-1.1.1-11-2011-0006.

t University of Szeged, Department of Software Engineering, E-mail:
{hferenc.bszabi,gertom,rrobi,beszedes}®inf.u-szeged.hu

^University of Novi Sad, Faculty of Technical Sciences, E-mail: vladam8uns.ac.rs

440 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

1 Introduction

Software testing is a very important quality assurance activity of the software de-

velopment life cycle. With testing, the risk of a residing bug in the software can

be reduced, and by reacting to the revealed defects, the quality of the software can

be improved. Testing can be performed in various ways. For example, static test-

ing includes the manual checking of documents and the automatic analysis of the

source code without executing the software. During dynamic testing the software

or a specific part of the software is executed. Many dynamic test design techniques

exist, the two most well known groups among them are black-box and white-box

techniques.

Black-box test design techniques concentrate on testing functionalities and re-

quirements by systematically checking whether the software works as intended and

produces the expected output for a specihc input. The techniques take the software

as a black box, examine "what" the program does without having any knowledge on

the structure of the program, and they are not intrerested in the question "how?".

On the other hand, white-box testing examines the question "How does the

program do that?", and tries to exhaustively examine the code from several aspects.

This exhaustive examination is given by a so-called coverage criterion which defines

the conditions to be fulfilled by the set of statement sequences executed during the

tests. For example, 100% instruction coverage criterion is fulfilled if all instructions

of the program are executed during the tests. Coverage measures give a feedback

on the quality of the tests themselves.

The reliability of the test can be improved by combining black-box and white-

box techniques. During the execution of test cases generated from the specifications

using black-box techniques, white-box techniques can be used to measure how com-

pletely the actual implementation is checked. If necessary, reliability of the tests

can be improved by generating new test cases for the code fragments not verified.

1.1 Specific problems with embedded system testing

Testing in embedded environments has special attributes and characteristics. Em-

bedded systems are neither uniform nor general-purpose. Each embedded system

has its own hardware and software configuration typically designed and optimized

for a specific task, which affects the development activities on the specific system.

Development, debugging, and testing are more difficult since different tools are

required for different platforms. However, high product quality and testing that

ensures this high quality is very important. Suppose that the software of a digital

TV with play-from-USB capabilities fails to recover after opening a specific media

file format and this bug can only be repaired by replacing the ROM of the TV.

Once the TV sets are produced and sold, it might be impossible to correct this bug

without spending a huge amount of money on logistic issues. Although there are

some solutions aiming at the uniformisation of the software layers of embedded sys-

tems (e.g., the Android platform [12]), there has not been a uniform methodology

for embedded systems testing.

Code Coverage Measurement Framework for Android Devices 441

1.2 The C I R E N E project

One of the goals of the CIRENE project [19] was to define a general testing method-

ology for embedded systems that copes with the above mentioned specialities and

whose parts can be implemented on specific systems. The methodology combines

black-box tests responsible for the quality assessment of the system under test

and white-box tests responsible for the quality assessment of the tests themselves.

Using this methodology the reliability of the test results and the quality of the

embedded system can be improved. As a proof-of-concept, the CIRENE project

included a pilot implementation of the methodology for a specific, Android-based

digital Set-Top-Box system. Although the proposed solution was developed for a

specific embedded environment, it can be used for all Android-based embedded

devices such as smart phones or tablets.

The coverage measurement toolchain plays an important role in the method-

ology (see Figure 1). Many coverage measurement tools (e.g., EMMA [28]) exist

that are not specific but can be used on Android applications. However, these are

applicable only during the early development phases as they are able to measure

code coverage on the development platform side. This kind of testing omits to test

the real environment and misses the hardware-software co-existence issues which

can be essential in embedded systems. We are not aware of any common toolchain

that measures code coverage directly on Android devices.

Our coverage measurement toolchain starts with the instrumentation of the ap-

plication under test, which allows us to the measure code coverage of the given

application during test execution. As the device of the pilot project runs the Java-

based Android operation system, Java instrumentation techniques can be used.

Then, the test cases are executed and the coverage information is collected. In the

pilot implementation, the collection is split between the Android device and the

used testing tool RT-Executor [24]: the service collects the information from the

individual applications of the device, while the testing tool processes the informa-

tion (through its plug-ins).

The coverage information gathered with the help of the coverage framework can

be utilized by many applications in the testing methodology. They can be used for

selecting and prioritizing test cases for further test executions, or for helping to

generate additional test cases if the coverage is not sufficient. It is also useful for

dead code detection or traceability links computation.

The resulting methodology and toolset were reused in another project which

aims usability testing on Android devices. In this project, we investigated whether

the coverage information gathered by the described method can be used to deter-

mine locations in the code that must be "watched" during test executions in order

to collect relevant information of the usability of the software. The long-term goal

was to reduce the number of instrumentation points in the examined software which

results in less performance decrease and, thus, supports aimed mass field testing.

In this paper, we introduce the pilot implementation, discuss our experiments

conducted to examine the further use of the coverage results, and evaluate these

experiments.

442 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

Figure 1: Coverage collection methodology on the Set-Top-Box

1.3 Paper structure

The rest of the paper is organized as follows. In Section 2 we give an overview on the

related work. Section 3 presents the implementation of the coverage measurement

framework. In Section 4 some use cases are shown to demonstrate the usefulness of

coverage information. Finally, we summarize our achievements and introduce some

possible future works in the last section.

2 Related Work

In the CIRENE project, one of our first tasks was to assess the state-of-the-art in

embedded systems testing techniques with special attention to the combined use of

black and white-box techniques. As a result of this task we presented a technical

report [3] in which we report only a few number of combined testing techniques

that have been specialized and implemented in the embedded environment.

Gotlieb and Petit [17] presented a path-based test case generation method. They

used symbolic program execution and did not execute the software on the embedded

device prior to the test case definitions. We use code coverage measurement of real

executions to determine information that can be used in test case generation.

José et al. [9] defined a new coverage metric for embedded systems to indicate

instructions that had no effect on the output of the program. Their implementation

used source code instrumentation and worked for C programs at instruction level,

and had a great influence on the performance of the program. Biswas et al. [4]

also utilized C code instrumentation in embedded environment to gather profiling

Code Coverage Measurement Framework for Android Devices 443

information for model-based test case prioritization. We use binary code instrumen-

tation at method level, use traditional metric that indicates whether the method is

executed during the test case or not, and our solution has a minimal overhead on

execution time. The resulting coverage information can also be used for test case

selection and prioritization.

Hazelwood and Klauser [18] worked on binary code instrumentation for ARM-

based embedded systems. They reported the design, implementation and applica-

tions of the ARM port of the Pin, a dynamic binary rewriting framework. However,

we are working with Android systems that hides the concrete hardware architecture

but provides a Java-based one.

There are many solutions for Java code coverage measurement. For example,

EMMA [28] provides a complete solution for tracing and reporting code coverage

of Java applications. However, it is not concerning the specialities of Android or

any embedded systems.

Most of the coverage measurement tools utilize code instrumentation. In Java-

based systems, byte code instrumentation is more popular than source code instru-

mentation. There are many frameworks providing instrumenting functionalities

(e.g., DiSL [21], InsECT [6, 26], jCello [27], and BCEL [2]) for Java. These are

very similar to each other regarding their provided functionalities. We chose Javas-

sist [7] to be our instrumentation framework in the pilot project.

Traceability links between requirements and source code are important in soft-

ware development. Automatic methods for traceability link detection include infor-

mation retrieval ([20, 1, 8]) and probabilistic feature location ([22]) and combined

techniques ([11]). We used code coverage based feature location to retrieve trace-

ability information.

3 Coverage Measurement Toolchain

The implemented coverage measurement toolchain consists of several parts. First,

the applications selected for measurement have to be prepared. This process in-

cludes program instrumentation that inserts extra code into the application so that

the application can produce the information necessary for tracing its execution path

during the test executions. The modified applications and the environment that

helps collecting the results must be installed on the device under test.

Next, tests are executed using this measurement environment and the prepared

applications, and coverage information is produced. In general, test execution

can be either manual or automated. In the current implementations, we use two

different approaches for test automation.

Within the CIRENE pilot implementation RT-Executor [24] (a black-box test

automation tool for multimedia devices testing) is used as the automation tool.

In the usability testing project we use a simplified tool in the testing process,

which helps gathering and preparing the coverage information for the evaluation.

The functions of this tool are based on the Robotium [16] framework. Robotium is

an Android test automation framework that has full support for native and hybrid

444 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

applications and makes it easy to write powerful and robust automatic black-box

tests for Android applications.

During the execution of the test cases, the instrumented applications produce

their traces which are collected, and coverage information is sent back to the au-

tomation tool.

Third, the coverage information resulted from the previous test executions is

processed and used for different purposes, e.g., for test selection and prioritization,

additional test case generation, traceability computation, and dead code detection.

In the rest of this section, we describe the technical details of the coverage

measurement toolchain.

3.1 Preparation

In order to measure code coverage, we have to prepare the environment and/or

the programs under test to produce the necessary information on the executed

items of the program. In our case, the Android system uses the Dalvik virtual

machine to execute the applications. Although modifying this virtual machine

to produce the necessary information would result in a more extensive solution

that would not require the individual preparation of the measured applications,

we decided not to do so, as we assumed that modifying the VM itself had higher

risks than modifying the individual applications. With individual preparation it is

much easier to decide what to measure and at what level of details. So, we decided

to individually prepare the applications to be measured. As we were interested in

method level granularity, the methods of the applications were instrumented before

test execution, and this instrumented version of the application was installed on

the device. In addition, a service application serving as a communication interface

between the tested applications and the network was also necessary to be present

on the device.

3.1.1 Ins t rumenta t ion

During the instrumentation process, extra instructions are inserted in the code

of the application. These extra instructions provide additional functionality (e.g.,

logging necessary information) but they should not modify the original behaviour

of the application. Instrumentation can be done on the source code or on the binary

code.

In our pilot implementation, we are interested in method level code coverage

measurement. It requires the instrumentation of each method inserting a code that

logs the fact that the method is called. As our targets are Android applications

usually available in binary form, we have chosen binary instrumentation.

Android is a Java-based system which in our case means that the applications

are written in Java language and compiled to Java Bytecode before a further step

creates the final Dalvik binary form of the Android application. The transforma-

tion from Java to Dalvik is reversible, so we can use Java tools to manipulate the

Code Coverage Measurement Framework for Android Devices 445

Figure 2: Instrumentation toolchain

program and instrument the necessary instructions. We used the Javass ist [7] li-

brary for Java bytecode instrumentation, apktool [13] for unpacking and repacking

the Android applications, the dex2jar [14] tool for converting between the Dalvik

and the Java program representations, and aapt [15] tool for sign the application.

The Instrumentation toolchain (see Figure 2) is the following:

• The Android binary form of the program needs to be instrumented. It is an

. apk file (a special Java package, similar to the . j ar files, but extended with

other data to become executable).

• Using the apktool the .apk file is unpacked and .dex file is extracted. This

. dex file is the main source package of the application, it contains its code in

a special binary format. [15, 5]

• For all .dex files the dex2jar is used to convert them to .jair format.

• On the . j a r files we can use the JInstrumenter. The JInstrumenter is our

Java instrumentation tool based on the Javass ist library [7].

JInstrumenter first adds a new collector class with two responsibilities to

the application. On the one hand, it contains a coverage array that holds the

numbers indicating how many times the methods (or any other items that is

to be measured) were executed. On the other hand, this class is responsible

for the communication with the service layer of the measurement framework.

Next, the JInstrumenter assigns a unique number as ID to each of the meth-

ods. This number indicates the method's place in the coverage array of the

collector class. Then a single instruction is inserted in the beginning of all

methods which updates the corresponding element of the coverage array on

all executions of the method.

The result of the instrumentation is a new . j ar file with instrumented meth-

ods and another file with all the methods' names and IDs.

• The instrumented . j a r files are converted to .dex files using the dex2jar

tool again.

446 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

• Finally, the .apk file instrumented application is created by repacking the

. dex files with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to each application. This name

will uniquely identify the application in the measurement toolchain, so the service

application can identify and separate the coverage information of different applica-

tions.

After the instrumentation, the application is ready for installation on the target

device.

3.1.2 Service appl icat ion

In our coverage measurement framework implementation it is necessary to have

an application that is continuously running on the Android device in parallel with

the program under test. During the test execution, this application is serving as

a communication interface between the tested applications and the external tool

collecting and processing the coverage data. On the one hand this is necessary be-

cause of the rights management of the Android systems. Using the network requires

special rights from the application and it is much simplier and more controllable to

give these rights to only a single application than to all of the tested applications.

On the other hand, this solution provides a single interface to query the coverage

data even if there are more applications tested and measured simultaneously.

In Android systems, there are two types of applications: "normal" and "service".

Normal applications are active only when they are visible. They are destroyed

when moved in the background, although their state can be preserved and restored

on the next activation. Services are running in the background continuously and

are not destroyed on closing. So, we had to implement this interface application as

a service. It serves as a bridge between the Android applications under test and

the "external world" as it can be seen on Figure 3. The tested applications are

measuring their own coverage and the service queries these data on-demand. As

the communication is usually initiated before the start and after the end of the test

cases, this means no regular communication overhead in the system during the test

case executions.

Messages are accepted from and sent to the external coverage measurement

tools. The communication uses JSON [10] objects (type-value pairs) over the

TCP/IP protocol. Implemented messages are:

N E W T C The testing tool sends this message to the service to sign that there is

a new test case to be executed and asks it to perform the required actions.

A S K The testing tool sends this message to query the actual coverage information.

C O V E R A G E D A T A The service sends this message to the testing tool in re-

sponse to the A S K message. The message contains coverage information.

Internally, the service also uses JSON objects to communicate with the instru-

mented applications. Implemented signals are:

Code Coverage Measurement Framework for Android Devices 447

Figure 3: Service Layer

reset With this signal the service asks the apps to reset the stored coverage values.

ask The service sends this signal to query the actual coverage information.

coverage da ta The application sends this message to the service in response to

the ask signal. The message contains coverage information.

3.1.3 Instal lat ion

To measure coverage on the Android system, two things need to be installed: the

particular application we want to test and the common service application that

collects coverage information from any instrumented application and provides a

communication interface for querying the data from the device.

The service application needs to be installed on a device only once; this single

entity can handle the communication of all tested applications.

The instrumented version of each application that is going to be measured must

be installed on the Android device. The original version of such an application

(if any) must be removed before the instrumented version can be installed. It is

necessary because Android idetifies the applications by their special android-name

and package, and our instrtumentation process does not change these attributes

of the applications; it only inserts the appropriate instructions into the code. Our

toolchain uses the adb tool (can be found in Android Development Kit) to remove

and install packages.

3.2 Execution

During test execution, the Android device executes the program under test and the

service application simultaneously. The program under test counts its own coverage

448 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

information and sends this information when the service layer application asks for

it. The coverage information can be queried from this service layer application

through network connection.

We used two possible modes of test execution: manual and automated. Either

mode is used, the service layer application must be started prior to the beginning

of the execution of the test cases. It is done automatically by the instrumented

applications if the service is not running already.

We implemented a simple query interface in Java for manual testing, a plug-in

for the RT-Executor [24], and a simple set of functions for the Robotium [16]. The

two automated frameworks use different yet somewhat similar approaches.

On one hand, we used the RT-Executor, which reads the test case scripts and

executes the test cases. The client side of the measurement framework is contained

in a plug-in of the automation tool, and this plug-in must be controlled from the

test case itself. Thus, the test case scripts must be prepared in order to measure

the code coverage of the executed applications.

The plug-in can indicate the beginning and the end of the particular test cases

to the service, so the service can distinguish the test cases and separate the col-

lected information. In order to measure the test case coverages individually, one

instruction must be inserted in the beginning of the test script to reset the coverage

values and one instruction must be inserted in the end instructing the plug-in to

collect and store coverage information belonging to the test case.

During test execution the following steps are taken:

• The program under test (PUT) is started.

• The start of the program triggers the start of the measurement service if

necessary. Then PUT connects to the service and registers itself by its unique

name given to it in instrumentation process.

• The test automation system starts a test case. The test case forces the client

of the automation system to send a N E W T C message to the service. The

service sends a reset signal to PUT, which resets the coverage array in its

collector class. The service returns the actual time to the client.

• The test automation system performs the test steps. PUT collects the cover-

age data.

• The test case ends. The client of the automation tool sends an A S K message

to the service. The service sends an ask signal to PUT, which sends back the

coverage data to the service. The service sends back the coverage data and

the actual time to the client.

• The client calculates the necessary information from the coverage data and

stores it in the local files. The stored data are: execution time, trace length,

coverage value, lists of covered and not covered methods. Another plug-in

decides if the test case was passed or failed and stores this information in

other local files.

Code Coverage Measurement Framework for Android Devices 449

These steps are repeated during the whole test suite execution. At the end, the

coverage information of all the executed test cases are stored in local files and are

ready to be processed by different stages of the testing methodology.

On the other hand, we used the Robotium framework as a black-box test aiding

tool, the Android testing API, and JUnit as the testing environment. Robotium

provides useful functions to help accessing the graphical user interface layer of

Android applications. This way it makes easy to write JUnit test cases which test

any application without user interaction.

In this case, the Android framework executes the JUnit test cases like RT-

Executor executes its test scripts. The client-side of the measurement framework

is contained in a TestHelper class that controls data flow during test execution.

Similar to the previous settings, this class must be controlled from the test case

itself, so the test cases must also be prepared in order to measure code coverage.

The helper class works like the plug-in of the RT-Executor. Thus, the execution

steps are very similar to those mentioned above except that only the coverage

information is stored at the end.

3.3 Processing the Data

As we mentioned above, the client side of the coverage measurement system is

realized as a plug-in of the RT-Executor tool and as an extension to the Robotium

framework.

Figure 4: Test execution framework with coverage measurement

In the RT-Executor settings (Figure 4) the plug-in is controlled from the test

cases. It indicates the beginning and the end of a test cases to the service layer

application. The service replies to these messages by sending the valuable data

back. When the measurement client indicates the start of a test case (by sending a

N E W T C message to the service), the service replies with the current time which

is stored by the client. At the end of a test case (when an A S K message is sent

by the client), the service replies with the current time and the collected coverage

information of the methods.

450 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

When the coverage data is received, the measurement client computes the ex-

ecution time, trace length (the number of method calls), and the list of covered

and not covered methods' IDs. Then, the client stores these data in a result file

for further use. The client makes other files, the trace files, separately for each

test case. Such a trace file stores the identifiers of the methods covered during the

execution of the test case.

Figure 5: Robotium based test execution environment with the integrated

TestHelper

In the Robotium settings (Figure 5) the communication between the service

layer and the tested application is very similar to the RT-Executor based one. The

difference is that the test cases are executed directly by the device and that instead

of an external plugin, an internal test helper will communicate with the service

application and will produce the coverage data.

As an alternative client, we implemented a simple standalone Java application

that is able to connect to the measurement service. This client is able to visual-

ize the code coverage information online, and is useful during the manual testing

activities.

3.4 Applications on the Measurement Framework Results

The code coverage and other information collected during the test execution can

be used in various ways. In the pilot project, we implemented some of the possible

applications. These implementations process the data files locally stored by the

client plug-in.

Code Coverage Measurement Framework for Android Devices 451

3.4.1 Test Case Selection and Prior i t izat ion

Test case selection defines a subset of a test suite based on some properties of the

test cases. Test case prioritization is a process that sorts the test suite elements

according to their properties [29]. A prioritized list of test cases can be cut at some

points resulting in a kind of selection.

Code coverage data can be used for test case selection and prioritization. We

implemented some selection and prioritization algorithms as a plug-in of the RT-

Executor, which utilizes the code coverage information collected by the measure-

ment framework:

• A change-based selection algorithm that used the list of changed methods

and the code coverage information to select the test cases that covered some

of the changed methods.

• Two well-known coverage-based prioritization algorithms: one that prefers

test cases covering more methods; and another that aims at higher overall

method coverage with less test cases.

• A simple prioritization that used the trace length of the test cases.

3.4.2 Not Covered Code

Not covered code plays an important role in program verification. There are two

possible reasons for a code part not being covered by any test case executions. The

test suite can simply omit its test case, in which case we have to define some new

test cases executing the missed code. It can also happen that the not covered code

cannot be executed by any test cases, which means that the code is dead. In the

latter case, the code can be dropped from the codebase.

In our pilot implementation, automatic test case generation is not implemented.

We simply calculate the lists of methods covered and not covered during the tests.

These lists can be used by the testers and the developers to examine the methods in

question and generate new test cases to cover the methods, or to simply eliminate

the methods from the code.

3.4.3 Traceability Calcu lat ion

Traceability links between different software development artifacts play a very im-

portant role in the change management processes. For example, traceability infor-

mation can be used to estimate the required resources to perform a specific change

or to select the test cases related to the change of the specification. Relationship

exists between different types of development artifacts. Some of them can simply

be recorded when the artifact is created, some of them must be determined later.

We implemented a traceability calculator that computes the correlation between

the requirements and the methods. The correlation computation is based on two

binary matrices: the pre-defined relationship matrix between the requirements and

452 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

the test cases and the matrix between the test cases and the methods (code cover-

age). From these matrices a binary vector can be assigned to each requirement and

method representing whether the test cases assigned to the elements of this vector

have relationship to the given requirement or method. If a requirement-method pair

is assigned with high correlation (i.e., their assigned binary test case vectors are

highly correlated), we can assume that the required functionality is implemented in

the method. To calculate the correlation of these binary vectors we implemented

three different well-known methods: the Pearson's product-moment coefficient [25],

the Kendall's correlation coefficient [25], and a Manhattan distance based method

where the similarity coefficient was defined as

(i) SM(a,b) = n— -
1 + l i = i i ai ~ b

The use of the information that is extracted from the results of the correlation

computational processes can be diverse. For example, it can be used to assess the

number of methods to be changed if the particular requirement changes. Addition-

ally, as we observed during our usability testing project, if we define functionalities

closely related to the usage of UI elements, then it can indicate the relations between

these graphical elements and the parts of the code-behind.

4 Usage and Evaluation

In this section, we present and evaluate some use cases to demonstrate the usability

of the measurement toolchain.

4.1 Additional Test Case Generation

In the pilot project our target embedded hardware was an Android-based Set-

Top-Box. We had this device with different pre-installed applications and test

cases for some of these apps. Considering the available resources we decided to

test our methodology and implementation on a media settings application. After

executing the tests of this application with coverage measurement, we found that

the pre-defined tests covered only 54% of the methods. We examined the methods

and defined new test cases. Although the source code of this application was not

available, based on the not covered method names and the GUI, we were able to

define new test cases that raised the proportion of covered methods to 69%. This is

still far from the required 100% method level coverage, but shows that the feedback

on code coverage can be used to improve the quality of the test suite.

4.2 Traceability Calculation

We made two experiments with the framework using it for traceability calculation.

First, in the CIRENE pilot project a simple implementation that is able to de-

termine the correlation between the code segments and the requirements was made.

Code Coverage Measurement Framework for Android Devices 453

We did not conduct detailed experimentation in this topic, but we did test the tool.

Instead of the requirements, we defined 12 functionalities performed by three media

applications (players) on our target Set-Top-Box device. Then, we assigned these

functionalities to 15 complex black-box test cases of the media applications and ex-

ecuted the test cases with coverage measurement. The traceability tool computed

correlations between the 12 functionalities and 608 methods, and was able to sep-

arate the methods relevant in implementing a functionality from the not relevant

methods.

In the experiment connected to the usability testing project our direct goal was

to investigate whether the coverage information could be used to determine a small

set of program locations to be instrumented in order to collect relevant information

for usability analysis. The main idea was that by reducing the number of instru-

mentation points needed for comprehensive usability testing we would be able to

minimize the possible negative effects on the performance of the application un-

der test and, therefore, analysing complex applications would become easier. We

conducted an experiment involving 10 small to medium sized Android applications

(see Table 1). Test cases were created for the applications each one modelling some

typical complex usage sessions. Next, we defined some functionalities for each ap-

plication. This measurement aimed to verify that automatic methods are able to

uncover relevant traceability links, and to evaluate the efficiency of different corre-

lation computation methods in indicating traceability links between the artefacts.

Table 1: List of applications used for experiments

Application Classes Methods Functionalities Test cases

AO 134 671 4 13

AX 144 1083 4 25

A2 303 1675 5 12

A3 545 2565 9 12

A4 812 3897 5 14

A5 861 6760 5 11

A6 1257 9619 5 12

A7 1519 11854 5 11

A8 1537 11166 5 15

A9 4247 24747 5 12

In order to evaluate the results of the three different computations we exam-

ined the functionalities and methods of the applications and created reference links

between them by manually classifying the methods of each application and con-

necting them to the functionalities. First the functionalities were determined by

usage scenarios. Next, we used some kind of semantic similarity: words seman-

tically connected to the determined functionalities and usual Android UI element

name fragments were searched for in the class and method names. Functionalities

454 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

were initially assigned with the matching elements. Then this initial classification

was refined manually by examining each program element and looking for hidden

or false reference links.

For evaluating the traceability calculation methods and comparing them to our

manual method, we used the precision, recall, and F-measure metrics [23]. The first

step of assessing these metrics was to compare the manually determined reference

links to the function-method traceability links that were selected by the different

correlation based traceability calculation methods. The comparison of the reference

and the computed links classified each traceability link as true or false positive,

and each lack of link as true or false negative records [23] for a calculation method.

Based on this classification of links, the three metric values were computed for each

traceability calculation method and for all applications.

All of the used correlation computation methods assigns a real value within

an interval ([—1,1] or [0,1]) to a functionality-method pair, but the existence of

the link is a binary information. To evaluate the methods we had to define some

thresholds to convert real values into true and false values. As the different methods

give different numbers, we could not use the same value for all the three ones. Thus,

we checked the precision, recall and F-measure values of different threshold values

for each methods and computed averages for all applications. The results are shown

in Figure 6.

By comparing the curves, we can observe that precision first slightly improves

as the treshold grows, then it suddenly drops. Although completeness cannot be

totally ignored, for our purposes less noise (fewer false positives) in the generated

data is more important than completeness. Thus, we have chosen to select tresholds

where the precision is maximal before its drop down. It resulted in 0.8, 0.3, and

0.1 treshold values for methods Pearson, Manhattan, and Kendall, respectively.

Table 2 shows the precision, recall, F-measure values of the three computation

methods using the previously defined threshold values. As can be seen, in half of

the cases the Pearson method produces the smallest set, and in four cases of them

this is the best choice according to the precision. Manhattan and Kendall methods

produce the same smallest sets in three cases and each of them produce the smallest

set individually in one case. However, the precision for these sets is always the best

among the three methods.

These results show that any of these three methods can be effectively used for

calculating traceability between source code and functionalities of a software. For

these 10 applications, the Pearson method seems to be slightly better than the other

two, but the results are not convincing. Which is the best is probably depending

on some other characteristics of the software.

Based on these results we can say that the investigated methods that infer trace-

ability links from code coverage data can be used to identify program points whose

inspection provide relevant information for usability testing. The effectiveness of

these methods are comparable to the manual traceability link detection. Therefore,

it is possible to use them to support the usability testing of large sized Android

applications.

Code Coverage Measurement Framework for Android Devices 455

Precision (mean) Precision (deviation)
Recall (mean) Recall (delation)
F-measure (mean) — F-measure (deviation)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(a) Pearson

Precision (mean) ————• Precision (delation)
Recall (mean) — Recall (deviation)
F-measure (mean) F-measure (delation)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) Manhattan

Precision (mean) — Precision (delation)
Recall (mean) Recall (delation)
F-measure (mean) ----- F-measure (delation)

(c) Kendall

Figure 6: Precision, recall, and F-measure values at different thresholds for the

three methods. (X axis: treshold; Y axis: metric value.)

5 Conclusions and Future Work

In this paper, we presented a methodology for method level code coverage measure-

ment on Android-based embedded systems. Although there were more solutions

allowing the measure of the code coverage of Android applications on the devel-

opers' computers, no common methods were known to us that performed coverage

measurement on the devices. We also reported the implementation of this method-

ology on a digital Set-Top-Box running Android. The coverage measurement was

integrated in the test automation process of this device allowing the use of the

collected coverage data in different applications like test case selection and prioriti-

zation of the automated tests, or additional test case generation. We also presented

an application of the framework. Using the produced coverage data we performed

experiments with three traceability computation methods.

456 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

Table 2: Precision (P), recall (R), F-measure (F) values for applications and com-

putation methods

A p p l i c a t i o n (a) P e a r s o n (b) M a n h a t t a n (<=) K e n d a l l

0 . 8 0 . 3 0 .1
p

K « F F R F

0 . 78 0 13 0 .22 0 . 7 9 0 . 1 0 0 . 17 0 . 7 9 0 . 10 0 . 17

0 . 2 7 0 06 0 .10 0 . 27 0 . 08 0 . 12 0 . 00 0 . 0 0 0 . 00

A2 0 .35 0 . 07 0 .10 0 . 7 6 0 .04 0 . 07 0 . 7 6 0 . 04 0 . 0 7
A3 0 . 07 0 .01 0 .02 6 . 28 0 . 13 0 16 0 . 2 8 0 . 1 3 0 . 1 6

A4 0 . 5 4 0 . 07 0 .12 0.46 0 .02 0 .04 0 . 4 6 0 . 02 0 . 04

0 . 6 3 0 . 05 0 .06 0.54 0 . 03 0 . 05 0 . 54 0 . 0 3 0 . 05

0 .81 0 . 0 9 0 .14 0 . 86 0 . 10 0 . 16 0 . 8 6 0 . 10 0 . 1 6

AJ 0 .44 0 . 1 3 0 .12 0 . 66 0 . 0 9 0 .11 0 . 6 6 0 09 0 . 11
A8 0 .83 0 . 10 0 .17 0 .84 0 . 08 0 .14 0 . 84 0 . 08 0 . 14
A9 0 . 5 2 0 . 08 0 .19 0.50 0 03 0 . 05 0 . 50 0 . 03 0 . 05

Average 0 .52 0 . 08 0 .12 0.60 0 . 07 0 .11 0 .57 0 . 0 6 0 . 1 0

D e v i a t i o n 0 . 25 0 . 04 0 . 06 0.22 0 . 04 0 . 05 0 . 27 0 .04 0 . 0 6

There are many improvement possibilities of this work. Regarding the imple-

mentation of code coverage measurement on Android devices, we wish to examine

if the granularity of tracing could be fined to sub-method level (e.g., to basic block

or instruction levels) without significantly affecting the runtime behaviour of the

applications. This would allow us to extract instruction and branch level coverages

that would result in more reliable tests. In addition, we are thinking of improv-

ing the instrumentation in order to build dynamic call trees for further use. The

current implementation (simple coverage measurement) does not deal with timing,

threads and exception handling, which are necessary for building the more detailed

call trees. It would also be interesting to help the integration of this coverage

measurement in commonly used continuous integration and test execution tools.

Furthermore, we are examining the use of the resulting coverage data. There

are other ways code coverage and computed traceability information can be used in

usability testing, for example to partially automate collecting data and to establish

usability models. The implemented code coverage measurement and the testing

process that utilizes this information are a good base for measuring the effect of

using coverage measurement data on the efficiency and reliability of testing.

References

[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. Recovering

traceability links between code and documentation. Software Engineering,

IEEE Transactions on, 28(10):970-983, Oct 2002.

[2] Apache Commons. BCEL homepage, h t t p : //commons. apache. org/proper/

commons-bee1/, June 2013.

[3] Beszédes, Árpád, Gergely, Tamás, Papp, István, Marinkovic, Vladimir, and

Zlokolica, Vladimir. Survey on testing embedded systems. Technical report,

Department of Software Engineering, University of Szeged, and Faculty of

Technical Sciences, University of Novi Sad, 2012.

Code Coverage Measurement Framework for Android Devices 457

[4] Biswas, Swarnendu, Mall, Rajib, Satpathy, Manoranjan, and Sukumaran, Sri-

hari. A model-based regression test selection approach for embedded applica-

tions. SIGSOFT Softw. Eng. Notes, 34(4): 1-9, July 2009.

[5] Bornstein, Dan. Presentation of Dalvik VM internals, 2008.

[6] Chawla, Anil and Orso, Alessandro. A generic instrumentation framework for

collecting dynamic information. In Online Proc. of the ISSTA Workshop on

Empirical Research in Software Testing (WERST 2004), 2004.

[7] Chiba, Shigeru. Javassist homepage. h t tp : / /www.csg .c i . i .u-tokyo.ac . jp /

~chiba/ javassist/ , May 2013.

[8] Cleland-Huang, Jane, Czauderna, Adam, Gibiec, Marek, and Emenecker,

John. A machine learning approach for tracing regulatory codes to product

specific requirements. In Proceedings of the 32Nd ACM/IEEE International

Conference on Software Engineering - Volume 1, ICSE '10, pages 155-164,

New York, NY, USA, 2010. ACM.

[9] Costa, José C., Devadas, Srinivas, and Monteiro, José C. Observability analysis

of embedded software for coverage-directed validation. In Proceedings of the

International Conference on Computer Aided Design, pages 27-32, 2000.

[10] Developers. JSON. http://www.json.org/, June 2013.

[11] Eaddy, M., Aho, A.V., Antoniol, G., and Gueheneuc, Y.-G. Cerberus: Tracing

requirements to source code using information retrieval, dynamic analysis, and

program analysis. In Program Comprehension, 2008. ICPC 2008. The 16th

IEEE International Conference on, pages 53-62, June 2008.

[12] Google. Android homepage, https ://www. cmdroid.com/, June 2013.

[13] Google. apktool homepage. https://c0de.g00gle.c0m/p/

android-apktool/, May 2013.

[14] Google. dex2jar. https://code.google.eom/p/dex2jar/, May 2013.

[15] Google Android Developers. Building and running an android application,

ht tp: / /developer.android .com/tools/bui ld ing/ index.html , May 2013.

[16] Google Code. Robotium homepage. https://oode.google.eom/p/

robotium/, March 2014.

[17] Gotlieb, Arnaud and Petit, Matthieu. Path-oriented random testing. In Pro-

ceedings of the 1st international workshop on Random testing, RT '06, pages

28-35, New York, NY, USA, 2006. ACM.

[18] Hazelwood, Kim and Klauser, Artur. A dynamic binary instrumentation en-

gine for the arm architecture. In Proceedings of the 2006 International Confer-

ence on Compilers, Architecture and Synthesis for Embedded Systems, CASES

'06, pages 261-270, New York, NY, USA, 2006. ACM.

http://www.csg.ci.i.u-tokyo.ac.jp/
http://www.json.org/
https://c0de.g00gle.c0m/p/
https://code.google.eom/p/dex2jar/
http://developer.android.com/tools/building/index.html
https://oode.google.eom/p/

458 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

[19] Kukolj, Sandra, Marinkovic, Vladimir, Popovic, Miroslav, and Bognar,

Szabolcs. Selection and prioritization of test cases by combining white-box

and black-box testing methods. In Proceedings of the 3 r d Eastern European

Regional Conference on the Engineering of Computer Based Systems (ECBS-

EERC 2013), 2013.

[20] Marcus, A. and Maletic, J.I. Recovering documentation-to-source-code trace-

ability links using latent semantic indexing. In Software Engineering, 2003.

Proceedings. 25th International Conference on, pages 125-135, May 2003.

[21] Marek, Lukas, Zheng, Yudi, Ansaloni, Danilo, Sarimbekov, Aibek, Binder,

Walter, Tuma, Petr, and Qi, Zhengwei. Java bytecode instrumentation made

easy: The disl framework for dynamic program analysis. In Jhala, Ranjit

and Igarashi, Atsushi, editors, Programming Languages and Systems, volume

7705 of Lecture Notes in Computer Science, pages 256-263. Springer Berlin

Heidelberg, 2012.

[22] Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., and Rajlich,

V. Feature location using probabilistic ranking of methods based on execution

scenarios and information retrieval. Software Engineering, IEEE Transactions

on, 33(6):420-432, June 2007.

[23] Powers, David MW. Evaluation: from precision, recall and f-measure to roc,

informedness, markedness & correlation. Journal of Machine Learning Tech-

nologies, 2(l):37-63, 2011.

[24] RT-RK Institute. RT-Executor. h t t p : / / bb t . r t- rk . com / so f tware /

rt-executor/, May 2013.

[25] Salkind, N.J. Encyclopedia of measurement and statistics. Number 1. k. in

Encyclopedia of Measurement and Statistics. SAGE Publications, 2007.

[26] Seesing, A. and Orso, A. InsECTJ: A Generic Instrumentation Framework for

Collecting Dynamic Information within Eclipse. In Proceedings of the Eclipse

Technology eXchange (eTX) Workshop at OOPSLA 2005, pages 49-53, San

Diego, CA, USA, october 2005.

[27] Slife, Derek and Chesney, Mark. jCello. h t t p : / / j c e l l o . s o u r c e f o r ge . n e t / ,

June 2013.

[28] Vlad Roubtsov. EMMA: a free java code coverage tool. ht tp:/ /emma.

sourceforge.net/ , June 2013.

[29] Yoo, S. and Harman, M. Regression testing minimization, selection and priori-

tization: a survey. Software Testing, Verification and Reliability, 22(2):67-120,

2012.

http://bbt.rt-rk.com/software/
http://jcello.sourceforge.net/
http://emma

REGULAR PAPERS

Acta Cybernetica 21 (2014) 461-437.

Hungarian Noun Phrase Extraction Using

Rule-based and Hybrid Methods*

Gábor Recski*

Abstract

We implement and revise Kornai's grammar of Hungarian NPs [11] to

create a parser that identifies noun phrases in Hungarian text. After mak-

ing several practical amendments to our morphological annotation system of

choice, we proceed to formulate rules to account for some specific phenomena

of the Hungarian language not covered by the original rule system. Although

the performance of the final parser is still inferior to state-of-the-art machine

learning methods, we use its output successfully to improve the performance

of one such system.

Keywords: natural language processing, parsing, machine learning

1 Introduction

This paper describes a rule-based system which extracts noun phrases (NPs) from

morphologically analyzed Hungarian text. We implement and revise the grammar

of Hungarian NPs in [11] to create a system that identifies NPs by means of bottom-

up parsing. Although high performance on the standard task is already possible

using state-of-the-art machine learning methods, we show that a rule-based ap-

proach contributes substantially to the performance of a hybrid system. Section 2

describes the task and provides a brief survey of the standard statistical approach.

Section 3 documents the process of creating a Hungarian NP corpus, a resource

crucial not only for machine learning approaches, but also for the evaluation of

rule-based systems.

Section 4.1 describes the technical preliminaries of creating an NP parser. In

section 4.2 we describe the process of grammar development, which involves exam-

ining the error classes in the output after every major change to the rule system.

Section 5 proposes a simple hybrid system where the chunking task is performed

by the learning-based system hunchunk [23], [24] using features derived from the

output of the rule-based system.

*I would like to thank András Kornai and two anonymous reviewers for their many useful
comments and suggestions. Work supported by OTKA grant #82333.

t Department of Theoretical Linguistics, Eötvös Loránd University and Hungarian Academy of
Sciences, E-mail: recski8budling.hu

462 Gábor Recski

2 Chunking

2.1 The task

The task of extracting one or several types of phrases from a text is often referred

to as shallow parsing or chunking. The term chunk and the task of text chunking,

however, do not have universally accepted definitions in NLP (Natural Language

Processing) literature. The term chunk was first used by Abney in [2], who uses

it to describe non-overlapping units of a sentence that each consist of "a single

content word surrounded by a constellation of function words" . Based primarily

on [9], who introduce the term performance structure to describe psycholinguistic

units of a sentence, Abney argues that chunks are units that do not neccessarily

coincide with syntactic constituents. Recent works on the automated chunking

of raw text, however, invariably use definitions of chunks that make it possible

to extract them from parse trees in order to provide training data for supervised

learning systems. In practice, these chunks usually coincide with some group of

syntactic phrases. One complete set of definitions for various classes of chunks is

given in the description of the chunking task of CoNLL 2000 [28], where the Penn

Treebank [17] was used as a source of chunk data.

One of the best known works on the extraction of NP chunks is that of Ramshaw

and Marcus [18], who define base NPs (or non-recursive NPs) as noun phrases that

do not contain another noun phrase. It is this definition that was adopted by Tjong

Kim Sang and Buchholz for the CoNLL 2000 shared task, and when the task of

NP chunking is mentioned as a benchmark for some machine learning algorithm,

it almost invariably refers to base NP tagging based on the datasets proposed by

Ramshaw and Marcus and adopted by CoNLL-2000.

2.2 Overview of statistical methods

Besides defining the task of NP chunking as the identification of non-recursive

(base) noun phrases, Ramshaw and Marcus attempt to solve the task by applying

the method of transformation-based learning, which had been used before for the

tasks of part-of-speech tagging [4] and parsing [5]. Using the datasets and method

of evaluation that was later to become the CoNLL shared task and also the standard

field of comparison for NP-chunker tools, Ramshaw and Marcus report precision

and recall rates of 90.5% and 90.7% respectively. Their datasets used for training

and testing purposes were derived from sections 15-18 and section 20 of the Wall

Street Journal respectively, data which was available from the Penn Treebank.

During and after the CoNLL shared task in 2000, a wide variety of machine

learning methods have been applied to the task of identifying base NPs. Kudo and

Matsumoto reached an F-score of 93.79% by using Support Vector Machines [13],

a result that was to increase to 94.22% a year later when they introduced weighted

voting between SVMs trained using different chunk representations [14]. Probably

the most popular method for NP chunking today is the Conditional Random Field

(CRF, [15]) machine learning algorithm. CRFs have been used on the standard

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 463

CoNLL task by Sha and Pereira, who achieved an F-score of 94.3% [26], and more

recently by Sun et al. (F = 94.34%) [27],

A further notable result is that of Hollingshead and colleagues [10], who eval-

uated several context-free parsers on various shallow parsing tasks and report an

F-score of 94.21% on the CoNLL task using the Charniak parser [6]. These re-

sults show that a rule-based system can be competitive with results obtained by

using any advanced machine learning algorithm, a fact that clearly points us in the

direction of hybrid systems.

2.3 The hunchunk system

In the final section of this paper we shall combine the parser with our own learning-

based NP-chunking tool. Hunchunk uses a combination of Maximum Entropy learn-

ing and Hidden Markov Models (HMM) to perform NP-chunking of a sentence that

is tokenized and morphologically annotated. For a detailed description of hunchunk

the reader is referred to [23]. Some past applications of hunchunk are documented

in [25] and [22], The tool is available for download under an LGPL license from

http://www.github.com/recski/HunTag.

3 Creating NP corpora

A preliminary step of creating the NP corpus is choosing a method for representing

morphological information. The morphological analyzer hunmorph [29] uses the KE

formalism [20] and our grammar relies heavily on the kind of structured information

that hunmorph provides and KR codes represent.

3.1 The K R formalism

The KR formalism for representing morphological information was developed with

the intention of capturing the hierarchy between individual inflectional features and

encoding the derivational steps used to arrive at the word form in question. The

output of the analysis of a word starts with the stem and contains the category and

features of the word as well as the category of the word from which the given form

was derived, if any. This latter part of the code also contains in square brackets the

type of derivation used to form the final word. The last part of the code represents

the hierarchy between grammatical features of the word by means of bracketing

similar to that used for the analysis of sentence structure.

Some examples of KR-codes in the Szeged Treebank [7] are given in Table 1. As

can be seen, KR encodes the entire chain of derivations that led to the word form

under analysis.

One great advantage of this formalism is that it explicitly encodes all pieces of

information which one might think of as a grammatical feature, therefore any NLP

application which relies on word level information can make use of the KR code

http://www.github.com/recski/HunTag

464 Gábor Recski

Table 1: KR examples

tanárunk

teacher-PosslPl

'our teacher'

tanár/NOUN<POSS<l><PLUR>>

óráján

class-Poss3-SUP

'in his/her class'

őra/NOUN<POSS><CAS<SUE>>

másodikkal

two-ORD-INS

'with the second'

kettö/NUM[ORD]/NUM<CAS<INS>>

vegyük

take-Imp- Pl 1-Def

'let's take'

vesz/VERB<SUBJUNC-IMPXPERS<l»<PLURXDEF>

felértékelődése

up-value(V)-Med-Ger-Poss3

'the increase of its value'

felértékel/VERB[MEDIAL]/VERB[GERUND]/N0UN<P0SS>

without the need for any external knowledge about the meaning of various symbols

or positions in the code.

The KR formalism straightforwardly encodes most grammatical features, but

there are still some distinctions which it is unable to represent. One of these, which

we must overcome in order to account for syntactic phenomena, is the distinction

between pronouns and nouns as well as the various types of pronouns in Hungarian.

Pronouns are tagged as nouns in the KR formalism because they take part in the

same inflectional phenomena as nouns - although some of their paradigms are

defective therefore introducing a new top-level category into the KR system would

cause the loss of a well-founded generalization. The solution we implemented for

use with our system is the introduction of the noun feature PRON which takes as

its value 0 if the word is not a pronoun and the type of pronoun otherwise. This

addition results in the analyses exemplified in Table 2, for a detailed description

see [21].

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 465

Table 2: Pronoun types

ez

this

ez/N0UN<PR0N<DEM>>

mindenki

everybody

mindenki/NOUN<PRON<GEN>>

valami

something

valami/NOUN<PRON<INDEF>>

aki

who (relative pron.)

aki/NOUN<PRON<REL>>

ki

who (interrogative pron.)

aki/N0UN<PR0N<WH>>

saját

own

aki/N0UN<PR0N<P0S>>

3.2 Extracting NPs from a treebank

Having determined the way we wish to encode morphological information we may

proceed to create an NP corpus by extracting sentences and syntactic information

from a treebank (a corpus which contains the full syntactic analysis for all sentences,

cf. [1]). For this purpose we use the Szeged Treebank [7], a syntactically annotated

corpus of Hungarian which contains nearly 1.5 M tokens of text taken from a

variety of genres including fiction, newspapers, legal text, software documentation

and essays written by students between the age of 13 and 16.

The treebank contains morphological information about each word in the MSD

format [8]. Converting MSD-tags to KR is insufficient because MSD codes do not con-

tain data about the derivations that create a word form, a piece of information

which KR can encode and which some of our rules rely on. Our morphological

analyzer, hunmorph, is able to supply this information, but it will necessarily pro-

duce some sporadic tagging errors on sentences extracted from the Treebank. Such

errors may be corrected in a machine learning system based on context, but will

surely mislead the rule-based system, which has no other source of information at

466 Gábor Recski

its disposal. In order to have all available data present in the corpus, and at the

same time preserve the high precision provided by manually annotated tags, we

merged our two sources of data. Information on the derivation of a word form, if

any, was taken from the KR-codes provided by hunmorph, the remaining part of the

tag, containing the category of the word as well as its grammatical features, was

obtained from the Treebank. In case the Treebank could not provide any gram-

matical information (0.91% of all words), the output of hunmorph was entered into

the corpus as is.

3.3 Mending the corpus

Having created a base NP corpus by the method described in section 3.2, we pro-

ceeded to apply two further changes to the data in order to handle syntactic analyses

in the Treebank with which we do not agree. Since we intend to use these corpora

as a standard of evaluation for the parser, we need it to reflect the analyses which

we expect our system to produce. In this paper we do not wish to argue extensively

for one analysis over the other, we simply describe the changes we have made to

the data in order to ensure that our experiments can be replicated.

3.3.1 Adjectives in possessive constructions

The largest number of cases where there is a discrepancy between the Szeged anal-

ysis and the one used here is related to the analysis of possessive constructions.

The noun phrase in Table 3 is represented in the treebank as in Figure 1.

Table 3: Possessive construction

egy idős úr kopasz fejére

an elderly gentleman bald head-Poss3-SUBL

'on the bald head of an elderly gentleman'

NP

NP
\
Adj

agy idős úr kopasz fejér«

Figure 1: Original analysis of the possessive construction

We believe this analysis to be false since the noun and preceding adjective

modifying it form a constituent in Hungarian and the possessive construction does

not change this fact: the possessor NP can be followed directly by any NP with

the POSS feature. Therefore we modified our base NP corpus in order to reflect the

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 467

analysis in Figure 2, which we believe to be the correct one. We will expect our

system to parse such structures as two consecutive NPs.

NP

egy idős úr Adj N

kopasz fejére

Figure 2: Revised analysis of the possessive construction

3.3.2 Demonstrat ives

Another structure which we intend to treat differently from the analysis in the

Treebank is the special demonstrative construction of Hungarian exemplified in

Table 4. Note that in this structure the demonstrative pronoun ez/az must be

marked for both the case and number of the following noun.

Table 4: Demonstrative NP

ez a pincér

this the waiter

'this waiter'

ezek a hajók

this-PL the ship-PL

'these ships'

attól a pasastól

that-ABL the bloke-ABL

'from that bloke'

For these structures the Treebank gives the analysis in Figure 3. We believe

that the demonstrative pronoun cannot project a noun phrase of its own, therefore

we change the corpus to reflect the analysis in Figure 4.

3.3.3 Other issues

The chunk corpus extracted from the Szeged Treebank still present a number of

small anomalies that hinder the evaluation of both the rule-based and the statistical

system as well as the training of the latter. One notable example is a construction

which involves an NP containing an adjective that precedes the noun and is enclosed

468 Gábor Recski

NP

NP Det N

i i i
tz a pincer

Figure 3: Original analysis of demonstrative NPs

NP

Det Det N

ez a pincer

Figure 4: Revised analysis of demonstrative NPs

in parentheses and which occurs often in legal text (e.g. A Gt. (uj) 3. paragrafusa

'The (new) 3rd section of the Gt. Act'). This case falls under the same questionable

analysis as those described in section 3.3.1. We believe that arbitrary modification

of the analysis of problematic structures (which are, unfortunately, overrepresented

in our corpus) is not a measure we can take in good conscience. Therefore, we leave

these occurrences, as well as any smaller anomalies, untouched. We note that this

phenomenon accounts for ca. 5% of those base NPs which our grammar is unable

to parse.

3.4 Evaluation methods

The corpus created in the manner described above is used to evaluate our parser at

various stages of development. The statistical system hunchunk also uses two (non-

overlapping) sections of this corpus for training and testing. Finally, performance

of the hybrid system (to be introduced in the final section of this paper) is also

measured using this data as gold standard.

In each of these cases, evaluation involves comparing two sets of chunks for each

sentence, the one supplied by the system in question and the one present in the

corpus. Our evaluation method follows the guidelines of CoNLL-2000: a chunk

identified by our system is considered correct iff it corresponds to a chunk in the

gold standard and a chunk in the corpus is considered found iff it corresponds to a

chunk in our tagging. A system's performance can be described by two values: the

precision of a system is the number of correctly identified chunks divided by the

number of all chunks in the output, while the recall rate is obtained by dividing

the same number by the number of chunks in the gold standard. As customary,

we measure the overall quality of the tagging by calculating the harmonic mean of

these two values, also called the F-score:

P + R

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 469

where P and R stand for precision and recall respectively (cf. e.g. [16].

4 Rule-based method

This chapter describes our efforts to use a rule-based parser for the extraction of

noun phrases. We improve the context-free feature grammar of Hungarian NPs [11]

[12] in order to account for even the most complicated structures.

4.1 Building a parser

Our system uses the NLTK parser, a tool which supports context-free grammars

and a wide variety of parsing methods [3]. To parse a text we must first give a

feature representation of all words. We implement the context-free grammar of

Kornai to create a parser which takes as its input the series of KR-codes of words

in a sentence and produces, by means of bottom-up parsing, charts containing the

possible rule applications that may produce some fragment of the sentence. A

chunking is then derived from this chart through a series of recognition steps which

we shall describe at the end of this section.

4 . 1 . 1 Prepar ing the data

When using the NLTK parser with a CF grammar, the system accepts nonterminal

symbols that consist of a category symbol such as NOUN or VERB followed by a set of

features in square brackets. Feature values can be strings, integers, non-terminals

of the grammar and variables that bind the value of the feature to that of some

other feature of the same type in the rule. Thus a rule to encode agreement in

number between verb and object would be VP -> V[PL=?a] N[PL=?a], which is

equivalent to the more standard'Greek variable'notation VP -> V[aPL] N[aPL].

Converting KR codes to such representations, i.e. supplying the terminal rules for

our grammar, is a straightforward mechanical process. Some examples are given

in Table 5. Notice that the grammar does not use different symbols for various

projection levels of the same syntactic category, but encodes this information in

the feature BAR; the notation NOUN [BAR=0] will then simply represent a bare noun.

Information on the source of derivation is represented by the feature SRC which

takes as its value a set of two features: STEM encoding the features of the source

word and DERIV the type of derivation.

As we have described in section 3.1, the bulk of any KR-style code lends itself to

such a representation, e.g. the code N0UN<P0SS><PLUR> needs only to be rewritten

as NOUN [P 0 S S = 1 , P L U R = 1] in order to produce input for NLTK. Still, a number of

problems must be addressed when transforming KR codes into such feature struc-

tures. First of all, KR features are privative: the fact that a noun is singular, for

example, can be concluded from the absence of the <PLUR> feature. Similarly, the

default case is nominative (there is no <CAS<N0M>> feature), the default person is

the third, etc. Since our grammar should be able to refer to such default features

470 Gábor Recski

Table 5: Terminal rules

NOUN[POSS=[1=1, PLUR=1] -> N0UN<P0SS<1><PLUR»

NOUN[P0SS=1, CAS=[SUE=1]] -> N0UN<P0SS><CAS<SUE>>

NOUN[ANP=0, CAS=0, PLUR=0, P0SS=[1, PLUR=1], PR0N=0] ->

-> 'N0UN<P0SS<1><PLUR>>

NUM[CAS=[INS=1], SRC=[STEM=NUM, DERIV=0RD]] ->

-> NUM[ORD]/NUM<CAS<INS>>

VERB[SUBJUNC-IMP=1, PERS=[1=1], PL=1, D=l] ->

-> VERB<SUBJUNC-IMPXPERS<1»<PLUR><DEF>

NOUN[POSS=l, SRC=[STEM=VERB [SRC=[STEM=VERB, DERIV=MEDIAL]] ,

DERIV=GERUND]] ->

-> VERB[MEDIAL]/VERB[GERUND]/NOUN<POSS>

in a straightforward manner, the process of transforming KR-codes involves expli-

cating these features by adding the feature values PERS=0, CAS=0, PLUR=0, etc.

Similarly, a word which has not been identified as the product of some derivation

will receive the feature SRC=0.

4.1.2 Imp lemen t i ng NP-chunking

Having established a method for creating the terminal rules of our grammar we

are now able to parse, based on the NP-grammar of Kornai, any sentence tagged

according to the KR formalism. Since we do not have a complete grammar of

Hungarian, we employed a bottom-up parser, which can provide an analysis of

fragments of a sentence without parsing the full sentence. The output obtained

for each sentence is a chart which contains edges, individual entries which describe

a step in the parsing process by representing a particular application of a rule in

the grammar, and gives the location of the sentence fragment to which it can be

applied.

The absence of an S-grammar means that we cannot automatically discard the

majority of chart edges based on their lack of ability to function as part of a parse-

tree for the full sentence. Therefore we must compile a list of rules to post-process

the set of parse edges in order to produce non-overlapping NP sequences. First,

we take all fragments of the sentence which correspond to a complete NOUN edge,

thereby selecting the word sequences that the parser considers potential NPs of

the sentence. Secondly, since we are trying to extract base NPs only, we discard

all fragments which contain more than one noun. Next, we discard all fragments

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 471

which are contained in a larger fragment. The final and most complicated step

in finding NPs is dealing with overlapping fragments: we implement a heuristic

approach in which we choose of two overlapping NPs the one which cannot be

parsed as a phrase of some other category based on the parse chart. This process is

preferable since most overlaps are produced by SLASH-rules, i.e. rules which allow

NPs with elliptic heads to be parsed as NPs. In most cases, these rules falsely

generate phrases which are not NPs but AdjPs, NumPs, etc. In case this process

fails to select exactly one of the two fragments - i.e. both or neither of them can

be parsed as a phrase of some other category - we discard them both.

4.2 Developing the grammar

In this section we describe our additions to the grammar of Hungarian NPs pub-

lished in [11], We evaluate each version of the grammar on a test corpus which

contains 1000 sentences picked randomly from all genres in the base NP corpus,

following the principles described in section 3.4.

Implementing the initial grammar of Kornai our system achieves an F-score of

81.76%. By observing the output it is clear that the greatest shortcoming of our

system is its lack of knowledge about the internal structure of adjectival, numeral

and adverbial phrases, all of which can form components of an NP. Therefore our

first step does not involve touching the NP grammar but rather the addition of

some simple rules to account for complex AdjPs, NumPs and AdvPs. These rules

can be seen in Table 6.

Table 6: Basic rules for AdjPs and NumPs

ADJ - > ADJ ADJ

ADJ - > ADV ADJ

NUM - > NUM NUM

NUM - > ADV NUM

NUM - > ADJ NUM

After the addition of these rules our system produces chunkings with an F-score of

84.18%. The next step involved the treatment of pronouns. We have discussed in

section 3.1 that Hungarian pronouns behave very similarly to nouns, and in fact

the parser can only distinguish them from nouns with the help of a feature which

we have added to the KR-system. In the vast majority of cases, treating pronouns as

nouns is entirely justified. There are, however, a handful of phenomena which make

it necessary for us to refer to them separately in the grammar. General pronouns

(e.g. minden 'all') and indefinite pronouns (e.g. néhány 'some') may combine with

a following noun constituent to form an NP (cf. Table 7)

These pronouns are not in complementary distribution with numerals, however we

choose to keep the grammar simple and adjoin them to nouns of bar-level 1. The

resulting rules are shown in Table 8.

472 Gábor Recski

Table 7: General and indefinite pronouns

minden pofon

all punch

'all punches'

néhány villanykörte

some light-bulb

'some light-bulbs'

Table 8: Rules for general and indefinite pronouns

NOUN[P0SS=?a, PLUR=?b, ANP=?c CAS=?d, D=?e, PR0N=?f] ->

-> NOUN[PR0N=GEN]

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d , D=?e, PR0N= ?f]

NOUN[P0SS=?a, PLUR=?b, ANP=?c CAS=?d, D=?e, PR0N=?f] ->

-> NOUN[PR0N=INDEF]

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d , D=?e, PR0N= ?f]

The addition of these two rules result in an increase of the system's F-score to 85.45.

A third type of pronoun, the demonstrative ez/az, etc. also needs treatment when

it comes to the demonstrative structure described in section 3.3.2. To allow the

parser to recognize the structure we implement the rule in Table 9, thus achieving

an F-score of 86.68.

Table 9: Rule for demonstrative NPs

NOUN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e] ->

-> NOUN[PR0N=DEM, BAR=0, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d]

ART NOUN[PR0N=0, BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=0],

The next structure which caused numerous parsing errors is that of adjectival

phrases containing a noun followed by an adjective derived from a verb (called a

deverbal adjective), either in perfect or imperfect participle form. An example of

both of these structures can be seen in Table 10.

Since our terminal symbols encode information about the source of derivation

which produced any given word form, we can once again treat these structures

properly by adding the two rules in Table 11 to our grammar. This addition caused

an increase in the performance of the system to 87.87%. In the end the greatest

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 473

Table 10: Sentences with deverbal adjectives

a korsónak támasztott

the jug-DAT prop-PERF_PART

könyvet olvasta

book-ACC read-PAST-DEF-3

'He read the book propped up against the jug.'

az ókori mór

the ancient moor

hódítóktól származó esküvést

conqueror-Pl-FROM originate-IMPERF-PART oath-ACC

hallották

hear-PAST-DEF-3

'They heard the oath originating from ancient moor conquerors'

Table 11: Rules for deverbal adjectives

ADJ -> NOUN ADJ[SRC=[STEM=VERB[] , DERIV='PERF_PART']]

ADJ -> NOUN ADJ[SRC=[STEM=VERB[], DERIV='IMPERF_PART']]

error classes - besides those caused by genuinely ambiguous structures - remained

those which involved the incorrect parsing of punctuation marks and conjunctions.

With the addition of several rules describing their behaviour in and around NPs

(see Appendix A) we further increased the F-score of the system to 89.36%.

The progress of the system's performance as a result of our steps of grammar

development are summarized in Table 12. As can be seen from these figures our

Table 12: Stages of grammar development

Development stage F-score

Kornai 1985 81.76%

AdjPs, AdvPs, NumPs 84.18%

Pronouns 85.45%

Demonstrative NPs 86.68 %

Deverbal adjectives 87.87%

Punctuation and conjunctions 89.36%

development of the grammar corrected nearly half of the errors made by the system.

For the final version of the grammar see Appendix A.

474 Gábor Recski

5 Features from the parser

Although the performance of our parser is still inferior to statistical systems, in

this final section we will demonstrate, using a very simple example, how a machine

learning system may benefit from the output provided by the parser.

Hunchunk handles the task of chunking as a type of word-tagging and attempts

to assign the correct chunk-tag to each word in the sentence: the five tags B-NP,

I-NP, E-NP, 1-NP, 0 indicate the position of a word within a chunk and each

possible chunking of a sentence corresponds to a sequence of word tags. The system

uses Maximum Entropy learning [19] to determine for each word the probability

distribution over this tagset, based on a set of binary features of the word such as

character ngrams, morphological features, position in the sentence, etc. (see [23]

for details). Using these distributions as observation probabilities and a simple

bigram model as an estimate for transition probabilities, the Viterbi algorithm can

efficiently compute the most probable sequence of tags, i.e. the most probable

chunking for a sentence.

We improve the system by first converting the output of the NP-parser to such

a sequence of tags and then using the tag for each word as an extra feature that

the maxent model has access to. In other words, when trying to guess what the

chunk-tag of a word should be, the hunchunk system may use the answer the NP-

parser gives to the same question. In order to evaluate this hybrid system we parse

the entire chunk corpus and then create a train and test set from the data obtained

in the same way as we would do when evaluating hunchunk on its own. Table 13

shows the results of the evaluation for both the original hunchunk model and the

new hybrid system.

Precision Recall F-score

hunchunk

hunchunk+parser features

94.61%

95.29%

94.88%

95.68%

94.75%

95.48%

Table 13: The role of parser features in base NP chunking

As can be seen from the above figures, the addition of information from a rule-

based system leads to a 15% decrease in the number of errors made by the statistical

system. We also measured the impact of parser features on a different chunking

task which hunchunk performs: that of extracting maximal NPs, i.e. noun phrases

that are not contained by a higher level NP. In the case of maximal noun phrases

the parser feature also causes some increase in performance (cf. Table 14).

Precision Recall F-score

hunchunk

hunchunk+parser features

89.34%

89.46%

88.12%

88.76%

88.72%

89.11%

Table 14: The role of parser features in maxNP-chunking

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 475

6 Conclusion

This paper described the process of implementing a grammar for Hungarian noun

phrases to create an NP-parser and using its output to enhance the performance

of a state-of-the-art statistical system. Firstly, we described the technical prelimi-

naries of implementing a context-free grammar and also documented additions and

amendments made to both the data and the grammar. Having reached a sufficient

parsing quality we proceeded to use the output of the rule-based system to create

new features for use with the learning-based hunchunk system.

The improved F-scores indicate that hybrid systems in NP-extraction may pro-

duce results superior to those of a stand-alone machine learning system. However,

it falls beyond the scope of this paper to explore the various possibilities of com-

bining rule-based and statistical approaches to NP-chunking. Also, cross-analysis

of errors made by each system - possibly on larger corpora - could help us gain a

better understanding of what the strengths and weaknesses of the two approaches

are.

References

[1] Abeille, A., editor. Treebanks: Building and using parsed corpora. Kluiwer,

Dodrecht, 2003.

[2] Abney, S. Parsing by chunks. In Berwick, Robert, Abney, Steven, and Tenny,

Carol, editors, Principle-based parsing, pages 257-278. Kluwer Academic Pub-

lishers, 1991.

[3] Bird, S., Klein, E., and Loper, E. Natural language processing with Python.

O'Reilly Media, 2009.

[4] Brill, E. A simple rule-based part of speech tagger. In Third Conference on

Applied Natural Language processing, pages 152-155, Trento, Italy, 1992.

[5] Brill, E. Automatic grammar induction and parsing free text: A

transformation-based approach, 1993. Proceedings of the Workshop on Human

Language Technology, pages 237-242, Association for Computational Linguis-

tics, Stroudsburg, PA, USA, 1993.

[6] Charniak, E. A maximum-entropy-inspired parser. In Proceedings of the 1st

North American chapter of the Association for Computational Linguistics con-

ference (NAACL-2000), pages 132-139. Association for Computational Lin-

guistics, 2000.

[7] Csendes, D., Csirik, J., Gyimothy, T., and Kocsor, A. The Szeged Treebank.

In Lecture Notes in Computer Science: Text, Speech and Dialogue, pages 123-

131. Springer, 2005.

476 Gábor Recski

[8] Erjavec, T. MULTEXT-east version 3: Multilingual morphosyntactic specifi-

cations, lexicons and corpora. In Lino, Maria Teresa, Xavier, Maria Francisca,

Ferreira, Fátima, Costa, Rute, and Sila, Raquel, editors, Fourth Inernational

Conference on Language Resources and Evaluation (LREC 2004), pages 1535-

1538, Paris, 2004. European Language Resources Association (ELRA).

[9] Gee, J. P. and Grosjean, F. Performance structures: A psycholinguistic and

linguistic apprasial. Cognitive Psychology, 15:411-458, 1983.

[10] Hollingshead, K., Fisher, S., and Roark, B. Comparing and combining finite-

state and context-free parsers. In Proceedings of the Conference on Human

Language Techonologies and Empirical Methods in Natural Language Process-

ing (HLT-EMNLP), pages 787-794, 2005.

[11] Kornai, A. The internal structure of Noun Phrases. In Approaches to Hungar-

ian, 1:79-92, 1985.

[12] Kornai, A. A főnévi csoport egyeztetése. In Kiefer, Ferenc, editor, Altalános

Nyelvészeti Tanulmányok, volume 17, pages 183-211. Akadémiai Kiadó, 1989.

[13] Kudo, T. and Matsumoto, Y. Use of support vector learning for chunk iden-

tification. In Proceedings of the 2nd workshop on Learning language in logic

and the 4th conference on Computational natural language learning - Volume

7, page 144. Association for Computational Linguistics, 2000.

[14] Kudo, T. and Matsumoto, Y. Chunking with support vector machines. In

Proceedings of the second meeting of the North American Chapter of the Asso-

ciation for Computational Linguistics (NAACL 2001), pages 1-8. Association

for Computational Linguistics, 2001.

[15] Lafferty, J., McCallum, A., and Pereira, F. Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data. Morgan Kaufmann,

2001.

[16] Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R. Performance mea-

sures for information extraction. In Proceedings of the DARPA Broadcast News

Workshop, page 249, Herndon, VA, 1999. Morgan Kaufmann.

[17] Marcus, M., Santorini, B., and Marcinkiewicz, M. Building a large annotated

corpus of English: The Penn treebank. Computational Linguistics, 19:313-330,

1993.

[18] Ramshaw, L. and Marcus, M. Text chunking using transformation-based

learning. In Yarowsky, D. and Church, K., editors, Proceedings of the Third

Workshop on Very Large Corpora, pages 82-94, Cambridge, MA, 1995. SIG-

DAT/ACL.

[19] Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambi-

guity Resolution. PhD thesis, University of Pennsylvania, 1998.

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 477

[20] Rebrus, P., Kornai, A., and Varga, D. Egy általános célú morfológiai annotáció.

[A general purpose morphological annotation system] Altalános Nyelvészeti

Tanulmányok , volume 24, pages 47-80. Akadémiai Kiadó 2012.

[21] Recski, G. Egy általános célú morfológiai annotáció kiterjesztése [Extending a

general-purpose morphological annotation system]. In Váradi, T., editor, VII.

Alkalmazott Nyelvészeti Doktoranduszkonferencia. pages 168-174. Budapest,

MTA Nyelvtudományi Intézet, 2013.

[22] Recski, G., Rung, A., Zséder, A., and Kornai, A. Np alignment in bilingual

corpora. In Calzolari, Nicoletta, Choukri, Khalid, Maegaard, Bente, Mari-

am, Joseph, Odijk, Jan, Piperidis, Stelios, Rosner, Mike, and Tapias, Daniel,

editors, Proceedings of the Seventh International Conference on Language Re-

sources and Evaluation (LREC'10), Valletta, Malta, 2010. European Language

Resources Association (ELRA).

[23] Recski, G. and Varga, D. A Hungarian NP Chunker. The Odd Yearbook. ELTE

SEAS Undergraduate Papers in Linguistics, pages 87-93, 2009.

[24] Recski, G. and Varga, D. Magyar főnévi csoportok azonosítása. Altalános

Nyelvészeti Tanulmányok, volume 24, pages 81-95. Akadémiai Kiadó 2012.

[25] Recski, G., Varga, D., Zséder, A., and Kornai, A. Főnévi csoportok azonosítása

magyar-angol párhuzamos korpuszban [Identifying noun phrases in a parallel

corpus of English and Hungarian]. VI. Magyar Számitógépes Nyelvészeti Kon-

ferencia [6th Hungarian Conference on Computational Linguistics], 2009.

[26] Sha, F. and Pereira, F. Shallow parsing with conditional random fields. In

NAACL '03: Proceedings of the 2003 Conference of the North American Chap-

ter of the Association for Computational Linguistics, pages 134-141. Associa-

tion for Computational Linguistics, 2003.

[27] Sun, X., Morency, L.-P., Okanohara, D., and Tsujii, J. Modeling latent-

dynamic in shallow parsing: a latent conditional model with improved in-

ference. In COLING '08: Proceedings of the 22nd International Conference

on Computational Linguistics, pages 841-848. Association for Computational

Linguistics, 2008.

[28] Tjong Kim Sang, E. F. and Buchholz, S. Introduction to the CoNLL-2000

shared task: Chunking. In Proceedings of the 2nd workshop on Learning

language in logic and the jth conference on Computational natural language

learning- Volume 7, pages 127-132. Association for Computational Linguistics,

2000.

[29] Trón, V., Gyepesi, Gy., Halácsy, P., Kornai, A., Németh, L., and Varga, D.

Hunmorph: open source word analysis. In Jansche, Martin, editor, Proceedings

of the ACL 2005 Software Workshop, pages 77-85. ACL, Ann Arbor, 2005.

478 Gábor Recski

A Final grammar of the N P parser

NOUN[POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] ->

NOUN[PR0N=P0S]

NOUN [BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f]

NOUN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e] ->

NOUN[PR0N=DEM, BAR=0, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d]

ART NOUN[PR0N=0, BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=0]

N0UN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] ->

NOUN[PR0N=GEN]

NOUN[BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]

N0UN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] ->

NOUN[PRON=INDEF]

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] ->

ADJ

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f]

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] ->

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]

NOUN[BAR=l, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] ->

ADJ

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0]

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f]/NOUN[BAR=0] ->

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0]

NOUN[BAR=2, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f] ->

NUM

NOUN[BAR=l, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] ->

NOUN[BAR=l, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]

NOUN[BAR=2, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] ->

NUM

NOUN[BAR=1, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0]

NOUN[BAR=2, POSS=?b, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] ->

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e]/N0UN[BAR=0, PRON=?f]

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] ->

ART[D=?e]

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, PRON=?f]

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=l, PRON=?f] ->

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=l, PRON=?f]

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] ->

ART[D=?e]

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, PRON=?f]/NOUN[BAR=0]

NOUN[BAR=3, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] ->

NOUN[BAR=3, ANP=0, CAS=0]

NOUN[BAR=2, POSS=l, PLUR=?a, ANP=?b, CAS=?c, PRON=?f]

NOUN[BAR=4, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] ->

NOUN [BAR=3, CAS=[DAT=1]]

NOUN[BAR=3, POSS=l, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f]

NOUN[BAR=3, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] ->

Hungarian Noun Phrase Extraction Using Ruie-based and Hybrid Methods 479

ART[BAR=1, D=l, ME=?d, YOU=?e, PLUR=?f]

NOUN[BAR=2, POSS=[ME=?d,YOU=?e,PLUR=?f], PLUR=?a,ANP=?b,CAS=?c,PRON=?f]

NOUN[BAR=3, P0SS=O, PLUR=?a, ANP=?b, CAS=?c, D=l, PR0N=?f] ->

ART [BAR=0]

NOUN[BAR=2, P0SS=[], PLUR=?a, ANP=?b, CAS=?c, PR0N=?f]

NOUN [POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f, BAR=?g] ->

PUNCT[TYPE='DQUOTE']

NOUN[BAR=?g, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f]

PUNCT[TYPE='DQUOTE']

NOUN/NOUN ->

ART[BAR=1, D=1, ME=?a, YOU=?b, PLUR=?c, PRON=?f] ->

ART[D=1] PRO[ME=?a, YOU=?b, PLUR=?c, PRON=?f]

ART [D=l] -> DET

ADJ -> ADJ ADJ

ADJ -> ADV ADJ

ADJ -> NOUN ADJ[SRC=[STEM=VERB [], DERIV='PERF_PART']]

ADJ -> NOUN ADJ[SRC=[STEM=VERB[], DERIV='IMPERF_PART']]

ADJ -> PUNCT[TYPE='DQUOTE'] ADJ PUNCT[TYPE='DQUOTE']

ADJ -> ADJ PUNCT[TYPE=COMMA] ADJ

ADJ -> ADJ PUNCT[TYPE=COMMA] CONJ ADJ

NUM -> NUM NUM

NUM -> ADV NUM

NUM -> ADJ NUM

Received 15th June 2011

Acta Cybernetica 21 (2014) 481-437.

Applications of the Inverse Theta Number

in Stable Set Problems

Miklós Ujvári: *

Abstract

In the paper we introduce a semidefinite upper bound on the square of

the stability number of a graph, the inverse theta number, which is proved

to be multiplicative with respect to the strong graph product, hence to be an

upper bound for the square of the Shannon capacity of the graph. We also

describe a heuristic algorithm for the stable set problem based on semidefinite

programming, Cholesky factorization, and eigenvector computation.

Keywords : Shannon capacity, stability number, inverse theta number

1 Introduction

An algorithm for the stable set problem is useful in many ways, e.g. it can be

used for colouring a graph: find a stable set, remove it from the graph, and iterate

the algorithm. (See [2] for further applications and approximation algorithms for

the stable set problem.) The strength of the semidefinite programming approach

for the stable set and colouring problems is shown by the algorithms of Grotschel-

Lovasz-Schrijver, Karger-Motwani-Sudan, and Alon-Kahale, see [5] for a summary

of these results. In this paper we will describe a heuristic algorithm for the stable

set problem based on semidefinite optimization, and the notion of the inverse theta

number.

We start the paper with stating the main results. First we fix some notation.

Let n e A/", and let G = (V(G), E{G)) be an undirected graph, with vertex set

F(G) = {1,. . . ,n}, and with edge set E(G) C {{¿, j } : i / j}. Let A(G) be the 0-1

adjacency matrix of the graph G, that is let

A(G) := (ay) e {0, l } n x n , where a¿ n x n
ij { 0, if {i,j}<¿E(G),

1, i f { í , y }eF (G) .

The complementary graph G is the graph with adjacency matrix

A(G) := J - I - A(G),

*H-2600 Vác, Szent János utca 1., Hungary. E-mail: ujvsLrimacs.elte.hu

482 Miklós Újvári

where I is the identity matrix, and J denotes the matrix with all elements equal

to one. The disjoint union of the graphs G\ and G2 is the graph G\ + G2 with

adjacency matrix

We will use the notation Kn for the clique graph, and KSll...,ak for the complete

multipartite graph KSl + . . . + KSk. Also, we will denote by Cn the n-cycle, the

polygon graph with n vertices.

Let (¿1,... ,Sn) be the sum of the row vectors of the adjacency matrix A(G).

The elements of this vector are the degrees of the vertices of the graph G. Let

6Q, AQ , be the minimum, maximum, resp. the arithmetic mean of the degrees

in the graph.

By Rayleigh's theorem (see [9]) for a symmetric matrix M = MT G TZ n x n the

minimum and maximum eigenvalue, AM, resp. AM can be expressed as

A M = min uTMu, Am = max uTMu.
||u||=1 ||u||=i

Attainment occurs if and only if u G TZ n is a unit eigenvector corresponding to AM

and AM, respectively. The minimum and maximum eigenvalue of the adjacency

matrix A(G) will be denoted by AG, resp. Aq.

The set of the n by n real symmetric positive semidefinite matrices will be

denoted by <S™, that is

SI : = (m g K n x n :M = MT, U tMU > 0 (u g H n)} .

For example, the Laplacian matrix of the graph G,

L(G) :=D
Sl
,...,sn-A(G)eSl.

(Here Dsdenotes the diagonal matrix with diagonal elements 81,..., 8n.)
It is well-known (see [9]), that the following statements are equivalent for a sym-

metric matrix M = (rr i i j) G TZ n X n: a) M G <S"; b) AM > 0; C) M is Gram matrix,

that is rrij = vfvj (i , j = 1 , . . . ,n) for some vectors v\,...,vn. Furthermore, by

Lemma 2.1 in [13], the set 5 " can be described as

SI = U t ^ f e - - 1
(did j) 11

i,j=1

d G A/", at G R d (1 < i < n)

afai = 1 (1 < i < n) (1)

The stability number, a(G), is the maximum cardinality of the (so-called stable)

sets S C V(G) such that {¿, j} C S implies {i,j} & E(G). The chromatic number,

x(G), is the minimum number of stable sets covering the vertex set V(G).

Let us define an orthonormal representation of the graph G (shortly, o.r. of G)

as a system of vectors a i , . . . , an G R d for some d G W , satisfying

afai = 1 (i = 1 , . . . , n) , afaj = 0 ({i,j} g E(G)).

Applications of the inverse Theta Number in Stable Set Problems 483

In the seminal paper [6] L. Lovász proved the following result, now popularly

called sandwich theorem, see [4]:

a(G) < d(G) < X(G),

where d(G) is the Lovász number of the graph G, defined as

d(G) := inf < max - — L — : a i , . . . ,o n o.r. of G > .
(i<t<n (mai) n J

The Lovász number has several equivalent descriptions, see [6]. For example,

by (1) and standard semidefinite duality theory (see e.g. [12]), it is the common

optimal value of the Slater-regular primal-dual semidefinite programs

f xu = A - 1 (i € V(G)),

(TP) min A, \ Xij = -1 ({i,j} e E(G)),

{ X = (xu) G A € K

and
f t r (Y) = l ,

(TD) maxtr (JY) , < V i j = 0 ({», j} € E(G)),

{ Y = (Vij) e Sf.

(Here tr stands for trace.) Reformulating the program (TD), Lovász derived the

following dual description of the theta number (Theorem 5 in [6]):

d(G)=maxS^2(bibJ)11:b1,...,bn o.r. o f ö j . (2)

An important application of the theory of the theta number is described in

Theorem 1 of [6], where it is proved that

©(G) < 0(G), (3)

with ©(G) denoting the Shannon capacity of the graph, that is

©(G) := sup \ja(G k).
keN v

(Here G • H denotes the strong graph product of the graphs G, H, the graph with

vertex set

V(G-H) :={(i,j):ieV(G),jeV(H)}

and edge set

E(G • H) { { (i , j ,) , (i„h)) | 111« } •

Also, G k denotes the strong graph product of k copies of the graph G.)

484 Miklós Újvári

The proof of (3) relies on the fact that the theta function i?(.) is submultiplica-

tive, that is

6(G • H) < 6(G) • 6(H)

holds for any graphs G, H. Another two submultiplicative bounds are described in

[6], see Theorems 10 and 11; they turn out to be weaker than the theta number.

In Section 2 we will define the inverse theta number as

L(G) := inf i - — D — : a i , . . . , a n o.r. of G I ,
l £ í (a » a /) i i j

and derive the inequality

A(G) < V/FYG),

an analogue of Lovász's sandwich theorem. In Section 3 we will prove also (as a

consequence of multiplicativity properties) the stronger relation

©(G) < y f tG j . (4)

It is known (see Proposition 2.2) that e.g. for the cycle graphs Cn, y/i(Cn) >

6(Cn) holds. Hence, the inverse theta number does not help in determining the

Shannon capacity of the odd cycles C7,C9,.. . , which is still an open problem,

though, using the theta number, Lovász determined the Shannon capacity of the

5-cycle and other graphs in [6]. However, we will see in Section 4, that orthonormal

representations of the complementary graph G of high value in the dual description

(5) of the inverse theta number, can be of use in a heuristic algorithm calculating

large stable sets in any graph G.

2 The inverse theta function

The inverse theta number is defined via optimizing over the inverse of the theta

body.

The reformulation of 6(G) described in (2) can be written concisely, as

6(G) = max j ¿ J Vi : y = (Vi) £ TH(G) j ,

where TH(G) denotes the theta body, that is the set of vectors y = (yt) £ 1Z n such

that yi = (btbj)n (i = l , . . . , n) for some orthonormal representation (6*) of the

complementary graph G.

Convexity and compactness of the theta body follows from the fact (see Corol-

lary 29 of [4]), that TH(G) can be described equivalently as the set of vectors

y = (yi) £ TZ n for which there exists a matrix W = (wtj) £ lZ n x n satisfying both

1 y t \ e s n + 1

v W

Applications of the inverse Theta Number in Stable Set Problems 485

and

Hi = wu {i = l,...,n), wij = O ({z,j} £ E(G)).

Analogously, let us denote by TH~(G) the inverse theta body, that is the set

of vectors x = (x¿) € TZ n such that x¿ = l / (a¿af)n (i = 1 ,...,n) for some

orthonormal representation (a¿) of the graph G.

From (1) it follows immediately, that TH~(G) can be described equivalently as

the set of vectors x = (x¿) € TZ n such that there exists a matrix Z = (zy) £ F r l><n

satisfying

zü=Xi- 1 (z = 1,..., rz), Zij = —1 ({i,j}€£(G)),

This fact implies the convexity of the inverse theta body, and also its monotonicity:

if x > x £ TH~{G) then x £ TH~{G), too.

Let us define the inverse theta number of a graph G as

z(G) := inf : x = (x¿) € T Í T (G) j .

From the above considerations, and standard semidefinite duality theory (see e.g.

[12]) we obtain the following statement, which implies also that the inverse theta

number is efficiently computable using interior-point algorithms (see e.g. [7], [1],

[10]).

Theo rem 2.1. The inverse theta number L(G) equals the common optimal value

of the Slater-regular primal-dual semidefinite programs

[TP') i n f t r (Z) + Zij = - 1 {{i,j} £ E{G)), Z = (zy) € 5 ? ,

{
ma = 1 {i = l,...,n),

MIJ = 0 {{i,j}£E{G)),

M = {mij) £
The optimal values of the programs {TP~) and {TD~) are attained. •

Moreover, rewriting the feasible solution M of the program {TD~) as the Gram

matrix M = {bfbj) for some vectors bi,...,bn £ TZ d, we obtain the following

analogue of (2):

7(G) = max < tfbj : b\,..., bn o.r. of G > . (5)

I ¿,1=1 J

Similarly to d{G), the number i(G) constitutes an upper bound for the stability

number a(G).

Theo r em 2.2. For any graph G, a{G) < y/i(G) holds.

486 Miklós Újvári

Proof. We adapt the proof of Lemma 3 in [6].

Let S C V(G) be a stable set, with cardinality a(G). Then for any (a*) or-

thonormal representation of G, the vectors a* (i € S) are pairwise orthogonal unit

vectors. Therefore

ies

which formula, by the arithmetic-harmonic mean inequality, implies that

E r̂ TT- > E rAu- > MG))2

holds. Taking infimum in (a*), we have the statement. •

The next two propositions give in particular the exact value of L(G) for complete

multipartite graphs and for graphs with vertex-transitive automorphism group.

Propos i t i o n 2.1. For any graph G, the inequalities

hold, with equality if G is a complete multipartite graph.

Proof. The inequalities are proved by the feasible solutions

Z := L(G), M I + M-A(G),
~ a g

which matrices have the values

in (TP) and (TD), respectively.

The last assertion follows from the fact that for complete multipartite graphs

Xg=-1. •

The following proposition implies that for graphs with vertex-transitive auto-

morphism group \JL(G) > 6(G).

Propos i t i o n 2.2. For any graph G, the inequalities

n 2

—=- < L(G) < n6(G)
6(G) ~ V ~ V '

hold, with equality if the graph G has vertex-transitive automorphism group.

Applications of the inverse Theta Number in Stable Set Problems 487

Proof. First, let (a,) and (6*) be orthonormal representations of G and G, respec-

tively. Then, by Lemma 4 in [6],

n

e(a»af) i i (&i&r)n < 1
¿=i

holds, which formula implies, by the arithmetic-harmonic mean inequality, that

n

v - > n 2

¿ i m d n c m n 11 - •

Consequently,

1 a 1 2
M A X ,T\ / 7 - n '

i < i < n (bibf)n f ^ (maj) 11

and taking infimum in (a,) and (fy) we have the inequality l(G) > n 2 / d (G) .

On the other hand, if M is feasible in (TD~) then Y = M/n is feasible in (TD),

which proves the inequality L(G) < nt)(G), too.

The last assertion follows from the fact that for graphs with vertex-transitive

automorphism group, the equality 19(G)I9(G) = n holds (see Theorem 8 in [6]). •

We conclude this section with an open problem. Closedness of the convex set

TH~(G) follows easily from the fact that TH(G) is a compact set. Hence, the

inverse theta body can be described as

TH~(G) = f) {xETZ n :WtX>L(G,W)) ,

w>0

where i(G,w) denotes the weighted version of t(G), that is

L(G,W) := inf{u;Tx : x £ TH~(G)} (W € TLN).

For special vectors w £ 7Z n, we have seen in the proof of Proposition 2.2 that

TH-(G) Cf]\x = (Xi) £ : E — J — > n 2 , x > 0 1 ,

¡60 i t i w i) " j

where the (6j)s are the orthonormal representations of the complementary graph

G. Does equality hold here? (For the theta body a similar linear description is

known (see [4]):

TH(G) - p) j Y = (v i) € HN : ¿FAA?)NLK < 1, V > 0 1 ,

(Oi) I ¿=1 J

where the (a,)s are the orthonormal representations of the graph G.)

488 Miklós Újvári

3 Shannon capacity

In this section we will prove that the inverse theta function has the same multi-

plicativity properties as the theta function, consequently its square root is an upper

bound for the Shannon capacity of the graph.

First, we will verify the submultiplicativity of the inverse theta function, an

analogue of Lemma 2 in [6].

Lemma 3.1. For any graphs G,H, i(G • H) < i(G) • i(H).

Proof. Let (a G) and {a") be orthonormal representations of the graphs G and H,

respectively. Then, by Lemma 1 in [6], (a G <E>a") is an orthonormal representation

of the graph G H. (Here x<g>y denotes Kronecker product of the vectors x = (xj), y,

that is the block vector x ® y := (xj • y), see [8].) Thus,

L(G-H) < £ l / ((a ? ® a f) (a ? ® a f f) n

i,3

= E V (^ f T) i r E l / (a f a f) u ,

i 3

and, taking infimum in (a G) and (a 1/), we have the statement. •

Now, we will prove the skew-supermultiplicativity of the inverse theta function.

Lemma 3.2. For any graphs G, H, i(G • H) > i(G) • l(H).

Proof. Let (b G) and (bj 1) be orthonormal representations of the complementary

graphs G and H, respectively. Then, by Lemma 1 in [6], {b G®b") is an orthonormal

representation of the graph G • H. Thus, by (5),

l { w h) > £ (i g ® ^) t (6 g ® 6 g)

= V b G Tb G • V bH Tb"

ill» 2 31,32

and, taking supremum in (b G) and (fej7), the statement is proved. •

Summarizing, we obtain the following analogue of Theorem 7 in [6].

Theo rem 3.1. The inequalities in Lemmas 3.1 and 3.2 hold with equalities: for

any graphs G, H,

a) L(G • H) = i(G) • t,{H);

b) L(G • H) = I{G) • T{H).

Applications of the inverse Theta Number in Stable Set Problems 489

Proof. It is enough to notice that the graph G • H is a subgraph of G • H, so

t(G-H) > t(G • H).

Applying Lemmas 3.1 and 3.2, the proof is completed. •

We remark that part of Theorem 3.1 holds also with + signs instead of • signs:

t(G + H)> L(G) + L(H) = L(G + H),

for any graphs G, H. The proof of this statement is immediate from Theorem 2.1,

therefore it is omitted. (For analogous results with the theta function, see [4].)

A submultiplicative upper bound for the stability number of a graph is also

an upper bound for the Shannon capacity of the graph, see Theorem 1 in [6].

Consequently,

Theorem 3.2. For any graph G, 0 (G) < yfr(G) holds.

Proof. By Theorem 2.2, for any graph H, A(H) < \JL(H). Hence, from Lemma

3.1,

a(G k)<Jf&)< (FT(G)) f c

follows for k G Ai; the proof is finished. •

Summarizing Theorem 1 in [6] and Theorem 3.2 we obtain

0 (G) < min |i?(G),vÁ(G)}. (6)

Can \//.(G) be less than 6(G) for some graph G? Juhász's theorem (see [3]) states

that 6(G) is typically "around" n1/2 in the following sense:

Theorem 3.3. (Juhász) Let G be a random graph with edge probability p = 1/2.

Then, with probability 1 — o(l) for n oo,

^yM + 0(n l , z\ogn) < 6(G) < + 0(n 1 / 3 logn).

Hence, the value \Ji(G) (which is between n / y/ti(G) and y/nâ(G) by Propo-

sition 2.2) is typically "around" n3//4.

Theorem 3.4. Let G be a random graph with edge probability p =1 /2 . Then, there

exist positive constants ci,c2 > 0 such that with probability 1 — o(l) for n —k oo,

ci • n3/4 < y i (G) < c2 • n 3/4

(Any ci,c2 > 0 such that c2 < 1/2 and > 2 meet the requirements.) •

490 Miklós Újvári

We mention two corollaries: a positive and a negative result with non-construc-

tive proofs.

Coro l l a ry 3.1. There exist graphs G such that \/c(G) <

Proof. The proof is indirect: Let us suppose that the inequality

X(H) < yf^H)

holds for any graph H.

Then, by Theorem 3.4,

<*(H) > —^-r > - j = > c • n 1 / 4 (7)

XW yfifR)

would hold, with probability 1 — o(l) as n —• oo, for some appropriate constant

c > 0. On the other hand, it can easily be seen that the probability of a(H) > £,

(?) P (a (f f) > £) < (;) - (l - l) <

i(i-1)/2

2 J
< (n • 2-(<-1V2) — 0 (n oo),

where £ := c • n1/4 . We reached contradiction with (7).

Hence, there exist graphs satisfying

from which, with G = H, the statement follows. •

From Theorems 3.3 and 3.4 immediately follows

Coro l l a ry 3.2. Under the assumptions of Theorems 3.3 and 3-4, with probability

1 — o(l) for n —¥ oo,

0(G) < SMG).

•

Thus, the graphs G, with \JL(G) < 0(G), if they exist at all, are rare. However,

we will see in the following section, that the fact that I(G) with high probability is

large, can be an advance, too.

We conclude this section with an open problem: With minor modification of

the proof of Theorem 2.2 it can be proved that

a(G) 2 < L(G) — n + a(G).

From this inequality we obtain the bound

A(G) < I (l + Y/4(T(G) - n) + l) , (8)

which is tighter than a(G) < L(G). It is an open problem, whether the bound

in (8) is submultiplicative (and, thus, is an upper bound for the Shannon capacity

6(G)) , or not.

Applications of the inverse Theta Number in Stable Set Problems 491

4 Heuristic algorithm

In this section we will describe a heuristic algorithm for the stable set problem.

The key observation for the algorithm is the following simple

Lemma 4.1. Let the vectors b\,..., bn E TZ d form an orthonormal representation

of the complementary graph G, and let u E TZ d, uTu = 1. Then,

5 := e {1, . . . ,«> : (t * ^) 2 > | | (9)

is a stable set in the graph G.

Proof. Let us suppose indirectly that for some i,j E S, {i,j} £ E(G). Then, as

(bi,... ,bn) is an orthonormal representation of G, so bfbj = 0, and j¡6, +6,|| = \f2.

By i,j E S, we have (vfb ,) 2 > 1/2 < (u Tbj)2 . Let us consider for example the case

when uTbi > v'2/2 < uTbj. Then,

\Í2 < uT(bi + bj) < |M| • ||bi + bj\\ = y/2,

which is a contradiction. The cases, when uTbi < —y/2/2 or uTbj < — v'2/2 can be

dealt with similarly. This completes the proof. •

Taking into account Lemma 4.1 we can search for large stable sets as follows:

We compute an orthonormal representation (BI) of the complementary graph G and

a unit vector u so that X+(u 7N) 2 maximal, that is, see (2), it equals 0(G). (The

solution of this problem is well-known, see Theorem 12 in [5].) The output stable

set S will be the one in (9). The algorithm derived this way is a special case of the

Alon-Kahale algorithm, see Theorem 29 in [5].

To calculate with the inverse theta function L(G) instead of the theta number

0(G), we take a different approach to the problem. It follows from Rayleigh's theo-

rem and (2) that finding an orthonormal representation (bi) of the complementary

graph G and unit vector u with value ffj(u
Tbl)'

2 = 0(G) means solving the programs

(P) onn a I (BTB)ii = l(i = l,...,n)
(Pd) sup AB BT, I { B r B) i j = 0 { { i j } e E { G) l

where B = (b\,... ,bn) E 1Z d x n. In other words, using the obvious equality AbbT =

A b T
B
 and the variable transformation M = BTB, we have to solve the program

{ mu = 1 (i = 1,... ,n)

mij=0({i,j}EE(G))

M = (m,j) E Sf.

This reformulation with a different proof is due to L. Lovász, who proved also the

equivalence of the programs (P) and (TD), see [11], Theorems 11.8 and 11.3.

492 Miklós Újvári

Algor i t hm 1 Heuristic algorithm for the stable set problem,

l: Solve to optimality (or with e > 0 additive error) the program (TD~) . Denote

the solution by M*. (The ^-optimal solution M* can be determined in poly-

nomial time using interior-point methods for semidefinite optimization, see e.g.

2: Determine a matrix B = (&i, . . . ,6n) g R d x n such that m * = BTB. (An

appropriate matrix B can be determined in polynomial time using algorithms

from [9], e.g. Cholesky factorization.)

3: Compute a vector u g 1Z d, uTu = 1 such that A B B T = uTBBTu holds. In

other words compute a unit eigenvector of the matrix BBT corresponding to

its maximum eigenvalue ABB T- (This can be accomplished in polynomial time

using algorithms from [9].)

4: Return the stable set S in (9).

To obtain an algorithm based on the notion of the inverse theta number, instead

of (P) we solve the program (TD~~) for M, and from this matrix we compute B, u

and the stable set S. The algorithm derived this way is as follows:

We have some evidence that our algorithm finds large stable sets. Note that

the following theorem implies, by Juhasz's theorem, that]Tt(u
T6,)2 is typically

"around" \Jn for the modified algorithm, similarly as in the case of its original

version, the Alon-Kahale algorithm.

T h e o r e m 4.1. Algorithm 1 computes an orthonormal representation (b\,... ,bn)

of the complementary graph G, and a unit vector u g TZ d such that the inequalities

Proof. The first inequality is the immediate consequence of Theorem 5 in [6]. Let

us prove the second inequality. Obviously,

[7], [1], [10].)

hold.

n

i=1

On the other hand, by Rayleigh's theorem,

1 _ tr {JM*) _ L(G)

n n

where 1 denotes the n-vector with all elements equal to one. This way we have

verified the inequality ^2i(uTbi)2 > t(G)/n. Finally, the last inequality follows

from Proposition 2.2. •

Applications of the inverse Theta Number in Stable Set Problems 493

Note that the following corollary of Theorem 4.1 implies the relation

(10)

as the Alon-Kahale algorithm shows.)

Coro l l a ry 4.1. Algorithm 1 realizes the bound in (10): finds a stable set S with

cardinality 151 > (2i(G)/n) — n.

Proof The statement is an easy consequence of the inequality

as for i 0 S we have (uTb,)' 2 < 1/2 by the definition of the stable set S in (9). •

Corollary 4.1 implies that |Sj > 0 if i(G) > n 2/2. Thus, the output stable set

S is nonempty for example when a(G) > n/y/2.

We conclude this section with a simple example. Let us consider the graph

G = . Then, the output matrix M* (the optimal solution of the program

(:TD~)) is the block-diagonal matrix made up of the matrices J £ lZ S l X S l, ...,

J £ 775fcXSfc as diagonal blocks, zero otherwise. The matrix B £ R k x n such that

M* = B ' B is made up of the column vectors of the identity matrix I £lZ k x k with

multiplicity S i , . . . , S f c , respectively. Then, B B T £ lZ k x k is the diagonal matrix

with diagonal elements s i , . . . , Sk- Let us suppose that si > s2, • • •, siThen, the

vector u £ lZ k equals the first column vector of the identity matrix I £ 7Z k x k; and

S = {1 , . . . , si} is the output stable set.

We can see that our heuristic algorithm in the case of the graph G =

finds a maximum stable set (and, iterating the algorithm, we obtain a minimum

colouring). Generally, estimating from below the factor of the algorithm, the infi-

mum ratio of the cardinality of the output stable set and the stability number for

a graph with n vertices, is an unsolved problem.

5 Conclusion

In this paper we studied the multiplicativity properties of the inverse theta function,

and as a consequence we proved that the square root of this function is an upper

bound for the Shannon capacity of the graph. Though the square root of the

inverse theta number, as compared to Lovasz's theta number, is typically a weak

upper bound, this fact could be exploited in a heuristic algorithm for the stable set

problem.

494 Miklós Újvári

References

de Klerk, E. Interior Point Methods for Semidefinite Programming. P hD

thesis, Technische Universiteit Delft, 1997.

Halldórsson, M.M. Approximations of independent sets in graphs. In: Jansen,

K. and Rolim, J., editors., A P P R O X '98, Lecture Notes in Computer Science,

1444:1-13, 1998.

Juhász, F. The asymptotic behaviour of Lovász' fl function for random graphs.

Combinatories 2:153-155, 1982.

Knuth, D. The sandwich theorem. Electronic Journal of Combinatorics, 1:1—

48, 1994.

Laurent, M. and Rendi, F. Semidefinite programming and integer program-

ming. In: Aardal, K. et al., editors., Handbook on Discrete Optimization, El-

sevier B.V., Amsterdam, pages 393-514, 2005.

Lovász, L. On the Shannon capacity of a graph. IEEE Transactions on Infor-

mation Theory, IT-25:l-7, 1979.

Nesterov, Y . and Nemirovskii, A. Interior-Point Polynomial Methods in Con-

vex Programming. Studies in Applied Mathematics 13, SIAM, Philadelphia,

1994.

Praszolov, V.V. Lineáris Algebra. Typotex Kiadó, Budapest, 2005.

Strang, G. Linear Algebra and its Applications. Academic Press, New York,

1980.

Sturm, J.F. Primal-Dual Interior Point Approach to Semidefinite Program-

ming. PhD thesis, Tinbergen Institute Research Series 156, Thesis Publishers,

Amsterdam, 1997.

Újvári, M. A Szemidefinit Programozás Alkalmazásai a Kombinatorikus Opti-

malizálásban. Eötvös Kiadó, Budapest, 2001.

Újvári, M. A note on the graph-bisection problem. Pure Mathematics and

Applications 12(1):119-130, 2002.

Újvári, M. New descriptions of the Lovász number, and the weak sandwich

theorem. Acta Cybemetica 20(4):499-513, 2012.

Received 9th April 2013

Acta Cybernetica 21 (2014) 495-437.

Time-dependent Network Algorithm for
Ranking in Sports

András London, József Németh, and Tamás Németh*

A b s t r a c t

In this paper a novel ranking method which may be useful in sports like tennis,
table tennis or American football, etc. is introduced and analyzed. In order to rank the
players or teams, a time-dependent PageRank based method is applied on the directed
and weighted graph representing game results in a sport competition. The method was
examined on the results of the table tennis competition of enthusiastic sport-loving
researchers of the Institute of Informatics at the University of Szeged. The results of
our method were compared by several popular ranking techniques. We observed that
our approach works well in general and it has a good predictive power.

K e y w o r d s : Col ley method, Least squares method, Keener method, Markov chain,

PageRank, ranking algorithms, self-organization

1 Introduction

In the last decade, rating and ranking methods have been studied and applied in a wide

range of different areas. Due to the extraordinary success of Google's PageRank (PR)

algorithm [7] -originally developed for ranking webpages based on their importance- graph

based algorithms have gained more ground in the topic of ranking problems. Some good

surveys on the PageRank method can be found in [4, 20, 29], Recently, the dynamic

extensions of the PageRank method have also been discussed, containing the dynamic

aspects of the 'damping' factor [28] and the viewpoint of the evolving network [3] and

the time dependency [2]. More recently, a novel dynamic ranking model has also been

proposed for ranking in sports [23].

Ranking athletes in individual sports, or sport teams is important for those who are

interested in the various professional or amateur leagues as a financial investor, a manager

or a fan and it also has a crucial role in sports betting from the point of view of both the

better and the betting agency. In many sports, only the win/loss ratio is considered (e.g. see

the most popular sports in the U.S.) for ranking, i.e. higher value indicates higher position

in the ranking. In the case of equal win/loss rates, the result(s) of the head-to-head matches

'University of Szeged, Department of Computer Science

E-mail: {london, nemjozs, tnemeth}@inf .u-szeged.hu

496 András London, József Németh, and Tamás Németh

between the players/teams in question and other simple statistics are considered to deter-

mine the ranking positions. In many sports, instead of the round-robin system, the type of

the most relevant competitions is a single-elimination tournament (also called knock-out or

cup) maybe with a preceding group stage. Thus the players play just few matches against

only a small subset of the competitors. The official ranking of the players is usually deter-

mined by a sport specific rating system (e.g. see tennis, table tennis, combat sports, etc.).

In fact, in a tournament, in a regular season or in a given period each player/team plays

with only a subset of the others and a player/team who plays against weaker opponents

have a considerable advantage compared with those, who play against stronger ones.

Many approach traces back the ranking problem to the solution of a system of linear

equations, where the entries of the coefficient matrix refer in some way to the results of the

games have been played. Due to the study of this pairwise comparison scheme (for early

studies see e.g. [6, 12, 19]), several matrix-based ranking algorithm have been appeared

related to the ranking in sports (see e.g. [10] for chess teams, [11, 26] for tennis players,

[5, 8, 14, 21] for American football teams). For a good mathematical guide to sports, see

e.g. [16], while a useful comprehensive work can be found in [13] and [21].

In this paper, we continue this direction of studies and present a simple, time-dependent

PageRank based method, the time-dependent PageRank (tdPR), and apply it to the table

tennis competition of the Institute of Informatics at the University of Szeged. In that com-

petition, there is no any regular organization rule: players play against any participant

whenever they want. Not even the number of winning sets needed for a win is stated.

The only restriction is that 7 days must be elapsed between two matches against the same

players. One of the biggest advantage of using this data set is its similarity to the result

database of many professional sports in a given period, due to the large variety of the num-

ber of matches between two players and the elapsed time between the matches. However

most of the (professional) sports have strong conditions for the opponent selection and the

number of matches. It can be assumed that without knowing the organizational rules, the

'opponent selection' in a given period can be regarded as a random process (we note that

this is not hold e.g. for a Swiss-system chess tournament). Furthermore, we think that the

importance of a certain result is inversely proportional to that how old that game is. Thus

considering this time-dependency (i.e., the latest results are more important than the older

ones) helps to get clearer picture about the actual relative strengths of the opponents.

Results presented here were compared to other traditional and widely used ranking

methods. We highlight the advantages of the usage of our method and show its higher

predictive power than the other methods. Furthermore, we also suggest a deeper study of a

self-organization mechanism respect to the opponent selection: the players having similar

tdPR values more likely to play with each other in the later part of the competition (without

knowing the scores and ranks of each other). This observation can explain the appearance

of different strength classes and emergence of the elite in several sports.

This paper is organized as follows: in Section 2, we give a brief mathematical descrip-

tion of the methods we used and compared, in Section 3, we apply the methods to the table

tennis competition and highlight the usefulness and advantages of our approach, finally,

in Section 4, we suggest a new type of a self-organization mechanism and a type of graph

regularity for deeper analysis.

Time-dependent Network Algorithm for Ranking in Sports 497

2 Overview of the ranking methods

In this section we introduce some widely used ranking methods and describe the proposed

approach. Hundreds of ranking methods have been appeared in the long history of ranking

in sports. The selection of the methods we use in this paper based on a few criterion: (1)

the method is based on linear algebra, (2) the method has been proved to be successful for

real applications, and (3) the method has simple formulation with closed form solution.

In this section the number of players is denoted by N while we will refer to the players

by 1 ,...,N.

2.1 Least squares method

The first method we describe is usually referred as the least squares (or weighted least

squares) method (Lsm) originated from Smith and Gulliksen [15, 30], Kenneth Massey

in his master thesis found wonderful applications of it, especially for ranking the collage

football teams in the United States ([21], Chapter 4). The only statistics used by this

method are the number of wins and losses of each player. The ranking of the players

comes from the solution of the linear system of equations

where r = (r j , . . . , ry) is the unknown rating vector of the players, p = (p\,..., pv) the

vector contains the difference of total number of wins and losses for the players, while M

(we call it Massey matrix) defined as

where m is the total number of matches played by player i and ny is the number of matches

played between player i and player j. Since rank(M) = N - 1, the linear system Eq. (1) is

underdetermined. The non-singularity can be guaranteed if each element of any row i of

M is set to 1 and the corresponding p, is set to 0. Obviously, the decreasing order of the

components of the rating vector r gives the ranking of the players.

2.2 Colley matrix method

The Colley matrix mehod was designed by Wesley N. Colley [8], The method is a mod-

ification of the Least squares method by using an observation called Laplace's rule of

succession (see [27], page 148) which claims, that if one observed k successes out of n

attempts, then (k +1)/(n + 1) is better estimation for the next event to be success than k/n.

The rating vector r of the players is the solution of the linear system

Mr = p, (1)

(2)

Cr = b, (3)

where the ith component of the vector b is defined as ¿>, = 1 + (w* — /,-)/2, where w, and

/, are the number of wins and losses of player i, respectively, and the Colley matrix C is

498 András London, József Németh, and Tamás Németh

defined as
(» . x i ;f ; — i

(4)
r _ J m'+2> if ' =

' i - "y . if m i -

Thus C = M+27, where / is the N x N identity matrix. It can be checked that system Eq. (3)

always has a unique solution and just as before, the ranking of the players is obtained by

the vector r.

2.3 Keener method

James P. Keener developed his ranking method [17], based on the theorem of Frobenius

and Perron (see e.g. [22], Chapter 8). Using this method, the ranking of the players comes

from the eigenvalue equation

Kf=Xr, (5)

where the Kenner matrix K defined as

wibti if player i played against player j , ^

otherwise,

where wly- is the number of wins of player i against player j while A is the dominant

eigenvalue (the eigenvalue of the largest absolute value, also known as the spectral radius)

of the matrix K. The Frobenius-Perron theorem guarantees the existence and uniqueness

of the vector r with strictly positive components. We mention, that the method has been

originally defined for ranking American football teams and used the concrete points that a

team i scored against a team j and also used a smoothing function to avoid the possibilities

for manipulation. For the table tennis competition that has been examined in this paper,

we do not deal with the points scored in the games played just consider the final result of

each game as win or loss.

2.4 PageRank method

The PageRank algorithm - developed by Sergey Brin and Larry Page [7] - was originally

designed to rank web pages in order to their importance. The idea behind the algorithm

came from the basic properties of Markov chains (see e.g in [27], Chapter 4) as a spe-

cial case of the Frobenius-Perron theory. The ranking points of the players are iteratively

calculated by the recursion formula

/>*(/) = ¿ + (1-A) X (7)
/ v jeN+(i) WJ

where N+(j) is the set of players defeated by player i at least once, Wj is the total number

of wins of player j and A £ [0,1] is a free parameter (usually 0.1 or 0.2; the intuitive

meaning of A is described in Section 2.5).

To see the close relationship between PageRank formula and the theory of Markov

chains, we write Eq. (7) to the vector equation form

PR = ^[/-(1-A)AD-1]-11, (8)

Time-dependent Network Algorithm for Ranking in Sports 499

where PR PageRank vector contains the PageRank rates of the players, A is the matrix

with elements A,y equals to the number of wins of player i against player j, D the diagonal

matrix such that D = diag[(Du = jJi=i A,/)^,)], / is the N x N identity matrix and finally 1

is the A-dimensional vector having each component equals to 1. Assuming that I PR = 1,

Eq. (8) implies, that

PR = MPR, (9)

with M = X/nllT — (1 - A)AD~ l, which shows that PR is the eigenvector of the matrix

M due to the eigenvalue 1, which is the largest eigenvalue of M by a consequence of the

Frobenius-Perron theorem for row-stochastic matrices.

2.5 Time-dependent PageRank method

Intuitively, the basic PageRank algorithm can be considered as a random walk in the graph

G = (V.E), where V denotes the set of players and we draw a directed edge i—¥ j EE each

time when player i wins against player j. The walk starts in a random node i of the graph

and steps to a randomly chosen node j, with uniform probability, for that i —> j edge exits.

The parameter A can be viewed as a "damping" factor which guarantee that the random

walk restarts in a random, uniformly chosen node of the graph almost surely in every 1/A-

th step. The PageRank of a node i can be considered as the the long-term fraction of the

number of visits in node i during the random walk.

Following this direction, we modified the PageRank algorithm such that the weight

(i.e the transition probability) of each edge decreases whenever a new edge appears in

the graph. Formally, after the Ath match was played in a given period, the weight of the

latest edge become 1, the second latest become 1/2, the ith latest become 1//, the oldest

one become 1 /k. We normalize the weights such that the obtained matrix become row-

stochastic (i.e. each row summing to 1) and we recalculate the ranking every time when a

new result is registered in the database by solving the equation

PR = M'PR, (10)

where the entries of M' are then the new transition probability values, calculated as we

described.

3 Experimental results

We applied the methods described above to the table tennis competition of the Institute of

Informatics at the University of Szeged (the dataset we used can be found in the website

[1]). In that competition, there is no any rule for the selection of the opponents or the date

of the match. The only restriction is that 7 days must be elapsed between two matches of

the same players. Without considering the organizational rules and by just considering the

list of the results in a given period, it can be observed, that these features are occurred in

many sports where the competitions are not round-robin.

In Table 1, we report the scores of the players obtained by the different ranking meth-

ods. In the case of the PR and the time tdPR algorithms, we used A = 0.1,0.2,0.3,0.4,

500 András London, József Németh, and Tamás Németh

respectively. Figure 3 shows, that the tdPR score is very robust against these variations

of A. The tdPR method was proved to be very effective in finding the best players of the

competition that could be a posteriori justified by knowing the players skills.

We used Kendall's r rank correlation method [18] to quantify the rank correlation

between the different methods. The rank correlation coefficient is defined as T = (nc —
no)/("/), where nc (nj) is the number of such pairs that have the same (opposite) order

in both ranking list. However, the tdPR score is positively correlated with the win ratio,

differences can be seen by comparing the two methods. The relation between the tdPR and

the winning ratio is shown in Figure 1(a).

A relevant outlier on the list is player 14 having win ratio 50%, who precedes player

5, 23, 19 and 21 having better win ratio than himself. He is placed at position 4 and this

is consistent with the fact, that he was defeated by just that players (player 10, player 12;

see the data set and Figure 4) who ranked higher. Figure 1 (b) shows the relation between

tdPR and the other ranking methods.

Despite the high correlation between tdPR and the other methods, we observed, that the

time-dependent method has a better predictive power. We considered the first half of the

total number matches had been played since the start of the competition and calculate the

tdPR values regarding that period. Then we checked the results of the upcoming matches

and the changes in the ranking. It can be observed, that the players with much higher

tdPR score after the first half the total matches played, won a high proportion of their

matches against players with smaller tdPR values in the later part of the competition. The

difference between the tdPR values of the players can give a reliable prediction for the

upcoming matches. Figure 2 shows the tdPR ranks of the players after 45, 90 and 180

played games. We mention, that Figure 2 only contains that players, who had already had

at least one played matches after the first 45 played matches of the competition. Obviously,

at that time we can not predict the results of those players who join later to the competition.

Figure 1: (a) The scatter plot of the tdPR rank vs. the win-rate rank, (b) The results

obtained by the different ranking methods.

Time-dependent Network Algorithm for Ranking in Sports 501

Table 1: Scrores obtained by the different methods; the ordering of the players are obtained

by the decreasing order of the tdPR values

Player #Plays #Wins Win ratio Lsm Colley Keener PR tdPR

9 13 13 1.000 1.418 1.074 0.229 0.113 0.138

10 29 25 0.862 0.972 0.923 0.238 0.089 0.093

12 30 26 0.867 0.859 0.882 0.245 0.083 0.085

1 63 44 0.698 0.497 0.722 0.233 0.071 0.075

14 6 3 0.500 0.658 0.717 0.198 0.064 0.070

5 38 22 0.579 0.266 0.604 0.200 0.050 0.052

23 5 3 0.600 0.779 0.736 0.199 0.047 0.047

18 16 8 0.500 0.555 0.700 0.192 0.046 0.045

11 24 11 0.458 0.209 0.564 0.193 0.039 0.040

19 10 6 0.600 0.454 0.664 0.200 0.042 0.039

21 13 7 0.538 0.325 0.615 0.199 0.035 0.032

8 19 6 0.316 -0.338 0.354 0.181 0.031 0.032

26 1 0 0.000 -0.503 0.407 0.194 0.031 0.029

4 19 3 0.158 -0.474 0.265 0.172 0.025 0.026

6 10 5 0.500 0.269 0.586 0.194 0.030 0.025

2 17 3 0.176 -0.380 0.307 0.177 0.022 0.024

17 13 2 0.154 -0.437 0.286 0.178 0.019 0.020

3 13 1 0.077 -0.615 0.213 0.171 0.019 0.020

7 12 2 0.167 -0.650 0.219 0.176 0.018 0.018

16 2 0 0.000 -0.322 0.401 0.191 0.024 0.018

13 2 0 0.000 -0.322 0.401 0.191 0.024 0.018

22 14 1 0.071 -0.433 0.277 0.169 0.016 0.016

24 4 1 0.250 -0.507 0.349 0.191 0.023 0.016

15 5 1 0.200 -0.174 0.416 0.188 0.017 0.010

25 3 0 0.000 -1.060 0.186 0.191 0.015 0.007

20 5 0 0.000 -1.047 0.136 0.184 0.010 0.004

Table 2: Kendall's r rank correlation between the different methods.

PR tdPR Win/loss Lsm Colley Keener

Win/loss 1.000

MASSEY 0.705 1.000

COLLEY 0.748 0.895 1.000

KEENER 0.655 0.606 0.711 1.000

PR 0.723 0.735 0.803 0.662

tdPR 0.723 0.674 0.705 0.563

1.000

0.902 1.000

502 András London, József Németh, and Tamás Németh

Players

Figure 2: The tdPR ranks of the players after 45, 90 and 180 played games.

Figure 3: Sensitivity analysis of tdPR for different A values after 45, 90 and 180 played

games, from left to right. The figure shows, that the tdPR score is robust against these

variations of A.

4 Further ideas and future work

We also ran a clustering algorithm (aiming to maximize modularity [25]) to see whether

there exists a deeper organizational mechanism behind the evolution of such a network.

In Figure 2 the clusters are colored with different colors. Figure 4 illustrates the contact

graph of the players after 90 played matches (left hand side) and the current state of the

championship with more than 180 mathces (right hand side). It is interesting to see the

changes of the clusters of the two graph. First, we observed that most of the new players

wants to play against the actual best players (in tdPR rank) hoping to jump to the top of the

ranking table. Second, it seems that players having closer tdPR values more likely to play

with each other, than players having much less tdPR value and rank. Thus, we conjecture

that the tdPR scores have a good explanatory power for a self-organizing mechanism of

free-time sports and it can explain the appearance of different strength classes in most

Figure 4: The contact graph of the players after 90 played matches (top) and the current

state of the championship with more than 180 mathces (bottom). Nodes having same colors

belong to the same clusters.

504 András London, József Németh, and Tamás Németh

of the sports, where the results in a class are more difficult to be predicted than results

between different classes. Furthermore, in a graph theoretical point of view, a new type

of 'regulatory' (for some details, see [9]) can be defined on directed graphs, where the

fraction of in/out edges of a node is around 1/2 in the same class, and tends to 1 (or 0

reversely) between different classes.

5 Conclusions

Graph based algorithms have been proved to be relevant in a wide range of applications.

However there is no perfect algorithm for ranking sport players/teams, we believe that

PageRank based methods are reliable to ranking athletes and this is even more true for

time-dependent modifications of these stochastic algorithms.

In this work, we defined a time-dependent PageRank based algorithm and applied it for

ranking players in a university table tennis competition. According to our tdPR method, the

ranking of a player is not only determined by the number of his or her victories, but matters

from how good players he could beat or lose against. It means, that a good player is needed

to beat for higher ranking position, but win many matches against weaker opponents does

not lead anyone to the first positions in the ranking table. The time-dependency of weights

of the matches guarantee that the matches played a long time ago do not count as much

weight in the ranking. Another aim of the time-dependency is to pressure the players to

play regularly or else their results would be out of date, therefore count much less in the

ranking.

We also observed that our method has a good predictive power. This can be interesting

in other aspects of sports, for example estimate the betting odds for games. Finally, we

think that a self-organization mechanism works in the background of the evolution of the

contact graph. Obviously, players want to enter matches are expected to be exciting, but

this nature of such competitions can be modeled and measured mathematically just by

knowing the time-series of the results. That observation gives the idea to define a special

preferential attachment mechanism [24] where players having higher PageRank values

more likely to play (contact) with each other and this is maybe related to the emergence

of an elite in sports. Further research is needed around this hypothesis, and testing our

method for different sports and data sets is also another work for the future.

Acknowledgment

The first author was supported by the European Union and the State of Hungary, co-

financed by the European Social Fund in the framework of TAMOP-4.2.4.A/2-11-1-

2012-0001 'National Excellence Program'.

The authors also thank Tibor Csendes and Andras Pluhar for useful discussion and

every excellent researcher of the Informatics Institute of University of Szeged who take

time to relax at the ping-pong table. We are indebted to the referees for their careful

reading and numerous suggestions which improved the presentation of the paper.

Time-dependent Network Algorithm for Ranking in Sports 505

References

[1] h t tp : / /www. in f .u-szeged.hu/-Tondon/TableTennisResu l ts . tx t .

[2] Baeza-Yates, Ricardo, Saint-Jean, Felipe, and Castillo, Carlos. Web structure, dy-

namics and page quality. String Processing and Information Retrieval, Lecture Notes

in Computer Science, 2476:117-130,2002.

[3] Bahmani, Bahman, Chowdhury, Abdur, and Goel, Ashish. Fast incremental and

personalized pagerank. Proc. VLDB Endow., 4(3): 173-184, December 2010.

[4] Berkhin, Pavel. A survey on PageRank computing. Internet Mathematics, 2(\):TS-

120,2005.

[5] Boginski, Vladimir, Butenko, Sergiy, and Pardalos, Panos M. Matrix-based methods

for college football rankings. Economics, Management and Optimization in Sports,

pages 1-13,2004.

[6] Bradley, Ralph Allan and Terry, Milton E. Rank analysis of incomplete block designs:

I. the method of paired comparisons. Biometrika, 39(3/4):324—345,1952.

[7] Brin, Sergey and Page, Lawrence. The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30(1): 107—117, 1998.

[8] Colley, Wesley N. Colley's bias free college football ranking method: the Colley

matrix explained, h t tp : //www. col leyrankings. com/matrate. pdf, 2002.

[9] Csaba, Béla and Pluhár, András. Weighted regularity lemma with applications. arXiv

preprint arXiv:0907.0245,2009.

[10] Csató, László. Ranking by pairwise comparisons for Swiss-system tournaments.

Central European Journal of Operations Research, 21(4):783—803,2013.

[11] Dahl, Geir. A matrix-based ranking method with application to tennis. Linear Alge-

bra and its Applications, 437(1):26-36, 2012.

[12] David, Herbert A. Ranking from unbalanced paired-comparison data. Biometrika,

74(2):432-436,1987.

[13] Govan, Anjela Yuryevna. Ranking theory with application to popular sports. PhD

dissertation, North Carolina State University, Raleigh, North Carolina, 2008.

[14] Govan, Anjela Yuryevna, Langville, Amy N, and Meyer, Carl D. Offense-defense

approach to ranking team sports. Journal of Quantitative Analysis in Sports, 5(1): I—

19, 2009.

[15] Gulliksen, Harold. A least-squares solution for paired comparisons with incomplete

data. Psychometrika, 21(2): 125—134,1956.

http://www.inf.u-szeged.hu/-Tondon/TableTennisResults.txt

506 András London, József Németh, and Tamás Németh

[16] Jech, Thomas. The ranking of incomplete tournaments: A mathematician's guide to

popular sports. The American Mathematical Monthly, 90(4):pp. 246-264+265-266,

1983.

[17] Keener, James P. The Perron-Frobenius theorem and the ranking of football teams.

SIAMReview, 35(l):80-93,1993.

[18] Kendall, Maurice G. A new measure of rank correlation. Biometrika, 30:81-93,

1938.

[19] Kendall, Maurice G and Babington Smith, B. On the method of paired comparisons.

Biometrika, 31(3/4):324-345,1940.

[20] Langville, Amy N and Meyer, Carl D. Deeper inside pagerank. Internet Mathematics,

l(3):335-380,2004.

[21] Massey, Kenneth. Statistical models applied to the rating of sports teams. Master

thesis, Bluefield College, 1997.

[22] Meyer, Carl D. Matrix analysis and applied linear algebra book and solutions man-

ual, volume 2. Society for Industrial and Applied Mathematics, 2000.

[23] Motegi, Shun and Masuda, Naoki. A network-based dynamical ranking system for

competitive sports. Scientific Reports, 2:904, 2012.

[24] Newman, Mark EJ. Clustering and preferential attachment in growing networks.

Physical Review E, 64(2) :025102,2001.

[25] Newman, Mark EJ. Modularity and community structure in networks. Proceedings

of the National Academy of Sciences of the USA, 103(23):8577-8582,2006.

[26] Radicchi, Filippo. Who is the best player ever? A complex network analysis of the

history of professional tennis. PloS ONE, 6(2):e 17249,2011.

[27] Ross, Sheldon M. Introduction to probability models. Academic Press, Ninth edition,

2007.

[28] Rossi, Ryan A and Gleich, David F. Dynamic pagerank using evolving teleportation.

In Algorithms and Models for the Web Graph, Lecture Notes in Computer Science,

volume 7323, pages 126-137. Springer, 2012.

[29] Sargolzaei, P and Soleymani, F. Pagerank problem, survey and future research direc-

tions. International Mathematical Forum, 5(19):937-956,2010.

[30] Smith, John H. Adjusting baseball standings for strength of teams played. American

Statistician, 10(3):23-24,1956.

Received 13th November 2013

CONTENTS

Programming Languages and Software Tools 287

Preface 289

Jari-Pekka Voutilainen, Anna-Liisa Mattila, and Tommi Mikkonen:

Lively3D: Building a 3D Desktop Environment as a Single Page

Application 291

Antti Valmari: Asymptotic Proportion of Hard Instances of the Halting Prob-

lem 307

István Kádár, Péter Hegedűs, and Rudolf Ferenc: Run t ime Exception Detec-

tion in Java Programs Using Symbolic Execution 331

Gergő Gombos, Tamás Matuszka, Balázs Pinczel, Gábor Rácz, and Attila

Kiss: VOSD: A General-Purpose Virtual Observatory over Semantic

Databases 353

Vard Antinyan, Miroslaw Staron, Jörgen Hansson, Wilhelm Meding, Per

Osterström, and Anders Henriksson: Monitoring Evolution of Code Com-

plexity and Magnitude of Changes 367

Otto Hylli, Samuel Lahtinen, Anna Ruokonen. and Kari Systd: Service Com-

position for End-Users 383

Akos Hajdú, András Vörös, Tamás Bartha. and Zoltán Mártonka: Extensions

to the CEGAR Approach on Petri Nets 401

Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc: Designing and

Implementing Control Flow Graph for Magic 4th Generation Language . 419

Ferenc Horváth, Szabolcs Bognár, Tamás Gergely, Róbert Rácz, Árpád

Beszédes, and Vladimir Marinkovic: Code Coverage Measurement Frame-

work for Android Devices 439

Regular Papers 459

Gábor Recski: Hungarian Noun Phrase Extraction Using Rule-based and Hy-

brid Methods 461

Miklós Újvári: Applications of the Inverse Theta Number in Stable Set

Problems 481

András London, József Németh, and Tamás Németh: Time-dependent Net-

work Algorithm for Ranking in Sports 495

I S S N 0 3 2 4 — 7 2 1 X

Felelős szerkesztő és kiadó: Csirik János

