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Preface 

This special issue contains papers on topics of the 13th Symposium on Pro-

gramming Languages and Software Tools (SPLST'13). The series started in 1989 

in Szeged, Hungary, and since then, by tradition, it has been organized every sec-

ond year in Hungary, Finland, and Estonia, with participants coming from all over 

Europe. The thirteenth edition of the symposium was back again in Szeged on 

August 26-27, 2013, organized by the Department of Software Engineering of the 

University of Szeged. The purpose of the SPLST has always been to provide a 

forum for software scientists to present and discuss recent researches and develop-

ments related to programming languages, software tools, and methods for software 

development. At SPLST'13, there were 20 accepted talks in sections on program 

analysis, formal verification, software evolution and maintenance, and web tech-

nologies. In addition, an invited talk was presented jointly by Hassan Charaf and 

László Lengyel (Budapest University of Technology and Economics). After the 

symposium, the authors of selected talks were invited to revise and extend their 

papers for publication in Acta Cybernetica. Following a review process, 9 were 

accepted for publication, which are presented in this special issue. 

Akos Kiss 

Guest Editor 
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Lively3D: Building a 3D Desktop Environment as a 

Single Page Application 

Jari-Pekka Voutilainen* Anna-Liisa Mattila* and Tommi Mikkonen* 

Abstract 

The Web has rapidly evolved from a simple document browsing and dis-

tribution environment into a rich software platform, where desktop-style ap-

plications are treated as first class citizens. Despite the associated technical 

complexities and limitations, it is not unusual to find complex applications 

that build on the web as their only platform, with no traditional installable 

application for the desktop environment - such systems are simply accessed 

via a web page that is downloaded inside the browser and once loading is 

completed, the application will begin its execution immediately. With the 

recent standardization efforts, including HTML5 and WebGL in particular, 

compelling, visually rich applications are increasingly supported by the the 

browsers. In this paper, we demonstrate the new facilities of the browser as 

a visualization tool, going beyond what is expected of traditional web appli-

cations. In particular, we demonstrate that with mashup technologies, which 

enable combining already existing content from various sites into an inte-

grated experience, the new graphics facilities unleashes unforeseen potential 

for visualizations. 

Keywords: web apps, visualization, window management, 3D UI 

1 Introduction 

Over the few recent years, the Web has evolved from a simple document browsing 

and distribution environment into a rich software platform, which is capable of 

hosting desktop-style applications. Moreover, these applications are increasingly 

often treated as first class citizens. 

The document-centric origins of the Web are still visible in many areas. Conse-

quently, it has been traditionally considered difficult to compose truly interactive 

web applications. A partial solution has been to use plug-in components or browser 

extensions, such as Adobe Flash or Microsoft Silverlight, but such binary or com-

pany specific technologies do not fit well to the ideals of the open web, advocating 

web applications that are built using technologies that are open, accessible and as 

'Department of Pervasive Computing, Tampere University of Technology, E-mail: 
(jari-pekka.voutilainen, anna-1iisa.mattila, tommi.mikkonen}®tut.fi 
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interoperable as possible to avoid vendor-specific lock-in. As a manifestation of this 

attitude, it is not unusual for complex applications to use the web as their only 

platform. In other words, despite the technical difficulties and limitations, there is 

no traditional installable application for the desktop - the system is simply accessed 

via a web page that is downloaded inside the browser, whose runtime resources are 

then used by the application. We believe that the transition of applications from 

the desktop computer to the web has only started, and the variety, number, and 

importance of web applications will be constantly rising during the next several 

years to come. 

In comparison to desktop applications, the benefits of web applications are 

many. Web applications are easy to adopt, because they need neither installation 

nor updating - one simply enters the URL into the browser and the latest version 

is always run. Furthermore, web applications are easy and cheap to publish and 

maintain; there is no need for intermediates like shops or distributors. Furthermore, 

in comparison to conventional desktop applications, web applications have a whole 

new set of features available, like online collaboration, user created content, shared 

data, and distributed workspace. Finally, with the whole content of the web acting 

as the data repository, the new application development opportunities, unleashed 

by the newly introduced facilities of the web technologies that make the browser 

increasingly capable platform for running interactive applications, are increasing 

the potential of the web as an application platform. 

In this paper, we demonstrate the new facilities of the web as an information 

visualization tool, going beyond what is expected of browser based applications. 

Moreover, we demonstrate that together with mashup technologies, which enable 

combining already existing content from various sites into an integrated, usually 

more compelling experience, the new graphics facilities results in unforeseen po-

tential for visualization of context-specific data. Together with data science, the 

approach can be generalized to increasingly complex systems, which simplifies data 

consumption tremendously. 

The rest of the paper is structured as follows. In Section 2, we discuss the 

evolution of the web and the main phases that can be identified in the process, and 

briefly address two important web standards - HTML5 and WebGL - and their role 

in the development of new types of web applications, building on already available 

resources. In Section 3, we introduce our technical contribution, Lively3D, which 

is a host environment that is capable of integrating multiple applications within 

single 3D-scene and visualize the environment in three different ways. In Section 4, 

we discuss development issues related to Lively3D's 3D user interface and introduce 

a redesigned version of Lively3D's UI. In Section 5 final conclusions are drawn. 

2 Background 

The World Wide Web has undergone a number of evolutionary phases [6]. In the 

first phase, web pages were truly pages, and navigation between pages was based 

simply on hyperlinks - a new web page was loaded from the web server each time 
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the user clicked on a link. These pages were truly page-structured documents that 

contained primarily text with some interspersed static images, without animation 

or any interactive content, which were only introduced in the second phase, as web 

pages became increasingly interactive, created by using animated graphics and plug-

in components. In this phase, the JavaScript scripting language enabled building 

animated, interactive content with technologies primarily associated with the Web 

only. Moreover, as a part of the transition to this phase, the Web started moving 

in directions that were unforeseen by its designers. Web sites started behaving 

more like multimedia presentations rather than page-structured documents, content 

mashups and web site cross-linking became increasingly popular. 

Today, the browser is increasingly used as a platform for real applications, with 

services such as Google Docs with its desktop-like interactions paving the way 

towards more complex systems. We expect that as more and more data becomes 

available online, the capabilities of the browser will be increasingly often harnessed 

to filter and further process the data into a form that can be more easily consumed. 

In this context, two recent initiatives form an important perspective. These are the 

open web, perhaps best manifested in Mozilla Manifesto1, which centers around the 

idea that the web that is a global public resource that must remain open, accessible, 

interoperable and secure, and open data, which according to Wikipedia2, builds on 

the idea that certain data should be freely available to everyone to use and republish 

as they wish, without restrictions from copyrights, patents, or other mechanisms of 

control. 

To support the above initiatives, the need to use plugins is being seriously 

challenged by two recently introduced technologies, HTML5 and WebGL, as already 

pointed out in [5]. These new technologies provide support for creating desktop-

like applications that run inside the browser (HTML5) and enable direct access 

to graphics facilities from web pages (WebGL). This, together with already well-

known techniques for mashupping, are paving the way towards the next generation 

of web applications, with increasing capabilities for modeling and visualizing data 

and conceptual information. 

The forthcoming HTML5 standard3 complements the capabilities of the existing 

HTML standard with numerous new features. Although HTML5 is a general-

purpose web standard, many of the new features are aimed squarely at making 

the Web a better place for desktop-style web applications. There are numerous 

additions when compared to the earlier versions of the HTML specification. To 

begin with, the new standard will extend the set of available markup tags with 

important new elements. These new elements make it possible, e.g., to embed 

audio and video directly into web pages. This will eliminate the need to use plug-

in components such as Flash for such types of media. The HTML5 standard will 

also introduce various new interfaces and APIs that will be available for JavaScript 

applications. 

1 http: //www. mozilla.org/about/manifesto.html 
2http://en. wikipedia.org/wiki/Open_data 
3http://www. w3.org/TR/html5/ 

http://en
http://www
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WebGL4 is a cross-platform web standard for hardware accelerated 3D graphics 

API developed by Mozilla, Khronos Group, and a consortium of additional compa-

nies including Apple, Google and Opera. The main feature that WebGL brings to 

the Web is the ability to display 3D graphics natively in the web browser without 

any plug-in components. WebGL is based on OpenGL ES 2.05, and it uses the 

OpenGL shading language GLSL. WebGL runs in the HTML5's canvas element, 

and WebGL data is generally accessible through the web browser's Document Ob-

ject Model (DOM) interface. A comprehensive JavaScript API is provided to open 

up OpenGL programming capabilities to JavaScript programmers. 

As a technical detail, it is important to notice that the WebGL API is imple-

mented at a lower level compared to the equivalent OpenGL APIs. This increases 

the software developers' burden as they have to implement some commonly used 

OpenGL functionality themselves. To make it easier and faster to use WebGL, 

several additional JavaScript frameworks and APIs have been introduced, includ-

ing Three.js6, Copperlicht7, GLGE8 , SceneJS9, and SpiderGL10. Such frameworks 

introduce their own JavaScript API through which the lower-level WebGL API is 

used. The goal of these libraries is to hide the majority of technical details and 

thus make it simpler to write applications using the framework APIs. Further-

more, these WebGL frameworks provide functions for performing basic 2D and 3D 

rendering operations such as drawing a rotating cube on the canvas. The more 

advanced libraries also have functions for performing animations, adding lighting 

and shadows, calculating the level of detail, collision detection, object selection, 

and so forth. 

3 Lively3D: Host environment for web apps 

The goal of the Lively 3D proof-of-concept design was to create a 3D environment 

in which applications of different kind - including data processing, visualization, 

and interactive applications in particular - can be embedded as separate elements 

within a single environment running inside the browser. Furthermore, the design is 

based on using facilities that are commonly used in the web already, implying that 

to a large extent it is possible to immediately reuse already existing content in the 

system. 

4http://www.khronos.org/webgl/ 
5http://www.khronos.org/opengles 
6http://threejs.org/ 
7http: //www. ambiera.com/copperlicht/ 
8http://www.glge.org/ 
9http://scenejs.org/ 

10http://spidergl.org/ 

http://www.khronos.org/webgl/
http://www.khronos.org/opengles
http://threejs.org/
http://www.glge.org/
http://scenejs.org/
http://spidergl.org/
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3.1 Overview 

Web app, by simple definition11, is an application utilizing web and [web] browser 

technologies to accomplish one or more tasks over a network, typically through 

[web] browser. Canvas application is a subset of web app, which uses a single 

canvas html element12 as its graphical interface. 

Lively3D13 is a web application framework, where embedded canvas applica-

tions are displayed inside a three dimensional windowing environment. Individual 

applications embedded in the system can thus be composed using the Canvas API, 

offered by HTML5. In general, this enables the creation of graphically rich small 

apps that are capable of interacting with the user in a desktop like fashion. 

The conceptual idea of Lively3D is based on previous project The Lively Ker-

nel[5]. Lively Kernel was 2D window manager and IDE that was executed in the 

browser. Similar frameworks and tools have been developed by others like Ventus14 

and SproutCore15. 

The Lively3D framework itself is implemented with GLGE16 , a WebGL library 

by Paul Brunt, which abstracts numerous implementation details of WebGL from 

the developer. Embedding the applications to the framework was designed in such 

a way that the developer of a canvas application needs to implement minimal 

interfaces towards the Lively3D system in order to integrate the application within 

the environment. Existing canvas applications are easily converted to Lively3D app 

by wrapping the existing code to the Lively3D interfaces. 

In addition to the applications, the 3D environment that displays the applica-

tions can be redefined using Lively3D interfaces. The applications and different 3D 

environments are deployed in a shared Dropbox folder, so that multiple developers 

can collaborate in implementing applications and environments without constantly 

updating the files on the server hosting Lively3D. 

Lively3D is implemented as Single-Page Application (SPA) where the whole 

application is loaded with a single page load. This provides the user interface and 

the basic mechanics of 3D environments. SPA design was selected, so that appli-

cations can interact with the windowing environment and the whole state of the 

environment is stored within the JavaScript namespace. The design of Lively3D 

was considerably affected by the browser security model, which limits the possi-

bilities of resource usage. The security model denies access both to the local file 

system and external resources in different domain with its Same-origin policy17. 

The policy is upheld in Lively3D with server-side proxies, so that the browser sees 

all the content in same domain. The main components of the system are illustrated 

in Figure 1. All components are designed with easy-to-use interfaces and require 

minimal knowledge of inner working of the framework. 

11 http: //web.appstorm .net/general/opinion / what-is-a-web-app-heres-our-definition / 
12 http://www.w3.org/wiki/HTML/Elements/canvas 
13 http: //lively 3d.cs.tut.fi / 
14http://www.rlamana.es/ventus/ 
15http://sproutcore.com/ 
16http://www. glge.org/ 
17 http://www.w3.org/Security/wiki/Same.Origin_Policy 

http://www.w3.org/wiki/HTML/Elements/canvas
http://www.rlamana.es/ventus/
http://sproutcore.com/
http://www
http://www.w3.org/Security/wiki/Same.Origin_Policy


296 Jarí-Pekka Voutilainen, Anna-Liisa M at ti ¡a, and Tommi Mikkonen 

Browser 
Apps 3D 

Scene 

Lively3D 
GLGE 

/-"Application server"\ z"' Hosting service 
Node.js 

MongoDB 

PHP 
Proxy 

Dropbox API 

Dropbox 

Figure 1 : Structure of the Lively3D framework 

Applications and 3D scenes are developed in JavaScript using Lively3D API, de-

ployed to Dropbox using the official Dropbox client, and downloaded into Lively3D 

through PHP or Node.js proxies, depending on the situation. The Lively3D API 

provides resource loaders, which enable deployment of application and 3D-scene 

specific resources to the Dropbox so that complete applications and 3D scenes can 

be downloaded through the server hosting Lively3D, thus in essence circumventing 

browser security restrictions. 

When a new 3D scene is designed and implemented, the developer has to define 

the essential functions that are called by the Lively3D environment, similarly to 

many other graphical user interface frameworks. These functions enable redefining 

how the system interacts with the user, including mouse interaction, the creation 

of 3D objects in the GLGE system that represents the application, and automatic 

updates of the scene between frames. Additionally, the initial state of the scene 

is defined in GLGE's XML format, which can be generated with 3D modeling 

software, like Blender (http://www.blender.org/) for example. 

3.2 Lively3D apps 

A Lively3D app consists of canvas application and its data structures in Lively3D 

host environment. Usable existing web apps are limited to canvas applications, 

because Lively3D is implemented in WebGL and the WebGL specification permits 

the use of canvas, image and video html-elements as the only source for textures 

within the 3D-environment. Most of the data structures are provided by Lively3D, 

but some conventions must be followed when converting existing canvas application 

to Lively3D app. 

Since web apps are usually developed with expectancy that the app will be the 

only app in web page, the app structure can be pretty much anything the developer 

desires. But since Lively3D is implemented in Single Page Application paradigm, 

Lively3D apps are separated from each other with simulated namespaces as much 

as the browser model permits. 

To achieve the above goal, each canvas application must have clearly separated 

initialization code. Additionally all the browser elements the app uses, must be 

created dynamically with a single canvas-element functioning as the only graphical 

element of the application. To mitigate these restrictions Lively3D offers API for 

canvas applications, which is presented in figure 2. In the following, we briefly list 

the most important features of the API. 

http://www.blender.org/
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Lively3D 

AddApplication 

LoadResources 

AllowAppStart 

Application User Interface 
Mandatory 

GetCanvas Resource 
Handlers 

SetLivelyApp Resources 
Loaded 

Optional 

Open Close 

GetState SetState 

ShowMessage 

ShowHTML 

Figure 2: Lively3D API for applications. 

To convert existing application to Lively3D app, the application must implement 

mandatory function of the figure. To embed the converted app to environment, the 

initialization code of the app must start the embedding process with calling the 

AddApplication-function. The process is presented in Figure 3. 

Livelv3D App Livelv3D 

AddApplication 

3D En onment 

C T 
GetCanvas 

I T 
SetLivelyApp 

Applnit 

Initialization 

Add 3D Object 

LoadResources 

ResourcesLoaded 

Resource 
Handling AllowAppStart 

Enable App 

Tl 

Figure 3: Sequence for embedding new Lively3D app. 

As illustrated in the above figures, each application must implement a few 

mandatory functions and call Lively3D functions in certain order to advance the 

integration with the environment. During the integration, the canvas app is created 

and hidden with CSS-styling. 

The Lively3D framework creates 3D objects representing the app and texturizes 
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them with the canvas element. Additionally to the mandatory functions, apps can 

provide optional functions which react to events like opening and closing the ap-

plication within the environment. These function have default functionalty if they 

are unimplemented, but when the developer decides to provide them, they define 

what happens to the application status during the different events. Additionally, 

the inner state of the application can be serialized and de-serialized to developer's 

desired format. 

Since the canvas element is defined as the only graphical element allowed for 

Lively3D Apps, the API also provides user interface functions to display messages 

and HTML in Lively3D provided dialogs. This provides consistent user interface, 

since Lively 3D itself is rendered in a full browser window and possibilities of dis-

playing text or other web interface elements within the environment are limited due 

to the WebGL specification. Figure 4 illustrates the existing canvas application in 

the left and the conversion to Lively3D app in the right with another app in the 

same environment. 

Figure 4: Conversion of existing application. 

3.3 Redefining the 3D environment 

As is common in various 3D applications, including in particular the genre of com-

puter games, the visualization in our system is based on so-called scene graph, a 

generic tree-like data structure containing a collection of nodes. Nodes in the scene 

graph may have many children but most often they only need a single parent. In 

this structure, any operation performed to the parent is further propagated to its 

children. This flexible data structure enables numerous different visualizations, 

where the parent-children role can be benefited from. 

The 3D environments in Lively3D are implemented dynamically, so that user 

can load new environments and change between them at will. As default only one 

environment is initialized in Lively3D and after adding more environments, the 

process of switching between environments is presented in Figure 5. Closing the 

applications and rebinding the events is done, so that the environment is in known 
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Figure 5: Sequence of switching environment. 

initial state. Changing of the 3D-objects is required since GLGE allows 3D-object 

to be present only in one scene at a time. 

In our experiment, we have created three different ways to visualize a scene 

graph where the children are applications and the root node is the 3D environment 

hosting the children. Example host environments include a conventional desktop, a 

planetary system where applications rotate a sun like in a solar system, and a true 

3D virtual world, where applications move in a 3D terrain. These are introduced 

in the following in more detail, together with a set of screen shots to demonstrate 

their visual appearance. 

Desktop. The conventional desktop consists of three dimensional room, cubes 

that represent closed applications, and planes that act as individual applications, 

Figure 6: Visualizing the system as a conventional desktop. 
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\ 

Figure 7: Visualizing the system as a solar system. 

with the ability to execute JavaScript code, render to the screen, and so forth. A 

screenshot of the desktop environment, with three opened and two closed applica-

tions, is presented in Figure 6. The scene mimics all traditional desktop features, 

including dragging applications within the desktop and application interaction with 

opening, closing, maximizing and minimizing them with mouse controls. 

Solar system. The solar system scene modifies the presentation of applica-

tions. In this scene, applications are presented as spheres that revolve around the 

central sun. Each revolving sphere generates a white trace in accordance to its 

path, and the trace is removed when the trace reaches maximum length. Each 

sphere uses the texture of the application canvas it is representing, and therefore 

each sphere has a different look within the scene. An example scene with 4 ap-

plications is demonstrated in Figure 7. Application windows retain their default 

functionality with dragging around, maximizing, minimizing, and so on. When an 

application that has been moved around is closed, the application returns to its po-

sition revolving around the central sun, in comparison to the conventional desktop 

scene where the application simply retains its current position. 

Vir tua l world. The 3D virtual world scene goes even further from the con-

ventional desktop. The only thing retained from the desktop concept are the appli-

cation windows, and the only remaining controls for the windows are opening and 

closing the application, which then of course can introduce more controls within the 

application. The world itself consists of three dimensional terrain, where the user 

can wander around using the keyboard and the mouse. In this setting, applications 

are presented as spheres that roam the terrain in random directions, with their 

textures simplified to single image for performance reasons - experiences where ap-

plication textures were used quickly showed that the resources of the test computer 

would no longer be adequate for such cases. Using this visualization, the 3D terrain 

and seven sample application spheres are illustrated in Figure 8. The right side of 
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Figure 8: Visualizing the system as a 3D virtual world. 

the figure illustrates application canvases within the world. 

All of the above visualizations are based on the same JavaScript code, with 

the only difference being the rendering strategy associated with the scene graph. 

Consequently, in all of these systems applications are runnable, and can in fact run 

even when they are inactive and being managed by the different host environments, 

except when explicitly disabled for performance reasons. 

4 Refactoring Lively3D U I 

In this section, we introduce some early experiences regarding the relation between 

the Lively3D framework and widget libraries commonly used in desktop applica-

tions. To summarize problems, the original implementation was built directly on 

primitives emerging from WebGL, whereas the refactored version is geared towards 

widget libraries in its architecture. 

4.1 Identified Problems 

As a part of the process of designing the Lively3D framework, it became obvious 

that its architecture would benefit from more abstract programming concepts, in 

particular when considering the programming of the 3D UI. WebGL is a low ab-

straction level tool and 3D-engines building upon it only hide the rendering details 

from programmer. In particular such libraries lack essential concepts known from 

desktop application development. 

As a concrete example, let us examine Lively3D's application window. The 

application window is a composition of three different 3D objects - title bar, window 

content and close button. These 3D objects are grouped together and aligned so 

that they appear as a window that is a solid object. 

The background is that WebGL provides tools to create the 3D objects, align 

and group those, but there is no tools for creating a WIMP 1 8 elements such as 

titled window which can be dragged from the title bar and closed from the close 

18Windows, Icons, Menus, and Pointer 
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button. However the natural abstraction of application window is an UI widget 

which has predefined look and feel, not a group of geometries which application 

logic is responsible for, which was the case in our original implementation. 

Most of the 3D engines built for WebGL lack also necessary event handling 

capabilities. Using e.g. GLGE there is no way to bind an event listener to a 3D 

object. Determining which event happened and which object receives the event 

is responsibility of an application developer. In Lively3D the event handling for 

3D UI is mixed into Lively3D application logic. In Lively3D there is a main event 

handler which catches all events for the Lively3D canvas, determines which object 

receives the event and executes functionality related to that object. 

For instance, if the user clicks the close button of a window, Lively3D's main 

event handler will receive the event and calculate collision detection based on the 

mouse position to determine if the mouse hit any 3D objects. After finding the 3D 

object the event handler has to deduce which kind of object was hit and execute 

operations related to that object. In the window's close buttons case the operation 

would be to hide the group of 3D objects that forms the window. 

In Lively 3D there are only two kinds of 3D widgets - application windows and 

application icons - which receives only restricted amount of events so Lively3D has 

fairly simple 3D UI. However if we wish to add some new interactive 3D content 

to Lively3D we would need to refactor quite a lot of Lively3D code to get that 

done. Simple 3D UIs can be built using low abstraction level tools however the UI 

definition and logic becomes easily a mess of glut and glue solutions which makes 

it hard to maintain and develop the application further. 

4.2 Revisiting the Design 

Motivated by the above observations we created WebWidget3D, a 3D widget library 

for WebGL [3]. The idea of the library is to provide some predefined reusable 3D 

widgets and tools for building custom 3D widgets. WebWidget3D provides event 

system which enables binding mouse and keyboard events directly to 3D widgets. 

The framework also introduces predefined controls e.g. drag control and roll control 

which can be bind to any widget and fly control for moving camera in the 3D 

scene. The current implementation of WebWidget3D uses Three.js 3D engine for 

rendering, although 3D engine can be changed due specialized adapter component. 

WebWidget3D provides predefined widgets and abstraction for creating widgets 

but it does not force the 3D world to consist of only 3D widgets. WebWidget3D 

content can be mixed with content (e.g. 3D objects, visual effects, animations, 

physics, etc.) provided by the 3D engine used with WebWidget3D. 

We redesigned and reimplemented Lively3D's desktop UI using WebWidget3D 

to see how much refactoring would affect to Lively3D's complexity. The imple-

mentation is divided to two parts, 1) widget building blocks out of which complete 

widgets can be built (Table 1), and 2) a reduced set of ready-to-use widgets that 

can be used to create complete applications (Table 2). Figure 9 illustrates the 

revisited implementation. 
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Table 1: Building blocks of revised Lively 3D design 

Component Description 

GuiObject Basic event handling capabilities. 

Widget Numerous commonly needed facilities for creating 

applications. Base class for new widgets. 

Text Simple string handling functionality. 

Group Abstraction of a container that can have other com-

ponents as its children. Container can also have a 

3D object representation. 

Application Corresponds to an application; receives events. 

Widget 

Table 2: Widgets used in Lively3D 

Description 

Grid window 

Titled window 

Menu window 

Dialog window 

Instance of a Group that is represented as a 3D grid 

plane. The grid window widget can be rotated in 3D 

space with the mouse. 

Instance of class Group. Contains three instances of 

Widget class as a title bar, a close button, and for 

representing the window content. 

Menu composed of multiple choice buttons. Individ-

ual choices are represented as cuboids. 

Dialog composed of title text, multiple text fields and 

multiple action buttons. 

s«v. 
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Figure 9: Reimplemented Lively3D 
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4.3 Evaluation 

In general, our work supports the conclusions of [2], where architecture related 

aspects of traditional applications are used as a driver for the design of apps that 

re run inside web pages. The goal of such designs, commonly referred to as single 

page web applications, is to support reuse and modifications in the long run, thus 

sharing the goals of more traditional software systems. Above, we reuse the design 

paradigm that is mature in the field of desktops, but to some extent missing from 

web design. 

To evaluate the design, using WebWidget3D and its predefined widgets we were 

able to reduce the amount of JavaScript code lines by 26% [3]. In addition, using 

the library liberates developers to focus on solving application specific problems 

by allowing them to overlook numerous details that remain similar in different 

applications. 

We also replaced Lively3D's 2D UI (menus and dialogs) with corresponding 3D 

UI widgets. This design reduced the number of code lines of HTML and CSS but 

on the other hand increased lines of code of JavaScript code. 

5 Conclusions 

Lively3D framework presents architecture to download and execute different appli-

cations within same environment. Although similar windowing environments have 

been developed and studied for years like Compiz/Beryl19, our experiment runs on 

top of the browser. This approach has the advantage of the cloud, so that the user 

does not need to install anything else except the browser to execute the environ-

ment and the applications. This approach also works in different platforms from 

desktop Windows and Linux to mobile phones. 

Our prototype demonstrates that integrating individual applications in a single 

web page is possible and achievable without complex structures from the application 

developer. However, one of the main goals - using existing content, preferably 

complete web sites in the system as applications - turned out to be unreachable. 

Due to the WebGL specification limitations, the use of existing content as textures 

is limited to image, video, and canvas elements, whereas in order to render existing 

web pages within 3D environment, the WebGL specification should to support 

IFrames as a source for textures. Currently, this option is associated with security 

issues - using the WebGL API gives loaded applications a direct access to the 

host devices hardware - which must be resolved before extending the rendering 

capabilities. Until then, applications are limited to the functionality of canvas 

element to produce graphics. 

Additional security issues also emerge. Applications share the same JavaScript 

namespace which causes problems with variable overwriting. Even though each 

application has a simulated private namespace, variables might bleed through to 

the global namespace if the variable is missing var keyword. Applications can ac-

19http://www.compiz.org 

http://www.compiz.org
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cess global variables and overwrite them, including Lively3D namespace, other used 

JavaScript libraries and even browsers' default JavaScript functionality. This espe-

cially causes accidental problems with generic JavaScript libraries, since they are 

usually bound in $ variable, which is overwritten when new library is loaded and ba-

sic functionality of the environment brakes down as result. These problems could be 

fixed with proper process model where each application has its own private names-

pace and rendering context. There has been an emergence of JavaScript frameworks 

like Require.js20 and browserify21 that encapsulate parts of the JavaScript code to 

separate modules, this could be used as a pattern to fix some of the problems of 

Lively3D. 

The Single Page Application paradigm has its advantages and disadvantages. 

Even though applications are in the same JavaScript namespace, this could be 

leveraged so that applications could communicate with each other. To enable this, 

the environment would need common JavaScript interfaces for application commu-

nications. Current implementation does not provide documented APIs for this. 

One of the goals of Lively3D was minimal overhead code while embedding ex-

isting applications. We consider that this requirement was achieved quite well, 

although comprehensive analysis between converted applications is useless since 

amount of overhead code depends on coding conventions. In Lively3D most of 

the application initialization must be done dynamically in JavaScript code, as op-

posed to convential browser where HTML tags can handle some of the resource 

downloading. The minimal overhead code amounts to about 50 lines of extra code. 

In the course of the design, we were alarmed by the fact that the circumvention 

of security restrictions became one of the key design drivers in the experiment. In 

this field, the problems arise from the combination of the current "one size fits 

all" browser security model and the general document-oriented nature of the web 

browser. Decisions about security are determined primarily by the site (origin) from 

which the web document is loaded, not by the specific needs of the document or 

application. Such problems could be alleviated by introducing a more fine-grained 

security model, e.g., a model similar to the comprehensive security model of the 

Java SE platform [1] or the more lightweight, permission-based, certificate-based 

security model introduced by the MIDP 2.0 Specification for the Java Platform, 

Micro Edition (Java ME) [4]. As already pointed out in [6], the biggest challenges in 

this area are related to standardization, as it is difficult to define a security solution 

that would be satisfactory to everybody while retaining backwards compatibility. 

Finally, there are numerous new methodological issues associated with the tran-

sition. The transition from conventional applications to web applications will result 

in a shift away from static programming languages such as C, C++ or C # towards 

dynamic programming languages. Since mainstream software developers are often 

unaware of the fundamental development style differences between static and dy-

namic programming languages, they need to be educated about the evolutionary, 

exploratory programming style associated with dynamic languages. Furthermore, 

20http://requirejs.org/ 
21 http: //browserify.org/ 

http://requirejs.org/
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techniques associated with dealing with big data - data sets that are too large to 

work with using on-hand database management tools - data mining, and mashup 

development will be increasingly important. 

To conclude, when considering the humble beginnings of the web browser as a 

simple document viewing and distribution environment, and the fact that program-

matic capabilities on the Web were largely an afterthought rather than a carefully 

designed feature, the transformation of the Web into an extremely popular software 

deployment platform is amazing. This transformation is one of the most profound 

changes in the modern history of computing and software engineering. 

In this paper, we are demonstrating the effect of new ways to visualize content 

in a fashion where the browser's new extensions are based on new web protocols 

rather than plugins, which has been the traditional way to create richer media inside 

the browser. Since no plugins that commonly introduce restrictions associated with 

their proprietary origins, the new technologies are manifesting the open web and 

open data. This, together with open data that is be available to everyone to freely 

use and republish as they wish without mechanisms of control, in turn liberates the 

developers to create increasingly compelling applications, building on the facilities 

that already exist in the web as well as their own innovative ideas. 
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Asymptotic Proportion of Hard Instances 

of the Halting Problem 

Antti Valmari* 

Abstract 

Although the halting problem is undecidable, imperfect testers that fail 

on some instances are possible. Such instances are called hard for the tester. 

One variant of imperfect testers replies "I don't know" on hard instances, 

another variant fails to halt, and yet another replies incorrectly "yes" or 

"no". Also the halting problem has three variants: does a given program halt 

on the empty input, does a given program halt when given itself as its input, 

or does a given program halt on a given input. The failure rate of a tester 

for some size is the proportion of hard instances among all instances of that 

size. This publication investigates the behaviour of the failure rate as the size 

grows without limit. Earlier results are surveyed and new results are proven. 

Some of them use C++ on Linux as the computational model. It turns out 

that the behaviour is sensitive to the details of the programming language 

or computational model, but in many cases it is possible to prove that the 

proportion of hard instances does not vanish. 

Keywords: halting problem, three-way tester, generic-case tester, approxi-

mating tester 

1 Introduction 

Turing proved in 1936 that undecidability exists by showing that the halting prob-

lem is undecidable [10]. Rice extended the set of known undecidable problems to 

cover all questions of the form "does the partial function computed by the given 

program have property X", where X is any property that at least one computable 

partial function has and at least one does not have [7]. For instance, X could 

be "returns 1 for all syntactically correct C + + programs and 0 for all remaining 

inputs." In other words, it may be impossible to find out whether a given weird-

looking program is a correct C + + syntax checker. These results are basic material 

in such textbooks as [3]. 

On the other hand, imperfect halting testers are possible. For any instance 

of the halting problem, a three-way tester eventually answers "yes", "no", or "I 
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don't know". If it answers "yes" or "no", then it must be correct. We say that 

the "I don't know" instances are hard instances for the tester. Also other kinds of 

imperfect testers have been introduced, as will be discussed in Section 2.1. 

Assume that T\ is a tester. By Turing's proof, it has a hard instance I\. If I\ 

is a halting instance, then let be "if the input is I\, then reply 'yes', otherwise 

run T\ and return its reply". If I\ is non-halting, then let TI be "if the input is 

J i , then reply 'no', otherwise run T\ and return its reply". By construction, T2 

is a tester with one fewer hard instances than T\ has. By Turing's proof, also T2 

has a hard instance. Let us call it I2 • It is hard also for T\. This reasoning can 

be repeated without limit, yielding an infinite sequence T\, T2, ... of testers and 

/1, I2, . . . of instances such that U is hard for Ti, . . . , Tj but not for X)+1, 

Therefore, every tester has an infinite number of hard instances, but no instance is 

hard for all testers. 

A program that answers "I don't know" for every program and input is a three-

way tester, although it is useless. A much more careful tester simulates the given 

program on the given input at most 99 steps, where n is the joint size of the 

program and its input. If the program stops by then, then the tester answers 

"yes". If the program repeats a configuration (that is, a complete description of 

the values of variables, the program counter, etc.) by then, then the tester answers 

"no". Otherwise it answers "I don't know". With this theoretically possible but 

in practice unrealistic tester, any hard halting instance has a finite but very long 

running time. 

The proofs by Turing and Rice may leave the hope that only rare artificial 

contrived programs yield hard instances. One could dream of a three-way tester 

that answers very seldom "I don't know". This publication analyses this issue, 

by surveying and proving results that tell how the proportion of hard instances 

behaves when the size of the instances grows without limit. 

Section 2 presents the variants of the halting problem and imperfect testers sur-

veyed, together with some basic results and notation. Earlier research is discussed 

in Section 3. The section contains some proofs to bring results into the framework 

of this publication. Section 4 presents some new results in the case that a program 

has many copies of all big sizes, or information can be packed densely inside the 

program. It is not always assumed that the program has access to the information. 

A natural example of such information is dead code, such as i f ( l==0)then{ . . .}. 

In Section 5, results are derived for C++ programs with inputs from files. Section 6 

briefly concludes this publication. 

This publication is a significantly extended version of [12, 13]. The papers [12, 

13] are otherwise essentially the same, but three proofs were left out from [13] 

because of lack of space. In the present publication, Theorems 4 and 6 and Corol-

laries 2 and 4 are new results lacking from [12, 13]. Furthermore, [12, 13] incorrectly 

claimed the opposite of Theorem 6. The present publication fixes this error and 

also a small error in Proposition 4. 
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2 Concepts and Notation 

2.1 Variants of the Halting Problem 

The literature on hard instances of the halting problem considers at least three 

variants of the halting problem: 

E does the given program halt on the empty input [2], 

S does the given program halt when given itself as its input [6, 8], and 

G does the given program halt on the given input [1, 4, 9]. 

Each variant is undecidable. Variant G has a different notion of instances from 

others: program-input pairs instead of just programs. A tester for G can be trivially 

converted to a tester for E or S, but the proportion of hard program-input pairs 

among all program-input pairs of some size is not necessarily the same as the 

similar proportion with the input fixed to the empty one or to the program itself. 

The literature also varies on what the tester does when it fails. Three-way 

testers, that is, the "I don't know" answer is used implicitly by [6], as it discusses 

the union of two decidable sets, one being a subset of the halting and the other of 

the non-halting instances. In generic-case decidability [8], instead of the "I don't 

know" answer, the tester itself fails to halt. Yet another idea is to always give a 

"yes" or "no" answer, but let the answer be incorrect for some instances [4, 9]. 

Such a tester is called approximating. One-sided results, where the answer is either 

"yes" or "I don't know", were presented in [1, 2]. For a tester of any of the three 

variants, we say that an instance is easy if the tester correctly answers "yes" or 

"no" on it, otherwise the instance is hard. 

These yield altogether nine different sets of testers, which we will denote with 

three-way(X), generic(X), and approx(X), where X is E, S, or G. Some simple facts 

facilitate carrying some results from one variant of testers to another. 

Propos i t i on 1. For any three-way tester there is a generic-case tester that has pre-

cisely the same easy "yes"-instances, easy "no"-instances, hard halting instances, 

and hard non-halting instances. 

There also is an approximating tester that has precisely the same easy "yes"-

instances, at least the same easy "no"-instances, precisely the same hard halting 

instances, and no hard non-halting instances; and an approximating tester that has 

at least the same easy "yes"-instances, precisely the same easy "no"-instances, no 

hard halting instances, and precisely the same hard non-halting instances. 

Proof. A three-way tester can be trivially converted to the promised tester by 

replacing the "I don't know" answer with an eternal loop, the reply "no", or the 

reply "yes". • 

Propos i t i on 2. For any generic-case tester there is a generic-case tester that 

has at least the same "yes "-instances, precisely the same "no "-instances, no hard 

halting instances, and precisely the same hard non-halting instances. 
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Proof. In parallel with the original tester, the instance is simulated. (In Turing 

machine terminology, parallel simulation is called "dovetailing".) If the original 

tester replies something, the simulation is aborted. If the simulation halts, the 

original tester is aborted and the reply "yes" is returned. • 

Propos i t i o n 3. For any i €E N and tester T, there is a tester Ti that answers 

correctly "yes" or "no" for all instances of size at most i, and similarly to T for 

bigger instances. 

Proof. Because there are only finitely many instances of size at most i, there is a 

finite bit string that lists the correct answers for them. If n < i, Ti picks the answer 

from it and otherwise calls T. (We do not necessarily know what bit string is the 

right one, but that does not rule out its existence.) • 

2.2 Notation 

We use £ to denote the set of characters that are used for writing programs and 

their inputs. It is finite and has at least two elements. There are |£|n character 

strings of size n. If a and ¡3 are in £*, then a C /3 denotes that a is a prefix of /3, 

and a C (3 denotes proper prefix. The size of a is denoted with |a|. 

A set A of finite character strings is self-delimiting if and only if membership 

in A is decidable and no member of A is a proper prefix of a member of A. The 

shortlex ordering of any set of finite character strings is obtained by sorting the 

strings in the set primarily according to their sizes and strings of the same size in 

the lexicographic order. 

Not necessarily all elements of £* are programs. The set of programs is denoted 

with II, and the set of all (not necessarily proper) prefixes of programs with T. So 

II C T. For tester variants E and S, we use p(n) to denote the number of programs 

of size n. Then p(n) = |£n fl II|. For tester variant G, p(n) denotes the number 

of program-input pairs of joint size n. We will later discuss how the program and 

its input are paired into a single string. The numbers of halting and non-halting 

(a.k.a. diverging) instances of size n are denoted with h(n) and d(n), respectively. 

We have p(n) = h{n) + d(n). 

If T is a tester, then hT(n), hr(n), dT(n), and dr{n) denote the number of 

its easy halting, hard halting, easy non-halting, and hard non-halting instances of 

size n, respectively. Obviously hT[n) + hr(n) = h(n) and dT(n) + dr{n) = d(n). 

The smaller hr{n) and dr{n) are, the better the tester is. The failure rate of T is 

(hT(n) + dT{n))/p(n). 

When referring to all instances of size at most n, we use capital letters. So, for 

example, P(n) = £ " = 0 p ( i ) and DT(n) = dT(i). 
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3 Related Work 

3.1 Early Results by Lynch 

Nancy Lynch [6] used Godel numberings for discussing programs. In essence, it 

means that each program has at least one index number (which is a natural number) 

from which the program can be constructed, and each natural number is the index 

of some program. 

Although the index of an individual program may be smaller than the index 

of some shorter program, the overall trend is that indices grow as the size of the 

programs grows, because otherwise we would run out of small numbers. On the 

other hand, if the mapping between the programs and indices is 1-1, then the 

growth cannot be faster than exponential. This is because p(n) < |E|n. With 

real-life programming languages, the growth is exponential, but (as we will see in 

Section 5.2) the base of the exponent may be smaller than |E|. 

To avoid confusion, we refrain from using the notation HT, etc., when discussing 

results in [6], because the results use indices instead of sizes of programs, and their 

relationship is not entirely straightforward. Fortunately, some results of [6] can 

be immediately applied to programming languages by using the shortlex Godel 

numbering. The shortlex Godel number of a program is its index in the shortlex 

ordering of all programs. 

The first group of results of [6] reveals that a wide variety of situations may be 

obtained by spreading the indices of all programs sparsely enough and then filling 

the gaps in a suitable way. For instance, with one Godel numbering, for each three-

way tester, the proportion of hard instances among the first i indices approaches 1 

as i grows. With another Godel numbering, there is a three-way tester such that 

the proportion approaches 0 as i grows. There even is a Godel numbering such 

that as i grows, the proportion oscillates in the following sense: for some three-way 

tester, it comes arbitrarily close to 0 infinitely often and for each three-way tester, 

it comes arbitrarily close to 1 infinitely often. 

In its simplest form, spreading the indices is analogous to defining a new lan-

guage SpaciousC++ whose syntax is identical to that of C++ but the semantics 

is different. If the first \n/2J characters of a SpaciousC++ program of size n are 

space characters, then the program is executed like a C++ program, otherwise it 

halts immediately. This does not restrict the expressiveness of the language, be-

cause any C++ program can be converted to a similarly behaving SpaciousC++ 

program by adding sufficiently many space characters to its front. However, it 

makes the proportion of easily recognizable trivially halting instances overwhelm. 

A program that replies "yes" if there are fewer than \n/2J space characters at the 

front and "I don't know" otherwise, is a three-way tester. Its proportion of hard 

instances vanishes as the size of the program grows. 

As a consequence of this and Proposition 3, one may choose any failure rate 

above zero and there is a three-way tester for SpaciousC++ programs with at most 

that failure rate. Of course, this result does not tell anything about how hard 

it is to test the halting of interesting programs. This is the first example in this 
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publication of what we call an anomaly stealing the result. That is, a proof of a 

theorem goes through for a reason that has little to do with the phenomenon we 

are interested in. 

Indeed, the first results of [6] depend on using unnatural Godel numberings. 

They do not tell what happens with untampered programming languages. Even 

so, they rule out the possibility of a simple and powerful general theorem that 

applies to all models of computation. They also make it necessary to be careful 

with the assumptions that are made about the programming language. 

To get sharper results, optimal Godel numberings were discussed in [6]. They 

do not allow distributing programs arbitrarily. A Godel numbering is optimal if 

and only if for any Godel numbering, there is a computable function that maps it 

to the former such that the index never grows more than by a constant factor.1 

The most interesting sharper results are opposite to what was obtained without the 

optimality assumption. To apply them to programming languages, we first define 

a programming language version of optimal Godel numberings. 

Definit ion 1. A programming language is end-of-file data segment, if and only if 

each program consists of two parts in the following way. The first part, called the 

actual program, is written in a self-delimiting language (so its end can be detected). 

The second part, called the data segment, is an arbitrary character string that 

extends to the end of the file. The language has a construct via which the actual 

program can read the contents of the data segment. 

The data segment is thus a data literal in the program, packed with maximum 

density. It is not the same thing as the input to the program. 

Coro l la ry 1. For each end-of-file data segment language, 

3c > 0 : 3T € three-way(S) : Vn e N : > c a n d 

P\Jl) 

3c > 0 : VT e three-way(S) : 3n r € N : Vn > nT : + > 
v ' ~ P(n) 

Proof. Let £ be the end-of-file data segment language, and let Q be any Godel 

numbering. Consider the following program P in £ . Let a and d be the sizes of 

its actual program and data segment. The actual program reads the data segment, 

interpreting its content as a number i in the range from |s|_! + 1 to i ^ p r - • 

Then it simulates the zth program in Q. The shortlex index of P is at most i' = 

E]=o ^ |S|a+d+1- We have i § j f r + l < ¿.yielding |E|d-l < |E|»-i-|E| + l , 

so |E|d < |E|z, thus i' < |E|a+2i. The shortlex numbering of £ is thus an optimal 

Godel numbering. From this, Proposition 6 in [6] gives the claims. • 

1The definition in [6] seems to say that the function must be a bijection. We believe that this 
is a misprint, because each proof in [6] that uses optimal Godel numberings obviously violates it. 
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A remarkable feature of the latter result compared to many others in this pub-

lication is that c is chosen before T. That is, there is a positive constant that only 

depends on the programming language (and not on the choice of the tester) such 

that all testers have at least that proportion of hard instances, for any big enough 

n. On the other hand, the proof depends on the programming language allowing 

to pack raw data very densely. Real-life programming languages do not satisfy 

this assumption. For instance, C++ string literals " . . . " cannot pack data densely 

enough, because the representation of " inside the literal (e.g., \" or \042) requires 

more than one character. 

Because of Proposition 3, "3nT € N" cannot be moved to the front of "VT £ 

three-way(S)". 

The result cannot be generalized to hr, dr, and p, because the following 

anomaly steals it. We can change the language by first adding 1 or 01 to the 

beginning of each program 7r and then declaring that if the size of l7r or 0l7r is 

odd, then it halts immediately, otherwise it behaves like n. This trick does not 

invalidate optimality but introduces infinitely many sizes for which the proportion 

of hard instances is 0. 

3.2 Results on Domain-Frequent Programming Languages 

In [4], the halting problem was analyzed in the context of programming languages 

that are frequent in the following sense: 

Definit ion 2. A programming language is (a) frequent (b) domain-frequent, if 

and only if for every program ir, there are n,eN and cn > 0 such that for every 

n > nn, at least cnp(n) programs of size n (a) compute the same partial function 

as IT (b) halt on precisely the same inputs as N. 

Instead of "frequent", the word "dense" was used in [4], but we renamed the 

concept because we felt "dense" a bit misleading. The definition says that programs 

that compute the same partial function are common. However, the more common 

they are, the less room there is for programs that compute other partial functions, 

implying that the smallest programs for each distinct partial function must be 

distributed more sparsely. "Dense" was used for domain-frequent in [9]. 

Any frequent programming language is obviously domain-frequent but not nec-

essarily vice versa. On the other hand, even if a theorem in this field mentions 

frequency as an assumption, the odds are that its proof goes through with domain-

frequency. Whether a real-life programming language such as C++ is domain-

frequent, is surprisingly difficult to find out. We will discuss this question briefly 

in Section 4.1. 

As an example of a frequent programming language, BF was mentioned in [4]. 

Its full name starts with "brain" and then contains a word that is widely considered 

inappropriate language, so we follow the convention of [4] and call it BF. Information 

on it can be found on Wikipedia under its real name. It is an exceptionally simple 

programming language suitable for recreational and illustrational but not for real-

life programming purposes. In essence, BF programs describe Turing machines with 
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a read-only input tape, write-only output tape, and one work tape. The alphabet of 

each tape is the set of 8-bit bytes. However, BF programs only use eight characters. 

As a side issue, a non-trivial proof was given in [4] that only a vanishing pro-

portion of character strings over the eight characters are BF programs. That is, 

limn_Kx, p(n)/8n exists and is 0. It trivially follows that if all character strings over 

the 8 characters are considered as instances and failure to compile is considered as 

non-halting, then the proportion of hard instances vanishes as n grows. 

The only possible compile-time error in BF is that the square brackets [ and ] 

do not match. Most, if not all, real-life programming languages have parentheses 

or brackets that must match. So it seems likely that compile-time errors dominate 

also in the case of most, if not all, real-life programming languages. Unfortunately, 

this is difficult to check rigorously, because the syntax and other compile-time rules 

of real-life programming languages are complicated. Using another, simpler line of 

argument, we will prove the result for both C++ and BF in Section 5.1. 

In any event, if the proportion of hard instances among all character strings 

vanishes because the proportion of programs vanishes, that is yet another example 

of an anomaly stealing the result. It is uninteresting in itself, but it rules out the 

possibility of interesting results about the proportion of hard instances of size n 

among all character strings of size n. Therefore, from now on, excluding Section 5.1, 

we focus on the proportion of hard instances among all programs or program-input 

pairs. 

In the case of program-input pairs, the results may be sensitive to how the 

program and its input are combined into a single string that is used as the input of 

the tester. To avoid anomalous results, it was assumed in [4, 9] that this "pairing 

function" has a certain property called "pair-fair". The commonly used function 

x + (x + y) (x + y +1)/2 is pair-fair. To use this pairing function, strings are mapped 

to numbers and back via their indices in the shortlex ordering of all finite character 

strings. 

A proof was sketched in [9] that, assuming domain-frequency and pair-fairness, 

VT e approx(G) : 3c r > 0 : 3nT G N : Vn > nT : M") + > Ct 

p{n) 

That is, the proportion of wrong answers does not vanish. However, this leaves open 

the possibility that for any failure rate c > 0, there is a tester that fares better than 

that for all big enough n. This possibility was ruled out in [4], assuming frequency 

and pair-fairness. (It is probably not important that frequency instead of domain-

frequency was assumed.) That is, there is a positive constant such that for any 

tester, the proportion of wrong answers exceeds the constant for infinitely many 

sizes of instances: 

3c > 0 : VT e approx(G) : Vn0 € N : 3n > n0 : M " ) + < * r ( n ) > c 

p(n) 

The third main result in [4], adapted and generalized to the present setting, is the 

following. We present its proof to obtain the generalization and to add a detail 
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that the proof in [4] lacks, that is, how T,j is made to halt for "wrong sizes". 

Generic-case testers are not mentioned, because Proposition 2 gave a related result 

for them. 

T h e o r e m 1. For each programming model and variant E, S, G of the halting 

problem, 

Vc > 0 : 3TC e approx(X) : Vn0 € N : 3n > n0 : ^ Z k M < c A i ^ M = 0 and 
p{n) p(n) 

Vc > 0 : 3TC e three-way(X) : Vrz0 G N : 3n > n0 :  h'T c}T^ < c . 
p(n) 

Proof. Let C = [T/c~|. Consider the family Tij of the programs of the following 

kind, where t 6 N, j € N, and 0 < i < C. If n < j , Tij answers "no" in the 

case of approximating and "I don't know" in the case of three-way testers. If 

n > j , Tij simulates all instances of size n until \ip(n)/C\ of them have halted. 

If the simulation stage terminates, then if the given instance is among those that 

halted, TIJ answers "yes", otherwise TL } answers "no" or "I don't know". Thus an 

approximating Tij has dr, ¡(n) — 0. 

We prove next that some Tij is the required tester. Let in = [Ch(n)/p(n)\. 

Then inp(n)/C < h(n) < (in + 1 )p{n)/C. When n > j , the simulation stage of 

TINJ terminates and the proportion of hard halting instances of TTNJ is less than 

1 ¡C < c. Some 0 < i < C is the in for infinitely many values of n. Furthermore, 

there is a smallest such i. We denote it with i'. There also is a j such that when 
n > J, then in > i'. With these choices, Ti'j always halts. • 

For a small enough c and the approximating tester Tc in Theorem 1,(1) implies 

that the failure rate of Tc oscillates, that is, does not approach any limit as n —> oo. 

This observation is directly obtainable from Lemma 23 in [4]. 

3.3 Results on Turing Machines 

For Turing machines with one-way infinite tape and randomly chosen transition 

function, the probability of falling off the left end of the tape before halting or re-

peating a state approaches 1 as the number of states grows [2]. The tester simulates 

the machine until it falls off the left end, halts, or repeats a state. If falling off the 

left end is considered as halting, then the proportion of hard instances vanishes as 

the size of the machine grows. This can be thought of as yet another example of 

an anomaly stealing the result. 

Formally, 3T € three-way(X) : limn_+00(/ix(^) + dT(n))/p(n) = 0, that is, 

3T e three-way(X) : Vc > 0 : 3nc € N : Vn > nc : M " ) + <M") < c _ 
p(n) 

Here X may be E, S, or G. Although E was considered in [2], the proof also ap-

plies to S and G. Comparing the result to Theorem 2 in Section 4.1 reveals that 
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the representation of programs as transition functions of Turing machines is not 

domain-frequent. 

On the other hand, independently of the tape model, the proportion does not 

vanish exponentially fast [8]. Like in [2], the proportion is computed on the transi-

tion functions, and not on some textual representations of the programs. The proof 

relies on the fact that any Turing machine has many obviously similarly behaving 

copies of bigger and bigger sizes. They are obtained by adding new states and tran-

sitions while keeping the original states and transitions intact. So the new states 

and transitions are unreachable. They are analogous to dead code. These copies 

are not common enough to satisfy Definition 2, but they are common enough to 

rule out exponentially fast vanishing. Generic-case decidability was used in [8], but 

the result applies also to three-way testers by Proposition 1. 

The results in [1] are based on using weighted running times. For every positive 

integer k, the proportion of halting programs that do not halt within time k + c is 

less than 2~ k, simply because the proportion of times greater than k + c is less than 

2~ k. The publication presents such a weighting that c is a computable constant. 

Assume that programs are represented as self-delimiting bit strings on the input 

tape of a universal Turing machine. The smallest three-way tester of variant E that 

answers "yes" or "no" up to size n and "I don't know" for bigger programs, is of 

size n ± O( l ) [11]. 

4 Programming Languages with Assumptions 

4.1 Domain-Frequent Languages 

The assumption that the programming language is domain-frequent (Definition 2) 

makes it possible to use a small variation of the standard proof of the non-existence 

of halting testers, to prove that each halting tester of variant S has a non-vanishing 

set of hard instances. For three-way and generic-case testers, one can also say some-

thing about whether the hard instances are halting or not. Despite its simplicity, 

as far as we know, the following result has not been presented in the literature. 

However, see the comment on [9] in Section 3.2. 

Theo r em 2. If the programming language is domain-frequent, then 

VT e three-way(S) : 3cT > 0 : 3nT € N : Vn > nT : > cT A ^ i M > C t 

p{n) p(n) 

VT € generic(S) : 3cT > 0 : 3 n r £ N : Vn > nT : > cT , and 
p{n) 

VT £ approx(S) : 3cT > 0 : 3 n r £ N : Vn > nT : M " ) + <*r(n) > C t _ 

p(n) 

Proof. Let the execution of X with an input y be denoted with X(y). For any 

T, consider the program PT that first tries its input x with T. If T(x) replies 
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"yes", then PT{X) enters an eternal loop. If T(x) replies "no", then PT{X) halts 

immediately. The case that T(x) replies "I don't know" is discussed below. If T(x) 

fails to halt, then PT(X) cannot continue and thus also fails to halt. 

By the definition of domain-frequent, there are CT > 0 and UT € N such that 

when n > nr, at least crpln) programs halt on precisely the same inputs as PT- Let 

P' be any such program. Consider PT(P')-  I F T{P') answers "yes", then PT (P ' ) 

fails to halt. Then also P'(P') fails to halt. Thus "yes" cannot be the correct 

answer for T(P'). A similar reasoning reveals that also "no" cannot be the correct 

answer for T(P'). So P' is a hard instance for T. 

Nothing more is needed to prove the claim for approximating testers. In the 

case of generic-case testers, the hard instances make T and thus PT fail to halt, so 

they are non-halting instances. 

In the case of three-way testers, all hard instances can be made halting in-

stances by making PT halt when T replies "I don't know". This proves the claim 

hr{n)/p(n) > CT- The claim dT{n)/p{n) > CT is proven by making PT enter an 

eternal loop when T replies "I don't know". These two proofs may yield different 

CT values, but the smaller one of them is suitable for both. Similarly, the bigger of 

their TIT values is suitable for both. • 

The second claim of Theorem 2 lacks a /ir(rc) part. Indeed, Proposition 2 says 

that with generic-case testers, hx{n) can be made 0. With approximating testers, 

/ir(n) can be made 0 at the cost of dr(^) becoming d(n), by always replying "yes". 

Similarly, dx(rc) can be made 0 by always replying "no". 

The next theorem applies to testers of variant E and presents some results 

similar to Theorem 2. To our knowledge, it is the first theorem of its kind that 

applies to the halting problem on the empty input. It assumes not only that many 

enough equivalent copies exist but also that they can be constructed. On the other 

hand, its equivalence only pays attention to the empty input. 

Definit ion 3. A programming language is computably empty-frequent if and only 

if there is a decidable equivalence relation between programs such that 

• for each program ir, there are cn > 0 and n , £ N such that for every n > n,r, 

at least c*p(n) programs of size n are equivalent to ir, and 

• for each programs IT and ir', if TT fa ir', then either both or none of ir and ir' 

halt on the empty input. 

If ir « ir', we say that ir' is a cousin of ir. 

It can be easily seen from [4] that BF is computably empty-frequent. 

Theorem 3. If the programming language is computably empty-frequent, then 

VT € three-way(E): 3cT > 0 : 3nT € N : Vn > nT : ^ ^ > cT . 
p(n) 

The result also holds for generic-case testers but not for approximating testers. 
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Proof. Given any three-way tester T, consider a program Pt that behaves as fol-

lows. First it constructs its own code and stores it in a string variable. Hard-wiring 

the code of a program inside the program is somewhat tricky, but it is well known 

that it can be done. With Godel numberings, the same can be obtained with 

Kleene's second recursion theorem. 

Then PT starts constructing its cousins of all sizes and tests each of them with 

T. By the assumption, there are CT > 0 and ny € N such that for every n > TIT, 

PT has at least CTP(TI) cousins of size n. If T ever replies "yes", then PT enters an 

eternal loop and thus does not continue testing its cousins. If T ever replies "no", 

then PT halts immediately. If T replies "I don't know", then PT tries the next 

cousin. 

If T ever replies "yes", then PT fails to halt on the empty input. By definition, 

also the tested cousin fails to halt on the empty input. So the answer "yes" would be 

incorrect. Similarly, if T ever replies "no", that would be incorrect. So T must reply 

"I don't know" for all cousins of PT- They are thus hard instances for T. Because 

there are infinitely many of them, PT does not halt, so they are non-halting. 

To prove the result for generic-case testers, it suffices to run the tests of the 

cousins in parallel, that is, go around a loop where each test that has been started 

is executed one step and the next test is started. If any test ever replies "yes" or 

"no", PT aborts all tests that it has started and then does the opposite of the reply. 

A program that always replies "no" is an approximating tester with dr (^ ) = 0 

for every n G N. • 

The results in this section and Section 3.2 motivate the question: are real-life 

programming languages domain-frequent? For instance, is C++ domain-frequent? 

Unfortunately, we have not been able to answer it. We try now to illustrate why it 

is difficult. 

Given any C++ program, it is easy to construct many longer programs that 

behave in precisely the same way, by adding space characters, line feeds (denoted 

with -a), comments, or dead code such as i f (0 !=0){ . . .} . It is, however, hard to 

verify that many enough programs are obtained in this way. For instance, it might 

seem that many enough programs can be constructed with string literals. We now 

provide evidence that suggests (but does not prove) that it fails. 

Any program of size n can be converted to (|E| — 3)fc identically behaving 

programs of size n + k + 12 by adding {char*s="<7";} to the beginning of some 

function, where a G (E\ {", \,-e})k. (The purpose of { and } is to hide the variable 

s, so that it does not collide with any other variable with the same name.) More 

programs are obtained by including escape codes such as \" to a. 

However, it seems that this is a vanishing instead of at least a positive constant 

proportion when k —• oo. In the absence of escape codes, it certainly is a vanishing 

proportion. This is because one can add {char*s="<7" , * t= "p " ; } instead, where 

+ |p| = k — 6. Without escape codes, this yields (k — 5)(|E| — 3)fc-6 programs. 

When k -+ oo, (|E| - 3 ) k / ( ( k - 5)(|E| - 3)fc~6) = (|E| - 3) 6/{k - 5) -+ 0. 

That is, although string literals can represent information rather densely, they 

do not constitute the densest possible way of packing information into a C++ 
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program (assuming the absence of escape codes). A pair of string literals yields 

an asymptotically strictly denser packing. Similarly, a triple of string literals is 

denser still, and so on. Counting the programs in the presence of escape codes is 

too difficult, but it seems likely that the phenomenon remains the same. 

So string literals do not yield many enough programs. It seems difficult to first 

find a construct that does yield many enough programs, and then prove that it 

works. 

4.2 End-of-file Data Segment Languages 

In this section we prove a theorem that resembles Theorem 3, but relies on different 

assumptions and has a different proof. 

We say that a three-way tester is n-perfect if and only if it does not answer "I 

don't know" when the size of the instance is at most n. The following lemma is 

adapted from [11]. 

L e m m a 1. Each programming language has a constant e such that the size of each 

n-perfect three-way tester of variant E or S is at least n — e. 

Proof. Let Tn be any n-perfect three-way tester of variant E or S. Consider a 

program P that constructs character strings x in shortlex order and tests them 

with Tn until Tn(x) replies "I don't know". If Tn(x) replies "yes", P simulates x 

before trying the next character string. When simulating x, P gives it the empty 

input in the case of variant E and x as the input in the case of S. The reply "I don't 

know" eventually comes, because otherwise Tn would be a true halting tester. As 

a consequence, P eventually halts. Before halting, P simulates at least all halting 

programs of size at most n. 

The time consumption of any simulated execution is at least the same as the 

time consumption of the corresponding genuine execution. So the execution of P 

cannot contain properly a simulated execution of P. P does not read any input, 

so it does not matter whether it is given itself or the empty string as its input. 

Therefore, the size of P is bigger than n. Because the only part of P that depends 

on n is Tn, there is a constant e such that the size of Tn is at least n — e. • 

In any everyday programming language, space characters can be added freely 

between tokens. Motivated by this, we define that a blank character is a character 

that, for any program, can be added to at least one place in the program without 

affecting the meaning of the program. 

Theorem 4. Let X be E or S. If the programming language is end-of-file data 

segment and has a blank character, then 

VT € three-way(X) : 3c r > 0 : 3nT € N : Vn > nT : > cT A ^ ^ > cT . 
P(n) p(n) 

Proof. Assume first that tester T is a counter-example to the /ir-claim. That is, 

for every c > 0, T has infinitely many values of n such that hr(n)/p(n) < c. 
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If T uses its data segment, let the use be replaced by the use of ordinary con-

stants, liberating the data segment for the use described in the sequel. Let Tt,m 

be the following program. Here k is a constant inside Tk,m represented by ©(log A;) 

characters, and m is the content of the data segment of Tfc,m interpreted as a natu-

ral number m in base |E|. Let a and d be the sizes of the actual program and data 

segment of Tjt,m. We have a = ©(log k). Let x be the input of Tk,m-

The program Tk.m first computes n := k + d. If |x| < n, then 7/tjm adds blank 

characters to x, to make its size n. Next, if |x| > n, then Tk.m replies "I don't 

know" and halts. Otherwise Tk,m gives x (which is now of size precisely n) to T. 

If T(x) replies "yes" or "no", then Tk,m gives the reply as its own reply and halts. 

Otherwise Tk,m constructs each character string y of size n and tests it with T. 

Tk,m simulates in parallel those y for which T{y) returns "I don't know" until m of 

them have halted (with y or the empty string as the input, as appropriate). Then 

it aborts those that have not halted. If x is among those that halted, then Tk,m 

replies "yes", otherwise Tt,m replies "no". 

For each k € N, there are infinitely many values of n such that hr(n)/p(n) < 

|E|~*. For any such n we have hr(n) <p(n)|E|-fc < |E|n|E|_fc. So n- k characters 

suffice for representing hr{n). Therefore, there is Tjt,m such that d = n — k and 

m = hr{n). It is an n-perfect three-way tester of size a + d = d + ©(log A:) = 

n — k + ©(log A:). A big enough k yields a contradiction with Lemma 1. 

The proof of the dy-claim is otherwise similar, but Tt,m counts the number v 

of those y for which T(y) returns "I don't know", and simulates the y until v — m 

of them have halted. The fix-claim and dx-claim are combined into a single claim 

by choosing the smaller ct and bigger nj provided by their proofs. • 

4.3 End-of-file Dead Segment Languages 

In this section we show that if dead information can be added extensively enough, 

a tester of variant E with an arbitrarily small positive failure rate exists, but the 

opposite holds for variant S. The reason for the result on variant E is that as the 

size of the programs grows, a bigger and bigger proportion of programs consists 

of copies of smaller programs. This phenomenon is so strong that to obtain the 

desired failure rate, it suffices to know the empty-input behaviour of all programs 

up to a sufficient size. 

An end-of-file dead segment language is defined otherwise like end-of-file data 

segment language (Definition 1), but the actual program cannot read the data seg-

ment. This is the situation with any self-delimiting real-life programming language, 

whose compiler stops reading its input when it has read a complete program. Any 

end-of-file dead segment language is frequent and computationally domain-frequent. 

Theo rem 5. For each end-of-file dead segment language, 

Vc > 0 : 3TC € three-way(E) : Vn € N : ^ (") + ¿tc (n) ^ ^ 

p(n) 

The result also holds with approximating and generic-case testers. 
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Proof. Let r(n) denote the number of programs whose dead segment is not empty. 

We have r(n) < p(n) < |E|U, so r(n)|E|"n < 1. For each n € N, r(n + 1) = 

|E|p(n) > |E|r(n). So r(n)|E|_n grows as n grows. These imply that there is £ 

such that r(n)|E|_" —» £ from below when n -» oo. 

Because there are programs, £ > 0. For every c > 0 we have £c > 0, so there is 

nc G N such that r(nc)|E|_"c >£-£c. On the other hand, p(n) = r(n + 1)/|E| < 

f|E|". These imply p(nc - l)|E|n-n=+1/p(n) = r(nc)|E|"-n<=/p(n) > 1 - c. Here 

p(nc — l)|E|n-nc+1 is the number of those programs of size n whose actual program 

is of size less than nc. 

The behaviour of a program on the empty input only depends on its actual 

program. Let na be the size of the actual program. Consider a three-way tester 

that looks the answer from a look-up table if na < nc and replies "I don't know" 

if na > nc (cf. Proposition 3). It has (hT (n ) + dT(n))/p(n) > 1 — c, implying the 

claim. 

Proposition 1 generalizes the result to approximating and generic-case testers. 

• 
The above proof exploited the fact that the correct answer for a long program 

is the same as the correct answer for a similarly behaving short program. This does 

not work for testers of variant S, because the short and long program no longer get 

the same input, since each one gets itself as its input. Although the program does 

not have direct access to its dead segment, it gets it via the input. This changes 

the situation to the opposite of the previous theorem. 

Theo rem 6. For each end-of-file dead segment language, 

3c > 0 : VT G three-way(S) : Vn0 € N : 3n > n0 : > c A > c , 
p(n) p(n) 

3c > 0 : VT G generic(S) : Vn0 G N : 3n > n0 : > c , and 
p(n) 

3c > 0 : VT G approx(S) : Vn0 G N : 3n > n0 : ^(n)+dT(n) ^ £ _ 

p(n) 

Proof. We prove first the claims on three-way and generic-case testers. 

Let us recall the overall idea of the proof of Theorem 2. In that proof, for 

any tester T, a program PT was constructed that gives its input x to T. If T(x) 

replies "yes", then PT{X) enters an eternal loop. If T(x) replies "no", then PT{X) 

halts immediately. To prove that a three-way tester has many hard (a) halting (b) 

non-halting instances, in the case of the "I don't know" reply, PT(X) was made to 

(a) halt immediately (b) enter an eternal loop. All programs that halt on the same 

inputs as PT were shown to be hard instances for T. For each n that is greater than 

a threshold that may depend on T, the existence of at least crp(n) such programs 

was proven, where CT may depend on T but not on n. 

We now apply the same idea, but, to get a result where the same constant c 

applies to all testers T, we no longer construct a separate program PT for each T. 
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Instead, we construct a single program P, which obtains T from the size of the 

input of P. (A similar idea appears in [4].) To discuss this, for any i > 0, let P, 

be the program whose shortlex index is i. Let ¿(¿) — i — s(i) + 1, where s(i) is the 

biggest square number that is at most i. The essence of S(i) is that as i gets the 

values 1, 2, 3, . . . , S(i) gets each value 1, 2, 3, . . . infinitely many times. 

One more idea needs to be explained before discussing the details of P. Let 

E be partitioned to Ei and E2 of sizes [ ^ J and Let na be the size of the 

actual program of P. For each n > na, by modifying the dead segment, |E|n_n° 

programs are obtained that have the same actual program as P. For i G {1,2}, let 

11* be the set of those of them whose dead segment ends with a character in E*. We 

have IIEI"-"» < |IIi| < |n2 |. Because 0 < p(n) < |E|n, by choosing c = ||E|-n-

we get i|E| n~ n ' /p(n) > c. 

The program P first checks that its input x is a program with a non-empty dead 

segment. If it is not, then P halts immediately. Otherwise, P constructs Ps(\x\) 

by going through all character strings in the shortlex order until <5(|x|) programs 

have been found. Then P constructs every program y that has the same size, has 

the same actual program, and belongs to the same n , as x. Then P executes the 

Ps(\x\){y) parallel until any of the following happens. 

If any Ps(|xp(2/) replies "yes", then P enters an eternal loop. If any Ps(\x\){y) 
replies "no", then P aborts the remaining P<5(|xp(y) and halts. If every Ps(\x\){y) 
replies "I don't know", then P halts if x € IIi , and enters an eternal loop if x G 112-

If none of the above ever happens, then P fails to halt. 

Recall that na is the size of the actual program of P. For any tester T, there 

are infinitely many n such that n > na and P<5(n) is T. For any such n, there are 

|E|n_"° programs P' of size n that have the same actual program as P. Let P " 

be any of them. The execution of P(P") starts P5 ( n )(P') for at least ||E|n"n-

distinct P'. If Ps{n)(P') replies "yes", then T claims that P'(P') halts. Then also 

P(P') halts, because P halts on the same inputs as P', since they have the same 

actual program. Furthermore, P(P") halts, because P only looks at the size, actual 

program, and 11,-class of its input, and P" and P ' agree on them. But the halting 

of P(P") is in contradiction with the behaviour of P described above. Therefore, 

no P5(„)(P') can reply "yes". For a similar reason, none of them replies "no" either. 

In conclusion, all at least ||E|n_rao distinct P' are hard instances for T. If T is 

a three-way tester, it replies "I don't know" for all of them. Depending on whether 

P" € IIi or P " € II2, they are hard halting or hard non-halting instances. If T is a 

generic-case tester, it halts on none of these hard instances. Therefore, also P (P" ) 

and P" (P" ) fail to halt. So they all are hard non-halting instances. 

In the case of approximating testers, P is modified such that it lets all Ps(\x\)(y) 
run into completion and counts the "yes"- and "no"-replies that they give. If the 

majority of the replies are "no", then P halts, otherwise P enters an eternal loop. 

For the same reasons as above, P(P") halts if and only if P(P') halts if and only 

if P'(P') halts. So at least half of the replies are wrong. • 

Finally, we prove a corollary of the above theorem that deals with the halting 

problem itself, not with imperfect testers. Imperfect testers are used in the proof 
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of the corollary, but not in the statement of the corollary. 

L e m m a 2. Let X be any of E, S, and G, and let f be any total computable function 

from natural numbers to integers. If 

3c > 0 : VT € three-way(X) : Vn0 € N : 3n > n0 : > c , 
p(n) 

h(n)-f(n) , 
then lim — does not exist. 

n—>00 p(n) 

Proof. Assume that limn-^ooCiC71) — f{n))/p{n) = x and c > 0. Let i = f— log2 c]. 

There is an x, of the form m + bj2~l such that m is an integer, bj € (0,1} 

when 1 < j < i + 1, and Xj < x < x, + 2~ I _1 . There also is no such that when 

n > no, then x* < (h(n) — f{n))/p(n) < x< + 2~ l. 

A tester T that disobeys the formula is obtained as follows. If n < no, T replies 

"I don't know". If n > no, T simulates all instances of size n until \x,p(n)] + / (n) 

have halted. If the given instance is among those that halted, then T replies "yes" 

and otherwise "I don't know". We have hr{n)/p(n) < 2~ l < c. • 

Coro l l a ry 2. Consider variant S of the halting problem and any end-of-file dead 

segment language. Then lim^oo h(n)/p(n) does not exist. 

The proof of Lemma 2 can be modified to approximating testers with (hr{n) + 

dT(n))/p(n) > c. By (1), the limit fails to exist also in the framework of [4]. 

5 CH—|- without Comments and with Input 

5.1 The Effect of Compile-Time Errors 

We first show that among all character strings of size n, those that are not C++ 

programs — that is, those that yield a compile-time error — dominate overwhelm-

ingly, as n grows. In other words, a random character string is not a C++ program 

except with vanishing probability. The result may seem obvious until one realizes 

that a C++ program may contain comments and string literals which may contain 

almost anything. We prove the result in a form that also applies to BF. 

C++ is not self-delimiting. After a complete C++ program, there may be, for 

instance, definitions of new functions that are not used by the program. This is 

because a C++ program can be compiled in several units, and the compiler does 

not check whether the extra functions are needed by another compilation unit. 

Even so, if n is a C++ program, then irO is definitely not a C++ program and not 

even a prefix of a C++ program. Similarly, if n is a BF program, then 7r] is not a 

prefix of a BF program. 

Propos i t i o n 4. If for every TT € II there is c£ E such that ire T, then 

lim ^-r- = 0 . 
n—>oo |£|n 
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Proof. Let q(n) = |£n n T|. Obviously 0 < p{n) < q{n) < |£| n. 

Assume first that for every e > 0, there is ne € N such that p(n)/q(n) < e 

for every n > n£. Because 0 < p(n)/|E|n < p(n)/q(n), we get p(n)/|E|n —> 0 as 

n oo. 

In the opposite case there is e > 0 such that p{n)/q(n) > e for infinitely many 

values of n. Let they be n\ < ri2 < Because 7rc is not a prefix of any program, 

q(rii +1) < |E|q(ni)—p(rii) < (|E| —e)q(rii). For the remaining values of n, obviously 

q(n + 1) < |E|g(n). These imply that when n > we have 0 < p(n)/|£|™ < 

g(n)/|£|n < q{ni)/|E|n< < (1 - e/^) 1 -+ 0 when i -+ oo, which happens when 

n —t oo. • 

Consider a tester T that replies "no" if the compilation fails and "I don't know" 

otherwise. If compile-time error is considered as non-halting, then Proposition 4 

implies that hT(n) —> 0, fix(ra) 0, dT(n) 1, and dr{n) 0 when n oo. As 

we pointed out in Section 3.2, this is yet another instance of an anomaly stealing 

the result. 

5.2 The C + + Language Model 

The model of computation we study in this section is program-input pairs, where 

the programs are written in C++, and the inputs obey the rules stated by the 

Linux operating system. Furthermore, E is the set of all 8-bit bytes. To make firm 

claims about details, it is necessary to fix some language and operating system. 

The validity of the details below has been checked with C++ and Linux. Most 

likely many other programming languages and operating systems could have been 

used instead. 

There are two deviations from the real everyday programming situation. First, 

of course, it must be assumed that unbounded memory is available. Otherwise 

everything would be decidable. (However, at any instant of time, only a finite 

number of bits are in use.) Second, it is assumed that the programs do not contain 

comments. This assumption needs a discussion. 

Comments are information that is inside the program but ignored by the com-

piler. They have no effect to the behaviour of the compiled program. We show 

next that most long C++ programs consist of a shorter C++ program and one or 

more comments. 

L e m m a 3. There are at most (|£| — l) 7 1 comment-less C++ programs of size n. 

Proof. Everywhere inside a C++ program excluding comments, it is either the case 

that Q or the case that the new line character cannot occur next. That is, for 

every character string a, either a® or a*j is not a prefix of any comment-less C + + 

program. • 

(Perhaps surprisingly, there indeed are places that are outside comments and 

where any byte except -j can occur.) 
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Lemma 4. Ifn > 16, then there are at least ((|E| —1)4 + 1)(" 1 C + + programs 

of size n. 

Proof. Let A = E \ {*}, and let m = [n/4 - 4J = |"(n - 19)/4]. Consider the 

character strings of the form 

i n t main(){/*«/?*/} 

where a consists of (n mod 4) space characters and ¡3 is any string of the form 

P1P2 • • • Pm, where Pi £ A 4 U {*//*} for 1 < i < m. Each such string is a syn-

tactically correct C++ program of size n. Their number is ((|E| — l)4 + l ) m > 

((|£| - l )4 + l)(n-19)/4 . • 

Corollary 3. The proportion of comment-less C++ programs among all C++ 

programs of size n approaches 0, when n -+ 00. 

Proof. Let s = |E| — 1. By Lemmas 3 and 4, the proportion is at most 

s n/(s 4 + 1 ) ( " - 1 9 > / 4 = s 1 9 ( s 4 / ( s 4 + 1 ) ) ( " - 1 9 ) / 4 0, when n 00. • 

As a consequence, although comments are irrelevant for the behaviour of pro-

grams, they have a significant effect on the distribution of long C++ programs. 

To avoid the risk that they cause yet another anomaly stealing the result, we re-

strict ourselves to C++ programs without comments. This assumption does not 

restrict the expressive power of the programming language, but reduces the number 

of superficially different instances of the same program. 

The input may be any finite string of bytes. This is how it is in Linux. Although 

not all such inputs can be given directly via the keyboard, they can be given by 

directing the so-called standard input to come from a file. There is a separate test 

construct in C++ for detecting the end of the input, so the end of the input need 

not be distinguished by the contents of the input. There are 256n different inputs 

of size n. 

The sizes of a program and input are the number of bytes in the program and 

the number of bytes in the input file. This is what Linux reports. The size of an 

instance is their sum. Analogously to Section 4.1, the size of a program is additional 

information to the concatenation of the program and the input. This is ignored by 

our notion of size. However, the notion is precisely what programmers mean with 

the word. Furthermore, the convention is similar to the convention in ordinary (as 

opposed to self-delimiting) Kolmogorov complexity theory [5]. 

Lemma 5. With the C++ programming model in Section 5.2, p(n) < |Ejn+1. 

Proof. By Lemma 3, the number of different program-input pairs of size n is at 

most 

¿ ( i £ i - D i E r < = i E r £ ( ] 5 b i ) ' < , = 

¿=0 ¿=0 |2j| ¿=0 
• 
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5.3 Proportions of Hard Instances 

The next theorem says that with halting testers of variant G and comment-less 

C++, the proportions of hard halting and hard non-halting instances do not vanish. 

Theo rem 7. With the C++ programming model in Section 5.2, 

VT G three-way(G) : 3cx > 0 : 3n x G N: Vn > nT : > C x A > C x . 
p(n) p(n) 

Proof. We prove first the /ix(n)/p(n) > c x part and then the d x (n) /p(n) > CT 

part. The results are combined by picking the bigger n x and the smaller c x . 

There is a program P x that behaves as follows. First, it gets its own size np 

from a constant in its program code. The constant uses some characters and thus 

affects the size of P x . However, the size of a natural number constant m is ©(log m) 

and grows in steps of zero or one as m grows. Therefore, by starting with m = 1 

and incrementing it by steps of one, it eventually catches the size of the program, 

although also the latter may grow. 

Then P x reads the input, counting the number of the characters that it gets 

with n* and interpreting the string of characters as a natural number x in base 

|E|. We have 0 < x < |E|n', and any natural number in this range is possible. Let 

n = np + Hi. 

Next P x constructs every program-input pair of size n and tests it with T. In 

this way P x gets the number hT(n) of easy halting pairs of size n. 

Then P x constructs again every pair of size n. This time it simulates each of 

them in parallel until hT(n) + x of them have halted. Then it aborts the rest and 

halts. It halts if and only if hT(n) + x < h(n). (It may be helpful to think of x as 

a guess of the number of hard halting pairs.) 

Among the pairs of size n is P x itself with the string that represents x as the 

input. We denote it with (Px , x). The time consumption of any simulated execution 

is at least the same as the time consumption of the corresponding genuine execution. 

So the execution of (Px , x) cannot contain properly a simulated execution of (P x , x). 

Therefore, either (Px , x) does not halt, or the simulated execution of (P x , x) is still 

continuing when (P x ,x) halts. In the former case, h(n) < hT(n) +x. In the latter 

case (Px ,x) is a halting pair but not counted in hT(n) + x, so h(n) > hT(n) + x. 

In both cases, x ^ h{n) — hT(n). 

As a consequence, no natural number less than |E|n< is fix(n). So fix(n) > 

]E|ni = |E|n_n". By Lemma 5, p(n) < |£|n+1. So for any n > np, we have 

hT(n)/p(n) > lEI-^-j. 

The proof of the dx(n)/p(n) > c x part is otherwise similar, except that P x 

continues simulation until p(n) - dT(n) - x pairs have halted. (Now x is a guess 

of dx (n) , yielding a guess of h(n) by subtraction.) The program F x gets p(n) by 

counting the pairs of size n whose program part is compilable. It turns out that 

p(n) — dT(n) - x ^ h(n), so x cannot be d x (n ) , yielding d x (n ) > |E|nL • 

Next we adapt the second main result in [4] to our present setting, with a 
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somewhat simplified proof and obtaining the result also for three-way and generic-

case testers. 

Theorem 8. With the C++ programming model in Section 5.2, 

3c > 0 : VT £ three-way(G) : Vn0 € N : 3n > n0 : ^ ^ > c A ^ ^ > c , 

p{n) p(n) 

3c > 0 : VT £ generic(G) : Vn0 £ N : 3n > n0 : ^ r ^ > c , and 

p(n) 

3c > 0 : VT £ approx(G) : Vn0 £ N : 3n > n0 : M " ) + dr(n) > c . 
p(n) 

Proof. The proof follows the same strategy as the proof of Theorem 6, but differs 

in some technical details. 

To prove the claim for three-way testers, for any character string a, let lb(a) = 0 

if a is the empty string, and otherwise lb(a) is the value of the least significant bit 

of the last character of a. For any character strings a and ß, let a ~ ß if and 

only if |q| = \ß\ and lb(a) = lb(/3). For any size n greater than 0, has two 

equivalence classes, each containing |£|n/2 character strings. For any i > 0, let Pi 

be the program whose shortlex index is i. 

There is a program P that behaves as follows. We denote its execution on input 

a with P(a). Please observe that if a ~ /3, then P(ß) behaves in the same way as 

P(a). 

First P(a) finds the program Ps(\a\), where 6(i) = i — s(i) + 1, where s(i) is the 

biggest square number that is at most i. 

Then P{A) goes through, in the shortlex order, all [|£|'a /2] character strings ß 

such that a ~ ß, until any of the termination conditions mentioned below occurs or 

P(a) has gone through all of them. For each ß, it runs Pä(|q|) o n ß- We denote this 

with Prf(|Q|)(j3). If P<5(|q|)(/3) fails to halt, then P(A>) never returns from it and thus 

fails to halt. If Psna\){ß) halts replying "yes", then P(A) enters an eternal loop, 

thus failing to halt. If Pi(|Q|)(/3) halts replying "no", then P(A) halts immediately. 

If P 4 ( H )G8) halts replying "I don't know", then P{A) tries the next ß. It is not 

important what P(A) does if Pa"(|«|)(/3) halts replying something else. 

If Pä(|q|)(/Ö) halted replying "I don't know" for every ß such that a ~ ß, then 

P(a) checks whether lb(a) = 0. If yes, then P(a) enters an eternal loop, otherwise 

P(a) halts. 

Now let T(Q, 7) be any three-way tester that tests whether program Q halts on 

the input 7 . How the two components Q and 7 of the input of T are encoded into 

one input string is not important. There is a program that has P hard-coded into 

a string constant, inputs ß, calls T(P,ß), and gives its reply as its own reply. Let 

i be the shortlex index of this program, so the program is Pt. 

There are infinitely many positive integers j such that S(j) = i. Let j be 

such, and let a be any character string of size j. So Ps([a\) is Pi- If, during the 

execution of P(a), Pi(ß) ever replies "yes" or "no", then the same happens during 
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the execution of P(ß), because P(ß) behaves in the same way as P(a) (the fact that 

Pi{ß) was called implies a ~ ß). But that would be incorrect by the construction 

of P. Therefore, T(P, ß) replies "I don't know" for every ß of size j. 
As a consequence, T has at least |Ep hard instances of size |P| + j . If j > 0, 

then half of them are halting and the other half non-halting, thanks to the lb(a) = 0 

test near the end of P. By Lemma 5, p(n) < |E|n+1. So if n = \P\+j > |P|, then 

The program P does not depend on n, so letting c = 1/(2|E|'P'+1) we have the 

claim. 

The proof for generic-case testers is otherwise similar, but the /3 are tried in 

parallel and T(P, /3) fails to halt for every (3 of size j. All hard instances are 

non-halting. The P for approximating testers lets each Pj(|Q|)(/3) continue until 

completion, counts the numbers of the "yes"- and "no"-replies they yield, and then 

does the opposite of the majority of the replies. • 

Application of Lemma 2 to this result yields the following. 

Corollary 4. With the C++ programming model in Section 5.2, l im,,-^ h(n)/p(n) 

does not exist. 

6 Conclusions 

This study did not cover all combinations of a programming model, variant of the 

halting problem, and variant of the tester. So there is a lot of room for future work. 

The results highlight what was already known since [6]: the programming model 

has a significant role. With some programming models, a phenomenon of secondary 

interest dominates the distribution of programs, making hard instances rare. Such 

phenomena include compile-time errors and falling off the left end of the tape of a 

Turing machine. 

Many results were derived using the assumption that information can be packed 

very densely in the program or the input file. Sometimes it was not even neces-

sary to assume that the program could use the information. It sufficed that the 

assumption allowed to make many enough similarly behaving longer copies of an 

original program. Intuition suggests that if the program can access the information, 

testing halting is harder than in the opposite case. A comparison of Theorem 5 to 

Theorem 6 supports this intuition. 

Corollaries 2 and 4 and the comment after Corollary 2 tell that the proportion 

of all (not just hard) halting instances has no limit with end-of-file dead segment 

languages and variant S of the halting problem, with the C++ model and variant 

G, and in the framework of [4]. It must thus oscillate irregularly as the size of the 

program grows — irregularly because of Lemma 2. This is not a property of various 

notions of imperfect halting testers, but a property of the halting problem itself. 

hr(n) |S|"~lp l 1 _ 
p(n) ~ 2|E|n + 1 ~ 2|E|lpl+1 

> and 
dT(n) 1 

p(n) ~ 2|E|lpl+1 ' 



Asymptotic Proportion of Hard Instances of the Halting Problem 329 

Acknowledgements 

I thank professor Keijo Ruohonen for helpful discussions, and the anonymous re-

viewers of SPLST '13 and Acta Cybernetica for their helpful comments. The latter 

pointed out that Proposition 4 had been formulated incorrectly. 

References 

[1] Calude, C. S. and Stay, M. A. Most programs stop quickly or never halt. 

Advances in Applied Mathematics, 40:295-308, 2008. 

[2] Hamkins, J. D. and Miasnikov, A. The halting problem is decidable on a set of 

asymptotic probability one. Notre Dame Journal of Formal Logic, 47(4):515-

524, 2006. 

[3] Hopcroft, J. E. and Ullman, J . D. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1979. 

[4] Köhler, S., Schindelhauer, C., and Ziegler, M. On approximating real-world 

halting problems. In Liskiewicz, M. and Reischuk, R., editor, Proc. 15th Fun-

damentals of Computation Theory, Lecture Notes in Computer Science 3623, 

pages 454-466, 2005. Springer. 

[5] Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity and Its 

Applications. Springer-Verlag, 2008. 

[6] Lynch, N. Approximations to the halting problem. Journal of Computer and 

System Sciences, 9:143-150, 1974. 

[7] Rice, H. G. Classes of recursively enumerable sets and their decision problems. 

Transactions of the American Mathematical Society 74:358-366, 1953. 

[8] Rybalov, A. On the strongly generic undecidability of the halting problem. 

Theoretical Computer Science, 377:268-270, 2007. 

[9] Schindelhauer, C. and Jakoby, A. The non-recursive power of erroneous com-

putation. In Pandu Rangan, C., Raman, V., and Ramanujam, R., editors, 

Proc. 19th Foundations of Software Technology and Theoretical Computer Sci-

ence, Lecture Notes in Computer Science 1738, pages 394-406, 1999. Springer. 

[10] Turing, A. M. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society ser. 2, 42:230-

265, 1937. 

[11] Valmari, A. Sizes of up-to-n halting testers. In Halava, V., Karhumáki, J., and 

Matiyasevich, Y., editors, Proceedings of the Second Russian Finnish Sympo-

sium on Discrete Mathematics, TUCS Lecture Notes 17, pages 176-183, Turku, 

Finland, 2012. 



330 Antti Valmari 

[12] Valmari, A. The asymptotic behaviour of the proportion of hard instances of 

the halting problem (extended version). Computer Science Research Reposi-

tory arXiv:1307.7066, 2013. 

[13] Valmari, A. The asymptotic behaviour of the proportion of hard instances 

of the halting problem. In Kiss, A., editor, Proceedings of SPLST '13, 13th 

Symposium on Programming Languages and Software Tools, pages 170-184, 

Szeged, Hungary, 2013. 



Acta Cybernetica 21 (2014) 331-352. 

Runtime Exception Detection in Java Programs 

Using Symbolic Execution* 

István Kádárj Péter Hegedűs! and Rudolf Ferenc* 

Abstract 

Most of the runtime failures of a software system can be revealed during 

test execution only, which has a very high cost. In Java programs, runtime 

failures are manifested as unhandled runtime exceptions. 

In this paper we present an approach and tool for detecting runtime ex-

ceptions in Java programs without having to execute tests on the software. 

We use the symbolic execution technique to implement the approach. By 

executing the methods of the program symbolically we can determine those 

execution branches that throw exceptions. Our algorithm is able to generate 

concrete test inputs also that cause the program to fail in runtime. 

We used the Symbolic PathFinder extension of the Java PathFinder as 

the symbolic execution engine. Besides small example codes we evaluated 

our algorithm on three open source systems: jEdit, ArgoUML, and log4j. We 

found multiple errors in the logfj system that were also reported as real bugs 

in its bug tracking system. 

Keywords: Java runtime exception, symbolic execution, rule checking 

1 Introduction 

Nowadays, it is a big challenge of the software engineering to produce huge, reliable 

and robust software systems. About 40% of the total development costs go for 

testing [13], and the maintenance activities, particularly bug fixing of the system 

also require a considerable amount of resources [20]. Our purpose is to develop a 

new method and tool, which supports this phase of the software engineering lifecycle 

with detecting runtime exceptions in Java programs, and finding dangerous parts 

in the source code, that could behave as time-bombs during further development. 

The analysis will be done without executing the program in a real environment. 

Runt ime exceptions in the Java programming language are the instances of class 

java.lang.RuntimeException, which represent a sort of runtime error, for example 

"This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-0038 and 
the TÁMOP 4.2.4. A/2-11-1-2012-0001 European grant. 

1 University of Szeged, Department of Software Engineering Árpád tér 2. H-6720 Szeged, 
Hungary, El-mail: {ikadarlhpeterlferencj8inf.u-szeged.hu 
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an invalid type cast, an array over indexing, or division by zero. These exceptions 

are dangerous because they can cause a sudden stop of the program, as they do 

not have to be handled by the programmer explicitly. 

Exploration of these exceptions is done by using a technique called symbolic 

execution [12]. When a program is executed symbolically, it is not executed on 

concrete input data but input data is handled as symbolic variables. When the ex-

ecution reaches a branching condition containing a symbolic variable, the execution 

continues on both branches. This way, all of the possible branches of the program 

will be executed in theory. Java PathFinder (JPF) [10] is a software model checker 

which is developed at NASA Ames Research Center. In fact, Java PathFinder is 

a Java virtual machine that executes Java bytecode in a special way. Symbolic 

PathFinder (SPF) [14] is an extension of JPF, which can perform symbolic execu-

tion of Java bytecodes. The presented work is based on these tools. 

The paper explains how the detection of runtime exceptions of the Java pro-

gramming language was implemented using Java PathFinder and symbolic execu-

tion. Concrete input parameters of the method resulting a runtime exception are 

also determined. It is also described how the number of execution branches, and the 

state space have been reduced to achieve a better performance. The implemented 

tool called Jpf Checker has been tested on real life projects, the log4j, ArgoUML, 

and jEdit open source systems. We found multiple errors in the log4j system that 

were also reported as real bugs in its bug tracking system. The performance of the 

tool is acceptable since the analysis was finished in a couple of hours even for the 

biggest system used for testing. 

The remainder of the paper is organized as follows. We give a brief introduction 

to symbolic execution in Section 2. After that in Section 3 we present our approach 

for detecting runtime exceptions. Section 4 discusses the results of the implemented 

algorithm on different small examples and real life open source projects. Section 5 

collects the works that related to ours. Finally, we conclude the paper and present 

some future work in Section 6. 

2 Symbolic Execution 

During its execution, every program performs operations on the input data in a 

defined order. Symbolic execution [12] is based on the idea that the program is 

operated on symbolic variables instead of specific input data, and the output will 

be a function of these symbolic variables. A symbolic variable is a set of the 

possible values of a concrete variable in the program, thus a symbolic state is a set 

of concrete states. When the execution reaches a selection control structure (e.g. 

an if statement) where the logical expression contains a symbolic variable, it cannot 

be evaluated, its value might be also true and false. The execution continues on 

both branches accordingly. This way we can simulate all the possible execution 

branches of the program. 

During symbolic execution we maintain a so-called path condition (PC). The 

path condition is a quantifier-free logical formula with the initial value of true, and 
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1. i n t x , y , d i s t ; 
2 . . . . 
3 . i f ( x > y ) { 
4 . d i s t = x - y ; 
5 . > e l s e t 
6 . d i s t = y - x ; 
7 . > 
8 . i f ( d i s t < 0 ) 
9 . w r i t e ( " E r r o r " ) ; 

(a) 

PC: imc. x - X, y - Y 
T ' 

PC: true, X > Y 
false 

PC: X > Y, dist = X-Y 
t 

PC: X > Y, dist= X-Y < 0 
false 

•» X Y * X - > " . t . X - Y ' X-1 •« " C t X - r Y A Y - X 
ssrite("Errc>r") END ~ 

PC: X < Y, dist - Y-X 
i 

PC: X < Y, dist = Y-X < 0 
. false 

. X V Y-X M PC: X < Y * Y-X > 0, 
uriteCError") END 

(b) 

Figure 1: (a) Sample code that determines the distance of two integers on the number line 

(b) Symbolic execution tree of the sample code handling variable x and y symbolically 

its variables are the symbolic variables of the program. If the execution reaches a 

branching condition that depends on one or more symbolic variables, the condition 

will be appended to the current PC with the logical operator AND to indicate 

the true branch, and the negation of the condition to indicate the false branch. 

With such an extension of the PC, each execution branch will be linked to a unique 

formula over the symbolic variables. In addition to maintaining the path condition, 

symbolic execution engines make use of the so called constraint solver programs. 

Constraint solvers are used to solve the path condition by assigning values to the 

symbolic variables that satisfy the logical formula. Path condition can be solved at 

any point of the symbolic execution. Practically, the solutions serve as test inputs 

that can be used to run the program in such a way that the concrete execution 

follows the execution path for which the PC was solved. 

All of the possible execution paths define a connected and acyclic directed graph 

called symbolic execution tree. Each point of the tree corresponds to a symbolic 

state of the program. An example is shown in Figure 1. 

Figure 1 (a) shows a sample code that determines the distance of two integers 

x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with 

the corresponding symbolic execution tree. We handle x and y symbolically, their 

symbols are X and Y respectively. The initial value of the path condition is true. 

Reaching the first if statement in line 3, there are two possibilities: the logical ex-

pression can be true or false; thus the execution branches and the logical expression 

and its negation is added to the PC as follows: 

true A X >Y X >Y, and true A -i(X >Y)=>X <Y 

The value of variable dist will be a symbolic expression, X-Y on the true branch 

and Y-X on the false one. As a result of the second if statement (line 8) the 

execution branches, and the appropriate PCs are appended again. On the true 

branches we get the following PCs: 

X >Y AX -Y <0=>X >Y AX <Y, 

X<Y/\Y — X<0=sX<Y/\X>Y 



334 István Kádár, Péter Hegedűs, and Rudolf Ferenc 

configuration 
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Java program 
(system under test) 

Java PathFinder 

Opttauit it stem 

report 

Figure 2: Java PathFinder as a virtual machine itself runs on a JVM, while performing a 

verification of a Java program 

It is clear that these formulas are unsolvable, we cannot specify such X and Y 

that satisfy the conditions. This means that there are no such x and y inputs with 

which the program reaches the write ("Error") statement. As long as the PC is 

unsatisfiable at a state, the sub-tree starting from that state can be pruned, there 

is no sense to continue the controversial execution. 

It is impossible to explore all the symbolic states. It takes unreasonably long 

time to execute all the possible paths. A solution for this problem can be e.g. to 

limit the depth of the symbolic execution tree or the number of states which, of 

course, inhibit to examine all the states. The next subsection describes what are 

the available techniques in Symbolic PathFinder to address this problem. 

2.1 Java PathFinder and Symbolic PathFinder 

Java PathFinder (JPF) [10] is a highly customizable execution environment that 

aims at verifying Java programs. In fact, JPF is nothing more than a Java Virtual 

Machine which interprets the Java bytecode in a special way to be able to verify 

certain properties. It is difficult to determine what kind of errors can be found and 

which properties can be checked by JPF, it depends primarily on its configuration. 

The system has been designed from the beginning to be easily configurable and 

extendable. One of its extensions is Symbolic PathFinder (SPF) [14] that provides 

symbolic execution of Java programs by implementing a bytecode instruction set 

allowing to execute the Java bytecode according to the theory of symbolic execution. 

JPF (and SPF) itself is implemented in Java, so it also have to run on a virtual 

machine, thus JPF is actually a middleware between the standard JVM and the 

bytecode. The architecture of the system is illustrated on Figure 2. 

To start the analysis we have to make a configuration file with .jpf extension in 

which we specify different options as key-value pairs. The output is a report that 

contains e.g. the found defects. In addition to the ability of handling logical, integer 

and floating-point type variables as symbols, SPF can also handle complex types 

symbolically with the lazy initialization algorithm [11], and allows the symbolic 

execution of multi-threaded programs too. 

SPF supports multiple constraint solvers and defines a general interface to com-

municate them. Cvc3 is used to solve linear formulas, choco can handle non-linear 
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logical formulas too, while IASolver use interval arithmetic techniques to satisfy 

the path condition. Among the supported constraint solvers, CORAL proved to 

be the most effective in terms of the number of solved constraints and the perfor-

mance [19]. 

To reduce the state space of the symbolic execution SPF offers a number of 

options. We can specify the maximum depth of the symbolic execution tree, and the 

number of elementary formulas in the path condition can also be limited. Further 

possibility is that with options symbolic.minint, symbolic.maxint, symbolic.minreal, 

and symbolic, maxreal we can restrict the value ranges of the integer and floating 

point types. With the proper use of these options the state space and the time 

required for the analysis can be reduced significantly. 

3 Detection of Runt ime Exceptions 

We developed a tool that is able to automatically detect runtime exceptions in an 

arbitrary Java program. This section explains in detail how this analysis program, 

the JPF checker works. 

To check the whole program we use symbolic execution, which is performed by 

Symbolic PathFinder. However, we do not execute the whole program symbolically 

to discover all of the possible paths, instead we symbolically execute the methods 

of the program one by one. Starting the analysis from the main method has several 

drawbacks. For example, the state space would be too large and we would need 

to cut it when the execution reaches the defined maximal depth in the symbolic 

execution tree. Our approach results in a significant reduction in the state space 

of the symbolic execution. 

An important question is which variables to be handled symbolically. In general, 

execution of a method mainly depends on the actual values of its parameters and the 

referred external variables. Thus, these are the inputs of a method that should be 

handled symbolically to generally analyze it. Currently, we handle the parameters 

and data members of the class of the analyzed method symbolically. 

Our goal is not only to indicate the runtime exceptions a method can throw (its 

type and the line causing the exception), but also to determine a parameterization 

that leads to throwing those exceptions. In addition, we determine this parameter-

ization not only for the analyzed method which is at the bottom of the call stack, 

but for all the other elements in the call stack (i.e. recursively for all the called 

methods). 

Our work can be divided into two steps: 

1. It is necessary to create a runtime environment which is able to iterate through 

all the methods of a Java program, and start their symbolic execution using 

Symbolic PathFinder. 

2. We need a JPF extension which is built on its listener mechanism, and which 

is able to indicate potential runtime exceptions and related parameterization 

while monitoring the execution. 
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Jsr 
Explorer 

Figure 3: Architecture of the runtime environment 

3.1 The Runt ime Environment 

The concept of the developers of Symbolic PathFinder was to start running the 

program in normal mode like in a real life environment, than at given points, e.g. 

at more complex or problematic parts in the program switch to symbolic execution 

mode [15]. The advantage of this approach is that, since the context is real, it 

is more likely to find real errors. E.g. the values of the global variables are all 

set, but if these variables are handled symbolically we can examine cases that 

never occur during a real run. A disadvantage is that it is hard to explore the 

problematic points of a program, it requires prior knowledge or preliminary work. 

Another disadvantage is that you have to run the program manually namely, that 

the control reach those methods which will be handled symbolic by the SPF. 

In contrast, the tool we have developed is able to execute an arbitrary method 

or all methods of a program symbolically. The advantage of this approach is that 

the user does not have to perform any manual runs, the entire process can be 

automated. Additionally, the symbolic state space also remains limited since we 

do not execute the whole program symbolically, but their parts separately. The 

approach also makes it possible to analyze libraries that do not have a main method 

such as log4j. One of the major disadvantages is the that we back away from the 

real execution environment, which may lead to false positive error reports. 

For implementing such an execution environment we have to achieve somehow 

that the control flow reaches the method we want to analyze. However, due to the 

nature of the virtual machine, JPF requires the entry point of the program, which 

is the class containing the main method. Therefore, we generate a driver class for 

each method containing a main method that only passes the control to the method 

we want to execute symbolically and carries out all the related tasks. Invoking 

the method is done using the Java Reflection API. We also have to generate a 

JPF configuration file that specifies, among others, the artificially created entry 

point and the method we want to handle symbolically. After creating the necessary 

files, we have to compile the generated Java class and finally, to launch Symbolic 

PathFinder. 

The architecture of the system is illustrated in Figure 3. The input jar file 

is processed by the JarExplorer, which reads all the methods of the classes from 

the jar file and creates a list from them. The elements of the list is taken by the 

Generator one by one. It generates a driver class and a JPF configuration file for 
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1. exceptionThrownO { 
2. exception = getPendingExceptionO ; 

3. if (isInstanceOfRuntimeException(exception)) { 
4. pc = getCurrentPcO ; 

5. solve(pc); 

6. summary = new FoundExceptionSummary(); 

7. summary.setExceptionType(exception); 
8. summary.setThrownFrom(exception); 
9. summary.setParameterization(parsePc(pc, analyzedMethod)); 

10. invocationChain = buildlnvocationChainO ; 

11. foreach(Method m : invocationChain) { 
12. summary.addStackTraceElement(m, parsePc(pc, m)); 

13. > 

14. foundExceptions.add(summary); 

15. } 
16.> 

Figure 4: Pseudo code of the exceptionThrown event 

each method. After the generation is complete, we start the symbolic execution. 

3.2 Implementing a Listener Class 

During functioning, JPF sends notifications about certain events. This is real-

ized with so-called listeners, which are based on the observer design pattern. The 

registered listener objects are notified about and can react to these events. JPF 

can send notifications of almost every detail of the program execution. There are 

low-level events such as execution of a bytecode instruction, as well as high-level 

events such as starting or finishing the search in the state space. In JPF, basically 

two listener interfaces exist: the SearchListener and VMListener interface. While 

the former includes the events related to the state space search, the latter reports 

the events of the virtual machine. Because these interfaces are quite large and the 

specific listener classes often implement both of them, adapter classes are intro-

duced that implement these interfaces with empty method bodies. Therefore, to 

create our custom listener we derived a class from this adapter and implemented 

the necessary methods only. 

Our algorithm for detecting runtime exceptions is briefly summarized below. By 

performing symbolic execution of a method all of its paths are executed, including 

those that throw exceptions. When an exception occurs, namely when the virtual 

machine executes an ATHROW bytecode instruction, JPF triggers and exception-

Thrown event. Thus, we implemented the exceptionThrown method in our listener 

class. Its pseudo code is shown in Figure 4. 

First, we acquire the thrown Exception object (line 2), then we decide whether it 

is a runtime exception (i.e. whether it is an instance of the class RuntimeException) 

(line 3). If it is, we request the path condition related to the actual path and 
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use the constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9 set 

up a summary report that contains the type of the thrown exception, the line 

that throws it and a parameterization which causes this exception to be thrown. 

The parameterization is constructed by the parsePC() method, which assigns the 

satisfactory solutions of the path condition to the method parameters. Lines 10-13 

take care of collecting and determining parameterization for the methods in the 

call stack. If the source code does not specify any constraint for a parameter on the 

path throwing an exception (i.e. the path condition does not contain the variable), 

then there is no related solution. This means that it does not matter what the 

actual value of that parameter is, as it does not affect the execution path, and the 

method is going to throw an exception due to the values of other parameters. In 

such cases parsePc() method assigns the value "any" to these parameters. 

It is also possible that a parameter has a concrete value. Figure 5 illustrates such 

an example. When we start the symbolic execution of method x(), its parameter a 

is handled symbolically. As x() calls y() its parameter a is still a symbol, but b is 

a concrete value (42). In a case like this, parsePc() have to get the concrete value 

from the stack of the actual method. 

We note that the presented algorithm reports any runtime exceptions regardless 

of the fact whether it is caught by the program or not. The reason of this is that 

we think that relying on runtime exceptions is a bad coding practice and a runtime 

exception can be dangerous even if it is handled by the program. Nonetheless, it 

would be easy to modify our algorithm to detect uncaught exceptions only. 

4 Results 

The developed tool was tested in a variety of ways. The section describes the re-

sults of these test runs. We analyzed manually prepared example codes containing 

instructions that cause runtime exceptions on purpose; then we performed analysis 

on different open-source software to show that our tool is able to detect runtime 

exceptions in real programs, not just in artificially made small examples. The sub-

ject systems are the log4j (h t tp : / / logg ing .apache .org/ log4 j / ) logging library, 

the ArgoUML modeling tool (h t tp : / / a rgomnl . t i g r i s .o rg / ) , and the jEdit text 

editor program (http://www.jedit .org/) . We prove the validity of the detected 

exceptions by the bug reports, found in the bug tracking systems of these projects, 

that describe program faults caused by those runtime exceptions that are also found 

by the developed tool. 

1. void x(int a) { 

2. short b = 42; 

3. y(a, b); 

4. > 

5. void yCint a, short b) { 

6. 
7. throw new NullPointerExceptionO; 

8 . 
9. } 

Figure 5: An example call with both symbolic and concrete parameters 

http://logging.apache.org/log4j/
http://argomnl.tigris.org/
http://www.jedit.org/
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20. public void run(int x, int y) { 

public class Example5 { 21. if (y > 10) { 
22. int [] arr = new int [5] ; 

8. void callRun(int x, int y) { 23. for (int i = 0; i < x; i++) { 

9. Integer i = null; 24. arr [i] = i; 

10. if (x > 6) { 25. > 
11. int b = 9; 26. J else { 

12. run(b, y); 27. Integer i = null; 

13. i = Integer.valueOf (b); 28. if (y < 5) { 
14. System.out.printIn(i) ; 29. i = Integer.valueOf(4); 

15. J- else { 30. i. f loatValueO ; 

16. i = Integer.valueOf(3); 31. } else { 

17. System.out.println(i); 32. System.out.printlnC 

18. > 33. i.floatValueO) ; 

19. > 34. > 
35. > 
36. » 

Figure 6: Manually prepared example code with the analysis of method callRun() 

4.1 Manually Prepared Examples 

A small manually prepared example code is shown on Figure 6. The method under 

test is callRun() which calls method run() in line 12. Running our algorithm on 

this code gives two hits: the first is an ArraylndexOutOfBoundsException, the 

second is a NullPointerException. The first exception is thrown by method run() 

at line 24. A parametrization leading to this exception is callRun(7, 11). Method 

run() will be called only if x > 6 (line 10) that is satisfied by 7 and it is called 

with the concrete value 9 and symbol y. At this point there is no condition for y. 

Method run() can reach line 24 only if y > 10, the indicated value 11 is obtained 

by satisfying this constraint. Throwing of the ArraylndexOutOfBoundsException 

is due to the fact that in line 22 we declare a 5-element array but the following for 

loop runs from 0 to x. The value of x at this point is 9 which leads to an exception. 

The train of thought is similar in the case of the second exception. The problem 

is that variable i created in line 27 initialized only in line 29 to a value different form 

null, but not in the else block, therefore line 33 throws a NullPointerException. 

This requires that the value of y not to be greater than 10 and not to be less than 

5. These restrictions are satisfied by e.g. 5, and value 7 for x is necessary to invoke 

run(). So the parametrizations are callRun(7, 5) and run(9, 5). The analysis is 

finished in less than a second. 

A second example code is presented in Figure 7. The resulting report refers to 

an ArithmeticException, which is thrown at line 39 and the stack trace highlights 

that the problematic method is expandf) which is invoked at line 30 by run(). The 

control flow reaches line 30 only if variable b is false. For example, if n is -999, 

and check has the value true, as the parameter list in the error report included, 

b will be false and the expand() method on the else branch will be executed. At 
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3. public class Example3 { 

8. public void run(int n, 
boolean check, A a) { 

9. boolean b = check && n >« 0; 
10. int max = Integer.MIN.VALUE; 
11. i f (b) { 
12. i f (a != null) { 
13. int 1 = n; 
14. int r = 2*n + 1; 
15. i f (a. getMember O > 120) { 
16. i f (1 <= a.getMemberO) { 
17. max = a.getMemberO; 
18. > else { 
19. max = 1; 
20. > 
21. i f (r > max) { 
22. max = r; 
23. > 
24. while (max < n) { 
25. max = expand(n, 0); 
26. > 
27. > 
28. > 
29. > else { 
30. max = expand(n, 0); 
31. > 
32. System, out .printlnC'Maximum" 
33. + value: " + max); 
34. > 

Figure 7: Manually prepared example 

35. private int expand(int n, int m) { 
36. double res = count(m); 
37. i f (res > n) { 
38. do { 
39. res = n / res; 
40. res -= 2; 
41. > while (res >= 0); 
42. return n + m; 
43. > else { 
44. return (int)res; 
45. > 
46. > 
47. 
48. private int count(int 1) { 
49. int count = 1; 
50. for (int i»100; i>0; i—) { 
51. i f ( i '/. 3 == 0) { 
52. count++; 
53. > 
54. > 
55. return count; 
56. > 
57. 
58. > 

1. public class A extends Letter { 
2. 
3. public int member; 
4. 
5. public int getMember() { 
6. return member; 
7. > 
8 . 
9. > 

with the analysis of method run() 

line 36, variable res has a concrete value because method count() will be executed. 

It can be seen that res is definitely a non-negative integer, thus the condition at 

line 37 is true if n=-999. Then the loop begins to execute, and variable res will 

be reduced to 0 after a number of iterations, leading to a division by 0 fault. In 

the report, the third parameter of the examined run() method is "any". That is 

because this parameter does not play a role in whether or not the program runs 

onto the discussed ArithmeticException. 

Line 25 in method run() also calls expandf), but there is no corresponding error 

report. In fact, due to the instructions at lines 13-23, the condition at line 24 is 

always false, thus this expandf) call will never be executed. Actually, line 25 is 

unreachable code. 
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Figure 8: (a)Number of methods examined in the programs and the number of JPF or 

SPF faults (b) Number of successfully analyzed methods and the number of defective 

methods (c) Analysis time 

4.2 Analysis of Open-source Systems 

Analysis of log4j 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a 

desktop computer with an Intel Core i5-540M 2.53 GHz processor and 8 GB of 

memory. In all three cases the analysis was done by executing all the methods of 

the release jar files of the projects symbolically. 

Figure 8 (a) displays the number of methods we analyzed in the different pro-

grams. We started analyzing 1242 methods in log4j of which only 757 were success-

ful, in 474 cases the analysis stopped due to the failure of the Java PathFinder (or 

Symbolic PathFinder). There are a lot of methods in ArgoUML which also could 

not be analyzed, more than half of the checks ended with failure. In case of jEdit 

the ratio is very similar. Unfortunately, in general JPF stopped with a variety of 

error messages. 

Despite the frequent failures of JPF, our tool indicated a fairly large number 

of runtime exceptions in all three programs. Figure 8 (b) shows the number of 

successfully analyzed methods and the methods with one or more runtime excep-

tions. The hit rate is the highest for log4j and despite its high number of methods, 

relatively few exceptions were found in ArgoUML. 

The analysis times are shown in Figure 8 (c). Analysis of log4j completed within 

an hour, while analysis of ArgoUML, that contains more than 7500 methods, took 

3 hours and 42 minutes. Although jEdit contains fewer methods than ArgoUML, 

its full analysis were more time-consuming. The performance of our algorithm is 

acceptable, especially considering that the analysis was performed on an ordinary 

desktop PC not on a high-performance server. However, it can be assumed that 

the analysis time would grow with less failed method analysis. 

It is important to note, that not all indicated exceptions are real errors. This is 

because the analysis were performed in an artificial execution environment which 

might have introduced false positive hits. When we start the symbolic execution of 

a method we have no information about the circumstances of the real invocation. 

All parameters and data members are handled symbolically, that is, it is considered 
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public class SimpleLayout extends Layout { 

58. public String format(LoggingEvent event) { 

59. 

60. sbuf.setLength(O); 

61. sbuf .append(event .getLevelO .toStringO) ; 
62. sbuf.append(" - "); 

63. sbuf .append(event.getRenderedMessageO); 
64. sbuf.append(LINE.SEP); 

65. return sbuf .toStringO ; 

66. > 

} 

public class LoggingEvent implements java.io.Serializable { 

transient public Priority level; 

255. public Level getLevelO { 

256. return (Level) level; 
257. > 

> 

public class Level extends Priority implements Serializablei 

> 

Figure 9: Method org.apache.log4j.SimpleLayout.format() and its environment. 

that their value can be anything although it is possible that a particular value of a 

variable never occurs. 

Despite the fact that not all the reported exceptions are real program errors 

they are definitely representing real risks. During the modification of the source 

code there are inevitably changes that introduce new errors. These errors often 

appear in form of runtime exceptions (i.e. in places where our algorithm found 

possible failures). So the majority of the reported exceptions do not report real 

errors, but potential sources of danger that should be paid special attention. 

In the following, we are going to show some interesting faults found by our tool 

in the above systems. 

The first example method is org. apache. logfj.SimpleLayout,format() of log4j, 

which is shwon in Figure 9. In this method three possible runtime exceptions are 

found by the tool. The first two are NullPointerExceptions, both thrown at line 

61. The produced report says that the first NPE will be thrown if the parameter 

is null, and the second when this parameter differs from null. In the first case, 

when the parameter is null, expression event. getLevel() causes the exception, since 

a method of a null reference cannot be called. When parameter event is not null, 

the code gets the level data member and calls its toString() method. The second 

NullPointerException is caused by the fact that the requested level data member 
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public class FindDialog extends ArgoDialog ... { ... } 
class PredicateMType extends PredicateType { 

727. public static PredicateType create(Object cO, Object cl, Object c2) { 
728. Class [] classes = new Class [3]; 

729. classes[0] = (Class) cO; 

730. classes[1] = (Class) cl; 

731. classes[2] = (Class) c2; 
732. return new PredicateMType(classes); 

733. > 

> 

Figure 10: Method org.argouml.ui.PredicateMType.createQ 

can also be null, thus using operator '.' may raise the exception. 

The third exception is a ClassCastException. As shown, at line 256 in class 

LoggingEvent there is a type cast which tries to convert the level member which 

has a type Priority to a Level object. According to the listing in the bottom of 

Figure 9, class Level is a descendant of class Priority, thus the cast at line 256 is a 

downcast, which is incorrect in case the dynamic type of the member is not Level. 

Three possible ClassCastExceptions are revealed in method PredicateMType. 

createf) that is depicted in Figure 10. Lines 729, 730 and 731 cast down the three 

parameters from Object to Class without performing any type check. The first 

entry in the report says that ereatefnull, null, .'null) parametrization can lead to 

an exception thrown at line 731. If cO and cl parameters are null, lines 729 and 

730 are executed without any problem, because casting a null reference to any 

class is permitted in Java. It is important that this does not mean that cO and cl 

have to be necessarily null, the report just gives a sample parametrization which 

leads the execution to the exception. As long as the third parameter is not null a 

ClassCastException can be raised. Of course, to achieve this it is necessary that the 

parameter type is different from Class. Parametrization create (null, .'null, "any") 

leads to potential fault at line 730. The reasoning is similar to the previous one: if 

cO is null and cl is non-null (and of course it is not a Class) ClassCastException 

will be thrown. The third parameter is completely irrelevant. In case of the third 

ClassCastException, occurring at line 729, the values of cl and c2 do not matter. 

The last example is a tiny method, MRUFileManager.getFile() shown in Fig-

ure 11. At line 98, getFilef) checks whether the index parameter is less then the 

size of the _mruFileList LinkedList. If so, the return value is the corresponding 

element of the LinkedList, otherwise null. Our report shows that the index can be 

a negative number, too. This case is not handled, and LinkedList.get() will throw 

an IndexOutOfBoundsException if method getField() is called for example with 

-999. Calling getField() with a negative number seems unreasonable and of course 

it is, but possible. 
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public class MRUFileManager { 

private LinkedList _mruFileList; 

public int sizeO { 
return _mruFileList.sizeO ; 

> 
97. public Object getFile(int index) { 

98. if (index < sizeO) { 
99. return _mruFileList.get(index); 

100. > 
101. 

102. return null; 

103. > 

> 

Figure 11: Method org.apache.log4j.lf5.viewer.configure.MRUFileManager.getFile() 

4.3 Real Errors 

In this subsection a few defects are presented which are reported in bug tracking 

systems, and caused by runtime exceptions found also by our tool. The first affected 

bug1 reports the termination of an application using log4j version 1.2.14 caused by a 

NullPointerException. The reporter got the Exception from line 59 of Throwableln-

formation.java thrown by method org. apache. log4j.spi. Throwablelnformation.get-

ThrowableStrRep() as shown in the given stack trace. The code of the method and 

the problematic line detected by our analysis is shown in Figure 12. 

The problem here is that the initialization of the throwable data member of class 

Throwablelnformation is omitted, its value is null causing a NullPointerException 

at line 59. This causes that the log() method of log4j can also throw an exception 

which should never happen. Our tool found other errors as well which demonstrate 

its strength of being capable of detecting real bugs. 

The next exception is also a NullPointerException, which occurred in log4j 

1.2.15. The bug report2 explains that the runtime exception causing the halt comes 

form method org.apache.log4j.NDC.remove(), at line 377. Figure 13 shows the 

corresponding piece of code. The fault here is that the ht static data member is 

null. Although the data member is initialized as Figure 13 shows, it is possible 

that during the execution its value is set to null. The report in the log4j bug 

tracking system sheds light to this. The reporter also mentions that according 

to his observations, the other methods of class NDC, which use the ht member, 

first check whether it is null or not, but in method remove() there is no such 

investigation. 

1https://issues.apache.org/bugzilla/show_bug.cgi?id=44038 
2https://issues.apache.org/bugzilla/show_bug.cgi?id=45335 

https://issues.apache.org/bugzilla/show_bug.cgi?id=44038
https://issues.apache.org/bugzilla/show_bug.cgi?id=45335


Runtime Exception Detection in Java Programs Using Symbolic Execution 345 

public class Throwablelnformation implements java.io.Serializable { 

private transient Throwable throwable; 

54. public String[] getThrowableStrRepO { 

55. if(rep != null) { 

56. return (StringG) rep.clone(); 

57. > else { 

58. VectorWriter vw = new VectorWriter(); 
59. throwable.printStackTrace(vw); 

60. rep = vw.toStringArrayO ; 

61. return rep; 
62. > 
63. > 

> 

Figure 12: Method org.apache.log4j.spi.Throwablelnformation.getThrowableStrRepO 

We describe one more error that was also found in log4j version 1.2.153. The 

error is at line 312 of the class org.apache.log4j.net.SyslogAppender. The line is 

inside the method append() in which there is a NullPointerException again. The 

code snippet is shown in Figure 14. 

The reason of this runtime error is that the layout data member, which is 

inherited from class AppenderSkeleton, stays uninitialized. Our report also includes 

a ClassCastException thrown by method getLevel() at line 294. This fault is the 

same that we already described explaining Figure 9 in the previous subsection. 

5 Related Work 

In this section we present works that are related to our research. First, we introduce 

some well-known symbolic execution engines, then we show the possible applications 

of the symbolic execution. We also summarize the problems that have been solved 

successfully by Symbolic PathFinder that we used for implementing our approach. 

Finally, we present the existing approaches and techniques for runtime exception 

detection. 

The idea of symbolic execution is not new, the first publications and execution 

engines appeared in the 1970's. One of the earliest work is by King that lays down 

the fundamentals of symbolic execution [12] and presents the EFFIGY system that 

is able to execute PL/I programs symbolically. Even though EFFIGY handles 

only integers symbolically, it is an interactive system with which the user is able 

to examine the process of symbolic execution by placing breakpoints and saving 

and restoring states. Another work from the 1970's by Boyer et al. presents a 

similar system called SELECT [1] that can be used for executing LISP programs 

3https: //issues.apache.org/bugzilla/show_bug.cgi?id=46271 
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public class NDC { 

static Hashtable ht = new HashtableO; 

374. static 

375. public 

376. void remove() { 

377. ht.remove(Thread.currentThread() ) ; 

378. 

379. // Lazily remove dead-thread references in ht. 

380. lazyRemoveO; 

381. > 

> 

Figure 13: Source code of method org.apache.log4j.NDC.removeQ 

symbolically. The users are allowed to define conditions for variables and return 

values and get back whether these conditions are satisfied or not as an output. The 

system can be applied for test input generation; in addition, for every path it gives 

back the path condition over the symbolic variables. 

Starting from the last decade the interest about the technique is constantly 

growing, numerous programs have been developed that aim at dynamic test in-

put generation using symbolic execution. The EXE (Execution generated Execu-

tions) [3] presented by Cadar et al. at the Stanford University is an error checking 

tool made for generating input data on which the program terminates with failure. 

The input generation is done by the STP built-in constraint solver that solves the 

path condition of the path causing the failure. EXE achieved promising results 

on real life systems. It found errors in the package filter implementations of BSD 

and Linux, in the udhcpd DHCP server and in different Linux file systems. The 

runtime detection algorithm presented in this work solves the path condition to 

generate test input data similarly to EXE. The basic difference is that for running 

EXE one needs to declare the variables to be handled symbolically while for Jpf 

Checker there is no need for editing the source code before detection. 

The DART [7] (Directed Automata Random Testing) by Godefroid et al. tries 

to eliminate the shortcomings of the symbolic execution e.g. when it is unable 

to handle a condition due to its unlinear nature. DART executes the program 

with random or predefined input data and records the constraints defined by the 

conditions on the input variables when it reaches a conditional statement. In the 

next iteration taking into account the recorded constraints it runs the program 

with input data that causes a different execution branch of the program. The goal 

is to execute all the reachable branches of the program by generating appropriate 

input data. The CUTE and jCUTE systems [16] by Sen and Agha extend DART 

with multithreading and dynamic data structures. The advantage of these tools is 

that they are capable of handling complex mathematical conditions due to concrete 
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public abstract class AppenderSkeleton { 

protected Layout layout; 

> 
public class SyslogAppender extends AppenderSkeleton { 

SyslogQuietWriter sqw; 

private boolean layoutHeaderChecked = false; 

291. public 

292. void append(LoggingEvent event) { 

293. 

294. if(!isAsSevereAsTbreshold(event.getLevel())) 

295. return; 

296. 

297. / / W e must not attempt to append if sqw is null. 

298. if(sqw == null) { 

299. errorHandler.error("No syslog host is set for SyslogAppedender" 

300. + named " + this.name + "."); 

301. return; 

302. > 

303. 

304. if (!layoutHeaderChecked) { 

305. if (layout != null && layout .getHeaderO != null) { 

306. sendLayoutMessage(layout.getHeaderO) ; 

307. > 

308. layoutHeaderChecked = true; 

309. > 

310. 

311. 

312. String packet = layout.format(event); 

313. String hdr = getPacketHeader(event.timeStamp); 

314. 

315. if(facilityPrinting II hdr.lengthO > 0) { 

316. StringBuffer buf = new StringBuffer(hdr); 

317. if(facilityPrinting) { 

318. buf.append(facilityStr); 

319. } 

320. buf.append(packet); 

321. packet = buf. toStringO ; 

322. > 

Figure 14: Source code of method org.apache.log4j.net.SyslogAppender.append() 
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executions. This can be also achieved in Jpf Checker by using the concolic execution 

of SPF; however, symbolic execution allows a more thorough examination of the 

source code. Further description and comparison of the above mentioned tools can 

be found e.g. in the work of Coward [4]. 

There are also approaches and tools for generating test suites for .NET programs 

using symbolic execution. Pex [21] is a tool that automatically produces a small test 

suite with high code coverage for .NET programs using dynamic symbolic execution, 

similar to path-bounded model-checking. Jamrozik et al. introduce an extension 

of the previous approach called augmented dynamic symbolic execution [9], which 

aims to produce representative test sets with DSE by augmenting path conditions 

with additional conditions that enforce target criteria such as boundary or muta-

tion adequacy, or logical coverage criteria. Experiments with the Apex prototype 

demonstrate that the resulting test cases can detect up to 30% more seeded defects 

than those produced with Pex. 

Song et al. applied the symbolic execution to the verification of networking 

protocol implementations [18]. The SymNV tool creates network packages with 

which a high coverage can be achieved in the source code of the daemon, therefore 

potential rule violations can be revealed according to the protocol specifications. 

The SAFELI tool [6] by Fu and Qian is a SQL injection detection program 

for analyzing Java web applications. It first instruments the Java bytecode then 

executes the instrumented code symbolically. When the execution reaches a SQL 

query the tool prepares a string equation based on the initial content of the web 

input components and the built-in SQL injection attack patterns. If the equation 

can be solved the calculated values are used as inputs which the tool verifies by 

sending a HTML form to the server. According to the response of the server it can 

decide whether the found input can be a real attack or not. 

The main application of the Java PathFinder and its symbolic execution exten-

sion is the verification of the internal projects in NASA. Bushnell et al. describes 

the application of Symbolic PathFinder in TSAFE (Tactical Separation Assisted 

Flight Environment) [2] that verifies the software components of an air control and 

collision detection system. The primary target is to generate useful test cases for 

TSAFE that simulates different wind conditions, radar images, flight schedules, etc. 

The detection of design patterns can be performed using dynamic approaches 

as well as with static program analysis. With the help of a monitoring software 

the program can be analyzed during manual execution and conclusions about the 

existence of different patterns can be made based on the execution branches. In his 

work, von Detten [22] applied symbolic execution with Symbolic PathFinder sup-

plementing manual execution. This way, more execution branches can be examined 

and the instances found by traditional approaches can be refined. 

Ihantola [8] describes an interesting application of JPF in education. He gen-

erates test inputs for checking the programs of his students. His approach is that 

functional test cases based on the specification of the program and their outcome 

(successful or not) is not enough for educational purposes. He generates test cases 

for the programs using symbolic execution. This way the students can get feedbacks 

like "the program works incorrectly if variable a is larger than variable b plus 10". 
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Sinha et al. deal with localizing Java runtime errors [17]. The introduced 

approach aims at helping to fix existing errors. They extract the statement that 

threw the exception from its stack trace and perform a backward dataflow analysis 

starting from there to localize those statements that might be the root causes of 

the exception. 

The work of Weimer and Necula [23] focuses on proving safe exception handling 

in safety critical systems. They generate test cases that lead to an exception by 

violating one of the rules of the language. Unlike Jpf Checker they do not generate 

test inputs based on symbolic execution but solving a global optimization problem 

on the control flow graph (CFG) of the program. 

The JCrasher tool [5] by Csallner and Smaragdakis takes a set of Java classes as 

input. After checking the class types it creates a Java program which instantiates 

the given classes and calls each of their public methods with random parameters. 

This algorithm might detect failures that cause the termination of the system such 

as runtime exceptions. The tool is capable of generating JUnit test cases and can 

be integrated to the Eclipse IDE. Similarly to Jpf Checker JCrasher also creates a 

driver environment but it can analyze public methods only and instead of symbolic 

execution it generates random data which is obviously not feasible for examining 

all possible execution branches. 

6 Conclusions and Future Work 

The introduced approach for detecting runtime exceptions works well not just on 

small, manually prepared examples but it is able to find runtime exceptions which 

are the causes of some documented runtime failures (i.e. there exists an issue for 

them in the bug tracking system) in real world systems also. However, not all the 

detected possible runtime exceptions will actually cause a system failure. There 

might be a large number of exceptions that will never occur running the system 

in real environment. Nonetheless, the importance of these warnings should not be 

underrated since they draw attention to those code parts that might turn to real 

problems after changing the system. Considering these possible problems could help 

system maintenance and contributes to achieving a better quality software. As we 

presented in Section 4 the analysis time of real world systems are also acceptable, 

therefore our approach and tool can be applied in practice. 

Unfortunately the Java PathFinder and its Symbolic PathFinder extension -

which we used for implementing our approach - contain a lot of bugs. It made the 

development very troublesome, but the authors at the NASA were really helpful. 

We contacted them several times and got responses very quickly; they fixed some 

blocker issues particularly for our request. Although JPF and SPF have several 

bugs, it is under constant development and becoming more and more stable. 

The achieved results are very promising and we continue the development of 

our tool. Our future plan is to eliminate the false positive and those hits that are 

irrelevant. We would also like to provide more details about the environment of the 

method in which the runtime exception is detected. The implemented tool gives 
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only the basic information about the reference type parameters whether they are 

null or not, and we cannot tell anything about the values of the member variables 

of the class playing a role in a runtime exception. These improvements of the 

algorithm are also in our future plans. 

The presented approach is not limited to runtime exception detection. We plan 

to utilize the potentials of the symbolic execution by implementing other types of 

error and rule violation checkers. E.g. we can detect some special types of infinite 

loops, dead or unused code parts, or even SQL injection vulnerabilities. 
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Abstract 

E-Science relies heavily on manipulating massive amounts of data for re-

search purposes. Researchers should be able to contribute their own data 

and methods, thus making their results accessible and reproducible by others 

worldwide. They need an environment which they can use anytime and any-

where to perform data-intensive computations. Virtual observatories serve 

this purpose. With the advance of the Semantic Web, more and more data is 

available in Resource Description Framework based databases. It is often de-

sirable to have the ability to link data from local sources to these public data 

sets. We present a prototype system, which satisfies the requirements of a 

virtual observatory over semantic databases, such as user roles, data import, 

query execution, visualization, exporting result, etc. The system has special 

features which facilitate working with semantic data: visual query editor, use 

of ontologies, knowledge inference, querying remote endpoints, linking remote 

data with local data, extracting data from web pages. 

Keywords: virtual observatory, semantic web, e-Science, data sharing, 

linked data 

1 Introduction 

E-Science is based on the interconnection of enormous amounts of data collected 

from various scientific fields. These massive data sets can be used for conducting 

researches, during which it is often desirable that researchers can share their own 

data and methods, thus making the results of the research accessible and repro-

ducible by anyone. The idea of virtual observatories coming from J im Gray and 

Alex S. Szalay serves this purpose [8]. A system like this expands the possibilities 

of combining data coming from various different instruments. Virtual observatories 

"This work was partially supported by the European Union and the European Social Fund 
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). We are grate-
ful to Zsófia Mészáros and Zoltán Vincellér for helpful discussion and comments. 
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can also be used to teach and demonstrate the basic research principles of various 

scientific fields (for example, astronomy or computer science). The researchers must 

have access to these constantly growing amounts of data, in order to be able to use 

them in various research projects. Another important requirement is to be able to 

publish the results. The Internet provides an excellent opportunity to satisfy the 

criteria mentioned above [8]. The primary motivation for creating virtual observa-

tories is to facilitate making new discoveries, and to provide a solution for carrying 

out data-intensive computations remotely. To access remote data, web services can 

be used [19]. 

The basic principles of science have been extended with a fourth paradigm. 

A thousand years ago, experimental results and observations defined science. In 

the last few hundred years, it shifted towards a theoretical approach, focusing on 

creating and generalizing models. During the last few decades, simulating complex 

phenomena with computers were becoming more and more common. Nowadays, 

researchers have to deal with large amounts of data, usually coming from sensors, 

telescopes, particle accelerators, etc. The data is processed using software solutions, 

and the extracted knowledge is stored in databases. Analyzing or visualizing the 

results needs further software support [7, 11]. 

A possible way to manage the data available on the Internet is to use the 

Semantic Web [4]. The Semantic Web aims for creating a "web of data": a large 

distributed knowledge base, which contains the information of the World Wide Web 

in a format which is directly interpretable by computers. The goal of this web of 

linked data is to allow better, more sensible methods for information search, and 

knowledge inference. To achieve this, the Semantic Web provides a data model and 

its query language. The data model called the Resource Description Framework 

(RDF) [14] uses a simple conceptual description of the information: we represent 

our knowledge as statements in the form of subject-predicate-object (or entity-

attribute-value) triples. This way our data can be seen as a directed graph, where 

a statement is an edge labeled with the predicate, pointing from the subject's node 

to the object's node. The query language called SPARQL [17] formulates the 

queries as graph patterns, thus the query results can be calculated by matching 

the pattern against the data graph. Furthermore, there are numerous databases 

which contain theoretical and experimental results of various scientific experiments 

in the field of computer science, biology, chemistry, etc. There is a quite complex 

collection of these kinds of data maintained by the Linked Data Community [5]. 

This collection contains dataseis and ontologies which are at least 1000 lines in 

length, and which contain links to each other. 

In this paper, we present a prototype system, which fulfills the standard re-

quirements of a virtual observatory, such as handling user roles, bulk loading data, 

answering queries, visualization, and storing results. In addition, we extended the 

system with special semantic technologies. We use the SPARQL language to formu-

late queries, aided by a visual SPARQL editor. Ontologies can be used to describe 

the hierarchy of complex conceptual systems, and to carry out knowledge inference. 

The system implements a tool, which helps its users to convert the data found on 

the web to the formats of the Semantic Web. We also provide a SPARQL endpoint 
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to enable remote querying of the knowledge base. The query results can be ex-

ported to various common semantic data formats. We demonstrated the flexibility 

of the system by implementing two different database backends. 

The structure of the paper is as follows. After the introductory Section 1, we 

outline preliminaries in Section 2. Afterwards, we present the high-level architec-

ture of our virtual observatory in Section 3. Then, in Section 4, we describe the 

main functionality of the system. Then, we show some possible use cases of our 

system in Section 5, followed by the conclusion and our future plans in Section 6. 

2 Preliminaries 

As we mentioned in the introduction, the Semantic Web [4] provides various tech-

niques to manage the data available on the Internet. This section gives insight into 

the basic concepts of Semantic Web that are necessary for understanding what our 

system is capable of and how it works. The main technologies that are used in our 

system are the following: Resource Description Framework (RDF), RDF Schema 

(RDFS), SPARQL query language, Web Ontology Language (OWL). In the formal 

discussion we follow the concepts and notations introduced in [16]. 

The Resource Description Framework is a description language, where the in-

formation is represented by RDF triples. Informally an RDF triple consists of a 

subject, a predicate, and an object; or alternatively it consists of an entity, a prop-

erty, and the value of that property of the described entity. This representation 

form is similar to natural language sentences. For example the sentence 'Eötvös 

Loránd University is located in Budapest.' can be translated into the triple (Eötvös 

Loránd University, location, Budapest). Three kinds of terms are distinguished: 

IRIs represent entities (e.g. http://dbpedia.org/resource/ELTE) or relations (e.g. 

http://dbpedia.org/ontology/location)-, literals can only occur as value of a property; 

blank nodes are the terms that do not represent real world entities, they just help 

to construct complex values, for example, mail addresses which consist of multiple 

parts such as postal code, city, street and number. Below is the formal definition 

of RDF triples (Definition 1). 

Definit ion 1. Let I , B, and L (IRIs, Blank Nodes, Literals) be pairwise disjoint 

sets. An RDF triple is a (vi,v2, V3) 6 (I U B) x I x (J U B U L), where v\ is the 

subject, t>2 is the predicate and is the object. A finite set of RDF triples is called 

an RDF graph or RDF dataset. 

The RDF Schema is a data-modeling vocabulary built on the top of RDF for 

defining concepts, properties and constraints which are essential for organizing the 

knowledge represented by triples. The Web Ontology Language also enables us 

to define concept and property hierarchies, however, it is a computational logic-

based language. Therefore logical constraints and rules can be expressed in order 

to verify the consistency of that knowledge or to make implicit knowledge explicit. 

The formal definition of an ontology is presented in Definition 2, based on [20]. 

http://dbpedia.org/resource/ELTE
http://dbpedia.org/ontology/location)-
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D e f i n i t i o n 2. An ontology is a structure O : = (C,<C,P,P), where C and P 

are two disjoint sets. The elements of C and P are called classes and properties, 

respectively. A partial order <c on C is called class hierarchy and a function 

a: P —> C x C is a signature of a property. For a property p £ P, its domain 

and its range can be defined in the following: dom(p) := (&{p)) and range(p) := 

TT2(a{p)), where ir is the projection operation. Let C\,C2 £ C be two classes; if 

Ci <c C2, then c\ is a subclass of C2 and C2 is a superclass of c\. 

SPARQL is a query language for retrieving and manipulating RDF data. It 

is an SQL-like declarative language; the queries are based on pattern matching, 

where the patterns are in the form of triples, though they can contain variables as 

well. Most of the keywords and their meanings are the same, such as SELECT, 

WHERE, LIMIT. However, there are some new keywords in SPARQL, for example, 

OPTIONAL means optional pattern matching, or FILTER that defines constraints 

for the variables. Definition 3 gives the abstract syntax of the filter conditions and 

Definition 4 presents the abstract syntax of the SPARQL expressions. 

D e f i n i t i o n 3. Let V be the set of distinct variables over ( / U B U i ) . The variables 

are distinguished by a question mark. Let I X , IY £ V be variables and c,d £ 

(Llil) be a literal and an IRI constant, respectively. We define the filter conditions 

recursively as follows. The IX = c, IX =IY, c = d, bound(IX), i s I R I ( I X ) , 

isLiteral(IX), and isBlank(IX) are atomic filter conditions. Thereafter, ifR\,R2 

are filter conditions, then ->Ri, R\ A J?2 and R\ V TO are filter conditions as well. 

D e f i n i t i o n 4. A SPARQL expression is built up recursively in the following way: 

1. the triple t £ (7 U V) x (I U V) x (L U IU V) is a SPARQL expression, 

2. if Q\, Q2 are SPARQL expressions, and R is a filter condition, 

then Qi FILTER R, Qi UNION Q2, Q1 OPT Q2, and Q1 AND Q2 are SPARQL 

expressions as well. 

The discussion of formal semantics of SPARQL is out of the scope of this paper. 

Set and multiset semantics are described in [16]. 

3 Architecture of the Virtual Observatory over 

Semantic Databases 

The VOSD system was built using the Java EE platform. Figure 3 summarizes the 

main architectural elements of the system. As typical Java EE applications, VOSD 

consists of three major parts: a frontend, a business logic, and a database layer. 

Frontend is an interface for users, while backend contains the business logic which 

operates over the database. 

As the Figure 3 shows, the basis of the system is an application server which 

is an Oracle WebLogic Application Server in our case. On the frontend side, our 

system uses the Java Server Faces (JSF) technology, which is a complete framework 
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for Java EE. This framework contains some basic elements, such as text boxes, 

message bars or pageable dynamic tables. In addition, it can handle file upload, 

even multiple files at once, error messages, user interactions. As JSF pages are 

supported by web browsers, the clients of the system can be various devices, for 

example, mobile phones, tablets, laptops. Besides the JSF pages, the system is also 

available via a REST webservice, to access the uploaded semantic models. This 

makes it possible to build different kind of applications over the system as you can 

see in Section 5 or in [13]. 

Clients Application Server Databases 

Figure 1: The architecture of the Virtual Observatory over Semantic Databases 

On the backend side, two different databases are available by default. The first 

one is an Oracle l l g R2 database which supports the managing of semantic models 

and provides a Jena Adapter API for Java applications to use these features. Using 

the built-in semantic support, we can, for example, perform knowledge inference 

at the database level which can be much more faster than using a third-party 

tool. The second database is the PostgreSQL, which is a widely-used open-source 

relational database, however, it has no built-in semantic support. We chose this 

one to demonstrate how the already existing technologies can be applied to handle 

semantic data, and how efficient these two different solutions can be. On the top 

of PostrgeSQL, Jena is used to map RDF data model to the relational model. 

4 Functionality 

In this section, we present the main functions of our system. Users can upload 

their own data sets in various formats. Then they can browse and query the 

uploaded datasets. A visual query editor is provided to facilitate the construction 

of syntactically correct SPARQL queries and the queries can be saved and re-used. 

Two third-party visualizer tools are integrated into our system to help understand 

and explore the structure of data sets. In addition, we offer a tool, which is able to 

extract RDF triples from semi-structured web pages. Last but not least, to support 

the collaboration of researchers, our system provides user group management. Users 

can share their own data sets and their own saved queries within groups or they 

can make their work publicly available for every user. 
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4.1 Data Loading 

There are two ways to load data into the system. One works by uploading a file 

containing the semantic data, the other requires a URL pointing to a resource on 

the Internet which contains the data. There are various RDF serialization formats 

for RDF which can be used with the system, such as RDF/XML, N3, Turtle, and N-

Triples. The most wide-spread is the RDF/XML, which represents the RDF graph 

as an XML document. This format is easier for computers to read, since there are 

numerous tools available for processing and transforming XML. The other formats 

store the data using a more human-readable serialization. The simplest one is the 

N-TYiples [1], which is simply the enumeration of the RDF triples (the edges of the 

RDF graph) separated with a dot. The Turtle [2] serialization allows more struc-

tures to simplify the expressions. For example, we can use prefix abbreviations to 

eliminate long, repeating IRIs, thus reducing the file size significantly. Furthermore, 

we have the option to group triples sharing the same subject, without repeating 

the common subject for all triples. This works similarly, if both the subject and 

the predicates are the same, and only the objects vary. This, too, helps to reduce 

the file size. Literals in Turtle can have language tags, or data type information 

added to them. Notation 3 [3] (or N3) allows further simplifications to make the 

serialization of complex statements easier. 

4.2 Querying and Saving Results 

Another main function of the system is querying the already loaded data. The 

SPARQL [17] language is used to express queries over semantic data sets. The 

language is similar to the well-known SQL language. The (SELECT) clause defines 

a projection of the variables, the values for which we would like to see in the result 

set. The WHERE clause defines the criteria the data must satisfy in order to appear 

as a result. This is basically a graph pattern that has to match the data graph. 

The simplest queries contain only triples in the graph pattern. The FILTER clause 

lets us provide further filtering conditions for the nodes. For example, if we have 

numeric nodes, we can use arithmetic operators on them to restrict the values to a 

given range. If we have string nodes, we can filter for their values as well. IRIs, and 

string nodes can be filtered using regular expressions, too. By default, all edges in 

the graph pattern of the WHERE clause have to match the data. However, we have 

the option to define optional matching criteria with the OPTIONAL keyword. If 

parts of the graph pattern are optional, then we can have rows in the result set which 

satisfy only the non-optional parts, with null values for the variables appearing only 

in the optional parts. This is useful when some information is not given for all of 

our individuals. For example, if we have an address book with addresses for all 

contacts and phone numbers for some of them, we can ask the phone numbers 

in the optional part. Without the OPTIONAL keyword, we would only get the 

contacts with both an address and a phone number. 

The advantage of the Semantic Web is that we can link our data with knowledge 

from other sources. In queries, the SERVICE keyword allows querying remote data 
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sets. The keyword requires a URL to a SPARQL endpoint, and a graph pattern that 

has to match the remote data. The most well-known data set is the DBpedia [6], 

which contains a subset of the knowledge of Wikipedia in semantic form. Data sets 

linked with DBpedia can be found in the LOD cloud [5]. 

Another useful feature of the semantic web is knowledge inference, which lets us 

extract new information based on what we already know. Computing inferred data 

may take long time, thats why our system offers two options regarding inference. 

One option is to run the query using only the data already available to us as facts, or 

we can enable inference - meaning slower query execution. There are multiple ways 

to carry out inference. For example, we can use the relationship information given 

in ontologies to generate new information. Another option is to use user-specified 

rules. A rule consists of a head (a new triple holding the new information) and a 

body (a condition that has to be satisfied in order for the rule to activate). The 

simplest example is the grandparent relationship (if x is parent of y, and y is parent 

of z, then x is grandparent of z). We can save the query results using the already 

mentioned formats: RDF/XML, N3, TURTLE, and also CSV. 

4.3 Visual SPARQL Editor 

With the spreading of the Semantic Web technologies, using SPARQL becomes 

more and more inevitable, since this declarative language is the standard tool to 

express queries over RDF data sets. VisualQuery is a visual query editor program, 

which allows us to build a SPARQL query using graphs and supplementary forms. 

PREFIX rdf:<http://www.W3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX dbpo:<http://dbpedia.org/ontologv/> 
PREFIX foaI:<http://xmlns.com/toar/0.l/> 
SELECT ?lname /birthplace FdeathPiace 
WHERE{ 

'Iperson foaf:name ?lname. 
SERVICE <http://dbpedia.org/Fparql> { 

/[-person foahname Frname. 
'rperson rdhtype dbpo:Person. 
Zrperson dbporbirthpiace /birthplace. 
Zrperson dbpo:deathPlace /deathplace. 

> 
FILTER (str(/lname)=Ftr(/rname)) 

Figure 2: An example SPARQL query both in graphic and textual form which finds 

additional information on DBpedia about locally stored famous people 

Graphic representation has various advantages. Firstly, using this approach, it 

is easier to see and understand the relationship of the individual elements, thus, 

the meaning of the query can clearly be seen as demonstrated in Figure 2 where 

the graphic and textual representation of the same query are shown. Secondly, we 

can quickly and easily modify the components and parameters defining the query. 

This way, we can improve or refine the query step-by-step. Thirdly, because the 

http://www.W3.org/1999/02/22-rdf-syntax-ns%23
http://dbpedia.org/ontologv/
http://xmlns.com/toar/0.l/
http://dbpedia.org/Fparql
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visual representation is language-independent, the co-operative work of researchers 

speaking different languages is supported. Another advantage of the program is 

that it performs various checks during editing, which helps preventing syntactical 

errors, for example: 

• literal nodes can not have outgoing edges - they can not be subjects in a 

• only variables or IRI nodes can be edges - blank nodes and literals can not, 

• variables in the head of a CONSTRUCT-type query must appear at least 

once in the WHERE clause. 

What makes this solution different from similar programs - like iSparql [15] or 

LuposDate [9] - is the distinction of visual elements by type, and the built-in checks 

based on this distinction. 

4.4 Visualizations 

We mentioned earlier that the semantic data can be seen as a directed graph. 

Subjects and objects are the nodes, and the predicates are the edges of the graph. 

Visualizing this graph helps us interpret the data. More graph visualization tools 

are available, and some can visualize the semantic data. We integrated two third-

party visualizer tools into the system, that is seen on Figure 3. 

One of them is Cytoscape Web [18], which allows us to display the semantic 

graph of locally stored models using various built-in layouts, such as a tree or circle. 

It is an open-source, interactive, customizable tool. It is a simple version of the 

Cytoscape for the web and it is reusable. The application uses Flex/Actionscript 

with JavaScript API, so rendering happens on the clients' computer. The user can 

visualize own models and the public models. However, the models can contain large 

amounts of data, and visualizing these models are resource-intensive, so we have to 

limit the edges. 

triple. 

(a) RelFinder (b) Cytoscape 

Figure 3: Vizualization tools 
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Another visualization tool integrated into the system is RelFinder [10], which 

searches connections among IRIs. To find connections, it runs SPARQL queries on 

an endpoint. The relations among the IRIs can be paths via common predicates. 

RelFinder first finds the shortest path, and adds its nodes to the graph. After that 

it tries to find longer paths. We can specify the maximum depth of the search. 

The program uses Flex/ActionScript for the display that provides various tools to 

create animations. We configured this tool to work on the semantic data of the 

virtual observatory, and the users can search their own models. 

4.5 Extracting Semantic Data from the Web 

Nowadays, we can easily find all kinds of information using the web. There are 

numerous sites which specialize in collecting and organizing knowledge about one 

specific topic. For example, we can find websites collecting information about hard-

ware components, reviews about movies, historical weather data, recipe collection, 

etc. These websites usually operate using a database of their own, and the web 

pages displayed to us are generated dynamically using the stored data. However, 

the databases are usually not using semantic technologies, moreover, they are often 

not public, so the only way for us to access the data is to visit the web pages. 

Fortunately, extracting data from the web pages does not always require complex 

text processing and text mining, because the consistent structure of the documents 

can be utilized to extract the information we are interested in. The structure is 

almost always consistent on all pages of a web site. For example, on a site collecting 

recipes, the structure can be the following: the name of the dish is always the title 

of a section, and it is followed by some additional information (always in the same 

order), such as the name of the uploader, the difficulty and the required time to 

prepare the meal. After this, we have a bullet-point list of the ingredients, and 

finally, there is a numbered list of the steps in the recipe. If we know this structure, 

we can utilize it to extract all recipes from all pages of the site. 

To help users in extracting data from sites like these, we created a browser 

extension that allows them to define the structure using one example page of a web 

site. Based on the structure information created this way, our virtual observatory 

is capable to extract the required information from all pages that use the same 

document structure. The tool can be downloaded and installed from the web front 

end of our virtual observatory. Then, visiting the desired website, the user can mark 

the sections to be extracted using selection with the mouse. To extract information 

about all entities (e.g. all recipes) on the same page, the user only needs to annotate 

the first occurrence by binding variables to the parts of interest (e.g. the name of 

the dish and the list of ingredients). These variables can be used to formulate 

an RDF template, which - during the extraction phase - gets instantiated for each 

entity on all similar-structured pages of the website, with the appropriate extracted 

values in place of the variables. 

The inner model for the annotation and the extraction is based on the DOM 

(Document Object Model) tree of the web page. When the user marks the first 

occurrence of an entity for extraction, the corresponding node in the DOM tree is 
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marked as an anchor. Variables are defined relative to an anchor, by the (possibly 

empty) path that leads from the anchor to the node bound to the variable. Dur-

ing the extraction phase, occurrences of the repeating structure will be traversed 

by iterating over those sibling nodes of the anchor which have the same type (i.e. 

HTML tag). In each iteration, the appropriate variables are evaluated by following 

their defined path, staring from the current sibling. To handle repeating structure 

inside a repeating structure (e.g. ingredients as list items inside recipes), the an-

chors can be nested, resulting in a nested iteration during the extraction phase. 

Figure 4 shows an example model with two anchors (one of them nested), and two 

variables. 

Figure 4: Part of an annotated DOM tree with two anchors and two variables. 

The model described in the previous paragraph is automatically created and 

updated in the background, whenever the user marks an area for extraction or 

binds a variable to an element on the page. This way, no knowledge of DOM trees 

and paths are required to use the tool: the model for the data extraction can be 

created in a user-friendly way, using selection by mouse and a few clicks in the drop-

down menu of the browser extension. The created model is saved as an XML file, 

which contains the structure information (anchors, variables, and paths between 

them) and the RDF template. The virtual observatory takes this file and a list of 

URLs as input, extracts the information from the specified web pages, and saves 

the extracted data to a semantic model. 

4.6 Collaboration of Researchers 

One of the most important purposes for virtual observatories is to collect infor-

mation originating from various different sources, and to support their integration. 
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Our system allows users to upload their own data and share it with others. We ap-

plied a multi-level permission system based on user groups. Every user can create 

groups, and invite other users to them. This way, research groups can be organized. 

Then, we have two possibilities to share the models containing our data. We can 

make the model publicly available to every other user, or we can give right to one or 

more groups to access our model. While the first possibility gives read-only access, 

in the latter case the group members can have write rights, too. In this case, they 

can load their own data into the model. 

It is also possible to publish queries. This can be useful in several cases: if 

other researchers would like to use our data, we can help their work by providing 

example queries, which illustrate the inner structure and relationships of the data. 

We can formulate basic queries, which can be further refined or specialized later. 

5 Use Cases 

In this section we describe two use cases that show the advantages of our system. 

The first one sums up how an application can be built on the top of data that is 

collected from heterogeneous sources, and how our system can be used to develop 

and manage such applications. The second example presents how we use the system 

in the education, how the functions and tools help the students to get familiar with 

the basic principles of the Semantic Web. 

5.1 O C R Application 

The first application is useful in the field of tourism. The main function of the 

program is to recognize text on street signs with OCR methods, based on pictures 

taken with mobile phones. Its purpose is to provide extra information about the 

famous people whose name can be found in the extracted texts. The extra infor-

mation comes from various data sources converted to semantic format (Hungarian 

Electronic Library, various online encyclopedias [12]), joined with other public data 

sets (DBpedia, GeoNames). A user group created for this purpose allows the col-

laboration between the users. The group has access to the data sets described 

above. One member of the group was given the task to collect information about 

the famous people appearing in street names, and then upload them to a model. 

He then shared the model inside the group. Another member had the same task, 

but he had to use an online encyclopedia as the data source. He added his data to 

the shared model. Meanwhile, a third member worked on linking the data in the 

model to data available in DBPedia, using SPARQL queries. He stored the results 

in a new, local model, to make it faster to access. (His work was not influenced 

by the fact that in the meantime, new data has been added to the model.) He 

also published the queries and the new model to the group. The members of the 

group created a virtual model over the models mentioned. (A virtual model is not 

materialized, but it contains the union of the data found in other models, and it 

is supported by an index structure.) This step was important, because it allowed 
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us to access the data as a single model. Then, using the REST API of our virtual 

observatory, we were able to run queries from a mobile application. 

5.2 Use in Education 

We use the virtual observatory during teaching the basic principles of the Semantic 

Web, within the Modern Databases course. The students of the course are added 

to a new group, and we share previously loaded models and queries with them. The 

models contain small data sets, so they could be viewed with the visualization tools, 

and the students could easily understand their structure. From week to week, they 

are introduced to the features of the SPARQL language, by solving typical tasks 

together. The new features can easily be demonstrated with the visual SPARQL 

editor, since the graphical representation speaks for itself. In some cases, the results 

of the exercises can be used in practical scenarios. For example, the family tree 

of a royal family can be created, if each student creates a model with the family 

tree of a selected king. During their work, they get to know the basic semantic 

serialization formats (RDF/XML, N3, etc.) and the results can be published to a 

common group. 

6 Conclusion and Future Work 

In the paper, we presented a prototype system, which fulfills the requirements of a 

virtual observatory, and helps the collaboration of researchers by letting them work 

using the same shared data and queries. We used the data model of the Semantic 

Web, thus the data sets in the virtual observatory can easily be linked to each 

other and to public data sets. We provided several features which can facilitate 

the use of the system, such as advanced data and query sharing, visual query 

building and editing, data visualization, and web data extraction. The system 

can run on top of any standard relational database system, but if the underlying 

database has some support for storing and handling semantic data (like Oracle 

databases), it can make use of those functions as well. We also presented real world 

use cases, where the existence of the system helped our work on other projects and 

in education. We are currently working on incorporating the ability to build and 

maintain bisimulation-based structure indexes, and utilize them in query evaluation 

to achieve better performance. Another feature in development is the visualization 

of SPARQL query plans. During further work, we would like to extend the system 

to be able to work using a Hadoop cluster as backend. In this solution, data storage 

and query execution would be distributed, thus the efficiency of the data-intensive 

computations would increase. Our other plans include enhanced visualization, such 

as the ability to plot geographic locations on a map, and to create charts and 

diagrams to help the better understanding of the data. 
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Abstract 

Complexity management has become a crucial activity in continuous soft-

ware development. While the overall perceived complexity of a product grows 

rather insignificantly, the small units, such as functions and files, can have 

noticeable complexity growth with every increment of product features. This 

kind of evolution triggers risks of escalating fault-proneness and deteriorat-

ing maintainability. The goal of this research was to develop a measurement 

system which enables effective monitoring of complexity evolution. An action 

research has been conducted in two large software development organizations. 

We have measured three complexity and two change properties of code for two 

large industrial products. The complexity growth has been measured for five 

consecutive releases of the products. Different patterns of growth have been 

identified and evaluated with software engineers in industry. The results show 

that monitoring cyclomatic complexity evolution of functions and number of 

revisions of files focuses the attention of designers to potentially problematic 

files and functions for manual assessment and improvement. A measurement 

system was developed at Ericsson to support the monitoring process. 

Keywords: complexity, metrics, risk, lean, agile, correlation, measurement 

systems, code, change, revision 

1 Introduction 

Actively managing software complexity has become an important aspect of continu-

ous software development. It is generally accepted that software products developed 

in a continuous manner are getting more and more complex over time. Evidence 

shows that the rising complexity drives to deteriorating quality of software [2,3]. 

The continuous increase of code base and growing complexity can lead to large, 

virtually unmaintainable source code if left unmanaged. 
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A number of metrics have been suggested to measure various aspects of software 

complexity and evolution over development time [7]. Those metrics has been accom-

panied with a number of studies indicating how adequately the proposed metrics 

relate to software quality [6, 17]. Complexity and change metrics have been used 

extensively in recent years for assessing the maintainability and fault-proneness of 

software code [4]. Despite the considerable amount of research conducted for inves-

tigating the influence of complexity on software quality, little results can be found 

on how to effectively monitor and prevent complexity growth. Therefore a question 

remains: 

How to monitor code complexity and changes effectively when delivering feature 

increments to the main code branch? 

The aim of this research was to develop method and tool support for actively 

monitoring complexity evolution and drawing the attention of industries' software 

engineers to the potentially problematic trends of growing complexity. In this 

paper we focus on the level of self-organized software development teams who often 

deliver code to the main branch for further testing, integration with hardware, and 

ultimate deployment to end customers. We address this question by conducting a 

case study at two companies, which develop software according to Agile and Lean 

principles. The studied companies are Ericsson which develops telecom products 

and Volvo Group Truck Technology (GTT) which develops electronic control units 

(ECU) for trucks. 

Our results show that using two complementary measures, McCabes cyclomatic 

complexity of functions and number of revisions of files supports teams in decision 

making, when delivering code to the main branch. The evaluation shows that 

monitoring trends in these measures draws attention of the self-organized Agile 

teams to a handful of functions and files. These functions and files are manually 

assessed, and the team formulates decisions before the delivery on whether they 

can cause problems. 

2 Related Work 

Cont inuous software evolution: A set of measures useful in the context of 

continuous deployment can be found in the work of Fritz [8], in the context of 

market driven software development. The metrics presented by Fritz measure such 

aspects as continuous integration as pace of delivery of features to the customers. 

These metrics complement the two indicators presented in this paper with business 

perspective which is important for product management. 

The delivery strategy, which is an extension of the concept of continuous deploy-

ment, has been found as one of the three key aspects important for Agile software 

development organizations in a survey of 109 companies by Chow and Cao [5]. The 

indicator presented in this paper is a means of supporting organizations in their 

transition towards achieving efficient delivery processes. 

Ericssons realization of the Lean principles combined with Agile development 

was not the only one recognized in literature. Perera and Fernando [14] presented 
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another approach. In their work they show the difference between the traditional 

and Lean-Agile way of working. Based on our observations, the measures and their 

trends at Ericsson were similar to those observed by Perera and Fernando. 

Measurement systems: The concept of an early warning measurement system 

is not new in engineering. Measurement instruments are one of the cornerstones 

of engineering. In this paper we only consider computerized measurement systems 

i.e. software products used as measurement systems. The reasons for this are: the 

flexibility of measurement systems, the fact that we work in the software field, and 

similarity of the problems e.g. concept of measurement errors, automation, etc. 

An example of a similar measurement system is presented by Wisell [21] where the 

concept of using multiple measurement instruments to define a measurement system 

is also used. Although differing in domains of applications these measurement 

systems show that concepts which we adopt from the international standards (like 

[11]) are successfully used in other engineering disciplines. We use the existing 

methods from the ISO standard to develop the measurement systems for monitoring 

complexity evolution. 

Lowler and Kitchenham [12] present a generic way of modeling measures and 

building more advanced measures from less complex ones. Their work is linked 

to the TychoMetric [15] tool. The tool is a very powerful measurement system 

framework, which has many advanced features not present in our framework (e.g. 

advanced ways of combining metrics). A similar approach to the TychoMetrics 

way of using metrics was presented by Garcia et al. [9]. Despite their complexity, 

both the TychoMetric tool and Garcias approach can be seen as alternatives in the 

context of advanced data presentation or advanced statistical analysis over time. 

Our research is a complement to [13] and [15]. We contribute by showing how the 

minimal set of measures can be selected and how the measurement systems can be 

applied regularly in large software organizations. 

Meyer [10, pp. 99-122] claims that the need for customized measurement sys-

tems for teams is one of the most important aspects in the adoption of metrics 

at the lowest levels in the organization. Meyers claims were also supported by 

the requirements that the customization of measurement systems and development 

of new ones should be simple and efficient in order to avoid unnecessary costs in 

development projects. In our research we simplify the ways of developing Key 

Performance Indicators exemplified by a 12-step model of Parmenter [13] in the 

domain of software development projects. 

3 Design of the Study 

This case study was conducted using action research approach [1,16]. The re-

searchers were part of the companys operations and worked directly with product 

development units. The role of Ericsson in the study was .the development of the 

method and its initial evaluation, whereas the role of Volvo GTT was to evaluate 

the method in a new context. 
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3.1 Studied Organizations 

Ericsson: The organization and the project within Ericsson developed large prod-

ucts for mobile packet core network. The number of the developers in the projects 

was up to a few hundreds. Projects were executed according to the principles of 

Agile software development and Lean production system, referred to as Stream-

line development within Ericsson [20]. In this environment, different development 

teams were responsible for larger parts of the development process compared to 

traditional processes: design teams, network verification and integration, testing, 

etc. 

Volvo GTT : The organization which we worked with at Volvo GTT developed 

ECU software for trucks. The collaborating unit developed software for two ECUs 

and consisted of over 40 designers, business analysts and testers at different levels. 

The development process was in the transaction from traditional to Agile. 

3.2 Units of Analysis 

During our study we analyzed two different products software for a telecom prod-

uct at Ericsson and software for two ECUs at Volvo GTT. 

Ericsson: The product was a large telecommunication product composed by over 

two million lines of code with several tens of thousands C functions. The product 

had a few releases per year with a number of service releases in-between them. The 

product has been in development for a number of years. 

Volvo GTT : The product was an embedded software system serving as one of the 

main computer nodes for a product line of trucks. It consisted of a few hundred 

thousand lines of code and several thousand C functions. The analyses that were 

conducted at Ericsson were replicated at Volvo GTT under the same conditions and 

using the same tools. The results were communicated with designers of the software 

product after the data was analyzed. At Ericsson the developed measurement sys-

tem ran regularly whereas at Volvo the analysis was done semi-automatically, that 

is, running the measurement system whenever feedback was needed for designers. 

3.3 Reference Group 

During this study we had the opportunity to work with a reference group at Ericsson 

and a designer at Volvo GTT. The aim of the reference group was to support the 

research team with expertise in the product domain and to validate the intermediate 

findings as prescribed by the principles of Action research. The group interacted 

with researchers on a bi-weekly meeting basis for over 8 months. At Ericsson the 

reference group consisted of a product manager, a measurement program leader, 

two designers, one operational architect and one research engineer. At Volvo GTT 

we worked with one designer. 
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3.4 Measures in the Study 

Table 1 presents the complexity measures, change measures and deltas of complex-

ity measures over time. The definitions of measures and their deltas are provided 

also. 

Table 1: Metrics and their definitions 

Complex i ty 

Measures 

Abbrev . Defini t ion 

McCab's 

cyclomatic 

complexity of 

a function 

M The number of linearly independent paths in 

the control flow graph of a function, measured 

by calculating the number of " if ' , "while", 

"for", "switch", "break", tokens 

Structural 

Fan — out 

Fan — out The number of invocations of functions found 

in a specified function 

Maximum 

Block Depth 

MBD The maximum level of nesting found in a func-

tion 

Cyclomatic 

complexity of 

a file 

Mf The sum of all functions M in a file 

Change 

Measures 

Abbrev . Def ini t ion 

Number of re-

visions of a file 

NR The number of check-ins of files in a speci-

fied code integration branch and its all sub-

branches in a specified time interval 

Number of de-

signers of a file 

ND The number of developers that do check-in of 

a file on a specified code integration branch 

and all of its sub-branches during a specified 

time interval 

Deltas of 

Complex i ty 

Measures 

Abbrev . Defini t ion 

Complexity 

deltas of a 

function 

AM, 

AFan — out, 

A MBD 

The increase or decrease of M, Fan-out and 

MBD measures of a function during a speci-

fied time interval. 

3.5 Research Method 

According to the principles of action research we adjusted the process of our research 

with the operations of the company. We conducted the study according to the 

following pre-defined process: 
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• Obtain access to the source code of the products and their different releases 

• Calculate complexity measures of all functions and change measures of all 

files in the code 

• Calculate the complexity deltas of all functions through five releases of both 

products 

• Sort the functions by complexity delta through five releases 

• Identify possible patterns of complexity change 

• Identify drivers for complexity changes for functions with functions having 

highest overall delta 

• Correlate measures to explore their dependencies and select measures for 

monitoring complexity and changes 

• Develop a measurement system (according to ISO 15939) for monitoring com-

plexity and changes 

• Monitor and evaluate the measurement system for five weeks 

The overall complexity change of function is calculated by: 

Overal l de l ta = |AA/ i_ 2 | + |AM 2 _ 3 | + | A M 3 _ 4 | + | A M 4 _ 5 | . 

| A M j . j | is the absolute value of change of M of a function between i and j releases. 

Overall complexity change of Fan-out and MBD is calculated the same way. 

4 Analysis and Results 

In this section we explore the main scenarios of complexity evolution. We carry out 

correlation analysis of collected measures in order to understand their dependencies 

and chose measures for monitoring. 

4.1 Evolution of the Studied Measures Over Time 

Exploring different types of changes of complexity, we categorized changes into 5 

groups. 

1. Group 1 - Functions that are newly created and become complex in current 

release and functions that existed but disappeared in current release. 

2. Group 2 - Functions that are re-implemented in current release. 

3. Group 3 - Functions that have significant change of complexity between two 

releases due to development or maintenance. 
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4. Group 4 - Test functions, which are regularly generated, destroyed and re-

generated for unit testing. 

5. Group 5 - functions that have minor complexity changes between two releases. 

Group 1 and group 5 functions were observed to be the most common. They 

appeared regularly in every release. Engineers of the reference group charac-

terized their existence as expected result of software evolution. Group 2 func-

tions were re-implementation of already existing function. The existed functions 

were re-implemented with different name and the old one was destroyed. Af-

ter re-implementation the new functions could be named as the old one. Re-

implementation usually took place when major software changes were happening: 

In this case re-implementation of a function sometimes could be more efficient than 

modification. Figure 1 shows the cyclomatic complexity evolution of top 200 func-

tions through five releases of products. Each line on the figure represents a C 

function. 

Telecom Product Automotive Product 

Figure 1: Evolution of M of functions 

In Figure 1 re-implemented functions are outlined by elliptic and old ones by 

round lines. In reality the number of re-implemented functions are small (about 

1%), however considering the big magnitude of complexity change of them, many 

of them ended-up in the top 200 functions in the picture, giving an impression that 

they are relatively many. Figure 2 similarly presents the evolution of Fan-out in 

the products. Group 3 functions are outlined by elliptic line in Figure 2. 

Group 3 functions were usually designed for parsing a huge amount of data and 

translating them into another format. As the amount and type of data is changed 

the complexity of the function also changes. Finally the Group 5 functions were unit 

test implementations. These functions were destroyed and regenerated frequently 

in order to update running unit tests. Figure 3 presents the MBD evolution of 

products. As nesting depth of blocks can be relatively shallow, many lines in Figure 

3 overlap each other thus creating an impression that there are few functions. We 

observed that functions in group 1, ones were created, stayed complex over time. 

These functions are outlined with a rectangular line in Figure 3. 
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Telecom Product Automotive Product 

Figure 3: Evolution of MBD of functions 

Figure 2: Evolution of Fan-out of functions 

Telecom Product Automotive Product 

The statistics of functions of all groups are represented in Table 2. The table 

shows how all functions, that had complexity change, are distributed in groups. We 

would like to mention that the number of all functions in telecom product is about 

65000 and in automotive product about 10000, however only top 200 functions out 

of those are presented in the figures. This might result in disproportional visual 

relationship between the relation of different groups of functions in the table and 

in the figures as the figures contains only top 200 functions. 

Table 2: The distribution of functions with complexity delta in groups 

Group Group 1 Group 2 Group 3 Group 4 Group 5 

Percentage 27% 1% 1% 1% 70% 

We observed the change of complexity for both long time intervals (between 

releases) and for short time intervals (between weeks). Figure 4 shows how the 

complexity of functions changes over weeks. The initial complexity of functions 

is provided under column M in the figure. We can see the week numbers on the 
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top of the columns, and every column shows the complexity growth of functions in 

that particular week. Under column we can see the overall delta complexity per 

function that is the sum of weekly deltas per function. 

Filename Function name M Total: AM w!306 wl307 w!308 w!309 W1310 w!311 w!312 
file 1 function 1 14 0 0 0 0 0 0 0 0 
file 2 function 2 15 15 0 0 0 0 0 15 0 
file 2 function 3 1 0 0 0 0 0 0 0 0 
file 3 function 4 10 5 4 -9 11 -11 10 0 0 
file 4 function 5 11 3 0 0 0 0 11 0 0 
file 5 function 6 58 13 17 0 11 -11 0 0 -4 
file 5 function 7 22 22 0 0 0 0 0 0 22 
file 6 function 8 20 20 0 0 0 18 2 0 0 
file 6 function 9 17 17 0 0 0 17 0 0 0 
file 7 function 10 11 11 0 0 0 11 0 0 0 
file 8 function 11 13 13 0 0 0 0 13 0 0 
file 9 function 12 28 28 0 28 0 0 0 0 0 
file 10 function 13 12 12 0 0 0 12 0 0 0 

Figure 4: Visualizing complexity evolution of functions over weeks 

The fact that the complexity of functions fluctuates irregularly was interesting 

for the designers, as the fluctuations indicate active modifications of functions, 

which might be due to new feature development or represent defect removals with 

multiple test-modify-test cycles. Functions 4 and 6 are such instances illustrated 

in Figure 4. Monitoring the complexity evolution through short time intervals we 

observed that very few functions are having significant complexity increase. For 

example in a week period the number of functions that have complexity increase 

AM > 10 can vary between 5-10 while overall number of functions reaches a few 

tens of thousands in the product. 

4.2 Correlation analyses 

The correlation analyses of measures were conducted in order to eliminate de-

pendent measures and select a minimal amount of measures for monitoring. The 

correlation analysis results of complexity measures for the two software products 

are presented in Table 3. The visual presentation of the relationship of complexity 

measures is presented in Figure 5. As the table illustrates there is a strong corre-

lation between M and Fan-out for the telecom product and M and MBD for the 

automotive product. There is a moderate correlation between M and MBD for the 

telecom product. Generally designers of reference group concluded that monitoring 

the cyclomatic complexity among all complexity measures is good enough as there 

was a moderate or strong correlation between three complexity measures. M was 

chosen because of two reasons: 
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1. MBD is rather a characteristic of a block of code than a whole function. It is 

a good complementary measure but it cannot characterize the complexity of 

a whole function. 

2. Fan-out seemed to be a weaker indicator of complexity than M because it 

rather showed the vulnerability of a function towards other functions that 

are in that function. 

Considering aforementioned conclusions M was chosen among complexity measures 

to be monitored. 

Table 3: Correlation of complexity measures 

Telecom / Au tomot ive MBD M 

M 0.41 / 0.69 

Fan-out 0.34 / 0.20 0.76 / 0.26 

Correlogarm of Complexity Measures - Telecom Correlogarm of Complexity Measures - Automotive 

.iii I iiii: 

i ;:. 
S I , 

. 1 

I I I 
• i : i I 

l: 

I I I j ! i • • 
M MBD 

Figure 5: Correlogram of complexity measures 

NR and ND are measures that indicate the magnitude of changes. Previously a 

few studies have shown that change metrics are good indicators of problematic areas 

of code, as observed Shihab [18]. The measurement entity of NR and ND is a file. 

Therefore in order to understand how change measures correlates to complexity we 

decided to define the M measure for files (Table 1). Table 4 presents the correlation 

analysis results for ND, NR and M/ measures. 

An important observation was the strong correlation between the number of 

designers and the number of revisions for the telecom product (Table 4). At the 

beginning of this study the designers of the reference group at Ericsson believed 

that a developer of a file might check-in and check-out the file several times which 

probably is not a problem. The real problem, they thought, could be when many 

designers modify a file simpultaneously. Nonetheless, a strong correlation between 

the two measures showed that they are strongly dependent, and many revisions 



Monitoring Evolution of Code Complexity and Magnitude of Changes 377 

is mainly caused by many designers modifying a file in a specified time interval 

(Figure 6). 

Table 4: Correlation of change and complexity measures 

Telecom / Au tomot i ve My ND 

ND 0.40 / 0.37 

NR 0.46 / 0.72 0.92 / 0.41 

Correlogram of Chang« Metrics and Complexity - Telecom Correlogram of Change Metrics and Complexity - Automotive 

Z . . • . 

ML = • • 
M File ND 

Figure 6: Correlogram of change and complexity measures 

In case of automotive product correlation of ND and NR was moderate which 

can be due to small number of designers who have rather firmly assigned develop-

ment areas and usually change the same code. Moderate correlation between M j 

and NR for the telecom product indicates that complex files are prone to changes. 

There are always simple files that are changed often due to development. 

Considering the correlation analysis results we designed a measurement system 

at Ericsson for monitoring code complexity and magnitude of changes over time. 

The description of design and application of measurement system is discussed in 

the next section. 

4.3 Design of the Measurement System 

Based on the results that we obtained from investigation of complexity evolution 

and correlation analyses, we designed two indicators based on M and NR measures. 

These indicators capture the increase of functions complexity and highlight the files 

with highest change magnitude over time. These indicators were designed according 

to ISO/IEC 15959. The design of complexity indicator is presented in Table 5. The 

other indicator based on NR is defined in the same way: the files that had NR > 

20 during last week development time period should be identified and reviewed. 

The measurement system was provided as a gadget with the necessary information 

updated on a weekly basis (Figure 7). The measurement system relies on a previous 

m* i I M i s 
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study carried out at Ericsson [19]. For instance the total number of files with more 

than 20 revisions since last week is 5 (Figure 7). The gadget provides the link to 

the source file where the designers can find the list of files or functions and the 

color-coded tables with details. 

We visualized the NR and A M measures using tables as depicted in Figure 4. 

As in Streamline development the development team merged builds to the main 

code branch in every week it was important for the team to be notified about 

functions with drastically increased complexity (over 20). 

Table 5: Measurement system design based on ISO/IEC 15939 standard 

Information Need Monitor cyclomatic complexity evolution over development 

time 

Measurable Con-

cept 

Complexity change of delivered source code 

Entity Source code function 

Attribute Complexity of C functions 

Base Measures Cyclomatic complexity number of C functions M 

Measurement 

Method 

Count cyclomatic number per C function according to the 

algorithm in CCCC tool 

Type of measure-

ment method 

Objective 

Scale Positive integers 

Unit of measure-

ment 

Execution paths over the C/C++ function 

Derived Measure The growth of cyclomatic complexity number of a C function 

in one week development time period 

Measurement Func-

tion 

Subtract old cyclomatic number of a function from new one: 

A M = M(weeki)M(weeki-i) 
Indicator Complexity growth: The number of functions that exceeded 

McCabe complexity of 20 during the last week 

Model Calculate the number of functions that exceeded cyclomatic 

number 20 during last week development period 

Decision Criteria If there are functions that exceeded M number 20 then soft-

ware designers should review these functions refactor if neces-

sary 

5 Threats to Validity 

In this paper we evaluate the validity of our results based on the framework de-

scribed by Wohlin et al. [22]. The framework is recommended for empirical studies 

in software engineering. 

The main external validity threat is the fact that our results come for an ac-

tion research. However, since two companies from different domains (telecom and 
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No. of files and 

functions 

2013-08-26 

No of func. AM > 20 

2 

No of func. NR > 20 

5 

Source data 

Figure 7: Information product for monitoring M and NR metrics over time 

automotive) were involved, we believe that the results can be generalized to more 

contexts than just one specific type of software development. 

The main internal validity threat is related to the construct of the study and 

the products. In order to minimize the risk of making mistakes in data collection 

we communicated the results with reference groups at both companies to validate 

them. 

The limit 20 for cyclomatic number established as a threshold in this study does 

not have any firm empirical or theoretical support. It is rather an agreement of 

developers of large software systems. We suggest that this threshold can vary from 

product to product. The number 20 is a preliminary established number taking into 

account the number of functions that can be handled on weekly basis by developers. 

The main construct validity threats are related to how we identify the names 

of functions for comparing their complexity numbers over time. There are several 

issues emerging in this operation. Namely, what happens if a function has changed 

its list of arguments or what happens if a function is moved to another file? Should 

this be regarded as the same function before and after changing the list of arguments 

or the position? We disregarded the change of argument list however this can be 

argued. 

Finally the main threat to conclusion validity is the fact that we do not use 

inferential statistics to monitor relation between the code characteristics and project 

properties, e.g. number of defects. This was attempted during the study but the 

data in defect reports could not be mapped to individual files. This might be a 

thread for jeopardizing the reliability of such an analysis. Therefore we chose to 

rely on the most skilled designers perception of how fault-prone and unmaintainable 

the delivered code is. 
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6 Conclusions 

In continuous software development quick feedbacks on developed code complexity 

is crucial. With small software increments there is a risk that the complexity of 

units of code can grow to an unmanageable level. In this paper we explored how 

complexity evolves, by studying two software products one telecom product at 

Ericsson and one automotive product at Volvo GTT. We identified that in short 

periods of time a few out of tens of thousands functions have significant complexity 

increase. We also concluded that the self-organized teams should be able to make 

the final assessment whether the potentially problematic is indeed problematic. 

By analyzing correlations between three complexity and two change metrics we 

concluded that it is enough to use two measures, McCabe complexity and number 

of revisions, to draw attention of the teams to potentially problematic code for 

review and improvement. 

The automated support for the teams was provided in form of a MS Sidebar 

gadget with the indicators and links to statistics and trends with detailed complex-

ity development data. The measurement system was evaluated by using it on an 

ongoing project and communicating the results with software engineers in industry. 

In our further work we intend to study how the teams formulate the decisions 

and monitor their implementation. 
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Service Composition for End-Users 

Otto Hylli* Samuel Lahtinen? Anna Ruokonen* and Kari Systà* 

Abstract 

RESTful services are becoming a popular technology for providing and consuming 
cloud services. The idea of cloud computing is based on on-demand services and 
their agile usage. This implies that also personal service compositions and workflows 
should be supported. Some approaches for RESTful service compositions have been 
proposed. In practice, such compositions typically present mashup applications, which 
are composed in an ad-hoc manner. In addition, such approaches and tools are mainly 
targeted for programmers rather than end-users. In this paper, a user-driven approach 
for reusable RESTful service compositions is presented. Such compositions can be 
executed once or they can be configured to be executed repeatedly, for example, to get 
newest updates from a service once a week. 

Keywords: service composition, REST, web, W A D L 

1 Introduction 

Use of internet-based services is a routine activity for millions of users. However, the 

services are often silos and users do not have means to operate and manage their content 

across the services. Even average PC users can transfer content between applications, but 

nothing similar is possible for the Internet services they use. In this paper we propose an 

approach that allows end-users to create compositions for the purpose of combing several 

internet services or resources. 

In service-oriented approaches dominant in the enterprise services, the focus is on the 

definition of service interfaces and service behavior. Service-oriented architecture (SOA) 

aims at loosely coupled, reusable, and composable services provided for a service con-

sumer. SOA can be implemented by Web services, which is a technology enabling appli-

cation integration. Web services can be used for composing high level composite services 

and business processes. Business processes are often realized as a service orchestration 

implemented, for example, as WS-BPEL based processes [3], WS-BPEL is targeted for 

composing operation-centric Web services utilizing WSDL and SOAP [20,21 ]. WS-BPEL 

is close to a programming language defining the logic for a service orchestration. Thus, it 

is mostly used by IT developers. 

"Department of Pervasive Computing, Tampere University of Technology, E-mail: 
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In cloud-based systems, resources are provided to the user as services via the Internet. 

On the other hand, the services are accessible anywhere and through several devices. Com-

pared to basic Internet-based service delivery, cloud adds elastic provisioning and release 

of computing capabilities. Cloud computing and SOA share similar interests on service 

reuse and service composition. Moreover cloud computing emphasizes on-demand ser-

vices, which means that services should be ready for use at any time when needed. This 

also applies for service configurations. Thus, service configuration and composition should 

be enabled on-line. 

Compared to business processes, typical on-demand processes for end-users are per-

sonal, simpler, and their lifetime is shorter than traditional business processes. Thus, on-

demand processes are often characterized as instant service compositions and service con-

figurations. Such processes are typically defined by the end-user instead of the developer 

of the cloud services. Due to instant nature of the on-demand processes, their usage and 

specification should be as simple as possible and require no installation of process devel-

opment and management tools. 

An end-user driven approach for WS-BPEL-based business process development has 

been proposed in [18]. The approach is targeted for providing a method for easy sketching 

of service orchestrations. In the proposed approach, a set of scenarios, given as UML 

sequence diagrams, are synthesized into a process description. However, in the context 

of cloud computing and on-demand processes, the use of UML modeling and standalone 

tools is not a proper solution. 

Usually, software services in the cloud are targeted for multiple users and they pro-

vide a programmable interface, most often a Representational State Transfer (REST) API. 

REST is a resource-oriented architectural style developed for distributed environments 

such as for Web and HTTP based applications [5], RESTful services provide an unified 

interface (GET, PUT, POST, DELETE) for data manipulation. Thus, composition of such 

services often includes combining resources and is characterized as mashup-type of devel-

opment. Some guidelines for mashup development have been proposed (e.g. [14]). Thus 

the WB-BPEL-based approach is not applicable for cloud-based services and mashups. 

Composing and orchestration of RESTful services is still lacking tool vendor indepen-

dent practices and description languages. Thus, the development is often done more in an 

ad-hoc manner. 

SaaS applications are often targeted for end-users. They are self-contained and contain 

user-interfaces, business rules, and possibly some metadata. 

A recent trend is cloud mashups, which combine resources from multiple services 

into a single service or application [19]. The provider of these service compositions can 

enhance the cloud's capabilities by offering new functionalities, which make use of existing 

cloud services, to clients. 

In this paper, a novel approach for developing personal service compositions is pre-

sented. The approach is targeted for the end-user and allows composition of RESTful 

cloud services. The approach includes tackling the following issues: (1) easy sketching 

of service compositions using a simple visual language, (2) a mechanism to export/save 

composite descriptions for future usage i.e. reusable composite descriptions, and (3) an 

engine for executing the service compositions, once or repeatedly. The implementation 

of the approach called Aino service composer is currently under development. The Aino 
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service composer includes a web browser based editor, which can be used to create sim-

ple on-demand service compositions. An earlier version of the tool description has been 

published in [9]. 

The rest of the paper is organized as follows. In Section 2, we describe the overall 

approach and related components. In Section 3, two use cases for end-user driven service 

composition are presented. Aino service composer is described in Section 4. In Section 5, 

related work and topics are discussed. In Section 6, conclusions and plan for future work 

are presented. 

2 User-driven approach for service composition 

In this paper, an end-user driven approach for defining personal service compositions is 

presented. The main goal of the approach is on easy design of service compositions, which 

requires minimal technical knowledge. The service composition is created by using GUI 

widgets, which are generated based on an imported service description. Widgets present 

individual resources and they can be dragged and dropped on the canvas. The user can 

draw dataflow pipes to connect the widgets. Incoming and outgoing dataflows are mapped 

to REST methods (e.g. outgoing dataflow for GETting a resource presentation). 

The implementation of the approach called Aino service composer consists of two 

components, designer Ilmarinen and engine Sampo. Ilmarinen is a client side application 

for creating and editing compositions and it is run in a web browser. Sampo is a server side 

application, which is an engine for running the service compositions. The composition de-

scription is given in XML-based format, called Aino description. As a service description 

format, the approach is based on WADL descriptions [22]. It defines the resources, i.e., 

URIs, methods, and parameters. That is, while the Aino description specifies the service 

logic, the WADL description describes the service interface. 

Sampo also plays a role of a service registry. Once a service is registered in Sampo, 

it can be used as a constituent service for future applications. One reason for providing 

a centralized registry, instead of letting the user search from the web, is that for RESTful 

services there is no agreement on one service description format. In case a third-party 

service does not have a compatible WADL description, it can be created afterwards and 

registered to Sampo. Thus, the approach allows using services, which do not natively 

provide a WADL description, as reusable constituents. 

The approach includes the following steps: 

(1) query services from the service registry, 

(2) select services to be used as a part of the composition, 

(3) composition described as a data flow between services, and 

(4) send the composition description to the server engine to be executed. 

The main steps are shown in Fig. 1. It also shows the relations between the main 

components of the system and descriptions, Aino and WADL, which are used for importing 

and exporting data (i.e. service and composition descriptions). 
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llmarinen (composition designer) 

Services (2) create composition 

• (4) export composition 

I (2) return descriptions 

Sampo I 
composition 

storage 

Aino 
description 

(5) exectute composition 

Figure 1: The main steps of the approach 

3 Use cases 

The following two use cases illustrate the possibilities offered by service compositions 

for regular internet users. They show how after encountering a normally labor intensive 

internet based task including multiple services, a user can pretty easily create a service 

composition that takes care of the task. 

3.1 Use case 1: Photos from Twitter to Flickr selectively 

An avid Twitter1 user has been sending many photos taken with his smart phone directly 

to Twitter. The user wants a better way to organize and share his photos so he opens an ac-

count in Flickr2 which enables him to save photos to different albums, associate keywords 

to them and decide which photos are public. Uploading all his photos manually to Flickr 

would be tedious for the user. He would have to go through his Twitter time line, download 

each photo to his computer and then upload it to Flickr. 

To automate the upload process the user wants to create a service composition with 

Aino service composer. He opens the composition designer llmarinen and chooses that he 

wants to get photos. llmarinen shows him a list of services from where he can get photos 

and he chooses Twitter. From Twitter he chooses that he wants photos from one user which 

in this case is himself. He also indicates that all photos shouldn't be fetched, instead he 

will select the ones he wants. Then the user tells llmarinen that he wants to upload the 

photos selected in the previous step. From the services list shown by llmarinen he chooses 

Flickr as the upload target. Additionally he specifies that he wants to choose for each photo 

1 www.twitter.com 
2 www.flickr.com 

http://www.twitter.com
http://www.flickr.com
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whether it is private or public. Lastly, he tells Ilmarinen that he wants to delete photos and 

chooses Twitter. He specifies that from Twitter he wants to delete those photos he has 

marked as private for Flickr. 

When he executes the composition the execution engine Sampo first asks him to autho-

rize Sampo's use of his Twitter and Flickr accounts. Authorization will be done by using 

OAuth [10] which means that the user authenticates to both services which then give ac-

cess tokens to Sampo. Sampo will store these access tokens for later use if the user wants it 

so that next time a service composition using these services is run the user doesn't need to 

authenticate to the services. He just has to log in to Sampo. When the actual execution has 

started Sampo will first show the user all his photos from Twitter and asks him to choose 

those he wants. After that Sampo shows the user his previously chosen photos and asks 

which of them he wants to be private in Flickr. After the execution has finished Sampo 

shows the user a execution results summary which tells that the execution was a success 

and shows how many photos were processed in each step. 

3.2 Use case 2: Affordable reading 

An enthusiastic book reader uses the Goodreads3 service to support her hobby. Goodreads 

is an online community for readers where users can search for books, rate and review 

them. Users can also categorize books in their profile by adding them to different shelves. 

One of these shelves is to-read where the user has been adding interesting books, which 

she has found through Goodreads' recommendation system. She wants to buy some new 

reading from her to-read shelf but due to her current poor economic situation she wants it 

to be as cheap as possible. Searching for each book's price from her favorite online book 

retailer Amazon4 and then comparing the prices manually would be time consuming so 

she decides to create a service composition to make the process quicker. 

The user opens the service composition designer Ilmarinen and chooses that she wants 

information about books. Ilmarinen gives the user a list of services that deal with books. 

The user chooses Goodreads and indicates that she wants the content of a particular user's, 

in this case hers, particular shelf. Ilmarinen asks the user to input the name of the user 

and the name of the shelf which in this case are the user's Goodreads user name and to-

read. Next the user tells Ilmarinen that she wants online shopping services. From the 

service list she chooses amazon.com. She specifies that she wants product information 

about the books from the previous step. Lastly she tells Ilmarinen that she wants the results 

in ascending order by price. When this composition is run the result is a table containing 

book information from Amazon including the price and a link to the Amazon product page 

where the book can be bought. 

4 Implementation 

The prototype implementation of the Aino service composer consists of two main compo-

nents: Designer Ilmarinen and engine Sampo. Sampo executes the service compositions, 

3 www.goodreads.com 
4 www.amazon.com 

http://www.goodreads.com
http://www.amazon.com
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Figure 2: High level architecture of the Aino service composer 

stores the service descriptions and offers Ilmarinen access to the information. The sepa-

ration of the two main componets allows their more independent development. Figure 2 

illustrates the high-level architecture of the Aino service composer. The user uses browser-

based Ilmarinen to create service compositions. A service composition is a service. Its 

interface is defined as a WADL document and its execution instructions are defined with 

the Aino composition description language. Both XML documents are stored in Sampo. 

The user interacts with engine component Sampo which is used to execute the composi-

tions. The execution and possible user interaction related to the execution is again done in 

a browser based UI. 

4.1 Service description 

All the constituent services, as well as the service composition, are described with WADL 

documents. WADL description defines the service, provided methods and their parameters, 

as well as data types. The data types can also be defined as separate XML schema files. 

An example of a simple service description is shown below. It has a partial definition of 

Twitter's get user timeline method which returns a specified number of tweets from the 

given user. 

<?xml version="1.8" encodirig="UTF-8"?> 
«application» 

«grammars»«/grammars» 
«resources base="https://api.twitter.com/1.1"> 

«resource path="statuses/user_timeline.json"> 
«method href="getTimeline"/> 

«/resource» 
«/resources» 
«method name="GET" id="getTimeline"> 

«request» 
«param name="screen_name" style="query" type="xsd:string" /» 
«param name="count" style="query" type="xsd:integer" /> 

«/request» 
«response» 

«representation mediaType="application/json" /» 
«/response» 

https://api.twitter.com/1.1
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</method> 
</application> 

4.2 Engine Sampo 

Engine Sampo is used in two ways, as a service registry and as an engine to execute the 

service compositions. Services can be added in the service registry as WADL descriptions. 

It provides the basic functionality for registration of the services, i.e. API for adding, 

removing, and searching the services. When a new WADL is added to Sampo the part of 

the categorization of the service and the resources can be done automatically based on the 

WADL and an expert user, who understands rest services and WADL, can complete the 

information and extend the suggested categorizations. 

The given metadata is used to offer Ilmarinen lists of the services. For instance, the user 

can ask to get a list of services related to pictures. Thanks to the metadata Ilmarinen only 

needs to process WADLs of the services user adds to her composition instead of processing 

every WADL. 

The other part of Sampo provides a REST interface for adding and executing Aino 

descriptions. The service composition execution uses Aino and the corresponding WADL 

descriptions for getting the required information on the services and their API. The engine 

uses this information to invoke correct API calls to the services and combine the tasks to 

create the complete composite service. 

Sampo contains a user interface for handling the compositions. The user can parame-

terize the composition and define time intervals of execution. In case of a recurring task the 

service page can be used to start and stop the compositions and change their time intervals. 

For instance, one could define a service composition that is launched weekly. 

Sampo implements simple basic services, for example, for displaying images and news 

feeds. These are available as components in Ilmarinen and can be added to a service 

composition in similar fashion as external services. 

Sampo is implemented as a Java based web application with the Spring framework5. 

Sampo's implementation is ongoing work. Features that require work include making 

Sampo work with a creater number of data types and implementing metadata editing for 

services. 

4.3 Designer Ilmarinen 

Ilmarinen is a client side application, which provides a graphical interface for creating the 

service compositions. The user is provided a simple visual environment for defining the 

service composition. The composition is done partially in a guided manner. A screenshot 

of an early prototype version of the tool is shown in Figure 3. The user can choose the 

services e.g. Twitter, BBC Program guide, Weather) she wants based on the service cat-

egory (e.g. Social media, file storage, picture, program guides). For the services the user 

can define the interaction and the resources related to the interaction. 

In the service composition key elements are the services and data flow between them. 

After adding a service one can see the input and output possibilities offered by it. These 

5http://projects.spring.io/spring-framework/ 

http://projects.spring.io/spring-framework/
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inputs and outputs are parameterized and services are connected to each other using them. 

When the user has finished, Ilmarinen generates the Aino description. This is exported 

to Sampo engine for execution. The composition is stored in Sampo and can be accessed 

directly using a corresponding link. That allows the users to access and execute the com-

positions directly without using Ilmarinen. This also enables sharing service compositions 

among different users. 

Figure 3: Screenshot of Prototype of Ilmarinen 

4.4 Composite description language Aino 

Descriptions written in Aino language define the services and resources involved in the 

composition and the dataflow. A dataflow from one service to another means by getting 

resource presentation from one service with GET methods and using it as an input to an-

other service using PUT, POST, or GET methods. Services can provide three types of 

resources: resource out (for GETting a representation), resource in (for PUTting or POST-

ing), and resource in/out (for PUTting or POSTing and GETting). For data manipulation, 

control nodes, such as merge and select nodes, are used. 

The dataflow can be modeled as an acyclic graph structure, which consists of resources, 

control nodes, and dataflow connections between them. Control nodes are used for manip-

ulating resource representations, e.g. transforming or filtering data. 

In addition to resource, control nodes and dataflow connections, the dataflow includes 

definition of method calls that are executed when the composition is run. These method 

calls to the services are presented as GET, PUT, POST, and DELETE elements in the 

XML description. In addition, the composite service can receive method calls from other 

compositions using this as a service or from user agent initiation. These are presented as 

onPUT, onGET, onPOST, and onDELETE elements. Corresponding request and response 

message types (including data types) are described in the services' WADL documents. 
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These activities corresponding to REST operations are the same, which are used in BPEL 

for REST [16] proposal. 

Figure 4: Aino language structure 

To enable importing and exporting of compositions, Aino descriptions are transformed 

in XML format. The structure of Aino language is given in Figure 4. It is explained 

in detail using an example Aino description given below. The given description presents 

an example of sending links from Twitter tweets to Instapaper6. Instapaper is a service 

where users can add links to articles they found from the web that they want to read later. 

Resources part defines two resources, Twitter's user timeline and instapaper's add, which 

participate in the composition. User timeline returns the desired bumber of tweets from 

the specified user. Rs WADL was an example in section 4.1. Instapaper's add resource 

adds the link in the url parameter to the account whose username and password are in the 

respective parameters. 

The example composition consists of a receive message and two message invocations. 

Execution starts when the client invokes GET method on the composite resource (onGET 

element). Execution continues with a sequence of two invocations. First the composite 

service invokes GET method on Twitter and second it invokes POST method on Instapaper. 

<?xml version="1.8" encoding="UTF-8"?> 
«description name="tweetlinks2instapaper" > 
<doc>Send links from the 18 most recent tweets from the specified user to Instapaper.</doc> 
<services> 

«service name = "twitter" id="52d" /> 
«service name = "instapaper" id="52f" /> 

«/services? 

6 www.instapaper.com 

http://www.instapaper.com
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<resources> 
/resource uri="https://api.twitter.com/1.l/statuses/user_timeline.json" 

resource_id ="rl" service_id = "52d" /> 
<resource uri="https://www.instapaper.com/api/add" resource_id ="r2" service_id = "52f" /> 

</resources> 

<variables> 
/variable name="twitterparams" type="variableset" > 

/variable name="screen_name" type="string" open = "true" /> 
/variable name="count" type="integer" value="18" /> 

//variables 
/variable name="links" type="linklist" /> 
/variable name-"instapaperparams" type="variableset" > 

/variable name="username" type="string" value = "john.smith0gmail.com" /> 
/variable name="password" type="string" value="passwordl23" /> 
/variable name="urls" type="variablereference" value="links" /> 

//variables 
//variables* 

/dataflows 
zonGETs 

/requestsz/requests 
zresponseslinksz/responses 
zresource_idsr_comp//resource_ids 
/sequences 

/GETs 
zrequeststwitterparamsz/requests 
zresponseslinksz/responses 
/re source_i dsrl//resource_i ds 

z/GETs 
/POSTS 

zrequestsinstapaperparamsz/requests 
zresponsesz/responses 
zresource_idsr2//resource_ids 

z/POSTs 
//sequences 

z/onGETs 
//dataflows 
//descriptions 

Variables are used for storing and manipulating message values. For example, the 

given code listing defines three variables, which correspond to input and output message 

types of the used GET and POST methods. The variables twitterparams and instapaper-

params are of the type variableset which means that they contain multiple variables. These 

variables contain the parameters for the requests to the services. This is indicated in the 

Aino description by putting them into the request elements of the service call. The member 

variables of these sets screenname, count, username and password correspond directly to 

parameters defined in services' WADLs. So for example Twitter's user timeline method 

has a parameter named screenname. The variable links contains a list of links. Links 

from the Twitter method call's response are saved to this variable. How this information 

is extracted from the response is explained in section 4.5. The links variable is also the 

response of the composition which means that it will be shown to the user. The variable 

is also one of the request parameters for Instapaper because of the variable reference in 

the instapaperparams. Because Instapaper's api doesn't support sending multiple links in 

one request, the execution engine has to make multiple post requests but this detail doesn't 

matter to the Aino description. 

screenname is initialized, when the user fills in the required input data, when she 

https://api.twitter.com/1.l/statuses/user_timeline.json
https://www.instapaper.com/api/add
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decides to run the composition (see Figure 5). A control interface is used for specifying 

process instance specific information, such as initial value of process variables and repeti-

tion information, which is not part of Aino description. 

Sampo beta 

tweetiinks2instapaper 

Send links from the 10 most recent tweets from the specified user to instapaper. 
Twitter account the links are loaded from can be changed by giving screenname. 

sbsSoittorasia screenname 

G m n only once 

Repeat interval: Begin time: Begin date: 

weekly - 16:0000 j [7312014 

1 | Cancel [ j OK 

Figure 5: A Control User Interface for the service Compositions 

4.5 Data processing 

One challenge in combining different internet services into compositions are the different 

ways the services represent the same data. Many services deal with the same kind of 

data, e.g. photos or status updates. However, these services represent this data in different 

ways. One uses XML in representing its resources while another uses JSON. Even if 

both services in a composition use the same format the schema would very probably be 

different. Below is an example of how Twitter and Facebook represent a status update. 

Both service's status update contains the name of the poster, time of the posting and the 

actual content of the status. They have different names for these attributes and they also 

have a different time format for the posting time. In addition, each service has additional 

service specific information about the status update which is not shown here. 

Facebook: 
{ 

"id":"281192866592832", 
"from":{ 

"name":"Otto Hylli", 
"id":"18883825396838" 

"message":"Hello, world.", 
"updated_time":"2812-85-15T28:35:25+8888", 

} 

Twitter: 
{ 

"text": "Hello, world", 
"id": 377326766385573888, 
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"user": { 
"id": 918838997, 
"name": "Otto Hylli" 

>, 
"created_at": "Hon Aug 16 17:45:23 +8888 2813" 

Our solution for this problem is to define a set of generic data types that internet ser-

vices provide and consume. These types include among others status update, photo, link, 

location and product. For each data type we define a group of attributes that this kind of 

data generally has. For instance, a status update has the name of the poster, the content of 

the status update, and the time of the posting. For a service that returns representations that 

correspond to a certain data type the representation needs to be mapped to the data type. 

For example, in Twitter's and Facebook's cases mapping information tells how to build a 

status object from the JSON. For instance, Where in JSON the posting time of the update 

is and what the format of the time information is. This means that we need mechanisms to 

locate the interesting data from a structured document. 

For locating the desired information from the representation we use XPath [23] for 

XML representations and JsonPath [6] for JSON. XPath is a language for addressing spe-

cific parts of a XML document. It is based on XPath expressions which select the specified 

nodes from the XML. JsonPath is a similar system for JSON. XPath and JsonPath based 

data processing information can be added by an expert user directly to a service's WADL 

or to the service's metadatain the service registry. In both cases the metadata will contain 

the required formatting information such as the time format used. For instance, Twitter's 

time format can be represented with this pattern string: E MMM d H:m:s Z y. The pattern 

format used is from the standard Java class used in the implementation to parse dates. 

In the WADL XPath or JsonPath information is located inside the representation ele-

ment of a resource's method's response. The information itself is contained in the param 

elements. The parameter's name is a keyword that tells what kind of information it con-

tains, e.g. the author of a status update. The path attribute of the parameter contains the 

XPath or JSONPath expression itself. The example below shows the representation ele-

ments for Twitter's and Facebook's methods that return a list of status updates. A more 

refined description of the generic data types and service metadata that uses them will be 

published in [8]. 

Twitter: 

«representation mediaType="application/json"? 
«param name="status_text" type="xsd:string" path="$[*].text" /> 
«param name="status_creator" type="xsd:string" path="S[*].user.name" /> 
«param name="status_posted" type="xsd:string" path="$[*].createcLat" /> 

«/representation? 

Facebook: 
«representation mediaType="application/json"? 

«param name="status_text" type="xsd:string" path="J[*].message" /? 
«param name="status_creator" type="xsd:string" path="$[*].from.name" /? 
«param name="status_posted" type="xsd:string" path="J[*],updated_time" /? 

«/representation? 
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5 Related work 

The idea of cloud computing is based on on-demand services, which are provided as SaaS 

applications. In the cloud, traditional business process management tools are already avail-

able as SaaS. However, they are targeted for design and management of structured business 

processes. Requirements for on-demand processes differ from traditional BPM. The ideal 

solution is to provide an easy and instant mechanism to support execution of personal and 

dynamic processes, which utilize existing SaaS applications available on the cloud. 

5.1 Tools for mashup development 

Ad-hoc processes are often expected to live only for a short time. The lack of documenta-

tion and proper design might make them single-use only. Thus, they may not be reusable 

and flexible, but they always need to be recomposed. 

JOpera [15] is an Eclipse-based tool build for composing SOAP/WSDL and RESTful 

Web services. For software developers it provides many useful features such as process 

modeling, debugging and execution. For composing RESTful services JOpera uses BPEL 

for REST [16]. BPEL for REST is an extension to WS-BPEL to support compositions 

of RESTful Web services. The approach does not rely on usage of WSDL or other ser-

vice descriptions. Resources are defined in the BPEL for REST description as a resource 

construct, which defines the resource URI and supported operations. 

In [13], Marino et al. present HTML5-based prototype tool support for mashup de-

velopment. They present a visual language for service composition. However, the paper 

is missing details on the user interface and tool usage. Also, details on the composition 

description are not given. 

In [1], Aghee et al. discuss different types of mashups enabled by HTML5. A case 

example includes a location sensitive mobile mashup. The mashup runs natively in a mo-

bile device and uses the GPS sensor build-in the device. In addition, it uses external Web 

APIs. Location data is sent to a server, which executes API calls to external services. 

This enables sharing the application between several uses. Mobile mashups enable use of 

real-time data gathered from the sensors in a mobile phone, e.g. real-time navigation. 

Bottaro et al. present a simple visual language for composing location-based services 

[4], The user uses a repository of web widgets. Widgets are dragged and dropped to build 

UI for the application. The application logic is defined by drawing connections between 

data widgets. 

In [7], Gronvall et al. present ongoing work on user-centric service composition. GUI 

elements are prototypes of service invocations, which can be chained to compose data 

flows among services. They present a lightweight tool support for composing simple dy-

namic workflows, such as for combining SMS, email, and calendar services. Instead of 

modeling complicated workflows, the emphasis is on the user experience. 

In EzWeb project [11,12], a service-oriented platform for end-user mashup develop-

ment has been built. The idea is to provide gadgets (e.g. Twitter, Flickr) the user could 

add to her "application page" creating a set of different applications and web services. 

The user can also define dataflow between the gadgets by connecting "events" the gadgets 

could give, e.g., an image url could be connected to another image displayer gadget that is 
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able to show the picture. All these gadgets are implemented for EzWeb environment. That 

is, implementation of their user interface, the way of communicating with servers, their 

events and event slots, are specific for the EzWeb environment. In our approach, the aim 

is to provide means to compose existing services together and execute these compositions. 

Thus, our target is to support composition of any third party services by introducing their 

service descriptions to our system. 

5.2 Describing service compositions 

Some approaches for modeling and describing RESTful service compositions have been 

proposed. Guidelines for UML modeling of RESTful service compositions is presented 

in [17] by Rauf et al. The static resource structure is modeled using class diagrams. The 

behavioral specification of the composite service is given using state chart diagrams. 

In [24,25], Zhao et al. discuss formal describing of RESTful services and resources as 

well as RESTful composite services. Their main interests is on supporting automatic ser-

vice compositions. For service compositions they present a logic-based synthesis approach 

utilizing linear-logic and pii-calculus. 

In [2], Alarcon et al. state that many of the recent service composition approaches rely 

on operation-based models and neglect hypermedia characteristics of REST. As a solution 

for composing RESTful services, they present a hypermedia-driven approach realized by 

using resource linking language (ReLL) for service description. The approach aims to 

support machine-clients by enabling automatic retrieving of resources from a web site. 

For describing the composite resources PetriNets are used. As an example of a composite 

resource, a social network application was presented. 

6 Conclusions 

Cloud computing is based on on-demand services, which should be available as needed. 

Similarly, it should also enable on-demand service compositions. In this paper, an end-

user driven approach for personal service composition has been presented. The proposed 

tool support i.e. Aino service composer includes a composition designer running in a 

web browser and a server-side engine for storing and executing service compositions. The 

designer is designed for the end-users and it is used for creating personal service compo-

sitions. It focuses on end-user concepts and aims to hide complicated and unnecessary 

information, e.g. service descriptions, which are handled by the engine. Instead of han-

dling data types, the user is allowed to use concepts such as a picture or a photo gallery. 

The presented use cases concentrate on combining social media services into a composite 

service. Also, the user is allowed to define repeatable executions for checking updates 

from the services. 

To characterize the approach, it is designed for cloud environment providing a browser-

based tool for building service compositions. It is based on WADL descriptions, which are 

also used for generating GUI widgets for the end-user. In addition, it enables defining 

RESTful workflows as a composite service. 
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Our future work includes finalizing the implementation and conducting case studies on 

applying the approach utilizing the developed tool support. Our future plans also include 

experimenting the tool usage with novice users. 

References 

[1] Aghaee, S. and Pautasso, C. Mashup development with HTML5. In Proceedings 

of the 3rd and 4th International Workshop on Web APIs and Services Mashups, 

Mashups '09/' 10, pages 10:1-10:8, New York, NY, USA, 2010. ACM. 

[2] Alarcon, R., Wilde, E„ and Bellido, J. Hypermedia-driven RESTful service com-

position. In Proceedings of the 2010 international conference on Service-oriented 

computing, ICSOC' 10, pages 111-120, Berlin, Heidelberg, 2011. Springer-Verlag. 

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y„ Klein, J., Leymann, F, 

Liu, K., Roller, D„ Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S. 

Business Process Execution Language for Web Services Version 1.1, May 2003. 

http://www.ibm.com/developerworks/. 

[4] Bottaro, A., Marino, E„ Milicchio, F., Paoluzzi, A., Rosina, M., and Spini, F. Visual 

programming of location-based services. In Proceedings of the 2011 international 

conference on Human interface and the management of information - Volume Part /, 

HI' 11, pages 3-12, Berlin, Heidelberg, 2011. Springer-Verlag. 

[5] Fielding, R.T. REST: Architectural Styles and the Design of Network-based Software 

Architectures. Doctoral dissertation, University of California, Irvine, 2000. 

[6] Goessner, S. Jsonpath - xpath for json. http://goessner.net/articles/JsonPath/. 

[7] Gronvall, E„ Ingstrup, M., Plpger, M., and Rasmussen, M. Rest based service compo-

sition: Exemplified in a care network scenario. In Costagliola, G., Ko, A.J., Cypher, 

A., Nichols, J., Scaffidi, C„ Kelleher, C„ and Myers, B.A., editors, VL/HCC, pages 

251-252. IEEE, 2011. 

[8] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Resource description for end-

user driven service compositions. Submitted to 2nd International Workshop on Per-

sonalized Web Tasking (PWT 2014), 2014. 

[9] Hylli, O., Lahtinen, S., Ruokonen, A., and Systa, K. Service composition for 

end-users. In 13th Symposium on Programming Languages and Software Tools 

(SPLST'13), page pp.15,2013. 

[10] Internet Engineering Task Force (IETF), http://tools.ietf.org/html/rfc6749. The OAuth 

2.0 Authorization Framework, 2012. 

[11] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.J. EzWeb/FAST: Reporting on a 

successful mashup-based solution for developing and deploying composite applica-

tions in the "upcoming ubiquitous SOA". In Mobile Ubiquitous Computing, Systems, 

http://www.ibm.com/developerworks/
http://goessner.net/articles/JsonPath/
http://tools.ietf.org/html/rfc6749


398 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä 

Services and Technologies, 2008. UBICOMM '08. The Second International Confer-

ence on, pages 488^95,2008. 

[12] Lizcano, D„ Soriano, J„ Reyes, M., and Hierro, J.J. EzWeb/FAST: reporting on 

a successful mashup-based solution for developing and deploying composite appli-

cations in the upcoming web of services. In Proceedings of the 10th International 

Conference on Information Integration and Web-based Applications &• Services, ii-

WAS '08, pages 15-24, New York, NY, USA, 2008. ACM. 

[13] Marino, E„ Spini, F., Minuti, F., Rosina, M., Bottaro, A., and Paoluzzi, A. HTML5 

visual composition of rest-like web services. In 4th IEEE International Conference 

on Software Engineering and Service Science (ICSESS 2013), 2013. To appear. 

[14] Mikkonen, T. and Salminen, A. Towards a reference architecture for mashups. In 

Proceedings of the 2011th Confederated international conference on On the move 

to meaningful internet systems, OTM' 11, pages 647-656, Berlin, Heidelberg, 2011. 

Springer-Verlag. 

[15] Pautasso, C. Composing RESTful services with JOpera. In International Conference 

on Software Composition 2009, volume 5634, pages 142-159, Zurich, Switzerland, 

July 2009. Springer. 

[16] Pautasso, C. RESTful web service composition with BPEL for REST. Data KnowI. 

Eng., 68(9):851-866, September 2009. 

[17] Rauf, I., Ruokonen, A., Systa, T., and Porres, I. Modeling a composite RESTful web 

service with UML. In Proceedings of the Fourth European Conference on Software 

Architecture: Companion Volume, ECSA ' 10, pages 253-260, New York, NY, USA, 

2010. ACM. 

[18] Ruokonen, A., Pajunen, L., and Systa, T. Scenario-driven approach for business 

process modeling. Web Services, IEEE International Conference on, 0:123-130, 

2009. 

[19] Singhal, M., Chandrasekhar, S„ Ge, T., Sandhu, R„ Krishnan, R„ Ahn, G-J., and 

Bertino, E. Collaboration in multicloud computing environments: Framework and 

security issues. Computer, 46(2):76-84,2013. 

[20] W3C, http://www.w3.org/TR/wsdl. Web Services Description Language (WSDL) 1.1, 

2001. 

[21] W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 7.2,2007. Last 

visited December 2011. 

[22] W3C, http://www.w3.org/Submission/wadl/. Web Application Description Language 

(WADL), 2009. 

[23] W3C, http://www.w3.org/. XML Path Language (XPath) 2.0 (Second Edition), 2010. 

http://www.w3.org/TR/wsdl
http://www.w3.org/
http://www.w3.org/Submission/wadl/
http://www.w3.org/


Service Composition for End-Users 399 

[24] Zhao, H. and Doshi, P. Towards automated RESTful web service composition. In 

Web Services, 2009. ICWS 2009. IEEE International Conference on, pages 189-196, 

July. 

[25] Zhao, X., Liu, E., Clapworthy, G.J., Ye, N„ and Lu, Y. RESTful web service com-

position: Extracting a process model from linear logic theorem proving. In Next 

Generation Web Services Practices (NWeSP), 2011 7th International Conference on, 

pages 398-403, Oct. 





Acta Cybernetica 21 (2014) 401-366. 

Extensions to the CEGAR Approach on Petri Nets* 

Ákos Hajduí András Vörösj Tamás Barthaf and Zoltán Mártonka* 

Abstract 

Formal verification is becoming more prevalent and often compulsory in 

the safety-critical system and software development processes. Reachability 

analysis can provide information about safety and invariant properties of the 

developed system. However, checking the reachability is a computationally 

hard problem, especially in the case of asynchronous or infinite state systems. 

Petri nets are widely used for the modeling and verification of such systems. 

In this paper we examine a recently published approach for the reachability 

checking of Petri net markings. We give proofs concerning the completeness 

and the correctness properties of the algorithm, and we introduce algorithmic 

improvements. We also extend the algorithm to handle new classes of prob-

lems: submarking coverability and reachability of Petri nets with inhibitor 

arcs. 

Keywords: Petri Nets, reachability analysis, abstraction, CEGAR 

1 Introduction 

The development of complex, distributed systems, and safety-critical systems in 

particular, requires mathematically precise verification techniques in order to prove 

the suitability and faultlessness of the design. Formal modeling and analysis meth-

ods provide such tools. However, one of the major drawbacks of formal methods 

is their computation and memory-intensive nature: even for relatively simple dis-

tributed, asynchronous systems the state space and the set of possible behaviors 

can become unmanageably large and complex, or even infinite. 

This problem also appears in one of the most popular modeling formalisms, 

Petri nets. Petri nets have a simple structure, which makes it possible to use 

strong structural analysis techniques based on the so-called state equation. As 

structural analysis is independent of the initial state, it can handle even infinite 
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state problems. Unfortunately, its pertinence to practical problems, such as reach-

ability analysis, has been limited. Recently, a new algorithm [13] using Counter-

Example Guided Abstraction Refinement (CEGAR) extended the applicability of 

state equation based reachability analysis. 

Our paper improves this new algorithm in several important ways. The authors 

of the original CEGAR algorithm have not published proofs for the completeness 

of their algorithm and the correctness of a heuristic used in the algorithm. In this 

paper we analyze the correctness and completeness of their work as well as our 

extensions. We prove the lack of correctness in certain situations by a counterex-

ample, and provide corrections to overcome this problem. We also prove that the 

algorithm is incomplete due to its iteration strategy. We describe algorithmic im-

provements that extend the set of decidable problems, and that effectively reduce 

the search space. We extend the applicability of the approach even further: we pro-

vide solutions to handle Petri nets with inhibitor arcs, and the so-called submarking 

coverability problem. At the end of our paper we demonstrate the efficiency of our 

improvements by measurements. 

2 Background 

In this section we introduce the background of our work. First, we present Petri 

nets (Section 2.1) as the modeling formalism used in our work. Then we introduce 

the counterexample guided abstraction refinement method and its application for 

the Petri net reachability problem (Section 2.2). 

2.1 Petri nets 

Petri nets are graphical models for concurrent and asynchronous systems, providing 

both structural and dynamical analysis. Formally, a Petri net is a tuple PN = 

(P, T, E, W), where P is the set of places, T is the set of transitions, with P ^ 0 ^ T 

and P n T = 0, E C (P x T) U (T x P) is the set of arcs and W : E Z + is the 

weight function assigning weights w~(pj,U) to the edge (P j ,U ) € E and w+{pj,ti) 

to the edge (U,pj) G E [9]. 

A marking of a Petri net is a mapping m : P —\ Zq . A place p contains k tokens 

under a marking m if m(p) = k. The initial marking is usually denoted by mo-

A transition t; € T is enabled in a marking m, if rn{pj) > w~(pj, £,) holds 

for each pj G P with (P j ,U ) G E. An enabled transition t, can fire, consuming 

w~(pj,ti) tokens from places pj G P with (P j , t i ) G E and producing w+(pj,ti) 

tokens in places pj G P with (U,P j ) G E. The firing of a transition i , in a marking 

m is denoted by m[ti)m' where m' is the marking after firing £,. 

A word ex G T* is a firing sequence. A firing sequence is realizable in a marking 

m and leads to m', (denoted by m[<j)m'), if either m = m' and o is an empty 

word, or there exists a realizable firing sequence w G T*, a transition ti G T, and a 

marking m" such that m[w)m"[ti)m'. The Parikh image of a firing sequence o is a 

vector p(cr) : T —> Zq , where p(cr)(U) is the number of the occurrences of t, in a. 



Extensions to the CEGAR Approach on Petri Nets 403 

Petri nets can be extended with inhibitor arcs to become a tuple P N i = 

(PN,I), where I C (P x T) is the set of inhibitor arcs. There is an extra con-

dition for a transition f* G T with inhibitor arcs to be enabled: for each pj G P, if 

(Pj,U) G I , then m(pj) = 0 must hold. Petri nets extended with inhibitor arcs are 

Turing complete [10]. 

Reachabi l i ty problem. A marking m' is reachable from m if there exists a 

realizable firing sequence o G T*, for which to[<t)to' holds. The set of all reachable 

markings from the initial marking m 0 of a Petri net PN is denoted by R(PN, m0) . 

The aim of the reachability problem is to check if TO' G R(PN, TOO) holds for a given 

marking TO'. 

We define a predicate as a linear inequality on markings of the form Am > b, 

where A is a matrix and b is a vector of coefficients [6]. The aim of the submarking 

coverability problem is to find a reachable marking TO' G R(PN, to0), for which the 

given predicate Am' > b holds. 

The reachability problem is decidable [8], but it is at least EXPSPACE-hard 

[7]. Using inhibitor arcs, the reachability problem in general is undecidable [3], 

State equat ion. The incidence matrix of a Petri net is a matrix C|p|X|T|i where 

C(i,j) = w+(pi,tj) - w~(pi,tj). Let to and to' be markings of the Petri net, then 

the state equation takes the form to + Cx = to'. Any vector x G (Zq ) ' t ' fulfilling 

the state equation is called a solution. Note that for any realizable firing sequence 

a leading from to to to', the Parikh image of the firing sequence fulfills the equation 

m + Cp(<r) = to'. On the other hand, not all solutions of the state equation are 

Parikh images of a realizable firing sequence. Therefore, the existence of a solution 

for the state equation is a necessary but not sufficient criterion for the reachability. 

A solution x is called realizable if a realizable firing sequence o exists with p(<r) = x. 

T-invariants. A vector x G (Zq ) I t ' is called a T-invariant if Cx = 0 holds. A 

realizable T-invariant represents the possibility of a cyclic behavior in the modeled 

system, since its complete occurrence does not change the marking. However, 

during firing the transitions of the invariant, some intermediate markings can be 

interesting for us. 

Solut ion space. Each solution x of the state equation TO + Cx = TO', can be 

written as the sum of a base vector and the linear combination of T-invariants [13], 

which can formally be written as x = b + JT  niVi, where b is a base vector and n* 

is the coefficient of the T-invariant y,. 

2.2 The C E G A R approach 

Counterexample guided abstraction refinement (CEGAR) is a general approach for 

analyzing systems with large or infinite state spaces. The CEGAR method works 



404 Ákos Hajdú, András Vörös, Tamás Bartha, and Zoltán Mártonka 

on an abstraction of the original model, which has a less detailed state space repre-

sentation. During the iteration steps, the CEGAR method refines the abstraction 

using the information from the explored part of the state space. When applying CE-

GAR on the Petri net reachability problem [13], the initial abstraction is the state 

equation. Solving the state equation is an integer linear programming problem [5], 

for which the ILP solver tool can yield one solution, minimizing a target function 

of the variables. Since the algorithm seeks the shortest firing sequences leading to 

the target marking, it minimizes the function f(x) = X R t x(t). The feasibility of 

the state equation is a necessary, but not sufficient criterion for reachability, so the 

following situations are possible: 

• If the state equation is infeasible, the necessary criterion does not hold, thus 

the target marking is not reachable. 

• If the state equation has a solution which is realizable by some firing sequence, 

the target marking is reachable. 

• If the state equation has an unrealizable solution, it is a counterexample and 

the abstraction has to be refined. 

The purpose of the abstraction refinement is to exclude counterexamples from 

the solution space without losing any realizable solutions. For this purpose, the 

CEGAR approach uses linear inequalities over transitions, called constraints. 

Constraints. Two types of constraints were defined by Wimmel and Wolf [13]: 

• Jump constraints have the form \ti\ < n, where n £ Z+ , ti £ T and \ti\ 

represents the firing count of the transition t,. Jump constraints can be used 

to switch between base vectors, exploiting their pairwise incomparability. 

• Increment constraints have the form — n> where n, £ Z, n £ Zq , 

and ti € T. Increment constraints can be used to reach non-base solutions. 

As an example, consider the Petri net in Figure 1(a) with the reachability prob-

lem (1,0,1,0) £ R{PN, (0,0,1,0)). There are two base vectors for this problem: 

(1,0,0) (firing i0) and (0,1,1) (firing t\ and t2). The ILP solver yields the solution 

(1,0,0) first, which is unrealizable, but using the jump constraint |t0| < 1, the ILP 

solver can be forced to produce the realizable solution (0,1,1). Consider now the 

Petri net in Figure 1(b) with the reachability problem (1,0,1) £ R{PN, (0,0,1)). 

The only base vector for this problem is the vector (1,0,0) (firing to), which is 

unrealizable. Using an increment constraint |fi| > 1, the ILP solver can be forced 

to add the T-invariant {ti,¿2} to the new solution (1,1,1), which is realizable by 

the firing sequence a = (ii, ¿2)-

2.2.1 Part ia l solutions 

Given a Petri net PN = (P, T, E, W) and a reachability problem m' £ R(PN, m0), 

a partial solution is a tuple ps = (C, x, a, r), where: 
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O R 
P 2 t2 P1 

Figure 1: Example nets for jump and increment constraints 

• C is the set of (jump and increment) constraints, together with the state 

equation they define the ILP problem, 

• x is the minimal solution satisfying the state equation and the constraints in 

• o G T* is a maximal realizable firing sequence, with p(cr) < x, i.e., each 

transition can fire as many times as it is included in the solution vector x and 

if it is enabled it must fire, 

• r = x — p(cr) is the remainder vector. 

Generat ing part ial solutions. Partial solutions can be produced from a solu-

tion vector x (and a constraint set C) by firing as many transitions as possible. For 

this purpose, the algorithm uses a "brute force" method. The algorithm builds a 

tree with markings as nodes and occurrences of transitions as edges. The root of 

the tree is the initial marking mo, and there is an edge labeled by t between nodes 

mi and m 2 if mi [t)m2 holds. On each path leading from the root of the tree to a 

leaf, each transition f¿ can occur at most x(f¿) times. Each path to a leaf represents 

a maximal firing sequence, thus a new partial solution. Even though the tree can 

be traversed only storing one path in the memory at a time using depth-first search, 

the size of the tree can grow exponentially. Some optimizations to reduce the size 

of the tree are presented later in this section. 

A partial solution is called a full solution if r = 0 holds, thus p(er) = x, which 

means that <r realizes the solution vector x. For each realizable solution x of the 

state equation there exists a full solution [13]. This full solution can be reached by 

continuously expanding the minimal solution of the state equation with constraints. 

Consider now a partial solution ps = (C, x, cr. r), which is not a full solution, 

i.e., r / 0. This means that some transitions could not fire enough times. There 

are three possible situations in this case: 

1. x may be realizable by another firing sequence o', thus a full solution ps' = 

(C, x, o', 0) exists. 

2. By adding jump constraints, greater, but pairwise incomparable solutions can 

be obtained. 

C 
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3. For transitions t £ T with r(t) > 0 increment constraints can be added to 

increase the token count in the input places of t, while the final marking m! 

must be unchanged. This can be achieved by adding new T-invariants to 

the solution. These T-invariants can "borrow" tokens for transitions in the 

remainder vector. 

2.2.2 Generat ing constraints 

J u m p constraints. Each base vector of the solution space can be reached by 

continuously adding jump constraints to the minimal solution [13]. In order to 

reach non-base solutions, increment constraints are needed, but they might conflict 

with previous jump constraints. Jump constraints are only needed to obtain a 

different base solution vector. However, after the computation of the base solution, 

jump constraints can be transformed into equivalent increment constraints [13]. 

Increment constraints. Let ps = {C,x,cr,r) be a partial solution with r > 0. 

This means that some transitions (in r) could not fire enough times. The algorithm 

uses a heuristic to find the places and number of tokens needed to enable these 

transitions. If a set of places actually needs n (n > 0) tokens, the heuristic estimates 

a number from 1 to n. If the estimate is too low, this method can be applied again, 

converging to the actual number of required tokens. The heuristic consists of the 

following three steps: 

1. First, the algorithm builds a dependency graph [11] to collect the transitions 

and places that are of interest. These are transitions that could not fire, 

and places that disable these transitions. Each source SCC1 of the depen-

dency graph has to be investigated, because it cannot get tokens from other 

components. Therefore, an increment constraint is needed. 

2. The second step is to calculate the minimal number of missing tokens for each 

source SCC. There are two sets of transitions, Ti C T and X.t C T. If one 

transition in Ti becomes fireable, it may enable all the other transitions of 

the SCC, while transitions in X i cannot activate each other, therefore their 

token shortage must be fulfilled at once. 

3. The third step is to construct an increment constraint c for each source SCC 

from the information about the places and their token requirements. These 

constraints will force transitions (with r(t) = 0) to produce tokens in the given 

places. Since the final marking is left unchanged, a T-invariant is added to 

the solution vector. 

When applying the new constraint c, three situations are possible depending on 

the T-invariants in the Petri net: 

1 Source strongly connected component, i.e., one without incoming edges from other compo-
nents. 
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• If the state equation and the set of constraints become infeasible, this partial 

solution cannot be extended to a full solution, therefore it can be skipped. 

• If the ILP solver can produce a solution x + y (with y being a T-invariant), 

new partial solutions can be found. If none of them helps getting closer to a 

full solution, the algorithm can get into an infinite loop, but no full solution is 

lost. A method to avoid this non-termination phenomenon will be discussed 

later in this section. 

• If there is a new partial solution ps' where some transitions in the remainder 

vector could fire, this method can be repeated. 

Theorem 1. (Reachability of solutions) [13] If the reachability problem has a so-

lution, a realizable solution of the state equation can be reached by continuously 

adding constraints, transforming jumps before increments. 

2.2.3 Opt imizat ions 

Wimmel and Wolf [13] also presented some methods for optimization. The following 

are important for our work: 

• S tubborn set: The stubborn set method [11] investigates conflicts, concur-

rency and dependencies between transitions, and reduces the search space by 

filtering the transitions. The stubborn set method usually leads to a search 

tree with lower degree. 

• Subtree omission: When a transition has to fire more than once (x(i) > 1), 

the stubborn set method may not provide an efficient reduction. The same 

marking is often reached by firing sequences that are only different in the order 

of transitions. During the abstraction refinement, only the final marking of 

the firing sequence is important. If a marking m' is reached by firing the 

same transitions as in a previous path, but in a different order, the subtree 

after m' was already processed. Therefore, it is no longer of interest. 

• Fi l tering T-invariants: After adding a T-invariant y to the partial solu-

tion ps = (C,x,o,r), all the transitions of y may fire without enabling any 

transition in r, yielding a partial solution ps' = (C',x + y,o',r). The final 

marking and remainder vector of ps' is the same as in ps, therefore the same 

T-invariant y is added to the solution vector again, which can prevent the 

algorithm from terminating. However, during firing the transitions of y, the 

algorithm could get closer to enabling a transition in r. These intermediate 

markings should be detected, and be used as new partial solutions. 

3 Theoretical results 

In this section we present our theoretical results with regard to the correctness and 

completeness of the original algorithm. 
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3.1 Correctness 

Although Theorem 1 states that a realizable solution can be reached using con-

straints, we found that in some special cases the heuristic used for generating 

increment constraints can overestimate the required number of tokens for proving 

reachability. We prove the incorrectness by a counterexample, for which the original 

algorithm [13] gives an incorrect answer. 

Consider the Petri net in Figure 2 with the reachability problem (0,1,0,0,1, 

0,0,2) G R(PN, (1,0,0,0,0,0,0,2)), i.e., we want to move the token from p0 to 

Pi and p4. The example was constructed so that the target marking is reachable 

by the firing sequence crs = (£i, £21 £o, £5. £6, £3, £7, £4)1 realizing the solution vector 

x , = (1,1,1,1,1,1,1,1). 

The CEGAR algorithm does the following steps. First, it finds the minimal so-

lution vector xo — (1,0,1,1,1,0,0,0), i.e., it tries to fire the transitions to, £2, £3, £4-
From these transitions only to is enabled, therefore the only partial solution is 

ps0 = (0,Xo, op = (t0),r0 = (0,0,1,1,1,0,0,0)). At this point the algorithm looks 

for an increment constraint. The dependency graph contains transitions £2, £3, £4 
(since they could not fire) and places PO , P2 ,P3 (because they disable the previous 

transitions). The only source SCC is the set containing one place po with zero 

tokens (because £0 has consumed one token from there). The algorithm estimates 

that three tokens are needed in po, where only £1 can produce tokens. Therefore, 

the T-invariant {£1, £5,£6,£7} is added twice to the solution vector. This invari-

ant is constructed so that for each of its firing, a token has to be produced in 

places P2 ,P3,P4, which token can no longer be removed. In the target marking only 

one token can be present in these places, therefore the algorithm cannot find any 

realizable solution, which yields the incorrect answer "not reachable". 

Notice that the problem is the over-estimation of tokens required in p0 . Without 

forcing t0 to fire, the algorithm could get a better estimation. This would imply 

that the invariant {£1, £5, to, £7} is added only once to the solution vector, producing 

the realizable solution xa. The problem is that the algorithm always tries to find 

P7 £J PO t0 P I 

Figure 2: Counterexample for correctness 
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maximal firing sequences, though some transitions would not be practical to fire 

(to in the example above). Due to this, the estimated number of tokens needed in 

the final marking of the firing sequence may not be correct. 

3.1.1 Detect ing over-estimation 

Our improved algorithm counts the maximal number of tokens in each place during 

the firing sequence of the partial solution into a vector m m a x . If the final marking 

is not the maximal regarding a SCC, the algorithm might have over-estimated the 

required number of tokens. This can be detected by ordering the intermediate 

markings. Formally: an over-estimation can occur if a place p exists in a SCC, for 

which mmax(p) > m'{p) holds, where ml is the final marking of the firing sequence. 

If such situation occurs and we do not find a full solution, we say that the problem 

cannot be decided. Moreover, we also developed a new method that tries to find 

solutions in such situations. Our first idea was to forget the original estimation (n) 

and estimate one instead. However, we found that over-estimation is not a problem 

in most cases: the algorithm still finds a realizable solution, but not the minimal. 

Estimating one means a slow convergence to the actual number of missing tokens, 

so at first we always try with the estimation n, but if no full solution is found under 

that subtree, we backtrack and start a new search with n = 1. This new approach 

can handle the counterexample presented in Figure 2. After no full solution is 

found by adding the T-invariant {fi, to,tj} twice, we backtrack to pso and try 

to produce only one token in po- This implies that the {ti,ts,te, ¿7} is added only 

once to the solution vector, yielding the realizable solution xs. 

This way we can not only detect the possibility of over-estimation, but we 

can also find the solution in most cases. However, this method also has some 

limitations, which we present with the following example. Consider the Petri net in 

Figure 3 with the reachability problem (1,0,1,1) € R(PN, (0,1,0,1)), i.e., moving 

the token from pi to p2 and producing a token in po- A possible solution is the 

vector xs = (1,1,1,1), realized by the firing sequence os = (¿3, ¿i> ¿2)-

t2 P2 t0 

Pi 

Figure 3: Example on the limitations of the new approach 

The algorithm does the following steps. It finds that the minimal solution is 

xo = (1,1,0,0), i.e., firing to and t,\. Only t\ is enabled, thus one partial solution 

ps0 = (0, xo, cto = (ti), ro = (1,0,0,0)) can be found. The marking reached by a0 

is (0,0,1,1), where n = 1 token is missing from pi (to enable to). None of the 
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transitions can produce tokens in pi , so the algorithm cannot find any constraint. 

The algorithm detects over-estimation because pi had one token before firing t\. 

Even so, a new search cannot be started, since the original estimation is also n = 1. 

The problem is that the heuristic tries to produce tokens in a place (p4), which 

lacks tokens in the final marking, but had the required number of tokens at some 

point of the firing sequence (00). Without forcing fy to fire, a token would be 

missing from p2, where the T-invariant {t2, £3} could help. Finding the solution in 

such situations is an aim of our future work. 

3.2 Completeness 

To our best knowledge, the completeness of the algorithm has neither been proved 

nor disproved yet. When we examined the iteration strategy of the abstraction 

loop, we found a whole subclass of nets that cannot be solved with this strategy. 

As an example, consider the Petri net in Figure 4 with the reachability problem 

(1,1,0,0) G R(PN, (0,1,0,0)), i.e., we want to produce a token in p0. We con-

structed the net so that the firing sequence os = (ti,ti,t2,t3,t3,to,t\,t2, £5) solves 

the problem. The main concept of this example is that we lend an extra token in 

pi indirectly using the T-invariant {¿4, is}• 

When applying the algorithm on this problem, the minimal solution vector is 

xo = (1,0,0,0,0,0), i.e., firing to- Since to is not enabled, the only partial solution is 

ps0 = (0, xo, CTQ = (),ro = (1,0,0,0,0,0)). The algorithm finds that an additional 

token is required in pi and only t3 can satisfy this need. With an increment 

constraint ci : |t3| > 1, the T-invariant {t i , t 2 , t 3} is added to the new solution 

vector x\ = (1,1,1,1,0,0), giving us one partial solution psi = ({cij.aq.cri = 

(¿1 t ^ 3 ) 1 = r0). Firing the invariant {f i , f2 , t3} does not help getting closer to 

enabling £0, since no extra token can be "borrowed" from the previous T-invariant. 

The iteration strategy of the original algorithm does not recognize the fact that an 

extra token could be produced in p3 (using £4) and then moved in p4 , therefore it 

cannot decide reachability. 

<1 P2 

U 

t3 P3 h 

Figure 4: Counterexample of completeness 
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4 Algorithmic contributions 

In this section we present our algorithmic contributions. In Section 4.1 we show 

some classes of problems, for which the original algorithm cannot decide reachabil-

ity, but our improved algorithm solves these problems. In Section 4.2 we present two 

extensions of the algorithm, solving submarking coverability problems and handling 

Petri nets with inhibitor arcs. 

4.1 Improvements 

In the previous section we proved that the algorithm is incomplete, but during 

our work we found some opportunities to extend the set of decidable problems. 

Moreover, we developed a new termination criterion, which we prove to be correct, 

i.e., no realizable solution is lost using this criterion. 

4.1.1 New ordering of the intermediate markings 

When a partial solution ps = (C, x, cr, r) is skipped using the T-invariant filtering 

optimization, the original algorithm checks if it was closer to enabling a transi-

tion t in the remainder during the firing sequence o. This is done by "counting 

the minimal number of missing tokens for firing t in the intermediate markings 

occurring" [13]. We found that this criterion is not general enough: in some cases 

the total number of missing tokens may not be less, but they are missing from 

different places, where additional tokens can be produced. In our new approach, 

we use the following definition: 

Def in i t i on 1. An intermediate marking mi is considered to be better than the final 

marking m', if there is a transition t £ T, r(t) > 0 and place p with (p, t) £ E, for 

which the following criterion holds: 

m'(p) < w~(p,t) A mfip) > m'(p). (1) 

The left inequality in the expression means that in the final marking t is disabled 

by the insufficient amount of tokens in p. This condition is important, because we 

do not want to consider places that already have enough tokens to enable t. The 

right inequality means that p has more tokens in the intermediate marking mi 

compared to the final marking m!. 

Theorem 2. Definition 1 is a total ordering between the intermediate markings 

occurring in the firing sequence cr of a partial solution and the final marking reached 

by <7. 

Proof. We first show that Definition 1 includes the original ordering of the inter-

mediate markings. When the original criterion holds, the total number of missing 

tokens for enabling t at the marking mi is less than at m'. This means that at least 

one place p must exist, which disables t, but mfip) > m'(p), thus (1) must hold. 

Furthermore, Definition 1 also recognizes markings that are pairwise incomparable, 

because if there is at least one place p with lesser tokens missing, (1) holds. • 
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Coro l l a ry 1. The new ordering of intermediate markings extends the set of decid-

able problems. 

Definition 1 is more general than the original criterion, hence it does not reduce 

the set of decidable problems. On the other hand, we give an example when the orig-

inal criterion prevents the algorithm from finding the solution. Consider the Petri 

net in Figure 5 with the reachability problem (1,0,0,1) € R(PN, (0,1,0,1)), i.e., 

moving the token from p\ to po- The minimal solution vector is XQ = (1,0,0,0,0), 

i.e., firing t0, which is disabled by p2, therefore the only partial solution is pso = 

(0,xo,cro = (),r0 = (1,0,0,0,0)). The algorithm looks for increment constraints 

and finds that only t\ can produce tokens in p2. Consequently, the T-invariant 

{ti,t2} is added to the solution vector x\ = (1,1,1,0,0). There is one partial so-

lution psi = ({|fi| > l},2Li,<7i = {t\,t2),ri = ro) for xx, where the T-invariant is 

fired, but t0 still could not fire. This partial solution is skipped by the T-invariant 

filtering optimization, and in all of the intermediate markings of <T\, totally one 

token is missing from the input places of to. By using the original criterion, the 

algorithm terminates, leaving the problem as undecided. By using Definition 1, less 

tokens are missing from p2 after firing t\ than in the final marking. Continuing from 

here, to is disabled by pi, where t3 can produce tokens, therefore the T-invariant 

{t3. t.i} is added to the new solution vector x2 = (1,1,1,1,1). A full solution is 

found for x2 by the realizable firing sequence o2 = {t\,t3,t(h t2, tf). 

P3 t3 

P2 

Figure 5: Example net depicting the usefulness of the new ordering 

4.1.2 T-invariant filtering and subtree omission 

Using T-invariant filtering and subtree omission optimizations together can prevent 

the algorithm from finding realizable solutions. The order of transitions in the firing 

sequence of a partial solution does not matter, except in one case. When a partial 

solution is skipped, the algorithm checks for an intermediate marking that was 

closer to firing a transition in the remainder vector. By using subtree omission, 

intermediate markings can be lost. 

As an example consider the Petri net in Figure 6 with the reachability problem 

(1,0,0,0,3) £ R(PN, (0,0,0,0,3)), i.e., we want to produce a token in p0• A 
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possible solution is the vector xs = (1,1,1,2,2,3,3) realized by the firing sequence 
as = {to,te,to,ti,t4,t2,to,t\,to,to,t5,te,,to). 

Figure 6: An example where the order of transitions matter 

Here we present only the interesting points during the execution of the algo-

rithm. As a minimal solution, the algorithm tries to fire to, but it is disabled by the 

places p\,pi,po- The algorithm searches for increment constraints. All the three 

places are in different SCCs, so the algorithm first tries to enable to by borrowing 

a single token for all three places. By the T-invariant {¿i,£2, - • •,£e} a token is 

carried through places PI,P2,P3, which does not enable TO, but there are interme-

diate markings in which the enabling of to is closer. Continuing from any of these 

intermediate markings, another token is borrowed in the places P\,P2,P3, but to is 

not enabled yet. Here comes the different order of transitions into view: 

• If the two tokens are carried through places P\,P2,P3 together, there are 

intermediate markings that are closer to firing to, because previously two 

tokens were missing, but now only one. Continuing from these markings a 

third token is borrowed in places P\,P2,P3, enabling f0 and yielding a full 

solution. 

• If the two tokens are carried through places P\,P2,P3 separately (i.e., a token 

is carried through the places, while the other is left in p4, and this procedure is 

repeated), there are no intermediate markings of interest, because two tokens 

are still missing to enable to- In this case the algorithm will not find the full 

solution. 

The order of transitions is non-deterministic, thus it is unknown which order 

will be omitted. Therefore, in our approach we reproduce all the possible firing 

sequences without subtree omission when a partial solution is skipped, and check 

for intermediate markings in the full tree. Although this may yield a computational 

overhead in some cases, we might lose full solutions otherwise. 

4.1.3 New terminat ion criterion 

We have developed a new termination criterion, which can efficiently cut the search 

space without losing any full solutions. When generating increment constraints for 

a partial solution ps, as a first step the algorithm finds the set of places P' C P 
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where tokens are needed. Then it estimates the number of tokens required (n). 

At this point, our new criterion checks if there exists a marking m', for which the 

following inequalities hold: 

The first inequality ensures that at least n tokens are present in the places of P', 

while the others guarantee that the number of tokens in each place is non-negative. 

These inequalities define a submarking coverability problem. Using the ILP solver, 

we can check if the modified form of the state equation (which we discuss in Section 

4.2.1) holds for this problem. If the state equation does not hold, it is a proof that 

no such marking is reachable where the required number of tokens are present in 

the places of P'. Thus, ps can be omitted without losing full solutions. 

This approach can also extend the set of decidable problems compared to the 

former algorithm. Consider the Petri net in Figure 7 with the reachability problem 

(1,1,0) G R(PN, (1,0,0)), i.e., firing i0 to produce a token in p\. The algorithm 

would add the T-invariant , ¿2} again and again to enable io- Using T-invariant 

filtering we cannot decide whether there is no full solution or the algorithm lost it. 

Using our new approach we can prove that no marking exist, where two tokens are 

present in po, therefore no full solution exists. 

4.2 Extensions 

In this section we present two extensions of the CEGAR approach: solving sub-

marking coverability problems and handling Petri nets with inhibitor arcs. 

4.2.1 Submark ing coverability problem 

In Section 2 we introduced predicates of the form Am' > b, where A is a matrix 

and b is a vector of coefficients. In order to use the state equation, this condition 

on places must be transformed to a condition on transitions. 

At first we substitute m' in the predicate Am' > b with the state equation 

mo + Cx = m', which results inequalities of the form {AC):x > b — Atoq. This set 

m'(pi) > n 

(2) Pi€P' 

Vpj £ P : m'ipj) > 0. 

Figure 7: Example net for the new filtering criterion 
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of inequalities can be solved as an ILP problem for transitions. The extended algo-

rithm uses this modified form of the state equation, and expands it with additional 

(jump or increment) constraints. 

4.2.2 Petr i nets w i th inhib i tor arcs 

The main problem with inhibitor arcs is that they do not appear in any form in 

the state equation, which is used as an abstraction. Therefore, a solution vector 

may be unrealizable because inhibitor arcs disable some transitions. In this case 

tokens must be removed from some places. Our strategy is to add transitions to 

the solution vector, which consume tokens from such places. Increment constraints 

are suitable for this purpose, but they have to be generated in a different way: 

1. The first step is to construct a dependency graph similar to the original one. 

The graph consists of transitions that could not fire due to inhibitor arcs and 

places that disable these transitions. The arcs of the graph have an opposite 

meaning: an arc from a place to a transition means that the place disables the 

transition, while the other direction means that firing the transition would 

decrease the number of tokens in the place. Each source SCC of the graph is 

interesting, because tokens cannot be consumed from them by another SCC. 

2. The second step is to estimate the minimal number of tokens to be removed 

from each source SCC. There are two sets of transitions as well, T) C T and 

Xi C T. If one transition in T, becomes fireable, it may enable all the others 

in the SCC, while the needs of transitions in X i must be fulfilled at once. 

3. The third step is to construct an increment constraint for each source SCC, 

by firing transitions (with r(t) = 0) to consume the required number of tokens 

from the place of the SCC. 

When a partial solution is not a full solution, and there are transitions disabled 

by inhibitor arcs, the previous algorithm is used to generate the constraint. If there 

are transitions disabled by normal arcs as well, both the original algorithm and the 

modified version must be used, taking the union of the generated constraints. 

Inhibitor arcs also affect some of the optimization methods: 

• Stubborn sets currently do not support inhibitor arcs. 

• Using T-invariant filtering, an intermediate marking is now of interest when 

it has less tokens in a place, which is connected by inhibitor arc to a transition 

that cannot fire. 

• Our new termination criterion is extended to check whether a reachable mark-

ing exists where the required number of tokens are removed. 

5 Evaluation 

We implemented our algorithm in the PetriDotNet [1] framework to evaluate its 

performance. The run-time results can be seen in Table 1, where TO refers to 



416 A kos Hajdú, András Vörös, Tamás Bart ha, and Zoltán Mártonka 

Table 1: Measurement results for well-known benchmark problems 

Mode l S A R A Saturat ion O u r a lgor i thm 

CP-NR 10 0,2 s - 0,5 s 

CP_NR 25 I l l s - 2s 

CP_NR 50 TO - 16s 

MAPK 0,2 s - I s 

Kanban 1000 0,2 s TO I s 

FMS 1500 0,5 s TO 5s 

SlottedRing 50 - 4s 433 s 

DPhil 50 - 0,5 s 45 s 

an unacceptable run-time (> 600 seconds). The measured models are published 

in [4, 12, 13]. The numbers in the model names represent the parameters. We 

also measured a highly asynchronous, infinite state space consumer-producer model 

constructed by us (CP_NR in the table). 

We compared our solution to the original algorithm, which is implemented in 

the SARA tool [2]. Our implementation is developed in the C # programming 

language, while the original is in C/C++. This causes a constant speed penalty 

for our algorithm. Moreover, our algorithm examines more partial solutions, which 

also yields computational overhead. However, the algorithmic improvements we 

introduced in this paper significantly reduce the computational effort for certain 

models (see the consumer-producer model). In addition, our algorithm can in many 

cases decide a problem that the original one cannot. 

We also compared our algorithm to the well-known saturation-based model 

checking algorithm [4], implemented in our framework [12]. The lesson learned is 

that if the ILP solver can produce results efficiently (Kanban and FMS models), the 

CEGAR approach is faster by an order of magnitude than the saturation algorithm. 

When the size of the model makes the integer linear programming task difficult, it 

dominates the run-time, and saturation wins the comparison. 

6 Conclusions 

The theoretical results presented in this paper are twofold. On one hand, we proved 

the incompleteness of the iteration strategy of the original CEGAR approach by 

constructing a counterexample. We also presented a counterexample that proved 

the incorrectness of a heuristic used in the original algorithm. We corrected this 

deficiency by improving the algorithm to detect such situations. On the other hand, 

our algorithmic improvements reduce the search space, and enable the algorithm to 

solve the reachability problem for certain, previously unsupported classes of Petri 

nets. In addition, we extended the algorithm to solve two new types of problems, 

namely submarking coverability and handling Petri nets with inhibitor arcs. We 

demonstrated the efficiency of our improvements with measurements. 
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Designing and Implementing Control Flow Graph 

for Magic 4th Generation Language 

Richárd Dévai* Judit Jász* Csaba Nagy* and Rudolf Ferenc* 

Abstract 

A good compiler which implements many optimizations during its compi-

lation phases must be able to perform several static analysis techniques such 

as control flow or data flow analysis. Besides compilers, these techniques 

are common for static analyzers as well to retrieve information from source 

code, for example for code auditing, quality assurance or testing purposes. 

Implementing control flow analysis requires handling many special structures 

of the target language. In our paper we present our experiences in imple-

menting control flow graph (CFG) construction for a special 4th generation 

language called Magic. While we were designing and implementing the CFG 

for this language, we identified differences compared to 3rd generation lan-

guages mostly because of the unique programming technique of Magic (e.g. 

data access, parallel task execution, events). Our work was motivated by our 

industrial partner who needed precise static analysis tools (e.g. for quality 

assurance or testing purposes) for this language. We believe that our experi-

ences for Magic, as a representative of 4GLs, might be generalized for other 

languages too. 

1 Introduction 

Control flow analysis is a common technique to determine the control flow of a 

program via static analysis. The outcome of this analysis is the Control Flow Graph 

(CFG), which describes the control relations between certain source code elements 

of the application. A CFG is a directed graph: its nodes are usually basic blocks 

representing the statements of the code that are executed after each other without 

any jumps. These basic blocks are connected with directed edges representing the 

jumps in the control flow. A CFG is a useful tool for code optimization techniques 

(e.g. unreachable code elimination, loop optimization or dead code elimination). 

The first publications of using control flow analysis are from the 70s [1] and 80s [4, 

10, 21], but since then most of the compilers have implemented this kind of analysis 

to construct a CFG and implement optimization phases by using it. 

*FrontEndART Software Ltd, E-mail: devai8frontendeLrt.com 
t Department of Software Engineering, University of Szeged, Hungary, E-mail: 

{j asy,ncsaba,f erenc}8inf.u-szeged.hu 
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Although the basic structure of a CFG is quite common, the methods con-

structing it for applications are rather language dependent. Identifying control 

dependencies in special structures of the target language may result in special al-

gorithms. Moreover, some program elements or applications may require minor 

modifications in the structure of the CFG (e.g. nodes like entry nodes). 

In our paper, we present our experiences in implementing Control Flow Graph 

construction for a special language called Magic. This language is a so-called 4th 

generation language [22] because the programmer does not write source code in the 

traditional way, but he or she implements the application 'at a higher level' with 

the help of an application development environment (Magic xpa1). This unique 

programming technique has many differences compared to 3GLs which are the most 

common languages today (Java, C, C++, C# , etc.). Due to the programming 

style of Magic, we had to revise traditional concepts like program components, 

expressions and variables during the design of a CFG for Magic applications. 

The main contributions of this paper are (1) development of a CFG construc-

tion technique for applications developed in Magic xpa, (2) identification of CFG 

implementation differences in a 4GL context as opposed to 3GLs. 

Our work was motivated by our industrial partner who needed a tool set to 

perform precise static analysis for code auditing and to support their testing pro-

cesses. In the case of code auditing, the CFG is an important input for static code 

checker algorithms, while in the case of testing, the CFG is an input for algorithms 

which generate test scripts for automatic UI testing. Our experiences in Magic, as a 

representative of 4GLs could provide a good basis to implement CFG construction 

for other 4GLs too. 

2 Related work 

Control flow is a widely used information container for example in the compiler 

programs of 3GLs. The method of a CFG construction is well defined in [17]. We 

need to discover and identify the statements, and define basic blocks by selecting 

leader statements. Key steps are to define the structures to handle control passing, 

and the elements for those items of logic which implicitly influence the behavior of 

the control flow. 

Control flow analysis has many applications, such as program transformations 

or source code optimizations in compilers2 [11], rule checkers of analyzer tools [6, 

7, 20], security checkers [5], test input generator tools3 [25], or program slicing [23]. 

Program dependence analysis approaches are also based upon control dependencies 

computed by control flow analysis [9]. 

The implementation of control flow analysis might differ for different languages. 

There are many papers published about dealing with higher-order languages (e.g. 

Scheme), for instance the work of Ashley et al. [2] and the PhD thesis of Ayers [3] 

'Magic Software Enterprises Website: http://vww.magicsoftwaire.com 
2GCC Internals Online Documentation: http://gcc.gnu.org/onlinedocs/gccint/ 
3Prasoft Products: http://www.parasoft.com/jsp/products.jsp 

http://vww.magicsoftwaire.com
http://gcc.gnu.org/onlinedocs/gccint/
http://www.parasoft.com/jsp/products.jsp
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both summing up further works too [10, 21]. An extensive investigation had been 

done for functional languages too, which was recently summed up by Midtgaard in 

a survey [16]. 

However, CFG solutions for 4GLs are really limited. E.g. ABAP, the program-

ming language of SAP is a popular 4GL and there are only few published flow 

analysis techniques which mostly deal with workflow analysis [13, 24]. 

In our previous work [19] we implemented a reverse engineering tool set for 

Magic and we found a real need to adapt some of these techniques to the language. 

Besides our work, Magic Optimizer4, as a code auditing tool also shows this ne-

cessity. This tool checks for violations of coding rules (i.e. 'best practices'), and 

it is able to perform optimization checks and further analyses to give an extended 

overview of every part of a Magic application. 

3 Specialties of a Magic Application 

In the early 80's Magic Software Enterprises introduced a 4th generation language, 

called Magic. The main concept was to write an application in a higher level meta 

language (using already existing solutions for instance for data handling and user 

management) and let an application generator engine create the final application. 

A Magic application was runnable on popular operating systems such as DOS 

and Unix, so applications were easily portable. Magic evolved and new versions 

were released, uniPaaS and lately Magic xpa. Latest releases support modern 

technologies such as RIA, SO A and mobile development. 

The unique meta model language of Magic contains instructions at a higher 

level of abstraction, closer to business logic. When one develops an application in 

Magic, he or she actually programs the Magic Runtime Application Environment 

(MRE) using its meta model. This meta model is what really makes Magic a Rapid 

Application Development and Deployment tool. 

Magic comes with many GUI screens and report editors as it was invented to 

develop business applications for data manipulation and reporting. The most im-

portant elements of Magic are the various entity types of business logic, namely 

the data tables. A table has its columns which are manipulated by a number of 

programs (consisting of subtasks) binded to forms, menus and help screens. These 

items may also implement functional logic using logic statements, e.g. for select-

ing variables (virtual variables or table columns), updating variables, conditional 

statements. 

The main building blocks of a Magic application are defined in repositories. For 

example in the Data Sources repository one can define Data Objects. These are 

essentially the descriptions of the tables in a database. Using these objects Magic 

is able to handle several database management systems. 

The logic of an application is implemented in the programs stored in the Pro-

grams Repository. Programs are the core elements of an application. These are 

executable entities with several sub tasks. Programs or their tasks interact with 

4Magic xpa tools: http://www.magic-optimizer.com/ 

http://www.magic-optimizer.com/


422 Richárd Dévai, Judit Jász, Csaba Nagy, and Rudolf Ferenc 

the user through forms to show the results of the implemented logic. Forms are 

also parts of tasks or programs. 

Developers can edit a program with the help of the different views. The main 

views are the followings: 

Da t a View. Declares which Data Objects are bound to the programs. The binding 

generally means some variable declaration, where these declarations can be 

real or virtual. A real declaration connects a variable to a data table column, 

while a virtual declaration stores some precomputed data. 

Logic View. Defines Logic Units of a program. A task has a predefined evaluation 

order determined bz so-called execution levels, and Logic Units are the parts 

of a task to handle the different execution levels. E.g. Task Prefix is the first 

Logic Unit which is executed to initialize a task. Actually, Logic Units are 

the units where the developer can write 'code' like in a 3GL. We can define 

statements here to perform calculations, manipulate data, call sub tasks, etc. 

Statements appear as Logic Lines in the Logic Unit. 

Form View. Defines the properties of a window (e.g. title, size and position). 

Elements of a window can be typical UI elements such as controls or menus. 

A window is represented by a Form Entry in which we can use many built-in 

controls or our custom controls too. 

As it can be seen, a Magic 4GL application differs from the programs developed 

in lower level languages. Developers can concentrate on implementing the business 

logic and the rest is done by Magic xpa. 

4 Control flow graph construction 

In this section, we discuss the main definitions and steps of the control flow con-

struction for 3rd generation languages and introduce the specialties of the control 

flow graph construction for Magic as a representative of 4GLs. 

4.1 Definitions and general steps 

A control flow graph is a graph representation of the computation and the control 

flow in a program, as it can be seen in an example in Figure 1. The nodes of a 

CFG are basic blocks represented by rectangles. Each basic block represents a set 

of statements that are executed after each other sequentially. Branching can only 

exist at the end of blocks, after the execution of their last encapsulated statement. 

The first step in the control flow creation is to determine the starting points of 

basic blocks [17]. These statements are called as leaders, and a leader can be: 

• the first statement of a program, 

• any statement that is the target of a conditional or unconditional branch 

statement, 
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Control Flow Graph 

Figure 1: CFG of a simple conditional structure. 

• any statement that immediately follows a conditional or unconditional branch 

statement, 

• any statement that immediately follows a method invocation statement5. 

If we know the sequence of statements in a program and the leaders of basic 

blocks, we can determine the blocks by enumerating their statements from one 

leader to another, but not including the next leader or the end of the program. 

Compilers and source code analyzers first construct an intermediate representation 

of the source code, called abstract syntax tree (AST) that implicitly describes 

the sequence of statements. With the traversal of the AST we can determine 

the sequence of statements, and if we want to build the control flow with finer 

granularity, we can examine the evaluation order of the expressions. We will discuss 

finer representations under the examination of Magic expressions and call types in 

Section 5. 

In general, the control flow information of methods, procedures or the subrou-

tines of a program are represented individually. Due to technical reasons, each of 

these has two special kinds of basic blocks. The Entry block represents the entering 

of a procedure, while the Exit block represents the returning from a called proce-

dure. The potential control flows among procedures are represented as call edges. 

A connected control flow graph of a procedure with the call information gives the 

so-called interprocedural control flow graph (ICFG) of a program. Figure 2 shows 

an example of the ICFG, where call edges are represented as arrow-headed dashed 

lines between the call site and the Entry block of the called procedure, and the 

Exit block and the return statement in the caller ICFG component. In some cases, 

detecting procedure boundaries is not an easy task, and a call target or a branch 

instruction cannot be determined unambiguously. The earlier situation commonly 

appears in binary codes [12], while the later is typical in the presence of function 

pointers or virtual function calls in higher level languages. The problems appeared 

in 4GLs are discussed in the rest of this section. 

5 Method invocations should not be basic block boundaries in all cases only if we need compute 
some summarized information at the call sites in our connected application. 
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Figure 2: Example ICFG. 

4.2 Challenges in Magic 

Like compiler programs or other software analyzer tools do it, our first step is 

also to create an intermediate representation of a Magic application. We call this 

representation the Magic Abstract Syntax Graph (ASG)and its structure is defined 

by the Magic Schema [18]. The ASG allows us to traverse and process every 

required element of a Magic application in a well-defined hierarchical graph format 

through an API to determine the execution order of Magic statements. Nodes of the 

ASG have all the necessary attributes that can affect the control flow. E.g. ASG 

contains the propagation information of Event Handlers, which can terminate the 

execution of other event handlers, or the wait attribute of Raise Event, which 

determines the execution point of the given event. 

Developing an application in Magic requires a unique way of thinking since 

the programming language is unique itself. However this programming language 

preserves some of the main characteristics of procedural languages. Mostly, the 

main logic of an application can be programmed in a procedural way via control 

statements in programs and their subtasks. Programs can call each other and they 

can call their subtasks. Also, tasks can use variables for their computations, and 

they can have branches within their statements. These structures of the language 

make it possible to adapt the CFG construction of 3GLs to Magic 4GL. For example, 

for every potential target of the call sites of Magic (task, event handler, developer 

function) we make an intraprocedural control flow graph and we connect these 

graphs by call edges to get the ICFG. However, there are some structures in the 

language which make harder to construct the CFG of an application. Here, we 

discuss the challenges which we face in later sections. 

Tasks architecture has a special event-based execution system. There are 

different task types for different operations. For example, online tasks interact 

with the user and batch tasks run in background without any user interaction. 

Each task type has its own levels (e.g. task, record) and the developer can operate 

these with the so-called Logic Units. A user action or a state change in a program 
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can trigger predefined events that are also handled by the Logic Units of tasks. So, 

the statements (Logic Lines) of these Logic Units get executed if a certain event 

triggers them. The most challenging step to construct the CFG of a Magic program 

is to discover every circumstance that can change the flow of the control among 

Logic Units and Logic Lines. We have to understand and represent the effect of 

property changes which can influence the behavior of execution, and represent it in 

a well describing form. 

A Raise Event Logic Line raises an event which is later handled by an 

Event Logic Un i t . When an event is raised, the MRE immediately looks for 

the last available handler in the given task, and gives the control to the handler. 

This is the simplest case, the synchronous case. However, we could raise events 

asynchronously; or set the scope of handlers as they could be handled by parent 

tasks too, or only by the task which raised them; or every matching handler could 

terminate the chain of handlers if propagate property is set to 'no'. Describing the 

proper event handler chains within the CFG requires a complex traversal of logic 

units in the task hierarchy with respect to the influencing attributes. Our model is 

limited to those events which are raised by a code element or a form item. 

D a t a access is supported with a rich toolset in Magic to access databases. 

Magic provides support to many database management systems (RDBMSs) by 

handling connection, transactions and generation of queries. In general, we can 

choose from two options to perform our transactions. In the Physical mode other 

DB users see our changes in RDBMS log and we use the locking system of the 

DB server. In the Deferred mode Magic xpa is responsible for storing our changes 

and committing them when we have assembled our transaction within a running 

task. Besides the transactional modes, we have to select the method of update 

process for the records we use in the transactions. Different strategies give us 

opportunity to handle concurrency and integrity on record updates. During the 

creation of the CFG we have to handle the different event handlers based on the 

selected transaction mode and update strategy. 

Parallel task execution makes it possible to execute more programs in par-

allel. Parallel programs run in an isolated context where every loaded component 

of the main application are reloaded within the new context. In such context, a 

parallel program has its own copy of memory tables and its own database con-

nections with some limitations (e.g. it cannot store data in the main program or 

communicate directly with other running programs). Tasks can raise asynchronous 

events in the context of another program to communicate, or they can use shared 

variables through proper functions in expressions. Parallel processes can run in 

Single or Multiple instance modes. In the Single mode the context is the same for 

each instance of the task, while the Multiple mode uses different contexts for each 

task. At the CFG construction we have to simulate all hidden data copying and 

the parallel execution of statements. 

Forms have many uses during a program execution. In each case, we have 

to build the CFG according to the current use of forms. In a form a user can 

manipulate variable data, which appear in the running program as an assignment 

instruction, or the user can affect the running program behavior too. 
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5 Implementation details 

The process of CFG building has several phases. First, with the traversal of the 

ASG we determine the sequence of statements and the evaluation order of expres-

sions. During evaluation we collect information about calls, then we determine 

basic block leaders and finally, we build up the basic blocks for later processes. In 

our representation, each call site is a block boundary. 

To determine the execution order of the contained statements and form elements 

of an analyzed code, we traverse its ASG from the root node step by step in the tree 

hierarchy and we refine the control flow information among the sub components. In 

each step, we define the execution order of the composed nodes of an investigated 

ASG node and we augment the execution sequence with additional expressions 

or statements, if it is needed. We do this since many semantic elements of a 

programming language do not appear explicitly in the source code and so in its 

ASG representation. Due to the hierarchical traversal, the control flow information 

of descendant nodes is refined after the traversal of their ancestors. 

Rectangles in the figures of this section represent nodes, or groups of ASG nodes. 

Parallelograms denote branches where the possible flow of control depends on an 

attribute of Logic Units, Logic Lines, controls, variables, etc. Black arrows de-

note the control edges of the CFG, while dashed lines represent the call edges among 

the intraprocedural CFG components. Since in our representation call instructions 

are basic block boundaries, we represent each call with two virtual nodes called 

Ca l l S i te and Return Si te . In some cases, we introduce solutions of alternative 

program versions with the help of one figure. To distinguish the variations of these 

versions, we use black branching points on the paths where the behaviors of the 

different versions are differ. 

In the following sections, we discuss the cases where we could create general 

algorithms to process group of nodes with the same base type. Finally we intro-

duce some special solutions where the general algorithms are not able to describe 

precisely the real evaluation order of the descendants of the analyzed ASG node. 

5.1 General algorithms 

Tasks in the ASG represent either programs or their sub tasks. The final repre-

sentation of a Task is influenced by the implementations of its Logic Units, and 

its variables, but first we have to concentrate only on the skeleton of the tasks, 

since the finer control flows of Logic Units are determined in later steps of the 

traversal. 

When we reach a Task node in the traversal, first we create an intraprocedural 

CFG context for the Task node. Our second step is to collect the sequence of logic 

units that take part in the execution process of the task. These nodes axe the 

child nodes of the Task node in the ASG. Task, Group, and Record are subtypes of 

the Logic Unit, but of course, the existence of these elements are only optional in 

each Task. Pref ix and Su f f i x are sub categories of previous Logic Uni t subtypes 

controlled by an attribute. The subtype and the selected attribute value determine 
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Figure 3: Evaluated control flow of a Batch Task and a Logic Unit. 

the exact execution point and order of these Logic Units. So, we nominate the 

diversity of Logic Units with the addition of subtypes to their names as it can be 

seen in Figure 3. 

We do not connect every Logic Unit subtype in this step, only the Task, Group 

and Record. For the Event and Function subtypes of the Logic Unit we associate 

a distinct intraprocedural CFG and handle them separately since these kinds of 

Logic Units can be triggered several times from distinct points. 

Generated source codes and behaviors of MRE are different from the structure 

that we can see in Magic xpa while developing a Task, because variable declara-

tions and initializations are also parts of the execution of logic, but defined in a 

separated view as we showed it in Section 3. The creations of variables and default 

value assignments are at the start point of a task execution. These commands are 

gathered by the Record Main node. 

While Task and Group logic units have only two subcategories, Prefix, Suffix 

and Record logic units logically have three distinct in a loop of control. Each 

execution round of Record logic units could have an initialization part that does 

not appear in the code explicitly. Since it has an important effect on the control 

flow, we insert a virtual Record I n i t node into the flow of execution. If we do 

not find any initialization during the investigation of variables in the traversal of 

the record unit, or the task is not in 'write' mode and the initializations use real 

variables only, we can delete this Logic Unit from the CFG at the end of the 

traversal of the Task. During the traversal, we collect available data about Forms, 

their associated Controls and the logic related to them and map this information to 

a suitable structure of statements. This data is represented by the Form Entry node 

in the figure between the Record logic units as they handle the data initialization, 

pre- and post-processing of a record of a table. In the last step, we investigate the 

return expression node of the Task, and if it exits we connect it as the last item 

\ Incoming Call Edges 
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Figure 4: Control flow of Raise Events. 

before the Exit block of the Task. 

On the left side of Figure 3, we can see the execution order of a Batch Task or 

a Browse Task. This task contains variables, implements all possible Logic Unit 

subtypes, and defines a return expression. 

After visiting all the nodes of a Task, we are able to build up its basic blocks 

and determine the control and call edges among them. With this information we 

can derive the exact execution order of the statements and expressions. 

Each Logic Un i t consists of Logic Lines. Generally, Logic Lines have two 

distinct kinds. First, the execution of the logic line does not depend on its properties 

or on the execution of other logic lines; we handle them as they can run sequentially 

in the order of appearance until further checks. We refer to these as Common Logic 

Lines. The second kind is the so-called Raise Event with an attribute called 

wait that we have to observe. With the Raise Event nodes we determine the 

asynchronously executed Queued Raise Events according to Figure 3, if the value 

of the wait attribute is 'no'. The wait attribute of the Raise Event can have a 

'yes' or 'no' boolean constant value or the result of a boolean expression. Since 

the execution of these lines depend on the value of the wait attribute, we have 

two distinct cases. If this value is logically true the raise events are synchronous 

otherwise they Eire asynchronous. An illustration can be seen in Figure 4. 

The execution of a Logic Line depends on a condition. If this condition evalu-

ates to true, the flow of control goes into the statement, which describes the exact 

behavior of the logic line. Although this part of the evaluation of the logic lines is 

general, the behavior of the distinct subtypes of Logic Lines can be very different 

as we can see in the next section. 

5.2 Specific algorithms 

As it was mentioned in the last subsection, the Funct ion and Event Logic Un i t 

nodes are different from other logic units, but similar to each other. Since the exe-

cution of these units depend on their context, and their execution can be triggered 

from different points of the program, it is better to handle them in a similar way 

as we handled the Task nodes. Hence, for these nodes we created intraprocedural 
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Incoming Call Edges 
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Figure 5: CFG of Function Logic Unit. 

CFG representations which are callable from distinct program points. Next, we 

collect Logic Lines which are variable declarations from their contained Logic 

Lines, because they are not necessarily in order before all other Logic Lines, but 

executed collectively at the beginning of the execution of the Logic Unit. Next 

we have to perform an algorithm like we performed for Logic Units. The differ-

ence between Function and Event Logic Units is that the former could define a 

Return Expression declared by an attribute of the Logic Unit which is executed 

before the Queued Raise Events as it is shown in Figure 5. 

Logic Lines are evaluated through the traversal by specific evaluators. These 

elements of logic are much more unique from the point of view of control flow 

processing than the Tasks and Logic Units. We introduce some of these to show 

the variety and the complexity of their processing. 

A Block node is implemented by a Logic Line pair. A Wh i l e Block with 

its related End Block declare the start and the end of the Block. These two 

encapsulate the body of the Block. When we find a While Block in the ASG, 

we have to search its terminating End Block node, because they are not connected 

directly in the ASG. The condition of a While Block can be a 'yes' or 'no' constant 

or an Expression. Nesting Block nodes make it harder to carry out this task. The 

left hand side of Figure 6 shows the evaluation of a while structure. The structure 

of an I f Block is similar to the structure of a While Block. First, we have to 

search the corresponding End Block and Else Blocks for each I f Block node. 

The multiple selection is implemented by the optional condition argument of an 

Else Block node. 

The right side of Figure 6 shows a Call logic line which implements a call based 

on a Magic generated identifier of a program, a sub task or a public name, etc. 

A Ca l l logic line node has an optional argument list and could receive a return 

value. The passed-by-reference arguments are updated after the control is given 

back to the Return Site. To implement this behavior in the CFG, we have to 

create update nodes for them. Before the actual call, we insert a Ca l l S i te node 

into the CFG, while after the execution of the Exit Block of the called CFG we 
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Figure 6: CFG of a While block and a general Call logic line. 

nominate the return with a Return S i te node. 

Select Logic Lines defined in the Data View are separated from the code. 

Semantically these Select Logic Lines are executed in the Record Main and 

Record I n i t Logic Units during of a given task. Hence, handling expressions of 

Select Logic Lines is similar to the way we handle normal Logic Line types. 

All Expressions of Magic are arranged into subtypes by categories in our 

ASG representation. An Expression can be a literal, a unary or binary operation 

or a Function Call that refers to a built-in function or Function Logic Units. 

L i t e ra l s can make a reference to an identifier, a resource or a component, or they 

can contain a constant value. 

The control flow of a Function Ca l l can be built-up as a simpler Ca l l Logic 

Line, the only difference is that its arguments cannot be passed by reference. 

5.3 Associated control structures of Form logic 

One primary motivation of our work was to support the UI testing of Magic appli-

cations, so it is essential to represent control dependencies arising via UI elements 

such as controls of Forms as they provide the main interface for user interactions. 

Magic programs basically follow a strongly event driven model and most of the 

events are generated by the UI elements of Forms. 

In Magic, the structure of the UI or the layout of Forms and controls is readily 

available in the ASG, so thanks to the language, the connection between Controls 

and their related logic is also available (e.g. relation between an edit box and its 

related variable; or relation between a menu and the task to be executed). Based 

on this information, we can extend the CFG with UI elements and their control 

relations, so we can get a better view of the control flow than in an event-based 

context. 

There have been several attempts to develop techniques for the generation of 
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automated GUI tests with less or more success by abstract state machines, but most 

of the techniques are ad hoc, and mostly manual; in addition, there is also a great 

potential in modeling event interactions with directed graphs e.g. by modeling the 

event flows of applications as noted in [15]. Similarly, we represent events in the 

CFG as there is a great number of events built into Magic. 

There are several control types which we group into the following two logical 

classes based on the control structures that we handle them with: 

Groupi: Push But tons , Sub Forms, Menus, Sub Menus and Context menus 

Group2'- Input controls such as Ed i t boxes and Lists, Radio Buttons and Check 

Boxes 

Groupi contains items which are responsible for process control and embedding, 

while items of Group2 handle input data and could be wrapped into a validation 

context. 

Sub Forms are useful to integrate a task form into the form of another task 

while maintaining the subform's task data handling and record cycle activities as 

independent of the parent task. This is a good solution for reusing data, logic and 

also their GUI parts. 

Input controls (e.g. edit boxes) are useful for setting the value of a Real or 

Vir tua l Variable. These controls take input data to change the values of variables 

and there are several kinds of validators and programming logic (e.g. logic units) 

to handle their usage. 

Menus can be used to navigate between different programs in an application 

through calls and events, so they provide access to a large variety of functionalities. 

Push Buttons are good for triggering events to place several crucial behavior 

just in front of the user to ease navigation, and give an opportunity to stress the 

operations which should be emphasized. E.g. it is possible, but rather unusual to 

use a context menu in a calculator application to add numbers. 

In a form the simple behaviour would be that all the controls are related to 

each other, since the sequence of control invocations is undetermined and we need 

to represent all possible sequences (e.g. imagine the user pushing the buttons 

randomly). Representing this would radically increase the number of edges in the 

CFG, so for simplicity, we introduce the so-called entry nodes which virtually join 

all the controls in a Form. A Form can have multiple exit points depending on 

which Su f f ix follows the Form in the program. 

In Figure 7. we see the CFG part of a form structure with an example entry 

node, which we introduced before. The controls like Edit Box could be surrounded 

with different types of validation logic. In the case of Group2 controls, there is one-

to-one correspondence established by the language for variables, so to each Control 

a Variable with a Variable Logic Unit that is responsible for handling the changes 

of its value will be assigned. These Logic Units either receive the original value and 

the new one, or only one of them and they do an initialization, validation or checking 

step. 
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Figure 7: CFG context of a Form Entry and its encapsulated controls. 

Menus, Push Buttons and Sub Forms are different as they are responsible for 

navigation and encapsulation. Menus can mainly possess two different types of 

behavior as they can trigger events, or they can call other Programs. To represent 

this behaviour, we created a virtual Logic Unit called Form Logic Unit . The 

purpose of this virtual logic unit is to group together virtual raise event statements 

and call the statements which are stored in the ASG under the corresponding task. 

These virtual raise event statement simulate how the control of a form can actually 

raise an event in the control flow (see the Form Logic Unit node in Figure 7). 

Such a logic unit can have incoming control edges from Group2 controls. 

Push Buttons are similarly handled as Menus except that they cannot call other 

tasks only raise an event. 

A Sub Forms is an embedded form in another main Form. The content of the 

Sub Form is provided by a sub task of the task of its main form. In order to 

represent this structure in the CFG, Sub Forms are connected through a task Ca l l 

to their main Form. 

Program control can leave the form context through events related to task ter-

mination or user actions. This is symbolized by outgoing control edges in Figure 7. 

6 Evaluation 

We implemented our technique in C++ and verified it through result validations 

and performance tests. For this verification we created a testbed with 105 Magic 

applications which were specifically designed to implement special control struc-

tures in Magic. We created a simple batch script to construct the ASG and then 

the CFG for each application in this testbed. Then, we manually compared the 

constructed CFGs to the program code. To perform this comparison, we exported 

the constructed CFG to graphML format which can be easily visualized with yED6 . 

6yED Graph Editor: http://wwv.yworks.com/eii/products_yed_about.html 

http://wwv.yworks.com/eii/products_yed_about.html
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Exit 

Figure 8: Visualized ICFG by generated graphML dump. 

An exported picture of a sample graphML can be seen in Figure 8. The original 

code contains an infinite While Block. This information is shown in the figure 

too, where basic block with id 4 is unreachable. This information could be easily 

retrieved by API calls during the traversal of the CFG. Of course, in this case this 

possibly malformed control structure is recognized by Magic xpa too, it warns the 

programmer about the existence of the infinite loop. The example of the figure 

contains a call from the body of the While Block. This call also appeared in 

our ICFG. We compared all the resulting dumps with the original source code 

manually, and we found that each ICFG gave a good description of the possible 

execution paths of the original code. 

After manually evaluating all the constructed CFGs of the testbed, we evaluated 

our implementation on a larger application too (the demo application released with 

Magic xpa). Not only did we construct the CFG and check its consistency, but 

with profiling we gathered run-time statistics of our algorithms too. 

To verify the usability of our algorithms, we ran our implementation on an Intel 

XENON E5450 @ 3GHz 32 GB Windows Server 2008. As performance results 

on a medium sized sample project with nearly 200.000 nodes and about 500.000 

attributes we got a 0,598 seconds runtime of the ICFG computation. The ICFG 

computation was carried out in an affordable time, so it was adaptable in any 

approaches based on this information. 

7 Limitations of the approach 

Besides the shown advantages of our technique, there are a few limitations too. 

Here we describe two main limitations. 

Our event handling does not handle all the possible specialties of a Magic ap-
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plication. Currently, the implementation is able to follow the events that are raised 

and handled inside the code with a raise event statement or a certain logic unit. 

The internal events of Magic xpa (such as hotkeys) are not yet supported unless 

raised by a raise event statement. 

Our recent CFG model does not support the representation of parallel task 

executions given by section 4.2. To improve our model, we should investigate 

previous work about the limitations and possible application forms of CFG for 

parallelism support e.g. [14]. 

8 Summary and Future Work 

In our paper, we presented an application of CFG concepts for a specific 4th gener-

ation language, Magic 4GL. We used a static analysis approach to gain information 

from the generated Magic source code and to build a CFG with fine granularity. 

We created a reusable library for further use of our model which makes it possible 

to perform further analyses and process the CFG and ICFG structures which we 

created. We created a textual and an XML based graphML dump to make it easy 

to get an overview of the processed information. 

Our evaluation showed that the approach implemented is applicable for middle-

sized Magic applications. The method presented had an affordable space require-

ment and it constructed the CFG fast enough to analyze large projects too. 

Besides, we showed that implementing control flow analysis for a higher-level 

language, such as Magic, was possible via adapting 3GL techniques, but the unique 

structures of the language may result in special methods and structures in the 

CFG as well. For example, the use of Events enabled us to gather more precise 

information compared to 3GLs where these structures are mostly dynamic. 

Conceptually, the presented technique could be applied to other 4GLs too. The 

core elements of the CFG should be the same in a language independent way (e.g. 

UI handling), but special constructs of the language should require special solutions 

(e.g. events and raise event handling and the task record loop). 

We applied our work in a research project which was carried out in cooperation 

with our industrial partner to automatically generate test cases and test input for a 

GUI test automation tool for Magic [8]. Additionally, we targeted the development 

of a trace analyser tool to support coverage measurement purposes based on our 

CFG solution. In this project, we created a path analyser and generator tool for 

traversing the CFG and generating potential execution paths for the test scripts. 

As we expected, the growth of path space was exponential [15], so we had to 

apply several pre-filtering techniques over the CFG before or during the generation, 

although post-filtering was also possible, it was inefficient or very limited. We 

created an XML based filtering technique where we could select a sub-component 

of the CFG with the help of the work flow descriptions of the application analyzed 

(a work flow described a certain functionality with its related programs and tasks). 

After the filtering we could execute the script generator tool to create test cases for 

the Magic XPA application that we analyzed. Our results were promising, hence 
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our CFG technique seemed to be useful in supporting automatic UI testing with 

test script generation and validation via test coverage measurements. 
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Abstract 

Software testing is a very important activity in the software development 

life cycle. Numerous general black- and white-box techniques exist to achieve 

different goals and there are a lot of practices for different kinds of soft-

ware. The testing of embedded systems, however, raises some very special 

constraints and requirements in software testing. Special solutions exist in 

this field, but there is no general testing methodology for embedded systems. 

One of the goals of the C IRENE project was to fill this gap and define a 

general testing methodology for embedded systems that could be specialized 

to different environments. The project included a pilot implementation of 

this methodology in a specific environment: an Android-based Digital TV 

receiver (Set-Top-Box). 

In this pilot, we implemented method level code coverage measurement 

of Android applications. This was done by instrumenting the applications 

and creating a framework for the Android device that collected basic infor-

mation from the instrumented applications and communicated it through the 

network towards a server where the data was finally processed. The result-

ing code coverage information was used for many purposes according to the 

methodology: test case selection and prioritization, traceability computation, 

dead code detection, etc. 

The resulting methodology and toolset were reused in another project 

where we investigated whether the coverage information can be used to de-

termine locations to be instrumented in order to collect relevant information 

about software usability. 

In this paper, we introduce the pilot implementation and, as a proof-of-

concept, present how the coverage results were used for different purposes. 
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1 Introduction 

Software testing is a very important quality assurance activity of the software de-

velopment life cycle. With testing, the risk of a residing bug in the software can 

be reduced, and by reacting to the revealed defects, the quality of the software can 

be improved. Testing can be performed in various ways. For example, static test-

ing includes the manual checking of documents and the automatic analysis of the 

source code without executing the software. During dynamic testing the software 

or a specific part of the software is executed. Many dynamic test design techniques 

exist, the two most well known groups among them are black-box and white-box 

techniques. 

Black-box test design techniques concentrate on testing functionalities and re-

quirements by systematically checking whether the software works as intended and 

produces the expected output for a specihc input. The techniques take the software 

as a black box, examine "what" the program does without having any knowledge on 

the structure of the program, and they are not intrerested in the question "how?". 

On the other hand, white-box testing examines the question "How does the 

program do that?", and tries to exhaustively examine the code from several aspects. 

This exhaustive examination is given by a so-called coverage criterion which defines 

the conditions to be fulfilled by the set of statement sequences executed during the 

tests. For example, 100% instruction coverage criterion is fulfilled if all instructions 

of the program are executed during the tests. Coverage measures give a feedback 

on the quality of the tests themselves. 

The reliability of the test can be improved by combining black-box and white-

box techniques. During the execution of test cases generated from the specifications 

using black-box techniques, white-box techniques can be used to measure how com-

pletely the actual implementation is checked. If necessary, reliability of the tests 

can be improved by generating new test cases for the code fragments not verified. 

1.1 Specific problems with embedded system testing 

Testing in embedded environments has special attributes and characteristics. Em-

bedded systems are neither uniform nor general-purpose. Each embedded system 

has its own hardware and software configuration typically designed and optimized 

for a specific task, which affects the development activities on the specific system. 

Development, debugging, and testing are more difficult since different tools are 

required for different platforms. However, high product quality and testing that 

ensures this high quality is very important. Suppose that the software of a digital 

TV with play-from-USB capabilities fails to recover after opening a specific media 

file format and this bug can only be repaired by replacing the ROM of the TV. 

Once the TV sets are produced and sold, it might be impossible to correct this bug 

without spending a huge amount of money on logistic issues. Although there are 

some solutions aiming at the uniformisation of the software layers of embedded sys-

tems (e.g., the Android platform [12]), there has not been a uniform methodology 

for embedded systems testing. 
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1.2 The C I R E N E project 

One of the goals of the CIRENE project [19] was to define a general testing method-

ology for embedded systems that copes with the above mentioned specialities and 

whose parts can be implemented on specific systems. The methodology combines 

black-box tests responsible for the quality assessment of the system under test 

and white-box tests responsible for the quality assessment of the tests themselves. 

Using this methodology the reliability of the test results and the quality of the 

embedded system can be improved. As a proof-of-concept, the CIRENE project 

included a pilot implementation of the methodology for a specific, Android-based 

digital Set-Top-Box system. Although the proposed solution was developed for a 

specific embedded environment, it can be used for all Android-based embedded 

devices such as smart phones or tablets. 

The coverage measurement toolchain plays an important role in the method-

ology (see Figure 1). Many coverage measurement tools (e.g., EMMA [28]) exist 

that are not specific but can be used on Android applications. However, these are 

applicable only during the early development phases as they are able to measure 

code coverage on the development platform side. This kind of testing omits to test 

the real environment and misses the hardware-software co-existence issues which 

can be essential in embedded systems. We are not aware of any common toolchain 

that measures code coverage directly on Android devices. 

Our coverage measurement toolchain starts with the instrumentation of the ap-

plication under test, which allows us to the measure code coverage of the given 

application during test execution. As the device of the pilot project runs the Java-

based Android operation system, Java instrumentation techniques can be used. 

Then, the test cases are executed and the coverage information is collected. In the 

pilot implementation, the collection is split between the Android device and the 

used testing tool RT-Executor [24]: the service collects the information from the 

individual applications of the device, while the testing tool processes the informa-

tion (through its plug-ins). 

The coverage information gathered with the help of the coverage framework can 

be utilized by many applications in the testing methodology. They can be used for 

selecting and prioritizing test cases for further test executions, or for helping to 

generate additional test cases if the coverage is not sufficient. It is also useful for 

dead code detection or traceability links computation. 

The resulting methodology and toolset were reused in another project which 

aims usability testing on Android devices. In this project, we investigated whether 

the coverage information gathered by the described method can be used to deter-

mine locations in the code that must be "watched" during test executions in order 

to collect relevant information of the usability of the software. The long-term goal 

was to reduce the number of instrumentation points in the examined software which 

results in less performance decrease and, thus, supports aimed mass field testing. 

In this paper, we introduce the pilot implementation, discuss our experiments 

conducted to examine the further use of the coverage results, and evaluate these 

experiments. 
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Figure 1: Coverage collection methodology on the Set-Top-Box 

1.3 Paper structure 

The rest of the paper is organized as follows. In Section 2 we give an overview on the 

related work. Section 3 presents the implementation of the coverage measurement 

framework. In Section 4 some use cases are shown to demonstrate the usefulness of 

coverage information. Finally, we summarize our achievements and introduce some 

possible future works in the last section. 

2 Related Work 

In the CIRENE project, one of our first tasks was to assess the state-of-the-art in 

embedded systems testing techniques with special attention to the combined use of 

black and white-box techniques. As a result of this task we presented a technical 

report [3] in which we report only a few number of combined testing techniques 

that have been specialized and implemented in the embedded environment. 

Gotlieb and Petit [17] presented a path-based test case generation method. They 

used symbolic program execution and did not execute the software on the embedded 

device prior to the test case definitions. We use code coverage measurement of real 

executions to determine information that can be used in test case generation. 

José et al. [9] defined a new coverage metric for embedded systems to indicate 

instructions that had no effect on the output of the program. Their implementation 

used source code instrumentation and worked for C programs at instruction level, 

and had a great influence on the performance of the program. Biswas et al. [4] 

also utilized C code instrumentation in embedded environment to gather profiling 
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information for model-based test case prioritization. We use binary code instrumen-

tation at method level, use traditional metric that indicates whether the method is 

executed during the test case or not, and our solution has a minimal overhead on 

execution time. The resulting coverage information can also be used for test case 

selection and prioritization. 

Hazelwood and Klauser [18] worked on binary code instrumentation for ARM-

based embedded systems. They reported the design, implementation and applica-

tions of the ARM port of the Pin, a dynamic binary rewriting framework. However, 

we are working with Android systems that hides the concrete hardware architecture 

but provides a Java-based one. 

There are many solutions for Java code coverage measurement. For example, 

EMMA [28] provides a complete solution for tracing and reporting code coverage 

of Java applications. However, it is not concerning the specialities of Android or 

any embedded systems. 

Most of the coverage measurement tools utilize code instrumentation. In Java-

based systems, byte code instrumentation is more popular than source code instru-

mentation. There are many frameworks providing instrumenting functionalities 

(e.g., DiSL [21], InsECT [6, 26], jCello [27], and BCEL [2]) for Java. These are 

very similar to each other regarding their provided functionalities. We chose Javas-

sist [7] to be our instrumentation framework in the pilot project. 

Traceability links between requirements and source code are important in soft-

ware development. Automatic methods for traceability link detection include infor-

mation retrieval ([20, 1, 8]) and probabilistic feature location ([22]) and combined 

techniques ([11]). We used code coverage based feature location to retrieve trace-

ability information. 

3 Coverage Measurement Toolchain 

The implemented coverage measurement toolchain consists of several parts. First, 

the applications selected for measurement have to be prepared. This process in-

cludes program instrumentation that inserts extra code into the application so that 

the application can produce the information necessary for tracing its execution path 

during the test executions. The modified applications and the environment that 

helps collecting the results must be installed on the device under test. 

Next, tests are executed using this measurement environment and the prepared 

applications, and coverage information is produced. In general, test execution 

can be either manual or automated. In the current implementations, we use two 

different approaches for test automation. 

Within the CIRENE pilot implementation RT-Executor [24] (a black-box test 

automation tool for multimedia devices testing) is used as the automation tool. 

In the usability testing project we use a simplified tool in the testing process, 

which helps gathering and preparing the coverage information for the evaluation. 

The functions of this tool are based on the Robotium [16] framework. Robotium is 

an Android test automation framework that has full support for native and hybrid 
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applications and makes it easy to write powerful and robust automatic black-box 

tests for Android applications. 

During the execution of the test cases, the instrumented applications produce 

their traces which are collected, and coverage information is sent back to the au-

tomation tool. 

Third, the coverage information resulted from the previous test executions is 

processed and used for different purposes, e.g., for test selection and prioritization, 

additional test case generation, traceability computation, and dead code detection. 

In the rest of this section, we describe the technical details of the coverage 

measurement toolchain. 

3.1 Preparation 

In order to measure code coverage, we have to prepare the environment and/or 

the programs under test to produce the necessary information on the executed 

items of the program. In our case, the Android system uses the Dalvik virtual 

machine to execute the applications. Although modifying this virtual machine 

to produce the necessary information would result in a more extensive solution 

that would not require the individual preparation of the measured applications, 

we decided not to do so, as we assumed that modifying the VM itself had higher 

risks than modifying the individual applications. With individual preparation it is 

much easier to decide what to measure and at what level of details. So, we decided 

to individually prepare the applications to be measured. As we were interested in 

method level granularity, the methods of the applications were instrumented before 

test execution, and this instrumented version of the application was installed on 

the device. In addition, a service application serving as a communication interface 

between the tested applications and the network was also necessary to be present 

on the device. 

3.1.1 Ins t rumenta t ion 

During the instrumentation process, extra instructions are inserted in the code 

of the application. These extra instructions provide additional functionality (e.g., 

logging necessary information) but they should not modify the original behaviour 

of the application. Instrumentation can be done on the source code or on the binary 

code. 

In our pilot implementation, we are interested in method level code coverage 

measurement. It requires the instrumentation of each method inserting a code that 

logs the fact that the method is called. As our targets are Android applications 

usually available in binary form, we have chosen binary instrumentation. 

Android is a Java-based system which in our case means that the applications 

are written in Java language and compiled to Java Bytecode before a further step 

creates the final Dalvik binary form of the Android application. The transforma-

tion from Java to Dalvik is reversible, so we can use Java tools to manipulate the 
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Figure 2: Instrumentation toolchain 

program and instrument the necessary instructions. We used the Javass ist [7] li-

brary for Java bytecode instrumentation, apktool [13] for unpacking and repacking 

the Android applications, the dex2jar [14] tool for converting between the Dalvik 

and the Java program representations, and aapt [15] tool for sign the application. 

The Instrumentation toolchain (see Figure 2) is the following: 

• The Android binary form of the program needs to be instrumented. It is an 

. apk file (a special Java package, similar to the . j ar files, but extended with 

other data to become executable). 

• Using the apktool the .apk file is unpacked and .dex file is extracted. This 

. dex file is the main source package of the application, it contains its code in 

a special binary format. [15, 5] 

• For all .dex files the dex2jar is used to convert them to .jair format. 

• On the . j a r files we can use the JInstrumenter. The JInstrumenter is our 

Java instrumentation tool based on the Javass ist library [7]. 

JInstrumenter first adds a new collector class with two responsibilities to 

the application. On the one hand, it contains a coverage array that holds the 

numbers indicating how many times the methods (or any other items that is 

to be measured) were executed. On the other hand, this class is responsible 

for the communication with the service layer of the measurement framework. 

Next, the JInstrumenter assigns a unique number as ID to each of the meth-

ods. This number indicates the method's place in the coverage array of the 

collector class. Then a single instruction is inserted in the beginning of all 

methods which updates the corresponding element of the coverage array on 

all executions of the method. 

The result of the instrumentation is a new . j ar file with instrumented meth-

ods and another file with all the methods' names and IDs. 

• The instrumented . j a r files are converted to .dex files using the dex2jar 

tool again. 
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• Finally, the .apk file instrumented application is created by repacking the 

. dex files with the apktool and signing it with the aapt tool. 

During the instrumentation, we give a name to each application. This name 

will uniquely identify the application in the measurement toolchain, so the service 

application can identify and separate the coverage information of different applica-

tions. 

After the instrumentation, the application is ready for installation on the target 

device. 

3.1.2 Service appl icat ion 

In our coverage measurement framework implementation it is necessary to have 

an application that is continuously running on the Android device in parallel with 

the program under test. During the test execution, this application is serving as 

a communication interface between the tested applications and the external tool 

collecting and processing the coverage data. On the one hand this is necessary be-

cause of the rights management of the Android systems. Using the network requires 

special rights from the application and it is much simplier and more controllable to 

give these rights to only a single application than to all of the tested applications. 

On the other hand, this solution provides a single interface to query the coverage 

data even if there are more applications tested and measured simultaneously. 

In Android systems, there are two types of applications: "normal" and "service". 

Normal applications are active only when they are visible. They are destroyed 

when moved in the background, although their state can be preserved and restored 

on the next activation. Services are running in the background continuously and 

are not destroyed on closing. So, we had to implement this interface application as 

a service. It serves as a bridge between the Android applications under test and 

the "external world" as it can be seen on Figure 3. The tested applications are 

measuring their own coverage and the service queries these data on-demand. As 

the communication is usually initiated before the start and after the end of the test 

cases, this means no regular communication overhead in the system during the test 

case executions. 

Messages are accepted from and sent to the external coverage measurement 

tools. The communication uses JSON [10] objects (type-value pairs) over the 

TCP/IP protocol. Implemented messages are: 

N E W T C The testing tool sends this message to the service to sign that there is 

a new test case to be executed and asks it to perform the required actions. 

A S K The testing tool sends this message to query the actual coverage information. 

C O V E R A G E D A T A The service sends this message to the testing tool in re-

sponse to the A S K message. The message contains coverage information. 

Internally, the service also uses JSON objects to communicate with the instru-

mented applications. Implemented signals are: 
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Figure 3: Service Layer 

reset With this signal the service asks the apps to reset the stored coverage values. 

ask The service sends this signal to query the actual coverage information. 

coverage da ta The application sends this message to the service in response to 

the ask signal. The message contains coverage information. 

3.1.3 Instal lat ion 

To measure coverage on the Android system, two things need to be installed: the 

particular application we want to test and the common service application that 

collects coverage information from any instrumented application and provides a 

communication interface for querying the data from the device. 

The service application needs to be installed on a device only once; this single 

entity can handle the communication of all tested applications. 

The instrumented version of each application that is going to be measured must 

be installed on the Android device. The original version of such an application 

(if any) must be removed before the instrumented version can be installed. It is 

necessary because Android idetifies the applications by their special android-name 

and package, and our instrtumentation process does not change these attributes 

of the applications; it only inserts the appropriate instructions into the code. Our 

toolchain uses the adb tool (can be found in Android Development Kit) to remove 

and install packages. 

3.2 Execution 

During test execution, the Android device executes the program under test and the 

service application simultaneously. The program under test counts its own coverage 
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information and sends this information when the service layer application asks for 

it. The coverage information can be queried from this service layer application 

through network connection. 

We used two possible modes of test execution: manual and automated. Either 

mode is used, the service layer application must be started prior to the beginning 

of the execution of the test cases. It is done automatically by the instrumented 

applications if the service is not running already. 

We implemented a simple query interface in Java for manual testing, a plug-in 

for the RT-Executor [24], and a simple set of functions for the Robotium [16]. The 

two automated frameworks use different yet somewhat similar approaches. 

On one hand, we used the RT-Executor, which reads the test case scripts and 

executes the test cases. The client side of the measurement framework is contained 

in a plug-in of the automation tool, and this plug-in must be controlled from the 

test case itself. Thus, the test case scripts must be prepared in order to measure 

the code coverage of the executed applications. 

The plug-in can indicate the beginning and the end of the particular test cases 

to the service, so the service can distinguish the test cases and separate the col-

lected information. In order to measure the test case coverages individually, one 

instruction must be inserted in the beginning of the test script to reset the coverage 

values and one instruction must be inserted in the end instructing the plug-in to 

collect and store coverage information belonging to the test case. 

During test execution the following steps are taken: 

• The program under test (PUT) is started. 

• The start of the program triggers the start of the measurement service if 

necessary. Then PUT connects to the service and registers itself by its unique 

name given to it in instrumentation process. 

• The test automation system starts a test case. The test case forces the client 

of the automation system to send a N E W T C message to the service. The 

service sends a reset signal to PUT, which resets the coverage array in its 

collector class. The service returns the actual time to the client. 

• The test automation system performs the test steps. PUT collects the cover-

age data. 

• The test case ends. The client of the automation tool sends an A S K message 

to the service. The service sends an ask signal to PUT, which sends back the 

coverage data to the service. The service sends back the coverage data and 

the actual time to the client. 

• The client calculates the necessary information from the coverage data and 

stores it in the local files. The stored data are: execution time, trace length, 

coverage value, lists of covered and not covered methods. Another plug-in 

decides if the test case was passed or failed and stores this information in 

other local files. 
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These steps are repeated during the whole test suite execution. At the end, the 

coverage information of all the executed test cases are stored in local files and are 

ready to be processed by different stages of the testing methodology. 

On the other hand, we used the Robotium framework as a black-box test aiding 

tool, the Android testing API, and JUnit as the testing environment. Robotium 

provides useful functions to help accessing the graphical user interface layer of 

Android applications. This way it makes easy to write JUnit test cases which test 

any application without user interaction. 

In this case, the Android framework executes the JUnit test cases like RT-

Executor executes its test scripts. The client-side of the measurement framework 

is contained in a TestHelper class that controls data flow during test execution. 

Similar to the previous settings, this class must be controlled from the test case 

itself, so the test cases must also be prepared in order to measure code coverage. 

The helper class works like the plug-in of the RT-Executor. Thus, the execution 

steps are very similar to those mentioned above except that only the coverage 

information is stored at the end. 

3.3 Processing the Data 

As we mentioned above, the client side of the coverage measurement system is 

realized as a plug-in of the RT-Executor tool and as an extension to the Robotium 

framework. 

Figure 4: Test execution framework with coverage measurement 

In the RT-Executor settings (Figure 4) the plug-in is controlled from the test 

cases. It indicates the beginning and the end of a test cases to the service layer 

application. The service replies to these messages by sending the valuable data 

back. When the measurement client indicates the start of a test case (by sending a 

N E W T C message to the service), the service replies with the current time which 

is stored by the client. At the end of a test case (when an A S K message is sent 

by the client), the service replies with the current time and the collected coverage 

information of the methods. 
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When the coverage data is received, the measurement client computes the ex-

ecution time, trace length (the number of method calls), and the list of covered 

and not covered methods' IDs. Then, the client stores these data in a result file 

for further use. The client makes other files, the trace files, separately for each 

test case. Such a trace file stores the identifiers of the methods covered during the 

execution of the test case. 

Figure 5: Robotium based test execution environment with the integrated 

TestHelper 

In the Robotium settings (Figure 5) the communication between the service 

layer and the tested application is very similar to the RT-Executor based one. The 

difference is that the test cases are executed directly by the device and that instead 

of an external plugin, an internal test helper will communicate with the service 

application and will produce the coverage data. 

As an alternative client, we implemented a simple standalone Java application 

that is able to connect to the measurement service. This client is able to visual-

ize the code coverage information online, and is useful during the manual testing 

activities. 

3.4 Applications on the Measurement Framework Results 

The code coverage and other information collected during the test execution can 

be used in various ways. In the pilot project, we implemented some of the possible 

applications. These implementations process the data files locally stored by the 

client plug-in. 



Code Coverage Measurement Framework for Android Devices 451 

3.4.1 Test Case Selection and Prior i t izat ion 

Test case selection defines a subset of a test suite based on some properties of the 

test cases. Test case prioritization is a process that sorts the test suite elements 

according to their properties [29]. A prioritized list of test cases can be cut at some 

points resulting in a kind of selection. 

Code coverage data can be used for test case selection and prioritization. We 

implemented some selection and prioritization algorithms as a plug-in of the RT-

Executor, which utilizes the code coverage information collected by the measure-

ment framework: 

• A change-based selection algorithm that used the list of changed methods 

and the code coverage information to select the test cases that covered some 

of the changed methods. 

• Two well-known coverage-based prioritization algorithms: one that prefers 

test cases covering more methods; and another that aims at higher overall 

method coverage with less test cases. 

• A simple prioritization that used the trace length of the test cases. 

3.4.2 Not Covered Code 

Not covered code plays an important role in program verification. There are two 

possible reasons for a code part not being covered by any test case executions. The 

test suite can simply omit its test case, in which case we have to define some new 

test cases executing the missed code. It can also happen that the not covered code 

cannot be executed by any test cases, which means that the code is dead. In the 

latter case, the code can be dropped from the codebase. 

In our pilot implementation, automatic test case generation is not implemented. 

We simply calculate the lists of methods covered and not covered during the tests. 

These lists can be used by the testers and the developers to examine the methods in 

question and generate new test cases to cover the methods, or to simply eliminate 

the methods from the code. 

3.4.3 Traceability Calcu lat ion 

Traceability links between different software development artifacts play a very im-

portant role in the change management processes. For example, traceability infor-

mation can be used to estimate the required resources to perform a specific change 

or to select the test cases related to the change of the specification. Relationship 

exists between different types of development artifacts. Some of them can simply 

be recorded when the artifact is created, some of them must be determined later. 

We implemented a traceability calculator that computes the correlation between 

the requirements and the methods. The correlation computation is based on two 

binary matrices: the pre-defined relationship matrix between the requirements and 
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the test cases and the matrix between the test cases and the methods (code cover-

age). From these matrices a binary vector can be assigned to each requirement and 

method representing whether the test cases assigned to the elements of this vector 

have relationship to the given requirement or method. If a requirement-method pair 

is assigned with high correlation (i.e., their assigned binary test case vectors are 

highly correlated), we can assume that the required functionality is implemented in 

the method. To calculate the correlation of these binary vectors we implemented 

three different well-known methods: the Pearson's product-moment coefficient [25], 

the Kendall's correlation coefficient [25], and a Manhattan distance based method 

where the similarity coefficient was defined as 

(i) SM(a,b) = n— -
1 + l i = i i  ai ~ b 

The use of the information that is extracted from the results of the correlation 

computational processes can be diverse. For example, it can be used to assess the 

number of methods to be changed if the particular requirement changes. Addition-

ally, as we observed during our usability testing project, if we define functionalities 

closely related to the usage of UI elements, then it can indicate the relations between 

these graphical elements and the parts of the code-behind. 

4 Usage and Evaluation 

In this section, we present and evaluate some use cases to demonstrate the usability 

of the measurement toolchain. 

4.1 Additional Test Case Generation 

In the pilot project our target embedded hardware was an Android-based Set-

Top-Box. We had this device with different pre-installed applications and test 

cases for some of these apps. Considering the available resources we decided to 

test our methodology and implementation on a media settings application. After 

executing the tests of this application with coverage measurement, we found that 

the pre-defined tests covered only 54% of the methods. We examined the methods 

and defined new test cases. Although the source code of this application was not 

available, based on the not covered method names and the GUI, we were able to 

define new test cases that raised the proportion of covered methods to 69%. This is 

still far from the required 100% method level coverage, but shows that the feedback 

on code coverage can be used to improve the quality of the test suite. 

4.2 Traceability Calculation 

We made two experiments with the framework using it for traceability calculation. 

First, in the CIRENE pilot project a simple implementation that is able to de-

termine the correlation between the code segments and the requirements was made. 



Code Coverage Measurement Framework for Android Devices 453 

We did not conduct detailed experimentation in this topic, but we did test the tool. 

Instead of the requirements, we defined 12 functionalities performed by three media 

applications (players) on our target Set-Top-Box device. Then, we assigned these 

functionalities to 15 complex black-box test cases of the media applications and ex-

ecuted the test cases with coverage measurement. The traceability tool computed 

correlations between the 12 functionalities and 608 methods, and was able to sep-

arate the methods relevant in implementing a functionality from the not relevant 

methods. 

In the experiment connected to the usability testing project our direct goal was 

to investigate whether the coverage information could be used to determine a small 

set of program locations to be instrumented in order to collect relevant information 

for usability analysis. The main idea was that by reducing the number of instru-

mentation points needed for comprehensive usability testing we would be able to 

minimize the possible negative effects on the performance of the application un-

der test and, therefore, analysing complex applications would become easier. We 

conducted an experiment involving 10 small to medium sized Android applications 

(see Table 1). Test cases were created for the applications each one modelling some 

typical complex usage sessions. Next, we defined some functionalities for each ap-

plication. This measurement aimed to verify that automatic methods are able to 

uncover relevant traceability links, and to evaluate the efficiency of different corre-

lation computation methods in indicating traceability links between the artefacts. 

Table 1: List of applications used for experiments 

Application Classes Methods Functionalities Test cases 

AO 134 671 4 13 

AX 144 1083 4 25 

A2 303 1675 5 12 

A3 545 2565 9 12 

A4 812 3897 5 14 

A5 861 6760 5 11 

A6 1257 9619 5 12 

A7 1519 11854 5 11 

A8 1537 11166 5 15 

A9 4247 24747 5 12 

In order to evaluate the results of the three different computations we exam-

ined the functionalities and methods of the applications and created reference links 

between them by manually classifying the methods of each application and con-

necting them to the functionalities. First the functionalities were determined by 

usage scenarios. Next, we used some kind of semantic similarity: words seman-

tically connected to the determined functionalities and usual Android UI element 

name fragments were searched for in the class and method names. Functionalities 
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were initially assigned with the matching elements. Then this initial classification 

was refined manually by examining each program element and looking for hidden 

or false reference links. 

For evaluating the traceability calculation methods and comparing them to our 

manual method, we used the precision, recall, and F-measure metrics [23]. The first 

step of assessing these metrics was to compare the manually determined reference 

links to the function-method traceability links that were selected by the different 

correlation based traceability calculation methods. The comparison of the reference 

and the computed links classified each traceability link as true or false positive, 

and each lack of link as true or false negative records [23] for a calculation method. 

Based on this classification of links, the three metric values were computed for each 

traceability calculation method and for all applications. 

All of the used correlation computation methods assigns a real value within 

an interval ([—1,1] or [0,1]) to a functionality-method pair, but the existence of 

the link is a binary information. To evaluate the methods we had to define some 

thresholds to convert real values into true and false values. As the different methods 

give different numbers, we could not use the same value for all the three ones. Thus, 

we checked the precision, recall and F-measure values of different threshold values 

for each methods and computed averages for all applications. The results are shown 

in Figure 6. 

By comparing the curves, we can observe that precision first slightly improves 

as the treshold grows, then it suddenly drops. Although completeness cannot be 

totally ignored, for our purposes less noise (fewer false positives) in the generated 

data is more important than completeness. Thus, we have chosen to select tresholds 

where the precision is maximal before its drop down. It resulted in 0.8, 0.3, and 

0.1 treshold values for methods Pearson, Manhattan, and Kendall, respectively. 

Table 2 shows the precision, recall, F-measure values of the three computation 

methods using the previously defined threshold values. As can be seen, in half of 

the cases the Pearson method produces the smallest set, and in four cases of them 

this is the best choice according to the precision. Manhattan and Kendall methods 

produce the same smallest sets in three cases and each of them produce the smallest 

set individually in one case. However, the precision for these sets is always the best 

among the three methods. 

These results show that any of these three methods can be effectively used for 

calculating traceability between source code and functionalities of a software. For 

these 10 applications, the Pearson method seems to be slightly better than the other 

two, but the results are not convincing. Which is the best is probably depending 

on some other characteristics of the software. 

Based on these results we can say that the investigated methods that infer trace-

ability links from code coverage data can be used to identify program points whose 

inspection provide relevant information for usability testing. The effectiveness of 

these methods are comparable to the manual traceability link detection. Therefore, 

it is possible to use them to support the usability testing of large sized Android 

applications. 
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Precision (mean) Precision (deviation) 
Recall (mean) Recall (delation) 
F-measure (mean) — F-measure (deviation) 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

(a) Pearson 

Precision (mean) ————• Precision (delation) 
Recall (mean) — Recall (deviation) 
F-measure (mean) F-measure (delation) 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

(b) Manhattan 

Precision (mean) — Precision (delation) 
Recall (mean) Recall (delation) 
F-measure (mean) ----- F-measure (delation) 

(c) Kendall 

Figure 6: Precision, recall, and F-measure values at different thresholds for the 

three methods. (X axis: treshold; Y axis: metric value.) 

5 Conclusions and Future Work 

In this paper, we presented a methodology for method level code coverage measure-

ment on Android-based embedded systems. Although there were more solutions 

allowing the measure of the code coverage of Android applications on the devel-

opers' computers, no common methods were known to us that performed coverage 

measurement on the devices. We also reported the implementation of this method-

ology on a digital Set-Top-Box running Android. The coverage measurement was 

integrated in the test automation process of this device allowing the use of the 

collected coverage data in different applications like test case selection and prioriti-

zation of the automated tests, or additional test case generation. We also presented 

an application of the framework. Using the produced coverage data we performed 

experiments with three traceability computation methods. 
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Table 2: Precision (P), recall (R), F-measure (F) values for applications and com-

putation methods 

A p p l i c a t i o n ( a ) P e a r s o n ( b ) M a n h a t t a n (<= ) K e n d a l l 

0 . 8 0 . 3 0 .1 
p 

K « F F R F 

0 . 78 0 13 0 .22 0 . 7 9 0 . 1 0 0 . 17 0 . 7 9 0 . 10 0 . 17 

0 . 2 7 0 06 0 .10 0 . 27 0 . 08 0 . 12 0 . 00 0 . 0 0 0 . 00 

A2 0 .35 0 . 07 0 .10 0 . 7 6 0 .04 0 . 07 0 . 7 6 0 . 04 0 . 0 7 
A3 0 . 07 0 .01 0 .02 6 . 28 0 . 13 0 16 0 . 2 8 0 . 1 3 0 . 1 6 

A4 0 . 5 4 0 . 07 0 .12 0.46 0 .02 0 .04 0 . 4 6 0 . 02 0 . 04 

0 . 6 3 0 . 05 0 .06 0.54 0 . 03 0 . 05 0 . 54 0 . 0 3 0 . 05 

0 .81 0 . 0 9 0 .14 0 . 86 0 . 10 0 . 16 0 . 8 6 0 . 10 0 . 1 6 

AJ 0 .44 0 . 1 3 0 .12 0 . 66 0 . 0 9 0 .11 0 . 6 6 0 09 0 . 11 
A8 0 .83 0 . 10 0 .17 0 .84 0 . 08 0 .14 0 . 84 0 . 08 0 . 14 
A9 0 . 5 2 0 . 08 0 .19 0.50 0 03 0 . 05 0 . 50 0 . 03 0 . 05 

Average 0 .52 0 . 08 0 .12 0.60 0 . 07 0 .11 0 .57 0 . 0 6 0 . 1 0 

D e v i a t i o n 0 . 25 0 . 04 0 . 06 0.22 0 . 04 0 . 05 0 . 27 0 .04 0 . 0 6 

There are many improvement possibilities of this work. Regarding the imple-

mentation of code coverage measurement on Android devices, we wish to examine 

if the granularity of tracing could be fined to sub-method level (e.g., to basic block 

or instruction levels) without significantly affecting the runtime behaviour of the 

applications. This would allow us to extract instruction and branch level coverages 

that would result in more reliable tests. In addition, we are thinking of improv-

ing the instrumentation in order to build dynamic call trees for further use. The 

current implementation (simple coverage measurement) does not deal with timing, 

threads and exception handling, which are necessary for building the more detailed 

call trees. It would also be interesting to help the integration of this coverage 

measurement in commonly used continuous integration and test execution tools. 

Furthermore, we are examining the use of the resulting coverage data. There 

are other ways code coverage and computed traceability information can be used in 

usability testing, for example to partially automate collecting data and to establish 

usability models. The implemented code coverage measurement and the testing 

process that utilizes this information are a good base for measuring the effect of 

using coverage measurement data on the efficiency and reliability of testing. 
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Hungarian Noun Phrase Extraction Using 

Rule-based and Hybrid Methods* 
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Abstract 

We implement and revise Kornai's grammar of Hungarian NPs [11] to 

create a parser that identifies noun phrases in Hungarian text. After mak-

ing several practical amendments to our morphological annotation system of 

choice, we proceed to formulate rules to account for some specific phenomena 

of the Hungarian language not covered by the original rule system. Although 

the performance of the final parser is still inferior to state-of-the-art machine 

learning methods, we use its output successfully to improve the performance 

of one such system. 

Keywords: natural language processing, parsing, machine learning 

1 Introduction 

This paper describes a rule-based system which extracts noun phrases (NPs) from 

morphologically analyzed Hungarian text. We implement and revise the grammar 

of Hungarian NPs in [11] to create a system that identifies NPs by means of bottom-

up parsing. Although high performance on the standard task is already possible 

using state-of-the-art machine learning methods, we show that a rule-based ap-

proach contributes substantially to the performance of a hybrid system. Section 2 

describes the task and provides a brief survey of the standard statistical approach. 

Section 3 documents the process of creating a Hungarian NP corpus, a resource 

crucial not only for machine learning approaches, but also for the evaluation of 

rule-based systems. 

Section 4.1 describes the technical preliminaries of creating an NP parser. In 

section 4.2 we describe the process of grammar development, which involves exam-

ining the error classes in the output after every major change to the rule system. 

Section 5 proposes a simple hybrid system where the chunking task is performed 

by the learning-based system hunchunk [23], [24] using features derived from the 

output of the rule-based system. 
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2 Chunking 

2.1 The task 

The task of extracting one or several types of phrases from a text is often referred 

to as shallow parsing or chunking. The term chunk and the task of text chunking, 

however, do not have universally accepted definitions in NLP (Natural Language 

Processing) literature. The term chunk was first used by Abney in [2], who uses 

it to describe non-overlapping units of a sentence that each consist of "a single 

content word surrounded by a constellation of function words" . Based primarily 

on [9], who introduce the term performance structure to describe psycholinguistic 

units of a sentence, Abney argues that chunks are units that do not neccessarily 

coincide with syntactic constituents. Recent works on the automated chunking 

of raw text, however, invariably use definitions of chunks that make it possible 

to extract them from parse trees in order to provide training data for supervised 

learning systems. In practice, these chunks usually coincide with some group of 

syntactic phrases. One complete set of definitions for various classes of chunks is 

given in the description of the chunking task of CoNLL 2000 [28], where the Penn 

Treebank [17] was used as a source of chunk data. 

One of the best known works on the extraction of NP chunks is that of Ramshaw 

and Marcus [18], who define base NPs (or non-recursive NPs) as noun phrases that 

do not contain another noun phrase. It is this definition that was adopted by Tjong 

Kim Sang and Buchholz for the CoNLL 2000 shared task, and when the task of 

NP chunking is mentioned as a benchmark for some machine learning algorithm, 

it almost invariably refers to base NP tagging based on the datasets proposed by 

Ramshaw and Marcus and adopted by CoNLL-2000. 

2.2 Overview of statistical methods 

Besides defining the task of NP chunking as the identification of non-recursive 

(base) noun phrases, Ramshaw and Marcus attempt to solve the task by applying 

the method of transformation-based learning, which had been used before for the 

tasks of part-of-speech tagging [4] and parsing [5]. Using the datasets and method 

of evaluation that was later to become the CoNLL shared task and also the standard 

field of comparison for NP-chunker tools, Ramshaw and Marcus report precision 

and recall rates of 90.5% and 90.7% respectively. Their datasets used for training 

and testing purposes were derived from sections 15-18 and section 20 of the Wall 

Street Journal respectively, data which was available from the Penn Treebank. 

During and after the CoNLL shared task in 2000, a wide variety of machine 

learning methods have been applied to the task of identifying base NPs. Kudo and 

Matsumoto reached an F-score of 93.79% by using Support Vector Machines [13], 

a result that was to increase to 94.22% a year later when they introduced weighted 

voting between SVMs trained using different chunk representations [14]. Probably 

the most popular method for NP chunking today is the Conditional Random Field 

(CRF, [15]) machine learning algorithm. CRFs have been used on the standard 
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CoNLL task by Sha and Pereira, who achieved an F-score of 94.3% [26], and more 

recently by Sun et al. (F = 94.34%) [27], 

A further notable result is that of Hollingshead and colleagues [10], who eval-

uated several context-free parsers on various shallow parsing tasks and report an 

F-score of 94.21% on the CoNLL task using the Charniak parser [6]. These re-

sults show that a rule-based system can be competitive with results obtained by 

using any advanced machine learning algorithm, a fact that clearly points us in the 

direction of hybrid systems. 

2.3 The hunchunk system 

In the final section of this paper we shall combine the parser with our own learning-

based NP-chunking tool. Hunchunk uses a combination of Maximum Entropy learn-

ing and Hidden Markov Models (HMM) to perform NP-chunking of a sentence that 

is tokenized and morphologically annotated. For a detailed description of hunchunk 

the reader is referred to [23]. Some past applications of hunchunk are documented 

in [25] and [22], The tool is available for download under an LGPL license from 

http://www.github.com/recski/HunTag. 

3 Creating NP corpora 

A preliminary step of creating the NP corpus is choosing a method for representing 

morphological information. The morphological analyzer hunmorph [29] uses the KE 

formalism [20] and our grammar relies heavily on the kind of structured information 

that hunmorph provides and KR codes represent. 

3.1 The K R formalism 

The KR formalism for representing morphological information was developed with 

the intention of capturing the hierarchy between individual inflectional features and 

encoding the derivational steps used to arrive at the word form in question. The 

output of the analysis of a word starts with the stem and contains the category and 

features of the word as well as the category of the word from which the given form 

was derived, if any. This latter part of the code also contains in square brackets the 

type of derivation used to form the final word. The last part of the code represents 

the hierarchy between grammatical features of the word by means of bracketing 

similar to that used for the analysis of sentence structure. 

Some examples of KR-codes in the Szeged Treebank [7] are given in Table 1. As 

can be seen, KR encodes the entire chain of derivations that led to the word form 

under analysis. 

One great advantage of this formalism is that it explicitly encodes all pieces of 

information which one might think of as a grammatical feature, therefore any NLP 

application which relies on word level information can make use of the KR code 

http://www.github.com/recski/HunTag


464 Gábor Recski 

Table 1: KR examples 

tanárunk 

teacher-PosslPl 

'our teacher' 

tanár/NOUN<POSS<l><PLUR>> 

óráján 

class-Poss3-SUP 

'in his/her class' 

őra/NOUN<POSS><CAS<SUE>> 

másodikkal 

two-ORD-INS 

'with the second' 

kettö/NUM[ORD]/NUM<CAS<INS>> 

vegyük 

take-Imp- Pl 1-Def 

'let's take' 

vesz/VERB<SUBJUNC-IMPXPERS<l»<PLURXDEF> 

felértékelődése 

up-value(V)-Med-Ger-Poss3 

'the increase of its value' 

felértékel/VERB[MEDIAL]/VERB[GERUND]/N0UN<P0SS> 

without the need for any external knowledge about the meaning of various symbols 

or positions in the code. 

The KR formalism straightforwardly encodes most grammatical features, but 

there are still some distinctions which it is unable to represent. One of these, which 

we must overcome in order to account for syntactic phenomena, is the distinction 

between pronouns and nouns as well as the various types of pronouns in Hungarian. 

Pronouns are tagged as nouns in the KR formalism because they take part in the 

same inflectional phenomena as nouns - although some of their paradigms are 

defective therefore introducing a new top-level category into the KR system would 

cause the loss of a well-founded generalization. The solution we implemented for 

use with our system is the introduction of the noun feature PRON which takes as 

its value 0 if the word is not a pronoun and the type of pronoun otherwise. This 

addition results in the analyses exemplified in Table 2, for a detailed description 

see [21]. 
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Table 2: Pronoun types 

ez 

this 

ez/N0UN<PR0N<DEM>> 

mindenki 

everybody 

mindenki/NOUN<PRON<GEN>> 

valami 

something 

valami/NOUN<PRON<INDEF>> 

aki 

who (relative pron.) 

aki/NOUN<PRON<REL>> 

ki 

who (interrogative pron.) 

aki/N0UN<PR0N<WH>> 

saját 

own 

aki/N0UN<PR0N<P0S>> 

3.2 Extracting NPs from a treebank 

Having determined the way we wish to encode morphological information we may 

proceed to create an NP corpus by extracting sentences and syntactic information 

from a treebank (a corpus which contains the full syntactic analysis for all sentences, 

cf. [1]). For this purpose we use the Szeged Treebank [7], a syntactically annotated 

corpus of Hungarian which contains nearly 1.5 M tokens of text taken from a 

variety of genres including fiction, newspapers, legal text, software documentation 

and essays written by students between the age of 13 and 16. 

The treebank contains morphological information about each word in the MSD 

format [8]. Converting MSD-tags to KR is insufficient because MSD codes do not con-

tain data about the derivations that create a word form, a piece of information 

which KR can encode and which some of our rules rely on. Our morphological 

analyzer, hunmorph, is able to supply this information, but it will necessarily pro-

duce some sporadic tagging errors on sentences extracted from the Treebank. Such 

errors may be corrected in a machine learning system based on context, but will 

surely mislead the rule-based system, which has no other source of information at 
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its disposal. In order to have all available data present in the corpus, and at the 

same time preserve the high precision provided by manually annotated tags, we 

merged our two sources of data. Information on the derivation of a word form, if 

any, was taken from the KR-codes provided by hunmorph, the remaining part of the 

tag, containing the category of the word as well as its grammatical features, was 

obtained from the Treebank. In case the Treebank could not provide any gram-

matical information ( 0.91% of all words), the output of hunmorph was entered into 

the corpus as is. 

3.3 Mending the corpus 

Having created a base NP corpus by the method described in section 3.2, we pro-

ceeded to apply two further changes to the data in order to handle syntactic analyses 

in the Treebank with which we do not agree. Since we intend to use these corpora 

as a standard of evaluation for the parser, we need it to reflect the analyses which 

we expect our system to produce. In this paper we do not wish to argue extensively 

for one analysis over the other, we simply describe the changes we have made to 

the data in order to ensure that our experiments can be replicated. 

3.3.1 Adjectives in possessive constructions 

The largest number of cases where there is a discrepancy between the Szeged anal-

ysis and the one used here is related to the analysis of possessive constructions. 

The noun phrase in Table 3 is represented in the treebank as in Figure 1. 

Table 3: Possessive construction 

egy idős úr kopasz fejére 

an elderly gentleman bald head-Poss3-SUBL 

'on the bald head of an elderly gentleman' 

NP 

NP 
\ 
Adj 

agy idős úr kopasz fejér« 

Figure 1: Original analysis of the possessive construction 

We believe this analysis to be false since the noun and preceding adjective 

modifying it form a constituent in Hungarian and the possessive construction does 

not change this fact: the possessor NP can be followed directly by any NP with 

the POSS feature. Therefore we modified our base NP corpus in order to reflect the 
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analysis in Figure 2, which we believe to be the correct one. We will expect our 

system to parse such structures as two consecutive NPs. 

NP 

egy idős úr Adj N 

kopasz fejére 

Figure 2: Revised analysis of the possessive construction 

3.3.2 Demonstrat ives 

Another structure which we intend to treat differently from the analysis in the 

Treebank is the special demonstrative construction of Hungarian exemplified in 

Table 4. Note that in this structure the demonstrative pronoun ez/az must be 

marked for both the case and number of the following noun. 

Table 4: Demonstrative NP 

ez a pincér 

this the waiter 

'this waiter' 

ezek a hajók 

this-PL the ship-PL 

'these ships' 

attól a pasastól 

that-ABL the bloke-ABL 

'from that bloke' 

For these structures the Treebank gives the analysis in Figure 3. We believe 

that the demonstrative pronoun cannot project a noun phrase of its own, therefore 

we change the corpus to reflect the analysis in Figure 4. 

3.3.3 Other issues 

The chunk corpus extracted from the Szeged Treebank still present a number of 

small anomalies that hinder the evaluation of both the rule-based and the statistical 

system as well as the training of the latter. One notable example is a construction 

which involves an NP containing an adjective that precedes the noun and is enclosed 
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NP 

NP Det N 

i i i 
tz a pincer 

Figure 3: Original analysis of demonstrative NPs 

NP 

Det Det N 

ez a pincer 

Figure 4: Revised analysis of demonstrative NPs 

in parentheses and which occurs often in legal text (e.g. A Gt. (uj) 3. paragrafusa 

'The (new) 3rd section of the Gt. Act'). This case falls under the same questionable 

analysis as those described in section 3.3.1. We believe that arbitrary modification 

of the analysis of problematic structures (which are, unfortunately, overrepresented 

in our corpus) is not a measure we can take in good conscience. Therefore, we leave 

these occurrences, as well as any smaller anomalies, untouched. We note that this 

phenomenon accounts for ca. 5% of those base NPs which our grammar is unable 

to parse. 

3.4 Evaluation methods 

The corpus created in the manner described above is used to evaluate our parser at 

various stages of development. The statistical system hunchunk also uses two (non-

overlapping) sections of this corpus for training and testing. Finally, performance 

of the hybrid system (to be introduced in the final section of this paper) is also 

measured using this data as gold standard. 

In each of these cases, evaluation involves comparing two sets of chunks for each 

sentence, the one supplied by the system in question and the one present in the 

corpus. Our evaluation method follows the guidelines of CoNLL-2000: a chunk 

identified by our system is considered correct iff it corresponds to a chunk in the 

gold standard and a chunk in the corpus is considered found iff it corresponds to a 

chunk in our tagging. A system's performance can be described by two values: the 

precision of a system is the number of correctly identified chunks divided by the 

number of all chunks in the output, while the recall rate is obtained by dividing 

the same number by the number of chunks in the gold standard. As customary, 

we measure the overall quality of the tagging by calculating the harmonic mean of 

these two values, also called the F-score: 

P + R 
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where P and R stand for precision and recall respectively (cf. e.g. [16]. 

4 Rule-based method 

This chapter describes our efforts to use a rule-based parser for the extraction of 

noun phrases. We improve the context-free feature grammar of Hungarian NPs [11] 

[12] in order to account for even the most complicated structures. 

4.1 Building a parser 

Our system uses the NLTK parser, a tool which supports context-free grammars 

and a wide variety of parsing methods [3]. To parse a text we must first give a 

feature representation of all words. We implement the context-free grammar of 

Kornai to create a parser which takes as its input the series of KR-codes of words 

in a sentence and produces, by means of bottom-up parsing, charts containing the 

possible rule applications that may produce some fragment of the sentence. A 

chunking is then derived from this chart through a series of recognition steps which 

we shall describe at the end of this section. 

4 . 1 . 1 Prepar ing the data 

When using the NLTK parser with a CF grammar, the system accepts nonterminal 

symbols that consist of a category symbol such as NOUN or VERB followed by a set of 

features in square brackets. Feature values can be strings, integers, non-terminals 

of the grammar and variables that bind the value of the feature to that of some 

other feature of the same type in the rule. Thus a rule to encode agreement in 

number between verb and object would be VP -> V[PL=?a] N[PL=?a], which is 

equivalent to the more standard'Greek variable'notation VP -> V[aPL] N[aPL]. 

Converting KR codes to such representations, i.e. supplying the terminal rules for 

our grammar, is a straightforward mechanical process. Some examples are given 

in Table 5. Notice that the grammar does not use different symbols for various 

projection levels of the same syntactic category, but encodes this information in 

the feature BAR; the notation NOUN [BAR=0] will then simply represent a bare noun. 

Information on the source of derivation is represented by the feature SRC which 

takes as its value a set of two features: STEM encoding the features of the source 

word and DERIV the type of derivation. 

As we have described in section 3.1, the bulk of any KR-style code lends itself to 

such a representation, e.g. the code N0UN<P0SS><PLUR> needs only to be rewritten 

as NOUN [ P 0 S S = 1 , P L U R = 1 ] in order to produce input for NLTK. Still, a number of 

problems must be addressed when transforming KR codes into such feature struc-

tures. First of all, KR features are privative: the fact that a noun is singular, for 

example, can be concluded from the absence of the <PLUR> feature. Similarly, the 

default case is nominative (there is no <CAS<N0M>> feature), the default person is 

the third, etc. Since our grammar should be able to refer to such default features 



470 Gábor Recski 

Table 5: Terminal rules 

NOUN[POSS=[1=1, PLUR=1] -> N0UN<P0SS<1><PLUR» 

NOUN[P0SS=1, CAS=[SUE=1]] -> N0UN<P0SS><CAS<SUE>> 

NOUN[ANP=0, CAS=0, PLUR=0, P0SS=[1, PLUR=1], PR0N=0] -> 

-> 'N0UN<P0SS<1><PLUR>> 

NUM[CAS=[INS=1], SRC=[STEM=NUM, DERIV=0RD]] -> 

-> NUM[ORD]/NUM<CAS<INS>> 

VERB[SUBJUNC-IMP=1, PERS=[1=1], PL=1, D=l] -> 

-> VERB<SUBJUNC-IMPXPERS<1»<PLUR><DEF> 

NOUN[POSS=l, SRC=[STEM=VERB [SRC=[STEM=VERB, DERIV=MEDIAL]] , 

DERIV=GERUND]] -> 

-> VERB[MEDIAL]/VERB[GERUND]/NOUN<POSS> 

in a straightforward manner, the process of transforming KR-codes involves expli-

cating these features by adding the feature values PERS=0, CAS=0, PLUR=0, etc. 

Similarly, a word which has not been identified as the product of some derivation 

will receive the feature SRC=0. 

4.1.2 Imp lemen t i ng NP-chunking 

Having established a method for creating the terminal rules of our grammar we 

are now able to parse, based on the NP-grammar of Kornai, any sentence tagged 

according to the KR formalism. Since we do not have a complete grammar of 

Hungarian, we employed a bottom-up parser, which can provide an analysis of 

fragments of a sentence without parsing the full sentence. The output obtained 

for each sentence is a chart which contains edges, individual entries which describe 

a step in the parsing process by representing a particular application of a rule in 

the grammar, and gives the location of the sentence fragment to which it can be 

applied. 

The absence of an S-grammar means that we cannot automatically discard the 

majority of chart edges based on their lack of ability to function as part of a parse-

tree for the full sentence. Therefore we must compile a list of rules to post-process 

the set of parse edges in order to produce non-overlapping NP sequences. First, 

we take all fragments of the sentence which correspond to a complete NOUN edge, 

thereby selecting the word sequences that the parser considers potential NPs of 

the sentence. Secondly, since we are trying to extract base NPs only, we discard 

all fragments which contain more than one noun. Next, we discard all fragments 
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which are contained in a larger fragment. The final and most complicated step 

in finding NPs is dealing with overlapping fragments: we implement a heuristic 

approach in which we choose of two overlapping NPs the one which cannot be 

parsed as a phrase of some other category based on the parse chart. This process is 

preferable since most overlaps are produced by SLASH-rules, i.e. rules which allow 

NPs with elliptic heads to be parsed as NPs. In most cases, these rules falsely 

generate phrases which are not NPs but AdjPs, NumPs, etc. In case this process 

fails to select exactly one of the two fragments - i.e. both or neither of them can 

be parsed as a phrase of some other category - we discard them both. 

4.2 Developing the grammar 

In this section we describe our additions to the grammar of Hungarian NPs pub-

lished in [11], We evaluate each version of the grammar on a test corpus which 

contains 1000 sentences picked randomly from all genres in the base NP corpus, 

following the principles described in section 3.4. 

Implementing the initial grammar of Kornai our system achieves an F-score of 

81.76%. By observing the output it is clear that the greatest shortcoming of our 

system is its lack of knowledge about the internal structure of adjectival, numeral 

and adverbial phrases, all of which can form components of an NP. Therefore our 

first step does not involve touching the NP grammar but rather the addition of 

some simple rules to account for complex AdjPs, NumPs and AdvPs. These rules 

can be seen in Table 6. 

Table 6: Basic rules for AdjPs and NumPs 

ADJ - > ADJ ADJ 

ADJ - > ADV ADJ 

NUM - > NUM NUM 

NUM - > ADV NUM 

NUM - > ADJ NUM 

After the addition of these rules our system produces chunkings with an F-score of 

84.18%. The next step involved the treatment of pronouns. We have discussed in 

section 3.1 that Hungarian pronouns behave very similarly to nouns, and in fact 

the parser can only distinguish them from nouns with the help of a feature which 

we have added to the KR-system. In the vast majority of cases, treating pronouns as 

nouns is entirely justified. There are, however, a handful of phenomena which make 

it necessary for us to refer to them separately in the grammar. General pronouns 

(e.g. minden 'all') and indefinite pronouns (e.g. néhány 'some') may combine with 

a following noun constituent to form an NP (cf. Table 7) 

These pronouns are not in complementary distribution with numerals, however we 

choose to keep the grammar simple and adjoin them to nouns of bar-level 1. The 

resulting rules are shown in Table 8. 
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Table 7: General and indefinite pronouns 

minden pofon 

all punch 

'all punches' 

néhány villanykörte 

some light-bulb 

'some light-bulbs' 

Table 8: Rules for general and indefinite pronouns 

NOUN[P0SS=?a, PLUR=?b, ANP=?c CAS=?d, D=?e, PR0N=?f] -> 

-> NOUN[PR0N=GEN] 

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d , D=?e, PR0N= ?f] 

NOUN[P0SS=?a, PLUR=?b, ANP=?c CAS=?d, D=?e, PR0N=?f] -> 

-> NOUN[PR0N=INDEF] 

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d , D=?e, PR0N= ?f] 

The addition of these two rules result in an increase of the system's F-score to 85.45. 

A third type of pronoun, the demonstrative ez/az, etc. also needs treatment when 

it comes to the demonstrative structure described in section 3.3.2. To allow the 

parser to recognize the structure we implement the rule in Table 9, thus achieving 

an F-score of 86.68. 

Table 9: Rule for demonstrative NPs 

NOUN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e] -> 

-> NOUN[PR0N=DEM, BAR=0, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d] 

ART NOUN[PR0N=0, BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=0], 

The next structure which caused numerous parsing errors is that of adjectival 

phrases containing a noun followed by an adjective derived from a verb (called a 

deverbal adjective), either in perfect or imperfect participle form. An example of 

both of these structures can be seen in Table 10. 

Since our terminal symbols encode information about the source of derivation 

which produced any given word form, we can once again treat these structures 

properly by adding the two rules in Table 11 to our grammar. This addition caused 

an increase in the performance of the system to 87.87%. In the end the greatest 
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Table 10: Sentences with deverbal adjectives 

a korsónak támasztott 

the jug-DAT prop-PERF_PART 

könyvet olvasta 

book-ACC read-PAST-DEF-3 

'He read the book propped up against the jug.' 

az ókori mór 

the ancient moor 

hódítóktól származó esküvést 

conqueror-Pl-FROM originate-IMPERF-PART oath-ACC 

hallották 

hear-PAST-DEF-3 

'They heard the oath originating from ancient moor conquerors' 

Table 11: Rules for deverbal adjectives 

ADJ -> NOUN ADJ[SRC=[STEM=VERB[] , DERIV='PERF_PART' ] ] 

ADJ -> NOUN ADJ[SRC=[STEM=VERB[], DERIV='IMPERF_PART' ] ] 

error classes - besides those caused by genuinely ambiguous structures - remained 

those which involved the incorrect parsing of punctuation marks and conjunctions. 

With the addition of several rules describing their behaviour in and around NPs 

(see Appendix A) we further increased the F-score of the system to 89.36%. 

The progress of the system's performance as a result of our steps of grammar 

development are summarized in Table 12. As can be seen from these figures our 

Table 12: Stages of grammar development 

Development stage F-score 

Kornai 1985 81.76% 

AdjPs, AdvPs, NumPs 84.18% 

Pronouns 85.45% 

Demonstrative NPs 86.68 % 

Deverbal adjectives 87.87% 

Punctuation and conjunctions 89.36% 

development of the grammar corrected nearly half of the errors made by the system. 

For the final version of the grammar see Appendix A. 
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5 Features from the parser 

Although the performance of our parser is still inferior to statistical systems, in 

this final section we will demonstrate, using a very simple example, how a machine 

learning system may benefit from the output provided by the parser. 

Hunchunk handles the task of chunking as a type of word-tagging and attempts 

to assign the correct chunk-tag to each word in the sentence: the five tags B-NP, 

I-NP, E-NP, 1-NP, 0 indicate the position of a word within a chunk and each 

possible chunking of a sentence corresponds to a sequence of word tags. The system 

uses Maximum Entropy learning [19] to determine for each word the probability 

distribution over this tagset, based on a set of binary features of the word such as 

character ngrams, morphological features, position in the sentence, etc. (see [23] 

for details). Using these distributions as observation probabilities and a simple 

bigram model as an estimate for transition probabilities, the Viterbi algorithm can 

efficiently compute the most probable sequence of tags, i.e. the most probable 

chunking for a sentence. 

We improve the system by first converting the output of the NP-parser to such 

a sequence of tags and then using the tag for each word as an extra feature that 

the maxent model has access to. In other words, when trying to guess what the 

chunk-tag of a word should be, the hunchunk system may use the answer the NP-

parser gives to the same question. In order to evaluate this hybrid system we parse 

the entire chunk corpus and then create a train and test set from the data obtained 

in the same way as we would do when evaluating hunchunk on its own. Table 13 

shows the results of the evaluation for both the original hunchunk model and the 

new hybrid system. 

Precision Recall F-score 

hunchunk 

hunchunk+parser features 

94.61% 

95.29% 

94.88% 

95.68% 

94.75% 

95.48% 

Table 13: The role of parser features in base NP chunking 

As can be seen from the above figures, the addition of information from a rule-

based system leads to a 15% decrease in the number of errors made by the statistical 

system. We also measured the impact of parser features on a different chunking 

task which hunchunk performs: that of extracting maximal NPs, i.e. noun phrases 

that are not contained by a higher level NP. In the case of maximal noun phrases 

the parser feature also causes some increase in performance (cf. Table 14). 

Precision Recall F-score 

hunchunk 

hunchunk+parser features 

89.34% 

89.46% 

88.12% 

88.76% 

88.72% 

89.11% 

Table 14: The role of parser features in maxNP-chunking 
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6 Conclusion 

This paper described the process of implementing a grammar for Hungarian noun 

phrases to create an NP-parser and using its output to enhance the performance 

of a state-of-the-art statistical system. Firstly, we described the technical prelimi-

naries of implementing a context-free grammar and also documented additions and 

amendments made to both the data and the grammar. Having reached a sufficient 

parsing quality we proceeded to use the output of the rule-based system to create 

new features for use with the learning-based hunchunk system. 

The improved F-scores indicate that hybrid systems in NP-extraction may pro-

duce results superior to those of a stand-alone machine learning system. However, 

it falls beyond the scope of this paper to explore the various possibilities of com-

bining rule-based and statistical approaches to NP-chunking. Also, cross-analysis 

of errors made by each system - possibly on larger corpora - could help us gain a 

better understanding of what the strengths and weaknesses of the two approaches 

are. 
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A Final grammar of the N P parser 

NOUN[POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] -> 

NOUN[PR0N=P0S] 

NOUN [BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] 

NOUN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e] -> 

NOUN[PR0N=DEM, BAR=0, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d] 

ART NOUN[PR0N=0, BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=0] 

N0UN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] -> 

NOUN[PR0N=GEN] 

NOUN[BAR=2, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] 

N0UN[P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] -> 

NOUN[PRON=INDEF] 

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] 

NOUN[BAR=1, P0SS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] -> 

ADJ 

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] 

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] -> 

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] 

NOUN[BAR=l, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] -> 

ADJ 

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] 

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f]/NOUN[BAR=0] -> 

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] 

NOUN[BAR=2, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f] -> 

NUM 

NOUN[BAR=l, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f] 

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] -> 

NOUN[BAR=l, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] 

NOUN[BAR=2, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] -> 

NUM 

NOUN[BAR=1, POSS=?a, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] 

NOUN[BAR=2, POSS=?b, PLUR=0, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] -> 

NOUN[BAR=1, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e]/N0UN[BAR=0, PRON=?f] 

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f] -> 

ART[D=?e] 

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, PRON=?f] 

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=l, PRON=?f] -> 

NOUN[BAR=0, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=l, PRON=?f] 

NOUN[BAR=3, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f]/NOUN[BAR=0] -> 

ART[D=?e] 

NOUN[BAR=2, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, PRON=?f]/NOUN[BAR=0] 

NOUN[BAR=3, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] -> 

NOUN[BAR=3, ANP=0, CAS=0] 

NOUN[BAR=2, POSS=l, PLUR=?a, ANP=?b, CAS=?c, PRON=?f] 

NOUN[BAR=4, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] -> 

NOUN [BAR=3, CAS=[DAT=1]] 

NOUN[BAR=3, POSS=l, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] 

NOUN[BAR=3, P0SS=0, PLUR=?a, ANP=?b, CAS=?c, D=l, PRON=?f] -> 
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ART[BAR=1, D=l, ME=?d, YOU=?e, PLUR=?f] 

NOUN[BAR=2, POSS=[ME=?d,YOU=?e,PLUR=?f], PLUR=?a,ANP=?b,CAS=?c,PRON=?f] 

NOUN[BAR=3, P0SS=O, PLUR=?a, ANP=?b, CAS=?c, D=l, PR0N=?f] -> 

ART [BAR=0] 

NOUN[BAR=2, P0SS=[], PLUR=?a, ANP=?b, CAS=?c, PR0N=?f] 

NOUN [POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PRON=?f, BAR=?g] -> 

PUNCT[TYPE='DQUOTE'] 

NOUN[BAR=?g, POSS=?a, PLUR=?b, ANP=?c, CAS=?d, D=?e, PR0N=?f] 

PUNCT[TYPE='DQUOTE'] 

NOUN/NOUN -> 

ART[BAR=1, D=1, ME=?a, YOU=?b, PLUR=?c, PRON=?f] -> 

ART[D=1] PRO[ME=?a, YOU=?b, PLUR=?c, PRON=?f] 

ART [D=l] -> DET 

ADJ -> ADJ ADJ 

ADJ -> ADV ADJ 

ADJ -> NOUN ADJ[SRC=[STEM=VERB [], DERIV='PERF_PART']] 

ADJ -> NOUN ADJ[SRC=[STEM=VERB[], DERIV='IMPERF_PART']] 

ADJ -> PUNCT[TYPE='DQUOTE'] ADJ PUNCT[TYPE='DQUOTE'] 

ADJ -> ADJ PUNCT[TYPE=COMMA] ADJ 

ADJ -> ADJ PUNCT[TYPE=COMMA] CONJ ADJ 

NUM -> NUM NUM 

NUM -> ADV NUM 

NUM -> ADJ NUM 
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Applications of the Inverse Theta Number 

in Stable Set Problems 

Miklós Ujvári: * 

Abstract 

In the paper we introduce a semidefinite upper bound on the square of 

the stability number of a graph, the inverse theta number, which is proved 

to be multiplicative with respect to the strong graph product, hence to be an 

upper bound for the square of the Shannon capacity of the graph. We also 

describe a heuristic algorithm for the stable set problem based on semidefinite 

programming, Cholesky factorization, and eigenvector computation. 

Keywords : Shannon capacity, stability number, inverse theta number 

1 Introduction 

An algorithm for the stable set problem is useful in many ways, e.g. it can be 

used for colouring a graph: find a stable set, remove it from the graph, and iterate 

the algorithm. (See [2] for further applications and approximation algorithms for 

the stable set problem.) The strength of the semidefinite programming approach 

for the stable set and colouring problems is shown by the algorithms of Grotschel-

Lovasz-Schrijver, Karger-Motwani-Sudan, and Alon-Kahale, see [5] for a summary 

of these results. In this paper we will describe a heuristic algorithm for the stable 

set problem based on semidefinite optimization, and the notion of the inverse theta 

number. 

We start the paper with stating the main results. First we fix some notation. 

Let n e A/", and let G = (V(G), E{G)) be an undirected graph, with vertex set 

F(G) = {1,. . . ,n}, and with edge set E(G) C {{¿, j } : i / j}. Let A(G) be the 0-1 

adjacency matrix of the graph G, that is let 

A(G) := (ay) e {0, l } n x n , where a¿ n x n 
ij { 0, if {i,j}<¿E(G), 

1, i f { í , y }eF (G ) . 

The complementary graph G is the graph with adjacency matrix 

A(G) := J - I - A(G), 

*H-2600 Vác, Szent János utca 1., Hungary. E-mail: ujvsLrimacs.elte.hu 
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where I is the identity matrix, and J denotes the matrix with all elements equal 

to one. The disjoint union of the graphs G\ and G2 is the graph G\ + G2 with 

adjacency matrix 

We will use the notation Kn for the clique graph, and KSll...,ak for the complete 

multipartite graph KSl + . . . + KSk. Also, we will denote by Cn the n-cycle, the 

polygon graph with n vertices. 

Let (¿1,... ,Sn) be the sum of the row vectors of the adjacency matrix A(G). 

The elements of this vector are the degrees of the vertices of the graph G. Let 

6Q, AQ , be the minimum, maximum, resp. the arithmetic mean of the degrees 

in the graph. 

By Rayleigh's theorem (see [9]) for a symmetric matrix M = MT G TZ n x n the 

minimum and maximum eigenvalue, AM, resp. AM can be expressed as 

A M = min uTMu, Am = max uTMu. 
||u||=1 ||u||=i 

Attainment occurs if and only if u G TZ n is a unit eigenvector corresponding to AM 

and AM, respectively. The minimum and maximum eigenvalue of the adjacency 

matrix A(G) will be denoted by AG, resp. Aq. 

The set of the n by n real symmetric positive semidefinite matrices will be 

denoted by <S™, that is 

SI : = ( m g K n x n :M = MT, U tMU > 0 (u g H n)} . 

For example, the Laplacian matrix of the graph G, 

L(G) :=D
Sl
,...,sn-A(G)eSl. 

(Here Dsdenotes the diagonal matrix with diagonal elements 81,..., 8n.) 
It is well-known (see [9]), that the following statements are equivalent for a sym-

metric matrix M = (rr i i j ) G TZ n X n: a) M G <S"; b) AM > 0; C) M is Gram matrix, 

that is rrij = vfvj ( i , j = 1 , . . . ,n) for some vectors v\,...,vn. Furthermore, by 

Lemma 2.1 in [13], the set 5 " can be described as 

SI = U t ^ f e - - 1 
(did j ) 11 

i,j=1 

d G A/", at G R d (1 < i < n) 

afai = 1 (1 < i < n) (1) 

The stability number, a(G), is the maximum cardinality of the (so-called stable) 

sets S C V(G) such that {¿, j} C S implies {i,j} & E(G). The chromatic number, 

x(G), is the minimum number of stable sets covering the vertex set V(G). 

Let us define an orthonormal representation of the graph G (shortly, o.r. of G) 

as a system of vectors a i , . . . , an G R d for some d G W , satisfying 

afai = 1 (i = 1 , . . . , n ) , afaj = 0 ({i,j} g E(G)). 
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In the seminal paper [6] L. Lovász proved the following result, now popularly 

called sandwich theorem, see [4]: 

a(G) < d(G) < X(G), 

where d(G) is the Lovász number of the graph G, defined as 

d(G) := inf < max - — L — : a i , . . . ,o n o.r. of G > . 
(i<t<n (mai ) n J 

The Lovász number has several equivalent descriptions, see [6]. For example, 

by (1) and standard semidefinite duality theory (see e.g. [12]), it is the common 

optimal value of the Slater-regular primal-dual semidefinite programs 

f xu = A - 1 (i € V(G)), 

(TP) min A, \ Xij = -1 ({i,j} e E(G)), 

{ X = (xu) G A € K 

and 
f t r (Y) = l , 

(TD) maxtr ( JY ) , < V i j = 0 ({», j} € E(G)), 

{ Y = (Vij) e Sf. 

(Here tr stands for trace.) Reformulating the program (TD), Lovász derived the 

following dual description of the theta number (Theorem 5 in [6]): 

d(G)=maxS^2(bibJ)11:b1,...,bn o.r. o f ö j . (2) 

An important application of the theory of the theta number is described in 

Theorem 1 of [6], where it is proved that 

©(G) < 0(G), (3) 

with ©(G) denoting the Shannon capacity of the graph, that is 

©(G) := sup \ja(G k). 
keN v 

(Here G • H denotes the strong graph product of the graphs G, H, the graph with 

vertex set 

V(G-H) :={(i,j):ieV(G),jeV(H)} 

and edge set 

E(G • H) { { ( i , j , ) , (i„h)) | 111« } • 

Also, G k denotes the strong graph product of k copies of the graph G.) 
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The proof of (3) relies on the fact that the theta function i?(.) is submultiplica-

tive, that is 

6(G • H) < 6(G) • 6(H) 

holds for any graphs G, H. Another two submultiplicative bounds are described in 

[6], see Theorems 10 and 11; they turn out to be weaker than the theta number. 

In Section 2 we will define the inverse theta number as 

L(G) := inf i - — D — : a i , . . . , a n o.r. of G I , 
l £ í ( a » a / ) i i j 

and derive the inequality 

A(G) < V/FYG), 

an analogue of Lovász's sandwich theorem. In Section 3 we will prove also (as a 

consequence of multiplicativity properties) the stronger relation 

©(G) < y f tG j . (4) 

It is known (see Proposition 2.2) that e.g. for the cycle graphs Cn, y/i(Cn) > 

6(Cn) holds. Hence, the inverse theta number does not help in determining the 

Shannon capacity of the odd cycles C7,C9,.. . , which is still an open problem, 

though, using the theta number, Lovász determined the Shannon capacity of the 

5-cycle and other graphs in [6]. However, we will see in Section 4, that orthonormal 

representations of the complementary graph G of high value in the dual description 

(5) of the inverse theta number, can be of use in a heuristic algorithm calculating 

large stable sets in any graph G. 

2 The inverse theta function 

The inverse theta number is defined via optimizing over the inverse of the theta 

body. 

The reformulation of 6(G) described in (2) can be written concisely, as 

6(G) = max j ¿ J Vi : y = (Vi) £ TH(G) j , 

where TH(G) denotes the theta body, that is the set of vectors y = (yt ) £ 1Z n such 

that yi = (btbj)n (i = l , . . . , n ) for some orthonormal representation (6*) of the 

complementary graph G. 

Convexity and compactness of the theta body follows from the fact (see Corol-

lary 29 of [4]), that TH(G) can be described equivalently as the set of vectors 

y = (yi) £ TZ n for which there exists a matrix W = (wtj) £ lZ n x n satisfying both 

1 y t \ e s n + 1 

v W 
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and 

Hi = wu {i = l,...,n), wij = O ({z,j} £ E(G)). 

Analogously, let us denote by TH~(G) the inverse theta body, that is the set 

of vectors x = (x¿) € TZ n such that x¿ = l / (a¿af )n (i = 1 ,...,n) for some 

orthonormal representation (a¿) of the graph G. 

From (1) it follows immediately, that TH~(G) can be described equivalently as 

the set of vectors x = (x¿) € TZ n such that there exists a matrix Z = (zy) £ F r l><n 

satisfying 

zü=Xi- 1 (z = 1,..., rz), Zij = —1 ({i,j}€£(G)), 

This fact implies the convexity of the inverse theta body, and also its monotonicity: 

if x > x £ TH~{G) then x £ TH~{G), too. 

Let us define the inverse theta number of a graph G as 

z(G) := inf : x = (x¿) € T Í T (G) j . 

From the above considerations, and standard semidefinite duality theory (see e.g. 

[12]) we obtain the following statement, which implies also that the inverse theta 

number is efficiently computable using interior-point algorithms (see e.g. [7], [1], 

[10]). 

Theo rem 2.1. The inverse theta number L(G) equals the common optimal value 

of the Slater-regular primal-dual semidefinite programs 

[TP') i n f t r ( Z ) + Zij = - 1 {{i,j} £ E{G)), Z = (zy) € 5 ? , 

{
ma = 1 {i = l,...,n), 

MIJ = 0 {{i,j}£E{G)), 

M = {mij) £ 
The optimal values of the programs {TP~) and {TD~) are attained. • 

Moreover, rewriting the feasible solution M of the program {TD~) as the Gram 

matrix M = {bfbj) for some vectors bi,...,bn £ TZ d, we obtain the following 

analogue of (2): 

7(G) = max < tfbj : b\,..., bn o.r. of G > . (5) 

I ¿,1=1 J 

Similarly to d{G), the number i(G) constitutes an upper bound for the stability 

number a(G). 

Theo r em 2.2. For any graph G, a{G) < y/i(G) holds. 
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Proof. We adapt the proof of Lemma 3 in [6]. 

Let S C V(G) be a stable set, with cardinality a(G). Then for any (a*) or-

thonormal representation of G, the vectors a* (i € S) are pairwise orthogonal unit 

vectors. Therefore 

ies 

which formula, by the arithmetic-harmonic mean inequality, implies that 

E r̂ TT- > E rAu- > MG))2 

holds. Taking infimum in (a*), we have the statement. • 

The next two propositions give in particular the exact value of L(G) for complete 

multipartite graphs and for graphs with vertex-transitive automorphism group. 

Propos i t i o n 2.1. For any graph G, the inequalities 

hold, with equality if G is a complete multipartite graph. 

Proof. The inequalities are proved by the feasible solutions 

Z := L(G), M I + M-A(G), 
~ a g 

which matrices have the values 

in (TP ) and (TD ), respectively. 

The last assertion follows from the fact that for complete multipartite graphs 

Xg=-1. • 

The following proposition implies that for graphs with vertex-transitive auto-

morphism group \JL(G) > 6(G). 

Propos i t i o n 2.2. For any graph G, the inequalities 

n 2  

—=- < L(G) < n6(G) 
6(G) ~  V ~  V ' 

hold, with equality if the graph G has vertex-transitive automorphism group. 
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Proof. First, let (a,) and (6*) be orthonormal representations of G and G, respec-

tively. Then, by Lemma 4 in [6], 

n 

e(a»af ) i i (&i&r)n < 1 
¿=i 

holds, which formula implies, by the arithmetic-harmonic mean inequality, that 

n 

v - > n 2 

¿ i m d n c m n 11 - • 

Consequently, 

1 a 1 2 
M A X ,T\ / 7 - n ' 

i < i < n (bibf)n f ^ (maj) 11 

and taking infimum in (a,) and (fy) we have the inequality l(G) > n 2 / d (G ) . 

On the other hand, if M is feasible in (TD~ ) then Y = M/n is feasible in (TD), 

which proves the inequality L(G) < nt)(G), too. 

The last assertion follows from the fact that for graphs with vertex-transitive 

automorphism group, the equality 19(G)I9(G) = n holds (see Theorem 8 in [6]). • 

We conclude this section with an open problem. Closedness of the convex set 

TH~(G) follows easily from the fact that TH(G) is a compact set. Hence, the 

inverse theta body can be described as 

TH~(G) = f ) {xETZ n :WtX>L(G,W)) , 

w>0 

where i(G,w) denotes the weighted version of t(G), that is 

L(G,W) := inf{u;Tx : x £ TH~(G)} (W € TLN). 

For special vectors w £ 7Z n, we have seen in the proof of Proposition 2.2 that 

TH-(G) Cf]\x = (Xi) £ : E — J — > n 2 , x > 0 1 , 

¡60 i t i w i ) " j 

where the (6j)s are the orthonormal representations of the complementary graph 

G. Does equality hold here? (For the theta body a similar linear description is 

known (see [4]): 

TH(G) - p ) j Y = ( v i ) € HN : ¿FAA?)NLK < 1, V > 0 1 , 

(Oi) I ¿=1 J 

where the (a,)s are the orthonormal representations of the graph G.) 
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3 Shannon capacity 

In this section we will prove that the inverse theta function has the same multi-

plicativity properties as the theta function, consequently its square root is an upper 

bound for the Shannon capacity of the graph. 

First, we will verify the submultiplicativity of the inverse theta function, an 

analogue of Lemma 2 in [6]. 

Lemma 3.1. For any graphs G,H, i(G • H) < i(G) • i(H). 

Proof. Let (a G) and {a") be orthonormal representations of the graphs G and H, 

respectively. Then, by Lemma 1 in [6], (a G <E>a") is an orthonormal representation 

of the graph G H. (Here x<g>y denotes Kronecker product of the vectors x = (xj), y, 

that is the block vector x ® y := (xj • y), see [8].) Thus, 

L(G-H) < £ l / ( ( a ? ® a f ) ( a ? ® a f f ) n 

i,3 

= E V ( ^ f T ) i r E l / ( a f a f ) u , 

i 3 

and, taking infimum in (a G) and (a 1/), we have the statement. • 

Now, we will prove the skew-supermultiplicativity of the inverse theta function. 

Lemma 3.2. For any graphs G, H, i(G • H) > i(G) • l(H). 

Proof. Let (b G) and (bj 1) be orthonormal representations of the complementary 

graphs G and H, respectively. Then, by Lemma 1 in [6], {b G®b") is an orthonormal 

representation of the graph G • H. Thus, by (5), 

l { w h ) > £ ( i g ® ^ ) t ( 6 g ® 6 g ) 

= V b G Tb G • V bH Tb" 

ill» 2 31,32 

and, taking supremum in (b G) and (fej7), the statement is proved. • 

Summarizing, we obtain the following analogue of Theorem 7 in [6]. 

Theo rem 3.1. The inequalities in Lemmas 3.1 and 3.2 hold with equalities: for 

any graphs G, H, 

a) L(G • H) = i(G) • t,{H); 

b) L(G • H) = I{G) • T{H). 
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Proof. It is enough to notice that the graph G • H is a subgraph of G • H, so 

t(G-H) > t(G • H). 

Applying Lemmas 3.1 and 3.2, the proof is completed. • 

We remark that part of Theorem 3.1 holds also with + signs instead of • signs: 

t(G + H)> L(G) + L(H) = L(G + H), 

for any graphs G, H. The proof of this statement is immediate from Theorem 2.1, 

therefore it is omitted. (For analogous results with the theta function, see [4].) 

A submultiplicative upper bound for the stability number of a graph is also 

an upper bound for the Shannon capacity of the graph, see Theorem 1 in [6]. 

Consequently, 

Theorem 3.2. For any graph G, 0 (G) < yfr(G) holds. 

Proof. By Theorem 2.2, for any graph H, A(H) < \JL(H). Hence, from Lemma 

3.1, 

a(G k)<Jf&)< (FT(G)) f c  

follows for k G Ai; the proof is finished. • 

Summarizing Theorem 1 in [6] and Theorem 3.2 we obtain 

0 (G) < min |i?(G),vÁ(G)}. (6) 

Can \//.(G) be less than 6(G) for some graph G? Juhász's theorem (see [3]) states 

that 6(G) is typically "around" n1/2 in the following sense: 

Theorem 3.3. (Juhász) Let G be a random graph with edge probability p = 1/2. 

Then, with probability 1 — o(l) for n oo, 

^yM + 0(n l , z\ogn) < 6(G) < + 0(n 1 / 3 logn). 

Hence, the value \Ji(G) (which is between n / y/ti(G) and y/nâ(G) by Propo-

sition 2.2) is typically "around" n3//4. 

Theorem 3.4. Let G be a random graph with edge probability p =1 /2 . Then, there 

exist positive constants ci,c2 > 0 such that with probability 1 — o(l) for n —k oo, 

ci • n3/4 < y i (G ) < c2 • n 3/4 

(Any ci,c2 > 0 such that c2 < 1/2 and > 2 meet the requirements.) • 
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We mention two corollaries: a positive and a negative result with non-construc-

tive proofs. 

Coro l l a ry 3.1. There exist graphs G such that \/c(G) < 

Proof. The proof is indirect: Let us suppose that the inequality 

X(H) < yf^H) 

holds for any graph H. 

Then, by Theorem 3.4, 

<*(H) > —^-r > - j = > c • n 1 / 4 (7) 

XW yfifR) 

would hold, with probability 1 — o(l) as n —• oo, for some appropriate constant 

c > 0. On the other hand, it can easily be seen that the probability of a(H) > £, 

( ? ) P ( a ( f f ) > £ ) < ( ; ) - ( l - l ) < 

i(i-1)/2 

2 J 
< (n • 2-(<-1V2) — 0 (n oo), 

where £ := c • n1/4 . We reached contradiction with (7). 

Hence, there exist graphs satisfying 

from which, with G = H, the statement follows. • 

From Theorems 3.3 and 3.4 immediately follows 

Coro l l a ry 3.2. Under the assumptions of Theorems 3.3 and 3-4, with probability 

1 — o(l) for n —¥ oo, 

0(G) < SMG). 

• 

Thus, the graphs G, with \JL(G) < 0(G), if they exist at all, are rare. However, 

we will see in the following section, that the fact that I(G) with high probability is 

large, can be an advance, too. 

We conclude this section with an open problem: With minor modification of 

the proof of Theorem 2.2 it can be proved that 

a(G) 2 < L(G) — n + a(G). 

From this inequality we obtain the bound 

A(G) < I ( l + Y/4(T(G) - n) + l ) , (8) 

which is tighter than a(G) < L(G). It is an open problem, whether the bound 

in (8) is submultiplicative (and, thus, is an upper bound for the Shannon capacity 

6(G)) , or not. 
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4 Heuristic algorithm 

In this section we will describe a heuristic algorithm for the stable set problem. 

The key observation for the algorithm is the following simple 

Lemma 4.1. Let the vectors b\,..., bn E TZ d form an orthonormal representation 

of the complementary graph G, and let u E TZ d, uTu = 1. Then, 

5 := e {1, . . . ,«> : ( t * ^ ) 2 > | | (9) 

is a stable set in the graph G. 

Proof. Let us suppose indirectly that for some i,j E S, {i,j} £ E(G). Then, as 

(bi,... ,bn) is an orthonormal representation of G, so bfbj = 0, and j¡6, +6,|| = \f2. 

By i,j E S, we have (vfb , ) 2 > 1/2 < (u Tbj )2 . Let us consider for example the case 

when uTbi > v'2/2 < uTbj. Then, 

\Í2 < uT(bi + bj) < |M| • ||bi + bj\\ = y/2, 

which is a contradiction. The cases, when uTbi < —y/2/2 or uTbj < — v'2/2 can be 

dealt with similarly. This completes the proof. • 

Taking into account Lemma 4.1 we can search for large stable sets as follows: 

We compute an orthonormal representation (BI) of the complementary graph G and 

a unit vector u so that X+( u 7N) 2 maximal, that is, see (2), it equals 0(G). (The 

solution of this problem is well-known, see Theorem 12 in [5].) The output stable 

set S will be the one in (9). The algorithm derived this way is a special case of the 

Alon-Kahale algorithm, see Theorem 29 in [5]. 

To calculate with the inverse theta function L(G) instead of the theta number 

0(G), we take a different approach to the problem. It follows from Rayleigh's theo-

rem and (2) that finding an orthonormal representation (bi) of the complementary 

graph G and unit vector u with value ffj(u
Tbl)'

2 = 0(G) means solving the programs 

( P ) onn a I (BTB)ii = l(i = l,...,n) 
(Pd) sup AB BT, I { B r B ) i j = 0 { { i j } e E { G ) l 

where B = (b\,... ,bn) E 1Z d x n. In other words, using the obvious equality AbbT = 

A b T
B
 and the variable transformation M = BTB, we have to solve the program 

{ mu = 1 (i = 1,... ,n) 

mij=0({i,j}EE(G)) 

M = (m,j) E Sf. 

This reformulation with a different proof is due to L. Lovász, who proved also the 

equivalence of the programs (P) and (TD), see [11], Theorems 11.8 and 11.3. 
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Algor i t hm 1 Heuristic algorithm for the stable set problem, 

l: Solve to optimality (or with e > 0 additive error) the program (TD~ ) . Denote 

the solution by M*. (The ^-optimal solution M* can be determined in poly-

nomial time using interior-point methods for semidefinite optimization, see e.g. 

2: Determine a matrix B = (&i, . . . ,6n) g R d x n such that m * = BTB. (An 

appropriate matrix B can be determined in polynomial time using algorithms 

from [9], e.g. Cholesky factorization.) 

3: Compute a vector u g 1Z d, uTu = 1 such that A B B T = uTBBTu holds. In 

other words compute a unit eigenvector of the matrix BBT corresponding to 

its maximum eigenvalue ABB T- (This can be accomplished in polynomial time 

using algorithms from [9].) 

4: Return the stable set S in (9). 

To obtain an algorithm based on the notion of the inverse theta number, instead 

of (P) we solve the program (TD~~) for M, and from this matrix we compute B, u 

and the stable set S. The algorithm derived this way is as follows: 

We have some evidence that our algorithm finds large stable sets. Note that 

the following theorem implies, by Juhasz's theorem, that ]Tt(u
T6,)2 is typically 

"around" \Jn for the modified algorithm, similarly as in the case of its original 

version, the Alon-Kahale algorithm. 

T h e o r e m 4.1. Algorithm 1 computes an orthonormal representation (b\,... ,bn) 

of the complementary graph G, and a unit vector u g TZ d such that the inequalities 

Proof. The first inequality is the immediate consequence of Theorem 5 in [6]. Let 

us prove the second inequality. Obviously, 

[7], [1], [10].) 

hold. 

n 

i=1 

On the other hand, by Rayleigh's theorem, 

1 _ tr {JM*) _ L(G) 

n n 

where 1 denotes the n-vector with all elements equal to one. This way we have 

verified the inequality ^2i(uTbi)2 > t(G)/n. Finally, the last inequality follows 

from Proposition 2.2. • 
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Note that the following corollary of Theorem 4.1 implies the relation 

(10) 

as the Alon-Kahale algorithm shows.) 

Coro l l a ry 4.1. Algorithm 1 realizes the bound in (10): finds a stable set S with 

cardinality 151 > (2i(G)/n) — n. 

Proof The statement is an easy consequence of the inequality 

as for i 0 S we have (uTb,)' 2 < 1/2 by the definition of the stable set S in (9). • 

Corollary 4.1 implies that |Sj > 0 if i(G) > n 2/2. Thus, the output stable set 

S is nonempty for example when a(G) > n/y/2. 

We conclude this section with a simple example. Let us consider the graph 

G = . Then, the output matrix M* (the optimal solution of the program 

(:TD~)) is the block-diagonal matrix made up of the matrices J £ lZ S l X S l, ..., 

J £ 775fcXSfc as diagonal blocks, zero otherwise. The matrix B £ R k x n such that 

M* = B ' B is made up of the column vectors of the identity matrix I £lZ k x k with 

multiplicity S i , . . . , S f c , respectively. Then, B B T £ lZ k x k is the diagonal matrix 

with diagonal elements s i , . . . , Sk- Let us suppose that si > s2, • • •, siThen, the 

vector u £ lZ k equals the first column vector of the identity matrix I £ 7Z k x k; and 

S = {1 , . . . , si} is the output stable set. 

We can see that our heuristic algorithm in the case of the graph G = 

finds a maximum stable set (and, iterating the algorithm, we obtain a minimum 

colouring). Generally, estimating from below the factor of the algorithm, the infi-

mum ratio of the cardinality of the output stable set and the stability number for 

a graph with n vertices, is an unsolved problem. 

5 Conclusion 

In this paper we studied the multiplicativity properties of the inverse theta function, 

and as a consequence we proved that the square root of this function is an upper 

bound for the Shannon capacity of the graph. Though the square root of the 

inverse theta number, as compared to Lovasz's theta number, is typically a weak 

upper bound, this fact could be exploited in a heuristic algorithm for the stable set 

problem. 
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Time-dependent Network Algorithm for 
Ranking in Sports 

András London, József Németh, and Tamás Németh* 

A b s t r a c t 

In this paper a novel ranking method which may be useful in sports like tennis, 
table tennis or American football, etc. is introduced and analyzed. In order to rank the 
players or teams, a time-dependent PageRank based method is applied on the directed 
and weighted graph representing game results in a sport competition. The method was 
examined on the results of the table tennis competition of enthusiastic sport-loving 
researchers of the Institute of Informatics at the University of Szeged. The results of 
our method were compared by several popular ranking techniques. We observed that 
our approach works well in general and it has a good predictive power. 

K e y w o r d s : Col ley method, Least squares method, Keener method, Markov chain, 

PageRank, ranking algorithms, self-organization 

1 Introduction 

In the last decade, rating and ranking methods have been studied and applied in a wide 

range of different areas. Due to the extraordinary success of Google's PageRank (PR) 

algorithm [7] -originally developed for ranking webpages based on their importance- graph 

based algorithms have gained more ground in the topic of ranking problems. Some good 

surveys on the PageRank method can be found in [4, 20, 29], Recently, the dynamic 

extensions of the PageRank method have also been discussed, containing the dynamic 

aspects of the 'damping' factor [28] and the viewpoint of the evolving network [3] and 

the time dependency [2]. More recently, a novel dynamic ranking model has also been 

proposed for ranking in sports [23]. 

Ranking athletes in individual sports, or sport teams is important for those who are 

interested in the various professional or amateur leagues as a financial investor, a manager 

or a fan and it also has a crucial role in sports betting from the point of view of both the 

better and the betting agency. In many sports, only the win/loss ratio is considered (e.g. see 

the most popular sports in the U.S.) for ranking, i.e. higher value indicates higher position 

in the ranking. In the case of equal win/loss rates, the result(s) of the head-to-head matches 

'University of Szeged, Department of Computer Science 

E-mail: {london, nemjozs, tnemeth}@inf .u-szeged.hu 
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between the players/teams in question and other simple statistics are considered to deter-

mine the ranking positions. In many sports, instead of the round-robin system, the type of 

the most relevant competitions is a single-elimination tournament (also called knock-out or 

cup) maybe with a preceding group stage. Thus the players play just few matches against 

only a small subset of the competitors. The official ranking of the players is usually deter-

mined by a sport specific rating system (e.g. see tennis, table tennis, combat sports, etc.). 

In fact, in a tournament, in a regular season or in a given period each player/team plays 

with only a subset of the others and a player/team who plays against weaker opponents 

have a considerable advantage compared with those, who play against stronger ones. 

Many approach traces back the ranking problem to the solution of a system of linear 

equations, where the entries of the coefficient matrix refer in some way to the results of the 

games have been played. Due to the study of this pairwise comparison scheme (for early 

studies see e.g. [6, 12, 19]), several matrix-based ranking algorithm have been appeared 

related to the ranking in sports (see e.g. [10] for chess teams, [11, 26] for tennis players, 

[5, 8, 14, 21] for American football teams). For a good mathematical guide to sports, see 

e.g. [16], while a useful comprehensive work can be found in [13] and [21]. 

In this paper, we continue this direction of studies and present a simple, time-dependent 

PageRank based method, the time-dependent PageRank (tdPR), and apply it to the table 

tennis competition of the Institute of Informatics at the University of Szeged. In that com-

petition, there is no any regular organization rule: players play against any participant 

whenever they want. Not even the number of winning sets needed for a win is stated. 

The only restriction is that 7 days must be elapsed between two matches against the same 

players. One of the biggest advantage of using this data set is its similarity to the result 

database of many professional sports in a given period, due to the large variety of the num-

ber of matches between two players and the elapsed time between the matches. However 

most of the (professional) sports have strong conditions for the opponent selection and the 

number of matches. It can be assumed that without knowing the organizational rules, the 

'opponent selection' in a given period can be regarded as a random process (we note that 

this is not hold e.g. for a Swiss-system chess tournament). Furthermore, we think that the 

importance of a certain result is inversely proportional to that how old that game is. Thus 

considering this time-dependency (i.e., the latest results are more important than the older 

ones) helps to get clearer picture about the actual relative strengths of the opponents. 

Results presented here were compared to other traditional and widely used ranking 

methods. We highlight the advantages of the usage of our method and show its higher 

predictive power than the other methods. Furthermore, we also suggest a deeper study of a 

self-organization mechanism respect to the opponent selection: the players having similar 

tdPR values more likely to play with each other in the later part of the competition (without 

knowing the scores and ranks of each other). This observation can explain the appearance 

of different strength classes and emergence of the elite in several sports. 

This paper is organized as follows: in Section 2, we give a brief mathematical descrip-

tion of the methods we used and compared, in Section 3, we apply the methods to the table 

tennis competition and highlight the usefulness and advantages of our approach, finally, 

in Section 4, we suggest a new type of a self-organization mechanism and a type of graph 

regularity for deeper analysis. 
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2 Overview of the ranking methods 

In this section we introduce some widely used ranking methods and describe the proposed 

approach. Hundreds of ranking methods have been appeared in the long history of ranking 

in sports. The selection of the methods we use in this paper based on a few criterion: (1) 

the method is based on linear algebra, (2) the method has been proved to be successful for 

real applications, and (3) the method has simple formulation with closed form solution. 

In this section the number of players is denoted by N while we will refer to the players 

by 1 ,...,N. 

2.1 Least squares method 

The first method we describe is usually referred as the least squares (or weighted least 

squares) method (Lsm) originated from Smith and Gulliksen [15, 30], Kenneth Massey 

in his master thesis found wonderful applications of it, especially for ranking the collage 

football teams in the United States ([21], Chapter 4). The only statistics used by this 

method are the number of wins and losses of each player. The ranking of the players 

comes from the solution of the linear system of equations 

where r = (r j , . . . , ry) is the unknown rating vector of the players, p = (p\,..., pv) the 

vector contains the difference of total number of wins and losses for the players, while M 

(we call it Massey matrix) defined as 

where m is the total number of matches played by player i and ny is the number of matches 

played between player i and player j. Since rank(M) = N - 1, the linear system Eq. (1) is 

underdetermined. The non-singularity can be guaranteed if each element of any row i of 

M is set to 1 and the corresponding p, is set to 0. Obviously, the decreasing order of the 

components of the rating vector r gives the ranking of the players. 

2.2 Colley matrix method 

The Colley matrix mehod was designed by Wesley N. Colley [8], The method is a mod-

ification of the Least squares method by using an observation called Laplace's rule of 

succession (see [27], page 148) which claims, that if one observed k successes out of n 

attempts, then (k +1 )/(n + 1) is better estimation for the next event to be success than k/n. 

The rating vector r of the players is the solution of the linear system 

Mr = p, (1) 

(2) 

Cr = b, (3) 

where the ith component of the vector b is defined as ¿>, = 1 + (w* — /,-)/2, where w, and 

/, are the number of wins and losses of player i, respectively, and the Colley matrix C is 
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defined as 
( » . x i ;f ; — i 

(4) 
r _ J m'+2> if ' = 

' i - "y . if m i -

Thus C = M+27, where / is the N x N identity matrix. It can be checked that system Eq. (3) 

always has a unique solution and just as before, the ranking of the players is obtained by 

the vector r. 

2.3 Keener method 

James P. Keener developed his ranking method [17], based on the theorem of Frobenius 

and Perron (see e.g. [22], Chapter 8). Using this method, the ranking of the players comes 

from the eigenvalue equation 

Kf=Xr, (5) 

where the Kenner matrix K defined as 

wibti if player i played against player j , ^ 

otherwise, 

where wly- is the number of wins of player i against player j while A is the dominant 

eigenvalue (the eigenvalue of the largest absolute value, also known as the spectral radius) 

of the matrix K. The Frobenius-Perron theorem guarantees the existence and uniqueness 

of the vector r with strictly positive components. We mention, that the method has been 

originally defined for ranking American football teams and used the concrete points that a 

team i scored against a team j and also used a smoothing function to avoid the possibilities 

for manipulation. For the table tennis competition that has been examined in this paper, 

we do not deal with the points scored in the games played just consider the final result of 

each game as win or loss. 

2.4 PageRank method 

The PageRank algorithm - developed by Sergey Brin and Larry Page [7] - was originally 

designed to rank web pages in order to their importance. The idea behind the algorithm 

came from the basic properties of Markov chains (see e.g in [27], Chapter 4) as a spe-

cial case of the Frobenius-Perron theory. The ranking points of the players are iteratively 

calculated by the recursion formula 

/>*(/) = ¿ + (1-A) X (7) 
/ v jeN+(i)  WJ 

where N+(j) is the set of players defeated by player i at least once, Wj is the total number 

of wins of player j and A £ [0,1] is a free parameter (usually 0.1 or 0.2; the intuitive 

meaning of A is described in Section 2.5). 

To see the close relationship between PageRank formula and the theory of Markov 

chains, we write Eq. (7) to the vector equation form 

PR = ^[/-(1-A)AD-1]-11, (8) 
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where PR PageRank vector contains the PageRank rates of the players, A is the matrix 

with elements A,y equals to the number of wins of player i against player j, D the diagonal 

matrix such that D = diag[(Du = jJi=i A,/)^,)], / is the N x N identity matrix and finally 1 

is the A-dimensional vector having each component equals to 1. Assuming that I PR = 1, 

Eq. (8) implies, that 

PR = MPR, (9) 

with M = X/nllT — (1 - A)AD~ l, which shows that PR is the eigenvector of the matrix 

M due to the eigenvalue 1, which is the largest eigenvalue of M by a consequence of the 

Frobenius-Perron theorem for row-stochastic matrices. 

2.5 Time-dependent PageRank method 

Intuitively, the basic PageRank algorithm can be considered as a random walk in the graph 

G = (V.E), where V denotes the set of players and we draw a directed edge i—¥ j EE each 

time when player i wins against player j. The walk starts in a random node i of the graph 

and steps to a randomly chosen node j, with uniform probability, for that i —> j edge exits. 

The parameter A can be viewed as a "damping" factor which guarantee that the random 

walk restarts in a random, uniformly chosen node of the graph almost surely in every 1/A-

th step. The PageRank of a node i can be considered as the the long-term fraction of the 

number of visits in node i during the random walk. 

Following this direction, we modified the PageRank algorithm such that the weight 

(i.e the transition probability) of each edge decreases whenever a new edge appears in 

the graph. Formally, after the Ath match was played in a given period, the weight of the 

latest edge become 1, the second latest become 1/2, the ith latest become 1//, the oldest 

one become 1 /k. We normalize the weights such that the obtained matrix become row-

stochastic (i.e. each row summing to 1) and we recalculate the ranking every time when a 

new result is registered in the database by solving the equation 

PR = M'PR, (10) 

where the entries of M' are then the new transition probability values, calculated as we 

described. 

3 Experimental results 

We applied the methods described above to the table tennis competition of the Institute of 

Informatics at the University of Szeged (the dataset we used can be found in the website 

[1]). In that competition, there is no any rule for the selection of the opponents or the date 

of the match. The only restriction is that 7 days must be elapsed between two matches of 

the same players. Without considering the organizational rules and by just considering the 

list of the results in a given period, it can be observed, that these features are occurred in 

many sports where the competitions are not round-robin. 

In Table 1, we report the scores of the players obtained by the different ranking meth-

ods. In the case of the PR and the time tdPR algorithms, we used A = 0.1,0.2,0.3,0.4, 
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respectively. Figure 3 shows, that the tdPR score is very robust against these variations 

of A. The tdPR method was proved to be very effective in finding the best players of the 

competition that could be a posteriori justified by knowing the players skills. 

We used Kendall's r rank correlation method [18] to quantify the rank correlation 

between the different methods. The rank correlation coefficient is defined as T = (nc — 
no)/("/), where nc (nj) is the number of such pairs that have the same (opposite) order 

in both ranking list. However, the tdPR score is positively correlated with the win ratio, 

differences can be seen by comparing the two methods. The relation between the tdPR and 

the winning ratio is shown in Figure 1(a). 

A relevant outlier on the list is player 14 having win ratio 50%, who precedes player 

5, 23, 19 and 21 having better win ratio than himself. He is placed at position 4 and this 

is consistent with the fact, that he was defeated by just that players (player 10, player 12; 

see the data set and Figure 4) who ranked higher. Figure 1 (b) shows the relation between 

tdPR and the other ranking methods. 

Despite the high correlation between tdPR and the other methods, we observed, that the 

time-dependent method has a better predictive power. We considered the first half of the 

total number matches had been played since the start of the competition and calculate the 

tdPR values regarding that period. Then we checked the results of the upcoming matches 

and the changes in the ranking. It can be observed, that the players with much higher 

tdPR score after the first half the total matches played, won a high proportion of their 

matches against players with smaller tdPR values in the later part of the competition. The 

difference between the tdPR values of the players can give a reliable prediction for the 

upcoming matches. Figure 2 shows the tdPR ranks of the players after 45, 90 and 180 

played games. We mention, that Figure 2 only contains that players, who had already had 

at least one played matches after the first 45 played matches of the competition. Obviously, 

at that time we can not predict the results of those players who join later to the competition. 

Figure 1: (a) The scatter plot of the tdPR rank vs. the win-rate rank, (b) The results 

obtained by the different ranking methods. 



Time-dependent Network Algorithm for Ranking in Sports 501 

Table 1: Scrores obtained by the different methods; the ordering of the players are obtained 

by the decreasing order of the tdPR values 

Player #Plays #Wins Win ratio Lsm Colley Keener PR tdPR 

9 13 13 1.000 1.418 1.074 0.229 0.113 0.138 

10 29 25 0.862 0.972 0.923 0.238 0.089 0.093 

12 30 26 0.867 0.859 0.882 0.245 0.083 0.085 

1 63 44 0.698 0.497 0.722 0.233 0.071 0.075 

14 6 3 0.500 0.658 0.717 0.198 0.064 0.070 

5 38 22 0.579 0.266 0.604 0.200 0.050 0.052 

23 5 3 0.600 0.779 0.736 0.199 0.047 0.047 

18 16 8 0.500 0.555 0.700 0.192 0.046 0.045 

11 24 11 0.458 0.209 0.564 0.193 0.039 0.040 

19 10 6 0.600 0.454 0.664 0.200 0.042 0.039 

21 13 7 0.538 0.325 0.615 0.199 0.035 0.032 

8 19 6 0.316 -0.338 0.354 0.181 0.031 0.032 

26 1 0 0.000 -0.503 0.407 0.194 0.031 0.029 

4 19 3 0.158 -0.474 0.265 0.172 0.025 0.026 

6 10 5 0.500 0.269 0.586 0.194 0.030 0.025 

2 17 3 0.176 -0.380 0.307 0.177 0.022 0.024 

17 13 2 0.154 -0.437 0.286 0.178 0.019 0.020 

3 13 1 0.077 -0.615 0.213 0.171 0.019 0.020 

7 12 2 0.167 -0.650 0.219 0.176 0.018 0.018 

16 2 0 0.000 -0.322 0.401 0.191 0.024 0.018 

13 2 0 0.000 -0.322 0.401 0.191 0.024 0.018 

22 14 1 0.071 -0.433 0.277 0.169 0.016 0.016 

24 4 1 0.250 -0.507 0.349 0.191 0.023 0.016 

15 5 1 0.200 -0.174 0.416 0.188 0.017 0.010 

25 3 0 0.000 -1.060 0.186 0.191 0.015 0.007 

20 5 0 0.000 -1.047 0.136 0.184 0.010 0.004 

Table 2: Kendall's r rank correlation between the different methods. 

PR tdPR Win/loss Lsm Colley Keener 

Win/loss 1.000 

MASSEY 0.705 1.000 

COLLEY 0.748 0.895 1.000 

KEENER 0.655 0.606 0.711 1.000 

PR 0.723 0.735 0.803 0.662 

tdPR 0.723 0.674 0.705 0.563 

1.000 

0.902 1.000 
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Players 

Figure 2: The tdPR ranks of the players after 45, 90 and 180 played games. 

Figure 3: Sensitivity analysis of tdPR for different A values after 45, 90 and 180 played 

games, from left to right. The figure shows, that the tdPR score is robust against these 

variations of A. 

4 Further ideas and future work 

We also ran a clustering algorithm (aiming to maximize modularity [25]) to see whether 

there exists a deeper organizational mechanism behind the evolution of such a network. 

In Figure 2 the clusters are colored with different colors. Figure 4 illustrates the contact 

graph of the players after 90 played matches (left hand side) and the current state of the 

championship with more than 180 mathces (right hand side). It is interesting to see the 

changes of the clusters of the two graph. First, we observed that most of the new players 

wants to play against the actual best players (in tdPR rank) hoping to jump to the top of the 

ranking table. Second, it seems that players having closer tdPR values more likely to play 

with each other, than players having much less tdPR value and rank. Thus, we conjecture 

that the tdPR scores have a good explanatory power for a self-organizing mechanism of 

free-time sports and it can explain the appearance of different strength classes in most 



Figure 4: The contact graph of the players after 90 played matches (top) and the current 

state of the championship with more than 180 mathces (bottom). Nodes having same colors 

belong to the same clusters. 
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of the sports, where the results in a class are more difficult to be predicted than results 

between different classes. Furthermore, in a graph theoretical point of view, a new type 

of 'regulatory' (for some details, see [9]) can be defined on directed graphs, where the 

fraction of in/out edges of a node is around 1/2 in the same class, and tends to 1 (or 0 

reversely) between different classes. 

5 Conclusions 

Graph based algorithms have been proved to be relevant in a wide range of applications. 

However there is no perfect algorithm for ranking sport players/teams, we believe that 

PageRank based methods are reliable to ranking athletes and this is even more true for 

time-dependent modifications of these stochastic algorithms. 

In this work, we defined a time-dependent PageRank based algorithm and applied it for 

ranking players in a university table tennis competition. According to our tdPR method, the 

ranking of a player is not only determined by the number of his or her victories, but matters 

from how good players he could beat or lose against. It means, that a good player is needed 

to beat for higher ranking position, but win many matches against weaker opponents does 

not lead anyone to the first positions in the ranking table. The time-dependency of weights 

of the matches guarantee that the matches played a long time ago do not count as much 

weight in the ranking. Another aim of the time-dependency is to pressure the players to 

play regularly or else their results would be out of date, therefore count much less in the 

ranking. 

We also observed that our method has a good predictive power. This can be interesting 

in other aspects of sports, for example estimate the betting odds for games. Finally, we 

think that a self-organization mechanism works in the background of the evolution of the 

contact graph. Obviously, players want to enter matches are expected to be exciting, but 

this nature of such competitions can be modeled and measured mathematically just by 

knowing the time-series of the results. That observation gives the idea to define a special 

preferential attachment mechanism [24] where players having higher PageRank values 

more likely to play (contact) with each other and this is maybe related to the emergence 

of an elite in sports. Further research is needed around this hypothesis, and testing our 

method for different sports and data sets is also another work for the future. 
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