
Volume 20 Number 4

ACTA
CYBERNETICA

Editor-in-Chief. János Csirik (Hungary)

Managing Editor. Csanád Imreh (Hungary)

Assistant to the Managing Editor. Attila Tanács (Hungary)
Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Hans L. Bodlaender (The Netherlands)
Horst Bunke (Switzerland)
Bruno Courcelle (Prance)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)
Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)

Tibor Gyirnóthy (Hungary)
Helmut Jürgensen (Canada)
Zoltán Kato (Hungary)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2012

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints axe
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the time
it takes to locate qualified reviewers. Usually, a review process takes 6 months to be
completed. There are no page charges. An electronic version of the puplished paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in I^TjtX format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http://www.inf.u-szeged.hu/actacybernetica/ .

mailto:acta@inf.u-szeged.hu
http://www.inf.u-szeged.hu/actacybernetica/

EDITORIAL BOARD

Editor-in-Chief: Janos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged. Hungary
csi ri k@ i nf. u-szeged. h u

Managing Editor: Csanád Imreh
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
ci m re h @ i nf. u-szeged. h u

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Bruno Courcelle
LaBRI
Talence Cedex, France
courcell@labri.u-bordeaux.fr

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf.u-szeged.hu

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

mailto:csirik@inf.u-szeged.hu
mailto:tanacs@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:hansb@cs.uu.nl
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr
mailto:csendes@inf.u-szeged.hu
mailto:demetrovics@sztaki.hu
mailto:ze@inf.u-szeged.hu
mailto:fulop@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged. Hungary
gecseg@inf.u-szeged.hu

Jozéf Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gy i mot hy @ i nf. u-szeged. h u

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@inf.u-szeged.hu

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest. Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:gecseg@inf.u-szeged.hu
mailto:gruska@savba.sk
mailto:helmut@csd.uwo.ca
mailto:kato@inf.u-szeged.hu
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:Heiko.Vogler@tu-dresden.de
mailto:gwoegi@win.tue.nl

Acta Cybernetica 20 (2012) 459-481.

Model-Driven Diagnostics of Underperforming
Communicating Systems*

Levente Eros* and Tibor Csöndes*

Abstract
This paper proposes methods for improving the performance of a commu-

nicating system that has failed its performance test. The proposed methods
extend our earlier published model-driven performance testing method, which
automatically determines whether the tested system is able to serve the speci-
fied number of requests within a second in worst case while serving a specified
number of users simultaneously. The underperformance diagnostic methods
presented in this paper are given as an input the formal performance model
representing the system under test, which was built up by our performance
testing method in the performance testing phase. The presented methods
aim at improving the performance of the system under test to the desired
level at minimal cost. One of the methods presented in this paper is a binary
linear program, while the other is a heuristic method which, according to our
simulation results, performs efficiently.

Keywords: performance testing, performance diagnostics, complexity the-
ory, optimization, approximation algorithms

1 Introduction
Testing is the last phase of the development of a system implementing a communi-
cation protocol. The kinds of tests run on a communicating system can be several,
but two of the most important kinds of tests are conformance tests and performance
tests. When performing a black-box test on a communicating system, the test en-
viroment (or tester) does not know anything about the internal structure of the
system under test (SUT) and can only investigate the SUT through its responses
(outputs) given for different requests (inputs). Black-box conformance testing ex-
amines whether the SUT implements the communication protocol that it should

"This paper has been (partially) supported by HSNLab, Budapest University of Technology
and Economics, http://www.hsnlab.hu.

^Department of Telecommunications and Media Informatics, Budapest University of Tech-
nology and Economics, H-1117. Magyar tudósok krt. 2. Budapest, Hungary, E-mail:
erosStmit.bme.hu

^Ericsson Hungary, H-1117. Irinyi József u. 4-20. Budapest, Hungary, E-mail:
t ibor .csondesOericsson.com

http://www.hsnlab.hu

462 Levente Erős and Tibor Csöndes

Figure 1: The TCFMM model

In the above definition, S is the set of states with so £ S being the initial state
of the TCFMM, T is the set of transitions, I is the set of inputs, O is the set of
outputs, and U is the set of tokens in the TCFMM. Each transition U G T is a
quintuple {sfrom^StOijiijOijdi), where s/romj G 5 is the originating state, st0i 6 S
is the destination state, ii 6 / is the input, Oj 6 O is the output, and di is the
delay of the transition. Each token Uj € U represents a protocol instance run by
the SUT. Each Uj has a current state s c u r r e n t j , which is the current state of that
protocol instance of the SUT, which communicates with user j . The transitions
work as follows. Let us assume that scurrentj = Sfrom.. If user j sends U to the
system represented by the TCFMM, token Uj is removed from Sfr0m. and placed
to st0i and Oi is sent to the user in response. The time elapsed between the user
sending ii to and receiving o, from the system represented by the TCFMM is di.
In the beginning, for each Uj G U, scurrentj = Sq. Figure 1 shows a TCFMM. The
transition parameters are written on each transition in the form input/output/delay.
All the tokens of the TCFMM reside in s0.

As the first step, our performance testing method creates the structure of the
TCFMM representing the SUT. In the rest of the paper, by the structure of the
TCFMM, we mean the complete TCFMM without its transition delays di. In the
testing phase, the tester measures all transition delays of the SUT and completes
this TCFMM model. During testing, the structure of the TCFMM is used for
tracing the state of the SUT.

The structure of the TCFMM is based on the FSM model to which the SUT cor-
responds, according to its conformance test. Each state of the TCFMM corresponds
to a state of the FSM, while each of its transitions correnspond to a transition in the
FSM. The input and output value of a transition in the TCFMM equals the input
and output value of the corresponding transition in the FSM, respectively. Two
states in the TCFMM are connected by a transition exactly if the corresponding
states are connected by the corresponding transition in the FSM. The originating
and destination states of each transition in the TCFMM are the originating and

Model-Driven Diagnostics of Underperforming Communicating Systems 463

Figure 2: Redirecting transitions from terminating states

destination states of the corresponding transition in the FSM, respectively. After
creating the states and transitions, usr tokens are placed to so in the TCFMM.
Placing these tokens to state so in the TCFMM means that during the performance
measurement, the tester will emulate the maximal number of users the SUT has to
be able to handle. During testing, moving token Uj along transition from state
sfromi to state st0i corresponds to the tester sending input to the SUT and then
waiting to receive output Oi from the SUT, in the name of user j .

To complete the structure of the TCFMM, all the transitions leading to sink
states (i.e. states that have no outgoing transitions) have to be redirected to so,
and the sink states have to be eliminated. The reason for this modification is that
if there were sink states in the TCFMM used for conducting the performance test
and a token vn reached one of these sink states, then the tester would not be able
to send any request messages (inputs) to the SUT in the name of user i that is,
the effective number of users the SUT has to serve would be decreased by one due
to this stuck token m. In other words, token w, would go inactive. If however,
the transition leading w, to this sink state is redirected to so, every time a token
goes through this transition, it reappears at s0 instead of going inactive. This is
identical to the situation when for each user that sends its last request to the SUT
and goes inactive, a new user appears. With this modification, the number of users
that the SUT has to serve simultaneously is usr for the whole duration of the test.
Figure 2 shows two TCFMMs. The TCFMM in the right side of the figure is the
TCFMM in the left side of the figure, after its transitions leading to the only sink
state S3 got redirected to so-

After creating the structure of the TCFMM, the tester measures the yet un-
known transition delay values di on the SUT. During testing, each user emulated
by the tester sends one request after another to the SUT. Thus, upon receiving a
response from the SUT, the user sends the next request right away, and this way
the SUT is continuously stressed by usr requests from usr users. Once each d.L is
known, the TCFMM is a complete performance model of the SUT. Based on this
TCFMM, CWusr can be calculated.

Before going on with calculating CWusr, let us define what it means that a

464 Levente Erős and Tibor Csöndes

system is able to process CWR^r messages per second in worst case.

Definition 1. Let denote the number of state transitions of the SUT measured
for time length t while the SUT is fed by s. Then the SUT is said to be able to
process CWRvsr messages per second if for an arbitrary infinite input sequence s,

lim ^ > CWR^r (1) t—yoo t

The above fraction is the reciprocal of the average amount of time needed to
process one input message of s. Since the amount of time needed to process any
input sequence of s equals a transition delay which takes its value from a finite set,
this average delay does have a limit and thus, the limit in the above formula exists
too.

According to the above definition, a system is said to be able to process CWR^r
messages per second in worst case if it processes at least CWRusr messages per
second when induced by an arbitrary and infinite sequence of inputs, measured for
a relatively long (optimally infinite) period of time.

In the following, a represents a cycle of transitions in the TCFMM, while \ci\
represents its length. The following is a sufficient and necessary requirement of a
system that processes CWRusr messages per second in worst case: A system is able
to process CWRUST messages per second in worst case if and only if, for each Ci of
the TCFMM of the system:

(2>
tj-ecj

As a consequence of the above, the number of messages the SUT is able to
process within a second in worst case can be calculated as follows, where C is the
set of all transition cycles in the TCFMM:

C W ^ = m i n { J ^ - } (3) Ciec dj
tjECi

4 The Worst-Case Underperformance Diagnostics
Problem

After the above introduction, we are going to show how to increase the performance
of a communicating system for which, CWRusr > CWusr (in other words, the
system is unable to process CWRusr messages per second in worst case).

Increasing CWusr is achieved by reducing the transition delays of the SUT. We
are going to assume that transition delays are not reducible by arbitrary amounts.
Moreover, each transition delay di is reducible by amounts 2 - ^ , . . . , (Gr—1)-^,
where Gr (the so-called granularity) is a positive integer. Each transition delay
reduction has a cost. The objective of the methods presented in this section is

Model-Driven Diagnostics of Underperforming Communicating Systems 465

to correct (some of the) transition delays of the SUT, so that at the end of the
correction CWRusr < CWusr and to carry out this correction at minimal cost.

4.1 Definition of the Worst-Case Underperformance Diag-
nostics Problem

The worst-case underperformance diagnostics problem is defined as follows:
Given are the set T = {ti} of transitions, and the set C — {C,} of cycles. Each

cycle Ci = {t j } is a set of transitions, and each transition tj has a delay value dj.
Given are a positive integer Gr, a positive number CWRusr, a positive number K.
and a variable 0 < qi < 1 assigned to each transition U. Given is furthermore, a
monotonic decreasing function Cost(x) for which Cost : (0,1] K + , Cost(l) = 0
measured by discrete equidistant points of the domain. The question to be answered
is as follows: Is it possible to choose the value of each qi so that qi = where
0 < rii < Gr is an integer and the following inequalities are true?

* » 6 C ! <4>]-tj€ci

J2 Cost{qi) < K (5)
i-.ti&T

To further explain the above, is a factor representing the reduction of di
(a correction factor from now on). The reduced delay of each ti £ T is c^g».

Y, Cost(qi) is the total cost of delay reduction. Cost(1) = 0, because if qi = 1,
i:ti£T
the delay of ti is not reduced, and so the delay reduction does not cost anything.
Finally, K is an upper bound for the cost of correcting the delays of all transitions.
Formula 4 corresponds to Formula 2 thus, it expresses that after the performance
correction, CWusr > CWRusr. Formula 5 requires the cost of the correction to be
under K.

4.2 Complexity of the Worst-case Underperformance Diag-
nostics Problem

In this subsection, we are going to prove the NP-completeness of the worst-case
underperformance diagnostics problem by reducing an arbitrary instance of the
NP-complete knapsack problem to an instance of the worst-case underperformance
diagnostics problem, using the Karp reduction. [30]

Proof. Before beginning the proof, let us redefine the worst-case underperformance
diagnostics problem using the attributes of the first definition:

Given are the set T = {tj} of transitions, and the set C = {Ci} of cycles. Each
cycle Ci = {tj} is a set of transitions. Each transition tj = {(djk,Cjk)} is a set of
delay-cost pairs, where djk = djCjk = Cost{-^), and 1 < fc < Gr is an integer
(y{tj G T) : \tj\ — Gr). The question to be answered is as follows: Is it possible

466 Levente Erős and Tibor Csöndes

to choose exactly one delay-cost pair (dj.Cj) € tj from each transition tj so that
V(z : Ci 6 C) : £ dj < cwr^ 311(1 E c'j < To further explain the

j-tjeCi j-tjZT
above, for each transition ij, is the measured delay di of the transition and
Cifci = Coat (^) = Cost(^) = Cost{ 1) = 0.

A set T of the chosen (dj. ¿j) pairs is an appropriate witness, since given this set
(containing |T| elements), checking whether the elements of T give an appropriate
solution can be done by summing up the dj values and checking whether the sum
is lower than or equal to Cwj}—, and by summing up the Cj values and checking
whether their sum is lower than or equal to K. This operation can be carried out in
0(|T||C|) time that is, in polynomial time. Thus, the worst-case underperformance
diagnostics problem is in NP.

Now, we have to reduce an arbitrary instance of the knapsack problem to an
instance of the worst-case underperformance diagnostics problem. The knapsack
problem is defined as follows:

Given are a set G, for all of its elements gj a v(gj) and a w(gj) value and positive
integers V and W. The question to be answered is as follows: Is there a subset
G' C G such that the following inequalities are true?

E < w (6)

£ v(9i) > V (7)
3j€G'

Let us now take this definition of the knapsack problem and reduce it to an
instance of the worst-case underperformance diagnostics problem. First of all,
to each gj € G of the knapsack problem, a transition tj is assigned, such that
tj = {{dj!, Cjx), {dj2, Cj2)}, and U tj = T. The variables of the resulting worst-case

i
underperformance diagnostics problem are as follows:

dj! = v(9j)
Cj! = H9j)
djz = 2 v(gj)
Cj2 - 0
C {¿M
Ci T

CWRusr = |C|
2 E v(9i)-V Si£G

K w
According to the assignments above, in the resulting graph there will be exactly

one cycle containing all the transitions. Furthermore, each transition tj will have
two delay-cost pairs. Choosing pair (dji, Cji) in the worst-case underperformance
diagnostics problem corresponds to including gj in G' in the knapsack problem,
while choosing pair (djS,Cjs) corresponds to not including gj in G'.

Model-Driven Diagnostics of Underperforming Communicating Systems 467

Now we have to show that the knapsack problem is solvable if and only if the
corresponding worst-case underperformance diagnostics problem is solvable.

Let us assume that the above defined worst-case underperformance diagnostics
problem is solvable. This means that for each tj G T there is a (dj,Cj) G tj pair
such that the following inequalities are true:

£ ̂ JF (8>
. Jlusr J-tjEOi E ¿i< K (9)

j:tj ET

Using the assignments defined earlier in this proof, Inequality 8 can be trans-
formed as follows:

2 E «(»<) - E v(9i) <
9iGG 9iEG>

- < IC'I (10)
— | Q | 2 *; v(Si)-v

Si E G

The reason for transforming the left side of Inequality 8 as above is the following:
According to the assignments defined earlier in the proof, dji = v(gj) = 2v(gj) —

v(gj). Thus, each dj value includes a 2v(gj) component either if it equals dji or djz-
Thus, by summing up the dj values on the left side of Inequality 8, a 2 E v(dj)

gjeG

component will appear on the left side of Inequality 10. A dj value has a further
—v(gj) component exactly if it equals dji. A dj value equals d.}1 exactly if g3 G G'.
Thus -v(gj) has to be added to the left side of Inequality 10 for each §j G G'.

Since |G| = |Ci|, Inequality 10 can be reduced as follows:

2 E - E ^2 E v(9i) - v (ii)
Si £G gj€G' 9i€G

V < E v(9j) (I2)
9j€G>

According to the assignments defined earlier in this proof, Inequality 9 can be
transformed as follows:

E w(9i) < W (13)
gj£ G'

The explanation for the left side of Inequality 13 is the following:
¿j = Cj§ = 0 exactly if gj £ G' and c,- = Cji = w(gj) exactly if g} G G'.

Thus, the left side of Inequality 13 will be the sum of those w(gj) values for which,
9j 6 G'.

As a consequence of the transformations of Inequalities 8 and 9, our worst-case
underperformance diagnostics problem will be solvable exactly if Inequalities 12 and

468 Levente Erős and Tibor Csöndes

13 are true. However, as Inequality 12 is identical to Inequality 7 and Inequality 13
is identical to Inequality 6, our worst-case underperformance diagnostics problem
is solvable if and only if the corresponding knapsack problem is solvable.

Since the transformation of the knapsack problem to an instance of the worst-
case underperformance diagnostics problem can be carried out in 0(|G|) that is, in
linear time and the knapsack problem is solvable if and only if the corresponding
worst-case underperformance diagnostics problem is solvable, the knapsack problem
is Karp reducible to the worst-case underperformance diagnostics problem.

And finally, since the knapsack problem is Karp reducible to the worst-case
underperformance diagnostics problem and the worst-case underperformance diag-
nostics problem is in NP, the worst-case underperformance diagnostics problem is
NP-complete.

•
4.3 ILP formulation of the Worst-Case Underperformance

Diagnostics Problem
Since the worst-case underperformance diagnostics problem is NP-complete, the
most effective known way to find its optimal solution is formulating it as an integer
linear program, and solving it. The optimal solution in our case is the solution
with the minimal cost. The integer linear program in our case will be the binary
linear program (BLP) formulated in this subsection.

The binary program formulating the worst-case underperformance diagnostics
problem is as follows, where err. = and csti = Cost(-^)\

Minimize:

Gr

£ (14)
i:ti€Tj=1

Subject to:

Gr

y(i:tieT):J2<lij= 1 (15)
i=i

Gr

W c . e C : Y , < ^ j j — (16)
j-.tjECi k= 1 usr

V(i : U ET) : V(j = 1 ,2 , . . . , Gr) :
9« € { 0 , 1 } W

When solving the program, the values of the qij variables are being searched
for. The value of each q^ has to be set to 0 or 1 (Equation 17). Variables q^,
where j = 1 , . . . , Gr are used for choosing the value of correction factor qt. As a
solution of the BLP above, for each transition ij, there is exactly one qtJ variable
with the value of 1. All the other qXJ variables of transition ti are set to 0. This is

Model-Driven Diagnostics of Underperforming Communicating Systems 469

a consequence of Equations 15 and 17. If the value of is 1 then ql equals
and thus, correcting the delay of £j costs C o s i (^) .

As mentioned above, Equations 15 and 17 are responsible for choosing the value
of qi legally. According to these equations, each ql} is 0 or 1 and for each ti, exactly
one qij equals 1, while the others equal 0. On the left side of Inequality 16, coefficient
Gr
E QjkCTTk equals Qj the value of which is chosen from among the err a- values by
fc=i
the appropriate qjk variable set to 1. Thus, Inequality 16 means that the corrected
delay of each cycle Cj has to be lower than or equal to — (this corresponds

Gr
to Inequality 4). Finally, in the objective function (Formula 14), E Qijcstj equals

3=1
Cost(qi), which is the cost of correcting the delay of transition £,;. The value of
Cost(qi) is chosen from among the cstj values by the appropriate ql3 variable set
to 1. Thus, the objective function expresses that the total cost of transition delay
correction should be minimal.

Note: The problem can also be interpreted as a maximalization problem, where
the maximal cost K is given and the task is to maximize CWusr. Using the above
notation, this problem can be formulated as follows:

Maximize:

CWusr (18)

Subject to:

Gr

i.ueT j=i

Gr

V(i: t i e r) : = 1 (20)
j=i

Gr , |

Vcj € C : £ dj Y, Qikcrrk < (21)

j:tj€Ci k= 1

V(i : ti &T) : V(j = 1 ,2 , . . . , Gr) :

The above formulation differs from the first formulation in two things. First, it
sets an upper limit for the total cost and second, while it still requires each cycle
delay to be lower than or equal to , its objective is to maximize CWUST. In
the simulations presented in Section 5, we use the first formulation.

470 Levente Erős and Tibor Csöndes

4.4 A Heuristic Solution for the Worst-Case Underperfor-
mance Diagnostics Problem

In this subsection, we introduce a heuristic algorithm for solving the worst-case
underperformance diagnostics problem. The algorithm is optimized for the case
when Cost(x) = — loga x (x < 1), an its objective is to minimize the cost by which
CWusr can be made greater than or equal to CWR^sr- Algorithm 1 shows how our
heuristic method works. In the algorithm, r is the so called refreshing granularity
(a large integer).

Algorithm 1: Heuristics for solving the worst-case underperformance diag-
nostics problem

input : T, C, Gr, CWRusr, r
output: (J qt

i.tiST

1 foreach i : ti € T do
2 | clisti : = {j\ti € Cj};
3 foreach i: ti € T do
4 | period{ := \\clisti\dir\;
5 foreach i: ti G T do

7if3 (a EC): £ ^ < c # f c t h e n

j'-tjECi
8 | return "unsolvable";
9 iteration := 1;

10 while
3{i : ti e T) : (qi < lAV(j € clish) : (£ + + < cwR^r)

k:tk€cjAk^i
do

i i
12

foreach i : U £ T do
if iteration mod periodj = OA
<ji < 1 A V(j e clisti) : (£ qkdk) + (% + ^ R < cwr~) then

13 I qi-=qi + -¿^-,
14 iteration := iteration + 1;
15 return |J qi;

i-.UET

, Gr>"-1 - CWR«.

The algorithm first sets each correction factor q. to its minimal value -¡^ and
then it increases each of these factors by more or less frequently, in a round
robin manner, e.g. some of the correction factors might be increased in each round
while some of the others might only be increased in every other round, etc. The
key step of the algorithm is determining how frequently each qi should be increased
in order to keep the total cost minimal, while still keeping the delay of each cycle
Ci lower than or equal to —.

In the following, we are going to explain the algorithm in detail.

Model-Driven Diagnostics of Underperforming Communicating Systems 471

In lines 1 and 2, to each transition ti, a set clisti is constructed, which stores
references to each of the cycles that include ti.

Lines 4 and 5 are the key steps of the algorithm. In these steps, for each
transition ti, we determine the value of period% which is the number of iterations
that have to pass between two subsequent increasements of qi. To explain why
V£j : periodi := \\clisti\dir], let us look at the following example.

Let us take a TCFMM consisting of two states so, and si, and two transitions
io, and t\, such that to is originated in .Sq and destinated in si while t\ is originated
in si and destinated in .sq. Thus, in this TCFMM there is exactly one directed
cycle. Let b denote the maximal allowed cycle delay we would like to achieve by
correcting delays do, and d1. In our case, b = — = Cwr—• us furthermore
assume that in this example, the co-domains of qo and qi are continuous and the
cost function is Cost{x) = — loga x.

Because of the continuous co-domains and the single directed cycle in the
TCFMM, for the most cost-effective solution the corrected cycle delay will be equal
to b and not lower than it. Thus, doqo + d\q\ = b. The latter equation means that

_ b-doqo
y 1 ~ di "

The objective of the problem is to choose the appropriate ^ values that minimize
E Cost(qi). In our case this formula equals min(—(loga qo + loga Qi)). The latter

i-.Uec i 90,91

formula, using that qi = , can be further transformed as follows:

min(-(logQ q0 + loga qi)) - » min(- loga q0qi) 90,91 90,9l min (- loga (- f y 0 + #)) - • max + f) 90 \ V 1 1 / / 90
f d i

4d'f do

Since the second component of the above formula does not contain qo, it is

minimal if the first component ~ minimal. Since the first

component is a square, it is minimal if it equals 0 that is, if go = 2J"

à l t = 23?- I n t h i s c a s e 91 = ^ = 257-
Thus, the cost of correcting the two transition delays will be minimal if diqi =

and doqo = that is if the corrected delay values (doqo, and diqi) are equal.
Based on this, we can suspect that in the case of a directed cycle which consists of
more than two transitions, the cost of correcting the cycle delay is minimal if each
corrected delay diqi value is equal. If however, the corrected transition delays of the
cycle are equal, they equal CV)R—• This is the consequence of Inequality 4, which
takes the following shape for the optimal qi values of this continuous problem (ci
denotes the only transition cycle in the TCFMM):

472 Levente Erős and Tibor Csöndes

As a consequence of the above, in the continuous case with a single directed
cycle, qi = doCWRuiT •

Let us now return to the non-continuous case that our heuristic algorithm deals
with. More precisely, let us see how to set the value of period{ optimally. If the
TCFMM consists of a single directed cycle, the appropriate correction factor for
transition ti can be achieved if the initial value of qz is incremented in every
[(¿¿r]-th round of the algorithm (see the explanation for r later). For example, if d\
is twice as large as do and thus, qo has to be around 2x and qi has to be around x
then qo has to be incremented twice as frequently as q\. To fulfill this requirement,
one coefficient of periodi is di which is responsible for making the corrected delay
values approximately equal to each other.

Let us now assume that the TCFMM has multiple cycles and some of its tran-
sitions are included in more than one of these cycles (this is the general case). In
this case, it is more cost-effective if we reduce the delays of transitions included in
many cycles by a bigger amount than the delays of transitions included in fewer
cycles. The reason for this is that if we reduce the delay of a transition, which is
included in n cycles, then n cycle delays will be reduced. This way the left side
of n instances of Inequality 4 will be reduced, while the cost of this reduction will
not be multiplied by n. Based on this, we can suspect that by adding \clisti\ as a
coefficient to period{ for each transition ti, the total cost of delay reduction will be
closer to optimal. We have confirmed this suspicion by running simulations.

The reason for including refreshing granularity r in periodj is that in order to
make periodi an integer value, the ceiling value of \clisti\di is taken. We have chosen
the ceiling value instead of the floor value to avoid the illegal case when periodi = 0.
If \ clisti\di is a small integer, then by taking its ceiling value, some of the accuracy
of \clisti\di is lost. If however, we multiply \clistl\di by r and then take the ceiling
value of \clisti\diT, then the bigger r is, the more of this otherwise lost accuracy
can be preserved. The value to be chosen for r is however, not independent from
\clisti\di. As the smaller \clisti\di is, the greater r has to be to preserve.the same
amount of accuracy. During our simulations presented in Section 5, we required r
to be larger than or equal to |" min UKst-ld-"!'

i:t ¿ST1 *' *
After setting the value of periodiy in lines 6 and 7, the algorithm initializes each

qi to its smallest possible value Then in lines 8 and 9, the algorithm checks
whether using these lowest possible values of the correction factors, Inequality 4
is fulfilled for each cycle or not. If not, the problem is unsolvable, since each qi
has taken its smallest possible value and thus, no transition delay can be further
reduced.

From line 10, the algorithm runs iterations. While there exists a transition i,
the correction factor qi of which can be augmented by without violating any
instances of Inequality 4 and without qi getting bigger than 1 (which is the greatest
possible value of each qi), the algorithm starts a new iteration. In each iteration,
the algorithm selects each transition U for which the iteration count is divisible by
periodj. If for a selected transition, qi is yet lower than 1, and qi can be increased
by without violating any instances of Inequality 4, qi is increased by -¡k-. The

Model-Driven Diagnostics of Underperforming Communicating Systems 473

Number of transitions

Figure 3: Costs of solutions, Gr = 2, CWRUST = 1.0

iterations go on until no further correction factor can be increased.

5 Simulation Results
In this subsection, we present simulation results comparing the efficiency of our
heuristic algorithm (denoted by H in the figures) to that of solving the fisrt BLP
(denoted by BLP in the figures) formulated in Subsection 4.2, which always finds
the optimal solution that is, the lowest cost solution.

The simulations were run on multiple TCFMMs, each one having 10 states. The
structure of the TCFMMs (i.e. their states and state transitions without the delays
assigned to each transition) were built incrementally. The first TCFMM structure
has 10 transitions, while each of the others were constructed by taking the previous
TCFMM structure and adding 10 random transitions to it. The largest structure
has 50 transitions. From each TCFMM structure, we have generated 10 different
TCFMMs by assigning random transition delay values to the structures. In the
following, a group of TCFMMs means the TCFMMs having the same number of
transitions.

During the simulations, we have measured the average time and cost needed
to correct the transition delays of the TCFMMs using each method, as a function
of the number of transitions in the TCFMM. The average cost and running time
values were calculated for each group of TCFMMs. Since the set of cycles is an
input parameter for both the BLP and the heuristic algorithm, all cycles in the
TCFMMs had to be found before executing any of the methods. Thus, each time
value plotted in the following figures is the average amount of time needed to run
the methods plus the amount of time needed to find the cycles in the corresponding
group of TCFMMs. For finding the cycles, we used an iterative deepening depth-
first search. Transition delays were generated with uniform distribution on interval
[0.5,1.5] that is, the mean transition delay is dmean = 1.0.

During the simulations, Cost(x) = — In a;.

474 Levente Erős and Tibor Csöndes

Number of transitions

Figure 4: Costs of solutions, Gr = 2, CWRusr = 1.5

Number of transitions

Figure 5: Costs of solutions, Gr = 4, CWRusr = 1.0

Figure 3 shows the average costs of correcting the transition delays using/each
method, where Gr = 2, and CWRUST = 1.0. Figure 4 plots the average costs of
each method, where Gr = 2, and CWRusr = 1.5. According to Figure 3jFwhere
CWRusr = —, there is no significant difference between the cost-efficiency of the
two methods. The cost of the heuristic solution is by 5,4 percent higher than the
optimal cost, in average. In the case of Figure 4 where CWRusr = however,

r t ^mea ft

the cost of the heuristic algorithm is only by 0,7 percent higher than the optimum,
in average.

Figure 5 shows the average costs of the two different methods, where Gr = 4,
and CWRusr = 1.0. Figure 6 shows the average costs of the solutions found by
each method, where Gr = 4, and CWRusr = 1-5. According to Figure 5, the cost
obtained by the heuristics is by 14 percent higher than the optimum, in average.
However, as can be seen in Figure 6, if CWRusr = -J^- then the cost of the "mean
heuristics is higher than the optimal cost by only 5 percent.

Figure 7 shows the costs obtained by the two methods in the case where Gr = 10,

Model-Driven Diagnostics of Underperforming Communicating Systems 19

Number of transitions

Figure 6: Costs of solutions, Gr = 4, CWRusr = 1.5

Number of transitions

Figure 7: Costs of solutions, Gr = 10, CWRusr = 1.0

Number of transitions

Figure 8: Costs of solutions, Gr = 10, CWRusr = 1.5

476 Levente Erős and Tibor Csöndes

Table 1: Rates of costs, Cost(x) = — Ina;
Gr CWR^r C(heuristics)

C(BLP)
2 1.0 1.0545
2 1.5 1.007
4 1.0 1.1408
4 1.5 1.0497
10 1.0 1.1815
10 1.5 1.0598

- CWR=1,0; Gr=2

- CWR=1,0; Gr=4

-CWR=l,0;Gr=10

-CWR=l,5;Gr=2

-CWR=l,5;Gr=4

-CWR=1,5; Gr=10

20 30 40

Number of transitions

Figure 9: Running times of the heuristic algorithm

and CWRusr = 1.0 = -¡-̂ —, while Figure 8 shows tis comparison for the case where
Gr = 10, and CWRusr = 1-5. As can be seen in Figure 7, if CWRusr = 1-0, the
cost of the solution obtained by the heuristic method is higher by 18 percent than
the optimal cost, in average. According to Figure 8, in average, the cost of the
heuristics is by only 6 percent higher than the optimal cost.

Table 1 shows the average rates of costs of the two methods. In the table, C
denotes cost.

Figure 9, and Table 2 show the average running time of the heuristic solution
(plus the amount of time needed for finding the transition cycles in the TCFMMs)

Table 2: Running times of the heuristic algorithm in seconds
CWRUSr Gr \T\ = 10 |T| = 20 |T| = 30 \T\ = 40 \T\ = 50

1,0 . 2 0,006 0,0108 0,2592 4,9084 64,4324
1,0 4 0,006 0,0112 0,2592 4,9204 64,5144
1,0 10 0,0064 0,012 0,264 4,9516 64,712
1,5 2 0,0068 0,0113 0,259 4,909 64,432
1,5 4 0,0064 0,0112 0,258 4,914 64,4692
1,5 10 0,0064 0,012 0,26 4,9376 64,6112

Model-Driven Diagnostics of Underperforming Communicating Systems 477

1000000

100000
•S 10000
o u « 1000

100
J 10
CO

1 c c 3 0,1 cc 0,1
0,01

0,001

-CWR=1,0; Gr=2

-CWR=1,0; Gr=4

-CWR=1,0; Gr=10

-CWR=1,5; Gr=2

-CWR=1,5; Gr=4

-CWR=1,5; Gr=10

10 20 30 40 50 60

Number of transitions

Figure 10: Running times of the BLP

Table 3: Running times of the BLP in seconds
CWRusr Gr \T\ = 10 |T| = 20 |T| = 30 |T| = 40 |T| = 50

1,0 2 0,0096 0,0208 0,4932 8,9786 263,681
1,0 4 0,0084 0,0428 7,85 1132,38
1,0 10 0,0292 0,196 221,1 35018,4
1,5 2 0,012 0,0513 0,415 5,695 94,842
1,5 4 0,01 2,7813 564,205 49765,9
1,5 10 0,0348 138,793 942004,119

as a function of the number of transitions in the TCFMMs, for different simulation
scenarios. In the table, |T| denotes the number of transitions in the TCFMM. As
it can be seen in the figure and the table, the running time of the heuristic solution
does not differ significantly for the different simulation scenarios (the markers of
each curve are almost exactly on top of each other). The reason for this is that the
running time of the heuristic algorithm itself is overweighed by the amount of time
needed to find the transition cycles in the TCFMMs. As it can also be seen, the
running time of the heuristics is reasonable even for extremely dense TCFMMs.

Figure 10 having a logarithmic vertical axis, and Table 3 show the average
amount of time needed for solving the BLP (plus the amount of time needed for
finding the transition cycles in the TCFMMs) as a function of the number of tran-
sitions in the TCFMMs. As the figure and the table show, the running time of the
BLP increases significantly as Gr or CWRusr grows. Thus, solving the BLP is only
a reasonable choice for lower Gr and CWRusr values. However, in the cases where
the running time of the BLP is the highest, the heuristic algorithm is capable of
calculating a solution the cost of which is not significantly higher than that of the
BLP.

478 Levente Erős and Tibor Csöndes

6 Summary
In this paper, we have proposed performance diagnostic methods. These methods
attempt to determine how to increase the performance of the SUT if according
to its performance test, it is unable to serve the required worst-case number' of
messages per second.

The increasement is achieved by decreasing transition delays and thus, increas-
ing the number of messages per second that the SUT is able to process in worst
case. Each transition delay can be decreased by discrete amounts and each delay
reduction has a cost, which should be as low as possible. The reduced delay of
transition ti will be d.qi, where q. is the so-called correction factor of transition fj.

By reducing an arbitrary instance of the NP-complete knapsack problem, we
have proven that this, so-called worst-case underperformance diagnostics problem
is NP-complete and formulated it as a binary linear program. We have also given
a heuristic approach which works by first choosing the lowest possible (and most
expensive) value of each correction factor and then by incrementing the correction
factors more or less frequently. By incrementing correction factors, the cost of
performance correction is decreased. The number of iterations that has to elapse
between two subsequent increasements of a given transition is determined by a
weight assigned to the transition.

We have compared the efficiency of solving the binary linear program to those
of our heuristics and found that the latter performs efficiently in those cases where
the former has an unreasonable running time.

7 Future Work
In our future work, we are going to extend the worst-case underperformance di-
agnostics problem for a more general case, in which the legal correction factors qz

vary for different transitions (e.g. the legal correction factor values for transition
t\ are 0.6 and 0.8, while the legal correction factor values for transition ¿2 are 0.1,
0.15 and 0.3, etc).

We are also going to deal with another extension of the worst-case underper-
formance diagnostics problem in which, instead of decreasing transition delays, the
performance of resources of the system can be increased by different amounts. As a
result of increasing the performance of a resource, the delays of a set of transitions
decrease by different amounts. Each resource performance increasement has a cost,
and the task is to determine how to increase the performance of each resource in
order to make the system meet Inequality 2 at minimal cost.

Acknowledgments
This paper has been (partially) supported by HSNLab, Budapest University of
Technology and Economics, http://www.hsnlab.hu.

http://www.hsnlab.hu

Model-Driven Diagnostics of Underperforming Communicating Systems 479

References
[1] Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State

Machines - A Survey In Proceedings of the IEEE vol. 84 issue 8, pages 1090-
1123, 1996.

[2] Cavalli, A. R., Dorofeeva, R., El-Fakih, K., Maag, S. and Yevtushenko, N.
FSM-based conformance testing methods: A survey annotated with experi-
mental evaluation In Information and Software Technology vol. 52 issue 12.,
pages 1286-1297, 2010.

[3] Feng, C., Lombardi, F., Shen, Y. and Sun, X. Advanced Series in Electrical
and Computer Engineering - Vol. 12, Protocol Conformance Testing Using
Unique Input/Output Sequences World Scientific Publishing, River Edge, NJ,
1997.

[4] ISO/IEC 9646-1: Information Technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 1: General concepts,
1994.

[5] Chul, K. and Song, J. S. Test Sequence Generation Methods for Protocol Con-
formance Testing In Proc. of the Eighteenth Annual International Computer
Software and Applications Conference, pages 169-174, 1994.

[6] ITU-T ITU-T Recommendation Z.500 - Framework on formal methods in
conformance testing, 1997.

[7] Boroday, S., Groz, R. and Petrenko, A. Confirming configurations in EFSM
In Proc. of the IFIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Proto-
cols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), pages 5-24, 1999.

[8] Lee, D. and Yannakakis, M. Testing Finite-State Machines: State Identifica-
tion and Verification In IEEE Transactions on Computing vol. 43 issue 3.,
pages 306-320, 1994.

[9] Aho, A.V. and Lee, D. Efficient algorithms for constructing testing sets, cov-
ering paths, and minimum flows In AT&T Bell Laboratories Technical Mem-
orandum, 1987.

[10] Tietmans, G. J. Test Generation with Inputs, Outputs, and Quiescence In
Proc. Tools and Algorithms for Construction and Analysis of Systems, Second
International Workshop, TACAS, pages 127-146, 1996.

[11] Brinksma, E., Tretmans, J. and Verhaard, L. A Framework for Test Selection
In Proc. IFIP WG6.1 11th Int. Symp. on Protocol Specification, Testing, and
Verification, pages 233-248, 1991.

480 Levente Eros and Tibor Csdndes

[12] Amalou, M., Fujiwara, S., Ghedamsi, A. and Khendek, F. Test Selection Based
on Finite State Models In IEEE Transactions on Software Engineering vol. 17
issue 6., pages 591-603, 2002.

[13] Dahbura, A.T., Sabnani, K.K. and Uyar, M.U. Formal Methods for Generating
Protocol Conformance Test Sequences In Proceedings of the IEEE vol. 78 issue
8, pages 1317-1326; 2002.

[14] Csopaki, G., Kovacs, G., Pap, Z. and Tarnay, K. Iterative Automatic Test
Generation Method for Telecommunication Protocols In Computer Standards
& Interfaces vol. 28 issue 4-, pages 412-427, 2006.

[15] Bochmann, G.V., Dssouli, R. and Ghedamsi, A. Multiple Fault Diagnosis for
Finite State Machines In INFOCOM'93. Proc. Twelfth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Networking:
Foundation for the Future. IEEE, pages 782-791, 2002.

[16] Bause, F., Kabutz, H., Kemper, P. and Kritzinger, P. SDL and Petri Net
Performance Analysis of Communicating Systems In Proc. of the 15th Inter-
national Symposium on Protocol Specification, Testing and Verification, pages
269-282, 1995.

[17] ITU-T Recommendation Z.100 - Specification and Description Language
(SDL), 1994.

[18] El-Kilani, W. S., El-Wahed, W. F. A. and Youness, O. S. A Behavior and Delay
Equivalent Petri Net Model for Performance Evaluation of Communication
Protocols In Computer Communications, vol. 31 issue 10., pages 2210-2230,
2008.

[19] Marsan, M. A. Stochastic Petri Nets: An Elementary Introduction In Advances
in Petri Nets, Lecture Notes in Computer Science, vol. 4%4> pages 1-29, 1990.

[20] Murata, T. Petri Nets: Properties, Analysis and Applications In Proceedings
of the IEEE vol. 77. issue 4., pages 541-580, 1989.

[21] Al-Obaidan, A., El-Karaksy, M. R. and Nouh, A. S. Performance Analysis of
Timed Petri Net Models for Communication Protocols: A Methodology and
Package In Computer Communications vol. 13 issue 2., pages 73-82, 1990.

[22] Chiola, G., Fumagalli, A. and Marsan, M. A. Timed Petri Net Model for
the Accurate Performance Analysis of CSMA/CD Bus LANs In Computer
Communications vol 10. issue 6., pages 304-312, 1987.

[23] Schieferdecker, I., Stepien, B. and Rennoch, A. PerfTTCN, a TTCN Language
Extension for Performance Testing In Proc. of the IFIP TC6 10th International
Workshop on Testing of Communicating Systems, pages 21-36, 1997.

Model-Driven Diagnostics of Underperforming Communicating Systems 481

[24] ISO/IEC 9646-1: Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Part 3: The Tree and
Tabular Combined Notation, 1995.

[25] ETSI ES 201 873-1 ver. 4.2.1: Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Lan-
guage 2010.

[26] Dai, Z. R., Grabowski, J. and Neukirchen, H. TimedTTCN-3 - A Real-Time
Extension for TTCN-3 In Testing of Communicating Systems, pages 407-424,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[27] Mingwei, X. and Jianping, W. A formal approach to protocol performance
testing In Journal of Computer Science and Technology vol. 14 issue 1, pages
81-87, 1999.

[28] ISO/IEC 9646-3 AM. 1: Information technology - OSI conformance testing
methodology and framework - Concurrent TTCN, 1993.

[29] Csondes, T. and Eros, L. An Automatic Performance Testing Method Based on
a Formal Model for Communicating Systems In Proc. of the 18th International
Workshop on Quality of Service (IWQoS), 2010.

[30] Garey, M. R. and Johnson, D. S. Computers and Intractability; A Guide to
the Theory of NP-Completeness W. H. Freeman & Co., San Francisco, CA,
1990.

Received 23rd May 2011

Acta Cybernetica 20 (2012) 483-497.

Understanding Program Slices

Ákos Hajnal* and István Forgács*

Abstract
Program slicing is a useful analysis for aiding different software engineer-

ing activities. In the past decades, various notions of program slices have
been evolved as well as a number of methods to compute them. By now
program slicing has numerous applications in software maintenance, program
comprehension, reverse engineering, program integration, and software test-
ing. Usability of program slicing for real world programs depends on many
factors such as precision, speed, and scalability, which have already been ad-
dressed in the literature. However, only a little attention has been brought
to the practical demand: when the slices are large or difficult to understand,
which often occur in the case of larger programs, how to give an explanation
for the user why a particular element has been included in the resulting slice.
This paper describes a reasoning method about elements of static program
slices.

Keywords: data flow analysis, static program slicing, reasoning

1 Introduction
Program slicing is a source code analysis technique proposed by Mark Weiser [35]
capable of automatically identifying the set of program statements, called the slice,
which may affect the values of the selected variables at a program point of interest,
called the slicing criterion. Program slicing uses dependence analysis that examines
the source code to trace control- and data flow to determine the statements that
belong to the slice.

Weiser's original method - motivated to aid debugging activities - has been
classified later as a "backward static" program slicing technique. Backward, because
in constructing the slice, statements affecting the selected statement are traced
backwards, and static, because the analysis is made without having specified any
particular program execution, i.e. all possible program executions are taken into
account. Forward static program slicing determines the part of the program that
is directly or indirectly affected by the selected statement.

* Computer and Automation Research Institute Hungarian Academy of Sciences, E-mail:
ahajnalOsztaki.hu

+4D Soft Ltd., E-mail: f orgacs84dso f t .hu

484 Ákos Hajnal and István Forgács

Since Weiser's method other variants of program slicing have been evolved such
as dynamic slicing [30, 2], quasi-static slicing [34], conditioned slicing [8], amor-
phous slicing [22], hybrid slicing [19], and relevant slicing [20]. In the past decades,
numerous applications of program slicing have been proposed in different areas
of software engineering, including software maintenance [16, 15, 10, 11], program
comprehension [12, 24], reverse engineering [9], program integration [27, 7], and
software testing [18, 23, 4, 5, 14, 25, 26].

Program slicing allows the users to focus on the selected aspects of semantics
by breaking the whole program into smaller pieces, and when these slices are small
they can be more easily maintained. However, lager program slices, but even slices
containing only some tens of program instructions can be very difficult to under-
stand. As William Griswold [17] pointed out in his talk: Making Slicing Practical:
The Final Mile, one of the problems why slicers are not widely used is that it is
not enough to dump the results onto the screen without explanation.

Slices computed based on execution traces (dynamic) are typically smaller than
the ones that consider all possible program executions (static). Furthermore, as
a particular execution history is available during dynamic slicing, the chain of
dependences caused a given program statement to be included in the slice can
be more easily discovered. This is not the case in static slicing, where neither
a particular dependence chain nor an execution trace covering these dependences
are presented. Some applications such as program comprehension, re- and reverse
engineering rely on static slicing, and it may occur that code under analysis cannot
be even compiled and run (legacy systems, program under development).

Static program slicing gives a wider view to the connected parts of the pro-
gram code, which is essential in program comprehension or at extracting reusable
functions from legacy systems - considering all possible program exécutions. Note
that without an automated slicing tool revealing dependences in the program text
is very labor-intensive, tedious, and time consuming task. These techniques cal-
culate the set of statements that directly or indirectly affect (or affected by) the
slicing criterion. However, beyond claiming that there is dependence between the
slicing criterion and the computed slice element, no explanation of the result is
provided, which could help in understanding the effects between different parts of
the program code by the human users.

For example, in regression testing, one can use static program slicing to deter-
mine those parts of the code that are affected by the program modification. It can
occur that one or more slice elements fall out of the software component that the
change supposed to be influenced, so the user may be curious how the effect has
reached that point. By showing a particular chain of dependences from the slicing
criterion to the selected slice element the user could be convinced that the influ-
ence indeed exists, and either there is an unforeseen, undesired side effect of the
modification, or this effect has not been taken into consideration at determining
the impact of the change.

The more precise the applied slicing technique the less the resulting slice sizes
are. There are no fully precise static slicing methods for real programming lan-
guages, so false positives, i.e. slice elements identified on dependences that actually

Understanding Program Slices 485

cannot occur during real program executions are unavoidable. One source of such
imprecision is due to following non-realizable program paths during the analysis
(paths along which procedure calls and returns are incorrectly nested). By apply-
ing context-sensitive techniques, these false positives can be filtered out. Other
sources of imprecision are due to infeasible program paths (no such program input
that results in the execution of the traversed conditional branches) and program-
ming language constructs that make impossible to recover the precise flow of data
statically (use of pointers, dynamic constructs). The latter two problems are not
solvable in general; static slicing techniques typically use a conservative approach
to provide safe results (consider all potential but not necessarily "real" effects).

In this case, reasoning about slice elements could help programmers to recognize
false positives. In regression testing, for example, an unexpected impact of a pro-
gram change may be proven to be false, when the presented chain of dependences
is infeasible (it can be realized along infeasible paths only), and it is rejected by
a human user. This is a manual process, but it can still be less expensive than
retesting all the slicer indicated parts of the code.

This paper concerns with the token propagation-based context-sensitive, static
program slicing technique [21], and proposes a method to reason about the com-
puted slice elements. Reasoning means showing a specific dependence chain -
along with control-flow information - from the slicing criterion to the selected slice
element.

The rest of the paper is organized as follows. Section 2 provides an overview of
the necessary concepts, and summarizes the basic rules of the token propagation-
based slicing method- Section 3 describes how a dependence trace for the slice
elements can be derived by computing a particular dependence chain. Section 4
discusses the related work. Finally, Section 5 concludes the paper.

2 Background
Computer programs can be represented by directed graphs called control flow graphs
(CFGs). Control flow graphs are constructed by assigning a directed graph to each
procedure (miraprocedural control flow graph) with unique entry and exit nodes,
in which nodes correspond to the statements and predicates in the procedure, and
edges represent the possible flow of control. A call statement is represented by two
nodes, a call site and a return site, which are linked to the entry and exit node of
the called procedure, respectively (mierprocedural control flow graph). We refer to
the related call site c and return site r using the callSiteOf, returnSiteOf operators,
such that, c=callSiteOf(rj and r=returnSiteOf(c).

Variable references and assignments are referred to as uses and definitions in
nodes. A definition is influenced by a use in the same node if the assigned value is
dependent on the value of the referenced variable. A path containing no definition
for a variable v (excluding start and end nodes) is a definition-clear path with
respect to variable v. The definition of v in node n and the use of the same variable
in node m form a definition-use pair if there is a definition-clear path with respect

486 Ákos Hajnal and István Forgács

to v from n to m. Node m is said to be (directly) data dependent on node n.
A statement S is control dependent on predicate P if the outcome of P de-

termines whether S executes. Intuitively it means that statements contained by
conditionally executed branches are control dependent on the predicate. Control
dependent procedure calls extend the control scope to statements in the called
procedure(s). There are different definitions and computations of control depen-
dence, the particular notion is however orthogonal to how to compute the slice. We
assume that (intraprocedural) control dependences are available in the program
graph, represented by control edges. We treat interprocedural control dependences
indirectly, by introducing control edges from call sites to procedure entry nodes,
and from entry to other nodes in the procedure - except entry- and exit nodes, as
shown in Figure 1.

The transitive flow of data and control dependences form a dependence chain,
which is a sequence of nodes ni, n2, ..., where node rij+i is either directly data-
or control dependent on node n* for all i, 1 < i < k — 1. Nodes TI2, 113, ..., nk

are said to be affected by node n 1. A path p covers the dependence chain if it
goes through chain nodes n\, ..., and each subpath of p between nodes rii
and n l + i is either definition-clear with respect to the variable defined at n̂ (data
dependence), or all the nodes of the subpath are control dependent on (control
dependence), respectively. The dependence chain is realizable if it can be covered
by a realizable path.

A slicing criterion is a pair C=<I, V>, where I is a program point and V is a
subset of program variables. The backward static program slice S with respect to
slicing criterion C consists of all the parts of the program that have direct or indirect
effect on the values computed for variables V at I. In forward static program slicing,
statements depending on the slicing criterion C are computed, where V is a set of
variables defined at I. Computing a program slice requires determining the nodes of
possible dependence chains that end (backward slicing), or start (forward slicing)
at the slicing criterion, respectively. The program slicing method is considered to
be precise up to realizable program paths if the slice is computed upon realizable
dependence chains.

2.1 Program Slicing via Token Propagation
The token propagation-based static program slicing method has been presented
in [21]. The idea of the approach is to discover possible dependence chains by
propagating tokens of the control flow graph starting from the slicing criterion.
Tokens contain a token index corresponding to a defined variable (initially the
variable of the slicing criterion) and a backtrack index used to control token propa-
gations from procedure exit nodes (considering realizable program paths). Tokens
are propagated along definition-clear paths wrt. variable corresponding to the to-
ken index; tokens propagated to affected nodes (containing use of the token index)
causing these nodes marked as in the slice. Influenced definitions induce new token
propagations from the affected nodes. A special 0 backtrack index value is used to
distinguish tokens having no previous "calling context", otherwise backtrack indices

Understanding Program Slices 487

correspond to variable identifiers.
The token propagation rules of forward data-flow slice computation (data-

dependences are considered only) can be summarized as follows:

Rule 0. A token RD® is created for slicing criterion C=<n, {x}>. which is prop-
agated to the successor node of n. Node n is marked as in the slice.

Rule 1. If a token RD% is propagated to a node n that does not (re) define variable
x, the token is propagated to the successor node(s) of n unchanged.

Rule 2. If a token RDyx is propagated to a node n that uses variable x, n is
marked as in the slice. A new token RDyz is created for definition of variable
2 influenced by use of x, which is propagated to the successor node of n.

Rule 3. If a token RD% is propagated to a call site, token RD% is propagated to
the entry node of the called procedure.

Rule 4. Any call site c that contains a token RD% and exit node e (of the called
procedure) that contains a token RD* induce the propagation of a token R,Dyz

from return site returnSiteOf(c). Token RD® is propagated from an exit node
to all return sites unchanged.

The token propagation stops when no more propagation is possible (a given
token is propagated to a given node once), and the slice is given by the set of nodes
marked as in the slice. Notice that a token RD* propagated to a procedure exit
node directly corresponds to procedure summary edge: x—>z of Horwitz et al. [28].
(Summary edges represent the transitive dependences due to the procedure call.)

Control tokens are created at affected predicate nodes (using a special token
index value C) and propagated along control edges to accommodate control depen-
dences. Nodes reached by control tokens are marked as in the slice; definitions in
control dependent nodes start new (data) token propagations. The rules of the full
forward slicing are shown below:

Rule 5. If a token RD% is propagated to a predicate node n that uses variable x,
a new token RDyc is created and propagated to the nodes that are control
dependent on n.

Rule 6. If a token RDVC is propagated to a predicate node n, token RDVC is prop-
agated to the nodes that are control dependent on n.

Rule 7. If a token RDVC is propagated to a node n, n is marked as in the slice. A
new token RDY is created for definition of variable z, which is propagated to
the successor node of n.

Rule 8. If a token RDq is propagated to an entry node, token RDq is propagated
to all the nodes of the procedure (except entry and exit nodes).

Backward slicing can be obtained by reversing the token propagation rules of
forward slicing, where tokens are propagated to predecessor nodes, backwards.

488 Ákos Hajnal and István Forgács

3 The Reason-why Algorithm
This section presents a method capable of reasoning about an arbitrarily selected
element of the resulting slice, called the "reason-why algorithm.". First, we restrict
to forward data-flow slices; then, we extended to full forward slices. Reasoning
about backward slices is just the dual of the presented method, which is hence
omitted to save space. For clarity of the presentation we consider programs con-
taining global and scalar variables. Local variables and parameter passing can be
treated as described in [21].

3.1 Reasoning Data-flow Slices
We assume that we are given a slicing criterion C=<n, { z } > for which the data-flow
slice has been computed using the token propagation method. We also assume all
the tokens propagated during slicing are available, and the resulting slice contains
a node m to be explained; m contains a use of variable y and a token RDy caused
m to be marked as in the slice (Rule 2). To justify why TO is included in the slice
our goal is to present a definition-use chain from n to TO - along with a potential
execution trace that covers it. The pair (n, RDX) will be referred to as the source;
the pair (m, RDy) is referred to as the target. We note that we provide one single,
any of the possible definition-use chains between the source and the target, which
is not necessarily the shortest one.

To our experiences providing a complete CFG path covering a definition-use
chain contains too much detail (instructions) to overview by a human user; provid-
ing merely the nodes of the chain is not enough to see how this dependence chain can
be covered by a potential program execution. The path to be constructed, called
the "reason-why path", will hence be a definition-use chain augmented with proce-
dure calls and returns (intraprocedural path segments between the use-definition
nodes and the procedure boundaries are omitted).

To reveal a definition-use chain between n and m we trace back the token
propagation performed during slicing. We start from target node m, and investigate
the tokens propagated to the predecessor nodes. Based on this information we can
deduce to the previously applied token propagation rule(s), and determine the
node(s) from where the token propagated to m may have been originated. The
predecessor node and the (possibly) new token propagated to the predecessor node
become the new target. Then, we continue finding such predecessors as far as we
reach the source. From procedure entry nodes we "return" to call sites, and from
return sites we enter procedure exit nodes, respectively. The traversed definition-
use chain nodes, as well as procedure call- and return sites are recorded; finally,
this node sequence is reversed. We bypass recovering applications of Rule 1 (which
propagates tokens unchanged to successors iteratively) by identifying reachable
nodes along definition-clear paths backwards.

The construction of the reason-why path is performed in two passes: in Pass
1 we traverse intraprocedural-, summary- and call edges backwards (to callers),
whereas in Pass 2 we traverse intraprocedural-, summary- and return edges (to

Understanding Program Slices 489

called procedures). As procedure summary edges - represented by exit node to-
kens in the called procedures - are available, we can cross procedure calls without
ascending into the called procedures. Exploited summary edges are resolved in a
subsequent step. Finally, the path is reversed to get a forward path. Note that
using the two-pass method procedure calls and returns are correctly nested, i.e. the
resulting reason-why path is realizable.

Pass 1

Pass 1 (as well as Pass 2) consists of a sequence of intra- and interprocedural path
search steps. In the intraprocedural step our goal is to get to the entry node of
the current procedure, whereas in the interprocedural step we select one of the
potential callers of the current procedure from where the token propagation had
been originated.

First, we consider the initial target: node m and token RD*, where z ^ 0.
(If z = 0, we skip Pass 1.) To determine the node from where RD* had been
propagated to m, we determine the set of nodes in the current procedure reachable
along definition-clear path wrt. y backwards. The possible source(s) of RD* among
these nodes is either (a) the procedure entry node if z = y and the entry node
contains RD%, (b) a node containing a definition of variable y, a use of a variable v,
and a token RD* (RD* had been started by Rule 2), or (c) a return site of a called
procedure P such that the related call site of P contains a token RD% and there is a
summary edge v—>y (Rule 4 had been applied to RDy in the called procedure's exit
node). Note that as the backtrack index is not 0, slicing criterion node n cannot
be the source of RDy. In either case, we record- and set the new node and the new
token as the new target. In the case of (b) and (c), we continue searching for the
next predecessor of the current target as far as we reach the entry. In the case of
(c), we record the call- and the return site, as well as the summary edge used to
cross the call (resolved later). To avoid infinite loop we traverse each node-token
pair at most once, and use backtracking if necessary.

In the interprocedural step, we select one of the potential callers that resulted
in the propagation of RD% to the entry node. These call sites contain a token
RDy (Rule 3 had been applied). We select one of them, and apply the above
intraprocedural path search for the new target (call site and RDy) to get to the
entry node of the caller procedure.

We continue the above procedure as far as any of the call sites contains a token
RDy , when we turn to Pass 2. In the presence of strongly-connected components
(SCCs), we visit each call site and call site token at most once, which avoids infinite
cycle.

As an example, let us consider the program shown in Figure 1. For slicing
criterion C=(a2, {z }) , we obtain the data-flow slice: S={a2, a4, b2, m6, c5j.
(The related instructions are highlighted in boldface characters; tokens propagated
during slicing are indicated next to the nodes in the figure). Assume that we choose
node c5 to be explained.

In Pass 1, we start from target (c5, RD%). After identifying the set of nodes
reachable (backwards) along definition-clear paths wrt. y we find return site c3,

490 Ákos Hajnal and István Forgács

procedure h begin

procedure MMH
begin

RD¡ RDfRDj
RD*RDfRD}
RD$RD¡RD$

end procedure

e CFG node
S c a l l site

return site
— c o n t r o l flow edge
.» control edge

Figure 1: Example program graph and the tokens propagated during data-flow
slicing

whose call site contains a token RD% and the called procedure contains summary
edge y->y (exit node token RD% in procedure B; case c). The new target is set as
node c2 and token RD^. In the next step, we reach procedure entry node cl (case
a).

In the interprocedural step, we return to call site m7, as it contains a token
RDy, so we finish Pass 1. The reason-why path constructed during Pass 1 is shown
below:

1.
2.

3.
4.
5.

(c5, RDp
(c3, RDp
(c2, RDp
(cl, RDp
(.ml, RDp -

- use of y
- return from B, summary edge: y
- ca l l B
- entry C
- ca l l C

• V

Pass 2

During Pass 2 we traverse intraprocedural- and return edges, and trace back the
propagation of RD® towards the slicing criterion.

The intraprocedural path search starts from a call site (following Pass 2), or
from node m, respectively (m contains a token RDy). The potential source of this
token is a node reachable from the current target along definition clear-path wrt.
y backwards, which is either (a) node n if y = x, (b) a node containing a definition

Understanding Program Slices 491

of variable y, a use of a variable v, and a token RD® (Rule 2), (c) a return site such
that the related call site contains a token RD® and there is summary edge RD%
(Rule 4), or (d) a return site such that the called procedure's exit node contains
the token RD® (Rule 4 is applied to a token with 0 backtrack index). In the case
of (a), we finish Pass 2; in the case of (b) or (c), we continue the intraprocedural
search; in the case (d), we set the exit node of the called procedure and RD® as
the new target (interprocedural step). We continue the above procedure as far as
we reach n.

In the example, in Pass 2, we start from node m7 and token RD®. The only
reachable node is node m6, which defines y, uses z, and contains a token RD® (case
b). The new target is set as (m6, RD®). In the next steps, we select return site
m3 and exit node a9 of procedure A, which contains RD® (case d). The source of
token RD® propagated to a9 is return site a6, since there is a token RD® in a5, and
the called procedure contains summary edge x—From target (a5, RD®) slicing
criterion node a2 is reachable, and token index x corresponds to the variable of the
slicing criterion (case a), so Pass 2 finishes too.

The path constructed in Pass 2 is as follows:

6. (m6, RD®) — use of z, definition of y
7. (m3, RD®) — return from A
8. (a9, RD — exit A
9. (a6, RD®) — return from B, summary edge: x —> z
10. (a5, RD®X) — call B
11. (a2, RD*) — definition of x

Resolving Summary Edges

The reason-why path potentially contains "jumps" from return- to call sites via
summary edges that need to be resolved. It requires constructing a coverage path
for a dependence-chain realizing the procedure summary. We iterate over each
adjacent call- and return sites contained in the reason-why path, resolve them
one-by-one, and insert the related summary edge coverage path into the original
reason-why path between the related call- and return site pair.

The construction of the coverage path for a summary edge v—>y is performed
correspondingly to the intraprocedural path search applied in Pass 1: for a given
call site c and return site r we construct a reason-why path from the exit node
of the called procedure and token RD% (target) to the entry node of the called
procedure and token RD]'t (source). Once this path has been constructed, it is
inserted between the call- and return site pair.

Resolving a summary edge may introduce new summary edges (case c), which
also need to be resolved, recursively. In the presence of SCCs, during resolving
a summary edge the same summary edge could potentially be reused. As during
resolving a summary edge there must exists a path that does not reuse itself (oth-
erwise, it would mean an infinite loop in the code, so the summary edge would have

492 Ákos Hajnal and István Forgács

never been computed), excluding the reuse of the same summary edge currently
being resolved, the infinite loop can be avoided.

By reversing the resulting path we obtain the required definition-use chain con-
taining a proper sequence of call- and return sites.

Continuing with the example, the reason-why path contains two summary edges,
at positions 2 and 9, which need to be resolved. The first summary edge y->y is
resolved by starting from exit node b3 in procedure B and token RD* (target).
Since the entry node is reachable from the exit, and the entry node contains RDv
(source), the path search finishes. The path to be inserted between positions 2 and
3 is as follows:

1. (b3, R D p — exit B
2. (bl, R D p — entry B

During resolving summary edge >2 of procedure B we have to traverse node
b2 as well, which results in the following path to be inserted between positions 9
and 10:

1. (b3, RDXZ) — exit B
2. (b2, RD%) — use of x, definition of z
3. (bl, RD%) — entry B

The resulting reason-why path is then reversed. The reason-why path from a2
to c5 is shown below (only target token indices are indicated - corresponding to the
most recently defined variable; procedure calls and returns are tabbed; comments
are substituted by actual program instructions):

1. a2, x — x := readO
2. a5, x — call B ()
3. bl, x — entry B
4. b2, x — z := x
5. b3, z — exit B
6. a6, z — return from B
7. a9, z — exit A
8. m3, z — return from A
9. m6, z — y := z
10. m7, y — call C 0
11. cl, y — entry C
12. c2, y — call B ()
13. bl, y — entry B
14. b3, y — exit B
15. c3, y — return from B
16. c5, y — print (y)

Understanding Program Slices 493

3.2 Reasoning Full Slices
In full slicing, data dependent predicates induce propagations of control tokens
along control edges, which also need to be considered at constructing the reason-
why path.

If target node m contains control token only, the initial target is of the form (m,
RDQ). During the intraprocedural path search we determine the set of controlling
nodes, i.e. the nodes from where there is a control edge to m. The possible source(s)
of token RDq among these nodes is either (a) a predicate node containing a use
of a variable v and a token RDZ

V (Rule 5), (b) a predicate node containing R D Q

(Rule 6), or (c) the procedure entry node if z = C and the entry node contains
RDq (Rule 8). The new node and the new token are set as the new target. This
intraprocedural search step is applied in passes 1 and 2 each time the origin of a
control token needs to be determined.

Another change in reasoning full slices is that control tokens induce data-tokens
at definition nodes (Rule 7); hence, at determining the possible sources of a data
token RDy, nodes containing definition of variable y and token RDQ need to be
investigated as well. If it holds for some node, this node and RDQ are also a
potential new target during the intraprocedural path search.

When the target token is a control token, the interprocedural step in Pass 1
requires determining the set of call sites containing control token. In Pass 2, as
no control token can be propagated to a procedure exit node, the interprocedural
traversal is unchanged.

Using the above extensions, a reason-why path can also be calculated for ele-
ments of full slices.

4 Related Work
Various algorithms for calculating interprocedural slices exist. The first method
published by Weiser [35] is not context-sensitive. There are studies [1, 32, 6, 31]
investigating whether considering calling-context has significant affect on the size
of the slices. It may occur that inaccurate slices due to following non-realizable
paths are several times larger than precise ones - what is more, the computation
of these extra large slices may take more time.

There are a number of context-sensitive static slicing methods. Most of them
are based on system dependence graphs published first by Horwitz et al. [28]. By
computing transitive dependences due to procedure calls (summary edges), slicing
is reduced to a graph reachability problem. Agrawal and Guo [1] have presented an
explicitly context-sensitive slicing method over the SDG (without summary edges),
in which the call stack is maintained during the propagation. Krinke [32] presented
a corrected explicitly context-sensitive algorithm. Atkinson and Griswold [3] used
CFGs and the invocation graph approach [13] for context-sensitive slicing. Liang
and Harrold [33] proposed a precise slice computation method also based on data-
flow information propagation over the CFG.

494 Ákos Hajnal and István Forgács

To our knowledge no reasoning technique has been proposed to justify slice
elements computed by these methods.

Hajnal and Forgács [21] presented a context-sensitive static slicing method
which combines the demand-driven nature of the CFG-based slicing and the ef-
ficiency of the SDG-based slicing, using token propagation. The reason-why algo-
rithm proposed in this paper makes it possible to justify slice elements computed
that method but also applicable to reason about slice elements computed by any
other technique which is at least as precise as our token propagation-based method.
For example, our method can be applied for SDG-based slicing considered the most
wide-spread method nowadays

Chopping [29] is a variant of program slicing capable of revealing statements
involved in a transitive dependence from one specific statement (source criterion) to
another one (target criterion). A chop is basically the intersection of the forward
slice of the forward criterion and the backward slice of the backward criterion,
which provides a more focused approach to investigating how one statement affects
the other. Considering a chop, which gives a set of nodes composed of (all) the
dependence chains between the source and the target, it can be still very difficult
to construct a dependence chain from source to target - and, if given that, an
appropriate calling sequence that covers these nodes. The solution proposed in this
paper answers both questions. We are aware of no other similar techniques for this
problem.

5 Conclusions
To our knowledge no automated reasoning technique about the computed slice
elements has been proposed in the literature so far. Without such a tool verification
or understanding of the resulting program slices requires considerable expertise and
time. This paper proposes a solution to "explain" slice elements by computing a
specific dependence chain from the slicing criterion to the chosen slice element. This
definition-use chain, augmented with control information, is more easily overviewed
or analyzed by a human user.

We implemented the presented reason-why algorithm in the Java programming
language and integrated with the slicing tool presented in [21]. We carried out
several experiments on the same COBOL systems and slices computed in programs
of different sizes. The results showed that in all the cases the slice computation
time dominates the time of the reason-why path computation (it took only a few
seconds in the worst case). It is because the reason-why algorithm only reads the
available token information and performs no compute-intensive operations (such
as slicing). Note that slice computation has to be performed once; then several
reasoning tasks can be initiated on the resulting slice elements.

In the presented method, the dependence chain is determined arbitrarily - trac-
ing back any of the possible token propagations performed during previous slicing.
Shorter chains are however easier to understand, therefore we plan to investigate
how to provide shorter paths from source to target (e.g., by also introducing a

Understanding Program Slices 495

kind of distance information from source into tokens). As the number of tokens
may be huge in the case of large programs, it is an interesting question how the
increased memory requirements and its maintenance cost affect the overall slicing
performance, and in what extent the reason-why chains can be shortened. Also, to
our experiences data-dependences are easier to follow mentally, hence, we should
be able to give option for selecting data-dependences (priorize or let the user decide
interactively) where both types of dependences arise. It would also be worth inves-
tigating that if the provided path has been found infeasible by the user, how the
algorithm can search for alternative path. The latter issues imply further possibil-
ities for improvement: how to visualize or represent the reason-why path (which is
currently plain XML), and how to make the path search interactive, respectively.
These serve as the basis of our future work.

References
[1] Agrawal, G., and Guo, L. Evaluating explicitly context-sensitive program slic-

ing. Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering, pages 6-12, 2001.

[2] Agrawal, H., and Horgan, J. Dynamic program slicing. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI). ACM,
New York, USA, pages 246-256, 1990.

[3] Atkinson, D.C., and Griswold, W.G. The design of whole-program analysis
tools. Proceedings of the 18th International Conference on Software Engineer-
ing, pages 16-27, 1996.

[4] Binkley, D. Semantics guided regression test cost reduction. IEEE Transactions
on Software Engineering, 23(8): 498-516, 1997.

[5] Binkley, D. The application of program slicing to regression testing. Information
and Software Technology Special Issue on Program Slicing, 40(11-12): 583-594,
1998.

[6] Binkley, D., and Harman, M. A large-scale empirical study of forward and back-
ward static slice size and context sensitivity. Proceedings of the International
Conference on Software Maintenance, pages 44-53, 2003.

[7] Binkley, D., Horwitz, S., and Reps, T. Program integration for languages with
procedure calls. Transactions on Programming Languages and Systems, 4(1):
3-35, 1995.

[8] Canfora, G., Cimitile, A., and De Lucia, A. Conditioned program slicing. Infor-
mation and Software Technology Special Issue on Program Slicing, 40(11-12):
595-607, 1998.

496 Ákos Hajnal and István Forgács

[9] Canfora, G., Cimitile, A., and Munro, M. RE2: Reverse engineering and reuse
reengineering. Journal of Software Maintenance:. Research and Practice, 6(2):
53-72, 1994.

[10] Canfora, G., Cimitile, A., De Lucia, A., and Di Lucca, G.A. Software salvaging
based on conditions. Proceedings of the International Conference on Software
Maintenance, pages 424-433, 1994.

[11] Cimitile, A., De Lucia, A., and Munro, M. A specification driven slicing process
for identifying reusable functions. Journal of Software Maintenance: Research
and Practice, 8(3): 145-178, 1996.

[12] De Lucia, A., Fasolino, A.R., and Munro, M. Understanding function be-
haviours through program slicing. Proceedings of the 4th IEEE Workshop on
Program Comprehension, pages 9-18, 1996.

[13] Emami, M., Ghiwya, R., and Hendren, L.J. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. Proceedings of the ACM
SI GPL AN 1994 Conference on Programming Language Design and Implemen-
tation, pages 20-24, 1994.

[14] Forgács, I., Takács, E., and Hajnal, A. Regression slicing and its use in re-
gression testing. Proceedings of IEEE International Computer Software and
Applications Conference, pages 464-469, 1998.

[15] Gallagher, K.B. Evaluating the surgeon's assistant: Results of a pilot study.
Proceedings of the Conference on Software Maintenance, pages 236-244, 1992.

[16] Gallagher, K.B., and Lyle, J.R. Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8): 751-761, 1991.

[17] Griswold, W.G. Making slicing practical: the final mile. Proceedings of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, page 1, 2001.

[18] Gupta, R., Harrold, M.J., and Soffa, M.L. An approach to regression testing
using slicing. Proceedings of the Conference on Software Maintenance, pages
299-308, 1992.

[19] Gupta, R., Soffa, M.L., and Howard, J. Hybrid Slicing: Integrating Dynamic
Information with Static Analysis. A CM Transactions on Software Engineering
and Methodology, 6(4): 370-397, 1997.

[20] Gyimóthy, T., Beszédes, A., and Forgács, I. An efficient relevant slicing method
for debugging. Lecture Notes in Computer Science, pages 303-321, 1999.

[21] Hajnal, A., and Forgács, I. A demand-driven approach to slicing legacy
COBOL systems. Journal of Software: Evolution and Process, 24(1): 67-82,
2012.

Understanding Program Slices 497

[22] Harman, M., and Danicic, S. Amorphous program slicing. Proceedings of the
5th International Workshop on Program Comprehension, pages 70-79, 1997.

[23] Harman, M., and Danicic, S. Using program slicing to simplify testing. Soft-
ware Testing, Verification and Reliability, 5(3): 143-162, 1995.

[24] Harman, M., Hierons, R.M., Fox, C., Danicic, S., and Howroyd, J. Pre/Post
conditioned slicing. Proceedings of the IEEE International Conference on Soft-
ware Maintenance, pages 138-147, 2001.

[25] Hierons, R., Harman, M., and Danicic, S. Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification and Reliability,
9(4): 233-262, 1999.

[26] Hierons, R., Harman, M., Fox, C., Ouarbya, L., and Daoudi, M. Conditioned
slicing supports partition testing. Software Testing, Verification and Reliability,
12(1): 23-28, 2002.

[27] Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of
programs. Transactions on Programming Languages and Systems, 11(3): 345-
387, 1989.

[28] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1'):
26-60, 1990.

[29] Jackson, D. and Rollins, E.J. A new model of program dependences for re-
verse engineering. Proceedings of the Second ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 2-10, 1994.

[30] Korel, B., and Laski, J. Dynamic program slicing. Information Processing
Letters, 29(3):155-163, 1988.

[31] Krinke, J. Effects of context on program slicing. Journal of Systems and
Software, 79(9): 1249-1260, 2006.

[32] Krinke, J. Evaluating context-sensitive slicing and chopping. Proceedings of
the International Conference on Software Maintenance, pages 22-31, 2002.

[33] Liang, D., and Harrold, M. J. Reuse-Driven Interprocedural Slicing in the
Presence of Pointers and Recursion. Proceedings of the IEEE International
Conference on Software Maintenance, pages 421-430, 1999.

[34] Venkatesh, G.A. The semantic approach to program slicing. Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, pages 107-119, 1991.

[35] Weiser, M. Program slicing. IEEE Trans. Software Eng., 10(4): 352-357,
1984.

Received 10th April 2012

Acta Cybernetica 20 (2012) 499-513.

New Descriptions of the Lovász Number, and the
Weak Sandwich Theorem

Miklós Újvári*

Abstract
In 1979, L. Lovász introduced the concept of an orthonormal representa-

tion of a graph, and also a related value, now popularly known as the Lovász
number of the graph. One of the remarkable properties of the Lovász num-
ber is that it lies sandwiched between the stability number of the graph and
the chromatic number of the complementary graph. This fact is called the
sandwich theorem.

In this paper, using new descriptions of the Lovász number and linear
algebraic lemmas we give three proofs for a weaker version of the sandwich
theorem.

Keywords: Lovász number, weak sandwich theorem

1 Introduction
From the several remarkable properties of the Lovász number of a graph we mention
here only the sandwich theorem: the Lovász number lies 'sandwiched' between the
stability number, and the chromatic number of the complementary graph. A weaker
form of this sandwich theorem will be derived here using new descriptions of the
Lovász number. This weak sandwich theorem is the immediate consequence of the
sandwich theorem, Brooks' theorem (concerning an upper bound on the chromatic
number), and the counterpart of Brooks' theorem (concerning a lower bound on
the stability number). In this paper our aim is to give more direct proofs.

We begin this paper with stating the above-mentioned results. First we fix
some notation. Let n G Af, and let G = (V(G),E(G)) be an undirected graph,
with vertex set V(G) = { l , . . . , n } , and with edge set E_(G) C i ^ j}.
The complementary graph will ue denoted by G. Thus G = (V(G), E(G)) where
V(G) = V(G) and E{G) = {{i,j} C V(G) : i ± j, {i,j} # E(G)}.

Let us define an orthonormal representation of the graph G (shortly, o.r. of G)
as a system of vectors o i , . . . , an G TZm for some m e A/", satisfying

of Oi = 1 (i = 1, • • -, n), afa3 = 0 ({», j } G E{G)).

"H-2600 Vác, Szent János utca 1., Hungary. E-mail: u jvar im8cs .e l te .hu

500 Miklós Újvári

In the seminal work [8] L. Lovász introduced the following number, 19(G), now
popularly known as. the Lovász number of the graph G ([7]):

(Here (aio[)n denotes the upper left corner element of the matrix that is
the square of the first element of the vector Oj, and though not emphasized in the
definition of ő(G), we suppose that (a^aj)n ^ 0 for all i £ V(G).)

By Lemma 3 in [8], the Lovász number i9(G) is an upper bound for the stability
number a(G), the maximum cardinality of the (so-called stable) sets S C V(G)
such that {i,j} C S implies {i,j} £ E(G). Moreover, by Theorem 11 in [8] if there
exists an orthonormal representation of the graph G with vectors a, in 7Zrn then
19(G) < m. Specially, "0(G) is at most the chromatic number of the complementary
graph, x(G), where the chromatic number of a graph is the minimal number of
stable sets covering the vertex set of the graph. Hence (see [8])

a fact known as the sandwich theorem (see [7]).
The Lovász number can also be defined via orthonormal representations of the

complementary graph: it is shown in [8] that i9(G) — fi'(G) where the number
1?'(G) is defined as

(We remark that here the values (hbf) n are allowed to be zero.) The proof of
the equality "0(G) = fl'(G) relies on strong duality between Slater-regular primal-
dual semidefinite programs equivalent with the programs defining "d(G) and $'(G),
respectively. (See [8], [10] or [15] for the equivalency results; and, for example, [16],
[17] for the duality results.) As a consequence of the sandwich theorem and the
equality between the values $(G) and d'(G) we have

a fact that can also be derived easily from the definition of i9'(G).
For i 6 V(G) let N(i) denote the set of vertices j € V(G) such that {i,j} e

E(G). Let us denote by di the cardinality of the set N(i), and let dmax denote the
maximum of the values di (i £ V(G)). We define similarly N(i), di and dm a x for
the complementary graph G instead of G.

The following theorem is well-known (see for example [9]):

Theorem 1.1. (Brooks) For any graph G, the chromatic number x(G) is at most
dmax + I.- with equality for a connected graph G if and only if the graph is a clique
or an odd cycle.

: ai,..., an o.r. of G

a(G) < i9(G) < x(G)

a(G) < tf'(G) < x(G),

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 501

As a corollary of Theorem 1.1 and the sandwich theorem we obtain

Corollary 1.1. The value $(G) ("d'{G) also) is at most dmax + 1.

The counterpart of the Brooks' theorem can be found for example in [1]. For
further lower bounds on the stability number, see [3], [18].

Theorem 1.2. (Caro-Wei) For any graph G, the stability number a(G) is at least
J2i€V(G) + 1); with equality if and only if the graph G is the disjoint union of
cliques.

Similarly as in the case of Theorem 1.1 we have the following corollary:

Corollary 1.2. The value tf'(G) (d(G) also) is at least J2iev(G) + !)•

We will call the results described in Corollaries 1.1 and 1.2 together the weak
sandwich theorem. In Sections 2 and 3 we give two proofs for this theorem using
linear algebraic lemmas and new descriptions of the Lovász number. In Section 4
we present a new, elementary graph theoretical proof for Theorem 1.2 (which is a
derandomization of the original proof) thus obtaining a third proof for the weak
sandwich theorem.

2 First proof for the weak sandwich theorem
In the first proof of the weak sandwich theorem we will need the following lemma,
implicit in the proof of Theorem 3 in [8]:

Lemma 2.1. Let PSD denote the set of n by n real symmetric positive semidefinite
matrices. Let P denote the following set of matrices:

m£M;ai£TZm(í<i<n)-, 1
afai — 1 (1 < i < n))

Then PSD = P. (Here e\ denotes the first column vector of the identity matrix I.
Though not emphasized in the definition of the set P, we suppose that the vectors
a. have nonzero first coordinates, that is efai ^ 0 for i = 1,..., n.)

Proof. First we will prove the inclusion P C PSD. Let a\,..., an be unit vectors.
Then the vectors o.-i • (efcij) - 1 can be written as (l ,xY)T with appropriate vectors
x, . We have

(T a f % - l) = (zTzj) € PSD.

Thus the elements of the set P are positive semidefinite.
To prove the reverse inclusion PSD C P, let X be a positive semidefinite matrix.

Then, there exist vectors Xi such that X = (xjxj). Let a,; := Xi(l,xf)T where

502 Miklós Újvári

the constants Ai are chosen appropriately so that a[a,i = 1 holds. With these
definitions we have

^ = = « i ^ n c i ^ J) - - 1) = - 1) .

Thus X 6 P, which was to be shown. •

From Lemma 2.1 follows immediately that the program defining i9(G) and the
following program are equivalent:

inf max xa + 1, xu = - 1 ({¿, j} G E(G)), X e PSD. (1) l<i<n

(We remark that program (1) in an equivalent form was studied previously by
Meurdesoif, see program (Vc) in [11].) We can see

Theorem 2.1. The optimal value of program (1) is equal to i?(G), and it is at-
tained. •

Now, let X be the following matrix:

{ di, iii = j,

0, if {i,j} € E(G),
- 1 , if {i,j} e E(G).

Then xu > \xn\ holds for 1 < i < n, so the matrix X is positive semidefinite
by the Gerschgorin's disc theorem, see [14]. (We can also use the fact that X is the
Laplacian matrix corresponding to the adjacency matrix of G, see [16] for another
application of the Laplacian matrix.) Moreover, the matrix X is a feasible solution
of program (1), with corresponding value dmax +1 . Thus we have $(G) < rfmax +1,
and Corollary 1.1 is proved. •

Similarly on the dual side we can apply the variable transformation described
in Lemma 2.1 to the program defining i?'(G). This way we obtain the following
program:

s u p E — t t > = - 1 G Y e P S D - (2)
¿=1 Vi i + L

The optimal value of program (2) is a lower bound of $'(G), as when writing
program (2) we considered only the representations (bi) where the vectors 6j had
nonzero first coordinates. From these considerations Corollary 1.2 follows similarly
as in the case above Corollary 1.1. •

We remark that the program defining fl'(G), and the program (2) are not equiv-
alent generally. In fact, let Go be the cherry graph:

Go := ({1,2,3}, { {1,2}, {1 ,3}}) .

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 503

Then i)'(Gq) = 2 by the sandwich theorem, but the program (2) has no feasible
solution with corresponding value 2. Otherwise there would exist

Y = € PSD

such that
1 1 1

1 h = 2. x+1 y+1 z+1
All the principal submatrices of the positive semidefinite matrix Y have nonnegative
determinants, see [14]. Hence, xy,xz > 1, x,y,z > 0, and

1 -yz
x = 2 yz + y + z

would hold. From these relations (1 — yz)y > 2yz + y + z, that is 0 > z(y + l)2

would follow, which is a contradiction. This contradiction shows that there exist
graphs such that in every optimal orthonormal representation (bi) there exist at
least one vector bi with zero first coordinate.

In the next two propositions we describe two lower bounds for the optimal value
of program (2).

Proposition 2.1. The optimal value of program (2) is at least n/'d(G).

Proof. Let e > 0, and let X = X(e) G 7Znxn be a feasible solution of program (1)
with G instead of G, such that

max xa + 1 < i9(G) + e.

1 <i<n

Then the matrix X is a feasible solution of program (2), and

n ^ 71 1 n = (xu + 1) < max (xa + 1) • - . f-' Xu + 1 V ' ~ 1 <i<n ' ^ Xa + 1 i=l t=l

We can see that n/('d(G) + e) is a lower bound for the optimal value of program
(2), and e —> 0 (or e = 0) gives the statement. •

Proposition 2.2. The optimal value of program (2) is at least a(G).

Proof. Let S Ç V(G) be a stable set with cardinality a(G), and let e > 0. Let us
define the matrix Y = Y(e) € 7£nxn the following way:

Y '•= where yl3 :=

£, if i = j G S,
o, if i,jeS,i^j,
A, if i = j £ S,
— 1 otherwise.

504 Miklós Újvári

Here let A = A(c) 6 TZ be the minimum number such that Y is positive semidefinite,
that is

(Schur complements [12] can be used to determine A.) Then Y is a feasible solution
of program (2). It can be easily seen that the corresponding value increases to a(G)
while e > 0 decreases to 0. •

From Propositions 2.1 and 2.2 equality between the optimal value of program
(2) and tf'(G) follows:

• for vertex-transitive graphs where the lower bound n/i9(G) (Proposition 2.1)
and the upper bound $(G) are equal, see Theorem 8 in [8];

• for perfect graphs where the lower bound a(G) (Proposition 2.2) and the
upper bound 19(G) are equal by the sandwich theorem and the perfect graph
theorem [9].

Note that in the case of vertex-transitive graphs the optimal value of program
(2) is attained, while in the case of perfect graphs non-attainment is possible.

Equality holds in the general case as well:

Theorem 2.2. The optimal value of program (2) and d'(G) are equal.

Proof. Let us denote by TH (G) the set of vectors x = (xi) € TZn for which there
exists a matrix Z = (zij) € 7Zn x n satisfying both

and
Zii =Xi (i = 1 , . . . ,n), Zij = 0 ({¿, j} e E(G)).

It can be shown (see Corollary 29 in [7]) that TH (G) can be described alterna-
tively as the set of vectors x = (x^ £ Hn such that

Xi = (ejbi)2 (i = l,...,n)

for some (bi) orthonormal representation of the complementary graph G.
Let TH+ (G) denote the set of positive vectors of TH (G). Then TH+ (G) is a

convex set (as TH (G) is a convex set), and it is nonempty (as every graph can be
represented by vectors with nonzero first elements). From this observation easily
follows that

TH+ (G) C TH (G) C clTH+ (G),

where cl denotes closure. Consequently we obtain the same value optimizing any
linear function over TH (G) and T H + (G); which is exactly the statement, for the
linear function (x i , . . . , xn) 1-4 ^ Xj. •

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 505

3 Second proof for the weak sandwich theorem
In this section we give an alternative proof for the weak sandwich theorem using a
completely different technique than the one used in the previous section.

Let <j(ti) denote the number of integers s in the range 0 < s < n such that
s = 0,1,2 or 4 (mod 8). For small values of n, the value a(n) can be read out from
the following table:

Table 1: The values a(n) for n = 1 , . . . , 16.

n 1 2 3,4 5,6,7,8
<j(n) 0 1 2 3

n 9 10 11,12 13,14,15,16
a(n) 4 5 6 7

The table can be continued in a similar manner for larger values of n. With this
notation the following combinatorial lemma holds:

Lemma 3.1. If n > 2 then there exist n of a(n)-letter words made up from the
letters a, b, c, d such that the number of letter-pairs (a, b) and (c, d) on the same
position in any two of the words is altogether odd. (For example in the words "aa"
and "cb" there is only one such letter-pair: (a,b), on the second position.)

Proof. For the values 2 < n < 9 the following word-sets have the desired property:

n = 2 , a(n) = 1
n = 3 or 4, <j(ri) = 2

n = 5,6,7 or 8, a(n) = 3

a, b
any n words from the word-set aa, cb, ba, db
any n words from the word-set
aaa, ccb, cba, cdb, baa, dab, dbc, dbd

n = 9, cr(n) = 4 : aaaa, accb, acba, acdb, abaa
adab, adbc, cdbd, ddbd.

For larger values of n we can use the following induction argument. Let us denote
by Si,..., Sg the words defined above in the case n = 9. Suppose that for some n
we have appropriate <r(n)-letter words T\,... ,Tn. Then the word-set

Si fell,..., S9&T1, bdbdkT2,..., bdbdk.Tn,

where & denotes concatenation, is made up of n + 8 of (<r(n) + 4)-letter words, and
it has the desired property, too. Thus the statement in the lemma is dealt with for
all the values of n. •

Now, let

<-(l ! W ! A)•>-(! i

506 Miklós Újvári

These matrices are orthogonal, furthermore from the matrix set

ATB, ATC, ATD, BTC, BTD, CTD

the matrices ATB and CTD are skew-symmetric, the others are symmetric. Given
a word made up of the letters a, 6, c, and d we can define a matrix by Kronecker-
multiplying the corresponding matrices: for example the word "dbc" is transformed
into the 8 by 8 matrix D ® B ® C where ® denotes Kronecker product. (The
Kronecker product of two matrices X = (Xij),Y is the block matrix X ® Y :=
(Xij • Y), see for example [12].) The matrices obtained this way are orthogonal, as
they are the Kronecker products of orthogonal matrices.

Using this construction, from Lemma 3.1 immediately follows

Lemma 3.2. Ifm = then there exist m by m orthogonal matrices C\..... Cn

such that for each i ^ j. the matrix CjCj is skew-symmetric.

Proof. Transform a word-set with the properties described in Lemma 3.1 into a
matrix-set using the construction described before Lemma 3.2. We claim that this
matrix-set meets the requirements. For example consider the matrix-set

A®A,.C®B,B®A,D®B.

As we have noted already, these m b y m matrices are orthogonal. On the other
hand,

(A ® A)T • (C®B) = (AT ® AT) • (C ® B) = (ATC) ® (ATB) =

= (CTA) ® (-BTA) = ~{CT ® BT) • {A ® A) = -(C ® B)T • (A ® ̂ 4),

and similarly for the other matrix-pairs:

(A ® A)T • (B®A) = -(B ®A)T -{A® A)... etc.

In the general case similar argument can be applied, so the lemma is proved. •
We remark that in [13] Radon proved that there exist m by m orthogonal

matrices C\,..., Cn such that for each i ^ j the matrix CjCj is skew-symmetric
if and only if m = 0 (mod 2'7W) (see also [6], [12]). The "if ' part is an easy
consequence of Lemma 3.2: just Kronecker-premultiply the Ci matrices with an
identity matrix of appropriate dimension. For a similar proof of this part of Radon's
theorem, see [4].

We will need one further lemma, concerning new descriptions of the Lovasz
number. The idea is to represent the graph G with matrices instead of vectors. Let
us define a matrix orthonormal representation of the graph G (shortly, m.o.r. of G)
as a block matrix (A i , . . . , An) £ ('R e* s)n for some £,s € Af, satisfying

AfAi = I (i - 1,. . . ,n), AjAj = 0 ({t, j} € E(G)).

Then, let us define

d{G):= inf i max . , * : {Ai,..., An) m.o.r. of G >
\i<i<n (AiAf)n J

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 507

ала

0(G) := sup j ^ O B i B f b :{Bu...,Bn) m.o.r. o f ü j .

It is obvious that d(G) < ti(G) and d'(G) < fl(G). Equalities here follow from
Lemma 3.3.

Lemma 3.3. With the above definitions the inequality fl(G) < i5(G) holds.

Proof. We adapt the proof of Lemma 4 in [8].
Let (A i , . . . , An) and (B\,... ,Bn) be matrix orthonormal representations of G

and G, respectively. Then,

(At ® Bi)T • (А,- ® В5) = (AjAj) ® {BjBj) = 0 (1 < i,j <Щ1ф j).

Thus the column vectors of the matrices Ai <g> Bi (1 < i < n) altogether form an
orthonormal system. Hence,

n

< 1,
¿=1

which can be rewritten as
n

Y^(AiAf)u • {BiBDn < 1.
i = 1

From this inequality

follows, and so

n

mm (AiAf)u • u < 1
1 <г<п l<t< r. ¿=1

n

^ (В Д Т) п < шах £—* 1<г<т 1 <i<n (AiAf)n

holds. We can see that 'd{G) < «9(G), and the proof of the lemma is finished. •

Lemma 3.3, together with the equality $(G) = $'(G), gives

Theorem 3.1. The values $(G) and &(G) are equal to i?(G) ($'(G) also), and are
attained. •

The weak sandwich theorem is an easy consequence of Lemmas 3.2 and 3.3. Let
C\,..., Cn be m by m orthogonal matrices with the property described in Lemma
3.2. Let us define the matrices A\,... ,An the following way: the matrix will be
(1 + e)m by m where e denotes the cardinality of E(G). The first m by m block in
A . Ifl . / ' . TTf n Ai is aiCi where

rv

508 Miklós Újvári

The further m by m blocks correspond to the edges of the complementary graph G:
let the block corresponding to the edge {i,j} be ctzCj in Ait ajC. in Aj, and the
zero matrix otherwise. Then, (A\,..., An) is a matrix orthonormal representation
of G, so

max * > d(G).

On the other hand,

1 dj + 1 -j
m a x / , .T^ = m a x = ¿max + 1 1 <i<n (AiAj)u l<i<n (CiCT)U

(note that the matrices Cj are orthogonal so the matrix C . C j is the identity ma-
trix). We obtained dmax + 1 > i9(G). Similar construction on the dual side shows
that J2ieV(G) 1/(^1 + 1) < $(G). The weak sandwich theorem now follows from
Lemma 3.3 and the obvious inequalities d(G) > tf'(G), d(G) < i?(G). •

Note that instead of the matrices Ci in the above construction we can also use
matrices Di with the following properties: the matrices Di are orthogonal; the
matrices DjDj are symmetric and have zero trace (i ^ j). (The only change is
that the block corresponding to the edge {i,j} is atDj in Ai and —ajDi in Aj.)

It is an open problem to characterize the numbers m such that there exist m
by m matrices Di,..., Dn with the properties described above; but any power of
2, greater than or equal to n meets the requirements: n words of the same length
log2 th, and made up from the letters a and d (or a and c) translate into appropriate
matrices (see the proof of Lemma 3.2).

Using simultaneous diagonalization (see [12]), the open problem described above
can be cast also in the following form: characterize the numbers (m, n) such that
there exists a matrix M G { ± l } m x n such that MTM = ml. This is a subproblem
of the Hadamard's Maximum Determinant Problem (see [5]); the Hadamard con-
jecture in an equivalent form states that the (m, n) pairs satisfying the requirements
are:

• (m, 1) such that m > 1;

• (m, 2) such that TO > 2 is even;

• (TO,n) such that m>n and TO = 0 (mod 4).

4 New proof for the Caro-Wei theorem
In this section we will prove the Caro-Wei theorem (Theorem 1.2), the counterpart
of Brooks' theorem (Theorem 1.1). We also describe the counterpart of Turan's
theorem.

First we will show that

T <3>

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 509

holds. We apply induction on the cardinality n of V(G). In the case when n = 1,
the. statement is trivial; in what follows we will suppose that the number of vertices
is n > 1 and that for graphs with smaller number of vertices the inequality (3)
already holds. Note that we can suppose also that the graph G is a-critical (that is
leaving out any edge the stability number becomes larger). In fact, otherwise delete '
edges from the graph while this operation does not change the stability number.
In the end we get an a-critical graph, and the value on the right hand side of (3)
became larger, while the value on the left hand side of (3) stayed the same. We can
suppose also that the graph G is connected: if it has more than one components,
then by induction the inequality (3) holds true for its components, and this implies
the validity of (3) for the whole graph. Hence, it is enough to consider the case
when the graph G is a-critical and connected.

Let v be a vertex of G such that dv = dmax. It is easy to prove that there exists
a stable set of the size a(G) such that it does not contain the vertex v (see Exercise
8.12 in [9]). In fact, otherwise every maximum stable set in G contains the vertex
v. As G is a-critical, so leaving out an edge {v,v'}, in the resulting graph there
exists a stable set S' of the size a(G) + 1 containing both v and v'. Then, S' \ {u}
is a maximum stable set in G; contradicting the indirect assumption.

Let us denote by G - v the graph with vertex-set { 1 , . . . , n} \ {V}, and with
edge-set {{¿, j} £ E(G) : i,j Then a(G - v) = a(G). By induction, for the
graph G — v (3) holds, that is

» < g - » > > E £ s ^ T - («>
ieN(v) igN(v),iyiv

As dv > di for all i £ V(G)., we have

di ~ di + 1 dv(dv + 1) ^ ^ ^ ^

Writing this bound into (4) we obtain the following inequality:

a(G-v)> V -j^TT + j 1 i •
v ' ~ ^ di +1 ^ di +1 dv +1

i€N(v) igN{v),i^v

As a(G — v) = a(G), this inequality is in fact (3), and the first half of Theorem 1.2
is proved.

To prove the second half of the theorem we will show that if

= (6)

i= 1

holds then the graph G is the disjoint union of cliques (the other direction is obvi-
ous). Again we apply induction on n. Note that if (6) holds then the graph G is
a-critical (otherwise G would have an edge such that after deleting this edge the
stability number stays unchanged, while the value on the right hand side of (6)

510 Miklós Újvári

becomes larger, contradicting (3)). We can suppose also that G is connected (if (6)
holds then it holds for the components also). Thus it suffices to prove that if the
graph G is a-critical and connected, furthermore (6) holds then G is a clique.

Let v be the same point as in the first half of the proof, and again consider the
graph G — v. Lét us denote by <5(G) the sum on the right hand side of (6). As we
have seen it in the first half of the proof,

a(G) = a(G - v) > S(G -v)> 5 (G) .

As now q(G) = 5(G), we have equalities instead of inequalities, that is

a(G) = a(G - v) = 6(G - v) = 0(G).

It follows from the 5(G — v) = 0(G) equality that di = dv (i 6 N(v)) (as otherwise
(5) would hold with strict inequality). Moreover by the a(G — v) = 8(G—v) equality
and by induction the graph G — v is the disjoint union of cliques. As the graph
G is connected, the set N(v) intersects with all of these cliques. Let us choose
one of the cliques, and a vertex i € N(v) from this clique. Then di equals dv as
well as the cardinality of the clique. Hence the components of G — v all have the
same cardinality dv. Then a(G — v) = (n — 1)/dv. If the graph G — v would have
more than one components then we could chose from each component a vertex
from N(v). These vertices together with the vertex v would constitute a stable set
in G with cardinality larger than a(G — v). This would contradict the fact that
a(G — v) = a(G), so G — v is a clique with cardinality dv with vertices in N(v).
Thus the graph G is a clique, and the proof of the second half of Theorem 1.2 is
finished also. •

Note that the bound in Brooks' theorem, x(G) < cfmax + 1, is obvious (it can
be proved using a simple greedy coloring algorithm), and together with (3) and the
sandwich theorem gives

Í2 "TT7 ^ a (G) ^ W) ^ X(G) < dmax + 1;

we obtained the third proof of the weak sandwich theorem.
We remark that Turán's theorem can be derived as a consequence of the Caro-

Wei theorem, see [1]. Here; the graph Tn m is defined as follows: Divide the vertex set
V(Tn,m) '•= { l j • • • i ti} into m disjoint subsets S\,..., Sm such that the cardinality
of §i and Sj differ by at most one for each i ^ j. Then the edge set of the graph
-̂ 71,771 ÍS

E{Tn,m):=UT=1{{i,j}CSi:i?j}.

Corollary 4.1. (Túrán) Let G be a simple graph on n vertices with stability number
a(G) < m. Minimizing the number of the edges of G under these assumptions, the
unique extremal graph is Tn rn.

The following corollary describes the counterpart of Turán's theorem which in
turn is a simple consequence of Brooks' theorem.

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 511

Corollary 4.2. Let G be a simple graph on n vertices with chromatic number
X{G) > m. Then the number of the edges of G is at least m(m - l) /2. Equality
holds if and only if G is the disjoint union of a clique and a stable set on m and
n — m vertices, respectively.

Proof. It is well-known that the number of the edges of any simple graph G on n
points is at least x(G)(x(G) - l) /2, so it is enough to prove that if the number of
the edges is m(m - 1)/2 and the chromatic number is m then G is isomorphic with
the graph described in the statement.

Hence, we can suppose that the vertex set is the disjoint union of m stable sets
with exactly one edge going between each two of them. Let us choose a connected
component G' of the graph G such that its chromatic number is x(G') = m. By
Brooks' theorem, then

TO = x (G ') < c U a x (G ') + 1 < d m a x (G) + 1 < 771,

and we can see that G' is a clique on m vertices; the statement is proved. •

Finally, we mention an open problem. Wilf proved the following result (see [2]):
the chromatic number x(G) is at most am a x + 1 (where am a x denotes the maximum
eigenvalue of the adjacency matrix of G), with equality for a connected graph G if
and only if the graph is a clique or an odd cycle. As am a x < (¿max always holds (with
equality for a connected graph if and only if the graph is regular), Wilf's theorem
is stronger than Brooks' theorem. It would be interesting to see how Theorem 1.2
could be strengthened using spectral information. (The bound n/(amax + 1) [18]
is not a strengthening of the Caro-Wei bound, as — using the convexity of the
function

x^-pr r (0<i€R"), dG = {du...,dn)T, dLGx + 1
and Rayleigh's theorem [14] — it can be easily shown that

n 1
n < y —

Q m a x + 1 di + 1

holds, with equality if and only if the graph is regular.)

5 Conclusion
In this paper we presented a new proof for the counterpart of Brooks' theorem
/ + 4-V. \ / . n v i / i o r n i n r r O c í m n l o lrtTITOT" V» m 1 n H r»n fVtn n n m K i i r y LilO W C U U - T I O l I1HAI H l I I I V,WJ) v-v-1 l - l l i ^ j . . . I . [V . V. • • • V*. . j vy** * ' 1 " " ' ' '

As a consequence of the sandwich theorem, Brooks' theorem, and the Caro-Wei
theorem we derived a weaker version of the sandwich theorem. For this weak
sandwich theorem we gave another two, more direct proofs also, which are based
on linear algebraic lemmas and new descriptions of the Lovász number.
Acknowledgements. I thank the two anonymous referees for their remarks that
helped me to improve the presentation of the paper.

512 Miklós Újvári

References
Alon, N. and Spencer, J. H. The Probabilistic Method. John Wiley & Sons,
New York, 1992.

Cvetkovic, D. M., Doob, M., and Sachs, H. Spectra of Graphs. Academic
Press, New York, 1979.

Edwards, C. S. and Elphick, C. H. Lower bounds for the clique and the
chromatic numbers of a graph. Discrete Applied Mathematics, 5:51-64, 1983.

Geramita, A. V. and Pullman, N. J. A theorem of Hurwitz and Radon and
orthogonal projective modules. Proceedings of the American Mathematical
Society, 42(l):51-56, 1974.

Jablonszkij, SZ. V. and Lupanov, O. B., editors. Diszkrét Matematika a
Számítástudományban. Műszaki Könyvkiadó, Budapest, 1980.

James, I. M. The Topology of Stiefel Manifolds. Cambridge University Press,
Cambridge, 1976.

Knuth, D. The sandwich theorem. Electronic Journal of Combinatorics, 1:1-
48, 1994.

Lovász, L. On the Shannon capacity of a graph. IEEE Transactions on Infor-
mation Theory, IT-25:l-7, 1979.

Lovász, L. Combinatorial Problems and Exercises. Akadémiai Kiadó, Bu-
dapest, 1979.

Lovász, L. Semidefinite programs and combinatorial optimization. In Reed,
B. A. and Sales, C. L., editors, Recent Advances in Algorithms and Combina-
torics, CMS Books in Mathematics, Springer, pages 137-194, 2003.

Meurdesoif, P. Strengthening the Lovász 0(G) bound for graph coloring. Math-
ematical Programming A, 102:577-588, 2005.

Praszolov, V. V. Lineáris Algebra. Typotex Kiadó, Budapest, 2005.

Radon, J. Lineare scharen orthogonaler matrizen. Abhandlungen aus dem
Matematischen Seminar der Hamburgischen Universität, 1:1-14, 1923.

Strang, G. Linear Algebra and its Applications. Academic Press, New York,
1980.

Újvári, M. A Szemidefinit Programozás Alkalmazásai a Kombinatorikus Opti-
malizálásban. ELTE Eötvös Kiadó, Budapest, 2001.

Újvári, M. A note on the graph-bisection problem. Pure Mathematics and
Applications, 12(1):119—130, 2002.

New Descriptions of the Lovász Number, and the Weak Sandwich Theorem 513

[17] Ujvari, M. On a closedness theorem. Pure Mathematics and Applications,
15(4):469-486, 2006.

[18] Wilf, H. S. Spectral bounds for the clique and independence numbers of graphs.
Journal of Combinatorial Theory B, 40:113-117, 1986.

Received 29th November 2011

Acta Cybernetica 20 (2012) 515-537.

Joint Perception in Agent Communication*

László Z. Varga1'

Abstract
Correctness of agent communication requires that the communicating

agents share a common ontology. Most of the ontology merging approaches
assume that there is a global, "god's eye" view which is a combination of the
concepts in the ontology of the individual agents. These approaches admit
that the agents may have different views and try to resolve the differences
within the limits of the global view which contains only the concepts based
on the individual perceptions of the agents. In this paper we introduce the no-
tion of joint perception in order to enrich the available concepts in the global
view and we introduce the notion of conceptualization based on joint percep-
tion in order to enable the agents to resolve the differences of their views by
introducing new concepts. We propose an incremental ontology negotiation
protocol for the conceptualization based on joint perception and demonstrate
it in a blocks world. With this work we develop new insights into ontol-
ogy merging and negotiation for agent communication by defining a formal
realization proposal for emergent semantics.

Keywords: distributed artificial intelligence, correctness of agent communi-
cation, ontology merging and negotiation, perception and conceptualization,
joint perception, conceptualization based on joint perception, ontology nego-
tiation protocol

1 Introduction
Agents can communicate with each other only if they have a common language.
This means in computing terms that agents must merge their ontology into a com-
mon ontology. Ever since more than one computer system existed, ontology merging
has been a fundamental issue. In the beginning the problem to be solved was the
migration of data from one system to another, then the interoperability of computer
systems was in focus and recently researchers started to investigate automated on-
tology negotiation. Most of the approaches assume that there is a global view which
contains the concepts of the systems under investigation and the goal of ontology

"This work was supported by TÁMOP-4.2.2/B-10/1-2010-0030 and TÁMOP-4.2 .1 . /B-
09/1/KMR-2010-0003. This work is part of COST Action IC0801: Agreement Technologies.
Many thanks to the anonymous reviewers for their valuable comments that improved the paper.

^Faculty of Informatics, Eötvös Loránd University, E-mail: lzvargaSinf . e l t e . hu

mailto:lzvarga@inf.elte.hu

516 László Z. Varga

merging and negotiation is to discover and learn the concepts not present in one
agent but present in the other. If the concepts in the ontologies of the agents are not
completely compatible, then the merging methods try to resolve the contradiction
to achieve a consistent global view. The approaches assume that if the ontologies
of the agents are merged in this way and the agents perceive the concepts correctly,
then the agents are able to communicate and work together using the merged on-
tology. The perception of the agents is a critical point in the above reasoning and
has not been studied in the same detail as the other points of ontology merging
and negotiation. In this paper we are going to investigate how perception of agents
influences the agents' ability to merge and negotiate their ontologies. We propose
an ontology negotiation protocol to discover new concepts with the help of joint
perception in ontology merging and negotiation. The proposed ontology negotia-
tion protocol may help agent communication, however the main goal of the paper
is to better understand the role of perception in ontology merging and negotiation.

1.1 Semantics in Agent Communication
In order to be able to discuss the role of perception in agent communication, we
are going to use the knowledge formalization approach by Genesereth and Nilsson
in [6]. Formalization of knowledge consists of a conceptualization and an ontology.
The instances of the real world are first conceptualized and then formally encoded
in an ontology used by the agents in their communication as shown in Figure 1.

formalization

interpretation

communication

interpretation

formalization uses

Figure 1: Semantic meaning in agent communication

When agents communicate with each other, they want to send to each other
statements about the real world which is shown on the left hand side of Fig-
ure 1. The relevant instances perceived by each agent are conceptualized in the
corresponding conceptualizations: Conceptualization^ for Agent x and Conceptu-

Joint Perception in Agent Communication 517

alizationy for Agenty. In accordance with Genesereth and Nilsson [6], the concep-
tualization consists of the universe of discourse (UOD), the functional basis set and
the relational basis set. The conceptualization is informal and its elements are not
formally named. There can be different conceptualizations for the same world. An
example of Genesereth and Nilsson [6] for agent specific conceptualization is the
wave and particle conceptualization of light, where the different conceptualizations
explain different aspects of the behavior of light. In that example we can observe
that a conceptualization depends not only on the interest of the agent, but also on
the perception capability of the agent.

In addition to the dependence on perception capability, conceptualization is
context dependent as well. Context dependence can be observed in different do-
mains and it is expressively described in the domain of image databases by Santini
et al. [10]:

" The full meaning of an image depends not only on the image data, but on a
complex of cultural and social conventions in use at the time and location of
the query, as well as on other contigiencies of the context in which the user
interacts with the database. This leads us to reject the somewhat Aristotelean
view that the meaning of an image is an immanent property of the image data.
Rather, the meaning arises from a process of interpretation and is the result
of the interaction between the image data and the interpreter."

While the conceptualization differences due to agent interest differences are usu-
ally mentioned in research papers that deal with ontology merging and negotiation,
the conceptualization differences due to context dependence and the limitation of
the perception capabilities of the agents are not in focus. We are going to focus on
this perception dependence aspect of conceptualization in this paper.

Once the agent has its conceptualization, the conceptualization is formalized
in an ontology that names the objects, functions and relations of the world as
perceived by the agent. The ontology is represented in a formal language. The
interpretation of an ontology is a mapping between the elements of the language
and the elements of the conceptualization. An ontology can be mapped to the
same conceptualization in several ways and an ontology can be mapped to different
conceptualizations, therefore an ontology may have several interpretations. The
intended interpretation is the one that the ontology developer had in mind when
he/she created the ontology. Functions and relations of an ontology are satisfied
by an interpretation if they are true in the corresponding conceptualization. Al-
though several conceptualizations may satisfy an ontology, the conceptualization
designated by the intended interpretation is meant to be the conceptualization to
be used when agents communicate.

Communicating agents are shown on the right hand side of Figure 1. When
Agentx sends a message to Agenty, then it formalizes its message using Ontology*,
and the message sent from Agent* to Agenty uses the concept names used in
Ontology* • Agenty decodes the message using Ontologyy. This decoding can be
completed if Agenty can find the corresponding names in Ontologyy. Successful

518 László Z. Varga

decoding of the message does not necessarily mean that the communication is
semantically correct.

The communication is semantically correct only if the elements of Figure 1
match correctly, which means that if a concept c in the real world is conceptu-
alized in Conceptualization^ and formalized as cpx in Ontology^, then there is
in Ontologyy a cpy that can be mapped to cpx and the intended interpretation
of cpy in Conceptualizationy is the conceptualization of the same c real world
concept.

1.2 Ensuring Correct Semantics in Agent Communication
In order to ensure semantically correct agent communication, both agents must have
a concept of the real world concept that they want to talk about. Basically this
is the goal of all the ontology matching and negotiation research. The individual
research reports usually focus on some of the elements of Figure 1 and assume that
the others are correct.

The most studied part of Figure 1 is the right hand side, where the focus is on
the formally represented ontologies. Ontology x and Ontology y may be different,
because there may be different names for the same concept in the two ontologies,
or there may be different concepts in the ontologies. Semantic correctness needs
that the ontologies are matched or aligned. Rahm and Bernstein [9] present a
taxonomy that explains the common features of the different ontology1 matching
techniques developed in the context of ontology translation and integration, knowl-
edge representation, machine learning, and information retrieval. An important
feature of these ontology matching approaches is that they investigate the formally
represented ontology on schema and instance level and try to find similarities in the
formal representations based on such properties as name, description, data type,
relationship types, constraints, and structure. Although the investigation of the
similarities of the formal representations may indicate similarities in the concepts,
the semantic correctness is not guaranteed and needs to be verified by humans. The
problem with human verification is that a human is just another agent with his/her
own conceptualization based on his/her own perception and we cannot be sure that
this third conceptualization correctly covers and integrates the conceptualizations
of Agentx and Agenty.2

Uschold and Gruninger [11] and Gruninger [7] propose the idea of ontological
stance as a standard for semantic correctness. They go deeper than the formal
representation of the ontologies and say that two ontologies are equivalent if their
intended models are equivalent. Proving the equivalence of intended models is done
by proving that the logical theories captured in each ontology are logically equiva-

1Rahm and Berstein write about schema matching, but their work can be applied to ontology
matching as well.

2This must be one of the reasons why any attempt to create a "global ontology" of the world
have failed. The ontology of Agents and Agenty were also created by humans, so when a third
human verifies the merging of Ontologyx and Ontologyy, the verification is basically the same
problem as merging the ontologies.

Joint Perception in Agent Communication 519

lent. Logical equivalence is verified if all statements and inferences that hold for one
agent, also hold when translated into the other ontology. If the inference does not
hold in the translated ontology, then the intended models are not equivalent. Un-
fortunately there is no procedure for generating and verifying all possible inferences
for any given pair of ontologies, therefore we cannot prove semantic correctness of
two ontologies, we can only prove the incorrectness if we find a conflicting inference.

The recent ontology negotiation approach includes all the elements of Figure
1. Truszkowski and Bailin [2] initiated the term ontology negotiation and recently
Diggelen et al. [5] proposed an implementation of ontology negotiation for agent
communication. As Williams [12] writes, a basic assumption is that both agents
are able to point at instances in the real world and this can be known for both
of them. Agent* points at an instance in the real world and sends the formal
representation of this instance in Ontology* to Agenty. Agent y can see the in-
stance in the real world and find its formal representation in Onologyy, and thus
can create a mapping between Ontology* and Ontologyy. The mapping method
can be supported by a learning method as Williams [12] proposes or explanation
based as Diggelen et al. [5] propose. Because agents point at instances in the real
world, the ontology negotiation approach includes the perception part of Figure 1
as well. A basic assumption of ontology negotiation is that the agents do not have
any errors in their perception of the world although their perceptions may differ.
This is necessary for a successful ontology negotiation, but is it enough? Can we
be sure that agents can negotiate successfully if they do not have error in their
perception? In the next sections of this paper we will investigate this as well.

In the case of the above three ontology merging and negotiation approaches, the
differences in the ontologies are due to the different categorizations by the agents
and the goal is to match these categorizations. If the perceptions of the agents may
have errors, then the agents have to eliminate the conflicting facts as well. In the
example of Cholvy [3] one witness saw a dark blue car on the crime scene, while
the other saw a dark green car and there were two men in it. In this case a unique
consistent view of the world can be achieved by dropping some of the perceptions
and keeping other perceptions. The selection is often helped by preference relations
like in the work of Amgoud and Kaci [1]. In the rest of the paper we will assume
that the perceptions of the agents are correct according to their conceptualization
of the world.

2 The Perception Problem in a Blocks World
The above overview of ontology merging and negotiation indicates that merged
ontologies and error free perceptions are needed for correct agent communication.
Now we are going to investigate this in a blocks world example. Although the blocks
world example below in this section has some kind of image processing flavor, we
are not focusing on image processing. We are using images only because they are
expressive. At the end of section 2 we will show that the blocks world example has
similarities with other domains as well.

520 László Z. Varga

2.1 Perception Capabilities in a Blocks World
When we assume that the perception of the agent is error free, then we assume
that there is an unambiguous mapping from the real world to the perception of
the agent. This means that if the real world instance is in the sensing range of
the agent, then the agent perceives the instance and the same real world instance
always maps to the same perception of the agent.

Definition 1. Error Free Perception: the perception of the agent is error free, if
the agent perceives every real world instance that gets in the sensing range of the
agent, and the same real world instance always maps to the same perception of the
agent.

We are going to investigate agents in a blocks world example, where the percep-
tion of the agents is through an image caption sensor. The sensor is able to make
camera images of the real world. Figure 2 shows the perception of the real world by
Agentx • The axes x and 2 are not part of the perception, they are on the figure just
to show the orientation. The conceptualization of this world by Agentx consists
of three blocks, no functions and two relations (square and circle) corresponding to
the shape of the blocks. The formalization of this conceptualization is Ontologyx
and in accordance with the formalization approach by Genesereth and Nilsson [6]
it is the following3:

< {a, b, c}, { } , {squarex,drclex} > (1)

Agentx has the following representation of the current state of the world:

squarex (a), circlex (b), squarex (c) (2)

-+• x

Figure 2: Perception of the blocks world scene by Agentx

Figure 3 shows the perception of the same scene of the real world by Agent y .
Agenty has exactly the same type of sensors and sensing capabilities as Agentx,
but Agenty has a different view. The axes y and z are not part of the perception,
they are on the figure just to show the orientation. The conceptualization of Agenty
is the same as that of Agentx and its formalization is the same (except that the
symbols are differentiated with the y index):

< {a,b,c},{},{squareY,circleY} > (3)

3We call this formal representation as Ontologyx, although it is not a complex sophisticated
ontology.

Joint Perception in Agent Communication 521

However Agenty has the following representation of the current state of the
world:

squarey (a), squarey (b), circley (c) (4)

Figure 3: Perception of the blocks world scene by Agenty

We assume that both agents are able to point at the blocks in the real world
and this can be perceived by both of them. Technically this could be implemented
for example by sending a radio signal to the selected block and if the selected block
receives the signal, then it emits light which is perceivable by both agents. So if
Agent* wants to point at block a, then it sends a signal to block a and Agenty
perceives that block a is glowing. In this blocks world example the letters denote
the same blocks, i.e. block a perceived by Agent* on Figure 2 is the same as block
a perceived by Agenty on Figure 3, block b perceived by Agent* is the same as
block b perceived by Agenty, and block c perceived by Agent* is the same as block
c perceived by Agenty.

2.2 Ontology Merging and Agent Communication in the
Blocks World

We are now investigating how the different ontology merging techniques cope with
the above blocks world example. In section 1.2 we have seen that there are three ma-
jor approaches: the merging technique based on the formally represented ontologies
(schema level matching), the verification method based on the logical equivalence
of the logical theories captured in each ontology, and the ontology negotiation.

Claim 1. Schema level matching and error free perception are not enough for
conflict free agent communication.

Proof. The merging technique based on the formally represented ontologies and
systems (see Rahm and Bernstein [9]) can be on the schema or on the instance
level.

The schema level matching in our blocks world example would result in stating
that the ontologies of Agent* and Agenty match each other, because their for-
mal representation (1) and (3) have the same structure. After investigating the
technical capabilities of the sensors of the agents and their processing software,
the ontology merger would say that squarex maps to squarey and circlex maps
to circley, because the agents have exactly the same type of sensors. Although
both agents have error free perception and their ontologies are matched, the agents

522 László Z. Varga

would have problems in their communication, because if Agent* sends the mes-
sage circlex(b) to Agenty, then it would be mapped to circley (b) and it would
conflict with the squarey (b) information of Agenty. So this example shows that
schema level matching and error free perception are not enough for conflict free
agent communication.

If schema merging is combined with instance level merging, then the above
conflict on the shape of block b can be found already at the ontology merging phase.
The instance level merger would not be able to find out how to map squarex to
the concepts of Agenty, because in the case of block a the symbol squarex maps to
squarey, but in the case of block c the symbol squarex maps to circley. The same
way, the instance level merger would not be able to find out how to map squarey to
the concepts of Agent*, because in the case of block a the symbol squarey maps to
squarex, but in the case of block b the symbol squarey maps to circlex • Therefore
instance level ontology merging would fail. •

Claim 2. The verification method based on the logical equivalence of the logical
theories captured in each ontology and error free perception are not enough for
conflict free agent communication.

Proof. The ontology merging verification approach of Gruninger [7] is based on
logical theories captured in the ontologies. In the case of the above blocks world
example there is no complex theory captured in the formal representation of the
conceptualizations, because there are no inference rules for the blocks. Therefore
we can use basic statements about the state of the blocks world and general logic to
verify the equivalence of the ontologies of Agent* and Agenty. Let us investigate
the following expressions:

Expression (5) states that blocks a and c are both squares. Agents are able to
point at the blocks, so they can identify blocks a and c. Statement (5) is evaluated
true by Agent*. The squarex symbol can be translated either to squarey or circley.
If squarex is translated to squarey, then we get expression (6) which is evaluated
false by Agenty. If squarex is translated to circley, then we get expression (7)
which is again evaluated false by Agenty. So expression (5) holds for Agent*, but
it does not hold in any translation into the formalization of Agenty. This means
that the intended models of Agent* and Agenty are not equivalent, the symbols of
Agent* cannot be mapped to Agenty and their ontologies cannot be merged. •

Claim 3. Ontology negotiation and error free perception are not enough for conflict
free agent communication.

squarex (a) A squarex (c)

squarey (a) A squarey (c)

circley (a) A circley (c)

(5)

(6)

(7)

Joint Perception in Agent Communication 523

Proof. The ontology negotiation approach to ontology merging is somewhat similar
to the instance level merging of the formally represented ontologies, but the merg-
ing is done at runtime by the agents instead of offline investigation of the formal
representations. The agents point at an instance in the real world and send the
representation of the instance to the other agent. In the case of the above blocks.
world example, Agentx would not be able to negotiate how to map squarex to
the concepts of Agenty, because when it points at block a and sends the symbol
squarex to Agenty, then Agenty would map squarex to squarey, but when Agentx
points at block c and sends the symbol squarex to Agenty, then Agenty would
map squarex to circley• The same way, Agenty would not be able to negotiate
how to map squarey to the concepts of Agentx, because in the case of block a
the symbol squarey would map to squarex, but in the case of block b the symbol
squarey would map to circlex • Therefore ontology negotiation would fail. •

Remark 1. In our simple blocks world example there are only few instances and
we could easily find a mismatch in the instances in instance level schema matching
or ontology negotiation, as well as conflicting statements in logic based verifica-
tion. However in a complex application there may be too many instances and
these types of mismatches may remain undiscovered until there is a conflict in the
communication of the agents.

2.3 Why Ontology Merging Fails in the Blocks World
In the previous section we have two identical agents with two different views of the
same blocks world, and the merging of their ontologies fails and the agents are not
able to correctly communicate. The schema level ontology merging based on the
formally represented ontologies and systems succeeds, but agent communication
will not be correct. The other ontology merging approaches do not succeed in
merging the ontologies, although the agents are identical. How can this be, and
how can the two agents have so different perception of the same blocks world? The
explanation is in the limited perception capabilities of the agents.

Definition 2. Limited Perception Capability: given an agent that can perceive an
application domain from different contexts and the perception of the agent is error
free in each context, then an agent has limited perception capability if there is at
least one application domain instance which maps to different perceptions of the
agent in different contexts.

Claim 4. Agents with error free perception capabilities m.n.y not be able to resolve
conflicting perceptions by choosing one of their already existing concepts, if the
perception capabilities of the agents are limited.

Proof. Figure 4 shows how the agents view the same blocks world. There are two
cylinders and a cube in the blocks world. Agentx perceives this blocks world's
projection on the x-z plane (Figure 2) and Agenty perceives this blocks world's
projection on the y-z plane (Figure 3). Agentx perceives cylinder b as circlex (b)

524 László Z. Varga

and A gent y perceives cylinder b as squarey (b). The concepts perceived by the
agents are in line with the concepts of their perception devices, but not with the
concepts of the real world as seen by the humans. The cylinder may be perceived
by the perception devices either as a circle or a square depending on the position
of the agents, and the agents are not aware of the three dimensional nature of
the blocks. This limited perception capability is the root of the problems in the
discussed ontology merging approaches and agent communication. •

As long as the agents keep to the concepts of their perceptions, they will have
conflicts. If they try to resolve the conflict with an argumentation framework
which is based on the existing concepts of the agents, like that of Amgoud and
Kaci [1], then one of the agents will be regarded more reliable than the other and
the perception of the more reliable agent will win. However in this case none of the
perceptions are better than the other, therefore eliminating the conflict between the
agents by dropping one of the statements will not help to have a better perception
of the blocks world.

2.4 The Blocks World and other Domains
We intentionally used the toy example of the blocks world in this paper, because
our goal here is to have a fundamental understanding of the role of perception
in ontology merging and negotiation. Once we have a clear understanding, then
later ontology merging and negotiation techniques can be improved to handle more
complex situations and huge amount of data.

One may think that the above blocks world example is too specific and not
realistic. This is not the case, because we can easily create similar examples for
the semantic concept learning application of Williams [12] in the World Wide Web
domain: Agent* is a historian expert and Agenty is a computer virus expert. They
both have the concept of "web page of professional interest' and the concept of
"professionally non interesting web page". The "web page of professional interesf
concept corresponds to the square concept and the "professionally non interesting

Agent-, x

Agentx

Figure 4: The blocks world scene in 3 dimensions

Joint Perception in Agent Communication 525

web pagé' concept corresponds to the circle concept in the blocks world. A web page
with title "The Trojan Horse" is similar to the cube in the blocks world,.because
both the historian and the computer expert may classify this page as "web page of
professional ínteres?. A web page with the title "History of Ancient Greece" is
similar to the cylinder in the blocks world, because the historian may classify this
page as " web page of professional interest'', while the computer expert classifies
this page as "professionally non interesting web page".

Apart from the blocks world example and its analogy above, the described
phenomenon is in the heart of almost every data integration project where different
representations must be merged. The views of the different developers may be
different, therefore the developers of one system may identify the relevant features
of a concept in a different way from the developers of the other system. This means
that there may be a mismatch between the perceptions of the different developers
and the concepts in the real world. For example, if there are two systems (X and
Y) and the developers of both systems want to represent people and houses. The
developers of system X find that the relevant features of a person are its name
and social security number, while the relevant features of a house are the name of
its owner, its address and the date when it was built, so they perceive the person
as a (name, number) pair and the house as a (name, address, date) triple. The
developers of system Y find that the relevant features of a person are its name, its
address and its date of birth, while the relevant features of a house are the name
of its owner and its topographical number, so they perceive the person as a (name,
address, date) triple and the house as a (name, number) pair. We can see that
this is similar to the blocks world example: the house corresponds to cylinder b
and the person corresponds to cylinder c. The limited two dimensional perception
capability is the internal representations in systems X and Y in the following way:
circle corresponds to the (name, address, date) triple and square corresponds to
the (name, number) pair.

Obviously the developers of system X and Y can easily understand the above
toy problem and explain the differences of the concepts and their representations
to each other, then add the necessary new representations and create the necessary
mappings between the two systems. If there are more complex concepts and internal
representations, then the developers may have difficulties in understanding and
explaining the differences, therefore they need automated methods.

As we said before, the perception capability depends on the context as well,
like in the case of image databases in Santini et al. [10]. If the image of a painted
portrait is placed among images of other paintings (some of which are portraits and
some of which are not), then an automated tool would label the images, among
them the portrait, with "painting". If the image of the portrait is placed among
photos and paintings of faces, then the automated tool would label the images with
"face". Both perceptions are good in their context, however if we want to resolve
the difference of the labellings, then the best result can be achieved if we take into
account both perceptions. In the following we are going to discuss this kind of joint
perception.

526 László Z. Varga

3 Conceptualization Based on Joint Perception
The above blocks world example clearly demonstrates that the success of ontology
merging greatly depends on the perception of the agents. If the conceptualization of
an agent does not describe the real world in a way that includes all the aspects nec-
essary for the successful communication between the agents, then ontology merging
fails. Although the conceptualization may be enough for a single agent to execute
its own tasks, the pair of agents will not understand each other. Because the con-
cepts in the conceptualizations of the individual agents cannot describe the real
world in this case, a new conceptualization is needed. The new conceptualization
may contain the concepts of the individual agents, but it should contain additional
concepts as well. The new concepts are developed by combining the different views
of the agents, which we call conceptualization based on joint perception.

Wooldridge [13] defines perception as the agent's capability to observe its E
environment with the help of the see function and map it to a set of Per perceptions:

see: E Per (8)

In accordance with Genesereth and Nilsson [6], the perception without formal-
ization is the conceptualization of the agent. The formal representation of the
perception follows the formalism of the ontology of the agent. Based on this, we
define joint perception as two agents' capability to jointly observe their shared
environment:

Definition 3. Joint Perception: Given the E environment in which two agents
Agentx and, Agenty observe the environment with the help of their seex and seey
functions and map the environment to two sets of perceptions Perx and Pery:

seex : E ->• Perx (9)

seey : E Pery (10)
and the agents can communicate to each other the formalization of their perceptions
with the sendx and sendy functions,

then we define joint perception as the agents' capability to observe the E envi-
ronment with the help of their modified seex joint o,nd seeyj0int functions and map
the environment to the Cartesian product of their own perception and the commu-
nicated perception of the other agent:

seexjoint • E —Perx X sendy (Pery) (11)

seeyjoint • E PeryXsendx(Perx) (12)

The Cartesian product of the agent's own perception and the communicated
perception of the other agent is called the conceptualization based on joint
perception.

Note that the modified see function of the agents involves communication with
the other agent, therefore the mapping result of the seexjoint and seeyjaint func-
tions cannot be determined by a single agent, but by the agents together within

Joint Perception in Agent Communication 527

the framework of the ontology negotiation protocol of the conceptualization
based on joint perception that we are going to discuss in the following sections.

With the above definition we have formally defined what Cudre-Mauroux [4]
writes on emergent semantics:

"This is a novel way of providing semantics to symbols of agents relative to
the symbols of other agents with which they interact."

3.1 Ontology Negotiation for Joint Perception
Diggelen et al. [5] assume that in the ontology negotiation process there is a
"god's eye view" of the conceptualizations which is the union of the individual
conceptualizations of the agents. However in the above blocks world example we
can enable successful agent communication only by adding new concepts to the
"god's eye view": the "god's eye view" is the three dimensional view which is
not perceivable by any of the agents and contains the new concept of the three
dimensional cylinder.

Now we are going to extend the ontology negotiation framework of Williams
[12] with a modification of the ontology negotiation protocol. We assume that both
agents are able to point at instances in the real world and this can be perceived
by both of them, so the agents can refer to the instances with the same instance
name.

The ontology negotiation protocol of the conceptualization based on
joint perception consists of the following steps:

1. Agentx sends the name of one of its semantic concepts, the names of a set of
instances of the semantic concept in the real world and points at the instances4

in the real world. Agentx repeats this message for all its semantic concepts
and the corresponding sets of the instances. In the blocks world example
Agent x sends the symbol squarex , the names a and c, and points at blocks
a and c. Then Agent x sends the symbol circlex, the name b and points at
block b.

2. Agenty receives the semantic concept names, the instance names and observes
the instances in the real world to find the corresponding semantic concept
names in its internal representation. In the blocks world example Agenty
finds that it knows that blocks a and b are squarey, and block c is circley.

3. Agenty builds up a joint concept name table that contains all combinations of
Agent v concept names and Agenty concept names, with observed instances.
Agenty assigns new joint concept names to each row of this table. Table 1
shows this for the blocks world example. A joint concept name can be any

4 A conceptualization consists of an universe of discourse, a functional basis set and a relational
basis set. While pointing at an object is relatively easy, ponting at a functional or relational
semantic concept needs further technical details of the protocol, because the agent has to point at
the tuples describing the functional or relational samples. In the case of the blocks world example
it is relatively easy, because we have only unary relational concepts like squarex (a)-

528 László Z. Varga

unique machine generated name, but in this blocks world example we use cube
and cylinder to have correspondence with the three dimensional objects.

4. Agenty sends the joint concept table to Agent*. Agent* receives the joint
concept table and incorporates the new concept names into its representation
by assigning the new concept names to the real world instances. As a result,
the semantic names of the concepts will be changed in the local ontology of
Agent*. Agent* confirms this update to Agenty.

5. Agenty receives the confirmation and incorporates the new concept names
into its local ontology, too. From this point the agents can use in their
communication the new semantic names, because they are unambiguous. This
means that the agents collaboratively learnt new concepts and identified the
instances of the new concept based on their joint perception. These new
concepts were previously unknown to them.

Table 1: Joint concept table based on joint perception.

Instances Agent* concept. Agenty concept Joint concept
a square* squarey cube

. b circle* squarey cylinder*
c square* circley cylindery

— circle* circley —

As Table 1 shows, the agents in the blocks world example learn the concept
of the three dimensional cylinder under two new concepts names: cylinderx and
cylindery and identified the instances of these concepts: b and c correspondingly.
Although for a human observer in the three dimensional world these two types of
objects are the same type of objects with different orientations, the agents assign
them two different semantic names, because the joint perception of the agents is not
three dimensional and the agents perceive two projections of the three dimensional
space. This means that the concept names cylinderx and cylindery include the
shape and the orientation of the three dimensional object.

The last row of Table 1 does not have any sample, therefore a semantic name
is not assigned to this row. If there were a sphere in the three dimensional space,
then this row would be complete.

3.2 Complexity
The conceptualization based on joint perception has the same drawback as the
instance level ontology merger approaches: in a complex application there may be
too many instances to check. In addition to that, the number of concepts may
increase the complexity as well, so we are going to investigate this.

Joint Perception in Agent Communication 529

If the formalization of the conceptualization of Agentx contains n semantic
concept names and the formalization of the conceptualization of Agenty contains
m semantic concept names, then the number of rows in the joint concept table
will be n * m. In order to build up this table, Agentx has to send n messages
with n different semantic concept names to Agenty. Agenty responds to Agentx
with the joint concept table in one message containing all the maximum n * m
joint concept names. Altogether the messages of the proposed ontology negotiation
protocol are proportional to n. Agenty has to find its own semantic concept name
for each sample and place the sample in the corresponding row of the joint concept
name table, so the computation needed to construct the joint concept name table
by Agenty is proportional to the samples in the real world.

The ontology negotiation protocol of Williams [12] has similar complexity, be-
cause in that protocol the querying agent has to send samples for each concept
name to be negotiated to the other agent, and the other agent has to decide if it
can find samples for the same concept.

3.3 Ontology Negotiation as Needed
If the agents want to explore all possibilities and send to each other all concept
names and their sample instances, then the joint concept table would contain all
instances, as shown in Table 1. In a complex application this would be too large
to send in a message, therefore we are going to modify the joint perception based
ontology negotiation protocol with the lazy (or incremental) ontology alignment
approach of Diggelen et. al [5]. The agents are not going to discover the whole
concept space before they start communicating. Instead of that, the agents discover
new concepts jointly when it is needed and they adjust their ontologies at the time
when they find a mismatch in the concepts. When they discover new concepts, they
incrementally solve the ontology merging problem and avoid that the reference to
all instances are sent from one agent to the other.

The conceptual framework of Diggelen et. al [5] contains several ontologies for
the incremental ontology alignment approach. Ox and Oy are the local ontologies
of the agents that want to align their ontologies in order to be able to communi-
cate correctly. O cv is the communication vocabulary ontology which contains the
concepts that both agents understand and use for communication. Ox-C T is the
combination5 of Ox and Ocv and contains the mappings from the concepts of Ocv
to the concepts of O x - Similarly, O y _ c „ contains the mappings from the concepts
of Ocv to the concepts of Oy. O x - y is the combination of Ox and Oy and con-
tains the concepts from both agent's ontologies in a god's eye view manner. The
assumption of the framework is that a) O x - y contains the union of the semantic
symbols of Ox and Oy, b) there are subset orderings of the intended interpreta-
tions of the semantic symbols in O x - y , Ox and Oy, and finally c) the subset
ordering in O x - y conforms to the subset ordering of Ox and Oy. We will refer
later to these assumptions as the " subset ordering assumption".

5Please note that the hyphen in Ox-cv denotes combination and not extraction.

530 László Z. Varga

squarex = squareY

circlex = circley

squarex

circlex

squarex -

circlex

Ox
squarex

circlex

squareY

squarey

circleY

Figure 5: Ontologies according to schema level formal ontology merging in the
blocks world example

Figure 5 shows these ontologies of Agent* and Agent y in the blocks world
example when their ontologies are merged with schema level formal ontology merg-
ing. As we said before, the schema level formal ontology merging would result in
saying that the code of the agents are identical, therefore there are two concepts
that are common to the agents: squarex = squarey and circlex = circley. This is
the god's eye view and is in the 0 * _ y ontology. The arrow from 0 * _ y to O x - c v
indicates that there is a mapping from the concepts in Ox-y to the concepts in
Ox-cv'• the squarex — squarey concept in Ox-y is mapped to the squarex con-
cept in Ox-cv and the circlex = circley concept in 0 * _ y is mapped to the circlex
concept in Ox-cv Similarly the squarex = squarey concept in 0 * _ y is mapped
to the squarey concept in Oy -cv and the circlex = circley concept in 0 * _ y is
mapped to the circley concept in O y - c v

The agents could use for example the symbols squarex and circlex to refer to
the common concepts in their communication vocabulary. This is shown in the
Oct, ontology. The arrow from Ox-cv to O c v indicates that there is a mapping
from the concepts in Ox-cv to the concepts in Oc„: the squarex concept in Ox-cv
is mapped to the squarex concept in Oc„ and the circlex concept in 0 * _ c „ is
mapped to the circlex concept in Ocv. The arrow from O y - c v to O c„ indicates
that there is a mapping from the concepts in Oy -cv to the concepts in O c v : the
squarey concept in Oy_ctl is mapped to the squarex concept in Ocv and the circley
concept in Oy cv is mapped to the circlex concept in Ocv.

Joint Perception in Agent Communication 531

Note that the schema level formal ontology merging does not take into account
the instances, therefore cannot check the assumption on the subset ordering of the
intended interpretation of the semantic symbols. However if we take into account
the instances and the intended interpretations as described in section 2.1, then we
see that although the subset ordering assumption holds for Ox and Oy, it does not
hold for O x - y , because the sets squarex and circlex are disjoint in Ox, therefore
the sets squarex = squarey and circlex = circley should be disjoint as well, but
for example block b would be a member of both sets. This is why instance level
ontology merging as well as ontology negotiations, as discussed in section 2.2, do
not succeed. If we keep to the subset ordering of the original ontologies, then the
agents cannot put into the merged ontology new concepts that do not conform to
the original subset ordering. This means that the agents cannot discover such new
concepts with the help of their joint perception capability.

Now we are going to extend the ontology negotiation protocol of the concep-
tualization based on joint perception (described in section 3.1) to support the in-
cremental ontology negotiation approach of Diggelen et. al [5]. Because we want
to include in the extension the possibility of learning new concepts previously un-
known to the agents, we cannot keep to the subset ordering assumption and cannot
directly use the ontology negotiation protocol of Diggelen et. al [5]. We will as-
sume that the negotiation protocol of Diggelen et. al [5] will be used in the first
place to determine the mapping between the Ocv communication vocabulary and
the local ontology of the agents when there is a subset ordering of the concepts
of the negotiating agents. The negotiation protocol we propose here will go to a
new branch to determine a new concept when the subset ordering of the concepts
of the negotiating agents does not apply or a concept mismatch is detected during
communication.

Basically the incremental ontology negotiation protocol works in the following
way: one of the agents proposes a concept to be added to 0C1J and then the agents
negotiate the mapping between the Ocv and the local ontology of the other agent.
This mapping is ambiguous when the individual perceptions of the agents do not
describe the real world properly and a new concept needs to be discovered based
on the joint perception. Let us take the blocks world example. Agentx proposes
to add the concept squarex to Ocv . As long as Agentx points at only block a
type of samples, Agenty will map the concept squarex to squarey, because the
perception of block a type of samples by Agenty is squarey. The result will be
squarex = squarey like in the case of schema level formal ontology merging on
Figure 5. However if Agentx starts to teach its squarex concept with block c type
of samples only, then Agenty will map the concept squarex to circley, because the
perception of block c type of objects by Agenty is circley. Both mappings may
be sufficient for the communication of the agents as long as no instances of the
squarex, squarey and circley concepts other than those used for the creation of
the mapping appear in their communication. If another type of instance appears in
the communication, then the new concept learning based on joint perception comes
in.

The incremental ontology negotiation protocol of the conceptualiza-

532 László Z. Varga

tion based on joint perception consists of the following steps:

1. Agent* proposes to add concept name c* to Ocll. If Agenty is able to map
concept name Ci into 0y_ c „ , then the agents continue the communication (in
step 3) or add other concepts to O c v (this step 1 is repeated).

2. If Agent y is not able to map concept name c* to O c v , then the agents start a
new concept discovery based on joint perception (in step 4, where c; will be
denoted by Cx).

3. The agents continuously communicate with each other. If the concepts in
OCT, correctly describe the real world for the communication, then there is no
problem and normal communication goes on (this step 3 is repeated). If the
agents want to extend Ocv , then they go to step 1 again. If the concepts in
Ocv do not describe correctly the real world for the communication, then at
some time one of the agents, let's say Agent*, sends a message to the other
agent, in this case to Agenty, and the message refers to a real world instance
ox of a concept cx, the concept name cx is in Ocv and mapped to Cy in Oy_ c „ ,
however Agenty discovers that according to its own perception ox is not in
concept Cy, rather in concept Cy2• In this case the agents start a new concept
discovery based on joint perception (in step 4).

4. (The concept name cx now denotes the conflicting concept: if we arrived here
from step 2, then cx denotes c, of step 2, if we arrived here from step 3, then
Cx denotes cx of step 3.) Agenty sends a message to Agent* and asks Agent*
to show instances of concept cx.

5. Agent* sends the names of a set of instances of the semantic concept Cx in
the real world and points at the instances in the real world.

6. Agenty receives the instance names and observes the instances in the real
world to find the corresponding semantic concept names in its internal rep-
resentation.

7. Agenty builds up a joint concept name table that contains all combinations
of Cx and Agenty concept names, with instance names from Agent*. If a
new row is added to the joint concept name table, then Agenty assigns new
joint concept names to each new row of this table. A joint concept name can
be any unique machine generated name.

8. The joint concept name table is permanently kept by each agent and updated
each time a new concept discovery is completed. Each time the new concept
discovery protocol is executed, only the newly added or modified rows are
communicated by the agents in order to keep this table synchronized.

9. Agenty sends the newly added rows of the joint concept table to Agent*.
Agent* receives the new rows of the joint concept table and incorporates the
new concept names into 0 * _ c u . As a result some of the instances will have
new semantic name. Agent* confirms this update to Agenty.

Joint Perception in Agent Communication 533

10. Agent у receives the confirmation and incorporates the new concept names
into О Y - C V , too. This means that the agents collaboratively learnt new con-
cepts based on their joint perception and at the same time jointly identified
instances of the new concept as well, therefore the agents can refer to these
instances in their future communication using the new concept name. These
new concepts and the categorisation of the instances to these concepts were
previously unknown to them. The agents add the new concepts to 0OT and
at the same time delete cx from Ocv, because cx is replaced by the new ones.
From this point the agents can continue the communication using the new
semantic names (step 3) and identifiy instances of the new semantic concepts
using the joint concept name table.

As an example, let's see how the above incremental ontology negotiation proto-
col of the conceptualization based on joint perception works in the blocks world of
section 2. A sample scenario is the following:

1. Agentx proposes to add concept name squarex to Ocv and points at block a.
A gent у maps squarex to squarey in Oy-cv.

2. The agents start to communicate with each other. At some time Agentx,
sends a message to Agenty, and the message refers to block с of the concept
squarex. The concept name squarex is in Ocv and mapped to squarey in
Oy-cv, however Agenty discovers that according to its own perception, block
с is in concept circley.

3. Agenty sends a message to Agentx and asks Agentx to show samples of
concept squarex.

4. Agentx sends the names of block a and с in the semantic concept squarex

and points at the sample instances in the real world.

5. Agenty receives the instance names and observes the instances in the real
world to find the corresponding semantic concept names in its internal rep-
resentation.

6. Agenty builds up a joint concept name table that contains all combinations
of squarex and Agenty concept names, with sample instance names from
Agentx- Agenty assigns new joint concept names to each row of this table
as shown in Table 2 below. Note that Table 2 contains the categorization of
t } m Vilrtflrc n n n r] £ g o \VC!I

7. Agenty sends the newly added rows of the joint concept table (in this case
the whole table is new) to Agentx • Agentx receives the new rows of the joint
concept table, stores the rows of the joint concept table in its own copy of
the joint concept table and incorporates the new concept names into О x - c v
Agentx confirms this update to Agenty.

534 László Z. Varga

8. Agenty receives the confirmation and incorporates the new concept names
into Oy - cv , too. This means that the agents collaboratively learnt the new
concepts cube and cylindery together with their instances based on their joint
perception and the ontologies are updated as shown in Figure 6. From this
point the agents can continue the communication using the new semantic
names and identify the instances of the new semantic concepts using the joint
concept table.

Table 2: Joint concept table based on incremental joint perception.

Instances Agent* concept Agentyconcept Joint concept
a square* squarey cube
c square* circley cylindery

squarex

circlex

Ocv squarey

circley

Figure 6: Ontologies of the agents after an incremental joint perception discovery
cycle in the blocks world

In accordance with Table 2, in Figure 6 the O c v communication vocabulary
ontology contains the newly discovered concepts cube and cylindery • Both cube and
cylindery are included in the squarex concept in O x - « ; - In O y _ „ , cube is included
in squarey and cylindery is included in circley. O x - y is the merged ontology

Joint Perception in Agent Communication 535

of the two agents, therefore it contains squarex (horizontal rounded rectangle in
the figure), circlex (horizontal rounded rectangle in the figure), squarey (vertical
rounded rectangle in the figure), circley (vertical rounded rectangle in the figure),
as well as the new concepts: cube as the intersection of squarex and squarey,
cylindery as the intersection of squarex and circley.

4 Conclusions
Two agents in a multi-agent environment can communicate correctly if they share
a common ontology. We can create this common ontology from the concepts per-
ceived by the agents only if the individual perceptions of the agents correctly de-
scribe the world from both agents' view. There are two reasons why we cannot
expect that the perceptions of the agents are perfect. One reason is that agents
have limited perception capabilities which may be enough to perform their own
tasks, but may not be correct from the point of view of the other agent. The other
reason (e.g. Santini et al. [10]) is that perception is not an abstract and objective
action independent from the observer, because perception depends on the complete
context of the observation including the history before and after the observation,
the environment of the observation, the observer and the interaction between the
observer and the observed object.

So if perception is not an abstract action depending only on the perceived
object, then we cannot expect that the individual perceptions of the agents always
correctly describe the real world for both agents, therefore if we want to describe
the world in a way that is correct from both agents' view, then we have to base
the common conceptualization of the agents on the perception of both agents.
This is why we introduced in this paper the notions of joint perception as well as
conceptualization based on joint perception. We developed the ontology negotiation
protocol of the conceptualization based on joint perception as an extension to the
ontology negotiation framework of Williams [12]. In order to reduce instant resource
usage of this ontology negotiation protocol, we developed the incremental ontology
negotiation protocol of the conceptualization based on joint perception and showed
how it fits in the incremental ontology negotiation approach of Diggelen et. al [5].
To our knowledge, this is the first work that actually describes how to create new
concepts in ontology merging and negotiation for agent communication, therefore
this is the first formal realization proposal for the viewpoints of Cudre-Mauroux
et al. [4] on emergent semantics. In a similar way as the notion of joint intention
of Jennings [8] helped to better understand cooperation in the multi-agent world,
we hope that the notion of joint perception gives better insight into the role of
perception in ontology merging and negotiation in multi-agent systems.

With the help of the ontology negotiation protocol of the conceptualization
based on joint perception the agents can create concepts that are in line with the
perceptions of both agents, therefore the ontologies of the agents can be merged into
a common ontology that is suitable for both agents and the agents can correctly
communicate with each other when they refer to the jointly identified concepts or

536 László Z. Varga

the instances of the new concepts. Although we get a common ontology with the
proposed ontology negotiation protocol, the disadvantage of the proposed approach
may be that the concepts newly discovered by the agents and merged into the
common ontology may not be "real" concepts for the human observer. Basically a
concept newly discovered by the agents is "something which is viewed in a way by
one agent and viewed in another way by the other agent". Another disadvantage
of the proposed approach may be that if we apply this conceptualization based
on joint perception in a multi-agent environment, then we may get confusingly
many new concepts in every possible pairs of agents. However, the agents may not
be able to discover the same "real" concepts as the human observer, because the
perceptions of the agents are limited and context based, and the agents are not
able to perceive the real world in its reality. Further research will have to focus
on the analysis of the proposed protocols in real settings and how to apply the
ontology negotiation protocol of the conceptualization based on joint perception
among three or more agents in order to support the communication of the agents.
In this paper we assumed that the agents benevolently participate in the joint
perception, however it would be interesting to consider the cases when the agents
report false perceptions either intentionally or by mistake.

References
[1] Amgoud, Leila and Kaci, Souhila. An argumentation framework for merging

conflicting knowledge bases. Int. J. Approx. Reasoning, 45:321-340, July 2007.

[2] Bailin, Sidney C. and Truszkowski, Walt. Ontology negotiation between intel-
ligent information agents. Knowl. Eng. Rev., 17:7-19, March 2002.

[3] Cholvy, L. A general framework for reasoning about contradictory information
and some of its applications. In Proceedings of the ECAI Workshop Conflicts
Among Agents, 1998.

[4] Cudre-Mauroux, Philippe. Emergent semantics. In Liu, Ling and Ozsu,
M. Tamer, editors, Encyclopedia of Database Systems, pages 982-985. Springer
US, 2009.

[5] Diggelen, Jurriaan Van, Beun, Robbert-Jan, Dignum, Frank, Eijk, Ro-
gier M. Van, and Meyer, John-Jules. Ontology negotiation: goals,
requirements and implementation. Int. J. Agent-Oriented Softw. Eng., 1:63-
90, April 2007.

[6] Genesereth, M. R. and Nilsson, N. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann Publishers, San Mateo, CA, 1987.

[7] Griininger, Michael. The ontological stance for a manufacturing scenario. In
Kalfoglou, Yannis, editor, Cases on Semantic Interoperability for Informa-
tion Systems Integration: Practices and Applications, pages 22-42. IGI Global,
2010.

Joint Perception in Agent Communication 537

[8] Jennings, Nicholas R. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artif. Intell., 75:195-240, June
1995.

[9] Rahm, Erhard and Bernstein, Philip A. A survey of approaches to automatic
schema matching. The VLDB Journal, 10:334-350, December 2001.

[10] Santini, Simone, Gupta, Amarnath, and Jain, Ramesh. Emergent semantics
through interaction in image databases. IEEE Trans, on Knowl. and Data
Eng., 13:337-351, May 2001.

[11] Uschold, M. and Gruninger, M. Creating semantically integrated communities
on the world wide web. In Proceedings of the Semantic Web Workshop Co-
located with WWW 2002 Honolulu, 2002.

[12] Williams, Andrew B. Learning .to share meaning in a multi-agent system.
Autonomous Agents and Multi-Agent Systems, 8:165-193, March 2004.

[13] Wooldridge, Michael J. An Introduction to Multiagent Systems. John Wiley
& Sons, Inc., Chichester, England, 2009.

Received 5th April 2011

•i

У
л

CONTENTS

Levente Erős and Tibor Csöndes: Model-Driven Diagnostics of Underper-
forming Communicating Systems 459

Ákos Hajnal and István Forgács: Understanding Program Slices 483
Miklós Újvári: New Descriptions of the Lovász Number, and the Weak Sand-

wich Theorem 499
László Z. Varga: Joint Perception in Agent Communication 515

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
Nyomdai kivitelezés: E-press Nyomdaipari Kft.

