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Preface 

The seventh Conference for PhD Students in Computer Science (CSCS) was or-
ganized by the Department of Computer Science of the University of Szeged (SZTE) 
and held in Szeged, Hungary from June 29 to July 2, 2010. The members of the 
Scientific Committee were the following representants of the Hungarian doctoral 
schools in computer science: András Benczúr (ELTE), Hasszan Charaf (BME), 
Tibor Csendes (SZTE), László Cser (BCE), János Csirik (Chair, SZTE), János 
Demetrovics (ELTE), József Dombi (SZTE), Zoltán Ésik (SZTE), Ferenc Fiedler 
(PE), Zoltán Fülöp (SZTE), Aurél Galántai (ÓE), Tibor Gyimóthy (SZTE), Zoltán 
Horváth (ELTE), Csanád Imreh (SZTE), Zoltán Kató (SZTE), Zoltán Kása (Sapi-
entia EMTE), László Keviczky (SZIE), János Kormos (DE), László Kozma (ELTE), 
János Levendovszky (BME), Eörs Máté (SZTE), Attila Pethő (DE), András Recski 
(BME), Lajos Rónyai (Co-chair, SZTAKI), Tamás Roska (PPKE), Endre Selényi 
(BME), Tamás Szirányi (SZTAKI), and Tibor Tóth (ME). The members of the 
Organizing Committee were Balázs Bánhelyi, Tamás Gergely, Zoltán Kincses, and 
Kálmán Palágyi. 

There were more than 60 participants and 51 talks in several fields of computer 
science and its applications. The talks were going in sections in computer graphics, 
computer networks, database theory, discrete mathematics, distributed computing, 
image and signal processing, numerical analysis, optimization, software engineer-
ing, and stochastic processes. The talks of the students were completed by four 
plenary talks of leading scientists: Bruno Buchberger (Johannes Kepler Univer-
sity, Hagenberg, Austria), Ágoston E. Eiben (Vrije Universiteit Amsterdam, The 
Netherlands), Aurél Galántai (Óbuda University, Hungary), and Mihály Kovács 
(The University of Otago, New Zealand). 

Two scientific journals, viz. Periodica Polytechnica (Budapest) and Acta Cyber-
netica (Szeged) offered students to publish the paper version of their presentations 
after a selection and review process. Altogether 24 manuscripts were submitted for 
publication. The present special issue of Acta Cybernetica contains 12 such papers. 

The full program of the conference, the collection of the abstracts and further 
information can be found at h t tp : / /www.inf .u-szeged.hu/~cscs . 

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too. According to the present plans, the next meeting will be 
held in July 2012 in Szeged. 

Kálmán Palágyi 
Guest Editor 
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A Stochastic Approach to Improve Macula 
Detection in Retinal Images 

Bálint Antal and András Hajdú* 

A b s t r a c t 

In this paper, we present an approach to improve detectors used in med-
ical image processing by fine-tuning their parameters for a certain dataset. 
The proposed algorithm uses a stochastic search algorithm to deal with large 
search spaces. We investigate the effectiveness of this approach by evaluating 
it on an actual clinical application. Namely, we present promising results 
with outperforming four state-of-the-art algorithms used for the detection of 
the center of the sharp vision (macula) in digital fundus images. 

Keywords : biomedical image processing, simulated annealing, learning and 
adaptive systems 

1 Introduction 
Diabetic Retinopathy (DR) is the most common cause of blindness in the developed 
countries. Nowadays, the automatic screening of DR received much attention in 
the medical imaging community [1], [7], [9], since replacing a resource-demanding 
and expensive manual screening is a very challenging task. Automatic screening 
is based on the analysis of retinal images taken at eye hospitals. One class of the 
difficulties originates from the use of different kinds of retinal images, which leads to 
varying performance in the anatomy or lesion detection processes. Some detectors 
are based on machine learning, while others consider non-training approaches. 

In this paper, we present a technique to improve a detection algorithm on retinal 
images via a learning-based approach. The idea behind this technique is to fine-
tune the parameter setup for a certain detector. Since the selection of the optimal 
parameter setup usually traverses a large search space, we decided to use a stochas-
tic approach, simulated annealing for this task. To demonstrate the effectiveness 
of this technique, we present a novel macula detector and show that the proposed 
framework improves detection performance. The contribution in this particular 
area is justified by the fact that the detection of macula involves the lowest number 
of reported works in the field of DR screening research [16]. A comparative analysis 

"University of Debrecen, Hungary. E-mail: { a n t a l . b a l i n t , hajdu.andrksjSinf .unideb.hu 



6 Bálint Antal and András Hajdú 

reveals that our tuned algorithm outperforms other state-of-the-art algorithms in 
the field. 

The main contributions of the paper are organized into the following sections: 

1. A stochastic approach to improve detector performance is introduced. We 
also discuss the advantages of using simulated annealing over stochastic hill 
climbing (Section 2). 

2. We show how to adopt the simulated annealing based search method to im-
prove the performance of the proposed macula detector (Section 3). 

3. A novel macula detector is proposed, which, in addition to its good perfor-
mance, can be easily fine-tuned by a search algorithm (Section 3.1). 

4. We define an error measure to efficiently characterize macula detection per-
formance (Section 3.3). 

5. We evaluate the performance of our macula detector using the proposed tun-
ing also in comparison with four state-of-the-art algorithms (Section 4). 

2 A stochastic approach to improve detector per-
formance 

In this section, we present our approach to select an optimal parameter setup for a 
detector algorithm. For this task, we have to prepare for a large search space, since 
these algorithms may operate with several parameters. In literature, stochastic hill 
climbing is often recommended [10] [13]. Stochastic hill climbing is based on the 
idea that using random jumps between the neighbouring elements of the search 
space converges faster to the extrema than using exhaustive enumerations. An 
element is accepted, if it provides better result than the current extremum. This 
approach is an effective solution for many problems, but it can get stuck in a local 
extrema in search spaces with many peaks. 

To overcome this difficulty, we used a simulated annealing-based method. Sim-
ulated annealing [5] avoids getting stuck in local extrema by using a random ac-
ceptance function for rejected elements. That is, if an element does not provide 
a better result than the current one, it is still accepted if the acceptance function 
allows that. See Figure 1 for a visual comparison of hill climbing and simulated 
annealing. 

The formal description of the algorithm can be given as follows: 

Algorithm 1.: Parameter setup selection by simulated annealing. 

Input: 

• An initial temperature T g R . 

• A minimal temperature Tmin € R. 
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Figure 1: The path of the hill climbing and the simulated annealing algorithm is 
represented with gray and black colors, respectively. While hill climbing reaches 
only the local optimum, simulated annealing can continue towards the global opti-
mum by using chaotic jumps. 

• A temperature change q £ R with (0 < q < 1). 

• A search space S CM" with s G S is a parameter setup. 

• A function r ( X ) , which chooses a random element x from a set X. 

• A function accept: R4 —> {true, false}, which is defined as the follows: 

• An energy function E : S —> R. 

Output: s optimal € S, where E (soptimai) = min E (s). That is, soptimai is the 
parameter setup minimizing the energy function E. 

1. s r(S) 
2. e E(s) 
3. S<r-S-{s} 
4. while S ^ 0 or T < Tmin do 
5. Si <r- r (5) 
6. e i < - E ( s i ) 
7. S ^ - S - { s i } 
8. if ôi < e t h e n 
9. S 4- Si 
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10. e ei 
11. T <c-T • q 
12. else 
13. y f - r (R) 
14. if accept (e, eit T, y) = true t h e n 
15. 5 i— Si 
16. e <- ei 
17. T <-T • q 
18. e n d i f 
19. e n d i f 
20. e n d w h i l e 
21. r e t u r n s 

3 Using the proposed approach: an example 
In this section, we present an example to demonstrate the power of the proposed 
method. For this task, we chose a novel approach for macula detection in retinal 
images, which algorithm requires only two parameter to be optimized. Our pro-
posed approach for obtaining the optimal parameter setup can be adapted to any 
similar problem, as well. 

3.1 Macula detection 
The macula is the central region of sharp vision in the human eye, with its center 
referred to as the fovea (see Figure 2). Any lesions (e.g. microaneurysms) which 
appear here can lead to severe loss of vision. Therefore, the efficient detection of 
the macula is essential in an automatic screening system for diabetic retinopathy. 

3.2 A novel algorithm for macula detection 
In this section, we present a novel approach to detect macula in a retinal image. As 
we can see later on, this algorithm outperforms state-of-the-art macula detectors 
with the use of the proposed framework for optimal parameter setup. 

The proposed macula detection algorithm can be formulated as follows: 

Algorithm 2.: A novel macula detector 

Input: 

• A digital retinal image I in 24 bit RGB format. 

• A parameter q € R with 0 < q < 1 to adjust of the mask size in the median 
filtering step. 

• A threshold t 6 [-255, . . . , 255]. 
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Figure 2: A sample fundus image with the main anatomical parts annotated. 

Output: An image containing the macula region of the eye. 

1. Extract the green intensity channel G from I. 

2. Let A = \Min (width ( / ) , height (/)) • q \. 

3. Produce image M with the same size as G by applying median filtering [12] 
on G with a mask size Ax A. 

4. Create the difference image D = G — M. 

5. Produce a binary image B by assigning all pixels with larger intensity than t 
in the D to the foreground, while the rest to its background. 

6. Select the largest binary component to locate the macula. 

The results after each step of the algorithm can also be observed in Figure 3. 
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(c) (d) 

Figure 3: Steps of the proposed macula detection: (a) The green channel of the 
input image, (b) The result of the median filtering, (c) The difference image, (d) 
The binary image after thresholding and largest component selection. 

3.3 Error measurement of macula detectors 
To select the optimal parameter setup for the above detector algorithm, we need 
a proper energy function to be minimized. An obvious choice for this task is to 
minimize the distance of the centroid of the macula found by the detector and 
the manually selected center of the macula for each image in a dataset. To avoid 
overtraining, we also take into account the distance from the optic disc (see Figure 
2), as the macula and the optic disc are spatially constrained [11]. 

Thus, we define the following energy function for this problem: 

E = Y1 d(Malg(I),Mhm(I))+ Y , \d(Malg(I),0)-M0avg\, 
igds reDS 

where 



A Stochastic Approach to Improve Macula Detection in Retinal Images 11 

• DS is the dataset, 

• d denotes the 2D Euclidean distance, 

• Maig is the centroid pixel of the detected macula, 

• Mhm is the manually selected macula center, 

• 0 is the manually selected optic disc center, 

• MOavg is the average Euclidean distance of the manually selected macula 
and optic disc center for the dataset DS. 

4 Comparative results 
We evaluate our method by comparing it with four other state-of-the-art macula 
detectors (Section 4.1) on different datasets (Section 4.2). As our results will show, 
the novel macula detector outperforms the others after finding its optimal param-
eter setup. 

4.1 State-of-the-art macula detection algorithms 
In this section, we list four macula detection algorithms, which axe involved in our 
comparative analysis. The parameters of the algorithms were set according to the 
corresponding recommendations in literature. 

4.1.1 Petsatodis et al. [8] 

In [8] a region of interest (ROI) is defined to process macula detection. A Gaussian 
low-pass filter is applied to smooth the image. The statistical mean and standard 
deviation of the ROI area are used to compute a threshold for segmentation to 
get binary objects. The object that is located nearest to the center of the ROI is 
labelled as macula. Its center of mass is considered to be the center of the macula. 
However, we did some modification to this approach, because it is not mentioned 
how this ROI is defined; therefore we applied the smoothing to the whole image 
using a large kernel (70 x 70 pixels with a = 10) so that vascular network and 
small patches do not interfere in detection. Then, an iterative thresholding process 
is launched to generate a set of binary images corresponding to different threshold 
values. In each binary image, the component satisfying the area and distance from 
the center constraints are identified, and the component found nearest to the center 
with minimum area is marked as macula. 

4.1.2 Sekhar et al. [11] 

In [11] a region of interest (ROI) for macula is defined regarding its spatial rela-
tionship to the optic disc. That is the portion of a sector subtended at the center of 
the optic disc by an angle of 30 ° above and below the line between this center and 
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the center of the retinal image disc. The macula is identified within this ROI by 
iteratively applying a threshold, and then applying morphological opening (erosion 
followed by dilation) on the resulting blob. The value of the threshold parameter 
is selected such that the area of the smoothed macula region is not more than 80% 
of that of the detected optic disc. The fovea is simply determined as the centroid 
of this blob. 

4.1.3 Fleming et al. [2] 

Fleming et al. [2] proposed to identify the macular region based on the informa-
tion of the temporal arcade and OD center. First, the arcade is found by using 
semielliptical templates. Next, the optic disc is detected by using Hough trans-
formation with circular templates having diameters from 0.7 to 1.25 OD diameter 
(DD). Finally, the fovea was detected by finding the maximum correlation coeffi-
cient between the image and a foveal model. The search was restricted to a circular 
region with diameter 1.6 DD centered on a point that is 2.4 DD from the optic 
disc and on a line between the detected optic disc and the center of the semi-ellipse 
fitted to the temporal arcades. 

4.1.4 Zana et al. [17] 

Zana et al. [17] presented a region merging algorithm based on watershed cell 
decomposition and morphological operations for macula recognition. After noise 
removal, morphological closing followed by opening is performed to remove the 
small dark holes and white spots. A watershed based decomposition of the gradient 
image into cells is done, and the cell with darkest gray level inside the macula is 
selected as the first step of a merging algorithm. A complex criterion based on the 
gray values and of edges of the filtered image is calculated to merge the cells of 
the macula, while rejecting perifoveal inter-capillary zones in order to produce the 
contour of the macula. 

/ 

4.2 Datasets 
iiii 

We have tested our approach on 199 images from three publicly available data 
sources: DiaretDBO [3], DiaretDBl [4] and DRIVE [15]. The characteristic prop-
erties of these datasets can be seen in Table 1. We have selected the optimal 
parameter setup for each dataset using a separate training subset of a total of 60 
images (20 images from each dataset). For each dataset, the ground truth are used 
only for parameter selection. 

4.3 Results 
<e 3 

Table 2 shows the selected optimal parameters for each dataset. The size param-
eter q and the threshold parameter t have been found by the proposed stochastic 
approach. Each dataset performed optimally using a different parameter setup. 
We have evaluated our approach in two aspects [6]: whether the detected macula 
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. Dataset Images Normal DR FOV Resolution 
DiaretDBO 130 20 110 50 1500x1152 
DiaretDBl 89 5 84 50 1500x1152 

DRIVE 40 33 7 45 768x584 

Table 1: Properties of the datasets. 

Dataset q t 
DiaretDBO 0.6 0 
DiaretDBl 0.6 5 

Drive 0.7 0 

Table 2: Parameters selected by the proposed algorithm for macula detection. 

center falls into the 0.5DD (Optic Disc Diameter) distance of the manually selected 
macula center and we also measured the Euclidean distance of them (calculated on 
normalized images). Table 3 and 4 contain the quantitative results using these mea-
sures, respectively. We disclose the results for each macula detector evaluated in all 
dataset. For the more straight-forward comparison, we also calculated the simple 
average of these performance values. In the terms of the first measure, the use of 
the proposed algorithm on the novel macula detector resulted in a 85% average 
accuracy, while the second best method only earned 77%. However, in the terms 
Euclidean error it is only third in the comparison, mainly because of its difficulties 
on the DRIVE database. 

Dataset Petsatodis Sekhar Fleming Zana Proposed 
DiaretDBO 68% 72% 85% 63% 86% 
DiaretDBl 62% 76% 79% 71% 92% 

DRIVE 66% 76% 53% 82% 68% 
Average 66% 74% 77% 69% 85% 

Table 3: Percentage of detected macula centers falling in the correct region. 

5 Conclusion 
In this paper, we have presented an approach to improve detection algorithms by 
fine-tuning their parameters. For this task, we have used a simulated annealing-
based search algorithm. As our experiments have proved, this approach is capable 
of improving a detector that outperforms state-of-the-art algorithms in the field of 
macula detectors. As a future work, the selection of different preprocessing methods 
for the dataset can further improve the detection of the macula. In addition, both 
simulated annealing [14] and the proposed detector could be implemented in parallel 
to reduce their computational needs. 



14 Bálint Antal and András Hajdú 

Dataset Petsatodis Sekhar Fleming Zana Proposed 
DiaretDBO 26.59 26.85 37.82 24.11 24.02 
DiaretDBl 26.32 27.45 35.67 24.77 25.72 

DRIVE 18.15 26.20 . 37.29 20.85 30.25 
Average 23.69 26.83 36.92 23.24 26.75 

Table 4: Average euclidean distance of the detected macula centers from the man-
ually selected ones. 
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Pickup and Delivery Vehicle Routing with 
Multidimensional Loading Constraints* 

Tamás Bartók* and Csanád Imreh* 

Abs t r ac t 

In this paper we introduce a new, pickup and delivery vehicle routing 
model where weight limits and also packing constraints are taken into account. 
In the model the vehicles have to transport 3-dimensional boxes from their 
pickup points into their delivery points. The boxes have weights and the 
vehiclee has to satisfy a weight limit. We present a heuristic algorithm for 
the solution of the problem. The efficiency of the algorithm is evaluated by 
an experimental analysis. 

Keywords : vehicle routing, multidimensional packing 

1 Introduction 
In logistics there are two important problems related to combinatorial optimization. 
One is the routing of the vehicles and the other problem is the container loading. 
Both areas have huge literature and many different models have been investigated. 
If both problems are taken into account then more difficult models appear, but 
they give a more adequate description of the real life problems. 

In the area of vehicle routing many models are investigated, one can find a 
detailed description of the models in the surveys [4] and [16]. Usually the goal is 
to minimize the cost of the transportation, but in some recent works other cost 
functions like minimizing pollution are also considered (see [2]). One of the most 
important subfields of vehicle routing is the area of pickup and delivery problems. 
In these problems the requests are goods with a pickup point and a delivery point 
and the vehicles must transport them from the pickup point to the delivery point 
with minimal cost. These problems are NP-hard and several exponential time exact 
solution algorithms and metaheuristics axe developed for their solution. One can 
find an overview about pickup and delivery problems in the survey [3]. 

Loading the vehicles leads to a 3-dimensional bin packing problem. If weight 
limits are taken into account, then we receive a common generalization of the vector 

*Cs. Imreh was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences. 
Unstitute of Informatics, University of Szeged, E-mail: tbartok@inf .u-szeged.hu 
^Institute of Informatics, University of Szeged, E-mail: c imreh8inf .u-szeged.hu 
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packing and box packing problems (see [1]). Algorithms for models, where both 
the routing and loading of vehicles are considered have been published only in the 
recent years. The capacitated vehicle routing problem (where each request has 
to be collected into a depot) with two dimensional loading constraints has been 
investigated first in the paper [9]. An algorithm which gives the exact optimal 
solution is presented for the case of two dimensional loading constraints in [10]. 
Improved tabu search algorithms are presented for the solution of that problem in 
[9] and [17]. An algorithm based on ant colony optimization is presented in [6]. 
The first paper on capacited vehicle routing with 3-dimensional loading constraints 
is presented in [8]. An improved tabu search based algorithm for 3-dimensional 
constraints is presented in [17], and an ant colony based algorithm is given in 
[7]. Pickup and delivery vehicle routing problems with two dimensional loading 
constraints are presented in [13]. An overview about the results on vehicle routing 
problems with loading constraints can be found in [11] and [18]. 

In this paper we consider a pickup and delivery problem with 3-dimensional 
loading constraints and with weight limit on the vehicles. As far as we know no 
algorithm for this model is presented in the literature. In the next section we give 
the mathematical model which is used in this paper. Then in Section 3 a heuristic 
algorithm is presented to solve the problem. Section 4 contains the description of 
the tests, we used to analyze the algorithm. 

2 The mathematical model 
In this model we are given an undirected simple graph G = (V,E) which describes 
the road system which can be used by the vehicles. The input of the problem is a 
list of demands denoted by D and a list of vehicles denoted by R. The demands 
have the following parameters: 

• the size which is a 3-dimensional box given by the sides Xj, y3. Zj, 

•" the weight which is a positive real number Wj, 

• pickup and delivery points: Sj 6 V, ej € V. 

The vehicles have the following parameters 
j 

• the size of the cargo which is a 3-dimensional box given by the sides XV,YV,ZV, 

• the weight limit which is a positive real number Wv, 

• the speed of the vehicle spv ,t. 

• the start and end point of the vehicle sv and ev 

• a cost function Cy which defines for each edge of G the travelling cost for 
vehicle v, we suppose that this is proportional to the distance, thus the time 
spent by the vehicle travelling on edge e is cv(e)/spv 
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• time limit of the vehicle lv which gives an upper bound on the time which 
the vehicle can travel before delivering its last demand 

Our goal is to transport all of the demands by the given vehicles by a minimal 
cost solution, while not violating the defined constraints. In this model we do not 
allow to change the vehicle during the transportation of a demand, the vehicle must 
pick up the demand at its pick up point and deliver it to the delivery point. A 
vehicle can transport an unlimited number of freights at the same time as long 
as the size and weight constraints are not violated. We suppose that the cost of 
the solution is the total cost of the routes done by the vehicles. During the route 
of the vehicles the constraints must be satisfied at each time, which means that 
the demands have to packed into it without overlapping and the total weight is not 
allowed to be more than the weight limit. We note that in this model rotation of the 
items is not allowed. This assumption is realistic for automation based container 
loading. Moreover there is an extra assumption on the routes: each route has to 
be finished before the time limit of the vehicle. Here we do not take into account 
the time which is used to return to the end point, the limit is on the last delivery 
time. On the other hand one can easily modify our algorithm to the case when the 
time limit is for the arrival time at the end point. 

Therefore the solution can be described as follows: Each vehicle v has a travel 
plan Pv which contains a list pi,... ,Pu(v) of vertices which - with the graph being 
simple - is a walk and for each vertex two sets are given: in(pi) C S contains 
the demands packed into the vehicle at vertex p(i) and out(pi) C S contains the 
demands packed out from the vehicle at vertex p(i), where 5 is a set of (a, b) couples 
( a, b € V), where there is at least one transport request from a to b. 

The solution is feasible if the following conditions are satisfied: 

• Sj = pi for each j € in(pi) and Vj = pi for each j £ out(pi), which means that 
a demand can be packed into a vehicle at its pickup point and can be packed 
out of the vehicle at its delivery point, 

• (cu(s„,pi) + Zltir"1 cv(Pi,Pi+i))/sPv < lv is valid for each vehicle v, which 
means that the route without the return trip has to be finished within the 
time limit, 

• at each point p, the items which are in the vehicle ( j £ S with j £ in(Pr) 
and j € out(Pq) for some r <i < q) must satisfy the loading constraints (the 
weight limit and the 3-dimensonal packing constraint) 

Then the objective function is 

fc(v)-l 
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3 The heuristic algorithm 
After initialization we build routes on the given graph for each vehicle, considering 
pairs of vertices, where there are requests in between. We axe repeating this step as 
long as we have any unassigned pair of vertices. After this step we apply a simple 
local search method, with which we are swapping vertices along a route as long as 
we can decrease the total distance of a route, while keeping the linear ordering of 
the vertices. After the simple local search step, comes the execution of the packing 
step. The algorithm used here, is what is described in [1]. Then, we repeat the steps 
above, as long as we have any uninitialized vehicle and at least one untransported 
item. The last step is an advanced local seach method, with which we are changing 
vertices between routes, while keeping the feasibility of the packing. 

Detailed description of the proposed algorithm 

Example 
In order to make the algorithm easier to understand, we use a simple example 

to demonstrate the steps of the algorithm. 
In our example we have a simple graph, which consists of 7 vertices and 10 sym-

metrical edges. The vertices are named 1,2,...,7. The edges are as follows: 1-3, 1-4, 
1-5, 2-3, 2-5, 3-4, 4-5, 4-7, 5-6, 6-7. The weight of the edges in the same order: 10, 
10, 15, 15, 10, 5, 10, 5, 5, 15. We have 2 vehicles (uj and v2), and 3 demands to ful-
fill. The.vehicles are defined as follows: s„j=l , eVi =7, sV2=2, eV2—7, spVl—spV2 — 1, 
XVl=YVl=ZVl=WVl=XV2—YV2=ZV2—WV2= 1, lV)=lV2= 30. The items are defined 
as follows: Xj=Zj=0.75, y j = 0.5, Wj= 0.5 for all demands. Si=l, ei=4, S2=3, e2=4, 
S3 =5, e3=6. The cost of travelling on edge e: cv(e) = weight of e for both vehicles, 
thus it will be easier to follow the examples. 

Phase 1 (Initialization) 

First of all, given a graph G(V:E), we create, the set S (defined in previous 
chapter). Moreover, let Si be the set of (a,b) couples, that are already inserted, 
initialized as an empty set. Let us assign a vehicle (taken from the initial set of 
vehicles R) to all couples in S, where Cv(sv, a) + Cv(b, ev) is minimal. 

Note: The assigment does not mean, that a certain demand can only be satis-
fied by v, it only means, if (a, b) is chosen as a first pair of vertices for a new route, 
then v is assigned to this route. 

Example: 5={ (1,4), (3,4), (5,6) }. The assigned vehicle will be V\ for (1,4) 
and (3,4), and V2 for (5,6). 

Phase 2 (Route Building) 

During this phase we repeatedly do the following steps: 

Step 2.1 Choose a couple (a, b) from S\Si, for which Cv(s: a, b, e) is minimal, where 
Si denotes the set of investigated couples and c ^ ^ a , b, e) = cv(s,a)+cv(a,b) + 
Cv(b, e) with the vehicle v assigned to the pair (a, b) in the initialization. Let 
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Figure 1: Routes after Phase 2 

r denote the route starting at s and continued by a and b, and ending at e. 
Insert (a, b) into Si. 

Step 2.2 Iteration: While the current route r can be continued with any couple 
from S \ Si- Insert the couple (a, b) from 5 \ 5», where total distance after 
inserting (a, b) into r before the position of e is minimal. Insert (a, b) into Si. 
A route can be continued by a vertex, if the total time travelled (length of r 
from s to the last delivery point after the insertion divided by spv, where spv 
is the speed of v) is not greater than lv, where lv is the time limit for v. 

Step 2.3 If vehicle v has been assigned to other couples in S \ Si before, repeat 
the vehicle assignment for those couples, allowing only unused vehicles. We 
have to do this reassignment since v cannot be used to serve these couples. 

Step 2.4 If S \ Si is not empty and there is at least one unused vehicle that can 
be continued with any couple from S \ Si, go to step 2.1. 

Note: If there are no unused vehicles left, and no route can be continued by 
any item from S \ Si, we still can not report the actual problem to be unsolvable, 
because the two local search methods in the later phases can still make it solvable. 

Example: We start with couple (1,4), and we use Vi, as v\ is the assigned 
vehicle for couple (1,4). We can insert both (1,4) and (3,4) into the route of v\, 
at this point cVl (r)=25, but the total time, which is checked with lVl is 20. We 
can not insert the last couple (5,6) as it would increase the total time to 35, which 
is >lVl. After these steps: S \ Si={ (5,6) }. (No reassignment of the vehicles is 
needed in Step 2.3, because v\ is not assigned to (5,6) ). After the second iteration, 
the two routes are demonstrated on Figure 1. 

Phase 3 (Simple Local Search) 

This simple local search phase consists of many internal swaps within a single 
route, and no swaps are allowed between different routes. This is an essential step, 
if we consider that the vertices are inserted into the routes without any ordering. 
We repeat the following steps for route r =p\,... ,Pk(v) assigned to vehicle v: 

Step 3.1 Let M be a set of pairs of positions in the route, initialized as an empty 
set. We will use this set for memorizing the already investigated pairs of 
vertices. 

Step 3.2 Choose a (i, j) pair of positions, where 0 < i < k(v) and Pi ^ Pj and 
(i, j) or ( j , i) is not in M. If there is no such pair of positions, go to Step 3.5. 
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Figure 2: Routes after Phase 3 

Step 3.3 Check if the swap at positions i and j would cause any of the requests, 
that are assigned to route r, unsatisfiable. This happens, if there is at least 
one request, for which, the start point does not precede the possible end 
points along r. If this swap would cause unfeasibility, insert (i, j) into M, go 
to Step 3.2. Otherwise, let us denote the new route r', go to Step 3.4. 

Step 3.4 Let Cv(r) denote the travelling cost for r, using v. If cv(r') < cv(r), let 
r := r ' , and delete every occurrence of i and j from M. Doing so, we allow 
further swaps of pi and pj in their new position. Continue with Step 3.2. 

Step 3.5 If S \ Si is not empty, try to insert a pair of vertices from S \ Si into r, 
using the same method that was described in Phase 2. If any pair from 5 \ 5» 
was successfully inserted, go to Step 3.2, otherwise proceed to the final step 
of phase 3. 

After the iteration the length of the route is not greater than before the iteration, 
and no demand has been made unsatisfiable, which had been satisfiable before. 

Final step of Phase 3 
We may have the same vertex on r multiple times, and we also note that we 

had a constraint that cv(a,a)= 0, for every v 6 fi, where a £ V, therefore in many 
cases after the iteration we may have more instances of a vertex along r next to 
each other. In this final step, we iterate through r, and remove all surplus instances 
of a, so that a can not be followed by an other instance of a. 

Note: We note that Phase 3 is indispensable in the algorithm. Without this 
phase the routes might contain several instances of a vertex and this would increase 
the cost a lot. 

Example: Considering the route of which is 1 —> 1 —>4—» 3 4 —>7, the 
only swap, which is possible, does not create unfeasibility and shortens the route ( 
thus decreasing total cost ) is the swap at positions 3 and 4 (p3=4, p4=3). After 
processing the swap the resulting route will be 1 1 3 —>4—>4—>7, thus 
the length of the route decreases from 25 to 20. For v2 we can not process any 
swaps, which could decrease the total length of the route and retain feasibility at 
the same time. During the final step the duplicate instances are deleted, resulting 
in the routes demonstrated on Figure 2. 

Phase 4 (Packing) 

During this phase we try to load as many items into the vehicle along the route 
as many is possible. We treat the items with priority, that are more difficult to be 
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packed. An item can be transported by vehicle v, if and only if it can be loaded 
in the loading area of the vehicle for every vertex along the route r between the 
item's pickup and delivery point. Hereby we note that the same vertex can be 
on r multiple times, so we need to check all feasible possibilities. If the item can 
be loaded in the loading area of v for any of these possibilities, it is considered 
transportable. The input for this phase is the list of vertices for route r„ and a 
list of items, item j is determined by its size Xj,yj,Zj, by its weight Wj and by its 
pickup and delivery points, Sj and ej, where Sj and e3 are vertices along the route 
r. We note the loading area of v (XV,YV, Zv) and weight limit Wv, specific for v. 
To pack the items we use the following alteration of the Block algorithm which is 
defined in [1]. In this application of the Block algorithm we do not aim to pack 
all the items in a given set, to a minimal number of bins, but we pack the given 
items into one single vehicle's loading area. At each vertex in the route we use the 
following algorithm to pack the items. . 

Block algorithm 

Step 4.1 (Classifying Phase) In this phase the items are divided into classes by 
their x-coordinates. Let fo = L < f\ < /2 <•••<%''='X be the list 
of the border points let C\ be thé set of the boxes having the x-coordinate 
between and /¿. The border points are determined by algorithm IPM 
given below. 

Step 4.2 (y-Block Building Phase) 

Step 4.2.1 For each class C, first order the elements by the y-coordinate. 
Step 4.2.2 If the list in the class is^empty then we move to the next class. 

Otherwise we take the longest' prefix of this list, which still fits into the 
container and does not exceed the maximal weight of the container. 

Step 4.2.3 We remove these items from the list and replace them with a 
single item (y-Block), which has the x-value of the greatest x-value and 
a z value of the greatest z-value in the list, and a height(y) of Y. Go to 
Step 4.2.2. using the new actual list. 

Step 4.3 (z-Block Building Phase) We take only those boxes into account in each 
iteration, which are in the i-'th interval according to its ^-coordinate. These 
are only y-Blocks. 

Step 4:3.1 We sort these boxes by their ^-coordinates into decreasing order. 
Step 4.3.2 We form z-Blocks from this list using first-fit strategy, we always 

choose the first element which fits into the container and does not exceed 
the maximal weight of the whole container. If no more such element 
exists we move to Step 4.3.3. 

Step 4.3.3 We remove these y-Blocks from the list and replace them with a 
single item (z-Block), which has the x value of the greatest x-value, a 
¿-value of Z, and a y-value of Y. 
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Step 4.4 (The packing phase) After the ¿-Block building phase there are blocks 
with size of the form (xj, Y, Z,Wi). 

Step 4.4.1 Order the elements (z-Blocks) into decreasing order by XjWj. Go 
to Step 4.4.2. 

Step 4.4.2 Pack the elements into the bins using a greedy strategy. This 
algorithm packs an element into the bin when it fits. If it does not fit 
then we skip the block. Note that in this case an element fits into the 
bin if it can be packed without overlapping and it does not violate the 
weight limit. 

Considering the values of f i , . . . , fk we use the following algorithm to determine 
them. The algorithm puts at most K elements into each class, moreover it ensures 
that the sum of the elements is at least K for each consecutive pair of intervals. 

Interval Preparation Method 

Initialization part: Let I = {1, X} be an ordered list of border points. Let K 
be the number of elements, we aim to have in each interval. 

Step IPM1 Let f i be the border point, for which the [/¿, /¿+i) interval contains 
the most elements. If this amount is at most K, then proceed with Step 
IPM2. Else, we divide this interval, with inserting a new border point into 
the list between fi and /¿+i, with value of ( f l + /¿+1)/2. Refresh the interval 
assignments and repeat Step 1. 

Step IPM2: Let i be an index of I, for which the sum of elements in intervals 
[fiifi+i) a n d [/i+i,/t+2) is minimal. If this sum is larger than K, then exit. 
Else concatenate these intervals by deleting border point /¿+ i from the list I . 
Refresh element assignments and repeat Step IPM2. 

Final step of Phase 4 
If an item j is not transportable by v, and ( S j , e j ) € Si, where Sj and ej are 

the pickup and delivery points for j , then delete (Sj,ej) from Si. This step is 
needed to ensure, that only those pair of vertices are prohibited from insertion 
into further routes, for those there are not unsatisfied demands. If S \ Si is not 
empty (means that there are untransported items), and there are unused vehicles, 
continue with Phase 2, Step 2.1. If there axe not any unused vehicles, but there 
are untransported items, we still can not state, that we can not provide a feasible 
solution, because the local search method, described in Phase 5, can still make 
space for the untransported items. 

Example: During this step the loading is trivial at all positions, and all items 
are transportable. Items 1 and 2 are packed to V\ (picked up at positions 1 and 2), 
item 3 is packed to V2 (picked up at position 2). 

Phase 5 (Advanced Local Search) 
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The input for this phase is a set of routes, an assigned vehicle for each route, 
and a list of transported items for each route. During this phase, we will investigate 
all possible vertices, and we will try to move a vertex into an another route, keeping 
in mind to maintain the feasibility of the transportation. 

S tep 5.1 Choose a point a in route 7~i, which cannot be the start or end point 
of ri , and has not been investigated before, and choose a route r2- If all 
possibilities are investigated, go to Step 5.7. 

S tep 5.2 Generate the "must-move neighbourhood" of the designated point. This 
contains the vertices, which, have to be moved to the other route together 
with the designated point. This "must-move neighbourhood" is a sublist of 
positions of a route, vertices included are: the designated point, and all points 
that are start points of a request fulfilled during this route, and ending at the 
designated point, or endpoints of such request, starting at the designated 
point. Let us denote this by La. The ordering of the points must be also 
kept within La. Note, that this could also be used recursively, generating 
the Kleene closure of the designated point, using it, we would not need the 
following step, but practically, this closure is usually close the whole route, 
and exchanging almost whole routes with one^another would not end up in 
decrease of total distance. 

S tep 5.3 Determine the sublist L'a of La. L'a represents those positions of La, 
that can be deleted from their original route r\. A vertex at a position cari 
be deleted from its previous route if there are no such demands assigned to this 
route, that have their start point in La and their endpoint not in La or vice 
versa. La\L'a represents the set of points in the "must-move neighbourhood" 
of a, where the points are tied to the original route and to La at the same 
time. 

Step 5.4 Insert La into r<¡, while keeping the linear order of points from La, delete 
L'a from r\ . 

Step 5.5 Execute phases 2, 3 and 4 for the new r\ and r2 to determine, whether 
all the items, that were previously transportable, are still transportable. If 
no, discard the changes, go to Step 5.1. 

Step 5.6 If the new total sum of costs has been decreased by the swaps, save the 
changes, else discard them. Go to Step 5.1. 

Step 5.7 If the total result value has been improved during the previous run of 
this local search procedure, restart the procedure (go to Step 5.1), otherwise 
proceed to Step 5.8. 

Note: It may also happen, because of the various speeds of vehicles, that 
the total amount of distance travelled increases, but the total amount time 
consumed decreases. 
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Figure 3: Solution after Phase 5 

Step 5.8 If S \ Si is not empty, reexecute the algorithm, starting at Phase 2 Step 
2.2, for each route. This reexecution places untransported items, whereever it 
may be possible. If there are still untransported items, report them as items 
not transported and a possible infeasibility of the input. 

Example: Let us investigate the case, when ri denotes the route of vi and r^ 
denotes the route of v\. We can not choose vertex 2 from r\, because it is a starting 
point, so let us choose vertex 5 (at position 2). The "must-move neighbourhood" 
La of vertex 5 will be: {2, 3}, representing vertices {5, 6}. L'a will be set to {2, 3}, 
because there aren't other demands in r j , which could retain an instance of vertex 
5 or 6 in r\. As we proceed to Step 5.4, we try to insert vertices 5 and 6 to r2, while 
keeping the order of them. One possibility is to insert them between positions 2 
and 3 (in r2), but this would increase the length of r<i from 20 to 50, and the total 
time would be 45 (the length of the route minus the last edge, which has a weight of 
5), which is > lVl, therefore the insertion at these points is not feasible. We refrain 
from presenting all infeasible possible insertions, so we continue to check insertion 
between positions 3 and 4. This increases the length of the route to 40, but the 
time consumed is only 30. (the last edge on this route is 6-7, which has a weight of 
10). This can be accepted, because lVl= 30. As we can not find any better insertion, 
we proceed to Step 5.5. Fortunately all demands can be fulfilled (trivial), so we 
can continue with Step 5.6. The new total sum of costs can be decreased from 50 
to 40, so we decide to keep the changes. We note that vehicle V2 will not transport 
any items, therefore it will not be included in the solution. We demonstrate the 
final solution in Figure 3. 

4 Description of tests 

To our knowledge pickup and delivery vehicle routing with 3-dimensional loading 
constraints has not been investigated before, therefore no test instances have been 
published yet. We generated our test instances, combining the following methods: 

• Graph: For the graph we used a part of the public roadsystem of county cap-
itals of Hungary. Below we can see the visualization of the graph, reflected 
on the map of Hungary: 
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Figure 4: The graph 

• Items: We extended the method with weights, which was used in [14] to 
generate the test demands (items), both uniform and gaussian (standard de-
viation: 1.0, the mean exactly halves the given interval) distributions were 
investigated. The pickup and delivery points were generated uniformly ran-
dom among points from the input graph.. 

• Vehicles: Loading area generated as in [14], start- and endpoints are (uni-
formly) random points from the graph. Time limit is uniformly random from 
the 1000-2000 interval. 

We were using the following testbed: Intel Core i5 750@3.15Ghz, Kingston 2x2 
GB DDR3 1600Mhz, Gigabyte P55-UD3, MS Win7 x64, Java 1.6.0.23 x64 

Testcases 
For both distributions we performed 10 types of tests (the same intervals are 

used for generating the size as in [14]). We define in each test a maximal loading 
area for the vehicles it is X x Y x Z and a weight limit denoted by W. In all testcases 
the sizes of the loading area of the vehicles are chosen as follows: 50% :.1.0 • MS, 
10% : 0.9 • MS, 10% : 0.8 -MS ... 10% : 0.5 • MS respectively, where MS is the 
maximal possible size of the loading area. 

In the first 5 types of tests X = Y = Z = 100 and W — 10000. The intervals 
which are used for the uniform distribution are the following: 

• Type 1: x G [1 ,1/2X], у G [2/ЗУ, У], г € [2/3Z, Z], w G [ 1 , 2 / Ж ] . 

• Type 2: x G [2/2,X,X], у G [1,1/2Y], z G [2/3Z,Z], w G [1,2/Ж]. 

• Type 3: x G [2/ZX,X], у G [2 /3Y,Y] , z G [1,1/2Z], w G [1,2/Ж]. 

• Type 4: x G [\/2X,X], у G [1/2У.У], 2 G [1/2Z,Z], w G [1,2/Ж]. 

• Type 5: x G [1 ,1/2X], у G [1,1/2У], z G [1,1/2Z], w G [ 1 , 2 / Ж ] . 
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We note that the loading in the case of type 4 is obvious, each vehicle can 
only transport one item at a time. In the next 3 tests the sizes are X = Y = 
Z = 10, X = Y = Z = 40 and X = Y = Z = 100 respectively, the weight 
limit is TV — 10000. The intervals which are used for the uniform distribution 
axe the following: 

. Type 6: x € [1,X], y e [l.V], z e [1,Z], to e 

• Type 7: x G [1,35], y £ [1,35], z £ [1,35], w £ [1.2/3W]. 

• Type 8: x £ [1,X], y £ [l.F], z £ [1,Z], w £ [1,2/3W]. 

The following two testcases were added to simulate the behaviour on many 
small items. Size of the maximal loading area for both: X = Y = Z — 100, 
W = 10000. 

• Type 9: x£ [1,1/4X], y £ [1,1/4F], z G [1,1/4Z], w £ [1, \/AW). 

• Type 10: x £ [1,1/8X], y £ [1,1/8Y], z £ [1,1/8Z], w £ [1,1/8W]. 

In the first class of tests the maximal number of vehicles: 30 for 100 items, 275 
for 1000 and 1250 for 5000 items. We note that in most cases only a portion of 
these vehicles were actually used. We expect more calculation time needed for the 
last two test cases, as in these test cases, the items are much smaller, therefore the 
packing is more difficult. 

We generated inputs of size 100, 1000 and of size 5000. All testcases on all 
sizes and distributions were executed 100 times, except for the largest testcases 
(N=5000), which were executed 20 times each. We executed the algorithm on the 
test cases and also considered the algorithm without the last most time consuming 
local search phase. As far as the running time is concerned, the presented algo-
rithms axe fast, we summarize the running times in Table 1. The running times 
are very similar for the two investigated distributions. If we consider the algorithm 
without the last local search phase, it is faster, the running time is decreased with 
approximately 25 percent. The experienced results were very similax in case of both 
investigated distributions, therefore we only present here one of them. 

Table 1: The average running time of the full algorithm (msec) 

N T1 T2 T3 T4 T5 
100 698.40 633.19 661.95 698.58 632.85 

1000 13349.9 11901.8 12598.6 18715.5 12136.2 
5000 199479 182741 190315 318304 180405 

N T6 T7 T8 T9 T10 
100 666.02 652.07 651.58 863.79 872.12 

1000 13753.8 12602.7 12477.3 16311.1 19223.5 
5000 206946 186038 182971 194910 218564 
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We also considered the value of the cost function for the algorithm. Table 2 
and 3 contain the cost for the case where the expansion of the items is generated 
by uniform and gaussian distribution. The first three lines contain the results of 
the full algorithm, the next three lines show the results when the last local search 
phase is omitted. 

Table 2: The average result value on gaussian distribution (km) 

N T1 T2 T3 T4 T5 
100 14237.96 14238.44 14098.83 22360.46 14213.81 
1000 124915 124825 124775 186269 125460 
5000 583884 588904 586226 813913 583893 
100 17615.72 17632.82 17479.83; 34355.57 17655.96 

1000 149285 149624 149656 287612 149873 
5000 690341 693146 693911 1214585 689334 

N T6 T7 T8 T9 T10 
100 17490.91 14378.77 15381.34 9670.62 9522.66 

1000 146063 126528 133402 87861 86065 
5000 670274 594189 602684 435602 429330 
100 23293.37 17775.66 19323.8 12492.3 12290.18 

1000 189296 151233 161949 97865 96426 
5000 828233 703710 719073 470851 462743 

Table 3: The average result value on uniform distribution (km) 

N T1 T2 T3 T4 T5 
100 14475.28 14356.12 14604.09 22307.21 14066.24 

1000 125852 126217 126756 185120 123222 
5000 574761 580987 582221 816104 571117 
100 18242.5 18247.02 18346.11; 34219.99 17889.46 
1000 152161 152508 153411 287123 150197 
5000 676405 681878 687960 1222230 675340 

N T6 T7 T8 T9 T10 
100 15807.48 14633.3 15146.15 9615.78 9398.92 

1000 135009 127794 130426 88013 86410 
5000 620470 581959 594788 434717 424375 
100 20460.28 18418.25 19245.48 12527.19 12345.06 

1000 167217 154564 159579 97967 96756 
5000 742652 688937 704292 467698 457200 

We saved the actual result value of each run of the local search procedure. In 
Figure 5 .we can see the average result value in the ratio of the result value prior 
to the execution of the last local search phase (which is marked as 1.0). Each 
bar represents one run of the local search procedure for the actual testcase. We 
can observe, that the most improvements were made (to 67% of the starting result 
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Figure 5: Percentages of result value, by each optimization cycle for the 10 testcases 

value) in those testcases, when the initial result value had been worse, and the 
least improvement was made in testcase 10, in which the initial result value was 
previously the best. We also note that we can observe different number of bars for 
some testcases, it refers to the different number of local search runs needed for the 
testcase. 

If we observe Table 4, we can see that the last local search has not only improved 
the solution value, but slightly decreased the number of required vehicles in all cases. 
Which can also be another reason for the decreased solution value. The first three 
lines contain the results of the full algorithm, the next three lines show the results 
when the last local search phase is omitted. 

Table 4: The average number of vehicles in the solution (pes) 

N T1 T2 T3 T4 T5 
100 14.48 14.49 14.48 29.39 14.29 

1000 136.8 137.29 137.04 272.85 137.70 
5000 698.17 705.38 702.25 1247.5 700.77 
100 14.9 14.89 14.84; 30.00 14.75 

1000 137.155 137.69 137.35 274.57 138.12 
5000 698.75 705.83 702.62 1250.0 701.22 

N T6 T7 T8 T9 T10 
100 19.93 14.71 15.93 9.07 9.04 

1000 172.61 138.91 148.71 83.96 82.28 
5000 820.1 712.87 724.83 453.14 441.62 
100 20.38 15.05 16.37 9.98 9.86 

1000 173.24 139.18 149.04 85.2 84.13 
5000 820.72 713.27 725.0 456.0 444.9 
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We also investigated the algorithm in the case where there are many items and 
fewer vehicles are available and it is not possible to serve all of the demands. In 
this case we investigated the number of the unsatisfied demands with the number 
of vehicles decreased to 60% of the previous tests. The results are summarized in 
table 5. 

Table 5: The average number of unfulfilled demands (pes) 

N T1 T2 T3 T4 T5 
100 0.6 1.0 0.6 2.7 0.45 

1000 0.75 2.5 3.25 28.5 1.0 
5000 10.6 11.3 28.0 104.4 16.5 

N T6 T7 T8 T9 T10 
100 0.45 0.45 0.95 0.0 0.0 

1000 2.5 1.0 0.5 0.0 0.0 
5000 27.5 4.1 8.0 0.0 0.0 

5 Conclusions 
In this paper we have presented a new vehicle routing model which gives an ade-
quate description of practical problems. We presented a multi level heuristic algo-
rithm for the solution of the problem which has a reasonable running time even for 
inputs of large time. Concerning the last more time consuming local search phase 
we could observe that it makes in average a 15 — 20% improvement in the solution 
given by the first part. 
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Dynamic Communities and their Detection 

András Bóta* Miklós Krészf and András Pluhár* 

A b s t r a c t 

Overlapping community detection has already become an interesting prob-
lem in data mining and also a useful technique in applications. This underlines 
the importance of following the lifetime of communities in real graphs. Palla 
et al. developed a promising method, and analyzed community evolution on 
two large databases [23]. We have followed their footsteps in analyzing large 
real-world databases and found, that the framework they use to describe the 
dynamics of communities is insufficient for our data. The method used by 
Palla et al. is also dependent on a very special community detection algo-
rithm, the clique percolation method, and on its monotonic nature. In this 
paper we propose an extension of the basic community events described in 
[23] and a method capable of handling communities found a non-monotonic 
community detection algorithm. We also report on findings that came from 
the tests on real social graphs. 

K e y w o r d s : graph mining, network analysis, community, community detec-
tion, dynamic communities 

1 Introduction 
The analysis of adaptive networks is considered to be a traditional research field, 
which in recent years, has received a new impulse, thanks to the variety of available 
test databases [3, 20]. These graphs are so large in some cases, that only the fastest, 
near linear time algorithms have a chance of tackling the given tasks. One of the 
approaches to network analysis, community detection has received a lot of attention 
both from the point of theory and applications [1, 6, 8, 9, 10, 12,15, 19, 22, 24, 25]. 
The definition of communities centers around dense subgraphs of the network. In 
traditional community detection, we are looking for disjoint subsets of vertices, 
that are connected to each other more closely, that to the rest of the graph. 1 In 
overlapping community detection, the subsets are not disjoint. Hereafter by the 

'University of Szeged, E-mail: bandrasQinf.u-szeged.hu 
^University of Szeged, E-mail: kreszSjgypk.u-szeged.hu 
^University of Szeged, E-mail: p luhara inf .u - szeged .hu 
1 Note that non-overlapping communities, or clusters had been researched even earlier. The 

clustering methods have huge literature, we refer to those notions only when they are significant 
in the case of overlapping communities. 
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notion of communities we will mean overlapping communities, otherwise we will 
use either clusters or non-overlapping communities. We will also take several basic 
definitions from graph theory [4j. 

However, communities are not static, they can change or even disappear in time; 
this might have caused the split of a club in the famous experiment of Zachary [27]. 

The dynamics of these networks is usually represented as a series of graphs 
{Gi}i&T, where T = {].,...,£}' represents a discrete time set. The number of 
time instances usually depends on two things: the length of the period, in which 
we observe the network, and the resolution, which governs, that in a given time 
period, how many "snapshots" do we take from the network. Although one might 
try to consider the whole history of the graph series in one step, for large graphs 
this is not feasible. Both Asur et al. [2] and Palla et a l [23] have chosen the path 
of following the entities from Gj to G i + 1 , and reconstructing the whole process 
out of these. Note that Asur et al. deals with clusters, while Palla et al. follows 
the lifetime of (overlapping) communities. They both took a normative approach 
to communities: they have decided upon the possible events that might happen 
to a community. In other words, they have simply listed the basic events of a 
hypothetical classification. We reproduce some of the relevant work of Palla et al. 
as follows. 

1.1 Basic events 
The basic events described in [23] are the following: 

• Birth, when a new community emerges without predecessor. 

• Death, when a community disappears without successor. 

• Merging, when several communities join together to form a new community. 

• Splitting, when a community splits into several new communities. 

• Growth, when a community gains new members. 

• Contraction, when a community loses members. 

Assuming the above described events, the problem is reduced to the following. 
Given the graphs G\ and G2, describing the starting and destination graphs, com-
pute the set of communities in both, let those be K.\ and K.2. Then find a relation 
TZ on /C] x 1C2 in an "obvious way"; if a C\ £ 1C1 is in no relation, then it is a death. 
If Ci G K\ is in relation with C\,..., C\ G /C2 and Cf c Ci for i G [1 , . . . , i), then 
C\ splits into Cf...., Cj. Similarly, if C2 G /C2 is in no relation, then it is a birth. 
If C2 G K.2 is in relation with C\,... ,C] G K,\ and Cj C C2 for i G [1 , . . . , £], then 
C},..., C} merged into CV Finally a related pair (Ci, C2), Ci G /Cj for i G {1,2}, 
should mean a growth (contraction) if C\ C C2 (C\ D C2). 
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1.2 Implementation 
Computing the relation 7Z, assuming that the basic events cover all possible cases, 
is not hard theoretically. In practice this is different, since for large graphs a naive 
approach of considering all pairs (C\, C'2) £ )Ci x K,2 is too costly. The way out 
of this quadratic complexity is an idea due to I. Derenyi [23]. They assume that 
the communities are always given by the Clique percolation method (CPM) [1, 22], 
which is monotonic. More exactly, if H and G are graphs on the same vertex set, 
E{H) C E{G) and C £ ICh then there exists a C ' e ICu, such that C C C', where 
JCh and Kq are the sets of communities of H and G, respectively. 

Then the union graph U is formed such that V(U) V{Gi) U V(G2), E(U) := 
E{G\) U E(G2) and ICu is computed. Now instead of going through all (C\ ,C 2 ) 
pairs from K.\ x K,2, one needs to check only those pairs for which there is a C' € ICu, 
such that (Ci,C2) C C'. 

1.3 Results of Palla et al. 
By applying this method, they get a convincing results on the dynamics of com-
munities. The most significant results are: the larger a community the older it is. 
The expected lifetime of a community increases with its size. A small community 
is more stable if it does not change its members, while it is the opposite for large 
communities. Let us note that the methodology is crucial, for the definitions, time 
scale and database the reader should consult the paper [23]. 

2 Problems 
We have conducted a similar research on two large social networks described in 
the results chapter, meaning we analyzed the changes in the community structure 
of the corresponding networks. We tried to adapt the methodology of [23] with 
little success. To find communities, we used CFinder2 for the CPM, resulting in 
the computational issues described in subsection 2.2. Then we decided on using 
the implementation of the N++ method3 developed in [9], which was finally able 
to handle our networks. We have also found, that the framework they have used 
is insufficient to describe the community dynamics in our database. One of the 
reasons for this could be the difference between our database and the one they 
have used. This will be discussed in the results section. Another reason might be 
the difference between the community detection algorithms. This will be discussed 
in section 2.3. 

2.1 Basic events 
In our experience, the description of basic events is not complete. The deviations 
from the description have at least three main causes, (i) The time scale is too large, 

2 The software was downloaded from the page http://angel.elte.hu/cfinder/ 
3 W e would like to express our thanks for obtaining free access to the appropriate softwares. 

http://angel.elte.hu/cfinder/
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and Gi differs significantly from Go. This is unavoidable, since in several cases the 
measurement intervals are given, (ii) A community might become extinct not by 
splitting, but by leaving behind a number of overlapping communities on the same 
vertex set4; we will discuss this in depth in subsection 3.1. (iii) In dense real graphs, 
it happens frequently that a set of overlapping communities change into another 
set of communities, and the relations cannot be easily mapped. 

2.2 Computational issues 
For large dense graphs the CPM is time inefficient. Deciding the proper value of the 
parameter k is also problematic. The other problem is, that for some benchmark 
graphs, e.g. the Zachary, the CPM performs poorly. It is natural to try out 
other community detection methods, since those might give better predictions in 
applications [8, 10, 19]. 

2.3 Implementation 
The method relies on the monotonicity of CPM. In general, communities do not 
behave this way, they might split when adding edges to a graph, or merge when 
deleting edges. This phenomenon makes it harder to map the communities K.i and 
/C2. 

3 Solutions 
To motivate our solution, we analyze a small problem in depth. It shows that the 
introduction of new classes for community events are unavoidable. 

3.1 Motivation 
The most obvious way to deal with the problem mentioned in subsection 2.1 (i) 
is an artificial refinement of the time.scale. That is, we fix the list of the changes 
that happened between Gi and Gj+1, and insert new graphs into the series, such 
that each new graph differs from the previous one in only one item. However, we 
will see that changing this order changes both the number and types of appearing 
community events, which implies, that the artificial refinement of the time scale 
should be avoided in practice. More importantly, this example will show us, in 
correspondence with problem (ii), that the seven basic events defined above are 
inadequate when dealing with differences larger than one. 

We illustrate the above mentioned problems with Zachary's karate club network 
[27]. Five edges were removed from the network one by one, in two different se-

4 Let A, B, C and D be cliques. Add a few edges between among those, such that An B and 
CUD are the two resulting communities. Deleting two and adding two edges, ADC and B <1 D 
will be the new communities, which does not fit in the scheme. 
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Figure 1: Zachary's karate club network. The boxes and naughts indicate the 
vertices corresponding to the split that has appeared during the original experiment. 

Original a b c d Final 
7 7 7 7 7 13 
9 9 9 9 9 13 
10 10 10 10a 10a 10a 

10fc 106a 13 
10bb 13 

Table 1: The changes in the community structure with the first edge removal 
sequence. Communities 1 through 6, 8, 11 and 12 do not change, and are omitted. 

quences5. The N++ algorithm was used for the purpose of detecting communities; 
the important parts of the outputs are summarized in Tables 1 and 2. 

In the first sequence, edges a,b,c,d and e are removed in this order. Af-
ter removing the first two edges, nothing changes. In the next step however, 
community 10 containing the nodes {0,1,2,3,7,13,19} splits into communities 
10a : {0,1,3,7} and 10b : {0,1,2,13,19}. In the next step, 106 splits further into 
lOba : {1,2,19} and 10(,b : {0,1,2,13}. After removing the fifth edge from the net-
work, several communities merge together, namely 7 : {0,1,17,21}, 9 : {0,2,8,32}, 
10(,a : {1,2,19} and 10(,(,: {0,1,2,13}. Out of these a new community, 13, is born: 
{0,1,2,8,13,17,19,21,32}. 

Thus far, the basic community events defined in [23] were sufficient for the 
description. What happens however, if we compare the communities from the 
original graph with the communities of the final graph? Ignoring those communities 

5 T h e edges a = (0,13), b = (0,19), c = (2,3), d = (2,7) and e = (3,19). 
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Original c a e d Final 
7 7 7 7 7 13 
9 9 9 9 9 13 
10 10 10 10a 10c 13 

106 10d 10e 

Table 2: Changes of the communities in the second sequence. Communities 1 
through 6, 8, 11 and 12 do not change, and are omitted. 

that did not change, we have number 7,9 and 10 in the original graph, and 10Q 
and 13 in the modified graph. It would seem that community 10 is involved in 
a contraction event resulting in 10a. Communities 7 and 9 merge into the new 
community 13, but 13 also acquires some nodes from community 10, meaning it is 
also a growth event. This gets further complicated considering the results of the 
one by one edge removal : It seems that the first event, that took place was a split 
event. One way to solve this problem is to extend the number of community events 
used by the algorithm with more complex events that involve multiple basic ones. 
Before deciding which combinations should be used, let us examine the second edge 
removal sequence. 

In the second sequence, edges c, a, e, d and b are removed in this order. Despite 
the different sequence, the first few steps are the same until community 10 splits 
apart. The resulting communities are different however, with 10a being {1,2,13} 
and 10f, : {0,1,2,3,7,19}. In the next step, 10a is involved in a growth event, steal-
ing a node from 10b, which is in a contraction event, resulting in 10c : {1,2,13,19} 
and 10d. • {0,1,2,3,7}. It is obvious that the two events are connected, but the 
original framework does not allow such complex situations. 

In the final step, community 10^ loses another node resulting in 10e : {0,1,3, 7} 
which corresponds to 10o from the previous example. A merge event occurs at the 
same time, joining communities number 7,9 and 10c. It is important to note, that 
10c is not identical to any community in the previous example, not even 10&. 

This example has two important consequences. First, if one tries to refine the 
time scale by creating an artificial series of graphs by adding or removing edges 
one by one, the result depends on the order of edges, rendering this approach 
meaningless. In the rest of the paper, we will not use this naive idea for solving 
the problem at hand. 

The second consequence is closely tied to the first one. It appears from the 
example above, that the basic events used to describe the changes of communities 
are satisfactory only if we change the graph one edge at a time. In all the other 
cases, more complex events, combinations of the basic events, are required. 
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3.2 Extending the number of community events 
Using all possible combinations of the basic events is not necessary, as it would 
over-complicate the results of the algorithm. The first four events listed below are 
straightforward, each one is a combination of two basic events. The obscure event 
represents combinations of possibly more than two events, including merge-split, 
merge-split-merge, grow-split-merge, and so on. This means, that this event could 
be divided further into other events, but using the test data available we have found, 
that these five additional events are sufficient for describing community dynamics. 
With them, the changes in community structure can be identified reasonably well 
without unnecessary complications of the algorithm. 

Tables 3 and 4 list the number of different community events found. A more 
detailed analysis of the results will be given in the results section. In the first 
one, the number of newly introduced merge and split variants are more numerous 
than their original counterparts. The number of obscure cases is somewhat higher, 
but still has the same magnitude. In table 4 the newly introduced events are far 
less numerous, but still relevant. This justifies the introduction of these events, 
and also implies, that further dividing the obscure cases would result in categories 
containing a very few number of events. 

• Grow-merge, several communities join together, and also absorb some addi-
tional members. 

• Contraction-merge, several communities join together, but loose some mem-
bers in the process. 

• Grow-split, a community splits into several communities, but these commu-
nities absorb additional members. 

• Contraction-split, a community splits into several communities, and these 
communities also loose members. 

• Obscure case. Multiple communities are involved from both K.\ and IC2, with 
their members reordering. 

With respect to the above framework, we redefine the concepts of the split and 
merge events. Given the community sets K, \ and /C2, and a community C\ £ /Ci 
which is in relation with communities C f , . . . , Cf € /C2, we define the split event if 
|Ci| = \Cl U C | U • • • U C\\. If |Ci | < \Cl U Cf U • • • U C?|, then we define the grow-
split event, and finally if \C\ \ > |Cj U Cf U • • • UCf |, we define the contraction-split 
event. 

The definition of the merge event is symmetrical: given the community sets K.\ 
and IC2, and communities C j . . . . , C'j £ K,\ which are in relation with a community 
C2 £ JC2, if \C} U C\ U • • • U C}\ = |C2|, then we define the merge event. If 
|Ci U 62 U • • • U C] j < |C2|, then we define the grow-merge event, and finally if 
\C] u C j ' U - U C j l > |C2|, we define the contraction-merge event. 
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The obscure case is less strictly defined. If there are multiple communities 
from /Ci and fC2 connected by a relation, without further analysis, we classify this 
relation as an obscure event. 

4 Details of the algorithm 
The method described in this section follows the idea of I. Derenyi [23], with a 
few important modifications. We will adopt the concept of the union graph U, 
and use it to solve the originally quadratic problem described in subsection 1.2 in 
almost the same way as in [23]. Our additional work centers around two important 
modifications of the original method. 

The first one is abandoning the requirement of monotonicity. This means, that 
we can no longer assign only one community from ICy to any community from the 
original graphs. The solution of this problem is described in the subsection 4.4. 

The second modification incorporates the detection of the extended community 
events. The solution to this is fairly straightforward, and will be discussed in 
subsection 4.5. 

We will also describe an optional modification of the original idea of [23]. Instead 
of using U, we will use I, the intersection graph of G\ and G2. That is V(I) := 
V:(Gi)n V(G2), E{I) := E{G-i)nE(G2), and K-i represents the communities of the 
intersection graph I. 6 We will describe this approach in 4.3. 

4.1 Overview 
The input of the algorithm consists of three community sets IC\, JC2 and fCu, where 
lCu is the community set of U. 

The output of the algorithm is a relation 7Z on K,\ x K.2, corresponding to 
community events described in [23] and subsection 3.2. 

The algorithm can be divided into two phases. The first phase creates a relation 
TZ\ on K, 1 x /Qy and 1Z.2 on /C2 x JCy. The second phase combines TZ\ and TZ2 into 
TZ. Because of the non-monotonic nature of the community detection algorithm, a 
preprocessing step is required before executing the second phase. 

4.2 First phase 
In the first phase we search for relations among C/ £ K. 1 for all i and Cf € K-u for 
all i. We are looking for two types of relations. The first type is the exact match: 
G/ = C f . The second is a contain match: Cj C C^. Because of the non-monotonic 
nature of the community detection algorithm Cf C C} might also occur. This case 
also counts as a contain match. 

For the purpose of finding these relations, we iterate over the elements of K. 1 
and compare each C} to every element of K,y. If we find a contain match, we create 

6 The community sets can be created by any, possibly non-monotonic, community detection 
algorithm. 



Dynamic Communities and their Detection 43 

a relation r\{C},Cf). If we find an exact match, we also create C"), but we 
ignore Cg in the subsequent computations. This step is repeated for JC2 and /Cy. 

4.3 Intersection approach 
Since a community detection algorithm is not necessarily monotonic, there might 
be elements of K, 1 or K,2 that are not in relation with any element of ICu, these were 
counted as "deaths" before. The intersection approach tries to solve this problem 
by replacing ICu with IC[. The only difference in the implementation is, that in the 
first phase K. 1 (and K,2 later) is replaced with ICj, and ICu is replaced with IC\ (and 
IC2 later). After the first phase has finished, the algorithm continues after inverting 
the relations r\ and r2. 

The intersection method provides almost the same results as the union approach 
with a few exceptions, that will be noted in the results chapter. The size of the 
intersection graph I is smaller than or equal (in the special case when G\ = G2) to 
the size of the union graph U. From the computational point of view, this implies 
that the running time of the community detection algorithm should be lower on I . 
Other than this, the use of the intersection approach is completely optional. 

4.4 Preprocessing 
As we noted before, there may be more than one element of ICu, that is in relation 
r 1 with a given C}. The same holds for C2 and the relation r2. To solve this, we 
put a new, fictitious community to ICU, set and delete all former 
relations containing C]. The same is done for C | . If Cj and C2 were in relation 
with the same elements of ICU, then the same C% is used. 

4.5 Second phase 
In this phase we run through the elements of ICU. For each element Cf G ICu, let 
the elements C1 : = {Cj1 , . . . , C-j C K,x and C2 := {Cj2,..., C2} C IC2 be in relation 
with Cg according to 7-] and r2 respectively. Let U% be the UhzuH f° r any set H. 

Depending on i and j , and the sizes of the communities involved, we create the 
relation r(C'l,, C^) for every i' and j', and we assign community events to these 
relations. 

• If C1 = 0 and |C2| > 0, then r(0, C?,) is a birth event for every j'. 

• If |CJ | > 0 and C2 = 0, then r(C},, 0) is a death event for every i'. 

• If IC11 = 1 and |C2| = 1, that is C1 = {Ci} and C1 = {Cx
2}, then 

- If |Ci | = \Cl\, r(C"i, C]) is an exact match. 
- If |Ci | > |C2 |, r(Cj,Cf) is a contraction event. 
- If |Cj | < ICfl, r{C\,C?) is a growth event. 
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• If IC11 = 1 and |C2| > 1, then 

- If \C}\ = | UC2|, r(Cf, C2,) is a split event for every j'. 

- If \C}\ < | UC2|, r(CI
1, C2/) is a grow-split event for every j'. 

- If \C- | > | UC2|, r(C}, C2/) is a contraction-split event for every j'. 

• If |CJ| > 1 and |C2| = 1, then 

- If | U C11 = |C2 |, r(C'/,, Cj) is a merge event for every i'. 

- If J UC11 < \Cj\, r(Cl,Cj) is a grow-merge event for every i'. 

- If | UC1! > |C2 |, r(Cf,,Cj) is a contraction-merge event for every i'. 

• If IC1! > 1 and |C2| > 1 then we introduce an obscure event r(Ci
1 ,C2,) for 

every i' and j'. 

4.6 Time complexity 
The time complexity of the algorithm will be addressed both from the theoretical 
and empirical point of view. In the first phase, we compare each community from ICi 
to communities from ICu- In the worst case, no exact matches are found resulting 
in an 0(n*m) complexity, where n is the size of |/Ci| and m is the size of |/C[/|. An 
exact match always reduces the number of further computations. Therefore when 
we find an exact match r i (C 1 ,C u ) (^ (C 2 , Cu)) , we can ignore all other relations 
involving C\C2 and Cu. 

The obscure events are catchier. Note, that the sizes of tCs might be exponential 
in |V(C?i)|, while a complex event could involve any number of communities on both 
sides, which would result in doubly-exponential running time. Fortunately, usually 
we have less communities than vertices, and the number of obscure events are small, 
consisting of only a few sets. So in practice the obscure events have only a negligible 
effect on the (actual) running time. 

In the second phase, if each element from 1C\ and IC2 were connected with every 
element from ICu, we would obtain a worst case complexity of 0(n*m*k), k = \K,2\-
In practice, a community from fCu corresponds to only a few communities from K.\ 
and K.2. This reduces the actual running time of this phase to 0(c * m), where c is 
a small constant. 

5 Results 
To test our algorithm, besides the small examples like Zachary's graph, we have 
used two large test databases. One came from an international bank [8], while 
the other one is a large social network. The bank graph is based on a transaction 
database, and consists of roughly 80000 nodes and 270000 edges, and we were 
provided with three time instances taken in a six month period. The edges of the 
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Events 12u 23u 13u 
Deaths 6586 6481 9901 
Births 6729 6477 9971 
Unchanged 4888 5062 2529 
Growths 2185 2084 1629 
Contractions 1985 2123 1569 
Splits 83 91 45 
Grow-splits 154 133 172 
Cont-splits 144 149 111 
Merges 200 184 117 
G row-merges 356 315 256 
Cont-merges 350 326 418 
Obscure 531 595 594 

Table 3: Results on the bank database. The columns show the community events 
in the following order: first and the second time instances, the second and third 
time instances, finally the first and the third instances. 

social graph were also determined as the output of a data mining project, and the 
graph contains roughly one million nodes and 1.5 million edges. Here four time 
instances were taken in a four month period. Due to the size and structure of these 
networks, the CFinder fails to provide communities, so the communities were listed 
by the N++ method only. 

5.1 Observations 
Table 3 shows the results for the bank dataset for different time intervals. Notice, 
that the number of death and birth events are very high, about 40% of the com-
munities die. A possible explanations for this is, that the time lapse between the 
instances is relatively long (three months), and in the last case, where the first and 
last instances are compared, this is extended to six months. During this long time 
period, the community structure of a network changes significantly. 

Another explanation might be based on problem (iii), referred in 2.1. If a dense 
community changes significantly, it is hard to know what had really happened to 
it, while the algorithm classifies it as a death event. 

The number of unchanged, growing and contracting communities has the same 
magnitude, which dominates the splitting and merging events.7. 

It indicates a certain dynamic equilibrium that the number of growth and con-
tract events, and the death and birth events are balanced. The number of pure 
split/merge events are less than the newly introduced grow/contraction split/merge 

7Since the first types of events involve the exact match events described in 4.2, this explains 
the low running time. 
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Events 12u 23u 34u 14u 
Deaths 6847 7812 7931 23519 
Births 6112 4119 3782 14934 
Unchanged 59985 59247 56031 38272 
Growths 2999 2161 1963 4343 
Contractions 3468 3629 3458 6753 
Splits 457 454 383 538 
Grow-splits 83 55 37 32 
Cont-splits 115 83 102 266 
Merges 919 820 785 1030 
Grow-merges 232 180 178 438 
Cont-merges 142 137 93 79 
Obscure 90 92 59 66 

Table 4: Results for the social network database. The columns show the community 
events in the following order: first and the second time instances, the second and 
third time instances, the third and fourth time instances, and finally the first and 
the fourth instances. 

events. This justifies the introduction of these events, and underlines the compli-
cations in community dynamics. 

The running time of our community matching algorithm was 8 seconds, while 
the search for communities took 5 minutes. The used computer configuration was 
a machine of two cores, with each processor running at 2.0 GHz and supplied with 
2 gigabytes of memory. 

Table 4 shows the matching results on the social network. In contrast to our 
previous results, the number of deaths and births are significantly lower, and the 
number of unchanged communities dominates all other events. The lapse between 
the time instances is short (one month), but in the last case, the first and last 
instances are compared resulting in a four months interval. Even in this case, the 
number of unchanged communities is much larger than the number of deaths, so one 
concludes that the social graph is more stable than the graph of the bank dataset. 
It is important to note, that the number of birth events are significantly lower than 
the. number of death events, and the number of split-like events do not balance this 
by generating more communities. This indicates that the number of communities 
of the network is decreasing. Indeed, the network has lost around 12.5 percent of 
its communities in the observed period. 

As in the previous case, the number of growth and death events are balanced. 
Here the number of pure split and merge events outnumber the newly introduced 
grow/contraction and split/merge events. This also points to the. fact, that this 
network is more stable than the previous. 

Even though this network is larger than the first, the running time of the match-
ing algorithm is about the same due to the very high number of unchanged commu-
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Figure 2: The percentage of community events compared to the community sizes 
for the bank dataset. The results were generated with the union graph approach. 

nities. Note that the N++ needed about 60 seconds for finding the communities, our 
community matching algorithm took 14 seconds. We have used the same machine 
as before. 

Figure 3: The percentage of community events compared to the community sizes for 
the bank dataset. The results were generated with the intersection graph approach. 



48 András Bóta,, Miklós Krész, and András Pluhár 

5.2 Community evolution 

Following the footsteps of Palla et al. [23], we compared the sizes and lifetimes 
of communities. Figure 2 displays our findings on the bank dataset. As we have 
concluded in the previous section, the community structure of this dataset changes 
very rapidly. For almost all sizes of communities the number of deaths outweigh 
all other community events. The only exceptions are very small communities of 
sizes three and four. It should also be noted, that there is a small spike of the 
obscure cases for the large communities. Aside from these, it can be said, that 
the size of a community does not relate to the community event it is involved in. 
Most importantly, the findings do not confirm the results of [23] that the expected 
lifetime of a community is a monotone function of its size. For a decisive result, 
further studies are needed. 

If we take the intersection graph approach displayed on Figure 3, the results are 
almost the same, except for the largest communities. These cases are classified as 
obscure cases in contrast to declaring them dead as before. 
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9 10 11+ 

Figure 4: The percentage of community events compared to the community sizes 
for the social graph dataset with one month difference. The results were generated 
with the union graph approach. 

The social network shows very different behavior. Figure 4 shows results for a 
one month time lapse. The percentage of death events is very small and constant 
compared to the community sizes, which is in contrast to the previous dataset. 
The number of unchanged communities is very high for small sizes, and decreases 
monotonically. This behavior was also reported in [23]. 

For large communities the contraction and split events dominate. The number 
of these events increases monotonically. The number of growth and merge events is 
small and independent of the sizes, which is somewhat surprising considering their 
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symmetrical counterparts. The number of all other events is small and independent 
of the community sizes. These results also indicate a more stable nature for this 
dataset. 

Figure 5 shows the results for the four month interval. It is clear that in a four 
month interval, the community structure of a network can change dramatically, yet 
the difference between the results for the bank dataset and this one is clear. The 
number of deaths is significantly lower, but still relevant, and except for the smallest 
communities, independent of size. The number of birth events is lower than the 
number of death events, this matches with our observations in the previous chapter. 
The number of unchanged events is high for small communities, and it decreases 
somewhat faster, than in the previous network. The number of split events is 
increasing much faster than before, and contraction events are dominant even for 
medium sized communities. It should also be noted that small communities aside, 
the number of contraction events is independent from the community sizes. The 
number of all the other cases is small and constant. 

The findings above reveal a strange behavior: while this network is more stable 
than the banking network, in some sense it is steadily loosing communities. The 
banking network on the other hand changes more dynamically, but it is in a state 
of equilibrium. 

For the social network, the intersection method provides almost the same results, 
with the percentage of death events being slightly lower. 

Figure 5: The percentage of community events compared to the community sizes 
for the social graph dataset with four months difference. The results were generated 
with the union graph approach. 
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6 Conclusion 
Based on the earlier results of [23, 2] we have developed a new algorithm and 
methodology for following the life cycle of communities in dynamic graphs. The 
methodology successfully extends the incomplete notions used in [23], and results 
in an algorithm that works based on general community detection methods. The 
algorithm is very fast, it solves large community matching problems in seconds. 

We have worked with two large datasets with fixed observation periods. Our 
findings indicate, that there is a significant difference between the behavior of the 
community structures and dynamics of these datasets. One of the networks is 
more stable, but looses communities steadily, the other network is more dynamical, 
but maintains its community number. We have also examined the changes in 
community structure in relation with the sizes of the involved communities. Our 
findings confirm some of the claims of [23], however not all of them. 
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Identification of the Place and Materials of 
Knocking Objects in Flow Induced Vibration 

Tibor Dobján**, Szilveszter Pletl*, Tamás Deák*, 
László Doszpod*, and Gábor Pór* 

A b s t r a c t 

Flow induced vibration can be found and identified by acoustic methods. 
Using acoustic sensors, the first task, the event detection has been solved 
using the sequential probability ratio test after autoregressive filtering the 
measured signal. The LABView program and actual test of the event recog-
nition technique are presented. The signals were recorded in a 100 m long test 
loop having artificially placed flow induced vibrating objects hitting the wall. 
Time delay between the fronts of detected events has been used to localize 
the actual place of the acoustic source. The recognition of the material of 
the knocking object is based traditionally on the spectrum estimation. How-
ever, this is rather time consuming task by naked eyes. We are proposing to 
introduce the skeleton method for event identification. 

Keywords : Autoregressive filtering, Sequential Probability Ratio Test, 
IAEA Benchmark measurement, event detection, skeleton method 

Introduction 
Many industrial systems contain pipes with fluid flow either for transmitting mate-
rials or for cooling purposes. If solid parts of the system are detached or loosened 
they may go to chaotic or deterministic motion due to forces gained from the flow 
energy. It is also quite common when either a disattached part of the equipment 
or just a forgotten object after maintenance work remains in the pipes causing so 
called loose parts, which might be even dangerous for the given industrial system. 
If a loose part knocks on the inner surface of the tube (or other compartment) 
then audible events are generated. These are surface waves traveling on the metal 
surfaces. The place of the knocks and the knocking material are crucial from the 
point of view of the fate of the given industrial objects. Therefore detection of 
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the event, finding of its place and identification of knocking material have primary 
importance from the point of view of the safety and maintenance of the system. 

Flow via piping systems in industry may excite vibrations. They are called 
flow-induced vibration. Some of those vibrations are expressed as eigenvalues of 
the pipes filled with streaming liquid. In some other cases solid parts transported 
by the liquid phase may also emit sound. These sounds axe regarded as background 
noise in our case. 

The task is to notice sound emissions due to loose parts on a relatively large 
background level and to identify their origin [1, 2, 3, 4]. In this paper we investigate 
the following areas. Improvement of the identification of the event recognition using 
autoregressive (AR) modeling based filtering and sequential probability ratio test 
(SPRT). The test measurements are described in Section 1. Data processing has 
been realized in LABVIEW. This was a very important preparation for identifying 
the event, since the correct event selection is the basic for that. The method and 
the program test axe presented in Section 2-, 

To give a hint on the material of the knocking objects first we estimated the 
auto power spectral density function (APSD). Then we divided the total frequency 
band into high frequency part and low frequency part. It was shown, that the ratio 
of these partial root mean square (RMS) values are different for knocking object 
of different materials. We present the first results of division of APSD into several 
parts. It can be clearly seen, that this may improve the identification. (See Section 
4.) Besides the identification the source localization is also important (Section 3.2.). 

In event identification we are going to use skeleton method, neutral network 
and later a specifically designed expert system, which has its own library based on 
experiments (Section 4.). 

1 Measurement 

1.1 Test section 
We carried out measurement sampling signals of accelerometers in frequency range 
from 1kHz up to 50 kHz. The lower frequencies may have very high industrial noise, 
while the frequency range above audible 16 kHz is still containing weak components 
from the knocks of the loose parts and the background noise is surprisingly weak 
in that range [2, 4]. 

The test section where measurements have been made generally serves for cool-
ing a shaker. The test section has two iron tubes: the cold leg and the hot leg 
(see Fig. 1). We installed 4 accelerometers on the cold leg. We generated internal 
and external events on the tube. For internal excitation we inserted different small 
objects in the tube. Due to turbulent flow, small parts fixed on a wire went on 
wild vibration knocking on inner wall of the tube. For external excitation we hit 
the outer side of the tube with an iron stack. 
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Figure 1: Measurement Setup 

We put 3 different types of objects into the tube (Table 1): 

• The first was the biggest one: a M10 iron bolt of l lg. 

• The second was the middle sized one: M8 iron bolt of about 6g 

• And the last one was a piece of Bakelite with weight of 1.7 g. 

There was only one object at one time inside the tube. 

Table 1: Objects in the tube. 

Type M10 bolt M8 bolt bakelite piece 
Mass H,16g 5,58g l,67g 

P h o t o m » 
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1.2 Measurement software 
Based on LABVIEW we developed a software for measurement, which can sample 
and store the signals of accelerometers up to 4 sensors in ASCII format specified 
by us. 

Figure 2: Display of measurement software during sampling 

While measuring the program shows the time series, the coherence, the transfer 
function and the phase in real-time (cf. Fig. 2) for the operator. The user has to set 
the length of the measure, while a process bar shows the actual state of measuring. 
The software has three states: 

Beginning s ta te First the operator has to set the sampling frequency, the time 
length of measurement, the method of storage. 

Cal ibrat ing s ta te In the second step the user can select sensor pairs to see the 
cross functions. It is possible to zoom into special points of functions. 

Measur ing s ta te If every sensor pairs has coherence peaks than the last step is 
the measuring. All the buttons are gray colored except the STOP button. 

2 Event Detect ion 

Once we did the record, we have to find and select events from the whole time 
series. Our preferred method is the Sequential Probability Ratio Test (SPRT), 
since it is generally accepted [5] and we also found that they are the most effective 
and reliable for this purposes. However, for carrying out the SPRT first we have to 
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filter the signal to remove large background noise. We did that using Autoregressive 
(AR) filtering. 

2.1 Autoregressive filtering 

We build an autoregressive model using Durbins method on a record without acous-
tic events, to describe the background without the acoustic events. 

The expression of autoregressive modeling is: 

p 

Vk = ^ ^iVk-i + Wfc (1) 
¿=1 

where y are the sampled data, a, are the autoregressive coefficients, while the 
w is a white, additional noise. It is supposed, that the autoregressive model will 
describe everything, what is deterministic in the background having in mind, that 
P is the degree of freedom of the system. This AR model was used for filtering the 
actual records with events. 

The formula of autoregression filtering: 

p 
„f i l tered „measured \ ' „measured 
xk ~ xk ~ / , aixk-i 

i=l 

This filtering method is very effective in real-time environment, because after 
the model has been built, i.e. the autoregressive coefficients have been estimated 
from the background measurements, the filtering can be made by subtracting the 
AR modeled data from the actually measured data. 

Figure 3: Test of autoregressive filtering 

On Fig. 3 one may see a simulated example for autoregressive filtering. The red 
line shows a generated (simulated) signal: one period of sine function with added 
white Gaussian noise and one transient event (burst) on it. The white is the filtered 
signal. 
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2.2 Sequential Probability Ratio Test 
The next step is the Sequential Probability Ratio Test, which serves for event 
detection in the filtered signal. The theoretical formula of SPRT [2]: 

\p{xi,x2,...,Xi\Ho)J 

The point-by-point formula of SPRT: 

<4» 
Lambda function (3) is a logarithm of a ratio of two conditioned probabilities. 

In the numerator we have the probability that the samples belong to the probability 
functions with condition Hi, i.e. the probability density function of that. While in 
the denominator we have the probability that the samples belong to the probability 
function conditioned by hypothesis Hq. If we substitute the normal distribution 
probability variable density function to the elementary lambda increment function 
of SPRT (4) then we get the following equation (5): 

To take decision by the SPRT lambda function we need two parameters A and 
B. When the measured signal similar in statistical sense to the background, i.e. 
when process can be described by Hypothesis Ho the lambda function has a negative 
increment values and tends to go to negative infinity, step by step. We take decision, 
that the signal belongs to background type when the value of the lambda function 
exceeds value A (becomes less than A). When the measured signal deviation is 
different from the background then lambda function has positive increment value 
and tends to raise. We take decision, when it exceeds value B. 

A can be calculated from the probability inequality [2] 

1 - AFP <FAP -eA (6) 

Expressing A: 
A = lnT^FAP <7> 

AFP 
, = In -

1 
B can be calculated also from: 

1 - AFP > FAP • eB (8) 

Expressing B: 
„ , 1 -AFP 

F A P <9> 
where AFP means the Alarm Failure Probability and FAP means False Alarm 
Probability. 
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Table 2: The A and B parameters 

AFP FAP A B 
10% 10% -2,2 2,2 
1% 1% -4,6 4,6 

0,1% 0,1% -6,91 6,91 
1% 10% -4,5 2,29 

0,1% 10% -6,8 2,3 

Calculated [2] values for A and B using equation (7) and (9) are presented in 
Table 2. 

If the value of lambda hits one of the limits then SPRT takes a decision A or 
B, where A means that, there was no any changes in the signal in comparison to 
the background, and B means that something has happened in the signal. After a 
decision has been taken we set the next lambda value to zero. 

There is a trivial example on Fig. 4 showing how SPRT works. One can see the 
acoustic event in the upper time signal. SPRT shown in the bottom window goes 
down regularly exhibiting a saw tooth shape until there is only background noise in 
the time signal. At the beginning of the acoustic event lambda function will start 
to grow toward the positive values. However, this is a trivial case, here one does 
not need really the SPRT for event recognition. 

There is a more realistic case on Fig. 5. The original sampled signal is shown 
in red color. The white signal in the upper window is that signal filtered by AR. 
Without the help of SPRT lambda function it is rather difficult to select real events, 
real burst even in the filtered signal. With SPRT events are clearly marked, and 
really one can see, that there is something in the filtered signal, which deviates at 
those time spots from the general behavior of the background. SPRT senses the 
standard deviation differences, where human eye doesnt see it at all. 

We processed by this method all measured signals described in Section 1. 

3 Analyses of selected time sequences 

3.1 Identification of the event using spectra 
The next task is to characterize the records classified by SPRT method into dif-
ferent classes. We calculated the averaged Power Spectrum Density function for 
backgrounds (A decisions of SPRT) and the events (B decisions of SPRT). They 
are shown on Figs. 6 and 7, respectively. 

It is clearly seen on Fig. 6, that there are two peaks a and b sitting on the noise 
level when there was no event in the measurement. The noise level is falling with 
the growing frequency. We believe that peaks are due to eigenfrequencies of the 
tube, while the falling noise level is due to friction of the flow. They characterize 
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Figure 5: Real measurement example 

the background noise of the measurements. 

One can see a and b peaks and falling noise level from the background mea-
surement in the average power spectrum density function of events as well (Fig. 7). 
But there are 3 other specific peaks (I,II,III) which are responsible for the events. 

The numerical difference between the spectrum of events and the spectrum of 
noises (Fig. 8), shows the specific descriptors of the event. The smaller peaks are 
due to uncertainties in standard deviation of the measured signal, but the bigger 
peaks marked on figure are useful for identification purposes. 
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APSDa, Autospectrum of A events: 2SB 

Figure 6: The averaged Power Spectrum Density function of background 

APSDB, Autospectrum of B events: 25B 

Figure 7: Averaged Power Spectrum Density function of acoustic events, what 
selected by SPRT. 
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APSDB - APSBA : 25B 
Senzor: 31 Date of measurement : 2010.02.12 13:46:02 

4000 6000 8000 10000 12000 14000 
Frequency (Hz) 

Figure 8: The numerical difference between the two spectrums, B-A. 

3.2 Localization 
The simplest method for localization is based on the front of the events identified 
by SPRT. There are two cases clearly depicted on Figs. 9 and 10. The impact can 
be either outside or inside of the section determined by the two sensors. 

Sensor 1 • • Sensor 2 

• Wavs front | Hir position 
• iron tube Distance 
•Time delay | Sensor position 

Figure 9: Hit outside the analyzed interval. 

Sensor L* 

H i t 

• Sensor 1 

• Wave front 
•iron tube 
• Time, delay 

Hie position 
-Distance 

Sensor position 

Figure 10: Hit intside the analyzed interval. 

On these figures we used the following notations: 

• The orange line is the tube itself. 

• The purple arrow shows the point of hits. 
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• The blue arrows show the propagation of the front of wave until it arrives to 
the first sensor. 

• The green arrows show the propagation after the front has passed the first 
sensor. It is the time difference. It is the time delay. 

• The black line shows the known distances in Fig. 9 and the unknown distances 
in Fig. 10. 

For localization procedure we have to estimate the time delays between the events 
measured by different sensors. 

3.2.1 Method using Cross Correlation Function (CCF) 

In case of traditional localization one can calculate the Cross Correlation Function 
(Fig. 11) to estimate the time delay and thus to localize the hits. The argument of 
maximum of this function shows the time delay between the two signals. 

Mérés: 5N, Szenzo rpá r : 1 - 4 , Mérve: 2010.02.11 18:26:40, Verzió: 5.0.5 
Át lagolások s z á m a : 1024, Ablak t ípus : Hanníng, Spektrum s zámí t á s i m ó d s z e r : Hagyományos 
x Maximum: 5.2576e-011 helye: -0 .0008s 

5 
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- Keresztkorrelációs függvény] \ 
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2.5 
- J • 
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l r 1 1 1 
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 

Ida (s) 

Figure 11: Example CCF 

3.2.2 Method using Impulse Response Function (IRF) 

There is another function in traditional localization procedures [3]: one can cal-
culate the Impulse Response Function (Fig. 11) to estimate time delays and thus 
to localize the hits. The argument of maximum of this function shows the time 
delay between the two signals, like the cross correlation function. This method is 
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better in the sense that it may show also the velocity distribution, but it has higher 
uncertainties. 

Mérés : 5N Szenzo tpá r : 1 - 4. Merve: 2010 02.11 18:2«:40. Verzió: 5.0.5 
Á t l a g o l á s o k s z á m a : 1024. Ab lak típus: H a n n m g , Spektrum s z ám í t á s i m ó d s z e r : H a g y o m á n y o s 

M a x i m u m : 0 13409 hetye 0.0102S 

Idö (S) 

Figure 12: Example of IRF 

3.2.3 New method 

The new way of localization is to use learning algorithms. We hit the tube several 
times on the marked points on Fig. 13. Then we calculate different description 
parameters from power spectrums to train the learning algorithm (for example 
neural network). 

St-nst sor 2 •h * Sensor 1 

Iron tube 
Hit position 
Known displacement 
Sensor position 

Figure 13: Localization with identification 
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4 Identification 

4.1 Traditional way 
To distinguish the material of the hitting object at the beginning we applied the 
spectrum division method proposed in [7]. We divide the power spectrum of acous-
tic events into four parts (see Fig. 14). 

Mirés: 5N, Szenzor: 1. Móivo: 2010.02.1118:28:40. Verzió: 5,0,5 
Ártapotós©k szárna: 1024. Ablak típus: Manning, Spektrum nàmk&si módszer: Hagyományos 

S 10"': 

1000 1500 
Frekvencia (Ki) 

Figure 14: Spectrum dividing method 

Using this spectrum division we can estimate their RMS Root Mean Square 
value by formula: 

¿'(n/4) —1 
RM Si = A f x J 2 APSDJ (10) 

j = (i-l)(n/4) 
In this way, we have got 4 numbers, which characterize the actual event. This 
method is insensitive for the position of peaks. However, the peaks contain im-
portant information. For example cutting a peak into two parts can produce big 
mistake in this method. 

4.2 New method 
We are looking for methods to describe spectra in a more effective way using ma-
chine learning processes. 

We are trying to calculate the skeleton of spectrums (Fig. 15). The endpoints 
of skeletons are positive peaks that we are interested in. We borrowed the skeleton 
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Figure 15: Skeleton of a spectrum 

method and program from Gábor Németh [8]. It produces skeleton which has 
different nodes and different distribution of the branches. In the future we shall 
use these parameters for characterizing the event. 

5 S u m m a r y and Conclusions 
The fact that sequential probability ratio test is one of the best methods for identify-
ing abnormal events had been proposed and demonstrated earlier cf. [1, 2, 3, 4, 5]. 
However, earlier only offline data evaluation programs have been used to select 
events in high background noise. The presented LABVIEW program opens the 
way for on-line application of the SPRT method for event selection. A bench-
mark measurement has been evaluated to show the capability of the event selection 
method. Efficiency of the method was clearly demonstrated in our paper. Spectral 
estimation of selected methods clearly pointed at differences of spectral compo-
nents, when different object impacted the wall. This opens the route for object 
identification using autospectrum. However, it is not easy to automotive the spec-
trum patter recognition having several different peaks in the spectrum. We are 
involving the skeleton method. For the other important task, for the localization 
of the impact place we tried three methods: we used time delay of the fronts of the 
events identified by SPRT; we used the cross correlation and the impulse response 
estimation to retrieve the time delay. The front cannot be estimated very precisely; 
the cross-correlation seems to be too wide for precise time delay estimation; the 
impulse response has rather large uncertainty. We tried a new method based on 
neural network, which seems to be very promising. 
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Community Detection by using the 
Extended Modularity 

Erika Griechisch and András Pluhár 

A b s t r a c t 

This article is about community detection algorithms in graphs. First a 
new method will be introduced, which is based on an extension [16] of the 
commonly used modularity [17, 18, 19, 20] and gives overlapping communi-
ties. We list and compare the results given by our new method and some 
other algorithms yileding either overlapping or non-overlapping communities. 
While the main use of the proposed algorithm is benchmarking, we also con-
sider the possibility of hot starts, and some further extensions that considers 
the degree distribution of the graphs. 

Keywords: graph mining, community detection, fuzzy partition, modularity 

1 Motivation 
Graph mining has became an important field of data mining, especially the com-
munity detection is very popular, because it can be applied in sociology, computer 
science, biology or finance. 

The main problem in community detection is that there is no exact definition for 
communities; all we can do is to postulate some properties. One approach is that a 
community is a set of vertices that are relatively densely connected to each other, 
but sparsely connected to other dense groups in the graph. Several methods are 
proposed for community detection. The majority of those define non-overlapping 
communities (clusters, partitions) [24, 13, 2], some of them define overlapping sets 
(henceforward communities), see [1, 22, 11]. 

However, it became clear that overlapping communities must be also considered 
in Small World graphs, see [10, 12, 22, 16]. Moreover, the given algorithms turned 
out to be useful in data mining and modeling [8, 9]. In fact, one way to evaluate the 
performance of different algorithms is to check their predictive value in models [11]. 
Another possibility is to define plausible measures. The most successful of those 
is the Newman modularity that is defined for a clustering of a graph. The higher 
the modularity, the better the clustering [17]. Nevertheless, for large graphs the 
modularity is just approximated [7, 5], since it is an NP-hard problem to maximize 
modularity [6]. 
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Nepusz et al. [16] proposed an algorithm for the detection of overlapping com-
munities in quadratic programming terms. To measure their results they also ex-
tended the notion of modularity to overlapping communities. We continue their 
work, but change the objective function, and examine the possibility of directly 
optimizing the extended modularity. Of course, one cannot expect an effective al-
gorithm for this, since it is also a quadratic optimization problem. Still, it can be 
computed for small graphs, and provides good benchmarks for the community de-
tection heuristics. It is also instructive, how good approximation of the modularity 
is achieved by those heuristics? 

Other methods for extending modularity exist. Nicosia et al. [21] introduce a 
general extension of the modularity on directed graphs which moves from simple 
considerations about the meaning and structure of the original modularity function, 
using an enriched null-model. 

2 Definitions 
A graph G with vertex set V and edge set E will be denoted G = (V,E), the 
cardinality of the vertex set will be denoted n, and the cardinality of the edge set 
will be denoted m. In this paper every graph is undirected and unweighted. The 
objective of classical community detection in networks is to partition the vertex set 
of the graph into c distinct subsets in a way that puts densely connected groups 
of vertices in the same community. Here c can either be given in advance or 
determined by the community detection algorithm itself. If c is known, a convenient 
representation of a given partition is the partition matrix U = [ujfc]. U has n = |V| 
rows and c columns, and uik = 1 if and only if vertex i belongs to the /cth subset 
in the partition, otherwise it is zero [3]. From the definition of the partition, it 
follows that Y^k=l uik = 1 for all 1 < i < n. The size of community k can then 
be calculated as l un i , and for any meaningful partition, we can assume that 
0 < uik < n • These partitions are called hard or crisp partitions, because 
a vertex can belong to one and only one of the detected communities [3]. The 
generalization of the hard partition follows by allowing Uik to attain any real value 
from the interval [0,1]. The constraints imposed on the partition matrix remain 
the same: 

uik e [0,1], VI < i < n, 1 < k < c; (1) 
c 

5 > f c = l, VI < i < n; (2) 
fc=i 
n 

o <^uik<n, VI <k<c. (3) 
¿=i 

Equation 2 simply states that the total membership degree for each vertex must be 
equal to one. Informally, this means that vertices have a total membership degree 
of one, which will be distributed among the communities. Inequality 3 is the formal 
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description of a simple requirement: we axe not interested in empty communities 
(to which no vertex belongs to any extent), and we do not want all vertices to be 
grouped into a single community. Partitions of this type are called fuzzy partitions. 

Several methods have been developed to search fuzzy clusters (see e.g. [4]), but 
we can not apply these to graph partitioning, because these methods need some 
additional data. 

In [16] Nepusz et al. use a different approach using vertex similarities. They 
observe that a meaningful partition should group vertices that are somehow similar 
to each other in the same community and assume that a similarity function s(U, i, j) 
satisfies the following criteria: 

. s ( U , m ) e [o,i] 

• s(U, i,j) is continuous and differentiable for all 

• s(U, i, j) = 1 if the membership values of vertex i and j suggest that these 
are as similar as possible 

• s(U, i,j) = 0 if the membership values of vertex i and j suggest that these 
are completely dissimilar. 

From now on, we denote s(U, i, j) by Sij. We use the similarity matrix from 
[16], that is 

c 

Sij = ' ^ 2 u i k u j k . ( 4 ) 
fc=l 

In [16] the following objective function was optimized 

• n n 
£>g(U) = ~ Sij)2, (5) 

¿=1j=1 

where w ^ s are optional weights and s^ is a prior assumption of the actual simi-
larity of the vertices. Instead of using Equation 5, we extend the commonly used 
modularity [17, 18, 19, 20], and optimize this objective function directly over the 
space of feasible solutions. 

Modularity is a property of a network and a specific proposed division of that 
network into communities. The measure of a division is large, if most of the edges 
are within clusters and only a few are between those. 

Let A be the adjacency matrix of the network, ki the degree of vertex i, 5(cj, Cj) 
is the Kronecker delta and suppose that vertex i belongs to community Cj. Then 

2m i j 

. ki kj 
6(Ci,Cj) 

is the modularity of the given division. 
The modularity can be either positive or negative. Positive values indicate the 

possible presence of community structure. Thus one can search for community 
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structure precisely by looking for the divisions of a network that have positive, and 
preferably large values of the modularity. 

By replacing S(ci}cj) with Sij we get a quadratic function called extended 
(fuzzy) modularity [16]: 

Q' = J - V v 2m ^ M 

. fcj j 
A i j ~ 2m 

- E 2m ^ »j 

kikj 
2m (u\uj), 

An 
~2m (6) 

(7) 

where u* is the ith row in the fuzzy partition matrix U and (.,.) denotes the 
dot product. 

So our the problem is to 

maximize Q' 
subject to Uik G [0,1], VI < i < n, 1 < k < c; 

E L i u i k = 1, VI < i < n; 
0 < E ? = i uik < n , VI < k < c. 

Higher modularity usually means better division, so our aim was to maximize the 
extended modularity directly, and thereby gaining a benchmark compare the results 
given by other methods. 

3 Examined methods 

This section introduces the compared methods. The results of these methods were 
not just compared in a sense of modularity value, but the detected communities 
were given to the quadratic solver as an initial point, thus we used their results as 
a "hot starts." 

In the case of overlapping communities, it is not obvious how to choose the 
community membership vectors. We decided to use uniform distribution, e.g. if 
the CPM (or iV"1""1") method produces 4 communities and the community 1 and 2 
also contains vertex v, then the membership vector of v is (0.5,0.5,0,0). 

Table 1 shows the running time of the examined methods depending on the 
number of nodes n, the number of edges m and the average degree davg. 

3.1 Community detection based on edge betweenness 
The method of Girvan and Newman [18] is based on the definition of edge between-
ness. The edge betweenness of an edge is the number of shortest paths between pairs 
of vertices run along it. Iteratively removing the edges with highest betweenness, 
we can determine a hierarchical tree and then communities. 
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3.2 Leading eigenvector method 
Newman showed in [19] that the modularity can be expressed in terms of the eigen-
vectors of a characteristic matrix for the network, which he calls the modularity 
matrix, and that this expression leads to a spectral algorithm for community detec-
tion that returns better results in shorter running times than competing methods, 
e.g. edge betweenness. 

3.3 Greedy modularity optimization method 

Clauset, Newman and Moore presented a hierarchical agglomeration algorithm for 
detecting community structure [20]. This algorithm uses a greedy optimization in 
which, starting with each vertex being the sole member of a community of one, 
repeatedly join together the two communities whose amalgamation produces the 
largest increase in the modularity Q. 

3.4 Label propagation 

The label propagation method [25] is based on the following iteration. Suppose that 
a node x has neighbors and each neighbor carries a label denoting the community 
to which they belong to. Then x determines its community based on the labels 
of its neighbors. We assume that each node in the network chooses to join the 
community to which the maximum number of its neighbors belong to, such that 
the occurring ties are broken uniformly randomly. 

At the beginning every vertex gets a unique label. Iteratively at every step, each 
node updates its label based on the labels of its neighbors. The iterative process 
continues until no node in the network changes its label.1 

3.5 Walktrap 

The walktrap method uses the idea of Markov chains, and it is based on random 
walks to tell a distance for every pair of vertices in the graph and with this it 
generalizes the distance of clusters [23]. 

3.6 Clique percolation 

The clique percolation method (CPM) uses adjacent cliques to determine over-
lapping communities [12, 22]. It builds up the communities from fc-clique (fully 
connected graphs), and two fc-cliques are considered adjacent if they share k — 1 
nodes. Then communities are the unions of the adjacent fc-cliques. Note that the 
result heavily depends on the value of the parameter k. 

'The algorithm may give oscillation if the input is a bipartite graph; this case should be 
handled. 
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3.7 N++ method 
The 

N++(v) = N+{N+(v)) = {u£V | d(u,v) < 2} 

is the set of vertices which are "close" to v. Using these sets and their dense subsets, 
the method provides overlapping communities [10, 11]. 

Table 1 shows the running time, where n is the number of vertices, m is the 
number of edges in the graph. 

Table 1: Running time of the compared methods 
Method Running time 

worst case 

Edge betweenness 0(m2n) [18] 
Leading eigenvector 0(m + 7i2 • steps) [19] 
Newman greedy 0(mdav g log n) [20] 
Label propagation 0(m + n) 125] 
Walktrap 0(mn2) [23] 

CPM 0(exp(n)) [12] 
N++ 0(exp(n)) [10] 

3.8 Sequential greedy method 
We also proposed a new sequential greedy (SG) method that might be considered 
as a heuristic for the modularity optimization problem. We determined the number 
of the communities (c) as the size of a maximal independent set I and placed those 
into different clusters. (The membership vector of the fcth vertex of I is e^, the the 
kth element of the standard orthonormal base.) Then we greedily decide about the 
membership vector of the leftover vertices using a partial modularity based on the 
already placed vertices. Since the extended modularity Q' (see Equation 7) 

2 >J 

hi hj 

in step j we set u3 such that it maximizes the partial modularity function Qj, where 

i<j 

. kikj 
2m (u\uj) = 

2m E 
\l<j 

An kj 
2m 

u\uj ) , 

and uJ satisfies the constraints 2, 3. Obviously the function Q(uJ) reaches its 
maximum if uJ equals the fct.h element of the standard orthonormal base, where k 
is the position of the largest coordinate of the vector i<j 

A fej fcj 
2m W. 
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4 Technical background 
This section describes the main software tools which were used during the research. 

4.1 igraph library 
The igraph [29] is a free software package for creating and manipulating undirected 
and directed graphs. It includes implementations for classic graph theory problems 
like minimum spanning trees and network flow, and also implements algorithms for 
some recent network analysis methods, such as the community structure search. 

The igraph contains functions for generating regular and random graphs, ma-
nipulating graphs, assigning attributes to vertices and edges. It can calculate va-
rious structural properties, graph isomorphism, includes heuristics for community 
structure detection and supports many file formats. 

We used the igraph functions IC_edge_betweenness , 
I C _ l e a d i n g _ e i g e n v e c t o r , I C _ f a s t g r e e d y , I C _ s p i n g l a s s and the IC_wa lk t r ap 
functions (where IC equals to igraph_community) to determine the correspond-
ing community structure and the function i g r a p h _ m o d u l a r i t y to determine the 
modularity value of the clustering. 

4.2 octave 
GNU Octave is a high-level language, primarily intended for numerical computa-
tions which is mostly compatible with Matlab. We used the octave function sqp to 
optimize the objective function which is an implementation of the SQP. 

The sequential quadratic programming (SQP) is one of the most popular and 
robust algorithms for nonlinear continuous optimization. The method is based on 
solving a series of sub-problems designed to minimize a quadratic model of the 
objective subject to a linearization of the constraints. 

4.3 Visualize graphs 
Several methods exist for visualizing graphs, we used the igraph_layout_graphopt 
function, which optimizes vertex layout via the graphopt algorithm. 

In contrast to other graph optimizers, graphopt does not use a finite-pass ap-
proach to layout optimization. Instead, it uses basic principles of physics to itera-
tively determine an optimal layout. 

Each node is given a mass and an electric charge, and each edge is represented 
as a spring. The node mass, the electric charge, the optimal spring length, and the 
spring constant are tweakable in the gui in real time [30]. 

4.4 Communities 
We used CFinder for CPM and the implementation of the N++ method is due to 
Csizmadia [1, 10]. We would like to express our thanks for obtaining free access to 
the appropriate softwares. 
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Figure 1: Zachary graph - The instructor and the administrator are represented 
by nodes 0 and 33. White squares represent individuals who ended up aligning 
with the club's instructor after the split, shaded circles those who aligned with the 
administrator. 

5 Resul ts 
Newman has released his benchmark graphs in [28]. We have chosen the following 
graphs from his database to examine: 

Zachary 's karate club: social network of friendships between 34 members of a 
karate club at a US university in the 1970s. 

Les Miserables: co appearance network of characters in the novel Les Miserables. 

Books abou t US politics: A network of books about US politics published 
around the time of the 2004 presidential election and sold by the on-line 
bookseller Amazon.com. 

Several researchers worked with these graphs, e.g. [17, 18, 19, 20, 21] from the 
perspective of community structure. 

5.1 Zachary's karate club network 
The first example is taken from one of the classic studies in social network analysis. 
In the late 1970s Wayne Zachary observed social interactions between the members 
of a karate club at an American university [27]. The club split in two as a result of 
an internal dispute, see Figure 1. 

The critical node of the graph is the node 2, which (in real life) stayed with 
the node 0 (he was the instructor). It is critical, since many clustering methods 
fail to find the correct community it belongs to. Maximizing extended optimality 
performs well: in every case (from c = 2 to c = 6) node 2 was assigned correctly. 
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Figure 2: Zachary graph - The communities determined by the optimal extended 
modularity. Different shapes denote different community, (a) c = 3 (b) c = 4 

Table 2: Zachary graph - membership vectors 
N o d e M e m b e r s h i p v e c t o r 

0 (inst) (1.000000,0.000000,0.000000,0.000000,0.000000) 
2 (0.985774,0.000000,0.000000,0.000000,0.014226) 
9 (0.000000,0.014226,0.000000,0.000000,0.985774) 
23 (0.000000,0.117156,0.882844,0.000000,0.000000) 
32 (0.000000,1.000000,0.000000,0.000000,0.000000) 
33 (adm) (0.000000,1.000000,0.000000,0.000000,0.000000) 

We tried a number of communities from c = 2 to c = 6. In these cases the 
optimal extended modularity determines a strict partition, except in the case c = 5. 
The nodes 2, 9 and 23 were assigned to more than one communities. All these nodes 
lie on the brink of two communities, see Table 2. 

The result of the case c = 3 coincided with the result of label propagation 
method [25]. The optimum of the extended modularity in case c = 4 gave the 
same result as the walktrap method [23]. The case c = 4 gave the highest mod-
ularity (0.4198), above c = 4 the value of modularity started decreasing. See the 
modularity values in Table 3 . 

5.2 "Les Miserables" graph 

In the "Les Miserables" graph (see Figure 3) nodes represent characters in Victor 
Hugo's novel "Les Miserables" as indicated by the labels and edges connect any 
pair of characters that appear in the same chapter of the book [14]. 

The Table 5 is the summarizing table of the modularity values. In case c = 4,5 
and 8 the optimal extended modularity determines strict partitions again, but in the 
case c = 11,12 we got some overlaps. In Table 4 the reader can see the non-binary 
membership vectors when the number of communities is 12. 
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Table 3: Modularity values - Zachary graph 

M e t h o d M o d u l a r i t y c o m m . 

Edge between ness 0.4013 5 
Leading eigenvector 0.3727 3 
Newman greedy 0.3807 3 
Label propagation 0.4020 3 
Spinglass 0.4063 6 
Walktrap 0.4198 4 

CPM (fc = 3) 0.2438 3 
CPM (k = 4) 0.2557 3 
N++ 0.1947 12 

Sequential greedy 0.3599 2 

Optimum of the 0.4086 6 
extended modularity 0.4159 5 

0.4198 4 
0.4020 3 
0.3718 2 

Table 4: "Les Miserables" graph - Membership vectors of some nodes (c = 12) 
N o d e M e m b e r s h i p vector 

Valjean (0.00, 0.00, 0.00, 0.00, 0.00, 0.31, 0.69, 0.00, 0.00, 0.00, 0.00, 0.00) 
Marguerite (0.06, 0.00, 0.21, 0.00, 0.00, 0.73, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 
Isabeau (0.00, 0.00, 0.00, 0.00, 0.00, 0.31, 0.00, 0.00, 0.00, 0.00, 0.69, 0.00) 
Gervais (0.00, 0.00, 0.00, 0.73, 0.00, 0.27, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 
Tholomyes (0.00, 0.00, 0.00, 0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00) 
Scaufflaire (0.00, 0.00, 0.00, 0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00) 
Woman 1 (0.00, 0.00, 0.00, 0.78, 0.00, 0.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 
Boulatruelle (0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.68, 0.00, 0.00, 0.00, 0.00, 0.00) 
Woman2 (0.00, 0.56, 0.00, 0.00, 0.00, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.27) 
MotherPlutarch (0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.68, 0.00) 
Toussaint (0.00, 0.56, 0.00, 0.00, 0.00, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.27) 
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Table 5: Modularity values - "Les Miserables" graph, *indicates the non-strict (fuzzy) 
partitions 

M e t h o d M o d u l a r i t y c o m m . 

Edge between ness 0.5381 11 
Leading eigenvector 0.5116 4 
Newman greedy 0.5006 5 
Label propagation 0.5222 5 
Spinglass 0.3809 12 
Walktrap 0.5214 8 

CPM (fc = 6) 0.4041 4 
CPM (fc = 7) 0.4359 5 
N++ 0.2946 16 

Sequential greedy 0.4705 7 
0.4805 5 
0.4658 4 

Optimum of the 0.4489* 12 
extended modularity 0.5402* 11 

0.5453 8 
0.5562 5 
0.5218 4 

Table 6: Modularity values - Graph of political books [15] 

M e t h o d M o d u l a r i t y c o m m 

Edge betweenness 0.5168 5 
Leading eigenvector 0.4516 4 
Greedy 0.5020 4 
Label propagation 0.4946 3 
Walktrap 0.5253 4 

CPM (k = 3) 0.4695 4 
N++ 0.1656 34 

Sequential greedy 0.4243 5 
0.4578 4 
0.3883 3 

The optimum of the 0.5217 5 
extended modularity 0.5254 4 

0.5269 3 



80 Erika. Griechisch and András Pluhár 

Figure 3: "Les Miserables" graph - Community structure with highest modularity 
( c = 5 ) 

Table 7: Graph of political books - distribution of the same type books among 
communities 

C o m m u n i t y Edge Eigen- Walktrap Label Newman CPM 
or c luster betweenness vector propagation greedy 

liberal/neutral/conservative books 

0 3 / 2 / 2 0 / 1 / 2 5 / 4 / 3 4/4/2 5 / 4 / 3 1 / 2 / 0 
1 0 /3 /42 0 /2 /35 0 /2 /39 0 /7 /46 0 /6 /43 0 / 4 / 4 4 
2 39 /2 /1 43 /7 /3 38 /2 /1 3 9 / 2 / 0 38 /2 /1 4 3 / 4 / 6 
3 0 / 4 / 4 0 / 3 / 9 0 /5 /6 - 0 / 1 / 2 0 / 4 / 4 
4 1 /2 /0 - - - - -
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Figure 4: Political books graph - The communities in case c = 4, the modularity is 
0.5254. The intensity shows the community, the shape indicates the original type 
of the book (square - liberal, circle - neutral, star - conservative). 
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5.3 Political books graph 
The nodes in political books graph represent books about US politics sold by the 
online bookseller Amazon.com. Edges represent frequent co-purchasing of books by 
the same buyers, as indicated by the "customers who bought this book also bought 
these other books" feature on Amazon. 

Nodes have been given values t, ri, or c to indicate whether they are liberal, neu-
tral, or conservative. These alignments were assigned separately by Mark Newman 
based on a reading of the descriptions and reviews of the books posted on Amazon. 

The optimum value of extended modularity in case c = 3,4 and 5 gave strict 
partitions. In case c = 4 the optimal extended modularity gave almost the same 
division as the walktrap method, just one node was classified to another group, see 
Table 6. 

The Table 7 shows the distribution of the book types among communities. 
It clearly shows, that every methods found two big and few (1, 2 or 3) small 
communities. One of the big communities contains mainly liberal books, the other 
contains conservative. The examination of the community/cluster 1 shows it mainly 
contains conservative book and few neutral, but none of the methods classified 
any liberal book to this class. As a contrast the community/cluster 2 mainly 
contains liberal books and some neutral, but almost every methods (except the 
label propagation) classified some conservative book in this community. 

The rest of the clusters/communities are small and there are few which con-
tains both liberal and conservative. The majority contains liberal and neutral or 
conservative and neutral books as we expect from a clustering method. 

6 Conclusion 

A new community detection method was proposed based on the definition of fuzzy 
partition and extended modularity. It was showed that the optimum of the ex-
tended modularity can determine overlapping and can give similar or sometimes 
better results, than earlier heuristics. However, it takes considerable more time to 
determine the optimum of the extended modularity, because it needs a solution of 
a quadratic optimization problem. 

In solving QP problems it is important to find a good initial point. Thus we 
tried out the outputs of other methods proposed in [12, 22, 18, 19, 25] (see in Table 
3, 5) as an initial point. Then the running time was reduced, but it is still too long. 
So the proposed method can be used only for small social networks. 

The other proposed SG method provides good results measured in modularity, 
and its running time is acceptable as well (see Table 3, 5 and 6). In some case 
it gives higher modularity than other, more sophisticated methods (e.g. leading 
eigenvector method in Table 6). However it is strictly a clustering method, it 
cannot provide overlap. 

There are still several ways for future work. We can define other similarity 
measures, or extend the modularity in some other reasonable way. 
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Other idea, to redefine the Equation 2, which is a constraint about the sum of 
the membership values of node i (VI < i < n). Instead of restrict this sum to be 
equal to 1, the sum can depend on the centrality of node i, so we can define it in 
the following way 

where g(.) is an increasing function of the degree. This change allows for central 
nodes to have higher membership values. It is a rational change, because nodes 
with many connections usually belongs to more than one community. 

We have already tested some cases on the Zachary graph. We increased the 
upper bound constraints of the sum of the membership values of the 3 main node: 
the 0, 32 and the 33. We can obtain from our observation that the increase of 
the upper bounds gives overlaps and maybe gives interesting results, thus it is a 
possible way for future work. 
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Sufficient Conditions for Order-Independency in 
Sequential Thinning* 

Péter Kardos* 

A b s t r a c t 

The main issue of this paper is to introduce some conditions for template-
based sequential thinning that are capable of producing the same skeleton for 
a given binary image, independent of the visiting order of object points. As 
an example, we introduce two order-independent thinning algorithms for 2D 
binary images that satisfy these conditions. 

Keywords : skeleton, sequential thinning, order-independency, digital topol-
ogy, topology preservation 

1 Introduction 
Skeleton provides a reduced-dimensional representation, which describes the general 
shape of objects [10]. Thinning is a widely used strategy for skeletonization that 
is based on an iterative peeling of the object boundary [8, 11]. Several parallel 
and sequential alternatives have been proposed for this method. In the sequential 
case, an iteration step of the thinning process is usually performed in two phases. 
Algorithm 1 shows the "classic" sequential thinning scheme. 

Basically, a "deletable" point must not be a so-called endpoint (which is im-
portant in the view of shape preservation), and its removal must be topology-
preserving. A usual way to define "deletable" points is to construct a set of match-
ing templates T. In this case, an object point can be considered as deletable, if 
it matches at least one template T € T. Further on, we call such object points 
as T-deletable. Without loss of generality, we assume square templates of size 
(2k + 1) x (2k + 1) (fee N). The central point of a template is then the point with 
position (k,k). 

As sequential thinning algorithms remove only one point at a time, topology 
preservation can be much easier guaranteed than in the parallel case [6, 8]. However, 
Algorithm 1 suffers from the problem that it may produce various skeletons for 
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tional Development Agency. 

t Institute of Informatics, University of Szeged, Hungary, 
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Algorithm 1: 
repeat 

// Phase 1: contour tracking 
mark all border points 
// Phase 2: reduction 
foreach marked point p do 

if p is "deletable" in the actual image then 
|_ delete p 

until no points are deleted 

different visiting orders of border points. Finding order-independent strategies (i. 
e., algorithms that produce the same skeletons for any visiting orders) is a key 
problem in sequential thinning. 

First Ranwez. and Soille [9], then Iwanowski and Soille [3] investigated this 
problem. The main disadvantage of the their order-independent algorithms lies in 
the fact that they axe basically anchor preserving reductive shrinking methods [2]. 
This means that, as a preprocessing step, endpoints must be previously detected 
as anchors. An order-independent algorithm with built-in endpoint-criterion has 
been proposed by Kardos, Nemeth, and Palagyi [4]. Their method is based on the 
classification of simple points. For this purpose, simple points are grouped into four 
sets in the first phase of an iteration, which means that this solution lies far from 
the sequential thinning scheme according to Algorithm 1. 

In this paper we formulate some criteria which are sufficient for order-inde-
pendency. The paper is organized as follows. In Section 2, we introduce some basic 
notions of digital topology, Section 3 presents the mentioned sufficient conditions 
and the proof of their correctness. Using these conditions, in Section 4, two possible 
2D template sets, T 1 and T 2 , are proposed. In Section 5, it will be proved that 
if we consider T 1 - or 7^-deletable points as "deletable" in Algorithm 1, we get 
order-independent and topologically correct thinning algorithms. Finally, some 
experimental results are shown in Section 6. 

2 Basic Notions 
Applying the basic concepts of digital topology as reviewed in [5], we introduce 
some additional notions for our purposes in this section. 

First, we give an extension of the definition of a 2-dimensional (8,4) binary 
digital picture: a 2-dimensional (8,4) labeled binary digital picture (in the following 
referred to as (8,4) picture or simply as picture) can be described with the 5-tuple 
(Z 2 , 8 ,4 ,B ,B + ) , where Z2 is the set.of picture points, B C 1? is the set of black 
points, its complement, Z 2 \ B is the set of white points, B + C B denotes the set 
of active black points, and B \ B + is the set of inactive black points. 

A black component is a maximal 8-connected set of black points, while a white 
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component is defined as a maximal 4-connected set of white points. 
A black point p in the picture (Z2,8,4, B, B + ) is called as a border point, if it is 

4-adjacent to at least one white point. A black point which is not a border point 
is said to be an interior point. The notation Nk(p) will be used to refer to the set 
of points fc-adjacent to p (k e {4,8}), and let N£(p) = A^(p)\{p}. Further on, 
let us denote by C(p) the number of 8-connected black components in the picture 
(Z2,8,4, B H Ng(p), B + ) . 

A black point p is said to be a simple point if its deletion (i.e., changing it 
to white) preserves the topolopgy of the picture [5]. We make use the following 
characterization of simple points. 

Theorem 1. [1] Black point p is simple if and only if p is a border point and 
C(p) = 1. 

In order to retain some relevant information about the shape of objects, thin-
ning algorithms preserve endpoints. Hence, thinning algorithms are coupled with 
endpoint-characterizations. We define endpoints as follows. 

Definition 1. The black point p £ B in (Z2,8,4, B, B + ) is an ej-endpoint if and 
only if there is not any inactive point in Nj(p) ( j £ {4,8}). 

Here we note that if we consider the interior points as inactive black points, then 
similar criteria can be discovered as "hidden" endpoint-characterizations in the thin-
ning scheme used by Manzanera et al. [7]. The importance of the notion of inactive 
and active black points rests on the fact that the thinning algorithm presented in [7] 
is parallel, which does not alter the state of interior points during an iteration before 
the simultaneous removal of deletable points. However, in sequential algorithms an 
interior point may change to a border point right after removing a deletable point. 
Thus, the algorithm must "memorize" actual border points in the beginning of the 
given iteration in order to be able to use such endpoint-characterizations like in [7]. 

A background point p £ B is called an isolated cavity point if for any q £ N4 (p), 
q £ B or N4(g) fi (B \ B + ) ^ 0. An object point p is called as single border point if 
JV4(p)flB = {g} where JV4(g)n(B\B+) = 0. As an example, Fig. 1 shows a possible 
configuration for isolated cavity points and single border points, respectively. The 
symbols "•", "W, "o" stand for active black points, inactive black points, and white 
points, respectively. 

The reason of order-dependency in the case of sequential thinning algorithms 
lies mainly in the fact that there is at least one pair of simple and non-end points 
{p, q] in the picture which for p is no more simple after removing q and vice versa. 
We call such a pair of points as decision pair. For a more formal definition, see 
[4]. In the case of a template-based thinning algorithm with a set T of matching 
templates, we can restrict this definition with the necessary condition that both p 
and q must bé T-deletable. 

For the masks T,T' let us suppose that X" differs from T only in one point q, 
where q marks a border point in T', while it is a background point in T such that 
it is neither an isolated cavity point nor a 4-neighbor of a single border point in T. 



90 Péter Kardos 

o • o 
o P o 
* • • 

a 
• o 

Figure 1: Examples where p is an isolated cavity point (a) and a single border 
point (b). The positions marked "•", and "o" are considered to be active black 
points, inactive black points, and white points, respectively. 

Then, q is the difference point of T and T', and T' is a contour-expanded version 
ofT. 

3 The Conditions for Order-Independency 
Before we formulate our sufficient conditions for the mentioned property we must 
write up Algorithm 1 in a more formal way by using the introduced notions in 
Section 2 (see Algorithm 2). We will use the abbreviation STA(T) (where STA 
stands for "Sequential Thinning Algorithm" and T for the input set of matching 
templates) to refer to this scheme. 

Algorithm 2: STA(T) 
Input: picture (Z2,8,4, X, 0) and a template set T 
Output: picture (Z2 ,8,4, Y,Y+) 
Y = X 
Y+ = 0 
repeat 

// Phase 1: contour tracking 
foreach p in Y do 
[_ if p is a border point then Y+ — Y+ U {p} 

// Phase 2: reduction 
changed = false 
foreach p 6 Y+ do 

if p is T-deletable then 
Y = Y\{p} 
changed = true 

until changed = false 

Theorem 2. Algorithm STA(T) is order-independent if it fulfils both of the fol-
lowing conditions: 

I. No template in T contains any position that is coincident with a T-deletable 
point (with the exception of its central element). 
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II. Let q be the difference point of an arbitrary template T G T and its contour-
expanded version T'. Then, q is not T-deletable in T'. 

Proof. We give an indirect proof. Let us suppose that Conditions I and II are 
both satisfied, but Algorithm STA(T) is not order-independent. Hence, one of the 
following two situations must occur: 

Case 1: There exists an object point p in the actual image, which is T-deletable in 
the beginning of the iteration, but it is not T-deletable when it is visited. 

Case 2: There exists an object point p in the actual image, which is not T-deletable 
in the beginning of the iteration, but it is T-deletable when it is visited. 

Let us suppose that Case I holds. Let us consider a visiting sequence 
Q = (si , S2, • • •, sn) of border points, where p = Sk for a given k G {1,2 , . . . n}. Let 
50 = 0 , Si = { S i , S 2 , ( 1 < i < n ) , 

Di = {x | x G Si and STA(T) removes x when the visiting order is Q}, 

and let us define the picture Vi = (Z2 ,8,4, Y \ DUY+). Note that D0 = 0 and 
51 C y + , hence p G Y + . 

Obviously, there must be a point s» = q G Di (1 < i < k) such that p is T-
deletable in Vi-1, but p is not T-deletable in Vi. As q G Di, q is also T-deletable in 
Vi-1- q must fall into a marked position in a template T G T, else the removal of 
q would not influence the deletabilty of p. This, however, leads to a contradiction 
with Condition I. 

Therefore, only Case II can occur, which means that there must be a point 
Si = q G Di (1 < i < k) such that p is not T-deletable in the picture Vi-1, but p 
is T-deletable in Vi- Let T be the template that p matches in Vi. As q falls into 
a marked position in T, q £ N4(p) or p is not a single border point in Vi, or else 
p would have been an interior point in the beginning of the given iteration of the 
algorithm, which is not possible, as p G Y+ in our example. Furthermore, q can 
not be a cavity point in Vi, or else q would have been an interior point in Vi-1, 
thus it would not have been visited at all. From these observations follows that q 
must be the difference point of T and one of its contour-expanded versions, T'. As 
q is T-deletable in picture Vi, its position yields a T-deletable point in template 
T', as well. However, this contradicts Condition II. • 

4 The Proposed Template Sets 
Here we introduce two template sets, T 1 and T 2 with the help of Fig. 2, which can 
be used for two possible realizations of Algorithm 2. 

In the 5 x 5 templates Ta—Ti depicted in Fig. 2, each black template element "•" 
or coincides with an active black point, while the black template elements "-^r" 
match inactive black points. Each white template element coincides with a white 
point. "Don't care" elements (i.e., empty positions) stand for points which can 
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be either active black points, or inactive black points, or white points. The points 
marked "." can be either active black points or white points. Let us define T^ = Tx, 
and T2 = Ty for any x G {a,b,c,d,e, f,g,h,i,j}, y G {a,b,c,d,e, f,g,h,k,l), with 
the supplement that points marked "O" count as "don't care" in the templates T2 , 
but in T^, they must be either active black points or white points. Taking these 
assumptions into consideration, we introduce the following sets: 

Tbase = {Tl I x e {a,6,c,d,e,/,5,M, ;'}}, 

Tbase = {Ty\y£ K b> c> d> e> f,9,h,k,l}}. 
Finally, the proposed template sets T 1 , T 2 contain the templates of Thlise, T^ase, 

respectively (see Fig. 2), plus all their possible k x 90° rotated and reflected versions 
(k 6 {1,2,3}). Later, we will also refer to the set of all such possible transformed 
versions of a given mask T j or T2 , which will be denoted by T^ or Ty, respectively. 

5 Discussion 
Now we will show that the algorithms STA(Tl) and ST ACT2) are both topology-
preserving and order-independent. For the proof of the mentioned properties, we 
need to introduce some further notions. For a given object point p, let us denote by 
ifc(p) the number of elements in Arfc(p) D(B\ B+) (k G {4, 8}). Further on, for any 
active black points that are 4-adjacent to points p and q, the number of elements 
in N£(p) n N£(q) n B+ will be denoted by Bp(q). 

Let T G T 1 U T 2 . Let us also consider an additional 5 x 5 template T' being p 
its central point where T" has the following properties: 

i) if the cell on the position (x, y) (x,y G {0,1,2,3,4}) marks a black/white 
point in T, then the cell on the position (x,y) also marks a black/white point 
in T"; 

ii) if the cell on the position (x,y) (x,y G {0,1,2,3,4}) marks a point denoted 
by '.' in T, then the cell on the position (x, y) marks an active black point or 
a white point in T'\ 

iii) if the cell on the position (x, y) (x,y G {0,1,2,3,4}) is a "don't care" point 
(i.e. an empty cell) in T, then the cell on the position (x, y) refers to a black 
or a white point in T'; 

iv) each active black point in a position coinciding with a member of N%(p) in 
T' has at least one white 4-neighbor q for which N4(q) does not contain any 
inactive black point in T'. (A member of N^q) being not coincident with 
any position of T' can have any values.) 

T' is called the properly composed version ofT. For a better understanding of this 
definition, Fig. 3 shows two templates where the first of them in Fig. 3a is a properly 
composed version of template Tk• However, in the template of Fig. 3b, both the 
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Figure 2: Sets of templates T^ase and T^ase- Notations: each position marked "•" 
and matches an active black point; positions denoted by match inactive 
black points; each position marked "o", "•" , and "A" matches a white point; each 
"." can yield either an active black point or a white point; each empty cell matches 
a "don't care" point which can be either an (active or inactive) black point or a 
white point; the symbols "©" are to be considered as "." for the members of T 1 

and "don't care" for the members of T 2 . 



94 Péter Kardos 

o o o o o 

o • o o 0 

o • p • • 

o • * • * 
• * • * * 

o o o o o 

o • o o * 
• • p • • 

o • * * • 
• * * * • 

a b 

Figure 3: Examples for being (a) and not being (b) a properly composed version 
of the template 7 \ . 

left and the right 4-neighbor of p are active black points, which for Condition iv) 
is not fulfiled. 

For the proof of order-independency we will make use of an earlier result which 
states an important property of decision pairs. 

Proposition 1. [4] If {p, q] is a decision pair, then Ns(p,q) matches at least one 
of the configurations in Fig. 4 or their rotations by 90°, 180°, or 270°. 

• 

p q 
• 

• 

p q 
• 

• 

p q 
• 

• 

p q 
9 

Figure 4: Possible configurations of the horizontal decision pair {p, q}. Points 
marked by empty cells may be either black or white. 

By careful examination of the templates in T 1 and T 2 we can observe the 
following two facts. 
Proposition 2. In any T £ T1 there is:an inactive black point (marked "-jc") in 
N8(P). 

Proposition 3. In any T G T 2 there is an inactive black point (marked "if") in 
N4(p). 

Remark 1. From these propositions and from our endpoint-criterion introduced in 
Section 1 follows that algorithm STA(Tl) preserves eg-endpoints while STA{T2) 
preserves e4-endpoints. 

An important question in the view of order-independency is how the decision 
pairs are handled by algorithms STAiT1) and STA{T2). The lemma below serves 
as an answer. 

Lemma 1. Let T g f ' u T 2 and let T' be a properly composed version ofT. If p 
is a member of a decision pair {p,q} in Ï", then one of the following conditions is 
satisfied: 
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• I4(p) < I4{q), or 

• I4(p) = IA(q) and I8(p) < I8(q), or 

• I4(p) = h(q), hip) = h{q), and Bp(q) < Bq(p). 

Remark 2. As at most one point can be removed from the decision pair {p, q} 
without altering the topology, we must somehow set rules to be able to decide 
whether we may safely remove any point from the pair at all, and if so, then which 
one should be preferred. This lemma gives a possible preference for this decision, 
which prevails for the template sets T 1 and T 2 . The number of interior 4- and 
8-neighbors is a useful property for the comparison of p and q, as the interior 
points do not change during an iteration. The values Bp(q) and Bq(p) can be 
also applied for this purpose, if it is ensured that the sets N4(p) n Ng(q) n B+ 

and N4(q) fl N£(p) Pi B+ contain only non-deletable border points. Note however 
that if the neighborhood of the decision pair is symmetric, then these rules do not 
determine any preferred point in {p, q}. 

Proof. First we will show that at least one of the mentioned conditions holds for 
each T e 

• If T £ { T ^ T ^ T ^ j T 2 } , then it is obvious that p is not a member of any 
decision pair in T'. 

• If T G {Tf), Tb
2}, then at least one of the positions marked "." in N4 (p) must 

be a white point, else p would be an interior point. Therefore, by Proposition 
1, p is not a member of any decision pair in T'. 

• If T G { T j . r j } , then I4(p) = 1 and hip) > 1 in T. 

- Let q be the left 4-neighbor of p in T. Then, I4(q) > 1 = I4(p). If 
h(q) = then Is(q) = 2 and I$(p) = 1, which implies I$(q) > hip)-

— Let q be the upper 4-neighbor of p in T. If T = T j , then q is an eg-
endpoint. Let T = T j . q does not match the templates in 7^ (x G 
{a, b, c, d, e, / , <7, h}), because I4(q) — 0, and in the mentioned templates 
the central point has at least one inactive black 4-neighbor. By careful 
examination of the possible remaining templates it is also easy to see 
that q does not match any member of 7}1 and 7"1. Thus, q is neither 
T^-deletable nor 7^-deletable, hence {p, 5} cannot be a decision pair. 

• If T G {Tl,T%}, then IA{p) = I&ip) = 1 in T'. Let q be the left or upper 
4-neighbor of p in T'. Then, in both possible cases we get hiq) = 1 = h(p), 
I8(q) > 2 > hip)-

• If T G {T},Tf}, then hip) = I, hip) = 2 in T'. Let q be the left 4-neighbor 
of p. By Proposition 1, only the set {p,q} may be a decision pair in T', and 
I4(q) = hip) - 1, hiq) > 2 ='h(p), further on, Bp(q) = 0 , B q ( p ) = 1, hence 
Bp(q) < Bvip). 
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• If T £ {Tg,Tg}, then let q be the right 4-neighbor of p and r be the left 4-
neighbor of p. By Proposition 1, the set {p, r} cannot be a decision pair in T'. 
Let us suppose that {p, q} is a decision pair. In this case, q is a border point, 
and by Proposition 1, the upper 4-neighbor of q must be also a border point. 
Therefore, there is not any white point s in N4(q) which for N4(3) would 
contain any inactive black point. But this leads to a contradiction with the 
definition of the properly composed version of T. Hence, {p, q} cannot be a 
decision pair in T'. 

• If T £ {T^ we can show the same way as in the previous case that p can 
not be a member of a decision pair in T'. 

• If T = T/ , then h(p) = 0 and by Proposition 1, p can only be a member of a 
decision pair {p, q} in T' where q is the left or bottom 4-neighbor of p. Then, 
/4(9) > 1 > h(p). 

• If T = T], then /4(p) = 0 and the following two cases are to be examined. 

— Let q be the right 4-neighbor of p in T'. If the bottom 4-neighbor of 
q, say r, is not an inactive black point, then q is an es-endpoint, which 
means, {p, q} cannot be a decision pair. If r is an inactive black point, 
then I4(q) = 1 > J4(p). 

— Let q be the bottom 4-neighbor of p in T'. Then, /4(q) > 1 > IA{P)-

• If T £ {T2, T2}, then it is easy to see by Propositions 1 and 3 that p cannot 
be a member of a decision pair in T'. 

It is obvious that the amounts /4(p), h(p), Bp(q), Bq(p) will not change for 
any q £ N4(p) after rotating or reflecting a template. Therefore, the lemma 
also holds in the case T e U for any x £ {a,b,c,d,e, f,g,h,i,j} and 
y £ {a,b,c,d,e,f,g, h,k,l}. • 

Finally, using Lemma 1 and Propositions 2-3, we give a proof for the mentioned 
properties of the proposed algorithms. 

Theorem 3. Algorithms STA(Tl) and STA{'T2) are both topology-preserving. 

Proof. It is easy to see that if an object point p matches in any iteration of STA{TX) 
or STA(T2) a T £ 7-1 or a T € T 2 , then there must be a properly composed version 
T' of T which for p matches T' as well. Therefore, by Theorem 1 we have only to 
show that C(p) = 1 holds in such a T". It is sufficient to prove this only for the 
case T £ Ttase U Tfrase, because C(p) does not change after rotating or reflecting T. 

• Let T £ {7^,7^} where x £ {a, b, c, d, e,f,j} and y £ {a, b, c, d, e, / , k, Z}. By 
careful examination of these templates one can notice that C(p) = 1 in T", 
hence p is simple. 
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• Let T G {T} ,7^}. It is easy to see that in the beginning of the actual iteration 
of STA(T ) or ST ACT2), C(p) = 1 in T', and the only way that this could 
change is when the right 4-neighbor of p, say q, and the upper 4-neighbor of 
q are both black points and q gets deleted before visiting p in Phase 2. But 
in this case, we would come into a contradiction with the definition of T", as 
q would be an active black point which for N4(q) does not contain any white 
point without an inactive black 4-neighbor. Therefore, C(p) = 1 still holds in 
T' when p becomes the actual point in Phase 2, which means that p is simple. 

• The proof for the situation T G {7^, 7^ } can be similar to the previous case. 

• Let T = T 1 . It is easy to see that in the beginning of the actual iteration of 
ST ACT1), C(p) = 1 holds in T', and there are two possible situations when 
this could change: either both the left 4-neighbor of p, say q, and the upper-
left 4-neighbor of p are black points and q will be removed before visiting p, or 
the bottom 4-neighbor, say r, and the bottom-right 4-neighbor of p are black 
points and r will be removed before visiting p. We only give the proof for the 
first case as the other situation can be similarly examined. Let us suppose 
that q gets removed before visiting p. Thus, when algorithm STA(Tl) visits 
q, it matches a properly composed version U' of a U £ T 1 . It is obvious 
that U ± T\ and U <£. T1, hence U = T1 or U G T1 must hold for at least 
one x G {a,b,c,d,e, f , j } . Above, we have already seen that in such a case, 
the central point of U' is a simple point. It can be also easily seen that by 
removing p before q, q would not be simple any more. This means that {p, q} 
is a decision pair, and from Lemma 1 follows that in this situation, q will not 
be removed. Hence, p remains simple until it gets removed. 

• 

Theorem 4. Algorithms STA(Tl) and ST ACT2) are both order-independent. 

Proof. For the positions represented by white or black symbols in any template 
T G T 1 U 7 -3 the following observations can be made. 

• Points marked by "o" do not have any inactive black 8-neighbor/4-neighbor, 
therefore if we consider such a point q and a contour-expanded version T' of 
T G T1 /T G 'T2 with difference point q, then by Proposition 2 / Proposition 
3, q is not TMeletable/T^-deletable in T'. 

• Points marked by "•" do not have any inactive black 8-neighbor/4-neighbor, 
therefore, by Proposition 2 / Proposition 3, such a point is not T'-deletable/ 
7^-deletable in T. 

• It is easy to see that if a position denoted by marks a simple point q and 
N$(q) contains an inactive black point, then by Lemma 1, q does not match 
any T' G T 1 UT2. 
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• Points marked by " A " are 4-neighbors of a simple point, therefore we can 
not construct for such a point q any contour-expanded version T' of T with 
difference point q. 

• The point represented by the symbol " • " is an isolated cavity point, therefore 
we can not construct for such a point q any contour-expanded version T' of 
T with difference point q. 

From these observations and from Theorem 2 follows that algorithms STA(Tl) and 
ST ACT2) are order-independent. • 

6 Results 
In experiments our algorithms were tested on some test pictures. Our results were 
compared to the ones produced by the existing algorithm introduced by Ranwez and 
Soille [9]. Figs. 5-9 show some illustrative examples where "skeletons" extracted by 
the mentioned 2D algorithms are superimposed on the original objects. Numbers 
in parentheses indicate the counts of skeletal points. One can easily recognize that 
the method by Ranwez and Soille has extracted much more unwanted line segments 
for the selected pictures than the proposed algorithms. However, it is important 
to note that the aim of the paper is not to carry out a detailed comparison of 
order-independent sequential thinning methods, hence the shown results serve only 
demonstrational purposes. 

STA{TX) (2 243) ST ACT2) (2 780) Ranwez-Soille (3 571) 

Figure 5: A 612 x 467 image with 179293 object points of an elephant and its 
"skeletons". 
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ST A^T1) (1318) ST ACT1) (1931) Ranwez-Soille (2 027) 

Figure 6: A 530 x 530 image of a seahorse with 79 293 object points and its "skele-
tons". 

ST ACT1) (1300) ST ACT2) (1786) Ranwez-Soille (2194) 

Figure 7: A 492 x 606 image of a crow with 126 538 object points and its "skeletons". 

STACT1) (3389) ST ACT2) (4 329) Ranwez-Soille (6081) 

Figure 8: A 1600 x 1600 image of a plane with 487 620 object points and its "skele-
tons". 
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STA(Tl) (4053) ST ACT2) (4641) Ranwez-Soille (6168) 

Figure 9: A 745 x 773 image with 152 611 object points of a leaf and its "skeletons". 
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Employing Pythagorean Hodograph Curves for 
Artistic Patterns 

Gergely Klár* and Gábor Valasek* 

Abstract 
In this paper we present a novel design element creator tool for the digi-

tal artist. The purpose of our tool is to support the creation of vines, swirls, 
swooshes and floral components. To create visually pleasing and gentle curves 
we employ Pythagorean Hodograph quintic spiral curves to join a hierarchy 
of control circles defined by the user. The control circles are joined by spiral 
segments with at least G2 continuity, ensuring smooth and seamless transi-
tions. The control circles give the user a fast and intuitive way to define the . 
desired curve. The resulting curves can be exported as cubic Bezier curves 
for further use in vector graphics applications. 

1 Introduction 
Floral elements, vines, tangled spirals and similar features are among the most 
popular design components. These components could be found in traditional orna-
mental and contemporary abstract designs as well. Whatever the actual media or 
purpose is, the common property of these patterns is they consist of an intricate 
network of gentle curves. Creating such curves by hand is a non-trivial task. Users 
of vector graphic applications often employ spirals as a starting shape, then apply 
transformations to achieve the desired curve. This method of curve creation heavily 
restricts the set of producible shapes. The motivation for our work was to enlarge 
this set of curves available for the artist, while guaranteeing the pleasingness of the 
curves. 

To give a formal definition of pleasing curves, we built upon the empirical ob-
servation and the same assumption as Xu and Mould, that is, a pleasing curve is a 
curve of monotically changing curvature. Our tool enables the digital artists to cre-
ate such curve or sequence of curves with ease. Out method uses cubic and quintic 
splines to generate resolution independent curves, which can be used directly, serve 
as a skeleton of a design, or act as a path for strokes or objects. To support the 
widest range of third party tools possible, the generated curves can be exported as 
cubic Bezier splines. 

* Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary, 
E-mail: g.klEirScreativereboot.hu, valasek8inf.elte.hu 
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To ensure this property of the drawn curves, we employ Pythagorean Hodograph 
(PH) curves. PH curves introduced by Farouki and Sakkalis [5] have very favourable 
properties, most importantly it is possible to define spiral segments using PH quintic 
curves whose curvature changes monotonically with arc-length. Spiral curves have 
been used in highway, railway and robot trajectory design [1], [7], [9]. Walton et. 
al. proposed to use PH spirals for such applications [12], which was followed by 
further research on PH quintic spirals [4] [6]. Now we demonstrate the efficiency of 
these curves as design elements as well. 

2 Background 

There have been several efforts to automate aspects of the artistic process of creat-
ing such designs and ornaments. Since the fundamental work of Prusinkiewicz and 
Lindenmayer [10] L-systems has been used widely to generate flowers and flower 
like patterns. 

Wong et al. [8] presented a system to automatically generate space-filling flo-
ral ornaments. Their system uses proxy objects during generation what could be 
replaced by arbitrary elements created by any means. 

Xu and Mould's Magnetic Curves [14] are more closely related to our work. 
They focus on the creation of the curves themselves, but their method uses a 
discrete time-step approach, and they commit the problem of creating smooth 
curves to approximation routines. 

In our tool the user defines the curves by placing circles on the canvas. Using 
various intuitive defining elements such as this has been subject to research [2], for 
example Singh proposed a method in which ellipse arcs axe used for defining the 
curves [11]. 

3 Pythagorean Hodograph curves 

Let x(t) and y{t) be the x and y components of the parametric curve Q(i) : [0,1] —> 
R2. Q(i) is said to be a PH curve if there exists a polynomial a(t) such that 
x'2(t) +y'2(t) = a2(t), that is, its coordinate polynomials' derivatives x'(t),y'(t) 
form a Pythagorean-triple with the parametric speed cr{t). This holds if and only 
if 

x'(t) = (u2(t) + v2(t))w(t) 
y'{t) = 2u{t)v{t)w(t), 

where u(t), v(t), and w(t) are polynomials and u(t) and v(t) are relative prime [5]. 
We set w(t) = 1, that is we use primitive Pythagorean Hodograph curves, following 
Walton and Meek's work as in [12]. 

One of the appealing properties of PH curves is their curvature can be expressed 
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as a rational function 

n(t) = 
2 (u(t)v'(t)-u'(t)v(t)) 

(u2(t)+v2(t))2 

The polynomials u(t) and v(t) are defined to be quadratic, hence there are six 
parameters (six scalar degrees of freedom) for the final curve. Using quadratic u(t) 
and v(t) results in quintic Q(i) what has desirable properties for our needs. This 
Q (t) then can be expressed in the Bezier form 

where Po is the beginning point of the curve and P G {1,2,3,4} are functions 
of the aforementioned six parameters. For the exact definition see [12]. 

Figure 1: Definition of points and angles as used by Walton and Meek. 

Without the loss of generality, we can consider the case where the curve starts 
from the origin and the x axis is tangential to it, as detailed in Habib and Sakai 
[6]. The user defined values for the actual starting point and tangent for the curve 
then can be translated, rotated, and if needed mirrored to align with this special 
case. The control points are computed in this space, then they are transformed 
back to the original using the inverse transformations of the applied ones. 

We use these curves to define spiral segments with monotonically changing 
curvature. These spiral segments are used to create our circle-in-circle and circle-
inside-circle transitions as detailed in the following section. 

t G [0,1] 

\ 
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Figure 2: Definition of points and angles as used by Habib and Sakai. 

4 Control circle hierarchies 
To create the desired pattern, in our tool the user defines curves through a hi-
erarchy of control circles. These control circles define the constraints required to 
derive a gentle curve. The control circles form a directed tree, where each circle is 
potentially connected to its ancestor. These connection are automatically created 
by our system as an appropriate curve. 

Using the control circle hierarchy we create smooth transition curves between 
each child and the ancestor circle. Depending on their geometric relation we con-
sider two cases: the circle-to-circle transition curve between two non-touching and 
non-overlapping circles, and the circle-in-circle transition curve, when the descen-
dant circle is fully contained within its ancestor. For the circle-to-circle case we 
only support S-shaped transition curves, i.e. curves with an inflection point in the 
middle. 

To realize these curves, the previously introduced PH curves are used. These 
curves have been defined to have G2 contact to their control circle. Therefore, each 
incoming curve can have G2 contact with any outgoing curve of the same circle if 
their endpoints coincide. 

The typical workflow of curve creation in our prototype application using control 
circles is as follows: 

1. The user places an initial circle on the drawing canvas or selects and existing 
one. 

2. Adjusts the position and radius of the circle as needed. 

3. Creates a new control circle anywhere on the canvas, and sets its radius. 

4. The new circle is created as a child of the previously selected one. 

5. The circles define the starting and ending curvature of the curve. 
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6. If it is possible, a new transition curve is created by our tool, the curve will 
coil onto the control circles, touching them only at the endpoints with G2 

contact. 

4.1 Circle-to-circle transitions 
Two non-touching, non-overlapping control circles are connected by an S-shape, if 
distance centres are within a certain threshold. The derivation of the control points 
of the S-curves is following the work of Walton and Meek [13]. 

According to their work, if the radii and centres of the circles are n , r2 , Ci , C 2 
respectively, then the condition for the distance threshold is 

ri +r2< ||C2 - C, || < ^ + (r, + r2) < 3.075(7-! + r2). 

If this criteria is met, the transition curve is automatically created. 
The positions and radii of the circles define the shape of the S, save for reflec-

tional symmetry. The choice between the two possible curves is the only required 
additional user input. 

The S-shape is produced using two distinct PH spiral segments. Let Qi(i), Q 2 ( t ) 
denote these two curves. We derive both Qi ( t ) and Q 2 ( t ) so Qi(0) = Q2(0), 
Q i ( 1 ) , Q 2 ( 1 ) lie on the first and second circle respectively, and k i ( 0 ) = « 2 ( 0 ) , 
/ii(l) = «2(1) = where (t),K2(t) denotes the curvature of Qi(t),Q2(t) 
respectively. 

4.2 Circle-in-circle transitions 
A fully contained circle is joined to its ancestor with a spiral segment, if such 
transition is possible. The conditions and the derivation of the control points are 
given in Habib and Sakai's [6] work. 

For a given containing circle with radius and centre r i , C i , only the radius r2 
of the contained circle is required to compute the control points of the new spiral 
segment. Using the radii of the circles the algorithm first computes the range of 
allowed distances between the centres. From this range our software chooses the 
smallest possible distance. While it would be possible to introduce this as a user 
parameter, practice show that this does not expand the range of possible curves 
significantly. 

As a consequence of the derivation, from the parameters that are defined by the 
user the ones used are only ri , r2 , Ci, but not C2 . The actual value of ||Ci — C2 | | is 
chosen by the software, and the final C2 centre is computed at a later point. For a 
given pair of radii and a distance, the spiral segment is uniquely defined, thus it is 
the radii and centre-to-centre distance that dictates the positioning of the smaller 
circle. If the creation of the transition curve is possible, only the radius of the 
smaller circle is used from the user input, and its centre is repositioned as defined 
by the algorithm. Similarly to the S-curves, a mirroring property can be defined. 
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An additional parameter of a spiral segment is its starting point, defined in degrees 
on the ancestor control circle. For new segments, this is automatically calculated, 
so the new curve continues the ancestor's incoming curve, if it exists. 

5 Implementation 
The computations of the control points in both cases are quite involved, especially 
for the case of circle-in-circle transitions, and require numerical algorithms in the 
implementation. Since the solution of the emergent equations differ greatly the two 
kinds of transition curves, we discuss them separately. 

5.1 Circle-to-circle transitions 
For this special case of circle-to-circle transitions, all the six parameter of u(t) and 
v(t) can be reduced either to zero or to the function of a single parameter 9 for 
each PH spiral segment. This 9 measures the angle between the beginning and 
ending tangent vectors of a spiral segment, as show on Figure 1. Because of this, 
the problem of finding the appropriate curve is reduced to finding an appropriate 
value of 9. 

Unfortunately, there is no known explicit equation for 9, but it defined as the 
root of a rational trigonometric equation f(9) = 0. Citing [12] f(9) is defined as 

m = | | c 2 - C l f - ( T 1 ± ) - ^ ) \ 2 ( e ) , 

where 

9i (0) 

92(e) 

The first and second derivatives of g\ and g2'-

36,cos (9)3 + 72 cos (6)2 + 365 cos (0) - 700 

cos (9)2 + 2 cos (9) + 1 

(36 cos (9)3 + 108 cos (Of - 221 cos (9) + 1765^ sin (6) 

cos {6f + 3 cos (9)2 + 3 cos (9) + 1 

( l8 cos (0)2 + 36 cos (9) - 80) sin (9) 

cos (9)2 + 2 cos (9) + 1 
18 cos (9)3 + 36 cos (9)2 + 116 cos (9) - 196 

cos (0)2 + 2 cos (9) + 1 

sin (9) 
(1 + cos (9)) 

1 
TTcosTö) 

(321 - 58 cos (9) + (-36) cos (0)2) , 

(91 + 11 cos (9) + 18 cos (0)2) . 

SÍ (0) = 

9"(0) = 

92(0) = 

92(0) = 
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Using these we numerically find the root of 'f(d) = 0 with bisection. It is suffi-
cient, since these computations are only required when parameters of the defining 
circles are modified. 

5.2 Circle-in-circle transitions 
When computing the control points for a circle-in-circle transition we built upon 
the work of Habib and Sakai [6]. The problem boils down to finding a specific 9 
value like in the previous case, but here it has a slightly different meaning. This 
time it is 29 that measures the angle between the beginning and ending tangent 
vectors of a spiral segment. Figure 2 demonstrates 9 and 29. 

Before computing 9, a valid range for ||Ci — C2II has to be determined. Again the 
solution required a root solving technique. (The upper bound is simply |Ci — C2 | .) 

The equation what's root is to be found is 

These definitions were given by Habib and Sakai. As it is clear from the equa-
tions above, the derivative of the concerned functions are too complex, and it-would 
be impossible to work with it efficiently. Nevertheless, because the domain of the 
possible solutions is known, a simple bisection method has proven adequate. 

m(A) ( r i - r 2 ) - | | C i - C 2 | | = 0 , 

where 

m W = ' 
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6 Export and refinement 

The patterns created in the tool can be exported as sequences of cubic Bezier curves 
in SVG format (the highest degree Bezier curves that SVG supports). In order to 
reduce the difference between the original PH curves and the Bezier curves as much 
as possible, each PH curve is exported as two Bezier curves. Since a quintic PH 
curve is a special Bezier curve, standard operations can be carried out on it. At 
first we split the PH curve to two quintic Bezier curve at t = 0.5, then reduce the 
degree of these curves to cubic. The resulting curve undergoes just small visual 
distortion. 

The SVG format is widely recognized by application, thus the user can use 
the whole toolset of her software to apply colours, strokes, brushes or textures the 
curves. Figure 3 demostrates such a process. 

Figure 3: Refinement process example, from left to right: SVG file opened with 
Inkscape, Bezier segments connected, brushes and colours applied according to 
curve parameter (brushes shown below). 

In this paper we demonstrated a novel use of Pythagorean Hodograph curves. We 
presented a tool in which the user can create smooth patterns using out control circle 
hierarchies. Using this tool the user can effortlessly create curves with pleasing 
slopes and seamless connection thanks to the monotonically changing curvature of 
the elements and to the G2 contacts. We aim this tool to the digital artist for 
creation of floral ornaments, swrils, and swooshes. 

Along with these, we augmented the works of principal researchers of PH curves 
with implementation details. 

Finally we showed how our tool integrates with other vector graphics applica-
tions. 

7 Results 



Employing Pythagorean Hodograph Curves for Artistic Patterns 109 

8 Future work 
While control circles give an intuitive way to define the curves, they lack the pre-
cision that is sometimes required even by the artist. It it not possible to explicitly 
define the start or endpoint of a curve, and they can be fitted only using experi-
menting. This behaviour of the control circles arises from the formulation of the 
PH curves, where only the starting point could be defined, and the position of the 
endpoint is dictated by the value of 9. Being able to directly define the endpoints 
and curvatures, much like the cubic Bézier curves being defined by endpoints and 
tangents in drawing applications, would give the user much better control. 

An other aspest of our future work is fully integrating our tool to a vector 
graphics application, such as Inkscape. This way our technique would be able to 
reach a wider audience, and we could receive feedback from a real user base. 

Further appealing properties of the PH curves can be taken advantage of. For 
example the arc length of PH curves can be expressed as a polynomial, allowing 
the application of textures and brushes depending on arc length, not just on curve 
parameter. 
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Calculating Non-Equidistant 
Generated by Blaschke 

Levente Lócsi* 

A b s t r a c t 

The argument functions of Blaschke products provide a very elegant way of 
handling non-uniformity of discretizations. In this paper we analyse the effi-
ciency of numerical methods as the bisection method and Newton's method in 
the case of calculating non-equidistant discretizations generated by Blaschke 
products. 

By taking advantage of the strictly increasing property of argument func-
tions we may calculate the discrete points in an enhanced order—to be in-
troduced here. The efficiency of the discrete points' sequential calculation in 
this order is significantly increased compared to the naive implementation. 

In our research we are primarily motivated by ECG curves which usually 
have alternating regions of high or low variability, and therefore different 
degree of discretization is needed at different regions of the signals. 

Keywords : non-equidistant discretization, Blaschke products 

1 Introduction 
In many cases non-equidistant discretizations (or non-uniform divisions) have been 
proven very useful. Many examples can be found from the fields of computer 
graphics (e.g. NURBS curves) to FFT analysis by engineering sciences. 

In our research we are investigating a very elegant way of handling non-unifor-
mity in the case of signals (e.g. ECG signals) with regions of high variability and 
therefore more detail, dense discretization needed, and with constant-like regions 
where less detail, sparse discretization is enough. The Blaschke functions, Blaschke 
products and their associated argument functions are used to describe a suitable 
non-equidistant discretization. The inverse image of an equidistant discretization 
according to an argument function is considered. 

One can give an explicit form of the inverse of an argument function associated 
to a Blaschke function: the inverse can be simply calculated. But in the case 
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of Blaschke products, the inverse of the argument function has no explicit form, 
numerical methods are needed to solve the arising non-linear equations. We have 
as many equations as the number of points in the discretization to generate. 

In the work to be presented here we analyse the efficiency of methods like the 
well-known bisection method and Newton's method applied to this problem. By 
taking advantage of non-uniformity and the strictly increasing property of argument 
functions, we may solve the equations at hand in a clever order also to be explained. 
The advantages and disadvantages of these methods and their combinations are to 
be analysed. 

In Section 2 we introduce the argument functions (associated to Blaschke func-
tions and products) as they serve as the starting point for the research presented 
here. Then we show how we can define a non-equidistant discretization (NED) 
according to an argument function. 

Then in Section 3 we describe the methods that can be used to calculate a 
NED, analyse their advantages and disadvantaged and introduce the idea of a 
better order to calculate the discrete points. Finally in Section 4 we present our 
results concerning calculation step count and time. 

A section exhibiting possible further research areas, and the Summary concludes 
this paper. 

2 Non-equidistant discretizations 
In this section we describe the Blaschke functions and products, define the argument 
function of those and show how a NED can be defined. We are focusing mainly 
on the properties of the argument function, therefore we do not provide a detailed 
description of Blaschke functions. For a proper definition, further analysis and 
detailed calculations see e.g. [1, 3]. 

Blaschke functions are a family of complex valued functions of a complex vari-
able with one additional complex parameter1 inside the complex unit disk, i.e.: 

B a :C-><C, (a = r • eiíp, 0 < r < 1, ip £ R), 

and they are defined by the formula: 

= ( z G C \ { l / 3 } ) . 
i — az 

These functions have the following property which we will use later on: they are a 
continuous bijection from the unit circle onto itself. 

Blaschke products are essentially products of Blaschke functions. 

Note some basic properties of Blaschke functions. The function Ba has a zero 
inside the unit circle (Ba(a) = 0), and it has a pole of order one outside the unit 
circle in the point 1/a. 

1 A second parameter may also be introduced, but is of no importance in this context. 
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Blaschke functions and products have many interesting properties and wide 
ranges of mathematical application. E.g. the isometric transformations on the 
Poincare disk model of hyperbolic geometry can be written in terms of Blaschke 
functions; they can describe rational orthogonal systems2; UDMD systems can be 
formed with them, which allows the application of FFT-like algorithms; they form 
a group with respect to the composition of functions, so wavelet-like transforms 
can be defined related to them; etc. See [4, 5, 6, 7]. 

From the bijection property of the function Ba comes that to every t £ K we 
can assign a unique u £ [—7r,7r] so that exp iu = Ba(expit). This leads us to the 
definition of the argument function associated to a Blaschke function: 

/?a: K —» R, ¡3a(t)=argBa(eu). 

The /?a argument function has the explicit form 

Pa(t) = (6 + <p) + 2 arctan t a n ' W 

where a = r • exp i<p, and a further 5 value is introduced3, which should be chosen 
so that Pa becomes a continuous bijection of [—w, n) for our convenience. Note that 
Pa is strictly increasing and invertible. 

The argument function of a Blaschke product is defined as 

1 m 1 m 
/ 3 - l , . . . , a m ( i ) : = - a r g n S a j ( z ) = - E ^ i ( i ) , (2) 7 lO , 7it 3 = 1 J = 1 

with the a j ( j = 1 , . . . ,n) parameters all inside the complex unit disk. This def-
inition makes use of the fact that the argument of the product of two complex 
numbers is the sum of the arguments of each. Also the 1/m factor is applied to 
maintain the [—tt, tt) bijection property. 

A NED is defined as the inverse image of an equidistant discretization. Consider 
the following set of ./V £ N equidistant points: 

:= j -tt + fc . ^ : 0 < / c < A T - l J c [-tt, tt). 

Then for given 1 < rn £ N, and a i , . . . , am parameters the set 

< am := {PaL,aJt) : t £ Dq } C [-tt.tt) 

is a non- equidistant discretization (NED) of N points on the interval [—n, n). 

2 The Malmquist-Takenaka systems can be written in explicit form using Blaschke products. 
3 This 5 value depends on the previously mentioned possible second parameter of the Blaschke 

functions, when rigorously defined. One could consider B a i d = d • d = expitf. 
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(b) ai = - 4 / 5 i,a2 = 1 /2 • i 

Figure 1: Argument functions and NEDs. 

Figure 1 shows two example NEDs of N — 24 points. The first one is generated 
by a Blaschke function and the second one is generated by a two-factor Blaschke 
product with the indicated parameters. Observe that the location of the more 
dense areas depend on the argument of the parameter, and the degree of density 
corresponds to the absolute value of the parameters.4 

Therefore we gain high control over the distribution of discrete points and so 
our discretization can be flexibly adapted to different problems, signals. 

Non-equidistant discretizations play an important role in mathematics and ap-
plications. E.g. when m = N, the Malmquist-Takenaka system corresponding to 
the parameters a \ , a2 , . . . , a m forms a discrete orthogonal system with respect to 
a scalar product defined on NED points; representation of signals and systems 
(Nyquist and Bode diagrams) can be improved using NEDs; etc. See works of 
authors of [1, 2, 3]. 

3 Calculating a N E D 

In this section we discuss the methods available for the numerical calculation of a 
NED, and describe an enhancement of the bisection method for this problem. 

4NOW we can see, that <5 does not influence the density in any relevant way, it was really 
introduced only for convenience. (In this context.) 
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3.1 General observations and notation 
Given 1 < N G N, the number of discrete points and a\,... ,am (1 < m G N) set 
of parameters, denote the discrete points of an equidistant discretization by 

27r 

dk := - j r + k • — (0 < A; < TV — 1), 

and the corresponding points of the NED by 
ek ;= Pai]...,aJdk) (0 < fc < JV - 1). (3) 

To calculate the NED of N points with these parameters, basically we must 
find the ejt values for all 0 < k < N — 1, as the calculation of the dk values is quite 
straightforward. When we have only m = 1 parameter, then the inverse formula of 
the argument function in (3) can be explicitly given, recall the definition in formula 
(1). No further effort is needed. But having m > 1 parameters, the inverse has 
no explicit form, numerical methods are needed to solve the N arising non-linear 
equations. 

The most simple methods at hand are the well-known bisection method and 
Newton's method. Both have their own advantages and problems. The bisection 
method surely converges because of the strictly increasing property of the argument 
functions (the first derivative is greater than zero), but it requires a lot of calculation 
and converges only in first order. Newton's method would converge in order two 
(the first derivative is non-zero), but it needs to be initialized close enough to the 
solution, therefore we still need e.g. the bisection method to determine a suitable 
initialization point. 

The derivative of an argument function according to (1) and (2) has the form: 

1 2 i m 

« < * > - i a n d ^ í » ' j=i 

The positivity follows from the detailed calculation, see [1]. 

3.2 Applying the bisection method 
When applying the bisection method to find all the ek values with the prescribed 
precision e > 0, we should solve TV — 1 (for 1 < k < N — 1) non-linear equations 
one-by-one, i.e. apply the bisection method N — 1 times. (Note that the solution 
eo = do = —it is trivial.) So the naive implementation would go as written in 
Algorithm 1. Denote simply by /3 the argument function at hand. 

This algorithm needs (TV - 1) • ("log2(27r/e)] steps to reach the prescribed pre-
cision. (The case in Line 11 is very unlikely to happen.) 

3.3 Enhancing the order of calculation 
We may find that the naive implementation does not take any advantage of previ-
ously calculated solutions. But when calculating e.g. e$, we might make use of 
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Algorithm 1 Naive implementation of calculating all values using the bisection 
method. 

1: eo < 7T 
2: for fe = 1 , . . . , AT — 1 do 
3: a < 7T, b <— TV 
4: c < - ( a + 6)/2 
5: while b — a > e do 
6: if /3(c) < dk then 
7: a <— C 

8: else if /3(c) > dk then 
9 : 6 <- C 

10: else 
li: break 
12: end if 
13: c (a + b)/2 
14: end while 
15: ek C 
16: end for 

and e4 if these have been already found, and initialize the bisection iteration using 
these two values. The strictly increasing property of the argument function ensures 
that e,3 lies between e2 and e4. 

Consider the example when 8 points should be calculated. Having found eo and 
e4, the calculation of e2 can be initialized using these values, therefore the bisection 
method could' save 1 step (in average), since we have started with an interval of 
half the length of the original. Continuing similarly with e\ and e3 we may find 
that 1 more step can be saved for each. 

Generally with the order given by the preorder traversal of a balanced binary 
search tree containing the values 1 trough N — 1, we may save considerable amount 
of steps the bisection method to take. 

Now we shall give the algorithm of calculating this order in an effective way (see 
Algorithm 2) with an example of a filled table in the case N — 12 (see Table 1). 

Table 1: The appropriate calculation order of points and its generation. 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 
n(j) 0 12 6 3 9 1 4 7 10 2 5 8 11 
Pl(j) - 0 0 6 0 3 6 9 1 4 7 10 
P2Ü) - 12 6 12 3 6 9 12 3 6 9 12 

The table to be filled to generate this order of point contains the j indices, the 
points in the appropriate n(j) order and Pi 0 ) , P2O) 'parents' of the points. In the 
generating algorithm we are going along the columns of this table starting with 

for the rest of the points 

do standard bisection iteration 
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column 3, and put the 'children' of the current column in the next free columns of 
the table. The variable name w denotes the column currently watched and / the 
next column to be filled. 

Algor i thm 2 The generation of the enhanced order of points. 
1: n( 1) 0, n(2) N 
2: n(3) f - LiV/2j, P l(3) 0, p2(3) TV 
3: W i— 3, f i— 4 
4: while / < TV + 1 do while table is not filled 
5: if n(w) — pi (w) > 1 then if there are points in between 
6: Pi ( / ) <-pi(w), p2(f) <r- n(w) 
7: n ( / ) < - L ( P l ( / ) + P 2 ( / ) ) / 2 j 
8: f*~f + 1 
9: e n d if 

10: if p2(w) — n(w) > 1 and / < TV + 1 then the other side 
Pi(f) n{w), p2(f) <- p2(w) 

12: n ( f ) ^ [ ( P l ( f ) + P 2 ( f ) ) / 2 \ 
13: f i / + 1 
14: end if 
15: W W + 1 
16: end while 

And finally we show the algorithm of the bisection method enhanced with this 
order of calculation: see Algorithm 3. For convenience we define en '•= n- This 
algorithm uses the table generated by Algorithm 2. 

Algori thm 3 Enhanced implementation of calculating all ek values using the bi-
section method and the order generated by Algorithm 2. 

1: eo < 7T, ejv <r- 7T 
2: for j = 3 , . . . , TV -f 1 do for the rest of the points 
3: k 4 n(j) 
4: a ePl(j), b eP2(j) 
5: c < - ( a + 6)/2 
6.- while b — a > e do do standard bisection iteration 
7: the same iteration step 
8: end while 
9: ek i- c 

10: end for 

3.4 Applying Newton's method 
We have already noted that Newton's method should be initialized close enough 
to the solution to ensure (quadratic) convergence. The starting points required 
must be calculated with e.g. the bisection method. To make a proper statement 
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about what 'close enough' precisely means requires more detailed analysis and goes 
beyond the extent of this paper. So the application of Newton's method can be 
thought of as an improvement of the results (e^ values) calculated by the bisection 
method. 

The iteration goes as usual according to the formula 

(next) := ek - ß(ek) - dk 

ß'(ek) ' 
Note that the function values are given by (3(ek) — dk, since this is the expression 
whose zero is to be found. The iteration terminates when 
a prescribed e > 0 precision. 

(next) - ek falls beneath 

4 Results 
In this section we describe and analyse our measurements and results concerning 
step counts of the bisection method, execution time, and the application of New-
ton's method. Both theoretical and measured values are to be displayed. 

4.1 Step counts of the bisection method 
Figure 2 shows for each ek (0 < k < N — 32) point how many steps the bisection 
method takes to reach the precision e = 10~3. 

Light columns show that the calculation of every ek value (except eo) needed 13 
steps using the naive implementation. This corresponds to the theoretical number 
[log2(27r/10~3)] = 13. Dark columns show the number of steps for each ek using 
the enhanced order we defined earlier. By comparing the dark region with the 
whole diagram, we find that globally we can save many steps. Our gain can be 
visualized as the region that actually seams light gray. 

Figure 2(a) shows the theoretical number of steps5 as described in Section 3.3. 
Figure 2(b) shows the case of 1 parameter. We may see that we do not exactly 
save 1 step every time: sometimes none, but in some cases even 2 or more. We 
did not actually needed numerical methods for the above, but did in the case of 2 
parameters (shown on 2(c)). The step gain also varies with k. One may observe 
the close relationship of these values to the parameters. 

These images provide an elegant visualization of how many steps can be saved, 
and suggest that the theoretical estimation of global step saving is close to the real. 

4.2 Step count and execution time ratios 
Our further inspections target the fact, that the number of points and the required 
precision firmly affects the step count saving of the enhanced implementation of 
the bisection method compared to the naive one. 

5 Note that this theoretical step count can be approximated in the case of 1 parameter while 
this parameter tends to zero. 
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(c) 2 parameters (ai = —1/2 • i, 02 = 3 /4 • i). 

Figure 2: Theoretical and real step counts. 
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When the precision becomes greater (i.e. e becomes smaller) the required step 
counts grows, but the saving does not. And as the number of points grow, the saving 
also increases. (Because—roughly speaking—the new points usually lie between 
previously calculated ones, therefore require even less steps.) 

Figure 3 shows the step count ratios of the enhanced and the naive imple-
mentation of the bisection algorithm corresponding to various number of points 
(2', I = 4,5,6,7,8) and precisions (10_p, p = 3,4,5,6,7). Figure 3(a) show the 
theoretic estimation of these ratios according using calculations similar to which re-
sulted in Figure 2(a). Figure 3(b) shows the measured step count ratios in the case 
of 2 parameters randomly chosen inside the unit disk. Each value is the average of 
10 independent measurements. 

One can see that the theoretic estimations are very close to the real measure-
ments, and the enhanced method requires about 50-90% of the steps of the naive 
implementation depending on the number of points and the precision to reach. 
The least saving can be seen when there axe few points and high precision required, 
and the most saving can be observed when we have lots of points and require low 
precision. 

We have obtained similar results concerning execution time. 

4.3 Applying Newton's method 
As described in Section 3.4, Newton's method can be considered mainly as an 
improvement of the results calculated by the bisection method. 

To analyse the efficiency of Newton's method compared to the bisection method 
(the enhanced version) we measured the execution time (in seconds) of the bisection 
method to precision 10 - 1 2 (dashed line), and of Newton's method to the same 
precision after initialized with precision 10 - 2 (thin solid line) and 10~3 (thick solid 
line) in the case of 2l (I = 4,5,6,7,8) points. The results can be seen on Figure 4. 

One may observe the quadratic convergence (it is much faster than the linear), 
and that 10 - 2 precision is close enough for the Newton's method to start. Also a 
near linear dependency can be seen between the number of points and the execution 
time. 

5 Further research 
Related to the experiments described in the previous sections we can found many 
aspects that may be further clarified or elaborated. 

Parallel implementation is a very obvious intention since the discrete points 
can be independently calculated. Experimenting with the emerging paradigm of 
general purpose GPU computing may be valuable. 

The deeper mathematical analysis of the Newton method's initialization needs 
seems very interesting. Which bounds could be deduced (from known theorems) 
at each point, from where Newton's method would surely converge? Could these 
results be efficiently applied to further improve the speed of the calculation? 
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(b) Measured. 

Figure 3: Step count ratios of the enhanced and the naive implementation of the 
bisection algorithm. 

(a) Theoretical. 
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Bis. 1E-12 Bis. 1E-2, Newton 1E-12 Bis. 1E-3, Newton 1E-12 

Figure 4: Execution times using Newton's method. 

May the inverse of an argument function associated to a Blaschke product be 
approximated (or found explicitly)? 

Multidimensional generalizations of non-equidistant discretizations of this kind 
could also be investigated. Possible application areas may be found e.g. at the fields 
of image processing or sampling methods. 

6 Summary 

We have made several experiments concerning the calculation of non-equidistant 
discretizations generated by Blaschke products and the associated argument func-
tions. To our knowledge, no effort has been made before in this area. 

We have managed to reduce the time needed for the calculation (using the 
bisection method) to about 50-70% of the original time by introducing a better 
order of the discrete points to calculate. 

Further improvements have been measured by applying Newton's algorithm 
combined with the above. 
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2D Parallel Thinning and Shrinking Based on 
Sufficient Conditions for Topology Preservation* 

Gábor Németh} Péter Kardosj and Kálmán Palágyi* 

Abstract 

Thinning and shrinking algorithms, respectively, are capable of extracting 
medial lines and topological kernels from digital binary objects in a topol-
ogy preserving way. These topological algorithms are composed of reduction 
operations: object points that satisfy some topological and geometrical con-
straints are removed until stability is reached. In this work we present some 
new sufficient conditions for topology preserving parallel reductions and fifty-
four new 2D parallel thinning and shrinking algorithms that are based on our 
conditions. The proposed thinning algorithms use five characterizations of 
endpoints. 

Keywords : thinning, shrinking, parallel reductions, digital topology, topol-
ogy preservation 

1 Introduction 
Shape- and topological analysis of discrete patterns play an important role in image 
processing and computer vision [17]. Considering the efficiency, several applications 
use iterative object reduction, like thinning and shrinking. Reduction algorithms 
are composed of reduction operations that delete object points. 

Thinning is a frequently applied skeletonization technique [17, 18], which pro-
vides the relevant geometric and topological properties of the shapes. Thinning 
algorithms are to produce medial lines from 2-dimensional digital objects in a topol-
ogy preserving way [8]. They preserve endpoints that provide important geometrical 
information relative to the shape of the objects. 

Shrinking algorithms are to extract topological kernels [6]. A topological kernel 
is a minimal set of points that is topologically equivalent [8, 9, 16] to the original 
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object (i.e., if we remove any further point from it, then the topology is not pre-
served) [6, 8, 9, 16). Shrinking algorithms preserve the topology [6, 8, 9, 16] of the 
objects, however, they do not take the object geometry into consideration. 

Parallel thinning and shrinking algorithms are composed of parallel reduction 
operations which delete a set of object points simultaneously [6, 7]. Note that 
there exists some "shrinking to a residue" algorithms, in which every object is 
transformed into a single point by eliminating cavities [6]. In this paper our at-
tention is focused on the topology-oriented shrinking, and we consider shrinking 
algorithms as thinning ones with no endpoint preservation. 

All thinning and shrinking algorithms need to preserve the topology [8]. De-
spite of this topological constraint, Couprie found five existing 2D parallel thinning 
algorithms that do not satisfy it [5]. In order to verify that a parallel reduction pre-
serves topology, Ronse introduced the minimal non-simple sets in [16], and Kong 
gave some sufficient conditions [9]. Bertrand introduced the P-simple points [1] 
and the critical kernels [2] that provide methodologies to design topology preserv-
ing parallel thinning algorithms. Bertrand and Couprie proposed various parallel 
thinning algorithms based on critical kernels [3], and they linked the critical kernels 
to minimal non-simple sets and P-simple points in [4]. However critical kernels con-
stitute a general framework in the category of abstract complexes in any dimension, 
designing parallel thinning algorithms working on discrete grids might be difficult. 
That is why we introduced modified versions of Kong's sufficient conditions [9] and 
combined them with the known parallel thinning approaches and endpoint char-
acterizations to generate a family of topology preserving thinning and shrinking 
algorithms [13, 15]. In our opinion, one can implement these algorithms easily. 

We use the fundamental concepts of digital topology as reviewed by Kong and 
Rosenfeld [8]. 

A 2D (8,4) binary digital picture V = (Z2,8,4, B) is a quadruple [8], where Z2 is 
the set of 2D discrete points. The elements of B C Z2 are the black points, having 
the value of "1", form the 8-connected objects, while points in Z2 \ B are white 
ones, having the value of "0", and are assigned to the 4-connected background 
and cavities. Let N$(p) and N4 (p) denote the set of 8- and 4-adjacent points 
to p, respectively. Furthermore, we use the notations N4(p) and N£ (p), where 
Ar

8*(p) = N8(P) \ {p} and N4 (p) = N4(p) \ {p}. The lexicographical order relation 
-< between two distinct points p = (Px,Py) and q = (qx ,qy) is defined as follows: 

p<q <!=> py < qyV [py = qy Apx < qx). 

A black point is called a border point if it is 4-adjacent to at least one white 
point. The other black points are called interior points. 

There are three major strategies for parallel thinning and shrinking algorithms: 
fully parallel, subiteration-based, and subfield-based [6, 7, 10, 18]. Németh and 
Palágyi studied a number of parallel thinning algorithms that are based on some 
sufficient conditions for topology preservation, and the three conventional types of 
endpoints were considered [15]. 

In this paper we introduce some advanced sufficient conditions for topology 
preservation. Then, we propose forty-five new parallel thinning algorithms and nine 
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shrinking ones that are based on these new conditions. Our thinning algorithms 
take five endpoint characterizations into consideration. 

The rest of this paper is organized as follows. In Section 2, we propose our 
new sufficient conditions for topology preserving parallel reductions. Section 3 
reviews the proposed parallel thinning and shrinking algorithms and presents some 
illustrative results. In Section 4, some properties of our algorithms are discussed. 
Finally, we round off the paper with some concluding remarks. 

2 Topology Preserv ing Parallel Reduct ions 
In this section, some results concerning topology preserving parallel reduction op-
erations are reviewed. 

A reduction operation may change some black points to white ones, which is 
referred to as deletion, while white points remain unchanged. A parallel reduction 
operation deletes a set of black points simultaneously. 

A 2D reduction operation does not preserve topology [8, 9, 16] if any object in 
the input picture is split (into several objects) or is completely deleted, any cavity 
in the input picture is merged with the background or another cavity, or any cavity 
is created where there was none in the input picture. 

A black point is simple in a picture if its deletion is a topology preserving 
reduction [8]. The simplicity of a point is a local property, since it can be decided 
by investigating its 3 x 3 neighborhood [7]. 

Although the deletion of a simple point preserves the topology, simultaneous 
deletion of a set of simple points may disconnect or eliminate objects, merge cavities 
with each other or with the background, or create new cavities. To ensure topology 
preservation for parallel reductions, Kong and Ronse gave some sufficient conditions 
[9, 16]. 

Theorem 1. A parallel reduction operation is topology preserving for (8,4) pictures 
if all of the following conditions hold: 

1. Only simple points are deleted. 

2. For any two 4-Q-djacent points p and q that are deleted, p is simple after 
deletion of q, or q is simple after p is deleted. 

3. No black component contained in a 2 x 2 square is deleted completely. 

Theorem 1 is generally used to verify the topological correctness of the thinning 
and the shrinking algorithms. Nemeth and Palagyi proposed alternative sufficient 
conditions for topology preservation that can be applied to generate deletion con-
ditions for various thinning algorithms [15]. 

Theorem 2. Let O be a parallel reduction operation. The operation O is topology 
preserving for (8,4) pictures if all of the following conditions hold, for any black 
point p in picture (Z2,8,4, B) deleted by O: 
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1. Point p is simple in (Z 2 ,8 ,4 ,B) . 

2. For any simple point q £ N%(p) D B, p is simple in picture (Z 2 ,8 ,4 ,B \ {9}), 
or q is simple in picture (Z2,8,4, B \ {p}). 

3. Point p does not coincide with the points marked "*" in the seven black com-
ponents depicted in Fig. 1(d)—(j). 

By nature of the sufficient conditions of Theorem 2, any parallel reduction 
operations derived from them can not alter some 2-point wide segments (see Fig. 
2). To extract the topological kernel, the algorithm should remove all the simple 
points, since topological kernels do not contain any simple points. That is why we 
propose some improved sufficient conditions. 

Theorem 3. Let O be a parallel reduction operation. The operation O is topology 
preserving for (8,4) pictures if all of the following conditions hold, for any black 
point p in picture (Z2,8, 4,j5) deleted by O: 

1. Point p is simple in (Z 2 ,8 ,4 ,B) . 

2. For any simple point q £ N%(p) fl B, p is simple in picture (Z2,8,4, B \ {<7}) 
or q is simple in the picture (Z2, 8 , 4 , B \ {p}), or q<p. 

3. Point p does not coincide with the points marked "*" in the seven black com-
ponents depicted in Fig. 1(d)—(j). 

Proof. To prove this theorem, it is sufficient to show that all conditions of Theorem 
1 are satisfied. 

• Condition 1 of Theorem 3 corresponds to Condition 1 of Theorem 1. 

• Let p', q' be two 4-adjacent simple points in B such that p' is not simple in 
B \ {q'} and q' is not simple in B \ {p1}. If p' -< q' (hence q' -ft p') then set 
p = p' and q = q' otherwise set p = p' and q = q' by Condition 2 of Theorem 
2, p is not deleted by O, thus Condition 2 of Theorem 1 is satisfied, for the 
pair p', q' is not deleted. 

• The black component in Fig. 1(a) is an isolated and non-simple point, hence 
it can not be deleted by Condition 1 of Theorem 3. The next two black com-
ponents (see Fig. 1(b) and (c)) are formed by two 4-adjacent black points. 
One of them (that comes lexicographically first) can not be deleted by Con-
dition 2 of Theorem 3. The remaining seven black components depicted in 
Fig. 1(d)—(j) can not be deleted completely by Condition 3 of Theorem 3 
(the points marked "*" are protected in these cases). Hence, Condition 3 of 
Theorem 1 holds. 

• 

Note that the general sufficient conditions of Theorem 3 can be simplified if we 
consider a given parallel reduction strategy. 
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Figure 1: The ten possible black components contained in a 2 x 2 square. Black 
points marked "*" are designated to be preserved by Condition 3 of Theorems 2 
and 3. Both black components in (b) and (c) must remain unchanged by Theorem 
2, but only points marked are to be preserved by Theorem 3. 

3 Thinning and Shrinking Algorithms 
In this section, forty-five new parallel thinning algorithms and nine shrinking ones 
are presented. These topological algorithms are composed of parallel reductions 
derived from our new sufficient conditions for topology preservation (see Theorem 
3). 

Thinning algorithms preserve endpoints, some border points that provide rele-
vant geometrical information with respect to the shape of the object. During the 
shrinking process no endpoint criterion is considered. 

Definition 1. There is no endpoint of type EO. 

To standardize the notations, a shrinking algorithm can be considered a special 
case of a thinning one, where no endpoint is preserved, hence we use endpoint of 
type EO (i.e., the empty set of the endpoints) for it. There exist three conventional 
types of endpoints El, E2, and E3 [7]. 

Definition 2. A border point p is an endpoint of type El if there is exactly one 
black point in iVg (p). 

Definition 3. A border point p is an endpoint of type E2 if there are at most two 
4-adjacent black points in Ng(p). 

Definition 4. A border point p is an endpoint of type E3 if there are at most two 
8-adjacent black points in N£(p). 

We consider two additional endpoint criteria [3, 12]. 

Definition 5. A border point p is an endpoint of type E4 if there is no interior 
point in Ng(p). 
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(a) (b) 

Figure 2: An example to compare the effects of reduction operations derived from 
Theorems 2 and 3. The points marked "s" are simple, while "n" denotes the non-
simple ones. No reduction operation derived from Theorem 2 can remove any point 
from picture (a), but there are some reduction operations derived from Theorem 3 
are capable of removing some additional points (b). Note that there is no simple 
point in picture (b), hence it is a topological kernel. 

Definition 6. A border point p is an endpoint of type E5 if there is no interior 
point in N4(p). 

Let £i denote the set of endpoints of type Ez (i — 1 , . . . , 5) for an arbitrarily 
chosen binary image. It is easy to see that 

£1 C £2 c £3 C £4 C £5. 

Some examples of these characterizations of endpoints are depicted in Fig. 3. 

Figure 3: Examples of endpoints. Points marked "k" are endpoints of type Ei 
(k = 1 , . . . ,5 ; i = k,..., 5). Points marked "i" are interior points, while points 
marked "b" are border points that are not endpoints. 

It is easy to see that all points in all possible black components contained in 
a 2 x 2 square are endpoints of types E4 and E5, since there is no interior point 
in these components (see Fig. 1). Consequently, Condition 3 of Theorem 3 can be 
omitted in the case of parallel reductions that preserve endpoints of type E4 or E5. 
Hence, we can state the following: 

Theorem 4. Let Oe be a parallel reduction operation that preserves endpoints of 
type e, where e € {E0, . . . , E5}. The operation Oe is topology preserving for (8,4) 
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pictures if all of the following conditions hold, for any black point p in picture 
(Z 2 ,8 ,4 ,5) deleted by Oe: 

1. Point p is simple and not an endpoint of type e. 

2. For any simple point q € N^(p) fl B that is not an endpoint of type e, p is 
simple in (Z2,8,4, B \ {<?}) or q is simple in (Z2,8,4, B \ {p}); or q<p. 

3. Depending on a given endpoint characterization e, the following conditions 
are to be satisfied: 

• If e = EO, then point p does not coincide with the point marked "*" 
depicted in Fig. l(d)-(j). 

• If e = El, then point p does not coincide with the point marked ' V 
depicted in Fig. l(f)-(j). 

• If £ G {E2, E3}, then point p does not coincide with the point marked 
"*" depicted in Fig. l(j). 

Proof. Conditions 1, 2, and 3 fulfill the Conditions 1, 2, and 3 of Theorem 3, 
respectively. In the case of Conditions 3, black points in Fig. 1(d) and (e) are 
endpoints of type El. In Fig. 1(d) - (i), there is at least one E2 or E3 endpoint in 
the component, hence it is not deletable completely. If e G {E4,E5}, then no black 
component contained in a 2 x 2 square can be deleted completely by 0 £ since all 
of their elements are endpoints to be preserved. 

• 
In the rest of this section thinning and shrinking algorithms composed of parallel 

reduction operations that satisfy Theorem 4 are reported. The properties of these 
algorithms are discussed in Section 4. 

The proposed algorithms were tested on objects of different shapes. Here we 
can present their results superimposed on just one 120 x 45 picture with 2572 object 
points, see Figs. 4, 6, 7, 11, 12. The pairs of numbers in parentheses are the count 
of object points in the produced pictures and the parallel speed (i.e., the number 
of the required parallel reduction operations [7]). 

3.1 Fully Parallel Algorithms 
In fully parallel algorithms, the same parallel reduction operation is applied in each 
iteration step [7]. 

The general scheme of the fully parallel thinning algorithms FP-e using endpoint 
of type £ are sketched by Alg. 1 (e € {EO,..., E5}). 

The FP-e-deletable points are defined as follows: 

Definition 7. Let e £ {EO,..., E5} be a characterization of endpoints. Black point 
p is FP-e-deletable if all the conditions of Theorem 4 hold. 
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Algori thm 1 Algorithm FP-e 
l: Input: picture (Z2,8,4,X) 
2: Output: picture (Z2,8,4,Y) 
3: Y = X 
4: repea t 
5: D = {p | p is FP-e-deletable in Y} 
6: Y = Y \D 
7: until D = 0 

FP-EO 
(156, 73) 

FP-E3 
(352, 17) 

FP-E4 
(405, 17) 

FP-E2 
(346, 17) 

M 
B B — 

FP-E5 
(474, 17) 

Figure 4: A topological kernel and five medial lines produced by the proposed fully 
parallel algorithms. 

Figure 4 presents illustrative examples for topological kernels and medial lines 
produced by algorithms FP-sr (e € {E0,. . . , E5}). 

It can readily be seen that deletable points of the proposed fully parallel algo-
rithms (see Def. 7) are derived directly from conditions of Theorem 4. Hence, all 
of the six algorithms are topology preserving. 

3.2 Subiteration-based Algorithms 
In subiteration-based (or frequently referred to as directional) thinning algorithms, 
an iteration step is decomposed into k successive parallel reduction operations ac-
cording to the k deletion directions. If direction d is the current deletion direction, 
then a set of ¿¿-border points can be deleted by the parallel reduction operation 
assigned to it [7]. 

A black point p is an ./V-border point if point ps (see Fig. 5) is white. The 
W-, S-, ¿-border points can be defined similarly. In addition, a black point p is an 
N ¿'-border point if pjv or pe is white. Considering another pairs of directions, we 
can likewise talk about NW-, SW-, SfJ-border points (see Fig. 5). 

Let e be a type of endpoint (e € {EO, . . . ,E5}) and Q = (d\,..., dk) be a 
sequence of the deletion directions. For existing 2-subiteration algorithms, the 
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pnw Pn Pne 

Pw P PB 

psvv ps pse 

Figure 5: Notations for the 3 x 3 neighborhood of point p. 

two deletion directions NE and SW are generally applied [7, 10, 18]. Of course, 
applying the intermediate directions SE and NW, we get algorithms SI-(iVW, SE)-
e. In the case of the existing 4-subiteration algorithms, cardinal deletion directions 
N, E, S, and W are considered [7, 10, 18]. 

Note that these subiteration-based algorithms with intermediate deletion direc-
tions produce distorted results for symmetric objects. In order to improve the me-
dialness property of the 2-subiteration algorithms, we propose a new 4-subiteration 
scheme with the sequence of intermediate deletion directions ( N E , S W , N W , S E ) . 
Note that this scheme is capable of removing the two outmost layers from the 
objects at an iteration step. 

Directional thinning algorithms using endpoint of type e and a sequence of dele-
tion directions Q are sketched by algorithm SI-(Q)-e (see Alg. 2), {E0, . . . , E5}; 
Q = (NE, SW), (NW, SE), (N,E,S,W), (NE,SW,NW,SE)). 

Algori thm 2 Algorithm SI-(<2)-e 
1: Input: picture (Z2,8,4,X) 
2: Output: picture (Z2,8,4,Y) 
3: Y = X 
4: r epea t 
5: D = 0 
6: for all d G Q do 
7: Dd ='{p | p Sl-d-e-deletable in Y } 
8: Y = Y \Dd 
9: D = D U Dd 

10: end for 
11: until D = 0 

The Sl-ci-e-deletable points are defined as follows: 

Definition 8. Black point p is called Sl-d-e-deletable if all the following conditions 
hold (e G {E0, . . . , E5}; d G {N, E, S, W, NE, SW, NW, SE}): 

1. Point p is a d-border point, simple, and not an endpoint of type e, 

2. For any simple d-border point q G N%(p) that is not an endpoint of type e, p 
is simple in N£(p) \ {g} or q is simple in N£(q) \ {p}, or q<p, 
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3. Depending on a given endpoint characterization e, the following conditions 
are to be satisfied: 

a) If e = EO, then the following cases have to be taken into consideration: 
— if d = NE, then p does not coincide with the point marked "*" 

depicted in Fig. 1(d), (e), (f), (h), and (i), 
— if d = SW, then p does not coincide with the point marked "*" 

depicted in Fig. 1(d), (e), (f), (g), and (i), 
— if d = NW. then p does not coincide with the point marked "*" 

depicted in Fig. 1(d), (e), (g), (h), and (i), 
— if d = SE, then p does not coincide with the point marked "*" 

depicted in Fig. 1(d), (e), (f), (g), and (h), 
— if d £ {N, E, S, W}, then p does not coincide with the point marked 

"*" depicted in Fig. 1(d) and (e). 
b) If £ = El , then the following cases have to be checked: 

— if d = NE, then p does not coincide with the point marked "*" 
depicted in Fig. 1(f), (h), (i), 

— if d = SW, then p does not coincide with the point marked "*" 
depicted in Fig. 1(f), (g), (i), 

— if d = NW, then p does not coincide with the point marked "*" 
depicted in Fig. 1(g), (h), (i), 

— if d = SE, then p does not coincide with the point marked "*" 
depicted in Fig. 1(f), (g), (h). 

Some topological kernels and medial lines proposed 2- and 4-subiteration algo-
rithms are presented in Figs. 6 and 7, respectively. 

It can readily be seen that deletable points of the proposed subiteration-based 
algorithms (see Def. 8) are derived from the conditions of Theorem 4. Hence, all of 
the twenty-four algorithms are topology preserving. 

3.3 Subfield-based Algorithms 
Subfield-based algorithms partition the digital space into k subfields. During an 
iteration step, the subfields are alternatively activated, and a set of border points 
in the active subfield can be deleted by a parallel reduction operation [7]. 

The existing subfield-based thinning algorithms partition the 2-dimensional dig-
ital space into two and four subfields, see Fig. 8. In the case of k subfields, the i-th 
subfield denoted by Sk(i) is defined as follows (k = 2,4; i — 0 , . . . , k — 1): 

It is easy to see that there is no 4-adjacent pair of points in the same subfield, 
hence Theorem 4 can be simplified in the following way. 

Síi}) = {p = {x,y) \ (x + y) =i (mod 2)}, 
S4(i) = {p=(x,y) | 2 - (ymod 2) + (x mod 2) =i}. 

( 1 ) 

(2) 
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SI-(NE,SW)-EO 
(151, 76) 

Sl-(NE,SW)-El 
(330, 26) 

Sl-(NE, SW)-E2 
(351, 26) 

S1-(NE, SW)-E3 
(355, 26) 

Sl-{NE, SW)-E4 
(464, 24) 

S I - ( N E , SW)-E5 
(579, 26) 

Sl-{NW,SE)-E0 
(149, 74) 

Sl-(NW,SE)-E3 
(356, 26) 

Sl-{NW,SE)-El 
(325, 26) 

SI-(AW, SE)-E2 
(351, 26) 

SI-(AW, SE)-E4 
(487, 24) 

SI-(NW,SE)-E5 
(593, 26) 

Figure 6: Two topological kernels and ten medial lines produced by the proposed 
2-subiteration algorithms. 

Theorem 5. Let a picture V = (Z2,8,4, B) be partitioned into k subfields, and let 
e be a type of endpoints (e G E0 , . . . , E5). Let p G B be a black point in the active 
subfield Sk(i), and Oe

SFk be a parallel reduction operation such that Oe
SFk deletes p. 

The parallel reduction operation Oe
SFk is topology preserving if all of the following 

conditions hold: 

1. Point p G Sk(i) H B is simple in V and not an endpoint of type e. 

2. If k = 2 and £ = E0, then p does not coincide with the point marked "*" 
depicted in Fig. 1(d) and (e). 

Proof. The proof of this theorem is very easy, since it is sufficient to see that it is a 
special case of Theorem 3. If Condition 1 of Theorem 5 is fulfilled, then Condition 1 
of Theorem 1 is satisfied. Condition 2 of Theorem 3 is not necessary to be checked, 
since there is no 4-adjacent pair of points in the same subfield, and operation Oe

SFk 
can delete a set of points in the active subfield. Finally, it is obvious that only two 
black components depicted in Fig. 1(d) and (e) contain simple points belonging to 
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SI - (N ,E , S, W)-El 
(325, 48) 

Sl-(N,E,S,W)-E4 
(509, 52) 

Sl-(N,E,S,W)-E2 
(356, 48) 

Sl-(N,E,S, W)-E5 
(639, 48) 

Sl-{N,E, S,W)-E3 
(365, 48) 

Sl-{N,E,S,W)-E0 
(148, 104) 

S1-(NE,SW,NW,SE)-E0 Sl-{NE, SW, NW, SE)-E1 SI-(NE, SW, NW, SE)-E2 

(158, 76) (339, 28) (356, 28) 

SHJVE.SW./VK^SE^ES Sl-(NE,SW,NW,SE)-E4 Sl-(NE, SW, NW, 5£)-E5 
(360, 28) (462, 28) (589, 28) 

Figure 7: Two topological kernels and ten medial lines produced by the proposed 
4-subiteration algorithms. 

the same subfield if k = 2. Therefore, if Condition 2 of Theorem 5 holds, then 
Condition 3 of Theorem 1 is satisfied. • 

Our subfield-based thinning algorithms SF-k-e (k = 2,4; e £ {E0, . . . ,E5}) 
derived from Theorem 5 are sketched by Alg. 3. 

In the case of subfield-based algorithms, deletable points are defined as follows. 

Definition 9. Black point p is SF-fc-i-e-deletable if the following conditions hold, 
(k = 2,4; i = 0 , . . . , k - 1; e € {E0, . . . , E5}): 

1. Point p is simple in subfield Sk(i) and not an endpoint of type e, 

2. If k = 2 and s = E0, then p does not coincide with the points marked "•" in 
Fig. 1(d) and 1(e). 

Some topological kernels and medial lines produced by our subfield-based algo-
rithms are presented in Figs. 11 and 12. 
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0 1 0 1 0 
1 0 1 0 1 
0 1 0 1 0 
1 0 1 0 1 
0 1 0 1 0 

0 1 0 1 0 
2 3 2 3 2 
0 1 0 1 0 
2 3 2 3 2 
0 1 0 1 0 

(a) 2 subfields (b) 4 subfields 

Figure 8: Partitions of Z2 into two (a) and four (b) subfields. For the fc-subfield 
case, the points marked i are in the subfield Sk{i) (k = 2,4, i = 0 , . . . , k — 1). 

Algorithm 3 Algorithm SF-k-e 
1: Input: picture (Z2,8,4,X) 
2: Output: picture (Z2,8,4,Y) 
3: Y = X 
4: repeat 
5: D = 0 

6: for i = 0 to k — 1 do 
7: Di = {p | p is SF-fc-i-e-deletable in Y} 
8: Y = Y \Di 
9: D = DUDi 

10: end for 
11: Until D = 0 

A drawback of the conventional subfield-based thinning algorithms is that they 
may produce several unwanted skeletal branches or the thinning process can be 
blocked, since endpoints preserved in a subiteration inhibit the deletion of some 
further points in the next iteration steps. In order to overcome this problem, we 
proposed a new scheme with iteration-level endpoint checking [14, 15]. According 
to this strategy, endpoints are marked in the beginning of each iteration step. In 
addition, this new strategy allows deletion of a set of border points, which were in 
the outmost layer in the beginning of the current iteration step. 

Our new subfield-based scheme produces different residues in the case of shrink-
ing algorithms as well, see Fig. 9. It can be stated that the new strategy produces 
less unwanted side branches than the conventional subfield-based thinning scheme 
(see Figs. 10, 11, and 12). 

Our subfield-based thinning algorithms SF-fc-IL-e (k — 2,4; e e {E0,. . . ,E5}) 
with iteration-level endpoint checking are sketched by Alg. 4. 

It can be seen that deletable points of the proposed subfield-based algorithms 
(see Def. 9) are derived directly from conditions of Theorem 4. Hence, all of the 
twenty-four algorithms are topology preserving. 
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Figure 9: Two iteration steps of the conventional 2-subfield shrinking algorithm SF-
2-EO (upper row) and algorithm SF-2-IL-E0 with iteration-level endpoint checking 
(lower row). Subfield S2(i) is activated in the i-th phase (i = 0,1). The numbers 
indicate the subfield indices. 

Algorithm 4 Algorithm SF-fc-IL-e 

9 

10 

l i 
12 

Input: picture (Z",8,4,X) 
Output: picture (Z2,8,4,Y) 
Y = X 
repeat 

D = 0 
E = {p | p is a border point but not an endpoint of type e in 
for i = 0 to k — 1 do 

A = {p | P is SF-Zc-i-EO-deletable in E n Sk(i)} 
Y = Y \ A 
D = D U A 

end for 
until D = 0 

i.4,Y) } 

4 Discussion 
This section is to discuss some important properties of the proposed algorithms. 

Definition 10. A result of a thinning algorithm is minimal if it does not contain 
any simple point except the type of endpoint taken into consideration. 

Definition 11. A result of a shrinking algorithm is minimal if it there is no simple 
point in it. 

Proposition 1. The results of the proposed fully parallel algorithms FP-e are min-
imal for any pictures (e € {E0, . . . , E5}). 

Proof. Let us suppose that a black and non-end point p remains simple after the 
last iteration step. 
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Figure 10: Phases of algorithms SF-4-E1 and SF-4-IL-E1. Subfield S4(i) is activated 
in the i-th phase (i = 0,1,2,3). Points marked E are the El endpoints to be 
preserved and numbers indicate the subfield indices. 

Let TZ be the set of all remaing simple points that are not endpoints in the 
output picture. There is a p G TZ such that, for any q G TZ\{p}, q -< p. This means 
that p satisfies all conditions of Theorem 4: 

• each point in TZ satisfies Condition 1 of Theorem 4, 

• since q -< p for each q G TZ\{p}, thus p satisfies Conditions 2 and 3 of Theorem 
4. 

Therefore, p is FP-e-deletable. We come to a contradiction with our assumption, 
as the algorithm should have deleted p in the last iteration. 

• 
Proposition 2. The results of the proposed subiteration-based algorithms SI-(Q)-e 
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SF-2-E0 
(157, 76) 

SF-2-E1 
(382, 20) 

SF-2-E2 
(392, 20) 

SF-2-E3 
(395, 20) 

SF-2-E4 
(403, 20) 

SF-2-E5 
(403, 20) 

SF-2-IL-E3 
(345, 34) 

SF-2-IL-E4 
(384, 34) 

SF-2-IL-E5 
(448, 34) 

Figure 11: Two topological kernels and ten topological kernels produced by the 
proposed 2-subfield algorithms. 

SF-2-IL-E0 
(157, 76) 

SF-2-IL-E1 
(332, 34) 

SF-2-IL-E2 
(340, 34) 

are minimal for any picture (Q £ {(NE, SW), (NW, SE), (N, E, S, W), 
(NE,SW,NW,SE)}\ e £ {E0, . . . , E5}). 

Proof. The proof goes similarly, as in the fully parallel case. Let us suppose that a 
black point p remains simple after the last iteration step. 

• If £ = E0, then if p is a d-border point (considering any deletion direction 
d) and there is no other d-border simple point in N4(p), then p is deletable. 
Otherwise, let q £ N%(p) be a simple d-border point. Then, p or q can be 
deletable according to Condition 2 of Theorem 4, when the lexicographically 
first remains simple after the deletion of the other one. Both of these two 
cases lead to a contradiction. 

• If e £ {E1,. . . ,E5}, then p must fulfill the considered endpoint criterion, 
otherwise it should have been deleted. 

Proposition 3. The results of the proposed subfield-based reduction algorithms 
SF-k-£, SF-k-IL-£ are minimal for any pictures (k = 2,4; e £ {E0, . . . , E5}). 



Parallel Thinning and Shrinking 141 

SF-4-E0 
(157, 148) 

SF-4-E1 
(635, 40) 

SF-4-E2 
(642, 40) 

SF-4-IL-E3 
(347, 51) 

SF-4-IL-E4 
(392, 51) 

SF-4-IL-E5 
(448, 51) 

Figure 12: Two topological kernels and ten medial lines produced by the proposed 
4-subfield algorithms. 

SF-4-E3 
(656, 40) 

SF-4-E4 
(690, 40) 

SF-4-E5 
(1118, 40) 

SF-4-IL-E0 
(157, 114) 

SF-4-IL-E1 
(334, 51) 

SF-4-IL-E2 
(344, 51) 

Proof. If the 2-dimensional digital space is partitioned into 2 or 4 subfields as 
presented in Fig. 8, then it is easy to see that no 4-adjacent pair of simple points 
belongs to the same subfield. Hence, it is evident that if two simple points are 
4-adjacent in the picture, then either of them can be deleted when the subfield is 
activated. If two 4-adjacent points remain simple after the final iteration step, then 
they must be endpoints of type El, E2, E3, E4, or E5. • 

To summarize the properties of the presented algorithms, we state the follow-
ings: 

• All the fifty-four algorithms are different from each other (see Figs. 4, 6, 7, 
11, 12). 

• All thinning algorithms with endpoint characterizations E4 and E5 may pro-
duce 2-point wide medial curves. 

• The 2-subiteration algorithms (i.e., Sl-(NE,SW)-e and Sl-(NW, SE)-e; e € 
{E0,.. . , E5}) may produce a "distorted" asymmetric medial curves for sym-
metric objects (see Fig. 6). 
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• The 4-subiteration algorithms (i.e., Sl-(NE, SW, NW, SE)-£ and 
Sl-(N,E, S, W)-e\ e € {EO, . . . ,E5}) can produce "almost symmetric" results 
for symmetric objects. 

• The 4-subfield thinning algorithms SF-4-e (e € { £ 1 , . . . , E5}) may produce 
numerous unwanted side branches. (That is why we proposed the thinning 
scheme with iteration-level endpoint checking.) 

• Subfield-based algorithms SF-/c-IL-e (k=2, 4; e e {EO,... ,E5}) with iteration-
level endpoint checking produce much less unwanted side branches than al-
gorithms SF-fc-e (k=2,4; e € {EO, . . . , E5}) that use the conventional scheme 
(see Figs. 11 and 12). 

• The fully parallel algorithms FP-e (e € {EO, . . . , E5}) require the least num-
bers of parallel reductions. 

• The 4-subiteration algorithms that are taken the intermediate deletion di-
rection into consideration (i.e., S I - ( N E , S W , N W , S E ) - £ ; £ € {E0,...,E5}) 
require less numbers of parallel reductions than the 4-subiteration ones con-
sidering the cardinal deletion directions (i.e., SI-(iV, W, S, E}-e\ £ € {EO, . . . , 
E5}). 

• The 2-subfield algorithms (i.e., SF-2-e and SF-2-IL-e; e € {EO, . . . , E5}) 
are require less numbers of parallel reductions than the 4-subfield ones (i.e., 
SF-4-e and SF-4-IL-e; e € {EO, . . . , E5}). 

In order to illustrate that our algorithms differ from the algorithms based on crit-
ical kernels, Fig. 13 presents three skeletons produced by algorithms AK2, MK2, 
and NK2 [3]. 

AK2 

(448, 17) 
MK2 

(214, 17) 
NK2 

(155, 72) 

Figure 13: Skeletons produced by algorithms AK2, MK2, and NK2 [3j. 

Unfortunately, there is no room to present here more examples, hence we invite 
the reader to visit the website at 
http:/ /www.inf.u-szeged.hu/~gnemeth/localweb/skeleton_alg2d.php, 
where skeletons produced by various existing algorithms are also presented. 

5 Conclusions 
This paper presents fifty-four topological algorithms for extracting skeleton-like 
shape features (i.e., topological kernels and medial lines) from binary objects. The 
major contributions of this work are: 

http://www.inf.u-szeged.hu/~gnemeth/localweb/skeleton_alg2d.php
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• We proposed new sufficient conditions for topology preserving parallel reduc-
tions that are suitable for generating deletion rules for parallel topological 
algorithms. 

• Fifty-four variations for parallel thinning and shrinking algorithms were con-
structed (each algorithm differ from the other ones). Deletion rules of the 
proposed algorithms were not given by matching templates (as it is usual), 
they were derived from our conditions. 

• We introduced the 4-subiteration scheme with intermediate deletion direc-
tions, and the iteration-level endpoint checking in subfield-based algorithms. 

• We proved that all the fifty-four algorithms produce minimal results for any 
pictures. 
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A Knowledge-Based Approach to Raster-Vector 
Conversion of Large Scale Topographic Maps* 

Rudolf Szendreij István Elek* and Mátyás Márton§ 

Abstract 
Paper-based raster maps are primarily for human consumption, and their 

interpretation always requires some level of human expertese. Todays com-
puter services in geoinformatics usually require vectorized topographic maps. 
The usual method of the conversion has been an error-prone, manual process. 

In this article, the possibilities, methods and difficulties of the conversion 
are discussed. The results described here are partially implemented in the 
IRIS project, but further work remains. This emphasizes the tools of digital 
image processing and knowledge-based approach. 

The system in development separates the recognition of point-like, line-like 
and surface-like objects, and the most successful approach appears to be the 
recognition of these objects in a reversed order with respect to their printing. 
During the recongition of surfaces, homogeneous and textured surfaces must 
be distinguished. The most diverse and complicated group constitute the 
line-like objects. 

The IRIS project realises a moderate, but significant step towards the 
automatization of map recognition process, bearing in mind that full autom-
atization is unlikely. It is reasonable to assume that human experts will always 
be required for high quality interpretation, but it is an exciting challenge to 
decrease the burden of manual work. 

Keywords : Geoinformatics, topographic maps, raster-vector conversion, 
artificial intelligence, knowledge representation 

1 Introduction 
Paper-based raster maps are primarily appropriate for human usage. They always 
require a certain level of intelligent interpretation. In GIS applications vectorized 
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maps are preferred. Especially, government, local authorities and service providers 
tend to use topographic maps in vectorized form. It is a serious challenge in every 
country to vectorize maps that are available in raster format. This task has been 
accomplished in most countries — often with the use of uncomfortable, "manual" 
tools, taking several years. However, it is worth dealing with the topic of raster-
vector conversion. On one hand, some results of vectorization need improvement 
or modification. On the other hand, new maps are created that need vectorization. 
This is valid not only for topographic maps, but also for remote sensing images 
reflecting the status of agricultural areas. 

The theoretical background of an intelligent raster-vector conversion system has 
been studied in the IRIS project [5]. Several components of a prototype system has 
been elaborated. It became clear very early that the computer support of conversion 
steps can be supported at quite different levels. For example, a map symbol can 
be identified by a human interpreter, but the recognition can be attempted with 
a software, using the tools of image processing. Therefore it is also valid that 
the level of intelligence of the raster-vector conversion system can be various. A 
computer system can be fairly valuable and usable even if every important decision 
of interpretation is made by the expert user. However, the system designed and 
developed by the authors is aimed at to automatize the raster-vector conversion as 
much as possible. This aim gives an emphasis to the knowledge-based approach. 

Two types of expert knowledge in connection with maps are distinguished (see 
Fig. 1). First type consists of professional knowledge needed the interpretation of 
maps. This is required to derive an equivalent in vector format from a paper-based 
scanned topographic map. The basic level information is contained in a standard 
file. More sophisticated relationships are usually stored in a relational data base, 
connected to vectorized data. The other type of expertise consists of the knowledge 
needed to draw conclusions based on vector data model and the related data base 
contents. 

There are several research results on the latter topic [1, 4]. Examples of ques-
tions to be answered are the area that will be inundated by water in case of a 
flood of a river, or how economic can the exploitation of an oil field. Beyond an-
swers consisting of numerical data, expert systems often use visualization for better 
understanding [2]. 

It is important to realize that the adequacy of answers given by an expert system 
does not only depend on the inference rules applied [3], but also on the quality of 
stored data used as input of these rules [6, 10]. This also emphasizes the importance 
of map interpretation knowledge. In this paper knowledge-based approach means 
the first type of knowledge mentioned above, i.e. raster-vector conversion. 

This paper deals with a part of raster-vector conversion applied in cartography, 
with knowledge-based approach. The types of map symbols used in topographical 
maps will be introduced, together with the algorithms used to recognize them. The 
organization of expertise into knowledge base will also be presented. 

The following must be considered in connection with good quality and auto-
mated vectorization. Raster maps contain numbers, inscriptions and other kinds 
of data, but the majority of information is contained in a special cartographic 
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Figure 1: Knowledge representation in geoinformatics 

context that can be adequately understood only by human expert. These relation-
ships used for interpretation are no more contained in the vectorized map — it 
consists only of numerical and descriptive data. Vectorization necessarily involves 
some loss of information, this is why the depth of conversion must be carefully 
defined. Automatic interpretation of image contents requires sophisticated image 
processing tools, which are not comparable to human perception in the majority 
of cases. Therefore, the level of automatic recognition must also be appropriately 
determined. 
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2 M a p symbols 
The topic of this article is how to interpret printed variant of maps and how to 
represent them in computer systems. This process is considered basically as the 
result of interpretation and processing of map symbols. To accomplish this task it 
is very important to understand maps, and specifically, map symbols. To gain a 
comprehensive survey, refer to [8]. Although human cognition can not be completely 
understood, it is necessary to know to a certain extent how the human expert 
interprets graphical information. Regarding human perception, primarily points, 
lines and textured surfaces are sought and distinguished (see Fig. 2). It must be 
realized that human perception may reveal finer or hidden information, for example 
how roads crossing at different levels hide each other. Human mind is also capable 
of abstraction, for example when it disregards the actual texture of surface, and 
investigates only its shape. Human eye can make some corrections, for example in 
the determination of shades of color layers printed over each other. 

Û * 

<g)> 

I ' 
Figure 2: Point types: a) statue, b) mine, c) thunderhead. Line types: d) railway, 
e) highway with emergency phone, f) highway under construction. Area types: g) 
scrub, h) orchard, i) orchard with bushes. 

Map interpretation process and the complexity of knowledge based object recog-
nition can be visualized via any example of the four different object types — that 
is, point, line surface and inscription. IT tools seem to be capable of accomplishing 
map interpretation steps, but the extent that can be reached with human percep-
tion can not be approached by the IT technology of present days. 

Point-like elements are usually graphical map symbols of small size, which often 
covers relatively larger area on map than the real object it represents. Neverthe-
less, its reference point can always be identified. Similarly, line-like elements can 
also cover larger area on map than their real size. For instance in the case of a 
highway, a zero-width center line can represent the theoretical position of the road 
in the database. Beyond the graphical properties of lines the database may contain 
real physical parameters, such as road width, carrying capacity, coating (concrete, 
asphalt) etc. 

Hiding is a very inherent phenomenon in maps when line-like objects, landmarks 
(typically roads, railways and wires) located at different elevations intersect. This 
results in discontinuity of objects in map visualization. However, in map interpre-
tation continuity must be assumed. Interpretation is not so straightforward in the 

•i 1 h H H 
-H H H H-

i i r i ni '•"'Vf ; : ' : ' ; "J . ' . -

. 



Knowledge-Based Raster-Vector Conversion of Topographic Maps 149 

case of surface elements. The discontinuity of surface in map does not generally 
mean discontinuity of the real object it represents, e.g. in the case of a bridge over 
a river represented by water surface. However, a dam in the map may actually 
mean the separation of different levels of water. 

The recognition and interpretation of inscriptions take place at two levels. Ba-
sically, the name represented by the inscription must be recognized, which may 
be accomplished with the support of a name data base. Interpretation means the 
establishment of appropriate connection between landmarks and their names. The 
recognition of inscriptions goes beyond the goals of this article. 

3 Knowledge-based approach 
One of the main tasks of geoinformatics is the conversion of available raster maps to 
vector format. Nowadays this is dominantly a manual task; it involves the tracing 
of polygon boundaries. This work is supported by the currently used software 
products, but the map interpretation is out of their scope. This is considered as a 
complex task in geoinformatics, which needs the intelligent application of various 
image processing algorithms. Our aim is to implement such a system that takes the 
majority of expert work, but it makes possible user interaction when it is necessary 
(see Fig. 3). 

Figure 3: The flow-chart of the thematic map interpretation system. 

In our approach, map symbols can be categorized into three groups according 
to their recognition algorithm. Point-like map symbols are used to mark objects 
that can be bound to a certain location (see Fig. 2 a — c) or land cover types, e.g. 
vineyard symbol. Line-like map symbols usually mean different types of roads and 
railroads, see Fig. 2d — / . Texturized surface map symbols mean a texture covering 
a given type of land cover, see Fig. 2 g — i ). Beyond these map symbols, extra 
care should be taken to recognize polygons delimiting areas. 

The map representation of some objects involves several classes. For example, 
a lake is basically represented by a homogeneous blue surface, but its boundary 
is described by a line-type element. The case of buildings is similar, but their 
boundaries are more dominant than their (usually pink) surface. 

One of the most difficult problems is the detection of rivers, as they can be 
represented either as line-like or surface element, depending on their width (e.g., in 
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case of a delta). In Table 3 below the categorization of some typical map objects 
can be seen. 

Object Point-like Line-based Texturized surface 
Letter X - -

Vineyard symbol X - -

Road - X -

Railway - X -

House polygon - X* -

River - X* X 
Lake - X* X 
Delta - X* X 
Field - X* X 
Forest - X* X 

Table 1: X - feature type can be recognized, * - boundary feature 

In the following sections the knowledge-based algorithms used to recognize dif-
ferent map symbols will be presented. 

In order to compile a map interpretation system from these algorithms, the 
order used during printing the map must be known, and the way of thinking of 
human interpreting the map must also be taken into account. As the first step an 
overview will be given on rules assembling maps, each resulting in an individual 
layer. 

1. The boundaries of polygons are drawn. 

2. Polygons are filled with a solid color or covered by a texture. 

3. The road and railroad network is drawn, using their respective map symbols. 

4. The map symbols of point-like objects are put onto the map. 

5. Inscriptions belonging to point-like objects are printed. 

6. Inscriptions belonging to line-like objects are printed following the arc of line 
— either next to the line or directly onto the line, omitting the section covered 
by the inscription. 

During vectorization, these steps are executed in reverse order so as to collect 
map components. Map layers are apparently printed onto each other; top layers 
may hide elements belonging to layers beneath them. Within cartography, a more 
complex set of rules is used. Especially, conflicts may arise within one layer as well. 
For example, some characters may be omitted from inscriptions that intersect each 
other to avoid overlaps (map generalization). 
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4 Recognition of Point-Like Symbols 
Point-like symbols are small objects (see Fig. 2 a — c), which usually also appear 
in the legend. They appear on the map undistorted, though they may be rotated. 

In a previous article [11] the authors introduced an efficient, linear time algo-
rithm for the recognition of point-like symbols (see Fig. 4), which is also capable of 
recognizing surface textures, since texture is nothing more than a point-like object 
repeated a number of times. We assume that for each map scale, an individual 
symbolset is used. 

The following algorithm attempts to recognize all point-like objects. 

1. Do edge detection (Canny or Laplace) on the whole map m. 

2. For all possible symbols (appearing in the database or requested by the user) 
do the following: 

a) Let sedse the result of the edge detection applied on the current symbol 
s of size sx x sy. 

b) Let sotSu the Otsu-thresholded image of sedge-
c) Find the first pixel (u,v) of sotsu, searching top-down, left to right, and 

determine the corresponding direction angle sq(u,v) by the gradients 
calculated on s at (u,v). 

d) For all edge pixel rn(x, y) of the transformed map image determine the 
corresponding direction angle mQ(x,y) by the gradients calculated on 
m at (x,y) and perform the following steps: 

i. Rotate the original raster image of the point-like object around point 
s(u,v), by the angle me(x,y) — sq(u,v) to get Smat, that is the 
matrix representation of the symbol rotated. 

ii. From the values of Smat substract the values of the underlying map 
pixels considering m(x, y) as the origin, to get the difference matrix 
D mat-

in. Calculate the standard deviation a of Dmat. 
iv. If a is smaller than a given threshold, then the point-like symbol is 

recognized with coordinates (x — u + sx/2, y — v + syj2). The coor-
dinates and the type of symbol are exported into a file or database. 

Laplace-I Laplace-II Prewitt Sobel 
Map 23.05% 29.07% 20.72% 27.89% 
Symbol 15.63% 21.88% 32.81% 35.94% 

Table 2: Ratio of edge pixels after an Otsu-thresholding is applied. 
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Figure 4: The flowchart of the recognition algorithm for a given symbol. The result 
image and the filtered images are in negative for better visibility. Each black point 
on the result image represents a recognized symbol. 

The algorithm does edge detection to omit those map points, where pattern 
matching is unnecessary. The edge detection is also needed to determine which 
pixel of a symbol should be matched to an edge pixel of the map. We made 
Otsu-thresholding on the results of four different edge detectors and counted the 
remaining edge pixels (see Table 2) to decide which edge detector is the most useful. 
We chose Laplace-I, because it gives less points where pattern matching has to be 
made. It is also important to choose the interpolation method to symbol rotation. 
Simple point sampling interpolation produces unneeded distortion, since it only 
chooses the closest neighbour to a pixel. Bilinear and bicubic interpolation give 
better results (see Fig. 5). These interpolation methods are also considering the 
surrounding pixels. We found that bicubic interpolation keeps more image details, 
like edge features. 

$ X X X 
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Figure 5: Top row: Original image, and its Point sampling, Bilinear and Bicubic 
interpolated rotations. Middle row: Results of Laplace-I. Bottom row: Results of 
Otsu-thresholding. 

The method is compared to a rotation-invariant pattern matching method [12] 
based upon color ring-projection. That gives a high recognition rate (about 95%). 
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The authors wrote that "Computation time of the proposed color ring-projection 
matching is 6 s on a Pentium 300 MHz personal computer for an arbitrarily ro-
tated image of size 256 x 256 pixels and a circular window of radius 25 pixels.'''' 
Nowadays, the algorithm may run on a Core i7 920 processor (without specific 
instruction sets, like SSE, etc.) approx. 35 times faster, but we have 100 megapix-
els resolution topographic maps. This gives us a runtime of 261 seconds in the 
case of a multi-threaded implementation. Because of the topographic symbols are 
simple graphics (versus natural images), we can perform the recognition with our 
parallelized algorithm in approx. 2-3 s on the same machine with a recognition 
rate > 99%. In practice, the point-like symbols of a high detail topographic map 
can be vectorized manually in approx. 1 hour. We note that a great similarity of 
a point-like symbol and a map region can lead to a false positive match. These 
false positives can be easily removed manually after vectorization, as we did. In 
the future, we try to automatically remove the false positives based on line filtering 
methods, e.g. Hough transformation, Canny etc. 

5 Recognit ion of Line-Like Symbols 
Line-like symbols are usually the trace of a road like object, or edge of a polygon 
with a given texture/attribute. 

- H H -
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Figure 6: Examples for line-like symbols: a) railway b) railway network at a railway 
station, c) highway under construction d) highway with emergency phone, e) road 
with a specified width f) bridge above a canal 

Recognition of line-like symbols is one of the most difficult tasks of raster-vector 
conversion. These symbols are often complex, and it is permitted for two symbols 
to differ only in their size, to cross each other or to join to form a single object 
(see Fig. 6 a, b, respectively). Difficulties are posed by parallel lines belonging to 
the same object (see Fig. 6 d, e) versus lines running in parallel which belong to 
separate objects. Further difficulties are the discontinuous symbols (see Fig. 6 c, 
e, f). 

It is beyond the aim of the current article to solve all the difficulties mentioned 
above, so for the purpose of this paper we assume that line-like symbols 

1. do not cross each other, and 

2. do not join to form a single object, and 

3. are continuous. 
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A classic way of line-like symbol vectorization is introduced in [7], where cadas-
tral maps in binary raster image format are vectorized. The additional features of 
color topographic maps, like road width, capacity, coating etc. can not be recog-
nized the classical way [9]. Each of these features are represented by a corresponding 
graphics, color and structure. The following method is able to recognize the trace 
of the line-like symbols of a topographic map. 

1. Do image segmentation and classify each pixel. 

2. Create a binary map, where each black pixel belong to eg. road. 

3. Apply thinning and morphological thinning on the binary map. 

4. Vectorize the one pixel thin skeletons. 

The first step is the segmentation, which works as follows. Define an object 
color set O and a surface color set S. The amount of colors in each color set is 
approx. 5-7 in the case of topographic maps. We assume that on a printed map 
each pixel color can be defined as a linear combination of a surface and an object 
color. In optimal case, this can be written as a c = a * cQ + (1 — a) * cs equation, 
where c is the value of the current pixel, and c0,cs are the respective object and 
surface colors, so the segmentation can be done by solving the minimalization task 

min |c — a * c0 + (1 — a) * cJ for each pixel. 
o e O , s € S 1 

As the second step is a simple selection on the segmented pixels, it can be done 
easily. The third step consists of two different thinning methods. A general thin-
ning method is used first to avoid creating unneeded short lines by morphological 
thinning. The general thinning can be described as it iteratively deletes pixels 
inside the shape to shrink it without shortening it or breaking it apart. 

p9 p2 p3 

p8 Pi p3 

P7 p6 p5 

Table 3: 3 x 3 binary matrix, and the indices of its elements. 

To decide whether an edge pixel PI should be deleted, sider its 8 neighbors in the 
3 by 3 neighborhood (see Table 3), P2, P3,..., P$ and P9 and define: 

• N(P\): number of non-zero neighbors (N(P\) = P2 + P3 + • • • + Pg). 

• S(Pi): number of 0 to 1 (or 1 to 0) transitions in the sequence P2, P3,..., Pg. 

The meaning of the values: 

• N(P\) = 0 (an isolated point) 

• N(Pi) = 1 (tip of a line) 
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• jV(Pi) = 7 (located in concavity) 

• N(Pi) = 8 (not a boundary point) 

• 5(Pi) > 2 (on a bridge connecting two or more edge pieces) 

Repeat the following steps, until no more change can be made 

1. Mark all pixels satisfying all of the following: [P1 = 1) and (2 < iV(Pj) < 6) 
and (S(Pi) = 1) and (P2 * P4 * P6 = 0) and (P4 * P6 * P8 = 0) and (P7 ^ 0). 

2. Delete all marked pixels. 

3. Mark all pixels satisfying all of the following: (Pi = 1) and (2 < AT (Pi) < 6) 
and (S(Pi) = 1) and (P2 * P4 * Pg = 0) and (P2 * P6 * P8 = 0) and (P3 ^ 0). 

4. Delete all marked pixels. 

Because the result of the above algorithm may contain small pixel groups, a 
morphological thinning should be performed. This morphological thinning can be 
done by using the structuring elements shown in Table 4. At each iteration, the 
image is first thinned by the left hand structuring element (see 1st element of Table 
4), and then by the right hand one (see 2nd element of Table 4), and then with 
the remaining six 90° rotations of the two elements. The process is repeated in 
cyclic fashion until none of the thinnings produces any further change. As usual, 
the origin of the structuring element is at the center. 

0 0 0 
1 

1 1 1 

0 0 
1 1 0 

1 

1 
1 1 1 

1 
1 1 

Table 4: The first and second structuring elements are used to morphological thin-
ning based skeletonization, while the third and fourth structuring elements are used 
to morphological fork detection on binary images. Values of the elements are: 0 -
background, 1 - foreground. Empty places can be either 0 or 1. 

The skeletonized binary image can be vectorized in the following way. Mark all 
object pixels black and surface pixels white. Mark those black pixels red, where 
N(P1)> 2, and then mark the remaining black fork points blue by using the 3rd 
and 4th structuring elements of Table 4 in the same way as structuring elements 
are used in morphological thinning. The red fork points are connecting lines, while 
blue fork points are connecting forks. Mark green each black pixel, if at most 
one neighbour of it is black (tip of a black line). It can be seen that a priority is 
defined over the colors as white < black < green < red < blue. The following 
steps vectorize the object pixels 
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1. Select a green point, mark white and create a new line segment list, which 
contains that point. 

2. Select a black neighbour if it exists and if the current point is also black. 
Otherwise select a higher priority point. Mark white the point and add to 
the end of the list. 

3. Go to Step 2, while a corresponding neighbour exists. 

4. Go back to the place of the first element of the list and go to Step 2. Be 
careful that new points should be added now to the front of the list. (This 
step processes points in the opposite direction.) 

5. Go to Step 1, while a green point exists. 

6. Select a black point, mark white, and create a new line segment list, which 
contains that point. 

7. Select a black neighbour of the current point, mark white, and put it at the 
end of the list. 

8. Go to Step 7, while a black neighbour exists. 

9. Select a red point p, mark white and create a new line segment list, which 
contains that point. Let Neighbour Select = RedSelect — Counter = 0, 
BlueFirst = false, where — back, q = p. 

10. Let PrevPoint = q. 

11. If the NeighbourSelectth neighbour r of q exists, let q = r, let 
BlueFirst = (Steps — 0 and where=back), let n = q, and increment 
Neighbour Select by 1. Put q into the list at where and go to Step 13. 

12. If the RedSelectth neighbour r of q exists, 

a) If q and n are neighbours and where =front, then let q = PrevPoint 
and increment RedSelect by 1. Go to Step 10. 

b) Put q into the list at where, mark q white, let Neighbour Select = 0 
and increment Counter by 1. Go to Step 10. 

13. If where=back, then let where=front, q = p and go to Step 10. 

14. Go to Step 9, while a red, point exists. 

Although, the algorithm above vectorizes all the objects, it merges the several 
object types and colors. Hence, pixels of a given object color are copied onto a 
separate binary image before they are vectorized. 

We introduce an approach, which is able to recognize the features of line-like 
objects, so the corresponding attributes can be assigned to them. This assumes 
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that the path of each object exists in the corresponding vector layer. In order to 
recognize a specific feature, its properties should be defined for identification. 

Two properties of vectorised symbols are recognized: forks (F ~ Fork), and 
end-points (E ~ End). Both are well known in fingerprint recognition where they 
are called minutiae. In the case of fingerprints, a fork means an end-point in the 
complement-pattern, so only one of them is used for identification. In our case, we 
can not define a complement-pattern, so both forks and end-points are used. 

Representation of line-like symbols is based on weighted, undirected graphs. An 
EF-graph is an undirected graph with the following properties: 

• Nodes are either of type E or F. The color of a node is determined by the 
corresponding vector layer. 

• Two nodes are connected if the line-segment sequence connecting the nodes 
in the corresponding vector layer does not contain additional nodes. Edges 
running between nodes of different colors can be defined by the user (in case of 
multicolor objects). The weight of the edge is equal to the length of the road 
connecting the two nodes, and it has the color of the corresponding symbol 
part. 

• There are special nodes, denoted by an index P, which occur on the trace of 
a line object. These will be used to produce the final vector model. 

An £F-graph can also be assigned to the vectorised map, not only to the 
vectorised symbols, where line-like symbols are not separated to their kernels. For 
recognition wte use the smallest units of the symbol, called the kernel. The smallest 
unit is defined as the one which can be used to produce the entire symbol by 
iteration. In the iJF-graph there is usually only two nodes participating in the 
iteration; these are type F with only a single edge, so become the entry and exit 
points to the graph. In the very few cases, where the entry and exit points of 
the smallest unit can not be identified, the kernel of the line-like object is itself. 
Smallest unit can not be defined for the whole vectorised map. 

Figure 7 shows how a symbol is built up from its smallest units by iteration. 
Weights represent proportions and depend on the scale of the map. Beside weights, 
we can assign another attribute to edges, their color. In the figure almost all edges 
are coloured black. 

The recognition of line-like objects is reduced to an extended subgraph isomor-
phism problem: we try to identify all the occurrences of the EF graph of the symbol 
(subgraph) in the EF graph of the entire map. The weights of the EF graphs are 
normalized with respect to the scale of the map, and the collection is sorted in 
decreasing order of node degrees. Call this collection of sorted EF graphs S. Since 
the EF graphs created to maps do not contain the edges those connecting nodes 
with different colors, this case should be handled. In this article, the potential 
edges are identified by searching the corresponding neighbour on its own layer in 
the given distance of the node. The validity of a found potential edge is verified by 
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Figure 7: The EF graph and the elementary EF graph of a double railway line. 
Distances are relative values and refer to the scale of the map. The dashed line in 
the elementary EF graph represents its cyclical property. 

comparing the color of the edge and the color of the segmented image pixels lying 
under the edge. 

Subject to the conditions above it is possible to design an algorithm for the 
recognition of subgraphs. While processing the map, recognized objects are re-
moved, by recoloring the corresponding subgraph. Two colors, say blue and red, 
can be used to keep track of the progress of the algorithm and to ensure termination. 

The following algorithm stops when there are no more red nodes left in the 
graph. 

1. Choose an arbitrary red node U with the highest degree from the EF graph 
of the map. 

2. Attempt to match the subgraph at node U against S, that is the sorted 
collection of EF graphs, until the first successful match in the following way: 

a) Perform a "parallel" breadth-first search on the EF graph of the map 
and the EF graph of kernel of the current symbol with origin U. This is 
called successful if both the degree of all nodes match, and weights are 
the same approximtely. 

b) In the case of success, all matching nodes become blue, otherwise they 
remain red. 

Upon successful matching the -EF-graph of the symbol is deleted from the EF-
graph of the map. Entry and exit points must not be deleted unless they are marked 
as E, and the degree of remaining F nodes must be decreased accordingly. The 
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equality of edge weights can only be approximate, due to the curvature of symbols. 
The algorithm above can be implemented, as it keeps track the given object by 
using the line segments as paths in vector data. The other difficulty is that edges 
with differently colored nodes are not directly defined by the vector layers. In 
practice, we have created a spatial database, which has contained the vectorized 
line segments and their color attribute. The potential edges was determined by 
a query, looking for existence of a neighbour with a corresping color in a given 
distance from the corresponding node. 

6 Recognition of Homogeneous Surfaces 

Although, some surface vectorization methods [5, 6) are working well on homoge-
neous surfaces, these methods are not able to deal with visually separated surface 
regions. During the recognition of surfaces, the most frequent tasks are the uni-
fication of areas which logically belong together, but are visually separated, and 
correction of map errors. For this purpose we use a mask, which identifies the points 
in the map which can be considered part of a surface. The mask can be defined as 
the area which remains after the removal of point and line-like symbols. Another 
possibility is to consider a mask to be the pixels of the approriate color that remain 
after color segmentation on the original map. Pixels belonging to the mask get 
the color of the surface, others are set to be UNDEFINED. For best results, we 
use both approaches combined. For recognition and high-quality polygonization we 
defined a heuristic rule system, which we discuss next. 

6.1 Removal of the Pixels of False Surfaces 

According to the rule, we remove all pixels, and groups of pixels of a given surface 
type if they occur less frequently then a given treshold. Many misclassified false 
surfaces are removed by this rule. 

Surface 
type 

Searching 
region size 

Minimal pixel 
occurence 

e.g. Grass n px x n px m pes 

Table 5: An example to remove false surface pixels. 

In the example (see Table 5), a given pixel is classified as e.g. grass, if and only 
if, in the surrounding n x n square there are at least m pixels that can be classified 
as grass. At the boundaries of the image, where less pixels exist, the treshold is 
decreased appropriately. The rule is applied top-down, left to right. The process is 
not adaptive in the sense that mask is developed as a new image, while the original 
map remains unchanged. 
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6.2 Classification of Delimited Surfaces 
On topographical maps it is usual practice that certain areas are delimited with a 
line, which forms a polygon. This helps recognition if we know that the polygon 
exclusively surrounds a homogeneous area of given type. In such cases, as soon 
as we determined a dominant surface we can classify the whole surface within the 
polygon. For example, in the case of a house, the color of the delimiting polygon 
is always black, and the surface within the polygon is pink. To determine if the 
polygon surrounds the given ares we use the usual "flooding" technique from any 
inner point. In practice, this needs a treshold (see Table 6) to limit "flooding". 

Border Blob type Flood limit 
e.g. Black e.g. House n px 

Table 6: An example of the classification rule. 

If flooding does not stop under the specified treshold n, we terminate and classify 
the area as UNDEFINED. 

6.3 Joining Surfaces 
The removal of point and line-like objects result in discontinuity of surfaces. We 
need a separate rule to join these (see Table 7), which describes what to do if there is 
an unexpected pixel during the top-down, left-right processing of the mask. From 
the given point, that is the occurrence of the first unexpected pixel, it searches 
within a predetermined limit n, in opposing directions for surfaces which have been 
classified as of the same type. If search succeed in finding such surfaces, then 
the color of the original pixel is changed to that of the surrounding surface. This 
process can be repeated m times or until no further change has made. 

Blob type Searching radius Iterations 
e.g. Grass n px m 

Table 7: Rule to fill gaps between surfaces. 

6.4 Removal of Small Damaged Areas and Holes 
Small erros can be often found on maps. In a clearly defined area, there might be 
spots which apparently do not belong there. Forests, for example, often contain 
empty areas yet the whole should be classified as one. Another source of errors, 
is when the type of a small area is clearly identified, yet, due to its small size or 
its context this classification can not be accepted. In these cases, the anomalous 
pixels are removed. Table 8 gives further details. 

The rules given above are mostly complete, in the sense that most pixels and 
areas axe classified into one of the known types. Yet, unclassified areas may remain. 
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Blob type Bounding type Blob size limit Decision 
Non-forest Forest n px Type := Forest 

Forest Non-forest m px Eliminate 

Table 8: Eliminate blobs and holes on a forest layer. 

Most of the time, those unclassified areas are surrounded by many areas of different 
types, so the techniques above fail. Table 9 shows a rule set which helps under 
such circumstances, but interestingly it also helps to reclassify previously classified 
areas. The table specifies for which pixels or areas should the rules apply, which 
surrounding areas are dominant, which areas are sub-dominant, and what other 
types must occur nearby. In other words, Table 9 is a higher level rule set, providing 
a sort of context sensitivity to the classification process. The distance limit can be 
interpreted as the maximum of the smallest diameter of the discontinuity, and the 
size limit determines the largest discontinuity which can be filled. If at least one of 
the conditions of the rule is satisfied the area can be reclassified to the dominant 
type. 

Type 
Dominant 

type 
Sub-dominant 

types 
Dist. 
limit 

Size 
limit 

Unknown Grass S.et(Forest, Vineyard) n px m px 

Table 9: Rule to fill multi-bounded blobs, pixels and holes. 

The rules specified in 9 specify for which areas a rule should apply. Often what 
is needed is to exclude a rule to be applied to a given surface. Such a case is when 
we are attempting to eliminate discontinuities between two areas, but we want to 
avoid considering a river as a discontinuity. To handle such situations, we need 
to provide a mask for the areas we wish to retain. Only the areas of interest get 
an appropriate type, others get UNDEFINED. Then we unite the results of the 
original and the temporary mask by copying the defined types from the later onto 
the former. Table 10 provides the details. 

D R m • m 
Figure 8: Result of using rules for filling multi-bounded blobs, pixels and holes. 

While a human expert is able to manually vectorize map anomalies, like dis-
continuity and additional hidden information, the raw segmentation is unable to 
recognize them. 
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Surface 
type 

Type of 
dominant surface 

Type of 
sub-dominant surface 

House House Grass 

Table 10: A. Surface type selection. B. Combine grass and house surfaces, preferring 
houses to "draw" onto the grass layer. 

Surface Correct False+ False ~ Time 
Field 88.75% 0.93% 11.25% 0ms 

Segmentation Forest 84.59% 3.53% 15.44% 2460ms 
results Vineyard 51.23% 443.01% 48.76% 2460ms 

Meadow 85.67% 1.87% 14.34% 3100ms 
Field 98.17% 3.77% 1.83% 57ms 

Reconstruction Forest 96.96% 0.78% 3.04% 4927ms 
results Vineyard 63.01% 25.93% 36.99% 5044ms 

Meadow 97.31% 1.19% 2.69% 8964ms 

Table 11: Segmentation is done by the method described in section Recognition of 
Line-Like Symbols. Runtime and quality were measured on a topographic map of 
scale 1:10000. Results were compared to the result of the manual vectorization. 

As it can be seen on Table 11, the reconstruction algorithms decreased the 
ratio of false positives, improved the vectorization accuracy and "recognized" some 
hidden information, which could be recognized earlier only by a human expert. 

7 Recognition of Texturized Surfaces 

Texturized surfaces are made up of repetition of smaller images, which are never 
rotated. The algorithm we described for the recognition of point-like symbols can 
be generalized (and at the same time specialized by removing the rotation steps) 
to simultaneously recognize multiple point-like symbols. 

Figure 9: Texture, representing a region covered by scrub: a) texture, b) a texture 
tiled with subtextures showing the kernel. 
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It is assumed that, besides the point-like symbols, raster data for all textured 
surfaces, with the appropriate scale, are available and can be uniquely identified by 
their index. The algorithm of Section 4 will now be applied to recognize texture 
kernels instead of point-like objects. The modifications required are as follows: 

1. Prepare a binary mask with the same size as the original map, and initialize 
all elements of it to FALSE. 

2. Prepare a surface mask with the same size as the original map and initialize 
all elements of it to UNDEFINED. Each element of the surface mask is an 
index, which uniquely identifies a surface type or remains UNDEFINED. 

3. Perform thinning on the map (for example Laplace). 

4. Order the texture kernels according to their standard deviation, and call it 
TKA. 

5. Process those pixels of the map which are currently unidentified (their index 
is UNDEFINED) in a top-down left to right fashion, which means performing 
the following steps: 

a) Assign TRUE to all elements of TKA (meaning no matching has been 
attempted). 

b) Calculate the standard deviation crc of the current map segment, that is 
the image starting at the pixel identified in step 5. 

c) In TKA find the closest match to <rc, for which its boolean entry is 
TRUE. 

d) Match the two pieces of images within the given standard deviation 
treshold. 

e) If they match, assign them matching texture type to each element of the 
surface mask for the area under consideration, and set the corresponding 
elements of the binary mask to TRUE. Then continue from step 5. 

f) If there is no match, mark the texture kernel with FALSE and continue 
from step 5.c. 

On the edges of textured surfaces, the kernels are usually not complete. In such 
cases, the algorithm as it stands is not capable of successful recognition. Those 
fractions can usually be identified by surrounding texture rectangles. 
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8 Conclusion 
In- this article, the results of the IRIS projects are discussed. The project aims 
to automate and support the recognition of raster images of topographic maps, 
with the combination of digital image processing and a knowledge-based approach. 
The developed system contains the basic knowledge of the classification of symbols 
to point-like, line-like and surface-like. From the point of recognition, there is 
an algorithmic difference between the recognition of homogeneous surfaces and 
textured surfaces. 

The robustness of IRIS is based on the insight that layers of symbols are rec-
ognized (and "removed") in reverse order of their printing. The interpretation of 
line-like symbols is the most difficult, and it can not be surprising that the task 
requires the heaviest mathematical machinery. EE graphs are used for the recog-
nition of curved, line-like objects with a systematic pattern. 

Rules of knowledge-based systems also appear in IRIS, and numerous rules are 
used for the recognition of homogeneous surfaces. 

It is widely accepted, that knowledge-based systems do not match the quality 
of human experts, yet, there are areas where automation is desirable and produces 
better results. Within its own limits a knowledge-based system is reliable, it is 
neither superficial nor does it makes mistakes. Both of these qualities have excep-
tional value in the case of maps with rich structure. While human interpretation 
and manual vectorization are error-prone, an automated system can process vast 
amount of details. 

Experiences with IRIS clearly demonstrates that human experts will always be 
required, yet it is an exciting challenge to decrease the amount of repetitive, and 
error-prone tasks. 

While most point-like objects are recognized (> 99%), some works remain to 
eliminate the false positives. We experienced the same difficulties when we tried to 
recognize the texturized surfaces. We have shown also a feature recognition method 
to line-like symbols. We found that these features could be recognized well (> 80%), 
which speeds up the later manual postprocessing. It removes the recognized features 
and assigns the attributes of the feature to the corresponding object. Furthermore, 
we developed a method to deal with the hidden surface objects. Formerly, these 
objects could be identified only by a human expert. As it can be seen on Table 11, 
our knowledge-based method is able to make deductions by predefined rules to 
refine the segmentation results and recognize surface discontinuities and hidden 
surface regions. 

We tested our methods on hungarian topographic maps at scale 1:10000. We 
have scanned the maps at 300dpi resolution, which produced ca. 100 megapixels 
bitmaps. The recognition time for each point-like symbol was 3-4 seconds, while 
the recognition of the line-like object features on the whole map took 15-18 sec-
onds. The surface reconstruction took 5-6 seconds for each surface layer. The total 
vectorization time was less than 2 minutes, compared to a vectorization made by 
a human expert, which takes many hours. 
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Projection Selection Dependency in 
Binary Tomography* 

László Varga** Péter Balázs* and Antal Nagy* 

A b s t r a c t 

It has already been shown that the choice of projection angles can sig-
nificantly influence the quality of reconstructions in discrete tomography. In 
this contribution we summarize and extend the previous results by explaining 
and demonstrating the effects of projection selection dependency, in a set of 
experimental software tests. We perform reconstructions of software phan-
toms, by using different binary tomography reconstruction algorithms, from 
different equiangular and non-equiangular projections sets, under various con-
ditions (i.e., when the objects to be reconstructed undergo slight topological 
changes, or the projection data is affected by noise) and compare the results 
with suitable approaches. Based on our observations, we reveal regularities 
in the resulting data and discuss possible consequences of such projection 
selection dependency in binary tomography. 

Keywords : discrete tomography, reconstruction, adaptive projection acqui-
sition, GPU-accelerated computing, non-destructive testing 

1 Introduction 
The main goal of transmission tomography is to reconstruct the inner s t ructure 
of given objects from a set of their projections. This is usually done by exposing 
the object of s tudy to some electromagnetic or particle radiation a t one side and 
measuring the amount of received energy on the other end. After the projections 
have been gathered, one can apply certain reconstruction algorithms for discovering 
the linear at tenuation coefficients of the object at its different points. 

The reconstruction can be performed in many ways. In the ideal case (when we 
have hundreds of projections available) one can use, e.g., the filtered backprojection 
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method or other continuous techniques for finding the reconstruction of arbitrary 
objects [7, 12]. Unfortunately, acquiring hundreds of projections is sometimes im-
possible, since taking too many of them can be expensive or can even damage the 
object of study. In this case, one can try to improve the quality of the reconstruc-
tion basically in two ways. One approach is to take the projections having the 
highest information content in order to get sufficient information from fewer pro-
jections [15]. Another common approach is to develop more accurate reconstruction 
algorithms by using some prior information of the objects of interest. 

In discrete tomography [8, 9] we assume that the object to be reconstructed 
consists of only a few (usually 2 to 4) materials, having known attenuation coef-
ficients. With such a strong prior information, algorithms have been developed 
capable of producing accurate reconstructions from a limited amount of (say, up 
to 10) projections. However, the low number of projections gives a relatively high 
freedom in choosing the directions to take projections with. 

Our previous studies [14, 17, 18, 19] revealed that different projection sets of an 
object can have entirely different information content, some holding more or less 
information than others. Despite their good performance, discrete reconstruction 
algorithms still require a certain amount of information to produce an accurate 
result, otherwise there can be numerous possible solutions, and among them just 
one is considered to be correct. This makes finding the proper angles essentially 
important in the case of discrete tomography, since we can get entirely different 
reconstructions from projection sets with even the same number of projections. 

There are also theoretical results, giving upper bounds to the number of required 
projections in case of reconstructing convex objects [6]. Also, one of our long-
term goals is to discover a more general description on how determined a binary 
reconstruction can be by a given set of projections. 

The main aim of our current study is to determine, whether the result of a 
reconstruction can be improved by finding the correct directions to take projections 
with. If the result can be improved in such a way, one can develop more accurate 
reconstruction techniques, capable of providing better reconstructions exclusively 
by finding the appropriate projection angles. 

In this paper, we summarize and extend the previous results connected to the 
angle selection dependency in binary tomography. We conduct experimental soft-
ware tests on phantom images by reconstructing them from different equiangular 
and non-equiangular sets of their projections and compare the resulting recon-
structions. We do experiments by applying three different binary reconstruction 
algorithms, and examine the effects of modifications of data, i.e., when the projec-
tions are corrupted by noise, or the object to be reconstructed is slightly altered 
(for example it has fractures or unwanted holes in it). The novelty of our studies 
lies in examining the case, when we allow the usage of non-equiangular projection 
sets and in the same time assume presence of distortions of the data. Furthermore, 
we will give a brief description of the nature of the problem, and describe some of 
its possible consequences. 

Although, we do mention some angle selection strategies in this paper, we must 
highlight that our goal is not to propose a new reconstruction algorithm, but only 
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to evaluate the direction-dependency of three currently existing ones. We must also 
note that - although our results contain an explicit evaluation of the performance 
of the three selected reconstruction algorithms - we do not intend to compare them 
and decide which one is the best. 

The paper is structured as follows. In Section 2 we introduce a formulation of 
the transmission tomography problem, and in Section 3 we present algorithms for 
solving it in the binary case. In Section 4 we describe the test frameset used for our 
experiments. In Section 5 we give some of our results, and provide an explanation 
of them. Finally, in Section 6 we conclude our work, and suggest some possible 
extensions of it. 

2 Transmission Tomography 
In this chapter we will provide a model of the continuous two-dimensional to-
mographic reconstruction problem, that will serve as the basis of describing the 
formulation of the reconstruction problem in the discrete environment. 

In a common representation of two-dimensional transmission tomography there 
is an unknown / : R2 M function we want to reconstruct (usually, because it 
represents the two-dimensional cross-section of a real-world object). The only data 
we can measure about this unknown function is a set of its line integrals given by 
the Radon-transform as 

/

00 

/( icos(a) - <7sin(a),isin(a) +gcos(a:)) dq , (1) •oo 

where the a and t value, respectively, describes the direction and the position 
of a line in the two-dimensional space, with its points parameterized by q. In 
transmission tomography the task is to reconstruct an / ' function that has the 
same projections as the original f(u,v) function, in a set of predefined directions. 
Theoretically, this problem can be solved by exact mathematical methods when all 
possible [ R f ] ( a , p ) values are available [7, 12]. 

Unfortunately, in a practical application we usually can only deal with a finite 
number of values therefore we have to discretize the model applied for both the 
projection data and the function to be reconstructed. In the followings, we will 
assume that the function to be reconstructed has constant values on each unit 
square shaped region determined by the two-dimensional integer lattice, that is 

f(u + a,v + b) = f(u + c,v + d)\ tt,oeZ; a, b,c,d <E [0,1) . (2) 

We will further assume that the function / has a bounded support, therefore 
without the loss of generality we can say that in (2) u, v £ {[^p, fl Z} with a 
constant n value. This restriction does not affect the applicability of the model, 
since in a real-world application we do not have infinitely large objects to deal with. 
This way, the task can be regarded as the reconstruction of an n x n pixel-sized 
image, from its projections. 
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Figure 1: Representation of the ordering of the pixels and the parallel-beam geom-
etry used. 

In our experiments a projection was defined as a set of [Rf] (a, t) values with 
the same a angles and 

t£^k+ 0.5 | k g N,,|fc + 0.5| < n/y/2,} (3) 

values, assuming that the origin of the coordinate system was placed into the center 
of the image to be reconstructed. In the defined projection geometry, a projection 
is composed of integrals taken along a set of equidistantly placed parallel lines. 
The distance between the neighboring projection lines was set to be 1 unit in the 
coordinate system and we used as many projection lines as needed to cover the 
whole image. The rotation center used for controlling the relation of the image and 
the projections was placed half-way between two projection lines, and in the center 
of the image to be reconstructed. 

Using the previous restrictions the reconstruction problem can be represented 
by a system of equations 

Ax = b; A = ( a i j ) r a x „ 1 £ r x " 2 , x £ r 2 , b e r , (4) 

where x denotes the ordered sequence of the pixels of the unknown image to be 
reconstructed, b is the sequence of the measured projection values and A describes 
the connection between x and b, where all d i j elements give the length of the line 
segment of the z-th projection line through the j-th pixel. An illustration can be 
seen in Figure 1. Ideally, by solving equation system (4) we can get the pixel values 
of an image that has exactly the same projections as the measured ones. 

Although, there are several general methods for solving equation systems, a 
direct method for finding the solutions of (4) is usually not the best approach. The 
resulting equation system can be too large for exact equation system solvers and 
might also be underdetermined, possibly yielding an infinite number of solutions. 
On the other hand, we cannot even guarantee that there is a solution, since - due 
to measurement errors and noise - the equation system can be inconsistent as well. 

The different types of the algebraic reconstruction techniques [2, 7, 12] try to 
overcome this problem by applying iterative algorithms to approximate a solution, 
from a suitably chosen initial suggestion. 
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Another group of reconstruction methods reformulate the task as an energy 
minimization problem with a given 

C(x) = II Ax — t>j|2 + A • g(x) (5) 
energy function. In the above formulation A, b, and x are the same as defined in 
(4) and g(x) is a function representing additional information about the image to 
be reconstructed with a given A weight. In the ideal case, we can find a vector x*. 
where (5) takes its minimal value, with an appropriate general optimizer [1, 14]. 
This x* vector will represent the desired reconstruction. The main advantage of 
this approach is that it can easily incorporate some a priori information into the 
model via a suitable g(x) function. . 

3 Binary Reconstruction Algorithms 
We examined the projection selection dependency in binary tomography, i.e., in 
the case when the results can contain only binary values (and x € {0,1}" in (4)). 
In our experiments we applied three suitable binary tomographic reconstruction al-
gorithms from the corresponding literature. All three algorithms are deterministic, 
therefore their results are unique for each input and can easily be evaluated. The 
brief introduction of the algorithms can be given as follows. 

3.1 Thresholded Simultaneous Iterative Reconstruction 
Technique (TSIRT) 

The first algorithm was basically a continuous reconstruction followed by a thresh-
olding. The continuous reconstruction was produced by the Simultaneous Iterative 
Reconstruction Technique (SIRT) [7, 12], which is an iterative algorithm for finding 
an approximate solution of (4). After obtaining the continuous result we applied a 
thresholding of the pixel values with a 0.5 threshold. 

3.2 Discrete Algebraic Reconstruction Technique (DART) 
The second algorithm was the Discrete Algebraic Reconstruction Technique [2], 
which is a combination of an algebraic based reconstruction method and a iterated 
thresholding. The DART starts by producing a continuous reconstruction using a 
suitable algorithm, and applies a thresholding of the result. Later, the values of 
the boundary pixels are fine-tuned by an iterative process. 

In our experiments, we applied 10 iterations of the SIRT algorithm to obtain 
the continuous reconstructions, and used a threshold value of 0.5. 

3.3 Energy Minimization Tomography with DC Program-
ming 

The third algorithm - that was first introduced in [16] - is based on DC program-
ming (a numerical method for minimizing the difference of convex functions), and 
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performs the reconstruction by minimizing an energy function given as 

1 
J A ( x ) : = | | A x - b | | 2 + | £ £ (xj — x/)2 — A-(x ,x — e) , x e [0, l]"2 . (6) 

j=i leNtti) 

Here, 7 is a fixed constant to control the weight of the smoothness term on the 
result, N ^ j ) is the set of pixels 4-connected to the j-th pixel, and e denotes the 
vector with all n2 coordinates equal to 1. This algorithm starts with approximating 
an optimal continuous result by minimizing the energy function with a A = 0 value. 
After, an iterated process forces binary results, by proceeding with the minimization 
while periodically increasing A with a Aa value. 

In the sequel, we will simply call this algorithm "DC". In the reconstructions 
the parameter settings of the DC algorithm were determined as in [17]. 

4 Test Frameset 
We conducted experimental tests on a set of software phantoms. We reconstructed 
them from different sets of their projections and we evaluated the results from two 
different viewpoints. First, we compared the reconstructions of the same phantoms, 
under the same conditions but from different sets of their projections. With the 
result of these experiments, we could determine how dependent the reconstruction 
of a specific object - performed by a specific algorithm - can be on the choice of 
projection angles. Secondly, we compared the reconstruction of the same objects, 
performed by using the same projection directions, but under different conditions 
(original and altered versions of the objects, addition of different levels of noise, 
or in case when the reconstruction is performed by different algorithms), in order 
to see if there are regularities of the projection selection dependency of an object 
which can be possibly used in practical applications. 

Our test database consisted of 10 phantom images, all having the same size of 
128 x 128 pixels. The database could be divided into two parts, 5 basic phantoms 
with different properties (those can be seen in Figure 2) and a slightly altered 
version of each basic phantom (the ones shown in Figure 3), which simulate small 
distortions of the object of study (i.e., fractures or bubbles). 

The elements of the test database were chosen based on previous studies [2, 
14, 16, 17, 18, 19]. Phantoms like the ones of Figure 2a and Figure 2b, containing 
circles in a ring, are commonly used test images in discrete tomography, since they 
are easy to generate but relatively hard to reconstruct. The ones in Figure 2c and 
Figure 2d are phantoms similar to complex real world objects. Finally, Figure 2e 
shows a highly direction dependent image, that is useful for illustrating our results. 

For simulating measurement errors during the projection acquisition phase of 
a real-world application, some of the experiments were performed using projection 
data corrupted by noise. In a real application the gathered projection data can be 
degraded by different artifacts - e.g.: beam hardening, photon scattering, imper-
fections of the detectors, background noise, etc. - most of which can be handled 
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a) b) c) 

d) e) 

Figure 2: Basic images in the test database. 

a) b) c) 

d) e) 

Figure 3: Altered images in the test database. 
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by preprocessing steps [3, 5, 10, 13]. Unfortunately, it was impossible to simulate 
all these effects in our experiments. Therefore, we decided to apply an additive 
Gaussian noise, which is a common technique for modeling noise is transmission 
tomography [4, 5, 13, 20]. 

In each case the mean value of the noise was set to ¡i = 0, and the standard 
deviation was chosen from the set a € {0.5; 1.5; 5.0}. Taken, that the mean of the 
projection values was approximately 40, we can say that the amount of noise in the 
projection was respectively 0%, 1.25%, 3.75% and 12.5%, compared to the amount 
of useful data. Together with the noiseless case, this gave four different versions 
of the projection data. We generated and stored the noise in advance, before the 
reconstructions, in order to ensure the same conditions in all experiments. 

The reconstruction algorithms were implemented with GPU acceleration using 
the NVIDIA CUDA programming toolkit [21]. For the computation we used a 2.66 
GHz Core 2 Quad CPU, and an NVIDIA GeForce GTS250 GPU. With this highly 
parallel implementation the time required to perform all 1145224 reconstruction 
tasks was about 500 hours. 

For the evaluation of the results we used a numerical error measurement called 
Relative Mean Error ( R M E ) that was defined in [11]. The RME value of a recon-
struction is computed as 

Here x* denotes the vector of pixel values of an expected reconstruction (in our case 
the pixel values of the phantom processed) and y is the reconstruction provided 
by one of the reconstruction algorithms described in Section 3, performed under a 
specific set of conditions (we will refer to the phantom and its reconstruction given 
by x* and y, in the text). Informally, the RME value gives the ratio of missed 
pixels in a binary reconstruction, normalized by the number of object pixels on the 
expected image. The main advantage of the RME measurement is that it gives the 
amount of error compared to the size of the object of study, and not the image itself 
(thus the error measurement is not affected by the zero padding of the image to be 
reconstructed). As a consequence the RME measurement can take values higher 
than 1, but fortunately this does not affect our evaluations, since we are interested 
in comparing the reconstructions to each other (and not determining their quality). 

We generated the projection sets used in our experiments with two angle set 
selection techniques described in [18]. In the followings we shortly describe them. 

4.1 Equiangular Angle Sets 
The first type of angle sets were generated equiangularly along the half circle. Such 
projection angle sets are uniquely determined by their number of p projections and 
a starting angle a as 

RME(x*, y) = 
£r=i xi 

( 7 ) 

180° 
S(a,p) = {a + i I i = 0 , . . . , p — 1} . (8) 
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Figure 4: Example of the equiangular projection angle sets (angle set S(a, 4)). 

An example of the equiangular angle sets is given in Figure 4. With our notation 
0° stands for vertical projection beams, aimed from the bottom to the top of the 
image. 

With each image, reconstruction algorithm and specified noise, we performed 
reconstructions from projection sets S(a,p), with p £ {2,.. . 18} projection numbers 
and all integer a starting angles ranging between 0° to 

4.2 Angle Set Selection with Greedy Angle Testing 
We also conducted experiments on several non-equiangular projection sets. Un-
fortunately, the extremely high number of such sets (even assuming only integer 
angles between 0° and 179° with 2 projections would produce (12°) = 16110 possi-
ble angle sets) made it impossible to perform such a thorough testing that we did 
in the equiangular case. Therefore, we had to choose a smaller subset of all the 
possibilities. 

In accordance to practical applications we restricted our studies to projection 
sets producing highly accurate results. We must note that the performance of pro-
jection sets strongly depends on the image to be reconstructed, and other conditions 
- like the applied reconstruction algorithm or noise - can also have influence on the 
information content of the projections. Therefore, we generated non-equiangular 
angle sets for each image, algorithm and noise level, trying to find highly accurate 
projections sets. 

For the purpose of generating the desired angle sets we used the greedy angle 
selection algorithm of [18], that produces an L = (ai, a2,. • •, ap) ordered list of 
angles as follows. 

Greedy: Greedy angle selection algorithm. 
Input: x* vector of image pixel values, p > 2 maximal number of angles, and 

1 < a i <179 predetermined integer angle. 
Output: L = (qi , a2,..., ai) angle list so that I < p. 

Step 1 Set L\ = (c*i), i = 1; 



176 László Varga, Péter Balázs, and Antal Nagy 

Figure 5: Steps of the Greedy algorithm. 

Step 2 Let i <- i + 1; 
Step 3 Let 0° < a* < 179° be an integer angle for which RME{x*, X(Li_ l iQ.)) 

is minimal; 
Step 4 Let the next list of angles be Li = (I/j_i,a*); 
Step 5 If i = p or RME(x* , x ^ J = 0 return with Li otherwise go to Step 2 

Here, x l stands for the reconstruction of the x* image from the projection set 
specified by the angles of L. 

The Greedy algorithm is an iterative process that takes an image, and in each 
iteration it tries to determine the best projection to be added to the current ones. 
The result of this algorithm is a list of angles ordered by decreasing significance. A 
demonstration of the algorithm's proceeding is plotted in Figure 5. 

In each iteration, when there are i projections already chosen, the algorithm 
has to test 180 — i possible projection sets to find the best one to proceed with. 
This determines a total number of Y^Zi (180 — i) projection angle sets, assuming 
that the maximal number of projections is p. We used these angle sets for building 
up our test frameset. This provided reconstructions from a significant number of 
non-equiangular projection sets, that gave a proper base for comparing the results 
of the different reconstruction algorithms. 

Although, in [18] other methods for non-equiangular angle set selection are also 
described - which could have been used for generating the desired angle sets in our 
studies - we decided to use the Greedy algorithm, due to its deterministic nature 
and relatively fast performance. 

The parameters of the Greedy algorithm were set as described in [18]: we 
allowed to choose integer angles between 0° and 179°, and used the SIRT algorithm 
for producing the first ct\ projection angle. Furthermore, we set the maximal 
number of projections to 18. 
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5 Experimental Results 
After performing the tests we started comparing the RME values of the reconstruc-
tions. As it was mentioned in Section 4 we evaluated the data from two viewpoints. 
First, we compared the reconstructions of the same objects, performed under the 
same conditions (i.e., using the same reconstruction algorithms and same noise), 
but from different projection sets to see how much improvement can be reached in 
the reconstruction, solely by finding better projections. Secondly, we compared the 
reconstructions of the same objects, from the same projections, but under different 
conditions to find out whether or not the direction dependency of the objects re-
main consistent under different conditions - i.e., to see if there are projection angle 
sets which lead to better (or worse) reconstruction results under all circumstances. 

Although all the results proved our observations, due to the extremely high num-
ber of performed reconstructions we cannot present all of them in detail. Therefore, 
in this section we will discuss our general observations, and show only samples of 
the result dataset which demonstrate them the best. 

5.1 Reconstruction from Equiangular Projection Sets 
In the case of the equiangular angle sets the task was relatively easy. We could plot 
the curves of RME values belonging to the reconstructions performed by one of the 
three reconstruction algorithms, from a specific number of projections, and using a 
given type of noise, according to the starting angle (as it was done in [19]). Then, 
we could easily determine if the curves have significant differences between their 
minimal and maximal values (i.e., if the accuracy of the reconstructions depend on 
the choice of the projection angles), and if the curves on the diagrams are similar 
or not (i.e., if there is correspondence between the reconstructions of the same 
object from the same projections, but under different conditions). As an example, 
the RME values belonging to the reconstructions of the phantoms in Figure 2e 
and Figure 3e (the basic and altered versions of the same object) can be seen in 
Figure 6. The plotted graphs show statistics of all the reconstructions performed 
from equiangular projection sets containing 4 projections, grouped by the different 
types of applied random noise. 

Apparently, all the graphs have significant gaps between their minimum and 
maximum points, showing that the binary reconstruction of an object can indeed 
be improved only by taking the proper projections (Figures 7 and 8 give examples 
of the reconstructed images preformed v^ith different projection sets). We can 
also notice, that the curves of the graphs are relatively smooth, suggesting that 
projections with angles close to each other have similar information content. This 
also indicates that small changes of the projection angles may only have negligible 
effects on the result of the reconstruction. In addition, all the curves show some 
degree of similarity, i.e., the minimal and maximal values correspond to similar 
projection angle sets and the transitions between the extrema are also alike. 

Such examination of equiangular projections has already been done in [17, 18], 
but we decided to reproduce these results to highlight the regularities and give a 
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Reconstructions of Figure 2e with the DC algorithm 
from 4 projections 

Reconstructions of Figure 3e with the DC algorithm 
from 4 projections 

Reconstructions of Figure 2e with the TSIRT 
algorithm from 4 projections 
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Reconstructions of Figure 2e with the DART 
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Figure 6: RME values of the reconstructions of the phantoms in Figure 2e and 
Figure 3e from 4 projections according to the starting angle. The three diagrams 
on the left hand side are the reconstructions of Figure 2e, and those on the right 
hand side are the reconstructions of Figure 3e. Each row shows the results of one 
applied reconstruction algorithm (from:the top to the bottom: DC, TSIRT and 
DART algorithms, respectively). Each diagram shows four curves each belonging 
to the reconstructions affected by the four different types of noise. On the diagrams: 
horizontal axis stands for the starting angle, and vertical axis for the RME value. 
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brief explanation of the projection selection dependency of objects. 
Let us consider the problem of angle selection dependency in general, i.e., with-

out the assumption of examining any specific object, reconstruction algorithm, or 
angle selection strategy. As it was described in Section 2, the goal of transmission 
tomography is to reconstruct a function / ' , that has the prescribed projections in 
a set of directions. We also mentioned that the limited amount of projection values 
may not contain enough information for a proper reconstruction. This lack of data 
makes it possible to have several different / ' functions having the same projections, 
i.e., different reconstructions. Nevertheless, we are usually interested in only one 
specific result (the one identical to the original object), and any other solution is 
considered to be incorrect. 

In our discretized grid based representation, the lack of information means that 
there can be several different binary images having the expected projections, some 
of which can be entirely different from the expected reconstruction. In this case the 
most we can expect from a reconstruction algorithm is to find one of these possible 
solutions. If the set of possible reconstructions is large, the probability of finding 
an accurate solution can be small. Naturally, if we want to increase the probability 
of finding an acceptable reconstruction, we have to reduce the set of possibilities, 
by gaining additional information for the reconstruction. This can be done by 
either adding some extra prior knowledge to the model (e.g. by assuming that the 
shape of the object of study fulfils some special property [9]), acquiring additional 
projections, or-taking better projections with higher information content. 

Since we have been experimenting on deterministic algorithms, the choice of the 
reconstruction method can also be regarded as a prior knowledge, i.e., to decide 
which strategy should be used for choosing a reconstruction out of the possible 
ones. 

Regarding the previous discussion, the differences in the curves of Figure 6 can 
easily be explained. First, let us consider the effects of the additive noise. In this 
case changing the projection data also affects the feasible solutions the algorithms 
can choose from, and all the possible solutions will have some degree of error. Since 
we applied the same noise each time, the distortion of data is similar with every 
reconstruction^ and the effect in Figure 6 is an approximately constant upwards 
shifting in the RME value curves. Naturally, higher noise levels result in bigger 
upwards shifting of the curves. 

The effect is different when we compare the RME curves on Figure 6, belonging 
to the basic and altered version of the phantoms. We know, that some objects 
can be reconstructed easier if their projections are taken from a specific set of 
directions. It is also clear, that different objects can have different optimal angle 
sets. Therefore, we can only find the optimal set of directions for a specific object. 
If we alter the structure of the the object, the information content of its projections 
taken from specific directions can change, thus some of them can be more (or less) 
useful for the reconstruction. This means that the modified object can have different 
optimal angle, sets. Our results show that this change of the optimal directions 
correspond to the level of modification of the object. Small modifications do not 
notably affect the result of reconstruction, but by increasing the distortion we reach 
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a) b) c) 

* * * 
d) e) 0 

Figure 7: Reconstructions of the phantom in Figure 2e performed by the three 
reconstruction algorithms, from different projection sets containing 4 projections. 
Images a, b, c correspond to the worst, and d, e, f to the best reconstructions gained 
by using equiangular projection sets. The three columns contain results belonging 
to the different reconstruction algorithms (DC: a, d; DART: b, e; TSIRT: c, f ) . 

a certain point, where we are dealing with an entirely different object, with different 
properties. 

The differences in the curves of Figure 6 are the most remarkable in the case of 
comparing the results belonging to the different reconstruction algorithms. Since 
we used the same information in all the reconstructions (the projection data and 
the fact that we are looking for binary solutions), the choice of the reconstruction 
algorithm should only influence which one of the feasible results is found. This 
previous assumption is, however, not true, since the algorithms we used are not 
guaranteed to give optimal solutions. Still, having more informative projection 
sets can make it more likely to get better results from the same projection sets 
regardless of the applied reconstruction algorithm. 

We should also take a look at what this projection angle dependency means 
regarding the reconstructed images themselves. In Figure 7 we gave the best and 
worst reconstructions of the phantom in Figure 2e reconstructed by the three ex-
amined algorithms from equiangular projection sets containing 4 projections. Here, 
we can see significant differences, especially on the reconstructions performed by 
the DC and the DART algorithms, but even the results of the TSIRT algorithm 
can notably be improved by finding the proper projections. 
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5.2 Reconstruction from Non-Equiangular Projection Sets 

It was also shown [18] that - in the case of noiseless projections - the dissimilarity 
between the result of the reconstructions using different projection sets can be even 
more significant if we allow the acquisition through non-equiangular projection sets. 
Here, we extended the previous work by examining the case when the projection 
data is affected by random noise. A brief example this can be seen in Figure 8, 
showing the reconstructions of the phantom of Figure 3e, from different projection 
sets. Our results indicate that the previous observations still hold, even in the case 
of distorted data, and loosing the assumption of equiangularity can bring further 
improvement to the reconstruction. 

Comparing the results numerically is a bit harder when using non-equiangular 
angle sets, than with the equiangular ones. In this case we could only compare 
a set of reconstruction pairs by plotting both RME values of the corresponding 
reconstructions. We used this technique for a pairwise comparison of the different 
reconstruction algorithms. Examples for the resulting diagrams can be seen in 
Figure 9. 

We would expect Figure 9 to show some degree of correspondence between 
the reconstructions of the different algorithms. If it is so, then the projection 
sets producing better results for one algorithm should also produce high quality 
reconstructions for other ones, and the points in the diagrams should be placed 
along - or at least close to - a diagonal straight line. As we can see, the points 
of Figure 9 do satisfy our expectations so we can deduce that there is a strong 
correspondence between the results of the different reconstruction algorithms. 

We used the same technique for comparing the reconstructions of the basic and 
altered versions of the images from projection sets using the same angles, in the case 
when we allow non-equiangular angles and the projection data can be corrupted by 
noise. An example of such results is given in Figure 10 by giving the RME value 
pairs of the reconstructions of Figure 2e and Figure 3e, performed with the DC 
reconstruction algorithm. Again, we can see that the points highlighted in Figure 10 
are allocated close to a diagonal straight line indicating that small distortions of the 
object of study do not have a significant influence on the reconstruction. Moreover, 
we also can deduce that such distortions do not affect the information content of 
projections taken from specific angles, i.e., if a projection of an object holds high 
information content, then another projection taken from the same direction, but 
from a slightly different object would also provide similarly useful information for 
the reconstruction. 

The results indicate that there is a strong correspondence between the binary 
reconstructions of an object performed with different reconstruction algorithms, 
even in the case when the projections are chosen non-equiangularly, and the pro-
jection data is affected by different types of random noise. Furthermore, we can 
say that the projection angle dependency of objects remains consistent and some-
what predictable under different conditions, and therefore it is possible to use the 
direction-dependency of objects in practical applications for improving the results 
of reconstruction (like it was proposed in [17, 19]). 
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a) 

i t -- * " ». * t • 

b) c) 

Figure 8: Comparing of the reconstructions of the phantom in Figure 3e, recon-
structed by the DC algorithm, from different projection sets, with different levels of 
noise. Each column contains the angles of the projection sets and the corresponding 
reconstructions. Top row indicates the angles in the projection sets, second row 
gives the reconstruction in the noiseless case, bottom row contains the reconstruc-
tions from projection sets affected by random noise with 1.5 deviance. 
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Comparison of the DC and the 
DART algorithms 
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Figure 9: Cross comparison of the algorithms of Section 3 for the reconstructions of 
the phantom in Figure 2e. Each diagram contains points representing RME value 
pairs corresponding to reconstruction performed by two algorithms. The graphs 
contain results with projection numbers from 2 to 18, and all the additive random 
noise described in Section 4. The red lines are regression lines fitted to the points 
for better visibility. 
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1,6 

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 

RME values of the reconstructions of 
the basic phantom (Figure 2e) 

Figure 10: Reconstructions of Figure 2e and Figure 3e performed with the DC 
reconstruction algorithm from projection sets acquired with different angles. Each 
point of the diagram is positioned according to the RME values of the reconstruc-
tions of the two images from the projection sets having the same angles. Different 
points of the diagram give reconstructions corresponding to different angle sets. 
The diagram also contain reconstructions performed with noise-corrupted projec-
tions. 
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Although, we have only given a sample of the performed reconstructions, we 
must note that our observations seemed to hold in all our many test cases. 

6 Conclusion 
In this paper we studied the projection angle selection dependency of reconstruc-
tions in the field of binary tomography. We have summarized and extended previous 
results by showing, that there is a strict correspondence between the reconstruc-
tions performed by different binary tomography reconstruction algorithms even 
in the case when the projection angles are selected from arbitrary directions, the 
objects of study are distorted and the projection data is affected by random noise. 

Our results indicate that this angle selection dependency is caused by the differ-
ent information content of the different projections, which is the intrinsic property 
of the images themselves. In the future we intend to discover the deep connections 
between our experimental results and the theory of discrete tomography, and also 
to extend our investigations to the case of three dimensional tomography, i.e, when 
the objects to be reconstructed are represented in three dimensions, and we can 
take projections from any directions on the sphere. 
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Parameter Estimation of Flow-Measurement in 
Digital Angiography* 

Krisztián Veress'1' and Tibor Csendes1' 

A b s t r a c t 

The purpose of angiographic procedures used in cardiovascular interven-
tions is to classify the patient's potential of regeneration after strokes caused 
by dead blood cells in the main arteria. The flow of blood into heart's capil-
laries is measured using x-ray radiometry with contrastive fluids. One quick 
and reliable method for estimating this potential could save lives and would 
allow further treatments to be more accurately planned. 

Our task was to fit a 5-parameter Gamma function to the intensity sam-
ples extracted from the x-ray angiograms. The estimation of this function's 
parameters is hard given that the raw data set is heavily polluted with several 
different types of noise. 

Our complete solution has four main parts which have also been suc-
cessfully verified and validated. First, we propose a solution for eliminating 
the noise by applying a specially designed moving window Gauss filter. Se-
condly, we have designed an algorithm for computing a good initial guess for 
the Levenberg-Marquardt optimizer in order to achieve the required preci-
sion. Third, an algorithm is proposed for selecting significant points on the 
smoothed data set with an interval-based classification method. Finally, we 
apply the LM algorithm to compute the solutions in a nonlinear least squares 
way. 

We have also formulated an algorithm based on interval arithmetic which 
can be effectively used for comparing nonlinear least-squares fit results and 
assign goodness values based on their residuals. This method has been used 
for measuring improvements during the development. 

We must emphasize that the proposed algorithms are distinct, they can 
be used in other applications together or separate!}' since they are generally 
applicable, they do not depend on specialties of the presented application. 

Keywords : numerical analysis, optimization, parameter estimation, gamma 
function 
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1 Introduction 

The digital substraction angiography [17] used in medical surgery is one kind of an 
image recording and processing method where panoramic x-ray images are taken 
while contrastive x-ray fluid [8] is injected into the patient's heart's main arteria. 
The x-ray fluid flow is similar to blood-flow [11], thus the amount of blood that 
can reach the critical region can be measured. The goal is to estimate the patient's 
survival chances who has recently survived a stroke, being dead blood cells removed 
by means of a surgery intervention. There is a high correlation between these and 
the regeneration ratio (perfusion parameter) of his/her cardiac muscle [1], [22]. 

X-ray panoramic images are recorded at a rate of 15 fps for 10 to 15 seconds 
yielding 150 to 225 frames as digital substraction angiograms [17]. The surgerer 
in charge selects the critical cardiac muscle region as the Region of Interest (ROI) 
[21] on the first couple of frames. The intensity of the x-ray fluid can be computed 
on each frame [3] by calculating the average intensity of the interior pixels in that 
ROI. In this way, an aggregate intensity value for each frame brings on a time-series 
(M(i)) which is going to be our input. Two examples are shown in Figure 1. 
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Figure 1: One valid and one erronous input time-series of x-ray intensities 
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1.1 Modelling flow dynamics 
Our main task was to characterize the x-ray fluid flow in blood vessels by means of 
numerical values. Several theoretical formulations have been proposed to explain 
the shape of peripheral indicator dilution curves [24], [25]. One expression proposed 
by Evans [5] and examined by Howard [13] has a graphical representation which 
bears a remarkable resemblance to indicator dilution curves without recirculation. 
This function can be expressed in the original form 

t - AT 
H(t) = Ks(t — AT)ae P +Z,, (1) 

being Ks > 0 a constant scale factor, AT > 0 the appearance time, Zi > 0 an 
offset, and a, ft > 0 the rising and descending slope shape parameters. To have a 
quick overview of this mathematical model, we have plots with different parameter 
sets in Figure 2. 

Figure 2: The effect of changing single parameters of H(t) 

The AT parameter specifies the time when the contrastive fluid has been injected 
while Zi and Ks are the base intensity and intensity scaling values of the x-ray 
device. The slope parameters describe the way blood can enter and exit the cardiac 
muscle. Since well-studied physiological meanings are to be abstracted from these 
numerical parameters [13], estimating them precisely and accurately is a must. 

The main objective was to efficiently fit H(t) to the initial samples M(t) with 
high confidence regarding the nature of the consequences our results could intro-
duce. Early studies showed that our inputs can be more precisely modeled with a 
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slightly modified version of H(t): 

f Z\ I AT <t \ 
G(t)=\ -(t'AT) I (2) 

{ H(t) = Ks(t — AT)ae P +Zi I AT >t ) 

What we have now, is a formulation of a non-linear parameter estimation prob-
lem where the measured data is M(t) and the model is G(t). There are several 
methods for solving such problems [6],[14],[23] among which we have selected the 
Least Squares Estimation procedure. To be more precise, we are going to use the 
Levenberg-Marquardt algorithm [15], [19], minimizing the difference between the 
model and sample values in a nonlinear least squares way [7], [16]: 

n 
Z r e s = J 2 № ) - M(ti))2 min. (3) 

i=l 

1.2 Normalizing residual squares 

After estimating the regression parameters, an essential aspect of the analysis is 
to test the appropriateness of the overall model. To declare a fit 'good' or 'bad', 
the sole sum of the residuals (Z res) are not reasonably satisfactory, since a 'better' 
fit can have higher Zres values than a 'worse' one caused by heavy noise or badly 
scaled sample. 

Widely used techniques such as proportion of variance, chi-square and covari-
ance matrix calculations showed nothing better. Since Zres can be arbitrarily large, 
we propose a method for scaling these values into any chosen interval. 

Let f , m S l n , f be the vector of our fitted values, m the measurement vector, 
gi,mi £ i lower, and gu, mu £ R upper bound values. Then Vi £ 1 , . . . ,n 9 

mi £ [mi,mu], < mu, mi,mu £ [0,255], 
Si e [gi,gu], gi < gu, 9i,9u e [0,255], 

which results the following inclusion (based on interval arithmetic): 

(g¿ - nij) e [gi,gu] - [mi,mu] e [gi - mu,gu - m¡]. 

From interval arithmetic we know that for any / : Kn t—> R function, its natural 
interval extension is given by the interval-valued function in the form 

F : [IT] ^ [R] where F([z]) 2 { f ( y ) | y £ [x]} 

and can be formulated by replacing each value with its thickest encasing interval: 

i e l i-» [x,x] £ [K]. 



Parameter Estimation of Flow-Measurement in Digital Angiography 193 

Now we can easily compute the natural interval extension of Zres: 

n n 
Zres = E № ) - * 2 = E f e - m « ) 2 

¿=1 ¿=1 
\2 

G Y l d d i — mu,9u - mi]f S ([0,max ((gi - mu)2 , (gu - m;)2)]) 
¿=1 j=i 

e [0, nmax ((p; — mu)2, (gu — mi)2)]. 

which implies that 

n max ((gi - mu)2, (gu ~ mi)2) €[0,1]. ( 4 ) 

The plotted original Zres and normalized Zres values for different inputs are 
shown in Figure 3 (smaller value means better accuracy). Note that the normalized 
values are more scattered than the original ones meaning that normalization pushes 
away 'bad' and 'good' fits. 
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Figure 3: Original and normalized residuals on 66 different M(t) samples 
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1.3 Results on the initial samples 

To evaluate our solution we had 66 real life, anonymous medical samples at our 
disposal. We must emphasize that these samples contain noises from uncountable 
sources [10] (i.e. unprecise recording, unprecise fluid injection [8], x-ray device's 
auto-intensity regulation [9], image processing bugs [18]) and our effort in figuring 
out suitable noise models was a fool's errand. 

We have implemented our solution in C++ by making the most of the Insight 
Toolkit [26]. On the first attempt we tried to directly fit the model (2) to our input 
using the mentioned LMA algorithm. Since the latter is an iterative curve-fitting 
method, we had to feed it with a suitable initial guess vector which was chosen for 
the following: 

P0 = (Ks, AT, a, ¡3,Zi) = (0.02,34.0,3.3,11,1,106.0) 

Based on our statistic analyses Pq describes a nearly-optimal estimator for a 
well-conducted, unnoisy, and error-free measurement sample. Since the results 
were really bad (concerning'either performance or precision), we classified each 
fit in a graphical way into appropriate and inappropriate fit classes (see Figure 
4), separately computed the normalized residuals and lastly matched these two 
properties. 
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Figure 4: Normalized results on the test database (naive fit) 

In Figure 4 a somewhat sharp interface showed up between appropriate and 
inappropriate classes from which we may conclude that there exist a high correlation 
between our normalized values and the optimality of the estimators. 

However, we must recognize that not every inappropriatedly classified sample 
is a clearly wrong measurement which means that the LMA algorithm should be 
fined-tuned and other pre-, and post-processing phases should be included in our 
complete solution. 
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2 Noise filtering 
In order to achieve better results, we have decided to apply a noise filtering algo-
rithm whose primary goal was to eliminate spikes and produce a smoothed sample. 
Simple filters like median and arithmetic mean moving-window filters did not per-
form well on all types of measurements. 

The chosen filtering algorithm is a general Gaussian moving window average 
type [12] filter with specially designed weights and variable length window size. 
The weights are designed to be precomputable given an initial sample, and not to 
introduce undesired offsets and scaling on the input values: 

i+Z/ 
M*{u) = W j if Lw<u< \M(t)\ ~ Lw, 

j J T l , , , 2 L w + 1 

where Vj € [i — Lw,i + Lw], and the weights are: 

,„. = 1). 21^ + 1 
J ' yi+Lu, (t._ti)2/(2L,„ + l) ' 

By selecting the weights in this way, it is guaranteed that Vi € [1, n]: 

v" W - ' v ie-(t-ti)2/(2Llv+i) 2Lw + l \ 

Generally speaking our proposed weighting method gives us a (not arithmetic) 
mean moving window filter with Gaussian weights. The optimal window size has 
been selected by generating a histogram for all possibly usable window sizes for all 
inputs in our database resulting the value 33. 

This modification of the original smoothing filter has the same advantages as 
to the Savitzky-Golay [20] filter because it also tends to preserve features of the 
distribution such as relative maxima, minima and width, which are usually 'flat-
tened' by other adjacent averaging techniques. However, further researches should 
be conducted to compare the performance, stability and applicability of these two 
filters and select the most appropriate one. 

Our proposed filtering algorithm can successfully be used on any one-dimensio-
nal sample since weights depend only on the measurement vector and the optimal 
window size can also be found in the above way. 

2.1 Smoothing results 

In Figure 5 we present four different initial samples and the result of our proposed 
smoothing filter. One can see that our filter is not sensitive to radidly changing 
curves or spikes and keeps the dominant part of the input signal. 
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Figure 5: Smoothing filter results on real medical samples 
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2.2 Results on the filtered samples (M*(t)) 
We modified the NLLS LMA minimizer's objective function as to minimize the dif-
ference between the model (G(t) and the filtered sample (M*(t)). Table 1 shows 
aggregate statistics about the results generated on the 66-eIement test database. 

Table 1: Numerical results of the LMA algorithm on M(t) and M*(t) samples 

M(t) mm max mean median 
iterations 

CPU time (s) 

3 9999 
121.84 35815.86 
0.0034 0.267 

0.01 7.22 

3796.09 
7010.51 
0.069 
2.03 

M*(t) mm max 

46 
2811.72 
0.037 
0.21 

mean median 
iterations 

ZT 
CPU time (s) 

4 9998 2158.71 45 
122.09 30084.45 3730.36 2480.72 
0.0034 0.255 0.048 0.034 

0.01 7.34 1.13 0.07 

One can see that when using M*(t) as reference, half the time is required to 
achieve double precision (compare Zres values). The normalized values (Zres) have 
also significantly decreased which means better fits. As before, we evaluated all 
curve-fitting results, classified them, and plotted the Zres values (Figure 6). 
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Figure 6: Normalized results on the test database (filtered fit) 

Notice that the bad fit count decreased and the interface between appropriate 
and inappropriate classes sharpened which let us conclude that using the filtered 
signal is far better than using the original one. 
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3 Initial guess computation for LMA 

Until now, we used a static, constant initial vector Pq for the LM algorithm. Given 
the nature of the source experiments, real solution vectors are expected to be scat-
tered in space. Scattering means greater search space, which indicates that a static 
initial vector for the LMA is in general a bad choice. 

We propose an algorithm which is able to dynamically compute an excellent 
approximation of the estimator based on the filtered sample in 0( 1) time and 0(n) 
space. Further advantage of our proposed algorithm is that is can also be used in 
other applications where the same (or analytically equivalent) model is applied. 

It is known, that fluid injection is scheduled to be one second after the start of 
the recording, so the estimation of the Z[ parameter is trivial; we have to compute 
the arithmetical mean of the first 15 values of M*(t). 

To estimate the other 4 parameters, we have computed the first order H'(t) and 
second order H"(t) derivatives of H(t) and solved the H'{t) = 0 and H"(t) = 0 
equations for identifying minimizer, maximizer and inflection points. The results 
showed that H(t) has only one single maximum point (at tmax), and two inflection 
points (at and ¿¿,2) which can be expressed with a,/3, and AT: 

tmax = AT, 
U, 1 = a/3 - y/afi + AT, 
U, 2 = a0 + y/eip + AT. 

In this way, if we were able to produce a good estimation for tmax, ¿iti and 
ti,2, by solving the above nonlinear systems of equations we would acquire good 
estimations for AT, a, and /3. However, the solution of this NLP problem is hard, 
complex NLP solvers are likely to introduce further errors, that is why we have 
chosen a simpler and faster heuristic method. 

Taking the above three equations the following expressions can be derived: 

^ i^max AT) {tmax AT) ^ 
(tmax ti^i)2 (tit 2 tmax)" 

a (tmax ti,l) (ti,2 tmax) 
~~ ~f — AT ~ ~t — AT ' ' Lmax ri± "max 

Since the AT parameter (the x-ray fluid appearance time) can easily be detected 
on M*(t), and given the tmax and one of the i^i and ¿¿^ values, a and /3 are directly 
computable using equations (5) and (6). The estimation of the AT parameter is 
done by combining zero and first order assumptions on the ideal model: 

AT k, \ arg max ( m * (t) = o) + \ arg max (M*(t) = Z) + (7) t) t \ / J t 

+ ^ arg min (M*(t) > Z). 
o £ 
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Last but not least, an estimation for the Ks parameter must be given. This 
scaling is determined by the maxima of G(t) (2). Given that 

a/3 

H(tmax) = (ap)ae P + Z = (a/3) ae" a + Z, 

an approximation for Ks can be formulated as 

m a x ( M » ( t ) ) - Z 
Ks {af})°e-° ' (8) 

Summarizing our method, we must 

1. localize the maximum point tmax and maxima of M*(t), 

2. localize at least one inflection point (¿,,i and/or i»^) by searching discrete 
approximated roots of M* (t), 

3. compute an approximation for AT given the equation 7, 

4. compute approximations for a, ¡3, and Ks using equations 5, 6, and 8. 

One may wonder how good estimation is computed by the proposed algorithm. 
To astonish the reader, we present some numerical and graphical results. Table 
2 shows the general and normalized residuals as if the initial guess was our final 
solution vector. 

Table 2: Computed initial guess vector evaluation 

min max mean median 
Zresi 235.88 17085.28 4009.98 343.64 
Zres\ 0.0090 0.2379 0.0436 0.02719 

CPU time (s): 0.01 0.26 0 .025 0.02 

If compared to Table 1, it is in full view that the newly proposed algorithm 
performs much better than using the LMA with static starting point. Of course, 
being an initial vector we can achieve further improvements (Table 3). 

Table 3: LMA results using computed initial guess 

M*(t) min max mean median 
Zres \ 120.45 11245.8 3210.77 134.66 
Zres\ 0.007 0.231 0.0316 0.0187 

CPU time (s): 0.01 2.54 0.42 0.05 
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Figure 7: Initial guess computation results on the test database 
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Figure 8: Normalized results with dynamic initial vector 

In Figure 7 four results are shown along with the original and filtered samples. 
Notice that how diverse could be the shape of the input measurements. In Figure 8 
showing the normalized residuals for the new approach, each fit has been classified 
as appropriate, higher values indicate wrong samples which must be dropped or 
re-recorded. At this point, the required efficiency and precision has been achieved. 

4 Significant point selection 
Although we could have stopped at this point, we was wondering how could we 
improve the physiological accuracy (not the numerical) of our solution. In order 
to achieve this new goal, the compression [2] of the input signal was the first step. 
All 200 (on average) intensity values in the filtered sample are too much for our 
model's 5 parameters [4]. Using less measurement values (about 20), we expected 
that our curve-fitting would be even more faster and accurate in a biological sense. 
The results showed a positive feedback. 

Our basic idea was to classify the filtered sample's values as significant and 
non-informational points. To select the significant ones, we must detect those 
points where there are sudden changes in M*(t). Generally speaking, we want to 
approximates the curve with a polyline. Our point selection scheme is based on the 
first order discrete derivative of M*(t): 

• dM*(t) = Ds(t) = i° „ , i f i = 1 
w w [M*(t)-M*(t-1) otherwise 

by dividing its codomain into a pre-defined number of intervals (C/). The limits 
for an interval h can be computed using the following equations: 

k = m i n ( ^ ) + ( , - l ) ( m ^ - j
m i n ™ ) , 

u = min { D s ) + l ^ ( D s ) - ^ n ( D s ) 
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The second part of the point selection is while scanning Ds(t), we track some 
history on the previously seen values and note those moments where the previous 
point was located in another interval than the current one. This yields selected 
points near interval borders. 

t 

Figure 9: Significant point selection algorithm 

The scheme of this method is shown in Figure 9, where the bottom graph shows 
the codomain of Ds(t) divided into C/ = 4 equidistant intervals. The blue squares 
are the selected significant points which are then projected onto the top graph. 

Of course, increasing C/ would increase the selected points, since the interval 
lengths would be smaller yielding more interval-border crossings. The proposed 
algorithm is designed to be driven by only one parameter - the target significant 
point count. The implementation is designed to select as many points as requested; 
more requested points mean more accurate approximation but less compression and 
vice versa. Also take note that our third proposed algorithm can also be used on 
any kind of a discrete sample in any dimensions. 
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Figure 10: Significant point selection results 
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5 Final results 

To summarize the work, our complex solution consists of a special filter, a pure 
mathematical initial guess computation algorithm, a measurement compression 
method and last but not least a NLLS Levenberg-Marquardt solver. This is also 
the order of their application, so after getting the initial sample, we apply our fil-
ter, compute an appropriate initial vector and select significant points using the 
filtered sample, and apply the LM optimizer with the pre-computed vector on the 
significant data points as empirical data. 

We have successfully applied our solution for all the 66 real measurements at 
our disposal, selected 4 measurements to be re-recorded, and computed an excel-
lent approximation of the model's parameters for the remaining 62 data sets. These 
have been validated by surgeons specialized in cardiovascular experiments and in-
terventions at the Cardiovascular Research Laboratory at University of Szeged, 
Hungary. 

t 

Figure 11: Composite result of a particular fit 

Our composite solution technique is able to determine the validity of the mea-
surement, then if it proves to be valid, we provide guaranteed results on any kind 
of input sample with high precision using no more than 2 seconds of computation 
time!1! 

Comparing our solution with the time requirements of arranging the patient 
into the examination room, recording the x-ray video, image processing and ROI 
selection, we can surely say that our solution is really efficient and also effective 
enough to incorporate it into real-world devices. 

1 Using an Intel Core 2 T2300, 4 GB RAM based PC 
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