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On regular languages determined by 
nondeterministic directable automata* 

Balázs Imreh* and Masami Ito* 

Abstract 

It is known that the languages consisting of directing words of determinis-
tic and nondeterministic automata are regular. Here these classes of regular 
languages are studied and compared. By introducing further three classes of 
regular languages, it is proved that the 8 classes considered form a semilattice 
with respect to intersection. 

1 Introduction 
We recall that an input word of an automaton is called directing or synchronizing 
if it brings the automaton from every state into the same state. An automaton is 
directable if it has a directing word. The directable automata and directing words 
have been studied from different points of view (see [2, 3, 5, 6, 7, 8, 10, 12, 13], for 
example). For nondeterministic (n.d.) automata, the directability can be defined 
in several ways. We study here three notions of directability which are defined in 
[7] as follows. An input word w of an n.d. automaton A is 

(1) Dl-directing if the set of states aw in which A may be after reading w 
consists of the same single state c whatever the initial state a is; 

(2) D2-directing if the set aw is independent of the initial state a; 

(3) D3-directing if there exists a state c included in all sets aw. 

We mention that Dl-directability of complete n.d. automata was already stud-
ied by Burkhard [1], where he gave an exact exponential bound for the length of 
minimum-length Dl-directing words of complete n.d. automata. In [5], classes of 
languages consisting of directing words of different types of n.d. automata were 
studied. Here, we extend our investigations to three further classes of languages 
and present some of their properties. The paper is organized as follows. The next 

'This work has been supported by the Japanese Ministry of Education, Mombusho Interna-
tiona] Scientific Research Program, Joint Research 10044098 and the Hungarian National Foun-
dation for Scientific Research, Grant T037258. 

tDept. of Informatics, University, of Szeged, Árpád tér 2, H-6720 Szeged, Hungary 
^ Dept. of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan 
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section provides general preliminaries, the formal definitions of the above language 
classes and some earlier results. Finally, Section 3 presents some new properties of 
the language families considered, in particular, it is proved that they constitute a 
semilattice with respect to intersection. 

2 Preliminaries 
Let X be a finite nonempty alphabet. As usual the set of all (finite) words over X 
is denoted by X* and the empty word by e. The length of a word w is denoted by 
M . 

By a (deterministic) automaton we mean a triplet A = (A, X, 8), where A is 
a finite nonempty set of states, X is the input alphabet, and 6 : A x X —+ A is 
the transition function. This function can be extended to A x X* in the usual 
way. By a recognizer we mean a system A = (A, X, 6, ao, F), where (A, X, 6) is an 
automaton, ao(£ A) is the initial state, and F(C A) is the set of final states. The 
language recognized by A is the set 

i,(A) = { w e ; r :«5(a0 ,w)eF}. 

A language is called recognizable, or regular, if it is recognized by some recognizer. 
Sometimes, we say that the recognizer A accepts the language L(A). 

An automaton A = (A, X, ¿) can also be defined as a unary algebra A = 
(A, X) for which each input letter x is realized as the unary operation xA : A —> 
A, a H-» S(a,x). Now, nondeterministic automata can be introduced as generalized 
automata in which the unary operations are replaced by binary relations. Therefore, 
by a nondeterministic (n.d.) automaton we mean a system A = (A, X) where A 
is a finite nonempty set of states, X is the set of the input signs (or letters), and 
each sign X(G X) is realized as a binary relation xA(C A x A) on A. For any a € A 
and I 6 X, we define axA = {b G A : (a, b) G xA}. Thus, axA is the set of states 
into which A may enter from state a by reading the input letter x. For any CCA 
and x € X, we set CxA = IJjax"4 : a G C}. This transition can be extended to 
arbitrary w G X* and CCA. CwA is obtained inductively by 

(1) Ce = C, 
(2) CwA = (CvA)xA for w = vx, x G X, w G X*. 

An n.d. automaton A = (A, X) is called complete, or c.n.d. automaton, if axA ^ 
0, for all a G A and x G X. 

The notion of the directability of deterministic automata can be generalized to 
n.d. automata in several ways. The following three definitions are taken from [7]. 
Let A = (A,X) be an n.d. automaton. For any word w £ X* we consider the 
following three conditions: 

(Dl) (3c G A)(Va G A)(awA = {c}); 
(D2) (Va, 6 G A){awA = bwA)\ 
(D3) (3c G J4)(VO G A)(c G awA). 
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If w satisfies condition (Di), then w is called a Di-directing word of A (i = 1,2,3). 
For every i, i = 1,2,3, the set of Di-directing words of A is denoted by Dj(.4), 
and A is called Di-directable if D»(.4) / 0. It is proved (see [7]) that Dj(«4) is 
recognizable, for every n.d. automaton A and i, i = 1,2,3. The classes of Di-
directable n.d. automata and c.n.d. automata are denoted by Dir(i) and CDir(i), 
respectively. 

Now, we can define the following classes of languages: For i = 1,2,3, let 

¿ND(i) = {Di(«4) = -A. G Dir(i)} and £CND(i) = {Di(-A) : A G CDir(*)}. 

Finally, let D denote the class of directable deterministic automata, and for any 
A G D, let D(.4) be the set of directing words of A. Moreover, let 

£d = {D(^) : A G D}. 

Since all of the languages occuring in the definitions above are recognizable, the 
defined classes are subclasses of the class of the regular languages. 

In what follows, we need the following definition. For any language L Ç X*, let 
us denote by Pr(L) the set of all prefixes of the words in L, i.e., Pr(L) = {u : u G 
X* & (3w G X*)(uv G L)}. 

Now, we recall some results from [5] and [7] which are used in the following 
section. 

Lemma 1 ([7]). For any n.d. automaton A = (A,X), D2(.4).X'* = D2(.A). If A 
is complete, then X*Di(.4) = Di (^) , X*D2(A)X* = D2(.A), and X*D3(>l)X* = 
D3(-4). 

Proposition 1 ([5]). For a language L Ç X*, L G £d if and only if L 0, L is 
regular, and X*LX* = L. 

Proposition 2 ([5]). £CND (2) = £ D , -CCND(3) = £ D , ^ C N D ( I ) N ^ N D ( 2 ) = ^ D , AND 

£ C N D ( I ) N £ND(3) = 

Furthermore, we need the following proper inclusions from [5]. 

Remark 1 ([5]). The following proper inclusions are valid: 

( a ) Co c £ C N D ( I ) C £ND(I)> 

( b ) £ D C £ N D ( 2 ) ; 
i 

(c) £ D C £ND (3 ) -

By Proposition 2, £CND (3) — £CND (2) = £DI and thus, we shall investigate 
the remaining 5 classes and three more defined as follows. Languages L Ç X* 
satisfying X*L = L are called ultimate definite {cf. [9] or [11]), and we shall consider 
the subclass U which consists of all the regular ultimate definite languages. The 
second class, denoted by £', contains all the nonempty regular languages satisfying 
Pr{L)LX* = L. Finally, we shall also considér the class £ N D ( I ) £ND (3)-
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3 Some observations on languages of directing 
words of n.d. automata 

First we consider the classes U and £ND(I ) - It IS known (see [5]) that £CND(I ) C U. 
£CND(I ) C £ND(I ) by Remark 1. The following assertion shows that £CND(I ) IS the 
intersection of these two wider classes. 

Proposition 3. £CND(I ) = £ N D ( I ) F W. 

Proof. As we mentioned, £CND(I ) IS contained in both U and £ N D ( I ) - Therefore, it 
is sufficient to show that £ND(I) NW Ç £CND(I)- For this reason, let L G £ND(I ) 
Then, there exists a nondeterministic Dl-directable automaton A — (A, X) such 
that L = D\(A). We show that A is a complete n.d. automaton. In order to 
obtain a contradiction, let us assume that there are a ' G A and x G X such that 
a'xA = 0. Let p G L be arbitrary and consider the word xp. Since L Ç.U, we have 
X*L = L, and therefore, xp G L, i.e., xp is a Dl-directing word. Thus, there exists 
a state a G A such that a(xp)A = {â}, for all a G A. In particular, a'(xp)A = {â} 
which is a contradiction. Consequently, A is a complete n.d. automaton, and thus, 
L G £CND(I)- E 

Using Propositions 1 and 2, by the same argument as in the proof of Proposition 
3, one can prove the following statement. 

Proposition 4. £ND(2) N W = £ D and £ND(3) HW = £ D -

By the definitions, one can easily prove the following: 

Lemma 2. If L G £ND(3)> then Pr(L)L = L and LPr(L) = L. 

Lemma 3. If L G £ND(I)> then Pr(L)L = L. 

Now, we show that £ND( I ) and £ND (3) ARE incomparable. To this aim, let us 
consider the following examples. 

Example 1. Let us define the n.d. automaton A = ({1,2},{X,y}) by xA = 
{(1,1), (1,2), (2,1), (2,2)} and yA = {(1,2), (2,2)}. 

Then, A is Dl-directable and Di(^4) = X*y. Now, let us suppose that X'y G 
£ND(3)- Since y,xy G X*y and x G Pr{X*y), by Lemma 2, we have that yx G X*y 
which is a contradiction. Therefore, £ND( I ) 2 £ND(3)-

Example 2. Let A = ({1,2}, {x, y}) be the n.d. automaton for which xA = 
{(1,2), (2,1), (2,2)} and ^ = {(1,1)}. 

Now, A is D3-directable and x,x2y G Da(.A) while xy £ D3(^4). Let us suppose 
that D3(.A) G £ND(I)- Then, there exists an n.d. automaton B = (B,X) such that 
D3(.4) = Di(B). In this case, x and x2y are Dl-directing words of B, and thus, 
there axe states c,d G B such that bxB = {c}, for all b G B, in particular cxB = {c}, 
and b(x2y)B = {d} for all b € B. Then, it is easy to see that b(xy)B = {d}, for all 
6 G B, and hence, xy G Di(B) = Ds(.4) must hold, which is a contradiction since 
xy & D3(^4). Consequently, £ N D ( 3 ) 2 £ND(I) -
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Regarding the class £ ' defined by property Pr(L)LX* = L, where L C X* is a 
nonempty regular language, the following assertion is valid. 

Proposition 5. £' = £ND(2) H £ND(3) • 

Proof. To prove the inclusion £ND (2) N £ND (3) Q £ ' , let us suppose that L G 
£ND (2) H £ND(3) • Since both classes, £ND (2) and £ND (3) I contain nonempty regular 
languages (cf. [7]), L is nonempty and regular. Since L € £ND(2)> by Lemma 
1, LX* = L. On the other hand, by Lemma 2, from L € £ND(3) it follows that 
Pr(L)L = L. Therefore, Pr{L)LX* = L, and thus, L € £'. 

In order to prove the inclusion £ ' C £ND(2) H £ND(3)> LET L G £ ' . Then, L is a 
nonempty regular language with Pr(L)LX* — L. Since L is regular, there exists 
a minimal recognizer (A, X, 6, ao, F) recognizing L. By our assumption, LX* = L, 
and hence, by the minimality of the recognizer, we have that F = { /} for some 
/ G A. Now, let us define the new n.d. automaton B = (B, X) for which B = 
{aoqA : q G P r(L)} and the transitions axe defined as follows. For every b G B and 
x € X, let 

Now, we prove that B is both D2-directable and D3-directable, moreover, L = 
(B) = D3(B). For this purpose, let us observe that if p G L, then ao(qp)B = {/}, 

for every q G Pr(L) since PT{L)L = L. Consequently, p is simultaneously a D2-
directing and a D3-directing word of B, moreover, L Ç D2(B) and L Ç D3 (B). 

To prove the inclusion D2 {B) Ç L, let p G D2(S) be arbitrary. Then there exists 
a set H of states of B such that bpB = H, for all b G B. But, fpB = {/}, and 
therefore, H = {/}, which results that p G L. 

For verifying D3(B) Ç L, let p G DA(B) be arbitrary. Since p G D3(0) and 
fpB = {/}, we have f G bpB, for all be B. Then, by the definition of B, bpB = {/}, 
for all b G B. In particular, aopB = {/}, so that aopA — / , proving p G L. 

Consequently, we have proved that L G £ND (2) and L G £ND(3)> and therefore, 
L G £ND(2) N £ND(3)- O 

Regarding the above proof, let us observe that the constructed automaton B is 
also Dl-directable, and L = Di(£?). By this observation, one can prove the next 
statement in the same way as Proposition 5. 

Proposition 6 . £ ' = £ND(2) N £ND(I>-

The next corollary follows from Propositions 5 and 6. 

Corollary 1. £' = ( £ N D ( I ) H £ND (3 ) ) N £ND(2)-

Since £ND(I) and £ND (3) a r e incomparable with respect to set inclusion, £ND(I)^ 
£ND(3) IS a proper subclass of both £ND(I) and £ND(3)- Moreover, by Corollary 1, 
£ ' Ç £ N D ( I ) H £ND (3) a n d £ ' Q £ND(2)- Both inclusions are proper. To verify this 
observation, let us consider the following examples. 

0 otherwise. 
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Example 3. Let the n.d. automaton A = ({1,2}, X) be defined by X = {x ,y} , 
xA = {(2,1), (2,2)}, and yA = {( 1,1), (2,1)}. 

Then, y is a Dl- and D3-directing word, and L = y {y}* = Di(^) = D3(>1). 
Now, if L G £' , then Pr(L)LX* — L must hold, which is a contradiction since 
ykx £ L, for every integer k > 1. Therefore, £ ' C £ N D ( I ) RÏ £ND(3)-

Example 4. Let the n.d. automaton A = ({1,2}, X) be defined by X = {x,y}, 
xA = {(1,2), (2,2)}, and yA = {(2,1)}. 
Then, A is D2-directable and D2(>t) = xX" U X'y2X\ Now, if D2(.4) G £', 
then since y G Pr(D2(«4)) and x G D2(-4), yx G D2{A) must hold, which is a 
contradiction. Consequently, £ ' C £CND(2) • 

By the definition of £ ' and Proposition 1, we obviously have that £D Ç £ ' . For 
proving that this inclusion is proper, let us consider the following example. 

Example 5. Let A = ({1,2},X), where X = {x,y}, xA = {(2,2)}, and yA = 
{(1,2), (2,2)}. 

Then, Dj(.4) = D 2 (^) = D3(-4) = yX*. By Proposition 5, yXm G £ ' . Let us 
suppose now that yX* G £D- Then, by Proposition 1, xy G yX* must hold, which 
is a contradiction. Therefore, yX* £ £d, and thus, £d C £ ' . 

Summarizing, we obtain the following result. 

Theo rem 1. If \X\> 2, then the 8 classes under consideration constitute a semi-
lattice with respect to intersection. 

The semilatice of these classes is depicted in Figure 1. 

U £ND( I ) £ND(3) 

£ND(2) 

Figure 1 : Semilattice of the classes considered. 
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Let A = (A, X) be an n.d. automaton and x £ X. Then, x is called a complete 
input sign if axA ^ 0, for all a € A. 

The following statement shows that the languages belonging to £N D ( 2 ) can be 
decomposed into a particular form. 

Proposition 7. If L £ £nd(2)< then L is a disjoint union of regular languages L\ 
and L2 where at least one of L\ and L2 is nonempty, furthermore, 

(1) L\ £ £d or LI = 0, 

and 
(2) L2 = Pr(L2)L2Y* and L2 = Y*L2Y*, where Y C X denotes the set of 

complete input symbols of A, or L2 = 0. 

Proof Let L £ £ND(2) be arbitrary. Then, there exists a D2-directable n.d. au-
tomaton A — (^4,X) such that L = D2(A), i.e., L consists of the D2-directing 
words of A. Let us classify now the D2-directing words of A as follows. Let 

Li = {p : p £ L & apA = 0, for all a € A}, 

L2 = {p : p £ L k apA ± 0, for some a £ A). 

Obviously, L\C\L2 = % and Li UL2 = L, furthermore, one of the languages L\ and 
L2 is nonempty. 

Let us suppose that L\ ^ 0. It is easy to see that L\ is regular. Now, if p £ L\, 
then apA = 0, for all a £ A. Thus also a(qpr)A = 0, for all q, r £ X* and a £ A. 
Therefore, X*L\X* = L\, and by Proposition 1, we obtain that Li £ £D if ¿1 ^ 0. 

The regularity of L2 can be concluded by the fact that L2 = L \ L\. Let us 
observe that Y = 0 implies L2 = 0. 

Now, let us suppose that L2 ^ 0 and let p £ L2 and q £ Pr{L2). Then, there 
exists an r £ X* with qr £ L2. Since qr £ L2, a(qr)A ± for all a £ A. Therefore, 
aqA — Aa 0, for all a £ A. Furthermore, since p £ L2, we have that there exists 
a nonempty set H of states such that A'pA — H, for every nonempty subset A' of 
A. In particular, AapA = H, for all a £ A. Consequently, a(qp)A = (aqA)pA = 
AapA = H, for all a £ A, and hence, qp £ L2. On the other hand, since Y is the 
set of complete input signs, L2Y* = L2. 

To prove the second equality, let q £Y* and p £ L2be arbitrary words. From 
p £ L2 it follows again that there exists a nonempty set H of states such that 
A'pA = H, for all nonempty subsets A' of A. On the other hand, since q £ Y*, 
aqA ^ 0, for all a £ A. Consequently, H = aqApA = a(qp)A, for all a £ A, and 
thus, Y*L2 = L2. The validity of the equality L2Y* = L2 is obvious, and hence, 
Y*L2Y* = L2. • 

Now, we study the representation of the languages of £N D ( 2 ) which have the 
form L = MX*, where M is a regular prefix code. For this reason, we recall some 
notions. 
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Let 0 ^ M C X+. Then, M is said to be a prefix code over X if M(lMX+ = 0. 
A prefix code M C is said to be maximal if, for any u G X*, there exists v € X* 
such that uv G MX*. Finally, a prefix code M is called regular if M is a regular 
language. Note that any L G £ND(2) can be represented as L = MX* such that 
M = L \ LX+ and M is a prefix code because LX* = L. 

Proposition 8. Let M C X+ be a regular prefix code that is not maximal. Let 
L = MX*. Then, L G £ND(2) if and only if Pr{M)M C L. 

Proof. To prove the necessity, let us assume L G £N D ( 2 ) - Then, there exists an n.d. 
automaton A = ( A , X ) such that L = D2{A). Let u G Pr{M) and w G M. Since 
u G Pr(M), there exists v G X* such that uv G M C L. Hence, for any a, b € A, 
a(uv)A = b(uv)A. Suppose a(uv)A = 0 for any a G A. Then, for any a € A and 
z G X*, a(z(uv))A = 0. This yields that zuv G L, for all z G X*, and hence, M is 
a maximal prefix code, which is a contradiction. Therefore, a(uv)A ^ 0, and thus, 
auA ^ 0, for all a G A. Consequently, a(uw)A = b{uw)A for any a,b G A since 
w G M C L. Thus, uw G L. 

In order to prove the sufficiency, let A' = {A, X, ao, S, F) be the minimal recog-
nizer (deterministic but not necessarily complete) accepting L. Notice that A' is a 
trim (i.e. accessible and coaccessible, see [4]) and F = {/}, since M is a prefix code 
and L = MX*. Consider the n.d. automaton A = (A,X). Note that f x A = { / } 
for any x £ X. Let a € A and to G L. Since A' is trim, there exist u,v G X* such 
that {a} = aouA &nd.ao(uv)A = {/}, i.e., uv G L. Consequently, u G PT(M) or 
u G MX*. If u G Pr(M), then uw G PT(M)MX* C LX* = L. If u G MX*, then 
uw G MX*X* = MX* = L. Hence, awA - {/}, for all a G A. This means that 
w G D2(-4). NOW, let w £ L. In this case, fwA = { /} but aowA / {/}. This 
means that w £ D2(.4). Consequently, L = D2(.A). This completes the proof of 
the proposition. • 

The above proposition does not always hold for a regular maximal prefix code. 

Example 6. Let X = {x,y} and let A = {1,2}. Moreover, let A — ( A , X ) be the 
following n.d. automaton: xA = {(1,2), (2,2)}, yA = {(1,2)}. 
Then, L = D2{A) = (:x\Jyx*y)X* G £ND(2)- Let M = L\LX+. Then, PT(M)M C 
L does not hold since y G Pr(M), x G M but yx^L — MX*. 

However, for the class of finite maximal prefix codes, we have the following: 

Proposition 9. Let 0 ^ M C X+ be a finite maximal prefix code. Let L = MX*. 
Then, L G £N D ( 2 ) if and only if Pr(M)M C L. 

Proof. The sufficiency can be proved in the same way as in the proof of the previous 
proposition. To prove the necessity, let us assume that L = MX* G £N D ( 2 ) - Let 
A = {A, X) be an n.d. automaton such that L = D2(.4). Let u G Pr(M) and 
w G M. Since M is a finite maximal prefix code, uw1 G MX* for some i,i > 1. 
There are two cases. First, assume a(uwl)A ^ 0 for any a £ A. In this case, 
auA 0 for any a G A. Since w G M C L, (auA)wA = (buA)wA for any 
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a, b £ A. Thus, a (uw) A = b{uw)A for any a,b.£ A. This means that uw £ L. 
Now, assume a(uwl)A = 0 for any a £ A. Suppose that there exists a £ A such 
that a(uw)A ^ 0. In this case, there exists a nonempty subset H of A such that 
(auA)wA = H ± 0- Thus, HwA — H holds because w £ L. This implies that 
a(uwl)A — (a(uwl~1)A)wA = H ^ 0, a contradiction. Consequently, a(uw)A = 0 
for any a £ A, and hence uw £ L. In either case, uw £ L, completing the proof of 
the proposition. • 

Example 7. Let X = {x ,y} and let M = {x,yxx,yxy,yy}. Then, M is a finite 
maximal prefix code. Take y £ PT(M) and x £ M. Then, yx ^ MX*. Therefore, 
MX* i £ N D ( 2 ) -
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Generation of Sentences with Their Parses: the 
Case of Propagating Scattered Context Grammars 

Alexander Meduna* and Jiri Techet* 

Abstract 

Propagating scattered context grammars are used to generate their sen-
tences together with their parses—that is, the sequences of labels denoting 
productions whose use lead to the generation of the corresponding sentences. 
It is proved that for every recursively enumerable language L, there exists a 
propagating scattered context grammar whose language consists of L's sen-
tences followed by their parses. 

Keywords: parsing, propagating scattered context grammars 

1 Introduction 
Parallel parsing represents a vivid investigation area concerning compilers today 
(see [1, 2, 9, 10, 16]). As parsing is almost always based on suitable grammatical 
models, parallel grammars are important to this area. Since scattered context 
grammars generate their languages in a parallel way, their use related to parsing 
surely deserves our attention. 

In this paper, we use the propagating scattered context grammars, which contain 
no erasing productions, to generate their language's sentences together with their 
parses—that is, the sequences of labels denoting productions whose use lead to 
the generation of the corresponding sentences (in the literature, derivations words 
and Szilard words are synonymous with parses). We demonstrate that for every 
recursively enumerable language L, there exists a propagating scattered context 
grammar whose language consists of L's sentences followed by their parses. That 
is, if we eliminate all the suffixes representing the parses, we obtain precisely L. This 
characterization of recursively enumerable languages is of some interest because it 
is based on propagating scattered context grammars whose languages are included 
in the family of context-sensitive languages, which is properly contained in the 
family of recursively enumerable languages. Simply stated, in this paper, we use 
the propagating scattered context grammars in such a way that this use provides us 
with the parses corresponding to the generated sentences and, in addition, increases 
the generative power of these grammars. 

'Department of Information Systems, Faculty of Information Technology, Brno University of 
Technology, Bozetëchova 2, Brno 61266, Czech Republic 
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2 Preliminaries 
We assume that the reader is familiar with the language theory (see [6, 11, 12, 13]). 
For an alphabet V, card(V) denotes the cardinality of V. V* represents the free 
monoid generated by V under the operation of concatenation. The unit of V* 
is denoted by e. Set V+ = V* - {e}. For w £ V*, |u;| and rev(w) denote the 
length of w and the reversal of w, respectively. For U C V, occur(w, U) denotes 
the number of occurrences of symbols from U in w. For L C V*, alph(L) denotes 
the set of symbols appearing in a word of L. Let L\,L2 be two languages. The 
right quotient of L\ with respect to L2, denoted by L\/L2, is defined as L\/L2 = 
{y | yx £ Li, for some x £ L2, y £ alph(Li)*}. The left quotient of L\ with respect 
to L2, denoted by L2\L\, is defined as L2\L\ — {y\xy £ Li, for some x £ L2,y £ 
alph(LiY}. 

A scattered context grammar (see [3, 4, 5, 7, 8, 14, 15] and pages 259-260 in 
[13]), a SCG for short, is a quadruple, G = (V,P,S,T), where V is an alphabet, 
T C V, S € V — T, and P is a finite set of productions such that each production 
has the form (A\,...,An) —» (x i , . . . ,xn), for some n > 1, where Ai € V — T, 
Xi € V*, for 1 < i < n. If every (j4i, . . . , An) —» (x i , . . . , x„ ) € P satisfies 
Xi £ V+ for all 1 < i < n, G is a propagating scattered context grammar, a PSCG 
for short. If (Ai,... ,An) —> ( x i , . . . , x n ) £ P, u = u\A\u2 ... unAnun+\, and 
v = u\X\u2... unxnun+1, where Uj £ V*, 1 < i < n, then u => v [(Ax ,...,An) —> 
(x i , . . . , xn)] in G or, simply, u=> v. Let =>+ and =>* denote the transitive closure 
of =4> and the transitive-reflexive closure of =>, respectively. The language of G is 
denoted by L(G) and defined as L(G) = {x | x 6 T*, S =>* x}. 

3 Definitions and examples 
Throughout this paper, we assume that for every SCG G = ( V , P , S , T ) , there is 
a set of production labels denoted by lab(G) such that card(lab(G)) = card(P)\ 
as usual, /06(G)* denotes the set of all strings over lab(G). Let us label each 
production in P uniquely with a label from lab(G) so that this labeling represents 
a bijection from lab(G) to P. To express that p £ lab(G) labels a production 
(A i , . . . , An) —> (x i , . . . , x n ) , we write p : (Ai,...,An) -> ( x i , . . . , x n ) . For every 
p : ( A i , . . . , An) —» (x i , . . . , x„ ) £ P, lhs(p) and rhs(p) denote AiA2...An and 

respectively. Furthermore, /pos(p,j) and rpos(p,j) denote Aj and Xj, 
respectively. To express that G makes x =>* y by using a sequence of productions 
labeled by p\,p2, • • • ,pn, we write x y\p], where x,y £ V*, p = p\.. .pn £ 
lab(G)*. Let S =>* x[p} in G, where x £ T* and p £ lab(G)*-, then, x is a 
sentence generated by G according to parse p. Let G = ( V , P , S , T ) be a SCG 
with lab(G) C T. G is a proper generator of its sentences with their parses if 
L(G) = {x\x = yp,y£{T- lab{G)Y,p £ lab{G)*,S x [/>]}. 

Next, we illustrate these definitions by three SCGs, each of which has 
its set of production labels equal to {1,2,3,4}. First, consider SCG G\ = 
({S,A,B,C,a,b,c},Pi,S,{a,b,c}) with Px containing 1 : (5) -> (e), 2 : (S) -> 
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(ABC), 3 : (A,B,C) -+ (aA,bB,cC), 4 : (A,B,C) -» (a,b,c). As {1,2,3,4} % 
{a, b, c}, Gi is no proper generator of its sentences with their parses. Second, 
consider G2 = ({5, A,B,C, a,b,c, 1,2,3,4}, P2, 5, {a, 6, c, 1,2,3,4}) with P2 con-
taining 1 : (5) -» (1), 2 : (S) —> (ABC2), 3 : (A,B,C) (aA,bB,cC3), 
4 : (A,.B,C) (a, 6, c4). Notice that {1,2,3,4} C {a, b, c, 1,2,3,4}. However, 
L(G2) = {anbncnrev(p) | n > 0 , 5 =>* anbncnrev(p) [/>]} ^ {an6"cn/9|n > 0 , 5 
anbncnp[p}}, so G2 is no proper generator of its sentences with their parses either. 
Third, consider G3 = ({5, A, B, C, a, b, c, 1,2,3,4}, P3, S, {a, b, c, 1,2,3,4}) with P3 
containing 1 : (5) (1), 2 : (5) - (ABC2%), 3 : (A,B,C,%) (aA,bB,cC, 3$), 
4 : (A,B,C,$) -> (a,b,c,4). Observe that L(G3) = {anbncnp\n > 0 ,S 
anbncnp [p]}, so G3 is a proper generator of its sentences with their parses. 

4 Results 
Next, we demonstrate that for every recursively enumerable language L, there is a 
PSCG G = (V, P, S,T), which represents a proper generator of its sentences with 
their parses so that L results from L(G) by eliminating all production labels in 
L(G). To express this property formally, we introduce the weak identity it from V* 
to (V — lab(G))* defined as n(a) = a for every a G (V — lab(G)) and n(jp) = e for 
every p e lab(G) and use n in the next main theorem of this paper. 

Theorem 1. For every recursively enumerable language L, there exists a PSCG 
G such that G is a proper generator of its sentences with their parses and L = 
tr(L(G)). 

Proof. Let L be a recursively enumerable language. Then, there is a SCG G = 
(V,P,S,T) such that L = L(G)_(see_[7]). Set $ = {(a) |a € T}. Define the 
homomorhism 7 from V_to ($ U (V - T) U {V})+ as 7 (a) = (a) for all a € T and 
7(A) = A for all A G V — T. Extend the domain of 7 to V+ in the standard 
manner; non-standardly, however, define 7(e) = Y rather than 7(e) = e. (Let us 
note that at this point 7 does not, strictly speaking, represent a morphism on V*.) 
Next, we introduce a PSCG G = (V, P, S, T) such that G is a proper generator of 
its sentences with their parses and L(G) = 7x(L(G)). Finally, set T = {$1, $21 $3}-
Define the PSCG 

G = ({5, X, Y, Z) U V U lab(G) U $ U T, P, S, f U lab(G)) 

with lab(G) = {[0J_, [1J, [2J, [3J, |4J}UE_IUE2UE3, where Hi = {[plj \p G lab(G)}, 
—2 = {l_fl2j |A G T}, E3 = {|_a3j |a G T}; without any loss of generality, assume 
lab(G) fl alph(L) = 0 . P is constructed as follows: 

1. Add 
[1J : (5) —> (X[ l J$ i^5) to P; 
[1£J : (5) (UcJ$i5) to P; 
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2. For every p : (A i , . . . ,A„) —• (x i , . . . ,x n) 6 P add 
LplJ : ($i, Alt..., An) ( L p 1 J $ i , 7(®i), • • •, 7(*n)) to P; 
in addition, add 
[2J : ( $ 1 ) ^ ( L 2 J $ 2 ) to P; 
L2£J : ( $ 1 ) ^ ( L 2 e J $ 3 ) t o P ; 

3. For every a € T, add 
|a2j : (X, $2, Z, (a)) - (aX, [a2\$2) Y, Z) to P; 
La3j : ( X , $2, Z, (a)) -» (a, Lo3J $3, r , y ) to P ; 

4. Add |3J : ( $ 3 , y ) ^ ( L 3 j , $ 3 ) t o P ; 

5. Add [4J : ($3) (|4J) to P . 

Basic Idea: 

First, we explain how G makes the generation of a nonempty sentence followed by 
its parse; then, we explain the generation of the empty sentence followed by its 
parse. 

G makes the generation of a\a2 • • • a„p, where n > 1, each a* € T and p is 
the corresponding parse, by productions introduced in steps 1 through 5 in this 
order. After starting this generation by using the production from 1, it applies 
productions introduced in 2, which simulate the applications of productions from 
P. More precisely, it simulates the use of p : (A\,..., An) —> ( x j , . . . , xn) € P 
by using [pl j : ($i, Ai,..., An) —* (LplJ$i,7(xi) , . . . ,7(xn)) £ P so that it places 
its own label, ' [plj , right behind the previously generated production labels; this 
substring of labels occurs between the leftmost symbol, X, and $i, in the sentential 
form. Otherwise, LplJ : ($i, Ai,..., An) —• ( |p l j$1 , 7 (21) , . . . , 7 (x n ) ) is analogical 
to p : ( A i , . . . , An) —> (x i , . . . ,x n ) except that (i) the former has the fill-in symbol 
y where the latter has e and (ii) the former has (a^ where the latter has terminal 
Oi. After using productions introduced in 2 ,G has its current sentential form of the 
form Xr$2^uo(ai)wi(o2)u2 • • • un-i(an)un, where r is a prefix of p and Uj 6 {y}*. 
By using productions from 3, it places a\... an at the beginning of the sentential 
form while replacing each (a¿) with Y and generating the production labels. By 
using productions labeled L3J (see step 4), G replaces each Y with L3J while shifting 
$3 to the right. Finally, the application of the production labeled with [4J completes 
the generation of aia2 . . . a n p (see step 5). Finally, let us explain how G makes the 
generation of the empty sentence e followed by its parse. By use of productions 
labeled with [lej and [2eJ instead of |_1 J and [2J, respectively, the process of placing 
terminal symbols at the beginning of the sentential form (by productions from step 
3) is skipped; otherwise, the derivation proceeds as above. 
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Rigorous proof (Sketch): 
Claim 1. G generates every w £ L(G) — lab(G)+ in the following way 

s = > x l i j S j Z S Î U J ] 

X [p] 

y [ L 2 J ] 

« M (1) 
u [[a3j] 
v [r] 
™ [W1 

where |a3j € S 3 , p, a and T are sequences consisting from Hi, E2 and {[3J}, 
respectively. 

Proof. First, let us make these four observations: 

1. Since the only productions with S on its left-hand side are productions in-
troduced in step 1 of the construction, S =>+ w surely starts with a step 
made by one of these productions. Notice that alph({w}) ft T ^ 0 and only 
productions labeled with p £ S2 U S 3 satisfy a £ alph({rhs(p)}), a £ T. 
As X = ipos{p, 1), a £ alph({rpos(p, 1)}), and only production labeled with 
p £ [ l j satisfies X £ alph({rhs(p)}), the derivation starts with a step made 
by this production. This derivation ends by applying production labeled with 
|4J because it is the only production with its right-hand side over T*. Thus, 
S w can be expressed as 

S * L l J $ i £ 5 [ U J ] 

I [|A|] 
v 

2. Let p be the label of any production introduced in steps 2 through 4 of 
the construction; then, occur(lhs(p),T) = occur(rhs(p),T) = 1. In greater 
detail, for every [piJ e Si , [o2j £ S2, [a3j £ H3, productions intro-
duced in step 2 satisfy occur(lhs([pl\), {$1}) = occur{rhs(\pl\), {$1}) = 1, 
occur(lhs([2\), {$1}) = 1, occur(r/is([2j), {$2}) = 1, occur{lhs{[2t\), {$1}) 
= 1, occur(rhs([2eJ), {$3}) = 1. Similarly, productions introduced in step 3 
satisfy occur(i/is([a2j), {$2}) = occur{rhs[\o2\), {$2}) = 1, occur(lhs([a3\), 
{$2}) = 1, occur(rhs([a3\), {$3}) = 1. Finally, production introduced in step 
4 satisfies occur(lhs{|3J), {$3}) = occur(r/is([3J), {$3}) = 1. 

3. Because X £ alph({x}) and only productions labeled with p £ S3 satisfy 
X £ alph({lhs(p)}) and X £ alph({rhs(p)}), production labeled with [2eJ 
cannot be used. 

4. Let p be the label of any production introduced in steps 1 through 5; then, 
alph({rhs(p)}) fl lab(G) = {p} and occur(rhs(p), {p}) = 1. 
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Based on these observations, notice that G generates every w G L(G) — {|0J} 
in the way described in the formulation of Claim 1. • 

Claim 2. Consider derivation (1). In its beginning 

S =• X [ l J $ i Z 5 [|1J] 
x [p] 
y [ L 2 J ] 

every sentential form s in X [ l J $ i Z S =s>+ x satisfies s G {X}Za6(G)+{$i}{.Z}($U 
{V - f ) U {y})+ and y G {X}ia6(G)+{$2}{,Z}($ U {y})+. 

Proof. By the definition of homomorphism 7, productions labeled with [piJ rewrite 
symbols over $ U ( K - f ) U { y } and change $1 to [plj$i- Since Vn{X,$uZ} = 0, 
every sentential form s in X [ l J $ i Z S =!>+ x satisfies s G {X}Za6(G)+{$i}{Z}($ U 
(V — T) U {y}) + . Only Si contains production labels p satisfying alph({lhs(p)}) n 
(V — T) T̂  0. Therefore, to generate w G T*, productions labeled with [pl j have to 
be applied until s G {X}/a6(G)+{$i}{Z}($U{y})+ . Finally, a production labeled 
with [2J is used, so y G {X}/a&(G)+{$2}{-Z}($ U {y}) + and the claim holds. • 

Claim 3. In 
y z [LffJ] 

u [[a3J] 

of derivation (1), every sentential form o in y =>* z can be expressed as o G 
Î*{X}Za&(G)+{$ 2}{y}*{Z}($U{y})+ and u G T+lab(G)+{h}{Y}+. In greater 
detail, 

X[p!J . . . b n j $ 2 ^ y i 0 ( 6 i ) y i l (b2)Yh • • • (bm)Y 
b1X[p1\...\j}n\[b12\$2Y^ZY^(b2)Y^...(bm)Y^ [|&i2j] 
hb2X\pi\...[pn\ L M J [ 6 2 2 j $ 2 y i o + 1 y i l + 1 £ y i 2 . . . (6m)y i m [L622J] 

=»™"3 hb2 ... bm—iX [piJ . . . [p„J [6l2j . . . Lt»m-i2j$2y<0+1y<1+1 . . • 
... Yim~2 ZY*™--1 (bm)Yirn [d] 
bib2.. .bm[pij.. .\jpnJ L&12J.. -L6m-i2j L&m3j$3y i 0+1y< '+1 . . [|6m3J] 

where [ p i j , . . . , [ p n J € lab(G) are labels that denote productions introduced in 1-
2, (61 ),..., (b m > 6 9, 61, . . . , "m C - 1 ! <7 = I 6 3 2 J . • • [b m— m > O , 

m = |s|, where s G L(G) is a corresponding sentence of the SCG G. 

Proof. Notice that occw(Z/is(|a2j), {X}) = occur(rhs(\a2\), {X}) = 1 and 
occur(lhs([a2\), {y}) = occur(rhs([a2\),{Y}) = 1. In every derivation step of 
y =$•* z, the the first symbol (b) G following Z is replaced with Z, X is changed 
to bX, and $2 is changed to Z$2, where l G lab(G). As [a2\ and (a3J are the only 
production labels p satisfying alph({lhs(p)}) fl 3> ̂  0, alph({rhs(p)}) n 3> = 0 and 
¡pos(|a2j,3) = Z, rpos([fl2J,4) '= Z. Z can replace only the first occurance of 
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(b) € $ behind Z to generate w e T*. Productions labeled with [a2j are used 
m — 1 times. Thus, y =S>* 2 has the form 

X\p1\...\pn\%2ZYi°{bl)Yi^b2)Yi*:..{bm)Yi™ 
=» b1Xlp1\...\pn\lb12\$2Yi°+1ZYii(b2)Yi>...(bm)Yi'» [|6i2j] 
=» b1b2X\pl\...\Pn\[bl2\[b22\%2Yi^Yi^lZY^...(bin)Yi™ [[fc22j] 

M 2 . . . . . . b n j Lfci2j L 6 m - i 2 j $ 2 y i ° + 1 y i ' + 1 . . . 

where every sentential form satisfies f *{X}ia6(G)+{$2}{F}*{Z}($ U {Y})+. 
Finally, some production labeled with [a3j is applied; therefore, z u can be 

expressed as 

hb2 ... bm- 1X\p1\ ...\jpn J [612J... 12J $2 Y io+1 y + 1 . . . 

hb2 . . . 6 m [p i J . . . b n j [bi2\ ... [bm-i2\ [&m3j$3Y i o + 1Y i l + 1 •.. Yim+1 [[6m3j] 

with u€T+lab(G)+{$3}{Y}+. 
Putting together the previous parts of derivation, we obtain the formulation of 

Claim 3. Thus, Claim 3 holds. • • 

Claim 4. In 
u =>+ v [r] 

™ t l A l ] 

of derivation (1), every sentential form, s of u =>+ v satisfies s € 
T+ia6(G)+{$3}{y}* and w £ T+lab(G)+. In greater detail, this derivation can 
be expressed as 

3 

where all bj € T, 1 < j < m and \pkJ G lab(G), 1 < k < n are labels that denote 
productions introduced in steps 1 through 3 of the construction, f is a sequence of 
production labels |3J. 

Proof. Notice that ¡pos([3J, 1) = rpos([3J, 2) = $3. Observe, that in order to 
generate w £ T* the first occurrence of Y following $3 has to be taken by [3J in 
each derivation step. Finally, [4J is applied. At this moment, w satisfies w e T* 
and w £ T+lab(G)+. • 

The next claim formally demonstrates how G generates the empty sentence e fol-
lowed by its parse. 

bi. • bm L p i j • • b n j ^ } ^ 

bi. • bm L p i j • • b n j L 3 J { $ 3 } y i _ 1 ÎL3J] 

bi. • bm [ p i J . L3J L 3 J { $ 3 } ^ " 2 [L3J] 
bi. • bm [ p i J . • LPnJ L 3 J i _ 1 { $ 3 } y [f] 
bi. • bm [ p i ] . • b n J L S j ^ S a } [ [ 3 J ] 

bi. • bm LPIJ • • b n j l A P I A I [ [ 4 J ] 
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Claim 5. G generates every w 6 L(G) fl lab(G)+ in the following way 

S U c J $ l S [ L l e J ] 

=i>+ x [p] 
V [ L 2 e J ] ( 1 ) 

=» + V [r] 
=> [L4J] 

where p and r are sequences consisting from Hi and {[3J}, respectively. 

Proof. Notice that alph({w}) fl T = 0 and only productions labeled with p e S3 
satisfy X € alph({lhs(p)}), X 0 alph({rhs(p)}) and X = ipos(p, 1), a = Tpos(p, 1), 
a €E T. Therefore, X cannot appear in any sentential form of S =>* w, and the 
derivation starts with a step made by |_leJ. As X alph({x}) and for p S S 2 U S 3 , 
X € alph({lhs(p)}), the production labeled with [2eJ has to be used. Observe that 
other derivation steps are made in the way described in Claim 2 and Claim 4. • 

From Claims 4 and 5, it follows that for every recursively enumerable language 
L, there exists a PSCG G such that G is a proper generator of its sentences with 
their parses and L = 7r(L(G)). • 

From Theorem 1, we obtain: 

Corollary 1. For every recursively enumerable language L, there exists a PSCG 
G such that G is a proper generator of its sentences with their parses and L = 
L(G)/lab(G)*nalph(L)*. 

Alternatively, we can introduce a SCG G = ( V , P , S , T ) , as a proper generator 
of its sentences preceded by their parses so that L(G) = {x\x = py,y 6 (T — 
lab(G))*,p € lab(Gy,S =•• x [p]}. 

Theorem 2. For every recursively enumerable language L, there exists a PSCG 
G such that G is a proper generator of its sentences preceded by their parses and 
L = 7T (L(G)). 

Proof. This theorem can be proved by a straightforward modification of Theorem 
1. A detailed version of this proof is left to the reader. • 

Corollary 2. For every recursively enumerable language L, there exists a PSCG 
G such that G is a proper generator of its sentences preceded by their parses and 
L = lab(G)*\L(G) n alph(L)m. 

5 Conclusion 
In this concluding section, we make some final notes and suggestions regarding the 
future investigation. 

First, notice that all the above results can be also established so that the gen-
erated sentences are followed by the reversals of their parses. 
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Second, consider the unordered scattered context grammars (see page 260 in 
[13]). In essence, in this version of scattered context grammars, we apply a pro-
duction of the form (Ai —> x i , . . . , An —> x„) so we simultaneously replace with 
x¿, for all i = 1 , . . . , n , no matter in what order the nonterminals Ai appear in 
the rewritten word. Naturally, we are tempted to use the construction given in 
the proof of Theorem 1 for these grammars in order to obtain analogical results 
to the above results. Unfortunately, this construction does not work for the un-
ordered versions of scattered context grammmars. Specifically, steps 3 and 4 of 
the construction require the prescribed order of rewritten nonterminals; otherwise, 
the result is not guaranteed. Can we prove the results of this paper in terms of 
unordered scattered context grammars by using some other methods? 

Finally, let us recall that we have demonstrated that for every recursively enu-
merable language, there exists a propagating scattered context grammar that gener-
ate the language's sentences followed by their parses. From a broader perspective, 
we could naturally reformulate this generation of sentences with their parses in 
terms of other propagating rewriting mechanisms that define the language family 
contained in the family of context-sensitive languages. Probably, some propagat-
ing parallel rewriting mechanisms, such as propagating PC grammar systems (see 
Chapter 4 in Volume 2 of [12]), can be used in this way. Furthermore, some propa-
gating regulated grammars, such as propagating matrix grammars (see Chapter 3 
in Volume 3 of [12]), seems to be suitable for this generation as well. On the other 
hand, we can hardly base the generation of sentences with their parses upon classi-
cal sequential rewriting mechanisms, such as context-free grammars. The authors 
suggest these problem areas as the topics of future investigation that continues with 
the discussion opened in the present paper. 
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Varieties of Tree Languages Definable by Syntactic 
Monoids 

Saeed Salehi * 

Abstract 

An algebraic characterization of the families of tree languages definable 
by syntactic monoids is presented. This settles a question raised by several 
authors. 

1 Introduction 
A Variety Theorem establishing a bijective correspondence between general vari-
eties of tree languages definable by syntactic monoids and varieties of finite monoids, 
is proved. This has been a relatively long-standing open problem, the most recent 
references to which are made by Esik [4] as "No variety theorem is known in the 
semigroup [monoid] approach" (page 759), and by Steinby [18] as "there are no 
general criteria for deciding whether or not a given GVTL [general variety of tree 
languages] can or cannot be defined by syntactic monoids" (page 41). The question 
was also mentioned in the last section of Wilke's paper [21]. 

Most of the interesting classes of algebraic structures form varieties, and sim-
ilarly, most of the interesting families of tree or string languages studied in the 
literature turn out to be varieties of some kind. The first Variety Theorem was 
proved by Eilenberg [3] who established a correspondence between varieties of finite 
monoids and varieties of regular (string) languages. It was motivated by charac-
terizations of several families of languages by syntactic monoids or semigroups (see 
[3],[10]), above all by Schiitzenberger's [15] theorem connecting star-free languages 
and aperiodic monoids. 

Eilenberg's theorem has since been extended in various directions. One could 
mention Pin's [11] Variety Theorem for positive varieties of string languages and 
varieties of ordered monoids, or Therien's [19] extension that includes also varieties, 
of congruences on free monoids. On the level of universal algebra, where tree 
automata and tree languages are studied, a Variety Theorem was proved by Steinby 
[16] for recognizable subsets of finitely generated free algebras. Both Eilenberg's 
""-varieties and -(-varieties, as well as varieties of regular tree languages (which was 

•Turku Center for Computer Science, DataCity - Lemminkaisenkatu 14 A, FIN-20520 Turku, 
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worked out in [17]), are special cases of the results of [16]. The correspondence 
to varieties of congruences, and some other generalizations, were added later by 
Almeida [1] and Steinby [17, 18]. Another example is Esik's [4] Variety Theorem 
between tree languages and theories (see also [5]). As Esik observes in [4], page 758: 
"The crucial concept in any 'Variety Theorem' is that of the 'syntactic structure' 
or 'syntactic algebra'." For almost all those syntactic structures associated to tree 
languages in the literature, one (or some) variety theorem(s) have been proved. 
The most famous 'syntactic structure' for which a variety theorem was not known, 
is the syntactic semigroup/monoid of a tree language, introduced by Thomas [20], 
and further studied by Salomaa [14]. A different formalism, based on the essentially 
same concept, was brought up by Nivat and Podelski [6], [13]. 

To establish our correspondence between varieties of tree languages and varieties 
of finite monoids, we add three more closure properties to the definition of a general 
tree language variety introduced in [18]. One of them, that of being closed under 
inverse tree homomorphisms, is already investigated by Esik [4], and the other two 
are stated in Theorem 24. 

2 Notation and Preliminaries 
Our notation is mainly based on [18]. However for understanding our results it 
is not necessary to read the whole of [18]. Here, we list the terminology used 
throughout the paper. 

A finite set of function symbols is called a ranked alphabet. If E is a ranked 
alphabet, for every m > 0, the set of m-ary function symbols of E is denoted by 
E m . In particular, Eo is the set of constant symbols of E. For a ranked alphabet 
E and a leaf alphabet X, the set of EX-trees T(E,X) is the smallest set satisfying 

(1) E0 U X C T(E,.X), and 
(2) f{tw- ,tm) G T(E,X), for all / G E m (m > 0) and ¿i, - • - ,tm G 

T(E,X). 

Any subset of T(E, X) is called a tree language. 
The EX- term algebra T(E, X) = (T(E,X),E) is defined by setting 

(1) c r ( 2 ' x ) = c for each c G E0, and 
(2) fT^'X\tu--- ,tm) = f(ti,---,tm) for all m > 0, / G E m , and 

t w - GT(E,X) . 

Let £ be a (special) symbol which does not appear in any ranked alphabet or leaf 
alphabet considered here. The set of EX-contexts, denoted by C(E, X), consists 
of the E(X U {£})-trees in which £ appears exactly once. For P,Q G C(£, X) and 
t G T(E, X) the context Q P, the composite of P and Q, results from P by replacing 
the special leaf £ with Q, and the term t • P results from P by replacing £ with t. 
Note that C(E, X) is a monoid with composition as the operation and £ as the unit 
element, and that t • (Q • P) = (t • Q) • P holds for all P, Q G C(E, X), t G T(E, X). 
For a tree language T C T(E, X) and context P, the inverse translation of T under 
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P is P _ 1 ( T ) = { i £ T(E, X) I t • P £ T}. Also the inverse morphism of T under a 
homomorphism cp : T(E, Y) -» T(E, X) is Ttp~l = {t £ T(E, Y) \ t<p £ T}. 

A T,X-recognizer (A,a,F) consists of a finite E-algebra A = (A, E), an initial 
assignment a : X —> A, and a set of final states F C A. The function a can 
uniquely be extended to a homomorphism aA : 7~(E, X) —> A, and the tree lan-
guage recognized by (A,a,F) is {£ £ T(£, X) | taA £ F). In that case we also 
simply say that T is recognized by the algebra A 

All algebras considered in this paper, except for term algebras, are finite, and 
the tree languages studied here are recognizable by finite algebras. A class of finite 
algebras of a fixed type is called a variety of finite algebras if it is closed under 
subalgebras, homomorphic images, and finite products. They are sometimes called 
pseudo-varieties, to be differentiated from real varieties whose members need not 
to be finite. Birkhoff's variety theorem [2] provides a logical characterization of 
those "original" varieties. In particular, a variety of finite monoids, abbreviated by 
VFM, is a class of finite monoids closed under submonoids, homomorphic images, 
and finite monoid products. A family Y = {y(X)} of tree languages of a fixed type 
E is a mapping which assigns to every finite leaf alphabet a collection y = {V(X)} 
of recognizable EX-tree languages. A family "V is called a variety of tree languages 
if each Y(X) is closed under Boolean operations and inverse translations, and the 
whole collection is closed under the inverse homomorphisms between term algebras 
(see [17]; below we will consider generalized varieties of tree languages). 

Let A = (A, E) be an algebra. Every elementary context 
P = f(ai,-" >£>••• >am) £ C(£,A), 

where / £ E m and ai, • • • , a m £ A, induces a unary function on A defined by 
PA(a) = fA(ai, • • • , a, • • • , a m ) for each a £ A. Such functions are called elemen-
tary translations of A. The functions induced by compositions of such elementary 
contexts are defined by setting (Q • P)A(a) = PA(QA(a)) for any two contexts P 
and Q and any a £ A. These functions constitute the set of translations of A de-
noted by Tr(^4). Note that two different contexts may induce the same translation. 

The set Tr(«4) is a monoid with composition as the operation, called the transla-
tion monoid of A, which is also denoted by Tr(,4). We note that Tr(^4) includes the 
identity translation £A = I A- The composition of translations p and q is denoted 
by q • p, that is (q • p)(o) = p(q(a)) for all a £ A (cf. Section 5 of [18]). 
For a tree language T C T(E,X) , the syntactic congruence 9T of T is defined by 

teTS <=!> VP € C(E, X)(t - P £T s- P £T), 
for t,s £ T(£ ,X) , and the syntactic algebra SA(T) of T is the quotient E-algebra 
T(E, X)/6T (see Definition 5.9 of [18]). 
Also, the m-congruence fJ-r of T on the monoid C(£, X) is defined by 

P HTQ VP € C(E, X)Vt € T(E, X)(t- P • R£T <^t-Q • R£T), 
for P,Q £ C(E,X), and the syntactic monoid SM(T) of T is the quotient monoid 
C(E, X)/HT (cf. [20] or Definition 10.1 of [18]). 

R e m a r k 1. It was shown in [14] that the translation monoid of the syntactic 
algebra of a tree language is isomorphic to the syntactic monoid of the tree language, 
i.e., Tr(SA(T)) ^ SM(T) for every tree language T. 
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A tree homomorphism is a mapping ip : T(E, X) —> T(fi, V) for ranked alphabets 
E and Q, and leaf alphabets X and Y, determined by some mappings <px • X —> 

and <pm : E m -> T(f2,y U •• ,fm}), where £ m ^ 0 and the are 
new variables, inductively as follows 

(1) xtp = ipx(x) for x e X, op = <po(c) for c € Eo, and 
(2) f(ti,--- ,tn)ip = ¿lV. — >Sn <- inV>] that is & is replaced 

with tiip for all i (cf. [18], page 7). 

A tree homomorphism tp : T(E, X) —» T(i2, y ) is called regular if for every 
/ £ E m (m > 1), each • • • , £m appears exactly once in <pm(f)-

The unique extension tp„ : C(E, X) —> C(f2, Y) of a regular tree homomorphism 
tp to contexts is obtained by setting = £ (cf. [18], Proposition 10.3).1 We 
note that the identities (Q • = Q<p* • P<p* and (t • Q • P)<p = tip • Qtp» • P<p, 
hold for a l l P . Q e C(E, X) and t e T(E, X). 

3 Algebras Definable by Translation Monoids 
The notions of subalgebra, homomorphism, and direct product are defined as 
usual in Universal Algebra, whereas for their generalizations, g-subalgebra, g-
homomorphism, and generalized product, are defined for algebras which are not 
necessarily of the same type. We recall the following definitions from [18] (Defini-
tions 3.1, 3.2, 3.3, 3.14). 

Definition 2. Let A = (A,E) and ¡3 = (B,Q.) be finite algebras. 
The algebra B is a g-subalgebra of A, in notation B Cg A, if B C A, Q,m C E m for 
all m > 0, and for every g € i l m , gB is the restriction of gA to B. 
An assignment is a mapping K : E —> fi such that « (E m ) C Q m for all m > 0. 
A g-morphism from A to B is a pair (K, <p), where K : E —> Q, is an assignment and 
f> : A —> B is a mapping satisfying fA(ai, ••• ,am)<p = (//c)e(ai<£, • • • ,am<p) for 
any m > 0, / € E m , and ai, • • • , am £ A. If both k and ip are surjective, then (k, <p) 
is called a g-epimorphism, and in that case we write B <—g A (B is a g-epimorphic 
image of A). When B is a g-epimorphic image of a g-subalgebra of A, we write 
B <g A. When both K and <p are bijective, (n,<p) is called a g-isomorphism, and 
B =g A means that B and A are g-isomorphic. 

Let E1 , • • • , E" and T be ranked alphabets. The product E 1 x • • • x E" is a 
ranked alphabet such that (E1 x • • • x E n ) m — E m x • • • x EJJj for every m > 0. For 
any assignment K : T —> E1 x • • • x E n , and any algebras A\ = (Ai, E1), • • • , An = 
{An, E"), the K-product of A\, • • • , An is the T-algebra • • • , An) = (A\ x • • • x 
An ,T) defined by 

^ ( A U - ^ ) = ( c f» , . . . ,C£ N ) for c e T 0 , where CK = ( C J , - - - ,CN), and 

'Indeed any tree homomorphism : T (£ , X ) —» T(f2, Y) can be extended to ip : C ( E , X ) —> 
T(H, Y U by setting (,<p = but if tp is not regular the range of ip may not be C(fi, V). Hence 
the regularity of <p is needed for the existence of the extension tp,, see also Example 18. 
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for f £ RM (TO > 0) and a j — (oji,--- , flin) G -<4i x ••• x An, where 
/ « = ( / l , - • - , /n) . 

Without specifying the assignment K, such algebras are called g-products. 
In the notations Cg, <— g , -<g, and = g , the subscript g is dropped when A and B are 
of the same type, say E, and the assignment K : E —» E is the identity mapping. 

The abbreviation GVFA stands for general variety of finite algebras which is a 
class of finite algebras, of all finite types, closed under g-sub-algebras, g-epimorphic 
images, and g-products (Definition 4.3 of [18]). It is easy to see that a class of 
algebras K is a GVFA, if for any Ai, - •• > An e K, any g-product K(AI, • • • , An), 
and any algebra A, if A -<g K(A\, • • • ,An) then A £ K (cf. Corollary 4.8 of [18]). 

Definition 3. For a VFM M, M a is the class of all finite algebras whose translation 
monoids are in M, i.e., A £ M a Tr(.4) £ M for any finite algebra A. 

A class of finite algebras K is said to be definable by translation monoids, if 
there is a VFM M such that M a = K. 

By Proposition 10.8 of [18], a class of finite algebras definable by translation 
monoids is a GVFA. In fact, any such class can be proved to be a d-variety of 
finite algebras (see page 758 of [4]). An algebraic characterization of the classes 
of finite algebras definable by translation monoids is given in the main theorem of 
this section. 

Definition 4. Let A be a finite algebra. With each translation p £ Tr(.4) we 
associate a unary function symbol p. Let Ayv = {p \ p £ Tr(^4)} be the unary 
ranked alphabet formed by these symbols and let the A .¿-algebra Ae = (Tr(yt), A^) 
be defined by pA° (q) — q • p for all p, q £ Tr(.A). 

The proof of the main theorem of this section is based on the following lemmas 
(cf. [8, 9] for similar results for unary algebras). 

Lemma 5. For any finite algebra A, Tr(<4) ^ T r ^ ) . 

Proof. The elementary translations of Ae are of the form pA°((,) where p £ Tr(^4), 
and clearly qA° (£) • pA° (£) = q~rpA° {£) for all q,p £ Tr(*4). For the identity 
translation of A the translation 1a (£) is the identity translation of Ae. This 
means that Tr(^te) = { F 4 " ^ ) | p £ Tr(.A)}. Moreover, pA"(0 ± qA°(0 whenever 
p^q, since pA°(0 = qA°(0 implies p = 1A • p = pA° (1A) = qA° (1A) = I A • Q = <7-
Hence, the mapping Tr(^4) —* Tr(.4e), p i-» pA°(£) is a monoid isomorphism. • 

Lemma 6. Let A — (A, E) and B = (B , Q) be two finite algebras. 

1. If Tr(>t) -< Tr(B), then Ae <gBe. 

2. Tr(>l) x Tr (B) S Tr(K(^ e ,B e)) for some g-product ti(Ae, Be). 



26 Saeed Salehi 

Proof. 1. Suppose Tr(.4) M Ç Ti(B) for some monoid M. Let Am = {p G Ag | 
p G M}. Then clearly M = (M, A M) Qg Be, where M is defined by pM(q) = q p 
(p,q G M). Let ip : M —> Tr(.4) be a monoid epimorphism. Define the assignment 
K : AM —> A^ by qn = qip for all q G M. It is clear that K is surjective and for all 
q,r G M Ç Tr(23), (9B"(t"))<£> = (r-q)ip = rip-qip = qipA°(rip) = (qn)A° (rip). Hence 
(K,<P) : M —> Ae is a g-epimorphism. Thus Ae *—g M Çg Be. 
2. Let T = {(p,q) \ p G Tr(.4), q 6 Tr(B)} be a set of unary function symbols, and 
define the assignment n : V —» A .4 x A g by (p,q)n = (p,q)- Let V = «(.-4e, ¿3e) be 

v 
the corresponding g-product of Ae and Be. We show that Tr('P) = {(p,q) (£) | p G 
Tr(.À), q G Tr(B)}. Firstly, we note that if 1,4 and 1 B are the identity translations of 

v 
A and B respectively, then (lyi, 1b) (£) is the identity translation of V. Secondly, 
by the definition of «-products, for all p,p' G Tr(-A), q, q' G Tr(B), 

MV,<?') = (pA°(p'),qB°(q')) = (p'-p,q'-q). 

Hence, if (p,q)V(0 = ( p W ) ^ ) . then (p,q) = (1A -p,lB-q) = (p,q)V(lA, I s ) 

= W r f f i l A , 1 B) = (IA • P', 1B • q') = (P',q')• So, M V ( t ) * when 
V 

p ± p' or q ± q'- Finally, we show that the set {(p, q) (£) | p G Tr(.4),ç G Tr(S)} 
is closed under the composition of translations. 

For all p,p',p" G TYM), q,q',q" G Tr(B), 

(pW)?-(M>"(p",î") = Mr(p"-p',q"-q') 
= ((p"-p')-p,(q"-q')-q) 
= (:p"-(p'-p),q"-(q'-q)) 
= <J>'-P,q'-q)V(p",q")-

Hence, {p',q') (f) • (p, q) (£) = (p'-p,q'-q) (0- It follows that the mapping 
v 

Tr(.A) x Tr(B) —> Tr(P), (p,q) (p, q) (£), is a monoid isomorphism. • 

Since g-products of g-products are g-isomorphic to a g-product of the original 
algebras (Lemma 4.2 of [18]), Lemma 6(2) can be generalized as follows. 

L e m m a 7. For any n > 1 and any algebras A\, -- , A i there is a g-product 
/e(.Af, • • • , A%) such that Tr (^ i ) x • • • x Tr(A>) - Tr(/i(-4?, • • • , -4£)). 

Now we are ready to prove the main theorem. 

T h e o r e m 8. Any class of finite algebras K is definable by translation monoids iff 
it is a GVFA such that A G K iff Ae G K, for any A. 

Proof Suppose K = M a for a VFM M. Then by Lemma 5, Tr(^) ^ Tr (^ e ) , so 
Tr(.4) G M Tr(^ e ) 6 M » £ K. For the converse, suppose the 

GVFA K satisfies the equivalence A G K Ae G K for any finite algebra A. Let 
M be the VFM generated by (Tr(^) | A G K}. We show that K = M a . Obviously 
K C M a . For the opposite inclusion, let B G M a . So, there are A\, • • • ,Am G K 
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d-varieties of finite algebras and general tree language varieties closed under inverse 
tree homomorphisms. However, those varieties may not be definable by syntactic 
monoids, as the following example shows. 

Example 13. Let Defi = {Defi(£, X)} be the family of 1-definite tree languages, 
i.e., T £ Def i (£ ,X) iff for all £X-trees t and s, root(£) = root(s) and t £ T 
imply s £ T, where root(i) is the root symbol of t. It is a GVTL ([18]) which 
can be shown to be closed under inverse strict regular tree homomorphisms (see 
[4] Subsection 11.1 and Section 5 below). Let £ = £2 = {/, g}, X = {x, y}, and 
T = {x} U { / ( t i , i 2 ) | tut2 £ T(£ ,X)} . Clearly T e Defi(E,X). It can be easily 
shown that the syntactic monoid of T consists of an identity element and two right 
zeros. This is also the syntactic monoid of the language T' of the £X-trees whose 
leftmost leaves are x, by Example 10.4 of [18]. Since T' £ Def i (£ ,X) , then Defi 
is not definable by syntactic monoids. 

This actually shows that the GVTL of all definite tree languages is not definable 
by syntactic monoids, since T' is not fc-definite for any k > 1. 

Remark 14. In [7] it is claimed that the variety of definite tree languages can 
be characterized by the property that all the non-identity idempotents of their 
syntactic monoids are right zeros (left zeros in the formalism of [7]). This clearly 
stands in conflict with the above Example 13. 

Indeed, it can be shown that Theorem 1 of [7] does not hold. When the syntactic 
semigroup of a tree language is defined as the syntactic monoid with the identity 
element removed, the authors clearly overlook the possibility that the identity ele-
ment may be obtained also as the product of some non-identity elements, and the 
proof of the theorem of [7] holds in just one direction. A concrete example showing 
that the equality between lines 9 and 10 on page 189 does not necessarily hold, can 
be obtained by considering the tree language T' of our Example 13. 
It can also be noted that finite monoids whose non-identity idempotents are right 
zeros, do not form a VFM. Finally, in Section 5 we shall see that a more appropriate 
definition of the syntactic semigroup and omitting trees that in a sense correspond 
to the empty word, does not save the result of [7]. 

We shall characterize the general varieties of tree languages that are definable 
by syntactic monoids by requiring them to satisfy two more conditions in addition 
to being closed under inverse regular tree homomorphisms. 

Definition 15. A regular tree homomorphism </J : T(£, X) —> T(ii ,Y) is said to 
be full with respect to a tree language T C T(Q, Y), if for every Q £ C(Q, Y) and 
every s £ T(fi, Y), there are P £ C(£ ,X) and t £ T (£ ,X) , such that Q HT P<p* 
and s 6t t<p hold. 

Remark 16. At first glance it seems that verifying fullness of with respect to 
T requires checking the existence of P £ C(£ ,X) and t £ T ( £ , X ) for all (in-
finitely many) Q £ C(i),Y) and s £ T(fi,Y) such that Q \ir Pip* and sOrtip 
hold. In fact it is decidable for a recognizable T to check whether or not ip 
is full with respect to T: let <pT : T(Q,Y) T(Q, Y)/0T , t<pT = t/6T and 
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such that Tr(£) X Tr(.4i) x • • • x Tr(.4m). By Lemma 7, Tr(B) -<: Tr(V) for some g-
product V of Al, • • • , Ae

m. By the property of K, A{, • • • , A^ G K, and s o P e K , 
hence Ve G K. By Lemma 6 (1) from Tr(£) Ti(V) we get Be -<9 Ve, and since 
Ve G K, also Be G K, which implies that Be K. Thus M a Ç K. • 

Remark 9. The proof of Theorem 8 also yields the fact that for any GVFA K 
definable by translation monoids, the class {Tr(^4) | A G K} is a variety of finite 
monoids. 

Another characterization of the classes of finite algebras definable by translation 
monoids which follows from Lemmas 5 and 6 is the following. 

Theorem 10. Any class of finite algebras K is definable by translation monoids 
iff it is a GVFA such that for all finite algebras A and B, if Tr(^) = Tr(£) and 
A G K, then B e K. 

4 Families of Tree Languages Definable by Syn-
tactic Monoids 

A general variety of tree languages (GVTL) is a family = {"¡^(E, X)} which as-
signs to every ranked alphabet E and leaf alphabet X, a set E ,X) of recognizable 
EX-tree languages, and is closed under all Boolean operations, inverse translations, 
and inverse g-morphisms. That is to say, for any ranked alphabets E, ÎÎ, leaf al-
phabets X, y , context P € C(E,X), and g-morphism ip : T ( f i ,y ) T(E,X) (see 
Definition 2), if T,V 6 r ( E , X ) , then T ( E , X ) \ T , T n T ' , P - 1 ( T ) e r ( E , X ) , and 
Tip ' 1 € r ( Q , y ) (Definition 7.1 of [18]). 

For a family of recognizable tree languages "V, is the GVFA generated by 
the class {SA(T) | T € r ( E , X ) , for some E,X}. 

Remark 11. The General Variety Theorem in [18], Proposition 9.15, implies that: 

(1) For any. GVTL "V, the class V* satisfies the following equivalence for any 
tree language T Ç T(E, X): T G r ( E , X) <f4> SA (T) G 

(2) For any GVFA K there is a unique GVTL Y such that r a = K. 

Definition 12. For a VFM M, let M' be the family of all recognizable tree 
languages whose syntactic monoids are in M, that is to say for any tree language 
T Ç T(E, X), T G M t (E , X) <*> SM(T) G M holds. 

A family of recognizable tree languages is said to be definable by syntactic 
monoids if there is a VFM M such that M ' = V. 

Steinby has shown that for any VFM M, M* is a GVTL ([18], Proposition 10.3). 
His proof can be applied to show that M t is also closed under inverse of regular 
tree homomorphisms. The general varieties of tree languages closed under inverse 
(arbitrary) tree homomorphisms are studied by Esik [4] who characterized them by 
their syntactic theories. Theorem 14.2 of [4] establishes a correspondence between 



Varieties of Tree Languages Definable by Syntactic Monoids 29 

XT : C(Q,Y) C(fi, Y)/nT, P\T = P/HT be the natural morphisms. Then 
the tree homomorphism ip : T(£ , X) —> T(fi, Y) is full with respect to T iff both 
the mappings ipipT : T (E ,X) -» T{Q. ,Y) /0 T and ip,XT : C(S ,X) C (Q,Y) /HT 
are surjective. 

Recall that for an equivalence relation 6 on a set A, the quotient set of A under 0 
is denoted by A/0, and a6 is the equivalence 0-class containing a £ A. 

L e m m a 17. If ip : T(£, X) —* Y) is a regular tree homomorphism and 
T C T ( f l , y ) , then SM(Tip- 1) -< SM(T), and if ip is full with respect to T, then 
S M t T V 1 ) S SM(T). 

Proof. We note that ip, : C(E,X) —» C(f2, y ) is a monoid homomorphism. Let 
S C C(ii, y ) be the image of </?„, and let n be the restriction of ^ t to S. Then S/n 
is a submonoid of C(fi, Y)/ht- We show that Pip, n Qip, implies P fj.Tip-1 Q for all 
P,Q£ C(E,X). 
Suppose Pip,nQip, and take arbitrary t G T(fi, Y) and R € C(ii, Y). Then 

t-PRz. Tip~l tip • Pip, • Rip, G T 
tip • Qip, • Rip, G T 
t-Q-R.eTip'1, 

that is P f j , T v - i Q . So the mapping V : S / f i —> C(E, X)//j.Ttfi-i defined by 
((Pip,)fj,)ip = P/j.Tip-i is well-defined and surjective. It is also a monoid ho-
momorphism, since ((Pip,)n • (Q<p,)n)ip = ((P • Q)iptfi)ip = (P • Q)M7V-» = 
Pl*TV-I • QHTV-I = {{P<p*)ii)il> • ((Q<P*)»)ip for all P,Q G C ( E , X ) . Hence 
SMCTV"1) <- S/n C SM(T), so S M ^ " 1 ) -< SM(T). 
Now, suppose ip is full with respect to T. We show P tiTtp-i Q iff Pip, fiT Qip, for 
any P,Q G C(E,X). Clearly, Pip, fir Qip* implies P fj,Tip-i Q. For the converse, 
suppose P fiTv,-i Q, and take arbitrary R' G C( f i ,y ) , and t' G T ( f i , y ) . There are 
R G C(£, X) and t G T(E, X) such that Rip, fj.T R' and tip 0T t'. Hence 

t' • Pip, R' G T tip • Pip, • Rip, G T 
<f4> (t • P • R)ip G T 

t-PReTip-1 

t-Q Re Tip-1 

<p> tip • Qip, • Rip, e T 
t' • Qip, R'eT, 

which shows that Pip, ht Qip,. Hence P fj.Ttfi-i Q iff Pip, /it Q<P*, and since the 
function ip, : C(E, X) —» C(ii, Y) is a monoid homomorphism, the mapping 

<fi-1 ^ (Pf*) Mr is a monoid isomorphism 
between SMCZV1) and SM(T). • 

In the following example we show that the regularity condition on ip in the 
previous lemma can not be relaxed. 
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Example 18. Define the ranked alphabets fi = 0.2 = { /} and £ = £ i = {g,h}, 
and the leaf alphabet X = {u,v,w}. Let (Z3, -f) be the cyclic group of order 
3. Define x '• T(f2,X) —> Z3 inductively by ux = 0, vx = 1, wx = 2, and 
f(t, s)x = tx + sx• Let T = {0}x - 1 . It is easy to see that the syntactic monoid of 
T consists of the /¿^-classes fche elementary contexts f(u, 0 , f(v, 0 , f(w, £), and 
in fact SM(T) ~ (Z3, +). 

Define the tree homomorphisms ip, V : T(E, X) —» T(íí, X) by <px(x) = 
i>x(x) = xfoi x £ X, and (fii(g) = ipi(g) = / ( « , 0 , ipi(h) = / (£ ,0> and V'i(h) = u. 
These tree homomorphisms are not regular: ^ appears twice in <fii(h) and does not 
appear at all in ipi(h). 

We show that neither SM (Tip- 1 ) nor SM (T ip ' 1 ) can divide SM (T) . The fol-
lowing identities can be verified by straightforward computations: 

- (v • HO • g(£))<px = 0, (v- • h(0)v>X = 1, and 
- (w • № • g(0)Tl>x = 1, (v • <7(0 • h(Z))1>X = 0. 

So, (/i(0 • 5 ( 0 . 5 ( 0 • MO) £ M r v » - 1 » ^ - 1 which proves that SM(T<^_1) and 
SM(Ti/'_1) are not commutative. 

Remark 19. Let C be the variety of finite commutative monoids. By Example 
18, the GVTL C l is not closed under inverse non-regular tree homomorphisms; 
cf. Theorem 24. So, C* is not definable by syntactic theories in the sense of [4]. 
On the other hand, by Example 13, the family of definite tree languages is not 
definable by syntactic monoids, even though it is definable by syntactic theories, 
cf. [4] Subsection 11.1. 

Thus, the concepts of "definability by syntactic theories" and of "definability by 
syntactic monoids" are not comparable to each other, though they are both weaker 
than "definability by syntactic algebras". 

Lemma 20. Let A = (A, E) be a finite algebra, and X be a leaf alphabet disjoint 
from A. For any tree language L C T(A^, X) recognized by Ae, there exists a 
regular tree homomorphism <p : T(A^, X) —> T(E, X U A), and a tree language 
T C T(£ , X U A) such that L = Tip-1, and T can be recognized by a finite power 
An where n = 

Proof. Let a : X —* TR(.4) be an initial assignment for Ae and F C TY(.A) be a 
subset such that L = {t 6 T(A^, X) \ taA° £ F). Define the tree homomorphism 
<p : T(A.A, X) T ( E , X U A) by <px(x) = x for all x € X, and for every p E TR(.A) 
choose a ipi(p) £ C(E, A) such that ipi(p)A = p. Obviously ip is a regular tree 
homomorphism. Suppose that A = {ai,--- ,a„}. Let F' = {(p(ai),--- ,p(a„)) £ 
An I p £ F}, and define the initial assignment /? : X U A —> An for An by 
xf3 = ((xa)(a\), • • • , ( i a ) (o n ) ) for all x £ X, and a/3 = (a, ••• ,a) £ An for all 
a € A. Let T be the subset of T ( E , X U A) recognized by (An,/3,F'). We show 
that L = Tip-1. Every tree w in T(A^, X) is of the form w = pl{p2( • • • Pk(x) • • • 
for some p\, • • • ,pk £ Tr(.A) (k > 0) and x £ X. For such a tree w, 

waA° = xa • pk • • • • • P2 • Pi, and 
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(wip)0An = (xa -pk • .. • -P2 -Pi(ai),- - • ,xa-pk- •• • • P2 • Pi{an)). So, 

wipeT <=> (wip)/3A" G F' 
for some p G F, p(a) = xa • pk • • • • • P2 • PI (a) for all a G A 
xa • pk • • • • • p2 • PI G F 
waA<> G F 
w G L. 

• 

L e m m a 21. Let A = (A, E) be a finite algebra and X be a leaf alphabet disjoint 
from AUE. For any tree language T C T(E, X) recognized by A there exists a unary 
ranked alphabet A, and a regular tree homomorphism ip : T(A, X U Eo) —• T(£ , X) 
such that if is full with respect to T, and for every z G X U Eo, Tip'1 D T(A, {z}) 
can be recognized as a subset of T(A, {2}) by A6. 

Proof. Let B = (B, E) be the syntactic algebra of T. Then B -< A. Suppose 
T = { í e T(E, X) I t(3B G F}, where ¡3 : X -> B is an initial assignment for 
B and F C B. Since B is the minimal tree automaton recognizing T, the set B 
is generated by 0(X). The mapping /3 : X —» B can be uniquely extended to a 
monoid homomorphism /3C : C(E, X) —> C(E, B). Since B is generated by 0(X), 
the mapping : C(E, X) Tr(S), /3®(Q) = pc{Q)B is surjective. Define the tree 
homomorphism (p : T(AB, XUEO) —> T(E, X) by <px(x) = x for all x G XUEo, and 
for every q G TR(S) choose a <pi(q) = Q G C(E, X) such that PC(Q)B = 9- Note that 
ip is a regular tree homomorphism. It remains to show that <p is full with respect 
to T and that for every 2 G X U Eo, Lz = Tip'1 D T(A, {2}) can be recognized as 
a subset of T(A, {2}) by Be. This will finish the proof since Tr(B) Tr(^) follows 
from B -< A by Lemma 10.7 of [18], and so B8 -< A8 by Lemma 6, which implies 
that Lz can also be recognized by Ae. 

Firstly, we show that <p is full with respect to T. Let Q G C(E, X) be a context. 
For q = PC(Q)B 6 Tr(S), q(£)ip* ht Q holds. By induction on the height of t we 
show that for any t G T ( E , X ) there is an s G T(AB, X U Eo) such that tOrstp. If 
t = x G X U E0 , then s<peTt for s = t. If t = t' • P for some P G C(E ,X) and 
t' G T(E, X) such that the height of t' is less than the height of t, then by the 
induction hypothesis there is an s' G T(Ag, X U Eo) such that t' OT s'ip. Also, for 
some p G Tr(B), p(£)v* Mr P holds. Let s = p(s'). Then 

sip = s'ip • 0Tt' -P = t. 
Secondly, we show that Lz can be recognized by Be for a fixed 2 G X U Eo- Let 
IB be the identity translation of B. Define the initial assignment a : {z} —> Tr(B) 
for Be by 2a = 1 B , and let Fz = {q G Tr (B) | q(zj3B) G F}. We show that Lz is 
recognized by (Be,a,Fz). Every w G T(Ae, {2}) can be written in the form 

w = K(<¡2( - • -Qh(z) • • •)) 
for some q\, • • • ,qh G Tr(S) (h > 0). For such a tree w, 
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waB° = 1B • qh • • • • • <72 • 9i> and (wtp)0B - qh •... • q2 • 9i(z/3B). Thus, 

w G Lz wip G T (wtp)(3B G F 
« qh • • • • • q2 • qi(z/3B) € F 

9/. • • • • • 92 • € Fz 
G F z . 

So, L2 = {to € T(A, {2}) | to®' GFi}. • 

We end the section by proving a Variety Theorem for tree languages and syn-
tactic monoids, and presenting some examples that justify the theorem (another 
interesting example is presented in [12]). 

Before presenting the main theorem we note two remarks. 

Remark 22. Let A be a unary ranked alphabet. For every leaf alphabet X and 
every subset Y C X, C(A, Y) = C(A,X), and the relation ¡IT for a tree language 
T C T(A, Y) on C(A, Y) is the same relation (IT on C(A, X) when T is viewed as 
a subset of T(A,X). 

So, if a family of tree languages "V — {y(T,, X)} is definable by syntactic 
monoids, then for every unary ranked alphabet A, and any leaf alphabets X and 
Y, if Y C X then r ( A , Y) C r ( A , X ) . 

Recall the notion of y a at the beginning of the section. 

Remark 23. By Propositions 6.13 and 5.8(b) of [18] it follows that every finite 
algebra can be represented as a subdirect product of the syntactic algebras of some 
tree languages that are recognizable by the algebra. This implies that for any GVTL 
V and any finite algebra A, if every tree language recognizable by A belongs to Y, 
then A G Y*. 

Theorem 24. A family of recognizable tree languages V is definable by syntactic 
monoids iff y is a GVTL that is closed under inverse regular tree homomorphisms 
and satisfies the following conditions: 

(1) For every unary ranked alphabet A, and any leaf alphabets X and Y, if Y C X 
then y{K,Y) C y{A,X). 

(2) For any regular tree homomorphism <p : T(£, X) —> T(ii, Y) which is full with 
respect to a tree language T C T(fi, Y), if Tip-1 G y{T,,X) then T G y(Cl,Y). 

Proof. That for any VFM M, 1VP satisfies the conditions of Theorem 24 follows 
from Lemma 17, Remark 22, and the facts mentioned at the beginning of the 
section. For the converse, suppose the GVTL y satisfies the conditions presented 
in the theorem. We complete the proof of the theorem by showing that y a satisfies 
the condition of Theorem 8. Indeed, Theorem 8 implies then that there is a VFM 
M such that y a = M a , and 

T ^ y & SA(T) G r a <*> TY(SA(r)) G M SM(T) G M 
holds for every tree language T by Remarks 11 and 1, which proves that y — M ' . 
So, all we have to show is that A G y* iff Ae £ y* for any A. 
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Let A — (A, E) be a finite algebra in By Lemma 20, any tree language L C 
X) recognized by Ae can be written as L = Tip'1, where ip : X) —> 

T(E, X U A) is a regular tree homomorphism, and T is a tree language recognized 
by some power An of A. Then An G implies that T G r ( E , X U A), and hence 
L = TipG Y(AA,X). This holds for every tree language L recognizable by Ae, 
so Ae G y a by Remark 23. 

Now, suppose Ae G r a for a finite algebra A = (A, E). Let T C T(E, X) be a 
tree language recognizable by A. By Lemma 21, there is a unary ranked alphabet 
A and a regular tree homomorphism ip : T(A, X U £o) —> T(£, X) full with respect 
to T such that for every z G X U £o, Lz = Tip'1 D T(A, {z}) can be recognized 
by Ae as a subset of T(A,{z}). So, Lz G r (A,{z}) , thus Lz G A,X U E0). 
Hence Tip-1 — Uzexus0

 e ^{A,X U Eo). Since ip is full with respect to T, 
then T G X). This holds for every tree language T recognizable by A, hence 
A G r a by Remark 23. • 

Example 25. It was shown in Example 13 that Defi is not definable by syntactic 
monoids. Here we show that it does not satisfy condition (2) of Theorem 24. 
Let E , X , T , T ' be as in Example 13. Define the regular tree homomorphism ip : 
T ( £ , X ) -» T(E, X), by tpx(x) = x, ipx(y) = y, and ip2(f) = f [x, f 
'•Pi(<?) — 5(2/1 £2))- Now ip is full with respect to T' since for any t G T(E, X), 
if t G T then f(y,x)<pdT> t, and if t & V then g{y,x)ip6T't. Similarly, for P G 
C(E, X), if the leftmost leaf of P is x then f ( y , HT' P, if the leftmost leaf of P 
is y then Mr' P-, and if the leftmost leaf of P is £ then £</?„ /xjv P. Clearly 
T'ip~x = T, since for any t G T ( £ , X ) , the leftmost leaf of tip is x iff either t — x 
or the root of t is / . By Example 13, T V - 1 =T G Defi, but T' <¿ Defi. 

Example 26. Let Ap = {Ap(E, X)} be the family of aperiodic tree languages. 
It was shown to be a GVTL in Example 7.8 of [18]. It is also known that Ap is 
definable by the variety of aperiodic (syntactic) monoids, see [20]. The argument 
of Example 7.8 in [18] showing that Ap is closed under inverse g-morphisms can be 
applied to show that Ap is in fact closed under inverse regular tree homomorphisms. 
It is also straightforward to see that Ap satisfies condition (1) of Theorem 24. We 
show that it also satisfies condition (2). Suppose ip : T(E, X) —» T(íí, Y) is a regular 
tree homomorphism full with respect to T C T(íl, Y), and Tip"1 £ Ap(£, X). 
There is an n such that for all t G T ( £ , X ) and all P,Q G C(E,X) , t • Pn • Q G 
Tip-1 <!=*> t • Pn+1 • Q G Tip-1. For any s G T(fi, Y) and any R, U G C(íí, Y), there 
are t G T ( E , X ) and P,Q G C(E ,X) such that tip6Ts, Ptp,fj,TR, and Qip+nrU. 
So, s • Rn -U €T <*tip- Pnip„ • Qip* G T t • Pn Q G Tip-1 & 

t • P n + 1 • Q G Tip'1 O tip • Pn+1ip, • Qtp* GT s- Rn+1 -UGT, 
which shows that T G Ap(fi, Y). 

Example 27. The family of nilpotent tree languages Nil = {Nil(£,X)} which 
consists of finite and cofinite tree languages is a GVFA (see [18], Example 7.5). Let 
A = Ai = {a} be a unary ranked alphabet and X — {x, y} be a leaf alphabet. Let 
T = {a(y),a(a(y)), a(a(a(y))), • • • }. Clearly T G Nil(A, {y}), but T ^ Nil(A, X). 
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Hence, Nil does not satisfy the condition (1) of Theorem 24, so it is not definable 
by syntactic monoids. 

5 Definability by Semigroups 
In this section, we show how to modify the above results as to yield characterizations 
of varieties of finite algebras definable by translation semigroups and of varieties of 
tree languages definable by syntactic semigroups. 

5.1 Algebras Definable by Translation Semigroups 
The difference between the translation monoid and the translation semigroup of an 
algebra is that the latter does not automatically contain the identity translation, 
although it may be included as an elementary translation or as a composition of 
some elementary translations. 

Denote the translation semigroup of an algebra A = (A, £) by TrS(^t) and let 
A.4 be as in Definition 4 except that Tr(.4) is replaced with TrS(^4). We associate 
with A a new symbol that does not appear in A U E U TrS(A). Define the 
A^-algebra A< = (TrS(^) U {Lt}, A^) by pA\q) = q-p and pA" (I A) = p for all 
p,q£lrS(A). 

L e m m a 28. For any finite algebras A = (A, E) and B = (B, Q), 
(1) T*S(.4) ^ T r S ( ^ ) ; 
(2) If TrS(.4) TrS(S), then A". -<g and 
(3) TVS(-4) x TrS(S) Si Tr(«;(^ i, B'')) for some g-product « ( A . B 5 ) . 
Moreover, for any k > 1, and algebras Ai, • • • ,Ak, there is a g-product V of 

A{,--- such that TrS(Ai) x • • • x TrS(Afc) S TrS(V). 

Proof. The statements (1) and (3) can be proved similarly as their counterparts in 
Lemmas 5, 6, and 7 just by replacing the identity translation I A (and I s ) with IA 
(with Ig). We prove (2): 

For a semigroup 5 that satisfies TrS(*4) <— S C TrS(S), let As = {p G Ag | p G 
5}. Then clearly 5 = (5 U {IS}, AM) Qg Bf where the interpretation of p G As in 
S is defined by p 5 ^ ) — q-p and p5(Ib) = p for p, <7 G 5. Suppose <p : S —> TrS(.A) 
is a semigroup epimorphism. Define the assignment k : As —> A.4 by qn = qip for 
all q G 5. It is clear that K is surjective and for all q, r G S C TrS(S), (qB< (r))ip = 
(r • q)tp = rtp • qtp = WA*(r<p) = (qn)A*(rtp). Hence (/c,<p) : S —• A* defined by 
sip — s<p for s 6 S and Ib<p = I.4, is a g-epimorphism. Thus Ae *—g S Cg BQ. • 

The following characterization of the class of finite algebras definable by trans-
lation semigroups can be proved similarly as Theorem 8. 

T h e o r e m 29. A class of finite algebras K is definable by translation semigroups 
iff it is a GVFA such that the equivalence A G K iff A* G K holds for any finite 
algebra A. 
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5.2 Tree Languages Definable by Syntactic Semigroups 
Let X be a leaf alphabet and E be a ranked alphabet such that E ^ Eo- A trivial 
tree language T consists of constant or leaf symbols only, i.e., T C E 0 UX. For such 
a tree language T, the syntactic semigroup of T is the trivial semigroup consisting of 
a zero element, while its syntactic monoid consists of a zero element and an identity 
element. Since the trivial semigroup belongs to every variety of finite semigroups, 
any family of tree languages definable by syntactic semigroups should contain all 
these trivial tree languages. So, it is reasonable to consider +-varieties of tree 
languages (cf. [4] Section 11). 

The sets of non-trivial EX-trees and non-trivial EX-contexts are defined by 
T+(E,X) = T ( E , X ) \ ( E 0 U X ) and C+(E,X) = C(E,X) \ {£}, respectively. Any 
subset of T+(E,X) is called a trivial-free tree language. 

For a trivial-free tree language T C T + ( E , X ) the syntactic semigroup of T is 
the quotient semigroup C + (E, X) /px where ¡JLT is restricted to C + (E ,X) . 

A regular tree homomorphism ip : T(E, X) —> T(i), Y) is called strict, if <pm(f) is 
not trivial for any / G E m with m > 0, and ipx(X), <po(Eo) C YUf20 (cf. Definition 
11.1 of [4]). We note that if tp is strict and regular, then T + (£ ,X)v? _ 1 = Y). 
A family of regular trivial-free tree languages { ^ ( E , X ) } C {T + (E ,X)} is called a 
+-GVTL if it is closed under Boolean operations, inverse translations and inverse 
strict regular tree homomorphisms, and moreover satisfies the following conditions: 
(1) For every unary ranked alphabet A, and any leaf alphabets X and Y, if Y C X 
then r ( A , Y ) C r ( A , X ) . 
(2) For any strict regular tree homomorphism <p : T(E,X) —> T(Q, Y) full with 
respect to T C T+(ii, Y), if Tip ' 1 G r ( E , X ) then T G Y). 

That any variety of trivial-free tree languages definable by syntactic semigroups 
is a -I—GVTL can be proved analogously to that of the monoid case. We claim the 
converse in the following theorem. 

Theorem 30. A family of trivial-free tree languages is definable by syntactic semi-
groups iff it is a +-GVTL of tree languages. 

The proof, once we have proved the following semigroup counterparts of Lemmas 
20 and 21, is very similar to that of Theorem 24. 

Lemma 31. Let A = (A, E) be a finite algebra, and X be a leaf alphabet disjoint 
from A U E. 

(1) For any trivial-free tree language L C T + ( A ^ , X ) recognized by A^, there 
exists a strict regular tree homomorphism ip : T(A^,X) —> T(E,X U A), and a 
trivial-free tree language T C T + ( E , X U A), such that L — Tip -1 , and T can be 
recognized by a finite power of A. 

(2) For any trivial-free tree language T C T + ( E , X ) recognized by A there 
exists a unary ranked alphabet A and a strict regular tree homomorphism ip : 
T(A, X U Eo) —> T(E, X) such that ip is full with respect to T, and for every 
2 G X U So, Tip ' 1 n T(A, {2}) can be recognized by A* as a subset of T(A, {2}). 
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Proof. (1) Suppose for an initial assignment a : X —» Tr(.4) U {I.4} and a subset 
F C Tr(A) U {1^}, L = {t G T(Aa,X) I taA° G F} holds. Since L is trivial-
free, we can assume that 1A & F, or equivalently F C Tr(.4). Let Y = {x G 
X | xa = I.4}. Define the tree homomorphism ip : —» T(E, X U A) by 

= x for all x G X, and for every p G Tr(A) choose a <£>i(p) € C(£, A) such 
that <Pi{p)A = p. Obviously ip is a strict regular tree homomorphism. Suppose 
that A = {ai,--- ,am}. Let F' — {(p(ai),- - ,p(am)) G Am | p G F ) , and define 
the initial assignment /3 : X U A —» Am by xf3 = ((xa)(ai), • • • , (xa)(a m ) ) for 
all x G X \ Y, yP = ( a i y ,am) for all y € Y, and a/? = (a,••• ,a) G Am 

for all a £ A. Let T be the subset of T ( £ , X U A) recognized by (Am,/3,F'). 
We show L = Tip-1. Every trivial-free tree w in X) is of the form w = 
pi(p2{ • • 'Pk(x) •")") some Pit'" j Pk € Tr(>4) (k > 0) and x e X. For such 
a tree w, waA" = xa • pk ••••• P2 • Pi ii x e X \ Y, and waA° = pk • • • • • P2 • Pi 
if x G Y; also (wtp)PA 'n = (xa • pk • .. • • P2 • Pi(ai), • - , x a • pfc • . . . • p2 • Pi(am)) 
holds. So, for x G X \ Y we have wip G T iff (w(p)0A'n G F' iff "for some p G F, 
p(a) = xa-pk •... -p2 -pi(a), for all a G A" iff xa •pk • • • • -p2 -Pi G F iff waA° G F 
iff w G L. Similarly, for x G Y we have wip G T iff (wip)(3A"1 G F' iff "for some 
p G F , p(a) = pk • • • • • P2 • P 1(0), for all a G A" iff pk • • • • • p2 • pi G F iff waA" G F 
iff tv £ L. 
(2) The proof is almost identical to that of Lemma 21, only is replaced with 

• 
. It was shown in Example 13 that the variety of 1-definite tree languages is 

not definable by syntactic monoids. In the following example we show that its 
trivial-free counterpart is not definable by syntactic semigroups. 

Example 32. The syntactic semigroup of the trivial-free 1-definite tree language 
T \ {x} where T is defined in Example 13, consists of two elements both of which 
are right zeros. Let A = Ai = {a,/3} and X = {x,y}. Let T" be the set of all 
AX-trees which either have root label a and leaf label x or have root label /3 and 
leaf label y, i.e., T" = {a(p(x)) | p G C(A,X)} U {(3(p(y)) \ p G C(A,X)}. It is 
easy to see that the syntactic semigroup of T" consists of two right zero elements, 
but clearly T" is not 1-definite. So, the trivial-free 1-definite tree languages are not 
definable by syntactic semigroups. 

Indeed, T" is not fc-definite for any k > 1, thus the trivial-free definite tree 
languages are not definable by syntactic semigroups. 

5.3 Monoids vs. Semigroups 
In this subsection we show that the concepts of "definability by semigroups" and 
"definability by monoids" are not comparable to each other. 

The abbreviation VFS stands for variety of finite semigroups. For a VFS S, 
let S a be the class of all finite algebras whose translation semigroups are in S, 
and S ' be the family of all recognizable trivial-free tree languages whose syntactic 
semigroups are in S (cf. Definitions 3 and 12). 
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We recall Proposition 10.9 of [18] which can be extended to VFS's. 

Theo rem 33. For any VFM M and VFS S, the identities M " = M t , M t a = M a , 
S a t = S* and S t a = S a hold. 

Theo rem 34. (1) There is a VFM M for which no VFS S, satisfies M a = S a or 
M* = S t . 
(2) There is a VFS S such that for no VFM M, M a = S a or M ' = S t holds. 

Proof. (1) Let M be the class of all finite monoids which satisfy the equation 
y . x • x = y. Obviously, M is a VFM. Let E = E j = { /} and put the algebras 
A = (A, E) and B = (B, E) be defined by A = {a}, fA(d) = a, and B = {a, b}, 
fB(a) = fB = a. Then Tr(A) = TrS(A) S TrS(S) is the trivial semigroup, but the 
monoid Tr(fi) consists of a zero element (0) and a unit (1). Now, A € M a , but 
B M a since Tr(£5) does not satisfy the equation y • x • x = y: 1 • 0 • 0 = 0 ^ 1. 
Hence, M a is not definable by translation semigroups. Now if M® = S* hold for a 
VFS S, then by Theorem 33 we would have M a = M t a = S t a = Sa , contradiction. 

(2) Let S be the variety of finite right zero semigroups, i.e., the class of all 
semigroups that satisfy the equation y • x = x. It can be easily seen that if T and T' 
are the tree languages of Example 13, then T \ {a:} € S t (E, X) since the syntactic 
semigroup of T \ {x} has two elements both of which are right zeros. On the other 
hand, the syntactic semigroup of T' consists of an identity element and two right 
zeros (like its syntactic monoid). Thus T' g S t (E, X). This shows that S* is not 
definable by syntactic monoids (since T \ {x} and T' have isomorphic syntactic 
monoids) whence M* = S* does not hold for any VFM M. On the other hand, if 
M a = S a holds for some VFM M, then by Theorem 33, M t - M a t = S a t = S \ 
contradiction. • 

Theorems 34 justifies the task of studying the definability by semigroup sepa-
rately from the monoid case. 

6 String languages definable by translation 
monoids 

In this final section, we present for strings the results corresponding to those of 
the previous sections. Familiarity with the basic notions of string languages and 
automata are presumed. 

Let X be a finite alphabet, and X* be the set of words over X. A string 
language over X is any subset of X*. In the literature the syntactic monoid SM(L) 
of a string language L C X* is defined to be the quotient monoid X*/0i where 
w 6L W' VU, v E X*(uwv 6 L H UW'V € L). 

For a monoid M — (M, •) the translations of M are the unary functions on 
M defined by x i—» m • x • mf for some m, m' £ M. Denote the composition of the 
translations p and q by p°q, that is poq(m) — p{q{m)) for all m € M. We note that 
the set of translations of M is a monoid with respect to composition operation. 
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Denote the translation monoid of M by Tr(A^). For a string language L, let the 
translation monoid TM(L) of L be the translation monoid of the syntactic monoid 
of L, i.e., TM(L) = Tr(SM(L)). 

Note that by necessity the terms 'syntactic monoid' and 'translation monoid' 
have different meanings and interpretations in this section. 

Eilenberg's [3] variety theorem establishes a correspondence between a variety 
of finite monoids M and a variety of string languages Jzf = {Jf(X)} such that for 
any L C X*, L G J f ( X ) SM(L) G M. 

A variety of string languages "V = {y(X)} is definable by translation monoids if 
there exists a variety of finite monoids M such that for any L C X*, L G Y(X) 
TM(L) G M. We shall characterize these varieties of string languages in Theorem 
40 below. 

It is known that not any variety of string languages can be defined by translation 
monoids (one example is the class of reverse definite, or frontier testable, string 
languages, cf. [21]). 

For a monoid M. = (M, •), the reverse of M. is the monoid MK = (M , -R) where 
m -R m' = ml • m for m, m' G M. Clearly (A4R)R = M. We show that a variety of 
finite monoids is definable by translation monoids (see Definition 3) iff it is closed 
under the reversing operation. 

First, we show that the reverse of a monoid and the original monoid have iso-
morphic translation monoids. 

Lemma 35. For a monoid M = (M, •), Tr(M) Tr(A^R). 

Proof. For any translation p(x) = m-x m' (m, m' G M) of M. let pR(x) = m'-x-m. 
The mapping Tr(A^) —> TV(A^R), p y—> pR is an isomorphism. • 

Next, we present some connections between the translation monoid of a monoid 
and the original monoid. 

Lemma 36. For any monoid M, (1) M C Tr(A4), and (2) Tr(M) M x A4R. 

Proof. Let M = (M, •). (1) For any m G M, let pm be the translation defined by 
Pm{x) = m • x on M. It is easy to see that the mapping m >-> pm is a monoid 
monomorphism that embeds M. into Tr(A'l). (2) For any m, n G M, let 9(m,n) be 
the translation of M. defined by q(m,n) (x) = rn • x • n. It can be easily seen that 
(m, n) i—» m • x • n yields an epimorphism M x A4R —» Tr(A'i). • 

• Finally, we characterize the varieties of finite monoids definable by translation 
monoids. 

Theorem 37. A variety of finite monoids M is definable by translation monoids 
iff it is closed under the reversing operation, i.e., M G M => M K G M for any 
monoid M . 

Proof By Lemma 35, every variety of finite monoids definable by translation 
monoids is closed under the reversing operation. Now suppose a variety of finite 
monoids M is closed under the reversing operation. We show that M g M <i=> 
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Tr(M) 6 M for any monoid M. The implication Tr(A4) G M M G M follows 
from Lemma 36(1). For the converse, let M G M. Then also ,A/iR G M, and hence 
Ti{M) G M by Lemma 36(2). • 

The proof also implies that: 

Corollary 38. If a variety of finite monoids M is definable by translation monoids, 
then M is generated by the translation monoids of its members. 

In the sequel we characterize the varieties of string languages definable by trans-
lation monoids. 

For a string w — X\X2 • • • xn G X* define the reverse of w as wR = xn ... X2X1. 
We note that uRvR = (vu)R holds for all u, v G X*. For a string language L C I ' , 
Lr = {ioR G X* | w£L}. 

The following lemma is a known fact (see e.g. [3]). 

Lemma 39. For any string language L C X*, SM(LR) = SM(L)R. 

Our characterization of the varieties of string languages definable by translation 
monoids is the following. 

T h e o r e m 40. A class of string languages ~V is definable by translation monoids 
iff it is a variety of string languages closed under the reversing operation, i.e., 
L G V{X) LR G Y ( X ) for any string language L C X*. 

Proof. Since Lemmas 39 and 35 imply that TM(L) = TM(LR) for any string 
language L, any variety of string languages definable by translation monoids is 
closed under the reversing operation. Now, suppose "V is a variety of string lan-
guages closed under the reversing operation. By Eilenberger's variety theorem 
there is a variety of finite monoids M such that for any string language L C X*, 
L G y(X) SM(L) G M. We show that the class M also defines the translation 
monoids of r , that is to say, for any L C X*, L G Y(X) o TM(L) G M. 
First, suppose L is in f ( X ) . Then also LR G Y(X), so SM(L) G M and 
SM(LR) G M. By Lemma 39, SM(L)R G M, and since TM(L) is an epimorphic im-
age of SM(L) x SM(L)R by Lemma 36, TM(L) G M. Next, suppose TM(L) G M 
for a string language L C X*. Since by Lemma 36, SM(L) is isomorphic to a 
submonoid of TM(L), then SM(L) G M, and hence L G Y{X). • 

Corollary 41. Let V be a variety of string languages definable by translation 
monoids. Then the variety generated by the translation monoids of Y is equal to 
the variety generated by the syntactic monoids of Y. 

An analogue of Theorem 40 can be proved for translation semigroups. 
Unlike Theorems 24 and 30 for tree languages, by Theorem 40 checking whether 

or not a variety of string languages is definable by translation monoids or semigroups 
is rather easy. For example the variety of definite string languages and the variety of 
reverse definite string languages are not definable by translation semigroups, while 
the variety of aperiodic string languages and the variety of commutative string 
languages (i.e., having commutative syntactic monoids) are definable by translation 
monoids. 
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Topologies for the Set of Disjunctive UJ-words 

Ludwig Staiger* 

A b s t r a c t 

An infinite sequence (w-word) is referred to as disjunctive provided it 
contains every finite word as infix (factor). As Jiirgensen and Thierrin [JT83] 
observed the set of disjunctive ui-words, D, has a trivial syntactic monoid but 
is not accepted by a finite automaton. 

In this paper we derive some topological properties of the set of disjunctive 
w-words. We introduce two non-standard topologies on the set of all w-
words and show that D fulfills some special properties with respect to these 
topologies: 
In the first topology - the so-called topology of forbidden words - D is the 
smallest nonempty Gj-set , and in the second one D is the set of accumulation 
points of the whole space as well as of itself. 

In 1983 two papers dealing with the w-language of disjunctive UJ-words appeared 
[JST83, JT83]. In the latter it was shown that this w-language is a natural example 
of an w-language having a trivial (finite) syntactic monoid but not being accepted 
by a finite automaton. For a more detailed account see [St83, JT86]. 

Subsequently, disjunctive w-words became of interest in connection with random 
and Borel normal sequences (see, for instance, [Ca02, He96]). In contrast to Borel 
normality, "disjunctivity" is a natural qualitative property which is satisfied, in 
particular, by Borel normal and by random w-words. 

As in [JST83, JT83] we say that an w-word is disjunctive if it contains any 
(finite) word as a subword. In this paper we are going to investigate topological 
properties of the set of all disjunctive sequences (w-words). Usually, one considers 
the space of all w-words over a finite alphabet X as the infinite product space of 
the discrete space X. Introducing the Baire metric, this space can be considered 
as a metric space (Cantor space) (XU,P), that is, a compact totally disconnected 
space. 

In this paper we consider topologies on the set of all w-words over a finite 
alphabet X in which the set of all disjunctive w-words has a special property: 

First, we consider the topology of "forbidden words" in which the set of disjunc-
tive w-words is the smallest G^-set. The second topology is a special case of the 
topologies derived from formal languages (cf. [St87]). Here the set of disjunctive 
w-words turns out to be the largest set which is closed and dense in itself. 

'Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, von-Seckendorff-Platz 
1, D-06099 Halle, Germany. E-mail: staiger@informatik.uni-halle.de 
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1 Notation 
By IN = {0,1,2, . . .} we denote the set of natural numbers. Let X be our alphabet 
of cardinality # X = r , r G IN, r > 2. 

By X* we denote the set of finite strings (words) on X, including the empty 
word e. We consider the space Xu of infinite sequences (w-words) over X. For 
w G X* and t] G X* U Xw let w • rj be their concatenation. This concatenation 
product extends in an obvious way to subsets W C X* and B C X ' u Xu. 

We extend the operations * and w to arbitrary subsets W C X* in the usual 
way : 

W* := [ J Wn where W° := {e}, Wn+1 := Wn • W , and 
NEIN 

W" := {w0 • wi • . . . -Wi - . . . : i G IN A lOj € {e}} 

is the set of w-words in Xu formed by concatenating members of W. 
We will refer to subsets of X* and Xw as languages or w-languages, respectively. 

By "C" we denote the prefix relation, that is, w E rj if and only if there is an rj' 
such that w • rj' = rj, and A(t]) := {w : w G X* A w C 77} and A ( B ) := Uijes A(r?) 
are the languages of finite prefixes of rj and B, respectively. 

The set of subwords (infixes) of rj G X* U Xu will be denoted by T(t;) := {w : 
w G X* A 3v(vw C rj)}. 

An w-language F is called regular provided there is an n e IN and regular 
languages Wit V* (1 < i < n) such that 

71' 
F = | J WiV?. (1) 

¿=1 

Similarly, an w-language F is called context-free if F has the form of Eq. (1) where 
Wi and Vi are context-free languages. 

Observe, that Vw = 0, V" = {u}" or V" D {v,u}" for some words v,u G V* 
with = |u| > 0 and v ^ u. Thus, every at most countable context-free OJ-
langiiage consists entirely of ultimately periodic u-words (cf. [St97]). 

2 Preliminary Considerations 
In the study of w-languages it is useful to consider Xw as a metric space (Cantor 
space) with the following metric. 

/5(77,0 :=inf{r~M : to C ryAto C e} (2) 

or an equivalent one1. 
1For example, the Baire metric o(r/, ( ) := inf{ : w C i / A « i C ( } generates the same 

topology. 
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In this paper, however, we will consider also a topology on Xw which cannot be 
specified by a metric, that is, a so-called non-metrizable topology. To this end we 
introduce topologies on X " in the general way (cf. [Ku66, En77]). 

A topology in Xu is a family O C ex" of subsets of Xu such that 0, Xu € O and 
O is closed under finite intersection and arbitrary union. The sets in O are called 
open subsets of Xu. The complements of open subsets are referred to as closed. 
Since an arbitrary intersection of closed sets is again closed, every set F C X" is 
contained in a minimal closed set, its closure Co(F). 

Having defined open and closed sets for some topology in X w e proceed to 
the next classes of the Borel hierarchy (cf. [Ku66]): 

G<5 is the set of countable intersections of open subsets of Xu, 

FCT is the set of countable unions of closed subsets of Xu. 

A metric o generates the set of open sets O a in the following way: First we define 
the open balls Be(£) := {77 : cr(£, r/) < e} for e > 0. Then a set is open in the 
space (Xu,o) if it is a union of open balls. In Cantor space, open balls are of the 
form w • Xw , and, consequently, the set of open subsets of X" is Oc = {W • Xw : 
W C X*}. From this it follows that a subset F C X " is closed in Cantor space if 
and only if A(£) C A ( F ) implies £ € F, and the closure in Cantor space can be 
specified as C(F) := {£ : A(£) C A ( F ) } . 

In Section 4 we shall consider the so-called topology of "forbidden" words which 
is specified by the set of open sets Ot { X * • W • Xw : W C X*}.2 

This topology is a subtopology of Cantor topology Oc D O r , or, equivalently, 
the Cantor space is a refinement of the topology of "forbidden" words. 

Finally, we define, for a language W C X*, its 5-limit of W, Ws, which consists 
of all infinite sequences of Xu that contain infinitely many prefixes in W, 

Ws = {t€X": # ( A ( 0 nW) = 00}. 

For Gj-sets in Cantor space we have the following characterization via languages 
(cf. [Th90, St87, St97]). It explains also why we call W5 the ¿-limit of the language 
W. 

Theorem 1. In Cantor space, a subset F C Xw is a Gs-set if and only if there is 
a language W C X* such that F = Ws. 

3 The ^-Language of Disjunctive Sequences 
In this section we will present a few simple general properties of the w-language D 
of all disjunctive sequences over X, and its topological properties in Cantor space. 
Some of the results in this section are reported in [CPS97, St02]. 

2 The term forbidden refers to the fact tha t closed subsets Eire specified by forbidding a certain 
set W of infixes. 
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As in [JST83, JT83] an w-word £ € Xw is called disjunctive provided T(£) = X*. 
Thus the set of all disjunctive w-words satisfies £> = {£: T(£) — X*}. 

From this definition we obtain 

Our next lemma shows that D is an example of a w-language which has a trivial 
finite syntactic congruence but is not context-free. The proof refers to the investi-
gations of Jiirgensen and Thierrin [JT83, JT86]. 

The syntactic congruence ~ F of an w-language F C Xu is defined as follows3 

w~Fv:& VuV£(u G X* A £ € Xu —> (uw£ € F «-> uv£ 6 F)) . 

As usual, we call ~ F of finite index iff its number of equivalence classes is finite. 
Observe that T(uw£) = X* iff T(£) = X*. Thus it is clear that w ~D v for 

arbitrary w,v € D, and has exactly one equivalence class which coincides with 
X*. Thus we have proven the first part of the following. 
L e m m a 2 ([JT83]). The LU-language D has a syntactic congruence of finite index 
but is not context-free. 

Proof. As T(]^[tu6 Y- w ) = X* and T{wv0J) ^ X*, D is nonempty and does not 
contain an ultimately periodic w-word wvu. Following Eq. (1) the u-language D 
cannot be context-free. • 

The representation of Eq. (3) verifies that D is a G^-set in Cantor space. Thus, in 
view of Theorem 1 it can be represented as the ¿-limit of a language. In case of D 
we construct such a language Wd explicitly (cf. [St02]). 

P ropos i t i on 3. Let WD = {wx : w € X* A x € X A 3n(n < |iy| + 1 A T(t/>x) D 
XN A T(ti») 2 Then D = W&

D. 

Finally, we are going to show that the topological complexity of D in Cantor space 
cannot be decreased. To this end we quote Theorem 21 from [St83]. 

T h e o r e m 4 ([St83]). If F C Xw has a syntactic congruence of finite index and 
is simultaneously an F<j- and a Gg-set in Cantor space, then F is regular. 

Combining Theorem 4 with Lemma 2 and Eq. (3) we get: 

P ropos i t i on 5. In Cantor space, D is not an F„-set. 

3There are other notions of syntactic congruences for ^-languages in use (cf. [MS97]). 

(3) 
tuex-
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4 The Topology of Forbidden Words 
In this section we investigate the topology of forbidden words described above and 
its relation to the set of disjunctive sequences. It turns out that this topology is 
not a metric one. 

Recall Or. = {X*WXU \ W C X*} from Section 2. As X*VX" (1 X*WX" = 
{X*WX* fl X*VX*)X" this family OT is closed under finite intersection. The 
closure under arbitrary union is obvious. Thus it defines a topology on X w . 

An w-language F C Xw avoids words of a language W C X* provided F C 
Xw \ X*WX0J, that is, no word w £ W occurs as a subword (infix) of an w-word 
( 6 F . Therefore, the closed sets in the topology O r are characterized by the fact 
that their ui-words do not contain subwords from W. The following theorem gives 
a connection to closed sets in Cantor space. 

To this end we define F/w := {£ : £ F}. 

T h e o r e m 6. Let F C X" . Then the following conditions are equivalent: 

1. F is closed in the topology of forbidden words. 

2. F is closed in Cantor space and \/w(w £ X* = > F D F/w). 

3. F is closed in Cantor space and A ( F ) = T ( F ) . 

4- V £ ( A ( £ ) C T ( F ) = * t £ F ) . 

Proof. "1. => 2": As we noticed above, every w-language closed in the topology 
of forbidden words is also closed in Cantor's topology. Let w £ X* and F = 
X" \ X*WXU. Then F/w = X" \ (X*WX")/w, and the assertion follows from 
the obvious inclusion (X*WXu)/w D X*WXU. 

"2. 5." follows from the identity A( ( J t u e X . F/w) = T ( F ) . 
"3. => 4.": If F is closed in Cantor space we have F = {£ : A(f ) C A(F)}. 

Now the assertion 4- follows from A ( F ) = T ( F ) . 
Finally, we show that Condition 4 implies F = X"\X* • ( X * \ T ( F ) ) - X " . Since 

X*\T{F) =X*-(X*\T(F))-X*it suffices to prove that F = XW\(X*\T(F))-XU. 
The inclusion F C Xw \ (X* \ A{F)) • X" C \ (X* \ T(F)) • Xw follows 

from A(F) C T ( F ) . To prove the converse inclusion let £ ^ F. Then in view 
of Condition 4 there is a prefix w C £ such that w ^ T(F) . Consequently, £ 6 
(X* \ T(F)) • Xu. • 

In view of the equivalence " i . 4 " we obtain the following representation of 
the closure operator Cr defined by the topology of forbidden words: 

Cr(F) = {£ : A ( 0 C T ( F ) } . 

Recall that the closure in Cantor space was definable as C(F) = {£ : A(£) C A(F)}. 
The additional requirements Vw{w £ X* => F D F/w) and A(F) = T(F) in 

2. and 3. are, however, not equivalent in general. The following example shows 
that there is an w-language (necessarily not closed in Cantor space) which satisfies 
A ( F ) = T(F), but not the condition Ww(w £ X* => F D F/w). 

f 
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Example 1. Let F = (X2)*bbaw U X(X2)*aatf. Then A(F) = T(F) = X*, but 
F/a 1 F. 

Since the family of regular w-languages is closed under Boolean operations, the 
w-language Fw = Xu \ X*WXU is regular if the language of forbidden patterns 
W C X* is regular. In connection with Eq. (1) and the considerations on Vu 

immediately following it this yields as a consequence the following generalization 
of a result of El-Zanati and Transue [ET90]. 

Theorem 7. Let W C X* be a regular language. If Fw is uncountable, then Fw 
contains a subset of the form w{u, vwhere u ^ v and |u| = > 0. 

We continue with some more examples. The first is an example of a countable 
regular w-language Fw which requires an infinite set of forbidden patterns. 
Example 2. Let X = {a,b} and W = ba*b. Then Fw = X" \ X*WXW = 
a*bau U a" is a countable u-language. It is clear that Fw / Fy, for any finite 
language V C X*. 

Though the regularity of W implies the regularity of Fw this same relation is 
not true for context-free languages and w-languages. 

Example 3. Let X = {a, 6} and W = {bb} U {balbajb | j ± i + 1}. Clearly, W is a 
deterministic context-free language, and Fw = a*({Vi I* e IN} U {̂ ¿^ \i,j e IN AI < 
j}) where rji — balbal+1b • • • and rjij = ba%bal+l • • • ba^bau. Since Fw is countable 
but does not consist entirely of ultimately periodic u-words, Eq. (1) shows that Fw 
is not context-free. 

Finally, we discuss a characterization of the w-language of disjunctive sequences 
D by means of the topology of forbidden words. From Eq. (3) we obtain immedi-
ately 

Proposition 8. In the topology of forbidden words, D is the smallest nonempty 
G g-set. 

A set F C X" is dense in Xw in case Xu is the smallest closed set containing F, 
that is, X"\F does not contain a nonempty open set. Since £ € X" is disjunctive, 
we have T(£) = X*, and therefore {£} (~\X*wXu ^ 0 for all w £ X*. Thus we have 
shown the following. 

Proposition 9. An ui-word £ e Xu is disjunctive if and only if the set {£} is dense 
in Xw in the topology of forbidden words. 

This proposition shows that every closed set in the topology of forbidden words 
which contains some £ € D must coincide with the whole space Xw. Consequently, 
every FCT-set containing £ € D equals Xu. 
Corollary 10. D is not an F„-set in the topology of forbidden words. 

Above we mentioned that the topology of forbidden words is not a metrizable 
topology, that is, it is not definable by a metric. Proposition 9 gives evidence of 
this fact, because the sets {£}, £ G D are not closed, while in a metrizable topology 
every finite set must be closed. 
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5 A Metric Related to Languages 
The definition of the topologies considered in this part is related to the well-known 
fact that every G^-set of a complete metric space is a complete metric space it-
self (cf. [Ku66]), possibly using a different metric. We use here the construction 
presented in [St87]. Related investigations were carried out in [DNPY92]. 

As we have seen in Theorem 1, in Cantor space a G^-set is of the form Us for 
some U C X*. We use this language U to define a new metric pu on Xw which 
makes Us a closed set in the metric space (Xu,pu): 

This metric, in some sense, resembles the metric p in Cantor space; in fact, p = 
PX"- Moreover, since pu{Ç,v) ^ p(Ç, 77), the [/-topology refines the topology of the 
Cantor space. In particular, every closed set in cantor space is also closed in the 
{/-topology. 

We denote by Cu{F) the smallest closed (with respect to pu) subset of Xu 

containing F. A point £ 6 Cu(F) is called an isolated point of F provided 3e(e > 
0 A N/77(77 £ F A 77 t̂  £ PU(Ç, V) > £))- It should be mentioned that an arbitrary 
set of isolated points of Xu is open. 

A point £ € Cu{F) which is not an isolated point of F is called an accumulation 
point of F. 

Lemma 11 ([St03, Corollary 3]). Let U Ç X*. Then Us is the set of accumu-
lation points of the whole space in (Xu,pu). 

As an immediate consequence we obtain the following property of U5 in the 
space (X",pu) which explains that the {/-topology may be indeed finer than the 
topology of Cantor space. 

Corollary 12. If F DU5 then F is a closed subset of(Xw,pv). 

Proof. Lemma 11 shows that every point £ G X" \ F is an isolated point of Xw. 
Consequently, X"\ F is open in (Xu, pv). • 

It should be mentioned that, although Us is the set of accumulation points of 
the whole space (Xw ,pu), it may contain isolated points with respect to itself. 

Example 4. Let U := a* U a*ba* Ç {a, b}*. Then every u-word £ G a*baw is an 
isolated point of Us = aw U a*baul. 

In the case of the w-language of disjunctive sequences, D, we can prove even 
more. To this end we mention the following relationship between accumulation 
points in (/-topology and in Cantor space. 

Lemma 13 ([St03, Theorem 4]). Let U Ç X*, F C Xu and let £ e Us. Then 
Ç is an accumulation point of F in (Xw,pu) if and only if Ç is an accumulation 
point of F in (X",p). 
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In Proposition 3 we constructed a language Wp for which D = Wfy. The 
following theorem shows that D is the set of its accumulation points, that is, in 
(X",pwD), D is closed and dense in itself. 

Theorem 14. Let Us = D. In the space (Xu, pu) the w-language D equals the set 
of its accumulation points. 

Proof. From Corollary 12 we know that D is closed in [/-topology. Thus no point 
77 ^ D is an accumulation point of D. 

On the other hand, since w € X* and £ £ D imply w( € D, every point 
{ £ D is an accumulation point of D in Cantor space. The assertion follows with 
Lemma 13. • 

This shows that in every space ( X u , p u ) where Us = D the set of disjunctive 
sequences is the set of accumulation points of itself as well as the set of accumulation 
points of the whole space. 
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On the Finiteness of Picture Languages of 
Synchronous Deterministic Chain Code Picture 

Systems 

Bianca Truthe* 

Abstract 

Chain Code Picture Systems are LINDENMAYER systems over a special 
alphabet. The strings generated are interpreted as pictures. This leads to 
Chain Code Picture Languages. In this paper, synchronous deterministic 
Chain Code Picture Systems (sDOL systems) are studied with respect to the 
finiteness of their picture languages. 

First, a hierarchy of abstractions is developed, in which the interpretation 
of a string as a picture passes through a multilevel process. Second, on the 
basis of this hierarchy, an algorithm is designed which decides the finiteness 
or infiniteness of any sDOL system in polynomial time. 

1 Introduction 
Important tasks in the area of picture processing are describing, creating, storing 
and recognizing pictures. With chain codes FREEMAN provided, in the 1960s, a 
possibility for describing line graphics [Pre74], A picture is formed by a sequence 
of drawing commands that are represented by symbols (letters). A string describes 
a picture, which is built by the drawing commands of its letters. FREEMAN uses 
an alphabet { 0 , . . . , 7 }, whose elements are interpreted according to the following 
sketch: 

7 ] The picture to the right, for ex-
7 \ ample, is generated by the word 

. 6
 2 • 1261204153445672606: 
/ \ 3 (For reconstructing start at the 

/ \ \ J tip of the nose.) 

This connection of strings and pictures suggests to search for relations between 
formal languages and picture sets. For language theoretical considerations the 
four directions {0 ,2 ,4 ,6} are sufficient, because the additional four do not yield 

* Fakultat fur Informatik, Otto-von-Guericke-Universitat Magdeburg, PSF 4120; D-39016 
Magdeburg; Germany. E-mail: truthe8isg.cs.uni-magdeburg.de 
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completely different results nor require different methods to prove the decidability 
of finiteness [DH89]. 

According to plotter commands, r, u, I, d are written as the directions right, 
up, left, down. With chain codes, patterns like curves, fractals or folklore patterns 
can be described: 

Figure 1: Applications of chain codes 

Chain Code Picture Systems are LINDENMAYER systems over chain codes; in this 
connection, the picture languages generated are of interest. 

This paper follows investigations on the decidability of the finiteness of picture 
languages generated by synchronous Chain Code Picture Systems (sTOL systems) 
presented by Dassow and Hromkovic in [DHr92]. That paper does not say anything 
about how many pictures are generated in the case of finiteness. During the work 
on this topic it turned out that synchronous deterministic Chain Code Picture 
Systems with the synchronization parameter k = 1 can generate finite or infinite 
picture languages, which is in contrast to a statement in [DHr92], 

In this paper, conditions are obtained under which such a system generates a 
finite picture language or an infinite one. For this, a hierarchy of abstractions was 
developed such that the interpretation of a string as a picture passes through a 
multilevel process. 

On this basis, a complete system of finiteness conditions is obtained such that 
one can decide, in polynomial time, for any sDOL system (with an arbitrary syn-
chronization parameter), whether the picture language generated is finite or infinite, 
and how many pictures are generated in the case of finiteness. 

2 Fundamentals 
The finiteness investigations about picture languages of synchronous deterministic 
Chain Code Picture Systems are based on a hierarchy of abstractions. The lowest 
level covers the strings over the alphabet { r, l,u, d}. Graphs of different levels 
of abstraction, that represent various interpretations of the strings, are associated 
with the strings. Such a hierarchy exists for each Chain Code Picture System over 
the alphabet { r, I, u, d }. The lowest level contains the string set generated by the 
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system. The graph set of the highest level is regarded as the picture language 
generated by the system. 

2.1 Structures over an Alphabet 
Let A = {r,l,u,d} be an alphabet. The set A* is the set of all strings (with 
a finite length) over the alphabet A that are built by concatenating letters of A. 
The empty string is symbolized by A; the set A* without the empty string by 
A+: A+ = A* \ {A}. The free structure ( .4V) over the alphabet A with the 
concatenation operation • is a monoid. 

The length #w of a string w is the number of letters in w. The set of all strings 
of length n from A* is denoted by An. A string w G An is composed of letters 
u>i,..., wn if not stated otherwise: w = wi • • • wn. A substring wi • • • Wi (0 1 i 1 n) 
is written as wl (wo = A). 

For a string w G An and a letter x G A, # x w is the number of occurrences of x 
in w. For a string w G A*, [w] is the set of all letters in w: 

H = { X I # l W > 1 } . 

The elements w of A* are interpreted as mappings on Z2: 

w : Z2 —» Z2 (w G A*), 

which are inductively defined as follows. The atomic mappings r, I, u, d assign to 
a point q e Z 2 its neighbours: 

r(q) = q + (1,0) Z(q) = q - (1,0) 
u(q) = q + (0,l) d(q) = q - (0,1) ' 

The translations x(q) — q of any point q 6 Z2 to its neighbours x(q) are designated 
by Dx G Z2: 

( 1 , 0 ) , iix = r 
( -1 ,0) , if a: = l • 
(0,1), if x = u 
(0 , -1) , if x = d 

The mappings x from A are translations. Every mapping x G A is surjective (the 
range of values is Z2), injective (from x(p) = x(q) always follows p = q) and, 
therefore, bijective (one to one). 

Two arbitrary mappings x, y are called disjoint if their function values differ for 
each argument. 

Proposition 1. Every two different mappings x,y G A, (x / y), never give the 
same neighbour: Vq G Z2 : x(q) ^ y(q). This means that the mappings in A are 
disjoint. 
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The empty string corresponds to the identical mapping 

A : 1? —> Z2 with q q. 

A compound string v w e i * stands for the concatenated mapping vow: 

v o w : Z 2 —• Z2 with q >-+ w(v(q)). 

The zero point of the Z2 is symbolized by o: o = (0,0). 
This interpretation of strings as mappings on Z2 is a homomorphism from the 

free structure (A*,-) in the free structure (A*,o). Hence (A*,o) is also a monoid. 
For each mapping w € A*, an inverse mapping w - 1 e A* exists: 

- The inverse of the identical mapping is the identical mapping: A - 1 = A. 
- The inverses of the atomic mappings are r - 1 = I, Z -1 = r, u~x = d, d~l = u, 

because oi = — ox-i (x € A). 
- Let w = wi o • • • o wn (Wi £ A, i = 1 , . . . , n) be a concatenated mapping. Then 

the inverse mapping is w _ 1 = w~ l o • • • o 1. 
This result is stated in the following proposition. 

Proposition 2. The algebraic structure (>1*,°) is a group. 

The operator o is not written if the context shows which operation is meant. 
For example, (iiX2)(o) implies that x\x 2 symbolizes the concatenated mapping 
xi 0x2, whereas x\x2 in [X1X2] represents the compound string X1X2. 

The mappings ru, ur and Id, dl assign the diagonal neighbours to a point q: 

ru(q) = ur(q) = q + (1,1); ld(q) = dl{q) = q - (1,1). 

These relations are symbolized by ~ and x : X X x± x x 

r I u d 
I r d u 
u d r I 
d u I r 

The mappings w G An are translations: w(p + q) = w(p) + q (can be proved by 
induction over n). This leads to the following proposition about the correlation 
between mappings of the zero point. 1 

Proposition 3. Let v, w be two words of A*. The mapping of the zero point by 
the compound mapping vow is (v o w)(o) = v(o) + w(o). 

Proof The mapping of the zero point by vow yields 

(vow)(o) = w(v(o)) 
= w(o + v(o)) 
= w(o) + v(o) 
= v(o)+w(o). 

• 
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2.2 Graphical Embedding 
A grid graph is a graph with the following properties: 

- The set of vertices is a subset of Z2. 
- Each edge connects two neighbours q e Z2 and x(q) with x £ A. 

The position of the vertices is essential; renaming of the vertices does not yield an 
isomorphic graph. For example, the graphs . . . and J should be considered as 
non-identical. 

For each point a £ Z2, functions exist that assign, to a word w £ An 

- the set of vertices O0(w) = { Wi(o) | i = 0 , . . . n }, 
- the directed grid graph (possibly with multiple edges) 

< 7 » = ( © » , { ( m H ( a ) M ( a ) ) } i=1,...,n) , 

- the simple directed grid graph s°(w) of ga(w) (without multiple edges), 

- the set of edges ||°w of s°(w) in a different notation 

||°w = { (wi-l(a),wi) | i = 1,... ,n}, 

- the picture (the shade of sa(w)) 

pa(w) = (Oa(w), { («¡¡Ii(a),53(a)), («¡i(a), ujjli(a)) | i = 0 , . . . , n }). 
If the reference point a is the zero point, the upper index will be omitted. The set 
||°w contains a pair (q, x) with q £ Z2 and x £ A if and only if (q,x(q)) is an edge 
in the graph s°(w) (if (q, q) is an edge then x £ A with x(q) = q exists uniquely -
due to Prop. 1). Thus, the graph s"(w) is one to one associated with the set ||aw. 
Throughout this paper, this set is referred to as the edge set of w with respect to 
a. 

The following example shall demonstrate these correlations: 
Example 1. Let w = ruullurddrurrulddldr be a word from A*. 

If a plotter takes this word as a sequence | | 
of elementary commands for drawing, the J 
resulting picture will be: 
For investigations on picture languages generated by sDOL systems, it is necessary 
also to know how a picture is drawn. To show how a pictured arises, the lines are 
marked by arrows indicating the drawing direction. Additionally, the grid points 
are marked (the only points where the direction can change). This leads to the 
following grid graph (beginning at the zero point). Note that the line from (1,1) 
upwards is drawn twice. 

31—T——t— 
2— •: — 
1 1 — M — : : 

o - l — — — 4 — 
- 1 0 1 2 3 
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The vertex set O(w) contains all grid points visited: 
o, r(o) = (1,0), ru(o) = (1,1), ruu(o) = (1,2), . . . , w(o) = (2,0). 

The directed grid graph g"(w) consists of the vertex set O(w) and all edges 
on the 'drawing path': (0,(1,0)), ((1,0), (1,1)), ((1,1), (1,2)), . . . , ((0,1), (1,1)), 
((1,1), (1,2)), ((1,2), (2,2)), . . . , ((1,0), (2,0)). The edge ((1,1), (1,2)) occurs twice 
because the underlined letters in ruullurddrurrulddldr both produce this line (be-
cause of ru(o) = (1,1) = ruullurddr(o)). The edge set ||w consists of all edges 
passed as elements of Z2 x A instead of Z2 x Z2: (o,r), ((1,0), u), ((1, l ) ,u ) , ..., 
((1,1), d), ((1,0),r) . 

Since the pictures axe shades of the simple directed graphs, one immediately 
notices that two words having the same edge set also represent the same picture. 
This result is stated in the following proposition, so it can be referred to. 

P ropos i t i on 4. If the edge sets ||v and ||w of two words v,w G A* coincide, so the 
pictures p(v) and p(w) do as well. 

The following proposition states correlations between concatenating strings and 
combining graphs. 

P ropos i t i on 5. The concatenation of strings is associated with a union of vertex 
sets, directed graphs, edge sets, and pictures: For each point a G Z2 and any two 
strings v,w £ A*, one has 

O0(vw) = ©°(v)UOv(o )(w), 

Pa(vw) = ffa(v) U ffv^(w), 
||°vw = | | 0 vU|r ( a ) w, 

pa(vw) = p a(v)Upv ( a )(w). 

Proof. Let v be an element of An and w be an element of Am. Then the union of 
the vertex sets ©°(v) and ©v(a)(w) is 

0 » U 0 , ( l ' ( w ) = {«?(a) | i = 0 , . . . , n } U { i £ ( v ( a ) ) | i = 0 , . . . , m } 
= { a, i>i(a),. . . , v(a), toi(v(a)) , . . . , vw(a) } 
= ©a(vw). 

The union of the other sets can be shown similarly. (Note that the non-simple 
graphs possibly contain multiple edges.) • 

The sets 

- A* of strings, 
- Q = { 5°(w) | w G A*, a 6 Z2 } of directed graphs, 
- S = { s°(w) | w G A*, a G Z2 } of simple directed graphs, and 
- -p = { p»(w) | w G A*, a G Z2 } of pictures 
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Figure 2: Hierarchy of abstractions 

form a hierarchy of different levels of abstraction. A part of this hierarchy is to be 
seen in Figure 2. 
A later derivation of words by a simultanous replacing of letters can be interpreted 
as a derivation of graphs by replacing an edge by a graph. In deterministic systems, 
one letter is always replaced by the same word. Thus, one edge is always replaced 
by the same graph - a derivation of an edge is independent from the number of its 
occurrences. In non-deterministic systems however, a letter at one position can be 
replaced by a different word than the same letter at another position. Hence, one 
occurrence of an edge can be replaced by a different graph than another occurrence 
of the same edge - the number of occurrences is essential. For this reason, the 
graphs with multiple edges are kept in the hierarchy, although the simple graphs 
are sufficient in this paper. 

A rectangle R determined by two points p = ( p x , p y ) and q = (q x ,q y) is the set 
of all points a = (a x , a y ) between p and q: 

px < ax < qx or qx < ax 1 px and 1 
Py - o-y - Qy ovqy<ay<py J ' 

Such a rectangle is written as R = [p, q]. The picture area of a set S ^ Z2 , denoted 
by is the smallest rectangle that contains S. By scaling a picture area if! = [p, q] 
by a factor s € No, the picture area s ( p = { s b | b € i p } = [sp, sq] is obtained. The 
union of two picture areas is not a rectangle in general. The extended union shall 
give the rectangle covering the normal union: 

SKp y 9\Q = iHpuQ. 

Let ©a(w) be the vertex set of a word w with respect to a. Then, the functions 
I- w> — " ' w > • w give the 'border 'of ©a(w): 

I- ° = m i n { x | (x,y) € O a ( w ) } , ^ = min{2/ | (x ,2 / )G©°(w)} 

• C = m a x { x | ( x , y ) € O a ( w ) } , = max{ y | (x,y) € ©a(w) } 

The symbols = (I- and ~1° = (-1°, • stand for the lower-left and 
upper-right corners. The picture area of ©a(w) is denoted by • a ( w ) = [L-w'^Cl-

R 
-

a 6 : 
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2.3 Special Endomorphisms 

Let K, FJ, be two natural numbers, K,(J, £ No- An endomorphism h on A* is called 
(K, ¿¿)-endomorphism if the following conditions are satisfied for each x G A: 

1. (h{x))(o) = KX>x. 

2. Q(/i(x)) Ç. «[o, ox] iy)/¿[Oj-x, o2±]. 

The following example illustrates this. 

Example 2. Let h be an endomorphism on A* with r >—• rdruurdr, I >—• lulddlul, 
u I—» urulluru, and d i—> dldrrdld. Then one has 

rdruurdr(o) = 4or + 2bd + 2Du = 4or, 
lulddlul(p) = 40/ + 2tJu 4- 20^ = 4t)j, 
urulluru(o) = 4 o u + 2 o r + 2D i = 4ou, 
dldrrdld{o) = 4od + 2o( -I- 2or = 4t)d. 

Hence, the first condition is satisfied. The simple directed graphs of h(x) (x G >1) 
axe: 

(4,0) (-4,0) , 

(0,4) 

o (0, - 4 ) 

All points of Q(h(x)) (for each x G A) lie in the rectangle covering both the lines 
[o,4t)x] and [Oj-x, 02±]. The picture area is Q(/i(x)) = 4[o, 0^] iyj [oxx, t>sx] for x G A. 
Thus, h is a (4, l)-endomorphism. The first synchronization condition says where 
the end point of a drawing lies. The second one causes the pictures to lie in certain 
rectangles. 

The n-ary concatenation of an endomorphism h is written shortly as hn. Applied 
to a string w G A*, its result is the n-th derivative of w; written as (w', w", 
w'" for the first three derivatives, v/0) = w). The parameter K defines the length of 
the derivation picture regarding the respective direction; the derivation is length-
contracting in the case of K < 1, length-constant in the case of K = 1, and length-
expanding in the case of k > 1. The parameter ¡i is the width of the derivation 
picture. 
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2.4 Chain Code Picture Systems 
A synchronous deterministic context free Chain Code Picture System (sDOL sy-
stem) is a triple 

G = (A,h,u) 

with the alphabet A — {r,l,u,d}, a (re, /¿)-endomorphism h on A*, and a non-empty 
start string (axiom) ui £ A+. 

The picture language PG generated by an sDOL system G is the set of all pictures 
of derivatives of the axiom LJ: 

PG = { P(U{N)) | n G No } . 

An sDOL system is called length-contracting (-constant, -expanding) if the (re, /i)-
endomorphism belonging to it, has this property. 

3 Finiteness Investigations 
Let G = (A,h,uj) be an sDOL system with a (re, /x)-endomorphism h. The n-th 
derivative (n £ N) of any letter x £ A maps the zero point o to the point KnK>x\ 
x(n)(o) = Knox. This can be proved by induction. 

Moreover, the first synchronization condition says that x'(O) = KVx. This means 
x'(o) = Kbx + cX)x + cOx+dt)x± +dvx± for some natural numbers c, d. Consequently, 
x1 and x1 have the same numbers of occurrences in the derivative x', and x has 
K more occurrences than x. These observations are summarized in the following 
proposition. 

Proposition 6. For all x £ A, one has 

1. x<n>(o) = Knx>x for n £ N, 

— & ~h ifcx^C* t • 

3. #x±x' = #x±x'. 

The Chain Code Picture Systems are distiguished by their 'length behaviour' 
(represented by the parameter re). 

3.1 Length-contracting Chain Code Picture Systems 
Let G = (A, h, u) be an sDOL system with a length-contracting (re, //)-endomor-
phism h. Since re < 1 and re £ No, re must be equal to 0. 

The second synchronization condition has the effect that the picture area of the 
derivative x' of a letter x £ A is a line: Q(x') t)£±]. Hence, x and x do not 
occur in the string x'. 

For any string w £ A*, exactly one of the following three cases occurs: 

1. w' = A. Then all further derivatives are also empty: w ^ = A, n > 1. 
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2. w' A, w" = A. Then all further derivatives are empty: = A, n > 2. 

3. w' ^ A, w" A. Since w' ^ A, some letter x e A occurs in w' and also the 
same number of x. Hence, the letter set [w'] can be {r,l}, {u,d} or A. 

Example 3. For example, let ft be a (0, /i)-endomorphism with 

r ud, it h-> rl, d i—> A and I > A. 

If w = r then [w'j — {u,d}, if w = u then [w'] = { r,I }. If w = ru then the 
letter set [w'] consists of all letters: [w'j = A. 

If [w'] — { r,I }, the letter set [w"] is { u , d } (it cannot be empty because 
w" ^ A). Similarly, [w"] = { r, I } if [w'] = { u,d }. If [w'] = A, some letter 
x 6 A occurs in the word w together with x1 or x1. As these letters occur 
in w' also, w" consists of the same letters as w'. Summerized, one has 

f {u,d} if H = {r,i}, 
[w"] = { {r,l} if[w'] = {u ,d} , 

[ A if [w'j = A. 

An analogous argumentation leads to 

f { r , 0 if M = {r,Z}, 
[w'"] = < if [w'] = {u,d}, 

[ A if [w'j = A, 

that is [w'"] = [w'j. Thus, the letter set of the fourth derivative coincides 
with that one of the second derivative: 

[w(4)] = u m = U m = K' i -
xe[w"'] ie[w'] 

From this case distinction one can conclude the following proposition by induction: 

Proposition 7. The letter sets from the second derivative of a string w G A* on 
are either empty or alternate beginning with the first derivative: 

[w"] = 0 [w(n)] = 0 (n > 2), 

[w"] ^ 0 =i> [wt2"-1)] = [w'] A [w(2n)] = [w"] (n > 2). 

A similar correlation can be found for edge sets. Let be the n-th derivative 
of a string w G A* : 

w(n) = x\ • • • xi (xi G A, i = 1 , . . . , I). 

The edge set of is, according to Proposition 5, 

^ (« -n) = j j^ u II^CO)^ u . . . u 
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The Propositions 3 and 6 imply that (x[ • • • x'JÇo) = x\ (o) + • • • + = o for 
i = l,...,l. Hence, the edge set of w(n+1) is 

i 
||w(n+i) = ( J | |x j = y ||x/ (¡f £ = £ t h e n ôt' = x' and \\x' = ||x'). 

i=l x€[w<">] 

According to Proposition 7, one obtains = 0 if w" = A and, in the case that 
w" ^ A : 

l l w - ' = ( J U*' = U H®' = Hw"' ,,(2n) _ 

a;6[w)(2n-l)] I6[w'] 
,<2n+l) = y ^ = y ||X' = ||W'", 

x€[w<2">] xe[w"j 

for n > 2. 
Thus, if w" = A then the pictures of w/") (n > 2) consist of the zero point only. 

If w" A then the pictures of even derivations coincide from the second derivation 
on; those of odd derivations from the third one on (because of Prop. 4). After the 
third derivation of a word w e i * , no new picture arises. 

Theorem 1. Let G = (A,h,u) be a length-contracting sDOL system.. The picture 
language generated is 

PG = {p(u>),P(<j'),p(w"),p(u'")}. 

The following example shows a length-contracting sDOL system together with 
its picture language. 

Example 4. Let G = (A, h, r) be an sDOL system with a (0, /¿)-endomorphism h 
with r 1—* ud, 11—• du, u > rl, and d h-> A. The words generated by G are r, ud, rl, 
uddu, (rl)2, (uddu)2, (rl)4, (uddu)4, etc. The corresponding pictures are 

Since a new picture does not occur, the picture language is | 1, 

3.2 Length-expanding Chain Code Picture Systems 
Let G = (A, h, u>) be a length-expanding sDOL system. Since the (K, fx)-endomor-
phism h is length-expanding, K is greater than 1. 

Let x e A be the initial letter of u> (since u> € A+ it has at least one letter): 
u> = xw (w € A*). The n-th derivative is = and x^(o) is a vertex 
of every graph of o/"); 

x ( n ) (o)e©(w ( n ) ) , n e N 0 . 
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Furthermore, let Xw be the set of all points Vw the union of the vertex sets 
©(w(n)), and Pw the set of all pictures p(w(n)), n G N0: 

The set Xu is infinite because K > 1 and X)X ^ o. Every point of Xw also occurs in 
Vu\ Xw ^ Vu\ thus the set Vw is also infinite. Each vertex set Q(uj<-n">), n € No, is 
finite; hence, there are infinitely many different ones in the union K,. If the vertex 
sets of two strings u, v £ A* differ, so the pictures do as well. Hence, among the 
pictures p(u/n)) with n £ No, there are infinitely many different ones: \PU\ = oo. 

Theorem 2. For every length-expanding sDOL system G = (A,h,uj), the picture 
language PG generated by G is infinite. 

The following example shows a length-expanding sDOL system. 

Example 5. Let G = (.4, h, ruld) be a length-expanding sDOL system with the 
(4, l)-endomorphism h given in Example 2. The first pictures generated are drawn 
below (up to the third derivation). 

= { xM(o) | n G N0 } = { knx>x | n G N0 } (Prop. 6) 

Vu = (J ©(W<">), 
ngN0 
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3.3 Length-constant Chain Code Picture Languages 
In contrast to the previous situations, among the length-constant sDOL systems, 
there are those with a finite picture language as well as those with an infinite one. 
The following example shows an sDOL system with a finite picture language and a 
similar sDOL system with an infinite picture language. 

Example 6. Let h be a (l,/i)-endomorphism with r h-> rud, u h-> uldru, d d, 
and I i-> I. Then G = (A,h ,r ) is a length-constant sDOL system. The simple 

directed graph of the axiom is of the first derivative J, and of the second 

derivative Q The graphs of the later derivatives are the same: O . Hence, the 
picture language generated is finite: PG = | , I, CU j . Now, change h such 
that / H-> Irl. Then, the simple directed graph of the third derivative is not the 

same as that one of the second derivative, but Q A new r-edge arose that will 
be replaced (in the next step) by its derivative; thus, the fourth derivative has the 

r l 
graph A new r-edge occurs in every third derivative (6th, 9th, etc.). Hence, 
the picture sizes increase; the picture language is infinite. 

The example above shows that, in the case of K = 1, further investigations are 
needed to find out when an sDOL system generates a finite picture language and 
when it does not. 

Several examples lead to the supposition that the difference between the edge 
sets of the second and third derivatives indicates the finiteness of the picture lan-
guage: If they do not differ, the picture language is finite; if there is a difference, 
then the language is infinite. This supposition will be confirmed and proved. 

Let G = (A, h, ui) be a length-constant sDOL system. The next proposition 
extends the first statement of Proposition 6 to words. 

Propos i t ion 8. If h is a (1,p)-endomorphism, then wA")(o) = w(o) for every 
string w £ A* and every derivation step n G No. 

Proof. Let w € A1 be a word wi •••u>i. Then, one can conclude the following 
equations: 

w<n>(o) = (u>in)--u;i
(n))(o) 

= w(")(o)...w\n)(o) (Prop. 3) 
= t v H 1- 0WJ (Prop. 6) 
= •wi(o) -I |-K;i(O) 
= w(o). 

This proves the proposition. • 
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Let w £ A* be a word. The operator ||- gives the edge set ||w of w. Applying the 
(1,/x)-endomorphism h for n times produces the n-th derivative its edge set 
is | | T h e following proposition shows how the edge set ||w'n^ can be obtained 
from the edge set ||w. 

w —> ||w 

w » 
Propos i t ion 9. The edge set ||\A/") of the n-th derivative of a string w £ A* is the 
union of the n-th derivatives of all edges in ||w: 

w ( J | | q x ( n ) w e i ' , n e N o . 

Proof. Let w £ A1 be the string w\ • • -wi- Then the n-th derivative of w is 

Ŵ  ' = w • W in) 

The edge set of w is 

||W = I K U L L 5 * ' " ) ^ U . . . U H ^ W T T F J 

= { (O, W L ) } U { (ÛJÎ(O), w2) } U • • • U { (Û>ÏIÎ(O), WT) } 

= { (°> Wi), {wl(o), W2),... (wi-l(o), WI)}, 

the edge set of is 

||w<"> = U H ^ ' " ^ « ) ^ U • • • U H ^ ' - ' I " ) « , } " ) 

(Prop. 5) 

= | | î4n ) U u • • • u I 

= U I 
(q,i)6||w 

l^l-lio)^") 
(Prop. 5) 

(Prop. 8) 
q x ( n ) , 

which proves the proposition. • 
The simple directed graph of the n-th derivative of a word w £ A* arises from 

the simple directed graph of w by replacing each x-edge (q,x) £ ||w by the simple 
directed graph of the n-th derivative of x, beginning at the point q. 

Example 7. Let h be a (1, /x)-endomorphism with r dru, u >—> rul, I H-> uld, and 
d i—> Idr. The simple directed graphs of the second atomic derivatives are shown 
below (those of the first derivatives are inserted grey coloured): 

r ; ; j : 
, 1—T 0 _ J , and 
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Let w be the first derivative of r. Its edge set \\dru is 

{ ( o , d ) , ( ( 0 , - l ) , r ) , ( ( l , - l ) l U ) ) } . 

The edge set of the second derivative of w consists of all edges of the edge sets of 
the second derivatives of d with respect to o, of r with respect to (0, —1), and of 
u with respect to (1 , -1) : ||w" = \\°d" U ¡|(0,-i)r// y | |(i ,-i)u". These edge sets are 
(shown as simple directed graphs): 

i J , I J , and { J 
Hence, the the simple directed graph of w" is 

Since w is the first derivative of r, this graph should be the same as that one of the 
third derivative of r - and is as the following sequence of derivative graphs shows. 

1: ,4 : 

With the help of the proposition above, the following proposition about the 
stability of edge sets can be proved. 

Propos i t ion 10. If the edge set of a string w € A* coincides with that of its 
derivative w', then it coincides with the edge set of every higher derivative: 

||w = | | w ' | | w = ||w(n), w e i ' . t i E N . 

Proof. The proof is carried out by induction. Suppose, that ||w = for 
1 < i < n. Then the edge set | |v/n + 1) is 

| | w ( n + i ) = y y q ^ (Prop. 9) 

(q,x)€| |w(»> 

= U | | ( i n d u c t i o n a l assumption) 
( q , x ) e | | w 

= ||w' . (Prop. 9) 
= ||w (inductional assumption) 

fiom which the proposition follows. • 
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With the Propositions 10 and 4, the first supposition (see page 65) is proved. 
So, it is stated in a lemma. 

Lemma 1. Let G = (A, h,u) be a length-constant sDOL system. If the edge sets of 
the second and third derivatives of the axiom u> coincide, then the picture language 
generated consists of the pictures up to the second derivative at most. That is 
shortly written as 

= ||W'» PG = {pH,p(w'),p(u/') } . 

In the first example of this section (p. 65), one can observe that if the edge sets 
of the second and third derivatives of the axiom w do not coincide, then at least 
one x-edge exists in the second derivative which is later replaced by a graph that 
contains another x-edge. The next propostion gives an even stronger restriction. 

Proposi t ion 11. If the edge sets of the second and third derivatives of the axiom 
L> do not coincide, then there exists a letter x G [u/'j such that one of the first three 
derivation edge sets ||x', \\x" or ||x'" contains an edge different from (o,x). 

Proof. The statement of the proposition is equivalent to the following statement. 
If, for each letter x 6 [w"], the edge sets of the first three derivatives of x do not 
contain any x-edge different from (o,x) then the edge sets of ui" and u>'" coincide: 

(Vx G [w"\ : ||*x = ||xx' = \\xx" = \\xx"') =• ||a/' = \\u)"'. 

This statement will be proved now. 
For all letters x € [w"], let ||xx = ||xx' = ||xx" = \\xx'". If (q,y) is an edge of 

any | |x ( i \ then (q,y) is also an edge of ||x'*+1^ (because of \\yy = ||vy'). Hence, 
each edge set includes those of lower derivatives, that is ||x ^ ||x' ^ ||x" ||x'". 

In order to conclude that ||o/' — ||w"', the inclusion ||x" £ ||x"' must be an 
equation. In the sequel, the inverted inclusion (||x"' ||x") will be shown. The 
case distinction used follows from Proposition 6. 

1. [x'] = { x }, hence = { x } for all natural numbers n. Especially, x" is 
equal to x"', and also ||x" = ||x'". 

.2. [x'] = { x,x }. 

(a) [x"J = [x'], hence [x^71'] = [x'] for all natural numbers n. Because of 
the second synchronization condition, the letters x and x alterni ce in x" 
and in x"'. That means for the edge sets 

||x" = ||x U | | l ( 0 )x U ||x U ||x(0)x U • • • ||x (Prop. 5) 

(b) [x"] = A. The edge set ||x' consists of the edges (o,x) and ( 3 . ( 0 ) , x ) 
(due to the second synchronization condition). The edge set ||x" does 
not contain any other x-edge nor x-edge (the edge (o,x) can produce 
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the edges of ||®' only; the edge (®(o), ®) can produce (o, ®) - due to 
||x® = II,®" - and (®(o),x) - due to ||x® = | |sx' - only). Hence, the x x -
and ¿-"--edges occur pairwise (between the same points): 

(q,®x)e||®"^(®x(q),®x)e||®". 

The set ||xx'" consists of (o,x) only. The set ||i®"' consists of (x(o),x) 
only (due to ||2x = ||2x"). The ®x- and ®x-edges do not produce new 
x-, x-edges (because of the same reasons), thus, the x x - and xx-edges 
occur pairwise in ||x"'; x x does not produce a new ®x-edge, hence, nor 
a new ®x-edge. Because of the same reason for ®x, there is not an edge 
in II®"' which is not in ||®". 

3. [x'j = { ® ,x x , x x }. 

(a) [x"| = [x'], hence [ x ^ ] = [®'] for all natural numbers n. As there 
are no ®-edges in the edge sets of any derivative, the edge set does not 
change from the first to the second derivative: ||x' = ||x". Because of 
Proposition 10, it follows || x" = II®'". 

(b) [®"J = A. This means, ® occurs in the derivative of ®x or ®x. As above, 
the x x - and ®x-edges occur pairwise in ||®'. With each ®-edge, also 
an ®-edge is produced. If there are more than one x x - and xx-edges, 
then they have different positions with respect to the edge (o,x) and 
then another ®-edge will appear. This is a contradiction. Hence, there 
are one ®x- and one ®x-edge only. The following cases are the only 
possibilities (the graphs given to the right shall illustrate the case of 
x = r): 

i. | | x '={ (o , x x ) , (® x (o ) ,® x ) , (o ,®)} L 

ii. II®' = { (o ,®),(x(o) ,xx) ,((xxx)(o) ,xx) } J 

iii. II®'= { (o,xx) ,(®x(o),®x) ,(o,x) } V 

iv. II®'= { (o,x),(x(o),®x),((®®x)(o),xx) } 1 
In ||®", there are not any new x-, x x - , ®x-edges. Hence, the new ®-edge 
is (x(o),x) (but then ||x"' is the same as ||x", because it does not get 
any new edge), or the new ®-edge is ((xxx)(o), x) (in the cases i. and ii.) 
or ((x®x)(o),x) (in the cases iii. and iv.). Then a new vertex e appears: 

i. e = (®®x)(o) C 

ii. e = ®x(o) 3 

iii. e = (®®x)(o) O 

iv. e = ®x(o) 3 
Since e is neither o nor ®(o), there is another edge in ||®" that is not in 
the set ||®': 
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i. ( x ( o ) , x x ) G | |x" D 

ii. (x X (o ) ,X X ) G | |x" O 

m. (x(o),xx) e III" O 

iv. (x X (o ) ,X X ) 6 | |x" O 

This implies that the x-edge is produced by x 1 in the cases i. and iv., 
and by x x in the other cases. Both do not produce further x-edges 
(otherwise they would produce a new x-edge or new x x - , xx-edges). As 
the x-edge cannot produce any new edge, the set ||x'" has no additional 
edges: ||x'" £ ||x". 

4. [x'| = A. Let v, w, y be different letters of the set ,/4\{x}. The x- and u-edges 
produced by deriving v in x' are not new (they are in ||x' already). Possibly, 
a new UJ-edge occurs. The x-, v-, and ui-edges produced by deriving w in x" 
are in ||x" already. Similar to the previous case, also all arising y-edges are 
in ||x". Hence, all edges of ||x"' are elements of ||x". 

There are no other cases (s. Prop. 6). Every case yields that ||x"' ||x". Together 
with the inclusion ||x" ||x"', one obtains that ||x" = ||x"'. Hence, the edge sets, 
with respect to any point a G Z2, coincide: | |ax" = ||ax"'. Let w\,... ,wn be the 
letters of u: w = wi • • • wn. For the edge set of the second derivative of u>, the 
considerations above yield 

IIw" = \\w'( U I r " ( 0 ) < U • • • U (Prop. 5) 

= I K U r " ' ( 0 H ' U • • • U (Prop. 8) 

= I K ' U Ir" ' ( 0 )u4" U • • • U (||°x" = ||ax'") 
= \ \ J" (Prop. 5). 

This proves the proposition. • 

In the sequel, consider LJ such that ||xx ^ H^x^ for a letter x G [UJ"\ and a 
derivation step I G { 1,2,3 }. The edge set ||x consists of the edge (o,x). Another 
x-edge is in the graph of the Z-th derivative of x: (q, x) G | |x^ with q ^ o. According 
to Proposition 9, one obtains that | | q x^ ^ | |x '2 ' \ which means that all edges of 
the Z-th derivative are in the 2Z-th derivative displaced by the point q. Thus, it is 
especially (q + q,x) G ||x^2i\ Induction leads to (nq,x) G in general. 

Consider u>" = vxv, then the edge sets of every Z-th derivative of u>" are 

||u/"'+2) = ||v(ni> U U^Wa.inJ) u ||(v:,:)t'")(0)v(n') 

= ||v("') u ||v(°)x(ni) U || <"*><•)$<»'> (Prop. 8). 

The edge (nq + v(o),x) occurs in every set ||v(°)i(n') with n G No. Hence, for each 
n G No, the edge (nq + v(o),x) is also an element of the set | |a/n , + 2). Thus, the 
vertex nq + v(o) is an element of the vertex set 0(w^ni+2^). 
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Let X u be the set of all vertices nq + v(o), V^ the union of the vertex sets 
0(w ( n '+ 2 ) ) , and Pu the set of all pictures p(u/ n i + 2 ) ) over all n £ N0: 

Xu> = { nq + v(o) | n £ N0 } , 

vu = (J o("(ni+2)), 
nSNo 

Pu = { p(u(nl+2)) | n e No } . 

The set Xu is infinite because q ^ o. Each point in Xu also occurs in thus 
Vu is also infinite. Every vertex set with n 6 No is finite; hence, there 
are infinitely many different ones in the union Vu. If the vertex sets of two strings 
x , y g / differ, then the pictures are also different. Hence, Pw contains infinitely 
many different pictures. This result is summerized in the next proposition. 

Propos i t ion 12. If there exists a letter x £ [u>"\ such that one of the first three 
derivation edge sets ||x', ||x" or \\x'" contains an edge different from (o,x), then 
the picture language generated is infinite. 

Together with the Proposition 11, this leads immediately to the following 
lemma. 

L e m m a 2. Let G = (A, h, u>) be a length-constant sDOL system. If the edge sets 
of the second and third derivatives of the axiom ui do not coincide, then the picture 
language generated is infinite. 

Hence, the second supposition on page 65 is confirmed and proved. The Lem-
mas 1 and 2 together state that the difference of the edge sets of the second and 
third derivatives of the axiom is a necessary and sufficient criterion of the finiteness. 
This result is summarized in the next theorem. 

T h e o r e m 3. Let G = (A,h,ui) be a length-constant sDOL system. The picture 
language PG generated by G is finite if and only if the edge sets of the second and 
third derivatives of the axiom u> coincide. 

Prom an algorithmic point of view, the case p, = 0 must be emphasized. 
According to the second synchronization condition, the edge set of each 

derivative of any letter x £ A with respect to the point a £ 1? consists of the edge 
(o, a 4- ox). Hence, the pictures of all derivatives of UJ coincide (Prop. 4). 

T h e o r e m 4. Let G = (A,h,w) be an sDOL system with a (1,0)-endomorphism h. 
Then the picture language PG generated by G is a singleton set, that is 

P G = { P M } . 

This means that the finiteness can be stated immediately in the case p, = 0 
(without further investigation of the system). 
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4 Conclusion and Future Work 

The paper investigates synchronous deterministic Chain Code Picture Systems with 
respect to the finiteness of their picture languages. 

Let G = (A,h,u>) be an sDOL system with a (K, /i)-endomorphism h. The 
synchronization parameter K defines a division of the sDOL systems in length-
contracting (K < 1), length-constant (K = 1), and length-expanding (K > 1) sys-
tems. 

The following table summarizes the results: 

«'< 1: PG = {p(u),p("'),P(""),P(""') } 

K > 1: | P G | = o o 

¿ = 1: jj. = 0 = > Pg = { p(ui) } 

S(W") = S(CJ"') = > P G = {p(a>),p(w'),PK) } 

s(w") ± s(u'") \PG\ = oo 

If the picture language generated by an sDOL system is finite, then it consists 
of four elements at most. In addition, an algorithm is given that decides for any 
sDOL system G, whether the picture language PG generated is finite or not. 

The decision about the finiteness of the picture language of a given sDOL sy-
stem G = (A,h,uj) can be made immediately (without further investigation of the 
system) if the (/c, /i)-endomorphism h is length-contracting or length-expanding or 
length-constant with fi — 0. Otherwise, the start string must be derived three 
times, and the edge sets of the second and third derivatives must be checked for 
equality. This time effort is cubic in the lengths of the replacement strings. 

For synchronous deterministic Chain Code Picture Systems G = (A,h,w), the 
finiteness and infiniteness are decidable in time 0(pn3), where p = #w is the length 
of the start string u> and n = max { #h(x) \ x G A } is the maximum length of the 
replacement strings. 

Future work will address the finiteness of picture languages generated by non-
deterministic sOL systems and tabled systems such as sDTOL systems and sTOL 
systems. The deterministic systems generate four pictures at most in the case of 
finiteness. For applications however, system are desirable that generate a large but 
a finite picture language. 
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Quasi-star-free Languages on Infinite Words* 

Zhilin Wuf 

Abstract 

Quasi-star-free languages were first introduced and studied by Barrington, 
Compton, Straubing and Therien within the context of circuit complexity in 
1992, and their connections with propositional linear temporal logic were 
established by Esik and Ito recently. While these results are all for finite 
words, in this paper we consider the languages on infinite words. 

1 Introduction 

Characterizations of different subclasses of regular languages have been a constantly 
active research area since Biichi characterized regular languages by monadic second 
order logic in [3]. One of the most important characterizations among them is the 
characterization of star free languages: in [11, 17, 9, 7, 13, 19, 18, 4], star free 
languages on finite and infinite words were characterized by aperiodic monoids, 
monadic first order logic and linear temporal logic. 

Quasi-star-free languages were first studied by Barrington, Compton, Straubing 
and Therien in [2]. Their motivation was to characterize the regular languages 
that can be recognized by constant-depth Boolean circuits using OR,AND and 
NOT gates(AC°). They found that these languages are precisely the quasi-star-free 
languages. And they give a characterization in terms of quasi-aperiodic semigroups 
and in terms of first order logic FO[C] which uses only the numerical predicates 
x < y and x = r(mod d). Recently, Esik and Ito proved in [5] that FO[C] and 
propositional linear temporal logic with cyclic counting(LTL[C]) have the same 
expressive power. While these results are all for finite words, we extend them to 
the case of infinite words in this paper. 

This pa:per is organized as follows. In section 2 we give some preliminaries 
about regular languages on finite and infinite words. Then in section 3, we give 
some definitions of quasi-star-free languages on finite words(QSFF), and summarize 
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the results of QSF f in [2, 5]. In section 4, we define quasi-star-free languages on 
infinite words ( Q S F 1 ) , and extend the results of Q S F f to Q S F 1 . Finally in section 
5, we give some conclusions and remarks on this paper. 

2 Preliminaries 

2.1 Regular languages on finite words 
In this subsection, at first we present some basic facts of semigroups and formal 
languages on finite words (cf. [12, 6, 14, 10] for more information), then after 
recalling the definitions of monadic first order logic (FO[<]) and linear temporal 
logic(LTL) interpreted on finite words, we introduce the classical results of star free 
languages on finite words. 

Let A be a finite alphabet, and L C A* be regular. 

2.1.1 Monoids and formal languages on finite words 

Let M be a finite monoid. We say that morphism <f>: A* —» M recognizes L if there 
is X C M such that L — X<j>~1. And we say that monoid M recognizes L if there 
is a morphism (¡>: A* —> M recognizing L. Moreover we say that congruence « on 
A* recognizes L if the natural morphism <j>: A* —» A* / « recognizes L. 

The syntactic congruence of L, « ¿ , is defined by: u v iff (xuy £ L iff 
xvy £ L for all x,y G A*); the syntactic monoid of L, M(L), is defined by the 
quotient monoid A*/ and the syntactic morphism of L, T]L A* —* M(L), is 
defined by urji = [it], where [it] denotes the equivalence class of containing u. 
Syntactic congruence is the coarsest congruence of A* recognizing L, i.e. for any 
congruence « recognizing L, u~v implies u v for all u,v G A*. 

A morphism (j) : A* —> M recognizes L iff there is a morphism 6 : Im(<j>) —> 
M(L) (where Im(<j>) is the image of <f>) such that for all u G A*, u(<f>9) = urn,-
Furthermore, a morphism (j) : A* —> M recognizes L iff there are morphisms (j)' : 
A* —> M' and 0 : Im(<p) —» M' such that 4»' recognizes L and for all u G A*, 
u(<f>6) = u<t>'. 

L is star free if L can be constructed from singleton languages {a}(a G >1) and 
the language A* by finite applications of operations of union, complementation, 
and concatenation. 

L is noncounting if there is some no £ N satisfying that for all n > n0, xynz £ L 
iff xyn+1z £ L for all x,y,z £ A*. 

A monoid M is aperiodic if there is some no £ N satisfying that for all n > no, 
mn = mn+l for all m G M. 

L is aperiodic if M(L) is aperiodic. It is easy to show that L is aperiodic iff 
there is an aperiodic monoid M recognizing L. 

It is not hard to show that L is noncounting iff L is aperiodic. In the remainder 
of this paper, we don't distinguish between the "noncounting" and "aperiodic" 
properties of regular languages on finite words. 
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2.1.2 First order logic and linear temporal logic on finite words 

Let F0[<] denote first order logic on words with binary predicate < and unary 
predicates Ра(а £ A). The formulas of F0[<] are defined by the following rules: 

ip := Pa(x) | x < у | (pi V ip2 I ~<Ф I 

The semantics of FO[<] are defined as follows: let X be a variable set and ip 
be a formula with free variables in X; и £ A* and r]: X —> {0,..., |«|}, i.e., 77 maps 
variables in X to "positions" in u. 

• (u,r)) \= Pa{x), if u[|x|] = a, where u[|x|] is the letter of и at position x 77 (the 
first position is 0, the last position is |u|, and by convention the letter at 
position |u| is e)\ 

• (it, 77) j= x < Y, if XT] < г/77; 

• (u,v) \=V>i VV2, if (U,T?) (= ipi or (u, 77) \=tp2; 

• f= i f n o t K 7?) h 

• (u,rj) [= (3x)V',if there exists a function 77/ : X —> {0,..., |u|}, which agrees 
with 77 on X — {x} and possibly differs from 77 on x, such that (u, rjf) (= ф. 

Let ip be an FO[<] sentence and и £ A*. We write и |= tp if there is an 
77: X —> {0,..., M ) such that (u, tj) )= 1p. 

Remark 2.1. The semantics of FO[<] defined in [5] had a subtle inaccuracy: the 
assignments of variables were defined by function Л : X —> [|u|], where [|?i|] = 
{0,..., |u| — 1}. But then for the empty string e, the assignments would become into 
Л : X 0, since [|e|] = [0] = 0. 

We avoid the accuracy by defining the assignments as 77: X —> {0,..., |w|}, and 
thus formulas of FO[<] can be interpreted on the empty string e. 

It is natural to define the boolean operations "A", "—>" ,etc. in a standard way. 
Here we introduce several other abbreviations for FO[<]: Last(x) for Vy(-i(x < y))\ 
True for ip V -чр, where tp is a fixed sentence; and False for —True. 

A language I С A' is definable in FO[<] if there is an FO[<] sentence ip such 
that for all и £ A*, и (= <p iff и £ L. 

Associate each letter a in A with a prepositional constant pa. Then formulas of 
linear temporal logic (LTL,[15]) over alphabet A are defined by the following rules: 

4> Pa I 4>\ V ip2 I -уф I Хф I iPlUiP2 

The semantics of LTL formulas on finite words are defined as follows: Let ip be an 
LTL formula, и £ A*. Denote the suffix of и starting from the г-th position (the 
first position is 0) as u l, where 0 < г < |u|, and the suffix starting from the |u|-th 
position is empty string e. 
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• u )= pa, if u = av, for some u 6 A*\ 

• U |= Ifii V <P2, if u |= ipi or U (= (p2\ 

• u f= , if not u |= ipi; 

• u |= Xipi, if |u| > 0 and u1 |= ipj; 

• u |= <p\Uip2, if there is 0 < i < |u| such tha t ux and for all 0 < j < i, 
Uj f= Ifii. 

We introduce several abbreviations for LTL, let True = pa V -<pa, where a is 
any letter in A, and let False = ->True. Moreover, let End denote the formula 
Ao6/4->pa, so that for all u € A*, u \= End iff u — e. 

Remark 2.2. When interpreted on finite words, the LTL formulas ->X<p and X-xp 
are not equivalent while on infinite words they are (See Section 2.2.2 for LTL in-
terpreted on infinite words). For instance, e \= ->Xpa while not e \= X^pa, where 
e is the empty string. 

A language L C A* is LTL definable iff there is an LTL formula ip such that for 
all u € A*, u (= y? iff u G L. 

2.1.3 Classical results of star free languages on finite words 

The classical results of star free languages on finite words are summarized in the 
following proposition: 

Proposition 2.3. Let L C A* be regular. The following conditions are equivalent 
[11, 17, 9, 7, 4}: 

• L is star free; 

• L is aperiodic; 

• M(L) contains no nontrivial group (i.e. contains no subsets which form a 
nontrivial group under the product of M(L)); 

• L is FO[<] definable; 

• L is LTL definable. 

2.2 Regular languages on infinite words 
Similar to the case of finite words, in this subsection at first we present some basic 
facts of semigroup and formal languages on infinite words (cf. [1, 20, 21, 4, 16]), 
then we interpret monadic first order logic (F0[<]) and linear temporal logic (LTL) 
on infinite words, at last we introduce the classical results of star free languages on 
infinite words. 

m 
Let A be a finite alphabet and L C Au be regular, i.e., L = |J X{Y", where 

¿=i 
Xi C. A*, Yi C A+ are regular languages on finite words. 
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2.2 .1 M o n o i d s and formal languages o n inf inite words 

Let M be a finite monoid. L is recognized by morphism <j> : A* M if for all 
771, n G M , (m</>_1) n L i 0 implies ( m ^ - 1 ) C L. A monoid M 
recognizes L iff there is a morphism (f> : A* —• M recognizing L. Moreover we say 
tha t a congruence « on A* recognizes L if the natural morphism <f>: A* —> A* / « 
recognizes L. 

The syntactic congruence of L, is defined by: for all u,v G A*, u v iff 
for all x,y,z e A*, (xuyzw G L iff xvyzu G L) and (x ( y u z ) u G L iff x ( y v z ) u G L). 
The syntactic monoid of L, M(L), is defined by the quotient monoid A*/ The 
syntactic morphism of L, T)L : A* —> M(L), is defined by UTJL = M , where [it] 
is the equivalence class of containing u. Syntactic congruence is the coarsest 
congruence recognizing L. 

P r o p o s i t i o n 2.4. Let L C Au be regular. A morphism <j) : A* —> M recognizes L 
i f f there is a morphism 9 : Im((f>) —> M(L) such that for all u G A*, u<f>9 — wqi. 

Proof. 
"=»" part: 

Define 0 : Im(4>) —> M(L) as follows: 

m9 - uriL, where u G A*,u<p = m 

9 is well defined since u<j> = v<j> implies tha t urji = vrji (syntactic congruence is 
the coarsest one). 

It is easy to verify tha t <p9 = T]L 
"«=" part: 

It is sufficient to prove tha t for all m, n G Im(<fi) 

<j>-\m)[<j>-l{n)]u p | L £ 0 implies <t>~1 {m){cf>-1 {n))u C L 

Since (¡)~1(m)[<j)~l(n))w is a nonempty regular language, there is an ulti-
mately periodic w-word xyu G 0_1(m)[<?!)_1(n)]UJ f ] L. So xyw has a decomposition: 
wowf such tha t 

too G <}>~1(m)[<t>~1(n))p,wi G [<?i>_1(n)]9 for some p,q> 0 

It is easy to see tha t 4>"1(m)[4>~1(n)]UJ C [ioo</></>_1][ioi<^>_1]w, thus it is sufficient 
to prove tha t [ i o o # - 1 ] [ i o i # _ 1 ] w C L, i . e . , [ io 0 # - 1 ] [ to i00- 1 ] a ' = 0-

To the contrary, suppose tha t [ i o o ^ 0. 
Since [ i o o ^ _ 1 ] [ i o i ^ _ 1 ] u P | L is regular, then there is an ultimately periodic 

word A^AF G [iii0#_1j[ioi4><J>-1}" n L. 
aoa" has a decomposition ct^a'^ such tha t a!0 G wo<j)(f)~1[wi<j)(j)~1]r and ot\ G 

[toi(jxj)*1]8 for some r, s > 0. 
Prom the assumption <p9 = t]l we know tha t a'0i]L = a'0(j>9 = (tootoir)<f>9 = 

(woWir)r)L, and a[r]L = a[(j)9 = (tois)<p9 — (ioi3)T]l- Thus woWir(wis)u G L iff 
a G L, i.e., wowi" G L iff a G L, i.e., xt/1" G L iff a G L, a contradiction. • 
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Corollary 2.5. A morphism <j> : A* —> M recognizes L i f f there are morphisms 
4>' : A* —* M' and 9 : Im(<j>) —» M' such that <j>' recognizes L and for all u £ A*, 
u(<j>9) = up. 

L is star free if L can be constructed from the language Aw by finite applications 
of operations of union, complementation and concatenation on the left by star free 
languages of A*. 

L is noncounting if there is no £ N such that for all n > no and x, u,y, z £ A*, 
(;xunyzw G L iff xun+lyzw £ L) and (x(yunz)" £ L iff x(yun+1z)w £ L). 

L is aperiodic if its syntactic monoid M(L) is aperiodic. And it is easy to show 
that L is aperiodic iff it is recognized by an aperiodic monoid. 

It is not hard to prove that L is noncounting iff L is aperiodic. In the remainder 
of this paper, for regular languages on infinite words, we don't distinguish between 
the "noncounting" and "aperiodic" properties. 

2.2.2 First order logic and linear temporal logic on infinite words 

FO[<] and LTL formulas can also be interpreted on infinite words. 
For FO[<]: Let X be the variable set and <p be a formula with free variables in 

X\u£ Au and r]: X —+ TV, i.e., 77 maps variables in X to "positions" in u. 

• (U,TJ) |= Pa(x), if u[|x|] = a,where u[|x|] is the 177th letter of u\ 

• (u,T})\=x < y, if xri < yrj; 

• (U,r1) (= ipx V(?2, if (u,T)) |= <Pi or (u,rj) |= ip2\ 

• (u,T)) |= -r^, if not (u, 77) |= 1p\ 

• (u, rj) f= (3x)t/>, if there exists a function 77/: X —> N, which agrees with 77 on 
X — {x} and possibly differs from 77 on x, such that (u, 77/) |= ip. 

Let 1p be an FO[<] sentence and u £ Aw. We write u f= if there is an 
77: X —• TV such that (u, 77) |= ip. 

For LTL: Let ip be an LTL formula, u £ Aw. Denote the suffix of u starting 
from i-th position (the first position is 0) as ul, then 

• u (= Pa 1 if it = av, for some v £ A"; 

• u f= ipi V ip2, if u \= fp\ or u (= <¿>2; 

• u |= -«pi, if not u |= ipi; 

• u |= Xipi, if u1 |= <px\ 

• u |= <piUtp2, if there is i > 0 such that ul [= <p2 and for all 0 < j < i, |= ipi-

L is definable in FO[<] if there is an FO[<] sentence (p such that for all u £ Aw, 
u\= tp iff u £ L. 

L is definable in LTL if there is an LTL formula <p such that for all u £ A", 
u f= ip iff u G L. 
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2.2.3 Classical results of star free languages on infinite words 

Similar to the finite words, there are the following classical results of star free 
languages on infinite words. 

Proposition 2.6. Let L C Aw be regular. The following conditions are equivalent 
[IS, 19, 18, 9, 7[: 

• L is star free; 

• L is aperiodic; 

• M(L) contains no nontrivial group; 

m 
• L = (J XiYf,where X{ C A*, Yi C A+ are star free and Y^ C Ya 

¿=i 

• L is FO[<[ definable; 

• L is LTL definable. 

3 Quasi-star-free languages on finite words 

3.1 Quasi-star-free languages on finite words 
Definition 3.1. Let L C A* be regular. L is quasi-star-free if there is some 
d > 1 such that L can be constructed from singleton languages {a} (a 6 A) and the 
language (Ad)* by finite applications of operations of union, complementation, and 
concatenation. 

If L C. A* is star free, it is quasi-star free as well. 
The family of quasi-star-free languages on finite words is denoted by Q S F F . 

Definition 3.2. Let L C A* be regular. L is quasi-noncounting if there is some 
d > 1 such that there is some no £ N satisfying that for all n > no, and for all 
x,y,z € A* with = 0 mod d; xynz € L iff xyn+1z € L. 

Let L C A* be regular and TJL : A* —+ M(L) be its syntactic morphism. we 
denote (Ad)*rn by M(L)^d\ Then we have the following definition: 

Definition 3.3. Let L C A* be regular and rji : A* —> M(L) be its syntactic 
morphism. L is quasi-aperiodic if there is d > 1 such that M ( L i s aperiodic. 

A language of A* is quasi-noncounting iff it is quasi-aperiodic. Thus in the 
remainder of this paper, we don't distinguish between the "quasi-noncounting" 
and "quasi-aperiodic" properties of regular languages on finite words. 
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3.2 Logic with cyclic counting interpreted on finite words 
F0[<] can be extended with unary predicates > 1 , 0 < r < d) adjoined. 
are interpreted on finite words as follows: 

Let u e A*, rj: X —> {0,..., |u|}, then (u,r]) |= C^(x) if xt] = r mod d. 
Denote this extended logic of FO[<] as FO[C]. 
LTL can be extended with "U" (Until) operator of LTL replaced by new "Until" 

operators with cyclic counting, namely U^'^ for all d > 1 and 0 < r < d. The 
semantics of ipiU^d,r^(p2 is defined as follows: 

Let u € A*, then u (= ipiU^'^w if there is i such that 0 < i < |u|, i = r mod d 
and u% |= ip2\ moreover, for all j such that (0 < j < i and j = r mod d), [= . 

Denote this extended LTL by LTL[C]. 
Similar to FO[<] and LTL, we can define the languages defined by FO[C] sen-

tences and LTL[C] formulas. 
The expressive power of FO[C] is strictly stronger than that of FO[<]. For 

instance, language ({a}A)*(a € A and > 1) isn't aperiodic, then according to 
Proposition 2.3, it can't be defined in FO[<], while it can be defined by FO[C] 
sentence Vx (Last(x) —> C°(x)) A Vx (C^x) A ->Last(x) —> P0(x)). 

It is obvious that for u € A*, u |= tp\U(p2 iff u |= <piU^l,0^(p2- Then the 
expressive power of LTL[C] is at least as strong as that of LTL. In fact, LTL[C] is 
more expressive than LTL. For instance, language ({a}A)*({a} € A and > 1) 
can't be defined in LTL, while it can be defined by LTL[C] formula End. 

R e m a r k 3.4. In [5], LTL[C] is defined by adjoining additional constants Igd,r(d > 
1,0 < r < d) into LTL, and U ^ are just derived temporal operators of Igd,r and 
"U". Nevertheless, since u [= Igd,r i f f |u| = r mod d, LTL[C] defined in [5] can't 
be interpreted on infinite words. Consequently we directly adjoin into LTL 
since can be interpreted on infinite words naturally. When interpreted on 
finite words, Igd,r can be derived from t/(d'r) as follows: 

Igd,r = TrueU{d'r)End 

3.3 Theorem on quasi-star-free languages on finite words 
We summarize the results of quasi-star-free languages on finite words in [2, 5] into 
the following proposition: 

Propos i t ion 3.5. Let L C A* be regular. The following conditions are equivalent: 

(i) L is quasi-star-free; 

(ii) L is quasi-aperiodic; 

(Hi) For all t>0, AtT]i contains no nontrivial group; 

(iv) L is definable in FO[C]; 

(v) L is definable in LTL[C]. 
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R e m a r k 3.6. (i), (ii),(iii) and (iv) of Proposition 3.5 were proved equivalent in 
[2], and (iv) and (v) were proved equivalent in [5j. As a matter of fact, (i),(iii),(iv) 
of Proposition 3.5 and the following condition (ii') (Theorem 3(d) in [2]), instead 
of (ii), were proved equivalent in [2], 

(ii') L is recognized by a morphism ip • {0,1}* —> MwrZr, where M is a finite 
aperiodic monoid and where the composition ipn : {0,1}* —> Zr takes both 0 and 1 
to the generator 1 of ZT (see [2] for the exact meaning of (ii')) 

And it is not hard to prove that (ii) and (ii') are equivalent. 

4 Quasi-star-free languages on infinite words 
4.1 Quasi-star-free languages on infinite words 
Similar to the case of finite words, we define that an (¿-language is quasi-star-free, 
quasi-noncounting and quasi-aperiodic in this subsection. 

Definit ion 4.1. Let L C Au be regular. L is quasi-star-free if L can be constructed 
from the language A" by finite applications of operations of union, complementa-
tion, and concatenation on the left by quasi-star-free languages of A*. 

If an w-language L C Au is star free, it is quasi-star-free as well. The family of 
quasi-star-free languages on infinite words is denoted by QSF1. 

P ropos i t ion 4.2. Let L C A" be quasi-star-free, then there is some d > 1 such 
that all those quasi-star-free languages of A*, used in the construction of L (namely, 
used in the operations of left concatenation during the construction of L), can be 
constructed from singleton languages {a} (a £ A) and the language (Ad)* by finite 
applications of operations of union, complementation and concatenation. 

Proof. Let Li,..., Lk be the quasi-star-free languages of A* used in the construction 
of L. 

Then there are di(l <i<k) such that £¿(1 < i < k) can be constructed from 
singleton languages {a}(a £ A) and the language (Adi)*. 

Let d be the least common multiple of d\, ...,dk- Then 

d[-i 1 / ydi 
(Adr = ( J (Ad)*Ardi = | J (Ad)* ( J {a} , where < = 

r=0 r=0 VaeA J 0,1 

Consequently ¿¿(1 < i < k ) can be constructed from singleton languages {a}(a € 
A) and the language (Ad)* by finite applications of operations of union, comple-
mentation and concatenation. • 

Definit ion 4.3. Let L C Aw be regular. L is quasi-noncounting if there is some 
d > 1 such that there is no £ N satisfying that for all n > no and u, x,y,z £ A* 
with |u| = 0 mod d, (xunyzu £ L iff xun+1yz" £ L) and (x(yunz)u £ L i f f 
x(yun+lzY £ L). 
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Defini t ion 4.4. Let L C A" be regular and T)L : A* —> M(L) be its syntactic 
morphism. Then L is quasi-aperiodic if there is some d > 1 such that M ( L i s 
aperiodic. 

Propos i t i on 4.5. Let L C Au be regular. L is quasi-noncounting i f f it is quasi-
aperiodic. 

Proof. 
"=>" part : 

Suppose that there is some d > 1 such that there is some n0 £ N satisfying 
that for all n > no, and for all x, u, y, z G A* with |u| = 0 mod d; 

(xunyzw G L iff xun+1yzw G L) and ( 1 ( ^ 2 ) " G L iff x ( y u n + 1 z ) u G l ) . 

Now we prove that M ( L ) ^ is aperiodic. 
Let m G M(L)^d\ Then there is some u e (Ad)* such that urn = m. Thus for 

any n > no, and for all x,y,z G A*; 

(:xunyzu G L iff xun+lyz" G L) and (x(yunz)w G L iff x ( y u n + 1 z ) u G L) . 

Consequently for any n > no, (un)r}i = (un+1)r]i, i.e., m n = m n + 1 . 
"<=" part: 

Suppose that there is some d > 1 such that M(L)^ is aperiodic, i.e., there is 
some no € N satisfying that for all n > no and m G M(L)^\ mn = mn+1. 

Now we prove that L is quasi-noncounting. 
Let n > no and x,u,y,z G A* with |u| = 0 mod d. Then UT]L G M(L)^d\ so 

(u11)T]L = (u n + l)r]L . Prom the definition of TJL, we have that 

(xunyzw G L iff xun+1yzu G L) and (x(yunz)w e L iff x {yun+1z)" G L ) . 

• 
As a result of Proposition 4.5, in the remainder of this paper, we don't dis-

tinguish between "quasi-noncounting" and "quasi-aperiodic" properties of regular 
languages on infinite words. 

4.2 Logic with cyclic counting interpreted on infinite words 
FO[C] and LTL[C] defined in Section 3.2 can be interpreted on infinite words as 
follows: 

For FO[C]: Let u G Aw and 77: X -» N, then 

(u, 77) )= Cr
d(x) if X77 = r mod d. 

For LTL[C]: Let u G A", then 
u |= tpiU<-d'r^(p2 if there is i > 0 such that (i = r mod d) and (u l y?2)i and 

(for all 0 < j < i and j = r mod d; ui <pi). 
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Similar to the case of finite words, we can define the languages defined by FO[C] 
sentences and LTL[C] formulas. 

When interpreted on infinite words, the expressive power of FO[C](LTL[C] resp.) 
is strictly stronger than FO[<](LTL resp.). E.g., language ({a}A)tJJ(a G A and 

> 1) isn't aperiodic, then according to Proposition 2.6, it can't be defined in 
FO[<](LTL resp.), while it can be defined by FO[C] sentence Vx (C$(x) Pa(x)) 
(LTL[C] formula -n (TrueU^'°^pa) resp.) 

4.3 Theorem on quasi-star-free languages on infinite words 
We extend Proposition 3.5 for QSF f to the following theorem for QSF1. 

Theorem 4.6. Let L C Au be regular. The following conditions are equivalent: 

(i) L is quasi-star-free; 

(ii) L is quasi-aperiodic; 

(Hi) For all t> 0, Atr]L C M(L) contains no nontrivial group; 
171 

(iv) L= [J Xi ( Y i f , where Xu € QSFF, Y{ C A+ and Y{Y{ C Yi; 
i=1 

(v) L is definable in FO[CJ; 

(vi) L is definable in LTL[C]. 

Before the proof of Theorem 4.6, we give some definitions and lemmas. 
Let A№ denote the alphabet consisting of all letters (u), where u G Ad. For 

any x G (Ad) , we denote the corresponding element of ( A ^ ) as (x). 
Let L C A* and u G A*, define L u - 1 = {x |x G A*,xu G L}. 
Let L C A* and d > 1, define 

L(d) = f {(uo) ••• (ufc-i) |uo-Ufc- i € L,k > 1,V 0 < i < k (ui G Ad) } if e <£ L 
I i^} U {<wo> -•• (uit-i) |tt0...tifc_i G L,k > 1,V 0 < i < k (m G Ad) } othewise 

Let L C A* and u G A*, define L(d>u) = {Lu~l){d). 
Let L C A" and d > 1, define 

L (d) = {{u0)... {uk)... |u<>...ufc... 6 L,V i > 0 (Ui G Ad) } . 

Lemma 4.7. Let L C Aw be regular. Define <j): (A^)* M(L)W by (x) (j> = xr)L 

for (x) G (A^)*. Then <j) recognizes L^d\ 

Proof. We define morphism 6 : Im(4>) —> M (L^) such that (¡>0 = r)L(d), and thus 
according to Proposition 2.4, 4> recognizes 

Define 6 by: for m G Im(<f)), m6 = (w) r)L(d), where (w) G (A^) and (w) </> = 
m. 
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At first, we prove that 9 is well defined. Let (w\) <f> = (w2) <p = m, i.e. W\T]L = 
W2T}l — m. Then for all x,y,z G A*, (xw\yzw G L iff xw2yzu G L) and ( x ( y w i z ) w G 
L iff x{yw2z)" G L), thus for all (x), (y), (z) G (A (d))*, ((x) (Wl) (y) {z)u G ¿ M 
iff (x) (w2) (y) (zr G LM) and ((*) ((») (Wl> <*))" G L™ iff <x) (<y) (t£/2) <*>r G 

i.e. (zoi) »¿«¡J (102), (w\)T]L(d) = {w2)r]Lw, so 9 is well defined. 
Evidently for all (w) G (A<d>)*, (w)<p9 = (w) r)LW. • 

m 
Lemma 4.8. Suppose that L = [j Xi(Yi)w, where XitYi G QSF, Y{ C A+ and 

i=l 
YiYi C Yi. Then there is d > 1 such that all those Xi and V, can be constructed 
from the singleton languages {a} (a G A) and the language (Ad) . 

Proof. Since Xi, Yi G QSF f , then there are dxi and such that Xi and Yi are 
constructed from the singleton languages {a} and the language (Adx>) . 

Let d — lcm{dxi,dYi |1 < i < TO}. Then similar to the proof of Proposition 4.2, 
we can prove that Xi and Yi can be constructed from singleton languages {a} and 
the language (Ad)*. • 

Lemma 4.9. Suppose that L C is star free for some d > 1, then L' = 

{x |x G (Ad)*, (x) G L] is quasi-star-free. 

Proof. Since L C 
is star free, it can be constructed from singleton lan-

guages {(u)} (u G Ad) and the language ( A ^ ) * by union, complementation and 
concatenation. 

By replacing {(u)}(u = ao...a<i_i) by {ao}...{a<f-i 
}; (AW)* by (Ad)*; L ^ L , 

b y L i U ^ ; (AWy-L,. by {Ad)*-L\ (namely A*-((A* - ( A d ) * ) u ^ ) ) ; and 
L\L2 by L\L'2 during the construction procedure of L, we can get the construction 
procedure of L'(where L\, L2 C (A^y 

and L'lt L'2 are the languages of (Ad) cor-
responding to L\ and L2 respectively). Thus L' can be constructed from singleton 
languages {a} and the language (Ad) by union, complementation and concatena-
tion. Consequently it is quasi-star-free by definition. • 
Lemma 4.10. Let L C Aw. Then L is definable in FOfCJ i f f there is some d > 1 
such that L^ is definable in FO[<]. 
Lemma 4.11. Let L C A". Then L is definable in LTLfCJ i f f L is definable in 
FO[C]. 
Remark 4.12. The proofs of Lemma 4.10 and Lemma 4-11 are totally similar to 
the proofs of the same results for finite words (Proposition 6.5, Proposition 6.7 and 
Theorem 7.5 in [5]). Consequently we omit the proofs of them here. Now we prove Theorem 4.6. 
Proof of Theorem 4-6. At first we prove the equivalence of (ii) and (iii). According 
to Lemma 4.11, (v) and (vi) are equivalent. Then if we have proved the equivalence 
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of (i),(ii),(iv) and (v), the proof would be completed. We prove the equivalence of 
(i),(ii), (iv) and (v) by proving the equivalence of (i),(ii),(v) and equivalence of 
(ii),(v) respectively. 

(ii)=>(iii): 
Suppose that L C A" is quasi-aperiodic, i.e. M ( L i s aperiodic for some 

d > 1. Now we show that for all t > 0, Atrji contains no nontrivial group. 
To the contrary suppose that there is some t > 0 such that Air]i contains a 

nontrivial group. Obviously t > 1. Select an element m of order k > 1 from the 
group, then G = {m,...mk} is also a nontrivial group in Air]i. Hence there are 
u,v € A1 such that urn, — TO, VT]l — mk. 

Consider AtkdrjL C M{L)^d\ It is easy to see that m i = (v k^d~ l ) ( u i v k ~ i ) ) r]L <E 
Atkdr}L, thus G C Atkdt]L C M(L)(d\ M(L)(-d^ contains a nontrivial group. Because 
a monoid is aperiodic iff it contains no nontrivial group, we have that M ( L ) ^ isn't 
aperiodic, a contradiction. 

(iii)=>(ii): 
The main idea is from the proof of Theorem 3 in [2]. 
Suppose that M(L) is finite and for all t > 0, A*"^^ contains no nontrivial group. 
For each nontrivial group G contained in M(L) pick a nonempty word VG such 

that VGVL is the identity of G. Let d be a common multiple of the lengths of all 
these VG- Now we show that M ( L ) ^ is aperiodic. 

To the contrary suppose that M ( L ) ^ isn't aperiodic. Because a monoid is 
aperiodic iff it contains no nontrivial group, then there is a nontrivial group in 
M(L)(d\ Select an element TO of order k > 1 from the group, then G — {TO, ..., mk} 
is also a nontrivial group in M(L)^d\ Select some v £ (Ad)* such that vrji = TO. 
From the selection of d, we know |u|(the length of i>) is a multiple of \VQ\, thus there 
is some power w of vq such that = |tu|. Let t = fc|u|, then m? = t]l G 
Atr]I, so G C A1T]L, a contradiction. 

Therefore we have proved the equivalence of (ii) and (iii). 
Now we prove the equivalence of (i), (ii), (v). 
(i)^(ii): 
Suppose that L can be constructed from language Au by finite applications of 

operations of union, complementation, and concatenation on the left by quasi-star-
free languages of A*. Then according to Proposition 4.2, there is d > 1 such that 
quasi-star-free languages of A* used in the construction of L can be constructed 
from singleton languages {a} and the language (Ad) . 

Now we prove that M ( L ) ^ is aperiodic by induction on the construction pro-
cedure of L. 

Induction base: L = Aw, then M(L) = {e}, where e is the identity of M(L). 
Obviously M ( L = {e}, then it is aperiodic. 

Induction step: 
Case L = Au — L\\ From induction hypothesis, M ( L i ) ^ is aperiodic. Since 

it is not hard to see that M(L) = M(Li) and tjl = r)ii from the definition of 
syntactic monoid and syntactic morphism of w-languages, M ( L i s aperiodic as 
well. 
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Case L = L\ 1JL2: From induction hypothesis, M ( L J ( ? . = 1,2) are aperi-
odic, then according to Proposition 4.5, there are n* (i = 1,2) such that for all 
n > ni and u,x,y,z G A* with |u| = 0 mod d, (xunyzw G Li iff xun+1yz" G Li) 
and (x{yunz)w € Li iff x{yun+1z)" G Li). 

Let no = max{ni, n2}. Now we show that for all n > no and u, x,y,z G A* with 
\u\ = 0 mod d, (xunyzw G L iff xun+1yz" G L) and ( x ( y u n z ) w G L iff x(yun+lzf G 
L). Then according to Proposition 4.5 we conclude that M ( L i s aperiodic. 

Suppose that xunyzw G L, then xunyzu G Li for some i = 1,2. Thus 
xun+1yzw G Li since n > no > n*, so xun+1yzw G L. The proof of xu n + 1 j /z w G L 
implies xunyz" G L is similar. 

Suppose that x(yunz)u G L, then x(yunz)u G L'I for some i = 1,2. Thus 
x(yun+1z)u G L{ since n > n0 > n i5 so G L. The proof of 
x(yun+lz)w G L implies x(yunz)u G L is similar. 

Case L = LIL2 : where L\ C A* and L2 C According to Proposition 3.5, 
L\ is quasi-aperiodic, then there is n\ such that for all n > m , xynz G L\ iff 
xyn+1z G L\ for all x,y,z G A* with |y| = 0 mod d. From induction hypothesis, 
M(L2) ( d) is aperiodic, thus there is n 2 such that for all n > n2 , u,x,y,z G A* 
with |u| = 0 mod d, (xiFyz" G L2 iff x ^ + ^ z 1 " G L2) and ( x ( y u n z ) w G L2 iff 
x(yun+1z)u G La). 

Let no = n i+n2 + l . It is sufficient to show that for all n > no and u,x, y,z G A* 
with |u| = 0 mod d, (xunyz" G L iff G L) and (x(yun2)w G L iff 
x(yun+1z)u G L) in order to prove that M(L)^ is aperiodic according to Propo-
sition 4.5. 

(a) Suppose that n > no,u,x,y,z G A* with |u| = 0 mod d, and xunyzw G L. 
We show that xun+1yzw G L. 

Since xunyzu G L = LiL2 , xunyzu has a decomposition vw such that v G L\ 
and w G L2 . There are the following cases: 

• v = xi, w = x2unyzw with x = XiX2; 

• there are h, k > 0, u\,u2 G A* such that u = xuhu\, w — u2ukyz" with 
n = h + k+l,u = u\u2\ 

• v = xunyi, w = y2zw with y - yiy2; 

• there are p > 0, z\, z2 G A* such that v = xunyzpz\, w = z2zw with z = z\z2. 

Here we take the second case as an example, the discussions of the other cases 
are similar. In the second case, because h + k + 1 > n i + n 2 - f l , then h > n\ or 
k > n2, thus xuh+1ui G Li or u2uk+1yzu> G L2 , then xun$xyzu G LiL2 = L. 

The proof of xun+1yzu G L implies xunyzw G L is similar to (a). 
(b) Suppose that n > no,u,x,y,z G A* with |u| = 0 mod d, and x(yunz)u G L. 

We show that x{yun+lzf G L. 
Since x(yunz)u G L = L IL 2, x(yunz)u has a decomposition vw such that v G L\ 

and w G L2. There are the following cases: 

• v = xi , w = x2(yunz)u with x = xix2; 
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• the re are p > 0, 2/1,2/2 G A* such t h a t v = x(yunz)pyi, w = (y2Unz)(yunz)" 
and y = 1/12/2; 

• there are p,h,k > 0, U\,U2 G A* such that v = x(yunz)p(yuhu{), w = 
(u2ukz)(yunz)u with n = h+k+1, u = u\u2\ 

• there a x e p > 0, 21,22 G A* such that v = x(yunz)p(yunz{), w = z2(yunz)w, 
z = Z1Z2; 

Here we take the third case as an example, the discussions of the other cases 
are similar. 

Since n > n0 — ni + n2 + I > rii(i = 1,2), then x(yun+1z)p(yuhui) G Li and 
(u2uk z)(yun+1 z)w € ¿2- Because h + k + 1 > ni + n2-l-l, we have h > ni or k > n2-
Thus x(2/un+12)p(2/u' l+1ui) G Li or (u2uk+1 z)(yun+1 z f G L2. Consequently 

x(yun+1z)p{yuh+1ul)(u2ukz)(yun+1z)w G L I L 2 

or 
x(2 / i /n + 12)P(2 /U , lU1)(U2n f c + 12)(2 /Un + 12)W G L1L2. 

Namely, x(yun+1z)u G LXL2 = L. 
The proof of x(yun+1z)w G L implies x(yunz)w G L is similar to (b). 
(H)=>(v): 
Suppose L is quasi-aperiodic, then there is d > 1 such that M ( L i s aperi-

odic, then according to Lemma 4.7, LW is aperiodic, thus L is definable in FO[C] 
according to Lemma 4.10. 

(v)=>(i): 
Suppose L C A" is definable in FO[C], then according to Lemma 4.10, there 

is d > 1 such that can be expressed in FO[<]. According to 
Proposition 2.6, LW is star-free, i.e. it can be constructed from (A^)*" by union, 
complementation and concatenation on the left by star free languages of ( A ^ ) * . 

By replacing L i U ¿2, (A^)u-Li, and L jL 2 by L\ (J Li;, (Ad)u-L[ and L[L'2 

respectively during the construction of L^ (where L\,L'2 are languages of (Ad)* 
or ( A d y corresponding to Li and L2 respectively), we can get the construction 
procedure for L. Moreover, according to Lemma 4.9, languages of (Ad)* used in 
the left concatenation during the construction of L must be quasi-star-free. Then 
we can conclude that L can be constructed from A"(namely (Ad)u) by union, 
complementation and concatenation on the left by quasi-star-free languages of A*, 
i.e., L is quasi-star-free. 

Therefore we have proved the equivalence of (i),(ii),(v). 
Now we prove the equivalence of (ii),(iv) and complete the proof of the theorem. 
(ii)=>(iv)\ 
Suppose L is quasi-aperiodic, i.e. there is d > 1 such that M ( L i s aperiodic. 
According to Lemma 4.7, is aperiodic. Thus by Proposition 2.6, L ^ = m , 

u XiYf , where C (A<d>) , y< C (A (d)) are star free, and Y & C 
¿=1 
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Let X[ = {x |x G (A d )* , (x) £ X{}, Y' = [y\y £ (Ad)*, (y) £ Y,}, then L = 
m 
u Evidently Y(Y! C Y/. Since X t , y t C are star free, then 
i=l 
according to Lemma 4.9, X[ and Y( are quasi-star-free. 

(iv)=$(ii): m 
Suppose that L = U Xi(Yi)u, where Xi C A*,Yi C A+ are quasi-star-free 

i=l 
languages, and YiYi C y*. Then according to Lemma 4.8, there is d > 1 such that 
Xi,Yi can be constructed from singleton languages {a} (a € A) and the language 
(A«)*. 

Because Xi is quasi-star-free, according to Proposition 3.5, Xi is quasi-aperiodic, 
i.e. there is no € iV such that for all n > no and x,y,z £ A* with |j/| = 0 mod d, 
xynz £ Xi iff xy n + 1 z £ Xi. Denote this no as nQ(Xi). Similarly we have no(yi) for 
Yi. Moreover, since Xi, Yi are quasi-star-free, XiYi is quasi-star-free as well, and 
we let n0(XiYi) > no(Xi) + n0(Yi) + 1 for XiYi such that for all n > no(XiYi) and 
x,y,z£ A* with |y| = 0 mod d, xynz £ XiYi iff xy n + 1 z e XiYi. 

Let Â o = 1 + 2max{no(Xili) | l < i < m}. It is sufficient to show that for all 
n > N0 and u,x,y,z £ A* with |u| = 0 mod d, (xunyz" £ L iff xun+1yzw £ L) 
and ( x ( y u n z ) u £ L iff x(yun+1z)" £ L) in order to prove that L is quasi-aperiodic 
(according to Proposition 4.5). 

(a) Suppose that n > No, u,x,y,z £ A*, |u| = 0 mod d, and xunyzu £ L, we 
show that xun+1yzu £ L. 

m 
Because L = \J X{ (Y^, xunyzu £ Xi(Yi)u for some i. Then there is 

i=l 
p,p',q,q' > 0, zi,z2 £ A* such that z = z\z2, xunyzp zi £ XiYf and Z2Zq z\ £ Y^. 
If p = 0, then xun+lyzp'zi £ X{ since n>N0> no(xiYi) > n0(Xi), xun+1yzw = 
( x u " + V p ' z i ) € Jfi ((yi)«)1" = XiY? C L. In the case of p > 0, 
XiY? C XiYi follows from that assumption YiYi C Yi, so xun+lyzv'z\ £ XiYi 
since n > N0 > noiXi^); then xun+iyz" = (xun+1yzp'z^j ^z"'z^j £ 
XiYi ((Yi)")" = Xi(Yir C L. 

The proof of xu n + 1yzw £ L implies xunyzu £ L is similar to (a). 
(b) Suppose that n > No, u,x,y,z £ A*, |u| = 0 mod d, and x(yunz)w £ L, we 

show that x(yun+1z)u £ L. 
m 

Because L = (J Xi(Yi)u, x {yunzf £ XiY" for some i. Then there are 
i=l 

p,p',q,q' > o, vuv2 £ A* such that x(yunz)p'vi € Xtf?, v2{yunz)"'vl £ Y?, 
V1V2 — yunz. 

Here we prove for the case of p > 0, the case of p — 0 can be proved similarly. 
Suppose that p > 0. 
Since YiYi C Yu we have XiY? C X{Yi, Y? C Y,. 
Because n > No > no(Xi,Yi) > n0(Yi), we have that x(yun+1z)p'v 1 £ XiYi and 

v2(yun+1z)q'v1 £ Yi. 
Now we discuss the following three cases of vi and V2-
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• vi=yi,v2= y2unz, y = 2/12/2; 

• «1 = yunzi, v2 =z2, z = ZiZ2\ 

• v\ = yuhu\, v2 = u2ukz, with h + k + 1 = n and u = u\u2. 

Here we take the third case as the example, the discussions of other cases are 
similar. 

Case v\ = yuhu\, v2 = u2ukz, with h + k + 1 = n and u = u\u2: 
Since n > N0 > 1 + 2n0(XiYi), we have h > n0(XzYl) or k > n 0 ( X i y i ) . 
If h > no{XiYi), then 

x{yun+1zY'{yu^ux) e XiYi, (u2ukz)(yun+1z)i'{yuh+xu{) € Yt. 

Thus 

x{yun+1zr = (x(yun+1z)p'(yuh+lui)J (iu2ukz)(yun+1z)"'{yuh+1
Ul)y € X i Y f . 

If k> no(XiYi), then (u2uk+1 z)(yun+1 z)"'(y^m) € Y,Thus 

x(yun+1zr = (x{yun+1zY' {yuhu{)) { { u ^ z ^ y u ^ z f ' i y u ^ Y e XiY?. 

The proof of x(yun+lz)w € L implies x(yunz)w € L is similar to (b). • 

5 Conclusions and Remarks 
In this paper quasi-star-free languages on infinite words (QSF1) are defined and 
studied. Quasi-star-free languages on finite words(QSFF) have been studied in 
[2, 5], and our work in this paper is an extension of those results for QSF f in [2, 5]. 

The extension of results of QSF f to QSF1 should be more useful for the 
characterizations of the expressive power of temporal logics since temporal logics 
are usually interpreted on infinite words in order to describe temporal properties 
of concurrent systems. One of the examples is the characterizations of expressive 
power of fragments of linear /¿-calculus [8] (known as vTL). The "next" operators 
within the scope of the fixed points of vTL formulas act like the FO[C] predicates 
"C5(x)" and LTL[C] operators "17(<i'r)", e.g. vTL formula uQ.pa A XXQ defines 
language ({a}j4)w, which can be defined by FO[C] sentence \/x(C2(x) —> pa(x)) and 
LTL[C] formula ->(TrueU^2,0^-'pa) respectively, as we have noticed in Section 4.2. 
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The lexicographic decision function 

József Dombi* and Nándor Vincze* 

A b s t r a c t 

In this paper the lexicographic decision process is presented in a unified 
way. We construct a lexicographic decision function using a universal pref-
erence function and a unary function. This construction incorporates the 
different outranking approaches,the lexicographic decision process and the 
utility based decision making models. Finally we consider the connection of 
the lexicographic decision method and the Arrow paradox. 

1 Introduction 
In this section we describe the concept of the lexicographic method. We use the 
terminology of P.C. Fishburn, see [6]. The general concept of a finite lexicographic 
order involves a set I = {1,2, . . . , n} and an order relation -<i on a nonempty set Xi 
for each i £ I. We let ~t denote the symmetric complement of -<i so that Xj ¡ji if 
and only if (Xi -<i yi or yi -<i X{) does not hold. With x = (xi, x2, • • •, xn) and y — 
(yi,H2, • • • >2 /n) , y precedes x lexicographically under the natural order < on I and 
with respect to the -<i or x <L y for short, iff {i : i £ I and (xj yi or yt -<i Xi)} 
is nonempty, and x» -<i yi for the first (smallest) i in this set. 
For this reason a lexicographic order <Lis also referred to as an order by first 
difference. 
An example of a lexicographic order arises from the alphabetical order of words 
in a dictionary or lexicon. To show this let I = {1 ,2 , . . . ,n} , let Xi = A = 
{0, a, b,..., z} with ID -<i a. -<i b -<i ... -<i z ioi each i , take n as large as the 
longest listed word , and let the English word a\a2 • •. a m with m <n correspond 
to (ai , a2,..., a m , 0 , . . . , 0) in An. Then <Lon the subset of An which corresponds 
to the "legitimate " words orders these words in their natural alphabetical order. 
For example, "as" precedes "ask" since (a, s, 0 , . . . , 0) < L (a, s, k, 0 , . . . , 0) which is 
to say that a ~ i a, s ~2 s, 0 -<3 fc. 
In multicriteria decision making the idea of the lexicographic decision consists of a 
hierarchy or ordered set of attributes or criteria. Decision alternatives are examined 
initially on the basis of the first or most important criterion, If more than one 
alternative is "best" or "satisfactory" on this basis, then these are compared under 
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the second most important criterion and so forth. The principle of order by first 
difference says that one alternative is "better" than another iff the first is "better" 
than the second on the most important criterion on which they differ. 
So let x and y be two alternatives (actions) and c i , c „ be different criteria, 
Xi and yi are the utilities (evaluations) of x and y. We identify x and y with their 
evaluation vector x = (xi ,x2, . . . ,x n ) , y = (1/1,3/2. • • • ,2/n)- Then -<i is the order 
relation according to Ci on the set of alternatives. 
We say that x* yi iff the alternatives x and y are indifferent according to the Ci, 
and we say that x <L y iff x» yi for i € {1 ,2 , . . . , k — 1} where 0 < fc — 1 < n — 1 
and Xk -<k Vk in other words the alternative y is preferred to the alternative x , 
according to the criteria Cfc. 
The lexicographic decision method is a well adaptable method. It can arrange 
data of arbitrary scales, and it is suitable to evaluate a set of considerable alter-
natives. This method does not require the weight of criteria and in spite of its 
simlicity always arranges the alternatives, Rapcsak [18]. Some decision procedures 
have lexicographic decision rules to prevent ties, Temesi [20]. Sequential screening 
procedures illustrate another common application of the lexicographic idea. Can-
didates or alternatives are first screened under a given criterion (perhaps with the 
use of a test or an interview) and separated into "rejects" and "others". In terms of 
-<1 of the set of candidates, x ~ y whenever both x and y are "rejects" or "others", 
with x -<1 y when x is a "reject" and y is an "other". The "others" are then screened 
further by the second criterion or test and sorted into two groups. Of course the 
"rejects" from the first stage may not be tested for the second stage, but that is of 
no importance from the viewpoint of the lexicographic rule except from the stand-
point of efficiency that it may promote.This process may continue through several 
more stages, perhaps including a ranking of all candidates who survive to the last 
stage. Another aspect of the using of lexicographic decision method is to avoid the 
intransitivity of preference. If -<i is a weak order for every i then < L is a weak 
order, if -<i is a linear order for every i then < L is also a linear order, but when -<i 
is a partial order for every i it does not follow that < L is a partial order, even if < L 

includes cycles. If 0 then the lexicographic aggeregation preserves transitivity, 
Fishburn [6], Solymosi [19]. About a general concept of the preference cycles and 
its representation, see Dombi,Vincze [4]. 
In the evaluation of alternatives, according to the ct criteria the values Xk, and yk 
would be numerical values or categories. In the case of categories the lexicographic 
decision can be characterized with weighted criteria. We will prove that there exists 
a weighted representation of lexicographic decision method on the real numbers. 
This yields a universal form: PROMETHEE, ELECTRE and utility are special 
cases of it, see Dombi[3]. 
It is important to note that the solution of many MCDM problems requires the 
application of two or three decision methods. For example when the groups of 
criteria needs different aggregation procedures. In our model we can give different 
decision making methods by changing the parameters. 
We construct a weighted method to get the decision function of the lexicographic 
decision method. We choose the weights in such a way, that a range of alternatives 
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by Cfc criteria could not be changed by Ck+i,Ck+2, ••• ,cn criteria. 
Finally we compare the conditions of the lexicographic decision method and the 
Arrow impossibility theorem. 
The main aspect of our motivation is that the mentioned non-compensatory prop-
erty arrange the criteria by their importancy and hence is the dictator in this 
decision model. So the dictatorship is an essential precept in this method. 
In our paper we suppose that among the alternatives there are no two lexicograph-
ically equal. 

2 The construction of the lexicographic decision 
function. 

The lexicographic decision method is a seldom occuring theme in publications. For 
its numerical representation we could not find solution. It may follow from the 
negative results in this logic, for example the lexicographic order of the plane: 

Theorem 1. There does not exist any continuous f(x,y) function, such that: 

{x,y)<L(v,z)ifff(x,y)<f(v,z). 

Proof Let the values x,xi,x2,1/1,2/2 be such that x\ < x < x2 and y\ < y2 • We 
suppose that there exists continuous f(x, y) function, for which: 

(;X,y)<L{v,z)iSf(x,y)<f(v,Z). 

Then for the mentioned values it is true, that: 

(x,y2) <L (x2,Vl) <L {X2,y2) iff f(x,y2) <L f(x2,y1) <L f(X2,y2). 

Because f(x,y) is continuous, it is continuous at the point (x2,y2). 
Let e be an arbitrarily fixed positive value such that 

£ < f{x2,y2) -f(X2,Vl)-

Then there exists a value S, such that: 

if \{x2,V2) - (x,y2)| < 5 then f{x2,y2) - f(x,y2) < e. 

but 

f(x2,y2) - f(x,y2) > f{x2,1/2) - f(X2,Vl) > e 

which contradicts that f(x, y) is continuous. • 
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2.1 The preference and the modifier functions 

In the introduction we shown the lexicographical decision concept. In this section 
we construct a lexicographical decision function. For the construction we use a 
general preference function p(x,y) and a r(x) modifier, (or threshold) function, 
which are the following, according to Dombi [3]: 

P(x,y) = (y~x +1)/2 

i 0 if 0 < x < 1/2, 
T(X) = < 1/2 if x = 1/2, 

[ 1 if l / 2 < x < l . 

Let A = {ai, a2, • • • , am} be the set of alternatives. Let C = {ci, c2, • • • , Cn} be the 
set of the criteria, ordered by importancy. Let denote the evaluation (utility) 
of Cj criteria in the case of choosing a* as an alternative , 0 < < 1. The decision 
situation can be described with the following decision matrix: 

Cl C2 CN 
0*1 Xn Xi2 XM 
A2 X21 X22 X2N 

AM ml %M2 

2.1.1 Properties of the preference function 

Let p(x, y) = P(y — x) consider as the function of y — x, and let 0 < x, y < 1. Then 
y - x e [-1,1]. We get that: 

r - 1 if 0 < p(x,y) < 1/2 
sign(y - x) = < 0 if p(x, y) = 1/2 

[ 1 if 1/2 < p(x,y) < 1 

Then 
( 0 if 0 < p(x,y) < 1 / 2 

P(sign(y - i ) ) = < 1/2 if p{x,y) = 1/2 
[ 1 if 1/2 < p(x,y) < 1 

As decsribed in the introduction we identify the alternatives with its evaluation 
n-tuples, so we let 

a» = (xn,xi2,... ,Xm) and a,j = (xji,xj2,... , X J „ ) . 

To order the alternatives a*,and a, with respect to criteria ct, we set x = Xft and 
y = xjk in the preference function p(x,y). 
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2.1.2 The composition of the preference and the modifier function. 

Definition 1. We can define for every (ai, aj) pair the p*(ai, aj) preference n-tuple 
in the following manner. Let 

P*K,Oj) = (4r4?> • • • i°r 4 = T(p(xik,xjk))-

Then 
j 0 if Xik > Xjk 

T ( p ( x i k , x j k ) ) = < 1 / 2 if xik = Xjk 

{ 1 if Xik < Xjk 

The indicators ej5- can be considered as the elements of a pairwise comparison 
matrix with respect to the Ck criterion. 

Ck ai a2 a m 
ai fk 

£N 
£12 £lm 

0-2 e21 e22 £2m 

a-m FK 
' m l 

£m2 efc 

All the elements in the main diagonal equal to 0.5. As mentioned before, we 
suppose, that among the alternatives there are no two lexicographically equal, so 
for each pair (aj, aj) ai = (xji,£i2> • • •,£in) , a>j = (xji,Xj2, • • • ,xjn), there exist fci 
and such that x ^ < x ^ and Xjk2 < x^ 2 . 

2.2 The lexicographic decision function 
The main result of this paper is the following Theorem: 

Theorem 2. Let A = {ai,a2,- - ,am} be the set of alternatives. Let C = 
{ci,c2,-- - ,Cn} be the set of criteria, ordered by importancy. Let Xij denote the 
evaluation (utility) of criterion Cj in the case of choosing ai as an alternative, 
0 < Xij < 1 . The decision situation can be described with the decision matrix: 

Ci C2 Cn 
ai Xii X12 
a 2 X21 %22 X2n 

Om Xml Xm2 • X-mn 

Letp(x,y) be the preference function and r(x) be the modifier, (or threshold) func-
tion as we defined in section 2.1. 

Then there exists Wk weights k = 1,2,..., n such that the real numbers: 
^ m n 

li - — ̂ 2r(j2wkr(p{xik,xjk))), ¿ = 1,2, . . . , m 
m j = l fc= l 
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satisfy that 
li < lj if and only if ai>L aj. 

• So we construct the lexicographic decision function with the help of a weighting 
system. This function is non compensatory. This we give in the following. Next 
we give the weighting system. 
Let the weight of Ci criterion be: 

Wi = l /2 i + l / (n2 n ) 

It can be verified, that: 
n 

Y^wk = i . 
fc=l 

The lexicographic decision function is constructed with the following function com-
position: 

r ( ¿ ^ r C p i x * , * , * ) ) ) = | J * % 

Since = r{p(xik,xjk)), we denote 

Sij = T ^^WfeT^Xjifc.Xjfc))^ . 

The following matrix provides the pairwise comparison matrix with respect to the 
weighted system of criteria (ci,wi;c2,w2', • • . ;cn,wn) 

(C,w) ai a2 am 

ai e n £12 • £ l m 
0-1 £21 £22 £2 m 

am £tj»2 • £mm 

All the elements in the main diagonal equal always to 0.5. 
Normalizing the lexicographic decision function we get real k in the interval 

[0,1]. 

1 m ( " \ 
li = — V V Y]wkT(p(xik, xjk)) 1 , 1 = 1 ,2 , . . . , 

m U \ t i J 
m 

so that: 
li < lj iff a, >L aj. 

This sequence of real numbers is constructed in such a way, that for alternative 
we aggregate the preferences between a< and aj for j = 1 , 2 , . . . , i — 1, i + 1 , . . . , m. 

This is the main idea of the global preference construction of the PROMETHEE 
method. 

To prove the correctness of the construction, first we prove the correctness of 
the weighting. 
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Lemma 1. Let 4 = r(p(xik,Xjk) as we defined it in 2.1.2. Then the following 
statements are true: 

n 
(1) min Ylwk£ii -1 /2 + l / (n2") if <L a,, and it is minimal if 

fc=i 

( 4 , 4 , . . . , £ £ ) = (1,0> . . . ,0) . 

(2) max f^WkBi j = 1/2 - l/(n2n) if ai >L aj , and it is maximal if 
fc=l 

Proof (of Lemma 1). 

(1) If a, < L a j and 4 = T(p(xik,Xjk)) then a preference n-tuple 

( 4 , 4 , . . . , 4 ) = (1 /2 ,1 /2 , . . . , 1 /2 ,1 ,4+2, . . . , 4 ) for 0 < t < n 

has minimal non-zero element, if e'+2 = e'+3 = . . . = £? .= 0. 
In this case: 

n 

5 3 ^ 4 = 1/2 + (i/2 + l)[l/(n2")]. 
fc=i 

It is minimal if t = 0. Then ( 4 , 4 , - • • >£ij) = (1 ,0 , . . . ,0 ) and the minimum 
is equal to 1/2 + l / (n2") . 

(2) If at > L a j then a preference n-tuple 

( 4 , 4 , . . . , 4 ) = (1 /2 ,1 /2 , . . . , 1 / 2 , 0 , 4 + 2 , . . . , 4 ) for 0 < k < n 

has minimal zero element, if e l f 2 = = . . . = = 1. v J *J 
Then 

n 

^ « » t 4 = l / 2 - ( i / 2 + l)[l/(n2")]. 
Jk=1 

This is maximal, if t = 0 and the maximum is 1/2 — l / (n2 n ) . 
Then 

( 4 , 4 , . . ; , 4 ) = ( O , I , . . . , I ) . 

• 
Proof (of Theorem 2). By Lemma 1 we get for the weighted sum that: 

0 < £ > * 4 < 1 / 2 i f > L a j k=1 
1/2 < ¿ > j f c 4 < 1 if ai<Laj 

k=1 
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Applying the modifier (or threshold) function T(X) for this weighted sum, we obtain: 

T(£wkT(p(xik,xjk))) = f ° 1 l f 2 < l Z 
1 J 

n 
So r ( Y^, wkT(p(xik,xjk))) gives the lexicographic preference ordering between al-

it=i 
ternatives. So with this construction we get a decision function. Then we get: 

m n ^ 

^y (^2w k T( j> (x i k , x j k ) ) ) = |{oj : a< < L a,-}| + - . 
j=l k=1 

To transform this number to the [0,1] interval, we get the real values: 

h = ( l / m ) £ V I ^ 2 w k T { p ( x i k , x j k ) ) I 
j=i \fc=l / 

for which 
li < l j if and only if a; > L a,j. 

• 

2.3 The lexicographic decision method as the limit of deci-
sion methods 

Using the mentioned r(x) threshold function, we construct the lexicographic deci-
sion function. This form is the general form of decision functions (for examples of 
PROMETHEE, ELECTRE and utility). In this formulation the form of the general 
modifier (threshold) function is, see Dombi [3]: 

{0 if 0 < x < p i , 

(x-Pi)/(P2~Pi) if pi<x<p2, 
1 if p2 < x < 1. 

This function is linear in the interval [pi, P2] - Taking the limit of this function we 
obtain: 

l im T P I P J ( X ) = T(X). 
PI — J.P2-*5 

So we get the lexicographic decision method as the limits of decision methods. 
These methods may be compensatorical or non compensatorical. 
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3 The lexicographic decision method, and the Ar-
row paradox 

As mentioned in the introduction, the concept of arranging the criteria according 
to their importancy and the lexicographic decision method is dictatorical. Because 
of this there may connections between the lexicographic rule, and Arrow's impossi-
bility theorem. But conditions of Arrow's impossibility theorem are applied to the 
voting situation, and so the lexicographic decision situation should be applied to a 
voting situation. 

Let the evaluation of alternatives with respect to criterion c* be xu, x2i, • • •, xni. 
Let their order be x ^ < x^ < . . . < x*^ and set x*ki = so we get simply an 
ordering on alternatives by Q. TO transform the voting situation to multicriteria 
decision situation we map the individuals to criteria. In this section the profile 
is a weak order on the alternatives based on a criteria (or individual). The social 
welfare function is a decision function which aggregates the criterion (or individual) 
ordering. Let R be the set of all possible weak orders on the set of alternatives. We 
say that an individual is a dictator if its preferences become automatically social 
prefrences. 

The axioms and conditions of the Arrow paradox are the following, see Hwang, 
Lin [13]: 

Axiom 1 (The preference relation is strongly complete). For all at and aj 
either o, 'is preferred or indifferent to' aj or aj 'is preferred or indifferent to' ai. 

Axiom 2 (The preference relation is transitive). For all a* and aj and ak: 
ai 'is preferred or indifferent to' aj and aj 'is preferred or indifferent to' ak imply 
ai 'is preferred or indifferent to' ak. 

Condition 1 (Universal domain). The social welfare function(decision func-
tion) f is defined for all possible profiles of individual (criteria). 

Condition 2 (The weak Pareto concept). If ak,ai € A and ak -<i ai for 
i = 1,2,..., n then ak <L at. 

Condition 3 (Independence from irrelevant alternatives ). i?(0i'Qj) = 
Jp(0«.°i)(p(ai.°i))) for every pair (a^aj) € Ax A, where Ri^o-j) F(aiiaj) p(aitaj) are 
the contraction of the social preference ordering, the social welfare function (i.e. 
the social decision function), and the p profile, to the pair (ai,aj). 

Condition 4 (Non-dictatorship). There is no dictator in the society, i.e.there 
is no individual that whenever he prefers ai to aj for any ai and aj society does 
likewise regardless of the preferences of other individuals-

Theorem 3 (General possibility theorem(Arrow)). If there are at least two 
individuals, and three alternatives, which the members of the society are free to order 
in any way, (condition 1.) then every social welfare function satisfying condition 2 
and 3 and yielding a social ordering satisfying axioms I. and II. must be dictatorical. 
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It means that if a given social welfare function satisfies conditions 1-4, then a 
contradiction axises. 

It can be seen that the lexicographic decision function satisfies Axioms 1-2 and 
Conditions 1-3. 

We now consider the formulation in which there are preference orders -<; on the 
set of alternatives for each criteria along with holistic order < L on A, see Fishburn 
[5],[6], May [15], Plott [17]. 
We shall refer to an n + 1 tuple (-<i, -<¡2, • . . , -<„, < L ) of weak orders on A as a 
situation. Then we consider the possibility that any one of a number of potential 
situation might arise. 

Theo rem 4. Let us suppose that A contains at least three alternatives, (A is other-
wise unlimited) and every n-tuple (-<i, -<2, • • •, ~<n) of weak orders on A appears in 
at least one situation. Then preferences are lexicographic, iff the following hold for 
all situations (-<1, -<2, •••, -<n, <L) and (-<1, -<2, • • •. < L) and all aj,ak G A : 
(aj ak for all i)=> aj ~ ak; (aj ^ ak for all i) Sc (aj -<i ak for some 
i)=$- a, <L ak, 
and (aj -<i ak iff aj ak) & (ak -<i aj iff ak -<{ aj for all i) ==> (aj <L ak i f f 
ak <L aj) & (ak <L aj iff aj <L ak). 

Now we compare the axioms and conditions of the lexicographic decision 
method, and the Arrow paradox. We shall refer to the lexicographic method and 
the Arrow Paradox in this comparison by letters L and A, respectively. 

1. Preference completness and transitivity 

L: The preference is a weak order, so it is strongly complete and transitive. 
A: The preference is strongly complete, and transitive. 

2. Universal domain 

L: Every n-tuple (-<1, -<2) • • •, -<n) of weak orders on A appears in at least 
one situation. 

A: The social welfare function(decision function) / is defined for all possible 
profiles of individual (criteria). 

3. The Pareto concepts 

L: The strong Pareto concept (aj ak for all i)=> aj ~ ak\ (aj ^ ak for 
all i, & aj -<i ak for some i)=> aj <L ak, 

A: The weak Pareto concept If ak,ai G A and ak -<i ai for i = 1 ,2 , . . . ,n 
then ak <L ai. 

4. Independence from irrelevant alternatives 

L: (aj -<i ak iff aj ak)k(ak -<i aj iff ak -<i aj for all i) (aj <L ak iff 
ak <L aj)&c(ak <L aj iff aj <L ak), 
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A: R(ai'a= for every pair (a¿, a,) 6 AxA, where R(ai'a'\ 
p(a-i,a-j) and p(ai-ai) a r e the contraction of the social preference ordering, 
the social welfare function (i.e. the social decision function), and the p 
profile to the pair (tti,a¿). 

It seems, that the conditions used in Arrow's impossibility theorem for a 'social 
welfare function' are formally similar to the conditions of Theorem 4, or are the same 
of the condition of this theorem. As it is mentioned above we can set a multicriteria 
decision situation to a voting situation. Then <i is interpreted as the prefrence 
order for the ith individual or voter. The Arrowian axioms, and the condition of 
universal domain and independence from irrelevant alternatives are the same as 
the conditions of theorem of the lexicographic decision. The difference is that while 
Arrow's theorem uses strong Pareto concept, the theorem of lexicographic decision 
method uses weak Pareto concept, and Arrow adds the condition that no individual 
shall be a 'dictator'. The main result of Arrow's theorem, to be shown that all 
conditions other than the nondictatorship condition imply that some individual is 
a dictator. 

By deleting specific references to dictators and replacing the weak Pareto con-
cept with the strong Pareto concept, as in Theorem 4., we derive a hierarchy of 
'dictators' <7(L),ER(2),... ,cr(n),which verifies the existence of lexicographic prefer-
ences. 
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Minimal inter-particle distance in atom clusters* 

A general method for obtaining minimal interatomic distance in molecule 
conformation problems is introduced. The method can be applied to a wide 
family of potential energy functions having reasonable properties. Using this 
method new lower bounds for the minimal inter-particle distance for the op-
timal Lennard-Jones and Morse potential functions are derived which are 
independent from the number of atoms. Improved linear lower bounds for 
the optimal function values for Lennard-Jones and Morse potentials are also 
given. 

1 Introduction 
Given a cluster of n atoms, define Xj G R3 (i = 1 , . . . , n) as the center of the ith 
atom. The potential energy of the cluster x = (x i , . . . , xn) G R3 n is defined as the 
sum of the two-body inter-particle pair potentials over all of the pairs, i.e., 

where ry = ||xj — Xj|| and v(r) is the value of a pair potential of distance r. For 
the pair potential v(r) we set the following requirements to be satisfied: 

(PI) The function v is continuous. 

(P2) There exists a unique s with v(s) < 0 and if r ^ s then v(r) > v(s) (single 
stable state property). 

(P3) If r < s then v is strictly decreasing and v(r) > r~4. 

(P4) If r > s then v is strictly increasing and v(r) > —r-4. 

The properties (P3) and (P4) come from sphere packing arguments ,used in the 
paper. We should use here Cr~3 bounds instead, but the a priori determination of 
the constant C is quite difficult. 

•This work has been supported by the grants OTKA T 048377 and A Ö U 6O0Ü6. 
* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University 
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The aim of the paper is to obtain lower bounds for the minimal interatomic 
distance in the optimal structure of (1), independent of the number of atoms and 
assuming only that the pair potential minimally satisfies properties (P1)-(P4). 
Many papers deal with this topic, however, they specialized the pair potential 
function. 

1.1 Previous results 
The first paper is by Xue et al. [9], where a poor lower bound for the minimal 
distance in Lennard-Jones cluster is established. They also proved that the globed 
optimum can be bounded from below and above by linear (in the number of atoms) 
functions. In a paper of Maranas and Floudas [7] results for the minimal distance 
can be found. They established bounds as functions of the number of atoms. That 
value is useful only for small n since it goes to zero as the number of atoms grows. 
In another work of Xue [11], a lower bound for inter-particle distance in the optimal 
Lennard-Jones cluster is given which is independent of the number of atoms in the 
cluster. Improved lower bound is obtained by Blanc [1]. For Morse clusters (for 
which property (P3) does not hold) Locatelli and Shoen [5] establish lower bound 
for the interatomic distance in the optimal structures. In this paper, better lower 
bounds for the Lennard-Jones and the Morse cluster (where we use the results from 
[5]) axe derived as applications of the introduced general method. 

Apart from the theoretical interest, this kind of results can be used efficiently in 
the construction of global optimization methods, especially in branch-and-bound 
type methods. As shown by Locatelli and Schoen in [4], information about the 
minimal interatomic distance can be used efficiently in starting point generator 
algorithm for (stochastic) optimization methods. Such a lower bound can also be 
applied to construct special data structures for fast procedures to compute potential 
functions with large number of atoms, see [12]. 

1.2 Notation 
In the rest of the paper the following notation will be used. The set of reed num-
bers, positive real number and nonnegative integers are denoted by R , R + and No, 
respectively. V denotes the set of functions v : R+ —> R satisfying properties (P l ) -
(P4) Using this notation v G V is supposed in this paper. The global minimizer of 
the function E is the configuration x* £ R3n with 

E(x*) = min E(x). (2) 
KER3" W W 

The global minimum will be denoted by 

Em = E(xm). 

Let Tij be the Euclidean distance of the points x* and x* (i,j = 1 , . . . ,n). Define 
the potential energy of particle i as 

^ ( x H ^ d l x i - x . l l ) (t = l , . . . , n ) 
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and E* = Ei(x*). It is obvious that 

£(x) = i f > ( x ) (3) 
¿=1 

holds. The minimal inter-particle distance in the optimal structure is 

r * = m i n r i j (i,j = 1 , . . . , n). (4) 
hJ 

Lower bound for the minimal distance is denoted by q, i.e., our task is to find a 
good underestimation 

q < r*. 
In order to obtain good lower bound q we assume that in the configuration taken 
into account the minimal distance between the particles equal to q. 

The positive root of v is denoted by t. Properties (P1)-(P4) imply that that t 
is unique and t < s. Note that with the general method only such a lower bound 
can be obtained which satisfies q <t. 

Without loss of generality let us suppose that x\ = 0 and 0 = ri < r2 < . . . < r n , 
where 

ri = I\xj - ®i || = I N | 0 = 1 , . . . , n). 
In the rest of the paper we consider only the cases n > 2. 

2 Lower bound on the minimal inter-particle dis-
tance 

To give a good lower bound for the minimal inter-particle distance we generalize 
the arguments given by Xue in [11] and Blanc in [1]. To do that, first we establish 
an upper bound for E* (i = 1 , . . . , n). Suppose that p G R+ is a parameter such 
that 

pq>s. (5) 

Then we use the partition 

E{= £ VM+ £ v(Ti) (6) 
q<Tj<pq rj>pq ' 

and give underestimations for the two terms. With suitable chosen parameters we 
show that if the minimal distance is too small, then we get a contradiction with 
the upper bound for Ejf. 

2.1 The auxiliary bounds 
Lemma 1. In the optimal configuration the potential energy of particle i is always 
less than the global minimum of v, i.e. the inequality E* < v(s) holds for all i = 
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Proof. Let k = n if i ± n and k = n — 1 if t = ra, and define the configuration 
z = (z i , . . . ,Zn) in such a way that Zj = x^ for ail j ± i, ||Zi — Zfc|| = s and 
ll^i — zi\\ > s for all I ^ i. Then put the atom Zi to the line determined by the 
origin point and the coordinates of in such a way that then Z{ has the maximal 
rj value. Thus Ei{z) < v(s). By construction of z, 

E*-E: = E(z) — Ei(z). 

Since E{(z) < v(s) and 

E* -E* = E(z) - Ei{z) > E(z) - v(s), 

we find E* < v{s). • 

Lemma 2. For | < a < b, the index set Jab = { j | a < rj < b} has size 

Proof. We may assume that the particles are centers of disjoint open balls of radius 
q/2. The cardinality of the set Jab can not exceed the number of balls with radius 
q/2 that can be contained in the ball centered at the origin with radius b + q/2. 
With volume comparison this gives the upper, bound 

On the other hand, since rj > a, we can drop out all the balls with radius q/2 from 

the ball centered in the origin and having radius a — q/2. • 

Lemma 3. If pq > s, then the first term of(6) can be underestimated with 

£ v(rj)>v(q) + v(s)((2p+l)3-l)). (7) 
q<rj<pq 

Proof. Suppose that r2 — r^ — ... = r m + i = q, (i.e. there Eire m > 1 distances 
equal to q). Since they give positive contributions we can cancel all of them but one 
(about what we supposed that exists, see Section 1.2) and this one can be taken 
out from the sum. Thus 

£ v(rj)>v(q)+ v(rj) . . (8) 
Q<rj<pg q<Tj<pq 

holds. Moreover, using Lemma 2 and the monotonicity property of the pair poten-
tial v we get 

«<«)+ E > v { q ) + v { s ) ( ( 2 J ^ ) 3 - ( 2 J l ^ ) 3 ) (9) 
q<Tj<pq \A 9 / \ 1 / J 

= v(q)+v(s){{2p+l)3-l)). (10) 

• 
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Lemma 4. Let s < pq = Ro < R\ < R2 <••• be an infinite strictly increasing 
sequence and define the index set Xk = {j | 2 < j < n,Rk < rj < Rk+i} (k = 
0,1,2,...). If pq > s, then the second term of (6) can be underestimated with 

1 00 

rj>pq k=0 

Proof. Again, we can use the monotonicity property of v and Lemma 2 with the 
index set I k : 

E = E E < r o) (15}) 
Tj >pq k=0 rj g l f c 

00 
> E E »(«*) ( 1 3 ) 

k=0rj€Xk 

1 °° 
> - j £ w(flfc) ((2«fc+1 + g)3 - (2Rk - q)3), (14) 

q fc=0 
which completes the proof. • 

2.2 The general method 
Using the above lemmas the following method can be introduced to obtain the 
minimal interatomic distance in the optimal potential energy function E. Recall 
that t and s are the zero and the minimizer of the pair potential v, respectively. 
Suppose that v 6 V. In Lemma 4 we use an increasing sequence Rk which represents 
an infinite sequence of spherical shells. Instead of this sequence one can use function 
R : 1R+ x No —> R+ having the properties 

R{Q, k) < R(Q, k + 1) and R{Q, 0) = c, 

where c € R+ is a constant (in the proof of Lemma 4 this constant is pq, the staring 
point of the infinite sequence). For technical reasons we use the notation R® for 
the functions R(Q, k). Moreover, we write 

Uf := {R$ | R$ < R%+1 and = c and k = 0,1, . . .}. 

Let us define now 

F(q,p) • 

S(q,p,R) : 

G(q,p,R) : 

= v(q)+v(s)((2p+l)3-l), (15) 
1 ^ / 3 

= 73E«(*?) ( 2 < i + 1 ) -(2RQ-<0 • (16) 
q k=0 ^ ' 

(17) = F(q,p) + S(q,p,R). 
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Using these functions and Lemma 3 and 4, we have the lower bound: 

Ei = £ «fa) + £ v(-r>) 
q<Tj<pq rj>pq 

> G(q,p,R) (18) 

where p 6 such that pq > s and R 6 U®q. 
T h e o r e m 1. Define the function gv(q,p,Q) := G(q,p,R). If gv(q,P,Q) > — oo 
then in the optimal atom cluster problem ( 2 ) the minimal inter-particle distance is 
greater than or equal to the solution q of the nonlinear system of equations 

= 0, (19) 

= 0, (20) 
= 0. (21) 

dgv(g,P,Q) 
dp 

dgv(g,p,Q) 
dQ 

9v(q,p, Q) — v(s) 

Proof. The finiteness of gv comes from properties (P3) and (P4). These properties 
also guarantee that gv is monotone in q on the interval [0, s]. Thus (21) has exactly 
one solution. 

From Lemma 1 we know E* < v(s). Moreover, gv < E\ comes from (18). We 
are looking for the largest q for which the underestimation gv < v(s) does not hold. 
Now let us consider the optimization problem 

m a x 1 (22) 
s.t. gv{q,p,Q)> v(s), v ' 

Thus (19) and (20) are the first order optimality conditions for p and Q, respectively, 
in the optimization problem (22). Finally, (21) guarantees the largest possible q 
for which the the inequality gv < v(s) does not hold. In this manner the minimal 
inter-particle distance in (2) is at least q. • 

One can improve the result can be achieved with Theorem 1. If we substitute the 
first m term of the sequence Rk with variables pi,... ,pm then we have a function 
G with m + 2 variables. Namely, 

m - l 

G(q,pu...,pm,R) := F(q,p)+ ((2p i +i + l ) 3 - (2Pi - l ) 3)) 
»=1 

H fe=0 v ' 
\ 

where F(q,p) is defined in (15), piq > s, and R® G Upmg-
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Corollary 1. Define the function gv(q,pi,... ,pm,Q) •= G{q,pi,... ,pm, R). If 
gv > —oo then in the optimal atom cluster problem (2) the minimal inter-particle 
distance is greater than or equal to the solution q of the nonlinear system of equa-
tions 

dgv(q,Pi,...,Pm,Q) = Q 

dpi 

dgv(q,Pi,...,Pm,Q) _ 0 

dpm 

dgy{q,Pi,...,Pm,Q) _ „ 
dQ ~ ' 

9v(q,Pl,---,Pm,Q)-v(s) = 0. 

3 Linear lower bounds on the optimal values 
Using the results of the previous section we can establish linear lower bounds for 
the optimal objective function value. These bounds are valid for arbitrary large 
clusters. 

3.1 The general method 
Theorem 2. If q is a lower bound obtained by the usage of Corollary 1 for the 
minimal inter-particle distance in the problem (2), then there exists a constant K 
such that 

2 ~ 
Moreover, K can be computed using the value of q. 

Proof. Let i G { 1 , . . . , N} arbitrary but fixed. Recall from Section 1.2 that s is the 
minimizer and t is the positive root of v, respectively. Let us define the interval 
M = [t,pq), where pq> s. Then one can make the underestimation 

n n n 

j=l j=1 3=1 

jfti &i,rij>pq 

Using Lemma 2, an underestimation of the first term is 
E v(m) > v(s)^2p + (23) 
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From Lemma 2 and 4 we have a lower bound for the second term: 
n 1 0 0 

E * 3 E ^ ) ( ( 2 < I + 9 ) 3 " ( 2 ^ - 9 ) 3 ) , (24) 
j=l q k=0 

pg 

where R® G U®.. (see section 2.2). Moreover, as in Corollary 1 we can extend 
these considerations with introducing more variables in (24). This leads to the 
underestimation 

jVi 
m- l 

+ E v&r*) + X)3 - (2W " 1)3)) + 
¡=i 

q k=0 v 7 

where pi<7 > s and Rk G U®mq. If gv is finite (see Corollary 1) then the substitution 
of the solution vector from Corollary 1 guarantees the finiteness of K. Finally, 
equation (3) yields a linear lower bound for the optimal potential function: 

2 _ 

• 

4 Lennard-Jones clusters 
In this section the generalized method introduced in the previous section is applied 
to the Lennard-Jones function. 

In general form the Lennard-Jones pair potential function is 

«•»-«•[(?)"-(?)*]. (25) 

where e is the pair well depth and 21/6CT is the pair separation at equilibrium. In the 
global optimization literature the function (25) with reduced units, i.e. e = a = 1 
and s = 21/6, 

4 4 
w u ( r ) = ^ a -

or the so-called scaled Lennard-Jones pair potential (e = 1, a = 2~1/>6, s = 1) 

1 2 «2-1/6,1 (r) = -n~-e (26) 
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is investigated. Note that the properties (P1)-(P4) required for the application of 
the general method are satisfied by (25). The scaled version is plotted in Figure 1. 

Using (1) and (25), the Lennard-Jones potential function is defined by 

Ea,e(x)= £ vat£{\\xi - Xj\\). (27) 
1 <i<j<n 

In the following minimal distance in the optimal Lennard-Jones cluster is given. 

4.1 Minimal distance 
Theorem 3. In the optimal Lennard-Jones atom cluster problem the minimal 
inter-particle distance is greater than or equal to 21//6er • 0.6187356774. 

Proof. The translation between the general and the scaled Lennard-Jones pair po-
tential is 

v<r ,£(r) = ev2-1/e.tl( r/s), (28) 

thus the minimal distance scales with s and the potential scales with e. We give a 
proof for the scaled version; then the result for the general case is straightforward. 

For the sake of simplicity, in the proof we use the notation 

v(r) = v2-i/eti(r) and E = E2~m8 L. 

Figure 1: The scaled Lennard-Jones pair potential function. 
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One can easily see that the zero point and the minimizer point of the function v is 

t = 2~1 /6 and s = 1, 

respectively. 
From Lemma 1 we have E{ < —1. The lower bound for E' can be established 

with the usage of Lemma 3 and 4. To prove the theorem by contradiction we should 
choose a suitable function R(Q, k) to keep that lower bound greater than or equal 
to - 1 . 

Define the function R{Q,k) = pqQk (pq > 1,Q > l,k = 0 ,1,2, . . . ) . Since 
property (P4) is satisfied by v, it is easy to see that 

SLJ(q,P,Q) :« £ - ( ( 2 p Q ^ + I ) 3 - (2PQk - I ) 3 ) > - o o 

(29) 
holds. Indeed, because Q > 1 holds, as k goes to infinity the first term in the sum 
(i.e. v(pqQk)) tends to 0 faster than the second term goes to infinity. Thus the 
function 

9v(q,P, Q) := v(q) + 1 - (2p + l ) 3 + SLJ{q,p, Q) (30) 

is well defined. Figure 2 shows the graph of this function, where the variable 
q = 0.618 is fixed. Note that the function gv is monotone decreasing in variable q. 

Figure 2: The graph of function </„(0.618,p, Q). 
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To obtain a lower bound one has to solve the nonlinear system of equations with 
three variables: 

§j>p.O> = o, 

ap,,P,Q) - 0, 

9v(q,P,Q) +1 = 0. 

The closed formula of the convergent series (29) and the partial derivative in the 
nonlinear system of equation above can be calculated with the usage of a symbolic-
algebraic system. For this task we used MAPLE 9 [6]. The solution of the nonlinear 
system is 

Q = 1.234749976, p = 2.24086158005346, q = 0.61845034503861, (31) 

which gives a lower bound on the minimal interatomic distance for the optimal 
scaled Lennard-Jones problem. 

As it is stated in Corollary 1, we can improve this bound with introducing more 
parameters. Using 5 variables instead of 3, one obtains: 

q = 0.6187356774, (32) 

which gives a slightly better underestimation for the minimal distance. • 

Note that we do not have significantly better bound with Corollary 1 using more 
and more variables, but more complicated calculations have to done. 

As it is mentioned in the introduction, there are papers about the minimal 
distance in optimal scaled Lennard-Jones clusters. These results are compared in 
the following table including the minimal distance obtained in this paper. 

Xue [11] Blanc [1] general method 
0.5 0.6108 0.6187 

Note that all these results are independent of the number of particles in the con-
figuration. 

The next corollary specializes the previous result for the case of reduced unit. 

Corollary 2. The minimal inter-particle distance in the optimal Lennard-Jones 
clusters with reduced units is greater than or equal to 0.6945073156. 

4.2 Linear lower bound on the optimal value 
Theorem 4. The optimal Lennard-Jones potential function has the linear lower 
bound 

—138.6775911n- e < E* e (n = 2,3, . . . ) . 

Proof. One can use the values from the numerical result of Theorem 3 and equation 
(28) then the statement of the theorem is straightforward from the considerations 
in section 3.1, thus the proof is omitted. • 
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5 Morse clusters 
The pair potential function in Morse cluster is 

vp(r) = e ' ( 1 - r ) (e p ( 1 - r ) - 2) , (33) 

where p > 0 is a parameter. For p = 6 the Morse and the scaled Lennard-Jones 
pair potential are related, they have similar curvature at the minimum point r = 1. 

Using (33) and (1) the Morse potential function is defined by 

Mp{x) = Y , Mll*<-sjll)- (34) 

1 <i<j<n 

The zero point and the minimizer point of the function vp is 

, In 2 t = 1 and s = 1, P 

respectively. Note that if p < In 2 then vp has no positive root. In the context of 
global optimization, the cases p > 6 are interesting, since these are more difficult 
problems than finding the optimal Lennard-Jones structures [2]. 

5.1 Minimal distance 
We must emphasize that property (P3) is not satisfied by the Morse potential. The 
reason is that the pair potential function vp is defined even in the case r = 0, 
i.e., when two particles are in the same position. In> other words the function G 
from (15) has two roots, i.e. becomes negative for small q values. Thus the general 
method cannot be applied directly to Mp. In this case, information on the minimal 
inter-particle distances can be helpful. In [5] the minimal inter-particle distance 
in optimal Morse clusters is investigated. The proposed technique differs from the 
method introduced by Xue in [11] and from the general method introduced in this 
paper. In [5] it has been proved that there are positive minimal distances in the 
optimal Morse clusters for p > 6. Using this information these bounds can be 
improved by the application of the general method. 

In the rest of this subsection we use the notation M := Mp for a given p > 0. 
From Lemma 1 we know that M* < — 1 for all i = 1 , . . . ,n and p > 0. As for the 
Lennard-Jones potential, define the function R(Q, k) := pqQk (pq > \,Q > l,k = 
0,1, . . . ) . The infinite series 

SM(q,P,Q) := £ ( ( e * 1 - ^ - l)' - l ) ((2pQk^ + l)3 - (2pQk - l)3) 

(35) 
is convergent - the first term of the sum (i.e. vp(pqQk)) goes to zero faster than the 
second term goes to infinity-, thus the function 

9v(q,P, Q) := vp{q) + 1 - (2p + l)3 + SM(q,p, Q) (36) 
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is well defined. 
In Table 1 the results from [5] are collected and compared with the results can 

be achieved with the usage of the general technique introduced in this paper. Note 
that the new results are achieved using the results from [5], i.e. using that q must 
be greater than the second column in Table 1. One can see that the new method 
produces much better lower bounds, especially for the case p — 6. 

The present method works for p > 6. For p = 5, the corresponding nonlinear 
system of equation has no non-negative solution. The technique used in [5] also 
gives no results for the cases p < 6 (at least without further non-trivial refinements). 

5.2 Linear lower bounds on the optimal values 
Theorem 5. The optimal Morse potential function has the linear lower bound for 
different p values: 

—177.6190601n < MI 
—97.52208250n < Mf 
—69.76159670n < Ml 
—55.71197450n < M9* 
—47.25499588n < Mb 
—41.61681210n < M*n 
—37.59385566n < Mi2 
—34.58070042n < Mi3 
—32.24012281n < MU 
—30.36965466n < Mi5 

Proof The values in the statement can be derived by the considerations from sec-
tion 3.1 and from the numerical result of section 5.1, thus the proof is omitted. • 

P q from [5] q by the general method 
6 0.114 0.4985948046 
7 0.376 0.6113121449 
8 0.468 0.6796501438 
9 0.528 0.7268978345 

10 0.574 0.7618207355 
11 0.613 0.7887781722 
12 0.644 0.8102494106 
13 0.672 0.8277671751 
14 0.695 0.8423362542 
15 0.715 0.8546451536 

Table 1: Lower bounds for the minimal distances in optimal Morse clusters for 
different p. 
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6 Summary 
The method introduced in this paper can be used to obtain minimal inter-particle 
distance in optimal atom clusters. For the usage, only natural requirements are 
supposed for the pair potential function. Linear lower bounds on the optimal 
potential energy is also established. As application, new results for the Lennard-
Jones and Morse clusters are derived. These theoretical results can be used for 
accelerating global optimization methods. 
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Synthesis of the synchronization of general 
pipeline systems * 

Balázs UgronJ Szabolcs HajdaráJ and László Kozma^ 

Abs t r ac t 

The pipeline systems and different subtypes of pipelines axe interesting 
parts of parallel systems in software engineering. That is why it seems to be 
worth dealing with the possibilities of the specification of the synchronization 
of these systems. 

Different methods exist that can be used to synthesize the synchronization 
of parallel systems based on some kind of specification, but these methods 
cannot be applied directly for pipeline systems because of some special prop-
erties of the pipeline systems and the methods themselves. 

The method that seems to be the most promising is the method of Attie 
and Emerson, which is a synthesization method for many similar processes 
based on a special temporal logic specification. 

In this paper we give an extension of this method so that the extended 
method will be able to handle more properties of parallel systems, especially 
of pipeline systems. We will consider not only linear [8], but general pipeline 
systems too. Furthermore, we give an abstract synchronization of a general 
pipeline system. 
Categor ies and Sub jec t Descr ip tors : D.2.1 [Software engineering): Re-
quirements specification; F.3.1 [Logic and Meanings of Programs]: Specifying 
and Verifying and Reasoning about Programs - assertions, invariants', F.4.1 
[Mathematical Logic]: Temporal logic. 
K e y Words and Phrases : semantic tableaux, pipeline, synthesis, parallel 
systems, temporal logic. 

1 Introduction 
In the following, we will consider the synchronization possibilities of a special par t 
of parallel systems, the pipeline systems. As usual (see [1, 2]), we consider only the 
synchronization part of the processes, because the real computation code usually 
can be separated from the synchronization part of parallel systems. 

*This research work was supported by GVOP-3.2.2-2004-07-005/3.0. 
^Department of Software Technology and Methodology, Eötvös Loránd University, Pázmány 
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A pipeline system is a parallel system of processes, which is built in order to 
solve some kind of problems. In the case of the simplest pipeline system, which 
is linear, the processes are aligned in a row by the connections between them, so 
every process in the system has exactly two connections, except the first and the 
last processes, which have only one. The processes between the two ends work on 
similar tasks, so their synchronization is obviously similar, too. 

In this paper, we will consider not only linear, but much more general pipeline 
systems. In paper [8] we described the synthesis of a linear pipeline system, while 
in this article general pipeline systems are synthesized. We have only the following 
assumptions: 

1. There are some processes, which have only one connection, which is an output 
connection. These processes generate the data. 

2. There are some processes, which have only one connection, which is an input 
connection. These processes receive the result. 

3. The processes inside the pipeline (that is, which are not data generator or 
receiver processes) are similar in terms of synchronization. 

There are methods in the literature, which can be used to synthesize the syn-
chronization part of a system from temporal logic specification, but these methods 
cannot be directly applied in this case. For example, the method of Emerson and 
Clark [2] suffers from the so-called state explosion problem [1], so it cannot be ap-
plied for a large number of processes, in practice. Another example is the method 
of Attie and Emerson [1], which can handle large systems, but this method can be 
only used for systems consisting many similar processes, and this is not that case. 

In this article, after a short description of the synchronization of many similar 
processes [1], we will introduce an extension of the method, with which it will be 
possible to handle the case of pipeline systems too. 

2 Synthesis of many similar processes 
In this section we review the parts in Attie and Emerson's paper [1] that are most 
important to understand this paper. The reader will generally find only informal 
definitions in this section, the exact definitions can be found in [1]. 

First, Attie and Emerson's method specifies that the processes must be similar. 
In this case, similarity means that any two processes can be exchanged with each 
other, except their indexes. This restriction is used many times in the method. 

2.1 CTL* 
The specification language is an extension of the temporal logic CTL*, which is a 
propositional branching-time temporal logic. The basic modalities of CTL* consist 
of a path quantifier, either A (for all paths) or E (for some path) followed by 
a linear-time formula, which is built up from atomic propositions, the Boolean 
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operators A, V, ->, and the linear-time modalities G (always), F (sometime), Xj 
(strong nexttime), Yj (weak nexttime) and U (until). CTL* formulas are built up 
from atomic propositions, the Boolean operators A, V, ->, and the basic modalities. 

Let us consider the intuitive meaning of the formulas mentioned above. For-
mula Ef means that there is some maximal path for which / holds; formula Af 
means that / holds of every maximal path; formula X j f means that the immediate 
successor state along the maximal path under consideration is reached by executing 
one step of process Pj, and formula / holds in that state; formula fUg means that 
there is some state along the maximal path under consideration where g holds, and 
/ holds at every state along this path at least the previous state. 

The usual abbreviations for logical disjunction, implication and equivalence can 
be introduced easily. Furthermore, some additional modalities as abbreviations can 
be introduced: Yjf for - .X,- . / , Ff for trueUf, Gf for ->F->f. 

The reader can find the formal definition of the semantics of CTL* formulas in 
[!]• 

2.2 The interconnection relation 
The interconnection scheme between processes is given by the interconnection re-
lation I. I C. {ii,..., iK} x {¿i , . . . , ix}, and i I j iff processes i and j are intercon-
nected. I is a symmetric and irreflexive relation. 

Those process pairs that are in the interconnection relation will be synchronized 
with each other, while the others will not. This means that the behaviour of the 
system can be simply changed by the interconnection relation. For example, the 
synchronization of the eating philosophers problem is the same as for the standard 
mutual exclusion problem - except the interconnection relation! 

2.3 MPCTL* 
An MPCTL* (Many-Process CTL*) formula consists of a spatial modality followed 
by a CTL* state formula. A spatial modality is of the form / \ i or A y / \ i quantifies 
the process index z, which ranges over {¿i , . . . , iK). f\i3 quantifies the process 
indexes i, j, which range over the elements of I. 

The definition of truth in structure M at state s of formula q is given by M, s |= q 
iff M, s |= q', where q' is the CTL* formula obtained from q by viewing q as an 
abbreviation and expanding it like 

• M, s f= A» fi iff Vi e {¿i, ...,iK} : M,s\= ft 

• M,s\= A^ fij iff V(i, j) € I: M,s \= f i j 

2.4 The method 
In this section, we give an extremely short informal description of the synthesis 
method of Attie and Emerson, which will be informative enough to catch the point, 
though. 
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First, the behaviour of the system needs to be specified in the above described 
temporal logic language, MPCTL*. This specification is applied to an arbitrary 
process or process pair from the system. 

Any known method (for example the one described in [2]) can be used to syn-
thesize the synchronization skeleton of an arbitrary process pair from the system. 

In this way, the method takes advantage of the fact that the processes in the 
system are similar and produces a global synchronization skeleton for the whole 
system based on the skeleton synthesized for the pair system. 

3 Synthesis of a pipeline system 
Our main goal in this paper is to develop a method, with which the synchronization 
skeleton of a pipeline system can be synthesized. The method of Attie and Emerson 
which we roughly described above cannot be applied directly in the case of a pipeline 
system. 

The first reason is that the processes in a pipeline system are not similar. Al-
though the processes except the sender and receiver ones of the pipeline are similar, 
the mentioned two processes differ from them, because they have different state sets 
from the other processes. 

The second reason is that the communication in a pipeline system has a direction 
- from the sender to the receiver processes. This method does not permit us to 
distinguish the processes even in the specification, so we cannot handle directions, 
and the synthesized synchronization code will not be efficient. 

First, we give an extension of the method, with which the side processes can be 
handled too. We introduce one more abstraction level in the method: we separate 
the processes inside the pipeline from the processes at the ends, handle them as an 
embedded system, and synthesize the synchronization for them. Finally, we handle 
the embedded system as a part of a new system, besides the processes at the ends 
of the pipeline. 

3.1 The embedded system 

First we give a straightforward solution to the synchronization of the previously 
mentioned embedded system in the pipeline. This is a very inefficient approach, 
but in this case the method of Attie and Emerson can be applied directly. In fact, 
this is the solution of the standard mutual exclusion problem. 

In this case, the processes will have three states, a normal (TV), a trying (T) and 
a critical (C) state. A process enters its trying state, when it wants to go to the 
critical state, and two interconnected processes cannot be in their critical state at 
the same time. The processes do the communication (data receiving and passing) 
and the real computation, too, in the critical state. 

The synchronization skeleton for such a system is deduced in [1]. The resulted 
automata can be seen in Figure 1. 
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r® ®/e/co(7} —>X/J. = j® Nj vCj — skip) 
•< 0 ®/E/®(/V/ v (Tj A xy = i) ~> skip) 0 

Figure 1: Synchronization skeleton of the embedded system 

As we said, this approach is extremely inefficient, because the neighbours of a 
process cannot do anything, while the process is in critical state, although theoreti-
cally they would be able to do the computational part of their work simultaneously. 

A much better approach will be shown later, in section 3.2. 

3.2 Another approach for the embedded system 
The method introduced in section 3.1 is not really applicable for pipeline systems. 
In this section, the method of Attie and Emerson will be extended so that it could 
handle such problems. 

We realised that the main problem in the synthesization of this part of the 
system is that the method does not allow us to make a distinction between processes 
and we cannot express the direction of the communication, so the result will be 
inefficient. 

To get over this issue, we introduce a new definition for the spatial operators 
defined by Attie and Emerson - or in other words, we define two new spatial 
operators. 

The original definition of the spatial operators can be found in section 2.3. We 
add a p predicate parameter to the spatial operators: 

This definition intuitively means that a connection between two processes which 
are defined in the interconnection relation may be actual or non actual in different 
situations and the actuality of the interconnection is driven by the predicate p. 

For the sake of effectiveness, there are two critical sections for every process in 
this approach: a critical section for reading the data from the previous process, 
and another one for sending the data to the next process. Moreover, there will 
be a sent and a received state for each process, because the communication works 
through shared variables, and the flow of the communication should be driven by 
the synchronization. 

The processes will have many states: N (normal), T (try to read), R (read), C 
(check), W (work), E (try to send), S (send) and finally A (after send). The two 
critical states are R and S, and the restriction is that if a process is in its state S, 
then, the following process must not be in its state R, and vice versa. 

• M,s t= AiOo)fi iff ViG {¿i , . . . , î i f} : p —» M,s |= /i 

• M, s \= A yWij iff V(t, j) € / : p -> M, s h f i j 



128 Balázs Ugrón, Szabolcs Hajdara, and László Kozma 

Let us see what happens in these states. State N is the start state of every 
process. State T is a trying state before the R critical section, which is for reading. 
State C is a checkpoint after the reading. State W is the state in which the process 
does its real computation work. State E is a trying state before the S critical 
section, which is for sending. Finally, state A is another checkpoint, now after 
sending. 

Let us see the extended MPCTL* specification of the synchronization of the 
embedded system: 

1. Initial state (every process is initially in its normal state): 

2. It is always the case that any move Pi makes from its N state is into its T 
state, and such a move is always possible (and similarly for the states R, W 
and S): 

A . AG(Ni =» (AYiTi A EXiTi)) 

/\. AG{Ri (AYiCi A EXiCi)) 

f \ . AG(Wi => (.AYiEi A EXiEi)) 

f\.AG{Si (AYiAi A EXiAi)) 

3. It is always the case that any move Pi makes from its T state is into its R 
state - but such a move is not definitely possible (and similarly for the states 
C, E and A): 

^ AG(Ti => AYiRi) 

AG(Ci => AYiWi) 

/\.AG{Ei => AYiSi) 

f\.AG{Ai ^ AYiNi) 

4. Pi is always in exactly one state of the state set: 

F \ AG(Ni = -.(Ti V R Í V C Í V W Í V E Í V S Í V ¿¿)) 

/\. AG(Ti = ->(Ni VRÍVCÍVWÍVEÍVSÍV Ai)) 

f \ . AG{Ri = ~>(Ni V Ti V Ci V Wi V Ek V St V Ai)) 
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/\. AG(Ci = -.(Ni VTiV RiVWiV EiV SiV At)) 

/\. AG{Wi = -.(JVi VTiVRiVCiVEiVSiV At)) 

/\ AG(Ei = -i{Ni V Ti V Ri V Ci V W< V Si V Ai)) 

/ \ . A G ( 5 I = -.(AT* V TI V V Ct V WI V JE?< V A I ) ) 

/\. AG(Ai = ->(Ni V T» V Ri V ^ V Wt V £7« V Si)) 

5. Liveness: if Pi is in state T, then some time it will reach state R (and similarly 
for the states C, E and A): 

f\,AG{Ti^ AFRi) 

f \ . AG{Ci =• AFWi) 

f \ , AG(Ei => AFSi) 

/\. AG{Ai =• AFNi) 

6. A transition by a process cannot cause a transition by another one: 

f \ AG{{Ni => AYjNi) A (Nj => AYiNj)) 

/\.. AG((Ti =• AYjTi) A (Tj => AYiTj)) 

f\,, AG((Ri AYjRi) A (fy => Ayi?.,)) 

A .. AG((Ci => AYjCi) A (C, =• AYiCj)) ij 

^G((Wi AY,W<) A (W, AYiWj)) 

A .. A G ( ( £ i =• AYjEi) A (.Ej A y £ j ) ) 

/\ AG ((Si =» AYjSi) A (5,- A y S 3 ) ) 

A AG((Ai => Ay, Ai) A A y A , ) ) ' HI 
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7. Data flow control: a process in state T waits for the previous process to reach 
state A and a process in state C waits for the previous process to leave A 
(and similarly the two other rules): 

A ( j < i)AG((Ti A -iAj) =s> - .EXitrue 

f \ ( j < i)AG({Ci A Aj) => -.EXitrue 

A (i < j)AG({Ei A Cj) => ->EXitrue 
' Hj 

A (i < j)AG((Ai A -.C,-) => -iEXitrue 
' Hj 

8. Always there is a possible step: • 

AG EX true 

If the set of the process-indices is {1,2} (so the processes are Pi and P2), then 
we get the specification of a pair-system. From this specification we can synthesize 
the synchronization skeleton of the pair-system with the method of Emerson and 
Clarke [2]. We implicitly applied the method on the parametric spatial operators 
introduced by us. In the following, the non trivial steps of the synthesis can be 
seen. Only the main cases are considered, because the other cases can be done by 
the analogy of the following ones. Note that the dashed lines in the figures mean 
that trivial steps are omitted there. 

Figure 2 shows how the blocks of the initial node can be constructed. 
In Figure 3 the construction of the titles of the result of the previous step can 

be seen. 
Figure 4 shows an example of the case when one of the processes has an even-

tually condition, but because of the parameters of the spatial operators none of the 
processes has to be blocked. 

After this there are a lot of similar steps as Figure 5 shows. 
Figure 6 illustrates an example of making blocks of a node where one of the 

processes has to wait for the another, and Figure 7 shows the titles of the result of 
this step (only Pi can execute the changing of its state). 

In Figure 8 an example is shown of the case when both processes have the 
possibility of blocking, but only one of them has to wait for the other. In Figure 9 
the titles of the result of the previous step can be seen. 

The J. sign in the tableau means that the relevant branch of the tableau is 
unsatisfiable, so this branch has to be eliminated. 

Based on this tableau we can construct the global state transition diagram, 
which can be seen in Figures 16-20 in Appendix A. 

Based on the global state transition diagram, we can construct the DAGs (see 
Figure 21 in Appendix B) and the fragments (see Figure 22 in Appendix B) of every 
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Figure 2: Blocks of the initial node 

N, N2 
AY,T, AY2T2 

EX,T, EX2T2 

AY2N, AY,N2 

1 / 2 

/ T , N 2 \ / N , T 2 \ 

Figure 3: Titles of the result set of the blocks of the initial node that can be seen 
in Figure 2 
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T, N2 
AY,R, AY :T, 
AY2T, EX2T2 
AFR, AY1N1 
EX ¡true 

1 Y 

1 AFR, AFR, 1 

Figure 4: None of the processes blocks but one of them has an eventually condition 

RI N1 
AY,C, AY2T2 
EX,C, EX2T2 

AY2RI AY,N2 

1 / 2 

< C T N 2 > 

Figure 5: There are a lot of steps similar to step one and two 

node. Based on the fragments, the model can be constructed shown in Figure 23-24 
in Appendix B. 

From the model we can construct the final deterministic automata for all pro-
cesses. If the first process (Pi) is in its state N\ then the second process (P2) can 
be in all of its states except state R2, and Pi has the possibility to step in all of 
this states. So the condition of thé transition of Pi from state N1 to state T\ is 
-'R2. The conditions of the transitions in states Ti, R\, C\, W\ are the same. If 
Pi is in state E\ and P2 is in state then Pi cannot step, so the condition of the 
transition from state E1 to state Si is ->#2 A->C2- The conditions of the other tran-
sitions can be determined similarly. Figure 10 shows the result, the synchronization 
skeleton for Pi and P2. 

Note that it cannot happen that Pi is in state N1 and P2 is in state R2, so the 
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Figure 6: Example of generating blocks of a node where the processes has to wait 

—ij?2 in condition of the transition from JVi to T\ can be eliminated. Similarly, we 
can do this with all of the transitions. The simplified synchronization skeletons can 
be seen in Figure 11. 

From this synchronization skeleton we can generate the synchronization code for 
every process with the method of Attie and Emerson [1]. The finite deterministic 
automata resulted by the method can be seen in Figure 12. 

Note that in the case of this synchronization, nothing keeps a process from 
working - that is, stepping in its state W - while the neighbours are working, so 
the processes can really work in parallel in this case. 
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N| T2 

AYJTI AY2R2 

EX,T, AY,T2 
AY2N, AFR2 

-lEKitrue 
EX,true 

1 

< ^ T | AFR; 

Figure 7: Titles of the result of the previous step can be seen in Figure 6 

3.3 The new three-process system 

As we said, there are special processes at the two ends of the pipeline, which only 
send and receive data. For the sake of simplicity, let us assume that the sender 
processes only produce the data and pass them on to the proper process in the 
embedded system, and similarly, the receiver processes only pick up the processed 
data from the proper process in the embedded system, and than work with that. 
These special processes must be handled in a special way. 

The sender and receiver processes are similar in the sense that they are con-
nected with only one another process, which they receive data from, or which they 
send data to. It is enough to consider only one sender and one receiver process 
when we generate the synchronization skeleton of the whole system, because the 
synchronization code of the selected sender and receiver process will naturally be 
suitable for the other sender and receiver processes, and respectively, the synchro-
nization for the processes that are connected to the sender and receiver processes 
will be reusable, too. That is why from this point on we will consider only one 
sender and one receiver process in the system. 

Now we can look at our process system as a system composed of three processes. 
The first process is the selected sender, the second is the embedded system and the 
third is the selected receiver process. We have to build the synchronization skeleton 
of this system. This system has only three processes, so we can handle it with 
the method of Emerson and Clarke [2], without running into the state explosion 
problem. 

There is still one more subject that we have to discuss. The middle process 
in this system is a system of processes itself, which makes the specification of our 
three-process system quite difficult. We should not just say, for example, that 
the pseudo process has a state for reading data, because this means that the first 
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E, T, 
E, => AY1S1 T2 => AY2R2 
E, -i(Ni v T, v R, v C, v W, v S, v A,) T2 => -i(N2 V R2 V C2 V W2 V E2 V S2 V A2) 
E, => AY2E, T2 AY,T2 
E, => AFS, T2 => AFR2 
Ei => (-1C2 v -iEX,true) T2 => (A| V -lEXztrue) 

E, T2 

AY,S, AY-.R-. 
AY2E, AY,T2 

AFS, AFR2 

-iC2 v -IE Xttrue 
-iEX,/r«e EX,true 

E, T2 

AY.S, AY2R2 

AY2E, AY,T2 

AFS, AFR2 

-NC2 -IEXztrue 
EXtrue EX, true 

E, Tt 
AY,S, AY2R2 

AY2E. AY,T2 

AFS, AFR2 

-IC2 -IEXitrue 
EX,true EX, true 

E, T2 

AY,S, AY2R2 

AY2E, AY,T2 

AFS, AFR2 

-IEX, true —EXilrue 
I EX, true 

E, T2 

AY,S, AYiRT 
AY2E, AY,T2 

AFS, AFR2 

-IC2 . -IEXttrue 
EXttrue . EX, true 

Figure 8: Example of generating blocks of a node where both processes have the 
possibility to be blocked, but only one of them has to wait 

process of the pseudo process reads the data, and at the same time, the last process 
theoretically can send data, which means that the whole pseudo process sends data 
to the receiver process, too. As a result, the pseudo process would be in two states 
at the same time, which is not allowed. 

We give two solutions to this issue. 
The first solution is that we handle the pseudo process as two processes - in 

this case, we have a four-process system instead of a three-process one - , which 
axe independent in the four-process system; one of them is connected to the sender 
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E, TI 
AYISI AY2R2 

AY2E, AY,T2 

AFS, AFR2 

-ICI -IEXitrue 
EX,true EX,true 

< S , AFSI AFR; 

Figure 9: Titles of the result of the previous step can be seen in Figure 7 

(N?) ^ — • Q 

C2 , R2 
1 

w 

Figure 10: The synchronization skeletons 

process, and the other is connected to the receiver. This is a reasonable approach, 
because there is a hidden connection between the two pseudo processes, and this 
connection is handled by the synchronization of the embedded system. 

The second approach is to define the states of the embedded system as pairs, so 
we will have state pairs like (N , N), (N, S), (R, S) and so on. For example, (N, N) 
means that the embedded system does not read or send data, while (N, S) means 
that the system does not read, but sends data and (R, S) means that the system 
reads and sends data at the same time. With such a type of set of states, we can 
express the behaviour of the system in a quite efficient way. 

The second approach is more complicated than the first one (because of the 
large number of the states of the system), so we chose the first approach for the 
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Figure 11: Simplified synchronization skeletons 
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Figure 12: Improved synchronization skeleton of the embedded system 

solution. We show only the connection between the sender process and the embed-
ded system. The synchronization of the embedded system and the receiver process 
can be deduced similarly. 

The states of the sender process are: 

J : normal (working) state, 

K: try to send state, 

L: sending state, 

M : after sending state. 
Using these states we can give the temporal logic specification of the system -

see Appendix C. For the specification, CTL* was used. Based on this specification, 
we are. able to generate the synchronization skeleton of the system. We used the 
synthesization method of Emerson and Clarke. The synchronization skeleton for 
the sender process and the first pseudo process of the embedded system can be 
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Figure 13: Synchronization skeleton for the sender process and the embedded sys-
tem 
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Figure 14: The modified synchronization skeleton for the first process of the em-
bedded system 

seen in Figure 13. Finally, the synchronization skeleton of the first and the last 
processes of the embedded system must be modified properly based on the result 
in Figure 13 - the transition conditions of the first process of the embedded system 
will be the conjunction of the original conditions, and the conditions in the proper 
transitions of the synchronization of the sender process and the pseudo embedded 
system - see in Figure 14. The new transition conditions for the last process of the 
embedded system can be deduced similarly. 

4 An application 
Where could this method be used? There are many complicated processor networks, 
which can be used for computational purposes; for example, the so-called butterfly 
network (see [7]). An n-level butterfly network can be constructed in a recursive 
way, which can be seen in Figure 15. The reason why these processor networks 
are interesting is that there axe many parallel algorithms that can be computed on 
them, such as the Fast Fourier Transformation on a butterfly network (see [7]). 

If we apply our result to an n-level butterfly, then we will have n generator 
processes, which are connected to the nodes at the left side of the butterfly, and 
we have n receiver processes, which are connected to the nodes at the right side 
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of the butterfly; the connections between the other processes can be defined in the 
relation I , in a proper way for the FFT working on a butterfly network. A proper 
I relation will be described in the following. 

The number of the processes in Bn = n2 n _ 1 . 
Let the numbering of the processes in B2 be like in Figure 15. 
Then the numbering of the processes in Bn+1 comes from the following rules: 

• The numbering of the first Bn component in Bn+i is the same as of Bn (i.e.: 
processes 1 - 4 of B3 in Figure 15). 

• The numbering of the second Bn component in 5 n + i is the numbering of Bn 
shifted by n 2 n _ 1 (i.e.: processes 5 - 8 of B3 in Figure 15). 

• The numbering of the remainder processes (the right side column) is n2" + 1 
- n2" + 2n (i.e.: processes 9 - 12 of B3 in Figure 15). 

As a result, the relation I consists of the following pairs: 

• The pairs in the two Bn components. 

• Vi € [1.. . 2"-1] : ((n - l ) 2 n _ 1 + i, n2n + i) G I (i.e.: (3,9) and (4,10) of B3 

in Figure 15). 

• Vi G [1 . . .2"- 1] : ((n — l ) 2 n _ 1 + i , n 2 n + 2 n _ 1 + i ) G I (i.e.: (3,11) and (4,12) 
of B3 in Figure 15). 

• Vi G [0. . . 2 n _ 1 - 1] : (n2n - i, n2n + 2n~l - i) G I (i.e.: (7,9) and (8,10) of 
B3 in Figure 15). 

• Vi G [0. . . 2"- 1 - 1] : (n2n - i, n2n + 2n - i) G I (i.e.: (7,11) and (8,12) of B3 

in Figure 15). 

The synchronization of the communication between the processes are defined 
in this way, and we do not have to bother with the "business logic" of how the 
processes compute the data they send to the connected processes. 

5 Conclusion 
This paper introduced a general pipeline tool, by which a complex application, such 
as the parallel FFT, can be solved in a short and simple way. 

Most of the programs that are working on some kind of data channels (see 
[5]) can be handled by the method described above. If some modification is still 
needed, the modification can be restricted to the temporal logic specifications and 
the relation I, so the above method can be processed by the analogy of the above; 
moreover, there are different tools exist that can help the process - for instance, the 
method of Emerson and Clarke [2]; namely, the finite deterministic automata for 
the pair-system can be generated from the CTL specification automatically, or even 
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Figure 15: The structure of butterfly processor networks 

concrete Java code can be generated with an object-oriented extension (see [4]) of 
[1] (though a straightforward modification is needed because of the parameterized 
spatial operators introduced in this paper) etc. 

Note, that in the case of FFT no modification was needed, only the proper 
relation I had to be defined. 

6 Future work 
The idea of synthesizing the synchronization of pipeline systems comes from the 
hardware designing of graphics cards. We will work on to meet these demands. 

The correctness of the algorithm should be proofed. 
An effective tool for deadline checking should be developed. 
During the communication, now it is possible that a process has received data 

but it has to wait until the other processes that receive data from the same sender 
process receive the data. Theoretically, it would be possible for a data receiver 
process to step forward in this situation. That is, the data flow control may be 
improved. 
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Appendix A 
The following figures (16 - 20) describe the global state transition diagram of the 
two-process system of the embedded system. 

Since the global state diagram of the system is too large, we had to split it into 
five figures. So we used the following notation: the bold box elements mark those 
elements that can be continued but they are continued in an other figure. Dotted 
box elements show boxes which can be found in a previous figure, so in the global 
state transition diagram there is an edge to such boxes. 

Figure 20: The global state transition diagram (part 5) 
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Figure 17: The global state transition diagram (part 2) 
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Appendix B 
The following figures (21 - 24) describe the model of the two-process system of the 
embedded system. 

DAGflTi.Tj], AFR.) 

Figure 21: The DAGs that are needed to construct frag([7\, T2]) 
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Figure 23: The model of the system 
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Figure 24: The model of the system 
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Appendix C 
In the following, the temporal logic specification can be seen for the system that is 
built from the sender process and the embedded system. 

For the sake of simplicity, we can join the states N, W, E, S and A of the first 
process of the embedded system (because the first process only receives data from 
the sender, the sender will not keep the first process from sending). Let the name 
of the joined state be N (Normal). Furthermore, we omit the indexes of the states, 
because the states of the sender process are labeled in another way. 

Note that in this case P\ is the second process and the sender is the first process. 

1. Initial state (every process is initially in its normal state): 

J AN 

2. It is always the case that any move Pi makes from its N state is into its T 
state, and such a move is always possible (and similarly for the state R and 
for the states J and L of the sender): 

AG{J => {AYXK A EXiK)) 

AG(L {AYXM A EXiM)) 

AG(N (AY2T A EX2T)) 

AG(R =• (AY2C A EX2C)) 

3. It is always the case that any move Pi makes from its T state is into its R 
state - but such a move is not definitely possible (and similarly for the state 
C and for the states K and M of the sender): 

AG{K => AY^L) 

AG(M => AY\J) 

AG(T => AY2R) 

AG(C => AY2N) 

4. The processes are always in exactly one state of the state set: 

AG(J = V L V M)) 

AG(K = - i ( J V L V M)) 

AG{L = -^(JyKy M)) 

AG(M = -I( J V K V L)) 

AG(N = - ( T V RV C)) 
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AG(T = ->(N VRVC)) 

AG(R = ->(N V T V C)) 

AG(C = -.(AT V T V R)) 

5. Liveness: if P\ is in state T, then some time it will reach state R (and similarly 
for the state C and states K and M of the sender): 

AG(K AFL) 

AG(M => AFJ) 

AG(T => AFR) 

AG(C ^ AFN) 

6. A transition by a process cannot cause a transition by another one: 

AG(J => AY2J) 

AG(K =» AY2K) 

AG(L AY2L) 

AG(M =» AY2M) 

AG(N =» AYiN) 

AG{T =» AYiT) 

AG(R =• AYiR) 

AG(C => AYxC) 

7. Data flow control: a process in state T waits for the sender process to reach 
state M and a process in state C waits for the sender process to leave M (and 
similarly for the sender): 

AG{{K A - . r ) => -*EX\ true 

AG((M A —iC) EXitrue 

AG((T A ->M) => ->EX2true 

AG((C A M) => -,EX2true 

8. Always there is a possible step: 

AGEXtrue 

Received November, 2004 
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Functional Dependencies over XML Documents 
with DTDs 

Sven Hartmann* Sebastian Link* and Klaus-Dieter Schewe* 

Abstract 

In this article an axiomatisation for functional dependencies over XML 
documents is presented. The approach is based on a representation of XML 
document type definitions (or XML schemata) by nested attributes using 
constructors for records, disjoint unions and lists, and a particular null value, 
which covers optionality. Infinite structures that may result from referencing 
attributes in XML are captured by rational trees. Using a partial order on 
nested attributes we obtain non-distributive Brouwer algebras. The opera-
tions of the Brouwer algebra are exploited in the soundness and completeness 
proofs for derivation rules for functional dependencies. 

Keywords : extensible Markup Language, nested attributes, subattributes, 
rational trees, functional dependencies, axiomatisation 

1 Introduction 
Over the last decade the extensible Markup Language (XML) [5] has attracted a 
lot of attention in research and practice. Its spectrum of usage spreads from data 
exchange on the web to a direct use as a data model. In fact, the language shows a 
lot of similarities to semi-structured data [1] and to object-oriented databases [12]. 

The treatment of XML as a data model requires re-investigating core problems 
of database theory. Therefore, it is no surprise that database dependency theory 
[13] has recently started a revival in the context of XML. The research interest first 
focused on the classes of keys [4, 11] and functional dependencies [3, 16, 18], which 
represent the most common and at the same time easiest class of dependencies. 

However, the problem is still not completely solved. The major drawback of the 
work by Arenas, Fan and Libkin and similarly Vincent and Liu is the restriction to 
a relational representation of XML documents. That is, XML documents are con-
sidered as some sets of (generalised) tuples, which then can be treated analogously 
to the relational model. However, it is possible to formulate functional dependen-
cies on XML documents that are not preserved by the relational representation. In 
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other words, these theories are adequate as long as we only deal with functional 
dependencies that can be expressed on a relational representation of XML docu-
ments. Going beyond this restricted class of functional dependencies requires an 
extended theory or a different approach to the problem. 

Our own work in this area originates from a more classical approach dealing 
with dependencies in higher-order data models such as the higher-order Entity-
Relationship model (HERM) [14] or the object-oriented data model (OODM) [12]. 
The basic idea is to consider nested attributes that can be built from constructors 
for records, sets, lists, etc. Furthermore, our first interest is devoted to the logical 
and mathematical foundations of dependency theory, i.e. we first address problems 
of axiomatisation, number of possible dependencies, complexity of closure building, 
etc. 

Using just the record- and set-constructors we obtained an axiomatisation in 
[6], extended in [7]. Additional constructors for lists, multisets and disjoint unions 
have been handled in [10]. Unfortunately, the presence of the union-constructor, in 
particular in connection with the set-constructor, requires an extension of the the-
ory to weak functional dependencies, i.e. disjunctions of functional dependencies. 
Rather astonishingly, among the three "bulk" constructors the list-constructor is 
the easiest one. So far it is the only part of the theory that could be generalised to 
multi-valued dependencies [9]. Other work on multi-valued dependencies for XML 
[17] is again "relationally minded". 

In this article we extend our theory of functional dependencies to XML docu-
ments. We show how to represent XML elements by nested attributes. In partic-
ular, we represent the Kleene-star by the list-constructor, i.e. we have order and 
duplicates. In our theory it is also possible to use the multiset- or set-constructor 
instead, thus neglecting order or duplicates. We may also treat all three "bulk" 
constructors together. However, as this would blow up the article we made the 
choice to restrict ourselves to only the easiest of the bulk constructors. A glimpse 
of the necessary extensions for the other two bulk constructors can be obtained 
from [10]. 

In any case the combination of a bulk constructor with the union-constructor 
is only satisfactory, if some form of restructuring is taken into account. The early 
work in [2] handles only the set-constructor, but even for this the theory would 
be equivalent to restricting the union-constructor in a way that it can only occyr 
as the outermost constructor. This is insufficient, if subattributes are considered. 
Therefore, we use an extended form of restructuring. 

However, in order to fully capture functional dependencies over XML documents 
we have to face two major extensions: 

1. We have to consider rational tree attributes, which result from reference struc-
tures in XML documents. We will see that the extension arising from this 
problem is not severe. The major observation is that the subattribute lat-
tice becomes infinite, but this does not affect the derivation of dependencies. 
Note that all previous work on functional dependencies for XML including 
[3] neglect references. 
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2. We have to consider functional dependencies on embedded elements. These 
dependencies can be "lifted" through the constructors, i.e. they induce func-
tional dependencies on complete XML documents. Such dependencies have 
not been considered in our previous work. However, the "lifting rules" be-
came already indispensable in the presence of the union-constructor, as this 
constructor leads to axioms on embedded structures [10]. 

In other words, this article takes a reasonable fragment of the theory from [10] 
and extends it with respect to these two problems. The result is a quite uniform 
axiomatisation for functional documents over XML documents. 

In the remainder of the article we first investigate the relationship between XML 
documents and nested attributes in Section 2. We show how to map the regular 
expressions in XML document type definitions to the attribute constructors. Fur-
thermore, we extend nested attributes by rational trees and use them to represent 
the infinite structures that may arise from references in XML documents. We then 
define a partial order on nested attributes and show that the set of subattributes 
of a given attribute forms nearly a Brouwer algebra — however, distributivity does 
not hold. 

In Section 3 we introduce functional dependencies and first prove the sound-
ness of some derivation rules for them. These soundness rules imply properties of 
closures, i.e. sets of subattributes that depend functionally on a given set of sub-
attributes. This leads to the notion of "strong higher-level ideal" or SHL-ideal for 
short. We show a central theorem about such SHL-ideals, which states that we can 
always find two values in the associated domain that coincide exactly on a given 
SHL-ideal. This theorem is indeed central for the proof of the completeness of the 
derivation rules. - The completeness theorem will be the major result of this article. 

2 XML and Nested Attributes 
In this section we define our extended model of nested attributes including rational 
tree attributes. We show how to use these attributes to represent XML document 
type definitions. Finally, we look a bit closer into the structure of sets of subat-
tributes and show that we obtain non-distributive Brouwer algebras. 

2.1 Elements in XML and Constructors 
The structure of XML documents is prescribed by a document type definition 
(DTD) [1] or (almost equivalently) by an XML schema. Basically, such a DTD 
is a collection of element definitions, where each element is defined by a regular 
expression made out of element names and a single base domain PCDATA. Without 
loss of generality we may assume to have more than one domain. Then we can 
isolate those element definitions that lead only to domains. These elements can be 
represented by simple attributes. 
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Defin i t ion 1. A universe is a finite set U together with domains (i.e. sets of 
values) dom(A) for all A G U. The elements of U are called simple attributes. 

For all other element definitions we may assume without loss of generality — 
just spend a few more element names, if necessary — that they are normalised in 
the sense that they only contain element names and no domains, and they only use 
exactly one of the constructors for sequences, Kleene-star or alternative. 

Then they can be represented as nested attributes as defined next. We use a set 
L of labels, and tacitly assume that the symbol A is neither a simple attribute nor 
a label, i.e. A ^ U U L , and that simple attributes and labels are pairwise different, 
i.e. It N JG = 0. 

Def in i t ion 2. Let U be a universe and L a set of labels. The set N of nested 
attributes (over U and -C) is the smallest set with A e N, U C N, and satisfying the 
following properties: 

• f o r X e - C a n d X i , . . . , X ; e X w e h a v e X ( X i , . . . , X ; ) € X ; 

• for X G £ and X' G "N we have X[X'} E ) f ; 

• for Xu ..., Xn G C and X[,..., X'n G Ji we have JTi(*{)©• • - © X n ( X ; ) G N. 

We call A a null attribute, X(X{,..., X'n) a record-attribute, X[X'\ a list at-
tribute, and ATi(X{) © • • -(BXn(Xn) a union attribute. As record and list attributes 
have a unique leading label, say X, we often write simply X to denote the attribute. 

Thus, a Kleene-star element definition (¡ELEMENT Ar(V)*) will be represented'by 
the nested attribute X[Y], a sequence element definition (¡ELEMENT X(Y\,..., Yn)} 
by X ( Y i , . . . , Y „ ) , and an alternative element definition (¡ELEMENT X(Yi | ••• | 
Yn)) by X(Ar

1(Yi) © • • • © Xn(Yn)) with some new invented labels X i , . . . ,Xn. 
Furthermore, as the plus-operator in regular expressions can be expressed by the 
Kleene-star, an element definition (¡ELEMENT X ( F ) + ) will be represented by the 
nested attribute X(Y, X '[Y]) with some new invented label X'. Similarly, optional 
elements can be expressed as alternatives with empty elements, thus an element 
definition (¡ELEMENT X(Y?)) will be represented by the nested attribute -X^Y) © 
X'(A). 

We can now extend the association dom from simple to nested attributes, i.e. 
for each X G N we will define a set of values dom(X). 

Defin i t ion 3. For each nested attribute X G N we get a domain dom(X) as 
follows: 

• dom(X) = {T}; 

• dom{X{X[,...,X'n)) = {(Xi : vu...,Xn : vn) \ Vi G dom(X[) for i = 
1 , . . . , n} with labels Xi for the attributes X[\ 

• dom(X[X']) = {[ui, . . . ,t;n] | Vi G dom(X') for i = 1 , . . . ,n}, i.e.. each ele-
ment in dom(X[X'\) is a finite list with elements in dom(X'); 
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• dom(Xipfj) © • • • © = { ( X i : v{) \ v{ £ dom(Xl) for t = 1,..., n}. 

Hence, each element in a DTD can be represented by a nested attribute. An 
XML document is then represented by a value v £ dom(X) of the nested attribute 
X that represents the root. In the following we assume without loss of generality 
— rename, if necessary — that labels are used only once in a representing nested 
attribute. In this way we may identify labels with nested attributes labelled by 
them. 

2.2 Attributes in XML and Rational Trees 
Besides element definitions a DTD also contains attribute definitions. Attributes 
are associated with elements. Neglecting some of the syntactic sugar, we basically 
have three types of attributes: 

• attributes with domain CD ATA, which can be represented again by simple 
attributes; 

• attributes with domain ID, which can be ignored; 

• attributes with domain IDREF or IDREFS, which can be replaced by the 
label, or the list of labels, respectively, of the referenced elements. 

More formally, we extend our Definition 2 of nested attributes by adding 
We say that a label Y £ L occurring inside a nested attribute X, is a defining label 
iff it is introduced by one of the three cases in Definition 2. Otherwise it is a 
referencing label. We require that each label Y appears, at most once as a defining 
label in a nested attribute X, and that each referencing label also occurs as a 
defining label. In other words, if we represent a nested attribute by a labelled tree, 
a defining label is the label of a non-leaf node, and a referencing label is the label 
of a leaf node. 

Using labels we can subsume the attributes of an element in the element defi-
nition using a sequence constructor. Attributes with domain CD ATA will be rep-
resented by simple attributes, attributes with domain IDREF will be represented 
by the label of the referenced element, and attributes with domain IDREFS will 
be represented by the list of labels of the referenced elements. 

We still have to extend Definition 3. For this assume X £ N and let Y be a 
referencing label in X. If we replace Y by the nested attribute that is defined by 
Y within X, we call the result an expansion of X. Note that in such an expansion 
a label may now appear more than once as a defining label, but all the nested at-
tributes defined by a label can be identified, as the corresponding sets of expansions 
are identical. 

In order to define domains assume set of label variables ip(Y) for each Y £ L. 
Then for each expansion X' of a nested attribute X we define dom(X') as in 
Definition 3 with the following modifications: 

• for a referencing label Y we take dom(Y) = ip(Y); 
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• for a label Y defining the nested attribute Y' take dom(Y) = {y : v \ y € 
1>(Y),v e dom(y')}; 

• allow only such values v in dom(X'), for which the values of referencing labels 
• also occur inside v exactly once at the position of a defining label. 

Finally, define dom(X) = (Jx , dom(X'), where the union spans over all expansions 
X' of X. 

2.3 Subattributes 
In classical dependency theory for the relational model we considered the powerset 
'P(R) for a relation schema R, which is a Boolean algebra with order C. We have to 
generalise this for nested attributes starting with a partial order >. However, this 
partial order will-be defined on equivalence classes of attributes. We will identify 
nested attributes, if we can identify their domains. 

Def in i t ion 4. = is the smallest equivalence relation on N satisfying the following 
properties: 

• A = * ( ) ; 

• X(X[,..., X'n) = X{X'i,..., X'n, A); 

• X{X[,..., X'n) = X{X'a{l),..., X'a(n)) for any permutation a; 

• X i (Xi ) ©•'••© Xn{X'n) = Xa{l){X'a{l)) © • • • © Xa{n){X'a{n)) for any permu-
tation a; 

• • -©Xn(X4) = Xi(yi)©- • -®Xn(yn) iff X? = Yi for all i = 1 , . . . , 7i; 

• X[X'] = X\Y] iff X' = Y\ 

. X{X'l,...,Y1{Y{)®---®Ym{Y^),...,X'n) = 
Y\{X[,..., Y{,..., X„) © • • • © ..., ..., X„); 

. x[xi(xi)) = 

Basically, the equivalence definition (apart from the last case) states that A in 
record attributes can be added or removed, and that order in record and union 
attributes does not matter. The last case in Definition 4 covers an obvious restruc-
turing rule, which was already introduced in [2]. 

In the following we identify N with the set K / = of equivalence classes. In 
particular, we will write = instead of =, and in the following definition we should 
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y. 

Defin i t ion 5. For X, Y € N we say that Y is a subattribute of X, iff X > Y holds, 
where > is the smallest partial order on N satisfying the following properties: 
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• X > A for all X G >f; 

• X > X' for all expansions X' of X; 

• X(Yi, . . . ,Y„) > for some injective a : { l , . . . , m } 
{1, . . . , n} and Ya(i) > X'a{i) for all i = 1 , . . . , m; 

• Xi(Yi) © • • • © Xn{Yn) > ©••'•© Xo{n){X'a{n)) for some permu-
tation a and Yi > X[ for all i = 1 , . . . , n; 

• X[Y] >X[X'] i f f y >X'\ 

• x[x1(x[)e---®xn(xil)]>x(x1[x[],...,xn[xil]y, 

. x[xi(xi) © • • • © xk(x'k)} > © • • • © xi{x't)\ for k > e-, 

. J f (X i l [A] l . . . ,X i f c [A])>X { i l i k )[\] . 

Obviously, X > Y .induces a projection map 7Ty : dom(X) —• dom(Y). For 
X = Y we have X > Y and Y > X and the projection maps 7Ty and are 
inverse to each other. 

Note that the last three cases in Definition 5 covers the restructuring for lists 
of unions, which needs some more explanation. Obviously, if we are given a list of 
elements labelled with X\,..., Xn, we can take the individual sublists - preserving 
the order - that contain only those elements labelled by Xi and build the tuple of 
these lists. In this case we can turn the label into a label for the whole sublist. This 
explains the third to last subattribute relationship. In case n — 1 this is subsumed 
by the last equivalence in Definition 4. 

Using the subattribute relationship for record attributes we obtain 

Xp^Yx],..., Xn[Yn]) > X(Xix [yj,..., Xik [ y j ) 

for {¿i , . . . C ( i ; . . . ,n}. But then also 

X l X ^ y j , . . . , X i f c ( y j ] > X p f ^ y , ] , . . . ,Xik[Yik}) 

holds as already explained. It is therefore natural to require the second to last 
property. It just means that a list with elements labelled by X\,... ,Xk can be 
mapped to the sublist - preserving the order - that contains only the elements 
with labels X \ , . . . , Xg. We may of course take any subset of the labels here, but 
this is already captured by the possibility to permute the components in a union 
attribute. 

In a list we can also map each element to T, the unique element in dom(A). 
In fact, the subattribute of the form X[A] only counts the number of elements in 
the list. This is not affected by first separating the list according to labels, so we 
obtain the last subattribute relationship. 
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However, restructuring requires some care with labels. If we simply reused the 
label X in the last property in Definition 5, we would obtain 

X L X X P F O E - Y A M ] >X{Xx[X[\,X2{X'7)) > X ( * ! [ X I ] ) > X ( * I [ A ] ) > A"[A]. 

However, the last step here is wrong, as the left hand side refers to the length 
of the sublist containing the elements with label Xi, whereas the right hand side 
refers to the length of the whole list, i.e. elements have labels Xi or X2- No such 
mapping can be claimed. In fact, what we really have to do is to mark the list label 
in an attribute of the form X[Xi(X[) © • • • © Xn(X'n)) to indicate the inner union 
attribute, i.e. we should use (or even X{Xi,...,x„}) instead of X. Then 
the second to last restructuring property in Definition 5 would become 

©•••© XfcM] > x{1 <}№№) © • • • © Xtixi)]. 

However, as long as we are not dealing with subattributes of the form 
-^{I,...,K}[A], the additional index does not add any information and thus can be 
omitted to increase readability. In the last restructuring property in Definition 5, 
however, the index is needed. 

Further note that due to the restructuring rules in Definitions 4 and 5 we may 
have the case that a record attribute is a subattribute of a list attribute. This allows 
us to assume that the union-constructor only appears inside a list-constructor or 
as the outermost constructor. This will be frequently exploited in our proofs. 

. We use the notation §(X) = {Z £ N \ X > Z} to denote the set of subattributes 
of a nested attribute X. In the next subsection we will take a closer look into the 
structure of S(X). 

Figure 1 shows the subattributes of X[Xi{A)®X2(B)\ together with the relation 
> on them. Note that the subattribute X[A] would not occur, if we only consid-
ered the record-structure, whereas other subattributes such as X(X.j[A]) would not 
occur, if we only considered the list-structure. This is a direct consequence of the 
restructuring rules. 

Let us now investigate the structure of S(X). We will show that we obtain 
a non-distributive Brouwer algebra, i.e. a non-distributive lattice with relative 
pseudo-complements. A lattice £ with zero and one, partial order <, join U and 
meet n is said to have relative pseudo-complements iff for all Y, Z £ £ the infimum 
Y «- Z = ri{{/ \UUY>Z} exists. 

Proposition 1. The set S(X) of subattributes carries the structure of a lattice 
with zero and one and relative pseudo-complements, where the order > is as defined 
in Definition 5, and A and X are the zero and one. 

In the following we denote join by U, meet by n and relative pseudo-complement 
by «—. Then it is straightforward to show the following properties: 

• for the join U: 

1. YUZ = Y i f f y >Z; 



Functional Dependencies over XML Documents with DTDs 161 

X [ X I ( A ) ® X 2 ( B ) ] 

x[Xi(/i)eX2(A)] X(Xx[A , X 2 [ B ] ) X [ X I ( A ) © X 2 ( B ) ] 

X ( X I [ A , X 2 [ A ] ) X [ X I ( A ) ® X 2 ( A ) ] X ( X I [ A ] , X 2 [ B ] ) 

X ( X I [ A ] ) X ( X ! [ A , X 2 [ A ] ) X ( X 2 [ B ] ) 

X ( X ! [ A ] ) X A] X ( X 2 [ A ] ) 

A 

Figure 1: The lattice S(X[Xj(A) © X2(B)]) 

2. for X = X ( X i , . . . , X „ ) , Y = X(Y 1 , . . . ,Y„) and Z = X(ZU... ,Zn) we 
have Y U Z = X(Yi UZu...,YnU Zn); 

3. for X = X ( X i , X n ) , Y = X(Yit..., Y„) + A and Z = X/[A] with 
7 = {*i *fc> we have YUZ = ZUY = YU X(X^ [A],..., Xik [A]); 

4. for X = Xi(X{) © • • • © Xn{X'n), Y = Xx{Y{) © • • • © Xn(Y^) and Z = 
Xi(Z[)®-• -®Xn(Ziï we have YuZ = X^YjuZi)®-• -®Xn{Y^uZ'n)\ 

5. for X = X[X'], y = X[Y'} and Z = X\Z'\ we have YuZ = X[Y' U Z']; 

6. for X = X[Xi(X{)©• • • ©X n (X;) ] , y = X ^ Y / ) ©• • • © X n T O ] and 
Z = X(Zi,..., Zn) with either Z* = Xl[Z'i\ or Z* = A we have Y U Z = 

1. y n Z = Z i f f y > Z ; 

2. for X = X { X i , X n ) , Y = X(Yi,... ,yn) and Z = X(Zlt..., Zn) we 
have y n Z = X(Yi nZi,...,Y„n Zn)\ 

3. for X = X{XU .. . ,Xn), Y = X(Yi,..., Yn) ^ A and Z = X,[A] with 
I = {ii, . . . ,ik} and y t Z we have Y n Z = Z n Y = A; 

4. for X = Xi(Xi) © • • • © xn(x;), y = Xi(Y{) © • • • © Xn(Y^) and Z = 
Xi(Zi)©- • we have YnZ = X^nZ^)®-• - © X ^ n Z ; ) ; 

5. for X = X[X'], y = X[Y'} and Z = X[Z'] we have Y n Z = X[Y' n Z']; 

• for the meet l~l: 
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6. f o r X = X[Xi (X{)©. - -©X n (X; ) ] , Y = X[X 1 (y 1 ' )©-- -©X n (y ,0] and 
Z = X(Zi, ...,Zn) with either Z< = Xi[Z[\ or Zi = A we have YnZ = 

ZnY = X(U1,...,Un) with * = n Z*1 f ° r = X * W . 
I A for Zi = A 

for the relative pseudo-complement <—: 

1. A «- y = Y; 
2. for y > Z we have Y <- Z = A; 

3. for X = X ( X u . . . , X n ) , Y = X ( Y u . . . , Y n ) , Z = X ( Z x , . . . , Z n ) a n d 
X[X) $ S(X) we have Y <- Z = X(Vi «- Z i , . . . , y„ *- Z„); 

4. for Z = X ( Z i , . . . , Z n ) ^ A and I = {¿ i , . . . , ifc} we have Z X/[A] = A 
and X,[A] «— Z = X(Xi, [A] «- Zh,..., Xik [A] «- Zifc); 

5. for X = Xi(X{) © • • • © Xn(X'n), Y = Xi(Yi) © • • • © X„(y„), Z = 
Xi(Zi) © • • • © Xn(Zn) and y 2 Z we have y «- Z = 4- Zi) © 
• • • © Xn(Yn <— Z„); 

6. for Z = X ( Z i , . . . , Zn) ^ A we have Z <- X[A] = A and X[A] Z = 
X(Xi[A] - Z i , . . . , X „ [ A ] « - Z n ) ; 

7. for X = X [ X x ( X 0 © • • • © * „ ( * ; ) ] or X = X(Xi [Xi ] , . . . ,X„[X;]) we 
have: 

(a) for Z = X ( Z i , . . . , Z n ) ^ A and I = {¿ i , . . . , tk} we have Z <— 
X,[A] = A and X/[A] - Z - X(Xn[X] « - Z M , . . . . X i n [ A ] - Zik); 

(b) for y = X(YU..., y n) and Z - X(Z i , . . . , Z n ) with A ¿Y£Z 
— if Yi > Zi or Yi — X,Zi = Xi[A] for all i = 1 , . . . ,n we have 

y <- Z = A, 
- otherwise we have Y <- Z = X(y i <- Z i , . . . , y„ <- Zn); 

(c) for y = X[Xx(Yi) © • • • © X n ( y j ] and Z = X(ZU . . . , Z n ) with 
Zi = Xi[Z<] or Zi = X and Y % Z we have Y «- Z = X ( £ / i , . . . , Un) 

with ^ = -
IA else 

(d) for y = X(yi,...,y„) ^ A with Yt = X^y/] or Yt = A, and 
Z = X[Xi(Z[) © ••• © X„(Z;)] with Zi = Xi{Z'i) or Zi = A 
and y 2 Z we have y <- Z = X[Xi{Ui) © • • • © X„([/n)] with 
U i = [Yl^Z'i for Yi^XjiZi 

' 1A else 
(e) for y = X[Xi(Y{) © • • • © Xn(y^)], Z = X[Xx(Z0 © • • • © Xn{Z'n)\ 

with y ^ Z we have Y «- Z = X(C/ i , . . . , Un) with 

Ui=[Xi[Y>^ZZ for Y ^ X * Z[ 
1 ] A else 
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3 Axiomatisation of Functional Dependencies 
In this section we will define functional dependencies on S(X) and derive some 
sound derivation rules. We consider finite sets r C dom(X), which we will call 
simply instances of X. If Y is a nested attribute that occurs inside X, then an 
instance r of X defines an instance r(Y) of Y; simply take r(Y) = {v' G dom(Y) \ 
v' occurs inside some v € r at the position defined by Y}. 

Definit ion 6. Let such that X' occurs in X. A functional dependency 
(FD) on S(X) is an expression X' : y -> Z with y,ZC S(X'). 

An instance r of X satisfies the FD X' : y —> Z on S(X) (notation: r \= X' : 
y Z) iff for all tut2 G r (X') with Tr£'(ti) = n f ( t 2 ) for all Y G y we also have 
7rf (ii) = ir%'{t2) for all Z eZ. 

Let E be a set of FDs defined on some S(X). A FD ip is implied by E (notation: 
E (= ip) iff all instances r with r |= for all <p G E also satisfy ip. As usual we write 
E* = {V | E |= V}-

We write E + for the set of all FDs that can be derived from £ by applying a 
system Dt of axioms and rules, i.e. E + = {tp | E I-« tp}. We omit the standard 
definitions of derivations with a given rule system, and also write simply I- instead 
of htR, if the rule system is clear from the context. 

Our goal is to find a finite axiomatisation, i.e. a rule system EH such that 
E* = E + holds. The rules in 91 are sound iff E + C E* holds, and complete iff 
E* C E + holds. 

3.1 Sound Axioms and Rules for Functional Dependencies 
Let us now look at derivation rules for FDs. We will need a particular notion of 
"semi-disjointness" that will permit a generalisation of the well known Armstrong 
axioms for the relational model. 

Definit ion 7. Two subattributes Y, Z € S(X) are called semi-disjoint iff one of 
the following holds: 

1. Y > Z or Z > Y; 

2. X = X(Xu...,Xn), Y = X(Y\,..., Yn), Z = X{Zu...,Zn) and YuZi G 
§(Xi) are semi-disjoint for all i = 1 , . . . , n; 

3. X = X\X% Y = X[Y'], Z = X[Z') and Y', Z' e S(X') are semi-disjoint; 

i. X = XtiXi) © • • • © Xn(X'n), Y = Xi(Y1
/) © • • • © Xn{Y£, Z = X^Zi) © 

• • • © Xn(Z'n) and Y(, Z\ G S(Xt') are semi-disjoint for all i = 1 , . . . , n; 

5. X = X[X!(Xi) © • • • © X„(X;)], Y = X{YU . . . , Yn) with Y» = X^Y/] or 
Yj = A = Y(, Z = X[Xi(Z[) © • • • © Xn{Z^)], and Y/, Z[ are semi-disjoint for 
alH = 1 , . . . ,n. 
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With the notion of semi-disjointness we can formulate axioms and rules for FDs 
and show their soundness. 

Theorem 1. The following axioms and rules are sound for the implication of FDs: 

• the X axiom: X': 0 —» {A} 

• the subattribute axiom: X' : {V} —> {Z} for Y > Z 

• the join axiom: X' : {Y, Z} —> {Y U Z} for semi-disjoint Y and Z 

• the reflexivity axiom: X': y —» Z for Z C y 

• the extension rule: X' : y —> Z implies X' : y —• y U Z 

• the transitivity rule: X' : y —* Z and X': Z —>It imply X' : y —> U 

• the list axioms: 

- X : {X,[A], Xj[A]} - {X/UJIA]} for I n J = 0 

- X : {X/[A],X/UJ[A]} - {JO[A]} for I n J = 0 

- X : {X/[A],Xj[A],X/nj[A]} - {X ( /_ J ) U ( J_ / )[A]} 

- X : { X / M X j I A I . X ^ ^ . ^ A ] } - {X/nj[A]} 

• the list lifting rule: X' : y -> Z implies X[X'] : {X[Y] \ Y e y} {X[Z] \ 

• the record lifting rule: X, : & —* Zi implies X(X\,... ,Xn) : ^ -> Zi vrith 
yi = {X(X,...,Yi,...,X) \YteVi} andZi = {X(X,...,Zi,...,X)\Yi£Zi} 

• the union lifting rule: X[ : —> Z.j implies Xi(Xi) © • • • © Xn(X^) : yi —> Zi 
with Vi = (Xi(A) © • • • © Xi(Yi) © • • • © Xn(A) | Yi £ Vi} and Zi = (Xi(A) © 
• • • © Xf(Zi) © • • • © Xn(A) | ^ e 

Proof. We only show the soundness of some of the axioms and rules. The proof 
for the other axioms and rules is either analogous or trivial. 

For the join axion let ii,¿2 € dom(X) with 7Ty(fi) = iTy and n^iti) = 
it^ (t2). We use induction on X to show 7Tyuz(ii) = 7Tyuz(i2). The cases X = A 
and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for 
Y > Z or Z > Y, as in these cases Y U Z is one of Y or Z. 

For X = X ( X x , . . . , X n ) let Y = X{Yi,..., Yn) and Z = X(ZU • • •, Z„) be semi-
disjoint. For tj = (X! : tji,..., Xn : tjn) ( j = 1,2) we have ity- (¿it) = T^Y- fa») 
7r^(tu) = Tr^(t2i), and Yi, Zi axe semi-disjoint for all i = 1 , . . . , n. By induction 

^Y-uzMi) = ^ W * 2 * ) ' w h i c h i m P l i e s *Yuz(ti) = TTyuzi^)-
For X = Xi(Xi) © • • • © X n (X; ) assume fx = (Xj : t[) and t2 = (Xj : t'2). 

Thus, for semi-disjoint Y = Xi(Y{)&-• -®Xn{Y^) and Z = Xi(ZJ)©- • © X n ( Z ; ) 
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X' X'- X X ' -
we obtain 7iy/(t'i) = n y ? ^ ) » = 7rz,J(^2)> anc^ ^ a r e semi-disjoint. By j j i i J J 

x' x' ' 
induction 7Ty/uZ' (i'i) = ^Y 'UZ ' ('2)' which implies 7Tyu2(ii) = 7Tyuz(i2)-

For X = ' ' X I X ^ X D © •: • © Xn(X'n)), Y = X(Yi,... ,Yn) with Yt = X^Y/] or 
Yi = X = Y! and Z = X[Xx(Z() © • • • © Xn{Z'n)} we get 7 U Z = X ^ y / U Z{) © 
• • • © Xn(Y^ U Z'n)\. As Z > X[A], we also have 7r^[A](ii) = 7r^[A)(i2), so f i and 
¿2 are lists of equal length. Therefore, assume tj = [ t , i , . . . , i j m ] for j = 1,2 and 

= (Xe : t'jk). This gives T T * ^ ^ ) = [ t ^ , . . . ,t'jm] with t'jk = (Xe : ^juz,(t'Jk)). 
X' x' 

We know 7t2,' (ii'fc) = kz! (¿2 )̂5 so we are done for Ye = X. For Ye ^ X the sublists 
containing all (X* : t"k) coincide on V/. As Y't and Z't are semi-disjoint, we have 
^Yf'uz'^'ik) = ^Y'uzft ' ik) by induction, which implies 7r^uZ(ii) = 7ryuZ(i2). 

For the first list axiom let i i , t 2 € dom(X). Then ^ ^ ( i i ) = 7i"x/(A](^2) m e a n s 

that ii and t2 contain the same number of elements of the form (Xj : vi) with 
i £ I. If the same holds for I U J, then t\ and t2 must also contain the same 
number of elements of the form (Xj : Vi) with i € J , i.e. ""^¡^( i i ) = ^^[x](¿2)-
The soundness of the second list axiom follows from the same argument. 

Analogously, for the third list axiom nyih) = Xy (i2) for Y G 
{X/[A],Xj[A],X/nj[A]} means that t i , t2 contain the same number of elements 
with labels in 7, J and I fl J, respectively. So they also contain the same number 
of elements with labels in ( / — J) U ( J — I). The soundness of the fourth list axiom 
follows from the same argument. 

For the soundness of the list lifting rule let t\,t2 £ dom(X) with ^ [ y j ^ i ) = 
ir*[Y](t2) for all X[Y\ with Y £ y. As y / 0, it follows that £1 and t2 must have 
the same length, say £j = [ i i i , . . . , i«fc] (i = 1,2), and for all j = 1 , . . . , k and all 
Y £ y we have 7Ty ( iy) = 7Ty (i2 j). Hence (tij) = ( t 2 j ) for all j = 1 , . . . , k 
and all Z £ Z, which implies ^[z]^ 1) = ^xizfa) for a i l X \ Z \ w i t h Z € z - T h e 

soundness of the other two lifting rules follows analogously. • 

Using these rules we can derive additional rules: 

• the union rule: X : y - » Z , a n d X : y - > U imply X : y -> Z U It 

,• the fragmentation rule: X : y —> Z implies X : y —» {Z} for Z € Z 

• the join rule: X : {V} —• {Z} implies X : {Y} —• {Y U Z} for semi-disjoint 
Y and Z 

3.2 SHL-Ideals 
In this subsection we investigate ideals. Of particular interest will be ideals with 
additional closure properties, which we call "strong high-level ideals" or SHL-ideals 
for short. These ideals will appear naturally in the completeness proof in the next 
subsection. The main result of this subsection is Theorem 2. 
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Definition 8. An ideal for a nested attribute X is a subset S C S(X) with A G S 
and whenever Y £ 9, Z £ §{X) with Y > Z, then also Z £%. 

Let us now address the closure properties that will turn ideals into "higher-level" 
or "strong higher-level ideals". 

Definition 9. Let X £ N. An ideal 7 C S(X) is called SHL-ideal on S(X) iff the 
following properties are satisfied: 

1. if Y, Z £ 7 are semi-disjoint, then YUZ £ J; 

2. (a) if A/[A] £ 7 and Xj[A] € 7 with I C J, then A] e J ; 

(b) if X / [ A ] £ 7 and X J [ A ] £ 7 with / D J = 0, then X / U J [ A ] € 7-, 
(c) if X/[A] £ 7 and Xj[X] £ 7, then X / n j [A] e 7 iff X ( / _ J ) U ( J _ 7 ) [A] e 7; 

3. if X = X{X[,..., X'n), then the sets 7{ = {Yt £ S(X[) | X(X,..., Yu ..., A) € 
7} are SHL-ideals; 

4. if X = X[X') and 7 £ {A}, then the set S = {Y e S(X') | X[Y] -£ 7} is a 
SHL-ideal; 

5. If X = X j p f i ) ® - • - © X n T O and 7 ± {A}, then the sets 7{ = {Yi £ S(X<) | 
Xi (A) © • • .• © Xi(Yi) © • • • © X„(A) e J } are SHL-ideals. 

We now prove the main result of this subsection. 

Theorem 2. Let X be a nested attribute such that the union-constructor appears 
in X only inside a list-constructor. If 7 is a SHL-ideal on S(X), then there exist 
tuples to,ti £ dom(X) with Wy (io) = ^y (¿i) i f f Y £ 7 . 

Proof. We use induction on X. The case X = A is trivial. For a simple attribute 
X = A we either have 7 = {A} or 7 = {A, A}. In the former case take to = a and 
¿1 = a' for a, a' £ dom(A) with a ^ a'. In the latter case take io = t\ = a. 

Let X = with X[X) $ S(X). Take the SHL-ideals 7{ from 
Definition 9(3). By induction we find t0i,tu £ dom(Xi) with TT^ (¿Oi) = ^y* (¿1») iff 
Yi £ 7i. So take tj = : tjU ... ,Xn : tjn) ( j = 0,1). For Y = X(YU... ,Vn) € 7 
we have n*(t0) = (X} : 7r^l(t01),... ,Xn : tt£"(i0n)) = {Xi : 7 r * l ( i n ) , . . . ,Xn : 
^„"( i in) ) = ny( i i ) . For Y = X(Yi,..., Yn) i 7 there is at least one Y, g 7it 

which g i v e s ( t o ) = № : (t0i),... ,Xn : nfc{t0n)) # № : ir${tn),..., : 
< n ( i m ) ) = 7 r $(h). 

Let X = X[X'\ and assume that X' is not a union attribute. If we have 7 = {A}, 
then take t0 = M with v £ dom(X') and ¿i = Q. For Y = X[Y') £ 7 we get 
TTy (i0) = [tt£'(u)] ± [] = t t£(i i) . For 7 ± {A} take the SHL-ideal 3 from Definition 
9(4). By induction we find t'0,t[ £ dorn(X') with TTf,(t'0) = n f , (t[) iff Y' £ S. 
Let tj = [t'j] for j = 0,1. Then we get TT£(I0) = [TT$'(tf0)] = [*£'(<!)] = TT$(ti) iff 
Y = X[Y'] £ 7. 
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LetX = X[X1(Xi)©---©Xn(X4)]. If 7 = {A}, define t0 = {{Xx : Vl),... ,(Xn : 
vn)} with arbitrary Vi G dom(X'i) and t\ = []. Then we get = (T,. „ , Tj, 

|/| times 

whereas Tr*f{A}(ii) = []• 
Now assume 7 ^ {A}. Take 7+ = {i G { l , . . . , n } | X(X»[A]) G 7} and 

I~ = { l , . . . , n } — 7 + . If 7 + = {iii , . . . , then consider first the subattribute 
X+ = © • • • © By Definition 9(2b) we have X/[A] 6 7 for 
all 7 C /+ . We first construct G dom(X+) with Tr£+(i+) = tt£+(£+) iff 
Y G 7+ = {Y G 7 | X+ > Y}. 

For this take X = X{Xh [X'h}, ...,Xik [Xt'J) and DC = {Y = X(Yh,..., Yik) \ 
Y G 7}. Ignoring restructuring and considering X just as a record attribute, 
7C becomes an SHL-ideal on S(X). Applying the record case above we obtain 
io.ii € dom(X) with (t0) = TT£(ii) iff Y G JC. 

If ii = (tiy i1 , . . . , ii,ik), we may concatenate these lists in the order of the indices 
to define i j and t f , respectively. Then for Y G S(X + ) with X > Y we have 
nY + (¿a) = 7ry + (ii") iff y G 7+. This does not change, if for any j we replace io,t; 

and i i ^ by the concatenated lists io,i3 '"io,tj and ii,ij^io,i3 , respectively. 
Now let K = {ki,...,km} C 1+ be maximal such that XfXfc^Xj^) © ••• © 

Xkm(X'kJ] G 7. Then for k G 7+ - K we must have £ 7, otherwise 
also X[Xfc,(Xjt ) © • • • © Xkm{X'km) © Xk(Xk)\ G 7 due to the semi-disjointness 
of the two subattributes and property 1 in Definition 9. Therefore, K is uniquely 
determined. 

Now, if X№ 1 [y / 1 ] , . . . ,X i ( 1 [y i ' J ) G 7, but X[Xit (y / J © • • • © X ^ ) ) i 7, 
then the uniqueness of K implies X(Xix [X t ' J , . . . , Xifi [X-J) ^ 7. Hence there 
must be some L G with io,t ^ ii ) t . We therefore replace £o,t and ii i t 

by the concatenated lists io,t^£o,t and ii^^io.i., respectively, changing t j and t \ 
accordingly. This gives ^ ^ ^ l e . . . ® ^ ^ ) ] ^ » ) * 7 r x p c i l ( ^ ) e -®x i ( i(^)]( i i") 
without destroying previously established equalities and inequalities. This implies 
Tr£+(i+) = 7 i ( i f ) iff y G 7+ for all y G §(X+) as claimed. 

Now let 7~ = { j i , . . . , je}. We choose non-negative integers Xj, yi (i = 1 , . . . , t) 
such that for each 7 = {jri,..., j r | ; | } C I~ we have 

I'l M 
E 3 ^ = i f f 

P=i P= i 

These integers can be obtained by the following procedure: 
for p = 1,... ,t: 

choose xp, yp such that all equations and inequations containing 
only Xi, yi with 1 < i < p are satisfied; 
replace xp, yp in the remaining equations and inequations by the 
chosen values 

endfor 
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Properties 2(b) and 2(c) in Definition 9 guarantee that this procedure always pro-
duces a solution for the given equations and inequations. Now define 

*o = KXh :vii)»• • •. (Xh vii) 1 a n d ¿i" = [ № i : vh). • • •. (xh vn)\ 
> v ' •> v ' > ' s V ' 

Xj-j-times i j^-t imes y J l - t i m e s i/j^-times 

with arbitrary values Vj{ G dom(X'j.) and concatenate tf and t~ to give ti 
(i = 0,1). Then for Y £ {Y £ $(X) \ X+ > Y} we have i(T¿) - TT£(«+), hence 
ir£(to) = iff Y € 7+. 

For Y £X+ we always have one j G I~ with Y > X(X,[A]) or Y = X/[A]. In 
the first case Y ^ 7 and 

^(XjIad^O) = TTxix^AD^o ) ^ ""xix^AD^r) = 7rX(XJ [A])(íl) 

as desired. In the second case 7TY (ío) = TT* (íi) iff 7r£ _ [AĴ O ) = _ [A] 
iff X / n / - [A] G 7 iff y = X/[A] G J due to property"2(a) of Definition 9 and 
Xmi+[X}e7. • 

3.3 Completeness of the Axioms and Rules for Functional 
Dependencies 

In this final subsection we want to show that the axioms and rules from Theorem 
1 are also complete. This gives our main result. 

Before we come to the proof let us make a little observation on the union-
constructor. If X = Xi(XJ) © • • • © Xn(Xn), then each instance r of X can be 
partitioned into r¡ (¿ = 1 , . . . , n), where r¿ contains exactly the .^-labelled elements 
of r. Then r satisfies a FD ip = y —> Z iff each r¿ satisfies the z'th projection <pi of 
ip, which results by replacing all subattributes Y = X\(Yj) © • • • © Xn{Yn) in y or 
Z by Xi(Yi). Similarly, we see ip G £ + iff ipi G for all i = 1 , . . . , n. 

Theorem 3. The axioms and rules in Theorem 1 are complete for the implication 
of FDs. 

Proof. Assume y —• Z £ E + . Due to the union rule we must have y —> {Zj £ £+ 

for some Z G Z. Now take y = {Z \ y —> {Z} G £+}, so Z $y. It is easy to see 
that 7 = y is a SHL-ideal: 

1. A G y follows from the refiexivity axiom, the subattribute axiom and the 
transitivity rule. 

2. In the same way for Z G y and Z >Z' we get Z' G 9 from the subattribute 
axiom and the transitivity rule. 

3. For semi-disjoint Z, Z' G 9 we obtain ZUZ' G 9 from the union rule, the join 
axiom and the transitivity rule. 
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4. The other properties of SHL-ideals follow directly from the list axioms and 
the lifting rules. 

If the outermost constructor is not the union-constructor, we can apply Theorem 
2 to obtain an instance r = { i i , i 2} with ^ ' ( i j ) = (i2) iff Z £ 9- As V C y and 
Z £ y, we must have r y —> {Z} and thus also r y —> Z due to the soundness 
of the fragmentation rule. 

If the outermost constructor is the union-constructor, say X = Xi(XJ) © • • • © 
Xn(X4) and thus Z ~ Xi(Zx) © ••• © Xn(Zn), we find some i with Zt (£ J j . 
Otherwise all Xx(A) © • • • © Xi(Zi) © • • • © Xn(X) £ 3", and as these attributes are 
all semi-disjoint, we would obtain Z £ too, which contradicts our assumptions. 

Apply the Theorem 2 to X[ and J j , which gives tn,ti2 £ dom(X'i) with 
T r $( t„ ) = 7r£'(ii2) iff Yi £ Ji. Take r = {(Xi .: i a ) , № : ti2)}. For Y £ y 
we get 

7r$((X t : t«)) = (Xi : 7r^(ii j)) = (Xf : t t£ '( t i a)) = tt?((X* : ti2)) 

and on the other hand 

7$((Xi : til)) = (Xi : *${tii)) + (Xi : t t g ( t a ) ) = 7rf ((Xi : i i 2)) , 

i.e. r ^ V —» {Z} and thus also r Z follows also in this case. 
In order to complete the proof we have to show r j= E. Let X ' : V —> W £ E. 

Applying only the lifting rules we obtain X : V* —• W* £ E + . We either have V* C 
y or not. In the first case we obtain y —* V* £ £ + and thus also y —> W* £ E + , 
which implies W* C y. This gives itjy(ii) = 7r$(i2) for all_W € W* and hence 
r (X') f= V W. If V* ^ y, then there is some V £ V* - y, for which we must 
have 7r£(ti) ^ ?r^(i2). This implies also r(X') |= V W. • 

4 Conclusion 
In this article we extended our theory of functional dependencies for higher-order 
data models and presented an axiomatisation for functional dependencies over XML 
documents. The approach is based on a representation of XML document type 
definitions (or XML schemata) by nested attributes using constructors for records, 
disjoint unions and lists, and a particular null value, which covers optionality. The 
list-constructor is used to represent the Kleene-star in regular expressions in XML 
element definitions. 

In order to fully capture functional dependencies over XML documents we ex-
tended our previous work in two major directions. We introduced rational tree 
attributes, which result from reference structures in XML documents. This led to 
infinite subattribute lattices, but did not affect the derivation of dependencies. This 
is the first time that the investigation of functional dependencies for XML did not 
neglect references. Furthermore, we considered functional dependencies on embed-
ded elements. These dependencies can be lifted through the constructors, i.e. they 



170 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe 

induce functional dependencies on complete XML documents. Such dependencies 
have not been considered in previous work. 

Using a partial order on nested attributes we obtain the structure of non-
distributive Brouwer algebras. The operations of the Brouwer algebra are exploited 
in the soundness and completeness proofs for derivation rules for functional depen-
dencies. 

In our theory it is also possible to use the multiset- or set-constructor instead 
of the list-constructor, thus neglecting order or duplicates. We may also treat all 
three "bulk" constructors together. These extensions had to be left out in this 
article. A glimpse of the necessary extensions for the other two bulk constructors 
can be obtained from [10]. 

Natural next steps in the development of a fully satisfying dependency theory 
for XML will be the generalisation to other classes of dependencies, e.g. multi-
valued or join dependencies, the investigation of efficient closure algorithms, and 
the study of normal forms [15] that provably characterise desirable properties of 
well-designed XML documents. First steps in this direction are the normal forms 
introduced in [3], [8], and [17]. 
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Some Results Related to Dense Families of 
Database Relations 

Vu Due Thi* and Nguyen Hoang Son1' 

Abstract 

The dense families of database relations were introduced by Jarvinen [7]. 
The aim of this paper is to investigate some new properties of dense families 
of database relations, and their applications. That is, we characterize func-
tional dependencies and minimal keys in terms of dense families. We give a 
necessary and sufficient condition for an abitrary family to be R— dense fam-
ily. We prove that with a given relation R the equality set ER is an R—dense 
family whose size is at most where TO is the number of tuples in R. 
We also prove tha t the set of all minimal keys of relation R is the transversal 
hypergraph of the complement of the equality set ER. We give an effective 
algorithm finding all minimal keys of a given relation R. We aslo give an algo-
rithm which from a given relation R finds a cover of functional dependencies 
that holds in R. The complexity of these algorithms is also esimated. 

1 Basic definitions 
In this section we present briefly the main concepts of the theory of relational 
databases which will be needed in sequel. The concepts and facts given in this 
section can be found in [1, 3, 4, 8, 9]. 

Let U be a finite set of attributes (e.g. name, age etc). The elements of U will 
be denoted by a, b, c,..., x, y, z, if an ordering on U is needed, by a i , . . . , a„. A 
map dom associates with each a £ U its domain dom(a). A relation R over U is a 
subset, of Cartesian product rLec/ dom(a). 

We can think of a relation R over U as being a set of tuples: R = { / i i , . . . , hm}, 

hi : U —> (^J dom(a), hi(a) £ dom(a), i = 1,2,..., m. 
a€U 

A functional dependency (FD for short) is a statement of form X —> Y, where 
X, Y C U. The FD X —>Y holds in a relation R = {hu • • •, hm} over U if 

{\/hi,hj £ i?)((Va 6 X)(hi(a) = h^a)) (V6 e Y)(hi(b) = hj(b))). 

'Institute of Information Technology, Vietnamese Academy of Science and Technology, 18 
Hoang Quoc Viet, Hanoi, Vietnam. 

t Department of Mathematics, College of Sciences, Hue University, Vietnam. 
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We also say that R satisfies the FD X —> Y. 
Let FN be a family of all FDs that holds in R. Then F = FR satisfies 

(Fl) X X £ F , 

(F2) ( X Y £ F , Y - » Z £ F ) => { X - Z £ F ) , . 

( F 3 ) ( X - > Y £ F , X C V , W C Y ) = > ( V - * W £ F ) , 

(F4) (X -> Y G F , V - * W G F ) =» { X U V — Y U W G f ) . 

A family of FDs satisfying (Fl) - (F4) is called an f — family over U. 
Clearly, FA is an /-family over U. It is known [1] that if F is an arbitrary/-

family, then there is a relation R over U such that FR = F. 
Given a family F of FDs over U, there exists a unique minimal /-family F+ 

that contains F. It can be seen that contains all,FDs which can ¡be derived 
from F by the rules (Fl) - (F4). - • • -

A relation scheme s is a pair (¡7, F), where U is a set of attributes and F is a 
set of FDs over U. • "-' 

Let U be a nonempty finite set and V(U) its power set.. The mapping C : 
V(U) —> ~P(U) is called a closure operation over U if 'it satisfies the following 
conditions: . . . . , . . . • 

( 1 ) X c c ( X ) , . 

(2) X C Y implies C(X) C C(Y), ' 
(3) c(c(x))=ax). . 

Remark 1.1. It is clear that, if F is an /— family, and we define CF{X) as 

C F { X ) = {a G U : X {a} G F } 

then CF is a closure operation over U. Conversely, it is.known [1,-3] that if £ is a 
closure operation, then there is exactly one /— family F over U so that £ = CF, 
where 

F = { X - + Y : X , Y C U , Y C £(X)}. 

Thus, there is a one-to-one correspondence between closure operations arid /— 
families over U. 1 

Let R be a relation over U and K C U. Then K.is a key of R if K —> U G FR. 
K is a minimal key of R if K is a key of R and any proper subset of K is not a key 
of R . 

Denote KR the set of all minimal keys of R. • 
Let I C V(U), U G I, and A, B € I => Ail B G I. I is called a meet-seiiiilattice 

over U. Let M C V(U). Denote M + = {flM' : M' C M}. We say that M is a 
generator of I if M+ = I. Note that U G M+ but'riot in Ai, by convention it is 
the intersection of the empty collection of sets. 

Denote N = {A G I : A ± n{A' G7 : A C A'}}. It can be seen that AT is the 
unique minimal generator of I . 
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2 Hypergraphs and Transversals 
Let U be a nonempty finite set and put V(U) for the family of all subsets of U. 
The family Tí = {Ei : Ei G V(JJ), i = 1 ,2 , . . . , m} is called a hypergraph over U if 
Ei 0 holds for all i (in [2] it is required that the union of EiS is U, in this paper 
we do not require this). 

The elements of U are called vertices, and the sets Ei,..., Em the edges of the 
hypergraph TL. 

A hypergraph TL is called simple if it satisfies VJ5¿, Ej € TL : Et Ç Ej Ei = Ej. 
It can be seen that KR is a simple hypergraph. 

Let H be a hypergraph over U. Then min(TL) denotes the set of minimal edges 
of Tí with respect to set inclusion, i.e., minÇH) = {Ei £ TL : flEj e Tí : Ej C i?¿}, 
and max(TL) denotes the set of maximal edges of Tí with respect to set inclusion, 
i.e., max(TL) = {Ei&TÍ :flEj 6 TL : Ej D Sti-

lt is clear that, min(Ti) and max(Ti) are simple hypergraphs. Furthermore, 
min(Ti) and max(TL) are uniquely determined by TL. 

A set T Ç U is called a transversal of Tí (sometimes it is called hitting set) if it 
meets all edges of Tí, i.e., VE 6 H : T n £ j ¿ 0 . Denote by Trs(H) the family of all 
transversals of TL. A transversal T of TL is called minimal if no proper subset T' of 
T is a transversal. 

The family of all minimal transversals of TL called the transversal hypergraph 
of TL, and denoted by Tr(TL). Clearly, Tr(TL) is a simple hypergraph. 

Proposition 2.1 ([2]). Let TL and G two simple hypergraphs over U. Then 

(1) H = Tr(Q) if and only if Q = Tr(TL), 
(2) Tr(Ti) = Tr(Q) if and only ifTL = G, 
(3) Tr(Tr(TL)) = H. 

By the definition of minimal transversal, the following proposition is obvious 

Proposition 2.2. Let Tí be a hypergraph over U. Then 

Tr(TL) = Tr(min(TL)). 

The following algorithm finds the family of all minimal transversals of a given 
hypergraph (by induction). 

Algorithm 2.3 ([5]). 

Input: let TL = {E\,..., Em} be a hypergraph over U. 

Output: Tr(TL). 

Method: 

Step 0. We set Lx {{a} : a G Ex}. It is obvious that Lx = Tr({Ex}). 
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Step q+1. (q < m) Assume that 

Lq = Sq U {Bi,.. .,Btq}, 

where Bi h Eq+i = 0, i = 1 , . . . , tq and Sq = {A G Lq : A n Eq+X ^ 0}. 

For each i (i = 1 , . . . , tq) constructs the set {Bi U {6} : b G Denote them 
by A\,..., Aj..(i = 1 , . . . , tq). Let 

Lq+1 = U {Aj,: A G Sq => A £ A*, 1 < i < tq, 1 < p < n} . 

Theorem 2.4 ([5]). For every q(l < q < m)Lq = Tr({Ei,... ,Eq}), i.e., Lm = 
Tr(H). 

It can be seen that the determination of Tr(T-L) based on our algorithm does 
not depend on the order of E\,..., Em. 

Remark 2.5. Denote Lq = Sq U {B\,... ,Btl)}, and lq( 1 < q < m — 1) be the 
number of elements of Lq. It can be seen that the worst-case time complexity of 
our algorithm is 

m—1 

<7=0 

where IQ = io = 1 and 

{ lq tq, if lq ^ tq', 

1, if = tq. 
Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known 

that the size of arbitrary simple hypergraph over U cannot be greater than C ^ 2 ' , 
where n = \U\. Ct/2] is asymptotically equal to 2 n + 1 /2/(7 r .n) i /2 

From this, the 
worst-case time complexity of our algorithm cannot be more than exponential in the 
number of attributes. In cases for which lq < lm(q = 1 ,...,m — 1), it is easy to see 
that the time complexity of our algorithm is not greater than 0(|{/|2 |W||Tr(W)|2). 
Thus, in these cases this algorithm finds Tr(H) in polynomial time in \U\, \H\ and 
\Tr(H)\. Obviously, if the number of elements of 7i is small, then this algorithm is 
very effective. It only requires polynomial time in |iZ|. The following proposition is obvious 

Proposition 2.6 ([5]). The time complexity of finding Tr(7i) of a given hypergraph 
Ti is (in general) exponential in the number of elements ofU. 

Proposition 2.6 is still true for a simple hypergraph. 
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3 Dense Families 
Let V C V(U) be a family of subsets of a U. We define a set Fv over V as follows 

Fv = {X Y : (VA € V)X CA=>YCA}. 

Proposition 3.1 ([7]). IfV is a family of subsets of a finite set U, then i*x> is an 
f— family over U. 

The notion of dense family of a database relation is defined in [7], as follows: 
Let R be a relation over U. We say that a family V C V(U) of attribute sets is 

R — dense (or dense in R) if FR = FX>. 
The following proposition guarantees the existence of at least one dense family. 

In the sequel we denote CFr simply by CR. 

Proposition 3.2 ([7]). The family CR is R—dense. 

Proposition 3.3 ([7]). IFD is R-dense, then V C CR. 

Note that by Proposition 3.2 and Proposition 3.3, CR is the greatest R—dense 
family. 

For any A C U, we denote by A the complement of A with respect to the set 
U, that is, A = {a £ U : a g A}. 

Theorem 3.4 ([7]). Let R be a relation over U. If T> C V(U) is R—dense, then 
the following conditions hold 

(1) K is a key of R if and only if it contains an element from each set in 
{A:AeV,A^U}. 

(2) K is a minimal key of R if and only if it minimal with respect to the property 
of containing an element from each set in {A : A £ V,A ^ U}. 

Let U be a finite set and V(U) its power set. For every family V C V(U), the 
complement family of V is the family V — {A : A € T>) over U. 

Let R = {hi,..., hm} be a relation over U, and ER the equality set of R, i.e., 

E R = { E I J : 1 < i < j < to} 

where E^ = {a £U : hi(a) = hj(a)}. 
Proposition 3.5. The equality set ER is R— dense. 

Proof. Assume that X —> Y € FR. Let E^ £ ER such that X C EIJ. This means 
that hi(X) = hj(X). From this, and according to the definition of FDs, we have 
hi(Y) = hj(Y). Thus, Y C ETJ. By the definition of FER, that is, 

F E R = { X ^ Y : ( V E I J e E R ) X C E T J =• Y C E ^ } , 

we obtain X —• Y £ FEr. 
Conversely, let X —> Y £ Fer. Suppose that there are hi,hj £ R such that 

hi(X) = hj(X), 1 < i < j < TO. Which means that X C E^. By X -» Y £ FER, 
Y C E^. Hence, we also obtain hi(Y) = hj(Y). Consequently, X —• Y £ FR. 

The proposition is proved. • 
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It is easy to see that the dense family ER has at most ^ elements. By 
Proposition 3.3, we also have ER Ç CR. 

Theorem 3.6. Let R be a relation over U. Then 

KR = Tr{min{ER)). 

Proof. By the definition of relation R, we have U & ER. Prom this, Proposition 
2.2, Proposition 3.5 and Theorem 3.4, the theorem is obvious. 

The proof is complete. • 

Let R = { / i i , . . . , hm} be a relation over U, and NR the nonequality set of R, 
i.e., 

N R = { N I J : 1 < i < j < M } 

where N^ = {a e U : hi(a) ^ hj(a)}. 
Note that, because R is a relation, 0 0 NR and U £ ER. Moreover, NR = ER. 

Prom this, and Theorem 3.6, the following corollary is immediate 

Corollary 3.7. Let R be a relation over U. Then 

KR = Tr{min{NR)). 

Corollary 3.7 was shown in [5]. 

Proposition 3.8. IfDis R— dense, then 

minÇD - {0}) = max(ER). 

Proof. According to Theorem 3.6, we have KR = Tr{ER). By Proposition 2.2, it 
is clear that 

KR = Tr(max{ER)). (1) 

Because V is R— dense, and by Theorem 3.4, we have K R = Tr(T> — {0}). Fur-
thermore, we have 

Tr(D - {0}) = Tr(min{V - {0})). 

Hence 
KR = Tr(min(p-{%})). (2) 

From (1) and (2), we give 

Tr(min(V - {0})) = Tr(max(ER)). 

By min(D — {0}) and max{ER) are simple hypergraphs, thus according to Propo-
sition 2.1 we have 

min(V - {0}) = max{ER). 

The proposition is proved. • 

From Proposition 3.8, the following corollary is clear 
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Corollary 3.9. IfDis R— dense, then 

min(D - {0}) - min(Nii). 

Now we give a necessary and sufficient condition for an arbitrary family V is 
R— dense. 

Theorem 3.10. Let R be a relation, T> C V(U) a family of subsets of a U. Then 
V is R— dense i f f for every X C U 

[ n A if 3A G V : X C A, 
CR(X) = I XCA 

I U otherwise, 

where CR{X) = {a G U : X -> {a} G FR). 

Proof. First we prove that in an arbitrary family V C. V(U) for all X C U 

i f | A if 3A G V : X C A, 
CFj>{X)=IXCA 

I U otherwise. 

Suppose that X is a set such that there is no A G V with X C A. By the 
definition of F-p, it is easy to see that X —• U G Fp. Hence, Cft,{X) = U. 

Since 0 C C\A£V A Q A, according to the definition of F-p and we obtain 

cF„m= n A. 
A€V 

If X £ 0 and there is an A G V such tha t X C A then we set 

Q = {A-.XQA,A£V), 

B = f l A 

It is easy to see that X C B holds. If Q = D or Q ^ V, then we also obtain 
X B G Ft,. 

By the definition of CFr>, we have B C CFv(X). Using X C B C CFt>(X), we 
obtain B CF„(X) G Fv. 

Now we suppose that b is an attribute such that b g B. Then, there is A G Q 
so that b $ A. Hence, by the definition of Fv we have B —> B U {6} £ F-p. 
Consequently, 

Aev 
By Remark 1.1 it is easy to see that FR = F-p holds iff C R = C F J 3 does. 
The Theorem is proved. • 
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Prom Theorem 3.10 and Proposition 3.5, the following proposition is obvious 

Proposition 3.11. Let R = {hi,..., hm} be a relation over U = { a i , . . . , On}. 
Then 

(1) IFV is R— dense, then V U {U} also is R-dense, and thus ER U {t/} is 
R—dense. 

(2) If m = 1 or FR = {{ai} -» f / , . . . , {a„} U}, then families VX = 0, 
X>2 = {0} and V3 = {U} are R—denses. 

4 Finding the set of all minimal keys of a relation 
In this section, we give the following algorithm finding all minimal keys of a given 
relation R. Remember that this problem is inherently exponential in the size of R 
[4]. 

Algorithm 4.1. 

Input: a relation R = {hi,..., hm} over U. 

Output: KR. 

Method: 

Step 1. Construct the equality set 

E R = { E I J : 1 < i < j < m} 

where E^ = {a € U : hi(a) = hj(a)}. 

Step 2. Compute the complement of ER as follows 

ER = {Eij : E^ 6 E R } . 

Denote elements of ER by NI, ... ,NK 

Step 3. From E^ compute the family min(ËR) = {Ni € T Ï R : fiNj £~ËR : Ni Ç 
Nj). _ 
Step 4• By Algorithm 2.3 we construct the set Тг{тт{Ед)). 

Based on Proposition 2.2, Algorithm 2.3 and Theorem 3.6, we have KR = 
Tr{min{ER)). It can be seen that the time complexity of this algorithm is the 
time complexity of Algorithm 2.3. In many cases this algorithm is very effective 
(see Remark 2.5). 

It can be seen that, if the number of elements of the equality set ER is constant, 
i.e. < К for some constant K, then the time complexity of finding KR of a 
given relation R is polynomial time [9]. 

The following example shows that for a given relation R, Algorithm 4.1 can be 
applied to find all minimal keys of a given relation R. 
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Example 4.2. Let us consider the relation R over U = {a, b, c, d} as follows 

a b e d 
0 0 0 0 
0 0 0 1 

R=2 0 0 0 
3 3 0 0 
4 0 4 4 
5 5 5 0 

It can be seen that the equality set ER is the following 
E R = {0, {6}, {c}, {d}, {b, c}, {c, d}, {a, b, c}, {b, c, d}}. 

Hence 
ER =J{a} , {d}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {a, c, d}, U}, 
min(ER) = {{a},{d}}. 

Prom this, we obtain 
KR = {{a,d}}. 

5 Finding the cover of a relation 
Prom Proposition 3.5 and Theorem 3.10 we have an application, which is the fol-
lowing algorithm finding a cover of FDs of a given relation R. Recall that this 
problem is inherently exponential in the size of R [6]. 

Algorithm 5.1. 
Input: a relation R = { / i i , . . . , hm} over U. 
Output: FR. 
Method: 

Step 1. Construct the equality set 

E R = { E I J : 1 < i < j < M } 

where Eij = {a & U : hi(a) = hj(a)}. 
Step 2. Compute the family Er = {nA : A C ER}. Denote the elements of E^ by 
Xi,... ,Xt. 
Step 3. Construct set of FDs as follows 

F = {Ki -» Xx : Kx € Key(Xi)} U • • • U {Kt^Xf.Kt& Key(Xt)} 

where Key(Xi) is a set of all minimal keys of IIx; (R) (the projection of R onto the 
attributes set Xi). 

Obviously, F — FR. Note that CR = E^. It is easy to see that the time 
complexity of this algorithm is exponential in the number of attributes. 

The following example shows that for a given relation R, Algorithm 5.1 can be 
applied to find a cover of a given relation R. 

i' 
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E x a m p l e 5.2. R is the following relation over U = {a, b, c, d} 

a b c 
0 0 0 

R~o 1 0 
1 1 0 

It can be seen that the equality set ER is the following 
ER = {{c},{a,c},{6,c}}. 

Therefore 
E+ = {{c},{a,c},{b,c},U}. 

From this, we have 
F= {M - M, {b} - {c}, {a, 6} - {c}}. 

It is obvious that F = FR. 
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