
Volume 17 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: J. Csirik (Hungary)

Managing Editor: Z. Fülöp (Hungary)

Assistant to the Managing Editor: B. Tóth (Hungary)

Editors: L. Aceto (Denmark), M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender
(The Netherlands), W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland),
B. Courcel le (France), J. Demetrovics (Hungary), B. Dömölki (Hungary),
J. Engelfriet (The Netherlands), Z. Esik (Hungary), F. Gécseg (Hungary), J. Gruska
(Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 2005

ACTA C Y B E R N E T I C A

In fo rma t ion for au tho r s . Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and can be submitted by post or by email
directly to the most competent Editor in the field covered by the paper (the Editor-
in-Chief and the Managing Editor should be considered as an Editor). If submitting
by email, use a printable form (ps or pdf) as an attachment to the email. The email
addresses of the Editors can be found in the Acta Cybernetica home page. On
the first page, the title of the paper, the name(s) and affiliation(s), together with
the mailing and electronic address(es) of the author(s) must appear. An abstract
summarizing the results of the paper is also required. References should be listed
in alphabetical order at the end of the paper in the form which can be seen in any
article already published in the journal. Manuscripts are expected to be made with
a great care. If typewritten, they should be typed double-spaced on one side of
each sheet. Authors are encouraged to use any available dialect of T^X.

After acceptance, the authors will be asked to send the manuscript's source T̂ ^X
file, if any, on a diskette to the Managing Editor. Having the TgjX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Pub l i ca t ion in format ion . Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the University of Szeged, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
2005 Numbers 1-2 of Volume 17 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests
for subscription information to: Department of Informatics, University of Szeged,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-546-396, Fax:(36)-(62)-546-
397.

U R L access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/kutatas/actacybernetica/.

EDITORIAL B O A R D

Editor-in-Chief: J. Csirik
University of Szeged
Department of Computer Algorithms
and Artificial Intelligence
Szeged, Árpád tér 2.
H-6720 Hungary

Managing Editor: Z. Fülöp
University of Szeged
Department of Foundations of
Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Assistant to the Managing Editor:

B. Tóth
University of Szeged
Research Group on
Artificial Intelligence
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

L. Aceto
Distributed Systems and Semantics Unit
Department of Computer Science
Aalborg University
Fr. Bajersvej 7E
9220 Aalborg East, Denmark

M. Arató
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

F. Gécseg
University of Szeged
Department of Computer Algorithms
and Artificial Intelligence
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
University of Szeged
Department of Applied Informatics
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

I

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51.
CH-3012 Bern, Switzerland

B. Courcelle
Universite Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, Lágymányosi u. 11.
H - l l l l Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
LIACS
P.O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Esik
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

L. Lovász
Eötvös Loránd University
Department of Computer Science
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A. Prékopa
Eötvös Loránd University
Department of Operations Research
Budapest, Kecskeméti u. 10-12.
H-1053Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Department of General Computer Science
Budapest, Pázmány Péter sétány 1 /c.
H-1117Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Department of Matematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

Acta Cybernetica 17 (2005) 1-10.

On regular languages determined by
nondeterministic directable automata*

Balázs Imreh* and Masami Ito*

Abstract

It is known that the languages consisting of directing words of determinis-
tic and nondeterministic automata are regular. Here these classes of regular
languages are studied and compared. By introducing further three classes of
regular languages, it is proved that the 8 classes considered form a semilattice
with respect to intersection.

1 Introduction
We recall that an input word of an automaton is called directing or synchronizing
if it brings the automaton from every state into the same state. An automaton is
directable if it has a directing word. The directable automata and directing words
have been studied from different points of view (see [2, 3, 5, 6, 7, 8, 10, 12, 13], for
example). For nondeterministic (n.d.) automata, the directability can be defined
in several ways. We study here three notions of directability which are defined in
[7] as follows. An input word w of an n.d. automaton A is

(1) Dl-directing if the set of states aw in which A may be after reading w
consists of the same single state c whatever the initial state a is;

(2) D2-directing if the set aw is independent of the initial state a;

(3) D3-directing if there exists a state c included in all sets aw.

We mention that Dl-directability of complete n.d. automata was already stud-
ied by Burkhard [1], where he gave an exact exponential bound for the length of
minimum-length Dl-directing words of complete n.d. automata. In [5], classes of
languages consisting of directing words of different types of n.d. automata were
studied. Here, we extend our investigations to three further classes of languages
and present some of their properties. The paper is organized as follows. The next

'This work has been supported by the Japanese Ministry of Education, Mombusho Interna-
tiona] Scientific Research Program, Joint Research 10044098 and the Hungarian National Foun-
dation for Scientific Research, Grant T037258.

tDept. of Informatics, University, of Szeged, Árpád tér 2, H-6720 Szeged, Hungary
^ Dept. of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan

1

2 Ba.la.zs Imreh and Masami Ito

section provides general preliminaries, the formal definitions of the above language
classes and some earlier results. Finally, Section 3 presents some new properties of
the language families considered, in particular, it is proved that they constitute a
semilattice with respect to intersection.

2 Preliminaries
Let X be a finite nonempty alphabet. As usual the set of all (finite) words over X
is denoted by X* and the empty word by e. The length of a word w is denoted by
M .

By a (deterministic) automaton we mean a triplet A = (A, X, 8), where A is
a finite nonempty set of states, X is the input alphabet, and 6 : A x X —+ A is
the transition function. This function can be extended to A x X* in the usual
way. By a recognizer we mean a system A = (A, X, 6, ao, F), where (A, X, 6) is an
automaton, ao(£ A) is the initial state, and F(C A) is the set of final states. The
language recognized by A is the set

i,(A) = { w e ; r :«5(a0 ,w)eF}.

A language is called recognizable, or regular, if it is recognized by some recognizer.
Sometimes, we say that the recognizer A accepts the language L(A).

An automaton A = (A, X, ¿) can also be defined as a unary algebra A =
(A, X) for which each input letter x is realized as the unary operation xA : A —>
A, a H-» S(a,x). Now, nondeterministic automata can be introduced as generalized
automata in which the unary operations are replaced by binary relations. Therefore,
by a nondeterministic (n.d.) automaton we mean a system A = (A, X) where A
is a finite nonempty set of states, X is the set of the input signs (or letters), and
each sign X(G X) is realized as a binary relation xA(C A x A) on A. For any a € A
and I 6 X, we define axA = {b G A : (a, b) G xA}. Thus, axA is the set of states
into which A may enter from state a by reading the input letter x. For any CCA
and x € X, we set CxA = IJjax"4 : a G C}. This transition can be extended to
arbitrary w G X* and CCA. CwA is obtained inductively by

(1) Ce = C,
(2) CwA = (CvA)xA for w = vx, x G X, w G X*.

An n.d. automaton A = (A, X) is called complete, or c.n.d. automaton, if axA ^
0, for all a G A and x G X.

The notion of the directability of deterministic automata can be generalized to
n.d. automata in several ways. The following three definitions are taken from [7].
Let A = (A,X) be an n.d. automaton. For any word w £ X* we consider the
following three conditions:

(Dl) (3c G A)(Va G A)(awA = {c});
(D2) (Va, 6 G A){awA = bwA)\
(D3) (3c G J4)(VO G A)(c G awA).

On regular languages determined by nondeterministic directable automata 3

If w satisfies condition (Di), then w is called a Di-directing word of A (i = 1,2,3).
For every i, i = 1,2,3, the set of Di-directing words of A is denoted by Dj(.4),
and A is called Di-directable if D»(.4) / 0. It is proved (see [7]) that Dj(«4) is
recognizable, for every n.d. automaton A and i, i = 1,2,3. The classes of Di-
directable n.d. automata and c.n.d. automata are denoted by Dir(i) and CDir(i),
respectively.

Now, we can define the following classes of languages: For i = 1,2,3, let

¿ND(i) = {Di(«4) = -A. G Dir(i)} and £CND(i) = {Di(-A) : A G CDir(*)}.

Finally, let D denote the class of directable deterministic automata, and for any
A G D, let D(.4) be the set of directing words of A. Moreover, let

£d = {D(^) : A G D}.

Since all of the languages occuring in the definitions above are recognizable, the
defined classes are subclasses of the class of the regular languages.

In what follows, we need the following definition. For any language L Ç X*, let
us denote by Pr(L) the set of all prefixes of the words in L, i.e., Pr(L) = {u : u G
X* & (3w G X*)(uv G L)}.

Now, we recall some results from [5] and [7] which are used in the following
section.

Lemma 1 ([7]). For any n.d. automaton A = (A,X), D2(.4).X'* = D2(.A). If A
is complete, then X*Di(.4) = Di (^) , X*D2(A)X* = D2(.A), and X*D3(>l)X* =
D3(-4).

Proposition 1 ([5]). For a language L Ç X*, L G £d if and only if L 0, L is
regular, and X*LX* = L.

Proposition 2 ([5]). £CND (2) = £ D , -CCND(3) = £ D , ^ C N D (I) N ^ N D (2) = ^ D , AND

£ C N D (I) N £ND(3) =

Furthermore, we need the following proper inclusions from [5].

Remark 1 ([5]). The following proper inclusions are valid:

(a) Co c £ C N D (I) C £ND(I)>

(b) £ D C £ N D (2) ;
i

(c) £ D C £ND (3) -

By Proposition 2, £CND (3) — £CND (2) = £DI and thus, we shall investigate
the remaining 5 classes and three more defined as follows. Languages L Ç X*
satisfying X*L = L are called ultimate definite {cf. [9] or [11]), and we shall consider
the subclass U which consists of all the regular ultimate definite languages. The
second class, denoted by £', contains all the nonempty regular languages satisfying
Pr{L)LX* = L. Finally, we shall also considér the class £ N D (I) £ND (3)-

4 Ba.la.zs Imreh and Masami Ito

3 Some observations on languages of directing
words of n.d. automata

First we consider the classes U and £ND(I) - It IS known (see [5]) that £CND(I) C U.
£CND(I) C £ND(I) by Remark 1. The following assertion shows that £CND(I) IS the
intersection of these two wider classes.

Proposition 3. £CND(I) = £ N D (I) F W.

Proof. As we mentioned, £CND(I) IS contained in both U and £ N D (I) - Therefore, it
is sufficient to show that £ND(I) NW Ç £CND(I)- For this reason, let L G £ND(I)
Then, there exists a nondeterministic Dl-directable automaton A — (A, X) such
that L = D\(A). We show that A is a complete n.d. automaton. In order to
obtain a contradiction, let us assume that there are a ' G A and x G X such that
a'xA = 0. Let p G L be arbitrary and consider the word xp. Since L Ç.U, we have
X*L = L, and therefore, xp G L, i.e., xp is a Dl-directing word. Thus, there exists
a state a G A such that a(xp)A = {â}, for all a G A. In particular, a'(xp)A = {â}
which is a contradiction. Consequently, A is a complete n.d. automaton, and thus,
L G £CND(I)- E

Using Propositions 1 and 2, by the same argument as in the proof of Proposition
3, one can prove the following statement.

Proposition 4. £ND(2) N W = £ D and £ND(3) HW = £ D -

By the definitions, one can easily prove the following:

Lemma 2. If L G £ND(3)> then Pr(L)L = L and LPr(L) = L.

Lemma 3. If L G £ND(I)> then Pr(L)L = L.

Now, we show that £ND(I) and £ND (3) ARE incomparable. To this aim, let us
consider the following examples.

Example 1. Let us define the n.d. automaton A = ({1,2},{X,y}) by xA =
{(1,1), (1,2), (2,1), (2,2)} and yA = {(1,2), (2,2)}.

Then, A is Dl-directable and Di(^4) = X*y. Now, let us suppose that X'y G
£ND(3)- Since y,xy G X*y and x G Pr{X*y), by Lemma 2, we have that yx G X*y
which is a contradiction. Therefore, £ND(I) 2 £ND(3)-

Example 2. Let A = ({1,2}, {x, y}) be the n.d. automaton for which xA =
{(1,2), (2,1), (2,2)} and ^ = {(1,1)}.

Now, A is D3-directable and x,x2y G Da(.A) while xy £ D3(^4). Let us suppose
that D3(.A) G £ND(I)- Then, there exists an n.d. automaton B = (B,X) such that
D3(.4) = Di(B). In this case, x and x2y are Dl-directing words of B, and thus,
there axe states c,d G B such that bxB = {c}, for all b G B, in particular cxB = {c},
and b(x2y)B = {d} for all b € B. Then, it is easy to see that b(xy)B = {d}, for all
6 G B, and hence, xy G Di(B) = Ds(.4) must hold, which is a contradiction since
xy & D3(^4). Consequently, £ N D (3) 2 £ND(I) -

On regular languages determined by nondeterministic directable automata 5

Regarding the class £ ' defined by property Pr(L)LX* = L, where L C X* is a
nonempty regular language, the following assertion is valid.

Proposition 5. £' = £ND(2) H £ND(3) •

Proof. To prove the inclusion £ND (2) N £ND (3) Q £ ' , let us suppose that L G
£ND (2) H £ND(3) • Since both classes, £ND (2) and £ND (3) I contain nonempty regular
languages (cf. [7]), L is nonempty and regular. Since L € £ND(2)> by Lemma
1, LX* = L. On the other hand, by Lemma 2, from L € £ND(3) it follows that
Pr(L)L = L. Therefore, Pr{L)LX* = L, and thus, L € £'.

In order to prove the inclusion £ ' C £ND(2) H £ND(3)> LET L G £ ' . Then, L is a
nonempty regular language with Pr(L)LX* — L. Since L is regular, there exists
a minimal recognizer (A, X, 6, ao, F) recognizing L. By our assumption, LX* = L,
and hence, by the minimality of the recognizer, we have that F = { /} for some
/ G A. Now, let us define the new n.d. automaton B = (B, X) for which B =
{aoqA : q G P r(L)} and the transitions axe defined as follows. For every b G B and
x € X, let

Now, we prove that B is both D2-directable and D3-directable, moreover, L =
(B) = D3(B). For this purpose, let us observe that if p G L, then ao(qp)B = {/},

for every q G Pr(L) since PT{L)L = L. Consequently, p is simultaneously a D2-
directing and a D3-directing word of B, moreover, L Ç D2(B) and L Ç D3 (B).

To prove the inclusion D2 {B) Ç L, let p G D2(S) be arbitrary. Then there exists
a set H of states of B such that bpB = H, for all b G B. But, fpB = {/}, and
therefore, H = {/}, which results that p G L.

For verifying D3(B) Ç L, let p G DA(B) be arbitrary. Since p G D3(0) and
fpB = {/}, we have f G bpB, for all be B. Then, by the definition of B, bpB = {/},
for all b G B. In particular, aopB = {/}, so that aopA — / , proving p G L.

Consequently, we have proved that L G £ND (2) and L G £ND(3)> and therefore,
L G £ND(2) N £ND(3)- O

Regarding the above proof, let us observe that the constructed automaton B is
also Dl-directable, and L = Di(£?). By this observation, one can prove the next
statement in the same way as Proposition 5.

Proposition 6 . £ ' = £ND(2) N £ND(I>-

The next corollary follows from Propositions 5 and 6.

Corollary 1. £' = (£ N D (I) H £ND (3)) N £ND(2)-

Since £ND(I) and £ND (3) a r e incomparable with respect to set inclusion, £ND(I)^
£ND(3) IS a proper subclass of both £ND(I) and £ND(3)- Moreover, by Corollary 1,
£ ' Ç £ N D (I) H £ND (3) a n d £ ' Q £ND(2)- Both inclusions are proper. To verify this
observation, let us consider the following examples.

0 otherwise.

Balâzs Imreh an d Masami Ito

Example 3. Let the n.d. automaton A = ({1,2}, X) be defined by X = {x ,y} ,
xA = {(2,1), (2,2)}, and yA = {(1,1), (2,1)}.

Then, y is a Dl- and D3-directing word, and L = y {y}* = Di(^) = D3(>1).
Now, if L G £' , then Pr(L)LX* — L must hold, which is a contradiction since
ykx £ L, for every integer k > 1. Therefore, £ ' C £ N D (I) RÏ £ND(3)-

Example 4. Let the n.d. automaton A = ({1,2}, X) be defined by X = {x,y},
xA = {(1,2), (2,2)}, and yA = {(2,1)}.
Then, A is D2-directable and D2(>t) = xX" U X'y2X\ Now, if D2(.4) G £',
then since y G Pr(D2(«4)) and x G D2(-4), yx G D2{A) must hold, which is a
contradiction. Consequently, £ ' C £CND(2) •

By the definition of £ ' and Proposition 1, we obviously have that £D Ç £ ' . For
proving that this inclusion is proper, let us consider the following example.

Example 5. Let A = ({1,2},X), where X = {x,y}, xA = {(2,2)}, and yA =
{(1,2), (2,2)}.

Then, Dj(.4) = D 2 (^) = D3(-4) = yX*. By Proposition 5, yXm G £ ' . Let us
suppose now that yX* G £D- Then, by Proposition 1, xy G yX* must hold, which
is a contradiction. Therefore, yX* £ £d, and thus, £d C £ ' .

Summarizing, we obtain the following result.

Theo rem 1. If \X\> 2, then the 8 classes under consideration constitute a semi-
lattice with respect to intersection.

The semilatice of these classes is depicted in Figure 1.

U £ND(I) £ND(3)

£ND(2)

Figure 1 : Semilattice of the classes considered.

On regular languages determined by nondeterministic directable automata 7

Let A = (A, X) be an n.d. automaton and x £ X. Then, x is called a complete
input sign if axA ^ 0, for all a € A.

The following statement shows that the languages belonging to £N D (2) can be
decomposed into a particular form.

Proposition 7. If L £ £nd(2)< then L is a disjoint union of regular languages L\
and L2 where at least one of L\ and L2 is nonempty, furthermore,

(1) L\ £ £d or LI = 0,

and
(2) L2 = Pr(L2)L2Y* and L2 = Y*L2Y*, where Y C X denotes the set of

complete input symbols of A, or L2 = 0.

Proof Let L £ £ND(2) be arbitrary. Then, there exists a D2-directable n.d. au-
tomaton A — (^4,X) such that L = D2(A), i.e., L consists of the D2-directing
words of A. Let us classify now the D2-directing words of A as follows. Let

Li = {p : p £ L & apA = 0, for all a € A},

L2 = {p : p £ L k apA ± 0, for some a £ A).

Obviously, L\C\L2 = % and Li UL2 = L, furthermore, one of the languages L\ and
L2 is nonempty.

Let us suppose that L\ ^ 0. It is easy to see that L\ is regular. Now, if p £ L\,
then apA = 0, for all a £ A. Thus also a(qpr)A = 0, for all q, r £ X* and a £ A.
Therefore, X*L\X* = L\, and by Proposition 1, we obtain that Li £ £D if ¿1 ^ 0.

The regularity of L2 can be concluded by the fact that L2 = L \ L\. Let us
observe that Y = 0 implies L2 = 0.

Now, let us suppose that L2 ^ 0 and let p £ L2 and q £ Pr{L2). Then, there
exists an r £ X* with qr £ L2. Since qr £ L2, a(qr)A ± for all a £ A. Therefore,
aqA — Aa 0, for all a £ A. Furthermore, since p £ L2, we have that there exists
a nonempty set H of states such that A'pA — H, for every nonempty subset A' of
A. In particular, AapA = H, for all a £ A. Consequently, a(qp)A = (aqA)pA =
AapA = H, for all a £ A, and hence, qp £ L2. On the other hand, since Y is the
set of complete input signs, L2Y* = L2.

To prove the second equality, let q £Y* and p £ L2be arbitrary words. From
p £ L2 it follows again that there exists a nonempty set H of states such that
A'pA = H, for all nonempty subsets A' of A. On the other hand, since q £ Y*,
aqA ^ 0, for all a £ A. Consequently, H = aqApA = a(qp)A, for all a £ A, and
thus, Y*L2 = L2. The validity of the equality L2Y* = L2 is obvious, and hence,
Y*L2Y* = L2. •

Now, we study the representation of the languages of £N D (2) which have the
form L = MX*, where M is a regular prefix code. For this reason, we recall some
notions.

8 Ba.la.zs Imreh and Masami Ito

Let 0 ^ M C X+. Then, M is said to be a prefix code over X if M(lMX+ = 0.
A prefix code M C is said to be maximal if, for any u G X*, there exists v € X*
such that uv G MX*. Finally, a prefix code M is called regular if M is a regular
language. Note that any L G £ND(2) can be represented as L = MX* such that
M = L \ LX+ and M is a prefix code because LX* = L.

Proposition 8. Let M C X+ be a regular prefix code that is not maximal. Let
L = MX*. Then, L G £ND(2) if and only if Pr{M)M C L.

Proof. To prove the necessity, let us assume L G £N D (2) - Then, there exists an n.d.
automaton A = (A , X) such that L = D2{A). Let u G Pr{M) and w G M. Since
u G Pr(M), there exists v G X* such that uv G M C L. Hence, for any a, b € A,
a(uv)A = b(uv)A. Suppose a(uv)A = 0 for any a G A. Then, for any a € A and
z G X*, a(z(uv))A = 0. This yields that zuv G L, for all z G X*, and hence, M is
a maximal prefix code, which is a contradiction. Therefore, a(uv)A ^ 0, and thus,
auA ^ 0, for all a G A. Consequently, a(uw)A = b{uw)A for any a,b G A since
w G M C L. Thus, uw G L.

In order to prove the sufficiency, let A' = {A, X, ao, S, F) be the minimal recog-
nizer (deterministic but not necessarily complete) accepting L. Notice that A' is a
trim (i.e. accessible and coaccessible, see [4]) and F = {/}, since M is a prefix code
and L = MX*. Consider the n.d. automaton A = (A,X). Note that f x A = { / }
for any x £ X. Let a € A and to G L. Since A' is trim, there exist u,v G X* such
that {a} = aouA &nd.ao(uv)A = {/}, i.e., uv G L. Consequently, u G PT(M) or
u G MX*. If u G Pr(M), then uw G PT(M)MX* C LX* = L. If u G MX*, then
uw G MX*X* = MX* = L. Hence, awA - {/}, for all a G A. This means that
w G D2(-4). NOW, let w £ L. In this case, fwA = { /} but aowA / {/}. This
means that w £ D2(.4). Consequently, L = D2(.A). This completes the proof of
the proposition. •

The above proposition does not always hold for a regular maximal prefix code.

Example 6. Let X = {x,y} and let A = {1,2}. Moreover, let A — (A , X) be the
following n.d. automaton: xA = {(1,2), (2,2)}, yA = {(1,2)}.
Then, L = D2{A) = (:x\Jyx*y)X* G £ND(2)- Let M = L\LX+. Then, PT(M)M C
L does not hold since y G Pr(M), x G M but yx^L — MX*.

However, for the class of finite maximal prefix codes, we have the following:

Proposition 9. Let 0 ^ M C X+ be a finite maximal prefix code. Let L = MX*.
Then, L G £N D (2) if and only if Pr(M)M C L.

Proof. The sufficiency can be proved in the same way as in the proof of the previous
proposition. To prove the necessity, let us assume that L = MX* G £N D (2) - Let
A = {A, X) be an n.d. automaton such that L = D2(.4). Let u G Pr(M) and
w G M. Since M is a finite maximal prefix code, uw1 G MX* for some i,i > 1.
There are two cases. First, assume a(uwl)A ^ 0 for any a £ A. In this case,
auA 0 for any a G A. Since w G M C L, (auA)wA = (buA)wA for any

On regular languages determined by nondeterministic directable automata 9

a, b £ A. Thus, a (uw) A = b{uw)A for any a,b.£ A. This means that uw £ L.
Now, assume a(uwl)A = 0 for any a £ A. Suppose that there exists a £ A such
that a(uw)A ^ 0. In this case, there exists a nonempty subset H of A such that
(auA)wA = H ± 0- Thus, HwA — H holds because w £ L. This implies that
a(uwl)A — (a(uwl~1)A)wA = H ^ 0, a contradiction. Consequently, a(uw)A = 0
for any a £ A, and hence uw £ L. In either case, uw £ L, completing the proof of
the proposition. •

Example 7. Let X = {x ,y} and let M = {x,yxx,yxy,yy}. Then, M is a finite
maximal prefix code. Take y £ PT(M) and x £ M. Then, yx ^ MX*. Therefore,
MX* i £ N D (2) -

References
[1] H.V. Burkhard, Zum Längenproblem homogener experimente an deter-

minierten und nicht-deterministischen automaten, Elektronische Informa-
• tionsverarbeitung und Kybernetik, EIK 12 (1976), 301-306.

[2] J. Cerny, Poznämka k homogennym experimentom s konecnymi automatmi.
Matematicko-fysikalny Casopis SAV14 (1964), 208-215.

[3] J. Cerny, A. Piricka & B. Rosenauerova, On directable automata, Kybemetika
(Praha) 7 (1971), 289-297.

[4] S. Eilenberg, Automata, Languages and Machines Vol. A, Academic Press,
New York and London, 1974.

[5] B. Imreh & M. Ito, On some special classes of regular languages, in Jewels
are Forever (eds.: J. Karhumaki, H. Maurer, G. Paun and G. Rozenberg),
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1999, 25-34.

[6] B. Imreh & M. Steinby, Some remarks on directable automata, Acta Cyber-
netica 12 (1995), 23-35.

[7] B. Imreh & M. Steinby, Directable nondeterministic automata, Acta Cyber-
netica 14 (1999), 105-115.

[8] M. Ito & J. Duske, On cofinal and definite automata. Acta Cybernetica 6
(1983), 181-189.

[9] A. Paz & B. Peleg, Ultimate-definite and symmetric definite events and au-
tomata, J. ACM 12 (1965), 399-410.

[10] J.-E. Pin, Sur les mots synchronisants dans un automata fini, Elekronische
Informationsverarbeitung und Kybernetik, EIK 14 (1978), 297-303.

[11] R.G. Reynolds & W.F. Cutlip, Synchronization and general repetitive ma-
chines, with applications to ultimate definite automata, J. ACM 16 (1969),
226-234.

10 Ba.la.zs Imreh and Masami Ito

[12] I. Rystsov, Reset words for commutative and solvable automata, Theoretical
Computer Science 172 (1997), 273-279.

[13] P.H. Starke, Abstrakte Automaten, VEB Deutscher Verlag der Wissenschaften,
Berlin 1969.

Received December, 2002

Acta Cybernetica 17 (2005) 11-20.

Generation of Sentences with Their Parses: the
Case of Propagating Scattered Context Grammars

Alexander Meduna* and Jiri Techet*

Abstract

Propagating scattered context grammars are used to generate their sen-
tences together with their parses—that is, the sequences of labels denoting
productions whose use lead to the generation of the corresponding sentences.
It is proved that for every recursively enumerable language L, there exists a
propagating scattered context grammar whose language consists of L's sen-
tences followed by their parses.

Keywords: parsing, propagating scattered context grammars

1 Introduction
Parallel parsing represents a vivid investigation area concerning compilers today
(see [1, 2, 9, 10, 16]). As parsing is almost always based on suitable grammatical
models, parallel grammars are important to this area. Since scattered context
grammars generate their languages in a parallel way, their use related to parsing
surely deserves our attention.

In this paper, we use the propagating scattered context grammars, which contain
no erasing productions, to generate their language's sentences together with their
parses—that is, the sequences of labels denoting productions whose use lead to
the generation of the corresponding sentences (in the literature, derivations words
and Szilard words are synonymous with parses). We demonstrate that for every
recursively enumerable language L, there exists a propagating scattered context
grammar whose language consists of L's sentences followed by their parses. That
is, if we eliminate all the suffixes representing the parses, we obtain precisely L. This
characterization of recursively enumerable languages is of some interest because it
is based on propagating scattered context grammars whose languages are included
in the family of context-sensitive languages, which is properly contained in the
family of recursively enumerable languages. Simply stated, in this paper, we use
the propagating scattered context grammars in such a way that this use provides us
with the parses corresponding to the generated sentences and, in addition, increases
the generative power of these grammars.

'Department of Information Systems, Faculty of Information Technology, Brno University of
Technology, Bozetëchova 2, Brno 61266, Czech Republic

11

12 Alexander Med una and Jiri Techet

2 Preliminaries
We assume that the reader is familiar with the language theory (see [6, 11, 12, 13]).
For an alphabet V, card(V) denotes the cardinality of V. V* represents the free
monoid generated by V under the operation of concatenation. The unit of V*
is denoted by e. Set V+ = V* - {e}. For w £ V*, |u;| and rev(w) denote the
length of w and the reversal of w, respectively. For U C V, occur(w, U) denotes
the number of occurrences of symbols from U in w. For L C V*, alph(L) denotes
the set of symbols appearing in a word of L. Let L\,L2 be two languages. The
right quotient of L\ with respect to L2, denoted by L\/L2, is defined as L\/L2 =
{y | yx £ Li, for some x £ L2, y £ alph(Li)*}. The left quotient of L\ with respect
to L2, denoted by L2\L\, is defined as L2\L\ — {y\xy £ Li, for some x £ L2,y £
alph(LiY}.

A scattered context grammar (see [3, 4, 5, 7, 8, 14, 15] and pages 259-260 in
[13]), a SCG for short, is a quadruple, G = (V,P,S,T), where V is an alphabet,
T C V, S € V — T, and P is a finite set of productions such that each production
has the form (A\,...,An) —» (x i , . . . ,xn), for some n > 1, where Ai € V — T,
Xi € V*, for 1 < i < n. If every (j4i, . . . , An) —» (x i , . . . , x„) € P satisfies
Xi £ V+ for all 1 < i < n, G is a propagating scattered context grammar, a PSCG
for short. If (Ai,... ,An) —> (x i , . . . , x n) £ P, u = u\A\u2 ... unAnun+\, and
v = u\X\u2... unxnun+1, where Uj £ V*, 1 < i < n, then u => v [(Ax ,...,An) —>
(x i , . . . , xn)] in G or, simply, u=> v. Let =>+ and =>* denote the transitive closure
of =4> and the transitive-reflexive closure of =>, respectively. The language of G is
denoted by L(G) and defined as L(G) = {x | x 6 T*, S =>* x}.

3 Definitions and examples
Throughout this paper, we assume that for every SCG G = (V , P , S , T) , there is
a set of production labels denoted by lab(G) such that card(lab(G)) = card(P)\
as usual, /06(G)* denotes the set of all strings over lab(G). Let us label each
production in P uniquely with a label from lab(G) so that this labeling represents
a bijection from lab(G) to P. To express that p £ lab(G) labels a production
(A i , . . . , An) —> (x i , . . . , x n) , we write p : (Ai,...,An) -> (x i , . . . , x n) . For every
p : (A i , . . . , An) —» (x i , . . . , x„) £ P, lhs(p) and rhs(p) denote AiA2...An and

respectively. Furthermore, /pos(p,j) and rpos(p,j) denote Aj and Xj,
respectively. To express that G makes x =>* y by using a sequence of productions
labeled by p\,p2, • • • ,pn, we write x y\p], where x,y £ V*, p = p\.. .pn £
lab(G)*. Let S =>* x[p} in G, where x £ T* and p £ lab(G)*-, then, x is a
sentence generated by G according to parse p. Let G = (V , P , S , T) be a SCG
with lab(G) C T. G is a proper generator of its sentences with their parses if
L(G) = {x\x = yp,y£{T- lab{G)Y,p £ lab{G)*,S x [/>]}.

Next, we illustrate these definitions by three SCGs, each of which has
its set of production labels equal to {1,2,3,4}. First, consider SCG G\ =
({S,A,B,C,a,b,c},Pi,S,{a,b,c}) with Px containing 1 : (5) -> (e), 2 : (S) ->

Generation of Sentences with Their Parses . 13

(ABC), 3 : (A,B,C) -+ (aA,bB,cC), 4 : (A,B,C) -» (a,b,c). As {1,2,3,4} %
{a, b, c}, Gi is no proper generator of its sentences with their parses. Second,
consider G2 = ({5, A,B,C, a,b,c, 1,2,3,4}, P2, 5, {a, 6, c, 1,2,3,4}) with P2 con-
taining 1 : (5) -» (1), 2 : (S) —> (ABC2), 3 : (A,B,C) (aA,bB,cC3),
4 : (A,.B,C) (a, 6, c4). Notice that {1,2,3,4} C {a, b, c, 1,2,3,4}. However,
L(G2) = {anbncnrev(p) | n > 0 , 5 =>* anbncnrev(p) [/>]} ^ {an6"cn/9|n > 0 , 5
anbncnp[p}}, so G2 is no proper generator of its sentences with their parses either.
Third, consider G3 = ({5, A, B, C, a, b, c, 1,2,3,4}, P3, S, {a, b, c, 1,2,3,4}) with P3
containing 1 : (5) (1), 2 : (5) - (ABC2%), 3 : (A,B,C,%) (aA,bB,cC, 3$),
4 : (A,B,C,$) -> (a,b,c,4). Observe that L(G3) = {anbncnp\n > 0 ,S
anbncnp [p]}, so G3 is a proper generator of its sentences with their parses.

4 Results
Next, we demonstrate that for every recursively enumerable language L, there is a
PSCG G = (V, P, S,T), which represents a proper generator of its sentences with
their parses so that L results from L(G) by eliminating all production labels in
L(G). To express this property formally, we introduce the weak identity it from V*
to (V — lab(G))* defined as n(a) = a for every a G (V — lab(G)) and n(jp) = e for
every p e lab(G) and use n in the next main theorem of this paper.

Theorem 1. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences with their parses and L =
tr(L(G)).

Proof. Let L be a recursively enumerable language. Then, there is a SCG G =
(V,P,S,T) such that L = L(G)_(see_[7]). Set $ = {(a) |a € T}. Define the
homomorhism 7 from V_to ($ U (V - T) U {V})+ as 7 (a) = (a) for all a € T and
7(A) = A for all A G V — T. Extend the domain of 7 to V+ in the standard
manner; non-standardly, however, define 7(e) = Y rather than 7(e) = e. (Let us
note that at this point 7 does not, strictly speaking, represent a morphism on V*.)
Next, we introduce a PSCG G = (V, P, S, T) such that G is a proper generator of
its sentences with their parses and L(G) = 7x(L(G)). Finally, set T = {$1, $21 $3}-
Define the PSCG

G = ({5, X, Y, Z) U V U lab(G) U $ U T, P, S, f U lab(G))

with lab(G) = {[0J_, [1J, [2J, [3J, |4J}UE_IUE2UE3, where Hi = {[plj \p G lab(G)},
—2 = {l_fl2j |A G T}, E3 = {|_a3j |a G T}; without any loss of generality, assume
lab(G) fl alph(L) = 0 . P is constructed as follows:

1. Add
[1J : (5) —> (X[l J$ i^5) to P;
[1£J : (5) (UcJ$i5) to P;

14 Alexander Med una and Jiri Techet

2. For every p : (A i , . . . ,A„) —• (x i , . . . ,x n) 6 P add
LplJ : ($i, Alt..., An) (L p 1 J $ i , 7(®i), • • •, 7(*n)) to P;
in addition, add
[2J : ($ 1) ^ (L 2 J $ 2) to P;
L2£J : ($ 1) ^ (L 2 e J $ 3) t o P ;

3. For every a € T, add
|a2j : (X, $2, Z, (a)) - (aX, [a2\$2) Y, Z) to P;
La3j : (X , $2, Z, (a)) -» (a, Lo3J $3, r , y) to P ;

4. Add |3J : ($ 3 , y) ^ (L 3 j , $ 3) t o P ;

5. Add [4J : ($3) (|4J) to P .

Basic Idea:

First, we explain how G makes the generation of a nonempty sentence followed by
its parse; then, we explain the generation of the empty sentence followed by its
parse.

G makes the generation of a\a2 • • • a„p, where n > 1, each a* € T and p is
the corresponding parse, by productions introduced in steps 1 through 5 in this
order. After starting this generation by using the production from 1, it applies
productions introduced in 2, which simulate the applications of productions from
P. More precisely, it simulates the use of p : (A\,..., An) —> (x j , . . . , xn) € P
by using [pl j : ($i, Ai,..., An) —* (LplJ$i,7(xi) , . . . ,7(xn)) £ P so that it places
its own label, ' [plj , right behind the previously generated production labels; this
substring of labels occurs between the leftmost symbol, X, and $i, in the sentential
form. Otherwise, LplJ : ($i, Ai,..., An) —• (|p l j$1 , 7 (21) , . . . , 7 (x n)) is analogical
to p : (A i , . . . , An) —> (x i , . . . ,x n) except that (i) the former has the fill-in symbol
y where the latter has e and (ii) the former has (a^ where the latter has terminal
Oi. After using productions introduced in 2 ,G has its current sentential form of the
form Xr$2^uo(ai)wi(o2)u2 • • • un-i(an)un, where r is a prefix of p and Uj 6 {y}*.
By using productions from 3, it places a\... an at the beginning of the sentential
form while replacing each (a¿) with Y and generating the production labels. By
using productions labeled L3J (see step 4), G replaces each Y with L3J while shifting
$3 to the right. Finally, the application of the production labeled with [4J completes
the generation of aia2 . . . a n p (see step 5). Finally, let us explain how G makes the
generation of the empty sentence e followed by its parse. By use of productions
labeled with [lej and [2eJ instead of |_1 J and [2J, respectively, the process of placing
terminal symbols at the beginning of the sentential form (by productions from step
3) is skipped; otherwise, the derivation proceeds as above.

Generation of Sentences with Their Parses . 15

Rigorous proof (Sketch):
Claim 1. G generates every w £ L(G) — lab(G)+ in the following way

s = > x l i j S j Z S Î U J]

X [p]

y [L 2 J]

« M (1)
u [[a3j]
v [r]
™ [W1

where |a3j € S 3 , p, a and T are sequences consisting from Hi, E2 and {[3J},
respectively.

Proof. First, let us make these four observations:

1. Since the only productions with S on its left-hand side are productions in-
troduced in step 1 of the construction, S =>+ w surely starts with a step
made by one of these productions. Notice that alph({w}) ft T ^ 0 and only
productions labeled with p £ S2 U S 3 satisfy a £ alph({rhs(p)}), a £ T.
As X = ipos{p, 1), a £ alph({rpos(p, 1)}), and only production labeled with
p £ [l j satisfies X £ alph({rhs(p)}), the derivation starts with a step made
by this production. This derivation ends by applying production labeled with
|4J because it is the only production with its right-hand side over T*. Thus,
S w can be expressed as

S * L l J $ i £ 5 [U J]

I [|A|]
v

2. Let p be the label of any production introduced in steps 2 through 4 of
the construction; then, occur(lhs(p),T) = occur(rhs(p),T) = 1. In greater
detail, for every [piJ e Si , [o2j £ S2, [a3j £ H3, productions intro-
duced in step 2 satisfy occur(lhs([pl\), {$1}) = occur{rhs(\pl\), {$1}) = 1,
occur(lhs([2\), {$1}) = 1, occur(r/is([2j), {$2}) = 1, occur{lhs{[2t\), {$1})
= 1, occur(rhs([2eJ), {$3}) = 1. Similarly, productions introduced in step 3
satisfy occur(i/is([a2j), {$2}) = occur{rhs[\o2\), {$2}) = 1, occur(lhs([a3\),
{$2}) = 1, occur(rhs([a3\), {$3}) = 1. Finally, production introduced in step
4 satisfies occur(lhs{|3J), {$3}) = occur(r/is([3J), {$3}) = 1.

3. Because X £ alph({x}) and only productions labeled with p £ S3 satisfy
X £ alph({lhs(p)}) and X £ alph({rhs(p)}), production labeled with [2eJ
cannot be used.

4. Let p be the label of any production introduced in steps 1 through 5; then,
alph({rhs(p)}) fl lab(G) = {p} and occur(rhs(p), {p}) = 1.

16 Alexander Med una and Jiri Techet

Based on these observations, notice that G generates every w G L(G) — {|0J}
in the way described in the formulation of Claim 1. •

Claim 2. Consider derivation (1). In its beginning

S =• X [l J $ i Z 5 [|1J]
x [p]
y [L 2 J]

every sentential form s in X [l J $ i Z S =s>+ x satisfies s G {X}Za6(G)+{$i}{.Z}($U
{V - f) U {y})+ and y G {X}ia6(G)+{$2}{,Z}($ U {y})+.

Proof. By the definition of homomorphism 7, productions labeled with [piJ rewrite
symbols over $ U (K - f) U { y } and change $1 to [plj$i- Since Vn{X,$uZ} = 0,
every sentential form s in X [l J $ i Z S =!>+ x satisfies s G {X}Za6(G)+{$i}{Z}($ U
(V — T) U {y}) + . Only Si contains production labels p satisfying alph({lhs(p)}) n
(V — T) T̂ 0. Therefore, to generate w G T*, productions labeled with [pl j have to
be applied until s G {X}/a6(G)+{$i}{Z}($U{y})+ . Finally, a production labeled
with [2J is used, so y G {X}/a&(G)+{$2}{-Z}($ U {y}) + and the claim holds. •

Claim 3. In
y z [LffJ]

u [[a3J]

of derivation (1), every sentential form o in y =>* z can be expressed as o G
Î*{X}Za&(G)+{$ 2}{y}*{Z}($U{y})+ and u G T+lab(G)+{h}{Y}+. In greater
detail,

X[p!J . . . b n j $ 2 ^ y i 0 (6 i) y i l (b2)Yh • • • (bm)Y
b1X[p1\...\j}n\[b12\$2Y^ZY^(b2)Y^...(bm)Y^ [|&i2j]
hb2X\pi\...[pn\ L M J [6 2 2 j $ 2 y i o + 1 y i l + 1 £ y i 2 . . . (6m)y i m [L622J]

=»™"3 hb2 ... bm—iX [piJ . . . [p„J [6l2j . . . Lt»m-i2j$2y<0+1y<1+1 . . •
... Yim~2 ZY*™--1 (bm)Yirn [d]
bib2.. .bm[pij.. .\jpnJ L&12J.. -L6m-i2j L&m3j$3y i 0+1y< '+1 . . [|6m3J]

where [p i j , . . . , [p n J € lab(G) are labels that denote productions introduced in 1-
2, (61),..., (b m > 6 9, 61, . . . , "m C - 1 ! <7 = I 6 3 2 J . • • [b m— m > O ,

m = |s|, where s G L(G) is a corresponding sentence of the SCG G.

Proof. Notice that occw(Z/is(|a2j), {X}) = occur(rhs(\a2\), {X}) = 1 and
occur(lhs([a2\), {y}) = occur(rhs([a2\),{Y}) = 1. In every derivation step of
y =$•* z, the the first symbol (b) G following Z is replaced with Z, X is changed
to bX, and $2 is changed to Z$2, where l G lab(G). As [a2\ and (a3J are the only
production labels p satisfying alph({lhs(p)}) fl 3> ̂ 0, alph({rhs(p)}) n 3> = 0 and
¡pos(|a2j,3) = Z, rpos([fl2J,4) '= Z. Z can replace only the first occurance of

Generation of Sentences with Their Parses . 17

(b) € $ behind Z to generate w e T*. Productions labeled with [a2j are used
m — 1 times. Thus, y =S>* 2 has the form

X\p1\...\pn\%2ZYi°{bl)Yi^b2)Yi*:..{bm)Yi™
=» b1Xlp1\...\pn\lb12\$2Yi°+1ZYii(b2)Yi>...(bm)Yi'» [|6i2j]
=» b1b2X\pl\...\Pn\[bl2\[b22\%2Yi^Yi^lZY^...(bin)Yi™ [[fc22j]

M 2 b n j Lfci2j L 6 m - i 2 j $ 2 y i ° + 1 y i ' + 1 . . .

where every sentential form satisfies f *{X}ia6(G)+{$2}{F}*{Z}($ U {Y})+.
Finally, some production labeled with [a3j is applied; therefore, z u can be

expressed as

hb2 ... bm- 1X\p1\ ...\jpn J [612J... 12J $2 Y io+1 y + 1 . . .

hb2 . . . 6 m [p i J . . . b n j [bi2\ ... [bm-i2\ [&m3j$3Y i o + 1Y i l + 1 •.. Yim+1 [[6m3j]

with u€T+lab(G)+{$3}{Y}+.
Putting together the previous parts of derivation, we obtain the formulation of

Claim 3. Thus, Claim 3 holds. • •

Claim 4. In
u =>+ v [r]

™ t l A l]

of derivation (1), every sentential form, s of u =>+ v satisfies s €
T+ia6(G)+{$3}{y}* and w £ T+lab(G)+. In greater detail, this derivation can
be expressed as

3

where all bj € T, 1 < j < m and \pkJ G lab(G), 1 < k < n are labels that denote
productions introduced in steps 1 through 3 of the construction, f is a sequence of
production labels |3J.

Proof. Notice that ¡pos([3J, 1) = rpos([3J, 2) = $3. Observe, that in order to
generate w £ T* the first occurrence of Y following $3 has to be taken by [3J in
each derivation step. Finally, [4J is applied. At this moment, w satisfies w e T*
and w £ T+lab(G)+. •

The next claim formally demonstrates how G generates the empty sentence e fol-
lowed by its parse.

bi. • bm L p i j • • b n j ^ } ^

bi. • bm L p i j • • b n j L 3 J { $ 3 } y i _ 1 ÎL3J]

bi. • bm [p i J . L3J L 3 J { $ 3 } ^ " 2 [L3J]
bi. • bm [p i J . • LPnJ L 3 J i _ 1 { $ 3 } y [f]
bi. • bm [p i] . • b n J L S j ^ S a } [[3 J]

bi. • bm LPIJ • • b n j l A P I A I [[4 J]

18 Alexander Med una and Jiri Techet

Claim 5. G generates every w 6 L(G) fl lab(G)+ in the following way

S U c J $ l S [L l e J]

=i>+ x [p]
V [L 2 e J] (1)

=» + V [r]
=> [L4J]

where p and r are sequences consisting from Hi and {[3J}, respectively.

Proof. Notice that alph({w}) fl T = 0 and only productions labeled with p e S3
satisfy X € alph({lhs(p)}), X 0 alph({rhs(p)}) and X = ipos(p, 1), a = Tpos(p, 1),
a €E T. Therefore, X cannot appear in any sentential form of S =>* w, and the
derivation starts with a step made by |_leJ. As X alph({x}) and for p S S 2 U S 3 ,
X € alph({lhs(p)}), the production labeled with [2eJ has to be used. Observe that
other derivation steps are made in the way described in Claim 2 and Claim 4. •

From Claims 4 and 5, it follows that for every recursively enumerable language
L, there exists a PSCG G such that G is a proper generator of its sentences with
their parses and L = 7r(L(G)). •

From Theorem 1, we obtain:

Corollary 1. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences with their parses and L =
L(G)/lab(G)*nalph(L)*.

Alternatively, we can introduce a SCG G = (V , P , S , T) , as a proper generator
of its sentences preceded by their parses so that L(G) = {x\x = py,y 6 (T —
lab(G))*,p € lab(Gy,S =•• x [p]}.

Theorem 2. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences preceded by their parses and
L = 7T (L(G)).

Proof. This theorem can be proved by a straightforward modification of Theorem
1. A detailed version of this proof is left to the reader. •

Corollary 2. For every recursively enumerable language L, there exists a PSCG
G such that G is a proper generator of its sentences preceded by their parses and
L = lab(G)*\L(G) n alph(L)m.

5 Conclusion
In this concluding section, we make some final notes and suggestions regarding the
future investigation.

First, notice that all the above results can be also established so that the gen-
erated sentences are followed by the reversals of their parses.

Generation of Sentences with Their Parses . 19

Second, consider the unordered scattered context grammars (see page 260 in
[13]). In essence, in this version of scattered context grammars, we apply a pro-
duction of the form (Ai —> x i , . . . , An —> x„) so we simultaneously replace with
x¿, for all i = 1 , . . . , n , no matter in what order the nonterminals Ai appear in
the rewritten word. Naturally, we are tempted to use the construction given in
the proof of Theorem 1 for these grammars in order to obtain analogical results
to the above results. Unfortunately, this construction does not work for the un-
ordered versions of scattered context grammmars. Specifically, steps 3 and 4 of
the construction require the prescribed order of rewritten nonterminals; otherwise,
the result is not guaranteed. Can we prove the results of this paper in terms of
unordered scattered context grammars by using some other methods?

Finally, let us recall that we have demonstrated that for every recursively enu-
merable language, there exists a propagating scattered context grammar that gener-
ate the language's sentences followed by their parses. From a broader perspective,
we could naturally reformulate this generation of sentences with their parses in
terms of other propagating rewriting mechanisms that define the language family
contained in the family of context-sensitive languages. Probably, some propagat-
ing parallel rewriting mechanisms, such as propagating PC grammar systems (see
Chapter 4 in Volume 2 of [12]), can be used in this way. Furthermore, some propa-
gating regulated grammars, such as propagating matrix grammars (see Chapter 3
in Volume 3 of [12]), seems to be suitable for this generation as well. On the other
hand, we can hardly base the generation of sentences with their parses upon classi-
cal sequential rewriting mechanisms, such as context-free grammars. The authors
suggest these problem areas as the topics of future investigation that continues with
the discussion opened in the present paper.

Acknowledgements We thank the anonymous referee for useful comments con-
cerning the first version of this paper. The first author gladly acknowledges support
of GACR grant 201/04/0441.

References
[1] Chatterjee, S. (eds.): Languages and Compilers for Parallel Computing,

Springer-Verlag, London, 1999.

[2] Darte, A. et al. (eds.): Compilers for Parallel Computers, World Scientific,
Singapore, 2000.

[3] Fernau, H.: Scattered Context Grammars with Regulation, Annals of Bucharest
Univ., Math.-Informatics Series 45(1) (1996), 41-49.

[4] Gonczarowski, J. and Warmuth, M. K.: Scattered Versus Context-Sensitive
Rewriting, Acta Informática 27 (1989), 81-95.

[5] Greibach, S. and Hopcroft, J. E.: Scattered Context Grammars, Journal of
Computer and System Sciences 3 (1969), 233-247.

20 Alexander Med una and Jiri Techet

[6] Meduna, A.: Automata and Languages: Theory and Applications, Springer-
Verlag, London, 2000.

[7] Meduna, A.: A Trivial Method of Characterizing the Family of Recursively
Enumerable Languages by Scattered Context Grammars, EATCS Bulletin 56
(1995), 104-106.

[8] Meduna, A.: Generative Power of Three-Nonterminal Scattered Context Gram-
mars, Theoretical Computer Science 237 (2000), 625-631.

[9] Midkiff, S. P. et al. (eds.): Languages and Compilers for Parallel Computing
(13th International Workshop on Languages and Compilers for Parallel Comput-
ing, 2000, Yorktown Heights, N.Y.), Springer, London, 2001.

[10] Rauchwerger, L. (eds.): Languages and Compilers for Parallel Computing
(16th International Workshop, October 2003, Colledge Station, Texas), Springer,
London, 2004.

[11] Revesz, G. E.: Introduction to Formal Language Theory, McGraw-Hill, New
York, 1983.

[12] Rozenberg, G. and Salomaa, A.(eds.): Handbook of Formal Languages, Volume
1 through 3, Springer-Verlag, 1997.

[13] Salomaa, A.: Formal Languages, Academic Press, London, 1973.

[14] Vaszil, G.: On the Number of Conditional Rules in Simple Semi-conditional
Grammars, Theoretical Computer Science, 2004 (in press).

[15] Virkkunen, V.: On Scattered Context Grammars, Acta Universitatis Ouluen-
sis, Series A, Mathematica 6 (1973), 75-82.

[16] Wolfe, M. J.: High Performance Compilers for Parallel Computing, Addison-
Wesley, Redwood City, 1996.

Received May, 2004

Acta Cybernetica 17 (2005) 21-41.

Varieties of Tree Languages Definable by Syntactic
Monoids

Saeed Salehi *

Abstract

An algebraic characterization of the families of tree languages definable
by syntactic monoids is presented. This settles a question raised by several
authors.

1 Introduction
A Variety Theorem establishing a bijective correspondence between general vari-
eties of tree languages definable by syntactic monoids and varieties of finite monoids,
is proved. This has been a relatively long-standing open problem, the most recent
references to which are made by Esik [4] as "No variety theorem is known in the
semigroup [monoid] approach" (page 759), and by Steinby [18] as "there are no
general criteria for deciding whether or not a given GVTL [general variety of tree
languages] can or cannot be defined by syntactic monoids" (page 41). The question
was also mentioned in the last section of Wilke's paper [21].

Most of the interesting classes of algebraic structures form varieties, and sim-
ilarly, most of the interesting families of tree or string languages studied in the
literature turn out to be varieties of some kind. The first Variety Theorem was
proved by Eilenberg [3] who established a correspondence between varieties of finite
monoids and varieties of regular (string) languages. It was motivated by charac-
terizations of several families of languages by syntactic monoids or semigroups (see
[3],[10]), above all by Schiitzenberger's [15] theorem connecting star-free languages
and aperiodic monoids.

Eilenberg's theorem has since been extended in various directions. One could
mention Pin's [11] Variety Theorem for positive varieties of string languages and
varieties of ordered monoids, or Therien's [19] extension that includes also varieties,
of congruences on free monoids. On the level of universal algebra, where tree
automata and tree languages are studied, a Variety Theorem was proved by Steinby
[16] for recognizable subsets of finitely generated free algebras. Both Eilenberg's
""-varieties and -(-varieties, as well as varieties of regular tree languages (which was

•Turku Center for Computer Science, DataCity - Lemminkaisenkatu 14 A, FIN-20520 Turku,
e-mail: saeedfflcs.utu.f i

21

22 Saeed Salehi

worked out in [17]), are special cases of the results of [16]. The correspondence
to varieties of congruences, and some other generalizations, were added later by
Almeida [1] and Steinby [17, 18]. Another example is Esik's [4] Variety Theorem
between tree languages and theories (see also [5]). As Esik observes in [4], page 758:
"The crucial concept in any 'Variety Theorem' is that of the 'syntactic structure'
or 'syntactic algebra'." For almost all those syntactic structures associated to tree
languages in the literature, one (or some) variety theorem(s) have been proved.
The most famous 'syntactic structure' for which a variety theorem was not known,
is the syntactic semigroup/monoid of a tree language, introduced by Thomas [20],
and further studied by Salomaa [14]. A different formalism, based on the essentially
same concept, was brought up by Nivat and Podelski [6], [13].

To establish our correspondence between varieties of tree languages and varieties
of finite monoids, we add three more closure properties to the definition of a general
tree language variety introduced in [18]. One of them, that of being closed under
inverse tree homomorphisms, is already investigated by Esik [4], and the other two
are stated in Theorem 24.

2 Notation and Preliminaries
Our notation is mainly based on [18]. However for understanding our results it
is not necessary to read the whole of [18]. Here, we list the terminology used
throughout the paper.

A finite set of function symbols is called a ranked alphabet. If E is a ranked
alphabet, for every m > 0, the set of m-ary function symbols of E is denoted by
E m . In particular, Eo is the set of constant symbols of E. For a ranked alphabet
E and a leaf alphabet X, the set of EX-trees T(E,X) is the smallest set satisfying

(1) E0 U X C T(E,.X), and
(2) f{tw- ,tm) G T(E,X), for all / G E m (m > 0) and ¿i, - • - ,tm G

T(E,X).

Any subset of T(E, X) is called a tree language.
The EX- term algebra T(E, X) = (T(E,X),E) is defined by setting

(1) c r (2 ' x) = c for each c G E0, and
(2) fT^'X\tu--- ,tm) = f(ti,---,tm) for all m > 0, / G E m , and

t w - GT(E,X) .

Let £ be a (special) symbol which does not appear in any ranked alphabet or leaf
alphabet considered here. The set of EX-contexts, denoted by C(E, X), consists
of the E(X U {£})-trees in which £ appears exactly once. For P,Q G C(£, X) and
t G T(E, X) the context Q P, the composite of P and Q, results from P by replacing
the special leaf £ with Q, and the term t • P results from P by replacing £ with t.
Note that C(E, X) is a monoid with composition as the operation and £ as the unit
element, and that t • (Q • P) = (t • Q) • P holds for all P, Q G C(E, X), t G T(E, X).
For a tree language T C T(E, X) and context P, the inverse translation of T under

Varieties of Tree Languages Definable by Syntactic Monoids 23

P is P _ 1 (T) = { i £ T(E, X) I t • P £ T}. Also the inverse morphism of T under a
homomorphism cp : T(E, Y) -» T(E, X) is Ttp~l = {t £ T(E, Y) \ t<p £ T}.

A T,X-recognizer (A,a,F) consists of a finite E-algebra A = (A, E), an initial
assignment a : X —> A, and a set of final states F C A. The function a can
uniquely be extended to a homomorphism aA : 7~(E, X) —> A, and the tree lan-
guage recognized by (A,a,F) is {£ £ T(£, X) | taA £ F). In that case we also
simply say that T is recognized by the algebra A

All algebras considered in this paper, except for term algebras, are finite, and
the tree languages studied here are recognizable by finite algebras. A class of finite
algebras of a fixed type is called a variety of finite algebras if it is closed under
subalgebras, homomorphic images, and finite products. They are sometimes called
pseudo-varieties, to be differentiated from real varieties whose members need not
to be finite. Birkhoff's variety theorem [2] provides a logical characterization of
those "original" varieties. In particular, a variety of finite monoids, abbreviated by
VFM, is a class of finite monoids closed under submonoids, homomorphic images,
and finite monoid products. A family Y = {y(X)} of tree languages of a fixed type
E is a mapping which assigns to every finite leaf alphabet a collection y = {V(X)}
of recognizable EX-tree languages. A family "V is called a variety of tree languages
if each Y(X) is closed under Boolean operations and inverse translations, and the
whole collection is closed under the inverse homomorphisms between term algebras
(see [17]; below we will consider generalized varieties of tree languages).

Let A = (A, E) be an algebra. Every elementary context
P = f(ai,-" >£>••• >am) £ C(£,A),

where / £ E m and ai, • • • , a m £ A, induces a unary function on A defined by
PA(a) = fA(ai, • • • , a, • • • , a m) for each a £ A. Such functions are called elemen-
tary translations of A. The functions induced by compositions of such elementary
contexts are defined by setting (Q • P)A(a) = PA(QA(a)) for any two contexts P
and Q and any a £ A. These functions constitute the set of translations of A de-
noted by Tr(^4). Note that two different contexts may induce the same translation.

The set Tr(«4) is a monoid with composition as the operation, called the transla-
tion monoid of A, which is also denoted by Tr(,4). We note that Tr(^4) includes the
identity translation £A = I A- The composition of translations p and q is denoted
by q • p, that is (q • p)(o) = p(q(a)) for all a £ A (cf. Section 5 of [18]).
For a tree language T C T(E,X) , the syntactic congruence 9T of T is defined by

teTS <=!> VP € C(E, X)(t - P £T s- P £T),
for t,s £ T(£ ,X) , and the syntactic algebra SA(T) of T is the quotient E-algebra
T(E, X)/6T (see Definition 5.9 of [18]).
Also, the m-congruence fJ-r of T on the monoid C(£, X) is defined by

P HTQ VP € C(E, X)Vt € T(E, X)(t- P • R£T <^t-Q • R£T),
for P,Q £ C(E,X), and the syntactic monoid SM(T) of T is the quotient monoid
C(E, X)/HT (cf. [20] or Definition 10.1 of [18]).

R e m a r k 1. It was shown in [14] that the translation monoid of the syntactic
algebra of a tree language is isomorphic to the syntactic monoid of the tree language,
i.e., Tr(SA(T)) ^ SM(T) for every tree language T.

24 Saeed Salehi

A tree homomorphism is a mapping ip : T(E, X) —> T(fi, V) for ranked alphabets
E and Q, and leaf alphabets X and Y, determined by some mappings <px • X —>

and <pm : E m -> T(f2,y U •• ,fm}), where £ m ^ 0 and the are
new variables, inductively as follows

(1) xtp = ipx(x) for x e X, op = <po(c) for c € Eo, and
(2) f(ti,--- ,tn)ip = ¿lV. — >Sn <- inV>] that is & is replaced

with tiip for all i (cf. [18], page 7).

A tree homomorphism tp : T(E, X) —» T(i2, y) is called regular if for every
/ £ E m (m > 1), each • • • , £m appears exactly once in <pm(f)-

The unique extension tp„ : C(E, X) —> C(f2, Y) of a regular tree homomorphism
tp to contexts is obtained by setting = £ (cf. [18], Proposition 10.3).1 We
note that the identities (Q • = Q<p* • P<p* and (t • Q • P)<p = tip • Qtp» • P<p,
hold for a l l P . Q e C(E, X) and t e T(E, X).

3 Algebras Definable by Translation Monoids
The notions of subalgebra, homomorphism, and direct product are defined as
usual in Universal Algebra, whereas for their generalizations, g-subalgebra, g-
homomorphism, and generalized product, are defined for algebras which are not
necessarily of the same type. We recall the following definitions from [18] (Defini-
tions 3.1, 3.2, 3.3, 3.14).

Definition 2. Let A = (A,E) and ¡3 = (B,Q.) be finite algebras.
The algebra B is a g-subalgebra of A, in notation B Cg A, if B C A, Q,m C E m for
all m > 0, and for every g € i l m , gB is the restriction of gA to B.
An assignment is a mapping K : E —> fi such that « (E m) C Q m for all m > 0.
A g-morphism from A to B is a pair (K, <p), where K : E —> Q, is an assignment and
f> : A —> B is a mapping satisfying fA(ai, ••• ,am)<p = (//c)e(ai<£, • • • ,am<p) for
any m > 0, / € E m , and ai, • • • , am £ A. If both k and ip are surjective, then (k, <p)
is called a g-epimorphism, and in that case we write B <—g A (B is a g-epimorphic
image of A). When B is a g-epimorphic image of a g-subalgebra of A, we write
B <g A. When both K and <p are bijective, (n,<p) is called a g-isomorphism, and
B =g A means that B and A are g-isomorphic.

Let E1 , • • • , E" and T be ranked alphabets. The product E 1 x • • • x E" is a
ranked alphabet such that (E1 x • • • x E n) m — E m x • • • x EJJj for every m > 0. For
any assignment K : T —> E1 x • • • x E n , and any algebras A\ = (Ai, E1), • • • , An =
{An, E"), the K-product of A\, • • • , An is the T-algebra • • • , An) = (A\ x • • • x
An ,T) defined by

^ (A U - ^) = (c f» , . . . ,C£ N) for c e T 0 , where CK = (C J , - - - ,CN), and

'Indeed any tree homomorphism : T (£ , X) —» T(f2, Y) can be extended to ip : C (E , X) —>
T(H, Y U by setting (,<p = but if tp is not regular the range of ip may not be C(fi, V). Hence
the regularity of <p is needed for the existence of the extension tp,, see also Example 18.

Varieties of Tree Languages Definable by Syntactic Monoids 25

for f £ RM (TO > 0) and a j — (oji,--- , flin) G -<4i x ••• x An, where
/ « = (/ l , - • - , /n) .

Without specifying the assignment K, such algebras are called g-products.
In the notations Cg, <— g , -<g, and = g , the subscript g is dropped when A and B are
of the same type, say E, and the assignment K : E —» E is the identity mapping.

The abbreviation GVFA stands for general variety of finite algebras which is a
class of finite algebras, of all finite types, closed under g-sub-algebras, g-epimorphic
images, and g-products (Definition 4.3 of [18]). It is easy to see that a class of
algebras K is a GVFA, if for any Ai, - •• > An e K, any g-product K(AI, • • • , An),
and any algebra A, if A -<g K(A\, • • • ,An) then A £ K (cf. Corollary 4.8 of [18]).

Definition 3. For a VFM M, M a is the class of all finite algebras whose translation
monoids are in M, i.e., A £ M a Tr(.4) £ M for any finite algebra A.

A class of finite algebras K is said to be definable by translation monoids, if
there is a VFM M such that M a = K.

By Proposition 10.8 of [18], a class of finite algebras definable by translation
monoids is a GVFA. In fact, any such class can be proved to be a d-variety of
finite algebras (see page 758 of [4]). An algebraic characterization of the classes
of finite algebras definable by translation monoids is given in the main theorem of
this section.

Definition 4. Let A be a finite algebra. With each translation p £ Tr(.4) we
associate a unary function symbol p. Let Ayv = {p \ p £ Tr(^4)} be the unary
ranked alphabet formed by these symbols and let the A .¿-algebra Ae = (Tr(yt), A^)
be defined by pA° (q) — q • p for all p, q £ Tr(.A).

The proof of the main theorem of this section is based on the following lemmas
(cf. [8, 9] for similar results for unary algebras).

Lemma 5. For any finite algebra A, Tr(<4) ^ T r ^) .

Proof. The elementary translations of Ae are of the form pA°((,) where p £ Tr(^4),
and clearly qA° (£) • pA° (£) = q~rpA° {£) for all q,p £ Tr(*4). For the identity
translation of A the translation 1a (£) is the identity translation of Ae. This
means that Tr(^te) = { F 4 " ^) | p £ Tr(.A)}. Moreover, pA"(0 ± qA°(0 whenever
p^q, since pA°(0 = qA°(0 implies p = 1A • p = pA° (1A) = qA° (1A) = I A • Q = <7-
Hence, the mapping Tr(^4) —* Tr(.4e), p i-» pA°(£) is a monoid isomorphism. •

Lemma 6. Let A — (A, E) and B = (B , Q) be two finite algebras.

1. If Tr(>t) -< Tr(B), then Ae <gBe.

2. Tr(>l) x Tr (B) S Tr(K(^ e ,B e)) for some g-product ti(Ae, Be).

26 Saeed Salehi

Proof. 1. Suppose Tr(.4) M Ç Ti(B) for some monoid M. Let Am = {p G Ag |
p G M}. Then clearly M = (M, A M) Qg Be, where M is defined by pM(q) = q p
(p,q G M). Let ip : M —> Tr(.4) be a monoid epimorphism. Define the assignment
K : AM —> A^ by qn = qip for all q G M. It is clear that K is surjective and for all
q,r G M Ç Tr(23), (9B"(t"))<£> = (r-q)ip = rip-qip = qipA°(rip) = (qn)A° (rip). Hence
(K,<P) : M —> Ae is a g-epimorphism. Thus Ae *—g M Çg Be.
2. Let T = {(p,q) \ p G Tr(.4), q 6 Tr(B)} be a set of unary function symbols, and
define the assignment n : V —» A .4 x A g by (p,q)n = (p,q)- Let V = «(.-4e, ¿3e) be

v
the corresponding g-product of Ae and Be. We show that Tr('P) = {(p,q) (£) | p G
Tr(.À), q G Tr(B)}. Firstly, we note that if 1,4 and 1 B are the identity translations of

v
A and B respectively, then (lyi, 1b) (£) is the identity translation of V. Secondly,
by the definition of «-products, for all p,p' G Tr(-A), q, q' G Tr(B),

MV,<?') = (pA°(p'),qB°(q')) = (p'-p,q'-q).

Hence, if (p,q)V(0 = (p W) ^) . then (p,q) = (1A -p,lB-q) = (p,q)V(lA, I s)

= W r f f i l A , 1 B) = (IA • P', 1B • q') = (P',q')• So, M V (t) * when
V

p ± p' or q ± q'- Finally, we show that the set {(p, q) (£) | p G Tr(.4),ç G Tr(S)}
is closed under the composition of translations.

For all p,p',p" G TYM), q,q',q" G Tr(B),

(pW)?-(M>"(p",î") = Mr(p"-p',q"-q')
= ((p"-p')-p,(q"-q')-q)
= (:p"-(p'-p),q"-(q'-q))
= <J>'-P,q'-q)V(p",q")-

Hence, {p',q') (f) • (p, q) (£) = (p'-p,q'-q) (0- It follows that the mapping
v

Tr(.A) x Tr(B) —> Tr(P), (p,q) (p, q) (£), is a monoid isomorphism. •

Since g-products of g-products are g-isomorphic to a g-product of the original
algebras (Lemma 4.2 of [18]), Lemma 6(2) can be generalized as follows.

L e m m a 7. For any n > 1 and any algebras A\, -- , A i there is a g-product
/e(.Af, • • • , A%) such that Tr (^ i) x • • • x Tr(A>) - Tr(/i(-4?, • • • , -4£)).

Now we are ready to prove the main theorem.

T h e o r e m 8. Any class of finite algebras K is definable by translation monoids iff
it is a GVFA such that A G K iff Ae G K, for any A.

Proof Suppose K = M a for a VFM M. Then by Lemma 5, Tr(^) ^ Tr (^ e) , so
Tr(.4) G M Tr(^ e) 6 M » £ K. For the converse, suppose the

GVFA K satisfies the equivalence A G K Ae G K for any finite algebra A. Let
M be the VFM generated by (Tr(^) | A G K}. We show that K = M a . Obviously
K C M a . For the opposite inclusion, let B G M a . So, there are A\, • • • ,Am G K

31
Saeed Salehi

d-varieties of finite algebras and general tree language varieties closed under inverse
tree homomorphisms. However, those varieties may not be definable by syntactic
monoids, as the following example shows.

Example 13. Let Defi = {Defi(£, X)} be the family of 1-definite tree languages,
i.e., T £ Def i (£ ,X) iff for all £X-trees t and s, root(£) = root(s) and t £ T
imply s £ T, where root(i) is the root symbol of t. It is a GVTL ([18]) which
can be shown to be closed under inverse strict regular tree homomorphisms (see
[4] Subsection 11.1 and Section 5 below). Let £ = £2 = {/, g}, X = {x, y}, and
T = {x} U { / (t i , i 2) | tut2 £ T(£ ,X)} . Clearly T e Defi(E,X). It can be easily
shown that the syntactic monoid of T consists of an identity element and two right
zeros. This is also the syntactic monoid of the language T' of the £X-trees whose
leftmost leaves are x, by Example 10.4 of [18]. Since T' £ Def i (£ ,X) , then Defi
is not definable by syntactic monoids.

This actually shows that the GVTL of all definite tree languages is not definable
by syntactic monoids, since T' is not fc-definite for any k > 1.

Remark 14. In [7] it is claimed that the variety of definite tree languages can
be characterized by the property that all the non-identity idempotents of their
syntactic monoids are right zeros (left zeros in the formalism of [7]). This clearly
stands in conflict with the above Example 13.

Indeed, it can be shown that Theorem 1 of [7] does not hold. When the syntactic
semigroup of a tree language is defined as the syntactic monoid with the identity
element removed, the authors clearly overlook the possibility that the identity ele-
ment may be obtained also as the product of some non-identity elements, and the
proof of the theorem of [7] holds in just one direction. A concrete example showing
that the equality between lines 9 and 10 on page 189 does not necessarily hold, can
be obtained by considering the tree language T' of our Example 13.
It can also be noted that finite monoids whose non-identity idempotents are right
zeros, do not form a VFM. Finally, in Section 5 we shall see that a more appropriate
definition of the syntactic semigroup and omitting trees that in a sense correspond
to the empty word, does not save the result of [7].

We shall characterize the general varieties of tree languages that are definable
by syntactic monoids by requiring them to satisfy two more conditions in addition
to being closed under inverse regular tree homomorphisms.

Definition 15. A regular tree homomorphism </J : T(£, X) —> T(ii ,Y) is said to
be full with respect to a tree language T C T(Q, Y), if for every Q £ C(Q, Y) and
every s £ T(fi, Y), there are P £ C(£ ,X) and t £ T (£ ,X) , such that Q HT P<p*
and s 6t t<p hold.

Remark 16. At first glance it seems that verifying fullness of with respect to
T requires checking the existence of P £ C(£ ,X) and t £ T (£ , X) for all (in-
finitely many) Q £ C(i),Y) and s £ T(fi,Y) such that Q \ir Pip* and sOrtip
hold. In fact it is decidable for a recognizable T to check whether or not ip
is full with respect to T: let <pT : T(Q,Y) T(Q, Y)/0T , t<pT = t/6T and

Varieties of Tree Languages Definable by Syntactic Monoids
32

such that Tr(£) X Tr(.4i) x • • • x Tr(.4m). By Lemma 7, Tr(B) -<: Tr(V) for some g-
product V of Al, • • • , Ae

m. By the property of K, A{, • • • , A^ G K, and s o P e K ,
hence Ve G K. By Lemma 6 (1) from Tr(£) Ti(V) we get Be -<9 Ve, and since
Ve G K, also Be G K, which implies that Be K. Thus M a Ç K. •

Remark 9. The proof of Theorem 8 also yields the fact that for any GVFA K
definable by translation monoids, the class {Tr(^4) | A G K} is a variety of finite
monoids.

Another characterization of the classes of finite algebras definable by translation
monoids which follows from Lemmas 5 and 6 is the following.

Theorem 10. Any class of finite algebras K is definable by translation monoids
iff it is a GVFA such that for all finite algebras A and B, if Tr(^) = Tr(£) and
A G K, then B e K.

4 Families of Tree Languages Definable by Syn-
tactic Monoids

A general variety of tree languages (GVTL) is a family = {"¡^(E, X)} which as-
signs to every ranked alphabet E and leaf alphabet X, a set E ,X) of recognizable
EX-tree languages, and is closed under all Boolean operations, inverse translations,
and inverse g-morphisms. That is to say, for any ranked alphabets E, ÎÎ, leaf al-
phabets X, y , context P € C(E,X), and g-morphism ip : T (f i ,y) T(E,X) (see
Definition 2), if T,V 6 r (E , X) , then T (E , X) \ T , T n T ' , P - 1 (T) e r (E , X) , and
Tip ' 1 € r (Q , y) (Definition 7.1 of [18]).

For a family of recognizable tree languages "V, is the GVFA generated by
the class {SA(T) | T € r (E , X) , for some E,X}.

Remark 11. The General Variety Theorem in [18], Proposition 9.15, implies that:

(1) For any. GVTL "V, the class V* satisfies the following equivalence for any
tree language T Ç T(E, X): T G r (E , X) <f4> SA (T) G

(2) For any GVFA K there is a unique GVTL Y such that r a = K.

Definition 12. For a VFM M, let M' be the family of all recognizable tree
languages whose syntactic monoids are in M, that is to say for any tree language
T Ç T(E, X), T G M t (E , X) <*> SM(T) G M holds.

A family of recognizable tree languages is said to be definable by syntactic
monoids if there is a VFM M such that M ' = V.

Steinby has shown that for any VFM M, M* is a GVTL ([18], Proposition 10.3).
His proof can be applied to show that M t is also closed under inverse of regular
tree homomorphisms. The general varieties of tree languages closed under inverse
(arbitrary) tree homomorphisms are studied by Esik [4] who characterized them by
their syntactic theories. Theorem 14.2 of [4] establishes a correspondence between

Varieties of Tree Languages Definable by Syntactic Monoids 29

XT : C(Q,Y) C(fi, Y)/nT, P\T = P/HT be the natural morphisms. Then
the tree homomorphism ip : T(£ , X) —> T(fi, Y) is full with respect to T iff both
the mappings ipipT : T (E ,X) -» T{Q. ,Y) /0 T and ip,XT : C(S ,X) C (Q,Y) /HT
are surjective.

Recall that for an equivalence relation 6 on a set A, the quotient set of A under 0
is denoted by A/0, and a6 is the equivalence 0-class containing a £ A.

L e m m a 17. If ip : T(£, X) —* Y) is a regular tree homomorphism and
T C T (f l , y) , then SM(Tip- 1) -< SM(T), and if ip is full with respect to T, then
S M t T V 1) S SM(T).

Proof. We note that ip, : C(E,X) —» C(f2, y) is a monoid homomorphism. Let
S C C(ii, y) be the image of </?„, and let n be the restriction of ^ t to S. Then S/n
is a submonoid of C(fi, Y)/ht- We show that Pip, n Qip, implies P fj.Tip-1 Q for all
P,Q£ C(E,X).
Suppose Pip,nQip, and take arbitrary t G T(fi, Y) and R € C(ii, Y). Then

t-PRz. Tip~l tip • Pip, • Rip, G T
tip • Qip, • Rip, G T
t-Q-R.eTip'1,

that is P f j , T v - i Q . So the mapping V : S / f i —> C(E, X)//j.Ttfi-i defined by
((Pip,)fj,)ip = P/j.Tip-i is well-defined and surjective. It is also a monoid ho-
momorphism, since ((Pip,)n • (Q<p,)n)ip = ((P • Q)iptfi)ip = (P • Q)M7V-» =
Pl*TV-I • QHTV-I = {{P<p*)ii)il> • ((Q<P*)»)ip for all P,Q G C (E , X) . Hence
SMCTV"1) <- S/n C SM(T), so S M ^ " 1) -< SM(T).
Now, suppose ip is full with respect to T. We show P tiTtp-i Q iff Pip, fiT Qip, for
any P,Q G C(E,X). Clearly, Pip, fir Qip* implies P fj,Tip-i Q. For the converse,
suppose P fiTv,-i Q, and take arbitrary R' G C(f i ,y) , and t' G T (f i , y) . There are
R G C(£, X) and t G T(E, X) such that Rip, fj.T R' and tip 0T t'. Hence

t' • Pip, R' G T tip • Pip, • Rip, G T
<f4> (t • P • R)ip G T

t-PReTip-1

t-Q Re Tip-1

<p> tip • Qip, • Rip, e T
t' • Qip, R'eT,

which shows that Pip, ht Qip,. Hence P fj.Ttfi-i Q iff Pip, /it Q<P*, and since the
function ip, : C(E, X) —» C(ii, Y) is a monoid homomorphism, the mapping

<fi-1 ^ (Pf*) Mr is a monoid isomorphism
between SMCZV1) and SM(T). •

In the following example we show that the regularity condition on ip in the
previous lemma can not be relaxed.

30 Saeed Salehi

Example 18. Define the ranked alphabets fi = 0.2 = { /} and £ = £ i = {g,h},
and the leaf alphabet X = {u,v,w}. Let (Z3, -f) be the cyclic group of order
3. Define x '• T(f2,X) —> Z3 inductively by ux = 0, vx = 1, wx = 2, and
f(t, s)x = tx + sx• Let T = {0}x - 1 . It is easy to see that the syntactic monoid of
T consists of the /¿^-classes fche elementary contexts f(u, 0 , f(v, 0 , f(w, £), and
in fact SM(T) ~ (Z3, +).

Define the tree homomorphisms ip, V : T(E, X) —» T(íí, X) by <px(x) =
i>x(x) = xfoi x £ X, and (fii(g) = ipi(g) = / (« , 0 , ipi(h) = / (£ ,0> and V'i(h) = u.
These tree homomorphisms are not regular: ^ appears twice in <fii(h) and does not
appear at all in ipi(h).

We show that neither SM (Tip- 1) nor SM (T ip ' 1) can divide SM (T) . The fol-
lowing identities can be verified by straightforward computations:

- (v • HO • g(£))<px = 0, (v- • h(0)v>X = 1, and
- (w • № • g(0)Tl>x = 1, (v • <7(0 • h(Z))1>X = 0.

So, (/i(0 • 5 (0 . 5 (0 • MO) £ M r v » - 1 » ^ - 1 which proves that SM(T<^_1) and
SM(Ti/'_1) are not commutative.

Remark 19. Let C be the variety of finite commutative monoids. By Example
18, the GVTL C l is not closed under inverse non-regular tree homomorphisms;
cf. Theorem 24. So, C* is not definable by syntactic theories in the sense of [4].
On the other hand, by Example 13, the family of definite tree languages is not
definable by syntactic monoids, even though it is definable by syntactic theories,
cf. [4] Subsection 11.1.

Thus, the concepts of "definability by syntactic theories" and of "definability by
syntactic monoids" are not comparable to each other, though they are both weaker
than "definability by syntactic algebras".

Lemma 20. Let A = (A, E) be a finite algebra, and X be a leaf alphabet disjoint
from A. For any tree language L C T(A^, X) recognized by Ae, there exists a
regular tree homomorphism <p : T(A^, X) —> T(E, X U A), and a tree language
T C T(£ , X U A) such that L = Tip-1, and T can be recognized by a finite power
An where n =

Proof. Let a : X —* TR(.4) be an initial assignment for Ae and F C TY(.A) be a
subset such that L = {t 6 T(A^, X) \ taA° £ F). Define the tree homomorphism
<p : T(A.A, X) T (E , X U A) by <px(x) = x for all x € X, and for every p E TR(.A)
choose a ipi(p) £ C(E, A) such that ipi(p)A = p. Obviously ip is a regular tree
homomorphism. Suppose that A = {ai,--- ,a„}. Let F' = {(p(ai),--- ,p(a„)) £
An I p £ F}, and define the initial assignment /? : X U A —> An for An by
xf3 = ((xa)(a\), • • • , (i a) (o n)) for all x £ X, and a/3 = (a, ••• ,a) £ An for all
a € A. Let T be the subset of T (E , X U A) recognized by (An,/3,F'). We show
that L = Tip-1. Every tree w in T(A^, X) is of the form w = pl{p2(• • • Pk(x) • • •
for some p\, • • • ,pk £ Tr(.A) (k > 0) and x £ X. For such a tree w,

waA° = xa • pk • • • • • P2 • Pi, and

Varieties of Tree Languages Definable by Syntactic Monoids 31

(wip)0An = (xa -pk • .. • -P2 -Pi(ai),- - • ,xa-pk- •• • • P2 • Pi{an)). So,

wipeT <=> (wip)/3A" G F'
for some p G F, p(a) = xa • pk • • • • • P2 • PI (a) for all a G A
xa • pk • • • • • p2 • PI G F
waA<> G F
w G L.

•

L e m m a 21. Let A = (A, E) be a finite algebra and X be a leaf alphabet disjoint
from AUE. For any tree language T C T(E, X) recognized by A there exists a unary
ranked alphabet A, and a regular tree homomorphism ip : T(A, X U Eo) —• T(£ , X)
such that if is full with respect to T, and for every z G X U Eo, Tip'1 D T(A, {z})
can be recognized as a subset of T(A, {2}) by A6.

Proof. Let B = (B, E) be the syntactic algebra of T. Then B -< A. Suppose
T = { í e T(E, X) I t(3B G F}, where ¡3 : X -> B is an initial assignment for
B and F C B. Since B is the minimal tree automaton recognizing T, the set B
is generated by 0(X). The mapping /3 : X —» B can be uniquely extended to a
monoid homomorphism /3C : C(E, X) —> C(E, B). Since B is generated by 0(X),
the mapping : C(E, X) Tr(S), /3®(Q) = pc{Q)B is surjective. Define the tree
homomorphism (p : T(AB, XUEO) —> T(E, X) by <px(x) = x for all x G XUEo, and
for every q G TR(S) choose a <pi(q) = Q G C(E, X) such that PC(Q)B = 9- Note that
ip is a regular tree homomorphism. It remains to show that <p is full with respect
to T and that for every 2 G X U Eo, Lz = Tip'1 D T(A, {2}) can be recognized as
a subset of T(A, {2}) by Be. This will finish the proof since Tr(B) Tr(^) follows
from B -< A by Lemma 10.7 of [18], and so B8 -< A8 by Lemma 6, which implies
that Lz can also be recognized by Ae.

Firstly, we show that <p is full with respect to T. Let Q G C(E, X) be a context.
For q = PC(Q)B 6 Tr(S), q(£)ip* ht Q holds. By induction on the height of t we
show that for any t G T (E , X) there is an s G T(AB, X U Eo) such that tOrstp. If
t = x G X U E0 , then s<peTt for s = t. If t = t' • P for some P G C(E ,X) and
t' G T(E, X) such that the height of t' is less than the height of t, then by the
induction hypothesis there is an s' G T(Ag, X U Eo) such that t' OT s'ip. Also, for
some p G Tr(B), p(£)v* Mr P holds. Let s = p(s'). Then

sip = s'ip • 0Tt' -P = t.
Secondly, we show that Lz can be recognized by Be for a fixed 2 G X U Eo- Let
IB be the identity translation of B. Define the initial assignment a : {z} —> Tr(B)
for Be by 2a = 1 B , and let Fz = {q G Tr (B) | q(zj3B) G F}. We show that Lz is
recognized by (Be,a,Fz). Every w G T(Ae, {2}) can be written in the form

w = K(<¡2(- • -Qh(z) • • •))
for some q\, • • • ,qh G Tr(S) (h > 0). For such a tree w,

32 Saeed Salehi

waB° = 1B • qh • • • • • <72 • 9i> and (wtp)0B - qh •... • q2 • 9i(z/3B). Thus,

w G Lz wip G T (wtp)(3B G F
« qh • • • • • q2 • qi(z/3B) € F

9/. • • • • • 92 • € Fz
G F z .

So, L2 = {to € T(A, {2}) | to®' GFi}. •

We end the section by proving a Variety Theorem for tree languages and syn-
tactic monoids, and presenting some examples that justify the theorem (another
interesting example is presented in [12]).

Before presenting the main theorem we note two remarks.

Remark 22. Let A be a unary ranked alphabet. For every leaf alphabet X and
every subset Y C X, C(A, Y) = C(A,X), and the relation ¡IT for a tree language
T C T(A, Y) on C(A, Y) is the same relation (IT on C(A, X) when T is viewed as
a subset of T(A,X).

So, if a family of tree languages "V — {y(T,, X)} is definable by syntactic
monoids, then for every unary ranked alphabet A, and any leaf alphabets X and
Y, if Y C X then r (A , Y) C r (A , X) .

Recall the notion of y a at the beginning of the section.

Remark 23. By Propositions 6.13 and 5.8(b) of [18] it follows that every finite
algebra can be represented as a subdirect product of the syntactic algebras of some
tree languages that are recognizable by the algebra. This implies that for any GVTL
V and any finite algebra A, if every tree language recognizable by A belongs to Y,
then A G Y*.

Theorem 24. A family of recognizable tree languages V is definable by syntactic
monoids iff y is a GVTL that is closed under inverse regular tree homomorphisms
and satisfies the following conditions:

(1) For every unary ranked alphabet A, and any leaf alphabets X and Y, if Y C X
then y{K,Y) C y{A,X).

(2) For any regular tree homomorphism <p : T(£, X) —> T(ii, Y) which is full with
respect to a tree language T C T(fi, Y), if Tip-1 G y{T,,X) then T G y(Cl,Y).

Proof. That for any VFM M, 1VP satisfies the conditions of Theorem 24 follows
from Lemma 17, Remark 22, and the facts mentioned at the beginning of the
section. For the converse, suppose the GVTL y satisfies the conditions presented
in the theorem. We complete the proof of the theorem by showing that y a satisfies
the condition of Theorem 8. Indeed, Theorem 8 implies then that there is a VFM
M such that y a = M a , and

T ^ y & SA(T) G r a <*> TY(SA(r)) G M SM(T) G M
holds for every tree language T by Remarks 11 and 1, which proves that y — M ' .
So, all we have to show is that A G y* iff Ae £ y* for any A.

Varieties of Tree Languages Definable by Syntactic Monoids 33

Let A — (A, E) be a finite algebra in By Lemma 20, any tree language L C
X) recognized by Ae can be written as L = Tip'1, where ip : X) —>

T(E, X U A) is a regular tree homomorphism, and T is a tree language recognized
by some power An of A. Then An G implies that T G r (E , X U A), and hence
L = TipG Y(AA,X). This holds for every tree language L recognizable by Ae,
so Ae G y a by Remark 23.

Now, suppose Ae G r a for a finite algebra A = (A, E). Let T C T(E, X) be a
tree language recognizable by A. By Lemma 21, there is a unary ranked alphabet
A and a regular tree homomorphism ip : T(A, X U £o) —> T(£, X) full with respect
to T such that for every z G X U £o, Lz = Tip'1 D T(A, {z}) can be recognized
by Ae as a subset of T(A,{z}). So, Lz G r (A,{z}) , thus Lz G A,X U E0).
Hence Tip-1 — Uzexus0

 e ^{A,X U Eo). Since ip is full with respect to T,
then T G X). This holds for every tree language T recognizable by A, hence
A G r a by Remark 23. •

Example 25. It was shown in Example 13 that Defi is not definable by syntactic
monoids. Here we show that it does not satisfy condition (2) of Theorem 24.
Let E , X , T , T ' be as in Example 13. Define the regular tree homomorphism ip :
T (£ , X) -» T(E, X), by tpx(x) = x, ipx(y) = y, and ip2(f) = f [x, f
'•Pi(<?) — 5(2/1 £2))- Now ip is full with respect to T' since for any t G T(E, X),
if t G T then f(y,x)<pdT> t, and if t & V then g{y,x)ip6T't. Similarly, for P G
C(E, X), if the leftmost leaf of P is x then f (y , HT' P, if the leftmost leaf of P
is y then Mr' P-, and if the leftmost leaf of P is £ then £</?„ /xjv P. Clearly
T'ip~x = T, since for any t G T (£ , X) , the leftmost leaf of tip is x iff either t — x
or the root of t is / . By Example 13, T V - 1 =T G Defi, but T' <¿ Defi.

Example 26. Let Ap = {Ap(E, X)} be the family of aperiodic tree languages.
It was shown to be a GVTL in Example 7.8 of [18]. It is also known that Ap is
definable by the variety of aperiodic (syntactic) monoids, see [20]. The argument
of Example 7.8 in [18] showing that Ap is closed under inverse g-morphisms can be
applied to show that Ap is in fact closed under inverse regular tree homomorphisms.
It is also straightforward to see that Ap satisfies condition (1) of Theorem 24. We
show that it also satisfies condition (2). Suppose ip : T(E, X) —» T(íí, Y) is a regular
tree homomorphism full with respect to T C T(íl, Y), and Tip"1 £ Ap(£, X).
There is an n such that for all t G T (£ , X) and all P,Q G C(E,X) , t • Pn • Q G
Tip-1 <!=*> t • Pn+1 • Q G Tip-1. For any s G T(fi, Y) and any R, U G C(íí, Y), there
are t G T (E , X) and P,Q G C(E ,X) such that tip6Ts, Ptp,fj,TR, and Qip+nrU.
So, s • Rn -U €T <*tip- Pnip„ • Qip* G T t • Pn Q G Tip-1 &

t • P n + 1 • Q G Tip'1 O tip • Pn+1ip, • Qtp* GT s- Rn+1 -UGT,
which shows that T G Ap(fi, Y).

Example 27. The family of nilpotent tree languages Nil = {Nil(£,X)} which
consists of finite and cofinite tree languages is a GVFA (see [18], Example 7.5). Let
A = Ai = {a} be a unary ranked alphabet and X — {x, y} be a leaf alphabet. Let
T = {a(y),a(a(y)), a(a(a(y))), • • • }. Clearly T G Nil(A, {y}), but T ^ Nil(A, X).

34 Saeed Salehi

Hence, Nil does not satisfy the condition (1) of Theorem 24, so it is not definable
by syntactic monoids.

5 Definability by Semigroups
In this section, we show how to modify the above results as to yield characterizations
of varieties of finite algebras definable by translation semigroups and of varieties of
tree languages definable by syntactic semigroups.

5.1 Algebras Definable by Translation Semigroups
The difference between the translation monoid and the translation semigroup of an
algebra is that the latter does not automatically contain the identity translation,
although it may be included as an elementary translation or as a composition of
some elementary translations.

Denote the translation semigroup of an algebra A = (A, £) by TrS(^t) and let
A.4 be as in Definition 4 except that Tr(.4) is replaced with TrS(^4). We associate
with A a new symbol that does not appear in A U E U TrS(A). Define the
A^-algebra A< = (TrS(^) U {Lt}, A^) by pA\q) = q-p and pA" (I A) = p for all
p,q£lrS(A).

L e m m a 28. For any finite algebras A = (A, E) and B = (B, Q),
(1) T*S(.4) ^ T r S (^) ;
(2) If TrS(.4) TrS(S), then A". -<g and
(3) TVS(-4) x TrS(S) Si Tr(«;(^ i, B'')) for some g-product « (A . B 5) .
Moreover, for any k > 1, and algebras Ai, • • • ,Ak, there is a g-product V of

A{,--- such that TrS(Ai) x • • • x TrS(Afc) S TrS(V).

Proof. The statements (1) and (3) can be proved similarly as their counterparts in
Lemmas 5, 6, and 7 just by replacing the identity translation I A (and I s) with IA
(with Ig). We prove (2):

For a semigroup 5 that satisfies TrS(*4) <— S C TrS(S), let As = {p G Ag | p G
5}. Then clearly 5 = (5 U {IS}, AM) Qg Bf where the interpretation of p G As in
S is defined by p 5 ^) — q-p and p5(Ib) = p for p, <7 G 5. Suppose <p : S —> TrS(.A)
is a semigroup epimorphism. Define the assignment k : As —> A.4 by qn = qip for
all q G 5. It is clear that K is surjective and for all q, r G S C TrS(S), (qB< (r))ip =
(r • q)tp = rtp • qtp = WA*(r<p) = (qn)A*(rtp). Hence (/c,<p) : S —• A* defined by
sip — s<p for s 6 S and Ib<p = I.4, is a g-epimorphism. Thus Ae *—g S Cg BQ. •

The following characterization of the class of finite algebras definable by trans-
lation semigroups can be proved similarly as Theorem 8.

T h e o r e m 29. A class of finite algebras K is definable by translation semigroups
iff it is a GVFA such that the equivalence A G K iff A* G K holds for any finite
algebra A.

Varieties of Tree Languages Definable by Syntactic Monoids 35

5.2 Tree Languages Definable by Syntactic Semigroups
Let X be a leaf alphabet and E be a ranked alphabet such that E ^ Eo- A trivial
tree language T consists of constant or leaf symbols only, i.e., T C E 0 UX. For such
a tree language T, the syntactic semigroup of T is the trivial semigroup consisting of
a zero element, while its syntactic monoid consists of a zero element and an identity
element. Since the trivial semigroup belongs to every variety of finite semigroups,
any family of tree languages definable by syntactic semigroups should contain all
these trivial tree languages. So, it is reasonable to consider +-varieties of tree
languages (cf. [4] Section 11).

The sets of non-trivial EX-trees and non-trivial EX-contexts are defined by
T+(E,X) = T (E , X) \ (E 0 U X) and C+(E,X) = C(E,X) \ {£}, respectively. Any
subset of T+(E,X) is called a trivial-free tree language.

For a trivial-free tree language T C T + (E , X) the syntactic semigroup of T is
the quotient semigroup C + (E, X) /px where ¡JLT is restricted to C + (E ,X) .

A regular tree homomorphism ip : T(E, X) —> T(i), Y) is called strict, if <pm(f) is
not trivial for any / G E m with m > 0, and ipx(X), <po(Eo) C YUf20 (cf. Definition
11.1 of [4]). We note that if tp is strict and regular, then T + (£ ,X)v? _ 1 = Y).
A family of regular trivial-free tree languages { ^ (E , X) } C {T + (E ,X)} is called a
+-GVTL if it is closed under Boolean operations, inverse translations and inverse
strict regular tree homomorphisms, and moreover satisfies the following conditions:
(1) For every unary ranked alphabet A, and any leaf alphabets X and Y, if Y C X
then r (A , Y) C r (A , X) .
(2) For any strict regular tree homomorphism <p : T(E,X) —> T(Q, Y) full with
respect to T C T+(ii, Y), if Tip ' 1 G r (E , X) then T G Y).

That any variety of trivial-free tree languages definable by syntactic semigroups
is a -I—GVTL can be proved analogously to that of the monoid case. We claim the
converse in the following theorem.

Theorem 30. A family of trivial-free tree languages is definable by syntactic semi-
groups iff it is a +-GVTL of tree languages.

The proof, once we have proved the following semigroup counterparts of Lemmas
20 and 21, is very similar to that of Theorem 24.

Lemma 31. Let A = (A, E) be a finite algebra, and X be a leaf alphabet disjoint
from A U E.

(1) For any trivial-free tree language L C T + (A ^ , X) recognized by A^, there
exists a strict regular tree homomorphism ip : T(A^,X) —> T(E,X U A), and a
trivial-free tree language T C T + (E , X U A), such that L — Tip -1 , and T can be
recognized by a finite power of A.

(2) For any trivial-free tree language T C T + (E , X) recognized by A there
exists a unary ranked alphabet A and a strict regular tree homomorphism ip :
T(A, X U Eo) —> T(E, X) such that ip is full with respect to T, and for every
2 G X U So, Tip ' 1 n T(A, {2}) can be recognized by A* as a subset of T(A, {2}).

36 Saeed Salehi

Proof. (1) Suppose for an initial assignment a : X —» Tr(.4) U {I.4} and a subset
F C Tr(A) U {1^}, L = {t G T(Aa,X) I taA° G F} holds. Since L is trivial-
free, we can assume that 1A & F, or equivalently F C Tr(.4). Let Y = {x G
X | xa = I.4}. Define the tree homomorphism ip : —» T(E, X U A) by

= x for all x G X, and for every p G Tr(A) choose a <£>i(p) € C(£, A) such
that <Pi{p)A = p. Obviously ip is a strict regular tree homomorphism. Suppose
that A = {ai,--- ,am}. Let F' — {(p(ai),- - ,p(am)) G Am | p G F) , and define
the initial assignment /3 : X U A —» Am by xf3 = ((xa)(ai), • • • , (xa)(a m)) for
all x G X \ Y, yP = (a i y ,am) for all y € Y, and a/? = (a,••• ,a) G Am

for all a £ A. Let T be the subset of T (£ , X U A) recognized by (Am,/3,F').
We show L = Tip-1. Every trivial-free tree w in X) is of the form w =
pi(p2{ • • 'Pk(x) •")") some Pit'" j Pk € Tr(>4) (k > 0) and x e X. For such
a tree w, waA" = xa • pk ••••• P2 • Pi ii x e X \ Y, and waA° = pk • • • • • P2 • Pi
if x G Y; also (wtp)PA 'n = (xa • pk • .. • • P2 • Pi(ai), • - , x a • pfc • . . . • p2 • Pi(am))
holds. So, for x G X \ Y we have wip G T iff (w(p)0A'n G F' iff "for some p G F,
p(a) = xa-pk •... -p2 -pi(a), for all a G A" iff xa •pk • • • • -p2 -Pi G F iff waA° G F
iff w G L. Similarly, for x G Y we have wip G T iff (wip)(3A"1 G F' iff "for some
p G F , p(a) = pk • • • • • P2 • P 1(0), for all a G A" iff pk • • • • • p2 • pi G F iff waA" G F
iff tv £ L.
(2) The proof is almost identical to that of Lemma 21, only is replaced with

•
. It was shown in Example 13 that the variety of 1-definite tree languages is

not definable by syntactic monoids. In the following example we show that its
trivial-free counterpart is not definable by syntactic semigroups.

Example 32. The syntactic semigroup of the trivial-free 1-definite tree language
T \ {x} where T is defined in Example 13, consists of two elements both of which
are right zeros. Let A = Ai = {a,/3} and X = {x,y}. Let T" be the set of all
AX-trees which either have root label a and leaf label x or have root label /3 and
leaf label y, i.e., T" = {a(p(x)) | p G C(A,X)} U {(3(p(y)) \ p G C(A,X)}. It is
easy to see that the syntactic semigroup of T" consists of two right zero elements,
but clearly T" is not 1-definite. So, the trivial-free 1-definite tree languages are not
definable by syntactic semigroups.

Indeed, T" is not fc-definite for any k > 1, thus the trivial-free definite tree
languages are not definable by syntactic semigroups.

5.3 Monoids vs. Semigroups
In this subsection we show that the concepts of "definability by semigroups" and
"definability by monoids" are not comparable to each other.

The abbreviation VFS stands for variety of finite semigroups. For a VFS S,
let S a be the class of all finite algebras whose translation semigroups are in S,
and S ' be the family of all recognizable trivial-free tree languages whose syntactic
semigroups are in S (cf. Definitions 3 and 12).

Varieties of Tree Languages Definable by Syntactic Monoids 37

We recall Proposition 10.9 of [18] which can be extended to VFS's.

Theo rem 33. For any VFM M and VFS S, the identities M " = M t , M t a = M a ,
S a t = S* and S t a = S a hold.

Theo rem 34. (1) There is a VFM M for which no VFS S, satisfies M a = S a or
M* = S t .
(2) There is a VFS S such that for no VFM M, M a = S a or M ' = S t holds.

Proof. (1) Let M be the class of all finite monoids which satisfy the equation
y . x • x = y. Obviously, M is a VFM. Let E = E j = { /} and put the algebras
A = (A, E) and B = (B, E) be defined by A = {a}, fA(d) = a, and B = {a, b},
fB(a) = fB = a. Then Tr(A) = TrS(A) S TrS(S) is the trivial semigroup, but the
monoid Tr(fi) consists of a zero element (0) and a unit (1). Now, A € M a , but
B M a since Tr(£5) does not satisfy the equation y • x • x = y: 1 • 0 • 0 = 0 ^ 1.
Hence, M a is not definable by translation semigroups. Now if M® = S* hold for a
VFS S, then by Theorem 33 we would have M a = M t a = S t a = Sa , contradiction.

(2) Let S be the variety of finite right zero semigroups, i.e., the class of all
semigroups that satisfy the equation y • x = x. It can be easily seen that if T and T'
are the tree languages of Example 13, then T \ {a:} € S t (E, X) since the syntactic
semigroup of T \ {x} has two elements both of which are right zeros. On the other
hand, the syntactic semigroup of T' consists of an identity element and two right
zeros (like its syntactic monoid). Thus T' g S t (E, X). This shows that S* is not
definable by syntactic monoids (since T \ {x} and T' have isomorphic syntactic
monoids) whence M* = S* does not hold for any VFM M. On the other hand, if
M a = S a holds for some VFM M, then by Theorem 33, M t - M a t = S a t = S \
contradiction. •

Theorems 34 justifies the task of studying the definability by semigroup sepa-
rately from the monoid case.

6 String languages definable by translation
monoids

In this final section, we present for strings the results corresponding to those of
the previous sections. Familiarity with the basic notions of string languages and
automata are presumed.

Let X be a finite alphabet, and X* be the set of words over X. A string
language over X is any subset of X*. In the literature the syntactic monoid SM(L)
of a string language L C X* is defined to be the quotient monoid X*/0i where
w 6L W' VU, v E X*(uwv 6 L H UW'V € L).

For a monoid M — (M, •) the translations of M are the unary functions on
M defined by x i—» m • x • mf for some m, m' £ M. Denote the composition of the
translations p and q by p°q, that is poq(m) — p{q{m)) for all m € M. We note that
the set of translations of M is a monoid with respect to composition operation.

38 Saeed Salehi

Denote the translation monoid of M by Tr(A^). For a string language L, let the
translation monoid TM(L) of L be the translation monoid of the syntactic monoid
of L, i.e., TM(L) = Tr(SM(L)).

Note that by necessity the terms 'syntactic monoid' and 'translation monoid'
have different meanings and interpretations in this section.

Eilenberg's [3] variety theorem establishes a correspondence between a variety
of finite monoids M and a variety of string languages Jzf = {Jf(X)} such that for
any L C X*, L G J f (X) SM(L) G M.

A variety of string languages "V = {y(X)} is definable by translation monoids if
there exists a variety of finite monoids M such that for any L C X*, L G Y(X)
TM(L) G M. We shall characterize these varieties of string languages in Theorem
40 below.

It is known that not any variety of string languages can be defined by translation
monoids (one example is the class of reverse definite, or frontier testable, string
languages, cf. [21]).

For a monoid M. = (M, •), the reverse of M. is the monoid MK = (M , -R) where
m -R m' = ml • m for m, m' G M. Clearly (A4R)R = M. We show that a variety of
finite monoids is definable by translation monoids (see Definition 3) iff it is closed
under the reversing operation.

First, we show that the reverse of a monoid and the original monoid have iso-
morphic translation monoids.

Lemma 35. For a monoid M = (M, •), Tr(M) Tr(A^R).

Proof. For any translation p(x) = m-x m' (m, m' G M) of M. let pR(x) = m'-x-m.
The mapping Tr(A^) —> TV(A^R), p y—> pR is an isomorphism. •

Next, we present some connections between the translation monoid of a monoid
and the original monoid.

Lemma 36. For any monoid M, (1) M C Tr(A4), and (2) Tr(M) M x A4R.

Proof. Let M = (M, •). (1) For any m G M, let pm be the translation defined by
Pm{x) = m • x on M. It is easy to see that the mapping m >-> pm is a monoid
monomorphism that embeds M. into Tr(A'l). (2) For any m, n G M, let 9(m,n) be
the translation of M. defined by q(m,n) (x) = rn • x • n. It can be easily seen that
(m, n) i—» m • x • n yields an epimorphism M x A4R —» Tr(A'i). •

• Finally, we characterize the varieties of finite monoids definable by translation
monoids.

Theorem 37. A variety of finite monoids M is definable by translation monoids
iff it is closed under the reversing operation, i.e., M G M => M K G M for any
monoid M .

Proof By Lemma 35, every variety of finite monoids definable by translation
monoids is closed under the reversing operation. Now suppose a variety of finite
monoids M is closed under the reversing operation. We show that M g M <i=>

Varieties of Tree Languages Definable by Syntactic Monoids 39

Tr(M) 6 M for any monoid M. The implication Tr(A4) G M M G M follows
from Lemma 36(1). For the converse, let M G M. Then also ,A/iR G M, and hence
Ti{M) G M by Lemma 36(2). •

The proof also implies that:

Corollary 38. If a variety of finite monoids M is definable by translation monoids,
then M is generated by the translation monoids of its members.

In the sequel we characterize the varieties of string languages definable by trans-
lation monoids.

For a string w — X\X2 • • • xn G X* define the reverse of w as wR = xn ... X2X1.
We note that uRvR = (vu)R holds for all u, v G X*. For a string language L C I ' ,
Lr = {ioR G X* | w£L}.

The following lemma is a known fact (see e.g. [3]).

Lemma 39. For any string language L C X*, SM(LR) = SM(L)R.

Our characterization of the varieties of string languages definable by translation
monoids is the following.

T h e o r e m 40. A class of string languages ~V is definable by translation monoids
iff it is a variety of string languages closed under the reversing operation, i.e.,
L G V{X) LR G Y (X) for any string language L C X*.

Proof. Since Lemmas 39 and 35 imply that TM(L) = TM(LR) for any string
language L, any variety of string languages definable by translation monoids is
closed under the reversing operation. Now, suppose "V is a variety of string lan-
guages closed under the reversing operation. By Eilenberger's variety theorem
there is a variety of finite monoids M such that for any string language L C X*,
L G y(X) SM(L) G M. We show that the class M also defines the translation
monoids of r , that is to say, for any L C X*, L G Y(X) o TM(L) G M.
First, suppose L is in f (X) . Then also LR G Y(X), so SM(L) G M and
SM(LR) G M. By Lemma 39, SM(L)R G M, and since TM(L) is an epimorphic im-
age of SM(L) x SM(L)R by Lemma 36, TM(L) G M. Next, suppose TM(L) G M
for a string language L C X*. Since by Lemma 36, SM(L) is isomorphic to a
submonoid of TM(L), then SM(L) G M, and hence L G Y{X). •

Corollary 41. Let V be a variety of string languages definable by translation
monoids. Then the variety generated by the translation monoids of Y is equal to
the variety generated by the syntactic monoids of Y.

An analogue of Theorem 40 can be proved for translation semigroups.
Unlike Theorems 24 and 30 for tree languages, by Theorem 40 checking whether

or not a variety of string languages is definable by translation monoids or semigroups
is rather easy. For example the variety of definite string languages and the variety of
reverse definite string languages are not definable by translation semigroups, while
the variety of aperiodic string languages and the variety of commutative string
languages (i.e., having commutative syntactic monoids) are definable by translation
monoids.

40 Saeed Salehi

Acknowledgements

I would like to thank Magnus Steinby, Tatjana Petkovic, Ville Piirainen, and Zoltán
Esik for helpful comments and stimulating discussions.

References
[1] Almeida J., On pseudovarieties, varieties of languages, filters of congruences,

pseudoidentities and related topics, Algebra Universalis 27 (1990) 333-350.

[2] Birkhoff G., On the structure of abstract algebras, Proc. Cambridge Phil. Soc.
31 (1935) 433-454.

[3] Eilenberg S., Automata, Languages, and Machines, Vol. B. Pure and Applied
Mathematics, Vol. 59, Academic Press, New York - London (1976).

[4] Ésik Z., A variety theorem for trees and theories, Automata and formal lan-
guages VIII (Salgótarján, 1996), Publ. Math. Debrecen 54 (1999), suppl., 711-
762.

[5] Esik Z. & Weil P., On Logically Defined Recognizable Tree Languages, Proceed-
ings of FSTTCS'03, Lect. Notes in Comp. Sci. 2914, Springer-Verlag (2003),
195-207.

[6] Nivat M. & Podelski A., Tree monoids and recognizability of sets of finite
trees, Resolution of Equations in Algebraic Structures, Vol. 1, Academic Press,
Boston MA (1989) 351-367.

[7] Nivat M. & Podelski A., Definite tree languages (cont'd), Bull. EATCS 38
(1989) 186-190.

[8] Petkovic T., Ciric M. & Bogdanovic S., Unary algebras, semigroups and con-
gruences on free semigroups, Theoret. Comput. Sci. 324 (2004) 87-105.

[9] Petkovic T., Ciric M. & Bogdanovic S., Eilenberg type theorems for automata,
submitted.

[10] Pin J.E., Varieties of formal, languages, Foundations of Computer Science,
Plenum Publishing Corp., New York (1986).

[11] Pin J.E., A variety theorem without complementation, Izvestiya VUZ Matem-
atika 39 (1995) 80-90.

[12] Piirainen V., Monotone algebras, ii-trivial monoids and a variety of tree lan-
guages, Bull. EATCS 84 (2004) 189-194.

[13] Podelski A., A monoid approach to tree languages, in: Nivat M. & Podelski
A. (ed.) Tree Automata and Languages, Elsevier-Amsterdam (1992) 41-56.

Varieties of Tree Languages Definable by Syntactic Monoids 41

[14] SalomaaK., Syntactic monoids of regular forests (Finnish), M.Sc. Thesis, Dep-
tartment of Mathematics, Turku University (1983).

[15] Schiitzenberger M. P., On finite monoids having only trivial subgroups, Infor-
mation and Control 8 (1965) 190-194.

[16] Steinby M., Syntactic algebras and varieties of recognizbale sets, in: Proc.
CAAP'79 (University of Lille 1979) 226-240.

[17] Steinby M., A theory of tree language varieties, in: Nivat M. & Podelski A.
(ed.) Tree Automata and Languages, Elsevier-Amsterdam (1992) 57-81.

[18] Steinby M., General varieties of tree languages, Theoret. Comput. Sci. 205
(1998) 1-43.

[19] Therien D., Recognizable languages and congruences, Semigroup Forum 23
(1981) 371-373.

[20] Thomas W., Logical aspects in the study of tree languages, Ninth Colloquium
on Trees in Algebra and in Programming (Proc. CAAP'84), Cambridge Uni-
versity Press (1984) 31-51.

[21] Wilke T., An algebraic characterization of frontier testable tree languages,
Theoret. Comput. Sci. 154 (1996) 85-106.

Received August, 2004

г

Acta Cybernetica 17 (2005) 43-51.

Topologies for the Set of Disjunctive UJ-words

Ludwig Staiger*

A b s t r a c t

An infinite sequence (w-word) is referred to as disjunctive provided it
contains every finite word as infix (factor). As Jiirgensen and Thierrin [JT83]
observed the set of disjunctive ui-words, D, has a trivial syntactic monoid but
is not accepted by a finite automaton.

In this paper we derive some topological properties of the set of disjunctive
w-words. We introduce two non-standard topologies on the set of all w-
words and show that D fulfills some special properties with respect to these
topologies:
In the first topology - the so-called topology of forbidden words - D is the
smallest nonempty Gj-set , and in the second one D is the set of accumulation
points of the whole space as well as of itself.

In 1983 two papers dealing with the w-language of disjunctive UJ-words appeared
[JST83, JT83]. In the latter it was shown that this w-language is a natural example
of an w-language having a trivial (finite) syntactic monoid but not being accepted
by a finite automaton. For a more detailed account see [St83, JT86].

Subsequently, disjunctive w-words became of interest in connection with random
and Borel normal sequences (see, for instance, [Ca02, He96]). In contrast to Borel
normality, "disjunctivity" is a natural qualitative property which is satisfied, in
particular, by Borel normal and by random w-words.

As in [JST83, JT83] we say that an w-word is disjunctive if it contains any
(finite) word as a subword. In this paper we are going to investigate topological
properties of the set of all disjunctive sequences (w-words). Usually, one considers
the space of all w-words over a finite alphabet X as the infinite product space of
the discrete space X. Introducing the Baire metric, this space can be considered
as a metric space (Cantor space) (XU,P), that is, a compact totally disconnected
space.

In this paper we consider topologies on the set of all w-words over a finite
alphabet X in which the set of all disjunctive w-words has a special property:

First, we consider the topology of "forbidden words" in which the set of disjunc-
tive w-words is the smallest G^-set. The second topology is a special case of the
topologies derived from formal languages (cf. [St87]). Here the set of disjunctive
w-words turns out to be the largest set which is closed and dense in itself.

'Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, von-Seckendorff-Platz
1, D-06099 Halle, Germany. E-mail: staiger@informatik.uni-halle.de

43

mailto:staiger@informatik.uni-halle.de

44 Ludwig Staiger

1 Notation
By IN = {0,1,2, . . .} we denote the set of natural numbers. Let X be our alphabet
of cardinality # X = r , r G IN, r > 2.

By X* we denote the set of finite strings (words) on X, including the empty
word e. We consider the space Xu of infinite sequences (w-words) over X. For
w G X* and t] G X* U Xw let w • rj be their concatenation. This concatenation
product extends in an obvious way to subsets W C X* and B C X ' u Xu.

We extend the operations * and w to arbitrary subsets W C X* in the usual
way :

W* := [J Wn where W° := {e}, Wn+1 := Wn • W , and
NEIN

W" := {w0 • wi • . . . -Wi - . . . : i G IN A lOj € {e}}

is the set of w-words in Xu formed by concatenating members of W.
We will refer to subsets of X* and Xw as languages or w-languages, respectively.

By "C" we denote the prefix relation, that is, w E rj if and only if there is an rj'
such that w • rj' = rj, and A(t]) := {w : w G X* A w C 77} and A (B) := Uijes A(r?)
are the languages of finite prefixes of rj and B, respectively.

The set of subwords (infixes) of rj G X* U Xu will be denoted by T(t;) := {w :
w G X* A 3v(vw C rj)}.

An w-language F is called regular provided there is an n e IN and regular
languages Wit V* (1 < i < n) such that

71'
F = | J WiV?. (1)

¿=1

Similarly, an w-language F is called context-free if F has the form of Eq. (1) where
Wi and Vi are context-free languages.

Observe, that Vw = 0, V" = {u}" or V" D {v,u}" for some words v,u G V*
with = |u| > 0 and v ^ u. Thus, every at most countable context-free OJ-
langiiage consists entirely of ultimately periodic u-words (cf. [St97]).

2 Preliminary Considerations
In the study of w-languages it is useful to consider Xw as a metric space (Cantor
space) with the following metric.

/5(77,0 :=inf{r~M : to C ryAto C e} (2)

or an equivalent one1.
1For example, the Baire metric o(r/, () := inf{ : w C i / A « i C (} generates the same

topology.

Topologies for the Set of Disjunctive aj-words 45

In this paper, however, we will consider also a topology on Xw which cannot be
specified by a metric, that is, a so-called non-metrizable topology. To this end we
introduce topologies on X " in the general way (cf. [Ku66, En77]).

A topology in Xu is a family O C ex" of subsets of Xu such that 0, Xu € O and
O is closed under finite intersection and arbitrary union. The sets in O are called
open subsets of Xu. The complements of open subsets are referred to as closed.
Since an arbitrary intersection of closed sets is again closed, every set F C X" is
contained in a minimal closed set, its closure Co(F).

Having defined open and closed sets for some topology in X w e proceed to
the next classes of the Borel hierarchy (cf. [Ku66]):

G<5 is the set of countable intersections of open subsets of Xu,

FCT is the set of countable unions of closed subsets of Xu.

A metric o generates the set of open sets O a in the following way: First we define
the open balls Be(£) := {77 : cr(£, r/) < e} for e > 0. Then a set is open in the
space (Xu,o) if it is a union of open balls. In Cantor space, open balls are of the
form w • Xw , and, consequently, the set of open subsets of X" is Oc = {W • Xw :
W C X*}. From this it follows that a subset F C X " is closed in Cantor space if
and only if A(£) C A (F) implies £ € F, and the closure in Cantor space can be
specified as C(F) := {£ : A(£) C A (F) } .

In Section 4 we shall consider the so-called topology of "forbidden" words which
is specified by the set of open sets Ot { X * • W • Xw : W C X*}.2

This topology is a subtopology of Cantor topology Oc D O r , or, equivalently,
the Cantor space is a refinement of the topology of "forbidden" words.

Finally, we define, for a language W C X*, its 5-limit of W, Ws, which consists
of all infinite sequences of Xu that contain infinitely many prefixes in W,

Ws = {t€X": # (A (0 nW) = 00}.

For Gj-sets in Cantor space we have the following characterization via languages
(cf. [Th90, St87, St97]). It explains also why we call W5 the ¿-limit of the language
W.

Theorem 1. In Cantor space, a subset F C Xw is a Gs-set if and only if there is
a language W C X* such that F = Ws.

3 The ^-Language of Disjunctive Sequences
In this section we will present a few simple general properties of the w-language D
of all disjunctive sequences over X, and its topological properties in Cantor space.
Some of the results in this section are reported in [CPS97, St02].

2 The term forbidden refers to the fact tha t closed subsets Eire specified by forbidding a certain
set W of infixes.

46 Ludwig Staiger

As in [JST83, JT83] an w-word £ € Xw is called disjunctive provided T(£) = X*.
Thus the set of all disjunctive w-words satisfies £> = {£: T(£) — X*}.

From this definition we obtain

Our next lemma shows that D is an example of a w-language which has a trivial
finite syntactic congruence but is not context-free. The proof refers to the investi-
gations of Jiirgensen and Thierrin [JT83, JT86].

The syntactic congruence ~ F of an w-language F C Xu is defined as follows3

w~Fv:& VuV£(u G X* A £ € Xu —> (uw£ € F «-> uv£ 6 F)) .

As usual, we call ~ F of finite index iff its number of equivalence classes is finite.
Observe that T(uw£) = X* iff T(£) = X*. Thus it is clear that w ~D v for

arbitrary w,v € D, and has exactly one equivalence class which coincides with
X*. Thus we have proven the first part of the following.
L e m m a 2 ([JT83]). The LU-language D has a syntactic congruence of finite index
but is not context-free.

Proof. As T(]^[tu6 Y- w) = X* and T{wv0J) ^ X*, D is nonempty and does not
contain an ultimately periodic w-word wvu. Following Eq. (1) the u-language D
cannot be context-free. •

The representation of Eq. (3) verifies that D is a G^-set in Cantor space. Thus, in
view of Theorem 1 it can be represented as the ¿-limit of a language. In case of D
we construct such a language Wd explicitly (cf. [St02]).

P ropos i t i on 3. Let WD = {wx : w € X* A x € X A 3n(n < |iy| + 1 A T(t/>x) D
XN A T(ti») 2 Then D = W&

D.

Finally, we are going to show that the topological complexity of D in Cantor space
cannot be decreased. To this end we quote Theorem 21 from [St83].

T h e o r e m 4 ([St83]). If F C Xw has a syntactic congruence of finite index and
is simultaneously an F<j- and a Gg-set in Cantor space, then F is regular.

Combining Theorem 4 with Lemma 2 and Eq. (3) we get:

P ropos i t i on 5. In Cantor space, D is not an F„-set.

3There are other notions of syntactic congruences for ^-languages in use (cf. [MS97]).

(3)
tuex-

Topologies for the Set of Disjunctive aj-words 47

4 The Topology of Forbidden Words
In this section we investigate the topology of forbidden words described above and
its relation to the set of disjunctive sequences. It turns out that this topology is
not a metric one.

Recall Or. = {X*WXU \ W C X*} from Section 2. As X*VX" (1 X*WX" =
{X*WX* fl X*VX*)X" this family OT is closed under finite intersection. The
closure under arbitrary union is obvious. Thus it defines a topology on X w .

An w-language F C Xw avoids words of a language W C X* provided F C
Xw \ X*WX0J, that is, no word w £ W occurs as a subword (infix) of an w-word
(6 F . Therefore, the closed sets in the topology O r are characterized by the fact
that their ui-words do not contain subwords from W. The following theorem gives
a connection to closed sets in Cantor space.

To this end we define F/w := {£ : £ F}.

T h e o r e m 6. Let F C X" . Then the following conditions are equivalent:

1. F is closed in the topology of forbidden words.

2. F is closed in Cantor space and \/w(w £ X* = > F D F/w).

3. F is closed in Cantor space and A (F) = T (F) .

4- V £ (A (£) C T (F) = * t £ F) .

Proof. "1. => 2": As we noticed above, every w-language closed in the topology
of forbidden words is also closed in Cantor's topology. Let w £ X* and F =
X" \ X*WXU. Then F/w = X" \ (X*WX")/w, and the assertion follows from
the obvious inclusion (X*WXu)/w D X*WXU.

"2. 5." follows from the identity A((J t u e X . F/w) = T (F) .
"3. => 4.": If F is closed in Cantor space we have F = {£ : A(f) C A(F)}.

Now the assertion 4- follows from A (F) = T (F) .
Finally, we show that Condition 4 implies F = X"\X* • (X * \ T (F)) - X " . Since

X*\T{F) =X*-(X*\T(F))-X*it suffices to prove that F = XW\(X*\T(F))-XU.
The inclusion F C Xw \ (X* \ A{F)) • X" C \ (X* \ T(F)) • Xw follows

from A(F) C T (F) . To prove the converse inclusion let £ ^ F. Then in view
of Condition 4 there is a prefix w C £ such that w ^ T(F) . Consequently, £ 6
(X* \ T(F)) • Xu. •

In view of the equivalence " i . 4 " we obtain the following representation of
the closure operator Cr defined by the topology of forbidden words:

Cr(F) = {£ : A (0 C T (F) } .

Recall that the closure in Cantor space was definable as C(F) = {£ : A(£) C A(F)}.
The additional requirements Vw{w £ X* => F D F/w) and A(F) = T(F) in

2. and 3. are, however, not equivalent in general. The following example shows
that there is an w-language (necessarily not closed in Cantor space) which satisfies
A (F) = T(F), but not the condition Ww(w £ X* => F D F/w).

f

48 Ludwig Staiger

Example 1. Let F = (X2)*bbaw U X(X2)*aatf. Then A(F) = T(F) = X*, but
F/a 1 F.

Since the family of regular w-languages is closed under Boolean operations, the
w-language Fw = Xu \ X*WXU is regular if the language of forbidden patterns
W C X* is regular. In connection with Eq. (1) and the considerations on Vu

immediately following it this yields as a consequence the following generalization
of a result of El-Zanati and Transue [ET90].

Theorem 7. Let W C X* be a regular language. If Fw is uncountable, then Fw
contains a subset of the form w{u, vwhere u ^ v and |u| = > 0.

We continue with some more examples. The first is an example of a countable
regular w-language Fw which requires an infinite set of forbidden patterns.
Example 2. Let X = {a,b} and W = ba*b. Then Fw = X" \ X*WXW =
a*bau U a" is a countable u-language. It is clear that Fw / Fy, for any finite
language V C X*.

Though the regularity of W implies the regularity of Fw this same relation is
not true for context-free languages and w-languages.

Example 3. Let X = {a, 6} and W = {bb} U {balbajb | j ± i + 1}. Clearly, W is a
deterministic context-free language, and Fw = a*({Vi I* e IN} U {̂ ¿^ \i,j e IN AI <
j}) where rji — balbal+1b • • • and rjij = ba%bal+l • • • ba^bau. Since Fw is countable
but does not consist entirely of ultimately periodic u-words, Eq. (1) shows that Fw
is not context-free.

Finally, we discuss a characterization of the w-language of disjunctive sequences
D by means of the topology of forbidden words. From Eq. (3) we obtain immedi-
ately

Proposition 8. In the topology of forbidden words, D is the smallest nonempty
G g-set.

A set F C X" is dense in Xw in case Xu is the smallest closed set containing F,
that is, X"\F does not contain a nonempty open set. Since £ € X" is disjunctive,
we have T(£) = X*, and therefore {£} (~\X*wXu ^ 0 for all w £ X*. Thus we have
shown the following.

Proposition 9. An ui-word £ e Xu is disjunctive if and only if the set {£} is dense
in Xw in the topology of forbidden words.

This proposition shows that every closed set in the topology of forbidden words
which contains some £ € D must coincide with the whole space Xw. Consequently,
every FCT-set containing £ € D equals Xu.
Corollary 10. D is not an F„-set in the topology of forbidden words.

Above we mentioned that the topology of forbidden words is not a metrizable
topology, that is, it is not definable by a metric. Proposition 9 gives evidence of
this fact, because the sets {£}, £ G D are not closed, while in a metrizable topology
every finite set must be closed.

Topologies for the Set of Disjunctive aj-words 49

5 A Metric Related to Languages
The definition of the topologies considered in this part is related to the well-known
fact that every G^-set of a complete metric space is a complete metric space it-
self (cf. [Ku66]), possibly using a different metric. We use here the construction
presented in [St87]. Related investigations were carried out in [DNPY92].

As we have seen in Theorem 1, in Cantor space a G^-set is of the form Us for
some U C X*. We use this language U to define a new metric pu on Xw which
makes Us a closed set in the metric space (Xu,pu):

This metric, in some sense, resembles the metric p in Cantor space; in fact, p =
PX"- Moreover, since pu{Ç,v) ^ p(Ç, 77), the [/-topology refines the topology of the
Cantor space. In particular, every closed set in cantor space is also closed in the
{/-topology.

We denote by Cu{F) the smallest closed (with respect to pu) subset of Xu

containing F. A point £ 6 Cu(F) is called an isolated point of F provided 3e(e >
0 A N/77(77 £ F A 77 t̂ £ PU(Ç, V) > £))- It should be mentioned that an arbitrary
set of isolated points of Xu is open.

A point £ € Cu{F) which is not an isolated point of F is called an accumulation
point of F.

Lemma 11 ([St03, Corollary 3]). Let U Ç X*. Then Us is the set of accumu-
lation points of the whole space in (Xu,pu).

As an immediate consequence we obtain the following property of U5 in the
space (X",pu) which explains that the {/-topology may be indeed finer than the
topology of Cantor space.

Corollary 12. If F DU5 then F is a closed subset of(Xw,pv).

Proof. Lemma 11 shows that every point £ G X" \ F is an isolated point of Xw.
Consequently, X"\ F is open in (Xu, pv). •

It should be mentioned that, although Us is the set of accumulation points of
the whole space (Xw ,pu), it may contain isolated points with respect to itself.

Example 4. Let U := a* U a*ba* Ç {a, b}*. Then every u-word £ G a*baw is an
isolated point of Us = aw U a*baul.

In the case of the w-language of disjunctive sequences, D, we can prove even
more. To this end we mention the following relationship between accumulation
points in (/-topology and in Cantor space.

Lemma 13 ([St03, Theorem 4]). Let U Ç X*, F C Xu and let £ e Us. Then
Ç is an accumulation point of F in (Xw,pu) if and only if Ç is an accumulation
point of F in (X",p).

50 Ludwig Staiger

In Proposition 3 we constructed a language Wp for which D = Wfy. The
following theorem shows that D is the set of its accumulation points, that is, in
(X",pwD), D is closed and dense in itself.

Theorem 14. Let Us = D. In the space (Xu, pu) the w-language D equals the set
of its accumulation points.

Proof. From Corollary 12 we know that D is closed in [/-topology. Thus no point
77 ^ D is an accumulation point of D.

On the other hand, since w € X* and £ £ D imply w(€ D, every point
{ £ D is an accumulation point of D in Cantor space. The assertion follows with
Lemma 13. •

This shows that in every space (X u , p u) where Us = D the set of disjunctive
sequences is the set of accumulation points of itself as well as the set of accumulation
points of the whole space.

References
[Ca02] Calude, C.S. Information and Randomness: An Algorithmic Perspec-

tive, 2nd Edition, Revised and Extended, Springer Verlag, Berlin,
2002.

[CPS97] C. Calude, L. Priese and L. Staiger, Disjunctive Sequences: An
Overview, CDMTCS Research Report 063, 1997.

[DNPY92] Ph. Darondeau, D. Nolte, L. Priese and S. Yoccoz, Fairness, Distances
and Degrees, Theoret. Comput. Sci. 97 (1992), 131-142.

R. Engelking, General Topology. PWN - Polish Scientific Publishers,
Warszawa 1977.

S.I. El-Zanati, W.R.R. Transue, On dynamics of certain Cantor sets,
J. Number Theory, 36 (1990), 246-253.

P. Hertling, Disjunctive w-words aiid Real Numbers, Journal of Uni-
versal Computer Science 2 (1996) 7, 549 - 568.

H. Jiirgensen, H.J. Shyr and G. Thierrin, Disjunctive w-languages.
Elektron. Informationsverarb. Kybernetik EIK 19 (1983) 6, 267-278.

H. Jiirgensen and G. Thierrin, On w-languages whose syntactic monoid
is trivial, Intern. J. Comput. Inform Sci. 12 (1983) 5, 359 -365.

H. Jiirgensen and G. Thierrin, Which monoids are syntactic monoids of
w-languages, Elektron. Informationsverarb. Kybernetik EIK 22 (1986)
10/11, 513-536.

K. Kuratowski, Topology I, Academic Press, New York, 1966.

[En77]

[ET90]

[He96]

[JST83]

[JT83]

[JT86]

[Ku66]

Topologies for the Set of Disjunctive aj-words 51

[MS97] O. Maler and L. Staiger, On syntactic congruences for w-languages,
Theoret. Comput. Sci. 183 (1997) 1, 93-112.

[St83] L. Staiger, Finite-state w-languages, J. Comput. System. Sci. 27
(1983), 434-448.

[St87] L. Staiger, Sequential mappings of w-languages. RAIRO Infor. theor.
et Appl. 21 (1987) 2, 147-173.

[St97] L. Staiger, w-languages, in: Handbook of Formal Languages (G. Ro-
zenberg and A. Salomaa Eds.), Vol. 3, Springer-Verlag, Berlin 1997.
339 - 387.

[St02] L. Staiger, How large is the set of disjunctive sequences? Journal of
Universal Computer Science 8 (2002) 2, 348-362.

[St03] L. Staiger, Weighted Finite Automata and Metrics in Cantor Space,
J. Automata, Languages and Combinatorics, 8 (2003) 2, 353 - 360.

[Th90] W. Thomas, Automata on Infinite Objects, in: Handbook of The-
oretical Computer Science, (J. Van Leeuwen Ed.), Vol. B, 133-191,
Elsevier, Amsterdam, 1990.

Received October, 2001

Acta Cybernetica 17 (2005) 53-73.

On the Finiteness of Picture Languages of
Synchronous Deterministic Chain Code Picture

Systems

Bianca Truthe*

Abstract

Chain Code Picture Systems are LINDENMAYER systems over a special
alphabet. The strings generated are interpreted as pictures. This leads to
Chain Code Picture Languages. In this paper, synchronous deterministic
Chain Code Picture Systems (sDOL systems) are studied with respect to the
finiteness of their picture languages.

First, a hierarchy of abstractions is developed, in which the interpretation
of a string as a picture passes through a multilevel process. Second, on the
basis of this hierarchy, an algorithm is designed which decides the finiteness
or infiniteness of any sDOL system in polynomial time.

1 Introduction
Important tasks in the area of picture processing are describing, creating, storing
and recognizing pictures. With chain codes FREEMAN provided, in the 1960s, a
possibility for describing line graphics [Pre74], A picture is formed by a sequence
of drawing commands that are represented by symbols (letters). A string describes
a picture, which is built by the drawing commands of its letters. FREEMAN uses
an alphabet { 0 , . . . , 7 }, whose elements are interpreted according to the following
sketch:

7] The picture to the right, for ex-
7 \ ample, is generated by the word

. 6
 2 • 1261204153445672606:
/ \ 3 (For reconstructing start at the

/ \ \ J tip of the nose.)

This connection of strings and pictures suggests to search for relations between
formal languages and picture sets. For language theoretical considerations the
four directions {0 ,2 ,4 ,6} are sufficient, because the additional four do not yield

* Fakultat fur Informatik, Otto-von-Guericke-Universitat Magdeburg, PSF 4120; D-39016
Magdeburg; Germany. E-mail: truthe8isg.cs.uni-magdeburg.de

53

54 Bianca Tr uthe

completely different results nor require different methods to prove the decidability
of finiteness [DH89].

According to plotter commands, r, u, I, d are written as the directions right,
up, left, down. With chain codes, patterns like curves, fractals or folklore patterns
can be described:

Figure 1: Applications of chain codes

Chain Code Picture Systems are LINDENMAYER systems over chain codes; in this
connection, the picture languages generated are of interest.

This paper follows investigations on the decidability of the finiteness of picture
languages generated by synchronous Chain Code Picture Systems (sTOL systems)
presented by Dassow and Hromkovic in [DHr92]. That paper does not say anything
about how many pictures are generated in the case of finiteness. During the work
on this topic it turned out that synchronous deterministic Chain Code Picture
Systems with the synchronization parameter k = 1 can generate finite or infinite
picture languages, which is in contrast to a statement in [DHr92],

In this paper, conditions are obtained under which such a system generates a
finite picture language or an infinite one. For this, a hierarchy of abstractions was
developed such that the interpretation of a string as a picture passes through a
multilevel process.

On this basis, a complete system of finiteness conditions is obtained such that
one can decide, in polynomial time, for any sDOL system (with an arbitrary syn-
chronization parameter), whether the picture language generated is finite or infinite,
and how many pictures are generated in the case of finiteness.

2 Fundamentals
The finiteness investigations about picture languages of synchronous deterministic
Chain Code Picture Systems are based on a hierarchy of abstractions. The lowest
level covers the strings over the alphabet { r, l,u, d}. Graphs of different levels
of abstraction, that represent various interpretations of the strings, are associated
with the strings. Such a hierarchy exists for each Chain Code Picture System over
the alphabet { r, I, u, d }. The lowest level contains the string set generated by the

Finiteness of Picture Languages 55

system. The graph set of the highest level is regarded as the picture language
generated by the system.

2.1 Structures over an Alphabet
Let A = {r,l,u,d} be an alphabet. The set A* is the set of all strings (with
a finite length) over the alphabet A that are built by concatenating letters of A.
The empty string is symbolized by A; the set A* without the empty string by
A+: A+ = A* \ {A}. The free structure (.4V) over the alphabet A with the
concatenation operation • is a monoid.

The length #w of a string w is the number of letters in w. The set of all strings
of length n from A* is denoted by An. A string w G An is composed of letters
u>i,..., wn if not stated otherwise: w = wi • • • wn. A substring wi • • • Wi (0 1 i 1 n)
is written as wl (wo = A).

For a string w G An and a letter x G A, # x w is the number of occurrences of x
in w. For a string w G A*, [w] is the set of all letters in w:

H = { X I # l W > 1 } .

The elements w of A* are interpreted as mappings on Z2:

w : Z2 —» Z2 (w G A*),

which are inductively defined as follows. The atomic mappings r, I, u, d assign to
a point q e Z 2 its neighbours:

r(q) = q + (1,0) Z(q) = q - (1,0)
u(q) = q + (0,l) d(q) = q - (0,1) '

The translations x(q) — q of any point q 6 Z2 to its neighbours x(q) are designated
by Dx G Z2:

(1 , 0) , iix = r
(-1 ,0) , if a: = l •
(0,1), if x = u
(0 , -1) , if x = d

The mappings x from A are translations. Every mapping x G A is surjective (the
range of values is Z2), injective (from x(p) = x(q) always follows p = q) and,
therefore, bijective (one to one).

Two arbitrary mappings x, y are called disjoint if their function values differ for
each argument.

Proposition 1. Every two different mappings x,y G A, (x / y), never give the
same neighbour: Vq G Z2 : x(q) ^ y(q). This means that the mappings in A are
disjoint.

56 Bianca Tr uthe

The empty string corresponds to the identical mapping

A : 1? —> Z2 with q q.

A compound string v w e i * stands for the concatenated mapping vow:

v o w : Z 2 —• Z2 with q >-+ w(v(q)).

The zero point of the Z2 is symbolized by o: o = (0,0).
This interpretation of strings as mappings on Z2 is a homomorphism from the

free structure (A*,-) in the free structure (A*,o). Hence (A*,o) is also a monoid.
For each mapping w € A*, an inverse mapping w - 1 e A* exists:

- The inverse of the identical mapping is the identical mapping: A - 1 = A.
- The inverses of the atomic mappings are r - 1 = I, Z -1 = r, u~x = d, d~l = u,

because oi = — ox-i (x € A).
- Let w = wi o • • • o wn (Wi £ A, i = 1 , . . . , n) be a concatenated mapping. Then

the inverse mapping is w _ 1 = w~ l o • • • o 1.
This result is stated in the following proposition.

Proposition 2. The algebraic structure (>1*,°) is a group.

The operator o is not written if the context shows which operation is meant.
For example, (iiX2)(o) implies that x\x 2 symbolizes the concatenated mapping
xi 0x2, whereas x\x2 in [X1X2] represents the compound string X1X2.

The mappings ru, ur and Id, dl assign the diagonal neighbours to a point q:

ru(q) = ur(q) = q + (1,1); ld(q) = dl{q) = q - (1,1).

These relations are symbolized by ~ and x : X X x± x x

r I u d
I r d u
u d r I
d u I r

The mappings w G An are translations: w(p + q) = w(p) + q (can be proved by
induction over n). This leads to the following proposition about the correlation
between mappings of the zero point. 1

Proposition 3. Let v, w be two words of A*. The mapping of the zero point by
the compound mapping vow is (v o w)(o) = v(o) + w(o).

Proof The mapping of the zero point by vow yields

(vow)(o) = w(v(o))
= w(o + v(o))
= w(o) + v(o)
= v(o)+w(o).

•

Finiteness of Picture Languages 57

2.2 Graphical Embedding
A grid graph is a graph with the following properties:

- The set of vertices is a subset of Z2.
- Each edge connects two neighbours q e Z2 and x(q) with x £ A.

The position of the vertices is essential; renaming of the vertices does not yield an
isomorphic graph. For example, the graphs . . . and J should be considered as
non-identical.

For each point a £ Z2, functions exist that assign, to a word w £ An

- the set of vertices O0(w) = { Wi(o) | i = 0 , . . . n },
- the directed grid graph (possibly with multiple edges)

< 7 » = (© » , { (m H (a) M (a)) } i=1,...,n) ,

- the simple directed grid graph s°(w) of ga(w) (without multiple edges),

- the set of edges ||°w of s°(w) in a different notation

||°w = { (wi-l(a),wi) | i = 1,... ,n},

- the picture (the shade of sa(w))

pa(w) = (Oa(w), { («¡¡Ii(a),53(a)), («¡i(a), ujjli(a)) | i = 0 , . . . , n }).
If the reference point a is the zero point, the upper index will be omitted. The set
||°w contains a pair (q, x) with q £ Z2 and x £ A if and only if (q,x(q)) is an edge
in the graph s°(w) (if (q, q) is an edge then x £ A with x(q) = q exists uniquely -
due to Prop. 1). Thus, the graph s"(w) is one to one associated with the set ||aw.
Throughout this paper, this set is referred to as the edge set of w with respect to
a.

The following example shall demonstrate these correlations:
Example 1. Let w = ruullurddrurrulddldr be a word from A*.

If a plotter takes this word as a sequence | |
of elementary commands for drawing, the J
resulting picture will be:
For investigations on picture languages generated by sDOL systems, it is necessary
also to know how a picture is drawn. To show how a pictured arises, the lines are
marked by arrows indicating the drawing direction. Additionally, the grid points
are marked (the only points where the direction can change). This leads to the
following grid graph (beginning at the zero point). Note that the line from (1,1)
upwards is drawn twice.

31—T——t—
2— •: —
1 1 — M — : :

o - l — — — 4 —
- 1 0 1 2 3

58 Bianca Tr uthe

The vertex set O(w) contains all grid points visited:
o, r(o) = (1,0), ru(o) = (1,1), ruu(o) = (1,2), . . . , w(o) = (2,0).

The directed grid graph g"(w) consists of the vertex set O(w) and all edges
on the 'drawing path': (0,(1,0)), ((1,0), (1,1)), ((1,1), (1,2)), . . . , ((0,1), (1,1)),
((1,1), (1,2)), ((1,2), (2,2)), . . . , ((1,0), (2,0)). The edge ((1,1), (1,2)) occurs twice
because the underlined letters in ruullurddrurrulddldr both produce this line (be-
cause of ru(o) = (1,1) = ruullurddr(o)). The edge set ||w consists of all edges
passed as elements of Z2 x A instead of Z2 x Z2: (o,r), ((1,0), u), ((1, l) ,u) , ...,
((1,1), d), ((1,0),r) .

Since the pictures axe shades of the simple directed graphs, one immediately
notices that two words having the same edge set also represent the same picture.
This result is stated in the following proposition, so it can be referred to.

P ropos i t i on 4. If the edge sets ||v and ||w of two words v,w G A* coincide, so the
pictures p(v) and p(w) do as well.

The following proposition states correlations between concatenating strings and
combining graphs.

P ropos i t i on 5. The concatenation of strings is associated with a union of vertex
sets, directed graphs, edge sets, and pictures: For each point a G Z2 and any two
strings v,w £ A*, one has

O0(vw) = ©°(v)UOv(o)(w),

Pa(vw) = ffa(v) U ffv^(w),
||°vw = | | 0 vU|r (a) w,

pa(vw) = p a(v)Upv (a)(w).

Proof. Let v be an element of An and w be an element of Am. Then the union of
the vertex sets ©°(v) and ©v(a)(w) is

0 » U 0 , (l ' (w) = {«?(a) | i = 0 , . . . , n } U { i £ (v (a)) | i = 0 , . . . , m }
= { a, i>i(a),. . . , v(a), toi(v(a)) , . . . , vw(a) }
= ©a(vw).

The union of the other sets can be shown similarly. (Note that the non-simple
graphs possibly contain multiple edges.) •

The sets

- A* of strings,
- Q = { 5°(w) | w G A*, a 6 Z2 } of directed graphs,
- S = { s°(w) | w G A*, a G Z2 } of simple directed graphs, and
- -p = { p»(w) | w G A*, a G Z2 } of pictures

Finiteness of Picture Languages 59

<5: O O
t

* O O
/ \

.4*: rllr Irrl

^ o —

/ \ t
- o — @ —

t t I
rll rlrll r

Figure 2: Hierarchy of abstractions

form a hierarchy of different levels of abstraction. A part of this hierarchy is to be
seen in Figure 2.
A later derivation of words by a simultanous replacing of letters can be interpreted
as a derivation of graphs by replacing an edge by a graph. In deterministic systems,
one letter is always replaced by the same word. Thus, one edge is always replaced
by the same graph - a derivation of an edge is independent from the number of its
occurrences. In non-deterministic systems however, a letter at one position can be
replaced by a different word than the same letter at another position. Hence, one
occurrence of an edge can be replaced by a different graph than another occurrence
of the same edge - the number of occurrences is essential. For this reason, the
graphs with multiple edges are kept in the hierarchy, although the simple graphs
are sufficient in this paper.

A rectangle R determined by two points p = (p x , p y) and q = (q x ,q y) is the set
of all points a = (a x , a y) between p and q:

px < ax < qx or qx < ax 1 px and 1
Py - o-y - Qy ovqy<ay<py J '

Such a rectangle is written as R = [p, q]. The picture area of a set S ^ Z2 , denoted
by is the smallest rectangle that contains S. By scaling a picture area if! = [p, q]
by a factor s € No, the picture area s (p = { s b | b € i p } = [sp, sq] is obtained. The
union of two picture areas is not a rectangle in general. The extended union shall
give the rectangle covering the normal union:

SKp y 9\Q = iHpuQ.

Let ©a(w) be the vertex set of a word w with respect to a. Then, the functions
I- w> — " ' w > • w give the 'border 'of ©a(w):

I- ° = m i n { x | (x,y) € O a (w) } , ^ = min{2/ | (x ,2 /)G©°(w)}

• C = m a x { x | (x , y) € O a (w) } , = max{ y | (x,y) € ©a(w) }

The symbols = (I- and ~1° = (-1°, • stand for the lower-left and
upper-right corners. The picture area of ©a(w) is denoted by • a (w) = [L-w'^Cl-

R
-

a 6 :

60 Bianca Tr uthe

2.3 Special Endomorphisms

Let K, FJ, be two natural numbers, K,(J, £ No- An endomorphism h on A* is called
(K, ¿¿)-endomorphism if the following conditions are satisfied for each x G A:

1. (h{x))(o) = KX>x.

2. Q(/i(x)) Ç. «[o, ox] iy)/¿[Oj-x, o2±].

The following example illustrates this.

Example 2. Let h be an endomorphism on A* with r >—• rdruurdr, I >—• lulddlul,
u I—» urulluru, and d i—> dldrrdld. Then one has

rdruurdr(o) = 4or + 2bd + 2Du = 4or,
lulddlul(p) = 40/ + 2tJu 4- 20^ = 4t)j,
urulluru(o) = 4 o u + 2 o r + 2D i = 4ou,
dldrrdld{o) = 4od + 2o(-I- 2or = 4t)d.

Hence, the first condition is satisfied. The simple directed graphs of h(x) (x G >1)
axe:

(4,0) (-4,0) ,

(0,4)

o (0, - 4)

All points of Q(h(x)) (for each x G A) lie in the rectangle covering both the lines
[o,4t)x] and [Oj-x, 02±]. The picture area is Q(/i(x)) = 4[o, 0^] iyj [oxx, t>sx] for x G A.
Thus, h is a (4, l)-endomorphism. The first synchronization condition says where
the end point of a drawing lies. The second one causes the pictures to lie in certain
rectangles.

The n-ary concatenation of an endomorphism h is written shortly as hn. Applied
to a string w G A*, its result is the n-th derivative of w; written as (w', w",
w'" for the first three derivatives, v/0) = w). The parameter K defines the length of
the derivation picture regarding the respective direction; the derivation is length-
contracting in the case of K < 1, length-constant in the case of K = 1, and length-
expanding in the case of k > 1. The parameter ¡i is the width of the derivation
picture.

Finiteness of Picture Languages 61

2.4 Chain Code Picture Systems
A synchronous deterministic context free Chain Code Picture System (sDOL sy-
stem) is a triple

G = (A,h,u)

with the alphabet A — {r,l,u,d}, a (re, /¿)-endomorphism h on A*, and a non-empty
start string (axiom) ui £ A+.

The picture language PG generated by an sDOL system G is the set of all pictures
of derivatives of the axiom LJ:

PG = { P(U{N)) | n G No } .

An sDOL system is called length-contracting (-constant, -expanding) if the (re, /i)-
endomorphism belonging to it, has this property.

3 Finiteness Investigations
Let G = (A,h,uj) be an sDOL system with a (re, /x)-endomorphism h. The n-th
derivative (n £ N) of any letter x £ A maps the zero point o to the point KnK>x\
x(n)(o) = Knox. This can be proved by induction.

Moreover, the first synchronization condition says that x'(O) = KVx. This means
x'(o) = Kbx + cX)x + cOx+dt)x± +dvx± for some natural numbers c, d. Consequently,
x1 and x1 have the same numbers of occurrences in the derivative x', and x has
K more occurrences than x. These observations are summarized in the following
proposition.

Proposition 6. For all x £ A, one has

1. x<n>(o) = Knx>x for n £ N,

— & ~h ifcx^C* t •

3. #x±x' = #x±x'.

The Chain Code Picture Systems are distiguished by their 'length behaviour'
(represented by the parameter re).

3.1 Length-contracting Chain Code Picture Systems
Let G = (A, h, u) be an sDOL system with a length-contracting (re, //)-endomor-
phism h. Since re < 1 and re £ No, re must be equal to 0.

The second synchronization condition has the effect that the picture area of the
derivative x' of a letter x £ A is a line: Q(x') t)£±]. Hence, x and x do not
occur in the string x'.

For any string w £ A*, exactly one of the following three cases occurs:

1. w' = A. Then all further derivatives are also empty: w ^ = A, n > 1.

62 Bianca Tr uthe

2. w' A, w" = A. Then all further derivatives are empty: = A, n > 2.

3. w' ^ A, w" A. Since w' ^ A, some letter x e A occurs in w' and also the
same number of x. Hence, the letter set [w'] can be {r,l}, {u,d} or A.

Example 3. For example, let ft be a (0, /i)-endomorphism with

r ud, it h-> rl, d i—> A and I > A.

If w = r then [w'j — {u,d}, if w = u then [w'] = { r,I }. If w = ru then the
letter set [w'] consists of all letters: [w'j = A.

If [w'] — { r,I }, the letter set [w"] is { u , d } (it cannot be empty because
w" ^ A). Similarly, [w"] = { r, I } if [w'] = { u,d }. If [w'] = A, some letter
x 6 A occurs in the word w together with x1 or x1. As these letters occur
in w' also, w" consists of the same letters as w'. Summerized, one has

f {u,d} if H = {r,i},
[w"] = { {r,l} if[w'] = {u ,d} ,

[A if [w'j = A.

An analogous argumentation leads to

f { r , 0 if M = {r,Z},
[w'"] = < if [w'] = {u,d},

[A if [w'j = A,

that is [w'"] = [w'j. Thus, the letter set of the fourth derivative coincides
with that one of the second derivative:

[w(4)] = u m = U m = K' i -
xe[w"'] ie[w']

From this case distinction one can conclude the following proposition by induction:

Proposition 7. The letter sets from the second derivative of a string w G A* on
are either empty or alternate beginning with the first derivative:

[w"] = 0 [w(n)] = 0 (n > 2),

[w"] ^ 0 =i> [wt2"-1)] = [w'] A [w(2n)] = [w"] (n > 2).

A similar correlation can be found for edge sets. Let be the n-th derivative
of a string w G A* :

w(n) = x\ • • • xi (xi G A, i = 1 , . . . , I).

The edge set of is, according to Proposition 5,

^ (« -n) = j j^ u II^CO)^ u . . . u

Finiteness of Picture Languages 63

The Propositions 3 and 6 imply that (x[• • • x'JÇo) = x\ (o) + • • • + = o for
i = l,...,l. Hence, the edge set of w(n+1) is

i
||w(n+i) = (J | |x j = y ||x/ (¡f £ = £ t h e n ôt' = x' and \\x' = ||x').

i=l x€[w<">]

According to Proposition 7, one obtains = 0 if w" = A and, in the case that
w" ^ A :

l l w - ' = (J U*' = U H®' = Hw"' ,,(2n) _

a;6[w)(2n-l)] I6[w']
,<2n+l) = y ^ = y ||X' = ||W'",

x€[w<2">] xe[w"j

for n > 2.
Thus, if w" = A then the pictures of w/") (n > 2) consist of the zero point only.

If w" A then the pictures of even derivations coincide from the second derivation
on; those of odd derivations from the third one on (because of Prop. 4). After the
third derivation of a word w e i * , no new picture arises.

Theorem 1. Let G = (A,h,u) be a length-contracting sDOL system.. The picture
language generated is

PG = {p(u>),P(<j'),p(w"),p(u'")}.

The following example shows a length-contracting sDOL system together with
its picture language.

Example 4. Let G = (A, h, r) be an sDOL system with a (0, /¿)-endomorphism h
with r 1—* ud, 11—• du, u > rl, and d h-> A. The words generated by G are r, ud, rl,
uddu, (rl)2, (uddu)2, (rl)4, (uddu)4, etc. The corresponding pictures are

Since a new picture does not occur, the picture language is | 1,

3.2 Length-expanding Chain Code Picture Systems
Let G = (A, h, u>) be a length-expanding sDOL system. Since the (K, fx)-endomor-
phism h is length-expanding, K is greater than 1.

Let x e A be the initial letter of u> (since u> € A+ it has at least one letter):
u> = xw (w € A*). The n-th derivative is = and x^(o) is a vertex
of every graph of o/");

x (n) (o)e©(w (n)) , n e N 0 .

64 Bianca Tr uthe

Furthermore, let Xw be the set of all points Vw the union of the vertex sets
©(w(n)), and Pw the set of all pictures p(w(n)), n G N0:

The set Xu is infinite because K > 1 and X)X ^ o. Every point of Xw also occurs in
Vu\ Xw ^ Vu\ thus the set Vw is also infinite. Each vertex set Q(uj<-n">), n € No, is
finite; hence, there are infinitely many different ones in the union K,. If the vertex
sets of two strings u, v £ A* differ, so the pictures do as well. Hence, among the
pictures p(u/n)) with n £ No, there are infinitely many different ones: \PU\ = oo.

Theorem 2. For every length-expanding sDOL system G = (A,h,uj), the picture
language PG generated by G is infinite.

The following example shows a length-expanding sDOL system.

Example 5. Let G = (.4, h, ruld) be a length-expanding sDOL system with the
(4, l)-endomorphism h given in Example 2. The first pictures generated are drawn
below (up to the third derivation).

= { xM(o) | n G N0 } = { knx>x | n G N0 } (Prop. 6)

Vu = (J ©(W<">),
ngN0

Finiteness of Picture Languages 65

3.3 Length-constant Chain Code Picture Languages
In contrast to the previous situations, among the length-constant sDOL systems,
there are those with a finite picture language as well as those with an infinite one.
The following example shows an sDOL system with a finite picture language and a
similar sDOL system with an infinite picture language.

Example 6. Let h be a (l,/i)-endomorphism with r h-> rud, u h-> uldru, d d,
and I i-> I. Then G = (A,h ,r) is a length-constant sDOL system. The simple

directed graph of the axiom is of the first derivative J, and of the second

derivative Q The graphs of the later derivatives are the same: O . Hence, the
picture language generated is finite: PG = | , I, CU j . Now, change h such
that / H-> Irl. Then, the simple directed graph of the third derivative is not the

same as that one of the second derivative, but Q A new r-edge arose that will
be replaced (in the next step) by its derivative; thus, the fourth derivative has the

r l
graph A new r-edge occurs in every third derivative (6th, 9th, etc.). Hence,
the picture sizes increase; the picture language is infinite.

The example above shows that, in the case of K = 1, further investigations are
needed to find out when an sDOL system generates a finite picture language and
when it does not.

Several examples lead to the supposition that the difference between the edge
sets of the second and third derivatives indicates the finiteness of the picture lan-
guage: If they do not differ, the picture language is finite; if there is a difference,
then the language is infinite. This supposition will be confirmed and proved.

Let G = (A, h, ui) be a length-constant sDOL system. The next proposition
extends the first statement of Proposition 6 to words.

Propos i t ion 8. If h is a (1,p)-endomorphism, then wA")(o) = w(o) for every
string w £ A* and every derivation step n G No.

Proof. Let w € A1 be a word wi •••u>i. Then, one can conclude the following
equations:

w<n>(o) = (u>in)--u;i
(n))(o)

= w(")(o)...w\n)(o) (Prop. 3)
= t v H 1- 0WJ (Prop. 6)
= •wi(o) -I |-K;i(O)
= w(o).

This proves the proposition. •

66 Bianca Tr uthe

Let w £ A* be a word. The operator ||- gives the edge set ||w of w. Applying the
(1,/x)-endomorphism h for n times produces the n-th derivative its edge set
is | | T h e following proposition shows how the edge set ||w'n^ can be obtained
from the edge set ||w.

w —> ||w

w »
Propos i t ion 9. The edge set ||\A/") of the n-th derivative of a string w £ A* is the
union of the n-th derivatives of all edges in ||w:

w (J | | q x (n) w e i ' , n e N o .

Proof. Let w £ A1 be the string w\ • • -wi- Then the n-th derivative of w is

Ŵ ' = w • W in)

The edge set of w is

||W = I K U L L 5 * ' ") ^ U . . . U H ^ W T T F J

= { (O, W L) } U { (ÛJÎ(O), w2) } U • • • U { (Û>ÏIÎ(O), WT) }

= { (°> Wi), {wl(o), W2),... (wi-l(o), WI)},

the edge set of is

||w<"> = U H ^ ' " ^ «) ^ U • • • U H ^ ' - ' I ") « , } ")

(Prop. 5)

= | | î4n) U u • • • u I

= U I
(q,i)6||w

l^l-lio)^")
(Prop. 5)

(Prop. 8)
q x (n) ,

which proves the proposition. •
The simple directed graph of the n-th derivative of a word w £ A* arises from

the simple directed graph of w by replacing each x-edge (q,x) £ ||w by the simple
directed graph of the n-th derivative of x, beginning at the point q.

Example 7. Let h be a (1, /x)-endomorphism with r dru, u >—> rul, I H-> uld, and
d i—> Idr. The simple directed graphs of the second atomic derivatives are shown
below (those of the first derivatives are inserted grey coloured):

r ; ; j :
, 1—T 0 _ J , and

Finiteness of Picture Languages 67

Let w be the first derivative of r. Its edge set \\dru is

{ (o , d) , ((0 , - l) , r) , ((l , - l) l U)) } .

The edge set of the second derivative of w consists of all edges of the edge sets of
the second derivatives of d with respect to o, of r with respect to (0, —1), and of
u with respect to (1 , -1) : ||w" = \\°d" U ¡|(0,-i)r// y | |(i ,-i)u". These edge sets are
(shown as simple directed graphs):

i J , I J , and { J
Hence, the the simple directed graph of w" is

Since w is the first derivative of r, this graph should be the same as that one of the
third derivative of r - and is as the following sequence of derivative graphs shows.

1: ,4 :

With the help of the proposition above, the following proposition about the
stability of edge sets can be proved.

Propos i t ion 10. If the edge set of a string w € A* coincides with that of its
derivative w', then it coincides with the edge set of every higher derivative:

||w = | | w ' | | w = ||w(n), w e i ' . t i E N .

Proof. The proof is carried out by induction. Suppose, that ||w = for
1 < i < n. Then the edge set | |v/n + 1) is

| | w (n + i) = y y q ^ (Prop. 9)

(q,x)€| |w(»>

= U | | (i n d u c t i o n a l assumption)
(q , x) e | | w

= ||w' . (Prop. 9)
= ||w (inductional assumption)

fiom which the proposition follows. •

68 Bianca Tr uthe

With the Propositions 10 and 4, the first supposition (see page 65) is proved.
So, it is stated in a lemma.

Lemma 1. Let G = (A, h,u) be a length-constant sDOL system. If the edge sets of
the second and third derivatives of the axiom u> coincide, then the picture language
generated consists of the pictures up to the second derivative at most. That is
shortly written as

= ||W'» PG = {pH,p(w'),p(u/') } .

In the first example of this section (p. 65), one can observe that if the edge sets
of the second and third derivatives of the axiom w do not coincide, then at least
one x-edge exists in the second derivative which is later replaced by a graph that
contains another x-edge. The next propostion gives an even stronger restriction.

Proposi t ion 11. If the edge sets of the second and third derivatives of the axiom
L> do not coincide, then there exists a letter x G [u/'j such that one of the first three
derivation edge sets ||x', \\x" or ||x'" contains an edge different from (o,x).

Proof. The statement of the proposition is equivalent to the following statement.
If, for each letter x 6 [w"], the edge sets of the first three derivatives of x do not
contain any x-edge different from (o,x) then the edge sets of ui" and u>'" coincide:

(Vx G [w"\ : ||*x = ||xx' = \\xx" = \\xx"') =• ||a/' = \\u)"'.

This statement will be proved now.
For all letters x € [w"], let ||xx = ||xx' = ||xx" = \\xx'". If (q,y) is an edge of

any | |x (i \ then (q,y) is also an edge of ||x'*+1^ (because of \\yy = ||vy'). Hence,
each edge set includes those of lower derivatives, that is ||x ^ ||x' ^ ||x" ||x'".

In order to conclude that ||o/' — ||w"', the inclusion ||x" £ ||x"' must be an
equation. In the sequel, the inverted inclusion (||x"' ||x") will be shown. The
case distinction used follows from Proposition 6.

1. [x'] = { x }, hence = { x } for all natural numbers n. Especially, x" is
equal to x"', and also ||x" = ||x'".

.2. [x'] = { x,x }.

(a) [x"J = [x'], hence [x^71'] = [x'] for all natural numbers n. Because of
the second synchronization condition, the letters x and x alterni ce in x"
and in x"'. That means for the edge sets

||x" = ||x U | | l (0)x U ||x U ||x(0)x U • • • ||x (Prop. 5)

(b) [x"] = A. The edge set ||x' consists of the edges (o,x) and (3 . (0) , x)
(due to the second synchronization condition). The edge set ||x" does
not contain any other x-edge nor x-edge (the edge (o,x) can produce

Finiteness of Picture Languages 69

the edges of ||®' only; the edge (®(o), ®) can produce (o, ®) - due to
||x® = II,®" - and (®(o),x) - due to ||x® = | |sx' - only). Hence, the x x -
and ¿-"--edges occur pairwise (between the same points):

(q,®x)e||®"^(®x(q),®x)e||®".

The set ||xx'" consists of (o,x) only. The set ||i®"' consists of (x(o),x)
only (due to ||2x = ||2x"). The ®x- and ®x-edges do not produce new
x-, x-edges (because of the same reasons), thus, the x x - and xx-edges
occur pairwise in ||x"'; x x does not produce a new ®x-edge, hence, nor
a new ®x-edge. Because of the same reason for ®x, there is not an edge
in II®"' which is not in ||®".

3. [x'j = { ® ,x x , x x }.

(a) [x"| = [x'], hence [x ^] = [®'] for all natural numbers n. As there
are no ®-edges in the edge sets of any derivative, the edge set does not
change from the first to the second derivative: ||x' = ||x". Because of
Proposition 10, it follows || x" = II®'".

(b) [®"J = A. This means, ® occurs in the derivative of ®x or ®x. As above,
the x x - and ®x-edges occur pairwise in ||®'. With each ®-edge, also
an ®-edge is produced. If there are more than one x x - and xx-edges,
then they have different positions with respect to the edge (o,x) and
then another ®-edge will appear. This is a contradiction. Hence, there
are one ®x- and one ®x-edge only. The following cases are the only
possibilities (the graphs given to the right shall illustrate the case of
x = r):

i. | | x '={ (o , x x) , (® x (o) ,® x) , (o ,®)} L

ii. II®' = { (o ,®),(x(o) ,xx) ,((xxx)(o) ,xx) } J

iii. II®'= { (o,xx) ,(®x(o),®x) ,(o,x) } V

iv. II®'= { (o,x),(x(o),®x),((®®x)(o),xx) } 1
In ||®", there are not any new x-, x x - , ®x-edges. Hence, the new ®-edge
is (x(o),x) (but then ||x"' is the same as ||x", because it does not get
any new edge), or the new ®-edge is ((xxx)(o), x) (in the cases i. and ii.)
or ((x®x)(o),x) (in the cases iii. and iv.). Then a new vertex e appears:

i. e = (®®x)(o) C

ii. e = ®x(o) 3

iii. e = (®®x)(o) O

iv. e = ®x(o) 3
Since e is neither o nor ®(o), there is another edge in ||®" that is not in
the set ||®':

70 Bianca Tr uthe

i. (x (o) , x x) G | |x" D

ii. (x X (o) ,X X) G | |x" O

m. (x(o),xx) e III" O

iv. (x X (o) ,X X) 6 | |x" O

This implies that the x-edge is produced by x 1 in the cases i. and iv.,
and by x x in the other cases. Both do not produce further x-edges
(otherwise they would produce a new x-edge or new x x - , xx-edges). As
the x-edge cannot produce any new edge, the set ||x'" has no additional
edges: ||x'" £ ||x".

4. [x'| = A. Let v, w, y be different letters of the set ,/4\{x}. The x- and u-edges
produced by deriving v in x' are not new (they are in ||x' already). Possibly,
a new UJ-edge occurs. The x-, v-, and ui-edges produced by deriving w in x"
are in ||x" already. Similar to the previous case, also all arising y-edges are
in ||x". Hence, all edges of ||x"' are elements of ||x".

There are no other cases (s. Prop. 6). Every case yields that ||x"' ||x". Together
with the inclusion ||x" ||x"', one obtains that ||x" = ||x"'. Hence, the edge sets,
with respect to any point a G Z2, coincide: | |ax" = ||ax"'. Let w\,... ,wn be the
letters of u: w = wi • • • wn. For the edge set of the second derivative of u>, the
considerations above yield

IIw" = \\w'(U I r " (0) < U • • • U (Prop. 5)

= I K U r " ' (0 H ' U • • • U (Prop. 8)

= I K ' U Ir" ' (0)u4" U • • • U (||°x" = ||ax'")
= \ \ J" (Prop. 5).

This proves the proposition. •

In the sequel, consider LJ such that ||xx ^ H^x^ for a letter x G [UJ"\ and a
derivation step I G { 1,2,3 }. The edge set ||x consists of the edge (o,x). Another
x-edge is in the graph of the Z-th derivative of x: (q, x) G | |x^ with q ^ o. According
to Proposition 9, one obtains that | | q x^ ^ | |x '2 ' \ which means that all edges of
the Z-th derivative are in the 2Z-th derivative displaced by the point q. Thus, it is
especially (q + q,x) G ||x^2i\ Induction leads to (nq,x) G in general.

Consider u>" = vxv, then the edge sets of every Z-th derivative of u>" are

||u/"'+2) = ||v(ni> U U^Wa.inJ) u ||(v:,:)t'")(0)v(n')

= ||v("') u ||v(°)x(ni) U || <"*><•)$<»'> (Prop. 8).

The edge (nq + v(o),x) occurs in every set ||v(°)i(n') with n G No. Hence, for each
n G No, the edge (nq + v(o),x) is also an element of the set | |a/n , + 2). Thus, the
vertex nq + v(o) is an element of the vertex set 0(w^ni+2^).

Finiteness of Picture Languages 71

Let X u be the set of all vertices nq + v(o), V^ the union of the vertex sets
0(w (n '+ 2)) , and Pu the set of all pictures p(u/ n i + 2)) over all n £ N0:

Xu> = { nq + v(o) | n £ N0 } ,

vu = (J o("(ni+2)),
nSNo

Pu = { p(u(nl+2)) | n e No } .

The set Xu is infinite because q ^ o. Each point in Xu also occurs in thus
Vu is also infinite. Every vertex set with n 6 No is finite; hence, there
are infinitely many different ones in the union Vu. If the vertex sets of two strings
x , y g / differ, then the pictures are also different. Hence, Pw contains infinitely
many different pictures. This result is summerized in the next proposition.

Propos i t ion 12. If there exists a letter x £ [u>"\ such that one of the first three
derivation edge sets ||x', ||x" or \\x'" contains an edge different from (o,x), then
the picture language generated is infinite.

Together with the Proposition 11, this leads immediately to the following
lemma.

L e m m a 2. Let G = (A, h, u>) be a length-constant sDOL system. If the edge sets
of the second and third derivatives of the axiom ui do not coincide, then the picture
language generated is infinite.

Hence, the second supposition on page 65 is confirmed and proved. The Lem-
mas 1 and 2 together state that the difference of the edge sets of the second and
third derivatives of the axiom is a necessary and sufficient criterion of the finiteness.
This result is summarized in the next theorem.

T h e o r e m 3. Let G = (A,h,ui) be a length-constant sDOL system. The picture
language PG generated by G is finite if and only if the edge sets of the second and
third derivatives of the axiom u> coincide.

Prom an algorithmic point of view, the case p, = 0 must be emphasized.
According to the second synchronization condition, the edge set of each

derivative of any letter x £ A with respect to the point a £ 1? consists of the edge
(o, a 4- ox). Hence, the pictures of all derivatives of UJ coincide (Prop. 4).

T h e o r e m 4. Let G = (A,h,w) be an sDOL system with a (1,0)-endomorphism h.
Then the picture language PG generated by G is a singleton set, that is

P G = { P M } .

This means that the finiteness can be stated immediately in the case p, = 0
(without further investigation of the system).

72 Bianca Tr uthe

4 Conclusion and Future Work

The paper investigates synchronous deterministic Chain Code Picture Systems with
respect to the finiteness of their picture languages.

Let G = (A,h,u>) be an sDOL system with a (K, /i)-endomorphism h. The
synchronization parameter K defines a division of the sDOL systems in length-
contracting (K < 1), length-constant (K = 1), and length-expanding (K > 1) sys-
tems.

The following table summarizes the results:

«'< 1: PG = {p(u),p("'),P(""),P(""') }

K > 1: | P G | = o o

¿ = 1: jj. = 0 = > Pg = { p(ui) }

S(W") = S(CJ"') = > P G = {p(a>),p(w'),PK) }

s(w") ± s(u'") \PG\ = oo

If the picture language generated by an sDOL system is finite, then it consists
of four elements at most. In addition, an algorithm is given that decides for any
sDOL system G, whether the picture language PG generated is finite or not.

The decision about the finiteness of the picture language of a given sDOL sy-
stem G = (A,h,uj) can be made immediately (without further investigation of the
system) if the (/c, /i)-endomorphism h is length-contracting or length-expanding or
length-constant with fi — 0. Otherwise, the start string must be derived three
times, and the edge sets of the second and third derivatives must be checked for
equality. This time effort is cubic in the lengths of the replacement strings.

For synchronous deterministic Chain Code Picture Systems G = (A,h,w), the
finiteness and infiniteness are decidable in time 0(pn3), where p = #w is the length
of the start string u> and n = max { #h(x) \ x G A } is the maximum length of the
replacement strings.

Future work will address the finiteness of picture languages generated by non-
deterministic sOL systems and tabled systems such as sDTOL systems and sTOL
systems. The deterministic systems generate four pictures at most in the case of
finiteness. For applications however, system are desirable that generate a large but
a finite picture language.

Acknowledgements

The author would like to thank Prof. Hollatz for many stimulating discussions and
recommendations, Prof. Dassow for his support and the anonymous referees for
their critical remarks and helpful suggestions.

Finiteness of Picture Languages 73

References
[DH89] DASSOW, J . ; HINZ, F . : Kettenkode-Bildsprachen. Theorie und Anwendun-

gen. Wiss. Zeitschrift d. Techn. Univ. Magdeburg, 33, 1989.

[DHr92] DASSOW, J.; HROMKOVIC, J.: On Synchronized Lindenmayer Picture
Languages. Lindenmayer Systems, 253-261. Springer-Verlag, Berlin 1992.

[Fre74] FREEMAN, H.: Computer processing of line-dravring images. Computer
Surveys, 6:57-97, 1974.

Received December, 2000

Acta Cybernetica IT (2005) 75-93.

Quasi-star-free Languages on Infinite Words*

Zhilin Wuf

Abstract

Quasi-star-free languages were first introduced and studied by Barrington,
Compton, Straubing and Therien within the context of circuit complexity in
1992, and their connections with propositional linear temporal logic were
established by Esik and Ito recently. While these results are all for finite
words, in this paper we consider the languages on infinite words.

1 Introduction

Characterizations of different subclasses of regular languages have been a constantly
active research area since Biichi characterized regular languages by monadic second
order logic in [3]. One of the most important characterizations among them is the
characterization of star free languages: in [11, 17, 9, 7, 13, 19, 18, 4], star free
languages on finite and infinite words were characterized by aperiodic monoids,
monadic first order logic and linear temporal logic.

Quasi-star-free languages were first studied by Barrington, Compton, Straubing
and Therien in [2]. Their motivation was to characterize the regular languages
that can be recognized by constant-depth Boolean circuits using OR,AND and
NOT gates(AC°). They found that these languages are precisely the quasi-star-free
languages. And they give a characterization in terms of quasi-aperiodic semigroups
and in terms of first order logic FO[C] which uses only the numerical predicates
x < y and x = r(mod d). Recently, Esik and Ito proved in [5] that FO[C] and
propositional linear temporal logic with cyclic counting(LTL[C]) have the same
expressive power. While these results are all for finite words, we extend them to
the case of infinite words in this paper.

This pa:per is organized as follows. In section 2 we give some preliminaries
about regular languages on finite and infinite words. Then in section 3, we give
some definitions of quasi-star-free languages on finite words(QSFF), and summarize

'Partially supported by the National Natural Science Foundation of China under Grant No.
60223005 and the National Grand Fundamental Research 973 Program of China under Grant No.
2002cb312200.

t Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, P.O.Box
8718, Beijing, China, & Graduate School of the Chinese Academy of Sciences, 19 Yuquan Street,
Beijing, China. E-mail: wuzlfiios. ac. cn

75

76 Zhilin Wu

the results of QSF f in [2, 5]. In section 4, we define quasi-star-free languages on
infinite words (Q S F 1) , and extend the results of Q S F f to Q S F 1 . Finally in section
5, we give some conclusions and remarks on this paper.

2 Preliminaries

2.1 Regular languages on finite words
In this subsection, at first we present some basic facts of semigroups and formal
languages on finite words (cf. [12, 6, 14, 10] for more information), then after
recalling the definitions of monadic first order logic (FO[<]) and linear temporal
logic(LTL) interpreted on finite words, we introduce the classical results of star free
languages on finite words.

Let A be a finite alphabet, and L C A* be regular.

2.1.1 Monoids and formal languages on finite words

Let M be a finite monoid. We say that morphism <f>: A* —» M recognizes L if there
is X C M such that L — X<j>~1. And we say that monoid M recognizes L if there
is a morphism (¡>: A* —> M recognizing L. Moreover we say that congruence « on
A* recognizes L if the natural morphism <j>: A* —» A* / « recognizes L.

The syntactic congruence of L, « ¿ , is defined by: u v iff (xuy £ L iff
xvy £ L for all x,y G A*); the syntactic monoid of L, M(L), is defined by the
quotient monoid A*/ and the syntactic morphism of L, T]L A* —* M(L), is
defined by urji = [it], where [it] denotes the equivalence class of containing u.
Syntactic congruence is the coarsest congruence of A* recognizing L, i.e. for any
congruence « recognizing L, u~v implies u v for all u,v G A*.

A morphism (j) : A* —> M recognizes L iff there is a morphism 6 : Im(<j>) —>
M(L) (where Im(<j>) is the image of <f>) such that for all u G A*, u(<f>9) = urn,-
Furthermore, a morphism (j) : A* —> M recognizes L iff there are morphisms (j)' :
A* —> M' and 0 : Im(<p) —» M' such that 4»' recognizes L and for all u G A*,
u(<f>6) = u<t>'.

L is star free if L can be constructed from singleton languages {a}(a G >1) and
the language A* by finite applications of operations of union, complementation,
and concatenation.

L is noncounting if there is some no £ N satisfying that for all n > n0, xynz £ L
iff xyn+1z £ L for all x,y,z £ A*.

A monoid M is aperiodic if there is some no £ N satisfying that for all n > no,
mn = mn+l for all m G M.

L is aperiodic if M(L) is aperiodic. It is easy to show that L is aperiodic iff
there is an aperiodic monoid M recognizing L.

It is not hard to show that L is noncounting iff L is aperiodic. In the remainder
of this paper, we don't distinguish between the "noncounting" and "aperiodic"
properties of regular languages on finite words.

Quasi-star-free Languages on Infinite Words 77

2.1.2 First order logic and linear temporal logic on finite words

Let F0[<] denote first order logic on words with binary predicate < and unary
predicates Ра(а £ A). The formulas of F0[<] are defined by the following rules:

ip := Pa(x) | x < у | (pi V ip2 I ~<Ф I

The semantics of FO[<] are defined as follows: let X be a variable set and ip
be a formula with free variables in X; и £ A* and r]: X —> {0,..., |«|}, i.e., 77 maps
variables in X to "positions" in u.

• (u,r)) \= Pa{x), if u[|x|] = a, where u[|x|] is the letter of и at position x 77 (the
first position is 0, the last position is |u|, and by convention the letter at
position |u| is e)\

• (it, 77) j= x < Y, if XT] < г/77;

• (u,v) \=V>i VV2, if (U,T?) (= ipi or (u, 77) \=tp2;

• f= i f n o t K 7?) h

• (u,rj) [= (3x)V',if there exists a function 77/ : X —> {0,..., |u|}, which agrees
with 77 on X — {x} and possibly differs from 77 on x, such that (u, rjf) (= ф.

Let ip be an FO[<] sentence and и £ A*. We write и |= tp if there is an
77: X —> {0,..., M) such that (u, tj))= 1p.

Remark 2.1. The semantics of FO[<] defined in [5] had a subtle inaccuracy: the
assignments of variables were defined by function Л : X —> [|u|], where [|?i|] =
{0,..., |u| — 1}. But then for the empty string e, the assignments would become into
Л : X 0, since [|e|] = [0] = 0.

We avoid the accuracy by defining the assignments as 77: X —> {0,..., |w|}, and
thus formulas of FO[<] can be interpreted on the empty string e.

It is natural to define the boolean operations "A", "—>" ,etc. in a standard way.
Here we introduce several other abbreviations for FO[<]: Last(x) for Vy(-i(x < y))\
True for ip V -чр, where tp is a fixed sentence; and False for —True.

A language I С A' is definable in FO[<] if there is an FO[<] sentence ip such
that for all и £ A*, и (= <p iff и £ L.

Associate each letter a in A with a prepositional constant pa. Then formulas of
linear temporal logic (LTL,[15]) over alphabet A are defined by the following rules:

4> Pa I 4>\ V ip2 I -уф I Хф I iPlUiP2

The semantics of LTL formulas on finite words are defined as follows: Let ip be an
LTL formula, и £ A*. Denote the suffix of и starting from the г-th position (the
first position is 0) as u l, where 0 < г < |u|, and the suffix starting from the |u|-th
position is empty string e.

78 Zhilin Wu

• u)= pa, if u = av, for some u 6 A*\

• U |= Ifii V <P2, if u |= ipi or U (= (p2\

• u f= , if not u |= ipi;

• u |= Xipi, if |u| > 0 and u1 |= ipj;

• u |= <p\Uip2, if there is 0 < i < |u| such tha t ux and for all 0 < j < i,
Uj f= Ifii.

We introduce several abbreviations for LTL, let True = pa V -<pa, where a is
any letter in A, and let False = ->True. Moreover, let End denote the formula
Ao6/4->pa, so that for all u € A*, u \= End iff u — e.

Remark 2.2. When interpreted on finite words, the LTL formulas ->X<p and X-xp
are not equivalent while on infinite words they are (See Section 2.2.2 for LTL in-
terpreted on infinite words). For instance, e \= ->Xpa while not e \= X^pa, where
e is the empty string.

A language L C A* is LTL definable iff there is an LTL formula ip such that for
all u € A*, u (= y? iff u G L.

2.1.3 Classical results of star free languages on finite words

The classical results of star free languages on finite words are summarized in the
following proposition:

Proposition 2.3. Let L C A* be regular. The following conditions are equivalent
[11, 17, 9, 7, 4}:

• L is star free;

• L is aperiodic;

• M(L) contains no nontrivial group (i.e. contains no subsets which form a
nontrivial group under the product of M(L));

• L is FO[<] definable;

• L is LTL definable.

2.2 Regular languages on infinite words
Similar to the case of finite words, in this subsection at first we present some basic
facts of semigroup and formal languages on infinite words (cf. [1, 20, 21, 4, 16]),
then we interpret monadic first order logic (F0[<]) and linear temporal logic (LTL)
on infinite words, at last we introduce the classical results of star free languages on
infinite words.

m
Let A be a finite alphabet and L C Au be regular, i.e., L = |J X{Y", where

¿=i
Xi C. A*, Yi C A+ are regular languages on finite words.

Quasi-star-free Languages on Infinite Words 79

2.2 .1 M o n o i d s and formal languages o n inf inite words

Let M be a finite monoid. L is recognized by morphism <j> : A* M if for all
771, n G M , (m</>_1) n L i 0 implies (m ^ - 1) C L. A monoid M
recognizes L iff there is a morphism (f> : A* —• M recognizing L. Moreover we say
tha t a congruence « on A* recognizes L if the natural morphism <f>: A* —> A* / «
recognizes L.

The syntactic congruence of L, is defined by: for all u,v G A*, u v iff
for all x,y,z e A*, (xuyzw G L iff xvyzu G L) and (x (y u z) u G L iff x (y v z) u G L).
The syntactic monoid of L, M(L), is defined by the quotient monoid A*/ The
syntactic morphism of L, T)L : A* —> M(L), is defined by UTJL = M , where [it]
is the equivalence class of containing u. Syntactic congruence is the coarsest
congruence recognizing L.

P r o p o s i t i o n 2.4. Let L C Au be regular. A morphism <j) : A* —> M recognizes L
i f f there is a morphism 9 : Im((f>) —> M(L) such that for all u G A*, u<f>9 — wqi.

Proof.
"=»" part:

Define 0 : Im(4>) —> M(L) as follows:

m9 - uriL, where u G A*,u<p = m

9 is well defined since u<j> = v<j> implies tha t urji = vrji (syntactic congruence is
the coarsest one).

It is easy to verify tha t <p9 = T]L
"«=" part:

It is sufficient to prove tha t for all m, n G Im(<fi)

<j>-\m)[<j>-l{n)]u p | L £ 0 implies <t>~1 {m){cf>-1 {n))u C L

Since (¡)~1(m)[<j)~l(n))w is a nonempty regular language, there is an ulti-
mately periodic w-word xyu G 0_1(m)[<?!)_1(n)]UJ f] L. So xyw has a decomposition:
wowf such tha t

too G <}>~1(m)[<t>~1(n))p,wi G [<?i>_1(n)]9 for some p,q> 0

It is easy to see tha t 4>"1(m)[4>~1(n)]UJ C [ioo</></>_1][ioi<^>_1]w, thus it is sufficient
to prove tha t [i o o # - 1] [i o i # _ 1] w C L, i . e . , [io 0 # - 1] [to i00- 1] a ' = 0-

To the contrary, suppose tha t [i o o ^ 0.
Since [i o o ^ _ 1] [i o i ^ _ 1] u P | L is regular, then there is an ultimately periodic

word A^AF G [iii0#_1j[ioi4><J>-1}" n L.
aoa" has a decomposition ct^a'^ such tha t a!0 G wo<j)(f)~1[wi<j)(j)~1]r and ot\ G

[toi(jxj)*1]8 for some r, s > 0.
Prom the assumption <p9 = t]l we know tha t a'0i]L = a'0(j>9 = (tootoir)<f>9 =

(woWir)r)L, and a[r]L = a[(j)9 = (tois)<p9 — (ioi3)T]l- Thus woWir(wis)u G L iff
a G L, i.e., wowi" G L iff a G L, i.e., xt/1" G L iff a G L, a contradiction. •

80 Zhilin Wu

Corollary 2.5. A morphism <j> : A* —> M recognizes L i f f there are morphisms
4>' : A* —* M' and 9 : Im(<j>) —» M' such that <j>' recognizes L and for all u £ A*,
u(<j>9) = up.

L is star free if L can be constructed from the language Aw by finite applications
of operations of union, complementation and concatenation on the left by star free
languages of A*.

L is noncounting if there is no £ N such that for all n > no and x, u,y, z £ A*,
(;xunyzw G L iff xun+lyzw £ L) and (x(yunz)" £ L iff x(yun+1z)w £ L).

L is aperiodic if its syntactic monoid M(L) is aperiodic. And it is easy to show
that L is aperiodic iff it is recognized by an aperiodic monoid.

It is not hard to prove that L is noncounting iff L is aperiodic. In the remainder
of this paper, for regular languages on infinite words, we don't distinguish between
the "noncounting" and "aperiodic" properties.

2.2.2 First order logic and linear temporal logic on infinite words

FO[<] and LTL formulas can also be interpreted on infinite words.
For FO[<]: Let X be the variable set and <p be a formula with free variables in

X\u£ Au and r]: X —+ TV, i.e., 77 maps variables in X to "positions" in u.

• (U,TJ) |= Pa(x), if u[|x|] = a,where u[|x|] is the 177th letter of u\

• (u,T})\=x < y, if xri < yrj;

• (U,r1) (= ipx V(?2, if (u,T)) |= <Pi or (u,rj) |= ip2\

• (u,T)) |= -r^, if not (u, 77) |= 1p\

• (u, rj) f= (3x)t/>, if there exists a function 77/: X —> N, which agrees with 77 on
X — {x} and possibly differs from 77 on x, such that (u, 77/) |= ip.

Let 1p be an FO[<] sentence and u £ Aw. We write u f= if there is an
77: X —• TV such that (u, 77) |= ip.

For LTL: Let ip be an LTL formula, u £ Aw. Denote the suffix of u starting
from i-th position (the first position is 0) as ul, then

• u (= Pa 1 if it = av, for some v £ A";

• u f= ipi V ip2, if u \= fp\ or u (= <¿>2;

• u |= -«pi, if not u |= ipi;

• u |= Xipi, if u1 |= <px\

• u |= <piUtp2, if there is i > 0 such that ul [= <p2 and for all 0 < j < i, |= ipi-

L is definable in FO[<] if there is an FO[<] sentence (p such that for all u £ Aw,
u\= tp iff u £ L.

L is definable in LTL if there is an LTL formula <p such that for all u £ A",
u f= ip iff u G L.

Quasi-star-free Languages on Infinite Words 81

2.2.3 Classical results of star free languages on infinite words

Similar to the finite words, there are the following classical results of star free
languages on infinite words.

Proposition 2.6. Let L C Aw be regular. The following conditions are equivalent
[IS, 19, 18, 9, 7[:

• L is star free;

• L is aperiodic;

• M(L) contains no nontrivial group;

m
• L = (J XiYf,where X{ C A*, Yi C A+ are star free and Y^ C Ya

¿=i

• L is FO[<[definable;

• L is LTL definable.

3 Quasi-star-free languages on finite words

3.1 Quasi-star-free languages on finite words
Definition 3.1. Let L C A* be regular. L is quasi-star-free if there is some
d > 1 such that L can be constructed from singleton languages {a} (a 6 A) and the
language (Ad)* by finite applications of operations of union, complementation, and
concatenation.

If L C. A* is star free, it is quasi-star free as well.
The family of quasi-star-free languages on finite words is denoted by Q S F F .

Definition 3.2. Let L C A* be regular. L is quasi-noncounting if there is some
d > 1 such that there is some no £ N satisfying that for all n > no, and for all
x,y,z € A* with = 0 mod d; xynz € L iff xyn+1z € L.

Let L C A* be regular and TJL : A* —+ M(L) be its syntactic morphism. we
denote (Ad)*rn by M(L)^d\ Then we have the following definition:

Definition 3.3. Let L C A* be regular and rji : A* —> M(L) be its syntactic
morphism. L is quasi-aperiodic if there is d > 1 such that M (L i s aperiodic.

A language of A* is quasi-noncounting iff it is quasi-aperiodic. Thus in the
remainder of this paper, we don't distinguish between the "quasi-noncounting"
and "quasi-aperiodic" properties of regular languages on finite words.

82 Zhilin Wu

3.2 Logic with cyclic counting interpreted on finite words
F0[<] can be extended with unary predicates > 1 , 0 < r < d) adjoined.
are interpreted on finite words as follows:

Let u e A*, rj: X —> {0,..., |u|}, then (u,r]) |= C^(x) if xt] = r mod d.
Denote this extended logic of FO[<] as FO[C].
LTL can be extended with "U" (Until) operator of LTL replaced by new "Until"

operators with cyclic counting, namely U^'^ for all d > 1 and 0 < r < d. The
semantics of ipiU^d,r^(p2 is defined as follows:

Let u € A*, then u (= ipiU^'^w if there is i such that 0 < i < |u|, i = r mod d
and u% |= ip2\ moreover, for all j such that (0 < j < i and j = r mod d), [= .

Denote this extended LTL by LTL[C].
Similar to FO[<] and LTL, we can define the languages defined by FO[C] sen-

tences and LTL[C] formulas.
The expressive power of FO[C] is strictly stronger than that of FO[<]. For

instance, language ({a}A)*(a € A and > 1) isn't aperiodic, then according to
Proposition 2.3, it can't be defined in FO[<], while it can be defined by FO[C]
sentence Vx (Last(x) —> C°(x)) A Vx (C^x) A ->Last(x) —> P0(x)).

It is obvious that for u € A*, u |= tp\U(p2 iff u |= <piU^l,0^(p2- Then the
expressive power of LTL[C] is at least as strong as that of LTL. In fact, LTL[C] is
more expressive than LTL. For instance, language ({a}A)*({a} € A and > 1)
can't be defined in LTL, while it can be defined by LTL[C] formula End.

R e m a r k 3.4. In [5], LTL[C] is defined by adjoining additional constants Igd,r(d >
1,0 < r < d) into LTL, and U ^ are just derived temporal operators of Igd,r and
"U". Nevertheless, since u [= Igd,r i f f |u| = r mod d, LTL[C] defined in [5] can't
be interpreted on infinite words. Consequently we directly adjoin into LTL
since can be interpreted on infinite words naturally. When interpreted on
finite words, Igd,r can be derived from t/(d'r) as follows:

Igd,r = TrueU{d'r)End

3.3 Theorem on quasi-star-free languages on finite words
We summarize the results of quasi-star-free languages on finite words in [2, 5] into
the following proposition:

Propos i t ion 3.5. Let L C A* be regular. The following conditions are equivalent:

(i) L is quasi-star-free;

(ii) L is quasi-aperiodic;

(Hi) For all t>0, AtT]i contains no nontrivial group;

(iv) L is definable in FO[C];

(v) L is definable in LTL[C].

Quasi-star-free Languages on Infinite Words 83

R e m a r k 3.6. (i), (ii),(iii) and (iv) of Proposition 3.5 were proved equivalent in
[2], and (iv) and (v) were proved equivalent in [5j. As a matter of fact, (i),(iii),(iv)
of Proposition 3.5 and the following condition (ii') (Theorem 3(d) in [2]), instead
of (ii), were proved equivalent in [2],

(ii') L is recognized by a morphism ip • {0,1}* —> MwrZr, where M is a finite
aperiodic monoid and where the composition ipn : {0,1}* —> Zr takes both 0 and 1
to the generator 1 of ZT (see [2] for the exact meaning of (ii'))

And it is not hard to prove that (ii) and (ii') are equivalent.

4 Quasi-star-free languages on infinite words
4.1 Quasi-star-free languages on infinite words
Similar to the case of finite words, we define that an (¿-language is quasi-star-free,
quasi-noncounting and quasi-aperiodic in this subsection.

Definit ion 4.1. Let L C Au be regular. L is quasi-star-free if L can be constructed
from the language A" by finite applications of operations of union, complementa-
tion, and concatenation on the left by quasi-star-free languages of A*.

If an w-language L C Au is star free, it is quasi-star-free as well. The family of
quasi-star-free languages on infinite words is denoted by QSF1.

P ropos i t ion 4.2. Let L C A" be quasi-star-free, then there is some d > 1 such
that all those quasi-star-free languages of A*, used in the construction of L (namely,
used in the operations of left concatenation during the construction of L), can be
constructed from singleton languages {a} (a £ A) and the language (Ad)* by finite
applications of operations of union, complementation and concatenation.

Proof. Let Li,..., Lk be the quasi-star-free languages of A* used in the construction
of L.

Then there are di(l <i<k) such that £¿(1 < i < k) can be constructed from
singleton languages {a}(a £ A) and the language (Adi)*.

Let d be the least common multiple of d\, ...,dk- Then

d[-i 1 / ydi
(Adr = (J (Ad)*Ardi = | J (Ad)* (J {a} , where < =

r=0 r=0 VaeA J 0,1

Consequently ¿¿(1 < i < k) can be constructed from singleton languages {a}(a €
A) and the language (Ad)* by finite applications of operations of union, comple-
mentation and concatenation. •

Definit ion 4.3. Let L C Aw be regular. L is quasi-noncounting if there is some
d > 1 such that there is no £ N satisfying that for all n > no and u, x,y,z £ A*
with |u| = 0 mod d, (xunyzu £ L iff xun+1yz" £ L) and (x(yunz)u £ L i f f
x(yun+lzY £ L).

84 Zhilin Wu

Defini t ion 4.4. Let L C A" be regular and T)L : A* —> M(L) be its syntactic
morphism. Then L is quasi-aperiodic if there is some d > 1 such that M (L i s
aperiodic.

Propos i t i on 4.5. Let L C Au be regular. L is quasi-noncounting i f f it is quasi-
aperiodic.

Proof.
"=>" part :

Suppose that there is some d > 1 such that there is some n0 £ N satisfying
that for all n > no, and for all x, u, y, z G A* with |u| = 0 mod d;

(xunyzw G L iff xun+1yzw G L) and (1 (^ 2) " G L iff x (y u n + 1 z) u G l) .

Now we prove that M (L) ^ is aperiodic.
Let m G M(L)^d\ Then there is some u e (Ad)* such that urn = m. Thus for

any n > no, and for all x,y,z G A*;

(:xunyzu G L iff xun+lyz" G L) and (x(yunz)w G L iff x (y u n + 1 z) u G L) .

Consequently for any n > no, (un)r}i = (un+1)r]i, i.e., m n = m n + 1 .
"<=" part:

Suppose that there is some d > 1 such that M(L)^ is aperiodic, i.e., there is
some no € N satisfying that for all n > no and m G M(L)^\ mn = mn+1.

Now we prove that L is quasi-noncounting.
Let n > no and x,u,y,z G A* with |u| = 0 mod d. Then UT]L G M(L)^d\ so

(u11)T]L = (u n + l)r]L . Prom the definition of TJL, we have that

(xunyzw G L iff xun+1yzu G L) and (x(yunz)w e L iff x {yun+1z)" G L) .

•
As a result of Proposition 4.5, in the remainder of this paper, we don't dis-

tinguish between "quasi-noncounting" and "quasi-aperiodic" properties of regular
languages on infinite words.

4.2 Logic with cyclic counting interpreted on infinite words
FO[C] and LTL[C] defined in Section 3.2 can be interpreted on infinite words as
follows:

For FO[C]: Let u G Aw and 77: X -» N, then

(u, 77))= Cr
d(x) if X77 = r mod d.

For LTL[C]: Let u G A", then
u |= tpiU<-d'r^(p2 if there is i > 0 such that (i = r mod d) and (u l y?2)i and

(for all 0 < j < i and j = r mod d; ui <pi).

Quasi-star-free Languages on Infinite Words 85

Similar to the case of finite words, we can define the languages defined by FO[C]
sentences and LTL[C] formulas.

When interpreted on infinite words, the expressive power of FO[C](LTL[C] resp.)
is strictly stronger than FO[<](LTL resp.). E.g., language ({a}A)tJJ(a G A and

> 1) isn't aperiodic, then according to Proposition 2.6, it can't be defined in
FO[<](LTL resp.), while it can be defined by FO[C] sentence Vx (C$(x) Pa(x))
(LTL[C] formula -n (TrueU^'°^pa) resp.)

4.3 Theorem on quasi-star-free languages on infinite words
We extend Proposition 3.5 for QSF f to the following theorem for QSF1.

Theorem 4.6. Let L C Au be regular. The following conditions are equivalent:

(i) L is quasi-star-free;

(ii) L is quasi-aperiodic;

(Hi) For all t> 0, Atr]L C M(L) contains no nontrivial group;
171

(iv) L= [J Xi (Y i f , where Xu € QSFF, Y{ C A+ and Y{Y{ C Yi;
i=1

(v) L is definable in FO[CJ;

(vi) L is definable in LTL[C].

Before the proof of Theorem 4.6, we give some definitions and lemmas.
Let A№ denote the alphabet consisting of all letters (u), where u G Ad. For

any x G (Ad) , we denote the corresponding element of (A ^) as (x).
Let L C A* and u G A*, define L u - 1 = {x |x G A*,xu G L}.
Let L C A* and d > 1, define

L(d) = f {(uo) ••• (ufc-i) |uo-Ufc- i € L,k > 1,V 0 < i < k (ui G Ad) } if e <£ L
I i^} U {<wo> -•• (uit-i) |tt0...tifc_i G L,k > 1,V 0 < i < k (m G Ad) } othewise

Let L C A* and u G A*, define L(d>u) = {Lu~l){d).
Let L C A" and d > 1, define

L (d) = {{u0)... {uk)... |u<>...ufc... 6 L,V i > 0 (Ui G Ad) } .

Lemma 4.7. Let L C Aw be regular. Define <j): (A^)* M(L)W by (x) (j> = xr)L

for (x) G (A^)*. Then <j) recognizes L^d\

Proof. We define morphism 6 : Im(4>) —> M (L^) such that (¡>0 = r)L(d), and thus
according to Proposition 2.4, 4> recognizes

Define 6 by: for m G Im(<f)), m6 = (w) r)L(d), where (w) G (A^) and (w) </> =
m.

86 Zhilin Wu

At first, we prove that 9 is well defined. Let (w\) <f> = (w2) <p = m, i.e. W\T]L =
W2T}l — m. Then for all x,y,z G A*, (xw\yzw G L iff xw2yzu G L) and (x (y w i z) w G
L iff x{yw2z)" G L), thus for all (x), (y), (z) G (A (d))*, ((x) (Wl) (y) {z)u G ¿ M
iff (x) (w2) (y) (zr G LM) and ((*) ((») (Wl> <*))" G L™ iff <x) (<y) (t£/2) <*>r G

i.e. (zoi) »¿«¡J (102), (w\)T]L(d) = {w2)r]Lw, so 9 is well defined.
Evidently for all (w) G (A<d>)*, (w)<p9 = (w) r)LW. •

m
Lemma 4.8. Suppose that L = [j Xi(Yi)w, where XitYi G QSF, Y{ C A+ and

i=l
YiYi C Yi. Then there is d > 1 such that all those Xi and V, can be constructed
from the singleton languages {a} (a G A) and the language (Ad) .

Proof. Since Xi, Yi G QSF f , then there are dxi and such that Xi and Yi are
constructed from the singleton languages {a} and the language (Adx>) .

Let d — lcm{dxi,dYi |1 < i < TO}. Then similar to the proof of Proposition 4.2,
we can prove that Xi and Yi can be constructed from singleton languages {a} and
the language (Ad)*. •

Lemma 4.9. Suppose that L C is star free for some d > 1, then L' =

{x |x G (Ad)*, (x) G L] is quasi-star-free.

Proof. Since L C
is star free, it can be constructed from singleton lan-

guages {(u)} (u G Ad) and the language (A ^) * by union, complementation and
concatenation.

By replacing {(u)}(u = ao...a<i_i) by {ao}...{a<f-i
}; (AW)* by (Ad)*; L ^ L ,

b y L i U ^ ; (AWy-L,. by {Ad)*-L\ (namely A*-((A* - (A d) *) u ^)) ; and
L\L2 by L\L'2 during the construction procedure of L, we can get the construction
procedure of L'(where L\, L2 C (A^y

and L'lt L'2 are the languages of (Ad) cor-
responding to L\ and L2 respectively). Thus L' can be constructed from singleton
languages {a} and the language (Ad) by union, complementation and concatena-
tion. Consequently it is quasi-star-free by definition. •
Lemma 4.10. Let L C Aw. Then L is definable in FOfCJ i f f there is some d > 1
such that L^ is definable in FO[<].
Lemma 4.11. Let L C A". Then L is definable in LTLfCJ i f f L is definable in
FO[C].
Remark 4.12. The proofs of Lemma 4.10 and Lemma 4-11 are totally similar to
the proofs of the same results for finite words (Proposition 6.5, Proposition 6.7 and
Theorem 7.5 in [5]). Consequently we omit the proofs of them here. Now we prove Theorem 4.6.
Proof of Theorem 4-6. At first we prove the equivalence of (ii) and (iii). According
to Lemma 4.11, (v) and (vi) are equivalent. Then if we have proved the equivalence

Quasi-star-free Languages on Infinite Words 87

of (i),(ii),(iv) and (v), the proof would be completed. We prove the equivalence of
(i),(ii), (iv) and (v) by proving the equivalence of (i),(ii),(v) and equivalence of
(ii),(v) respectively.

(ii)=>(iii):
Suppose that L C A" is quasi-aperiodic, i.e. M (L i s aperiodic for some

d > 1. Now we show that for all t > 0, Atrji contains no nontrivial group.
To the contrary suppose that there is some t > 0 such that Air]i contains a

nontrivial group. Obviously t > 1. Select an element m of order k > 1 from the
group, then G = {m,...mk} is also a nontrivial group in Air]i. Hence there are
u,v € A1 such that urn, — TO, VT]l — mk.

Consider AtkdrjL C M{L)^d\ It is easy to see that m i = (v k^d~ l) (u i v k ~ i)) r]L <E
Atkdr}L, thus G C Atkdt]L C M(L)(d\ M(L)(-d^ contains a nontrivial group. Because
a monoid is aperiodic iff it contains no nontrivial group, we have that M (L) ^ isn't
aperiodic, a contradiction.

(iii)=>(ii):
The main idea is from the proof of Theorem 3 in [2].
Suppose that M(L) is finite and for all t > 0, A*"^^ contains no nontrivial group.
For each nontrivial group G contained in M(L) pick a nonempty word VG such

that VGVL is the identity of G. Let d be a common multiple of the lengths of all
these VG- Now we show that M (L) ^ is aperiodic.

To the contrary suppose that M (L) ^ isn't aperiodic. Because a monoid is
aperiodic iff it contains no nontrivial group, then there is a nontrivial group in
M(L)(d\ Select an element TO of order k > 1 from the group, then G — {TO, ..., mk}
is also a nontrivial group in M(L)^d\ Select some v £ (Ad)* such that vrji = TO.
From the selection of d, we know |u|(the length of i>) is a multiple of \VQ\, thus there
is some power w of vq such that = |tu|. Let t = fc|u|, then m? = t]l G
Atr]I, so G C A1T]L, a contradiction.

Therefore we have proved the equivalence of (ii) and (iii).
Now we prove the equivalence of (i), (ii), (v).
(i)^(ii):
Suppose that L can be constructed from language Au by finite applications of

operations of union, complementation, and concatenation on the left by quasi-star-
free languages of A*. Then according to Proposition 4.2, there is d > 1 such that
quasi-star-free languages of A* used in the construction of L can be constructed
from singleton languages {a} and the language (Ad) .

Now we prove that M (L) ^ is aperiodic by induction on the construction pro-
cedure of L.

Induction base: L = Aw, then M(L) = {e}, where e is the identity of M(L).
Obviously M (L = {e}, then it is aperiodic.

Induction step:
Case L = Au — L\\ From induction hypothesis, M (L i) ^ is aperiodic. Since

it is not hard to see that M(L) = M(Li) and tjl = r)ii from the definition of
syntactic monoid and syntactic morphism of w-languages, M (L i s aperiodic as
well.

88 Zhilin Wu

Case L = L\ 1JL2: From induction hypothesis, M (L J (? . = 1,2) are aperi-
odic, then according to Proposition 4.5, there are n* (i = 1,2) such that for all
n > ni and u,x,y,z G A* with |u| = 0 mod d, (xunyzw G Li iff xun+1yz" G Li)
and (x{yunz)w € Li iff x{yun+1z)" G Li).

Let no = max{ni, n2}. Now we show that for all n > no and u, x,y,z G A* with
\u\ = 0 mod d, (xunyzw G L iff xun+1yz" G L) and (x (y u n z) w G L iff x(yun+lzf G
L). Then according to Proposition 4.5 we conclude that M (L i s aperiodic.

Suppose that xunyzw G L, then xunyzu G Li for some i = 1,2. Thus
xun+1yzw G Li since n > no > n*, so xun+1yzw G L. The proof of xu n + 1 j /z w G L
implies xunyz" G L is similar.

Suppose that x(yunz)u G L, then x(yunz)u G L'I for some i = 1,2. Thus
x(yun+1z)u G L{ since n > n0 > n i5 so G L. The proof of
x(yun+lz)w G L implies x(yunz)u G L is similar.

Case L = LIL2 : where L\ C A* and L2 C According to Proposition 3.5,
L\ is quasi-aperiodic, then there is n\ such that for all n > m , xynz G L\ iff
xyn+1z G L\ for all x,y,z G A* with |y| = 0 mod d. From induction hypothesis,
M(L2) (d) is aperiodic, thus there is n 2 such that for all n > n2 , u,x,y,z G A*
with |u| = 0 mod d, (xiFyz" G L2 iff x ^ + ^ z 1 " G L2) and (x (y u n z) w G L2 iff
x(yun+1z)u G La).

Let no = n i+n2 + l . It is sufficient to show that for all n > no and u,x, y,z G A*
with |u| = 0 mod d, (xunyz" G L iff G L) and (x(yun2)w G L iff
x(yun+1z)u G L) in order to prove that M(L)^ is aperiodic according to Propo-
sition 4.5.

(a) Suppose that n > no,u,x,y,z G A* with |u| = 0 mod d, and xunyzw G L.
We show that xun+1yzw G L.

Since xunyzu G L = LiL2 , xunyzu has a decomposition vw such that v G L\
and w G L2 . There are the following cases:

• v = xi, w = x2unyzw with x = XiX2;

• there are h, k > 0, u\,u2 G A* such that u = xuhu\, w — u2ukyz" with
n = h + k+l,u = u\u2\

• v = xunyi, w = y2zw with y - yiy2;

• there are p > 0, z\, z2 G A* such that v = xunyzpz\, w = z2zw with z = z\z2.

Here we take the second case as an example, the discussions of the other cases
are similar. In the second case, because h + k + 1 > n i + n 2 - f l , then h > n\ or
k > n2, thus xuh+1ui G Li or u2uk+1yzu> G L2 , then xun$xyzu G LiL2 = L.

The proof of xun+1yzu G L implies xunyzw G L is similar to (a).
(b) Suppose that n > no,u,x,y,z G A* with |u| = 0 mod d, and x(yunz)u G L.

We show that x{yun+lzf G L.
Since x(yunz)u G L = L IL 2, x(yunz)u has a decomposition vw such that v G L\

and w G L2. There are the following cases:

• v = xi , w = x2(yunz)u with x = xix2;

Quasi-star-free Languages on Infinite Words 89

• the re are p > 0, 2/1,2/2 G A* such t h a t v = x(yunz)pyi, w = (y2Unz)(yunz)"
and y = 1/12/2;

• there are p,h,k > 0, U\,U2 G A* such that v = x(yunz)p(yuhu{), w =
(u2ukz)(yunz)u with n = h+k+1, u = u\u2\

• there a x e p > 0, 21,22 G A* such that v = x(yunz)p(yunz{), w = z2(yunz)w,
z = Z1Z2;

Here we take the third case as an example, the discussions of the other cases
are similar.

Since n > n0 — ni + n2 + I > rii(i = 1,2), then x(yun+1z)p(yuhui) G Li and
(u2uk z)(yun+1 z)w € ¿2- Because h + k + 1 > ni + n2-l-l, we have h > ni or k > n2-
Thus x(2/un+12)p(2/u' l+1ui) G Li or (u2uk+1 z)(yun+1 z f G L2. Consequently

x(yun+1z)p{yuh+1ul)(u2ukz)(yun+1z)w G L I L 2

or
x(2 / i /n + 12)P(2 /U , lU1)(U2n f c + 12)(2 /Un + 12)W G L1L2.

Namely, x(yun+1z)u G LXL2 = L.
The proof of x(yun+1z)w G L implies x(yunz)w G L is similar to (b).
(H)=>(v):
Suppose L is quasi-aperiodic, then there is d > 1 such that M (L i s aperi-

odic, then according to Lemma 4.7, LW is aperiodic, thus L is definable in FO[C]
according to Lemma 4.10.

(v)=>(i):
Suppose L C A" is definable in FO[C], then according to Lemma 4.10, there

is d > 1 such that can be expressed in FO[<]. According to
Proposition 2.6, LW is star-free, i.e. it can be constructed from (A^)*" by union,
complementation and concatenation on the left by star free languages of (A ^) * .

By replacing L i U ¿2, (A^)u-Li, and L jL 2 by L\ (J Li;, (Ad)u-L[and L[L'2

respectively during the construction of L^ (where L\,L'2 are languages of (Ad)*
or (A d y corresponding to Li and L2 respectively), we can get the construction
procedure for L. Moreover, according to Lemma 4.9, languages of (Ad)* used in
the left concatenation during the construction of L must be quasi-star-free. Then
we can conclude that L can be constructed from A"(namely (Ad)u) by union,
complementation and concatenation on the left by quasi-star-free languages of A*,
i.e., L is quasi-star-free.

Therefore we have proved the equivalence of (i),(ii),(v).
Now we prove the equivalence of (ii),(iv) and complete the proof of the theorem.
(ii)=>(iv)\
Suppose L is quasi-aperiodic, i.e. there is d > 1 such that M (L i s aperiodic.
According to Lemma 4.7, is aperiodic. Thus by Proposition 2.6, L ^ = m ,

u XiYf , where C (A<d>) , y< C (A (d)) are star free, and Y & C
¿=1

90 Zhilin Wu

Let X[= {x |x G (A d)* , (x) £ X{}, Y' = [y\y £ (Ad)*, (y) £ Y,}, then L =
m
u Evidently Y(Y! C Y/. Since X t , y t C are star free, then
i=l
according to Lemma 4.9, X[and Y(are quasi-star-free.

(iv)=$(ii): m
Suppose that L = U Xi(Yi)u, where Xi C A*,Yi C A+ are quasi-star-free

i=l
languages, and YiYi C y*. Then according to Lemma 4.8, there is d > 1 such that
Xi,Yi can be constructed from singleton languages {a} (a € A) and the language
(A«)*.

Because Xi is quasi-star-free, according to Proposition 3.5, Xi is quasi-aperiodic,
i.e. there is no € iV such that for all n > no and x,y,z £ A* with |j/| = 0 mod d,
xynz £ Xi iff xy n + 1 z £ Xi. Denote this no as nQ(Xi). Similarly we have no(yi) for
Yi. Moreover, since Xi, Yi are quasi-star-free, XiYi is quasi-star-free as well, and
we let n0(XiYi) > no(Xi) + n0(Yi) + 1 for XiYi such that for all n > no(XiYi) and
x,y,z£ A* with |y| = 0 mod d, xynz £ XiYi iff xy n + 1 z e XiYi.

Let Â o = 1 + 2max{no(Xili) | l < i < m}. It is sufficient to show that for all
n > N0 and u,x,y,z £ A* with |u| = 0 mod d, (xunyz" £ L iff xun+1yzw £ L)
and (x (y u n z) u £ L iff x(yun+1z)" £ L) in order to prove that L is quasi-aperiodic
(according to Proposition 4.5).

(a) Suppose that n > No, u,x,y,z £ A*, |u| = 0 mod d, and xunyzu £ L, we
show that xun+1yzu £ L.

m
Because L = \J X{ (Y^, xunyzu £ Xi(Yi)u for some i. Then there is

i=l
p,p',q,q' > 0, zi,z2 £ A* such that z = z\z2, xunyzp zi £ XiYf and Z2Zq z\ £ Y^.
If p = 0, then xun+lyzp'zi £ X{ since n>N0> no(xiYi) > n0(Xi), xun+1yzw =
(x u " + V p ' z i) € Jfi ((yi)«)1" = XiY? C L. In the case of p > 0,
XiY? C XiYi follows from that assumption YiYi C Yi, so xun+lyzv'z\ £ XiYi
since n > N0 > noiXi^); then xun+iyz" = (xun+1yzp'z^j ^z"'z^j £
XiYi ((Yi)")" = Xi(Yir C L.

The proof of xu n + 1yzw £ L implies xunyzu £ L is similar to (a).
(b) Suppose that n > No, u,x,y,z £ A*, |u| = 0 mod d, and x(yunz)w £ L, we

show that x(yun+1z)u £ L.
m

Because L = (J Xi(Yi)u, x {yunzf £ XiY" for some i. Then there are
i=l

p,p',q,q' > o, vuv2 £ A* such that x(yunz)p'vi € Xtf?, v2{yunz)"'vl £ Y?,
V1V2 — yunz.

Here we prove for the case of p > 0, the case of p — 0 can be proved similarly.
Suppose that p > 0.
Since YiYi C Yu we have XiY? C X{Yi, Y? C Y,.
Because n > No > no(Xi,Yi) > n0(Yi), we have that x(yun+1z)p'v 1 £ XiYi and

v2(yun+1z)q'v1 £ Yi.
Now we discuss the following three cases of vi and V2-

Quasi-star-free Languages on Infinite Words 91

• vi=yi,v2= y2unz, y = 2/12/2;

• «1 = yunzi, v2 =z2, z = ZiZ2\

• v\ = yuhu\, v2 = u2ukz, with h + k + 1 = n and u = u\u2.

Here we take the third case as the example, the discussions of other cases are
similar.

Case v\ = yuhu\, v2 = u2ukz, with h + k + 1 = n and u = u\u2:
Since n > N0 > 1 + 2n0(XiYi), we have h > n0(XzYl) or k > n 0 (X i y i) .
If h > no{XiYi), then

x{yun+1zY'{yu^ux) e XiYi, (u2ukz)(yun+1z)i'{yuh+xu{) € Yt.

Thus

x{yun+1zr = (x(yun+1z)p'(yuh+lui)J (iu2ukz)(yun+1z)"'{yuh+1
Ul)y € X i Y f .

If k> no(XiYi), then (u2uk+1 z)(yun+1 z)"'(y^m) € Y,Thus

x(yun+1zr = (x{yun+1zY' {yuhu{)) { { u ^ z ^ y u ^ z f ' i y u ^ Y e XiY?.

The proof of x(yun+lz)w € L implies x(yunz)w € L is similar to (b). •

5 Conclusions and Remarks
In this paper quasi-star-free languages on infinite words (QSF1) are defined and
studied. Quasi-star-free languages on finite words(QSFF) have been studied in
[2, 5], and our work in this paper is an extension of those results for QSF f in [2, 5].

The extension of results of QSF f to QSF1 should be more useful for the
characterizations of the expressive power of temporal logics since temporal logics
are usually interpreted on infinite words in order to describe temporal properties
of concurrent systems. One of the examples is the characterizations of expressive
power of fragments of linear /¿-calculus [8] (known as vTL). The "next" operators
within the scope of the fixed points of vTL formulas act like the FO[C] predicates
"C5(x)" and LTL[C] operators "17(<i'r)", e.g. vTL formula uQ.pa A XXQ defines
language ({a}j4)w, which can be defined by FO[C] sentence \/x(C2(x) —> pa(x)) and
LTL[C] formula ->(TrueU^2,0^-'pa) respectively, as we have noticed in Section 4.2.

Acknowledgements . I would like to thank anonymous referees for their
comments and suggestions. Moreover, I would like to thank Prof. Wenhui Zhang
for his reviews on this paper and discussions with me.

92 Zhilin Wu

References
A. Arnold. A syntactic congruence for rational w-languages. Theoretical Com-
puter Science 39, 333-335, 1985.

D.A. Barrington, K. Compton, H. Straubing, D. Therien. Regular languages
in NC1. Journal of Computer and System Sciences 44, 478-499, 1992.

J. R. Biichi, On a decision method in restricted second order arithmetic. In: E.
Nagel et al., eds., Proc Internat. Congr. on Logic, Methodology and Philosophy
of Science (Stanford Univ. Press, Stanford, CA),1-11, 1962.

J.Cohen, D.Perrin, J.E.Pin. On the expressive power of temporal logic for finite
words,Journal of Computer and System Sciences 46, 271-294,1993.

Z. Esik, M. Ito. Temporal logic with cyclic counting and the degree of aperi-
odity of finite automata. Acta Cybernetica 16, 1-28, 2003.

S. Eilenberg. Automata, Languages and Mahcines, Volume B. Academic Press,
1976.

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
Temporal Analysis of Fairness. In Conference Record of the 7th ACM Sympo-
sium on Principles of Programming Languages (POPL'80), 163-173, 1980.

R. Kaivola. Axiomatising linear time mu-calculus. In 6th International Con-
ference of Concurrency theory, LNCS 962: 423-437, 1995.

H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA,
Los Angeles, California, USA, 1968.

G.. Lallement. Semigroups and combinatorial applications. Wiley, New York,
1979.

R. McNaughton and S. Papert. Counter-free automata. MIT Press, 1971.

D. Perrin. Finite automata. Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Semantics, 1-53, Elsevier Science Publishers, Am-
sterdam, 1990.

D. Perrin. Recent results on automata and infinite words. In 11th MFCS,
LNCS 176, 134-148, 1984.

J.E.Pin. Varieties of formal languages. North Oxford Academic, London,
Plenum, New York, 1986.

A.Pnueli. The temporal logic of programs. Proc. 18t/l FOCS, Providence, RI,
46-57, 1977.

D.Perrin, J.E.Pin. Infinite Words. Pure and Applied Mathematics, Vol 141,
Elsevier, 2004, ISBN 0-12-532111-2.

Quasi-star-free Languages on Infinite Words 93

[17] M.P Schutzenberger. On finite monoids having only trivial subgroups. Infor-
mation and Computation 8, 190-194, 1965.

[18] W. Thomas. Star-free regular sets of w-sequences. Inform, and Control 42,
148-156, 1979.

[19] W. Thomas. A combinatorial approach to the theory of w-automata. Inform,
and Control 48, 261-283, 1981.

[20] W. Thomas. Computation tree logic and regular w-languages. In REX Work-
shop 1988: Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, LNCS 354, 690-713, 1989.

[21] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, 133-192. Elsevier Science
Publishers, Amsterdam, 1990.

[22] H. Straubing. Finite Automata, Formal Logic and Circuit Complexity.
Birkhauser, 1994.

[23] P. Wolper. Temporal logic can be more expressive. Inform, and Control 56,
72-99, 1983.

Received September, 2004

Acta Cybernetica 17 (2005) 95-106.

The lexicographic decision function

József Dombi* and Nándor Vincze*

A b s t r a c t

In this paper the lexicographic decision process is presented in a unified
way. We construct a lexicographic decision function using a universal pref-
erence function and a unary function. This construction incorporates the
different outranking approaches,the lexicographic decision process and the
utility based decision making models. Finally we consider the connection of
the lexicographic decision method and the Arrow paradox.

1 Introduction
In this section we describe the concept of the lexicographic method. We use the
terminology of P.C. Fishburn, see [6]. The general concept of a finite lexicographic
order involves a set I = {1,2, . . . , n} and an order relation -<i on a nonempty set Xi
for each i £ I. We let ~t denote the symmetric complement of -<i so that Xj ¡ji if
and only if (Xi -<i yi or yi -<i X{) does not hold. With x = (xi, x2, • • •, xn) and y —
(yi,H2, • • • >2 /n) , y precedes x lexicographically under the natural order < on I and
with respect to the -<i or x <L y for short, iff {i : i £ I and (xj yi or yt -<i Xi)}
is nonempty, and x» -<i yi for the first (smallest) i in this set.
For this reason a lexicographic order <Lis also referred to as an order by first
difference.
An example of a lexicographic order arises from the alphabetical order of words
in a dictionary or lexicon. To show this let I = {1 ,2 , . . . ,n} , let Xi = A =
{0, a, b,..., z} with ID -<i a. -<i b -<i ... -<i z ioi each i , take n as large as the
longest listed word , and let the English word a\a2 • •. a m with m <n correspond
to (ai , a2,..., a m , 0 , . . . , 0) in An. Then <Lon the subset of An which corresponds
to the "legitimate " words orders these words in their natural alphabetical order.
For example, "as" precedes "ask" since (a, s, 0 , . . . , 0) < L (a, s, k, 0 , . . . , 0) which is
to say that a ~ i a, s ~2 s, 0 -<3 fc.
In multicriteria decision making the idea of the lexicographic decision consists of a
hierarchy or ordered set of attributes or criteria. Decision alternatives are examined
initially on the basis of the first or most important criterion, If more than one
alternative is "best" or "satisfactory" on this basis, then these are compared under

"Department of Informatics, University of Szeged H-6720 Szeged, Árpád tér 2. Hungary
•^Department of Engineering and Informatics, Szeged College Faculty of Food Engineering,

University of Szeged H-6725 Szeged, Mars tér 20. Hungary

95

96 József Dombi and Nándor Vincze

the second most important criterion and so forth. The principle of order by first
difference says that one alternative is "better" than another iff the first is "better"
than the second on the most important criterion on which they differ.
So let x and y be two alternatives (actions) and c i , c „ be different criteria,
Xi and yi are the utilities (evaluations) of x and y. We identify x and y with their
evaluation vector x = (xi ,x2, . . . ,x n) , y = (1/1,3/2. • • • ,2/n)- Then -<i is the order
relation according to Ci on the set of alternatives.
We say that x* yi iff the alternatives x and y are indifferent according to the Ci,
and we say that x <L y iff x» yi for i € {1 ,2 , . . . , k — 1} where 0 < fc — 1 < n — 1
and Xk -<k Vk in other words the alternative y is preferred to the alternative x ,
according to the criteria Cfc.
The lexicographic decision method is a well adaptable method. It can arrange
data of arbitrary scales, and it is suitable to evaluate a set of considerable alter-
natives. This method does not require the weight of criteria and in spite of its
simlicity always arranges the alternatives, Rapcsak [18]. Some decision procedures
have lexicographic decision rules to prevent ties, Temesi [20]. Sequential screening
procedures illustrate another common application of the lexicographic idea. Can-
didates or alternatives are first screened under a given criterion (perhaps with the
use of a test or an interview) and separated into "rejects" and "others". In terms of
-<1 of the set of candidates, x ~ y whenever both x and y are "rejects" or "others",
with x -<1 y when x is a "reject" and y is an "other". The "others" are then screened
further by the second criterion or test and sorted into two groups. Of course the
"rejects" from the first stage may not be tested for the second stage, but that is of
no importance from the viewpoint of the lexicographic rule except from the stand-
point of efficiency that it may promote.This process may continue through several
more stages, perhaps including a ranking of all candidates who survive to the last
stage. Another aspect of the using of lexicographic decision method is to avoid the
intransitivity of preference. If -<i is a weak order for every i then < L is a weak
order, if -<i is a linear order for every i then < L is also a linear order, but when -<i
is a partial order for every i it does not follow that < L is a partial order, even if < L

includes cycles. If 0 then the lexicographic aggeregation preserves transitivity,
Fishburn [6], Solymosi [19]. About a general concept of the preference cycles and
its representation, see Dombi,Vincze [4].
In the evaluation of alternatives, according to the ct criteria the values Xk, and yk
would be numerical values or categories. In the case of categories the lexicographic
decision can be characterized with weighted criteria. We will prove that there exists
a weighted representation of lexicographic decision method on the real numbers.
This yields a universal form: PROMETHEE, ELECTRE and utility are special
cases of it, see Dombi[3].
It is important to note that the solution of many MCDM problems requires the
application of two or three decision methods. For example when the groups of
criteria needs different aggregation procedures. In our model we can give different
decision making methods by changing the parameters.
We construct a weighted method to get the decision function of the lexicographic
decision method. We choose the weights in such a way, that a range of alternatives

The lexicographic decision function 97

by Cfc criteria could not be changed by Ck+i,Ck+2, ••• ,cn criteria.
Finally we compare the conditions of the lexicographic decision method and the
Arrow impossibility theorem.
The main aspect of our motivation is that the mentioned non-compensatory prop-
erty arrange the criteria by their importancy and hence is the dictator in this
decision model. So the dictatorship is an essential precept in this method.
In our paper we suppose that among the alternatives there are no two lexicograph-
ically equal.

2 The construction of the lexicographic decision
function.

The lexicographic decision method is a seldom occuring theme in publications. For
its numerical representation we could not find solution. It may follow from the
negative results in this logic, for example the lexicographic order of the plane:

Theorem 1. There does not exist any continuous f(x,y) function, such that:

{x,y)<L(v,z)ifff(x,y)<f(v,z).

Proof Let the values x,xi,x2,1/1,2/2 be such that x\ < x < x2 and y\ < y2 • We
suppose that there exists continuous f(x, y) function, for which:

(;X,y)<L{v,z)iSf(x,y)<f(v,Z).

Then for the mentioned values it is true, that:

(x,y2) <L (x2,Vl) <L {X2,y2) iff f(x,y2) <L f(x2,y1) <L f(X2,y2).

Because f(x,y) is continuous, it is continuous at the point (x2,y2).
Let e be an arbitrarily fixed positive value such that

£ < f{x2,y2) -f(X2,Vl)-

Then there exists a value S, such that:

if \{x2,V2) - (x,y2)| < 5 then f{x2,y2) - f(x,y2) < e.

but

f(x2,y2) - f(x,y2) > f{x2,1/2) - f(X2,Vl) > e

which contradicts that f(x, y) is continuous. •

98 József Dombi and Nándor Vincze

2.1 The preference and the modifier functions

In the introduction we shown the lexicographical decision concept. In this section
we construct a lexicographical decision function. For the construction we use a
general preference function p(x,y) and a r(x) modifier, (or threshold) function,
which are the following, according to Dombi [3]:

P(x,y) = (y~x +1)/2

i 0 if 0 < x < 1/2,
T(X) = < 1/2 if x = 1/2,

[1 if l / 2 < x < l .

Let A = {ai, a2, • • • , am} be the set of alternatives. Let C = {ci, c2, • • • , Cn} be the
set of the criteria, ordered by importancy. Let denote the evaluation (utility)
of Cj criteria in the case of choosing a* as an alternative , 0 < < 1. The decision
situation can be described with the following decision matrix:

Cl C2 CN
0*1 Xn Xi2 XM
A2 X21 X22 X2N

AM ml %M2

2.1.1 Properties of the preference function

Let p(x, y) = P(y — x) consider as the function of y — x, and let 0 < x, y < 1. Then
y - x e [-1,1]. We get that:

r - 1 if 0 < p(x,y) < 1/2
sign(y - x) = < 0 if p(x, y) = 1/2

[1 if 1/2 < p(x,y) < 1

Then
(0 if 0 < p(x,y) < 1 / 2

P(sign(y - i)) = < 1/2 if p{x,y) = 1/2
[1 if 1/2 < p(x,y) < 1

As decsribed in the introduction we identify the alternatives with its evaluation
n-tuples, so we let

a» = (xn,xi2,... ,Xm) and a,j = (xji,xj2,... , X J „) .

To order the alternatives a*,and a, with respect to criteria ct, we set x = Xft and
y = xjk in the preference function p(x,y).

The lexicographic decision function 99

2.1.2 The composition of the preference and the modifier function.

Definition 1. We can define for every (ai, aj) pair the p*(ai, aj) preference n-tuple
in the following manner. Let

P*K,Oj) = (4r4?> • • • i°r 4 = T(p(xik,xjk))-

Then
j 0 if Xik > Xjk

T (p (x i k , x j k)) = < 1 / 2 if xik = Xjk

{ 1 if Xik < Xjk

The indicators ej5- can be considered as the elements of a pairwise comparison
matrix with respect to the Ck criterion.

Ck ai a2 a m
ai fk

£N
£12 £lm

0-2 e21 e22 £2m

a-m FK
' m l

£m2 efc

All the elements in the main diagonal equal to 0.5. As mentioned before, we
suppose, that among the alternatives there are no two lexicographically equal, so
for each pair (aj, aj) ai = (xji,£i2> • • •,£in) , a>j = (xji,Xj2, • • • ,xjn), there exist fci
and such that x ^ < x ^ and Xjk2 < x^ 2 .

2.2 The lexicographic decision function
The main result of this paper is the following Theorem:

Theorem 2. Let A = {ai,a2,- - ,am} be the set of alternatives. Let C =
{ci,c2,-- - ,Cn} be the set of criteria, ordered by importancy. Let Xij denote the
evaluation (utility) of criterion Cj in the case of choosing ai as an alternative,
0 < Xij < 1 . The decision situation can be described with the decision matrix:

Ci C2 Cn
ai Xii X12
a 2 X21 %22 X2n

Om Xml Xm2 • X-mn

Letp(x,y) be the preference function and r(x) be the modifier, (or threshold) func-
tion as we defined in section 2.1.

Then there exists Wk weights k = 1,2,..., n such that the real numbers:
^ m n

li - — ̂ 2r(j2wkr(p{xik,xjk))), ¿ = 1,2, . . . , m
m j = l fc= l

100 József Dombi and Nándor Vincze

satisfy that
li < lj if and only if ai>L aj.

• So we construct the lexicographic decision function with the help of a weighting
system. This function is non compensatory. This we give in the following. Next
we give the weighting system.
Let the weight of Ci criterion be:

Wi = l /2 i + l / (n2 n)

It can be verified, that:
n

Y^wk = i .
fc=l

The lexicographic decision function is constructed with the following function com-
position:

r (¿ ^ r C p i x * , * , *))) = | J * %

Since = r{p(xik,xjk)), we denote

Sij = T ^^WfeT^Xjifc.Xjfc))^ .

The following matrix provides the pairwise comparison matrix with respect to the
weighted system of criteria (ci,wi;c2,w2', • • . ;cn,wn)

(C,w) ai a2 am

ai e n £12 • £ l m
0-1 £21 £22 £2 m

am £tj»2 • £mm

All the elements in the main diagonal equal always to 0.5.
Normalizing the lexicographic decision function we get real k in the interval

[0,1].

1 m (" \
li = — V V Y]wkT(p(xik, xjk)) 1 , 1 = 1 ,2 , . . . ,

m U \ t i J
m

so that:
li < lj iff a, >L aj.

This sequence of real numbers is constructed in such a way, that for alternative
we aggregate the preferences between a< and aj for j = 1 , 2 , . . . , i — 1, i + 1 , . . . , m.

This is the main idea of the global preference construction of the PROMETHEE
method.

To prove the correctness of the construction, first we prove the correctness of
the weighting.

The lexicographic decision function 101

Lemma 1. Let 4 = r(p(xik,Xjk) as we defined it in 2.1.2. Then the following
statements are true:

n
(1) min Ylwk£ii -1 /2 + l / (n2") if <L a,, and it is minimal if

fc=i

(4 , 4 , . . . , £ £) = (1,0> . . . ,0) .

(2) max f^WkBi j = 1/2 - l/(n2n) if ai >L aj , and it is maximal if
fc=l

Proof (of Lemma 1).

(1) If a, < L a j and 4 = T(p(xik,Xjk)) then a preference n-tuple

(4 , 4 , . . . , 4) = (1 /2 ,1 /2 , . . . , 1 /2 ,1 ,4+2, . . . , 4) for 0 < t < n

has minimal non-zero element, if e'+2 = e'+3 = . . . = £? .= 0.
In this case:

n

5 3 ^ 4 = 1/2 + (i/2 + l)[l/(n2")].
fc=i

It is minimal if t = 0. Then (4 , 4 , - • • >£ij) = (1 ,0 , . . . ,0) and the minimum
is equal to 1/2 + l / (n2") .

(2) If at > L a j then a preference n-tuple

(4 , 4 , . . . , 4) = (1 /2 ,1 /2 , . . . , 1 / 2 , 0 , 4 + 2 , . . . , 4) for 0 < k < n

has minimal zero element, if e l f 2 = = . . . = = 1. v J *J
Then

n

^ « » t 4 = l / 2 - (i / 2 + l)[l/(n2")].
Jk=1

This is maximal, if t = 0 and the maximum is 1/2 — l / (n2 n) .
Then

(4 , 4 , . . ; , 4) = (O , I , . . . , I) .

•
Proof (of Theorem 2). By Lemma 1 we get for the weighted sum that:

0 < £ > * 4 < 1 / 2 i f > L a j k=1
1/2 < ¿ > j f c 4 < 1 if ai<Laj

k=1

102 József Dombi and Nándor Vincze

Applying the modifier (or threshold) function T(X) for this weighted sum, we obtain:

T(£wkT(p(xik,xjk))) = f ° 1 l f 2 < l Z
1 J

n
So r (Y^, wkT(p(xik,xjk))) gives the lexicographic preference ordering between al-

it=i
ternatives. So with this construction we get a decision function. Then we get:

m n ^

^y (^2w k T(j> (x i k , x j k))) = |{oj : a< < L a,-}| + - .
j=l k=1

To transform this number to the [0,1] interval, we get the real values:

h = (l / m) £ V I ^ 2 w k T { p (x i k , x j k)) I
j=i \fc=l /

for which
li < l j if and only if a; > L a,j.

•

2.3 The lexicographic decision method as the limit of deci-
sion methods

Using the mentioned r(x) threshold function, we construct the lexicographic deci-
sion function. This form is the general form of decision functions (for examples of
PROMETHEE, ELECTRE and utility). In this formulation the form of the general
modifier (threshold) function is, see Dombi [3]:

{0 if 0 < x < p i ,

(x-Pi)/(P2~Pi) if pi<x<p2,
1 if p2 < x < 1.

This function is linear in the interval [pi, P2] - Taking the limit of this function we
obtain:

l im T P I P J (X) = T(X).
PI — J.P2-*5

So we get the lexicographic decision method as the limits of decision methods.
These methods may be compensatorical or non compensatorical.

The lexicographic decision function 103

3 The lexicographic decision method, and the Ar-
row paradox

As mentioned in the introduction, the concept of arranging the criteria according
to their importancy and the lexicographic decision method is dictatorical. Because
of this there may connections between the lexicographic rule, and Arrow's impossi-
bility theorem. But conditions of Arrow's impossibility theorem are applied to the
voting situation, and so the lexicographic decision situation should be applied to a
voting situation.

Let the evaluation of alternatives with respect to criterion c* be xu, x2i, • • •, xni.
Let their order be x ^ < x^ < . . . < x*^ and set x*ki = so we get simply an
ordering on alternatives by Q. TO transform the voting situation to multicriteria
decision situation we map the individuals to criteria. In this section the profile
is a weak order on the alternatives based on a criteria (or individual). The social
welfare function is a decision function which aggregates the criterion (or individual)
ordering. Let R be the set of all possible weak orders on the set of alternatives. We
say that an individual is a dictator if its preferences become automatically social
prefrences.

The axioms and conditions of the Arrow paradox are the following, see Hwang,
Lin [13]:

Axiom 1 (The preference relation is strongly complete). For all at and aj
either o, 'is preferred or indifferent to' aj or aj 'is preferred or indifferent to' ai.

Axiom 2 (The preference relation is transitive). For all a* and aj and ak:
ai 'is preferred or indifferent to' aj and aj 'is preferred or indifferent to' ak imply
ai 'is preferred or indifferent to' ak.

Condition 1 (Universal domain). The social welfare function(decision func-
tion) f is defined for all possible profiles of individual (criteria).

Condition 2 (The weak Pareto concept). If ak,ai € A and ak -<i ai for
i = 1,2,..., n then ak <L at.

Condition 3 (Independence from irrelevant alternatives). i?(0i'Qj) =
Jp(0«.°i)(p(ai.°i))) for every pair (a^aj) € Ax A, where Ri^o-j) F(aiiaj) p(aitaj) are
the contraction of the social preference ordering, the social welfare function (i.e.
the social decision function), and the p profile, to the pair (ai,aj).

Condition 4 (Non-dictatorship). There is no dictator in the society, i.e.there
is no individual that whenever he prefers ai to aj for any ai and aj society does
likewise regardless of the preferences of other individuals-

Theorem 3 (General possibility theorem(Arrow)). If there are at least two
individuals, and three alternatives, which the members of the society are free to order
in any way, (condition 1.) then every social welfare function satisfying condition 2
and 3 and yielding a social ordering satisfying axioms I. and II. must be dictatorical.

104 József Dombi and Nándor Vincze

It means that if a given social welfare function satisfies conditions 1-4, then a
contradiction axises.

It can be seen that the lexicographic decision function satisfies Axioms 1-2 and
Conditions 1-3.

We now consider the formulation in which there are preference orders -<; on the
set of alternatives for each criteria along with holistic order < L on A, see Fishburn
[5],[6], May [15], Plott [17].
We shall refer to an n + 1 tuple (-<i, -<¡2, • . . , -<„, < L) of weak orders on A as a
situation. Then we consider the possibility that any one of a number of potential
situation might arise.

Theo rem 4. Let us suppose that A contains at least three alternatives, (A is other-
wise unlimited) and every n-tuple (-<i, -<2, • • •, ~<n) of weak orders on A appears in
at least one situation. Then preferences are lexicographic, iff the following hold for
all situations (-<1, -<2, •••, -<n, <L) and (-<1, -<2, • • •. < L) and all aj,ak G A :
(aj ak for all i)=> aj ~ ak; (aj ^ ak for all i) Sc (aj -<i ak for some
i)=$- a, <L ak,
and (aj -<i ak iff aj ak) & (ak -<i aj iff ak -<{ aj for all i) ==> (aj <L ak i f f
ak <L aj) & (ak <L aj iff aj <L ak).

Now we compare the axioms and conditions of the lexicographic decision
method, and the Arrow paradox. We shall refer to the lexicographic method and
the Arrow Paradox in this comparison by letters L and A, respectively.

1. Preference completness and transitivity

L: The preference is a weak order, so it is strongly complete and transitive.
A: The preference is strongly complete, and transitive.

2. Universal domain

L: Every n-tuple (-<1, -<2) • • •, -<n) of weak orders on A appears in at least
one situation.

A: The social welfare function(decision function) / is defined for all possible
profiles of individual (criteria).

3. The Pareto concepts

L: The strong Pareto concept (aj ak for all i)=> aj ~ ak\ (aj ^ ak for
all i, & aj -<i ak for some i)=> aj <L ak,

A: The weak Pareto concept If ak,ai G A and ak -<i ai for i = 1 ,2 , . . . ,n
then ak <L ai.

4. Independence from irrelevant alternatives

L: (aj -<i ak iff aj ak)k(ak -<i aj iff ak -<i aj for all i) (aj <L ak iff
ak <L aj)&c(ak <L aj iff aj <L ak),

The lexicographic decision function 105

A: R(ai'a= for every pair (a¿, a,) 6 AxA, where R(ai'a'\
p(a-i,a-j) and p(ai-ai) a r e the contraction of the social preference ordering,
the social welfare function (i.e. the social decision function), and the p
profile to the pair (tti,a¿).

It seems, that the conditions used in Arrow's impossibility theorem for a 'social
welfare function' are formally similar to the conditions of Theorem 4, or are the same
of the condition of this theorem. As it is mentioned above we can set a multicriteria
decision situation to a voting situation. Then <i is interpreted as the prefrence
order for the ith individual or voter. The Arrowian axioms, and the condition of
universal domain and independence from irrelevant alternatives are the same as
the conditions of theorem of the lexicographic decision. The difference is that while
Arrow's theorem uses strong Pareto concept, the theorem of lexicographic decision
method uses weak Pareto concept, and Arrow adds the condition that no individual
shall be a 'dictator'. The main result of Arrow's theorem, to be shown that all
conditions other than the nondictatorship condition imply that some individual is
a dictator.

By deleting specific references to dictators and replacing the weak Pareto con-
cept with the strong Pareto concept, as in Theorem 4., we derive a hierarchy of
'dictators' <7(L),ER(2),... ,cr(n),which verifies the existence of lexicographic prefer-
ences.

References
[1] Behringer F.A., Lexmaxmin in fuzzy multiobjective decision making, Opti-

mization 21 (1990) 23-49.

[2] Boussou D., Some remarks on the notion of compensation in MCDM, European
Journal of Operation Research, 26 (1986) 150-160.

[3] Dombi J., A general framework for the utility/based and outranking methods,
Fuzzy Logic and Soft Computing, Advances in Fuzzy Systems - Application
and Theory, Ed.: B. Bouchon-Meunier, R.R. Yager, R.A. Zadeh, Word Scien-
tific, (1995) 202-208.

[4] Dombi J.,Vincze N.J., Universal characterisation of non-transitive preferences,
Mathematical Social Sciences 27 (1994) 91-104.

[5] Fishburn P.C., Axioms for Lexicographic Preferences, mimeographed (1972).

[6] Fishburn P.C., Lexicographic orders,utilities and decision rules: a survey, Man-
agement Science 11 (1974) 1442-1471.

[7] Fishburn P.C., Noncompensatory preferences. Synthese 33 (1976) 393-403.

[8] Fiscburn P.C., Lexicographic additive differences, Journal of Mathematical
Psychology 21 (1980) 191-218.

106 József Dombi and Nándor Vincze

[9] Fishburn P.C., The foundations of expected utility, D. Reidel Publishing Com-
pany, Dordrecht:Holland, Boston:USA, London:England, 1982.

[10] Fortemps P., Pirlot M., Conjoint axiomatization of Min, DiscriMin and Lex-
iMin (under preparation)

[11] Frisch A., Hnich B., Kiziltan Z.,Miguel I., Walsh T., Global Constraints for
Lexicographic Orderings, Ed.:P. Van Heytenryck, Springer-Verlag Berlin Hei-
delberg (2002) 93-102.

[12] Hwang CL, Lin MJ., Group Decision Making under Multiple Criteria. Springer
Verlag: Berlin Heidelberg, 1987.

[13] Hwang CL, Lin MJ., Fuzzy Multiple Attribute Decision Making. Springer Ver-
lag: Berlin Heidelberg, 1992.

[14] Luce R.D., Lexicographic tradeoff structures Theory and Decision 9 (1978)
187-193.

[15] May K.O., Intransitivity, Utility, and Aggregation of Preference Patterns,
Econometrica, 22 (1954) 1-13.

[16] Olson D.L., Decision Aids for Selection Problems, Springer Verlag: New York,
1996.

[17] Plott C.R., Little J.T., Parks R.P., Individual Choice When Objects have Ordi-
nal Properties, Social Science Working Paper Number 14. California Institute
of Technology 1972.

[18] Rapcsák T., Többszempontú döntési problémák, AHP módszertan, MTA SZ-
TAKI, 2003.

[19] Solymosi T., Ordinális mérési skálák lexikografikus aggregálása, Adat, modell,
elemzés, szerk.:Kovács E., Aula, Budapest, (2001) 119-126.

[20] Temesi J., A döntéselmélet alapjai, Aula, 2002.

[21] Marchant T., Towards a theory of MCDM: Stepping away from social choise
theory, Mathematical Social Sciences, Elsevier, 45 (2003) 343-363.

Received November, 2004

Acta Cybernetica 17 (2005) 9 5 - 1 0 6 .

Minimal inter-particle distance in atom clusters*

A general method for obtaining minimal interatomic distance in molecule
conformation problems is introduced. The method can be applied to a wide
family of potential energy functions having reasonable properties. Using this
method new lower bounds for the minimal inter-particle distance for the op-
timal Lennard-Jones and Morse potential functions are derived which are
independent from the number of atoms. Improved linear lower bounds for
the optimal function values for Lennard-Jones and Morse potentials are also
given.

1 Introduction
Given a cluster of n atoms, define Xj G R3 (i = 1 , . . . , n) as the center of the ith
atom. The potential energy of the cluster x = (x i , . . . , xn) G R3 n is defined as the
sum of the two-body inter-particle pair potentials over all of the pairs, i.e.,

where ry = ||xj — Xj|| and v(r) is the value of a pair potential of distance r. For
the pair potential v(r) we set the following requirements to be satisfied:

(PI) The function v is continuous.

(P2) There exists a unique s with v(s) < 0 and if r ^ s then v(r) > v(s) (single
stable state property).

(P3) If r < s then v is strictly decreasing and v(r) > r~4.

(P4) If r > s then v is strictly increasing and v(r) > —r-4.

The properties (P3) and (P4) come from sphere packing arguments ,used in the
paper. We should use here Cr~3 bounds instead, but the a priori determination of
the constant C is quite difficult.

•This work has been supported by the grants OTKA T 048377 and A Ö U 6O0Ü6.
* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University

of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary email: t v i n k o a i n f . u - s z e g e d . h u

Tamás Vinkó1'

Abstract

(1)

107

108 Tamás Vinkó

The aim of the paper is to obtain lower bounds for the minimal interatomic
distance in the optimal structure of (1), independent of the number of atoms and
assuming only that the pair potential minimally satisfies properties (P1)-(P4).
Many papers deal with this topic, however, they specialized the pair potential
function.

1.1 Previous results
The first paper is by Xue et al. [9], where a poor lower bound for the minimal
distance in Lennard-Jones cluster is established. They also proved that the globed
optimum can be bounded from below and above by linear (in the number of atoms)
functions. In a paper of Maranas and Floudas [7] results for the minimal distance
can be found. They established bounds as functions of the number of atoms. That
value is useful only for small n since it goes to zero as the number of atoms grows.
In another work of Xue [11], a lower bound for inter-particle distance in the optimal
Lennard-Jones cluster is given which is independent of the number of atoms in the
cluster. Improved lower bound is obtained by Blanc [1]. For Morse clusters (for
which property (P3) does not hold) Locatelli and Shoen [5] establish lower bound
for the interatomic distance in the optimal structures. In this paper, better lower
bounds for the Lennard-Jones and the Morse cluster (where we use the results from
[5]) axe derived as applications of the introduced general method.

Apart from the theoretical interest, this kind of results can be used efficiently in
the construction of global optimization methods, especially in branch-and-bound
type methods. As shown by Locatelli and Schoen in [4], information about the
minimal interatomic distance can be used efficiently in starting point generator
algorithm for (stochastic) optimization methods. Such a lower bound can also be
applied to construct special data structures for fast procedures to compute potential
functions with large number of atoms, see [12].

1.2 Notation
In the rest of the paper the following notation will be used. The set of reed num-
bers, positive real number and nonnegative integers are denoted by R , R + and No,
respectively. V denotes the set of functions v : R+ —> R satisfying properties (P l) -
(P4) Using this notation v G V is supposed in this paper. The global minimizer of
the function E is the configuration x* £ R3n with

E(x*) = min E(x). (2)
KER3" W W

The global minimum will be denoted by

Em = E(xm).

Let Tij be the Euclidean distance of the points x* and x* (i,j = 1 , . . . ,n). Define
the potential energy of particle i as

^ (x H ^ d l x i - x . l l) (t = l , . . . , n)

Minimal inter-particle distance in atom clusters 109

and E* = Ei(x*). It is obvious that

£(x) = i f > (x) (3)
¿=1

holds. The minimal inter-particle distance in the optimal structure is

r * = m i n r i j (i,j = 1 , . . . , n). (4)
hJ

Lower bound for the minimal distance is denoted by q, i.e., our task is to find a
good underestimation

q < r*.
In order to obtain good lower bound q we assume that in the configuration taken
into account the minimal distance between the particles equal to q.

The positive root of v is denoted by t. Properties (P1)-(P4) imply that that t
is unique and t < s. Note that with the general method only such a lower bound
can be obtained which satisfies q <t.

Without loss of generality let us suppose that x\ = 0 and 0 = ri < r2 < . . . < r n ,
where

ri = I\xj - ®i || = I N | 0 = 1 , . . . , n).
In the rest of the paper we consider only the cases n > 2.

2 Lower bound on the minimal inter-particle dis-
tance

To give a good lower bound for the minimal inter-particle distance we generalize
the arguments given by Xue in [11] and Blanc in [1]. To do that, first we establish
an upper bound for E* (i = 1 , . . . , n). Suppose that p G R+ is a parameter such
that

pq>s. (5)

Then we use the partition

E{= £ VM+ £ v(Ti) (6)
q<Tj<pq rj>pq '

and give underestimations for the two terms. With suitable chosen parameters we
show that if the minimal distance is too small, then we get a contradiction with
the upper bound for Ejf.

2.1 The auxiliary bounds
Lemma 1. In the optimal configuration the potential energy of particle i is always
less than the global minimum of v, i.e. the inequality E* < v(s) holds for all i =

110 Tamás Vinkó

Proof. Let k = n if i ± n and k = n — 1 if t = ra, and define the configuration
z = (z i , . . . ,Zn) in such a way that Zj = x^ for ail j ± i, ||Zi — Zfc|| = s and
ll^i — zi\\ > s for all I ^ i. Then put the atom Zi to the line determined by the
origin point and the coordinates of in such a way that then Z{ has the maximal
rj value. Thus Ei{z) < v(s). By construction of z,

E*-E: = E(z) — Ei(z).

Since E{(z) < v(s) and

E* -E* = E(z) - Ei{z) > E(z) - v(s),

we find E* < v{s). •

Lemma 2. For | < a < b, the index set Jab = { j | a < rj < b} has size

Proof. We may assume that the particles are centers of disjoint open balls of radius
q/2. The cardinality of the set Jab can not exceed the number of balls with radius
q/2 that can be contained in the ball centered at the origin with radius b + q/2.
With volume comparison this gives the upper, bound

On the other hand, since rj > a, we can drop out all the balls with radius q/2 from

the ball centered in the origin and having radius a — q/2. •

Lemma 3. If pq > s, then the first term of(6) can be underestimated with

£ v(rj)>v(q) + v(s)((2p+l)3-l)). (7)
q<rj<pq

Proof. Suppose that r2 — r^ — ... = r m + i = q, (i.e. there Eire m > 1 distances
equal to q). Since they give positive contributions we can cancel all of them but one
(about what we supposed that exists, see Section 1.2) and this one can be taken
out from the sum. Thus

£ v(rj)>v(q)+ v(rj) . . (8)
Q<rj<pg q<Tj<pq

holds. Moreover, using Lemma 2 and the monotonicity property of the pair poten-
tial v we get

«<«)+ E > v { q) + v { s) ((2 J ^) 3 - (2 J l ^) 3) (9)
q<Tj<pq \A 9 / \ 1 / J

= v(q)+v(s){{2p+l)3-l)). (10)

•

Minimal inter-particle distance in atom clusters 111

Lemma 4. Let s < pq = Ro < R\ < R2 <••• be an infinite strictly increasing
sequence and define the index set Xk = {j | 2 < j < n,Rk < rj < Rk+i} (k =
0,1,2,...). If pq > s, then the second term of (6) can be underestimated with

1 00

rj>pq k=0

Proof. Again, we can use the monotonicity property of v and Lemma 2 with the
index set I k :

E = E E < r o) (15})
Tj >pq k=0 rj g l f c

00
> E E »(«*) (1 3)

k=0rj€Xk

1 °°
> - j £ w(flfc) ((2«fc+1 + g)3 - (2Rk - q)3), (14)

q fc=0
which completes the proof. •

2.2 The general method
Using the above lemmas the following method can be introduced to obtain the
minimal interatomic distance in the optimal potential energy function E. Recall
that t and s are the zero and the minimizer of the pair potential v, respectively.
Suppose that v 6 V. In Lemma 4 we use an increasing sequence Rk which represents
an infinite sequence of spherical shells. Instead of this sequence one can use function
R : 1R+ x No —> R+ having the properties

R{Q, k) < R(Q, k + 1) and R{Q, 0) = c,

where c € R+ is a constant (in the proof of Lemma 4 this constant is pq, the staring
point of the infinite sequence). For technical reasons we use the notation R® for
the functions R(Q, k). Moreover, we write

Uf := {R$ | R$ < R%+1 and = c and k = 0,1, . . .}.

Let us define now

F(q,p) •

S(q,p,R) :

G(q,p,R) :

= v(q)+v(s)((2p+l)3-l), (15)
1 ^ / 3

= 73E«(*?) (2 < i + 1) -(2RQ-<0 • (16)
q k=0 ^ '

(17) = F(q,p) + S(q,p,R).

112 Tamás Vinkó

Using these functions and Lemma 3 and 4, we have the lower bound:

Ei = £ «fa) + £ v(-r>)
q<Tj<pq rj>pq

> G(q,p,R) (18)

where p 6 such that pq > s and R 6 U®q.
T h e o r e m 1. Define the function gv(q,p,Q) := G(q,p,R). If gv(q,P,Q) > — oo
then in the optimal atom cluster problem (2) the minimal inter-particle distance is
greater than or equal to the solution q of the nonlinear system of equations

= 0, (19)

= 0, (20)
= 0. (21)

dgv(g,P,Q)
dp

dgv(g,p,Q)
dQ

9v(q,p, Q) — v(s)

Proof. The finiteness of gv comes from properties (P3) and (P4). These properties
also guarantee that gv is monotone in q on the interval [0, s]. Thus (21) has exactly
one solution.

From Lemma 1 we know E* < v(s). Moreover, gv < E\ comes from (18). We
are looking for the largest q for which the underestimation gv < v(s) does not hold.
Now let us consider the optimization problem

m a x 1 (22)
s.t. gv{q,p,Q)> v(s), v '

Thus (19) and (20) are the first order optimality conditions for p and Q, respectively,
in the optimization problem (22). Finally, (21) guarantees the largest possible q
for which the the inequality gv < v(s) does not hold. In this manner the minimal
inter-particle distance in (2) is at least q. •

One can improve the result can be achieved with Theorem 1. If we substitute the
first m term of the sequence Rk with variables pi,... ,pm then we have a function
G with m + 2 variables. Namely,

m - l

G(q,pu...,pm,R) := F(q,p)+ ((2p i +i + l) 3 - (2Pi - l) 3))
»=1

H fe=0 v '
\

where F(q,p) is defined in (15), piq > s, and R® G Upmg-

Minimal inter-particle distance in atom clusters 113

Corollary 1. Define the function gv(q,pi,... ,pm,Q) •= G{q,pi,... ,pm, R). If
gv > —oo then in the optimal atom cluster problem (2) the minimal inter-particle
distance is greater than or equal to the solution q of the nonlinear system of equa-
tions

dgv(q,Pi,...,Pm,Q) = Q

dpi

dgv(q,Pi,...,Pm,Q) _ 0

dpm

dgy{q,Pi,...,Pm,Q) _ „
dQ ~ '

9v(q,Pl,---,Pm,Q)-v(s) = 0.

3 Linear lower bounds on the optimal values
Using the results of the previous section we can establish linear lower bounds for
the optimal objective function value. These bounds are valid for arbitrary large
clusters.

3.1 The general method
Theorem 2. If q is a lower bound obtained by the usage of Corollary 1 for the
minimal inter-particle distance in the problem (2), then there exists a constant K
such that

2 ~
Moreover, K can be computed using the value of q.

Proof. Let i G { 1 , . . . , N} arbitrary but fixed. Recall from Section 1.2 that s is the
minimizer and t is the positive root of v, respectively. Let us define the interval
M = [t,pq), where pq> s. Then one can make the underestimation

n n n

j=l j=1 3=1

jfti &i,rij>pq

Using Lemma 2, an underestimation of the first term is
E v(m) > v(s)^2p + (23)

114 Tamás Vinkó

From Lemma 2 and 4 we have a lower bound for the second term:
n 1 0 0

E * 3 E ^) ((2 < I + 9) 3 " (2 ^ - 9) 3) , (24)
j=l q k=0

pg

where R® G U®.. (see section 2.2). Moreover, as in Corollary 1 we can extend
these considerations with introducing more variables in (24). This leads to the
underestimation

jVi
m- l

+ E v&r*) + X)3 - (2W " 1)3)) +
¡=i

q k=0 v 7

where pi<7 > s and Rk G U®mq. If gv is finite (see Corollary 1) then the substitution
of the solution vector from Corollary 1 guarantees the finiteness of K. Finally,
equation (3) yields a linear lower bound for the optimal potential function:

2 _

•

4 Lennard-Jones clusters
In this section the generalized method introduced in the previous section is applied
to the Lennard-Jones function.

In general form the Lennard-Jones pair potential function is

«•»-«•[(?)"-(?)*]. (25)

where e is the pair well depth and 21/6CT is the pair separation at equilibrium. In the
global optimization literature the function (25) with reduced units, i.e. e = a = 1
and s = 21/6,

4 4
w u (r) = ^ a -

or the so-called scaled Lennard-Jones pair potential (e = 1, a = 2~1/>6, s = 1)

1 2 «2-1/6,1 (r) = -n~-e (26)

Minimal inter-particle distance in atom clusters 115

is investigated. Note that the properties (P1)-(P4) required for the application of
the general method are satisfied by (25). The scaled version is plotted in Figure 1.

Using (1) and (25), the Lennard-Jones potential function is defined by

Ea,e(x)= £ vat£{\\xi - Xj\\). (27)
1 <i<j<n

In the following minimal distance in the optimal Lennard-Jones cluster is given.

4.1 Minimal distance
Theorem 3. In the optimal Lennard-Jones atom cluster problem the minimal
inter-particle distance is greater than or equal to 21//6er • 0.6187356774.

Proof. The translation between the general and the scaled Lennard-Jones pair po-
tential is

v<r ,£(r) = ev2-1/e.tl(r/s), (28)

thus the minimal distance scales with s and the potential scales with e. We give a
proof for the scaled version; then the result for the general case is straightforward.

For the sake of simplicity, in the proof we use the notation

v(r) = v2-i/eti(r) and E = E2~m8 L.

Figure 1: The scaled Lennard-Jones pair potential function.

116 Tamás Vinkó

One can easily see that the zero point and the minimizer point of the function v is

t = 2~1 /6 and s = 1,

respectively.
From Lemma 1 we have E{ < —1. The lower bound for E' can be established

with the usage of Lemma 3 and 4. To prove the theorem by contradiction we should
choose a suitable function R(Q, k) to keep that lower bound greater than or equal
to - 1 .

Define the function R{Q,k) = pqQk (pq > 1,Q > l,k = 0 ,1,2, . . .) . Since
property (P4) is satisfied by v, it is easy to see that

SLJ(q,P,Q) :« £ - ((2 p Q ^ + I) 3 - (2PQk - I) 3) > - o o

(29)
holds. Indeed, because Q > 1 holds, as k goes to infinity the first term in the sum
(i.e. v(pqQk)) tends to 0 faster than the second term goes to infinity. Thus the
function

9v(q,P, Q) := v(q) + 1 - (2p + l) 3 + SLJ{q,p, Q) (30)

is well defined. Figure 2 shows the graph of this function, where the variable
q = 0.618 is fixed. Note that the function gv is monotone decreasing in variable q.

Figure 2: The graph of function </„(0.618,p, Q).

Minimal inter-particle distance in atom clusters 117

To obtain a lower bound one has to solve the nonlinear system of equations with
three variables:

§j>p.O> = o,

ap,,P,Q) - 0,

9v(q,P,Q) +1 = 0.

The closed formula of the convergent series (29) and the partial derivative in the
nonlinear system of equation above can be calculated with the usage of a symbolic-
algebraic system. For this task we used MAPLE 9 [6]. The solution of the nonlinear
system is

Q = 1.234749976, p = 2.24086158005346, q = 0.61845034503861, (31)

which gives a lower bound on the minimal interatomic distance for the optimal
scaled Lennard-Jones problem.

As it is stated in Corollary 1, we can improve this bound with introducing more
parameters. Using 5 variables instead of 3, one obtains:

q = 0.6187356774, (32)

which gives a slightly better underestimation for the minimal distance. •

Note that we do not have significantly better bound with Corollary 1 using more
and more variables, but more complicated calculations have to done.

As it is mentioned in the introduction, there are papers about the minimal
distance in optimal scaled Lennard-Jones clusters. These results are compared in
the following table including the minimal distance obtained in this paper.

Xue [11] Blanc [1] general method
0.5 0.6108 0.6187

Note that all these results are independent of the number of particles in the con-
figuration.

The next corollary specializes the previous result for the case of reduced unit.

Corollary 2. The minimal inter-particle distance in the optimal Lennard-Jones
clusters with reduced units is greater than or equal to 0.6945073156.

4.2 Linear lower bound on the optimal value
Theorem 4. The optimal Lennard-Jones potential function has the linear lower
bound

—138.6775911n- e < E* e (n = 2,3, . . .) .

Proof. One can use the values from the numerical result of Theorem 3 and equation
(28) then the statement of the theorem is straightforward from the considerations
in section 3.1, thus the proof is omitted. •

118 Tamás Vinkó

5 Morse clusters
The pair potential function in Morse cluster is

vp(r) = e ' (1 - r) (e p (1 - r) - 2) , (33)

where p > 0 is a parameter. For p = 6 the Morse and the scaled Lennard-Jones
pair potential are related, they have similar curvature at the minimum point r = 1.

Using (33) and (1) the Morse potential function is defined by

Mp{x) = Y , Mll*<-sjll)- (34)

1 <i<j<n

The zero point and the minimizer point of the function vp is

, In 2 t = 1 and s = 1, P

respectively. Note that if p < In 2 then vp has no positive root. In the context of
global optimization, the cases p > 6 are interesting, since these are more difficult
problems than finding the optimal Lennard-Jones structures [2].

5.1 Minimal distance
We must emphasize that property (P3) is not satisfied by the Morse potential. The
reason is that the pair potential function vp is defined even in the case r = 0,
i.e., when two particles are in the same position. In> other words the function G
from (15) has two roots, i.e. becomes negative for small q values. Thus the general
method cannot be applied directly to Mp. In this case, information on the minimal
inter-particle distances can be helpful. In [5] the minimal inter-particle distance
in optimal Morse clusters is investigated. The proposed technique differs from the
method introduced by Xue in [11] and from the general method introduced in this
paper. In [5] it has been proved that there are positive minimal distances in the
optimal Morse clusters for p > 6. Using this information these bounds can be
improved by the application of the general method.

In the rest of this subsection we use the notation M := Mp for a given p > 0.
From Lemma 1 we know that M* < — 1 for all i = 1 , . . . ,n and p > 0. As for the
Lennard-Jones potential, define the function R(Q, k) := pqQk (pq > \,Q > l,k =
0,1, . . .) . The infinite series

SM(q,P,Q) := £ ((e * 1 - ^ - l)' - l) ((2pQk^ + l)3 - (2pQk - l)3)

(35)
is convergent - the first term of the sum (i.e. vp(pqQk)) goes to zero faster than the
second term goes to infinity-, thus the function

9v(q,P, Q) := vp{q) + 1 - (2p + l)3 + SM(q,p, Q) (36)

Minimal inter-particle distance in atom clusters 119

is well defined.
In Table 1 the results from [5] are collected and compared with the results can

be achieved with the usage of the general technique introduced in this paper. Note
that the new results are achieved using the results from [5], i.e. using that q must
be greater than the second column in Table 1. One can see that the new method
produces much better lower bounds, especially for the case p — 6.

The present method works for p > 6. For p = 5, the corresponding nonlinear
system of equation has no non-negative solution. The technique used in [5] also
gives no results for the cases p < 6 (at least without further non-trivial refinements).

5.2 Linear lower bounds on the optimal values
Theorem 5. The optimal Morse potential function has the linear lower bound for
different p values:

—177.6190601n < MI
—97.52208250n < Mf
—69.76159670n < Ml
—55.71197450n < M9*
—47.25499588n < Mb
—41.61681210n < M*n
—37.59385566n < Mi2
—34.58070042n < Mi3
—32.24012281n < MU
—30.36965466n < Mi5

Proof The values in the statement can be derived by the considerations from sec-
tion 3.1 and from the numerical result of section 5.1, thus the proof is omitted. •

P q from [5] q by the general method
6 0.114 0.4985948046
7 0.376 0.6113121449
8 0.468 0.6796501438
9 0.528 0.7268978345

10 0.574 0.7618207355
11 0.613 0.7887781722
12 0.644 0.8102494106
13 0.672 0.8277671751
14 0.695 0.8423362542
15 0.715 0.8546451536

Table 1: Lower bounds for the minimal distances in optimal Morse clusters for
different p.

120 Tamás Vinkó

6 Summary
The method introduced in this paper can be used to obtain minimal inter-particle
distance in optimal atom clusters. For the usage, only natural requirements are
supposed for the pair potential function. Linear lower bounds on the optimal
potential energy is also established. As application, new results for the Lennard-
Jones and Morse clusters are derived. These theoretical results can be used for
accelerating global optimization methods.

Acknowledgment
The author would like to thank Prof. Arnold Neumaier (University of Vienna) for
the introduction to this topic and his valuable suggestions and ideas. The author is
grateful to the two anonymous referees for the valuable comments and suggestions
which have led to better quality in the explanations.

References
[1] X. Blanc. Lower bounds for the interatomic distance in Lennard-Jones clusters.

Computational Optimization and Applications, 29:5-12, 2004.

[2] J.P.K. Doye, R.H. Leary, M. Locatelli and F. Schoen. The global optimization
' of Morse clusters by potential energy transformations. INFORMS Journal On

Computing, 16:371-379, 2004.

[3] H.X. Huang, P. Pardalos and Z.J. Shen. Equivalent formulations and neces-
sary optimality conditions for the Lennard-Jones problem. Journal of Global
Optimization, 22:97-118, 2002.

[4] M. Locatelli and F. Schoen. Fast global optimization of difficult Lennard-Jones
clusters Computational Optimization and Applications, 21:55-70, 2002.

[5] M. Locatelli and F. Schoen. Minimal interatomic distance in Morse-clusters.
Journal of Global Optimization, 22:175-190, 2002.

[6] The Maplesoft Product Site, ht tp: / /www.maplesoft .com

[7] C. Maranas and C. Floudas. A global optimization approach for Lennard-Jones
microclusters. Journal of Chemical Physics, 97:7667-7678,1992.

[8] J. A. Northby. Structure and binding of Lennard-Jones clusters: 13 < n < 147.
Journal of Chemical Physics, 87:6166-6178, 1987.

[9] G. L. Xue, R. S. Maier, and J. B. Rosen. Minimizing the Lennard-Jones
potential function on a massively parallel computer. Proceedings of the 6th
international conference on Supercomputing, 409-416, 1992.

http://www.maplesoft.com

Minimal inter-particle distance in atom clusters 121

[10] G.L. Xue. Improvements on the Northby algorithm for molecular conforma-
tion: better solutions. Journal of Global Optimization, 4:425-440, 1994.

[11] G.L. Xue. Minimum inter-particle distance at global minimizers of Lennard-
Jones clusters. Journal of Global Optimization, 11:83-90, 1997.

[12] G.L. Xue. An 0(n) time hierarchical tree algorithm for computing force field
in n-body simulations. Theoretical Computer Science, 197:157-169, 1998.

Received July, 2004

Acta Cybernetica 17 (2005) 123-151.

Synthesis of the synchronization of general
pipeline systems *

Balázs UgronJ Szabolcs HajdaráJ and László Kozma^

Abs t r ac t

The pipeline systems and different subtypes of pipelines axe interesting
parts of parallel systems in software engineering. That is why it seems to be
worth dealing with the possibilities of the specification of the synchronization
of these systems.

Different methods exist that can be used to synthesize the synchronization
of parallel systems based on some kind of specification, but these methods
cannot be applied directly for pipeline systems because of some special prop-
erties of the pipeline systems and the methods themselves.

The method that seems to be the most promising is the method of Attie
and Emerson, which is a synthesization method for many similar processes
based on a special temporal logic specification.

In this paper we give an extension of this method so that the extended
method will be able to handle more properties of parallel systems, especially
of pipeline systems. We will consider not only linear [8], but general pipeline
systems too. Furthermore, we give an abstract synchronization of a general
pipeline system.
Categor ies and Sub jec t Descr ip tors : D.2.1 [Software engineering): Re-
quirements specification; F.3.1 [Logic and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs - assertions, invariants', F.4.1
[Mathematical Logic]: Temporal logic.
K e y Words and Phrases : semantic tableaux, pipeline, synthesis, parallel
systems, temporal logic.

1 Introduction
In the following, we will consider the synchronization possibilities of a special par t
of parallel systems, the pipeline systems. As usual (see [1, 2]), we consider only the
synchronization part of the processes, because the real computation code usually
can be separated from the synchronization part of parallel systems.

*This research work was supported by GVOP-3.2.2-2004-07-005/3.0.
^Department of Software Technology and Methodology, Eötvös Loránd University, Pázmány

P. sétány 1/c, H-1117 Budapest, Hungary. E-mail: b a l e e 8 e l t e . h u , s l e e t i e l t e . h u ,
kozmaflludens.elte.hu

123

124 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

A pipeline system is a parallel system of processes, which is built in order to
solve some kind of problems. In the case of the simplest pipeline system, which
is linear, the processes are aligned in a row by the connections between them, so
every process in the system has exactly two connections, except the first and the
last processes, which have only one. The processes between the two ends work on
similar tasks, so their synchronization is obviously similar, too.

In this paper, we will consider not only linear, but much more general pipeline
systems. In paper [8] we described the synthesis of a linear pipeline system, while
in this article general pipeline systems are synthesized. We have only the following
assumptions:

1. There are some processes, which have only one connection, which is an output
connection. These processes generate the data.

2. There are some processes, which have only one connection, which is an input
connection. These processes receive the result.

3. The processes inside the pipeline (that is, which are not data generator or
receiver processes) are similar in terms of synchronization.

There are methods in the literature, which can be used to synthesize the syn-
chronization part of a system from temporal logic specification, but these methods
cannot be directly applied in this case. For example, the method of Emerson and
Clark [2] suffers from the so-called state explosion problem [1], so it cannot be ap-
plied for a large number of processes, in practice. Another example is the method
of Attie and Emerson [1], which can handle large systems, but this method can be
only used for systems consisting many similar processes, and this is not that case.

In this article, after a short description of the synchronization of many similar
processes [1], we will introduce an extension of the method, with which it will be
possible to handle the case of pipeline systems too.

2 Synthesis of many similar processes
In this section we review the parts in Attie and Emerson's paper [1] that are most
important to understand this paper. The reader will generally find only informal
definitions in this section, the exact definitions can be found in [1].

First, Attie and Emerson's method specifies that the processes must be similar.
In this case, similarity means that any two processes can be exchanged with each
other, except their indexes. This restriction is used many times in the method.

2.1 CTL*
The specification language is an extension of the temporal logic CTL*, which is a
propositional branching-time temporal logic. The basic modalities of CTL* consist
of a path quantifier, either A (for all paths) or E (for some path) followed by
a linear-time formula, which is built up from atomic propositions, the Boolean

Synthesis of the synchronization of general pipeline systems 125

operators A, V, ->, and the linear-time modalities G (always), F (sometime), Xj
(strong nexttime), Yj (weak nexttime) and U (until). CTL* formulas are built up
from atomic propositions, the Boolean operators A, V, ->, and the basic modalities.

Let us consider the intuitive meaning of the formulas mentioned above. For-
mula Ef means that there is some maximal path for which / holds; formula Af
means that / holds of every maximal path; formula X j f means that the immediate
successor state along the maximal path under consideration is reached by executing
one step of process Pj, and formula / holds in that state; formula fUg means that
there is some state along the maximal path under consideration where g holds, and
/ holds at every state along this path at least the previous state.

The usual abbreviations for logical disjunction, implication and equivalence can
be introduced easily. Furthermore, some additional modalities as abbreviations can
be introduced: Yjf for - .X,- . / , Ff for trueUf, Gf for ->F->f.

The reader can find the formal definition of the semantics of CTL* formulas in
[!]•

2.2 The interconnection relation
The interconnection scheme between processes is given by the interconnection re-
lation I. I C. {ii,..., iK} x {¿i , . . . , ix}, and i I j iff processes i and j are intercon-
nected. I is a symmetric and irreflexive relation.

Those process pairs that are in the interconnection relation will be synchronized
with each other, while the others will not. This means that the behaviour of the
system can be simply changed by the interconnection relation. For example, the
synchronization of the eating philosophers problem is the same as for the standard
mutual exclusion problem - except the interconnection relation!

2.3 MPCTL*
An MPCTL* (Many-Process CTL*) formula consists of a spatial modality followed
by a CTL* state formula. A spatial modality is of the form / \ i or A y / \ i quantifies
the process index z, which ranges over {¿i , . . . , iK). f\i3 quantifies the process
indexes i, j, which range over the elements of I.

The definition of truth in structure M at state s of formula q is given by M, s |= q
iff M, s |= q', where q' is the CTL* formula obtained from q by viewing q as an
abbreviation and expanding it like

• M, s f= A» fi iff Vi e {¿i, ...,iK} : M,s\= ft

• M,s\= A^ fij iff V(i, j) € I: M,s \= f i j

2.4 The method
In this section, we give an extremely short informal description of the synthesis
method of Attie and Emerson, which will be informative enough to catch the point,
though.

126 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

First, the behaviour of the system needs to be specified in the above described
temporal logic language, MPCTL*. This specification is applied to an arbitrary
process or process pair from the system.

Any known method (for example the one described in [2]) can be used to syn-
thesize the synchronization skeleton of an arbitrary process pair from the system.

In this way, the method takes advantage of the fact that the processes in the
system are similar and produces a global synchronization skeleton for the whole
system based on the skeleton synthesized for the pair system.

3 Synthesis of a pipeline system
Our main goal in this paper is to develop a method, with which the synchronization
skeleton of a pipeline system can be synthesized. The method of Attie and Emerson
which we roughly described above cannot be applied directly in the case of a pipeline
system.

The first reason is that the processes in a pipeline system are not similar. Al-
though the processes except the sender and receiver ones of the pipeline are similar,
the mentioned two processes differ from them, because they have different state sets
from the other processes.

The second reason is that the communication in a pipeline system has a direction
- from the sender to the receiver processes. This method does not permit us to
distinguish the processes even in the specification, so we cannot handle directions,
and the synthesized synchronization code will not be efficient.

First, we give an extension of the method, with which the side processes can be
handled too. We introduce one more abstraction level in the method: we separate
the processes inside the pipeline from the processes at the ends, handle them as an
embedded system, and synthesize the synchronization for them. Finally, we handle
the embedded system as a part of a new system, besides the processes at the ends
of the pipeline.

3.1 The embedded system

First we give a straightforward solution to the synchronization of the previously
mentioned embedded system in the pipeline. This is a very inefficient approach,
but in this case the method of Attie and Emerson can be applied directly. In fact,
this is the solution of the standard mutual exclusion problem.

In this case, the processes will have three states, a normal (TV), a trying (T) and
a critical (C) state. A process enters its trying state, when it wants to go to the
critical state, and two interconnected processes cannot be in their critical state at
the same time. The processes do the communication (data receiving and passing)
and the real computation, too, in the critical state.

The synchronization skeleton for such a system is deduced in [1]. The resulted
automata can be seen in Figure 1.

Synthesis of the synchronization of general pipeline systems 127

r® ®/e/co(7} —>X/J. = j® Nj vCj — skip)
•< 0 ®/E/®(/V/ v (Tj A xy = i) ~> skip) 0

Figure 1: Synchronization skeleton of the embedded system

As we said, this approach is extremely inefficient, because the neighbours of a
process cannot do anything, while the process is in critical state, although theoreti-
cally they would be able to do the computational part of their work simultaneously.

A much better approach will be shown later, in section 3.2.

3.2 Another approach for the embedded system
The method introduced in section 3.1 is not really applicable for pipeline systems.
In this section, the method of Attie and Emerson will be extended so that it could
handle such problems.

We realised that the main problem in the synthesization of this part of the
system is that the method does not allow us to make a distinction between processes
and we cannot express the direction of the communication, so the result will be
inefficient.

To get over this issue, we introduce a new definition for the spatial operators
defined by Attie and Emerson - or in other words, we define two new spatial
operators.

The original definition of the spatial operators can be found in section 2.3. We
add a p predicate parameter to the spatial operators:

This definition intuitively means that a connection between two processes which
are defined in the interconnection relation may be actual or non actual in different
situations and the actuality of the interconnection is driven by the predicate p.

For the sake of effectiveness, there are two critical sections for every process in
this approach: a critical section for reading the data from the previous process,
and another one for sending the data to the next process. Moreover, there will
be a sent and a received state for each process, because the communication works
through shared variables, and the flow of the communication should be driven by
the synchronization.

The processes will have many states: N (normal), T (try to read), R (read), C
(check), W (work), E (try to send), S (send) and finally A (after send). The two
critical states are R and S, and the restriction is that if a process is in its state S,
then, the following process must not be in its state R, and vice versa.

• M,s t= AiOo)fi iff ViG {¿i , . . . , î i f} : p —» M,s |= /i

• M, s \= A yWij iff V(t, j) € / : p -> M, s h f i j

128 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

Let us see what happens in these states. State N is the start state of every
process. State T is a trying state before the R critical section, which is for reading.
State C is a checkpoint after the reading. State W is the state in which the process
does its real computation work. State E is a trying state before the S critical
section, which is for sending. Finally, state A is another checkpoint, now after
sending.

Let us see the extended MPCTL* specification of the synchronization of the
embedded system:

1. Initial state (every process is initially in its normal state):

2. It is always the case that any move Pi makes from its N state is into its T
state, and such a move is always possible (and similarly for the states R, W
and S):

A . AG(Ni =» (AYiTi A EXiTi))

/\. AG{Ri (AYiCi A EXiCi))

f \ . AG(Wi => (.AYiEi A EXiEi))

f\.AG{Si (AYiAi A EXiAi))

3. It is always the case that any move Pi makes from its T state is into its R
state - but such a move is not definitely possible (and similarly for the states
C, E and A):

^ AG(Ti => AYiRi)

AG(Ci => AYiWi)

/\.AG{Ei => AYiSi)

f\.AG{Ai ^ AYiNi)

4. Pi is always in exactly one state of the state set:

F \ AG(Ni = -.(Ti V R Í V C Í V W Í V E Í V S Í V ¿¿))

/\. AG(Ti = ->(Ni VRÍVCÍVWÍVEÍVSÍV Ai))

f \ . AG{Ri = ~>(Ni V Ti V Ci V Wi V Ek V St V Ai))

Synthesis of the synchronization of general pipeline systems 129

/\. AG(Ci = -.(Ni VTiV RiVWiV EiV SiV At))

/\. AG{Wi = -.(JVi VTiVRiVCiVEiVSiV At))

/\ AG(Ei = -i{Ni V Ti V Ri V Ci V W< V Si V Ai))

/ \ . A G (5 I = -.(AT* V TI V V Ct V WI V JE?< V A I))

/\. AG(Ai = ->(Ni V T» V Ri V ^ V Wt V £7« V Si))

5. Liveness: if Pi is in state T, then some time it will reach state R (and similarly
for the states C, E and A):

f\,AG{Ti^ AFRi)

f \ . AG{Ci =• AFWi)

f \ , AG(Ei => AFSi)

/\. AG{Ai =• AFNi)

6. A transition by a process cannot cause a transition by another one:

f \ AG{{Ni => AYjNi) A (Nj => AYiNj))

/\.. AG((Ti =• AYjTi) A (Tj => AYiTj))

f\,, AG((Ri AYjRi) A (fy => Ayi?.,))

A .. AG((Ci => AYjCi) A (C, =• AYiCj)) ij

^G((Wi AY,W<) A (W, AYiWj))

A .. A G ((£ i =• AYjEi) A (.Ej A y £ j))

/\ AG ((Si =» AYjSi) A (5,- A y S 3))

A AG((Ai => Ay, Ai) A A y A ,)) ' HI

130 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

7. Data flow control: a process in state T waits for the previous process to reach
state A and a process in state C waits for the previous process to leave A
(and similarly the two other rules):

A (j < i)AG((Ti A -iAj) =s> - .EXitrue

f \ (j < i)AG({Ci A Aj) => -.EXitrue

A (i < j)AG({Ei A Cj) => ->EXitrue
' Hj

A (i < j)AG((Ai A -.C,-) => -iEXitrue
' Hj

8. Always there is a possible step: •

AG EX true

If the set of the process-indices is {1,2} (so the processes are Pi and P2), then
we get the specification of a pair-system. From this specification we can synthesize
the synchronization skeleton of the pair-system with the method of Emerson and
Clarke [2]. We implicitly applied the method on the parametric spatial operators
introduced by us. In the following, the non trivial steps of the synthesis can be
seen. Only the main cases are considered, because the other cases can be done by
the analogy of the following ones. Note that the dashed lines in the figures mean
that trivial steps are omitted there.

Figure 2 shows how the blocks of the initial node can be constructed.
In Figure 3 the construction of the titles of the result of the previous step can

be seen.
Figure 4 shows an example of the case when one of the processes has an even-

tually condition, but because of the parameters of the spatial operators none of the
processes has to be blocked.

After this there are a lot of similar steps as Figure 5 shows.
Figure 6 illustrates an example of making blocks of a node where one of the

processes has to wait for the another, and Figure 7 shows the titles of the result of
this step (only Pi can execute the changing of its state).

In Figure 8 an example is shown of the case when both processes have the
possibility of blocking, but only one of them has to wait for the other. In Figure 9
the titles of the result of the previous step can be seen.

The J. sign in the tableau means that the relevant branch of the tableau is
unsatisfiable, so this branch has to be eliminated.

Based on this tableau we can construct the global state transition diagram,
which can be seen in Figures 16-20 in Appendix A.

Based on the global state transition diagram, we can construct the DAGs (see
Figure 21 in Appendix B) and the fragments (see Figure 22 in Appendix B) of every

Synthesis of the synchronization of general pipeline systems 131

Figure 2: Blocks of the initial node

N, N2
AY,T, AY2T2

EX,T, EX2T2

AY2N, AY,N2

1 / 2

/ T , N 2 \ / N , T 2 \

Figure 3: Titles of the result set of the blocks of the initial node that can be seen
in Figure 2

132 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

T, N2
AY,R, AY :T,
AY2T, EX2T2
AFR, AY1N1
EX ¡true

1 Y

1 AFR, AFR, 1

Figure 4: None of the processes blocks but one of them has an eventually condition

RI N1
AY,C, AY2T2
EX,C, EX2T2

AY2RI AY,N2

1 / 2

< C T N 2 >

Figure 5: There are a lot of steps similar to step one and two

node. Based on the fragments, the model can be constructed shown in Figure 23-24
in Appendix B.

From the model we can construct the final deterministic automata for all pro-
cesses. If the first process (Pi) is in its state N\ then the second process (P2) can
be in all of its states except state R2, and Pi has the possibility to step in all of
this states. So the condition of thé transition of Pi from state N1 to state T\ is
-'R2. The conditions of the transitions in states Ti, R\, C\, W\ are the same. If
Pi is in state E\ and P2 is in state then Pi cannot step, so the condition of the
transition from state E1 to state Si is ->#2 A->C2- The conditions of the other tran-
sitions can be determined similarly. Figure 10 shows the result, the synchronization
skeleton for Pi and P2.

Note that it cannot happen that Pi is in state N1 and P2 is in state R2, so the

Synthesis of the synchronization of general pipeline systems 133

Figure 6: Example of generating blocks of a node where the processes has to wait

—ij?2 in condition of the transition from JVi to T\ can be eliminated. Similarly, we
can do this with all of the transitions. The simplified synchronization skeletons can
be seen in Figure 11.

From this synchronization skeleton we can generate the synchronization code for
every process with the method of Attie and Emerson [1]. The finite deterministic
automata resulted by the method can be seen in Figure 12.

Note that in the case of this synchronization, nothing keeps a process from
working - that is, stepping in its state W - while the neighbours are working, so
the processes can really work in parallel in this case.

134 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

N| T2

AYJTI AY2R2

EX,T, AY,T2
AY2N, AFR2

-lEKitrue
EX,true

1

< ^ T | AFR;

Figure 7: Titles of the result of the previous step can be seen in Figure 6

3.3 The new three-process system

As we said, there are special processes at the two ends of the pipeline, which only
send and receive data. For the sake of simplicity, let us assume that the sender
processes only produce the data and pass them on to the proper process in the
embedded system, and similarly, the receiver processes only pick up the processed
data from the proper process in the embedded system, and than work with that.
These special processes must be handled in a special way.

The sender and receiver processes are similar in the sense that they are con-
nected with only one another process, which they receive data from, or which they
send data to. It is enough to consider only one sender and one receiver process
when we generate the synchronization skeleton of the whole system, because the
synchronization code of the selected sender and receiver process will naturally be
suitable for the other sender and receiver processes, and respectively, the synchro-
nization for the processes that are connected to the sender and receiver processes
will be reusable, too. That is why from this point on we will consider only one
sender and one receiver process in the system.

Now we can look at our process system as a system composed of three processes.
The first process is the selected sender, the second is the embedded system and the
third is the selected receiver process. We have to build the synchronization skeleton
of this system. This system has only three processes, so we can handle it with
the method of Emerson and Clarke [2], without running into the state explosion
problem.

There is still one more subject that we have to discuss. The middle process
in this system is a system of processes itself, which makes the specification of our
three-process system quite difficult. We should not just say, for example, that
the pseudo process has a state for reading data, because this means that the first

Synthesis of the synchronization of general pipeline systems 135

E, T,
E, => AY1S1 T2 => AY2R2
E, -i(Ni v T, v R, v C, v W, v S, v A,) T2 => -i(N2 V R2 V C2 V W2 V E2 V S2 V A2)
E, => AY2E, T2 AY,T2
E, => AFS, T2 => AFR2
Ei => (-1C2 v -iEX,true) T2 => (A| V -lEXztrue)

E, T2

AY,S, AY-.R-.
AY2E, AY,T2

AFS, AFR2

-iC2 v -IE Xttrue
-iEX,/r«e EX,true

E, T2

AY.S, AY2R2

AY2E, AY,T2

AFS, AFR2

-NC2 -IEXztrue
EXtrue EX, true

E, Tt
AY,S, AY2R2

AY2E. AY,T2

AFS, AFR2

-IC2 -IEXitrue
EX,true EX, true

E, T2

AY,S, AY2R2

AY2E, AY,T2

AFS, AFR2

-IEX, true —EXilrue
I EX, true

E, T2

AY,S, AYiRT
AY2E, AY,T2

AFS, AFR2

-IC2 . -IEXttrue
EXttrue . EX, true

Figure 8: Example of generating blocks of a node where both processes have the
possibility to be blocked, but only one of them has to wait

process of the pseudo process reads the data, and at the same time, the last process
theoretically can send data, which means that the whole pseudo process sends data
to the receiver process, too. As a result, the pseudo process would be in two states
at the same time, which is not allowed.

We give two solutions to this issue.
The first solution is that we handle the pseudo process as two processes - in

this case, we have a four-process system instead of a three-process one - , which
axe independent in the four-process system; one of them is connected to the sender

136 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

E, TI
AYISI AY2R2

AY2E, AY,T2

AFS, AFR2

-ICI -IEXitrue
EX,true EX,true

< S , AFSI AFR;

Figure 9: Titles of the result of the previous step can be seen in Figure 7

(N?) ^ — • Q

C2 , R2
1

w

Figure 10: The synchronization skeletons

process, and the other is connected to the receiver. This is a reasonable approach,
because there is a hidden connection between the two pseudo processes, and this
connection is handled by the synchronization of the embedded system.

The second approach is to define the states of the embedded system as pairs, so
we will have state pairs like (N , N), (N, S), (R, S) and so on. For example, (N, N)
means that the embedded system does not read or send data, while (N, S) means
that the system does not read, but sends data and (R, S) means that the system
reads and sends data at the same time. With such a type of set of states, we can
express the behaviour of the system in a quite efficient way.

The second approach is more complicated than the first one (because of the
large number of the states of the system), so we chose the first approach for the

Synthesis of the synchronization of general pipeline systems 137

true -A i
i '

© + (sTV* T ^ V (wT) true v j y true v j x true

Figure 11: Simplified synchronization skeletons

__ ®jei«->(true skip) __ ®/6/(g<.-)(Aj->skip) __ ®j<,m(true skip) __

© O KD
X J

I i

© « <J> ©
<8iein,(true —> iWp) ®;£,0p/<A(-iC; -» i i /p) ®ye/(,•)(»/•«« J'&p)

Figure 12: Improved synchronization skeleton of the embedded system

solution. We show only the connection between the sender process and the embed-
ded system. The synchronization of the embedded system and the receiver process
can be deduced similarly.

The states of the sender process are:

J : normal (working) state,

K: try to send state,

L: sending state,

M : after sending state.
Using these states we can give the temporal logic specification of the system -

see Appendix C. For the specification, CTL* was used. Based on this specification,
we are. able to generate the synchronization skeleton of the system. We used the
synthesization method of Emerson and Clarke. The synchronization skeleton for
the sender process and the first pseudo process of the embedded system can be

138 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

|—»Q '""-^»Q—r~> skiP » Q true y*'P»Q

C —» skip

p Q 'rue-skip^Q M —» skip ^ Q -

—uM —» i&p

Figure 13: Synchronization skeleton for the sender process and the embedded sys-
tem

__ Hi,(true — skip) M A -* skip) ®jenn(true —» skip) __

® • © — — — < *) K y
i i

®/e IUj<i)(Q -» -iM A ®;6y</)(-iAy ¿ftp)
I jk

© < ©< ©« 0
®jaH!)(true —>• jftp) <S>ye/(i.,<»(—iQ -»stop) ®j€im(true -> .vi/p)

Figure 14: The modified synchronization skeleton for the first process of the em-
bedded system

seen in Figure 13. Finally, the synchronization skeleton of the first and the last
processes of the embedded system must be modified properly based on the result
in Figure 13 - the transition conditions of the first process of the embedded system
will be the conjunction of the original conditions, and the conditions in the proper
transitions of the synchronization of the sender process and the pseudo embedded
system - see in Figure 14. The new transition conditions for the last process of the
embedded system can be deduced similarly.

4 An application
Where could this method be used? There are many complicated processor networks,
which can be used for computational purposes; for example, the so-called butterfly
network (see [7]). An n-level butterfly network can be constructed in a recursive
way, which can be seen in Figure 15. The reason why these processor networks
are interesting is that there axe many parallel algorithms that can be computed on
them, such as the Fast Fourier Transformation on a butterfly network (see [7]).

If we apply our result to an n-level butterfly, then we will have n generator
processes, which are connected to the nodes at the left side of the butterfly, and
we have n receiver processes, which are connected to the nodes at the right side

Synthesis of the synchronization of general pipeline systems 139

of the butterfly; the connections between the other processes can be defined in the
relation I , in a proper way for the FFT working on a butterfly network. A proper
I relation will be described in the following.

The number of the processes in Bn = n2 n _ 1 .
Let the numbering of the processes in B2 be like in Figure 15.
Then the numbering of the processes in Bn+1 comes from the following rules:

• The numbering of the first Bn component in Bn+i is the same as of Bn (i.e.:
processes 1 - 4 of B3 in Figure 15).

• The numbering of the second Bn component in 5 n + i is the numbering of Bn
shifted by n 2 n _ 1 (i.e.: processes 5 - 8 of B3 in Figure 15).

• The numbering of the remainder processes (the right side column) is n2" + 1
- n2" + 2n (i.e.: processes 9 - 12 of B3 in Figure 15).

As a result, the relation I consists of the following pairs:

• The pairs in the two Bn components.

• Vi € [1.. . 2"-1] : ((n - l) 2 n _ 1 + i, n2n + i) G I (i.e.: (3,9) and (4,10) of B3

in Figure 15).

• Vi G [1 . . .2"- 1] : ((n — l) 2 n _ 1 + i , n 2 n + 2 n _ 1 + i) G I (i.e.: (3,11) and (4,12)
of B3 in Figure 15).

• Vi G [0. . . 2 n _ 1 - 1] : (n2n - i, n2n + 2n~l - i) G I (i.e.: (7,9) and (8,10) of
B3 in Figure 15).

• Vi G [0. . . 2"- 1 - 1] : (n2n - i, n2n + 2n - i) G I (i.e.: (7,11) and (8,12) of B3

in Figure 15).

The synchronization of the communication between the processes are defined
in this way, and we do not have to bother with the "business logic" of how the
processes compute the data they send to the connected processes.

5 Conclusion
This paper introduced a general pipeline tool, by which a complex application, such
as the parallel FFT, can be solved in a short and simple way.

Most of the programs that are working on some kind of data channels (see
[5]) can be handled by the method described above. If some modification is still
needed, the modification can be restricted to the temporal logic specifications and
the relation I, so the above method can be processed by the analogy of the above;
moreover, there are different tools exist that can help the process - for instance, the
method of Emerson and Clarke [2]; namely, the finite deterministic automata for
the pair-system can be generated from the CTL specification automatically, or even

140 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

1 3 1 3
B2: B3:

2 4

6 8

Figure 15: The structure of butterfly processor networks

concrete Java code can be generated with an object-oriented extension (see [4]) of
[1] (though a straightforward modification is needed because of the parameterized
spatial operators introduced in this paper) etc.

Note, that in the case of FFT no modification was needed, only the proper
relation I had to be defined.

6 Future work
The idea of synthesizing the synchronization of pipeline systems comes from the
hardware designing of graphics cards. We will work on to meet these demands.

The correctness of the algorithm should be proofed.
An effective tool for deadline checking should be developed.
During the communication, now it is possible that a process has received data

but it has to wait until the other processes that receive data from the same sender
process receive the data. Theoretically, it would be possible for a data receiver
process to step forward in this situation. That is, the data flow control may be
improved.

References
[1] P. C. Attie, E. A. Emerson: Synthesis of Concurrent Systems with Many Similar

Processes, ACM TOPLAS Vol. 20, No. 1, (January 1998) pp. 51-115

[2] E. A. Emerson, E. M. Clarke: Using branching time temporal logic to synthesize
synchronization skeletons, Science of Computer Programming, 2 (1982), pp. 241
- 266

[3] Sz. Hajdara, L. Kozma, B. Ugron: Synthesis of a system composed by many
similar objects, Annales Univ. Sci. Budapest., Sect. Comp. 22 (2003)

Synthesis of the synchronization of general pipeline systems 141

[4] Sz. Hajdara, B. Ugron: An example of generating the synchronization code of a
system composed by many similar objects, 17th European Conference on Object-
Oriented Programming (ECOOP), The 13th Workshop for PhD Students in
Object-Oriented Systems (2003)

[5] Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting Skele-
tons, International Conference on Applied Informatics, Eger 2004

[6] L. Kozma: A transformation of strongly correct concurrent programs, Proc. of
the Third Hungarian Computer Science Conference 1981, 157-170

[7] F. T. Leighton: Introduction to Parallel Algorithms and Architectures, 1992

[8] B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems,
International Conference on Applied Informatics, Eger 2004

142 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

Appendix A
The following figures (16 - 20) describe the global state transition diagram of the
two-process system of the embedded system.

Since the global state diagram of the system is too large, we had to split it into
five figures. So we used the following notation: the bold box elements mark those
elements that can be continued but they are continued in an other figure. Dotted
box elements show boxes which can be found in a previous figure, so in the global
state transition diagram there is an edge to such boxes.

Figure 20: The global state transition diagram (part 5)

Synthesis of the synchronization of general pipeline systems 143

Figure 17: The global state transition diagram (part 2)

144 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

N, AFN, AFW2C2

N,C2

<^T|AFW2C2^>-

— K ^ N I AFW2

N.E,

T,W2

RiC2

— A F W 2 - »

2

— K ^ R . AFW2

AFRI R,

- K ^ T , AFRI 1 . .
K ^ " T, AFS2 EJ - 4

W,c2

Figure 20: The global state transition diagram (part 5)

Synthesis of the synchronization of general pipeline systems 149

AFN; N 2 ^ -

AFN2

AFR,

• ^ R I AFRI

• ^ R I AFS;

AFS; E T ^ . J

AFW,

< W , A F W , W R ^ - - ^

AFW2 W ^ '

Figure 17: The global state transition diagram (part 2)

146 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

AFSI AFSJ EI

A, W2
E Xitrue

S,E2

Ei S2 *

W,A2

, . A F N ; /

2

—•<^ETAFN2 A j >
2 *

AFS|

K ^ S I AFS, S,

2 /
— K ^ S , AFS2 s2

• X ^ T A F N , E T ^ '

•áá '
A, A2

E Xitrue

1
2

A, AFN, AFN2N2

Figure 20: The global state transition diagram (part 5)

Synthesis of the synchronization of general pipeline systems 147

Appendix B
The following figures (21 - 24) describe the model of the two-process system of the
embedded system.

DAGflTi.Tj], AFR.)

Figure 21: The DAGs that are needed to construct frag([7\, T2])

148 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

N, Nj

T, T2

1 1 r
Ri T2

1 r
C, T2

i 1 r
W, T2

1

Ei T2

i 1

s, T2

1 1 r
Ai T2

2 r
A, R2

T, H,

1
I

R, N2

1
I r

C, N2

1

W,N 2

1 r
E, N2

1
'

s, N2

1

A, N2

FRAG([T1(TJ)

N, T,

2 — 1 r
T, T2

1

R. T2

2 — 1 r
c, T,

2 1

W, T2

2 1

E, T2

2 1

s, T2

1

A,T2

1 2
A, R2

2 r
A|C2

1 1 r
N, C2

Figure 22: The fragment of the
[Ti,r2] AND node

Figure 23: The model of the system

Synthesis of the synchronization of general pipeline systems 149

Figure 24: The model of the system

150 Balázs Ugrón, Szabolcs Hajdara, and László Kozma

Appendix C
In the following, the temporal logic specification can be seen for the system that is
built from the sender process and the embedded system.

For the sake of simplicity, we can join the states N, W, E, S and A of the first
process of the embedded system (because the first process only receives data from
the sender, the sender will not keep the first process from sending). Let the name
of the joined state be N (Normal). Furthermore, we omit the indexes of the states,
because the states of the sender process are labeled in another way.

Note that in this case P\ is the second process and the sender is the first process.

1. Initial state (every process is initially in its normal state):

J AN

2. It is always the case that any move Pi makes from its N state is into its T
state, and such a move is always possible (and similarly for the state R and
for the states J and L of the sender):

AG{J => {AYXK A EXiK))

AG(L {AYXM A EXiM))

AG(N (AY2T A EX2T))

AG(R =• (AY2C A EX2C))

3. It is always the case that any move Pi makes from its T state is into its R
state - but such a move is not definitely possible (and similarly for the state
C and for the states K and M of the sender):

AG{K => AY^L)

AG(M => AY\J)

AG(T => AY2R)

AG(C => AY2N)

4. The processes are always in exactly one state of the state set:

AG(J = V L V M))

AG(K = - i (J V L V M))

AG{L = -^(JyKy M))

AG(M = -I(J V K V L))

AG(N = - (T V RV C))

Synthesis of the synchronization of general pipeline systems 151

AG(T = ->(N VRVC))

AG(R = ->(N V T V C))

AG(C = -.(AT V T V R))

5. Liveness: if P\ is in state T, then some time it will reach state R (and similarly
for the state C and states K and M of the sender):

AG(K AFL)

AG(M => AFJ)

AG(T => AFR)

AG(C ^ AFN)

6. A transition by a process cannot cause a transition by another one:

AG(J => AY2J)

AG(K =» AY2K)

AG(L AY2L)

AG(M =» AY2M)

AG(N =» AYiN)

AG{T =» AYiT)

AG(R =• AYiR)

AG(C => AYxC)

7. Data flow control: a process in state T waits for the sender process to reach
state M and a process in state C waits for the sender process to leave M (and
similarly for the sender):

AG{{K A - . r) => -*EX\ true

AG((M A —iC) EXitrue

AG((T A ->M) => ->EX2true

AG((C A M) => -,EX2true

8. Always there is a possible step:

AGEXtrue

Received November, 2004

Acta Cybernetica 17 (2005) 123-151.

Functional Dependencies over XML Documents
with DTDs

Sven Hartmann* Sebastian Link* and Klaus-Dieter Schewe*

Abstract

In this article an axiomatisation for functional dependencies over XML
documents is presented. The approach is based on a representation of XML
document type definitions (or XML schemata) by nested attributes using
constructors for records, disjoint unions and lists, and a particular null value,
which covers optionality. Infinite structures that may result from referencing
attributes in XML are captured by rational trees. Using a partial order on
nested attributes we obtain non-distributive Brouwer algebras. The opera-
tions of the Brouwer algebra are exploited in the soundness and completeness
proofs for derivation rules for functional dependencies.

Keywords : extensible Markup Language, nested attributes, subattributes,
rational trees, functional dependencies, axiomatisation

1 Introduction
Over the last decade the extensible Markup Language (XML) [5] has attracted a
lot of attention in research and practice. Its spectrum of usage spreads from data
exchange on the web to a direct use as a data model. In fact, the language shows a
lot of similarities to semi-structured data [1] and to object-oriented databases [12].

The treatment of XML as a data model requires re-investigating core problems
of database theory. Therefore, it is no surprise that database dependency theory
[13] has recently started a revival in the context of XML. The research interest first
focused on the classes of keys [4, 11] and functional dependencies [3, 16, 18], which
represent the most common and at the same time easiest class of dependencies.

However, the problem is still not completely solved. The major drawback of the
work by Arenas, Fan and Libkin and similarly Vincent and Liu is the restriction to
a relational representation of XML documents. That is, XML documents are con-
sidered as some sets of (generalised) tuples, which then can be treated analogously
to the relational model. However, it is possible to formulate functional dependen-
cies on XML documents that are not preserved by the relational representation. In

"Massey Information Science Research Centre, Private Bag 11222, Palmerston North, New
Zealand. E-mail: [s .hartmann|s . l ink|k.d. schewe](Smassey.ac.nz

153

154 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

other words, these theories are adequate as long as we only deal with functional
dependencies that can be expressed on a relational representation of XML docu-
ments. Going beyond this restricted class of functional dependencies requires an
extended theory or a different approach to the problem.

Our own work in this area originates from a more classical approach dealing
with dependencies in higher-order data models such as the higher-order Entity-
Relationship model (HERM) [14] or the object-oriented data model (OODM) [12].
The basic idea is to consider nested attributes that can be built from constructors
for records, sets, lists, etc. Furthermore, our first interest is devoted to the logical
and mathematical foundations of dependency theory, i.e. we first address problems
of axiomatisation, number of possible dependencies, complexity of closure building,
etc.

Using just the record- and set-constructors we obtained an axiomatisation in
[6], extended in [7]. Additional constructors for lists, multisets and disjoint unions
have been handled in [10]. Unfortunately, the presence of the union-constructor, in
particular in connection with the set-constructor, requires an extension of the the-
ory to weak functional dependencies, i.e. disjunctions of functional dependencies.
Rather astonishingly, among the three "bulk" constructors the list-constructor is
the easiest one. So far it is the only part of the theory that could be generalised to
multi-valued dependencies [9]. Other work on multi-valued dependencies for XML
[17] is again "relationally minded".

In this article we extend our theory of functional dependencies to XML docu-
ments. We show how to represent XML elements by nested attributes. In partic-
ular, we represent the Kleene-star by the list-constructor, i.e. we have order and
duplicates. In our theory it is also possible to use the multiset- or set-constructor
instead, thus neglecting order or duplicates. We may also treat all three "bulk"
constructors together. However, as this would blow up the article we made the
choice to restrict ourselves to only the easiest of the bulk constructors. A glimpse
of the necessary extensions for the other two bulk constructors can be obtained
from [10].

In any case the combination of a bulk constructor with the union-constructor
is only satisfactory, if some form of restructuring is taken into account. The early
work in [2] handles only the set-constructor, but even for this the theory would
be equivalent to restricting the union-constructor in a way that it can only occyr
as the outermost constructor. This is insufficient, if subattributes are considered.
Therefore, we use an extended form of restructuring.

However, in order to fully capture functional dependencies over XML documents
we have to face two major extensions:

1. We have to consider rational tree attributes, which result from reference struc-
tures in XML documents. We will see that the extension arising from this
problem is not severe. The major observation is that the subattribute lat-
tice becomes infinite, but this does not affect the derivation of dependencies.
Note that all previous work on functional dependencies for XML including
[3] neglect references.

Functional Dependencies over XML Documents with DTDs 155

2. We have to consider functional dependencies on embedded elements. These
dependencies can be "lifted" through the constructors, i.e. they induce func-
tional dependencies on complete XML documents. Such dependencies have
not been considered in our previous work. However, the "lifting rules" be-
came already indispensable in the presence of the union-constructor, as this
constructor leads to axioms on embedded structures [10].

In other words, this article takes a reasonable fragment of the theory from [10]
and extends it with respect to these two problems. The result is a quite uniform
axiomatisation for functional documents over XML documents.

In the remainder of the article we first investigate the relationship between XML
documents and nested attributes in Section 2. We show how to map the regular
expressions in XML document type definitions to the attribute constructors. Fur-
thermore, we extend nested attributes by rational trees and use them to represent
the infinite structures that may arise from references in XML documents. We then
define a partial order on nested attributes and show that the set of subattributes
of a given attribute forms nearly a Brouwer algebra — however, distributivity does
not hold.

In Section 3 we introduce functional dependencies and first prove the sound-
ness of some derivation rules for them. These soundness rules imply properties of
closures, i.e. sets of subattributes that depend functionally on a given set of sub-
attributes. This leads to the notion of "strong higher-level ideal" or SHL-ideal for
short. We show a central theorem about such SHL-ideals, which states that we can
always find two values in the associated domain that coincide exactly on a given
SHL-ideal. This theorem is indeed central for the proof of the completeness of the
derivation rules. - The completeness theorem will be the major result of this article.

2 XML and Nested Attributes
In this section we define our extended model of nested attributes including rational
tree attributes. We show how to use these attributes to represent XML document
type definitions. Finally, we look a bit closer into the structure of sets of subat-
tributes and show that we obtain non-distributive Brouwer algebras.

2.1 Elements in XML and Constructors
The structure of XML documents is prescribed by a document type definition
(DTD) [1] or (almost equivalently) by an XML schema. Basically, such a DTD
is a collection of element definitions, where each element is defined by a regular
expression made out of element names and a single base domain PCDATA. Without
loss of generality we may assume to have more than one domain. Then we can
isolate those element definitions that lead only to domains. These elements can be
represented by simple attributes.

156 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

Defin i t ion 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A G U. The elements of U are called simple attributes.

For all other element definitions we may assume without loss of generality —
just spend a few more element names, if necessary — that they are normalised in
the sense that they only contain element names and no domains, and they only use
exactly one of the constructors for sequences, Kleene-star or alternative.

Then they can be represented as nested attributes as defined next. We use a set
L of labels, and tacitly assume that the symbol A is neither a simple attribute nor
a label, i.e. A ^ U U L , and that simple attributes and labels are pairwise different,
i.e. It N JG = 0.

Def in i t ion 2. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and -C) is the smallest set with A e N, U C N, and satisfying the
following properties:

• f o r X e - C a n d X i , . . . , X ; e X w e h a v e X (X i , . . . , X ;) € X ;

• for X G £ and X' G "N we have X[X'} E) f ;

• for Xu ..., Xn G C and X[,..., X'n G Ji we have JTi(*{)©• • - © X n (X ;) G N.

We call A a null attribute, X(X{,..., X'n) a record-attribute, X[X'\ a list at-
tribute, and ATi(X{) © • • -(BXn(Xn) a union attribute. As record and list attributes
have a unique leading label, say X, we often write simply X to denote the attribute.

Thus, a Kleene-star element definition (¡ELEMENT Ar(V)*) will be represented'by
the nested attribute X[Y], a sequence element definition (¡ELEMENT X(Y\,..., Yn)}
by X (Y i , . . . , Y „) , and an alternative element definition (¡ELEMENT X(Yi | ••• |
Yn)) by X(Ar

1(Yi) © • • • © Xn(Yn)) with some new invented labels X i , . . . ,Xn.
Furthermore, as the plus-operator in regular expressions can be expressed by the
Kleene-star, an element definition (¡ELEMENT X (F) +) will be represented by the
nested attribute X(Y, X '[Y]) with some new invented label X'. Similarly, optional
elements can be expressed as alternatives with empty elements, thus an element
definition (¡ELEMENT X(Y?)) will be represented by the nested attribute -X^Y) ©
X'(A).

We can now extend the association dom from simple to nested attributes, i.e.
for each X G N we will define a set of values dom(X).

Defin i t ion 3. For each nested attribute X G N we get a domain dom(X) as
follows:

• dom(X) = {T};

• dom{X{X[,...,X'n)) = {(Xi : vu...,Xn : vn) \ Vi G dom(X[) for i =
1 , . . . , n} with labels Xi for the attributes X[\

• dom(X[X']) = {[ui, . . . ,t;n] | Vi G dom(X') for i = 1 , . . . ,n}, i.e.. each ele-
ment in dom(X[X'\) is a finite list with elements in dom(X');

Functional Dependencies over XML Documents with DTDs 157

• dom(Xipfj) © • • • © = { (X i : v{) \ v{ £ dom(Xl) for t = 1,..., n}.

Hence, each element in a DTD can be represented by a nested attribute. An
XML document is then represented by a value v £ dom(X) of the nested attribute
X that represents the root. In the following we assume without loss of generality
— rename, if necessary — that labels are used only once in a representing nested
attribute. In this way we may identify labels with nested attributes labelled by
them.

2.2 Attributes in XML and Rational Trees
Besides element definitions a DTD also contains attribute definitions. Attributes
are associated with elements. Neglecting some of the syntactic sugar, we basically
have three types of attributes:

• attributes with domain CD ATA, which can be represented again by simple
attributes;

• attributes with domain ID, which can be ignored;

• attributes with domain IDREF or IDREFS, which can be replaced by the
label, or the list of labels, respectively, of the referenced elements.

More formally, we extend our Definition 2 of nested attributes by adding
We say that a label Y £ L occurring inside a nested attribute X, is a defining label
iff it is introduced by one of the three cases in Definition 2. Otherwise it is a
referencing label. We require that each label Y appears, at most once as a defining
label in a nested attribute X, and that each referencing label also occurs as a
defining label. In other words, if we represent a nested attribute by a labelled tree,
a defining label is the label of a non-leaf node, and a referencing label is the label
of a leaf node.

Using labels we can subsume the attributes of an element in the element defi-
nition using a sequence constructor. Attributes with domain CD ATA will be rep-
resented by simple attributes, attributes with domain IDREF will be represented
by the label of the referenced element, and attributes with domain IDREFS will
be represented by the list of labels of the referenced elements.

We still have to extend Definition 3. For this assume X £ N and let Y be a
referencing label in X. If we replace Y by the nested attribute that is defined by
Y within X, we call the result an expansion of X. Note that in such an expansion
a label may now appear more than once as a defining label, but all the nested at-
tributes defined by a label can be identified, as the corresponding sets of expansions
are identical.

In order to define domains assume set of label variables ip(Y) for each Y £ L.
Then for each expansion X' of a nested attribute X we define dom(X') as in
Definition 3 with the following modifications:

• for a referencing label Y we take dom(Y) = ip(Y);

158 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

• for a label Y defining the nested attribute Y' take dom(Y) = {y : v \ y €
1>(Y),v e dom(y')};

• allow only such values v in dom(X'), for which the values of referencing labels
• also occur inside v exactly once at the position of a defining label.

Finally, define dom(X) = (Jx , dom(X'), where the union spans over all expansions
X' of X.

2.3 Subattributes
In classical dependency theory for the relational model we considered the powerset
'P(R) for a relation schema R, which is a Boolean algebra with order C. We have to
generalise this for nested attributes starting with a partial order >. However, this
partial order will-be defined on equivalence classes of attributes. We will identify
nested attributes, if we can identify their domains.

Def in i t ion 4. = is the smallest equivalence relation on N satisfying the following
properties:

• A = * () ;

• X(X[,..., X'n) = X{X'i,..., X'n, A);

• X{X[,..., X'n) = X{X'a{l),..., X'a(n)) for any permutation a;

• X i (Xi) ©•'••© Xn{X'n) = Xa{l){X'a{l)) © • • • © Xa{n){X'a{n)) for any permu-
tation a;

• • -©Xn(X4) = Xi(yi)©- • -®Xn(yn) iff X? = Yi for all i = 1 , . . . , 7i;

• X[X'] = X\Y] iff X' = Y\

. X{X'l,...,Y1{Y{)®---®Ym{Y^),...,X'n) =
Y\{X[,..., Y{,..., X„) © • • • © ..., ..., X„);

. x[xi(xi)) =

Basically, the equivalence definition (apart from the last case) states that A in
record attributes can be added or removed, and that order in record and union
attributes does not matter. The last case in Definition 4 covers an obvious restruc-
turing rule, which was already introduced in [2].

In the following we identify N with the set K / = of equivalence classes. In
particular, we will write = instead of =, and in the following definition we should
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y.

Defin i t ion 5. For X, Y € N we say that Y is a subattribute of X, iff X > Y holds,
where > is the smallest partial order on N satisfying the following properties:

Functional Dependencies over XML Documents with DTDs 159

• X > A for all X G >f;

• X > X' for all expansions X' of X;

• X(Yi, . . . ,Y„) > for some injective a : { l , . . . , m }
{1, . . . , n} and Ya(i) > X'a{i) for all i = 1 , . . . , m;

• Xi(Yi) © • • • © Xn{Yn) > ©••'•© Xo{n){X'a{n)) for some permu-
tation a and Yi > X[for all i = 1 , . . . , n;

• X[Y] >X[X'] i f f y >X'\

• x[x1(x[)e---®xn(xil)]>x(x1[x[],...,xn[xil]y,

. x[xi(xi) © • • • © xk(x'k)} > © • • • © xi{x't)\ for k > e-,

. J f (X i l [A] l . . . ,X i f c [A])>X { i l i k)[\] .

Obviously, X > Y .induces a projection map 7Ty : dom(X) —• dom(Y). For
X = Y we have X > Y and Y > X and the projection maps 7Ty and are
inverse to each other.

Note that the last three cases in Definition 5 covers the restructuring for lists
of unions, which needs some more explanation. Obviously, if we are given a list of
elements labelled with X\,..., Xn, we can take the individual sublists - preserving
the order - that contain only those elements labelled by Xi and build the tuple of
these lists. In this case we can turn the label into a label for the whole sublist. This
explains the third to last subattribute relationship. In case n — 1 this is subsumed
by the last equivalence in Definition 4.

Using the subattribute relationship for record attributes we obtain

Xp^Yx],..., Xn[Yn]) > X(Xix [yj,..., Xik [y j)

for {¿i , . . . C (i ; . . . ,n}. But then also

X l X ^ y j , . . . , X i f c (y j] > X p f ^ y ,] , . . . ,Xik[Yik})

holds as already explained. It is therefore natural to require the second to last
property. It just means that a list with elements labelled by X\,... ,Xk can be
mapped to the sublist - preserving the order - that contains only the elements
with labels X \ , . . . , Xg. We may of course take any subset of the labels here, but
this is already captured by the possibility to permute the components in a union
attribute.

In a list we can also map each element to T, the unique element in dom(A).
In fact, the subattribute of the form X[A] only counts the number of elements in
the list. This is not affected by first separating the list according to labels, so we
obtain the last subattribute relationship.

160 Sven Hartmann, Sebastian Link, and Klaus-Dieter Schewe

However, restructuring requires some care with labels. If we simply reused the
label X in the last property in Definition 5, we would obtain

X L X X P F O E - Y A M] >X{Xx[X[\,X2{X'7)) > X (* ! [X I]) > X (* I [A]) > A"[A].

However, the last step here is wrong, as the left hand side refers to the length
of the sublist containing the elements with label Xi, whereas the right hand side
refers to the length of the whole list, i.e. elements have labels Xi or X2- No such
mapping can be claimed. In fact, what we really have to do is to mark the list label
in an attribute of the form X[Xi(X[) © • • • © Xn(X'n)) to indicate the inner union
attribute, i.e. we should use (or even X{Xi,...,x„}) instead of X. Then
the second to last restructuring property in Definition 5 would become

©•••© XfcM] > x{1 <}№№) © • • • © Xtixi)].

However, as long as we are not dealing with subattributes of the form
-^{I,...,K}[A], the additional index does not add any information and thus can be
omitted to increase readability. In the last restructuring property in Definition 5,
however, the index is needed.

Further note that due to the restructuring rules in Definitions 4 and 5 we may
have the case that a record attribute is a subattribute of a list attribute. This allows
us to assume that the union-constructor only appears inside a list-constructor or
as the outermost constructor. This will be frequently exploited in our proofs.

. We use the notation §(X) = {Z £ N \ X > Z} to denote the set of subattributes
of a nested attribute X. In the next subsection we will take a closer look into the
structure of S(X).

Figure 1 shows the subattributes of X[Xi{A)®X2(B)\ together with the relation
> on them. Note that the subattribute X[A] would not occur, if we only consid-
ered the record-structure, whereas other subattributes such as X(X.j[A]) would not
occur, if we only considered the list-structure. This is a direct consequence of the
restructuring rules.

Let us now investigate the structure of S(X). We will show that we obtain
a non-distributive Brouwer algebra, i.e. a non-distributive lattice with relative
pseudo-complements. A lattice £ with zero and one, partial order <, join U and
meet n is said to have relative pseudo-complements iff for all Y, Z £ £ the infimum
Y «- Z = ri{{/ \UUY>Z} exists.

Proposition 1. The set S(X) of subattributes carries the structure of a lattice
with zero and one and relative pseudo-complements, where the order > is as defined
in Definition 5, and A and X are the zero and one.

In the following we denote join by U, meet by n and relative pseudo-complement
by «—. Then it is straightforward to show the following properties:

• for the join U:

1. YUZ = Y i f f y >Z;

Functional Dependencies over XML Documents with DTDs 161

X [X I (A) ® X 2 (B)]

x[Xi(/i)eX2(A)] X(Xx[A , X 2 [B]) X [X I (A) © X 2 (B)]

X (X I [A , X 2 [A]) X [X I (A) ® X 2 (A)] X (X I [A] , X 2 [B])

X (X I [A]) X (X ! [A , X 2 [A]) X (X 2 [B])

X (X ! [A]) X A] X (X 2 [A])

A

Figure 1: The lattice S(X[Xj(A) © X2(B)])

2. for X = X (X i , . . . , X „) , Y = X(Y 1 , . . . ,Y„) and Z = X(ZU... ,Zn) we
have Y U Z = X(Yi UZu...,YnU Zn);

3. for X = X (X i , X n) , Y = X(Yit..., Y„) + A and Z = X/[A] with
7 = {*i *fc> we have YUZ = ZUY = YU X(X^ [A],..., Xik [A]);

4. for X = Xi(X{) © • • • © Xn{X'n), Y = Xx{Y{) © • • • © Xn(Y^) and Z =
Xi(Z[)®-• -®Xn(Ziï we have YuZ = X^YjuZi)®-• -®Xn{Y^uZ'n)\

5. for X = X[X'], y = X[Y'} and Z = X\Z'\ we have YuZ = X[Y' U Z'];

6. for X = X[Xi(X{)©• • • ©X n (X;)] , y = X ^ Y /) ©• • • © X n T O] and
Z = X(Zi,..., Zn) with either Z* = Xl[Z'i\ or Z* = A we have Y U Z =

1. y n Z = Z i f f y > Z ;

2. for X = X { X i , X n) , Y = X(Yi,... ,yn) and Z = X(Zlt..., Zn) we
have y n Z = X(Yi nZi,...,Y„n Zn)\

3. for X = X{XU .. . ,Xn), Y = X(Yi,..., Yn) ^ A and Z = X,[A] with
I = {ii, . . . ,ik} and y t Z we have Y n Z = Z n Y = A;

4. for X = Xi(Xi) © • • • © xn(x;), y = Xi(Y{) © • • • © Xn(Y^) and Z =
Xi(Zi)©- • we have YnZ = X^nZ^)®-• - © X ^ n Z ;) ;

5. for X = X[X'], y = X[Y'} and Z = X[Z'] we have Y n Z = X[Y' n Z'];

• for the meet l~l:

166 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

6. f o r X = X[Xi (X{)©. - -©X n (X;)] , Y = X[X 1 (y 1 ')©-- -©X n (y ,0] and
Z = X(Zi, ...,Zn) with either Z< = Xi[Z[\ or Zi = A we have YnZ =

ZnY = X(U1,...,Un) with * = n Z*1 f ° r = X * W .
I A for Zi = A

for the relative pseudo-complement <—:

1. A «- y = Y;
2. for y > Z we have Y <- Z = A;

3. for X = X (X u . . . , X n) , Y = X (Y u . . . , Y n) , Z = X (Z x , . . . , Z n) a n d
X[X) $ S(X) we have Y <- Z = X(Vi «- Z i , . . . , y„ *- Z„);

4. for Z = X (Z i , . . . , Z n) ^ A and I = {¿ i , . . . , ifc} we have Z X/[A] = A
and X,[A] «— Z = X(Xi, [A] «- Zh,..., Xik [A] «- Zifc);

5. for X = Xi(X{) © • • • © Xn(X'n), Y = Xi(Yi) © • • • © X„(y„), Z =
Xi(Zi) © • • • © Xn(Zn) and y 2 Z we have y «- Z = 4- Zi) ©
• • • © Xn(Yn <— Z„);

6. for Z = X (Z i , . . . , Zn) ^ A we have Z <- X[A] = A and X[A] Z =
X(Xi[A] - Z i , . . . , X „ [A] « - Z n) ;

7. for X = X [X x (X 0 © • • • © * „ (* ;)] or X = X(Xi [Xi] , . . . ,X„[X;]) we
have:

(a) for Z = X (Z i , . . . , Z n) ^ A and I = {¿ i , . . . , tk} we have Z <—
X,[A] = A and X/[A] - Z - X(Xn[X] « - Z M , X i n [A] - Zik);

(b) for y = X(YU..., y n) and Z - X(Z i , . . . , Z n) with A ¿Y£Z
— if Yi > Zi or Yi — X,Zi = Xi[A] for all i = 1 , . . . ,n we have

y <- Z = A,
- otherwise we have Y <- Z = X(y i <- Z i , . . . , y„ <- Zn);

(c) for y = X[Xx(Yi) © • • • © X n (y j] and Z = X(ZU . . . , Z n) with
Zi = Xi[Z<] or Zi = X and Y % Z we have Y «- Z = X (£ / i , . . . , Un)

with ^ = -
IA else

(d) for y = X(yi,...,y„) ^ A with Yt = X^y/] or Yt = A, and
Z = X[Xi(Z[) © ••• © X„(Z;)] with Zi = Xi{Z'i) or Zi = A
and y 2 Z we have y <- Z = X[Xi{Ui) © • • • © X„([/n)] with
U i = [Yl^Z'i for Yi^XjiZi

' 1A else
(e) for y = X[Xi(Y{) © • • • © Xn(y^)], Z = X[Xx(Z0 © • • • © Xn{Z'n)\

with y ^ Z we have Y «- Z = X(C/ i , . . . , Un) with

Ui=[Xi[Y>^ZZ for Y ^ X * Z[
1] A else

Functional Dependencies over XML Documents with DTDs 163

3 Axiomatisation of Functional Dependencies
In this section we will define functional dependencies on S(X) and derive some
sound derivation rules. We consider finite sets r C dom(X), which we will call
simply instances of X. If Y is a nested attribute that occurs inside X, then an
instance r of X defines an instance r(Y) of Y; simply take r(Y) = {v' G dom(Y) \
v' occurs inside some v € r at the position defined by Y}.

Definit ion 6. Let such that X' occurs in X. A functional dependency
(FD) on S(X) is an expression X' : y -> Z with y,ZC S(X').

An instance r of X satisfies the FD X' : y —> Z on S(X) (notation: r \= X' :
y Z) iff for all tut2 G r (X') with Tr£'(ti) = n f (t 2) for all Y G y we also have
7rf (ii) = ir%'{t2) for all Z eZ.

Let E be a set of FDs defined on some S(X). A FD ip is implied by E (notation:
E (= ip) iff all instances r with r |= for all <p G E also satisfy ip. As usual we write
E* = {V | E |= V}-

We write E + for the set of all FDs that can be derived from £ by applying a
system Dt of axioms and rules, i.e. E + = {tp | E I-« tp}. We omit the standard
definitions of derivations with a given rule system, and also write simply I- instead
of htR, if the rule system is clear from the context.

Our goal is to find a finite axiomatisation, i.e. a rule system EH such that
E* = E + holds. The rules in 91 are sound iff E + C E* holds, and complete iff
E* C E + holds.

3.1 Sound Axioms and Rules for Functional Dependencies
Let us now look at derivation rules for FDs. We will need a particular notion of
"semi-disjointness" that will permit a generalisation of the well known Armstrong
axioms for the relational model.

Definit ion 7. Two subattributes Y, Z € S(X) are called semi-disjoint iff one of
the following holds:

1. Y > Z or Z > Y;

2. X = X(Xu...,Xn), Y = X(Y\,..., Yn), Z = X{Zu...,Zn) and YuZi G
§(Xi) are semi-disjoint for all i = 1 , . . . , n;

3. X = X\X% Y = X[Y'], Z = X[Z') and Y', Z' e S(X') are semi-disjoint;

i. X = XtiXi) © • • • © Xn(X'n), Y = Xi(Y1
/) © • • • © Xn{Y£, Z = X^Zi) ©

• • • © Xn(Z'n) and Y(, Z\ G S(Xt') are semi-disjoint for all i = 1 , . . . , n;

5. X = X[X!(Xi) © • • • © X„(X;)], Y = X{YU . . . , Yn) with Y» = X^Y/] or
Yj = A = Y(, Z = X[Xi(Z[) © • • • © Xn{Z^)], and Y/, Z[are semi-disjoint for
alH = 1 , . . . ,n.

164 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

With the notion of semi-disjointness we can formulate axioms and rules for FDs
and show their soundness.

Theorem 1. The following axioms and rules are sound for the implication of FDs:

• the X axiom: X': 0 —» {A}

• the subattribute axiom: X' : {V} —> {Z} for Y > Z

• the join axiom: X' : {Y, Z} —> {Y U Z} for semi-disjoint Y and Z

• the reflexivity axiom: X': y —» Z for Z C y

• the extension rule: X' : y —> Z implies X' : y —• y U Z

• the transitivity rule: X' : y —* Z and X': Z —>It imply X' : y —> U

• the list axioms:

- X : {X,[A], Xj[A]} - {X/UJIA]} for I n J = 0

- X : {X/[A],X/UJ[A]} - {JO[A]} for I n J = 0

- X : {X/[A],Xj[A],X/nj[A]} - {X (/_ J) U (J_ /)[A]}

- X : { X / M X j I A I . X ^ ^ . ^ A] } - {X/nj[A]}

• the list lifting rule: X' : y -> Z implies X[X'] : {X[Y] \ Y e y} {X[Z] \

• the record lifting rule: X, : & —* Zi implies X(X\,... ,Xn) : ^ -> Zi vrith
yi = {X(X,...,Yi,...,X) \YteVi} andZi = {X(X,...,Zi,...,X)\Yi£Zi}

• the union lifting rule: X[: —> Z.j implies Xi(Xi) © • • • © Xn(X^) : yi —> Zi
with Vi = (Xi(A) © • • • © Xi(Yi) © • • • © Xn(A) | Yi £ Vi} and Zi = (Xi(A) ©
• • • © Xf(Zi) © • • • © Xn(A) | ^ e

Proof. We only show the soundness of some of the axioms and rules. The proof
for the other axioms and rules is either analogous or trivial.

For the join axion let ii,¿2 € dom(X) with 7Ty(fi) = iTy and n^iti) =
it^ (t2). We use induction on X to show 7Tyuz(ii) = 7Tyuz(i2). The cases X = A
and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for
Y > Z or Z > Y, as in these cases Y U Z is one of Y or Z.

For X = X (X x , . . . , X n) let Y = X{Yi,..., Yn) and Z = X(ZU • • •, Z„) be semi-
disjoint. For tj = (X! : tji,..., Xn : tjn) (j = 1,2) we have ity- (¿it) = T^Y- fa»)
7r^(tu) = Tr^(t2i), and Yi, Zi axe semi-disjoint for all i = 1 , . . . , n. By induction

^Y-uzMi) = ^ W * 2 *) ' w h i c h i m P l i e s *Yuz(ti) = TTyuzi^)-
For X = Xi(Xi) © • • • © X n (X;) assume fx = (Xj : t[) and t2 = (Xj : t'2).

Thus, for semi-disjoint Y = Xi(Y{)&-• -®Xn{Y^) and Z = Xi(ZJ)©- • © X n (Z ;)

Functional Dependencies over XML Documents with DTDs 165

X' X'- X X ' -
we obtain 7iy/(t'i) = n y ? ^) » = 7rz,J(^2)> anc^ ^ a r e semi-disjoint. By j j i i J J

x' x' '
induction 7Ty/uZ' (i'i) = ^Y 'UZ ' ('2)' which implies 7Tyu2(ii) = 7Tyuz(i2)-

For X = ' ' X I X ^ X D © •: • © Xn(X'n)), Y = X(Yi,... ,Yn) with Yt = X^Y/] or
Yi = X = Y! and Z = X[Xx(Z() © • • • © Xn{Z'n)} we get 7 U Z = X ^ y / U Z{) ©
• • • © Xn(Y^ U Z'n)\. As Z > X[A], we also have 7r^[A](ii) = 7r^[A)(i2), so f i and
¿2 are lists of equal length. Therefore, assume tj = [t , i , . . . , i j m] for j = 1,2 and

= (Xe : t'jk). This gives T T * ^ ^) = [t ^ , . . . ,t'jm] with t'jk = (Xe : ^juz,(t'Jk)).
X' x'

We know 7t2,' (ii'fc) = kz! (¿2)̂5 so we are done for Ye = X. For Ye ^ X the sublists
containing all (X* : t"k) coincide on V/. As Y't and Z't are semi-disjoint, we have
^Yf'uz'^'ik) = ^Y'uzft ' ik) by induction, which implies 7r^uZ(ii) = 7ryuZ(i2).

For the first list axiom let i i , t 2 € dom(X). Then ^ ^ (i i) = 7i"x/(A](^2) m e a n s

that ii and t2 contain the same number of elements of the form (Xj : vi) with
i £ I. If the same holds for I U J, then t\ and t2 must also contain the same
number of elements of the form (Xj : Vi) with i € J , i.e. ""^¡^(i i) = ^^[x](¿2)-
The soundness of the second list axiom follows from the same argument.

Analogously, for the third list axiom nyih) = Xy (i2) for Y G
{X/[A],Xj[A],X/nj[A]} means that t i , t2 contain the same number of elements
with labels in 7, J and I fl J, respectively. So they also contain the same number
of elements with labels in (/ — J) U (J — I). The soundness of the fourth list axiom
follows from the same argument.

For the soundness of the list lifting rule let t\,t2 £ dom(X) with ^ [y j ^ i) =
ir*[Y](t2) for all X[Y\ with Y £ y. As y / 0, it follows that £1 and t2 must have
the same length, say £j = [i i i , . . . , i«fc] (i = 1,2), and for all j = 1 , . . . , k and all
Y £ y we have 7Ty (iy) = 7Ty (i2 j). Hence (tij) = (t 2 j) for all j = 1 , . . . , k
and all Z £ Z, which implies ^[z]^ 1) = ^xizfa) for a i l X \ Z \ w i t h Z € z - T h e

soundness of the other two lifting rules follows analogously. •

Using these rules we can derive additional rules:

• the union rule: X : y - » Z , a n d X : y - > U imply X : y -> Z U It

,• the fragmentation rule: X : y —> Z implies X : y —» {Z} for Z € Z

• the join rule: X : {V} —• {Z} implies X : {Y} —• {Y U Z} for semi-disjoint
Y and Z

3.2 SHL-Ideals
In this subsection we investigate ideals. Of particular interest will be ideals with
additional closure properties, which we call "strong high-level ideals" or SHL-ideals
for short. These ideals will appear naturally in the completeness proof in the next
subsection. The main result of this subsection is Theorem 2.

166 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

Definition 8. An ideal for a nested attribute X is a subset S C S(X) with A G S
and whenever Y £ 9, Z £ §{X) with Y > Z, then also Z £%.

Let us now address the closure properties that will turn ideals into "higher-level"
or "strong higher-level ideals".

Definition 9. Let X £ N. An ideal 7 C S(X) is called SHL-ideal on S(X) iff the
following properties are satisfied:

1. if Y, Z £ 7 are semi-disjoint, then YUZ £ J;

2. (a) if A/[A] £ 7 and Xj[A] € 7 with I C J, then A] e J ;

(b) if X / [A] £ 7 and X J [A] £ 7 with / D J = 0, then X / U J [A] € 7-,
(c) if X/[A] £ 7 and Xj[X] £ 7, then X / n j [A] e 7 iff X (/ _ J) U (J _ 7) [A] e 7;

3. if X = X{X[,..., X'n), then the sets 7{ = {Yt £ S(X[) | X(X,..., Yu ..., A) €
7} are SHL-ideals;

4. if X = X[X') and 7 £ {A}, then the set S = {Y e S(X') | X[Y] -£ 7} is a
SHL-ideal;

5. If X = X j p f i) ® - • - © X n T O and 7 ± {A}, then the sets 7{ = {Yi £ S(X<) |
Xi (A) © • • .• © Xi(Yi) © • • • © X„(A) e J } are SHL-ideals.

We now prove the main result of this subsection.

Theorem 2. Let X be a nested attribute such that the union-constructor appears
in X only inside a list-constructor. If 7 is a SHL-ideal on S(X), then there exist
tuples to,ti £ dom(X) with Wy (io) = ^y (¿i) i f f Y £ 7 .

Proof. We use induction on X. The case X = A is trivial. For a simple attribute
X = A we either have 7 = {A} or 7 = {A, A}. In the former case take to = a and
¿1 = a' for a, a' £ dom(A) with a ^ a'. In the latter case take io = t\ = a.

Let X = with X[X) $ S(X). Take the SHL-ideals 7{ from
Definition 9(3). By induction we find t0i,tu £ dom(Xi) with TT^ (¿Oi) = ^y* (¿1») iff
Yi £ 7i. So take tj = : tjU ... ,Xn : tjn) (j = 0,1). For Y = X(YU... ,Vn) € 7
we have n*(t0) = (X} : 7r^l(t01),... ,Xn : tt£"(i0n)) = {Xi : 7 r * l (i n) , . . . ,Xn :
^„"(i in)) = ny(i i) . For Y = X(Yi,..., Yn) i 7 there is at least one Y, g 7it

which g i v e s (t o) = № : (t0i),... ,Xn : nfc{t0n)) # № : ir${tn),..., :
< n (i m)) = 7 r $(h).

Let X = X[X'\ and assume that X' is not a union attribute. If we have 7 = {A},
then take t0 = M with v £ dom(X') and ¿i = Q. For Y = X[Y') £ 7 we get
TTy (i0) = [tt£'(u)] ± [] = t t£(i i) . For 7 ± {A} take the SHL-ideal 3 from Definition
9(4). By induction we find t'0,t[£ dorn(X') with TTf,(t'0) = n f , (t[) iff Y' £ S.
Let tj = [t'j] for j = 0,1. Then we get TT£(I0) = [TT$'(tf0)] = [*£'(<!)] = TT$(ti) iff
Y = X[Y'] £ 7.

Functional Dependencies over XML Documents with DTDs 167

LetX = X[X1(Xi)©---©Xn(X4)]. If 7 = {A}, define t0 = {{Xx : Vl),... ,(Xn :
vn)} with arbitrary Vi G dom(X'i) and t\ = []. Then we get = (T,. „ , Tj,

|/| times

whereas Tr*f{A}(ii) = []•
Now assume 7 ^ {A}. Take 7+ = {i G { l , . . . , n } | X(X»[A]) G 7} and

I~ = { l , . . . , n } — 7 + . If 7 + = {iii , . . . , then consider first the subattribute
X+ = © • • • © By Definition 9(2b) we have X/[A] 6 7 for
all 7 C /+ . We first construct G dom(X+) with Tr£+(i+) = tt£+(£+) iff
Y G 7+ = {Y G 7 | X+ > Y}.

For this take X = X{Xh [X'h}, ...,Xik [Xt'J) and DC = {Y = X(Yh,..., Yik) \
Y G 7}. Ignoring restructuring and considering X just as a record attribute,
7C becomes an SHL-ideal on S(X). Applying the record case above we obtain
io.ii € dom(X) with (t0) = TT£(ii) iff Y G JC.

If ii = (tiy i1 , . . . , ii,ik), we may concatenate these lists in the order of the indices
to define i j and t f , respectively. Then for Y G S(X +) with X > Y we have
nY + (¿a) = 7ry + (ii") iff y G 7+. This does not change, if for any j we replace io,t;

and i i ^ by the concatenated lists io,i3 '"io,tj and ii,ij^io,i3 , respectively.
Now let K = {ki,...,km} C 1+ be maximal such that XfXfc^Xj^) © ••• ©

Xkm(X'kJ] G 7. Then for k G 7+ - K we must have £ 7, otherwise
also X[Xfc,(Xjt) © • • • © Xkm{X'km) © Xk(Xk)\ G 7 due to the semi-disjointness
of the two subattributes and property 1 in Definition 9. Therefore, K is uniquely
determined.

Now, if X№ 1 [y / 1] , . . . ,X i (1 [y i ' J) G 7, but X[Xit (y / J © • • • © X ^)) i 7,
then the uniqueness of K implies X(Xix [X t ' J , . . . , Xifi [X-J) ^ 7. Hence there
must be some L G with io,t ^ ii) t . We therefore replace £o,t and ii i t

by the concatenated lists io,t^£o,t and ii^^io.i., respectively, changing t j and t \
accordingly. This gives ^ ^ ^ l e . . . ® ^ ^)] ^ ») * 7 r x p c i l (^) e -®x i (i(^)](i i")
without destroying previously established equalities and inequalities. This implies
Tr£+(i+) = 7 i (i f) iff y G 7+ for all y G §(X+) as claimed.

Now let 7~ = { j i , . . . , je}. We choose non-negative integers Xj, yi (i = 1 , . . . , t)
such that for each 7 = {jri,..., j r | ; | } C I~ we have

I'l M
E 3 ^ = i f f

P=i P= i

These integers can be obtained by the following procedure:
for p = 1,... ,t:

choose xp, yp such that all equations and inequations containing
only Xi, yi with 1 < i < p are satisfied;
replace xp, yp in the remaining equations and inequations by the
chosen values

endfor

168 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

Properties 2(b) and 2(c) in Definition 9 guarantee that this procedure always pro-
duces a solution for the given equations and inequations. Now define

*o = KXh :vii)»• • •. (Xh vii) 1 a n d ¿i" = [№ i : vh). • • •. (xh vn)\
> v ' •> v ' > ' s V '

Xj-j-times i j^-t imes y J l - t i m e s i/j^-times

with arbitrary values Vj{ G dom(X'j.) and concatenate tf and t~ to give ti
(i = 0,1). Then for Y £ {Y £ $(X) \ X+ > Y} we have i(T¿) - TT£(«+), hence
ir£(to) = iff Y € 7+.

For Y £X+ we always have one j G I~ with Y > X(X,[A]) or Y = X/[A]. In
the first case Y ^ 7 and

^(XjIad^O) = TTxix^AD^o) ^ ""xix^AD^r) = 7rX(XJ [A])(íl)

as desired. In the second case 7TY (ío) = TT* (íi) iff 7r£ _ [AĴ O) = _ [A]
iff X / n / - [A] G 7 iff y = X/[A] G J due to property"2(a) of Definition 9 and
Xmi+[X}e7. •

3.3 Completeness of the Axioms and Rules for Functional
Dependencies

In this final subsection we want to show that the axioms and rules from Theorem
1 are also complete. This gives our main result.

Before we come to the proof let us make a little observation on the union-
constructor. If X = Xi(XJ) © • • • © Xn(Xn), then each instance r of X can be
partitioned into r¡ (¿ = 1 , . . . , n), where r¿ contains exactly the .^-labelled elements
of r. Then r satisfies a FD ip = y —> Z iff each r¿ satisfies the z'th projection <pi of
ip, which results by replacing all subattributes Y = X\(Yj) © • • • © Xn{Yn) in y or
Z by Xi(Yi). Similarly, we see ip G £ + iff ipi G for all i = 1 , . . . , n.

Theorem 3. The axioms and rules in Theorem 1 are complete for the implication
of FDs.

Proof. Assume y —• Z £ E + . Due to the union rule we must have y —> {Zj £ £+

for some Z G Z. Now take y = {Z \ y —> {Z} G £+}, so Z $y. It is easy to see
that 7 = y is a SHL-ideal:

1. A G y follows from the refiexivity axiom, the subattribute axiom and the
transitivity rule.

2. In the same way for Z G y and Z >Z' we get Z' G 9 from the subattribute
axiom and the transitivity rule.

3. For semi-disjoint Z, Z' G 9 we obtain ZUZ' G 9 from the union rule, the join
axiom and the transitivity rule.

Functional Dependencies over XML Documents with DTDs 169

4. The other properties of SHL-ideals follow directly from the list axioms and
the lifting rules.

If the outermost constructor is not the union-constructor, we can apply Theorem
2 to obtain an instance r = { i i , i 2} with ^ ' (i j) = (i2) iff Z £ 9- As V C y and
Z £ y, we must have r y —> {Z} and thus also r y —> Z due to the soundness
of the fragmentation rule.

If the outermost constructor is the union-constructor, say X = Xi(XJ) © • • • ©
Xn(X4) and thus Z ~ Xi(Zx) © ••• © Xn(Zn), we find some i with Zt (£ J j .
Otherwise all Xx(A) © • • • © Xi(Zi) © • • • © Xn(X) £ 3", and as these attributes are
all semi-disjoint, we would obtain Z £ too, which contradicts our assumptions.

Apply the Theorem 2 to X[and J j , which gives tn,ti2 £ dom(X'i) with
T r $(t„) = 7r£'(ii2) iff Yi £ Ji. Take r = {(Xi .: i a) , № : ti2)}. For Y £ y
we get

7r$((X t : t«)) = (Xi : 7r^(ii j)) = (Xf : t t£ '(t i a)) = tt?((X* : ti2))

and on the other hand

7$((Xi : til)) = (Xi : *${tii)) + (Xi : t t g (t a)) = 7rf ((Xi : i i 2)) ,

i.e. r ^ V —» {Z} and thus also r Z follows also in this case.
In order to complete the proof we have to show r j= E. Let X ' : V —> W £ E.

Applying only the lifting rules we obtain X : V* —• W* £ E + . We either have V* C
y or not. In the first case we obtain y —* V* £ £ + and thus also y —> W* £ E + ,
which implies W* C y. This gives itjy(ii) = 7r$(i2) for all_W € W* and hence
r (X') f= V W. If V* ^ y, then there is some V £ V* - y, for which we must
have 7r£(ti) ^ ?r^(i2). This implies also r(X') |= V W. •

4 Conclusion
In this article we extended our theory of functional dependencies for higher-order
data models and presented an axiomatisation for functional dependencies over XML
documents. The approach is based on a representation of XML document type
definitions (or XML schemata) by nested attributes using constructors for records,
disjoint unions and lists, and a particular null value, which covers optionality. The
list-constructor is used to represent the Kleene-star in regular expressions in XML
element definitions.

In order to fully capture functional dependencies over XML documents we ex-
tended our previous work in two major directions. We introduced rational tree
attributes, which result from reference structures in XML documents. This led to
infinite subattribute lattices, but did not affect the derivation of dependencies. This
is the first time that the investigation of functional dependencies for XML did not
neglect references. Furthermore, we considered functional dependencies on embed-
ded elements. These dependencies can be lifted through the constructors, i.e. they

170 Sven Hart mann, Sebastian Link, and Klaus-Dieter Schewe

induce functional dependencies on complete XML documents. Such dependencies
have not been considered in previous work.

Using a partial order on nested attributes we obtain the structure of non-
distributive Brouwer algebras. The operations of the Brouwer algebra are exploited
in the soundness and completeness proofs for derivation rules for functional depen-
dencies.

In our theory it is also possible to use the multiset- or set-constructor instead
of the list-constructor, thus neglecting order or duplicates. We may also treat all
three "bulk" constructors together. These extensions had to be left out in this
article. A glimpse of the necessary extensions for the other two bulk constructors
can be obtained from [10].

Natural next steps in the development of a fully satisfying dependency theory
for XML will be the generalisation to other classes of dependencies, e.g. multi-
valued or join dependencies, the investigation of efficient closure algorithms, and
the study of normal forms [15] that provably characterise desirable properties of
well-designed XML documents. First steps in this direction are the normal forms
introduced in [3], [8], and [17].

References
[1] ABITEBOUL, S . , BUNEMAN, P . , AND SUCIU, D . Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann Publishers,
2000.

[2] ABITEBOUL, S . , AND HULL, R. Restructuring hierarchical database objects.
Theoretical Computer Science (1988).

[3] ARENAS, M . , AND LIBKIN, L . A normal form for X M L documents. In PODS
2002 (2002), ACM.

[4] BUNEMAN, P. , DAVIDSON, S., FAN, W., H A R A , C., AND TAN, W. Keys for
XML. In Tenth WWW Conference (2001), IEEE.

[5] GOLDFARB, C . , AND PRESCOD, P . The XML Handbook. Prentice Hall, 1998.

[6] HARTMANN, S . , HOFFMANN, A., LINK, S . , AND SCHEWE, K . - D . Axioma-
tizing functional dependencies in the higher-order entity relationship model.
Information Processing Letters 87, 3 (2003), 133-137.

[7] HARTMANN, S . , AND LINK, S . Reasoning about functional dependencies in
an abstract data model. Electronic Notes in Theoretical Computer Science 84
(2003).

[8] HARTMANN, S . , LINK, S . , AND SCHEWE, K.-D. A new normal form for con-
ceptual databases. In Information Modelling and Knowledge Bases XV (2004),
Y. Kiyoki, E. Kawaguchi, H. Jaakkola, and H. Kangassalo, Eds., vol. 105 of
Frontiers in Artificial Intelligence and Applications, IOS Press, pp. 88-105.

Functional Dependencies over XML Documents with DTDs 171

[9] HARTMANN, S., LINK, S., AND SCHEWE, K . - D . Reasoning about functional
and multi-valued dependencies in the presence of lists. In Foundations of
Information and Knowledge Systems (2004), D. Seipel and J. M. Turull Torres,
Eds., vol. 2942 of Springer LNCS, Springer Verlag.

[10] HARTMANN, S., LINK, S., AND SCHEWE, K , - D . Weak functional dependen-
cies in higher-order datamodels. In Foundations of Information and Knowledge
Systems (2004), D. Seipel and J. M. Turull Torres, Eds., vol. 2942 of Springer
LNCS, Springer Verlag.

[11] SALI, A . Minimal keys in higher-order datamodels. In Foundations of In-
formation and Knowledge Systems (2004), D.. Seipel and J. M. Turull Torres,
Eds., vol. 2942 of Springer LNCS, Springer Verlag.

[12] SCHEWE, K . - D . , AND THALHEIM, B . Fundamental concepts of object oriented
databases. Acta Cybernetica 11, 4 (1 9 9 3) , 4 9 - 8 5 .

[13] THALHEIM, B. Dependencies in Relational Databases. Teubuer-Verlag, 1991.

[14] THALHEIM, B . Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer-Verlag, 2000.

[15] VINCENT, M . The semantic justification for normal forms in relational
database design. PhD thesis, Monash University, Melbourne, Australia, 1994.

[16] VINCENT, M . W., AND LIU, J. Functional dependencies for X M L . In
Web Technologies and Applications: 5th Asia-Pacific Web Conference (2003),
vol. 2642 of LNCS, Springer-Verlag, pp. 22-34.

[17] VINCENT, M. W., AND LIU, J. Multivalued dependencies and a 4nf for XML.
In Advanced Information Systems Engineering: 15th International Conference
CAiSE 2003 (2003), vol. 2681 of LNCS, Springer-Verlag, pp. 14-29.

[18] VINCENT, M. W., AND LIU, J. Multivalued dependencies in XML. In British
National Conference on Database Systems: BNCOD 2003 (2003), vol. 2712 of
LNCS, Springer-Verlag, pp. 4-18.

Received May, 2004

Acta Cybernetica 17 (2005) 123-151.

Some Results Related to Dense Families of
Database Relations

Vu Due Thi* and Nguyen Hoang Son1'

Abstract

The dense families of database relations were introduced by Jarvinen [7].
The aim of this paper is to investigate some new properties of dense families
of database relations, and their applications. That is, we characterize func-
tional dependencies and minimal keys in terms of dense families. We give a
necessary and sufficient condition for an abitrary family to be R— dense fam-
ily. We prove that with a given relation R the equality set ER is an R—dense
family whose size is at most where TO is the number of tuples in R.
We also prove tha t the set of all minimal keys of relation R is the transversal
hypergraph of the complement of the equality set ER. We give an effective
algorithm finding all minimal keys of a given relation R. We aslo give an algo-
rithm which from a given relation R finds a cover of functional dependencies
that holds in R. The complexity of these algorithms is also esimated.

1 Basic definitions
In this section we present briefly the main concepts of the theory of relational
databases which will be needed in sequel. The concepts and facts given in this
section can be found in [1, 3, 4, 8, 9].

Let U be a finite set of attributes (e.g. name, age etc). The elements of U will
be denoted by a, b, c,..., x, y, z, if an ordering on U is needed, by a i , . . . , a„. A
map dom associates with each a £ U its domain dom(a). A relation R over U is a
subset, of Cartesian product rLec/ dom(a).

We can think of a relation R over U as being a set of tuples: R = { / i i , . . . , hm},

hi : U —> (^J dom(a), hi(a) £ dom(a), i = 1,2,..., m.
a€U

A functional dependency (FD for short) is a statement of form X —> Y, where
X, Y C U. The FD X —>Y holds in a relation R = {hu • • •, hm} over U if

{\/hi,hj £ i?)((Va 6 X)(hi(a) = h^a)) (V6 e Y)(hi(b) = hj(b))).

'Institute of Information Technology, Vietnamese Academy of Science and Technology, 18
Hoang Quoc Viet, Hanoi, Vietnam.

t Department of Mathematics, College of Sciences, Hue University, Vietnam.

173

174 Vu Due Thi and Nguyen Hoang Son

We also say that R satisfies the FD X —> Y.
Let FN be a family of all FDs that holds in R. Then F = FR satisfies

(Fl) X X £ F ,

(F2) (X Y £ F , Y - » Z £ F) => { X - Z £ F) , .

(F 3) (X - > Y £ F , X C V , W C Y) = > (V - * W £ F) ,

(F4) (X -> Y G F , V - * W G F) =» { X U V — Y U W G f) .

A family of FDs satisfying (Fl) - (F4) is called an f — family over U.
Clearly, FA is an /-family over U. It is known [1] that if F is an arbitrary/-

family, then there is a relation R over U such that FR = F.
Given a family F of FDs over U, there exists a unique minimal /-family F+

that contains F. It can be seen that contains all,FDs which can ¡be derived
from F by the rules (Fl) - (F4). - • • -

A relation scheme s is a pair (¡7, F), where U is a set of attributes and F is a
set of FDs over U. • "-'

Let U be a nonempty finite set and V(U) its power set.. The mapping C :
V(U) —> ~P(U) is called a closure operation over U if 'it satisfies the following
conditions: , . . . •

(1) X c c (X) , .

(2) X C Y implies C(X) C C(Y), '
(3) c(c(x))=ax). .

Remark 1.1. It is clear that, if F is an /— family, and we define CF{X) as

C F { X) = {a G U : X {a} G F }

then CF is a closure operation over U. Conversely, it is.known [1,-3] that if £ is a
closure operation, then there is exactly one /— family F over U so that £ = CF,
where

F = { X - + Y : X , Y C U , Y C £(X)}.

Thus, there is a one-to-one correspondence between closure operations arid /—
families over U. 1

Let R be a relation over U and K C U. Then K.is a key of R if K —> U G FR.
K is a minimal key of R if K is a key of R and any proper subset of K is not a key
of R .

Denote KR the set of all minimal keys of R. •
Let I C V(U), U G I, and A, B € I => Ail B G I. I is called a meet-seiiiilattice

over U. Let M C V(U). Denote M + = {flM' : M' C M}. We say that M is a
generator of I if M+ = I. Note that U G M+ but'riot in Ai, by convention it is
the intersection of the empty collection of sets.

Denote N = {A G I : A ± n{A' G7 : A C A'}}. It can be seen that AT is the
unique minimal generator of I .

Some Results Related to Dense Families of Database Relations 175

2 Hypergraphs and Transversals
Let U be a nonempty finite set and put V(U) for the family of all subsets of U.
The family Tí = {Ei : Ei G V(JJ), i = 1 ,2 , . . . , m} is called a hypergraph over U if
Ei 0 holds for all i (in [2] it is required that the union of EiS is U, in this paper
we do not require this).

The elements of U are called vertices, and the sets Ei,..., Em the edges of the
hypergraph TL.

A hypergraph TL is called simple if it satisfies VJ5¿, Ej € TL : Et Ç Ej Ei = Ej.
It can be seen that KR is a simple hypergraph.

Let H be a hypergraph over U. Then min(TL) denotes the set of minimal edges
of Tí with respect to set inclusion, i.e., minÇH) = {Ei £ TL : flEj e Tí : Ej C i?¿},
and max(TL) denotes the set of maximal edges of Tí with respect to set inclusion,
i.e., max(TL) = {Ei&TÍ :flEj 6 TL : Ej D Sti-

lt is clear that, min(Ti) and max(Ti) are simple hypergraphs. Furthermore,
min(Ti) and max(TL) are uniquely determined by TL.

A set T Ç U is called a transversal of Tí (sometimes it is called hitting set) if it
meets all edges of Tí, i.e., VE 6 H : T n £ j ¿ 0 . Denote by Trs(H) the family of all
transversals of TL. A transversal T of TL is called minimal if no proper subset T' of
T is a transversal.

The family of all minimal transversals of TL called the transversal hypergraph
of TL, and denoted by Tr(TL). Clearly, Tr(TL) is a simple hypergraph.

Proposition 2.1 ([2]). Let TL and G two simple hypergraphs over U. Then

(1) H = Tr(Q) if and only if Q = Tr(TL),
(2) Tr(Ti) = Tr(Q) if and only ifTL = G,
(3) Tr(Tr(TL)) = H.

By the definition of minimal transversal, the following proposition is obvious

Proposition 2.2. Let Tí be a hypergraph over U. Then

Tr(TL) = Tr(min(TL)).

The following algorithm finds the family of all minimal transversals of a given
hypergraph (by induction).

Algorithm 2.3 ([5]).

Input: let TL = {E\,..., Em} be a hypergraph over U.

Output: Tr(TL).

Method:

Step 0. We set Lx {{a} : a G Ex}. It is obvious that Lx = Tr({Ex}).

176 Vu Due Thi and Nguyen Hoang Son

Step q+1. (q < m) Assume that

Lq = Sq U {Bi,.. .,Btq},

where Bi h Eq+i = 0, i = 1 , . . . , tq and Sq = {A G Lq : A n Eq+X ^ 0}.

For each i (i = 1 , . . . , tq) constructs the set {Bi U {6} : b G Denote them
by A\,..., Aj..(i = 1 , . . . , tq). Let

Lq+1 = U {Aj,: A G Sq => A £ A*, 1 < i < tq, 1 < p < n} .

Theorem 2.4 ([5]). For every q(l < q < m)Lq = Tr({Ei,... ,Eq}), i.e., Lm =
Tr(H).

It can be seen that the determination of Tr(T-L) based on our algorithm does
not depend on the order of E\,..., Em.

Remark 2.5. Denote Lq = Sq U {B\,... ,Btl)}, and lq(1 < q < m — 1) be the
number of elements of Lq. It can be seen that the worst-case time complexity of
our algorithm is

m—1

<7=0

where IQ = io = 1 and

{ lq tq, if lq ^ tq',

1, if = tq.
Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known

that the size of arbitrary simple hypergraph over U cannot be greater than C ^ 2 ' ,
where n = \U\. Ct/2] is asymptotically equal to 2 n + 1 /2/(7 r .n) i /2

From this, the
worst-case time complexity of our algorithm cannot be more than exponential in the
number of attributes. In cases for which lq < lm(q = 1 ,...,m — 1), it is easy to see
that the time complexity of our algorithm is not greater than 0(|{/|2 |W||Tr(W)|2).
Thus, in these cases this algorithm finds Tr(H) in polynomial time in \U\, \H\ and
\Tr(H)\. Obviously, if the number of elements of 7i is small, then this algorithm is
very effective. It only requires polynomial time in |iZ|. The following proposition is obvious

Proposition 2.6 ([5]). The time complexity of finding Tr(7i) of a given hypergraph
Ti is (in general) exponential in the number of elements ofU.

Proposition 2.6 is still true for a simple hypergraph.

Some Results Related to Dense Families of Database Relations 177

3 Dense Families
Let V C V(U) be a family of subsets of a U. We define a set Fv over V as follows

Fv = {X Y : (VA € V)X CA=>YCA}.

Proposition 3.1 ([7]). IfV is a family of subsets of a finite set U, then i*x> is an
f— family over U.

The notion of dense family of a database relation is defined in [7], as follows:
Let R be a relation over U. We say that a family V C V(U) of attribute sets is

R — dense (or dense in R) if FR = FX>.
The following proposition guarantees the existence of at least one dense family.

In the sequel we denote CFr simply by CR.

Proposition 3.2 ([7]). The family CR is R—dense.

Proposition 3.3 ([7]). IFD is R-dense, then V C CR.

Note that by Proposition 3.2 and Proposition 3.3, CR is the greatest R—dense
family.

For any A C U, we denote by A the complement of A with respect to the set
U, that is, A = {a £ U : a g A}.

Theorem 3.4 ([7]). Let R be a relation over U. If T> C V(U) is R—dense, then
the following conditions hold

(1) K is a key of R if and only if it contains an element from each set in
{A:AeV,A^U}.

(2) K is a minimal key of R if and only if it minimal with respect to the property
of containing an element from each set in {A : A £ V,A ^ U}.

Let U be a finite set and V(U) its power set. For every family V C V(U), the
complement family of V is the family V — {A : A € T>) over U.

Let R = {hi,..., hm} be a relation over U, and ER the equality set of R, i.e.,

E R = { E I J : 1 < i < j < to}

where E^ = {a £U : hi(a) = hj(a)}.
Proposition 3.5. The equality set ER is R— dense.

Proof. Assume that X —> Y € FR. Let E^ £ ER such that X C EIJ. This means
that hi(X) = hj(X). From this, and according to the definition of FDs, we have
hi(Y) = hj(Y). Thus, Y C ETJ. By the definition of FER, that is,

F E R = { X ^ Y : (V E I J e E R) X C E T J =• Y C E ^ } ,

we obtain X —• Y £ FEr.
Conversely, let X —> Y £ Fer. Suppose that there are hi,hj £ R such that

hi(X) = hj(X), 1 < i < j < TO. Which means that X C E^. By X -» Y £ FER,
Y C E^. Hence, we also obtain hi(Y) = hj(Y). Consequently, X —• Y £ FR.

The proposition is proved. •

178 Vu Duc Thi and Nguyen Hoang Son

It is easy to see that the dense family ER has at most ^ elements. By
Proposition 3.3, we also have ER Ç CR.

Theorem 3.6. Let R be a relation over U. Then

KR = Tr{min{ER)).

Proof. By the definition of relation R, we have U & ER. Prom this, Proposition
2.2, Proposition 3.5 and Theorem 3.4, the theorem is obvious.

The proof is complete. •

Let R = { / i i , . . . , hm} be a relation over U, and NR the nonequality set of R,
i.e.,

N R = { N I J : 1 < i < j < M }

where N^ = {a e U : hi(a) ^ hj(a)}.
Note that, because R is a relation, 0 0 NR and U £ ER. Moreover, NR = ER.

Prom this, and Theorem 3.6, the following corollary is immediate

Corollary 3.7. Let R be a relation over U. Then

KR = Tr{min{NR)).

Corollary 3.7 was shown in [5].

Proposition 3.8. IfDis R— dense, then

minÇD - {0}) = max(ER).

Proof. According to Theorem 3.6, we have KR = Tr{ER). By Proposition 2.2, it
is clear that

KR = Tr(max{ER)). (1)

Because V is R— dense, and by Theorem 3.4, we have K R = Tr(T> — {0}). Fur-
thermore, we have

Tr(D - {0}) = Tr(min{V - {0})).

Hence
KR = Tr(min(p-{%})). (2)

From (1) and (2), we give

Tr(min(V - {0})) = Tr(max(ER)).

By min(D — {0}) and max{ER) are simple hypergraphs, thus according to Propo-
sition 2.1 we have

min(V - {0}) = max{ER).

The proposition is proved. •

From Proposition 3.8, the following corollary is clear

Some Results Related to Dense Families of Database Relations 179

Corollary 3.9. IfDis R— dense, then

min(D - {0}) - min(Nii).

Now we give a necessary and sufficient condition for an arbitrary family V is
R— dense.

Theorem 3.10. Let R be a relation, T> C V(U) a family of subsets of a U. Then
V is R— dense i f f for every X C U

[n A if 3A G V : X C A,
CR(X) = I XCA

I U otherwise,

where CR{X) = {a G U : X -> {a} G FR).

Proof. First we prove that in an arbitrary family V C. V(U) for all X C U

i f | A if 3A G V : X C A,
CFj>{X)=IXCA

I U otherwise.

Suppose that X is a set such that there is no A G V with X C A. By the
definition of F-p, it is easy to see that X —• U G Fp. Hence, Cft,{X) = U.

Since 0 C C\A£V A Q A, according to the definition of F-p and we obtain

cF„m= n A.
A€V

If X £ 0 and there is an A G V such tha t X C A then we set

Q = {A-.XQA,A£V),

B = f l A

It is easy to see that X C B holds. If Q = D or Q ^ V, then we also obtain
X B G Ft,.

By the definition of CFr>, we have B C CFv(X). Using X C B C CFt>(X), we
obtain B CF„(X) G Fv.

Now we suppose that b is an attribute such that b g B. Then, there is A G Q
so that b $ A. Hence, by the definition of Fv we have B —> B U {6} £ F-p.
Consequently,

Aev
By Remark 1.1 it is easy to see that FR = F-p holds iff C R = C F J 3 does.
The Theorem is proved. •

180 Vu Due Thi and Nguyen Hoang Son

Prom Theorem 3.10 and Proposition 3.5, the following proposition is obvious

Proposition 3.11. Let R = {hi,..., hm} be a relation over U = { a i , . . . , On}.
Then

(1) IFV is R— dense, then V U {U} also is R-dense, and thus ER U {t/} is
R—dense.

(2) If m = 1 or FR = {{ai} -» f / , . . . , {a„} U}, then families VX = 0,
X>2 = {0} and V3 = {U} are R—denses.

4 Finding the set of all minimal keys of a relation
In this section, we give the following algorithm finding all minimal keys of a given
relation R. Remember that this problem is inherently exponential in the size of R
[4].

Algorithm 4.1.

Input: a relation R = {hi,..., hm} over U.

Output: KR.

Method:

Step 1. Construct the equality set

E R = { E I J : 1 < i < j < m}

where E^ = {a € U : hi(a) = hj(a)}.

Step 2. Compute the complement of ER as follows

ER = {Eij : E^ 6 E R } .

Denote elements of ER by NI, ... ,NK

Step 3. From E^ compute the family min(ËR) = {Ni € T Ï R : fiNj £~ËR : Ni Ç
Nj). _
Step 4• By Algorithm 2.3 we construct the set Тг{тт{Ед)).

Based on Proposition 2.2, Algorithm 2.3 and Theorem 3.6, we have KR =
Tr{min{ER)). It can be seen that the time complexity of this algorithm is the
time complexity of Algorithm 2.3. In many cases this algorithm is very effective
(see Remark 2.5).

It can be seen that, if the number of elements of the equality set ER is constant,
i.e. < К for some constant K, then the time complexity of finding KR of a
given relation R is polynomial time [9].

The following example shows that for a given relation R, Algorithm 4.1 can be
applied to find all minimal keys of a given relation R.

Some Results Related to Dense Families of Database Relations 181

Example 4.2. Let us consider the relation R over U = {a, b, c, d} as follows

a b e d
0 0 0 0
0 0 0 1

R=2 0 0 0
3 3 0 0
4 0 4 4
5 5 5 0

It can be seen that the equality set ER is the following
E R = {0, {6}, {c}, {d}, {b, c}, {c, d}, {a, b, c}, {b, c, d}}.

Hence
ER =J{a} , {d}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {a, c, d}, U},
min(ER) = {{a},{d}}.

Prom this, we obtain
KR = {{a,d}}.

5 Finding the cover of a relation
Prom Proposition 3.5 and Theorem 3.10 we have an application, which is the fol-
lowing algorithm finding a cover of FDs of a given relation R. Recall that this
problem is inherently exponential in the size of R [6].

Algorithm 5.1.
Input: a relation R = { / i i , . . . , hm} over U.
Output: FR.
Method:

Step 1. Construct the equality set

E R = { E I J : 1 < i < j < M }

where Eij = {a & U : hi(a) = hj(a)}.
Step 2. Compute the family Er = {nA : A C ER}. Denote the elements of E^ by
Xi,... ,Xt.
Step 3. Construct set of FDs as follows

F = {Ki -» Xx : Kx € Key(Xi)} U • • • U {Kt^Xf.Kt& Key(Xt)}

where Key(Xi) is a set of all minimal keys of IIx; (R) (the projection of R onto the
attributes set Xi).

Obviously, F — FR. Note that CR = E^. It is easy to see that the time
complexity of this algorithm is exponential in the number of attributes.

The following example shows that for a given relation R, Algorithm 5.1 can be
applied to find a cover of a given relation R.

i'

182 Vu Due Thi aad Nguyen Hoang Son

E x a m p l e 5.2. R is the following relation over U = {a, b, c, d}

a b c
0 0 0

R~o 1 0
1 1 0

It can be seen that the equality set ER is the following
ER = {{c},{a,c},{6,c}}.

Therefore
E+ = {{c},{a,c},{b,c},U}.

From this, we have
F= {M - M, {b} - {c}, {a, 6} - {c}}.

It is obvious that F = FR.

References
[1] Armstrong W. W., Dependency structure of database relationship, Information

Processing 74, North-Holland Pub. Co. , (1974) 580-583.

[2] Berge C., Hypergraphs: combinatorics of finite sets, North - Holland,' Amster-
dam (1989).

[3] Demetrocis J., On the equivalence of candidate keys with Sperner systems, Acta
Cybernetica 4, (1979), 247-252.

[4] Demetrovics J., Thi V.D., Keys, antikeys and prime attributes, Annales Univ.
Sci. Budapest Sect. Comp. 8, (1987), 35-52.

[5] Demetrovics J., Thi V. D., Describing candidate keys by hypergraphs, Computers
and Artificial Intelligence 18, 2 (1999), 191-207.

[6] Gottlob G., Libkin L., Investigations on Armstrong relations, denpendency in-
ference, and excluded functional dependencies, Acta Cybernetica Hungary 9, 4
(1990), 385-402.

[7] Jarvinen J., Dense families and key functions of database relation instances,
in: Freivalds R. (ed.), Fundamentals of Computation Theory, Proceedings of
the 13th International Symposium, Lecture Notes in Computer Science 2138
(Springer-Verlag, Heidelberg, 2001), 184-192.

[8] Thi V. D., Minimal keys and antikeys, Acta Cybernetica 7 (1986), 361-371.

[9] Thi V. D., Son N. H., Some problems related to keys and the Boyce-Codd normal
form, Acta Cybernetica 16, 3 (2004), 473-483.

Received December, 2004

CONTENTS

Balázs Imreh and Masami Ito: On regular languages determined by nonde-
terministic directable automata 1

Alexander Meduna and Jifi Techet: Generation of Sentences with Their
Parses: the Case of Propagating Scattered Context Grammars 11

Saeed Salehi: Varieties of Tree Languages Definable by Syntactic Monoids . . 21
Ludwig Staiger. Topologies for the Set of Disjunctive w-words 43
Bianca Truthe: On the Finiteness of Picture Languages of Synchronous De-

terministic Chain Code Picture Systems 53
Zhilin Wu: Quasi-star-free Languages on Infinite Words 75
József Dombi and Nándor Vincze: The lexicographic decision function 95
Tamas Vinkó: Minimal inter-particle distance in atom clusters 107
Balázs Ugron, Szabolcs Hajdara, and László Kozma: Synthesis of the syn-

chronization of general pipeline systems ; . . 123
Sven Hartmann, Sebastian Link, and Klaus-.Dieter Scheme: Functional De-

pendencies over XML Documents with DTDs 153
Vu Due Thi and Nguyen Hoang Son: Some Results Related to Dense Families

of Database Relations 173

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

