
Volume 16 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: J. Csirik (Hungary)

Managing Editor: Z. Fülöp (Hungary)

Assistant to the Managing Editor: B. Tóth (Hungary)

Editors: L. Aceto (Denmark), M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender
(The Netherlands), W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland),
B. Courcelle (France), J. Demetrovics (Hungary), B. Dömölki (Hungary),
J. Engelfriet (The Netherlands), Z. Esik (Hungary), F. Gécseg (Hungary), J. Gruska
(Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 2003

A C T A C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source Tj^X
file, if any, on a diskette to the Managing Editor. Having the TgX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the University of Szeged, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
2003 Numbers 1-2 of Volume 16 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests
for subscription information to: Department of Informatics, University of Szeged,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-546-396, Fax:(36)-(62)-546-
397.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/kutatas/actacybernetica/.

EDITORIAL BOARD

Editor-in-Chief: J. Csirik
University of Szeged
Department of Computer Science*
Szeged, Árpád tér 2.
H-6720 Hungary

Managing Editor: Z. Fülöp
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Assistant to the Managing Editor:

B. Tóth
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

L. Aceto
Distributed Systems and Semantics Unit
Department of Computer Science
Aalborg University
Fr. Bajersvej 7E
9220 Aalborg East, Denmark

M . Aratö
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
.Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

F. Gécseg
University of Szeged
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

W . Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

A. Kelemenova
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51.
CH-3012 Bern, Switzerland

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, Lágymányosi u. 11.
H - l l l l Hungary

B. Dömölki
.IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
LIACS
P.O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Ésik
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Department of Computer Science
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A . Prékopa
Eötvös Loránd University
Department of Operations Research
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

A . Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Department of General Computer Science
Budapest, Pázmány Péter sétány 1/c .
H-l 117 Hungary 1

H. Vogler I
Dresden University of Technology i
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Department of Matematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

Preface

The 3rd Conference for PhD Students in Computer Science (CSCS) was or-
ganized by the Department of Computer Science of the University of Szeged
(SZTE) and held in Szeged, Hungary from July 1 to 4, 2002. The members of
the Scientific Committee were the following representants of the Hungarian doc-
toral schools in computer science: Mátyás Arató (DE), András Benczúr (ELTE),
Miklós Bartha (SZTE), Tibor Csendes (SZTE), János Csirik (SZTE), János
Demetrovics (SZTAKI), Sarolta Dibuz (Ericsson), József Dombi (SZTE), Zoltán
Esik (SZTE), Ferenc Friedler (VE), Zoltán Fülöp (SZTE), Ferenc Gécseg (chair,
SZTE), Balázs Imreh (SZTE), János Kormos (DE), László Kozma (ELTE),
Attila Kuba (SZTE), Eörs Máté (SZTE), Gyula Pap (DE), András Recski
(BMGE), Endre Selényi (BMGE), Katalin Tarnay (NOKIA), György Túrán
(SZTE), and László Varga (ELTE). The members of the Organizing Commit-
tee were Tibor Csendes (chair), Lajos Schrettner, Mariann Sebő, Péter Gábor
Szabó, Boglárka Tóth, and Tamás Vinkó.

There were more than 100 participants and 88 talks in several fields of computer
science and its applications. Beyond the Hungarian PhD schools in computer
science, mainly the universities of Almería, Spain and of Turku, Finland were
represented. The talks were going in two parallel sections in artificial intelli-
gence, automata and formal languages, computer networks, database theory,
discrete mathematics, fuzzy decision support systems, information systems, op-
timization, picture processing, and software engineering. The' talks of the stu-
dents were completed by 4 plenary talks of leading scientists.

Three scientific journals, viz. Periodica Polytechnica (Budapest), Publicationes
Mathematicae (Debrecen) and Acta Cybernetica (Szeged) offered students to
publish the paper version of their presentations after a selection and review
process. Altogether 35 papers were submitted for publication. The present
special issue of Acta Cybernetica contains 10 such papers.

The full program of the conference, the collection of the abstracts and further
information can be found at h t t p : //www. i n f . u - s z e g e d . h u / ~ c s c s .

On the basis of our positive experiences, the conference will be organized in the
future, too, hopefully with more foreign participants. According to the present
plans, the next meeting will be held in July 2004 in Szeged.

Tibor Csendes and Zoltán Fülöp

207

Acta Cybernetica 16 (2003) 209-228.

Incorporating Linkage Learning into the GeLog
Framework*

Tim Fühnert and Gabriella Kokai*

Abstract

This article introduces modifications that have been applied to GeLog, a
genetic logic programming framework, in order to improve its performance.
The main emphasis of this work is the structure processing of genetic algo-
rithms. As studies have shown, the linkage of genes plays an important role in
the performance of genetic algorithms. Thus, different approaches that take
linkage learning into account have been reviewed and the most promising
has been implemented and tested with GeLog. It is demonstrated that the
modified program solves problems that proved hard for the original system.

1 Introduction
The GeLog program combines two approaches, inductive logic programming (ILP)
and artificial evolution [1]. This work aims at improving the GeLog framework by
incorporating methods that help the evolutionary algorithm to maintain a rugged
search behavior without losing the ability to quickly find (local) optima. Both
requirements are most relevant to noisy search spaces, which are often characteristic
in inductive logic programming. This article introduces the modifications that were
applied to the GeLog framework and presents the results of two experiments, which
demonstrate that the program has been drastically improved.

The following section briefly introduces the GeLog framework. Section 3 ex-
plains the term linkage and introduces related approaches. The modifications that
have been applied to GeLog are depicted in Section 4. In Section 5 some test results
are presented. Finally, Section 6 concludes this article and provides a short outlook
on future investigations and improvements.

2 Brief Introduction into GeLog
The GeLog framework is a genetic logic programming framework, an inductive
logic programming system combined with an evolutionary search algorithm [1]. In-

"This work is supported by the grants of Bayerischer Habilitationsforderpreis 1999.
^Department of Computer Science II, University of Erlangen-Nuremberg, Martensstr. 3, 91058

Erlangen, Germany, e-mail: fuehnerfliis-b.fhg.de, kokaiflinformatik.uni-erlangen.de

209

210 Tim Fiihner and Gabriella Kókai

ductive logic programming is a machine learning approach, in which correlations
of objects are ascertained by induction. Hypotheses are searched for and evalu-
ated by comparing their classification results with a sufficiently large number of
instances for which it is known whether their objects are correlated or not [2]. It is
thus assumed that hypotheses classifying these training instances correctly will also
approximate the target function well over any other set of instances. The learned
hypotheses can be interpreted as PROLOG programs, since they consist of set of
rules, that is, first order Horn clauses.

GeLog's data representation resembles more to that of genetic programming:
the individual solutions consist of PROLOG program parts, which encode the hy-
potheses' rules. Thus, an individual comprises the target predicate as its left hand
side and a number of disjunctions (right hand sides), all of which are conjunctions
of literals. The following example demonstrates how individuals are represented in
the the original GeLog implementation:

daughter(XO, XI) : - f emale (XO) , p a r e n t s (X l , X0, X I) .

parents(XO, XI , X I) .

f e m a l e (X I) , female (XO) , p a r e n t s (X l , XI , XO) .

The depicted individual consists of three disjunctions (right hand sides); each
disjunction contains a number of conjuncted literals and is terminated by a dot.

The pay-off of one hypothesis results from the number of correctly classified
instances. Different selection operators have been implemented: Roulette Wheel
Selection, Rank Selection, and Elitism (for further explanation of these operators
see [3] and [4]).

Due to the non-standard data representation special recombination and muta-
tion operators had to be implemented:

• Two recombination operators; (1) two individuals exchange entire disjunc-
tions by single- or multi-point crossover, (2) two individuals exchange predi-
cates by performing single- or multi-point crossover at disjunction level.

• Mutation operators; (1) insertion and deletion of literals, (2) insertion and
deletion of entire disjunctions, (3) insertion of new variables, and (4) substi-
tution of variables.

3 Linkage Learning and Related Work
The first complete theory of the dynamics and processing units of genetic algorithm
was developed by Holland [5]. In his schema theorem he suggested that genetic al-
gorithms process the search space implicitly parallel. A specific individual is also

Incorporating Linkage Learning into the GeLog Framework 211

a representative of a class of individuals that have certain gene values (alleles) in
common. For example, individual 100101 represents the class of individuals with a
leading '1' (denoted as 1*****); but it also represents individuals that contain two
'0' alleles on second and third position (*00***), etc. Thus, by selecting individual
solutions the (schema) classes which are represented by the individual gain influ-
ence. For example, if *00*** exhibits a relative high fitness, i.e., individuals that
contain the specified '0' alleles are on average fitter than others are, this schema is
represented more often than other schemata. A higher fitness is achieved if those
parts of solutions are recombined that caused the former individuals to exhibit a
higher fitness than other individuals. In other words, by combining fit schemata
even fitter schemata are generated.

Based on the insights attained by the schema theory Goldberg formulated what
he called the building block hypothesis [3]. He concluded that the central processing
units of genetic algorithms are "short, low-order, and highly fit schemata". These
entities he called building blocks. Goldberg also found that some problems are hard
to solve for genetic algorithms because of difficulties in processing building blocks.
Consider four building blocks: Hi = 1*****, H2 = *****1, H3 = 0*****, and H4
= ***+*0. Let the fitness of Hi and H2 be remarkably greater than the fitness of
Hz and H4, also let the fitness of a recombination of Hx and H2 (1****1) be smaller
than 0****0 (the combination of H3 and H4). As the two recombined schemata
exhibit a relatively high order, chances are high that they are disrupted quickly,
resembling schemata Hi - H\. Since the selection probabilities for schemata
and are low it is difficult for the genetic algorithm to recombine them both
yielding the highly fit schema 0****0 again.

The situation changes if the defining genes of the schemata are linked more
tightly, since the probability of disruption decreases drastically. On the one hand
that increases the chances of preserving the fit recombined schema, on the other
hand it ensures that the unfit schema is discarded and not split into the two fit
sub-schemata which lead to the deception. This is obviously a simplification of the
dynamics of genetic algorithms and has been criticized for that reason (cf. [6, 7]).
However, it could be shown that for many problems improving the linkage situation
of building blocks also improved the performance of the genetic algorithm. It is
therefore worthwhile to develop techniques that lead to tighter linkage of building
blocks.

It was long assumed that individuals in genetic algorithms would eventually
evolve towards tighter linkage. However, early efforts that used inversion operators
to achieve tight linkage proved that selection is too powerful and thus counteracting
linkage learning [8].

3.1 Messy GA
One of the early approaches that took this observation into account was the so-
called messy genetic algorithm [9]. In addition to a "messy coding" which allowed
for a reordering of the chromosome, linkage learning and selection were separated

212 Tim Fiihner and Gabriella Kókai

into two phases such that selection is prevented from vitiating linkage learning. The
two phases are repeated alternately increasing the order of building blocks that are
processed. In the first phase all possible building blocks of the current order are
generated. This explicit enumeration is very expensive (0 { 2 k i k) , where I is the
chromosome length and k is the highest order of building blocks, i.e., the number of
genes, that define a building block). After this enumeration the threshold operator
tries to select individuals such that only those compete that define the same class
of schemata. For example, 00* and 11*, but not 0*1 and *01. The second phase
resembles to a simple genetic algorithm. A variation of this approach replaces the
expensive enumeration of all building blocks of a specific order by a probabilistic
technique [10]. Instead of generating all order-fc schemata explicitly, this technique
makes use of the fact that one bit string may contain multiple schemata at the
same time, since the bit string is normally longer than the order of the schema.
Thus, only a fraction of the former 0{2klk) individuals had to be created. The
threshold selection operator must then decrease the string lengths, such that only
fit schemata remain. However, the threshold selection operator has proven quite
unfit in this task [11].

3.2 Gene Expression Messy GA

Another messy genetic algorithm was developed by Kargupta [12]. The process
of gene expression as observed in nature inspired his approach. Consequently this
type of algorithm is called gene expression messy genetic algorithm (GEMGA). The
linkage learning is done by induction; the genes that improve the solution's pay-off
are assumed to correlate. In a first transcription phase the contribution of a gene is
to the fitness of the individual is determined. This is done by flipping each gene to
its opposite value if the fitness increases, the original value does not contribute to
the fitness, otherwise it does and is marked such that it cannot be changed in the
future. In the second transcription phase all genes in a chromosome that have been
marked as unchangeable are collected and compared with the same unchangeable
genes of another randomly chosen chromosome. The intersection of the genes is
saved (linkage set) and either is added to a list of the former chromosome or, if
the set is already present, its weight is increased. After some iterations a matrix is
build, which contains the probabilities of the presence of a gene under the condition
that a specific gene is in the linkage set.

Afterwards, the schemata that have been identified as good are manifolded
using class selection: two chromosomes are randomly picked, the fitter of both is
marked, the genes in the linkage set of the marked chromosome are copied to the
other chromosome, provided that the destroy genes exhibit less linkage than the
genes by which they are replaced. Additionally tournament selection is applied.

Recombination is done by randomly picking an individual and selecting its max-
imum weighted linkage set, another individual is selected, and the corresponding
genes are exchanged if the disrupted linkage sets in the latter chromosome have a
smaller weight than the maximum weight of the former.

Incorporating Linkage Learning into the GeLog Framework 213

3.3 Linkage Learning GA

A completely different approach was taken by Harik [13]. Harik showed that a
specific recombination operator, the so-called exchange crossover operator, could
under certain conditions improve the linkage of genes. The chromosomes in Harik's
linkage learning genetic algorithm (LLGA) are declared as rings. Each gene is de-
scribed by its allele (value) and a locus, i.e., the interpretation position of this gene.
By introducing so-called introns, genes that are not interpreted at all, the relative
distance of two genes can be adjusted. In Figure 1 an example of a chromosome
containing three genes is given. One can see that by inserting non-coding genes
(introns) between the coding genes (exons) the distances (yi, y2, and 2/3) can be
varied.

gene 3

gap yi

Figure 1: Chromosome in linkage learning genetic algorithm.

In contrast to most common implementations the exchange crossover operation
is directional, that is, one individual serves as donor, the other one is the recipient.
First some exchange material is randomly chosen from the donor chromosome,
then a random graft point is declared at the recipient. The exchange material is
then inserted within the graft point of the recipient. As one can see in Figure 2
the crossover leaves an over-determined chromosome, that is, some of the genes
appear twice. Therefore an expression step is appended: A starting point and an
interpretation direction are defined. Beginning from the starting point each gene
that has been previously defined on the circle is simply removed, yielding a valid
chromosome.

Harik proved that by applying this operator the individuals evolve towards
tighter linkage. He assumed that the population will eventually consist mostly of
both optimal building blocks and deceptive building blocks (as described earlier).
This assumption can be made as the genetic algorithm eventually rules out all
apparently unfit building blocks. Harik observed two effects:

(1) Linkage Skew: tightly linked building blocks in the donor chromosome have a
higher survival probability than loose linked building blocks. This mechanism
is comparable to fitness-proportional selection.

214 Tim Fiihner and Gabriella Kókai

\.*,\tf ^m (2 , 1)

f > v . f >
:2 ,1) \ (3 , 1) ^ M (4 , 0) (5 ,

l J j X l)
(1,0)^^^(5.1) (3.0J. _U,1)

(a) (b)

í
v /

(3 . 0) (5 - - °

(1,1) ,«B,0)

(c)
.(2,1).

(4 , 0) (3 , 1)

l)
(l . l ^ (5 .1)

(d)

Figure 2: Exchange Crossover Operator: (a) donor, (b) recipient, (c) offspring
before expression, and (d) offspring after expression.

(2) Linkage Shift: if exchange material from the donor is copied onto the
recipient—which contains an optimal building block—the building block is ei-
ther disrupted or its linkage is increased.

However, in order for linkage learning to work selection must be slowed down,
since it counteracts the evolution towards tighter linkage (as shown by Harik).
Harik suggests two different methods to slow down selection:

(1) Restricted tournament selection: In contrast to conventional selection opera-
tors where each individual is competing against one another, with tournament
selection individuals only replace solutions which have a similar bit-string [13].

Thus, this selection operator is not only well suited for multi-modal optimiza-
tion tasks, but will also maintain a high level of diversity within the population.

The main program's pseudo code listing in Section 4.5 comprises a detailed
description of restricted tournament selection.

Incorporating Linkage Learning into the GeLog Framework 215

(2) Probabilistic expression: This approach refers to an alternative way of chromo-
some encoding in which all genes appear twice, exhibiting the actual allele and
its opposite. The starting point of the chromosome interpretation is randomly
changed, resulting in a change of the genes' alleles with some probability. Thus,
even if an allele has leveled out in the population, it might be revived.

3.4 Summary
The messy genetic algorithm and its variant the fast messy genetic algorithm can
be considered early approaches. They have proven to work in limited settings, but
haven proven infeasible for real-world applications. A very promising approach
has been suggested by Kargupta [12]. However, the number of additional fitness
evaluation (in the transcription phase) and the large administration effort, which is
necessary in order to store linkage information, seem to be a remarkable drawback.
Harik's LLGA, on the other hand, proved to work well on exponentially scaled
problems, that is, problems where parts of the genes contribute differently to the
fitness value. As the hard problems for GeLog can be assumed to belong to this
kind of problem class, this approach seems well suited for GeLog.

4 Improving the GeLog Framework
This section introduces the modifications that were applied to the data structures
and the operators, which were implemented in order to achieve linkage learning. We
have chosen the Linkage Learning GA (LLGA) approach to achieve this goal, since it
offers a relatively good scalability and the genotypic representation is appropriate
for GeLog. Moreover, the apparently reasonable theory of the LLGA and the
promising results suggested an application to the GeLog framework.

The probabilistic expression (PE) as suggested by Harik [13] is not incorporated
for the maintenance of diversity. Instead, tournament selection and restricted tour-
nament selection are used. While tournament selection is a standard selection
scheme in genetic algorithms, restricted tournament selection is commonly used for
multi-objective optimization problems [13].

4.1 Chromosome
The genotypes in GeLog are represented by a so-called object graph [1], which allows
for a direct transformation into the data structures used in logic programming.
However, this representation is not ideal for the processing of building blocks in
genetic algorithms. Not only is there evidence [5] that short alphabets have a
positive impact on the implicit parallelism, but also for the linkage learning a
chromosome of fixed length seems more appropriate. It is important that the entire
search space is explicitly represented in one individual.

Except for the necessary changes in the genotype representation, the new ver-
sion tried to stay as close to the original representation as possible. As in the

216 Tim Fiihner and Gabriella Kókai

original work, each individual contains a number of disjunctions. However, in con-
trast to the previous implementation the number of disjunctions is fixed, i.e., each
individual consists of the same number of disjunction. A gene, or bit, in the chromo-
some stands for one conjunction. A conjunction represents one variable assignment
corresponding to the respective predicate.

For example, let the background knowledge, i.e., the pool of valid predicates
which may be used at the right hand side of the individual, be:

f e m a l e / 1 p a r e n t s / 3

with the target predicate: daughter(XO, XI)
In the original work an individual could look as follows:

daughter(XO, X I) - : - f emale (XO) , p a r e n t s (X l , XO, X I) .

parents(XO, XI , X I) .

f e m a l e (X I) , f emale (XO) , p a r e n t s (X I , XI , XO).

The new representation consists of a fixed number of fixed length bit strings.
The individual must hence be transformed into something like this:

1000000100 (1 . d i s j u n c t i o n)
0000000010 (2 . d i s j u n c t i o n)
1100010000 (3 . d i s j u n c t i o n)

How do we achieve an appropriate representation?
First of all, we have to determine the length of the chromosome, since it will be

fixed throughout the entire process. Thus, the chromosome's length must allow for
encoding all valid predicates with all possible assignments:

I = parity (t)arity<-p\
P€B

where B is the background knowledge, p is one of the background knowledge's
predicates, and t is the target predicate.

For the former example the length would be:

I = arity{ daughter) o r i i y (f e m a l e) + aniy (daughter) a r , iy<' larents)

= 21 + 23 = 10

If we introduce a number of additional, unbound variables (v) that the literals
may take as arguments this can be transformed into

I = parity (t) + v)arity(p\
peB

Incorporating Linkage Learning into the GeLog Framework 217

In our example we allow for additional two variables, with the target predicate's
original two variables we obtain variables XO. .X3:

I = (arity (daughter) + w)arI iy (female) + (arity (daughter) + ^ « " i y (parents)

= 41 + 43 = 68

Let pn(x) be the nth predicate of the background knowledge with allocation
x = (xo, • • •,xm); where m = arity(pn) — 1. All variables Xj (with 0 < i < m) must
be one of the target predicate's or of additional variables: 0 < Xi < (arity(t) + v).
The locus of this mapping can be calculated as follows:

n-l arity(pn)-l

locus{pn{x)) = 5 ^ (arity (i) + v) a r i t y ^ + Xi- (arity(t) + v)\
j=0 1 = 0

Let us calculate the locus of the parent /3 predicate of the former example using
allocation parents (X3, XI, XI).

Zocus(parents(X3, XI, XI)) = (arify(daughter) + u) o H i y (f e m a l e)

+ 3 • (arity(daughter) + v)° + 1 • (arity(daughter) + u)1

+ 1 • (arity (daughter) + v)2 = 41 + 3 + 1 • 4 + 1 • 16 = 27

Thus, gene number 27 indicates whether the predicate parents (X3,Xl ,Xl) is
present or not. Its allele (value) is either 1 or 0.

The coding of the genes is messy, that is, their position in the bit string is not
fixed but they may float around. A gene's predicate allocation is not determined
by the gene's position in the bit string but by its locus, which is in general different
from the position.

It is quite obvious that the length of the chromosomes is increasing exponentially
with the arity of the predicates of background knowledge and the arity of the target
predicate. This is problematic since the genes have messy coding, which means
every single gene contains a number as large as the chromosome's length. This is
necessary since the locus—the position of the genes within the chromosome—has
to be stored. For example, for 100 literals in the background knowledge, an average
arity of 10, and a target predicate's arity of 10 the chromosome length is 1012, a
number that must be stored in all 1012 genes of the chromosome.

4.2 Mutation
With the new representation the change of one single bit deletes or adds one map-
ping of a predicate. Thus, a single allocation, a predicate, or even a disjunction may
be erased altogether by the change of one bit. The following example illustrates
this: Let the background knowledge be the same as in the previous example. The
three rows represent the variable numbers within the literal. The columns denote
the subscript of the X variables. There are four variables (X0, XI are arguments of

218 Tim Fiihner and Gabriella Kókai

the target literal daughter; X2, X3 are unbound variables), and we need to be able
to place any of these four variables on any position within each literal. Therefore,
we only need four positions for the female literal, as it takes only one argument
(i.e., XO, XI, X2, or X3). For the second literal, parents , we need 43 positions, since
it requires three arguments.

1. Variable 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123 0123
2. Variable 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333 0000 1111 2222 3333
3. Variable 0000 0000 0000 0000 1111 1111 1111 1111 2222 2222 2222 2222 3333 3333 3333 3333

001010000101001000010100100001000010000101001000010000100101000010000100001000010000

is equivalent to the structure:

f e m a l e (X 2) , p a r e n t s (X I , XI , XO), p a r e n t s (X I , X3, X0) „
p a r e n t s (X I , X3, X I) , parents (X2 , X2, X2).

Two mutations are performed:

H h
001010000101001000010100100001000010000101001000010000100101000010000100001000010000

=> 001010000101001001010100100001000010000101001000010000100001000010000100001000010000

This is equivalent to inserting a new predicate allocation (parents (X2, X2 , X0))
and deleting one (parents (X2 , X2, X2)) :

f e m a l e (X 2) , p a r e n t s (X I , XI , X0) , p a r e n t s (X 2 , X2, X0) ,
p a r e n t s (X I , X3, X0) , p a r e n t s (X I , X3, XI) .

Since the modified version of GeLog aims at maintaining a high level of diversity, it
does not depend on mutation. Compared to the original work, the mutation rates
have therefore been decreased drastically.

4.3 Diversity
In order to make linkage learning work, it is necessary to maintain a large diversity
in the population. It might therefore be desirable to keep solutions in different parts
of the search space and optimize these solutions individually. A better solution
replaces another solution only if both are similar to another, i.e., if their distance
is small.

In order to evaluate the distance of two individuals, their chromosomes have to
be compared. Since the chromosomes are bit strings, the Hamming distance (i.e.,
the sum of all difference bits) is an appropriate distance metric. As individuals
in GeLog do not only consist of one but a number of chromosomes, the Hamming
distances for all chromosomes have to evaluated. One approach is to calculate the
Hamming distance for each pair of chromosomes of the two individuals (x and y),
after which the sum of these chromosome-wise distances yields the distances of the
individuals:

m n

E E ^ - t f i .
c = 0 ¿=0

Incorporating Linkage Learning into the GeLog Framework 219

where m is the number of chromosomes and n is the number of genes. In contrast
to a single chromosome where a gene at a specific locus always encodes the same
trait, it cannot be pre-termined what kind of disjunction one chromosome will be
coding for. Therefore, the distance between two individuals is not as obvious as
in a single chromosome case. One extreme case is, two individuals containing the
same chromosomes yet in a different order.

One solution to this problem is to form the sum of the distances of all chromo-
somes in one solution with all the chromosomes in. the other solution:

where m is the number of chromosomes and n is the number of genes. This distance
metric is referred to as sum/ sum.

This approach, however, does not aim at finding corresponding chromosomes in
the compared individuals. For example, although the sum of all distances might be
large, the distance between certain chromosomes is possibly small. The sum/min
approach takes this into account by identifying matching slots. By finding the
permutation p of disjunctions that maximizes

those disjunctions are identified that exhibit a much smaller distance than the
disjunctions with the second smallest distance.

for all ci :— chromosomes in individual 1 do
find C2 unmarked chromosomes in individual with minimum distance to ci
if two chromosomes have the same minimum distance then

choose one randomly
end if
store distance
mark chromosome C2

end for
sum up all stored distances

The algorithm's complexity is 0(n • n\) in the number of chromosomes. Since
distance comparisons are needed very frequently, GeLog uses a variation of this
procedure. Instead, all distances between all chromosomes are evaluated and those
chromosomes are assumed to match that have the smallest distance. If any chromo-
some has the same distance to more than one chromosome in the other individual,
one of these chromosomes is chosen randomly. Figure 3 demonstrates the algorithm.

m m n

c=0d=0i=0

¿=1

Figure 3: Pseudo code of the sum/min algorithm

220 Tim Fiihner and Gabriella Kókai

4.4 Recombination
The different recombination operators of the original GeLog version, as explained in
Section 2, have been replaced by a single operator. Selection yields two individuals,
a donor and a recipient. First one chromosome is selected in the donor individual
and a corresponding chromosome in the recipient is chosen. After crossover has
been performed a slot for the new recombined chromosome has to be chosen. This
process of choosing chromosomes, recombining them and storing them is repeated
for all chromosomes.

Since it is not obvious how to select chromosomes for recombination, several
strategies have been developed:

(1) ordered: the chromosomes are selected in the order they appear in the indi-
vidual,

(2) shuf f led : the chromosomes are randomly shuffled and selected in this new
order, or

(3) f i t n e s s : the chromosomes are selected fitness proportionally, i.e., by roulette
wheel selection. This scheme is very expensive, as a huge number of fitness
evaluations have to be performed.

The new individual (offspring) is now created by the recombined chromosomes.
However, each chromosome has to go into a different slot in the offspring. Therefore,
a selection strategy is also required for storing:
(1) ordered: the chromosome is stored in the same slot as the recipient's chromo-

some was selected from,
(2) shuf f led : a randomly shuffled list of all chromosomes slots is generated, the

chromosomes are stored in that new order, or
(3) s imi lar i ty : the chromosome is placed into the slot that has the shortest

distance, i.e., the number of the recipients slot which is most similar to the
recombined chromosome.

The most important of the nine possible combinations are explained in the follow-
ing:

(1) ordered/ordered: Each chromosome has its fixed slot, for the whole evolu-
tionary process.

(2) s h u f f l e d / s i m i l a r i t y : The parents are chosen randomly, the offspring, how-
ever, replaces the chromosome, which it is most similar to. This selec-
tion/storing scheme induces a similar distribution on the single individual as
the restricted tournament selection did on the entire population.

(3) shuf f l e d / s h u f f l e d : The parents are selected randomly, the offspring is stored
at a random position. This scheme is suitable if restricted tournament selection
is used and all clauses should be intermixed.

Incorporating Linkage Learning into the GeLog Framework 221

(4) f i t n e s s / s i m i l a r i t y : As s h u f f l e d / s i m i l a r i t y , but holds the danger that
the inner-individual diversity gets lost too fast since only well performing chro-
mosomes are selected.

As introduced by Harik [13] an exchange crossover operator was used to re-
combine two chromosomes. When combined with a harsh control of selection, this
operator induces a tighter linkage on the building blocks.

4.5 Flow of GeLog
In this section, pseudo-code is presented for the fitness evaluation routine and for
the main program.

The fitness evaluation consists of two parts: first the genome of the individual
has to be decoded into a hypothesis, and in a second step it is checked, whether
the hypothesis correctly classifies all training instances. The hypothesis must clas-
sify negative instances as false and positive instances as true. The fitness value
corresponds to the percentage of correctly classified training instances.

Fitness Evaluation
input individual A
hypothesis H := decode A
for all positive training instances EP[j] (j := 0..number of pos. instances) do

if H accepts EP{j] then
increase fitness of A

else
decrease fitness of A

end if
end for
for all negative training instances EN\j] (j := 0..number of neg. instances) do

if H rejects EN[j] then
increase fitness of A

else
decrease fitness of A

end if
end for

The following flow demonstrates that the GA flow differs substantially depend-
ing on the selection operator. With conventional selection operators the fitness of
individuals is evaluated after the new population has been created, whereas with
restricted tournament selection more evaluation steps have to be performed.

The program has been implemented using the programming language C + + ;
all experimental runs have been conducted on Intel /AMD processor based com-
puters running the Linux operating system. As PROLOG interpreting system the
SICStus framework version 3.8.5 was used, which can be easily linked to C / C + +
programs. However, calling the external PROLOG process is expensive and decid-
edly contributes to the time required by fitness evaluations. This circumstance is

222 Tim Fiihner and Gabriella Kókai

especially problematic with restricted tournament selection, for which a number of
additional fitness evaluations have to be performed.

Main Program
initialize prolog interpreter
load background knowledge
randomly initialize start population
for fill individuals A[i] (i := 0..population size) do

evaluate A[i]
end for
while not (termination criterion reached or max. number of generations) do

if selection = restricted tournament then
while not new population complete do

A := select randomly
B := select randomly
A' := exchange crossover A, B
B' := exchange crossover B, A
mutate A' ,B'
W[] := select randomly w individuals
A" := Wb'l, where distance(W[j], A') = min (distance(W[il, A'))
evaluate A!
if fitness A' > fitness A" then

replace A!' with A'
end if
repeat the same for B'

end while
else

while not new population complete do
A := select individual (using any recombination operator)
B := select individual (using any recombination operator)
A' := exchange crossover A, B
B' := exchange crossover B, A
mutate A', B'
place A', B' into the new population

end while
evaluate all individuals in the new population

end if
end while

5 Experimental Results

Two experiments that had proven difficult for the original version of GeLog have
been conducted in order to verify that the performance of GeLog has been improved.

Incorporating Linkage Learning into the GeLog Framework 223

5.1 Tic-Tac-Toe
This experiment was introduced by Aha [14] and is based on the Tic-Tac-Toe game.
It encodes all possible endgame situations where the player using the "X" symbol
has started. The target concept, which takes the nine board squares as variables
with values blank, X, or 0, is to classify the win situation for player "X". For 626
of the 956 possible constellations player "X" wins.

The performance of the concept learning algorithms on this data set varied re-
markably, depending on the used variant of learners: while experiments conducted
with decision tree based learners exhibited errors of 20% or more, other algorithms,
such as rule based learners performed well on it (errors < 2%). With the original
version of GeLog we could not achieve error results below 24%, which were signifi-
cantly improved after the modifications.

individual chromosome chromosome selection lowest average
distance selection storing operator error (%) error (%)
none ordered ordered ts 6.25 9.71
none shuffled similarity ts 5.26 8.66
sum/min shuffled similarity rts " 6.25 10.13
sum/sum shuffled similarity rts 6.25 10.86
original GeLog version 24.95 26.91

Table 1: GeLog test results on 'TicTacToe'

Table 1 shows four tests, each consisting of five test runs. All tests have been
conducted using ten-cross-validation, that is, the example set is divided into 10
disjunctive subsets. One is declared as test set. This procedure is used in order
to avoid over-fitting. The first column indicates the individuals' distance metric.
For tournament selection this column contains the word "none", since this selec-
tion operator does not utilize the individuals' distances. The second and third
columns state the chromosome selection and storing scheme as described in Sec-
tion 4.4. The selection operator appears in the fourth row, "rts" means restricted
tournament selection, whereas "ts" is tournament selection. The depicted settings
have been chosen in order to clarify whether restricted tournament selection is in
any case necessary to maintain a high level of diversity. Therefore, tournament
selection was tested using the ordered selection and storing scheme, thus totally ig-
noring the distance relation. The second experiment was conducted using random
selection but with storage into the slot that exhibits the highest similarity. For re-
stricted tournament experiments the same selection/storing scheme was used with
the two different distance metrics, as this might be a critical factor for restricted
tournament selection. The mutation probability for all experiments was defined
as 0.01, crossover was performed with a probability of 0.6, a population consists
of 150 individuals, and the maximum number of generations was 250, however,
for tournament selection, the lowest error rate was chiefly obtained after 50-100
generations.

224 Tim Fiihner and Gabriella Kókai

Figure 4: Minimal versus average error for "TicTacToe": (a) tournament selection,
(b) restricted tournament selection

The absence of a significant difference in the results of tournament and restricted
tournament selection may indicate that the problem is not difficult enough, i.e., that
plain tournament restriction can maintain large enough a diversity.

For the chromosome selection/storing we see a slight difference between
"ordered/ordered" and "shuffled/similarity", which can be attributed to higher
in-individual diversity, that is, clauses have greater differences.

Figure 4 shows two runs of the same experiment, however only 100 individuals
per population are generated. It becomes clear that restricted tournament selection
is aiming at improving the fitness situation of the entire .population.

individual selection run time
distance operator (25 generations)
none ts w 3m50s
sum/sum rts « 5m
sum/min rts ~ 5m8s
original GeLog version « 2ml0s

Table 2: Durations for different selection operators and distance metrics for 25
generations.

In Table 2 the durations for different operators and distance metrics are demon-
strated. The original version of GeLog is faster, due to faster decoding times and
less fitness evaluations. It is also obvious that restricted tournament selection has
a significantly longer run time, owing to the higher number of fitness evaluations.
The different distance metrics seem to have little influence on the duration.

All experiments have been executed on an Intel Pentium II computer with
450 MHz. The run time experiments only involved 25 generations. The number of
right hand sides (disjunctions) was fixed to three. The length of a chromosome is
27.

Incorporating Linkage Learning into the GeLog Framework 225

5.2 Chess Endgame King-Rook-King

The second experiment we have chosen to validate the performance improvement
of GeLog is a chess endgame variant, the "White King and Rook vs. Black King"
[15]. There are three pieces left on the board: a white king, a white rook, and a
black king. The next player to move is white. The objective is to classify legal and
illegal constellations, where a situation is illegal when either white has already won
or black can capture the rook without being check (draw).

individual chromosome chromosome selection lowest average
distance selection storing operator error (%) error (%)
none ordered ordered ts 0.53 0.71
sum/sum ordered ordered rts 0.53 0.71
sum/sum shuffled shuffled rts 0.53 0.72
sum/min shuffled shuffled rts 0.53 0.72
sum/sum shuffled similarity rts 0.53 0.72
sum/min shuffled similarity rts 0.53 0.74
original GeLog version 4.90 8.02

Table 3: GeLog test results on 'King-Rook-King'

There is a total of 28056 entries, each of which consists of the coordinates of
the pieces and an attribute for the optimal number of moves for white to win. The
attributes are the number of moves (0..17) and "draw".

mutation probability 0.01
crossover probability 0.6
population size 150
number of generations 250
termination criterion -

Table 4: Parameter Settings for the 'King-Rook-King' experiment

With the original GeLog program the minimum error was about 5%. Table
3 shows the experimental results for the modified version of GeLog, each entry
representing five test runs, all of which are conducted using ten-cross-validation.
The experiment settings are summarized in Table 4.

Again, neither the different distance metrics nor the diversity sustaining re-
stricted tournament selection exhibit a remarkable difference with respect to the
objective function values.

Also Figure 5 shows that the average payoff of the population is remarkably
higher for restricted tournament selection.

226 Tim Fiihner and Gabriella Kókai

1 . 1 1 1 Jisd saircwa 1—i
^

_ \

1 1 1 1

(a)
noilawnag

(b)

Figure 5: Best versus average payoff for "King Rook King": (a) tournament selec-
tion, (b) restricted tournament selection

In Table 5 the run times for the different operators and metrics are listed.
The experiments have been conducted with the same settings as in the previous
experiment. However, the number of disjunctions is set to five. The length of
chromosome in the new version is 54.

individual selection run time
distance operator (25 generations)
none ts . « 3m50s
sum/sum rts « 4m50s
sum/min rts « 5ml0s
original GeLog version ~ 2m6s

Table 5: Run times for different selection operators and distance metrics for 25
generations.

6 Conclusion and Future Work
In this article we presented some modifications to the GeLog framework—a genetic
logic programming system—in order to improve its underlying genetic algorithm.
The original GeLog program, linkage learning, and some related approaches were
briefly introduced.

It was demonstrated how linkage learning was incorporated into the GeLog
framework. All necessary changes and the resulting problems were presented. A
distance metric, which was developed for the implemented selection operator, was
also presented.

Finally, the test results showed that the GeLog framework has been significantly
improved. Problems that used to be hard for the original program were solved.

Incorporating Linkage Learning into the GeLog Framework 227

Although these first test results are very promising and already demonstrate
that the modifications do indeed enhance GeLog's performance, further experiments
have to be conducted to quantify the influence of the improvements achieved by the
modified GeLog framework. In particular, it has to be investigated if under certain
conditions linkage learning by the combination of the exchange crossover operator
and standard tournament selection can withstand the force of selection.

References
[1] Gabriella Kokai. GeLog—A System Combining Genetic Algorithm with In-

ductive Logic Programming. In Proc of the International Conference on Com-
putational Intelligence, 7th Fuzzy Days LNCS, pages 326-345, Springer Verlag,
Dortmund, 2001.

[2] Nada Lavrac and Saso Dzeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, New York, 1994.

[3] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[4] Christian Jacob. Illustrating Evolutionary Computation with Mathematica.
Morgan Kaufrriann, San Francisco, CA, 2001.

[5] John H. Holland. Adaptation in Natural and Artificial Systems. PhD thesis,
University of Michigan, Ann Arbor, 1975.

[6] John J. Grefenstette. Deception considered harmful. In D. Whitley, edi-
tor, Proceedings of the Foundations of Genetic Algorithms Workshop, Morgan

. Kauffmann, Vail, CO, 1992.

[7] Stephanie Forrest and Melanie Mitchell. What Makes a Problem Hard for a
Genetic Algorithm? Some Anomalous Results and Their Explanation. Ma-
chine Learning, 13:285-319, 1993.

[8] David E. Goldberg and Clayton L. Bridges. An analysis of a reordering oper-
ator on a GA-hard problem. Biological Cybernetics, 62(5):397-405,1990.

[9] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algo-
rithms: Motivation, analysis, and first results. Complex Systems, 3(5):493-530,
1990.

[10] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges Harik.
Rapid accurate optimization of difficult problems using fast messy genetic
algorithms. In Stephanie Forrest, editor, Proc. of the Fifth Int. Conf. on
Genetic Algorithms, pages 56-64, Morgan Kaufmann, San Mateo, CA, 1993.

[11] Hillol Kargupta. SEARCH, polynomial complexity, and the fast messy genetic
algorithm. Technical report, University of Illinois, Illinois Genetic Algorithms
Laboratory, Urbana, H, 1995.

228 Tim Fiihner and Gabriella Kókai

[12] Hillol Kargupta. The gene expression messy genetic algorithm. In Interna-
tional Conference on Evolutionary Computation, pages 814-819, Piscataway,
NJ, 1996.

[13] George Harik. Learning linkage to efficiently solve problems of bounded diffi-
culty using genetic algorithms. PhD thesis, The University of Michigan, Ann
Arbor, Michigan, 1997.

[14] David W. Aha. Incremental constructive induction: An instance-based ap-
proach. In Proceedings of the 8th International Workshop on Machine Learn-
ing, pages 117-121, Morgan Kaufmann, Evanston, IL, 1991.

[15] Micheal Bain. Learning optimal KRK strategies. In S. Muggleton, editor,
ILP92: Proc. Intl. Workshop on Inductive Logic Programming, Report ICOT
TM-1182, Tokyo, 1992.

Acta Cybernetica 16 (2003) 229-240.

Various Robust Search Methods in a Hungarian
Speech Recognition System*

Gábor GosztolyaJ András Kocsorf László TóthJ

and László Felföldi*

Abstract

This work focuses on the search aspect of speech recognition. We describe
some standard algorithms such as stack decoding, multi-stack decoding, the
Viterbi beam search and an A* heuristic, then present improvements on these
search methods. Finally we compare the performance of each algorithm, grad-
ing them according to their performance. We will show that our improvements
can outperform the standard methods.

KeyWords. search methods, stack decoding, multi-stack decoding, Viterbi
beam search.

1 Introduction

In any speech recognition system, the real task is to find the most probable word
(sequence of phonemes) for a given speech signal. However, as the number of
possibilities is extremely high, and most of them will have very low probabilities, we
need efficient algorithms to reduce the enormous search space. There are numerous
standard methods for doing this, and some rarely used heuristics. We implemented
and tested some of them, and adapted these according to our needs. Our aim
was to construct a faster method which recognized the same amount of words.
The methods were tested within the framework of our segment-based recognition
system, the OASIS Speech Laboratory [7, 8].

"This work was supported under the contract IKTA No. 2001/055 from the Hungarian Ministry
of Education.

^Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University
of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary,
e-mail: ghostyargai . inf .u-szeged.hu, kocsoriinf .u-szeged.hu, tothl®inf .u-szeged.hu

^Department of Informatics, University of Szeged H-6720 Szeged, Árpád tér 2., Hungary,
e-mail: l f e l f o l d t i n f . u - s z e g e d . h u

229

230 Gabor Gosztolya et a1.

2 A Segment-based Speech Recognition Approach
In the following, the speech signal A will be treated as a chronologically increasing
series of the form a\a2 . . . atm a i , while the set of possible phoneme-sequences will
be denoted by W. Essentially the task here is to find the word w € W defined by

where P{w) is known as the language model.
If we optimize P(io|A) directly, we use a discriminative method, while if we

use Bayes' theorem and omit P{A), our approach is generative. Moreover the
recognition process can be frame-based or segment-based, depending on whether
the model incorporates frame-based or segment-based features. The widely-used
HMM is a frame-based, generative method, but in the following we will describe
the recognition process in a segment-based, discriminative approach (c.f. [8]).

We assume that P(w\A) = P{wi\A) = PJi P{wi\A{), i.e. that the phonemes
are independent, and for a word w = o i . . . 0/ a phoneme Oi is based on Ai =
a j d j + i . . . Oj+ r_i (an r-long segment of A, where A = A\ ... An). With this Ai
segment, a phoneme classifier identifies the phoneme by some method using long-
term features; in our recognition system, the OASIS Speech Laboratory, Artificial
Neural Networks (ANNs) [3] are used, but the way the classifier actually works is
of no concern to us here.

To determine the values of these P(wi\Ai) functions, we need to know the exact
values of the AjS, which are determined by their start and ending times (the above
j and j + r — I values). Alas, this is quite a hard task, and because automated
segmentation cannot be done reliably, the program will make many segmentation
hypotheses, so we must include this segmentation T in our formulae:

P{w\A) = p(w> T\A) = £ PMT, A) • P(T\A) « maxP{w\T, A) • P(T\A)

For a given T, P(w\T, A) can be readily calculated with the phoneme clas-
sifier, and we handle P(T\A) using ANN-s as well. For this two-class training,
the elements of the "phoneme" class were marked by hand, while the others in the
"anti-phoneme" class were constructed from randomly selected parts of two or more
phonemes. This allows us to employ the same set of features in the segmentation
procedure that was used for phoneme recognition.

3 Overview of Robust Search Methods

3.1 Definition of the search space
Before presenting the algorithms, we have to define some basic terms and notations.
An array T„ = [io, h,..., tn] is called a segmentation if 0 = io < ti < • • • < tn <

w = arg max P(w\A) = arg = arg max P(A\w) • P(w),
W

T T

Various Robust Search Methods in a Hungarian Speech Recognition System 231

tmax holds, i.e. they axe in increasing chronological order. We also require that
every phoneme fit into some overlapping interval [ti,tj] (i,j £ {0, . . . n } , 0 < i <
j <n), i.e. the former speech segments are referred by their start and end times.

Given a set of words W, Prefk(W) will denote the k-long prefixes of all the
words in W with at least k phonemes. Then we may construct the search tree in
a recursive manner: ho — (0, [fo]) will be the root of the tree, and Prefi(W) x T^
will contain the first-level vertices. Then, for a (0102 . . . Oj, [¿¿0,... ,i» .]) leaf we link
all (0102 . . . ojOj+1, [t i 0 , . . . , tij, tij+1]) € Prefj+1{W) x Tl+1 nodes.

When one or more hypothesis is discarded due to its high cost, we say that it
was pruned.

For the algorithms, certain notations are employed. means that a variable
is assigned a value; "4=" means pushing a hypothesis into a stack. A H(t,c,w)
hypothesis is a triplet of time, cost and a phoneme-sequence. Extending a hypoth-
esis H(t,c,w) with a phoneme v and an ending time U results in a hypothesis
H'(t', c', w'), where t' = U, w' = wv, and c' = c + Cj, Cj being the cost of v in an
interval [i, ti). This is equivalent to p' = p • pi, where p', p and pi are the proba-
bilities of H', H, and v in an interval [t,ti), respectively, and ct — —In pi. We are
looking for the hypothesis with the lowest cost.

3.2 Stack decoding
The stack decoding algorithm [2] is time-asynchronous, i.e. it compares hypotheses
with different ending times.

In the first step of the process we place the initial hypothesis into the stack.
Then we pop the hypothesis in order to examine and extend it. Next, we put all
the new hypotheses into the stack and pop the most probable of them. We repeat
the process until the popped hypothesis reaches the end of the utterance.

The above algorithm works because it extends hypotheses, and their cost in-
creases since we add these costs (non-negative real numbers) together. Thus, when
we reach the end of the utterance, all unexamined hypotheses will have higher costs
than our actual solution.

In practice it is common to use a finite stack. However, for large vocabularies
and/or sentences (those with a huge search space) there is a danger that it will
eliminate the best scoring hypotheses with a greater end time. Another problem
with this method is that, by increasing the length of an utterance, the run time of
the stack decoding algorithm will increase exponentially.

3.3 An A* heuristic
The A* search [4] algorithm is also a common method for finding a near-optimal
solution. Here, besides the g{H) value for a hypothesis H (the cost so far), there is
a h(H) value for estimating the cost of the remaining path. We put the hypotheses
into a stack and sort them using f(H) = g{H) + h(H). Basically, this is just a
variation of the stack decoding method.

232 Gabor Gosztolya et a1.

Algorithm 1 Stack decoding algorithm
Stack <= Ho(to, 0,0)
while Stack is not empty do

H(U,p,w) top(Siacfc)
if U = tmax then

return H
end if
for ti = ti+1 . . . tmax do

for all {t> | wv e Prefi+iength of w} do
H'(ti,p',w') extend H with v on [£»,£/]
Stack H'

end for
end for

end while

Jelinek offers a method for constructing a heuristic based on examples. The
exact formulae can be found in [6]. The idea behind it is simple enough. An
evaluation is made on segmented, tagged data in order to calculate the average
(or the minimum) cost per unit time. It should then give a good estimate of
the cost for the remaining time. As regards the optimality criterion, the estimate
must be not greater than the actual cost. It is quite hard to meet this criterion
using the average-value based approach, but fairly straightforward to satisfy with
the latter. However, when we calculate the minimum cost per unit time using the
latter version, there is a certain loss of efficiency although it is still somewhat better
than the simple stack decoding method. The solution might be to use some hybrid
combination of the two.

Algorithm 2 Universal A* algorithm
Stack <= #o(io,O,0)
while Stack is not empty do

H(ti,p,h,w) top (Stack)
if ti = tmax then

return H
end if
for ti = t i+ i . . . tmax do

for all {D | wv G Prefi+iength 0f w} do
H'(ti,p',h',w') extend H with v on [£¿,<¿1
Stack <= H'

end for
end for

end while

Various Robust Search Methods in a Hungarian Speech Recognition System 233

3.4 Multi-stack decoding
This method is a time-synchronous modification of stack decoding. Instead of using
just one stack (where the elements cannot truly be compared because most of them
have different end times), we assign one stack for each time instance. Advancing in
time, we can pop each hypothesis one at a time from the given stack, extend them,
and put the new hypotheses into the right stack (which depends on their new end
time) [1].

Obviously stack size is very important in this method as it can affect accuracy.
Overly large stacks result in a large search space (and unnecessarily long run time),
while very small stacks can prune those hypotheses whose extensions might be
better at a later time. Note that, for a given stack size, the run time of the
algorithm depends only on the length of the utterance (or, to be more precise, on
the number of possible segments).

Algorithm 3 Multi-stack decoding algorithm
Stack[i0] -<= H o (i o ,O,0)
for time = to ... tmax do

while not empty(Stack[£ime]) do
H(t,p,w) top(Stack[iwne])
if time = tmax then

return H
end if
for ti = time + 1... tmax do

for all {v | wv G Prefi+tength of w} do
H'(ti,p',w') extend H with v on [ti, ti]
Stack[iz] <i= H'

end for
end for

end while
end for

3.5 Viterbi beam search
The standard Viterbi search algorithm is just the standard time-synchronous ex-
haustive search method but, as it stands, it is practically unusable. However, with
a small modification it can be made rather effective. We employ a variable T called
beam width; for each time instance t we calculate Dmin, i.e. the lowest cost of the
hypotheses with the end time t, and prune all those hypotheses whose cost D falls
outside Dm in + T [5]. The value of the beam width is found by trial and error.

Several versions of this method exist. When choosing one we might use dif-
ferent beam widths for different end times (using greater values at the beginning
of words). Or we could calculate the beam width dynamically (i.e. keeping the
best N hypotheses - which is identical to the multi-stack decoding algorithm - , or

234 Gabor Gosztolya et a1.

reducing the beam width when the probabilities start to decrease). In trials so far
we have tested this method only with a constant beam width.

Algorithm 4 Viterbi beam search algorithm
Stack[i0] <= iio(to, 0,0)
for time = to .. . f max do

while not empty(Stack[iime]) do
H(t,p,w) •<— top(Stack[iime])
if time = tmax then

return H
end if
for ti = time + 1 . . . tmax do

f o r al l {l> | WV € Prefi+iength of w } d o
H'(t[,p',iu') extend H with v on [time,t{\
Stack[ij] <= H'
Prune Stack[t;] with beam width T

end for
end for

end while
end for

4 Refinement of the Multi-stack decoding algo-
rithm

When calculating the optimal stack size for multi-stack decoding, it is readily seen
that this optimum will be the one with the smallest value where no best-scoring
hypothesis is discarded. But this approach obviously has one major drawback.
Most of the time bad scoring hypotheses will have to be evaluated owing to the
constant stack size. If we could only find a way of estimating the required stack size
at each time instance, the performance of the method would markedly improve.

One possibility might be to combine multi-stack decoding with a Viterbi beam
search. At each time point we keep the n best-scoring hypotheses, and discard those
which are not close to the peak (thus the cost will be higher than the best cost plus
the beam width). Here the beam width can also be determined empirically.

One surprising thing is that when we determine the optimal parameters (stack
size and beam width) for the two methods (multi-stack and Viterbi beam), both
parameters can be used together, thus making the combined search method work
faster than either of them separately. We found that this worked for both test sets.

Yet another approach for improving the multi-stack method is that we can
predict, at a given time instance, what stack size should be sufficient. We devised
two improved methods based on this.

We trained an ANN to predict whether, at a given time instance, a bound
between phonemes exists or not. Then, at each time instance, this ANN returns a

Various Robust Search Methods in a Hungarian Speech Recognition System 235

Figure 1: Bound probability - stack size diagram with the best fitting curve

probability p for this. In the first improvement we compare this p to a parameter
I: if p < I, we use a smaller-sized stack (c m j „) , and a bigger (cmax) one otherwise.

We could also improve the model by fine-tuning it. To find a function that ap-
proximates the necessary stack size based on the output p of the ANN, we conducted
an experiment. We recognized a set of test words using a standard multi-stack de-
coding algorithm with a large stack size. Then we examined the path which led
to the winning hypothesis (or the first n hypotheses), and noted the required stack
size and the phoneme-bound probability p at each time instance. The points of
Figure 1 show the necessary stack sizes as a function of p.

For a phoneme-bound probability p (supplied by the ANN), we found that a
min(co + eCl P+C2 , C3) size stack was satisfactory. Obviously, the value for c% comes
from the test of multi-stack decoding, and the value for cq from an examination of
the.previous improvement (as Cmi„). After, for a given c\, C2 can be determined by
trial and error. The best fitting curve was plotted in Figure 1.

5 Experimental results

5.1 The testing sets
In trials we tested the above methods and their variations using varying parameters,
namely different dictionary sizes, words, and other parameters which are method
dependent (e.g. stack size in stack decoding). We also examined whether making
use of a voicedetect function (which seeks to remove long, silent parts of a voice

236 Gabor Gosztolya et a1.

signal) significantly improves the speed of recognition, thereby reducing the number
of neuron network calls.

For this reason we created two test groups. Test set I contained only the basic
elements of Hungarian numbers from six speakers. Each uttered the 26 elements
twice, giving a total of 312 occurrences, while test set II contained numbers under
100 (169 test cases in all).

5.2 Results
Two things were important in the comparison. First, we had to see how good the
method was in scoring correct hits. Second, the number of phoneme-classifying
ANN calls made in this task. Actually, the key quantity here for evaluating a
method's performance is the lowest number of ANN calls when its performance is
maximal.

As the entire hypothesis space is enormous (> 107 for an average utterance) our
goal is to drastically reduce it. The methods tested here require different types of
parameters for optimal performance, hence they have to be listed individually.

5.3 Results of using the standard algorithms
The results of each method employed in trials are listed below.

5.3.1 Stack decoding

This method performed surprisingly well on the first test set. Extending the best-
scoring of all hypotheses can be regarded as a heuristic, which performs very well
with a short utterance, but on longer words it proved unsatisfactory. On the second
set (whose elements were much closer to real-life examples) it yielded the worst

hits ANN calls hits ANN calls
(312) on set I (169) on set II

5000 304 1,124,024 141 27,353,614
1000 304 1,124,024 139 10,278,189
500 304 735,135 137 6,798,157
250 303 661,214 136 4,135,990
100 295 562,460 136 2,039,124
50 279 500,748 127 1,148,680
25 260 354,077 124 670,369
10 210 225,152 80 281,704

Table 1: Stack decoding algorithm. The first column indicates the stack size; the
best result (the one with the required accuracy and minimum ANN calls) is in
bold.

Various Robust Search Methods in a Hungarian Speech Recognition System 237

results of all. Overall, this methods works well with short speech utterances but
not with long ones. The results can be seen in Table 1.

5.3.2 Multi-stack decoding

The multi-stack decoding method seems most promising. Although it did not
perform outstandingly well, it produced fair results and, unlike the other methods
mentioned here (with the exception of the flexible A* algorithm) there is significant
room for improvement. The main drawback of this method is the fixed stack size.
Only in some cases is there a need for a maximum stack size, but here it is applied
to all stacks. If we could somehow determine the stack size for each case, the
performance of this method would be greatly improved. There results are shown
on Table 2.

hits ANN calls hits ANN calls
(312) on set I (169) on set II

100 304 8,808,675 141 7,503,876
50 304 4,421,691 141 3,719,326
25 304 2,173,794 140 1,822,171
20 304 1,732,549 138 1,449,417
15 299 1,292,938 137 1,080,198
10 295 842,595 132 707,777
5 280 416,284 119 348,066
2 240 190,994 90 155,698
1 213 119,576 59 95,938

Table 2: Multi-stack decoding algorithm. Here the parameter shown is the stack
size.

5.3.3 Viterbi beam search

Of all the standard algorithms this method worked the best. On the first test set its
performance ranked behind that of the stack decoding method, but on the second,
more important set it performed very well, producing the lowest run times of the
four standard methods. (See Table 3.)

5.4 Results of improvements
Combining standard algorithms

Among the former algorithms only the Viterbi beam and multi-stack decoding
methods could be combined (the stack decoding and multi-stack decoding methods
are basically different, and the A* algorithm is already an improved version of the
stack decoding method). Combining the first two methods led to a more efficient

238 Gabor Gosztolya et a1.

hits ANN calls hits ANN calls
(312) on set I (169) on set II

25.0 304 2,032,830 141 2,806,010
20.0 304 1,223,316 139 1,394,292
19.0 304 1,098,123 138 1,211,195
18.0 303 983,711 138 1,048,396
17.0 301 884,876 137 912,880
16.0 300 790,772 135 795,547
15.0 297 704,808 134 692,303
10.0 286 380,425 128 341,587
5.0 264 201,408 98 168,941
1.0 229 131,175 71 105,807

Table 3: Viterbi beam search algorithm. Here the parameter shown is the beam
width.

algorithm. This idea was included in the other improvements too. Henceforth,
when we talk about improving the multi-stack decoding method, we will assume
that a Viterbi beam pruning has also been applied.

Phoneme-bound detection

In order to evaluate the probability of a bound we used an ANN, which classified
a bound to 80% accuracy. In the first version it achieved its goal. Acting on the
first testing set the results approached those of the stack decoding results, and it
performed better than the standard algorithms (see Table 4). However, on the

Stmax 0.50 0.55 0.60 0.65 0.70 0.75 0.80
25 304

933,993
304

926,151
304

918,376
304

912,275
304

886,313
299

788,429
292

672,395
20 304

882,358
304

875,252
304

868,634
304

862,734
304

839,789
299

752,371
292

645,656
15 299

788,599
299

782,810
299

777,810
299

772,591
299

750,078
294

684,313
288

594,605
10 293

632,134
293

628,904
293

626,278
293

622,681
293

610,825
288

566,334
282

504,831

Table 4: Results using the multi-stack decoding method with the first improvement
on test set I.

second set a slighter poorer result was obtained. Surprisingly, this method did
slightly worse than the multi-stack decoding method with Viterbi pruning.

In the second version the ex smoothing technique, however, worked very well.

Various Robust Search Methods in a Hungarian Speech Recognition System 239

Set I Set II
Stack decoding 735,135 2,039,124
A* heuristic 2,276,965 9,384,119
Multi-stack decoding 1,732,549 707,777
Viterbi beam search 1,098,123 692,303
Multi-stack decoding combined with Viterbi 922,434 474,188
Multi-stack decoding with stack size reduction I 839,789 462,363
Multi-stack decoding with stack size reduction II 749,228 427,212

Table 5: Summary of the best performances of all the methods used

On the first test set it produced almost as good a result as the stack decoding
algorithm, and on the second it had the smallest run time. We can say that
this novel method is definitely better than the standard algorithms. (Overall, the
formula min(3 4- e45 0 p + 3 2 -3 ,20) produced the best results.)

The best results of all methods can be seen on Table 5.

6 Conclusion

In this paper our goal was to study the search problem of speech recognition tasks,
compare the standard algorithms and look for ways of improving them. Exam-
ining the test results, it is clear that we can indeed marry standard algorithms
without loss of accuracy, and with a marked improvement in performance. The
novel method presented here proved to be more efficient, and matched or outdid
the performance of the others.

Hopefully it could be further refined by using automatic parameter determina-
tion or changing the exponential model function to some other. This will be the
subject of future work.

References

[1] L .R . BAHL, P .S . GOPALAKRISHNAN, R.L. MERCER, Search issues in large
vocabulary speech recognition, Proceedings of the 1993 IEEE Workshop on Au-
tomatic Speech Recognition, Snowbird, UT, 1993.

[2] L .R . BAHL, F. JELINEK AND R. MERCER, A Maximum Likelihood Approach
to Continuous Speech Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 179-190, 1983(2)

[3] C .M. BISHOP, Neural Networks for Pattern Recognition, Clarendon Press,
Oxford, 1995.

240 Gabor Gosztolya et a1.

[4] P . E . HART, N.J . NILSSON AND B. RAPHAEL, A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Transactions on Systems Science
and Cybernetics, pp. 100-107, 1968, 4(2)

[5] P . E . HART, N.J . NILSSON AND B. RAPHAEL, Correction to "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths", SIGART Newsletter,
No. 37, pp. 28-29, 1972.

[6] F. JELINEK, Statistical Methods for Speech Recognition, The MIT Press, 1997.

[7] A . KOCSOR, L. TOTH AND A . KUBA JR., An Overview of the Oasis Speech
Recognition Project, Proceedings of ICAI '99, pp. 95-102, Eger-Noszvaj, Hungary,
1999.

[8] L. TOTH, A . KOCSOR AND K. KOVACS, A Discriminative Segmental Speech
Model and its Application to Hungarian Number Recognition, P. Sojka, I
kopecek, K. Pala (eds.): TSD'2000, LNAI1902, pp. 307-313, 2000.

Acta Cybernetica 16 (2003) 241-258.

Implementing Global Constraints as
Graphs of Elementary Constraints*

Dávid Hanák*

Abstract

Global constraints axe cardinal concepts of CLP (FD), a constraint pro-
gramming language. They axe means to find a set of integers that satisfy
certain relations. The fact that defining globed constraints often requires the
knowledge of a specification language makes sharing constraints between sci-
entists and programmers difficult. Nicolas Beldiceanu presented a theory that
could solve this problem, because it depicts global constraints as graphs: an
abstraction that everyone understands.

The abstract description language defined by the theory may also be in-
terpreted by a computer program. This paper deals with the problematic
issues of putting the theory into practice by implementing such a program.
It introduces a concrete syntax of the language and presents three programs
understanding that syntax. These case studies represent two different ap-
proaches of propagation. One of these offers exhausting pruning with poor
efficiency, the other, yet unfinished attempt provides a better alternative at
the cost of being a lot more complicated.

1 Introduction
Constraint Logic Programming (CLP, also referred to as Constraint Programming,
CP) [4] is a family of logic programming languages, where a problem is defined
in terms of correlations between unknown values, and a solution is a set of values
which satisfy the correlations. In other words, the correlations constrain the set
of acceptable values, hence the name. A member of this family is C L P ^ D) , a
constraint language which operates on variables of integer values. Like CLP(X)
solvers in general, CLP(^ r P) solvers are embedded either into standalone platforms
such as the ILOG OPL Studio [9] or host languages, such as C [3], Java [5], Oz [6]
or Prolog [8, 2].

In CLP(^"P) , FD stands for finite domain, because each variable has a finite set
of integer values which it can take. These variables are connected by the constraints,

"The results reported in this paper were presented at the CS 2 conference held at Szeged, July
1-4 . 2002.

^Budapest University of Technology and Economics, Dept. of Computer Science and Informa-
tion Theory, e-mail: dhanak9cs.bme.hu

241

242 Dávid HanáJc

which propagate the change of the domain of one variable to the domains of others.
A constraint can be thought of as a "daemon" which wakes up when the domain
of one (or more) of its variables has changed, propagates the change and then
falls asleep again. This change can be induced either by an other constraint or by
the distribution or labeling process, which enumerates the solutions by successively
substituting every possible value into the variables. Constraints can be divided into
two groups: simple and global constraints. The former always operate on a fixed
number of arguments (like X = Y), while the latter are more generic and caii work
with a variable number of arguments (e.g., "Xi, X2,.. •, Xn are all different").

Many solvers allow the users to implement user-defined constraints. However,
the specification languages vary. In some cases, a specific syntax is defined for
this purpose, in others, the host language is used. There are several problems
with this. First, GW(J-T>) programmers using different systems could have serious
difficulties sharing such constraints because of the lack of a common description
language. Second, to define constraints, one usually has to know the solver in
greater detail than if merely using the predefined ones. Inspired by these problems,
Nicolas Beldiceanu suggested a new method for defining and describing global finite
domain constraints [1]. After studying his theory, I decided to put it into practice
by implementing a parser of Beldiceanu's abstract description language (ADL), as
an extension to the CLP(TT>) library of SICStus Prolog [7, Section CLPFD], a full
implementation of the CLP (TV) language.

The paper is structured as follows. , Section 2 introduces the theory of
Beldiceanu, explains how constraints may be represented by graphs and describes
the ADL in some detail. Section 3 specifies the concrete syntax of the language
used by the implementation, Section 4 presents the implemented programs capable
of understanding such a description. Section 5 gives some ideas about the possible
directions of future research and development, and finally Section 6 concludes the
paper.

2 The Theory
In [1], Beldiceanu specifies a description language which enables mathematicians,
computer scientists and programmers of different CLP systems to share information
on global constraints in a way that all of them understand. It also helps to classify
global constraints, and as a most important feature, it enables us to write programs
which, given only this abstract description, can automatically generate parsers, type
checkers and propagators (pruners) for specific global constraints.

Beldiceanu has also defined a large number of constraints in the ADL. Most of
them are already known, but the slight modification of existing descriptions has
resulted in several new constraints. The potential of these modifications arose only
with the use of this schema.

Section 2.1 introduces the essential concepts of Beldiceanu's theory, Section 2.2
presents the most important features of the ADL, finally Section 2.3 illustrates the
usage through the simple example of the widely used element constraint.

Implementing Global Constraints as Graphs of Elementary Constraints. 243

2.1 Representing Constraints as Graphs
In order to create an inter-paradigm platform, Beldiceanu reached for a device that
is abstract enough and capable of depicting relations between members of a set: the
directed graph. Before we can show how graphs can represent global constraints,
three concepts have to be introduced:

1. The initial graph is a regularly structured graph, which is characteristic of
the constraint and the number of arguments1, but is independent from the
specific values of the arguments.

2. The elementary constraint is a very simple constraint with few arguments,
such as X = Y.

3. The graph properties are restrictions on the number of arcs, sources, connected
components, etc.

The description of a constraint specifies how the initial graph should be built. Its
vertices are assigned one or more variables from the constraint, while the arcs con-
necting the vertices are generated according to a regular pattern. Finally the chosen
elementary constraint is assigned to each arc. The variable belonging to the start
point of the arc will become the first argument of the elementary constraint, while
the variable assigned to the endpoint will become the second argument. Note that
in general, the elementary constraint need not be binary, if it has more arguments,
then a hypergraph is built using arcs with the required number of endpoints.

Every distinct instantiation of the constraint arguments results in a separate
instance of the constraint. For every such instance, a different final graph is derived
from the common initial graph by keeping those arcs for which the elementary
constraint holds. If a vertex is left without connecting arcs, the vertex itself is
also removed. The global constraint succeeds if and only if the specified graph
properties hold for this final graph.

The graph of a simplified variant of the element constraint can be seen in
Figure 1. This constraint serves as an example throughout this paper, and it is
explained in detail in Section 2.3. For now, it is enough to know that it succeeds
if its first argument, a single variable (denoted by A in the figure), is equal to a
member of its second argument, a list of values (denoted by B, C, D and E). The
required graph property is that the number of arcs should be exactly one.

2.2 The Abstract Description Language (ADL)
The most important feature of the ADL is the ability to describe how the initial
graph has to be generated, what is the elementary constraint to be assigned to the
arcs, and what graph properties must hold for the final graph.

Beside these, the ADL gives means' to limit the set of values to be accepted in
the constraint arguments, too. We have to specify the type of each argument, and

' A s already mentioned, global constraints may (and usually do) have variable number of ar-
guments.

244 Dávid HanáJc

(a) Initial graph (b) An instance of (a) (c) Final graph

Figure 1: The graph of the simplified element constraint

we may also pose further restrictions on the values. Any concrete application of
the constraint that violates these preconditions will be considered as erroneous.

The syntactic order of these language elements in a concrete definition reflects
the order in which they are interpreted: the type and value restrictions are fol-
lowed by the graph generation parameters, finally the required graph properties
are specified. The following paragraphs discuss the language features in the very
same order.

2.2.1 Argument type restrictions.

According to the schema of Beldiceanu, all arguments of the global constraint must
be typed. There are three simple data types and a compound type, which are
widely used. An argument of type

int is a constant integer;
atom is a character sequence (just like a Prolog atom);
dvar is a domain variable (which could also be a constant as a special case);
c o l l e c t ion (A fctri-Typei, Att^-Type?, . . .) is an ordered list of items, each

item being a set of labeled attributes, where the attribute associated with
the label Attri (if any) has type Typei, for each i. This type specification
does not require the items of such a collection to have all the attributes
specified and also allows them to have additional attributes. It only requires
the values of the given attributes to have the right type. An example
collection and its type specification (taken from [1]) is shown in Figure 2.

There are other compound data types, too, like l i s t or term, which are rarely
used in the numerous existing constraint descriptions.

2.2.2 Argument value restrictions.

In addition to type restrictions it is also possible to specify preconditions on the
values of the arguments. These conditions can be expressed with the following
formulae:

Name Relop Expression means Name must be in relation Relop with Expres-
sion. Here Name is the name of either an argument or an attribute of a col-
lection, in the form Coll.Attr, Coll being the collection. Relop is a relational

Implementing Global Constraints as Graphs of Elementary Constraints. 245

The type RECTANGLES corresponds to a collection of rectangles, each
rectangle being defined in both dimensions by its origin and either
its size or its end. The following is the type definition of RECTANGLES
and a sample instance of it, that contains two rectangles, one given
with its size, the other with its endpoint. (The attributes of each
rectangle are separated by spaces, the two rectangles are separated
by a comma.)

RECTANGLES: collection(oril-dvar, sizl-dvar, endl-dvar,

ori2-dvar, siz2-dvar, end2-dvar)

RECTANGLES = { oril-5 sizl-20 ori2-5 siz2-10,

oril-25 endl-45 ori2-15 end2-25 >

2nd

ŝt

Figure 2: An example collection

operator, like -fc or >. Expression is an arbitrary expression consisting of con-
stants, other names and mathematical operators.

Name in {List} means Name (same as before) must appear in List, a list of
comma separated constants.

d is t inct (Col l/At tr) means that for any two items in the collection Coll the
values of attribute Attr must be different.

required(CoiJ. Attr) means that all items in collection Coll must have attribute
Attr specified.

There are several other value restricting statements, but those are seldom used.

2.2.3 Graph generation parameters.

The initial graph generation consists of three phases. In the first phase the vertices
are created, in the second phase they are connected by arcs, and in the third phase,
the specified elementary constraint is assigned to each arc.

In the most common case, one has to specify a single input collection to create
the vertices: to each element of this collection a vertex is assigned. The collection
may either be a constraint argument or it can be built for this purpose. The
vertices thus created provide the input of the arc generator, which manages the
second phase. Each generator incorporates a regular pattern, which is reflected in

246 Dávid HanáJc

the created set of arcs. The arity of the arcs is characteristic of the generator, and
it must also match the arity of the specified elementary constraint.

In general, the arc generator may require the vertices to be divided into disjoint
subsets. In that case, not one but several input collections must be specified, each
of these is mapped to a separate subset of vertices. Currently, most existing arc
generators need a single set of vertices (i.e., one collection) as an input, and there
are two of them expecting two.

Figure 3 shows four example arc generators. All of these generators create
binary arcs, which means that they can be used with binary elementary constraints
only. (This is the most common case.) The loop generator connects each vertex
to itself. The path generator exploits that the collections are ordered lists, and
connects the first vertex to the second, the second to the third, and so on. The
c l ique generator connects all vertices to all others by default, but it can have a
relational operator as an argument, in which case it only connects vertices with
indices which sustain the relation. Such a case is shown in the figure. The product
generator gets two sets as an input, and connects all the vertices in the first set to
all the vertices in the second set. This generator can also have a relational operator
as an argument.

The elementary constraint, the third ingredient of the graph generation, is ba-
sically a mathematical relation containing symbolic references to values assigned to
the vertices (i.e., the endpoints of the arcs).

A constraint definition contains three terms to specify the graph to be generated.
We have to determine the input collection(s), select the arc generator by its name,
and define the elementary constraint assigned to the arcs.

2.2.4 Graph property requirements.

These statements also have the form of an equation, with a graph property name
on the left hand side, constants and arguments of the global constraint on the right.
Let us see several graph properties:

nvertex is the number of vertices;2

narc is the number of arcs;
ncc is the number of connected components;
nscc is the number of strongly connected components;

product

Figure 3: Arc generators

2This property is sensible to examine, because unconnected vertices are removed from the
graph, therefore it is not necessarily equal to the size of the input collection.

Implementing Global Constraints as Graphs of Elementary Constraints. 247

nsource is the number of sources (those vertices which do not have arcs leading
into them);

nsink is the number of sinks.

2.3 An Example - The element Constraint
The element constraint is one of the most common global constraints. It receives
a single item and a set of items as arguments and it succeeds iff the item is a
member of the set. In some implementations, both the item and the elements of
the set may be domain variables, but in the following interpretation the elements
of the set must be constants. The formal definition of element according to [1] is
shown in Figure 4, an instance of its graph with specific arguments was presented
in Figure 1. It can be explained as follows.

1. The element constraint has two arguments (line 1).

2. The first, called ITEM is a collection with two attributes, index and value,
both are domain variables (line 2). The second argument, called TABLE is also
a collection with two attributes, also called index and value, but these are
constants (line 3).

3. The following restrictions must hold:

• both attributes of both collections must be specified in all items (lines 4 -
5);

• there must be exactly one item in the ITEM collection (line 6);

• the indices in both collections must be between 1 and the size of TABLE
(lines 7-8);

• all indices in TABLE must be distinct (line 9).

4. The arc generator is product (line 11), which requires two collections as its
input, namely ITEM and TABLE (line 10).

5. The elementary constraint assigned to the arcs appears in lines 12-13. It is
to be read like this: the value assigned to the first endpoint of the arc ([1])
is a member of the ITEM collection, and its attributes labeled as index and
value must both be equal to the equivalent attributes of the value assigned
to the second endpoint ([2]) , which is a member of the TABLE collection. The
syntax looks a bit weird and perhaps even confusing. We will further discuss
this question in Section 3.1.

6. The number of arcs must be exactly 1 in the final graph (line 14).

248 Dávid HanáJc

1 Constraint :

2 Arguments:

element(ITEM,TABLE)

ITEM: collection(index-dvar, value-dvax)

TABLE: collection(index-int, value-int)

4 Restrictions: required([ITEM.index,ITEM.value]),

required([TABLE.index,TABLE.value]),

I ITEM| = 1 ,

ITEM.index > 1, ITEM.index < I TABLE I,

TABLE.index > 1, TABLE.index < I TABLE I

distinct(TABLE/index) .

io Arc input :

H Arc generator:

12 Arc constraint :

13

ITEM, TABLE

product

ITEM.index[1] = TABLE.index[2] A

ITEM.value[1] = TABLE.value[2]

i4 Graph property: narc = 1

Figure 4: The element constraint in abstract syntax

N o t e . It might seem strange to define ITEM as a collection when it must have
exactly one element (line 6). However, passing the index and value as two separate
arguments of the constraint would be less symmetric with respect to TABLE. Another
advantage is that ITEM, being a collection, can serve directly as an input for the
product arc generator.

3 The Concrete Syntax

In order to be able to put the theory into practice, we had to define a concrete
syntax of the language. The chosen representation closely resembles the abstract
syntax, but follows the syntax of Prolog, too. This has the advantage that it can
be effortlessly parsed by a Prolog program.

This work has helped to discover some weaknesses of the ADL. First, it turned
out that the semantics of the d i s t i n c t operator is unclear in certain contexts, be-
cause it is under-specified. Second, as it was already noted at the end of the previous
section, the syntax of the elementary constraint specification can be confusing.

Section 3.1 covers the two problematic issues and suggests a solution to both.
Section 3.2 discusses the concrete syntax itself, illustrated by the updated version
of the already familiar element example.

Implementing Global Constraints as Graphs of Elementary Constraints. 249

3.1 Clarifying the Language Specification
3.1.1 The problem of the distinct operator.

Let us consider the following type declaration of a collection of collections:

COLL: collection(c-collection(val-int))

Such a data structure can be used to model different data semantics. Two of these
are the following:

1. The inner collections depict sets, thus each of them must have distinct ele-
ments, but the same element can appear in more than one collection.

2. The inner collections represent partitions, i.e., pairwise disjoint subsets of a
single superset. In this case all elements of all the inner collections must be
pairwise different.

Since the used data structure is the same in both cases, the distinction must be made
using value restrictions, more specifically d i s t i n c t statements. Unfortunately, it
is clear that we cannot express both with the d i s t i n c t (COLL/c/val) statement.
Moreover, it is unclear which of the two semantics the statement expresses. The
inability to precisely determine the value sets d i s t i n c t operates upon leads us to
the definition of two concepts in the following paragraph.

3.1.2 Selectors and designators.

When we refer to attributes of items of collections, sometimes we want to reach sin-
gle values, in other cases we need the list of values of all items within the collection.
The required and d i s t i n c t operators are good examples of the two possibilities,
respectively.

Keeping the notation of [1], which uses the term designator to refer to a sequence
of names selected by slashes, let us introduce two new concepts, defined with BNF
notation as follows:

selector ::= Coll | selector . Attr

designator ::= selector | designator / Attr

Selectors can be used to point out single values. They can be used to state some-
thing about values of items of a collection separately. Designators, on the other
hand, point to a list of values. They can be used to state something about the
values in all the items of a collection together.

By starting a designator with a selector, we express that we want to divide the
list of all the values into sublists and state something about these sublists separately.
The division points are determined by the selector part of the designator. To clarify
this, Figure 5 shows a somewhat degenerated collection as a tree, along with two
designators and the corresponding sublists marked with ovals.

250 Dávid HanáJc

C: collection(a-collection(b-collection(c-int)))

C

O C.a.b/c

C D C.a/b/c

Figure 5: The meaning of designators

In certain contexts only selectors are accepted. Among others, such places are
where the dot notation was already used, such as the argument of required, or
TABLE. index > 1 in Figure 4. In the latter we want to express that all values
labeled as index must be greater than or equal to 1, separately.

Elsewhere designators are required. The argument of d i s t i n c t is such a place.
One would also use a designator to count those items of a collection which possess
a certain attribute. Then one needs to write iCOLL/attrl, because COLL/attr
brings all the items with a t t r attribute together into a list, and I . . . I returns the
length of this.

Now let us return to the problem of d i s t i n c t . In the example presented there,
the statement d i s t i n c t (COLL. c / v a l) means that for all c collections separately,
the val values must be distinct, but the same value can appear in more than one
collection (case 1). d i s t i n c t (COLL/c/val), on the other hand, means that the list
of all values in all collections must be distinct (case 2).

3.1.3 The elementary constraint notation.

As we have seen in Figure 4, ITEM. value [1] means the value of the value attribute
of the first argument which is the ITEM collection. Thus we can say that the general
form is something like Coll. Attr [Arglndex]. This is rather confusing and does not
resemble any of the notations we are used to:

• the specification of ITEM is redundant, because it is well known from the
graph structure that the first argument of the elementary constraint must be
an item of that collection;

• the position of the index 1 between the brackets is misleading because this
notation suggests some kind of array indexing, which is not the case.

Implementing Global Constraints as Graphs of Elementary Constraints. 251

We would be better off with a notation like Args [1] .value (where Args would be
an array of all arguments of the elementary constraint) or Argl .value. As we will
see, the concrete syntax uses a very similar notation.

3.2 The Prolog-like Concrete Syntax
As stated in the introduction of Section 3, the chosen representation, while closely
resembling the abstract syntax, follows the syntax of Prolog. Hence, each global
constraint is described by a Prolog clause with seven arguments, as shown in Fig-
ure 6 for the element constraint. These arguments axe the following:

1. the name and arguments of the global constraint (as a Prolog term);

2. the list of type restrictions of the form Arg-Type where Arg is the name of
the argument and Type is the type specification;

3. the list of value restrictions in a form very similar to the abstract syntax, with
the exception of I COLL I which should be written as size (COLL), and all the
relational operators must be written in Prolog notation;

4. the arc generator input (a list of collections);

5. the name of the arc generator;

6. the elementary constraint in the form Args => Body, where Args is a collec-
tion of the arguments of the elementary constraint and Body is the constraint
itself (#= and #/\ are operators of the host language, basically they mean =
and A, respectively);

7. the list of graph properties.

Inline collections have a somewhat different syntax than the one in Figure 2. They
can be written as follows (note the difference in the use of commas and semicolons):

• a collection has the form { Itemx ; Item2 ; ... };

• each Itemi above has the form Attri -Vah , Attr2-Vak , . . . where Attri
is an attribute name and Vak is a value.

The lines of Figure 6 correspond respectively to the lines of Figure 4, and the
definition as a whole should be self-explanatory. However, two things are worth
mentioning.

One is that we have chosen to represent the arguments of the elementary con-
straint as items of a collection. In the body, we need to refer to these items and
their attributes. The collection can be broken up into separate items simply by
writing a pattern. But to access the attributes of these items, we must call for a
trick: by wrapping A in braces, we create a collection with a single item, therefore
{A} . index will expand to the index of this single element.

252 Dávid HanáJc

i graphfd:global(element(Item, Table),

2 [Item-collection(index-dvar, value-dvar),

3 Table-collection(index-int, value-int)],

4 [required(Item.index), required(Item.value),

5 required(Table.index), required(Table.value),

e size(Item) =:= 1,

7 Item.index >= 1, Item.index =< size(Table),

s Table.index >= 1, Table.index =< size(Table),

9 distinct(Table/index)],

10 [Item, Table].,

n product,

12 {A;B} => {A}.index #= {B>.index #/\

13 -[A}-.value #= {B}.value,

14 narc = 1) .

Figure 6: The element constraint in concrete syntax

The other point to note that the relational operator #= comes from the SICS-
tus CLP (TV) library, therefore, after expanding the selectors, the statement will
become a valid CHP(J-V) expression. The advantages of this will be discussed in
Section 4.2.

4 The Implementation
The schema created by Beldiceanu allows us to test whether the relation expressed
by a global constraint holds for a given set of concrete arguments. However, it does
not deal with the more important case where only the domains of the arguments
are specified, but their specific values are unknown. In such a case we need an
algorithm to prune the domains of the arguments by deleting those values that
would certainly result in a final graph not satisfying the properties. This question
is fundamental in' practical applications, therefore it is addressed by this section.

Development was launched with two goals in mind. The first task was to imple-
ment a relation checker, a realization of the testing feature offered by the schema,
and a dumb propagator built on this checker. By and large, this task is finished,
the results are presented by Section 4.1.

The second task was to implement a direct propagator capable of pruning vari-
able domains based on an analysis of the current state of the graph, with the

Implementing Global Constraints as Graphs of Elementary Constraints. 253

required properties in view. This task is much bigger, the development is still in
an early stage. Its current state and features are introduced by Section 4.2.

Both tasks are implemented in SICStus Prolog [7], extending its CLP {TV) li-
brary by utilizing the interface for defining global constraints. This allows thorough
testing of both the program and the theory itself in a trusted environment.

4.1 The Complex Relation Checker and the Generate-and-
Test Propagator

The first stage was to implement the complex relation checker, a program that
checks whether the relation defined by the global constraint holds for a given set
of values, but does no pruning at all. It includes the following features:

• complete type checking (dvar is interpreted as int) ;

• full support of selectors and designators introduced in Section 3.1;

• support for value restriction with the most frequent statements:

— distinct and required; plus

— arbitrary Prolog calls which must succeed for the restriction to hold;

— s i z e (. . .) is replaced by the length of a collection or list.

• full set of built-in arc generators;

• extensive set of supported graph properties.

When called, the relation checker is given a constraint with fully specified argu-
ments, and reports the result of the type check, the restriction check, and whether
the graph properties hold for the final graph. The output of two example runs can
be seen in Figure 7. In the first case, the first argument appears in the collection
passed in the second argument, while in the second case it does not.

The checker was used to test the formal description of several constraints,
whether they really conform to their expected meaning, and some errors in their
specification have already been discovered (these will not be discussed here).

The second stage was to amend the relation checker with a generate-and-test prop-
agator. The idea is that whenever the domain of a variable changes, all possible
value combinations of the affected constraint's arguments are tested with the rela-
tion checker, and only the values that passed the test are preserved. This classical
but extremely inefficient method for finding solutions gives us full and exhaustive
pruning.

The usage and output of the generate-and-test propagator is the same as that
of the direct propagator, which is introduced in the next section (see Figure 8).

254 Dávid HanáJc

Testing element({index-2,value-3}, {index-1.value-1 ; index-2,value-3}).

Type checking passed.

Type restrictions held.

Graph properties held.

Relation is sustained.

Testing element({index-2,value-l}, {index-1,value-1 ; index-2,value-3}).

Type checking passed.

Type restrictions held.

Graph properties failed.

Relation is not sustained.

Figure 7: Output of the complex relation checker

4.2 The Direct Propagator
Generate-and-test propagation is naturally out of the question in any practical
applications. The direct propagator is the first step towards an efficient, applicable
pruner. Here the line of thought is reversed: we assume that the constraint holds,
and from the required graph properties we try to deduce conclusions regarding the
domains of its variables.

4.2.1 Propagation in theory.

The question that naturally arises is the following: how the changes of domains can
be propagated given a graph representation of the constraint. As mentioned in the
Introduction, constraints behave like daemons which wake up when the domain of
the affected variables change. The propagator - using the programming interface
of CLP (TV) - can be set up so that it is notified whenever a constraint wakes up.
On these occasions it must check the graph corresponding to the constraint and
classify its arcs into three groups:

1. arcs with the assigned elementary constraint being known to hold - i.e., they
will appear in the final graph;

2. arcs with the assigned elementary constraint being known to fail - i.e., they
will be left out of the final graph;

3. arcs with the assigned elementary constraint being yet uncertain.

This classification can be completed gradually because the CLP (TV) system is
monotonic, which means that values can only be removed from a domain. As a
result, a value is removed only if it is definitely not a solution, because it cannot
be re-added later.

Implementing Global Constraints as Graphs of Elementary Constraints. 255

To propagate the constraint, we have to look at this semi-determined graph
and the required graph property together, and try to tell something about the still
uncertain arcs. This process is called the tightening of the graph. In order to
ensure that the graph properties hold, some of the uncertain arcs must be removed
from the final graph, others must be made part of it. This causes the corresponding
elementary constraints to be forced into success or failure, thus pruning the domains
of the variables. The global constraint finally becomes entailed when there are no
uncertain arcs left.

Because of the character of this propagation algorithm, elementary constraints
are chosen to be reifiable CLP (TV) constraints, as shown in Figure 6. Reifiable
constraints are connected with a Boole variable, and succeed if and only if the
Boole variable has a value of 1. This use of reifiable constraints has several ad-
vantages. For one, a wide range of predefined constraints is available, already at
this early stage of development. For another, the algorithm must be able to de-
termine whether an elementary constraint holds or fails, or force it into success or
failure, and the Boole variable linked to the reifiable constraints serves exactly that
purpose.

To figure out how to tighten the graph at each step, that is, to find the rules
of pruning, we need to study each graph property separately. There are simpler
properties, such as prescribing the number of arcs, for which finding these rules
is not very problematic (see below). A few of these are already handled by the
propagator. The are more complex properties, like constraining the difference in
the vertex number of the biggest and smallest strongly connected components, the
pruning rules for these are a lot more complicated.

4.2.2 Propagation of the narc = N property.

Let us assume that the required graph property is narc = N, where N is a positive
integer. Let S be the set of arcs which are known to be part of the final graph, and
let U denote the set of the still uncertain arcs. Then we have to take the following
action:

• if |5| > N, fail, because there are already to many arcs;

• if |S| = N, force every arc in U to failure;

• if |S| + |t/| < N, fail, because N cannot be reached any more;

• if |S| + |£/| = TV, force every arc in U to success;

• otherwise do nothing.

4.2.3 Example run.

Running the direct propagator on the element constraint is possible because it uses
exactly this graph property. An example run can be seen in Figure 8. The first call
determines that the A-B element must appear in the list, arid we get that A must
be between 1 and 3, while B must be either 2, 6 or 9. The second call we also ask

256 Dávid HanáJc

the CLP (TV) environment to enumerate ail solutions by labeling the variable A,
and, as we could expect, we get the three correct solutions.

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})).

A in 1..3, B in{2}\/{6} ? ;

no

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})),

label ing ([], [A]).

A = 1, B = 6 ? ;

A = 2, B = 2 ? ;

A = 3, B = 2 ? ;

no

Figure 8: Running the direct propagator

The current implementation can handle four graph properties, these are narc,
nvertex, nsource and nsink. Fortunately, a large number of descriptions re-
lies only on the first two, thus many different constraints can already be propa-
gated. Without going into details, such constraints are among, d i s j o i n t , common,
sliding_sum, change, smooth, inverse, and variants of these.

Current work is concentrated on the perfection of the propagation of these prop-
erties, and on the study of the nscc (number of strongly connected components)
and related properties, which are also heavily used in the existing descriptions. The
rest of the properties are only required by a minority of the constraints.

This propagator, although still not efficient enough to be useful in. practical
applications, may serve as a prototype for more effective implementations. A few
thoughts on this issue are shared in the next section.

5 Future Work
Pruning rules for more of the graph properties are to be worked out. The existing
rules also need to be improved in certain cases. This will be the objective of an
international project hopefully starting in Autumn 2003.

Using reifiable constraints as elementary constraints poses a problem: they do
not necessarily provide a pruning as strong as expectable. Such a case can be seen
on Figure 9. What we see here, is that 1 is not excluded from the domain of A,
although it could be. The problem is that forcing the and-ed elementary constraint
of element (Figure 6, lines 12-13) into failure is not enough to do that. We would
get better pruning if we could write something like:

Implementing Global Constraints as Graphs of Elementary Constraints. 257

arc exists <i=>- indices are equal
arc exists => values are equal

But implication does not conform with the concept of elementary constraints. This
problem requires further study.

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})),

B #= 2.

B = 2,

A in 1..3 ?

Figure 9: Weak propagation of reifiable constraints

Efficiency matters need to be considered more carefully when implementing
further propagators. One way to increase efficiency, as suggested by Beldiceanu,
could be to abandon the thought of a common propagator, that is able to parse such
descriptions and prune in run time, and implement a pruner algorithm generator
instead. This generator would take the description and convert it into a piece of
code that does the pruning. This would shift the execution of complicated graph
algorithms into compile time, where efficiency is a smaller issue. How this can be
done must be worked out yet.

6 Conclusions
The paper began with the introduction of a theory first described in [1] that en-
ables us to represent global constraints as regular graphs of the same elementary
constraint. It was shown how the definition of a global constraint looks like, what
restrictions and requirements may appear in it, and how the representative graph
is built by it.

Then the concrete syntax of the language developed for the implementation was
presented. First, attention was drawn to two problems with the ADL specification,
and solutions to them were suggested, too. Second, the concrete syntax itself was
illustrated.

The last part of the paper described the results on constraint checking and
propagation. The first of these was the complex relation checker capable of testing
whether a constraint holds for a given set of values. The second, based on this, was
the generate-and-test propagator, which implements exhaustive propagation for a
large number of graph properties, but with very low efficiency. The result of the
third, more interesting approach was the direct propagator, which was considered
as a step towards efficient algorithms of constraint pruning. This deals with semi-
determined constraint graphs and the enforcement of uncertain arcs in order to
satisfy the required graph properties.

258 Dávid HanáJc

Acknowledgements
I would like to thank Nicolas Beldiceanu for his theory and his ideas on the propaga-
tion of graph properties. Péter Szeredi, my supervisor always directed my attempts
at research and writing with patience yet with great tenacity. Thanks are also due
to the anonymous reviewer whose remarks led to major improvements in the paper.

References
[1] Nicolas Beldiceanu. Global constraints as graph properties on a structured

network of elementary constraints of the same type. In Principles and, Practice
of Constraint Programming, pages 52-66, 2000.

[2] Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for
clp(FD). In David S. Warren, editor, Proceedings of the Tenth International
Conference on Logic Programming, pages 774-790, Budapest, Hungary, 1993.
The MIT Press.

[3] ILOG. ILOG Solver 5.1 User's Manual. ILOG s.a. http : / /www.i log .com,
2001.

[4] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP
system. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the
4th International Conference, pages 196-218, Melbourne, May 1987. MIT Press.
Revised version of Monash University technical report number 86/75, November
1986.

[5] Vincenzo Loia and Michel Quaggetto. Embed finite domain constraint pro-
gramming into Java and some Web-based applications. Software— Practice
and Experience, 29(4):311-339, April 1999.

[6] Gert Smolka. Constraints in OZ. ACM Computing Surveys, 28(4es):75, Decem-
ber 1996.

[7] Swedish Institute of Computer Science, Uppsala, Sweden. SICStus Prolog User's
Manual, 2003. http://www.sics.se/isl/sicstuswww/site/documentation.html.

[8] Pascal van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, Massachusetts, 1989.

[9] Pascal van Hentenryck, Laurent Michela, Laurent Perron, and Jean-Charles Ré-
gin. Constraint programming in OPL. In Gopalan Nadathur, editor, Proceed-
ings of the International Conference on Principles and Practice of Declarative
Programming (PPDP'99), volume 1702 of Lecture Notes in Computer Science,
pages 98-116, September 29 - October 1 1999.

http://www.ilog.com
http://www.sics.se/isl/sicstuswww/site/documentation.html

Acta Cybernetica 16 (2003) 259-270.

On Implementing Relational Databases
on DNA Strands

István Katsányi*

Abstract

This work describes the theoretical bases of the implementation of rela-
tional databases in test tubes, using an abstract model of molecular comput-
ing. It specifies the representation of relations and the execution program
of the relational algebra (RA) operations. We investigate the possibilities of
practical usage of the proposed model as well as the bounds of it.

K e y words: Molecular computing, theory of computing, relational database.

1 Introduction
In the last decade molecular biology has become the fastest growing discipline in
the world. Some of the results are widely known, let us only mention the major
breakthroughs in the Human Genome Project and nanotechnology. The progress
made possible the birth of a new branch of science, that is called molecular com-
puting (or DNA computing). Leonard M. Adleman published a paper [1] in 1994,
which later become the foundation-stone of this new subject. In his article Adleman
demonstrates how can a classic NP-complete problem: the problem of searching
for a Hamiltonian path in a directed graph can be solved in polynomial time us-
ing the techniques of molecular biology and DNA strands. He outlines the great
opportunity laying in the large computing power and the extremely compact data
storage. In a test tube there can be performed as much as 1016 operations in a
second. That is much more than current supercomputers can execute. In a litre
of water DNA strands can encode 108 terabytes, and we can perform associative
searches on the data in constant time.

In the past years many papers dealing with the computing power of DNA were
published. However, only a few article studied the possibility of data storage and
processing (see e.g. [2], [3]). Recently two papers ([4], [5]) described methods that
yielded in an operation that closely resembles to the join operation of relational
algebra. In spite of this no one has extensively studied the potentialities of the

*Eötvös Loránd University, Department of General Computer Science, 1117 Budapest,
Pázmány Péter sétány 1 /C , e-mail: kacsaSludens.elte.hu

259

260 István Katsányi

usage of molecular computing in the field of RA. By this work we would like to show
the (at least theoretical) possibility of the use of the results of molecular computing
in this area. In the Preliminaries section we introduce John Reif's RDNA model of
biomolecular computing. We define a possible representation of relations using that
model in the Representation section, and show how to implement the RA operations
in this model in the Operations section. We close the paper by conclusions and
references.

2 Preliminaries
As common in formal language theory, we denote the free monoid generated by a
finite set X by X*. We call X as alphabet, elements of X as letters, and elements of
X* as words. The symbol e means the empty word. The length of a word u £ X*
will be denoted by |u|. The cardinality of a set S will also be denoted by |S|.

We describe briefly the RDNA model introduced by J. H. Reif in [4]. For
motivations, connections to molecular biology and complete definitions please refer
to the original article. The operations of the model are abstractions of the well
understood recombinant DNA operations and basic molecular biology operations.
The structural properties of DNA are represented in a structure called complex.

We use an alphabet consisting n > 1 pairs of letters that said to be complemen-
tary: E = {o i , 02, . . . an ,a'i ,a2' • • • a 'n}i where a* and a[form a complementary pair
for all i £ [l,n]. By a linear string we mean a word from E*, and by a loop string
we mean any possible circular rotation of a word from E*. The set of circular rota-
tions of word u £ E* is {U2U1 £ E* | U\U2 = «}• A loop string can be represented
by any particular instance of the rotated words. For a linear string u define G(u)
as a directed graph of |u| vertices and |tt| — 1 edges, such that the graph consists
of one (nonrepeating) directed path, where the consecutive edges are labelled by
the consecutive letters of u, from first to last. For a loop string u define G(u) as
a directed graph of |u| vertices and |u| edges, such that the graph consists of one
directed loop, where the consecutive edges are labelled by the consecutive letters
of u. For a set S of linear or loop strings over E define G(S) as the union of the
disjoint directed graphs G(u) for each u £ S. Hence G{S) consists of |S| disjoint
directed paths or loops.

Define a labelled pairing of the edges of G(S) to be a set n of unordered pairs
of distinct directed edges of G(S) such that (1) n pairs the starting and ending
vertices of the edges as well as the edges itself, (2) no edge appears more than once
in fj,, and (3) each pair of edges in fi have complementary labels and point to the
opposite direction. We define a complex over S to be the pair (S,/x), where /j. is a
labelled pairing of G(S).

The complex (S, fi) has a naturally defined graph G(S, fj,) derived from the graph
G(S) by merging together the vertices i,i' as well as the vertices j,j' for all labelled
pairs ((i , j) , (j ' , i ')) in fi, so the resulting graph has edges in both directions between
the two merged nodes. Note that three nodes may be merged into one, for example
j and j' would be merged with j" if the pair ((j, k), (k1, j)) is in /x in addition to

On Implementing Relational Databases on DNA Strands 261

the pair ((i,j),(j',i')).
The complex (S, p) is a linear complex if p. = 0 and 5 is a set of linear strings.

The complex (S, 0) is a single linear complex if S contains one linear string only,
so the graph G(S) is a single directed path.

A complex may be used to model both the information content and also the
three-dimensional structure of single- or double-stranded DNA, including hy-
bridization and secondary structure. The use of complexes allows modelling the
effect of various recombinant DNA operations, and thus providing rigorous defini-
tions of recombinant DNA operations.

Operations of the RDNA model
We use a slightly different notation for the operations than Reif uses. We also
extend the list of operations by the operations Prepare, Assign and Amplify. By a
test tube we mean a multiset of connected complexes, where a complex (S, p.) is said
to be connected, if its graph G(S,pi) is connected. We call two sets of complexes
equivalent, if the union of the graphs of the complexes in each set are isomorphic.
The allowed operations (also called instructions) are the following:

1. Prepare. The operation T := Prepare(S) prepares the test tube T containing
the linear complex (5,0) from the set of linear strings S C S * .

2. Assign. We use the usual := operator for assigning values for test tubes.

3. Merge. After the operation MergeiTi, T2) the test tube T\ becomes the union
of multisets T\ and T2.

4. Copy. T' := Copy(T) produces a copy of the test tube T containing only
linear complexes.

5. Amplify. By using Amplify(T,n) each complex of the multiset T is replaced
by at least n identical copies of it, hence the volume of T is multiplied by at
least n.

6. Detect. Detect(T) returns true if T is not the empty multiset, false otherwise.
7. Select. Operations T' := Select-(T,n) and T" := Select^iT, n) separate the

contents of T by the size of the complexes. The size of a complex is the
number of nodes in its graph. T' will contain those complexes of T, whose
size are equal, (or in case of Select± not equal) to n.

8." Separate. Operations T' := Separateinci(T,u) and T' := Separateexci(T,u)
separate the contents of T by the content of the complexes in it, where u is
a word over E. The operation may only be applied on a test tube of linear
complexes. T' will contain those complexes (5,0) of T, where there exists (or
in case of Separateexci does not exist) a word v € S such that u is a subword
of v.

9. Cleave. The operations Cleavebefore(T,a) and Cleaveafter(T,a) cuts every
path of the complexes of T before (resp. after) the edges labelled with a 6 S.

262 István Katsányi

If the created complex is not connected, it is replaced by connected complexes
equivalent to it.

10. Anneal. The Anneal(T) operation changes the test tube T nondeterminis-
tically. Each complex (S, ¡j) of T is replaced by a complex of form (S,fi'),
where is a superset of n, and there is no fi" labelled pairing of G(S) such
that n" 2 M'-

11. Ligate. By the use of the operation Ligate(T) every complex (S, n) in T is
replaced by a complex (5',/x'), which has the same graph as (S,¡j), except
that all vertices that are paired to the same node in fj, are merged. That
means that any two paths in G(S) that have ending and beginning nodes
that are paired to the same (third) node are concatenated.

12. Denature. The Denature(T) operation replaces every complex (S,fi) in T by
the set of connected complexes { ({ a } , 0) | a £ S}.

3 Representation
In this section we show a method, by which arbitrary finite relations can be repre-
sented in test tubes using the devices introduced in the previous section.

Each relation is represented by a unique test tube containing complexes over a
common alphabet. The tubes contain mainly linear complexes. During performing
certain operations there may occur other structures as well, but these are eliminated
by the end of the operation.

Suppose that we have m not necessarily different sets Ai,...,Am, by which
the bases of n relations Ri,..., Rn are defined. Each relation Ri consists of ki
components: Ri C Afi l x ••• x Aii k. (i = 1 , . . . , n , ki > 1, /¿,j £ [1,m] for all j £
[l,fcj]). We will also call components of a relation as columns, and the indexes / ¿ j
as labels of columns. For technical reasons we only allow relations of different base
sets: for all i £ [l,n], j, k £ [1, A;,] such that j k the non-equality / ¿ j ^ fi^ must
hold. We may easily overcome this limitation by introducing new base sets.

We only deal with finite relations, so each Ai must be a finite set (i = 1 , . . . , m).
Since they are finite, we can encode them over a common alphabet X (e.g. the set of
bits). Let these encodings denoted by the injective mappings e* : Ai h4 Xli, where
li is the letters needed to uniquely encode the elements of Ai in the alphabet X
(i £ [l ,m]). Please note that the length of e*(r) is always exactly /¿, independently
of r £ Ai.

By the use of these mapping, we may define injective mappings from Ri to words
over X. For each i = 1 , . . . , n define hi: Ri XLi, where Li = YljLi Ifrj > a n d for
all r — (r i , . . . , r / t j £ Ri, hi(r) is defined as the concatenation of the mappings of
the components of r: hi{r) = e/j,i(ri) •• • efi k. (r^) .

An element r £ Ri {i £ [l ,n]) is represented by a single linear complex over
an alphabet £ of length L{\ each letter is a triplet, where the first components are
letters of X, such that the concatenation of the first components gives the word
hi(r). The second components contain the index of the base set whose element is

On Implementing Relational Databases on DNA Strands 263

partially encoded in the letter, and the last element is the position of the encoded
letter within the encoding of the referred base set. Hence we define the alphabet

E = {(x,j,k),(x,j,k)' | x 6 X,j e [1,m], k € [1,^])}

where each letter has its primed version as complementary pair and vice versa. Since
the alphabet E is fixed, we have to define all relations occurring in the computation
in advance. This problem can be eliminated if we use a suitable encoding of E.
Now let us formally define for every i £ [l ,n] the injective mapping gi : XLi k* E L i

in the above manner: for every x\... xl{ £ XLi

gi(xi ...xLi) = (xi, fi,i,l)(x2, fi,i,2) ••• {xlfii, fiA,lfi

{xi,. ^ , / ¿ , 2 , 1)) ••• (xlf.i+lf. 2,fit 2,lfi2)) •

(XLi-lfi k. +1, fi,ki, 1) • • • (XLi 1 fi,ki ,lfi,ki)-

Define for every i £ [1,"] the mapping / ; = gi ° hi. Of course this mapping is
also injective. An element of a relation r € Ri is represented by the single linear
complex ({ / i (r) } , 0) , and Ri is represented by the test tube containing the linear
complex ({ /¿(r) | r € Ri},®) (i e [l,n]).

Let us look at an example. We have one relation, Ri C Ai x A2, where A\ =
{i | 0 < i < 99} and A2 = {« | 0 < i < 9}. A possible encoding of the sets A\
and A2 is the decimal representation, we need two digits for A\ and one digit for
A2. We get: X = { 0 , 1 , . . . , 9 } , h = 2, l2.= 1. /ii((a,6)) = a'b' where a' € X2,
b' e X, a' and b' are the decimal representation of a and b containing leading zeroes
if necessary. The complex alphabet is the following:

E = {(x,j,k),(x,j,k)' I X e [o,9], j e [l, 2], (j = l k e [1,2],
j = 2=>k = l)}.

If Ri = {(2,3), (85,0)}, then hi(Ri) = {(02,3), (85,0)}, and

h(Ri) = {(0,1,1)(2,1,2)(3,2,1), (8,1,1)(5,1,2)(0,2,1)} .

The test tube of Ri contains two single linear complexes, each containing one single
string from fi(Ri).

Although the introduced representation is redundant, not too simple and have
some limitations, we choose it because it is robust and allows simple implementation
of the RA operations.

4 Operations
In this section we give methods for creating test tubes containing given relations
as well as creating tubes from existing ones as a result of a RA operation. We

264 István Katsányi

give a molecular program for Union, Selection, Cartesian product, Projection and
Difference. The other RA operations can be expressed by these ones. In all our
examples the test tube Tj will denote the tube that contains the representation of
relation Ri (i G [1, n]). We will use auxiliary tubes, too. These will be denoted by
indexed S symbols.

Set up
After we fixed the originating relations and all computation by which we want to
define new relations from the existing ones, we fix the alphabet E and the mappings
defined in the previous section. The test tubes that represent the original relations
can be set up by subsequent uses of the Prepare operation. The realization of
this process in laboratory can be very expensive and time consuming for relations
of many elements. An alternative method for creating large databases of DNA
strands can be found in [3]. A third way can be starting from a naturally existent
set of DNA strands and transform them to the form required in our model using
biomolecular operations only.

Union
The execution program for creating the union Rk of two relations R, and Rj is very
simple (i,j, k G [l,n]):

For Rk := Ri U Rj do:

51 := Copy(Ti)
52 := CopyiTj)
Merge(S1,S2)
Tk := Si

We simply make copies of the tubes representing Ri and Rj, merge them to-
gether to form Tk •

Selection
We give different programs for the selection operation a depending on the selection
condition. First, suppose that the condition is that a given column equals to a
constant value or formally: in the relation Ri the column labelled j is equal to
u 6 Aj, where i G [l,n], j G [l,m]. Let the letters x\,... ,xij G X be determined
by the equation ei(u) = xi - • • x^.

For Rk : = <rCj-uRi do:

Si := Copy(Ti)
Tk :=Separateinci(S1,(xi,j,l)...(xlj,j,lj))

The program is based on a single Separate instruction that selects from a copy of
the original tube those strings, that contain the (possible long) encoding of word u

On Implementing Relational Databases on DNA Strands 265

over alphabet £ as subword. However, if for technical reasons we allow separations
of short sequences only, we may take advantage of our redundant representation
and perform the separation step by step, letter by letter, getting Tk after lj Separate
instructions:

For Rk ••= (TCj=uRi do:

51 := Copy{Ti)
52 •= Separateinci(Si, (xi, j, 1))
53 := Separateinci(S2, {x2, j,2))

Sij—SeparateindiSij-i^xij-iJJj-l))
Tk := SeparateindiSi^txi^jJj))

Next, we show how to deal with selections where the condition is that two
columns are equal. Select those elements of Ri whose columns labelled with a and
b are equal. Let us suppose, that the two columns have a representation over X of
equal length, that is suppose la — /&.

For Rk : = crCa=CbRi do:

Si := Copy(Ti)
For j = 1 ,2 , . . J a do

S2 := 0
For each i £ l d o

53 := Separateinci(Si,(x,a,j))
54 := Separateinci(S3, (x,b, j))
Merge(S2,Si)

end do
Si := S2

end do
Tk := Si

The inner loop separates those complexes of S, whose jth letter are equal both
in column a and column b in the representation over X, since it is the union of
such words, where the jth letter equal to an x G X in both columns for all x € l .
Having done this separation for all letters of the columns we get Tk, using a total
of 2Za |X| Separate, la Merge, 2la Assign and one Copy instructions.

If the condition contains instead of = , we have to modify slightly the former
algorithms to give the union of those complexes that differ in at least one position
from the given constant value, or the value of the other column. If the condition
contains the logical operator and, then we model it by sucessive selection. We model
or by merging the resulting tubes of the constituent selections. The operation not
can always be avoided using the former operators.

It is also possible to model selection operations that contain,simple arithmetic
expressions in their conditions. There are several methods, by which we can perform
calculations on DNA molecules, see e.g. [6], [7] and [8]. However, dealing with

266 István Katsányi

comparative relations < and > is not settled yet, to handle them is an open problem
as of today.

Cartesian product
For creating the Cartesian product of two test tubes Tj and Tj we „stick" the proper
ends of the strings in the tubes (i,j 6 [1, n]). Because the result can have much more
element, than the original relations, the test tubes must be amplified by a factor n,
which is no smaller than the number of complexes in any of the two test tubes. An
upper bound for n is of course max{|i?i|, |iij|} as well as m a x d X p , Please
note that in our representation all column labels of a relation must be unique, so
before executing the program creating the product of two tubes, we must relabel
one of each pair of the columns that would have equal label in the product. This
is especially important, if we take the Cartesian product of a relation with itself.
The definition of relabelling and the molecular program for it is shown in the end
of this section.

For Rk : = Ri X Rj do:

51 := Copy(Ti)
52 := Copy(Tj)
Amplify (Si, n)
Amplify{S2,n)
5 3 := Prepare{{(x,fj>uiy{y,fiM, //.,.)' | x,y G X })
Merge{Si,S2)
M e r g e d , S3)
Anneal(Si)
Ligate(Si)
Denature(Si)
Si := Select={SuLi + Lj)
Tk := Si

We prepare a tube S3 containing complexes of size two: the complements of any
possible first symbol of Rj represented over the alphabet £ followed by complements
of any possible last symbol of Ri represented over the alphabet After merging
this tube with the amplified copies of Tj and Tj, these complexes can anneal to
the last letters of Ri and to the first letters of Rj. If both edges are annealed,
the annealed complexes of Ri and Rj axe ligated: they are stuck together, and
remain stuck even when after Denature, the complex of S3 breaks off. After these
operations complexes of size Li + Lj form the elements of Tk representing the
relation Rk = Ri x R j •

Projection
First let us show how can we project a relation Ri into a single column labelled j
{i € [l,n],j G [l,m]):

On Implementing Relational Databases on DNA Strands 267

For Rk := nC j Ri do:

:= Copy{Ti)
for each x G X do

Cleavebefore(Si,(x,j,l))
Cleaveafter(Su(x,j,lfij))

end do
for each x 6 X do

Si := Separateinci(Si, (x,j, 1))
end do
Tk := Si

We cleave (cut) the complexes before any possible first letter of the ith column
represented in the alphabet S, and then cleave after any possible last letter. By
that we cleave each complex into three parts: the parts (complexes) that contain
any (let say, first) letter of the ith column will constitute the tube containing the
projection.

When we want to project into more than one column, then in addition to cutting
the unnecessary ends of the strings as in the previous case, we have to erase some
inner „gaps" as well: substrings that do not belong to columns in the projection
list, but laying between them. We will show a molecular program by which we
can erase one gap. For modelling the general case of the projection we must call
this procedure for all inner gaps, and than must cut the needless ends using a
procedure very similar to the former one. Let us now look at the program that
erases the gap between the ath and 6th column in the tube representing the relation
Ri (i € [l,n],a,b £ [1,fc»],a < b):

For So : = EraseGap(Ti,i,a,b) do:

51 :=Prepare({(x, fiA,l)'(y, fiM,l}i_kiy \x,y£ X })
5 2 := Prepare({(x, fi,b,l)'(y, frajf^)' \x,y <EX})
So := Copy(Ti)
Merge(S0,Si)
Anneal(So)
for each x S X

Cleavageafter(So, (x, fi,a,lfi<a))
Cleavagebefore(So,(x,fi,b,l))

end do
So := Select=(S0, Ej=i */«., + EjU + 2)
Merge{S0,S2)
Anneal(So)
Ligate(So)
Denature(So)
So := S e / e c i = (S 0 , E ; = i E*= 6 */<.,)

We create the tube Si, whose complexes can anneal to the first and last letter
of any complex in T{. Using this tube we can achive that the strings of T; form

268 István Katsányi

loops, so that we can cut them with the possibility not to confuse the separated
beginnings and endings. After creating the rings we cut the unneeded columns and
stick the broken parts together with the help of the tube S2, whose complexes can
anneal to the first letter of the 6th column and to the last letter of the ath column.
We may now select the result.

Difference
The last RA operation we examine is the set difference. For creating the test tube
Tfc that represents the difference of the relations represented in the tubes Tj and
Tj we may use the following molecular program, which has a precondition that
relations Ri and Rj has the same base sets (i,j,k G [1,n]):

For Rk •.— Ri\ Rj do:

51 := Copy(Ti)
52 := CopyiTj)
53 := Prepare({(x, a, b)' \ x G X,a G [l,ra], 6 G [Mo] })
Amplify(S3,\Rj\)
Merge(S2,S3)
Anneal(S2)
Ligate(S2)
Denature(S2)
54 := Select=(S2,Lj)
55 := 0
For each i £ l d o

S6 := Separateincl(S2,{x, fi,i,l)')
Merge(S5,S6)

end do
Merge{SuSh)
Anneal (Si)
57 Select = (Si ,Lj)
58 :=0
For each x G X do

S9 := Separateinci(S7, (x, /», 1,1))
Merge(S8,S9)

end do
Tk '•= S9

After creating copies of Tj and Tj we create a tube S3, that contains complexes
of size one: any possible primed letter of E. Note that this tube does not depend on
Tj or Tj, it can be used for calculating other differences as well. After merging the
suitably amplified tube of S3 with the copy of Tj, the short complexes are permitted
to anneal to the complexes of S2, hence after the Anneal and Ligate operations
each complex of S2 will be annealed (or paired) to an equally long complementary
complex. After Denature these pairs of complexes break apart, and after some

On Implementing Relational Databases on DNA Strands 269

selection and separation we get the tube S5 , that contain strings that are exactly
the complements of the strings in Tj. When we merge this tube with Si, those
complexes that appear both in Ti and Tj will form pairs after annealing, and those
complexes that appear only in one of the tubes Ti, or Tj remain in their linear
structure. >From the result we only have to separate the linear complexes of Tj.

Relabelling
We say that the relation Rj C AfjA x • • • x Af. k is a relabelling of Ri C Af. 1 x
••• x Afik. if hi = kj, Ri = Rj and for each k 6 [1,fe»] either /¿^ - f j k , or
fi,k fj,k, but Afi k = Afj k and e/ i f c = e/jk. Hence the relabelled relation has
the same base sets as the original relation, it has the same value, too, but some of
its components may have a different label, but it does not affect the representation
of that component over the alphabet X . Of course the representation of the two
relations over the alphabet E will be different.

For our purposes it is enough show that relabelling where all of the columns are
relabelled can be done in our model. An easy way of doing this is based on the fact
that such relabelling can be expressed by relational operations:

Rj = n/J-.l--/JM.i0'/i,l=/i.lA...A/;,l!i.=/i,fcii?t x AfjA x---xAfjk..

The tube representing AjjA x • • • x Afj k. can effectively be prepared, in spite of
the fact that this tube contains an exponential number of strings. After preparing
the tube we may perform the marked operations as stated before. Another way for
relabelling is to form a ring of each string (similarly to the EraseGap operation),
cut each loop before and after the letter we want to replace, then bind the broken
loops again inserting the substituting letter. After doing this for all letters of the
columns to relabel, we are ready.

5 Conclusions
In this work we showed that building a relational database in test tubes using DNA
strands is possible. The proof is based on the assertion that the RDNA model of
biomolecular computing is indeed a sound model of biomolecular operations. It
seems to be a correct model, because it is based on the basic structure of DNA
strands and on the well understood operations on test tubes. However, by the
time of writing no real laboratory experiments justified neither the model nor any
application based on the model. During laboratory realization it may turn out,
that alternate versions of the mentioned operations proves to be more efficient or
reliable, it depends on the used laboratory techniques.

It is not unlikely in the not too far future, that we can make complex queries
on artificially created or naturally existent DNA databases. Utilizing the enormous
storage capacity of DNA and the possibility of associative searches on the strands
it may be possible to efficiently work with databases of size much greater than that
is manageable on conventional computer architectures.

270 István Katsányi

References
[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266:1021-1024, November 11, 1994.

[2] Eric B. Baum. Building an associative memory vastly larger than the brain.
Science, 268:583-585, April 28, 1995.

[3] John H. Reif, T. H. LaBean, M. Pirrug, V. S. Rana, B. Guo, C. Kingsford,
and G. S. Wickham. Experimental construction of a very large scale DNA
database with assoriatice search capability. In DNA Computing, 7th inter-
national Workshop on DNA-Based Computers, DNA 2001, Tampa, U.S.A.,
10-13 June 2001, pages 241-250. University of South Florida, 2001.

[4] John H. Reif. Parallel molecular computation: Models and simulations. Algo-
rithmica, 1998. Special issue on Computational Biology. See also [9].

[5] Masanori Arita, Masami Hagiya, and Akira Suyama. Joining and rotating data
with molecules. In IEEE International Conference on Evolutionary Compu-
tation, pages 243-248, Indiana University, Purdue University, Indianapolis,
Illinois, April 13-16, 1997.

[6] Pierluigi Frisco. Parallel arithmetic with splicing. Romanian Journal of Infor-
mation Science and Technology (ROMJIST), 3(2):113-128, 2000.

[7] Eric B. Baum and Dan Boneh. Running dynamic programming algorithms
on a DNA computer. In Proceedings of the. Second Annual Meeting on DNA
Based Computers, held at Princeton University, June 10-12, 1996. [10].

[8] Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis, and Erik Win-
free. On applying molecular computation to the data encryption standard. In
Proceedings of the Second Annual Meeting on DNA Based Computers, held at
Princeton University, June 10-12, 1996. [10].

[9] John H. Reif. Parallel molecular computation: Models and simulations. In
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA95), Santa Barbara, June 1995, pages 213-223. As-
sociation for Computing Machinery, June 1995. See also [4].

[10] American Mathematical Society. Proceedings of the Second Annual Meeting
on DNA Based Computers, held at Princeton University, June 10-12, 1996.,
DIM ACS: Series in Discrete Mathematics and Theoretical Computer Science.,
1996.

Acta Cybernetica 16 (2003) 271-278.

Various Hyperplane Classifiers Using Kernel
Feature Spaces*

Kornél Kovács* and András Kocsor*

Abstract

In this paper we introduce a new family of hyperplane classifiers. But, in
contrast to Support Vector Machines (SVM) - where a constrained quadratic
optimization is used - some of the proposed methods lead to the unconstrained
minimization of convex functions while others merely require solving a linear
system of equations. So that the efficiency of these methods could be checked,
classification tests were conducted on standard databases. In our evaluation,
classification results of SVM were of course used as a general point of refer-,
ence, which we found were outperformed in many cases.

1 Introduction
Numerous scientific areas such as bioinformatics, pharmacology and artificial in-
telligence depend on classification and regression methods which may be linear or
non-linear, but it now seems that by using the so-called kernel idea, linear methods
can be readily generalized to nonlinear ones. The key idea was originally presented
in Aizermann's paper [1] and it was successfully applied in the context of the ubiq-
uitous Support Vector Machines [10]. The roots of SV methods can be traced back
to the need for the determination of the optimal parameters of a separating hyper-
plane, which can be formulated both in input space or in kernel induced feature
spaces. However, optimality can vary from method to method and SVM is just one
of several possible approaches.

Without loss of generality we shall assume that, as a realization of multivariate
random variables, there are m-dimensional real attribute vectors in a compact set
X over K m describing objects in a certain domain, and that we have a finite nxm
sample matrix X = [x i , . . . x n j T containing n random observations. Let us assume
as well that we have an indicator function C : R m —• L CM, where £ (x¿) gives the
label of the sample x¡, and let us denote the vector [£ (x i) , . . . , £ (x n)] T by C(X).

"This work was supported under the contract IKTA No. 2001/055 from the Hungarian Ministry
of Education.

^Department of Informatics, University of Szeged H-6720 Szeged, Arpad tér 2., Hungary, e-
mail: kkornelflinf.u-szeged.hu

* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University
of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary, e-mail: kocsorflinf.u-szeged.hu

271

272 Kornél Kovács and András Kocsor

e~x -x+ ¿log(l + eax)

Figure 1: Three possible loss functions

Here, a finite set L means a classification task. Should L be an infinite set, the task
will be a regression problem.

In this paper we will restrict our investigations only to that of binary classifica-
tion (L = { - 1 , +1}) , as multiclass problems can be dealt with by applying binary
classifiers [3]. But regression problems will not be entirely excluded here, since
binary classifiers will be derived from regression formulae.

2 Linear classifiers with various loss-functions
Linear classification attempts to separate the sample points with different labels
via a hyperplane. A hyperplane is a set of point z:

(zT 1) a = 0 z G Km, a G K m + 1 . (1)

For a point z the left-hand side of Eq. (1) is a signed expression with absolute
value proportional to the distance from the hyperplane: In addition, the sign of
this expression corresponds to the sign of the half-space the point lies in.

A point x¿ is well-separated by a hyperplane with parameter a if and only if:

£(x¿) - (xf l) a > 0 i G { 1 , . . . , n} .

• Based on these products a target function - whose lower value indicates a better
separation - can be defined:

l) a) , (2)
¿=i

where g : E K is a strictly monotonic decreasing function, called a loss function.
Of the many possibilities [6], three candidates are shown in Fig. 1. We should
note here that using a signum-function approximating loss function, the measure
estimates the number of poorly separated points when a -4 oo.

Minimizing r(a) we get an unconstrained minimization of a strictly convex
function, which is in marked contrast to the quadratic optimization with constraints

Various Hyperplasie Classifiers Using Kernel Feature Spaces 273

in SVM. With a suitably smooth loss function, the gradient vector of r(a) will be
smooth as well, hence one can apply quasi-Newton methods or even the Newton
iteration method.

After obtaining the optimal parameter of the separating hyperplane the binary
classification of an arbitrary point z can be carried out by:

sign ((z r l) a) .

,3 Linear regression in classification
Linear regression attempts to optimally fit a hyperplane onto the indicator func-
tion £ . The indicator function has values £ (x i) , . . . , £ (x n) at the sample points
x j , . . . , x n while the regression hyperplane has function values / (x i) , . . . , / (x „) ,
where

/ (z) = (zT l) a z € K m , a € H r + 1 .

Thus the error of the sample point x, can be expressed by

= C(xi) - f(xi) = C(xi) - (x f 1) a.

The optimal parameter of the regression hyperplane can be obtained by minimizing
the following sum:

m i n y ; e ? = min||£(A-)--X1a||i X i =
a ' a ¿=1

VI V

whose well-known solution is given by

a = (X f X J + x T C i X) , (3)

where + denotes the Moore-Penrose pseudo-inverse.
Though the regression makes use of the hyperplane in a different sense from

that in the classification problem, the regression-based binary classification of an
arbitrary point z can still be performed in the same way as that for a linear classifier:

sign ((zT l) a) .

4 Minor Component Classifier
Let us take the sample points X with the corresponding labels C(X), and repre-
sent (x f , £ (x i)) r , . . . , (x^, £ (x n)) T as vectors in R n + 1 . In this extended space a
hyperplane with parameter a contains points z where

(zT £ (z) l) ä = 0, z € l m , ä £ E m + 2 .

274 Kornél Kovács and András Kocsor

The distance of (xj £(x<)) from the hyperplane is

(xf £(xQ l) a
S(xt,£(xi)) = jj-jj- ,

so there exists an optimal hyperplane fitting on the extended sample points with
least error:

-TxTx - £(xi) ^
min > ¿(xj , £ (x j)) 2 = min r ln X2 = • '•

a ^—' á a a '
i = 1 W £ (X n) 1)

(4)

It can be proved that eigenvectors of XjX2 are the stationary points of the above
functional with the corresponding eigenvalues as function values. Thus the solution
of the minimization problem can be readily obtained by finding the eigenvector of
X2X2 which has the smallest eigenvalue [4].

We should note that the better the fit of a hyperplane onto the points, the
lower the deviation of the sample points projections onto the normal vector of the
hyperplane. Finding the best hyperplane means performing a Minor Component
Analysis (MCA) [5] in the extended space, as MCA searches for directions with a
small deviation of the sample points projections.

The binary classification of a point u in the original space can be performed
by computing the absolute distances in the extended space for both labels {—1,1}
and probabilities can be assigned to the labels via normalization:

P(£(u) = 1) = l < 5 (U ' - 1 } l

P(£(u) = - 1) =

|i (11,1)1 + 15(11,-1)|

>¿(11,1)1
|5 (u,l)| + |(Hu,-l)|

5 Kernel-based nonlinearization
The proposed methods, linear classifiers, linear regression and minor component
classifier performs linear separation in the original sample space. Making the sepa-
ration nonlinear with kernels it must be shown that the methods optimal solutions
are in the linear subspace of the appropriate extended points:

a = X x a a e l n ,

and
a = X2j3 /3 6M n .

Regarding a linear classifier the parameter vector a can be decomposed into two
perpendicular components aj and a2 , where the first component lies in the subspace
of the extended sample points X\:

a = ax + a2 ai = Xia, a € Kn, ai±a 2 .

Various Hyperplasie Classifiers Using Kernel Feature Spaces 275

The form of the measure r then becomes

T(a) = E 2=1 fl (A *) - (x f l) (a 1 + a 2)) =
= E?=19 1 a 1 + £ (x i) . (x f l)a 2) =
= L I U l)ai), '

because a2 is orthogonal to all the extended sample points (xf l).
Because the measure depends only on aj , thus the minimization in fact can be

performed in the linear subspace of the extended sample points X\. Actually, this
result holds true far the other methods as well.

Utilizing the introduced formulas the solutions of the proposed methods can be
found by optimizing a and /3 respectively:

n

m i n ^ O C ^ H x f 1) ^ «) , (5)
¿=1

a = (XfXlX1X]:)+X^X1C(X), (6)

m i n ^ f (7)

Supposing that the pairwise dot products of the extended sample points are
known the above optimizations have some polynomial time complexity that depends
on the sample points number. Since the time complexity of these methods is not
a function of dimension, the original vectors can be transformed to a new space T
with <[> : X —> T (see Fig. 2) where the separation can be achieved perhaps more
effectively. Now let the dot product be implicitly defined by the kernel function k in
this finite or infinite dimensional feature space T with the associated transformation
4>-

k(x, y) = 0(x) • 4>(y)
Algorithms using only the dot product can be executed in the kernel feature

space by kernel function evaluations alone. Moreover, since <j> is generally nonlinear
the resultant method is nonlinear in the original sample space. Knowing <j> explic-
itly - and, consequently, knowing T - is not necessary. We need only define the
kernel function, which then ensures an implicit evaluation. The construction of an
appropriate kernel function (i.e. when such a function <j> exists) is a non-trivial
problem, but there are many good suggestions about the sorts of kernel functions
[2, 7, 10] which might be adopted along with some background theory. Among the
functions available, the two most popular kernels are:

Polynomial kernel: K(X, y) = (x T y + i) ° , de N
II x — y II ^

Gaussian RBF kernel: K(X, y) = e~ - , r 6 K +

For a given kernel function the dimension of the feature space T is not always
unique as in the case of a polynomial kernel, where it is at least () , while
with the Gaussian RBF kernel we get an infinite dimension feature space.

276 Kornél Kovács and András Kocsor

T

«(*. y) = <A(X) • <Ky)

Figure 2: The "kernel-idea". T is the closure of the linear span of the mapped
data. The dot product in the kernel feature space T is defined implicitly. The dot
product of 0(x) and (f>(y) is /c(x, y).

Employing the kernel-idea to make the proposed methods (5), (6) and (7) non-
linear, we obtain the following three expressions:

m j n i > (c (x i) • p a i K ((x f 1) , (x j l)) j , (8)

a = (KTK)+KTC(X), (9)

min—7fr-z—, (10)
P pTKp

where the matrices K and K contain the pairwise dot products of transformed
points:

K { j = K ((x f l) , (x j 1))
kii = K((xf £ (X0 l) , (x j C(xj) 1)) .

The solution of (10) can be obtained by finding the eigenvector corresponding
to the smallest nontrivial eigenvalue of the generalized eigenproblem KK(3 = XK(3.

Various Hyperplasie Classifiers Using Kernel Feature Spaces 277

Table 1: The best training and testing results using tenfold cross validations. A set
of kernel functions with different parameters were used during the tests, but only
the best results are summarized here.

linear
classifier

linear
regression M C C S V M

BUPA 7 2 . 2 9
65.98

7 1 . 7 0
6 5 . 4 0

73.10
6 2 . 2 4

7 2 . 4 0
6 5 . 6 0

chess 100.0
98.08

9 7 . 4 2
9 0 . 7 3

9 5 . 9 8
8 8 . 4 9

100.0
98.08

echo 100.0
8 9 . 5 4

9 2 . 3 5
8 9 . 5 7

9 1 . 5 7
90.32

100.0
9 0 . 1 0

hheart 8 6 . 6 4

8 0 . 0 8

8 5 . 9 6
7 9 . 7 3

8 5 . 2 7
8 0 . 4 0

87.10
80.40

monks 100.0
8 7 . 8 8

9 3 . 3 5
8 8 . 8 1

9 3 . 3 5
89.60

100.0
8 9 . 1 0

spiral 100.0
8 8 . 4 8

100.0
8 7 . 2 3

100.0
90.80

100.0
8 9 . 2 0

Note here that if the transformed sample points lies entirely on a hyperplane in
the space T then the normal vector of the hyperplane is not in the subspace of the
transformed sample points. Thus perfect fitting of the hyperplane is never realized
in regression methods nonlinearized with kernels.

6 Experimental Results and Evaluation

When evaluating the efficiency of a new algorithm the usual method is to assess its
performance by making use of standard databases. To this end we selected a set
of databases from the UCI Repository [9]. Namely, we carried out tests using the
BUPA liver, chess, echo, Hungarian heart, monks and spiral databases. All sets
were normalized so that each feature had a zero mean and unit deviation and we
applied a tenfold cross-validation on all the sets. Since a recent study [3] compared
five different Support Vector algorithms using the UCI Repository and concluded
that the methods have no significant difference in efficiency, we will employ [8] as
the SVM classifier. The numerical results of tenfold cross-validations are shown in
Table 1, where the best result is emphasized in bold. It confirms that regression
based classification methods are indeed just as effective as the original separation
algorithms. Moreover, making use of the labels in the regression task with the
Minor Component Classifier the usual classification methods were surpassed in
many cases so MCC can now be considered as a rival classification method.

278 Kornél Kovács and András Kocsor

References
[1] M . AIZERMANN, E . BRAVERMAN, AND L. ROZONOER Theoretical foundations

of the potential function method in pattern recognition learning, Automation
and Remote Control 25:821-837,1964.

[2] CRISTIANINI, N . AND SHAWE-TAYLOR, J. An Introduction to Support Vec-
tor Machines and other kernel-based learning methods, Cambridge University
Press, 2000.

[3] Hsu, C. -W. AND LIN, C.-J. A comparison of methods for multi-class support
vector machines, IEEE Transactions on Neural Networks, Vol. 13, pp. 415-425,
2002.

[4] FUHRMANN, D. R. AND LIU, B. An iterative algorithm for locating the mini-
mal eigenvector of a symmetric matrix, Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, pp. 45.8.1-45.8.4, 1984.

[5] Luo, F., UNBEHAUEN, R., CICHOCKI, A. A minor component analysis algo-
rithm, Neural Networks, Vol. 10/2, pp. 291-297, 1997.

[6] EVGENIOU, T . , PONTIL, M . , POGGIO, T . Regularization Networks and Sup-
port Vector Machines, Advances in Computational Mathematics, Vol. 13/1,
p p . 1 -50 , 2000 .

[7] SMOLA, A . , BARTLETT , P . , SCHOLKOPF, B . , SCHUURMANS, D . Advances in
Large Margin Classifiers, MIT Press, Cambridge, 2000.

[8] COLLOBERT, R. AND BENGIO, S. SVMTorch: Support Vector Machines for
Large-Scale Regression Problems, Journal of Machine Learning Research, vol
1, pages 143-160, 2001.

[9] BLAKE, C. L. AND MERZ, C. J. UCI repository of machine learning
databases, http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

[10] VAPNIK, V. N. Statistical Learning Theory, John Wiley & Sons Inc., 1998.

http://www.ics.uci.edu/

Acta Cybernetica 16 (2003) 271-278.

Probabilistic Diagnostics with P-Graphs*

Balázs Polgár* and Endre Setényi*

Abstract

This paper presents a novel approach for solving the probabilistic diag-
nosis problem in multiprocessor systems. The main idea of the algorithm is
based on the reformulation of the diagnostic procedure as a P-graph model.
The same, well-elaborated mathematical paradigm—originally used to model
material flow—can be applied in our approach to model information flow.
This idea is illustrated by deriving a maximum likelihood diagnostic decision
procedure. The diagnostic accuracy of the solution is considered on the basis
of simulation measurements, and a method of constructing a general frame-
work for different aspects of a complex problem is demonstrated with the use
of P-graph models.

Introduction
Diagnostics is one of the major tools for assuring the reliability of complex systems
in information technology.

In such systems the test process is often implemented on system-level: the
"intelligent" components of the system test their local environment and each other.
The test results are collected, and based on this information the good or faulty state
of each system-component is determined. This classification procedure is known as
diagnostic process.

The early approaches that solve the diagnostic problem employed oversimplified
binary fault models, could only describe homogeneous systems, and assumed the
faults to be permanent. Since these conditions proved to be impractical, lately
much effort has been put into extending the limitations of traditional models [1].
However, the presented solutions mostly concentrated on only one aspect of the
problem. In this paper we introduce a novel modeling approach based on P-graphs
that can integrate these extensions in one framework, while maintaining a good
diagnostic performance. With this model, we formulate diagnosis as an optimiza-
tion problem and apply the idea to the well-known multiprocessor testing problem,
whose structure is one of the simplest.

'This research has been supported partly by the Hungarian National Research Foundation
Grants O T K A T038027.

^Department of Measurement and Information Systems, Budapest University of Tech-
nology and Economics, Magyar Tudósok krt. 2, Budapest, Hungary, H-1117, e-mail:
{polgár,selenyi}®mit.bme.hu

279

280 Balázs Polgár and Endre Selényi

Furthermore, we have not only integrated existing solution methods, but pro-
ceeding from a more general base we have extended the set of solvable problems
with new ones.

The paper is structured as follows. First an overview is given about the tradi-
tional aspects of system-level diagnosis and the way we have generalized the test
invalidation model. Then the elements and the solution method of a P-graph model
are introduced. In the main part the diagnostic problem of a multiprocessor sys-
tem is formulated with the use of P-graphs. Afterwards, an important aspect, the
extensibility of the model is demonstrated via examples. Moreover, the generation
and the solution method of a P-graph model is clarified on a small example. The
diagnostic accuracy of the decoding algorithm is presented on the basis of simu-
lation results and it is compared to other approaches taken from the literature.
Finally, we conclude and sketch the direction of future work.

1 System-level Diagnosis

System-level diagnosis considers the replaceable units of a system, and does not deal
with the exact location of faults within these units. A system consists of an in-
terconnected network of independent but cooperating units (typically processors).
The state of each unit is either good when it behaves as specified, or faulty, other-
wise. The fault pattern is the collection of the states of all units in the system. A
unit may test the neighboring units connected with it via direct links. The network
of the units testing each other determines the test topology. The outcome of a test
can be either passed or failed (denoted by 0/1 or G/F) ; this result is considered
valid if it corresponds to the actual physical state of the tested unit.

The collection of the results of every completed test is called the syndrome. The
test topology and the syndrome are represented graphically by the testing graph.
The vertices of a testing graph denote the units of the system, while the directed
arcs represent the tests originated at the tester and directed towards the tested
unit (UUT). The result of a test is shown as the label of the corresponding arc.
Label 0 represents the passed test result, while label 1 represents the failed one.
See Figure 1 for an example testing graph with three units.

Figure 1: Example testing graph (test topology with syndrome)

Probabilistic Diagnostics with P-Graphs 281

1.1 Traditional approach
Traditional diagnostic algorithms [2, 3] assume that

• faults are permanent,
• states of units are binary (good, faulty),

• the test results of good units are always valid,
• the test results of faulty units can also be invalid. The behavior of faulty

tester units is expressed in the form of test invalidation models.

Table 1 covers the possible test invalidation models where the selection of c and
d values determines a specific model. The most widely used example is the so-
called PMC (Preparata, Metze, Chien) test invalidation model, (c = any, d = any)
which considers the test result of a faulty tester to be independent of the state of
the tested unit. Another well-known test invalidation model is the BGM (Barsi,
Grandoni, Maestrini) model (c = any, d = faulty) where a faulty tester will always
detect the failure of the tested unit, as it is assumed that the probability of two
units failing the same way is negligible.

Table 1: Traditional test invalidation models
State of State of Test result

tester U U T
good good passed
good faulty failed

faulty good c 6 {passed, failed, any}
faulty faulty d € {passed, failed, any}

The purpose of system-level diagnostic algorithms is to determine the state of
each unit from the syndrome. The difficulty comes from the possibility that a
fault in the tester processor invalidates the test result. As a consequence, multiple
"candidate" diagnoses can be compatible with the syndrome. To provide a complete
diagnosis and to select from the candidate diagnoses, the so-called deterministic
algorithms use extra information in addition to the syndrome, such as assumptions
on the size or on the topology of. the fault pattern.

Alternatively, probabilistic algorithms try to determine the most probable di-
agnosis assuming that a unit is more likely good than faulty [4]. Frequently, this
maximum likelihood strategy can be expressed simply as "many faults occur less
frequently than a few faults." Thus, the aim of diagnostics is to determine the
minimal set of faulty elements of the system that is consistent with the syndrome..

1.2 Generalized approach
In our previous work [5] we used a generalized test invalidation model, introduced
by Blount [6]. In this model probabilities are assigned to both possible test outcome

282 Balázs Polgár and Endre Selényi

for each combination of the states of tester and tested unit (shown in Table 2). Since
the passed and failed results are complementary events, the sum of the probabilities
in each row is 1. The assumption of the complete fault coverage can be relaxed in
the generalized model by setting probability pbi to the fault coverage of the test. .
Probabilities pco, Pel, Pdo and Pd\ express the distortion of the test results by a
faulty tester. Moreover, the generalized model is able to encompass false alarms (a •
good tester finds a good unit to be faulty) by setting probability pai to nonzero.

Table 2: Generalized testing model

State of
tester

State of
U U T

Probability of test result State of
tester

State of
U U T 0 1

good good Pa 0 Pal
good faulty PbO Pbi

faulty good PcO Pel
faulty faulty PdO Pdi

Naturally, the generalized test invalidation model also covers the traditional
models. Setting the probabilities as pao = Pbi = 1, Pco — PcI = Pdo — Pdi = 0.5,
and Pai = Pbo — 0, the generalized model will have the characteristics of the
PMC model, while the configuration pao = Pbi = Pdi = 1, Pco — Pel = 0.5 and
Pai = Pbo = Pdo — 0 will make it behave like the BGM model. Analogously, every
traditional test invalidation model can be mapped as a special case to our model
by assigning suitable probabilities to each element of the related test invalidation
relation. In this sense the generalized test invalidation model covers the traditional
models.

2 Diagnosis Based on P-Graphs

2.1 Definition of P-Graph Model of the Diagnostic System
The name 'P-graph' originates from the name 'Process-graph' from the field of Pro-
cess Network Synthesis problems (PNS problem for short) in chemical engineering.
In connection with this field the mathematical background of the solution methods
of PNS problems have been elaborated well, see [7], [8] and [9].

A P-graph is a directed bipartite graph. Its vertices are partitioned into two
sets, with no two vertices of the same set being adjacent. In our interpretation one
of the sets contains knowledge (the knowledge about the states of units union the
knowledge about the possible test results), the other one contains logical relations
between the pieces of knowledge. The edges of the graph point from the premisses1

'through' the logical relation to the consequences. The set of premisses contains
both good and faulty states of each unit (e.g., 'unit A is good', 'unit A is faulty',
'unit B is good', denoted by Ag, Af, Bg), and the set of consequences contains the

1 premiss = preliminary condition

Probabilistic Diagnostics with P-Graphs 283

measured test results (e.g. 'unit A finds unit B to be good', 'unit B finds unit C
to be faulty', denoted by ABG, BCF)- Logical relations determine the possible
premisses of each possible test result. Namely, there are 8 logical relations for each
test according to the states of tester and tested unit and the possible test results.
Probabilities in Table 2 are assigned to relations expressing the uncertainty of the
consequences, see Figure 2.

Figure 2: P-graph model of a single test (vertices with same label represent a single
vertex; multiple instances are only for better arrangement)

A solution structure is defined as a subgraph of the original P-graph, which
deduces the consequences back to a subset of premisses.

Function X () is a membership function, X(A) is 1 if unit A is in the solution
structure, and 0 otherwise. With the use of this function constraints can be defined
assuring that in a solution structure a unit should have one and only one state.
Formally, for each unit U X(UG) + X(UF) = 1. A P-graph is contradictionless if
all constraints are satisfied.

The probability of the syndrome (Ps) is the product of probabilities of relations
in a solution structure. This is the occurring probability of the known consequences
under the conditions of the given subset of system premisses.

Because of probabilities are assigned to relations, more contradictionless solu-
tion structures can exist having different subsets of system premisses and having
different Ps values. The object is to find a solution structure containing that sub-
set of system premisses which implies the known consequences with the maximum
likelihood. This is an optimization task.

In principle, this task can be solved by general mathematical programming
methods like mixed integer non-linear programming (MINLP), however, they are
unnecessary complex. Friedler et al. ([7, 8, 9]) developed a new framework for
solving PNS problems effectively by exploiting the special structure of the problem
and the corresponding mathematical model.

2.2 Steps of the Solution Algorithm
1. The maximal P-graph structure is generated. It contains only the relevant

pieces of knowledge and the relevant logical relations, but constraints are not
yet satisfied. It contains all possible fault patterns being consistent with the
given syndrome.

284 Balázs Polgár and Endre Selényi

2. Every combinatorially feasible solution structure is obtained. These are the
structures that satisfy the constraints and draw the known consequences—the
syndrome—back to a subset of the system premisses. Each of these subsets
determines a possible fault pattern.

3. For each combinatorially feasible solution structure the probability of syn-
drome is calculated. This is the conditional probability of the syndrome
under the condition of a particular fault pattern.

4. The structure having the highest probability is selected; this solution struc-
ture contains the diagnosis with maximum likelihood.

Steps 2-4 can be completed either by a general solver for linear programming
(since the generated maximal structure is a special flat P-graph), or with an adapted
SSG algorithm [7] using the branch and bound technique.

3 Extensions of the Model
The main contribution of this novel modeling approach is its generality. With its
use several aspects of system-level diagnosis can be handled in the same framework.
Furthermore, it also became possible to formulate new aspects of diagnosis. So, it
is possible to model and diagnose for instance

• systems with heterogeneous elements

To achieve this, different generalized test invalidation models with appropriate
probabilities should be assigned to units with different behavior.

• multiple fault states

It is able to construct „and handle a finer model of the state of a unit, than
the binary one (containing the good and faulty states). This also means that
the result of a test can be more than binary.

• intermittent faults

These are permanent faults that become activated only in special circum-
stances. Because these circumstances are usually independent from the test-
ing process, these type of faults are diagnosed on the basis of multiple syn-
dromes.

• failures occurring during the test process

It is a new aspect of the diagnostics. Traditional models all have the restrictive
assumption that the state of units must be unchanged from the beginning of
the test process to the end. But it is not acceptable if the time of test is
comparable to the mean time between failures.

Probabilistic Diagnostics with P-Graphs 285

The model of the last two items are presented in details in the next subsections.
The model constructed for the test process of intermittent faults is equivalent to
the model of a system having more than two possible test results. Accordingly, for
details of the handle of multiple fault states see the handle of intermittent faults.

3.1 Modeling Intermittent Faults
Although handle of intermittent faults is one of the difficult to manage diagnostic
problems, a possible solution is the use of multiple syndromes, as mentioned above.
In this approach two or more testing rounds are performed in a row, and the possible
differences between the subsequent syndromes are used to detect intermittent faults.

The adaptation of diagnostic P-graph model to this approach is quite simple.
Considering the case of double syndromes (for simplicity), there are four possible
result combinations for each test:

• 'both results are passed' (denoted by GG),
• 'first result is passed, the other is failed' (denoted by GF),
• 'first result is failed, the other is passed' (denoted by FG) and
• 'both results are failed' (denoted by FF).

This means that the P-graph model of a single test should contain 4 x 4 logical rela-
tions according to the 4 possible test results and the 4 possible state-combinations
of tester and tested unit (Figure 3). The probabilities of relations are calculated
from the original probabilities (Table 2) and can be seen in Table 3.

Table 3: Probabilities of test results for pairs of syndrome

State of State of Probability of test results
tester U U T G G GF FG FF

good good PAO = P2a0 PAl = PaOPal PA2 = PalPaO PA3 = pli
good faulty PBO = PbO PB1 = PbOPbl PB2 = PblPbO PB3 = Pbl

faulty good PCO = PcO PCI = PcOPcX PC2 = Pel PcO PC3 = Pel
faulty faulty PDO = Pdo PDI ~ PdOPdl PD2 = PdlPdO PD3 = Pdl

A B„ B, A, A Bn B. A, A Bn B. A, A„ B„ B, A,

GAO P̂BO V̂QI-̂ - PDO - P D I ~ P Q 2 PD3

Figure 3: P-graph model of a single test in case of two syndromes

The case of diagnostics on the basis of more than two syndromes can be handled
a similar way having more and more test result combinations.

286 Balázs Polgár and Endre Selényi

A good property of this model is the following: after the 1s t solution step—
namely cutting the irrelevant parts of the graph to be solved— the P-graph model
based on multiple syndromes is exactly of the same size as the P-graph model based
on a single syndrome. This is because only the number of possible test results (or
result combinations) grows, but the measured result (or result combination) of a
test will be always a particular one.

3.2 Modeling Failures Occurring During the Test Process
Properties of the system to be modelled:

• faults are still permanent,

• units can fail during test process, i.e. a unit which was assumed to be good
in a test can be faulty later. (Repairing is not included in the model, that is
a faulty unit cannot become good in a later test.)

The second property implies that an order between tests should be defined and
the states of a unit in different tests should be distinguished.

Let's define the test order graph TO(VTO,ETO), where

• each ijeVrO vertex represents a test in the system, i.e. it corresponds to an
edge in the testing graph

• a (t{, tj)eErO directed edge defines a preceding relation between tests mean-
ing that test U is performed earlier than test tj.

For instance, consider a system with toroidal mesh topology, where each unit
tests its four neighbors (Figure 4.a). The TO-graph of this system can be seen on
Figure 4.b if only the order of those tests are known, which are performed by the
same tester.

Figure 4: Example a) testing graph with toroidal mesh topology b) a possible test
order graph of it

The definition of the P-graph model corresponds to the former one (Section 2.1)
with the following changes.

,»

o

Probabilistic Diagnostics with P-Graphs 287

• The set of system premisses contains each possible state of each unit in each
such test, where the given unit is affected (for each U unit and U test UiG
and UiF are included, where unit U is either a tester or a tested unit in test
ti).

• Constraints formulate that

— each unit U in each test U where it is either a tester or a tested unit has
one and only one state, i.e. X(UiG) + X(UiF) = 1.

— for each unit U and tests ti, tj, where unit U is either a tester or a
tested unit in tests ti and tj, and there exists a directed path from ti to
tj in the TO-graph: X(UiF) + X(UjG) < 1.

Expectedly, the more information known about the dependencies of tests results
the more accurate diagnosis. And reversely, the less edges in the test order graph
can imply the more and more misdiagnosed processor in the diagnosis.

4 Example
Consider the testing graph and syndrome given on Figure 1. Eight logical relations
belong to each of the three tests, but the maximal structure contains only four for
each test depending on the test results as Figure 5 shows.

ACG CBF BAP

Figure 5: P-graph-model of testing graph and syndrome given on Figure 1

Eight combinatorially feasible solution structures exist because of the con-
straints and each of it contains three logical relations. The eight structures cor-
respond to the 23 possible fault patterns of the three units. A part of these can
be seen on Figure 6 with the corresponding diagnoses and probabilities. Finally,
such a fault pattern is selected, which produces the syndrome with the highest
probability.

Table 4 contains three test invalidation models, the first one corresponds to
the PMC model, the second is a PMC model with incomplete fault coverage and
the third is a more general model converging to the BGM model. The conditional
probabilities of the syndrome under the conditions of different fault patterns, that
is the redundant probabilities of the structures can be found in Table 5.

In case of PMC model the probability of syndrome is the highest when only unit
B is faulty. This is still the case when the assumption of 100 percent test coverage

288 Balázs Polgár and Endre Selényi

Figure 6: Some of solution structures of the P-graph model

Table 4: Test invalidation models with different probabilities

Test result
P M C incomplete incomplete

State of State of P M C BGM-like
tester tested unit 0 1 0 1 0 1
good good 1 0 1 0 1 0
good faulty 0 1 0.1 0.9 0.1 0.9
faulty good 0.5 0.5 0.5 0.5 0.7 0.3
faulty faulty 0.5 0.5 0.5 0.5 0.1 0.9

is given up but with smaller probability and with the possibility that unit C can
be faulty although a good unit tested it to be good. If we assume that faults in the
testers eventuate in valid test results more frequently than in invalid ones—as in
the third model—then logically it seems to be probable that unit A is also faulty
beside unit B and the algorithm provides this diagnosis.

Table 5: Probabilities of the syndrome (Ps) assuming different fault patterns and
test invalidation models

Solution ŝt 2nd 3rd 4th 5 th 6th yth 8 th

Faulty units A B C A B A C B c A B C
PMC 0 0 0.5 0 0.25 0.25 0 0.125
inc. PMC 0 0 0.45 0 0.225 0.225 0.025 0.125
inc. BGM-like 0 0 0.27 0 0.567 0.027 0.027 0.081

Probabilistic Diagnostics with P-Graphs 289

5 Simulation Results

In order to measure the efficiency of the P-graph based modeling technique a simu-
lation environment was developed, which generates the fault pattern and the corre-
sponding syndrome for the most common topologies with various parameters. The
P-graph model of the syndrome-decoding problem was solved as a linear program-
ming task using a commercial program called CPLEX. Other diagnostic algorithms
with different solution methods taken from the literature were also implemented
for comparison. First, the accuracy of the developed algorithm is demonstrated for
varying parameters, then its relation to other algorithms for fixed parameters.

The simulations were performed in a two-dimensional toroidal mesh topology,
where each unit is tested by its four neighbors and each unit behaved according to
the PMC test invalidation model. Statistical values were calculated on the basis of
100 diagnostic rounds. In every round the fault pattern was generated by setting
each processor to be faulty with a given probability, independently from others.

Accuracy of the solution algorithm: measurements were performed with system
sizes of 4 x 4, 6 x 6, 8 x 8, 10 x 10 units, and the failure probability of units varied
from 10% to 100% in 10% steps. From the diagrams in Figure 7 it can be observed
that the algorithm has a very good diagnostic accuracy. Even if half of the units
were faulty, the rate of rounds containing misdiagnosed units did not exceed 20
percent, and the rate of misdiagnosed units relative to the system size was under 1
percent.

rate of rounds containing
misdiagnosed processors [%]

average number of misdiagnosed
processors relative to system size [%]

Figure 7: Simulation results depending on failing probability of units

Comparison to other algorithms: measurements were performed with system
size 8 x 8 and the unit failure probability varied from 10% to 100% in 10% steps.
The well-known algorithms taken from the literature were the LDAl algorithm of
Somani and Agarwal [10], the Dahbura, Sabnani and King (DSK) algorithm [11],
and the limited multiplication of inference matrix (LMIM) algorithm developed by
Bartha and Selenyi [12] from the area of local information diagnosis. It can be
seen on the diagrams in Figure 8 that only the LMIM- algorithm approximates the
accuracy of P-graph-algorithm.

290 Balázs Polgár and Endre Selényi

average number of m isd iagnosed

processors relat ive to sys tem size [%]

• LMIM

— « — DSK
X LDA1

— P-graph

rate of rounds con ta in ing
misd iagnosed p rocessors [%]

10 20 30 40 50 70 80 90 100 10 20 30 40 SO 60 70 80 90 100

Figure 8: Comparison of probabilistic diagnostic algorithms

6 Conclusions
Application of P-graph based modeling in system-level diagnosis provides a general
framework that supports the solution for several different fields, which previously
needed several different modeling approaches and solution algorithms. Because the
P-graph model takes into consideration more properties of the real system than
previous models, its diagnostic accuracy is also better; it provides almost good
diagnosis still in the situation, when half of the processors are faulty.

The results presented in this paper arose from solving the model with a gen-
eral LP-problem solver and not from solving with a method specialized for PNS
problems. Therefore its complexity was incomparable with traditional ones. But
combinatorial approach for solving PNS problems is based on rigorous mathemat-
ical foundation, which -on the basis of experiences- can result in effective solution
algorithm. Creating such an adapted algorithm is one of the subjects of our future
work. Furthermore, we plan to examine the P-graph model of a diagnostic system
with transient faults.

The favorable properties of the approach are achieved by considering the di-
agnostic system as a structured set of knowledge with well-defined relations. As
mentioned previously, the syndrome-decoding problem in multiprocessor systems
has a special structure, namely the direct manifestation of internal fault states in
the syndromes. In more complex systems the states of the control logic have to
be taken into account in the model to be analyzed [13]. These straightforward
extensions to the modelling of integrated diagnostics can be well incorporated into
the P-graph based models. Our current work aims at generalization of the results
into this direction by extending previous results on the qualitative modeling of
dependable systems with quantitative optimization [14].

References
[1] T. Bartha, E. Selényi. Probabilistic System-Level Fault Diagnostic Algorithms

for Multiprocessors, Parallel Computing, vol. 22, no. 13, pp. 1807-1821, Else-
vier Science, 1997.

Probabilistic Diagnostics with P-Graphs 291

[2] T. Bartha. Efficient System-Level Fault Diagnosis of Large Multiprocessor Sys-
tems, Ph.D thesis, BME-MIT, 2000.

[3] M. Barborak, M. Malek, and A. Dahbura. The Consensus Problem in Fault
Tolerant Computing, ACM Computing Surveys, vol. 25, pp. 171-220, June
1993.

[4] S. N. Maheshwari, S. L. Hakimi. On Models for Diagnosable Systems and
Probabilistic Fault Diagnosis. IEEE Transactions on Computers, vol. C-25,
pp. 228-236, 1976.

[5] B. Polgár, Sz. Nováki, A. Pataricza, F. Friedler. A Process-Graph Based For-
mulation of the Syndrome-Decoding Problem, In 4th Workshop on Design and
Diagnostics of Electronic Circuits and Systems, pp. 267-272, Hungary, 2001.

[6] M. L. Blount. Probabilistic Treatment of Diagnosis in Digital Systems, In Proc.
of 7th IEEE International Symposium on Fault-Tolerant Computing (FTCS-
7), pp. 72-77, June 1977.

[7] F. Friedler, K. Tarjan, Y. W. Huang, L. T. Fan. Combinatorial Algorithms
for Process Synthesis. Comp. in Chemical Engineering, vol. 16, pp. 313-320,
1992.

[8] F. Friedler, K. Tarjan, Y. W. Huang, and L. T. Fan. Graph-Theoretic Ap-
proach to Process Synthesis: Axioms and Theorems, Chemical Engineering

~ Science, 47(8), pp. 1973-1988, 1992.

[9] F. Friedler, L. T. Fan, and B. Imreh. Process Network Synthesis: Problem
Definition. Networks, 28(2), pp. 119-124, 1998.

[10] A. Somani, V. Agarwal. Distributed syndrome decoding for regular intercon-
nected structures, In 19th IEEE International Symposium on Fault Tolerant
Computing, pp. 70-77, IEEE 1989.

[11] A. Dahbura, K. Sabnani, and L. King. The Comparison Approach to Multi-
processor Fault Diagnosis, IEEE Transactions on Computers, vol. C-36, pp.
373-378, Mar. 1987.

[12] T. Bartha, E. Selényi. Probabilistic Fault Diagnosis in Large, Heterogeneous
Computing Systems, Periodica Polytechnica, vol. 43/2, pp. 127-149, 2000.

[13] A. Pataricza. Algebraic Modelling of Diagnostic Problems in HW-SW Co-
Design. In Digest of Abstracts of the IEEE International Workshop on Embed-
ded Fault-Tolerant Systems. Dallas, Texas, Sept. 1996.

[14] A. Pataricza. Semi-decisions in the validation of dependable systems In Proc.
of IEEE International Conference on Dependable Systems and Networks, pp.
114-115, Göteborg, Sweden, July 2001.

Acta Cybernetica 16 (2003) 271-278.

Programming by steps

Raluca Oana Scarlatescu*

Abstract

The paper introduces a new method of software analysis, design and pro-
gramming based on a different implementation of a logical flow: the sequence
of steps is memorised in a database table, and each step is linked to a specific
function inserted in a library. A main application manages the steps' infor-
mation and runs the functions, until the steps axe finished. The database
management system stores the data of the each step and its precedence rules,
the functions and their parameters, the static and dynamic values of the
parameters, the errors, etc.

The paper details the principles of the "Programming by steps", explains
the reasons, which originally motivated the development of the method, and
defines the principal requisites to build an application system. Future as-
pects of the implementation, as well as advantages/disadvantages of design,
implementing and maintaining the system are stated.

The paper includes a comparative analysis between the "Programming by
steps" and another two methods of software engineering: the "Rapid Pro-
totyping" and the "Component-based Design". Integrative comments and
conclusive remarks axe provided in the conclusion of the paper.

1 New changes in the evolution of the software
methods for analysis, design and programming

The fast evolution of technologies reflects a boom of software applications' re-
quests. The result is a larger application domain, which is more diversified and/or
specialised, that requires new software methods for analysis, design and program-
ming in order to develop open applications, which may be transparent and easy-
exportable from one domain to another.

Other characteristics of the actual requests are the speed, the on-line and real-
time features, based on the Internet and telephony's services. In these cases, it
is necessary to find out solutions to permit the adaptation and the improvement
of the existing software without interrupting the system. Also, it is recommended
to maintain the operative execution by trying to control and reduce the hardware
costs.

*PhD Student of the Academy of Economic Studies, Bucharest, Romania, e -mail :
oana.rsOtiscal i . i t

293

294 RaJuca Oana Scarlatescu

The growth of the number of the applications1 and the increased complexity of
the information systems may produce problems for the analysts and programmers.
Therefore it is necessary to develop new methods that shall simplify the work for
the programmers.

"Programming by steps" is a method that can be used in order to analyse and
design software in the following cases:

• for systems characterised by many applications belonging to the same family
with common functions, or that may become common after a standardisation
process;

• for real-time systems, where changes or maintenance should not cause the
interruption of the existing services;

• for real-time systems, where it is necessary to test the newer releases without
interrupting or damaging the older ones.
"Programming by steps" offers some advantages:

• standardisation of the problems in the analysis process, reducing time and
resource consuming;

• higher degree of flexibility and greater speed in the programming activities
for the applications in the same domain;

• better visibility that helps the control and error correction activities.

The method is based on the old flow-charts in order to obtain, not only a logical
representation of the problem to be solved, but also the real-time functioning of
the software itself.

2 What is "Programming by steps"?
Supposing one should write several programs that utilise functions belonging to a
defined group and which show some homogeneities.

The traditional solution is based on:

• grouping several functions into a library;

• projecting more specific applications which call for different single functions
with defined parameters, each one to solve some problems.

This solution supposes that a programmer writes the code for these applications:
one defines the new variables, chooses and picks out the necessary functions from
the library, integrates them, and after tests the program's functionality (see Fig.
1)-

*It is very difficult to imagine any activity that could not be usefully touched by the information
technology, even if the effective informational process is not concluded yet.

Programming by steps 295

In such a situation the difference between one application and the other is
represented by the used functions' set and their priority. How could this work
be done without writing a new program code every time? Is there an alternate
solution?

The alternative is offered with the method "Programming by steps": a unique
application accesses the functions' library through its own interface. The applica-
tion consists of an "engine" that follows different logical flows memorised in either
internal or external tables. One flow is used for every problem to be solved.

Function 1

Function 2

Function m

Figure 1: A main application launches many specific applications using the same
functions' library

The analysis process of a new problem may be resumed in building up and
implementing the logical flow in data tables. The execution "engine" pursues this
logical flow and launches the various functions, building up the application by itself
in a stepwise manner during run-time (see Fig. 2). Indeed it is necessary that
the main application find all the functions inserted in the logical flow within the
functions' library.

The design and implement phases supposed for every new application:

• to define the logical flow represented by steps to be done and their relative
functions;

• to identify the values of all functions' parameters and the link/order among
them;

• to put these elements together through their descriptive information inserted
into a specific structure of tables (subsequently described);

• to launch the main application with a reference to the tables specific to certain
applications.

The major advantage is that the main program is independent from the content
of the logical flows. It knows only the modality to pursue such a flow, and to

296 RaJuca Oana Scarlatescu

Function 1

Function 2
•

Function m

Y Main
•1 application

V . X

Logical tav 1

I nglrdtrw?

\

0
U

ILogicaltcwn

Figure 2: A main application is used for many specific logical flows, and it is linked
to the functions' library for this goal

transfer different values from one step to another. Several concepts which are
necessary to comprehensively understand the method "Programming by steps" are
presented below.

2.1 Logical flows and flow-charts
In order to solve a specific problem it is necessary to understand its prerequisites
and the different situations that could appear or influence it, and to intercept its
possible results. It is seldomly possible to represent the solution through a logical
flow of events or situations.

At the end of the 60's, Edsgar Dijkstra and others proposed three logical con-
structions to represent the logical flow of a program. These are: "sequence, con-
dition and repetition. The sequence implements the procedures' steps, which are
essential for each algorithm. The condition provides the capacity to elaborate se-
lectively, based on determined logical conditions; whereas the repetition consents
to perform cycles. All these constructions are fundamental for structured program-
ming, which is an important technique of projecting the components' level. In
practice, every construction has a predictable logical structure with the entry at
the superior part and the exit at the inferior part, which allows to easily follow the
procedure's flow"2:

"Each programme can be projected, independently for the application area or
technical complexity, by using only three types of structured constructions"2. Its
logical flow provides a precise specification of the elaboration that means the events'
sequence, the iterations, and the decisions' points, using certain data structures.

The flow chart is "a pictorial representation of the steps in a process, useful for
investigating opportunities for improvement by gaining a detailed understanding of

2Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, pp.442-443

Programming by steps 297

how the process actually works"3.
"Flow charts have been used for so long that no one individual is specified

as the father of the flow chart"4. "The flow chart is a means of communicating
information. It must be able to communicate the steps in a process clearly and
unambiguously"5.

The New Oxford Dictionary defines the flow-chart (flow diagram) as: "a dia-
gram of sequence of movements or actions of people or things involved in a complex
system or activity; [. . .] a graphical representation of a computer program in rela-
tion to its sequence of functions (as distinct from the data it processes)"6.

As mentioned above, for each initial application from Fig. 1 a set of information
describing the own logical flow is presented: its steps and its functions, which have
to be performed at every step.

2.2 Functions
The second part of the flow chart definition written in the New Oxford Dictionary
introduces another important concept: the function. According to the same dictio-
nary, the function is "a basic task of a computer, especially one that corresponds to
a single instruction from the user"7, or, mathematically, "a relation or expression
involving one or many variables"7. Usually, a function is a "black box" that returns
a value8. The user interacts with the function through the function's parameters9,
and possibly through global variables.

In "Programming by steps" a function is a routine (application, relationship,
or transformation) that accepts a certain number of input parameters, uses them
for its elaboration and returns some results through its output parameters.

Let us consider a function fj, having xj input parameters and j/j output pa-
rameters:

3See ISO 9004-4 "Quality management and quality system Elements - Part 4: Guidelines for
quality improvement", 1993, p. 13. This standard has fixed a symbol set that ensures instant
recognition by everyone in order to allow a unique representation of the fundamental constructions
and logical flows.

4See J. R. Clauson, T. Glenn, J. A. O. Hunter , "Index of quality control tutorials", 1995, p. 2
5See T. Burns, " A Fresh Look at Flow Charting", p. 1
6See "The New Oxford Dictionary of English", Clarendon Press, Oxford, 1998, p. 707
7See "The New Oxford Dictionary of English", 1998, p. 743
8In programming a function may return a value, a vector or structure. The mathematical

definition becomes larger. We know that a function may return a value or a memory's address (a
pointer), that would contain everything. The large concept of functions is covered by functions
and procedures in some programming languages.

9 The parameter may have different values (see note 10): number, string, date, vector, matrix,
pointer, structure, image, etc.

f j - I j - > oh 1 <j<n j,n £ N
1 < h < Xj h, Xj £ N

1 <l<Vj l,Vj e N

, ••;iXJ,01,02, •••, 0/, ..., Oyj)

(1)

Ij = I\Xl2X...xIhX...xIXj

Oj — 0ix02x...x0ix...x0,

f j = fj(h,Í2,

298 RaJuca Oana Scarlatescu

FUNCTIONS
| DJUNCTION I FUNCTION-NAME \ NUMJN | NUM-OUT \

PARAMETERS ''
I ID-FUNCTION | D_PARAM \ PARAM-NAME | PARAM_~FYPE \ DATA-TYPE \ DATA-DIM \

Figure 3: Functions and parameters

where
ih - the input parameter, i/, € //,
oi - the output parameter, oi £ Oi
Xj - the number of input parameters for the function f j
Hj - the number of output parameters for the function f j
Ih, Oi - sets of values having homogeneous types of data (see the last footnotes)
Let us consider a set of functions defined above:

where
n - the number of functions in the library
Each parameter, ih or o/, is characterised by its type and dimension. In "Pro-

gramming by steps" the parameters are like doors, which permit the entrance and
exit of values in the function's body. Let us consider the generic parameter p c

PT - {Input, Output}
DT = {Boolean, short, long, string, pointer, etc.}
Pi = Ih or Oi
Pi = Pi(ti,dti,di(dti))
where
U - the type of parameter pi', input/output
dti - the data type contained by the parameter (Boolean, short, long, string,

pointer, etc.)
di(dU) - the dimension of the parameter (that may be dependent of the data

type), di(dti) e N
PT - the set of parameters' types
DT - the set of data types that depends on the programming language
One function may be a simple function or a macro-function that performs a

certain group of activities. For example, it could only print a value on the output
terminal or play a welcome message on an answering machine.

The functions are integrated in a library and called by a main application (see
section 2.4). The information that is related to the functions' definition is repre-
sented in a database system in this modality:

The first table, FUNCTIONS, stores information about the functions:

F = {fi) l < j < n j,n e N (2)

Pi : PT * DT * N- > Pi 1 <i <Xj +yj i, xj, yj £ N (3)

Programming by steps 299

• the function's identifier;

• the function's name;

• the number of input/output parameters (Xj , yj).

The second one, PARAMETERS, contains information about the parameters
of every function: the function's identifier, the parameter's identifier, its name10

and type (input/output), the accepted types11 and the maximum size of respective
types12.

2.3 Steps
Returning to the structured programming, the body of a program (between start
and stop) is composed by a sequence of steps.

"Programming by steps" considers a step as the smallest logical part of a pro-
gram, which can be associated with a function to be executed. The decomposition's
level of a logical flow in its steps is inversely proportional to the standardisation's
degree of the functions: the more abstract the functions, the fewer are the steps.

Consider S the set of steps from a logical flow:

S = {sí} 1 < i < m i,meN (4)

where
Si - the step
m - the number of steps to be done

Each step s, is described by the following information:

SÍ = s i (t i , { (c ik ,s n k) } i<k< n ¡ , f i) 1 < i , n k < m (5)
Si e S, ti€T, fi€F, Cik&C, s„k € S i,k,m,rik,ni e N

where
ti - the type of step s¿
fi - the function associated with the step Si

1 0 A generic name is used in order to identify the parameter.
u T h e types and dimensions depend on the used programming language and/or database man-

agement system. In this example SQL Server 2000 and C are considered. The information is only
descriptive, and it should be used düring the data input process or the program's execution. We
note that using a varchar data type, it is possible to memorise different data in the database, and
after to utilise them independently of their types, because of the implicit conversions done by the
SQL Server 2000.

1 2 It is recommended to use a type compliant with a major number of possible received values
and to perform internal conversions either at the function calling level (main application) or at
the function execution level (library).

300 RaJuca Oana Scarlatescu

(Cik, Snfc) _ one of the couples (condition, successive step) which determines
the behaviour of the logic flow: if the condition d k is fulfilled, the step Si will be
followed by the step s„k , and 1 < k < ni, 1 < nk < m13.

ni - the number of conditions (situations) that may appear
S - the set of steps
F - the set of functions
Ci,T - the sets of conditions and types defined below
The "Programming by steps" proposes the set of the steps' types below:

T = {I = Iteration, D = Decision, S = Jump, L = Loop} (6)

Let's see the meaning of each type in relation with the fundamental construc-
tions proposed by the structured programming: sequence, condition and repetition
(see section 2.1).

The I type (iteration) corresponds to sequence construction. If we consider the
actual step Sj, the step Sj+i will succeed it. There is no condition to be evaluated,
and the step number will increase with a fixed iteration, equal to 1 (see Fig. 4a).

The D type (decision) corresponds to decision construction. The number of
conditions to be evaluated is unlimited (like in a multiple selection) and the next
step will be calculated based on the condition's evaluation. Let us consider Ci the
set of conditions, which are supposed to cover all possibilities, which can arise in
the decisional step Si:

Ci = {cik} l<i<m, \<k<ni i,k,m,ni£N (7)

where:
Cik ~ the condition associated with the step S{
ni - the number of possible conditions for the step Si
m - the number of steps in the flow
If the condition en is true, then the step Si+i will follow the step s,- If the

condition Ci2 is true, then the step s<+2 will follow the step Si, and so on, until the
last condition (if the condition a n i is true, then Si will be succeeded by Si + n i) 1 4 .
All these branches will meet in the next step S i + „ i + i . The conditions are discrete
and finite (see Fig. 4b)15.

13For simplifying, we will consider the relation between the step's index n^ and the condition's
index k in the couple (condition, successive step) as linear: nk = i + k. Note that "Programming
by steps" is not limited to this linearity.

14Remember that when running an application one condition will only be true at a certain
moment of time. The flow will pass trough a unique branch.

1 5The problem is to transform a set of continual conditions in a set of discrete conditions. For
example, if the condition is: "if x>0 then true else false", then a function will be used in order
to translate it like here: f(x) = (unknown char) if x>0 return 1, else return Oy. The condition
becomes: "if f (x)= l then true, if f(x)=0 then false". We have obtained a discrete condition from
a continuous one.

Programming by steps 301

The S type (jump) behaves in this manner: the step Si will be followed by a
sequential step s,+k. If k is negative, the logical flow will come back to a precedent
step (see Fig. 4c and d). This type doesn't correspond to a fundamental construc-
tion (it is similar to the "go to" instruction). It offers a lot of flexibility, but it
should be used carefully. The number k differs to 1 (otherwise the step's type will
be an iteration I);

The repetition construction has no correspondence to the steps' types, because
it can be simulated by a number of iterations, decisions and negative jumps, until
the exit condition is fulfilled. This shall be managed carefully, for avoiding infinite
repetitions when the application runs with real data. When we use an application
for drawing the flow chart, the same information will generate at least the number
of cycles foreseen for the real-time situation. Sometimes the exit condition will
never happen, because the drawing software simulates the real execution without
having the real data. Therefore the number of cycles might be infinite. The L type
(loop) was introduced in order to solve this issue. It is associated with the last step
of a repetition in order to mark its end (see Fig. 4e and f). The type behaves as
a negative jump16 and the real application will treat it identically. The drawing
application will represent only the first cycle of the repetition.

Based on the description above, the link between the step's type and its be-
haviour for the step Sj (1 < i < m, i € N) shall be schematised:

- 1 type - iteration: Si ->Sj+i
- D type — decision: Si -> - if en is true then -> Sj+i

- if Ci2 is true then -> Si+2
" > S t + n i + l

- if Cini is true then -> Si+n.
where 1 < i + ni < m, rij 6 N

- L type - loop17: Si ->s»+fc, k < 0 k € N
- S type - jump: sj ->Si+k, k <> 1 k e N
The Fig. 4 depicts the types' definitions according with the presented method.

In this figure the step in discussion is Sj and its type is properly represented. The
types of the other steps are irrelevant.

"Programming by steps" considers that each step is a virtual decision. A se-
quence is a decision with a unique branch, which is always true. A repetition is
a decision with two branches: the first branch will return the flow to a precedent
step, and the condition will then be re-evaluated, until something changes; the sec-
ond branch will be followed when the cycle finishes. Only the decision has many
conditions to be evaluated.

The information related to the sequence of steps (the logical flow) may be pre-
sented as in Fig. 5. The table THESE-STEPS contains the information about
the current steps: the step's identifier, the step's type, the number18 of successive
steps/conditions and the function's identifier that will be executed at this step.

1 6The iteration and the loop are particular cases of the jump.
17Used for repetition only.
18It is greater than 1 for a D step, otherwise it is equal to 1.

302 RaJuca Oana Scarlatescu

Sj
3 :

s M , l/D/S/L

T

C[7 • Co
1 1

Sw. 1 1 | SM , S

a) Iteration

rsi,7.i, l/D/S/L

b) Decision (ni = 7)

d) Loop (k<0)

Legend: Alteration, D=Oecision, S=Jump, L=Loop

c) Jump (k<0)

f) Example of loop - simulates a
repetition construction

Figure 4: Example of steps' types defined in the "Programming by steps" method

The table NEXT-STEPS is related to the couples (condition, successive step)
that force the execution: the current step's identifier, the condition's identifier, the
value for which the condition is true and the corresponding next step to be executed
(when that condition is realised). For the types which differ from decision, the con-
dition can not be estimated (ID_CC)ND=0, VAL-COND=<AT[/LL>). DEF.STEPS
contains the set of types, with their description. The main application has imple-
mented a special mechanism in order to automatically treat the different types of
steps (see section 3 of this paper).

We can observe that not all the information of the logical flow is memorised,
because there is no exchange of data between the functions from one step to another,
thus we haven't obtained a functional system yet.

The possible parameters' values have the following characteristics:

• they may be fixed or variable, deterministic or non-deterministic;

• they may be dependent or independent of the step in that axe executed, as
well as the precedent steps;

• they have a certain type of data and a specific dimension.

To solve the data transfer, "Programming by steps" introduces a new concept:
a field associated with one or many parameters, which is a part of a specific table:

Programming by steps 303

THESE_STEPS

|THS_STEP |STEP_TYPE I NUM_STEPS |ID_FUNCTION I

1

DEFJSTE?
| STEP_TY1

r

PE [DESCRIPTION I

|TH1S_STEP I ID_COND VAL.COND | NEXTSTEP |

Figure 5: The general structure of the tables with information for the flow building

TRANSFER-VALUES. Transferring data from one step to another means associ-
ating the same field with two parameters: one output parameter appertaining to
the first function and one input parameter belonging to the successive function
(indicated by the specific logical flow). The first parameter will scatter the output
value in the field mentioned above, and the second one will gather it to use in its
function19.

For example, we can choose to associate the on output parameter of the / ,
function with the <FIELD_1> field at the Sj step. After we may associate the
ijk input parameter of the f j function with the same field in order to receive the
contained data at the Sj step.

The link between the parameters and their fields will be done according to
the step where the function is called (see FIELDS-THIS-STEP table). This table
contains the step's identifier, the parameter's identifier and the field's identifier
(associated with the field's description in FIELDS table).

The TRANSFER-VALUES table is composed of fields having names, types,
and initial values as described in FIELDS table. If many applications use the
same flow, many rows will be inserted in the table TRANSFER-VALUES, and
each application will identify its row by a number (record number). The value
memorised into ID-FIELD field (see tables FIELDS, FIELDS-THIS-STEP and
FIELDS-NEXT-STEP) indicates the position of the corresponding field in the
TRANSFER-VALUES table's structure. Please observe that we may associate now
the field <FIELD_1> with other inputs parameter for reusing the value memorised
there, or with other output parameters for loading it with a new value.

Let's consider another situation. Supposing the same function is used in the
same flow twice, with different values each time. There are two solutions:

• to associate new fields with the respective parameters, memorising their initial

1 9 Do you remember the interpretation of the parameters? Let's imagine now the field like a
room between two doors (the parameters): the value goes out from the first function and enters
in this room using one door. When it is necessary, the other door is open and the value leaves the
room, entering in the successive function.

304 Raluca Oana Scarlatescu

THESE3TEPS
I THIS_STCP I STEP TYPE | NUM_STEPS | ID_FUNCTION |

DEF_STEPS
I STEP-TYPE I DESCRIPTION |

NEXTR STEPS
I THIS_STEP I ID_CQND

FIELLS_THIS_STEP
I THIS_STEP I ID_PARAM

FIEL4S_NEXT_STEP
I THIS_STEP I ID-.COND"

TRANSFER-VALUES
I RECORD-NO I <FIELD_1>

VAI COND I NEXT_STEP I

ID_FIELD

ID_PARAM I ID_F1ELD I FIELD_VALUE I

FIELDS
ID-FIELD I FIELD-NAME | FIELD-TYPE |FIELD_VALUE|

<FIELD_2> F

Figure 6: A logical flow implementation in a database management system

values into the FIELD .VALUE fields (see FIELDS table);

to use the same associated fields and to reset the values.

In the second alternative another data set will be used, that specifies the initial-
isations to be made for a successive step in a known situation, given by the couple
(condition, successive step): FIELDS-NEXT .STEP. The parameters, the fields and
the associated values are memorised here, and will be set for a certain condition
that is realised during the application's execution. The table contains the step's
identifier, the condition's identifier (in order to know the branch), the parameter's
identifier, the field's identifier and its initial value.

The "field" concept offers a great flexibility in the functions' management. As
described above, the fields can be initialised with static values at the beginning
or at a certain moment during the run-time. They also permit the data transfer
between steps and functions.

Our database schema may be completed like in Fig. 6.
Resuming, we can consider the logical flow as an oriented graph. In each node a

certain function is realised and the next step is decided. Parameters' values may be
transferred from one node to another, using FIELDS-THIS-STEP table, and some
parameters may sometimes be re-initialised, using FIELDS -NEXT-STEP table.

The information related to the step execution may be represented as:

Si = Si(ti, { (C t i , S t + l) , • • • , (cifc, Sj+fc) , • . - , (c ¿ n ¡ , S « + n ;) } ,

fi(Vii,Vi2, . . .,vih, . . .,Vixi,Wii, . . .,Wu, . . . ,wiyi))
(8)

Programming by steps 305

si es, ti€ T, fi e F, cik e c, si+k e S
1 <i,i + k<m, \<k<rii i,k,m,rii£N

1 < h < X i , l < l < V i h,l,Xi,yi€N

where
Si - the step Si
U - the type of step Sj
fi - the function specific to the step Si
Vih - the value Sj of the input parameter i/, specific to the step Si
wu - the value of the output parameter Of specific to the step Si
(Cik, Si+k) - one of the couples (condition, successive step), for step Si, where

1 < k <rii, 1 < i + k <m

2.4 The Main Application
The main application will be built in order to roll over the logical flow memorised
in the tables, following the procedure presented in Fig. 7.

In this representation, an iterative alternative was chosen to operate the whole
logical flow. The idea to build such a program comes from the backtracking engine
used in the nonprocedural language Prolog, that can be stopped only with a specific
instruction (in our case: the value of the next step is equal to O)20.
In the case of "Programming by steps" method, the application that follows the
flow's evolution consists in a "do-while" cycle that operates until it receives a specific
exit instruction. A flow step is performed at any iteration, so that a specific function
is launched, then the next step is identified. The zero value for the step represents
the exit from the logical flow (and also from the program).

In this way the logical flows can be built physically, the main program has an
role of execution, but is transparent for the content of execution. If the functions
have been analysed and projected to be usable in many and different situations and
programs, then the programmers work is reduced only to organise the functions in
the necessary order and to fill in some linking information in the database tables.

From the Fig. 7 we may deduce the mechanism on which the method "Pro-
gramming by steps" is based and from where its name comes from: it loads one
step by one and executes each associated function. The sequence of steps is linked
to the specific characteristics for the. problem and for the domain.

3 How to apply "Programming by steps"?
"Programming by steps" method requires the next stages (see Fig. 8):

1. Domain Analysis

2. Main application development
2 0It may be used a recursive method that will be more suggestive- when the logical flow is

interpreted like an oriented graph.

306 RaJuca Oana Scarlatescu

Load general
variables

V
th is_step:= l

Yes

r
Load

information for
this_step

Execute
this_step

i r
Find

next_step

this_step:=next_step

Figure 7: The behaviour of the main application that executes the logical flow

3. Functions development

4. Functions integration in the Common Library

5. Specific problem analysis; if there are new functions to be developed go to 4,
else go to 6

6. Flow chart design and implementation for the problem solution

7. Application testing and homologation

For all these stages a short description will be presented21.

1) Domain analysis

2 1 Note: More homogeneous functionality has the analysed domain, more simply is to apply the
method. If the analysis is correct and the functions present a high degree of standardisation, the
steps 1,2,3, and 4 aire rarely used.

Programming by steps 307

Figure 8: The process model for the method "Programming by steps"

The general description of the domain analysis can be taken over from the
oriented objects design method, with the following definition: "the domain
analysis for the software consists of the location, analysis and specification
of the common requirements in a specific application sector in order to reuse
some parts of them in many projects from that sector"22.

In the "Programming by steps" method, the domain analysis looks for identi-
fication of general characteristics of the sector, the location of already existing
applications, the identification of future and present requirements, the identi-
fication of main requested functions, and the setting up of reusing projecting
standards.

2) Main application development

This phase permits to build the main application with its interface towards
the function library (internally or externally implemented).
The main software reads the information of each step, gathers the input
values of the corresponding function and interprets them, runs the function
and scatters the output results in associated fields, manages the checking of
all the steps, and ensures the execution of the entire system well (see Fig. 7).
The main application's characteristics are defined in the way of interacting
with the functions on one side, and with the, data on the other side. The
modality to execute the steps (recursive or iterative) is chosen, and the engine
that follows the logical flow is projected.

In this stage the database structure is implemented, which stores the data of
the steps and its priorities, functions and its parameters, static and dynamic
values of the parameters, errors etc. The structures that implement these
functions are projected.

22Unofficial translation from the Italian version of R. S. Pressman in "Principi di ingegneria del
software", 2000, pp.598, that refers D. G. Firesmith with "Object Oriented Requirements Analysis
and Logical Design", 1993

106 RaJuca Oana Scarlatescu

Functions development

The analysis starts from the functions identified at the first stage. The input
and output parameters are defined in order to be possible to use a function
in as many situations as possible.
The name, the data type and its dimension are established for each in-
put/output parameter. In order to raise the usage of a function it is rec-
ommended that each parameter accept many data types. Some conversion
mechanisms will be applied inside each function.
The data structures defined in second stage and represented in Fig. 3 are
loaded. The functions can be written in a high level language, or in the
language incorporated in the chosen database management system.

Functions integration in the Common Library

The role of this stage is to integrate the functions, which were projected at the
third stage, into a library. A friendly interface between the main application
and the library shall be created in order to reuse the functions if necessary.
However, the application will interpret the information memorised at the
second stage to access and run the functions.

Specific problem analysis

In this phase the problem must be identified within the area. It is necessary
to find similar problems and their possible solutions. If there is more than
one solution, one must be chosen and its corresponding functions must be
defined. When all of these functions are defined, we can go directly to the
sixth stage.
If the analysis reflects the necessity of new functions, we will return to the
third stage - Functions development, until all the new functions are integrated
into the Common Library.

Flow chart design and implementation for the problem solution

The projecting and implementation of the logical flow represent the effective
programming process. This stage's goal is the structure loading with the
specific values for the problem's solution.
It is based on the chosen solution at the fifth point, where the necessary
functions were identified and defined, and it continues with the establishing
of functions' succession. The logical flow is built up asking questions like:
"What really happens next in the process?", "Does a decision need to be made
before the next step?", or "What approvals are required before moving on to
the next step?". The data structures from Fig. 6 are loaded. The initial
values are established for each step.

Application testing and homologation

After putting all the pieces together, the logical flow execution must be tested
by the main application. With the flow chart already built, we need to make

Programming by steps 309

a test plan that covers all the different paths and to execute it, correcting the
eventual differences from the thought-established solution.

4 Comparative analysis between the "Program-
ming by steps", the "Rapid Prototyping" and
the "Component-based Design"

This section contains a short presentation of two other design method (Rapid Pro-
totyping and the Component-based Design) and some comparative characteristics
between these methods and the "Programming by steps" method.

The "Rapid Prototyping" method

"The prototyping paradigm may be <closed> or <open>"23. In the first case the
prototype is considered a "quick and dirty" affair, used like a communications aid
between users and developers. Once the sought information has been obtained, it is
discarded and conventional software design ensues (see Fig. 9). In the second case,
the prototype becomes the central focus of the process model, called "evolutive
prototyping". The prototype is scoped, scheduled, resources are allocated and
refined as depicted in Fig. 1024.

"One solution for the "Rapid Prototyping" consists of the prototype assembling
(instead of building it), using the existing software components. An existing soft-
ware product can be used like a prototype for a new product. In a same sense, this
is a reuse form applied on the prototyping"25.

In the case of the "Programming by steps" method, one or many existing ap-
plications may constitute a prototype model for a new one. In this way a new
problem will be quickly understood and resolved with predictable results. The old
functions are all homologated and their use will be secure and free of errors. In case
of detected errors, the corrections automatically touch the old applications (logical
flows) which therefore makes the maintenance process easier. But the model for
a new application is neither a closed prototype, nor an opened one, because it is
more, it is a functional model, with correct results and acceptance by the client.

The "Component-based Design" method

"Component based development offers a vision of plug and play software devel-
opment"26. "The Component-Based Software Engineering process is drastically dif-
ferent from the conventional software development process: it's integration-centric

•^Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 301

24See R. L. Vienneau, R. Senn - " A state of the ART Report: software design methods", 1995,
p . 12

25Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 302

2 6See M. Collins-Cope, D. Deveaux, P. Frison, H. Matthews, G. Pour, "Component Based
Development: Software Architecture, Component Models and Teaching", p. 1

310 RaJuca Oana Scarlatescu

Bui ld ing/analys is of
the mode l

Model's testing
by the client

Source: Unofficial translation from the Italian version of R. S. Pressman,
"Principi di ingegneria del software", 2000, p. 33

Figure 9: The prototype paradigm

Prototyping
paradigm

List of
rarisbns

Re/ise
prototype

User
exercises
prototype

System
D a ermine
scope and Prototype

statement of
work

Plan schedule
and resources

Autotype
de/ebpment

plan

Bidd
protDtvpe ^

Prototype
Refine and Defr/ered

requirements objectvesof
prototype

Prototype
statement of

work
torde/ebping
the prototype

Autotype
de/ebpment

plan Oäver ii to
user

Prototype e/oi/e *
prototype

system

Conventional
paradigm

Analyze user
require™ ens

Source: W.W. Agresti, "What are the New Paradigms?"

Figure 10: The Prototyping Paradigm and its Relationship to the Conventional
Software Development.

as opposed to development-centric. This is a real challenge for developers, but also
for teachers. New skills should be emphasised:

• connections between analysis, design and programming,

• documentation use and its construction,

Programming by steps 311

• testing and validation technologies,

• reliability and trustability,

• software project management"27.

"When building procedural code, common behaviour is extracted into some
kind of function or subroutine that can be reused in some way, either by having all
users call the same function implementation, or by copying the function into code
at compile time.

Source: Unofficial translation from the Italian version of R. S. Pressman,
"Principi di ingegneria del software", 2000, p. 45

Figure 11: Component-based Development

When designing a component-based solution, it is possible to extract a common
behaviour so that multiple consumers can use it"28.

The "Programming by steps" method may be situated between these two ap-
proaches: the common behaviour is extracted into functions like in a procedural
method. But, the way in which they are used is nearer to the component-based
method, because the main application calls them like external components. The
logical flow is composed piece by piece for every solution, reusing the functions.
The functions may be used to solve several problems of a specific domain, as well
as in a different application domain, if they have the requested functionality and a
recognisable interface29.

27See M. Collins-Cope, D. Deveaux, P. Frison, H. Matthews, G. Pour, "Component Based
Development: Software Architecture, Component Models and Teaching", p. 1

2 8See K. Mclnnis, "Component-based Design and Reuse", 1999, p. 2
2 9 The problem of CPU's usage shall be solved using a multiprocessor computer.

312 RaJuca Oana Scarlatescu

Table 1: Comparative requirements to apply the design methods: Rapid Prototyp-
ing, Component Based Development (CBD) and "Programming by steps"

Requirements Closed Open CBD Programming
Prototyping Prototyping by steps

Application domain well * * * *

known
Problems may be mod- * * * *

elled
Accurate and stable re- -

* * *

quirements
Ambiguous and contra- *

- - - -

dictory requirements
Possibility of reuse -

* * *

Source: adapted from, R. S. Pressman, "Principi di ingegneria del software",
2000, p. 302

"The component based development model represented in Fig. 11 incorporates
several characteristics of the spiral model. It presents an evolutive nature30 and
requires a software development iterative approach. However this development
model creates applications starting from software components ready to be used
(the classes)"31.

We see that also the "Programming by steps" method has an evolutive nature.
One could remark on the similarity between the process of component individuation
and design on one hand, and the process of function identification and design, on
the other hand. One function is like a component, with its functionality and its
interface implemented into the database tables (see Fig. 3).

In the next table we may see some requirements that could be used to choose
one of the methods:

Different advantages and disadvantages of the three methods are listed in the
Table 2.

/

5 Conclusions
The use of a high level language with a good database management system adds
some advantages to the "Programming by steps" method:

• the velocity and accuracy of computing offered by the programming language;

30See R. S. Pressman in "Principi di ingegneria del software", 2000, p. 44, that refers the article
of Nierstrasz, O., Gibbs, S., Tsichritzis, D., "Component-Oriented Software Development", 1992,
pp. 160-165

3lUnofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 44

Programming by steps 313

Table 2: Comparative advantages and disadvantages

Advantages and disadvantages

Rapid understanding of the requirements
Rapid application building
Reuse possibilities
Reducing of the development cycle
Reducing of the project costs
Increasing of the productivity
Possibility to use wizards
Possibility to use non-expert personnel32

Prototype may be shallow and narrow
Components too complicated
Integration issues between main application
and database implementation

Rapid CBD Programming
Prototyping by steps

* I I * *
* * *

* *

* * *

* *

* * *
*

*

*

*

• faster and secure data access and manipulation, without concurrency prob-
lems offered by the database management system;

• larger volume of data that could be stored inside of the same database man-
agement system.

The idea of the functions' incorporation inside the database management sys-
tem, and the ability to be updated for different problems without touching the
source in the high-level language, raises the flexibility of the program and offers
new development's perspectives.

"Programming by steps" is a new method that designs and implements a mech-
anism that executes specific steps corresponding to a logical flow and permits to
build new applications only configuring some tables with the steps and the functions
necessary in that case. A new program may be designed building the succession of
steps with the necessary functions for the respective situation. In other words, the
software engineer would fill in some fields in the tables with some values in order
to complete the logical flow and then to run the program.

In a future release a non-specialist user could also be the "writer" of the software.
One possible solution is to implement a system, with an adapted graphical interface
(for example, an icon for each function). The user will have to choose the icons
and to connect them together in a logical flow. Another solution is to use a flow-
charting software for drawing the logical flow and then automatically to convert it
in the requested information in order to fill in the specific tables.

The "Programming by steps" method is based on the reusable functions that
may be designed without changing the main application. That offers flexibility and
manageability in obtaining new software releases.

3 2This feature refers to the situation when the library has already been implemented.

314 RaJuca Oana Scarlatescu

References
[1] Agresti, W. W. "What are the New Paradigms?" In Agresti, W.W. (ed.) "New

Paradigms for Software Development", Washington, DC: IEEE Computer So-
ciety, 1986

[2] Burns, T. "A Fresh Look at Flow Charting",
http://www.q-skills.com/flowchrt.html

[3] Chichernea, V., Botezatu, C., Iacob, I., Fabian, C., Mihalcea, R., Goron, S.
"Proiectarea sistemelor informatice", Sylvi, Bucharest, 2001

[4] Clauson, J. R., Glenn, T., Hunter, J. A. H. "Index of quality control tutori-
als", Clemson CQI Server Copyright (c) 1995 by Clemson University Portions
Copyright (c), 1995
http://deming.eng.clemson.edu/pub/tutorials/qctools/flowm.htm

[5] Collins-Cope, M., Deveaux, D., Prison, P., Matthews, H., Pour, G. "Com-
ponent Based Development: Software Architecture, Component Models and
Teaching", CBD-TOOL, 2000

[6] Firesmith, D.G. "Object Oriented Requirements Analysis and Logical Design",
Wiley, 1993

[7] Mclnnis, K. "Component-based Design and Reuse", Castek, 1999

[8] Mihalca, R., Tataru, A. "Realizarea produselor program. Metode si tehnici de
analiza si proiectare structurata", Scripta, Bucharest, 1994

[9] Nierstrasz, 0 . , Gibbs, S., Tsichritzis, D. "Component-Oriented Software De-
velopment", CACM, vol. 35, no. 9, September 1992, pp. 160-165

[10] Pressman, R. S. "Principi di ingegneria del software", third edition, McGraw
Hill, Milan, 2000

[11] Vienneau, R. L., Senn, R. "A state of the ART Report: software design meth-
ods", ITT System Corporation, Griffiss Bussiness and Technology Park, Rome,
1995 - http://www.dacs.dtic.mil/techs/design/Design.toc.html

[12] *** "The New Oxford Dictionary of English", Clarendon Press, Oxford, 1998

[13] *** ISO 9004-4 "Quality management and quality system elements, Part 4:
Guidelines for quality improvement", Geneva, first edition, 1993

http://www.q-skills.com/flowchrt.html
http://deming.eng.clemson.edu/pub/tutorials/qctools/flowm.htm
http://www.dacs.dtic.mil/techs/design/Design.toc.html

Acta Cybernetica 16 (2003) 2 7 1 - 2 7 8 .

Two Content Protection Schemes
for Digital Items

Paula Steinby*

Abstract

Modern techniques make digital articles easy to copy and manipulate.
Content protection systems aim at protecting the rights of producers and
distributors. These mostly rely on data encryption, digital watermarking, and
special-purpose devices. In this paper, we describe two content protection
schemes, both of which make use of tamper-resistant devices and devicer
dependent decryption keys. One of the schemes uses a modified El Gamal
system, in the other one we combine watermaxking with encryption.

1 Introduction
Consider a scheme where a digital article is distributed over an insecure channel.
During the transmission, the data may be subjected to eavesdropping and trans-
formations. The combination of digital data and modern techniques to handle it
brings along some controversial possibilities. Producing identical or manipulated
copies of a digitized item is easy, and devices and programs for this purpose are
commonly available.

For the parties using the transmission channel, there is a need for privacy and
content authentication (i.e. capability to detect any data manipulation). Owner
of an item may require copyright protection and further, a possibility for traitor
tracing, maybe even for copy and/or use control of the item.

Content protection systems have been designed to protect media producers and
distributors. The existing tools are limited: data encryption, digital watermark-
ing, tamper-resistant and special-purpose devices. Encryption contributes to the
privacy of the parties as well as makes the data useless for those without means to
decrypt it. Watermarking enables one to recognize the copyright owner, or even
distinguish between each copy of the data. A unique label in every copy provides for
traitor tracing. This type of watermarking is usually referred to as fingerprinting.
Cryptographic protection gives privacy for the transmission, but there lies a fun-
damental weakness in it. Namely, one must remove the encryption at some point
to reproduce the item, thus leaving the item without any protection whatsoever.

"Turku Centre for Computer Science, 20014 Turun yliopisto, Finland, email: pauste iutu . f i

I

315

316 Paula Steinby

Special-purpose devices may offer a solution to this problem. These are devices
with some special features, designed in view of a certain operating system. In this
work, we describe two content protection schemes, which both make use ofepecial-
purpose devices, and device-dependent decryption keys. In Chapter 2 we describe
a scheme with a modified El Gamal system, where the device can recognize if the
input is supposed to be given in encrypted form, and refuses to process such data
if given in plaintext form. In Chapter 3 we sketch a scheme to combine encryption,
watermarking and compression of the data. In both schemes, we assume the device
to have a secret key which is not known to anybody outside the device.

Digital watermarking is the so far best technique to protect an item after de-
cryption. As the ultimate goal of content protection (i.e. making producing illegal
copies impossible) remains unachievable, digital watermarking introduces methods
to make producing, distributing and using illegal copies of some data unattractive:
difficult, risky or unprofitable. We use digital watermarking for both schemes dis-
cussed in this paper, in order to bring security even in the case where the security
provided by encryption and/or the device failed.

2 A scheme with modified El Gamal system
In this section, we sketch a method to protect copyrighted digital items using
techniques based on public-key cryptography and a tamper-resistant device T>. The
items to be protected can be visual, aural, etc. We assume that a public-key
interface is used: each V is equipped with a public-key pair (iu, sp). The private
key sv is unknown even to the owner of V. (It is a common practice that private
keys are generated within smart cards such that no other unit will ever learn them.)

Our scheme has the following features:

• The data is delivered to buyers in encrypted form. The encryption is the same
for all buyers. This is convenient, because then it is enough for the merchant
to perform a single encryption on the data, and then make it freely available.
We denote the (symmetric) encryption/decryption key by K .

• A tamper-resistant special-purpose device V is needed to reproduce the item.
The respective device-dependent key is needed for V to be able to compute
the decryption key K . Hence, this key is different for all buyers.

• Even if K was revealed, legal unhacked devices could not exploit it.

Consider giving up the last feature in the list. Then the key delivery could be real-
ized by encrypting the decryption key K with the public device key i®, and sending
it to T>. But if the decryption key was revealed, then unauthorized device-dependent
keys could be easily computed, and thus legal devices would be compatible with
hacked documents. Preventing this seems highly desirable.

In the following, we present the notation and the cryptographic primitives that
will be used in our protocol.

Two Content Protection Schemes for Digital Items 317

• The tamper-resistant devices use an El Gamal type public key encryption
system. The domain parameters common for all are p and g, where p is a
large prime (1024 bits), and g is a generator modulo p. The private key of
V is s-p (0 < sx> < p — 1), and the corresponding public key is t-p = g3TI

(modp) .

• M (the Merchant) has an item for sale. We denote the digital representation of
the item by I. Prior to delivery, I is encrypted using a symmetric encryption
function E with key K. We denote enc(I) = E(I,K).

• B (the Buyer) wants to buy the item, and he has the device V with the key
pair (sp , ip) to reproduce it from I.

• h is a cryptographic hash function with output length equal to the key length
1*1-

For encryption, M could use some fast stream cipher. If, say, RC4 with key length
160 was used, then SHA-1 can be chosen for h with a 160 bit output.

The Protocol
The protocol proceeds as follows. Step 0, where M encrypts her data, is preliminary.
Steps 1 and 2 constitute the purchase phase, and in step 3 B's device V decrypts
and reproduces the data.

0. M selects a random a G [1 ,p — 1] and computes K = h(ga). Then M
computes enc(I) = E(I,K), which is the data set for delivery.

1. B sends M a request for I together with his device public key ip.

2. M computes r = t% (mod p) and sends B the pair /3 = (x,y), where x =
ga • ip (mod p) and y = gr (mod p), together with enc(I).

3. B inputs (x,y) and enc(I) to his device T>. V computes K' = x • (y s) _ 1

(mod p), r' = K's (mod p). Then it checks whether y = gT (mod p). If
this is the case, then V computes K = h(K') and I = D(enc(I),K) and
reproduces I.

The protocol is a modification of El Gamal system. The difference is that instead of
picking a random r we choose r = f£>, thus tying the value to the device V through
its public key t-p- If the protocol is properly performed, then V obtains the correct
key K in step 3. This is verified by observing that

K'=X- (y T 1 = (ga • trv) • 9~rs = ga • 9rs9~rs = ga (m o d p),

and hence K = h(K'). It follows that

r' = K" = gas =t% = r,

318 Paula Steinby

and hence the check in step 3 is always successful if r is of the right form.
Let us weigh a legal buyers chances to determine K after the purchase (without

hacking V). B knows the public key £p, and a pair (x , y) where x = ga (mod p)
and y — gr (mod p). Clearly, finding K is equivalent to finding ga. Thus the task
would be to compute = grs, given i-p = g" and y = gT. This is the famous
Diffie-Hellman problem (DHP), for which no efficient algorithm is known. DHP is
believed to be equivalent to the discrete logarithm problem (the equivalence has a
partial proof, see [1]). The fact that r is of special form, r — gas, does not seem to
help, but one could as well select r = hash(gas) to be on the safe side. Then also
the check in step 3 changes to y — <?hash(r) (mod p).

To be able to produce any device-dependent keys needed to decrypt and repro-
duce enc(J), one must be able to compute r for a given t. For this purpose, one
must know either a, or the respective s, since r = ta = (x(ys)~l)s. Note that the
problem does not become any easier even if a hacker has discovered the encryption
key K = ga\ there is still the discrete logarithm problem to be solved for a. As we
assumed that the knowledge of s is not available outside V, we conclude that it is
M alone who can make enc(I) compatible with V.

Drawbacks and improvements
In most cases, it would be useful if it was possible to display some unencrypted items
with V as well. However, we want to be able to distinguish between a document,
which was originally delivered in plaintext form, and another document which was
purchased in encrypted form and later decrypted. In particular, the decryption
D(enc(I),K) of enc(I) should be distinguishable from any originally unprotected
piece of data. Then, even if a hacker was able to decrypt enc(I) (i.e. the key K
was somehow revealed), this decrypted version would not be too useful because it
would be rejected by the device T>.

One solution is to embed an 'information bit' b into I before encryption, thus
labeling I as a protected document. For instance, if b = 1, then any V would refuse
to process the data when input in the plaintext form. The bit b can be embedded in
j using some robust watermarking scheme, so that b cannot be removed or its value
changed without also destroying the document (see f.ex. [2], [3], [6]). The device
V then checks the value of the watermark in I, and decides whether to reproduce
I or not on the grounds of the value of b.

We must require that any key K is authorized by some trusted third party
T. Otherwise, if a hacker H can access I which is decrypted but unreproducable
with any legal device because of the watermark, he can easily sidestep the hindrance
caused by b. Namely, re-encrypting I will do the trick: H can choose the encryption
key, take the position of M and thus compute any device-dependent key /3.

To prevent this possibility, M includes T's signature for the encryption key K
to the device-dependent key /3 in Step 2 of the protocol. In other words, 0 becomes
a triple (x , y , z) , where x and y are as before, and 2 = sigT(K). When V gets 0

Two Content Protection Schemes for Digital Items 319

as input, it checks the validity of 2 before using K . Naturally, it must be assumed
that hackers cannot obtain T's signatures for their own keys.

There is still another major weakness in the system. Suppose that hacker H
has got hold of a key K used for some / , and that some user B has acquired the
same I. Thus, B has received the respective decryption key /3 = (x , y , z) . Now H
and B can collude: any time the hacker is able to hack some item J, then he can
re-encrypt it with K. Consequently, B can use the same ¡3 to decrypt J, without
having to purchase a legal copy.

The obvious solution is to bind each key K to a specific item I. We propose a
few methods. The simplest one is to set z = s igT (K || I). The drawback is that
then V has to read all of I before it can determine whether z is valid. A more
practical solution would be to divide I into blocks Iq, /1, . . . ,In, and encrypt each
with a different key Ko, K\, . . . ,Kn. KQ is the original key K, and each Ki is a
function of K^i and a hash of /¿-1. In this case we have z = sigT(Ko || Iq), and
V can decide z's validity right after reading 7o-

A variant would be to set 2 = sigT (K || w), where w is a watermark embedded in
I prior to encryption, w could contain any kind of information on I, the purchase
etc. The information bit b could be included in w as well. Depending on the
placement of w in I, again V must have read at least some of I before it can verify

The primary aim of the proposed content protection system is to prevent hackers
from getting hold of unencrypted data items, and - if failing in this - secondary to
minimize the usability of illegally decrypted data. The scheme does not have traitor
tracing feature. This means that should we come short of both the goals, and illegal
copies of I were made and distributed, there would be no way to find who is to
blame.

A way to add traceability would be to make all the legal copies look different, i.e.
uniquely fingerprint them. The devices V could be equipped with an additional
watermarking module and each I would be labeled before putting it out. Each
device would have an unique watermarking pattern, and hence each copy of I
would be different and distinguishable. The obvious weakness of this solution is
that it relays quite heavily on the tamper-resistance of the device. One could argue,
that if somebody can hack V to obtain K and I, he would probably be able to pass
by the watermarking module as well.

3 Encryption with Watermarking
In this chapter, we will describe a purchase protocol combining encryption with
watermarking. Data encryption adds to the privacy of the parties, watermarking
enables copyright protection and traitor tracing. We choose to use a watermarking
scheme which is compatible with the compression procedure, since it is customary
to compress any data prior to sending it over a transmission channel. Next we will
discuss watermarking and combining it with compression, after which the scheme

320 Paula Steinby

with encryption and watermarking is presented. We assume that the subject of the
purchase I is an image. A watermark, a bit sequence of length N, is denoted by w.

Combining watermarking with compression

In general terms, watermarking an image I means encoding the bits of a watermark
w into I in some imperceptible way. A usual practice is to divide I in blocks of
8 x 8 pixels, and (pseudorandomly) choose the blocks in which the watermark will
be embedded. Values of certain coefficients of I will be manipulated, and their
absolute or relative values will then indicate the values of encoded bits of w.

Images are usually expressed by giving the gray-scale value(s) of each pixel.
However, to achieve greater robustness and minimization of the computation time,
watermarking is often performed in some transform domain instead of the spatial
one. Namely, it is easier to predict the effects of compression (or some other ma-
nipulation) on the watermark if we work in the same domain as the manipulating
algorithm.

Compression algorithms make use of different transformations to separate the
data into parts of different importance with respect to visual quality. Discrete
Cosine Transformation (DCT) is an orthogonal transformation exploited by e.g.
JPEG and MPEG algorithms. Its different basis vectors capture different features
present in the input data. The effect is that the role of low frequency coefficients is
emphasized, whereas most of the high frequency coefficients are small, and will be
rounded off to zero during the compression. Therefore, placing the watermark in the
low frequency DCT coefficients greatly adds to its robustness against compression.
(For a throughout introduction on current watermarking schemes, see Chapter 6 in
[3], or Chapter 8 in [2] on robust watermarking in general. A detailed description
of the baseline JPEG can be found in [5].)

As changes in low frequency components easily become perceptual, various per-
ceptual models, i.e. models imitating human visual system, are exploited in wa-
termarking. One can use these models to compute so-called masking constraints,
upper boundaries for the amounts a certain coefficient can be changed without
causing visual effects. For more on the subject, see Chapter 7 in [2].

Many of the masking functions give the boundaries in the spatial domain instead
of the frequency one. Often the problem has been solved by first embedding the
watermark in the frequency domain and then cutting the visible changes in the
spatial domain. The watermark remains imperceptible, but suffers in robustness.
The framework by Pereira & al. in [4], however, enables strong watermarking in
the frequency domain without violating the constraints in the spatial domain.

3.1 Combining watermarking with encryption

Whichever watermark embedding system or masking function is used, we can
assume the outline of the procedure to be as follows:

Two Content Protection Schemes for Digital Items 321

User Key KJJ
Position
Sequence
Generator Image data I

Watermark W

Watermark
Embedding
System

Watermarked
image / '

The Position Sequence Generator is used to pseudorandomly select the pixel blocks
of the image in which the watermark is placed. Hereafter, we use the word "image"
as referring to a single 8 x 8 block, and "embedding a watermark" means encoding
a single bit of the watermark in the block. This is natural, since embedding a
longer watermark in a bigger image means just repeating this procedure for many
enough blocks. The following notation is adopted:

I — the DCT-coefs of an image block
I' = the DCT-coefs of the image after watermarking
w = the watermark
E — encryption coefficients
D — decryption coefficients.

For simplicity, we assume that all the variants above are real valued vectors
of length 64, although most of the entries are zero for w, E and D. By + we
denote component-wise addition of two vectors.

Whichever the actual watermarking embedding system, watermarking means
making imperceptible changes in some low frequency DCT coefficients of the image:
/' = I + w. We note that encryption is realizable in the fashion of watermarking,
by making perceptible changes in the coefficients: enc(I) = I + E. Here E's non-
zero entries are placed in the low frequency DCT coefficients, and they are large in
magnitude compared with w.

Naturally, decryption reverses the effects of encryption in a straightforward
way: I = enc(I) + D where D = —E. However, the idea of the following protocol
is to combine watermarking and encryption through 'imperfect decryption', that
is by setting D = w — E. Then

enc(I) +D = enc(I) + (w - E)
= I+E-E+w
= I + w
= / ' .

322 Paula Steinby

Clearly, decryption strips off most but not all of encryption, leaving I watermarked.
Further, if w is unique, then so is I'.

Let again Merchant M and Buyer B be the parties of a purchase protocol.
M has image I for sale, which he encrypts prior to setting it for distribution. B
has a device V to display the data. During the protocol, M delivers B a unique
decryption vector D. As comparison between two decryption vectors D and D'
gives away a lot of information on the respective watermarks w and w', any two
buyers of the same item could collude and easily destroy the watermarks, unless
the decryption vectors were somehow protected. We solve the problem by adding
a device mask as follows.

Connected to every device, there is a unique device key Kdev which determines
a mask Dev. Dev is an integer vector, which the device will automatically subtract
from the DCT-coefficients of any data prior to reproducing it. Therefore M adds
the respective Dev to each decryption vector D\

enc(I) + D = I + E+(w + Dev- E) = I' + Dev.

It is important that the explicit value of Kdev remains unknown to everybody except
for M, because the presence of a secret Dev in D makes comparisons between
different decryption keys useless. However we assume that B has an index number
k, with which B can enable M to find out the actual Kdev

The main features of the protocol are as follows:

• Purchase: B sends the index k to M for computing Kdev• M returns B a
unique decryption key KD,B• Applying KD,B to enc(I) using the device V,
B receives a copy of I with a unique watermark WB-

• Tracing: Suppose B illegally redistributes his copy of I. He can be traced on
the basis of the watermark wb, which can be extracted only from the copies
originating from his version of I.

• One encryption of I can be distributed to all buyers, but each decryption key
is bound to a certain buyer with a certain device. The unique watermarking
is forced to be done along the decryption.

The Protocol
We will adopt the following notation:

Dev = the mask removed from any input data by V on the basis of
the key Kdev

wb = a unique watermark embedded in B's copy of I.
KE = the encryption key, on basis of which the encryption vector E

is computed.
KD,B — the decryption key, from which the decryption vector DG for

buyer B is achieved.

Two Content Protection Schemes for Digital Items 323

The protocol consists of a preliminary step (step 0), the purchase phase
(steps 1 to 3), and step 4 where B's device decrypts and reproduces the data.

0. M encrypts image I with a secret, symmetric key KB- Encrypted image
enc(I) is set for distribution.

1. B gives M the index k for computing the key Kdev

2. M computes Kdev on the basis of given k, chooses a watermark wb for B,
and computes a unique decryption key KD,B s.t. D = Dev + w — E.

3. M returns KD,B to B.

4. B applies KD,B together with the device key KDEV to enc(K).

In the last step,

enc(I) enc(I) +D = I + E-E + Dev + W
= I' + Dev,

and further
/' + Dev I' + Dev - Dev = I'.

Hence the result of V's computations is the watermarked image I'.
We have not specified the correspondences KE ~ E, KD ~ D, or K^ev ~ Dev.

Use of the keys is necessary, since the actual vectors D and Dev are too long and
too many to be transmitted as such (even though they mostly consist of zeros).
A mapping to pack the information is needed. Possible solutions are many, as an
example we give one.

We have thought of D and Dev as 64-dimensional integer vectors. Let us present
a vector as a concatenation of the binary presentations of its entries, and let N be
an integer such that for every entry i in D or Dev, |i| < |JV.|. The length of the
binary presentation is then 64 • log2(2iV). For N = 215 this equals 1024. We can
establish a one-to-one correspondence between 1024-long binary vectors and the
elements of the group Z*, where \p\ = 1024. Therefore, each vector D or Dev can
be presented as an element of Z*.

Note that most of the entries of the vectors are zeros, as it is enough to
mask/encrypt about five to twenty most significant of them. Thus, we can cut
the extra zeros by setting for example D,Dev G [—N, N]20. Then, for N = 215,
20 • log2(2iV) = 320 and thus the vectors can be expressed as elements of Z*, where
p = |320| only.

In the previous scheme we assumed there is a mapping k —> Kdev, which re-
mained unknown to B but could be found out by M. In this case, it could be f.ex.
a permutation on Z*. In the following chapter, we will re-examine the concepts of
and relations between k, Kdev and Dev.

324 Paula Steinby

3.2 On the device key Kdev

Consider the following scheme: buyers B and B' with devices V and V resp., both
purchase an encrypted item enc(I) = I + E from the merchant M. The following
communication takes place:

M -)• B : KD,B ~ DB = -E + Devv + WB
M B' : Kd,b' ~ Db' = -E + Devv+wb'

Here is a chance for B and B' to collude. Subtracting one decryption vector
from the other, they learn S = Dev-p — Devv + wb — vjb'- Here wb — wb' is
small, thus S « Dev-p — Dew• Now, if B buys another image enc(J) = J + Ej,
then B' can use the corresponding decryption vector Dg = —Ej + Devp + w'B by
computing

DJB,=DJB-S = -Ej + Dew + e,

where e = w'B + wB' — vjb is a small error. Decryption of enc(J) with the new
vector Dg, using the device V yields J' J + Dev-D + e - » J + e. Thus, B' can
use his own device to reproduce B's copy of J with only small distraction.

The above scheme suggests that the device mask Dev should not be fixed, but
different for each I. In our model, Dev is deterministically computed from a device
key Kdev (see the end of the previous chapter). Thus, what we need is a method
to generate keys Kdev As the computation Kdev -> Dev is reversible, Kdev must
remain unknown to B.

Relying on the tamper-resistance of V., the keys could be generated within the
device by some function fn(k) = K%ev, for n — 1 ,2 , . . . etc. The merchant would
be able to compute Dev if he was given the pair (k, n) instead of the index k only.
However, the system with indices and secret generating functions seems somewhat
impractical, because duplex communication between B and T> is needed, as well
as an active third party with the knowledge of k ~ Kdev correspondences and the
functions / .

To avoid these difficulties we take a new starting point: allowing M to take
part in the generation of Kdev If M is able to compute Kdev on his own, then the
role of index k shrinks into tying Kdev toV. If M can actually decide the value of
the key (and thereby of the mask) used in decryption, then M can as well give the
value of the decryption key and the mask together. In other words, M can provide
B with a key K, which corresponds with the vector Db - Dev, instead of giving
Kd'-'b a n d Kdev separately.

Let us discuss options of carrying out the above scenario. Let M provide V with
a seed d to generate Kdev, as a function of both I and k, for example. M generates
d from I, and computes f{k,d) = Kdev ~ Dev. If M sends dtoB together with
the decryption key (step 3), then V can compute Kdev too. The problem is that
so can B, unless the function / is kept secret from B (but it has to be available to
V, which in turn again would complicate the system).

Function / is not needed, if M decides the value of Kdev and sends it to B as
such. However, if Kdev has the value of an element in Z*, then the correspondence

Two Content Protection Schemes for Digital Items 325

Z* ~ {0,1} 'P ' between the key and the mask must remain unknown to B (but
accessible to V). If V possessed a public key pair (sp, ip), then M could protect
Kdev from B by encrypting it with tv before handing it out. V would still be able
to find out Kdev, since it has access to sp.

The scheme with V possessing a public key pair (sj5,io) where sp is accessible
to V only (c.f. the scheme in Chapter 2) seems useful. We can use the Diffie-
Hellman protocol to generate the key Kdev as follows. M creates an ephemeral key
pair (SMJ^M), and performs the D-H protocol to obtain Kdev = t'o • Then he can
further compute Dev, and compute the decryption vector DB = —E + Dev + WB-
Now M sends B both KD,B and Given these, V can decrypt enc(I), since
enc(I) + DB = (E + I) + (-E + Dev + wB) = I + Dev + wB = I' + Dev, where
Dev — tS]fi • On the other hand, on basis of the given information, B cannot learn
and remove Dev, as he does not know so which is needed to compute Kdev

Assume Kdev is generated as above. M wants to give B a key K such that
K ~ DB — Dev = —E + WB (we assume that he can easily compute the target
value K once he knows DB — Dev). To give DB — Dev with a single key, we can
proceed as follows.

1. M computes the value of K ~ Dev + DB-

2. M generates a random public-key pair (SM,tMJ, and computes Kdev = tSQ .

3. M computes the difference A = K — Kdev and sends t^ and A to B.

4. V computes Kdev = ts^, and further K = A — Kdev

As B knows only that A is the difference between K and Kdev, he cannot find out
either of these values because he does not know sp. The key K is computed in
each end of the transmission channel, but not transmitted at all.

The above method can be applied even if Kdev was generated in some other
manner, as long as M can find out the target value K ~ DB — Dev on his own.
Then the difference between a random key t3^ and the target is computed, and to
and the corrective key (A above) are given to B.

References
[1] B. den Boer, Diffie-Hellman is as Strong as Discrete Log for Certain Primes,

Proceedings of CRYPTO'88, LNCS 403, Springer-Verlag, 1988, pp. 530-539.

[2] I. Cox, M. Miller and J. Bloom, Digital Watermarking, Academic Press, San
Francisco 2002.

[3] S. Katzenbeisser and F. Petitcolas (ed.), Information Hiding Techniques for
Steganography and Digital Watermarking, Artech House, London 2000.

[4] S. Pereira and T. Pun, Optimal Transform Domain Watermark Embedding
Via Linear Programming. Signal Processing 81, No. 6 2001, pp. 1251-1260.

326 Paula Steinby

[5] K. Wallace, The JPEG still picture compression standard. Communications of
the ACM 34, No. 4 1991, pp. 30-40.

[6] J. Zhao and E. Koch, Embedding Robust Labels Into Images For Copyright
Protection. Proceedings of the International Congress on Intellectual Property
Rights for Specialized Information, Knowledge and New Technologies, Vienna
1995.

Acta Cybernetica 16 (2003) 271-278.

Evaluation of a Fully Automatic Medical Image
Registration Algorithm Based on

Mutual Information*

Attila Tanács^ and Attila Kuba*

Abstract
Registration is a fundamental task in image processing. Its purpose is

to find a geometrical transformation that relates the points of an image to
their corresponding points of another image. Many registration algorithms
have been proposed in the past decade. We present a fast, fully automatic
algorithm that is capable of solving rigid-body registration of 3D images of
the human brain where the images are taken by different imaging devices.
We joined the Retrospective Registration Evaluation Project conducted by
Vanderbilt University, USA. The evaluations of our results show that our
method has the potential to produce satisfactory results, but visual inspection
is necessary to guard against laxge errors.

Keywords: registration problem; automatic multimodal registration; regis-
tration accuracy;

1 Introduction
There is an increasing number of applications that require accurate aligning of one
image with another taken from different viewpoints, by different imaging devices,
or at different times. The geometrical transformation is to be found that maps a
floating image data set in precise spatial correspondence with a reference image
data set. This process of alignment is known as registration, although other words,
such as co-registration, matching, and fusion, are also used. Examples of systems
where image registration is a significant component include aligning medical images
from different medical modalities for diagnosis, matching a target with a real-time
image of a scene for target recognition, monitoring global land usage using satellite
images, and matching stereo images to recover shape for autonomous navigation
[1, 81-

•This work was supported by O T K A T023804 and FKFP 0908/1999 Grants.
^Department of Foundations of Computer Science, University of Szeged, 6720 Szeged, Árpád

tér 2, Hungary, e-mail: tanacs8inf.u-szeged.hu
•••Department of Applied Informatics, University of Szeged, 6720 Szeged, Árpád tér 2, Hungary,

e-mail: kuba8inf.u-szeged.hu

327

328 Attila Tanács and Attila Kuba

In this paper we focus on medical image registration which has a wide range
of applications including combining information from multiple imaging modalities
e.g., when relating functional information from nuclear medicine images to anatomy
delineated in high-resolution MR or CT images, monitoring changes in size, shape,
or image intensity over time intervals ranging from few seconds to even months or
years, relating preoperative images and surgical plans to the physical reality of the
patient in the operating room during image-guided surgery or during radiotherapy,
and relating an individual's anatomy to a standardized atlas.

The registration technique for a given task depends on the knowledge about the
characteristics of the type of variations. Registration methods can be viewed as
different combinations of choices for the following four components [1]:

• Search space is determined by the type of transformation we have to consider,
i.e., what is the class of transformations that is capable of aligning the images.
Some widely used types are rigid-body, when only translations and rotations
are allowed, affine, which maps parallel lines to parallel lines, and nonlinear,
which can transform straight lines to curves.

• Feature data set describes what kind of image properties are used in match-
ing. Features can be geometrical, e.g., automatically or manually selected
landmark points, lines, and/or surfaces or the image intensity values can be
used directly.

• Similarity measure is a function of the transformation parameters which shows
how well the floating and the reference image fit. The task of registration is
to optimize this function.

In case of geometrical features this is usually a distance measure. When im-
age intensity values are used, correlation, functions based on image intensity
differences, or intensity similarity measures can be applied.

• Search strategy determines what kind of optimization method to use. Except
for geometric features, where a direct solution of the problem might exist, an
iterative approach is necessary.

In this paper we propose a fully automatic, iterative registration method that
is capable of finding rigid-body transformations to align images from the same or
different modalities (i.e., taken by the same or different imaging devices). Intensity
similarity measures based on mutual information are used.

2 Methods
We follow the notations of [7]. Let X denote the object to be imaged, and let A
and B be 3D images of X taken by the same or different imaging devices. The
images usually have different fields of view, thus the domains Ha and Qb will be
different:

Evaluation of a Fully Automatic Medical Image Registration Algorithm 329

A : xAESLAi-> A(Xa),
B : xB ESIfi >-> B(xB).

A(XA) and B(XB) are referred to as the intensity values at spatial positions
xA and xg, respectively. Intensity values represent some kind of measurement of
the material in spatial positions of X , such as attenuation of X-ray beams in case
of Computed Tomography (CT), changes in states of protons under changing the
magnetic field properties in Magnetic Resonance Imaging (MRI), or distribution of
nuclear tracers in case of Positron Emission Tomography (PET) and Single Photon
Emission Computed Tomography (SPECT).

As the images A and B represent the same object X, there is a relation between
the spatial locations in A and B. Position x G X is mapped to xA in image A,
and to IB in image B. The registration process involves recovering the spatial
transformation T which maps xg to xA over the entire domain of interest, which is
the overlapping portion of the domains. This overlapping portion depends on the
images A and B and on the spatial transformation T:

nAtB = e CIaIT-^xa) 6 ftB}.
The medical images are discrete, they sample the object at a finite number of

points. Taking this into account, we can define the domain ft in the following way:

ft := ft n Tc

where ft is a bounded continuous set defining the volume of the patient imaged, and
T is an infinite discrete sampling grid, which is characterized by the anisotropic sam-
ple spacing (= ((x S a m p l e spacing can be different for different images.
These grid positions and the corresponding sample values together are referred to
as voxels. For any given T, the intersection of discrete domains CIA and fig might
be the empty set, when no sample points will exactly overlap. To overcome this,
we have to resample image intensities of image B in ft^. The simplest resampling
method is to select the intensity value of the closest grid position of fts- Linear
or more complex interpolation methods can also be used. Let T denote the trans-
formation that maps both the position and the associated intensity value at that
position, and Br the resampled image B.

The selection of the similarity measure is probably the most crucial part of a
registration algorithm. We need a function which optimally has one global optimum
at perfect alignment, has no local optimums, and is "smooth enough" to find this
optimum fast. Practically it is very hard, or even impossible to find such a similarity
measure, especially when the images are taken by different imaging devices. Many
similarity measures were proposed in the past decade. We chose the measures based
on the mutual information of the images proposed by Collignon et al. [4] and Wells
et al. [12], and on the normalized mutual information of the images proposed by
Studholme et al [11].

330 Attila Tanács and Attila Kuba

Both measures utilize the entropy of image A,

H(A) = -J2PA(a)-logpTA(a),
a

the entropy of image B,

ZT(B) = - £ > £ (&) - l o g p S C) ,
6

and the joint entropy of images A and B,

H(A,B) = -LOGP^IM),
a b

where pa and pb are the histograms, and pAB is the co-occurrence matrix of the
intensity values of images A and B. Mutual information is computed as

MI(A, B) = H(A) + H(B) - H(A, B),

and the normalized mutual information as

We found that when mutual information is calculated over the overlapping do-
main B , the failure rate is high [11]. We decided to use the whole i lA instead,
in case of this measure, which solved the problem.

To speed up the registration process and to avoid falling into a local optimum,
we use the Laplacian multiresolution pyramid representation of the images [2].
The search starts at the coarsest level. When an optimum is found, the result is
propagated to the next, finer level. For the registration task of this project, we
generate two new coarser pyramid levels.

We use Powell's direction set, iterative, nonlinear optimization algorithm to find
the optimum of the similarity measure [10]. This method requires evaluating the
similarity measure value for given transformation parameters only, no gradient or
other information is necessary. The most time consuming part of the method is the
evaluation itself, so it is crucial to avoid any unnecessary computations.

When resampling, we can take advantage of the fact that the transformation
we axe looking for is a linear one, which means that parallel lines, e.g., rows and
columns remain parallel lines after applying the transformation. Using a general
3D line drawing algorithm [6], the resampling can be done using additions only, no
multiplications are necessary. We use no interpolation of intensity values, we select
the value of the nearest neighbor.

When the image sizes are no larger than 256 voxels, we can represent floating
point numbers as 32-bit integers. Thus we have 1 sign bit, 9 bits for the integer part,
and 22 bits for the fraction part. The precision of this representation is worse than
that of the built-in floating point types, but is still good enough. We performed

Evaluation of a Fully Automatic Medical Image Registration Algorithm 331

numerical simulations to check the inaccuracy. Rigid-body transformations were
generated randomly and applied to the points of a grid of size 256 x 256 x 25, with
grid spacing of 1.25,1.25,4.00, respectively. Both real floating point and integer
representations of reslicing methods were used and the maximum distance of the
transformed points was calculated. The comparison showed that the maximum
difference between spatial locations was about 0.02 voxels. For this price we get
dramatic speed boost.

During resampling, we calculate probabilities p j , p j , and pTAB for each intensity
value. The calculation of MI(A, B) can be made faster as follows. By definition,

MI(A,B) = -£p5(a)logpS(a)-£p£-logp5(&) +
a b

b) • logpXB(a, b)
a b

= b) • logpLj(a, b) - p%(a) • logp%(a) -
a b

p5- iogp£(6)) .

Since thé marginal probability distributions can be calculated from the joint prob-
ability distribution,

PA{O) = ^Pab^S,
b

PBW = ^ P A B K 6) ,
a

mutual information can be calculated as

Ml(A,B) =] T £ P I B (M) • [\oZpTAB{a,b) -\ogpTA(a) -\ogpTB(b)).
a b

The probabilities can have a value between 0 and 1, thus instead of calculating
logarithmic values, we can use a precalculated lookup table, say the size of 10000
elements.

Real medical images can usually have intensity values ranging from -1000 to
4000. It means that the joint probability distribution table should have 5000-5000 =
25000000 elements, which is not feasible. That is why we scale intensity values so
as to be in the [0,63], [0,127], or [0,255] ranges before registration.

Algorithm 1 summarizes the main steps of the method we applied.

3 Evaluation of the registration method
It is necessary to measure the degree of alignment in order to determine whether a
given registration technique is adequate for a given problem. The alignment need
not be perfect, but the error must be below a certain threshold. The similarity

332 Attila Tanács and Attila Kuba

Algorithm 1: Registration algorithm

Input: Two 3D images A and B with known dimensions and sample spacing
Output: Rigid-body transformation optT that maximizes the mutual in-

formation or the normalized mutual information of images A and
optT(B)

begin
1 scale intensity values of both images to be in [0,127];
2 generate Ai and Bi, the multiresolution Laplacian pyramid representa-

tion of the images (Z = 0 , . . . , L);
3 let T be the identity transformation;
4 optT - T;
5 for each pyramid level I from coarsest to finest do
6 optl = MI{At,optT{Bi));
7 repeat
8 T = optT;
a make a change to T (Powell's method);

10 m = MI(AhT(Bi))]
n if m > optl then
12 optl = m;
13 optT = T;

endif
until optT was not changed;

endfor
end

measure cannot be used to judge this, since it is not guaranteed that it reaches its
global optimum at perfect alignment. An other method, visual inspection plays an
important role. When a suitable interactive image viewing software is available,
the human visual system can detect errors greater than 2 mm for CT to MR, and
4 mm for PET to MR registration [5, 15]. Although visual inspection is always
necessary, since the automatic methods occassionally might fall into a nonglobal
optimum producing a bad result without any warnings, a more accurate evulation
procedure is necessary. An overview of such procedures can be found in [7].

To evaluate our registration method, we joined the Retrospective Registration
Evaluation Project of Vanderbilt University, USA in 1999 [13]. The objective of
that project was to perform blinded evaluation of retrospective image registration
techniques using a prospective, marker-based registration method as a gold stan-
dard. A gold standard is a system whose accuracy is known to be high. A fiducial
marker system can serve as an excellent gold standard for rigid registration, since
some of these systems can provide submillimetric accuracy. The primary disadvan-
tage is the high invasiveness i.e., bone-implanted markers [9]. In order to ensure
blindness, all retrospective registrations were performed by participants who had
no knowledge of the gold-standard until after their results had been submitted.

Evaluation of a Fully Automatic Medical Image Registration Algorithm 333

Image volumes of three modalities: X-ray computed tomography (CT), mag-
netic resonance (MR), and positron emission tomography (PET) were obtained
from patients undergoing neurosurgery at Vanderbilt University Medical Center,
on whom bone-implanted markers were mounted. These volumes had all traces of
the markers removed and were provided to project collaborators outside Vanderbilt,
who then performed registration on the volumes. The investigators communicated
their results to Vanderbilt, where the accuracy of each registration was evaluated.

Two registration tasks were evaluated: CT to MR and PET to MR, and these
tasks were broken into subtasks according to the type of MR and to whether or not
the MR image was corrected (rectified) for geometrical distortion [3]. The image
data set of nine patients were used, seven of which contained both CT and MR,
and seven with both PET and MR.

The CT volumes have a resolution of 512 pixels in the x and y directions, and
have between 28 and 34 slices in the z direction. The voxel size is 0.65 mm in x
and y, and 4.0 mm in z. The MR volumes have a resolution of 256 pixels in the x
and y directions, and have 20 to 26 slices. The voxel size is between 1.25 and 1.28
mm in the x and y directions, and 4.0 mm in z. The PET volumes have 15 slices
with a resolution of 128 pixels in the x and y directions. The voxel size is 2.59 mm
in x and y, and 8.0 mm in z.

At Vanderbilt, in collaboration with a neurological and a neurosurgical expert,
a set of VOIs (Volume of Interest) representing areas of neurological and/or sur-
gical interest was manually segmented within one of the MR image volumes for
each patient. An estimate of the accuracy of the retrospective registration at the
position of each VOI is computed as follows. The centroid pixel of the VOI is
found, and its position is converted from voxel index to a millimetric position c in
the reference volume using the known size for the image volume. Let Tq denote
the gold-standard rigid-body transformation, and TR the result of the retrospective
registration algorithm. The point c' in the floating image is defined so that c is the
mapping of c' under the gold-standard transformation,

c = TG(c ')-

Thus,
d=TG~\c).

The point c" in the reference image is defined as the mapping of c' under the
retrospective transformation,

c" = TR(C').

The error of the retrospective registration at the anatomical position of the VOI
is defined as the Euclidean distance between the registered target position of the
retrospective method and that of the gold standard, ||c" — c||.

4 Results
The results of the project were published in [13] and [14]. Since we joined the
project later, our results were not included in those papers. Here we compare our

334 Attila Tanács and Attila Kuba

results against those evaluated earlier.

Ten groups of investigators applied 14 techniques to solve the registration tasks.
The techniques were divided into two groups. Any technique which performs regis-
tration by making use of a relationship between voxel intensities within the images
is referred to as volume based, and any technique which works by minimizing a
distance measure between two corresponding surfaces in the images to be matched
is referred to as surface based. Six of the 14 techniques were volume based and
eight were surface based. Our methods can be classified as volume based ones.

Before the evaluation of our results, we visually inspected the quality of reg-
istration. When the normalized version of the mutual information was used, all
registration results were visually acceptable. In case of mutual information, for the
CT to MR task, all 41 results were visually acceptable. In case of PET to MR, for
five image pairs the results of registration was visually misregistered. These pairs
were PET to MR PD, MR T l , MR PD rectified of Patient 6 and PET to MR T l ,
and MR T2 rectified of Patient 8. The other 30 results were visually acceptable.
In spite of these clear misregistrations, all results were submitted for evaluation to
Vanderbilt University.

Table 1 shows the statistics of registration errors for the groups of algorithms
and the rankings of our methods out of the 16 competing methods.

Surface based Volume based Our MI Our NMI
Modality mean error mean error mean error mean error

(std.dev.) (std.dev.) (ranking) (ranking).
CT-T1 5.7 (7.8) 2.9 (2.4) 1.6 (#2) 2.3 (#7)
CT-PD . 5.8 (8.0) 2.9 (2.5) 2.2 (#2) 1.8 (#1)
CT-T2 6.3 (7.9) 2.4 (1.4) 2.0 (#5) 2.0 (#3)

CT-T1 rect. 6.1 (8.3) 2.0 (2.5) 1-7 (#5) 2.2 (#7)
CT-T2 rect. 5.7 (7.8) 1.8 (2.0) 1-4 (#3) 2.3 (#7)
CT-PD rect. 6.1 (7.6) 2.1 (1.6) 1-7 (#4) 2.4 (#7)

PET-T1 3.9 (2.0) 3.5 (2.1) 5.3 (#9) 3-0 (#2)
PET-T2 4.4 (2.1) 3.6 (1.9) 3.8 (#7) 3-5 (#4)
PET-PD 4.3 (2.6) 4.0 (2.7) 4.4 (#7) 4.2 (#10)

PET-T1 rect. 3.9 (2.3) 2.7 (1.4) 3.8 (#12) 2.7 (#3)
PET-T2 rect. 3.9 (2.0) 3.5 (1.7) 3.9 (#10) 3-3 (#5)
PET-PD rect. 3.9 (2.3) 3.5 (2.4) 4.8 (#10) 3.0 (#2)

Table 1: Mean and standard deviation of registration errors. Note that the ranking
of our methods is based on the median errors of the registration methods, as it is
published in [13].

Evaluation of a Fully Automatic Medical Image Registration Algorithm 335

5 Discussion
The results show that in case of CT to MR registration task, both of our methods
produce acceptable results. For PET to MR problems, the MI method tends to
fail (five failures out of 35 cases), and produces average results. The NMI method
gives stable results and ranks high among the competing algorithms.

The running time was about 30-120 seconds on a 800 Mhz Pentium-Ill
PC. More detailed results of the evaluation of our methods can be found at
http : / /www.vuse.vanderbi l t .edu/~images /registrat ion.

6 Conclusion
We presented a registration algorithm, which can be successfully used to align 3D
medical images from different imaging modalities. The algorithm is fully automatic,
needs no user interaction. However, before using the optimal transformation de-
termined by the algorithm, it is necessary to visually inspect it to sort out possible
misregistrations.

Acknowledgements
The images and the standard transformations were provided as part of the project,
" Evaluation of Retrospective Image Registration", National Institutes of Health,
Project Number 1 R01 NS33926-01, Principal Investigator, J. Michael Fitzpatrick,
Vanderbilt University, Nashville, TN.

References
[1] Brown, L.G.: A survey of image registration techniques. ACM Computing

Surveys 24 (1992) 325-376

[2] Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Code. IEEE
Trans, on Communications 31 (1983) 532-540

[3] Chang, H., Fitzpatrick, J.M.: A technique for accurate magnetic resonance
imaging in the presence of field inhomogeneities. IEEE Transactions on Medical
Imaging 11 (1992) 319-329

[4] Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal,
G.: Automated multi-modality image registration based on information theory.
In Proceedings of Information Processing in Medical Imaging (1995) 263-274

[5] Fitzpatrick, J.M., Hill, D.L.G., Shyr, Y., West, J.B., Studholme, C., Maurer,
C.R.Jr.: Visual assesment of the accuracy of retrospective registration of MR
and CT images of the brain. IEEE Transactions on Medical Imaging 17 (1998)
571-585

http://www.vuse.vanderbilt.edu/~images/registration

336 Attila Tanács and Attila Kuba

[6] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics
— Principles and Practice. Addison-Wesley Publishing Company, Reading,
Massachusetts (1991)

[7] Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds.): Medical Image Registration.
CRC Press (2001)

[8] Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med-
ical Image Analysis 2 (1998) 1-36

[9] Maurer, C.R., Fitzpatrick, J.M., Wang, M.Y., Galloway, R.L., Maciunas, R.J.,
Allen, G.S.: Registration of head volume images using implantable fiducial
markers. IEEE Trans, on Medical Imaging 16 (1997) 447-462

[10] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
second edition (1992)

[11] Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy mea-
sure of 3D medical image alignment. Pattern Recognition, 32 (1999) 71-86

[12] Wells, W.M.III, Viola, P., Kikinis, R.: Multi-modal volume registration by
maximization of mutual information. In Medical Robotics and Computer as-
sisted Surgery, Wiley-Liss, New York (1995) 155-162

[13] West, J.B., Fitzpatrick, J.M., et al.: Comparison and evaluation of retrospec-
tive intermodality brain image registration techniques. Journal of Computer
Assisted Tomography 21 (1997) 554-566

[14] West, J.B., Fitzpatrick, J.M., et al.: Retrospective Intermodality Registration
Techniques for Images of the Head: Surface-Based Versus Volume-Based. IEEE
Trans, on Medical Imaging 18 (1999) 144-150

[15] Wong, J.C.H., Studholme, C., Hawkes, D.J., Maisey, M.N.: Evaluation of
the limits of visual detection of image misregistration in a brain fluorine-18
fluorodeoxyglucose PET-MRI study. European Journal of Nuclear Medicine
24 (1997) 642-650

Acta Cybernetica 16 (2003) 271-278.

A Graphical User Interface
for Evolutionary Algorithms*

Zoltán Tóth f

Abstract

The purpose of Generic Evolutionary Algorithms Programming Library
(GEA1) system is to provide researchers with an easy-to-use, widely applica-
ble and extendable programming library which solves real-world optimization
problems by means of evolutionary algorithms. It contains algorithms for
various evolutionary methods, implemented genetic operators for the most
common representation forms for individuals, various selection methods, and
examples on how to use and expand the library. All these functions assure that
GEA can be effectively applied on many problems. GraphGEA is a graphical
user interface to GEA written with the GTK API. The numerous parameters
of the evolutionary algorithm can be set in appropriate dialog boxes. The
program also checks the correctness of the parameters and saving/restoring
of parameter sets is also possible. The selected evolutionary algorithm can
be executed interactively on the specified optimization problem through the
graphical user interface of GraphGEA, and the results and behavior of the
EA can be observed on several selected graphs and drawings. While the main
purpose of GEA is solving optimization problems, that of GraphGEA is ed-
ucation and analysis. It can be of great help for students understanding the
characteristics of evolutionary algorithms and researchers of the area can use
it to analyze an EA's behavior on particular problems.

1 Introduction
Evolutionary algorithms (EAs for short) are general purpose function optimization
methods that search for optima by making potential solutions (individuals) compete
for survival in a population. The better a potential solution is, the better chance
it has to survive. The individuals are represented by means of a predefined data
structure {genotype), and the evaluation considers the performance of the individual
in its current environment (phenotype). The search space is explored by modifying

"This work was supported by the grants of the German Academic Exchange Service (DAAD)
^Institute of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary. Now

visiting Department of Computer Science 2: Programming Systems, Priedrich-Alexander Univer-
sity of Erlangen-Nuremberg, Martensstr. 3, D-91058 Erlangen, Germany,
e-mail: zntothiinf .u-szeged.hu

'The project's home page can be found at h t t p : / / g e a . z t o t h . n e t

337

http://gea.ztoth.net

338 Zoltán Tóth

the genotypes by genetic operators observed in nature: generally mutation and
recombination [15, 22, 32].
Evolutionary algorithms have (among others) the following two advantages over
other optimization methods: first, in most cases they converge to global optima,
and second, the usage of the black-box principle (which only requires knowledge
of a function's input and output to perform optimization on it) makes them easily
applicable to functions whose behavior is too complex to handle with other methods.
The huge amount of practical applications presented on numerous conferences show
that EAs represent a relatively new and important group of function optimization
methods. Nevertheless, being stochastic processes, it is hard to understand the
functioning of a particular algorithm and build a suitable model of it. An even
more difficult problem is to choose the optimal algorithm and determine the values
of its parameters for a given problem or problem class.
Visualizing the interiors of an algorithm can be a great help in the understanding
of its inner processes and behavior. For example, it is very easy to see the effects of
a parameter or a selection method on the diversity of the population in the different
phases of the evolution process.
The visualization of evolutionary algorithms is useful in education, too. Not just
because it is much easier to fascinate students with a nice and handy graphical user
interface, but also because they can become acquainted with the most important
features of evolutionary computation. They can experience with different parameter
settings and see that the changes in the behavior of the process are really those
which they have heard of or read in the literature.
The purpose of this paper is to present a tool for visualizing evolutionary algo-
rithms: the GraphGEA program. GraphGEA is a graphical user interface (GUI)
to the Generic Evolutionary Algorithms Programming Library (GEA) [36]. GEA is
an easily applicable and extendible evolutionary programming tool written in the
C + + programming language. By interacting with the evolution process running
in the background as its child process, the GUI shows the course and the status
of the optimization in various configurable visualization windows. GraphGEA can
be easily extended with new methods showing the interiors of the optimization, for
these methods are realized as plug-ins of the system. The communication is imple-
mented by means of the so-called pipe mechanism and UNIX IPC (inter-process
communication).
Last but not least, an evolution process can have a great many parameters, the
values of which are usually strongly interconnected or dependent. The GraphGEA
program can just be used to manage optimization projects, for it assures that all
necessary parameters of the selected algorithm and representation of individuals
are correctly set.
In the following, Section 2 offers a short overview of evolutionary algorithms. The
presented systems use a special data structure to hold the parameters of the evo-
lution process, this data structure is presented briefly in Section 3. Section 4 deals
with the GEA system: the class hierarchy, the functioning of the various evolu-
tionary algorithms, the selection methods and the genetic operators are described.
Section 5 presents the GraphGEA program with a detailed description of the user

A Graphical User Interface for Evolutionary Algorithms 339

interface and the visualization tools. In Section 6, some references to and compar-
isons with the related work can be found. Finally in Section 7 a summary of the
work is given.

2 Evolutionary Algorithms
In this section an overview of evolutionary algorithms is given, focusing on details
that are important for the GEA and GraphGEA systems.
Evolutionary algorithms (EAs) are general purpose function optimization methods
which use the 'survival-of-the-fittest'-model known from nature [8]. In this model,
individuals compete for resources in an environment, and selection assures that
individuals which are better suited for the given environment will produce more
offspring. Thus the preservation of good attributes is guaranteed.
Unlike most optimization methods, EAs consider several potential solutions at a
time. These potential solutions, called individuals from now on, form a population.
The individuals interact with each other, thus they create new individuals to form
a new generation.
An individual of the population is represented with a sort of data structure. The
most common representation forms for individuals are bit-string and real vector.
Each element of the vector is called a gene. The chain of genes is also called
a chromosome. The values in it are the individual's genotype. The appearance
of an individual - which can be e.g. a permutation of certain numbers - is called
phenotype. Evolutionary algorithms work on the level of the genotype, which means
that they modify the encoded form of individuals. When evaluating an individual in
its current environment, its phenotype is considered. The result of the evaluation is
the fitness value, a specified extremum of which has to be found by the evolutionary
algorithm. This fitness value is considered when performing selection.
The creation of new individuals is implemented by applying certain genetic opera-
tors on the selected parents. The most common genetic operators are reproduction,
mutation and recombination. Reproduction and mutation are unary operators. Re-
production simply copies the individual into the new generation, while mutation
modifies its argument by randomly changing each gene of it with a certain prob-
ability. Recombination takes two or more individuals and creates new ones by
exchanging parts of their gene-chains. Each genetic operator is applied with a cer-
tain probability. However, sometimes one operator is more efficient than the others
and it is not easy (or at least it requires experiment) to set the probabilities cor-
rectly at the start of an evolution process. Davis offers a solution to this problem:
let's change the probabilities dynamically during the evolution process by observing
the effectiveness of the operators. He calls this method the adaptation of operator
probability [9].
Generally, the procedure of an evolutionary algorithm is the following: the struc-
tures in the initial population can be generated randomly or, if an initiative solution
is known, then that one can be used with random modifications. Then the individ-
uals are evaluated and new generations are created until a termination condition

340 Zoltán Tóth

is satisfied, which, in the simplest cases, is reaching a certain generation number
or the stagnation of the best individual's fitness value. The generation of the new
population is absolutely algorithm-dependent, so these methods will be discussed
at the specification of the algorithms.
Several kinds of evolutionary algorithms are known, the most important ones of
which are genetic algorithms (GAs) [10, 15] and evolution strategies (ESs) [31].
They were developed independently in the 1970s: GAs were introduced by John
Holland and analyzed by his students (e.g. Kenneth De Jong) in the USA, and at
the same time, evolution strategies were invented in Germany by Ingo Rechenberg.
The main differences between these two kinds of EAs are the method of creating
the new generation and the typical representation form for individuals: it is bit-
string for GAs and real vector for ESs. The two kinds of EAs also differ in the way
genetic operators are applied.
There is a special kind of genetic algorithms, namely genetic programming (GP),
introduced by John R. Koza [22]. The main invention of GPs is that branching
structures can be evolved. Most of the methods are the same as in GAs, but there
are special genetic operators designed for branching structures: e.g. recombination
replaces subtrees of the selected individuals.
In the following, the characteristics of genetic algorithms, genetic programming and
evolution strategies are presented in brief. At the end of the section, the possibilities
of the visualization are discussed.

2.1 Genetic Algorithms
Genetic algorithms are the most popular sort of evolutionary algorithms, where the
individuals are usually represented by a series of bits. The genetic operators are
implemented in accordance with this representation form. Genetic algorithms have
proven to be successful at searching multidimensional spaces in order to solve, or
solve approximately, a wide variety of problems [13, 25]. Here follows the description
of the two most important genetic operators for GAs: mutation and crossover.
Mutation randomly changes each bit of an individual with a certain probability.
The change can be done by either flipping a bit or replacing its value with a newly
generated random value. In both cases it is important that it is considered for each
bit independently whether to change it or not.
In the case of GAs, the recombination operator always takes two parents and
creates two descendants, thus it is usually called crossover. The main kinds of
crossover are point-based crossover and parametrized uniform crossover. For point-
based crossover, the crossover points (whose number is given) are chosen at random.
The case when there is only one crossover point is called single-point crossover. Af-
ter choosing the crossover points, the parts of the individuals between these points
are exchanged. Parametrized uniform crossover exchanges each bit of the parent
individuals with a given probability to create the descendants.
The process of creating the new generation for a GA is quite simple: first, a new
empty population is created. Then, to ensure the monotonity of the process, a
number of best individuals in the previous generation is copied into the new pop-

A Graphical User Interface for Evolutionary Algorithms 341

ulation as determined by the elitism rate parameter. After that, the remaining
places are filled out in the population by selecting two parent individuals from the
old population, performing mutation and crossover on them, and inserting either
one or both of the descendant individuals into the. new population as necessary.
These operations (from the selection to the insertion) are repeated in a loop until
the new population has enough individuals.

The selection method is a very important part of genetic algorithms, since selection
assures that the fitness values of the individuals are constantly increasing during
the evolution process. Since there are a wide range of functions that can be opti-
mized with genetic algorithms and these functions behave very differently, various
selection methods have been developed to deal with them [27]. For example, if a
function has many local optima and some of these optima are very close to the
global optimum, then selection pressure should be kept low in order to explore
the whole search space rather than founding one local optimum and get stuck at
it. For easier functions, which are smooth and have no local optima, the selection
pressure can be set high in order to achieve faster convergence. Selection pressure
means a function of fitness value that determines the relationship between fitness
values and the probability of an individual with that fitness value to get selected.
The selection probability of an individual is usually proportional to its fitness value
or rank in the population. Other constructs use only a subset of the population
when selecting or apply more complicated transformation functions to the fitness
values. Interactive selection is usually used when it is impossible to formalize an
effective fitness function (e.g. in some design and shape recognition applications
[2, 5, 14, 24, 34, 40]); here, the individuals are presented to the user and he/she
can decide which of them are the most suitable solutions.

2.2 Genetic Programming

It is difficult and restrictive to represent hierarchies of dynamically varying size
and shape with fixed length vectors. Genetic programming (GP) uses the same
algorithms for creating the new generation and selecting individuals as genetic
algorithms. The difference between GAs and GP is that GP uses a tree-like rep-
resentation form for individuals, thus it provides a way to find a function or a
computer program of unspecified size and shape to solve a problem [22].

Genetic programming has been successfully applied to problems such as classifica-
tion [1] and pattern recognition [23, 33], generation of maximal entropy sequences
of random numbers [21], Boolean function learning [11, 26], simultaneous architec-
tural design [28] and training of neural networks [29].
GP's genetic operators work with sub-trees of the individuals. Mutation chooses a
node of the tree and replaces the corresponding sub-tree with a new, randomly gen-
erated one, while crossover creates the offspring by exchanging randomly selected
sub-trees of the parent individuals.

342 Zoltán Tóth

2.3 Evolution Strategies
Evolution strategies (ESs) are less popular than genetic algorithms, although they
stand closer to the natural evolution since competition with their descendants is
enabled for the parent individuals.
There are two kinds of evolution strategies, the so-called comma and plus strate-
gies: (n/p, A)-ES and (fi/p + A)-ES. Here p,, p and A denote the population size,
the number of parents used in recombination and the size of the selection pool,
respectively. The selection pool is a temporary storage for individuals: offspring of
the selected parents are put into it and the new generation is formed from the best
H individuals of the selection pool. The difference between the comma and plus
strategies is that the plus strategy puts the old population (the parents) into the
selection pool after generating A individuals. Obviously, p, < A must hold if the
comma strategy is applied. There are special cases for ES, e.g. when p is set to 0
or 1 (or omitted) then recombination doesn't take place, only mutation is applied.
Other special cases are (1 + 1)-ES (hill climbing) and (1,1)-ES (random search).
For ESs, the common representation form of individuals is a fixed length real vector.
The genetic operators are developed in accordance with this specific representation
form.
The mutation operator of evolution strategies is very similar to that of genetic
algorithms: it changes each element of the real vector (i.e. each gene) with a
certain probability. The difference originates from that the genes are real numbers,
so they can be either multiplied or increased by a random value (the distribution
of the value added to the gene is usually normal). The extent of this random value
is controled by the mutation rate parameter.
ES recombination takes p individuals as parents and produces one descendant of
them. (Recall that GA's crossover takes two parent individuals and creates two
descendants.) ES recombination methods can be classified by two aspects: there
exist discrete/intermediate and local/global recombination methods; their detailed
description with examples can be found in Section 5.3 of [16].
The algorithm for creating the new generation for an ES is the following: First A
individuals are created in the empty selection pool. To create a new individual, p
parent individuals are selected randomly from the old population. Then recombi-
nation is performed on these individuals to get a descendant. After mutating the
descendant, it is put into the selection pool. In the case of the plus strategy, the
individuals from the old population are also put into the selection pool. Note that
the random selection does not assure the convergence of the process, it is assured
by forming the new generation from the best p, individuals of the selection pool.
In nature, it can be observed that populations of the same species are sometimes
evolving separarately, and after some generations they meet. In the field of evo-
lution strategies, this phenomenon is realized by means of the so-called meta-ES
method ([16], Subsection 5.4.5). In meta-ES, several populations of the same type
are evolved separately for some generations, and these populations are modified by
genetic operators. I.e. the populations are regarded as individuals (vectors of indi-
viduals), thus genetic operators can be applied on them. Mutation can be carried

A Graphical User Interface for Evolutionary Algorithms 343

out by randomly replacing some individuals in the population, and recombination
can work as crossover works in GAs. The similar approach in genetic algorithms is
called island model.

2.4 Possibilities of the Visualization
Visualizing an evolutionary algorithm is useful for controlling its run and under-
standing its behavior. Controlling includes the configuration and the interactive
execution of the evolution process. The behavior can be analyzed by observing the
operation of the selection and the genetic operators, the quality of the solutions
found, the individuals' genotypes and phenotypes etc.
To show the internals of the process, basically the following three techniques can be
applied:

Plots are suitable for displaying a smaller amount of numerical data like the values
of a feature as a function of one or two other parameters. Depending on
the number of the function parameters, two-dimensional or three-dimensional
plots can be created.

Color coding is an efficient method to display larger amounts of numerical data
in a tabular and still easily readable form. Here a two-dimensional table is
created, the rows and columns being indexed by the discrete values of the two
parameters and the cells representing the respective value by a color. A color
is assigned to both the lowest and highest values in the table and intermediary
values are represented by tones between these two colors.

Drawings can be used to display graphical objects such as the phenotypes of the
evolved individuals. This way the changes and differences on the genotype
level can be easily recognized as corresponding changes in the individuals'
behavior in their evaluating environment.

When talking about visualization possibilities, one has to distinguish between the
so-called course and status visualization methods, that is, between the ones that
provide information about the progress and the current state of the process.
In the case of evolutionary algorithms, course visualization includes plots of partic-
ular fitness values, consumed system resources and the diversity of the population
(e.g. standard deviation of the fitness values). The plots are usually drawn against
generation number or, in the case of a steady-state GA, the number of evaluated
individuals, but the used CPU time is a very good base for benchmarks, too.
The most useful color-coding progress visualization methods are those which show
the best individuals' genotypes and the fitness values of all individuals of each
generation. Though the first method is applicable only for fixed-length numerical
chromosomes, together with the fitness graphs, it helps identifying the roles and
importance of the single genes or gene groups. The latter view of the population
shows somewhat more information about the fitness distribution than the deviation
graphs.

344 Zoltán Tóth

In most cases, displaying information about the current status of an evolution
process means showing some characteristics of the complete current generation.
This information can be, for example, the genotypes or phenotypes of all individuals
or just the occurring lowest and highest gene values.
Showing the phenotypes of individuals can be very productive when one needs to
understand the connection between the genotypes and the phenotypes. However,
being a completely problem-dependent visualization technique, it requires more
implementation work from the user than just providing a fitness function.
A very important aspect of graphical data portrayal is the correct determination
of the amount of the displayed information: the views should be enough for the
user to be able to find the sought relations. On the other hand, they say that one
figure is worth a thousand words; but the user should not be overwhelmed by an
undigestable pack of knowledge.

3 The e_params Data Structure
This section gives a short description of a data structure that was designed to hold
parameters of arbitrary objects such as various processes, data elements etc. Its
main features are that relationships can be defined between the parameters and
conditions and restrictions for the parameter values.
The data structure is designed in a way that the input and output of the functions
are stored in easily readable text files, thus they can be modified with a plain text
editor or script files.
e.params is implemented in ANSI C language for portability and simplicity reasons.
It uses some elements of the GLib2 library which is distributed under the Free
Software LGPL and is available on UNIX, Win32 and OS/2 platforms. The current
version of e_params is 0.14.
An extension has been implemented which enables the setting of the parameter
values on a graphical user interface (GUI). This extension is written in ANSI C as
well and it uses the GIMP ToolKit (GTK2), which is available on several platforms
including Linux and Win32 systems. Of course the e_params data structure can be
used without the graphical extension.
The first application of the e.params data structure is related to evolutionary algo-
rithms. The ordinary data types, possible conditions, restrictions and relationships
are defined in a way that suits this purpose.
The domain of evolutionary algorithms requests that a list of main parameters (the
values of which have to be given in every case) should be defined, and some ordinary
types can have dependent parameters which have to be set iff the value of another
parameter satisfies a condition. Moreover, conditions can be defined for some data
types and certain parameters can restrict the possible values of other parameters.
The possible data types of the parameters include strings, file names, integer and
real numbers and boolean values. A type called OptionList has been introduced
for parameters which can have their values from a predefined finite set (Dptions).

2http://www.gtk.org

http://www.gtk.org

A Graphical User Interface for Evolutionary Algorithms 345

Each of the predefined values can have dependent parameters (which must be set
only if the parameter is set to this option) and the options can also restrict the
possible values of other OptionList parameters. Special types can also be defined
for more sophisticated functionality.
Conditions can be assigned to numerical parameters by setting lower and/or upper
boundaries for them. The value of the numerical parameter is valid iff it meets all
the conditions assigned.
Restrictions are a kind of relationship between an Option and a parameter of the
type OptionList: when an Option is assigned to a parameter as its value, the
possible values of other OptionList parameters can be limited. For example, if the
representation of the individuals in an evolution strategy is BitString, it doesn't
make sense to compute the average of the bits, so the intermediate recombination
cannot be selected as the recombination type. A function is provided for the data
structure that checks whether the value of a given parameter satisfies its conditions
and restrictions or not.
All parameters of a given object can have default values which are defined along
with the parameters.
The definition of a parameters data structure is stored in a plain text file with
the suffix " . ep" the format of which is given formally by a grammar in Extended
Backus-Naur Form (EBNF, [41]) and context-sensitive restrictions. The files that
store parameter values for an e.params parameter structure usually have the suf-
fix " . epv". In such a file, the parameter values are stored in lines of the form
"parameter -name = parameter -value". Special forms may be defined for special-
type parameters such as arrays. Lines beginning with a hash mark are regarded as
comments.
A graphical extension was implemented in order to provide an easy-to-use interface
for setting the parameter values. It is realized using the GIMP ToolKif because it
is available in different platforms (e.g. Linux and Win32). From version 0.12, GTK
version 1.1.4 is required. An important feature of the extension is that it checks
the parameter values whether they satisfy the defined conditions and restrictions.
The dependent parameters can be set up easily as well.
The form of the parameter setting dialog box can be seen in Figure 1. Each row
shown in the table corresponds to one parameter. The second column o f the table
shows the parameter's "display name" (which can be different from the name used
for the internal representation), and the value itself can be set using the widget
placed into the third column. The type of this widget is determined according to
the type of the parameter (for example, the value of a parameter of type OptionList
can be set with a combo box).
If dependent parameters can be set to a parameter, then the Parameters button
is enabled in the last column. When it is pressed, a new window appears offering
modifications to the dependent parameters.
The first column of each row contains a hash mark which indicates the correctness
of the parameter in that row. When the hash mark is yellow, then the parameter
value had been changed since the last check and the new value has not been checked
yet. A green hash mark indicates a correct value of the parameter and a red one

346 Zoltán Tóth

a n I ~

Ef t F l ies/Funct ions

1

UM - ^ _ — _ — —

Indiv idual representat ion | Bitstring / | Parameters]
3

Optimizat ion type ¡Minimization j f / j Parameters!

Algori thm type |Genet ic algorithm j f / | Parameters

8 Dependen t p a r a m e t e r s o f "SuhPopulat ior is" i l
w
' * Fitness va lue of a subpopulat ion jva lue o f t he best indiv idual l F / | .PaFametersj.'

5

Mutat ion method for subpopulat ions jc reate random indiv iduáis ¡f«"/! :Parameters|¡

; • Separat ion interval | i o

/ i
— _ . ~ . . . _ - - - , .' ¡7

1 ut
_

• : • . : : „ ; ^ - - , - - •

j |L Okay •• Cance l | . Check J
i * • Recombinat ion (c rossove i) method |none i | 7 | j¡f?arameters| i¡

ii * . Recombinat ion probabi l i ty 7 0 . 0) i , " i ' l - ^ - ' J ' 3

nz • 1
t " " . . - . - . . - r

: Okay . | j{ Cancel ii Check J
Figure 1: The parameter settings dialog boxes of the e.params data structure. The
figure shows the setting of the dependent parameters

indicates that the value is incorrect. The Check button can be pressed to perform a
test of the values of the parameters. A check is performed automatically when the
window is first displayed and when the Okay button is pressed. Parameters with
incorrect values cannot be saved.

When the value of a parameter of type OptionList is changed to an Option that
has defined restrictions to other OptionList parameters, then the combo boxes
of the displayed restricted parameters axe updated so that they will contain those
options which are enabled by their restrictors. By pressing the Browse... button
right to a file or directory name input field a standard file/directory selection dialog
box appears in which the user can select a file/directory easily.

A Graphical User Interface for Evolutionary Algorithms 347

4 The GEA System
Kókai, Vanyi and Tóth have been involved in evolving fractal images since 1997.
The first, attempt was to reproduce and improve Koza's results with Lindenmayer
systems (L-systems) [18, 22]. This project was written in Java and did not use
any general genetic programming libraries. Then it was realized that L-systems are
capable of describing plants and these plants can be evolved by interactive evolution
(the TEvol program, [19, 37, 38]). At the same time an ophthalmologist came up
with the idea of describing the blood vessels of the eye with L-systems. This idea
led to the GREDEA system [20, 39]. These two projects required the evolution of
the rewriting rules of the L-systems as well as their parameters. The most suitable
algorithm for the evolution of the rewriting rules is genetic programming, while thé
one for the parameter vectors are evolution strategies.
Since the ANSI C++ programming language was used to implement TEvol and
GREDEA and a programming library which dealt with both GPs and ESs could
not be found at that time (in 1998), the design and implementation of a suitable
system had begun. This system was later named GEA (Generic Evolutionary
Algorithms Programming Library).

Figure 2: The class hierarchy of the GEA system

The class hierarchy of the current version of GEA can be seen in Figure 2. Already
the first version contained the Evolvable abstract class which is the superclass of
all evolvable objects, but at that time the integration of new selection methods
and evolutionary algorithms was not easy to carry out. The latest version contains
the abstract classes Select ionMethod and NextGenMethod as well, which define
interfaces for selection methods and evolutionary algorithms. These enable the
user of the system to easily expand it.
The latest version of GEA uses the so-called plug-in technology for the integration of

348 Zoltán Tóth

newly implemented classes. The subclasses of SelectionMethod, NextGenMethod
and Evolvable have to be compiled and linked as shared libraries (.so files on Unix
systems and DLLs under Windows). When the new plug-ins are registered in the
parameter data structure of GEA (see Section 3), it will find and load them if
necessary.
The application of the e_params data structure is also new in GEA. This data struc-
ture makes the extension of the system easier and provides a hierarchical structure
of the parameters. Just as a sidenote, the system has currently 94 parameters (not
all of which have to be set at the same time), which makes having a transparent
interface to them reasonable.
Class Evolvable is the abstract superclass of all evolvable classes: it declares all
the methods a class has to implement in order to become an evolvable class and
implements a few basic functions. An Evolvable object represents one individual
in the evolution process.
The GEA system uses three genetic operators which must be implemented in all
evolvable classes: Mutate, Crosswith and Recombine. Input/output and factory
functions provide an interface for the transportation of the evolvable objects.
GEA has currently four built-in representation forms, namely for bit-strings, real
vectors, integer vectors and permutations. The class that represents a population is
also an evolvable class (that is, genetic operators can be applied on it), this makes
experiments with meta-ES in GEA possible.
The abstract class Select ionMethod is the superclass of all implemented selection
methods in GEA.
As it is explained in Section 2, evolutionary algorithms mostly differ in the way
the individuals are represented and new generations are created. Various repre-
sentation forms are available via the Evolvable abstract class and its subclasses.
Different methods for creating a new generation are available in GEA through
the NextGenMethod abstract class and its subclasses. Just like in the case of the
selection methods, evolutionary algorithms are implemented as plug-ins and the
required class is loaded at running time.
Currently, two evolutionary algorithm frameworks are available in the GEA system:
GANextGen and ESNextgen implement genetic algorithms and evolution strategies
as they are described in Subsections 2.1 and 2.3, respectively.
Class EA represents an evolution process in the GEA system. It has all methods at
its disposal that are necessary to handle a population and create new generations.
The constructor of the class receives an e_params data structure and according to
the settings, it loads the necessary plug-ins and creates the initial population.
A common plug-in handling interface is provided to all classes which use shared
libraries by class Pluglns. A static data member is used to keep account of the
loaded shared libraries and a function can be used to look up a given symbol in a
given shared library; the function loads the object file if needed.
The most important problem-dependent function in all evolution processes is the
fitness function. In the GEA system, fitness functions are implemented as callbacks
and are loaded from plug-ins, like every customizable part of the program code.
The callback receives a pointer to an evolvable object as its parameter and should

A Graphical User Interface for Evolutionary Algorithms 349

return the result of the evaluation as a real number. Whether this value should be
maximized or minimized is determined by the parameters of the evolution process.
For some of the optimization problems, it is necessary to perform certain prepara-
tory tasks before the start of the evolution process (e.g. the training and test
data sets have to be loaded and preprocessed for a machine learning application).
The data structures created by the preparator function and used for fitness cal-
culation have to be properly destroyed after the optimization process has finished
and sometimes the task requires maintaining operations between the generations.
These tasks can be performed in GEA by so-called preliminary, intermediary and
posterior functions.
After the problem-specific implementations (fitness function, in some cases special
functions and/or individual representation) are ready, the optimization process can
be started by typing

GEA <parameter value file> <path to parameter structure> [shmid]
into the command line. The command-line parameters are the following:

parameter value file Contains the values of the parameters of the evolution pro-
cess.

path to parameter structure The name of the directory that contains the de-
scription of the parameter data structure of GEA. .

shmid This optional argument is a so-called shared memory identifier. This is
an integer number used to identify shared memory locations in the Unix
System V Interprocess Communication system. When GEA is being run by
GraphGEA, the calling graphical user interface allocates this shared memory
and the two programs communicate through it. This feature is available only
on Unix platforms.

When GEA is started, it performs the following tasks:

• loads the parameter structure file

• loads the parameter values

• processes the termination parameters of the EA

• processes the logging parameters of the EA, initializes logging facilities

• if an shmid is provided in the command line, initializes the communication
with GraphGEA

• creates the evolution process

• runs the evolution process according to the termination parameters; during
the run, manages logging and listens to the messages of the controlling graph-
ical user interface

• after the evolution process had finished, properly frees the used resources and
closes the log files

350 Zoltán Tóth

Since the input file of GEA is an easily readable and editable text file, the au-
tomation of performing several runs of the evolutionary algorithm with different
parameters is very simple to carry out. Previous runs can be reconstructed by
directly specifying the random seed of the process. Knowing the structure of the
log files, the results of the run(s) can be extracted and converted to the desired
format with standard text-processing tools. GEA is capable to dump the genotypes
and the phenotypes of all individuals to given files in certain generation intervals
or after the evolution process had finished. The genotype dumps can be used as
milestones to start an evolution process later with a given initial population.
For more information on the GEA system, see [35] and [36]. Usage examples can
be found on the GEA home page.

5 GraphGEA
This section describes the GraphGEA program in detail. The system uses the
graphical object set of the GIMP ToolKit (GTK2) which is written in the C pro-
gramming language, thus this same language was used to implement GraphGEA.
The functionality is presented beginning with the parameter settings, through the
execution of the evolution process and closed with the visualization possibilities.

mpKSEA - /honi&'infZr,
i | File" EA Options - " * • , ' ' - i

; : D IÍJ LMJ] • I I ä 3 : 1 ! « CD |

Ikl Éj i f a á 1 1 Jls [É J • '
Welcome to GraphGEA
This program was written by Zoltan Totti, graphgea@ztoth.net

T

7
II • , !

Figure 3: The main window of GraphGEA

The central window of the software is depicted in Figure 3. Below the menu bar, the
main window of GraphGEA contains two rows of buttons (so-called toolbars), the
upper row for managing parameter settings and controlling the evolution process,
the lower one for showing and hiding the various visualization windows. The middle

mailto:graphgea@ztoth.net

A Graphical User Interface for Evolutionary Algorithms 351

of the window is occupied by a large text field where the messages of the application
are written. Among others, these messages provide information about the actions
between the graphical user interface and the underlying GEA process. Error reports
are also printed here if one or more of the parameter values are invalid. A menu
item of the Options menu serves for clearing the text field. A hint bar can be found
at the bottom of the window. If the user moves the mouse over a button or a menu
item, a short description of the associated function appears in this area.

5.1 Managing the Parameters
When the GraphGEA program starts, it loads the parameter structure definition
and main parameter list of GEA. The first three buttons of the first toolbar realize
the New-Load-Save functions known from many applications. The program keeps
track of the changes of the parameter values and sends confirmation messages if
non-saved information might be lost or used.
The §U button brings up a dialog box of the e_params data structure (introduced
in Section 3) with the main parameters of the evolution process. The main param-
eters are divided into three groups: the representation form of individuals, halting
condition, applied genetic operators etc. belong to the first group. The second
group contains the program-specific parameters such as the fitness function and
plug-in file names, while the third group is for specifying logging options and log
files.

5.2 Running the Evolution Process
After the parameters are set, the evolution process can be started and controlled
with the buttons that resemble to those of CD or cassette players. Their functions
are the following:

ELI Starts the evolution process. The mechanism of the interaction between Graph-
GEA and GEA is described below.

PTJ If the evolution process is running, this button can be used to suspend it after
the current generation has been processed. The suspended process can be
resumed by pressing the button again.

L"| If the evolution process is suspended, it can be executed generation by gener-
ation with this button, that is, this button proceeds one generation in the
process. This enables the user to conveniently analyze the progress of the
EA.

¡5] Causes the evolution process to stop after the current generation. After it is
clicked, GraphGEA sends an appropriate signal to GEA and waits until it
exits before enabling other actions for the user.

EL and i»| The two red buttons of the second group of controls can be used to
pause/resume and stop the running evolution process immediately, i.e. with-
out finishing the current generation and writing the results to the log files.

352 Zoltán Tóth

As it can be expected from every worthy application, the above listed buttons have
their counterparts in the menu system of the program and they are enabled only if
they are meaningful in actual state of the evolution process.
When the evolution is started, the graphical user interface invokes the GEA pro-
gram as its child process and communicates with it during the run. The relationship
and interaction between the two programs are depicted in Figure 4.

Figure 4: The interaction between GraphGEA and GEA

At the start of the evolution run, GraphGEA first checks whether the current
parameter settings are correct and saved. If there are incorrect parameter values
then it lists the error messages of the e.params data structure in its text area. In
the case when the parameter settings have not been stored since the last changes,
it asks the user if they should be written to disk before starting GEA or not.
Starting the GEA program takes the following steps: first, a shared memory area is
requested from the operating system, the messages between the two programs are
stored here before they are processed. Then GraphGEA creates a child process with
the fork system call and the child invokes GEA with the necessary command-line
arguments (see Section 4) using the execvp function. The parent process opens a
pipe to the child and registers an event handler to manage its output (by default,
GEA writes its log onto the standard output channel). Signal handlers are also
registered by both programs, for they use the SIGUSR1 signal to let each other
know about messages waiting on the shared memory area for processing.
Once the evolution process has started, the graphical user interface can send mes-
sages to it with system signals. Suspending and stopping GEA after the current
generation and resuming a suspended run is done by placing the appropriate mes-
sage identifier into the shared memory and sending a SIGUSR1 signal to the child
process. GEA also sends a message to GraphGEA with the same mechanism each
time a generation is ready. This is used for example at the step-by-step execution
to enable/disable control buttons at the right time. Immediate suspend/resume
and stop of the evolution process is done by sending SIGSTOP/SIGCONT and

A Graphical User Interface for Evolutionary Algorithms 353

SIGTERM signals, respectively. GraphGEA is watching the SIGCHLD signal, too,
so that it knows when GEA exits.
The off-line visualization of an already finished evolution run can be initiated with
the HI button. For this, the parameter settings and the log file of the run are
needed. When these two files are given, GraphGEA invokes a simple program
(called GEmut) that echoes the log file to its standard output and communicates
with the graphical user interface the same way as GEA does. In short, GEmul
emulates the behavior of GEA, thus the suspension, step-by-step execution of the
EA, etc. are all possible.
When a complete reconstruction of an evolution run is needed (a reason for this
can be, for example, that the user wants to have more detailed logs), the original
parameter settings are needed and the evolution process should be started with the
random seed which was used in the original run (the used random seed is always
printed into the log file).
After the work with GraphGEA is finished, the user can leave the program with
the !®J button or by pressing Ctrl-Q on the keyboard.

5.3 The Visualization Plug-ins
The visualization options of the GraphGEA system are implemented as so-called
plug-in modules (plug-ins for short). Plug-ins are compiled code segments, modules,
which are not loaded by the operating system when the application is started, but
the application itself can load them if it needs their functionalities. The most im-
portant advantages of plug-ins against traditional objects linked to the application
are the following:

« Since they are stored in separate files (DLLs - dynamically loaded libraries
- under Windows systems and .so - shared object - files in Unices), sev-
eral applications can use the same files without the need of having the same
compiled code stored several times on the hard disks.

• If an application does not need a certain module during a particular run,
the code of that module doesn't have to be loaded and initialized, thus the
start-up speed can be increased and the program can economize on system
resources.

• Due to the standard interface of loading and using shared libraries, a part of
a program can be improved by updating the plug-in file, thus avoiding the
complete reinstallation.

• The standard interface also enables the easy and fast extension of applications,
it is usually done by just copying the compiled code into a predefined directory
and in some cases modifying configuration files.

Besides the advantages listed above, the generation of shared objects and their
usage require only a very little implementation work from the program developer:
in the compilation and linking, one only has to use a few additional command line

354 Zoltán Tóth

arguments of the linker, and loading and using the plug-ins in the main program
make the call of only three simple library functions necessary.
The main reason of using plug-ins in the GraphGEA program is extendibility: new
visualization plug-ins can be added with minimal modification of the existing pro-
gram code. Each plug-in has a corresponding button in the second toolbar which
shows and hides its visualization window. These buttons are enabled according
to the successfulness of the loading and initialization of the plug-ins at start-up.
GraphGEA looks up four functions (create, init, new.data, and done) in each loaded
plug-in for the communication.
The evolution process (that is, the GEA program) runs as a child process of the
graphical user interface and GraphGEA is reading its output from a pipe. Each
time when the input handler function of the GUI gets a line from the pipe, it
invokes the appropriate standard input handler function of each loaded plug-in.
Each visualization method can decide whether the received information is relevant
for its purposes or not and carry out the necessary actions (updating its database,
executing certain drawing commands, etc.); for this reason it is very important to
set the logging parameters of the evolution process correctly. If GEA does not print
an information into the log (and to its standard output) then obviously this infor-
mation will not be passed on to the plug-ins which might need them. On the other
hand, if the user finds the output of one or more plug-ins irrelevant to his/her work,
then turning off the corresponding logging options can be reasonable because it can
increase the performance of the GUI. If the information turns out to be important
in a later phase of the research, the evolution run can be reconstructed given the
evolution parameters and the random seed are still available. The visualization
windows with short descriptions are listed in Table 1.

5.3.1 Methods of Visualization

As it is described in Subsection 2.4, there are basically three different visualization
methods discussed in this paper: plots, color coding, and drawings. Each of these
three methods use the common plug-in interface but of course their behavior and
look are different, so the implementation of some functions differs, too. Next, the
look of the three plug-in window types and their functionality are discussed.
A plot window of GraphGEA is depicted in Figure 5. It is capable of showing
several diagrams in one coordinate system, each of which can be shown and hidden
individually with the checkboxes of the second toolbar. In the example, the best,
mean and worst fitness values are depicted with different colors and the legend
is displayed in the top-left corner of the plot. By default, the lower and upper
boundaries of the X and Y axes are computed automatically according to the ranges
of the shown values. This computation considers only the visible diagrams. Thé
boundaries can be set manually in the first toolbar by unchecking the appropriate
checkboxes and entering the values into the input lines next to them. The actual
view of the diagrams can be saved in gnuplot format with the 'Save gnuplot' button.
The gnuplot program can convert its input into various well-know graphical formats,
e.g. the encapsulated postscript file created from the plot shown in Figure 5 is

A Graphical User Interface for Evolutionary Algorithms 355

Figure 5: A plot window of GraphGEA

Fitness values

Figure 6: The gnuplot output of the plot window

displayed in Figure 6.
With the color coding technique, it is possible to depict a large amount of values in a
transparent way: they are displayed with different colors, not with numbers. A color
coding visualization window can be seen on Figure 7. Arbitrary numerical values
can be shown in the form of a two-dimensional array with additional explanatory

356 Zoltán Tóth

GOLlM.
0
2
4
I
I
10
12

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 16 H
ana

—

• • •
a a a a

-
—
-
—

r r

• • • —

• • • I

e>it
195 479004

187.729004

162 625000

179.102005

179.102005

179.102005

178102005

179.102005

175102005

178.102005

173 434998

173.434996

167 832998

167.632936

167.632938

160.796005

160 796005

160.796005

160.738005

Figure 7: A color coding window of GraphGEA

columns on the left and the right hand side of the color matrix. In the current
implementation, the lowest and highest displayed values can be specified directly
or the plug-ins can compute them automatically. The specification or the automatic
computation can be done either separately for each column or all columns can share
the same limits.
There are two possibilities of displaying the individuals' phenotypes in the Graph-
GEA system: by printing the phenotypes as a series of strings into a text field
or by using the drawing commands of the program. The phenotype visualization
plug-ins choose between these two methods according to the representation form
of the individuals. A window with a solution of the TSP problem can be seen on
Figure 8. One individual is displayed at a time and the user can use the scrollbar
at the top of the window to select from the available individuals. The initializer
function creates and displays the appropriate drawing object by looking at the
representation form of the individuals: if the representation is known as a drawable
one (that is, its phenotype is printed as a series of drawing commands) then a
drawing area is created, otherwise a text field will appear.
The set of drawing commands of GraphGEA is the following:

B x l y l x2 y2 This command determines the boundaries of the drawing area.
The individual is drawn in a way that the graphical primitives within the
boundaries are always visible in the plug-in window.

P x y Puts a point with coordinates (x,y).

L x l y l x2 y2 Draws a line from (x l , y l) to (x2,y2).

A Graphical User Interface for Evolutionary Algorithms 357

Figure 8: The phenotype of an individual drawn by GraphGEA

R x y w h f Draws a rectangle with the upper-left corner being in (x ,y) , width
w and height h. If / is equal to T then the rectangle will be filled.

A x y w h a l a2 f Draws an arc. The upper-left corner will be at (x, y), the
width and height of the arc will be w and h, respectively. The starting angle
of the arc is determined by al, the length by a2 (that is, a2 is the ending
angle relative to al) . The values of the angles should be between 0 and 360,
0 being at 12 O'clock, the positive direction is counter-clockwise. The last
argument (/) determines the filling: T = yes, F = no.

Y n f x l y l x2 y2 ... xn yn Draws a polygon. First the number of vertices (n)
is given, then the filling parameter, at the end follow the coordinates of the
vertices.

S x y s Puts the string s at the coordinates (x,y); x and y are the left edge and
the baseline of the string, respectively.

5.3.2 T h e Implemented Plug-ins

Table 1 shows the list of the currently available visualization plug-ins of GraphGEA.
Besides the name, icon of the show/hide button and type of the visualization tools,
a short description is also given.

358 Zoltán Tóth

Name Type Description
Fitness
values
11

plot,
course

Diagrams of the best, mean and worst fitness values plotted
against the generation number.

CPU
times
H

plot,
course

A diagram showing the used CPU time of the evolution
process plotted against the generation number.

Fitness
variance |jg|

plot,
course

A diagram showing the variance of the fitness values in the
population against the generation number.

Best
genotypes
HI

color
coding,
course

A table containing the color coded gene values of the best
individuals of the generations. The lowest gene values cor-
respond to black cells, the highest gene values to white
cells. The first and the last columns show the generation
number and the fitness value of the depicted individual,
respectively.

Best
phenotypes

draw,
course

The phenotypes of the best individuals of the generations.
The individual can be selected by the generation number.

Gene
variances
•

color
coding,
course

Shows the variances the of values of each gene in the pop-
ulation. Blue corresponds to low variance, red corresponds
to high variance. The first and the last column contain
the generation number and the fitness value of the best
individual in the generation, respectively.

All
fitness
values

color
coding,
course

The fitness values of all individuals are shown in one ta-
ble. High fitness values with green, low values with red.
The first and last columns of the matrix show the gener-
ation number and the fitness value of the best individual,
respectively.

All
phenotypes

draw,
status

Offers all phenotypes of the current generation for view-
ing. The individual can be selected by its position in the
population.

All
genotypes

SHI
color
coding,
status

Displays all genotypes of the current generation. The low
and high gene values are represented by white and brown
colors, respectively. The first and last columns show the
number of the individual and its fitness value.

Current
gene
values

plot,
course

The lowest, average and highest values of each gene are
plotted against the gene number.

Table 1: The currently available visualization plug-ins of the GraphGEA system

A Graphical User Interface for Evolutionary Algorithms 359

6 Related Work
In this section some other EA visualizing/controlling tools and the differences be-
tween them and GraphGEA are discussed. It must be emphasized that the primary
purpose of GEA is solving real world optimization problems and GraphGEA is a
graphical user interface that supports analysis of the evolution process's behavior
and education. GraphGEA does not affect the efficiency of the underlying evolution
process.
The EA Visualizer [4] is a platform independent tool for running and visualiz-
ing evolutionary algorithms written in the Java programming language. It has a
wide variety of convergence graphs and a special tool called GraphDrawer is pro-.
vided to create various plots. Some of its disadvantages are that chromosomes can
be depicted only in the case of binary representations and the phenotypes of the
individuals can be drawn for some determined problems only, e.g. the traveling
salesman problem (Figure 9). Since all individual representation forms in GEA
have functions to output the genotypes of the individuals, these can be shown, in
every case. The internal drawing language of GraphGEA and the phenotype output
of GEA enable depicting the phenotypes of solutions of any problem (see Figure 8).
On the other hand, the EA Visualizer is able to handle multiple runs with different
parameter settings. The evolutionary algorithms are implemented in Java and as-
sembled from modules; this makes the system easily extendable, although genetic
programming is not supported.
EvolVision [12] is a client-server based tool to visualize the output of Mathematica
notebooks which use the Evolvica system [17]. The client-server architecture is
very useful to make the EA process independent from the visualization tool, but
EvolVision cannot control the run of the evolution process. It is able to perform
off-line and on-line visualization as well and can depict any genomes and a range of
various graphs. A plug-in interface is used for possible extensions. A disadvantage
of the system is that it only realizes the results and has no real connection with the
running evolution process. The graphical components of the Java language (Swing)
are slow and require much memory and time for visualizing larger data sets.
GIGA [7] is what its name stands for: a Graphical user Interface for Genetic
Algorithms. That is, only GAs are implemented and the evolution process can be
controlled via the GUI to some extent; some parameters of the GA can be set in the
control windows. It is able to do off-line and on-line visualization of some graphs
and the algorithm's internals, but the latter figures are hard to read because the
user has to find the crossover points and mutated genes himself, as these are not
shown directly (see Figure 10). The phenotypic representation of the individuals
is also available, but being completely problem dependent, this visualization has
to be implemented by the user. The system is written in the C programming
language using the Unix /X l l environment and the OSF/Motif GUI library, thus
its portability is strongly bounded, it is possible to implement new algorithms
for GIGA, but these must meet the quite strict restrictions of a given prototyping
interface.

GeatBx [30] is another very promising visualization tool with various plots and

360 Zoltán Tóth

Figure 9: The EA Visualizer working on a TSP

GIGA - Internals I
9.) 2-1-6-4-3-8-7-5

13.) 4-7-1-4-3-5-8-2
* 4-4-3-8-2-1-7-5 —> 4-6-3-8-2-1-7-5

10.) 8-3-2-5-6-7-4-1

1.) 1-6-7-«-3-S-4-2
* 8-7-6-1-4-5-2-3 —> 8-7-6-4-5-2-1-3

8.) 5-2-7-6-4-l-»-3 > 5-2-7-6-4-1-8-3

1 H * 1

Figure 10: The 'internals' window of GIGA

graphs for depicting the course and the state of the running EA, but its disadvantage
is that it is written in the Matlab computer algebra system, thus the user must
know Matlab to use GeatBx efficiently. Besides, Matlab is a commercial software.
The tool is able to do off-line and on-line visualization as well. GAs and ESs are
implemented in the system but it is not able to visualize GPs and because of the
lack of extendibility, the option to make experiments with these latter algorithms
is completely missing. Only the genotypic representation of the individuals can be
depicted, the phenotypes cannot be visualized with this tool.
Gonzo [6] is a tool for visualizing genetic algorithms written in LISP. The number of
users of this system is strongly bounded because of the choice of the programming
language, since LISP is not so widespread as C / C + + or Java. Gonzo is designed
to explain the search behavior of the algorithm, so the search space and its repre-
sentation stand in the center of this program. It can depict some graphs and plot

A Graphical User Interface for Evolutionary Algorithms 361
N

am
e

of

th
e

sy
st

em

Su
pp

or
te

d
al

go
ri

th
m

s

L
an

gu
ag

e
of

im

pl
em

en
ta

ti
on

T
yp

e
of

vi

su
al

iz
at

io
ns

E
xt

en
si

on

po
ss

ib
le

?

In
te

ra
ct

iv
e?

O
ff

-l
in

e
vi

su
al

iz
at

io
n

?

GraphGEA EAs C / C + + Genotype,
phenotype

yes yes yes

EA Visualizer no GP Java Genotype,
phenotype
with restric-
tions

yes yes no

EvolVision EAs Mathematica,
Java

Genotype,
phenotype

yes no yes

GIGA GAs c,
OSF/Motif

Genotype,
phenotype

yes partly yes

GeatBx no GP MatLab Genotype no yes yes
Gonzo GAs LISP Genotype yes yes yes

Table 2: Comparison of the various visualization tools

how the gene values develop during the EA process (note that this technique is not
applicable for genetic programming). Besides GraphGEA, this is the only system
with total control over the running evolutionary algorithm: the user can start, stop,
pause, resume the GA or execute it by generation steps.
The advantages and disadvantages of the described systems are summarized in
Table 2.

7 Summary
In this document the GraphGEA system, a visualization extension of the Generic
Evolutionary Algorithms programming library is presented. The first section covers
the theoretical fundamentals of evolutionary algorithms. An evolution process has
many, sometimes intricately interrelating parameters. A data structure for handling
and extending this parameter structure is presented in Section 3. The GEA system
is described in Section 4, while Section 5 deals with the GraphGEA system itself.
Finally, a view on related work is given in Section 6.
GraphGEA has two main objectives: first, it helps the researchers to analyze and
understand the search behavior of evolutionary algorithms, and second, it is a very
good tool for students to get acquainted with these optimization methods. Since
GEA, the underlying EA implementation, is an efficient and easy-to-use optimiza-
tion utility, the graphical user interface can be used just to set all the parameters

362 Zoltán Tóth

of an optimization correctly, thus the GUI can be useful in solving real industrial
optimization problems.
The graphical user interface can be divided into three main parts. Solving an opti-
mization problem with an evolutionary algorithm always begins with the selection
of the representation form of the individuals, the most suitable evolutionary algo-
rithm and other parameters. GraphGEA offers very handy dialog boxes for setting
all the parameters and it also assures that the values are correct. If one wants to
analyze the optimization process, looking at the log files after the run is not always
the best and most convenient way. The implemented software offers the possibility
of the interactive execution of the evolution run, this way the user can suspend the
process at any time and look at its course and status. The huge amount of nu-
merical data describing an evolution run can be displayed by various visualization
plug-ins in the GraphGEA system. The visualization windows provide a run-time
look at the evolution process: the user can observe how the individuals change dur-
ing the optimization, how much system resource is consumed, what is the diversity
of the population, etc. Since the visualization methods are implemented as plug-ins
and they have a common programming interface, it is very easy to expand the GUI
with new methods.
Looking at the work done in the field of the visualization of evolutionary algo-
rithms, the most important conclusion is that most of the available tools are very
specific in terms of the implementation language and the range of suitable prob-
lems. Throughout the design of the GEA and GraphGEA systems, the two most
important objectives were efficiency and applicability. This is the reason of the
selection of the C and C + + programming languages and the application of the
plug-in technology. Together with the used parameter structure, these make the
programs able to solve and visualize a wide range of optimization problems.

References

[1] M. Abramson and L. Hunter. Classification using cultural co-evolution and
genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 249-254, Stanford University, CA, USA, 28-31 July 1996.
MIT Press.

[2] K. Aoki, H. Takagi, and N. Fujimura. Interactive GA-based design support sys-
tem for lighting design in computer graphics. In International Conference on
Soft Computing (IIZUKA '96), pages 533-536, Iizuka, Fukuoka, Japan, 1996.
World Scientific.

[3] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation
Conference, Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

A Graphical User Interface for Evolutionary Algorithms 363

[4] P. A. N. Bosman. EA visualizer.
http://www.cs.ruu.nl/people/peterb/computer/
ea/eavisualizer/EAVisualizer.htm.

[5] C. Caldwell and V. S. Johnston. Tracking a criminal suspect through face-
space with a genetic algorithm. In ICGA91, pages 416-421, 1991.

[6] T. D. Collins. The Application of Software Visualization Technology to Evo-
lutionary Computation: A Case Study in Genetic Algorithms. Ph.D thesis,
Knowledge Media Institute, The Open University, Milton Keynes, UK, 1998.

[7] T. Dabs. Eine Entwicklungsumgebung zum Monitoring Genetischer Algorith-
men. Master's thesis, University of Würzburg, 1994.

[8] C. Darwin. On the Origin of Species. Murray, London, 1859.

[9] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings
of the Third ICG A, pages 61-67. Morgan Kaufmann, 1989.

[10] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. Ph.D thesis, University of Michigan, 1975.

[11] S. Droste. Efficient genetic programming for finding good generalizing boolean
functions. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzón, H. Iba,
and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 82-87, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann.

[12] T. Fühner and C. Jacob. Evolvision - an evolvica visualization tool. In L. Spec-
tor, E. D. Goodman, A. Wu, W. B. Langdon, hans Michael Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzón, and E. Burke, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference, page 176, San
Francisco, California, USA, 7-11 July 2001. Morgan Kaufmanii.

[13] D.Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Reading, MA, 1989.

[14] J. Graph and W. Banzhaf. Interactive evolution of images. In International
Conference on Evolutionary Programming, 1995.

[15] J. H. Holland. Adaption of Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

[16] C. Jacob. Principia Evolvica - Simulierte Evolution mit Mathematica. Dpunkt
Verlag, 1997.

[17] C. Jacob. Principia Evolvica - Simulierte Evolution mit Mathematica, page
443. In [16], 1997.

http://www.cs.ruu.nl/people/peterb/computer/

364 Zoltán Tóth

[18] G. Kókai, Z. Tóth, and R. Ványi. Application of genetic algorithms with more
populations for Lindenmayer systems. In Proceedings of the International Sym-
posium on Engineering of Intelligent Systems, EIS'98, pages 324-331. ICSC
Academic Press, 1998.

[19] G. Kókai, Z. Tóth, and R. Ványi. Evolving artificial trees described by para-
metric L-systems. In Proceedings of the First Canadian Workshop on Soft
Computing, pages 1722-1728, Edmonton, Alberta, Canada, 9 # may 1999.

[20] G. Kókai, R. Ványi, and Z. Tóth. Parametric L-system description of the retina
with combined evolutionary operators. In Banzhaf et al. [3], pages 1588-1595.

[21] J. R. Koza. Evolving a computer program to generate random numbers using
the genetic programming paradigm. In R. K. Belew and L. B. Booker, editors,
Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 37-44, University of California - San Diego, La Jolla, CA, USA, 13-16
July 1991. Morgan Kaufmann.

[22] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, Massachusetts, 1992.

[23] J. R. Koza. Automated discovery of detectors and iteration-performing calcu-
lations to recognize patterns in protein sequences using genetic programming.
In Proceedings of the Conference on Computer Vision and Pattern Recognition,
pages 684-689. IEEE Computer Society Press, 1994.

[24] D. Levine, M. Facelllo, and P. Hallstrom. Stalk: An interactive system for
virtual molecular docking. IEEE Science and Engineering, 2/97:55-67, 1997.

[25] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Artificial Intelligence. Springer-Verlag, 1992.

[26] J. F. Miller. An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In Banzhaf et al. [3], pages
1135-1142.

[27] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge
Massachusetts, 1996.

[28] U.-M. O'Reilly and G. Ramachandran. A preliminary investigation of evolu-
tion as a form design strategy. In C. Adami, R. K. Belew, H. Kitano, and
C. E. Taylor, editors, Proceedings of the Sixth International Conference on
Artificial Life, University of California, Los Angeles, 26-29 June 1998. MIT
Press, Cambridge.

[29] V. P. Plagianakos and M. N. Vrahatis. Training neural networks with 3-bit
integer weights. In Banzhaf et al. [3], pages 910-915.

[30] H. Pohlheim. Visualization of evolutionary algorithms - set of standard tech-
niques and multidimensional visualization. In Banzhaf et al. [3] , pages 533-540.

A Graphical User Interface for Evolutionary Algorithms 365

[31] I. Rechenberg. Evolutionsstrategien: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Fromman-Holzboog, Stuttgart, 1973.

[32] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutonsstrategie. Interdisciplinary Systems research (26), Birkh.user, Basel,
1977.

[33] J. Sherrah. Automatic Feature Extraction for Pattern Recognition. PhD thesis,
University of Adelaide, South Australia, July 1998.

[34] J. R. Smith. Designing biomorphs with an interactive genetic algorithm. In
ICGA91, pages 535-538, 1991.

[35] Z. Tóth. The Generic Evolutionary Algorithms Programming Library. Master's
thesis, University of Szeged, Szeged, Hungary, 2000.

[36] Z. Tóth and G. Kókai. An evolutionary optimum searching tool. In The
Proceedings of the Fourteenth International Conference on Industrial & En-
gineering Applications of Artificial Intelligence & Expert Systems (IEA/AIE-
2001), volume 2070 of LNAI, pages 19-24, Budapest, Hungary, June 4-7 2001.
Springer-Verlag.

[37] Z. Tóth, G. Kókai, and R. Ványi. Interactive visual tree evolution. In EIS2000
Second International ICSC Symposium on Engineering of Intelligent Systems,
June 27 - 30, 2000 at the University of Paisley, Scotland, U.K., pages 384-390,
2000.

[38] R. Ványi. Modelling the Evolution of the Flora. Bachelor's thesis (in Hungar-
ian), József Attila University, Szeged, Hungary, 1998.

[39] R. Ványi, G. Kókai, Z. Tóth, and T. Pető. Grammatical retina description
with enhanced methods. In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, editors, Genetic Programming, Proceedings of
EuroGP'2000, volume 1802 of LNCS, pages 193-208, Edinburgh, Apr. 15-16
2000. Springer-Verlag.

[40] G. Venturini, M. Slimane, F. Morin, and J. P. A. de Beauville. On using inter-
active genetic algorithms for knowledge discovery in databases. In ICGA97,
pages 696-703, 1997.

[41] N. Wirth. What can we do about the unnecessary diversity of notation for
syntatic definitions. Communications of the ACM, 20(ll):822-823, Nov. 1977.

CONTENTS

Preface 207
Tim Fühner and Gabriella Kókai: Incorporating Linkage Learning into the

GeLog Framework 209
Gábor Gosztolya, András Kocsor, László Tóth, and László Felföldi: Various

Robust Search Methods in a Hungarian Speech Recognition System . . . 229
Dávid Hanák: Implementing Global Constraints as Graphs of Elementary

Constraints 241
István Katsányi: On Implementing Relational Databases on DNA Strands . . 259
Kornél Kovács and András Kocsor: Various Hyperplane Classifiers Using

Kernel Feature Spaces 271
Balázs Polgár and Endre Selényi: Probabilistic Diagnostics with P-Graphs . 279
Raluca Oana Scarlatescu: Programming by steps 293
Paula Steinby: Two Content Protection Schemes for Digital Items 315
Attila Tanács and Attila Kuba: Evaluation of a Fully Automatic Medical

Image Registration Algorithm Based on Mutual Information 327
Zoltán Tóth: A Graphical User Interface for Evolutionary Algorithms 337

«

ti

I S S N 0 3 2 4 — 7 2 1 X

Felelős szerkesztő és kiadó: Csirik "János

