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Acts Over Completely 0-Simple Semigroups. 

Avdeyev A. Yu. * Kozhukhov I. B. * 

The aim of this work is to describe, in the set-theoretical and group-theoretical 
terms, all the acts (automata) over completely 0-simple semigroups and also over 
completely simple and zero semigroups. As the consequence of this results we 
obtain a description of all the acts over rectangular groups, rectangular bands, 
right (or left) groups, and right (or left) zero semigroups. Moreover, we find all the 
subacts of some mentioned acts. Our results generalize the results of [3]. Theorem 
1, Proposition 2 and Corollaries 9, 10, 11 of this work were published in [1]. We 
give them for the sake of completeness. Theorem 4 was announced by the second 
author in [7], Corollary 6 - by both authors in [2]. 

Recall that a right act (or right operand, or S-set) over a semigroup 5 is a set 
X with a mapping X x S -4 X (the image of (x,s) we denote xs) such that the 
axiom (xs)t = x(st) is held (for x £ X, s,t £ S) [6]. This notation coincides, in 
fact, with the notation "Moore's automaton" V = (A,Q,S) where A is th'e input 
alphabet, Q is the set of the states, and S is the transition function [8]. For the act 
X, we may assume that Q = X, A is the set of generators of S, and S(x,s) — xs. 
The S-set X is called unitary if S has a unity and x • 1 = x for all x £ X. 

If the semigroup S has a simple structure, all the S-acts can.be described. For 
example, an act X over the cyclic semigroup S = (a) is an unar ( X , / ) [9], i.e.,,the 
set X with the mapping / : X -> X\ we have x • a1 = fl(x). Esik and Imreh [5] 
described the subdirectly irreducible commutative automata. Babcsanyi-and Nagy 
[3] obtained a description of the automata X over a right group S in case when the 
following conditions are satisfied: 

XS = X, • (1) 

Mx,y £ X\/s,t £ S (xs = xt => ys = yt). (2) 

The condition (2) is called "state-independence". In this work we describe the right 
group acts (automata) in general case, i.e., without assuming (1), (2). 

The notations and definitions of semigroup theory can be found in [4]. A coniT 
pletely 0-simple semigroup is signed by M°(G,I,A,P), completely simple semi-
group - by M(G,I,A,P). Here G is a group, I and A are sets, P = ||pa»|| is a 
sandwich-matrix (i £ I, A £ A, p\i £ G U {0} or p\i £ G resp.). The non-zero 

*kv. 105, k. 200-b, 103305 Zelenograd, Russia. 
+kv. 51, k. 1209, 103460 Zelenograd, Russia. 
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elements of M°(G, I, A, P) have a form (g)i\ (where g € G, i g I, A e A) and their 
multiplication is defined by the rule 

(n\ , (h\ - / if pxj ± 0, 
(9hx o if pXj= 0. 

Let A be a set and 6 an equivalence on A. Then A/Q is the set of 0-classes and 
a9 is the class of the element a 6 A. An equivalence 6 and a subset B C A are 
called compatible if \aQ fl B\ = 1 for every a. e A; in this case, the set B is called 
a transversal of 0. Let <p : A -» A be a mapping. The kernel ker<p and the image 
im<£ are defined as usual: 

ker<p= {(a,b)\<p(a) = <p(b)}, 

im(p — {(¿>(a)|a € A}. 

If (p2 = ip, ker(p and im</5 are compatible, the opposite is false. If A is a right act 
over a semigroup S and s € S, kers and ims are the kernel and the image of the 
mapping a M- as. 

The element 2 of an 5-act X is called a zero if zs = z for all s £ S- Of course, 
an act X may have no zero. If the act X has an unique zero, we denote it by 0. 
Let (Xa) be a family of the S-acts Xa. Then (J Xa is the coproduct (or disjoint 

a 
union) of the acts Xa. 

Let G be a group and H be a subgroup of G, not necessarily normal. Denote 
by G/H the set of the classes Hg where g € G. The set G/H is an unitary right 
G-act with respect to the action * where Hg * g' — Hgg'. Every unitary right act 
over the group G is obviously a disjoint union of orbits xG of the elements of X. 
It can be easily verified that every orbit is isomorphic (as a right G-act) to an act 
of form G/H for some subgroup H of G. Thus, we have the obvious assertion: 

Lemma 1. If G is a group andX is an unitary right G-act, thenX = [J(G/Ha) 
a 

where (Ha) is a family of subgroups ofG. 

Recall some definitions of the semigroup theory. 

Zero semigroup is a semigroup S with 0 such that ab = 0 for all a,b E S. 
Left zero semigroup (L) is a semigroup satisfying the identity xy = x. 
Right zero semigroup (R) is a semigroup with identity xy = y. 
Rectangular band (L xR) is a semigroup determined by the identities x2 = x, 

xyz = xz. It is known [4] that the rectangular band is isomorphic to a direct 
product of the left zero semigroup and the right zero one. Moreover, the rectangular 
band is isomorphic to the Rees matrix semigroup M{{e},I,A,P) where p\i = e 
for all A 6 A, i 6 I. 

Left group (L x G) is a direct product of a group and a left zero semigroup. 
Right group (it x G) is a direct product of a group and a right zero semigroup. 
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We shall describe all the acts over zero semigroups. Let A be a set which is 
a disjoint union of some subsets Aa, i.e., A = U{Aa\a £ T} , Ba (cc 6 T) is some 
subset of Aa, and ba (a 6 T) is some element of Ba. Further, let S be a non-empty 
set and let ips, s £ S, be a family of mappings ips : A —» A such that tps(Aa) C Ba 

and ips(Ba) = {&„} for all a £ T. Moreover, assume that there exists an element 
9 £ S such that <pg(Aa) = { b a } for all a £ I\ If we put st = 9 for all s,t £ S, then 
S turns a zero semigroup (with zero 9). Define the action of the semigroup S on 
the set A as follows: as = <ps(a) (a £ A, s £ S). 

Theorem 2. The set A is a right act over the zero semigroup S. Conversely, 
every right act over a zero semigroup can be obtained by this way. 

Proof. At the first we check that A is a right S-act. Indeed, let a € A and s,t 6 
S. Then a £ Aa for some a £ T. We have (as)t = (pt((ps(a)) € iflt(Ba) = i.e., 
(as)t — ba. Moreover, a(st) — a9 = tpg(a) = ba. Thus, (as)t = a(st). 

Conversely, let A be an arbitrary right act over the zero semigroup S and 9 is 
the zero of S. Introduce the equivalence a on 5 putting curb <=> a,6 = b9. The equiv-
alence determines the partition A = U{Aa\a 6 T}. Check that Aas C Aa for all 
a € T, s € 5. Indeed, let a £ Aa, s 6 S. As (as)9 = a(s9) = a9, then (as, a) £ a. 
Therefore, as £ Aa. Thus, A a s C Aa. Put Ba = AaS for any a £ T. If a, b £ Aa 

and (a,b) £ a, we have a9 = b9, therefore \Aa9\ = 1, and hence Aa9 = {ba} for 
some ba. Define, for any s £ S, the mapping ips : A —> A putting <ps(a) — as for 
a £ A. Then (ps(Aa) C Ba and ips(Ba) = The theorem is proved. 

The following proposition gives a description of all subacts of the act over a zero 
semigroup. The statements can be easily checked, and the proofs are omitted. 

Proposition 3. Let A = U{AQ|a £ T} be a right act over the zero semigroup 
S, and Ba = AaS for a £ T, and {6a} = BaS. If A CT is a non-empty subset and 
A's C As (for S £ A) such that A'ss C A's for all s £ S, then the act G A } 
is a subact of A. Conversely, every subact of A can be obtained by this way. 

Now we shall consider the case of the completely 0-simple semigroup 
S =M°(G,I,A,P). We may assume without loss of generality that 1 £ I n A 
and pii = e where e is the unity of the group G. The following.theorem describes 
all the acts over such semigroups. We require here that 0 • s = x • 0 = 0 for all s £ S, 
x £ X where X is a right S-act, and 0 denotes the zero of S and the zero of X. 
The assumption of the existence of zero does not restrict the generality because of 
the fact that every act can be complemented by zero. 

Theorem 4. Let S = M°(G,I,A,P) be a completely simple semigroup and X 
be a set with some element 0 (it is called conditionally as zero). Further, let (Ha) 
be a family of subgroups of the group G,Q — |_\(G/Ha) is the coproduct of the right 

a 
G-acts, and Q° = Q U 0. Finally, let us suppose that, for i £ I and X £ A, the 
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mappings K,\ : Q° —,• X and TT{ : X —> Q° are defined such that 

k a ( 0 ) = 0 ; 7Ti(0) = 0; (3) 

Ki(K\(<j)) = q * P\i for all q E Q°. (4) 

Put, for x £ X and s = (g)ix E S, 

x • s = x • (g)i\ = kx(iTi(x) * g) and x • 0 = 0. (5) 

Then X is a right S-act with zero. Conversely, every right act with zero over a 
completely 0-simple semigroup can be obtained by this way. 

Proof. At the first, we shall check that the set X satisfying the written condi-
tions is really a right 5-act. Clearly, it is sufficient to prove that 

(x • (g)ix) • (h)jfi = x • ((g)i\ • (h)jtl). (6) 

We have 
(a • (9)ix) • (h)j„ = Kx(*i(x) * g) • (h)jfl = 

K»(nj(KX(Tri(x) *g)) *h) = n^iix) *g*pXj * h) = 

f 0, if pxj — 0, 
1 (gp\jh)ip if Pxj i o. 

This implies (6). 
Now, let X be a right 5-act with zero. Put Y = X • ( e )n . Define an action of 

the group G on the set Y as follows: y * g = y • (g)u for y 6 Y, g E G. Because 
of condition p u = e we have (y * g) * h = (y • (g)u) • (h)u = y • ((g)n • (h)n) = 
V • (gh) ii = y*gh. Moreover, y * e = (x • (e )n) • ( e ) n = x • (e )n = y. Therefore, 
Y is a unitary right G-act with zero. It follows from Lemma 1 that there exists a 
family of subgroups H& C G and an isomorphism 6 : Y Q° = |_\(G/Ha) |_J 0 of 

a 
right G-acts. 

Construct, for every A E A, the mapping KX : Q° X putting t\(x) = x • (e)iA 
and K,x(q) = fx(Q~l(q)) where x E X, q E Q°. Then construct, for i E I, the 
mapping 7Tj : X ->• Q° putting TTi(x) = 6(x • (e)ii) where x E X. If i E / , A E A, 
q E Q°, and pXi ^ 0, we obtain tt^kx(q)) = 0(KX(q) • (e)n) = O^O'^q)) • (e)n) = 
0(0~l(q)-(e) lA-(c)ii) = 6(e~l(q)-(pxi)u) = e(e~1(q)*Pxi) = 0(d-1(q*Pxi)) = q*Pxi-
If pxi = 0, we obtain tu (Kx (q ) ) = 0(9~1(q)-(e)ix-(e)il) = e(e~1(q) 0) = 0 = q*0 = 
q *pxi• Therefore, the equality (4) is satisfied in any case. 

Finally, we verify the equality (5). We have KX(TT,(X) *g) — k x ( 0 ( x - ( e ) n ) * g ) = 
*x(e((x-(e)a)*g)) = Kx(9(xie)aig)n)) = Kx(e(xig)n)) = Txtf-^e^ig)«))) = 
rx(x • (g)ii) = X • (g)N • (e)iA = x • (g)iX. The theorem is proved. 

Now we consider the case of the completely simple semigroup S = 
M(G,I,A,P). As before, we assume that 1 E I D A and pn = e where e is 
the unity of the group G. Moreover, as the matrix P has only non-zero elements, 
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then we may assume (without loss of generality) that some column and some row 
consists only of unities. Let p\i — pn — e for all i £ I, A £ A. The description of 
the acts over completely simple semigroup is given by the following theorem. 

Theorem 5. Let X be a set, S =M(G,I,A,P) be a completely simple semi-
group, (Ha) be a family of subgroups of G, and Q = \_j(G/Ha) be the coproduct of 

a 
G-acts. Suppose that, for every i £ I, an equivalence Oi on X is given, for every 
A £ A, a subset X\ C X is given, for i £ I, the mappings iti : X —• Q, kx : Q —X 
are given. Suppose that the following conditions hold (for i £ I, X £ A, x £ X, 
q e Q): 

keriTj = cTj, (7) 

imAcA = Xx, (8) 

\Xxnxoi\ = l, (.9) 

{TTiKx)(q) = q*p\i- (10) 

Put 
x • (g)i\ = K,x{iri(x) *g) (11) 

for x £ X, (g)ix £ S. Then X turns a right S-act. Conversely, every right act over 
the completely simple semigroup.S =M(G,I,A,P) can be obtained by this way. 

Proof. As is seen in the proof of THeorem 4, from the conditions (10) and (11), 
it can be shown that X is a right S-act. 

Now we assume that X is an arbitrary right S-act. Put e, = (e)n, e,A = 
(Pxi)iX for i £ I, X £ A. Clearly, ê  and e^ are idempotents. It is easy to check 
that eix&i = e i ; e^e^ = eiX, e u e t t = e u and eiXeiA. Put Xx = Xeix. Then 
Xx = Xeix = Xeixeix C Xeix = Xx- Then Xx = Xeix for any i. 

For every i £ I, we put ai = { (x ,y ) £ X x X\xei = yei\. Prove that 

Mx,y £ X VA e A (xei = yei <i4> xeiX = (12) 

Indeed, xBi — yCi implies X6i\ — xCiBi\ — yci&i\ and similarly xeix = yeix implies 
xei — V î- Therefore the (12) holds: 

We shall prove the property (9), i.e., every crj-class intersects with every Xx 
in one element (in other words, Xx is a set of representatives of <7̂ ). Let x £ X. 
Then from the above facts, we have that xeix £ Xx and (xeix)ei = xei, so that 
xeix £ Xx fl xei. Then Xx H xai ^ 0 (notice: if s2 = s and x £ Xs, then xs = x, 
since x = us = us2 = (us)s = xs). Let x,y £ Xx with (a:,y) £ <Ji. Then again 
from the above facts, we have X = xeix — y&ix = V- Thus Xx D xai = {xetx} for 
every x £ X. 

For i £ I and X £ A, let 7Tj and Kx be as in the proof of Theorem 4. Then 
we can similarly show that the conditions , (10) and (11) hold. This completes the 
proof. 
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Corollary 6. Let G be a group, X, L, Ft be sets, (Ha) be a family of subgroups 
of G, and Q = [J(G/Ha) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalences 01 on X for all I £ L, 
the subsets Xr C X for all r £ R, 
the mappings n[ : X —> Q, kt : Q X for all I £ L, r £ R 

such that the following conditions hold (for x £ X, I £ L, r £ R): 

ker7i"i = ai, im/tr = Xr, \Xr C\xoi\ = 1, iriKr = idg. 

Let S = L x G x R. Define the multiplication on S by the rule 

(l,g,r)-(l',g'y) = (l,gg'y) 

and the action of S on X by the rule 

X • (L,G,R) = KT(TTI{X) *G). 

Then S is a rectangular group and X is a right S-act. Conversely, every right act 
over a rectangular group can be obtained by this way. 

Corollary 7. Let G be a group, X and R be sets, (Ha) be a family of subgroups 
of G, and Q = [_l(G/Ha) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalence a on X, 
the subsets XT C X for all r £ R, 
the mappings 7r: X —> Q, nr : Q > X for all r £ R 

such that the following conditions hold (for x £ X, r £ R): 

kerir = (T, im/cr = Xr, |Xr fl X<J\ - 1, 7TKT = idQ. 

Let S = G x R. Define the multiplication on S by the rule 

(9,r)-(g',r') = (gg'y) 

and the action of S on X by the rule 

x • (g,r) = Kr(7r(x) *g). 

Then S is a right group and X is an S-act. Conversely, every right act over a right 
group can be obtained by this way. 

f)|j+ ^Remark. This corollary gives a description of all acts over the right groups, 
the "state-independence" and the condition (1) are not necessarily satisfied. Let 
us see what will be obtained in case when this conditions (1), (2) are fulfilled. 
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Let 5 = G x R and X be an S-act with the properties (1), (2). At first we 
notice that Xr is a unitary right G-act with respect to the operation a * g = a-(g,r) 
for a £ Xr, g £ G. Indeed, u * g = a • (g,r) = Kr(n(a) * g) £imKr = Xr, 
therefore XT * G C Xr. Further, a* e = Kr(n(a) * e) = Kr(n(a)) = a. Finally, 
a* (gig2) =a-(g1g2,r) = a-((g1,r) • (g2,r)) = (a - (gur)) • (</2,J-) = (a*gi)*g2. 

Now we notice that XT = Q as the right G-acts. Indeed, as 7r/cr = idg, then nr 

is an injection. It implies that Kt is a bijection from Q onto im/ir = Xr. Moreover, 
Kr(q) *g = Kr(q) • (9,r) = Kr(w(/ir(q)) * g) — KT(q*g). Thus, Kr is an isomorphism 
of Xr and Q. 

The condition (1) implies that X — U{Xr|r £ R}. Check that Xr are dis-
joint. Let Xr n Xr' ^ 0, and a € XT n Xri. Then a = nr(q) = Kr>(q') for some 
q,q' £ Q. As 7r(a) = -KKT(q) = q and similarly n(a) = q', then q = q'. Further, 
a • (e, r) = Kr(77(a) *e) = Krir(a) = KT(q) = a and similarly a • (e, r') = a. Because of 
the property (2) we have x-(e,r) = x-(e,r') for all 2; £ X, i.e., Kr(ir(x)) = Kr'(-n(x)). 
Since 7r is surjective, we have /cr = nr>, and hence Xr = Xri. Thus, X is a disjoint 
union of the pairwise isomorphic G-acts Xr. This is the main result of [3]. 

Corollary 8. Let G be a group, X and L be sets, (Ha) be a family of subgroups 
of G, and Q = \_\{GJHQ) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalences ai on X for all I £ L, 
the subset Y C X, 
the mappings TX\ : X —> Q, K : Q -» X for all I £ L, 

such that the following conditions hold (for x £ X, I £ L): 

ker7Tj = AI, i m / i = Y, ¡ y f l a ; a / | = l , TTIK = idQ. 

Let S — L x G. Define the multiplication on S by the rule 

{l,g)-(l',g') = (l,ggl) 
vis? 

and the action of S on X by the rule 

x • (l,g) = K(TTI(X) *g). 

Then S is a left group and X is a right S-act. Conversely, every right act over a 
left group can be obtained by this way. 

Corollary 9 [1]. Let X,L,R be sets. Assume that the following objects are 
given: 

the equivalences ai on X for all I £ L, 
the subsets Xr C X for all r £ R. 
Also assume that the following conditions hold, for any r,r' £ R, 1,1' £ L, 

x € X: 

\Xr fl xvi\ = 1, (13) 

Va £ Xr Vbe XT< (a, b) £ (a, b) € <Jv . (14) 
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Define the multiplication on the set S = L x R by the rule 

(l,r)-(l',r') = (iy) 

and the action of S on X by the rule 

a • (l,r) = b where aoi fl Xr = {6}. 

Then S is a rectangular band and X is a right S-act. Conversely, every right act 
over a rectangular band can be obtained by this way. 

Proof. We give the proof another than the proof of [1]. Clearly, the formulated 
rule determines a rectangular band. We shall prove that X is a right S-act. Indeed, 
let a £ X, a-(l,r) = b, and b-(l',r') = c. Then aat DXr = {6} and barr\Xr> = { c } . 
We see that (6,c) 6 o^, therefore, because of the (14), (b,c) £ oi. As (a, 6) £ 07, 
then (a, c) e 07. Since c £ Xr>, a • (I, r'} = c. Thus, a • (( / ,r) • (V,r')) = a • ( l ,r ' ) = 
c = b-(l',r') = (a - (l,r)) • (l',r'). We see that X is a right S-act. 

Further, we need to prove that the sets Xr and the equivalences 07 of Corollary 
6 satisfy to (14). Indeed, let (a, 6) £ 07 where a £ Xr, b £ XT<. Then we have 
a = KT(q), b — Kr'(q') for some q,q' £ Q. As (a,6) £ 01, then ni(a) = 7r;(i>). 
We have -ni(a) = 7T/(/cr(g)) = q and similarly ^ - (a ) = q, 7r/(6) = tti>(b) = q'. As 
7T((a) = 7T;(6), then q = q'. It implies (a,b) £ Ov. 

We want to show that the Corollary 6 coincides with the Corollary 9 in case 
when G = {1} . Indeed, we may take Q = Xro where ro £ R is a fixed element and 
put tt[(x) = y when xoi fl Xro = {y}. Also we put Kr(q) = x when qai fl Xr = { x } 
(the correctness, i.e., independence on I follows from (13) and (14): as q £ Xro, then 
(q,x ) £ at <=> (q,x ) 6 01 qov fl XT = {x} ) . It remains to show that 7T(/cr = idQ. 
Let q £ Q, Kr(q) = x, and 7r I(X) = q'. Then qoi fl Xr = {a;} and XAI fl Xr = {g ' } . 
We have (q',x) £ oi. It follows that q,q' £ Xro C\xoi. The condition (13) implies 
q = q'-

Corollary 10. LetX and S be sets, a be an equivalence on X, and (Xs), s £ S 
be a family of subsets of the set X such that |XS fl aa\ = 1 for all s £ S, a £ X. 
Define the multiplication on the set S by the rule st = t for all s,t £ S, and define 
the action of S on X by the rule 

as = Xsr\aa = {b}. 

Then S is a right zero semigroup, and X is a right S-act. Conversely, every right 
act over a right zero semigroup can be obtained by this way. 

Corollary 11. Let X and S be sets, Y be a non-empty subset of X, and (as), 
s £ S be a family of the equivalences on X such that |Y fl aas\ — 1 for all s £ S, 
a £ X. Define the multiplication on the set S by the rule st = s for all s,t £ S, 
and define the action of S on X by the rule 

as = b r\aas = {6}. 
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Then S is a left zero semigroup, and X is a right S-act. Conversely, every right 
act over a right zero semigroup can be obtained by this way. 

The authors are thankful to the referees for their valuable suggestions. 
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The Logic of Knights, Knaves, Normals and Mutes 

L. Aszalos * 

Abstract 

R. M. Smullyan wrote in his book about islands, knights and knaves. The 
knights always tell the truth and the knaves axe always lying. Instead of say 
we shall examine the can say modal operator. W e show the soundness and 
the completeness of this logic. 

1 Introduction 

At first we introduce the characters of the puzzles. Then we describe a logical 
language suitable to formulate puzzles. Later we prove soundness and completeness 
of this logic and eventually we show some interesting properties of this logic. 

In Smullyan's famous book [2] the knights always tell the truth. Consequently 
they cannot say false statements. Smullyan does not mention any taboo in his 
puzzles, so we can assume that the knights can say any true statement. For the 
knaves the opposite holds, so they can say any false statement and can not say any 
true statement. We can arrange our information in columns: 

can say 
false statements 

can say no 
false statements 

can say true statements knights 
can say no true statements knaves 

Later Smullyan introduced a third type of islanders: the normals, who some-
times tell the truth and sometimes lie. If we put this type into the table, one entry 
will remain empty. To fill this gap we need a new type of islanders, who can not 
say anything; hence we call them mutes. So the complete table is the following: 

can say 
false statements 

can say no 
false statements 

can say true statements normals knights 
can say no true statements knaves mutes 
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2 Syntax 
In the following we shall use the well-known definition of the syntax of propositional 
logic: -

Definition 1 Let be S a finite set of propositional letters. The set of propositional 
formulae is the smallest set J- such that 

1. ScT. 

2. If Ad F then G T. 

3. If A, Be 7 then (A A B), (A V B) and {A D B) G T. 

In the definition above thé connectives are the usual: (negation), V (disjunc-
tion), A (conjunction) and D (implication). To formulate the puzzles we need to 
express that the person x can say true statements, the person x can say false state-
ments and the person x can say the statement A. For this we introduce Tx, F^ and 
S^yl, respectively. Definition 1. is extended to 

Definition 2 Let beVa finite set. The set of formulae is the smallest set T that 
satisfies 1-3. and 

4. If x G V then Tx G T and F,, G T. 

5. If xeV and Ae F thenSxAe f-

In this definition V is the set of persons, and elements of V will be denoted by 
a; b, ... This definition allows the embedding of Sx in the formulae, so for example 
Sa-iSj,Ta is a legal formula, which means that a can say that b cannot say that a 
can say true statements. 

3 Semantics 
In the propositional logic the prime components are the propositional letters. In 
our logic the truth value of a formula can depend on the type of persons, so the 
formulae describing the type of persons are prime components too. Hence the 
définition of the valuation will be more complicated than usual: 

Definition 3 Let i?s C S, dT C V and dF C V. The valuation tf - {•OS^T^F) 
assigns a truth value to every formula. If the formula A is true in a valuation d 
this is denoted by A. 

. if Pes, iffPetis 

• tfh Tx iff x G tfr 

• isN F® iff x G 
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• - A iff # A 

• ,?(= A A B iff A and ^|= B 

• 4)= AV B iff A or $\=B . 

• A D B iff A or , jf= B 

• ,j|= SXA iff lx and A) or Fx and A) 

A formula A is satisfiable if there exists a valuation d such that $ |= A and: a 
formula A is valid if at every valuation 1?, A. 

In t3 model the sets of knights, knaves, normals and mutes are t?7'ni9;r, ^ f l i p , 
fl dp and fl , respectively. 

4 Sequent Calculus 
In our proofs we shall use the sequent calculus described for example in [I, §48.]. 
We shall use the notations and definitions of this book, but we shall give informally 
the basic definitions for whose are unfamiliar with this topic. We do not need the 
last four rules about quantifiers [1, p. 289], but we need two other rules about can 
say . . . 

r , T x , A —->• 0 ; r ,F x —> A , 0 r . A - ^ T , , © . ; r , —> A, Fx, €> 
r , S x A — 4 0 a n r —> S X A , 0 

We say a sequent T —> 0 is falsifiable, if there exists a valuation such that all 
formulae of T are true and all formulae of 0 are false. 

5 Soundness 

Theorem 4 For each of 12 rules: The sequent written below the line is falsifiable iff 
the sequent or at least one of the two sequents written is above the line is falsifiable. 

Proof. For the first 10 rules this was proven in [1], so we prove the claim only for 
rules of can say. 

If T, SXA —> 0 is falsifiable then there exists a 1} such that all formulae of 
T and SXA are true and all formulae of 0 are false in 1?. If SXA is true then by 
definition either A and Tx are true or A is false and Fx is true. In the first case 
r , T x , A —> 0 , in the other case T,FX —> A,Q is falsifiable. To prove it in other 
direction 

1) If r , Tx, A —> 0 is falsifiable, then there exists a such that all formulae of 
T, Tx and A are true and all formulae of 0 are false in $ and by definition 
SXA is true in d so T, Sx A —> 0 is falsifiable. 
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2) If r , Fx —> A, © is falsifiable, then there exists a d such that all formulae of 
T and Fx are true and all formulae of 0 and A are false in $ and by definition 
S^A is true in d so r , S x A —> 0 is falsifiable. 

It easy to check that ^ SXA iff A and Tx) or ( ^ A and Fi)> the 
proof about other rule is similar. • 

The axioms of the sequent calculus are I\A —> A,Q. This kind of sequent is 
not falsifiable, so it is valid. We can prove a formula A in the sequent calculus if we 
can construct a tree according to the rules such that each path ends in an axiom. 
Since all axiom are valid, we can go.upside-down on the tree line by line and by 
the lemma above (which states that if the sequents above the line are valid then 
the sequent below the line is valid, too) all the sequents in the tree are valid; hence 
A is too. This proves the following theorem: 

Theorem 5 Each provable formula is valid. 

6 Completeness. 
We want to prove that any valid formula is provable. At first we shall show that 
any proof-tree is finite. To do this we define a function: 

Definition 6 On the rank of a formula we understand a natural number such that 

• Rank of propositional letters are 0. 

• If x £ V then the ranks of T̂  and Fx are 0, too. 

• If the rank of A is n, then rank of -\A and SXA are n + 1. 

• If the rank of A is n and the rank of B is m then the rank of A A B, A V B 
and A D B are m + n + 1, so the ranks of subformulae are smaller than the 
rank of the formulae. 

The rank of a sequent and the rank of the set of formulae are the sum of the ranks 
of its formulae. 

Lemma 7 The rank of a sequent above the line is smaller than the rank of the 
sequent below the line. 

Proof. Let us show this only for one of the new rules. For the others the proof is 
similar. If the rank of T, 0 and SXA are n, m and I, respectively, then the rank of 
T, SXA —4 0 , r , Tx, A —• 0 and r, Fx —> A, 0 are n + m + I, n + m + l - 1 
and n + m + I — 1, respectively. • 

When we construct a proof-tree then in each step we reduce the rank of the 
sequents. This can be done finitely many times, because the rank of the original 
formula was finite. This proves the following lemma. 
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Lemma 8 Every proof-tree is finite. 

Theorem 9 Every valid formula is provable. 

Proof. Let us assume that there is a valid formula A which is not provable. Take 
a maximal proof ending with the given formula A. By the lemma above its proof-
tree is finite and since the formula is not provable, one path of the tree does not 
end with an axiom and no rule can be applied here, so this node contains only 
prime components, namely predicate letters, formulae of types T^ and Fx. The 
sequent is not axiom, so the two sets of formulae of this sequent are disjunct, hence 
falsifiable, and we only need to assign the value true to each formula to the left of 
the arrow (antecedent) and the value false to each formula to the right of the arrow 
(succedent). By theorem 4. the sequent below this is falsifiable, too, and repeating 
the process we get the original formula falsifiable, but we assumed that it was valid. 
We get a contradiction because we assumed that this formula was unprovable. • 

7 A puzzle and some properties. 

It is hard to typeset the proof-trees in the original form so we shall use a different 
notation. We typeset 

T,A —> e;r,B —> e 
r ,AvB—>0 

as 
r , B - 0 
r , A - 0 

so the two paths are boxed and positioned vertically. 
This logic is not as nice as the logic of belief or logic of knowledge. For example, 

we do not have here the two common properties T and 4. Fig. 1. contains the 
proofs. The problematic paths are denoted by a star. 

Smullyan did not examined this logic, so no puzzles are for it. After Smullyan 
it is hard to invent new puzzles but we shall try it: We met three islander: A, B 
and C. A said that B cannot say that C is a knight. B said that C cannot say that 
A is a knight. C said that A cannot say that B is a knight. Let us prove that at 
least one of them isn't a knight. We formulate this puzzle by the following formula: 
Sa-.S6(TC A -iFc) A Si,-.Sc(Ta A -.Fa) A SC-.SQ(T6 A -.F6) D -.(Ta A -.Fa) V ->(T6 A -.F6) V 
-i(Tc A ->FC). Without the first step our proof is in Fig. 2. 

We have seen in Fig. 1. that two properties are lacking. This is also true for 
many of usual properties, but the formula SX(A D B) D (SXA D S X B), also known 
as K , is still valid. We prove this in Fig. 3. 
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S qA > Saj4, Fa 

Foj Fa ^ A,A,Ta 

F a j Ta, A A, Ta 

Fa —>• A, A SaA,Tg,A —>• Ta 

S a Aj S a A t Ta 

SaA —y A SaA y SaSaJ4 
—> Sa-A 3 A y 3 

Fig. 1. 

Si,-iSc(Ta A - i F q ) , Sc-iS0(T(, A - 'F 6 ) ,T a ,Tt ,T c ,F a —> ->S6(TC A ->FC), Fa , Fb, Fc 

Si,-.Sc(Ta A -'Fa),Sc->Sa(T i ) A -iF(,) ,T0 ,T6,T c ,Ta ,F c —> F6 ,Fa,Fi„F c 

S 6 - S c ( T a A -.F0) ,S c- .Sa(T6 A ->F(,),Ta,T{,,Tc,Ta -—> ->FC, F&, Fa , F&, Fc 

S6-iS c(Ta A ->Fa), SC-SQ(T6 A -|F6 ) ,Ta ,T ( ) ,T c ,Ta , — » Tc, F6, Fa , Ff,, Fc 

St -S c (T a A -iFa), Sc-iSa(Ti, A -F 6 ) ,Ta ,T 6 ,T c ,T a , —> Tc A ->FC, F(,, Fa>F^, Fc 

S 6 -S c (T a A ->Fa), S c -S a (T 6 A ~<Fb), Ta , T ,̂ Tc, TQ, Tc A ~iFc — • T6, Fa, Ff,, Fc 

Sb->Sc(Ta A -iFa), Sc-iSa(Ti, A -|F i,),Ta,T(,,Tc,Ta — • S6(TC A -iF c), Fa, Fb, Fc 

S6->Sc(Ta A -iFa),S c-iSa(T6 A ->Ff,),Ta,T(,,Tc,Ta, -iSÍ,(Tc A ->FC) —> Fa, Fb, Fc 

Sa-'SftÍTc A -^Fc),S6->Sc(Ta A -iFa) ,S c- iSa(T6 A ->F6) ,T0 ,T6 ,T c —> F a ,F 6 ,F c 

Sa^SftíTc A -iF c ) ,S6 - iS c (Ta A _|Fa), Sc-iSa(Ti, A ->F(,), Ta , -iFa , Tj,, ->FÍ,,Tc, ->FC 

Fig. 2. 
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Fa,A,F a —> A,B,SaB 

Fa,A,Ta,A—>Fa,B,B 

Fai A, Ta,A,B — • Ta , B 

Fa,A,ra,'A—>B,SaB 

S a A , F a , A — • B, S a ß 
S a A , F a —> A D B, SaB 

T a ,F a —> A,B,Fa,A 

Tai A, Ta — > B , F a , A 

SaA,Ta —> B,Fa,A 

SaA,Ta, B • Ta, A 

SoAjTa > A, SaB 

SaA,Ta,B —> B,Fa 

SaA,Ta,B,B —> Ta 

SaA,Ta,B —> S a B 

S a A , T 0 , A D B —> SaB 

S„(A D B),SaA —>• S a B 
S a (A D B) —> S a A D S a B 

S a (A DB)D (SaA D S a B ) 
Fig. 3. 
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Equivalence of Mealy and Moore Automata 

István Babcsányi * 

Abstract 
It is proved here that every Mealy automaton is a liomomorphic image of 

a Moore automaton, and among these Moore automata (up to isomorphism) 
there exists a unique one which is a homomorphic image of the others. A 
unique simple Moore automaton M is constructed (up to isomorphism) in 
the set MO(A) of all Moore automata equivalent to a Mealy automaton A 
such that M is a homomorphic image of every Moore automaton belonging 
to MO{A). By the help of this construction, it can be decided in steps |X|fc 

that automaton mappings inducing by states of a k-uniform finite Mealy 
[Moore] automaton are equal or not. The structures of simple k-uniform 
Mealy [Moore] automata are described by the results of [1]. It gives a pos-
sibility for us to get the k-uniform Mealy [Moore] automata from the simple 
k-uniform Mealy [Moore] automata. Based on these results, we give a con-
struction for finite Mealy [Moore] automata. 

1 Preliminaries 
Let X be a nonempty set. A Mealy automaton (over X) is a system A = 
(A, X, Y, S, A) consisting of a (nonempty) state set A, the input set X, a (non-
empty) output set Y, a transition function <5 : A x X —• A and a surjective output 
function A : A x X -» Y. 

A Moore automaton (over X) is a system A = (A,X,Y,S,fi) consisting of a 
(nonempty) state set A, the input set X, a (nonempty) output set Y, a transition 
function 5 : A x X —» A and a surjective sign function ¡j,: A —»• Y. 

If A,X and Y are finite, the Mealy [Moore] automaton A is called finite. 
For arbitrary Moore automaton A' = (A,X,Y,S,fi), the system A* = 

(A,X,Y,S,X) with A = is a Mealy automaton over X. The Mealy automa-
ton Ax is called the Mealy automaton associated with the Moore automaton A. 
It is said that A is the output function of the Moore automaton A. The Mealy 
automaton A = (A, X, Y, S, A) fulfils the Moore criterion if 

<5(ai,xi) = S(a2,x2) => A(ai,a;i) = A(o2 , i2) 

for every ai,a2 € A and xi:x2 € X. If fi : A —> Y is a surjective mapping 
such that A = fiő, the Moore automaton AM = (A,X,Y,S,fi) is called a Moore 

'Department of Algebra, Mathematical Institute, Technical University of Budapest, 1521 Bu-
dapest, Műegyetem rkp. 9., Hungary, E-mail: babcs@math.bme.hu 

541 

mailto:babcs@math.bme.hu


542 István Babcsányi 

automaton associated with the Mealy automaton A. Furthermore, we say that f.i is 
a sign function of the Mealy automaton A. We note that the output function A is 
determined by restriction of n to the subset 5(A,X) = {<5(a,2:);a £ A, x £ X} of A. 
Thus, the restrictions of all sign functions of the Mealy automaton A to 5(A, X) 
are equal. The Mealy automaton A = (A, X, Y, S, A) is called real if there exist 
ai,a,2 € A and X\,X2 EX such that 

5(a i ,x i ) = 5(a,2,X2) and A(ai ,z i ) ^ A(a2,x2)-

Let Z* and Z+ denote the free monoid and the free semigroup over a nonempty 
set Z, respectively. If A = (A,X,Y,S, A) is a Mealy automaton, the functions S 
and A can be extended to Ax X* in the usual forms as follows: 

S(a,e)=a, S(a,px) = S(a,p)S(ap,x), 

A(a,e) = e, X(a,px) = X(a,p)X(ap, x), 

where a £ A, p £ X+, ap denotes the last letter of S(a,p) and e denotes the empty 
word. ([5], [2]). If A = ( A , X , Y , 5 , n ) is a Moore automaton, the extension of S is 
similar to the case when A is a Mealy automaton. The extension of ¡J, to A + is 
given by 

(j,(aia2 ... ak) = /x(ai)/x(a2).. . fi{ak) (ai, a2 , •. •, ak 6 A). 

It means that if A = fj.5, then 

A (a,p) = fj,(5(a,p)), 

for all a £ A, p £ X+. But A (a, e) = e and fJ,(5(a, e)) = fj.(a) for all a £ A. 
The Mealy [Moore] automaton A' = (A', X, Y', S', A'[/i']) is a subautomaton of 

the Mealy [Moore] automaton A if A' C A, Y' C Y, 5' and A' [¿i'] are restrictions 
of 6 and A [/ii] to A' x X [A']. 

Let A j = (Ai,X,Y,5i,\i[fii\) (i = 1,2) be arbitrary Mealy [Moore] automata 
over X• We say that a mapping : Ai —> A2 is a homomorphism of A i into A 2 if 

^ ( ^ ( a , ! ) ) = 62(tp(a),x), Xi(a,x) = X2(ip(a),x) [^i(o) = ¿/2(<p(a))] 

for all a £ A and x £ X. It is easy to see that 

Ai(a,p) = X2{f(a),p) 

for all p € X*. The mapping ip : Ai —> A2 is called a homomorphism of a Moore 
automaton Ai into a Mealy automaton A 2 if <p is a homomorphism of (Aj)^ into 
A2 . We note that every homomorphic image of a real Mealy automata is real, too. 

Every state a £ A of a Mealy automaton A induces a mapping aa : X* —> Y* 
given by aa{p) = X(a,p) (p £ X*). The mapping a : X* Y* is called automaton 
mapping if there exist a Mealy automaton A and a state a £ A such that a = aa. 
The mapping a : X* Y* is an automaton mapping if and only if it preserves the 
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length of words and the map of every prefix of a word is a prefix of the image word. 
The Mealy automata A and B are called equivalent if { a a ; a £ A) = {ay, b £ B). 
The Mealy automaton A and the Moore automaton B are equivalent if A and 
Ba are equivalent. Similarly, the Moore automata A and B are equivalent if Aa 

and Ba are equivalent. 
An equivalence relation p of state set A of a Mealy [Moore] automaton A is 

called a congruence on A if 

(a, b) £ p (6(a, x), 5(b, x)) £ p, X(a,x) = A(b, x) [p(a) = /z(b)] • 

for all a,b £ A and x £ X. The p-class of A containing the state a is denoted by 
p[a]. The greatest congruence on A is the relation [71-̂ J defined by 

(a,fo) e p A [ ? r A ] <=» X(a,p) = X(b,p) \jj,(6(a,p)) = p.{5(b,p))} 

for all p £ X*. Denoting the identity relation on the state set A by LA, we say that 
A is simple if = LA [^a = that ^ an<^ PA. [•^•/7rA'] a r e isomorphic. 

Since every homomorphic image of a Mealy automaton A is equivalent to A ([5], 
[7]), therefore we can give the automaton mappings with simple Mealy automata. 
The Mealy automata A and B are equivalent if and only if A/pj^ and B / p g are 
isomorphic ([5]). Thus, simple Mealy automata are equivalent if and only if they 
are isomorphic. For every Mealy automaton A, there exists a Moore automaton B 
such that A and B are equivalent ([4], [5], [6]). From this it follows that we can 
give the automaton mappings by simple Moore automata. 

2 Moore automata equivalent to a Mealy 
automaton 

For a Mealy automaton A = (A, X, Y, 5, A) over X, let us denote by A y = (A x 
Y,X,Y,5Y,HY) the Moore automaton over X for which 

6Y((a,y),x) = (S(a,x),X(a,x)) and py(a,y) = y {a £ A,y £Y,x € X). 

If Ay = /¿y<5y, then 

XY((a,y),x) = p.Y{SY((a,y),x)) = /j.Y(S(a,x),X(a,x)) = X(a,x) • 

for every a £ A,y £ Y,x £ X, and hence, A y is equivalent to A . 

Lemma 1 If the Mealy automaton A' is a homomorphic [isomorphic] image of the 
Mealy automaton A, then Ay is a homomorphic [isomorphic] image of Ay. 

Proof. If tp is a homomorphism [isomorphism] of A onto A ' , the mapping 
•ip : A x Y A! x Y, such that 

ip(a,y) = {<p(a),y) (a£A,y£Y), . ,• 
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is a homomorphism [isomorphism] of Ay onto A'Y. 

Consider the subautomata M = (M, X, Y, SY, fJ.'Y) of A y where for every a G 
A there exists y G Y such that (a,y) € M. Let M ( A ) be the set of all such 
subautomata M . 

Lemma 2 The Mealy automaton A is a homomorphic image of every automaton 
M in M(A). 

Proof. It is easy to see that the mapping tp : M —• A, defined by <p{a, y) = 
a (a G A), is a homomorphism of M^ onto A. 

Theorem 1 The Mealy automaton Ai = (A\, X, Y, Si, Ai) is a homomorphic im-
age of a Moore automaton A2 = (A2, X, Y, S2, H2) if o,nd only if there exists a 
homomorphic image of A2 in M(A\). 

Proof. First, we note that every automaton M € M(Ai ) is a Moore automa-
ton. By Lemma 2, if there exists a homomorphic image of A2 in M (Ai) , then Ai 
is a homomorphic image of A 2 . 

Conversely, assume that tp is a homomorphism of the Moore automaton A2 onto 
the Mealy automaton Ai - It is evident that by the state set M = {((p(b), 112(b))-, b € 

M = (M,X,Y,5'y,fj.'Y) G M ( A i ) . 

We show that the mapping ip : A2 —> M, defined by 

= (beA2), 

is a homomorphism of A 2 onto M . It is obvious that the mapping tp is surjective. 
For every b G A2 and x G X 

iP(52(b,x)) = (<p(82{b,x)),to(h{b,x))) = (S1(ip(b),x),X2(b,x)) = 

= (Si(<p(b),X),M(<p(b),x)) = 6'Y((<p(b),H2(b)),x) = 6'Y(m,x), 

to(b) = &{<p{b),= 

Therefore, ip is a homomorphism. 

Theorem 2 For every Mealy automaton A (up to isomorphism) there exists a 
unique automaton M G M(A) which is a homomorphic image of any automaton 
inM(A). . 

Proof. First, we give the automaton M. If A ^ 8(A,X), let k be a mapping 
of A \ S(A, X) into Y. For all a G A, consider the sets Ya C Y such that 

X(b, x) G Ya <5(6, x) = a (beA,x 6 X). 

We define the sets Ma (a G A) as follows. If a G ¿ ( A , X ) , let Ma — {(a,y)\y G 
Yo}, and if a $ 6(A,X), let Ma = {(a, « (a) ) } . Let M = Ua€>tMQ . Then M = 



Equivalence of Mealy and Moore Automata .545 

(M,X,Y,6Y,HY) € M(A). Let M ' ( A ) be the set of'all such automata M . If 
A = S(A, X), then |M'(A)| = 1. We show that if A ^ ¿(A, X), then all automata 
in i f ' ( A ) are isomorphic. Assume that K{ (i = 1,2) are arbitrary mappings of 
A \ <5(A, X) into Y and the automaton M ; G M' ( A) is defined by the mapping k̂ .-
It can be easily verified that the mapping ip : Mi —> M2 , defined by 

is an isomorphism of Mi onto M 2 . 
Now we show that for every B G M{A), there is an M G M ' ( A ) such that-M 

is a homomorphic image of B. We define the following partition of the state set 

Take an automaton M 6 M'(A) such that MQ C Ba (a £ A). By the definition of 
M'( A) , one can see that there exists such an automaton M . Let ip be an arbitrary 
mapping of B onto M for which 

It is clear that -0 is a homomorphism of B onto M. 

Lemma 3 ([7]) Let A be a Mealy automaton and ME(A) be the set of all Mealy 
automata equivalent to A . Then (up to isomorphism) there exists a unique simple 
Mealy automaton in M E ( A ) which is a homomorphic image of every automaton 
in M E { A ) . 

We have a similar statement for Moore automata which are equivalent to a 
Mealy automaton. 

Theorem 3 Let A be a Mealy automaton and MO(A) be the set of all Moore 
automata which are equivalent to A. Then (up to isomorphism) there exists a' 
unique simple Moore automaton in MO(A) which is a homomorphic image of each 
automaton in MO(A). 

Proof. Let A 0 denote a simple Mealy automaton in ME(A) which is homo-
morphic image of any automaton in M E ( A ) . By Lemma 3, such an automaton 
exists. Moreover, by Theorem 2, (up to isomorphism) there is a unique Moore au-
tomaton Mo 6 M ( A o ) which is homomorphic image of any automaton in M(Ao). 
Using the last fact, it can be seen that M 0 is a simple Moore automaton. 

Now, let B be an arbitrary Moore automaton equivalent to A. We prove that 
M 0 is a homomorphic image of B. Since B is equivalent A , Ba G M E ( A ) , and 
hence, Ao is a homomorphic image of B. This implies, by Theorem 1, that there 
is an M G M(AQ) such that M is a homomorphic image of B, and therefore, M 0 

is a homomorphic image of B as well. 

B: 
B a = {(o,i/); (a,y) G B} (a-G A). 

{V(&); b£Ba} = Ma and V£> G Ma : ^(b) = b. 
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3 Uniform automata 

Let A = (A, X, Y, S, A[p]) be a Mealy [Moore] automaton over X. Denote by |p| the 
length of the word p <E X*. Let Xh = {p € X*\|p| = k} and X(k) = {p € X* ; |p| < 
к}. For every nonnegative integer k, we define the equivalence relation т]к on A as 
follows: 

(a, b) e щ <=> A(a,p) = A(b,p) '[/a($(a,p)) = M<5(M)] 

for all p e X(k). We note that if A is a Mealy automaton, the relation щ is the 
universal relation on A and щ is the output-equivalence of A ([2]). If A is a Moore 
automaton, 770 is the sign-equivalence of A ([3]). 

Lemma 4 If a and b are arbitrary states of a Mealy [Moore] automaton A = 
(А,Х,У,(5,А[м]), then 

(a, b) € щ X(a,p) = X(b,p) [fi(a) = ц{Ь), X(a,p) = X(b,p)} 

for all p E Xk. 

Proof. If (a, b) e rjk, the statement follows from the definition of i]k. 
Conversely, assume that if A is a Mealy automaton, A(a,p) = A(b,p), and if A 

is a Moore automaton, then fj,(a) = ц(Ь), X(a,p) = A(b,p) holds for every p € Xk. 
Take arbitrary words q,r £ X* such that < к and |r| = к - Then 

X(a,q)X(aq,r) = X (a,qr) = X{b,qr) = X{b,q)X(bq,r). 

Thus, X(a,q) = A(b,q), which implies our statement. 

The Mealy [Moore] automaton A is called k-uniform if щ = PaJ^a]- The 
k-uniform Mealy [Moore] automata are (к + l)-uniform. Every subautomaton of a 
k-uniform Mealy [Moore] automaton is k-uniform, too. An arbitrary homomorphic 
image of a Mealy [Moore] automaton is k-uniform if and only if it is k-uniform. The 
Mealy [Moore] automaton is said to be uniform if there exists a positive integer к 
such that it is k-uniform. Every finite Mealy [Moore] automaton is k-uniform for 
some positive integer k. Let a a and аь be automaton mappings induced by states 
a and b of a k-uniform finite Mealy [Moore] automaton A = (A, X, Y, S, A[/x]), 
respectively. If aa(p) = аь(р) for every p € Xk, then aQ = а>ь- Thus, it can be 
decided in |X|fc steps whether two automaton mappings of this kind are equal or 
not. 

Theorem 4 If the Moore automaton A = (A, X, Y, S, p) is k-uniform, the Mealy 
automaton A\ is (k+1)-uniform. 

Proof. We note that A\ is (k+l)-uniform if and only if = (л+ъ where 
(a,b) € Cifc+i (a>b 6 A) if and only if A(a,p)) = X(b,p)) for all p £ X(k + 1). 
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Let the Moore automaton A = (A,X,Y,5,n) be k-uniform, that is, % = 
Assume that (a, b) G Cfc+i- Then, 

fi(S(a,x)) = A (a,x) = A (b,x) = fi(5(b,x)), 

H(6{5{a,x),q)) = X(S(a,x),q) = X(S(b, z), q) = fi(S(6(b,x),q)) 

for every x G X, q E Xk. Thus, by Lemma 4, (5(a,x),5{b,x)) G T]k .= 7rA. This 
yields that 

A(<5(a,z),r) = n(5(6(a,x),r)) = m(6(5(b,x),r)) = A(J(6,x),r) 

for all r G A ' + . Therefore, (S(a,x),S(b,x)) G Ca+i> that is, Q+i is a congruence on 
A\. Thus, C/t+i = Pax' From this we get that A\ is (k+l)-uniform. 

Theorem 5 The Mealy [Moore] automaton A = (A, X, Y, S, A[/j]) is k-uniform if 
and only if rjk = T]k+i • 

Proof. Assume that the Mealy [Moore] automaton A is k-uniform, that is, 
r)k = p A . Since T)k+i C r)k and n ^ ^ = P a K a J ' therefore rjk = Vk+i-

Conversely, assume that r]k = r)k+1- If A is a Mealy automaton, rj0 is the 
universal relation on A. If t]0 = rji, the relation rj\ is a congruence on A . It yields 
that 770 = 771 = p a - Furthermore let us assume that A is a Mealy "automaton 
and 1 < k. Let (a,b) G rjk. Since rjk = rjk+i, then (a,b) G Vk+i- By Lemma 4, 
A(a,xp) = X(bjxp) for every x G X and p G Xk. From this it follows that 

X(S(a, x),p) = X{5{b,x),p). 

Moreover, if A is a Moore automaton, 

n(5(a, x)) = A(a, a;) = X(b, x) = fJ.(5(b, x)), • 

that is, (6(a, x), S(b, x)) G rjk- This results in that rjk is a congruence on A , and so 
Vk = P a ^ a I - Hence, A is k-uniform. 

Lemma 5 If a and b are arbitrary states of a Mealy [Moore] automaton A = 
(A,X,Y,5,X[fi\), then 

(a,b)er]k+i (a,b) G rjk and (5(a,x),6(b,x)) G rjk, for all x G X. 

Proof. Assume that (a, b) G rjk+1. Since Tjk+i C rjk, then (a, b) G r]k. By 
Lemma 4, X(a,xp) = X(b,xp) for every x G X and p G Xk. But 

X(a,x)X(5(a,x),p) — X(a,xp) = X(b,xp) — X(b,x)X(S(b,x),p), 

and so 
X(S(a,x),p) = X(S(b,x),p). 
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Moreover, if A is a Moore automaton, 

fj,(5(a,x)) = X(a,x) = \(b,x) = n(S(b,x)). 

By Lemma 4, this yields that (5(a,x),5(b:x)) £ r)k. 
Conversely, assume that (a, b) £ t]k and ( 6 ( a , x ) , 6 ( b , x ) ) £ rjk for every x £ X. 

If x £ X and q £ Xk, then A(a,x) = X(b,x) and X(S(a,x),q) = X(S(b,x),q). From 
this it follows that 

A (a,xq) — X(a,x)X(S(a,x)q) = X(b,x)X(S(b,x),q) = X(b,xq). 

Moreover, if A is a Moore automaton, {¿(a) = n{b). By Lemma 4, (a,b) £ r)k+i-

Theorem 6 For every Mealy automaton A = (A,X,Y,S,X), Ay is k-uniform 
[simple] if and only if A is k-uniform [simple]. 

Proof. If a € A, y £ Y and p £ X+, then ^y{Sy((a,y),p)) = A(a,p). 
We note that A y is k-uniform if = (it, where is an equivalence relation 

on A x y for which 

((o,l/i).(&.S/2)) e Cfc ' HY(6y((a,yi),p)) = nY(6Y((b,y2),p)) 

for all p £ X (k) . 
Assume that the Mealy automaton A is k-uniform. Consider two arbitrary 

elements (a, 2/1) and (b,y2) of A x Y with ((0,2/1), (b,y2)) € 01- Then 

V\ = ny(a,yi) - VY{b,y2) = 3/2, 

A(a,p) = ixy(5y{{a,yi),p)) = fiY(SY{(b, y2),p)) = X(b,p) 

for all p € Xk. By Lemma 4, this implies (a, b) £ rjk = By Theorem 5, 
(a, 6) £ r?fc+i, that is, 

My(M(a>2/i)>P)) = Ha,P) = x(b,p) = VY(SY((b,y2),p)) 

for all p 6 which results in (a, b) £ Cfc+i- Thus, Ofe = Ofc+i- By Theorem 5, 
A y is k-uniform. 

Conversely, assume that A y is k-uniform. Let (a,b) 6 If y £ Y, then 
((a,y),(b,y)) £ Cfc = "'Ay' B y Theorem 5, ((a,y),(b,y) £ Cfc+i, and thus (a,6) e 
rjfc+i. Therefore, r/k = tyt+i, that is, A is k-uniform. 

We can prove, in a similar way, that A y is simple if and only if A is simple (see 
Lemma 2 in [1]). 

By Theorem 6 and Lemma 2, every k-uniform Mealy automaton is equivalent to 
a k-uniform Moore automaton. By Theorem 3, among these Moore automata (up 
to isomorphism) there exists a unique simple k-uniform Moore automaton which is 
a homomorphic image of these Moore automata, that is, the cardinality of its state 
set is the least among these Moore automata. 
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4 Simple uniform automata 
In this part of the paper, we describe the structure of the simple uniform Mealy 
[Moore] automata using the results of paper [1]. 

Lemma 6 (Lemma 3 in [1]) Every subautomaton of a simple Mealy [Moore] au-
tomaton A over X is simple and the subautomata of A are isomorphic if and only 
if they are equal. 

Denote the set of mappings a^ : X1 Y by A^ for every integer i > 0. 
Consider the set A = IlSi . Let 

o4l) (z i , X2, • • • ,Xi) = a^+1)(x}xi,x2, ...,Xi) (X,XI,X2, •. • ,Xi £ A'), 

a ^ f a « ^ , . . . , ^ , . . . ) . 

Assume that ae = a and let apx = (a p ) x for every p G X* and x £ X. Define the 
Mealy automaton A = (A, X, Y, 5, A) with transition and output functions: 

ô(a,x) = ax, X(a,x) = a^(x) (a £ A, x £ X). 

Theorem 7 (Theorem 4 in [1]) The Mealy automaton A is simple. A Mealy 
automaton A = (A, X, Y', S, A) over X is simple if and only if it is isomorphic to a 
subautomaton of A, where Y'CY. 

Theorem 8 (Theorem 5 in [1]) The Moore automaton Ay is simple.and A is a 
homomorpic image of Ay. A Moore automaton A = (A, X, Y' ,S, /i) (Y' Ç Y) over 
X is simple if and only if it is isomorphic to a subautomaton of Ay. 

Consider the set Ak = ElLi ^ a n d a mapping g : Ak Let 

a4 l 9 l X = ( 4 1 ) > a W 1 . . . > a W ) 1 . . 

where = g(ak). 
We define the Mealy automaton Akg = (Ak,X, Y, 5, A) with the following tran-

sition and output functions: 

S(ak,x) = ak,g,x, \{ak,x) = a^ix) {ak e Ak, x G X). 

Consider a nonempty set Ho Ç Ak. It is evident that 

Hj = {<Xk,g,x\ak £ Hj-i,x £ X} Ç Ak ( j = 1 ,2 , . . . ) . 

If H ^ 
= Hq U H\ U . . . U Hj for every nonnegative integer j, then is a 

subautomaton of Akg if and only if C Hti) . We note that if X and Y are 
finite sets, then there exists a nonnegative integer j such that j j (J+ 1) Ç H^K 
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Theorem 9 A Mealy automaton A over X is simple k-uniform if and only if there 
exists a mapping g such that A is isomorphic to some subautomaton 

Proofs As in the proof of Theorem 7, we can show that the Mealy automaton 
Ak g is simple. By Lemma 6, every subautomaton of A k g is simple. On the other 
hand, it is easy to verify that the subautomata of Ak g are k-uniform. 

Therefore, by Theorem 7, it is sufficient to show that every k-uniform subau-
tomaton of A is isomorphic to an automaton H w . Let A' = {A1, X,Y', SA,, \A,) 
be a k-uniform subautomaton of A. Let 

for every a = ( a ^ ^ a ' 2 ' , . . . , a ^ , . . . ) £ A'. Define a mapping g : Ak _4(fc+1) 
such that g(ak) = a( f c + 1 ' for every a 6 A'. Let H0 = {a k \a £ .4 '} . Since A! is a 
subautomaton of A, then Hi C Ho- Thus, H ^ is a subautomaton of A k g . The 
mapping (p : A1 Ho, for which <p(a) = ak (a £ A'), is an isomorphism of X onto 
H<°>. 

Every finite Mealy [Moore] automaton is k-uniform for some nonnegative integer 
k. Thus, we get easily the following theorem from Theorem 9. 

Theorem 10 A finite Mealy automaton A over X is simple if and only if there 
exist a nonnegative integer k and a mapping g : Ak —» for which A is 
isomorphic to some subautomaton of Ak g. 

By Theorems 6, 9 and 10, the following two theorems are true. 

Theorem 11 A Moore automaton A over X is simple k-uniform if and only if it 
is isomorphic to some subautomaton of(Aki9)Y-

Theorem 12 A finite Moore automaton A over X is simple if and only if there 
exists a nonnegative integer k for which it is isomorphic to some subautomaton of 

Let C = (C,X,Y',5c, \c) be a subautomaton of the automaton A. Consider 
a family of nonempty sets Ua (a £ C) such that Ua fl Up = 0 if a ^ ft. Let 
Uc = Ua€cUa . For all x £ X and a £ C, let <pa<x be a mapping of Ua into 
Uai. Define the functions Suc(a,x) = ^pa,x(a) and \uc(a,x) = a^(x) for all 
a £ Ua, a £ C and x £ X. It can be easily verified that U c = (Uc, X, Y',5uc, \uc) 
is a Mealy automaton ([2]). 

Lemma 7 Every Mealy automaton A = (A, X,Y',6, A) ( V C F ) equals an au-
tomaton Uc-
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Proof. By Theorem 7, there exists an isomorphism tp of A/pj^ onto a sub-
automaton C of A. Assume that <p(pA[aD = aa> = P a H ( a ^ = 
S(a,x) and Uc = UaeAUaa. Since 

X(a,x) = Xa/pa(p a W - 1 ) = Ac(aa,x) = a^\x) = XUb(a,x), 

therefore A = U c . 

Theorem 13 The automaton Uc is k-uniform if and only ifC is simple k-uniform. 

Proof. It is evident that if the automaton U c is k-uniform, then C is simple 
k-uniform. 

Conversely, assume that the automaton C is simple k-uniform. Assume that 
(a, b) £ r]k for some a £ Ua and b £ Up. Then, by Lemma 4, for every p £ Xk 

>>c{a,p) = A uc(a,p) = XUc{b,p) = A c(P,p)-

But C is simple k-uniform, thus a = 0, that is, a,b £ Ua. It means that ap,bp £ 
Uap. Then, for all x £ X, 

XUc(a,px) = XUc(a,p)XUc(ap,x) = XUc(b,p)XUc(bp,x) = XUc(b,px), 

that is (a, b) £ r)k+\ • By Theorem 5, U is a k-uniform automaton. 

By Theorems 6 and 13, we get the following theorem: 

Theorem 14 The automaton ( UC)Y is k-uniform if and only if CY is simple k-
uniform. 

By Theorems 10 and 12, we give a construction for finite simple Mealy and 
Moore automata. Thus, by using Theorems 13 and 14, we can give all finite Mealy 
and Moore automata. 
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Pseudo-Hamiltonian Graphs 

Luitpold Babel * Gerhard J. Woeginger + 

Abstract 
A pseudo-/i-hamiltonian cycle in a graph is a closed walk that visits every 

vertex exactly h times. We present a variety of combinatorial and algorithmic 
results on pseudo-/i-hamiltonian cycles. 

First, we show that deciding whether a graph is pseudo-/i-hamiltonian is 
NP-complete for any given h > 1. Surprisingly, deciding whether there exists 
an h > 1 such that the graph is pseudo-ft-hamiltonian, can be done in poly-
nomial time. We also present sufficient conditions for pseudo-/i-hamiltonicity 
that axe based on stable sets and on toughness. Moreover, we investigate the 
computational complexity of finding pseudo-/i-hamiltonian cycles on special 
graph classes like bipartite graphs, split graphs, planar graphs, cocomparabil-
ity graphs; in doing this, we establish a precise separating line between easy 
and difficult cases of this problem. 

1 Introduction 
For an integer h > 1, we shall say that an undirected graph G = (V,E) is pseudo-
h-hamiltonian if there exists a circular sequence of /i • |V| vertices such that 

• every vertex of G appears precisely h times in the sequence, and 

• any two consecutive vertices in the sequence are adjacent in G. 

A sequence with these properties will be termed a pseudo-h-hamiltonian cycle. 
In this sense, pseudo- 1-hamiltonian corresponds to the standard notion hamilto-
nian, and a pseudo-1-hamiltonian cycle is just a hamiltonian cycle. The pseudo-
hamiltonicity number ph(G) of the graph G, is the smallest integer h > 1 for which 
G is pseudo-fo-hamiltonian; in case no such h exists, ph(G) = oo. A graph G with 
finite ph(G) is called pseudo-hamiltonian. Pseudo-/i-hamiltonicity is a non-trivial 
graph property. E.g. for every h > 2, the graph Gh that results from glueing to-
gether h triangles at one of their vertices, is pseudo-/i-hamiltonian but it is not 
pseudo-(/i - l)-hamiltonian. 
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Figure 1: Complexity results for some of the treated graph classes. NP-complete 
problems have a solid frame, polynomially solvable problems have a dashed frame. 

Results of this paper. The problem of deciding whether a given graph is hamil-
tonian is NP-complete. Hence, it is not surprising at all that for each fixed value 
of h > 1, the problem of deciding whether ph(G) < h holds for a given graph G is 
also NP-complete. However, if we just ask whether ph(G) < oo, i.e. whether there 
exists some value of h for which G is pseudo-/i-hamiltonian, then we can answer 
this question in polynomial time (and this is perhaps surprising). This polynomial 
time result is based on the close relationship of pseudo-hamiltonian graphs with 
regularizable graphs (cf. Section 2). 

We also provide a nice and simple characterization of pseudo-hamiltonian graphs 
that is based on the stable sets of vertices of the graph. We show that ev-
ery pseudo-hamiltonian graph G must be l/ph(G)-tough, and that every 1-tough 
graph is pseudo-hamiltonian. The square of a connected graph is always pseudo-
hamiltonian. For d-regular graphs with d > 3, we derive a tight result of the 
following form: There exists a threshold r(d) such that for h < r(d), it is NP-
complete to decide whether a ¿-regular graph is pseudo-/i-hamiltonian, whereas for 
every h > r(d), a (¿-regular graph automatically is pseudo-/i-hamiltonian. Hence, 
the computational complexity of deciding pseudo-/i-hamiltonicity of regular graphs 
jumps at r(d) from trivial immediately to NP-complete. 

Finally, we will investigate the computational complexity of computing ph(G) 
on many well-known special graph classes, like bipartite graphs, split graphs, par-
tial fc-trees, interval graphs, planar graphs etc. Figure 1 summarizes some of our 
results together with some of their implications for special graph classes. Directed 
arcs represent containment of the lower graph class in the upper graph class. For 
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classes with a solid frame, the computation of ph(G) is NP-complete, and for classes 
with a dashed frame, this problem is polynomial time solvable (for exact definitions 
of all these graph classes cf. Johnson [12]). Note that the results for trees, bipar-
tite graphs, split graphs and cocomparability graphs imply all the other results in 
Figure 1. 
Organization of the paper. Section 2 investigates the connections between 
pseudo-hamiltonicity and regularizable graphs, and it states several general com-
plexity results. Section 3 relates pseudo-hamiltonicity to stable sets, to connectivity 
and to toughness. Section 4 derives the complexity threshold for oi-regular graphs, 
and Section 5 deals with squares of graphs. Finally, Section 6 collects the complex-
ity results for the special graph classes. 
Notation and conventions. Throughout this paper, we only consider undirected 
graphs. All graphs have at least three vertices. For convenience we often write 
G — W instead of G(V — W), the graph that results from removing the vertices in 
W together with all incident edges from G. For a set W C V, we denote by N(W) 
the set of all vertices outside W which are adjacent to vertices from W. A stable 
set is a set of pairwise non-adjacent vertices. A stable set S is maximal if there is 
no stable set S' which properly contains S. The stability number a(G) is the size 
of a largest stable set in G. 

2 Complexity aspects of pseudo-hamiltonicity 
In this section, we give several characterizations of pseudo-hamiltonian graphs that 
are based on regularizable graphs. These characterizations imply that one can 
decide in polynomial time whether ph(G) < oo. On the other hand, we will show 
that for every fixed integer h > 1 it is NP-complete to decide whether ph(G) < h. 

A graph G = (V,E) is called regularizable (see Berge [2, 3]), if for each edge 
e E E there is a positive integer m(e) such that the multigraph which arises from 
G by replacing every edge e by m(e) parallel edges is a regular graph. A useful 
characterization of regularizable graphs can be found in Berge [2]. 

Proposition 2.1 (Berge [2]) 
A connected graph G = (V, E) is regularizable if and only if one of the following 
two statements holds 

(a) G is elementary bipartite 
(i.e. G is bipartite, connected and every edge ofG appears in a perfect match-
ing); 

(b) G is 2-bicritical 
(i.e. 1^(5)1 > |S| holds for every stable set S CV). • 

Regularizable graphs are related to pseudo-hamiltonian graphs as follows. 

Lemma 2.2 A graph G is pseudo-hamiltonian if and only if G has a connected 
spanning regularizable subgraph. 
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Proof. (Only if). Clearly, in a pseudo-/i-hamiltonian cycle (considered as a multi-
graph) each vertex has degree 2h. Hence, the skeleton of a pseudo-/i-hamiltonian 
cycle (that is, the simple graph arising from replacing parallel edges by simple 
edges) of a graph G constitutes a regularizable subgraph of G which, additionally, 
is connected and contains all the vertices of G. 

(If). Conversely, assume that a graph G has a connected spanning regularizable 
subgraph H. Let H* denote the associated regular multigraph, say of degree 2h 
(if the degree of the regular multigraph is odd, multiply every number m(e) by 
two). Clearly, H* has an Eulerian cycle. This Eulerian cycle corresponds to a 
pseudo-/i-hamiltonian cycle in G. • 

A graph has a perfect 2-matching if one can assign weights 0, 1 or 2 to its edges 
in such a way that for each vertex, the sum of the weights of the incident edges is 
equal to 2. The following characterization of regularizable graphs can be found in 
the book by Lovász and Plummer [13]. 

Proposition 2.3 (Lovász and Plummer [IS]) 
A graph G = (V, E) is regularizable if and only if for each edge e € E there exists 
a perfect 2-matching of G in which e has weight 1 or 2. • 

Proposition 2.3 has several important consequences. 

Corollary 2.4 (i) For any integer h with 1 < h < ph(G), graph G does not possess 
a pseudo-h-hamiltonian cycle, (ii) For any integer h > ph(G), graph G does possess 
a pseudo-h-hamiltonian cycle. 

Proof. Statement (i) trivially follows from the definition of ph(G). In order to 
prove (ii), we show that if a graph has a pseudo-/i-hamiltonian cycle then it also 
has a pseudo-(h + l)-hamiltonian cycle: Let C be a pseudo-/i-hamiltonian cycle in 
G. Then the skeleton of C is regularizable, and consequently possesses a perfect 
2-matching. If one adds this perfect 2-matching to the 2/i-regular multigraph that 
corresponds to C, one gets a (2h + 2)-regular multigraph that corresponds to a 
pseudo-(/i + l)-hamiltonian cycle. • 

Proposition 2.3 together with Lemma 2.2 also allows us to construct an algorithm 
to decide efficiently whether a graph is pseudo-hamiltonian (or, equivalently, to 
decide whether a graph has a connected spanning regularizable subgraph). The 
algorithm repeatedly runs through all the edges of the graph and deletes all those 
edges which do not allow a perfect 2-matching with the desired property. If the 
remaining graph is disconnected then G is not pseudo-hamiltonian. Otherwise, 
one obtains a connected spanning regularizable subgraph of G, i.e. G is pseudo-
hamiltonian. 
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Algorithm PSEUDO-HAMILTON(G) 
1. UNCHECKED:= E\ E*:= E\ 
2. W h i l e UNCHECKED ^ 0 do 

Pick an arbitrary edge e GUNCHECKED; 
Check whether the graph (V,E*) possesses a perfect 

2-matching in which edge e has weight 1 or 2; 
If there is no such perfect 2-matching 

then E*:= E* - {e } ; 
UNCHECKED:= UNCHECKED—{e}; 

3. If the graph (V, E*) is connected . • • 
then return 'yes' else return 'no'. 

Since perfect 2-matchings can be found in polynomial time (cf. Lovász and Plummer 
[13]), the whole algorithm can be implemented to run in polynomial time. 

Theorem 2.5 It can be decided in polynomial time, whether ph(G) < oo holds for-
a given graph G. • 

In strong contrast to Theorem 2.5, it is NP-complete to compute ph(G) exactly. 

Theorem 2.6 For every fixed value h > 1, the problem of deciding whether 
ph(G) < h holds for a given graph G is NP-complete. 

Proof. It is well known that deciding pseudo-l-hamiltonicity (i.e. standard hamil-
tonicity) of a graph is NP-complete. Let h > 2 be some fixed integer. Consider 
some undirected graph G' = (V',E'), and construct another graph G = (V,E) 
from it as follows: V contains the vertices in V' together with 3(/i ^ 1)|V^| new. 
vertices. For every vertex v £ V', there are 3/i — 3 new vertices that are called 
a®, 6®, and c®, where i = 1,... ,h - 1. The edge set E contains all edges in E' 
together with 4 (h — 1)|V| new edges. For every vertex v £ V', there are'4/i - 4 
new edges (u,a®), (a*, blv), (&*, c*), and (c*, a*), where i = 1 , . . . , h - 1. We claim 
that the constructed graph G possesses a pseudo-/i-hamiltonian cycle if and only if 
the original graph G' possesses a hamiltonian cycle. 

(Only if). Assume that G possesses a pseudo-/i-hamiltonian cycle C. Consider 
for arbitrary v £ V' and 1 < i < h — 1 the connected component consisting of al, 
blv, and clv. The cycle C can visit and leave this component only via the edge (v, al), 
and this edge must be used an even number of times. Hence, C uses at least 2h — 2 
edges incident to v just for visiting the (h— 1) attached components. There remain 
only two edges that can connect v to other vertices in V , and it is easy to see that 
these pairs of edges taken over all vertices in V' correspond to a hamiltonian cycle 
in G'. 

(If). Now assume that G' possesses a hamiltonian cycle. Construct a multigraph 
with vertex set V as follows: The multigraph contains all edges that are used by 
the hamiltonian cycle. Moreover, it contains for'every v £ V' and for every i, 
1 < i < h - 1, two copies of the edge (u,o*), h — 1 copies of the edge (a*,6*), 
h + 1 copies of the edge (&*, c*), and h— T copies of the edge (c®, alv). The resulting 
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multigraph is connected and 2/i-regular. Hence, it contains an Eulerian cycle that 
corresponds to a pseudo-/i-hamiltonian cycle in a natural way. • 

Question 2.7 What can be said about approximating ph(G)? Can one always find 
in polynomial time a, say, pseudo-2ph(G)-hamiltonian cycle? 

3 Stable sets, connectivity and toughness 
This section discusses the relationship of pseudo-hamiltonicity with the structure of 
stable subsets, with the connectivity of a graph, and with the toughness of a graph. 
First, consider the following two conditions (CI) and (C2) on a graph G = (V,E). 

(CI) 1^(5)1 > |S| holds for every maximal stable set S CV. 

(C2) \N(S)\ > |S| holds for every non-maximal stable set S C V. 

Lemma 3.1 If a graph G = (V, E) is pseudo-hamiltonian, then it fulfills the con-
ditions (CI) and (C2). 

Proof. Consider a pseudo-/i-hamiltonian cycle C and let 5 be a stable set in G. 
Every vertex from S appears h times in C. Since S is stable, each vertex from S 
must be followed by a vertex from N(S). Hence the set N(S) is visited at least 
h • |S| times. Since each vertex from N(S) also appears h times in C we obtain 

MS)| > |S|. ( i ) 

Now assume that |N(S)| = |S|. Then vertices from 5 and from N(S) must alternate 
in C, and it is not possible to visit any vertex from V - S - N(S). This implies 
that V = S U N(S), or equivalently, that S is a maximal stable set. • 

Corollary 3.2 If the graph G = (V,E) with \V\ > 3 vertices is pseudo-hamiltonian 
then the following holds: 

(a) G has no vertices of degree one. 

(b) a(G) < \\V\. • 

We can use the results on regularizable graphs (cf. Section 2) in order to show 
that, for a connected graph, the conditions (Cl) and (C2) are also sufficient for the 
existence of a pseudo-hamiltonian cycle. 

Lemma 3.3 If a connected graph G = (V,E) fulfills conditions (Cl) and (C2), 
then it is pseudo-hamiltonian. 

Proof. If |N(S)| > |S| holds for every stable set S C V then G is 2-bicritical and, 
by Proposition 2.1, also regularizable. Since G is connected, Lemma 2.2 implies 
that in this case G is pseudo-hamiltonian. 

Otherwise, there exists a stable set S with 1/^(5)1 = |S|. Then by condition 
(Cl) , S is maximal and V = SUN(S) holds. Let H denote the spanning subgraph 
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of G which arises from deleting all edges between vertices from N(S). We show 
that H is elementary bipartite. Then, again by Proposition 2.1, the subgraph 
H is regularizable and, since H is also connected, Lemma 2.2 implies that G is 
pseudo-hamiltonian. 

By construction, the graph H is bipartite. H is connected, since otherwise we 
can easily find a proper subset S' C S with |iV(S')| < \S'\ in contradiction to the 
assumption. Let (s, t) be an arbitrary edge in H with s G S. In H — {s, t} we have 
\N(S')\ > |5'| for each set 5 ' C S - { s } (note that S' is not maximal stable in G). 
It is well known that this condition implies the existence of a perfect matching in 
H — { s , i } (cf. e.g. Lovász and Plummer [13]). Hence there is a perfect matching 
in H containing the edge (s, i). • 
Every hamiltonian graph must be 2-connected. However, it is easy to see that this 
is not a necessary condition for a graph to be pseudo-/i-hamiltonian for some h > 2. 
On the other side one may ask whether there exists a number k such that every 
fc-connected graph is also pseudo-hamiltonian. The following example shows that 
this is not true in general. 

Example 3.4 Consider the complete bipartite graph Kk+1^, i.e. the graph con-
sisting of two stable sets S and S1 of cardinality k + Í and k, respectively, where 
any two vertices from S and S' are adjacent. By deleting fewer than k vertices, we 
leave at least one node in the stable set S and at least one node in the stable set 
S'. Hence, this graph is k-connected. However, since |A (̂5)| = k < k + 1 = |S|, we 
conclude from Lemma 3.1 that the graph is not pseudo-hamiltonian. 

Chvátal [7] defines the toughness t(G) of a graph G (where G is not a complete 
graph) by 

t{G) = . m i n ^ W ' , (2) 

where W is a cutset of G and c{G—W) denotes the number of connected components 
of the graph G — W. It is well known that a hamiltonian graph has toughness at 
least 1. As an extension of this result we obtain: 

Lemma 3.5 If G is pseudo-h-hamiltonian, thent(G) > ' 

Proof. Let W* be a cutset of G with t(G) = \W*\/c{G - W*). Each path between 
two vertices of different connected components of G — W* contains vertices from 
W*. Hence, in a pseudo-/i-hamiltonian cycle of G there appears at least c(G — W*) 
times a vertex from W*, i.e. each vertex from W* appears at least c(G — W*)j\W*\ 
times. This implies h > 1 /t(G) and the correctness of the claim. • 
It is known (cf. Chvátal [7]) that there are graphs with toughness 1 which are not 
hamiltonian. Similarly, the converse of Lemma 3.5 is not always true for h > 2. 
The complete bipartite graph K3 2 has toughness t(K3i2) = 2/3 > 1 /h. However, 
as argued in Example 3.4 above, this graph is not pseudo-/i-hamiltonian. 

Another sufficient condition for pseudo-hamiltonicity relies on the toughness of 
the graph. 
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Lemma 3.6 (i) Any graph G with t{G) > 1 is pseudo-hamiltonian. (ii) For every 
e > 0, there exists a graph G with t(G) > 1 — e that is not pseudo-hamiltonian. 

Proof. Consider a graph G with toughness at least 1. Clearly, G is connected. We 
will show that G fulfills the conditions (Cl) and (C2), and then Lemma 3.3 implies 
statement (i). 

Let 5 be a maximal stable set in G and assume that |iV(S)| < |S| holds. With 
W := N(S), we obtain c(G - W) > \W\ as the vertices of S form the connected 
components of G — W. Hence t(G) < 1, in contradiction to the assumption. 

Let 5 be a non-maximal stable set in G and assume that |N(5)| < |S|. Define 
again W := N(S). Then the vertices of S are again connected components of 
G — W, and since S is not maximal there is at least one further component. Hence 
c(G -W)> \W\ holds, which implies that t(G) < 1. 

In order to prove (ii), consider the complete bipartite graphs Kk+i,k from Ex-
ample 3.4: Kk+i,k has toughness k/(k + 1). As k tends to infinity, this expression 
tends to one. • 

4 Regular graphs 
In this section, we discuss the problem of deciding whether a given d-regular graph 
possesses a pseudo-/i-hamiltonian cycle. We will show that for every d, there is a 
precise threshold for h where the computational complexity of recognizing pseudo-
/i-hamiltonian d-regular graphs jumps from NP-complete to trivial. 

Lemma 4.1 (i) For odd d> 3, every connected d-regular graph G fulfills ph(G) < 
d. (ii) For even d > 4, every connected d-regular graph G fulfills ph(G) < d/2. 

Proof. For even d, graph G itself is Eulerian and the Eulerian cycle yields a 
pseudo-d/2-hamiltonian cycle. For odd d, the multigraph that contains two copies 
of every edge in G is Eulerian and thus yields a pseudo-d-hamiltonian cycle. • 

Lemma 4.2 (i) For odd d>3, it is NP-complete to decide whether ph(G) < d— 1 
holds for a d-regular graph G. (ii) For even d > 4, it is NP-complete to decide 
whether ph(G) < d/2 — 1 holds for a d-regular graph G. 

Proof. We only prove (i). The proof of (ii) can be done by analogous (somewhat 
tedious) arguments. 

For every odd d > 3, the proof of (i) is based on the following auxiliary graph 
H H d has 2d - 1 vertices that are divided into three parts X, Y and Z. Part 
X consists of a single vertex x, parts Y = {yi,..., yd-1} and Z = { ¿ i , . . . , z^ - i } 
both contain d — 1 vertices. There is an edge between x and every vertex in Y, 
and there is an edge between every vertex in Y and every vertex in Z. Moreover, 
the vertices in Z are connected to each other by a perfect matching in such a way 
that zi and are matched with each other. This completes the description of Hd. 
Note that in Hd, vertex x has degree d - 1 and all vertices in Y U Z have degree 
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d. Moreover, we will use the following connected multigraph M(Hd). M(Hd) has 
the same vertex set as Hd. Vertex x is connected by a single edge to 2/1 and 2/2, 
respectively, and by two edges to each vertex in Y — {2/1,2/2}- For 1 < j < 2, yj is 
connected by 2d — 3 edges to zj, and for 3 < j < d — 1, yj is connected by 2d — 4 
edges to Zj. Finally, there is one edge that connects z\ to ¿2 , and there are two 
copies of every other edge in the matching over Z. Note that in the resulting graph 
M(Hd), vertex x has degree 2d - 4 and all vertices in Y U Z have degree. 2d - 2. 

The NP-completeness proof for result (i) is done by a reduction from the NP-
complete hamiltonian cycle problem in cubic graphs (cf. Garey and Johnson [11]). 
Consider an instance G' = (V'~, E') of this problem, and construct a d-regular graph 
G = (V, E) from G' as follows: 

• For every v £ V', introduce a corresponding vertex v* in V. Moreover, 
introduce d — 3 pairwise disjoint copies of Hd- The a:-vertex of every such 
copy is connected to v*. 

• For every edge (u,v) € E', introduce two new vertices aUiV and a„jU together 
with the three edges (u*,au,v), (flu.u, &v,u) and (a„ iU,n*), i.e. the vertices aUtV 

and av,u essentially subdivide the original edge (u,v) into three sub-edges. 

• For every new vertex aU)tl, create d — 2 pairwise disjoint copies of Hd> and 
connect the x-vertex of every copy to aUiV. •.-...• 

It is easy to verify that the resulting graph G is d-regular (since in Hd, vertex x 
has degree d — 1 and all other vertices have degree d). We claim that G. possesses 
a pseudo-(d — l)-hamiltonian cycle if and only if G' possesses a hamiltonian cycle. 

(If). Assume that G' possesses a hamiltonian cycle. Construct from this hamil-
tonian cycle a (2d — 2)-regular multigraph M* as follows: For every copy of Hd in 
G, introduce the corresponding edges of M(Hd) in M*, together with two edges 
that connect the x-vertex to that vertex to which the copy has been attached. For 
every edge (u, v) that is used by the hamiltonian cycle, introduce the three edges 
(u*,au>v), (aU|v,a«,u) and (aViU,v*) in M*. For every edge (u,v) that is not used by 
the hamiltonian cycle, introduce two copies of ('u*, au>v) and two copies of (aV}U,v*) 
in M*. The resulting multigraph is (2d — 2)-regular, is connected (as it simulates 
the hamiltonian cycle in G'), and it is spanning. Hence, the corresponding Eulerian 
cycle in G yields a pseudo-(d — l)-hamiltonian cycle for G. 

(Only if): Now assume that G possesses a pseudo-(d — l)-hamiltonian cycle C.. 
Then the edges that are traversed by C form a (2d— 2)-regular connected multigraph 
Mc. For every copy of Hd in G, the cycle C traverses the edge'that connects the 
a;-vertex to the vertex to which the copy has been attached, at least twice and an 
even number of times. Hence, for every edge (u, w) € E' the vertex aVjU in Mc is 
connected by at least 2d — 4 edges to the a;-vertices of the attached copies of Hd, 
and there remain only two edges that can connect aVtU to the rest of the graph. 
With this it is easy to verify that there remain only two possibilities how the cycle 
C may traverse the three edges (u*,aUtV), (aU:V,aV:U) and (aViU,v*) that correspond 
to some edge (u,v) 6 E' in the original graph: Either all three edges are traversed 
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thus resulting multigraph is 4-regular and contains only edges from G2. Hence, G2 

is pseudo-2-hamiltonian. 
(Only if). Now assume that G2 possesses a pseudo-2-hamiltonian cycle C. The 

following statements on the structure of C are easy to verify. 

1. C traverses every edge (b*v,v) with v £ V[ and 1 < i < 4 exactly once. 
2. C traverses every edge (b%v,alv) with v £ V{ and 1 < i < 4 exactly three times. 
3. For every v € C either traverses exactly one or exactly zero of the edges 

(a i ,a i ) with 1 < i < j < 4. 
4. C traverses every edge {dlv,v) with v £ V2 and 1 < i < 2 exactly once. 
5. C traverses every edge (cfj,,c£) with v £ V2 and 1 < i < 2 exactly three times. 
6. C traverses every edge (c*,c2) with v £ V2 exactly once. 

Hence, every v £ V{ is only connected to vertices blv. Every v € V2 must be 
connected by two edges to some vertices alu. Hence, there are exactly 2|V2'| edges 
between V2' and the alu with u £ VI, and a simple counting argument shows that in 
statement (3) above, the "traverses exactly zero of the edges"-part can never hold. 
Hence, for every v £ V/ there exist exactly two edges in C that connect some a® to 
some vertex u £ V2. It is straightforward to see that the union of all these edges 
corresponds to a hamiltonian cycle in G'. • 

6 Special graph classes 
In this section, we show that deciding whether a graph is pseudo-/i-hamiltonian is 
NP-complete even for some very restricted classes of graphs that possess a strong 
combinatorial structure. Moreover, we present polynomial time algorithms for other 
classes of structured graphs. 

6.1 Trees and planar graphs 
By Corollary 3.2.(a), a pseudo-hamiltonian graph cannot have any vertices of degree 
one. Hence, ph(T) = oo for any tree T. 

If we start the construction in the proof of Theorem 2.6 with a planar graph G', 
then the constructed graph G is also planar. Since deciding hamiltonicity of planar 
graphs is NP-complete [11], we conclude that for every h > 1 it is NP-complete to 
decide whether a planar graph is pseudo-/i-hamiltonian. 

6.2 Partial k-trees 
The class of partial k-trees is a well-known generalization of ordinary trees (see e.g. 
the survey articles by Bodlaender [4, 5, 6] and by van Leeuwen [14]). It is known 
that series-parallel graphs and outerplanar graphs are partial 2-trees and that Halin 
graphs are partial 3-trees. Large classes of algorithmic problems can be solved in 
polynomial time on partial A;-trees if k is constant. Essentially, each graph problem 
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that is expressible in the Monadic Second Order Logic (MSOL) is solvable in linear 
time on partial A;-trees with constant k (cf. e.g. Arnborg, Lagergren, Seese [lj). 

Lemma 6.1 For every h > 1 and for every k > 1, it can be decided in linear time 
whether a given partial k-tree is pseudo-h-hamiltonian. 

Proof. We only show the statement for h = 2; the other cases can be settled 
analogously. For a given graph G = (V, E), the property of having a connected 
4-regular submultigraph can be expressed in MSOL as follows: 

1. There exist three pairwise disjoint subsets Ei, E2 and E3 of E 
2. Every vertex is either incident to (i) four edges from Ei, or to (ii) two edges 

from E\ and one edge from E2, or to (iii) one edge from E\ and one edge 
from E3, or to (iv) two edges from E2 

3. There does not exist a partition of the vertex set V into two non-empty sets 
Vi and V2, such that none of the edges in Ei U E2 U E3 connects V\ to V2. 

Intuitively speaking, the edges in E\ (E2 , E3) occur once (twice, thrice) in the 
submultigraph. The second condition then takes care of the 4-regularity, and the 
third condition ensures that the submultigraph is connected. • 

6.3 Bipartite graphs and split graphs 
Lemma 6.2 For every integer h>l, it is NP-complete to decide whether a bipar-
tite graph is pseudo-h-hamiltonian. 

Proof. It is NP-complete to decide whether a bipartite graph G' is hamiltonian (cf. 
Garey and Johnson [11]). Consider a bipartite graph G' = ( V , E') with bipartition 
V' = V{ U V2: and construct from G' another bipartite graph G as follows. For 
every vertex v G V', introduce two vertices iv and rv in V together with auxiliary 
vertices alv and blv, i = 1 , . . . , 2h - 2. In E, there are the edges (¿v, rv) together 
with the edges a*), (alv,blv), and (b lv,rv) for i = l , . . . , 2 / i - 2. Moreover, for 
every edge (u,v) G E' with u G V{ and v G V2, we introduce the two edges (£u , r v ) 
and (iv,ru). 

It can be verified that the resulting graph G is also bipartite. Moreover, one 
can show that G possesses a pseudo-/i-hamiltonian cycle if and only if G' possesses 
a hamiltonian cycle. • 
A split graph is a graph whose vertex set can be partitioned into two parts such 
that the subgraph induced by the first part is a clique and the subgraph induced 
by the second part is a stable set. 

Corollary 6.3 For every integer h> it is NP-complete to decide whether a split 
graph is pseudo-h-hamiltonian. 

Proof. In the NP-completeness proof for bipartite graphs in Lemma 6.2, both 
classes in the bipartition of the constructed graph G are of equal cardinality. Trans-
form G into a split graph G* by adding all edges between vertices in one part of 
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the bipartition. It is easy to see that a pseudo-/i-hamiltonian cycle in G* can never 
use these added edges, and hence G* is pseudo-/i-hamiltonian if and only if G' is 
hamiltonian. • 

6.4 Cocomparability graphs 
A comparability graph is a graph G = (V, E) whose edges are exactly the compara-
ble pairs in a partial order on V. The complementary graph is called a cocompa-
rability graph. The class of cocomparability graphs properly contains all cographs, 
permutation graphs and interval graphs. 

Lemma 6.4 For every integer h > 1, it can be decided in polynomial time whether 
a cocomparability graph is pseudo-h-hamiltonian. 

Proof. It is known that a hamiltonian cycle in a cocomparability graph can be 
found in polynomial time (cf. Deogun and Steiner [9]). Given a cocomparability 
graph G = (V,E), we construct another cocomparability graph G' = (V',E') as 
follows. V contains the vertices in V together with (h, — 1)¡Vj new vertices. For 
every vertex v £ V there are h— 1 new vertices that are called vl, where i = 2,..., h. 
For simplicity of notation, let vl := v. If (u, v) is an edge in E then all edges w-7) 
with i, j = 1 , . . . , h belong to E' (roughly spoken, G' arises from G by replacing 
each vertex by a stable set of h vertices). It is easy to see that G' is again a 
cocomparability graph. We show that G has a pseudo-/i-hamiltonian cycle if and 
only if G' has a hamiltonian cycle. 

(If). Assume that G' possesses a hamiltonian cycle. We obtain a pseudo-/i-
hamiltonian cycle in G if each vertex vl, i = 2,...,h, is replaced by the corre-
sponding vertex v. 

(Only if). Now assume that G possesses a pseudo-fa-hamiltonian cycle C. Each 
vertex of G appears h times in C. For each v £ V replace h — 1 copies of v in C 
by v2,... ,vh. This yields a S-factor of G', i.e. a subgraph of G' such that each 
vertex has degree 2. If the 2-factor is a cycle then we have a hamiltonian cycle in 
G' and we are done. Otherwise the 2-factor is a disjoint union of cycles. In this 
case the following principle allows to reduce the number of cycles: Let C\ and C2 

denote two disjoint cycles such that v% belongs to C\ and belongs to C2 (it is 
straightforward to see that such cycles must exist). Let further x be the predecessor 
of v1 in Ci and y the predecessor of vi in C2- Replace the edges (x,vl) and (y , v^) by 
(x ,y i ) and (y,vl). One obtains a new cycle that contains all vertices from C\ and 
C2 • Repeatedly merging cycles in this way finally provides the desired hamiltonian 
cycle in G'. • 

We leave it as an open problem to determine the complexity of computing the 
pseudo-hamiltonicity number of asteroidal triple-free graphs, AT-free graphs for 
short (cf. Corneil, Olariu, and Stewart [8]). Note that for an AT-free graph G, 
the graph G' that is constructed in the proof of Lemma 6.4 above is also AT-
free. However, the complexity of finding a hamiltonian cycle in AT-free graphs is 
currently unknown. 
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Two remarks on variants of simple eco-grammar 
systems* 

Judit Csima t 

Abstract 
Two powerful variants of simple eco-grammax systems, namely extended 

tabled simple eco-grammar systems (ETEG systems) and weak extended sim-
ple eco-grammar systems (wEEG systems) are studied. It is proved that both 
modifications of the original definition result in universal power: all recur-
sively enumerable languages can be obtained both by ETEG and by wEEG 
systems. 

1 Introduction 
Eco-grammar systems form a grammatical framework proposed in [2] for modelling 
living systems consisting of several agents and a common environment. In the 
original definition of an eco-grammar system, the environment is described by a 
Lindenmayer system which determines its evolution; the agents are represented by 
context-free grammars and by Lindenmayer systems : the Lindenmayer systems 
determine their development, while the context-free grammars describe their ac-
tions. The interaction between the agents and the environment is ensured by the 
computable functions ip and <f>, which allow the agents to adapt to the environment 
both in their development and in their actions. 

In the original model there are no terminal and nonterminal symbols. In [2] 
it was shown that this model is very strong as far as the generative capacity is 
concerned: all recursively enumerable languages can be obtained as languages of 
extended eco-grammar systems (that is with systems with a distinguished terminal 
alphabet) with a very simple choice of the functions ip and é. 

Because of this result another, simpler variant of eco-grammar systems was 
introduced in [2]: the simple eco-grammar system. In a simple eco-grammar system 
the interaction between the environment and the agents is restricted and the agents 
do not have an inner representation. Other variants like non-extended simple eco-
grammar systems in [3] and conditional tabled eco-grammar systems in [4], [5] 
and [10] were introduced and studied. 

•Research supported by the Hungarian Scientific Foundation " O T K A " Grant No. T029615 
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Besides these directions, the study of extended simple eco-grammar systems 
continued in [6], where it was proved that the hierarchy according to the number of 
the agents is a collapsing one and that the class of languages generated by extended 
simple eco-grammar systems without A-rules is between the class of languages gen-
erated by extended 0L systems and the class of languages generated by matrix 
grammars with appearance checking.' (For more information about these language 
classes the reader is referred to [9] and [8].) The general case, where A-rules are 
allowed in the system, remained open. In [1] it was shown that the hierarchy col-
lapses in the general case as well, even if we consider different derivation modes, 
but the place of this collapsing language class remained unsolved. 

In [11] simple eco-grammar systems with prescribed teams were examined. It 
was proved there that extended tabled simple eco-grammar systems with teams of 
agents with prescribed members and operating according to a weak rewriting steps 
(that is the derivation is not blocked if some agents from a team cannot perform 
any action) can generate all recursively enumerable languages. In this article we 
present a stronger result: it is not necessary to use prescribed teams to reach the 
power of Turing machines. Moreover, both extended tabled simple eco-grammar 
systems (using the original derivation mode, not the weak one) and weak extended 
simple eco-grammar systems (without tables) are enough to generate all recursively 
enumerable languages. (We note that the definition of a weak derivation step we 
use in this article is a slightly different one compared to [11], therefore only the 
first result is stronger than the one in [11].) 

More precisely, we consider two variants of extended simple eco-grammar sys-
tems for which the question of their generative power will be answered. 

The first part of the article deals with extended tabled simple eco-grammar sys-
tems, where instead of one 0L system the environment can be represented by more 
than one 0L system, called tables. Thus the environment can vary its behaviour 
step by step. Allowing this possibility, all recursively enumerable languages can be 
obtained even with one agent. 

In the second part of the article we present weak extended simple eco-grammar 
systems. In this case the definition of the derivation step is different from the 
original definition of an extended simple eco-grammar system. In this modified 
version the derivation is not blocked if some agents cannot perform any action on 
the sentehtial form. We show that the generative power of Turing machines can be 
reached also in this case. 

2 Preliminaries 

Here we present the notions and notations used in this article, for further informa-
tion the reader is referred to [9], [8] and [7]. 

The set of all non-empty words over a finite alphabet V is denoted by V+, the 
empty word is denoted by A; V* = V+ U {A}. For a set V, we denote by card (V) 
the cardinality of V. For a word x, we denote by |z| the length of x. If 
is a word over an alphabet V, Xj 6 V for 1 < j < n, [x,i, k] denotes the word 
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[x\, i, fc] • • • [xn, i, k] for 1 < i, k. 
By a context-free production or by a context-free rule (a CF rule, for short) 

over an alphabet V we mean a production of the form of o—>u, where a £ V and 
u £ V*. A CF rule is a A-rule (or a deletion rule) if u = A. 

We also use the following notations: for a set of CF rules R, dom(R) denotes 
the set of all letters appearing in the left-hand side of a rule in R. For a word x 
over an alphabet V, alph(x) denotes the set of all letters appearing in x. 

A 0L system is a triplet H = (V,P,LJ), where V is a finite alphabet, P is a 
set of context-free rules over V, and U> £ V* is the axiom. Moreover, P has to 
be complete, that is for each symbol a from V there must be at least one rule in 
P with this letter in the left-hand side. 0L systems use parallel derivations: we 
say that x directly derives y in a OL system H = (V,P,UJ), written as a ;=>#? / , if 
x = X\X2 • • •xn, y = 2/12/2 • • •2/n> where X{ £ V, yi £ V*, and the rules £¿->2/1 are in 
P for 1 < i < n. 

A TOL system is a triplet H = (V,T,w), where V is a finite alphabet, T = 
{ T i , . . . , J*,} is a set of tables over V, where each table Ti for 1 < i < k is a 
complete set of CF rules over V, and w £ V* is the axiom. We say that x directly 

TOL OL 
derives y in a TOL system H = (V, T, lj), written as x y, if x ==>Hi y for some 
i , 1 < i < with the OL system Hi — (V,Ti,ui). 

An ETOL system is a quadruple H = (V,T, A, u), where H' = (V, T, w) is a TOL 
system, and A C V is the terminal alphabet. In an ETOL system H — (V,T, A,u>) 

ETOL TOL x directly derives y, written as x H 2/, if x V-
ETOL ETOL 

The transitive and reflexive closure of =4- n is denoted by 
The generated language of the ETOL system H (denoted by L(H)) is 

ETOL 
L(H) = { w £ A* \ oj=>*hW }. 

That is, in an ETOL system only words over a distinguished subalphabet are in 
the generated language. A language is said to be an ETOL language if there is an 
ETOL system which generates it. 

TOL and OL systems are special cases of ETOL systems: A = V stands in both 
cases; moreover, in the case of OL systems T = {T i } also holds. Therefore the 
above definition gives the generated language for these systems as well. 

A random-context grammar is a quadruple G = (N, T, P, S) where N is the set 
of nonterminals, T is the set of terminals, S is the axiom, and P is a finite set of 
random-context rules, that is triplets of the form of (C—»a, Q, R), where C - > a is 
a CF rule over NUT, where C £ N, and Q and R are subsets of N. For x, y £ 
(NUT)*, we write x=$y iff x = rriCo^, y = x\ax2 for some £1,0:2 £ (NUT)*, 
(•C->a, Q, R) is a triplet in P, all symbols of Q appear and no symbol of R appears 
in x\Cx2 (Q is called the permitting context, and R is called the forbidding context 
of the rule C—ta. If Q and/or R are empty, no check is necessary.) This is a slightly 
modified but equivalent version of the definition presented in [7]. 

If the forbidding context is empty for every rule, we speak about a random-
context grammar without appearance checking, otherwise the grammar is with 
appearance checking. For the sake of brevity we will refer to a random-context 
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grammar with appearance checking and with A-rules as a random-context grammar. 
The generated language of a random-context grammar consists of all the words 

which can be generated in some steps from axiom S. The class of languages which 
can be generated by random-context grammars is denoted by 7lC*c. 

Now we present the definition of an extended simple eco-grammar system, as 
introduced in [6]. 

Definition 2.1 An extended simple eco-grammar system is a construct 
E = ( VE, PE, RI , • • •, Rn, w, A ), where 

• VE is a finite, non-empty alphabet, 

• PE is a complete set of CF rules over VE, i.e. for each letter of VE there 
exists at least one rule in PE with this letter in the left-hand side, 

• Ri is a non-empty set of CF rules over VE for 1 <i<n, 

• W 6 VE*, o,nd 

• A C VE. 

In this construct VE is the alphabet and PE is the set of the evolution rules of 
the environment. The ith agent is represented by Ri, 1 < i < n, its set of action 
rules. The current state of the environment, which is also the state of the eco-
grammar system, is the current sentential form. String u> is the initial state. A is 
the terminal alphabet and shortly we will see that only words over A are in the 
generated language of E. 

The system changes its state by a simultaneous action of the agents and by a 
parallel rewriting according to Pe-
Definition 2.2 Consider an extended simple eco-grammar system 
E = ( VE, PE, RI > • • •, Rn, w, A ). We say that x directly derives y in E (with x £ 
VE+ and y € VE*, written as x y), if 

• x = X1Z1X2Z2 • • • xnZnxn+i, with Zi £ Ve, Xj € Ve*, 1 < i < n, and 
l < j < n + l , 

• y = yiwiy2w2 • ••ynwnyn+1, with y i, Wj G VE*, 1 < i < n, and 1 < j < n+ 1, 

• there exists a permutation of the agents, namely Rjy, Rj2,..., Rjn, such that 
Zi~>Wi 6 Rj¡, for 1 < i < n, and 

j J 

• Xi x— A or Xi =>E Hi, for 1 <i<n, where E = (VE,PE,U) is the 0L system 
of the environment. 

We denote the transitive and reflexive closure of by = > E . 
The generated language consists of the words over A which can be obtained in 
some derivation steps starting from the axiom. 
Definition 2.3 Consider an extended simple eco-grammar system 
S = ( VE , PE , RI, • • •, RN, W, A ). The generated language of E is the following: 

L{ E) = { » £ A*| w ^ u } . 
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3 Extended tabled simple eco-grammar systems 
In this section a modified version of an extended simple eco-grammar system, called 
an extended tabled simple eco-grammar system, is investigated. In such a system 
the environment can be represented by more than one 0L system. We show that 
this device is as powerful as Turing machines. 

Definition 3.1 An extended tabled simple eco-grammar system (an ETEG system, 
for short) is a construct Y, = (Ve,Te,Ri,. .. ,Rn,oj, A), where 

• (VB, TE, A,U>) is an ETOL system, and 

• Ri is a non-empty set of CF rules over VE for 1 < i < n. 

Here VE, Ri, W and A have the same meaning as in Definition 2.1, namely they are 
the alphabet of the system, the production sets representing the agents, the axiom, 
and the terminal alphabet. TE is the set of tables of the environment. 

In an extended tabled eco-grammar system the environment can choose a 0L 
system in each derivation step to perform a parallel rewriting. 

Definition 3.2 Consider an extended tabled simple eco-grammar system 
£ = ( Ve,Te,Ri, • • • A ). We say that x directly derives y in £ (with x G 
VE+ and y G VB*, written as %y) if y for the extended simple eco-
grammar system £ j = (VE, TI,R\,..., RN,w, A) for some 1 < i < k. 

We denote the transitive and reflexive closure of E by ^. 

Definition 3.3 The generated language of an extended tabled simple eco-grammar 
system £ = ( VE,TE,R\, • • • ,RN,LJ, A ) is the following: 

L(£) = { T) £ A* IW'^E V}. 

The class of languages which can be generated by an ETEG system with n agents 
is denoted by £(£T£G,\)-

Now we present an example to illustrate the power of ETEG systems. 

Example 3.1 Let £ = ( VE,TE, RI, w, A ) be the following ETEG system: 

• VE = {S,B,N,D,S',a,b}, 

• TE = {T1,T2,T3,T4}, where 
Ti={ S-+D, N-+.N, a—>a, 6—>6, D-iD, S"—»S', B—>B }, 
T2 = { S^\,N->N,a-^a,b->b,D-*D,S'^D,B-*B }, 
T3 = { S^D,N^N,a^a,b^b,D-^D,S'^D,B^bB } , 
T4 = { S^D, N—>N, a—ta, fo—>6, D->D, S'^D, B->b }, 

• I?I = { S^aBNS, S'-»A } , 

• oj = SS', and 
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• A = { a,b }. 

We show that the generated language of this system is 
L(E) = { (abn)m | 1 < n < m } U {A}. 

First we note the following: S can be deleted only by the environment and 
S' can be deleted only by the agent. These two events must happen in the same 
derivation step because of the following reasons. If the environment deletes S, that 
is uses table T2, and the agent does not apply the rule S'—>A, then the environment 
rewrites S' to D, which "blocks" the derivation since this D will never disappear 
from the sentential form. If the agent deletes S' in a derivation step and the 
environment does not'delete S, that is does not use table T2, it introduces symbol 
D again. 

We have seen that S and S' disappear from the sentential form in the same 
derivation step. Before this step the agent has to use the rule S—>aBNS, or other-
wise the environment introduces a D\ the environment has to use the first table Ti, 
or otherwise S' would be rewritten to D. Thus either the derivation is SS' t=£'X, 
or the first few steps are SS*{aBN)mSS' i=^{aBN)m. After these steps 
the only possibility for the agent to work is by using rule TV—>A. During these steps 
the environment can use any of its tables, therefore it can introduce b letters before 
all the B's or it can rewrite either all B's to B or all B's to b's. Because there 
are only m symbols TV in the sentential form, the derivation lasts exactly m more 
steps. Hence at the end of the derivation, when there are no more TV symbols left, 
there are at least one but at most m symbols b after each a. 

The above explication showes that all non-empty generated words are of the 
form of (abn )m , 1 < n < m. It follows from the construction that all words of this 
form as well as the empty word, A, are in the generated language, which is thus 
indeed: 

L(£) = { (abn)m | 1 < n < m } U {A}. 

This example shows that even a very simple extended tabled simple eco-
grammar system with only one agent is able to produce a quite complicated lan-
guage, namely a language which is not an ETOL one (see [8]). 

We show that the generative capacity of these systems reaches that of Turing 
machines. This is a direct consequence of the following lemma. 

Lemma 3.1 1ZC*C C C{£T£Q,oo) 

Proof Let G = (N, T, S, P) be a random-context grammar. Without loss of gener-
ality, we can asssume that the rules in P have the form (C-»a , Q, R), with C 6 TV, 
a £ (NUT)*, card(Q) < 1, and card(R) < 1 (see [7]). Moreover, we can assume 
that there are no rules with Q = R, R = { C } or Q = {C}, because rules of the 
first two types are not applicable and in the last case the rule is equivalent to the 
rule (C^x,%,R). 

We denote by r the number of rules in P and by V the set TV U T. The rules of 
P are enumerated as pi = (C»—>Qt, Qi, Ri)- We will refer to the components of the 
ith rule as Cj, on, Qi, and R^. 
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Now we will construct a simple extended tabled eco-grammar system 
S = {VE,TE,RI,U, A ) such that L ( E ) = L(G). 

Let 

• VB = VU {[X,i]\X eV,l<i<r} 
u{[x',i}\x ev,i<i<r} 
U { D , U, z, Z'} 
u {[u,i] I 1 < i < r,Qi = 0} 
U {[U'J] | 1 < i < r}U 
U {[U,i] \ l<i<r,Qi / . 0 } , 

where D, U, Z £ V, 

. •,TE = {T{ihT'{i),T"(i)\l<i<r}, where 

T{i) = {X^[X,i]\X EV} 
U {U-+{U,i} | Qt = 0} 
U {U->[U,i] | Qi ± 0}, 
for 1 < i < r, 

T'{i) = {[X, i]->{X', i]\X e V, { X } 5¿ R{) 
L¡{[B¡i}-^D\{B}=Ri} 
U {Z'^Z1} 

for 1 < i < r, 

T"(i).= {[x\i]^x \xev} 
U {Z'->Z, Z'->A, [U't i]-*U, [U'i i]->A} 
for 1 < i < r, 

• i?i = {Z^Z'} 
U {[£/, i ]—»[[ / ' , ¿] | 1 < i < Í", Q¿ = 0 } 

U {[A,i]^[A',i] | 1 <i<r,Qi = {A}} 
U { [ C " ¿ , í ] - > a ¿ | 1 < i < r}, 

• oj = SUZ, and 

• A = T. 

Those symbols which are not mentioned above in the tables are rewritten into 
D\ these rules make the tables complete. 

We introduce different alphabets according to the rules of P in the following way. 
These alphabets are multiplied versions of V: for the ith rule of P we have alphabets 
{[X,i] j X e V} and {[X',i] \ X eV}. Moreover, we have some special additional 



576 Judit Csirna 

symbols in the ETEG system in order to coordinate the derivation. These are 
{D,U,Z,Z'}U {[U',i] | 1 < i < r } U { [ £ / , i ] | 1 < i < r, Qi = 0} U {[0,i] | 1 < i < 
r> Qi 0}- By D the derivation is "blocked" : if this symbol appears, the derivation 
never results in a terminal word. Symbol U allows the agent to work when Qi = 0. 

First we show how a derivation step of G can be simulated by S. During the 
simulation the sentential form has the form wUZ, where the word w corresponds to 
the sentential form of G, while U and Z coordinate the simulation. Let us suppose 
that in a derivation step with sentential form x rule (Cj-^Qj, Qi,Ri) is used. The 
simulation in the ETEG system is as follows. 

In the first step the environment applies table T^ to rewrite xU into [x,i\\U, i] 
or into [x,i][U,i\ depending on whether or not Qi = 0; the agent rewrites Z into 
Z'. This is the only role of Z: it allows the agent to work during the first step of 
the simulation. 

In the second step the agent applies the rule [t/, z]-»[t/ ' ,z] if Qi = 0 or applies 
the rule [A,i\-*[A' if Qi = { A } . The environment rewrites the remaining letters 
by using table T ' ^ y 

In the third simulation step the agent applies its rule corresponding to the rule 
of G, namely rule [C'i, i]->ai, while the environment rewrites the remaining letters 
by using table T"During this last step, the environment can delete the special 
symbols Z' and [{/ ' , ¿], thus allowing the possibility of finishing the derivation if the 
sentential form would be a terminal .word. 

Now we have showed that we can simulate the derivation steps of the random-
context grammar. It follows from the construction of the simulating ETEG system 
that the behaviour described above is the only one which can result in a terminal 
word. The only possibility to start a derivation from a word over V U {U, Z} is 
to use one of the tables T(») and the rule Z-+Z' of the agent. If the sentential 
form contains some forbidding letters from Ri, the environment blocks the deriva-
tion in the next step by introducing a D; if the permitting symbol referring to the 
non-empty set Qi does not appear in the sentential form, the derivation is blocked 
because the agent cannot work. (It cannot use the other rule [U,i]—t[U',i], because 
this symbol appears in the sentential form iff Qi = 0.) In the next step the agent 
has to use the rule [C'i,i\—>oti and the environment has to use table T"(¿). These 
three consecutive steps simulate the application of one of the rules of P . • 

Using the fact that = RE and the fact that we can construct a Turing 
machine simulating an extended tabled simple eco-grammar system, we obtain the 
following theorem: 

Theorem 3.1 C(£T£G, oo) = 7Z£ 

4 Weak extended simple eco-grammar systems 
In this section another variant of extended simple eco-grammar systems is studied: 
the weak extended simple eco-grammar system. This variant has the same çompo-
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nents as the extended simple eco-grammar system but it works in a different way. 
Informally speaking, in a weak system the derivation is not blocked if there are 
some agents which cannot perform any action. 

Compared to [11], the definition of a weak rewriting step is slightly different. 
There, in a weak rewriting step, the derivation is blocked if no agent can work, 
whereas here we allow this possibility. 

Definition 4.1 A weak extended simple eco-grammar system (a wEEG system, for 
short) is a construct £ = ( VE, PE, R\, • • •, RN,U, A ), where 

• all the components are the same as in Definition 2.1. 

In a weak extended simple eco-grammar system S = ( VE, PE, RI , • • •, RN, w, A ) x 
directly derives y (with x £ VE+ and y £ VE*, written as xw=M-° sy) if 

• x = x\Z\x-iZi • • • XkZkXk+i, with Zi £ VE, Xj £ VE* , 0 <k <n, I <i <k, 
and 1 < j < k + 1, 

• V = yiW\V2W2 • • -ykWkVk+i, with yuWj £ VE*, 0<k<n, l < i < k , and 
l < j < k + l, 

• there exists a permutation of some agents, namely Rj1, Rj2,..., Rjk, such that 
Zi-^Wi £ Rji; for 1 < i < k, 

• {dom(Rt) | 1 < t < n, t ^ ji, for 1 < i < k} FL alph(x\x2 • • • ZJFE+I) = 0, and 

• Xi = A or XI=>EVI, for 1 < i < k + 1, where E — (VE,PE,W) IS the 0 L 
system of the environment. 

We denote by w =j> the transitive and reflexive closure of E . 
That is, in a weak extended simple eco-grammar system we choose some agents 

to perform a common action in the following way: the chosen agents can perform 
an action together and there is no symbol among the remaining letters where any 
of the other agents could act. The chosen agents perform their actions and the 
remaining letters are rewritten by the environment. In the particular case when 
there is only one agent in the system, this definition implies that the agent has 
to work if it is able to but if no letter can be rewritten by the agent it is the 
environment itself that continues the derivation. 

Definition 4.2 For a weak extended simple eco-grammar system 
E = ( VE, PE, RI , • • •, Rn,<*>, A ) the generated language is the following: 

L(Z) = {v£A*\ujwm0xv}. 

We denote by wEEG(n) the class of languages which can be generated by weak 
extended simple eco-grammar systems with n agents. 

In the following we show that wEEG systems can generate all recursively enumer-
able languages. The result is based on the following lemma. 
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L e m m a 4 . 1 7ZC*C C WEEG{ 1) 

P r o o f For a random-context grammar G = (N, T, P, S) we will give a weak ex-
tended simple eco-grammar system £ = (V E , PB, RI,A,LJ) such that L(G) = £(£)• 

First we present the definition of this system £ and explain its functioning. 
Similar to Lemma 3.1, the notation V stands for N UT, r denotes the number of 
rules in P, the rules in P are enumerated aSPI = (CI—QI, RI), we assume there 
are no rules with Q = R, Q = { C } or R = {C}, and we refer to the components of 
the ith rule as CI, CTI, QI, and RI. 

Let 

. VB = V U {[X,i,j] | X G V, 1 < » < r, 1 < j < 5} 
U {[Z,i,j],[Z,i,k] | 1 < i < r , l < j < 5,1 < k < 4} 
U {[Ci,i,k} | 1 < i < r , l < k < 4} 
U{[U,i,j]\l<i<r,Qi = <b,l<j <2} 

U{[£>, i, 3] | 1 < i < r } where U,D, Z g V, 

. PE = {[X,i- l , 5 ] -> [X , i , l ] I 2 < » < r,X G VU{Z}} 

U {[X,i,l]^[X,i,2] | 1 <i<r,X G V U{Z,Z}} 
U {[Ci,i,l)^[Ci,i,2] | 1 <i < r } 
U {[17, x, *, 2] | 1 < * < r, Qi = 0> 

U {[X, i, 2}^[X, i, 3] | 1 < i < r, X G V U {Z, Z}} 
U {[Ci,i,2]-+[Ci,i,3] | 1 <i <r} 
U {[U,i,2]->D | 1 <i <r,Qi = 0 } 

U {[X,i ,3]->[X,2,4] | 1 < i < r,X G V U {Z,Z}} 
U{[Ci,i,3]^[Ci,i,4]ll<i<r} 
U {[D,i,3]->D | 1 < i < rj 

U { [X, i ,4 ] ->[X, i ,5 ] | 1 < i < r,X G VU{Z}} 
U {[Z,i,4]-*[Z,i,5] | 1 < i < r] 
U{[Ci,iA]^[Ci,i,5]\l<i<r} 

U { [ * , » , 5]->X | 1 < * < r,X G VU {Z}} 
U | X G V U {£>}}, 

• Rx = {[Z,i- 1,5]->[Z, t.'l] | 2 < i < r} 
U{[Z,r,5)->[Z,l,l]} 
U {[Ci, i - 1 , 5 M C i , i , 1] | 2 < i < r, Qi + 0} 
U ^ C i . r . S H t C i . l . l J I Q i # 0 } 
U { [C< ,* - l,5Mdi,i,l][U,i, 1] | 2 < i < r,Qi = 0} 
U {[Ci, r, 5]->[Ci, 1, l][i/, 1,1] | Qx = 0> 

\j'{[Z,i,l]->[Z,i,2] | 1 < i < r} 
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U {[B, i, 1]->D | 1 < i < r, {B} = Ri ± 0} 

U {[A,i, 2]-»[A, i, 3}[D, i, 3] | 1 < i < r, {A} = Q, / 0} 
U {[£/, i, 2]->[D, i,3}\l<i<r,Qi = d)} 
U {[Z,i,2]^[Z,i,3] | 1 < i < r} 

U {[Ci,i,2,]-^D | 1 < i < r,} 

U {{Cj,i,4]-+[oLi,i,5\ | 1 < i < r,cti ± A} 
U {[Ci, i, 4]—>A | 1 < i < r, cti = A} 

U {[Z,i, 5]->A | 1 < i < r}, 

• A = T, and 

. u) = [5, r, h][Z, r, 5]. 

The main point of the simulation is that we simulate the application of the rules in 
their order from 1 to r, each time either simulating the rule or skipping the rule. 
After having simulated or skipped the rth rule we continue with the first one. 
We do the simulation of a rule by introducing five different alphabets for each rule 
of G: for the ith rule we introduce the alphabets [V,i,j] for 1 < j < 5. We start the 
simulation or the skipping of the ith rule with a word over the alphabet [V,i — 1,5], 
then during the simulation we go through the alphabets [V,i,j] for 1 < j < 4, and 
finish with a word over the alphabet [V, i, 5]. Consequently we can finish the whole 
derivation or we can continue with the next the rule. 

There are more additional alphabets for coordinating the simulation: the letters 
[Z,i,j] and [Z,i,k] for 1 < i < r, 1 < j < 5, and 1 < k < 4 make it possible to 
skip the ith rule of G; the symbols [Ci, i,j] let the agent simulate the ith rule of G\ 
the symbols [U,i,j] are introduced only if Qi = 0 and make it possible to deal with 
this case; the symbols [Z),i,3] ensure that the derivation is blocked if the agent 
simulates the ith rule of G while the non-empty permitting condition is missing. 

In the following, we first show how the application of a rule of G can be simulated 
and we also show how the application can be skipped. Then we show why the 
construction of the above wEEG system guarantees that only those derivations 
that follow a derivation of the random-context grammar G result in a terminal 
word. 

Let us suppose that we want to simulate the application of the first rule of G: 
(Ci—>ai, Qi, R\) (the case of the other rules is similar) and let us first suppose 
that Qi 0. Before the simulation the sentential form in E is over {[W, r, 5] | W € 

In the first step the agent "decides" whether the current rule (in this case the 
first rule of G) will be simulated or will be skipped. Let us suppose that the rule is 
to be simulated. In this case the agent uses the rule [C\, r,'5]—>[Ci, 1,1]. The other 
letters are rewritten by the environment, using the rules {[if , r, 5 ] — 1 , 1 ] | X 6 
VU{Z}}. 
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In the next step the agent checks whether or not the forbidding context is present 
in the sentential form. This is done in the following way: the agent introduces a D 
if [£ ,1,1] is present (where { B } = Rx), while otherwise the agent does not work 
because [Z, 1,1] is not present in the sentential form. The environment increases 
the second index of the symbols from 1 to 2 in this step. 

In the third step the agent uses its rule [A, 1,2]->[A, 1,3][£>, 1,3] for { A } = Qi; 
the environment increases the second indices from 2 to 3 in the other symbols. 

In the fourth step the agent deletes [£>, 1,3] while the environment increases the 
second indices from 3 to 4. In the fifth and final step the agent applies the rule 
[Ci, 1,4]—>[c*i, 1,5] or the rule [Ci, 1,4]—>A, which correspond to the first rule of 
G; the environment increases the second indices. Therefore we obtain a word over 
{[w,i,5]| W e v u { z } } . 

If Q1 = 0, that is when the permitting condition is empty, the simulation 
is different. While the environment does the same as in the previous case, 
the agent applies different rules. The rule the agent uses in the first step is 
[Gi,r, 5]->[Gi, 1,1][f7,1,1] and thus [U, 1,1] is introduced. In the third step this 
symbol is used to introduce [£>,1,3] and from that point the simulation continues 
in the same way as described above, that is when Qi / 0. 

Now we show how we can do the skipping of the first rule (the case of the other 
rules is the same). Let us suppose again that we have a word over the alphabet 
{[W,r,5] | W EVU{Z}}. 

The environment works in the same way as it did in the previous case, the only 
difference is in the behaviour of the agent. In the first step the agent chooses the 
rule [Z, r, 5]->[Z, 1,1], in the next step the rule [Z, 1, l]-ï[Z, 1,2], and in the third 
step the rule [Z,l,2]->[Z,l,3]. In the fourth and the fifth step the agent no longer 
has any rule to apply, hence it does not perform any action. By the end of these 
five steps we have the same word as we had before, apart from the first indices in 
the symbols: we have the same word over the alphabet {[W, 1,5] | W € V U {Z}}. 

At this point the simulation or the skipping of the second rule can start and 
can be carried out in the previous manner. We can continue this process until the 
last rule, the rth one, when we can restart the whole procedure with the first rule 
again. 

In order to finish the derivation, after having finished the simulation of a rule 
of G the agent chooses the rule of the form of [Z,i, 5]—>A while the environment 
rewrites the remaining letters according to its rules [X,i, 5]—>X. 

Thus we have seen that L(G) Ç £(£). 
In the following we show that the eco-grammar system must follow one of the 

sequences of steps presented above, or otherwise the derivation would never termi-
nate. 

In the first step, when the sentential form is over [W,i — 1,5], thé agent can 
work because either the left-hand side of the current rule of G is present (and thus 
the agent can rewrite [Ci, i — 1,5]) or the symbol [Z, ¿—1,5] can be rewritten. (At 
the end of the proof we explain why we can suppose that Z has not yet disappeared 
from the sentential form.) 
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Therefore, in this first step the agent marks a place where it can perform the 
application of the current rule or it can mark Z. If it marks a place for the current 
rule in the next steps it must check the appearance of the forbidding and the 
permitting context. The derivation can result in a word not containing letters D 
only if the check is successful. This is done in the following way: the derivation is 
blocked by the rule [B,i, 1]—>D if the forbidding context is present, or by the rule 
[Ci,i, 3 ] — i f the non-empty permitting condition is missing. In the last step the 
agent must apply the rule corresponding to the rule of G. 

Thus, we have seen that if the agent decides to mark a place for applying the 
current rule, then he must check whether or not the rule is applicable, and he must 
simulate it during the five steps. If the agent chooses the. other possibility and 
marks Z, then in the next two steps he must increase the second index of [Z,i, j] 
from 1 to 2 and from 2 to 3. In the next two steps the agent cannot work. Hence 
if the agent chooses to mark [Z, i, 5], then the work of the whole system follows the 
strategy of skipping the current rule, or otherwise the derivation would be blocked. 

As far as the end of the derivation is concerned, the environment has to apply 
the rules of the form [X,i, 5]—>X for all the letters in the same derivation step, or 
otherwise the derivation is blocked in the next step. It can happen that the agent 
deletes Z before the end of the derivation but this fact does not allow any new 
word to be generated, so we can safely assume that the deletion of Z happens in 
the same derivation step as the rewritings [X, i,5]-^X. 

We have seen the other direction of the inclusion, L(E) C L(G), which com-
pletes the proof of the lemma. • 

Because = RE and because weak extended simple eco-grammar systems 
can be simulated by Turing machines, we obtain the following theorem: 

Theorem 4.1 oo) = US 

5 Conclusions 

In this article we presented two variants of extended simple eco-grammar systems. 
In both cases we have found that the modifications lead to systems withlarge gen-
erative power: all recursively enumerable languages can be obtained in these ways 
with only one agent. 
The question of the generative power of the original model, the extended simple 
eco-grammar system, remains open. 
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On Kleene Algebras of Ternary Co-Relations 

Igor Dolinka * 

Abstract 

In this paper we investigate identities satisfied by a class of algebras made 
of ternary co-relations - contravariant ("arrow-reversed") analogues of bi-
nary relations. These algebras are equipped with the operations of union, 
co-relational composition, iteration, converse and the empty co-relation and 
the so-called diagonal co-relation as constants. Our first result is that the 
converse-free part of the corresponding equational theory consists precisely 
of Kleenean equations for relations, or, equivalently, for (regular) languages. 
However, the rest of the equations, involving the symbol of the converse, are 
relatively axiomatized by involution axioms only, so that the co-relational 
converse behaves more like the reversal of languages, rather than the rela-
tional converse. Actually, the language reversal is explicitely used to prove 
this result. Therefore, we conclude that co-relations can offer a better frame-
work than relations for the mathematical modeling of formal languages, as 
well as many other notions from computer science. 

1. Introduction 

The study of the equational theory of. Kleene algebras dates back to sixties, and' 
since then it has a vivid history. However, the term 'Kleene algebra' is of more 
recent date, while the above equational theory was in the first place considered as 
the collection of regular identities: pairs of regular expressions denoting the same 
language. It was Redko [23] who proved first that regular identities have no finite 
base of equational axioms, but that result became available for a larger audience 
only with the famous booklet of Conway [6] in 1971. Conway's model-theoretic 
argument is probably the best known proof of Redko's result so far. 

What is even more important, Conway's ideas eventually led to further progress 
in the field. However, the explicite determination of a nontrivial equational base-
of Kleene algebras had to wait until the last decade, when Krob [19] and. Bloom 
and Esik [3] solved the problem: the axiomatization from [19] was based on the 
discovery of a beautiful connection between regular languages and finite groups, 
while the one in [3] came out from some deep investigations in category theory and 

'Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradoviia 4, 21000 Novi Sad, 
Yugoslavia, e-mail: dockieaunsim.ns.ac.yu 
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its applications in computer science (see [2]). These approaches were quite recently 
unified in [5, 12]. 

It was realized in the late seventies by relation algebraists that language algebras 
and Kleene relation algebras are very closely related: they satisfy precisely the same 
(regular) identities, so that both of these two classes generate the same variety (of 
Kleene algebras). Moreover, the algebras of regular languages turned out to be just 
the free Kleene algebras, as proved by Kozen [18] in 1979 (although this result was 
originally formulated in the context of dynamic algebras). 

But when one considers the operations of the converse of relations and the rever-
sal of languages, respectively, the above symmetry between languages and relations 
is lost. Namely, the involution axioms suffice to capture the equational properties 
of the reversal of languages [4], while for the converse of relations one should involve 
an additional identity [13], which does not hold for languages. Therefore, relations 
are not 'good enough' to model the language reversal. 

On the other hand, the concept of a co-relation is quite new. Yet, it belongs 
to the collection of 'co-algebraic' phenomena, which have been studied for some 
time. Roughly speaking, the main idea is to dualize the notion of an algebra and 
the main algebraic constructions. The pioneering papers along this line were the 
ones of Eilenberg and Moore [11] and Kleisli [17], but it was Aczel and Mendler [1] 
who opened new directions in applying co-algebra in computer science. With this 
approach at hand, they managéd to model (binary) trees, different deterministic 
and nondeterminstic transition systems, etc. Since then, co-algebraic concepts were 
widely applied e.g. in object-oriented programming [24] and program verification 
[14]. For basic notions of co-algebra, see [15, 25]. 

In 1971, Drbohlav [10] started to investigate co-operations on a set, which one 
obtains from the notion of an operation by reversing arrows and replacing products 
by coproducts in the category of sets. Later, this inspired Csákány [9] to introduce 
clones of co-operations (see also [20]). But as the classical clone theory needs its 
'relational part' in order to develop full strength, so the theory of clones of co-
operations needs appropriate co-objects as invariants. Hence, Pöschel and Röfiiger 
[22] proposed the concept of a co-relation. While an n-ary relation on X can be 
thought of as a family of n-ary vectors over X, that is, functions n X, an n-ary 
co-relation on X is a collection of functions X —> n (n-ary co-vectors on X), which 
should be imagined just as colourings (partitions) of X in n colours (into n classes). 

In [20], the operation of composition was defined for arbitrary co-relations; 
however, the result of the composition of two n-ary co-relations is again an n-
ary co-relation if and only if n = 3. Of course, binary co-relations quite clearly 
correspond to unary relations (subsets). Thus it is natural to expect that the role 
and importance of binary relations is inherited by ternary co-relations on a set. 

In this paper, we consider algebras consisting of ternary co-relations, endowed 
with the operations of union, composition, iteration (in the sense of the complete 
union of composition powers), co-relational converse and with two distinguished 
constants. Our main result is that such algebras generate the same variety as the 
language algebras equipped with the operations of union, concatenation, Kleene 
star, reversal and the empty lanugage and the language containing the empty word 
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only, as constants. In particular, it follows that the converse-free reducts of these 
co-relation algebras are indeed Kleene algebras, justifying the title of the paper. 
Therefore, we are going to eventually conclude that', from the equational point bf 
view, co-relations model (the operations on)ianguages better than relations. : -

For basics of universal algebra we refer to [21] and for the theory of binary 
relations to [16]. The same references hold for all undefined notions throughout the 
paper. 

2. Preliminaries 

2.1. Kleene algebras 
Let X be any set. Consider the following algebra: 

Rel (X) = (V(X x X), U, o , r t c , 0, A x ) , 

where U is the union, o is the composition of relations, r tc is the formation of the 
reflexive-transitive closure, while A j is the diagonal relation on X . The algebra 
Rel(X) is called the full Kleene algebra of relations on X. Any algebra which 
can be embedded into some full Kleene relation algebra is called representable, (or 
standard) Kleene algebra. The variety generated by all algebras Rel(AT) we denote 
by K.A. A Kleene algebra is just any member of K.A. 

Beyond algebras of relations, the most important example of Kleene algebras is 
the language algebra over an alphabet E: 

Lang(£) = <?>(£*),+ )-.*,0,{A}>, ' 

where £* is the free monoid on £ (which consists of all words over £) , + denotes 
the union, • is the concatenation, * is the Kleene star (iteration), and' finally, A 
denotes the empty word. The fact that language algebras indeed belong to K.A is 
a consequence of a more general observation. 

Lemma 1. Let M be any monoid. Then K(M) = (P(M), U, •,* ,0, {1}), where 
• is the complex multiplication, * the generation of a submonoid, and 1 the unit of 
M, is a Kleene algebra. 

Proof (in outline). Consider the mapping £ : V(M) V(M x M) defined for 
every A C Jli by 

£(A) = {(z,£a) : x G M,a G A} = (J ga, 
A€A 

where ga denotes the right translation of the monoid M. It is a routine matter to 
show that £ is an embedding of K ( M ) into Rel(M). • 

By taking M = £*, from the above lemma we immediately obtain that 
Lang(£) = K(£*) is a Kleene algebra for any alphabet £ . 
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The elements of the subalgebra of Lang(£) generated by the languages of the 
form {a } , a £ £ (or, equivalently, by all finite languages), are called the regular 
languages over £ . This subalgebra is denoted by Reg(£). Now, the algebras of 
regular languages have the following remarkable property. 

Proposition 2. (Kozen, [18]) Reg(£) is the free Kleene algebra on £, freely 
generated by the map a >-4 {a } , a 6 £. 

Thus, it follows that an identity p = q holds in K.A if and only if the regular 
expressions p, q represent the same (regular) language. Also, the above proposi-
tion implies that if we denote by C the variety generated by all language algebras 
Lang(£), then C = K.A. 

We are not going to state here the well known nonfinite axiomatizability result 
for K.A, due to Redko [23], nor the explicite axiomatizations given by Krob [19] 
and Bloom and Esik [3]. However, when one is concerned with Kleene algebras or 
relations and languages, it is quite customary to consider one more operation. First, 
we have the natural operation of the reversal of languages. If w = a\a2... an £ £* 
is a word, we define 

wv = an ... a2ai. 

Now we have 
Ly = {wv : we L}. 

By adding the operation of the reversal of languages to Lang(£) we obtain the 
algebra Langv(£). The variety generated by algebras of this form we denote by 

Proposition 3. (Bloom, Esik and Stefanescu, [4]) The variety £v is axioma-
tized relatively to K.A by the involution axioms, that is, by the following identities: 

( x + y ) v 
V , V = X + y , (1) 

= Y V Z V , (2) 
( x T = ( * V r , (3) 
( * T = X, (4) 

ov 
= 0, (5) 

i v = 1. (6) 

There is one more way to define an involutorial operation on language algebras, 
which can be useful in some applications. For an alphabet let £ ' denote a 
bijective copy of £ ' = {a' : a £ E}. For w = hb2 .. • bn € ( £ U £')* define 

w'= b'n...b'2b'1, 

where for all 1 < i < n, 
bi = a e H, 



On Kleene Algebras of Ternary Co-Relations 587 

Finally, let Lang'(£, £ ' ) be the language algebra Lang(E U £ ' ) endowed with the 
unary operation ', where, of course, L' = {w' : w 6 L}. 

By Proposition 4.3 and Theorem 5.1 of [4], algebras Lang'(£, £ ' ) also generate 
the variety £ v . 

On the other hand, the operation which extends Kleene algebras of relations is 
the converse: 

= {(y,x) • (x,y) e Q}. 
By equipping the algebra Rel(X) with v , we obtain the algebra Relv(AT). All 
algebras of the latter form generate the variety K.AV, which turns out to be a 
proper subvariety of £ v . 

Proposition 4. (Esik and Bernatsky, [13]) The equations (l)-(6) and 

x + xxy x = xxy x (7) 

axiomatize the variety ICAV relatively to K.A. 

Therefore, we may conclude that the equational properties of the language re-
versal are not faithfully modeled by the relational converse and hence, it is natural 
to look after a different setting which would allow to capture those properties, 
preserving at the same time the Kleenean equations. 

2.2. Co-Relations 
Clearly, an n-ary relation on X can be thought of as a collection of n-ary vectors 
over X, that is, functions n —> X. Dually, an n-ary co-relation on X is a set 
consisting of n-ary co-vectors, i.e. of functions X —> n. Of course, the notion of a 
n-ary co-vector is equivalent to the notion of a colouring of a given set in n colours. 
In particular, a ternary co-relation is a family of functions X —» 3. It is convenient 
to represent a ternary co-vector / : X —> 3 through the corresponding partition 
of X into A = /_1(°)> B = / - 1 ( 1 ) and C = f~1{2), so that / is written as 
(A, B, C ) v (we use the symbol v to indicate that we are not dealing with a ternary 
vector whose elements are A,B,C). In order to introduce a more intuitive (and 
visualisable) terminology, we are going to call the colours 0,1,2 (i.e. the elements 
from A,B,C) respectively red, green and blue. 

In this paper, we deal with algebras of ternary co-relations of the form 

cRelu(X) = ( 7 > ( 3 x ) , U , . , * , u , 0 , e x ) 

(the reduct without u is denoted by cRel(X)), where the operations and the con-
stants are defined below. First of all, U is simply the set-theoretic union, while the 
constant ex is the co-relation consisting of all green-free colourings of X , that is, 

The definition of the co-relational composition • is the following: 

e*a = {(A,BUE,F)V : (3 C,D C X)((A,B,C)V € gA(D,E,F)v e o AC = X\D)}. 



588 Igor Dolinka 

In other words, two co-vectors can be composed if the blue set of the first one 
coincides with the non-red part (green+blue) of the second one (or, equivalently, 
red+green elements of the first are precisely the red elements of the second co-
vector). If that is the case, green elements are added together, the red colour is 
copied from the first and the blue from the second factor. 

Since one can define arbitrary unions of co-relations, the unary operation * is 
just the co-relation analogue of the reflexive-transitive closure of relations, or of the 
Kleene iteration. If for a ternary co-relation g and n > 1 we define 

gn = £>#...• Q 
n 

and g° = Ex, then 
6*= [J Qn• 

n>0 

Finally, the co-relational converse u is defined as the interchanging of the red 
and the blue colour: 

gu = {(C,B,A)V : (A,B,C)veg}. 

In the sequel, we shall need the following fact (whose proof is omitted as being 
immediate). 

Lemma 5. For any set X, the algebra cRelu(X) satisfies the identities (1)-
(6). 

However, note that for all nonempty X , c R e l u ( X ) does not satisfy (7), because 
for g = { ( 0 , X , 0 ) V ) we have g*gu»g=®. 

3. The Results 
First of all, we prove that the co-relation algebras c R e l ( X ) are Kleene algebras. 
Moreover, all such algebras are representable. 

Proposition 6. For any set X, the algebra cRel(X) is isomorphic to a sub-
alegbra of Kel(V(X)). 

Proof. Define a mapping 0 : V(3X) V(V(X) x V(X)) by 

Q(q) = {(A,AUB) : (A,B,C)V eg}. 

It is immediately clear that 0 is injective and completely additive. It remains to 
prove that for all g,a C 3 X we have Q(g • a) — Q(g) o 0 ( a ) (for then it follows 
from the the complete additivity that we have ©(ß*) = (0(ß)) r t c ) . 

Indeed, let (A, B) £ Q(g»a). Clearly, this is the same as saying that AC B and 
(A,B\A, X\B)V £ g*a. The latter condition is just equivalent to the existence of 
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BUB2,C,D C X s u c h t h a t C = X\D, (A,BUC)V £ G, (D,B2,X\B)V £ A a n d 
B\\JB2 = B\A. Note that from here C can be eliminated, namely C = X\( J 4uSi ) , 
so that we arrive at (A, A U Bi) € Q(g) and {A U BX, A U BX U B2) £ 0(CT), 
where BX U B2 = B \ A. But recall that A C B, so that (A,B ) £ Q(G • A) is 
the same as (A,A\JB{) £ Q{G) and (A\JBI,B) £ Q(cr) for some J3i C B, i.e. 
(A,B) £ @(Q) O 0(CT), which finishes the proof. • 

The combined effect of Lemma 5 and the above proposition is just as follows. 

Corollary 7. For all X, cRelu(X) £ £ v . 

Now let E be an alphabet, x £ E, and let 

w = aia2 .. ,an £ (E U E')* 

be any word (E' is, as in the previous section, a bijective copy of E). Define a 
mapping i/jw : E —> V(3—) (where we use the following notation: n = { 1 , 2 , . . . ,n } 
and 0 = 0) by 

= {(i_zzl>{i}>n\i)V '• ai-x}U {(n \ j, - 1)V : at = x'}. 

Since by Proposition 4.2 from [4] we have that Lang ' (E,E') is the free object 
on E in the category of completely idempotent semirings with involution (to which 
cRel u (X ) certainly belongs, for all X ) , the mapping defined above can be extended 
(by identifying x and {x} for all x £ E) to a morphism : Lang ' (E,E ' ) _» 
cRelu(n) (recall that n = |iu|). 

It is not difficult to see that the following assertions hold: 

(a) < M ( u ; } ) = *w({ai})...iBw({an})=xl>w(a1)...%l>w(an) = { ( 0 , n , 0 ) v } . 

(b) ^ ( { A } ) = e„. In particular, * A ( { A } ) = = { ( 0 ,0 ,0 ) v } -

(c) If u is a nonempty subword of w, say u = a ; . . .aj, then, similarly as in (a), 

* « . ( { " } ) = { ( ¿ - l , i \ t - l , n \ j ) v ) . 

Otherwise, ^ „ ( { u } ) = 0. 

(d) If L is a language over E U £ ' , then 

$ l iJ(L) = : u is a subword of w such that u £ L}). 

Therefore, for any word w, we have the following equivalence: 

w £ L (0 ,n ,0 ) v e *v,(L). (8) 

Finally, let 
^ : Lang '(E, E') JJ cRel u (H) 

tu6(EuE')* 

be the target tupling of the morphisms that is, the (unique) function satisfying 
the condition \I> o nw = for all w £ (£ U E')* (where nw is the projection of the 
above direct product corresponding to w). 
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Proposition 8. is an embedding of completely idempotent semirings with 
involution (and thusof Kleene algebras with involution). 

Proof. Since all functions "fu, are morphisms of completely idempotent semirings 
with involution', it suffices to prove that <5 is injective. But this easily follows from 
the equivalence (8), because if L\,L2 are two different languages over S u S ' and 
w0 E LI\L2i n0 = K l , then by (8) we have that (0 ,no ,0) v 6 $W0{LI)\$W0(L2). 
Hence, $„ , 0 (Li) ^ VWO(L2), and so i - (Li) ± $(Z,2). • 

As the algebras Lang'(£,E') generate the variety £ v , we have just proved 

Theorem 9. The variety generated by all algebras of co-relations cRelu(AT) 
coincides with £v. 

Hence, we may say that the equational behaviour of the language reversal is 
modeled by ternary co-relations. 

On the other hand, it is interesting to see how one obtains Kleene algebras of 
relations from those of co-relations, provided that we drop the converse operation. 
It turns out that we do not need the (slightly cumbersome) construction of the 
direct product: we shall prove that Rel (X) € HS(cRel(w x X ) ) for all X , i.e. that 
Rel(X) is a quotient of a subalgebra of cRel(w x X). It is worth noting tha.t LJ x X 
is just the w-copower of X (coproduct of u copies of X) in the category of sets. 

First of all, choose a linear order < on X, so that (X, < ) is a chain. Further, 
define a linear order relation ^ on u x X as follows: 

(k,xi) •< (£,X2) if and only if k < £ or k = i, xi < x2. 

A ternary co-vector over X (3-colouring of X) of the form = (A,B, C ) v , 

A = {(n,x) : (n, x) < (k, u)}, 
B = {(n, x) : (k,u) < {n,x) < (i,v)}, 
C = {(n,x): (i,v) < (n,x)}, 

where (k, u) (£, v), we call a cutting of the set w x X. Now for m € w let 

X2v = {<i-- i~k = m}. 

Note that Xu v nonempty if and only if u < v. 
A ternary co-relation on ui x X is a closed set of cuttings if it is representable as 

a union of co-relations of the form xUV Alternatively, we can define a closed set 
of cuttings as a family g of cuttings satisfying, for all u,v 6 X, the condition 

(3p,q € cj) G e. 

Finally, we call a ternary co-relation on w x X good if it is a union of a closed set 
of cuttings and a green-free co-relation (that is, a subset of euxx) which contains 
no cuttings. The set of all good co-relations on w x X is denoted by G(X). 
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Lemma 10. G(X) is the universe of a subalgebra G(X) of cRel(w x X). 

Proof. First of all, it is clear that G ( X ) is closed for arbitrary unions and that 
0 6 G(X). Also, euxX € G(X), because 

e„xx = ( (J Xx,x) Ue', 
\ I € X / 

where e' is the set of all green-free co-vectors over UJ x X which are not cuttings. 
Hence, the lemma will be proved if we show that the composition of two good 
co-relations remains good. 

Therefore, let 

ei = и £ ь 
\ie/ / 

82 = j ^ U x ^ . j u e a , 

where £i,£2 are green-free co-relations containing no cuttings, and I, J are disjoint. 
Since • is completely distributive over U (recall Proposition 6), we have: 

= ( ( J ' x™/»,) J u ( U ^ U ' £ 2 ) ) u ( U # x^.%,) I U(£1 .£ 2 ) . 

\(i,j)€lxJ J \i€i ) \jeJ J. . 

It is easy to see that the following holds: 
yk * = i xtf' v = z> 
Xu,v Xz,t ^ v фг. 

Also, note that a со-vector which is a cutting can be composed (from the left or from 
the right) with a green-free co-vector only if the latter is a cutting, too (because 
the blue part of the considered green-free co-vector must coincide either with the 
green+blue part, or with the blue part of the cutting which it is composed with). 
Thus for all u, v £ X and m g UJ we have 

Xu,v • £2 = £i • Xu,v = 0-

Finally, it is not difficult to see that the composition of two green-free co-relations 
coincides with their intersection (because two green-free со-vectors can be composed 
if and only if they are equal), so 

£j «£2 = £l П £2, 

which is a green-free co-relation containing no cuttings. We conclude that Qi • q% 
is a good co-relation. • • 
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Now define a relation = on G(X) by 

ei = 62 if and only if (V«,1» e X)((3k e u) xku,v Q 01 e w) xi,v Q ea)-

Proposition 11. TTie relation = is a congruence of G(X) and 

3 Rel(X). 

Proo/. Define a mapping T : G{X) V(X x X ) by 

T ( e ) = { < « , « ) : ( 3 f c 6 o ; ) x £ , „ C e } . 

It is obvious that the kernel of T coincides with = . Thus it remains to prove that 
T is a surjective morphism of complete semirings. 

First, for a C X x X define 

U 
(u,v)e<r 

According to the above definition, T(g„) = o. Hence, T is surjective. 
Now we prove that T is completely additive. We have: 

T(U<ft) = : (3fc € £ U<6/ ft}-
But all the co-relations are good, which means that if € then Xu~«p — ft-
Therefore, if & ^ 0 > t h e n C g u and so Xu,v Q Uig/ ft implies xt,v Q 
for some io G / . Clearly, the converse of the latter conclusion is true, which amounts 
to say that T ( U i 6 / e<) = Uie/ T(ft)-

Finally, let QI = 9i U E\ and g2 = 92 U e2 be two good co-relations, where 
9\,92 are closed sets of cuttings and ei ,e2 are green-free co-relations containing no 
cuttings. As seen in the previous lemma, we have 

Bi • 92 = (9i *02 ) U (ex •e2) . 

Now we have the following chain of equivalences: 

(u,v) er(ei*g2) <S> (3k e w) xi,v C Qi • g2 

(3k6w)XtiVC01»ff2 

& (3 z € X)(3p, q € u)(xPUt2 C 6X C gx A x l „ C 0 2 C g2) 
(3z e * ) « " > * ) € T ( e i ) A <z,v) € T i f t ) ) 

«> < u , i ; ) G T ( e i ) o T ( e 2 ) 

So, T ( g i • g2) = o T(g2), and the proposition is proved. • 

Finally, it is well known that any direct product of full Kleene relation algebras 
(possibly with converse) is a represetable Kleene algebra. Namely, such a direct 
product (say, of Rel v (X j ) , i e I) can be embedded into the full Kleene algebra of 
the relations on [ J i 6 / Xi , the coproduct (disjoint union) of the base sets X{. In the 
last assertion of this paper, we note that the direct product of co-relation algebras 
cRelu (Xj) can be in a similar fashion represented by co-relations. 
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Proposition 12. Any direct product of algebras of the form cRelu(Ji) is. em-
beddable into an algebra of that form. More precisely, the direct product of algebras 
cRelu(X i), i e I, is isomorphic to a subalgebra o/cRelu(]J i € i A^), where \JiefXi 
denotes the coproduct of the sets Xi. 

Proof (in outline). In order to relax the notation, we may assume that the 
sets Xi are already disjoint and argue that Hie/ c R- e l U (^ i ) is embeddable into 
cRelupO, where X = \JieI X{. Consider the mapping <p : fliej-V(3Xi) -> V{ZX) 
given by 

¥>««!< = i € I)) = U Si-
i€l 

One shows in a routine way that (p is an injecitve morphism of complete semirings 
with involution. ® • 

Therefore, the embedding $ from Proposition 8 composed with the embed-
ding <p from the above proposition gives an embedding of the language. algebra 
Lang'(£, £ ' ) into cRelu(S), where 5 is a set of cardinality |£| -I- No-

4. A n Open P r o b l e m 

The algebras cRelu(X), whose identities were investigated in this paper, turned 
up as categorical duals of Kleene relation algebras (with converse).. However, we 
can consider another kind of co-relation algebras which arise from the analogy with 
relation algebras of Tarski (by droping the operation of iteration and taking all of 
the Boolean operations): 

cR(A') = ( P ( 3 x ) , U , n , - , 0 , 3 - \ . , U , ^ > -

It is well known (Monk, 1964) that the variety generated by the corresponding re-
lation algebras is not finitely axiomatizable. Also, several explicite axiomatizations 
are known. Here we raise the question whether the same is true for. the variety 
determined by algebras of the form cR(X). First of all, it would be interesting.to 
give any nontrivial equational axiomatization for this variety (or any other descrip-
tion of its equational theory). Of course, we have proved in the present paper that 
the equations of co-relation algebras cR(X) not involving n,~, 3 X , are just those of 
idempotent unitary semirings with involution. However, the equations of relation 
and co-relation algebras which contain the above symbols are not equal, since the 
famous Tarski identity: 

(x v o (xo~y)) n y — 0, 

does not hold for co-relations (see [20]). 

Aknowledgement. The author is grateful to Dragan Masuiovic for providing 
a copy of [20] and for many valuable conversations we led concerning the theory,of 
ternary co-relations. 
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Results concerning EOL and COL power series 

Juha Honkala * 

Abstract 
By a classical result of Ehrenfeucht and Rozenberg the families of EOL and 

COL languages are equal. We generalize this result for EOL and COL power 
series satisfying the e-condition which restricts the coefficients of the empty 
word. 

1 Introduction 
A celebrated result from classical theory of Lindenmayer systems states that the 
families of EOL languages and COL languages are equal (see Ehrenfeucht and Rozen-
berg [1], Rozenberg and Salomaa [5,6]). In this paper we generalize this result foi 
formal power series. We will work in the framework of morphically generated formal 
power series introduced in Honkala [2,3] and Honkala and Kuich [4]. 

In what follows A will always be a commutative w-continuous semiring (see [4]). 
Suppose S is a finite alphabet. The set of formal power series with noncommuting 
variables in E and coefficients in A is denoted by A <C E* The subset of 
A « S" > consisting of all series with a finite support is denoted by A < £*•' >: 
Series of A < E* > are referred to as polynomials. A semialgebra morphism 
h : A < E* >—• A < E* > is specified by the polynomials h(o), o £ E. If h(a) is 
quasiregular for all a £ E, thé semialgebra morphism h is called propagating. If A 
is a finite alphabet, a semialgebra morphism h : A < E* >—> A < A* > is called 
a coding if for each o € E there exist a nonzero a £ A and a letter a; £ A such that 
h(a) = ax. 

We are going to discuss 0L, POL, EOL, EPOL and COL power series. By defini-
tion, a power series r £ A -C E* is called a 0L power series if there exist a £ A, 
w £ E* and a semialgebra morphism h : A .< £* >—> A < E* > such that -

oo 

r = X W f a ) . (1) 
n=0 

If in (1) the semialgebra morphism h is propagating, r is called a POL power series. 
EOL and EPOL power series are now defined in the natural way (see Honkala and 

* Research supported by the Academy of Finland Department of Mathematics, University of 
Turku, FIN-20014 Turku, Finland, email: juha.honkala@utu.fi 
and Turku Centre for Computer Science (TUCS), Lemminkàisenkatu 14, FIN-20520 Turku, Fin-
land 
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Kuich [4]). A power series r £ A « A ' » is called an EOL (resp. EPOL) power 
series if there are a finite alphabet E and a OL (resp. POL) power series s g i « 
E* such that 

r = s O char(A*). 

Finally, a power series r E A c A* 3> is called a COL power series if there exist a 
finite alphabet E, a OL power series s e /4 « S ' » and a coding g : A < E* >—> 
A < A* > such that 

r = g(s). 

If A = B where B = {0 ,1} is the Boolean semiring, r £ B € E* > is a OL 
(resp. POL, EOL, EPOL, COL) power series if and only if the support of r is a OL 
(resp. POL, EOL, EPOL, COL) language. (Here the empty set is regarded as a OL 
(resp. POL, EOL, EPOL, COL) language.) 

In order to generalize the E0L=C0L theorem for formal power series it is useful 
to consider separately three parts of the result corresponding to different steps in 
its proof (see Rozenberg and Salomaa [5]; recall also that here two languages are 
regarded as equal if they contain the same nonempty words.) 

Theorem 1 Every COL language is an EOL language. 

Theorem 2 Every EOL language is an EPOL language. 

Theorem 3 Every EPOL language is a COL language. 

In the sequel we will generalize Theorems 1 and 3 for'quasiregular power series 
over any commutative w-continuous semiring A. To generalize Theorem 2 we have 
to introduce an additional condition. As a consequence we obtain a power series 
generalization of the E0L=C0L theorem. 

2 COL power series are EOL power series 
In this section we prove a power series generalization of Theorem 1. 

Theorem 4 Suppose r 6 A C A ' » is a quasiregular COL power series. Then r 
is an EOL power series. 

Proof. Suppose 
oo 

r = aghn(w) 
n-o 

where h : A < E* >—> A < E* > is a semialgebra morphism, g : A < £* >—> 
A < A* > is a coding, a £ A and w £ E*. Without restriction we assume that 
E n A = 0. Extend g and h to semialgebra morphisms g, h : A < (E U A)* >—> 
A < (E U A)* > by g(x) = h(x) = 0 if x £ A. Next, choose a new letter $ & E U A 
and define the semialgebra morphism / : A < ( E U A U $ ) * > — > - A < ( E U A U $ ) * > 
by 

f(x) = $h(x) + g(x), /($)=£, 
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i 6 S U A . We claim that there exist polynomials rn,pn e A < (E U A U;$.)* •>', 
n > 1, such that ' 

fn(w) =rn + ghn-1(w)+pn (2) 

and 

pro j E u A ( r n ) = hn(w), pn © char((E U $)*) = 0, pn O char(A*) = 0 (3) 

if n > 1. (Here pro j E u A : A < (E U A U $)* >—> A < (E U A)* „> is the 
projection mapping $ into e and x into itself if x £ E U A.) Clearly, there exist 
r i ,pi £ A < (E U A U $)* > such that (2) and (3) hold for n = 1. Suppose then 
that (2) and (3) hold for n > 1. Then 

/n+1M = f(rn + ghn-1(w)+pn) = f(hn(w)) = r n + i + ghn(w) +Pn+1 

for suitable r n + i , p n + i £ A < ( S U A U $ ) * > satisfying 

pro j E U A ( r n + i ) = hn+1{w), 

pn+1 Ochar((EU$)*) = 0,. pn+1 © char(A*) .= 0. 

This concludes the proof of the existence of the polynomials r „ ,p n , n > 1. 
Now, because • 

oo 
^ o / n ( w ) 0 char(A*) = 
n=0 

oo 
aw © char(A*) + a ^ ( r n + ghn~l(w) + pn) O char(A*) = 

71—1 

OO 

aghn{w) = r, 
n = 0 

r is a EOL power series. • 

3 EOL power series satisfying the e-condition 
In this section we generalize Theorem 2 for EOL power series satisfying the e-
condition. Suppose 

OO 

r = agn(w) © char(A*) 
71=0 

is an EOL power series where g : A < E* >—> A < E* > is a semialgebra 
morphism, a £ A, w € E* and A C E . We say that r satisfies the e-condition if 

(g(c),e) = (gn(c),e) 

for all n > 1, c 6 E. 
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Theorem 5 Suppose r £ .4 « 4 ' 2> is a quasiregular EOL power series satisfying 
the e-condition. Then r is an EPOL power series. 

Proof. Suppose 
oo 

r = agn(w) © char(A*) 
n=0 

where g : A < E* >—> A < E* > is a semialgebra morphism, a £ A, w £ E* and 
A C E . Define the semialgebra morphism j3 : A < £* >—> A < E* > by /?(c) = 
(g{c), e)e for c £ E. Then we have ¡3{v) = (g(v),e)e for v £ E\ Let E_= {c | c £ E} 
be a new alphabet. Define the mapping <f>: A < E* >—> A < (E U £)* > by 

№ = o, 
<p{ci ...cm) = c1...cm + [13(d) + Ci] . . . Wm) + Cm J Ci . . . Cm /?(C1 . . . 

if m > 1 and c i , . . . , c m € E, and 

if P £ A < E* > . (Here A is not a ring but the meaning of the subtraction above 
should be clear.) Next, define the propagating semialgebra morphism h : A < 
(SUE)* > — 4 A < (SUE)* > by 

h(c) = h(c) = <p(g(c)) 

for c 6 E. Finally, define the semialgebra morphism n : A < (E U £)* >—> A < 
A* > by 7r(c) = c if c € A and 7r(c) = 0 if c £ A. 

Now, we claim that 
*hn(c)+fi(c)=*9n(c), (4) 

7Thn(c)+13(c) =irgn(c) (5) 

and 
TThn(cj>(v)) + I3(v) =TT9n(v) (6) 

for c 6 E, v € £ + and n > 1. First, it is easy to see that (4) and (5) hold if 
n = 1. Suppose (4) and (5) hold for n > 1. Let v = c\.. .cm where m > 1 and 
ci, • • •, cm 6 E. Then 

7T hn(<f>(v)) + 0(v) = 7Thn(Cl ...cm)+ 7r[/3(Cl) + /ln(Ci)] . . . 

n\fi(Cm) + h n { c m ) } - irhn(ci . . .Cm) = TTgn{ci . . . Cm). 

Next, we have 
g(c) = p(c) + J2(9(c),u)u. 

ujie 

Because /3(c) = (g(c),e)e = (g2(c),e)e = fi(g(c)), we obtain 

/ ? ( c )= /? (c ) + £ ( s ( c ) , t i ) 0 ( u ) . 
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Hence 
7rhn+1(c) + /3(c) = 7rhn(h(c)) + /3(c) + £ > ( c ) , u ) j 8 ( u ) = 

u^e 

*hn(£(g(c), u)ct>(u)) + /3(c) + 5 > ( c ) , « ) / ? ( « ) = 
u^e u^e 

7rgn(J2(9(c),u)u) + p(c) = irgn(g(c)) = 7rgn+1(c). 
u^e 

Therefore (4) holds if n is replaced by n + 1. A similar argument shows that (5) 
holds if n is replaced by n + 1. This proves (4),(5) and (6) for all n > 1. 

Let now $ be a new letter and extend h and 7r by /i($) = <j>(w), nr($) = 0. Then 
the extended h is propagating and 

oo oo oo 
r = Yl aitgn(w) = an(w) + ^ anhn((j>(w)) = ^ a7rhn($), 

71=0 71=1 71=0 ' 

where we have used the fact that a/3(w) = 0. Hence r is an EP0L power series. • 

4 EP0L power series are COL power series 
To generalize Theorem 3 we need two lemmas. 

Lemma 1 If a £ A and w £ E* is a nonempty word, the monomial aw is a COL 
power series. 

Proof. Define the semialgebra morphism h : A < E* >—> A < E* > by h(c) = 0 
for all c £ E. Then 

OO 
aw = ^ ahn(w) 

71=0 
is a OL power series. Hence aw is also a COL power series. • 

Note that the proof of Lemma 1, although very simple, is completely different 
than the language-theoretic proof that {w} is a OL language. In fact, the use of 
0-images is unavoidable in Lemma 1. For example, if a 6 E, o 6 N <C E* is not 
a 0-free COL power series although it clearly is a 0-free EPOL power series. 

Lemma 2 If r\,... ,rt £ A A* are quasiregular COL power series, so is 
n + . . . + rt • 

Proof. It suffices to consider the case t = 2. Let 
oo 

rj = X! 9]h^{a]Wj) 
71=0 

where hj : A < E* >—>• A < E* > is a semialgebra morphism, gj : A < E* >—> 
A < A* > is a coding, aj G A and wj e £ ) , j = 1,2. Without restriction we 
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suppose that a\ ^ 0 and £ j fl £2 = 0- Denote k = |kji | and let $1,... ,$jt be new 
letters. Let h be the common extension of h\ and h2 satisfying 

/i($i) = hi(a\Wi) + a2w2, h($2) = • • • = H$k) = e. 

Finally, let g be the common extension of <?i and g2 satisfying 

S($ 1 • ••$*) = a i g i ( w i ) . 

(The existence of g is clear if ai<7i(u>i) 0 or k ^ 1. If ai5i(u>i) = 0 and k — 1, 
we have to increase the value of A: by 1.) Then 

00 00 
Y/9hn(%i-..%k)=9^i---h) + ^2ghn(h1(a1w1)+a2w2) = 
n=0 n=0 

00 00 
aigi(wi) + *52g ih? + 1 { a iw i )+ Y^92h 2 (a 2w 2 ) = n + r 2 

n=0 n=0 
showing that r\ + r2 is indeed a COL power series. • 

Theorem 6 If r £ A <C A* » is a quasiregular EPOL power series then r is a 
COL power series. 

Proof. Suppose 
00 

r = ^2ahn{w)Q char(A*) 
n=0 

where h : A < S* >—• A < £* > is a propagating semialgebra morphism, a £ A 
and w £ £*. Without restriction we assume that a = 1. 

For a letter c £ E, the existential spectrum of c, denoted by espec(c), is defined 
by 

espec(c) = {n > 0 | hn(c) © char(A*) ^ 0}. 

If c £ E, the set espec(c) is ultimately periodic, see Rozenberg and Salomaa [5,6]. 
(Here we use Konig's Lemma to avoid the difficulties caused by products equal to 
zero.) The threshold and period of espec(c) are denoted by thres(espec(c)) and 
per(espec(c)), respectively. If espec(c) is infinite, then c is called a vital letter. The 
set of vital letters of £ is denoted by vit(E). 

The uniform period associated to r is the smallest positive integer p such that 
(i) for all j > p, if c is not a vital letter, then hj(c) © char(A*) = 0; 
(ii) if c is a vital letter, then p > thres(espec(c)) and per(espec(c)) divides p. 

Let 0 < k < p and denote 

£it = { c £ E | p + A;£ espec(c)}. 

Define the propagating semialgebra morphism gk A < E£ >—> A < ££ > by 

gk(c) = /ip(c) ©char(££), 
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c 6 Efc. Furthermore, define the propagating semialgebra morphism gp+k • A < 
££ >—> A < A* > by 

gp+k(c) = hp+k(c) © char(A*), 

c £ Sfc. Note that (?p+fc(c) / 0 for all c £ E*. We claim that 

hP+k(hp)nhp(P) © char(A*) = © char(E^)] (7) 

for any n > 0 and P £ A < £* >. First, 

hp+khp(P) © char(A*) = /ip+fc[hp(P) O char(E^)] © char(A*) + 

hp+k[hp(P) © char(E+ - Efc)] © char(A*) = 

hp+k[hp(P) © char(££)] © char(A*) = gp+k[hp{P) © char(££)]. 

Hence (7) holds if n = 0. Suppose then that (7) holds for n > 0. Then 

hp+k(hp)n+1hp(P) Q char(A*) = hp+k(hp)nhp[hp(P) © char(EJ)] © char(A*) = 

gp+kg%[hp[hp{P) © char(££)] © char(E^)] = gp+kgnk+1[hp(P) © char(E^)]. 

Consequently, (7) holds for all n > 0. Therefore 

2p—1 p—1 oo 
r = ^ / i n ( w ) © c h a r ( A * ) + ^ ^ / i p + ' ; ( / i i ' ) n / i p ( w ) © c h a r ( A * ) = 

71=0 A=0 ra=0 

2p—1 p—1 oo 
^ hn(w) © char(A*) + ^ ^ gp+flgk[hp(w) © char(E^)]. • 
n = 0 k=0 7i=0 

By Lemmas 1 and 2 it suffices to prove that the series 

oo 
sk,y = ^29P+kgk{y) 

71=0 

is a COL power series if 0 < k < p and y £ EjJ".' For the proof fix k and y. 
Next, choose nonzero polynomials Px, x £ and a coding a such that 

<*{Px) = 9P+k(x), 

no two of Px, x £ Ejt contain a common variable, each variable of Px has a unique 
occurrence in Px and every nonzero coefficient of Px equals 1, a; £ Denote 
Pe = e and Pv = PV2 ... PVm if m > 1, v = v\... vm and Vi £ for 1 < i < m. 
By our choice of Px, there exists a semialgebra morphism f such that 

• f(p*)= 52(9k(x),v)Pv, 
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if x £ E t . Then 
f ( P » ) = , £ ( 9 k M , v ) P v (8) 

vesf 

for any nonempty word u 6 Indeed, (8) holds if u £ and, if (8) holds for 

/ ( A x ) = / (Pu) / (Px) = 
u G E j we have 

XI (pt(«),Ui)Pn • £ (9k(x),v2)PV2 = £ (gk(ux),v)Pv 

where x € 
Next, we claim that 

№ ) = (9) 

for n > 1. First, if n = 1, (9) follows from (8). Suppose that (9) holds for n > 1. 
Then 

fn+1(Py)= £ (<£(</),")№) = 
ues; 

£ ( i f c ( u ) , t ; ) P „ = £ ( i £ + 1 ( y ) , u n -
ties; 

Hence (9) holds for all n > 1. Therefore 

oo oo oo 
£«/n(-fy) =9p-hk(y) + £ £ (9k(y),v)9p+k(v) = ^2'9p+k9k(y) = Sk.y 
n=0 n=lu€EJ n=0 

This shows that sjti3/ is indeed a COL power series. • 

Now, Theorems 5 and 6 imply the following result. 

T h e o r e m 7 / / r e A « A * ^ is a quasiregular EOL power series satisfying the 
e-condition, then r is a COL power series. 

The necessity of the e-condition in Theorem 7 is an open problem. 
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On commutative asynchronous nondeterministic 
automata * 

B. Imreh f M. Ito 1 A. Pukler § 

Abstract 
In this paper, we deal with nondeterministic automata, in particular, com-

mutative asynchronous ones. Our goal is to give their isomorphic represen-
tation under the serial product or equivalently, under the ao-product. It 
turns out that this class does not contain any finite isomorphically complete 
system with respect to the ao-product. On the other hand, we present an 
isomorphically complete system for this class which consists of one monotone 
nondeterministic automaton of three elements. 

1 Introduction 
The study of the compositions of nondeterministic (n.d. for short) automata was 
initiated in the work [3], where the isomorphically complete systems with respect 
to the general product were characterized. In [4] it is proved that the general 
and cube products of n.d. .automata are equivalent regarding the isomorphically 
complete systems. A further result on this line can be found in [7], where the 
isomorphically complete systems of n.d. automata with respect to the Q o - P r ° d u c t 

are characterized. 
In this work, a particular class of n.d. automata, the class of all commutative 

asynchronous n.d. automata, is studied. The isomorphic representation of the 
deterministic commutative asynchronous automata was studied in [8], where it 
turned out that every commutative asynchronous automaton can be embedded into 
a quasi-direct power of a suitable two-state commutative asynchronous automaton. 
We show here that this is not valid for the n.d. case, and what is more, it is not 
valid neither under the stronger ao-product. On the other hand, it is proved that 
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every commutative asynchronous n.d. automaton can be embedded into a suitable 
Qo-power of a monotone n.d. automaton having three states. 

The paper is organized as follows. First, in Section 2, we recall a few notions 
and notation and present some basic results necessary in the sequal. In Section 3, it 
is shown that there is no finite system of commutative asynchronous n.d. automata 
which is isomorphically complete for the class under consideration with respect to 
the Q o - P roduct . Then we look for a finite isomorphically complete system in a 
larger class, namely, in the class of monotone n.d. automata, and we prove that 
every commutative asynchronous n.d. automaton can be embedded into a suitable 
Qo-power of a monotone n.d. automaton of three states. 

2 Preliminaries 
An automaton can be defined as an algebra A = (A, X) in which every input sign 
x is realized as a unary operation xA : A -» A. Then the n.d. automata can be 
introduced as generalized automata in which the unary operations are replaced by 
binary relations. Therefore, by n.d. automaton we mean a system A = ( A , X ) , 
where A is a finite nonvoid set' of states, X is a finite nonempty set of input signs, 
and every x G X is realized as a binary relation x A ( C Ax A) on A. For any a € A 
and x £ X, let axA = {c : c G A and (a,c) G xA}, i.e., axA is the set of states 
into which A may enter from a by receiving the input sign x. For any CCA and 
i 6 I , we set CxA = U{axA : a G C} . For a word w G X*, CwA can be defined 
inductively as follows: 

(1) CeA = C, 

(2) CwA = (CvA)xA for w = vx, v G X* and x G X , 

where e denotes the empty word of X*. An n.d. automaton is called complete if 
axA ^ 0, for all a G A and Throughout this paper, by n.d. automaton we 
always mean a complete n.d. automaton. Let A = ( A , X ) be an n.d. automaton 
and B C A. Then one can define a subautomaton B = ( B , X ) of A by the 
realizations xB = xAC\(B x B), x £ X. We note that a subautomaton of a complete 
n.d. automaton is not necessarily complete. Let A = (A, X) and B = (B,X) be 
two n.d. automata and p, a mapping of A onto B. The mapping p is called a 
homomorphism of A onto B if axAp = ap,xB is valid, for all a G A and x G X. In 
this case, it is said that B is a homomorphic image of A . If the homorphism p is 
a one-to-one mapping, then it is called an isomorphism and in this case, it is said 
that A is isomorphic to B. Furthermore, if B is isomorphic to some subautomaton 
of A , then it is said that B can be embedded into A. 

Let A = (A, X) be an n.d. automaton and 0 an equivalence relation on A. For 
every a G A, let us denote by 0 (a ) the equivalence class containing a, or equiva-
lently, the set of the elements which are equivalent to a. Then we can construct 
a factor n.d. automaton A / 0 as follows. For any 0 (a ) G A/Q and x G X, let 
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0 (a )a ; A / 0 = {0 (6) : 0(6) £ A / 0 and 0 ( a ) z A n 0(6) £ 0}. It is worth not-
ing that A / 0 is not a homomorphic image of A in general. In what follows, we 
shall use particular equivalence relations. To define them, let A be an arbitrary 
nonempty set and a, 6 its two different elements. Then the equivalence, relation 
0 (a , 6) is defined as follows. For every u,v £ A, 

uQ(a,b)v if and only if {a,6} = {u,t>} or u — v. 

An n.d. automaton A = ( A , X ) is called commutative iia(xy)A = a(yx)A is 
valid, for every a £ A and x,y £ X. By the definition of the commutativity, one 
can easily prove the following fact. 

Lemma 1. If an n.d. automaton A is commutative and B is a homomorphic 
image of A, then B is commutative as well. 

An n.d. automaton A = ( A , X ) is called asynchronous if for every a £ A and 
x £ X, 6 £ axA implies bxA = {6}. In particular, if a £ axA, then axA = {a} . 
Since we recall this property in more times, we express it by the following remark. 

Remark 1. If A = ( A , X ) is an asynchronous n.d. automaton and a •£: axA for 
some a £ A and x £ X, then axA — {a}. 

¿From the definition of the asynchronous n.d. automata the following fact 
follows immediately. . 

Lemma 2. If an n.d. automaton A is asynchronous and B is a homomorphic 
image of A , then B is also asynchronous. 

We shall study the commutative asynchronous n.d. automata. Let us denote 
by K.nd the class of all commutative asynchronous automata. Then, by Lemmas 1 
and 2, we obtain the following observation. 

Corollary 1. If A £ fCnd and B is a homomorphic image of A, then B £,K.nd-

An important property of the n.d. automata in K.nd is presented by the next 
assertion. 

Lemma 3. If A = {A,X) £ ¡Cn<i, then its transition graph does not contain any 
directed cycle different from loop-

Proof. Let a £ aqA for some a £ A, q £ X+ and let q be a minimum-length 
word with this property. Now, let us suppose that \q\ > 1. Then q — xp for some 
x £ X and p £ X+. By the commutativity of A, a £ apAxA. Therefore, there 
exists a state 6 such that 6 £ apA and a £ bxA. Let us distinguish now the following 
two cases depending on 6. 

Case 1. a = b. Then a £ axA, and by Remark 1, axA = {a } contradicting the 
minimality of the word q. ! 
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Case 2. a ^ b. In this case, a G bxA. Since A is an asynchronous n.d. 
automaton, a G bxA implies axA = { a } which contradicts the minimality of q 
again. 

Consequently, the transition graph of A does not contain any directed cycle 
different from loop. 

Let A = ( A , X ) be an arbitrary n.d. automaton. Let us define the reachability 
relation as follows. For a couple of states a, b, it is said that b is reachable from 
a, denoted by a < b, if there exists a word w such that b G awA. Obviously, that 
this relation is reflexive and transitive. In particular, if A G ICnd, then by Lemma 
3, this relation is antisymmetric, and thus, it is a partial ordering on A. Hence, we 
have the following statement. 

C o r o l l a r y 2. For every A G ICnd, (A, <) is a partially ordered set. 

The more general composition, the general product of automata was introduced 
by V. M. Gluskov in [6]. This composition is extended to n.d. automata in [3]. 
Now, we recall this definition. 

Let us consider the n.d. automata A = (X,A), A j = (Xj, Aj), j = 1,... ,k, 
and let $ be a family of mappings below 

<Pj : 4 i x • • • x Ak x X ->• Xj, j = 1 , . . . , k. 

It is said that A is the general product of A j with respect to $ if the following 
conditions are satisfied: 

(1) A = U U A f ' 

(2) for any ( o i , . . . ,ak) G ]~[>=i Aj, and x G X, 

(ai,./., ak)xA = a 1 x f 1 x ••• x akxAk, 

where Xj — <pj ( a i , . . . , ak, x) for all j G { 1 , . . . , k]. 

For' the general product above we use the notation 
• ' * 

A = 1 ] A , 

The mappings ipj \ j = 1,..., k are called feedback functions. 

Let K, be a system of n.d. automata. K, is isornorphically complete with respect 
to the general product if for any n.d. automaton A , there exist automata Aj G /C, 
j = 1 ,...,k, such that A can be embedded into a general product of Aj, j = 
1 ,...,k. 

Different compositions of automata can be obtain as a special case of the general 
product by using particular feedback functions. One of them is the serial composi-
tion of automata, where the automata form a chain and the input, sign of a given 
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automaton of the chain depends on the input sign received by the composition and 
the current states of the previos automata in the chain. The formal definition can 
be given as follows. 

Let A j — ( A j , X j ) , j = 1 , . . . , k be arbitrary n.d. automata. Moreover, let X 
be a finite nonvoid set and $ is a family of mappings: 

ipj : Ax x • • • x Aj-1 j = 1 , . . . , k. 

An n.d. automaton A = ( A , X ) is called the serial product or ao-product of the 
n.d. automata considered, if A = ri jLi A? anc^ f° r e v e rY (oi, • • • i ak) £ 11^= i Aj 
and x £ X, 

( d , . . . , ak)xA = aiXAl x • • • x akxAk 

is valid, where Xj = <fj(ai,...,aj-i,x), j — 1,... ,k. If the component n.d. au-
tomata Aj are equal, say Aj = B, j = 1 , . . . , k, then it is said that the ao-product 
A is an ao-power of B. In particular, if the mappings ipj, j = 1 , . . . , k are indepen-
dent of the states, i.e., they have the forms ipj : X Xj, j = 1 , . . . , k, then A is 
called the quasi-direct product of the n.d. automata under consideration. 

It has to be mentioned here that as generalizations of the serial product of 
automata a family of products, the aj-product, i = 0 ,1 , . . . , was introduced in [1] 
for the deterministic case and some nice results concerning the aj-products can be 
found in the monography [2]. 

By the definition of the ao-product, one can easily prove the following statement. 

L e m m a 4. If for every t, t = l , . . . , n , the n.d. automata At can be embedded 
into an ao-product of n.d. automata Atj, j = 1 ,...,kt, then any ao-product of 
the n.d. automata At, t = 1 , . . . ,n can be embedded into an ao -product of the n.d. 
automata A tj, t = 1 , . . . , n; j = 1,... ,kt-

Finally, we define the notion of isomorphically complete systems of n.d. au-
tomata for the ao-product. For this purpose, let K, be an arbitrary class of n.d. 
automata. A system M. of n.d. automata is called isomorphically complete for JC 
with respect to the ao-product if any n.d. automaton in /C can be embedded into 
an ao-product of n.d. automata in M . 

3 Isomorphic representation 
In this section, the isomorphic representation of the automata in K.nd are studied. 
The next statement shows that contrary to the deterministic case, the class ICnd 
does not contain any finite isomorphically complete system for K,nd with respect to 
the general product. 

Propos i t ion 1. There is no finite system M C K.nd of n.d. automata which is 
isomorphically complete for K-nd with respect to the general product. 
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Proof. In our proof we shall use some particular automata. Namely, for all 
n > 3, let us define the n.d. automaton C n = ( { 1 , . . . , n } , {x2, • • • , x n - i } ) as 
follows. For every i G { 1 , . . . , n } and xk G {x2,... ,a ; n _i } , let 

ixcn _ ( {k,k+ 1, . . . , n } if i < fc, 
k \ {¿} otherwise. 

From the definition of C n it follows that Cn is an asynchronous n.d. automa-
ton. Now, we prove that C n is commutative. For this reason, let i G { 1 , . . . , n } 
and xj,xk G {x2, • • • , x „ _ i } be arbitrary elements with j ^ k. Without loss of 
generality, we may suppose that j < k. Then, for the case k < i, we have that 
ixfnx%" = {¿} = ixfnxfn. If j <i<k, then 

ixfnx]jrn = {i}a£" = {k,k + l,...,n} =ixfnxf 

Finally, if i < j, then 

ixf~xf~ = { j , j + l,...,n}xfn = {k,k+l,...,n} =ix^nxfn. 

These observations lead to the commutativity of C n . Consequently, C n G K.nd, for 
all integer n > 3. 

For proving the statement, contrary, let us suppose that M C K.nd is a finite 
isomorphically complete system for ICnd with respect to the general product. Then 
there exists an integer n such that |A| < n is valid for every n.d. automaton A = 
(A, X) G M. Since M. is an isomorphically complete system for K.nd with respect to 
the general product and C n G fCnd, there are n.d. automata At £ M, t = 1,... ,k 
such that C „ can be embedded into a general product n i = i ^-t({x2, • • • 
Let fi denote a suitable isomorphism of C n into the general product considered and 
let 

i\i = (aii,ai2,... ,aik), i = l,...,n. 

Denote by r an integer for which an_i> r ^ anr. Such an integer exists. We shall now 
prove that the states ai r , a2r, • • •, anr are pairwise different. First, let us consider 
the state an_ 2 < r . Since p is an isomorphism, an-2tripr(an-2ii,... ,an-2<k,xn-i)Arr\ 
{ a n _ i , r , a „ i r } = { a n _ i i r , a „ , r } . Thus, by a n _i , r ^ anT and Remark 1, we obtain 
that an_2,r ^ { a n - i , r , T h e r e f o r e , a„_2,r , On-i,r> <W are pairwise different. 
Now, if for some integer 2 < i < n — 2, the elements a n _ j i r , a n _ i + . . . ,anr are 
pairwise different, then in a similar way as above, we get that 

^n-i - l^Vrt^n-i - l . i ' l • • • J^n-i-lj /ll^n-i) r ^ — 1,7*) i+l,r> • • • ) 

This inclusion and Remark 1 yield that an-i-i,r & {an-i,r, • • •, a n r } , and therefore, 
the elements a„_t_ i , r , an-i,T, • • •, &nr are pairwise different. From these observa-
tions it follows immediately that the elements air,a2r>... ,anr are pairwise differ-
ent. This implies that n < |Ar| contradicting the definition of n. Consequently, 
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there is no finite system M C K.nd.so that M is isomorphically complete for K.nd 
with respect to the general product. • 

Since the ao-product is a particular case of the general product, we get the 
following observation. 

Corollary 3. There is no finite system, M. C K.nd of n.d. automata which is 
isomorphically complete for ICnd with respect to the Qo -product. • • :. -

Corollary 3 shows that there is a significant difference between the isomorphic 
representations of deterministic and n.d. automata. The class of all deterministic 
automata denoted by Cd does not contain any finite system which is isomorphically 
complete for Cd with respect to the ao-product (see [5]). On the other hand, the 
class of all n.d. automata denoted by Cnd contains finite isomorphically complete 
system iox Cnd with respect to the ao-product (cf. [7]). Therefore, this pair of 
classes is an example for the case when the deterministic class does not contain 
any finite isomorphically complete system while the n.d. class contains a finite 
isomorphically complete system with respect to the ao-product. The piair of the 
classes of the commutative asynchronous deterministic and n.d. automata denoted 
by K-d and K,nd, respectively, is an example for the opposite case. Indeed, in [8], it is 
proved that / Q contains finite isomorphically complete systems for / Q with respect 
to the quasi-direct product. Since the quasi-direct product is a particular case of 
the ao-product, this result yields that this class contains some finite isomorphically 
complete systems for ICd with respect to the ao-product. On the other hand, by 
Proposition 1, it is not valid for the class K,nd• Consequently, the pair of classes K-d 
and K.nd is an example for the case when the determinstic class conatins a finite 
isomorphically system while the n.d. class does not do it. 

Of course there are finite isomorphically complete systems for K,nd with respect 
to the ao-product, but they are not contained in K.nd• Proposition 2 shows that 
there are finite isomorphically complete systems for tC7Ui with respect to the ao-
product such that they contain monotone n.d. automata in that sense that the 
transition graphs of these automata do not contain any directed cycle different from 
a loop. Moreover, it turns out that there exists such an isomorphically complete 
system for Knd with respect to the ao-product which consists of a monotone n.d. 
automaton having three states. 

The n.d. automaton what we need is denoted by B = ( {0 ,1 ,2 } , {x, y, u,v}) and 
it is defined as follows: 

0a:B = { 0 , 1 , 2 } , ixB = {¿}, i = 1 ,2 , 

0yB = { 0 ,1 } , iyB = {¿}, i = 1,2, ' 

0uB = {0 ,2 } , iuB = {¿}, i = 1,2, 
ivB = { 2 } , i = 0 ,1,2. 

It is easy to check that B is monotone, i.e., its transition graph does not contain 
any directed cycle different from loop. 
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Proposition 2. Any system M, containig such an n.d. automaton A that B 
can be embedded into an ao-product of A with a single factor, is isomorphically 
complete for K,nd with respect to the ao-product. 

Proof. By Lemma 4, it is sufficient to prove that any n.d. automaton from ICnd 
can be embedded into a suitable ao-power of B. 

We shall prove this statement by induction on the number of states of the 
n.d. automata. It is worth noting that for every positive integer n, IC„d contains 
automata having n states. 

One can easily check that if A G K.nd and \A\ < 2, then A can be embedded 
into an ao-product of B with a single factor. Now, let n > 2 be an arbitrary integer 
and let us suppose that the statement is valid for every A G Knd with |A| < n. 
Let us consider an arbitrary n.d. automaton A = ( A , X ) G /CN(¡ with |A| = n + 1. 
Corollary 2 provides that the reachability relation is a partial ordering on the set 
A. Since A is finite, (A, < ) contains maximal elements. We distinguish two cases 
depending on the number of the maximal elements. 

Case 1. The number of the maximal elements in (A, < ) is not less than 2. Then 
there are at least 2 maximal elements, which are denoted by c, d. Now, let us define 
the ao-product D = A / 0 ( c , d) x B ( X , 3>) as follows. 

For every z £ X and a G A \ {c, d}, let 

<fi(z) = z 

( y if azA fl {c, d} = { c } , 
(p2({a},z) = < u if azA fl {c, d} = {d} , 

[ x otherwise, 

v>2 ( { { c , 4 } , z ) = x. 

Let us define the mapping p,: A A / 0 ( c , d) x {0 ,1 ,2 } as follows: 

c/i = ({c, d}, 1), 
d/i = ( { 0 , 4 , 2 ) , 
a/i = ( {a} , 0), for all a € A \ {c, d}. 

and let 5 = { ( { a } , 0) : a G A \ {c, 4 } U { ( { c , 4 , 1 ) , ({c, 4 , 2 ) } . 
We prove that /z is an isomorphism of A into the ao-product D, more precisely, 

A is isomorphic to the subautomaton of D which is determined by the subset S. 
First, let a 6 A\{c , d} and z G X be arbitrary state and input sign, respectively. 

If azA D {c, 4 = 0> then azAn — ap.z° fl S = a¡xzs is obviously valid. If azA fl 
{c, 4 th e n let us investigate separately the three cases corresponding to the 
elements of the intersection. For the sake of simplicity, let us denote by Q the set 
{c, 4 and for every R C A \ Q, let R' = { ( { r } , 0 ) : r G R}. 

(1) azA = RU {c } , where R C A\Q. Then azA\i = i ? ' U { ( Q , l ) } . On the other 
hand, 

( {a } , 0 )z D = {a }z A / e ( c ' d > x {0,1} = (R' U {Q}.) x {0 ,1 } . 
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But ( ( i ? ' U { Q } ) x {0 ,1 } ) D S = R! U { (Q, 1)}, and hence, azAfi = afizs is valid for 
the case under consideration. 

(2) azA = i i U { d } , where R C A\Q. Then azAfj, = i ? 'U{ (Q ,2 ) } . Furthermore, 

( { a } , 0 ) z D = { a J z V ® ^ x {0 ,2} = (R' U {<?}) x {0 ,2 } . 

Now, ( ( i ? ' u { Q } ) x { 0 , 2 } ) n 5 = i ? 'U{ (Q ,2 ) } , and therefore, azAn = afizs is valid 
for this case as well. 

(3) azA = R U Q, with R C A \ Q. In this case, azA/j, = R' U { (Q, 1), (Q, 2)}. 
Furthermore, 

( {a } , 0 > D = { a } z A / e ^ x {0 ,1 ,2} = (R' U {Q}) x {0 ,1 ,2 } . 

Now, ((R' U { Q } ) x {0 ,1 ,2 } ) n S = R' U {(Q, 1), (Q, 2)}, and hence, azAp, = afizs 

is valid for the case considered. 

Finally, it is easy to see that czAp, = cpzs and dzAfi = dfizs. By the cases 
considered above, we get that n is an isomorphism of A into the Qo-product D. 
On the other hand, it is easy to check that A/Q(c,d) is a homomorphic image of 
A , and thus, Corollary 1, Lemma 4 and the induction hypothesis result in that A 
can be embedded into an a o-power of B. 

Case 2. (A , < ) has only one maximal element which is denoted by c. Then the 
partially ordered set (A \ { c } , < ) contains at least one maximal element. Let us 
denote it by b. For the sake of simplicity, let Q denote the set {b, c}. Now, let us 
define the ao-product A/0( fo ,c ) x B ( X , $ ) as follows. 

For every z E. X and a € A \ Q, let 
ip1(z) = z, 

(u if azA C\Q — {c}, 
M{a},z) = I y if azA f l Q = {&}, 

[ x otherwise, 

<P*iQ.z) = {v *tJ*A = W. I. v otherwise. 

Define the mapping of A into A/Q(b,c) x {0 ,1 ,2} as follows: 

c / i = ( Q , 2), 

bn = (Q,l), 
an = ( {a } , 0), for all a £ A \ Q, 

and let S = { ( { a } , 0 ) : a e A \ Q) U { (Q, 1), (Q, 2)}. 
Then it can be seen that /z is an isomorphism of A into the ao-product consid-

ered, namely, A is isomorphic to the subautomaton determined by the set S. On 
the other hand, A / 0 ( 6 , c) is a homomorphic image of A . Then Corollary 1, Lemma 
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4 and the induction hypothesis yield that A can be embedded into an a0-power of 
B which ends the proof of Proposition 2. 

It is interesting to note that we need the monotone n.d. automaton of three 
states not only for the convenience. This assertion is vitnissed by a commutative 
asynchronous n.d. automaton which can not be embedded into any general product 
of two-state monotone n.d. automata. 

Let us consider the n.d. automaton A = ( {0 ,1 ,2 ,3 } , {x,y,z}) which is defined 
in the following way: 

0 z A = {1 ,3 } , ixA = {¿}, i = 1,2,3, 
0 y A = {2 ,3 } , 1 yA = {2 } , iyA = { » } , » = 2,3, 
izA = {3 } , i = 0,1,2,3. 

It is easy to check that A G /C„d. Now, we prove that A can not be embedded 
into any general product of two-state monotone n.d. automata. Contrary, let us 
suppose that A can be embedded into a general product D = FljLi A.j({x, y, z}, $) 
of two-state monotone n.d. automata. Without loss of generality, we may assume 
that the states of the n.d. automaton Aj are 0 and 1, moreover, there is no edge 
from 1 into 0 in the corresponding transition graph, for all j, j = 1 , . . . , k. Let ¡i 
denote a suitable isomorphism and let ifi = (en,...,eik), 2 = 0,1,2,3. Obviously, 
the vectors (en,..., eik), i = 0,1,2,3 are binary vectors. The isomorphism and 
the monotone property of the components imply that Q/J, < l/i < 2/x < 3/i. Let us 
investigate the equality 0xA(i = 0/J,XD n { (e^i , . . . , e^) : 0 < i < 3}. The left side is 
obviously { ( e n , . . . , eut), ( e 3 i , . . . , e^k)}• By the definition of the general product, 
the right side is equal to the following set: 

W = ( { e n , e 3 i } x { e i 2 , e 3 2 } x •• • x {e u , e 3 f c } ) n {(en,.. .,eik) : 0 < i < 3}. 

Since ei j < e2j < e3 j , j = 1 , . . . , k and e -̂ G {0 ,1 } , for all i = 1,2,3; j = 1 , . . . , k, 
(e2i, • • •,e2k) £ W which is a contradiction. 

By the observation above, we obtain the following statement. 

Corollary 4. There is no isomorphically complete system for K.nd with respect to 
the general product which consists of two-state monotone n.d. automata. 

Summarizing, the results presented here illustrate that although ICnd is a small 
and very particular class, the characterization of the isomorphically complete sys-
tems for K.nd w ^ h respect to the ao-product can be very difficult. Proposition 1 
shows that some isomorphically complete systems for JCnd must be Infinite, while 
Proposition 2 implies that there are some finite isomorphically complete systems 
for K n d . 
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Difference Functions of Dependence Spaces 

Jouni Järvinen * 

Abstract 
Here the reduction problem is studied in an algebraic structure called de-

pendence space. We characterize the reducts by the means of dense families 
of dependence spaces. Dependence spaces defined by indiscernibility relations 
are also considered. We show how we can determine dense families of depen-
dence spaces induced by indiscernibility relations by applying indiscernibility 
matrices. We also study difference functions which connect the reduction 
problem to the general problem of identifying the set of all minimal Boolean 
vectors satisfying an isotone Boolean function. 

1 Introduction 
Z. Pawlak introduced his notion of information systems in the early 1980's [11]. 
Information concerning properties of objects is the basic knowledge included in in-
formation systems, and it is given in terms of attributes and values of attributes. 
For example, we may express statements concerning the color of objects if the in-
formation system includes the attribute "color" and a set of values of this attribute 
consisting of "green", "yellow", etc. It should be noted that relational databases 
can be viewed as information systems in the sense of Pawlak. 

In an information system each subset of attributes defines an indiscernibility 
relation, which is an equivalence on the object set such that two objects are equiva-
lent when their values of all attributes in the set are the same. It may turn out that 
a proper subset of a set of attributes classifies the objects with the same accuracy 
as the original set, which means that some attributes may be omitted. An attribute 
set C is a reduct of an attribute set B, if C is a minimal subset of B which defines 
the same indiscernibility relation as B. The reduction problem means that we want 
to enumerate all reducts of a given subset of attributes. 

This work is devoted to the reduction problem in a dependence space. It is based 
on some papers of the same author, in particular on [5]. The fundamental notion 
appearing in the present paper is the concept of a dense family of a dependence 
space. We prove that our definition of dense families agrees with the definition pre-
sented earlier in the literature [10]; this result appeared also in [7]. Proposition 4.1 
characterizes reducts in dependence spaces by the means of dense families. Also 
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difference functions are defined by using dense families (cf. [5]). Proposition 5.2 
characterizes reducts by the means of difference functions and Proposition 6.1 con-
tains a construction of a dense family in the dependence space of an information 
system starting with its indiscernibility matrix; this result appeared also in [6]. 

As stated above, this paper gives a survey of some results concerning reducts and 
their construction, but the presented formulations are simpler than the formulations 
published earlier. It also completes proofs of some theorems published without 
proofs in the quoted papers. 

2 Preliminaries 
All general lattice theoretical and algebraic notions used in this paper can be found 
in [2, 4], for example. An oredered set (many authors use the shorthand poset) 
(P, <) is a join-semilattice if the join a V 6 exists for all a, b £ P. An equivalence 
relation 0 on P is a congruence relation on the semilattice (P, V) if ai©6i and 
a20£>2 imply (ai V a2)0(6i V 62) for all 01,02,61,62 £ P- We denote by a / 0 the 
congruence class of a, that is, a / 0 = {6 £ P | a©6}. 

An ordered set (P, <) is a lattice if a V 6 and a A 6 exist for all a, 6 £ P. Let us 
consider a lattice (P, <) . An element a € P is meet-irreducible if a = 6 A c implies 
a = 6 or a = c. We denote the set of all meet-irreducible elements a ± 1 (in case 
P has a unit) of (P, < ) by M(P). The following lemma can be found in [2], for 
example. 

Lemma 2.1. If (P, < ) is a finite lattice, then 

a = f\{x £ M(P) | a < x) 

for all a £ P. • 

Let (P, < ) be an ordered set. A subset S of P is meet-dense (see e.g. [2]), if 
for all x £ P there exists a subset X of S such that x = f\p X. Now the following 
lemma holds. 

Lemma 2.2. If (P, < ) is a finite lattice, then S(C P ) is meet-dense if and only if 
M(P) C S. 

Proof. Let S C P. be meet-dense and a £ M (P). Since S is meet-dense and 
a / 1, there exists a finite nonempty subset X = { a i , . . . , a n } of S such that 
a = ai A • • • A an. Because a is meet-irreducible, we obtain that a £ X and so 
a £ S. Hence, M{P) C S holds. 

Conversely, suppose that M(P) C S C ? . Then for all a £ P , 

{x £ M{P) | a < x} C {x £ S | a < x} C {x £ P | a < x}, 

which implies 

a = f\{x £ M(P) | a < x} > f\{x £ S \ a < x) 

> /\{x £ P \ a < x} = a. 
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Hence a = / \ { a ; £ S | a < x } . This means that S is meet-dense. • 

Let (P, < ) be an ordered set and a,b € P. We say that a is covered by b, and 
write a —< b, if a < b and a < c < b implies a = c. It is known (see e.g. [2]) that 
in a finite lattice (P, < ) the set of the elements of (P, <) covered by exactly one 
element of P is M{P). Thus, by Lemma 2.2, a subset of a finite lattice (P, < ) is 
meet-dense if and only if it contains all elements of P which are covered by exactly 
one element of P . ; 

A family £ of subsets of a set A is said to be a closure system on A if £ is closed 
under intersections, which means that for all 7i C £ , we have f"| H £ £ . We denote 
by p(A) the power set of A, i.e., the set of all subsets of A. A closure operator on a 
set A is an extensive, idempotent and isotone map C: p(A) —> p(A); that is to say, 
B C C(B), C(C(B)) = C(B), and B C C implies C{B) C C{C) for all B, C C A. A 
subset B of A is closed (with respect to C) if C(B) — B. A closure system £ on A 
defines a closure operator Cc on A by the rule 

Cc(B) = f ] { x e£\Bcx}. 

Conversely, if C is a closure operator on A, then the family 

Cc = {B C A I C(B) = B} 

of closed subsets of A is a closure system. The relationship between closure systems 
and closure operators is bijective; the closure operator induced by the closure system 
Cc is C itself, and the closure system induced by the closure operator Cc is C. It 
is well-known that if £ is a closure system on A, then the ordered set (C, C) is a 
lattice in which 

XA Y = XnV and XvY = Cc(XuV) 

for all X,Y E C. 
Next we consider meet-dense subsets of the lattice (£, C), where £ is a closure 

system on a finite set. 

Proposition 2.3. Let T be a meet-dense subset of a lattice (£, C), where C is a 
closure system on a finite set A. 

(a) For all B C A, Cc(B) = f ) {A: £ T \ B C X}. 
(b) For all B,C C A the following three conditions are equivalent: 

(i) Cc(B)CCc(C); 
(ii) for all X £ T, C c X implies B CX; 

(iii) for all X £ T, B - X ^ 0 implies C - X ^ 0. 

Proof, (a) Because Cc(B) £ £ , and B C X if and only if Cc{B) C X for all 
X £ £ , we obtain by Lemmas 2.1 and 2.2 that 

Cc(B) = f | { X £ M(C) | Cc(B) C X} = f | { X £ M(C) \ BCX} 

d eT\Bcx} D P|{X eC\Bcx} = cc(B). 
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Figure 1: The closure lattice (£z>, Q) 

Hence, Cc(B) = {X £ T | B C X). 
(b) Let Cc(B) C Cc(C). If X £ T and C C. X, then B C Cc(B) C Cc(C) C 

= X. Conversely, if for all X £ T, C C X implies B C X, then {X £ T \ 
C C. X} C. {X £ T \ B C.X}. Hence by (a), Cc{B) = G T | B C X} C 
H i * G T I C C X } = C £ (C) . Thus, (i) and (ii) are equivalent. Also (ii) and (iii) 
are equivalent since for all X, Y C A, Y C X if and only if Y — X = 0. • 

3 Dense families of dependence spaces 

We recall Novotny's and Pawlak's [9] definition of dependence spaces. We note 
that in [7] Jarvinen studied infinite dependence spaces. 

Definition. If A is a finite nonempty set and 0 is a congruence on the semilattice 
(p(A), U), then the ordered pair T> = (A, 0 ) is said to be a dependence space. 

Let V = (A, O) be a dependence space. Recalling the finiteness of A, it is 
clear that for every B(C A), the congruence class B/Q has a greatest element 
Cv(B) = U B/Q. It was noted in [8] that for all B,C C A, 

In [8] it was also observed that Cp: p(A) —> p(A), B n - ^ U - B / O i s a closure operator 
on A. We denote by £?> the closure system corresponding to the closure operator 
Cp. Hence, the family Cv consists of the greatest elements of the 0-classes. 

Example 3.1. Let A = {1 ,2 ,3 ,4 } and 0 be the congruence relation on (p(A),U) 
whose congruence classes are {0} , { { 1 } } , { { 2 } } , { { 3 } } , { { 4 } , {1 ,2 } , {1 ,4 } , {2 ,4 } , 
{ 1 , 2 ,4 } } , { { 1 , 3 } } , { { 2 , 3 } } and { {3 ,4 } , {1 ,2 ,3 } , {1 ,3 ,4 } , {2 ,3 ,4 } , { 1 , 2 , 3 , 4 } } . 
The closure lattice ( £ p , C ) corresponding to the dependence space V ~ (A, 0 ) is 
presented in Figure 1. Moreover, M{CV) = { { 1 , 2 , 4 } , {1 ,3} , { 2 ,3 } } . 

BQC if and only if CV(B) = CV{C). 
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Dense families of dependence spaces were introduced in [10]. Here we define 
them differently as meet-dense subsets of the lattice (£-d, C); recall that in (£x>, Q), 
X A Y = X fl Y for all X , Y £ C-D- We will also show that our definition agrees 
with Novotny's definition of dense families. 

Definit ion. Let V = (A, 0 ) be a dependence space. A family T C p(A) is dense 
in V if it is a meet-dense subset of the lattice (£p , C). 

By Lemma 2.2, a family T is dense in V if and only if it is a subfamily of £D 
which contains all elements of the lattice (Cv, Q) which are covered by exactly one 
element of £ p . 

Example 3.2. Let us consider the dependence space V — ( A , 0 ) of Example 3.1. 
The Hasse diagram of (£x>, C) is given in Figure 1. The dense families of V are the 
32 families T such that M{Cv) C T C C-D-

Let A be a set. Each family T C p(A) defines a binary relation r ( T ) on p(-4): 

(B, C) £ r ( T ) if and only if (VX £ T) B C X C C I 

We note that in [10] dense families were defined by the condition presented in the 
next proposition. 

Propos i t i on 3.3. Let V = (A , 0 ) be a dependence space. A family T C p(A) is 
dense in T> if and only if T(T) = 0 . 

Proof. Let T be dense and BQC. Then CV(B) = CV(C), which implies by 
Proposition 2.3(b) that for all X £ 7~, B C X iff C C X . Thus, 0 C T(T). 
Conversely, if (B ,C ) 6 T(T), then 

CV(B) = f | { x e r | B c x } - n { x e 7" | C c x } = CV(C), 

which is equivalent to BQC. Hence, also T(T) C 0 . 
On the other hand, let T(T) = 0 . We will show that M(JCV) QTCCV, which 

implies by Lemma 2.2 that T is a meet-dense subset of (£P, C). Suppose'that 
X £ T. Because X0C-D(X) and X C X , we obtain C-P(X) C X , which implies 
X € £•£>. Hence, T C C-D-

Assume that M(Cv) 2 T. This means that there exists a Y £ M(C-p) such 
that Y £ T. Since Y £ M(£v), there exists exactly one Z £ £ p such that 
Y -< Z holds in £ p . For all X £ T, Z C X implies obviously that Y C X . 
Suppose that there is an X € T such that Y C I but Z X. Since X , Z £ £ p , 
we get X n Z £ £v and Y C X n Z C Z. The fact that Y -< Z holds in 
£ p implies Y = X fl Z. Because Y is meet-irreducible, we obtain Y = X or 
Y = Z. Obviously both of these equalities lead to a contradiction! Hence, for all 
X £T, also Y C X implies Z C I Thus, (Y, Z) £ T(T) = 0 , which means that 
Y - CT>{Y) = CV{Z) = Z, a contradiction! Therefore, also M(LV) C T holds. • 
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4 Independent sets and reducts 
In this section we review independent sets and reducts defined in dependence spaces. 
Further references can be found in [8, 9, 10], for example. Our main result of this 
section gives a characterization of the reducts of a given subset of a dependence 
space in terms of dense families. 

Let V = (A, 0 ) be a dependence space. A subset B(C A) is called independent, 
if B is minimal with respect to inclusion in its O-class. We denote the set of all 
independent subsets of V by IND-p. 

The notion of reducts is important in the theory of Pawlak's information sys-
tems. Here we study reducts in the more algebraic setting of dependence spaces. 
For any B(C A) a set C(C A) is called a reduct of B, if C C B, BQC and 
C £ IN D-D- The set of all reducts of B will be denoted by RE D-D (B). In the other 
words, a subset C (C B) is a reduct of B, if C is minimal in B/Q with respect to 
inclusion. Because A is finite, it is obvious that every set has at least one reduct. 

Finding all reducts of a given set is called the reduction problem. Our next 
proposition, which appears without a proof also in [6], characterizes the reducts of 
a given set by the means of dense families. 

Propos i t i on 4.1. Let T be a dense family in a dependence space V = (A, 0 ) . If 
B C A, then C € REDj)(B) if and only if C is minimal set with respect to the 
property of containing an element from each nonempty difference B — X, where 
X £ T. 

Proof. Let C be a minimal set which contains an element from each nonempty 
difference B - X, X £ T . First we show that C C B. If C £ B, then BnC cC 
and (B n C) D (B - X) = C n (B - X) ^ 0 whenever B - X ^ 0, a contradiction! 
Thus, C C B. Now C - X = (B n C) - X = C n (B - X) ^ 0 for all X £ T 
such that B - X ± 0. This implies by Proposition 2.3(b) that CV{B) C CV{C). 
The inclusion Cv(C) C Cv(B) is obvious. Hence, BQC. Assume that C £ IND-p. 
Then there exists a D C C such that CQD. Since 0 is transitive, we obtain 
BQD and in particular C©(B) C C-D(D). This implies by Proposition 2.3(b) that 
D f l (B - X) = D - X ^ 0 whenever B - X ^ 0, a contradiction! Hence, C is 
independent and thus C is a reduct of B. 

On the other hand, suppose C £ REDV{B). Then C C B, BQC, C £ INDV, 
and especially CV(B) C CV(C). This implies that C n (B - X) = (B D C) - X = 
C — X 0 for all X € T which satisfy B — X ^ 0. Assume that there exists a 
D C C which contains an element from each nonempty difference B — X, where 
X eT. Then D - X = (B n D) - X = D (~1 {B - X) ^ 0 for all X £ T such that 
B - X ± 0. Hence, CV{B) C C©(D). Since D c B also CV{D) C CV(B) holds. 
This implies BQD, and because COB we obtain CQD, a contradiction! • 

Example 4.2. Let us consider the dependence space V = (A,©) defined in Ex-
ample 3.1. We have already noted that M{CV) = { { 1 , 2 , 4 } , {1 ,3 } , { 2 , 3 } } is the 
smallest dense family. 

Next we find the reducts of A. The differences A - X, where X £ M(£T>), are 



Difference Functions of Dependence Spaces 6251 

A - {1 ,2 ,4 } = {3 } , A — {1 ,3} = {2 ,4} , and A - {2 ,3} = {1 ,4 } . 

They are all nonempty. Because the reducts of A must contain an element from all 
of these differences, each reduct must include 3. It can be easily seen that {1 ,2 ,3 } 
and {3 ,4 } are the reducts of A. 

5 The difference function 
In this section we study the notion of difference function. Difference functions 
were introduced in [5]. Here we give an equivalent, but a clearer definition. First 
we recall some notions concerning Boolean functions (see e.g. [1], where further 
references can be found). A Boolean function, or a function for short, is a mapping 
/ : {0, l } n —> {0 ,1} . An element v £ {0, l } n is called a Boolean vector (a vector for 
short). If f(v) = 1 (resp. 0), then v is called a true (resp. false) vector'of / . The 
set of all true vectors (resp. false vectors) of / is denoted by T(f) (resp. F(f)). 

Let u = (u\,..., un) and v = (vi,... ,vn) be vectors, We set u < v if and only if 
Ui < Vi, for 1 < i < n. A function / is isotone if u < v always implies f(u) < f{v). 

In the sequel we assume that / is an isotone function. A true vector v of / 
is minimal if there is no true vector w such that w < v, and let m i n T ( / ) denote 
the set of all minimal true vectors of / . A maximal false vector is symmetrically 
defined and max F(f) denotes the set of all maximal false vectors of / . 

Let V = (A , 0 ) be a dependence space such that A — { a i , . . . , a n } and let T 
be dense in V. For any B C A, let S(B) denote the disjunction of all variables yi, 
where ai £ B. We define the difference function fg{yi, • • •, yn) as the conjunction' 

A Z ( B - X ) . 

Clearly, the function f g is isotone. A function x '• p{A)'—> {0, l } n is defined by 

B^(xx(B),...,Xn(B)), 

where 
/ 0 if a i ? B 

X i { D ) ~ \ 1 if ai£B 

for all z, 1 < i < n. The value x(B) is called the characteristic vector of B. 
Now the following lemma holds. 

L e m m a 5.1. Let T be a dense family in a dependence space V = (A, 0 ) . For all 
B,C C A, the following conditions are equivalent: 

(a) X(C) £ TUB); 
(b) C contains an element from each nonempty difference B — X, X £ T• 

Proof. Let B, C C A and {X £ T \ B - X ± 0} = {Xi... Xk). 
(a) (b) Assume that /J(x(C")) = 1. If Cn(B-Xi) = 0 for some i, 1 <i<k, 

then obviously the disjunction S(B-Xi) has the value 0 for x(C) . This implies that 
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also the conjunction Ai<i<jt $(B — has the value 0 for x(C)> a contradiction! 
Hence, C f l ( B - X{) ¿ffi for all i, 1 < i < k. 

(b) => (a) Suppose that C n {B - Xi) ± 0 for all 1 < i < n. Then for all 
1 < i < n, the disjunction 5(B — Xi) has the value 1 for x (C) . This implies that 
the conjunction f\l<i<k S(B - Xi) has the value 1 for x (C) , i.e., / J ( x ( C ) ) = 1. • 

Now we can write the following proposition. Note that for any X C A, Xc = 
A — X is the complement of X. 

Propos i t ion 5.2. Let T be a dense family in a dependence space V = (A, 0 ) . If 
B C A, then 

(a) m i n T ( / J ) = { x ( C ) | C £ REDV(B)} and 
(b) m a x F ( / J ) = max{x( (B - X ) c ) | X 6 T,B - X ? 0}. 

Proof. Let us denote fg simply by / . 
(a) Let v £ min T(f) and let C be the subset of A which satisfies x (C) = v- By 

Lemma 5.1 C contains an element from each nonempty difference B — X, where 
X 6 T. Assume, that C is not minimal set with respect to that property, that is, 
there exist a D C C which also contains an element from each nonempty difference 
B - X, where X £ T. By Lemma 5.1 this implies that x(-D) £ T{f). But D C C 
implies x(-O) < x (C) and hence x (C) $ rain , a contradiction! Therefore, C 
is minimal set with respect to the property of containing an element from each 
nonempty difference B — X, where X £ T . This implies that C is a reduct of B by 
Proposition 4.1. 

On the other hand, suppose that C is a reduct of B. Then C contains an element 
from each nonempty difference B — X, where X £ T , and thus x (C) € T(f). 
Suppose that x (C ) ^ minT( / ) . This means that there exists a vector v £ T(f) 
such that v < x(C)- Let D be the subset of A which satisfies x{D) = v. Then 
obviously D is a set which contains an element from each nonempty difference 
B — X, where X £ T. Since D C C, C is not a reduct of B, a contradiction! 
Hence, x (C) € m i n T ( / ) . 

(b) By Lemma 5.1 it is obvious that f(x(C)) = 0 if and only if there exist 
an X £ T such that B - X 0 and C n (B - X) = 0. This is equivalent to the 
condition that / ( x ( C ) ) = 0 if and only if there exist an X £ T such that B-X 0 
and C C (B — X ) c . 

Suppose that x (C) 6 max F{f). This implies that C C (B - X ) ° for some 
X £ T, B - X ± 0, and hence x (C) < x ( ( £ - Assume that x (C ) < x((B -
X ) c ) . Since x({B - X f ) £ F(J), this implies x(C) $ m a x F ( f ) , a contradiction! 
Hence, x (C) € {x((B - X ) C ) | X £ T,B - X ± 0}. Assume that there exists a 
X(D) £ {X((B - X f ) | X £ T,B - X # 0} such that X ( C ) < X(D). Clearly, 
this implies that x(-O) £ F(f) and hence x(C) ^ m a x F ( f ) , a contradiction! Thus, 
X(C) € max{x( (B - X f ) \ X £ T , B - X ± 0}. 

Conversely, suppose that x (C) £ max{x ( (5 - X ) c ) | X £ T, B - X ± 0}. 
Then obviously x (C) S F(f)- Assume that there exists a x{D) £ F{f) such that 
X(C) < x(D). This implies that there exists an X € T such that D C (B - X ) c 



Difference Functions of Dependence Spaces 
6251 

and B - X We obtain that X(G) < *(£>) < X((B - Ar)c) for some X £ T-
such that B — X ^ 0, a contradiction! Hence, x{G) G m a x F ( / ) . • 

Hence, the minimal true vectors of the difference function of B(C A) are the 
characteristic vectors of the reducts of B. 

Example 5.3. Let us consider the dependence space V = (A, 0 ) defined in Exam-
ple 3.1. The family T = { {1 ,2 ,4 } , {1 ,3 } , { 2 , 3 } } is known to be dense in V. The 
differences A — X are all nonempty for all X £ 7~. Hence, 

/J = ¿(A - { 1 , 2 , 4 } ) A ¿(A - { 1 , 3 } ) A S(A - { 2 , 3 } ) 
= 3 A (2 V 4) A ( IV 4), 

where i stands for i/j. The function f j has the minimal true vectors (0,0,1,1) and 
(1,1,1,0), which implies by Proposition 5.2 that REDV(A) = { {3 ,4 } , { 1 ,2 ,3 } } . 

The_dual of a Boolean function / , denoted by fd, is defined by fd(x) = /(x), 
where / and x denote the complements of / and x, respectively. It is well-known 
that ( f d ) d = f and that the DNF expression of fd is obtained from that of / by 
exchanging V and A as well as constants 0 and 1, and then expanding the resulting 
formula. For example, the dual of g = 3V ( lA4)V (2A4) is gd = 3A(1V4) A(2V4) = 
(3 A 4) V (1 A 2 A 3). 

It is known (see e.g. [1]) that for any isotone Boolean function / , m i n T ( / d ) = 
{u | v £ m a x F ( / ) } . Let us denote / J simply by / . By Proposition 5.2: 

v £ mmT(fd) v £ m a x F ( / ) 

v £ max{X{{B - X)c) \ X £ T,B - X ^ <&} 
v £ min{x(B - X ) | X g T,B -X ± 0}. 

The family T = { {1 ,2 ,4 } , {1 ,3 } , { 2 ,3 } } is known to be dense in the dependence 
space V of Example 3.1. Let us denote by / the difference function of the set A. 
Then 

min( / d ) = min{X (A - X) \ X £ T,A - X ^ 
= { (0 ,0 ,1 ,0 ) , (0 ,1 ,0 ,1 ) , (1 ,0 ,0 ,1 ) } . 

This means that fd = 3 V (1 A 4) V (2 A 4) and / = ( f d ) d . = (3 A 4) V (1 A 2 A 3). 
Hence, m i n T ( / ) = { (0,0,1,1) , (1 ,1,1,0)} , as stated in Example 5.3. 

Remark . Let / = f(xi,..., x n ) and g = g(x\,..., x „ ) be a pair of isotone Boolean 
functions given by their minimal true vectors minT'( /) and minT(^), respectively. 
Let us consider the following problem; test whether f and g are mutually dual. 
In [3] Fredman and Khachiyan showed that this problem can be solved in time 
fco(iogwhere k = |minT(/)| + |minT(i/)|. 

This implies that for an isotone Boolean function f given by its minimal true 
vectors and for a subset G C minT( / d ) , a new vector v £ m i n T ( f d ) - G can be 
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computed in time nk°^ogk\ where k = |minT(/)| + |G| (see [1], for example). 
This means also that for any isotone Boolean function / given by its minimal true 
vectors, fd can be computed in time nk°^°sk\ where k = | minT( / )| + | minT(/d )|. 

6 An application to information systems 
An information system is a triple S = (U, A, {Va}a€where U is a set of objects, 
A is a set of attributes, and {V^Joe/i is a n indexed set of value sets of attributes. 
All these sets are assumed to be finite and nonempty. Each attribute is a function 
a:U —> Va which assigns a value of the attribute a to objects (see e.g. [9, 10, 11]). 

For any B Ç..A, the indiscernibility relation of B is defined by 

1(B) = {(x,y) € U2 | a(x) = a(y) for all a e B}. 

It is known that I{B) is an equivalence relation on U such that its equivalence 
classes consist of objects which are indiscernible with respect to all attributes in B. 
Let us define the following binary relation Qs on the set p(A): 

(B,C) € 0 5 I{B) = 1(C). 

So, two subsets of attributes are in the relation ©5 if and only if they define the 
same indiscernibility relation. It is known (see e.g. [8, 9]) that ©5 is a congruence 
on the semilattice (p(A),U). Hence, the pair T>s = (A, ©5) is a dependence space. 
It can be easily seen that C (Ç A) is a reduct of B (Ç A) in the dependence space 
T>s if and only if C is a minimal subset of B which defines the same indiscernibility 
relation as B. 

Assume that U = {xi,..., xm}. Then the indiscernibility matrix of S is an 
m x 7n-matrix M 5 = (Ci j ) m x m such that 

Cij — {a £ A I a(x) = a(y)j 

for all 1 < i,j < m. Thus, the entry c^ consists of the attributes which do not 
discern objects Xi and Xj (cf. discernibility matrices defined in [12]). It is now 
trivial that 

' ' (xi,xj) e 1(B) B C dj. 

Next we show how matrices of preimage relations induce dense families. 

Proposition 6.1. If S = (U,A,{Va}aç_44) is an information system and M 5 = 
(cij)mxm is the indiscernibility matrix of S, then the family 

Ts = {cij I 1 < i,j < m} 

is dense in the dependence space T>s = (A, 0^). 
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Proof. By Proposition 3.3 it suffices to show that F(TS) = Os• If (B, C) G ©5, 
then for all 1 < i,j < rn, B C cy iff ( x i } x j ) G 1(B) iff (Xi,Xj) G 1(C) iff C C cy , 
which implies (B,C) G T(TS). Hence, 0 5 C r (7s ) . 

If (B,C) G T(Ts), then for all 1 < i,j < m, (xuxj) G 1(B) iff B C cy iff 
C C dj iff (xi,xj) G 1(C), which implies 1(B) = 1(C). Thus, also T(Ts) C 0 5 

and hence T(Ts) = ©s- • 

We conclude this paper by an example. 

Example 6.2. Let us consider an information system S = (U,A, {V4}ae/i)i where 
the object set U = {1 ,2 ,3 ,4 ,5 } consists of five persons, the attribute set A consists 
of the attributes Age, Eyes, and Height, and the corresponding value sets are 
VXge = {Young, Middle, Old}, Vfeyes = {Blue, Brown, Green}, and Vneight = 
{Short, Normal, Tall}. 

Let the values of the attributes be defined as in the following table. 

Age Eyes Height 
1 Young Blue Short 
2 Young Brown Normal 
3 Middle Brown Tall 
4 Old Green Normal 
5 Young Brown Normal 

For example, the indiscernibility relation 1(A) of the attribute set A is an equiva-
lence on U which has the equivalence classes {1} , {2 ,5} , {3} , and {4} . 

If we denote a — Age, b = Eyes, and c = Height, then the indiscernibility matrix 
of S is the following: 

( A- {a } 0 0 W \ 
{a} A m { c } A 
0 m A 0 {b} 
0 {c } 0 A M 

^ W A m { c } a J 

By Proposition 6.1, the family Ts = {0, {a } , {&}> { c } , A} consisting of the 
entries of M s is dense in the dependence space T>s = (A, ©5). Let us denote by / 
the difference function of the set A. Then min( / d ) = min{x(A — X) \ X £ T, A — 

= {(0,1,1) , (1,0,1), (1,1,0)} . This means that fd = (6Ac)V(aAc) V(aA&) 
and / = (b V c) A (a V c) A (a V b) = (a A b) V (a A c) V ' ( iAc ) . Obviously, (1,1,0), 
(1,0,1) and (0,1,1) are the minimal true vectors of / . Thus, {a; b}, {a, c} , and 
{b, c} are the reducts of A in T>s-
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Elementary decomposition of soliton automata* 

Miklós Bartha 1 Miklós Krész * 

Abstract 

Soliton automata are the mathematical models of certain possible molec-
ular switching devices. In this paper we work out a decomposition of soliton 
automata through the structure of their underlying graphs. These results lead 
to the original aim, to give a characterization of soliton automata in general 
case. 

1 Introduction 

One of the most important goals of research in bioelectronics is to develop a molec-
ular computer (see e.g. [3]). The soliton automaton introduced in [4] is the mathe-
matical model of so-called "soliton valves" having the potential to serve as a molec-
ular switching device in such a computer architecture. 

The underlying object of a soliton automaton is a soliton graph, which is the 
topological model of a hydrocarbon molecule-chain in which the appropriate soliton 
waves travel along. Any soliton graph has a perfect internal matching, i.e. a 
matching that covers all the vertices with degree at least two. These vertices model 
the carbon atoms, whereas vertices with degree one (external vertices) represent an 
interface with the outside world. The states of the corresponding automaton - also 
called the states of the graph - are the perfect internal matchings of the underlying 
graph, while the transitions are realized by making soliton walks. Intuitively, a 
soliton walk is an alternating walk with respect to some state M of the graph G, 
which starts and ends at an external vertex. However, the status of each edge in the 
walk regarding its presence in M changes dynamically step by step while making 
the walk, so that by the time the walk is finished, a new state of G is reached. 

The analysis of soliton automata is a very complex task. So far only a few special 
cases have been described. In [4], [5] and [6], the transition monoids were deter-
mined for strongly deterministic soliton automata, deterministic soliton automata 
with a single external vertex or with one cycle. Following a different approach, in 
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[8], the computational power of strongly deterministic soliton automata have been 
investigated by automata products. However, the general case is still open. 

The main contribution of this paper is to reduce the general problem to a 
simpler one by working out a decomposition of soliton automata into elementary 
ones. For this goal we make use of the elementary structure of soliton graphs found 
in [2]. In Section 3 we describe the automata based on the internal parts of this 
decomposition, then characterize the relationship of component automata by aq-
products. In Section 4 the self-transitions - transitions from a state to itself -
induced by non-trivial walks are investigated. This problem will be analyzed also 
through the elementary decomposition. 

2 Basic concepts and preliminaries 

By a graph we mean, unless otherwise specified, a finite undirected graph in the 
most general sense, i.e. with multiple edges and loops allowed. For a graph G, V(G) 
and E(G) will denote the set of vertices and the set of edges of G, respectively. 
An edge e— (i>i,v2) G E(G) connects two vertices vi,v2 G V(G), which are called 
the endpoints of e, and e is said to be incident with v\ and v2. If = v2, then 
e is called a loop around v\. Two edges sharing at least one endpoint are said to 
be adjacent in G. A subgraph G' of G is a graph such that V(G' ) C V(G) and 
E(G') C E(G). If X C V(G) then G[X] denotes the subgraph of G induced by X , 
i.e. V(G[X]) = X and E(G[X]) consists of the edges of G having both endpoints in 
X. Moreover, we say that the set E C E(G) spans the subgraph G' if G' = G[X], 
where X is the set of vertices incident with some edge of E. 

If the vertex set of a graph G can be partitioned into two disjoint non-empty 
sets A and B such that all edges of G join a vertex in A to a vertex in B, we call 
G bipartite and refer to (A, B) as the bipartition of G. 

The degree of a vertex v in graph G is the number of occurences of v as an 
endpoint of some edge in E(G). According to this definition, every loop around v 
contributes two occurences to the count. The vertex v is called external if its degree 
d(v) is one, internal if d(v) > 1, and isolated otherwise. External edges are those 
that are incident with at least one external vertex, whereas an edge is internal, if 
it is not external. The sets of external and internal vertices of G will be denoted 
by Ext{G) and Int(G), respectively. 

A matching M of graph G is a subset of E(G) such that no vertex of G occurs 
more than once as an endpoint of some edge in M . Again, it is understood that 
loops are not allowed to participate in M. The endpoints of the edges contained 
in M are said to be covered by M . A perfect internal matching is one that covers 
all the internal vertices of G. An edge e G E(G) is allowed (mandatory) if e is 
contained in some (respectively, all) perfect internal matching(s) of G. Forbidden 
edges are those that are not allowed. We will also use the name constant edge as a 
common reference to forbidden and mandatory edges. A perfect internal matching 
in G will be also referred to as a. state of G, and the set of states of G is denoted 
by S(G). For a complete account on matching theory the reader is refered to [9]. 
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To follow the matching theoretic terminology, a soiiton graph G is defined as a 
graph having at least one external vertex and a perfect internal matching. (See [1]). 
A connected soiiton graph G is said to be essentially internal if either G consists 
of one edge or every external edge of G is forbidden. 

An elementary component C of soiiton graph G is a maximal connected subgraph 
of G spanned by allowed edges only. Then C is called external or internal depending 
on whether it contains an external vertex or not. An elementary component is said 
to be trivial, if it contains at most one edge. Elementary graphs are those which 
consist of one elementary component. Note that the decomposition into elementary 
components determines a partition on V(G). 

Now let G' be a subgraph of soiiton graph G. Then for any state M of G, 
by MG> we mean the restriction of M to G'. If, in addition, G' is also a soiiton 
graph with MG> E S(G'), and either Tnt(G') = V(G')C\Int(G) or G' is essentially 
internal, then G' will be called a soiiton subgraph with respect to M. 

In a graph G, a walk of length n is a sequence A ~ VQ, e\,... , en,vn, n > 0, of 
alternating vertices and edges. This sequence indicates the starting point VQ 6 V(G) 
of a and the vertex Vj, j 6 [n] = {1 , . . .n } , that a reached after traversing the j-th 
edge ej. The notation a[vi,vj] with 1 < i < j < n will be used for the subwalk 
of ol between Vi and Vj, i.e., a[vi,vj] — • • • ,ej,Vj. Furthermore a - 1 will 
represent the reverse of a. For every j g [n], na(j) will denote the number of 
occurences of the edge ej in the prefix vo, e\,... , ej. By a backtrack in a walk we 
mean the traversal of the same edge twice in a consecutive way. However, as the 
only exception, the traversal of a looping edge in the above way is not considered 
to be a backtrack. If all edges in a walk are distinct, the walk is called a trail, and 
if, in addition, the vertices are also distinct, the trail is a path. We define a cycle to 
be a path together with an edge joining the first and the last vertex. Note, that a 
looping edge is also a (trivial) cycle according to the above definition. An external 
trail (path) is a trail (path) having an external endpoint , while a path between two 
external vertices is said to be crossing. Internal trails (paths) are those that are 
not external. 

A trail a = wo,'ei, • • • , e n , v n , n > 0 is an alternating trail with respect to state 
M (or M-alternating trail, for short) if for every i 6 [n - 1], e, 6 M iff e»+i $ M. 
If vo,vn € Int(G), then a is called internal, otherwise a is external. Moreover, a 
is said to be positive (negative) if either a is internal with e\, en € M ( e\, en $ M, 
respectively) or it is external with vn € Int(G) such that en € M (en $ M, 
respectively). Observe that at most the endpoints of a can be traversed twice by an 
alternating trail a. Based on the above fact, any maximal external M-alternating 
trail a starting from vertex v, different from a crossing, can be decomposed in the 
form a = ah + ac, where Q^, the handle of a, is an external M-alternating path, 
whereas ac, the cycle of a, is an M-alternating cycle. With these parameters, a is 
called an alternating v-racket or an alternating v-loop depending on whether ac is 
even or odd. 

We say that an internal vertex w is accessible in state M from external vertex v 
(or simply w is M-accessible from v) if there exists a positive external M-alternating 
path with endpoints v and w. We will call an edge e viable from external vertex 
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v in state M if e is traversed by an external M-alternating trail starting from v. 
Impervious edges are those which are not viable in any state from any external 
vertex. Furthermore, a cycle is said to be M-accessible from external vertex v if 
some of its edges are viable from v in state M. 

For a state M of G, an M-alternating trail a is called complete if a is either a 
crossing or it is an even length cycle. An alternating network with respect to M (or 
M-alternating network, for short) is a set of nonempty, pairwise disjoint, complete 
M-alternating trails. Note that, although an M-alternating network V consists of 
nonempty trails only, the network T itself can be empty. 

Let M be a state of graph G and a be a complete M-alternating trail. By 
making a in state M we mean exchanging the status of the edges in a regarding 
their being present or not being present in M , thus creating a new state M'. The 
state M ' created in this way will be denoted by Sc{M,a) or simply S{M,a) if 
G is understood. Making an M-alternating network T in state M means making 
all the trails of T simultaneously in M . Since the trails of T do not intersect each 
other, the resulting state, denoted by SG{M,V), is well-defined. Finally, let G ' be 
a subraph of G and M € S(G). Then by an M&-alternating trail (network) we 
mean one that is entirely contained in graph G' . 

Now we quote two results from [1] related to alternating networks. 

Theorem 2.1 For any two states Mi, M2 of graph G, there exists a unique 
mediator alternating network T between Mi and M2, i.e. 5(j(Mi,r) = M2 and 
5 G ( M 2 , r ) = M 1 

Corollary 2.2 An edge e is non-constant iff it is traversed by a complete M-
alternating trail in each state M. 

In our decomposition results we will make use of the aQ-products of finite automata, 
therefore we now recall the necessary definitions from [7]. An alphabet is a finite, 
non-empty set. If X is an alphabet, then X* denotes the set of words over X, 
including the empty word e. A non-deterministic finite automaton is a triple A = 
(S, X, 5), where 5 is a non-empty finite set, the set of states, X is an alphabet, the 
input alphabet, and 5 : A x X -> 2A is the transition function. We can extend <5 in 
such a way that S(s, e) = s for all s E S. 
For i = 1,2, let Ai = (S i ,X i ,6 i ) be finite automata. An isomorphism between 
Ai and A2 is a pair ip = (tps^x) of bijective mappings ips '• Si S 2 and 
ipx '• Xi X2 which satisfies the equation 

WS(S') I S1 6 J i ( s , s ) } = ¿2W>s(s) ,<Mx)) , 

for every s G Si and every x E Xi. The existence of an isomorphism between Ai 
and A2 is denoted by A\ = A2. 

Definition 2.3 Let Ai = (Si,Xi, ¿¡) (i = 1 , . . . , fe; k > 0) be a system of automata. 
Their ctQ-product with respect to alphabet X and feedback function <fi — notation 
ni=1 Ai[X, 4>\ — is the automaton 

A={S,X,6), where 
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(a) S = Si x . . . x Sk 

(b) (j> = ((¡>i,... , (f>k) is a mapping, such that 
<j)i : S\ x . . . x Sk x X - » Xi U {e} , and fa is independent of its j t h component 
whenever i < j < k, (i = 1 , . . . , k) 

(c) ¿ ( (sx , . . . ,sk),x) = 
5i{si,4>i(si,... ,sk,x)) x . . . x 6k(sk,4>k(si,... ,sk,x)) 

for every x 6 X, Sj € Si (i = 1 , . . . , k) 

Moreover, if every <f>i (1 < i < k) depends only on the input signal, then we speak 
of the quasi-direct e-product of A\ ... Ak. 

The following definitions are the matching theoretic formalizations of soliton walk 
and soliton automata introduced in [4]. 
Definition 2.4 A partial soliton walk in graph G with respect to state M is a 
backtrack-free walk a = vq, e i , . . . ,en,vn subject to the following conditions: 

(a) vo is an external vertex 
(b) for every j 6 [n — 1], na(j) and na(j + 1 ) have the same parity iff Cj and e^+i 

are M-alternating, i.e., e;- € M iff eJ +i £ M. 
Furthermore if vn is also external then a is called total soliton walk, or simply 

soliton walk. 

Note that the case of n = 0 is also possible; then the soliton walk is called trivial. 
Making the walk a in state M means creating M' = S(M,a) by setting for 

every e € E(G) 
e € M' iff e £ M and e occurs an even number of times in a, or e £ M and e 

occurs an odd number of times in a. 
In the light of [4, Lemma 3.3] it should be clear that S(M, a) is indeed a state. 
In the rest of the paper we will use the following notation. If M is a state of 

graph G and V\,V2 € Ext(G), then 
SG(M,VI,V2) = {S(M,A) | a is a soliton walk with respect to M , which starts 

at vi and ends at v2} 

Definition 2.5 A soliton automaton with underlying graph G is a non-
deterministic finite automaton 

A(G) = {(S{G),(XxX)t6) 

subject to the following conditions: 
(a) G is a soliton graph 
(b) S(G), the set of states of -4(G), is the set of states of G 
(c) ( X x X ) is the input alphabet, where X — Ext(G) 
(d) 5 : S(G) x (X x X) -> 2s<g> is the transition function, such that 

S(M, [v1,v2))=SG{M,vuv2), iiSG{M,vuv2)^% 
5(M, (vi,v2)) = { M } , otherwise 

for any M 6 S(G) and vi,v2 € X. 
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A soliton automaton is said to be elementary if its underlying object is an 
elementary graph. 
Note that, without loss of generality, we can assume that all constant external edges 
of a soliton graph G are mandatory. Indeed, attaching an extra mandatory edge to 
each forbidden external edge of G results in a graph G* for which A(G) = A(G*). 
We shall use this assumption throughout the paper without any further reference. 

In [4] an edge is called impervious if it is not traversed by any partial soliton walk. 
The following proposition states that our definition of impervious edge is equivalent 
to this. 
Proposition 2.6 Let a = VQ, e\,... , en, v„ be a partial soliton walk with respect 
to state M with Vo ̂  vn. Then there exists an external M-alternating trail j3 from 
vo such that /3 terminates in en and E(fi) C E(a). Furthermore, if na(n) is odd, 
then the other endpoint of ¡3 is vn. 

Proof. First suppose that en $ M. Extend G by new external edges e = (vn-i,v) 
and e' = (v n ,v ' ) , such that v,v' £ V(G). Furthermore let e m denote the last 
edge of a for which em = en and na(m) is odd. Observe that a[wo,wm-i] + e 
or a[i>o,um_i] + e' is a total soliton walk in G + e + e' depending on whether 
vm-i = vn-i or vm-i = vn. Therefore, based on Theorem 2.1, there exists an 
M-alternating network T such that making T and making the appropriate part of 
the above walks results in the same state of G + e + e'. Clearly, T will contain an 
M-alternating crossing /3' between VQ and v (between v0 and v', respectively). Then 
replacing e (respectively, e') in /3' by en, we obtain the required M-alternating trail 
/3-

Now consider the case when en £ M. Then e n _ i $ M , thus we can construct 
the appropriate external alternating trail /3 described above, which terminates at 
e n _ i . If en £ E(/3), then we are ready. Otherwise ft + en will provide a suit-
able alternating path. Finally, based on the first part of the proof, observe that 
en ^ E(P), when na(n) = na(n — 1) is odd, which makes the proof complete. • 

It is clear that impervious edges have no effect on the operations of soliton au-
tomata. Thus, without loss of generality, we can restrict our investigation to soliton 
graphs without impervious edges. The above fact in more precise form is stated in 
[4, Proposition 4.5]. Therefore, throughout the paper, unless otherwise specified, 
G will denote a soliton graph without impervious edges. 

In the rest of this section we summerize some results from [2]. 
Definition 2.7 For any two internal vertices u,v £ V(G), u ~ v if u and v belong 
to the same elementary component of G and the edge e = (u, v) becomes forbidden 
in G + e. 

For an elementary component C of G, ~ c will denote ~ on C separately. Note 
that generally ~ c is not equal to the restriction of ~ to C. 
Theorem 2.8 The relation ~ is an equivalence on Int(G). 

The classes of the partition determined by ~ are called canonical classes. In par-
ticular a canonical class of elementary component C is a canonical class contained 
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in V(C). 

Proposition 2.9 Let u and v be arbitrary vertices of a non-trivial internal ele-
mentary component C of G. Then u /c v iff for any state M of G there exists a 
positive internal Mq-alternating path connecting u and v. 

In the following we shall use the phrase " external alternating path 7 enters elemen-
tary component C" in the strict sense, meaning that 7 enters C for the first time. 
Note that in this case 7 must be negative. 
Definition 2.10 An internal elementary component C is one-way if all external 
alternating paths enter C in the same canonical class of C. This unique class is 
called principal. Further to this, every external elementary component is a priori 
one-way by the present definition (with no principal canonical class). An elemen-
tary component is two-way if it is not one-way. 
Proposition 2.11 There exists no edge connecting two internal vertices contained 
in principal canonical classes. 

Let C be an elementary component of G, and consider a state M in G. An 
M-alternating C-loop (just C-loop if M is understood) is a negative internal M -
alternating path or odd M-alternating cycle in G having both endpoints, but no 
other vertices, in C. Note that the endpoints of a C-loop a must belong to the 
same canonical class which is called the domain of a. We say that a covers the 
elementary component D if some edge of D is traversed by a. 

Definition 2.12 Let M and C be a state and an external elementary component 
of G, respectively. A hidden edge of C is an edge e = («1,^2), not necessarily in 
E(G), for which vi,v2 are the endpoints of an M-alternating C-loop. 
An elementary graph C consisting of an external elementary component and its 
hidden edges will also be considered elementary component throughout the paper. 
In this case we will call C augmented external elementary component. In [2] it was 
proved that the augmentation of a soliton graph G by its hidden edges preserves the 
elementary structure of G with the same canonical partition for each elementary 
component. 

The hidden edges have important role in the external alternating paths, which 
is expressed below. 
Proposition 2.13 LetM be a state ofG, w 6 V(G) andv € Ext{G). Furthermore 
let a be a positive (negative) M-alternating trail between v and w such that E(a) 
contains hidden edges. Then there exists a positive (respectively, negative) M-
alternating trail between v and w which does not traverse any hidden edge. 

Elementary components are structured according to their accessibility by exter-
nal alternating paths. The rest of this section is an extract of some results obtained 
in [2] relating to this structure. 
Definition 2.14 Let C be an elementary component with a non-principal canoni-
cal class P. We say that the couple (C, P) are the parents of elementary component 
D if a C-loop with domain P covers D but there does not exist a C'-loop a for any 
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elementary component C" such that a covers both C and D. In that case C and 
P are called the father and the mother of D, respectively. 
Theorem 2.15 Each two-way elementary component has a unique father and a 
unique mother. One-way components have no parents. 

The following property of fathers will play important role in the paper. 
Proposition 2.16 Let (C,P) be the parents of elementary component D and let 
a be an alternating trail starting from external vertex v entering D at a vertex w. 
Then a[v, tu] will go through C such that the last common vertex of a[v, u>] and of 
C belongs to P. 

By Theorem 2.15, elementary components can be grouped into disjoint family trees 
according to the father-son relationship. Then a family T is defined as a block of 
elementary components belonging to the same family tree. The root, denoted by 
r(T), is the ultimate forefather of T. Then Theorem 2.15 implies the following 
result. 

Theorem 2.17 Every family contains a unique one-way elementary component, 
which is r(T). 

A family T is external if r(T) is such, otherwise it is internal. Moreover, for the 
family containing some elementary component C, the notation Tc will be used. 

Now we describe the relationship of families with the help of a binary relation. 
For this we need the following observation. 
Proposition 2.18 Let e be a forbidden edge of G connecting two different families 
T\ and J~2. Then exactly one endpoint of e belongs to the principal canonical class 
of the root of either T\ or T2 • 

Making use of the above claim, the binary relation is defined in the following 
way. 

Definition 2.19 For any two different families T\, T 2 , T 2 if there exists an 
edge e connecting T\ and T 2 such that the principal endpoint of e is in • In this 
case we say that e points to family T2 . 
Let A denote the reflexive and transitive closure of K>. 
Theorem 2.20 The relation A is a partial order on the collection of all families 
of G, by which the external families are maximal elements. 

Finally we give an important consequence of the above results, which will be used 
throughout the paper. 
Corollary 2.21 An edge e connecting two families is traversed by any external 
alternating trail a in G by reflecting the relation 1—that is, if a enters family T2 

from family T\, then e points to T2 • 

Proof. Suppose by way of contradiction that T 2 T\ holds in the situation 
described in the statement of the corollary for some M-alternating trail a starting 
from an external vertex u. In that case let (vj, v2) denote the edge traversed by the 
above way with vi being contained in the principal canonical class P\ of r(T\). Now 
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let extend G by edge / = (vi,v\). Then / will be clearly viable by a[u,t;i] + (i;i,iii), 
thus G + f has no impervious edges. Observe that Pi will be a canonical class in 
G + / , too. Indeed, if we assumed that an extra edge g connecting two vertices 
wi, w'i € Pi would be allowed in G + f + g, then it is easy to see, by making use of 
Corollary 2.2, that there would exist in G + f + g a complete M-alternating trail 
/3 containing both / and g. However, / is a loop, consequently the above situation 
is not possible. Therefore the elementary component r{T\) + / is also one-way in 
G + f with / being in its principal canonical class Pi; which is a contradiction in 
Proposition 2.11. • 

3 The decomposition of soliton automata 
It is a central question to establish the correspondence between alternating networks 
and soliton walks. The first result gives the characterization of this problem. 
Definition 3.1 Let u, w be external vertices and M be a state of G. An M -
transition network T from v to w is an M-alternating network with the following 
conditions: 

(a) If T = 0, then v = w. 
(b) All elements of T, except one crossing from v to w if v ^ w, are alternating 

cycles accessible from v in M. 
Let 7G(M, v, w) denote the set of M-transition networks from v to w in graph G. 

T h e o r e m 3.2 Let M be a state of G, v,w € Ext(G), and T be an M-alternating 
network. Then SG(M,T) £ SG(M,v,w) iffT £ TG(M,v,w). 

Proo f . The "only if ' part is straightforward from Theorem 2.1 and from Proposi-
tion 2.6. To prove the "i f ' part, let us construct for each cycle /3 of T an appropriate 
u-racket ¡3' with respect to M , such that the length of the handle of /?' is minimal. 
Let T' denote the set of the above u-rackets and , in the case of v w, of the 
crossing of r . 

We will show by an inductive argument on | T' | that there exists a soliton walk 
a for which E(a) C E{UT') and S(M,a) = S(M,T). The basis step with T being 
empty or a singleton is trivial. 

Now let | T' |> 1 and assume that the assertion holds for each soliton walk set 
T'l constructed in the described way from an appropriate alternating network I\ 
with | T'l |<| r ' |. Let 7 denote the v-racket with longest handle in T'. It is evident 
that 7C is disjoint from U ( r ' \ { 7 } ) . Now using the induction hypothesis consider a 
soliton walk a = v,ei,vi,... , v n _ i , e „ , w traversing T'\{7} by the required way. If 
7h ,= v, fi,wi,... , fm, wm, then let w, be the first vertex of 7h such that fk+1 / 
efc+i. Then it is easy to see that a[v, Vi] + 7/Jwj,wm] + 7 c + 1 [wm, Wi] + a[vi,w] 
will be a soliton walk with the required properties, which makes the proof complete. • 

Note that based on Theorem 3.2, the transitions of a soliton automaton can be 
effectively computed from its underlying soliton graph. Indeed, for any two states 
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Mi, the mediator alternating network between M1 and M2 is given by T = 
Mi © M2 , where © denotes the symmetric difference of M1 and M 2 , while the 
shortest handle for each alternating cycle in T can be found in a straightforward 
way. Moreover, the proof of Theorem 3.2 is constructive, it yields a soliton walk 
between two given states. The above facts are important from simulation point of 
view. 

We will work out products of automata based on elementary components, thus 
first we characterize the automata constructed from these components. 
Definition 3.3 For an elementary component C of graph G, the component au-
tomaton determined by C is the soliton automaton based on the graph C*, where 

C* = C, if C is external 
C* = C + (v, w), v £ C, w & V(G), if C is internal 

Definition 3.3 might give the impression that an internal component automaton de-
pends on the choice of vertex v. -However, Theorem 3.5 will show that all component 
automata determined by the same internal elementary component are isomorphic, 
thus A(C*) is unambiguous. 
Definition 3.4 An A = (S, X, 6) automaton is called full, if 

(i) X = { * } 

(ii) <5(s, x) = S, for each s £ S 

Theorem 3.5 Every internal component automaton is a full automaton. Con-
versely, for any full automaton there exists an isomorphic internal component au-
tomaton. 

Proof. We start with proving the first statement. To this end let C be an internal 
elementary component, v £ V(C) and (v,w) an extra external edge attached to C 
in order to form C*. As any state of C* has a transition to itself by a trivial soliton 
walk, we have to prove the "full-property" only for any two different states M\ ,M2 

of C. If T is the mediator alternating network between Mx and M2, then clearly 
T consits of Mi(M2)-alternating cycles. Any cycle /3 of T contains a vertex u for 
which u / c v, thus there exists an internal positive Mi(M2)-alternating path a 
between u and v in the graph C. Therefore /3 is accessible from w in Mi (M 2 ) by 
(w,v) + a. As v and /3 were arbitrary, we obtain the first claim with the help of 
Theorem 3.2. 

To prove the second statement, we only have to show that there exists an internal 
elementary component with n states for every n E N. The case n = 1 is satisfied 
by an elementary component consisting of one internal mandatory edge. If n > 2, 
then consider an even cycle /3, two adjacent vertices v,w 6 V(/3) and construct a 
graph G such that it has a representation in the form G = ¡3 + cti + ... + an-2, 
where 

(i) ai, i £ [n — 2] is an odd path with endpoints v and w 
(ii) V(ai)nV(p) = {v,w},ie[n-2) 
(ii) V(ai) n V(aj) = i,j £ [n - 2] 
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Observe that for any edge e being incident with v, there is a unique state M of G 
such that e 6 M . Thus, it is easy to see, that each edge of G is allowed and G has 
n states, as expected. • 

For the description of the product automaton we need the following concepts. 

Def in i t ion 3.6 Let P be a canonical class of some external component. Then the 
set pp is the smallest set of elementary components such that: 

(i) if C' is an internal elementary component and (v,w ) is an edge for which 
v <E P and w e V(C'), then C' 6 pP. 

(ii) if CUC2 are internal elementary components such that Jrc1 A Ci & pp 
and there is an edge between C\ and C2, then C2 £ pp-

Note that (ii) may also hold if C\ and C2 are in the same family, as A is reflexive. 
Moreover, based on the structure of the families it can be easily showed, that if 
C £ pp and Tc is internal, then C' £ pp for any elementary component C' of Tc-

For the main result of the section we introduce some technical notations and prove 
a lemma. For these we need the following simple observation. 

C la im 3.7 Let P be a canonical class of some elementary component C. An 
internal vertex of P is accessible from external vertex v in state M iff all vertices 
of P are M-accessible from v . 

P r o o f . Let us assume that a is a positive external M-alternating path from vtow 
and let u be an arbitrary vertex of P different from w. We claim that there exists an 
internal M-alternating path /3 between u and some vertex of a such that /? is positive 
on the end of vertex u. If C is external, then according to [2, Proposition 2.3] there 
exists a positive external Mc-alternating path 7 with endpoint u. Observe that 
E{a) n E{7) 0, because otherwise a' = a + (w, u) + 7 would form an alternating 
crossing indicating that u / «J by S(M,a'). Therefore an appropriate subpath 
of 7 is suitable for /3. Now assume that C is internal. Then let w' denote the 
vertex incident with vj by the edge covered by M . Clearly, u ^c w', thus, based 
on Proposition 2.9, there exists a positive internal Mc-alternating path between u 
and w', from which the existence of f3 is straightforward again. 

Now starting from u let ua denote the first vertex along /3 for which ua E V(a). 
ai = a[w,ua] + 0[ua,u] cannot form a positive internal alternating path, as it 
would contradict u ~ w. Therefore a[v,ua] + /3[ua,u] gives a positive external 
M-alternating path, as desired. • 

By Claim 3.7 it is justified to say that a canonical class is accessible from an ex-
ternal vertex in a given state. 
For any internal elementary component C' of graph G: 

1ZG(C') = { P | P is a canonical class of some external elementary 
component and C' £ pp} 

For any external vertex v of a (possibly augmented) external elementary component 
C and state M of C in graph G: 
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Vc{M,v) = {P | P is a canonical class of C, which is M-accessible from 
v in the graph C }. 

and 
CG(M,V) = {C' | C' is an internal elementary component such that 

HG(C')nVc{M, 
Note that if G is understood then the subscript G is omitted from the above nota-
tions. Furthermore, if C is an augmented external elementary component, then it 
is indicated with a superscript 'h! , i.e. using Ch(M,v). 

Lemma'3.8 Let P' be a non-principal canonical class of some internal elementary 
component C' and v be an external vertex of an elementary component C. Then an 
edge e incident with a vertex of P' is viable from v in state M iff C' £ Ch(Mc,v). 

Proo f . During the proof the notation Ch will be used for the augmented ex-
ternal elementary component constructed from C. Furthermore, for any external 
alternating trail a starting from C, wa will denote the last vertex of a for which 
wa £ V(C). 

'Only if' Let a be a positive external M-alternating trail starting from v and 
terminating at vertex w, where w is an endpoint of e. Moreover, let Pa denote 
the canonical class containing wa. Then substituting the C-loops for hidden edges 
in a, we obtain that Pa £ 7> cj .(Mc,v)- Now using Corollary 2.21, it is easy to 
see that Cs £ ppa for each internal elementary component Cs reached by a[wa,w\. 
Hence Pa £ 7Z(C') n P C h ( M c , v ) , which gives the result. 

'If' Suppose that C' £ pp for some canonical class P € Vch(Mc,v). Then 
based on the definition of pp there exist families T i , . . . , T m containing members 
of pp such that T\ = Tc, Fm = and for each 1 < s < m - 1 J s ^s+i with 
some edges connecting elements of pp fl Ts and pp fl Ts+i • Let a be an external 
M-alternating trail terminating at w, where w is an endpoint of e. Note that such 
an a exists, because [1, Corollary 3.3] states that an edge is impervious in one state 
iff it is impervious in all states. The proof will apply an induction on m. 

Basis step. Applying Theorem 2.15 iteratively, we obtain that each two-way 
elementary component C\ of T\ has a unique ultimate foremother - in notation 
m ( C i ) - as a class of C. Then, making use of Proposition 2.16, it is clear that for 
any external M-alternating trail /3 reaching Ci, wp is contained in m(Ci) . 

It is clear, by Proposition 2.18, that p' = pp f1 T\ can be built up iteratively 
according to Definition 3.6 (z) — (ii). We will show by a structural induction 
based on the building procedure of p', that for any elementary component C\ £ p\ 
m(Ci) = P holds. First suppose that C\ is added to p' in a step of type (i). 
As P £ PCh(Mc, v), we obtain with the help of Proposition 2.13, that in this case 
w7 G P holds, which implies m(Ci) = P by the previous paragraph. Continuing the 
procedure with (ii) such that edge e connects C\ with an elementary component 
C2 already in p', let us consider an external alternating trail 7 terminating at 
e. According to the hypothesis for C2, w7 must belong to P . Thus applying the 
observation of the previous paragraph again, we obtain that m(Ci) = P, as desired. 
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Summarizing the foregoings we conclude that-wa E P. Now choosing a positive 
Mc-alternating path ai between v and wa and applying Proposition 2.13 for ai + 
a[wa ,w] we obtain a suitable alternating trail. 

Induction step. Let u denote the first Vertex of a which is also in C m — 
Moreover, let u' denote a vertex of Cm which is connected by an edge to a vertex w' 
of some elementary component of Tm-\C\ 'pp. According to the induction hypothesis 
there exists an appropriate M-alternating trail /3 running from v and terminating at 
(u',w'). Based on Corollary 2.21 the following facts hold: the internal endpoint of 
P is u' such that ¡3 is a negative path, a[u, w) avoids T\,... , J-m-i and /3 — (w' ,u') 
does not "touch" fm. Now consider a positive internal Mc alternating path 7 , 
which starts from u' and terminates in some vertex iii of V(a) Pi V(Cm) such that 
u' 7¿c u\. By Corollary 2.21, u ~ u', therefore if u[ denotes the vertex where 7 
hits a first time, then we can conclude that /3 + 7[u',u'1] + a[«i,u;] provides the 
desired alternating trail. • 

T h e o r e m 3.9 Let C i , . . . , C ; be the augmented external elementary compo-
nents, Ci+i,... ,Ck be the internal elementary components of G, and A(C*) = 
( S ( C i ) , (Xi x D . J i ) {i = 1 , . . . ,k), with Xi = {xi}, if i > I. Then: 

A(G) = A*{G), where 

= \\ki=i A(C*)\Y, (j>) is an ae0-product such that 

(a) Y = (Ext(G) x Ext(G)) 
(b) <fr = (</>!,... , cfik) is defined in the following way: 

For eachl <i <k, M i S 5 ( C i ) , . . . ,MkE S(Ck) and (yuy2) EY 
(b/1) if 1 <i < I and ( 3 / 1 , ^ 2 ) E Xi x Xi, then 

4 > i ( M i , . . . ,Mk, ( 1 / 1 , 2 / 2 ) ) = ( 2 / 1 , 2 / 2 ) 

(b/2) if I + 1 < i < k, (2/1,2/2) E Xj x Xj for some 1 < j < I, 
Ci E Ch(Mj,yi), and either yi =y2, 

• • or 2/1 ^ 2/2 With 5j(Mj,(y1,y2)) ± {Mj}, .then 
« / » ¿ ( M i , . . . - , M k , ( 2 / 1 , 2 / 2 ) ) = { x i , X i ) 

(b/3) Otherwise: 
< / > i ( M i , . . . , M f c , ( 1 / 1 , 2 / 2 ) ) = £ • • 

Proo f . Let <5 and <5* denote the transition function of A{G) and that of A* (G), 
respectively. Moreover, let (2 /1*2/2) E Y and M E S(G) be arbitrary, such that 
2/i E V(Cr), 2/2 E V(CS) for some r,s < I. Since the mapping 

^ ( M ) = ( M C 1 , : . . , M C J ' (1) 

is clearly a bijection between S(G) and S(Ci) x . . . S(Ck), we only have to prove 
that 

{tp(M') | M ' E S(M, (2/1,2/2))} = 5*{i>{M),(yi,y2)) :.'.(2) 
For each 1 < i < k let Zi denote (/>i(Mc1,••• , Mc f c, (2/1,2/2))- Consider first.the 
right side of (2). Then based on (1) and Definition 2.3, we have 
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First we provide a characterization of non-trivial self-transitions by alternating 
trails. For this result we need the following definition. 
Definition 4.2 Let M be a state of G and v 6 Ext(G). An M- alternating double 
v-racket a is a pair of M-alternating v-rackets (a1, a2) with branching handles, 
i.e. with neither of aj1 and a2 being a prefix of the other. The maximal common 
external subpath - denoted by a/, - of a^ and of a\ is called the handle of a, 
whereas the last vertex of ah is referred to be as the branching vertex of a. 

Note that the handle of a double «-racket is a positive external alternating path. 
T h e o r e m 4.3 There exists a non-trivial self-transition of external vertex v with 
respect to state M of G, iff G contains either an M-alternating v-loop or an M-
alternating double v-racket. 

Proo f . During the proof if we refer to an alternating cycle a as a part of a 
decomposed form of a soliton walk /3, then we mean that a as a subwalk of /3 is 
traversed in an appropriate way. 

For an M-alternating u-loop a it is easy to check that a^ + ac + ac + a^1 is a 
non-trivial self-transition of v. Therefore, we can suppose for the rest of the proof 
that G does not contain an M-alternating v-loop . 

'Only if' Let a = v,ei,vi,... ,en,vn be a non-trivial self-transition of v with 
respeict to M , and let i be the smallest index for which there exists an index j > i 
such that vj = Vi, na(j) = 1 and each edge of a[v,vi] is traversed exactly once 
by a[v\vj\. In other words, Vi is the closest vertex to v where a returns to itself. 
Now, based on Proposition 2.6, there exists an M-alternating trail /3 such that /3 
terminates at ej and E(j3) C E(a[v,vj]). By assumption, /3 is an alternating v-
racket with /3/, = a[v, «¿]. Observe that a[u, Vj] + a[v, « ¿ j - 1 is a soliton walk from v 
to itself. Therefore, it is obvious that the edges traversed by a[vi,vj] an odd number 
of times will constitute an M-alternating network T consisting of alternating cycles. 
By the above facts we obtain that e.j+i = el. The edge ej must be traversed by 
a[vj,vn}, consequently there is a first edge em with m> j which is not on a[v,v{]. 
Then, let eT denote the edge for which er = e m _ i with r < i. It is easy to see, 
that because of the choice of Vi, any vertex V[ with I < i is incident with exactly 
two edges of a[v,vj\. Therefore na(m) = 1 and we can select the first edge ek of 
a[vm-i,vn] for which na(k) is even. Again, by the choice of v¿, we conclude that 
a[v,vr-.i\ and a[vm-i,vk] are edge-disjoint. Furthermore, observe that e r ^ M , 
therefore a' = i>r_i] + a[um_i,-ufc_i] is a partial soliton walk with respect to 
M. As we have seen, there exists an M-alternating cycle 7 ' of T containing ek. 
Making use of the former observations for T and for a ' we obtain that 7 ' and a ' 
are edge-disjoint. Now applying Proposition 2.6 for a' , an M-alternating «-racket 
7 can be constructed such that 6 = (/3,7) is a double u-racket with 7C = 7 ' and 
dh = a[u,v r_i] . 

'If' Let a = ( a 1 , « 2 ) be a double «-racket, and let w denote the branching 
vertex of a. Moreover, let us introduce the notation a\ = alh — au and alw = 
a® -I- a'c.+ ( a * ) - 1 for i = 1,2. If a 2 - an is edge-disjoint from a1 we obtain that 
ah. + <*w + oi^ + a^ + a^ + a^"1 is a soliton walk with the desired properties. 
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Otherwise let u be the first vertex of a^ which is also on a1 and extend a2[w,u] 
to an M-alternating path au by continuing its way appropriately on a\ until it 
reaches a2c. Note that au = a2[u>,u] holds if u 6 V(a2). Also note that the 
construction described above is feasible, as G has no M-alternating v-loops. Then 
ah + ah + a u + a l + a^1 + a^1 will result in the requested soliton walk. • 
We now turn to the characterization of v-loops. 
Propos i t i on 4.4 Let v be an external vertex of graph G and M £ S(G). Then G 
contains an M-alternating v-loop iff there exists an internal edge (u,w) such that 
both u and w are accessible from v in M. 

P r o o f . It is sufficient to prove the 'If' part. Let a and ¡3 be positive external 
M-alternating paths from v to internal vertices u and w, respectively, such that 
(u, w) e E(G) and | E(a) U E(/3) | is minimal. Then let wp denote the last vertex 
of ¡3 with wp = ua for some ua 6 V(a). We claim that a[v,ua] is positive. Indeed, 
otherwise both endpoints of the last edge of a[v,ua] would be accessible from v 
in M by the appropriate subpaths of a and /3, which would be a contradiction in 
the choice of u and w. Therefore an M-alternating v-loop can be formed from the 
edges of the set E(a) U E{P[wp,w]) U { (u, io)} , as desired. • 

To state the following important consequence of Proposition 4.4, let us call two 
states Mi , M2 compatible if Mi and M2 cover the same external edges. 
Corol lary 4.5 Let Mi and M2 be compatible states of G and v 6 Ext{G). Then 
G contains an Mi-alternating v-loop iff G contains an M2-alternating v-loop. 

Proo f . The role of Mi and M2 is symmetric, so we need to prove one direction only. 
To this end let (vi ,v2) be an edge of the cycle of an Mi-alternating v-loop a and let 
ai and a2 denote the appropriate positive external Mi-alternating subpaths of a 
running to vertices vi and v2, respectively. According to Theorem 2.1, there exists 
a mediator alternating network T between Mi and M2 containing only alternating 
cycles. Clearly, we can suppose without loss of generality that T consists of one 
Mi-alternating cycle ¡3. We claim that for « ¿ , ¿ = 1,2, either ai is accessible from v 
in M2 or an M2-alternating v-loop can be formed from the edges of E{ai) U E{f3). 
If the latter case holds for at least one of a 1 and a2, then we are ready-. Otherwise 
the Corollary can be obtained by Proposition 4.4. 

Our claim is obviously enough to be proved for QI with the assumption that 
E(ai) fl E{P) 0. Let w and w' denote the first and the last vertex of ai which 
are also in V(f3). If w and w' are in odd distance on ¡3, then the requested M2-
alternating path is obtained by combining a[v, tu], the positive M2-alternating sub-
path of f3 between w and w', and a[w',vi]. Otherwise it is easy to see that there 
must exist a subpath a1 having its endpoints x and y, but no other vertices, in 
V(/3) such that both x and y are in an odd distance from w on 0 . This allows 
an M2-alternating v-loop to be constructed from a[v,u>], a' and an appropriate 
M2-alternating subpath of /3. Hence the proof is complete. • 

For a further analysis of v-loops we introduce the graph Cff, where C is an exter-
nal elementary component of G containing external vertex v and M £ S{G). The 
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graph C^ is the subgraph of C spanned by the edges that are Mc-viable from v in 
the subgraph C. Moreover, let C^f denote the set C{Mc,v) U {C™}. Finally, G™ 
will denote the graph which consists of LiCff plus the edges connecting different 
elements of C^f. 

Note that generally G^f is not equal to the graph G{V{UC^)\. Moreover, we 
might have the impression that G^f contains all the edges M-viable from v. How-
ever, by Lemma 3.8 and by Proposition 2.13, it is easy to see that the above fact 
is true iff C(Mc,v) = Ch(Mc,v) and any edge of C Mc-viable from v in the aug-
mentation of C is also Mo-viable from v in C. 

Proposition 4.6 G^f is a soliton subgraph with respect to M. Furthermore, the 
set of elementary components of G^f is Cff . 

Proof. The first sentence is evidently tru if C is a trivial component. Further-
more, if C is non-trivial, then any maximal M-alternating trail starting from v is 
entirely contained in C^f, which implies that Gff is indeed a soliton subgraph with 
respect to M . To verify the second sentence, observe that if an edge of a soliton 
subgraph G' of G is forbidden in G, then it is also forbidden in G'. For this reason, 
all we have to prove is that C^f is elementary. To this end we will make use of the 
following two claims. 
Claim A If an edge of C^ is part of an even M-alternating cycle a of G, then a 
is enterily contained in C^1. 

Proof. Straightforward. 
Claim B Any edge of C^f traversed by an M-alternating crossing in G is in the 
unique external elementary component of Cff. 

Proof. It is clear that Cff has a unique external elementary component. Let 
a = vo, e i , . . . ,en,vnbe & fixed M-alternating crossing and ej be an arbitrary edge 
of a which is also in . Furthermore let /3 be an external M-alternating trail 
starting from v and terminating at ê  such that k =| E(P)\E(a) | is minimal. We 
will prove the claim by induction on k. The basis step k = 0 is trivial. For the in-
duction step, consider the last edge ep of /3 not on a and let w denote the endpoint 
of ep contained in V(a). We can assume without loss of generality that w = Vj 
with j < i. Then clearly ej+1 6 M. If /3[v,w] does not overlap with a[vi,vn], then 
the crossing fi[v,w] + a[vj,vn] does the job. Otherwise, let v^ be the first vertex 
of a[vi,vn] incident with an edge e of E(P)\E(a) and let u denote the vertex of 0 
with u = Vk- Observe that, starting from v, ¡3 must go through e before reaching 
u. Indeed, if not, then - since ek+i G M - fi[v,u] + alvk^i-i]"1 would contradict 
the choice of /3. Therefore a' — P[u,w] + a[vj,vk] will form an even M-alternating 
cycle, which shows by Claim A that ei and ek+i are in the same elementary com-
ponent of C^f. Finally, by applying the induction hypothesis for ek+i we obtain 
Claim B. • 

Continuing the proof of Proposition 4.6, let us suppose by way of contradiction that 
C f has an internal elementary component C". Then, there must exist an allowed 
edge e of C having exactly one endpoint in C". Let / denote the edge of C' incident 



Elementary decomposition of soli ton automata 649 

with e such that / £ M. Clearly e $ M, consequently, by Corollary 2.2, a complete 
M-alternating trail a must go through e. Applying Claim A and Claim B for / 
and a , we obtain a contradiction, which makes the proof complete. • 

Corollary 4.7 Each edge of G^ is viable from v in MQM . 

Proof. Based on Proposition 4.6, we have CQM{MQM ,v) = CQ{MC,V), i.e. 
CGM ( M c M , v) contains all elementary components of G^f which are different from 
O f f . Then the claim is obtained with the help of Lemma 3.8. • 

Proposition 4.8 For any external vertex v ofG, there exists an alternating v-loop 
with respect to state M iff G™ is non-bipartite. 

Proof. 

'Only if' Let C be the elementary component containig v, and a be an M-
alternating u-loop. If each edge of a is also contained in O f f , then we are ready. 
Otherwise, starting from v, let VJ be the first vertex of a such that an appropriate 
subpath a' of a forms a C-loop with one of its endpoints being w. Then, it is easy 
to see with the help of Corollary 2.21, that each edge of a[v,w\ is contained in 
G^f. Therefore a' is also a C-loop in G^f, consequently, because of Claim 3.7, both 
endpoints of a' are MQM -accessible from V. Finally, applying Proposition 4.4 for 
the endpoints of the last edge of a[v, w], we obtain that G^f has a u-loop, indicating 
that it is non-bipartite. 

'If' Let us suppose by way of contradiction that G^f does not contain M -
alternating u-loops. Then let G' denote a maximal bipartite soliton subgraph of 
Gwith respect to MQM such that v 6 V(G') and each edge of G' is viable from 
v in M c - Note that such a subgraph G' exists under our assumption, because 
any maximal external alternating trail starting from v as a v-racket or a crossing 
from v has the required properties. Based on Corollary 4.7, there exists a maximal 
external Mqm-alternating trail (3 from v to some vertex v' traversing an edge not in 
G'. Let e denote the first edge of /3 not in E(G'). Moreover, let w be the endpoint 
of e belonging to V(G') with A being the bipartition class of G' containing w. 
Observe that E(P[w,v']) fl E(G') ^ 0 and starting from w, the first overlap will 
occur at a vertex u in A. Indeed, checking any other possible cases, because of 
G' + ¡3[w, v'), we would obtain a contradiction with the choice of G'. Furthermore, 
every edge is viable from v in Mc, consequently there exists an MQI-alternating 
trail 7 from v to u. Observe that 7 is also positive, as the parity of the length of 7 
and that of f3[v, w] must be equal because of the bipartition of G'. Finally, applying 
Proposition 4.4 for any edge of /3[w, u], we obtain a contradiction. Hence the proof 
is complete. • 

Considering double v-rackets too, we can describe non-trivial self-transitions via 
the elementary structure of soliton automata. We also obtain that, similarly to 
Theorem 3.9, the problem can be reduced to elementary automata. For this final 
result we introduce the following concept. 

Definition 4.9 Let { C i , . . . , C „ } be the set of the elementary components of G 
with Ci being external. G is a component-chain graph if it can be decomposed in 
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the chain-form G = C\ + (w\, v2) + C2 + (w2,v3) + ... + (wn-i, vn) + C„ such that 
for each 2 < i < n — 1, (u;i_i,?;i), 6 E(G) with the vertices « j and uij 
belonging to different canonical classes of Cj. 

We shall be interested in situations when G'¡f is a component-chain graph for 
some graph G with external vertex v and M e S(G). In that case we augment 
Definition 4.9 by taking vi = v. We will call a (external or internal) positive Mc{-
alternating path Mv-transit if it connects Vi and W{. Component Ci is said to 
be Mv-transit if i ^ n and either Ci has two different M"-transit paths or there 
exists an even Mc{-alternating cycle disjoint from the unique M"-transit path of 
Ci. Finally, Ci is called an Mv-terminal if i = n and C[ has an Mc{-alternating 
double w-racket, where either C\ = Cj with w = v or C[ = Ci + (wj ,«t_i ) with 
w = Vi-i depending on whether n = 1 or not. 
Theorem 4.10 Let A(G) be a soliton automaton, M be a state of A(G) and C be 
an elementary component of G containing external vertex v. Then, there exists a 
non-trivial self-transition ofv with respect to M, iff one of the following conditions 
holds. 

(i) G^f is not a bipartite component-chain graph. 
(ii) Gy4 is a bipartite component-chain graph having an Mv-transit or an Mv-

terminal elementary component. 
Proof. 
'Only if' Based on Theorem 4.3 and Proposition 4.6, it is enough to prove 

that if G contains an M-alternating double «-racket a = (a1 , a 2 ) such that G ^ is a 
bipartite component-chain graph, then (ii) holds. To this end, first we claim that 
in this case a is entirely contained in G^f. Indeed, if, on the contrary, e denotes 
the first edge of a 1 (or a 2 ) which is not in E(G^f), then, based on Corollary 2.21 
and the definition of G^f e must connect two elementary components belonging to 
{ C } U C(Mc,v). Then, clearly, one of the endpoints of e, denoted by w, will be 
contained in V(C). However, it is a contradiction in the choice of e, because an 
appropriate subpath of a[v,w\ will be a G-loop between w\ and w, which implies 
that w is also in the unique canonical class of Vc(Mc,v), consequently e should 
be contained in G ^ . 

Therefore let us consider the chain form G^ — C\ + (tui, u2) +... + (uin_i, un) + 
G„ with Gi = C^ and v\ = v. Let Ci and Cj, 1 < i,j < n, denote the elementary 
components containing a j and a\, respectively. Furthermore, let a f , with k = 1,2 
and I = i,j, denote the subtrail of ak running entirely in Ci, whereas the notation 
(Ai,Bi) will be used for the bipartition of Ci with Wi 6 Bi. We may suppose 
without loss of generality that i < j. Now consider the elementary component Ck 

containing the branching vertex of a. If k < i, then it is easy to see that Ck is 
M"-transit. Therefore we may suppose for the rest of the proof that i = k. Then 
we distinguish two cases. 

Case (a) i < j. Then af is an M"-transit path. Therefore, we are ready, if a 2 

is disjoint from a\. Otherwise, let u' denote the first vertex of a\ incident with an 
edge of E(a\)\E(af). Then u' ^ im, because it is easy to check that af is not a 
subpath of aj. Thus continuing a\ from u', there will be a first vertex u" of the 



Elementary decomposition of soli ton automata 651 

appropriate subtrail of a ] which is also in V(a j ) . Now it can be easily observed 
that u' € B{ and u" 6 Ai, therefore the edges of E{al) U E(a\[u',u"} form two 
M^-transit paths, as desired. 

Case (b) i = j. If i = n, then Ci is clearly M"-terminal, thus we are ready. 
For other alternatives we will prove that C» is M"-transit. To this end let Pi be an 
Mv-transit path of Ci. Furthermore, starting from Vi let Ui denote the last vertex of 
Pi which is also in V(a])LlV(a?). The role of a\ and af is symmetric, thus we can 
assume that m = u for some vertex u oi a]. Obviously, a' = a\[vi,u] + Pi[ui, wi\ 
is an AP-transit path, because Ui must belong to Bi. Now following the same 
argument for a1 and a? which was applied in the proof of Case (a), we obtain the 
claim. 

'IF' By Theorem 4.3 and Proposition 4.8, it is sufficient to prove that a bipartite 
G c o n t a i n s an MQM-alternating double v-racket, if (i) or (n) holds. In this 
case observe that each family of G ^ is singleton. Indeed, if family..T7 is not a 
singleton, then there must exist an Mi-alternating C"-loop p connecting vertices 
vi,v2 S V(C'), where MX G S(GF) and C' = r{T). It was proved in [1] that any 
two vertices of an elementary graph is contained in a common complete alternating 
trail. Consequently, there exists for some M' 6 S(C') a complete M'-alternating 
trail 7 traversing both and v2. The length of ^[v\,v2] is clearly even, thus 
P + 7[t>i , v2} indicates that G^f is non-bipartite, which contradicts our assumption. 

Therefore, if (i) holds, then there must be elementary components C i , C 2 , C 3 

of G^f such that ^ Tci for i = 2,3 by two different edges e2 ^ e3. Then, 
as we have seen in the proof of Theorem 3.5, for i = 2,3, the endpoint of ê  in 
Ci is connected to some vertex of any even Mc,-alternating cycle by an internal 
positive Mci-alternating path. Based on Corollary 4.8, both e2 and are viable by 
alternating paths entering C2 and C3 through e2 and e3, respectively. Summerizing 
the above facts we can easily obtain the claim, if (i) holds. 

Finally, making use of Corollary 4.7, we can build an M-alternating double 
v-racket by an obvious way in a graph with the conditions of (ii). Therefore the 
proof is complete. • 
Finally, observe that C^f is trivially determined for constant automata, thus Defi-
nition 4.9 has a simplified form. Therefore the use of Theorem 4.10 is much easier 
in this special case. 

5 Conclusion 

We have worked out a decomposition of soliton automata into elementary automata. 
As the internal component automata are full and the appropriate ao"P r o^u ct is 
effectively computable, future research will concentrate on elementary automata 
only. Moreover, with the help of our results, the class of constant soliton automata 
is fully characterized. Considering practical issues, non-trivial self-transitions have 
an important role. We have also reduced this problem to elementary components, 
namely we have proved that to find self-transitions we only need to search for a 
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double u-racket or a pair of disjoint alternating paths in a bipartite elementary 
graph. 
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Regulated Pushdown Automata 

Alexander Meduna* Dusan Kolar * 

Abstract 
The present paper suggests a new investigation area of the formal language 

theory—regulated automata. Specifically, it investigates pushdown automata 
that regulate the use of their rules by control languages. It proves that this ' 
regulation has no effect on the power of pushdown automata if the control 
languages are regular. However, the pushdown automata regulated by linear 
control languages characterize the family of recursively enumerable languages. 
All these results axe established in terms of (A) acceptance by final state, (B) 
acceptance by empty pushdown, and (C) acceptance by final state and empty 
pushdown. In its conclusion, this paper formulates several open problems. 

K e y W o r d s : pushdown automata; regulated accepting; control languages 

1 Introduction 
Over the past three or four decades, grammars that regulate the use of their rules 
by various control mechanisms have played an important role in the language the-
ory. Indeed, literally hundreds studies were written about these grammars (see [1], 
Chapter 5 in the second volume of [4], and Chapter V in [5] for an overview of 
these studies). Besides grammars, however, the language theory uses automata as 
fundamental language models, and this very elementary fact gives rise to the idea 
of regulated automata, which are introduced and discussed in the present paper. 

More specifically, this paper introduces pushdown automata that regulate the 
use of their rules by control languages. First, it demonstrates that this regulation 
has no effect on the power of pushdown automata if the control languages are reg-
ular. Based on this result, it points out that pushdown automata regulated by 
analogy with the control mechanisms used in most common regulated grammars, 
such as matrix grammars, are of little interest because their resulting power coin-
cides with the power of ordinary pushdown automata. Then, however, the present 
paper proves that the pushdown automata increase their power remarkably if they 
are regulated by linear languages; indeed, they characterize the family of recursively 
enumerable languages. 
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2, Brno 61266, Czech Republic 

653 



654 Alexander Meduna, Dusán Kolar 

All results given in this paper are established in terms of (A) acceptance by 
final state, (B) acceptance by empty pushdown, and (C) acceptance by final state 
and empty pushdown. In its conclusion, this paper discusses some open problem 
areas concerning regulated automata. 

2 Preliminaries 

We assume that the reader is familiar with the language theory (see [3]). Set 
N = { 1 , 2 , . . . } and I = { 0 , 1 , 2 , . . . } . 

Let V be an alphabet. V* represents the free monoid generated by V under the 
operation of concatenation. The unit of V* is denoted by e. Set V+ = V* — {e } ; 
algebraically, V+ is thus the free semigroup generated by V under the operation of 
concatenation. 

For w £ V*, |w| and reversal(w) denote the length of w and the rever-
sal of w, respectively. Set prefix(w) = {x \ x is a prefix of w}, suffix(w) = 
{x | x is a suffix of u>}, and alph(w) = {a \ a £ V, and a appears in w). 

For w £ V+ and i £ { 1 , . . . , |u;|}, sym(w,i) denotes the ith symbol of w; for 
instance, sym(abcd, 3) = c. 

A linear grammar is a quadruple, G — (N,T,P,S), where N and T are alpha-
bets such that N fl T = 0, S £ N, and P is a finite set of productions of the form 
A x , where A £ N and x £T*(N U {e})T*. If A ->• x £ P and u,v £ T*, then 
uAv =>• uxv [A —> x] or, simply, uAv uxv. In the standard manner, extend => 
to where n > 0; then, based on =>n, define =>+ and =S>*. The language of G, 
L(G), is defined as L(G) = {w £ T* \ S =>* wj. A language, L, is linear if and 
only if L = L(G), where G is a linear grammar. 

Let G = (N, T, P, S) be a linear grammar. G represents a regular grammar if 
for every A —> x £ P, x £ T(N U {e}) . A language, L, is regular if and only if 
L — L(G), where G is a regular grammar. 

A queue grammar (see [2]) is a sixtuple, Q — (V,T,W,F,S,P), where V and 
W are alphabets satisfying V. n W = 0, T C V, F C W, S £ {V -T)(W - F), 
and P C (V x (W — F)) x (V* x W) is a finite relation such that for every a £ V, 
there exists an element (a, b, x, c) £ P. If u,v £ V*W such that u = arb, v = rzc, 
a £ V,r^z £ V*, b, c £ W and (a,b,z ,c) £ P, then u => v [(a, b, z,c)] in G or, 
simply, u => v. In the standard manner, extend to =>•", where n > 0. Based 
on =>n, define =3>+ and =>•*. The language of Q, L(Q), is defined as L(Q) = {w £ 
T* | S =>* wf where / € F}. 

Next, this paper slightly modifies the notion of a queue grammar. 
A left-extended queue grammar is a sixtuple, Q = (V, T, W, F, S, P), where 

V, T, W, F, S, P have the same meaning as in a queue grammar; in addition, as-
sume that # ^ V U W. If u,v £ V*{#}V*W so u = w#arb, v = wa#rzc, 
a £ V, r,z,w £ V*, b, c £ W, and (a,b,z,c) £ P, then u =>• v [(a, b, z,c)} 
in G or, simply, u => v. In the standard manner, extend =>• to where 
n > 0: Based on define and =>*. The language of Q,L(Q), is defined as 
L{Q) = {v £ T* I # 5 =»* w#vf for some w £ V* and / £ F}. 
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Let REG, LIN, and RE denote the families of regular, linear, and recursively 
enumerable languages, respectively. 

3 Definitions 
Consider a pushdown automaton, M, and a control language, E, over M's rulés. 
Informally, with E, M accepts a word, x, if and only if E contains á control word 
according to which M makes a sequence of moves so it reaches a final configuration 
after reading x. 

Formally, a pushdown automaton is a 7-tuple, M = (Q, E, Cl, R, s, S, F), where 
Q is a. finite set of states, E is an input alphabet, Q is a pushdown alphabet, R is a 
finite set of rules of the form Apa —> wq, where A £ Q, p, q £ Q, a £ E U {e } , and 
w £ fi*, s £ Q is the start state, S £ fi is the start symbol, F C Q is a set of final 
states. In addition, this paper requires that Q, E, fi are pairwise disjoint. 

Let be an alphabet of rule labels such that card(\I/) = card(R), and ip be a 
bijection from R to \I>. For simplicity, to express that ip maps a rule, Apa —> wq £ R, 
to p, where p £ this paper writes p.Apa wq £ i?; in other words, p.Apa--* wq 
means ip(Apa —• wq) = p. A configuration of M, x, is any word from ft*<3E*. For 
every x £ ü*, y £ E*, and p.Apa wq £ R, M makes a move from configuration 
xApay to configuration xwqy according to p, written as xApay xwqy \p\. Let 
X be any configuration of M. M makes zero moves from x t° X according to e, 
symbolically written as x X [£]- Let there exist a sequence of configurations 
Xo,Xi>---iXn for some n > 1 such that x¿- i =>• Xi [p¿], where p¿ £ <3>, for i = 
1 , . . . , n, then M makes n moves from xo to x-n according to p\... pn, symbolically 
written as xo =>n Xn [Pi • • • Pn]• • , • 

Let E be a control language over that is, 5 C Í ' , With E, M defines.the 
following three types of accepted languages: 

L(M, E, 1)—the language accepted by final state ' 

L(M, E, 2)—the language accepted by empty pushdown 

L(M, E,3)—the language accepted by final state and empty pushdown 

defined as follows. Let % £ fi*QE*. If x £ Ü*F, x £ Q, X 6 F, then-x is 
a 1-final configuration, 2-final configuration, 3-final configuration, respectively. 
For i = 1,2,3, define L{M,E,i) as L{M,E,i) = {w | w £ E*, and Ssw =4>* 
X [c] in M for an ¿—final configuration, x, and a £ E}. 

For any family of languages, X, set RPD(X,i) = {L \ L = 
L(M,E,i), where M is a pushdown automaton and E £ X}, where ¿ = 1, 2,3. 
Specifically, RPD(REG,i) and RPD(LIN,i) axe central to this paper. 

4 Results 
This section demonstrates that CF = RPD(REG, 1) = RPD{REG, 2) = 
RPD{REG, 3) and RE = RPD{LIN, 1) = RPD(LIN, 2) = RPD{LIN, 3). 
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Some of the following proofs involve several grammars and automata. To 
avoid any confusion, these proofs sometimes specify a regular grammar, G, as 
G = (V[G\, P[G], S[G],T[G]) because this specification clearly expresses that V[G], 
P[G], S[G], and T[G] represent G's components. Other grammars and automata 
are specified analogously whenever any confusion may exist. 

Regular Control Languages 

Next, this section proves that if the control languages are regular, then the reg-
ulation of pushdown automata has no effect on their power. The proof of the 
following lemma presents a transformation that converts any regular grammar, G, 
and any pushdown automaton, K , to an ordinary pushdown automaton, M , such 
that L(M) = L(K,L(G),l). 

Lemma 1 
For every regular grammar, G, and every pushdown automaton, K, there exists a 
pushdown automaton, M , such that L(M) = L(K,L(G), 1). 

Proof: Let G = (iV[G], T[G], P[G], S[G]) be any regular grammar, and let K = 
(Q[K},T,[K],Q[K],R[K],s[K],S[K],F[K}) be any pushdown automaton. Next, 
we construct a pushdown automaton, M, that simultaneously simulates G and K 
so that L(M) = L{K,L{G), 1). 

Let / be a new symbol. Define the pushdown automaton M = 
[Q[M], £[M], fl[M], R[M], s[M], S[M], F[M]) as Q[M] = {(qB) | q £ Q[K],B £ 
7V[G] U { / } } , £ [M] = S [ K ] , il[M} = fl[K], s[M] = (s[iT]5[G]), S[M] = 
F[M] = {(qf) | q e F\K]}, and R[M] = {C(qA)b -> x(pB) \ a.Cqb xp £ 
R[K], A aB £ P[G]} U {C{qA)b -)• x{pf) \ a.Cqb xp £ R[K\,A^ a £ P[G]} . 

Observe that a move in M according to C(qA)b x(pB) £ R[M] simulates 
a move in K according a.Cqb —> xp € R[K], where a is generated in G by using 
A —» aB £ P[G\. Based on this observation, it is rather easy to see that M accepts 
an input word, w, if and only if K reads w and enters a final state after using a 
complete word of L(G)\ therefore, L(M) = L(K,L(G), 1). A rigorous proof that 
L(M) - L(K, L(G), 1) is left to the reader. • 

Theorem 2 
For i £ {1 ,2 ,3 } , CF = RPD(REG,i). 

Proof: To prove CF = RPD(REG, 1), notice that RPD(REG, 1) C CF follows 
from Lemma 1. Clearly, CF C RPD(REG, 1), so RPD(REG, 1) = CF. 

By analogy with the demonstration of RPD(REG, 1) = CF, prove that CF = 
RPD(REG, 2) and CF = RPD(REG, 3). • 

Let us point out that most fundamental regulated grammars use control mech-
anisms that can be expressed in terms of regular control languages (c.f. Theorem 
V.6.1 on page 175 in [5]). However, pushdown automata introduced by analogy 
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with these grammars are of little or no interest because they are as powerful as 
ordinary pushdown automata (see Theorem 2 above). 

Linear Control Languages 
The rest of this section demonstrates that the pushdown automata regulated by 
linear control languages are more powerful than ordinary pushdown automata. In 
fact, it proves that RE = RPD(LIN, 1) = RPD{LIN, 2) = RPD(LIN, 3). 

Lemma 3 
For every left-extended queue grammar, K, there exists a left-extended queue gram-
mar Q = (V,T,W,F,s,P) satisfying L(K) = L(Q), ! is a distinguished member of 
(W -F),V = UUZUT such that U, Z, T are pairwise disjoint, and Q derives 
every z £ L(Q) in this way 

# 5 =>+ x # M 2 . . . W 
xb1#b2 • • -bnyiP2 

=> xbib2#bz • • -bnyiy2p2, 

=> xbxb2 ... i>„-l#6„2/l2/2 • • -Vn-lPn 
=> xbxb2 . . . 6„-l&n#2/lJ/2 • • -2/nPn+l 

where n £ N, x £ U*, hi £ Z for i = l , . . . , n , yi £ T* for i = 1 ,...,n, z = 
2/i2/2 ••• 2/n, Pi £ W — { ! } for i = 1,..., n — 1, pn £ F, and in this derivation 
x#b\b2 ... bn\ is the only word containing !. 

Proof: Let K be any left-extended queue grammar. Convert K to a left-extended 
queue grammar, H = (V[H],T{H},W[H],F[H},S[H],P{H]), such that L{K) = 
L(H) and H generates every x £ L(H) by making two or more derivation steps 
(this conversion is trivial and left to the reader). 

Define the bijection a from W to W', where W' = {q1 | q £ W}, as a(q) = {?'} 
for every q £ W. Analogously, define the bijection /3 from W to W",- where 
W" = {q" | q £ W), as /3(q) = {q"} for every q £W. Without any loss of gener-
ality, assume that {1 ,2 } n {V U W) = 0. Set 5 = {(a,q,ulv,p) \ (a,q,uv,p). £ 
P[H] for some a £ V,q £ W — F,v £ T*,u £ V*, and p £ W} and 
T = {(a,q,z2w,p) \{a,q,zw,p) £ P[H] for some a £ V,q £ W - F,w £ 
T*,z £ V*, and p £ W}. Define the relation x from V[H] to ET so for every 
a £ V, x(a) = {(a,q,ylx,p){a,q,y2x,p) | (a,q,ylx,p) £ E,(a,q,y2x,p) £ T,q £ 
W - F,x £ T*,y £ V*,p £ W}. Define the bijection <5 from V[H) to V', where 
V' = {a' | a £ V}, as 5(a) = {a ' } . In the standard manner, extend <5 so it is 
defined from (V[Jf]j* to ( V ) * . Finally, define the bijection <f> from V[H] to V" , 
where V" = {a" \ a £ V}, as (f>(a) — { a " } . In the standard manner, extend (f> so it 
is defined from (F[if])* to (V" )\ 

Define the left-extended queue grammar 

Q = (V[Q],T[Ql W[Q],F[Q],S[Q},P[Q]) 
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so that V[Q] = V[H] U 6(V[H}) U <t>{V[H]) U E U T , T[Q] = T[H], W[Q] = 
W[H] Ua(W[H]) U(3(W[H)) U { ! } , F[Q] = 0(F[H]), S[Q] = S(S[H]), and P[V] is 
constructed in this way 

1. if ( a , q , x , p ) G P[H] where a £ V, q £ W - F, x £ V*, and p £ W, then add 
(6{a),q,6{x),p) and (S(a),a(q),S(x),a(p)) to P[Qj; 

2. if ( a , q , x A y , p ) G P[H], where a G V, q G W - F, x, y G V*, A G V, and 
p £ W, then add {6(a),q,6{x)X(A)4>(y),a(p)) to P[Q]; 

3. if ( a , q , y x , p ) £ P[H], where a £ V, q G W - F, y £ V*, x £ T*, and p £ W, 
then add ((a,q,ylx,p),a(q),^>(y),\) and ((a,q , y2x,p),\,x,0(p)) to P[Q}-

4. if (a,q,y,p) £ P[H], where a £ V, q £ W - F, y £ T*, and p £ W, then add 
Ma),0(q),y,l3(p)) to P[Q). 

Set U = S(V[H)) U E and Z - <j>(V[H]) U T. Notice that Q satisfies properties 
2 and 3 of Lemma 3. To demonstrate that the other two properties hold as well, 
observe that H generates every z £ L(H) in this way 

# 5 [ H ] x # M 2 • • -biPi " 
xbi #b2... bibi+1... bnyiP2 

=> xbi b2 #b3 ... bi bi+1... bnyi y2p3 

xbib2... bi-iftbibi+i... bnyiy2 ... yi-iPi 
=> xbib2... 1 ... bnyiy2 • • • yi-mPi+i 

=>• xbib2...bn-i#bnyiy2...yn-iPn 
xb1b2...bn-1bn#yiy2---ynPn+i 

where n £ M, x £ V+, bi £ V for i = l , . . . , n , yi £ T* for i = l , . . . , n , 
= yiy2---Vn, Pi € W for i = l , G , n , pn+1 £ F. Q simulates this generation 

of z as follows 

# 5 [ Q ] i ( s ) # x ( & i M & 2 . . . & i ) « ( P i ) 
6(x)(bi,pi,bi+i...bnlyi,p2)#(bi,pi,bi+1.\.bn2yi>p2) 
4>(b2 ...bibi+i ...bny. 

=>• S(x)x(bi)#<t>{b2...bn)yip2 

5{x)x{bi)4>(b2)#<l>{b3 ... bn)yiy2P3 

=> 6(x)x{bi)<l>(b2 ... bn-i)#4>{bn)yiy2 • • • yn-iPn 
=> 6{x)x(bi)<l>(b2...bn)#yiy2...ynpn+i 

Q makes the first |z| - 1 steps of #S[<3] =>+ ¿ (aO#x(M0(&2 • • • bi )a(pi ) according 
to productions introduced in 1; in addition, during this derivation, Q makes one 
step by using a production introduced in 2. By using productions introduced in 3, 
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Q makes the two steps 

S(x)(b1,pi,bi+1.. •bnlyi,p2)#(bi,pi,bi+i... bn2yup2)(f>(b2 •. • bibi+1 . ,.bn)\ => 
S(x)xQ>i)#4>(b2.--bn)yip2 

with 
x(h) = (bi,p0,bi+1 ...bnlyi,pi)(bi,p0,bi+i .,.bn2yx,p2). 

Q makes the rest of the derivation by using productions introduced in 4. 
Based on the previous observation, it easy to see that Q satisfies all the four 

properties stated in Lemma 3, whose rigorous proof is left to the reader. • 

Lemma 4 
Let Q be a left-extended queue grammar that satisfies the properties of Lemma 3. 
Then, there exist a linear grammar, G, and a pushdown automaton, M , such that 
L(Q) = L(M,L(G), 3). 

Proof: Let Q = (V[Q],T[Q]} W[Q], F[Q], s[Q], P[Q]) be a left-extended queue 
grammar satisfying the properties of Lemma 3. Without any loss of generality, 
assume that ¿MQ D {V U W) = 0. Define the coding, C,.from (F[Q])* to 
{(£as) | a 6 V[Q]}* as £(a) = { ( . fas ) } (s is used as the start state of the push-
down automaton, M , defined later in this proof). 

Construct the linear grammar G = (iV[G],T[G],P[G],S[G]) in the following 
way. Initially, set 

IV[G] = { 5 [ C ] , <!>, {!, 1 ) } U { ( / ) | / E F [ Q ] } 

T[G] = C(V[Q]) U { ( £ § S ) , ( £ @ ) } U { ( £ § / ) | f £ P [ Q ] } 

P[G\ - {S[G} -»• (£§s)</> | / € F[Q}} U {(!) (!, 1)(£@)} 

Increase ^[G], T[G), and P\G] by performing 1 through 3, following next. 

1. for every (a,p,x,q) £ P[Q) where p,q £ W[Q], a£ Z,x £T*, 

JV[G] = N[G] U {(apxqk) \k = 0,..., \x\} U {(p), (q)} 
T[G\=T[G) U {(£sym(y, k)) \ k = 1 . . , |y|} U {(£ apxq)} 
P[G] = P[G] U {(g) -> (apxq\x\)(£apxq),(apxqO) (p)} 

U {(apxqk) —>• (apxq(k — l))(£sym(a;, k)) \ k = 1,..., |x|}; 

2. for every (a,p,x\q) £ P[Q] with p,q £ W[Q], a£U,x£ (V[<9])*, 

i V [ G ] = i V [ G ] U { ( p , l ) , ( 5 , l ) } 
P[G) = P[G} U {(q, 1) -> reversal(C(x))(p, l)C(a)}; 

3. for every (a,p,x,q) £ P[Q] with ap = S[Q],p,q £ W[Q], x £ (V[Q])*, 
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N[G} = N[G]U{{q,\)} 
P[G] = P[G} U {<9,1) ->• reversal(x)(.£$s)}. 

The construction of G is completed. Set $ = T[G]. represents the al-
phabet of rule labels corresponding to the rules of the pushdown automaton 
M = (Q[M],E[M],fi[M],.R[M],s[M],S[M],{"|}), which is constructed next. 

Initially, set Q[M] = {s[M], [ , ] } (throughout the rest of this proof, 
s[M} is abbreviated to s), E [M] = T[Q], f l [M] = { 5 [M] ,§ } U V[Q], R[M] = 
{{£§s).S[M]s -> §s}U {(£§/).§(H/> ->1 | / e F[M]}. Increase Q[M} and R[M] by 
performing A through D, following next. 

A. R[M] = R[M) U { (¿6s) .as abs \ a E Q\M] - { 5 [M] } , b E Í2[M) - {$}}; 

B. R[M] = R[M) U { (¿$s) .as aL | a € V[Q]} U {(¿a).aL->- [ \ aE K[Q]}; 

C. R[M] = R[M] U { ( ¿ § ) . a h a(1f!) \ a E Z}-

D. for every (a,p,x ,q) € P[Q], where p, q E W[Q], aE Z,xE (T[Q})*, 

Q[M} = Q[M] U {(1fp)} U {(%qu) | u E prefix(x)} 
R[M}=R[M]u{(£b).a(<bqy)b-> a{%qyb) | 6 e T[Q],y E'(T[Q])*, 

yb E prefix(x)} U {(£apxq).a(<iqx) (Ifp)}. 

The construction of M is completed. 
Notice that several components of G and M have this form: (x). Intuitively, if 

x begins with £ , then (x) E T[G\. If x begins with f , then (x) E Q[M]. Finally, if 
x begins with a symbol different from £ or f , then (x) E N[G]. 

First, we only sketch the reason why L(Q) contains L(M,L(G), 3). Accordinng 
to a word from L(G), M accepts every word w as 

§&m. . bian . . .aiswi . . . w m - i w m 

§6m- • b\Cln . . .OlLlül • ..Wm-iVUm 
• tlLlül . . . W m - i W m 

=> %bm. • bi(%qi)wi . . . w m - i w m 

§Öm • •bi(%qiwi)w2 . . .Wm-iWm 

•b2(%q2)w2---wm-iwm 

§ 6 m . •b3(%q3)w3 . . . w m - i w m 

=> §MH<7m)Wm 
=>|u'",l §Mf qmwm) 
=> § ( l 9m+l> 

1 
where w — w\ .. .wm-\wm, a\ ..,anb\ ...bm = and Ü[Q] contains 
(a0,p0,xi,pi), (ai,pi,x2,p2), • • •, (an,pn,xn+i,qi), (6i, , , , (&2,92>tf2,93), 
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• • •, ( b m , q m , w m , q m + i ) . According to these members of R[Q], Q makes 

# a 0 p 0 => ao#yoxiPi [(ao.Po,a;i,Pi)] 
=> aoai#yix2P2 [{ai,Pi,x2,P2)} 

a0aia2#y2x3p3 [(02,^2,2:3,^3)] 

=> aoaia2 ... an-i#yn-ixnpn [ ( a „ _ i , p n _ i , x n , p „ ) ] 
a0aia2 ... an#ynxn+iqi [(an,pn,xn+1,91)] 

=> a0 ... anbi#b2 . • • bmwiq2 [ (6 1 ,9 1 ,^ 1 ,92)] 
=> ao . . . a n b \ b 2 # b z . . . b m w i w 2 q z [(62 ,92,^2,93)] 

=> a0 . . . a „ 6 i . . .bm-i#bmwiiv2 .. . u / m _ i9 m [ ( 6 r n _ i , 9 m _ 1 , w m _ i , 9 m ) ] 
^^ a0 • - • d n 6 i . . . O771 m 5 Qm > ^ m ? 9m+l ) ] 

Therefore, L(M,L(G), 3) C L(Q) . 
More formally, to demonstrate that L(Q) contains L{M,L(G)\3), consider any 

h 6 £ ( G ) . G generates /1 as 

5[G] => 
- > „ 1 + 1 (£§s){qm)tm(£bmqmwmqm+i) 

=>|Wm-ll+1 {£§s)(qm-i)tm-i(£bm-iqm-iwm-i qm)tm{£bmqmwmqm+i) 

^ K l + i ( ¿ § s ) < 9 i ) 0 . . . . 
^ K l + i < £ § s ) ( 9 l , l > < £ @ > 0 

[<9i> <gi,l><^@>] 

=> (£§s)C(reversal(a;n+j )){pn, l){£o,n)(£@)o 
[ ( 9 i , l ) ^ r e v e r s a l ( C ( x n + i ) ) ( p „ , l ) ( ^ o n ) < j e @ ) ] 

( ¿ § s ) C ( r e v e r s a l ( x n 2 ; n + i ) ) ( p „ _ i , i ) ( £ a n _ J ) ( £ a „ ) ( i ' @ ) o ' 
[ ( p „ , l ) r eversa l (C (x n ) ) ( p „ _ i , l ) ( £a n _ j ) ] 

=> (¿§s)C(reversal(®s . . . xnxn+1)){pl, l){£ai){£a2). - - (£an)(£@)o 
[(P2,l) ->• reversal (C(x 2 ) ) (p i , l ) (^aj ) ] 

=> (£§s)C(reversal(a: i . . . xnxn+1 ) ) ( / $ s ) ( i : a J ) ( £ a s ) . . . (£an)(£@)o 
[ (p i , l ) reversal(C(xi))(£$s)] 

where n,m € A/"; Oj E { / for i = l , . . . , n ; 6fc G Z for k = 
1 , . . . ,m; X; G V* for I = 1 , . . . ,ri + 1; pi € W for i = l , . . . , n ; 
9; € W for I = 1 , . . . , m + 1 with 91 = ! and 9 m + i £ F\ tk = 
(£sym{wk, 1))... (£sym(wk,\wk\ - l)){£sym(wk,\wk\)) for k = l , . . . , m ; o = 
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h(£bt qi wi qs)... (£ls){qm-i)tm-i{,£bm-iqm-iwm-iqm)tm{£bmqmwmqm+i)\ 
h = (/§s)C(reversal(a;1 . . . xnxn+1)) {£§){£ a 1){£as)... (£an){£@)o. 

In greater detail, G makes S[G] { £ § s ) ( q m + i ) according to S[G] —> 
(£§s)(qm+1). Furthermore, G makes 

=>>m|+i (£§s){qm)tm(£bmqrnwmqm+1) 
^Itum-il+i (£§s)(qm-i)tm-i(£bm-i qm-iWm-i qm)tm(£b m Qm Qm+1) 

^Kl+i (£$s)(qi)o 

according to productions introduced in step 1. Then, G makes 

(£§3){qi)o*(£$s){qi,l)(£@)o 

according to (!) ->• (!, l ) { £ @ ) (recall that q\ =!) . After this step, G makes 

(£§s)(qi,l)(£@)o 
=> ( £ § s) £(reversal(a;n+ ¡))(pn, l)(£an)(£@)o 

(£§s)C(reversal(a;nxn + / ) ) (pn_J j l)(£an.1)(£an)(£@)o 

=>• {£§s)C(reversal(x2 . . . xnxn+i))(pj, l){£aj)(£a2) •.. (£an)(£@)o 

according to productions introduced in step 2. Finally, according to ( p i , l ) —• 
reversal(C(xi))(.£$), which is introduced in step 3, G makes 

(£§s)C(reversal(x2 . . . xnxn+1))(pi, l)(£ai)(£ae)... (£an)(£@)o 
=> (£§s)C(reversal(x2 ... xnxn+1))(M)(£ai)(£as).. • (£an)(£@)o 

If a i . . . anbi... bm differs from x\ . . . x n + i , then M does not accept according to 
h. Assume that a i . . . anbi... bm = x\ ... xn+\. At this point, according to h, M 
makes this sequence of moves 

•§6m. . han ... aiswi . . . w m - \ w m 

§6m- • f>ion . . .ai[«Ji . . . w m - i w m 

§6m'. .bilwi ...wm-iwm 

§&m- •bl(%qi)wi ...Wm-iWm 
•hi^qiw^wi .. . tu m _iw m 

=i> 
• 02(192^2)^3 • • • Wm-lWra 

lbm. •03(1193)^3 • ••Wm-lWm 

=> §bm(^qm)wm 

=> §(1l9m+l> 
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In other words, according to h, M accepts w\.. . w m _ i w m . Return to the 
generation of h in G. By the construction of P[G\, this generation im-
plies that i?[Q] contains (ao,po, z i . P i ) , (ai , p i , x2,p2), ... ,(a.j-i,pj-i,Xj,pj), 
• • •, (an,pn,xn+i,qi), ( 6 1 , 9 1 , ^ 1 , 9 2 ) , (b2,q2,w2,q3), • • •, {bm,qmywm,qm+1). 

Thus, in Q, 

# a 0 p 0 => ao#yoXiPi [ (ao ,Po,z i ,Pi ) ] 
=>• a0a1#yix2p2 [(01, Pi, x2,p2)} 

aoa!a2#y2x3P3 [(a2,P2,x3,p3)} 

=> a0aia2 ... an-i#yn-ixnpn [ ( a n _ i , p „ _ i , a : n , p n ) ] 
=> a 0 a ia 2 • • • an#2/nZn+i9i [ (an,Pn,£n+i,9i) ] 
=> a0 .. .anbi#b2 .. .bmwxq2 [(^1,91,^1,92)] 

ao ... anbib2#b3 ... bmwiw2q3 [{b2,q2,w2,q3)} 

=> a0 .. ,anbi .. .bm-i#bmwiw2 .. .wm-iqm [ ( V - i , 9 m - i , ® m - i , 9 m ) ] 
^ £Z0 • • • anbi . . . Om #Wl»2 . . . Wm9m+1 [(6 771) 9m) ̂ m) 9m+l)] 

Therefore, wxw2 ...wme L{Q). Consequently, L(M,L(G), 3) C L(Q). 
A proof that that L(Q) C L ( M , L ( G ) , 3) is left to the reader. As L(Q) C 

L(M,L(G), 3) and L(M,L(G), 3) C L(Q) , L (Q) = L{M,L{G), 3). Therefore, 
Lemma 4 holds. • 

Theorem 5 
For i <E { 1 , 2 , 3 } , RE = RPD(LIN,i). 

Proof : Obviously, RPD(LIN,3) C RE. To prove C RPD(LIN,3), consider 
any recursively enumerable language, L £ By Theorem 2.1 in [2], L(Q) = L, 
for a queue grammar. Clearly, there exists a left-extended queue grammar, Q', so 
L{Q) = L{Q'). Furthermore, by Lemmas 3 and 4, L(Q') = L(M,L(G),3), for a 
linear grammar, G, and a pushdown automaton, M. Thus, L = L(M,L(G),2>). 
Hence, RE C RPD(LIN, 3). As RPD(LIN, 3) C RE and RE C RPD(LIN, 3), 
RE = RPD(LIN, 3). 

By analogy with the demonstration of RE = RPD(LIN, 3), prove RE = 
RPD(LIN,i) for i = 1,2. • 

5 Future Investigation 

As already pointed out, this paper has discussed regulated automata as a new 
investigation field of the formal language theory. Therefore, it has defined all 
notions and established all results in terms of this new field. However, this approach 
does not rule out a relation of the achieved results to the classical formal language 
theory. Specifically, Theorem 5 can be viewed as a new characterization of RE and 
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compared with other well-known characterizations of this family (see pages 180 
through 184 in the first volume of [4] for an overview of these characterizations). 

Several research topics remain to be explored: 

A . For i = 1 , . . . , 3, consider RPD(X,i), where X is a language family satisfying 
REG C X C LIN\ for instance, set X equal to the family of minimal linear 
languages. Compare RE with RPD(X,i). 

B. Investigate special cases of regulated pushdown automata, such as their de-
terministic versions. 

C. By analogy with regulated pushdown automata, introduce and study some 
other types of regulated automata. 

D . Investigate the descriptional complexity of regulated pushdown automata. 
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