Volume 14 Number 4

ACTA
CYBERNETICA

Editor-in-Chief:). Csirik (Hungary)
Managing Editor: Z. Filép (Hungary)
Assistants to the Managing Editor: A. Pluhar (Hungary), M. Seb& (Hungary)

Editors: M. Araté (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France), J. Demetrovics (Hungary), B. Démolki (Hungary),]. Engelfriet
(The Netherlands), Z. Esik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jirgensen (Canada), A. Kelemenovd (Czech Republic),
L. Lovasz (Hungary), G. Pdun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Waginger (Austria)

Szeged, 2000

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TEX.
. After acceptance, the authors will be asked to send the manuscript’s source TEX
file, if any, on a diskette to the Managing Editor. Having the TgX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the University of Szeged, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
2000 Numbers 3-4 of Volume 14 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests
for subscription information to: Department of Informatics, University of Szeged,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-420-184, Fax:(36)-(62)-420-
292. -

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

EDITORAL BOARD

Editor-in-Chief: J. Csirik
University of Szeged

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Assistants to the

A. Pluhar

University of Szeged

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Managing Editor: Z. Fulop -
University of Szeged

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Managing Editor:

M. Sebd

University of Szeged

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Editors:

M. Araté

University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom

Stevens Intitute of Technology
‘Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender

Department of Computer Science
Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

W. Brauer

Institut fiir Informatik
Technische Universitdat Miinchen
D-80290 Miinchen

Germany

L. Budach

University of Postdam
Department of Computer Science
Am Neuen Palais 10

14415 Postdam, Germany

F. Gécseg

University of Szeged

Department of Computer Science'
Szeged, Aradi vértantk tere 1.
H-6720 Hungary '

J. Gruska

Institute of Informatics/Mathematics

Slovak Academy of Science
Dubravska 9, Bratislava 84235
Slovakia

B. Imreh

University of Szeged
Department of Foundations of
Computer Science

Szeged, Aradi vértanuk tere 1.
H-6720 Hungary

H. Jiirgensen

The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

A. Kelemenova

Institute of Mathematics and
Computer Science

Silesian University at Opava
761 01 Opava, Czech Republic

H. Bunke

Universitat Bern

Institut fur Informatik und
angewandte Mathematik

Léangass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle

Université Bordeaux-1

LaBRI, 351 Cours de la Liberation
33405 TALENCE Cedex

France

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary

B. D6émolki

IQSOFT

Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet

Leiden University

Computer Science Department
P.O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Esik

University of Szeged
Department of Foundations of
Computer Science

Szeged, Aradi vértamik tere 1.
H-6720 Hungary

G. Waoginger

L. Lovasz

E6tvos Lorand University
Budapest Mizeum krt. 6-8.
H-1088 Hungary

G. Paun

Institute of Mathematics
Romanian Academy
P.0.Box 1-764, RO-70700
Bucuresti, Romania

A. Prékopa

Eo6tvos Lorand University
Budapest, Mizeum krt. 6-8.
H-1088 Hungary

A. Salomaa

University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga

- E6tvos Lordnd University

Budapest, Mizeum krt. 6-8.
H-1088 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science

Foundations of Programming
D-01062 Dresden, Germany

Technische Universitat Graz
Institut fiir Mathematik (501B)

Steyrergasse 30

A-8010 Graz, Osterreich

Acta Cybernetica 14 (2000) 523-531.

‘Acts Over Completely 0-Simple Semigroups.

Avdeyev A. Yu. * 'Kozhukhov I. B. 1

The aim of this work is to describe, in the set-theoretical and group-theoretical
terms, all the acts (automata) over completely O-simple semigroups and also over
completely simple and zero semigroups. As the consequence of this results we
obtain a description of all the acts over rectangular groups, rectangular bands,
right (or left) groups, and right (or left) zero semigroups. Moreover, we find all the
subacts of some mentioned acts. Our results generalize the results of [3]. Theorem
1, Proposition 2 and Corollaries 9, 10, 11 of this work were published in [1}. We
give them for the sake of completeness. Theorem 4 was announced by the second
author in {7}, Corollary 6 — by both authors in [2].

Recall that a right act (or right operand, or S-set) over a semigroup S is a set
X with a mapping X x S — X (the image of (z,s) we denote zs) such -that the
axiom (zs)t = z(st) is held (for z € X, s,¢t € S) [6]. This notation coincides, in
fact, with the notation ”Moore’s automaton” V = (A4, Q,d) where A is the input
alphabet, @ is the set of the states, and J is the transition function [8]. AFor the act
X, we may assume that @ = X, A is the set of generators of S, and 5‘(2:, s) = xs.
The S-set X is called unitary if S has a unity and -1 =z for all z € X.

If the semigroup S has a simple structure, all the S-acts can be described. For
example, an act X over the cyclic semigroup S = (a) is an unar (X, f) [9], i.e., the
set X with the mapping f : X — X; we have z - o' = f*(z). Esik and Imreh [5]
described the subdirectly irreducible commutative automata. Babcsényi-and Nagy
[3] obtained a description of the automata X over a right group S in case when the
following conditions are satisfied:

XS =X, @

Vz,y € XVs,t €S (zs =zt = ys = yt). - (2)

The condition (2) is called "state-independence”. In this work we describe the right
group acts (automata) in general case, i.e., without assuming (1), (2).

The notations and definitions of semigroup theory can be found in [4]. A com-
pletely O-simple semigroup is signed by M%G, I, A, P), completely simple semi-
group — by M(G,I,A,P). Here G is a group, I and A are sets, P = ||pxi| is a
sandwich-matrix (i € I, A € A, pa;i € G U {0} or py; € G resp.). The non-zero

*kv. 105, k. 200-b, 103305 Zelenograd, Russia.
Tkv. 51, k. 1209, 103460 Zelenograd, Russia.

523

524 Avdeyev A. Yu., Kozhukhov I. B.

elements of M%(G, I, A, P) have a form (g);\ (where g € G, i € I, A € A) and their
multiplication is defined by the rule

(@i + (Bl = { 0 if pr=0.

Let A be a set and § an equivalence on A. Then A/8 is the set of §-classes and
af is the class of the element a € A. An equivalence 8 and a subset B C A are
called compatible if |ad N B| = 1 for every a.€ A; in this case, the set B is called
a transversel of 8. Let v : A — A be a mapping. The kernel kery and the image
im¢ are defined as usual: .

kerp = {(a,b)|(a) = p(b)},

imp = {p(a)la € A}.

If ¢? = ¢, kerp and imyp are compatible, the opposite is false. If A is a right act
over a semigroup S and s € S, kers and ims are the kernel and the image of the
mapping a — as.

The element z of an S-act X is called a zero if zs = z for all s € S. Of course,
an act X may have no zero. If the act X has an unique zero, we denote it by 0.
Let (X,) be a family of the S-acts X,. Then || X, is the coproduct (or disjoint

24

union) of the acts X,.

Let G be a group and H be a subgroup of G, not necessarily normal. Denote
by G/H the set of the classes Hg where g € G. The set G/H is an unitary right
G-act with respect to the action * where Hg * ¢’ = Hgg'. Every unitary right act
over the group G is obviously a disjoint union of orbits zG of the elements of X.
It can be easily verified that every orbit is isomorphic (as a right G-act) to an act
of form G/H for some subgroup H of G. Thus, we have the obvious assertion:

Lemma 1. IfG is a group and X is an unitary right G-act, then X = | |(G/Hq)
where (Hy) is a family of subgroups of G.

Recall some definitions of the semigroup theory.

Zero semigroup is a semigroup S with 0 such that ab=0for all a,b € S.

Left zero semigroup (L) is a semigroup satisfying the identity zy = z.

Right zero semigroup (R) is a semigroup with identity zy = y.

Rectangular band (L x R) is a semigroup determined by the identities z* = z,
zyz = zz. Tt is known [4] that the rectangular band is isomorphic to a direct
product of the left zero semigroup and the right zero one. Moreover, the rectangular
band is isomorphic to the Rees matrix semigroup M({e},I, A, P) where py; = e
forall A€ A, i€ 1.

Left group (L x G) is a direct product of a group and a left zero semigroup.

Right group (R x G) is a direct product of a group and a right zero semigroup.

Acts Over Completely 0-Simple Semigroups 525

We shall describe all the acts over zero semigroups. Let A be a set which is
a disjoint union of some subsets A4,, i.e., A = U{Aq|a € T'}, B, (o € T') is some
subset of A,, and b, (a € T') is some element of B,. Further, let S be a non-empty
set and let ¢, s € S, be a family of mappings ¢, : A — A such that ¢(A4,) C By
and @s(By) = {by} for all @ € I'. Moreover, assume that there exists an element
8 € S such that pp(Ay) = {bs} for all @ € T. If we put st =0 for all 5,¢ € S, then
S turns a zero semigroup (with zero 6). Define the action of the semigroup S on
the set A as follows: as = ps{a) {(a € 4, s € 5).

Theorem 2. The set A is a right act over the zero semigroup S. Conversely,
every right act over a zero semigroup can be obtained by this way.

Proof. At the first we check that A is a right S-act. Indeed, let a € A and s,t €
S. Then a € A, for some o € I'. We have (as)t = ¢(¢s(a)) € pi(Bo) = {ba}, ie.,
(as)t = by. Moreover, a(st) = ad = gy(a) = by. Thus, (as)t = a(st).

Conversely, let A be an arbitrary right act over the zero semigroup S and § is
the zero of S. Introduce the equivalence o on S putting acbh <> af = bd. The equiv-
alence determines the partition A = U{A,|a € T'}. Check that A,s C A, for all
a€l, seS. Indeed, let a € Ay, s € S. As (as)f = a(s8) = ab, then (as,a) € 0.
Therefore, as € A,. Thus, Axs C Ay. Put By = ApSforany a €T If a,b € A,
and (a,b) € o, we have af = bf, therefore |A,8] = 1, and hence A8 = {bs} for
some b,. Define, for any s € S, the mapping ¢s : A = A putting ¢,(a) = as for
a € A. Then ps(Ay) C By and ¢(Bgy) = {bs}. The theorem is proved.

The following proposition gives a description of-all subacts of the act over a zero
semigroup. The statements can be easily checked, and the proofs are omitted.

Proposition 3. Let A = U{A,|a € T} be a right act over the zero semigroup
S, and By = AyS for a« € T, and {b,} = BaS. If A CT is a non-empty subset and
Al C A; (for 6 € A) such that Ajs C Ay for all s € S, then the act U{A}|6 € A}
is a subact of A. Conversely, every subact of A can be obtained by this way.

Now we shall consider the case of the completely O-simple semigroup
S =MYG,I,A,P). We may assume without loss of generality that 1 € I N A
and p11 = e where e is the unity of the group G. The following.theorem describes
all the acts over such semigroups. We require here that 0-s = z-0=0forall s € §,
z € X where X is a right S-act, and 0 denotes the zero of S and the zero of X.
The assumption of the existence of zero does not restrict the generality because of
the fact that every act can be complemented by zero. '

Theorem 4. Let S = M°(G,I,A, P) be a completely simple semigroup and X
be a set with some element 0 (it is called conditionally as zero). Further, let (H,)
be a family of subgroups of the group G, @ = | [(G/H,) is the ¢oproduct of the right

G-acts, and Q° = Q U 0. Finally, let us suppose that, for i € I and X € A, the

526 Avdeyev A. Yu., Kozhukhov I. B.

mappings ky : Q° = X and 7; : X = Q° are defined such that
£x(0) =0; m(0) =0; (3)

mi(ka(q)) = g*pxi for all qe Q°. (4)
Put, for z € X and s = (g)ir € S,

z-s=2z-(g)ix = kr(mi(z)*g) and z-0=0. (5)

Then X is a right S-act with zero. Conversely, every right act with zero over a
completely 0-simple semigroup can be obtained by this way.

Proof. At the first, we shall check that the set X satisfying the written condi-
tions is really a right S-act. Clearly, it is sufficient to prove that

(- (9)in) - (B)ju = - ((@ix - (R)j)- (6)
We have-
(2 (9)ir) - (B)ju = walmi(z) % g) - (h)ju =
k(i (ka(mi(2) * g)) * h) = Ky (mi(z) * g * prj x h) =

. { 0, if p)\j = 0,
T\ (gpaih)in if pay #0.
This implies (6). '

Now, let X be a right S-act with zero. Put Y = X (e)11. Define an action of
the group G on the set Y as follows: yxg =y -(g)11 fory € Y, g € G. Because
of condition p11 = e we have (y* g) *h = (y - (9)11) - (M1 = ¥ - ((9u1 - (B)u1) =
y - (gh)11 = y * gh. Moreover, yxe = (z - (¢)11) - (€)11 = z - (¢)11 = y. Therefore,
Y is a unitary right G-act with zero. It follows from Lemma 1 that there exists a-
family of subgroups H, C G and an isomorphism 6 : ¥ = Q% = | |(G/H,)| 0 of

a

right G-acts.

Construct, for every A € A, the mapping £y : Q° = X putting 7x(z) = z- (€)1
and kx(q) = 7a(071(q)) where z € X, ¢ € Q°. Then construct, for i € I, the
mapping 7; : X — Q° putting 7;(z) = 8(z - (e)i1) wherez € X. If i € I, X € A,
g € Q°, and py; # 0, we obtain ;(kx(g)) = 8(kar(q) - (€)i1) = 8(TA (87 (q)) - (e)a1) =
061 (@)-(€)1x-()r) = 06 (0)-(pao)nn) = B0 (@)#pr0) = 86 (gpa0) = +ps.
If pi = 0, we obtain ;(xx(g)) = 8(87"(q)- (e)1r-(e)ir) = 0(67'(¢)-0) =0 = g+0 =
¢ * pxi- Therefore, the equality (4) is satisfied in any case.

Finally, we verify the equality (5). We have &y (mi(z) *g) = kx(6(z-()i1) *g)
£a(0((z-(€)i1)*g)) = ra(B(z-(€)i-(9)11)) = ka(8(z-(9)ir)) = Ta (67 (6(z-(9)i1)))
Tz (9)i1) = - (9)i1 - (€)1x =z - (g)ir. The theorem is proved.

Now we consider the case of the completely simple semigroup S =
M(G,I,A, P). As before, we assume that 1 € I N A and p;; = e where ¢ is
the unity of the group G. Moreover, as the matrix P has only non-zero elements,

Acts Over Completely 0-Simple Semigroups 527

then we may assume (without loss of generality) that some column and some row
consists only of unities. Let py1 = p1; = e for all ¢ € I, A € A. The description of
the acts over completely simple semigroup is given by the following theorem.

Theorem 5. Let X be a set, S =M(G,I,A, P) be a completely simple semi-

group, (Hy) be a family of subgroups of G, and @ = | {(G/H) be the coproduct of
[0 4

G-acts. Suppose that, for every i € I, an equivalence o; on X is given, for every

A€ A, asubset X\ C X is given, fori € I, the mappings m; : X = Q, ky: @ > X

are giwen. Suppose that the following conditions hold (fori € I, A € A,z € X,
7€ Q)

kerm; = oy, (7)
imky = X, (8)
[XxNzo;| =1, 9)
(mika)(@) = g * Pxi- (10)
Put
z-(9)in =ra(mi(z) * g) ' (11)

forz € X, (9)ix € S. Then X turns a right S-act. Conversely, every right act over
the completely simple semigroup. S =M(G, I, A, P) can be obtained by this way.

Proof. As is seen in the proof of THeorem 4, from the conditions (10) and (11),
it can be shown that X is a right S-act. »

Now we assume that X is an arbitrary right S-act. Put e; = (e)i1, e =
(p;il)iA for i € I, A € A. Clearly, e; and e;, are idempotents. It is easy to check
that e;ne; = e;, eien = e, e1nein = ey and e;epy. Put Xy = Xe;n. Then
Xy =Xein = Xeppnein C© Xejn = X5, Then X, = Xe;), for any 1. ’

For every i € I, we put ¢; = {(z,y) € X x X|ze; = ye;}. Prove that

Ve,y € X VAEA (ze; =vye; & zein = yeqn). (12)

Indeed, ze; = ye; implies ze;\ = ze;e;n = yeze;n and similarly ze;y = ye;y implies
ze; = ye;. Therefore the (12) holds:

We shall prove the property (9), i.e., every o;-class intersects with every X,
in one element (in other words, X is a set of representatives of ;). Let z € X.
Then from the above facts, we have that ze;, € X, and (ze;\)e; = ze;, so that
ze;n € Xy Nzo;. Then Xy Nzo; # 0 (notice: if s2 = s and z € X, then zs = z,
since £ = us = us® = (us)s = zs). Let z,y € X with (z,y) € 0;. Then again
from the above facts, we have X = ze;n = ye;n = y. Thus X Nzo; = {ze;n} for
every z € X.

For i € I and A € A, let m; and k) ‘be as in the proof of Theorem 4. Then
we can similarly show that the conditions.(10) and (11) hold. This completes the
proof. .

528 Avdeyev A. Yu., Kozhukhov I. B.

Corollary 6. Let G be a group, X, L, R be sets, (Hy) be a family of subgroups
of G, and Q = | |(G/H,) be the coproduct of the right G-acts. Assume that the

following objects oézre given:

the equivalences a; on X for alll € L,

the subsets X, C X for allT € R,

the mappings mj : X = Q, k. :Q = X forallle L, T € R
such that the following conditions hold (forz € X,le€ L, € R):

kerm =0y, imk, =X, |X,Nza|=1, mk, =idg.
Let S = L x G x R. Define the multiplication on S by the rule
(Lgr)- (g, r") = (l,99',7)
and the action of S on X by the rule
z-(l,g,7) = re(m(z) * g).

Then S is a rectangular group and X is a right S-act. Conversely, every right act
over a rectangular group can be obtained by this way.
Corollary 7. Let G be a group, X and R be sets, (Hy) be a family of subgroups
of G, and Q = | J(G/H,) be the coproduct of the right G-acts. Assume that the
[s4

following objects are given:

the equivalence o on X,

the subsets X, C X for allT € R,

the mappings 7: X - Q, K, : Q = X forallr €R
such that the following conditions hold (for z € X, r € R):

kermr =0, imk,=X,, |X.Nzo|=1, =k, =idg.
Let S = G x R. Define the multiplication on S by the rule
(9,7) '(g',_;') = (9',7")
and the action of S on X by the rule
z-(9,7) = ke (7(z) * g).

Then S is a right group and X is an.S-act. Conversely, every right act over o right
group can be obtained by this way.

aijs pRemark. This corollary gives a description of all acts over the right groups,
the ”state-independence” and the condition (1) are not necessarily satisfied. Let
us see what will be obtained in case when this conditions (1), (2) are fulfilled.

Acts Over Completely 0-Simple Semigroups 529

Let S = G x R and X be an S-act with the properties (1), (2). At first we
notice that X, is a unitary right G-act with respect to the operation axg = a-(g,7)
fora € X,, g € G. Indeed, u*xg = a-(g,7) = ke{m(a) * g) €imr, = X,
therefore X, * G C X,. Further, a # e = k.(n(a) * €) = k.(n(a)) = a. Finally,
ax(g9192) =a-(9192,7) = a-((g1,7) - (92,7)) = (a- (91,7)) - (g2,7) = (a* g1) * g2

Now we notice that X, = @ as the right G-acts. Indeed, as 7x, = idg, then &,
is an injection. It implies that «, is a bijection from @) onto imk, = X,. Moreover,
kr(q) g = kr(q) - (9,7) = kr(7(kr(q)) *g) = Kr(g*g). Thus, &, is an isomorphism
of X, and Q. ’

The condition (1) implies that X = U{X,|r € R}. Check that X, are dis-
joint. Let X, N X, # 0, and a € X, N X,». Then a = s,(q) = £~ (¢") for some
3,4 € Q. As w(a) = mk.(¢) = ¢ and similarly n(a) = ¢, then ¢ = ¢’. Further,
a-(e,r) = ke(m(a)*e) = k.7(a) = k,(q) = a and similarly a-(e,r') = a. Because of
the property (2) we have z-(e,r) = z-(e,r") forallz € X, i.e., k- (7(2)) = & (7(z)).
Since 7 is surjective, we have k, = &,s, and hence X, = X,». Thus, X is a disjoint
union of the pairwise isomorphic G-acts X,. This is the main result of [3].

Corollary 8. Let G be a group, X and L be sets, (H,) be a family of subgroups
of G, and Q = | |(G/Hy) be the coproduct of the right G-acts. Assume that the
e

following objects are given:

the equivalences oy on X for alll € L,

the subset Y C X,

the mappings m; : X = Q, :Q — X foralll € L,
such that the following conditions hold (forz € X, l € L):

kerm =05, ime=Y, |YNzol=1 mk=ido.
Let S = L x G. Define the multiplication on S by the rule

(99" = (99"
‘ viae
and the action of S on X by the rule

z-(l,9) = s(m(z) * g)-

Then S is a left group and X is a right S-act. Conversely, every right act over a
left group can be obtained by this way.

Corollary 9 [1]. Let X,L,R be sets. Assume that the following objects are
qiven:
the equivalences o on X for alll € L,
the subsets X, C X for allr € R.
Also assume that the following conditions hold, for any r,v' € R, ,I' € L,
T€E€X:
| X, Nzoy} =1, (13)

Vae X, VYbe X, (a,b) €04 (a,b)€oay. (14)

530 Avdeyev A. Yu., Kozhukhov I. B.

Define the multiplication on the set S = L x R by the rule
() ()= (")
and the action of S on X by the rule
a-(I,r)="b where ao;NX, = {b}.

Then S is a rectangular band and X is a right S-act. Conversely, every right act
over a rectangular band can be obtained by this way.

Proof. We give the proof another than the proof of [1]. Clearly, the formulated
rule determines a rectangular band. We shall prove that X is a right S-act. Indeed,
leta€ X,a (I,r) =b,and b-(I',r") = ¢. Then aoiNX, = {b} and bop N X, = {c}.
We see that (b,c) € oy, therefore, because of the (14), (b,c) € o1. As (a,b) € oy,
then (a,c) € gy. Since ¢ € X, a- (I, 7'y =¢. Thus, a-(({,r) - (', 7)) =a-(,7") =
c=b-(I',T"Y=(a-(l,r)) - (I',7"). We see that X is a right S-act.

Further, we need to prove that the sets X, and the equivalences o; of Corollary
6 satisfy to (14). Indeed, let (a,b) € o where @ € X, b € X». Then we have
a = kr(q), b = K (q') for some ¢,¢' € Q. As (a,b) € oy, then m(a) = m(b).
We have m(a) = m(k-(q)) = ¢ and similarly = (a) = ¢, m(b) = m(b) = ¢'. As
mi(a) = m(b), then ¢ = ¢'. It implies (a,b) € ov.

We want to show that the Corollary 6 coincides with the Corollary 9 in case
when G = {1}. Indeed, we may take Q = X,, where ry € R is a fixed element and
put m{z) = y when zo; N X,, = {y}. Also we put x,-(q) = £ when go; N X, = {z}
(the correctness, i.e., independence on [follows from (13) and (14): as ¢ € X, then
(q,z) € o1 & (¢,z) € op & qoy N X, = {z}). It remains to show that mk, = idg.
Let g € @, x-(q) = z, and m(z) = ¢'. Then goy N X, = {z} and zg; N X, = {¢'}.
We have (¢’,z) € o;. It follows that gq,q' € X, Nzo;. The condition (13) implies
q=4q.

Corollary 10. Let X and S be sets, o be an equivalence on X, and (X;), s € S
be a family of subsets of the set X such that |XsNao|l=1foralse S, a€ X.
Define the multiplication on the set S by the rule st =t for all s,t € S, and define
the action of S on X by the rule

as =be X, Nao = {b}.

Then S is a right zero semigroup, and X is a right S-act. Conversely, every right
act over a right zero semigroup can be obtained by this way.

Corollary 11. Let X and S be sets, Y be a non-empty subset of X, and (0s),
s € S be a family of the equivalences on X such that |Y Naoy| =1 for all s € S,
a € X. Define the multiplication on the set S by the rule st = s for all s,t € §,
and define the action of S on X by the rule

as =b& Y Nao, = {b}.

Acts Over Completely 0-Simple Semigroups 531

Then S is a left zero semigroup, and X is a right S-act. Conversely, every right
act over a right zero semigroup can be obtained by this way.

The authors are thankful to the referees for their valuable suggestions.

References

(1] Avdeyev A.Yu., Kozukhhov LB. Acts over semigroups of simple structure.
The 6th Conf. of Moscow State Social Univ. "Mathematical Methods and
Applications”. Abstr. of reports, p. 103-107. Moscow, 1999 (in Russian).

[2] Avdeyev A.Yu., Kozhukhov I1.B. Acts over the rectangular groups. 12th In-
tern. Conf. ”"Problems of Theoretical Cybernetics” (Nizhny Novgorod, Rus-
sia, 1999). Abstr. of reports, p. 5. Moscow, 1999 (in Russian).

{3] Babcsanyi 1., Nagy A. Right group-type automata. Acta Cybernetica, 1995,
© 12, 131-136.

[4] Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups. Amer.
Math. Soc., Providence, 1(1961), II(1967).

[5] Esik Z., Imreh B. Subdirectly irreducible commutative automata. Acta cy-
bernetica, 1981, 5, 251-260.

[6] Kilp M., Knauer U., Mikhalev A.V. Monoids, acts and categories. W. de
Gruyter, Berlin — New York, 2000.

[7] Kozhukhov I.B. Acts over completely simple semigroups. Intern. Seminar
”Universal Algebra and Its Applications” due to memory of Prof. Skornjakov
L.A. (Volgograd, Russia, 1999). Abstr. of reports, p. 35-36. Volgograd, 1999
(in Russian).

[8] Kudryavtsev V.B., Podkolzin A.S. Introduction into Theory of Abstract
Automata. Moscow, Moscow State Univ., 1985 (in Russian).

[9] Skornjakov L.A. Unars. Collog. Math. Soc. Jénos Bolyai. 29. Universal Al-
gebra, Esztergom (Hungary), 1977, p. 735-742.

Received November, 1999

Acta Cybernetica 14 (2000) 533-540.

The Logic of Knights, Knaves, Normals and Mutes

L. Aszalés *

Abstract

R. M. Smullyan wrote in his book about islands, knights and knaves. The
knights always tell the truth and the knaves are always lying. Instead of say
we shall examine the can say modal operator. We show the soundness and

. the completeness of this logic. :

1 Introduction

At first we introduce the characters of the puzzles. Then we describe a logical
language suitable to formulate puzzles. Later we prove soundness and completeness
of this logic and eventually we show some interesting properties of this logic.

In Smullyan’s famous book [2] the knights always tell the truth. Consequently
they cannot say false statements. Smullyan does not mention any -taboo in his
puzzles, so we can assume that the knights can say any true statement. For the
knaves the opposite holds, so they can say any false statement and can not say any
true statement. We can arrange our information in columns:

can say can say no
false statements | false statements
can say true statements knights
can say no true statements knaves

Later Smullyan introduced a third type of islanders: the normals, who some-
times tell the truth and sometimes lie. If we put this type into the table, one entry
will remain empty. To fill this gap we need a new type of islanders, who can not
say anything; hence we call them mutes. So the complete table is the following:

can say can say no

false statements | false statements’
can say true statements normals knights
can say no true statements knaves mutes

* University of Debrecen, 4010 Debrecen, PO Box 12, Hungary, e-mail: aszalos@math.klte.hu

533

534 - L. Aszalés

2 Syntax

In the following we shall use the well-known definition of the syntax of propositional
logic: ce : :

Definition 1 Let be S a finite set of propositional letters. The set of propositional
formulae is the smallest set F such that

1. SCF.

2. If A€ F then-A € F.

3. If A, B € F then (AN B), (AV B) and (A> B) € F.

In the definition above the connectives are the usual: - (negatlon) Vv (disjunc-
tion), A.(conjunction) and O (implication). To formulate the puzzles we need to
express that the person z can say true statements, the person z can say false state-
ments and the person z can say the statement A. For this we introduce T, F, and
Sz A, respectively. Definition 1. is extended to

Definition 2 Let be P a finite set. The set of formulae is the smallest set F that
satisfies 1-8. and

4. If:ce’PthenTszandF Ef
5 IfzeP andAE]-'thenSerf.

- In this definition P is the set of persons, and elements of P will be denoted by
a; b, ... This definition allows the embedding of S, in the formulae, so for example
S.—SpT, is a legal formula, which means that a can say that b cannot say that a
can say true statements.

3 Semantics

In the propositional logic the prime components are the propositional letters. In
our-logic the truth value of a formula can depend on the type of persons, so the
formulae descrlbmg the type of persons are prime components too.. Hence the
definition of the valuation will be more complicated than usual:

Deﬁnition’ 3 Letds CS, 97 CP and Vg C P. The valuation 9 = (Vs,97,9F)
assigns a truth value to every formula. If the formula A is true in a valuation 9
this is denoted by 9= A.

e IfPeS, =P iff Pedg
o =T, iffz €97
© e gEFr iffz €9F

The Logic of Knights, Knaves, Normals and Mutes 535

. o A i ol A

s AAB iff s= A and 9= B

o= AV B iff y= A or 9= B

o= AD B iff o A or = B

b= So4 iff (o= T, and ob= 4) o7 (sk= F, and o}t 4)

A formula A is satisfiable if there ezzsts a valuation U such that y|= A and a
formula A is valid if at every valuation ¥, sf= A. -

In ¥ model the sets of knights, knaves, normals and mutes are 97 NI g, I NIE,
P NYp and dr N IF, respectively.

4 Sequent Calculus

In our proofs we shall use the sequent calculus described for example in [1, §48.].
We shall use the notations and definitions of this book, but we shall give informally
the basic definitions for whose are unfamiliar with this topic. We do not need the
last four rules about quantifiers {1, p. 289), but we need two other rules about can
say

I, T, A—0; I,F, — 4,0 g DA—=T0; T, — AF,,0
T.5,4— 0 . T 5406 '

We say a sequent I' — © is falsifiable, 1f there exists a valuation such that all
formulae of I" are true and all formulae of © are false.

5 Soundness

Theorem 4 For each of 12 rules: The seqﬁent written below the line is falsifiable iff
the sequent or at least one of the two sequents written is above the line is falsifiable.

Proof. For the first 10 rules this was proven in (1], so we prove the claim only for
rules of can say. '

If 'S, A — O is falsifiable then there exists a ¢ such that -all formulae of
I’ and S, A are true and all formulae of © are false in 9. If S;A is true then by
definition either A and T, are true or A is false and F; is true. In the first case
I, T,, A — O, in the other case I',F, — A, © is falsifiable. To prove it in other
direction

1) T, T,,A — O is falsifiable, then there exists a ¥ such that all formulae of
I', T, and A are true and all formulae of © are false in ¢ and by deﬁmtlon
Sz A is true in ¥ so I', S, A — O is falsifiable.

536 L. Aszalés

2) If T',F, — A, O is falsifiable, then there exists a ¥ such that all formulae of
I" and F, are true and all formulae of © and A are false in ¥ and by definition
S:A is true in 9 so I',S; A — O is falsifiable.

It easy to check that g~ S, A iff (s A and ‘9% Tz) or (9b= A and g}~ F;), and the
proof about other rule is similar.) a

The axioms of the sequent calculus are I’ A — A, ©. This kind of sequent is
not falsifiable, so it is valid. We can prove a formula A in the sequent calculus if we
can construct a tree according to the rules such that each path ends in an axiom.
Since all axiom are valid, we can go upside-down on the tree line by line and by
the lemma above (which states that if the sequents above the line are valid then
the sequent below the line is valid, too) all the sequents in the tree are valid; hence
A is too. This proves the following theorem:

Theorem 5 Each provable formula is valid.

6 Completeness.

We want to prove that any valid formula is provable. At first we shall show that
any proof-tree is finite. To do this we define a function:

Definition 6 On the rank of a formula we understand a natural number such that

Rank of propositional letters are 0.
~ o If z € P then the ranks of T, and F; are 0, too.
o If the rank of A is n, then rank of ~A and S;A are n + 1.

If the rank of A is n and the rank of B is m then the rank of ANB, AVB
and A D B are m +n + 1, so the ranks of subformulae are smaller than the
‘rank of the formulae.

The rank of a sequent and the rank of the set of formulae are the sum of the ranks
of its formulae.

Lemma 7 The rank of a sequent above the line is smaller than the rank of the
sequent below the line.

Proof. Let us show this only for one of the new rules. For the others the proof is
similar. If the rank of I, ©® and S, A are n, m and [, respectively, then the rank of
rs,.A—eoe, IT,,A—0andIlF, — A Qaren+m+Ii,n+m+I1-1
and n + m + [— 1, respectively.]

When we construct a proof-tree then in each step we reduce the rank of the
sequents. This can be done finitely many times, because the rank of the original
formula was finite. This proves the following lemma.

The Logic of Knights, Knaves, Normals and Mutes 537 -

Lemma 8 FEvery proof-tree is finite.

Theorem 9 FEvery valid formula is provable.

Proof. Let us assume that there is a valid formula A which is not provable. Take
a maximal proof ending with the given formula A. By the lemma above its proof-
tree is finite and since the formula is not provable, one path of the tree does not
end with an axiom and no rule can be applied here, so this node contains only
prime components, namely predicate letters, formulae of types T, and F,. The
sequent is not axiom, so the two sets of formulae of this sequent are disjunct, hence
falsifiable, and we only need to assign the value true to each formula to the left of
the arrow (antecedent) and the value false to each formula to the right of the arrow
(succedent). By theorem 4. the sequent below this is falsifiable, too, and repeating
the process we get the original formula falsifiable, but we assumed that it was valid.
We get a contradiction because we assumed that this formula was unprovable. O

7 A puzzle and some properties.

It is hard to typeset the proof-trees in the original form so we shall use a different
notation. We typeset
NA—oe,IB—o
IAvB —©

I AvB —0

so the two paths are boxed and positioned vertically.

This logic is not as nice as the logic of belief or logic of knowledge. For example,
we do not have here the two common properties T and 4. Flg 1. contains the-
proofs. The problematic paths are denoted by a star.

Smullyan did not examined this logic, so no puzzles are for it. After Smullyan
it is hard to invent new puzzles but we shall try it: We met three islander: A, B
and C. A said that B cannot say that C is a knight. B said that C cannot say that -
A is a knight. C said that A cannot say that B is a knight. Let us prove that at
least one of them isn’t a knight. We formulate this puzzle by the following formula:
sa._‘sb(Tc A _‘Fc) A sb_‘sc(Ta A _‘Fa) A sc_‘sa(Tb A _‘Fb) 2 _'(Ta A _‘Fa) v .’(Tb A _‘Fb) \%
—(T. A —F,.). Without the first step our proof is in Fig. 2.

We have seen in Fig. 1. that two properties are lacking. This is also true for
many of usual properties, but the formula S;(4 2> B) D (S; A D S, B), also known
as K, is still valid. We prove this in Fig. 3.

as

538 L. Aszalés

| S, A — S,A,F, |

*
Fa.; Fa — A) A1 Ta

| FoTa, A — A, Ta |

SeA,Fq — A, T,

*
Fo — A A | SeA T, A—T. ||
T, A— A° SeA,SeA — T,
S, A— A Sad — 5,54 A

—3 S, ADA —3 S, A D S5, A

Fig. 1.

| $4-Sc(Ta A ~Fa),5c8a(Ts A =F4), Ta, T, Te,Fa —> =S(Te A Fe), Fa, Fy, Fe |

Sb-‘SC(TG A _'Fa); Sc_‘Sa(Tb A _‘Fb);Ta;Tb;TCa Ta,Fe — Fp,Fq,Fy, Fe
Sb"‘sc(Ta A 'ﬂFa), Scﬂsa(Tb A _‘Fb): Ta,To, Te, Ta —> 7F¢, Fp, Fo, Fy, Fe

| Sb_'SC(Ta /\—‘Fa))sc—'sa(Tb/.\ﬂFb);Ta)TMTC)Ta.)—) TC$Fb)Fa)Fb;FC]

Sp=8:{Ta A =F,),Sc=Sa(Ts A =Fs), Ta, To, Te, Tay — Te A =F¢, Fy, Fu,Fp, Fo

| S6=Sc(Ta A =Fa),Sc=Sa(To A ~Fs),Ta, To, Te, Ta, Te A "Fe — Ty, Fo,Fi, Fe |

S5=Sc(Ta A ~Fa), Sc=Sa(Ty A ~Fs), Ta, Ty, Te, T — Sy(Tc A =Fc), Fq, Fy, Fe
Sb—‘sc(Ta /\ _‘Fa)a Sc_‘sa(Tb A _'Fb); Ta; Ty, Te, Ta,s _‘Sb(Tc A _‘Fc) — Fo,Fp, Fe

Sd%Sb(Tc A "‘Fc')) Sbf‘sc(Ta A _‘Fa): S:7S, (Tb A _'Fb)a To, Tp, Te — Fa,Fp, Fe
SaSp(Te A —IFC); Sb—\SC(Ta A =Fg),5:78e (T A =Fp), Ta, Fq, Ty, =Fp, Te, oF¢ —
' Fig. 2.

The Logic of Knights, Knaves, Normals and Mutes 539

N Fa,A,VF‘a'—>A,B,SaB Il

| Fa,A,T,,A—Fs,B,B |
| FayA,Ta,A,B—T,B |
Fo, A, Ts, A — B,S,B

S.A,F,, A — B,S,B
S.A,F, — AD B,S.B

| TeFa— A,B,Fs,A |

| Ta4,Ta— B,Fs, A |
S.A,T, — B,F,, A

| SaA,Ts,B—Ts, 4 |

SaA, T, — A,S,B

| S44,Te,B— B,Fs |
| S.4,T.,,B,B—T. |
SeA,T,, B — S, B

S.A, T, ADB —5,B

Se(A D B),S;A — S, B
Se(ADB) —S,ADS,B
— S4(A D B) D (SaA D S.B)

Fig. 3.

540 ‘) . L. Aszalds

8 Acknowledgements

The author is grateful to K. Pasztor-Varga and A. Kron for helpful comments and
useful discussions. We are also want to pay tribute to A. G. Dragalin who guided
us before his death in 1998.

References

[1] S. C. Kleene. Mathematical Logic. John Wiley & Sons, Inc., 1967.

[2] R. M. Smullyan. What is the name of this book? (The riddle of Dracula and
other logical puzzles). Prentice Hall, Inc., 1978.

Received October, 1999

Acta Cybernetica 14 (2000) 541-552.

Equivalence of Mealy and Moore Automata,

Istvan Babcsanyi *

_ Abstract .

It is proved here that every Mealy automaton is a homomorphic image of
a Moore automaton, and among these Moore automata (up to isomorphism)
there exists a unique one which is a homomorphic image of the others. A
unique simple Moore automaton M is constructed (up to isomorphism) in
the set MO(A) of all Moore automata equivalent to a Mealy automaton A
such that M is a homomorphic image of every Moore automaton belonging
to MO(A). By the help of this construction, it can be decided in steps | X|*
that automaton mappings inducing by states of a k-uniform finite Mealy
[Moore] automaton are equal or not. The structures of simple k-uniform
Mealy [Moore| automata are described by the results of [1]. It gives a pos-
sibility for us to get the k-uniform Mealy [Moore] automata from the simple
k-uniform Mealy [Moore] automata. Based on these results, we give a con-
struction for finite Mealy [Moore] automata.

1 Preliminaries

Let X be a nonempty set. A Mealy automaton (over X) is a system A =
(A4, X,Y,4,)) consisting of a (nonempty) state set A, the input set X, a (non-
empty) output set Y, a transition function § : A x X — A and a surjective output
function A: A x X = Y. :

A Moore automaton (over X) is a system A = (A, X,Y,4,) consisting of a
(nonempty) state set A, the input set X, a (nonempty) output set ¥, a transition
function § : A x X — A and a surjective sign function p: A =5 Y.

If A, X and Y are finite, the Mealy [Moore] automaton A is called finite.

For arbitrary Moore automaton A° = (A4,X,Y,8,u), the system Ay =
(A, X,Y,4,) with A = ud is a Mealy automaton over X. The Mealy automa-
ton Ay is called the Mealy automaton associated with the Moore automaton A.
It is said that A is the output function of the Moore automaton A. The Mealy
automaton A = (4, X,Y, 6, \) fulfils the Moore criterion if ’

é(ar,z1) =6(ag,z2) = Aa1,z1) = A(az2,22)

for every a1,a2 € A and z3,z2 € X. If p: A = Y is a surjective mapping
such that A = pué, the Moore automaton A, = (A4,X,Y,4,) is called a Moore

*Department of Algebra, Mathematical Institute, Technical University of Budapest, 1521 Bu-
dapest, Miiegyetem rkp. 9., Hungary, E-mail: babcs@math.bme.hu

541

mailto:babcs@math.bme.hu

542 . Istvdn Babcsanyi

automaton associated with the Mealy automaton A. Furthermore, we say that p is
a sign function of the Mealy automnaton A. We note that the output function A is
determined by restriction of u to the subset 6(A, X) = {6(a,z);a € A,z € X} of A.
Thus, the restrictions of all sign functions of the Mealy automaton A to §(A4, X)
are equal. The Mealy automaton A = (4,X,Y,6,) is called real if there exist
ai,as € A and z,,z2 € X such that

8(ay, 1) = 6{az,z2) and A(a1,z1) # Maz, z2).

Let Z* and Z+ denote the free monoid and the free semigroup over a nonempty
set Z, respectively. If A = (4,X,Y,6,)) is a Mealy automaton, the functions ¢
and X can be extended to A x X™* in the usual forms as follows:

5(ae) =a, 6(a,pz) = 8(a, p)d(ap, z),

Ma,e) =e, Ma,pz) = Ma,p)X(ap, z),

where a € A, p € X, ap denotes the last letter of §(a, p) and e denotes - the empty
word. ([5], [2] If A =(A,X,Y,4, 1) is a Moore automaton, the extension of § is
similar to the case when A is a Mealy automaton. The extension of u to A% is
given by

p(a1a2...a;) = w(a)u(as) .. plax) (a1, a2, as € A).

It means that if A = ud, then

AMa,p) = p(8(a,p)),

foralla € A, p€ X*. But Ma,e) = e and p(d(a,e)) = p(a) for all a € A.

The Mealy [Moore] automaton A' = (4', X,Y",§', N'[n']) is a subautomaton of
the Mealy [Moore] automaton A if A’ C 4, Y’ C Y, § and X [p] are restrictions
of § and A [y] to A" x X [A'].

Let A; = (A, X, Y, 6, \[w]) (=1 ,2) be arbitrary Mealy [Moore] automata
over X. We say that a mapping ¢ : A; — As is a homomorphism of A; into A, if

¢(01(a,2)) = ba2(p(a),2), Mi(e,2) = ha(p(a),2) [wi(a) = pa(w(a))]

forall a € A and z € X. It is easy to see that

Ai(a, p) = Aa((a), p)

for all p € X*. The mapping ¢ : 41 — A, is called a homomorphism of a Moore
automaton A; into a Mealy automaton A, if ¢ is a homomorphism of (A,), into
A,. We note that every homomorphic image of a real Mealy automata is real, too.

Every state a € A of a Mealy automaton A induces a mapping o, : X* = Y*
given by aq(p) = A(e,p) (p € X*). The mapping a : X* = Y™ is called automaton
mapping if there exist a Mealy automaton A and a state a € A such that a = a,.
The mapping o : X* — Y* is an automaton mapping-if and only if it preserves the

Equivalence of Mealy and Moore Automata 543

length of words and the map of every prefix of a word is a prefix of the image word.
The Mealy automata A and B are called equivalent if {aq;a € A} = {ay;b € B}.
The Mealy automaton A and the Moore automaton B are " equivalent if A and
B, are equivalent. Slmllarly, the Moore automata A and B are equwalent if A A
and B, are equivalent.

An equivalence relation p of state set A of a Mealy [Moore] automaton A is
called a congruence on A if

Aa,0) € p= (8(a,),6(b,2)) € p, Ma,z) = Ab,z) [u(a) = pu(b)] -

for all a,b € Aand z € X. The p-class of A containing the state a is denoted by
pla]. The greatest congruence on A is the relation pp [] defined by

(@b € palral €= Aap)=Abp) [u(6(a,p) = u(d6,p))

for all p € X*. Denoting the identity relation on the state set A by ¢4, we say that
A is simple if pp =14 [mp = 4], that is, A and A/pp [A/7 a)| are isomorphic.

Since every homomorphic image of a Mealy automaton A is equivalent to A ([5],
[7]), therefore we can give the automaton mappings with simple Mealy automata.
The Mealy automata A and B are equivalent if and only if A /p A and B/pp are
isomorphic ([5]). Thus, simple Mealy automata are equivalent if and only if they
are isomorphic. For every Mealy automaton A, there exists a Moore automaton B
such that A and B are equivalent ([4], [5], [6]). From this it follows that we can
give the automaton mappings by simple Moore automata. S

2 Moore automata equlvalent to a Mealy
automaton

For a Mealy automaton A = (A4,X,Y,4,) over X, let us denote by Ay = (4 x
Y, X,Y, 6y, py) the Moore automaton over X for which

éy ((a,y),z) = (5(a,x)‘, Ma,z)) and py(a,y) = y (a€AyeY,zeX).
If Ay = puydy, then
Ay ((a,9),2) = py (by ((2,9), 7)) = py (8(a, z), Ma, 7)) = Aa, z)
for every a E AyeY,ze X, anci hence, Ay is equivalent to A. a

Lemma 1 If the Mealy automaton A’ is a homomorphic [isomorphic] image of the
Mealy automaton A, then Ay is a homomorphic [isomorphic] image of Ay .

Proof. If ¢ is a homomorphism [isomorphism] of A onto A’, the mapping
P:AxY — A’ xY, such that

b(a,y) = (p(a)y) (€A, yev),

544 Istvan Babcsanyi

is a homomorphism [isomorphism| of Ay onto A} .

Consider the subautomata M = (M, XY, 6y, uy) of Ay where for every a €
A there exists y € Y such that (a,y) € M. Let M(A) be the set of all such
subautomata M. ’

Lemma 2 The Mealy automaton A is a homomorphic image of every automaton
Min M(A).

Proof. It is easy to see that the mapping v : M — A, defined by ¢(a,y) =
a (a € A), is a homomorphism of M} onto A.

Theorem 1 The Mealy automaton A, = (A1, X,Y,61, A1) is a homomorphic im-
age of a Moore automaton Ay = (A2, X,Y,da,us) if and only if there exists a
homomorphic image of Ay in M(A;). : :

Proof. First, we note that every automaton M € M (A,;) is a Moore automa-
ton. By Lemma 2, if there exists a homomorphic image of Ay in M(A;), then A;
is a homomorphic image of Ay.-

Conversely, assume that ¢ is a homomorphism of the Moore automaton A, onto
the Mealy automaton A;. It is evident that by the state set M = {{(p(b), u2(b)); b €
A2},
’ M=(M)XaY75;’$/"IY)EM(A1)'

We show that the mapping 9 : Ay = M, defined by
P(b) = (p(b), u2()) (b€ Ap),

is a homomorphism of A; onto M. It is obvious that the mappmg 1 is surjective.
For every b€ Ay and x € X

P(82(b, z)) = (p(d2(b, 7)), p2 (82(b, 7)) = (81 (1p(b),), A2 (b, 7)) =

= (01((0), 2), A1 ((b), 7)) = 8y ((2(b), p2 (b)),) = by (¥(b), 2),
p2(b) = py (9(b), n2(b)) = py (%(b)).

Therefore, 9 is a homomorphism.

Theorem 2 For every Mealy automaton A (up to isomorphism) there exists a
unique automaton M € M(A) which is a homomorphic image of any automaton
in M(A).

Proof. First, we give the automaton M. If A # §(A, X), let k be a mapping
of A\ 6(A, X) into Y. For all a € A, consider the sets Y, C Y such that

Ab,z)eY, < dbz)=a (be A zxeX).

We define the sets M, (a € A) as follows. If a € §(4,X), let M, = {(a,y).;vy €
Yo}, and if a ¢ 6(4,X), let M, = {(a,s(a))}. Let M = UseaM,. Then M =

Equivalence of Mealy and Moore Automata 545

(M, X,Y,by,py) € M(A). Let M'(A) be the set of all such automata M. If
A =8(A,X), then [M'(A)| = 1. We show that if A # §(4,X), then all automata
in " M'(A) are isomorphic. Assume that x; (¢ = 1,2) are arbitrary mappings of
A\ (A, X) into Y and the automaton M; € M'(A) is defined by the mapping ki
It can be easily verified that the mapping ¢ : My — My, defined by -

— (a‘a y) 1f Yy 76 K1 (a):
wla.y) = { (4, 52(a) if y = ka(a),

is an isomorphism of M; onto M. : . .

Now we show that for every B € M(A), there is an M € M'(A) such that-M
is a homomorphic image of B. We define the following partition of the state set
B: ’

Ba:{(a7y);(a,y)EB} (a"EA)‘

Take an automaton M € M'(A) such that M, C B, (a € A). By the definition of
M'(A), one can see that there exists such an automaton M. Let 9 be an arbitrary
mapping of B onto M for which

{(b);b€ By} =M, and Vbe M, :¢(b) =
It is clear that ¢ is a homomorphism of B onto M.

Lemma 3 ([7]) Let A be a Mealy automaton and M E(A) be the set of all Mealy
automata equivalent to A. Then (up to 1somorphlsm) there exists a unique simple

Mealy automaton in M E(A) which is a homomorphic image of every automaton
in ME(A).

We have a similar statement for Moore automata which are equivalent to a
Mealy automaton.

Theorem 3 Let A be a Mealy automaton and MO(A) be the set of all Mooré
automata which are equivalent to A. Then (up to isomorphism) there exists a’
unique simple Moore automaton in MO(A) which is a homomorphic image of each
automaton in MO(A).

Proof. Let Ay denote a simple Mealy automaton in M E(A) which is homo-
morphic image of any automaton in M E(A). By Lemma 3, such an automaton
exists. Moreover, by Theorem 2, (up to isomorphism) there is a unique Moore au-'
tomaton My € M (Ap) which is homomorphic image of any automaton in M (Ap).
Using the last fact, it can be seen that My is a simple Moore automaton.

Now, let B be an arbitrary Moore automaton equivalent to A. We prove that
My is a homomorphic image of B. Since B is equivalent A, By, € M E(A), and
hence, Ag is a homomorphic image of B. This implies, by Theorem 1, that there
is an M € M(Ayp) such that M is a homomorphic image of B, and therefore, My
is a homomorphic image of B as well.

546 . Istvin Babcsanyi

3 Uniform automata

Let A = (4, X,Y, 6, \[1]) be a Mealy [Moore] automaton over X. Denote by |p| the
length of the word p € X*. Let X* = {pe X*;|p| = k} and X (k) = {p € X*;|p| <
k}. For every nonnegative integer k, we define the equivalence relation n; on A as
follows:

(@b)em <<= Aa,p)=A0bp) [u(é(a,p) = n(6(,p))]

for all p € X(k). We note that if A is a Mealy automaton, the relation 7o is the
universal relation on A and 7 is the output-equivalence of A ([2]). If A is a Moore
automaton, 7 is the sign-equivalence of A ([3]). :

Lemma 4 If a and b are arbitrary states of a Mealy [Moore] a.utomaton A =
(A, X,Y,0,A[]), then

@hem < MNap) =Abp) [u(a) = ud), Aap) = Ab,p)
for all p € X*.

Proof. If (a,b) € 7, the statement follows from the definition of 7.

Conversely, assume that if A is a Mealy automaton, A(a,p) = A(b,p), and if A
is a Moore automaton, then u(a) = u(b), A(a,p) = A(b,p) holds for every p € X*.
Take arbitrary words q,7 € X* such that |g| < k and |r| = k — |g|. Then

Ma, 9)Mag,) = Aa,qr) = A(b, qr) = A(b,) A(bg, 7).
Thus, /\(a q) = A(b, q), which implies our statement.

The Mealy [Moore] automaton A is called k- uniform if g, = pp[ra]. The
k-uniform Mealy [Moore| automata are (k + 1)-uniform. Every subautomaton of a
k-uniform Mealy [Moore] automaton is k-uniform, too. An arbitrary homomorphic
image of a Mealy [Moore] automaton is k-uniform if and only if it is k-uniform. The
Mealy [Moore] automaton is said to be uniforin if there exists a positive integer k
such that it is k-uniform. Every finite Mealy [Moore] automaton is k-uniform for
some positive integer k. Let o, and a; be automaton mappings induced by states
a and b of a k-uniform finite Mealy [Moore] automaton A = (A, X,Y,6, A[y]),
respectively. If a,(p) = as(p) for every p € X*, then o, = ap. Thus, it can be
decided in |X|* steps whether two automaton mappings of this kind are equal or
not.

Theorem 4 If the Moore automaton A = (A, X,Y, 6,) is k-uniform, the Mealy
automaton Ay is (k+1)-uniform.

Proof. We note that Ay is (k+1)-uniform if and only if p5 = (kt1, Where
(a,b) € k41 (a,b € A) if and only if A(a,p)) = A(b,p)) for all p€ X(k+1).

Equivalence of Mealy and Moore Automata 547

Let the Moore automaton A = (A4, X,Y,§, u) be k-uniform, that is, ny =74 .
Assume that (a,b) € (g41. Then,

w(é(a,z)) = Aa,z) = Ab,) = u(é(b,z)),

ﬂ(é(é(aﬂ .’E), Q))'z A(6((1'> (I)), q) = ’\(6(17) Z), Q) = P’(é(é(b:z)a Q))

for every z € X, qge X~ Thus, vby Lemma 4, (5(a,z),6(b, z)) € ﬁk = mp- This
yields that

A(3(a,2),7) = u(6(6(a,), 7)) = p(d((b,2),7)) = Mo(, x) r)

for all » € X*. Therefore, (6(a,z),8(b,z)) € it1, that is, (k41 1S @ congruence on
A,. Thus, (41 = pA From this we get that A is (k+1) uniform. :

Theorem 5 The Mealy [Moore] automaton A = (4 X,Y,s, /\[,u.]) is k umform if
and only ¢f Mk = Nk41.

Proof. Assume that the Mealy [Moore| automaton A is k-uniform, that.is,
Nk = pA - Since Ney1 € M and N ome = pA [T Al therefore g = miy.

Conversely, assume that 7, = 7g+1- If A is a Mealy automaton, 7y is the
universal relation on A. If np = 71, the relation n; is a congruence on A. It yields
that mo = m = pp. Furthermore let us assume that A is a Mealy automaton
‘and 1 < k. Let (a,b) € mi. Since np = 17L+1, then (a,b) € niy1. By Lemma 4,
Ma, zp) = A(b,zp) for every z € X and p € X*. From this it follows that *~ =

A(é(a,2),p) = A(3(b,2), p)-
Moreover, if A ‘is a Moore automaton,
u(6(a,2)) = Ma,z) = A(b,z) = u(b(b, %)),

that is, (6(a,z),d(b, z)) € 1. This results in that 7 is a congruence.on A, and so
nx = pplma) Hence, A is k—uniform.

Lemma 5 If a and b are arbitrary states of a Mealy [Moore] automaton: A
(A, X,Y,6,A[n]), then

(a,b) €1 <= (a,b) €nx and (6(a,z),0(b,z)) € ng, forall ze€X.

Proof. Assume that (a,b) € 741 Since mgr1 C 7k, then (a,b) € nk By
Lemma 4, A(a, zp) = A(b,zp) for every z € X and p € X*. But

A, z)A(6(a, z),p) = Ma, zp) = A(b,zp) = A(b, 2)A(4(b, z),),

and so
AMé(a,z),p) = A(8(b, z), p)-

548 Istvan Babcsanyi

Moreover, if A is a Moore automaton,

w(é(a,z)) = Ma,z) = A(b,z) = u(é(b, z)).

By Lemma 4, this yields that (&(a, z),d(b, z)) € nx.

Conversely, assume that (a,b) € n and (8(a,z),d(b,z)) € n for every z € X.
If z € X and g € X*, then Aa,z) = A(b,z) and A(d(a,z),q) = A(6(b,z),q). From
this it follows that

Aa, zq) = Ma,)A(8(a, z)q) = b, z)A((b, z), q) = A(b, zq)-
Moreover, if A is a Moore automaton, p(a) = p(b). By Lemma 4, (a,b) € M1

Theorem 6 For every Mealy automaton A = (A, X,Y,6,)), Ay is k-uniform
[simple] if and only if A is k uniform [simple].

Proof. Ifa € A, y €Y and p € X, then py(6y((a,vy), p)) = Ma, p).
We note that Ay is k-uniform if = A = (i, where (; is an equwa.lence relation
on A x Y for which

((a,yl), (b1 y2)) € Ck = MY(JY((avyl)’p)) = .L‘Y(JY((b:y2)’p))

for all p € X (k).
Assume that the Mealy automaton A is k-uniform. Consider two arbitrary
elements (a,y;) and (b,y2) of A x Y with ((a,91), (b,¥2)) € {x. Then

y1 = py(a,y1) = py(b,y2) = y2,

Aa,p) = py (v ((a,11),p)) = py (6y ((b,2),p)) = A(b, p)

for all p € X*. By Lemma 4, this 1mphes (a,b) € ¢ = pp. By Theorem 5,
(a,b) € M1, that is,

py 0y ((a,41),p)) = Aa,p) = A(b,p) = py (6 ((b,y2),p))

for all p € X*+1 which results in (a,d) € (x41. Thus, {x = (k+1. By Theorem 5,
Ay is k-uniform.

Conversely, assume that Ay is k-uniform. Let (a,b) € n,. If y € Y, then
((a,9),(b,y)) € G =mp - By Theorem 5, ((a,y), (b,y) € Ct+1, and thus (a,bd) €
Mk+1- Therefore, nx = Ne+1, that is, A is k-uniform.

We can prove, in a similar way, that Ay is simple if and only if A is simple (see
Lemma 2 in [1]). V

By Theorem 6 and Lemma 2, every k-uniform Mealy automaton is equivalent to
a k-uniform Moore automaton. By Theorem 3, among these Moore automata (up
to isomorphism) there exists a unique simple k-uniform Moore auntomaton which is
a homomorphic image of these Moore automata, that is, the cardinality of its state
set, is the least among these Moore automata.

Equivalence of Mealy and Moore Automata 549

4 Simple uniform automata

In this part of the paper, we describe the structure of the simple uniform Mealy
[Moore] automata using the results of paper [1].

Lemma 6 (Lemma 3 in [1]) Every subautomaton of a simple Mealy [Moore] au-
tomaton A over X is simple and the subautomata of A are isomorphic if and only
if they are equal.

Denote the set of mappings a® : X? - Y by A® for every integer i > 0.
Consider the set A = [, A®. Let

a=(® a® a®) (@ e A,
ag:i)(zlyzZy- .-,xi) = a(i+1)($"m1,x2,..-,$i) (z)zl)-zZ,- o, T € X),
Oz = (a:(cl)aa(ﬁ)w~-,a‘,(zi),..‘).

Assume that a, = a and let ap; = (@), for every p € X* and z € X. Define the
Mealy automaton A = (A4, X,Y, 4§, \) with transition and output functions:

0o, T) = 0, Moy z) = oM (z) (ae A zeX).

Theorem 7 (Theorem 4 in [1]) The Mealy automaton A is simple. A" Mealy
automaton A = (A4, X,Y’,4,)\) over X is simple if and only if it is 1sornorph1c to a
subautomaton of A, where Y'CY.

Theorem 8 (Theorem 5 in [1]) The Moore automaton Ay is simple.and A is a
homomorpic image of Ay. A Moore automaton A = (4, X,Y",6,u) (Y' CY) over
X is simple if and only if it is isomorphic to a-subautomaton of Ay . .

Consider the set A = []*_, A® and a mapping g : Ay — AU+ Tet

Qp = (a(l),a(”’ L ,a(k)) (a(i) c A(l)),

Qkga = @, o, . o),

where a(**1) = g(ay). : :
We define the Mealy automaton A, ; = (A, X, Y, 6, A) with the following tran-
sition and output functions:

(k1) = kgar Mar,z) =V (z) (o € Ak, T € X).
Consider a nonempty set Hy C Ay. It is evident that
Hj ={okgoar € Hji-1,2 € X} C A (=1,2,...).

If HY) = HUH, U ... U H; for every nonnegative integer j, then HY is a
subautomaton of Ay , if and only if HU+) C HU).-We note that if X and ¥ are
finite sets, then there exists a nonnegative integer j such that HU+YD ¢ H0),

550 ' : -Istvan Babcséanyi

Theorem 9 A Mealy automaton A over X is simple k-uniform if and only if there
ezists a mapping g : Ay — A¥TY) such that A is isomorphic to some subautomaton
Of Ak g

Proof. As in the proof of Theorem 7, we can show that the Mealy automaton
A g 18 simple. By Lemma’6, every subautomaton of A,c is simple. On the other
hand, it is easy to verify that the subautomata of A, , are k-uniform.

Therefore, by Theorem 7, it is sufficient to show that every k-uniform subau-
tomaton of A is isomorphic to an automaton HY), Let A = (A, X,V 84, 24)
be a k-uniform subautomaton of A. Let

o = (e, ... o)

for every a = (aW,a®,...,a®), ..} € A'. Define a mapping g : A; — AK+D
such that g(ag) = a¥+1) for every a € A'. Let Hy = {ay; € A'}. Since A’ is a
subautomaton of A, then H; C Hy. Thus, H© is a subautomaton of _Ak’g. The
mapping ¢ : A' — Hy, for which p(a) = ar (a € A'), is an isomorphism of A’ onto
HO. '

Every finite Mealy [Moore] automaton is k-uniform for some nonnegative integer
k. Thus, we get easily the following theorem from Theorem 9.

Theorem 10 A finite Mealy automaton A over X is simple if and only if there
ezist a nonnegative integer k and a mapping g : A — A®YY for which A is
isomorphic to some subautomaton of Ay ,. ’

By Theorems 6, 9 and 10, the following two theorems are true.

Theorem 11 A Moore automaton A over X is simple k-uniform if and only if it
is isomorphic to some subautomaton of (Arg)y

Theorem 12 A finite Moore automaton A over X is simple if and only if there
ezists a nonnegative integer k for which it is isomorphic to some subautomaton of

(Ak,g)y

Let ¢ = (C,X,Y’, 8¢, Ac) be a subautomaton of the automaton A. Consider
a family of nonempty sets U, (a € C) such that U, NUg = @ if @ # B. Let
Uc = UaecUys. For all z € X and a € C, let o, be a mapping of U, into
U,,. Define the functions dy, (a,z) = @az(a) and Ay,(a,z) = oV (z) for all
a €Uy, a € Cand z € X. It can be easily verified that Ug = (Uc, X, Y, du., Aug)
is a Mealy automaton ([2]).

Lemma 7 Every Mea.ly automaton A = (4, X,Y",8,)) (Y' C Y) equals an au-
tomaton Uc.

Equivaleh(:e of Mealy and Moore Automata .551

Proof. By Theorem 7, there exists an isomorphism ¢ of A/p ‘onto a sub-
automaton C of A. Assume that p(pp [a]) = aq, Ua, = ppld] (a € 4), @a, = =
d(a,z) and Uc = Useala, . Since

Me,2) = Aaspp (0 Ala]i2) = Acl0a,2) = 0 (2) = Au (a,2),
therefore A = Ug. . .
Theorem 13 The automaton Ug is k-uniform if and only if C is simple k-uniform.

Proof. It is evident that if the automaton Ug is k-uniform, then C is simple
k-uniform. S

Conversely, assume that the automaton C is simple k-uniform. Assume that
(a,d) € ny for some a € U, and b € Ug. Then, by Lemma 4, for every p € X*

)\C(a)p) =)‘UC (aap) = AUC (bap) =)‘C(:Bap)

But C is simple k-uniform, thus o = §, that is, a,b € U,. It means that ap,bp €
Us,. Then, for all z € X,

AU (a,pz) = AUc (a, p))‘Uc (ap, T) = Aue (ba p))‘Uc (bp,z) = AUg (b’ pz),
that is (a,b) € fg41. By Theorem 5, U is a k-uniform automaton.

By Theorems 6 and 13, we get the following theorem:

Theorem 14 The automaton (Ug)y is k-uniform if and only if Cy is simple k-
uniform.

By Theorems 10 and 12, we give a construction for finite simple Mealy and
Moore automata. Thus, by using Theorems 13 and 14, we can give all finite Mealy
and Moore automata.

Abknowledgement. The author express his thank to B. Imreh for his valuable
comments on the original version of the manuscript.

References

1] Babcsanyi, 1., Simple Mealy and Moore automata, Proceedings of the Interna-
g
tional Conference on Automata and Formal Languages IX, Vasszécseny, Hun-
gary, August 9 - 13, 1999, Publicationes Mathematicae (to appear).

[2] Babcsanyi, I. and A. Nagy, Mealy-automata in which the output-equivalence is
a congruence, Acta Cybernetica, 11 (1994), 121-126.

[3] Babcsanyi, I. and A. Nagy, Moore-automata in which the sign-equivalence is a
Moore-congruence, Publicationes Mathematicae, 47 (1995), 393-401.

552 , Istvan Babcsanyi

[4] Bloh, A.-S., O zadacsah, resajemith poszledovatyelnosztniimi masinami, Probl.
kibernetyiki, 3 (1960), 81-88.

[5] Gécseg, F. and I. Peak, Algebraic Theory of Automata, Akadémiai K1ado Bu-
dapest, 1972.

[6] Gill, A., C’omparison bfﬁnite-state models, IRE Trans. Circuit Theory, 7 (1960),
178-179.

[7} Gluskov, V. M., Absztraktnaja tyeorija avtomatov, Uszpehi matyem. nauk, 16
(1961), 3-62.

Received January, 2000

Acta Cybernetica 14 (2000) 553-567.

Pseudo-Hamiltonian Graphs

Luitpold Babel * Gerhard J. Woeginger T

Abstract

A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every
vertex exactly h times. We present a variety of combinatorial and algorithmic -
results on pseudo-h-hamiltonian cycles.

First, we show that deciding whether a graph is pseudo-h-hamiltonian is
NP-complete for any given h > 1. Surprisingly, deciding whether there exists
an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in poly-
nomial time. We also present sufficient conditions for pseudo-h-hamiltonicity
that are based on stable sets and on toughness. Moreover, we investigate the
computational complexity of finding pseudo-h-hamiltonian cycles on special
graph classes like bipartite graphs, split graphs, planar graphs, cocomparabil-
ity graphs; in doing this, we establish a precise separating line between easy
and difficult cases of this problem.

1 Introduction

For an integer h > 1, we shall say that an undirected graph G = (V, E) is pseudo-
h-haemiltonian if there exists a circular sequence of h - |V| vertices such that

e every vertex of G appears precisely h times in the sequence, and
e any two consecutive vertices in the sequence are adjacent in G.

A sequence with these properties will be termed a pseudo-h-hamiltonian cycle.
In this sense, pseudo-1-hamiltonian corresponds to the standard notion hamilto-
nian, and a pseudo-1-hamiltonian cycle is just a hamiltonian cycle. The pseudo-
hamiltonicity number ph(G) of the graph G, is the smallest integer h > 1 for which
G is pseudo-h-hamiltonian; in case no such h exists, ph{(G) = co. A graph G with
finite ph(G) is called pseudo-hamiltonian. Pseudo-h-hamiltonicity is a non-trivial
graph property. E.g. for every & > 2, the graph Gy that results from glueing to-
gether h triangles at one of their vertices, is pseudo-h-hamiltonian but it is not
pseudo-(h — 1)-hamiltonian.

*Institut fiir Mathematik, TU Miinchen, D~-80290 Miinchen, Germany. This author was sup-
ported by the Deutsche Forschungsgemeinschaft (DFG)., e-mail:babel@statistik.tu-muenchen.de.

tInstitut fiir Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria. This author
acknowledges support by the Start program Y43- MAT of the Austrian Mmlstry of Science., e-
mail:gwoegi@opt.math.tu-graz.ac.at.

-553

mailto:babel@statistik.tu-muenchen.de
mailto:gwoegi@opt.math.tu-graz.ac.at

(%41
<t
=

Luitpold Babel, Gerhard J. Woeginger

Perfect

/ \

Bipartite Chordal ECocompaxabilityE

' Tree ' Split Graphs X Interval | i\ Permutation |

Figure 1: Complexity results for some of the treated graph classes. NP-complete
problems have a solid frame, polynomially solvable problems have a dashed frame.

Results of this paper. The problem of deciding whether a given graph is hamil-
tonian is NP-complete. Hence, it is not surprising at all that for each fixed value
of h > 1, the problem of deciding whether ph(G) < h holds for a given graph G is
also NP-complete. However, if we just ask whether ph{G) < oo, i.e. whether there
exists some value of h for which G is pseudo-h-hamiltonian, then we can answer
this question in polynomial time (and this is perhaps surprising). This polynomial
time result is based on the close relationship of pseudo-hamiltonian graphs with
reqularizable graphs (cf. Section 2).

We also provide a nice and simple characterization of pseudo-hamiltonian graphs
that is based on the stable sets of vertices of the graph. We show that ev-
ery pseudo-hamiltonian graph G must be 1/ph{(G)-tough, and that every 1-tough
graph is pseudo-hamiltonian. The square of a connected graph is always pseudo-
hamiltonian. For d-regular graphs with d > 3, we derive a tight result of the
following form: There exists a threshold 7(d) such that for A < 7(d), it is NP-
complete to decide whether a d-regular graph is pseudo-h-hamiltonian, whereas for
every h > 7(d), a d-regular graph automatically is pseudo-h-hamiltonian. Hence,
the computational complexity of deciding pseudo-h-hamiltonicity of regular graphs
jumps at 7(d) from trivial immediately to NP-complete.

Finally, we will investigate the computational complexity of computing ph(G)
on many well-known special graph classes, like bipartite graphs, split graphs, par-
tial k-trees, interval graphs, planar graphs etc. Figure 1 summarizes some of our
results together with some of their implications for special graph classes. Directed
arcs represent containment of the lower graph class in the upper graph class. For

Pseudo-Hamiltonian Graphs 555

classes with a solid frame, the computation of ph(G) is NP-complete, and for classes
with a dashed frame, this problem is polynomial time solvable (for exact definitions
of all these graph classes cf. Johnson [12]). Note that the results for trees, bipar-
tite graphs, split graphs and cocomparability graphs imply all the other results in
Figure 1.

Organization of the paper. Section 2 investigates the connections between
pseudo-hamiltonicity and regularizable graphs, and it states several general com-
plexity results. Section 3 relates pseudo-hamiltonicity to stable sets, to connectivity
and to toughness. Section 4 derives the complexity threshold for d-regular graphs,
and Section 5 deals with squares of graphs. Finally, Section 6 collects the complex-
ity results for the special graph classes.

Notation and conventions. Throughout this paper, we only consider undirected -
graphs. All graphs have at least three vertices. For convenience we often write
G — W instead of G(V — W), the graph that results from removing the vertices in
W together with all incident edges from G. For a set W C V, we denote by N(W)
the set of all vertices outside W which are adjacent to vertices from W. A stable
set is a set of pairwise non-adjacent vertices. A stable set S is maximal if there is
no stable set S’ which properly contains S. The stability number a(G) is the size
of a largest stable set in G. ' :

2 Complexity aspects of pseudo-hamiltonicity .

In this section, we give several characterizations of pseudo-hamiltonian graphs that
are based on regularizable graphs. These characterizations imply that one can
decide in polynomial time whether ph(G) < co. On the other hand, we will show
that for every fixed integer h > 1 it is NP-complete to decide whether ph(G) < h.
A graph G = (V, E) is called regularizable (see Berge [2, 3]), if for each edge
e € E there is a positive integer m(e) such that the multigraph which arises from
G by replacing every edge e by m(e) parallel edges is a regular graph. A useful
characterization of regularizable graphs can be found in Berge [2].

Proposition 2.1 (Berge [2])
A connected graph G = (V, E) is regularizable if and only if one of the following
two statements holds - :

(a) G is elementary bipartite
(i.e. G is bipartite, connected and every edge of G appears in a perfect match-
ing)f ’
(b) G is 2-bicritical
(i.e. IN(S)| > |S| holds for every stable set S C V). i
Regularizable graphs are related to pseudo-hamiltonian graphs as follows.

Lemma 2.2 A graph G is pseudo-hamiltontan if and only if G has a connected
spanning regularizable subgraph.

556 Luitpold Babel, Gerhard J. Woeginger

Proof. (Only if). Clearly, in a pseudo-h-hamiltonian cycle (considered as a multi-
graph) each vertex has degree 2h. Hence, the skeleton of a pseudo-h-hamiltonian
cycle (that is, the simple graph arising from replacing parallel edges by simple
edges) of a graph G constitutes a regularizable subgraph of G which, additionally,
is connected and contains all the vertices of G.

(If). Conversely, assume that a graph G has a connected spanning regularizable
subgraph H. Let H* denote the associated regular multigraph, say of degree 2h
(if the degree of the regular multigraph is odd, multiply every number m(e) by
two). Clearly, H* has an Eulerian cycle. This Eulerian cycle corresponds to a
pseudo-h-hamiltonian cycle in G. O

A graph has a perfect 2-matching if one can assign weights 0, 1 or 2 to its edges
in such a way that for each vertex, the sum of the weights of the incident edges is
equal to 2. The following characterization of regularizable graphs can be found in
the book by Lovdsz and Plummer [13].

Proposition 2.3 (Lovdsz and Plummer [15])
A graph G = (V, E) is regularizable if and only if for each edge e € E there ezists
a perfect 2-matching of G in which e has weight 1 or 2. D

Proposition 2.3 has several important consequences.

Corollary 2.4 (i) For any integer h with 1 < h < ph(G), graph G does not possess
a pseudo-h-hamiltonian cycle. (ii) For any integer h > ph(G), graph G does possess
a pseudo-h-hamiltonian cycle.

Proof. Statement (i) trivially follows from the definition of ph(G). In order to
prove (ii), we show that if a graph has a pseudo-h-hamiltonian cycle then it also
has a pseudo-(h + 1)-hamiltonian cycle: Let C be a pseudo-h-hamiltonian cycle in
G. Then the skeleton of C is regularizable, and consequently possesses a perfect
2-matching. If one adds this perfect 2-matching to the 2A-regular multigraph that
corresponds to C, one gets a (2h + 2)-regular multigraph that corresponds to a
pseudo-(h + 1)-hamiltonian cycle. m]

Proposition 2.3 together with-Lemma 2.2 also allows us to construct an algorithm
to decide efficiently whether a graph is pseudo-hamiltonian (or, equivalently, to
decide whether a graph has a connected spanning regularizable subgraph). The
algorithm repeatedly runs through all the edges of the graph and deletes all those
edges which do not allow a perfect 2-matching with the desired property. If the
remaining graph is disconnected then G is not pseudo-hamiltonian. Otherwise,
one obtains a connected spanning regularizable subgraph of G, i.e. G is pseudo-
hamiltonian. '

Pseudo-Hamiltonian Graphs o957

Algorithm PSEUDO-HAMILTON(G)

1. UNCHECKED:= E; E*:= E;
2. While UNCHECKED # § do
Pick an arbitrary edge e EUNCHECKED .
Check whether the graph (V, E*) possesses a, perfect
2-matching in which edge e has weight 1 or 2;
If there is no such perfect 2-matching
then E*:= E* — {e};
UNCHECKED:= UNCHECKED—{e};
3. If the graph (V, E*) is connected
then return ‘yes’ else return ‘no’.

Since perfect 2-matchings can be found in polyﬁomial'time (cf. Lovdsz and Plummer
[13]), the whole algorithm can be implemented to run in polynomial time.

Theorem 2.5 It can be decided in polynomial time; whether ph(G) < oo holds for
a given graph G. .. O

In strong contrast to Theorem 2.5, it is NP-complete to compute ph(G) exactly.

The_brerh 2.6 For every fized value -h > 1, the pmblem of deczdmg whether
ph(G) < h holds for a given graph G is NP- complete

Proof. It is well known that deciding pseudo-1-hamiltonicity (i.e. standard hamil-
tonicity) of a graph is NP-complete. Let h > 2 be some fixed integer. Consider
some undirected graph G' = (V',E'), and construct another graph G =-(V, E)
from it as follows: V contains the vertices in V' together with 3(h - 1)|V| new.
vertices For every vertex v € V', there are 3h — 3 new vertices that-are called

, bi, and ¢, where ¢ = 1,...,h — 1. The edge set E contains all edges in E’
together w1th 4(h — 1)|V’| new edges. For every vertex v € V', there are 4h = 4
new edges (v,al), (ai,bt), (b%,ct), and (ct,al), wherei =1,...,h — 1. We claim
that the constructed graph G possesses a pseudo-h-hamiltonian cycle if and only if
the original graph G’ possesses a hamiltonian cycle.) A

(Only if). Assume that G possesses a pseudo-h-hamiltonian cycle C. Consider
for arb1trary v € V'and 1 <i < h—1 the connected component consisting of av,
bi, and c¢i. The cycle C can visit and leave this component only via the edge (v al)
and this edge must be used an even number of times. Hence, C uses at least 2h — 2}
edges incident to v just for visiting the (h — 1) attached components. There remain
only two edges that can connect v to other vertices in V', and it is easy to see that
these pairs of edges taken over all vertices in V' correspond to a hamiltonian cycle.
in G'.

(If). Now assume that G’ possesses a hamiltonian cycle. Construct a multigraph
with vertex set V as follows: The multigraph contains all edges that are used by
the hamiltonian cycle. Moreover, it contains for-every v € V' and for every 1,
1 < i< h—1, two copies of the edge (v,al), h — 1 copies of the edge (ai,bi),

h'+1 copies of the edge (bi,c’), and h— T copies of the edge (c},a’). The resulting

558 Luitpold Babel, Gerhard J. Woeginger

multigraph is connected and 2h-regular. Hence, it contains an Eulerian cycle that
corresponds to a pseudo-h-hamiltonian cycle in a natural way. O

Question 2.7 What can be said about approzimating ph(G)? Can one always find
in polynomial time a, say, pseudo-2ph(G)-hamiltonian cycle?

3 Stable sets, connectivity and toughness

This section discusses the relationship of pseudo-hamiltonicity with the structure of
stable subsets, with the connectivity of a graph, and with the toughness of a graph.
First, consider the following two conditions (C1) and (C2) on a graph G = (V, E).

(C1) |N(S)| > |S]| holds for every maximal stable set S C V.
(C2) |N(S)| > |S| holds for every non-maximal stable set S C V.

Lemma 3.1 If a graph G = (V, E) is pseudo-hamiltonian, then it fulfills the con-
ditions (C1) and (C2).

Proof. Consider a pseudo-h-hamiltonian cycle C and let S be a stable set in G.
Every vertex from S appears h times in C. Since § is stable, each vertex from S
must be followed by a vertex from N(S). Hence the set N(S) is visited at least
h - |S] times. Since each vertex from N(S) also appears h times in C we obtain

IN(S)| > IS]. G

Now assume that |N(S)| = |S|. Then vertices from S and from N(S) must alternate
in C, and it is not possible to visit any vertex from V ~ S — N(S). This implies
that V = S U N(S), or equivalently, that S is a maximal stable set. 0

Corollary 3.2 If the graph G = (V, E) with [V| > 3 vertices is pseudo-hamiltonian
then the following holds:

(a) G has no vertices of degree one.
(b) o(G) < 3lVI. =

We can use the results on regularizable graphs (cf. Section 2) in order to show
that, for a connected graph, the conditions (C1) and (C2) are also sufficient for the
existence of a pseudo-hamiltonian cycle.

Lemma 3.3 If a connected graph G = (V,E) fulfills conditions (C1) and (C2),
then it is pseudo-hamiltonian.

Proof. If |[N(S)| > |S] holds for every stable set S C V then G is 2-bicritical and,
by Proposition 2.1, also regularizable. Since G is connected, Lemma 2.2 implies -
that in this case G is pseudo-hamiltonian.

Otherwise, there exists a stable set S with |N(S)| = |S|. Then by condition
(C1), S is maximal and V = SUN(S) holds. Let H denote the spanning subgraph

Pseudo-Hamiltonian Graphs 559

of G which arises from deleting all edges between vertices from N(S). We show
that H is elementary bipartite. Then, again by Proposition 2.1, the subgraph
H is regularizable and, since H is also connected, Lemma 2.2 implies that G is
pseudo-hamiltonian.

By construction, the graph H is bipartite. H is connected, since otherwise we
can easily find a proper subset S’ C S with |[N(S')| < |S5'| in contradiction to the
assumption. Let (s,t) be an arbitrary edge in H with s € S. In H — {s,t} we have
IN(S")| > |S’| for each set S’ C S — {s} (note that S’ is not maximal stable in G).
It is well known that this condition implies the existence of a perfect matching in
H — {s,t} (cf. e.g. Lovész and Plummer [13]). Hence there is a perfect matching
in H containing the edge (s,t). . ' O
Every hamiltonian graph must be 2-connected. However, it is easy to see that this
is not a necessary condition for a graph to be pseudo-h-hamiltonian for some h > 2.
On the other side one may ask whether there exists a number k such that every
k-connected graph is also pseudo-hamiltonian. The following example shows that
this is not true in general.

Example 3.4 Consider the complete bipartite graph K1y, i.e. the graph con-
sisting of two stable sets S and S' of cardinality k + 1 and k, respectively, where
any two vertices from S and S’ are adjacent. By deleting fewer than k vertices, we
leave at least one node in the stable set S and at least one node in the stable set
S'. Hence, this graph is k-connected. However, since |[N(S)| =k < k+1=15|, we
conclude from Lemma 3.1 that the graph is not pseudo hamiltonian.

Chvétal [7] defines the toughness t(G) of a graph G (where G is not a complete
graph) by
W]

where W is a cutset of G and ¢(G—W) denotes the number of connected components
of the graph G — W. It is well known that a hamiltonian graph has toughness at
least 1. As an extension of this result we obtain:

t(G) = mi

Lemma 3.5 If G is pseudo-h-hamiltonian, then t(G) > +.

Proof. Let W™ be a cutset of G with t(G) = |W*|/c(G — W*). Each path between
two vertices of different connected components of G ~ W* contains vertices from
W*. Hence, in a pseudo-h-hamiltonian cycle of G there appears at least ¢(G — W*)
times a vertex from W*, i.e. each vertex from W* appears at least ¢(G— W*}/|W*|
times. This implies h > 1/t(G) and the correctness of the claim. o

It is known (cf. Chvital {7]) that there are graphs with toughness 1 which are not
hamiltonian. Similarly, the converse of Lemma 3.5 is not always true for A > 2.
The complete bipartite graph K3, has toughness t(K32) = 2/3 > 1/h. However,
as argued in Example 3.4 above, this graph is not pseudo-A-hamiltonian.

Another sufficient condition for pseudo-hamiltonicity relies on the toughness of
the graph.

560 : ‘ Luitpold Babel, Gerhard J. Woeginger

Lemma 3.6 (i) Any graph G with t(G) > 1 is pseudo-hamiltonian. (i1} For every
€ > 0, there ezists a graph G with t(G) > 1 — € that is not pseudo-hamiltonian.

Proof. Consider a graph G with toughness at least 1. Clearly, G is connected. We
will show that G fulfills the conditions (C1) and (C2), and then Lemma 3.3 implies
statement (i).

Let S be a maximal stable set in G and assume that |N(S)| < |S| holds. With
W := N(S), we obtain ¢(G — W) > |W| as the vertices of S form the connected
components of G — W. Hence ¢(G) < 1, in contradiction to the assumption.

Let S be a non-maximal stable set in G and assume that |[N(S)| < |S|. Define
again W := N(S). Then the vertices of S are again connected components of
G — W, and since S is not maximal there is at least one further component. Hence
c(G — W) > |W| holds, which implies that t(G) < 1.

In order to prove (ii), consider the complete bipartite graphs Kj+1, from Ex-
ample 3.4: Ky, has toughness k/(k + 1). As k tends to infinity, this expression
tends to one. m]

4 Regular graphs

In this section, we discuss the problem of deciding whether a given d-regular graph
possesses a pseudo-h-hamiltonian cycle. We will show that for every d, there is a
precise threshold for h where the computational complexity of recognizing pseudo-
h-hamiltonian d-regular graphs jumps from NP-complete to trivial. '

Lemma 4.1 (i) For odd d > 3, every connected d-regular graph G fulfills ph(G) <
d. (ii) For even d > 4, every connected d-regular graph G fulfills ph(G) < d/2.

Proof. For even d, graph G itself is Eulerian and the Eulerian cycle yields a
pseudo-d/2-hamiltonian cycle. For odd d, the multigraph that contains two copies
of every edge in G is Eulerian and thus yields a pseudo-d-hamiltonian cycle. O

Lemma 4.2 (i) For odd d > 3, it is NP-complete to decide whether ph(G) < d-1
holds for a d-regular graph G. (ii) For even d > 4, it is NP-complete to decide
whether ph(G) < d/2 — 1 holds for a d-regular graph G.

Proof. We only prove (i). The proof of (ii) can be done by analogous (somewhat
tedious) arguments. '

For every odd d > 3, the proof of (i) is based on the following auxiliary graph
Hy: H; has 2d — 1 vertices that are divided into three parts X, Y and Z. Part
X consists of a single vertex z, parts Y = {y1,...,y4-1} and Z = {z1,...,24-1}
both contain d — 1 vertices. There is an edge between z and every vertex in Y,
and there is an edge between every vertex in Y and every vertex in Z. Moreover,
the vertices in Z are connected to each other by a perfect matching in such a way
that z; and z, are matched with each other. This completes the description of Hy.
Note that in Hyg, vertex z has degree d — 1 and all vertices in Y U Z have degree

Pseudo-Hamiltonian Graphs ' . 561

d. Moreover, we will use the following connected multigraph M (Hy): M(H,) has
the same vertex set as Hy. Vertex z is connected by a single edge to y; and ya,.
respectively, and by two edges to each vertex in ¥ — {y1,y2}. For 1 < j <2, y; is
connected by 2d — 3 edges to Zj,. and for 3 < j <d -1, y; is connected by 2d — 4
edges to z;. Finally, there is one edge that connects z; to 23, and there are two
copies of every other edge in the matching over Z. Note that in the resulting graph
M(Hy), vertex z has degree 2d — 4 and all vertices in Y U Z have degree.2d — 2.

The NP-completeness proof for result (i) is done by a reduction.from the NP-
complete hamiltonian cycle problem in cubic graphs (cf. Garey and Johnson [11]).
Consider an instance G' = (V', E') of this problem, and construct a d-regular graph

= (V, E) from G’ as follows: T

e For every v € V', introduce a corresponding vertex v* in V. Moreover,
introduce d — 3 pairwise disjoint copies of Hy. The z-vertex of every such
copy is connected to v*. ' '

e For every edge (u,v) € E', introduce two new vertices a,,, and ay together
‘with the three edges (u*, ay v), (Gu,v, Gy) and (Gy,u, v *), 1.e. the vertices ay o
and a, . essentially subdivide the original edge (u, v) ‘into three sub- edges

e For every new wvertex a,y, create d — 2 pairwise dlsJomt copies of -Hy and'
connect the x-vertex of every copy to ay -

It is easy to verify that the resulting graph G is d-regular (since in Hyg, vertex -
has degree d — 1 and all other vertices have degree d). We claim that G. possesses
a pseudo-(d — 1)-hamiltonian cycle if and only if G’ possesses a hamiltonian cycle.

(If). Assume that G' possesses a hamiltonian cycle. Construct from this hamil-
tonian cycle a (2d — 2)-regular multigraph M* as follows: For every copy of Hy in
G, introduce the corresponding edges of M (Hy) in M*, together with two edges
that connect the z-vertex to that vertex to which the copy has been attached. For
every edge (u,v) that is used by the hamiltonian cycle, introduce the three edges
(u*,au), (Quvs@u) and (ay 4, v*) in M*. For every edge (u,v) that is not used by
the hamiltonian cycle, introduce two copies of (u*, ay,v) and two copies of (ay,y, v*)
in M*. The resulting multigraph is (2d — 2)-regular, is connected (as it simulates
the hamiltonian cycle in G'), and it is spanning. Hence, the correspondlng Eulerlan
cycle in G yields a pseudo-(d — 1)-hamiltonian cycle for G-

(Only if): Now assume that G possesses a pseudo-(d — 1)-hamiltonian cycle C.
Then the edges that are traversed by form a (2d— 2)-regular connected multigraph
MC. For every copy of Hy in G, the cycle C traverses the edge that connects the
z-vertex to the vertex to which the copy has been attached, at least twice and an
even number of times. Hence, for every edge (u,v) € E' the vertex a,, in M i
connected by at least 2d — 4 edges to the z-vertices of the attached copies of Hd,
and there remain only-two edges that can connect a,,, to the rest of the graph.
With this it is easy to verify that there remain only two possibilities how the cycle
C may traverse the three edges (u*, au), (y v, Gy) and (ay, 4, v*) that correspond
to some edge (u,v) € E' in the original graph: Either all three edges are traversed

564 Luitpold Babel, Gerhard J. Woeginger

thus resulting multigraph is 4-regular and contains only edges from G?. Hence, G?
is pseudo-2-hamiltonian.

(Only if). Now assume that G? possesses a pseudo-2-hamiltonian cycle C. The
following statements on the structure of C are easy to verify.

1. C traverses every edge (b%,v) with v € V{ and 1 < i < 4 exactly once.
2. C traverses every edge (b%,al) with v € V] and 1 < i < 4 exactly three times.

3. For every v € V/, C either traverses exactly one or exactly zero of the edges
(ai,al) with 1 <i<j <4

4. C traverses every edge (di,v) with v € V and 1 < i < 2 exactly once.
5. C traverses every edge (d¢,ct) with v € V5 and 1 < i <2 exactly three times.

6. C traverses every edge (c!,c2) with v € V] exactly once.

‘U”U

Hence, every v € V| is only connected to vertices bi. Every v € V, must be
connected by two edges to some vertices ai. Hence, there are exactly 2|V;| edges
between V; and the o}, with v € V/, and a smple counting argument shows that in
statement (3) above, the “traverses exactly zero of the edges”-part can never hold.
Hence, for every v € V{ there exist exactly two edges in C that connect some a’ to
some vertex u € V. It is straightforv&}ard to see that the union of all these edges
corresponds to a hamlltoman cyclein G'. m]

6 Spécial gfaph clésses

In this section, we show that deciding whether a graph is pseudo-h-hamiltonian is
NP-complete even for some very restricted classes of graphs that possess a strong
combinatorial structure. Moreover, we present polynomlal time algorithms for other
classes of structured graphs.

6.1 Trees and planar graphs

By Corollary 3.2.(a), a pseudo-hamiltonian graph cannot have any vertices of degree
one. Hence, ph(T') = oo for any tree T

If we start the construction in the proof of Theorem 2.6 with a planar graph G’,
then the constructed graph G is also planar. Since deciding hamiltonicity of planar
graphs is NP-complete [11], we conclude that for every h > 1 it is NP-complete to
decide whether a planar graph is pseudo-h-hamiltonian.

6.2 Partial_ k-trees

The class of partial k-trees is a well-known generalization of ordinary trees (see e.g.
the survey articles by Bodlaender [4, 5, 6] and by van Leeuwen [14]). It is known
that series-parallel graphs and outerplanar graphs are partial 2-trees and that Halin
graphs are partial 3-trees. Large classes of algorithmic problems can be solved in
polynomial tifme on partial k-trees if & is constant. Essentially, each graph problem

Pseudo-Hamiltonian Graphs 565

that is expressible in the Monadic Second Order Logic (MSOL) is solvable in linear
time on partial k-trees with constant & (cf. e.g. Arnborg, Lagergren, Seese [1]).

Lemma 6.1 For every h > 1 and for every k > 1, it can be decided in linear time
whether a given partial k-tree is pseudo-h-hamiltonian.

Proof. We only show the statement for h = 2; the other cases can be settled
analogously. For a given graph G = (V, E), the property of having a connected
4-regular submultigraph can be expressed in MSOL as follows:

1. There exist three pairwise disjoint subsets E;, E; and F3 of E

2. Every vertex is either incident to (i) four edges from Ei, or to (ii) two edges
from E; and one edge from FEs, or to (iii) one edge from E; and one edge
from FEj3, or to (iv) two edges from E;

3. There does not exist a partition of the vertex set V' into two non-empty sets
V1 and V4, such that none of the edges in E; U Eo U E3 connects V) to Vs.

Intuitively speaking, the edges in Ey (E», E3) occur once (twice, thrice) in the
submultigraph. The second condition then takes care of the 4-regularity, and the
third condition ensures that the submultigraph is connected. a

6.3 Bipartite graphs and split graphs

Lemma 6.2 For every integer h > 1, it is NP-complete to decide whether a bipar-
tite graph is pseudo-h-hamiltonian.

Proof. It is NP-complete to decide whether a bipartite graph G’ is hamiltonian (cf.
Garey and Johnson [11}). Consider a bipartite graph G' = (V', E') with bipartition
V' = V/ UV, and construct from G' another bipartite graph G as follows. For
every vertex v € V', introduce two vertices £, and 7, in V together with auxiliary
vertices al and b%, i = 1,...,2h — 2. In E, there are the edges (£,,7,) together
with the edges (£y,al), (at,b!), and (b,7,) for 1 = 1,...,2h — 2. Moreover, for
every edge (u,v) € E' with v € V{ and v € V3, we introduce the two edges (£y,7,)
and (£, 7). '

It can be verified that the resulting graph G is also bipartite. Moreover, one
can show that G possesses a pseudo-h-hamiltonian cycle if and only if G’ possesses
a hamiltonian cycle. o

A split graph is a graph whose vertex set can be partitioned into two parts such
that the subgraph induced by the first part is a clique and the subgraph induced
by the second part is a stable set.

Corollary 6.3 For every integer h > 1, it is NP-complete to decide whether a split
graph is pseudo-h-hamiltonian.

Proof. In the NP-completeness proof for bipartite graphs in Lemma 6.2, both
classes in the bipartition of the constructed graph G are of equal cardinality. Trans-
form G into a split graph G* by adding all edges between vertices in one part of

566 Luitpold Babel, Gerhard J. Woeginger

the bipartition. It is easy to see that a pseudo-h-hamiltonian cycle in G* can never
use these added edges, and hence G* is pseudo-h-hamiltonian if and only if G’ is
hamiltonian. O

6.4 Cocomparability graphs

A comparability graph is a graph G = (V, E) whose edges are exactly the compara-
ble pairs in a partial order on V. The complementary graph is called a cocompa-
rability graph. The class of cocomparability graphs properly contains all cographs,
permutation graphs and interval graphs.

Lemma 6.4 For every integer h > 1, it can be decided in polynomial time whether
a cocomparability graph is pseudo-h-hamiltonian.

Proof. It is known that a hamiltonian cycle in a cocomparability graph can be
found in polynomial time (cf. Deogun and Steiner [9]). Given a cocomparability
graph G = (V, E), we construct another cocomparability graph G' = (V', E') as
follows. V' contains the vertices in V together with (h — 1)]V| new vertices. For
every vertex v € V there are h—1 new vertices that are called v, where¢ = 2,..., h.
For simplicity of notation, let v! := v. If (u, v) is an edge in E then all edges (u?,v7)
with 4,7 = 1,...,h belong to E’ (roughly spoken, G’ arises from G by replacing
each vertex by a stable set of h vertices). It is easy to see that G’ is again a
cocomparability graph. We show that G has a pseudo-A-hamiltonian cycle if and
only if G’ has a hamiltonian cycle.

(If). Assume that G’ possesses a hamiltonian cycle. We obtain a pseudo-h-
hamiltonian cycle in G if each vertex v, ¢ = 2,...,h, is replaced by the corre-
sponding vertex v. »

{(Only if). Now assume that G possesses a pseudo-h-hamiltonian cycle C. Each
vertex of G appears h times in C. For each v € V replace h — 1 copies of v in C
by v?,...,v". This yields a 2-factor of G', i.e. a subgraph of G’ such that each
vertex has degree 2. If the 2-factor is a cycle then we have a hamiltonian cycle in
G' and we are done. Otherwise the 2-factor is a disjoint union of cycles. In this
case the following principle allows to reduce the number of cycles: Let C; and C,
denote two disjoint cycles such that v belongs to C; and v’ belongs to Cy (it is
straightforward to see that such cycles must exist). Let further z be the predecessor
of v* in C; and y the predecessor of v7 in C,. Replace the edges (z,v*) and (y, v¥) by
(z,v7) and (y,v'). One obtains a new cycle that contains all vertices from C; and
C». Repeatedly merging cycles in this way finally provides the desired hamiltonian
cycle in G'. O
We leave it as an open problem to determine the complexity of computing the
pseudo-hamiltonicity number of asteroidal triple-free graphs, AT-free graphs for
short (cf. Corneil, Olariu, and Stewart [8]). Note that for an AT-free graph G,
the graph G’ that is constructed in the proof of Lemma 6.4 above is also AT-
free. However, the complexity of finding a hamiltonian cycle in AT-free graphs is
currently unknown. '

Pseudo-Hamiltonian Graphs 567

References

[1] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms 12, 1991, 308-340.

[2] C. Berge. Regularizable graphs I. Discrete Mathematics 23, 1978, 85-89.
[3] C. Berge. Regularizable graphs II. Discrete Mathematics 23, 1978, 91-95.

[4] H.L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin of
the EATCS 36, 1988, 116-126.

[5] H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica 11,
1993, 1-21.

[6] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science 209, 1998, 1-45.

[7] V. Chvétal. Tough graphs and hamiltonian circuits. Discrete Mathematics 5,
1973, 215-228.

(8] D.G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free graphs. Pro-
ceedings of the 19th International Workshop on Graph-Theoretic Concepts in
Computer Science WG’98, Springer Verlag, LNCS 790, 1994, 211-224.

[9] J.S. Deogun and G. Steiner. Polynomial algorithms for hamiltonian cycles in
cocomparability graphs. SIAM Journal on Computing 23, 1994, 520-552.

[10] H. Fleischner. The square of every two-connected graph is hamiltonian. Journal
of Combinatorial Theory B 16, 1974, 29-34.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability, A guide to the
theory of NP-completeness. Freeman, San Francisco, 1979.

[12] D.S. Johnson. The NP-Completeness Column: an Ongoing Guide. Journal of
Algorithms 6, 1985, 434-451.

[13] L. Lovéasz and M.D. Plummer. Matching Theory. Annals of Discrete Mathe-
matics 29, North-Holland, 1986.

[14] J. van Leeuwen. Graph algorithms. in Handbook of Theoretical Computer Sci-
ence, A: Algorithms and Complezrity Theory, 527-631, North Holland, Ams-
terdam, 1990.

Received April, 2000

Acta Cybernetica 14, (2000) 569-582.

Two remarks on variants of simple eco-grammar
systems*

Judit Csima 1

Abstract
Two powerful variants of simple eco-grammar systems, namely extended
tabled simple eco-grammar systems (ETEG systems) and weak extended sim-
ple eco-grammar systems (wEEG systems) are studied. It is proved that both
modifications of the original definition result in universal power: all recur-
sively enumerable languages can be obtained both by ETEG and by wEEG
systems.)

1 Introduction

Eco-grammar systems form a grammatical framework proposed in {2] for modelling
living systems consisting of several agents and a common environment. In the
original definition of an eco-grammar system, the environment is described by a
Lindenmayer system which determines its evolution; the agents are represented by
context-free grammars and by Lindenmayer systems : the Lindenmayer systems
determine their development, while the context-free grammars describe their ac-
tions. The interaction between the agents and the environment is ensured by the
computable functions ¢ and ¢, which allow the agents to adapt to the environment
both in their development and in their actions. '

In the original model there are no terminal and nonterminal symbols. In [2]
it was shown that this model is very strong as far as the generative capacity is
concerned: all recursively enumerable languages can be obtained as languages of
extended eco-grammar systems (that is with systems with a distinguished terminal
alphabet) with a very simple choice of the functions ¢ and ¢.

Because of this result another, simpler variant of eco-grammar systems was
introduced in [2]: the simple eco-grammar system. In a simple eco-grammar system
the interaction between the environment and the agents is restricted and the agents
do not have an inner representation. Other variants like non-extended simple eco-
grammar systems in [3] and conditional tabled eco-grammar systems in [4], [5]
and [10] were introduced and studied.

*Research supported by the Hungarian Scientific Foundation “OTKA” Grant No. T029615
tComputer and Automation Research Institute, Hungarian Academy of Sciences, Kende u.
13-17, H-1111, Budapest, Hungary. E-mail: csima@cs.bme.hu

569

mailto:csima@cs.bme.hu

570 Judit Csima

Besides these directions, the study of extended simple eco-grammar systems
continued in [6], where it was proved that the hierarchy according to the number of
the agents is a collapsing one and that the class of languages generated by extended
simple eco-grammar systems without A-rules is between the class of languages gen-
erated by extended 0L systems and the class of languages generated by matrix
grammars with appearance checking. (For more information about these language
classes the reader is referred to [9] and [8].) The general case, where A-rules are
allowed in the system, remained open. In [1] it was shown that the hierarchy col-
lapses in the general case as well, even if we consider different derivation modes,
but the place of this collapsing language class remained unsolved.

In [11] simple eco-grammar systems with prescribed teams were examined. It
was proved there that extended tabled simple eco-grammar systems with teams of
agents with prescribed members and operating according to a weak rewriting steps
(that is the derivation is not blocked if some agents from a team cannot perform
any action) can generate all recursively enumerable languages. In this article we
present a stronger result: it is not necessary to use prescribed teams to reach the
power of Turing machines. Moreover, both extended tabled simple eco-grammar
systems (using the original derivation mode, not the weak one) and weak extended
simple eco-grammar systems (without tables) are enough to generate all recursively
enumerable languages. -(We note that the definition of a weak derivation step we
use in this article is a slightly different one compared to [11], therefore only the
first result is stronger than the one in [11].)

More precisely, we consider two variants of extended simple eco-grammar sys-
tems for which the question of their generative power will be answered.

The first part of the article deals with extended tabled simple eco—grammaj sys-
tems, where instead of one 0L system the environment can be represented by more
than one 0L system, called tables. Thus the environment can vary its behaviour
step by step. Allowing this possibility, all recursively enumerable languages can be
obtained even with one agent.

In the second part of the article we present weak extended simple eco-grammar
systems. In this case the definition of the derivation step is different from the
original definition of an extended simple eco-grammar system. In this modified
version the derivation is not blocked if some agents cannot perform any action on
the sentential form. We show that the generative power of Turing machines can be
reached also in this case.

.o

2 Preliminaries

Here we present the notions and notations used in this article, for further informa-
tion the reader is referred to [9], (8] and (7).

The set of all non-empty words over a finite alphabet V is denoted by VT, the
empty word is denoted by A; V* = V*+ U {A}. For a set V, we denote by card (V)
the cardinality of V. For a word z, we denoté by |z| the length of z. ffz =z, -- - 2z,
is a word over an alphabet V, z; € V for 1 < j < n, [z,1, k] denotes the word

Two remarks on variants of simple eco-grammar systems 571

(1,1, k] - [Zn, i, k] for 1 <4,k.

By a context-free production or by a context-free rule (a C'F rule, for short)
over an alphabet V' we mean a production of the form of a—u, where @ € V and
w € V*. A CF rule is a A-rule (or a deletion rule) if u = A.

We also use the following notations: for a set of C'F rules R, dom(R) denotes
the set of all letters appearing in the left-hand side of a rule in R. For a word z
over an alphabet V', alph(z) denotes the set of all letters appearing in z.

A OL system is a triplet H = (V, P,w), where V is a finite alphabet, P is a
set of context-free rules over V, and w € V* is the axiom. Moreover, P has to
be complete, that is for each symbol a from V there must be at least one rule in
P with this letter in the left-hand side. 0L systems use parallel derivations: we

say that z directly derives y in a 0L system H = (V, P,w), written as = 0:L>H y, if
T =1Ly "Tp, Y = Y1Y2 - -Yn, where z; € V, y; € V*, and the rules z;—y; are in
Pforl1<i<n.

A TOL system is a triplet H = (V,T,w), where V is a finite alphabet, T =
{T,..., T} is a set of tables over V, where each table T; for 1 < i < kis a
complete set of CF rules over V, and w € V* is the axiom. We say that z directly
derives y in a T'0L system H = (V,T,w), written as z g}{ y,ifz 0=L>Hi y for some
i,1 <1<k, with the 0L system H; = (V,T;,w).

An ETOL system is a quadruple H = (V,T,A,w), where H' = (V,T,w) isaT0L
system, and A C V is the terminal alphabet. In an ETO0L system H = (V,T, A, w)
z directly derives y, written as z Ear HY, ifz o0 H' Y-

ETOL
.. . ST .
The transitive and reflexive closure of E=O>L & is denoted by ==%,.

The generated language of the ET0L system H (denoted by L(H)) is -

ETOL

LH)={weA" |w=}w}
That is, in an ETOL system only words over a distinguished subalphabet are in
the generated language. A language is said to be an ET0L language if thereis an
ETOL system which generates it.

TOL and 0L systems are special cases of ET0L systems: A = V stands in both
cases; moreover, in the case of 0L systems T' = {1} also holds. Therefore the
above definition gives the generated language for these systems as well.

A random-context grammar is a quadruple G = (N, T, P, S) where N is the set
of nonterminals, T is the set of terminals, S is the axiom, and P is a finite set of
random-context rules, that is triplets of the form of (C—a, @, R), where C—a is
a CF rule over NUT, where C € N, and @ and R are subsets of N. For =,y €
(NUT)Y, we write ==y iff 2 = £,Cxs, y = z1025 for some z;,2, € (NUT)",
(C—a, @, R) is a triplet in P, all symbols of @ appear and no symbol of R appears
in £1Cz9 (Q is called the permitting context, and R is called the forbidding context
of the rule C—a. If Q and/or R are empty, no check is necessary.) This is a slightly
modified but equivalent version of the definition presented in [7].

If the forbidding context is empty for every rule, we speak about a random-
context grammar without appearance checking, otherwise the grammar is with
appearance checking. For the sake of brevity we will refer to a random-context

572 Judit Csima

grammar with appearance checking and with A-rules as a random-context grammar.
The generated language of a random-context grammar consists of all the words
which can be generated in some steps from axiom S. The class of languages which
can be generated by random-context grammars is denoted by RCf:C
Now we present the definition of an extended simple eco-grammar system, as
introduced in [6).

Definition 2.1 An ezxtended simple eco-grammar system is a construct
Y= (Vg,Pe,R1,...,Rn,w,A), where

e Vg is a finite, non-empty alphabet,

o Pg is a complete set of CF rules over Vg, 1.e. for each letter of Vg there
exists at least one rule in Pg with this letter in the left-hand side,

e R; is a non-empty set of CF rules over Vg for 1<i<n,
o we€ Ve", and
e AC Vg.

In this construct Vg is the alphabet and Pg is the set of the evolution rules of
the environment. The ith agent is represented by R;, 1 < ¢ < n, its set of action
rules. The current state of the environment, which is also the state of the eco-
grammar system, is the current sentential form. String w is the initial state. A is
the terminal alphabet and shortly we will see that only words over A are in the
generated language of %.

The system changes its state by a simultaneous action of the agents and by a
parallel rewriting according to Pg.

Definition 2.2 Consider an eztended simple eco-grammar system
Y =(Vg,Pg,Ry,...,Ry,w,A). We say that = directly derives y in ¥ (with = €
Vet and y € Vg*, written as £ =25 y), if

oz = 11212975 TpZnTnyl, With Z; € VE; T; € VE*, 1 < i < n, and
1<j<n+l,

* Y= DWW YnWnlni with y;,w; € VE*, 1 <i<n,and1 <j<n+l,

e there exists a permutation of the agents, namely R],,R]z,...,Rjn, such that
Z—)w,ER,, for 1<i<n, and
3 s
o T, =\ orz; =>Ey,-, for 1 < i< n, where E = (Vg, Pg,w) is the OL system
of the environment.

We denote the transitive and reflexive closure of =2y by %E

The generated language consists of the words over A which can be obtained in
some derivation steps starting from the axiom.

Definition 2.3 Consider an estended simple eco-grammar system
Y =(Vg, Pg,Ry,...,R,,w,A). The generated language of X is the following:
= {U S A‘Iwg}z'v}

Two remarks on variants of simple eco-grammar systems o973

3 Extended tabled simple eco-grammar systems

In this section a modified version of an extended simple eco-grammar system, called
an extended tabled simple eco-grammar system, is investigated. In such a system
the environment can be represented by more than one 0L system. We show that
this device is as powerful as Turing machines.

Definition 3.1 An extended tabled simple eco-grammar system (an ETEG system,
for short) is a construct ¥ = (Vg,Tg,Ry,...,Rn,w,A), where

o (Vg,Tg, A, w) is an ETOL system, and
e R; is a non-empty set of CF rules over Vg for 1<i<n.

Here Vg, R;, w and A have the same meaning as in Definition 2.1, namely they are
the alphabet of the system, the production sets representing the agents, the axiom,
and the terminal alphabet. Tg is the set of tables of the environment.

In an extended tabled eco-grammar system the environment can choose a 0L
system in each derivation step to perform a parallel rewriting.

Definition 3.2 Consider an extended tabled simple eco-grammar system
X =(Vg,Tg,Ry,...,Rp,w,A). We say that = directly derives y in ¥ (with z €
Vet and y € Vg*, written as z ' =% 5, y) if 2555, y for the extended simple eco-
grammar system ; = (Vg, T, Ry, ..., Rp,w,A) for some 1 <i< k. B
We denote the transitive and reflexive closure of "=2%° 5, by ‘=25 ;
Definition 3.3 The generated language of an extended tabled simple eco-grammar
system X = (Vg,Tg, Ry, ..., Ry,w,A) is the following:

LE)={veA* |w'= v}
The class of languages which can be generated by an ETEG system with n agents
is denoted by L(ETEG,\).

Now we present an example to illustrate the power of ET EG systems.
Example 3.1 Let £ = (Vg, Tg, R1,w,A) be the following ETEG system:
L4 VE = { S,B,N,D,S’,a,b };

o T ={T1,T2,T5,T4 }, where
Ty ={ S—D,N-N,a—a,b—b,D—D, S-S5 , BB},
T, ={S5-2A N-N,a—a,b-b,D-D,S'-D,B—B },
T3 ={S—>D,N->N,a—a,b—b,D—-D,S'-D,B—bB },
Ty={S—=D,N-N,a—a,b=b,D—>D,S'-D,B-b },

o R ={S—aBNS,N=)\,S8 =)},
e w=2S5Y, and

574 Judit Csima

s A={ab}. -

We show that the generated language of this system is
L(Z) = { (@")™ | 1<n<m}U{A).

First we note the following: S can be deleted only by the environment and
S’ can be deleted only by the agent. These two events must happen in the same
derivation step because of the following reasons. If the environment deletes S, that
is uses table T, and the agent does not apply the rule S'—)\, then the environment
rewrites S’ to D, which “blocks” the derivation since this D will never disappear
from the sentential form. If the agent deletes S’ in a derivation step and the
environment does not delete S, that is does not use table T3, it introduces symbol
D again. ' ‘

We ‘have seen that S and S’ disappear from the sentential form in the same
derivation step. Before this step the agent has to use the rule S—aBNS, or other-
wise the environment introduces a D; the environment has.to use the first table T},

or otherwise S' would be rewritten to D. Thus either the derivation is SS’ t~=e§°)\,

or the first few steps are SS' ‘=% *(aBN)mSS’ tégo(aBN)m. After these steps
the only possibility for the agent to work is by using rule N—\. During these steps
the environment can use any of its tables, therefore it can introduce b letters before
all the B’s or it can rewrite either all B’s to B or all B’s to b’s. Because there
are only m symbols N in the sentential form, the derivation lasts exactly m more
steps. Hence at the end of the derivation, when there are no more N symbols left,
there are at'least one but at most m symbols b after each a.

The above explication showes that all non-empty generated words are of the
form of (ab™)™, 1 < n < m. It follows from the construction that all words of this
form as well as the empty word, A, are in the generated language, which is thus
indeed: .

L(E) = { (@™ [1<n<m}ufA).

This example shows that even a very simple extended tabled simple eco-
grammar system with only one agent is able to produce a quite complicated lan-
guage, namely a language which is not an ET0L one (see [8]).

We show that the generative capacity of these systems reaches that of Turing
machines. This is a direct consequence of the following lemma.

Lemma 3.1 RC), C L(ETEG, c0)

Proof Let G = (N, T, S, P) be a random-context grammar. Without loss of gener-
ality, we can asssume that the rules in P have the form (C—ea, @, R), with C € N,
a € (NUT)", card(Q) < 1, and card(R) < 1 (see [7]). Moreover, we can assume
that there are no rules with @ = R, R = {C} or Q = {C}, because rules of the
first two types are not applicable and in the last case the rule is equivalent to the
rule (C—z,0, R).

We denote by 7 the number of rules in P and by V the set NUT. The rules of
P are enumerated as p; = (C;—ay, @, R;). We will refer to the components of the
ith rule as Cj;, a;, @Q;, and R;.

Two remarks on variants of simple eco-grammar systems 5975

Now we will construct a simple extended tabled eco-grammar system
¥ = (Vg,Tg, R1,w, A) such that L(Z) = L(G).
Let
e Ve=VU{X,i|XeV,1<i<r}
u{[X,i|XeV,1<i<r}
U{D,U,Z,Z'} '
U{lU,i]|1<i<r,Q: =0}
u{[U',d|1<i<r}u
U{0,i11<i<r,Qi#0},
where D, U, Z ¢V,

.. TE = {T(i),T’(.,;),T”(i) I 1.S 1 S 7‘}, where

T(i) = {X—)[X,Z] | Xe V}
U {U—{U,1]| Q: =0}
for 1< <,

Tl(i) ={[X, Z]-’[X’)Z} | X eV, {X} # Ri}
U {[B,i]=D | {B} = Ri}
U{Z'-2'}
u{[U,4]-[U",i] | Q: # 0}
for1<i<r,

T"(i).= {[X',i]—)X | X € V}
U{Z'=Z,2=\[U,{]-U,[U,i=A}
for1<i<r, '

e Ry ={Z-2'}
UA{[U,d]=[U",d] |1 <i<7,Q; =0}
U{[4,i]=[4",i]|1<i<rQ; = {A}}
u{[C",i]>a;|1<i<r},

e w=SUZ, and
e A=T.

Those symbols which are not mentloned above in the tables are rewrltten into
D; these rules make the tables complete. : »

We introduce different alphabets according to the rules of P in the following way.
These alphabets are multiplied versions of V': for the ith rule of P we have alphabets
{[X,{]{ X € V} and {[X',7] | X € V}. Moreover, we have some special additional

576 Judit Csima

symbols in the ETEG system in order to coordinate the derivation. These are
{D,U,2,2 U{[U"i] | 1< < r}U{[U,i] | 1< <mQi =0} U{[D,|1<i<
r,Q:i # 0}. By D the derivation is “blocked”: if this symbol appears, the derivation
never results in a terminal word. Symbol U allows the agent to work when Q; = 0.

First we show how a derivation step of G can be simulated by £. During the
simulation the sentential form has the form wU Z, where thé word w corresponds to
the sentential form of G, while U and Z coordinate the simulation. Let us suppose
that in a derivation step with sentential form z rule (C;—a;, @i, R;) is used. The
simulation in the ETEG system is as follows. '

In the first step the environment applies table T(,-)'to rewrite zU into [z, {][U, 1]

or into [z,4)[U, i] depending on whether or not Q; = ; the agent rewrites Z into
Z'. This is the only role of Z: it allows the agent to work during the first step of
the simulation.

In the second step the agent applies the rule [U,:]—[U’,1] if Q; = 0 or applies
the rule [A,1]—[A4',4] if Q; = {A}. The environment rewrites the remaining letters
by using table T";).

In the third simulation step the agent applies its rule corresponding to the rule
of G, namely rule [C’;,i|—a;, while the environment. rewrites the remaining letters
by using table T"(;. During this last step, the environment can delete the special
symbols Z' and [U’, 1], thus allowing the possibility of finishing the derivation if the
sentential form would be a terminal word. -

Now we have showed that we can simulate the derlvatlon steps of the random-
context grammar. It follows from the construction of the simulating ETEG system
‘that the behaviour described above is the only one which can result in a terminal
word. The only possibility to start a derivation-from a word over V U {U, Z} is
to use one of the tables T(;) and the rule Z—Z' of the agent. If the sentential
form contains some forbidding letters from R;, the environment blocks the deriva-
tion in the next step by introducing a D; if the permitting symbol referring to the
non-empty set ¢; does not appear in the sentential form, the derivation is blocked
because the agent cannot work. (It cannot use the other rule [U, i]—[U’, 1], because
this symbol appears in the sentential form iff @; = @.) In the next step the agent
has to use the rule [C';,i]—ca; and the environment has to use table T"(;y. These
three consecutive steps simulate the application of one of the rules of P. D

Using the fact that RC}, = RE and the fact that we can construct a Turing
machine simulating an extended tabled simple eco-grammar system we obtain the
following theorem:

Theorem 3.1 L(ETEG,00) = RE

4 Weak extended simple eco-grammar Systems

In this section another variant of extended simple eco-grammar systems is studied:
‘the weak extended simple eco-grammar system. This variant has the same compo-

Two remarks on variants of simple eco-grammar systems 577

nents as the extended simple eco-grammar system but it works in a different way.
Informally speaking, in a weak system the derivation is not blocked if there are
some agents which cannot perform any action.

Compared to [11), the definition of a weak rewriting step is slightly different.
There, in a weak rewriting step, the derivation is blocked if no agent can work,
whereas here we allow this possibility.

Definition 4.1 A weak extended simple eco-grammar system (a wEEG system, for
short) is a construct ¥ = (Vg, Pg, Ry, ..., Ry, w,A), where

e all the components are the same as in Definition 2.1.

In o weak extended simple eco-grammar system % = (Vg, Pg,Ry,...,Rp,w,A) z
directly derives y (with z € Vgt and y € Vg*, written as 2 "= 5 y) if

o £ =2,212372 Tp ZpTptr, with Z; € Vg, z; € V*, 0< k< n, 1 <i <k,
and 1 <j<k+1,

* Y = y1unYows YkWkYk+1, With y,w; € VE', 0 <k <n, 1 <4<k, and
1<ji<k+1,
o there exists a permutation of some agents, namely R;, R;,, ..., Rj,, such that

Zi—w; € Ry, for 1 <i <k,

{dom(R) |1 <t < m,t# i, for 1 <i < k}Nalph(z122 - Tpy1) =0, and

oz, =AorziBpy;, for 1 <i<k+1, where E = (Vg, Pg,w) is the OL
system of the environment. :

We denote by YL "5 the transitive and reflexive closure of “=%5° 5,

That is, in a weak extended simple eco-grammar system we choose some agents
to perform a common action in the following way: the chosen agents can perform
an action together and there is no symbol among the remaining letters where any
of the other agents could act. The chosen agents perform their actions and the
remaining letters are rewritten by the environment. In the particular case when
there is only one agent in the system, this definition implies that the agent has
to work if it is able to but if no letter can be rewritten by the agent it is the
environment itself that continues the derivation.

Definition 4.2 For a weak extended simple eco-grammar system
= (Vg,Pg,Ry,...,Rn,w,A) the generated language is the following:

L(®) = {v € A*| w "= L v},
We denote by wEEG(n) the class of languages which can be generated by weak
extended simple eco-grammar systems with n agents.

In the following we show that wEEG systems can generate all recursively enumer-
able languages. The result is based on the following lemma.

578 Judit Csima

Lemma 4.1 RC), C wEEG(1)

Proof For a random-context grammar G = (N, T, P,S) we will give a weak ex-
tended simple eco-grammar system ¥ = (Vg, Pg, Ry, A,w) such that L(G) = L(X).

First we present the definition of this system ¥ and explain its functioning.
Similar to Lemma, 3. 1 the notation V stands for N UT, r denotes the number of
rules in P, the rules in P are enumerated as p; = (C;—a;, @4, R;), we assume there
are no rules with Q@ = R, @ = {C} or R = {C}, and we refer to the components of
the ith rule as C;, a;, Q,, and R;.

Let

o Vg=VU {[X:%]HXEV,lSiSTalSJ55}
U{[2,4,4),[2,i,K]|1<i<n1<i<5,1<k <4}
U{[Ci,i,k]|1<i<r1<k<4}
U{[U,4,4]11<i<rQ:i=0,1<j <2}

U {D}
U{[D,7,3] |1 <i<r} whereU,D,Z ¢V,

o Pg={X,i-1,52[X,i,1]|]2<i<r,X eVU{Z}}
U {[X,r,5]=[X,1,1] | X e VU{Z}}

U{X,i,]=[X,5,2]|1<i<nX e VU{Z Z}}
U {[C;,i,1]=(C;,i,2] |1 <i <1}

U {[U,i,l]—-)[U,’i,2] | 1<i<rQi= w}

U {[X,3,2]-[X,i,3] | 1<i<r X e VU{Z,Z)}}
U {(Ci,i,21-[C,3,3] | 1 < i <)
U{lU,i,2]»D[1<i<r Qi =0}

U {[X,4,3]=[X,5,4] | 1<i<nX e VU{Z,Z}}
U {[C;,i,3]-[Ci,i,4] |1 <i<r)
U{[D,i,3»D|1<i<r)

U {[X i, 4]-[X,4,5]|1<i<nrXe€ VU{Z}}
U{[Zz4]—)[Zz 5111<i<r}
U{[Ci,5,4-[C,3,5] | 1 <i <r}
U{[X,i,5|»X|1<i<rXeVU{Z}}
U{X-D|X eVU{D}},

o Ry ={[2,i-1,5]-[Z,i,1}|2<i< 7}
u{[Z,r,5]-[Z,1,1]}
U{[Ci,i—1,5][Ci,3,1] |2 < i <7, Qs # B}
U {[01,7‘, 5]—)[01, l, 1] | Ql # 0}
U {[Ciyi — 1,81(C5,4, 10,4, | 2 < i <7, Qs = 0}
U {[Cy,r,5]=[C1,1,1][U,1,1] | @, = B}

U{lZ,i,1]-[Z,4,2]|1<i<r}

Two remarks on variants of simple eco-grammar systems 279

U {[B,i,1]=D|1<i<r,{B}=R; # 0}

U {[4,4,2]~[A,1,3][D,5,3] | 1 <i <7, {A} = Q; # 0}
U{[U,i,2]=[D,,3] | 1 <i <7, Q; = 0}
U{(Z,i,2-[Z,i,3] | 1<i<r}

U {[D,i,3]A}
U{[Ci,i,3]2D [1<i<r}

U {[Ci,1,4]—0s,,5) | 1 < i < oy # A}
U{[Ci,i,4] oA |1 <i<rya; = A}
[

U{[Z,3,5]=A]1<i<r),
[] A:T, and
e w={[Sr5][Zr5]

The main point of the simulation is that we simulate the application of the rules in
their order from 1 to r, each time either simulating the rule or skipping the rule.
After having simulated or skipped the rth rule we continue with the first one.

We do the simulation of a rule by introducing five different alphabets for each rule
of G: for the ith rule we introduce the alphabets [V, 4, j] for 1 < j < 5. We start the
simulation or the skipping of the ith rule with a word over the alphabet [V, —1, 5],
then during the simulation we go through the alphabets [V,4,j] for 1 < j < 4, and
finish with a word over the alphabet [V, ,5]. Consequently we can finish the whole
derivation or we can continue with the next the rule. :

There are more additional alphabets for coordinating the simulation: the letters
[Z,%,7] and [Z,i,k] for1<i<r, 1<j<5,and 1< k <4 make it possible to
skip the ith rule of G; the symbols [@i, i, 7] let the agent simulate the ith rule of G;
the symbols [U, 1, 5] are introduced only if @; = 0 and make it possible to deal with
this case; the symbols [D,i, 3] ensure that the derivation is blocked if the agent
simulates the ith rule of G while the non-empty permitting condition is missing.

In the following, we first show how the application of a rule of G' can be simulated
and we also show how the application can be skipped. Then we show why the
construction of the above wEEG system guarantees that only those dérivations
that follow a derivation of the random-context grammar G result in a terminal
word.

Let us suppose that we want to simulate the application of the first rule of G:
(Ci—a1,Q1, R1) (the case of the other rules is similar) :and let us first suppose
that @; # 0. Before the simulation the sentential form in ¥ is over {{W,r,5] | W €
Vu{Z}}.

In the first step the agent “decides” whether the current rule (in this case the
first rule of G) will be simulated or will be skipped. Let us suppose that the rule is
to be simulated. In this case the agent uses the rule {C;,r ’5]—)[5’1, 1,1]. The other
letters .are rewritten by the environment, using the rules {[{X,r,5]—=[X,1,1] | X 6
Vu{Zz}}.

580 Judit Csima

In the next step the agent checks whether or not the forbidding context is present
in the sentential form. This is done in the following way: the agent introduces a D
if [B,1,1] is present (where {B} = R,), while otherwise the agent does not work
because [2 ,1,1] is not present in the sentential form. The environment increases
the second index of the symbols from 1 to 2 in this step.

In the third step the agent uses its rule [4,1,2]—[A4,1,3][D, 1, 3] for {4} = @Qs;
the environment increases the second indices from 2 to 3 in the other symbols.

In the fourth step the agent deletes [D, 1, 3] while the environment increases the
second indices from 3 to 4. In the fifth and final step the agent applies the rule
[C1,1,4]=[e1,1,5)] or the rule [Cy,1 ,4]—= A, which correspond to the first rule of
G} the environment increases the second indices. Therefore we obtain a word over
{[W,1,5] | W e Vu{Z}}.

If @, = 0, that is when the permitting condition is empty, the simulation
is different. While the environment does the same as in the previous case,
the agent applies different rules. The rule the agent uses in the first step is
[Ci,T, 5]——)[01,1, 1][U,1,1] and thus [U,1,1] is introduced. In the third step this
symbol is used to 1ntroduce [D,1,3] and from that point the simulation continues
in the same way as described above, that is when Q, # 0.

Now we show how we can do the skipping of the first rule (the case of the other
rules is the same). Let us suppose again that we have a word over the alphabet
{W,r,51 | W e VU{z}}.

The environment works in the same way as it did in the previous case, the only

difference is in ‘the behaviour of the agent. In the first step the agent chooses the
rule [Z,r, 5]—>[Z, 1,1], in the next step the rule [Z,1,1]—[Z,1,2], and in the third
step the rule [Z,1,2]»[Z,1,3]. In the fourth and the fifth step the agent no longer
has any rule to apply, hence it does not perform any action. By the end of these
five steps we have the same word as we had before, apart from the first indices in
the symbols: we have the same word over the alphabet {{W,1,5) | W € VU {Z}}.
" At this point the simulation or the skipping of the second rule can start and
can be.carried out in the previous manner. We can continue this process until the
last rule, the rth one, when we can restart the whole procedure with the first rule
again.

In order to finish the derivation, after having finished the simulation of a rule
of G the agent chooses the rule of the form of [Z,4,5]—A while the environment
rewrites the remaining letters according to its rules [X,1,5]—X.

Thus we have seen that L(G) C L(Z).

In the following we show that the eco-grammar system must follow one of the
sequences of steps presented above, or otherwise the derivation would never termi-
nate.

In the first step, when the sentential form is over [W,i — 1,5}, thé agent can
work because either the left-hand side of the current rule of G is present (and thus
the agent can rewrite [C;,7 — 1,5]) or the symbol [Z,7 — 1,5] can be rewritten. (At
the end of the proof we explain why we can suppose that Z has not yet disappeared
from the sentential form.) ' '

Two remarks on variants of simple eco-grammar systems 581

Therefore, in this first step the agent marks a place where it can perform the
application of the current rule or it can mark Z. If it marks a place for the current
rule in the next steps it must check the appearance of the forbidding and the
permitting context. The derivation can result in a word not containing letters D
only if the check is successful. This is done in the following way: the derivation is
blocked by the rule [B, i, 1}—D if the forbidding context is present, or by the rule
[@,i, 3]— D if the non-empty permitting condition is missing. In the last step the
agent must apply the rule corresponding to the rule of G.

Thus, we have seen that if the agent decides to mark a place for applying the
current rule, then-he must check whether or not the rule is applicable, and he must
simulate it during the five steps. If the agent chooses the other possibility and
marks Z, then in the next two steps he must increase the second index of [Z,1, j]
from 1 to 2 and from 2 to 3. In the next two steps the agent cannot work. Hence
if the agent chooses to mark [Z,1, 5], then the work of the whole system follows the
strategy of skipping the current rule, or otherwise the derivation would be blocked.

As far as the end of the derivation is concerned, the environment has to apply
the rules of the form [X,4,5]—X for all the letters in the same derivation step, or
otherwise the derivation is blocked in the next step. It can happen that the agent
deletes Z before the end of the derivation but this fact does not allow any new
word to be generated, so we can safely assume that the deletion of Z happens in
the same derivation step as the rewritings [X, i, 5]—X.

We have seen the other direction of the inclusion, L(X) € L(G), which com-
pletes the proof of the lemma. O

Because RC), = RE and because weak extended simple eco-grammar systems
can be simulated by Turing machines, we obtain the following theorem:

Theorem 4.1 £{JEEG,0) = RE

5 Conclusions

In this article we presented two variants of extended simple eco-grammar systems.
In both cases we have found that the modifications lead to systems withlarge gen-
erative power: all recursively enumerable languages can be obtained in these ways
with only one agent.

The question of the generative power of the original model, the extended simple
eco-grammar system, remains open.

Acknowledgement
The author expresses her thanks to two anonymous referees who suggested a series
of improvements of the article.

582 Judit Csima

References

1] J. Csima. On extended simple eco-grammar systems. Acta Cybernetice,
13(4):359-373, 1998.

[2] E. Csuhaj-Varjy, J. Kelemen, A. Kelemenova, and Gh. Piun. Eco-Grammar
Systems: A Grammatical Framework for Studying Lifelike Interactions. Arti-
ficial Life, 3:1-28, 1997.

[3] E. Csuhaj-Varji and A. Kelemenova. Team Behaviour in Eco-Grammar Sys-
tems. Theoretical Computer Science, (209):213-224, 1998.

[4] E. Csuhaj-Varji, Gh. Piun, and A. Salomaa. Conditional Tabled Eco-
Grammar Systems. In Gh. P3un, editor, Artificial Life: grammatical models,
pages 227-239. Black Sea Univ. Press, Bucharest, 1995. '

[5] E. Csuhaj-Varji, Gh. Paun, and A. Salomaa. Conditional Tabled Eco-
Grammar Systems versus (E)TOL Systems. Journal of Universal Computer
Science, 5(1):252-268, 1995.

[6] J. Dassow and V. Mihalache. Eco-Grammar Systems, Matrix Grammars and
EOL Systems. In Gh. P&un, editor, Artificial Life: grammatical models, pages
210-226. Black Sea Univ. Press, Bucharest, 1995.

[7] J. Dassow and Gh. P3un. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, 1989.

[8] Grzegorz Rozenberg and Arto Salomaa. The Mathematical Theory of L-
systems. Academic Press, 1980.

[9] A. Salomaa. Formal languages. Academic Press, 1973.

[10] P. Sosik. Eco-Grammar Systems, Decidability and the Tiling Problem. In
A. Kelemenov4, editor, Proceedings.of the MFCS’98 Satellite Workshop on
Grammar Systems, pages 195-213. Silesian University, Opava, 1998.

[11] M. H. ter Beek. Simple Eco-Grammar Systems with Prescribed Teams. In Gh.
P&un and A. Salomaa, editors, Grammatical Models of Multi-Agent Systems,
pages 113-135. Gordon and Breach Science Publishers, 1999.

Received December, 1999

Acta Cybernetica 14 (2000) 583-595.

On Kleene Algebras of Ternary Co-Relations

Igor Dolinka *

Abstract

In this paper we investigate identities satisfied by a class of algebras made
of ternary co-relations — contravariant (“arrow-reversed”) analogues of bi-
nary relations. These algebras are equipped with the operations of union,
co-relational composition, iteration, converse and the empty co-relation and
the so-called diagonal co-relation as constants. Our first result is that the
converse-free part of the corresponding equational theory consists precisely
of Kleenean equations for relations, or, equivalently, for (regular} languages.
However, the rest of the equations, involving the symbol of the converse, are
relatively axiomatized by involution axioms only, so that the co-relational
converse behaves more like the reversal of languages, rather than the rela-
tional converse. Actually, the language reversal is explicitely used to prove
this result. Therefore, we conclude that co-relations can offer a better frame-
work than relations for the mathematical modeling of formal languages, as
well as many other notions from computer science.

1. Introduétion

The study of the equational theory of Kleene algebras dates back to sixties, and’
since then it has a vivid history. However, the term ‘Kleene algebra’ is of more
recent date, while the above equational theory was in the first place considered as
the collection of regular identities: pairs of regular expressions denoting the same
language. It was Redko [23] who proved first that regular identities have no finite
base of equational axioms, but that result became available for a larger audience
only with the famous booklet of Conway [6] in 1971. Conway’s model-theoretic
argument is probably the best known proof of Redko’s result so far.

What is even more important, Conway’s ideas eventually led to further progress
in the field. However, the explicite determination of a nontrivial equational base-
of Kleene algebras had to wait until the last decade, when Krob [19] and Bloom
and Esik [3] solved the problem: the axiomatization from [19] was based on' the
discovery of a beautiful connection between regular languages and finite groups,
while the one in [3] came out from some deep investigations in category theory and -

*Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradoviéa 4, 21000 Novi Sad,
Yugoslavia, e-mail: dockieQunsim.ns.ac.yu '

583

584 Igor Dolinka

its applications in computer science (see [2]). These approaches were quite recently
unified in [5, 12].

It was realized in the late seventies by relation algebraists that language algebras
and Kleene relation algebras are very closely related: they satisfy precisely the same
(regular) identities, so that both of these two classes generate the same variety (of
Kleene algebras). Moreover, the algebras of regular languages turned out to be just
the free Kleene algebras, as proved by Kozen [18] in 1979 (although this result was
originally formulated in the context of dynamic algebras).

But when one considers the operations of the converse of relations and the rever-
sal of languages, respectively, the above symmetry between languages and relations
is lost. Namely, the involution axioms suffice to capture the equational properties
of the reversal of languages [4], while for the converse of relations one should involve
an additional identity [13], which does not hold for languages. Therefore, relations
are not ‘good enough’ to model the language reversal.

On the other hand, the concept of a co-relation is quite new. Yet, it belongs
to the collection of ‘co-algebraic’ phenomena, which have been studied for some
time. Roughly speaking, the main idea is to dualize the notion of an algebra and
the main algebraic constructions. The pioneering papers along this line were the
ones of Eilenberg and Moore [11] and Kleisli [17], but it was Aczel and Mendler [1]
who opened new directions in applying co-algebra in computer science. With this
approach at hand, they managéd to model (binary) trees, different deterministic
and nondeterminstic transition systems, etc. Since then, co-algebraic concepts were
widely applied e.g. in object-oriented programming [24] and program verification
[14]. For basic notions of co-algebra, see [15, 25].

In 1971, Drbohlav [10] started to investigate co-operations on a set, which one
obtains from the notion of an operation by reversing arrows and replacing products
by coproducts in the category of sets. Later, this inspired Csakany [9] to introduce
clones of co-operations (see also [20]). But as the classical clone theory needs its
‘relational part’ in order to develop full strength, so the theory of clones of co-
operations needs appropriate co-objects as invariants. Hence, Pdschel and Ro8iger
[22] proposed the concept of a co-relation. While an n-ary relation on X can be
thought of as a family of n-ary vectors over X, that is, functions n = X, an n-ary
co-relation on X is a collection of functions X — n (n-ary co-vectors on X), which
should be imagined just as colourings (partitions) of X in n colours (into n classes).

In [20], the operation of composition was defined for arbitrary co-relations;
however, the result of the composition of two n-ary co-relations is again an n-
ary co-relation if and only if n = 3. Of course, binary co-relations quite clearly
correspond to unary relations (subsets). Thus it is natural to expect that the role
and importance of binary relations is inherited by ternary co-relations on a set.

In this paper, we consider algebras consisting of ternary co-relations, endowed
with the operations of union, composition, iteration (in the sense of the complete
union of composition powers), co-relational converse and with two distinguished
constants. Our main result is that such algebras generate the same variety as the
language algebras equipped with the operations of union, concatenation, Kleene
‘star, reversal and the empty lanugage and the language containing the empty word

On Kleene Algebras of Ternary Co-Relations 585

only, as constants. In particular, it follows that the converse-free reducts of these
co-relation algebras are indeed Kleene algebras, justifying the title of the paper.
Therefore, we are going to eventually conclude that, from the equational point* 6f
view, co-relations model (the operations on):languages better than relations. "~ °
For basics of universal algebra we refer to [21] and for the theory of binary
relations to [16]. The same references hold for all undefined notlons throughout the

paper.

2. Preliminaries

2.1. Kleene algebras
Let X be any set. Consider the following algebra:

Rel(X) = (P(X x X),U,0,™,0,Ax),

where U is the union, o is the composition of relations, ' is the formation of the
reflexive-transitive closure, while Ay is the diagonal relation on X. The algebra
Rel(X) is called the full Kleene algebra of relations on X. Any algebra which
can be embedded into some full Kleene relation algebra is called representable (or
standard) Kleene algebra. The variety generated by all algebras Rel(X) we denote
by KA. A Kleene algebra is just any member of KA.

Beyond algebras of relations, the most important example of Kleene algebras is
the language algebra over an alphabet ¥:

Lang(%) = (P(2"),+,,",0, {A}>

where ¥* is the free monoid on ¥ (which consists of all words over X), + denotes
the union, - is the concatenation, * is the Kleene star (iteration), and finally, A
denotes the empty word. The fact that language algebras indeed belong to KA is
a consequence of a more general observation.

Lemma 1. Let M be any monoid. Then K(M) = (P(M),U,-,*,0,{1}), where
- is the complez multiplication, * the generation of a submonoid, and 1 the unit of
M, is a Kleene algebra.

Proof (in outline). Consider the mapping £ : P(M) — P(M x M) defined for
every A C M by

£(A) = {(z,20): € M,a€ A} = | ga,
a€A

where g, denotes the right translation of the monoid M. It is a routine matter to
show that £ is an embedding of K(M) into Rel(M). O

By taking M = X¥*, from the above lemma we 1rnmed1ately obtam that
Lang(X) = K(Z*) is a Kleene algebra for any alphabet Z.

586 Igor Dolinka

The elements of the subalgebra of Lang(X) generated by the languages of the
‘form {a}, a € X (or, equivalently, by all finite languages), are called the regular
languages over . This subalgebra is denoted by Reg(X). Now, the algebras of
regular languages have the following remarkable property.

Proposition 2. (Kozen, [18]) Reg(X) is the free Kleene algebra on X, freely
generated by the map a — {a}, a € .

Thus, it follows that an identity p = ¢ holds in KA if and only if the regular
expressions p, g represent the same (regular) language. Also, the above proposi-
tion implies that if we denote by £ the variety generated by all language algebras
Lang(¥), then £ = KA.

We are not going to state here the well known nonfinite axiomatizability result
for KA, due to Redko [23], nor the explicite axiomatizations given by Krob [19]
and Bloom and Esik [3]. However, when one is concerned with Kleene algebras or
relations and languages, it is quite customary to consider one more operation. First,
we have the natural operation of the reversal of languages. If w = a1a3...a, € *
is a word, we define

wY =ag...0201.
Now we have
LV ={w: welL}

By adding the opératibn of the reversal of languages to Lang(X) we obtain the
algebra Lang¥(X). The variety generated by algebras of this form we denote by
Ly,

Proposition 3. (Bloom, Esik and Stefanescu, [4]) The variety LV is azioma-
tized relatively to KA by the involution azioms, that 1s, by the following identities:

(z+y)Y = zV+yY, (1)
(zy)" = y'zY, (2)
()Y = (zV), (3)
(=) = g, (4)

oV = 0, (5)
v =1 (6)

There is one more way to define an involutorial operation on language algebras,
which can be useful in some applications. For an alphabet X, let £’ denote a
bijective copy of &, &' = {a': a € £}. For w = b1b2...b, € (XU X')* define

w' = b, ... bybl,
where for all 1 <i < n,

a, bj=acX,
a, bj=ad €.

On Kléene Algebras of Ternary Co-Relations 587

Finally, let Lang’' (X, %') be the language algebra Lang(X U ¥') endowed with the
unary operation ', where, of course, L' = {w' : w € L}.

By Proposition 4.3 and Theorem 5.1 of [4], algebras Lang’' (X, ¥') also generate
the variety £V. ' _

On the other hand, the operation which extends Kleene algebras of relations is
the converse: ’

0¥ = {{y;3): (a,) € o).

By equipping the algebra Rel(X) with v, we obtain the algebra Rel¥(X). All
algebras of the latter form generate the variety X.AY, which turns out to be a
proper subvariety of £V. :

Proposition 4. (Esik and Bernétsky, [13]) The equations (1)-(6) and
z+azzVr =23z (7)
aziomatize the variety KA relatively to KA.

Therefore, we may conclude that the equational properties of the language re-
versal are not faithfully modeled by the relational converse and hence, it is natural
to look after a different setting which would allow to capture those properties,
preserving at the same time the Kleenean equations.

2.2, Co-Relations

Clearly, an n-ary relation on X can be thought of as a collection of n-ary vectors
over X, that is, functions n — X. Dually, an n-ary co-relation on- X is a set
consisting of n-ary co-vectors, i.e. of functions X — n. Of course, the notion of a
n-ary co-vector is equivalent to the notion of a colouring of a given set in n colours.
In particular, a ternary co-relation is a family of functions X — 3. It is convenient
to represent a ternary co-vector f : X — 3 through the corresponding partition
of X into A = f~1(0), B = f~(1) and C = f~1(2), so that f is written as
(A, B,C)V (we use the symbol V to indicate that we are not dealing with a ternary
vector whose elements are A, B,C). In order to introduce a more intuitive (and
visualisable) terminology, we are going to call the colours 0,1, 2 (i.e. the elements
from A, B, C) respectively red, green and blue.
In this paper; we deal with algebras of ternary co-relations of the form = -
CRelu (X) = (P(sx)’ UY .’ *, U’ @, EX)

(the reduct without U is denoted by cRel(X)), where the operations and the con-
stants are defined below. First of all, U is simply the set-theoretic union, while the
constant € x is the co-relation consisting of all green-free colourings of X, that is,

ex ={(4,0,X\ A7 : ACX}.
The definition of the co-relational composition e is the following;:

peo = {(A,BUE,F)Y : (3C,D C X)({4,B,C)¥ € oA(D,E,F)¥ € oAC = X\D)}.

588 Igor Dolinka

In other words, two co-vectors can be composed if the blue set of the first one
coincides with the non-red part (green+blue) of the second one (or, equivalently,
red+green elements of the first are precisely the red elements of the second co-
vector). If that is the case, green elements are added together, the red- colour is
copied from the first and the blue from the second factor.

Since one can define arbitrary unions of co-relations, the unary operation * is
just the co-relation analogue of the reflexive-transitive closure of relations, or of the
Kleene iteration. If for a ternary co-relation g and n > 1 we define

*

g"=ge...0p

n

ot =]

n>0

and p° = ex, then

' Finally, the co-relational converse ! is defined as the interchanging of the red
and the blue colour:

¢? ={(C,B,A)" : (4,B,C)Y € g}. -

In the sequel, we shall need the following fact (whose proof is omitted as being
immediate).

- Lemma 5. For any set X, the algebra cRel"(X) satisfies the identities (1)-
(6).

' However, note ﬁhat for all nonempty X, cRel"(X) does not satisfy (7), because
for o = {(0,X,0)V} we have g e g” e g = 0.

3. The Results

First of all, we prove that the co-relation algebras cRel(X) are Kleene algebras.
Moreover, all such algebras are representable.

Proposition 6. For any set X, the algebra cRel(X) is isomorphic to a sub-
alegbra of Rel(P(X)).

Proof. Define a mapping © : P(3%) - P(P(X) x P(X)) by '
O(0) = {(4,AUB): (4,B,C)" €o}.

It is immediately clear that © is injective and completely additive. It remains to
prove that for all o, C 3% we have O(pe o) = O(p) o O(c) (for then it follows
from the the complete additivity that we have @(g*) = (0(g))™).

Indeed, let (A, B) € ©(gea). Clearly, this is the same as saying that A C B and
(A,B\ A, X\ B)Y € peo. The latter condition is just equivalent to the existence of

On Kleene Algebras of Ternary Co-Relations 589

B1,B,,C,D C X such that C = X\ D, (4,B;,C)V € 9, (D,By, X\ B)Y € 6 and
B1UB,; = B\ A. Note that from here C can be eliminated, namely C = X\ (AUB,),
so that we arrive at (A4, AU B;) € O(p) and (AU By, AU B, U By) € 0(0),
where By U B = B\ A. But recall that A C B, so that (4,B) € O(peo) is
the same as (A,AU B;) € ©(p) and (AU By, B) € ©(0) for some B; C B, ie.
(A, B) € ©(p) 0o ©(g), which finishes the proof. O

The combined effect of Lemma 5 and the above propositic'mAis just as follows.
Corollary 7. For all X, cRel”(X) € LV.
Now let ¥ be an alphabet, z € ¥, and let

w=aay...a, € (BUL)*

be any word (¥’ is, as in the previous section, a bijective copy of I). Define a
mapping %, : & — P(32) (where we use the following notation: n = {1,2,...,n}
and 0 =) by :

Yu(z) = {(i=1,{},2\)V : as=2}U{{n\i{},i=D": a;=2'}.

Since by Proposition 4.2 from [4] we have that Lang'(Z, %) is the free object
on ¥ in the category of completely idempotent semirings with involution (to which
cRel”(X) certainly belongs, for all X), the mapping defined above can be extended
(by identifying z and {z} for all z € £) to a morphism ¥, : Lang'(Z,%') —
cRel"”(n) (recall that n = |w]).
It is not difficult to see that the following assertions hold:

(@) Tu({w}) = ¥u({ar}) .. Tu({an}) = Yu(ar) .. Pulan) = {(0,2,0)V}.

(b) ¥,({A}) = en. In particular, U({A}) =& = {(0,0,0)V}.

(c) If u is a nonempty subword of w, say u = a; .. .a; , then, similarly as in (a),

Ty({u)) = {(i=1,j\i=1,n\)"}
Otherwise, ¥, ({u}) = 0. ‘

(d) If L is a language over L U X', then
U, (L) = Uy({u: uis asubword of w such that u € L}).

Therefore, for any word w, we have the following equivalence:
weL < (B,n,0)Y € ¥,(L). (8)
Finally, let
¥:Lang'($,5) > [cRel”(w))
we(XuL’)*
be the target tupling of the morphisms ¥,,, that is, the (unique) function satisfying

the condition ¥ o 7, = ¥,, for all w € (XU X')* (where 7, is the projection of the
above direct product corresponding to w).

590 Igor Dolinka

Proposition 8. ¥ is an embedding of completely idempotent semirings with
involution (and thus, of Kleene algebras with involution).

Proof. Since all functions ¥,, are morphisms of completely idempotent semirings
with involution) it suffices to prove that ¥ is injective. But this easily follows from
the equivalence (8), because if Ly, Ly are two different languages over £ U ¥’ and
wo € L1\ L2, no = |wo|, then by (8) we have that (§,n0,0)¥ € Uyo(L1) \ Tuyo(L2).
Hence, Uy, (L1) # Wuo (L2), and so (L) # ¥(Ls). m]

As the algebras Lang'(Z, ') generate the variety £V, we have just proved

Theorem 9. The variety generated by all algebras of co-relations cRel”(X)
coincides with LV .

Hence, we may say that the equational behaviour of the language reversal is
modeled by ternary co-relations.

On the other hand, it is interesting to see how one obtams Kleene algebras of
relations from those of co-relations, provided that we drop the converse operation.
It turns out that we do not need the (slightly cumbersome) construction of the
direct product: we shall prove that Rel(X) € HS(cRel(w x X)) for all X, i.e. that
Rel(X) is a quotient of a subalgebra of cRel{w x X). It is worth noting that wx X
is just the w-copower of X (coproduct of w copies of X) in the category of sets.

First of all, choose a linear order < on X, so that (X, <) is a chain. Further,
define a linear order relation < on w x X as follows: .

(k,z1) X ({,z2) ifand only if k < Lor k =¢, z; < zs.
A ternary co-vector over X (3-colouring of X) of the form c&¢ = (4,B,C)V,
A = {{n,2): (n,z) 2 (k,u)},

B = {{n,z): (k,u) < (n,z) < (¢0)},
C = {{n,2): ({v) < (n,z)},

where (k,u) <X (£,v), we call a cutting of the set w x X. Now for m € w let
Xoy ={ckl: - k=m}.

Note that x3 , is nonempty if and only if u < v.

A ternary co-relation on w x X is a closed set of cuttings if it is representable as
a union of co-relations of the form xi7,. Alternatively, we can define a closed set
of cuttings as a family ¢ of cuttings satisfying, for all u,v € X, the condition

(Fpgcw) et € o = (Vnew) it g p

Finally, we call a ternary co-relation on w x X good if it is a union of a closed-set
of cuttings and a green-free co-relation (that is, a subset of €,xx) which contains
no cuttings. The set of all good co-relations on w x X is denoted by G(X).

On Kleene Algebras of Ternary Co-Relations - 591

Lemma 10. G(X) s the universe of a subalgebra G(X) of cRel{w x X).

Proof. First of all, it is clear that G(X) is closed for arbitrary unions and that
0 € G(X). Also, euxx € G(X), because

EuxX = (U Xzz> UE

zeX

where €’ is the set of all green-free co-vectors over w x X which are not cuttings.
Hence, the lemma will be proved if we show that the composmon of two good
co-relations remains good.

Therefore, let

01

(U Xug ,v.) Uer,
iel

U XUJ!UJ Ues,
\JjeJ

il

02

where £1, €, are green-free co-relations containing no cuttings, and I,J are d1s30mt

- Since e is completely distributive over U (recall Proposition 6), we have

01002 = U (Xarus ® Xuyo;) U(U(X:Z‘,v-'°52)>u U(Ei.‘XTj{W) U(eyoe2).

GhgYeTxJ iel jeJd

It is easy to see that the following holds:

k+¢ —
Xk . XZ — Xu,t , V=2,
u,u z,t 0’ v # z.

Also, note that a co-vector which is a cutting can be composed (from the left or from
the right) with a green-free co-vector only if the latter is a cutting, too (because
the blue part of the considered green-free co-vector must coincide either with the
green+blue part, or with the blue part of the cutting which it is composed with).
Thus for all u,v € X and m € w we have

- m
Xy ®€r=€10Xy, =0.

Finally, it is not difficult to see that the composition of two green- free co-relations
coincides with their intersection (because two green-free co-vectors can be composed
if and only if they are equal), s

E10E2 =€ ﬂsz,

which is a green-free co-relation containing no cuttings. We conclude that 01802
is a good co-relation.- B v .]

592 Igor Dolinka

Now define a relation = on G(X) by
o1 = o2 if and only if (Vu,v € X)((Fk €w) x5, C o1 & (F€w) x5, C 02)-
Proposition 11. The relation = is a congruence of G(X) and
G(X)

Proof. Define a mapping T : G(X) = P(X x X) by
Y(o) = {(u,v): Bkew) xs, Co}

It is obvious that the kernel of Y coincides with =. Thus it remains to prove that
T is a surjective morphism of complete semirings.
First, for 0 C X x X define
Os = U X,l_,,u‘

(u,v)€a

= Rel(X).

According to the abgve definition, Y(g,) = ¢. Hence, T is surjective.
Now we prove that T is completely additive. We have:

T(Uie] 0i) = {(’U., v): (3k € w) Xﬁ,v - Uie[Qi}'

But all the co-relations g; are good, which means that if ¢f%, € g;, then xI"P C o:.
Therefore, if o; Nx% , # 0, then x& , C g, and so x% , C ¢, 0 implies x% |, C 04,
for some ig € I. Clearly, the converse of the latter conclusion is true, which amounts
© to say that Y(U,e; 0:) = Uier T(0:)-

Finally, let o = 6; Ue; and go = 83 Ues be two good co-relations, where
01,0 are closed sets of cuttings and €1, ¢, are green-free co-relations containing no
cuttings. As seen in the previous lemma, we have

01002 = (61 062)U (e ®€2).
Now we have the following chain of equivalences:
(u,v) € T(or1002) & (Fkew) Xf,,,, Coeo
& (Gkew) Xﬁ,v C 600,
& (F2e€X)Bpgew)Xl.Ch Co A xI,C02C 02)
& (32 € X)({(u,2) € T(o1) A (2,v) € Y(o2))
< (u,v) € T(e1) © T(o2)

‘So, T(po1 ® p2) = T(01) o Y{p2), and the proposition is proved. a

Finally, it is well known that any direct product of full Kleene relation algebras
{possibly with converse) is a represetable Kleene algebra. Namely, such a direct
product (say, of Rel¥(X;), i € I) can be embedded into the full Kleene algebra of
the relations on [[;; X, the coproduct (disjoint union) of the base sets X;. In the
last assertion of this paper, we note that the direct product of co-relation algebras
cRel”(X;) can be in a similar fashion represented by co-relations.

On Kleene Algebras of Ternary Co-Relations 593

Proposition 12. Any direct product of algebras of the form cRel”(:X) is em:
beddable into an algebra of that form. More precisely, the direct product of algebras
cRel"(X;), 1 € I, is isomorphic-to a subalgebra of cRel"” (Lies X:); where HngX
denotes the coproduct of the sets X;.

Proof (in outline} In order to relax the notation, we may assume that the
sets X; are already disjoint and argue that [[;¢; cRel"(X;) is embeddable into
cRel”(X), where X = U;es Xi. Consider the mapping p: [Tic; P(3%) — P(3%)
given by

90((13:261 UQ:

iel

One shows in a routine way that (p is an 1n3ec1tve morphism of complete semirings
with involution. . . WO

Therefore, the embedding ¥ from Proposition 8 composed with the embed-
ding ¢ from the above proposition gives an embedding of the language.algebra
Lang’(Z,Y’) into cRel"(S), where S is a set of cardinality |Z| + Ro.

4. An Open Problem

The algebras cRel”(X), whose identities were investigated in this paper, turned
up as categorical duals of Kleene relation algebras (with converse). However, we
can consider another kind of co-relation algebras which arise from the analogy with
relation algebras of Tarski (by droping the operation of 1terat10n and taking all of
the Boolean operations): - :

cR(X) = (P(3¥),u,n,",0,3%,e," £x).

It is well known (Monk, 1964) that the variety generated by the corresponding re-
lation algebras is not finitely axiomatizable. Also, several explicite axiomatizations
are known. Here we raise the question whether the same is true for the variety
determined by algebras of the form cR(X). First of all, it would be interesting.to
give any nontrivial equational axiomatization for this variety (or any other descrip-
tion of its equational theory). Of course, we have proved in the present paper that
the equations of co-relation algebras cR(X) not involving N,~, 3%, are just those of
idempotent unitary semirings with involution. However, the equations of relation
and co-relation algebras which contain the above symbols are not equal; since the
famous Tarski identity: : '

(z¥o(@Ty) Ny =0,
does not hold for co-relations (see [20]).
Aknowledgement. The author is grateful to Dragan Masulof/ié for providing

a copy of [20] and for many valuable conversations we led: concernmg the theory.of
-ternary co-relations. :

594 Igor Dolinka

References

[1] Aczel, P. and Mendler, N. P., A final coalgebra theorem. In: eds. D. H. Pitt et
al., “Category Theory and Computer Science”, Lecture Notes Comput. Sci.,
Vol. 389, pp. 357-365, Springer-Verlag, 1989.

[2] Bloom, S. L. and Esik, Z., “Iteration Theories: The Equational Logic of It-
erative Processes”. EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1993.

(3] Bloom, S. L. and Esik, Z., Equational azioms for regular sets. Math. Struct.
Comput. Sci. 3 (1993), 1-24.

[4] Bloom, S. L., Esik, Z. and Stefanescu, Gh., Notes on equational theories of
relations. Algebra Universalis 33 (1995), 98-126.

[5] Bloom, S. L. and Esik, Z., The equational logic of fized points. Theoret. Com-
put. Sci. 179 (1997), 1-60.

[6] Conway, J. H., “Regular Algebra and Finite Machines”. Chapman & Hall,
1971.

[7] Crvenkovi¢, S. and Madarész, R. Sz., On Kleene algebras. Theoret. Comput.
Sci. 108 (1993), 17-24.

[8] Crvenkovi¢, S., Dolinka, I. and Esik, Z., The variety of Kleene algebras with
conversion is not finitely based. Theoret. Comput. Sci. 230 (2000), 235-245.

[9] Csakany, B., Completeness in coalgebras. Acta Sci. Math. (Szeged) 48 (1985),
75-84.

[10] Drbohlav, K., On quaszcovametzes Acta Fac. Rerum Natur Univ. Comenian.
Math., Spec1al Issue (1971), 17-20.

(11 Exlenberg, S. and Moore, J. C., Ad]omt functors and triples. lllinois J. Math.
9 (1965), 381-398.

[12] Esik, Z., Group azioms for iteration. Inform. Comput. 148 (1999), 131-180.

(13] Esik, Z. and Bernétsky, L., Equational properties of Kleene algebras of relations
with conversion. Theoret. Comput. Sci. 137 (1995), 237-251.

[14] Jacobs, B., Objects and classes, co-algebraically. In: eds. B. Freitag et al.,
“Object-Orientation with Paralelism and Persistance”, pp. 83-103, Kluwer
Academic Publishers, 1996.

[15] Jacobs, B. and Rutten, J. J. M. M., A tutorial on (co)algebra and
(co)induction. EATCS Bull. 62 (1997), 222-259.

On Kleene Algebras of Ternary Co-Relations 595

[16] J6nsson, B., The theory of binary relations. In: eds. H. Andréka, J. D. Monk
and I. Németi, “Algebraic Logic” (Budapest, 1988), Colloq. Math. Soc. Janos
Bolyai, Vol. 54, pp. 245-292, North-Holland, 1991.

[17] Kleisli, H., Bvery standard construction is induced by a pair of adjoint functors.
Proc. Amer. Math. Soc. 16 (1965), 544-546.

(18] Kozen, D., A representation theorem for models of *-free PDL. Report RC
7864, IBM Research, Yorktown Heights, 1979.

[19] Krob, D., Complete systems of B-rational identities. Theoret. Comput. Sci. 89
(1991), 207-343.

[20] Masulovi¢, D., “The Lattice of Clones of Co-Operations” (in Serbian). Ph.D.
thesis, viii+216 pp., University of Novi Sad, 1999.

[21] McKenzie, R. N., McNulty, G. F. and Taylor, W. F., “Algebras, Lattices,
Varieties”, Vol. I. Wadsworth & Brooks/Cole, 1987.

[22] Poschel, R. and RéBiger, M., A general Galois theory for co-functions and co-
relations. Preprint MATH-AL-11-1997, Technische Universitdt Dresden, 1997.

[23] Redko, V. N., On defining relations for the algebra of regular events (in Rus-
sian). Ukrainian Math. J. 16 (1964), 120-126.

[24] Reichel, H., An approach to object semantics based on terminal co-algebras.
~ Math. Struct. Comput. Sci. 5 (1995), 129-152.

[25] Rutten, J. J. M. M., Universal coalgebra: A theory of systems. CWI Technical
Report CS-R9652, 1996. ‘

Received February, 2000

Acta Cybernetica 14 (2000) 597-605.

Results concerning EOL and COL power series

Juha Honkala *

Abstract

By a classical result of Ehrenfeucht and Rozenberg the families of EOL and °
COL languages are equal. We generalize this result for EOL and COL power
series satisfying the e-condition which restricts the coefﬁcxents of the empty -
word. .

1 Introduction

A celebrated result from classical theory of Lindenmayer systems states that the
families of EOL languages and COL languages are equal (see Ehrenfeucht and Rozen-
~ berg [1], Rozenberg and Salomaa [5,6]). In this paper we generalize this result for
formal power series. We will work in the framework of morphically generated formal
power series introduced in Honkala {2,3] and Honkala and Kuich [4]. L

In what follows A will always be a commutative w-continuous semiring (see [4]).
Suppose ¥ is a finite alphabet. The set of formal power series with noncommuting
variables in ¥ and coefficients in A is denoted by A « ¥* >». The subset of
A € ¥* > consisting of all series with a finite support is denoted by A < X* >
Series of A < ¥* > are referred to as polynomials. A semialgebra morphism
h:A<¥* >— A < Z* > is specified by the polynomials h(c), o € Z. If h(o) is
quasiregular for all ¢ € I, thé semialgebra morphism h is called propagating. If A
is a finite alphabet, a semialgebra morphism h: A < ¥* >— A < A* > is called
a coding if for each o € T there exist a nonzero a € A and a letter z € A such that
h{o) = az. _

We are going to discuss 0L, POL, EOL, EPOL and COL power series. By deﬁm-
tion, a power series 7 € A « £* > is called a 0L power series if there exist a € A,
w € £* and a semialgebra morphism h: A < * >— A < ¥* > such that

o0

r= Zah"'(w.). ,. (1)

n=0

If in (1) the semialgebra morphism h is propagating, r is called a POL power series.
EOL and EPOL power series are now defined in the natural way (see Honkala and

*Research supported by the Academy of Finland Department of Mathematlcs, University of
Turku, FIN-20014 Turku, Finland, email: juha.honkala@Qutu.fi
and Turku Centre for Computer Science (TUCS), Lemminkiisenkatu 14, FIN-20520 Turku, Fin-
land

597

mailto:juha.honkala@utu.fi

598 Juha Honkala

Kuich [4]). A power series r € A <« A* > is called an FOL (resp. EPOL) power
series if there are a finite alphabet £ and a OL (resp. POL) power series s € A <
2* > such that

r = s O char(A*).

Finally, a power series 7 € A « A* > is called a COL power series if there exist a
finite alphabet X, a OL power series s € A K £* > and a coding g : A < £* >—»
A < A* > such that

T = g(s). ‘

If A =B where B = {0,1} is the Boolean semiring, r € B « £* > is a OL
(resp. POL, EOL, EPOL, COL) power series if and only if the support of 7 is a OL
(resp. POL, EOL, EPOL, COL) language. (Here the empty set is regarded as a OL
(resp. POL, EOL, EPOL, COL) language.)

In order to generalize the EOL=COL theorem for formal power series it is useful
to consider separately three parts of the result corresponding to different steps in
its proof (see Rozenberg and Salomaa [5]; recall also that here two languages are
regarded as equal if they contain the same nonempty words.)

Theorem 1 Every COL language is an EOL language.
Theorem 2 Every EOL language is an EPOL language.
Theorem 3 Every EPOL language is ¢ COL language.

In the sequel we will generalize Theorems 1 and 3 for'quasiregular power series
over any commutative w-continuous semiring A. To generalize Theorem 2 we have
to introduce an additional condition. As a consequence we obtain a power series
generalization of the EOL=COL theorem.

2 COL power series are EOL power series

In this section we prove a power series generalization of Theorem 1.

Theorem 4 Suppose r € A € A* > is a quasireqular COL power series. Then r
is an EOL power series.

Proof. Suppose

o0
T = Z agh™(w)

n=0
where h: A < £* >— A < T* > is a semialgebra morphism, g: 4 < &* >—
A < A* > is a coding, a € A and w € ¥£*. Without restriction we assume that
YN A = 0. Extend g and h to semialgebra morphisms g,h: A < (ZU A)* >—
A < (ZUA)* > by g(z) = h(z) = 0 if z € A. Next, choose a new letter $ ¢ ZU A
and define the semialgebra morphism f: A < (ZUAUS)* >— 4 < (BUAUS)* >

by
f(z) = 8h(z) + g(z), [f(8) =¢,

Results concerning EOL and COL power series 599

z € TUA. We claim that there exist polynomials 7,,pn € A < (EUAUS) >
n > 1, such that

J7w) =+ gh™ () + - (2)_
and
projsua(tn) = h™(w), pn O char((EU$)*) =0, p,Ochar(A*)=0 (3)

if n > 1. (Here projpuan : A < (FUAU$* >— A4 < (EUA)! > is the
projection mapping $ into £ and z into itself if z € X U A.) Clearly, there exist
r,p1 € A < (ZUAUS)* > such that (2) and (3) hold for n = 1. Suppose then
that (2) and (3) hold for n > 1. Then '

FrH(w) = flra + gh" ™ (W) +p) = F(B"(W)) = rny1 + gh™ (W) + pata
for suitable rp41,Pn+1 € A < (XU AU §)* > satisfying
Projgua (Tat1) = h’_lﬂ (w),

Pn+1 © char((ZU8)") =0, pny1 Ochar(A™)=0.
This concludes the proof of the existence of the polynomlals TnyPn, T 2 1.

Now, because
(o o]

Z af™(w) ® char(A*) =

n=0

aw © char(A*) +a Z(rn + gh™ ' (w) + pp) © char(A*) =

n=1

i agh™(w) = r,
n=0

r is a EOL power series. 0O

3 EOL power series satisfying the e-condition

In this section we generalize Theorem 2 for EQL power series satisfying the e-
condition. Suppose

T = Z ag™(w) © char(A*)

is an EOL power series where ¢ : A < £* >— A < ¥* > is a semialgebra
morphism, a € A, w-€ * and A C 3. We say that r satisfies the e-condition if

foraln >1,ce X.

600 Juha Honkala

Theorem 5 SupposerT € A K A* > is a quasiregular EOL power series satisfying
the e-condition. Then r is an EPOL power series.

Proof. Suppose
[o0]
T = Z ag"(w) © char(A*)

n=0
where g: A < &* >— A < £* > is a semialgebra morphism, a € 4, w € ¥* and
A C X. Define the semialgebra morphism §: A < &* >— A < T* > by B(c) =
(g(c),€)e for ¢ € £. Then we have f(v) = (g(v),e)e forv € £*. Let T = {¢|ce€ =}
be‘a new alphabet. Define the mapping ¢: A < Z* >— A < (ZUZ)* > by

¢(e) =0,
dler...om) = Cm + [Blcr) +@]...[Blem) +Cm]) —C1...Cm — Blcr...Cm)
ifm>1andec,...,cm € £, and
$(P) = D _(Pw)p(w)

if P€ A< X*>. (Here A is not a ring but the meaning of the subtraction above
should be clear.) Next, define the propagating semialgebra morphism h : A4 <
U >— A< (ZUD)* > by

h{c) = h(c) = ¢(g(c))

for ¢ € . Finally, define the semialgebra morphism 7: A < (SUZ)* >— A <
A*>byw(c)=cifce Aand 7(c) =0if c € A.
Now, we claim that

mh™(c) + Bc) =7 "(C), (4)
mh™(e) + B(c) = mg™(c) (5)

and
Th™ ($(v)) + B(v) = 7g" (v) (6)

forc € T,v € ¥ and n > 1. First, it is easy to see that (4) and (5) hold if
n = 1.- Suppose (4) and (5) hold for n > 1. Let v = ¢ ...cm where m > 1 and
Ci,...,Cm € X. Then

‘Th™($(v)) + B(v) = 7h"(c1 ... cm) + T[B(cr) + A" (@1)]. ..

n[Blem) + h*(Cm)] — 7h" (€1 ...Cm) = 1g"(c1.. . Cm).

= B(c) + Y (9(0), u)u

Next, we have

uFe
Because B(c) = (g(c),&)e = (¢°(c),e)e = B(g(c)), we obtain
)+ > _(g(c), u)B(w).

ufe

Results concerning EOL and COL power series 601

Hence .
mh™¥(c) + B(c) = mh(h(c)) + Blc) + Y _(9(c),w)B(u) =

uFe

wh™ (D (9(c), 0)(w)) + B(e) + D _(9(c),u)B(u) =

| ue e
mg™(>_(g9(c), wu) + B(c) = g™ (9(c) = g™ (e).
uFe

Therefore (4) holds if n is replaced by n + 1. A similar argument shows that (5)
holds if n is replaced by n + 1. This proves (4),(5) and (6) for all n > 1.

Let now $ be a new letter and extend h and 7 by h(S) ¢(w), 7(3) = 0. Then
the extended h-is propagating and : :

T = i arg™(w) = aw{w) + Z arh™(¢(w Z amh™($
n=0 n=1 '

where we have used the fact that af(w) = 0. Hence r is an EPOL power series. O

4 EPOL power series are COL power series -

To generalize Theorem 3 we need two lemmas.

Lemmal Ifa € A and w € T* is a nonempty word, the monomial aw is a COL
DOWer series.

Proof. Define the semialgebra morphism h: A < £* >— A < ¥* > by h(c) =
for all ¢ € £. Then

o

aw = Z ah™(w)
n=0
is a OL power series. Hence aw is also a COL power series. a

Note that the proof of Lemma 1, although very simple, is completely different
than the language-theoretic proof that {w} is a OL language. In fact, the use of
0-images is unavoidable in Lemma 1. For example, if ¢ € £, 0 € N € ¥* >» isnot’
a 0-free COL power series although it clearly is a 0-free EPOL power series.

Lemma 2 If rq,...,7¢ € A € A* > are quasiregular COL power series, S0:1§
rn+...+ 7.

Proof. It suffices to consider the case t = 2. Let

Z g;hj 7 (ajw;)

where h; : A < X7 >— A < X} > is a semialgebra morphism, g; : 4 < ¥} >—
A < A* > is a coding, a¢; € A and w; € X%, 7 = 1,2. Without restriction we

602 Juha Honkala

suppose that a; # 0 and £; N3, = §. Denote k = |w;| and let $;,...,8; be new
letters. Let h be the common extension of h; and h, satisfying

h($1) = hy (a1w1) + arwa, h($2) =...= h($k) =€.
Finally, let g be the common extension of g; and g2 satisfying

g(81...8k) = a1g1(wn).

(The existence of g is clear if a;g1(w1) # 0or k # 1. If a1g1(w1) =0 and k = 1,
we have to.increase the value of k by 1.) Then

D gh™(81...8) = g(81...8:) + Y gh"(h1(arwr) + apws) =
n=0

n=0

o - oo ’
airt (wl) + Zglh?“(alwl) + Zgzh’z‘(azwz) =T + 79

n=0 n=0

showing that r1 + ro is indeed a COL power series. o

Theorem 6 Ifr € A € A* > is-a quasiregular EPOL power series then r is a
COL power series:

Proof. Suppose

o

r= Z ah™(w) O char(A*)

n=0 _
where h: A < £* >— A < ¥* > is a propagating semialgebra morphism, a € A
and w € ¥*. Without restriction we assume that a = 1.

For a letter c € I, the ezistential spectrum of ¢, denoted by espec(c), is defined
by .
espec(c) = {n > 0| h?(c) ® char(A*) # 0}.

If c € %, the set espec(c) is ultimately periodic, see Rozenberg and Salomaa [5,6).
(Here we use Konig’s Lemma to avoid the difficulties caused by products equal to
zero.) The threshold and period of espec(c) are denoted by thres(espec(c)) and
per(espec(c)), respectively. If espec(c) is infinite, then c is called a vital letter. The
set of vital letters of 3 is denoted by vit(X).

The uniform period associated to r is the smallest positive integer p such that
(i) for all j > p, if c is not a vital letter, then h?(c) ® char(A*) =0;
(ii) if c is a vital letter, then p > thres(espec(c)) and per(espec(c)) divides p.

Let 0 < k < p and denote

Yr = {c€ Z|p+k € espec(c)}.
Define the propagating semialgebra morphism gx : A < £} >— A < 3} > by

91(c) = h*(c) © char(S}),

Results concerning EQOL and COL power series 603

¢ € ;. Furthermore, define the propagating semialgebra morphism gpit : 4 <
I >— A< A" > by

gpia(©) = h7H(0) © char(A”),
c€ Z;. Note tvhat gp+k(c) # 0 for all ¢ € 5. We claim that
WPHE(RP)*hP(P) © char(A*) = g1 g} [h?(P) © char(})] (7
for any n > 0 and P € A < £* >. First,
KPHERP(P) © char(A*) = RPH#[hP(P) © char(S})] © char(A*)+
RPTE[RP(P) © char(E1 - £})] © char(A*) =

hPH*[RP(P) ® char(2})] © char(A*) = gp4+x[RP(P) © char(Z;)].
Hence (7) holds if n = 0. Suppose then that (7) holds for n > 0. Then

hPHE(RPYMH1RP(P) @ char(A*) = hPHE(hP)"hP[hP(P) © char(S})] ® char(A*) =

9p+egi [RP[RP(P) © char(Z})] © char(X})] = gp+kg"+1[h”(P) O char(Z})}
Consequently, (7) holds for all n > 0. Therefore

2p-1 ’ p—1 oo

r=Y h™w)©char(A%) + Y > APF(RP)"hP(w) O char(A*) =
n=0 k=0 n=0 ' -
2p—-1
Z R™(w) © char(A*) + Z Z gprgP[RP (w) ® char(})).

k=0n=0

By Lemmas 1 and 2 it suffices to prove that the series

o
Sky = O Gprkgr(¥)

n=0

is a COL power seriesif 0 < k< pand y € Ef For the proof fix k and y.
Next, choose nonzero polynomials P, z € Ly, and a coding « such that

a(Pz) = gp+i(2),

no two of P,, ¢ € L) contain a common variable, each variable of P, has a unique
occurrence in P, and every nonzero coefficient of P, equals 1, z € ¥;. Denote
P.=¢e¢and P, =P, P,.. P, ifm>1lv=v...un andv; € T for 1 <i <m.
By our choice of P;, there exists a semialgebra morphism f such that

CF(P) =) (ge(),v) Py,

vEL]

604 Juha Honkala

if z € £x. Then
(P = S (x(u),v)P, (8)

veEZ;

for any nonempty word u € X}. Indeed, (8) holds if u € Iy and, if (8) holds for
u € T we have

) f(Puz:) = f(Pu.)f(Pz)
> (ge(w),v1)Psy - Y (gk(@),02)Puy = > (gk(uz),v) Py

v;GE‘ ’UQEE‘ ‘UEE;

where z € ¥
Next, we claim that

M(P) = (gh(y),v)P, 9)

vED}

for n > 1. First, if n = 1, (9) follows from (8). Suppose that (9) holds for n > 1.

Then
) = Y G w) WP =
uEZ; '
Yo (RFw)hu) Y (@) v)Po=) (957 (v),v)Py.
uEE vEE vED}

Hence (9) holds for all n > 1. Therefore

o0
> af"(P) = 9p+k(y + Z > (g @), v)gprk(v ng+kgk (Y) = sk,y-
n=0 n=1vex; n=0

This shows that sy, , is indeed a COL power series. (@]

Now, Theorems 5 and 6 imply the following result.

Theorem 7 Ifr € A € A* > is a quasireguler EOL power series satisfying the
e-condition, then r is a COL power series.

The necessity of the e-condition in Theorem 7 is an open problem.

References

(1] A.Ehrenfeucht and G. Rozenberg, The equality of EOL languages and codings
of OL languages, Intern. J. Comput. Math. 4 (1974) 95-104.

[2] J. Honkala, On Lindenmayerian series in complete semirings, in: G. Rozen-
berg and A. Salomaa, eds., Developments in Language Theory (World Scien-
tific, Singapore, 1994) 179-192.

Results concerning EOL and COL power series 605

(3] J. Honkala, On morphically generated formal power series, RAIRO Theoret-
ical Inform. and Appl. 29 (1995) 105-127.

4] J. Honkala and W. Kuich, On Lindenmayerian algebraic power series, Theo-
ret. Comput. Sci. 183 (1997) 113-142.

[5) G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Aca-
demic Press, New York, 1980).

(6] G. Rozenberg and A. Salomaa (eds.): Handbook of Formal Languages, Vol.
1-3 (Springer, Berlin, 1997).

Received April, 2000

Acta Cybernetica 14 (2000) 607-617.

On commutative asynchronous nondeterministic -
automata *

B. Imreh 1 M. Ito ¥ A. Pukler §

Abstract)

In this paper, we deal with nondeterministic automata, in particular, com-
mutative asynchronous ones. Our goal is to give their isomorphic represen-
tation under the serial product or equivalently, under the ap-product. It
turns out that this class does not contain any finite isomorphically complete
system with respect to the ap-product. On the other hand, we present an
isomorphically complete system for this class which consists of one monotone
nondeterministic automaton of three elements. ‘

1 Introduction

The study of the compositions of nondeterministic (n.d. for short) antomata was
initiated in the work [3], where the isomorphically complete systems with respect
to the general product were characterized. In [4] it is proved that the general
and cube products of n.d. .automata are equivalent regarding the isomorphically
complete systems. A further result on this line can be found in [7], where the
isomorphically complete systems of n.d. automata with respect to the aqg-product
are characterized.

In this work, a particular class of n.d. automata, the class of all commutative
asynchronous n.d. automata, is studied. The isomorphic representation of the
deterministic commutative asynchronous automata was studied in [8], where it
turned out that every commutative asynchronous automaton can be embedded into
a quasi-direct power of a suitable two-state commutative asynchronous automaton.
We show here that this is not valid for the n.d. case, and what is more, it is not
valid neither under the stronger ag-product. On the other hand, it is proved that

*This work has been supported by the Japanese Ministry of Education, Mombusho Interna-
tional Scientific Research Program, Joint Research 10044098, the Hungarian National Foundation
for Scientific Research, Grant T030143, and the Ministry of Culture and Education of Hungary,
Grant FKFP 0704/1997.)

tDepartment of Informatics, University of Szeged, Arpad tér 2, H-6720 Szeged, Hungary

tDepartment of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555,
Japan

$Department of Computer Science, Istvan Széchenyi College, Hédervari 4t 3., H-9026 Gydr,
Hungary o

607

608 B. Imreh, M. Ito, A. Pukler

every commutative asynchronous n.d. automaton can be embedded into a suitable
ag-power of a monotone n.d. automaton having three states.

The paper is organized as follows. First, in Section 2, we recall a few notions
and notation and present some basic results necessary in the sequal. In Section 3, it
is shown that there is no finite system of commutative asynchronous n.d. automata
which is isomorphically complete for the class under consideration with respect to
the ag-product. Then we look for a finite isomorphically complete system in a
larger class, namely, in the class of monotone n.d. automata, and we prove that
every commutative asynchronous n.d. automaton can be embedded into a suitable
op-power of a monotone n.d. automaton of three states.

2 Preliminaries

An automaton can be defined as an algebra A = (A4, X)) in which every input sign
z is realized as a unary operation z» : A - A. Then the n.d. automata can be
introduced as generalized automata in which the unary operations are replaced by
binary relations. Therefore, by n.d. utomaton we mean a system A = (4, X),
where A is a finite nonvoid set of states, X is a finite nonempty set of input signs,
and every r € X is realized as a binary relation z4(C A x A) on A. Forany a € A
and z € X, let az® = {c:c€ A and (a,c) € 3"}, i.e, az® is the set of states
into which A may enter from a by receiving the input sign z. For any C C A and
z € X, we set Cz® = U{az? :a € C}. Fora word w € X*, Cw? can be defined
inductively as follows:

(1) Ce* =cC,

(2) Cwh = (CvA)zA forw =wvz,v € X*and z € X,

where € denotes the empty word of X*. An n.d. automaton is called complete if
az® # 0, for all a € A and z € X. Throughout this paper, by n.d. automaton we
always mean a complete n.d. automaton. Let A = (4, X) be an n.d. automaton
and B C A. Then one can define a subautomaton B = (B, X) of A by the
realizations zB = zAN(B x B), z € X. We note that a subautomaton of a complete
n.d. automaton is not necessarily complete. Let A = (4,X) and B = (B, X) be
two n.d. automata and g a mapping of A onto B. The mapping 4 is called a
homomorphism of A onto B if az®p = aus® is valid, foralla € A and z € X. In
this case, it is said that B is a homomorphic image of A. If the homorphism u is
a one-to-one mapping, then it is called an isomorphism and in this case, it is said
that A is isomorphic to B. Furthermore, if B is isomorphic to some subautomaton
of A, then it is said that B can be embedded into A.

Let A = (4, X) be an n.d. automaton and © an equivalence relation on A. For
every a € A, let us denote by ©(a) the equivalence class containing a, or equiva-
lently, the set of the elements which are equivalent to a. Then we can construct
a factor n.d. automaton A/@ as follows. For any ©(a) € A/© and z € X, let

On commutative asynchronous nondeterministic automata 609

O(a)z™/® = {O(b) : O() € A4/0 and O(a)z® N O() # 0}. It is worth not-
ing that A/© is not a homomorphic image of A in general. In what follows, we
shall use particular equivalence relations. To define them, let A be an arbitrary
nonempty set and a,b its two different elements. Then the equivalence relation
O(a,b) is defined as follows. For every u,v € A,

O(a,b)v if and only if {a,b} = {u,v} or u=w.

An n.d. automaton A = (A, X) is called commutative if a(xy) = a(yz)? is
valid, for every a € A and z,y € X. By the deﬁnmon of the commutat1v1ty, one
can easily prove the following fact.

Lemma 1. If an n.d. automaton A is commutative and B is a homomorphzc
image of A, then B is commutative as well.

“An n.d. autorriaton A = (A, X) is called asynechronous if for every a E A and
z € X, b € az® implies bz® = {b}. In particular, if a € az®, then az® = {a}
Since we recall this property in more times, we express it by the following remark.

Remark 1. If A = (A, X) is an asynchronous n.d. automaton .and aE‘:-a:vA for
some a € A and z € X, then az® = {a}.

iFrom the definition of the asynchronous n.d. automata the following fact
follows immediately. : :
Lemma 2. If an n.d. automaton A is asynchronous and B 1is 'av homomorphic
image of A, then B is also asynchronous.

We shall study the commutative asynchronous n.d. automata. Let us denote
by K4 the class of all commutative asynchronous automata. Then, by Lemmas 1
and 2, we obtain the following observation.

Corollary 1. If A € K,q and B is a homomorphic image of A, then B € K,.4.

An important property of the n.d. automata in K,q is presented by the next
assertion.

Lemma 3. If A = (A, X) € Knq4, then its transition graph does not contain any
directed cycle different from loop.

Proof. Let a € ag® for some a € 4, ¢ € X* and let ¢ be a minimum-length
word with this property. Now, let us suppose that |g| > 1. Then ¢ = zp for some
z € X and p € X*. By the commutativity of A, a € ap®z?. Therefore, there
exists a state b such that b € ap® and a € bz®. Let us distinguish now the following
two cases depending on b. ,) ,

Case 1. a = b. Then a € az®, and by Remark 1, az® = {a} contradicting the
minimality of the word gq. : : : S :

610 ' B. Imreh, M. Ito, A. Pukler

Case 2. a # b. In this case, « € bz®. Since A is an asynchronous n.d.
automaton, a € bzr® implies az® = {a} which contradicts the minimality of g
again.

Consequently, the transition graph of A does not contain any directed cycle
different from loop.

Let A = (A, X) be an arbitrary n.d. automaton. Let us define the reachability
relation as follows. For a couple of states a,b, it is said that b is reachable from
a, denoted by a < b, if there exists a word w such that b € aw®. Obviously, that
this relation is reflexive and transitive. In particular, if A € K4, then by Lemma
3, this relation is antisymmetric, and thus, it is a partial ordering on A. Hence, we
have the following statement.

Cordll'ary 2 For every A € Kqa, (A, <) is a partially ordered set.

~ The more general composition, the general product of automata was introduced
by V. M. Gluskov in [6]. This composition is extended to n.d. automata in [3].
Now, we recall this definition.

Let us consider the n.d. automata A = (X, A4), A; = (X;,4;),j=1,...,k,
and let @ be a family of mappings below

pj A1 X o x A xX 2 X;, j=1,... k.

It is said that A is the general product of A; with respect to ® if the following
conditions are satisfied:

Dy k .
(2) fo.r any (a1,...,ax) € H?=1 Aj,andz € X,

S : A A
(al,...,ak)a:A:alzjll X o X agTy k,

where z; = pj(a1,...,ak,z) for all j € {1,...,k}.
For the general product above we use the notation

.
A=]]A;x.9).
j=1

The mappings i, j =1,...,k are called feedback functions.

Let K be a system of n.d. automata. K is isomorphically complete with respect
to the general product if for any n.d. automaton A, there exist automata A; € K,
j = 1,...,k, such that A can be embedded into a general product of A, j =
1,...,k. .

Different compositions of automata can be obtain as a special case of the general
product by using particular feedback functions. One of them is the serial composi-
tion of automata, where the automata form a chain and the input.sign of a given

On commutative asynchronous nondeterministic automata 611

automaton of the chain depends on the input sign received by the composition and
the current states of the previos automata in the chain. The formal definition can
be given as follows.

Let A; = (A4;,X;), i = 1,...,k be arbitrary n.d. automata. Moreover, let X
be a finite nonvoid set and ® is a family of mappings:

QDJ'ZA1X"~XA]'_1 XX——)XJ', j=1,...,k’.

An nd. automaton A = (A, X) is called the serial product or ag-product of the
n.d. automata considered, if A = H 1 4; and for every (ai,...,a;) € 1_[] LA
and z € X,

(a1,...,a5)z™ = alzf’ X oo X a.k.'zz,?‘“
is valid, where z; = ¢;(a1,...,aj-1,%), j = 1,...,k. If the component n.d. auv-
tomata A; are equal, say A; = B, j =1,...,k, then it is said that the ag-product
A is an ap-power of B. In particular, if the mappings y;, j = 1,...,k are indepen-
dent of the states, i.e., they have the forms ¢; : X — X;,7=1,...,k, then A is
called the gquasi-direct product of the n.d. automata under consideration.

It has to be mentioned here that as generalizations of the serial product of
automata a family of products, the a;-product, 1 = 0,1, ..., was introduced in [1]
for the deterministic case and some nice results concerning the a;-products can be
found in the monography [2].

By the definition of the ag-product, one can easily prove the following statement.

Lemma 4. If for every t, t = 1,...,n, the n.d. automata A; can be embedded
into an og-product of n.d. automate A, j = 1,...,k;, then any ag-product of
the n.d. automata A;,t=1,...,n can be embedded into an ag-product of the n.d.

automata Ay, t=1,...,n; j=1,... k.

Finally, we define the notion of isomorphically complete systems of n.d. au-
tomata for the ag-product. For this purpose, let £ be an arbitrary class of n.d.
automata. A system M of n.d. automata is called isomorphically complete for K
with respect to the ag-product if any n.d. automaton in K can be embedded into
an ag-product of n.d. automata in M.

3 Isomorphic representation

In this section, the isomorphic representation of the automata in K, 4 are studied.
The next statement shows that contrary to the deterministic case, the class K,q4
does not contain any finite isomorphically complete system for K,q with respect to
the general product.

Proposition 1. There is no-finite system M C Knq of n.d. automata which is
isomorphically complete for K4 with respect to the general product.

612 B. Imreh, M. Ito, A. Pukler

Proof.- In our proof we shall use some particular automata. Namely, for all
n > 3, let us define the n.d. automaton C, = ({1,...,n},{z2,...,2n-1}) as

follows. For every i € {1,... ,n} and zj € {z2,...,Zn-1}, let
oG _ [{Rk+1,.. 0} i<k,
ko {g) otherwise.

From the definition of C,, it follows that C, is an asynchronous n.d. automa-
ton. Now, we prove that C, is commutative. For this reason, let i € {1,...,n}
and z;,zx € {Z2,...,Zn—1} be arbitrary elements with j # k. Without loss of
generality, we may suppose that j < k. Then, for the case k < i, we have that
izf"mf" = {i} = ia:kc"xjc-:“. If j <i <k, then

iz](-:“zkc" = {i}xf" ={kk+1,...,n}= zzkc"zf".

Finally, if ¢ < 7, then

iZCred = {5, +1,..,n}apm = {kk+1,...,n} =izl =izl x5

These observations lead to the commutativity of C,. Consequently, C, € K,q, for
all integer n > 3.

For proving the statement, contrary, let us suppose that M C K,4 is a finite
isomorphically complete system for K, 4 with respect to the general product. Then
there exists an integer n such that |A| < n is valid for every n.d. automaton A =
(A, X) € M. Since M is an isomorphically complete system for K4 with respect to
the general product and C,, € Kpg4, there are n.d. automata AieM,t=1,...,k
such that C,, can be embedded into a general product Hz L A({za, .. ,:zn_l} <I>
Let u denote a suitable isomorphism of C,, into the general product considered and
let

in = (aa, iz, ...,0%), i=1,...,n

Denote by r an integer for which a,,—1,» # @nr. Such an integer exists. We shall now
prove that the states ayr,asr, ..., anr are pairwise different. First, let us consider
the state a,—2,r. Since p is an isomorphism, an_2,r¢r(an-2,, .- ,an_gyk,' Tp_1)2"N
{@n-1,r8nr} = {@n-1,rsanr}. Thus, by an_1, # an, and Remark 1, we obtain
that an—2r & {@n-1,r,0nr}. Therefore, an_2r,an_1,r,an, are pairwise different.
Now, if for some integer 2 < ¢ < n — 2, the elements an_ir,8n_it1,r,...,0nr are
pairwise different, then in a similar way as above, we get that

. y A,
an—i—l,rﬂar(an—i—l,l, vy Bn—i—1,k zn-i) 2 {an-—i,r: An—itl,ry--- yanr}-

This inclusion and Remark 1 yield that ap—i—1,» & {@n—i,r,...,anr}, and therefore,
the elements an_{_l,r,an_i,r, ...,Qny are pairwise different. From these observa-
tions it follows immediately that the elements ai,,as,,...,a,, are pairwise differ-
“ent. This implies that n < |4,| contradicting the definition of n. Consequently,

On commutative asynchronous nondeterministic automata 613

there is no finite system M C K,4.s0 that M is isomorphically complete for ICnd
with respect to the general product.

Since the ag-product is a partlcular case of the general product we get the
followmg observation. : ,

Corollary 3. There is no finite system M C K4 of n.d. automata which is
isomorphically complete for Kpq with respect to the ag-product. SO

~ Corollary 3 shows that there is a significant difference between the isomorphic
representations of deterministic and n.d. automata. The class of all deterministic
automata denoted by L4 does not contain any finite system which is isomorphically
complete for L4 with respect to the ap-product (see [5]). On the other hand, the
class of all n.d. automata denoted by L4 contains finite isomorphically complete
system for’ Lnq With respect to the ap-product (cf. [7]). Therefore, this pair of
classes is an example for the case when the deterministic class does not contain
any finite isomorphically complete system while the n.d. class contains a finite
isomorphically complete system with respect to the ag-product. The pair of the
classes of the commutative asynchronous deterministic and n.d. automata denoted
by K4 and K4, respectively, is an example for the opposite case. Indeed, in [8], it is
proved that K; contains finite isomorphically complete systems for Ky with respect
to the quasi-direct product. Since the quasi-direct product is a particular case of
the ag-product, this result yields that this class contains some finite isomorphically
complete systems for 4 with respect to the ap-product. On the other hand, by
Proposition 1, it is not valid for the class K,,4. Consequently, the pair of classes Kq4
and K,q is an example for the case when the determinstic class conatins a finite
isomorphically system while the n.d. class does not do it.

Of course there are finite isomorphically complete systems for K,4 with respect
to the ag-product, but they are not contained in K,4. Proposition 2 shows that
_there are finite isomorphically complete systems for K4 with respect to the ag-
product such that they contain monotone n.d. automata in that sense that the
transition graphs of these automata do not contain any directed cycle different from
a loop. Moreover, it turns out that there exists such an isomorphically complete
system for K,q with respect to the ag-product which con51sts of a monotone n.d.
automaton havmg three states.

The n.d. automaton what we need is denoted by B = ({0, 1,2}, {z,y,u,v}) and
it is defined as follows:
B = {0,1,2},4zB = {i},i = 1,2, . ,
B = (0,1}, iy® = {i},i = 1,2, S
B = (0,2}, B = {i},i=1,2, ' '
B={2},i=0,1,2.

It i5 easy to check that B is monotone, i.e., its transition graph does not contain
any directed cycle different from loop.

614 B. Imreh, M. Ito, A. Pukler

Proposition 2. Any system M, containig such an n.d. automaton A that B
can be embedded into an ap-product of A with a single factor, is isomorphically
complete for K,q with respect to the ag-product.

Proof. By Lemma 4, it is sufficient to prove that any n.d. automaton from K4
can be embedded into a suitable ag-power of B.

We shall prove this statement by induction on the number of states of the
n.d. automata. It is worth noting that for every positive integer n, K,q contains
automata having n states.

One can easily check that if A € K,,q and |A| < 2, then A can be embedded
into an ap-product of B with a single factor. Now, let n > 2 be an arbitrary integer

“and let us suppose that the statement is valid for every A € K,4 with |A| < n.
Let us consider an arbitrary n.d. automaton A = (A4, X) € Kpq with |4 =n + 1.
Corollary 2 provides that the reachability relation is a partial ordering on the set
A. Since A is finite, (A4, <) contains maximal elements. We distinguish two cases
depending on the number of the maximal elements.

Case 1. The number of the maximal elements in (A4, <) is not less than 2. Then
there are at least 2 maximal elements, which are denoted by ¢,d. Now, let us define
the ag-product D = A/0(c,d) x B(X, ®) as follows.

For every z € X and a € A\ {c,d}, let
p1(2) =2

y ifazdn {c,d} = {c},
w2({a},2) =S u if az® n{c,d} = {d},
z otherwise,

902({{0’ d}},z) =z
Let us define the mapping p: A - A/0(c,d) x {0,1,2} as follows:

= ({C,d},l),
dp = ({c,d},2),
ap = ({a},0), for all a € A\ {c,d}.

and let S = {({a},0):a € A\ {c,d}} U {({c,d},1),({c,d},2)}.
We prove that p is an isomorphism of A into the ag-product D, more precisely,
A is isomorphic to the subautomaton of D which is determined by the subset S.

First, let a € A\ {c,d} and z € X be arbitrary state and input sign, respectively.
If az® N {c,d} = 0, then az®p = apz® NS = auz® is obviously valid. If az® N
{c,d} # 0, then let us investigate separately the three cases corresponding to the
elements of the intersection. For the sake of simplicity, let us denote by Q the set
{¢,d} and for every R C A\ Q, let R' = {({r},0) : r € R}.

(1) az® = RU{c}, where R C A\ Q. Then az*p = R'U{(Q,1)}. On the other
hand, .
({a},0)2® = {a}z4/%CD x (0,1} = (R' U {Q}) x {0, 1},

On commutative asynchronous nondeterministic automata 615

But ((R'U{Q}) x {0,1})nS = R'U{(Q,1)}, and hence, az®p = apzS is valid for
the case under consideration.

(2) az® = RU{d}, where R C A\ Q. Then az®y = R'U{(Q,2)}. Furthermore,
({a},0)zP = {a}227%CD x {0,2} = (R" U{Q)}) x {0,2}.

Now, (R'U{Q}) x {0,2})NS = R'U{(Q,2)}, and therefore, az?pu = apzS is valid
for this case as well. _

(3) az® = RUQ, with R C A\ Q. In this case, az®p = R'U{(Q,1),(Q,2)}.
Furthermore,

({a},0)2° = {a}zA/e(c’d) x {0,1,2} = (R'U{Q}) x {0,1,2}.

Now, ((R'U{Q}) x {0,1,2})NS = R'U{(Q,1),(Q,2)}, and hence, az?p = a,uz
is valid for the case considered.

Finally, it is easy to see that cz®u = cpzS and dz*p = dpzS. By the cases
considered above, we get that p is an isomorphism of A into the ag-product D.
On the other hand, it is easy to check that A/©(c,d) is a homomorphic image of
A, and thus, Corollary 1, Lemma 4 and the induction hypothesis result in that A
can be embedded into an ag-power of B. S

Case 2. (A, <) has only one maximal element which is denoted by ¢. Then the
partially ordered set (4 \ {c}, <) contains at least one maximal element. Let us
denote it by b. For the sake of simplicity, let () denote the set {b,c}. Now, let us
define the ap-product A/O(b,c) x B(X, ®) as follows. o

For every z€ X and a € A\ Q, let

p1(z) = 2,

U ifazAﬂQ:{;},
p({a),2) =3y ifazAnQ = {b).

z otherwise,

v otherwise.

£2(Q,5) = {v 022 = (b},

. Define the mapping of A into A/@(b, ¢) x {0,1,2} as follows:

cu=(Q,2),
bu =(Q,1),
= ({a},0),foralla € A\ Q,
and let S = {({a},0):a € A\ Q}U{(Q,1),(Q,2)}. -
Then it can be seen that p is an isomorphism of A into the ag-product consid-

ered, namely, A is isomorphic to the subautomaton determined by the set'.S. On
the other hand, A/©(b,c) is a homomorphic image of A. Then Corollary 1, Lemma

616 B. Imreh, M. Ito, A. Pukler

4 and the induction hypothesis yield that A can be embedded into an ag-power of
B which ends the proof of Proposition 2.

It is interesting to note that we need the monotone n.d. automaton of three
states not only for the convenience. This assertion is vitnissed by a commutative
asynchronous n.d. automaton which can not be embedded into any general product
of two-state monotone n.d. automata.

Let us consider the n.d. automaton A = ({0,1,2,3}, {z,y, z}) which is defined
in the following way: :

A =1{1,3},iz™ = {i},1=1,2,3,

={2,3}, 1yA = {2}, iy”A = {i},i = 2,3,
A={3},i=0,1,2,3.

It is easy to check that A € K,4;. Now, we prove that A can not be embedded
into any general product of two-state monotone n.d. automata. Contrary, let us
suppose that A can be embedded into a general product D = Hf=1 A;({z,y,2},®)
of two-state monotone n.d. automata. Without loss of generality, we may assume
that the states of the n.d. automaton A; are 0 and 1, moreover, there is no edge
from 1 into 0 in the corresponding trans1t10n graph, for allj,j=1,...,k. Let p
denote a suitable isomorphism and let ip = (e:1,...,ei), i = 0,1,2, 3, Obviously,
the vectors (ei1,...,eik), ¢ = 0,1,2,3 are binary vectors. The isomorphism and
the monotone property of the components imply that Op < 1p < 2p < 3u. Let us
investigate the equality 0z = 0uz® N{(ei,- .., ewx) : 0 < i < 3}. The left side is
obviously {(e11,...,e1k),(€31,--.,esx)}. By the definition of the general product,
the right side is equal to the following set:

W = ({e1n,ea1} x {erz, €32} x -+ x {ewx,eax}) N {(ea,...,eix) : 0 <7 < 3}

Since e1; < es; < e3j,j=1,...,kand e;; € {0,1}, for all 4 =1,2,3; j = 1,...,k,
(e21,- --,e2r) € W which is a contradiction.

By the observation above, we obtain the following statement.

Corollary 4. There is no isomorphically complete system for K,q with respect to
the general product which consists of two-state monotone n.d. automata.

Summarizing, the results presented here illustrate that although X, is a small
and very particular class, the characterization of the isomorphically complete sys-
tems for K4 with respect to the ag-product can be very difficult. Proposition 1

- shows that some isomorphically complete systems for K,,4 must be infinite, while
Proposition 2 implies that there are some finite isomorphically complete systems
for lCnd

Acknowledgement. The authors thank Professor Ferenc Gécseg for his valuable
observations on this paper.

On commutative asynchronous nondeterministic automata 617

References

{1] Gécseg, F., Composition of automata, Proceedings of the 2nd Colloquium
on Automata, Languages and Programming, Saarbriicken, LNCS 14 (1974),
351-363.

[2] Gécseg, F., Products of Automata, Springer-Verlag, Berlin - Heidelberg-New
York - Tokyo (1986).

(3] Gécseg, F., B. Imreh, On completeness of nondeterministicautomata, Acta
Math. Hungar. 68 (1995), 151-159.

[4] Gécseg F., B. Imreh, On the cube-product of nondeterministic automata,
Acta Sci. Math. (Szeged) 60 (1995), 321-327.

(5] Imreh, B., On a;-products of automata, Acte Cybernetica 3 (1978), 301-307.

[6] Glushkov, V. M., Abstract theory of automata, Uspekhi Mat. Nauk, 16:5
101 (1961), 3-62 (in Russian).

(7] Imreh, B., M., Ito, On a;-products of nondeterministic automata, Algebra
Collogquium, 4 (1997), 195-202.

[8] Imreh, B., M. Ito, A. Pukler, On commutative asynchronous automata,
Proceedings of The Third International Colloquium on Words, Languages,
and Combinatorics, Kyoto, 2000, to appear.

Received September, 2000

Acta Cybernetica 14 (2000) 619-630.

Difference Functions of Dependence Spaces

Jouni Jarvinen *

Abstract

Here the reduction problem is studied in an algebraic structure called de-
pendence space. We characterize the reducts by the means of dense families
of dependence spaces. Dependence spaces defined by indiscernibility relations
are also considered. We show how we can determine dense families of depen-
dence spaces induced by indiscernibility relations by applying indiscernibility
matrices. We also study difference functions which connect the reduction
problem to the general problem of identifying the set of all minimal Boolean
vectors satisfying an isotone Boolean function.

1 Introduction

Z. Pawlak introduced his notion of information systems in the early 1980’s [11].
Information concerning properties of objects is the basic knowledge included in in-
formation systems, and it is given in terms of attributes and values of attributes.
For example, we may express statements concerning the color of objects if the in-
formation system includes the attribute “color” and a set of values of this attribute
consisting of “green”, “yellow”, etc. It should be noted that relational databases
can be viewed as information systems in the sense of Pawlak.

In an information system each subset of attributes defines an indiscernibility
relation, which is an equivalence on the object set such that two objects are equiva- .
lent when their values of all attributes in the set are the same. It may turn out that
a proper subset of a set of attributes classifies the objects with the same accuracy
as the original set, which means that some attributes may be omitted. An attribute
set C is a reduct of an attribute set B, if C is a minimal subset of B which defines
the same indiscernibility relation as B. The reduction problem means that we want
to enumerate all reducts of a given subset of attributes.

This work is devoted to the reduction problem in a dependence space. It is based
on some papers of the same author, in particular on [5]. The fundamental notion
appearing in the present paper is the concept of a dense family of a dependence
space. We prove that our definition of dense families agrees with the definition pre-
sented earlier in the literature {10]; this result appeared also in [7]. Proposition 4.1
characterizes reducts in dependence spaces by the means of dense families. Also

*Turku Centre for Computer Science TUCS, Lemminkdisenkatu 14, FIN-20520 Turku, Finland.
Email: jjarvine@cs.utu.fi ’

619

620 Jouni Jarvinen

difference functions are defined by using dense families (cf. [5]). Proposition 5.2
characterizes reducts by the means of difference functions and Proposition 6.1 con-
tains a construction of a dense family in the dependence space-of an information
system starting with its indiscernibility matrix; this result appeared also in [6].

As stated above, this paper gives a survey of some results concerning reducts and
their construction, but the presented formulations are simpler than the formulations
published earlier. It also completes proofs of some theorems published without
proofs in the quoted papers.

2 Preliminaries

All general lattice theoretical and algebraic notions used in this paper can be found
in [2, 4], for example. An oredered set (many authors use the shorthand poset)
(P, <) is a join-semilattice if the join a V b exists for all a,b € P. An equivalence
relation © on P is a congruence relation on the semilattice (P,V) if a;0b; and
a90by imply (a; V a2)0(by V b) for all ay1,aq,b1,b2 € P. We denote by a/© the
congruence class of a, that is, a/O = {b € P | a©b}.

An ordered set (P, <) is a lattice if a Vb and a A b exist for all a,b € P. Let us
consider a lattice (P, <). An element a € P is meet-irreducible if a = b A ¢ implies
a = b or a = ¢c. We denote the set of all meet-irreducible elements a # 1 (in case
P has a unit) of (P, <) by M(P). The following lemma can be found in [2], for
‘example. - ' '

Lemma 2.1. If (P, <) is a finite lattice, then
a:/\{zEM(PHaSz}
for alla € P.]

Let (P, <) be an ordered set. A subset S of P is meet-dense (see e.g. [2]), if
for all z € P there exists a subset X of S such that z = A, X. Now the following
lemma holds.

Lemma 2.2. If (P, <) is a finite lattice, then S(C P) is meet-dense if and only if
M(P)CS.

Proof. Let S C P, be meet-dense and a € M(P). Since S is meet-dense and
a # 1, there exists a finite nonempty subset X = {ai,...,an} of S such that
a =a; A Aa,. Because a is meet-irreducible, we obtain that a € X and so
a € S. Hence, M(P) C S holds.

Conversely, suppose that M(P) C S C P. Then for all a € P,

{zeM(P)la<z}C{zeS|a<z} C{z€P|a<z}

which implies

S
Il

Nz eMP)la<z}> A\{zeS|a<a}
/\{zePlan}:a.

v

Difference Functions of Dependence Spaces 621

Hence a = A{z € S| a < z}. This means that S is meet-dense. a

Let (P, <) be an ordered set and a,b € P. We say that a is covered by b, and
write a —< b, if a < b and a < ¢ < b implies a = ¢. It is known (see e.g. [2]) that
in a finite lattice (P, <) the set of the elements of (P, <) covered by exactly one
element of P is M(P). Thus, by Lemma 2.2, a subset of a finite lattice (P, <) is
meet-dense if and only if it contains all elements of P which are covered by exactly
one element of P. i

A family £ of subsets of a set A is said to be a closure system on A if £ is closed
under intersections, which means that for all H C £, we have (|H € £. We denote
by p(A) the power set of A, i.e., the set of all subsets of A. A closure operator on a
set A is an extensive, idempotent and isotone map C: p(4) — p(A); that is to say,
B C C(B), C(C(B)) =C(B), and B C C implies C(B) CC(C) for all B,C C A. A
subset B of A is closed (with respect to C) if C(B) = B. A closure system £ on A
defines a closure operator C; on A by the rule

Cc(B)y=({{XeL|BCX}
Conversely, if C is a closure 6perator on A, then the family
Le={BCA|C(B) =B}

of closed subsets of A is a closure system. The relationship between closure systems
and closure operators is bijective; the closure operator induced by the closure system
Le is C itself, and the closure system induced by the closure operator C. is £. It
is well-known that if £ is a closure system on A, then the ordered set (£,C) is a
lattice in which

XAY=XNY and XVY=C(XUY)

forall X,Y € L. .
Next we consider meet-dense subsets of the lattice (£, C), where £ is a closure
system on a finite set.

Proposition 2.3. Let T be a meet-dense subset of a lattice (£, C), where L is a
closure system on a finite set A.
(a) Forall BC A, Cc(B)=({X €T |BCX}.
(b) For all B,C C A the following three conditions are equivalent:
(i) Cc(B) CCc(C);
(i) forall X eT,CC X implies BC X;
(i) forall X eT,B—X #0 implies C — X # 0.

Proof. (a) Because Cg(B) € L, and B C X if and only if C,(B) C X for all
X € L, we obtain by Lemmas 2.1 and 2.2 that

Cc(B) = (WX eM(L)|Cc(B)C X} = [{X € M(L)| BC X}
(X eTI|BCX} 2 ([{XeL|BCX} = Cc(B)

622 Jouni Jarvinen

o 11,2,3,4}
{1,2,4} , s {13} ™, {2,3)
N
0

Figure 1: The closure lattice (Lp, C)

Hence, C.(B) ={X € T | BC X}.

(b) Let Cc(B) C Cc(C). If X € T and C C X, then B C C(B) C C(C) C
Cc(X) = X. Conversely, if for all X € 7, C C X implies B C X, then {X € T |
CCX}C{XeT|BC.X} Henceby (a),Ce(B)=({X €T |BCX}C
({X € T-|C C X} =Cc(C). Thus, (i) and (ii) are equivalent. Also (ii) and (iii)
are equivalent since forall X, Y C 4, Y C X ifandonly if Y — X = . a

3 Dense families of dependence spaces

We recall Novotny’s and Pawlak’s [9] definition of dependence spaces. We note
that in [7} Jarvinen studied infinite dependence spaces.

Definition. If A is a finite nonempty set and © is a congruence on the semilattice
(p(A),U), then the ordered pair D = (A, ©) is said to be a dependence space.

Let D = (A,©) be a dependence space. Recalling the finiteness of A, it is
clear that for every B(C A), the congruence class B/© has a greatest element
Cp(B) =JB/©. It was noted in [8] that for all B,C C A,

BOC ifand only if Cp(B)=Cp(C).

In [8] it was also observed that Cp: p(A) = p(A), B — |JB/O is a closure operator
on A. We denote by Lp the closure system corresponding to the closure operator
Cp. Hence, the family £Lp consists of the greatest elements of the ©-classes.

Example 3.1. Let A = {1,2,3,4} and © be the congruence relation on (p(A4), U)
whose congruence classes are {0}, {{1}}, {{2}}, {{3}}, {{4}, {1,2}, {1,4}, {2,4},
{1,2,4}), {{1;3}}, {{2,3}} and {{3,4}, {1,2,3}, {L,3,4}, {2,3,4), {1,2,3,4}}.
The closure lattice (£p, C) corresponding to the dependence space D = (A4, 0) is
presented in Figure 1. Moreover, M(Lp) = {{1,2,4}, {1,3}, {2,3}}.

Difference Functions of Dependence Spaces 623

Dense families of dependence spaces were introduced in [10]. Here we define
them differently as meet-dense subsets of the lattice (Lp, C); recall that in (Lp, C),
XAY =XnNnY foral X,Y € Lp. We will also show that our definition agrees
with Novotny’s definition of dense families.

Definition. Let D = (A, ©) be a dependence space.. A family 7 C p(A4) is dense
in D if it is a meet-dense subset of the lattice (Lp, C).

By Lemma 2.2, a family 7 is dense in D if and only if it is a subfamily of Lp
which contains all elements of the lattice (£p, C) which are covered by exactly one
element of Lp.

Example 3.2. Let us consider the dependence space D = '(A ©) of Example 3.1.
The Hasse diagram of (Lp, C) is given in Figure 1. The dense families of D are the
32 families 7 such that M(£Lp) C T C Lp.

Let A be a set. Each family 7 C p(A) defines a binary relation I'(T) on p(A):
(B,C)eI{(T)ifandonlyif ¥X e T) BC X < CCX.

We note that in [10] dense families were defined by the condition presénted in the
next proposition.

Proposition 3.3. Let D = (A, ©) be a dependence space. A family T C p(A) is
dense in D if and only if T'(T) = O.

Proof. Let T be dense and BOC. Then Cp(B) = Cp(C), which implies by
Proposition 2.3(b) that for all X € 7, B C X iff C € X. Thus, © C I'(7).
Conversely, if (B,C) € I'(T), then

Co(B)=({XeT|BCX}={XeT|CCX}=Cp(C),

which is equivalent to BOC. Hence, also I'(T) C ©.

On the other hand, let I'(7) = ©. We will show that M(L’D) C T C Lp, which
implies by Lemma 2.2 that 7 is a meet-dense subset of (£p,C). Suppose that
X € T. Because XOCp(X) and X C X, we obtain Cp(X) C X, which implies
X € Lp. Hence, T C Lp.

Assume that M(Lp) € 7. This means that there exists a ¥ € M(Lp) such
that ¥ ¢ 7. Since Y € M(Lp), there exists exactly one' Z € Lp such that
Y —< Z holds in Lp. For all X € 7, Z C X implies obviously that ¥ C X.
Suppose that there is an X € 7T such that Y C X but Z € X. Since X, Z € Lp,
weget XNZ € LpandY C XNZ C Z. The fact that ¥ —< Z holds in
Lp implies Y = X N Z. Because Y is meet-irreducible, we obtain ¥ = X or
Y = Z. Obviously both of these equalities lead to a contradiction! Hence, for all
X eT,alsoY C X implies Z C X. Thus, (Y,Z) € I'(T) = ©, which means that
Y =Cp(Y) =Cp(Z) = Z, a contradiction! Therefore, also M(Lp) C T holds. O

624 Jouni Jarvinen

4 Independent sets and reducts

In this section we review independent sets and reducts defined in dependence spaces.
Further references can be found in {8, 9, 10], for example. Our main result of this
section gives a characterization of the reducts of a given subset of a dependence
space in terms of dense families.

Let D = (A, ©) be a dependence space. A subset B(C A) is called independent,
if-B is minimal with respect to inclusion in its ©-class. We denote the set of all
independent subsets of D by IN Dp.

The notion of reducts is important in the theory of Pawlak’s information sys-
tems. Here we study reducts in the more algebraic setting of dependence spaces.
For any B(C A) a set C(C A) is called a reduct of B, if C € B, BOC and
C € INDp. The set of all reducts of B will be denoted by REDp(B). In the other
words, a subset C' (C B) is a reduct of B, if C' is minimal in B/© with respect to
inclusion. Because A is finite, it is obvious that every set has at least one reduct.

Finding all reducts of a given set is called the reduction problem. Our next
proposition, which appears without a proof also in [6], characterizes the reducts of
a given set by the means of dense families.

Proposition 4.1. Let T be a dense family in a dependence space D = (A,0). If
B C A, then C € REDp(B) if and only if C is minimal set with respect to the
property of containing an element from each nonempty difference B — X, where
XeT.

Proof. Let C be a minimal set which contains an element froni each nonempty
difference B — X, X € T. First we show that CC B. f C € B,then BNC Cc C
and (BNC)N(B - X)=CnN(B - X) # 0 whenever B — X # 0, a contradiction!
Thus, CCB. NowC—-X =(BnNC)—-X=CnNn(B-X)#@Qforal X € T
such that B — X # 0. This implies by Proposition 2.3(b) that Cp(B) C Cp(C).
The inclusion Cp(C) C Cp(B) is obvious. Hence, BOC. Assume that C' ¢ INDp.
Then there exists a D C C such that COD. Since O is transitive, we obtain
BOD and in particular Cp(B) C Cp(D). This implies by Proposition 2.3(b) that
DN(B-X)=D-X # { whenever B— X # §, a contradiction! Hence, C is
independent and thus C is a reduct of B.

On the other hand, suppose C € REDp(B). Then C C B, BOC, C € INDp,
and especially Cp(B) C Cp(C). This implies that CN (B - X) = (BN C) —

C — X # 0 for all X € T which satisfy B — X # 0. Assume that there exists a
D C C which contains an element from each nonempty difference B — X, where
XeT. Then D-X=(BND)—-X=DN(B—-X)#0for all X € T such that
B — X # 0. Hence, Cp(B) C Cp(D). Since D C B also Cp(D) C Cp(B) holds.
This implies BOD, and because COB we obtain COD, a contradiction! O

Example 4.2. Let us consider the dependence space D = (A, ©) defined in Ex-
ample 3.1. We have already noted that M(Lp) = {{1,2,4},{1,3},{2,3}} is the
smallest dense family. .

Next we find the reducts of A. The differences A — X, where X € M(Lp), are

Difference Functions of Dependence Spaces 625

A-{1,2,4} = {3}, A—{1,3} ={2,4},and A - {2,3} = {1,4}.

They are all nonempty. Because the reducts of A must contain an element frdm all
of these differences, each reduct must include 3. It can be easily seen that {1,2,3}
and {3,4} are the reducts of A.

5 The difference function

In this section we study the notion of difference function. Difference functions
were introduced in [5]. Here we give an equivalent, but a clearer definition. First
we recall some notions concerning Boolean functions (see e.g. [1], wheré further
references can be found). A Boolean function, or a function for short, is a mapping
f:{0,1}* = {0,1}. An element v € {0,1}™ is called a Boolean vector (a véctor for
short). If f(v) = 1 (resp. 0), then v is called a true (resp. false) vector'of f. The
set of all true vectors (resp. false vectors) of f is denoted by -T'(f) (resp. F(f)).

Let u = (u1,...,u,) and v = (v1,...,vn) be vectors. We set v < v if and only if
u; <wv;, for 1 <7 < n. A function f-is isotone if u < v always implies f(u) < f(v).

In the sequel we assume that f is an isotone function. A true vector v of f
is minimal if there is no true vector w such that w < v, and let min T'(f) denote
the set of all minimal true vectors of f. A mazimal false vector is symmetrically
defined and max F(f) denotes the set of all maximal false vectors of f.

Let D = (A4,©) be a dependence space such that A = {ay,...,a,} and let T
be dense in D. For any B C A, let §(B) denote the disjunction of all variables y;,

where a; € B. We define the difference function fJ (y1,...,yn) as the conjunction
N 6B -X).
XeT
B-X#0

Clearly, the function fJ is isotone. A function x : p(4) — {0,1}" is defined by
B (Xl(B)a v 7Xn(B)):

where ; ¢
0 i a; B
Xi(B)_{ 1 ifa; €B
for all i, 1 < i < n. The value x(B) is called the characteristic vector of B
Now the following lemma holds.

Lemma 5.1. Let T be a dense family in a dependence épace D = (A,09). For all
B,C C A, the following conditions are equivalent:

(a) x(C) € T(]);

(b) C contains an element from each nonempty difference B— X, X € T.

Proof. Let B,C CAand {X €7 |B-X #0} = {X;... Xs}.
(a) = (b) Assume that f (x(C)) = 1. ICN(B-X;) = § for some 4, 1 < i<k,
then obviously the disjunction 6(B - X;) has the value 0 for x(C). This 1mphes that

626 Jouni Jarvinen

also the conjunction A ;<. 0(B — X;) has the value 0 for x(C), a contradiction!
Hence, CN(B - X;) #0 forall:, 1 <i<k.

(b) = (a) Suppose that C N (B — X;) # 0 for all 1 < i < n. Then for all
1 < i < n, the disjunction 6(B — X;) has the value 1 for x(C). This implies that
the conjunction A, ;<, 6(B — X;) has the value 1 for x(C), i.e., fL(x(C))=1. O

Now we can write the following proposition. Note that for any X C A, X C =
A — X is the complement of X.

Proposition 5.2. Let T be a dense family in a dependence space D = (A,0). If
B C A, then
(a) minT(f) = {x(C) | C € REDp(B)} and
(b) max F(fF) = max{x((B~X)*)| X € T,B — X # 0}.

Proof. Let us denote fJ simply by f.

(a) Let v € min T'(f) and let C be the subset of A which satisfies x(C) = v. By
Lemma, 5.1 C contains an element from each nonempty difference B — X, where
X € T. Assume that C is not minimal set with respect to that property, that is,
there exist a D C C which also contains an element from each nonempty difference
B - X, where X € T. By Lemma 5.1 this implies that x(D) € T(f). But D c C
implies x(D) < x(C) and hence x(C) ¢ minT(f), a contradiction! Therefore, C
is minimal set with respect to the property of containing an element from each
nonempty difference B — X, where X € 7. This implies that C is a reduct of B by
Proposition 4.1.

On the other hand, suppose that C is a reduct of B. Then C contains an element
from each nonempty difference B — X, where X € T, and thus x(C) € T(f).
Suppose that x(C) ¢ minT(f). This means that there exists a vector v € T(f)
such that v < x(C). Let D be the subset of A which satisfies x(D) = v. Then
obviously D is a set which contains an element from each nonempty difference
B - X, where X € 7. Since D C C, C is not a reduct of B, a contradiction!
Hence, x(C) € minT'(f).

(b) By Lemma 5.1 it is obvious that f(x(C)) = 0 if and only if there exist
an X € 7 such that B— X # @ and CN (B — X) = 0. This is equivalent to the
condition that f(x(C)) = 0 if and only if there exist an X € T such that B—X # 0)
and C C (B - X)C. -

Suppose that x(C) € max F(f). This implies that C C (B — X)¢ for some
X e T,B—- X #0, and hence x(C) < x((B - X)®). Assume that x(C) < x((B —

X)%). Since x((B - X)) € F(), this implies x(C) ¢ max F(f), a contradiction!
Hence, x(C) € {x((B X)®) | X € T,B— X # 0}. Assume that there exists a
x(D) € {x((B- X)) | X € T,B — X # 0} such that x(C) < x(D). Clearly,
this implies that x(D) € F(f) and hence x(C) ¢ max F(f), a contradiction! Thus,
x(C) € max{x((B-X)") | X € T,B - X # 0}.

Conversely, suppose that x(C) € max{x((B - X)’) | X € T,B - X # 0}.
Then obviously x(C) € F(f). Assume that there exists a x(D) € F(f) such that
x(C) < x(D). This implies that there exists an X € T such that D C (B — X)©

Difference Functions of Dependence Spaces 627

and B — X # 0. We obtain that x(C) < x(D) < x((B — X)%) for some X € T~
such that B — X # 0, a contradiction! Hence, x(C) € max F(f). -0

Hence, the minimal true vectors of the difference function of B(C A) are the
characteristic vectors of the reducts of B.

Example 5.3. Let us consider the dependence space D = (4, O) defined in Exam-
ple 3.1. The family 7 = {{1,2,4},{1,3}, {2,3}} is known to be dense in D. The
differences A — X are all nonempty for all X € 7. Hence,

[T = 8(A={1,2,4}) AS(A— {1,3)) AS(A - {2,3))
= 3A(2V4)A(1V4),

where i stands for y;. The function f] has the minimal true vectors (0,0,1,1) and
(1,1,1,0), which implies by Proposition 5.2 that REDp(A) = {{3,4},{1,2,3}}.

The dual of a Boolean function f, denoted by f¢, is defined by fé(z) = f(%),
where f and Z denote the complements of f and z, respectively. It is well-known
that (f4)¢ = f and that the DNF expression of f¢ is obtained from that of f by
exchanging V and A as well as constants 0 and 1, and then expanding the resulting
formula. For example, the dual of g = 3V(1A4)V (2A4) is g% = 3A(1V4)A(2V4) =
(3A4)V(LA2A3).

It is known (see e.g. [1]) that for any isotone Boolean function f, minT'(f¢) =
{v| v € max F(f)}. Let us denote f simply by f. By Proposition 5.2:

veminT(fY) <= T€ maxF(f)
= vemax{x(B-X)")|XeT,B-X+£0)
< veEmin{x(B-X)|XeT,B-X#0)}.
The family 7 = {{1, 2,4}, {1, 3}, {2, 3} } is known to be dense in the dependence -

space D of Example 3.1. Let us denote by f the difference function of the set A.
Then

min(%) min{x(A-X)| X eT,A- X # 0}

{(0,0,1,0),(0,1,0,1),(1,0,0,1)}.

This means that f¢ =3V (1A4)V(2A4)and f= ()%= 3A4)V(IA2A3).
Hence, min T'(f) = {(0,0,1,1),(1,1,1,0)}, as stated in Example 5.3.

Remark. Let f = f(z1,...,2,) and g = g(z1,...,7,) be a pair of isotone Boolean
functions given by their minimal true vectors min T'(f) and min T(g), respectively.
Let us consider the following problem; test whether f and ¢ are mutually dual.
In [3] Fredman and Khachiyan showed that this problem can be solved in time
ko068 %) where k = | min T'(f)| + | min T(g)].

This implies that for an isotone Boolean function f given by its minimal true
vectors and for a subset G C minT'(f?), a new vector v € minT(f%) — G can be

628 Jouni Jarvinen

computed in time nk°(°8%) where k = |minT(f)| + |G| (see [1], for example).
This means also that for any isotone Boolean function f given by its minimal true
vectors, f¢ can be computed in time nk°(°8%) where k = | min T'(f)|+| min T'(f4%)|.

6 An application to information systems

An information system is a triple S = (U, A, {Va}aca), where U is a set of objects,

A is a set of attributes, and {V,}.ca is an indexed set of value sets of attributes.

All these sets are assumed to be finite and nonempty. Each attribute is a function

a:U — V, which assigns a value of the attribute a to objects (see e.g. [9; 10, 11]).
For any B C A, the indiscernibility relation of B is defined by

I(B) = {(z,y) € U? | a(x) = a(y) for all a € B}.

It is known that I(B) is an equivalence relation on U such that its equivalence
classes consist of objects which are indiscernible with respect to all attributes in B.
Let us define the following binary relation ©s on the set p(A):

(B,C) € ©s + I(B) = I(C).

So, two subsets of attributes are in the relation ©g if and only if they define the
same indiscernibility relation. It is known (see e.g. [8, 9]) that O is a congruence
on the semilattice (p(A),U). Hence, the pair Ds = (4, Og) is a dependence space.
It can be easily seen that C (C A) is a reduct of B (C A) in the dependence space
Ds if and only if C' is a minimal subset of B which defines the same indiscernibility
relation as B. '

Assume that U = {21,...,2m}. Then the indiscernibility matriz of S is an
m X m-matrix Ms = (¢ij)mxm such that

cij = {a € Al a(z) = a(y)}

for all 1 < 4,5 < m. Thus, the entry c;; consists of the attributes which do not
discern objects z; and z; (cf. discernibility matrices defined in [12]). It is now
trivial that
T (zi,z;) €I(B) <= B Ccij.

Next we show how matrices of preimage relations induce dense families.

Proposition 6.1. If S = (U, A,{V,}eca) is an information system and Mg =
(Cij)mxm 15 the indiscernibility matriz of S, then the family

Ts ={ei; | 1 <4,5 <m}

is dense in the dependence space Ds = (4, Og).

Difference Functions of Dependence Spaces 629

Proof. By Proposition 3.3 it suffices to show that I'(7s) = ©s. If (B,C) € Og,
then for all 1 < 4,5 < m, B C ¢; iff (z5,2;) € I(B) iff (z;,z;) € I(C’) iff C C ¢y,
Wthh implies (B,C) € I'(Ts). Hence, Os CI'(7s).

If (B,C) € I'(Ts), then for all 1 < 4,5 < m, (z;,z;) € I(B) 1ffB C ¢y iff
C C ¢y iff (z5,z;) € I(C), which implies I(B) = I(C). Thus, also I'(Ts) C Os
and hence I'(7s) = Os. : ’ 0O

We conclude this paper by an example.

Example 6.2. Let us consider an information system S = (U, A, {Va}aea), where
the object set U = {1, 2, 3,4, 5} consists of five persons, the attribute set A consists
of the attributes Age, Eyes, and Height, and the corresponding value sets are
Vage = {Young, Middle, Old}, Vgyes = {Blue, Brown, Green}, and VHe,gm =
{Short, Normal, Tall}.

Let the values of the attributes be defined as in the following table.

Age Eyes Height
Young Blue Short
Young Brown Normal
Middle Brown Tall
Old Green Normal
Young Brown Normal

Tk W N~

For example, the indiscernibility relation I(A) of the attribute set A is an equiva-
lence on U which has the equivalence classes {1}, {2,5}, {3}, and {4}.

If we denote a = Age, b = Eyes, and ¢ = Height, then the indiscernibility matrix
of S is the following: ' '

~{a} 0 0 {a}
{fa} 4 {8} {c¢ 4
Ms = g {8 A 0 {b}
0 {3 0 A |}
{a} 4 {8} {c} 4

By Proposition 6.1, the family 7s = {0, {a}, {b}, {c}, A} consisting of the
entries of M is dense in the dependence space Ds = (A, ©s). Let us denote by f
the difference function of the set A. Then min(f¢) = min{x(4 - X) | X € T,A -
X #0} ={(0,1,1),(1,0,1),(1,1,0)}. This means that f¢ = (bAc)V(aAc)V (aAb)
and f =(Vc)A(aVe)A(aVb)=(aAb)V(aAc)V(bAc). Obviously, (1,1,0),
(1,0,1) and (0,1,1) are the minimal true vectors of f..Thus, {a;b}, {a,c}, and
{b,c} are the reducts of A in Ds.

Acknowledgement

The author thanks the referee for his valuable comments and suggestions.

630

Jouni Jarvinen

References

(1]

(2l

[3]

[4)

[5]

7]

18

(9]

[10]

[11]

J. C. BiocH, T. IBARAKI, Complezity of identification and dualization of
positive Boolean functions, Information and Computation 123 (1995), 50-63.

B. A. DAvEY, H.A. PRIESTLEY, Introduction to lattices and order, Cam-
bridge University Press, Cambridge, 1990.

M. FREDMAN, L. KHACHIYAN, On the complezity of dualization of mono-
tone disjunctive normal forms, Journal of Algorithms 21 (1996}, 618-628.

G. GRATZER, Lattice theory: first concepts and distributive lattices, W. H.
Freeman and company, San Francisco, 1971.

J. JARVINEN, A representation of dependence spaces and some basic algo-
rithms, Fundamenta Informaticae 29 (1997), 369-382.

J. JARVINEN, Preimage relations and their matrices. In L. POLKOWSKI,
A. SKOWRON (eds.), Rough sets and current trends in computing, Lecture
Notes in Artificial Intelligence 1424, Springer-Verlag, Berlin/Heidelberg,
139-146, 1998.

J. JARVINEN, Knowledge representation and rough sets, PhD Dissertation,
University of Turku, Department of Mathematics, March 1999 (available at
http://www.cs.utu.fi/jjarvine).

J. NovoTNY, M. NOVOTNY, Notes on the algebraic approach to dependence
in information systems, Fundamenta Informaticae 16 (1992), 263-273.

M. NoVOTNY, Z. PAWLAK, Algebraic theory of independence in information
systems, Fundamenta Informaticae 14 (1991), 454-476.

M. NOVOTNY,. Applications of dependence spaces. In E. ORLOWSKA
{ed.), Incomplete information: rough set analysis, Physica—Verlag, Heidel-
berg/New York, 247-289, 1998.

Z. PAWLAK, Information systems. Theoretical foundations, Informations
Systems 6 (1981), 205-218.

[12) A. SkowroN, C. RAUSZER, The discernibility matrices and functions in

information systems. In R. SLOWINSKI (ed.), Intelligent decision support.
Handbook of applications and advances of the rough set theory, Kluwer Aca-
demic Publisher, Dordrecht, 331-362, 1991.

Received November, 1999

Acta Cybernetica 14 (2000) 631-652.

Elementary decomposition of soliton automata*

Miklés Bartha Miklés Krész ¥

Abstract

Soliton automata are the mathematical models of certain possible molec-
ular switching devices. In this paper we work out a decomposition of soliton
automata through the structure of their underlying graphs. These results lead
to the original aim, to give a characterization of soliton automata in general
case.

1 Introduction

One of the most important goals of research in bioelectronics is to develop a molec-
ular computer (see e.g. [3]). The soliton automaton introduced in [4] is the mathe-
matical model of so-called "soliton valves” having the potential to serve as a molec-
ular switching device in such a computer architecture.

The underlying object of a soliton automaton is a soliton graph, which is the
topological model of a hydrocarbon molecule-chain in which the appropriate soliton
waves travel along. Any soliton graph has a perfect internal matching, ie. a
matching that covers all the vertices with degree at least two. These vertices model
the carbon atoms, whereas vertices with degree one (external vertices) represent an
interface with the outside world. The states of the corresponding automaton — also
called the states of the graph — are the perfect internal matchings of the underlying
graph, while the transitions are realized by making soliton walks. Intuitively, a
soliton walk is an alternating walk with respect to some state M of the graph G,
which starts and ends at an external vertex. However, the status of each edge in the
walk regarding its presence in M changes dynamically step by step while making
the walk, so that by the time the walk is finished, a new state of G is reached.

The analysis of soliton automata is a very complex task. So far only a few special
cases have been described. In [4], [5] and [6], the transition monoids were deter-
mined for strongly deterministic soliton automata, deterministic soliton automata
with a single external vertex or with one cycle. Following a different approach, in

*This work was partially supported by Soros Foundation. Presented at the Conference of PhD
Students on Computer Science, July 20-23 2000, Szeged.

tDepartment of Informatics, University of Szeged, 6720, Szeged, Arpéd tér 2, Hungary, e-mail:
bartha@inf.u-szeged.hu

iDepartment of Computer Science, University of Szeged, Faculty of Juhdsz Gyula Teacher
Training College, 6725, Szeged, Boldogasszony sgt. 6, Hungary, e-mail: kresz@jgytf.u-szeged.hu

631

mailto:bartha@inf.u-szeged.hu
mailto:kresz@jgytf.u-szeged.hu

632 Miklés Bartha, Miklés Krész

(8], the computational power of strongly deterministic soliton automata have been
investigated by automata products. However, the general case is still open.

The main contribution of this paper is to reduce the general problem to a
simpler one by working out a decomposition of soliton automata into elementary
ones. For this goal we make use of the elementary structure of soliton graphs found
in [2]. In Section 3 we describe the automata based on the internal parts of this
decomposition, then characterize the relationship of component automata by ag-
products. In Section 4 the self-transitions — transitions from a state to itself -
induced by non-trivial walks are investigated. This problem will be analyzed also
through the elementary decomposition. '

2 Basic concepts and preliminaries

By a graph we mean, unless otherwise specified, a finite undirected graph in the
most general sense, i.e. with multiple edges and loops allowed. For a graph G, V(G)
and E(G) will denote the set of vertices and the set of edges of G, respectively.
An edge e = (v1,v2) € E(G) connects two vertices vy, vy € V(G), which are called
the endpoints of e, and e is said to be incident with v; and vy. If v; = vg, then
e is called a loop around v;. Two edges sharing at least one endpoint are said to
be adjacent in G. A subgraph G’ of G is a graph such that V(G’') C V(G) and
E(G") C E(G). If X C V(G) then G[X] denotes the subgraph of G induced by X,
ie. V(G[X]) = X and E(G[X]) consists of the edges of G having both endpoints in
X . Moreover, we say that the set E C E(G) spans the subgraph G' if G' = G[X],
where X is the set of vertices incident with some edge of E.

If the vertex set of a graph G can be partitioned into two disjoint non-empty
sets A and B such that all edges of G join a vertex in A to a vertex in B, we call
G bipartite and refer to (A, B) as the bipartition of G.

The degree of a vertex v in graph G is the number of occurences of v as an
endpoint of some edge in E(G). According to this definition, every loop around v
contributes two occurences to the count. The vertex v is called ezternal if its degree
d(v) is one, internal if d(v) > 1, and isolated otherwise. Ezternal edges are those
that are incident with at least one external vertex, whereas an edge is internal, if
it is not external. The sets of external and internal vertices of G will be denoted
by Ezt(G) and Int(G), respectively. ’

A matching M of graph G is a subset of E(G) such that no vertex of G occurs
more ‘than once as an endpoint of some edge in M. Again, it is understood that
loops are not allowed to participate in M. The endpoints of the edges contained
in M are said to be covered by M. A perfect internal matching is one that covers
all the internal vertices of G. An edge e € E(G) is allowed (mandatory) if e is
contained in some (respectively, all) perfect internal matching(s) of G. Forbidden
edges are those that are not allowed. We will also use the name constant edge as a
common reference to forbidden and mandatory edges. A perfect internal matching
in G will be also referred to as a state of G, and the set of states of G is denoted
by S(G). For a complete account on matching theory the reader is refered to [9].

Elementary decomposition of soliton automata 633

To follow the matching theoretic terminology, a soliton graph G is defined as a
graph having at least one external vertex and a perfect internal matching. (See [1]).
A connected soliton graph G is said to be essentially internal if either G consists
of one edge or every external edge of G is forbidden.

An elementary component C of soliton graph G is a maximal connected subgraph
of G spanned by allowed edges only. Then C is called ezternal or internal depending
on whether it contains an external vertex or not. An elementary component is said
to be trivial, if it contains at most one edge. Elementary graphs are those which
consist of one elementary component. Note that the decomposition into elementary
components determines a partition on V(G).

Now let G' be a subgraph of soliton graph G. Then for any state M of G,
by Mg we mean the restriction of M to G'. If, in addition, G’ is also a soliton
graph with Mq € S(G'), and either Int(G’) = V(G') N Int(G) or G’ is essentially
internal, then G’ will be called a soliton subgraph with respect to M.

. Inagraph G, a walk of length n is a sequence « =g, e1,...,€n,Un, n >0, of
alternating vertices and edges. This sequence indicates the starting point vy € V(G)
of o and the vertex vj, j € [n] = {1,...n}, that o reached after traversing the j-th
edge e;. The notation ofv;,v;] with 1 < i < j < n will be used for the subwalk

of a between v; and vj, i.e., ofv;,v;] = vi,ei41,...,€;,v;. Furthermore ot will
represent the reverse of a. For every j € [n], ne(j) will denote the number of
occurences of the edge e, in the prefix vo,e1,... ,e;. By a backtrack in a walk we

mean the traversal of the same edge twice in a consecutive way. However, as the
only exception, the traversal of a looping edge in the above way is not considered
to be a backtrack. If all edges in a walk are distinct, the walk is called a trail, and
if, in addition, the vertices are also distinct, the trail is a path. We define a cycle to
be a path together with an edge joining the first and the last vertex. Note, that a
looping edge is also a (trivial) cycle according to the above definition. An ezternal
trasl (path) is a trail (path) having an external endpoint , while a path between two
external vertices is said to be crossing. Internal trails (paths) are those that are
not external.

A trail a = vg,e;,... ,en,Vn, n > 0 is an alternating trail with respect to state
M (or M-alternating trail, for short) if for every i € [n — 1], e; € M iff e;41 & M.
If vo,vn € Int(G), then « is called internal, otherwise a is external. Moreover, «
is said to be positive (negative) if either a is internal with e;,e, € M (e1,en & M,
respectively) or it is external with v, € Int(G) such that e, € M (e, & M,
respectively). Observe that at most the endpoints of a can be traversed twice by an
alternating trail a. Based on the above fact, any maximal external M-alternating
trail a starting from vertex v, different from a crossing, can be decomposed in the
form a = ap + a¢, where oy, the handle of , is an external M-alternating path,
whereas a., the cycle of «, is an M-alternating cycle. With these parameters, a is
called an clternating v-racket or an alternating v-loop depending on whether «, is
even or odd. .

We say that an internal vertex w is accessible in state M from external vertezr v
(or simply w is M -accessible from v) if there exists a positive external M-alternating
path with endpoints v and w. We will call an edge e viable from external vertex

634 Miklés Bartha, Miklds Krész

v in state M if e is traversed by an external M-alternating trail starting from v.
Impervious edges are those which are not viable in any state from any external
vertex. Furthermore, a cycle is said to be M -accessible from external vertex v if
some of its edges are viable from v in state M.

For a state M of G, an M-alternating trail o is called complete if a is either a
crossing or it is an even length cycle. An alternating network with respect to M (or
M-alternating network, for short) is a set of nonempty, pairwise disjoint, complete
M-alternating trails. Note that, although an M-alternating network I' consists of
nonempty trails only, the network I' itself can be empty.

Let M be a state of graph G and a be a complete M-alternating trail. By
making a in state M we mean exchanging the status of the edges in a regarding
their being present or not being present in M, thus creating a new state M'. The
state M’ created in this way will be denoted by Sg(M,) or simply S(M,a) if
G is understood. Making an M-alternating network I' in state M means making
all the trails of I" simultaneously in M. Since the trails of I' do not intersect each
other, the resulting state, denoted by Sg(M,T), is well-defined. Finally, let G’ be
a subraph of G and M € S(G). Then by an Mg/ -alternating trail (network) we
mean one that is entirely contained in graph G'.

Now we quote two results from [1] related to alternating networks.

Theorem 2.1 For any two states My, M, of graph G, there ezists a unique
mediator alternating network I' between My and Ma, ie. Sg(M1,T) = M, and
SG(MQ,F) = M1

Corollary 2.2 An edge e is non-constant iff it is traversed by a complete M-
alternating trail in each state M.

In our decomposition results we will make use of the a§-products of finite automata,
therefore we now recall the necessary definitions from [7]. An alphabet is a finite,
non-empty set. If X is an alphabet, then X* denotes the set of words over X,
including the empty word €. A non-deterministic finite automaton is a triple A =
(8, X,9), where S is a non-empty finite set, the set of states, X is an alphabet, the
input alphabet, and & : A x X — 24 is the transition function. We can extend & in
such a way that §(s,e) =sforallse S.

For i = 1,2, let A; = (5;, X;,d;) be finite automata. An isomorphism between
A; and A, is a pair ¢ = (s,¥x) of bijective mappings s : S; =& S and
¥x : X1 = X, which satisfies the equation

- {s(s) | 8" € d1(s,2)} = Ba(¥s(s), ¥x (),

for every s € S; and every z € X;. The existence of an isomorphism between .4,
and .45 is denoted by A; = A,.

Definition 2.3 Let A; = (S;, X;,8;) i =1,...,k; k > 0) be a system of automata.
Their af-product with respect to alphabet X and feedback function ¢ — notation
Hle A;[X, ¢) — is the automaton

A= (S, X,8), where

Elementary decomposition of soliton automata 635

(a) S=81x...x 5
(b) ¢ = (¢1,-..,¢r) is a mapping, such that
$i:S1x...x Sk x X = X;U{e}, and ¢; is independent of its j** component
whenever i < j <k, (i=1,...,k)
(c) 6((s1,.--,8k),2) =
61(81)¢1(317"')Sk)z)) X...X dk(sk7¢k(sla"' ,Sk,fl:))
foreveryz € X,s;, € S; (i=1,...,k)

Moreover, if every ¢; (1 <4 < k) depends only on the input signal, then we speak
of the quasi-direct e-product of A; ... Ag.

The following definitions are the matching theoretic formalizations of soliton walk
and soliton automata introduced in [4].

Definition 2.4 A partial soliton walk in graph G with respect to state M is a
backtrack-free walk a = vg, ey, ... ,en, vy, subject to the following conditions:

(a) wo is an external vertex
(b) for every j € [n—1], no(j) and ny(j + 1) have the same parity iff e; and ejyqq
are M-alternating, i.e., e; € M iff e;41 § M.

Furthermore if v, is also external then « is called total soliton walk, or simply
soliton walk.

Note that the case of n = 0 is also possible; then the soliton walk is called trivial.

Making the walk o in state M means creating M’ = S(M,a) by setting for
every e € E(G)

e€ M'iff e € M and e occurs an even number of times in a, or e ¢ M and e
occurs an odd number of times in a.

In the light of [4, Lemma 3.3] it should be clear that S(M, a) is indeed a state.

In the rest of the paper we will use the following notation. If M is a state of
graph G and 'U1,’02 € Ezt(G), then

Sa(M,v1,v2) = {S(M, @) | a is a soliton walk with respect to M, which starts
at v; and ends at vy}

Definition 2.5 A soliton automaton with underlying graph G is a non-
deterministic finite automaton

A(G) = ((5(G), (X x X),6)

subject to the following conditions:
(a) G is a soliton graph
(b) S(G), the set of states of A(G), is the set of states of G
(c) (X x X) is the input alphabet, where X = Ezt(G)
(d) §:S(G) x (X x X) — 25(5) is the transition function, such that
0(M, (v1,v2)) = Sg(M,v1,v2), if Sg{M,v1,v2) #0
(M, (v1,v2)) = {M}, otherwise
for any M € S(G) and vq,v2 € X.

636 Miklés Bartha, Miklés Krész

A soliton automaton is said to be elementary if its underlying object is an
elementary graph.

Note that, without loss of generality, we can assume that all constant external edges
of a soliton graph G are mandatory. Indeed, attaching an extra mandatory edge to
each forbidden external edge of G results in a graph G* for which A(G) = A(G*).
We shall use this assumption throughout the paper without any further reference.

In [4] an edge is called impervious if it is not traversed by any partial soliton walk.
The following proposition states that our definition of impervious edge is equivalent
to this.

Proposition 2.6 Let a = vg,ey,... ,€y,,Un be a partial soliton walk with respect
to state M with vy # v,,. Then there ezists an external M -alternating trail B from
vg such that § terminates in e, and E(8) C E(a). Furthermore, if no(n) is odd,
then the other endpoint of B is v,. :

Proof. First suppose that e,, ¢ M. Extend G by new external edges e = (vp_1,v)
and €' = (vp,v'), such that v,v" € V(G). Furthermore let e, denote the last
edge of a for which e, = e, and ny(m) is odd. Observe that afvg,vm-1] + €
or afvg,vm-1] + €' is a total soliton walk in G + e + €' depending on whether
Um—1 = Un—1 OF Um—_1 = vUn. Therefore, based on Theorem 2.1, there exists an
M-alternating network I" such that making I' and making the appropriate part of
the above walks results in the same state of G + e + ¢'. Clearly, I" will contain an
M-alternating crossing 8’ between vy and v (between vg and v', respectively). Then
replacing e (respectively, €') in 8’ by e, we obtain the required M-alternating trail
B. . '

Now consider the case when e, € M. Then e,_; € M, thus we can construct
the appropriate external alternating trail § described above, which terminates at
én—1. If e, € E(B), then we are ready. Otherwise § + e, will provide a suit-
able alternating path. Finally, based on the first part of the proof, observe that
en & E(B), when ny(n) = ne(n — 1) is odd, which makes the proof complete. O

It is clear that impervious edges have no effect on the operations of soliton au-
tomata. Thus, without loss of generality, we cah restrict our investigation to soliton
graphs without impervious edges. The above fact in more precise form is stated in
[4, Proposition 4.5]. Therefore, throughout the paper, unless otherwise specified,
G will denote a soliton graph without impervious edges.

In the rest of this section we summerize some results from [2].
Definition 2.7 For any two internal vertices u,v € V(G), u ~ v if u and v belong
to the same elementary component of G and the edge e = (u,v) becomes forbidden
inG+e.

For an elementary component C of G, ~¢ will denote ~ on C separately. Note
that generally ~¢ is not equal to the restriction of ~ to C.
Theorem 2.8 The relation ~ is an equivalence on Int(G).

The classes of the partition determined by ~ are called canonical classes. In par-
ticular a canonical class of elementary component C is a canonical class contained

Elementary decomposition of soliton automata 637

in V(C).

Proposition 2.9 Let u and v be arbitrary vertices of a non-trivial internal ele-
mentary component C of G. Then u #¢ v iff for any state M of G there exists a
positive internal Mc-alternating path connecting u and v.

In the following we shall use the phrase ”external alternating path v enters elemen-
tary component C” in the strict sense, meaning that + enters C for the first time.
Note that in this case v must be negative.

Definition 2.10 An internal elementary component C is one-way if all external
alternating paths enter C in the same canonical class of C. This unique class is
called principal. Further to this, every external elementary component is a priori
one-way by the present definition (with no principal canonical class). An elemen-
tary component is two-way if it is not one-way.

Proposition 2.11 There ezists no edge connecting two internal vertices contained
in principal canonical classes.

Let C be an elementary component of G, and consider a state M in G. An
M -alternating C-loop (just C-loop if M is understood) is a negative internal M-
alternating path or odd M-alternating cycle in G having both endpoints, but no
other vertices, in C. Note that the endpoints of a C-loop a must belong to the
same canonical class which is called the domain of «. We say that a covers the
elementary component D if some edge of D is traversed by a.

Definition 2.12 Let M and C be a state and an external elementary component
of G, respectively. A hidden edge of C is an edge e = (v1,v2), not necessarily in
E(G), for which v, v, are the endpoints of an M-alternating C-loop.

An elementary graph C consisting of an external elementary component and its
hidden edges will also be considered elementary component throughout the paper.
In this case we will call C augmented esternal elementary component. In [2] it was
proved that the augmentation of a soliton graph G by its hidden edges preserves the
elementary structure of G with the same canonical partition for each elementary
component.

The hidden edges have important role in the external alternating paths, which
is expressed below.

Proposition 2.13 Let M be a state of G, w € V(G) andv € Ext(G). Furthermore
let a be a positive (negative) M -alternating trail between v and w such that E(a)
contains hidden edges. Then there exists a positive (respectively, negative) M -
alternating trail between v and w which does not traverse any hidden edge.

Elementary components are structured according to their accessibility by exter-
nal alternating paths. The rest of this section is an extract of some results obtained
in {2] relating to this structure.

Definition 2.14 Let C be an elementary component with a non-principal canoni-
cal class P. We say that the couple (C, P) are the parents of elementary component
D if a C-loop with domain P covers D but there does not exist a C'-loop a for any

638 Miklés Bartha, Miklés Krész

elementary component C’' such that a covers both C and D. In that case C and
P are called the father and the mother of D, respectively.

Theorem 2.15 Fach two-way elementary component has a unique father and a
unique mother. One-way components have no parents.

The following property of fathers will play important role in the paper.

Proposition 2.16 Let (C, P) be the parents of elementary component D and let
a be an alternating trail starting from external vertexr v entering D at a vertez w.
Then afv,w] will go through C such that the last common vertez of afv,w] and of
C belongs to P.

By Theorem 2.15, elementary components can be grouped into disjoint family trees
according to the father-son relationship. Then a family F is defined as a block of
elementary components belonging to the same family tree. The root, denoted by
r(F), is the ultimate forefather of 7. Then Theorem 2.15 implies the following
result. ‘

Theorem 2.17 Every family contains a unique one-way elementary component,

which is r(F).

A family F is external if r(F) is such, otherwise it is internal. Moreover, for the
family containing some elementary component C, the notation F¢ will be used.

Now we describe the relationship of families with the help of a binary relation.
For this we need the following observation.

Proposition 2.18 Let e be a forbidden edge of G connecting two different families
F1 and F». Then exactly one endpoint of e belongs to the principal canonical class
of the root of either 71 or Fs.

Making use-of the above claim, the binary relation — is defined in the following
way. '

Definition 2.19 For any two different families Fy, Fa, F1 +— F2 if there exists an
edge e connecting F; and F» such that the principal endpoint of e is in F;. In this
case we say that e points to family F».

Let v denote the reflexive and transitive closure of .

Theorem 2.20 The relation v is a partial order on the collection of all families
of G, by which the external families are mazimal elements.

Finally we give an important consequence of the above results, which will be used
throughout the paper.

Corollary 2.21 An edge e connecting two families is traversed by any external
alternating trail o in G by reflecting the relation —, that is, if a enters family F»
from family Fy, then e points to F;.

Proof. Suppose by way of contradiction that 7> — F; holds in the situation
described in the statement of the corollary for some M-alternating trail o starting
from an external vertex u. In that case let (v1,v2) denote the edge traversed by the
above way with v; being contained in the principal canonical class Py of 7(F;). Now -

Elementary decomposition of soliton automata 639

let extend G by edge f = (v, v1). Then f will be clearly viable by afu, v1]+ (vi,v1),
thus G + f has no impervious edges. Observe that P, will be a canonical class in
G + f, too. Indeed, if we assumed that an extra edge ¢ connecting two vertices
wy,w; € P1 would be allowed in G + f + g, then it is easy to see, by making use of
Corollary 2.2, that there would exist in G + f + g a complete M-alternating trail
f containing both f and g. However, f is a loop, consequently the above situation
is not possible. Therefore the elementary component r(F1) + f is also one-way in
G + f with f being in its principal canonical class P;; which is a contradiction in
Proposition 2.11. » 0

3 The decomposition of soliton automata

It is a central question to establish the correspondence between alternating networks
and soliton walks. The first result gives the characterization of this problem.

Definition 3.1 Let v, w be external vertices and M be a state of G. An M-
transition network I' from v to w is an M-alternating network with the following
conditions:

(a) T =@, then v = w.

(b) All elements of I', except one crossing from v to w if v # w, are alternating
cycles accessible from v in M.

Let To (M, v, w) denote the set of M-transition networks from v to w in graph G.

Theorem 3.2 Let M be a state of G, v,w € Ext(G), and I' be an M -alternating
network. Then Sg(M,T) € Sg(M,v,w) iff I € Ta(M,v,w).

Proof. The "only if’ part is straightforward from Theorem 2.1 and from Proposi-
tion 2.6. To prove the "if” part, let us construct for each cycle §# of I' an appropriate
v-racket 8’ with respect to M, such that the length of the handle of 8’ is minimal.
Let I denote the set of the above v-rackets and , in the case of v # w, of the
crossing of T".

We will show by an inductive argument on | I’ | that there exists a soliton walk
a for which E(a) C E(UT") and S(M,a) = S(M,T). The basis step with I being
empty or a singleton is trivial.

Now let | IV |> 1 and assume that the assertion holds for each soliton walk set
I'| constructed in the described way from an appropriate alternating network I'y
"~ with | T} |<| I |. Let -y denote the v-racket with longest handle in I''. It is evident
that v, is disjoint from U(I'\{~}). Now using the induction hypothesis consider a
soliton walk & = v,e1,v1,...,Un_1,€n,w traversing I\ {7} by the required way. If
Yo = U, f1,Wi1,-.. , fm,Wm, then let w; be the first vertex of v, such that fir4i #
er+1. Then it is easy to see that afv, v;] + Yn[wi, W) + Ye + Y {Wm, wi] + afvi,)]
will be a soliton walk with the required properties, which makes the proof complete.
O

Note that based on Theorem 3.2, the transitions of a soliton automaton can be
effectively computed from its underlying soliton graph. Indeed, for any two states

640 Miklés Bartha, Miklés Krész

M,, M,, the mediator alternating network between M; and M, is given by I' =
M, © M,, where @ denotes the symmetric difference of M; and M., while the
shortest handle for each alternating cycle in ' can be found in a straightforward
way. Moreover, the proof of Theorem 3.2 is constructive, it yields a soliton walk
between two given states. The above facts are important from simulation point of
view.

We will work out products of automata based on elementary components, thus
first we characterize the automata constructed from these components.

Definition 3.3 For an elementary component C of graph G, the component au-
tomaton determined by C is the soliton automaton based on the graph C*, where
‘C* =(C, if C is external
C*=C+ (v,w),v € C,w & V(G), if C is internal

Definition 3.3 might give the impression that an internal component automaton de-
pends on the choice of vertex v. However, Theorem 3.5 will show that all component
automata determined by the same internal elementary component are isomorphic,
thus A(C*) is unambiguous.

Definition 3.4 An A4 = (S, X,) automaton is called full, if

(i) X = {z}
(ii) 6(s,z) = S, foreachs € S

Theorem 3.5 FEuvery internal component automaton is a full automaton. Con-
versely, for any full automaton there exists an isomorphic internal component au-
tomaton.

Proof. We start with proving the first statement. To this end let C be an internal
elementary component, v € V(C) and (v,w) an extra external edge attached to C
in order to form C*. As any state of C* has a transition to itself by a trivial soliton
walk, we have to prove the ”full-property” only for any two different states M;,M,
of C. If T is the mediator alternating network between M, and Ms, then clearly
I consits of M(M,)-alternating cycles. Any cycle 8 of I' contains a vertex u for
which u ¢ v, thus there exists an internal positive M;(M;)-alternating path a
between v and v in the graph C. Therefore 3 is accessible from w in M (M) by
(w,v) + a. As v and B were arbitrary, we obtain the first claim with the help of
Theorem 3.2.

To prove the second statement, we only have to show that there exists an internal
elementary component with n states for every n € N. The case n = 1 is satisfied
by an elementary component consisting of one internal mandatory edge. If n > 2,
then consider an even cycle 3, two adjacent vertices v,w € V(f) and construct a
graph G such that it has a representation in the form G = S+ a; + ... + @p—9,
where

(i) @;, i € [n— 2] is an odd path with endpoints v and w
(i) V() NV (B) = {v,w}, i€ [n—2]
(i) V() NV(a;) = {v,w}, 4,7 € [n—-2]

Elementary decomposition of soliton automata 641

Observe that for any edge e being incident with v, there is a unique state M of G
such that e € M. Thus, it is easy to see, that each edge of G is allowed and G has
n states, as expected. 0

For the description of the product automaton we need the following concepts.

Definition 3.6 Let P be a canonical class of some external component. Then the
set, pp is the smallest set of elementary components such that:

(i) if C' is an internal elementary component and (v,w) is an edge for which
v € P and w e V(C'), then C' € pp.

(ii) if Cy,Cs are internal elementary components such that Fe, = Fc,, C1 € pp
and there is an edge between C; and Cs, then C; € pp.

Note that (ii) may also hold if C; and Cs are in the same family, as v is reflexive.
Moreover, based on the structure of the families it can be easily showed, that if
C € pp and F¢ is internal, then C’ € pp for any elementary component C' of Fe.

For the main result of the section we introduce some technical notations and prove
a lemma. For these we need the following simple observation.

Claim 3.7 Let P be a canonical class of some elementary component C. An
internal vertez of P is accessible from external vertex v in state M iff all vertices
of P are M -accessible from v . -

Proof. Let us assume that o is a positive external M-alternating path from v to w
and let u be an arbitrary vertex of P different from w. We claim that there exists an
internal M -alternating path 8 between u and some vertex of & such that 5 is positive
on the end of vertex u. If C is external, then according to [2, Proposition 2.3] there
exists a positive external Mc-alternating path v with endpoint u. Observe that
E(a) N E(7y) # 0, because otherwise &' = @ + (w,u) + v would form an alternating
crossing indicating that u % w by S(M,a'). Therefore an appropriate subpath
of 7y is suitable for 8. Now assume that C is internal. Then let w’ denote the
vertex incident with w by the edge covered by M. Clearly, u ¢ w’, thus, based
on Proposition 2.9, there exists a positive internal M¢c-alternating path between u
and w', from which the existence of § is straightforward again. :
Now starting from u let u, denote the first vertex along f for which u, € V(a).
a1 = afw,uq] + Blua,u] cannot form a positive internal alternating path, as it
would contradict u ~ w. Therefore afv,uq] + Bluq,u] gives a positive external
M -alternating path, as desired. O

By Claim 3.7 it is justified to say that a canonical class is accessible from an ex-
ternal vertex in a given state.

For any internal elementary component C' of graph G:

Ra(C') = {P | P is a canonical class of some external elementary
component and C’' € pp}

For any external vertex v of a (possibly augmented) external elementary cbmponent
C and state M of C in graph G: ‘

642 Miklés Bartha, Miklés Krész

Pe(M,v) = {P | P is a canonical class of C, which is M-accessible from
v in the graph C }.

and

Ce(M,v) = {C'| C' is an internal elementary component such that
Rc(C')NPc(M,v) # 0.}

Noté that if G is understood then the subscript G is omitted from the above nota-
tions. Furthermore, if C is an augmented external elementary component, then it
is indicated with a superscript ‘A’ , i.e. using C*(M,v).

Lemma*3.8 Let P' be a non-principal canonical class of some internal elementary
component C' and v be an external vertez of an elementary component C. Then an
edge e incident with a vertex of P' is viable from v in state M iff C' € C*(Mc,v).

Proof. During the proof the notation C* will be used for the augmented ex-
ternal elementary component constructed from C. Furthermore, for any external
alternating trail « starting from C, w, will denote the last vertex of a for which
wq € V(CO).

‘Only if” Let a be a positive external M-alternating trail starting from v and
terminating at vertex w, where w is an endpoint of e. Moreover, let P, denote
the canonical class containing w,. Then substituting the C-loops for hidden edges
in a, we obtain that P, € Pcr(Me,v). Now using Corollary 2.21, it is easy to
see that C; € pp, for each internal elementary component C; reached by afw,,w].
Hence P, € R(C'YNPer(Mc,v), which gives the result.

'If* Suppose that C' € pp for some canonical class P € Pgn(Mc,v). Then
based on the definition of pp there exist families Fi,... ,F,, containing members
of pp such that Fy = F¢, Fy = Feor and foreach 1 < s <m -1 F; — Fsyq with
some edges connecting elements of pp N F; and pp N Fs;31. Let o be an external
M-alternating trail terminating at w, where w is an endpoint of e. Note that such
an « exists, because [1, Corollary 3.3] states that an edge is impervious in one state
iff it is impervious in all states. The proof will apply an induction on m.

Basis step. Applying Theorem 2.15 iteratively, we obtain that each two-way
elementary component C; of F; has a unique ultimate foremother — in notation
m(C})~- as a class of C. Then, making use of Proposition 2.16, it is clear that for
any external M-alternating trail § reaching Cy, wg is contained in m(C1).

It is clear, by Proposition 2.18, that p' = pp N F; can be built up iteratively
according to Definition 3.6 (¢) — (i1). We will show by a structural induction
based on the building procedure of p', that for any elementary component C; € p/,
m(C;) = P holds. First suppose that C; is added to p’ in a step of type (i).
As P € Pon(Mc,v), we obtain with the help of Proposition 2.13, that in this case
w.y € P holds, which implies m(C}) = P by the previous paragraph. Continuing the
procedure with (3¢) such that edge e connects C; with an elementary component
C, already in p', let us consider an external alternating trail v terminating at
e. According to the hypothesis for Cy, wy must belong to P. Thus applying the
observation of the previous paragraph again, we obtain that m(C;) = P, as desired.

Elementary decomposition of soliton automata 643

Summarizing the foregoings we conclude that.w, € P. Now choosing a positive
Mc-alternating path o) between v and wo and applying Proposition 2. 13 for a; +
afwy,w] we obtain a suitable alternating trail. :

Induction step. Let u denote the first vertex of a which is also in Cp, = 7(Fm).
Moreover, let v’ denote a vertex of C,,, which is connected by an edge to a vertex w'
of some elementary component of F,, _1Npp. According to the induction hypothesis
there exists an appropriate M-alternating trail 8 running from v and terminating at
(o', w’). Based on Corollary 2.21 the following facts hold: - the internal endpoint of
B is u' such that f is a negative path, afu,w] avoids Fy,... , Frm—1 and B — (w', u')
does not "touch” F,,. Now consider a positive internal M¢ alternating path v,
which starts from u’ and terminates in some vertex u; of V(a) NV(C,,) such that
u' #¢c uy. By Corollary 2.21, u .~ v, therefore if 4] denotes the vertex where v
hits « first time, then we can conclude that 5 + ¥[u', uq] + afuy, w] provides the

desired alternatmg trail. . _ B
Theorem 3.9 Let Ci,...,C; be the augmented external elementary compo-
nents, Ciy1,...,Cx be the internal elementary components of G, and A(C}) =

(S(C;), (Xl X Xz),(Sl) (Z = 1, AN ,]C), with Xi = {ZL‘i},‘ ’LfZ > 1. Then:
A(G) = A*(G), where
A* (@) =]—L_ CA(CH]Y, ¢) is an af-product such that
(a) Y = (Ezt(G) x Ezt(G))
(b) ¢ = (@1,...,¢x) is defined in the following way:
For each 1 <i <k, My € S(C1),... , My € S(Ci) and (y1,y2) €Y :
(b/1) if 1 <4 <l and (y1,y2) € Xi x X;, then o T
Gi(My, ..., Mk, (y1,92)) = (y1,92)
(5/2) ifl+1<i<k, (y1,92) € X; x X for some 1< j<lI,
" Ci € ChM{(M;,v1), and either y1 =y,
ot y1 # Yo with 6;(Mj, (y1,y2)) # {M;}, then
¢:(My, ... ;Mk>(ylay2)) = (4, T4)
(b/3) Otherwise: '
¢2(M1)-- Mka(ylayZ)) —'5

Proof. Let § and 6* denote the transition function of A() and that of A*(G),
respectively. Moreover, let (y1;y2) € ¥ and M € S(G) be arbitrary, ‘such that
y1 € V(C,), y2 € V(C;s) for some r, s < [. Since the mapping o

is clearly a bijection between S{G) and S(C’l) x ...S(Cy), we only have to prove
that . A) o E
{o(M') | M" € 6(M, (y1,¥2))} = 6" (Y(M), (y1,%2)) - (2
For each 1 < i < k let 2z; denote ¢;(Mc,,...,Mc,,(y1,¥2)). Consider first-the
right side of (2). Then based on (1) and Definition 2.3, we have o

646 Miklés Bartha, Miklés Krész

First we provide a characterization of non-trivial self-transitions by alternating
trails. For this result we need the following definition.

Definition 4.2 Let M be a state of G and v € Ezt(G). An M- alternating double
v-racket a is a pair of M-alternating v-rackets (a',a?) with branching handles,
i.e. with neither of o and af being a prefix of the other. The maximal common
external subpath — denoted by a; - of @} and of o is called the handle of a,
whereas the last vertex of ay is referred to be as the branching vertez of a.

Note that the handle of a double v-racket is a positive external alternating path.

Theorem 4.3 There exists a non-trivial self-transition of external vertex v with
respect to state M of G, iff G contains either an M -alternating v-loop or an M -
alternating double v-racket.

Proof. Durmg the proof if we refer to ‘an alternating cycle a as a part of a
" decomposed form of a soliton walk 3, then we mean that o as a subwalk of § is
traversed in an appropriate way.

. For an M-alternating v-loop « it is easy to check that op + o+ ac + ay ~“lisa

non-trivial self-transition of v. Therefore, we can suppose for the rest of the proof
that G does not contain an M-alternating v-loop .

'Only if Let o = v,ey,vq,...,€n;Upn be a non-trivial self-transition of v with
respect to M, and let i be the smallest index for which there exists an index j > ¢
such that v; = v, ne(j) = 1 and each edge of ‘a[v,v;] is traversed exactly once
by afv,v;]. In other words, v; is the closest vertex to v where « returns to itself.
Now, based on Proposition 2.6, there exists an M-alternating trail § such that
terminates at e; and E(8) C E(c[v,v;]). By assumption, # is an alternating v-
racket with 8, = afv,v;]. Observe that afv,v;]+ alv,v;]™! is a soliton walk from v
to itself. Therefore, it is obvious that the edges traversed by a[v;, v;] an odd number

- of times will constitute an M -alternating network I' consisting of alternating cycles.
By the above facts we obtain that ej;; = e;. The edge e; must be traversed by
alvj, vn), consequently there is a first edge ey, with m > j which is not on afv, v;].
Then, let e, denote the edge for which e, = e,,_; with 7 < i. It is easy to see,
that because of the choice of v;, any vertex v; with [< ¢ is incident with exactly
two edges of afv,v;]. Therefore n,(m) = 1 and we can select the first edge ey of
a[vm—1,vn] for which n,(k) is even. Again, by the choice of v;, we conclude that
alv,vr—1] and a[vm,-1,vx] are edge-disjoint. Furthermore, observe that e, ¢ M,
therefore o' = afv,vr—1] + a[vm-1,vk-1] is a partial soliton walk with respect to
M. As we have seen, there exists an.M-alternating cycle v’ of T’ containing ey.
Making use of the former observations for I and for o/ we obtain that v' and o'
are edge-disjoint. Now applying Proposition 2.6 for o', an M-alternating v-racket
v can be constructed such that § = (8,7) is a double v-racket with v, = +4' and
Op = afv,vry).

If’ Let a = (a!,a?) be a double v-racket, and let w denote the branching
vertex of a. Moreover, let us introduce the notation a! = af — a; and of, =
at +al + (al)! fori = 1,2. If a® — a, is edge-disjoint from a! we obtain that
an +al, + a2 +al, + a2 + ;! is a soliton walk with the desired properties.

Elementary decomposition of soliton automata 647

Otherwise let u be the first vertex of a2, which is also on ! and extend o?w,u)
to an M-alternating path a, by continuing its way appropriately on o2 until it
reaches . Note that o, = a?[w,u} holds if u € V(a?). Also note that the
construction described above is feasible, as G has no M-alternating v-loops. Then
an + al, +ay +al +ag! +a; ' will result in the requested soliton walk. a

We now turn to the characterization of v-loops.

Proposition 4.4 Let v be an esternal vertex of graph G and M € S(G). Then G
contains an M -alternating v-loop iff there exists an internal edge (u,w) such that
both u and w are accessible from v in M.

Proof. It is sufficient to prove the ’If’ part. Let o and 8 be positive external
M-alternating paths from v to internal vertices u and w, respectively, such that
(u,w) € E(G) and | E(a) U E(f) | is minimal. Then let wg denote the last vertex
of § with wg = u, for some u, € V(a). We claim that afv, u,] is positive. Indeed,
otherwise both endpoints of the last edge of afv,u,] would be accessible from v
in M by the appropriate subpaths of & and £, which would be a contradiction in
the choice of v and w. Therefore an M-alternating v-loop can be formed from the
edges of the set E(a) U E(B[ws,w]) U {(u,w)}, as desired. O

To state the following important consequence of Proposition 4.4, let us call two
states M;, My compatible if M7 and M, cover the same external edges.

Corollary 4.5 Let M; and My be compatible states of G and v € Ext(G). Then
G contains an M, -alternating v-loop iff G contains an Ms-alternating v-loop.

Proof. The role of M; and M, is symmetric, so we need to prove one direction only.
To this end let (v1,v2) be an edge of the cycle of an M;-alternating v-loop and let
a1 and ag denote the appropriate positive external M;-alternating subpaths of «
running to vertices v; and vy, respectively. According to Theorem 2.1, there exists
a mediator alternating network I" between M; and M, containing only alternating
cycles. Clearly, we can suppose without loss of generality that T’ consists of one
M;-alternating cycle 8. We claim that for «;, ¢ = 1, 2, either «; is accessible from v
in M, or an Mj-alternating v-loop can be formed from the edges of E(a;) U E(f).
If the latter case holds for at least one of @; and as, then we are ready. Otherwise
the Corollary can be obtained by Proposition 4.4.

Our claim is obviously enough to be proved for a; with the assumption that
E(an) N E(B) # 0. Let w and w' denote the first and the last vertex of a; which
are also in V(8). If w and w' are in odd distance on f, then the requested M-
alternating path is obtained by combining afv, w], the positive M,-alternating sub-
path of B between w and w', and afw’,v;]. Otherwise it is easy to see that there
must exist a subpath o' having its endpoints z and y, but no other vertices, in
V(B) such that both z and y are in an odd distance from w on 8 . This allows
an Ms-alternating v-loop to be constructed from afv,w], o' and an appropriate
M;-alternating subpath of 8. Hence the proof is complete. a

For a further analysis of v-loops we introduce the graph CM, where C is an exter-
nal elementary component of G containing external vertex v and M € S(G). The

648 Miklés Bartha, Miklés Krész

graph CM is the subgraph of C spanned by the edges that are Mc-viable from v in
the subgraph C. Moreover, let CM denote the set C(Mc,v) U {CM}. Finally, GM
will denote the graph which consists of UCM plus the edges connecting different
elements of CM.

Note that generally GM is not equal to the graph G[V(UCM)]. Moreover, we
might have the impression that G¥ contains all the edges M-viable from v. How-
ever, by Lemma 3.8 and by Proposition 2.13, it is easy to see that the above fact
is true iff C(M¢,v) = C*(Mc,v) and any edge of C Mc-viable from v in the aug-
mentation of C is also M¢-viable from v in C.

Proposition 4.6 GM is a soliton subgraph with respect to M. Furthermore, the
set of elementary components of GM is CM.

Proof. The first sentence is evidently tru if C is a trivial component. Further-
more, if C is non-trivial, then any maximal M-alternating trail starting from v is
entirely contained in CM, which implies that G is indeed a soliton subgraph with
respect to M. To verify the second sentence, observe that if an edge of a soliton
subgraph G’ of G is forbidden in G, then it is also forbidden in G'. For this reason,
all we have to prove is that CM is elementary. To this end we will make use of the
following two claims.

Claim A If an edge of CM is part of an even M -alternating cycle a of G, then a
is enterily contained in CM.

Proof. Straightforward.

Claim B Any edge of CM traversed by an M -alternating crossing in G is in the
unique external elementary component of CM.

Proof. It is clear that CM has a unique external elementary component. Let
a =g, €e1,...,en,Un be a fixed M-alternating crossing and e; be an arbitrary edge
of a which is also in C}. Furthermore let 8 be an external M-alternating trail
starting from v and terminating at e; such that k =| E(8)\E(«a) | is minimal. We
will prove the claim by induction on k. The basis step & = 0 is trivial. For the in-
duction step, consider the last edge eg of B not on « and let w denote the endpoint
of eg contained in V(a). We can assume without loss of generality that w = v;
with j < i. Then clearly e;j11 € M. If B{v, w] does not overlap with afv;,vy,], then
the crossing B[v,w] + afv;,v,] does the job. Otherwise, let i be the first vertex
of a[v;,vy,] incident with an edge e of E(8)\E(a) and let u denote the vertex of
with u = v. Observe that, starting from v, # must go through e before reaching
u. Indeed, if not, then ~ since ex+1 € M — Blv, u] + afvk, vi—1]7! would contradict
the choice of 8. Therefore o' = Blu,w] + afv;,vi] will form an even M-alternating
cycle, which shows by Claim A that e; and exy; are in the same elementary com-
ponent of CM. Finally, by applying the induction hypothesis for e, we obtain
Claim B. O

Continuing the proof of Proposition 4.6, let us suppose by way of contradiction that
CM has an internal elementary component C'. Then, there must exist an allowed
edge e of C having exactly one endpoint in C’. Let f denote the edge of C' incident

Elementary decomposition of soliton automata 649

with e such that f € M. Clearly e ¢ M, consequently, by Corollary 2.2, a complete
M -alternating trail o must go through e. Applying Claim A and Claim B for f
and «, we obtain a contradiction, which makes the proof complete. O

Corollary 4.7 Each edge of GM is viable from v in Mg

Proof. Based on Propbsition 4.6, we have Com(Mcgm,v) = Ce(Mg,v), ie.
Caom (Mg, v) contains all elementary components of GM which are different from
CM . Then the claim is obtained with the help of Lemma 3.8. O

Proposition 4.8 For any external vertex v of G, there exists an alternating v-loop
with respect to state M iff GM is non-bipartite.

Proof.

'Only if° Let C be the elementary component containig v, and o be an M-
alternating v-loop. If each edge of « is also contained in CM, then we are ready.
Otherwise, starting from v, let w be the first vertex of a such that an appropriate
subpath o' of « forms a C-loop with one of its endpoints being w. Then, it is easy
to see with the help of Corollary 2.21, that each edge of afv,w] is contained in
GM. Therefore o is also a C-loop in GM, consequently, because of Claim 3.7, both
endpoints of o' are Mgwm-accessible from v. Finally, applying Proposition 4.4 for
the endpoints of the last edge of a[v, w], we obtain that GM has a v-loop, indicating
that it is non-bipartite.

If’ Let us suppose by way of contradiction that GM does not contain M-
alternating v-loops. Then let G’ denote a maximal bipartite soliton subgraph of
GM with respect to Mg such that v € V(G') and each edge of G’ is viable from
v in Mg. Note that such a subgraph G’ exists under our assumption, because
any maximal external alternating trail starting from v as a v-racket or a crossing
from v has the required properties. Based on Corollary 4.7, there exists a maximal
external Mgum-alternating trail 8 from v to some vertex v’ traversing an edge not in
G'. Let e denote the first edge of § not in E(G'). Moreover, let w be the endpoint
of e belonging to V(G') with A being the bipartition class of G' containing w.
Observe that E(Blw,v']) N E(G') # 0 and starting from w, the first overlap will
occur at a vertex u in A. Indeed, checking any other possible cases, because of
G’ + Bw,v'], we would obtain a contradiction with the choice of G’. Furthermore,
every edge is viable from v in Mg, consequently there exists an Mgr-alternating
trail v from v to u. Observe that « is also positive, as the parity of the length of v
and that of B[v, w] must be equal because of the bipartition of G'. Finally, applying
Proposition 4.4 for any edge of A[w, u], we obtain a contradiction. Hence the proof
is complete. O

Considering double v-rackets too, we can describe non-trivial self-transitions via
the elementary structure of soliton automata. We also obtain that, similarly to
Theorem 3.9, the problem can be reduced to elementary automata. For this final
result we introduce the following concept.

Definition 4.9 Let {C,...,Cr} be the set of the elementary components of G
with C1 being external. G is a component-chain graph if it can be decomposed in

650 Miklés Bartha, Miklés Krész

the chain-form G = Cy + (wy,v2) + Co + (wq,v3) + . . . + (Wn—1,vn) + Cy such that
for each 2 < i < n — 1, (wj—1,v), (w;,viy1) € E(G) with the vertices v; and w;
belonging to different canonical classes of C;.

We shall be interested in situations when G is a component-chain graph for
some graph G with external vertex v and M € S(G). In that case we augment
Definition 4.9 by taking v; = v. We will call a (external or internal) positive Mc,-
alternating path M?-transit if it connects v; and w;. Component C; is said to
be M?V-transit if i # n and either C; has two different M?-transit paths or there
exists an even Mg, -alternating cycle disjoint from the unique M"-transit path of
Ci. Finally, C; is called an M"”-terminal if i = n and C] has an Mc;-alternating
double w-racket, where either C] = C; with w = v or C] = C; + (wi,vi—) with
w = v;_; depending on whether n =1 or not.

Theorem 4.10 Let A(G) be a soliton automaton, M be a state of A(G) and C be
an elementary component of G containing external vertex v. Then, there ezists a
non-trivial self-transition of v with respect to M, iff one of the following conditions
holds.
(i) GM is not a bipartite component-chain graph.
(ii) GM is a bipartite component-chain graph having an MY-transit or an M"-
terminal elementary component.

Proof.

‘Only if’ Based on Theorem 4.3 and Proposition 4.6, it is enough to prove
that if G contains an M-alternating double v-racket a = (a!,a?) such that GMis a
bipartite component-chain graph, then (i7) holds. To this end, first we claim that
in this case a is entirely contained in GM. Indeed, if, on the contrary, e denotes
the first edge of o! (or a?) which is not in E(GM), then, based on Corollary 2.21
and the definition of GM e must connect two elementary components belonging to
{C}UC(Mc,v). Then, clearly, one of the endpoints of e, denoted by w, will be
contained in V(C). However, it is a contradiction in the choice of e, because an
appropriate subpath of afv,w] will be a C-loop between w; and w, which implies
that w is also in the unique canonical class of Pc(Mc,v), consequently e should
be contained in GM.

Therefore let us consider the chain form GM = C, + (wy,v2) +.. .4+ (Wn_1,vn) +
C,, with C; = CM and v; =v. Let C; and Cj, 1 < i,j < n, denote the elementary
components containing e} and a2, respectively. Furthermore, let of, with k = 1,2
and ! = i, §, denote the subtrail of o* running entirely in C;, whereas the notation
(Ai, B;) will be used for the bipartition of C; with w; € B;. We may suppose
without loss of generality that 4 < j. Now consider the elementary component Cy,
containing the branching vertex of a. If & < 1, then it is easy to see that Cy is
MPV-transit. Therefore we may suppose for the rest of the proof that i = k. Then
we distinguish two cases.

Case (a) i < j. Then o? is an M?-transit path. Therefore, we are ready, if o?
is disjoint from «!. Otherwise, let u’ denote the first vertex of o} incident with an
edge of E(a!)\E(a?). Then u' # w;, because it is easy to check that o? is not a
subpath of a}. Thus continuing a} from v/, there will be a first vertex u” of the

Elementary decomposition of soliton automata 651

appropriate subtrail of o} which is also in V(a?). Now it can be easily observed
that v € B; and u" € A;, therefore the edges of E(a?) U E(al[uw’,u"] form two
M7"-transit paths, as desired.

Case (b) i = 7. If i = n, then C; is clearly MY-terminal, thus we are ready.
For other alternatives we will prove that C; is MV-transit. To this end let §; be an
MPV-transit path of C;. Furthermore, starting from v; let u; denote the last vertex of
B; which is also in V(aj)UV (a?). The role of o] and of is symmetric, thus we can
assume that u; = u for some vertex u of a}. Obviously, &' = o} v, u] + Bi[ui, ws)
is an M7"-transit path, because u; must belong to B;. Now following the same
argument for o’ and a? which was applied in the proof of Case (a), we obtain the
claim.

’If’ By Theorem 4.3 and Proposition 4.8, it is sufficient to prove that a bipartite
G} contains an Mgwm-alternating double v-racket, if (¢) or (i) holds. In this
case observe that each family of GM is singleton. Indeed, if family F is not a
singleton, then there must exist an M;-alternating C’-loop S connecting vertices
vi,vp € V(C'), where M; € S(GM) and C' = r(F). It was proved in [1] that any
two vertices of an elementary graph is contained in a common complete alternating
trail. Consequently, there exists for some M' € S(C') a complete M’-alternating
trail v traversing both v; and ve. The length of «[v1,vs] is clearly even, thus
B + v[v1, v2] indicates that GM is non-bipartite, which contradicts our assumption.

Therefore, if (i) holds, then there must be elementary components Cy, Cz,C3
of GM such that F¢, — F¢, for i = 2,3 by two different edges ez # e3. Then,
as we have seen in the proof of Theorem 3.5, for 1 = 2,3, the endpoint of e; in
C; is connected to some vertex of any even Mg, -alternating cycle by an internal
positive M¢,-alternating path. Based on Corollary 4.8, both e; and e3 are viable by
alternating paths entering Cy and C3 through e; and es, respectively. Summerlzmg
the above facts we can easily obtain the claim, if (i) holds.

Finally, making use of Corollary 4.7, we can build an M-alternating double
v-racket by an obvious way in a graph with the conditions of (i¢). Therefore the
" proof is complete. O

Finally, observe that C}¥ is trivially determined for constant automata, thus Defi-
nition 4.9 has a simplified form. Therefore the use of Theorem 4.10 is much easier
in this special case.

5 Conclusion

We have worked out a decomposition of soliton automata into elementary automata.
As the internal component automata are full and the appropriate a§-product is
effectively computable, future research will concentrate on elementary automata
only. Moreover, with the help of our results, the class of constant soliton automata
is fully characterized. Considering practical issues, non-trivial self-transitions have
an important role. We have also reduced this problem to elementary components,
namely we have proved that to find self-transitions we only need to search for a

652 Miklés Bartha, Miklos Krész

double v-racket or a pair of disjoint alternating paths in a bipartite elementary
graph.

References

[1] M. Bartha, E. Gombds, On graphs with perfect internal matchings,Acta
Cybernetica 12 (1995), 111-124.

[2] M. Bartha, M. Krész, Structuring the elementary components of graphs
having a perfect internal matching, submitted.

[3] F. L. Carter (ed.), Molecular Electronic Devices, Marcel Dekker, Inc., New
York, 1982.

[4] J. Dassow, H. Jiirgensen, Soliton automata, J. Comput. System Sci. 40
(1990), 154-181.

[5] J. Dassow, H. Jiirgensen, Soliton automata with a single exterior node,
Theoretical Computer Science 84 (1991), 281-292.

[6] J. Dassow, H. Jiirgensen, Soliton automata with at most one cycle, J. Com-
put. System Sci. 46 (1993), 155-197.

[7] F. Gécseg, Products of Automata, Akademie-Verlag, Berlin, 1986.

[8] F. Gécseg, H. Jiirgensen, Automata represented by products of soliton au-
tomata, Theoretical Computer Science 74 (1990), 163-181.

[9] L. Lovész, M. D. Plummer, Matching Theory, North-Holland, Amsterdam,
1986.

Acta Cybernetica 14 (2000) 653-664.

Regulated Pushdown Automata

Alexander Meduna* Dusan Kolar *

Abstract

The present paper suggests a new investigation area of the formal language
theory—regulated automata. Specifically, it investigates pushdown automata
“that regulate the use of their rules by control languages. It proves that this -
regulation has no effect on the power of pushdown automata if the control
languages are regular. However, the pushdown automata regulated by linear
control languages characterize the family of recursively enumerable languages.
All these results are established in terms of (A) acceptance by final state, (B)
acceptance by empty pushdown, and (C) acceptance by final state and empty
pushdown. In its conclusion, this paper formulates several open problems.

Key Words: pushdown automata; regulated accepting; control languages

1 Introduction

Over the past three or four decades, grammars that regulate the use of their rules
by various control mechanisms have played an important role in the language the- -
ory. Indeed, literally hundreds studies were written about these grammars (see {1],
Chapter 5 in the second volume of [4], and Chapter V in [5] for an overview of
these studies). Besides grammars, however, the language theory uses automata as
fundamental language models, and this very elementary fact gives rise to the idea
of regulated automata, which are introduced and discussed in the present paper.
More specifically, this paper introduces pushdown automata that regulate the
use of their rules by control languages. First, it demonstrates that this regulation
has no effect on the power of pushdown automata if the control languages are reg-
ular. Based on this result, it points out that pushdown automata regulated by
analogy with the control mechanisms used in most common regulated grammars,
such as matrix grammars, are of little interest because their resulting power coin-
cides with the power of ordinary pushdown automata. Then, however, the present
paper proves that the pushdown automata increase their power remarkably if they
are regulated by linear languages; indeed, they characterize the family of recursively
enumerable languages. '

*Department of Computer Science and Engineering, Technical University of Brno, Bozetechova
2, Brno 61266, Czech Republic

653

654 Alexander Meduna, Dusan Kolar

All results given in this paper are established in terms of (A) acceptance by
final state, (B} acceptance by empty pushdown, and (C) acceptance by final state
and empty pushdown. In its conclusion, this paper dlscusses some open problem
areas concerning regulated automata.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [3]). Set
N={12,..}and T ={0,1,2,...}.

Let V be an alphabet. V* represents the free monoid generated by V' under the
operation of concatenation. The unit of V* is denoted by €. Set V't = V* — {¢};
algebraically, V1 is thus the free semigroup generated by V under the operation of
concatenation.

For w € V*, |w| and reversal(w) denote the length of w and the rever-

sal of w, respectively. Set prefiz(w) = {z | z is a prefix of w}, suffiz(w) =
{z] z is a suffix of w}, and alph(w) = {a | ¢ € V,and a appears in w}.
Forw € V* and i € {1,...,|w|}, sym(w,i) denotes the ith symbol of w; for

instance, sym(abcd, 3) = c.

A linear grammar is a quadruple, G = (N, T, P, S), where N and T are alpha-
bets such that NNT =@, S € N, and P is a finite set of productions of the form
A—z,where A€ Nand z e T*(NU {e})T*. If A - z € P and u,v € T*, then
uAv = uzv [A — z] or, simply, uAv = uzv. In the standard manner, extend =
to =™, where n > 0; then, based on =", define =% and =*. The language of G,
L(G), is defined as L(G) = {w € T* | S =* w}. A language, L, is linear if and
only if L = L(G), where G is a linear grammar. ‘

Let G = (N, T, P,S) be a linear grammar. G represents a regular grammar if
for every A - £ € P,z € T(N U{e}). A language, L, is regular if and only if
L = L(G), where G is a regular grammar.

A queue grammar (see [2]) is a sixtuple, Q@ = (V,T,W, F, S, P), where V and
W are alphabets satisfying VNW =0, TCV, FC W, Se (V-T)W - F),
and P C (V x (W — F)) x (V* x W) is a finite relation such that for every a € V,
there exists an element (a,b,z,¢c) € P. If u,v € V*W such that u = arb, v = rzc,
a€V,rz € V* bce W and (a,b,2,¢c) € P, then u = v {(a,b,2,¢)] in G or,
simply, ©« = v. In the standard manner, extend = to =", where n > 0. Based
on =", define =% and =*. The language of Q, L(Q), is defined as L(Q) = {w €
T* | § =* wf where f EF}

' Next, this paper slightly modifies the notlon of a queue grammar.

A left-extended queue grammar is a sixtuple, @ = (V,T,W, F, S, P), where
V,T,W,F,S, P have the same meaning as in a queue grammar; in addition, as-
sume that # ¢ VUW. If u,v € V{#}V*W so u = w#arb, v = wa#rzc,
a €V, rz,w € V* bc € W, and (a,b,z,¢) € P, then u = v [(a,b, z,c)]
in G or, simply, v = v. In the standard manner, extend = to =", where
n > 0: Based on =™, define =% and =*. The language of Q, L(Q), is defined as

={veT*|#S =>*wH#vf for some w € V* and f € F}.

Regulated Pushdown Automata : 655

Let REG, LIN, and RE denote the families of regular linear, and recursively
enumerable languages, respectively. :

3 Definitions

Consider a pushdown automaton, M, and a control language, =, over M’s rules.
Informally, with =, M accepts a word, z, if and only if = contains a control word
according to which M makes a sequence of moves so it reaches a final configuration
after reading z.

Formally, a pushdown automaton is a 7-tuple, M = (Q,%,Q, R, s, S, F'), where
Q is a finite set of states, ¥ is an input alphabet, Q is a pushdown alphabet, R is a
finite set of rules -of the form Apa — wq, where A € Q, p,q € @, a € LU {e},and
w € Q*, s € Q is the start state, S € Q is the start symbol, F C @ is a set of ﬁnal
states. In addition, this paper requires that @, ¥, §} are pairwise disjoint.

Let ¥ be an alphabet of rule labels such that card(¥) = card(R), and ¢ be a
bijection from R to ¥. For simplicity, to express that ¢ maps a rule, Apa — wq € R,
to p, where p € ¥, this paper writes p.Apa — wq € R; in other words, p.Apa.— wq
means ¢¥(Apa = wq) = p. A configuration of M, ¥, is any word from Q*QX*. For
every z € Q*, y € *, and p.Apa — wq € R, M makes a move from configuration
zApay to configuration zwqy according to p, written as zApay = zwqy [p]. Let
x be any configuration of M. M makes zero moves from x to x according to e,
symbolically written as xy =° X [¢]. Let there exist a sequence of configurations
X0, X1s---,Xn fOr some n > 1 such that x;—1 = X [pi], where p; € ¥, for i =
1,...,n, then M makes n moves from xo to xn according to p; . pn, symbohcally
written as xo =™ Xn [01 .- fn)

Let Z be a control language over ¥; that is, = C ¥*, With Z, M deﬁnes the
following three types of accepted languages: -

L(M,Z,1)—the language accepted by final state
L(M,Z,2)—the language accepted by empty pushdown
L(M,=,3)—the language accepted by final state and empty pushdown

defined as follows. Let x € Q*QZ*. If x € Q*F, x € @, x € F, then-x is
a I-final configuration, 2-final configuration, 3-final conﬁgumtion respectively.
For i = 1,2,3, define L(M,E,7) as L(M,E,i) = {w | w € ¥*, and Ssw =~
X [o)in M for an i—final configuration, x, and o € Z}. _

For any family of languages, X, set RPD(X,i) = {L | L
L(M,=Z,i), where M is a pushdown automaton and £ € X}, where i = 1,
Specifically, RPD(REG,1) and RPD(LIN,i) are central to this paper. '

2,3.

4 Results ‘ A

This section demonstrates that CF = RPD(REG,1) = RPD(REG,2) =
RPD(REG,3) and RE = RPD(LIN,1) = RPD(LIN,2) = RPD(LIN, 3).

656 Alexander Meduna, Dusan Kolar

Some of the following proofs involve several grammars and automata. To
avoid any confusion, these proofs sometimes specify a regular grammar, G, as
G = (V[G], P[G), S[G], T[G)) because this specification clearly expresses that V[G],
P|G], 5{G), and T[G] represent G’s components. Other grammars and automata
are specified analogously whenever any confusion may exist.

Regular Control Languages

Next, this section proves that if the control languages are regular, then the reg-
ulation of pushdown automata has no effect on their power. The proof of the
following lemma presents a transformation that converts any regular grammar, G,

and any pushdown automaton, K, to an ordinary pushdown automaton, M, such
that L(M) = L(K, L(G), 1).

Lemma'l
For every regular grammar, G, and every pushdown automaton, K, there exists a
pushdown automaton, M, such that L(M) = L(K, L(G), 1).

Proof: Let G = (N[G],T[G], P[G], S[G]) be any regular grammar, and let K =
(QIK), Z[K], Q[K], R[K], s|K],S[K], F[K]) be any pushdown automaton. Next,
we construct a pushdown automaton, M, that simultaneously simulates G and K
so that L(M) = L(K, L(G),1).

Let f be a new symbol. Define the pushdown automaton M =
(Q[M), =[M], M), R[M]}, s[M], S{M]}, F[M]) as Q[M] = {(¢B) | ¢ € Q[K],B €
NG U {f}}, =(M] = S[K], QM) = Q[K], s[M] = (s[K]S[G]), S[M] = S[K),
FIM] = {(af) | q € FIK]}, and R[M] = {C(qA)b — a(pB) | a.Cqb — zp €
R[K],A = aB € P[G]} U {C(gA)b = z(pf) | a.Cqb — zp € R[K], A - a € P[G]}.

Observe that a move in M according to C(gA)b — z(pB) € R[M] simulates
a move in K according a.Cgb — zp € R[K], where a is generated in G by using
A — aB € P[G]. Based on this observation, it is rather easy to see that M accepts
an input word, w, if and only if K reads w and enters a final state after using a
complete word of L(G); therefore, L(M) = L(K,L(G),1). A rigorous proof that
L(M) = L(K, L(G),1) is left to the reader. ' a

»Thec')rem 2 .
For i € {1,2,3}, CF = RPD(REG,1).

Proof: To prove CF = RPD(REG,1), notice that RPD(REG,1) C CF follows
from Lemma 1. Clearly, CF C RPD(REG,1), so RPD(REG,1) = CF.
By analogy with the demonstration of RPD(REG,1) = CF, prove that CF =
RPD(REG,2) and CF = RPD(REG, 3). o
Let us point out that most fundamental regulated grammars use control mech-
anisms that can be expressed in terms of regular control languages (c.f. Theorem
V.6.1 on page.175 in [5]). However, pushdown automata introduced by analogy

Regulated Pushdown Automata 657

with these grammars are of little or no interest because they are as powerful as
ordinary pushdown automata (see Theorem 2 above).

Linear Control Languages

The rest of this section demonstrates that the pushdown automata regulated by
linear control languages are more powerful than ordinary pushdown automata. In
fact, it proves that RE = RPD(LIN,1) = RPD(LIN,2) = RPD(LIN,3).

Lemma 3 _

For every left-extended queue grammar, K, there exists a left-extended queue gram-
mar Q = (V,T,W, F, s, P) satisfying L(K) L(Q), ! is a distinguished member of
(W - F),V=UUZUT such that U, Z, T are pairwise disjoint, and Q derives
every z € L(Q) in this way

#S =T z#biby ... by!
= zbhi#d.. nylpz
=

zb1 by #bs bry1y2p3

gbiby .. b1 #bay1y2 - Yn-1Pn

Tbiby .. bn1bnF#Y1Y2 - YUnPni1

where n € N,z e U*, b e Zfori=1,...,n,y; € T*fori =1,...,n, z =
Y2 Yn, pi € W {1} fori =1,...,n -1, p, € F, and in this derivation
TH#b1by ... byl is the only word containing !.

=
=

Proof: Let K be any left-extended queue grammar. Convert X to a left-extended
queue grammar, H = (V[H],T[H|,W[H], F|H}, S[H], P[H]), such that L(K) =
L(H) and H generates every z € L(H) by making two or more derivation steps
(this conversion is trivial and left to the reader).

Define the bijection a from W to W', where W' = {¢' | ¢ € W}, as a(q) = {¢'}
for every ¢ € W. Analogously, define the bijection § from W to W', where
W" = {q" | g€ W}, as B(q) = {¢"} for every ¢ € W. Without any loss of gener-
ality, assume that {1,2} N (VU W) = 0. Set = = {{(a,q,ulv,p) | (a,q,uv,p). €

P[H] forsome a € V,g € W - Fv € T*,u € V*, and p € W} and
r = {{a,q,22w,p) |(a,q,2w,p) € P[H] forsome a € V,g € W — F,w ¢
T*,z € V*, and p € W}. Define the relation x from V[H] to ZT so for every
a €V, x(a) = {{a,q,y1z,p){a,q,y2z,p) | {a,q,y1z,p) € E,(a,q,y2z,p) € I',q €
W — F,z € T*,y € V*,p € W}. Define the bijection é from V[H] to V', where
V' = {a | a € V}, as §(a) = {a'}. In the standard manner, extend 4 so it is
defined from (V[H])* to (V')*. Finally, define the bijection ¢ from V[H] to V",
where V' = {a" | a € V'}, as ¢(a) = {a"}. In the standard manner, extend ¢ so it
is defined from (V{H})* to (V“)*

Define the left-extended queue grammar

= (VIQL T[Q), WIQ), FIQ), SIQ), PIQ)

658 Alexander Meduna, Dusan Kolar

so that V[Q] = V[H]U&V[H) U V[H))UEZUT, TQ] = T[H], WI[Q] =
WH] U o(W[H]) U B(W(H]) U {1}, FIQ] = A(F[H)), S[Q] = 5(S[H]), and P[V] is
constructed in this way

1. if (a,q,z,p) € P[H] wherea € V,qe W — F, z € V*, and p € W, then add
(d(a),g,6(z), p) and (6(a), x(q),d(z), a(p)) to P[Q);

2. if (a,q,zAy,p) € P[H], wherea € V,qe W - F, z,y € V*, A € V, and
p € W, then add (8(a), g,d(z)x(4)8(y), a(p)) to P[Q];

3. if (a,q,yz,p) € P[H], wherea € V,qeW -F,yeV*, zeT*, andpe W,
then add ((a,q,y1z,p),2(g), (¥),!) and ({e,q,y2z,p),!, z, B(p)) to P[Q];

4. if (a,q,y,p) € P[H], wherea € V,ge W - F,y € T*, and p € W, then add
(¢(a), B(q),y, B(p)) to P[Q].

Set U = §(V[H])) UE and Z = ¢(V[H]) UT. Notice that @ satisfies properties
2 and 3 of Lemma 3. To demonstrate that the other two properties hold as well,
observe that H generates every z € L(H) in this way -

=T z#biby...bi;
= xbi#bs. .. bibi+1 coobnyipe
= by bz#bs Ce bibi+1 . bny1y2p3

#S(H]

= zbiby.. . bio{#bibiti .. bayiya ... Yic1pi
= zbi by ... bi#bi+1 e bny1y2 e Yi—1YiDig

= zhiby. . bp1#bny1Y2 - Yn-1Pn

= zbiby. . b 1bn#yryz - YnPrta
where n € N, z € V¥ b, € Vifori =1,...,n,y; € T* fori = 1,...,n,
zZ=1Y1Y2...Yn, i € Wfori = 16€,n, ppt1 € F. @ simulates this generation
of z as follows

#5[Q] =% s(@)#x(b1)p(bs- .. bi)a(pr)
= 0(z)(br,p1,bir1 - - baly1, p2)#(b1, p1, bita - - bn2y1, p2)
d)(bz . bibi+l - bn)|
= 0(x)x(b)#d(ba. .. bn)y1p2
= 6(z)x(b1)@(b2)# (b3 . .. ba)y1y2p3

S 6@x(b)dbr. . bae1)ESB)YIY: - Yn1Pn
= 8(z)x(b1)d(ba .. . bu)#Y1V2 - . YnPrt1

Q makes the first |z] — 1 steps of #5[Q] =t 6(z)#x(b1)¢(bs . .. b;)a(p1) according
to productions introduced in 1; in addition, during this derivation, Q makes one
step by using a production introduced in 2. By using productions introduced in 3,

Regulated Pushdown Automata 659

(@ makes the two steps

3(z)#x(b1)@(bz . . . bi)a(po) =
8(z)(b1,p1, big1 .. bnlyy, p2)# (b1, 1, biv1 - bn2y1, p2)B(ba .. bibiy1 ... bR)! =
6(z)x(b1)#¢(b2 .. ba)y1p2

with : . :

x(b1) = (b1, po, bix1 - bnlys, p1) (b1, 0, bix1 - - - bn2y1, P2).

@ makes the rest of the derivation by using productions introduced in 4.

Based on the previous observation, it easy to see that @ satisfies all the four
properties stated in Lemma 3, whose rigorous proof is left to the reader. 0O

Lemma 4 4
Let @ be a left-extended queue grammar that satisfies the properties of Lemma 3.
Then, there exist a linear grammar, G, and a pushdown automaton, M, such that-

L(Q) = L(M, L(G), 3).

Proof: Let Q@ = (V[Q],TIQ], W[Q], F[Q], s[Q], P[Q]) be a left-extended queue
grammar satisfying the properties of Lemma 3. Without any loss of generality,
assume that {@,£,9} N (VU W) = 0. Define the coding, ¢{, from (V[Q])* to
{{£as) | a € V[Q]}* as {(a) = {(£as)} (s is used as the start state of the push-
down automaton, M, defined later in thls proof).

Construct the linear grammar G = (N(G], T{G], P[G], S{G]) in the followmg
way. Initially, set

NIG] ={S[G].{), L1V () | f € FIQD}

T[G] = ((VIQD) U {(£8s), (L@} U {(£8f) | f € F[Q]}

P[G] = {S[G] = (£8s){f) | f e F[QI}U{{}) 1){£@)}
Increase N[G], T[G], and P[G] by performing 1 through 3, following next.

1. for every (a,p,z,q) € P[Q] where p,g E W([Q),a € Z,z € T*,
N[G] = N[G] U {(apzqk) | k=10,...,|z|} U {(p),(2)}
T[G) =T[G] U {(£sym(y,k)) | k= 1;..1yl} U {(£apzq)}
P[G] = P[G] U {{g) = (apzqiz|)(£apzq), (apzq0) — (p)}
{{apzqk) = (apzq(k — 1)){(Lsym(z, k) | k=1,...,|z|};
2. for every (a,p,z;q) € P[Q] with p,g € W[Q), €U, ze viens,

N[G] = N[G] U {{p, 1), (g, 1)}
P[G] = P[G] U {(g,1) = reversal({(z))(p, 1){(a)};

3. for every (a,p,z,q) € P[Q] with ap = S[Q], p,qg € W[Q)], z € (V[Q])*

660 Alexander Meduna, Dusan Kolar

N[G] = N[G] U {{(q, 1)}
P[G] = P[G] U {{(g,1) — reversal(z)(£8s)}.

The construction of G is completed. Set ¥ = T[G]. ¥ represents the al-
phabet of rule labels corresponding to the rules of the pushdown automaton
M = (Q[M), Z[M],Q[M], R[M], s[M], S[M],{]}), which is constructed next.

Initially, set Q[M] = {s[M],(99.|,]1} (throughout the rest of this proof,
s[M] is abbreviated to s), E[M] = T[Q], Q[M] = {S[M],§} U V[Q], R[M] =
{(£85).S[M]s — §s} U {(£8f).8(1f) =1 | f € F[M]}. Increase Q[M] and R[M] by
performing A through D, following next.

A. R[M] = R[M]U {(£bs).as — abs | a € 2{M] — {S[M]},b € Q[M] - {$}};
B. R[M] = R[M]U {(£3s).as = a| ['a e VIQI}u{(£fa).el—> || a € V[Q]};
C. R[M] = RM]U{(£@).a|— a(]") | c € Z};
D

. for every (a,p,z,q) € P[Q], where p,g€ W[Q], a € Z, z € (T[Q))*,

QIM] =Q[M]U {(p)} U {(Tqu} | u € prefix(z)}
R[M] = R[M]U {(£b).a{Tqy)b — a{Ygyd) | b € T[Q),y € (T[Q])",
yb € prefix(x)} U {(£apzq).a(Tgz) = (Tp)}.

The construction of M is completed.

Notice that several components of G and M have this form: (z). Intuitively, if
z begins with £, then (z) € T[G]. If = begins with €, then (z) € Q{M]. Finally, if
z begins with a symbol different from £ or §, then (z) € N[G].

First, we only sketch the reason why L(Q) contains L(M, L(G),3). Accordinng
to a word from L(G), M accepts every word w as

§'w1...wm_1wm =+ §bm...b1an...alsw1 e Wm—1Wim
=> 8bm ... b1an .. .01 W1 .. . Wn—1Wm
=" §bm Loob |_’U)1 e W —1Wim
= §bm . bl(ﬁ[ql)wl e W —1Wem

:>|w1| §bm PN b1<1[(]1’wl>’wz e Wm—1Wen

= §bm e b-z(ﬂ(]z)'ll)z e W —1Win
=lwal 8b by (Ygowa)ws . . . Won— 1 Wy
= 8bm .. b3 (g3)ws - . . Wr—1 Wi
.=> 8bm (Yam)wm

=lwn| §bm(1IQmwm)

= §(1[(Im+1>

= 1

where w = wy...Wn—1Wm, G1...@xb1...by = T1...Zp41, and R|Q] contains
(ao,Po,zl;Pl)a(al;Pl;Iz,P2),-~-:(Gn»Pn,zn+l7QI):(bl:QI,wl,‘h):(b2:¢12a'w2,‘k),

Regulated Pushdown Automata 661

.oy (b, @ms Wm, Gmi1)- According to these members of R[Q], @ makes

#aopo =
=
=

RS

=
=

ao#yoT1p1 {(ao, po, 21, p1)]

aoa1 #y1 2202 [(a1,p1,Z2,P2)]

apa1 a2 #Y2T3P3 (a2, p2,23,Pp3)]

081G - - - Gn—1#Yn—1ZnPn [(@n-1,Pn-1,%n,Dn)]

aoal ag . an#yn$n+101 [(@n,Pn, Tny1,@1))
anbl #ba .. bpwige (b1, 01, w1, g2)]
anb1b2#b3 bnwiw2qs [(b2, g2, w2, g3)]

ag...anb1 . b #bpw1ws . Wm_1gm (b1, m—1, Wm—1,qm)]
Qg ...apby ... bnFwiws .. Wnms1 (b, Gm> Wm, Gm1)]

Therefore, L(M, L(G),3) C L(Q).
 Moreformally, to demonstrate that L(Q) contains L(M, L(G), 3), consider any
h € L(G). G generates h as :

S[G)=
:>|wm|+1

(£85)(gm+1)

: (£§5)<qm>tm(£bm Qmwmqm+1)

:lwm_]l*’l (-£§5><qm—1)tm—1 <‘£bm—1 gm—1Wm—1t 9m>tm<£bm 4m wQO—{-I) .

=>|‘UJ1|+1

(£8s){q1)0
sl (£85)(qr, 1)(£@)o0
lar) = (@, 1)(£@)] |
= (£8s)¢(reversal(Tny1))(pPn, 1){£aa)(£@)0
[{g1,1) — reversal({(zn+1)){Pn,){£aa)(£@)]
=> (£55)C(reversal(znZnt 1)) (Pre 1, I £ n 1) (£ 82) (£@) 0"
[(pn, 1) = reversal({(zn)){Pn-1, 1)(£ an—1)]
= (£8s)C(reversal(zz ... TaTnt1))(P1, 1){(£La1){£Laz) ... (£a,)(£Q)0
[(p2,1) — reversal({(z2))(p1,1){£as)]
= (£8s)((reversal(zy ... ZnZnt1)} {(£L8s)(£Las)(£Lag) ... (£an)(,£'@);)
[(p1,1) — reversal({(z1))(£8$s)]
where nm € N; ai € U for i = 1,...,n; by € Z for k =
1,....m; zz € V* for'l = 1,....n+1;, p € W for i = 1,...,n;
q € W forl = 1,....m+ 1 with ¢t = ! and gny1 € F; tx =

(Lsym(wg, 1)) ...

(Lsym(wg, fwe| — 1))(£Lsym(w, |we])) for & = 1,...,m; o

662 : Alexander Meduna, Dusan Kolar

ti{Lbrgrwige) - (L85)(gm-1)tm-1{Lbm—1Gm—1Wm—1gm)tm{L£bm mWm mi1);
h = (£8s)((reversal(z; ... TnZnt1))(£3)(£La;s)(Laz) ... (£a,)(£@)o0.

In greater detail, G makes S[G] = (£§5)(gm+:) according to S[G] —
(£85){gm+1)- Furthermore, G makes

(-£§5)(‘Im+1)
lomlt (£85)(gm) tm (£ b G Win Gmr 1)
s lwmotl+1 (L85 gm-1)tm—1{Lbm—1@m—1Wm—1qm)tm (L bm G W Gm+1)

Sl (£8s)(g1)o
according to productions introduced in step 1. Then, G makes
(£8s)(qr)o = (£8s)(q1, 1){£@)o)
according to (1) — (1, 1)(£@) (recall that g; =!). After this step, G makes
(£8s)(g1, 1){£@)o

= (£8s)((reversal(Tni-1)){Pn, 1}{£a,){(£@)0
= (£§s)((reversal(znTnt1)){Pn—1, I){Lan-1){£a){£@)0

‘=> (£8s)¢(reversal(zg . .. xnzng))(m yIWLa) (Lag) ... (Lap)(£@)o

according to productions introduced in step 2. Finally, according to (p;,1) —
reversal({(z1))(£8$), which is introduced in step 3, G makes

(£8s)(reversal(zs . .. TpTni1)){p1, I){Lar){Las) ... (Lay)(L£@)o
= (£8s)(reversal(zy ... TnTnt 1)){L8) (Lo} {Lag) ... (La}(£Q@)0

Ifa;...anbr ... by differs from Z1...ZTny1, then M does not accept according to
h. Assume that ay...anb;...bm = Z;...ZTnqy. At this point, according to h, M
makes this sequence of moves : '

§w1 v W1 Wm =7 §bm...b1an...alsw1 e W —1Wm
= . §bm...b1an...a1|_w1...wm_lwm
=" §bm...b1Lw1 v Wn—1 Wy
= " 8bm - 01 (g - - W1 W
=l _ 8bm . b1 (Jqrwr)we . . W 1wy
= 8bm - .. b2 (Yg2)wr . .- Wm—1Wm
=lwal gy bo(Yqzwa)ws - . . Wiy —1Wm
= §bm .bg(ﬂ]q3)w3...wm_1wm
= 8bm (Jgm)wim
=luml 8 (Ygmwm)
= §(Yqm+1)

=]

Regulated Pushdown Automata 663

In other words, according to h, M accepts wi...wWm—1Wn. . Return to the
generation of h in .G. By the construction of P[G], this generation im-
plies that R[Q] contains (a0:p0: 331,101), (al:pl, $2ap2)a R (a‘]'—hpj—laxjapj):
L) (an,pn,$n+1,q1), (bl’ql)wlan)a (b2,Q2,U)2,Q3), vy (bm7qm’wﬂh q'm,+1)'
Thus, in Q, '

#aopo = aoHYor1P1 [(ao0, po, z1, 7))
= apa1#Y1T2p2 . {(a1,p1 y T2, p2)]
= Gga102#Y2T3P3 (a2, p2, z3,P3)]

G00102 . . . On— 1 FYn—1ZnPn [(@n—1,Pn-1,%n,Pn)]
a0a102 . . . CnF#YnTni1Q1 [(@n,Pn, Tni1, q1)]
Qg - .. anbi#by .. . bpwiqo [(b1,q1,w1,q2)]

ag ... anb1ba##bs .. . bnwiwags ((b2,q2,w2,q3)]

IR RN R

= ap...anby... bm—l#bmw1w2 o Wm-19m [(bm—la dm-1, Wm-—1, Qm)]
= ag...apb1 ... bnFwIWs .. Wnlmir (b @m> Wiy Gm+1)]

Therefore, wiws . . - wm € L(Q). Consequently, L(M, L(G), 3) C L(Q).

A proof that that L(Q) C L(M, L(G),3) is left to the reader. As L(Q) C
L(M,L(G),3) and L(M,L(G),3) C L(Q), L(Q) = L(M,L(G),3). Therefore,
Lemma 4 holds. ' ‘ O

Theorem 5
For i € {1,2,3}, RE = RPD(LIN 7).

Proof: Obviously, RPD(LIN,3) C RE. To prove RE C RPD(LIN,3), consider
any recursively enumerable language, L € RE. By Theorem 2.1 in [2], L(Q) = L,
for a queue grammar. Clearly, there exists a left-extended queue grammar, @', so
L(Q) = L(Q'). Furthermore, by Lemmas 3 and 4, L(Q') = L(M, L(G),3), for a
linear grammar, G, and a pushdown automaton, M. Thus, L = L(M, L(G), 3).
Hence, RE C RPD(LIN,3). As RPD(LIN,3) C RE and RE C RPD(LIN,3),
RE = RPD(LIN,3).

By analogy with the demonstration of RE = RPD(LIN,3), prove RE =
RPD(LIN,i) for i = 1,2. ‘ _ |

5 Future Investigation

As already pointed out, this paper has discussed regulated automata as a new
investigation field of the formal language theory. Therefore, it has defined all
notions and established all results in terms of this new field. However, this approach
does not rule out a relation of the achieved results to the classical formal language
theory. Specifically, Theorem 5 can be viewed as a new characterization of RE and

664 Alexander Meduna, Dusan Kolar

compared with other well-known characterizations of this family (see pages 180
through 184 in the first volume of [4] for an overview of these characterizations).
Several research topics remain to be explored:

A. Fori=1,...,3, consider RPD(X,1), where X is a language family satisfying
REG C X C LIN; for instance, set X equal to the family of minimal linear
languages. Compare RE with RPD(X,1).

B. Investigate special cases of regulated pushdown automata, such as their de-
terministic versions.

C. By analogy with regulated pushdown automata, introduce and study some
other types of regulated automata.

D. Investigate the descriptional complexity of re'gulafed pushdown automata.

References

[1] Dassow, J. and Paun G.: Regulated Rewriting in Formal Language Theory
- Springer, New York, 1989.

[2] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular
Pattern Grammars, Acta Informatica, Vol. 20, pp. 391-411, 1983.

[3] Meduna, A.: Automate and Languages: Theory and Applications. Springer,
London, 2000. ‘

[4] Rozenberg, G. and Salomaa, A. (eds.}: Handbook of Formal Languages; Vol-
umes 1 through 8. Springer, Berlin/Heidelberg, 1997.

[5] Salomaa, A.: Formal Languages. Academic Press, New York, 1973.

Received January, 2000

CONTENTS

Avdeyev A. Yu., Kozhukhov I. B.: Acts Over Completely 0-Simple

SIMIGTOUDPS oottt ittt e e 523
L. Aszalds: The Logic of Knights, Knaves, Normals and Mutes 533
Istvdn Babcsdnyi: Equivalence of Mealy and Moore Automata 541
Luitpold Babel, Gerhard J. Woeginger: Pseudo-Hamiltonian Graphs 553
Judit Csima: Two remarks on variants of simple eco-grammar systems 569
Igor Dolinka: On Kleene Algebras of Ternary Co-Relations 583
Juha Honkala: Results concerning EOL and COL power series 597
B. Imreh, M. Ito, A. Pukler: On commutative asynchronous

nondeterministic automata 607
Jouni Jarvinen: Difference Functions of Dependence Spaces 619
Miklés Bartha, Miklds Krész: Elementary decomposition of

SOliton automAatao 631
Alezander Meduna, Dusan Kolar: Regulated Pushdown Automata 653

ISSN 0324—721 X

FelelSs szerkesztS és kiadé: Csirik Jdnos
A kézirat a nyomdédba érkezett: 2000. november

