
Volume 14 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: J. Cs ir ik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France) , J. Demetrov ics (Hungary), B. Dömölk i (Hungary), J. Engelfriet
(The Netherlands), Z. Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. PSun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 1999

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source T ĵX
file, if any, on a diskette to the Managing Editor. Having the T^X file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the József Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1999 Numbers 1-2 of Volume 14 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, József Attila University,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-420-184, Fax:(36)-(62)-420-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

EDITORAL BOARD

Editor-in-Chief: J. Csirik :
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Managing Editor: Z. Fülöp
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary'

Assistants to the Managing Editor:

A. Pluhár
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

M.Sebő
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

M. Arato
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
Computer Science Department
P.O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Esik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Budapest Múzeum kit. 6-8.
H-1088 Hungary

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A. Prékopa
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G; Wöginger
Technische Universität Graz
Institut für Mathematik (501B)
Steyrergasse 30
A-8010 Graz, Österreich

The first Conference for PhD Students in Computer Science (CSCS) was orga-
nized by the Department of Informatics of the József Attila University and held in
Szeged, Hungary from July 18 to 22, 1998. The aim of the meeting was to provide
a forum for PhD students for presenting their results which they achieved during
their studies.

The Program Committee was actually the Doctoral Committee of the Depart-
ment: Miklós Bartha, Tibor Csendes, János Csirik, József Dombi, Zoltán Esik,
Zoltán Fülöp, Ferenc Gécseg, Balázs Imreh, Attila Kuba, Eörs Máté, and György
Túrán. The Organizing Committee consisted of László Bernátsky, Tibor Csendes,
Csongor Halmai, László Martonossy, Lajos Schrettner, and Mariann Sebő.

There were about 80 participants and 70 talks from 8 countries in many fields of
computer science and its applications. Beyond the Hungarian PhD Schools in Infor-
matics, mainly those foreign universities were represented (University of Turku and
University of Nis) which have a strong cooperation with the József Attila Univer-
sity. The talks were going in two parallel sections in artificial intelligence, automata
and formal languages, computer networks, database theory, discrete mathematics,
fuzzy decision support systems, information systems, optimization, picture pro-
cessing, and software engineering. The talks of the students were completed by 4
plenary talks of leading experts.

Those students who gave a talk had the possibility to submit the paper version
of their presentaion for publication in a special issue of Acta Cybernetica. Alto-
gether 37 manuscripts were submitted, out of which 18 have been accepted, 18 were
rejected and one is still under review. This special issue contains 14 of the accepted
papers, while 2 papers already appeared in Volume 13 Number 4 (1998), and 2
further will be published in a later regular issue of Acta Cybernetica.

The full program of the conference, the preliminary proceedings and further
information can be found on the web page http: / /www.inf .u-szeged.hu/~cscs .

On the basis of our collected positive experiences, the conference will be orga-
nized regularly under similar conditions hopefully with more foreign participation.
The next meeting will be held also in Szeged, Hungary, in July 2000.

Tibor Csendes
Chairman of CSCS

Zoltán Fülöp
Managing Editor

http://www.inf.u-szeged.hu/~cscs

Acta Cybernetica 14 (1999) 217-227.

On the Partitioning Algorithm

Béla Csaba *

Abstract
We consider the deterministic and the randomized paging problem. We

show the close connection between the partitioning algorithm of McGeoch
and Sleator and the OPT graph of the problem via a natural framework.
This allows us to prove some important properties of the "deterministic"
partitioning algorithm. As a consequence of these we prove, that it is a k-
competitive deterministic on-line algorithm. Besides, we show an application
of the OPT graph for a special case of the fc-server problem.

1 Introduction
The paging problem is defined as follows. We have a two-level memory system with
k pages of fast memory, and n — k pages of slow memory. Repeatedly a request to a
page appears. This request should be satisfied by moving the page to fast memory,
if it is in slow memory, i.e., a page fault occurs. In this case a page has to be evicted
from fast memory to make room for the new, recently requested one. The paging
problem is to decide which page is to be evicted. The cost of a request sequence is
the number of page faults. Of course, this number depends on the strategy used
when deciding which page to evict.

There is a simple optimum paging algorithm, Belady's MIN algorithm (see
[B]), if one knows the whole request sequence in advance, in the off-line case. It is
more practical to consider the on-line paging problem, when the algorithm has to
decide immediately after a page request, without knowing what the future requests
will be.

Paging is a special case of the so called /c-server problem. In this problem we
are given a finite metric space: a set V on n points, and a distance function d(x, y)
on V2 satisfying the usual requirements of distances (non-negativity, simmetry,
triangle-inequality). There are k (1 < k < n) mobile servers, initially residing on
some points of V, no two on the same point. A number of requests, each is an
element of V, appears. A request has to be satisfied immediately by moving a
server to the requested point, if there is no server on it. By moving a server from
the point y to the requested point x a cost, d(x,y) incurs. The total cost of a

'Department of Computer Science; Rutgers, The State University of NJ; 110 Frelinghuysen
Road; Piscataway, NJ 08854-8019 USA. Email: bcsaba@paul.rutgers.edu

217

mailto:bcsaba@paul.rutgers.edu

218 Béla Csaba

request sequence is the sum of the costs of the composing requests. One can see,
that by choosing d = 1 (uniform metric space), we arrive to paging. The number
of faults done by some algorithm on a request sequence a is the same as the total
distance taken by the servers during the satisfaction of a. For the case of simplicity
we use the terminology of the uniform k-server problem throughout the paper. An
important remark is that it is enough to consider lazy algorithms, i.e., algorithms,
which move a server only to a requested point (see [MMS]).

For comparing two paging algorithms the competitive ratio is used. This measure
of performance of an on-line algorithm was introduced by Sleator and Tarjan (see
[ST]). Fix any starting configuration of the pages, and denote by opt(cr) the optimal
cost of the satisfaction of the request sequence a. The competitive ratio of the on-
line algorithm A is c, if there is a constant M such that on every request sequence
a the cost incurred by .4, A(a) is at most c • opt(a) + M. It was shown (see [ST])
that no on-line algorithm can have a competitive ratio less than k for the paging
problem. LRU, FIFO and a large number of other on-line algorithms are known
to be /c-competitive. On the other hand, the best competitive ratio achieved by
some on-line algorithm for the k-server problem is 2k — 1 (see [KP]), while the lower
bound for any metric space is k (see [MMS]), like in paging.

As it happens frequently, one may expect a better performance in the random-
ized case. A randomized on-line algorithm 1Z is c-competitive, if there is a constant
M such that on every request sequence a, E[JZ(cr)] is at most c • opt(a) + M,
where E\TZ{<i]\ denotes the expected cost incurred by 1Z on a. It was proved (see
[FKLMSY]) that Hk = 3D1 + | H h £ is a lower bound for the randomized com-
petitiveness of an on-line paging algorithm. There is a simple, elegant algorithm,
which has randomized competitive ratio 2Hk (see [FKLMSY]). On the other hand,
the only known optimal randomized algorithm, the partitioning algorithm has a
much more complicated description. Our goal is to show that despite it's complex-
ity, the "deterministic" version of this algorithm is based on rather plausible ideas.
This is done by the help of OPT graphs.

OPT graphs for on-line problems were first considered in [CL1], [CL2] when
investigating the deterministic fc-server problem, and in [LR] were used to analyze
the randomized case. Roughly speaking, the OPT graph for the ^-server problem
is a finite directed graph, with which one can easily compute the optimal cost of
any request sequence, and find the corresponding satisfaction.

The outline of the paper is as follows. In the second section we give the definition
of the partitioning algorithm, and our framework, which is based on the OPT graph
of the problem. The third section deals with the deterministic paging problem, and
the connection between the OPT graph and the partitioning algorithm, and we
show that the partitioning algorithm is fc-competitive in the deterministic case.
In the fourth section we give an application of our results for a special k-server
problem, achieving 2k — 2 competitive ratio.

On the Partitioning Algorithm •219

2 Definitions
First we give the definition of the partitioning algorithm following [MS]. The algo-
rithm dynamically maintains a partition of the points: V = (J Sa+ .1 U • • • U Sp.
Each set Si (i < (3) is labeled with an integer k{. Initially a = 1 and (3 = 2,S-2
contains the k points that are covered by the servers, S\ contains the unoccupied
points, and ki = 0. In response to a request at a point r G V the labeled partition
is updated. Let r € Si, then there are three cases.

Rule 1: i = (3

Do nothing.

Rule 2: a < i < 0

First do the following assignements:
• Si Si - r

• S/3 <- S/3 + r

• kj <- kj - 1, i < j < ¡3.

If some label changed from 1 to 0, find the largest number j such that kj = 0. Then
let

• Sj <- Sa |J Sa+1 (J . . . IJ Sj

• a J-

Rule 3: i = a

Do the following assignements:

® S a ^ v

• Sp+1 <- r

• kf3 fc — 1

• P+-P + 1.

By induction one can easily show that the following labeling invariant conditions
always hold:

• ka= 0

• ki > 0 (a < i < (3)

• ki = ki-1 + |5j| - 1 (a < i < (3)

• hp-1 = k -

220 Béla Csaba

Now we are ready to give the partitioning algorithm itself. Denote
SQ|JStt+i U - -U5i by S*. For each set S*, where a < i < /3, there are ki i-
marks occupying different points of S*. An ¿-mark is only allowed 011 the points of
Si or on points with an (i — l)-mark - on the i-eligible points. The algorithm keeps
a server on each element of Sp and on each point with a (/3 — l)-mark. By the
labeling invariant conditions this means exactly k points covered by some server.
Before the first request a = 1 and /3 = 2, and there are no marks of any kind. Now,
let the new request be r.

(1) If r £ S/3, then do nothing.
(2) If r E Si (a < i < /3), move the marks around so as to achieve that there is

a j-mark on r for all j (i < j < /3) in the following way. If r has a j-mark, then
do nothing. Otherwise randomly choose some point w that has a j-mark. Transfer
each /-mark (/ > j) from w to r. Repeat this step, if r does not have all marks
up to /3 — 1. Then apply Rule 2, and erase all the marks on r. If a changes, all
i-marks (t < a) are erased. If a (/3 — l)-mark moves to r from another point, the
corresponding server moves to r.

(3) If r £ Sa, then apply Rule 3. Then create k — 1 new (/? — l)-marks, and
distribute them randomly amongst the k (/3 — Ineligible points. We move the server
to r from the point which is left without a (/9 — l)-mark.

Recall, that this randomized algorithm is -if^-competitive. Note, that with any
deterministic rule for distributing the marks this algorithm switches to a determin-
istic one. Now we turn our attention to the OPT graph of the paging problem. We
repeat the definition of [LR].

Definition 2.1 An OPT graph of an on-line k-server problem is a finite directed
graph with one distinguished vertex I, such that (1) each edge is labeled with a
request from V and a cost, (2) for each vertex and each request r there is a unique
edge out of that vertex vihose request label is r, .and (3) for every request sequence
g, opt(g) equals the sum of the cost labels on the path given by g starting from I.

Every legal configuration of the servers can be viewed as a k element subset
of the points. If S C V is the set of points occupied by the servers, and r is
the new request, the k-sets reachable by some algorithm from S by r are the
elements of the following set system: 7i = {H : H = S — s + r, s £ Sj. If r 6 S,
then S = H, otherwise % has k elements. Denote Ho the initial configuration of
the servers, and let g = BiQi • • • Qm be a request sequence of lenth m. If %i =
{H : H = H' h! + Qi, ti £ H' £ Hi-1}, where 1 < i < m, then every g-
satisfying algorithm's movements from configuration to configuration is embedded
in the following sequence: Ho > Hi = 20 . . . —> Hm. An important observation,
that it is possible that in a set system Hi there is a fc-set H for which the cost of
any satisfying algorithm starting from Ho and getting to H is " too big" comparing
to that of some other H' £ Hi. One may think that this kind of sets can be ignored
without eliminating any actions of a "good algorithm". In what follows these simple
ideas will be made precise.

First, we give three rules for building a finite directed graph G. The vertices of

On the Partitioning Algorithm •221

this graph are associated with set systems of fc-sets, one distinguished vertex is I,
the initial configuration. Now let H be a vertex of the graph, r 6 V.

Rule A: If r £ D/few nothing.
Rule B: If r £ f\ H e H H, but r € {JHen H-< t h e n l e t = iH' '• H' e 7i, re

i f ' } . If %' is not present in G, then put it in as a new vertex. Draw the directed
edge (H.,%') in G with label r. We call this kind of edge a decreasing edge.

Rule C: If r 0 [}Heu H, then let %' = {H' : H' = H - h + r, he He U).
If T~L' is not present in G, then put it in as a new vertex. Draw the directed edge
{%, H') in G with label r. We call this kind of edge an increasing edge.

Note, that Rule B stands for discarding the "expensive fc-sets", and we apply
Rule C, when we are forced to move a server. Starting from I after a finite number
of applications of the rules we arrive to a graph G to which we can't put new vertices
or edges. As one can see, there cainnot be more than n • 2('=-1) vertices of G.

3 Properties of OPT graphs and an on-line algo-
rithm

Call a vertex of the graph G defined in the previous section a single vertex, if it
contains only one configuration, otherwise call it a multiple vertex. The following
two lemmas prove, that G is the OPT graph of the problem.

Lemma 3.1 Let g be a request sequence, and assume that starting from I we arrive
to the vertex % following g in G, and H £% is a configuration. Theri there exists
a satisfaction of g with endconfiguration H and its cost is the number of increasing
edges in the above walk.

Proof. Let's go backwards from H on the walk determined by g. From the
definition of decreasing edges it follows that until we reach an increasing edge, we
don't have to change configuration. When an increasing edge is coming, it is enough
to move a server, and we can get to the configuration, from which this increasing
edge is going out. Hence, for the decreasing edges on the walk there is no incurring
cost, and in the case of increasing edges the cost is 1. •

Lemma 3.2 Let g be a request sequence, and assume that starting from I we arrive
to the vertex T~L in G. Then the set system H contains exactly the optimally reachable
configurations, and the optimal cost is the number of increasing edges traversed
when getting to %.

Proof. We proceed by induction on the length of the request sequence. If
< 1, then the lemma trivially holds. Let's suppose that it is true for every

request sequence with length at most t, and \g\ = t.
First we prove, that for every new request r, if the edge (H, H') is labeled r, then

for H' e H' the optimal cost of arriving to H' is the number of increasing edges.

222 Béla Csaba

Let's assume that there is a satisfaction of gr which arrives to H' with cost less than
the number of increasing edges. Denote the jth configuration of this satisfaction by
Qj. If Qi £ H, then by the induction hypothesis we know that the cost of getting
to Qt by g is bigger than the number of increasing edges, because every optimally
reachable configuration is the element of H. Hence, after a new request the cost
of getting to Qt+i = H' is at least as big as the number of increasing edges. If
Qt G H, then the statement trivially holds, either the edge {%,%') is an increasing
or a decreasing edge.

So far we have proved that the optimal cost for H' is the number of increasing
edges. Let's assume that there is a satisfaction S of gr such that St+i, the last
configuration of it is not in TL', but it has optimal cost. If the cost of S were smaller,
than the number of increasing edges, then because up to St the cost can't be smaller
than the cost of H (by the induction hypothesis), St G H- One can easily see, that
r has to be an increasing request, but then the cost of S cannot be smaller than the
cost of . Hence, the only case is when S i + 1 £ H', and has the same cost. Denote
the directed walk from I by U 0 (= /) - > Hj H t {= U) ->• W. t+i{= W) .
There is a last configuration of S which is the element of the corresponding vertex
of the graph. Denote it by Sm, and let r1 ; r-i, • •. ri be the last I = t + 1 — rn
requests. Thus, Snl € but for j > 1 Sm+j $ T-im+j- By our assumption
the cost incurred on S before the last request is greater than that incurred on the
0-path in G. Hence, the last edge, ('Ht, T~Lt+ i) is an increasing edge, and St = St+i-
Denote Ri the closest set in Hi to Si, i.e., = max{\Hf)Si\ '• H G Hi}.
Observe, that r\ £ Sm, and the ('Hm,'Hm+1) edge is a decreasing edge, otherwise
Si £ T-Lm+i- From this follows, that |ii4p|Si| = k — 1. There are five cases to
consider when satisfying the last I requests. In the following 1 < i < I — 1.

(1) ri+1 6 Si ("J Ri = > |5j Pi = |5i+i Pi and the difference of the costs
doesn't change (lazy satisfactions).

(2) (Hi,Hi+1) is an increasing edge, and r i + 1 e Si = > the difference of the
costs is decreased by 1, and +. 1 — l^+i HRi+i\- This equality easily
follows from the definition of G (Rule C).

(3) (Tii,'Hi+1) is an increasing edge, and ri+1 £ Si the difference of the
costs doesn't change, and |SiP|i?j| < |5j+i H-Rj+il-

(4) Ti-|_i ^ Si, and T-j+i G Ri the difference of the costs is increased by 1,
and\Sif]Ri\<\Si+iC\Ri+1\.

(5)?-i+i ^ Si, (Hi, 'Hj+i) is a decreasing edge, but Ri $ ==>• the difference
of the costs is increased by 1, and |Sj |"| Ri\ < P| | + 1.

Let us suppose first, that at the jth stage (1 < j < I) the difference of the
costs is > k. Then by moving at most k — 1 servers from R3 we can reach Sj
(the intersection Si (~) Ri always contains the most recently requested point), and
this has cost at most k — 1. Hence, there is a ^-satisfying configuration sequence
to St+i with smaller cost, and this contradicts with the optimality of S. Let us
consider now the quantity Di = k — |5j D-^il- W e claim, that Di is a lower bound
for the difference of the costs in the ith stage. For i = 1 this is obviously true.
Assume, that Di is a lower bound up to the zth step, and a new request, ri+\ is

On the Partitioning Algorithm •223

coming. We check the possible five cases. In case (1) Di(= Di+1) certainly remains
a lower bound. In case (2) the drawback of S is decreased, but the intersection size
increases by one. In case (3) the drawback doesn't change, and the intersection
size may increase. In cases (4)-(5) the drawback increases, but the size of the
intersection doesn't decrease by more than one. Thus, in all cases Di+{ is a lower
bound. By our assumptions, _D/_i < 1, and the last request should be a request
considered in case (2). By the definition of G, St+1 £ %t+1- We get, that, Ut+i
consists of exactly the optimally reachable configurations. •

Definition 3.3 Consider the partition Sa U ^Wr U • • • U Sp given by the partition-
ing algorithm. Let V = {P :-|P| — k — IS^I, P does not contain more than ki points
from S8*}. The set system given by the partition is S = {S : S = Sp\J P, £ V}.

Lemma 3.4 Let S be the set system determined by the partitioning algorithm.
Then Sp = f)SetSS. .

Proof. Sp C Pises S trivially holds. Let's suppose that for some v £ V v £
f]ses ancl v G Si, a < i < 0. By the labeling invariant conditions ki = ki-i +
|Si| — 1, i.e., |5j| = ki — ki-1 + 1 . If v £ Pises S, then every point of Si is in the
intersection, because they have the same role. Thus, from we could choose
only ki-i — 1 points. On the other hand we are allowed to choose ki-1 points —
we arrived at a contradiction. ' •

Lemma 3.5 Assume, that starting from I we follow the edges of G determined'by
the request sequence g, and we arrive to the vertex H. Let the set system given by
the actual partition (after g.) is S. Then H — S.

Proof. We prove the statement by comparing the maintaining rules for' the
partitioning algorithm and the build-up rules for G, by induction on the length of
g. If = 0, the lemma trivially holds. Let's suppose now that the lemma is true
for q, a new request r is coming, the edge (T~L, T) is labeled r in G, and the new set
system given by the partition is Q. We distinct three cases depending on the rule
we use to maintain the partition.

If r £ Sp: There is nothing to prove, T = H and Q = S (Rule 1 Rule A) .
If r £ Si (a < i < ¡3): By Rule 2, Qp = Sp + r, and Qi = Si — r and kj -<— kj — 1

for j : i < j < ¡3. If for some j, kj has become 0, this means, that previously kj
was 1, and hence, from Sj we could choose only one point to some S £ S. By
Qa = i o U ^ j o) where jo is the biggest such j , we discard all the sets S £ S which
doesn't contain r. Thus, the set system Q contains exactly those sets S £ S, for
which r £ 5. Using the induction hypothesis and the definition of Rule B, we get,
that Q = T.

The only possibility left is that r £ Sa. By Rule 3, Qp = r, thus, r £ Q for
every Q £ Q, and this is the only element of the intersection of the sets of Q.- Also,
kp kp — 1 and /3 /3 + 1, hence Q contains exactly the sets which has r and
other k — 1 points from some S £ S. But this is the set system T we get from %
by applying Rule C. •

224 Béla Csaba

Definition 3.6 Let H and F be two configurations. We say, that F is achievable
from H (and vice versa), if \H f]F\ = k — 1, i.e., moving one server is enough to
reach one from the other.

Lemma 3.7 Let % be a vertex in G, r £ V, and H £ H. If (H,T) is the outgoing
edge from 1~L labeled r, then there is an achievable F £ T from H.

Proof. If Ti = T (Rule A) , then there is nothing to prove
If (Ti, T) is an increasing edge, then there are k sets in T which are achievable from
H: all the sets of the form F = H - h + r, h£ H.

Let's suppose now, that (7i,J-) is a decreasing edge. If r £ H, then H £ T,
so, let r £ H. By Lemma 3.5 (and using the notation of it), r £ Si for some
i : a < i < ¡3.

There are two possibilities.
(1) When composing H, we did not pick any points from S*. But then there is

a largest t (t > 0), such that we did not choose any point from S*+t, because we had
the necessary number of points. Hence, we picked a point v £ S*+t+1. Substituting
this v by r (r £ S*+t+1) we arrive to a set H', for which \Hf]H'\ = k — 1, and
r £ H'. Thus, H' £ T, and it is achievable from H.

(2) Wre picked another point w from S*. Substituting w by r, we again get a
set of T, which is achievable from H. •

Lemma 3.8 There cannot be more than k — 1 consecutive decreasing edges in any
walk on G,

Proof. Notice, that for any vertex H in G, r £ H if r is the label of
an ingoing edge. After each application of Rule B this intersection size increases.
Thus, after k — 1 decreasing edges we arrive to a vertex which is represented by a
single &-set. From such vertices every outgoing edge is an increasing edge: no k
consecutive decreasing edges are possible. •

Now we are ready to discuss our on-line algorithm. Roughly speaking, we do
a walk on the OPT graph step by step according to the incoming requests. We
introduce some notation: r is the new request, 5 is the configuration of the servers,
and HjH' are vertices of the OPT graph.

• (1) Initially S = n = I.

• (2) If r £ S, then no server moves. If r is a loop edge label of 1-L (the actual
vertex of the graph), then we stay there. If {%,%') is a decreasing edge
labeled r, then H' will be the new actual vertex.

• (3) If r $ S, then (H,H ') is either a decreasing edge or an increasing edge
labeled r. Choose any configuration H' e H ' , which is reachable from S. We
know, that there is always at least one such configuration (Lemma 3.7). Move
the server on S — H to r.

On the Partitioning Algorithm •225

Note, that in (3) there is no deterministic rule how to choose the server to move,
when there is a multiple choice. We will see, that one can use any kind of rule in
these cases.

Theorem 3.9 The algorithm described above is a k-competitive on-line algorithm.

Proof. From the description it is obvious, that the algorithm is well defined,
and in an on-line fashion we never have to move more than one server for a request.
We decomp ose the walk defined by the request sequence g in the OPT graph
into s everal phases. The first phase starts from I, consists of the first consecutive
increasing edges, and the conse cutive decreasing edges coming right after them.
This phase ends, when a new increasing edge is to be traversed. =20 Then'a
new phase starts, with the same structure: consecutive increasing edges, and then
consecutive decreasing edges. Observe, that from Lemma 3.1 and 3.2 it follows, that
the optimal cost of g is the number of increasing edges traversed while satisfying g.
In a phase by definition, there is at least one increasing edge, and not more, than
k— 1 decreasing edges. This is the consequence of Lemma 3.8. As mentioned above,:
the algorithm never moves more than one server for a request. Hence, in every phase
the cost of the optimal satisfaction is the number of increasing edges, and the cost
of our on-line algorithm is at most the sum of the umber of the increasing and
decreasing edges (at most, because the algorithm not necessarily moves a server for
a decreasing request). It is easy to see, that the fraction of these two quantities is
always at most k. From this the theorem follows. •

Remark: Say, that there are i increasing edges in a phase. Then the compe titive
ratio for that phase is at most < 4 + 1. When n is large enough comparing
to fc, then we expect more than one increasing edge and less than k — 1 decreasing
edges in an "average phase". Hence, this algorithm works well in these cases. Un-
fortunately, either storing the OPT graph in memory or dynamically computing
the next vertex needs a lot of resources. Thus, this algorithm is undesirable in prac-
tice, but possibly of theoretical interest. It suggests, that for "random sequences"
the competitive ratio of an on-line algorithm can be much smaller, than k.

4 Application for a £;-server problem
In this section we use the OPT graph of the paging problem to define an on-line
algorithm for a special case of the fc-server problem. Let us call a finite metric
space multipartite, if the points can be distributed into several classes, where the
distance between two points is 1, when they correspond to different classes, and
any number in the [1,2] interval otherwise. One can easily show, that these are
valid metric spaces, that is, non-negativity and symmetry of the distances, and the
triangle inequality are satisfied.

226 Béla Csaba

Theorem 4.1 If in a multipartite metric space no class has more than k — 1 el-
ements, then there is an on-line algorithm for the k-server problem of this metric
space with competitive ratio 2k — 2.

Proof. Our algorithm is almost the same, which was considered in the paging
problem, but now we have-less freedom in the multiple choices. If the algorithm
is forced to move, then we try to move distance 1 if it is possible. Otherwise, we
move any server consistently with the actual OPT graph vertex. Observe, that if
the new request is an increasing request, then we can choose a server which move s
distance 1. There are at most k — 1 points in one class, hence, at least two servers
are not in the class of the new request. Another important case, when a phase
starts from a single vertex H, and that phase has only one increasing edge. That
edge goes to a vertex H', which contains exactly the union of the k — 1 element
subsets of H and r, the new request. Whichever server we have moved to r, there
is always another server from another class in another configuration of H'. Hence,
for the first decreasing edge we either don't move a server at all, or there is a server,
which has to move only 1. Again, this is a simple consequence of the class sizes.
Thus, in such phases the optimal cost is at least 1, while our on-line cost is at most
1 + 1 + 2(k — 2), from which we have the 2k — 2 bound for the competitive ratio of
these phases.

If there are more than one increasing edge in a phase, then the competitive
ratio of such a phase is at most < 1 + k — 1 = k, where i is the number of
increasing edges. When there are less than k — 1 decreasing edges, the competitive
ratio of the phase is at most < 2k — 3.

There is one case left: phases with one increasing edge and k — 1 decreasing
edges, starting from a multiple vertex. If a phase starts from a multiple vertex, then
the previous phase has at most k — 2 decreasing edges. We compute the competitive
ratio of these two consecutive phases. It is at most 1+2(fc~2)+1+2(A'"1) — 2k — 2. •

This result was an illustration, the careful reader may notice that by decreasing
the class sizes, a more thorough analysis gives smaller competitive ratios. On the
other hand, we cannot expect a fc-competitive algorithm for non-uniform metric
spaces by just using the OPT graph of the paging problem. OPT graphs for
non-uniform spaces may prove to be useful, but up to this time these graphs were
investigated only for very special cases. Notice, that for non-uniform problems we
may lose the symmetry of the graph, that can make the analysis hard.

Let us discuss a little bit more on the connection of paging and the general
fc-server problem. In a finite metric space divide every distance with the length of
the smallest distance in it. This way every distance will be in the [1,-D] interval for
some D. Let g be a request sequence, and denote optp{g) the optimal cost of g in
the uniform metric space, while opt(g) denotes the optimal cost of satisfaction in
the original one. Then optp(g) < opt{g) and opt(g) < D • opt.(g), obviously. If A is
any fc-cornpetitive paging algorithm, then A{g) < k-optp(g) + M for some constant,
M, and thus A{g) < D • k • opt(g) + M. Thus, reaching the 2 • A;-competitivity for
multipartite metric spaces is easy, any ¿-competitive paging algorithm achieves it.

On the Partitioning Algorithm •227

5 Summary
In this paper we investigated the paging problem, and a special fc-server problem.
We used OPT graphs to have a better insight to paging. Our results suggests,
that the partitioning algorithm in practice may perform well, considering only the
competitivity as a measure. Then we proved a new nontrivial upper bound for
the multipartite k-server problem. We did it by the help of the OPT graph of the
paging problem. While our opinion is that one cannot expect much more with our
technique, we think, that a better understanding of the structure of OPT graphs
for non-uniform spaces may result in better upper bounds.

Acknowledgement The author is grateful Péter Hajnal and Endre Szemerédi
for listening to earlier versions of this paper, and to Tibor Széles for his valuable
help in the proofreading.

References
[B] Belady, L., A study of page replacement algorithms for virtual storage comput-

ers, IBM Systems Journal, 5:78-101, 1966

[CL1] Chrobak, M., Larmore, L., The Server Problem and On- -line Games, Pro-
ceedings of the DIMACS Workshop on On-line Algorithms, American Mathe-
matical Society, February 1991

[CL2] Chrobak, M., Larmore, L., Generosity helps, or an 1 1-competitive algorithm
for three servers, Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1992

[FKLMSY] Fiat, A., Karp, R., Luby, M., McGeoch, L., Sleator, D., Young, N.,
Competitive Paging Algorithms, Journal of Algorithms 12 (1991), pp. 685-699.

[KP] Koutsoupias, E. and Papadimitrou, C., On the k-Server Conjecture, STOC
94, pp. 507-511.

[LR] Lund, C., Reingold, N., Linear Programs for Randomized On-line Algorithms,
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 382-391, 1994

[MMS] Manasse, M. S., McGeoch L. A. and Sleator, D. D., Competitive Algorithms
for Server Problems, Journal of Algorithms 11 (1990), pp. 208-230.

[MS] McGeoch L. A. and Sleator, D. D., A Strongly Competitive Randomized Pag-
ing Algorithm, Algorithmica (1991), pp. 816-825.

[ST] Sleator, D. D., Tarjan, R. E., Amortized Efficiency of List Update and Paging
Rules, Comm. of the ACM, February 1985, pp. 202-208.

Acta Cybernetica 14 (1999) 229-238.

Test Suite Reduction in Conformance Testing

Tibor Csöndes * Sarolta Dibuz * Balázs Kotnyek t

Abstract
Conformance testing is based on a test suite. Standardization committees

release standard test suites, which consist of hundreds of test cases. The main
problem of conformance testing is that we do not have enough time to execute
them all. Therefore, test selection is required to maximize the test coverage.
In our earlier papers [6,7] we outlined a new method of selecting an optimal
test suite which can detect the errors with better probability' and réduce the •
time of testing. In this paper we will expound the mathematical optimization
method for test suite optimization based on cost and test coverage, and we
will apply this method to an ISDN protocol.

1 Introduction ,
The main aim of conformance testing is to check whether the protocol implementa-
tion conforms to the standard. The procedure of conformance testing as well as the
protocols are standardized [1]. The two main terms of testing are the test purpose
(TP) and the abstract test suite (ATS). The test purpose is the description of the
well defined objective of testing to focus on a single conformance requirement or
a set of related conformance requirements. The ATS consists of several test cases
(TC) created to test one or more TPs. In real-life conformance testing, the testers
choose some of the TPs and execute all the TCs that are related to the chosen set
of TPs. The challenge in conformance testing is this selection, choosing this set so
that the coverage, the fault detection capability, be maximal. Of course, the best
selection is when we choose all the TPs or - what means the same - all the TCs.
The problem that arises here is the time limitation. Usually we do not have enough
time to do this, so we can only execute some of the TCs.

The existing approach of handling this problem is the test generation. The goal
of such procedures is briefly to generate optimal ATSs from the protocol specifi-
cation , i.e. that contain as few parallelisms as possible so they can be entirely
executed within the time limit. The theoretical background, of this kind of op-
timization is the finite state machine (FSM). If a FSM model of the protocol is
already given, there are several algorithms for generating good, or better test suites
(Transition Tour, Unique Input/Output method, Distinguishing Sequence) [4]. We

'Conformance Center, Ericsson Ltd.,Laborc u. 1., H-1037 Budapest, Hungary
t Eötvös Loránd University, Budapest,

229

230 T. Csdndes. S. Dibuz and B. Kotnyek

need this FSM model, however and real life protocols are so complicated that it is
not possible to create their usable FSM model.

Our approach, which we outlined in our earlier papers [6,7], is based 011 practice.
We suppose that we are given an ATS and we cannot generate any new TCs. That
is what test laboratories do, they use only those test cases which are provided by
the standards. By now, the selection of TCs from ATS is based on the subjective
decision of the test laboratory. Our aim is to create a theoretical background of
such selection. We found that mathematical optimization could be a suitable one.

The rest of the paper is organized as follows: first, we introduce a model of
conformance testing mathematics could operate on. In Section 3 we describe this
operation, in Section 4 we present how this method could be applied to an existing
protocol the ISDN DSSl Layer 2 protocol[2]. We chose this protocol because it is
widely used, well known, and its ATS exists.

2 The model
In our model, we create a mathematically formulated relation between the test cases
and test purposes by introducing the purpose-test incidence matrix. The purposes
are placed in the rows and the tests in the columns. As a result we get an A matrix
of size k x n where Pi,... ,Pk are the purposes and T\,..., Tn are the test cases
defined in the ATS (Figure 1). The jth element in the ith row is 1 if, and only if
Tj is necessary to check Pi, otherwise it is 0. In other words, if we want to check a
purpose (e.g. Pi) completely, we have to execute all test cases having 1 in the row
of the purpose (namely in the ith row). Let us introduce the number bi designating
the number of such test cases and let b = (f>i,..., bk)T be the vector made of these
numbers.

Ti T2

Pi 1 0 1
Pi 1 1 0

Pk 0 1 0

= A

Figure 1: Purpose-test incidence matrix

There are protocols the ATSs of which define one-to-one connection between
the test cases and the purposes, hence their incidence matrix is diagonal. There
exist, however, ATSs the matrices of which are not diagonal, thus there are more
than one necessary test cases to check a test purpose. In this paper, we are dealing
with these kind of protocols.

Let us assign the value cov(Pi), (i = 1 , . . . , k) to every purpose describing its
coverage. This value may be obtained from a theoretical consideration or we can
simply mark the priority of the purpose with it. Similarly, let us designate the cost

Test Suite Reduction in Conformance Testing 231

of test Tj with c(Tj), (j — 1 , . . . ,n). This cost function can be defined -.to-represent
the resources (time) required to execute the test case. The cost of a set of test cases
can be defined simply as the sum of the cost of the individual test cases in the set.
Let us do the same with the coverage of a set of purposes.

Let us introduce the increasing functions fi : {0 ,1 , . . . , bi} -4 [0, cov(Pi)], (i =
1 , . . . ,k) describing the coverage we get if we execute m tests among the tests that
correspond to Pi (to = 0 ,1 , . . . , bi). Of course /¿(0) = 0 and fi{bi) = cov(Pi) for all
i = 1,2,... ,k. The different models differ from each other in choosing functions
fi. We introduce three models below.

1. Linear model: The coverage is in direct proportion to the number of exe-
cuted tests i.e.

7TI
fi(m) =—cov(Pi) m = 0,...,bi ,

bi

2. "All or nothing" model: We only consider the purpose being checked
when we executed all the necessary tests.

/¿(0) = /¿(1) = . . . = fi(bi - 1) = 0 . and fi(bi) = cov(Pi) ...

3. "One is enough" model: If only one test is executed among the ones that
correspond to Pi, we get the whole coverage.

/¿(0) = 0 and fi(1) = ... = Mbi) = cov(Pi)

3 Optimization
We introduce two possible optimization problems. In the first one our aim is to
select a test set from the test suite with minimal cost supposing a constraint
bounding the coverage from below. Let x G {0,1}™ be the decision vector, so
Xj = 1 if Tj is executed and x = 0 if it is not. The minimization can be formalized
in the following manner:

min cx
k

subject to ^ f i (a i x) > K (1)

'xe {0 ,1 } "

where c = (c (Ti) , . : . , c(Tn)) is the cost vector, K is the lower bound for
the coverage, and Oj is the ith row of the matrix A. Furthermore, let v —
(cov(Pi),... ,cov{Pk)) be the coverage vector. Let us see how this formula looks
like in the case of the three introduced models.

232 T. Csdndes. S. Dibuz and B. Kotnyek

1. Linear model

t < \ shaix mi (V^ aicav{Pi)\
f i M = -—cov(Pi) = ^ x

t=i t=i % \i=i 1 /

Thus (1) turns into a binary minimization with a single linear constraint:
mm cx

k
subject to j , > K (2)

x G~{0,1}"

2. "All or nothing" model
Let us introduce a new variable vector 2 = (z i , . . . , Zk) defined in the following
manner:

_ J 1 if a,iX = b{
1 \ 0 if a,iX < bi

In other words, z = max{yla: — b + e, 0}, where e = (1 ,1 , . . . , 1) and the
maximization is made componentwise. Using this vector problem (1) can be
written in the following manner

min cx
subject to vz > K

z = max{>la; — b + e, 0}
x G {0,1}'1

It is easy to see that this is equivalent to

min
subject to

cx
Zi < ^x bi
z > Ax - b + e

vz > K
X e {0 ,1 } "
z e {0, i } f c

This is a binary minimization with linear constraints. The number of the
variables is n + k, the number of the constraints is 2k + 1.

3. "One is enough" model
This model can be handled similarly to the previous one. Let now 2 be the
following vector: •

_ J 0 ha aiX = 0
1 (1 ha diX > 1

Test Suite Reduction in Conformance Testing 233

namely z = min-j^x, e}. In this case (3) can be transformed into thetfollowing
problem:

min cx ' •
subject to Zi > f:X i = l,...,k

I (4)

Zi > qi bi J'
z < Ax

vz > K
X € {0,1}
z e {0,1}

Our second optimization problem is to find a maximal coverage test set supposing
an upper bound for the cost (L). This optimization problem, as the previous one,
can be formulated as a binary minimization problem with the functions /¿:

k
max y ^ /¿(a {x)

г=l (5)
subject to cx < L

' x e {0 ,1 } "

Without further details let us see the formulas for the three models.

1. Linear model

a,iCov{Pi)\ max > x

subject to cx < L
x e {0,1}

i=i bi I (6)

nothing" model

max vz
subject to Zi < f;X

z > Ax - b +
cx < L
x e {o,i}"
z G {0,1}*

enough" model

max vz
subject to

z < Ax
cx < L
x e {0 ,1}"
z e . {o , i } f c

i = 1,..., k

• (7)

i — 1,.. :,k

(8)

234 T. Csdndes. S. Dibuz and B. Kotnyek

4 The results of optimization
Having described the method, let us look at the experiments now. As it was
mentioned in the introduction, we applied the method to the ISDN DSSl Layer 2
protocol [2]. This TBR4 standard contains 27 test purposes (k=27) and 52 test
cases (n=52) as well as the relation between the TCs and the TPs. The TCs that
are necessary to check a TP are given for each purpose. Based on this standard
the purpose-test incidence matrix can be easily constructed.

We fixed the coverage vector v in the value of e = (1 , . . . , 1) because we did
not want to distinguish the TCs with respect to the coverage. We defined three
different cost, vectors:

• In the first, c\{Tj) = 1 for j = (1 , . . . ,n). This cost can be used if we are
interested in only the number of the test cases; for example if their costs are
all equal.

• The second cost vector (02) is based on the timers contained by the test cases.
We estimated c2 using the sum of the default times of the timers in the jth

test case. This time can be an upper bound for the execution time, of Tj. The
exact value of c-i is as follows:

c2 = (6,3,33,3,3,8,4,5,3,9,6,35,3,13,2,4,34,6,6,2,34,5,3,5,2,5,
1,8,33,7,8,3,2,1,2,35,4,2,2,3,2,4,6,2, 2,2,33,33,31,6,1,2)

• The definition of the third cost vector (03) is based on the assumption that
the main time consuming steps of testing are the preparation and, in case of
fault, the search for its cause. That is why we added a constant value (100)
to every c-i{Tj) referring to this time, so C3 = Co + 100.'

To solve the integer (binary) programming problems with the described parameters,
we used the CPLEX program tool [5] .

4.1 Minimal costs
1. Linear model

This model is less interesting than the others so we examined only the c-2 cost
vector. The cost of the optimal test set for K = 1 , . . . , 27 is shown in Figure
2-a.

2. "All or nothing" model
We examined all the three cost vectors. The results of the optimization
problem (3) for K — 1 , . . . , 27 for the three cost functions are shown in Figure
2-b, Figure 3-a, Figure 3-b.
We can see in all cases that increasing the coverage bound, the cost of the
optimal test set does not increase linearly. This means that using our method
we can obtain better (shorter in time) test sets to execute, than we would

Test Suite Reduction in Conformance Testing 235

TtW eovarago bound (K) TM csvMaga bound (K)

(a) Linear model, c-2 cost vector (b) "All or nothing" model, c\ cost vec-
tor

Figure 2: Minimal costs in Linear model and "All or nothing" model

(a) "All or nothing" model, 02 cost vector (b) "All or nothing" model, C3 cost vector

Figure 3: Minimal costs in "All or nothing" model '

236 T. Csdndes. S. Dibuz and B. Kotnyek

!

(a) Minimal cost in "One is enough'
model, C2 cost vector

» (b) Maximal coverage in Linear model, c-2
cost vector

Figure 4: Minimal cost in "One is enough" model and maximal coverage in Linear
model

get if we chose at random. In fact, our method gives us the best possible test
set within the constraints.

The figures also show that the biggest increase in the rate of the cost
in coverage is in the case when the cost vector c-2 is used (Figure 3-a).
This is because the variation of the cost values is the biggest in this
case. That means we can reduce cost with only a small loss of test
coverage. The cost jumps when, in order to reach the required test cov-
erage, it is necessary to execute those test cases which have bigger cost values.

Where the variation of the cost vector is less, as in case C3 and espe-
cially in ci, the graph is smoother. This is quite logical as the execution of
a given test case does not increase the total cost significantly regardless of
which test case we select.

3. "One is enough" model
Figure 4-a shows the optimal cost in the " One is enough" model using cost
vector C2

4.2 Maximal coverages
1. Linear model When we are looking for a maximal coverage test set we

have an upper bound for the cost (L). Different cost vectors have different
maximal upper bounds (Lm a x =52, 477 or 5677). We present only one graph
for this model, Figure 4-b, which shows the results using cost vector C2 and

Test Suite Reduction in Conformance Testing 237

(a) "All or nothing" model, C2 cost vector (b) "One is enough" model C2 cost vector

Figure 5: Maximal coverage in "All or nothing" model and "One is enough" model

2. "All or nothing" model
Figure 5-a shows the result of the maximal coverage problem for "All or
nothing" model using the cost vector c-2-

3. "One is enough" model
The results of the maximal coverage problem for the " One is enough" model
using cost vector c-i are shown in Figure 5-b. We can observe that the graph
reaches the highest cost value at L = 160, so in this model only the third of
the total cost is enough for the whole coverage.

4.3 Conclusions
The reduction of the time or effort put into conformance testing while keeping the
test coverage under control is very important for those who perform conformance
testing. If the time of executing conformance testing is limited, then we have to
select the more efficient test cases from the whole test suite in order to make testing
possible within a shorter period of time.

Our method is based on selecting test cases from the ATS of a protocol, when
we can select what portion of the test coverage we are willing to devote to shorten
the time of test execution. To achieve minimal testing time for a given lower
bound of coverage the method determines which test cases have to be selected for
execution. The method is protocol independent, so it can be used in the testing of
any protocol. In the ATS of some protocols, however, the incidence matrix looks
different. If there is a one-to-one relation between the test purposes and test cases,
then the method cannot give us usable results.

238 T. Csdndes. S. Dibuz and B. Kotnyek

Since the first step in the application of our method is the construction of the
incidence matrix, it determines if the method is well applicable to a given protocol.
For those protocols the incidence matrix is a diagonal one, we are working on other
approaches to be able to give selection criteria for the test cases based on the
coverage and the time constraints.

References
[1] X.290-X.296 OSI conformance testing methodology and framework for protocol

recommendations for ITU-T applications

[2] ETSI Draft prTBR4 Integrated Services Digital Network (ISDN); Attachment
requirements for terminal equipment to connect to an ISDN using ISDN primary
rate access

[3] S. T. Vuong, Jinsong Zhu, Jadranka Alilovic-Curgus, "Sensitivity analysis of
the metric based test selection", IFIP TC6 10th Int. Workshop on Testing of
Communication Systems, 1997.

[4] K. Tarnay, "Protocol Specification and Testing", Akadémiai Kiadó, 1991.

[5] CPLEX, Version 3.0, 1989-1994, CPLEX Optimization, Inc.

[6] T. Csöndes, B. Kotnyek, "A Mathematical Programming Method in Test Se-
lection", EUROMICRO'97 Short Contribution Session, 1997.

[7] T. Csöndes, S. Dibuz, B. Kotnyek, "Conformance Testing of Communication
Protocols", IFIP TC6 Int. Symposium on Automation and Informatics'97, 1997.

Acta Cybernetica 14 (1999) 239-250.

A Family of Fast Constant-Space Substring Search
Algorithms

Harri Hakonen* and Timo Raita^

Abstract

This paper describes a new strategy for searching a substring in a given
text. The method is based on the well-known Boyer-Moore algorithm com-
plementing it with a technique called q-slicing, a form of probabilistic 5-gram
matching. As a result, we get a family of highly parametric algorithms apt for
adaptation to the special properties inherent to the source which generates
the input strings. The search procedure is independent of the alphabet size
and appropriate for efficient and practical on-line implementations. Simula-
tion results show that they are comparable to the fastest currently known
Boyer-Moore variants.

1 Introduction

In the string scorching (pattern matching) problem our task is to determine all posi-
tions in a given text, text[l..n], where the pattern, pat[\..m], occurs. This problem
has been studied extensively (see e.g. [1] for a good survey) and several efficient
and elegant solutions have been devised. The most efficient implementations, from
the practical point of view, are based on the seminal ideas of Boyer and Moore [6].
The original Boyer-Moore algorithm (BM for short) aligns the pattern with a text
position j, compares the corresponding symbols of pat[l..m] and t,ext[j — m + l..j]
starting from the last symbol of the pattern and advancing to the left. If a mis-
match (if any) is found, the pattern is shifted forward with respect to the text and
the process is repeated:

"Turku Centre for Computer Science (TUCS), e-mail: hat®cs .utu . f i
^Department of Computer Science, University of Turku, Lemminkäisenkatu 14 A, SF-20520

Turku, Finland, e-mail: r a i t a 0 c s . u t u . f i . The author acknowledges support by the Academy of
Finland under grant No. 865431

239

240 Harri Heikonen and Timo Raita

Boyer-Moore search(pat[l..m], text[l..n])
Preprocess pattern,
while all text is not scanned do

(i) Perform skip loop.
if witness for a match is found then

(ii) Perform match loop.
if pattern is found then

Report match,
endif

endif
(iii) Shift pattern,

endwhile

The search procedure consists of three distinct phases: (i) fast skipping over non-
matching text regions, (ii) match checking when some evidence of a pattern occur-
rence has been found and (iii) shift to the next position. All these steps have been
subject of refinements [7, 8, 10, 13, 15, 16]. A detailed analysis of the various BM
substep combinations can be found in [10].

The power of the BM algorithm is largely based on a sophisticated strategy to move
the pattern forward relative to the text in steps (i) and (iii). This is accomplished by
forming two tables in 0(m) time prior to the actual search. The match heuristic
table determines how much the pattern must be moved in order to realign the
matched region of the text, text[j — k..j], with an identical pattern substring also
in the new position. For this, we need to determine the rightmost substring pat\p —
k..p], p < m, which is identical to the matched suffix pat[m — k..m] (not overlooking
the special case 0 < p < k). In fact, when we find that pat[m — k — 1] ^ text[j —
k — 1], we know that in order to succeed at the next probe position, the condition
pat\p — k — 1] = text[j — k — 1] must also hold. Because of the large amount
of space and time overhead, however, the match heuristic is usually not made so
fine-grained. As a reasonable and quick approximation, it is only required that
pat\p — k — 1] ^ pat[m — k — 1]. The occurrence heuristic table expresses the
position of the rightmost occurrence of each symbol of the input alphabet £ in the
pattern. Thus, the occurrence heuristic determines, how much we can shift the
pattern in order to align the mismatched text symbol with an identical pattern
symbol. The length of the shift in step (iii) is then given by the maximum of the
match and the occurrence heuristic values.

Let us consider the role and importance of the two heuristics. The well-known
and widely used BM variant devised by Horspool [8] (BMH) discards the match
heuristic due to its small significance with non-periodic patterns. This results in
0(mn) worst case complexity. However, on the average, the complexity is only
0(n/m), the same as that for the original BM method, implying that the BMH
method is very fast in practice. Evidently, BMH makes shorter shifts (on the
average) than BM because it uses less information. This behaviour is emphasized
when cr, the size of the input alphabet, is small. On the other hand, the role of the

A Family of Fast Constant-Space Substring Search Algorithms 241

match heuristic becomes insignificant when a becomes large (this is studied in more
detail in [14]). As suggested in [13], we should try to compensate the omission of
the match heuristic in other ways during the search. One alternative is to extend
the occurrence heuristic for bigrams, incorporating thus both heuristics (at least
partly) into one. This idea was introduced in [16] and was shown to give improved
running times, especially for small input alphabets. Moreover, if we follow the idea
of BMH and choose always (independently of the position where the mismatch
occurred during the right to left scan) the bigram composed of the text symbols
aligning with pat[m — 1] and pat\m], we obtain a very close approximation to the
match heuristic. In the special case, where the mismatch occurs at pat[m — 2],
they are used identically. Thus, if we can generalize the approach (as suggested
in [2, 3, 12]) and use g-grams (q > 2) of arbitrary length, we obtain a heuristic which
is a hybrid of the two original ones. However, the disadvantage of the approach
is that both the preprocessing time and the space demand increase rapidly, being-
proportional to aq . In Section 2 we show how this can be avoided by retrieving
only the most important information scattered around the current text position
and storing it into a compact unit. After this, we give an intuitive analysis of the
selection strategy which maximizes the length of the shift. Simulation results of the
new search method are also given in Section 3. Concluding remarks are presented
in Section 4.

/

2 The g-slicing method

During the search, the pattern pat[l..m] is always aligned with a substring text[j —
m + l..j], where j is the current text position (m < j < n). Thus, when we
say that the current position is increased, it means that the pattern, which is
considered to be positioned above the text, is shifted forward relative to the text.
The information, on the basis of which the shift is made, is typically gathered from
the text region text[j — m + 2..j}\ the symbol text[j — m + 1] does not contribute
any information, because the length of the shift is always at least one. To increase
the average shift length, the symbol text[j + 1] can also be used [15]. In the sequel,
the text symbols which are used as the basis for the shift are defined by a template
t = (t i , . . . ,tQ) containing a strictly increasing sequence of integers tk- Each tk is
an offset from the current text position j. Thus, the symbol text[j + tk] aligns with
the pattern symbol pat[m + tk], iff —m + 1 < tjt < 0. Otherwise (1 < tk < n — j),
the text symbol does not reside 'under' the pattern. Clearly, the elements of the
template can have a chance to push the pattern forward only, if the condition

— tk < m (k = 1 , . . . ,q — 1) holds. Figure 1(a) presents an example of a
template giving four offsets.

To give some insight into the efficiency of some commonly used templates, as
well as some alternative choices, the following table summarizes the average shift
lengths when a pattern of length 13 was searched for in an English book text (see

242 Harri Heikonen and Timo Raita

table on page 247 for more details of this input text).

template t (0) (-1,0) (0,1) (0,2)
average shift 9.65 12.53 13.44 13.72

template r (0,3) (-2,-1,0) (-1,0,1) (0,1,2)
average shift 13.97 12.83 13.81 14.54

The text sampling processes defined by templates (0) and (—1,0) are used in the
Horspool [8] and Zhu-Takaoka [16] algorithms, respectively. Also, (0,1) can be
seen as a generalization of Sunday's idea to exploit text[j + 1] in shifting [15]. The
general tendency is clear: longer templates yield longer shifts. However, a carefully
selected sampling strategy compensates short templates, as can be seen e.g. from
the figures for (0,3) and (- 2 , - 1 , 0) .

(a) template r = (- 2 , 0,1, 4)

pgppT
_ l ü l l Hi

• • • •
(b) selective mappings /j, = {bi(text[j — 2]),
b2{text\j]),b3{text\j + 1]), bi{text[j + 4]))

Figure 1: A structure of a 4-slice defined by T:/J, = (—2:b\, 0:b2,1 :b3, 4:&})

In order to avoid the excessive time and space requirements during preprocessing
and still achieve large shifts, we combine two ideas. First, the template is kept fixed
during the search. The symbols indicated by the template are picked from the text
at each probe position j. Second, we reduce the size of the alphabet at the cost of
losing some accuracy in symbol comparison. The idea is to partition the symbols
of the input alphabet E into equivalence classes and tag each class uniquely with
a symbol of a reduced alphabet £ ' for which a' < a. Now, instead of comparing
individual symbols, we compare tags of the classes. Thus, the approach is related to
the 'shift-or' algorithm of Baeza-Yates and Gonnet [4], which can be used to search
for substrings composed of metacharacters representing a set of symbols from the
original alphabet. However, in the new scheme the tag is formed by mapping a
symbol according to its position in the sampling template. In other words, the tag
of text[j + t-k] is the value of the corresponding function bk : E »-> E' (1 < k < q).

A Family of Fast Constant-Space Substring Search Algorithms 243

The collection of these selective mappings is defined by the vector /t = (bi,... , bq).
The combination of r and /1 is denoted by r : ¡i = (i j : b\,... ,tq\bq). Figure 1(b)
shows an example of fi for the template r = (—2,0,1,4). Concatenation of the
(reduced) symbols defined by the current text position j and the pair r : /1 is called
a q-slice:

q
q-s\iceT:ll(text,j) = Concat bi(text[j + £,]) 1

The g-slice scheme can be regarded as a hash function defined by r giving the po-
sitions and /i representing the amount of information to be gathered. The equality
of two slices is a necessary, but not a sufficient condition for the equality of the
corresponding patterns [11]. The g-slice scheme introduces a general information
sampling concept, and it has some interesting properties intrinsic to the string-
searching problem:

• The loss of information caused by the selective mappings is minimized, when
the symbols of E' are uniformly distributed into the mapped sequences. Inter-
estingly, by taking the three least significant bits from the (ASCII encoded)
symbol representation has a nice property for natural languages: the most fre-
quent symbols of the skew distribution fall into different equivalence classes.
Because of this, and the fact that support for this type of operation can be
found in most machine architectures, we restrict the form of the bk functions
(A; = 1 , . . . , q) in the sequel as follows:

bk{a) = a AND 0 . . . O i l . . . 1, a G S.

The number of one-bits in the mask, Isbk, determines how many least signifi-
cant bits (LSBs) of the original symbol a we want to select. This specialized
//, is called an LSB-mask. In what follows, each b^ function is denoted by the
corresponding integer Isb -̂ Naturally, other kinds of mappings are possible
also, but they are not studied in this paper.

• Because the value of the hash function realized by the g-slice scheme is a
concatenation of the mapped values, the function does not scramble the bits
of the constituent symbols. Since important order information is preserved,
it could be taken advantage of in the implementation of the search procedure:
for each shift value calculated, we check whether the suffix of the previous
hash value overlaps the prefix of the next one and in such a case, leads to a
conflict. With a high probability this will happen, and we can increase the
length of the shift. This improvement resembles the search strategy of Galil [7]
and also the principles used in the construction of the BM match heuristic
(cf. the description given in the Introduction). Although the proposed hash
function is very simple, false matches occur rarely.

244 Harri Heikonen and Timo Raita

Collision probability of (/-slice. Let B = log2 o and fix B' = Isb^ for all
k = 1 , . . . ,q. Assuming that the text and the pattern have been generated
by a uniform symbol distribution, the probability of a (/-slice hash address
collision is

2q(B-B') _ x
P^-slice matches | pattern mismatches) = — — „ — - — .

Proof. This follows from the probabilities P((/-slice matches) = 2 , ,B and
P(pattern mismatches | (/-slice matches) = 1 - 2~q(-B~B \ •

A simple but good approximation for this formula is the (/-slice match-
ing probability 2~qB'. For example, if q = 2. B = 8 and B' = 3, then
P(collision) « 0.0156.

• The 7-slice can be used efficiently for searching when its length, lsb\ + .. .+lsbq,
is conveniently chosen to fill a machine-dependent unit, e.g. a byte or a word,
and the sampling strategy is supported by the architecture. Unfortunately,
the latter is often true only for the trivial case q = 1. Therefore, this pa-
rameter is usually chosen to be small and a balanced intertwining of r and /x
becomes crucial. This is discussed in more detail in section 3.

The actual search procedure starts by preprocessing the pattern as follows. In the
description below, we use the notation »r| »,.+1 |... | »s (1 < r < s < q), when we
want to refer to a part of a g-slice. Also, the set of all possible bit combinations
of length Isbk for the fc'th component is denoted by *k- For simplicity, we shall
assume that there exists an index i for which — m + 2 < ti < 1. Without this
restriction, the algorithm would contain unnecessary details obscuring the basic
idea; these special cases can be easily incorporated into the scheme by analysing
them carefully (left as an easy exercise to the reader).

Define a proper template t (of length q) and LSB-mask /¿.
shiftLength[*i| *2 |... |*9] := m + tq

I I Each of the lsbi table values is initialized to the maximal shift,
for c := m + tq — 1 downto 1 do

Find all ifc values in range —m + 1 + c..m + c.
/I These are characterized by indices r and s for which tT < t^ < ts.
/I Each tk aligns with pat[tk — (m + tq — c)] after a shift of
/I length c. Thus, we call these offsets bound (template)
/I positions. The others (i.e. t\,... , i r_ 1 and i s + i , . . . , tq)'
/I are free positions.

Determine the unique part of the q-slice *r| •,-+! |... |»s corresponding
to the bound positions.

shiftLength[*! |... | * r_i | |... | *s | * s + 1 |... |*,] := c

A Family of Fast Constant-Space Substring Search Algorithms 245

/ / Make lsb< updates.
endfor

After preprocessing, the search is performed by mapping the text symbols to the
reduced alphabet on-the-fly using the g-sliceT:M(iexi, j). The slice contains infor-
mation which is scattered into a large region near the current context. This gives
a basis to increase the average length of a shift using only a small amount of com-
parisons. A minor drawback of the approach is, that when we encounter a (/-slice
match, we must confirm that an identical symbol pattern has been found.

Example. Let us assume that the symbols are ASCII encoded and that the
pattern is pai[1..14] = abracadabracab. The two least significant bits of the
symbols 'a', '6', V , 'd' and V are '01', '10', '11', '00' and '10', respectively. The
template (—1,0,1) and the LSB-mask (2,1,1) generate 16 different (/-slices and
their corrsponding shift lengths:

g-slice 00|0|0 00|0|1 00|1|0 00|1|1 01|0|0 01|0|1 01|1|0 01|1|1
shift 15 14 6 14 5 7 13 2

g-slice 10|0|0 10|0|1 10|1|0 10|1|1 11|0|0 11|0|1 11|1|0 11|1|1
shift 15 4 13 3 15 14 1 14

For example, the shift value for the g-slice 10|0|1 is 4 because pa£[10..12] = rac is
the rightmost pattern region that matches it. Obviously, the shift values are always
in the range l..rn + tq. Assuming that the pattern and text are aligned as in (a):

pat ... a c ab
text ... a c a d b a r b a c ...

(a)

pat ... adabracab
text ... acadbarbac

(b)

we find that g-slice 01|0|0 obtained from the text symbols a, d, b tells us to shift the
pattern 5 positions forward (as shown in (b)) in order to align abr with adb. No
pattern occurrence is found here either, and the template symbols b, a, c generate
the ç-slice 10|1|1 yielding a new shift of length 3.

3 Experiments

Expectation of the shift length. The basic structure of the BM algorithm,
given in the introduction, shows that before the pattern shift is made in step (iii), we
have gathered a lot of information about the symbols near the current text position.

246 Harri Heikonen and Timo Raita

In this experimental analysis, however, we assume that no such information is
available. To obtain a realiable comparative analysis and at the same time keep
the various parameter combinations practically feasible, we restrict ourselves to a
2-slice of type r : /x = (0 : i, (D + 1) : u). In other words, the pattern is shifted
according to the ¿-bit tag of text[j] and u-bit tag of text[j + D + 1]. The i bits are
extracted from the text symbol which resides under the €ast pattern symbol. This
information produces an 'initial shift' for the pattern. The (D + 1): u component
gives an 'additional push', since it probes further information from an -upcoming
text symbol at the distance D from the current text position. This special algorithm
family is denoted by I <3 D o u, where <•••[> symbolizes the distance between the
two units from which the bits are extracted.

Let us study the expectation of the shift lengths for the I < D t> u algorithm
when m = 13; £, u = 0 , . . . , 8 and D = 0,1, m/2. To analyze the behaviour of
the expectation for natural languages, a simulation over an English book text (see
table on page 247) was accomplished. The search was performed for 30 randomly-
selected patterns from the text. Figure 2 shows the expectation of the shift length
based on this test arrangement.

(a) D = 0 (b) D = 1

(c) D = 6

Figure 2: The expectation of the shift length for I <1 D t> u algorithms

A Family of Fast Constant-Space Substring Search Algorithms 247

The expectation behaves differently for the following two cases.

Case D = 0. The average shift values are almost symmetrical wrt the diagonal
£ = u (Fig 2(a)). For the region d + u > 6, the expected shift length is always
> 12. This suggests that even a shift table of size 64 gives a good performance
for English text.

Case D > 1. The shape of the expectation function differs from the previous case:
whenever t — 0, we have now no information to use any other shift length
except 1. The influence of the parameter I is more significant than that
of u and only with parameter values I + u > 7 constrained by i > 4, we
reach the average shift of at least 12 positions (Fig 2(b,c)). Referring back
to figure 2(a), we can observe that if u = 0 and £ approaches the length of
the original encoding of text[j], we quite quickly reach the situation where
the shifts are larger than m/2. Comparing this with the results of Fig2(c),
we can see how much more the upcoming symbol is able push the pattern
forward once the initial push has been given. This also explains why we can
have an average shift length which is significantly larger than m, the length
of the pattern.

Running times. After extensive test runs, we suggest the schemes 4 <1 0 t> 2
and 3 < 0 t> 3 as general purpose substring searching algorithms. Evidently, if the
properties of the input strings differ significantly from those of English, some other
parameter values may result in better performance. Furthermore, the implemen-
tations of the fastest currently known search algorithms are extremely carefully
designed and the hardware architecture may have a large effect on their speed.

The 4 C 0 O 2 algorithm was tested and compared to the basic Horspool variant
BMH [8] and to the Hume-Sunday variant TBM [10]. To our knowledge, TBM is
one of the fastest, widely known algorithms for natural language text search. Tests
were run on a Sparc machine (architecture sun4m, kernel SunOS 5.6) and the C
programs were compiled with gcc (version 2.7.2.3) using the optimization switch
-03.

The input data consisted of the English book text and a dna text, having the
following properties.

text type source used file a length
English book Calgary Corpus [5] book2 96 611 kB
Dna sequence [10] dna.test 4 988 kB

The simulation was accomplished by selecting 30 patterns of length m randomly
in the text and then searching for all of their occurrences in the text. This was
repeated for m = 4 , . . . ,20. To make the comparison fair, the running times include

248 Harri Heikonen and Timo Raita

both searching and preprocessing phases. Figure 3 shows the results of this test
set.

(a) English text

(b) Dna sequence

Figure 3: The running times of BM, BMH, 4 <3 0 > 2 and 2 < 0 > 2 algorithms

The running times of the 4 <3 0 £> 2 algorithm are quite modest for natural languages
(see Fig 3(a)). This is due to the hardware architecture, which does not support
multicharacter sampling. However, the shape of the curve of the new scheme shows
that the information obtained from a (/-slice is at least as good as if we used more
local, but exact information. When the size of the input alphabet is decreased, the
'traditional' methods begin to lose their power because the machine-level size of a
symbol unit is typically kept fixed although the information content of a unit is

A Family of Fast Constant-Space Substring Search Algorithms 249

smaller. This deficiency is handled in the new method, as it gathers and utilizes data
of size q extracted from the neighbourhood of the current position.. The effect can
be seen strikingly in Fig. 3(b): the form of the curve for the g-slice method remains
identical to that for large alphabets whereas the smoothness of the performance for
the two other methods disappears. Moreover, it is not only the 0(n/m) behaviour
which is lost but BMH and TBM are also clearly much slower than the new method.
Since a = 4 for dna sequences, 2 <3 0 O 2 was chosen as the representative of the
new approach (Fig 3(b)). As a final remark, recall that the running times of the
t<i Dt> u algorithms are independent of E, unlike the BMH and TBM methods.

4 Summary

A new family of fast substring searching algorithms using g-slices is devised. The
concept of a g-slice combines the idea of using g-grams together with the mapping
of symbols to a reduced alphabet. This new strategy makes on-line text sampling
to skip fast over regions where the pattern cannot occur. In spite of the fact that
most machine architectures do not support the core operation of g-slicing on the
hardware level, the efficiency of the new method is comparable to the fastest known
substring search algorithms. Tests have shown that this approach typically results
in average shift lengths which are even larger than the size of the pattern. This
algorithm family is highly parametric and can thus easily be adapted to specific
application environments when necessary.

References

[1] Baeza-Yates, R.A.: Algorithms for String Searching: A Survey, SIGIR Forum,,
Spring/Summer 1989, Vol. 23, No. 3,4, pp. 34-58

[2] Baeza-Yates, R.A.: Improved String Searching, Softw. Pract. Exp., Vol. 19,
No. 3, March 1989, pp. 257-271

[3] Baeza-Yates, R., Krogh, F.T., Ziegler, B., Sibbald, P.R. & Sunday, D.M.:
Notes on a Very Fast Substring Search Algorithm, Comm. ACM, Vol. 35, No.
4, April 1992, pp. 132-137

[4] Baeza-Yates, R.A. & Gönnet, G.H.: A New Approach to Text Searching, Proc.
of the SIGIR Conference 1989, pp. 168-175

[5] Bell, T.C., Cleary, J.G. & Witten, I.H.: Text Compression, Prentice-Hall, 1990

[6] Boyer, R.S. & Moore, J.S.: A Fast String Searching Algorithm, Comm. ACM,
Vol. 20, No. 10, October 1977, pp. 762-772

250 Harri Hakonen and Tiino Raita

Galil, Z.: On Improving the Worst Case Running Time of the Boyer-Moore
String Matching Algorithm, Comm. of the ACM, Vol. 22, No. 9, September
1979, pp. 505-508

Horspool, R.N.: Practical Fast Searching in Strings, Softw. Pract. Exp., Vol.
10, 1980, pp. 501-506

Galil, Z. & Seiferas, J.: Time-Space-Optimal String Matching, ./. Comput.
System Sci., Vol. 26, 1983, pp. 280-294

Hume, A. & Sunday, D.M.: Fast String Searching, Softw. Pract. Exp., Vol. 21,
No. 11, November 1991, pp. 1221-1248

Karp, R.M. & Rabin, M.O.: Efficient Randomized Pattern-matching Algo-
rithms, IBM J. Res. Develop., Vol. 31, No. 2, March 1987, pp. 249-260

Knuth, D.E., Morris, J.H. & Pratt, V.R.: Fast Pattern Matching in Strings,
Siam J. Comput., Vol 6, No. 2, June 1977, pp. 323-350

Raita, T.: Tuning the Boyer-Moore-Horspool String Searching Algorithm,
Softw. Pract. Exp., Vol. 22, No. 10, October, 1992, pp. 879-884

Tarvainen, H.: A Theoretical Framework for the Substring Searching Algo-
rithms, M.Sc. Thesis (in Finnish), University of Turku, Finland, May 1995

Sunday, D.M.: A Very Fast Substring Search Algorithm, Comm. of the ACM,
Vol. 33, No. 8, August 1990, pp. 132-142

Zhu, R.F. & Takaoka, T.: On Improving the Average Case of the Boyer-Moore
String Matching Algorithm, J. of Inf. Proc., Vol. 10, No. 3, 1987, pp. 173-177

Acta Cybernetica 14 (1999) 251-261.

On a Merging Reduction of the Process Network
Synthesis Problem*

Cs. Holló t, z. Blázsik j Cs. Imreh t, Z. Kovács t

Abstract
Since the combinatorial version of the process network synthesis (PNS) prob-
lem is NP-complete, it is important to establish such methods which render
possible the reduction of the size of model. In this work, a new method called
merging reduction is introduced which is based on the merging of operating
units. The mergeable operating units are determined by an equivalence rela-
tion on the set of the operating units, and all of the operating units included in
an equivalence class are merged into one new operating unit. This reduction
has the following property: an optimal solution of the original problem can
be derived from an optimal solution of the reduced problem and conversely.
Presentation of this reduction technique is equipped with an empirical anal-
ysis on randomly generated problems which shows the measure of the size
decrease.

1 Preliminaries
The foundations of PNS and the background of the combinatorial model studied
here can be found in [3], [4], [5], and [9]. Therefore, we shall confine ourselves only
to the recall of the definitions here. The merging reduction is presented in Section
2, while Section 3 contains the results of our empirical analysis.

In the combinatorial approach, the structure of a process can be described by
the process graph (see [4]) defined as follows.

Let M be a finite nonempty set, the set of the materials. Furthermore, let
l / O C p' (M) x p'(M) with M n O = 0 where p'{M) denotes the set of all
nonempty subsets of M. The elements of 0 are called operating units and for an
operating unit (a,¡3) € O, a and /3 are called the input-set and output-set of the
operating unit, respectively. Pair (M, O) is defined to be a process graph or P-
graph in short. The set of vertices of this directed graph is JliUO, and the set

"This work has been supported by the Ministry of Culture and Education of Hungary, Grant
FKFP 0008/1999 and by the Hungarian National Foundation for Scientific Research. Grant T O
30074.

^Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
^Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanúk

tere 1, H-6720 Szeged, Hungary

251

252 Cs. Hollo. Z. Blazsik, Cs, Imreh. Z. Kova.cs

of arcs is A = Ai U A2 where Ai = { (A , y) : Y = (a,p) £ 0 and X G a } and
A-2 = { (y , A') : Y = (a, P) £ 0 and X £ /3}. If there exist vertices A 1 ; X-2, . . ,A '„ ,
such that (Ai . X2), (X-2,X3),.... (A„_ i , Xn) are arcs of process graph (M, O), then
the path determined by these arcs is denoted by [A'i, An].

Now. let o C O be arbitrary. Let us define the following functions on set o

matin(o) = |J a, rnatout{o) = \J P,
(«,¿3)60 (a,0)£o

and

mat(o) = mafin{o)[jmatout{o).

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph
of (M, 0) , if 77i C M and oCO.

Now, we can define the structural model of PNS for studying the problem from
structural point of view. For this reason, let M* be an arbitrarily fixed possibly
infinite set, the set of the available materials. By structural model of PNS, we mean
a triplet (P,'R, O) where P, R, O are finite sets, i ^ P C M* is the set of the desired
products, R, C M* is the set of the raw materials, and O C p'(M*) x p'(M') is the
set of the available operating units. It is assumed that PC\R, = % and M* PI O = 0,
furthermore, a and P are finite sets for every (a,P) = u G O.

Then, process graph (M , 0) , where M = u { a U P : (a,P) G O}, presents
the interconnections among the operating units of O. Furthermore, every feasible
process network, producing the given set P of products from the given set R of
raw materials using operating units from 0, corresponds to a subgraph of (M, O).
Examining the corresponding subgraphs of (M, O), therefore, we can determine the
feasible process networks. If we do not consider further constraints such as material
balance, then the subgraphs of (M, 0) which can be assigned to the feasible process
networks have common combinatorial properties. They are studied in [4] and their
description is given by the following definition.

Subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O) if the fol-
lowing conditions are satisfied:

(AI) P C in,
(A2) MX G m, X G R O' no (y, X) arc in the process graph (m, o),
(A3) VY0 6 o, 3 path [Y0,Yn] with Yn G P,

• (A4) VA G in, B(q, p) G O such that X £ a U p.

The set of solution-structures of M = (P , R , 0) will be denoted by S(P,R,0) or
S(M) .

Let us consider PNS problems in which each operating unit has a weight. We
are to find a feasible process network with the minimal weight where by weight of
a process network we mean the sum of the weights of the operating units belonging
to the process network under consideration. Each feasible process network in such

On Merging Reduction of the Process Network Synthesis Problem 253

a class of PNS problems is determined uniquely from the corresponding solution-
structure and vice versa. Thus, the problem can be formalized as follows:

PNS problem with weights

Let a structural model of PNS problem M = (P. R. O) be given. Moreover, let
iu be a positive real-valued function defined on O, the weight function. The basic
model is then

(1) min{J] w(u) : (m, o) e S(P, R,0)}.
uÇ.0

It is known (see [1],[2], and [10]) that this problem is NP-complete. In what follows,
for the sake of simplicity, we call the elements of S(M) feasible solutions and by
PNS problem we mean a PNS problem with weights.

It is a basic observation that if (m,o) and (m',o') are solution-structures of
M, then (m, o) U (m', o') is also a solution-structure óf M. This yields that 5 (M)
has a greatest element called maximal structure provided that S(M) ^ 0. Indeed,
the maximal structure is the union of all the solution-structures of M. Obviously,
the P-graph of. an arbitrary PNS problem can contain unnecessary operating units
and materials. On the basis of the maximal structure, we can disregard from
these unnecessary operating units and materials as follows. Let (M, Ö) denote
the P-graph of the maximal structure. Then, the P-graph of structural model
M =_(P,Rr\M, Ö) is (Ö, M), and since each solution-structure of M is a subgraph
of (M , 0) , it is a solution-structure of M, and conversely. Consequently, ¿"(M) =
S(M). On the other hand, M does not contain any unnecessary operating unit and
material. Structural model M is called reduced structural model of PNS.

To determine the reduced structural model for a PNS problem, an effective
procedure is presented in [6], [7]; it can decide if S(M) is empty; if S (M) is not
empty, the algorithm provides the corresponding maximal structure. Regarding the
significance of this reduction, an empirical analysis is presented in [11], where the
reduction procedure is executed on randomly generated PNS problems. It turned
out that the decrease of size is about 47%.

Now, we recall this algorithm. This procedure consists of two major parts. The
first part is intended to reduce the set of available operating units by eliminating
some or all inappropriate operating units. Even if one desired product cannot be
generated by any of the remaining operating units, no solution-structure exists for
the structural model of PNS under consideration; consequently, there is no maximal
structure. If it is still possible to have the maximal structure, then the second part
of the algorithm constructs a P-graph from a subset of the operating units left after
the first part, which is exactly the maximal structure. To elucidate this procedure,
let a structural model of PNS be given by M = (P, R.,0).

254 Cs. Hollo. Z. Blazsik, Cs, Imreh. Z. Kova.cs

Algorithm for Maximal Structure Generation

1. Reduction

Initialization

• Let O0 = 0 \ {(a,P) : (a, P) G 0 & /? n R ^ 0} and M0 = rnat(O0). If
P 2 Mo, then terminate since there is no maximal structure for M. If not,
then let T0 = {X : X G M0 \ R & ((a, P) G Oo —• A £ p)}. Finally, set
r := 0.

Iteration

• Step 1.1. If Tr = 0, then proceed to the initialization for building. If not, then
choose a material X from Tr and set Ox = {(¿*,/3) : {a,P) G Or & A G a}.
Let Or+1 = Or\ Ox; moreover,M r +i — mat(Or+i). If P % Mr+then
terminate since there is no maximal structure for M. If not, then construct set
T; by T; = {Y :Y E matoui{Ox) & F $ matout{Or+1) k Y G matin(Or+1)}.
Let Tr+i = (Tr (~l MT+1) UT;. Set r := r + 1 and proceed to the following
iteration for reduction.

2. Building
Initialization

• Let Wo = P, mo = 0 and OQ = 0; moreover, set s :— 0.

Iteration

• Step 2.1. If Ws = 0, then terminate. There exists at least one solution-
structure for M. In particular, (fh,os) is the maximal structure of M where
m = mat{os). If Ws ^ 0, then proceed to Step 2.2.

• Step 2.2. Choose one material from Ws; denote this material by A , and let
m s +1 = m s U { A } . Then, form set 0*x = { (a,P) : (a,p) G Or & A G P).
Also, let os+1 = osUO*x and Ws+l = (WsUmatin(0*x))\{RUms+1). Then,
set s := s -I-1, and proceed to the succeeding iteration for building.

2 Merging reduction
While the general reduction presented above renders possible to exclude the unnec-
essary operating units and materials from the investigation, the merging reduction
compresses the P-graph by merging some of its operating units. If it] = (a i ,Pi)
and u-2 = (a-2,/3-2), then one can merge these two operating units into a new op-
erating unit defined by u = (ai U a2 ,Pi U /52). It is worth noting that after the
merging of two or more operating units, we obtain a new structural model of PNS.

On Merging Reduction of the Process Network Synthesis Problem 255

If we want to use this new structural model for solving the original problem, then
a strong relationship must be established between the feasible solutions of the two
problems. To establish this relationship, it is a basic question that which operating
units are mergeable.

For this purpose, let M = (P, R, O) be a reduced structural model of PNS. Then,
operating units v,\, u-2 6 O are called mergeable if for any feasible solution, either
both of them are contained in it or both of them are excluded from it. Formally
stated, tii and u2 are mergeable if u\ G o implies u-2 G o, and conversely, for every
feasible solution (m,o) G S(M).

It can be readily seen that this relation is reflexive, symmetric, and transitive,
and thus, it is an equivalence relation on set O which is denoted by =. Let us define
structural model M / = = (P,R,0*) by

O* = {(U{a t : ut = {au Pt) G C(u)}, U{& : ut = (at,Pt) & C{u)}) : u G 0}

where C(u) denotes the equivalence class containing u. The visual meaning of M / =
can be given as follows. For each equivalence class, we merge all of the operating
units belonging to this class into a new operating unit. This new operating unit
will substitute the original ones in M / =. Obviously, M / = is a structural model of
PNS and its maximal structure is (M, O*). Now, we define a mapping ip of M UO
onto M U O*. For every X G M, let <p(X) = X, furthermore, for every us G C(u),
let ip(us) = (U{a/, : ut G C{u)},\J{pt '• ut G C(u)}). As it is usual, we shall use the
notation <p(o) = {<p{u) : u G o} and ip(m) = {<p(X) : X G m} for a subset o of O
and for a subset m of M, respectively. Using this extension, we can take the image
of an arbitrary P-graph (m, o) of (M, O) under >p as (ip(m), <p(o)). This mapping is
denoted also by (p.

The following statement establishes a strong relationship between the two sets
S(M) and S(M/ =) of feasible solutions.

Theorem 1. Mapping ip is a bijective m,appi,ng of S(M) onto S(M/ =).

Proof. Let (rn,o) G S'(M) be an arbitrary feasible solution. First, it is shown
that (ip(m), ip(o)) is a feasible solution of M / =. Obviously, (ip(m), <p(o)) is such
a P-graph which is a subgraph of (M,0*) . Consequently, it is enough to prove
that (ip(m),ip(o)) satisfies conditions (Al) through (A4). Condition (Al) is clearly
valid, since P Cm = ip(m). To prove condition (A2), let us observe that mapping
<p preserves the sources. Regarding condition (A3), let u G tp(o) be an arbitrary
operating unit. Then, there is at least one Uj G o such that <p(uj) = u. On the
other hand, (m,o) G 5 (M) , and thus, on the base of (A3), there is a path
in (m,,o) with Yn G P. Now taking the images under ip of the vertices of this path,
we obtain a path in (ip(m), <p(o)) where G P which implies the validity
of (A3). Finally, to prove (A4), let X G <p(m) be arbitrary. Then, X G m, and by
property (A4), there exists an operating unit Uj = (aj,fij) such that X £ aj U flr

Let <p(uj) = (q,/3). Then, by the definition of <p(v,j), X G aU/3, thereby validating
(A4).

256 Cs. Hollo. Z. Blazsik, Cs, Imreh. Z. Kova.cs

Now, it is proven that ip is an injective mapping. For this purpose, let (in, o) 7̂
(m',o') £ S (M) . If m 7̂ m', then <p{m) ^ <p(m'), and thus, the images are
different. Otherwise, o 7̂ d. To prove this case by contradiction, let us suppose
that (ip{m), ip{o)) = (<p(m'),ip(o')). Since o 7̂ o', without loss of generality, we may
assume that there exists a u' £ o' with u' o. Let <p(u') = u. Since (ip(rn), ip(o)) =
(ip(m'),(p(o')), there exists a ü £ o with <p(u) = u. Then, by the definition of ip,
ü = u1, and thus, by the definition of the equivalence relation, u' G o which is a
contradiction. Consequently, is a one-to-one mapping.

Finally, we show that <p is a mapping of S (M) onto S(M/ =) . For this purpose,
let us consider an arbitrary feasible solution denoted by (m*,o*) of S (M / =) . Let
m = to* and o = {Uj : Uj £ 0 & <p(uj) £ o*}. Obviously, ip(m, o) = (cp(m), <p(o)) =
(m*, o*). Therefore, we have to prove that (m, o) is a feasible solution of M . It can
be easily seen that (rn,o) is such a P-graph which is a subgraph of (M, O). Thus,
we have to prove that (to,o) satisfies conditions (Al) through (A4).

Since (m*,o*) 6 S(M/ =) , condition (Al) implies P C m*. On the other hand,
m = TO*, thereby indicating the validity of (/11) for (m,o) .

Since the ancestor of a source in (m*,o*) is a source in (to,o) under </?, and
(m*,o*) satisfies (A2), (to, o) satisfies condition (A2) as well.

To prove (A3) by contradiction, let us suppose that (A3) is not valid for (m, o).
Let us denote by oj the set of operating units in o from which there is no path in
(m,o) into some required product, i.e., let

0\ = {uj : Uj € o Sz no [uj, Y] path exists with Y £ P in (m, o) } .

By our assumption, 01 / 0. Now, let us consider P-graph (to',o') where o' = o\o i
and TO' = mat(o'). We shall prove that (m',o ') is a feasible solution of M .

Since (m*,o*) £ S(M/ =) , (Al) implies that for any A' £ P, there exists an
operating unit u producing A directly. Taking an ancestor of u, we obtain that
there is an operating unit denoted by u' in o producing A directly, and thus, u'
is not contained in o\. Consequently, u' £ d, thereby resulting in P C in', i.e.,
(to',o') satisfies condition (Al) .

To prove (A2), let A G m' be arbitrary. If A G R, then A is a source in
(m*,0*), and since the ancestor of X is a source in (m, o) under ip, X is a source of
(m,o) . But (m',d) C (m,o), and thus, X is a source in (m',o') . Conversely, let us
suppose that A is a source in (7??.', o'). Then, A is a source in (771, o). Indeed, in the
opposite case, X would be an output material of at least one operating unit from
0\. Let ttj denote such an operating unit. Then, there is a [ui, Y] path in (771,0)
since X is a source in (to', o'), and thus, A is an input material for some operating
unit in o'. This fact contradicts the definition of o\. Hence, A is a source in (m, o).
In this case, A is a source in (m*,o*), and since (A2) is valid for {m*,0*), X £ R.
Consequently, (m',d) satisfies (A2).

The validity of conditions (A3) and (A4) follows from the definitions of o\ and
(771', o'), and thus, we obtain that (m',o') is a feasible solution of M.

On Merging Reduction of the Process Network Synthesis Problem 257

Now, let us observe that <p(m', o') = (m*,o*) = ip{m., o), which implies (m', o') =
(ra, o) since ip is infective. Hence, oi = 0 which is a contradiction. Consequently,
(A3) is valid for (m,o).

In proceeding to prove the validity of condition (A4), let X e m be an arbitrary
material. Then X ' e m * , and since (m*,o*) satisfies (A4), there exists an operating
unit u = (a, P) e o* such that X e a U p. This implies that there exists an
operating unit Uj = ((Xj,Pj) € o such that <p{uj) = u a n d X e ctj U Pj. Indeed, in
the opposite case, we would have that I ^ q U j S which is a contradiction.

This completes the proof of Theorem 1.
Let us equip structural model M / = with the weight function w defined as

follows. For every u e O*, let iu(u) = Y^UleC{u') w(ut) where <p(u') = u. Since the
equivalent operating units have an identical image, function iu is well-defined. The
constructed new model is then

(2) m i n { ^ w (u) : (m,o) e S (M/ =) } .

Extend the weight functions for the feasible solutions in the following way. For
any (m,o) e S(M) and (m*,o*) g S(M/ =)",: let w(m,o)...= '• u e o}
and iu(m*,o*) — : u e }• Then, w(m,o) = iu((p(m,o)J is valid,- for all
feasible solutions (m,o) e 5(M). On the basis of this observation and Theorem'l,
the validity of the following statement is obvious.

Theorem 2. The image of an optimal solution of problem (1) under <p is an
optimal solution of problem (2), arid conversely, the image of an optimal solution
of problem (2) under (p-1 is an optimal solution of problem (1).

To execute the merging reduction on an instance, we need to determine the
equivalence relation introduced. For this reason, a further notation is introduced.
Let M = (P, R, O) be a reduced structural model of PNS with S(M) ^ 0. Further-
more, let Uj e O be arbitrary. Then, we can construct a new structural model of
PNS, M(tij) = (P, R, O \ {mj}). Let us denote the maximal structure of M(uj) by
(Mj,Oj) provided that it exists. If it does not exist, then let Mj = Oj = 0. Then,
we have the following statement.

Theorem 3. For every Ui,Uj e O, Ui = Uj if and only if Ui e O \ Oj and
v,j eO\Oi are simultaneously valid.

Proof. Let us suppose that Uj e 0\ Oj and Uj e 0\0i for some Ui Uj 6 0.
Let us consider an arbitrary feasible solution (m,o). We have to distinguish three
cases.

Case 1. (m,o) does not contain Uj. Then, (m,o) is a subset of (Mi,Oi), and
thus, by our assumption, (m,o) does not contain iij.

Case 2. (TO, o) does not contain Uj. In this case, (m,o) is a subset of (M. ; ,07),
and hence, by our assumption, (m,o) does not contain Uj.

Case 3. (m,o) contains both u, and Uj.

258 Cs. Hollo, Z. Blazsik. Cs, Imreli, Z. Kovacs

Since there is no further case, we have proved that ui = Uj.

In order to prove the necessity of the condition, let us suppose that Uj = uj
for some itj ^ Uj £ 0 . Let us consider the structural models M(itj) and M(uj) .
Then, (M j , O j) is the union of those feasible solutions which do not contain uj
provided that there exists such a feasible solution. Since itj = Uj none of these
feasible solutions contains Uj. Consequently, their union does not contain Ui, i.e.,
Ui £ 0\0j. We can obtain by a similar argument that Uj £ 0\0i. If every feasible
solution contains Uj, i.e., Oj = 0, then from ut = Uj, it follows that every feasible
solution contains ui as well, and thus Oj = 0, and the corresponding inclusions are
obviously valid.

From Theorem 3, we get immediately the following corollary.

Corollary. If Oj = O \ {'Uj}, then Uj is not mergeable with any other operating
unit.

Now, by Theorem 3 and the Maximal Structure Generation algorithm, we obtain
the following procedure to determine the required equivalence relation where it is
assumed that O = { « i , . . . , un } .

Procedure

Initialization

• Step 1. Set i := 1, k := 1, N = { l , . . . , n } .

• Step 2. Determine the maximal structure of M(ttj) by the maximal structure
generation algorithm. If Oj = O \ {«¿} , then let Vk = {«,;}, N — N \ {«'},
k = k + 1. Proceed to Step 3.

• Step 3. If i = n, then proceed to Step 4. Otherwise, let i = i +1, and proceed
to Step 2.

• Step 4- Terminate ii N = Otherwise, let i denote the smallest element of
N. Let J = {t: t £ N &cut £ O \ Oj}. Let V = 0, and proceed to Step 5.

• Step 5. If J = 0, then let N = N \ {¿}, Vk = V U { « , } , k = k + 1, and proceed
to Step 4. Otherwise, proceed to Step 6.

• Step 6. Choose an element j from J. Let J = J \ { j } . I f £ O \ 0 7 , t hen
\etV = VU {uj}, N = N \ { j } . Proceed to Step 5.

As a result of this procedure, we obtain the equivalence classes belonging to the
required equivalence relation as V\,..., .

Regarding the merging reduction one can raise the following questions.
(1) Does the merging reduction decrease the measure of practical problems or is

it only a theoretical aspect?

On Merging Reduction of the Process Network Synthesis Problem 259

(2) Is the decrease of the measure able to balance the higher complexity of the
operating units caused by the merging reduction with respect to the running times
of the known procedures for solving PNS problems?

Both questions were investigated empirically. The corresponding computational
experiences and their results are presented in the following section.

3 Empirical analysis
The first empirical analysis is devoted to the estimation of the decrease of measure.
More precisely, it was investigated that how large the decrease of the model size was
in general. For this reason, we considered 1000 randomly generated PNS problems
(for their generation cf. [11]), and for each problem, the maximal structure was
determined, then the merging reduction was performed. Figure 1 shows the average
numbers of the operating units in the initial problem, in the maximal structure, and
in the problem after the merging reduction. Figure 2 presents the same information
in percent.

Operating units after the merging

11,39
Î9,37 -134,21

I
12,32
—136,45

45,05

I
• in i t ia l • Max.Struct. • Merging rad.

Figure 1: Average number of operating units.

As the results of the empirical analysis show, the merging reduction results in
a decrease of 7% in general. It is obvious that the price of this decrease is that
the new problem will be more complex than the initial one, namely, the operating
units will have more input and output materials. Therefore, it is interesting to
study the behaviours of the available procedures for solving PNS problems on the
problems obtained by merging reduction. For this reason, we executed the follow-
ing empirical investigation. Three procedures, the Accelerated Branch-and-Bound
Algorithm, ABBA in short (see [8]), the Modified Accelerated Branch-and-Bound
Procedure, in short MABBA (cf. [9]), and a version of the Refined Modified Ac-
celerated Branch-and-Bound Procedure, in short RMABBA [11] were involved in

260 Cs. Hollo. Z. Blazsik, Cs, Imreh. Z. Kova.cs

Operating units after the merging

Operating

• Merging red. nMax Struct DMtlal

Figure 2: Average number of operating units in percent.

the empirical analysis. 1000 PNS problems with 100 materials were generated ran-
domly, and for each of them the maximal structure was determined and the merging
reduction was performed as well. Then, the two problems (problem belonging to
the maximal structure and problem obtained by the merging reduction) were solved
by the three procedures considered. Figure 3 shows the averages of the running
times in percent for the different procedures.

Running t imes after the m e r g i n g
Time <%)

100

60

40

20

0

• Maximal structure • M e r g e d s t ructure

Figure 3: Behaviours of the procedures.

86,59

67,76 68,86

-

1
A B B A M-ABBA M-ABBA

l in ,rat Mlxb. rat

Conclusions. The empirical analysis shows that the merging reduction is ap-
propriate to get further reduction of the model, moreover, the higher complexity of
the operating units not necessarily implies longer running time for the procedures

On Merging Reduction of the Process Network Synthesis Problem 261

considered. The smaller measure of the PNS problem resulted in a smaller running
time for the procedures investigated even if the complexity of the operating units
became higher.

References
[1] Blázsik, Z. and B. Imreh, A note 011 connection between PNS and set covering

problems, Acta Cybernetica 12 (1996), 309-312.

[2] Fülöp, J., B. Imreh, F. Friedler, On the reformulation of some classes of PNS
problems as set covering problems, Acta Cybernetica, 13 (1998), 329-397.

[3] Friedler, F., L. T. Fan, B. Imreh, Process Network Synthesis: Problem Defini-
tion, Networks 28 (1998), 119-124.

[4] Friedler, F., K. Tarján, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci. 47(8)
(1992), 1973-1988.

[5] Friedler, F., K. Tarján, Y.W. Huang, and L.T. Fan, Combinatorial Algorithms
for Process Synthesis, Computers chem. Engng. 16 (1992), S313-S320.

[6] Friedler, F., K. Tarján, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Polinomyal Algorithm for maximal structure
generation, Computer chem. Engng. 17 (1993), 924-942.

[7] Friedler, F., K. Tarján, Y. W. Huang, and L. T. Fan, Combinatorial Algorithms
for Process Synthesis, Computer chem. Engng. 16 (1992), 313-320.

[8] Friedler, F., J. B. Varga, E. Fehér, and L. T. Fan, Combinatorially Accelerated
Branch-a.nd-Bound Method for Solving the MIP Model of Process Network
Synthesis, Non convex Optimization and its Applications, Kluwer Academic
Publisher, Norwell, MA, U.S.A. (in press).

[9] Imreh, B., F. Friedler, L. T. Fan, An Algorithm for Improving the Bound-
ing Procedure in Solving Process Network Synthesis by a Branch-and-Bound
Method Developments in Global Optimization, editors: I. Bonze, T.
Csendes, R. Horst, P. M. Pardalos, Kluwer Academic Publisher, Dordrecht,
Boston, London, 1996, 301-348.

[10] Imreh, B., J. Fülöp, F. Friedler, On the Equivalence of the Set Covering and
Process Network Synthesis Problems, Networks, submitted for publication.

[11] Imreh, B., G. Magyar, Empirical Analysis of Some Procedures for Solving
Process Network Synthesis Problem, Journal of Computing and Information
Technology, to appear.

Acta Cybernetica 14 (1999) 263-283.

Construction of Recursive Algorithms for Polarity
Matrices Calculation in Polynomial Logical

Function Representation

Dragan Jankovic *

Abstract
There is no algorithm for the calculation of optimal fixed polarity expan-

sion. Therefore, the efficient calculation of polarity matrix consisting of all
fixed polarity expansion coefficients is very important task. We show that
polarity matrix can be generated as convolution of function f with rows of
relates transform matrix. The recursive properties of the convolution matrix
affect to properties of polarity matrix. In literature are known some recur-
sive algorithms for the calculation of polarity matrix of some expressions for
Multiple-valued (MV) functions [3,6]. We give a unique method to construct
recursive procedures for the polarity matrices calculation for any Kronecker
product based expression of MV functions. As a particular cases we derive

• two recursive algorithms for calculation of fixed polarity Reed-Muller-Fourier
expressions for four-valued functions.

1 Introduction
Compact representation of switching functions is not only the mater of notation
convenience, but highly relates to the analysis and synthesis of these functions.
Both analysis and synthesis procedures, as well as final realizations, can be greatly
simplified by choosing appropriate representations of switching functions.

In the case of Reed-Muller (RM) expressions, the problem to determine the
most compact representation reduces to the determination of optimal polarity for
switching variables. By choosing between the positive or negative literals for each
variable, but not both at the same time, the Fixed polarity R,M (FPRM) expressions
are defined [5].

In a FPRM, the number of products, or equivalently, the number of non-zero
coefficients may be considerably reduced by choosing different polarities for the
variables. The FPRM with the minimum number of products is taken as the

•Faculty of Electronic Engineering, University of Nis, Yugoslavia

263

264 Dragon .Jankovic

optimal FPRM for / . If there are two FPRMs with the same number of products,
the one with the smaller number of literals in the products is taken.

There is no method to determine apriori the polarities of variables for a given
function f . In practice, it is necessary to generate all the FPRMs and chose the
optimal one. That can be efficiently done by generating the polarity matrices PRM
whose rows are RM-coefficients for the given / with different polarities of variables.
The efficiency of generation of PRM is based upon its recursive structure originating
in the Kronecker product representation of the RM-transform matrix.

Polynomial representations of Multiple-valued (MV) functions are very interest-
ing with advent of multiple-valued circuit technology, in particular recent experi-
ence with current-mode circuits that are very attractive for implementation of MV
functions. Specially, the realization of the corresponding 4-valued circuit is very
efficient. The problem of compact representations is even harder in the case of MV
functions. Galois field (GF) expressions are a generalization of RM-expressions to
MV case [7]. Optimization of GF-expressions. can be studied and solved in a way
similar to that used for RM-expressions. In particular, efficient methods for genera-
tion of polarity matrices Pgf for GF-expréssions of ternary functions are reported
in [6], while the corresponding methods for quaternary functions are reported in
[3], and further elaborated in [1], [2], [4].

Reed-Muller-Fourier (RMF) expressions are an alternative extension of RM-
expressions to MV case [8]. It has been shown that RMF-expressions require on
the average smaller number of products than GF-expressions to represent a given
function / [9]. The optimization of RMF-expressions is performed in the same way
as in the GF-expressions by choosing different polarities for the variables. As in
the case of RM and GF-expressions, there are no mëthods to determine apriori
the polarity for the variables in a given / to get the RMF-expression with the
minimum number of products. For that reason, the efficient calculation of polarity
matrices is a very important task. An analyse of present recursive methods for
calculation of polarity matrix for some particular expressions shows that recursive
approaches are more efficient than others methods. Therefore, the construction of
recursive relations for polarity matrix calculation for various expressions are a very
interesting problem.

In this paper, we uniformly consider the coefficients in various expressions for
logic functions as spectral coefficients in particular spectral transforms. We show
that polarity matrix can be generated as convolution of / with columns of related
transform matrix. The recursive properties of the polarity matrix result from prop-
erties of the convolution matrix. We give a unique method to construct recursive
procedures for the polarity matrices calculation for any Kronecker product based
expression of MV functions.

This method involves existing methods as a particular cases and permits various
generalizations. For illustration, we derive two recursive algorithms for calculation
of fixed polarity Reed-Muller-Fourier expressions for four-valued functions.

Recursive Algorithms for Polarity Matrices Calculation 265

2 Notations and Definitions
Definition 1 Let E(ij) be the set of integers modulo q. n-variable q-valued logical
function is mapping

f : E(g)" E(g).

Definition 2 Each n-variable q-valued logical function f can be represented in
polynomial form

/(Xi,...,Xn) = Co ffi C\Xn © C2X?n © . . . © Cg-iX^1 ffi CqXn-i

^n^n— 1 © ... © Cqn —lXnXn—i . . . X\.

The coefficient vector C, consisting from the coefficients Ci,i = 0 , . . . , q n — 1
can be calculated as direct transform of function / , given by its truth vector F =
[/ (0) , . . . , / (i n - l)] T i . e .

C = (c 0 , c i) . . . , c 9 »_ i) = T n F = ^ 0 T i ^ - F

.= (® [1 x? ... x f 1 -F , (1)

where with is denoted the inverse matrix and ® denotes Kronecker product. T „
is transform matrix.

The number of non-zero coefficients in vector C is usually used criteria of opti-
mality. Optimization can be made by using different polarities of variables.

Definition 3 i-th polarity of variable x in notation %x is defined as: %x= x(Bi,i =
0,..., q — 1, for q-valued functions.

If each literal Xi in expansion (1) have complemented or noncomplemented form
but not both this expansion is named fixed polarity expansion. For n-variable q-
valued function the number of different polarities is qn.

Theorem 1 For polarity k — (ki,..., kn) (< k >= ^¿Li kiqn~l), the coefficient
vector can be calculated as-[6]:

C<k> =T< f c > - F = j(g)T[fci) J F, (2)

where is the matrix Ti whose that columns are shifted for ki places in accord-
ing to the definition of operation ffi.

Example 1 Let f is two variable function on Galois field GF(3). The operations
• and ffi are multiplication modulo 3 and addition modulo 3 respectively. < k >
polarity expansion coefficient vector of f is given as:

C < k > = . p

266 Dragon .Jankovic

If < k >—< 7 > then c<7> is calculated as:

Tf1 =

T (D

0 0 0
0 1 1
0 2 1

0 0 1
2 1 0
2 2 2

T x =

T (2) =

1 0 0
0 2 1
2 2 2

0 1 0
1 0 2
2 2 2

„<7> _ T(2)) F \

0 1 0 " 0 0 1 "
1 0 2 € 2 1 0 •

2 2 2 2 2 2
0 0 0 0 0 1 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 2 2 2 0 0 0
0 0 1 0 0 0 0 0 2
2 1 0 0 0 0 1 2 0
2 2 2 0 0 0 1 1 1
0 0 2 0 0 2 0 0 2
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1

• F .

Lemma 1 The coefficient vector of polarity < p > can be calculated as

C < P > = T < p > F = - (g) ! ^ j • F = T n • F < p > = T n • F < P l ,P2 ,...,pn>

1
= • T „ • F.(a;i ®P2,x2 ©P2,- • • ,xn ®pn). (3)

Example 2 Let f is the two variable 3-valued function defined on GF(3) and
represented by truth vector F = (122010210). The vector c<7> can be calculated as

= T i ^ cg> T Y ' • F J

" 0 0 0 0 0 1 0 0 0 ' ' 1 " " 0 "
0 0 0 2 1 0 0 0 0 2 1
0 0 0 2 2 2 0 0 0 2 2
0 0 1 0 0 0 0 0 2 0 2

F T = 2 1 0 0 0 0 1 2 0 1 = 2
2 2 2 0 0 0 1 1 1 0 1
0 0 2 0 0 2 0 0 2 2 1
1 2 0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1 0 0

Recursive Algorithms for Polarity Matrices Calculation 267

„ < 7 > = T 2 F < 7 > _

1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2
2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1

atrix P of an n -variable
f(xi,x-2, • • •, xn) is a (qn x qn) matrix where every row matches a coefficient vector
in a different polarity < k >. i-th row corresponds to a coefficient vector in the
< i >-th polarity, i.e., c<l>.

Definition 5 The optimal polarity of junction f{x i,x2,...,xn) is defined as po-
larity kopt whose coefficient vector has the minimal number of nonzero elements.

Example 3 The polarity matrix of a two variable quaternary function f , given by
truth vector F = (0311132322321002) is given as

P =

0 3 1 3 1 1 2 ' 2 0 3 2 2 2 2 2 2 c<o>
3 2 2 1 0 3 0 2 1 1 0 2 0 0 0 2 c<i>
1 0 1 1 1 3 2 2 0 1 2 2 0 0 2 2 f . <2>

1 3 0 3 2 1. 0 2 3 3 0 2 0 2 0 2 c < 3 >

1 2 3 1 1 2 0 0 2 1 0 0 2 0 2 2 c < 4 >
3 3 2 3 3 2 0 0 1 1 0 0 2 2 0 2 c < 5 >

2 1 3 3 1 2 0 0 0 1 0 0 0 2 2 2 c < 6 >

3 2 0 1 3 2 0 0 3 1 0 0 2 0 0 2 c < 7 >

2 0 3 1 3 1 0 0 0 1 2 2 2 2 2 2 c < 8 >

2 1 2 3 2 1 0 0 3 3 0 2 0 0 0 2 C<°>

3 3 3 3 1 1 0 0 0 3 2 2 0 0 2 2 c < 1 0 >

2 0 0 1 0 1 0 0 1 1 0 2 0 2 0 2 C<11>
1 3 3 1 3 0 2 2 2 3 0 0 2 0 2 2 r d 2 >

0 0 2 3 3 2 0 2 3 3 0 0 2 2 0 2 c < 1 3 >

0 2 3 3 1 2 2 2 0 3 0 0 0 2 2 2 c < 1 4 >

2 3 0 1 3 0 0 2 1 3 0 0 2 0 0 2 c < 1 5 >

3 Convolution
Definition 6 Convolution of n-variable q-valued logic functions f and g is defined

<7n-i

/ * S O O = J2 f(x"> ' 0{x(Bs), s = 0 , 1 , - 1,
2 = 0

268 Dragan Jankovic

/ * . 0 (s i , - " , s n) =

x =

9-1,9-1,-,9-1)
f(xi> ' ' ' 'xn) • 9ÍX1 © S i , " • jZn © Sn),

x=(0,0,—,0)
n

(s i , S 2 , • • • , s „) ,
i= 1

n

(x ' i , X'2, , — ^ ^ X{ • (]
i=l

Operations © and - are defined on corresponding algebraic structure.

The convolution matrix is given as:

<7(0 ©0)
s(oei)

.9(1 © 0)
© 1)

< 7 ((9 n - l) © 0)
g((qn - 1) © 1)

• (4)
<7(0 © (g" - 1)) g(l © (qn - 1)) ••• g{{qn - 1) © (qn - 1))

Now, the convolution of / and g, in according to (4) can be write in form

/ * 9 = Gconv • f. (5)

Theorem 2 Convolution of k-t.h row in transform matrix tk, with function vector
F gives the vector of k-th coefficients in polarity matrix i.e. P* — tk* F.

The proof of theorem can be done from the structure of convolution matrix.
Proof:

Pn =

C (0)

C (l)

T„ • F<°>
T n • F (1)

Tn • F^"" 1 '

E j ' = 0 T » (° . i) F (j © o)

E , C Ô 1 t » (° . j) f (J © 1)

p o p i . . .] _

E U ' T n í d l , j) F (j © 0)
E C ' W - I . j W J ® !)

E^o1 - i, j)F(i © qn - i)

where

P* = [Pfc(0), Pfc(l), • • • ,Pfc(gn — 1)] , k = 0, 1.
9 n - l

PA(¿) = Y , Tn(fc , j)F(j© 2), ¿ = 0,- •.,qn- 1.
j=o

Recursive Algorithms for Polarity Matrices Calculation 269

It follows from equation (4)

Pfc = T^ * F.

Example 4 Tenth column from polarity matrix for function f from example 3 can
be calculated as convolution of tenth row in transform matrix and truth-vector F;

" 3 ' " 0 " 3 "
1 3 1
0 1 1
0 1
2 1 1
2 3 1
0 2 1
0
3

*
3
2 = A + B =

1
1

1 2 3
0 3 3
0 2 1
0 2 3
0 0 3
0 0 3
0 2 3

where

" 3 0 + 1 3 + 0 1 + 0 1 + 2 1 + 2 3 + 0 2 + 0 3
3 3 + 1 1 + 0 1 + 0 0 + 2 3 + 2 2 + 0 3 + 0 1
3 1 + 1 1 + 0 0 + 0 3 + 2 2 + 2 3 + 0 1 + 0 3
3 1 + 1 0 + 0 3 + 0 1 + 2 3 + 2 1 + 0 3 + 0 2
3 1 + 1 3 + 0 2 + 0 3 + 2 2 + 2 ,2 + 0 3 + 0 2
3 3 + 1 2 + 0 3 + 0 1 + 2 2 + 2 3 + 0 2 + 0 2
3 2 + 1 3 + 0 1 + 0 3 + 2 3 + 2 2 + 0 2 + 0 2
3 3 + 1 1 + 0 3 + 0 2 + 2 2 + 2 2 + 0 2 + 0 3
3 2 + 1 2 + 0 3 + 0 2 + 2 1 + 2 0 + 0 0 + 0 2
3 2 + 1 3 + 0 2 + 0 2 + 2 0 + 2 0 + 0 2 + 0 1
3 3 + 1 2 + 0 2 + 0 2 + 2 0 + 2 2 + 0 1 + 0 0
3 2 + 1 2 + 0 2 + 0 3 + 2 2 + 2 1 + 0 0 + 0 0
3 1 + 1 0 + 0 0 + 0 2 + 2 0 + 2 3 + 0 1 + 0 1
3 0 + 1 0 + 0 2 + 0 1 + 2 3 + 2 1 + 0 1 + 0 0
3 0 + 1 2 + 0 1 + 0 0 + 2 1 + 2 1 + 0 0 + 0 3
3 2 + 1 1 + 0 0 + 0 0 + 2 1 + 2 0 + 0 3 + 0 1

270 Dragon .Jankovic

3 2 + 1 2 + 0 3 + 0 2 + 0 1 + 0 0 + 0 0 + 0 2 "
3 2 + 1 3 + 0 2 + 0 2 + 0 0 + 0 0 + 0 2 + 0 1
3 3 + 1 2 + 0 2 + 0 2 + 0 0 + 0 2 + 0 1 + 0 0
3 2 + 1 2 + 0 2 + 0 3 + 0 2 + 0 1 + 0 0 + 0 0
3 1 + 1 0 + 0 0 + 0 2 + 0 1 + 0 0 + 0 3 + 0 1
3 0 + 1 0 + 0 2 + 0 1 + 0 0 + 0 3 + 0 1 + 0 0
3 0 + 1 2 + 0 1 + 0 0 + 0 0 + 0 1 + 0 1 + 0 3
3 •2 + 1 1 + 0 0 + 0 0 + 0 2 + 0 1 + 0 0 + 0 1
3 0 + 1 3 + 0 1 + 0 1 + 0 0 + 0 1 + 0 3 + 0 3
3 3 + 1 1 + 0 1 + 0 0 + 0 3 + 0 3 + 0 2 + 0 1
3 1 .+ 1 1 + 0 0 + 0 3 + 0 1 + 0 2 + 0 3 + 0 3
3 1 + 1 0 + 0 3 + 0 1 + 0 1 + 0 3 + 0 1 + 0 2
3 1 + 1 3 + 0 2 + 0 3 + 0 2 + 0 2 + 0 3 + 0 2
3 3 + 1 2 + 0 3 + 0 1 + 0 2 + 0 3 + 0 2 + 0 2
3 2 + 1 3 + 0 1 + 0 3 + 0 3 + 0 2 + 0 2 + 0 2
3 3 + 1 1 + 0 0 + 0 2 + 0 2 + 0 2 + 0 2 + 0 3 .

4 Calculation of the Polarity Matrix
The polarity matrix can be calculated directly with equation (2). The complexity of
this direct method is (<7n)3 i.e. practically unuseful for large q. For the calculation
of polarity matrix can be used the FFT-like method. The complexity of this method
is n(qn)2. In [3,6] is shown that the polarity matrices can be generated efficiently
by recursive relations. Proposed procedure is given only for GF(3) "recursion by
column" and "recursion by row" for GF(4). In this section, we give the unique
method for the generation of recursive relations for the calculation of polarity matrix
for arbitrary finite fields. Both "recursion by columns" and "recursion by rows"
are considered. Our method is generalization of methods proposed in [3] and [6].

4.1 Unique method for the generation of recursive relations
for the polarity matrix construction

If we have in mind that transform matrix is given in Kronecker product form, the
next theorem is obviously.

Theorem 3 Let T(n) is transformation matrix given as: T(n) = Tj where
the dimension of matrix Tj is qi * qi • Element from p row and r column C ' < i n
polarity matrix P is given as:

. ' « ¡ - l
C<P> _ p<Vl,P2, •••,P.V",Pn> _ ITI./ 1\ . r > < P l , P 2 , ••,1, -,Pn> • _ 1 ...
^ < r > — °<ri,r2,•••,)•;,•••,r„> — ¿_J ° < r i , r 2) —,0, — , r „ > ' 1 ~~ 1 ' ' "

1=0

If T j = T j , V i . j e { 1 , 2 , - - . , « } then

Recursive Algorithms for Polarity Matrices Calculation 271

r<<P> — n<V\ o < r > — o < r i

or in matrix form

,v 2,-
r2,-

;P n> E ^ - ' i ' C P2,
- ,r„> > i = 1,

1=0

P — Pq n X (7" (n) = [p^Hhj)}, p^iij)
9 - 1
y£T(j,i)-P

n-\i(ôi]o), j ^ o. (6)
1=0

This relation is recurrence by columns. ¿From recurrence relation (6) by first
columns where we start from the first column i.e. 0-column it can be derived
recurrence matrix relation started from any column fc. Derived recurrence matrix
relation we called "recurrence by k-th column". Recurrence by fc-th column can
be derived if we each element in fc-th column from (6) denote with one letter and
calculate relations. In this manner can be calculated "recurrence by fc-th row", too.

The formal method for construction recurrence matrix relation for polarity ma-
trix calculation may be presented through following steps:

1. The generation of q x q simbolic matrix B as B = [B2®-7] , 0 < i, j < q — 1.

2. The generation of q x q matrix Q = T - 1 • B.

3. If it wish the recurrence by fc-th column/row, the elements from fc-th col-
umn /row are substituted with one letter Pl, 0 < i < q — 1 . These substitu-
tions give equations system consisting of q equations.

4. Solving the generating equations system.

5. The modification of the matrix Q in according to the solutions of previous
equation system.

6. The substitution Q with Pn and P* with P^-i •
This method can be generalized to the case when matrices T, are different, e.i.

T n — Ti ^ T j if i / j. In this case, it is not possible to generate
polarity matrix by only one recurrence matrix equation. The polarity matrix can
be generated by means n recurrence matrix equations similar to the above matrix
equations. For each of n steps, we generate recurrence matrix relations based on
the matrix Tj. Namely, we run above method n.times, substituting Tj"1 with
T~2 , 1 < z < n . Obviously, dimensions of matrices B and Q are equal Çj x </j. This
will be illustrated in following example.

Example 5 Let T = Ti ® T2, Ti = 1 0
1 1 T f 1 =

1 0
1 1

T2 =

1 0 0 0
1 1 1 1
1 2 3 1
1 3 2 1

T i " =

1 0 0 0
0 1 3 2
0 1 2 3
1 1 1 1

272 Dragon .Jankovic

The recurrence matrix equations are:

pO pO , pi
1 n — 1 n — 1 T Tl — i

Pn-l Pn-l+Pn-1
r P„°_. PU + 3P*_i + 2 PL 1 P1 + 2 PL i + 3 PL i s -

P2 — PÎ-! PU + 3 PLi + 2P„°_i P2 1 1i — 1 + 2P,?_i + 3P°_i s Pfl - PL i + 3 Pn°_: + 2P,Î_, p3 1 Tl — 1 + 2Pn0_! + 3Pn-l s
. P„3-. + 3 PLi + 2 PLi pO n — 1 + 2PLi + 3 PL 1 s

where

S = P ° _ 1 + P ? _ 1 + P „ 2 _ 1 + P n 3 _ 1 .

Proposed above method we explain in next section for the case of polarity matrix
of Reed-Muller-Fourier expression of quaternary functions.

5 RMF-expressions for Quaternary Functions
To make the paper self-contained, we present in this section basic definitions for
RMF-expressions for quaternary functions. Then, we consider their optimization by
choosing different polarities for variables. It is assumed single polarity for a variable
in the expression. In that way the Fixed polarity RMF (FPRMF) expressions are
defined.

Let E(4) be the set of integers modulo 4 with the .addition and multiplication
modulo 4 shown in Table 1 and Table 2. •

Table 1: Addition modulo 4. Table 2: Multiplication modulo 4.

© 0 1 2 3 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

Define the exponentiation 4EXP and multiplication 4AND, denoted by * and
o , respectively, as in Table 3 and Table 4. Denote by J the space of ?i-variable
quaternary functions, i.e., / : E(4)'1 E(4).

Definition 7 The operator D(n) in J is defined, in the matrix notation, by a
(4n x 4") diagonal matrix given by D(n) = diag(3,1, • • •, 1).

Definition 8 RMF-expression of a function / £ J given by its truth-vector F =
[/(0), • • -, / (4 " x 4n)]T is given by [9]

Recursive Algorithms for Polarity Matrices Calculation 273

Table 3: Exponentiation 4EXP.

* 0 1 2 3
0 3 0 0 0
1 3 1 0 0
2 3 2 3 0
3 3 3 1 1

Table 4: Multiplication 4AND.

o 0 1 2 3
0 0 0 0 0
1 0 3 2 1
2 0 2 0 2
3 0 1 2 3

f(xir--,xn)=\B(n)\^[l Xi x? xfYJj-A, (7)

where A = [o(0),..., a(4n — 1)]T is the vector of RMF-coefficients determined by
the matrix relation

A = R(n) • F,

where

R - H = S ^ L i R i , R j =

1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3

In this relation, <g> denotes the Kronecker product and x*3, j £ {2,3} denotes
the j-th power of Xj with respect to 4EXP.

In (7), the addition and multiplication are performed modulo 4.

6 Fixed Polarity RMF-expressions
Similarly as for RM-expressions for switching functions, and GF-expressions for
MV functions, optimisation of RMF-expressions means reduction of the number
of products, i.e., the number of non-zero RMF-coefficients. As noted above, the
optimisation of RMF-expressions is possible if we use different polarities for the
variables. For a p-valued variable, we consider p — 1 complements defined by %x =
x © i, i e {1, • • • ,p — 1}. Thus, in a FPRMF-expression, a variable can appear as
the positive literal x^ or any of p — 1 negative literals %x , but not as few of them at
the same time. Therefore, there are pn different polarity FPRM-expressions for a.

1— 2 — 3—
given n-variable function / . For p = 4, the complements 3X6 X } CE . x , and thus,
there exist 4n different FPRMF-expressions for a quaternary function f . These

2-74 Dragan Jankovic

different possible FPRMF-expressions are determined through the polarity vector
H = (/ij, • • •, /in), where the value of hi € {0,1,2,3} determines polarity of the
literal chosen for the variable xt.

Definition 9 For / € J given by the truth-vector F ; the FPRMF-expression with,
the polarity vector H = (h.\, • • •, hn) is given by

/ (*! ,•••,*») = (d h (® [I v , v ; 2 v ; 3])) (8)

where R,'1' is derived from Rj by the cyclic shift of its columns for hi places. Thus.

R ? = R I =

R?

1 0 0 0 "
1 3 0 0
1 2 1 0
1 1 2 3
0 0 1 0 "
0 0 1 3
1 0 1 2
3 3 1 1

, R{ =

, R 3 =

0 0 0 1
0 0 1
1 0 1
3 3 1

0 1 0 0
0 1 3 0
0 1 2 1
3 1 1 3

Example G The zero-polarity FPR.MF-expression (H = [0,0]) for two-variable
function f , given by the truth vector F = [0311132322321002]r is

f = 3x2 8 X*2- © 3^2 © -T1 © X1 ° x2 © 2xl 0 X2~ © 2X] O X*/ © 3Xj" O X-2 0
(8)2xf o xf © 2xf o xf © 2xf © 2xj3 o x2 © 2xf ° x f © 2x*3 o xf.

Definition 10 For a given f £ J, the FPRMF-expression with the minimum num-
ber of non-zero coefficients is the optimal FPRM-expression for f.

Example 7 The optima,I polarity RMF-expression for function f in Example G
corresponds to the polarity vector H = [2,3], and is given by.

3 - * 3 2 - 3 - 2 - * 2 2 - * 2 3— 2 — *~
f - 2© X 2 © x] O X 2 © X í © X J O X 2 ©2 X j O X 2

©2 "x ! O X 2 ©2 ~x\ o 'x 2 .

7 RMF-polarity Matrix
Similarly as in RM and GF expressions, an efficient way to determine the optimal
polarity FPRMF-expression for a given function / is to calculate first the corre-
sponding polarity matrix. Therefore, in this section we define polarity matrix for
FPRMF-expressions for quaternary functions.

Recursive Algorithms for Polarity Matrices Calculation 275

Definition 11 The RMF polarity matrix PRMF for f 6 J is a (4ra x 4n) matrix
whose the i-th row consists of the coefficients in the F PRMF-expression for f , for
the polarity vector H = [ii, • • • ,in] where (ji, - • • ,in) is the quaternary representa-
tion of i.

Example 8 The RMF polarity matrix for function f in Example 6 is given by

RMF =

0 3 1 3 1 1 2 2 0 3 2 2 2 2 2 2
1 2 2 1 0 3 0 2 1 1 0 2 0 0 0 2
3 0 1 1 1 3 2 2 0 1 2 2 0 0 2 2
3 3 0 3 2 1 0 2 3 3 0 2 0 2 0 2
3 2 3 1 1 2 0 0 2 1 0 0 2 0 2 2
1 3 2 3 3 2 0 0 1 1 0 0 2 2 0 2
2 1 3 3 1 2 0 0 0 1 0 0 0 2 2 2
1 2 0 1 3 2 0 0 3 1 0 " 0 2 0 0 2
2 0 3 1 3 1 0 0 0 1 2 2 2 2 2 2
2 1 2 3 2 1 0 0 3 3 0 2 3 3 3 2
1 3 3 3 1 1 0 0 0 3 2 2 0 0 2 2
2 0 0 1 0 1 0 0 1 1 0 2 0 2 0 2
3 3 3 1 3 0 2 2 2 3 0 0 2 0 2 2
0 0 2 3 3 2 0 2 3 3 0 0 2 2 0 2
0 2 3 3 1 2 2 2 0 3 0 0 0 2 2 2
2 3 0 1 3 0 0 2 1 3 0 0 2 0 0 2

8 Calculation of RMF Polarity Matrix
Harking and Moraga in [6] gave a method for the calculation of polaxity matri-
ces PGF for GF-expressions of ternary functions. Their method starts from the
truth-vector F of / . Unlike to that, Falkowski and Rahardja proposed method for
calculation of polarity matrices PGF for GF-expressions of quaternary functions
starting from zero-polarity GF-expression coefficients vector [3]. In this section,
we give two recursive methods for FPRMF polarity matrix calculation. The first
method, named "recursion by columns", starts from the truth-vector F while the
other named "recursion by rows", starts from the zero-polarity RMF-coefficient
vector A.

Recursion by columns

Now, we will construct the recurrence matrix relation for RMF polarity matrix
calculation using proposed formal method. First, we define matrix B.

Definition 12 For an n-variable quaternary function f(x\,x-2, • • • ,xn) the (4" x
4") matrix B is defined as B = [JB1®-7], where © is the operation addition modulo
4•

2-276 Dragan Jankovic

B

' B° B1 B2 B3 '
B1 B2 B3 B°
B2 B3 B° B1

B3 B° Bl B2

Based on matrix B we generate the recursive square matrix Q,

Qn = (R f B)3 ' =

B°
B1

B2

B3

1
1
1
1

B° + 3 B1

B1 + 3 B2

B2 + 3 B3

B3 + 3 B°

B°
B1

B2

B3

B1

B2

B3

B°

B2

B3

B°
Bl

B3

B°
B1

B2

B° + 2 B1 + B2

B1 + 2 B2 + B3

B2 + 2B3 + B°
B3 + 2B° + B1

B° + B1 + 3 B2 + 3B3

B1 + B2 + W3 + 3 B°
B2 + B3 + 3B° + 3 B1

B3 +B° + W1 +3 B2

QL1 Q°n-i + w13

QL 1 QL 1 + 3 QLi w23 w2i

QL 1 QL 1 + 3 QLi w33 W34
QLi QL 1 + 3 QLi w43 W44

(9)

where

W13

T'̂ 23
"Ql
--QI

^33 = QVI + 2<5;
w 4 3 = Q3 . +

.1+2 Q 11— 1 ' ^n-1 '

.l + 2Q2n_1 + Ql_1,
.i+Q°n-i,
l + Qn-1>

n
i~ + 2Q°

= QLi + g1 _i + 3QÎU + 3Qn-],
^24 = Qi-! + g?,_! + 3Q 3 _ ! + 3 0 ° . ! ,
W34 = Ql , + 0?, , + 302 , + 30.1. ,.

- ! -r o v „ _
-1 -t- + 3Q3 _1 + 3Q°_

M/34 = + Q'Li + 3Q°_j + 3Ql_
w44 = Q3_i + Q°_i + 3 Q U + 3Q 2_

In this equation, Q ^ ^ {i = 0,1,2,3) is a square matrix, which is one order lower
than the matrix Qn.

Now we rewrite equation (9) in the usually used form [1,2,3,6].
Assume that the truth-vector F of / £ J is split into 4 subvectors of 4 n _ l

successive elements

F = {F[n_ l i 0] ,F[n_ l i l] ,F[n_ l i2] ,F[„_ l i3]} .

Then, based 011 (9) RMF polarity matrix PRMF for quaternary functions can be
calculated by recursive method named "recursion by columns", given in Theorem
4.

Theorem 4 The polarity matrix PRMF for f £ J can be calculated as

P RMF = Qn(F).

Qk, k = 1,... ,n is determined by the following recurrence matrix relations

Recursive Algorithms for Polarity Matrices Calculation 277

Qfc(F[M)

where

W13

W23
w 2 4

w 3 3

W34

w 4 3

w 4 4

Qjfc-i(F[fc_li0] Qk-i(F[k-i,o]+3F[k_ul]) W13 W14

Q*-i(F[fc-i,i] Q*-i(F[ft-i,i] +3F [Jfc_ l i2]) W23 w24

Q*-i(F[fc_i,2] Qfc-i(F [t_i i2]+3F [Jfc_ l i3]) ^33 W34
Q*-i (F [f c_ l i 3] Qfc-i(F [J t_ l i 3]+3F [f c_ l i 0]) W43 W44

Qfc-i(F[fc_lio] + 2F [f c_ l i l] + F[fe-i,2])j
Qfc-i(F[fc_i>0] + + 3F[fc_li2] + 3F[fc_ii3],
Qk- i (F{ k - 1 A] +2F[fc_i)2] +F[f t_i)3]),
Qfe-i(F[t_i,i] + F(fc_i,2] + 3F[fc_i;3] + 3F[fc_i)0],
Qfe-i(F[A;-i,2] + 2F[fc_1>3] + F[fc_lj0]),
Qfc-i(F[fc_i)2] + F [A;—1,3] + 3F[fc_li0] + 3F[fc_lil],
Qfc-i (F[jfc-i,3] + 2F[fc_li0] + F[Jfe_i,i]),
Qfe-i(F[ft-i,3] + F[fc_it0] + 3F[fc_1>1] + 3F[fc_i,2].

(10)

P r o o f : The proof follows from the Kronecker product structure of RMF transform
matrix R (n) . Thanks to this structure, the columns of P R M F can be expressed as
the convolution of f with the corresponding columns 0 / R (n) (Theorem 2). Then,
the proof follows from the convolution properties of RMF-expressions [8].

We define three auxiliary vectors

T [f c _
• 1 . 1] = 3 F [f c _ • 1 . 0]

• 1 . 2] = 2 F [f c _ •1,2]
T [f c _ •1,3] = 2 F f f c _ •1,3]

Then, (10) can be written as
Qfc-i(gn)

Q* (F [M)
Qfc-l(Ç2l)
Qfc-l(?3l)
Qfe-X (?4l)

Qfc-1 (<?12)
Qfc-1 fe)
Qfc-l(?32)
Qfc-1 fe)

Qfc-i(?i3)
Qfc-l(?23)
Qfc-i (933)
Qfc-1 fe)

Qfc-i(gi4)
Qfc-1 (924)
Qfc-1 (?34)
Qfc-1 (944)

Qfc-i (F[fc_i)0])
Qfc-1 (F[fc_i,i])
Qfc-1 (F[fc_i,2])
Qfc-1 (F[fc_ij3])

Qfc-1 (?22 +Ç13) W13 W14
Qfc-1 (932 + 923) ^ 2 3 W 2̂4

Qk-1 (942 + 933) W33 W34
q k - i (g« + T[Jb_i,ij) w4 3 w 4 4

(i i)

where

W-:
W 1 3 = Q f c _ i (923 + 914)

= Q f c _ i (921 + 941 + T[fc_

W33 = Qfc-i (911 + 93i + T[Jt_
W43 = Qfc-i (933 + 914)

1,2]) >
1,3]) ,

w% 4 = Q f c - 1 (923 + 933),

W 2 4 = Q f c - i (933 + 943),

W34 = Qfc-i (913 +943),
W44 = Qfc-1 (li3 + 923) •

2-278 Dragan Jankovic

The number of operations needed to calculate P RMF, is reduced significantly if we
first calculate these auxiliary vectors T, and then the vectors that are arguments
of the matrices Q t - i , as given in (11).

Recursion by rows

If we know the zero-polarity RMF-coefRcient vector A of / , then the RMF polarity
matrix PRMF, tan be calculated through the following "recursion by rows" method,
given in Theorem 5. This "recursion by rows" can be induced from (9) if we apply
the 3-th, 4-th and 5-th step in proposed method for generation recurrence relations
for polarity matrices calculation.

Let the vector A of zero-polarity RMF-coefficients is split into 4 subvectors of
4"""1 successive elements, i.e.,

A = {A[n_i>0], A^ - i^ j , A[n_ l i 2] , A[„_ l i 3] } .

Theorem 5 The RMF polarity matrix PRMF for f £ J can be calculated as

PRMF = Q» (A) ,

where the following recursive matrix relations are used for the calculation of
Qfc, k = l,...,n:

Q* (A [M)

• Q f c - i (i i i) . Q * - l (i l 2)
Q f t - i (< 2 i) Q f c - i (i 2 2)
Q f c - l (¿ 3 l) Q t - l (Í 3 2)
Q f c - l (¿ 4 l) Q f c - l (Í 4 2)

Q f c - i (í i s) Q t - i (í i 4)
Q f c - l (¿ 2 3) Q f c - l (Í 2 4)
Q k - Á h z) . Q f c - i (¿ 3 4)
Q f c - l (¿ 4 3) Q í t - l (¿ 4 4)

(12)

'where
t íi = A[fc-i,o]i
¿13 = A[fc_i)2],
t'21 = A[¿._li0] + 3A[fc_li]],
t'2'í = A[fc_1]2] +'3A[fc_ l i3],
¿31 = A [fe—1,03 + 2A [f e — 1 , 1 3 + A [fc-1,2],
Í33 = 3A[fc_ l i2j + 2A[fc_li3],
<41 = A[fc_i,0] + A[fc_Xil] + 3A[&_1>2]
+3A[fc_i i3],
Í43 = 3A[A._ii2] + 3A[f c_ i 3], ;

¿12 = A[j(. _!_!],
¿14 = A[fc_i]3],
¿22 ='A[f c_i]1] + 3A[fc_i2],
í24 = 2A[i._ii2] + A[fe_ii3],
¿32 = A[fc_1]i] + 2A[fc_ii3] + A[fc.
¿34 = 3A[fc_ii3],

1 , 3] .

¿42 - A[fc_iilj + 3A[fc_ii2] + 3A[fe_ l i3],
¿44 = 2 A [í . _ i i 2] -I- 3 A [¿ _ i i 3 j .

Qfc(A[0j]) = A[0 j] , j =0,1,2,3.

Similarly to the "recursion by columns" method, the number of additions and
multiplications can be reduced significantly if, instead (12), we use the following

279

Qfc-l(<7l4)
Qfc-l(<7-24)
Qfc-l (Ç34)
Qft-l(?44)

W\3 W14

W23 w 2 4

W 3 3 w 3 4

W 4 3 W 4 4

W13 = Ch-i (A [f c_ l i 2]) , Wu = Qk-! (A [f e_ l i3]) ,
W23 = Qfc-i (<713 + S[fc—1,3]) , W24 = Qfc-1 (<714 + Srft_i,2]) ,
W33 = Qfc-i (Q'23 + Q44), w34 = Qk-i (S[A._lj3j) ,
W43 = Qft_] (</13 + f/44) , = Qfc-l (S[fc_i,2] + S[fc-1,3]) ,

S[fc-•1.1] = 3A[fc_ •1.1]
S[fc-•1.2] = 2A[fc_ •1,2]

s [f c -•1.3] = 3A[fc_ 1,3]
Calculation of the auxiliary vectors S precedes calculation of arguments in Q^-i

like in the previous method.

9 Calculation Complexity
In this section, the efficiency of the presented methods for calculation of RMF
polarity matrix is estimated through the number of operations required to calculate
P R M F for a quaternary function. For comparison, we give the number of operations
in the corresponding methods for GF-expressions.

There are few methods to calculate the polarity matrix for GF-expressions of
quaternary functions. A direct calculation by definition of P g f for GF-expressions
of ?i-variable quaternary functions requires 11™ — 4" additions and § (l l n — 5")
multiplications [5]. In FFT-like algorithms proposed in [5], the number of addi-
tions and multiplications is 7n4n _ 1 and n4", respectively. The recursive algorithm
proposed by Falkowski and Rahardja in [3] requires An — |(13n — 4") additions
and Mn = |(3n - 1)4'1 multiplications.

By the analogy to GF-expressions, we considered few ways to calculate the RMF
polarity matrix. In a direct implementation of (6), the number of required additions
and multiplications is Ar(\ = 42"(4n - 1) and = 43n, respectively. The number
of additions and multiplications required for the polarity matrix calculation with
FFT-like algorithm is A%FT = ^ 1 6 n and M £ F T = 7-fl&\ respectively.

The computational cost of methods proposed in Section 8 is stated by the
following theorem.

Recursive Algorithms for Polarity Matrices Calculation

formula

Q'. (A i m)

where

QA-i(<7H)
Qfc - i f e i)
Qk-i(qzi)
Qfc-l (i4l)

Qfc-i (A [fc_i i0])
Qfc-i (911 + S[fc-i,i])

Qfc-i (<721 + qi3 + S[fc_i,i])
Qfc-i (511 + 942)

QA-I(9I2) Qjt-i(gi3)
Qfc-l fe) Qfc-l (<723)
Qfc-i(<732) Q f c - i f e)
Qfc-i (942) Qfc-i(ï43)

Qk-i (A [t ._ i a])
Qfc-l (?42 + 914)
Qfc-l (<724 + <712)

Qfc-l ((724 + S[fc_i,3])

280 Dragan Janlcovic

Table 5: The number of additions and multiplications in calculation of ~PRMF-

direct FFT-like
n An

Ad M2 An
AFFT

1 48 64 24 28
2 3840 4096 768 896
3 258048 262144 18432 21504
4 16711680 16777216 393216 458752
5 1072693248 1073741824 7864320 9175040
6 6.87027el0 6.8719477E10 150994944 176160768

recursion by columns recursion by rows
n A" Mc" An M;1

1 14 3 12 3
2 280 57 240 57
3 4704 903 4032 903
4 76160 13737 65280 13737
5 1222144 206823 1047552 206823
6 19568640 3105417 16773120 3105417

Theorem 6 The number of additions required to calculate B.MF polarity matrix
for an n-variable quaternary function, by using the recursive matrix relation (11)
(recursion by columns) is A" = j|(16n — 4"). If the relation (13) (recursion by
rows) is used, the number of additions is A™ = (16™ — 4"). In both cases, the same
number of M™ = ^-(15™ — 4") multiplications is required.

For illustration of this theorem, the Table 5 shows, the number of additions and
multiplications in calculation of the RMF-polarity matrix for different, values of the
number n of variables for different methods. Figures 1 and 2 show the number of
additions and the number of multiplications needed for the calculation of the RMF
polarity matrix with different methods.

It is obvious that methods proposed in Section 8 are more efficient than direct
computation or FFT-like methods for the calculation of the RMF polarity matrices.
It is important to note that the efficiency of our method increases with the number
of variables.

Recursive Algorithms for Polarity Matrices Calculation 281

10 Conclusion
We have proposed a method for construction of recursive procedures for the polarity
matrices calculation in polynomial logical function representation. As particular
cases the recursive methods proposed in [3] and [6] can be derived by our method.
Based on our method we have constructed two algorithms, denoted as "recursion
by rows" and "recursion by columns", for generation of polarity matrices for R.MF-
expressions of quaternary functions. To estimate their efficiency, we determined the
number of operations required in each of them, and provided a comparison to other
algorithms for generation of P R M F , as well as to the corresponding algorithms for
polarity matrix for GF-expressions.

We showed that the proposed algorithms are more efficient than both direct
calculation of P R M F and related FFT-like algorithms. An important feature is
that the efficiency of the proposed algorithms grows with the number of variables
n in the represented functions. For example, the ratio between the number of
additions in direct calculation of P R M F and "recursion by rows" method is 4".
The corresponding ratio for multiplications is greater than y 4 " .

Our method can be used for construction of recursive relations for polarity
matrices calculation for any Kronecker product based expression of MV functions.

1E+12

1E+06

1E+10

1E+08

10000
100

n
1 2 3 4 5 6

Figure 1: The number of additions needed for calculation P R M F -

2-282 Dragan Jankovic

l E + 1 1

ÍE+IO

1E+9

1E+08

1E+07

1E+06

1E+05

10000
1000

100
10

n
1

1 2 3 4 5 6

Figure 2: The number of multiplications needed for calculation PRMF-

References
[1] Falkowski, B.J., Rahardja, S., "Efficient algorithm for the generation of fixed po-

larity quaternary Reed-Muller expansions", Proc. 25-th Int. Symp. on Multiple-
Valued Logic, Bioomington, 1995, 158-163.

[2] Falkowski, B.J., Rahardja, S., "Efficient computation of quaternary fixed po-
larity Reed-Muller expansions", IEE Proc.-Comp.Digit.Tech., Vol.142, No. 5,
1995, 345-352.

[3] Falkowski, B.J., Rahardja, S., "Fast construction of polarity coefficient matrices
for fixed polarity quaternary Reed-Muller expansions" ,Proc. 5th International
Workshop on Spectral Techniques, Beijing, China, March 1994, 220-225.

[4] Falkowski, B.J., Rahardja, S., "Quasi-arithmetic expansions for quaternary
functions",Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller
Expansion in Circuit Design, Chiba, Japan, 1995, 265-272.

[5] Green, D.H., "Reed-Muller expansions with fixed and mixed polarities over
GF(4)", IEE Proc.- Comp.Digit.Tech., Vol.137, No. 5, Sept. 1990, 380-388.

[6] Harking, B., Moraga, C., "Efficient derivation of Reed-Muller expansions in
multiple-valued logic system", Proc. 22nd IEEE Int. Symp. on Multiple-Valued
Logic, Sendai, Japan, 1992, 436-441.

[7] Muzio, J.C., Wesselkamper, T.C., Multiple-valued Switching Theory, Adam
Hilger, Bristol, 1986.

Recursive Algorithms for Polarity Matrices Calculation 283

[8] Stankovic, R.S., Moraga, C., "Reed-Muller-Fourier representations of multiple-
valued functions over Galois fields of prime cardinality",Proc. IFIP WG 10.5
Workshop on Applications of the Reed-Muller Expansion in Circuit Design,
Hamburg, Germany, Sept. 1993, 115-124.

[9] Stankovic, R.S., Jankovic, D., Moraga, C.,"Reed-Muller-Fourier versus Galois
Field representations of Four- Valued Logic Functions" ,Proc. 3rd Workshop on
Applications of the Reed-Muller Expansion in Circuit Design, September 19-20,
1997. Oxford, UK, 269-278.

Acta Cybernetica 14 (1999) 285-302.

Object-Oriented Model for Partially Separable
Functions in Parameter Estimation*

Jaakko Järvi^

Abstract
In parameter estimation, a model function depending on adjustable pa-

rameters is fitted to a set of observed data. The parameter estimation task
is an optimisation problem, which needs a computational kernel for evalu-
ating the model function values and derivatives. This article presents an
object-oriented framework for representing model functions, which are par-
tially separable, or structural. Such functions are commonly encountered,
e.g., in spectroscopy.

The model is general, being able to cover a range of varying model func-
tions. It offers flexibility at runtime allowing the construction of the model
functions from predefined component functions. The mathematical expres-
sions are encapsulated and a close mapping between mathematics and pro-
gram code is preserved. Also, all interfacing code can be written indepen-
dently of the particular mathematical formula. These properties together
make it easy to adapt the model to different problem domains: only tightly
controlled changes to the program code are required.

The paper shows how derivatives of the model function can be computed
using automatic differentiation relieving the programmer from writing explicit
analytical derivative codes.

The persistence of the objects involved is discussed and finally the com-
putational efficiency of the function and derivative evaluation is addressed.
It is shown that the benefits of the object-oriented model, namely the higher
abstraction level and increased.flexibility, are achieved with a very moderate
loss of performance. This is demonstrated by comparing the performance
with low-level tailored C-code.

1 Introduction
Even though object-orientation (0 0) has become the dominating programming
paradigm, it is quite slowly adopted to numerical applications, mainly because of
the poor efficiency of 0 0 programs in numerical codes. The progress in program-
ming techniques and compilers is changing this situation and makes it possible to

"This work was supported by the Academy of Finland, grant 37178.
tTurku Centre for Computer Science, Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland,

email: jaakko.jarvi@cs.utu.fi

285

mailto:jaakko.jarvi@cs.utu.fi

286 .Jaakko -Jarvi

take advantage of 0 0 in numerical codes without a significant performance penalty
[16]. This is demonstrated in this paper describing an 0 0 model for parameter es-
timation of structural, partially separable functions.

The task of modelling data is commonly encountered in numerous application
fields. The goal is to fit a model that depends on adjustable parameters to a set of
observed data. A cost function, such as the sum of squared differences, is chosen to
measure the agreement between the model and data. This function is minimised by
adjusting the parameters of the model according to some optimisation algorithm.

The model can be based on some underlying theory about the data or be just a
sum of convenient functions, such as polynomials. This article focuses on partially
separable model functions, where the function is a sum of component functions.
e.g., a spectrum consisting of a sum of spectral lines. The 0 0 model presented
in this article was developed while working on nuclear magnetic resonance (NMR)
spectra estimation. Hence, the article includes a case study of NMR spectral fitting
to make the ideas presented more concrete.

Numerous algorithms have been described for model fitting tasks in the liter-
ature [2, 14]. They are usually presented from the numerical analysis viewpoint,
treating the model as a plain vector of parameters and a function for evaluating
values, and derivatives. However, this flat representation of the model function is
not necessarily natural. The model may be structural consisting of several compo-
nent functions, which possibly correspond to some real life entities. The function
representation should be flexible. It should be possible to specify the composition
of the component functions at runtime, rather than fix them in the program code.
Furthermore, the function representation should be able to handle dependencies
between parameters of different component functions. The flat model representa-
tion is therefore inconvenient for the user and it is the application developer's task
to provide a conversion to and from the structural representation.

This article presents an 0 0 model to serve as an intermediate link between the
two representations described above. The model provides simultaneously an effi-
cient computational kernel for the optimisation algorithms and the structured view
for the user. It is a collection of classes comprising a core to represent structured
model functions. These core classes implement the basic structural and flat views
to the model function, as well as the mechanisms for function value and derivative
calculations.

The extension of the core model for a specific application is done by provid-
ing a simple class for each type of component function. Essentially only member
functions specifying the mathematical formulae of the component functions are re-
quired in these classes. Consequently, the particular mathematical expressions are
encapsulated and the mathematical structures of the problem domain are preserved
in the program code. This means that the necessary changes to program code are
minor and well controlled if the model is applied to a different application area.

The model utilises the concept of automatic differentiation [15] for derivative
computations. This relieves the programmer from writing analytical derivative
codes. Automatic differentiation is made transparent to the programmer with
operator overloading.

Object-Oriented Model for Partially Separable Functions 287

The core classes implement all the functionality needed for constructing compo-
nent functions and their parameters. The user interface for this task can therefore
be built solely based on the core classes. The addition of new classes to the model
hierarchy does not cause any need for changes in the interfacing code. In section
3.5 we give an example of a user interface built in this manner.

This paper also discusses the computational efficiency and shows that the over-
head arising from the higher abstraction level and greater runtime flexibility of
the 0 0 model is very moderate compared with a low-level C-code implementation.
Persistence, i.e., the ability to store and retrieve the objects of the model is also
considered.

The crucial parts of the model are presented using C + + language, but the
model can be implemented in any language supporting inheritance, dynamic bind-
ing and operator overloading. However, the test runs were performed using a C + +
implementation.

There are few descriptions of using object orientation together with parameter
estimation in the literature. Related work can be found from [11, 17] containing
general descriptions of computer systems sharing some similarities with our model.
For description of an NMR analysis software built using a variant of the object
oriented model presented here, see [10].

2 Parameter estimation problem
The task of fitting a parametric model function to a set of observed data points
can be seen as minimisation of a cost function describing the distance between the
model and the data. A common choice for the cost function is the sum of squares
function. This least-squares model fitting problem can be stated as follows:

Let y(xi),i = 1 , . . . ,m be a set of observed data points, p = (pi , . . . ,pu) be
a vector of model parameters and y(x,p) a parameter-dependent model function.
The maximum likelihood estimate of the parameters is obtained by minimising the
chi-square function

x3(p) = ¿(g(g<)" f ff (ai 'p))a, (1)

where cr¿ is the standard deviation of the measurement error of the ith data point.
This formulation leads to a possibly non-linear optimisation problem which can
be solved with iterative methods, most commonly with Levenberg-Marquardt or
Gauss-Newton algorithms [2, 14]. The idea is to improve iteratively the trial solu-
tion

Pnew = Pcurrent + Ap (2)
until an acceptable solution is found. The change Ap is determined using the
gradient and usually an approximation of the Hessian of the cost function. These
in turn require calculation of the partial derivatives ^(^.p) ^ g _ ^ 0f

288 .Jaakko -Jarvi

PCr

- i
a P

A . T

frequency

Figure 1: Example of a 31P NMR spectrum (lower curve) and a model function
(upper curve) fitted to the spectrum, a, ¡3 and 7 peak groups originate from ATP
molecules. The measured spectrum is shifted rightwards for clarity.

model function. Even though each iteration typically involves additional costs,
such as solving a linear system of equations, the calculation of the model function
and derivative values often dominate the overall cost.

The above clarifies the numerical view to the parametric estimation problem.
The algorithms developed for the estimation must be supplied with the parametric
model function, functions for the partial derivatives and the vector of modifiable
parameters. Furthermore, y(x, p) is typically calculated at several points with
constant p. In cases we are interested in, y(x, p) is partially separable, that is, y
can be represented as a sum of component functions y j , j = 1 , . . . ,n, each being
dependent on only rj parameters, where rj < < k.

2.1 N M R spectroscopy case

In NMR spectroscopy, a signal of damping oscillations (FID) emitted by certain
atomic nuclei (e.g. 31P) is observed. An NMR spectrum is a Fourier transform
of this signal. The spectrum contains peaks or resonance lines corresponding to
nuclei in various compounds. The amplitude of a single peak is proportional to the
number of equivalent nuclei resonating at that frequency. [6]

A typical 31P NMR spectrum is shown in Fig. 1. Signals of inorganic phosphate
(Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) can be identified
from the spectrum. The aim is to find the amplitudes and frequencies of the
identified compounds. This is done by quantifying the spectrum or the FID, which
is represented as a superposition of parametric functions, each corresponding to
a single resonance line. This parametric model function is fitted to the measured
signal and the results, peak intensities and frequencies, are calculated from the
model parameters. Fig. 1 also shows a fitted model.

Basically we have a structural model function consisting of a sum of compo-
nent functions, the resonance lines. Several lineshapes are encountered, the most
common being the Lorenz function described by amplitude A, frequency / , phase
(j> and damping factor d. A model of n reconance lines in a somewhat simplified
form in time domain is then

Object-Oriented Model for Partially Separable Functions 289

3 1 P N M R spectrum

Pi PCr ATP baseline /
7 A T P a A T P ß /3 A T P / \

left right left right left mid right

Figure 2: Example of a model function instance.

n
y(t, p) = AI COS(2TTfjt + HY-W (3)

3 = 1

where p = (Ai, fi, di, 4>i,..., /n> dn, <f>n). As can be seen, the sum function
is partially separable. Note that, contrary to this simplified expression, the NMR
signal can contain different lineshapes and there may be additional terms in the
sum. [5]

Dependencies between parameters of different component functions are typical
for NMR models. Consider the ATP molecule. It is known a priori that 7 peaks
altogether originate from the ATP molecules. The peaks come in three groups: a,
P and 7. These groups have equal amplitudes. The groups a and 7 consist of two
peaks each having again equal amplitudes. The /3-group consists of three peaks with
relative amplitudes 1 : 2 : 1 . The frequency differences between the peaks-inside
the groups are known and it is reasonable to assume that the damping factors of
all the peaks are equal. Taking these into consideration, the amplitudes, damping
factors and frequencies of 7 peaks are actually defined by only one amplitude, one
damping factor and three frequency parameters. The hierarchical structure of ATP
and other peaks in the NMR example spectrum is depicted in Fig. 2.

To sum up the problem setting, the estimation of the parameters of the function
y is the task to be performed. This is done by minimising the chi-square error with
respect to the measured signal, where the partial derivatives of y must be calculated
repeatedly. Function y has a hierarchical structure corresponding to the peaks in
the spectrum.

3 Object-oriented model
Significant savings in development time can be achieved with careful design of the
model function representation. In the case of structural model functions, the utmost
goal is flexibility. The number and type of the component functions may vary and
there may be common or related parameters between the component functions.

290 .Jaakko -Jarvi

The model function representation ought to be able to handle these situations with
ease and yet be able to compute the function value and derivatives efficiently.

An important issue is the user interface for managing the model functions. The
user constructs the model functions and observes or edits the model parameters.
The programmer's task to provide this interface for varying models is considerably
alleviated if the interface can be implemented without the need to know the actual
types or number of the component functions. The term user refers to a human
operator of a computer program whereas by client we denote the programmer or
code calling the functions or using other services of the object-oriented model.

The object-oriented approach provides a convenient means to build a function
representation to meet the requirements detailed above. The model consists of two
separate class hierarchies, the function hierarchy and the parameter hierarchy. An
essential component is also a library for automatic differentiation. The hierarchies
are first discussed accentuating the client view to the classes and then the process
of function value and derivative evaluation is clarified. While reading, the reader
may consult the object diagram in Fig. 6 representing the NMR example as objects
from function and parameter hierarchy.

3.1 Function hierarchy
The classes of the function hierarchy (Fig. 3) represent the component functions
of the structural model function (the nodes of the tree in Fig. 2). The base of
the hierachy is the abstract base class base-model, which defines the interface for
the function classes; each function can compute the value and derivatives at a
given point. The base.class maintains a vector of parameters and defines member
functions for accessing them. Different component functions are derived from the
base.model class. These can be either elementary or composite functions.

Composite functions maintain a list of other component functions. They simply
group other components. A composite function computes its values and derivatives
by calling the evaluation functions of its child functions. Each composite model
owns the models in its child list. The top_model class represents the whole model
function to be fitted and implements the interface to the client code. It also main-
tains the vector of the adjustable parameters used by the optimisation algorithm.

The.generic elementary-model class encapsulates the common features of the
component functions to make the derived classes as simple as possible. The tem-
plate parameter of the generic class specifies the number of parameters in the func-
tion. We will return to the details of this template in section 4. Now it suffices to
say that the elementary model holds the parameters of the mathematical function
to be calculated as automatically differentiable numbers in the proxy data member.

Fig. 4 shows a complete class definition of an example class derived from elemen-
tary .model. These derived classes contain the actual mathematical formulae of the
model function (the eval function). In addition, only two simple utility functions
(create and get_class_name) are needed. These are the only requirements for each
elementary function class and it is thus very easy to extend the function hierarchy
to cover new function types.

Object-Oriented Model for Partially Separable Functions 291

Figure 3: Model function class hierarchy.

Gamma et al. [8] have proposed some general methods for representing hierar-
chical structures in an object-oriented language. This model function hierarchy can
be seen as a version of the Composite design pattern. Regarding the implementa-
tion issues of this pattern discussed by Gamma et al. we have chosen to maintain
explicit parent references implemented as a pointer in the base_model class. We
also chose to maximise the interface of the base_model. This means that, e.g., oper-
ations for manipulating the list of children of the composite models (add, remove)
are declared and defined in base_model. This gives transparency for the client but
on the other hand the operations do not have a meaning for elementary models.
Therefore, by default, the operations add and remove fail (e.g. by raising an excep-
tion) and the functions are overridden in the composite.model class to give them
meaningful definitions.

Not all functions are shown in the class diagram of Fig. 3. The base_model class
also defines functions for adding and removing parameters as well as functions for
naming the models. The virtual constructor [8, 1] mechanism is utilised in the
object construction, requiring the two virtual functions, create and get_class-name,
to be overridden in each derived class.

292 .Jaakko -Jarvi

class lorenz : public elementary_model<4> {
public:

lorenz* create() { r e t u r n n e w lorenz(), }
string get-dass_name() { r e t u r n "lorenz"; }
enum {amp, freq, damp, ph };
double eval(double x, vector<double>& ders) {

return store_derivatives(ders,
par(amp)*cos(2*pi*par(freq)*x + par(ph)) * exp(-x*par(damp))); }

};
Figure 4: Definition of an example function derived from the elementary .model
class.

3.2 The parameter hierarchy

The parameter of a model function is basically just a value of some floating point
type. However, the same parameter value may be shared by several component
functions or there may be other dependencies between parameters. Hence, not
all parameters of the component functions store a value. As a consequence, just
representing a parameter as a floating point number is not sufficient to allow the
component models to use the parameters in a uniform way. Therefore parameters
are represented as classes from the parameter hierarchy (Fig. 5).

The base_par class is the topmost class of the hierachy and provides the com-
mon interface, the functions get-value and get_derivative for retrieving the value and
initial derivative of the parameter. The stored_par class represents actually stored,
adjustable parameters. The dependent-par class is the base class for dependent, pa-
rameters and linear.par is for expressing linear relations between parameters. Other
dependencies may be implemented by deriving new classes from the dependent-par
class.

Each dependent parameter holds a pointer to another parameter, a parent pa-
rameter. The value is resolved by asking the value of the parent recursively until
finally an instance of a stored.par class will end the recursion. The same mechanism
applies for derivatives. The get-derivative function evaluates the derivative with re-
spect to the underlying stored parameter. For stored_par this is 1 (the derivative
of a variable with respect to itself is 1), while for linear parameters we get it by
multiplying the derivative of the parent with the linear factor (see the code outlined
in Fig. 5).

All parameters also maintain a child list and a pointer to the model function
owning the parameter. The dependent parameters contain a vector of parame-
ter modifiers such as the coefficients of the linear relation. The number of these
modifiers is fixed for each derived class and given in the constructor.

Object-Oriented Model for Partially Separable Functions 293

Figure 5: Parameter hierarchy.

3.3 Enforcing the consistency
The data structure for representing structural functions consists of several objects
from the function and parameter hierarchies (Fig. 6). It is a combination of two
object trees, both maintaining child node lists and parent pointers. In addition,
the nodes of the model tree may own nodes of the parameter tree. This relation
is represented as a list in the model tree node and a corresponding owner pointer
in the parameter tree node. Furthermore, a vector of references to the adjustable
parameters in the parameter hierarchy is maintained in the topmost model function.

To be able to guarantee the consistency of such a complex structure the con-
struction and manipulation of the objects involved in the data structure must be
controlled tightly. Though not shown in the class definitions, the creation and de-
struction of models is not part of the public interface of the classes, instead the
creation of the objects is delegated to a special creator object and the destruction
is performed from within the member functions of the classes of the hierarchy.

The final data structure maintains several invariances. The child list of a com-
posite model is kept consistent with the parent references of the children. The
same applies to child/parent relation in the parameter hierarchy as well as the
parameter/owner relation between model functions and parameters.

The relation between parameters and models is further restricted. A parameter
and its descendant can not be owned by different function hierarchies. Furthermore,
the owner function of a dependent parameter must be a descendant of the owner
of the parent parameter. Some of the invariances are guaranteed automatically by

294 .Jaakko -Jarvi

Figure 6: Instantiated objects and their relations illustrated in the NMR, case
(part of the ATP molecule). Solid lines represent ownership relation, while dashed
lines are non-owning pointers. Dotted lines are parent links. The class of each
object is given in parenthesis (C=composite, L=lorenz, LP=linea-r parameter,
DP=dependent parameter, SP=stored parameter). Along the parent links of the
parameters are the formulas for computing the values of linear parameters.

Object-Oriented Model for Partially Separable Functions 295

the restricted object construction. Others are enforced by raising an exception if a
user tries to perform an operation which conflicts with an invariance condition.

3.4 Constructing model functions

The starting point of a model function is an instance of the top.model class. After
it has been created, component models can be added to its child list.

The construction of objects is delegated to a special creator object implementing
the virtual construction mechanism. The purpose of this is to make the client code,
which initiates the creation of objects, independent of the changes in the elementary
function classes.

The class of the object to be created is specified as a class name string at
runtime. This is a convenient way of initiating object construction. Since the
object creation task is most likely initiated by a user command, it is quite natural
to specify the class as a class name string. The user may, e.g., have selected the
class from a selection list.

The creation mechanism requires each class to register itself (one line of code)
and define the virtual functions get_class_name and create. Otherwise the creation
mechanism is totally independent of the derived classes: e.g., adding new elemen-
tary functions to the model hierarchy does not have any effect on the client code.
For details of the virtual construction mechanism, see [8] describing several cre-
ational design patterns.

3.5 Model editor

As an example of a user interface for specifying structural model functions, Fig.
7 shows a snapshot of the model editor we have written. The structural function
tree is visible on the left and the parameters of the currently selected model on the
right. The names of the functions as well as the parameter names and values can
be edited freely on the spot. There are buttons and menu commands for adding
and removing functions and parameters, defining relations between parameters and
storing and retrieving models. As pointed out above, the code of the model editor
is totally independent of the particular elementary function classes derived from
the model function hierarchy.

3.6 Persistence of model objects

In addition to methods for creating and modifying the structural model functions,
means for their storage and retrieval are needed. In object-oriented systems, the
ability of objects to live beyond the lifetime of the program is called persistence.
It can be achieved using object serialisation, the common approach used in com-
mercial class libraries such as MFC [12] and OWL [13]. This approach relies on
virtual construction mechanism and requires the programmer to specify reading
and writing methods for each persistent class.

296 •Jaakko Järvi

a Fie £d» £«*cb Took Help
—

— — ;
31P NMR

Pi

PCr

E ATP
B ATPGamma

left
right

S ATP-alfa
left
right

S ATP-beta
;- left

middle

¡ATP-beta

Amp ¡24 502 ¡(near jATP-beta: Amp |0 25 |0

Freq ¡725.31 ¡(near |ATP-beta: Freq |0 |-14 7

Damp ¡0.0671 ¡dependent |ATP: Damp j

mm

wimmmw-^
!

Figure 7: Snapshot of our model editor.

Virtual construction is already included in the model and parameter hierarchies.
Furthermore, when the model hierarchy is extended, no new data members need to
be introduced in the derived elementary function classes. Therefore the read and
write functions can be inherited and need not be specified. Consequently, the im-
plementation of persistence can be encapsulated entirely into the core classes of the
model and no changes are required when new classes are added to the hierarchies.

4 Evaluation of function values and derivatives
In this section, the function value and derivative computation in our model is
explained. The concept of automatic differentiation is described and it is shown
how to calculate the derivatives of structural functions easily and yet effectively
with this technique.

4.1 Automatic differentiation
The derivatives are traditionally calculated either symbolically or by using divided
differences. The former may be quite difficult and error-prone while the latter
introduces truncation errors and may be inaccurate and inefficient. Automatic
differentiation provides an appealing alternative.

In automatic differentiation, the derivatives are computed by the well-known
chain rule, but instead of propagating symbolic functions, numerical values are
propagated along the computation. The evaluation of the function and its deriva-
tives are calculated simultaneously using the same expressions. There are several
descriptions about automatic differentiation [15, 1, 3] and also software packages

Object-Oriented Model for Partially Separable Functions 297

available [9, 4]. Some packages preprocess the source code to add the necessary
statements for computing the derivatives. Other packages, using programming lan-
guages that support operator overloading, implement the differentiation as a class
library without the need for a separate précompilation.

There are interesting computational issues concerning the implementation of
automatic differentiation. The chain rule can be used either in forward or backward
mode or in something between. The implementation involves a tradeoff between
time and space complexity. In this article the forward mode automatic differenti-
ation is used. It is simple and fits very well in this particular application as will
become clear below.

In forward mode automatic differentiation, instead of computing with scalar
values, we compute with automatically differentiable numbers (ADN) (f, V f) . An
ADN consists of a value and a vector of partial derivatives of a function at a
given point. When building expressions with these objects, at the leaf level of
the expression tree f is either a variable or a constant. When differentiating with
respect to N variables, the derivative of the ith variable is represented as the ith
canonical unit vector of length N and the derivative of a constant with a zero
vector. For example, when differentiating with respect to three variables x,y,z
the constant 3.14 is expressed as (3.14, (0,0, 0)) and the variable y as (y, (0,1, 0)).
Computation with these objects utilises the chain rule of derivatives.

s/(9<1))L = (¿ / W

As an example, consider the two-derivative case for function z/+sin(x2). Starting
with (y, (0,1)) -f sin(ï, (1,0))2) by squaring x, we get {y, (0,1)) + sin((a;2, (2x, 0))).
Taking the sine gives (y, (0,1)) + (sin(x2), (2x cos(x2), 0)) and finally the addition
with y gives (y -I- sin(a;2), (2a: cos.t2), 1)). For numerical work, the computation is
not done symbolically, rather the actual values of the function and its derivatives
are calculated and propagated through the expression. Given x = 2, y = 4 the same
example becomes

<4,(0,l)) + sin«2,(l ,0))2) = (4, (0,1)) + sin((4, (4,0))) =
(4 , (0 ,1))+ (0.06976,(1.9951,0)) = (4.06976,(1.9951,1)).

The method can be applied to any machine-computable function. All that
is needed is to code the differentiation rules for simple functions and operations.
Then any function composed of those elementary functions can be differentiated
automatically. In C + + this means overloading common functions and operators
for objects described above.

The forward mode automatic differentiation for calculating gradients can be
computationally unattractive if applied blindly. If the gradient has n elements, the
computation may require up to order of n as much time as computating the value
of the same expression. However, in the case of partially separable functions the

s=a(tn1
(4)

t.=tn .

298 .Jaakko -Jarvi

forward mode can be applied efficiently. If we consider the model function as a
whole, it may have quite a number of parameters, but the number of parameters of
the individual elementary functions is typically rather low and known beforehand.
Furthermore, different elementary functions are only related via a summation ex-
pression, which means that also the derivatives are just summed together. Conse-
quently, we use automatic differentiation in computing the local gradients of the
elementary functions and update the calculated values via pointers to the common
derivative vector.

The computing time of the local gradients can be further reduced. By using
C + + templates, moderate size derivative vectors of ADNs can be replaced with
special sparse vectors to yield very efficient code [10]. This method was utilised in
the test runs described in section 4.4.

4.2 The function evaluation process
The model function is evaluated by calling the eval function of the topmost class,
which will traverse all the contained models and calculate their cumulative values
at a given point. The derivatives are computed simultaneously using automatic
differentiation. The derivative vector is passed as a parameter to the eval function.
First the resulting derivative vector or gradient is initialised to zero. Each elemen-
tary function reads the values and initial derivatives of the parameters (with the
get_value and get-derivative functions) and constructs ADNs from them. If the ele-
mentary function has n parameters, ADNs having n-dimensional derivative vectors
are used. The mathematical expression is then evaluated using ADNs and each
elementary function updates the resulting derivative values to the actual gradient
vector. This is accomplished with a call to store-derivatives function defined in the
elementary .model template (see Fig. 4), which adds the derivative values to the
right positions of the gradient.

After the whole function tree has been traversed, the function value is returned
and the gradient is available as the derivative vector passed to the eval function.

4.3 Computational efficiency
With regard to the computational efficiency the evaluation strategy includes a few
pitfalls. Firstly, dynamic binding is applied in the eval function invocations. There
is an inherent additional cost in a call to a dynamically bound virtual function com-
pared with a statically bound function [7]. Furthermore dynamic binding precludes
the use of inlined functions. Inline expansion can speed up function calls and is
beneficial for small functions. However, in this case the computational cost of the
function call is probably minor compared to the cost arising from the evaluation
of the actual mathematical formulae of the elementary functions, recalling that the
derivatives are also calculated in the same function. Considering this, the relative
cost of the slightly slower function call is most likely insignificant in this case.

Secondly, dynamic binding is also applied between parameters in the get-value
and get_derivative functions. In this case the extra cost may be notable. The

Object-Oriented Model for Partially Separable Functions 299

evaluation of an elementary function having n parameters would yield at least n
virtual function calls to fetch the parameter values. The number of calls is larger
if dependent parameters are involved. However, in model fitting''tasks, the .model
function is evaluated repeatedly at sev.eral points, without changing the parameter
values. Taken the example from NMR spectroscopy, the region of interest may
contain thousands of points. Therefore the parameter values can be cached and
only when the parameter values are changed, each elementary function reads the
values and derivatives with the virtual get.value and get-derivative functions and
stores the values to local proxy variables (ADNs). With this approach the relative
cost of retrieving the parameter values via virtual functions is of little consequence.
The caching is made transparent to the client code by maintaining a flag in the
topmost class indicating whether the values in the proxy variables are valid or not.

Also, the updating of the local gradients to the global derivative vector must
be efficient. This is implemented in the elementary .model template by maintaining
a mapping from each local parameter index to an index in the global derivative
vector. These mappings can be constructed prior to the first model evaluation. In
this task the function tree must be traversed once, but this causes no efficiency
problems, since the indices only change if the model function changes, i.e., new
component functions are added or removed. At evaluation time the only additional
cost is an extra indirection for each parameter.

Some cost may also arise if the composite models in the function tree contain
many levels (e.g. in the ATP compound). From the computational point of view, it
is not necessary to traverse all composite functions during the evaluation, rather it
is sufficient to call the evaluation functions of the elementary models directly and
save the cost of a few virtual call's. This is easy to implement by maintaining a
separate list of the leaf nodes in the top.model class, which we did in the test runs.

4.4 Test runs
To assess the efficiency of the model some test runs were performed. As a test
case, we used formulae from the NMR case consisting of 10 component functions
having 24 adjustable parameters altogether. Five different alternatives to perform
the function and derivative computations were programmed:

1. A tailored low-level C-code with analytical derivatives.

2. The presented 0 0 model with analytical derivatives.

3. The 0 0 model with automatic differentiation.

4. A straightforward 0 0 implementation, without any caching.

5. A low-level implementation of the function with finite difference value ap-
proximations of the derivatives.

In the tailored low-level implementation, the model function was totally fixed at
design time, so any change in the function requires changes in the code. The code

300 .Jaakko -Jarvi

Implementation Relative time
1. Tailored low level C-code
2. 0 0 model with analytical derivatives
3. 0 0 model with automatic differentiation
4. Straightforward 0 0 implementation
5. Divided difference approximations

1.00
1.07
1.29
2.48
16.52

Table 1: Relative evaluation times of the different methods for computing the value
and derivatives of the NMR model.

was hand-optimised to a reasonable level (not making any processor specific tricks).
All subexpressions were calculated only once and all relations between parameters
were directly written into the code as effectively as possible. It is fair to say that
the code used was as fast as possible.

In the second case, the 0 0 model presented was used, but the derivatives of the
elementary functions were calculated analytically. This case should roughly repre-
sent the extra cost originating from the dynamic binding of the model functions, as
well as the cost arising from not coding the dependencies between the parameters
directly.

In the third case, the 0 0 model was used with derivatives computed using
automatic differentiation. Table 1 shows the results and confirms the extra cost
being quite acceptable compared with the flexibility the model offers.

In the fourth case, no proxies for parameters were used, rather the initial values
and derivatives were retrieved during each evaluation using the virtual function
invocations. This demonstrates that the performance may drop significantly if the
programmer is not aware of the principles affecting efficiency in 0 0 programs.

In the fifth case, derivatives were approximated with divided difference values.
The benefit of this alternative is that only the code for evaluating the value of
the model function is needed. The performance is, however, very poor requiring
n evaluations of the model function, where n is the number of elements in the
gradient. Also, the accuracy is harder to assess.

The test runs were performed under Linux on Intel Pentium processor. The
C + + compiler used was KAI C + + 3.2.d with optimisation flags +K2 -03 .

5 Conclusions
An object-oriented model for parameter estimation of partially separable function
was described. The model achieves two goals. Firstly it gives an easily extendible
0 0 framework for representing partially separable functions in a structured way,
resembling the physical real-life interpretation and mathematical structure of the
functions. Secondly, it offers an interface to an optimisation algorithm, namely a
vector of adjustable parameters and a function capable of computing the value and
derivatives of the model function efficiently.

Object-Oriented Model for Partially Separable Functions 301

To achieve the first goal, the model separates the commonalities of partially
separable functions from the specific mathematical formulae. The formulae are
encapsulated to a few very simple classes. It is therefore easy to apply the model
to different problem domains, since changing these classes or adding new ones to
the model does not affect the client code using the model. Furthermore, relations
between parameters are handled by the model and they do not complicate the
mathematical expressions of the component functions.

The derivatives needed in the parameter estimation are obtained using auto-
matic differentiation. Hence, there is no need to hand-code analytical derivatives
or use divided difference values.

Considering the second goal, the calculation of function values and derivatives
is efficient. In our example case from NMR spectroscopy, the evaluation of the 0 0
model required only 29% more time than a low-level tailored implementation of
the same function. As a compensation, in the 0 0 model the final function as well
as relations between parameters can be specified at run-time, the model is easily
extendible to cover new component functions and no hand-coded derivatives are
required.

To sum up, the paper gives practical guidelines for implementing an efficient
0 0 computational kernel for partially separable functions. With an example, we
showed that 0 0 programming offers substantial benefits, such as higher abstraction
level, code reuse, flexibility and handling of complexity for numerical programming
as well. Furthermore, the advantages can be achieved with a moderate loss of
performance.

References
[1] Barton J. J., Nackman L. R.: Scientific and Engineering C + + , Addison-

Wesley, Reading Massachusetts 1994.

[2] BazaraaM.S., Sherali H.D., Shetty C. M.: Nonlinear Programming: Theory
and Algorithms, 2nd Edition, Wiley 1993.

[3] Editors: Berz M., Bischof C. H., Corliss G. F., and Griewank A.: Computa-
tional Differentiation - Techniques, Applications, and Tools,.SIAM, Philadel-
phia Pennsylvania 1996.

[4] Bischof C. II., Carle A., Corliss G. F., Griewank A., Hovland P.: ADIFOR:
Generating derivative codes from Fortran programs, Scientific Programming,
1 (1992) 1-29.

[5] Bovee W. M. M. J.: Quantification in in vivo NMR, Spectral editing, in:
Magnetic Resonance Spectroscopy in Biology and Medicine, eds. de Cer-
taines J. D., Bovee W. M. M. J., Podo F., 181-207, Pergamon, Oxford 1992.

[6] Derome A. E.: Modern NMR Techniques for Chemistry Research, 63-90,
Pergamon, Oxford 1991.

302 .Jaakko -Jarvi

[7] Driesen K., Holzle U.: The Direct Cost of Virtual Function Calls in C + + .
ACM Sigplan Notices, OOPSLA'96 Proceedings, 31 (1996) 306-323.

[8] Gamma E., Helm R., Johnson R., Vlissides J: Design Patterns, Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, Reading
Massachusetts 1995.

[9] Griewank A., Juedes D., Utke J.: ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C / C + + , ACM Transactions on
Mathematical Software, 22 (1996) no.2, 31-167.

[10] Jarvi J.: A PC program for automatic analysis of NMR spectrum series,
Computer Methods and Programs in Biomedicine 52 (1997) 213-222.

[11] Majoras R. E., Richardson W. M., Seymour R. S.: An object-oriented ap-
proach to evaluating multiple spectral models, Journal of Radioanalytical
and Nuclear Chemistry 193 (1995) 207-210.

[12] Microsoft, Microsoft Foundation Class Library, Microsoft Corporation.

[13] Borland, Borland C + + 5 Programmer's guide, Borland International, 1996.

[14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical
Recipes in C: the Art of Scientific Computing, 2nd Edition, Cambridge
University Press, New York 1992.

[15] Rail L.B.: Automatic differentiation: Techniques and Applications, Lecture
Notes in Computer Science 120, Springer-Verlag, Berlin 1981.

[16] Robinson A.D.: C + + Gets Faster for Scientific Computing, Computers in
Physics 10 (1996) 458-462.

[17] van Tongeren B. P. 0., Boxman R. D. C., Deumens J. W., van Leeuwen J.
P., Mehlkopf A. F., van Ormondt D., de Beer R.: QUANSIS, An object-
oriented data-analysis system for in vivo NMR signals, Journal of Magnetic
Resonance Analysis, 2 (1996) 75-84.

Acta Cybernetica 14 (1999) 2 8 5 - 3 0 2 .

Hausdorff Dimension of Univoque Sets

Gábor Kallós *

Dedicated to Professor Imre Katai on his 60th birthday

Abstract

In this paper we present the results obtained so far for the determination
of the Hausdorff dimension of the univoque set, in number systems with base
number greater than 1. The investigation is based on the methods presented
in [1] and [2]. We illustrate the theoretical results with interesting examples.
Keywords: Number Theory, Expansions of Numbers, Univoque Sequences

1 Introduction
A lot of interesting problems arose relating to the number systems. A collection of
these is presented in D. E. KNUTH'S significant book [5].

In this paper we investigate the problem, what the numbers are, the represen-
tation of which is unique in a number system. The answer to this question derives
immediately, when the base number of the number system is a positive integer. For
example, in the decimal system a number has a unique representation if its form
is an infinite decimal fraction, except the numbers with a pure nine tail (999...).
The integers, the finite decimal fractions and the infinite decimal fractions with the
tail 999 . . . have two representations.

7T = 3,1415926... - only one representation
3,14 = 3,13999 . . . - two representations

Essentially the same is true of other number systems with integer base number,
using the pure /3 tail, where (3 is the base of the number system.

However, the situation becomes much more complicated when we investigate
number systems which have a non-integer base number.

EXAMPLE 1.

Let the base number /3 = y/6 + 2 « 4,4495. The digits we can use are A =
{0,1,2,3,4} , where the largest digit is the integer part of /3. Let Q = j . In this

"Department of Computer Science, Széchenyi István College, Hédervári út 3., H-9026 Győr,
Hungary. E-mail:kallos@rsl.szif.hu

303

mailto:kallos@rsl.szif.hu

304 Gábor Kallós

number system 1 = 40 + 202 , since

, V Ő - 2 „ f\/6-2\2 ., . s/6-2 1 = 4- h 2 • — . with 0 = — .

Let us substitute now in this expansion one 0 2 with 40 3 + 204 . This we can
do without any restriction, since we apply only usable digits. Then it derives
1 = 40-f-102 + 40 3 + 204 . Repeating this method we can present infinite different
expansions for 1:

1 = 0,42W) = 0,4142 (0) = 0,414142(0) = 0 ,41 . . . 4142(0) = 0,4141.. . { p) .

Thus, in a general number system numbers can have more than two different ex-
pansions. The choice of the numbers with only one expansion seems to be difficult.

2 Expansions of numbers
The methods presented here are based on the work of Z. D A R O C Z Y and I. K A T A I

([1] and [2]), with new approaches when needed. They have specified the univoque
sequences and have presented a method for the computation of the Hausdorff di-
mension of the univoque set in the cases 1 < /3 < 2, where f} is the base of the
number system. This is our goal now in general, in an arbitrary number system
with base number /3 > 1.

As. in the example let 0 = ^, and A = { 0 ,1 , . . . , [/?]} the set of the usable digits.
The set of fractions in this number system is

oo
E a « 0 n } >
71=1

where a = (a i ,a 2 , . . .) £ {0 ,1 , . . . , [/?]}N. The smallest element in this set is 0 (with
all of the a,i-s = 0), and the largest element is

L = [/?]© +[/?]02 + [£] 0 3 + . . . =

(with all of the a<-s = [/?]). Here L > 1, because from this inequality - substituting
L - follows [13] >/3- 1.

From now on we work only on the set of fractions.
For an arbitrary x e [0, L] we are able to describe at least one sequence a =

(ai,a2, • • •) € {0 ,1 , . . . , [/?]}N, which produces the number x, i.e. x = a „ 0 n .
This we can do for example with the ¡3 or regular expansion of x. A . R E N Y I has
proved [9], that every number x has a 0 expansion with f3 > 1 as follows:

, , £i(x) e2(x)

oo

Tl~ 1

HausdorfF Dimension of Univoque Sets 305

where £o(%) = [x],ei{x) = \f}(x)],E2{x) = [P(/3(x))],... - here [a;] denotes the
integral part and (x) the fractional part of x. The set T is closed and bounded
(G. A. E D G A R [3]). For our investigation we will use two different expansions, the
regular and the quasiregular one. The first is the "restriction" of the /? expansion
to the set of fractions.

The regular expansion. Let us define the following sequence en{x) for x €
[0, L), by induction on n:

£n{x) ='j, if
n-1

£¿(2)0* + ¿ 0 " < Z
¿ = 1

where j € A, but
n— 1
Y,ei(x)Qi + (j + l)Qn>x,
i= 1

or j +1 > [/3], i.e. we would use a non-usable digit for the expansion. The expansion
x — Si(x)0 -(- £2(a:)02 + . . . is called the regular expansion of x.

This essentially means, that we choose the largest usable digit in every step. So
the expansion 1 = 0 , 4 2 ^) is the regular expansion of 1 in the previous example,
since 40 < 1, thus e^z) = 4, and 40 + 202 = 1, thus £2(a;) = 2.

The quasiregular expansion. Let us define by induction on n the following
sequence Sn(x) for x £ (0,L]:

$n(x) = j, if
71— 1

¿ ¿ (a ;) 0 i + i 0 " <a;
i= 1

where j £ A, but
n-l

¿ i (z) © * + (j + 1) 0 " > a;,
i= 1

or j + 1 > [/?], i.e. we would use a non-usable digit for the expansion. The expansion
x = <5i(a;)0 + S2(x)Q2 + . . . is called the quasiregular expansion of x.

The quasiregular expansion is always infinite, and if the regular expansion, is
infinite too, then the two expansions are the same. Comparing with the regular
expansion here we choose "almost" the largest usable digit in every step. In the
previous example the quasiregular expansion of 1 is 1 = 0,4141.. . Here 40 < 1
so ¿i(x) = 4, 40 -I- 0 2 < 1 and 40 + 202 = 1, so S2(x) = 1. 40 + 0 2 + 40 3 < 1,
thus S3(x) = 4, and eventually 1 = 0,4141.. follows.

In the example we have seen too, that in spite of the "closeness" of the regular
and quasiregular expansions, we can find other different infinite expansions among
them.

306 Gábor Kallós

3 Univoque sequences
We call the sequence e 6 {0 ,1 , . . . , [/?]}N univoque (with respect to 9) if the equa-
tion

O O O O

n=1 n=1

is only true in the case e = S, i.e. e„ = Sn, forn e N (i 6 {0 ,1 , . . . , 1#]}N). In this
case the number ^Z^Lx £n@™ is said to be univoque, too.

The sequences
0 : = (0 , 0 , . . .) , [£]:=([/?],[/?],. . .)

are univoque,. because every other sequence is clearly larger or smaller than these
ones, respectively, using lexicographic ordering.

Fore e {0 ,1 , . . . , [£] } N let e = [/?]-£ = { [f t] - £ i , [ft]-£2, • • •)> w h i c h w e will call
the complementary sequence. From this it follows that e 6 {0 ,1 , . . . , [ft]}N. and if

* = E~=i en®". then E " = i = ([/?]," ei)© + № - ^) © 2 + ..- = L-x.

E X A M P L E 1 . (C O N T I N U E D)

Are the following sequences univoque in the number system with base number
ft = y/6 + 2?

a) The sequence (3 , . . . , 3,3,4,4, . . .) .
Here we can substitute the last digit 3 . with digit 4, using for example

1 = 0,42(0). Thus, if we "catch" a digit 4 and a digit 2 from the tail of
the sequence, we get (3 , . . . , 3,4,0,2,4,4, . . .) , which represents the same num-
ber, .so it is clearly not univoque. Of course, using other expansions of 1,
we get infinitely many different sequences representing the same number: from
1 = 0,4142(0) it derives (3 , . . . , 3,4,0,3,0,2,4,4, . . .) , from 1 = 0,414142(0) we get
(3 , . . . ,3 ,4 ,0 ,3 ,0 ,3 ,0 ,2 ,4 ,4 , . . .) etc.

We can work similarly with the complementary sequence (1 , . . . , 1 ,0 , . . .) . Here
we can substitute the last digit 1 with digit 0, using 1 = 0,42(0). Thus we get
(1 , . . . , 1,0,4,2,0,0, . . .) , which represents the same number, and we can produce
infinitely many such sequences in the same manner.

b) The sequence .(4,... ,4 ,3 ,3 , . . .) ,
In this sequence we are not able to change any digit using the equation 1 = 4 0 +

2©2, since we would get in all cases non-usable digits: (4 , . . . , 4 ,2 ,3+4,3+2,3 ,3 , . . .)
or (4 , . . . ,4,4,3 — 4,3 — 2,3,3,. . .) . The same is true of the complementary sequence,
so we conclude, that both of the sequences are univoque.

We have seen,, that the expansions of 1 play a very important role in deciding
the univoque property. Since [/?]© < 1 both in the regular and the quasiregular
expansion of 1 surely £i = [/9] and 5\ = [/3] it [ft] < ft.

Now we present the exact theoretical investigation. Some of the results were
already presented in [4], these parts we quote briefly, without proofs (Lemma 1.,
Propositon 1., Theorem 1. and 2.).

HausdorfF Dimension of Univoque Sets 307

By using the regular expansions we are able to decide whether a sequence is
univoque or not:

L E M M A 1. E G { 0 , 1 , . . . , [/?]}N is univoque with respect to 0 e and [f3] — E

are regular.
(This Lemma is a generalization of Theorem 2.1 in [1].)

By Lemma 1., in order to decide whether a sequence is univoque or not we need
the regular expansion of the sequence and that of the complementary sequence. To
establish that an expansion producing a number less than 1 is regular, we use the
result of W . PARRY [8]. By reformulating his results according to our notations
we get the following

P A R R Y CONDITION.

b = (bi, 62, • • •) is regular representing a number less than 1

(bn,bn+1,...) < (£i,£2 , . . .) V n> 1,

where 0 < x = bxO + 6202 + • • • < 1 with b e { 0 ,1 , . . . , [/3]}N, and (¿1}e2,...) is
the coefficient sequence of the quasiregular expansion of 1.

Using only the Parry condition we are not able to decide the univoque or regular
property of a sequence representing a number in the interval [1,1/]. To accomplish
this we shall use other Propositions [4], and eventually it follows, that the fur-
ther regular sequences are in the form ([/?],..., [/3], 61, b2, • ..) where the sequence
(61, b2,...) is regular representing a number less than 1.

The set of the univoque numbers. Let
00

H = {x = e„.0n|a; G [0,L] and e univoque with respect to 0 }
71— 1

be the set of the univoque numbers of the interval [0, L], and similarly H* and H\
the set of the univoque numbers of the intervals [0,1), [0,1) respectively.

PROPOSITION 1. We have
00

Hi = {0}U |J QnH*.
71=0

By Lemma 1., the location of the univoque numbers in the interval [0, Z/], is
symmetrical, and from Proposition 1., it is self-similar. Thus, if L < 2, then from
the univoque numbers of the interval [0,1) by reflection we can get the univoque
numbers in [1 , L], and so eventually the univoque numbers of the whole interval
[0,L], _

L = < ï z q ! a n d the fraction on the right side is less than 2 if 1 — 0 > i.e.
if ¡3 > 2. This will be assumed in the sequel, since the properties of the univoque
set in the cases 1 < (3 < 2 are already well-known ([1],[2]).

308 Gábor Kallós

Thus, we can specify all univoque numbers (the set H) if we know the univoque
numbers in the interval [0,1), i.e. the set H*.

Breaking down the problem into two cases. Let us notice now that

Clearly, in this interval there exists a OK for which KOK + OJ< 2 = 1, since for
all 0 in this interval KO < 1 but (K + 1)0 > 1. The value of this number is

-K + s/K2 + 4
QK = g ,

and if we use the notation /3 K = ^ r , then ¡3K — K + O K -

The case when the fraction part is larger than OK (K + 1>/3>K + OK)
will be called from now on the "big case", and the case when the fraction part is
smaller than 0K (K < ft < K + 0K) the "small case".

4 Univoque sequences in the small case
Let

Z = {z = e10 + e 2 0 2 + e3©3 + • • • |1 < £i < K - 1}.
THEOREM 1. All elements of Z are univoque numbers.
However, there are also other univoque sequences. According to our former

investigation, the univoque sequences are the following:
a) The sequences [/3] = K and 0,
b) the sequences of type [/3]... [/3]bibi+i . . . and 0 . . . O&ifcj+i . . . , where for the

tail b = bibi+1 ...

hh ...< oj{b) < ht2...

is true of all j = 0 ,1 , . . . (a is the shift operator).

So we can represent the whole univoque set from Z as follows:
o o oo

H = { 0 } U {L} U Z U (J OjZ U (J (K0 4- K O 2 + ... + K O 3 + OjZ).

j=i j=i

The Hausdorff dimension of the set H. The Hausdorff dimensions of the
sets OjZ and KO + ... + KOj + OjZ (j = 1 ,2, . . .) are clearly the same as the
dimension of the set Z. Thus, the Hausdorff dimension of the whole set H equals
the dimension of the base set Z.

To compute the dimension of the set Z, we first specify the self-similarity di-
mension, and after this we check the fulfilment of the open set condition, which
guarantees that the Hausdorff dimension equals the self-similarity dimension, ac-
cording to the method presented by G . A . E D G A R [3].

HausdorfF Dimension of Univoque Sets 309

T H E O R E M 2 . The Hausdorff dimension of the univoque set is

dim H = log(K - 1)
log/3 '

R E M A R K . TO represent the univoque sequences we can use a graphic model.
We build a directed graph, the nodes of which are the usable digits in the number-
system, and draw an edge from the node a to b if the digit b is allowable (in a
univoque sequence) after digit a. We label the edges by 0 . Thus, we get a directed
graph called Mauldin-Williams graph [3]. Wandering over all the digits of the
graph, we can construct all univoque sequences. The fulfilment of the open set
condition guarantees, that the self-similarity dimension of the graph is the same
as the Hausdorff dimension of the set H. The graph model is a useful means to
demonstrate the univoque sequences, but it is not absolutely necessary.

The number system with base number
In this number system [¡3] = 2, A = {0,1,2}, 0 = y/2 - 1,

L =
20 _ 2\/2 — 2

1 - 0 ~~ 2-y/2
v/2.

Since 20 + 0 2 = 1, the sequences belonging to the regular and the quasiregular
expansion of 1 are 21 and (20)°°, respectively. This number system belongs to the
small case, thus the univoque sequences are the following:

a) The sequences 2 and 0,
b) the sequences of type 2 . . . 211... and 0 . . . Oi l
Let us denote the set of the univoque numbers beginning with i with Hi, where

i = 0,1,2. The set of all univoque numbers is H = Ho U Hi U H2, with

H0 = (0 + ©Ho) U (0 + 0-Hi),

Hi = (0 + QHi),

H2 = (20 + 0 H i) U (20 + QH2).

The structure of the univoque set is representable by the Mauldin-Williams
graph shown on Figure 1.

Figure 1: The Mauldin-Williams graph in the number system l + y / 2 .

310 Gábor Kallós

Since

Hi = {(1)°°} =

the set H contains only countably many elements. Thus, its self-similarity and
Hausdorff dimension is 0, according to Theorem 2.

The set H approximately has the form 1 shown on Figure 2.

IFH 1 1 1 1 1 L-H

0 1 L

Figure 2: The approximate form of the set H

REMARK . The univoque set is very similar to this in all of the cases, when
2 < / ? < / ? 2 = l + V2, since the univoque sequences have the same form. These
base numbers give the simplest univoque sets investigating number systems with
P > 2.

5 Univoque sequences in the big case
In the big case the structure of the univoque set is much more complicated than
in the small case. Usually, the Mauldin-Williams graph of the set is not strongly
connected, it contains more strongly connected parts. We build up this graph in
the same manner, as before (using the Parry condition). The nodes of it repre-
sent the allowable digits (or sequence parts) in the univoque sequences (because
of the complicated structure it is possible, that in the representation we have to
use sequence parts - see the following example). From the node iii-2.. . in there is
an edge to the node jijz • • - jn, if «2^3 • • - in = jij-2 • • -jn-i, and the sequence part
¿i«2 .. • injn is allowed in a univoque sequence.

THEOREM 3 . The Hausdorff dimension of the univoque set in the big case is
the same, as the largest self similarity dimension of the strongly connected parts.

PROOF. Let us assume, that the graph representing the univoque set has m
strongly connected parts, V ^ . . . The graph part V ^ has a unique
self-similarity dimension, let us denote this by dims

a) First we prove, that the self-similarity dimension of D'1 ' is the same, as the
Hausdorff dimension of V ^ (which we denote by dimX^1').

To do this we have the check the open set condition. We prove this part gener-
ally, for an arbitrary (strongly) connected graph part. Let us consider for all nodes
v the set Iv on the number line, which contains the picture of the sequences begin-
ning with v. This is a closed interval. Intervals according to different nodes can not

' T o draw Figure 2 and Figure 4 we have used the computer algebra software Maple [7]. Maple
is a registered trademark of Waterloo Maple Inc.

HausdorfF Dimension of Univoque Sets 311

have an intersection. Let us assume to the contrary, that fl Ij1j2...jn ^ 0.
Since the nodes are different, we can find different digits in the same position:
ik jk- If c a n be assumed, that for example ik — jk + 1, since if it is not possible,
then clearly larger difference can not exist, too. The smallest element in the first
interval is

ii • 0 + i2 • 0 2 + • • • + h • Qk + 0 • Qk+1 + 0 • 0 f c + 2 + . . .

and the largest in the second must be smaller than

h • e + i 2 • e2+...+(»* -1) • Qk+h • e k + 1 + i 2 • e f c + 2+. . .•+ e p • e k + p + ¿ 1 • e k + p + 1 + . . .

where in the following the digits l\t2 .. . lp are repeated, which are the coeffients
in the quasiregular expansion of 1 (this result follows from the Parry condition).
Thus, the intervals can not have an intersection. Choosing open intervals "little
bit larger" than these closed intervals there is still no intersection, so eventually
dimsr>W =dimZ>(1).

b) As in a) we have dim£>(2) = dimsP<2). The set V{1) U £><2> is situated in
the graph representing the whole univoque set in such manner, that we complete
the two strongly connected parts with the through leading edges and nodes. Now,
using the results of R . D . MAULDIN and S . C . WILLIAMS [6], we deduce that

dim(£>W U X>(2)) = max{dims(£> (1)),dims(p'2^)}.

In the sequel we consider the graph part containing the sets V ^ and P ' 2 ' as one
component, and we add the set V ^ etc. Finally we get for the Hausdorff dimension
of the whole graph Q\

dimi? = max(dimsD (1),dimsX> (2),... ,dims£>(m '),

and since the open set condition is satisfied, this is the Hausdorff dimension of the
set H.

•

The number system with base number a(26+6>/33)3
(26+6\/33)f-8-(26+6\/33)3

In this number system 2 /3 « 3,3830, thus A = {0,1,2,3}. The regular expansion
of 1 is 1 = 30 + 0 2 + 6 3 , and the quasiregular form is 1 = 0,310310.... Thus, the
univoque sequences can not contain the following parts:

(3,3),(0,0), (3,2), (0,1), (3,1,3), (0,2,0), (3,1,2), (0,2,1), (3,1,1), (0,2,2).

The possible parts are the following:

(3,1,0), (3,0,3), (3,0,2), (2,3,1), (2,3,0), (2,2,3), (2,2,2), (2,2,1), (2,2,0),
2 T h e base number of the number system is the reciprocal value of the real solution of the

equation 1 = 3 0 + 0 2 + 6 3

312 Gábor Kallós

(2,1,3), (2,1, 2), (2,1,1), (2,1„0), (2,0, 3), (2,0, 2),

and their complementers:

(0,2,3), (0,3,0), (0,3,1), (1,0,2), (1,0,3), (1,1,0), (1,1,1), (1,1,2), (1,1,3),

(1,2,0), (1,2,1), (1,2,2), (1,2,3), (1,3,0), (1,3,1).

Now if we would like to denote the possible parts unambigous, then we have to
use three digits in a node. Similarly as before, we will use the sets H ^ i ^ , and we
can write the set equations, for example:

0 2 3 = (0 + 0 # 2 3 l) U (0 + 0 # 2 3 O)

1 0 2 = © + © # 0 2 3

#111 = (0 + 0 # n o) u (0 + 0 # n i) U (0 + 0 # n 2) U (0 + 0 # n 3)

To save place, we have omitted the further equations, but it is an easy exercise to
write those ones, too. The structure of the univoque set is representable with the
Mauldin-Williams graph shown on Figure 3. The graph contains two strongly con-
nected parts. To indicate this, we have separated the nodes. The nodes which have
"through leading" role are shown alone, and their edges indicate the connections.

L J-

302-*~ 023

Gf l ïT .
M X

. f y

t t Eaäp—^Í222lO
J t y TT

102 103 13 0 131 202 203 23 0 231 3 02 303 310 023 030 031 102 103 130 131 2 02 2 03 230 231

t t t-t I t t ! t t I t t t i, \ t, ,t t.
|110[11X31 11201 11231 |130| |131| |202| ¡203] |210| |213| 22 0 12231
1 F T T .1 T 1 r • t r 1 F T T T T T T 1 T. f r i r
111 a l l 111 211 112 212 112 212 113 213 113 213 120 220 120 220 121 221 121 221 122 222 122 222

Figure 3: Mauldin-Williams graph. (See text for details.)

To specify the self-similarity dimension, for the strongly connected graph parts
we get the following equation systems:

The first graph part

9023 = ^ ' 9230 + ^ ' 9231

9030 = ^ ' 9302 + ^ ' 9303 = 9230
9031 = ^ ' 93 io = 9231

HausdorfF Dimension of Univoque Sets 313

<?102
 =

 A ' 1023
 =

 9302

9l03
 =

 A ' 5030 + A ' 9031 — 9303

9310
 =

 A ' ?102 + A ' 9l03;

where qijk is the Perron number belonging to the node ijk, s is the self-similarity
dimension of the graph part, and A = 0 s . After repeated substitution

9o23
 =

 A ' 9o30 + A
2

 ' 9o30

9030
 =

 A
2

 ' 9023 + A ' 9023

We can choose without any restriction one of the Perron numbers ([3]), let for
example 5023 = 1- Thus, from the last equations

1 = A • 30 + A2 • q*30 and
9030 = A2 + A.

From these two equations 1 = A2 + 2A3 + A4 = (A + A2)2. The solution of
A2 + A - 1 = 0 is

_ V 5 - 1

so the dimension is
l o g ^)

log/0
The second graph part

0,3948.

9 Í n =
 A

 • 9Í11 + A • q(12 = 1211
9ll2

 =

 A ' 9l21 + A • 9l22 = 9212

9i2i = A • gfii + A • 9212 = 9221

9l22 = A • 9221 + A • 9222 = 9222

After repeated substitution
9Íii = A • q¡n + A • qsn2 = 9ll2

From this <7fn = 2A • and A =
Thus, the dimension is

S = M « 0,5687,
log/3

and the dimension of the whole graph is eventually the dimension of the second
graph part. The open set criterion is now satisfied, so this is the Hausdorff dimen-
sion of the whole univoque set, which approximately has the form shown on Figure
4.

I I I II I I II I I II I—I II I I II I I II I—I II I I II I I II I—I II I I II I I II I I I
0 1 L

Figure 4: The approximate form of the set H

314 Gábor Kallós

References
[1] Z . D A R Ó C Z Y , I. KÁTAI , Univoque Sequences, Publ. Math. Debrecen. 4 2 .

(1 9 9 3) , 3 9 7 - 4 0 7 .

[2] Z . D A R Ó C Z Y , I. K Á T A I , On the Structure of Univoque Numbers, Publ. Math.
Debrecen, 46. (1995), 385-408.

[3] G . A . E D G A R , Measure, Topology and Fractal Geometry, Springer Verlag,
New York, 1994.

[4] G . KALLÓS , The Structure of the Univoque Set in the Small Case, Publ. Math.
Debrecen, 53. (1998). (to appear)

[5] D . E. K N U T H , The Art of Computer Programming, Vol. 2., Addison-Wesley,
1981.

[6] R . D. MAULDIN, S. C. WILLIAMS , Hausdorff Dimension in Graph Directed
Constructions, Trans. Amer. Math. Soc., 309. (1988), 811-819.

[7] M O L N Á R K A G Y Ő Z Ő ET AL., A Maple V és alkalmazásai, Springer, 1 9 9 6 .

[8] W. PARRY , On the /3 Expansions of Real Numbers, Acta Math. Hung., 11.
(1960), 401-406.

[9] A. RÉNYI , Representations for Real Numbers and their Ergodic Properties,
Acta Math, Hung., 8. (1957), 477-493.

Acta Cybernetica 14 (1999) 285-302.

Optimal parameters of a sinusoidal representation
of signals

A. Kocsor* L. Tóth* I. Bálint™

Abstract

In the spectral analysis of digital signals, one of the most useful paramet-
ric models is the representation by a sum of phase-shifted sinusoids in form of

Ansm(ujnt + <pn), where An, w„, and ipn are the component's ampli-
tude, frequency and phase, respectively. This model generally fits well speech
and most musical signals due to the shape of the representation functions.
If using all of the above parameters, a quite difficult optimization problem
arises. The applied methods are generally based on eigenvalue decomposition
[3]. However this procedure is computationally expensive and works only if
the sinusoids and the residual signal are statistically uncorrelated. To speed
up the representation process also rather ad hoc methods occur [4]. The
presented algorithm applies the newly established Homogeneous Sinus Rep-
resentation Function (HSRF) to find the best representing subspace of fixed
dimension N by a BFGS optimization. The optimum parameters {A,tu,(p}
ensure the mean square error of approximation to be below a preset threshold.

1 Introduction
Since the invention of the telephone, speech or generally sound processing and
representation have paramount importance in electrical engineering. In the last
years the rapid development of multimedia and computer networks brought a revival
of the high-effective coding and representation problem.

By the classic model of speech generation, the voiced part of speech comes from
the oscillation of the vocal chord, which is modellable by an oscillating string. The
voice consists of a fundamental and its harmonics, therefore it is well representable

*MTA-JATE Research Group on Artificial Intelligence, H-6720 Szeged, Aradi Vértanuk Tere
1, Hungary

^Department of Theoretical Physics, József Attila University, H-6720 Szeged, Tisza L. krt.
80-82., Hungary

^Department of Pharmaceutical Analysis, Szent-Györgyi Albert Medical University, H-6720
Szeged, Somogyi Béla u. 4., Hungary

§ Department of Natural Scienses, Polytechnic of the Miskolc University, H-2400 Dunaújváros,
Táncsics M. u. 1., Hungary

315

316 A. Kocsor L. Tôt h I. Bâlint

in the form
N-1

Ansin{uint + ipn).
n=0

The error of this approximation gives the 'unvoiced', noise-like part, which can be
decoupled from the signal. The model fits well also musical signals, since the sound
of most musical instruments (stringed-, wind instruments, etc.) consist of harmonic
sinusoids. The residual signal again contains the noise-like part of the sound (e.g.
drum hits), which should be modelled separately.

The above form of the model yields a complicated optimization problem enforc-
ing some simplifications. In case of DFT (Discrete Fourier Transform), the number
of sinusoids and their frequencies are fixed providing a rapid way for the compu-
tation of amplitudes and phases. However, in general, the individual sinusoidal
components of this representation may significantly differ in their parameters from
the real sound components. The method of McAulay-Quatieri [4] tends to deduce
the real frequencies of components by looking for peaks in the DFT spectrum. A
basically different approach is based on eigenvalue decomposition [3]. Here, only
the dimension of approximation space is fixed, but the statistical independence of
the representation functions (sinusoids) and of the residual signal is required.

The presented procedure is free from requiring any statistical condition, only the
dimension of approximation space is fixed. The established optimization problem
is based on a recently introduced functional [16] and it is solved very effectively
by the BFGS [10,12,13] method. The efficiency of the method is illustrated by-
representations of artificial and natural voice patterns.

As to the structure of the report, the second section provides the usual, 'con-
servative' formulation of the problem, the third section deals with the introduced
Homogeneous Sinus Representation Function (HSRF), the fourth section investi-
gates the properties of HSRF, the fifth section discusses the workhorse optimization
scheme BFGS, finally the sixth section delivers the numerical illustrations and con-
clusions.

1.1 Notational conventions

The Euclidean norm is denoted by || ||, the gradient of a function f(x) : !Rn —> IR
by

and the Hessian will be denoted, as

/ d2j(x) a2f(x) \
dx\dxi dx\dxn

V x V f(x) =
92f(x) 92f(x)
dxndx\ dxn dx

Optimal parameters of a sinusoidal representation of signals 317

Definition 1.1 The continuous function / (x) : IR™ IR is homogeneous of Ith
degree, if

f(kx) = fc'/(x), feelR.

2 The representation problem
A signal is sampled at points to, t j , • • •, TK-\ of a closed time-interval [0, r] and the
obtained values are represented by the real sequence,

X [t 0] , • • -,x[TK-i].

A function of the form
J V - 1

^ An sin(unt + ipn)
n = 0

is sought, which approximates the measured sample with a preset error e > 0, by
fixing the dimension of approximation space to N,

K-1 /N-1 \2

min zL [Y , AnSin(TkUn + iPn)-x[rk]\ < e. (1)
A i , • • • , A n - i k = 0 \ n = o J

Wi, • • • ,UJV-1
^i, • • - ,<PN-I

3 Optimization of the Homogeneous Sinusoidal
Representation Function

Let be introduced the following notation,

TV—1

wk(A,u,p) := Ansin(U}NTK + cpn), k = 0, • • • , K - 1 (2)
n=0

where

A := • • • w := [w0,' • • ^ := [<p0,-' • ,<Piv-i]T

and let be applied the trigonometric identity,

J V - 1

wk (A, u, ip) := ^ An sm(rkUJn + tpn) =
n=0

J V - 1 J V - 1

An(sm(ujnTk) cos((/?„) + cos(w„rfc) sin(<^„)) = ^ an sin(w„rfc) + bn cos(uinTk),

318 A. Kocsor L. Tôt h I. Bâlint

where
an = Ancos(<pn), bn = Ansm(ipn). (3)

By introducing new variables.

/ ,C", n == sin(wn), . := cos(w„), c2 + 4 / 0 , (4)
V cn + d i \Jcn + d-n

we obtain
N-1

ßn sin(wnrA) + bn cos(WNTF C) =
n=0

N-l
V awsin(rfc arcsin(—^ ")) + b„ cos(rfc arcsin(_ ü = =)) =: b, c, d),

where
a := [a0l • • • ,Qiv-i] , b := [&o, • • • , V - i] ,

c : = [co, • • • ,CAT_I]t, d : = [D0, • • •

If we introduce two further vectors,

x := [x[r0], • • • ,a;[rA-_i]]T, w := [w0(a, b, c, d), • • •, wK-i{a., b, c, d)]T

the Homogeneous Sinusoidal Representation Function (HSRF) to be optimized will
be

Lxw(a, b, c, d) := x T xw T w — (xTw)2. (5)

4 Some properties of HSRF
Notation 4.1 Let the parameters a, b,c, d of HSRF be concatenated into a single
vector, as follows

z = [a,b, c, d]T = [a0, • • •,a^r-i, bo,''' ,bjv-i,co, • • •, Cjv-i, do, • • • , d,v-i]T.

Vector z is of 4Ar-dimension and the concatenated components occupy the following
fields:

a, ,if 0 < i < N - 1
bi-N ,if N <i < 2N — 1

Ci_2jv ,«/ 2N<i<3N-l '
di-3N ,if 3N < i < AN - 1

Lemma 4.2 HSRF exhibits the properties:

1. Lxw(z) is a homogeneous function of 2nd degree.

ZI= <

Optimal parameters of a sinusoidal representation of signals 319

2. L x w is a Oth degree homogeneous function of its variables c . d :

Lxw(a, b, Ac. Ad) = L x w (a , b. c, d), 0 ^ A e IR

3. Lxw is a 2nd degree homogeneous function of its variables a, b :

Lxw(Aa, Ab, c, d) = \2LXw(a, b, c, d), A € IR

4• Lxw(z) = Lwx[z)

Proof . Point 4. satisfies trivially, points 1., 2., and 3. follow from the continuity of
L x w (z) , as well as from the enumerated properties obeyed by Wk(z) = wk(a, b, c, d):

1. Wfc(Az) = Awfc(z), O ^ A e l R .

2. Wfc(Aa, Ab, c, d) = b, c, d), A € IR.

3. Wfc(a, b, Ac, Ad) = w*(a,b, c ,d) , 0 ^ A g IR. •

Theorem 4.3 HSRF exhibits the enumerated properties:

1• Lxw(z) > 0 and L x w (z) = 0 if and only if the x and w vectors are linearly
dependent.

2. If z is an optimumpoint of Lxw(z), then Lxw(z) = 0.

3. If L x w (z) = 0, then VL x w (z) = 0.

Proof .

1. Function Lxw(z) stems from the Cauchy-Scwartz-Bunyakovszkij inequality
applied on the vectors x £ I R a ' and w(z) £ I R :

x T x w (z) T w (z) > (xTw(z))~.

The equality satisfies, if the vectors are linearly dependent,

x T xw(z) T w(z) - (x T w(z)) 2 = 0.

2. If z € IR4^ is an optimumpoint of L x w (z) , then necessarily VL x w (z) = 0.
Euler's theorem ensures that the 2nd degree, homogeneous function L x w (z)
obeyes the equality:

z T V L x w (z) = 2Lx w(z).

Therefore a zerovector gradient implies a zero function value, VLX W(z) =
0 = > Lxw(z) = 0 .

320 A. Kocsor L. Totli I. Balint,

3. If Lxw(z) = 0, the vectors x and w are linearly dependent, i.e. x = Aw(z)
without restricting generality. The following sequence of equalities proves the
statement:

VLxw(z) =

= xTxV (w(z)Tw(z)) + V (xTx) w(z)Tw(z) - 2 (xTw(z)) V (xTw(z)) =

= A2 (w(z)Tw(z)) w(z)TV (w(z))+0—2A2 (w(z)Tw(z)) w(z)T V (w(z)) = 0
•

The properties of Lxw(z) discussed above ensure good optimization properties.
The optimumpoints of this non-negative homogeneous function are global and a
gradient-based optimization scheme may efficiently localize them.

Lemma 4.4 The gradient VLxw(z); z = [a,b, c,d]T is of the form:

The partial derivatives by the various sets of variables are as follovi:

9 m • t (X\

A W f c (z) = c o s ^ a r c s i n (- 7 = ^ = ^

Tkdi (ai cos I rfc arcsin (,Ci I I — bi sin (Tk arcsin

I K U j I U t ^ y j o I < R C U U C U l l 1 , I I L/J O l l l 1 , fc C l i ^ O l l l / , ,
o . . V V V vci+di J J V V v'ci+di

^ k { z) = W^W)

Q TkCi ^a* cos arcsin ^) ~ bi s i " (Tfc a r c s i n I yc2+rf2

Proof. The proof is trivial by the differentiation rules. •
The next theorem provides the bridge between the function value of HSRF and the
representation problem (1).

Theorem 4.5 If for any positive number S and for real vectors z £ IR4N and
x G IRK, (z) <5 is satisfied, then

x W (Z)
Ai ||w(z)|| x[Ti}' '

Optimal parameters of a sinusoidal representation of signals 321

Proof. For the sake of simplicity, the argument z of w(z) and of itij(z) will be
omitted and xfc] will be denoted simply as Xi.

'K-1 n<-\ n<-1
Z,xw(z) = x T x w T w - (x T w) 2 = ^ x¡ ^ " Xi x XiWi

K — L K-1

. i=0 J \ i=0
K-1 K — L

. 1=0

i=0 j=0

K-1 /Í-1

»=0 j=0 v 4 ' ¿=0
If choosing the 'best' of AjS, the inequality

¿=o j=o

2 , K-1 w X - < <5

- ||w|| mm 2 j A,;

2 n /f-1

< I > ?
i=0

proves the statement.
If the previous optimization yields a z0 satisfying

2
x - w(z0) XT.

ws{z) = min x - w(z0)-
Wi(z)

<

<5,

2¿xw(zo)
l|w(z0)ir

•

the difference of the Euclidean norm of the signal vector x and the representation
vector ' "

z [r s] w(z0) ws(z)
is given by the above expression.

5 Solving the representation problem by NHSRF
5.1 Application of the BFGS optimization scheme
For minimizing the representation functional the most suitable procedure proved
to be the gradient based Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme
[10,12,13]. Since also the zero-vector is an optimumpoint of Lxw(z) to avoid .conver-
gence to the zero-vector, the HSRF is normalized to be a Otli degree homogeneous
function of the form,

¿x w(z) .
INI INI' W

This will be called Normalized HSRF, NHSRF in short. Every former obtained
result are inherited by NHSRF, however the new partial derivative components of
the gradient are given below,

8 Lxw(z) _ 1 INI (gj -L*w(z)) - L x w (z) ^
9o.i INI INI ~ INI M 2 ~

322 A. Kocsor L. Tôt h I. Bâlint

d L x w (z) _ 1 l | b | | (^ L x w (z)) - L x w (z) ^
9bi ||a|| ||b|| ||a|| ||b||2

d L x w (z) _ 1 d
5Ci||a||||b|| ~ ||a|| ||b|| dci x w l Z j '

d L x w (z) _ 1 d
ddi ||a|| ||b|| - ||a|| ||b|| ddi x w l Z j '

Every test result displayed for illustration was obtained by the NHSRF. For termi-
nating the line-search

. L x w (z + /td)
INIIIbll '

the Wolf-condition, for initializing the H-matrix, the unit matrix was used. For
terminating the whole BFGS optimization generally the acceptable low norm of
the error-vector, as well as that of the gradient was used. We also have stopped
the iteration, if the condition

2-LXw(z) ^
l|w(z)||2

as referred in Theorem 4.5 was satisfied.

5.2 Estimation of the number of necessary operations
For one iteration step of the BFGS scheme generally the function value and gradient
should be computed at several points in the line-search process. This requires to
evaluate scalar products, which can be obtained with o(NK + K2) operations,
because for any k,

N-I C

V an sin(rk arcsin(_ ! ! — :)) + bn cos(rfc arcsin(")) = wk(a, b, c, d)
^ Vcn + < V c n + di

can be obtained with o(N) operations, and the /f-dimensional vector w is obtain-
able with o(NK) operations. To evaluate the function value, as well as the gradient,
scalar products of /("-dimensional vectors have to be computed. The update of the
4./V x 4Ar-size ii-matrix requires o(N2) operations in every step counting altogether
o(N2 + NK) operations per step. Since generally the number N of sinusoidal com-
ponents is much less then the number of the components in the signal vector, the
number of really required operations is of o(NK).

6 Numerical illustration of the algorithm
The aim is to construct an acceptably accurate sinusoidal representation of an
arbitrary (sound) signal. The procedure is based on the optimization of NHSRF
starting from an approximate sinusoidal decomposition of the signal. The procedure

Optimal parameters of a sinusoidal representation of signals 323

aims to reduce the number of sinusoidal components by retaining the accuracy
of the representation. The numerical illustrations are mainly artificial examples
to obtain a well-defined measure for the accuracy of approximation, however the
representation of a natural sound sample is also included.

In all cases of artificial and natural sound patterns an approximate sinu-
soidal represenation served as initial parameters of the NHRSF optimization. The
X[TO], • • • , X [T K - I] signal was decomposed by the following iterative algorithm:

• In every iteration, first the DFT of the signal was computed on a zero padded
2048 base point data set using a Hamming window. The obtained spectrum
is the convolution of the transformed signal and the transformed window.

• The maximum amplitude component was selected. To remove the unpleas-
ant effect of windowing, the Fourier-transform of the window function was
subtracted from the spectrum after a suitable shifting and scaling.

• The iteration was continued until the largest amplitude was smaller than a
preset positive number.

The iterations steps necessary for the NHSRF optimization algorithm to reach the
required accuracy was empirically tested. Both in the case of the natural and
artificial tests the number of function and gradient evaluations necessary for one
iteration step was generally one or two.

6.1 Representation of artificial signals
The sample to be represented was a sum of N sinusoidal components sampled at K
points, where the parameters Aq, • • •, \ wo, • • •, ojn-V, and tpo, • • •, ipN-i were
specified:

JV-l
x[k] = Ansin(ujnk + tpn), k G {1, • • • ,K}.

71=0

Using the above mentioned DFT-based decomposition of the signal,

the following estimate was obtained,

p-1

X [k } ^ j 2 A ' n f c G { i , - . - , / a ,P>N,
n=0

which proved to be generally unacceptably inaccurate. Without restricting gener-
ality, we can assume the following ordering of the components A[> A'j <£> i > j,
which selects the N components,

At At / I / t
^Oi " " > a N - 1> w0> ' ' ' > WiV-l! Vo>'"' > VN- 1

324 A. Kocsor L. Tot,11 I. Bahnt

U) V K iter ¿1 ¿2
0.2 0.1 2 100 8 0.0006 10-17

0.2 0.1 2 200 9 0.0031 1 0-l i)
0.2 0.1 2 400 7 0.0131 10"15

Table 1: Approximation of one sinusoidal component.

dominating by amplitude. The optimization process started in every case from
these dominant components by constructing the initial parameter vector

z = [a0; ' ' ' j aiv —l > K>>''' > bjv-i, c'o>''' i c'/v-i > d'o, • • •, <^v-i]T

using (3) and (4). Let be assumed, that the optimization of (6) resulted in the
optimum vector

r II ll ill rll ll ll ill Jll l T z

O — i«o 1 ' ' ' > aN-1! °0> • • • , °N-li
 c

0 ! ' • ') cN-l>aO > ' ' ' I " N - l J

and the inverses of transformations (3) and (4) yielded the parameters

All All II It II II
A0 > ' ' ' i 1) w0 J • • • , ip0 , • • ' , Vjv-1-

The error of the DFT-based signal representation is

N-l SI = J 2 (A<> ~ A'NF + K - WN)2 + (VN - TFN? , (7)

n = 0

while that of the NHSRF-based signal representation is

JV-l Ä2 = £ (An - K f + - O 2 + (¥>n - • (8)
7 1 = 0

For TV = 1,2,3, three examples were investigated in each case and the results are
displayed in Tables 1.-9.. The rows of the tables display the parameters of the
sinusoidal basis functions cj,ip,A, the number of sample points K , the number of
iterations iter and the accuracies of DFT-based and NHRSF-based representations

, ¿2 • The discussion of the results will be given together with the discussion of
the natural test results.

6.2 Representation of natural sound signals
To check the accuracy and efficiency of the proposed algorithm on natural sound
patterns, the phone / a / was represented and synthesised by the DFT decompo-
sition, as well as by the NHSRF optimization based scheme. The sample was
consisting in 861 points from the middle of a, the DFT algorithm described above

Optimal parameters of a sinusoidal representation of signals 325

LÜ V A K iter Si (5,
0.2 0.1 200 100 7 0.2456 io-15

0.2 0.1 200 200 10 0.1858 10-ib
0.2 0.1 200 400 11 0.0456 10"15

Table 2: Approximation of one sinusoidal component.

to A K iter ¿i ¿2
0.2 0.1 0.02 100 10 0.0006 10-28
0.2 0.1 0.02 200 8 0.0031 10-2Ü
0.2 0.1 0.02 400 9 1 0.0131 10-18

Table 3: Approximation of one sinusoidal component.

U1 A K iter ¿i Í2
0.1
0.2

-0 .1
0.1

3
2 100 18 0.5452 10"17

0.1
0.2

-0 .1
0.1

3
2 200 18 0.0194 1 0

- 1 9

0.1
0.2

-0 .1
0.1

3
2 400 20 0.0727 1 0

- 1 6

Table 4: Approximation of two sinusoidal components.

OJ A K iter ¿i ¿2
0.85
0.98

-0 .1
0.1

1201
1200 100 19 7.6271 1 0 - i o

0.85
0.98

-0 .1
0.1

1201
1200 200 17 19.470 lO"13

0.85
0.98

-0 .1
0.1

1201
1200 400 20 77.481 10-11

Table 5: Approximation of two sinusoidal components.

326 A. Kocsor L. Tóth I. Bálint

UJ A K iter Si 62

0.1
0.2

-0 .1
0.1

1800
179 100 20 568.43 IO"12

0.1
0.2

-0 .1
0.1

1800
179 200 20 14.969 10- '°

0.1
0.2

-0 .1
0.1

1800
179 400 20 118.35 IO"12

Table 6: Approximation of two sinusoidal components.

LJ A K iter Si s2

1 0 30
0.1 -0 .1 3 100 27 0.7118 io - 1 6

0.2 0.1 2
1 0 30

0.1 -0 .1 3 200 21 0.0723 io - 1 3

0.2 0.1 2
1 0 30

0.1 -0 .1 3 400 22 0.0706 n r 1 5

0.2 0.1 2

Table 7: Approximation of three sinusoidal components.

OJ V A K iter ¿1 S 2
1 0 1200

1.2 0.5 200 100 28 2178.4 IO"12

1.1 -0 .9 129
1 0 1200

1.2 0.5 200 200 21 41.797 10"12

1.1 -0 .9 129
1 0 1200

1.2 0.5 200 400 25 57.899 IO"10

1.1 -0 .9 129

Table 8: Approximation of three sinusoidal components.

Optimal parameters of a sinusoidal representation of signals 327

ÜJ </> A K iter ¿i ¿2
1 0 130

0.1 -0 .1 129 100 29 0.3769 10"12

0.2 0.1 128
1 0 130

0.1 -0 .1 129 200 25 0.3253 1(T13

0.2 0.1 128
1 0 130

0.1 -0 .1 129 400 26 0.4165 10"12

0.2 0.1 128

Table 9: Approximation of three sinusoidal components.

Figure 1:

provided the sinusoidal decomposition of the signal and the sound pattern was
synthesised from the obtained sinusoidal components. The parameters of the first
20 dominant sinusoidal components of the DFT decomposition were used as initial
parameters of the NHSRF optimization scheme and the minimization of (6) yielded
the optimum decomposition of / a / , by the NHSRF-based procedure. The sound
signal was synthesised again from the obtained components. Unfortunately the
quality of sound synthesis is not easy to measure, since the metric is not Euclidean,
but a 'perceptual' distance function would be necessary to measure the 'goodness'
of the representation procedure. Therefore the 'comparison by listening' of the orig-
inal and synthesised sounds had a decisive role in the judgement. However to give
an easily noticeable impression on the accuracies of approximations of the natural
sound pattern, figure 1-3 display the original signal, the signal synthesised from the
50 largest amplitude components of the DFT-based decomposition and the signal
synthesised from the 20 components of the NHSRF-based decomposition.

328 A. Kocsor L. Totli I. Balint

20000
15000
10000

5000
0

- 5 0 0 0
-10000

- 15000

20000
15000
10000

5000
0

- 5 0 0 0
-10000
- 1 5 0 0 0
- 2 0 0 0 0

Figure 3:

7 Discussion

7.1 Artificial signals

The application of the proposed algorithm is especially important if either the
components of the signal are required with high accuracies, or the usual DFT-based
technics are not suitable to provide acceptably accurate results at all. This case
occurs if the sample is too short, the components are too close, or the amplitudes
differ too much. Our test functions were therefore of these types.

The proposed algorithm proved to be powerful in correcting the estimations
of the DFT-based decomposition procedure even in those cases where the former
algorithm provided quite acceptable results. Notice that the DFT-based scheme
estimated the phases very poorly, while the NHSRF-based algorithm corrected
these values.

7.2 Real sound signals

The proposed algorithm allowed to reconstruct the analysed sound signal from less
sinusoidal components (20 components) at higher accuracy than the DFT-based
method (50 components), as seen clearly on the figures. The DFT-based decom-
position of voiced sounds is generally unable to provide the sinusoidal fundamental
and overtones accurately enough and yields more overtone components than the
sample really contains. However the high-fidelity modelling of voiced sounds re-

Optimal parameters of a sinusoidal representation of signals 329

quires to synthesise the signal by the least sinusoidal components defined with
accurately determined parameters. This is a necessary condition for developing
and using efficient data compression technics, too.

7.3 Future Work

On the basis of the presented results, the NHSRF-optimizing algorithm proved to be
robust and efficient in applications of speech- and audio-processing. The aim is to
use the algorithm in sound coding and to develop a more advanced pitch estimation
method than the ones used nowadays. The momentarily fixed dimension of the
approximation subspace will be handled as variational parameter in the future.
This feature will help to separate the sinusoidal and the noiselike components of
the sound allowing to screen noise, to detect the unvoiced/voiced parts of the
sound, furthermore the upgraded procedure would be a candidate for being applied
in those sound coding methods, which are based on the 'sinusoidal + noise'-type
decomposition of the signal (e.g. Quatieri-McAulay).

References
[1] Alan V. Oppenheim, Ronald W. Schafer: Discrete-Time Signal Processing,

PRENTICE HALL

[2] L.R. Rabiner, R.W Schafer: Digital Processing of Speech Signals, PREN-
TICE HALL

[3] S. Lawrence MArple, Jr. : Digital Spectral Analysis with applications,
PRENTICE HALL

[4] McAulay, R.J. and T.F. Quatieri. 1986. "Speech Analysis/Synthesis based
on a Sinusoidal Representation." IEEE Transactions on Acoustics, Speech
and Signal Processing, 34(4):744-754

[5] Allen, J.B 1977. "Short Term Spectral Analysis, Synthesis, and Modifica-
tion by Discrete Fourier Transformation. " IEEE Transactions on Acoustics,
Speech and Signal Processing, 25(3):235-238

[6] Hess, W. 1983. Pitch Determination of Speech Signals. New york: Springer-
Verlang

[7] Harrs, F.J. 1978. " On the use of windows for harmonic analysis with the
discrete Fourier transform." Proceedings IEEE, vol. 66, pp.51-83.

[8] Goodwin, M. and X.Rodet. 1994. "Efficient Fourier Synthesis of Nonsta-
cionary Sinusoids." Proceedings of the 1994 International Computer Music
Conference. San Francisco: Computer Music Association.

330 A. Kocsor L. Tóth I. Bálint

[9] Mather, R. C. and J. W. Beauchamp. 1994. "Fundamental Frequency Esti-
mation of Musical Signals using a two-way Mismatch Procedure." Journal
of Acoustical Society of America 95(4):2254-2263

[10] Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty, NONLINEAR PRO-
GRAMMING theory and algorithms, John Wiley & Sons, [1993]

[11] J. L. Nazareth, Conjugate Gradient Methods Less Dependency on Conju-
gacy, SIAM Review, 28(4), PP. 501-511, 1986.

[12] J. Nocedal, The Performance of Several Algorithms for Large Scale Uncon-
strained Optimization, in Large-Scale Numerical Optimization, T. F. Cole-
man and Y. Li (Eds.), SIAM, Philadelphia, pp. 138-151, 1990.

[13] Gill, P.E., W. Murray, and P.A. Pitfield, The implementation of Two Revised
Quasi-Newton Algorithms for Unconstrained Optimization, Report NAC-11,
National Physical Lab., 1972

[14] Usmani, R. A.: Applied Linear Algebra. Marcel Dekker, New York, 1987

[15] Lippmann, Stanley B.: C + + Primer. Addison Wesley, 1991

[16] A. Kocsor, J. Dombi, I. Bálint, An Optimization Algorithm for Determining
Eigenpairs of Large Real Matrices, (submitted to SIAM Journal On Scientific
Computing)

Acta Cybernetical4 (1999) 331-339:

Improved Greedy Algorithm for Computing
Approximate Median Strings

Ferenc Kruzslicz *

Abstract

The distance of a string from a set of strings is defined by the sum of
distances to the strings of the given set. A string that is closest to the set is
called the median of the set. To find a median string is an NP-Hard problem
in general, so it is useful to develop fast heuristic algorithms that give a good
approximation of the median string. These methods significally depend on
the type of distance used to measure the dissimilarity between strings. The
present algorithm is based on edit distance of strings, and constructing the
approximate median in a letter by letter manner.

1 Introduction
If the solution of the optical character recognition (OCR) problem is considered
as a "black box" process where images are mapped to character strings, then 'we
usually use a certain kind of off-line approach. In this way the efficiency of some
OCR processes could be increased in an OCR software and language independent
manner. Suppose we have a set of strings as the result of several OCR processes
of the same input bitmap. When the same OCR software was used to produce this
set, with different paper orientation, changed resolution or simply repeated OCR
processes we can eliminate the effects of noise (fingerprints on the glass etc.). While
in case of different OCR software their efficiency can be compared to each other
[7]-

2 String distance
Finding a median string that is minimal in sum of distances form a given input set
of strings, is known to be an NP-hard problem [8]. Therefore it is interesting to find
fast algorithms, that give us good approximations. One of the latest algorithms can
be found in [3]. It is called greedy algorithm, because it builds up the approximate
median string letter by letter, by always choosing the best possible continuation.
In this paper an improvement of this algorithm is described.

'Department of Business Informatics, Janus Pannonius University, Rákóczi út 80, 7622 Pécs,
Hungary. Email: kruzslic@ktk.jpte.hu

331

mailto:kruzslic@ktk.jpte.hu

332 Ferenc Kruzslicz

Suppose that all the strings are defined over the same fixed alphabet E (for
European countries E is usually a certain kind of extended ASCII). The most
widely used edit distances are similar to the Levenshtein distance. The improved
greedy algorithm is based on the dynamic programming approach [4], therefore it
is suitable for all cl: (E*)2 —> R distances that satisfies the following properties.

d(t, s) > 0
d(t,s) = 0 <=>t = s
d(s, t) = d(t, s)
d{s,r) + d(r,t) > d(.s,t)
for all r, s,t € E*.

In case of c 6 E let c i n s (c , r) , Cdei{c,r), cSUb{c,r) denote the cost of insertion,
deletion and substitution of letter c in string r. The costs of edit operations do
not depend on letter c and on the place of operations in r.

The Levenshtein distance is derived from this class of distances by choosing
the following values: c i n s (c , r) = cdei(c,r) = csuf,(c,r) = 1. To establish the
Levenshtein distance between two strings, the dynamic programming approach
can be used with 0(nm) time and 0(n) space complexity. The general algorithm
to compute the minimal edit distance, using the dynamic programming technique
is given in the paper of Kruskal [5]. With the aid of this method, we get the
following in the case of two strings (s and t):

Let D[i,0] = i and D[0,j] = j for i=0..|s| and j=0..lt|.

For i=l..|s| and j=l..|t| calculate the next elements of matrix D

D [i i j] = min (D [i-1, j]+ cins, D[i,j-1]+ cdel, D[i-l,j-l]+<5([i,j]), where

¿([i.j] = c
s u b

 if s[i]^t[j] , and 0 otherwise.

It is clear that the distance is d(s,t) = Z?[|s|, |i|].
Much space can be saved if the matrix D is computed in a row by row manner.

3 Approximate median
This dynamic programming technique is suitable for a large number of heuristics.
Almost all of the "natural" heuristics can be described by the following informal
scheme, where |r| denotes the length of r, and A is the empty string.

function ApproximateMedian (si,«2 ••• s
n
) : string;

preprocess (s i, s 2, . . . sn)
median = A;

do
c

ijest
 = a r

g best (weight (median, c, si, S2. •••. s
n
) c 6 S) ;

median = median + Cb
es
t

while (it was worth to append Cf,est);
returnC best prefix of median).

Improved Greedy Algorithm for Computing Approximate Median Strings 333

Basically, an ApproximateMedian algorithm of this type builds the median
string letter by letter, and in case of each letter it uses a weight decision function
to select the next letter for median string to continue with. It makes judgements
on the base of input strings si, s2,..., s„ and the prebuilt median appended with
letter c. The previous loop has to be continued, until a stopping condition holds.
In the last step we can select the best prefix of median to return.

The time and space complexity of these algorithms is determined by the com-
plexity of the preprocessing phase and the weight function. The previous scheme
is general enough, because any type of algorithm can be written in this high level
form. In case of greedy algorithms no preprocessing phase is allowed, and the
weight function must be linear.

4 The Improved Greedy Algorithm
The earlier scheme of algorithms gives a large variety of heuristics. We have
freedom to choose the weight functions, the stopping condition, and the last prefix
correction.

A fairly good greedy heuristic can be obtained if we use the method in [3], i.e.

• The weight function is the sum of minimal elements in the last rows containing
letter c in the'dynamic programming matrix, computing d(median + c,Si).

The next letter to be appended is the letter with the minimal weight.

• The main loop is stopped if the length of median reaches the length of the
longest input string.

• The prefix of median is returned, that minimise the sum of distances from
the input strings.

The greedy algorithm computes the whole dynamic programming matrixes, but
stores only the last rows of them, and it loses a lot of information, because it uses
only the minimal element of this vector. Let the algorithm improve by gaining
more information from this vector.

If we sum these vectors, we get information on what would happen if we stop
the algorithm immediately. The values of the summed vector show the sum of
distances of median from the input strings, and the sum distances of median from
the input strings without their last letter, etc. For example strings aabb, ab, bbb
and median string ab will be examined:

334 Ferenc Kruzslicz

b 2 1 1 1 2 b 2 1 0 b 2 1 1 2
a 1 0 1 2 3 a 1 0 1 a 1 1 2 3
A 0 1 2 3 4 A 0 1 2 A 0 1 2 3

A a a b b A a b A b b b

The sum of the last rows of matrixes D is defined as follows:

aabb 2 1 1 1 2
ab 2 1 0

bbb 2 1 1 2
S 2 3 4 3 4

or more precisely, let m denote the length of median string,
and k = maa;(|si|, js2U •••> ls«l)- Moreover the last row of the ith matrix is denoted
byVj = < £)[|m|,0],£>[|m|, 1], ...,£)[|m|, 5j|] >. For convenience, we also assume that
the'co-ordinate Vi[t] = 0, whenever t is not in the 0...|.sl| interval. The summarised
vector S is defined with the following expression

5 [t]= - i : " ! = 1 V-[i - / !+|s i |]) f or« = 0>...,fc.
With these notations the weight function in the greedy algorithm can be for-

mulated in a simple way:
weight (median, c, s\,s-2, •••, s n) = Ylj=\ min(Vj[0], Vj\\], . . . , Vj [|s j|])

and the letter with the least weight will be appended to the median string.

Unfortunately this weight function frequently gives the same value for different
letters, and in such a case the next letter is selected arbitrary. The weight function
behaves better if we use the whole V vector to pick the best continuation of the
median. Let us choose the letter in case of draw, that is minimal in lexicographic
order of the reversed sum vectors < S[fc]; S[k — 1]; ...; 5(0] >. Clearly the choice of
next letter tries to minimise the expected sum of distances, furthermore the time
and space complexity of the algorithm remains the same.

The improved algorithm runs in 0(k2n\T,\) time, and it is given in the following
pseudocode.

function ImprovedApproximateMedianisi, s2, . . . , s n) : string;

constants

k = max(|si|, |saj, .. . , |s
n
|);

C-ins, c.del, c_sub; /* Cost of edit operations */

variables

Vi : array [0..|sj|] of integer; /* for i=l..n */

Dist, S , S_best, tmp : array [0..k] of integer;

c : char;

min.best, min_sum, i, j :• integer;

median : array [l..k] of char;

algorithm

median = A; /* Initialization */

Dist [0] = 0;

for i=l to n do

Improved Greedy Algorithm for Computing Approximate Median Strings 125

f o r j=0 t o Is; I do V j [j] = j ; od
D is t [0] = D i s t [0] + | j

od
f o r i = l t o k do / * B u i l d i n g the median l e t t e r by l e t t e r * /

S .bes t := [0 , 0 , . . . , 0] ;
f o r j = l t o n do S .bes t := add.vect (S . b e s t , Vj , k - |sj |); od
f o r each c £ £ do / * S e l e c t i n g the b e s t l e t t e r * /

min.sum 0 ;
S := [0 , 0 , . . . , 0] ;
f o r j = l t o n do test-letter (c, j , FALSE); od
min.sum := min.sum + min .bes t ;
S := add.vect (S, tmp, k - |s;|)
i f weight (min.sum, S, m i n . b e s t , S . b e s t) < 0 then

S .best := S;
min.best := min.sum;
m e d i a n [i] := c ;
Dis t [i] := S .bes t [k] ;

f i
od
f o r j = l t o n do tes t.let ter (m e d i a n [i] , j , TRUE); od

od
i := 0 ;
f o r j = l t o k do

i f D i s t [j] < D i s t [i] then i = j ; f i
od

r e t u r n m e d i a n [1 . . i]

f u n c t i o n test-letter(c, i , update) ; i n t e g e r ;
local variables

j ; i n t e g e r ;
procedure /* C a l c u l a t i n g the e d i t d i s t a n c e * /

min .best := + o o ;
tmp[0] := i ;
f o r j = l t o |si| do

t m p [j] : = m i n (Vi [j - 1] + c . i n s , V; —1 [j] + c . d e l , V i - \ [j - l] + c _ s u b) ;
i f m e d i a n [j] = c then

t m p [j] = mini t m p [j] , K j - j i j - l]) ;
f i
i f t m p [j] > min.best then

min .best = t m p [j] ;
f i

od
i f update then / * Updating v e c t o r s when a * /

Vi := tmp[0. . |sj|] ; / * new l e t t e r was appended. * /
f i

r e t u r n min .bes t ;

f u n c t i o n add-vect (S , V , o f f s e t) : array [0 . . k] of i n t e g e r ;
local variables

i : i n t e g e r
procedure /* V e c t o r a d d i t i o n with o f f s e t * /

f o r i=0 t o k - o f f s e t do
S [i] := S [i] + V [i - o f f s e t] ;

r e t u r n S [0 . . k] ;

336 Ferenc Kruzslicz

f u n c t i o n weight (min, S, min .bes t , S - b e s t) : b o o l e a n ;
local v a r i a b l e s

d i f f , i : i n t e g e r / * Negative value i s re turned i f the new * /
procedure / * charac ter i s b e t t e r than the o l d one. * /

d i f f := min - min .best ; / * Greedy h e u r i s t i c * /
i := k ;
whi le (i > 0 and d i f f = 0) do / » L e x i c o g r a p h i c o rder * /

d i f f := S [i] - S . b e s t [i] ;
i := i - 1 ;

od
r e turn d i f f

To illustrate how the algorithm works and to show the improvement, let us
examine the following example:

The alphabet contains only two letters E = {a, ' ' } , and the input strings are
Sj = ab, s2 = bab.

a 1 0 1 a 1 1 1 2 b 1 I 1 b 1 0 1 2
\ 0 1 2 A 0 1 2 3 A 0 1 2 A 0 1 2 3

A a b A b a b A a b A b a b

It is easy to see that we are in the draw situation, since for
median = a, min_sum = 1, S = ¡1,2,1,3^, and for
median = b, min_sum = 1, S = ¡1,1,2,3^.

By the rule of the improved greedy algorithm letter a will be selected as the
first letter of the median string.

5 Experimental Results
The improved approximate algorithm was tested on the same garbled strings as the
greedy algorithm. In the test sets the string were deformed with equally probable
delete, insert and substitute operations, with probability of 1/4.

11X11)

V00
mi

27110 S!
v
O500
-g 400
Z300

200

100

0

Figure 1: Efficiency of the improved versus the greedy algorithm

Improved Greedy Algorithm for Computing Approximate Median Strings 337

Original words:
hector helsinki iapr ojo pepermint recognition sim patica

Garbled strings:
erth eksh arr j j etepi etorgon icpsa

ttohr ielkhnnki rpp 00 petpnrmin tricogntionr sic. static

ectoo hlsinhki iaria j pepeprmiimtn recggginiiong simpsatiapat

heceor hislnsiki iaprr ojjo peermmint receniicion. . sipatpica

htoor hselsekni iapri j jo epneemine egcoogeieion imtpit ici

ecttor eelseskli iappp oj merpeement regtoggniitocn pimmpitaca

hetroe hlliinki irap ojo pepitrmminnt recortoit - siaatpta

hecetrc hiklssinnksl iappr oojo mrpermimm ecgnittin satica

heeter elsinss iai oooj eentin reoritoc pppttca

hectter esnkki iraar oj pepterintm enoeniiion smpactia

hector helsinki iapr ojo pepermint recognition simptatica

Greedy approximate medians:
hector helsinki iapr ojo pepermint recognition simp tatica

[26] [39] [19] [12] [39] [50] [45]

Improved approximate medians:
hector helsinki iapr ojo pepermint recogniion simptatica

[26] [39] [19] [12] [39] [47] [45]

When we used the new algorithm for the second test sets published in [6], there
were no improvements at all.

Original words:
hector helsinki iapr recognition

Garbled strings:
hetcr cheinni cianr rgfkfgnition

heptor h lei si ki iap recoxsniimoi

hector hesenkc iapi riecoxgnifon

hevor velskki Iapr jeognitigqn

hetuor ceeltsinkmi ilp resonigior

hscor elnsgxnki riapr reoinitiggn

htuctor gbheklsink ialr rciorgnitvihn

fjhecto htosini iar recognin

getoqr hxlsiky iapd ecotnritiin

hetofr heklusnkk iuar grecpoginitko

Greedy and improved approximate medians:
hector helsinki iapr recognition

[13] [34] [13] [42]

The real advantage of the improved algorithm appeared when the probability of
the edit operations has been increased. The Fihure 1 is obtained by the following
test sets. The string recognition was garbled with delete, insert and substitute edit
operations. For substituting and inserting only the letters r, e, c, g, t, _i, o, n, s,
p, a were used, and each of the operations and its place was uniformly distributed.

338 Ferenc Kruzslicz

Every test consists of 10 garbled strings, and the index of a test means how many-
operations was performed in the garbling procedure. All column of the diagrams
represents the results of 1000 tests of the same type. The greedy and the improved
algorithms were compared, the bars show in how many cases which one was the
better. In some cases the greedy algorithm proved to be superior to the improved
one. The reason for this is, that in a case of draw in the greedy algorithm the next
letter was chosen randomly, that could result in a better performance.

I4(X)
I2(X)
IIXX)

ai
c
§ SIX)

4IX)
21X1

0
ill d2 il3 <14 (15 ilfi [17 dX iiy till) (III (112 (113 (114 dl5 (116 dl7

Test set d iss imilar i ty

Figure 2: Improvements measured in edit distance.

In Figure 2 the total distances were summed (i.e. the distances of the approxi-
mate median from the test set). The same garbled sets were used as in Figure 1 and
values of diagram are the difference between the totals for the improved and the
greedy algorithm. We see that a slight modification in the greedy algorithm results
in computing better medians whenever the problem becomes more difficult. Since
the total sum of distances is bounded from above by the total length of strings
from the test set, the results remain stable when we choose the dissimilarity value
higher than the length of the distorted string.

6 Conclusions

The improved approximate median algorithm is a simple refinement of the greedy
algorithm [3]. It has the same time complexity 0(k'2n\'S\) as the previous one. The
space complexity was a bit reduced by the help of storing only the last rows of the
distance matrixes. This idea is based on [9], in this way the new algorithm runs in
0(kn) space. The closer the garbled strings are to each other the improvement is
less significant. Therefore the improved algorithm presented in this paper is more
suitable for searching approximate median of highly dissimilar strings.

Improved Greedy Algorithm for Computing Approximate Median Strings 339

Acknowledgement
I am grateful to the anonymous reviewers for their helpful comments which helped
me improve the quality of the paper. In particular, I thank the anonymous referee
who provided an improved English version of my manuscript, and Dr. Jänos Csirik
for calling my attention to the median string problem.

References
[1] D. Lopestri, J. Zhou: Using Consensus Voting to Correct OCR Errors. Series

in Machine Perception and Artifical Intelligence Vol. 14 pages 157-168, 1995

[2] A. Juan, E. Vidal: An Algorithm For Fast Median Search. Pattern Recog-
nition and Image Analysis Vol. 1 pages 187-192, 1996

[3] F. Casacuberta, M. D. Antonio: A greedy algorithm for computing approxi-
mate Median Strings. Pattern Recognition and Image Analysis Vol. 1 pages
193-198, 1996

[4] M. Crochemore, W. Rytter: Text Algorithms. Oxford University Press, 1994

[5] J.B. Krushkal: An overview of sequence comparison: Time warps, string
edits, and macromolecules. SIAM Review Vol. 25 pages 201-237, 1983.

[6] H. Rulot: Un Algoritmo de Inferencia Gramatical mediante Correccin de
Errores. Tesis Doctoral. Universität de Valencia, 1992.

[7] S. V. Rice, J. Kanai, T. A. Nartker: A difference algorithm for OCR-
generated text. Proceeding of the IAPR Workshop on Structural and Syn-
tactic Pattern Recognition, Bern, 1992.

[8] T. Kohonen: "Median strings". Pattern Recognition Letters Vol. 3 pages
309-313, 1985.

[9] L. Allison, T. I. Dix: A bit-string longest-common-subsequence algorithm.
Information Processing Letters Vol. 23 pages 305-310, 1986

Acta Cybernetica 14 (1999) 341-356.

Limiting Distortion of a Wavelet Image Codec

Joonas Lehtinen *

Abstract

A new image compression algorithm. Distortion Limited Wavelet Image
Codec (DLWIC), is introduced. The codec is designed to be simple to im-
plement, fast and have modest requirements for the working storage. It is
shown, how the distortion of the result can be calculated while progressively
coding a transformed image and thus how the mean square error of the result
can be limited to a predefined value. The D L W I C uses zerotrees for efficient
coding of the wavelet coefficients. Correlations between different orientation
components axe also taken into account by binding together the coefficients
on the three different orientation components in the same spatial location.
The maximum numbers of significant bits in the coefficients of all subtrees
are stored in two-dimensional heap structure that allows the coder to test the
zerotree property of a subtree with only one comparison. The compression
performance of the D L W I C is compared to the industry standard JPEG com-
pression and to an advanced wavelet image compression algorithm, vqSPIHT.
An estimation of execution speed and memory requirements for the algorithm
is given. The compression performance of the algorithm seems to exceed the
performance of the JPEG and to be comparable with the vqSPIHT.

1 Introduction
In some digital image archiving and transferring applications, especially in medi-
cal imaging, the quality of images must meet predefined constrains. The quality
must be often guaranteed by using a lossless image compression technique. This
is somewhat problematic, because the compression performance of the best known
lossless image compression algorithms is fairly modest; the compression ratio ranges
typically from 1:2 to 1:4 for medical images [5].

Lossy compression techniques generally offer much higher compression ratios
than lossless ones, but this is achieved by losing details and thus decreasing the
quality of the reconstructed image. Compression performance and also the amount
of distortion are usually controlled with some parameters which are not directly
connected to image quality, defined by mean square error [1] (MSE). If a lossy
technique is used, the quality constrains can be often met by overestimating the
control parameters, which results worse compression performance.

* Turku Centre for Computer Science, University of Turku, Lemminkaisenkatu 14 A , 20520
Turku, Finland, email: j o l e S j o l e . f i , W W W : h t t p : / / j o l e . f i /

341

http://jole.fi/

342 •Joonas Lehtinen

In this paper a new lossy image compression technique called Distortion Limited
Wavelet Image Codec (DLWIC) is presented. The DLWIC is related to embedded -
zerotree wavelet coding (EZW) [9] technique introduced by J.M. Shapiro in 1993.
Also some ideas from SPIHT [8] and vqSPIHT [3] have been used. DLWIC solves
the problem of distortion limiting (DL) by allowing the user of the algorithm to
specify the MSE of the decompressed image as controlling parameter for the com-
pression algorithm.

The algorithm is designed to be as simple as possible, which is achieved by bind-
ing together the orientation bands of the octave band composition and coding the
zerotree structures and wavelet coefficient bits in the same pass. A special auxiliary
data structure called two dimensional heap is introduced to make the zerotree cod-
ing simple and fast. The DLWIC uses only little extra memory in the compression
and is thus suitable for compression of very large images. The technique also seems
to provide competitive compression performance in comparison with the vqSPIHT.

In the DLWIC, the image to be compressed is first converted to the wavelet
domain with the orthonormal Daubechies wavelet transform [10]. The transformed
data is then coded by bit-levels using a scanning algorithm presented in this paper.
The output of the scanning algorithm is coded using QM-coder [7], an advanced
binary arithmetic coder.

The scanning algorithm processes the bits of the wavelet transformed image
data in decreasing order of their significance in terms of MSE, as in the EZW. This
produces progressive output stream: the algorithm can be stopped at any phase of
the coding and the already coded output can be used to construct an approximation
of the original image. This feature can be used when a user browses images using
slow connection to the image archive: The image can be viewed immediately after
only few bits have been received; the subsequent bits then make it more accurate.
The DLWIC uses the progressivity by stopping the coding when the quality of
the reconstruction exceeds threshold given as a parameter to the algorithm. The
coding can also be stopped when the size of the coded output exceeds a given
threshold. This way both the MSE and bits per pixel (BPP) value of the output
can be accurately controlled.

After the introduction, the structure of the DLWIC is explained. A quick
overview of the octave band composition is given and it is shown with an example
how the wavelet coefficients are connected to each other in different parts of the
coefficient matrix.

Some general ideas of the bit-level coding are then explained (2.3) and it is
shown how the unknown bits should be approximated in the decoder. The meaning
of zerotrees in DLWIC is then discussed (2.4). After that an auxiliary data structure
called two dimensional heap is introduced (2.5). The scanning algorithm is given
as pseudo code (2.6).

The distortion limiting feature is introduced and the stopping of the algorithm
on certain stopping conditions is discussed (2.7). Finally we show how separate
probability distributions are allocated for coding the bits with the QM-coder in
different contexts (2.8).

The algorithm is tested with a set of images and the compression performance

Limiting Distortion of a Wavelet Image Codec 343

Figure 1: The structure of the DLWIC compression algorithm

is compared to the .JPEG and the vqSPIHT compression algorithms (3). Variations
in the quality achieved by the constant quantization in the JPEG is demonstrated
with an example. Also an estimation of the speed and memory usage is given (3.2).

2 DLWIC algorithm

2.1 Structure of the DLWIC and the wavelet transform
The DLWIC algorithm consists of three steps (Figure 1): 1) the wavelet transform,
2) scanning the wavelet coefficients by bit-levels and 3) coding the binary decisions
made by the scanning algorithm and the bits of the coefficients with the statistical
coder. The decoding algorithm is almost identical: 1) binary decisions and coeffi-
cient bits are decoded, 2) the coefficient data is generated using the same scanning
algorithm as in the coding phase, but using the previously coded decision infor-
mation, 3) the coefficient matrix is converted to a spatial image with the inverse
wavelet transform.

The original spatial domain picture is transformed to the wavelet domain using
Daubechies wavelet transform [10]. The transform is applied recursively to the
rows and columns of the matrix representing the original spatial domain image.
This operation gives us an octave band composition (Figure 2). The left side (B)
of the resulting coefficient matrix contains horizontal components of the spatial
domain image, the vertical components of the image are on the top (A) and the
diagonal components are along the diagonal axis (C). Each orientation pyramid
is divided to levels, for example the horizontal orientation pyramid (B) consists
of three levels (BO, B1 and B2). Each level contains details of different size; the
lowest level (BO), for example, contains the smallest horizontal details of the spatial
image. The three orientation pyramids have one shared top level (S), which contains

344 •Joonas Lehtinen

M

A l

AO

81 C l

BO CO

Figure 2: Octave band composition produced by recursive wavelet transform is
illustrated on the left and the pyramid structure inside the coefficient matrix is
shown on the right.

scaling coefficients of the image, representing essentially the average intensity of the
corresponding region in the image. Usually the coefficients in the wavelet transform
of a natural image are small on the lower levels and bigger on the upper levels
(Figure 3). This property is very important for the compression: the coefficients of
this highly skewed distribution can be coded using fewer bits.

2.2 Connection between orientation pyramids

Each level in the coefficient matrix represents certain property of the spatial domain
image in its different locations. Structures in the natural image contain almost
always both big and small details. In the coefficient matrix this means that if
some coefficient is small, it is most likely that also the coefficients, representing
smaller features of the same spatial location, are small. This can be seen in Figure
3: different levels of the same coefficient pyramid look similar, but are in different
scales. The EZW takes advantage of this by scanning the image in depth first order,
i.e. it scans all the coefficients related to one spatial location in one orientation
pyramid before moving to another location. This way it can code a group of small
coefficients together, and thus achieves better compression performance.

In natural image, most of the features are not strictly horizontal or vertical,
but contain both components. The DLWIC takes advantage of this by binding
also all three orientation pyramids together: The scanning is done only for the
horizontal orientation pyramid (B), but bits of all three coefficients, representing the
three orientations of the same location and scale, are coded together. Surprisingly
this only slightly enhances the compression performance. The feature is however
included in the DLWIC because of its advantages: it simplifies the scanning, makes
the implementation faster and reduces the size of auxiliary data structures.

Limiting Distortion of a Wavelet Image Codec 345

Figure 3: An example of the Daubechies wavelet transform. The original 512 x 512
sized picture is on the left and its transform is presented with absolute values of
the coefficients in logarithmic scale on the right.

2.3 Bit-level coding
The coefficient matrix of size W x H is scanned by bit-levels beginning from the
highest bit-level nmax required for coding the biggest coefficient in the matrix (i.e.
the number of the significant bits in the biggest coefficient):

nmax = Lloga(max{(|cij|)|0 < « < W A 0 < j < H}) + 1J, (1)

where the coefficient in (i,j) is marked with C{j. The coefficients are represented
using positive integers and the sign bits that are stored separately. The coder first
codes all the bits on the bit-level nmax of all the coefficients, then all the bits on
bit-level iimax — 1 and so on until the least significant bit-level 1 is reached or the
scanning algorithm is stopped (Section 2.7). The sign is coded together with the
most significant bit (the first 1-bit) of a coefficient. For example three coefficients
co,o = -19io = -100112,ci,0 = 9io = 010012,c2,o = - 2 i o = -000102 would be
coded as

1 ^ 0 ^ ^ 1 0 1 1 ^ 1 1 0 , , (2)
5 4 3 2 1

where the corresponding bit-level numbers are marked under the bits coded on that
level (without signs it would be s100/v010 000 >101>y110).

5 4 3 2 1
Because of the progressivity, the code stream can be truncated at any position

and the decoder can approximate the coefficient matrix using received information.
The easiest way of approximating the unknown bits in the coefficient matrix would
be to fill them with zeroes. In the DLWIC algorithm a more accurate estimation is

346 •Joonas Lehtinen

used, the first unknown bit of each coefficient, for which the sign is known, is filled
with one and the rest bits are filled with zeroes. For example, if the first seven bits
of the bit-stream (2) have been received, the coefficients would be approximated:
co,o = —20io = —IOIOO2, ci}o = 12io = OIIOO2, c2,o = O10 = 000002.

2.4 Zerotrees in DLWIC
A bit-level is scanned by first coding a bit of a scaling coefficient (on the level S in
the Figure 2). Then recursively the three bits of the coefficients in the same spatial
location on the next level of the orientation pyramids (A2,B2,C2) are coded. The
scanning continues to the next scaling coefficient, after all the coefficients in the
previous spatial location in all the pyramid levels has been scanned.

We will define that a coefficient c is insignificant on a bit-level n, if and only if
|c| < 2 n _ 1 . Because the coefficients on the lower pyramid levels tend to be smaller
than on the higher levels and different sized details are often spatially clustered,
probability for a coefficient for being insignificant is high, if the coefficient on the
higher level in the same spatial location is insignificant.

If an insignificant coefficient is found in the scanning, the compression algorithm
will check if any of the coefficients below the insignificant one is significant. If no
significant coefficients are found, all the bits in those coefficients on current bit-
level are zeroes and thus can be coded with only one bit. This structure is called
zerotree.

One difference to the EZW algorithm is that the DLWIC scans all the orienta-
tions simultaneously and thus constructs only one shared zerotree for the all the
orientation pyramids. Also the significance information is coded at the same pass
as the significant bits in the coefficients, whereas the EZW and SPIHT algorithms
use separate passes for the significance information.

2.5 Two dimensional significance heap
It is a slow operation to perform a significance check for all the coefficients on a
specific spatial location on all the pyramid levels. The DLWIC algorithm uses a
new auxiliary data-structure, which we call two dimensional significance heap, to
eliminate the slow significance checks.

The heap is a two dimensional data-structure of the same size (number of ele-
ments) and shape as the horizontal orientation pyramid in the coefficient matrix.
Each element in the heap defines the number of bits needed to represent the largest
coefficient in any orientation pyramid in the same location on the same level or
below it. Thus the scanning algorithm can find out, whether there is a zerotree
starting from a particular coefficient on a certain bit-level by comparing the num-
ber of the bit-level to the corresponding value in the heap.

Here and in the rest of this paper we denote the height of the coefficient matrix
with H, the width with W and the number of levels in the pyramid excluding the
scaling coefficient level (S) with L. Thus the dimensions of the scaling coefficient
level are: Hs = H/2L and Ws = W/2L. Furthermore the dimensions of the level

Limiting Distortion of a Wavelet Image Codec 347

in the two-dimensional heap, where (x,y) resides are

Wxy = tf/^K^^O.Tfr»]

Now the heap elements hx,y can be defined with the functions ht(x,y), hc(x,y) and
hs(x,y):

ht(x,y) = max{/i I : V + H . , LloSa(lc®I)J + ! }
hc(x,y) — max{/l2Xl2y,/l2x+l,2i/j/l2a;,2j/+li/?'2x+l,2!/+l}
hs(x, y) = LloS2(max{l

,y I, \cx + WIty,y-HXtV |})J + 1
(ht{x,y), if X <WS Ay < Hs

hx,v = ^ h,(x,y), if i > W/2 A y > H/2 .
I max{hs(x,y),hc(x,y)}, otherwise,

(4)

Note that the definitions (3) and (4) are only valid for the elements in the heap,
where 0 < y < H and 0 < x < Ws2Ll0S2(nriax"[1'^r})J. While the definition of
the heap looks complex, we can construct the heap with a very simple and fast
algorithm (Alg. 1).

2.6 Coding algorithm
The skeleton of the compression algorithm (Alg. 2) is straightforward: 1) the spatial
domain image is transformed to wavelet domain by constructing the octave band
composition, 2) the two dimensional heap is constructed (Alg. 1), 3) the QM-coder
is initialized, 4) the coefficient matrix is scanned in bit-levels by executing scanning
algorithm (Alg. 3) for each top level coefficient on each bit-level.

The decoding algorithm is similar. First an empty two dimensional heap is
created by filling it with zeroes. Then the QM-dccoder is initialized and the same
scanning algorithm is executed in such way that instead of calculating the decisions,
it extracts the decision information from the coded data.

The scanning algorithm (Alg. 3) is the core of the compression scheme. It tries
to minimize correlations between the saved bits by coding as many bits as possible
with zerotrees. In the pseudo-code, Bit(:r,n) returns n:th bit of the absolute value
of x and Sij denotes the sign of the coefficient in the matrix element (i,j). Bits
are coded with function QMCode(6,CONTEXT), where b is the bit to be coded and
CONTEXT is the context used as explained in Section 2.8. Context can be either a
constant or some function of variables known to both the coder and decoder. In
both cases, the value of the context is not important, but it should be unique for
each combination of parameters. Stopping of the algorithm is queried with func-
tion ContinueCoding(), which returns true, if the coding should be continued. In
order to calculate the stopping condition, the quality of the approximated result-
ing image must be calculated while coding. This is achieved by calling function
DLUpdate(n,a;) every time after coding n:th bit of the coefficient x. Both calcula-
tions are explained in the Section 2.7. The dimensions of the matrix and its levels
are noted in the same way as in the Section 2.5.

348 •Joonas Lehtinen

The scanning algorithm first checks the stopping condition. Then we check from
the two dimensional heap, whether there is a zerotree starting from this location, —
and code the result. If the coefficient had become significant earlier, the decoder
knows also that and thus we can omit the coding of the result. If we are coding
a scaling coefficient (I = 0), we only process that coefficient and then recursively
scan the coefficient in the same location on the next level below this one. If we
are coding a coefficient below the top-level, we must process all three coefficients
in three orientation pyramids in this spatial location and then recursively scan all
four coefficients on the next level, if that level exists.

When a coefficient is processed using ScanCoeff algorithm (Alg. 4), we first
check, whether it had become significant earlier. If that is the case, we just code the
bit on the current bit-level and then do the distortion calculation. If the coefficient
is smaller than 2n, we code the bit on the current bit-level, and also check whether
that was the first 1-bit of the coefficient. If that is true, we also code the sign of
the coefficient and do the distortion calculation.

2.7 Stopping condition and distortion limiting
The DLWIC continues coding until some of the following conditions occur: 1) All
the bits of the coefficient matrix have been coded, 2) The number of bits produced
by the QM-coder reach a user specified threshold, or 3) the distortion of the output
image, that can be constructed from sent data, decreases below the user specified
threshold. The binary stopping decisions made before coding each bit of a coefficient
are coded, as the decoder must exactly know when to stop decoding.

The first condition is trivial, as the main loop (Alg. 2) ends when all the bits
have been coded. The second condition is also easy to implement: output routine
of the QM-coder can easily count the number of bits or bytes produced. To check
the third condition, the algorithm must know the MSE of the decompressed image.
The MSE of the decompressed image could be calculated by doing inverse wavelet
transform for the whole coefficient matrix and then calculating the MSE from the
result. Unfortunately this would be extremely slow, because the algorithm must
check the stopping condition very often.

The reason for using Daubechies wavelet transform is its orthonormality. For
orthonormal transforms, the square sums of the pixel values of the image before
and after the transform are equal:

where Xij stands for the spatial domain image intensity and a j is the wavelet
coefficient. Furthermore, the mean square error between the original image and
some approximation of it can be calculated equally in the wavelet and spatial
domains. Thus we do not have to do the inverse wavelet transform to calculate the

Instead of tracking the MSE, we track the current square error, cse, of the
approximated image because it is computationally easier. The initial approximation

MSE.

Limiting Distortion of a Wavelet Image Codec 349

of the image is zero coefficient matrix, as we have to approximate the coefficients
to be zero, when we do not know their signs. Thus the initial cse equals to the
energy of the coefficient matrix.

cse <— U K » ') 2 (6)

After sending each bit of a coefficient c, we must update cse by subtracting the
error produced by the previous approximation of c and adding the error of its new
approximation. The error of an approximation of c depends only on the level of
the last known bit and the coefficient c itself. If we code the n:th bit of c, then the
cse should be updated:

cse cse — <

[(|c|AND2(2n — 1)) — 2 n _ 1] —
[(|C|AND2(2™~1 — 1)) — 2n~2]2

c2 _ (2 (n- l) + 2(n-2) _ c)2
0

if Llog2 cj > n - 1

if U°g2 c\=n-l
if[log2cJ < 7 1 - 1 ,

(7)

where AND2 is bitwise and-operation. The first case defines the error reduced by
finding out one bit of a coefficient, when the sign is already known. The second
case defines the error reduced by finding out the sign of a coefficient and the last
case states that cse does not change if only zero bit before the coefficients first one
bit is found. The equation 7 holds only, when n > 1.

2.8 The use of contexts in QM-coder

The QM-coder is a binary arithmetic coding algorithm that tries to code binary
data following some probability distribution as efficiently as possible. Theoretically
an arithmetic coder compresses data according to its entropy [4], but the QM-
coder uses a dynamical probability estimation technique [6, 7, 2] based on state
automata, and its compression performance can even exceed the entropy, if the
local probability distribution differs from the global distribution used in the entropy
calculation.

The DLWIC codes different types of information with differing probability dis-
tributions. For example the signs of coefficients are highly random, that is the
probability of plus sign is approximately 0.5, but the probability of finding the
stopping condition is only 1/N, where N is the number of stopping condition eval-
uations. If bits following the both distributions would be coded using the same
probability distribution, the compression performance obviously would not be ac-
ceptable.

To achieve better compression performance the DLWIC uses separate contexts
for binary data following different probability distributions. The contexts for cod-
ing the following type of data are defined: 1) signs, 2) stopping conditions, 3) the
bits of the coefficients after the first one bit, 4) the bits of the scaling coefficients,
5) zerotrees on the different levels of the pyramid, 6) the significance check of the

350 •Joonas Lehtinen

Figure 4: Test images from top left: 1) barb (512 x 512), 2) bird (256 x 256), 3)
boat (512 x 512), 4) bridge (256 x 256), 5) camera (256 x 256), 6) circles (256 x 256),
7) crosses (256 x 256), 8) france (672 x 496) and 9) frog (621 x 498).

insignificant coefficients on different pyramid levels on different orientation pyra-
mids. The number of separate contexts is 4 * (/ + 1), where I defines the number
of levels in the pyramids. It would also be possible to define different contexts for
each bit-level, but dynamical probability estimation in the QM-coder seems to be
so efficient that this is not necessary.

3 Test results
The performance of the DLWIC algorithm is compared to the JPEG and the
vqSPIHT [3] algorithms with a set (Fig. 4) of 8 bit grayscale test images. The
vqSPIHT is an efficient implementation of the SPIHT [8] compression algorithm.
The vqSPIHT algorithm uses the biorthogonal B97 wavelet transform [10], the QM-
coder and a more complicated image scanning algorithm than the DLWIC. Image
quality is measured in terms of peak signal to noise ratio [1] (PSNR), which is an
inverse logarithmic measure calculated from MSE.

3.1 Compression efficiency
To compare the compression performance of the algorithms, the test image set is
compressed with different BPP-rates from 0.1 to 3.0 and the PSNR is calculated
as the mean for all the images. Because it is not possible to specify BPP as a
parameter for JPEG compression algorithm, various quantization parameters are
used and the BPP value is calculated as a mean value of the image set for each
quantization value.

As can be seen in the Figure 5, the performance of the vqSPIHT and the DLWIC
algorithms is highly similar. This is somewhat surprising, because of the greater
complexity and better wavelet transform used in the vqSPIHT. The quality of the
images compressed with the EZW variants seem to exceed the quality produced by

Limiting Distortion of a Wavelet Image Codec 351

1

0.5

m -o
Œ o z w
CL

-0.5

-1

0 0.5 1 1.5 2 2.5 3
BPP

DLWIC
vqSPIHT

JPEG
J I I L

Figure 5: Compression performance comparison of DLWIC, vqSPIHT and JPEG.
The PSNR-values correspond to mean value obtained from test image set (Fig. 4).

the JPEG. This is especially true when low bit-rates are used. Poor scalability of
the JPEG to low BPP values is probably implied by the fixed block size used in
the DCT transform of the JPEG as opposed to multi-resolution approach of the
wavelet based methods.

One might expect that a conventional image compression algorithm such as the
JPEG would give similar PSNR and BPP values for similar images when fixed
quantization parameter is used. This is not the case as demonstrated in the Figure
6, where all the test images are compressed using the same quantization parameter
(20) with the standard JPEG.

3.2 Speed and memory usage
The speed of the implementation is not compared to other techniques, because the
implementation of the algorithm is not highly optimized. Instead an example of
the time consumption of the different components of the compression process is ex-
amined using the GNU profiler. The frog test image is compressed using a 400MHz
Intel Pentium II workstation running Linux and the algorithm is implemented in
C language and compiled with GNU C 2.7.2.1 using "-04 -p" options. The cumu-
lative CPU time used in the different parts of the algorithm is shown in the Figure
7.

When the image is compressed with a low BPP-rate, most of the time is con-
sumed by the wavelet transform. When the BPP-rate increases, the time used by
the QM-coder, the scanning algorithm and the distortion calculations increases in

352 •Joonas Lehtinen

• I i l l i i . i. „. i_, i 1

2 4 6 8 10

Image №

Figure 6: All the images of the test image set are compressed by JPEG with the
same quantization value (20), and the BPP (left) and the PSNR (right) of the
resulting images are shown.

somewhat linear manner. Construction of the two dimensional heap seems to be
quite fast operation and distortion limiting is not very time consuming.

If we want to optimize the implementation of the DLWIC, the biggest problem
would probably be the extensive use of the QM-coder, that is already highly opti-
mized. One way to alleviate the problem would be to store the stopping condition is
some other way than compressing the binary decision after each bit received. Also
the transform would have to be optimized to achieve faster compression, because
it consumes nearly half of the processing time, when higher compression ratios are
used.

Probably the biggest advantage of the DLWIC over the SPIHT and even the
vqSPIHT is its low auxiliary memory usage. The only auxiliary data-structure
used, the two dimensional heap, can be represented using 8-bit integers and thus
only consumes approximately 8 * N/3 bits of memory, where N is the number of
coefficients. If the coefficients are stored with 32-bit integers, this implies 8% auxil-
iary memory overhead, which is very reasonable, when compared to 32% overhead
in the vqSPIHT or even much higher overhead in the SPIHT algorithm, which
depends on the target BPP-rate.

4 Summary and conclusion
In this paper a new general purpose wavelet image compression scheme, DLWIC,
was introduced. Also it was shown how the distortion of the resulting decompressed
image can be calculated while compressing the image and thus how the distortion
of the compressed image can be limited. The scanning algorithm in the DLWIC is
very simple and it was shown, how it can be efficiently implemented using a two
dimensional heap structure.

Compression performance of the DLWIC was tested with a set of images and the
compression performance seems to be promising, when compared to a more complex

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Image #

Limiting Distortion of a Wavelet Image Codec 353

BPP

Figure 7: Running time of the different components in the DLWIC compres-
sion/decompression algorithm, when compressing the frog test image (Fig. 4).
Graph shows the cumulative CPU time consumption when different BPP-rates are
used.

compression algorithm, the vqSPIHT. Furthermore, the compression performance
easily exceeds the performance of the JPEG, especially when high compression
ratios are used.

Further research for extending the DLWIC algorithm to be used in lossless or
nearly lossless multidimensional medical image compression is planned. Also the
implementation of the DLWIC will be optimized and usage of some other wavelet
transforms will be considered.

References
[1] R. Gonzalez and R. Woods . Digital Image Processing. Addison-Wesley Publishing Company,

1992.

[2] I T U - T . Progressive bi-level image compression, recommendation t.82. Technical report,
International telecommunication union, 1993.

[3] A . Járvi, J. Lehtinen, and O. Nevalainen. Variable quality image compression system based
on S P I H T . to appear in Signal Processing: Image Communications, 1998.

[4] Sayhood K. Introduction to Data Compression. Morgan Kaufmann, 1996.

[5] Juha Kivijrvi , Ti ina Ojala, T i m o Kaukoranta, Attila Kuba, László Nyúl, and Olli Nevalaineri.
T h e comparison of lossless compression methods in the case of a medical image database.
Technical Report 171, Turku Centre for Computer Science, April 1998.

[6] W . B . Pennebaker and J.L. Mitchell. Probabil ity estimation for the q-coder . IBM .Journal of
Research and Development, 32(6) :737-752, 1988.

354 •Joonas Lehtinen

[7] Will iam Pennebaker and Joan Mitchell. Jpeg : Still Image Data Compression Standard. Van
Nostrand Reinhold, 1992.

[8] Amir Said and Will iam A. Pearlman. A new fast- and efficient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems ¡or Video
Technology, 6 :243-250, June 1996.

[9] J .M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.
Signal Processing, 31(12), December 1993.

[10] M. Vettereli-and J. Kovacevic. Wavelets and Subband Coding. Prentice Hall, Eng lewood
Cliffs, N j , 1995.

Limiting Distortion of a Wavelet Image Codec 355

Algorithm 1 Construct2DHeap
for I <r- 1 to L + 1 do

Ht <- H/2minV'V, Wt <r- w/2minV'Ly
for j 0 to Ht - 1 do

for i 0 to Wt - 1 do
if 1 = 1 then

t 0
u 4- [1 + l o g 2 (m a x { | c i 1 , \ci+w,j\,\ci+WJ+H|})J

else if I < L then
t Vn.ax{h2xi2y,h2x+l,-2y,h2x,2y+l,h2x+l,2y+l}
u <- [1 + log2(max{|ci):,-+ff \ci+w,j\, \ci+w,j+H\})\

else
t max {h i i j + f j s , hi+w,,j,hi+wa ,j+H,}
u [1 + log2(max{(|ci,7|)|0 <i<W A0<j < H})\

hitj max{i, u}

Algorithm 2 CompressDLWIC
Transform the spatial image with Daubechies wavelet transform constructing the
octave band composition where the coefficients Cij are represented with positive
integers and separate sign bit.
Construct the two dimensional heap (Alg. 1).
Initialize QM-coder
Calculate initial distortion of the image (Section 2.7).
nmax тах{Л^|0 < г < Ws Л 0 < j < Hs}
for n <r- n m a x to 1 do

for j 0 to Hs - 1 do
for % 4— 0 to Ws - 1 do

Scan(i, j, 0,ri) (Alg. 3)

356 •Joonas Lehtinen

Algorithm 3 Scan (i , j , l ,n)
if ContinueCoding() then

if hij < n then
QMCode(lNSIGNIFlCANT, SIGNIFICANCE-TEST(/))

else
if hi j = n then

QMCode(SIGNIFICANT, SIGNIFICANCE-TEST(/))
if I = 0 then

ScanCoeff(i, i,TOPLEVEL, n)
Scan(i, j + Hs,l,n)

else
ScanCoeff(i,j,HORIZONTALF ' ' C(T+WI-A>I < 2 ') I7L)

V C{i+Wi,i),(j-Hi,i) < 2)
(I c • < 2n~1 \

ScanCoeff i i + Wij,DIAGONAL ' U3 ' , N)
V ^i+Wi^XJ-mj) < 2 J

(I c- • < 2n_1 \ ScanCoeff(I + WJ J, J - IIJ ,VERTICAL ' ' ,J , N)
V < z J

if 2 *y <H then
Scan(2 * i, 2 * j, I + 1, n)
Scan(2 * i + 1,2 * j,l + l ,n)
Scan (2 * i ,2 * j + 1,Z + l ,n)
Scan(2 *i + l,2*j + lq,l + l ,n)

A l g o r i t h m 4 ScanCoeff(a;,y,CONTEXT,n)
if c^y < 2™ then

QMCode(Bit(c :C jj / ,N),CONTEXT)
if ~B\t(cXty,n)= 1 then

QMCode(sX]! /,SLGN)
DLUpdate(n, cXiV)

else
QMCode(Bit(cXiy,n),COEFFICIENTBIT)
DLUpdate(n, cXiV)

Acta Cybernetica 14 (1999) 341-356.

On the Exact Solution of the Euclidean
Three-Matching Problem

Gábor Magyar Mika Johnsson Olli Nevalainen *

Abstract

Three-Matching Problem (3MP) is an NP-complete graph problem which
has applications in the field of inserting electronic components on a printed
circuit board. In 3MP we want to partition a set of n = 31 points into I
disjoint subsets, each containing three points (triplets) so that the total cost
of the triplets is minimal. W e consider the problem where the cost Cijk of
a triplet is the sum of the lengths of the two shortest edges of the triangle
(i, j, k)\ the reason for this assumption is the nature of the practical problems.

In this paper we discuss the optimal solution of 3MP. W e give two dif-
ferent integer formulations and several lower bounds of the problem based
on the Lagrangian relaxations of the integer programs. The different lower
bounds are evaluated by empirical comparisons. W e construct branch-and-
bound procedures for solving 3MP by completing the best lower bound with
appropriate branching operations. The resulting procedures are compared to
our previous exact method and to general MIP solvers.

1 Introduction
The task in Three-Matching Problem (3MP) is to form I disjoint triplets from
7i — 3/ points and to minimize the total cost of these triplets, i.e., to connect the
three points of each triplet by two line segments so that the total length of the
line segments is minimal. The 3MP can be illustrated with an Euclidean problem
instance, see Fig. 1.

The 3MP occurs in some industrial applications [3, 5, 7, 12]. In manual insertion
of electronic components on a printed circuit board, the operations are arranged into
close triplets to aid the worker's task. Furthermore, some flexible machines (e.g.,
General Surface Mounter) for automatic electronic component insertion have from
three to eight insertion heads and operate in cycles comprising component pickups
and insertions; the throughput of the machine can be improved by minimizing the
length of the inter-board head movements. Component insertions are performed
in two phases: in the first phase head nozzles pick up new components from the
component feeders, and in the second phase the head moves to the actual insertion

"Turku Centre for Computer Science (TUCS) and Department of Computer Science, University
of Turku, Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland

357

358 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Ä) ©

©

©

<s>
iS) %

© ©
® ® ®

©
©

ÍÍ, © @ © <S) (S)
© © (3) © ©

Ii)

©
<S)

w
©

©

(9

© (30)
@ a €> ©

<Z) ® (Si
®

—•(V)

I
''i CO-

ri)
© (.7) (,;)

©
(0) Í3*)

/

@
üs)
" \

© © e;
\ (*i) (33)

©

Figure 1: A sample 51-point 3MP problem instance ('eil51' from TSPLIB [15])
along with its optimal solution. The vertices are numbered as they appear in the
problem file.

points to perform the actual insertions. Careful selection of the point triplets (in the
case of a three-headed machine) is essential in minimizing the total printing time
of the board. A similar problem is encountered in the scheduling of an automated
assay analysis instrument (AutoDelphia).

3MP is closely related to the 3-dimensional assignment problem (3DA) [1, 3]
which is NP-complete and a restricted version of our problem (in 3DA the points
of the triplets are drawn from three disjoint subsets of the point set). Our previous
studies and the connection to 3D A indicate that 3MP is NP-complete [6]. Addi-
tionally, 3MP is closely related to the p-median problem [2], in which we search p
median points to which the remaining points are connected in such a way that the
total sum of the connecting edges is minimal. However, the p-median problem does
not restrict the number of allocated points to a median to be exactly ji/p. The
3MP can therefore be viewed as a specialization of the p-median problem.

The 3MP can be solved heuristically by standard approaches, like local search
heuristics using pairwise interchanges, simulated annealing, tabu search and genetic
algorithm [6, 9, 10]. Several lower bounds can be given to the problem. By knowing
the optimal solution to the problem we can evaluate the quality of the lower bound
and the upper bound solutions of the heuristic approaches. Here we will discuss a
number of design alternatives of B&B algorithms for 3MP and their trade-offs in
this study.

The plan of the paper is as follows. Two different integer programming formu-
lations for 3MP are given in the next section. In Section 3 we discuss briefly the
branch-and-bound method and its main components. Section 4 describes four lower
bounds to the problem and compares them empirically. The best lower bound is

On the Exact Solution of the Euclidean Three-Matching Problem 359

completed with three different branching rules in Section 5. Test results comparing
the branch-and-bound procedures and previous methods are discussed in Section 6.
This section also compares our procedure to general MIP solver packages. Finally,
the conclusions are drawn in Section 7.

2 Problem formulations

In this section, we give two integer programming formulations for 3MP. Firstly, the
problem can be formulated by the following 0-1 program [6]:

Let dij represent the cost of the edge j —» i, V the set of vertices and Xij the
decision variable where

_ J 1 if the edge j —• i is present in the solution,
y [0 otherwise.

The problem is to

minz/pi = £ £ dijXij (1)
iev jev

subject to

+ = 1

 (2)

iev kev
i i j e { o , i } W e v j e v (3)

In the above formulation the edges are directed and the first index stands for
the central point of the triplets. The first term in constraint (2) is equal to 1 if and
only if the point j is not a central triplet point, whereas the second sum is equal
to 1 if and only if the point j is a central point.

Our second formulation considers 3MP as a modification of the p-median prob-
lem (e.g., see [2]), where p = n/3 and every median has exactly two other points
allocated to it. The decision variable xu is equal to 1 if and only if point i is a
median vertex. Concerning the other variables,

_ J 1 if point j is allocated to median i in the solution,
\ 0 otherwise.

The problem is to

min zjp-2 = £ £ dijXij (4)
iev jev

subject to

360 Gábor Magyar, Mika Johnsson. Olli Nevalainen

5 > y = 1 V i e v (5)
iev

xu = n / 3

iev
(6)

xij = 2xn viev (7)
jevscj^i

Xij £ {o, 1} Vî g v , j e v (8)

Equations (5) ensure that each point is allocated to a median. Equation (6)
says that there are exactly n/3 medians. Equations (7) ensure that every point is
allocated only to a median point and every median has exactly two other points al-
located to itself. The above program is also valid for the 3MP if we have inequalities

When we describe the Lagrangian relaxations of the above integer programs in
Section 4, we will refer to the first program as "IP1", the second one with signs
" = " in (7) as "IP2a", and with signs "<" as "IP2b".

It must be noted that the p-median formulation does not hold for natural gen-
eralizations of the three-matching problem: for example, in the case of 4-matching
when the objective is to find point groups of four points with a minimal total
distance of the path crossing the four points, there is no median point.

The branch-and-bound (B&B) method (e.g., see [8]) is an intelligent enumerating
procedure for finding the exact solution of a given combinatorial optimization prob-
lem. The method maintains a set of live leaves of an enumeration tree. The tree
represents partitions of the feasible solutions in its nodes. The classes of the parti-
tions are usually defined by storing some fixed variables or partial solutions in the
nodes. The procedure begins with the root, which has no fixed variables; it rep-
resents all the feasible solutions of the optimization problem under consideration.
The branching operation is used to partition the feasible solutions of a selected
branching node into its descendant nodes. The partitioning is done by fixing some
further variables in the descendant nodes in a systematic way depending on the
structure of the problem. The effectiveness of the method comes from the bound-
ing operation, where we calculate sharp lower bounds (in case of a minimization
problem) of the object values of the feasible solutions represented in the nodes of
the tree. We do not have to build up the whole enumeration tree in general, i.e.,
if a node does not contain any better solutions than a known one, then that node
and the respective subtree can be discarded. A more precise description of the
branch-and-bound procedure is as follows:

1. (Initialization) Let the set L of live leaves contain only one node, the root,
which represents all the feasible solutions. Calculate the lower bound for the

in (7).

3 Outline of the algorithm

On the Exact Solution of the Euclidean Three-Matching Problem 361

root. Calculate a sub-optimal solution s* with some heuristics if possible and
store its value to z*.

2. (Iteration) If L is empty, then terminate. Return s* as the optimal solution
and 2:* as the optimal value.

3. (Selection) Select a branching node Node from L with some leaf selection
rule.

4. (Branching) Form the partition ip(Node) = {N1,... ,Nk} of the selected
branching node.

5. (Bounding) Calculate the lower bounds g(N{) for all the new nodes, i =
1, . . . ,k. If a feasible solution arises during the bound calculations, then
modify the current best solution s* and its object value z* when necessary.

6. (Fathoming) Update the set L of live leaves according to the explored node
and the actual value of z*:

(a) add N1,... ,Nk to L,
(b) delete Node from L,

(c) delete all TV e L for which g(N) > z*.

7. (Next iteration) Go to the next iteration (step 2).

We have two major alternatives to select a leaf at step 3. We can select the
leaf with the minimal assigned lower bound. This way the set of live leaves usually
grows very rapidly since we build the tree more or less level by level horizontally.
A more practical approach selects the leaf for which the ratio of the assigned lower
bound and the number of fixed variables is minimal. In this case we traverse the
tree in a depth-first fashion. This action provides feasible solutions at an early
phase of the processing and uses less memory. We will apply the second selection
criterion in our branch-and-bound procedures.

The main components of a B&B procedure are the branching operation tp,
the bounding function g, and the primal heuristics available for generating initial
solutions. Furthermore, upper bound heuristics can also be applied to generate
candidate solutions based on the partial solutions of the tree nodes. Next we
consider all these components in detail and give a complete branch-and-bound
procedure.

4 Lower bounds
In this section we discuss four lower bounds for the 3MP. The first bound is problem-
specific, while the other three are based on the Lagrangian relaxations of IP1 and
IP2a. The latter program provides two alternatives for the relaxation, either by
relaxing the constraints (5) or (7).

362 Gábor Magyar, Mika Johnsson. Olli Nevalainen

The first lower bound ("LB1"), introduced in [6] (as bound "D") is applicable
for the Euclidean case only:

1. For each point, calculate the distance to the closest point, store these distances
together with the indices in the list Si.

2. For each point, calculate the distance to the second closest point, store these
distances together with the indices in the list S<>.

3. Sort lists Si and S--> into an increasing order on the distances.

4. Omit duplicates from Si and S2 (i.e., rule out the edge b — a if a — b has
occurred previously), also rule out a — c if a — b and b — c are already in the
list and a — c is the longest distance in the triplet (a — b — c). The deletion is
done first in S2 and in Si only if Si itself requires the deletion (all deletion
conditions are met in Si). When selecting the distances from the sorted lists
Si and S2, we omit those distances that would connect a point to more than
two other points.

5. If there are less than 2/3n values in Si, move 2/3n — |Si| elements with
the shortest distances from S2 to Si. Alternatively, if |Si| > 2/3n, delete
at a maximum |Si| — 2/3n values from Si. Deletion is allowed only if the
points connected by the deleted edge are still connected after the deletion to
some other point in Si by an edge. Deletions are started from the end of Si
(the largest values first). The operation is implemented by maintaining a list
R — (r 1,... , r| Sl |) where is the degree of point i in Si. So the deletion of
the element (dij , i , j) is allowed only if r.L > 1 and rj > 1. After a successful
deletion, R is updated, r-j = rj — 1, rj = rj — 1.

6. Sum the first 2/3n distances in Si to get the lower bound.

The Lagrangian relaxation (see e.g. [4, 14]) is a general way for obtaining high
quality lower bounds for hard combinatorial optimization problems. By attach-
ing Lagrangian multipliers to some of the constraints of the original problem and
relaxing these constraints into the objective function, we get a Lagrangian relax-
ation, which is easier to solve than the original problem. Maximizing the optimal
values of the Lagrangian relaxation for A, we obtain the Lagrangian dual program.
The optimal value of the Lagrangian dual is a valid lower bound (in the case of
minimization) and in the optimal case it can reach the optimal value of the linear
programming relaxation of the original problem. The main advantage of the La-
grangian relaxation is that the solution process is much faster than solving the LP
relaxation. The maximization of the value of the Lagrangian dual is often done by
the subgradient optimization method, in which we update the Lagrangian multipli-
ers in a systematic way to achieve the best lower bound. The Lagrangian relaxation
technique has been applied successfully to many hard combinatorial optimization
problems, see for example, [1, 2, 4].

On the Exact Solution of the Euclidean Three-Matching Problem 363

Next we describe three Lagrangian lower bounds and the subgradient, opti-
mization procedure for maximizing the bounds. Our first bound is based on the
Lagrangian relaxation of IP1 [6]. The latter two relaxations were introduced in [2]
for the general p-median problem. Here we recall them with such modifications
that make them applicable to the 3MP.

In the case of the relaxation for the problem formulation of IP1, we relax the
constraints (2) into the objective function by introducing the Lagrangian multipliers
A j (j G V) and get the following Lagrangian relaxation:

min zjji = Y^ d i i X i i + X ! (X ! X ii + \ X ! x i k

iev jev jev \ev kev

= J2 Y,\dii + Xi + x*i ~ H A i
iev jev ^ ' jev

subject to

Xij G { 0 , 1 } ViGVjGV (10)

This program is easy to solve. The solution becomes straightforward after ex-
amining the signs of the terms D^ = d^ + Aj + 0.5Ai since the second sum of (9)
is constant with respect to x. Hence, the optimal solution of zdi is:

, . - / 0 if D^ > 0,
\ l if D^ < 0. 1 J

Now we describe two Lagrangian relaxations for the program IP2a. Let I\y
denote the set of vertices that have been previously fixed to be medians and Kq
the vertices that have been fixed to be non-medians by the branching rules of the
B&B procedure.

As a second relaxation, we relax the constraints (7) by introducing the multipli-
ers Ai(i G V). The resulting program allows us to allocate the points to non-medians
and, in addition, a point may have an arbitrary number of other points allocated
to itself. We get the following Lagrangian relaxation:

minZD2 — X ! X I ^jXij -j- Y -M E Xij-2xu) =
iev-K0 jev-Ki iev-Ki S'ev&j^i * '

= XI X! + + X (dii
 ~

iev-k0 jev-KiSijjH iev-K0

subject to

364 Gábor Magyar, Mika Johnsson. Olli Nevalainen

5 3 xij — 1 Vj e i / - /v 1 (13)
iev-Ko-K-,

xu = n /3 - \Ki\ (14)
Ki

Ai = 0 Vi e Ki (15)
xu = 0 Vi e KQ (16)

— 1 \/i e Ki (17)
Xij G {0 ,1} Vi e v,j e v (18)

To solve this program, we define aj as the minimum cost of allocation vertex j
other than to itself, i.e., the minimal arising cost if vertex j is not a median:

otj = min (dij + Ai) Vj G V - ICi (19) iEV — Koiii^j

The Lagrangian relaxation (equations (12)-(18)) then can be changed for the
following problem which has the same optimal value as the Lagrangian relaxation.
The basis; of this substitution is that the minimal value of ^ 2 i e V _ K o ^ (dij + Ai)r,ij
is equal to aj if j £ V - K\, by (13).

min zD2 = 53 aj + 53 dii + 5 3 ~ 2Xi ~ ai)xij (20)
jav-Ki j e « , jev-i<o-Ki

subject to

J] xii=n/3-\K1\ (21)
iev-Ko-Ki

xu = 1 V? 6 Ki (22)
xu£{ 0 ,1} Vi€V-Ko (23)

The optimal solution of this program is found by setting xa to 1 for i g K\ and
the remaining n/3 — |/iTi| xa with the smallest (da — 2 A j — c^) (i £ V — K0 — Ki)
to 1, while all the other xu are set to zero. If the values of the variables xa are
denoted by x*u the optimal solution of the above program, then the other variables
(,x*j) are calculated as follows:

if x*j = 0 and i corresponds to the minimum
for a j in (19) (i ¿ j) , (24)
otherwise (i ^ j).

On the Exact Solution of the Euclidean Three-Matching Problem 365

Thirdly, we relax the constraints (5) of IP2a by introducing the Lagrangian
multipliers A j (j G V) and get the following Lagrangian relaxation:

min zm = E E dvXii ~ E Xi (Xii ~ 1

iev-Kojev-K! jev \ev

- E E i^ j A,)*,, -] T (rfj, - A,) ! E 'V
iev-Kojev-K! jei<i jev

subject to

E Xii = n/Z-\Ki\ (26)
iev-Ko-Ki

^ ^ Xij — 2Xa Vi G V (27)
jev-K^jjti

xu = 0 Vi G Ko (28)
— 1 Vi G Kl • (29)

Xij e {o, 1} Vi G V,j G V (30)

The relaxation disregards the constraint that every point must be allocated to
a median. Therefore, every selected median point will still have exactly two other
points allocated to it, but a point can be allocated to several medians.

To solve this program, let us consider the effect of specifying that k is a median
vertex. This implies the settings xkk — 1 a n d xk j — 1 where j corresponds to the
indices of the smallest or second smallest value of (dkj — Aj), j G V — Kx — {fc}.
This is true, because the constraints (27) ensure that every selected median will
have the two points with the smallest (dkj — Aj) allocated to itself. Because the
constraints (5) have been relaxed, a point can be allocated to several medians. We
denote by the arising cost when deciding that vertex k will be a median:

ak = (dkk - Ak) + min (dkj - \k) + 2ndmin (dkj - Xk), Vk G V - I(0 jev-KxUj^tk jev-Ki&j^tk
. (31)

where "2ndmin" denotes the second smallest value of the expression.
The solution of the Lagrangian relaxation of (25)-(30) now can be obtained by

solving the following problem which has the same optimal value:

min zD3 = E aixa + E (32)
iev-Ko jev

subject to

366 Gábor Magyar, Mika Johnsson. Olli Nevalainen

E = n / 3 - l ^ i I (33)
iev-Ko-Ki

Xu = 1 V i e Ki
zu e {o, 1} Vie v-Ko

(34)
(35)

The optimal solution of this program is found by selecting the needed n/ 3— 11\ \ \
medians as follows: set xn to 1 for the indices i (i £ V — Kq - Ki) which give the
smallest a* values. The other xu values (except i e Ki) are set to 0. Denoting the
optimal assignment of the diagonal elements by x*u, the remaining variables (x*j)
are allocated as follows:

The problem reduction by calculating penalties is a common technique in La-
grangian relaxations. Suppose that we have solved the Lagrangian relaxation to
optimality. We can then estimate the increase in the lower bound which would
result from forcing a variable to either 0 or 1. If the lower bound resulting from
imposing some condition on a variable is above some known upper bound to the
problem, then that condition cannot be satisfied in the optimal solution of the orig-
inal problem. This means that we can fix the value of the given variable as it is in
the optimal solution of the Lagrangian relaxation. For example, if a variable x*j is
0 in the optimal solution of the Lagrangian relaxation, and the penalty for forcing
x*.j to be 1 results in exceeding the known upper bound, then the value of x*̂ can
be fixed to 0 and the size of the problem can be reduced. For the third relaxation,
we include the calculation of the penalties, where we have four cases for = 0
and two cases for x*- = 1. i j

Finally, we describe the method that is applied for maximizing the optimal
values of the Lagrangian dual programs. We will denote the three described La-
grangian relaxations by "LR1", "LR2" and " LR3" and "LR3P" (LR3 with penal-
ties). In the above relaxations, the Lagrangian multipliers are unconstrained in
sign, because the relaxed constraints are equalities in every case. We apply the
following subgradient optimization procedure in order to maximize the value of the
Lagrangian dual programs:

1. Determine an upper bound zub to the problem. This can be done by any of
our previous heuristic methods, see for exapmle, [6, 9, 10]. Set z*L to —oo,
which will denote the maximal lower bound.

2. Initialize the Lagrangian multipliers to Xj = 0, j £ V.

3. Solve the Lagrangian relaxation with the actual set of Lagrangian multipliers.
Let z*D denote the optimal value of the relaxation, x*i} the optimal solution
and M* the associated median set (in the case of LR2 and LR3).

if x*- = 0 and j corresponds to the smallest or the
second smallest index for ai in (31) (i ^ j),
otherwise (i /])•

(36)

On the Exact Solution of the Euclidean Three-Matching Problem 367

4. S e t z*L = ma,x(zQ,zl).

5. Terminate if zub < z l , which means that the maximal lower bound is found.
Otherwise go to step 6.

6. Perform the penalty tests outlined above (case LR3P).

7. Calculate the subgradient vector S:

S j = Y , + \ £ x h - 1 V i e Vfor LRl (37)
iev kev

Si= E x*j - 2x*n Vi e yfor LR2 (38)
jevgij^i

S j = 1 - E x i j G y f o r L R 3 (3 9)
ieM'

8. If Sj '= 0 for all j G y , then terminate; the optimal solution of the original
problem is found. Otherwise go to step 9.

9. Calculate the step size T for updating the multipliers by

T = (40)

where n is a constant (0 < it < 2) controlling the step size of the procedure.

10. Update the multipliers by

A j = A j + T S j , V j € y (4 1)

11. Go to step 3 for the next subgradient iteration unless some termination cri-
teria (see below) is satisfied. Else stop and return z*L as the maximal lower
bound.

We set the value of it initially to 2. After that it is halved after every 30 itera-
tions if the value of the best lower bound has not been improving. The procedure
terminates after reaching a predefined total number of iterations which is set to
200.

Now we are in the position to compare the lower bounds. Table 1 shows a
summary of the results of practical tests with 20 Euclidean problem instances1. It
should be noted that all the above bounds except the first one (LB1) can deal with

1 T h e test problems are available from http : / /www.cs .utu. f i / research/pro jects /3mp/

http://www.cs.utu.fi/research/projects/3mp/

368 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Prob Pts LR3P LR3 LR1 LR2 LB1 max LB O P T
f21 21 0,00 0,03 8,31 8,31 7,52 159,73 159,73
f27 27 1,22 1,22 7,88 7,91 10,45 7913,53 8011,08
f33 33 0,00 0,00 7,31 7,32 8,31 255,69 255,69
f39 39 10,63 10,63 15,79 15,79 14,31 252,31 282,31
39a 39 1,56 1,56 9,98 9,98 7,55 771,74 783,96
39b 39 7,47 7,47 17,03 17,06 16,76 764,45 826,14
39c 39 0,54 0,54 9,81 9,84 11,44 954,21 959,38
39d 39 1,65 1,65 10,41 10,44 10,34 768,33 781,22
39e 39 6,25 6,25 13,00 13,01 16,11 817,82 872,35
42a 42 6,14 6,14 15,14 15,16 15,77 890,83 949,09
42b 42 5,41 5,41 15,43 15,48 15,28 814,00 860,59
45a 45 0,55 0,55 10,92 10,94 10,52 1007,60 1013,14
45b 45 4,20 4,20 20,34 20,36 22,62 944,18 985,60
48a 48 0,00 0,00 5,12 5,13 4,84 996,61 996,61
48b 48 0,00 0,00 15,52 15,53 11,66 967,83 967,83
51a 51 1,78 ' 1,78 14,19 14,20 13,26 966,01 983,55
51b 51 3,01 3,01 11,07 11,09 9,17 973,57 1003,82

eil 51 51 2,36 2,36 8,33 8,33 8,66 259,34 265,61
f99 99 0,89 0,89 5,99 5,99 6,88 382,78 386,23

rat99 99 1,07 1,07 8,88 8,89 9,60 743,48 751,53
Average 2,7367 2,7382 11,5233 11,5372 11,5542

Table 1: Test results for different lower bounds and the effect of the penalties for the
bound of LR3. The values show the difference from the optimal value in percents.

any kind of distance matrix. The problem instances "rat99" and "eil51" are from
the TSPLIB [15] and the instances "f21", "f27", "f33", "f39", "f99" are prefixes
of the files "eil51", "krobl50", "rat99", "rat783" and "eillOl" of the TSPLIB,
respectively. The other 13 files are generated by picking the co-ordinates of the
points randomly and independently within the range [1,300]. The results of Table 1
show the difference from the optimum. Column 8 shows the value of the maximal
lower bound of the five bounds and the last column shows the optimal value, which
we calculated with the B&B procedure. The averages of the differences from the
optimum are indicated in the last row.

The results indicate that LR3 outperforms the other bounds. Furthermore, the
penalties still improve the bound in one case (f21). The average difference between
the bound LR3 (LR3P) and the optimum is 2.7367% for the test problems. Some
problems (e.g., f39, 39b and 39e) are harder than the others because the bound is
farther from the optimum. On the other hand, the bound can also be very close
to the optimum. In some cases it even reaches the optimum, for exapmle, f21, f33,
48a and 48b.

The results of LR1 and LR2 are practically identical and LB1 also seems to
be as good as these two bounds. The difference between LR3 and the three other
bounds is relatively large. Therefore, the application of LR3 is justified in the B&B
procedure, as the quality of the lower bound is essential. However, the calculation ̂

On the Exact Solution of the Euclidean Three-Matching Problem 369

of the bound LB1 is much faster than of the other three, which require many
hundreds of iteration steps of the subgradient method. Therefore, we will examine
the application of this bound in the B&B procedure.

Finally, the results of Table 1 are also in line with the observations of [2], i.e.,
the bound LR3 clearly outperforms LR2.

5 Branching rules
Next we equip LR3P with appropriate branching rules to build up a complete
branch-and-bound procedure for the 3MP. We describe three different branching
rules. The first one was introduced in [2] for LR3. The other two can be considered
as enhancements or extensions of the first one. The branching rules choose variables
to the sets of K0 (non-medians) and K\ (medians) (cf. Section 4) systematically.
A variable is referred as a free variable unless the branching rules or some other
operations, for example the application of the penalties, have fixed its value.

Rule 1. The first branching rule [2] selects the variable Xjj corresponding to

Q; = min a-, (42) J ieM'-Ki

and sets Xjj either to 0 (non-median, K0 = K0 -I- { j }) or to 1 (median,/^ =
K\ -I- { j }) in the descendant nodes. This rule selects the median point from the
selected free medians of the Lagrangian relaxation and gives a binary enumeration
tree.

Rule 2. This rule performs a 3-ary branching based on a free variable Xjk, where
j is determined by (42) as above. The vertex k corresponds to min djk among the
free variables Xjk (i.e., it represents the smallest possible allocation cost of a point
to j). In one branch, we perform the partitioning by fixing Xjj to 0 (I<0 = Ko + {;j}).
In the other two branches, we set j as a median by fixing xjj — 1 (K1 = Ki + {j}).
The latter two branches differ in the value of the variable namely we fix Xjk = 1
in one of them (this also yields that k becomes a non-median), and Xjk = 0 in the
other. This rule is an extension of rule 1 in the sense that in addition to deciding
whether point j is a median or not, we also decide an allocated point k in the case
when j was selected as a median.

Rule 3. This rule is a modification of rule 2. We select now the branching
variable Xjk corresponding to mindjk, where j € V — Kq — Ki,k £ V — K\,k ^ j
and Xjk is free. The difference from the previous rule is that the candidate for
the median point (j) is not determined by (42), but it is selected according to the
minimal value of djk, where j can be any of the possible candidates for a median.
The branching is similar to rule 2, this again yields a 3-ary tree.

The above branching rules are exhausted when we have fixed the required num-
ber of medians, i.e., |Ii\| = n/3 (or |A'0| = 2n/3). It seems to be problematic
that in the p-median problem the solution resulting from the relaxation LR3 is
restricted to find the n/3 median points. In the general p-median problem, the

370 Gábor Magyar, Mika Johnsson. Olli Nevalainen

remaining points are allocated to the closest medians and a median can have an
arbitrary number of other points allocated to it. The solution of 3MP, however,
requires that each median has exactly two other points allocated. This difficulty
can be overcome by applying the Hungarian method (e.g., see [13]) as follows: Let
us create an assignment problem where we put the median points in duplicates
into the first set (i.e., every selected median point will appear twice). The other
set includes the non-median points. Performing the Hungarian method for the
assignment of the elements of the two sets results for each median point a match-
ing to exactly two non-median points, where the allocated points are different for
each pair of median points. With this additional procedure, the solution of 3MP
is complete after solving the appropriate restricted version of the general p-median
problem. For this reason, it is enough to select the n/3 median points optimally
(central points of the triplets), and the exact solution of the 3MP can be derived
from that.

In order to find tight upper bounds during the B&B procedure, we perform the
Hungarian method also on the median set M* which is associated with the best
Lagrangian lower bound from the subgradient procedure. This way the size of the
tree can be reduced since the better upper bounds enable us to fathom some more
unnecessary leaves, see step 6 of the B&B procedure in Section 3.

It was noted above that the calculation of a high quality lower bound is achieved
by 200 iterations of the subgradient method. This is applied at the root node. We
perform only 30 iterations at other levels of the tree. The Lagrangian multipliers of
the tree nodes are initialized to their best values in the parent nodes; this common
practice enables a smaller number of iterations at the lower levels of the tree. The
value of 7t is initialized to 1 in the tree nodes, and it is halved after every fifth
iteration.

When adding a variable to the set Kq, all the variables in its row are also fixed to
0, as it cannot have any points allocated. If a variable is added to K\, the variables
in its column (except the diagonal) are fixed to 0, as it cannot be allocated to other
points. We apply some additional tests on the fixed variables, and, if it is possible,
we still fix some more variables. These additional tests take place after the penalty
tests and they work recursively until no new variable has been fixed.

The following tests are performed:

1. If all three variables have been assigned to the median (the median and the
two allocated points), then all the other free variables of the row of the median
can be fixed to 0.

2. If a row of a median contains only the required number of free variables
(i.e., 1 or 2), then those variables are automatically allocated to the median;
furthermore, the appropriate columns are included in the set of Kq. The other
variables in the row and column of the automatically allocated variables are
fixed to 0.

3. If a row has less than three free variables and no variable has been fixed
to 1, then it is impossible for it to be a row of a median. Therefore, the

On the Exact Solution of the Euclidean Three-Matching Problem 371

Time (sec) Nodes
Problem Pts PI P2 P3 PI P2 P3

f27 27 17 7 12 91 19 73
£39 39 N / A 76803 31903 N / A N / A 323599
39a 39 24 27 16 127 169 73
39b 39 N / A 16935 4946 N / A 143098 29068
39c 39 28 20 9 131 115 13
39d 39 44 29 24 195 208 109
39e 39 9490 5034 741 46847 46789 3718
42a 42 14359 7093 2348 65345 52468 12310
42b 42 51916 17670 9847 120969 142495 59497
45a 45 19 9 11 59 13 25
45b 45 5720 5226 5573 22121 33475 33484
51a 51 558 58 105 2169 259 439
51b 51 6832 2962 554 29471 17557 2296

eil51 51 4216 1010 284 15243 4984 1141
f99 99 N / A 3667 4055 N / A 10546 7228

rat99 99 N / A 9692 3444 N / A 23731 7012

Table 2: A comparison of the branching rules

corresponding vertex is included in Ko and all the elements of the row are
fixed to 0.

4. If there is only one free variable in a column, then it is fixed to 1. The neces-
sary additional operations are also performed, i.e., the index corresponding to
the row of the fixed variable is included in K\ if it has not yet been included.

Finally, some feasibility tests are also performed after each subgradient, iteration,
i.e., if too many medians or non-medians have been fixed by the deterministic rules,
or all the elements of a column have been fixed to 0, or there is no free point to
allocate to a previously identified median, then the corresponding tree node will be
fathomed.

Now we have the components for a complete branch-and-bound procedure. In
the light of the previous experiments on the quality of the lower bounds, we will
apply the bound which is based on our third relaxation (LR3). Next we examine
the efficiency of the branching rules, see Table 2. All three procedures apply the
penalties and the additional variable tests when calculating the lower bound. They
differ only in the branching rules they apply, and we denote them by "PI" , "P2" and
" P3", respectively. The running times2 (in seconds) and the number of examined
nodes are indicated in Table 2 for the selected problem instances.

The results show that the second and third branching rule have significantly
better performance than the first rule. Furthermore, the third rule is better than

2 All computational tests were performed on a 133MHz Pentium PC.

372 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Time (sec) Nodes
Problem Pts P3 P3- P3- - P3 P3- P3- -

m 21 1 2 19 1 16 40
f27 27 12 26 187 73 244 436
f33 33 1 1 3 1 1 1
39a 39 16 28 298 73 169 346
39c 39 9 29 171 13 181 139
39d 39 24 32 275 109 160 268
39e 39 741 1617 26072 3718 10867 17242
45a 45 11 15 205 25 43 130
51a 51 105 675 7515 439 4096 5284
51b 51 554 4086 32615 2296 22360 23635

eil51 51 284 851 11843 1141 4663 9352

Table 3: The effect of the penalty tests and the additional variable tests

the second one, and therefore, the application of that rule is desirable in an effi-
cient branch-and-bound procedure. The average ratio of the running times of the
procedures PI and P3 was roughly five; for P2 and P3 the corresponding value was
two. On average, the procedure PI generated ca. five times more nodes than P3,
while the average ratio of the number of nodes for P2 and P3 was about three.
The average processing time per a node was approximately the same for all three
procedures.

Concerning the efficiency of the penalties and the additional variable tests, Ta-
ble 3 presents a comparison which is based on some of the easier problem instances.
In the light of the experiments with the branching rules (see Table 2), the third
branching rule is applied in all three procedures. The procedures differ only in the
way they apply the penalties and the variable tests: "P3" denotes the variant which
applies both the penalties and the additional tests (this variant was also included
in the previous tests), "P3-" denotes the variant where the penalties are applied
but the additional variable tests are not, "P3- -" denotes the variant without the
penalties and without the additional variable tests. The table indicates the running
times in seconds and the number of examined nodes for the selected problems.

The results of Table 3 clearly show the advantages of applying both the penalties
and the additional variable tests. The penalties generally enable to fix a large
portion of the variables and have two main advantages. Firstly, by fixing many of
the variables, the calculation of the lower bound becomes much faster. Secondly,
the performance of the branch-and-bound procedure based on the lower bound
equipped with the penalty tests is much better, since eliminating many of the free
variables reduces the size of the enumeration tree.

The average ratio of the running times of the procedure without the penalties
(P3- -) and with the penalties (P3-) was roughly ten, while the average ratio of the
number of nodes was two for the same procedures. Concerning the effect of the
additional variable tests, the average ratio of the running times of the procedure

On the Exact Solution of the Euclidean Three-Matching Problem 373

without these tests (P3-) and with these tests (P3) was roughly three, whereas the
average ratio of the number of nodes was six for the same procedures. The average
processing time of one tree node was approximately 3.5 seconds for P3, 5.7 for P3-,
and 1.0 for P3- -. These values correspond to the observation that the application
of the penalties demands more processing time. The number of nodes is, however,
much smaller when penalties are applied. The additional variable tests speed up
the calculation, and their application also yields a smaller number of tree nodes on
average. To summarize, the experiments confirm that the application of both the
penalties and the additional variable tests is advantageous.

6 Comparisons to other approaches

In this section, we compare the performance of P3 with our previous B&B variant
("P-LB1") [6] and with general MIP solver packages "OSLMIP"3 and "lp-solve"4.
The P-LB1 is based on the quickly computable lower bound LB1. The branching is
done by selecting the free variable with the smallest cost and fixing its value either
to 0 or to 1 in the two descendant nodes. The P-LB1 also performs some variable
manipulating procedures, which can fix certain additional variables on the basis of
the previous branching decisions.

Table 4 shows the running times for the different procedures in seconds. The
better solver (OSLMIP) was performed on all the three integer programs, i.e., on
IP1, IP2a and IP2b, while the other (lp-solve) is performed on IP1 only.

The results of lp-solve with IP2a and IP2b are not included in Table 4, because
they were much worse than with the formulation IP1. We could obtain results
only for the first two problems. These results were roughly 6-10 times worse than
the ones with IP1. For the other problems, we interrupted the execution of the
procedures after 8-10 hours without termination. These observations are especially
interesting if we compare them with the results of the other solver, which showed
that the latter two formulations are much more promising to solve.

The results of Table 4 show that the procedure P3 outperforms the procedure
P-LB1 due to the sharper bounding function. The calculation of the specific bound
of P-LB1 is much faster than the bound of P3, but the improvement in the quality
of the bound yields a much smaller tree size and total running time.

Concerning the comparison with the general MIP solvers, the results are diverse.
The highly optimized machine code of the first solver (OSLMIP) gives better results
than our procedure, while the general package (lp-solve) was much worse than our
method. We think that differences in the running time between our procedure and
the better solver may lay mainly in technical details, as we used general techniques
and high-level programming languages for the implementation. The ratios between
the running times of P3 and OSLMIP show that the difference does not grow with

3 T h e package called O S L M I P is developed by IBM and it is one of the market lead-
ers with respect to the performance. We downloaded the 60-day trial version from
ht tp : / / i sm.bou lder . ibm.com/es / os lv2 / s tar tme .htm

4 T h e package lp-solve can be downloaded from f tp : / / f tp . i cs .e le . tue .n l /pub / lp -so lve /

http://ism.boulder.ibm.com/es/oslv2/startme.htm

374 Gábor Magyar, Mika Johnsson. Olli Nevalainen

Problem Pts OSL-IP1 OSL-IP2a OSL-IP2b P-LB1 P3 LP-IP1
f21 21 10 7 4 8 1 34
f27 27 19 8 12 59 12 386
f33 33 10 4 4 98 1 181
f39 39 8114 620 814 122689 31903 N / A
39a 39 76 16 43 67 16 98
39b 39 7642 644 206 74035 4946 N / A
39c 39 71 13 15 2541 9 21452
39d 39 32 14 27 1000 24 2369
39e 39 1220 402 160 59605 741 20435
42a 42 3670 584 406 31272 2348 231900
42b 42 5787 452 543 N / A 9847 N / A
45a 45 88 16 25 N / A 11 N / A
45b 45 423 107 62 N / A 5573 N / A
48a 48 9 9 7 145 1 200
48b 48 39 8 8 N / A 3 N / A
51a 51 130 23 31 186560 105 N / A
51b 51 841 302 88 N / A 554 N / A

eil51 51 777 613 133 N / A 284 N / A
f99 99 2889 718 1312 N / A 4055 N / A

rat99 99 N / A 3545 2100 N / A 3444 N / A

Table 4: A comparison of some methods for finding the exact solution of the 3MP

the problem size but stays at a constant level. However, for some hard problems
this difference can increase, see problems f'39, 39b, 42b, 45b.

Experiments with problem instances with different cost matrix show a rather dif-
ferent trend [11]. It turned out that matrices with the triangle inequality property
are hard for our procedure, while on totally random cost matrices our procedure is
superior to the other approaches.

Comparing the efficiency of the MIP solvers with respect to the applied integer
program, as stated above, it is important which formulation is used as an input. The
results of OSLMIP show that the modified p-median formulation is much better.
Moreover, IP2b seems to be slightly better than IP2a.

7 Conclusions
We have considered the exact solution of an NP-complete graph problem, the three-
matching problem. We introduced a problem-specific lower bound and a Lagrangian
lower bound based on an integer formulation to the problem. Based on the con-
nection to the p-median problem [2], two further Lagrangian relaxations were given
to the problem. We gave a solution of the 3MP by modifying an algorithm for the
p-median problem.

Our empirical results showed that the lower bounds were quite different, and
special care must be taken when selecting the constraints to be relaxed to the

On the Exact Solution of the Euclidean Three-Matching Problem 375

objective function. It was also shown that two seeming!}' different approaches
gave the same lower bounds (LR1 and LR2). The application of the penalty tests
speeds up the calculation of the lower bound considerably because it eliminates a
large portion of the free variables.

We constructed several complete B&B procedures by introducing different
branching rules. Our modification of the branching rule of [2] gave the best perfor-
mance. Furthermore, we incorporated additional variable tests in order to enable
to fix more free variables. The efficiency of the branching rules were examined and
the application of the penalties and the additional variable tests were justified by
empirical tests.

We compared our B&B procedure with our previous algorithm, which uses a
quickly computable but worse lower bound, and the results clearly showed that
the increase in the quality of the bound was essential and the procedure with the
better bound outperformed the previous approach. Furthermore, we compared our
procedure with two general optimization packages, and the results were diverse.
The highly optimized machine code of a commercial MIP solver had better running
times than our procedure, but the ratios of the two running times seemed to remain
constant. The other solver, which was written in C, had a worse performance than
our procedure.

It was also shown that it was very important which integer program was used
in the MIP solvers. There is a significant difference between the formulations IP1
and IP2, but even the small difference between the formulations of IP2a and IP2b
can yield great differences in the performance of the solvers applied to the two
programs.

References
[1] E. Balas and M.J. Saltzman: An algorithm for the three-index assignment

problem, Operations Research 29 (1991), 150-161.

[2] N. Christofides and J.E. Beasley: A tree search algorithm for the p-median
problem, European Journal of Operational Research 10 (1982), p. 196-204.

[3] Y. Crama, A.W.J. Kolen, A.G. Oerlemans and F.C.R. Spieksma: Production
Planning in Automated Manufacturing, Springer-Verlag, 1994.

[4] M.L. Fisher: The Lagrangian relaxation method for solving integer program-
ming problems, Man. Sci. 27 (1981), 1-18.

[5] M. Johnsson, T. Leipala: Determining the manual setting order of components
on PC-boards, Journal of Manufacturing Systems, Vol. 15 No. 3 (1996), 155-
163.

[6] M. Johnsson, G. Magyar, 0 . Nevalainen: On the Euclidean 3-Matching Prob-
lem, Nordic Journal of Computing 5(1998), p. 143-171.

376 Gábor Magyar, Mika Johnsson. Olli Nevalainen

[7] P. J. M. van Laarhoven and W. H. m. Zijm: Production Preparation and
Numerical Control in PCB Assembly. The International Journal of Flexible
Manufacturing Systems, 5 (1993), p. 187-207.

[8] E.L. Lawler and D.E. Wood, "Branch-and-Bound Methods: A Survey", Oper-
ations Research 14 (1966), 699-719.

[9] G. Magyar, M.Johnsson, 0 . Nevalainen: Genetic algorithm approach for the
three-matching problem, Proceedings of the Third Nordic Workshop on Ge-
netic Algorithms and their Applications (3NWGA), p. 109-122, Aug. 1997.
(ftp://ftp.uwasa.fi/cs/3NWGA/Magyar.ps.Z)

[10] G. Magyar, M.Johnsson, 0 . Nevalainen: An adaptive hybrid GA for the 3-
matching problem, Turku Centre for Computer Science (TUCS) Technical

. Report 166, March, 1998.

[11] G. Magyar, M.Johnsson, O. Nevalainen: On the exact solution of the three-
matching problem, Turku Centre for Computer Science (TUCS) Technical Re-
port 199, October, 1998.

[12] K. Palletvuori, P. Luostarinen, K. Muurinen and O. Nevalainen: "On the
scheduling of a multipurpose laboratory analysis instrument", In 9th Euromi-
cro Workshop on Realtime Systems 97, 1997.

[13] C.H. Papadimitrou and K. Steiglitz: Combinatorial Optimization, Algorithms
and Complexity. Prentice-Hall, New Jersey, 1982.

[14] Modern Heuristic Techniques for Combinatorial Problems, edited by C.R.
Reeves. McGraw-Hill, 1995.

[15] G. Reinelt: TSPLIB - A Traveling Salesman Problem Library, ORSA Journal
on Computing 3 (1991), 376-384.

ftp://ftp.uwasa.fi/cs/3NWGA/Magyar.ps.Z

Acta Cybernetica 14 (1999) 341-356.

Testing Internet Applications - Terminology and
Applicability

Mazen Malek * Roland Geese *

Abstract

This paper examines the applicability of OSI conformance test method-
ology to Internet protocols. It summarizes the differences between them
and introduces the Internet Reference Model along with a new abstract test .
method, which was designed for the practical purposes of conformance test-
ing of T C P / I P protocols. Some interesting test cases and points, that were
chosen from RIP, demonstrate the facilities of the model and give impression
of testing Internet protocols.

1 Introduction
Up to now, in the Internet community, conformance testing was an unknown con-
cept. However, the need for recommendation conforming TCP/IP implementations
grows, as the application of Internet protocols in business telecommunication sys-
tems is becoming reality. It is probable that more and more vendors are going to
provide Internet products, whose reliability and interoperability with other prod-
ucts have to be assured.

Although conformance testing methodology [1] was originally intended for OSI
based systems, there are ongoing discussions about its applicability to the TCP/IP
protocol stack. Numerous articles and conference contributions justify that these
questions present a current topic. [2] founds theoretical base of relay system testing,
which is then used, among others, for the testing of Simple Mail Transfer Protocol
[3] and IP router. [4] and [5] focus on detailed analysis of Transmission Control
Protocol's flow control algorithms that are expected to be used in measuring and
fixing the majority of implementation problems listed in [6]. On the other hand, [7]
deals with interoperability test suite derivation that may be used for the purpose
of Internet testing.

The following issues, beside others, will be argued in this paper. Sections 2-5
give an overview of the Internet protocol structure, introduce the Internet Reference
Model and suggest a new abstract test method. Also, similarities and differences
in layering, data flow and configuration are fetched in comparison to the OSI Basic
Reference Model (BRM) [8]. After the presentation of a possible test realization

•Conformance Center, Ericsson Ltd., Lahore u. 1., H-1037 Budapest, Hungary

377

378 Mäzen Malek, RolancI Gecse

(section 6) and a short overview of the Routing Information Protocol and related
Internet routing concepts (section 7). sections 8 and 9 give some practical testing
experience.

2 Comparing Internet and OSI architecture
The OSI BRM has 7 layers, each of which with a well-defined task. OSI protocol
stacks are designed to fit to this model. The protocol entities (PEs) of a particular
protocol suite are associated to the appropriate layers. Peer-to-peer communication
between two PEs of the same layer takes place in abstract protocol data units
(PDUs) while physical communication with upper and lower layers' PEs is only
possible via service primitives (SPs).

Unfortunately, Internet was not planned to have such a detailed abstract model.
The structure of TCP/IP, which represents the actual state of Internet, has evolved
gradually from the beginning [9]. Internet has only four layers: link, network, trans-
port and application. Although the general functions of these layers are not as well
defined as OSI's, they provide almost the same functionality. Disregarding that
reliable service appears first only in the transport layer, network and transport
layers map to their OSI counterparts. Internet link layer maps, in general, to OSI
physical and data-link layers. Since the application layer holds all remaining func-
tionality (OSI layers 5-7), applications may gain enormous complexity. Internet
protocols do not have standardized SPs, thus in contrast to open systems; the com-
munication between neighboring layers is implementation specific. This, besides
the loosely specified layer characteristics, results that layer boundaries are flexible.
Another feature that must be kept in mind when talking about Internet is the whole
TCP/IP protocol stack should be considered as a single unit together with a set
of alternative protocols. The transport layer for example consists of two protocols:
the transmission control protocol (TCP), which is a connection-mode service and
the user datagram protocol (UDP) that provides a connectionless service. In a
particular communication process, at most one of these services is used.

From the configuration point of view a real open system can act as end sys-
tem, relay system or both simultaneously. Internet systems have also this kind of
configurations with noting that relay systems are called also intermediaries. Inter-
mediaries are further subdivided according to working aspects to proxy, gateway
and tunnel. In our paper we limit our discussion to relay systems and call them
routers.

3 Conformance testing of Internet protocols
From the conformance testing perspective it is worth to distinguish between hard-
ware and software implementations. Hardware implementations (e.g. IP router)
neither implement the whole TCP/IP protocol stack, nor provide interface to pro-
tocol layers. Accordingly, they could be examined only by an external test, sys-
tem. Software implementations (e.g. FTP client, httpd programs), on the other

Testing Internet Applications - Terminology and Applicability 379

hand, have numerous advantages over hardware systems. Besides the existing test
methods [12], they imply the possibility of designing more effective new test meth-
ods. For the understanding of these methods, a particular TCP/IP implementation
should be examined.

4.4BSD-Lit,e's Net/3 networking code [10] can be considered as a reference im-
plementation of the Internet protocol suite (Besides TCP/IP, it also supports Xerox
Network Systems (XNS), OSI communication protocol families and the Unix do-
main protocols that are provided for Inter Process Communication (IPC)).

The structure of the Net/3 networking code is presented in figure 1. Applica-
tion level protocols (FTP, Telnet, and RIP) are distinguished from the underlying
TCP/IP stack. They are running as processes in the device's user space while un-
derlying layer protocols used to be implemented as a single unit in the operating-
system space. The internal structure of this unit consists of three layers: applica-
tion programming interface (API) or socket layer, protocol layer and interface layer.
The public functions of this unit can be reached at the kernel entry points using
system calls (SCs) which represent the operating systems' service primitives. API,
in addition to separating the application layer, provides a protocol independent
interface to the entities of the underlying protocol layer. It offers a set of differ-
ent networking features of the kernel that can be reached uniformly via SCs. The
protocol layer holds the Internet transport (UDP, TCP) and network (IP, ICMP,
IGMP) layer protocols [11]. The protocol layer does not provide SCs to application
layer entities. The interface layer consists of various device drivers implementing
link layer protocols (e.g. Ethernet) and procedures that are used for address con-
version between the protocol layer and it. The code for different pseudo devices
(loopback interface, BSD packet filter (BPF)) can also be found there. Interface
layer functions are accessible through SCs. The packet filtering functions are fur-
ther applicable for control and observation. Now, having a global picture of the
overall structure of TCP/IP, the Internet Reference Model will be introduced.

4 The Internet Reference Model

It can be stated that all of today's software TCP/IP implementations are based
upon the architecture of Net/3. By considering this, a model will be introduced
that is suitable for conformance testing and incorporates the listed features of
software implementations. In the Internet Reference Model (IRM), In Figure 1,
the functions of SPs are replaced by SCs of API (In this context, API is used as
a general term, which in a particular implementation (e.g. Net/3) stands for both
socket API and BPF. That is, because the socket API does not provide access to
the interface layer). These SCs allow applications to send PDUs directly to each
layer protocol entity. The API itself should be considered as a switch that connects
applications to the selected underlying service via SCs. The functions of the API
are provided at kernel entry points (rhombus). The semicircles present the possible
destination protocol layers to which SCs provide access. The dashed line expresses
that API itself is not a protocol. Although the IRM has some minor differences

380 Mäzen Malek, RolancI Gecse

from OSI BRM, which are coming from design aspects, the applicability of existing
conformance test methodology is straightforward.

user
space

system
space

7: application
6: presentation
5: session

4: transport

3: network

2: data link

1: physical

Figure 1: The Internet Reference Model (left), general organization of Net/3 net-
working code (right)

5 Abstract Test Methods

Considering the open structure of software implementations, the new Joint Test
method (JT) will be defined, which can be uniformly applied to testing of all
protocols of IRM. JT can be applied both in Single Party Testing (SPyT) and in
Multi Party Testing (MPyT) context. When used in SPyT, it resembles to the local
[1] test method, whereas the MPyT variant has similarities to the local transverse
test method in [2].

JT is shown in (Figure 2), and uses the graphical notation of [12].

Figure 2: The joint test method

Testing Internet Applications - Terminology and Applicability 381

JT has the following characteristics:

• Test system and system under test (SUT) are on the same system.

• There is an optional Upper Tester (UT), and one Lower Tester (LT) in SPyT;
no UT, an arbitrary number (usually 2) of LTs and a Lower Tester Control
Function (LTCF) in MPyT. UT, LT(s) and LTCF are application layer pro-
cesses.

• The Points of Control and Observation (PCOs) are at the LT and UT.

• Test coordination is done using Unix IPC.

• Test events are exchanged in PDUs using SCs of API. The control and ob-
servation is provided by means of API.

The most significant difference to the ancestor test methods, which is very ad-
vantageous in practical testing of software TCP/IP implementations, is that LT(s),
UT and coordination procedures are placed in the application layer regardless of
the layer which is occupied by IUT. Another good feature is that JT can be applied
to both end systems (SPyT) and relay systems (MPyT), thus intermediaries can
be tested out of their environment.

6 Test realization
Having an implementation to be tested and an abstract test suite (ATS), the means
of testing should be provided. It consists of the implementation of tester function-
ality, the derivation of ATS into executable test suite (ETS) and the production of
test documents. System Certification System (SCS) is a set of tools provided by
Ericsson that can be used in a wide variety of testing: functional testing (white-box
technique), conformance and interoperability testing (black-box) and performance
testing (white/black-box). SCS is based on the following principles:

• Protocol independence. This means that different protocols can be tested on
the same manner.

• Multiple simultaneous protocols. Not only one but also many protocols can
be accessed from the same test.

• Distribution. One test may be distributed (over the Internet), making it
possible for each part of the test most closely related to one interface to
reside in the box containing that physical interface.

• Platform independence. SCS is independent of the platform in which the SUT
executes. It can execute the same tests both against the physically real SUT
and the SUT only simulated in a workstation (bypassing the lowest protocol
layers).

382 Mäzen Malek, RolancI Gecse

TTCN
Editor

MP
file

TTCN
Manager

1
i

TTCN
Translator

ExTeL
file

TCE
PDU enc/dec

| produces controls

: uses — c o m m u n i c a t e s :

Log

Test ports

Figure 3: SCS structure

One of the main ideas in SCS is that it is an interpreting execution platform.
This means that a TTCN test suite (an MP file) given as input to the Translator is
first converted into an intermediate language, ExTeL (Executable Test Language),
which then can be directly executed (interpreted) by the ExTeL Test Component
Executor, TCE (see also Figure 3 above). With this method there is only one phase
from a TTCN test suite to the final executable format which makes it different
compared to the compiling methods, where an extra compilation and linking phase
has to be performed. Another important feature in SCS is the Test Port concept.
With this solution it is possible to develop the core functionality separately without
affecting the existing test ports and vice versa. For this reason, a complete set of
test ports where realized and worked out by the authors, particularly, IP, TCP and
"UDP test ports. There exist also two built-in PDU encoder/decoders: BER (Basic
Encoding Rules) and a raw binary encoder/decoder. TTCN Manager is the front
end in SCS. It has the control over execution and monitoring. The log files for
different test components can be observed in real time.

7 Routing techniques
Routing involves two basic activities: determination of routing paths and the trans-
port, of information groups (packets) through an internetwork. In some literatures
the later is referred to as switching. Path determination, on the other hand, can
be very complex. To aid the process of path determination, routing algorithms
initialize and maintain routing tables, which contain route information. Usually,

Testing Internet Applications - Terminology and Applicability 383

routing algorithms fill routing tables with destination/next hop associations. These
associations tell a router that a particular " destination" can be gained optimally by
sending the packet to the node identified in "next hop". Routers communicate with
one another (and maintain their routing tables) through the transmission of a vari-
ety of messages. The routing update message is one such message. Routing updates
generally consist of all or a portion of a routing table. They are the means by which
routers communicate path information between one another. In this paper we limit
our illustration on a very common routing technique, it is the RIP protocol. It is a
distance vector, intra-domain routing protocol originally designed for PUP (Xerox
PARC Universal Protocol, 1980) and used in XNS. RIP became associated with
both UNIX and TCP/IP in 1982 when the Berkely Standard Distribution (BSD)
implementation of UNIX was introduced.

8 Interesting issues in testing routing
When time comes and routing testing is to be performed, a lot of interesting points
should be considered. As the basic representation of test cases is the stimuli-
response pairs, one should define precisely the types and instances of such pairs.
Accordingly, routing stimuli and responses were defined. We have found that we
need to deal with two different layer concepts. Firstly, the Internet layer and its
datagrams that is used to check the arrival of forwarded data. Secondly, the appli-
cation layer, or the routing application in question. Within this context, majority
of testing events will be written by applying types and instances of this application.
Both stimuli and responses, at application level, are in a form of routing updates.
These updates can be gotten at prescribed time intervals or synchronized to other
testing events. Another point of interest is the alternatives to those responses.
They may have the form of modified routing update, in terms of metrics and/or
routes.

A conformance test case has, typically, three phases of actions, preamble, test
case body and postamble. The first and third phases are for state transition, to
initial testing state and to idle state respectively. In the case of routing application,
state inquiry is only possible when the routing table is to be accessed, through the
usual updates or by asking the table on demand.

In the Internet, routing is the main building block in its backbone. That's why
they play a crucial role when we think of the enormous growth of the Internet.
Another important issue here is that routing techniques are evolving more quickly
than host ones.

9 Example
In this section we try to illustrate our method of testing on a simple configuration
of three test components connected to the IUT. Each test component has the role
of simulating another router in the network, while connections through the con-
figuration tries to indicate the subnetworks involved in the testing. According to

384 Mäzen Malek, RolancI Gecse

the standard [13]: "An internet router should be capable of choosing a next-hop
destination for each IP datagram", and according to standard [14]: "After the vali-
dation process of a response finishes successfully, an update that changes the metric
of an existing entry in the routing table should be a trigger for entry modification".
This modification varies between recalculating the metric according to the following
formula:

metric = MIN (metric -I- cost, 16)

where 16 indicates that a link is inaccessable, and adding a new entry. In our
example, we have established the tested condition as if one route is substituted by
the other. In particular, we have informed the IUT that the desired destination
(address included in an IP datagram) is reachable with a lower cost through B router
instead of C router. In terms of Tree and Tabular Combined Notation (TTCN)
[15], the official test notation of the conformance testing, a preamble will contain
the preliminary parts of testing; i.e. getting the configuration working, sending an
update form B router (within the testing context it is a test component) with a
cost of the destination less than what is sent by C, and sending an IP datagram
from A with the destination address. Test case body, however, is a set of test,
events that is responsible for issuing a test verdict, indicating the correctness of
behaviour. Here, it is the arrival of the sent IP datagram at B instead of C. Before
ending the test case, an action should take place to get the implementation right to
its original state. This is possible by refreshing the routing table with the original
route update, in terms of RIP it means a new response from C with higher cost or
form B with lower cost. Figure 4 demonstrates the overall distribution of testing
functionality. In the laboratory environment, testing was handled with software
components, called gatewas, and with the standard SCS interface together with
the newly defined test ports. Accordingly, IP test port was used to transfer the
sample IP datagram and UDP test port to send and receive routing updates. The
two solutions differ in the appearance of test cases. In the first solution, test cases
where included in the code part of the gateways, while the other used an interface
to a TTCN editor. In short we list below the tasks associated to test components.

Tasks of test components:

• Simulate RIP

• Test coordination & management (remote/local)

• Execute Test Cases

According to this example, the following Test Purpose was defined.
Test Purpose 1.1:

"To check if the router applies to changes in network topology after receiving the
required update from other routers"

Testing Internet Applications - Terminology and Applicability 385

Abbriviations:

• IUT - Implementation Under Test

• A, B, C - gateways

• a, b, c, ai, bi, ci - networks

Roles of gateways

• Client

• server

• Listener
a

Figure 4: Illustration of a test application for IP routing

10 Conclusions

In this paper, differences between OSI and Internet systems were summarized. Then
the Internet Reference Model was introduced together with the Joint Test method
for conformance testing (which is major contribution to the base methodology).
Afterwards, a practical application of the new concept was demonstrated on the
testing of RIP routing protocol, which is a continuation of the progress reached in
[16]. The Test Purpose viewed here is part of a complete set to provide complete
testing for routing applications. We have shown a framework for testing Internet
protocols, which was worked out on the basis of the conformance testing framework
of [1]. Experiences with testing RIP showed that some extensions are necessary
to TTCN for making it more suitable to describe test cases for testing Internet
protocols. This is true especially for testing performance related features of the
product. Our interest for the time being is to generate a complete test suite to
test a routing application, RIP2 or OSPF. Future work can be for example the
interoperability testing based on this concept of Internet protocols, and introduction
of formal extensions that are more suitable for Internet testing.

386 Mäzen Malek, RolancI Gecse

References
ITU-T X.290 -X.296, OSI conformance testing methodology and framework
for protocol recommendations for ITU-T applications. 1994-1995.

Bi, J. and Wu, J.: Towards abstract test methods for relay system testing.
Testing of Communicating Systems, Volume 10 pp 381-397, IFIP, 1997.

Bi, J. and Wu, J.: Application of a TTCN based conformance test environ-
ment on the Internet email protocol. Testing of Communicating Systems,
Volume 10 pp 324-330, IFIP, 1997.

Kato, T., Ogishi, T., Idoue, A. And Suzuki, K.: Design of Protocol Moni-
tor Emulating Behaviors of TCP/IP Protocols. Testing of Communicating
Systems, Volume 10 pp 416-431, IFIP, 1997.

Kato, T., Ogishi, T., Idoue, A. and Suzuki, K.: Intelligent Protocol Analyzer
with TCP Behavior Emulation for Interoperability Testing of TCP/IP Pro-
tocols. Formal Description Techniques and Protocol Specification, Testing
and Verification, FORTE X/PSTV XVII '97 pp 449-464, IFIP, 1997.

Paxton, V. (editor), Allman, M., Dawson, S., Heavens, I. and Volz, B.:
Known TCP Implementation Problems, ¡draft-ietf-tcpimpl-prob-02.txt/;, In-
ternet Draft, IETF Network Working Group, May 1998.

Malek, M. and Dibuz S.: A Pragmatic Method for Interoperability Test Suite
Derivation. EUROMICRO'98, Proceedings of the 24th Euromicro Confer-
ence, Stockholm, Sweden, 1998. Aug 24-26.

ITU-T X.200, Information Technology - Open Systems Interconnection Ba-
sic Reference Model: The Basic Model, 1994.

Carpenter, B. (editor): Architectural Principles of the Internet, RFC 1958
Informational, IETF Network Working Group, 1996.

Wright, G. R. and Stevens, W. R.: TCP/IP Illustrated, Volume 2, The
Implementation. Addison-Wesley, 1995.

Stevens, W. R. TCP/IP Illustrated Volume 1, The Protocols. Addison-
Wesley, 1994.

Baumgarten, B. and Giessler, A.: OSI conformance testing methodology
and TTCN, North. Holland, 1994.

P. Almquist: Towards requirements for IP routers, Network working group,
RFC1716, November 1994.

C. Hedrick: Routing Information Protocol, Network working protocol,
RFC 1058 June 1988.

Testing Internet Applications - Terminology and Applicability 387

[15] ISO/IEC 9646-3, The Tree and Tabular Combined Notation (TTCN), 1998.

[16] Geese Roland: Conformance testing methodology of Internet protocols, In-
ternet application-layer, Protocol testing- the Hypertext Transfer Protocol.
The IFIP 11th International workshop on Testing of Communicating Sys-
tems IWTCS'98, August 31- September 2, 1998, Tomsk, Russia

Acta Cybernetica 14 (1999) 341-356.

A study of portability in the deployment of W W W

András Micsik *

Abstract

There are several problems with handling compound hypermedia docu-
ments on the Internet currently. One class of these problems, namely porta-
bility is studied in this paper in detail, and possible solutions are examined.
The offered solutions are based on a new container architecture, the WebPack
format, currently under development at SZTAKI .

Keywords: hypermedia documents, document-like objects (DLO), World Wide
Web, portability, metadata, Internet

1 Introduction

As the World Wide Web [1] spread the world from the beginning of this decade, it in-
corporated more and more powerful tools and formats, and the information served
via WWW became more and more complex. The content and layout of WWW
pages became competitive with printed material, and in other aspects WWW pages
have far more potential than printed documents. Searching, interactivity, anima-
tions and virtual reality are just keywords to make the additional possibilities felt.

The meaning of document in case of the Internet is changing. Digital docu-
ments are sometimes more similar to a piece of software than to printed material.
Furthermore these documents on the Internet are interconnected with each other
via hyperlinks. The Dublin Metadata Workshop [15] investigated this new kind of
information source, and created a new term: Document-like Object (DLO) [14]. A
DLO can be characterized like this:

• it may contain files in lots of different formats: text, graphics, animation,
video, audio and 3D models

• its files and data are interconnected with hyperlinks.

• it may contain executable parts (applets, scripts, objects, etc.)

•Department of Distributed Systems, M T A SZTAKI, 1111 Budapest XI. Lágymányosi u. 11.
Hungary, e-mail: mics ikQsztaki .hu

389

390 András Micsik

User
environment

Server
environment

Internet

Figure 1: Using WWW documents

DLOs are called WWW documents or simply documents for simplicity in this
paper. WWW documents can be surprisingly immovable compared to other widely
used formats such as Postscript, Microsoft Word or ToolBook. This is because
these documents may depend on the presence of several files and programs, and
they may also depend on services of the WWW server. Currently there is no gen-
eral approach to provide collection and management of these dependencies and
therefore the management of WWW documents is solved individually by web ad-
ministrators. Management in general is not in the scope of this paper, rather one of
its subtopics, portability. When moving a document from one host to another, all
dependencies in a WWW document must be explored and fixed in order to restore
correct operation. The nature of portability dependencies is analyzed in Section 2.
A formal descriptive framework for poratbility conditions is given in Section 3, and
technical solutions for the identified problems are given in Section 4. An outlook
to related work and the summary concludes the paper.

2 Analysis of portability issues

Users access WWW documents through the user and server environments. The
user environment is specific to the actual user of the document, while the server
environment is specific to the used document. The user environment provides
browsing and viewing capability for the user. The server environment offers the
services of the operating system and the WWW server for the document. A server
environment usually serves several documents.

The correct operation of a WWW document means that all its features (hyper-
links, images, interactive parts, etc.) are available for the user in the same way as
the author has implemented them. This relies on both the user and server envi-
ronments, and may rely on other WWW documents or external data as well. As
the user environment is totally under the control of the user, this approach con-
centrates on the correct operation of the server side. If the operation of the server
side is based on open standards, it is possible to give recommendations for the user

,4 study of portability in the deployment of WIVIK 391

environment as well.
In case of a WWW document portability means that if the document is placed

into a new server environment, or its server environment has changed, there is a
way to keep the same operation of the document as in its previous environment.
In the next subsection the most generally used formats and technologies are listed
together with the problems that jeopardize the portability of W W W documents.

2.1 Summary of formats, technologies and portability prob-
lems

URIs and URLs Embedded or linked objects are most commonly referred to as
Uniform Resource Locators (URLs) [5] on the Internet. A URL can refer to

• an object, on the same host,

• an object on a different host

• a part of an HTML page

• dynamically created objects

The problem with URLs is that they are location specific. The referred object
is identified by the combination of the host machine name and the descriptor of the
object in the file system. This means that moving a part of a document to another
location in the file system or to another host can make that part inaccessible.

URLs are a subclass of Uniform Resource Identifiers (URIs) [2]. The URI
schema defines a highly customizable reference methodology for the Internet, which
would allow location transparent naming facilities, but currently there isn't any
widely used and location transparent naming facility for the Internet.

H T M L The Hypertext Markup Language [3] serves as a basis for WWW docu-
ments. It provides embedding and linking facilities for other digital formats, and
usually acts as the main user interface for the whole document. After moving an
HTML page to another location URLs for inline images, or URLs to other pages
may become incorrect making the page unusable and the referred pages inaccessible.

CGI The Common Gateway Interface [6] is a simple and general mechanism to
call executable programs from static WWW pages. The program is identified as a
URL, and there are two ways to pass parameters to the program: encoded in the
URL or via HTML forms. When the program is launched the calling parameters
are passed, and the program output is an object to display for the user. CGI scripts
can work only with the help of a WWW server, but the scripts are executed in the
context of the operating system. Therefore any kind of compiled or interpreted
program can be used to write CGI scripts. For example Perl is a very popular
language of CGI.

392 András Micsik

CGI scripts mean a great problem concerning portability, because the execution
is controlled only by the operating system. The program may rely upon other
programs or data files, and these may not be present on another host.

Applets Applets are written in Java language [7], and provide a full-featured
graphical user interface in a part of the screen during WWW browsing. Java is an
interpreted and platform-independent language, so an applet should execute in the
same way in every WWW browser on every machine (in practice there are small,
not very significant differences among different browsers and different operating-
systems).

Applets can load parts of their code and additional data files from the server
host, and can communicate directly with other network services on the server host.
Therefore hidden file dependencies can still occur similarly to CGI scripts.

JavaScript JavaScript, [8] offers a way to associate custom code with HTML
pages, and in this way to add new functionality to WWW browsers. For exam-
ple with JavaScript the programmer can change the behaviour of a button in an
HTML form, or can load other pages automatically into the browser. Unfortunately
JavaScript is not one uniform scripting language. It has no specification, and its
support differs remarkably in different browsers (namely Netscape and Internet
Explorer) and even in different browser versions.

Server side includes There are several very different tools that are described
here commonly as server side includes. The basic server side include facility is a
way to include parts into a HTML page on the fly when the page is accessed by the
user. Traditionally there were two possibilities: to include another file or to include
the output of a program. Later these possibilities were enhanced to enable flexible
scripting and database access. Products falling into this category are for example
PHP and Microsoft's Active Server Pages. From the portability viewpoint server
side scripts require the presence of their specific interpreter environment, and may
introduce additional dependencies on data files and executables.

V R M L With the use of the Virtual Reality Modeling Language [9] one can in-
tegrate 3D models into a WWW document. These 3D models may contain anima-
tions, interactive scripts, and hyperlinks to other objects. Models often incorporate
external objects (images, sounds, etc.). Links and embedded objects are both rep-
resented as URLs, so in this aspect VRML holds the same problems as HTML,
furthermore VR.ML can contain scripts as well, inheriting the portability problems
with executables. VRML files are sometimes stored in a compressed format to
speed up download. To find external references, these files must be uncompressed
temporarily.

The server environment The server environment, provides elementary docu-
ment services called features later in this paper. These include authentication and

,4 study of portability in the deployment of WIVIK 393

access control, handling of object types, aliasing or redirection of URLs, and server
side includes or scripting. The configuration of these features differs from server to
server, and often needs the editing of complicated configuration files. Additionally
the server environment provides a set of installed auxiliary programs: scripting
tools, image manipulating software, etc.

The user environment This environment is not only the WWW browser but
also a set of external viewer applications for various formats (e.g. Postscript, PDF
or VRML) that cannot be viewed within the browser. Also the browser preferences
set by the user are very important, here viewers are associated with formats, Java
or JavaScript is enabled or disabled, etc. Finally the type and version of the WWW
browser determines the capability of JavaScript and Java execution.

3 Describing portability conditions
The first step towards the solution of the above mentioned problems is the formal
description of portability conditions. The description is based on the dependence
and reference relationships. With these relationships all aspects that are impor-
tant for portability can be formalized. For these relationships a metadata-based
representation is given for automatic processing, and a graphical representation
for humans. Metadata literally means data about data [15], data characterizing
an object. Typically metadata provides descriptive, administrative and structural
information about an object.

The descriptive framework for portability conditions is built with the follow-
ing terms: the server environment contains a set of WWW documents. A WWW
document is defined as a set of objects. Objects are single-file entities in any for-
mat. Each entity (objects, documents, etc.) may have metadata associated with
it. Metadata describes either relations among objects or properties of objects. Re-
lations may have properties as well. Properties are simply name-value pairs.

3.1 Definition of dependence and reference relationships
Saying object X depejuls on object Y means that the correct access and operation
of object X requires that ob ject Y is accessible and operates correctly for object X.
This definition of "depends" is the transitive closure of the dependence relationship.

Definition 1 Dependence relationship (X, Y) holds for objects X, Y if X depends
on Y, but there is no such object Z that X depends on Z and Z depends on Y.

Each dependence relation (Ar, Y) creates an entity called dependency. Objects
and dependencies may have properties containing additional information, and they
are typed. Type is given as a property according to the following type hierarchy (Fig
2): on the highest level an object can be data, program or feature, a dependency can
be read or execute type. On lower levels the type of object is given by a MIME type
definition, except for features. Features are special services of the server or user

394 András Micsik

Objects Dependencies

Data Programs Features

/ N / K
Various data formats Exécutables classified Access control,
classified by MIME type by execution mode Server Side Include,

(CGI, Java, etc.) JavaScript,...

read execute

Figure 2: The type hierarchy for the dependence relationship

environment, for example server side include or authorization techniques. In case
of dependencies the referencing structure may be given as a property containing
the significant HTML or VRML tag, for example an image can be referenced as
background (BACKGROUND) or inline image (IMG).

The reference relationship is defined similarly to the dependence relationship:

Definition 2 Reference relationship (X, Y) holds for objects X, Y if X contains a
hyperlink pointing at Y.

The difference between dependencies and references is that dependencies show
what is needed for an object itself to operate properly, while references show how a
set of objects are interconnected to form hypermedia. These two relationships are
called together as portability relationships.

3.2 Graphical notation and textual representation

The graphical notation for the above defined relationships may be appropriate for
human understanding of portability conditions. The notation is explained through
an example (Fig 3). This example shows the portability relationships of a simple
searchable list (e.g. a hotel list) as a WWW document. Rectangles denote objects
and ellipses denote features. References are drawn with dashed lines and dependen-
cies are drawn with solid lines. In the rectangles the name and type of the objects
are printed. The dashed ellipse shows the boundaries of the document.

The example document has a starting page containing a logo which is a shared
object between several documents, and therefore it is not contained in this doc-
ument. Searching is done by the search script, called from the home page. The
search script requires version 4 of Perl, which is denoted here as a feature of the
server environment for simplicity reasons. Another approach would be to denote
the Perl program as an external object, and detail other Perl module dependencies
as well. This depends on the definition of features. The search script reads the

,4 study of portability in the deployment of WIVIK 395

Figure 3: An example for the dependency/reference notation

<rd f :RDF>
< r d f ¡ D e s c r i p t i o n a b o u t = " f i l e : / w w w / c g i - b i n / s e a r c h _ s c r i p t " >

<P0RT: type="CGI" / >
<P0RT:dependsOn r e s o u r c e = " f i l e : / w w w / t e m p l a t e s / s e a r c h _ r e s u l t "

PORT:mode="read" / >
<P0RT:dependsOn r e s o u r c e = " f i l e : / w w w / s u p p o r t / i n d e x _ f i l e "

PORT:mode="read" / >
<P0RT:dependsOn r e s o u r c e = " f i l e : / b i n / p e r l 4 "

PORT:mode="execute" / >
< / r d f : D e s c r i p t i o n >

< / r d f : R D F >

Figure 4: RDF representation of dependencies for the search script in Fig 3

396 András Micsik

database file, and inserts the results of the search into the result template. The
generated page contains the logo as well.

Some dependencies are not explicitly drawn on the figure. Each object of type
X depends on the feature of handling type X by the server and user environment,
but these dependencies are omitted to make the notation clearer. Type names in
the boxes implicitly show these feature dependencies. Objects sharing the same
dependency can be grouped together with a dashed ellipse to decrease the number
of arrows in the graphical representation.

As Fig 3 shows, portability relationships can be interpreted as directed graphs
as well. These graphs can be quite complex, and may contain thousands of nodes
for a server environment. The graph need not be connected, and it may contain
cycles. There are some rules for invalid connections according the type of nodes in
the graph, for example an edge from an image to a program is invalid.

Portability relationships fall into the category of structural metadata, and can
be described with RDF [17]. RDF (Resource Description Framework) is an effort led
by the WWW Consortium to standardize the description of metadata, and coupling
metadata with Internet objects. This gives us a machine readable representation
of portability metadata applicable for automated document management. Part of
the RDF description of the example in Fig 3 is shown in Fig 4.

3.3 Definition of portability requirements
The portability profile is the summary of all portability conditions for the document.
It can be calculated by merging all portability relations from various metadata
sources and automatic detection processes. For simplicity in further investigations
dependency will mean either a dependency or a reference, as the correctness of
references are also essential for the correct operation of the whole document.

Definition 3 Formally a portability profile of document D is

VD = { (X,Y) 6 V | X 6 D V 3 Z : Z £ D A (Z,X) € V }

where V contains all described or detected dependencies in the server environment,
and P is the transitive closure of V.

The portability profile can be further divided into three subsets:
Definition 4 Internal dependencies are between objects inside the document:

ID = { {X, Y) 6 VD | X G D A Y e D }

Definition 5 External dependencies are between document objects and external
objects:

£ D = { (A', Y) E VD I X i D V Y i D }

Definition 6 Viewer dependencies are requirements about the services of the user
environment:

Vn = {V GV\3X:(X,V) GVo}
where V contains all features that have specific user environment requirements.

,4 study of portability in the deployment of WIVIK 397

Logo «-¡correct urlH Homepage-
GIFL / HTML

Correct URL\

¡Correct URL\
•

Search script
CGI I

Install Perl 4
Call with correct path

I Load files with correct path \
+ \

Result template
HTML

Database
text/plain

Figure 5: Restoring dependencies (example continued)

Moving/copying a document into a new server environment is formally a process
to create correspondance between objects in the original server environment and
objects in the new server environment. During this process corresponding objects
are found in the new server environment, that are capable to play the same role for
the document copy as their pairs in the original server environment.

Definition 7 Suppose document D' in server environment S' is the copy of docu-
ment D in server environment S. D' is a complete mirror of D if for every (X,Y)
in Vd there is X' and Y' in S' that

• X corresponds to X',

• Y corresponds to Y',

• if X or Y is in D then also X' or Y' is in D'

and then (X',Y') is in Vd1-

However in practice making correspondance is not enough, each dependency
has to be operational, has to be working for any user accessing the document. A
dependency (X, Y) is fulfilled if object X is operational and accessible from ob ject
Y. To achieve this the dependency is tested and restored.

4 Solutions for creating portable documents
A brief list of necessary actions when moving our example document (Fig 3.) is
given: the administrator should find the corresponding external objects for the logo

398 András Micsik

and Perl in the new environment. This could also include installation of Perl, or
the decision to use version 5 of Perl to interpret the search script. In Fig 5. the
required actions are shown to restore all dependencies. URLs referring to the logo
and the search script has to be checked and corrected in the homepage, and in
the result template as well. The search script needs two data files and a program
file, each loaded by file paths which should be corrected, and execute permissions
for the Perl program has to be set. It is obvious from this small example that
moving a document means many hardly detectable and easily forgettable tasks for
the administrator.

This process can be automated using portability relationships. The automated
process contains the following steps:

1. The portability profile is calculated

2. The new place of the document is investigated

3. The document is moved/copied to the new place

4. Each dependency is tested and restored if necessary

Now each step is detailed. The calculation of portability profile needs to rely
on portability conditions given by the author, because automatic detection of de-
pendencies is not possible in all cases. It is very easy in an HTML object, but can
be nearly impossible in a CGI program written in C where the source code is not
available. Therefore the author's contribution is very important, and should be
eased with software tools.

The new server environment where the document is to be placed has a set of
offered features and documents. These are compared with the external dependency
set of the document. The result is a list of missing features or external objects.
The administrator of the server environment can install the required features (e.g.
Perl 5.0), and match the required external objects to existing objects in the server
(e.g. password files). When this is done copying of the document can start.

The document is copied to its new location, and each dependency is tried to be
restored. There are three methods for restoration:

• Changing the object source: typically used for HTML files, where the URL
referring to the depended object can be easily found and corrected in the
source.

• Changing configuration files: typically used for features (e.g. CGI execution)
to enable them in the server configuration.

• Changing translation tables: this is a new method and requires that the object,
accesses the depended object through a translation interface. The object looks
for symbolic names in the translation table, which are translated to their path
descriptors in the current server environment. Typically used for CGI scripts.

,4 study of portability in the deployment of WIVIK 399

Finally viewer dependencies can provide ways to warn the user automatically
about required/missing features in his environment. This can be a listing of required
viewer features, or a help to install the missing features.

Generally there are three approaches that can help making WWW documents
easily portable: guidelines for authors, document management tools, and applica-
tion of middleware layers. None of these approaches is exclusive, rather they should
be used in conjunction with the others.

4.1 Guidelines for authors
In the first place guidelines can be used to list non-portable technical solutions so
that authors can avoid using them. There are also several simple solutions to create
very easily portable documents. If relative URLs are used in HTML and VRML,
there is no need to restore internal dependencies if the document is moved in one
piece.

When using CGI scripts, external data files should be grouped together and
referred to with a relative file path. If the script uses external objects, the script
should read the location of these objects from a configuration file.

Applets should read their data using the Java built-in resource loading feature
and the packaging mechanism.

4.2 Document management tools
The WebPack tool being implemented at SZTAKI is a prototype of a WWW doc-
ument management tool. It has a notion of document, and maintains a central
metadata repository for each document. The central metadata of the document
may contain descriptive information about the whole document (e.g. authors, cre-
ation date, keywords), and may also contain administrative metadata including
portability relations. Metadata can be edited through a graphical user interface,
and dependencies in HTML files are automatically detected.

The administrator can move or copy documents inside the server with the Web-
Pack tool. Further useful operations that can be provided by a WWW document
management tool are: merging/splitting of documents, removing a document, in-
stalling a new document, filtering the contents of the document and verifying the
operation of a document.

4.3 Application of middleware layers
A middleware layer could be used to provide standardized communication between
the document and the server environment. In this way the immediate dependency
of operating system and WWW server features can be lessened to indirect depen-
dency. For example the document calls a software by its standard name, and the
middleware layer directs the call to the software in the server environment. Mid-
dleware layers can be the solution for automatic configuration of server features as
well.

400 András Micsik

5 Related work

There are several applications that partially support locally manageable W W W
documents (e.g. Microsoft's FrontPage, Macromedia's Dreamweaver). These usu-
ally handle the web server as a whole and automatically adjust URLs in HTML
files when it is needed. Netscape Composer's publishing functionality automati-
cally updates the links when the page is published. However these solutions are
restricted to HTML files, and lack a consistent approach to all possible portability
problems on the Web.

There are two categories of public domain tools in connection with our topic:
HTML integrity test tools, and mirroring tools. Mirroring tools replicate the files
of a document on a remote server via HTTP or FTP protocol. However it is
not always possible to retrieve all needed files in this way because of access and
authentication problems, furthermore these programs do not explore and restore
spoilt dependencies. For the latter HTML integrity test tools can be used. These
traverse the hyperlinks in HTML files and report dangling URLs.

An organized standardization effort of IETF in this area is WebDAV (World
Wide Web Distributed Authoring and Versioning) [18] which aims at "defining the
HTTP extensions necessary to enable distributed web authoring tools to be broadly
interoperable, while supporting user needs". In this respect WebDAV will support
remote management and authoring of WWW pages, but currently it is only near
the end of the standardization phase.

Location transparent naming is a central problem for portability. The CNRI
handle system [10] and PURLs (Persistent URLs) [11] are two experiments for
location transparent naming on the Internet. The problem with both systems is
that they provide a flat naming scheme for objects, and thus will not be able to
cope with the millions of existing WWW pages.

Object request brokers and distributed object management may give a long
term solution for powerful and portable hypermedia documents. The Ob ject Man-
agement Group's Object Management Architecture and Common Object R.equest,
Broker Architecture (CORBA [13]) will provide a very general framework for net-
work objects including naming services. These network objects could encompass
documents or parts of documents. However as a short and middle term solution
the Internet community needs the tools outlined in Section 4.

6 Summary

The complex issues of portability for hypermedia documents oil Internet were sum-
marized, and a unified approach to handle portability problems was given. This
approach contains a formal description technique for portability dependencies, and
a method to match and restore these dependencies. Using this approach the ex-
change of complex WWW documents could become as simple as the exchange
of documents in Microsoft's Word format. The WebPack framework serves as a
t.estbed for the implementation of technical solutions based on the theoretical in-

,4 study of portability in the deployment of W I V I K 401

vestigations.

Acknowledgment I would like to thank Róbert László his work in the imple-
mentation of the WebPack toolkit.

References
• [1] About the World Wide Web, URL: http:/ /www.w3.org/pub/WWW/WWW/

[2] WWW Names and Addresses, URIs, URLs, URNs,
URL: http://www.w3.org/hypertext/ WWW/Addressing/Addressing.html

[3] Hypertext Markup Language, URL: http://www.w3.org/hypertext/
WWW/MarkUp/MarkUp.html

[4] Hypertext Transfer Protocol, URL: http://www.w3.org/hypertext/WWW/
Protocols/Overview .html

[5] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform Resource Loca-
tors (URL)", RFC 1738

[6] Rob McCool: The CGI Specification, URL: http://hoolxoo.ncsa.uiuc.edu/
cgi/inteiface.html

[7] Java Technology Home page, URL: http://java.sun.com

[8] JavaScript resources, URL: http://developer.netscape.com/tech/javascript
/resources.html

[9] VRML97 International Standard, URL: http://www.vrml.org/Specifications

[10] The CNRI Handle System, URL: http://www.handle.net/

[11] Persistent URLs, UR.L: http://purl.oclc.org/

[12] Common Ground Digital Paper, URL: http://www.hummingbird.com/cg/

[13] CORBA (Common Object Request Broker Architecture) URL: http://www.
orng.org/corba/

[14] Reginald Ferber: Hypermedia and Metadata, 2nd DELOS Workshop, Oc-
tober 1996, Bad Honneff, Germany, URL: http://www.darmstadt.gmd.de/
~ferber/delos/ws2/frame/frame.ht,ml

[15] Stuart Weibel, Jean Godby, Eric Miller and Ron Daniel: OCLC/NCSA
Metadata Workshop Report, URL: http://www.oclc.org:5046/oclc/ re-
search/conferences /metadata/dublin_core_report.html

http://www.w3.org/pub/WWW/WWW/
http://www.w3.org/hypertext/
http://www.w3.org/hypertext/
http://www.w3.org/hypertext/WWW/
http://hoolxoo.ncsa.uiuc.edu/
http://java.sun.com
http://developer.netscape.com/tech/javascript
http://www.vrml.org/Specifications
http://www.handle.net/
http://purl.oclc.org/
http://www.hummingbird.com/cg/
http://www
http://www.darmstadt.gmd.de/
http://www.oclc.org:5046/oclc/

402 András Micsik

[16] Carl Lagoze, Clifford A. Lynch, Ron Daniel Jr.: The Warwick Framework - A
Container Architecture for Aggregating Sets of Metadata, Cornell Computer
Science Technical Report TR95-1558

[17] Resource Description Framework, URL: http://www.w3.org/Metadata/rdf

[18] IETF WebDAV Working Group, URL: http://www.ics.uci.edu/~ejw/ au-
thoring

[19] L. Kovács, A. Micsik: "Portable Hypermedia: a New Format for W W W
Documents", SZTAKI Technical Report TR97-1

[20] L. Gulyás, L. Kovács, A. Micsik, L. Tersztenyák: Personalized Home Pages
- A Working Environment on the World Wide Web, to appear in: IFIP'98
World Computer Congress, Vienna-Budapest, September 1998

[21] L. Kovács, A. Micsik: Replication within Distributed Digital Document Li-
braries. Proceedings of the 8th ERCIM Database Research Group Workshop
on Database Issues and Infrastructure in Cooperative Information Systems,
Trondheim, Norway, 1995

[22] L. Kovács, A. Micsik, G. Schermann: An Environment for Mirroring Hy-
permedia Documents, JENC 7, Budapest, May 13-16 1996.

http://www.w3.org/Metadata/rdf
http://www.ics.uci.edu/~ejw/

Acta Cybernetica 14 (1999) 341-356.

A parallelized sequential random search global
optimization algorithm

P.M. Ortigosa, J. Balogh, I. Garcia *

Abstract
This work deals with a stochastic global optimization algorithm, called

CRS (Controlled Random Search), which originally was devised as a sequen-
tial algorithm. Our work is intended to analyze the degree of parallelism that
can be introduced into CRS and to propose a new refined parallel CRS algo-
rithm (R P C R S) . As a first stage, evaluations of R P C R S were carried out by
simulating parallel implementations. The degree of parallelism of R P C R S is
controlled by a user given parameter whose value must be tuned to the size
of the parallel computer system. It will be shown that the greater the degree
of parallelism is the better the performance of the sequential and parallel
executions are.

Keywords: Parallel algorithm, Distributed Processing, Random Search,
Global Optimization.

1 Introduction
The generic global optimization problem can be described as:

m i n / (s) , s € S C Rn (1)

where the objective function, / (s) , is a real valued continuous nonlinear function
on S and the search domain, S, is a compact body. Under these conditions it is
known that the optimal solution value:

/ * = min f(s),s G S (2)
exists and is attained; i.e. the set:

S* = {sES-. f(s) = } ¿ 0 (3)
Two general models of Global Optimization methods exist: Deterministic meth-

ods which require a certain mathematical structure and Stochastic methods which
*This work was supported by the Tempus Program, by the Consejeria de Educación de la

Junta de Andalucía (0 7 / F S C / M D M) and by the Ministry of Education of Spain (C I C Y T T I C 9 6 -
1125-C03-03).

403

404 P.M. Ortigosa, J. Balogh, I. García

are based on the random generation of feasible trial points and nonlinear local op-
timization procedures. A profound discussion on the classification of methods can
be found in Torn and Zilinskas [15] and for a complete and rigorous mathemati-
cal description of global optimization methods, both deterministic and stochastic
approaches, the reader may consult the Handbook of Global Optimization [6].

On the other hand, there exists a question which frequently arises when a prac-
tical Global Optimization problem has to be solved: which kind of method, or which
particular algorithm, may be more appropriate to solve a particular problem?. The
answer could only be obtained from a deep analysis of the problem at hand. A wide
discussion on this subject can be found in [5], where relations between the problem,
its modeling and properties, and global optimization methods are studied. Roughly
speaking, it could be said that deterministic methods may be more efficient than
the stochastic ones, when an analytical expression of / , its derivatives, bounds and
useful properties are available. However, when / is a black-box function determin-
istic methods cannot be applied. In contrast, stochastic methods do not require
any specific structure of / , only a computational procedure to obtain the value of
the function at any location s G S [5] is needed. So, most optimization problems
can be solved by stochastic global optimization techniques.

For computationally expensive functions, stochastic global optimization meth-
ods have shown to be very useful because of, compared to deterministic methods,
fewer function evaluations are needed to obtain the solution of (1). In addition,
stochastic methods can be applied to problems where the objective function is not
continuous nor differentiable and only a tool for evaluating the function at any
location is required.

For most of the functions, global optimization is a NP hard problem. For
this reason, the global optimization problem is a suitable candidate for the use of
supercomputers, mainly for those functions whose evaluation is computationally
expensive.

This paper will only deal with a stochastic global optimization algorithm called
CRS and a new parallel version of CRS. CRS (Controlled Random Search) algo-
rithm was introduced by Price [9, 10, 11]. It is based on clustering techniques and
has proved to be very reliable and computationally inexpensive. In [2] a paral-
lel version of CRS (PCRS) was applied to efficiently solve a global optimization
problem coming from the image processing field, whose objective function were
computationally very expensive.

The aim of this work is to describe and evaluate a new refined version of PCRS,
called RPCRS. It was originally devised to be executed on parallel multicomputer
system, but it will be also shown that RPCRS outperforms CRS even when it is
run on a single processor system. Our study only covers analysis of the speed up
of RPCRS as compared to the original sequential CRS algorithm. Our analysis is
only based on empirical results obtained from experimental executions. Although
a wide set of standard test functions was used to validate our results, this work
does not provide any theoretical support to demonstrate that the same results can
be obtained using other functions.

Two different kinds of experiments were carried out for analyzing the speed up

A parallelized sequential random search global optimization algorithm 405

of RPCRS: those oriented to highlight advantages of its parallel nature and those
intended to show its capability for being executed on a parallel computer system.

This paper has been organized as follows: Section 2 describes the CRS algorithm
and its parallel version RPCRS. Section 3 is devoted to show experimental results
intended to evaluate the speed up of RPCRS compared to CRS, as a function of a
control parameter which determines the degree of parallelism. Finally, in Section 4,
numerical results of parallel executions of RPCRS, on a CRAY T3D using up to
16 processor elements, will be shown.

2 RPCRS, a parallel version of the CRS algorithm

The goal of this section is to describe the RPCRS algorithm; a refined version of
PCRS (Parallel Controlled Random Search) algorithm proposed in [2]. RPCRS is
a parallel algorithm based on the Controlled Random Search (CRS) algorithm of
Price [9, 10, 11]. Some parallel approaches of the original CRS algorithm have been
proposed and evaluated using several models of parallel computers and strategies
[1, 3, 4, 7, 12, 14, 16]. Our proposal only makes small modifications to the original
sequential version of CRS. These modifications are aimed at increasing the degree
of parallelism of CRS by creating a pile of work to feed the set of processors of a
parallel computer. RPCRS will allow to evaluate the objective function at several
trial points, simultaneously. Nevertheless, the general strategy used in CRS remains
in our parallel version. For the sake of clarity, description of CRS will precede to
RPCRS algorithm.

The Controlled Random Search algorithm, proposed by Price, is a simple and
direct procedure for global optimization, applicable both to unconstrained' and
constrained optimization problems [9, 10, 11]. In this Work, it is assumed that the
global optimization problem to be solved is that described by (1), where S is a
hyper-rectangle. Due to its simplicity, CRS has been used to solve many practical
problems but it has not been very popular among researchers on the theory of
Global Optimization because no analytical property can be derived.

CRS starts by evaluating the objective function at N trial points randomly
chosen over 5, (initialize step of Algorithm 2.1). Coordinates and the correspond-
ing value of the objective function, for the set of N trial points, are stored in an
array R = R°,... ,RN. The worst and besttrial points in R (Rw, RB) are then
computed at the update step. New trial points (P) are selected and evaluated, at
the generate step. The algorithm iteratively executes the update and generate
steps until stopping criteria are reached.

At the generate step two different trial points are computed; primary and
secondary trial points. Both kinds of trial points are defined in terms of the con-
figuration of a subset of n + 1 (J?-70,...,) trial points. , (i = 0 , . . . , n) are
randomly selected from the current set of N points stored at R (CRS is considered
the first algorithm which uses a population of points). Primary points are gener-
ated in a Nelder-Mead fashion [8] by mirroring a point) over the centroid, G,
of the remaining subset of points (/Z-7 0 , . . . ,RJ n- i) . In contrast, location of a sec-

406 P.M. Ortigosa, J. Balogh, I. García

(0 < i < N)

x)

Algorithm 2.1
Begin CRS(/ , S, N, NF,

initialize:
Iter = 0; Dmax = e + 0.1; ns = 0
Select at random a set, R, of N trial points R1

Compute f(Ri)\ (0<i<N)
while (D m a x > e OR f(Rw) - f(RB) < 5 OR Iter < NF„

update: Determine the trial points W and B such that
f(Rw) > f(R) > f(RB)- (0 < » < N)

Iter = Iter + 1
Begin generate:

Select randomly n + 1 points,), from the set R

P = 2 X G - Rjn._
if P 6 S AND f(P) < f(Rw

Rw = P; ns = ns + 1
else if RS = ns/Iter < 0.5

P = (G + Ri-)/2
Iter — Iter + 1
if f(P) <_}{RW)

RW = P; nS=HS+ 1
End generate

End while
Return {RB and f(RB)};

End C R S

Primary points

Rate of Success Test
Secondary points

f(RB) < f{Rl)\ (o <i<N)

ondary point is the middle point between Rin and the centroid G. While primary
points are intended to keep the search space as wide as possible (global search),
secondary points are conducive to convergence (local search). Secondary points
are only computed if the current primary trial point fails and the rate of success
(RS) in finding smaller values of Rw is bellow 50%. This general procedure may
be modified in a variety of ways, our version of CRS is detailed at Algorithm 2.1,
where stopping criteria are based on (i) the value of the maximum distance between
any two points in the set R (Dmax = max{d(R\ i?J); V 0 < i, j < N-, i j} < e),
(ii) the range of / (#) > i-e. f(Rw) - f(RB) < 6] where f(Rw) = m a x { f (R i) } ;
f(RB) = min{/(i?1)} ; and (iii) the number of function evaluations NFmax. Condi-
tion (i) ensures that all the trial points are located in a small cluster, condition (ii)
allows the algorithm to stop even when the trial points are a long distance apart
but the values of the function for all the trial points are almost equal one to each
other; this condition is useful for functions with several global optima. Finally,
condition (iii) will permit to leave the process in the case that algorithm does not

A parallelized sequential random search global optimization algorithm 407

converge.
It can be seen that CRS is a highly sequential algorithm, because every new

trial point, P, is generated from a subset of the current set R of TV trial points.
This current set of points consists of the best points found along the iterative proce-
dure. However, provided that R°,... ,RN~X can be simultaneously generated and
f(R°), • • •, / (-R^ - 1) concurrently computed, the algorithm exhibits some degree of
parallelism at the initialize stage.

In order to increase the degree of parallelism of CRS, the following strategy
has been introduced: After the initialize stage, using the same initial set (R) of
N trial points, a set of b primary points are generated and saved into a FIFO
buffer, A = A0,... ,Ab-1. After computing f{A°), Rw will be replaced by A0 iff
f(A°) < f(Rw). A0 is removed from the buffer and a new point is obtained by the
generate procedure and saved at the end of the buffer FIFO. The only difference
with Algorithm 2.1 is that a set of b trial points is always ready to be evaluated,
so the degree of parallelism is increased.

The best strategy for implementing this kind of parallel algorithms is a cen-
tralized model, where a master-worker communication scheme is applied. In our
model, the master processor executes the optimization algorithm and provides a
set of trial points to the worker processors, worker processors only evaluate the ob-
jective function at the trial points supplied by the master processor and after every
evaluation of the function they send the result back to the master processor [4].
Garcia et al [2, 4] have implemented a similar strategy using a fully asynchronous
model where the master processor does not start to generate primary or secondary
trial points until the initial sample set of trial points has been evaluated. At any
time worker processors keep information of a single trial point. Although this ap-
proach is fully asynchronous, several worker processors frequently may remain in a
idle state waiting for the master processor to provide a new trial point.

This drawback could be solved if worker processors always keep in a buffer a set
of trial points to be evaluated. So, when a worker processor finishes an evaluation,
it sends the result back to the master and goes on evaluating a new trial point
stored in its local buffer. Our parallel implementation of CRS (RPCRS) consists of
two different processes: Master_RPCRS (Algorithm 2.2) and Worker_RPCRS
(Algorithm 2.3).

The Master_RPCRS process consists of three different stages: (i) the ini-
tialize stage where the set R of N trial points are randomly chosen over 5, (ii)
a stage where b = NP x npoints primary trial points are computed and (iii) the
convergence loop where primary or secondary trial points are generated following
a strategy similar to Algorithm 2.1.

After initialize step, master processor cyclically distributes all the N trial
points among worker processors. If the number of worker processors (NP) were
greater than N, master processor would generate NP trial points and after receiving
their function values from worker processors, it would only save the best N trial
points at R. Then, master processor calculates b primary trial points and sends
npoints to each worker processor. Points P are computed using b different G and
W".

408 P.M. Ortigosa, J. Balogh, I. García

Algorithm 2.2
Begin Master_RPCRS(/, S, N,NP, npoints, NFmax,e)

initialize:
Iter = 0; Dmax = e + 0.1; n.s = 0
Select at random a set, R, of N trial points /?,*; (0 < i < N)

SEND N/NP trial points from R to each worker processor
RECEIVE N function values from the NP processors
do j = 1 : NP

do k = 1 : npoints # b = NP x npoints
Iter = Iter + 1
Gk = E ^ V ™
Pk = 2 x Gk - Rj" . # Primary points

SEND Pk to processor j; (k = 1 , . . . , npoints).
while (Dmax > e OR f(Rw) - f(RB) < S OR Iter < NFmax)

update: Determine the trial points W and B such that
f(Rw) > fiW) > f(RB) (0 <i<N)

Iter — Iter + 1
Pnew = gen_trial()
RECEIVE / (P) from processor idp # (1 < idp < NP)
SEND Pnew to processor idp
if f(P) <№w)

Rw = P; ns = ns + 1
End while
Return {RB and f(RB)}; # f(RB) < f (R (0 < i < N)

End MasterJRPCRS

In the convergence loop the greatest value of the function (f(Rw)) in the
set R°,..., RN_1 is determined. Also a new P (named Pnew) is computed in
gen_trial() procedure. In this procedure the algorithm will generate a primary or
a secondary trial point following the same strategy of CRS. Then, master proces-
sor waits for the arrival of a new value of the objective function from any worker
processor and immediately sends a new trial point Pnew to this worker processor.
After that, master processor checks if the received trial point is accepted or not
and decides if the next trial point should be a primary or a secondary trial point.

Worker_RPCRS process consists of an initial stage where worker processor
receives N/NP trial points from master processor, evaluates them and returns the
values of the function back to master processor. Then, worker processor receives
npoints to be evaluated. They are stored in a FIFO buffer, A. When a worker
processor has evaluated a trial point it sends the value of the function back to the
master processor and checks for the arrival of a new trial point. If a new point

A parallelized sequential random search global optimization algorithm 409

Algorithm 2.3
Begin Worker _RPCRS(/, S, N, NP., npoints)

RECEIVE N/NP trial points and store in a FIFO A
Compute /(A1 < i < N/NP
SEND N/NP values of the function (J (A%)) to the master processor
RECEIVE npoints from the master and store them into Aflrst,..., Alast

while (Master_RPCRS is working)
while there are stored points to evaluate (A ^ 0)

Evaluate f{A^irst)
SEND f(AilTSt) to master processor
if a new point has arrived from master

RECEIVE Alast

end while
wait for a new point from master processor
RECEIVE Alast

End while
End Worker JELPCRS

has arrived, worker processor reads the point and pushes it into the FIFO buffer.
Otherwise, worker processor goes on evaluating the next point of its buffer. If the
FIFO buffer A = 0 and master processor is still working, worker processor has to
wait for a new trial point from the master processor.

Using this strategy, idle time of worker processors is reduced (even eliminated),
and in addition communication overhead is decreased because communications and
computations are overlapped.

3 Evaluation of RPCRS on a uniprocessor envi-
ronment

In order to hide the set of problems associated to parallel implementations, such
as communication overhead or bottlenecks due to intensive communications, a ma-
chine independent evaluation of RPCRS has been realized; i.e. in this section
executions of RPCRS were carried out on a uniprocessor system and performance
was measured versus the number of function evaluations computed during the ex-
ecution of RPCRS. The goal of this analysis consists of determining the behavior
of RPCRS with respect to CRS as a function of the buffer size (b).

A set of twenty two test functions has been used to check convergence and
parallel performance of RPCRS. Due to the strong stochastic component of this
algorithm, the number of function evaluations carried out by RPCRS depends on
the particular execution. For this reason, the algorithm has been executed 100 times

410 P.M. Ortigosa, J. Balogh, I. García

for every value of the setting parameters, obtaining a significantly statistic sample.
From this data set, average value of the number of function evaluations and the
corresponding confidence intervals (95%) were computed (see [13]). Setting lower
and upper limits to a statistic implies that the probability of an interval covering
the mean is 0.95 or, expressed in another way, that on the average 95 out of 100
confidence intervals similarly obtained would cover the mean.

Table 1: Results of RPCRS for Goldstein/Price and ShekellO test functions.'1' and
mean 98% and 97% of success were obtained respectively.

Goldstein/Price Test Function
Cluster Size = 25 x ?i Cluster Size = 50 x n Cluster Size = 100 x v.

b NoFE Conf.Int. NoFE Conf.Int. NoFE Conf.Int.
1 <1>1622 [1604,1640] 3254 [3230,3278] 6505 [6467,6544]
2 1650 [1632,1667] 3261 [3238,3284] 6511 [6479,6543]
3 1633 [1609,1657] 3261 [3238,3284] 6502 [6473,6532]
4 1649 [1630,1669] 3256 [3229,3283] 6501 [6464,6539]
8 1631 [1612,1649] 3235 [3207,3264] 6520 [6483,6558]

16 1599 [1575,1623] 3212 [3186,3237] 6431 [6394,6468]
32 1606 [1574,1637] 3146 [3112,3180] 6340 [6301,6378]
64 1706 [1674,1739] 3149 [3112,3186] 6229 [6195,6264]

ShekellO Test Function
1 5310 [5262,5357] 10614 [10562,10666] 21454 [21367,21540]
2 (2>5315 [5260,5370] 10645 [10592,10698] 21543 [21475,21611]
3 5326 [5283,5369] 10620 [10562,10678] 21523 [21433,21613]
4 5335 [5295,5375] 10576 [10506,10646] 21498 [21425,21571]
8 5279 [5229,5329] 10575 [10509,10642] 21472 [21390,21553]

16 5161 [5117,5206] 10477 [10409,10545] 21452 [21371,21532]
32 5049 [4945,5152] 10237 [10171,10303] 21066 [20987,21145]
64 5059 [4905,5213] 9784 [9728,9839] 20660 [20577,2074.3]

In order to facilitate analysis of the behavior of RPCRS, in a first set of ex-
perimental tests, only six test functions were used: Goldstein/Price, Hartman3,
Hartman6, Shekel5, Shekel7 and ShekellO [15].

Two of the RPCRS's input parameters which play an important role in the
performance evaluation are: the number of trial points N defining the cluster of
trial points and the size b of the buffer. During the first set of tests, performance
evaluation has been made as a function of both Ar and b. N has been established
as a function of the dimension of the problem ri, so values for N in our performance
evaluation were N = 25 x n, 50 x n, 75 x n and 100 x n. Values for the buffer
size b were 1, 2, 3, 4, 8, 16, 32, 64. It must be pointed out that for b = 1,
RPCRS algorithm matches to the original sequential version of CRS algorithm. So,

A parallelized sequential random search global optimization algorithm 411

performance evaluation will be realized by comparing R,PCR.S(/;) to R,PCRS(6 = 1).
For all the executions of RPCRS, the parameters used in the stopping criteria were:
e = 10-\ 5 = lCT5 and NFmox = 10°.

In Table 1 numerical results obtained from the evaluation of two test functions,
using several values of b and N, are given. In this table average values of the
number of function evaluations (NoFE) and the corresponding confidence intervals
(Conf.Int.) for a sample of hundred executions of RPCRS, are shown.

From Table 1, it must be noticed that for the smallest value of the cluster size
(25 x n) the percentage of success of RPCRS were not always 100% (see notes (1)
and (2)). Therefore, bigger values of the cluster size N must be chosen to ensure the
convergence of the algorithm. It can be seen in Table 1 that the number of function
evaluations tends to decrease when the cluster size N grows, though this tendency
can not be observed for Goldstein/Price Function with the smallest cluster size
value (25 x n)

Percentage Increase In the Number of Function Evaluations
Cluster Size = 25n

Percentage Increase in the Number of Function Evaluations
Cluster Size & 50n

G—OGOLD
R — n HARTS
O—OSHEK5
A—AHART6
o OSHEK7
V—7SHEK10

G—OGOLD
H—nHART3
O—OSHEKS
¿s—ÛHART6
<J r]SHEK7

- V—VSHEK10

Percentage Increase in the Number of Function Evaluations
Cluster Size = 75n

Percentage Increase in the Number of Function Evaluations
Cluster Size = 100n

G—qgolo
n— FÏHART3

• O—OSHEK5
A—ÛHART6

—3SHEK7
- V—VSHEKtO

Butter Size (b)

Figure 1: Percentage of increase in the number of function evaluations (N'oFE) for
several values of the cluster size (TV): % Increase = NEval i$E^IS{™ l ib=1) x 100.

412 P.M. Ortigosa, J. Balogh, I. García

Figure 1 shows results of RPCRS over the set of six test functions for the four-
values of cluster size. Due to the average values of the number of function eval-
uations range between 1000 and 40000, we decided not to draw the number of
function evaluation versus the buffer size b. Instead of this, in Figure 1, the per-
centage of increase (%Increase) in the number of function evaluations with respect
to the original case (b = 1), 1} x 100), has been drawn.

So Figure 1 shows the percentage of increase (or decrease) for several different
values of the cluster size. For Shekel 5 test function, a positive %Increase were
always obtained, though this increment in the number of function evaluations di-
minishes as the cluster size increases. For the remaining test functions, it can be
seen that %Increase varies just a little bit because the average values of the number
of function evaluations remains almost constant, with respect to b, when the buffer
size is small (1 < b < 8). For bigger buffer sizes the %Increase tends to be more
negative (e.g. Hartman6). Only for Goldstein/Price test function with a cluster
size jV = 25 x n, the %Increase is positive for a buffer size b = 64. This is due to the
number of points stored in the buffer is relatively large compared with the cluster
size. Goldstein/Price test function is two-dimensional and therefore the cluster size
in this case is smaller, 25 x n = 50, than the buffer size (b = 64); i.e. ^ < 1.

Results from this set of experiments seems to show that: (i) using a cluster size
large enough, convergence to the global optimum is ensured and (ii) for a value of
the buffer size smaller than the cluster size but greater than 8 the computational
cost of RPCRS diminishes or remains similar to the original CRS (RPCRS(6 = 1)).

In a second set of experiments, performance evaluation of RPCRS was made
for a wider set of test functions (see appendix for a detail description of these test
functions). In this case the cluster size was always iV — 100 x 71, ensuring that
for all the test functions N > b. This new set of test functions includes all the
functions previously used and seventeen additional functions. These functions have
been chosen in such a way that they are defined over several different domains of
definition, S C Rn, where S ranges from [—1,1] to [—600,600] and n from 1 to 10;
the number of global optima varies from 1 to > 10 and at least one of the functions
has more than 1000 local optima. For all the functions, 100% of success in finding
the optimal solution was obtained by RPCRS.

In Figure 2, performance evaluation of RPCRS, for the set of 22 test functions,
is shown. In this graph, X-axe represents the index of the test function. The
functions have been sorted by the increasing number of function evaluations needed
to reach the global solution when 6 = 1 (NEval(b = 1). For each function, results
for all the values of the buffer size (b) are displayed in a vertical straight line.
Roughly speaking it can be said that when the number of function evaluations is
big enough the performance of RPCRS is best than that of CRS; i.e. NEval(b) <
NEval(b = 1) for most of the values of b. For test functions with a computational
burden not too strong, the performance of the algorithm depending of the value
of the buffer size, has more fluctuations. Anyway it can be seen that only for 5
functions over the set of 22 test functions, RPCRS performs worst than CRS: i.e
NEval(b) > NEval(b = 1).

A parallelized sequential random search global optimization algorithm 413

Cluster size = 100n

CD co
CO
CD
i _ o c

15.0

-15.0

-5.0

10 15
Index Function

Figure 2: Percentage of increase in the number of function evaluations for several
values of the buffer size (b) and TV = 100 x n. % Increase = NEvali^Ji)l(b=1) x

100.

In general, it can be said that the parallelism introduced at CRS for build-
ing RPCRS does not strongly disturb its performance characteristic and for hard
functions, requiring a lot of computational resources, RPCRS outperforms CRS.
Nevertheless, no theoretical proof of these results has been still studied. In the
next section, results of the performance evaluation of RPCRS on a parallel system
(Cray T3D) using up to 16 processors are presented.

4 Performance evaluations on a parallel system
In order to analyze the behavior and the performance of the parallel program, we
have chosen a cluster size of 100 x n. In our experiments buffer sizes b = 16 and
b — 64 were used. Though our asynchronous parallel program was designed with the
capability of overlapping computations and communications, the algorithm needs

414 P.M. Ortigosa, J. Balogh, I. García

Speed up
Cluster Size = lOOn. Buffer Size = 16

Speed up
Cluster Size = 100n. Buffer Size = 64

No. ol Slave Processors No. of Slave Processors

Figure 3: Speedup of the parallel executions of RPCRS with respect to the sequen-
tial case. Speed-up =t{RPCRS(b = 1 ,p = 1))/t(RPCRS(b,p)). Delay = 0.03
sec.

the computational cost of the test functions to be greater than the communication
time required to exchange data among master and worker processors. If computa,-
tional cost of the objective function is small enough, bottlenecks would appear at
master processor. But for these unexpensive functions it would not be necessary
the use of a parallel system. So, in our evaluations of the parallel performance of
RPCRS, it was simulated that test functions have the same computational cost
by introducing an additional time delay into the function evaluation. Particularly,
effects of delays: 0.003 sec. and 0.03 sec. have been analyzed for a set of six test
functions.

Figure 3 shows the values of the speedup obtained when the execution time
for the parallel executions is compared to the execution time obtained by the
original sequential algorithm (CRS = RPCRS(b = 1 ,p = 1)); i.e. Speed-up
=t(RPCRS(b = 1 ,p = 1)/t(RPCRS(b,p)), where p is the number of worker pro-
cessors. From results at Figure 3, it might seem that we have implemented a
marvelous parallel program because of a speedup over linear is most of times ob-
tained. Nevertheless, these super speedups are due to the property that the number
of function evaluations carried out by RPCRS algorithm is lesser for buffer sizes
b = 16 or b = 64 than for a buffer size 6 = 1 (see Figure 1).

Figure 4 shows values of the speedup obtained when execution time for the
parallel program is compared to execution time obtained in the sequential case,
but in this case using the same value of the buffer size for both sequential and
parallel executions; i.e. Speed-up = t(RPCRS(b,p = l)/t(RPCRS(b,p)). It can
be seen that in this case an almost linear speedup has been obtained for all the
functions, but no super speedups. These speedups are closer to the linear speedup

A parallelized sequential random search global optimization algorithm 415

Speed up
Cluster size = 100n. Buffer Size = 16. Delay = 0.003 sec.

Speed up
Cluster size = 100n. Buffer Size = 16. Delay = 0.03 sec.

No. of Slave Processors

Speed up
Cluster size = 100n. Buffer Size = 64. Delay = 0.003 sec.

No. of Slave Processors <

Speed up
Cluster size = lOOn. Buffer Size = 64. Delay = 0.03 sec.

No. of Slave Processors No. of Slave Processors

Figure 4: Speedup of the parallel version with respect to the sequential case. Speed-
up = t(RPCRS(b,p = l))/t(RPCRS(b,p)).

for a delay of 0.03 sec. than for a delay of 0.003 sec.

5 Conclusions and future work
In this work a parallel implementation of CRS, called RPCRS, has been described
and evaluated. It has been shown that RPCRS is computationally cheaper than
CRS and in addition it is easy to implement on a real parallel or distributed com-
puting system an asynchronous model.

Although a wide set of standard test functions were used to validate that RPCRS
outperforms to CRS, no theoretical support exists behind this work to demonstrate
that our results will be the same for any function. Our future work will be aimed

416 P.M. Ortigosa, J. Balogh, I. García

at obtaining a better understood of this results and a mathematical proof (if any).

Appendix: Description of the test functions

F : Index of the Function.
D : Search domain.
f(x*) : Global minimum value of the function.
M : Number of global plus local minima of the function.

Table 2: Description of the test functions.

F Function f(x) D f(x') M
1 Three hump camel back [- 5 , 5] * 0.0 3
2 (xi - 5)2 - (z 2 - 10)2 if xi < 10

(:x\ - 15)2 - (x2 - 10)2 otherwise
[0, 20]2 0.0 2

3 Six hump camel back [- 2 . 5 , 2.5]2 -1.0316 6
4 Booth [- 5 , 5] * 0.0 1
5 Levy 13 [- 1 0 , 1 0] 2 0.0 > 1
6 Goldstein / Price l - 2 , 2] 2 3.0 3

7 Shperical 2 = X1 [- M l 2 0.0 1

8 Hartman 3 [o,i]J -3.862782 > 3
9 Beale [- 5 , 5] 2 0.0 > 4
10 Levy 3 [- 1 0 , 1 0] 2 -176.54 > 9
11 Griewank [-600 ,600] 2 0.0 > 10

12 Shperical 3 = yj^t xl [- M] 3 0.0 1

13 Shekel 5 [- 1 0 , 1 0] 4 -10.15320 > 4
14 Shekel 7 [- 1 0 , 1 0] " -10.40294 > 4
15 Shekel 10 [- 1 0 , 1 0] " -10.53641 > 4

16 Shperical 4 = y^ll X1 [- M] 4 0.0 1
17 Hartman 6 [0 , l] e -3.322828 > 6
18 Shperical 5 = y X ^ [- M] 5 0.0 1

19 Shperical 6 = sJ^T^ x j [-1.1]6 0.0 1

20 Shperical 7 = y Y ^ i X1 [-1 .1] 7 0.0 1

21 Shperical 8 = y Y l ^ x? l - l , l] 8 0.0 1

22 Shperical 9 = y X w x'i [- 1 . 1] 9 0.0 1

A parallelized sequential random search global optimization algorithm 417

References
[1] Duckbury, P.G., Parallel Array Processing. Chichester: Ellis Horward, 1986.

[2] Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T. and Matej, S., "A
parallel implementation of the controlled random search algorithm to optimize
an algorithm for reconstruction from projections," in Illrd Workshop on Global
Optimization, (Szeged, Hungary), pp. 28-32, December 1995.

[3] Garcia, I. and Herman, G.T., "Global optimization by parallel constrained
biased random search," in State of Art in Global Optimization: Computational
Methods and Applications (C.A. Floudas and P.M. Pardalos, ed.), Kluwer Inc,
pp.433-455, 1996.

[4] Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T. and Matej, S., "Multi-
dimensional Optimization in Image Reconstruction from Projections," in De-
velopments in Global Optimization, (L.M. Bomze, T. Csendes, R. Horst and
P.M. Pardalos eds,), Kluwer Inc, pp. 289-300, 1997.

[5] Hendrix, E.M.T., Global Optimization at Work, PhD. Dissertation, Wagenin-
gen Agricultural University, 1998.

[6] Horst, R. and Pardalos, P.M. eds., Handbook of Global Optimization, Dor-
drecht: Kluwer, 1995.

[7] McKeown, J.J., "Aspects of parallel computations in numerical optimization,"
in Numerical Techniques for Stochastic Systems (F. Arcetti and M. Cugiani,
eds.), pp. 297-327, 1980.

[8] Nelder, J.A. and Mead, R., "A simplex method for function minimization," in
The Computer Journal, pp. 308-313, 1965.

[9] Price, W.L., "A controlled random search procedure for global optimization,"
in Towards Global Optimization 2 (L.C.W Dixon and G.P. Szego, eds.), pp. 71-
84, Amsterdam: North Holland, 1978.

[10] Price, W.L., "A controlled random search procedure for global optimization,"
in The Computer Journal, no. 20, pp. 367-370, 1979.

[11] Price, W.L., "Global optimization algorithms by controlled random search,"
Journal of Optimization Theory and Applications, no. 40, pp. 333-348, 1983.

[12] Price, W.L., "Global optimization algorithms for a CAD workstation," Journal
of Optimization Theory and Applications, no. 55, pp. 133-146, 1987.

[13] Sokal, R.R. and Rohlf, F.J., Biometry. New York: W. H. Freeman and com-
pany, 1981.

[14] Sutti, C., "Local and global optimization by parallel algorithms for MIMD
systems," Annals of Operating Research, no. 1, pp. 151-164, 1984.

418 P.M. Ortigosa, J. Balogh, I. García

[15] Torn, A. and Zilinskas, A., Global Optimization. Lecture Notes in Computer
Science 350. Springer-Verlag, Berlin, 1989.

[16] Woodhams, F.W.D. and Price, W.L., "Optimizing accelerator for CAD work-
station," IEE Proceedings Part E, vol. 135, no. 4, pp. 214-221, 1988.

CONTENTS

Tibor Csendes, Zoltán Fülöp: Preface 215
Béla Csaba: On the Partitioning Algorithm 217
Tibor Csöndes, Sarolta Dibuz, Balázs Kotnyek: Test Suite Reduction

in Conformance Testing 229
Harri Hakonen, Timo Raita: A Family of Fast Constant-Space

Substring Search Algorithms 239
Cs. Holló, Z. Blázsik, Cs. Imreh, Z. Kovács: On Merging Reduction of the

Process Network Synthesis Problem 251
Dragan Jankovic: Construction of Recursive Algorithms for Polarity Matrices

Calculation in Polynomial Logical Function Representation 263
Jaakko Jarvi: Object-Oriented Model for Partially Seperable Functions

in Parameter Estimation 285
Gábor Kallós: Hausdorff Dimension of Univoque Sets 303
A. Kocsor, L. Tóth, I. Bálint: Optimal parameters of a sinusoidal

representation of signals 315
Ferenc Kruzslicz: Improved Greedy Algorithm for Computing

Approximate Median Strings 331
Joonas Lehtinen: Limiting Distortion of a Wavelet Image Codec 341
Gábor Magyar, Mika Johnsson, Olli Nevalainen: On the Exact Solution of the

Euclidean Three-Matching Problem 357
Mazen Malek, Roland Geese: Testing Internet Applications - Terminology

and Applicability 377
András Micsik: A study of portability in the deployment of WWW 389
P.M. Ortigosa, J. Balogh, J. Garcia: A parallelized sequential random search

global optimization algorithm 403

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
A kézirat a nyomdába érkezett: 1999. október

Terjedelem: 13,7 (B/5) ív

