Volume 14 Number 2

ACTA
CYBERNETICA

Editor-in-Chief:). Csirik (Hungary)
Managing Editor: Z. Fiillép (Hungary)
Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhir (Hungary)

Editors: M. Araté (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France),). Demetrovics (Hungary), B. Démélki (Hungary),). Engelfriet
(The Netherlands), Z. Esik (Hungary), F. Gécseg (Hungary),). Gruska (Slovakia),
B. Imreh (Hungary), H. Jirgensen (Canada), A. Kelemenovi (Czech Republic),
L. Lovész (Hungary), G. Pdun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wéginger (Austria)

Szeged, 1999

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TEX.

After acceptance, the authors will be asked to send the manuscript’s source TEX
file, if any, on a diskette to the Managing Editor. Having the TgX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the Jézsef Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1999 Numbers 1-2 of Volume 14 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, Jézsef Attila University,
H-6701 Szeged, P.0.Box 652, Hungary. Tel.: (36)-(62)-420-184, Fax:(36)-(62)-420-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

EDITORAL BOARD

Editor-in-Chief: J. Csirik

A. Jézsef University

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Managing Editor: Z. Fulop

A. Jézsef University

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary’

Assistants to the Managing Editor:

A. Pluhar

A. Jézsef University

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

M. Sebd '

A. Jézsef University

Department of Computer Science
Szeged, Arpad tér 2.

H-6720 Hungary

Editors:

M. Araté

University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom

Stevens Intitute of Technology
Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender

Department of Computer Science
Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

W. Brauer

Institut fiir Informatik
Technische Universitat Miinchen
D-80290 Miinchen

Germany

L. Budach

University of Postdam
Department of Computer Science
Am Neuen Palais 10

14415 Postdam, Germany

F. Gécseg

A. J6zsef University ,
Department of Computer Science -
Szeged, Aradi vértanik tere 1.
H-6720 Hungary

J. Gruska

Institute of Informatics/Mathematics
Slovak Academy of Science
Dubravska 9, Bratislava 84235
Slovakia,

B. Imreh

A. J6zsef University
Department of Foundations of
Computer Science

Szeged, Aradi vértantk tere 1.
H-6720 Hungary

H. Jiirgensen

The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada NGA 5B7

A. Kelemenova

Institute of Mathematics and
Computer Science

Silesian University at Opava
761 01 Opava, Czech Republic

H. Bunke

Universitdt Bern

Institut fiir Informatik und
angewandte Mathematik

Langass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle

Universite Bordeaux-1

LaBRI, 351 Cours de la Liberation
33405 TALENCE Cedex

France

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary -

B. Domolki

IQSOFT

Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet

Leiden University

Computer Science Department
P.0O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Esik

A. Jézsef University
Department of Foundations of
Computer Science

Szeged, Aradi vértanik tere 1.
H-6720 Hungary

G: Woginger

L. Lovasz

Eo6tvos Lordnd University
Budapest Muzeum krt. 6-8.
H-1088 Hungary

G. Paun

Institute of Mathematics
Romanian Academy
P.O.Box 1-764, RO-70700
Bucuresti, Romania

A. Prékopa

Eoétvés Lordand University
Budapest, Mizeum krt. 6-8.
H-1088 Hungary

A. Salomaa

University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga

Eo6tvos Lorand University
Budapest, Mizeum krt. 6-8.
H-1088 Hungary

H. Vogler

Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

Technische Universitat Graz
Institut fiir Mathematik (501B)

Steyrergasse 30

A-8010 Graz, Osterreich

Preface

The first Conference for PhD Students in Computer Science (CSCS) was orga-
nized by the Department of Informatics of the Jozsef Attila University and held in
Szeged, Hungary from July 18 to 22, 1998. The aim of the meeting was to provide
a forum for PhD students for presenting their results which they achieved during
their studies.

The Program Committee was actually the Doctoral Committee of the Depart-
ment: Miklés Bartha, Tibor Csendes, Janos Csirik, Jozsef Dombi, Zoltan Esik,
Zoltan Fiilép, Ferenc Gécseg, Baldzs Imreh, Attila Kuba, Eérs Maté, and Gyorgy
Turdn. The Organizing Committee consisted of Laszlé Bernatsky, Tibor Csendes,
Csongor Halmai, Laszlé Martonossy, Lajos Schrettner, and Mariann Sebé.

There were about 80 participants and 70 talks from & countries in many fields of
computer science and its applications. Beyond the Hungarian PhD Schools in Infor-
matics, mainly those foreign universities were represented (University of Turku and
University of Nis) which have a strong cooperation with the J6zsef Attila Univer-
sity. The talks were going in two parallel sections in artificial intelligence, automata
and formal languages, computer networks, database theory, discrete mathematics,
fuzzy decision support systems, information systems, optimization, picture pro-
cessing, and software engineering. The talks of the students were completed by 4
plenary talks of leading experts.

Those students who gave a talk had the possibility to submit the paper version
of their presentaion for publication in a special issue of Acta Cybernetica. Alto-
gether 37 manuscripts were submitted, out of which 18 have been accepted, 18 were
rejected and one is still under review. This special issue contains 14 of the accepted
papers, while 2 papers already appeared in Volume 13 Number 4 (1998), and 2
further will be publish@d in a later regular issue of Acta Cybernetica.

The full program of the conference, the preliminary proceedings and further
information can be found on the web page http://www.inf.u-szeged.hu/~cscs.

On the basis of our collected positive experiences, the conference will be orga-
nized regularly under similar conditions hopefully with more foreign participation.
The next meeting will be held also in Szeged, Hungary, in July 2000.

Tibor Csendes Zoltan Fiilop
Chairman of CSCS Managing Editor

215

http://www.inf.u-szeged.hu/~cscs

Acta Cybernetica 14 (1999) 217-227.

On the Partitioning Algorithm

Béla Csaba *

Abstract

We consider the deterministic and the randomized paging problem. We
show the close connection between the partitioning algorithm of McGeoch
and Sleator and the OPT graph of the problem via a natural framework.
This allows us to prove some important properties of the ”deterministic”
partitioning algorithm. As a consequence of these we prove, that it is a k-
competitive deterministic on-line algorithm. Besides, we show an application
of the OPT graph for a special case of the k-server problem.

1 Introduction

The paging problem is defined as follows. We have a two-level memory system with
k pages of fast memory, and n — &k pages of slow memory. Repeatedly a request to a
page appears. This request should be satisfied by moving the page to fast memory,
if it is in slow memory, i.e., a page fault occurs. In this case a page has to be evicted
from fast memory to make room for the new, recently requested one. The paging
problem is to decide which page is to be evicted. The cost of a request sequence is
the number of page faults. Of course, this number depends on the strategy used
when deciding which page to evict. :

There is a simple optimum paging algorithm, Belady’s MIN algorithm (see
IB]), if one knows the whole request sequence in advance, in the off-line case. It is
more practical to consider the on-line paging problem, when the algorithm has to
decide immediately after a page request, without knowing what the future requests
will be.

Paging is a special case of the so called k-server problem. In this problem we
are given a finite metric space: a set V on n points, and a distance function d{z, y)
on V? satisfying the usual requirements of distances (non-negativity, simmetry,
triangle-inequality). There are k (1 < k < n) mobile servers, initially residing on
some points of V', no two on the same point. A number of requests, each is an
clement of V, appears. A request has to be satisfied immediately by moving a
server to the requested point, if there is no server on it. By moving a server from
the point y to the requested point z a cost, d(z,y) incurs. The total cost of a

*Department of Computer Science; Rutgers, The State University of NJ; 110 Frelinghuysen
Road; Piscataway, NJ 08854-8019 USA. Email: bcsaba@paul.rutgers.edu

217

mailto:bcsaba@paul.rutgers.edu

218 Béla Csaba

request sequence is the sum of the costs of the composing requests. One can see,
that by choosing d = 1 (uniform metric space), we arrive to paging. The number
of faults done by some algorithm on a request sequence ¢ is the same as the total
distance taken by the servers during the satisfaction of o. For the case of simplicity
we use the terminology of the uniform k-server problem throughout the paper. An
important remark is that it is enough to consider lazy algorithms, i.e., algorithms,
which move a server only to a requested point (see [MMS]).

For comparing two paging algorithms the competitive ratio is used. This measure
of performance of an on-line algorithm was introduced by Sleator and Tarjan (see
[ST]). Fix any starting configuration of the pages, and denote by opt(c) the optimal
cost of the satisfaction of the request sequence . The competitive ratio of the on-
line algorithm A is ¢, if there is a constant M such that on every request sequence
o the cost incurred by A, A(o) is at most ¢ - opt(o) + M. It was shown (see [ST])
that no on-line algorithm can have a competitive ratio less than k for the paging
problem. LRU, FIFQO and a large number of other on-line algorithms are known
to be k-competitive. On the other hand, the best competitive ratio achieved by
some on-line algorithm for the k-server problem is 2k — 1 (see [KP}), while the lower
bound for any metric space is k (see [MMS]), like in paging.

As it happens frequently, one may expect a better performance in the random-
ized case. A randomized on-line algorithm R is c-competitive, if there is a constant
M such that on every request sequence o, E[R(c)] is at most ¢ - opt(c) + M,
where E[R(c)] denotes the expected cost incurred by R on o. It was proved (see
[FKLMSY]) that Hy = 3D1+ 3 +---+ 1 is a lower bound for the randomized com-
petitiveness of an on-line paging algorithm. There is a simple, elegant algorithm,
which has randomized competitive ratio 2Hy, (see [FKLMSY]). On the other hand,
the only known optimal randomized algorithm, the partitioning algorithm has a
much more complicated description. Our goal is to show that despite it’s complex-
ity, the “deterministic” version of this algorithm is based on rather plausible ideas.
This is done by the help of OPT graphs.

OPT graphs for on-line problems were first considered in [CL1], [CL2] when
investigating the deterministic k-server problem, and in [LR] were used to analyze
the randomized case. Roughly speaking, the OPT graph for the k-server problem
is a finite directed graph, with which one can easily compute the optimal cost of
any request sequence, and find the corresponding satisfaction.

The outline of the paper is as follows. In the second section we give the definition
of the partitioning algorithm, and our framework, which is based on the OPT graph
of the problem. The third section deals with the deterministic paging problem, and
the connection between the OPT graph and the partitioning algorithm, and we
show that the partitioning algorithm is k-competitive in the deterministic case.
In the fourth section we give an application of our results for a special k-server
problem, achieving 2k — 2 competitive ratio.

On the Partitioning Algorithm 219

2 Definitions

First we give the definition of the partitioning algorithm following [MS]. The algo-
rithm dynamically maintains a partition of the points: V = S, |JSar1 U---U Ss-
Each set S; (i <) is labeled with an integer k;. Initially = 1 and 8 = 2,5,
contains the & points that are covered by the servers, S; contains the unoccupied
points, and k; = 0. In response to a request at a point r € V the labeled partition
is updated. Let r € S;, then there are three cases.

Rule 1: i= 4
Do nothing.

Rule 2: a<i< f

First do the following assignements:
e S, S;—r
o SgSg+r
o ki kj—1,1<5<B.

If some label changed from 1 to 0, find the largest number j such that &; = 0. Then
let ’ C

e S;« SalUSa+1U-.-US;
caej

Rule 3: i = «
Do the following assignements:
® Sy Sa—T
e Sgp1 1
e kg k—1

B+ B+1.

By induction one can easily show that the following labeling invariant conditions
always hold:

o ky=0
o ki >0(a<i<f)

o ki=ki1+|5]-1(a<i<f)
o ks_1 =k —]Sp).

220 Béla Csaba

Now we are ready to give the partitioning algorithm itself. Denote
SalUSat+1U---UUS: by S}. For each set S}, where o < 7 < f, there are k; i-
marks occupying different points of S;. An {-mark is only allowed on the points of
S; or on points with an (i — 1)-mark - on the i-eligible points. The algorithm keeps
a server on each element of Sg and on each point with a (§ — 1)-mark. By the
labeling invariant conditions this means exactly & points covered by some server.
Before the first request & = 1 and = 2, and there are no marks of any kind. Now,
let the new request be r.

(1) If » € S, then do nothing.

(2) If r € S; (@ < i < B), move the marks around so as to achieve that there is
a j-mark on r for all (i < j < B) in the following way. If r has.a j-mark, then
do nothing. Otherwise randomly choose some point w that has a j-mark. Transfer
each I-mark (I > j) from w to r. Repeat this step, if r does not have all marks
up to f — 1. Then apply Rule 2, and erase all the marks on r. If a changes, all
t-marks (¢ < a) are erased. If a (# — 1)-mark moves to 7 from another point, the
corresponding server moves to 7.

(3) If r € S,, then apply Rule 3. Then create £ — 1 new (8 — 1)-marks, and
distribute them randomly amongst the k (8 —1)-eligible points. We move the server
to 7 from the point which is left without a (8 — 1)-mark.

Recall, that this randomized algorithm is Hi-competitive. Note, that with any
deterministic rule for distributing the marks this algorithm switches to a determin-
istic one. Now we turn our attention to the OPT graph of the paging problem. We
repeat the definition of [LR).

Definition 2.1 An OPT graph of an on-line k-server problem is a finite directed
graph with one distinguished vertex I, such that (1) each edge is labeled with a
request from V' and a cost, (8) for each vertex and each request r there is a unique
edge out of that vertez whose request label is v, and (3) for every request sequence
0, opt(p) equals the sum of the cost labels on the path given by o starting from I.

Every legal configuration of the servers can be viewed as a k element subset,
of the points. If § C V is the set of points occupied by the servers, and 7 is
the new request, the k-sets reachable by some algorithm from S by r are the
elements of the following set system: H = {H :H=S—-s+7,s€ S}. Ifr € S,
then S = H, otherwise H has k elements. Denote #Ho the initial configuration of
the servers, and let o = p102... 0, be a request sequence of lenth m. If H; =
{H:H=H —-—-h+yp9;, ¥ € H € H;1}, where 1 < i < m, then every p-
satisfying algorithm’s movements from configuration to configuration is embedded
in the following sequence: Ho = H; =20 — ... = H,,. An important observation,
that it is possible that in a set system H; there is a k-set H for which the cost of
any satisfying algorithm starting from #o and getting to H is "too big” comparing
to that of some other H' € H;. One may think that this kind of sets can be ignored
without eliminating any actions of a "good algorithm”. In what follows these simple
ideas will be made precise.

First, we give three rules for building a finite directed graph G. The vertices of

On the Partitioning Algorithm 221

this graph are associated with set systems of k-sets, one distinguished vertex is 1,
the initial configuration. Now let 7{ be a vertex of the graph, r € V.

Rule A: If r € (¢4 H, then do nothing.

Rule B: If 7 & ey H, but 7 € Upey H, thenlet H' = {H' - H' € H, 1 €
H'}. If H' is not present in G, then put it in as a new vertex. Draw the directed
edge (H,H') in G with label r. We call this kind of edge a decreasing edge.

Rule C: If r ¢ Uyey H, thenlet H' ={H': H' = H-h+r, h€ H € H}.
If H' is not present in G, then put it in as a new vertex. Draw the directed edge
(H,H') in G with label r. We call this kind of edge an increasing edge.

Note, that Rule B stands for discarding the ”expensive k-sets”, and we apply
Rule C, when we are forced to move a server. Starting from I after a finite number
of applications of the rules we arrive to a graph G to which we can’t put new vertices

or edges. As one can see, there cannot be more than n - 2(:21) vertices of G.

3 Properties of OPT graphs and an on-line algo-
rithm | |

Call a vertex of the graph G defined in the previous section a single vertez, if it
contains only one configuration, otherwise call it a multiple vertez. The following
two lemmas prove, that G is the OPT graph of the problem.

Lemma 3.1 Let p be a request sequence, and assume that starting from I we arrive
to the vertex H following o in G, and H € H is a configuration. Then there exists
a satisfaction of o with endconfiguration H and its cost is the number of increasing
edges in the above walk. '

Proof. Let’s go backwards from H on the walk determined by p. From the
definition of decreasing edges it follows that until we reach an increasing edge, we
don’t have to change configuration. When an increasing edge is coming, it is enough
to move a server, and we can get to the configuration, from which this increasing
edge is going out. Hence, for the decreasing edges on the walk there is no incurring
cost, and in the case of increasing edges the cost is 1. ‘ O

Lemma 3.2 Let g be a request sequence, and assume that starting from I we arrive
to the vertex H in G. Then the set system H contains exactly the optimally reachable
configurations, and the optimal cost is the number of increasing edges traversed
when getting to H. '

Proof. We proceed by induction on the length of the request sequence. If
lo] < 1, then the lemma trivially holds. Let’s suppose that it is true for every
request sequence with length at most ¢, and [g| = t. :

First we prove, that for every new request r, if the edge (H,H') is labeled r, then
for H' € H' the optimal cost of arriving to H' is the number of increasing edges.

222 Béla Csaba

Let’s assume that there is a satisfaction of pr which arrives to H' with cost less than
the number of increasing edges. Denote the jth configuration of this satisfaction by
Q;. If Q, ¢ H, then by the induction hypothesis we know that the cost of getting
to @: by g is bigger than the number of increasing edges, because every optimally
reachable configuration is the element of 7. Hence, after a new request the cost
of getting to Q41 = H' is at least as big as the number of increasing edges. If
Q): € H, then the statement trivially holds, either the edge (H,H’) is an increasing
or a decreasing edge.

So far we have proved that the optimal cost for H' is the number of increasing
edges. Let’s assume that there is a satisfaction S of gr such that S;.;, the last
configuration of it is not in H', but it has optimal cost. If the cost of S were smaller,
than the number of increasing edges, then because up to S; the cost can’t be smaller
than the cost of H# (by the induction hypothesis), S; € H. One can easily see, that
7 has to be an increasing request, but then the cost of S cannot be smaller than the
cost of H’. Hence, the only case is when S;,1 € H’, and has the same cost. Denote
the directed walk from I by Ho(= 1) =5 Hy; = ... = Hy(= H) = Hep (= H).
There is a last configuration of § which is the element of the corresponding vertex
of the graph. Denote it by S,,, and let ry,79,...7; be the last [= t + 1 — m
requests. Thus, S; € Hm, but for j > 1 Spiyj € Hmyj. By our assumption
the cost incurred on & before the last request is greater than that incurred on the
g-path in G. Hence, the last edge, (H:, Her1) is an increasing edge, and S; = Syy .
Denote R; the closest set in H; to Sj, ie., |Ri(]Si| = maz{|HNS:| : H € H;}.
Observe, that r1 & Sy, and the (H,,, Hm+1) edge is a decreasing edge, otherwise
S1 € Hmy1- From this follows, that |R; () S1] = k — 1. There are five cases to
consider when satisfying the last [requests. In the following 1 <i <[] — 1.

(1) 1541 € SiNRi = |SiN Ril = |Si+1 N Ris1|, and the difference of the costs
doesn’t change (lazy satisfactions).

(2) (Hi,H;+1) is an increasing edge, and ;41 € S; = the difference of the
costs is decreased by 1, and |S;(VRi| +1 = |Siy1 N Ri+1]. This equality easily
follows from the definition of G (Rule C).

(3) (H;,H;v1) is an increasing edge, and r;41 ¢ S; = the difference of the
costs doesn’t change, and |S; [Ri| < |Six1 [Ris1]-

(4) ri41 € S;, and 7341 € R; = the difference of the costs is increased by 1,
and |S; () R:| < [Six1) Risal-

(5)rix1 & Si, (Hi, Hiy1) 1s a decreasing edge, but R; € Hy o = the ditference
of the costs is increased by 1, and |S; [Ri| < |Six1 N Rit1]| + 1.

Let us suppose first, that at the jth stage (1 < j < I) the difference of the
costs is > k. Then by moving at most & — 1 servers from R; we can reach S
(the intersection S; () R; always contains the most recently requested point), and
this has cost at most k — 1. Hence, there is a p-satisfying configuration sequence
to S;y1 with smaller cost, and this contradicts with the optimality of S. Let us
consider now the quantity D; = k — |S; [R;|. We claim, that D; is a lower bound
for the difference of the costs in the ¢th stage. For i = 1 this is obviously true.
Assume, that D; is a lower bound up to the ¢th step, and a new request, r;y1 is

On the Partitioning Algorithm ‘223

coming. We check the possible five cases. In case (1) D;(= D;11) certainly remains
a lower bound. In case (2) the drawback of S is decreased, but, the intersection size
increases by one. In case (3) the drawback doesn’t change, and the intersection
size may increase. In cases (4)-(5) the drawback increases, but the size of the
intersection doesn’t decrease by more than one. Thus, in all cases D; i is a lower
bound. By our assumptions, D;—; < 1, and the last request should be a request
considered in case (2). By the definition of G, S;11 € Hip1. We get, that Hep,y
consists of exactly the optimally reachable configurations. o » =

Definition 3.3 Consider the partition So |J Sa+1 ... USs given by the partition-
ing algorithm. Let P = {P :|P| = k—|Sg|, P does not contain more than k; points
from SF}. The set system given by the partition is S ={S:S =Sz JP, € P}.

Lemma 3.4 Let S be the set system determined by the partitioning algarzthm
Then Sp = [ges S-

Proof. Sz C ﬂSESS trivially holds. Let’s suppose that for some v € V v e
Nses S and v € S;, o < i < . By the labeling invariant conditions k; = k;_; +
|S[—1 Le., |Si| = ki —ki—1 + 1. If v € Ngeg S, then every point of S; is in the
intersection, because they have the same role. Thus, from S} ; we could choose
only k;—; — 1 points. On the other hand we are allowed to choose ki 1 pomts —
we arrived at a contradiction. lin

Lemma 3.5 Assume, that starting from I we follow the edges of G deterfh’z'ﬁed*b,l;
the request sequence g, and we arrive to the vertexr H. Let the set system given by
the actual partition (after p) is S. Then H=S.

Proof. We prove the statement by comparing the maintaining rules for the
partitioning algorithm and the build-up rules for G, by induction on the length of
0. If |g| = 0, the lemma trivially holds. Let’s suppose now that the lemma’is true
for g, a new request 7 is coming, the edge (#H,F) is labeled r in G, and the new set
system given by the partition is Q. We distinct three cases dependmg> on the 1ule
we use to maintain the partition.

If r € Sg: There is nothing to prove, F = H and @ =S (Rule 1 & Rule A).

IfreSi(a<i<f):ByRule2, Qp=53+r,and Q; = S;—rand k; < k;—1
for j: 4 < j < 8. If for some j, k; has become 0, this means, that previously k;
was 1, and hence, from S} we could choose only one point to some § € S. By
Qo = Sa U S3,, where jo is the biggest such j, we discard all the sets S € S which
doesn’t contain r. Thus, the set system @ contains exactly those sets S € S, for
which r € S. Using the induction hypothesis and the definition of Rule B, we get,
that @ = F.

The only possibility left is that 7 € S4. By Rule 3, Qp = r, thus 7 € @ for
every (@ € @, and this is the only element of the intersection of the sets of Q.: Also,
kg < kg — 1 and 8 < B+ 1, hence Q contains ekactly the sets which hasr and
other k — 1 points from some S € S. But this is the set system F we get from H
by applying Rule C. - O

224 Béla Csaba

Definition 3.6 Let H and F be two configurations. We say, that F is achievable
from H (and vice versa), if |H(F| =k — 1, i.e., moving one server is enough to
reach one from the other.

Lemma 3.7 Let H be avertezin G, r € V, and H € H. If (H,F) is the outgoing
edge from H labeled v, then there is an achievable F € F from H.

Proof. If H = F (Rule A), then there is nothing to prove
If (H, F) is an increasing edge, then there are & sets in F which are achievable from
H: all the sets of the form F=H —-h+r, h € H.

Let’s suppose now, that (H,F) is a decreasing edge. If r € H, then H € F,
so, let » ¢ H. By Lemma 3.5 (and using the notation of it), » € S; for some
1 a<i<p.

There are two possibilities.

(1) When composing H, we did not pick any points from S}. But then there is
a largest ¢ (¢ > 0), such that we did not choose any point from S}, ,, because we had
the necessary number of points. Hence, we picked a point v € S}, ;.. Substituting
this v by r (r € Sf,,,,) we arrive to a set H', for which |H(VH'| = k — 1, and
r € H'. Thus, H' € F, and it is achievable from H.

(2) We picked another point w from S}. Substituting w by r, we again get a
set, of 7, which is achievable from H. O

Lemma 3.8 There cannot be more than k — 1 consecutive decreasing edges in any
walk on G.

Proof. Notice, that for any vertex H in G, r € [\ycqy H if 7 is the label of
an ingoing edge. After each application of Rule B this intersection size increases.
Thus, after £ — 1 decreasing edges we arrive to a vertex which is represented by a
single k-set. From such vertices every outgoing edge is an increasing edge: no k
consecutive decreasing edges are possible. a

Now we are ready to discuss our on-line algorithm. Roughly speaking, we do
a walk on the OPT graph step by step according to the incoming requests. We
introduce some notation: 7 is the new request, S is the configuration of the servers,
and H,H' are vertices of the OPT graph.

e (1) Initially S =H = I.

e (2) If r € S, then no server moves. If r is a loop edge label of H (the actual
vertex of the graph), then we stay there. If (H,H') is a decreasing edge
labeled r, then H' will be the new actual vertex.

o (3)If r ¢ S, then (H,H') is either a decreasing edge or an increasing edge
labeled r. Choose any configuration H' € H', which is reachable from S. We
know, that there is always at least one such configuration (Lemma 3.7). Move
the server on S — H to 7.

On the Partitioning Algorithm 225

Note, that in (3) there is no deterministic rule how to choose the server to move,
when there is a multiple choice. We will see, that one can use any kind of rule in
these cases.

Theorem 3.9 The algorithm described above is a k-competitive on-line algorithm.

Proof. From the description it is obvious, that the algorithm is well defined,
and in an on-line fashion we never have to move more than one server for-a request.
We decomp ose the walk defined by the request sequence g in the OPT graph
into s everal phases. The first phase starts from I, consists of the first consecutive
increasing edges, and the conse cutive decreasing edges coming right after them:
This phase ends, when a new increasing edge is to be traversed. =20 Then'a
new phase starts, with the same structure: consecutive increasing edges, and then
consecutive decreasing edges. Observe, that from Lemma 3.1 and 3.2 it follows, that
the optimal cost of g is the number of increasing edges traversed while satisfying g.
In a phase by definition, there is at least one increasing edge, and not more, than
k—1 decreasing edges. This is the consequence of Lemma 3.8. As mentioned above;
the algorithm never moves more than one server for a request. Hence, in every phase
the cost of the optimal satisfaction is the number of increasing edges, and the cost
of our on-line algorithm is at most the sum of the umber of the increasing and
decreasing edges (at most, because the algorithm not necessarily moves a server for
a decreasing request). It is easy to see, that the fraction of these two quantities is
always at most k. From this the theorem follows. a

Remark: Say, that there are ¢ increasing edges in a phase. Then the compe titive
ratio for that phase is at most k——ll—ﬁ < % + 1. When n is large enough comparing
to k, then we expect more than one increasing edge and less than & — 1 decreasing
edges in an “average phase”. Hence, this algorithm works well in these cases. Un-
fortunately, either storing the OPT graph in memory or dynamically computing
the next vertex needs a lot of resources. Thus, this algorithm is undesirable in prac-
tice, but possibly of theoretical interest. It suggests, that for “random sequences”
the competitive ratio of an on-line algorithm can be much smaller, than &.

4 Application for a k-server problem

In this section we use the OPT graph of the paging problem to define an on-line
algorithm for a special case of the k-server problem. Let us call a finite metric
space multipartite, if the points can be distributed into several classes, where the
distance between two points is 1, when they correspond to different classes, and
any number in the [1,2] interval otherwise. One can easily show, that these are
valid metric spaces, that is, non-negativity and symmetry of the distances, and the
triangle inequality are satisfied.

226 Béla Csaba

Theorem 4.1 If in o multipartite metric space no class has more than k — 1 el-
ements, then there is an on-line algorithm for the k-server problem of this metric
space with competitive ratio 2k — 2.

Proof. Qur algorithm is almost the same, which was considered in the paging
problem, but now we have.less freedom in the multiple choices. If the algorithm
is forced to move, then we try to move distance 1 if it is possible. Otherwise, we
move any server consistently with the actual OPT graph vertex. Observe, that if
the new request is an increasing request, then we can choose a server which move s
distance 1. There are at most k — 1 points in one class, hence, at least two servers
are not in the class of the new request. Another important case, when a phase
starts from a single vertex H, and that phase has only one increasing edge. That
edge goes to a vertex H', which contains exactly the union of the & — 1 element
subsets of H and r, the new request. Whichever server we have moved to r, there
is always another server from another class in another configuration of H'. Hence,
for the first decreasing edge we either don’t move a server at all, or there is a server,
which has to move only 1. Again, this is a simple consequence of the class sizes.
Thus, in such phases the optimal cost is at least 1, while our on-line cost is at most,
1+ 1+ 2(k — 2), from which we have the 2k — 2 bound for the competitive ratio of
these phases.

If there are more than one increasing edge in a phase, then the competitive
ratio of such a phase is at most ﬂ'—z—(;“—_—l—) <14k —1=k, where i is the number of
increasing edges. When there are less than k£ — 1 decreasing edges, the competitive
ratio of the phase is at most ﬂ(f;z) <2k -3.

There is one case left: phases with one increasing edge and k& — 1 decreasing
edges, starting from a multiple vertex. If a phase starts from a multiple vertex, then
the previous phase has at most k— 2 decreasing edges. We compute the competitive
ratio of these two consecutive phases. It is at most 1+2(k‘2)§1+2("""1) =2k-2.0

This result was an illustration, the careful reader may natice that by decreasing
the class sizes, a more thorough analysis gives smaller competitive ratios. On the
other hand, we cannot expect a k-competitive algorithm for non-uniform metric
spaces by just using the OPT graph of the paging problem. OPT graphs for
non-uniform spaces may prove to be useful, but up to this time these graphs were
investigated only for very special cases. Notice, that for non-uniform.problems we
may lose the symmetry of the graph, that can make the analysis hard.

Let us discuss a little bit more on the connection of paging and the general
k-server problem. In a finite metric space divide every distance with the length of
the smallest distance in it. This way every distance will be in the [1,D] interval for
some D. Let p be a request sequence, and denote opt,(p) the optimal cost of g in
the uniform metric space, while opt(g) denotes the optimal cost of satisfaction in
the original one. Then opt,(g) < opt(p) and opt(p) < D - opt(p), obviously. If A is
any k-competitive paging algorithm, then A(p) < k- opt,(0) + M for some constant
M, and thus A(g) < D -k - opt(p) + M. Thus, reaching the 2 - k-competitivity for
multipartite metric spaces is easy, any k-competitive paging algorithm achieves it.

On the Partitioning Algorithm 227

5 Summary

In this paper we investigated the paging problem, and a special k-server problem.
We used OPT graphs to have a better insight to paging. Our results suggests,
that the partitioning algorithm in practice may perform well, considering only the
competitivity as a measure. Then we proved a new nontrivial upper bound for
the multipartite k-server problem. We did it by the help of the OPT graph of the
paging problem. While our opinion is that one cannot expect much more with our
technique, we think, that a better understanding of the structure of OPT graphs
for non-uniform spaces may result in better upper bounds.

Acknowledgement The author is grateful Péter Hajnal and Endre Szemerédi
for listening to earlier versions of this paper, and to Tibor Széles for his valuable
help in the proofreading.

References

[B] Belady, L., A study of page replacement algorithms for virtual storage comput-
ers, IBM Systems Journal, 5:78-101, 1966

[CL1] Chrobak, M., Larmore, L., The Server Problem and On- -line Games, Pro-
ceedings of the DIMACS Workshop on On-line Algorithms, American Mathe-
matical Society, February 1991

CL2] Chrobak, M., Larmore, L., Generosity helps, or an 1 1-competitive algorithm
g
for three servers, Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1992 '

[FKLMSY] Fiat, A., Karp, R., Luby, M., McGeoch, L., Sleator, D., Young, N,
Competitive Paging Algorithms, Journal of Algorithms 12 (1991), pp. 685-699.

[KP] Koutsoupias, E. and Papadimitroﬁ, C., On the k-Server Conjecture, STOC
94, pp. 507-511.

[LR] Lund, C., Reingold, N., Linear Programs for Randomized On-line Algorithms,
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 382-391, 1994

[MMS] Manasse, M. S., McGeoch L. A. and Sleator, D. D., Competitive Algorithmns
for Server Problems, Journal of Algorithms 11 (1990), pp. 208-230.

[MS] McGeoch L. A. and Sleator, D. D., A Strongly Competitive Randomized Pag-
ing Algorithm, Algorithmica (1991), pp. 816-825.

[ST] Sleator, D. D., Tarjan, R. E., Amortized Efficiency of List Update and Paging
Rules, Comm. of the ACM, February 1985, pp. 202-208.

Acta Cybernetica 14 (1999) 229-238.

i

- Test Suite Reduction in Conformé,nc_:eﬂTestihg' -

Tibor Cséndes * Sarolta Dibuz * Balazs Kotnyek -

Abstract

Conformance testing is based on a test suite. Standardization committees
release standard test suites, which consist of hundreds of test cases. The main
problem of conformance testing is that we do not have enough time to execute
them all. Therefore, test selection is required to maximize the test coverage.
In our earlier papers [6,7] we outlined a new method of selecting an optimal
test suite which can detect the errors with better probability and réduce the
time of testing. In this paper we will expound-the mathematical optimization
method for test suite -optimization based on cost and test coverage, and we
will apply this method to an ISDN protocol. .

1 Introduction | - -

The main aim of conformance testing is to check whether the protocol implementa-
tion conforms to the standard. The procedure of conformance testing as well as the
protocols are standardized [1]. The two main terms of testing.are the test purpose
(TP) and the abstract test suite (ATS). The test purpose is the description of the
well defined objective of testing to focus on a single conformance requirement or
a set of related conformance requirements. The ATS consists of several test cases
(TC) created to test one or more TPs. In real-life conformance testing, the testers
choose some of the TPs and execute all the TCs that are related to the chosen set
of TPs. The challenge in conformance testing is this selection, choosing this set so
that the coverage, the fault detection capability, be maximal. Of course, the best
selection is when we choose all the TPs or - what means the same - all the TCs.
The problem that arises here is the time limitation. Usually we do not have enough
time to do this, so we can only execute some of the TCs.

The existing approach of handling this problem is the test generation. The goal
of such procedures is briefly to generate optimal ATSs from the protocol specifi-
cation , i.e. that contain as few parallelisms as possible so they can be entirely
executed within the time limit. The theoretical background of this kind of 6p-
timization is the finite state machine (FSM). If a FSM model of the protocol is
already given, there are several algorithms for generating good or better test suites
(Transition Tour, Unique Input/Output method, Distinguishing Sequence) [4]. We

*Conformance Center, Ericsson Ltd.,Laborc u. 1., H-1037 Budapest, Hungary
YE6tvés Lorand University, Budapest

229

230 T. Cséndes, S. Dibuz and B. Kotnyek

need this FSM model, however and real life protocols are so complicated that it is
not possible to create their usable FSM model.

Our approach, which we outlined in our earlier papers [6,7], is based on practice.
We suppose that we are given an ATS and we cannot generate any new TCs. That
is what test laboratories do, they use only those test cases which are provided by
the standards. By now, the selection of TCs from ATS is based on the subjective
decision of the test laboratory. Our aim is to create a theoretical background of
such selection. We found that mathematical optimization could be a suitable one.

The rest of the paper is organized as follows: first, we introduce a model of
conformance testing mathematics could operate on. In Section 3 we describe this
operation, in Section 4 we present how this method could be applied to an existing
protocol the ISDN DSS1 Layer 2 protocol[2]. We chose this protocol because it is
widely used, well known, and its ATS exists.

2 T_he model

In our model, we create a mathematically formulated relation between the test cases
and test purposes by introducing the purpose-test incidence matrix. The purposes
are placed in the rows and the tests in the columns. As a result we get an A matrix
of size k x n where P, ..., P are the purposes and Ti,...,T, are the test cases
defined in the ATS (Figure 1). The j* element in the i** row is 1 if, and only if
Tj; is necessary to check FP;, otherwise it is 0. In other words, if we want to check a
purpose (e.g. P;) completely, we have to execute all test cases having 1 in the row

of the purpose (namely in the it* row). Let us introduce the number b; designating

the number of such test cases and let b = (b, ...,bx)T be the vector made of these
numbers.
™ T, - T,
P10 -1
PB{1]1]---10
.) } . =A
P.lOo]1][---]0

Figure 1: Purpose-test incidence matrix

There are protocols the ATSs of which define one-to-one connection between
the test cases and the purposes, hence their incidence matrix is diagonal. There
exist, however, ATSs the matrices of which are not diagonal, thus there are more
than one necessary test cases to check a test purpose. In this paper, we are dealing
with these kind of protocols.

Let us assign the value cov(P;), (i = 1,...,k) to every purpose describing its
coverage. This value may be obtained from a theoretical consideration or we can
simply mark the priority of the purpose with it. Similarly, let us designate the cost

Test Suite Reduction in Conformance Testing 231

of test T; with ¢(T}), (j = 1,...,n). This cost function can be defined to-represent
the resources (time) required to execute the test case. The cost of a set of test cases
can be defined simply as the sum of the cost of the individual test cases in-the set.
Let us do the same with the coverage of a set of purposes.

Let us introduce the increasing functions f; + {0,1,...,b;} = [0,cou(F;)], (i =

1,..., k) describing the coverage we get, if we execute m tests among the tests that
correspond to P, (m=0,1,...,b;). Of course f;(0) = 0 and f;(b;) = cov(P) for all
i = 1,2,...,k. The different models differ from each other in choosing functions

fi We 1ntroduce three models below.

1. Linear model: The coverage is in direct proportlon to the number of exe-
cuted tests i.e.

film) = ———cov(P) m=0,...,b;

2. “All or nothing” model: We only consider the purpose beirlg' checked
when we executed all the necessary tests.

fz(O) = fz(l) =...= fi(bi — 1) =0 . and fl(bl) = CO’U(R)

3. “One is enough” model: If only one test is executed among the ones that
correspond to P;, we get the whole coverage.

f0)=0 and fi(1)= ... = fi(b) = coo(P)

3 Optimization

We introduce two possible optimization problems. In the first one our aim is to
select a test set from the test suite with minimal cost supposing a constraint
bounding the coverage from below. Let z € {0,1}" be the decision vector, so
x; = 1if T} is executed and = = 0 if it is not. The minimization can be formalized
in the following manner:

min cz
k .
subject to Zfi(aiz)'z K - o o (1)
i=1 ’
z € {0,1}"
where ¢ = (¢(Th),.:.,c(Tn)) is -the cost vector, K is the lower bound for
the coverage, and @; is the i*" row of the matrix A. Furthermore, let v =
(cou(P1),...,cou(Py)) be the coverage vector. Let us see how this formula looks

like in the case of the three introduced models.

232 T. Cséndes, S. Dibuz and B. Kotnyek

- 1. Linear model

=1 i =1

"Thus (1) turns into a binary minimization with a single linear constraint:

min cx
k
icov(P;
subject to <Z %(J) z>K (2)
i=1 i
z € {0,1}"
2. “All or nothing” model
Let us introduce a new variable vector z = (21, ..., z;) defined in the following
manner:
2 = 1 if aiai = bi
T 0 if gz < b;

In other words, z = max{Az — b+ e, 0}, where e = (1,1,...,1) and the
maximization is made componentwise. Using this vector problem (1) can be
written in the following manner

min cz
subject to wvz > K
z = max{Az —b+e, 0}
z € {0,1}*

It is easy to see that this is equivalent to

) min - ¢x
subject to z; < i=1,...,k
z > Az -b+e :
vz > K (3)
z € {0,1}"
z € {0,1}*

This is a binary minimization with linear constraints. The number of the
variables is n + &, the number of the constraints is 2k + 1.

3. “One is enough” model
This ' model: can be handled similarly to the previous one. Let now z be the
following wvector: -
- = 0 haagz=0
11 haaz>1

Test Suite Reduction in Conformance Testing 233

namely z = min{ Az, e}. In this case (3) can be transformed into thef“foi'lowiﬁg

problem:
min ¢t
subject to 2z > iz 1=1,...,k
z < Az . . .
vz _>.. K ’ . 1 ' . (4)
z € {0,1}" ' :
z € {0,1}*

Our second optimization problem is to find a maximal coverage test set supposing
an upper bound for the cost (L). This optimization problem, as the previous one,
can be formulated as a binary minimization problem with the functions f;:

k
max Z fi(aix)
=1

. (5)
subject to ¢z <L
z € {0,1}"
Without further details let us see the formulas for the three models.
1. Linear model -
A aicov(P;)
max (Z—-l h 1'>z'
i=1 (6)
subject to cx <L - - T
z € {0,1}" D
2. “All or nothing“ model
max vz
subject to z; < Px i=1,...,k
z > Az-b+e o '
cc < L ‘ ’)
r € {0,1}"
z € {0,1}% ..
3. “One is enough” model
max vz
subject to z; > %L:c i=1,..5k .
z < Az . B
cz < L .) (8)
z € {01}
z €. {0,1}

234 - T. Csondes, S. Dibuz and B. Kotnyek

4 The results of optimization

Having described the method, let us look at the experiments now. As it was
mentioned in the introduction, we applied the method to the ISDN DSS1 Layer 2
protocol [2]. This TBR4 standard contains 27 test purposes (k=27) and 52 test,
cases (n=52) as well as the relation between the TCs and the TPs. The TCs that
are necessary to check a TP are given for each purpose. Based on this standard
the purpose-test incidence matrix can be easily constructed.

We fixed the coverage vector v in the value of e = (1,...,1) because we did
not want to distinguish the TCs with respect to the coverage. We defined three
different cost, vectors:

e In the first, c1(Ty) = 1for j = (1,...,n). This cost can be used if we are
interested in only the number of the test cases; for example if their costs are
all equal.

e The second cost vector (c2) is based on the timers contained by the test cases.
We estimated c; using the sum of the default times of the timers in the jt
test case. This time can be an upper bound for the execution time.of T;. The
exact value of ¢; is as follows:

2= (6,3,33,3,3,8,4,5,3,9,6,35,3,13,2,4,34,6,6,2,34,5,3,5,2,5,
1,8,33,7,8,3,2,1,2,35,4,2,2,3,2,4,6,2,2,2,33,33,31,6,1,2)

e The definition of the third cost vector (¢3) is based on the assumption that,
the main time consuming steps of testing are the preparation and, in case of
fault, the search for its cause. That is why we added a constant value (100)
to every cz(Tj) referring to this time, so ¢z = ¢; + 100.

To solve the integer (binary) programming problems with the described parameters,
we used the CPLEX program tool [5] .

4.1 Minimal costs

1. Linear model
This model is less interesting than the others so we examined only the ¢ cost
vector. The cost of the optimal test set for K = 1,...,27 is shown in Figure
2-a. ' '

2. “All or nothing” model
We examined all the three cost vectors. The results of the optimization
problem (3) for K =1, ...,27 for the three cost functions are shown in Figure
2-b, Figure 3-a, Figure 3-b.

We can see in all cases that increasing the coverage bound, the cost of the
optimal test set does not increase linearly. This means that using our method
we can obtain better (shorter in time) test sets to execute, than we would

Test Suite Reduction in Conformance Testing

235

a0

Test cost

.

10 15 0 25
Test coverage bound (K)

(a) Linear model, ca cost vector

o -8 10 15 20 25
Test coverage bound (K}

(b) ?All or nothing” model, ¢; cost vec-
tor . .

Figure 2: Minimal costs in Linear model and “All or nothing” model

3
8
3
.
4

3000+

1

L] 5 10 15
Tant coverage bound (K)

(a) " All or nothing” model, c2 cost vector

Figure 3: Minimal costs in “All or nothing” model

(] s 10 15 20 25
Teat coverage bound (K)

(b) " All or nothing” model, c3 cost vector

236

T. Cséndes, S. Dibuz and B. Kotnyek
140)
120
100+
wo}-
0
w}-
o}
s : 0 e % h e W m o w m
Tasl covarage bound (K} Test cost bound)
(a) Minimal cost in ”One is enough” (b) Maximal coverage in Linear model, ¢»
model, ca cost vector cost vector

Figure 4: Minimal cost in “One is enough” model and maximal coverage in Linear
model

4.2

get if 'we chose at random. In fact, our method gives us the best possible test
set within the constraints.

The figures also show that the biggest increase in the rate of the cost
in coverage is in the case when the cost vector c; is used (Figure 3-a).
This is because the variation of the cost values is the biggest in this
case. That means we can reduce cost with only a small loss of test
coverage. The cost jumps when, in order to reach the required test cov-

_erage, it is necessary to execute those test cases which have bigger cost values.

Where the variation of the cost vector is less, as in case c3 and espe-
cially in ¢;, the graph is smoother. This is quite logical as the execution of
a given test case does not increase the total cost significantly regardless of
which test case we select.

“One is enough” model
Figure 4-a shows the optimal cost in the ”One is enough” model using cost
vector ¢z

Maximal coverages

. Linear model When we are looking for a maximal coverage test set we

have an upper bound for the cost (L). Different cost vectors have different
maximal upper bounds (L. =52, 477 or 5677). We present only one graph
for this model, Figure 4-b, which shows the results using cost vector ¢y and

Test Suite Reduction in Conformance Testing 237

Test covarage

H 1 L " L ‘ N 1 L L j ' " L { " L {
o 50 100 150 200 250 200 350 400 450 o 50 100 150 200 250 300 as0 400 . 450
Test cost bound (L} Test cost bound (L}

(a) ”All or nothing” model, c2 cost vector (b) ”One is enough” model ¢z cost vector

Figure 5: Maximal coverage in “All or nothing” model and “One is encugh” model

Loz = 477.

2. “All or nothing” model
Figure 5-a shows the result of the maximal coverage problem for ¢All or
nothing” model using the cost vector c;. .

3. “One is enough” model ~
The results of the maximal cover age problem for the ”One is enough” model
using cost vector ¢z are shown in Figure 5-b. We can observe that the graph
reaches the highest cost value at L = 160, so in this model only the third of
the total cost is enough for the whole coverage.

4.3 Conclusions

The reduction of the time or effort put into conformance testing while keeping the
test coverage under control is very important for those who perform conformance
testing. If the time of executing conformance testing is limited, then we have to
select the more efficient test cases from the whole test suite in order to make testing
possible within a shorter period of time.

Our method is based on selecting test cases from the ATS of a protocol, when
we can select what portion of the test coverage we are willing to devote to shorten
the time of test execution. To achieve minimal testing time for a given lower
bound of coverage the method determines which test cases have to be selected for
execution. The method is protocol independent, so it can be used in the testing of
any protocol. In the ATS of some protocols, however, the incidence matrix looks
different. If there is a one-to-one relation between the test purposes and test cases,
then the method cannot give us usable results.

238 T. Csondes, S. Dibuz and B: Kotnyek

Since the first step in the application of our method is the construction of the
incidence matrix, it determines if the method is well applicable to a given protocol.
For those protocols the incidence matrix is a diagonal one, we are working on other
approaches to be able to give selection criteria for the test cases based on the
coverage and the time constraints.

References

[1] X.290-X.296 OSI conformance testing methodology and framework for protocol
recommendations for ITU-T applications

[2] ETSI Draft prTBR4 Integrated Services Digital Network (ISDN); Attachment,
‘requirements for terminal equipment to connect to an ISDN using ISDN primary
rate access

[3] S. T. Vuong, Jinsong Zhu, Jadranka Alilovic-Curgus, “Sensitivity analysis of
the metric based test selection”, IFIP TC6 10th Int. Workshop on Testing of
Communication Systems, 1997.

[4] K. Tarnay, “Protocol Specification and Testing”, Akadémiai Kiadd, 1991.
[5] CPLEX, Version 3.0, 1989-1994, CPLEX Optimization, Inc.

6] T. Csbndes, B. Kotnyek, “A Mathematical Programming Method in Test Se-
lection”, EUROMICRO’97 Short Contribution Session, 1997.

[7] T. Cséndes, S. Dibuz, B. Kotnyek, “Conformance Testing of Communication
~ Protocols”, IFIP "TC6 Int. Symposium on Automation and Informatics’97, 1997.

Acta Cybernetica 14 (1999) 239-250.

A Family of Fast Constant-Space Substring Search
Algorithms-

Harri Hakonen* and Timo Raital

Abstract

This paper describes a new strategy for searching a substring in a given
text. The method is based on the well-known Boyer-Moore algorithm com-
plementing it with a technique called g¢-slicing, a form of probabilistic ¢g-gram
matching. As aresult, we get a family of highly parametric algorithms apt for
adaptation to the special properties inherent to the source which generates
the input strings. The search procedure is independent of the alphabet size
and appropriate for efficient and practical on-line implementations. Simula-
tion results show that they are comparable to the fastest currently known
Boyer—Moore variants.

1 Introduction

In the string scarching (pattern matching) problem our task is to determine all posi-
tions in a given text, text[l..n], where the pattern, pat[l..m], occurs. This problem
has been studied extensively (see e.g. [1] for a good survey) and several efficient
and elegant solutions have been devised. The most efficient implementations, from
the practical point of view, are based on the seminal ideas of Boyer and Moore [6].
The original Boyer—-Moore algorithm (BM for short) aligns the pattern with a text
position j, compares the corresponding symbols of pat[l..m] and tezt[j — m + 1..5]
starting from the last symbol of the pattern and advancing to the left. If a mis-
match (if any) is found, the pattern is shifted forward with respect to the text and
the process is repeated: .

*Turku Centre for Computer Science (TUCS), e-mail: hat@cs.utu.fi

TDepartment of Computer Science, University of Turku, Lemminkiisenkatu 14 A, SF-20520
Turku, Finland, e-mail: raita@cs.utu.fi. The author acknowledges support by the Academy of
Finland under grant No. 865431

239

240 Harri Hakonen and Timo Raita

Boyer—Moore search(pat[l..m], text][1..n])
Preprocess pattern.
while all text is not scanned do

(1) Perform skip loop.
if witness for a match is found then
(i) Perform match loop.

if pattern is found then
Report match.
endif
endif
(iii) Shift pattern.
‘ endwhile

The search procedure consists of three distinct phases: (i) fast skipping over non-
matching text regions, (ii) match checking when some evidence of a pattern occur-
rence has been found and (iii) shift to the next position. All these steps have been
subject of refinements {7, 8, 10, 13, 15, 16]. A detailed analysis of the various BM
substep combinations can be found in [10].

The power of the BM algorithm is largely based on a sophisticated strategy to maove
the pattern forward relative to the text in steps (i) and (iii). This is accomplished by
forming two tables in O{m) time prior to the actual search. The match heuristic
table determines how much the pattern must be moved in order to realign the
matched region of the text, text[j — k..j], with an identical pattern substring also
in the new position. For this, we need to determine the rightmost substring pat[p—
k..p], p < m, which is identical to the matched suffix pat[m —k..m] {not overlooking
the special case 0 < p < k). In fact, when we find that pat[m — k — 1] # text[j —
k — 1], we know that in order to succeed at the next probe position, the condition
pat[p — k — 1] = tewt[j — k — 1] must also hold. Because of the large amount
of space and time overhead, however, the match heuristic is usually not made so
fine-grained. As a reasonable and quick approximation, it is only required that
patlp — k — 1] # pat[m — k — 1]. The occurrence heuristic table expresses the
position of the rightmost occurrence of each symbol of the input alphabet ¥ in the
pattern. Thus, the occurrence heuristic determines, how much we can shift the
pattern in order to align the mismatched text symbol with an identical pattern
symbol. The length of the shift in step (iii) is then given by the maximum of the
match and the occurrenée heuristic values.

Let us consider the role and importance of the two heuristics. The well-known
and widely used BM variant devised by Horspool [8] (BMH) discards the match
heuristic due to its small significance with non-periodic patterns. This results in
O(mn) worst case complexity. However, on the average, the complexity is only
O(n/m), the same as that for the original BM method, implying that the BMH
method is very fast in practice. Evidently, BMH makes shorter shifts (on the
average) than BM because it uses less information. This behaviour is emphasized
when o, the size of the input alphabet, is small. On the other hand, the role of the

A Family of Fast Constant-Space Substring Search Algorithms 241

match heuristic becomes insignificant when o becomes large (this is studied .in more
detail in [14]). As suggested in {13}, we should try to compensate the omission of
the match heuristic in other ways during the search. One alternative is to extend
the occurrence heuristic for bigrams, incorporating thus both heuristics (at least
partly) into one. This idea was introduced in [16] and was shown to give improved
running times, especially for small input alphabets. Moreover, if we follow the idea
of BMH and choose always (independently of the position where the mismatch
occurred during the right to left scan) the bigram composed of the text symbols
aligning with pat[m — 1] and pat[m], we obtain a very close approximation to the-
match heuristic. In the special case, where the mismatch occurs at pat[m — 2],
they are used identically. Thus, if we can generalize the approach (as suggested
in [2, 3, 12]) and use g-grams (g > 2) of arbitrary length, we obtain a heuristic which
is a hybrid of the two original ones. However, the disadvantage of the approach
is that both the preprocessing time and the space demand increase rapidly, being
proportional to ¢?. In Section 2 we show how this can be avoided by retrieving
only the most important information scattered around the current text position
and storing it into a compact unit. After this, we give an intuitive analysis of the
selection strategy which maximizes the length of the shift. Simulation results of the
new search method are also given in Section 3. Concluding remarks are presented
in Section 4.

2 The ¢-slicing method

During the search, the pattern pat[l..m] is always aligned with a substring text[j —
m + 1..7], where j is the current text position (m < j < m). Thus, when we
say that the current position is increased, it means that the pattern, which is
considered to be positioned above the text, is shifted forward relative to the text.
The information, on the basis of which the shift is made, is typically gathered from
the text region text[j — m + 2..j]; the symbol text[j — m + 1] does not contribute
any information, because the length of the shift is always at least one. To increase
the average shift length, the symbol tezt[j + 1] can also be used [15]. In the sequel,
the text symbols which are used as the basis for the shift are defined by a template
T = (t1,... ,tq) containing a strictly increasing sequence of integers t;. Bach t; is
an offset from the current text position j. Thus, the symbol text[j + tz] aligns with
the pattern symbol pat[m + £;,], if —m + 1 <#; <0. Otherwise (1 <t <n — j),
the text symbol does not reside 'under’ the pattern. Clearly, the elements of the
template can have a chance to push the pattern forward only, if the condition
ty1 —tk <m (k=1,...,9g —1) holds. Figure 1(a) presents an example of a
template giving four offsets.

To give some insight into the efficiency of some commonly used templates, as
well as some alternative choices, the following table summarizes the average shift
lengths when a pattern of length 13 was searched for in an English book text (see

242 Harri Hakonen and Timo Raita

table on page 247 for more details of this input text).

template T (0) {-1,0) (0,1) (0,2)
average shift 9.65 12.53 13.44 13.72
template 7 {0,3) (-2,-1,0) | (-1,0,1} | (0,1,2)
average shift 13.97 12.83 13.81 14.54

The text sampling processes defined by templates (0) and (—1,0) are used in the
Horspool [8] and Zhu-Takaoka [16] algorithms, respectively. Also, (0,1) can be
seen as a generalization of Sunday’s idea to exploit text[s + 1] in shifting [15]. The
general tendency is clear: longer templates yield longer shifts. However, a carefully
selected sampling strategy compensates short templates, as can be seen e.g. from
the figures for (0, 3) and (-2, -1,0).

text

(a) template 7 = (—2,0,1,4)

text |

~ [R

)

a

) by

0

-~
~~———

O
O

(b) selective mappings p = (b: (text[j - 2]),
ba(text[j]), bs(text(s + 1]), ba(text]j + 4]))

Figure 1: A structure of a'4-slice defined by 7:p = (—=2:51,0:59,1:b3,4:b4)

In order to avoid the excessive time and space requirements during preprocessing
and still achieve large shifts, we combine two ideas. First, the template is kept fixed
during the search. The symbols indicated by the template are picked from the text
at each probe position j. Second, we reduce the size of the alphabet at the cost of
losing some accuracy in symbol comparison. The idea is to partition the symbols
of the input alphabet ¥ into equivalence classes and tag each class uniquely with
a symbol of a reduced alphabet ¥’ for which ¢' < . Now, instead of comparing
individual symbols, we compare tags of the classes. Thus, the approach is related to
the 'shift-or’ algorithm of Baeza-Yates and Gonnet [4], which can be used to search -
for substrings composed of metacharacters representing a set of symbols from the
original alphabet. However, in the new scheme the tag is formed by mapping a
symbol according to its position in the sampling template. In other words, the tag
of text[j + t] is the value of the corresponding function by : X — E' (1 < k < g).

A Family of Fast Constant-Space Substring Search Algorithms 243

The collection of these selective mappings is defined by the vector = (by,... , by).
The combination of 7 and s is denoted by 7:p = (t1:by,... ,4;:b,). Figure 1(b)
shows an example of p for the template 7 = (—2,0,1,4). Concatenation of the
(reduced) symbols defined by the current text position j and the pair 7:p4 is called
a g-slice: :

. . {I .
g-slice;. . (text, j) = Concat bi(text{j + ti])
1=

The g-slice scheme can be regarded as a hash function defined by 7 giving the po-
sitions and j representing the amount of information to be gathered. The equality
of two slices is a necessary, but not a sufficient condition for the equality of the
corresponding patterns [11]. The g-slice scheme introduces a general information
sampling concept, and it has some interesting properties intrinsic to the string
searching problem:

e The loss of information caused by the selective mappings is minimized, when
the symbols of ¥’ are uniformly distributed into the mapped sequences. Inter-
estingly, by taking the three least significant bits from the (ASCII encoded)
symbol representation has a nice property for natural languages: the most fre-
quent symbols of the skew distribution fall into different equivalence classes.
Because of this, and the fact that support for this type of operation can be
found in most machine architectures, we restrict the form of the by functions
(k=1,...,q) in the sequel as follows:

br{(a)= « AND 0...011...1, a€X.

The number of one-bits in the mask, Isby, determines how many least signifi-
cant bits (LSBs) of the original symbol a we want to select. This specialized
1 is called an LSB-mask. In what follows, each b function is denoted by the
corresponding integer Ish;. Naturally, other kinds of mappings are possible
also, but, they are not studied in this paper.

e Because the value of the hash function realized by the g¢-slice scheme is a
concatenation of the mapped values, the function does not scramble the bits
of the constituent symbols. Since important order information is preserved,
it could be taken advantage of in the implementation of the search procedure:
for each shift value calculated, we check whether the suffix of the previous
hash value overlaps the prefix of the next one and in such a case, leads to a
conflict. With a high probability this will happen, and we can increase the
length of the shift. This improvement resembles the search strategy of Galil [7]
and also the principles used in the construction of the BM match heuristic
(cf. the description given in the Introduction). Although the proposed hash
function is very simple, false matches occur rarely.

244

Harri Hakonen and Timo Raita

Collision probability of ¢-slice. Let B = log, 0 and fix B’ = Ish;, for all
k=1,...,q. Assuming that the text and the pattern have been generated
by a uniform symbol distribution, the probability of a g-slice hash address
collision is

2¢(B-B") _q

P(g-slice matches | pattern mismatches) = 5B]

Proof. This follows from the probabilities P(g-slice matches) = 27¢8" and

P(pattern mismatches | g-slice matches) = 1 — 2-4(B-B') |

A simple but good approximation for this formula is the g-slice match-
ing probability 2798 . For example, if ¢ = 2, B = 8 and B’ = 3, then
P(collision) = 0.0156.

The g-slice can be used efficiently for searching when its length, Ishy +. . .+ Isb,,
is conveniently chosen to fill a machine-dependent unit, e.g. a byte or a word,
and the sampling strategy is supported by the architecture. Unfortunately,
the latter is often true only for the trivial case ¢ = 1. Therefore, this pa-
rameter is usually chosen to be small and a balanced intertwining of 7 and p
becomes crucial. This is discussed in more detail in section 3.

The actual search procedure starts by preprocessing the pattern as follows. In the
description below, we use the notation e.{e,.,1|...|e; (1 <7 <5< gq), when we
want to refer to a part of a g-slice. Also, the set of all possible bit combinations
of length Isb;, for the k’th component is denoted by *;. For simplicity, we shall
assume that there exists an index i for which —-m 4+ 2 < ¢t; < 1. Without this
restriction, the algorithm would contain unnecessary details obscuring the basic
idea; these special cases can be easily incorporated into the scheme by analysing
them carefully (left as an easy exercise to the reader).

Define a proper template 7 (of length ¢) and LSB-mask .
shiftLength[#1| *2 | ... |%4] == m+ ¢,
// Each of the 2X7=11% table values is initialized to the maximal shift.
for ¢ :=m +t;, — 1 downto 1 do
Find all ¢; values in range —m + 1+ c..m +c.
// These are characterized by indices and s for which ¢, <#; <t,.
// Each t; aligns with pat[ty — (m + ¢, — ¢)] after a shift of
// length ¢. Thus, we call these offsets bound (temnplate)

// positions. The others (i.e. t1,... ,t,—1 and ts41,...,t,)
// are free positions.
Determine the unique part of the ¢-slice o, .1 |...|es corresponding

to the bound positions.
shiftLength[#;| ... | s%_q1 | o0 | ... |05 | %551 |.. . |%g) = ¢

A Family of Fast Constant-Space Substring Search Algorithms 245

// Make 2Xi=1 Isbit Einy i Isbi ypdates.
endfor

After preprocessing, the search is performed by mapping the text symbols to the
reduced alphabet on-the-fly using the g-slice;.,(text, 7). The slice contains infor-
mation which is scattered into a large region near the current context. This gives
a basis to increase the average length of a shift using only a small amount of com-
parisons. A minor drawback of the approach is, that when we encounter a g-slice
match, we must confirm that an identical symbol pattern has been found.

Example. Let us assume that the symbols are ASCII encoded and that the
pattern is pat[l..14] = abracadabracab. The two least significant bits of the
symbols ’a’, ’b’, ’¢’, ’d’ and ’r’ are '01’, ’10°, ’11°, '00’ and 10’ respectively. The
template (—1,0,1) and the LSB-mask (2,1,1) generate 16 different g¢-slices and
their corrsponding shift lengths:

g-slice || 00]0]0 | 00j0j1 | 00[1]0 | 00]1]1 | 010j0 | 01j0[1 | O1[1j0 | O11]1
shift 15 14 6 14 5 7 13 2
g-slice || 10]0[0 | 10[0[1 | 10[1j0 | 10]1]1 | 11j0j0 | 11[0[1 | 11|10 | 111[1
shift 15 4 13 3 15 14 1 14

For example, the shift value for the g-slice 10|0|1 is 4 because pat[10..12] = rac is
the rightmost pattern region that matches it. Obviously, the shift values are always
in the range 1..m + t,. Assuming that the pattern and text are aligned as in (a):

pat ...acab pat ...adabracald
text ...acadbarbac.. text ..acadbarbac..
(a) o

we find that ¢-slice 01]|0]0 obtained from the text symbols a, d, b tells us to shift the
pattern 5 positions forward (as shown in (b)) in order to align abr with adb. No
pattern occurrence is found here either, and the template symbols b, a, ¢ generate
the g-slice 10[1|1 yielding a new shift of length 3.

3 Experiments

Expectation of the shift length. The basic structure of the BM algorithm,
given in the introduction, shows that before the pattern shift is made in step (iii), we
have gathered a lot of information about the symbols near the current text position.

246 Harri Hakonen and Timo Raita

In this experimental analysis, however, we assume that no such information is
available. To obtain a realiable comparative analysis and at the same time keep
the various parameter combinations practically feasible, we restrict ourselves to a
2-slice of type 7: 0 = (0:£,(D + 1) : u). In other words, the pattern is shifted
according to the £-bit tag of text[j] and u-bit tag of text[j + D + 1]. The £ bits are
extracted from the text symbol which resides under the fast pattern symbol. This
information produces an ’initial shift’ for the pattern. The (D + 1):w component
gives an 'additional push’, since it probes further information from an upcoming
text symbol at the distance D from the current text position. This special algorithm
family is denoted by ¢ <t D > u, where < - -i> symbolizes the distance between the
two units from which the bits are extracted.

Let us study the expectation of the shift lengths for the £ < D &> u algorithm
when m = 13; f,u = 0,...,8 and D = 0,1,m/2. To analyze the behaviour of
the expectation for natural languages, a simulation over an English book text (see
table on page 247) was accomplished. The search was performed for 30 randomly
selected patterns from the text. Figure 2 shows the expectation of the shift length
based on this test arrangement.

Figure 2: The expectation of the shift length for £ <1 D > u algorithms

A Family of Fast Constant-Space Substring Search Algorithms 247

The expectation behaves differently for the following two cases.

Case D = 0. The average shift values are almost symmetrical wrt the diagonal
¢ = v (Fig 2(a)). For the region €+u > 6, the expected shift length is always
> 12. This suggests that even a shift table of size 64 gives a good performance
for English text.

Case D > 1. The shape of the expectation function differs from the previous case:
whenever ¢ = 0, we have now no information to use any other shift length
except 1. The influence of the parameter £ is more significant than that
of u and only with parameter values £ + u > 7 constrained by £ > 4, we
reach the average shift of at least 12 positions (Fig 2(b,c)). Referring back
to figure 2(a), we can observe that if « = 0 and ¢ approaches the length of
the original encoding of tezt[j], we quite quickly reach the situation where
the shifts are larger than m/2. Comparing this with the results of Fig2(c),
we can see how much more the upcoming symbol is able push the pattern
forward once the initial push has been given. This also explains why we can
have an average shift length which is significantly larger than m, the length
of the pattern.

Running times. After extensive test runs, we suggest the schemes 4 <0 > 2
and 3 < 0> 3 as general purpose substring searching algorithms. Evidently, if the
properties of the input strings differ significantly from those of English, some other
parameter values may result in better performance. Furthermore, the implemen-
tations of the fastest currently known search algorithms are extremely carefully
designed and the hardware architecture may have a large effect on their speed.

The 4 <1 0 > 2 algorithm was tested and compared to the basic Horspool variant
BMH [8] and to the Hume-Sunday variant TBM [10]. To our knowledge, TBM is
one of the fastest, widely known algorithms for natural language text search. Tests
were run on a Sparc machine (architecture sundm, kernel Sun0S 5.6) and the C
programs were compiled with gec (version 2.7.2.3) using the optimization switch
-03.

The input data consisted of the English book text and a dna text, having the
following properties.

text type source used file o length
English book | Calgary Corpus [5] book?2 96 611 kB
Dna sequence [10] dna.test 4 988 kB

The simulation was accomplished by selecting 30 patterns of length m randomly
in the text and then searching for all of their occurrences in the text. This was
repeated for m =4, ... ,20. To make the comparison fair, the running times include

248 Harri Hakonen and Timo Raita

both searching and preprocessing phases. Figure 3 shows fhe results of this test
set.

28

‘BMH' -o—
o TBM' -+--
26 [I<D>u’ -a--

24 | -"q . 1

lime

9

10

L i L
14 16 18 20

4 6 8 12
tength of pattern
(a) English text
70 T
BMH' ——
'TBM' -+
65 [\ l<D>u’ c@--

time

35 | g i

30

L s : " "
4 6 8 10 12 14 16 18 20
length of pattern

(b) Dna sequence

Figure 3: The running times of BM, BMH, 4 <0 > 2 and 2 <0 1> 2 algorithms

The running times of the 4 <02 algorithm are quite modest for natural languages
(see Fig 3(a)). This is due to the hardware architecture, which does not support
multicharacter sampling. However, the shape of the curve of the new scheme shows
that the information obtained from a g-slice is at least as good as if we used more
local, but exact information. When the size of the input alphabet is decreased, the
‘traditional’ methods begin to lose their power because the machine-level size of a
symbol unit is typically kept fixed although the information content of a unit is

A Family of Fast Constant-Space Substring-Search Algorithms 249

smaller. This deficiency is handled in the new method, as it gathers and utilizes data
of size ¢ extracted from the neighbourhood of the current position.. The effect can
be seen strikingly in Fig. 3(b): the form of the curve for the ¢-slice method remains
identical to that for large alphabets whereas the smoothness of the performance for
the two other methods disappears. Moreover, it is not only the O(n/m) behaviour
which is lost but BMH and TBM are also clearly much slower than the new method.
Since o = 4 for dna sequences, 2 < 0 > 2 was chosen as the representative .of the
new approach (Fig 3(b)). As a final remark, recall that the running times of the
¢ < D > u algorithms are independent of £, unlike the BMH and TBM methods.

4 Summary

A new family of fast substring searching algorithms using g-slices is devised. The
concept of a g-slice combines the idea of using g-grams together with the mapping
of symbols to a reduced alphabet. This new strategy makes on-line text sampling
to skip fast over regions where the pattern cannot occur. In spite of the fact that
most machine architectures do not support the core operation of ¢-slicing on the
hardware level, the efficiency of the new method is comparable to the fastest known
substring search algorithms. Tests have shown that this approach typically results
in average shift lengths which are even larger than the size of the pattern. This
algorithm family is highly parametric and can thus easily be adapted to specific
application environments when necessary. '

References

[1] Baeza-Yates, R.A.: Algorithms for String Searching: A Survey, SIGIR Forum,
Spring/Summer 1989, Vol. 23, No. 3,4, pp. 34-58

[2] Baeza-Yates, R.A.: Improved String Searching, Softw. Pract. Exp., Vol. 19,
No. 3, March 1989, pp. 257-271

[3] Baeza-Yates, R., Krogh, F.T., Ziegler, B., Sibbald, P.R. & Sunday, D.M.:
Notes on a Very Fast Substring Search Algorithm, Comm. ACM, Vol. 35, No.
4, April 1992, pp. 152-137

[4] Baeza-Yates, R.A. & Gonnet, G.H.: A New Approach to Text Searching, Proc.
of the SIGIR Conference 1989, pp. 168-175

[5] Bell, T.C., Cleary, J.G. & Witten, L.H.: Text Compression, Prentice-Hall, 1990

[6] Boyer, R.S. & Moore, J.S.: A Fast String Searching Algorithm, Comm. ACM,
Vol. 20, No. 10, October 1977, pp. 762-772

250 Harri Hakonen and Timo Raita

[7] Galil, Z.: On Improving the Worst Case Running Time of the Boyer-Moore
String Matching Algorithm, Comm. of the ACM, Vol. 22, No. 9, September
1979, pp. 505-508

[8] Horspool, R.N.: Practical Fast Searching in Strings, Softw. Pract. Ezp., Vol.
10, 1980, pp. 501-506

[9] Galil, Z. & Seiferas, J.: Time-Space-Optimal String Matching, J. Comput.
System Sci., Vol. 26, 1983, pp. 280-29/

[10] Hume, A. & Sunday, D.M.: Fast String Searching, Softw. Pract. Ezp., Vol. 21,
No. 11, Novemb(_zr 1991, pp. 1221-1248

[11] Karp, R.M. & Rabin, M.O.: Efficient Randomized Pattern-matching Algo-
rithms, IBM J. Res. Develop., Vol. 31, No. 2, March 1987, pp. 249-260

(12) Knuth, D.E., Morris, J.H. & Pratt, V.R.: Fast Pattern Matching in Strings,
Siam J. Comput., Vol. 6, No. 2, June 1977, pp. 328-350

[13] Raita, T.: Tuning the Boyer-Moore~Horspool String Searching Algorithm,
Softw. Pract. Ezp., Vol. 22, No. 10, October, 1992, pp. 879-884

[14] Tarvainen, H.: A Theoretical Framework for the Substring Searching Algo-
rithms, M.Sc. Thesis (in Finnish), University of Turku, Finland, May 1995

[15] Sunday, D.M.: A Very Fast Substring Search Algorithm, Comm. of the ACM,
Vol. 83, No. 8, August 1990, pp. 132-142

[16] Zhu, R.F. & Takaoka, T.: On Improving the Average Case of the Boyer-Moore
String Matching Algorithm, J. of Inf. Proc., Vol. 10, No. 3, 1987, pp. 173-177

A

Acta Cybernetica 14 (1999) 251-261.

On a Merging Reduction of the Process Network
Synthesis Problem*

Cs. Holl6 T, Z. Blazsik ! Cs. Imreh f, Z. Kovacs T

Abstract

Since the combinatorial version of the process network synthesis (PNS) prob-
lem is NP-complete, it is important to establish such methods which render
possible the reduction of the size of model. In this work, a new method called
merging reduction is introduced which is based on the merging of operating
units. The mergeable operating units are determined by an equivalence rela-
tion on the set of the operating units, and all of the operating units included in
an equivalence class are merged into one new operating unit. This reduction
has the following property: an optimal solution of the original problem can
be derived from an optimal solution of the reduced problem and conversely.
Presentation of this reduction technique is equipped with an empirical anal-
ysis on randomly generated problems which shows the measure of the size
decrease.

1 Preliminaries

The foundations of PNS and the background of the combinatorial model studied
here can be found in [3], [4], [5], and [9]. Therefore, we shall confine ourselves only
to the recall of the definitions here. The merging reduction is presented in Section
2, while Section 3 contains the results of our empirical analysis.

In the combinatorial approach, the structure of a process can be described by
the process graph (see [4]) defined as follows.

Let M be a finite nonempty set, the set of the materials. Furthermore, let
0 £ 0O C (M) xp' (M) with M NO = § where p'(M) denotes the set of all
nonempty subsets of M. The elements of O are called operating units and for an
operating unit (o,) € O, a and 8 are called the input-set and output-set of the
operating unit, respectively. Pair (M, Q) is defined to be a process graph or P-
graph in short. The set of vertices of this directed graph is M U O, and the set -

*This work has been supported by the Ministry of Culture and Education of Hungary, Grant
FKFP 0008/1999 and by the Hungarian National Foundation for Scientific Research, Grant TO
30074.

tDepartment of Informatics, Jézsef Attila University, Arpad tér 2, H-6720 Szeged, Hungary

fResearch Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanik
tere 1, H-6720 Szeged, Hungary

251

252 Cs. Hollé, Z. Bldzsik, Cs, Imreh, Z. Kovacs

of arcsis A = A; U Ay where 4) = {(X,Y) : Y = (a,8) € O and X € a} and
Ay = {(Y,X):Y = (a,0) € O and X € B}. If there exist vertices Xy, Xo,..., X,,,
such that (X, X5), (X2, X3), ..., (Xn-1, Xn) are arcs of process graph (M, O), then
the path determined by these arcs is denoted by [X;, X,].

Now, let 0 C O be arbitrary. Let us define the following functions on set o

mat™ (o) = U a, mat®* (o) = U B,
(a.B)€0 (a.B)€0
and

mat(o) = mat™ (o) U mat®* (o).

Let process graphs (m, 0) and (M, O) be given. (m, 0) is defined to be a subgraph
of (M,0),if mC M and o C O.

Now, we can define the structural model of PNS for studying the problem from
structural point of view. For this reason, let A/* be an arbitrarily fixed possibly
infinite set, the set of the available materials. By structural model of PNS, we mean
a triplet (P, R,O) where P, R, O are finite sets, § £ P C M™ is the set of the desired
products, R C M* is the set of the raw materials, and O C p'(M*) x p'(M*) is the
set of the available operating units. It is assumed that PN R =@ and M*NO = §,
furthermore, o and 8 are finite sets for every (o, 8) = u € O.

Then, process graph (M,0), where M = U{a U S : (a,8) € O}, presents
the interconnections among the operating units of O. Furthermore, every feasible
process network, producing the given set P of products from the given set R of
raw materials using operating units from O, corresponds to a subgraph of (M, O).
Examining the corresponding subgraphs of (M, O), therefore, we can determine the
feasible process networks. If we do not consider further constraints such as material
balance, then the subgraphs of (M, O) which can be assigned to the feasible process
networks have common combinatorial properties. They are studied in [4] and their
description is given by the following definition.

Subgraph (m,0) of (M, 0) is called a solution-structure of (P, R, O) if the fol-
lowing conditions are satisfied:
(A1) P Cm,
(A2) VX € m, X € R & no (Y, X) arc in the process graph (m, o),
(A3) VY, € o, 3 path [Yp, Y,] with Y, € P,
(A VX €m, I(a,B) €0 such that X € a U S.

The set of solution-structures of M = (P, R, Q) will be denoted by S(P, R, Q) or
S(M).

Let us consider PNS problems in which each operating unit has a weight. We
are to find a feasible process network with the minimal weight where by weight of
a process network we mean the sum of the weights of the operating units belonging
to the process network under consideration. Each feasible process network in such

On Merging Reduction of the Process Network Synthesis Problem 253

a class of PNS problems is determined uniquely from the corresponding solution-
structure and vice versa. Thus, the problem can be formalized as follows:

PNS problem with weights

Let a structural model of PNS problem M = (P, R, O) be given. Moreover, let
w be a positive real-valued function defined on O, the weight function. The basic
model is then :

(1) min{z w(u) : (m,0) € S(P,R,0)}.

u€o

Ii is known (see [1],[2], and [10]) that this problem is NP-complete. In what follows,
for the sake of simplicity, we call the elements of S(M) feasible solutions and by
PNS problem we mean a PNS problem with weights.

It is a basic observation that if (m,0) and (m’',0') are solution-structures of
M, then (m,0) U (m',0') is also a solution-structure of M. This yields that S(M)
has a greatest element called mazimal structure provided that S(M) #). Indeed,
the maximal structure is the union of all the solution-structures of M. Obviously,
the P-graph of.an arbitrary PNS problem can contain unnecessary operating units
and materials. On the basis of the maximal structure, we can disregard from
these unnecessary operating units and materials as follows. Let (M,0) denote
the P-graph of the maximal structure. Then, the P-graph of structural model
M = (P,RNM,0) is (O, M), and since each solution-structure of M is a subgraph
of (M, 0), it is a solution-structure of M, and conversely. Consequently, S(M) =
S(M). On the other hand, M does not contain any unnecessary operating unit and
material. Structural model M is called reduced structural model of PNS.

To determine the reduced structural model for a PNS problem, an effective
procedure is presented in [6], [7]; it can decide if S(M) is empty; if S(M) is not
empty, the algorithm provides the corresponding maximal structure. Regarding the
significance of this reduction, an empirical analysis is presented in [11}, where the
reduction procedure is executed on randomly generated PNS problems. It turned
out that the decrease of size is about 47%.

Now, we recall this algorithm. This procedure consists of two major parts. The
first part is intended to reduce the set of available operating units by eliminating
some or all inappropriate operating units. Even if one desired product cannot be
generated by any of the remaining operating units, no solution-structure exists for
the structural model of PNS under consideration; consequently, there is no maximal
structure. If it is still possible to have the maximal structure, then the second part
of the algorithm constructs a P-graph from a subset of the operating units left after -
the first part, which is exactly the maximal structure. To elucidate this procedure,
let a structural model of PNS be given by M = (P, R, O). .

254 Cs. Hollé, Z. Blazsik, Cs, Imreh, Z. Kovacs

Algorithm for Maximal Structure Generation

1. Reduction

Initialization

o Let O = O\ {{e,8) : (o,) € O & BN R # 8} and My = mat(Op). If
P ¢ My, then terminate since there is no maximal structure for M. If not,
then let To = {X : X € Mo\ R & ((a,8) € Og — X ¢ f8)}. Finally, set
r:=0.

Tteration

e Step 1.1. If T, = B, then proceed to the initialization for building. If not, then
choose a material X from T, and set Ox = {{(a,8) : (@, 8) € 0, & X € a}.
Let Op41 = Oy \ Ox; moreover, M,y = mat(O,41). If P € M,;, then
terminate since there is no maximal structure for M. If not, then construct set
T by T ={Y :Y € mat®(0x) &Y € mat®(0,41) & Y € mat™(0,4,)}.
Let Try1 = (T N My41) UT.. Set r := r + 1 and proceed to the following
iteration for reduction.

2. Building

Initialization
e Let Wy = P, mo = 0 and 0o = 0; moreover, set s := 0.
Iteration

e Step 2.1. If W, = {}, then terminate. There exists at least one solution-
structure for M. In particular, (7n,05) is the maximal structure of M where
m = mat(os). If W, # 0, then proceed to Step 2.2.

e Step 2.2. Choose one material from W;; denote this material by X, and let
msp1 = ms U {X}. Then, form set O% = {(o,f) : (a,) € O, & X € 5}.
Also, let 0541 = 05 UO% and W1 = (W, Umat™(0%)) \ (RUmns4y). Then,
set s := s + 1, and proceed to the succeeding iteration for building.

2 Merging reduction

While the general reduction presented above renders possible to exclude the unnec-
essary operating units and materials from the investigation, the merging reduction
compresses the P-graph by merging some of its operating units. If u; = (ay, 51)
and us = (a3, F2), then one can merge these two operating units into a new op-
erating unit defined by v = (ay U a2, 1 U f2). It is worth noting that after the
merging of two or more operating units, we obtain a new structural model of PNS.

On Merging Reduction of the Process Network Synthesis Problem 255

If we want to use this new structural model for solving the original problem, then
a strong relationship must be established between the feasible solutions of the two
problems. To establish this relationship, it is a basic question that which operating
units are mergeable.

For this purpose, let M = (P, R, O) be a reduced structural model of PNS. Then,
operating units uy,us € O are called mergeable if for any feasible solution, either
both of them are contained in it or both of them are excluded from it. Formally
stated, u; and wu; are mergeable if u; € o implies uy € 0, and conversely, for every
feasible solution (m,0) € S(M).

It can be readily seen that this relation is reflexive, symmetric, and transitive,
and thus, it is an equivalence relation on set O which is denoted by =. Let us define
structural model M/ == (P, R,O*) by

0" = {(Way 1 up = (e, Bt) € C(u) },U{Bs : ue = (o, Bt) € Clu)}) s w € O}

where C'(u) denotes the equivalence class containing «. The visual meaning of M/ =
can be given as follows. For each equivalence class, we merge all of the operating
units belonging to this class into a new operating unit. This new operating unit
will substitute the original ones in M/ =. Obviously, M/ = is a structural model of
PNS and its maximal structure is (M, O*). Now, we define a mapping ¢ of M U O
onto M UO*. For every X € M, let ¢(X) = X, furthermore, for every us € C(u),
let of{us) = (U{ow : up € Clu)},U{B: : ue € C(w)}). As it is usual, we shall use the
notation ¢(0) = {©(u) : v € o} and p(m) = {¢(X) : X € m} for a subset o of O
and for a subset m of M, respectively. Using this extension, we can take the image
of an arbitrary P-graph (m, o) of (M, O) under ¢ as (p{m), ¢(0)). This mapping is
denoted also by ¢.

The following statement establishes a strong relationship between the two sets
S(M) and S(M/ =) of feasible solutions.

Theorem 1. Mapping ¢ is a bijective mapping of S(M) onto S(M/ =).

Proof. Let (m,0) € S(M) be an arbitrary feasible solution. First, it is shown
that (¢(m),(0)) is a feasible solution of M/ =. Obviously, (p(m),¢(0)) is such
a P-graph which is a subgraph of (M, 0*). Consequently, it is enough to prove
that (p(m), p(0)) satisfies conditions (A1) through (A4). Condition (Al) is clearly
valid, since P C mn = ¢(m). To prove condition (A2), let us observe that mapping
@ preserves the sources. Regarding condition (A3), let u € (o) be an arbitrary
operating unit. Then, there is at least one u; € o such that ¢(u;) = u. On the
other hand, (m,0) € S(M), and thus, on the base of (43), there is a [u;, ;] path
in (m,0) with ¥, € P. Now taking the images under ¢ of the vertices of this path,
we obtain a path [u, Y]] in (¢(m), p(0)) where Y,, € P which implies the validity
of (A3). Finally, to prove (A4), let X € (m) be arbitrary. Then, X € m, and by
property (A4), there exists an operating unit u; = (o, f;) such that X € o; U f;.
Let ¢(u;) = (a,). Then, by the definition of ¢(u;), X € aUf, thereby validating
(A4).

256 Cs. Holl6, Z. Bldzsik, Cs, Imreh, Z. Kovics

Now, it is proven that ¢ is an injective mapping. For this purpose, let (m, 0) #
(m',0') € SM). If m # m/, then ¢(m) # @(m'), and thus, the images are
different. Otherwise, o # o'. To prove this case by contradiction, let us suppose
that ((m), p(0)) = (p(m'),p(0")). Since o # o', without loss of generality, we may
assume that there exists a v’ € o' with v’ ¢ 0. Let ¢(u’) = u. Since (¢(m), p(0)) =
(p(m'), p(0")), there exists a & € o with p(iz) = u. Then, by the definition of ¢,
4 = u', and thus, by the definition of the equivalence relation, v’ € o which is a
contradiction. Consequently, ¢ is a one-to-one mapping.

Finally, we show that ¢ is a mapping of S(M) onto S(M/ =). For this purpose,
let us consider an arbitrary feasible solution denoted by (m*,0*) of S(M/ =). Let
m=m*and o= {u; : u; € O & ¢(u;) € 0*}. Obviously, p(m,0) = (p(m), (o)) =
(m*, 0*). Therefore, we have to prove that (m, o) is a feasible solution of M. It can
be easily seen that (m, o) is such a P-graph which is a subgraph of (M, 0). Thus,
we have to prove that (m, o) satisfies conditions (A1) through (A4).

Since (m*, 0*) € S(M/ =), condition (Al) implies P C m*. On the other hand,
m = m*, thereby indicating the validity of (A1) for (m, o).

Since the ancestor of a source in (m*,0*) is a source in (m,0) under ¢, and
(m*, 0%) satisfies (A2), (m, o) satisfies condition (A2) as well.

To prove (A3) by contradiction, let us suppose that (A43) is not valid for (m, o).
Let us denote by o0; the set of operating units in o from which there is no path in
(m, 0) into some required product, i.e., let

o1 = {u; : uj € 0 & no [u;,Y] path exists with ¥ € P in (m,0)}.

By our assumption, o; # 0. Now, let us consider P-graph (m’,0') where o' = 0\ 0,
and m’ = mat(o'). We shall prove that (m', o) is a feasible solution of M.

Since (m*,0*) € S(M/ =), (Al) implies that for any X € P, there exists an
operating unit u producing X directly. Taking an ancestor of u, we obtain that
there is an operating unit denoted by v’ in o producing X directly, and thus, '
is not contained in o0;. Consequently, v’ € o', thereby resulting in P C m/, i.e.,
(m/', 0') satisfies condition (A1l).

To prove (A2), let X € m' be arbitrary. If X € R, then X is a source in
(m*, 0*), and since the ancestor of X is a source in (7n, 0) under ¢, X is a source of
(m,0). But (m',0') C (m,o0), and thus, X is a source in (m’,o'). Conversely, let us
suppose that X is a source in (m/, o). Then, X is a source in (m, 0). Indeed, in the
opposite case, X would be an output material of at least one operating unit from
o01. Let u; denote such an operating unit. Then, there is a [u;, Y] path in (m, o)
since X is a source in (m’, 0'), and thus, X is an input material for some operating
unit in o'. This fact contradicts the definition of 0;. Hence, X is a source in (m, o).
In this case, X is a source in (m*, 0*), and since (A2) is valid for (m*,0*), X € R.
Consequently, (m', o') satisfies (A2).

The validity of conditions (A3) and (A4) follows from the definitions of 0, and
(m’,0"), and thus, we obtain that (m’,¢) is a feasible solution of M.

On Merging Reduction of the Process Network Synthesis Problem 257

Now, let us observe that p(m’, 0') = (m*, 0*) = @(m, 0), which implies (', 0') =
(m, o) since ¢ is injective. Hence, 0; = @ which is a contmchctlon Consequently,
(A3) is valid for (m,0).

In proceeding to prove the validity of condition (A4), let X € m be an arbitrary
material. Then X € m*, and since (m*, 0*) satisfies (A44), there exists an operating
unit u = (@,B) € o* such that X € aU B. This implies that there exists an
operating unit u; = (a;, ;) € o such that p(u;) = v and X € a; U ;. Indeed, in
the opposite case, we would have that X € o U which is a contradiction.

This completes the proof of Theorem 1.

Let us equip structural model M/ = with the weight function @ defined as
follows. For every u € O*, let w(u) = ZmGC(u’) w(uy) where p(u') = u. Since the
equivalent operating units have an identical image, function 1 is well-defined. The
constructed new model is then

(2) min{ _w(u) : (m,0) € S(M/ =)}.

uco

Extend the weight functions for the feasible solutions in the following way. For
any (m,o0) € S(M) and (m*,0*) € S(M/ =), let w(m,0).= Z{w(u) u € o}
and w(m*,0*) = Y {@(u) : u € 0*}. Then, w(m,0) = w(go(m 0)} is valid; for all
feasible solutions (m,0) €-S(M). On the basis of this observation and Theorem 1,
the validity of the following statement is obvious.

Theorem 2. The image of an optimal solution of problem (1) under ¢ is an
optirnal solution of problem (2), and conversely, the image of -an optimal solution
of problem (2) under ¢~ is an optimal solution of problem (1).

To execute the merging reduction on an instance, we need to determine the
equivalence relation introduced. For this reason, a further notation is introduced.
Let M = (P, R, O) be areduced structural model of PNS with S(M) # ¢. Further-
more, let u; € O be arbitrary. Then, we can construct a new structural model of
PNS, M(u;) = (P, R,0\ {u;}). Let us denote the maximal structure of M(u;) by
(M;,0;) provided that it exists. If it does not exist, then let M; = O; = @. Then,
we have the following statement.

Theorem 3. For every u;,u; € O, u; = u; if and only if u; € O\ O; and
u; € O\ O; are simultaneously valid. _

Proof. Let us suppose that u; € O\ O; and u; € O\ O; for some u; # u; € O.
Let us consider an arbitrary feasible solution (m, 0). We have to distinguish three
cases. '

Cuse 1. (m,0) does not contain w;. Then, (m,0) is a subset of (M;, 0;), and
thus, by our assumption, (m,0) does not contain u,.

Case 2. (m,0) does not contain u;. In this case, (m, o) is a subset of (M;, 0;),
and hence, by our assumption, (m,0) does not contain u;.

Case 3. (m,0) contains both u; and u;.

258 Cs. Hollo, Z. Blazsik, Cs, Imreh, Z. Kovics

Since there is no further case, we have proved that u; = u;.

In order to prove the necessity of the condition, let us suppose that u; = U,
for some u; # u; € O. Let us consider the structural models M(u;) and M(u;).
Then, (M;,0;) is the union of those feasible solutions which do not contain u,
provided that there exists such a feasible solution. Since u; = u; none of these
feasible solutions contains u;. Consequently, their union does not contain wu;, i.e.,
u; € O\ 0;. We can obtain by a similar argument that u; € O\ O;. If every feasible
solution contains uj, t.e., O; = 0, then from u; = u;, it follows that every feasible
solution contains u; as well, and thus O; = §, and the corresponding inclusions are
obviously valid.

From Theorem 3, we get immediately the following corollary.

Corollary. If O; = O\ {u;}, then u; is not mergeable with any other operating
unit.

Now, by Theorem 3 and the Maximal Structure Generation algorithm, we obtain
the following procedure to determine the required equivalence relation where it is
assumed that O = {uy,...,un}.

Procedure

Initialization

e Step 1.. Seti:=1,k:=1, N ={1,...,n}.

o Step 2. Determine the maximal structure of M(u;) by the maximal structure
generation algorithm. If O; = O\ {u;}, then let Vi, = {u;}, N = N\ {4},
k. =k + 1. Proceed to Step 3.

e Step 8. If i = n, then proceed to Step 4. Otherwise, let ¢ = i+ 1, and proceed
to Step 2.

e Step 4. Terminate if N = §. Otherwise, let ¢ denote the smallest element of
N.Let J={t:t€ N &wu, € O\ 0;}. Let V =0, and proceed to Step 5.

o Step 5. If J =0, then let N = N\ {i}, Vi, = VU{w;}, k = k+1, and proceed
to Step 4. Otherwise, proceed to Step 6.

o Step 6. Choose an element j from J. Let J = J\ {j}. If u; € O\ O;, then
let V.=V U{u;}, N=N\{j}. Proceed to Step 5.

As a result of this procedure, we obtain the equivalence classes belonging to the
required equivalence relation as V1,...,Vj.

Regarding the merging reduction one can raise the following questions.

(1) Does the merging reduction decrease the measure of practical problems or is
it only a theoretical aspect?

On Merging Reduction of the Process Network Synthesis Problem 259

(2) Is the decrease of the measure able to balance the higher complexity of the
operating units caused by the merging reduction with respect to the running times
of the known procedures for solving PNS problems?

Both questions were investigated empirically. The corresponding computational
experiences and their results are presented in the following section.

3 Empirical analysis

The first empirical analysis is devoted to the estimation of the decrease of measure.
More precisely, it was investigated that how large the decrease of the model size was
in general. For this reason, we considered 1000 randomly generated PNS problems
(for their generation ¢f. [11]), and for each problem, the maximal structure was
determined, then the merging reduction was performed. Figure 1 shows the average
numbers of the operating units in the initial problem, in the maximal structure, and
in the problem after the merging reduction. Figure 2 presents the same information
in percent.

Operating units after the merging

2 3 -4

| Ciots OMexsimct merging ma. |

Figure 1: Average number of operating units.

As the results of the empirical analysis show, the merging reduction results in
a decrease of 7% in general. It is obvious that the price of this decrease is that
the new problem will be more complex than the initial one, namely, the operating
units will have more input and output materials. Therefore, it is interesting to
study the behaviours of the available procedures for solving PNS problems on the
problems obtained by merging reduction. For this reason, we executed the follow-
ing empirical investigation. Three procedures, the Accelerated Branch-and-Bound
Algorithm, ABBA in short (see [8]), the Modified Accelerated Branch-and-Bound
Procedure, in short MABBA (c¢f. [9]), and a version of the Refined Modified Ac-
celerated Branch-and-Bound Procedure, in short RMABBA [11] were involved in

260 Cs. Hollo, Z. Blazsik, Cs, Imreh, Z. Kovacs

Operating units after the merging

Operating
units (%)

100

Figure 2: Average number of operating units in percent.

the empirical analysis. 1000 PNS problems with 100 materials were generated ran-
domly, and for each of them the maximal structure was determined and the merging
reduction was performed as well. Then, the two problems (problem belonging to
the maximal structure and problem obtained by the merging reduction) were solved
by the three procedures considered. Figure 3 shows the averages of the running
times in percent for the different procedures.

Running times after the merging

Time (%)
100 T
86,59
80 ==
67,75 68,86
60
40
20
0
ABBA M-ABBA M-ABBA
lin,rat Mixb,rat
OMaximal structure W Merged structure

Figure 3: Behaviours of the procedures.

Conclusions. The empirical analysis shows that the merging reduction is ap-
propriate to get further reduction of the model, moreover, the higher complexity of
the operating units not necessarily implies longer running time for the procedures

On Merging Reduction of the Process Network Synthesis Problem 261

considered. The smaller measure of the PNS problem resulted in a smaller running
time for the procedures investigated even if the complexity of the operating units
became higher.

References

[1]

[2]

[7]

8]

[10]

[11]

Blazsik, Z. and B. Imreh, A note on connection between PNS and set covering
problems, Acta Cybernetica 12 (1996), 309-312.

Fiilop, J., B. Imreh, F. Friedler, On the reformulation of some classes of PNS
problems as set covering problems, Acta Cybernetica, 13 (1998), 329-397.

Friedler, F., L. T. Fan, B. Imreh, Process Network Synthesis: Problem Defini-
tion, Networks 28 (1998), 119-124.

Friedler, F., K. Tarjin, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci. 47(8)
(1992), 1973-1988.

Friedler, F., K. Tarjdn, Y.W. Huang, and L.T. Fan, Combinatorial Algorithms
for Process Synthesis, Computers chem. Engng. 16 (1992), $313-S320.

Friedler, F., K. Tarjdn, Y. W. Huang, and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Polinomyal Algorithm for maximal structure
generation, Computer chem. Engng. 17 (1993), 924-942.

Friedler, F., K. Tarjdn, Y. W. Huang, and L. T. Fan, Combinatorial Algorithms
for Process Synthesis, Computer chem. Engng. 16 (1992), 313-320.

Friedler, F., J. B. Varga, E. Fehér, and L.. T. Fan, Combinatorially Accelerated
Branch-and-Bound Method for Solving the MIP Model of Process Network
Synthesis, Nonconvex Optimization and its Applications, Kluwer Academic
Publisher, Norwell, MA, U.S.A. (in press).

Imreh, B., F. Friedler, L. T. Fan, An Algorithm for Improving the Bound-
ing Procedure in Solving Process Network Synthesis by a Branch-and-Bound
Method Dewvelopments in Global Optimization, editors: I. M. Bongze, T.
Csendes, R. Horst, P. M. Pardalos, Kluwer Academic Publisher, Dordrecht,
Boston, London, 1996, 301-348.

Imreh, B., J. Fiilép, F. Friedler, On the Equivalence of the Set Covering and
Process Network Synthesis Problems, Networks, submitted for publication.

Imreh, B:, G. Magyar, Empirical Analysis of Some Procedures for Solving
Process Network Synthesis Problem, Journal of Computing and Information
Technology, to appear. '

Acta Cybernetica 14 (1999) 263-283.

Construction of Recursive Algorithms for Polarity -
- Matrices Calculation in Polynomial Logical
Function Representation

Dragan Jankovié *

Abstract

There is no algorithm for the calculation of optimal fixed polarity expan-
sion. Therefore, the efficient calculation of polarity matrix consisting of all
fixed polarity expansion coefficients is very important task. We show that
polarity matrix can be generated as convolution of function f with rows of
relates transform matrix. The recursive properties of the convolution matrix
affect to properties of polarity matrix. In literature are known some recur-
sive algorithms for the calculation of polarity matrix of some expressions for
Multiple-valued (MV) functions [3,6]. We give a unique method to construct
recursive procedures for the polarity matrices calculation for any Kronecker
product based expression of MV functions. As a particular cases we derive

- two recursive algorithms for calculation of fixed polarity Reed-Muller-Fourier
expressions for four-valued functions.

1 Introduction

Compact representation of switching functions is not only the mater of notation
convenience, but highly relates to the analysis and synthesis of these functions.
‘Both analysis and synthesis procedures, as well as final realizations, can be greatly
simplified by choosing appropriate representations of switching functions.

In the case of Reed-Muller (RM) expressions, the problem to determine the
most, compact representation reduces to the determination of optimal polarity for

' -switching variables. By choosing between the positive or negative literals for each

variable; but not both at the same time, the Fixed polarity RM (FPRM) expressions
are defined [5]. '

In a FPRM, the number of products, or equivalently, the number of non-zero
coefficients may be considerably reduced by choosing different polarities for the
variables. The FPRM with the minimum number of products is taken as the

*Faculty of Electronic Enginecring, University of Ni§, Yugoslavia

263

264 Dragan Jankovié

optimal FPRM for f. If there are two FPRMs with the same number of products,
the one with the smaller number of literals in the products is taken.

There is no method to determine apriori the polarities of variables for a given
function f. In practice, it is necessary to generate all the FPRMs and chose the
optimal one. That can be efficiently done by generating the polarity matrices P pas
whose rows are RM-coefficients for the given f with different polarities of variables.
The efficiency of generation of P pas is based upon its recursive structure originating
in the Kronecker product representation of the RM-transform matrix.

Polynomial representations of Multiple-valued (MV) functions are very interest-
ing with advent of multiple-valued circuit technology, in particular recent experi-
ence with current-mode circuits that are very attractive for implementation of MV

" functions. Specially, the realization of the corresponding 4-valued circuit is very
efficient. The problem of compact representations is even harder in the case of MV
functions. Galois field (GF) expressions are a generahzatlon of RM-expressions to
MV case [7]. Optimization of GF—expressmns can be studied and solved in a way
similar to that used for RM-expressions. In particular, efficient methods for genera-

' tion of polarity matrices P¢r for GF-expressions of ternary functions are reported

in [6], while the corresponding methods f01 quaternary functlons are reported in

{3], and further elaborated in [1] 2], 14 :

- Reed- Muller Fourler (RMF) expressmns ‘are an’ altematlve extension of RM-
expressions to MV case [8]. It has been shown that RMF-expressions require on

' .the average ‘smaller number of products than GF -expressions to represent a given ’

- function f [9]. The optimization of RMF -expressions is performed in the same way

as’'in the GF-expressions by choosing different polarities for the variables. As in '

‘the case of RM and GF-expressions, there are no meéthods to determine apriori
" 'the polarity for the variables in a given f to get the RMF-expression with the
minimum number of products. For that reason, the efficient calculation of polarity
‘matrices is a very important task. An analyse of present recursive methods for
calculation of polarity matrix for some particular expressions shows that recursive
approaches are more efficient than others methods. Therefore, the construction of
recursive relations for polarity matrix calculation for various expressions are a very
* interesting problem.

In this paper, we uniformly consider the coeflicients in various expressions for
logic functions as spectral coefficients in particular spectral transforms. We show
that polarity matrix can be generated as convolution of f with columns of related
transform matrix. The recursive properties of the polarity matrix result from prop-
erties of the convolution matrix. We give a unique method to construct recursive
procedures for the polarity matrices calculation for any Kronecker product based
expression of MV functions.

This method involves existing methods as a particular cases and permits various
generalizations. For illustration, we derive two recursive algorithms for calculation
of fixed polarity Reed-Muller-Fourier expressions for four-valued functions.

Recursive Algorithms for Polarity Matrices Calculation : 265

2 Notations and Definitions

Definition 1 Let E(q) be the set of integers modulo q. n-variable q-valued logical
function is mapping .
f:E(q)" - E(q).

Definition 2 Each n-variable gq-velued logical function f can be represented in
polynomial form

2 -1
f(Z1,..,2n) = @caT,®cr, d...Bcg1zl Bcgn_

@Cq+1l'nl'n_1 b...0 Cgn-1ZnTp—-1...21.

The coefficient vector C, consisting from the coefficients ¢;,i = 0,...,¢" — 1
can be calculated as direct transform of function f, given by its truth vector F =

[£(0),..., g™ - D)]T ie.
Cz(co’cl""’ch"—l) = TnF= (éTl) -F
=1

= | (é[1z oz .. ol]_1> -F, (1)

=1

where with ~! is denoted the inverse matrix and ® denotes Kronecker product. T,
is transform matrix.

The number of non-zero coefficients in vector C is usually used criteria of opti-
mality. Optimization can be made by using different polarities of variables.

Definition 3 i-th polarity of variable x in notation T is defined as: T=1 ®i,i=
0,...,q — 1, for g-valued functions.

If each literal z; in expansion (1) have complemented or noncomplemented form
but not both this expansion is named fixed polarity expansion. For n-variable g-
valued function the number of different polarities is ¢™.

Theorem 1 For polarity k = (k1,...,kn) (< k >= Y1) kiq™™?), the coefficient
vector can be calculated as[6]: '

C<k> = TSk> F = <® Tgk.-)) -F, (2)
i=1

where Tgk") is the matriz Ty whose that columns are shifted for k; places in accord-
ing to the definition of operation &.

Example 1 Let f is two varieble function on Galois field GF(3). The operations
- and @ are multiplication modulo 3 and addition modulo 3 respectively. < k >
polarity expansion coefficient vector of f is given as:

C<k> = (Tgkl) ® Tgkz)) .F.

266 Dragan Jankovié

If < k>=< 7> then ¢<"> is calculated as:

[0 0 0] 100
™! = |01 1|, Ty={0 2 1],
0 2 1 2 2 2
[0 0 1] 010
™ = |2 10|, T®=|10 2/{.
(2 2 2| 2 2 2
<> = (T§2)®T§1)>-F
[0 10 001
= |102{®|2 10| F
_222} [222}
(00000100 0]
000210000
000222000
00100000 2
= |210000120]|F
2 22000111
00200200 2
120120120
1111111 11|

Lemma 1 The coefficient vector of polarity < p > can be calculated as

n
P s PN
' . i=1

= Tn F(z19p2,22®P2,- .-, Tn DPn). (3)

Ekamblé 2 Let f is the two variable 3-valued function defined on GF(3) and.
represented by truth vector F = (122010210). The vector c<"> can be calculated as

]
]
1

[[[

< =TP T FT =

HHONNOOOO
—H N ON OO0
—H OMNNOMFOOD
— =0 OO0 O NNO
= NOOOON—HO
H ONOOONO M
=0 =00 00
HFNO R NOOOO
= ONFONOOO
O HNOHONINKM
Il
O N = 0NN~ O

T
1
r
L
r
L

Recursive Algorithms for Polarity Matrices Calculation 267

[1 0 0 000 0O0O0] [0] (0]
0 21000000 0 1
222000000 1 2
000200100 0 2
< =Ty F<™ = [0 00012021 2 | =12
0001112 2 2 1 1
2 00 200200 2 1
01201201 2 1 2
1111 11111] [2] [0]
Definition 4 The polarity matriz P of an n-variable q-valued function
flai, 22, .., n) s a (g x ¢"*) matriz where every row matches a coefficient vector

in a different polarity < k >. i-th row corresponds to a coefficient vector in the
< i >-th polarity, i.e., ¢,

Definition 5 The optimal polarity of function f(x1,z2,...,zn) is defined as po-
larity kop whose coefficient vector has the minimal number of monzero elements.

Example 3 The polarity matriz of a two variable quaternary function f, given by
truth vector F = (0311132322321002) is given as

B ‘ T <0>
<1>
2>
<3>
<4>
<5>

[aw]
o
[
[
o
w
no

W N wWwo N W
OO H R BN N W
OO OO NNNNOOOONNNN
N ONNOOODNNODNNODOON
ONONONONODODNONONON
RO B DD DD DD DN DN DD DD ND N

QOO0 000000

CO LW WO N WWH WHNFHE O
H O WN R OWOWOHFNDWDH
OO OO ONONODDODOOOND

O WHRNWOWN WOWN WD b
CO Lo LW LW e e e Q)

N O O WK N W R W
I I U O N e U IS IS R U
ONONDODDDODOODODDODDND
NNNNOOODOOOIDOODNNDN

WNOWOWwONM

L _

3 Convolution
Definition 6 Convolution of n-variable q-valued logic functions f and g is defined

as

q" -1

f*g(S) = Zf(i‘)-g(x@s),3:0,1,--',q”—1,
=0

268 Dragan Jankovié

q-1,94-1,---,q—1)

f*!](Sly"',Sn) = Z f(mlz"':zn)'g(ml69'91;"'31:11@511):
£=(0,0,--,0) ’

n

.\ —_ n—t

s = (s1,82,""",5n), S—E si-q" ",
i=1

n

— - _ § n—i
r = (11712)"'1111)) = T;-q .
i=1

Operations @ and - are defined on corresponding algebraic structure.

The convolution matrix is given as:

9(0®0) 9(1®0) 9((¢" - 1) ®0)
9(0®1) g(le1) - gt -Del)
Gconv = : . : (4)
90@(¢"-1)) gl (q"-1) - gl¢"-D&(¢"-1))
Now, the convolution of f and g, in according to (4) can be write in form
f*g:Gconv'f- . (5)

Theorem 2 Convolution of k-th row in transform matrix t, with function vector
F gives the vector of k-th coefficients in polarity matriz i.e. P* = ¢, « F.

The proof of theorem can be done from the structure of convolution matrix.
Proof:

c® T, - FO
c T, . FM
Pn = =
C(q;“l) T, -
j=o Ta(0,)F(®0) - j=o Tulg" = 1L)F(j ®0)
jeo THOAFGOG -1 - YIS Ta(@" ~LAFG@q" - 1)
= [PO P! ... Pq"-—l],
where
Pt = [Pk(O),Pk(l), - 7Pk(qn _ 1)] L k=0, " —1,

" -1

P* (i) > Tulk,)F(@4), i =0,--,¢" — 1.
2

Il

Recursive Algorithms for Polarity Matrices Calculation 269

It follows from equation (4)

P* = T: xF.

Example 4 Tenth column from polarity matriz for function f from example 3 can
be calculated as convolution of tenth row in transform matriz and truth-vector F:

1
=1

N O O NN WNDNWNWR M =W

T
L
T
[
r
L

OO DO OH WOONNODODRRW

R R R R U R T N S S S U

where

0+1-3+0-1+0-14+2-1+2-34+0-2+0-
34+41-140-1+0-0+2-3+2-2+0:3+0-
141-14+0:-0+0-34+2-2+2-3+0-1+0-
14+1-0+0-3+0-142-3+2-14+0-340-
14+1-34+0-2+0-34+2-2+2-24+0-3+0-
34+41:240-3+0-14+2-2+2-3+0-24+0-
24+1-34+0-1+0-34+2-3+2-240-2+40-
3+1-1+0-34+0-2+2-2+2-240-2+0-
241-240-3+4+0-24+2-14+2-04+0-0-4+0-
241-3+0-24+0-24+2-04+2-04+0-240-
34+41-240-2+4+0-242-0+2-24+0-1+0-
241:240-2+0-34+2-2+2-14+0:-0+0-
1+1:0+0:-0+0-24+2-0+2-3+0-1+0-
04+1.04+0-2+0-14+2-3+2-1+0-140-
04+1:-240-140-0+2-1+2-14+0-0+0-
241-140-040-0+2-1+2-0+0-3+0-

WO R OO NWRNNNNWRF W

T
QO oLl WoLWwWWWWwWwwWwwww
[

270 Dragan Jankovié

241.2+40-340-2+0-14+0-0+0-0+0-
2+1-3+0-240-2+0-0+0-0+0-2+0-
341-2+40-240-2+40-0+0-2+0-1+0-
241-240-240-340-24+0-1+0-0+0-
14+1:0+0-040-2+0-1+0-040-3+0-
0+1-0+0-240-140-0+0-3+0-1+0-
0+1-2+0-140-0+0-0+0-140-1+0-
“241-140-040-040-24+0-14+0-040-
0+1-3+0-140-14+0-04+0-1+0-3+0-
3+1-140-140-040-3+0-34+0-2+0-
1+41-140-040-340-140-24+0-3+0-
1+1-0+0-34+0-140-140-3+0-140-
141-340-240-3+0-24+0-240-3+0-
3+1-240-34+0-1+0-24+0-3+0-2+0-
2+41-340-140-3+0-34+0-2+0-2+0-
3+1:-140-04+0-2+0-24+0-2+40-2+0-

o LWL wiowwwwwwwwww
WNNNNNWRHRWRFRWORROD N

4 Calculation of the Polarity Matrix

The polarity matrix can be calculated directly with equation (2). The complexity of
this direct method is (q™)? i.e. practically unuseful for large q. For the calculation
of polarity matrix can be used the FF'T-like method. The complexity of this method
is n(g™)%. In [3,6] is shown that the polarity matrices can be generated efficiently
by recursive relations. Proposed procedure is given only for GF(3) "recursion by
column” and “recursion by row” for GF(4). In this section, we give the unique
method for the generation of recursive relations for the calculation of polarity matrix
~for arbitrary finite fields. Both ”recursion by columns” and "recursion by rows”
are considered. Our method is generalization of methods proposed in [3] and [6].

4.1 Unique method for the generation of recursive relations
for the polarity matrix construction

If we have in mind that transform matrix is given in Kronecker product form, the
next theorem is obviously.

Theorem 3 Let T(n) is transformation matriz given as: T(n) = @;_, T; where
the dimension of matriz T; is q; X q; . Element from p row and r column CE,”; m

polarity matriz P is given as:

. ’ . (11—]
P> _ A<PLDP2y PP <171,P2, Pn > s
CSPZ = CSPvpzy ohioin 2 E Ti(rs,0) - C ’ MhZi=1,00n

<11,T2,'“,7:, cTn > <Ti,T2,- P>

IfT, =Ty, Vi,j €{1,2,---,n} then

Recursive Algorithms for Polarity Matrices Calculation 271

qgi—1

<p> _ <P1,P2, 0P Pe > E : <p1,p2, : , yraPn> s _ 1 L
C<"‘> - C<'v‘1 T2, Ty T > T ’r"’l) cv<7‘1 F2,00, > U T L T

or in matriz form -

q—1

P = Py = [P77 6], 97716 5) = DTG, - 0" (@14, 0), i#0. (6).
=0

This relation is recurrence by columns. ;From recurrence relation (6) by first
columns where we start from the first column i.e. 0-column it can be derived
recurrence matrix relation started from any column k. Derived recurrence matrix
relation we called ”recurrence by k-th column”. Recurrence by k-th column can
be derived if we each element in k-th column from (6) denote with one letter and
calculate relations. In this manner can be calculated "recurrence by k-th row”, too.

The formal method for construction recurrence matrix relation for polarity ma-
trix calculation may be presented through following steps:

1. The generation of ¢ x ¢ simbolic matrix B as B = [Bi@j] , 02,7 <qg-1.
2.. The generation of ¢ x ¢ matrix Q = T~ - B. '

3. If it wish the recurrence by k-th column/row, the elements from k-th col-
umn/row are substituted with one letter P, 0 <i < ¢ —1. These substitu-
tions give equations system consisting of ¢ equations.

4. Solving the generating equations system.

5. The modification of the matrix Q in according to the solutions of previous
equation system. .

6. The substitution Q with P, and P* with P}_; .

This method can be generalized to the case when matrices T; are different, e.i.

= ®r,Ti, T; # T; if i # j. In this case, it is not possible to generate
polarity matrix by only one recurrence matrix equation. The polarity matrix can
be generated by means n recurrence matrix equations similar to the above matrix
equations. For each of n steps, we generate recurrence matrix relations based on
the matrix T;. Namely, we run above method n.times, substituting T;' with
T‘1 1 < i < n. Obviously, dimensions of matuces B and Q are equal ¢; x q1 This
w1ll bc illustrated in following example.

poms i mem [} 8] - 2],

-1
3 2. =

T, =

el i
W N =D
— e O
-0 O
= O
N WD
=W N O

272 Dragan Jankovié

The recurrence matriz equations are:

P, P)_,+P,,

1 _
P = Pl Pl +Pl, |
P% ., P, 43P +2P3, P! ,+2P: +3P3_,
pr o= | Pa P3P +2Pay Pry+2PR +3P,

P:, P, +3P1?—1 +2Pi., P, +2P)_ ,+3P;,
P3_, P°_,+3P! +2P?., PO, +2P! 43P,

nihnn

where
S=P)_ +Pi +Pl_+P.

Proposed above method we explain in next section for the case of polarity matrix
of Reed-Muller-Fourier expression of quaternary functions.

5 -RMF-expressions for Quaternary Functions

To make the paper self-contained, we present in this section basic definitions for
RMF- expréssions for quaternary functions. Then, we consider their optimization by
‘choosing dlfferent polarities for variables. It is assumed single polarity for a variable
_.in the expression. In that way the Fixed polarlty RMF (FPRMF) expressions are
- defined. .
‘ Let E(4) be the set of integers modulo 4 with the addition and mul‘rlphcatlorl
“modulo 4 shown in Table 1 and Table 2. .

Table 1: Addifcion modulo 4. Table 2: Multiplication modulo 4.
éji0 1 2 3 -10 1 2 3
0({0 1 2 3 0|0 0 0 0
111 2.3 0 110 1 2 3
212 3 0 1 210 2 0 2
3(3 0 1 2 3i0 3 2 1

Define the exponentiation 4EXP and multiplication 4AND, denoted by * and
o , respectively, as in Table 3 and Table 4. Denote by J the space of n-variable
quaternary functions, i.e., f : E(4)" — E(4).

Definition 7 The operator D(n) in J is defined, in the matriz notation, by a
(4™ x 4") diagonal matriz given by D(n) = diag(3,1,---,1).

Definition 8 RMF-expression of e function f € J given by its truth-vector F =
[F(0),..., F(4™ x 4" is given by [9)

Recursive Algorithms for Polarity Matrices Calculation 273

Table 3: Exponentiation 4EXP. Table 4: Multiplication 4AND.
x| 0 1 2 3 o0 1 2 3
013 0 0 O 00 0 0 O
1{3 1 0 O 110 3 2 1
213 2 3 0 210 2 0 2
313 3 1 1 3/0 1 2 3

f(@y, @) = (D(n) (®[1 oz 2 2P])) A, (7)

=1

where A = [a(0),...,a(4™ — 1)]T is the vector of RMF-coefficients determined by
the matriz relation

A =R(n) F,
where
1 0 0 0
n 1 3 0 0
R(n) =3Q@;_; Ri, Ri= 1 210
1 1 3 3

In this relation, ® denotes the I{ronecker product and :L:] , J € {2,3} denotes
the j-th power of z; with respect to 4EXP.
In (7), the addition and multiplication are performed modulo 4.

6 Fixed Polarity RMF-expressions

Similarly as for RM-expressions for switching functions, and GF-expressions for
MV functions, optimisation of RMF-expressions means reduction of the number
of products, i.e., the number of non-zero RMF-coefficients. As noted above, the
optimisation of RMF-expressions is possible if we use different polarities for the

variables. For a p-valued variable, we consider p — 1 complements defined by %=
z®%, 1 € {1,---,p—1}. Thus, in a FPRMF-expression, a variable can appear as
the positive literal z; or any of p — 1 negative literals 'z , but not as few of them at
the same time. Therefore, there are p™ different polarity FPRM-expressions for a

. . . 1— 2— 3
given n-variable function f. For p = 4, the complements are =, , 2, and thus,
there exist 4" different FPRMF-expressions for a quaternary function f. These

974 . Dragan Jankovié

different possible FPRMF-expressions are determined through the polarity vector
H = (h, -, hn), where the value of h; € {0,1,2,3} determines polarity of the -
literal chosen for the variable ;.

Definition 9 For f € J given by the truth-vector ¥, the FPRMF-expression with
the polarity vector H = (hy,- -+, hy,) is given by

Flar, o, an) = (D(n) (@[L, N])) <<3®R§“> r) (8)
i=1 =1

where Ri“ is derived from R; by the cyclic shift of its columns for h; places. Thus,

1 0 0 0] [0 0 O 1]
o _ 1300 L1300 1
Rl_R1'1210’R1‘2101’
|11 2 3| |1 3 3 1]
[0 0 1 0] [0 1 0 0]
2 _ {0013 5 |01 30
R1‘1012’1{1‘0121
| 3 3 1 1 | |31 1 3

Example 6 The zero-polarity FPRMF-expression (H = [0,0]) for two-variable
function f, given by the truth vector F = [0311132322321002]T

f = 3312@1‘22@32;3@711@2}1 oz P21, 09332@2m107:§3®3'v*2 5 ®
@2z oz B2z} 0x3® D22 @227 o2y @ 227 0 23 @ 2273 0 437

Definition 10 For a given f € J, the FPRMF-expression with the minirnum num-
ber of non-zero coefficients is the optimal FPRM-expression for f.

Example 7 The optimal polarity RMF-expression for function f in Example 6
corresponds to the polarity vector H = [2, 3], and is given by,

. _*3 9 *2 o *2 4 g_*2 %3
f= 2@7,@7,03‘2@11@T10'I:>@2110'3:2
*3 g g_*3 g_*3

e)mel 03)6927,1 o T,

7 RMF-polarity Matrix

Similarly as in RM and GF expressions, an efficient way to determine the optimal
polarity FPRMF-expression for a given function f is to calculate first the corre-
sponding polarity matrix. Therefore, in this section we define polarity matrix for
FPRMTF-expressions for quaternary functions. :

Recursive Algorithms for Polarity Matrices Calculation 275

Definition 11 The RMF polarity matriz Pryr for f € J is a (4™ x 4™) matriz
whose the i-th row consists of the coefficients in the FPRMF-expression for f, for
the polarity vector H = [iy, - - ,in] where (i1, -+ ,in) s the quaternary representa-
tion of .

Example 8 The RMF polarity matrix for function f in Example 6 is given by

0313112203222 7222
122 103021102000 2
3 0111322012200 22
3303 21023302020 2
3 2311200210020 2 2
1323320011002 20 2
2 13.3120001:00022 2
P |1 2013200310020 0 2
EME= 19 0313100012222 22
21 2321003302333 2
13331100032 200 2 2
2001010011020 20 2
333130222300 20 2 2
002 332023300220 2
02 3312220300022 2
(2 30130021300200 2]

8 Calculation of RMF Polarity Matrix

Harking and Moraga in [6] gave a method for the calculation of polarity matri-
ces Por for GF-expressions of ternary functions. Their method starts from the
truth-vector F of f. Unlike to that, Falkowski and Rahardja proposed method for
calculation of polarity matrices Pgp for GF-expressions of quaternary functions
starting from zero-polarity GF-expression coefficients vector {3]. In this section,
we give two recursive methods for FPRMF polarity matrix calculation. The first
method, named ”recursion by columns”, starts from the truth-vector F while the
other named ”recursion by rows”, starts from the zero-polarity RMF-coefficient
vector A.

Recursion by columns

Now, we will construct the recurrence matrix relation for RMF polarity matrix
calculation using proposed formal method. First, we define matrix B.

Definition 12 For an n-varieble quaternary function f(xi,za, -, z,) the (4’”.><
4™) matriz B is defined as B = [B’e”], where @ 1is the operation addition modulo

4.

276 Dragan Jankovié

BO Bl BQ BB
Bl B‘2 BB BO
Bz 33 BO Bl
BB BO Bl B2

Based on matrix B we generate the recursive square matrix Q,.

1000 B B' B p?

i T | 1300 B' B B® RO
Q= R{"B)o=|, 95 10| | B B B B
113 3 B* B® BU B?

B® B°+3B' B%+2B'+B? B°+B!'+3B?+3B°
B' B'+3B? B'+2B?>+B® B'+B?+3B%+3B°
B?> B?*+3B® B?+2B®+B° B?+B?+3B°+3B!
B® B34+3B° B3+2B°+ B! B3+ B°+3B'+3B?

01 Qi+ 3@}1_1 Wiz Wi
_ | Qo Qo1 +3Qhy Wz Wi)
2 Q% +3Q0_ Wiz Wi |

3 3 0
no1 Qno1+3Qn_, Wiz Wy
where

Wis=0Q% , +2QL_, +Q2_,, Wwu=Q% +QL_,+3Q%_,+3Q}_,,
Wy =Qh 1 +2Q2 1+ Q0 1, War=0Q 1 +Q5_, +3Q_, +3Q)_,,
Wis = Q% 1 +2Q% 1+ Q% Way=0Qp , +Q%_, +3Q%_, +3Q,,_,,
Wiz =Q3_, +2Q% , +QL_,, Wau=0Q3_,+Q% , +3Q%_, +30Q7%_,.

In this equation, Q¢ _, (i = 0,1,2,3) is a square matrix, which is one order lower
than the matrix Qn.

Now we rewrite equation (9) in the usually used form [1,2,3,6].

Assume that the truth-vector F of f € J is split into 4 subvectors of 4!
successive elements '

F = {Fin-1.0) Fino11) Fin=1,2) Fn—-1,3) |-
Then, based on (9) RMF polarity matrix P garr for quaternary functions can be

calculated by recursive method named "recursion by columns”, given in Theorem
4.

Theorem 4 The polarity matriz Prpr for f € J can be calculated as
Prur = Qn(F).

Q, k=1,...,n is determined by the following recurrence matriz relations

- Recursive Algorithms for Polarity Matrices Calculation

Qr(Fi) =

where

Wis
Wi
Was
Was
Wis
Wiq
Wy
Waq

Qi-1(Fp-10 Qu-1Fp—1,00 +3F_1,) Wiz Wiy
Qr-1(Fr—11) Qr-1(Fpo1,y +3F 1) Was Wiy
Qr-1(Flr_12) Qu—1(Fpeo1,2) +3Fk-13) Wiz Wi
Qr-1(Fpp13) Qu-1(Freo1,3 +3F_10) Waz Wy

H

Qr-1(Fpi—1,0) + 2F 11y + Fleo1,)),
Qr—1(Fpr—1,00 + Fle—1,1) + 3Fp—1,2) + 3F 1,3},
Qi1 (Fpp1,3) + 2Fj—1,9) + Flio1 3)),
Qi1 (Flp—1,1) + Fle—1,2) + 3F(r-1,3) + 3F (k1,0
Qr—1(Fe—1,2) + 2F k1,30 + Flr—1,0),
Qi1 (Fle—1,2) + Frec1,3) + 3F—1,0) + 3F [e—1,13,
Qi1 (Fi—1,3 + 2Fk—1,0) + Flz-1,1)),
Qi1 (Fie—1,3) + Fle—1,00 + 3F—1) + 3F[k_1,2)-

277

» (10)

Proof: The proof follows from the Kronecker product structure of RMF transform
matriz R(n). Thanks to this structure, the columns of Pryr can be expressed as
.the convolution of f with the corresponding columns of R(n) (Theorem 2). Then,

the proof follows f?fomA the convolution properties of RMF-expressions [8].

We define three aﬁxiliary vectors.

Ti-11 = 3Fpg-10,
Tip-12) = 2Fp-19),
Tir-13 = 2Fp-13)

Then, (10) can be written as

Qi (Fi.g) =

Qr-1(q11) Qr-1(q12) Qi-1(q13) Qi-1(q14)
Qi-1(g21) Qr-1(g22) Qi-1(g23) Qr—1(gq24)
Qi-1(g31) Qr-1(g32) Qr-1(g33) Qi-1(g34)
Qr-1(q41) Qr-1(qe2) Qr-1(q43) Qr-1(qaa)

Qi—1 (Fie—1,01) Qr—1(g22 + q13) Wiz Wi

Qi1 (Fpe-1,1)) Qr—1 (g2 + q23) Wiz Wy
Q-1 (Fir-1,2)) Q-1 (ga2 + g33) Wiz Wi |’

Qi1 (Fr—1,3) Qi1 (g1 + Tpp—1,y) Wiz Wag

where

Wiz = Qr—1 (g23 + q14), Wis = Qp-1(g23 + g33) ,
Was = Qi1 (g21 + qa1 + Tie-1,2)), Waa = Qu—1(g33 + qa3) ,
Wiz = Q-1 (g1 + g31 + Tpe-1,3) , Was = Qi1 (@13 + qa3),
Wiz = Qr-1(g33 + q14), Wia = Qr-1 (q13 + ¢23) -

(11)

278 . . Dragan Jankovié

The number of operations needed to calculate P gasr, is reduced significantly if we
first calculate these auxiliary vectors T, and then the vectors that are arguments
of the matrices Qy_1, as given in (11).

Recursion by rows

If we know the zero-polarity RMF-coefficient vector A of f, then the RMF polarity
matrix P garr, can be calculated through the following "recursion by rows” method,
given in Theorem 5. This "recursion by rows” can be induced from (9) if we apply
the 3-th, 4-th and 5-th step in proposed method for generation recurrence relations
for polarity matrices calculation.

Let the vector A of zero-polarity RMF-coefficients is split into 4 subvectors of
471 successive elements, i.e.,

A = {A[1z;1,0]7 A[n—l,}], A[n—].,z]: A[n—1,3-]}~
Theorem 5 The RMF pola'rity' matriz Ppyr for f €J can be calculated as
' PRMF =Q,(A),

“where the followmq recursive matriz Telatwns are used for the calculation of
Qu, k=1,. '

Qi_1(t) Qi

(Qr_1(t13) Qu-1(t4
Qi—i(t21) Qi lta

(

(

12))
; Qr-1(t23) Qk—l(t24§ (12)
2))

Qe (Aka) = | Q.- (tn). Qi (ts:
Qr-1(ta1) Qu—1(ta;

Qr—1(tss) Qr—1(t34
Qi—1(ts3) Qi-1(taa

where)

' t11 = Apk-1,0)5 tie = Ap-11,

t13 = Ap-1,2) ' tia = Apr-1,3)s
it = Apor,0) + 3Apk-1,1), , o2 = Afg-1,1) + 3Ap-1,2,

t23 = Ag-1,2) +'3Ak-1,3) 24 = 2A(k-19) + Ap—13)
t31 = Ap—1,0) + 2A0—1,1) + Apk-12), 32 = Ao + 28019 + Ap-1,3)
ts3 = 3A[k—1,2] + 2A(k-13]s 34 = 3Ak-1,3,
ta1 = Ap—1,0) + A1) + 3A%k-1,2) _ ' .
+3A-1,3), taz = Apo1,1) F3A -1 + 3Ap_1,3),
ta3 = 3Ap 19 +3AR 3], tag = 2Aqk_19) + 3Ak_1 3]

QL(A[OJ}) = A[O,j]: j = 0, 1,2,3.

Similarly to the "recursion by columns” method, the number of additions and
multiplications can be reduced significantly if, instead (12), we use the following

Recursive Algorithms for Polarity Matrices Calculation 279

formula

Qr-1(q11) Qr-1(q12) Qur-1(n13) Qi-1(714)
Qi (Apy) = Qr-1(g21) Qr—1(122) Qr-1(gq23) Qur-1(g24)
B A) Qr-1(g31) Qr-1(g32) Qu-1(g33) Qr-1(gza)
Qr-1(g41) Qi-1(qs2) Qir-1(@s) Qi-1(qaa)

Q-1 (Ap—1,07) Qi1 (Ap—1) Wiz Wi
_ Qi-1 (g1 + Spe—1,1]) Qi-1(ga2 +qua) Waz Wy
Qi-1 (221 + @13 + Spe—1.1)) Q-1 (924 + q12) Wiz Way
Qi1 (q11 + ga2) Qk—1 (924 + Spi—1.3)) Wiz Wi
where
Wis = Qi1 (Ap—1,2]) Wi = Qr—1 (Ap—13)
I’V-23=Qk—1(611?,-+—Sk 1,3]) 5 WM—Qk 1((114+Sk 121) >
Wiz = Qo1 (o3 + qus) , Vag = Qi—1 (Spr—1 35
Wiz = Qo1 (q13 + qaa) , Wia = Qro1 (Spe—1, + Spe—1.3]) »
Sik—1,1] = 3Ap-1ap
Stk=1,2) = 2Ap-1,9),
Sik-1,3) = 3Ap-13

Calculation of the auxiliary vectors S precedes calculation of arguments in Qg_;
like in the previous method.

9 Calculation Complexity

In this section, the efficiency of the presented methods for calculation of RMF
polarity matrix is estimated through the number of operations required to calculate
P rasr for a quaternary function. For comparison, we give the number of operations
in the corresponding methods for GF-expressions.

There are few methods to calculate the polarity matrix for GF-expressions of
quaternary functions. A direct calculation by definition of P for GF-expressions
of n-variable quaternary functions requires 11" - 4™ additions and %(11"" —5m)
multiplications [5]. In FFT-like algorithms proposed in [5], the number of addi-
tions and multiplications is 7n4”~! and n4", respectively. The recursive algorithm
proposed by Falkowski and Rahardja in [3] requires A, = %(13" — 4") additions
and M, = 3 2 (3" — 1)4™ multiplications.

By the analogy to GF-expressions, we considered few ways to calculate the RMF
polarity matrix. In a direct implementation of (6), the number of required additions
and multiplications is A% = 4?"(4™ — 1) and M} = 4®", respectively. The number
of additions and multiplications required for the polarity matrix calculation with
FFT-like algorithm is A% pp = 2216™ and M3 e, = T:16", respectively.

The computational cost of methods proposed in Section 8 is stated by the
following theorem.

280 Dragan Jankovi¢

Table 5: The number of additions and multiplications in calculation of Prasr.

direct FFT-like
n A My Afpr Mppr
1 48 64 24 28
2 3840 4096 768 896
3 258048 262144 18432 21504
4 16711680 16777216 393216 458752
5 | 1072693248 1073741824 7864320 9175040
6 | 6.87027e10 | 6.8719477E10 | 150994944 | 176160768
recursion by columns recursion by rows
n A7 M2 AP MP
1 14 3 12 3
2 280 57 240 57
3 4704 903 4032 903
4 76160 13737 65280 13737
5 1222144 206823 1047552 206823
6 19568640 3105417 | 16773120 3105417

Theorem 6 The number of additions required to calculate RMF polarity matri
for an n-variable quaternary function, by using the recursive matriz relation (11)
(recursion by columns) is AY = i—g(lﬁ“ — 4™). If the relation (13) (recursion by
rows) is used, the number of additions is AT = (16™ — 4™). In both cases, the same
number of M} = %(15" — 4™) maultiplications is required.

For illustration of this theorem, the Table 5 shows the number of additions and
multiplications in calculation of the RMF-polarity matrix for different, values of the
number n of variables for different methods. Figures 1 and 2 show the number of
additions and the number of multiplications needed for the calculation of the RMF
polarity matrix with different methods.

It is obvious that methods proposed in Section 8 are more efficient than direct
computation or FFT-like methods for the calculation of the RMF polarity matrices.
It is important to note that the efficiency of our method increases with the number
of variables.

Recursive Algorithms for Polarity Matrices Calculation 281

10 Conclusion

We have proposed a method for construction of recursive procedures for the polarity
matrices calculation in polynomial logical function representation. As particular
cases the recursive methods proposed in [3] and [6] can be derived by our method.
Based on our method we have constructed two algorithms, denoted as recursion
by rows” and ”recursion by columns”, for generation of polarity matrices for RMF-
expressions of quaternary functions. To estimate their efficiency, we determined the
number of operations required in each of them, and provided a comparison to other
algorithms for generation of P r, as well as to the corresponding algorithms for
polarity matrix for GF-expressions.

We showed that the proposed algorithms are more efficient than both direct
calculation of Prayrp and related FFT-like algorithms. An important feature is
that the efficiency of the proposed algorithms grows with the number of variables
n in the represented functions. For example, the ratio between the number of
additions in direct calculation of Prppr and “recursion by rows” method is 4™.
The corresponding ratio for multiplications is greater than 1.714”.

Our method can be used for construction of recursive relations for polarity
matrices calculation for any Kronecker product based expression of MV functions.

1E+12 ...

1E+10

1E+08

1E+06

10000

100

1 2 3 4 5 6

Figure 1: The number of additions needed for calculation Prasr.

282 Dragan Jankovié

1E+11
1E+10
ST — M; ..
1E+08 M
1E+07
1E+06
1E+05
10000 MM
1000

100) R — _

10

Figure 2: The number of multiplications needed for calculation Ppasp.

-References

[1] Falkowski, B.J., Rahardja, S., “Efficient algorithm for the generation of fixed po-
larity quaternary Reed-Muller expansions”, Proc. 25-th Int. Symp. on Multiple-
Valued Logic, Bloomington, 1995, 158-163.

2] Falkowski, B.J., Rahardja, S., “Efficient computation of quaternary fixed po-
larity Reed-Muller expansions”, IEE Proc.-Comp.Digit. Tech., Vol.142, No. 5,
1995, 345-352.

[3] Falkowski, B.J., Rahardja, S., “Fast construction of polarity coefficient matrices
for fixed polarity quaternary Reed-Muller expansions” ,Proc. §th International
Workshop on Spectral Techniques, Beijing, China, March 1994, 220-225.

[4] Falkowski, B.J., Rahardja, S., “Quasi-arithmetic expansions for quaternary
functions” ,Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller
Ezpansion in Clircuit Design, Chiba, Japan, 1995, 265-272.

[6] Green, D.H., “Reed-Muller expansions with fixed and mixed polarities over
GF(4)”, IFE Proc.- Comp.Digit. Tech., ‘Vol.137, No. 5, Sept. 1990, 380-388.

[6] Harking, B., Moraga, C., “Efficient derivation of Reed-Muller expansions in
multiple-valued logic system”, Proc. 22nd IEEE Int. Symp. on Multiple- Valued
Logic, Sendai, Japan, 1992, 436-441.

(7] Muzio, J.C., Wesselkamper, T.C., Multiple-valued Switching Theory, Adam
Hilger, Bristol, 1986.

Recursive Algorithms for Polarity Matrices Calculation 283

[8] Stankovié, R.S., Moraga, C., “Reed-Muller-Fourier representations of multiple-
valued functions over Galois fields of prime cardinality”,Proc. IFIP WG 10.5
Workshop on Applications of the Reed-Muller Ezpansion in Circuit Design,
Hamburg, Germany, Sept. 1993, 115-124.

[9) Stankovié, R.S., Jankovi¢, D., Moraga, C.,“Reed-Muller-Fourier versus Galois
Field representations of Four- Valued Logic Functions”,Proc. 3rd Workshop on
Applications of the Reed-Muller Ezpansion in Circuit Design, September 19-20,
1997. Oxford, UK, 269-278.

Acta Cybernetica 14 (1999) 285-302.

Object-Oriented Model for Paftially Separable
Functions in Parameter Estimation®

Jaakko Jarvit

Abstract

In parameter estimation, a model function depending on adjustable pa-
rameters is fitted to a set of observed data. The parameter estimation task
is an optimisation problem, which needs a computational kernel for evalu-
ating the model function values and derivatives. This article presents an
object-oriented framework for representing model functions, which are par-
tially separable, or structurel. Such functions are commonly encountered,
e.g., in spectroscopy.

The model is general, being able to cover a range of - varying model func-
tions. It offers flexibility at runtime allowing the construction of the model
functions from predefined component functions. The mathematical expres-
sions are encapsulated and a close mapping between mathematics and pro-

"gram code is preserved. Also, all interfacing code can be written indepen-
dently of the particular mathematical formula. These properties together -
make it easy to adapt the model to different problem domains: only tlghtly
controlled changes to the program code are required.

The paper shows how derivatives of the model function can be computed
using automatic differentiation relieving the programmer from writing explicit
analytical derivative codes.

The persistence of the objects involved is discussed and finally the com-
putational efficiency of the function and derivative evaluation is addressed.
It is shown that the benefits of the object-oriented model, namely the higher
abstraction level and increased flexibility, are achieved with a very moderate
loss of performance. This is demonstrated by comparing the performance
with low-level tailored C-code.

1 Introduction

Even though object-orientation (OO) has become the dominating programming
paradigm, it is quite slowly adopted to numerical applications, mainly because of
the poor efficiency of OO programs in numerical codes. The progress in program-
ming techniques and compilers is changing this situation and makes it possible to

*This work was supported by the Academy of Finland, grant 37178.
fTurku Centre for Computer Science, Lemminkiisenkatu 14 A, FIN-20520 Turku, Finland,
email: jaakko.jarvi@cs.utu.fi

285

mailto:jaakko.jarvi@cs.utu.fi

286 Jaakko Jarvi

take advantage of OO in numerical codes without a significant performance penalty
[16]. This is demonstrated in this paper describing an OO model for parameter es-
timation of structural, partially separable functions.

The task of modelling data is commonly encountered in numerous apphcamon
fields. The goal is to fit a model that depends on adjustable parameters to a set of
observed data. A cost function, such as the sum of squared differences, is chosen to
measure the agreement between the model and data. This function is minimised by
adjusting the parameters of the model according to some optimisation algorithm.

The model can be based on some underlying theory about the data or be just a
sum of convenient functions, such as polynomials. This article focuses on partially
separable model functions, where the function is a sum of component functions,
e.g., a spectrum consisting of a sum of spectral lines. The OO model presented
in this article was developed while working on nuclear magnetic resonance (NMR)
spectra estimation. Hence, the article includes a case study of NMR spectral fitting
to make the ideas presented more concrete.

Numerous algorithms have been described for model fitting tasks in the liter-
ature [2, 14]. They are usually presented from the numerical analysis viewpoint,
treating the model as a plain vector of parameters and a function for evaluating
values and derivatives. However, this flat representation of the model function is
not necessarily natural. The model may be structural consisting of several compo-
nent functions, which possibly correspond to some real life entities. The function
representation should be flexible. It should be possible to specify the composition
of the component functions at runtime, rather than fix them in the program code.
Furthermore, the function representation should be able to handle dependencies
between parameters of different component functions. The flat model representa-
tion is therefore inconvenient, for the user and it is the application developer’s task
to provide a conversion to and from the structural representation.

This article presents an OO model to serve as an intermediate link between the
two representations described above. The model provides simultaneously an effi-
cient computational kernel for the optimisation algorithms and the structured view
for the user. It is a collection of classes comprising a core to represent structurecd
model functions. These core classes implement the basic structural and flat views
to the model function, as well as the mechanisms for function value and derivative
calculations.

The extension of the core model for a specific application is done by provid-
ing a simple class for each type of component function. Essentially only member
functions specifying the mathematical formulae of the component functions are re-
quired in these classes. Consequently, the particular mathematical expressions are
encapsulated and the mathematical structures of the problem domain are preserved
in the program code. This means that the necessary changes to program code are
minor and well controlled if the model is applied to a different application area.

The model utilises the concept of automatic differentiation [15] for derivative
computations. This relieves the programmer from writing analytical derivative
codes. Automatic differentiation is made transparent to the programmer with
operator overloading.

Object-Oriented Model for Partially Separable Functions ... 287

The core classes implement all the functionality needed for constructing compo-
nent functions and their parameters. The user interface for this task can therefore
be built solely based on the core classes. The addition of new classes to the model
hierarchy does not cause any need for changes in the interfacing code. In section
3.5 we give an example of a user interface built in this manner.

This paper also discusses the computational efficiency and shows that the over-
head arising from the higher abstraction level and greater runtime flexibility of
the OO model is very moderate compared with a low-level C-code implementation.
Persistence, i.e., the ability to store and retrieve the objects of the model is also
considered.

The crucial parts of the model are presented using C++ language, but the
model can be implemented in any language supporting inheritance, dynamic bind-
ing and operator overloading. However, the test runs were performed using a C++
implementation.

There are few descriptions of using object orientation together with parameter
estimation in the literature. Related work can be found from [11, 17] containing
general descriptions of computer systems sharing some similarities with our model.
For description of an NMR. analysis software built using a variant of the object
oriented model presented here, see [10].

2 Parameter estimation problem

The task of fitting a parametric model function to a set of observed data points
can be seen as minimisation of a cost function describing the distance between the
model and the data. A common choice for the cost function is the sum of squares
function. This least-squares model fitting problem can be stated as follows: '

Let y(z;),i = 1,...,m be a set of observed data points, p = (p1,...,pr) be
a vector of model parameters and §(z,p) a parameter-dependent model function.
The maximum likelihood estimate of the parameters is obtained by minimising the
chi-square function

O (y(@:) =iz, p)
vlp) = Y (M rEe)) 1
‘)
i=1 . .
where o; is the standard deviation of the measurement error of the ith data point.
This formulation leads to a possibly non-linear optimisation problem which can
be solved with iterative methods, most commonly with Levenberg-Marquardt or
Gauss-Newton algorithms {2, 14]. The idea is to improve iteratively the trial solu-
tion

S

Pnew = Pcurrent + Ap (2)

until an acceptable solution is found. The change Ap is determined using the
gradient and usually an approximation of the Hessian of the cost function. These
in turn require calculation of the partial derivatives Q%:ﬂ,s = 1,...,k of the

288 Jaakko Jérvi

PCr

i i
1 T

amplitude

i
T

<
R

=

A S A,

frequency

Figure 1: Example of a 3'P NMR spectrum (lower curve) and a model function
(upper curve) fitted to the spectrum. «, f and -y peak groups originate from ATP
molecules. The measured spectrum is shifted rightwards for clarity.

model function. Even though each iteration typically involves additional costs,
such as solving a linear system of equations, the calculation of the model function
and derivative values often dominate the overall cost.

The above clarifies the numerical view to the parametric estimation problem.
The algorithms developed for the estimation must be supplied with the parametric
model function, functions for the partial derivatives and the vector of modifiable
parameters. Furthermore, gj(z,p) is typically calculated at several points with
constant p. In cases we are interested in, §(z,p) is partially separable, that is, §
can be represented as a sum of component functions §;,j = 1,...,n, each being
dependent on only r; parameters, where 7; << k.

2.1 NMR spectroscopy case

In NMR spectroscopy, a signal of damping oscillations (FID) emitted by certain
atomic nuclei (e.g. 3'P) is observed. An NMR. spectrum is a Fourier transform
of this s'ignal. The spectrum contains peaks or resonance lines corresponding to
nuclei in various compounds. The amplitude of a single peak is proportional to the
number of equivalent nuclei resonating at that frequency. 6]

A typical 'P NMR spectrum is shown in Fig. 1. Signals of inorganic phosphate
(Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) can be identified
from the spectrum. The aim is to find the amplitudes and frequencies of the
identified compounds. This is done by quantifying the spectrum or the FID, which
is represented as a superposition of parametric functions, each corresponding to
a single resonance line. This parametric model function is fitted to the measured
signal and the results, peak intensities and frequencies, are calculated from the
model parameters. Fig. 1 also shows a fitted model.

Basically we have a structural model function consisting of a sum of compo-
nent, functions, the resonance lines. Several lineshapes are encountered, the most
common being the Lorenz function described by amplitude A, frequency f, phase
¢ and damping factor d. A model of n reconance lines in a somewhat sunphﬁed
form in time domain is then

Object-Oriented Model for Partially Separable Functions ... 289
31p NMR. spectrum
Pi PCr ATP baseline

v ATP o ATP B ATP

/N N I

left right left right left mid right

Figure 2: Example of a model function instance.

§(t,p) =) Ajcos(2mfjt + p;)e” Y, _ (3)

=1

where p = (A1, f1,d1, 01, ..., An, fn, dn, ¢n). As can be seen, the sum function
is partially separable. Note that, contrary to this simplified expression, the NMR
signal can contain different lineshapes and there may be additional terms in the
sum. [5] .

Dependencies between parameters of different component functions are typical
for NMR models. Consider the ATP molecule. It is known a priori that 7 peaks "
altogether originate from the ATP molecules. The peaks come in three groups: a,
B and . These groups have equal amplitudes. The groups a and <y consist of two
peaks each having again equal amplitudes. The f-group consists of three peaks with
relative amplitudes 1 : 2 : 1. The frequency differences between the peaks inside
the groups are known and it is reasonable to assume that the damping factors of
all the peaks are equal. Taking these into consideration, the amplitudes, damping
factors and frequencies of 7 peaks are actually defined by only one amplitude, one
damping factor and three frequency parameters. The hierarchical structure of ATP
and other peaks in the NMR example spectrum is depicted in Fig. 2. -

To sum up the problem setting, the estimation of the parameters of the function
i is the task to be performed. This is done by minimising the chi-square error with
respect to the measured signal, where the partial derivatives of § must be calculated
repeatedly. Function § has a hierarchical structure corresponding to the peaks in
the spectrum.

3 Object-oriented model

Significant savings in development time can be achieved with careful design.of the
model function representation. In the case of structural model functions, the utmost
goal is flexibility. The number and type of the component functions may vary and
there may be common or related parameters between the component functions.

290 Jaakko Jarvi

The model function representation cught to be able to handle these situations with
case and yet be able to compute the function value and derivatives efficiently.

An important issue is the user interface for managing the model functions. The
user constructs the model functions and observes or edits the model parameters.
The programmer’s task to provide this interface for varying models is considerably
alleviated if the interface can be implemented without the need to know the actual
types or number of the component functions. The term user refers to a human
operator of a computer program whereas by client we denote the programmer or
code calling the functions or using other services of the object-oriented model.

The object-oriented approach provides a convenient means to build a function
representation to meet the requirements detailed above. The model consists of two
separate class hierarchies, the function hierarchy and the parameter hierarchy. An
essential component is also a library for automatic differentiation. The hierarchies
are first discussed accentuating the client view to the classes and then the process
of function value and derivative evaluation is clarified. While reading, the reader
may consult the object diagram in Fig. 6 representing the NMR example as objects
from function and parameter hierarchy.

3.1 Function hierarchy

The classes of the function hierarchy (Fig. 3) represent the component functions
of the structural model function (the nodes of the tree in Fig. 2). The base of
the hierachy is the abstract base class base_model, which defines the intertace for
the function classes; each function can compute the value and derivatives at a
given point. The base_class maintains a vector of parameters and defines member
functions for accessing them. Different component functions are derived from the
base_model class. These can be either elementary or composite functions.

Composite functions maintain a list of other component functions. They simply
group other components. A composite function computes its values and derivatives
by calling the evaluation functions of its child functions. Each composite model
owns the models in its child list. The top_.model class represents the whole model
function to be fitted and implements the interface to the client code. It also main-
tains the vector of the adjustable parameters used by the optimisation algorithm.

The . generic elementary_model class encapsulates the common features of the
component functions to make the derived classes as simple as possible. The tem-
plate parameter of the generic class specifies the number of parameters in the func-
tion. We will return to the details of this template in section 4. Now it suffices to.
say that the elementary model holds the parameters of the mathematical function
to be calculated as automatically differentiable numbers in the proxy data member.

Fig. 4 shows a complete class definition of an example class derived from elemen-
tary_model. These derived classes contain the actual mathematical formulae of the
model function (the eval function). In addition, only two simple utility functions
(create and get_class_.name) are needed. These are the only requirements for each
elementary function class and it is thus very easy to extend the function hierarchy
to cover new function types.

Object-Oriented Model for Partially Separable Functions ... 291

base_model

vector<base_par*> parameters
composite_model* parent

double eval(double x, double ders[])
add(base_model* m)’
remove(base_model* m)
get_child(int i)

N\

composite_model
list<base_model*> children
elementary_model<N> eval(x, ders)
ad_numbers<N>> proxy add(m)

remove(m)

get_child(i)

top_model
vector<stored_par*> parameters
eval(x, ders)

function 1 function 2
eval(x, ders) eval(x, ders)

Figure 3: Model function class hierarchy.

Gamma et al. [8] have proposed some general methods for representing hierar-
chical structures in an object-oriented language. This model function hierarchy can
be seen as a version of the Composite design pattern. Regarding the implementa-
tion issues of this pattern discussed by Gamma et al. we have chosen to maintain
explicit parent references implemented as a pointer in the base_model class. We
also chose to maximise the interface of the base_model. This means that, e.g., oper-
ations for manipulating the list of children of the composite models (add, remove)
are declared and defined in base_model. This gives transparency for the client but
on the other hand the operations do not have a meaning for elementary models.
Therefore, by default, the operations add and remove fail (e.g. by raising an excep-
tion) and the functions are overridden in the composite_model class to give them
meaningful definitions.

Not all functions are shown in the class diagram of Fig. 3. The base_model class
also defines functions for adding and removing parameters as well as functions for
naming the models. The wvirtual constructor [8, 1] mechanism is utilised in the
object construction, requiring the two virtual functions, create and get_class_name,
to be overridden in each derived class.

292 Jaakko Jarvi

class lorenz : public elementary_model<4> {
public:

lorenz* create() {return new lorenz(); }

string get_class_name() {return "lorenz"; }

enum {amp, freq, damp, ph };

double eval(double x, vector<double>& ders) {

return store_derivatives(ders,
par(amp)¥*cos(2*pi*par(freq)*x + par(ph)) * exp(-x*par(damp))); }

}

Figure 4: Definition of an example function derived from the elementary_model
class.

3.2 The parameter hierarchy

The parameter of a model function is basically just a value of some floating point
type. However, the same parameter value may be shared by several component
functions or there may be other dependencies between parameters. Hence, not
all parameters of the component functions store a value. As a consequence, just
representing a parameter as a floating point number is not sufficient to allow the
component models to use the parameters in a uniform way. Therefore parameters
are represented as classes from the parameter hierarchy (Fig. 5).

The base_par class is the topmost class of the hierachy and provides the com-
mon interface, the functions get_value and get_derivative for retrieving the value and
initial derivative of the parameter. The stored_par class represents actually stored,
adjustable parameters. The dependent_par class is the base class for dependent pa-
rameters and linear_par is for expressing linear relations between parameters. Other
dependencies may be implemented by deriving new classes from the dependent_par
class.

Each dependent parameter holds a pointer to another parameter, a parent pa-
rameter. The value is resolved by asking the value of the parent recursively until
finally an instance of a stored_par class will end the recursion. The same mechanism
applies for derivatives. The get_derivative function evaluates the derivative with re-
spect to the underlying stored parameter. For stored_par this is 1 (the derivative
of a variable with respect to itself is 1), while for linear parameters we get it by
multiplying the derivative of the parent with the linear factor (see the code outlined
in Fig. 5).

All parameters also maintain a child list and a pointer to the model function
owning the parameter. The dependent parameters contain a vector of parame-
ter modifiers such as the coefficients of the linear relation. The number of these
modifiers is fixed for each derived class and given in the constructor.

Object-Oriented Model for Partially Separable Functions ... 293

base_par)

base_model* owner
list<dependent_par*> children
double get_value()

double get_derivative()

dependent_par \ .

base_par* parent stored_par
vector<double> pp //param modifiers double value;
get_value() { get_value() {return value; }
return parent->get_value(); } get_derivative() {return 1; }
get_derivative() { set_value(double)
return parent->get_derivative(); }

linear_par
get-value() {return parent->get_value()*pp[0]+pp[1]; }
get_derivative() {return parent->get_derivative()*pp[0]; }

Figure 5: Parameter hierarchy.

3.3 Enforcing the consistency

The data structure for representing structural functions consists of several objects
from the function and parameter hierarchies (Fig. 6). It is a combination of two
object trees, both maintaining child node lists and parent pointers. In addition,
the nodes of the model tree may own nodes of the parameter tree. This relation
is represented as a list in the model tree node and a corresponding owner pointer
in the parameter tree node. Furthermore, a vector of references to the adjustable
parameters in the parameter hierarchy is maintained in the topmost model function.

To be able to guarantee the consistency of such a complex structure the con-
struction and manipulation of the objects involved in the data structure must be
controlled tightly. Though not shown in the class definitions, the creation and de-
struction of models is not part of the public interface of the classes, instead the
creation of the objects is delegated to a special creator object and the destruction
is performed from within the member functions of the classes of the hierarchy.

The final data structure maintains several invariances. The child list of a com-
posite model is kept consistent with the parent references of the children. The
same applies to child/parent relation in the parameter hierarchy as well as the
parameter/owner relation between model functions and parameters.

The relation between parameters and models is further restricted. A parameter
and its descendant can not be owned by different function hierarchies. Furthermore,
the owner function of a dependent parameter must be a descendant of the owner
of the parent parameter. Some of the invariances are guaranteed automatically by

294 Jaakko Jarvi

T: top
stored parameters

child st ;"\ "~ S~

) % \\\
. \ \ hJ
T T e/ SP: common ATP decay
| S: ATP \" [J<.
: parameters [SP: total ATP amplitude }
l . ~. .
I
\

\ ' x0.3333

S: 4 ATP S: o ATP S: 8 ATP)
parameters parameters parameters :

i
child list child list child list /l

» (LP: o ATP amplitude]

[SP: o ATP frequency]

: L: left L: right -
1 parameters parameters +14.7
I
\

\No——— _ S ——— [LP: Frequen.c.ﬂ

x (.5

Figure 6: Instantiated objects and their relations illustrated in the NMR case
(part of the ATP molecule). Solid lines represent ownership relation, while dashed
lines are non-owning pointers. Dotted lines are parent links. The class of each
object is given in parenthesis (C=composite, L=lorenz, LP=linear parameter,
DP=dependent parameter, SP=stored parameter). Along the parent links of the
parameters are the formulas for computing the values of linear parameters.

Object-Oriented Model for Partially Separable Functions . .. 295

the restricted object construction. Others are enforced by raising an exception if a
user tries to perform an operation which conflicts with an invariance condition.

3.4 Constructing model functions

The starting point of a model function is an instance of the top_model class. After
it has been created, component models can be added to its child list.

The construction of objects is delegated to a special creator object implementing
the virtual construction mechanism. The purpose of this is to make the client code,
which initiates the creation of objects, independent of the changes in the elementary
function classes.

The class of the object to be created is specified as a class name string at
runtime. This is a convenient way of initiating object construction. Since the
object creation task is most likely initiated by a user command, it is quite natural
to specify the class as a class name string. The user may, e.g., have selected the
class from a selection list.

The creation mechanism requires each class to register itself (one line of code)
and define the virtual functions get_class_name and create. Otherwise the creation
mechanism is totally independent of the derived classes: e.g., adding new elemen-
tary functions to the model hierarchy does not have any effect on the client code.
For details of the virtual construction mechanism, see [8] describing several cre-
ational design patterns.

3.5 Model editor

As an example of a user interface for specifying structural model functions, Fig.
7 shows a snapshot of the model editor we have written. The structural function
tree is visible on the left and the parameters of the currently selected model on the
right. The names of the functions as well as the parameter names and values can
be edited freely on the spot. There are buttons and menu commands for adding
and removing functions and parameters, defining relations between parameters and
storing and retrieving models. As pointed out above, the code of the model editor
is totally independent of the particular elementary function classes derived from
the model function hierarchy.

3.6 Persistence of model objects

In addition to methods for creating and modifying the structural model functions,
means for their storage and retrieval are needed. In object-oriented systemns, the
ability of objects to live beyond the lifetime of the program is called persistence.
It can be achieved using object serialisation, the common approach used in com-
mercial class libraries such as MFC [12] and OWL [13]. This approach relies on
virtual construction mechanism and requires the programmer to specify reading
and writing methods for each persistent class.

296 Jaakko Jarvi

Hode E|lo

[ATPbeta Amp (025 [0
IATP-beta: Freq 0 |-147 v
ATP: Damp | '

Figure 7: Snapshot of our model editor.

Virtual construction is already included in the model and parameter hierarchies.
Furthermore, when the model hierarchy is extended, no new data members need to
be introduced in the derived elementary function classes. Therefore the read and
write functions can be inherited and need not be specified. Consequently, the im-
plementation of persistence can be encapsulated entirely into the core classes of the
model and no changes are required when new classes are added to the hierarchies.

4 Evaluation of function values and derivatives

In this section, the function value and derivative computation in our model is
explained. The concept of automatic differentiation is described and it is shown
how to calculate the derivatives of structural functions easily and yet effectively
with this technique.

4.1 Automatic differentiation

The derivatives are traditionally calculated either symbolically or by using divided
differences. The former may be quite difficult and error-prone while the latter
introduces truncation errors and may be inaccurate and inefficient. Automatic
differentiation provides an appealing alternative.

In automatic differentiation, the derivatives are computed by the well-known
chain rule, but instead of propagating symbolic functions, numerical values are
propagated along the computation. The evaluation of the function and its deriva-
tives are calculated simultaneously using the same expressions. There are several
descriptions about automatic differentiation [15, 1, 3] and also software packages

Object-Oriented Model for Partially Separable Functions ... 297

available [9, 4]. Some packages preprocess the source code to add the necessary
statements for computing the derivatives. Other packages, using programming lan-
guages that support operator overloading, implement the differentiation as a class
library without the need for a separate precompilation.

There are interesting computational issues concerning the implementation of
automatic differentiation. The chain rule can be used either in forward or backward
mode or in something between. The implementation involves a tradeoff between
time and space complexity. In this article the forward mode automatic differenti-
ation is used. It is simple and fits very well in this particular application as will
become clear below.

In forward mode automatic differentiation, instead of computing with scalar
values, we compute with automatically differentiable numbers (ADN) (f, Vf). An
ADN consists of a value and a vector of partial derivatives of a function at a
given point. When building expressions with these objects, at the leaf level of
the expression tree f is either a variable or a constant. When differentiating with
respect to N variables, the derivative of the ith variable is represented as the ith
canonical unit vector of length N and the derivative of a constant with a zero
vector. For example, when differentiating with respect to three variables z,y,z
the constant 3.14 is expressed as (3.14, (0,0,0)) and the variable y as (y, (0,1, 0)).
Computation with these objects utilises the chain rule of derivatives.

9 2 .
. = (gf(s) s:g(to)> (ag(t) t:to> 3

As an example, consider the two-derivative case for function y+sin(z?). Starting
with (y, (0,1)) +sin(z, (1,0))?) by squaring z, we get (y, (0, 1)) +sin((z2, (2z,0))).
Taking the sine gives (y, (0,1)) + (sin(z?), (2z cos(z?),0)) and finally the addition
with y gives (y + sin(z?), (22 cosz?),1)). For numerical work, the computation is
not done symbolically, rather the actual values of the function and its derivatives
are calculated and propagated through the expression. Given 2 = 2,y = 4 the same
example becomes

2 fla)

{4,(0,1)) +sin((2, (1,0))%) (4,(0,1)) +sin({4, (4,0))) =
(4, (0,1))+ (0.06976, (1.9951,0)) = (4.06976, (1.9951,1)).

The method can be applied to any machine-computable function. All that
is needed is to code the differentiation rules for simple functions and operations.
Then any function composed of those elementary functions can be differentiated
automatically. In C++ this means overloading common functions and operators
for objects described above.

The forward mode automatic differentiation for .calculating gradients can be
computationally unattractive if applied blindly. If the gradient has n elements, the
computation may require up to order of n as much time as computating the value
of the same expression. However, in the case of partially separable functions the

298 Jaakko Jarvi

forward mode can be applied efficiently. If we consider the model function as a
whole, it may have quite a number of parameters, but the number of parameters of
the individual elementary functions is typically rather low and known beforehand.
Furthermore, different elementary functions are only related via a summation ex-
pression, which means that also the derivatives are just summed together. Conse-
quently, we use automatic differentiation in computing the local gradients of the
elementary functions and update the calculated values via pointers to the common
derivative vector. .

The computing time of the local gradients can be further reduced. By using
C++ templates, moderate size derivative vectors of ADNs can be replaced with
special sparse vectors to yield very efficient code [10]. This method was utilised in
the test runs described in section 4.4.

4.2 The function evaluation process

The model function is evaluated by calling the eval function of the topmost class,
which will traverse all the contained models and calculate their cumulative values
at a given point. The derivatives are computed simultaneously using automatic
differentiation. The derivative vector is passed as a parameter to the eval function.
First the resulting derivative vector or gradient is initialised to zero. Each elemen-
tary function reads the values and initial derivatives of the parameters (with the
get_value and get_derivative functions) and constructs ADNs from them. If the ele-
mentary function has n parameters, ADNs having n-dimensional derivative vectors
are used. The mathematical expression is then evaluated using ADNs and each
elementary function updates the resulting derivative values to the actual gradient
vector. This is accomplished with a call to store_derivatives function defined in the
elementary_model template (see Fig. 4), which adds the derivative values to the
right positions of the gradient.

After the whole function tree has been traversed, the function value is returned
and the gradient is available as the derivative vector passed to the eval function.

4.3 Computational efficiency

With regard to the computational efficiency the evaluation strategy includes a few
pitfalls. Firstly, dynamic binding is applied in the eval function invocations. There
is an inherent additional cost in a call to a dynamically bound virtual function com-
pared with a statically bound function [7]. Furthermore dynamic binding preciudes
the use of inlined functions. Inline expansion can speed up function calls and is
beneficial for small functions. However, in this case the computational cost of the
function call is probably minor compared to the cost arising from the evaluation
of the actual mathematical formulae of the elementary functions, recalling that the
derivatives are also calculated in the same function. Considering this, the relative
cost of the slightly slower function call is most likely insignificant in this case.
Secondly, dynamic binding is also applied between parameters in the get.value
and get_derivative functions. In this case the extra cost may be notable. The

Object-Oriented Model for Partially Separable Functions . .. 299

evaluation of an elementary function having n parameters would yield at least n
virtual function calls to fetch the parameter values. The number of calls is larger
if dependent parameters are involved. However, in model fitting tasks, the model
function is evaluated repeatedly at several points, without changing the parameter
values. Taken the example from NMR spectroscopy, the region of interest may
contain thousands of points. Therefore the parameter values can be cached and
only when the parameter values are changed, each elementary function reads the
values and derivatives with the virtual get_value and get_derivative functions and
stores the values to local proxy variables (ADNs). With this approach the relative
cost of retrieving the parameter values via virtual functions is of little consequence.
The caching is made transparent to the client code by maintaining a flag in the
topmost class indicating whether the values in the proxy variables are valid or not.

Also, the updating of the local gradients to the global derivative vector must
be efficient. This is implemented in the elementary_model template by maintaining
a mapping from each local parameter index to an index in the global derivative
vector. These mappings can be constructed prior to the first model evaluation. In
this task the function tree must be traversed once, but this causes no efficiency
problems, since the indices only change if the model function changes, i.e., new
component functions are added or removed. At evaluation time the only addltlonal

cost is an extra indirection for each parameter.

Some cost may also arise if the composite models in the function tree contain
many levels (e.g. in the ATP compound). From the computational point of view, it
is not necessary to traverse all composite functions during the evaluation, rather it
is sufficient to call the evaluation functions of the elementary models directly and
save the cost of a few virtual calls. This is easy to implement by maintaining a
separate list of the leaf nodes in the top_model class, which we did in the test runs.

4.4 Test runs

To assess the efficiency of the model some test runs were performed. As a test
case, we used formulae from the NMR case consisting of 10 component, functions
having 24 adjustable parameters altogether. Five different alternatives to perform
the function and derivative computations were programmed:

1. A tailored low-level C-code with analytical derivatives.

2. The presented OO model with analytical derivatives.

3. The OO model with automatic differentiation.

4. A straightforward OO implementation, without any caching.

5. A low-level implementation of the function with finite difference value ap-
proximations of the derivatives.

In the tailored low-level implementation, the model function was totally fixed at
design time, so any change in the function requires changes in the code. The code

300 Jaakko Jarvi

Implementation | Relative time
1. Tailored low level C-code 1.00
2. 00 model with analytical derivatives 1.07
3. 00 model with automatic differentiation 1.29
4. Straightforward OO implementation 2.48
5. Divided difference approximations 16.52

Table 1: Relative evaluation times of the different methods for computing the value
and derivatives of the NMR model.

was hand-optimised to a reasonable level (not making any processor specific tricks).
All subexpressions were calculated only once and all relations between parameters
were directly written into the code as effectively as possible. It is fair to say that
the code used was as fast as possible. :

In the second case, the OO model presented was used, but the derivatives of the
elementary functions were calculated analytically. This case should roughly repre-
sent the extra cost originating from the dynamic binding of the model functions, as
well as the cost arising from not coding the dependencies between the parameters
directly.

In the third case, the OO model was used with derivatives computed using
automatic differentiation. Table 1 shows the results and confirms the extra cost
being quite acceptable compared with the flexibility the model offers.

In the fourth case, no proxies for parameters were used, rather the initial values
and derivatives were retrieved during each evaluation using the virtual function
invocations. This demonstrates that the performance may drop significantly if the
programiner is not aware of the principles affecting efficiency in OO programs.

In the fifth case, derivatives were approximated with divided difference values.

The benefit of this alternative is that only the code for evaluating the value of -

the model function is needed. The performance is, however, very poor requiring
n evaluations of the model function, where n is the number of elements in the
gradient. Also, the accuracy is harder to assess.

The test runs were performed under Linux on Intel Pentium processor. The
C++ compiler used was KAI C++ 3.2.d with optimisation flags +K2 -03.

5 Conclusions

An object-oriented model for parameter estimation of partially separable function
was described. The model achieves two goals. Firstly it gives an easily extendible
OO0 framework for representing partially separable functions in a structured way,
resembling the physical real-life interpretation and mathematical structure of the
functions. Secondly, it offers an interface to an optimisation algorithm, namely a
vector of adjustable parameters and a function capable of computing the value and
derivatives of the model function efficiently.

Object-Oriented Model for Partially Separable Functions . .. 301

To achieve the first goal, the model separates the commonalities of partially
separable functions from the specific mathematical formulae. The formulae are
encapsulated to a few very simple classes. It is therefore easy to apply the model
to different problem domains, since changing these classes or adding new ones to
the model does not affect the client code using the model. Furthermore, relations
between parameters are handled by the model and they do not complicate the
mathematical expressions of the component functions.

The derivatives needed in the parameter estimation are obtained using auto-
matic differentiation. Hence, there is no need to hand-code analytical derivatives
or use divided difference values.

Considering the second goal, the calculation of function values and derivatives
is efficient. In our example case from NMR spectroscopy, the evaluation of the OQ
model required only 29% more time than a low-level tailored implementation of
the same function. As a compensation, in the OO model the final function as well
as relations between parameters can be specified at run-time, the model is easily
extendible to cover new component functions and no hand-coded derivatives are
required. ‘

To sum up, the paper gives practical guidelines for implementing an efficient
00 computational kernel for partially separable functions. With an example, we
showed that OO programming offers substantial benefits, such as higher abstraction
level, code reuse, flexibility and handling of complexity for numerical programming
as well. Furthermore, the advantages can be achieved with a moderate loss of
performance.

References

[1] Barton J. J., Nackman L. R.: Scientific and Engineering C++, Addison-
Wesley, Reading Massachusetts 1994.

[2] Bazaraa M.S., Sherali H.D., Shetty C. M.: Nonlinear Programming: Theory
and Algorithms, 2nd Edition, Wiley 1993.

[3] Editors: Berz M., Bischof C. H., Corliss G. F., and Griewank A.: Computa-
tional Differentiation - Techniques, Applications, and Tools, STAM, Philadel-
phia Pennsylvania 1996.

[4] Bischof C. H., Carle A., Corliss G. F., Griewank A., Hovland P.: ADIFOR:
Generating derivative codes from Fortran programs, Scientific Programming,
1 (1992) 1-29.

[5] Bovée W. M. M. J.: Quantification in in vivo NMR, Spectral editing, in:
Magnetic Resonance Spectroscopy in Biology and Medicine, eds. de Cer-
taines J. D., Bovée W. M. M. J., Podo F., 181-207, Pergamon, Oxford 1992.

[6] Derome A. E.: Modern NMR Techniques for Chemistry Research, 63-90,
Pergamon, Oxford 1991.

302 Jaakko Jarvi

[7] Driesen K., Hélzle U.: The Direct Cost of Virtual Function Calls in C++,
ACM Sigplan Notices, OOPSLA’96 Proceedings, 31 (1996) 306-323.

{8] Gamma E., Helm R., Johnson R., Vlissides J: Design Patterns, Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, Reading
Massachusetts 1995.

[9] Griewank A., Juedes D., Utke J.: ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C/C++, ACM Transactions on
Mathematical Software, 22 (1996) no.2, 31-167.

[10] Jarvi J.: A PC program for automatic analysis of NMR, spectrum series,
Computer Methods and Programs in Biomedicine 52 (1997) 213-222.

[11] Majoras R. E., Richardson W. M., Seymour R. S.: An object-oriented ap-
proach to evaluating multiple spectral models, Journal of Radioanalytical
and Nuclear Chemistry 193 (1995) 207-210.

[12] Microsoft, Microsoft Foundation Class Library, Microsoft Corporation.
[13] Borland, Borland C++ 5 Programmer’s guide, Borland International, 1996.

[14] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical
Recipes in C: the Art of Scientific Computing, 2nd Edition, Cambridge
University Press, New York 1992.

[15] Rall L.B.: Automatic differentiation: Techniques and Applications, Lecture
Notes in Computer Science 120, Springer-Verlag, Berlin 1981,

[16] Robinson A.D.: C++4 Gets Faster for Scientific Computing, Computers in
Physics 10 (1996) 458-462.

[17] van Tongeren B. P. O., Boxman R. D. C., Deumens J. W., van Leeuwen .J.
P., Mehlkopf A. F.; van Ormondt D., de Beer R.: QUANSIS, An object-
oriented data-analysis system for in vivo NMR signals, Journal of Magnetic
Resonance Analysis, 2 (1996) 75-84.

Acta Cybernetica 14 (1999) 303-314.

Hausdorff Dimension of Univoque Sets

Gabor Kallés *

Dedicated to Professor Imre Kdtai on his 60th birthday

Abstract

In this paper we present the results obtained so far for the determination
of the Hausdorff dimension of the univoque set, in number systems with base
number greater than 1. The investigation is based on the methods presented
in [1] and [2]. We illustrate the theoretical results with interesting examples.

Keywords: Number Theory, Expansions of Numbers, Univoque Sequences

1 Introduction

A lot of interesting problems arose relating to the number systems. A collection of
these is presented in D. E. KNUTH’s significant book [5].

In this paper we investigate the problem, what the numbers are, the represen-
tation of which is unique in a number system. The answer to this question derives
immediately, when the base number of the number system is a positive integer. For
example, in the decimal system a number has a unique representation if its form
is an infinite decimal fraction, except the numbers with a pure nine tail (999...).
The integers the finite decimal fractions and the infinite decimal fractions with the
tail 999... have two representatlons

T = 3, 1415926. .. - only one representation

3,14 = 3,13999... - two representations

Essentially the same is true of other number systems with integer base number,
using the pure £ tail, where f is the base of the number system.

However, the situation becomes much more complicated when we 1nvest1gate
number systems which have a non- 1nteger base number.

EXAMPLE 1.

Let the base number 8 = V6 + 2 & 4,4495. The digits we can use are A =
{0,1,2,3,4}, where the largest digit is the integer part of f. Let @ = £. In this

*Department of Computer Science, Széchenyi Istvdn College, Hédervari ut 3., H-9026 Gyér,
Hungary. E-mail:kallos@rs].szif.hu

303

mailto:kallos@rsl.szif.hu

304 Gabor Kallos

number system 1 = 40 + 202, since
V6 —2 V6 -2 V6 -2
5 +2- 5 .

1=4-
2

)"; with © =

Let us substitute now in this expansion one ©2 with 403 + 20%. This we can
do without any restriction, since we apply only usable digits. Then it derives
1 =40 +102+40% 4+ 20*. Repeating this method we can present infinite different
expansions for 1:

1=0,42(5, = 0,4142(5) = 0,414142(5) = 0,41...41425, = 0,4141 .. (5 .

Thus, in a general number system numbers can have more than two different ex-
pansions. The choice of the numbers with only one expansion seems to be difficult.

2 Expansions of numbers

The methods presented here are based on the work of Z. DAROCZY and 1. KATAI
(1] and [2]), with new approaches when needed. They have specified the univoque
sequences and have presented a method for the computation of the Hausdorff di-
mension of the univoque set in the cases 1 < f < 2, where § is the base of the
number system. This is our goal now in general, in an arbitrary number system
with base number 8 > 1.

As in the example let © = ;—3'_, and A ={0,1,...,{8]} the set of the usable digits.
The set of fractions in this number system is

F={z]z = ig{g = ian@"},
n=1 n=1

where a = (a1, as,...) € {0,1,...,[B]}N. The smallest element in this set is 0 (with
all of the a;-s = 0), and the largest element is

L=[p0+ (8107 + 18107 + ... = D
(with all of the a;-s = [8]). Here L > 1, because from this inequality - substituting
L - follows [5] > 8 — 1.

From now on we work only on the set of fractions.

For an arbitrary = € [0,L] we are able to describe at least one sequence a =
(a1,a9,...) € {0,1,...,[B]}Y, which produces the number z, i.e. z = S an O™
This we can do for example with the 8 or regular expansion of z. A. RENYI has
proved [9], that every number z has a § expansion with 8 > 1 as follows:

e1(z) eq(x)

B B’

z = eo(z) +

Hausdorff Dimension of Univoque Sets ' 305

where go(z) = [z],e1(z) = [B(z)]),e2(z) = [B(B(x))],... - here [z] denotes the
integral part and (z) the fractional part of z. The set }‘ is closed and bounded
(G. A. EDGAR [3]). For our investigation we will use two different expansions, the
regular and the quasiregular one. The first is the ”restriction” of the S expansion
to the set of fractions.

The regular expansion. Let us define the following sequence e,(z) for z €
[0, L], by induction on n:
en(z) =3, if
n—1
> ei(x)0' +jO" <z
=1
where j € A, but

n—1

> ()0 + (j +1)0" > g,

i=1

or j+1 > [f], i.e. we would use a non-usable digit for the expansion. The expansion
Tz =£1(7)0 + e2(x)0% + ... is called the regular expansion of z.

This essentially means, that we choose the largest usable digit in every step. So
the expamsion 1 = 0,42(g) is the regular expansion of 1 in the previous example,
since 40 < 1, thus ¢;(z) = 4, and 40 + 202 = 1, thus &;(z) = 2.

The quasiregular expansion. Let us define by induction on n the following
sequence 0, (z) for z € (0, L]:
On(z) =7, if
n—1 :
> 6:(z)0' +jO" <=

i=1

where j € A, but

> 6i(@)0' + (5 +1)0" > g,

or j+1 > [B), i.e. we would use a non-usable digit for the expansion. The expansion
z = 61(z)0 + 62(z)O2 + ... is called the quasiregular expansion of z.

The quasiregular expansion is always infinite, and if the regular expansion.is
infinite too, then the two expansions are the same. Comparing with the regular
expansion here we choose ”almost” the largest usable digit in every step. In the
previous example the quasiregular expansion of 1is 1 = 0,4141...5) . Here 40 < 1
s0 01(z) = 4, 40 + ©? < 1 and 40 +20? = 1, 50 dx(z) = 1. 40 + O 1 467 < 1,
thus d3(z) = 4, and eventually 1 = 0,4141.. () follows.

In the example we have seen too, that in spite of the’ closeness of the regular
and quasiregular expansions, we can find other dlﬂerent infinite expansions among
them.

306 Gébor Kallés

3 Univoque sequences

We call the sequence € € {0,1,...,[8]}Y univoque (with respect to ©) if the equa-

tion
[eS) [s5s)
S0 =3 5,07
n=1 n=1

is only true in the case e = 4, i.e. £, = &, forn € N (§ € {0,1,...,[B]}N). In this
case the number Y >, £,0™ is said to be univoque, too.

The sequences
=(0,0,..), ([Bl:=(818]-.)

are univoque, because every other sequence is clearly larger or smaller than these
ones, respectively, using lexicographic ordering.

Fore € {0,1,...,[B]}N let € = [B] —e = ([B] — 1, [B] —€2, - . .), which we will call
the complementary sequence. From this it follows that £ € {0,1,...,[8]}Y, and if

T =) ol €nO, then 3707 5,0 = ([f] —€1)0 + (8] —€2)0° +... = L —z.
EXAMPLE 1. (CONTINUED)

Are the followmg sequences un1voque in the number system with base number
B=+v6+2?

"a) The sequence (3,...,3,3,4,4,...).

Here we can substitute -the last digit 3. with digit 4, using .for example
1 = 0,42(3). Thus, if we "catch” a digit 4 and a digit 2 from the tail of
the sequence, we get (3,...,3,4,0,2,4,4,...), which represents the same num-
ber, .so it is clearly not univoque. Of course, using other expansions of 1,
we get infinitely many different sequences representing the same number: from
1=0,41423 it derives (3,...,3,4,0,3,0,2,4,4,..), from 1 = 0,414142 4y we get
(3,...,3,4,0,3,0,3,0,2,4,4,..) etc.

"We can work similarly with the complementary sequence (1,...,1,0,...). Here
we can substitute the last digit 1 with digit 0, using 1 = 0,42(3). Thus we get
(1,...,1,0,4,2,0,0,...), which represents the same number, and we can produce
infinitely many such sequences in the same manner.

b) The sequence (4,...,4,3,3,...).

In this sequence we are not able to change any digit using the equation 1 = 40 +
202, since we would get in all cases non-usable digits: (4, ...,4,2,3+4,34+2,3,3,...)
or(4,...,4,4,3—4,3-2,3,3,...). The same is true of the complementary sequence,
SO we conclude ‘that both of the sequences are un1voque

-We have seen, that the expansions of 1 play a very important role in deciding
the univoque property. Since [$]© < 1 both in the regular and the quasiregular
expansion of 1 surely e; = [f] and & = [8] if [8] < 8.

Now we present the exact theoretical investigation. Some of the results were
already presented in [4], these parts we quote briefly, without proofs (Lemma 1.,
Propositon 1., Theorem 1. and 2.).

Hausdorff Dimension of Univoque Sets : 307

By using the regular expansions we are able to decide whether a sequence is
univoque or not: ‘

LEMMA 1. € € {0,1,...,[B]}N is univoque with respect to © <= ¢ and [f]—¢
are regular.
(This Lemma is a generalization of Theorem 2.1 in [1].)’

By Lemma 1., in order to decide whether a sequence is univoque or not we need
the regular expansion of the sequence and that of the complementary sequence. To
establish that an expansion producing a number less than 1 is regular, we use the
result of W. PARRY [8]. By reformulating his results according to our notations
we get the following

PARRY CONDITION.

b= (b1,bs,...) is regular representing a number less than 1 <=

(b g, --) < (€1,) ¥ 0> 1,

where 0 < z = 5,0 + b:0% + ... < 1 with b € {0,1,...,[8]}Y, and (¢;,4,...) is
the coefficient sequence of the quasiregular expansion of 1.

Using only the Parry condition we are not able to decide the univoque or regular
property of a sequence representing a number in the interval [1, L]. To accomplish
this we shall use other Propositions [4], and eventually it follows, that the fur-
ther regular sequences are in the form ([8],...,[0],b1,b2,...) where the sequence
(b1, ba,...) is regular representing a number less than 1.

The set of the univoque numbers. Let

[e9)
H={z= Zené)"lz € [0, L] and £ univoque with respect to ©}

n=1

be the set of the univoque numbers of the interval [0, L], and similarly H* and H;
the set of the univoque numbers of the intervals [@,1), [0, 1) respectively.

PRroOPOSITION 1. We have

H, = {0} U G O"H*.

n=0

By Lemma 1., the location of the univoque numbers in the interval [0, L], is
symmetrical, and from Proposition 1., it is self-similar. Thus, if I < 2, then from
the univoque numbers of the interval [0,1) by reflection we can get the univoque
numbers in [1, L], and so eventually the univoque numbers of the whole interval
[O’ L]' . '
L= J@% < 125, and the fraction on the right side is less than 2if 1-© > 1, i.e.
if § > 2. This will be assumed in the sequel, since the properties of the univoque
set in the cases 1 < B < 2 are already well-known ([1],[2]).

308 Gabor Kallés

Thus, we can specify all univoque numbers (the set H) if we know the univoque
numbers in the interval [©, 1), i.e. the set H*.

Breaking down the problem into two cases. Let us notice now that

1 1
B — < —, ie. = .
ki1 <Osp e K=

Clearly, in this interval there exists a @ for which KO + 0 K= 1, since for
all © in this interval K© <1 but (K 4+ 1)© > 1. The value of this number is

K+ VK?+4

Ok 5

and if we use the notation Bx = &, then fx = K + Og.

The case when the fraction part is larger than O (K +1 > 8 > K + Q)
will be called from now on the ”big case”, and the case when the fraction part is
smaller than O (K < B8 < K + O) the ”small case”.

4 Univoque sequences in the small case

Let
Z:{2261@+52®2+63@3+...|1S&‘iSK—l}.

THEOREM 1. All elements of Z are univoque numbers.

However, there are also other univoque sequences. According to our former
investigation, the univoque sequences are the following:
a) The sequences [f] = K and 0, ’
b) the sequences of type [8]...[B]bibit1 ... and 0...0b;by1 ..., where for the
tail b = bibjy1 ...
E1Z2... <0'j(b) < tita...

is true of all = 0,1,... (o is the shift operator).

So we can represent the whole univoque set from Z as follows:

H={0}u{L}uzu|JOZU| J(KO+KO>+...+ KO+ 02).
j=1 7=1

The Hausdorff dimension of the set H. The Hausdorff dimensions of the
sets ©9Z and KO + ...+ KO + 077 (j = 1,2,...) are clearly the same as the
dimension of the set Z. Thus, the Hausdorff dimension of the whole set H equals
the dimension of the base set Z.

To compute the dimension of the set Z, we first specify the self-similarity di-
mension, and after this we check the fulfilment of the open set condition, which
guarantees that the Hausdorff dimension equals the self-similarity dimension, ac-
cording to the method presented by G. A. EDGAR [3].

Hausdorff Dimension of Univoque Sets 309

THEOREM 2. The Hausdorff dimension of the univoque set is

_ log(K - 1)
- logB

REMARK. To represent the univoque sequences we can use a graphic model.
We build a directed graph, the nodes of which are the usable digits in the number
system, and draw an edge from the node a to b if the digit b is allowable (in a
univoque sequence) after digit a. We label the edges by ©. Thus, we get a directed
graph called Mauldin-Williams graph [3]. Wandering over all the digits of the
graph, we can construct all univoque sequences. The fulfilment of the open set
condition guarantees, that the self-similarity dimension of the graph is the same
as the Hausdorff dimension of the set H. The graph model is a useful means to
demonstrate the univoque sequences, but it is not absolutely necessary.

dimH

The number system with base number 1+ v/2.
In this number system [8] =2, 4 = {0,1,2}, 0 = V2 -1,

20 22 -2
= = = V2.
1-0 2-v2 v

Since 20 + 02 = 1, the sequences belonging to the regular and the quasiregular
expansion of 1 are 21 and (20)*°, respectively. This number system belongs to the
small case, thus the univoque sequences are the following:

a) The sequences 2 and 0,

b) the sequences of type 2...211...and 0...011....

Let us denote the set of the univoque numbers beginning with i with H;, where
1 =0,1,2. The set of all univoque numbers is H = Hy U H; U Hy, with

L

Hy =(0+9H0)U(0+9H1),
H, = (0 + 0H;),
H, = (20+ ©GH,)U (20 + OH,).

The structure of the univoque set is representable by the Mauldin-Williams
graph shown on Figure 1.

31

H o 2 D

Figure 1: The Mauldin-Williams graph in the number system 1 + /2.

310 Gabor Kallés

Since

= (=) = {2},

the set H contains only countably many elements. Thus, its self-similarity and
Hausdorff dimension is 0, according to Theorem 2.
The set H approximately has the form ! shown on Figure 2.

0 1 L
Figure 2: The approximate form of the set H

REMARK. The univoque set is very similar to this in all of the cases, when
2 < B < By =1+ /2, since the univoque sequences have the same form. These
base numbers give the simplest univoque sets investigating number systems with
8> 2.

5 Univoque sequences in the big case

In the big case the structure of the univoque set is much more complicated than
in the small case. Usually, the Mauldin-Williams graph of the set is not strongly
connected, it contains more strongly connected parts. We build up this graph in
the same manner, as before (using the Parry condition). The nodes of it repre-
sent the allowable digits (or sequence parts) in the univoque sequences (because
of the complicated structure it is possible, that in the representation we have to
use sequence parts - see the following example). From the node 4,15 . ..4,, there is
an edge to the node jij2 ... jn, if 4293 ...9n = j1J2 ... Jn-1, and the sequence part,
13492 . . . inJn is allowed in a univoque sequence.

THEOREM 3. The Hausdorff dimension of the univoque set in the big case is
the same, as the largest self similarity dimension of the strongly connected parts.

PROOF. Let us assume, that the graph representing the univoque set has m
strongly connected parts, D) D) . D™ The graph part D) has a unique
self-similarity dimension, let us denote this by dim,D(®).

a) First we prove, that the self-similarity dimension of D) is the same, as the
Hausdorff dimension of D) (which we denote by dimD®M)).

To do this we have the check the open set condition. We prove this part gener-
ally, for an arbitrary (strongly) connected graph part. Let us consider for all nodes
v the set I, on the number line, which contains the picture of the sequences begin-
ning with v. This is a closed interval. Intervals according to different nodes can not

1o draw Figure 2 and Figure 4 we have used the computer algebra software Maple {7]. Maple
is a registered trademark of Waterloo Maple Inc.

Hausdorff Dimension of Univoque Sets _ 311

have an intersection. Let us assume to the contrary, that I; ;, ;. N1 . 5. # 0.
Since the nodes are different, we can find different digits in the same position:
ix # jr- It can be assumed, that for example iy = j; + 1, since if it is not possible,
then clearly larger difference can not exist, too. The smallest element in the first
interval is

i1-O@+ip- 0%+ . +ip-0F 4008 400824
and the largest in the second must be smaller than
0O+ 0% 4. 4 (ip—1)-O%+£,-0FF 40,042 44, 08P g @R

where in the following the digits £1¢, ...¢, are repeated, which are the coeffients
in the quasiregular expansion of 1 (this result follows from the Parry condition).
Thus, the intervals can not have an intersection. Choosing open intervals ”little
bit larger” than these closed intervals there is still no intersection, so eventually
dims DY = dimDW.

b) As in a) we have dimD?®) = dim,D®. The set D) U D) is situated in
the graph representing the whole univoque set in such manner, that we complete
the two strongly connected parts with the through leading edges and nodes. Now,
using the results of R. D. MAULDIN and S. C. WILLIAMS [6], we deduce that

di_m(D(l) UD?) = max{dim,(DM), dim,(D®)}.

In the sequel we consider the graph part containing the sets D) and P® as one
component, and we add the set D) etc. Finally we get for the Hausdorff dimension
of the whole graph G:

dimg = max(dim, DM, dim, D, ..., dim,D(™),

and since the open set condition is satisfied, this is the Hausdorff dimension of the
set H.
‘ O

3(26+46v33)§
(26+6v/33)% —8—(26+6v33)}
In this number system ? 8 & 3, 3830, thus A = {0,1,2,3}. The regular expansion
of 1is 1 =30 + ©2 + 83, and the quasiregular form is 1 = 0,310310.... Thus, the
univoque sequences can not contain the following parts:

The number system with base number

© (3,3),(0,0),(3,2),(0,1),(3,1,3),(0,2,0), (3,1,2),(0,2, 1), (3,1,1), (0,2, 2).
The possible parts are the following:

(3,1,0),(3,0,3),(3,0,2),(2,3,1),(2,3,0), (2,2,3), (2,2, 2),(2,2,1),(2,2,0),

2The base number of the number system is the reciprocal value of the real solution of the
equation 1 = 30 + ©2 + 03

312 : Gabor Kallds

(21 173)’ (27 1’ 2)’ (2’]"]')’ (2’]'7-0)’ (2707 3)7 (270) 2))
and their complementers:
(0,2,3),(0,3,0),(0,3,1),(1,0,2),(1,0,3),(1,1,0),(1,1,1),(1,1,2), (1, 1, 3),

(1,2,0),(1,2,1),(1,2,2),(1,2,3),(1,3,0),(1,3,1).

Now if we would like to denote the possible parts unambigous, then we have to
use three digits in a node. Similarly as before, we will use the sets H; 4,4, and we
can write the set equations, for example:

Hpzz = (0+ ©@Ha31) U (0 4+ OHaszp)

Hyga = © 4+ OHps
Hii1 = (@ + @Huo) U (@ + @Hm)'U (@+ @Hlvlg) U (@ + ®H113)

To save place, we have omitted the further equations, but it is an easy exercise to
- write those ones, too. The structure of the univoque set is representable with the
Mauldin-Williams graph shown on Figure 3. The graph contains two strongly con-
nected parts. To indicate this, we have separated the nodes. The nodes which have
"through leading” role are shown alone, and their edges indicate the connections.

110 113

202

223 220 223 220

ll.)*] 1+o: 1340 lfl 202 203 230 231 302 303 310 023 030 031 102 103 130 101 202 203 230 231
I%u*)l [%13] [120] [123] [130] [131] [202] [203] [210] 213 220 223
f

111 211 111 211 112 212 112 212 113 213 113 213 120 220 120 220 121 221 121 121 122 222 122 222

Figure 3: Mauldin-Williams graph. (See text for vdetails.)

To specify the self-similarity dimension, for the str ongly connected graph parts
we get the following equation systems:
The first graph part
T2z = A~ @330 + A~ g3y
30 = A~ G302 + A Q33 = ¢330
9031 = A+ G310 = @

Hausdorff Dimension of Univoque Sets 313

dloz = A - 0Ga3 = G50z
qlo3 = A Qg0 + A - @631 = 4303
9310 = A - qlo2 + A~ qios;
where g; 1, is the Perron number belonging to the node ijk, s is the self-similarity
dimension of the graph part, and A = ©°. After repeated substitution
a3 = A a0 + A° - G330
830 = X%~ G823 + A - G823
We can choose without any restriction one of the Perron numbers ([3]), let for
example ggo3 = 1. Thus, from the last equations
1= X" ggo +A* - ¢33 and
Qos0 = A2 + A.
From these two equations 1 = A2 + 2X3 + X* = (X + A?)2. The solution of
MN4+A-—1=0is

5—-1
A= oot
2
so the dimension is v
log(¥5£L
o= 19805 o 3048,
logf
The second graph part
g =A-gin + A ='¢5n
iz = A @in + A Qi =51y
921 = A @G+ A3y = g5m
Qoo = A Gy + A Gy = Q3
After repeated substitution
a1 = A-qin A di =(qi12
From this ¢§;; = 2X - ¢f;;, and A = 1.
Thus, the dimension is
log2
= %2 +0,5687,
logf

and the dimension of the whole graph is eventually the dimension of the second
graph part. The open set criterion is now satisfied, so this is the Hausdorff dimen-
sion of the whole univoque set, which approximately has the form shown on Figure
4.

—+HH
0 1 L

Figure 4: The approximate form of the set H

314 Gabor Kallss

References

[1] Z. DarOczy, 1. KATal, Univoque Sequences, Publ. Math. Debrecen, 42.
(1993), 397-407.

[2] Z. DAROCZY, I. KATAL, On the Structure of Univoque Numbers, Publ. Math.
Debrecen, 46. (1995), 385-408.

[3] G. A. EDGAR, Measure, Topology and Fractal Geometry, Springer Verlag,
New York, 1994.

[4] G. KALLOS, The Structure of the Univoque Set in the Small Case, Publ. Math.
Debrecen, 53. (1998). (to appear)

[5] D. E. KnuTH, The Art of Computer Programming, Vol. 2., Addison-Wesley,
1981.

6] R. D. MAULDIN, S. C. WILLIAMS, Hausdorff Dimension in Graph Directed
Constructions, Trans. Amer. Math. Soc., 309. (1988), 811-819.

[7] MOLNARKA GYOz06 ET AL., A Maple V és alkalmazdsai, Springer, 1996.

(8] W. PARRY, On the § Expansions of Real Numbers, Acta Math. Hung., 11.
(1960), 401-406.

[9] A. RENYI, Representations for Real Numbers and their Ergodic Properties,
Acta Math. Hung., 8. (1957), 477-493.

Acta Cybernetica 14 (1999) 315-330.

Optimal parameters of a sinusoidal representation
of signals

A. Kocsor* L. Téth* 1. Balintf#

Abstract

In the spectral analysis of digital signals, one of the most useful paramet-
ric models is the representation by a sum of phase-shifted sinusoids in form of
ZT]Y:_OI An sin(wat + ¢n), where Ay, ws, and ¢, are the component’s ampli-
tude, frequency and phase, respectively. This model generally fits well speech
and most musical signals due to the shape of the representation functions.
If using all of the above parameters, a quite difficult optimization problem
arises. The applied methods are generally based on eigenvalue decomposition
[3]. However this procedure is computationally expensive and works only if
the sinusoids and the residual signal are statistically uncorrelated. To speed
up the representation process also rather ad hoc methods occur [4]. The
presented algorithm applies the newly established Homogeneous Sinus Rep-
resentation Function (HSRF) to find the best representing subspace of fixed
dimension N by a BFGS optimization. The optimum parameters {A,w, ¢}
ensure the mean square error of approximation to be below a preset threshold.

1 Introduction

Since the invention of the telephone, speech or generally sound processing and
representation have paramount importance in electrical engineering. In the last
years the rapid development of multimedia and computer networks brought a revival
of the high-effective coding and representation problem.

By the classic model of speech generation, the voiced part of speech comes from
the oscillation of the vocal chord, which is modellable by an oscillating string. The
voice consists of a fundamental and its harmonics, therefore it is well representable

*MTA-JATE Research Group on Artificial Intelligence, H-6720 Szeged, Aradi Vértanuk Tere
1, Hungary)

TDepartment of Theoretical Physics, Jézsef Attila University, H-6720 Szeged, Tisza L. krt.
80-82., Hungary ’

¥Department of Pharmaceutical Analysis, Szent-Gyérgyi Albert Medical Uriversity, H-6720
Szeged, Somogyi Béla u. 4., Hungary

§Department of Natural Scienses, Polytechnic of the Miskolc University, H-2400 Dunaiijvéros,
Téncsics M. u. 1., Hungary

315

316 A. Kocsor L. Téth 1. Bilint

in the form
N—1

Z An sin{wat + ©n).

n=0

The error of this approximation gives the 'unvoiced’, noise-like part, which can be

- decoupled from the signal. The model fits well also musical signals, since the sound
of most musical instruments (stringed-, wind instruments, etc.) consist of harmonic
sinusoids. The residual signal again contains the noise-like part of the sound (e.g.
drum hits), which should be modelled separately.

The above form of the model yields a complicated optimization problem enforc-
ing some simplifications. In case of DFT (Discrete Fourier Transform), the number
of sinusoids and their frequencies are fixed providing a rapid way for the compu-
tation of amplitudes and phases. However, in general, the individual sinusoidal
components of this representation may significantly differ in their parameters from
the real sound components. The method of McAulay-Quatieri [4] tends to deduce
the real frequencies of components by looking for peaks in the DFT spectrum. A
basically different approach is based on eigenvalue decomposition [3]. Here, only
the dimension of approximation space is fixed, but the statistical independence of
the representation functions (sinusoids) and of the residual signal is required.

The presented procedure is free from requiring any statistical condition, only the
dimension of approximation space is fixed. The established optimization problem
is based on a recently introduced functional [16] and it is solved very effectively
by the BFGS [10,12,13] method. The efficiency of the method is illustrated by
representations of artificial and natural voice patterns.

As to the structure of the report, the second section provides the usual, 'con-
servative’ formulation of the problem, the third section deals with the introduced
Homogeneous Sinus Representation Function (HSRF), the fourth section investi-
gates the properties of HSRF, the fifth section discusses the workhorse optimization
scheme BFGS, finally the sixth section delivers the numerical illustrations and con-
clusions.

1.1 Notational conventions

The Euclidean norm is denoted by || ||, the gradient of a function f(z): R™ - R
by

o) | 3fa)s

v =
f(z) [awl)) azn)
and the Hessian will be denoted, as
i) .. (=)
dx10x, 0z10Tn
VxVi@=| i
?fz) . 8%(a)

CEINCED O0Tn0%n

Optimal parameters of a sinusoidal representation of signals 317

Definition 1.1 The continuous function f(x) : R"™ — R is homogencous of lth
degree, if
fkx) = k' f(x), k € R.

2 The representation problem

A signal is sampled at points 79, 71, -+, Ti—1 of a closed time-interval [0, 7] and the
obtained values are represented by the real sequence,

zlrol, - 2[Tr 1]
A function of the form
N-1
E Ap sin{wnt + ¢n)
n=0

is sought, which approximates the measured sample with a preset error € > 0, by
fixing the dimension of approximation space to IV,

2

K-1 /N-1
min Z (Z Ay sin(Trw, + ©n) —:E[Tk]> < e (1)
Ay, AvC1 k=0 \n=o

Wy, "y WN-1

Y1, " PN-1

3 Optimization of the Homogeneous Sinusoidal
Representation Function

Let be introduced the following notation,

N-1
wi(A,w,9) = > Apsin(wnti +n), k=0, K1 2)

n=0
where
A :=[4o,, An_1]T, wi=|wo, wnoa]', 0= [P0, on1]"

and let be applied the trigonometric identity,

N-1
w(A,w,p) == Z Ap sin(rgwn + ©n) =
n=0 :
N-1 N—1

Z An(sin{wn i) cos(¢n) + cos(wpTk) sin(ps)) = Z ap $in{wpTk) + by cos(wp k),

n=0 n=>0

318 A. Kocsor L. Téth 1. Balint

where
n = Ancos(py), bn = Apsin(e,). (3)

By introducing new variables,

dn

. 2, 2
=sin(wn), —F————== = cos(wy), ¢, +d, #0, 4
i a (wn) JETE (wn) ; # (4)
we obtain
N-1
Z an sin(wy,7g) + by, cos(wn i) =
TL:O
N-1 c
an, sin(7y, arcsin + by, cos(Ty, arcsin(———)) =: wg(a,b,c,d),
where
a:=[ag, ,an—1)", b:=[bo, - ,bn_a]T,
c:=[co, - ,en-1]", d:=[do, -, dn-1]".

If we introduce two further vectors,

x = [z]70), -, :E[TK_l]}T, w = [wp(a,b,c,d), - ,wx-1(a,b,c, d)]T

the Homogeneous Sinusoidal Representation Function (HSRF) to be optimized will
be

Lyw(a,b,c,d) :==x"xw ' w — (x"w)2. (5)

4 Some properties of HSRF

Notation 4.1 Let the parameters a,b,c,d of HSRF be concatenated into a single
vector, as follows

zZ = [a,b,c,d]T = [ao, s ,aN_l,bo, e ,bN—laCO; s ,Cj\{_l,do7 s ,dN_.l]T.
Vector z is of 4N-dimension and the concatenated components occupy the following
fields:

a; ,if 0<i<N-1
bi_ny ,if N<i<2N-1
Ci—an Hif 2N <1 <3N -1
di—any ,if 3N <i<4N -1

Z; =

Lemma 4.2 HSRF exhibits the properties:

1. Lyw(z) is a homogeneous function of 2nd degree.

Optimal parameters of a sinusoidal representation of signals 319

2. Lyw s a Oth degree homogeneous function of its variables c,d:

wa(aaba /\C, /\d) = wa(a7b:c:d): 0 # /\ € IR ‘

8. Lxw .is a 2nd degree homogeneous function of its variables a,b:

Lyw(Aa,Ab,c,d) = A’ Lyw(a,b,c,d), A€R

4. Luw(z) = Lwx(2)

Proof. Point 4. satisfies trivially, points 1., 2., and 3. follow from the continuity of
Lyw(z), as well as from the enumerated properties obeyed by wy (z) = wy(a, b, ¢, d):

1. wi(Az) = Awyg(z), 0#AelR.
2. wi(ra, Ab,c,d) = Awg{a, b, c,d), Ae 1R,
3. wi(a, b, e, Ad) = wi(a,b,c,d), 0#)€ ' o

Theorem 4.3 HSRF exhibits the enumerated properties:

1. Lyw(z) > 0 and Lxw(z) = 0 if and only if the x and w vectors are linearly
dependent.

2. If z is an optimumpoint of Lxw(z), then Lxw(z) = 0.

3. If Lyw(z) =0, then Vyw(z) = 0.

Proof.

1. Function Lyw(2z) stems from the Cauchy-Scwartz-Bunyakovszkij inequality
applied on the vectors x € R* and w(z) € R¥:

xxw(z) w(z) > (x—'—w(z))2
The equality satisfies, if the vectors are linearly dependent,

x xw(z) w(z) — (xTw(z))2 =0.

2. If z € R*Y is an optimumpoint of Lyxw(z), then necessarily VL, yw(z) = 0.
Euler’s theorem ensures that the 2nd degree, homogeneous function Lxw(z)
obeyes the equality:

2"V Liw(2) = 2Lyw(2).

Therefore a zerovector gradient implies a zero function value, VL, w(z) =
0 = Lyw(z) =0.

320 A. Kocsor L. Téth I Balint

3. If Lyw(z) = 0, the vectors x and w are linearly dependent, i.e. x = Aw(z)
without restricting generality. The following sequence of equalities proves the

statement:
Vikw(z) =

=x"xV (w(z) w(z)) + V (x ' x) w(z) "w(z) - 2 (x " w(z)) V (x w(z)) =
= X (w(z)"w(z) w(2) TV (w(2))+0-2)* (w(2) Tw(2)) w(2)T V (w(z)) = 0
O

The properties of Lxw(z) discussed above ensure good optimization properties.
The optimumpoints of this non-negative homogeneous function are global and a
gradient-based optimization scheme may efficiently localize them.

Lemma 4.4 The gradient VL, (z); z = [a,b,c,d]" is of the form:

K-1

K—1
%wa(z) = (Z l’[TkP) (2 Z wk(Z)aiZiwk(z)) —

k=0 k=0

K-1 K-1 P
2 (Z z['rk]wk(z)> (Z x[Tk]aziwk(Z)> :

k=0 k=0

The partial derivatives by the various sets of variables are as follow:
0 wg(z) = sin | 7 arcsin i

kl2) = k > ‘
Oa; Ve +d?

0 . Ci
B_biwk(z) = cos | 7y arcsin W

! . : . - .
T d; <ai cos (Tk arcsin (\/g‘—>> — b; sin (Tk arcsin (c;
c?+d? VE+d?

_6_w (z) =

dei (F + &)

5 _ THC <a,- cos <Tk arcsin (\/C_ng—d?)) — b; sin (Tk arcsin (J;_—M)))
aq; "+ = (2 +d2)
Proof. The proof is trivial by the differentiation rules. O

The next theorem provides the bridge between the function value of HSRF and the
representation problem (1).

Theorem 4.5 If for any positive number 6 and for real vectors z € R*"N and
x € R¥, Lyw(z) < 6 is satisfied, then

B a=20 0 ko)
Iw(2)I*’ RO ’

w(z)
Ai

X —

min
i

Optimal parameters of a sinusoidal representation of signals 321

Proof. For the sake of simplicity, the argument z of w(z) and of w;(z) will be
omitted and z{r;] will be denoted simply as z;.

K—1 K-l ke 2
Lyw(z) = x xw'w — (x' w) (zf) (Z) (Z z; wl> =

i=0 i=0
K-1K-1 K-1K-1 2
1 Z ()2 1 Wy
= - Wir; —W;T; = = Wir; — Wy — =
9 : ' M 7 2 § : ‘ et} J /\1
=0 7=0 i=0 j=0

2

1 — w 1 w
:§Z'IU,LZ<I]—/\—]) EZ'LUf X—; <(5
i=0 §=0 t
If choosing the ’best’ of A;s, the inequality
1 S Sy 2
2 mi 2 .
EHWII min X_A_i <5§wi X“—Z <4,
proves the statement. ' ’ 0
If the previous optimization ylelds a zg satisfying
1 2LXW
x — w(zg) 2] = m1n x — w(zg)- 2[r] (ZOQ),
ws(z) w;(z) llw(z0)||

the difference of the Euclidean norm of the signal vector x and the replesentatlon

vector
z[7s]

ws(z)

w(zo)

is given by the above expression.

5 Solving the representation problem by NHSRF

5.1 Application of the BFGS optimization scheme

For minimizing the representation functional the most suitable procedure proved
to be the gradient based Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme
[10,12,13]. Since also the zero-vector is an optimumpoint of Lyw(z) to avoid.conver-
gence to the zero-vector, the HSRF is normalized to be a Oth degree: homoguleous
function of the form, .

Lyw(z) : o ©)

llall o]l S

This will be called Normalized HSRF, NHSRF in short. Every former obtained
result are inherited by NHSRF, however the new partial derlvatlve components of
the gradient are given below,

0 i) _ 1 I () - B
a; [lal[[[bl] ~ Ib]| N -

322 A. Kocsor L. Téth I Balint

9 Dow(z) 1 Il (FrLaw(®) — Lo iy
b

Jall o1l = Tall T :
O Lyxw(2) 1 d ’
a_ = _wa zZ),
9e; Tl bl Tl Tl 8 =<)
0 Lyxw(z) _ 1 0 L (2).

ad; [lall oIl — [lall I1b]] 8d:

Every test result displayed for illustration was obtained by the NHSRF. For termi-

nating the line-search
Lyw(z + kd)
min ————-——=
se® lalllbll
the Wolf-condition, for initializing the H-matrix, the unit matrix was used. For
terminating the whole BFGS optimization generally the acceptable low norm of
the error-vector, as well as that of the gradient was used. We also have stopped
the iteration, if the condition
2Lyw(Z)
l[w(=)}*

as referred in Theorem 4.5 was satisfied.

5.2 Estimation of the number of necessary operations

For one iteration step of the BFGS scheme generally the function value and gradient
should be computed at several points in the line-search process. This requires to
evaluate scalar products, which can be obtained with o(NK + K?2) operations,
because for any k,

N-1
. . Cn Cn
g @ sin(7y, arcsm(—2—2 TEr
n=0 VA + dn Ve + d

can be obtained with o(IV)} operations, and the K-dimensional vector w is obtain-
able with o(N K') operations. To evaluate the function value, as well as the gradient,,
scalar products of K-dimensional vectors have to be computed. The update of the
4N x 4N-size H-matrix requires o(N?) operations in every step counting altogether
o(N? + N K) operations per step. Since generally the number V of sinusoidal com-
ponents is much less then the number of the components in the signal vector, the
number of really required operations is of o(INK').

)) + by, cos(7y, arcsin()) = wi(a,b,c,d)

6 Numerical illustration of the algorithm

The aim is to construct an acceptably accurate sinusoidal representation of an
arbitrary (sound) signal. The procedure is based on the optimization of NHSRF
starting from an approximate sinusoidal decomposition of the signal. The procedure

Optimal parameters of a sinusoidal representation of signals 323

aims to reduce the number of sinusoidal components by retaining the accuracy
of the representation. The numerical illustrations are mainly artificial examples
to obtain a well-defined measure for the accuracy of approximation, however the
representation of a natural sound sample is also included.

In all cases of artificial and natural sound patterns an approximate sinu-
soidal represenation served as initial parameters of the NHRSF optimization. The
z[m0), - - -, [Tk 1] signal was decomposed by the following iterative algorithm:

e In every iteration, first the DFT of the signal was computed on a zero padded
2048 base point data set using a Hamming window. The obtained spectrum
is the convolution of the transformed signal and the transformed window. -

e The maximum amplitude component was selected. To remove the unpleas-
ant effect of windowing, the Fourier-transform of the window function was
subtracted from the spectrum after a suitable shifting and scaling. ‘

e The iteration was continued until the largest amplitude was smaller than a
preset positive number.

The iterations steps necessary for the NHSRF optimization algorithm to reach the
required accuracy was empirically tested. Both in the case of the natural and
artificial tests the number of function and gradient evaluations necessary for one
iteration step was generally one or two.

6.1 Representation of artificial signals

The sample to be represented was a sum of N sinusoidal components sampled at I

points, where the parameters Ag,---, An—1; wo, - ,wn—i; and @g, -, oN_1 Were
specified:
N-1
zlk] = Z Apsin(wnk +¢n), ke {l,--- K}
n=0

Using the above mentioned DFT-based decomposition of the signal,

the following estimate was obtained,

P-1
o[kl ~ Y Apsin(wpk+¢l), ke{l,--, K}, ,P>N,
n=0
which proved to be generally unacceptably inaccurate. Without restricting gener-
ality, we can assume the following ordering of the components A; > A’ & i > j;
which selects the N components,

/] ’ ’ / /
AOW":AN—lawof"awNala(lDO"";@N—l

324 A. Kocsor L. Téth I Balint

(v [w [A K Jiter [& [& |
02012 100] 8 [0.0006] 10"
02011220 9 [0.0031]10°
0201|2400 7 |00131]10° 5

Table 1: Approximation of one sinusoidal component.

dominating by amplitude. The optimization process started in every case from
these dominant components by constructing the initial parameter vector

I v ’ / / ! ’] 4 T
z=[ag, ", an_1,b0, " UNn_1,Cor s Evotadpy o, Ay

using (3) and (4). Let be assumed, that the optimization of (6) resulted in the
optimum vector

o n] 1" o N 1" 1 T
zO"["’O:"WaN—la 0>" " " N'—la(’Oa"WCN—ladO:"'a N—l]

and the inverses of transformations (3) and (4) yielded the parameters
A:)li T X/—Dwg: ’ "’wx/—la‘/)g: e ,<P9(/—1-

The error of the DFT-based signal representation is

N-1 .
1= (An— AL + (wn — w))* + (00 — ¢)”, (7)

n=0

while that of the NHSRF-based signal representation is

N-1
b= (An— AN+ (wn — wi) + (0 — 91)". ®)

n=>0

For N = 1,2,3, three examples were investigated in each case and the results are
displayed in Tables 1.-9.. The rows of the tables display the parameters of the
sinusoidal basis functions w, ¢, A, the number of sample points K, the number of
iterations iter and the accuracies of DFT-based and NHRSF-based representations
81,62. The discussion of the results will be given together with the discussion of
the natural test results.

6.2 Representation of natural sound signals

To check the accuracy and efficiency of the proposed algorithm on natural sound
patterns, the phone /a/ was represented and synthesised by the DFT decompo-
sition, as well as by the NHSRF optimization based scheme. The sample was
consisting in 861 points from the middle of a, the DFT algorithm described above

Optimal parameters of a sinusoidal representation of signals 325

(v lw [AK [ie] & [& |
027017200100 7 102456 10775
021011200200 10 {0.1858 | 1071
0.2 0.1200 [400 || 11 | 0.0456 | 10~ 15

Table 2: Approximation of one sinusoidal component.

(o [¢ [A K [er] 5 [&]
02701]002(1001 10] 0.0006 | 10-28
02101]00202001 8 [0.0031] 1020
02011002400 9 [00131]10° T8

Table 3: Approximation of one sinusoidal component.

[w [¢ [AJK Jitee] & [& |
o o s [o |l 18 | osase | 10707
oS (200 | 18 fo019a | 1070
o2t LS 00| 20 | 00727 | 100

Table 4: Approximation of two sinusoidal components.

o | » | A [EJite] & [& |
8:32 —0(31 38(1) 100 || 19 | 7.6271 | 10-10
8:22 _(](_)il 1;8(1) 200 || 17 | 19.470 | 10-13
8:32 —0(_)11 38(1) 400 || 20 | 77.481 | 1071

Table 5: Approximation of two sinusoidal components.

326 A. Kocsor L. Toth 1. Bdlint

Lw | o | A [K Jitee] & [&]
8:; ‘&1 11870;’ 100 || 20 | 568.43 | 1012
8; _()(.)il 1187090 200 || 20 | 14.969 | 10-10
8:; “O(_’il 1187090 400 || 20 | 118.35 | 1012

Table 6: Approximation of two sinusoidal components.

(v [¢ T A [KEwe[& [5 |
1 0 30 -

0.1 -0.1 3 100 | 27 | 0.7118 | 10~'6
0.2 0.1 2 ‘

1 0 30

0.1 -0.1 3 200 || 21 | 0.0723 j 10~
0.2 0.1 2

1 0 30

0.1 —-0.1 3 400 || 22 | 0.0706 | 10715
0.2 0.1 2

Table 7: Approximation of three sinusoidal components.

(o [¢ [A K Jite[& [& |
1 0 1200

1.2 0.5 200 100 || 28 | 2178.4 | 10712
1.1 -0.9 129

1 0 1200

1.2 0.5 200 200 || 21 | 41.797 | 1072
1.1 -0.9 129

1 0 1200

1.2 0.5 200 400 || 25 | 57.899 | 10~10
1.1 -0.9 129

Table 8: Approximation of three sinusoidal components.

Optimal parameters of a sinusoidal representation of signals 327

[w | ¢ | A [K Jitee][& [4
1 0 130

0.1 -0.1 129 | 100 || 29 | 0.3769 | 1012
0.2 0.1 128

1 0 130

0.1 -0.1 129 | 200 || 25 | 0.3253 | 10713
0.2 0.1 128

1 0 130

0.1 -0.1 129 || 400 || 26 | 0.4165 | 1012
0.2 0.1 128

Table 9: Approximation of three sinusoidal components.

20000 ‘prrmrere
15000
10000 -
5000

| -s000
| -10000
| -15000 i
| -20000 * - e R S i 1

Figure 1:

provided the sinusoidal decomposition of the signal and the sound pattern was
synthesised from the obtained sinusoidal components. The parameters of the first
20 dominant sinusoidal components of the DFT decomposition were used as initial
parameters of the NHSRF optimization scheme and the minimization of (6) yielded
the optimum decomposition of /a/, by the NHSRF-based procedure. The sound
signal was synthesised again from the obtained components. Unfortunately the
quality of sound synthesis is not easy to measure, since the metric is not Euclidean,
but a 'perceptual’ distance function would be necessary to measure the ’'goodness’
of the representation procedure. Therefore the ’comparison by listening’ of the orig-
inal and synthesised sounds had a decisive role in the judgement. However to give
an easily noticeable impression on the accuracies of approximations of the natural
sound pattern, figure 1-3 display the original signal, the signal synthesised from the
50 largest amplitude components of the DFT-based decomposition and the signal
synthesised from the 20 components of the NHSRF-based decomposition.

328 A. Kocsor L. Toth 1. Bdlint

20000 ¢
15000
10000
5000

-5000 +
-10000

-15000 *

Figure 2:

20000
15000
10000

5000

-5000 +
-10000 +
-15000

-20000

Figure 3:

7 Discussion

7.1 Artificial signals

The application of the proposed algorithm is especially important if either the
components of the signal are required with high accuracies, or the usual DFT-based
technics are not suitable to provide acceptably accurate results at all. This case
occurs if the sample is too short, the components are too close, or the amplitudes
differ too much. Our test functions were therefore of these types.

The proposed algorithm proved to be powerful in correcting the estimations
of the DFT-based decomposition procedure even in those cases where the former
algorithm provided quite acceptable results. Notice that the DFT-based scheme
estimated the phases very poorly, while the NHSRF-based algorithm corrected
these values.

7.2 Real sound signals

The proposed algorithm allowed to reconstruct the analysed sound signal from less
sinusoidal components (20 components) at higher accuracy than the DFT-based
method (50 components), as seen clearly on the figures. The DFT-based decom-
position of voiced sounds is generally unable to provide the sinusoidal fundamental
and overtones accurately enough and yields more overtone components than the
sample really contains. However the high-fidelity modelling of voiced sounds re-

Optimal parameters of a sinusoidal representation of signals 329

quires to synthesise the signal by the least sinusoidal components defined with
accurately determined parameters. This is a necessary condition for developing
and using efficient, data compression technics, too.

7.3 Future Work

On the basis of the presented results, the NHSRF-optimizing algorithm proved to be
robust and efficient in applications of speech- and audio-processing. The aim is to
use the algorithm in sound coding and to develop a more advanced pitch estimation
method than the ones used nowadays. The momentarily fixed dimension of the
approximation subspace will be handled as variational parameter in the future.
This feature will help to separate the sinusoidal and the noiselike components of
the sound allowing to screen noise, to detect the unvoiced/voiced parts of the
sound, furthermore the upgraded procedure would be a candidate for being applied
in those sound coding methods, which are based on the ’sinusoidal + noise’-type
decomposition of the signal (e.g. Quatieri-McAulay). '

References

[1] Alan V. Oppenheim, Ronald W. Schafer: Discrete-Time Signal Processing,
PRENTICE HALL

[2] L.R. Rabiner, R.W Schafer: Digital Processing of Speech Signals, PREN-
TICE HALL

[3] S. Lawrence MArple, Jr. : Digital Spectral Analysis with applications,
PRENTICE HALL

[4] McAulay, R.J. and T.F. Quatieri. 1986. “Speech Analysis/Synthesis based
on a Sinusoidal Representation.” IEEE Transactions on Acoustics, Speech
and Signal Processing, 34(4):744-754

(5] Allen, J.B 1977. “Short Term Spectral Analysis, Synthesis, and Modifica-
tion by Discrete Fourier Transformation. ” IEEE Transactions on Acoustics,
Speech and Signal Processing, 25(3):235-238

[6] Hess, W. 1983. Pitch Determination of Speech Signals. New york: Springer-
Verlang

[7] Harrs, F.J. 1978. © On the use of windows for harmonic analysis with the
discrete Fourier transform.” Proceedings IEEE, vol. 66, pp.51-83.

[8] Goodwin, M. and X.Rodet. 1994. “Efficient Fourier Synthesis of Nonsta-
cionary Sinusoids.” Proceedings of the 1994 International Computer Music
Conference. San Francisco: Computer Music Association.

330

9

(10]

[11]

[12]

[13]

[14]
[15]

[16]

A. Kocsor L. Téth 1. Balint

Mather, R. C. and J. W. Beauchamp. 1994. “Fundamental Frequency Esti-
mation of Musical Signals using a two-way Mismatch Procedure.” Journal
of Acoustical Society of America 95(4):2254-2263

Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty, NONLINEAR PRO-
GRAMMING theory and algorithms, John Wiley & Sons, [1993]

J. L. Nazareth, Conjugate Gradient Methods Less Dependency on Conju-
gacy, SIAM Review, 28(4), PP. 501-511, 1986.

J. Nocedal, The Performance of Several Algoritlzms for Large Scale Uncon-
strained Optimization, in Large-Scale Numerical Optimization, T. F. Cole-
man and Y. Li (Eds.), SIAM, Philadelphia, pp. 138-151, 1990.

Gill, P.E., W. Murray, and P.A. Pitfield, The implementation of Two Revised
Quasi-Newton Algorithms for Unconstrained Optimization, Report NAC-11,
National Physical Lab., 1972

Usmani, R. A.: Applied Linear Algebra. Marcel Dekker, New York, 1987
Lippmann, Stanley B.: C++ Primer. Addison Wesley, 1991

A. Kocsor, J. Dombi, I. Balint, An Optimization Algorithm for Determining
Eigenpairs of Large Real Matrices, (submitted to SIAM Journal On Scientific
Computing) .

Acta Cybernetical4 (1999) 331-339:

Improved Greedy Algorithm for Computing
Approximate Median Strings

Ferenc Kruzslicz *

Abstract

The distance of a string from a set of strings is defined by the sum of
distances to the strings of the given set. A string that is closest to the set is
called the median of the set. To find a median string is an NP-Hard problem
in general, so it is useful to develop fast heuristic algorithms that give a good
approximation of the median string. These methods significally depend on
the type of distance used to measure the dissimilarity between strings. The
present algorithm is based on edit distance of strings, and constructing the
approximate median in a letter by letter manner.

1 Introduction

If the solution of the optical character recognition (OCR) problem is considered
as a "black box” process where images are mapped to character strings, then we
usually use a certain kind of off-line approach. In this way the efficiency of some
OCR processes could be increased in an OCR software and language independent
manner. Suppose we have a set of strings as the result of several OCR processes
of the same input bitmap. When the same OCR software was used to produce this
set, with different paper orientation, changed resolution or simply repeated OCR
processes we can eliminate the effects of noise (fingerprints on the glass etc.). While
in case of different OCR, software their efficiency can be compared to each other

[7].

2 String distance

Finding a median string that is minimal in sum of distances form a given input, set
of strings, is known to be an NP-hard problem [8]. Therefore it is interesting to find
fast algorithms, that give us good approximations. One of the latest algorithms can
be found in [3]. It is called greedy algorithm, because it builds up the approximate
median string letter by letter, by always choosing the best possible continuation.
In this paper an improvement of this algorithm is described.

*Department of Business Informatics, Janus Pannonius University, Rdkdczi it 80, 7622 Pécs,
Hungary. Email: kruzslic@ktk.jpte.hu

-331

mailto:kruzslic@ktk.jpte.hu

332 Ferenc Kruzslicz

Suppose that all the strings are defined over the same fixed alphabet ¥ (for
European countries ¥ is usually a certain kind of extended ASCII). The most
widely used edit distances are similar to the Levenshtein distance. The improved
greedy algorithm is based on the dynamic programming approach [4], therefore it
is suitable for all d : (£*)? — R distances that satisfies the following properties.

d(t,s) >0

d(t,s) =0t =s
d(s,t) = d(t,s)

d(s,r) + d(r,t) > d(s,t)
for all r,s,t € T*.

In case of ¢ € ¥ let ¢ins(e,), caer{c,), csun(c,7) denote the cost of insertion,
deletion and substitution of letter ¢ in string r. The costs of edit operations do
not depend on letter ¢ and on the place of operations in r.

The Levenshtein distance is derived from this class of distances by choosing
the following values: cins(c,7) = cger(c,7) = csun(c,7) = 1. To establish the
Levenshtein distance between two strings, the dynamic programming approach
can be used with O(nm) time and O(n) space complexity. The general algorithm
to compute the minimal edit distance, using the dynamic programming technique
is given in the paper of Kruskal [5]. With the aid of this method, we get the
following in the case of two strings (s and t):

Let D[i,0] = i and D[0,j] = j for i=0..|sl| and j=0..|tl.
For i=1..|s| and j=1..|t] calculate the next elements of matrix D
D(1,j] = min (D[i-1,j]+ c¢ins, D[i,j=11+ cger, DLi-1,3-11+6({i,j1), where
0([1,3] = cgyp if s[il#t(j], and 0 otherwise.

It is clear that the distance is d(s,t) = D|s, |#{].
Much space can be saved if the matrix D is computed in a row by row manner.

3 Approximate median
This dynamic programming technique is suitable for a large number of heuristics.

Almost all of the "natural” heuristics can be described by the following informal
scheme, where |r| denotes the length of r, and A is the empty string.

function ApprozimateMedian(sy,s2 ... Sp): string;
preprocess(s1, S2, ... Sn);
median = A;
do
Cphest = arg best (weight (median, ¢, si, S2, ..., Sp) : c€X);

median = median + Cpest;)
while (it was worth to append cpes:);
return(best prefix of median).

Improvéd Greedy Algorithm for Computing Approximate Median Strings 333

Basically, an ApproximateMedian algorithm of this type builds the median
string letter by letter, and in case of each letter it uses a weight decision function
to select the next letter for median string to continue with. It makes judgements
on the base of input strings si, 52, ..., 5, and the prebuilt median appended with
letter ¢. The previous loop has to be continued, until a stopping.condition holds.
In the last step we can select the best pre‘zﬁx of median to return.

The time and space complexity of these algorithms is determined by the com-
plexity of the preprocessing phase and the weight function. The previous scheme
is general enough, because any type of algorithm can be written in this high level
form. In case of greedy algorithms no preprocessing phase is allowed, and the
weight function must be linear.

4 'The Improved Greedy Algorithm

The earlier scheme of algorithms gives a large variety of heuristics. We have
freedom to choose the weight functions, the stopping condition, and the last prefix
correction.

A fairly good greedy heuristic can be obtained if we use the method in [3], i.e.

o The weight function is the sum of minimal elements in the last rows containing
letter ¢ in the dynamic programming matrix, computing d(median + ¢, s;).
The next letter to be appended is the letter with the minimal weight.

. The main loop is stopped if the length of median reaches the length of the
longest input string.

e The prefix of median is returned, that minimise the sum of distances from
the input strings.

The greedy algorithm computes the whole dynamic programming matrixes, but
stores only the last rows of them, and it loses a lot of information, because it uses
only the minimal element of this vector. Let the algorithm improve by gaining
more information from this vector.

If we sum these vectors, we get information on what would happen if we stop
the algorithm immediately. The values of the summed vector show the sum of
distances of median from the input strings, and the sum distances of median from
the input strings without their last letter, etc. F01 example strings aabb, ab, bbb
and median string ab will be examined:

334 ’ Ferenc Kruzslicz

bj2 1 1 1 2 b2 1 0 b{2 1 1 2
all 0 1 2 3 a|l 0 1 all 1 2 3
A0 1 2 3 4 A0 1 2 A0 1 2 3
|/\aabb l/\ab |)\bbb

The sum of the last rows of matrixes D is defined as follows:

aabb [2 1 1 1 2
ab 2 1 0
bbb 2 1 1 2
S ! 2 3 4 3 4

or more precisely, let m denote the length of median string,
and k = maz(|s1],|sz], .-, |sn|). Moreover the last row of the ith matrix is denoted
by V; =< D[|m/|,0], D[|m/|,1], ..., D[}m/|, s;|]] >. For convenience, we also assume that
theé co-ordinate V;[t] = 0, whenever ¢ is not in the 0...|s;| interval. The summarised
vector S is defined with the following expression

S[i] = 35, Vili — k+ |ssf}, for i = 0,..., k.

With these notations the weight function in the greedy algorithm can be for-

mulated in a simple way: _ .
weight(median, ¢, s1, 52, ..., $n) = 25—y man(V;[0], V5[1], ..., Vj[Is;]])
~ and the letter with the least weight will be appended to the median string.

Unfortunately this weight function frequently gives the same value for different
letters, and in such a case the next letter is selected arbitrary. The weight function
behaves better if we use the whole V vector to pick the best continuation of the
median: Let us choose the letter in case of draw, that is minimal in lexicographic
order of the reversed sum vectors < S[k]; S[k — 1]; ...; S[0] >. Clearly the choice of
next letter tries to minimise the expected sum of distances, furthermore the time
and space complexity of the algorithin remains the same.

"The improved algorithm runs in O(k*n|Z|) time, and it is given in the following
pseudocode.

function ImproveddpprozimateMedian(sy, s2, ..., Sp) : string;
constants
k = maz(|s1], |s2}, ..., [sn]);
c.ins, c¢.del, c_sub; /* Cost of edit operations */
variables

V; : array [0..[s;|] of integer; /* for i=1..n */
Dist, S, S.best, tmp : array [0..k] of integer;
¢ : char;
min_best, min_sum, i, j : integer;
median : array [1..k] of char;

algorithm
median = X; /* Initialization =*/
Dist{0] = 0;
for i=1 to n do

Improved Greedy Algorithm for Computing Approximate Median Strings

for j=0 to |s;| do Vi[j] = j; od
Dist[0] = Dist[0] + |s;;
od) .
for i=1 to k do /% Building the median letter by letter */
S_best := [0,0,...,0];
for j=1 to n do S_best := add_vect(S_best, V;, k - [s;]); od

for each c € ¥ do /* Selecting the best letter */
min_sum := 0;
s := [0,0,...,0];
for j=1 to n do test_letter(c, j» FALSE); od
min_sum := min_sum + min_best;

S := addvect(S, tmp, k - [si])
if weight (min_sum, S, min_best, S_best) < O then

S_best := S;
min_best := min_sum;
median{i] := ¢;
Dist[i] := S_best[k];
fi
od
for j=1 to n do test_letter(median(i], j, TRUE); od
od
i := 0;

for j=1 to k do
if Dist[j] < Dist([i] then i = j; fi
od
return median[i..i]

function test.letter(c, i, update) : integer;
local variables
j : integer;
procedure /* Calculating the edit distance */
min_best := +00;
tmp[0] := i;
for j=1 to |s;| do
tmp[j] := min(V;[j-1)+c_ins, Vi_j[jl+c.del, V;_;[j-1]+c_sub);
if median[j] = ¢ then
tmp[3] = min(tmpl[3], V;_1[j-11);
fi
if tmp[j] > min _best then
min_best = tmp[j];

fi
od '
if update then /* Updating vectors when a */

V; := tmpl0..]s;|]; /* new letter was appended. */
fi

return min_best;

function add.vect (5,V,offset) : array [0..k] of integer;
local variables
i : integer -
procedure /* Vector addition with offset */
for i=0 to k - offset do Coe
Sfi) := S[i] + V[i-offset];
return S[0..k];

335

336 Ferenc Kruzslicz

function weight (min, S, min_best, S_best) : boolean;
local variables
diff, i : integer /* Negative value is returned if the new */

procedure /* character is better than the old one. */
diff := min - min_best; /* Greedy heuristic */
i = k;
while (i > 0 and diff = 0) do /* Lexicographic order */
diff := S[i] - S_best[i];
i a= i-13
od

return diff

To illustrate how the algorithm works and to show the improvement, let us
examine the following example:

The alphabet contains only two letters ¥ = {a,b}, and the input strings are
$1 = ab, sy = bab.

a1l 0 a1l 1 1 2 b1 1 1 b1 0 1 2
Ao 1 Alo 1 2 3 Ao 1 2 Alo 1 2 3
[x a B b [A a b [A b a b

It is easy to see that we are in the draw situation, since for
median = @, min.sum = 1, S = {1,2,1,3;, and for
median = b, min.sum = 1, S = {1,1,2,3;.
By the rule of the improved greedy algorithm letter a will be selected as the
first letter of the median string.

5 Experimental Results

The improved approximate algorithm was tested on the same garbled strings as the
greedy algorithm. In the test sets the string were deformed with equally probable
delete, insert and substitute operations, with probability of 1/4.

800 i

O Worse
Same
B Better

8 2
E B

Number of test sets
h vy
=

dl 2] a3 [ds d6 a7 d8 d9 dl()» dit d12 di3 414 dIs dl6 d17
Test set dissimilarity

Figure 1: Efficiency of the improved versus the greedy algorithm

Improved Greedy Algorithm for Computing Approximate Median Strings

Original words:

hector l helsinki I iapr I ojo l pepermint recognition sim paticaT
Garbled strings: _
erth eksh arr i etepi etorgon. icpsa
_ttohr ielkhnnki rpp 00 petpnrmin tricogntionr sic. static
ectoo hisinhki iaria I . Pepeprmiimtn recggginiiong | simpsatiapat
heceor hislnsiki iaprr ojjo peermmint receniicion, . . sipatpica
htoor hselsekni iapri jjo epneemine egcoogeieion imtpitici
ecttor eelseskli iappp oj merpeement regtoggniitocn pimmpitaca
hetroe hitiinki irap ojo pepitrmminnt recortoit - siaatpta
hecetrc | hiklssinnksl | iappr | oojo mrpermimm ecgnittin satica
heeter elsinss iai 000j eentin reoritoc pppttca
“hectter esnkki iraar 0j pepterintm enoeniiion smpactia
hector helsinki -lapr ojo pepermint recognition simptatica
Greedy approximate medians:
hector helsinki iapr ojo pepermint recognition simp tatica
[26] {391 (191 | (17 [39] [50] [45]
Improved approximate medians: ,
hector helsinki iapr ojo pepermint recogniion simptatica
[26] [39] 9] | 2 [39] [a7) [45]

When we used the new algorithm for the second test sets published in [6], there

were no improvements at all.

337,

Original words:
L hector I helsinki | iapr I recognition I

Garbled strings:
hetcr cheinni cianr rgfkfgnition
heptor hlelsiki iap recoxsniimoi
hector hesenkc iapi riecoxgnifon
hevor velskki lapr- jeognitigqn
hetuor | ceeltsinkmi ilp resonigior
hscor elnsgxnki. riapr reoinitiggn
htuctor | gbheklsink ialr rciorgnitvihn
fihecto htosini iar recognin
getogr hxlIsiky iapd ecotnritiin
hetofr heklusnkk ivar | grecpoginitko

Greedy and improved approximate medians:
hector helsinki iapr recognition

(13] (34] [13] (42]

The real advantage of the improved algorithm appeared when the'probability'of)
the edit operations has been increased. The Fihure 1 is obtained by the following .
test sets. The string recognition was garbled with delete, insert and substitute edit.
operatlons.‘ For substituting and inserting only the letters r, e, ¢, g, £, 4, 0, n, s,
p, a were used, and each of the operations and its place was uniformly distribilted. o

338 Ferenc Kruzslicz

Every test consists of 10 garbled strings, and the index of a test means how many
operations was performed in the garbling procedure. All column of the diagrams
represents the results of 1000 tests of the same type. The greedy and the improved
algorithms were compared, the bars show in how many cases which one was the
better. In some cases the greedy algorithm proved to be superior to the improved
one. The reason for this is, that in a case of draw in the greedy algorithm the next
letter was chosen randomly, that could result in a better performance.

1400

1200

1004}

Edit distance
=
=

.2
=

dl d2 43 04 ds 6 A7 d8 49 dI0 dil dI2 413 dl4 dIS dI6 di7
Test set dissimilarity

Figure 2: Improvements measured in edit distance.

In Figure 2 the total distances were summed (i.e. the distances of the approxi-
mate median from the test set). The same garbled sets were used as in Figure 1 and
values of diagram are the difference between the totals for the improved and the

- greedy algorithm. We see that a slight modification in the greedy algorithm results
in computing better medians whenever the problem becomes more difficult. Since
the total sum of distances is bounded from above by the total length of strings
from the test set, the results remain stable when we choose the dissimilarity value
higher than the length of the distorted string.

6 Conclusions

The improved approximate median algorithm is a simple refinement of the greedy
algorithm [3]. It has the same time complexity O(k*n|%|) as the previous one. The
space complexity was a bit réduced by the help of storing only the last rows of the
distance matrixes. This idea is based on [9], in this way the new algorithm runs in
O(kn) space. The closer the garbled strings are to each other the improvement is
less significant. Therefore the improved algorithm presented in this paper is more
suitable for searching approximate median of highly dissimilar strings.

Improved Greedy Algorithm for Computing Approximate Median Strings 339

Acknowledgement

I am grateful to the anonymous reviewers for their helpful comments which helped
me improve the quality of the paper. In particular, I thank the anonymous referee
who provided an improved English version of my manuscript, and Dr. Jénos Csirik
for calling my attention to the median string problem.

References

(1] D. Lopestri, J. Zhou: Using Consensus Voting to Correct OCR Errors. Series
in Machine Perception and Artifical Intelligence Vol. 14 pages 157-168, 1995

(2] A. Juan, E. Vidal: An Algorithm For Fast Median Search. Pattern Recog-
nition and Image Analysis Vol. 1 pages 187-192, 1996

[3] F. Casacuberta, M. D. Antonio: A greedy algorithm for computing approxi-
mate Median Strings. Pattern Recognition and Image Analysis Vol. 1 pages
193-198, 1996

[4] M. Crochemore, W. Rytter: Text Algorithms. Oxford University Press, 1994

{5] J.B. Krushkal: An overview of sequence comparison: Time warps, str<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>