
Volume 13 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: J. Csir ik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France), J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet
(The Netherlands), Z . Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jiirgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 1998

ACTA C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at th£ end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source TgX
file, if any, on a diskette to the Managing Editor. Having the T]gX file of the paper-
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publicat ion information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the Jozsef Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1997 Numbers 1-2 of Volume 13 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, Jozsef Attila University,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-311-184, Fax:(36)-(62)-312-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

E D I T O R A I B O A R D

Editor-in-Chief: J. Csirik Managing Editor: Z. Fülöp
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Assistants to the Managing Editor:

P. Gyenizse A. Pluhár
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Editors:

M. Aratö
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. B loom
Stevens Intitute of Technology
Department of Pure and Applied

- Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720' Hungary

J. Gruska
"Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1. -
H-6720 Hungary

H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

B. Courcelle
Université Bordeaux-1
LaBR.1. 351 Cours de la Liberation
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
Computer Science Department
P :0 . Box 9512, 2300 RA LEIDEN
The Netherland

Z. Ésik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Budapest Múzeum krt. 6-8.
H-1088 Hungary

G. Paun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A. Prékopa
Eötvös Loránd University
Budapest, Múzeum kit. 6-8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

H. Vogler
Dresden University of Technology
Faculty of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Technische Universität Graz
Institut für Mathematik (501B)
Steyrergasse 30
A-8010 Graz, Österreich

Acta Cybernetica 13 (1998) 209-224.

NP-completeness results concerning the
transformation of logic programs into attribute

grammars

Markus Lohrey *

Abstract
Attribute grammars and logic programs axe two well investigated for-

malisms, which were related in [DM85] for the restricted class of simple logic
programs. In this paper we define the more restricted class of very simple
logic programs and we prove that the problem of deciding, whether a given
logic program is (very) simple, is NP-complete.

1 Introduction

Attribute grammars were introduced in [Knu68] as a formalism for the specification
of the semantics of programming languages. [DJ90] and [AM91] give an overview
of current research trends. One of the most significant features of attribute gram-
mars are their declarative programming style and the existence of efficient attribute
evaluation methods. For the last point, see e.g. [Alb89].

Another declarative programming paradigm are definite program clauses. Their
ability to specify computations was first recognized in [Kow74]. For a modern and
exhaustive introduction to the wide area of logic programming see [Apt96].

In [DM85] a strong relationship between attribute grammars1 and definite pro-
gram clauses has been established. The investigation of this relationship is at-
tractive, because one can try to apply a great number of techniques, which were
originally developed for attribute grammars, to logic programs. For instance, de-
pendency graphs can be used to study strictness, necessity of the occur-check or
other run-time properties of logic programs. Moreover, attribute evaluation meth-
ods can be used for giving alternative operational semantics to logic programs.

It has been shown in [DM85] that every attribute grammar, whose function sym-
bols are interpreted as term constructors, can be transformed into a semantically

'Grundlagen der Programmierung, Institut für Softwaretechnik I, Fakultät Informatik, Tech-
nische Universität Dresden, D-01062 Dresden, Germany.

'The kind of attribute grammars we use in this paper are called functional attribute grammars
in [DM85].

209

210 Markus Lohrey

equivalent logic program. However, the reverse construction, i.e., the transforma-
tion of a logic program into a semantically equivalent attribute grammar is not
always possible. In [DM85] the restricted class of simple logic programs has been
defined and a construction has been presented, which transforms a simple logic
program into an equivalent attribute grammar. In general, the semantic domain of
the resulting attribute grammar is not a free term algebra. In Section 3 we will de-
fine the even more restricted class of very simple logic programs. For a very simple
logic program the construction in [DM85] produces an attribute grammar, whose
semantic domain is a free term algebra. It should be noted that the class of simple
logic programs is still Turing-complete whereas very simple logic programs axe no
longer Turing-complete (in fact, attribute grammars with a free term algebra as
semantic domain are not Turing-complete).

For a given logic program it can be decided whether this logic program is (very)
simple or not. Since many techniques, developed for attribute grammars, can be
applied to simple logic programs and even more to very simple logic programs, see
the note above, and [DM85], [DM93] for more details, it would be useful to have
efficient algorithms for these problems. In this paper we show that the problem
to decide, whether a given logic program is (very) simple, is in fact NP-complete.
Therefore it is unlikely to find efficient algorithms for these problems.

This paper is organized as follows. Section 2 gives some basic definitions con-
cerning attribute grammars and logic programs. In Section 3 we define the class
of simple and very simple logic programs and show how a simple logic program
can be transformed into an attribute grammar. Finally in section 4 we prove the
NP-completeness results mentioned above.

2 Preliminaries

First we recall some basic notions from universal algebra. Throughout this paper
we assume that there is a countable infinite set V of variables.

Defini t ion 2.1. A ranked alphabet V is a finite set of symbols together with a
mapping rankr : T N = {0,1 ,2 , . . .} . r<n) = { / G T | rankr(f) = n} is the set of
all symbols of rank n. The set of all T-terms with variables in V, denoted by Tp (V),
is the smallest set such that (i) V C T r (V) and (ii) / G r ' " ' , ^ , . . . ,tn G T r (V)
implies f(ti,. .. , i„) G T r (V). For t G T r(V), V(t) denotes the set of all variables,
which occur in t. If x G V(t), we say that x occurs in t.

Defini t ion 2.2. A semantic domain D = (fi, T, II, <p) consists of a set f2, two
ranked alphabets T and II of function and predicate symbols, respectively, such
that r D n = 0, and an interpretation function ip, i.e., for every n > 0, / G
and q G t p (f) is a partial function <p.(f) : fi" ii and <p(q) is a relation
<p(q) C n n . An assignment is a function val : V —> ii. Every assignment val
can be lifted to a function val : Tr(V) i) by (i) val(x) = val(x) for x 6 V
and (ii) val(f(ti,... ,tn)) = ip{i){val{t{),... ,val(tn)) for n > 0, / G and

NP-completeness results concerning the transformation of logic programs 211

t i , . . . ,tn£Tr(V) 2.

Note that we allow partial functions. For the rest of the paper we fix two
ranked alphabets T and II of function and predicate symbols, respectively, such
that r n n = 0.

Definition 2.3. The free V-term algebra (generated by V), denoted by Tr(V),
is the semantic domain (Tr(V), T, 0,ip), where ip(f)(ti,... ,tn) = f(ti,... ,tn) for
n > 0, / € r<»>, and i i , . . . ,tn G Tr(V). Thus, a free T-term algebra does not
contain relations and every function symbol / 6 T is interpreted by itself. A
substitution is an assignment 6 : V Tr(V) such that {x £ V | 6{x) ^ a;} is finite.
If 9(xi) = ti for 1 < i < n and Vx e V \ { i i , . . . ,xn} : 6(x) = x, we use the notation
t{U/xi | 1 < i < n} rather than 6(t) for t € T r(V).

Next we have to introduce the machinery of attribute grammars. For the simu-
lation of logic programs it is not necessary to include terminals and start symbols
in the grammatical part of attribute grammars. Therefore we just introduce the
notion of an abstract context-free grammar (see [GTWW77]), which is equivalent
to the notion of a many-sorted signature.

Definition 2.4. An abstract context-free grammar, or briefly abstract cfg, Go =
(N, L, P) consists of a finite set N of nonterminals, a finite set L of labels and a
finite set P C L x N x N*3 of productions such that for every (I, X, a), (V, X', a') €
P, I = V implies (l , X , a) = (l ' , X ' , a ') , i.e., different productions are labeled by
different labels. The production (l , X , a) will be denoted by I : X a.

Derivations of abstract cfgs will be represented by trees. Nodes of a tree are
specified by means of the well-known Dewey notation, i.e., a tree node x is a string
x = i\.i<2 ... in with ij > 0 for 1 < j < n. Intuitively, this string indicates the path
from the root of the tree to x. Thus, the root itself is denoted by the string e of
length 0. Furthermore, for technical reasons it is useful to define ,t.O = x.

Definition 2.5. Let Go = (N , L , P) be an abstract cfg. A syntax tree of Go is a
finite tree s whose nodes are labeled by nonterminals from N such that the following
condition holds:

For every node x there is a production (I : Xo —• Xi... Xn) 6 P with n > 0
such that x is labeled by -Xo, x has exactly n successor nodes x.l,... , x.n, and
x.i is labeled by Xi for 1 < i < n. In this situation we say that the production
I: A'o —• Xi... Xn is applied at the node x.

Definition 2.6. An attribute grammar, or briefly ag, G = (Go,D,B,R,C) con-
sists of the following components:

• an abstract cfg Go = (N, L, P)
2We assume that tp(f)(ai,... , a„) is undefined if one of its arguments aj is undefined.
3 As usual, N' denotes the set of all finite sequences of elements of N, including the empty

sequence, which will be denoted by e.

212 Markus Lohrey

• a semantic domain D = (fi,r,n,y>)

• an attribute description B = (Inh, Syn, inh, syn). Inh and Syn are finite
disjoint sets of inherited and synthesized attributes, respectively, inh and
syn are functions inh : N —2Inh4 and syn : N —> 2Syn, respectively.
Att = Inh U Syn is the set of attributes of G.

• a set R = {R(p) \ p £ P} of finite sets R(p) of semantic rules. To every
production p £ P of the form I : Xo X\... Xn with n > 0 we assign the
set

in[p) = {(7 ,i) | (7 6 syn(X0) A i = 0) V (7 £ inh(Xi) A 1 < i < n)}

of inside attribute occurrences of p and the set

out(p) = {(7 ,i) | (7 £ inh(X0) A i = 0) V (7 £ syn(Xi) A 1 <i<n)}

of outside attribute occurrences of p . att(p) = in(p) U out(p) is the set of
attribute occurrences of p. For every (7 , i) 6 in{p), the set R(p) contains
exactly one semantic rule of the form (7 , i) = t with t £ Tp (out(p)). Nothing
else belongs to R(p).

• a set C = {C(p) | p £ P} of finite sets C{p) of semantic conditions. For every
p E P, very element of C{p) has the form q{t\,... ,tn) with q 6 I I (n ' and
ti e Tr(out(p)) for 1 < i < n.

G is called free iff there is a ranked alphabet T such that D is the free T-term
algebra Tr(V). In particular, a free ag does not contain semantic conditions.

The semantic of an ag is the set of all (correctly) decorated syntax trees of the
underlying abstract cfg, defined as follows.

Definition 2.7. Let G = (GQ,D,B,R,C) be an ag with an underlying abstract
cfg Go = (N , L , P) and a semantic domain D = (f i , r , I I , ^) . Furthermore let s be
a syntax tree of Go and x be a node of s, which is labeled by X 6 N. To x we
assign the set inh(x) = {(7,x) | 7 6 inh(X)} of inherited attribute instances of x
and the set syn(x) = {(7,z) | 7 £ syn(X)} of synthesized attribute instances of x.
inst(x) = inh(x) U syn(x) is the set of attribute instances of x. The set inst(s) of
all attribute instances of s is (J{insi(x) | a; is a node of s}. A decoration of s is a
function val : inst(s) —> fi. A decoration val is called valid iff for every node x of
s the following condition holds:

Assume that production p is applied at node x. Let 6 : out(p) —• inst(s) be
the substitution, defined by 0((j',j)) = (7 ' , x . j) for every (7 ' , j) £ out(p) (recall
that we defined x.O = x), where we assume w.l.o.g. that out(p) is contained in
the set V of variables. Then for every semantic rule (7 , i) = t in R(p), the equa-
tion val((j,x.i)) = val(9(t)) has to hold in D. Furthermore, for every semantic
condition q(ti,... ,tn) € C{p) we must have (val(6{ t \)) , . . . ,val(6{tn))) £ ip(q).

4For every set A, 2A denotes the powerset of A.

NP-completeness results concerning the transformation of logic programs 213

A decorated tree of G is a pair, consisting of a syntax tree s of Go and a valid
decoration of s.

In most investigations only the class of so called non-circular attribute gram-
mars is considered, since non-circularity of an ag G is sufficient for the construction
of an attribute evaluator for G. For our purpose this restriction is not necessary.
Next we give some basic definitions concerning logic programs.

Definition 2.8. The set of all (Г,n)-atoms with variables in V, denoted by
Ar,n(v)> is the set {q(tu--- ,tn) I q e П("> Л ¿ i , . . . , i„ e Tr(V)}. л г ,п(0) is
the set of all ground (r ,II)-atoms. V(q(ti,... ,tn)) = U™=1 V(ti) is the set of all
variables, which occur in the atom q{t\,... ,tn). A deñnite (Г, Щ-dause, or just
clause, is a formula of the form Vxi,... , xn(A\ Л . . . Л Am —¥ Ao), where m > 0,
A0, •. • , Am € Ar.ni1^) and . . . , x n } = |J™0 V(Ai). In the sequel we will use
the abbreviation Ao Ai,... ,Am for this clause. A deñnite logic program, or
briefly dip, is a triple H = (Г, П, U), where U is a finite set of definite (Г, II)-clauses.

Definition 2.9. Let 9 be a substitution. The atom в{А) = q{9(ti),... ,9(tn))
is called an instance of the atom A = q(ti,... ,tn). The clause 9(Ao)
9(Ai),... , 9(Am) is called an instance of the clause A0 A\,... , Am.

There are several ways to assign a semantic to a dip H = (Г, П, U). Probably
the way, which is familiar to most of the readers, is the least Herbrand model of H
(see [Apt96]). The least Herbrand model of H consists of the set of all ground atoms
that are logical consequences of U. This set can be generated by an operational
method as well.

Definition 2.10. Let H = (Г, П, U) be a dip. A proof tree of Я is a finite tree s
whose nodes are labeled by atoms from such that the following condition
holds:

For every node x of s there is an instance Ao A\,... , An (n > 0) of a clause
in U such that x is labeled by Ao, x has exactly n successor nodes x.l,... ,x.n,
and x.i is labeled by Ai for 1 < i < п.

As shown in [Cla78] the least Herbrand model of H consists of all ground atoms
that are the root of a proof tree of H.

3 Transformation of definite logic programs into
attribute grammars

In the rest of the paper we fix a dip H = (Г, П, U).
The material in this section is taken from [DM85]. Our aim is to translate the

dip H into a semantically equivalent ag G. What it means precisely that the dip H
and the ag G are semantically equivalent, will be defined at the end of this section.
Intuitively, the predicate symbols in П will become the nonterminals of G. The

214 Markus Lohrey

clauses in U will be translated into productions of G by simply removing the argu-
ment positions of the predicate symbols in II. To store the values of the argument
positions of q € , we assign n attributes q 1 , . . . , qn to q, one for each argument
position j £ {1 , . . . ,n} of q. Now the formalism of definite logic programs gives
no hint of how to split this attribute set into inherited and synthesized attributes.
Therefore we have to enrich H with some additional information.

Def ini t ion 3.1. A direction assignment, or briefly d-assignment, for H is a func-
tion d, mapping every pair (q, j) with q € n<»> and 1 < j < n to an element of the
se t{ t ,4} .

d(q,j) = | means that qj becomes a synthesized attribute, whereas d(q, j) =4.
means that qj becomes an inherited attribute. In the rest of this section, let d be
a d-assignment for the dip H. Since the value of an inside attribute occurrence
must be calculated by use of the outside attribute occurrences, we have to impose
a restriction on d.

Defini t ion 3.2. Let

u = (Qo (so,i > • • • , So,710) qi (Si ,1 , • • • J 5l,ni m, 1 j • * • j ^m,nm))tU. (1)
POS(u) = {(qij,i) | 0 < i < m A 1 < j < m} is the set of positions of u
(this set will become the set of attribute occurrences of the translation of the
clause u). For 0 < i < m, 1 < j < n^, the term Sjj is denoted by t((qij,i),u).
For pos £ POS(u), we say that t(pos, u) appears at the position pos of u. The
set POS(u) is partitioned into the sets ind(u) and out,i{u) of inside and outside
positions under d ofu, respectively, defined as follows:

ind(u) - {(qij,i) | (i = 0 A d{q0,j) = t) V (1 < i < m A c j) =4-)}

outd(u) = {{qij, i) | (i = 0 A d(q0 ,j) = |) V (l < i < m A d(qi,j) = t) }

d is called safe for H iff

Vu 6 U^ipos £ in,i{u)'ix £ V(t(pos, u)) 3pos' E outd{u) : x £ V (t(pos', u)).

This condition says that for every clause u £ U, every variable that occurs in a
term that appears at an inside position of u occurs also in a term that appears at
some outside position of u. d is called very safe for H iff d is safe for H and the
following additional condition holds:

Vu £ UVpos,pos' £ outd(u) : t(pos, u), t(pos', u) £ V A (pos ^ pos' =S> t(pos,u) ^

y£t(pos',u))

This condition says that for every clause u £ U, the terms that appear at
the outside positions of u are different variables. H is called simple iff a safe d -
assignment for H exists. H is called very simple iff a very safe d-assignment for H
exists.

NP-completeness results concerning the transformation of logic programs 215

Example 3.3. Let H = ({nil,cons}, {app}, {«1,^2}) be the well-known append-
dlp, where u\ = (app(n i l ,L ,L)), u2 = (app(cons(X,Li),L2,cons(X,L3))
app(Li, L-2, ¿3)), and X,Li,L2,Lz are variables. Let a d-assignment d for H be
given by d(app, 1) = d(app, 2) =4., d(app, 3) =t - <i is a safe but not very safe
d-assignment for i i . In fact, H is not very simple.

Example 3.4. Simple dips are Turing-complete since every two-counter machine
can be simulated by a simple dip. A two-counter machine M consists of a finite
set Q of states, an initial state qo € Q, a set F C Q of final states, and a finite set
R of statements. Every r € R has the following form, where q denotes the current
SticltG} X and y are two registers whose values range over N, and i,j € Q.

• if q — i then x := x + 1 and q := j (analogously for the register y)

• if q = i then x := x — 1 and q := j (analogously for the register y)

• if q = i and x = 0 then q :— j else q := k (analogously for the register y)

A calculation of M is defined in the obvious way. M can be simulated by the dip
H(M) = ({0,s}, {Pi | i 6 Q}, {Pi(x,y) «- | i 6 F} U \JreRUr), where Ur consists
of the following clauses, depending on the form of the statement r.

• Pi{x,y) Pj(s(x),y) (analogously for y)

• Pi(s(x),y) <- Pj(x,y) (analogously for y)

• Pi(0,i/) Pj(0,y), Pi(s(x),y) <- Pk(s(x),y) (analogously for y)

The d-assignment d for H(M), which is given by d(Pu 1) = d(Pt) 2) =4. for every
i G Q is a safe d-assignment for H(M). On the other hand, if for instance there
exist two statements of the form (if q = k then x := x + 1 and q := i) and (if q = i
then x := x — 1 and q := j) then H(M) is not very simple. In fact, it is not difficult
to see that very simple dips are not Turing-complete.

Example 3.5. Let H = ({0, s}, {plus}, {ui,u2}) be the well-known dip for adding
natural numbers, where u\ = (plus(0 ,x ,x)) and u2 = (plus(s(x),y,s(z))
plus(x,y,z). Let a d-assignment d for H be given by d(app, 1) = d(app, 3) = t ,
d(app, 2) =4,. d is a very safe d-assignment for H.

Since for every given dip there are only finitely many different d--assignments,
it is decidable whether a dip is simple or very simple, respectively. We call the
corresponding computational problems SIMPLE and VERY-SIMPLE, respectively.
A problem instance of (VERY-)SIMPLE consists of a dip H. The question is
whether H is (very) simple or not.

In the rest of this section we will show that a (very) simple dip H together
with a (very) safe d-assignment d for H can be transformed into a semantically
equivalent (free) ag G(H,d). This result is not necessary for understanding our
main results in Section 4 but we present it for completeness.

216 Markus Lohrey

If the d-assignment d is very safe for H, then for every clause u E U, the terms
in { t (pos ,u) | pos E ind(u)} can be constructed from the terms in {i(pos, u) | pos E
outd(u)} (which are variables in this case) and the function symbols in T. If d
is only safe but not very safe, we need additional special selector functions Si~f,
defined as follows:

Definition 3.6. For every / E and i E {1, • • • ,n}, Si~f is a partial function on
T r(V), defined by (i) Si~f(t) = t{ if t = / (¿ i , . . . , f„) and (ii) Si~f(t) - undefined
otherwise, s—f is called a selector function.

In order to refer to selector functions, for every S{-f we introduce a new function
symbol seh-f. Of course we assume that seli~f # T. We introduce the new ranked
alphabet V = T U {seh-f \ f E r< n ' , n > 0,1 < i < n}, where (i) rankv(f) =
ranhrtf) if / E r and (ii) rankr>(f) = 1 otherwise.

For a term t E Tr(V) and a variable x E V, we denote by Sel(t,x) the set of
all terms s = sel^-fii-.. selih-fk(x)...) such that the term s{t/x} evaluates the
variable x when every seli-f is interpreted by S{-f. In other words, ik-ik-i- - • • H
specifies a path from the root of t to an occurrence of the variable x in t. This is
formalized by the following definition.

Defini t ion 3.7. Let t E 2r(V) and x E V. The set Sel(t,x) is defined by (i)
Sel(x, x) = {x}, (ii) Sel(y, x) = 0 for y E and (hi) Sel(f(tu... ,tn),x) =
U ? = i { s { s e k - f (x) / x } | s G Sel(ti,x)} for n > 0, / G r ' ") and t u . . . ,tn E Tr{V).

For instance, Sel(g(f(x),g(x,y)),x) = {seh-f (seli~g(x)), sel2-g(sel2-g(x))}.
In addition to the selector functions, semantic conditions are also necessary for

the simulation of the dip H, if d is safe but not very safe. This is because of two
reasons. Firstly, if there exist an u G U and a pos G outd{u) such that the term
t(pos, u) is not just a variable, we have to express the fact that the value of the
attribute occurrence pos is an instance of t(pos,u). This will be done with the
help of a predicate symbol instancet(pos uj of rank one. Secondly, if there exist
pos,pos' E outd(u) and x E V such that x E V(t(pos,u)) fl V(t(pos',u)), we must
express the fact that the corresponding subterms of the values of the attribute
occurrences pos and pos' are equal. Therefore we have to include the syntactic
equality of terms into the semantic domain of the simulating ag. Note that both
situations cannot occur if d is very safe for H.

Construction 3.8. Let d be a safe d-assignment for H. The ag G(H,d) =
(•Go,D,B,R,C) is defined as follows:

• Go — (II, U, P), where for every clause u E U of the form shown in (1) we put
the production p(u) = (u : qo —> qi,... , qm) into P. Nothing else belongs to
P.

• D - (Tr(V),V, {=} U {instancet \ 3u E U3pos E outd{u) : t = t(pos,u) 0
V}, ip), where

— (p interprets every / G T as in the T-term algebra Tr(V),

NP-completeness results concerning the transformation of logic programs 217

- tp(seli-f) = Si-f for / G r<n> and 1 < i < n,
- (p(instancetl)(t2) iff i 2 is an instance of ii for ii , £2 G 7 r (V) ,

- </?(=) is the syntactic equality on Tr(V).

• B = (Inh, Syn,inh, syn), where for every <7 G 11^"', inli(q) = {qi | 1 < i <
n,d(q,i) =4-} and syn(q) = {qi \ I < i < n,d(q,i) =|}. Inh = Uggn inh{q)
and Syn = Uqen sVn(l)•

• For every clause u £ U, R(p(u)) = {pos = tpos,u | pos G in^u)}, where for
pos G indiu) the term tpoSiU G Tr»(V) is defined as follows:

For every x G V(t(pos,u)) let posx G outd(u) such that a; G V(t{posx,u)).
Since d is safe, such a posx must exist for every x G V(t,(pos,«)). Of course
there may be several choices for posx. Therefore the construction is non-
deterministic. Now let tx G Sel(t(posx,u),x). Again there may be several
choices for tx. We set tp0StU = t(pos,u){tx{posx/x}/x | x G V(t(pos,u))} G
Tv(outd(u)).

• For every clause u eU, C(p(u)) = Ci(p(u)) U Cuipiu)), where

- Ci(p(u)) = {instancet(poStU)(pos) | pos G outi(u),t(pos,u) g V} and
- C2(i>(u)) = {t{pos/x} = t'{pos'/x} | pos,pos' G outd(u),x G V, t G

Sel(t(pos, u),x),
t! G 5eZ(i(pos',w),a;)}. Of course, equations of the form t — t can be
omitted in C2(p(u))-

Example 3.9. Let H be the append program from Example 3.3 and let d be the
d-assignment for H from the same example. The ag G(H,d) = (GQ,D,B,R,C)
has the following components.

• G0 = ({app}, {ui,u2}, {ui : app -»• app,u2 : app })

• B = ({appl,app2},{app3},inh,syn), where inh(app) = {appl,app2} and
syn(app) = {app3}.

• R = {R{U1),R(U2)}, where R(ui) = {(app3,0) = (app2,Q}} and

R(u-2) = {(appZ,0) = cons(si-cons({appl,0)), (app3,l)),
(appl, 1) = s2-cons((appl, 0)), {app2,1) = (app2,0)}.

• C = {C(ui), C(u2)}, where C(u\) = {instancenu({appl,0))} and

C(u2) = {instanceC0ns[x,Li){{appl,l))}-

If d is very safe, then C(p(u)) = 0 for every u G U. Moreover, the function
symbols seli-J do not appear in the semantic rules of G(H,d). Therefore we can
omit them in the semantic domain D of G(H,d). In this way G(H,d) becomes a
free ag.

218 Markus Lohrey

Let Фя be the function, defined as follows. Фя maps a proof tree s of the dip
H to a pair, consisting of a syntax tree s' of Go (the underlying abstract cfg of ag
G{H,d)) and a decoration val of s'. s' results from s by replacing for every node
x of s the label q(t\,... , tn) of a; by the label q. val is defined by val((qi, x)) = U
for every node x of s with label q(ti,... ,tn) and 1 < г < тг.

Theorem 3.10. Let H = (Г, П, U) be a simple dip and let dbe a safe d-assignment
for H. Furthermore, let G(H, d) be the ag as constructed in Construction 3.8. Then
Фя is a bijective mapping between the set of all proof trees of H and the set of all
decorated trees of G(H, d).

The proof of this theorem can be found in [DM85].

4 Complexity of SIMPLE and V E R Y - S I M P L E
In this section we show that the computational problems SIMPLE and VERY-
SIMPLE are NP-complete problems. The NP-completeness of SIMPLE will be
proved by a reduction from SAT, which is the satisfaction problem for boolean
expressions (see [Coo71] and [GJ79]), to SIMPLE. For the corresponding result
for VERY-SIMPLE we will use a variant of SAT, called ONE-SAT, that will be
introduced later.

Theorem 4.1. SIMPLE is NP-complete.

Proof. Since we can guess a d-assignment for the dip H and check in polynomial
time, whether this d-assignment is safe for H, SIMPLE is in NP. To prove that
SIMPLE is NP-hard, we will construct a polynomial time reduction from SAT to
SIMPLE. Firstly, we recall the definition of SAT, A problem instance S of SAT is
a boolean expression, which can be assumed to be in conjunctive normal form, i.e.,

where Cj is a nonempty disjunction of literals Ai : i , . . . , (ij > 0) with

where the a i j are boolean variables. To ease notation we will write the disjunction
Ci as a set5, i.e.,

5 = Ci A C2 A . . . Л C, Ti 1 (2)

(3)

Ci = {Ai,u--- , М м } ^ 0- (4)

Finally, let

{ai,... , am} = {aitj | 1 < i < n, 1 < j < ¿¿} (5)
5Therefore in each disjunction a literal can only appear once. Of course this is not a real

restriction.

NP-completeness results concerning the transformation of logic programs 219

be the set of all boolean variables that occur in S. Given such a problem instance
S the question is, whether there exists a truth assignment for S which satisfies S,
i.e., whether there exists a function

w : {ai,... ,am} ->• {true, false} (6)

such that

Vz 6 {1, - -. ,n}3j € {1, • • • ,m} : (aj £ Ci A w(aj) = true) V ((->0,-) € Ci A w(aj) =

= false).

In [Coo71], this question was shown to be NP-complete.
In order to construct a polynomial time reduction from SAT to SIMPLE let S

be the problem instance of SAT given by (2) to (5). We construct a dip

H(S) = ({a},{g},{C/(Ci),... ,U{Cn)}).

The only function symbol a is of rank 0. The only predicate symbol q is of rank
m, which is the number of different boolean variables appearing in S, see (5). For
every 1 < i < n the clause U(Ci) is of the form

q(sitl,... ,sitTn) i- q(titi,... ,ii ,m).

We fix a variable x G V. For 1 < j < m the terms s,j and tij are defined by

S i j = [X [f a > £ C i and t i j = ! X
 (7) l a otherwise ' l a otherwise.

Let w be the truth assignment for S given in (6). We define a corresponding
d-assignment dw of H(S) by

(8)
14- n uj(aj) — true

for 1 < j < m. We will use the abbreviation dw(j) for dw(q,j).

Example 4.2. Let

S = («! V a-2 V a 3) A (->0:2 V ->0:3 V a 4) A (ai V a3 V -104).

Then H(S) consists of the following clauses:

q(x, x, x, a) q(a, a, a, a)

q(a, a, a, x) q(a, x, x, a)

220 Markus Lohrey

q(x, a, x, a) <— q(a, a, a, x)

Let w be the following truth assignment:

ii>(ai) = w(a 3) = w(a4) = false, «7(0:2) = true

In fact w satisfies S. The corresponding d-assignment dw is

dw(1) = dw(3) = <4,(4) = t , d w (2) = | .

dw is a safe d-assignment for H(S). The following claim shows that this is not just
a coincidence.

Claim 4.3. w satisfies S iff dw is a safe d-assignment for H(S).

Proof of the claim, ui satisfies S iff

Vi G { 1 , . . . ,n}3j G { 1 , . . . , m } : (aj G Q A w(ctj) = true) V ((->0:^) E Ci A w (a j) =

= false).

Because of (7) and (8) this is equivalent to

Vî G {1, • • • ,n}3j G {1,... ,m] : (sitj = xA dw{j) =4.) V (titj = x A dw(j) =f).
(9)

We claim that (9) is equivalent to the statement that dw is a safe d-assignment for
H(S).

Assume that (9) holds and consider a clause U(Ci). (9) says that x appears at
an outside position pos G outdw(U(Ci)) of U(Ci). Since x is the only variable that
occurs in U(Ci) (and therefore is the only variable y that occurs in a term that
appears at an inside position of U(Ci)), this shows that dw is a safe d-assignment
for H(S).

Now assume that dw is a safe d-assignment for H{S) and consider a clause
U{Ci) of H(S). We claim that x appears at an outside position of U(Ci). Since
Ci ^ 0, there exists a j G {1, . . . ,m} such that either Sij = x or tij = x. Thus,
x appears at some position.pos of U(Ci). If pos is an outside position of U(Ci),
we are ready. Thus, assume that pos is an inside position of U(Ci). Since dw is a
safe d-assignment for H(S), there exists an outside position pos' G outdm (U(Ci)) of
U(Ci) such that x occurs in the term that appears at position pos' of U(Ci). Since
H(S) does not contain function symbols of rank greater than zero, this implies that
x appears at the outside position pos' of U(Ci), which proves (9). •

Since the function that maps a truth assignment w for S to the d-assignment dw
of H(S) is bijective, the claim shows that we have constructed a correct reduction
from SAT to SIMPLE. Since this reduction can be done in polynomial time, the
proof of the theorem is complete. •

NP-completeness results concerning the transformation of logic programs 221

The proof above shows that for the class of logic programs with only one con-
stant symbol (and no other function symbol) and only one predicate symbol, SIM-
PLE is already NP-complete.

Theorem 4.4. VERY-SIMPLE is NP-complete.

Proof Of course, VERY-SIMPLE is also in NP. To prove that VERY-SIMPLE
is NP-hard, we use a variant of SAT, called ONE-SAT (see [Sch78], where the
problem is called ONE-IN-THREE 3SAT). Again a problem instance of ONE-
SAT is a disjunctive normal form S. The question is whether there exists a truth
assignment w for S such that in every disjunction Ci exactly one literal AhJ becomes
true under w. This problem is known to be NP-complete as well. Let S be the
disjunctive normal form 5 given in (2) - (5) and let w be the truth assignment for
S given in (6).

We will construct a dip H'(S) that is a mild variant of the dip H(S) =
({«},{<?}, {[/(Cx),. . . ,
U(Cn)}) constructed in the proof of Theorem 4.1. It is easy to see that the dip
H(S) and the d-assignment dw given in (8) satisfy the following fact:

w satisfies exactly one literal A i j in every disjunction Ci iff there is
exactly one pos £ outdw(U(Ci)) for every clause U(Ci) such that x £
V{t{pos,U{Ci))).

Therefore, if w satisfies exactly one literal A i j in every disjunction Ci, the d -
assignment dw is almost very safe for H(S). The only problem that may arise is that
there may exist a clause U(Ci) and an outside position pos £ out,^(U(Ci)) such
that t(pos,U(Ci)) = a, i.e., a term, which is not a variable, appears at an outside
position of U(Ci). We solve this problem by replacing every occurrence of the
constant a in U(Ci) by a new variable (different from x and all other new variables
that will be introduced). Call the resulting clause U"(Ci). Now it is possible
that one of these new variables appears at an inside position pos £ m ^ (U"(Ci)) of
U"(Ci) and thus has to appear also at an outside position of U"(Ci). To compensate
this, we collect all new variables of the clause U"(Ci) (i.e., all variables different
from x that occur in U"(Ci)) in the argument positions of a new predicate symbol
Pi and attach the resulting atom to the body of f/"(C,). The resulting clause will
be called U'(Ci). The d-assignments for the new predicate symbol p, are chosen
in such a way that every new variable appears exactly once at an outside position
pos £ outd„(U'(Ci)) of U'(Ci) and once at an inside position pos' £ indw(U'(Ci))
of TJ'(Ci). A formal presentation of this idea follows.

As motivated, every clause Ci is translated into a clause U'(Ci) of the form

q(siti, . . . , Si rn) (¡{ti i, • • • > ti,rn)iPi(ui, 1) • • • j ui,rm)-

The number rrii will be specified later. Let Y = {y±, y2,...} C V and Z =
{zi, z-2, • • • } C V be two disjoint sets of new variables different from x. The terms

222 Markus Lohrey

s'i :j and t \ j are defined by

x if Oij € Ci
Hj otherwise

and t
x if (->aj) £ Ci
z; otherwise

(note the small difference to the terms Sij and t i j in the proof of Theorem 4.1).
Fix an i £ {1 , . . . ,n}. Let K - {j | 1 < j < m A s'itj e y } = {fci, . . . , k#K}6 and
L = {j | 1 < j < m A i- j 6 Z} = {li,... be the set of all argument positions
of q, where variables from Y respectively Z appear in U'(Ci). W.l.o.g. we assume
that ki < kj and li < lj for every i < j. Define rrii = + # L . The terms Ui j
are defined by

For a given truth assignment w for S, the d-assignments dw(q,j) for the positions
of the predicate symbol q are defined as in (8). The d-assignments dw(pi,j) for the
argument positions of the new predicate symbol Pi are defined by7

E x a m p l e 4.5. Let S be the conjunctive normal form given in Example 4.2. H'(S)
consists of the following clauses:

Let w be the truth assignment given in Example 4.2. w satisfies exactly one literal
in each disjunction C{. The corresponding d-assignment dw is

• dw(q, 1) = dw{q, 3) = dw{q, 4) =t> dw{q, 2) = |

• dw(pi,l) = dw(pi, 3) =1\ dw{p\,2) = dw(p!,4) = d „ (p i , 5) = !

• dw(p2,l) = dw(p2,3) =t,dw(p2,2) = dw (p2,4) = dw(p2,5) =i

• dw(p3,2) = dw[p%iA) =t,dw(p3,l) = dw(p3,3) = dw(p3,5) =|.

This is a very safe d-assignment for H'(S).

The following claim completes the proof. Its proof is very similar to the proof
of the corresponding claim, made in the proof of Theorem 4.1, and it is therefore
omitted.

6#/1 denotes the number of elements in the finite set A.
7We define t _ 1 =4 and 4.-x=t-

if 1 < j < # K
if #K <j < rrii

q(x,x,x,y4) q{z\,z2,z3,zA),pi(yii,zi,z2,z3,Z4)
9(2/1,2/2,2/3,2:) <r- q(zi,x,x,z4),p2(yi,y2,y3,z1,z4)
q(x,y2,x,V4) <r- q(zi,z2,z3,x),p3(y2,yA,zi,z2,z3)

NP-completeness results concerning the transformation of logic programs 223

Cla im 4.6. w satisfies exactly one literal Aij in every disjunction C¿ of S iff dw

is a very safe d-assignment for H'(S).

The proof above shows that for the class of logic programs with an empty set
of function symbols, VERY-SIMPLE is already NP-complete.

5 • Conclusion
In this paper, we have proved that the problem of deciding, whether a given logic
program is simple, is NP-complete. A simple logic program H can be transformed
into an attribute grammar G. In general G has a semantic domain, which is not
a free term algebra, i.e., G is not free. We have defined the more restricted class
of very simple logic programs. Very simple logic programs can be transformed
into equivalent free attribute grammars. We proved that the problem of deciding,
whether a given logic program is very simple, is NP-complete as well.

References
[Alb89] H. Alblas. Attribute evaluation methods. Memoranda Informática,

89-20, University of Twente, Enschede, 1989.

[AM91] H. Alblas and B. Melichar. International Conference SAGA, Prague,
volume 545 of Lect. Notes Comput. Sci. Springer-Verlag, Juni 1991.

[Apt96] K. Apt. Prom Logic Programming to Prolog. Prentice-Hall, January
1996.

[Cla78] K. L. Clark. Predicate logic as a computational formalism. Report
Res. Mon. 79/59, Imperial College, London, 1978.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proc.
3rd IEEE Symp. on the Foundations of Computer Science, pages 151-
158, 1971.

[DJ90] P. Deransart and M. Jourdan. Attribute Grammars and Their Appli-
cations, International Conference WAG A, Paris, volume 461 of Lect.
Notes Comput. Sci. Springer-Verlag, September 1990.

[DM85] P. Deransart and J. Maluszynski. Relating logic programs and at-
tribute grammars. J. Logic Programming, 2:119-155, 1985.

[DM93] P. Deransart and J. Maluszynski. A Grammatical View of Logic Pro-
gramming. MIT Press, Cambridge MA, 1993.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, San Francisco,
1979.

224 Markus Lohrey

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial
algebra semantics and continuous algebras. J. ACM, 24:68-95, 1977.

[Isa91] T. Isakowitz. Can we transform logic programs into attribute gram-
mars. Journal of Theoretical Informatics and Applications, 15:499-
543, 1991.

[Knu68] D.E. Knuth. Semantics of context-free languages. Math. Systems
Theory, 2:127-145, 1968.

[Kow74] R. Kowalski. Predicate logic as a programming language. Inform.
Process. Letters, 74:569-574, 1974.

[Sch78] T.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th
Ann. ACM Symp. on Theory of Computing, Association for Comput-
ing Machinery, pages 216-226, New York, 1978.

Received May, 1997

Acta Cybernetica 13 (1998) 225-242.

Economical Transformations of Phrase-Structure
Grammars to Scattered Context Grammars

Alexander Meduna*

Abstract
This paper presents a transformation that converts any phrase-structure

grammar, H, in Penttonen normal form to an equivalent scattered context
grammar whose size differs from the size of H quite insignificantly; specifically,
G has only five more nonterminals, four more context-dependent productions,
and one more context-free production than H. An analogical result holds for
Kuroda normal form, too.

1 Introduction
Transformations that convert grammars of one type to equivalent grammars of an-
other type are central to the formal language theory. Initially, this theory designed
these transformations regardless of the size of the output grammars. Because this
size was usually enormously greater than the size of the input grammars, transfor-
mations of this kind were of no use in practice. Therefore, at present, the formal
language theory modifies these transformations to produce the equivalent output
grammars as small as possible (see [2], [3], [5], [6], [7], and Chapter 4 in [1], including
references therein).

Following this line of the language theory, the present paper explains how to
transform any phrase-structure grammar to an equivalent scattered context gram-
mar whose size differs from the size of the input phrase-structure grammar quite
insignificantly. More precisely, it converts any phrase-structure grammar, H, in
Penttonen normal form to an equivalent scattered context grammar, G, so G has
only five more nonterminals, four more context-dependent productions, and one
more context-free production than H. Then, this paper states an analogical result
in terms of Kuroda normal form.

2 Definitions
This paper assumes that the reader is familiar with the language theory (see Chap-
ter 0 in [1]).

'Computing Center at Technical University of Brno, Udolni 19, Brno 60200, Czech Republic

225

226 Alexander Meduna

Basic Notions
For a set, Q, card(Q) denotes the cardinality of Q. Set

N = {1,2, . . .} and I = {0,1,2, . . .} .

Let V be an alphabet. V* represents the free monoid generated by V under the
operation of concatenation. The unit of V* is denoted by e. Set V+ = V* — {e};
algebraically, V+ is the free semigroup generated by V under the operation of
concatenaton.

For w £ V*, |w| denotes the lenght of w. Set

subword(w) = {x : x £ V* and a; is a subword of w};
prefix(w) = {x : x is a prefix u>};
suffix(w) = {a; : x is a suffix u>};
alph(w) = subword(w) n V.

For a £ V and w £ V*-, occur(a,w) denotes the number of occurrences of a's in w.

Grammars
A phrase-structure grammar is a quadruple

G = (N,P,S,T)

where N and T are alphabets such that N fl T = 0. Symbols in N are referred to
as nonterminals while symbols in T are terminals. N contains S - the start symbol
of G. P is a finite set of productions of the form

x —>y

where x,y £V* so alph(x) n N ± 0. If x —> y £ P and ut € (N U T)* for « = 1,2,
then

U1XU2 => Uiyu2;
whenever this paper needs to specify the subword, x, rewritten during uixu> = >
uiyu2, it underlines it as

U1XU2 = > U\yU2-

Observe that represents a relation on (N U T)*. Let ==>"' denote the m-fold
product of where m £ I. Furthermore, = > + and =$>* denote the transitive
closure of = > and the transitive and reflexive closure of = > , respectively. The
language generated by G,L(G), is defined as

L(G) = {w£T* :S 10}.

Let G = (N, P, S, T) be a phrase-structure grammar. G is in Penttonen normal
form if P has only these two kinds of productions

AB —> AC where A,B,C £ N, and

Economical Transformations of Phrase-Structure Grammars 227

A —¥ x where A e N and x £ NN U T U {e}.

A scattered context grammar is a quadruple

G = (N,P,S,T)

where N,T, S have the same meaning as in a phrase-structure grammar, and P is
a finite set of productions of the form

(A i , A 2 , . . . , A „) — • (xi,x2, • • • ,xn),

where n € N, and for all i = 1 ,2 , . . . ,n, A{ £ N and n £ (JVUT)*.
Let G = (N, P, S, T) be a scattered context grammar, and let v,w £ (N U T)*.

If for some n £ N

A. (Ai, A2, • • •, An) —> (xi,x2, - • •, xn) £ P, and

B. v = u\Aiu2A2 ... unAnun-|_i and w = uixiu2x2 • • • unxnun+1 with m £ (N U
T)* f o r i = 1 , 2 , . . . , n + 1,

then v directly derives w in G, symbolically written as

v ==>• w.

Express v ==> w as uiAiu2A2 .. .unAnun+1 u\xiu2x2 • • .unxnun+i.
Whenever this paper needs to specify the nonterminals, Ai through Arl. rewrit-

ten during this direct derivation, it underlines them as

AjU2A2.. .UnABUn+1 UxXiU2X2 • • .unxnun+1.

For m £ I, = > m denotes the m-fold product of . Furthermore, = > + and
denote the transitive closure of ==?• and the transitive and reflexive closure of =$>,
respectively. The language generated by G,L(G), is defined as

L(G) = {w £ T* : S w}.

Recall that phrase-structure grammars, phrase-structure grammars in Penttonen
normal form, and scattered context grammars have the same generative power.
Indeed, they all characterize the family of recursively enumerable languages (see
[1], [4], and [7]).

Context-Dependent and Context-Free Productions
Let G be a grammar, and let P be G's set of production. In this paper, we separate
P into two disjoint subsets - the set of context-free productions, ContextFree(P),
and the set of context-dependent productions, ContextDependent(P). A production,
p £ P, belongs to ContextFree(P) if and only if the left-hand side of p consists of
one nonterminal; otherwise, p belongs to ContextDependent(P).

228 Alexander Meduna

Specifically, if G = (N,P,S,T) is a phrase-structure grammar, then

ContextFree(P) = {A —> x : A — n e P and A 6 A'}, and
Cont.extDependent{P) = P— ContextFree(P).

If G = (N, P, S, T) is a scattered context grammar, then

ContextFree.(P) = {(A) —• (x) : (A) — (x) € P}, and
ContextDependent(P) = P— ContextFree(P).

Equivalently, if G = (N, P, S, T) is a scattered context grammar, then

(.4 t , . . . , Au) —> (x\,..., xn) G ContextDependent(P) if and only if n > 2;
otherwise, (Ai,..., An) —> (x i , . . . , xn) G ContextFree(P).

3 Results
This section demonstrates that for every phrase-structure grammar, H =
(Ar/, P',S',T), in Penttonen normal form, there exists an equivalent scattered con-
text grammar, G = (N,P,S,T), that satisfies

A. L(G) = L(H)-

B. card (AO < card(N') + 5;

C. card(Cont,extDependent (P)) = card(ContextDependcnt(P')) + 4;

D. card(ContextFree(P)) = card(ContextFree(P')) + 1.

Theorem 1 Let H = (M, R, S,T) be a phrase-structure grammar in Penttonen
normal form. Then, there exists a scattered context grammar, G = (N,P,E,T),
that satisfies

A. L(G) = L{H)-

B. card{M) = card(N) + 5;

C. card(ContextDependent,(P)) = card(ContextDependent(R)) + 4;

D. card(Contexi.Free(P)) = card(ContextFree(R)) + 1.

Proof.: Let
H = (M,R,S,T)

be a phrase-structure grammar in Penttonen normal form, where M denotes IJ's
alphabet of nonterminals, R denotes its set of productions, S is its start symbol,
and T denotes its alphabet of terminals. Without loss of generality, assume that

{£ ,F , [,] ,$}nM = 0.

Economical Transformations of Phrase-Structure Grammars 229

In the following, we describe how to construct a scattered context grammar, G,
such that L(G) = L(H) and G satisfies the conditions of Theorem 1.
Define the scattered context grammar

G = (N, P, E, T),

where
N = {E,F, [,},$} UM

and

P = { E _ > F o n ^ m

(F,[,],F,F)-^(F,e,e,F,F),
(F,F,$,F) —> (F,F,e,F),
(F,[,],F,F, [,],[) —> (£,£,£,e,F,[,]F,F[),
(-F,[,],F,F,[,]) > (£,£,£,£,£,£,£)}

U {(A, B) —> {A[,\C) : AB —• AC € R with A,B,C 6 M}
U {(A) —> (x) : A —> x € R,Ae M,x 6 MM}
U {(A) — > ($ a) : A — > x e R , A e M , a e T U {e}}

Observe that

card(M) = card(N) + 5;
card(ContextDependent(P)) = card(ContextDependent(R)) +4;
card(ContextFree(P)) = card(ContextFree (i?)) + 1.

The proof that ¿(G) = £ (i i) is based on the following.
By productions in

{(A, B) —> (A[,]G) :AB—>AC€R with A,B,C 6 M }
U {(A) —> (x) : A —¥ xeR,AeM,xE MM}
U {(A) —•> ($a) : A —> x € R,A £ M,a&T U {e}},

G simulates H's derivations. By productions in

{¿5_>F0F[F]S0.
(F,[,],F,F) ^(Fy£,£,F,F),
(F,F,$,F) —> (F,F,e,F),
(F,[,],F,F, [,],[) —• (£,£,£,£,F,[,]F,F[),
(F,[, j ,F,F,[,]) > (£,£,£,£,£,£,£)},

G verifies that the simulation was performed properly.
Next, this proof establishes several claims to demonstrate L(G) = L(H) in a rigor-
ous way.

230 Alexander Med una

Cla im 1 Let
E =>+ u =>+ t

in G, where u G (N U T)* and i £ T * . Then

u = wFx,

where w 6 T* and x G ((TV - {E}) U T)* with occur[F,v) = 2.

Proof, of Claim 1: Consider any derivation,

E u =>+ t

in G, where u E (N U T)* and t ET*. Examine P to see that

occur(E,u) = 0 and occur(F,u) = 3.

Express u as
u = W-F?;,

where w,v £ (NUT)* and occur(F,v) = 2. Notice that

alph(w) n {E,F} = 0.

By contradiction, prove that

alph(iu) 0(N - {E, F}) = 0.

Assume that alph(w) n (N - {E, F}) ^ 0. Consider

(F,l},F,F)-^(F,e,e,F,F),

(F,[,},F,F, [,],D ^(£,e'e,e,F,[,]F,F[), and
(-P.EJ.^^i,]) —> (£,£,e,£,e,£,e).

As occur(F,v) = 2, none of these productions can rewrite any symbol in w. Because
alph(w) n (N - {E, F }) / 0, for every y such that wFv ==>+ y,

alph(y) n(N- {E, F}) # 0,

which contradicts wFv t with t ET*. Thus,

alph(w)n(N - {E,F}) = 0.

Consequently,
u = wFv,

where w ET* and v G ((N - {E})\JT)* with occur(F,v) = 2.
Therefore, Claim 1 holds.

•
Define the morphism, a , from ((N - {£?}) U T)* to ({[,], F , # } UT)* as

a{Y) = Y for all Y G ({[,], F} U T), and
a(X) = # for all X e ({$} u M).

Economical Transformations of Phrase-Structure Grammars 231

Claim 2 Let
E wFvFxFy =>+ u

in G, where w,u G T*, and v,x,y G ((TV - {E,F})\JT)*. Then,

Proof of Claim 2: Let

E wFvFxFy u

in G, where w,u G T*, and v,x,y G ((N - {E}) U T)*. By contradiction we next
prove that

{ # } + n subword(a(v)) = 0.

Assume that

{ # } + n subword(a(v)) ± 0.

Examine

(F,[,],F,F)^(F,£,£,F,F),
(F,F,$,F) —> (F,F,£,F),
(F, {,},F,F,[,}, [) - U ' (£, e, 'e, e, F, [, }F, F[), and
(F . U . F . F . U) —>• (£,£,£,£,£,£,£).

The form of these productions and {#} + H subword(a(v)) 0 imply that every
word that G derives from wFvFxFy contains # . Specifically,

{ # } + n subword(a(u)) ^ 0,

which contradicts u G T*. Hence,

{ # } + n subword(a(v)) = 0.

Thus,
$ £ alph{v).

Consider
{(A) —> ($a) :A —> x E R,A & M,aeTU {e}}.

Observe that this set includes all productions containing symbols from T u {$}.
Therefore, as $ ^ alph(v),

T n alph(v) = 0.

Consequently,
a (v) € { [,] } * •

•

232 Alexander Med una

Claim 1 Let
E=>+y

in G, where y E ({N - {£}) U T)*. Then,

subword(y).

Proof of Claim 3: Let
E=*+y

in G, where y E ((N — {E}) U T)*. All productions containing [or] are included
in this set

{ E _> F[]F[F]S0,
(F,[,],F,F) —> (F,e,e,F,F),
(F , F , $, F) — » (F . F . e . F) ,
(F, [,], F, F, [,],[) —(£, £, F, [,]F, F[),
(F,[,],F,F,{,})—> (£,£,£•£,£,£,£)}

U {(A,B) —> (A[,]C) : AB —> AC E B, with A,B,C E M}.

By E —> F[]F[F]SQ, G generates i,[]JF,[F]S,[]. Notice that

][£ su6word(F[]F[F]50).

By using, the productions in

{(A,B) —• (A[,]C) : AB —• AC G iî with A,B,C £ M},

G can generate no word containing][. Finally, consider the other four productions:

(F , [,] ,F ,F) —• (F,e,e,F,F),
(F ,F ,$,F) —> (F ,F ,e ,F) ,
(F J , i , F , F , [,],[) - ^ ' (e , £ , e , e ,F , [,]F ,F [) , and
(F,[;] ,F,F,[,]) —> (£,£,£,£,£,£,£)}.

If the current sentential form does not contain][, then every word directly derived
from this sentential form by using any of these productions does not contain][
either. Thus,

}[& subword(y).

A formal version of this proof is left to the reader. •

Claim 4 Let
E =>+ wFvFxFy =>+ u

in G, where w, u E T*\v E {[,]}*; and x,y E ((N - {E, F}) U T)*. Then,

Economical Transformations of Phrase-Structure Grammars 233

Proof of Claim 4: This claim follows from Claims 2 and 3.
•

Claim 5 Let
E wFvFxFy =>+ u

in G, where w,ueT*-,ve {[}*{]}*; and x,y G ((N - {E,F}) U T)*. Then,

v G {[']' : i G N}.

Proof of Claim 5: Consider

E wFvFxFy u

in G, where w,u £ T*\v G {[}*{]}*; and x,y G ((N - {£ , F}) U T)*.
By contradiction, we next demonstrate

M > 1-

Assume that
M = 0.

Examine P to see that at this point, wFvFxFy derives no word over T, which
contradicts wFvFxFy u with u G T*. Thus, > 1.

Let i,j G I such that i < j and |w| = i + j. By contradiction, we now prove

[? i a(v).

Assume that

Examine P to see that under this assumption,

] G alph(u).

Thus,
u<£T\

which contradicts u € T*. Hence,

[T # a(v).

Analogously, prove [lp ^ ce(v), where i,j G I so iFj and |u| = i + j.
Thus, for any i, j g I such that i ^ j,

fiV <*(«)•
Therefore, Claim 5 holds.

•

234 Alexander Med una

Cla im 1 Let
E wFvFxFy =>+ u

in G, where w,u £T*;v£ {[}'{]}* for some i £ N; and x,y £ ((N - {E, F})UT)*.
Then,

x e ({$}UTUM)*.

P r o o f of Cla im 6: In G, consider any derivation that has this form

E wFvFxFy =>+ u

in G, where w,u £T*;v£ {[}i{]}i for some i £ N; and x,y £ ((N - {E,F})UT)\
By contradiction, demonstrate

{[,}} n alph{x) = 0.

Assume that
{[,]} fl alph(x) £ 0.

Examine P; specifically,

(F,[,],F,F, [,],[) —> (e,£,£,£,F,[,}F,F[), and
(P, [,]) > (e,£,£,£,£,£,£).

In this case,
{[>]} n alph(u) -fi 0,

which contradicts u £T*. Hence

{[,]}nalph{x) = 0.

Therefore, x £ ((N - {E, F, [,]}) U T)*, so

x £ ({$} U T U M)*.

Cla im 7 Let
E =>+ wFvFxFy u

in G, where w,u £ T*, and v £ {[}*{]}' for some i £ N,x £ ({$} U T U M)*,y £
((N — {E, F}) U T)*. Then,

with
K = ((N-{E,F,],[})UT).

P r o o f of Cla im 7: Examine P; specifically,

(P,[,],F,P) -+(F,£,£,F,F), 1

(F,F,$,F) —> (F,F,£,F),
(F, [,], F, F, [,], [) - U ' (e, e, e, e, F, [,)F, F[), and

Economical Transformations of Phrase-Structure Grammars 235

(F,[,],F:F,[,}) —• (e,e,e,e,e,£,£)}.

Based on this examination, observe that this claim follows from Claims 5 and 6 (a
formal verification of this observation is left to the reader).

•
Define the morphism, /3, from ((N - {E}) U T)* to (N - {[,],$, E, F}) U T)* as

P(Y) = £ for all Y £ {[,], $, F}, and
0(X) = X for all 'X £ (AT- { [,] , $, F }) U T .

Claim 8 Let
E = > m w z

in G, where m 6 {N,2 6 T*,w £ (N U T)*. Then,

5 p (w)

in H.

Proof of Claim 8: This claim is established by induction on m = 0,
Basis:
Let m = 1. That is,

E = • F[]F[F]S[] = » * v

in G. Notice that /?(QF[.F]5[]) = S. As

S S

in H, the basis holds.

Induction Hypothesis:
Suppose that there exists j £ N such that Claim 8 holds for every m < j.

Induction Step:
Let

E =>j+1 w =>* 2

in G, where z £ T* and w £ (N Li T)*. Based on Claims 1 through 7, express this
derivation as

S =>j tFvFxFy w z

in G, where z,t £ T*, and v £ {[}*{]}* for some i £ N , x £ ({$} U T U M)\
y £ (KUK^Y : i £ N}/O*{0> with K = ((N - {E,F,], [}) U T). Let p be the
production that G uses to make tFvFxFy => w. By the induction hypothesis,

S =»* 0(tFvFxFy)

in H. Next, this proof considers all possible forms of p. Before this consideration
notice that p surely differs from E —• F(]F[F]5[] because E does not appear in
tFvFxFy.

236 Alexander Meduna

1. Assume that p has this form

(A,B) ^ (A [,] C) ,

where A,B,C G N. Because z,tET*,ve {[}i{]}i for some i E N . i e ({$} U T U
M)*, and y G {KuKtfY : i G N}/0*{[]} with K = ((N - {E, F,], [}) U T), the
previous claims imply that

u = tFvFxFy'Ay"By"' and w = tFvFxFy'A[y"]Cy'",

for some y' G prefix(y), y'" G suffix(y), and

V" G ({[? : t G I}-

Thus,
0{y")=e.

As (A,B) —> (A[,]C) GP,
AB —y AC e R.

Notice that

p{tFvFxFy')mv")mv'") =• (3(tFvFxFy')AP(y")CP(y"')

in H. Because P(tFvFxFy')A/3(y")Cf3(y"') = ¡3{w),

S 0(w)

in H.

2. Assume that p has this form

(A) (x).

A G M,x G MM. At this point,

u = tFvFxFy'Ay" ovu = tFvFx'Ax"Fy.

Assume that u = tFvFxFy'Ay". At this point,

w = tFvFxFy' xy".

As (A) —> (x) G P,
A —> x G R.

Notice that H makes

/3{tFvFxFy')Aj3(y") =4> 0(tFvFxFy')xP(y")

by using A —> x. Because f}(tFvFxFy')x(3(y") = 0{w),

S =>* /3(w)

Economical Transformations of Phrase-Structure Grammars 237

in H. Analogically, prove that S =$>* /3(w) in the case when u = tFvFx'Ax"Fy.

3. Assume that p has this form

(A) —• (So),

where A G M and a G T U {e}. Observe that
either x = x'Ax" so u = tFvFx'Ax" Fy

where x' G prefix(x) and x" G suffix(x)

or y = y'Ay" so u = tFvFxFy'Ay"
where y' G prefix(y) and y" G suf fix(y).

Assume that u = tFvFx'Ax"Fy. At this point,

w = tFvFx'$ax" Fy.

As (A) — > ($o) G P,
A — » a G R.

Notice that H makes

/3(tFvFx'$)Aj3{x"Fy) =>• P(tFvFz'$)a/3(x"Fy).

Because P{tFvFx'%)aP{x"Fy) = /3(w),

S =>* p(w)

in H.
Analogously, establish S =>* P{w) under the assumption that u = tFvFxFy'Ay".

4. Assume that p is a production from

{(F,[,},F,F) —> (F,e,e,F,F),
(F,F,$,F) (F,F,e,F),
(F,[,},F,F,[,],[)-+ (e,e,e,e,F,[,]F,F[),
(F,[,),F,F,[,}) —> (£,£,£,£, £,£,£)}.

Then,
¡3(tFvFxFy) = p(w)

By the induction hypothesis,
S (3{w)

in H.
Thus, Claim 8 holds.

•
Claim 9

L(G) C L{H).

238 Alexander Meduna

Proof of Claim 9: By Claim 6, if

E =>+ v

in G with v G T*, then
S=>* v

in H. Therefore, Claim 9 holds.
•

Claim 10 Let
S u =>* z

in H, where j el, z e T*, and u G (M U T)*. Then,

E wFvFxFy

in G, where w G T*,v G { [} i {] } i for some i G N , a ; G ({ $ } U T) * , y G {(N-{E,F})U
T)*, so that

u G p(wFvFxFy).

Proof of Claim 10: This claim is established by induction on j = 0 ,

Basis:
Let j = 0; that is,

S 5 = > * z

in H. Notice that G makes
E =» F[}F[F}S[]

by using E F[]F[F]S[], and S G / 3 (i , 0* , №Q). Thus, the basis holds.

Induction Hypothesis:
Suppose that

S u z

in H, where z G T*, u G (M U T)* , for all i = 0 , . . . , j , for some j G I.

Induction Step:
Let

S u =>* z

in H, where z G T* and u G (M UT)*. Express this derivation as

S u => t = > * z

in H, where t G (MUT)* and u t is made according to p G R. By the induction
hypothesis,

E wFvFxFy

in G, where w G T*,v G {[}i{]}i for some? G N , i G ({$}U T)*,y G ({N-{E,F}) U
T)*, so u G 0(wFvFxFy). Let H make u => t by using a production, p £ R. Next,
this proof considers all possible forms of p.

Economical Transformations of Phrase-Structure Grammars 239

1. Assume that p has this form

AB —> AC.

Express U = > T in H as
u'ABu" =• u'ACu",

where u'ABu" = u and u'ACu" = t. As ID £T",v £ {[}*{]}* for some i £ N,.x £
({$} UT)*,?y e ((N - {E,F})l>T)*,u£ P{wFvFxFy), and

AB £ subword(y).

Assume that
y = y'A[k)kBy",

where u' £ P{wFvFxFy'),k £ I,u" £ ¡3(y").
As AB —• AC £ R,

{A,B) {A[,]C) £ P.

Thus,

wFvFxFy'A[k]kBy" => wFvFxFy'A[k+1]k+1Cy"

in G. Therefore,
E =>+ wFvFxFy'A[k+1]k+1Cy"

in G so
u £ /3(wFvFxFy'A[k+1]k+1Cy").

2. Assume that p has this form

A —> BC.

Because w £ T*,v £ {[}i{]}i for some i £N,x£ ({$}UT)*,y £ {{N-{E, F})UT)*,
and u £ fi(wFvFxFy),

A £ subword(y).

Express y as
V = y'Ay".

As A —> BC £ R,
(A) —>• (BC) £ P.

Thus,
wFvFxFy'Ay" => luFvFxFy'BCy"

in G. Therefore,
E =>+ wFvFxFy' BCy"

in G so
u £ P(wFvFxFy'BCy").

240 Alexander Meduna

3. Assume that p has this form
a.

As w E T*,v E {[}i{]}i f o r s o m e i e N, a E ({e} U T),x E ({$} U T)*,y E
((N - {E, F}) U T)*, and u E ß(wFvFxFy), we have

A E subword(y).

y = y'Ay".

(A) —> (So) E P.

wFvFxFy' Ay" => wFvFxFy'%ayn

E =>•+ wFvFxFy'$ay"

u E ß(wFvFxFy'$ay").

Express y as

As A —> a E R,

Thus,

in G. Therefore,

in G so

Therefore, Claim 10 holds.

Cla im 11

Proof of C la im 11:
By Claim 10, if

in H, where v ET*, then

in G. Therefore, Claim 11 holds.

By Claims 9 and 11,
L(G)=L(H).

To summarize the proof,

A. L(G) = L{H)\

B. card(M) = card(N) + 5;

C. card(ContextDependent(P)) = card(ContextDependent(R)) + 4;

D. card(ContextFree(P)) = card(ContextFree(R)) + 1.

L(H) C L(G).

•

•

Economical Transformations of Phrase-Structure Grammars 241

Thus, Theorem 1 holds.
•

In its conclusion, this paper points out that the previous theorem also holds for
phrase-structure grammars in Kuroda normal form (see [2]). Recall that a phrase-
structure grammar, G — (N, P, S, T), is in Kuroda normal form if P has only these
two kinds of productions

AB —> CD where A, B,C,D £ N, and

A —> x £ R, where A £ N a n d x £ NN U T U { e }

Theorem 2 Let H = (N1 ,P', S',T) be a phrase-structure grammar in Kuroda
normal form. Then, there exists a scattered context grammar, G = (A T ,P ,S ,T) ,
that satisfies

A. L(G) = L{H);

B. cnrd(N) < card(N') + 5;

C. card(Cont,extDependent(P)) < card(ContextDependent(P')) + 4;

D. card(ContextFree(P)) < card{ContextFree(P')) + 1.

Proof.: Prove this theorem by analogy with the proof of Theorem 1.
•

Acknowledgement: The author thanks the anonymous referee for useful comments
concerning the first, version of this paper.

References
[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory.

Springer, New York, 1989.

[2] Kuroda, S. Y. : "Classes of Languages and Linear Bounded Automata,"
Inform. Control 7, 207 - 223, 1964.

[3] Meduna, A. : "Syntactic Complexity of Scattered Context Grammars " Acta
Informática 32, 285 - 298, 1995.

[4] Meduna, A. : "A Trivial Method of Characterizing the Family of Recursively
Enumerable Languages by Scattered Context Grammars," EATCS Bulletin
56 (1995), 104 -106.

[5] Meduna, A. : "Four-Nonterminal Scattered Context Grammars Character-
ize the Family of Recursively Enumerable Languages," International Journal
of Computer Mathematics 63, 67-83, 1997.

242 Alexander Meduna

[6] Paun, Gh. : "Six Nonterminals are Enough for Generating each R.E. Lan-
guage by a Matrix Grammar," International Journal of Computer Mathe-
matics 15, 23-37, 1993.

[7] Penttonen, M. : "One-Sided and Two-Sided Context in Formal Grammars,"
Inform. Control 25, 371 - 392, 1974.

Received March, 1997

Acta Cybernet,ica 13 (1998) 243-256.

Isomorphic representation of
nondeterministic nilpotent automata

Ildikó Székely *

Abstract
In this paper, we deal with nondeterministic nilpotent automata and give

a characterization of their isomorphic embedding with respect to the direct
product.

1 Introduction
Investigation on homomorphic or isomorphic embeddings into products of automata
is the starting point in the study of homomophic or isomorphic completeness of cer-
tain classes of automata with respect to different kinds of products. The problem
of decomposition has a general approach in [4], where an abstract notion of compo-
sition and a general decomposition theorem are presented. Regarding the subdirect
representation, there are several works dealing with this topic, see [3], [5], [2], [9],

In this paper, we generalize the notion of nilpotency for nondeterministic au-
tomata and study the isomorphic representation of nondeterministic nilpotent au-
tomata under the direct product. As it turns out, this case is much more compli-
cated than the deterministic one presented in [3].

2 Preliminaries
By a nondeterministic automaton we mean a system A = (X, A, 5) , where A' and
A are nonempty finite sets, X is the set of input signs, A is the set of states and
5 : A x X —» V(A) is the transition function. V(A) denotes here the power-set of
A. For an input sign x £ X and a state a £ A, 5(a,x) can be visualised as the
set of all states in which the automaton goes when the current state is a and the
input sign is x. For S(a,x), the notation axA is frequently used. Let us suppose
that a € A and p £ X+. The transition function can be extended as follows:

'Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary

[8].

U bxA if p = ax where x £ X and q £ X+

\aqA

cA if p = x and x £ X.

243

244 Ildikó Székely

If M C A,x £ X, then we denote by MxA the set U axA and if p £ X+, then
a£M

MpA = U apA.
a£M

Let now A = (X, A, 5) and B = (X,B,5B) be two nondeterministic automata.
It is said that B is a subautomaton of A if B C A and 5b is the restriction of
6 to B x X, i.e. axB = axA fl B is valid, for all a £ A and x £ X. For two
nondeterministic automata A = (X, A, 5) and B = (X, B,5B), a mapping / t : A —>
B is a homomorphism if p(axA) = p(a)xB holds, for all o 6 A and x £ X. If
the homomorphism p : A —• B is an onto mapping, then we say that B is the
homomorphic image of A; moreover p is called an isomorphism, if p is a one-to-one
mapping of A onto B. In this case, we say that A and B are isomorphic.

Let k be an arbitrary positive integer and A r = (A'. Ar, 6r),r = 1 , . . . , k, be non-
deterministic automata. By the direct product of these nondeterministic automata
we mean the automaton A = (X, A, 5) where A = Ai x • • • x Ak and <5 is defined
as follows. For every a — (a i , . . . , a*;) £ A and x £ X, S(a,x) = 5i(a\,x) x • • • x
5k(a,k, x) or using the other notation: axA = (ai,..., dk)xA = a\XAl x • • • x auxAh.
For the direct product of A i , . . . , A*, we will use the notation Ai x • •• x Ak •
It is said that a nondeterministic automaton A can be embedded isomorphically
into the direct product of A i , . . . , Afc if A is isomorphic to a subautomaton B of
Ai x • • • x Afc.

Let A = (X, A, <5) be a nondeterministic automaton and- 9 an equivalence re-
lation on A. For every a £ A, let 6(a) denote the class of the partition belonging
to 9 and containing a. We can define a factor-automaton based on 9 as follows.
Let A/9 = (X, A/9,5') be the nondeterministic automaton where the transition is
defined by 9(a)xA/6 = {6>(a')K e bxA and b £ 9(a)}, for all a £ A and x £ X. It
is important to remark that the mapping a 9(a), a £ A is not a homomorphism
of A onto A/9 in general.

Let us introduce some special equivalence relations on A. If a, b £ A, then
let 9a^ be the equivalence relation defined in the following way: u 9a^ v if and
only if u = v or u,v £ {o,6}, for all u,v £ A. It is obvious that the factor-set,
A/9atb — {{u}|w £ A \ {a, 6}} U {{a, b}}. For the sake of simplicity we will denote
by u the classes of the form {u} and by capital letters like U or V the classes
of the form {a, b} of the factor-set. We will use in the proofs of this paper the
following important observation. If A has two states c ^ d satisfying cxA = dxA,
for all £ 6 A", then A/9C^ is a homomorphic image of A under the homomorphism
a 9Cid(a),a £ A.

Now, let, 9i,... ,9k be arbitrary equivalence relations on A. Then, the mapping
/i : A A/9i x • • • x A/9k given by p(a) = (Oi(a),... ,9k(a)) ,a £ A, is called the
natural mapping. It is easy to see that the natural mapping is a one-to-one mapping

fc
of A into A/91 x • • • x A/9k if fl 9r = A^, where A^ is the equality relation on

r—1

A. If we consider the factor-automata A i , . . . , Afc based on arbitrary equivalence
relations 9\,... ,9 k, respectively, then one can see that the natural mapping is not a
homomorphism of A into Ai x • • • x Afc, in general. In the constructive proofs given
in this paper, we will have only natural mappings that are one-to-one mappings and

Isomorphic representation of nondeterministic nilpotent automata 245

are homomorphisms. By reducing the codomain of chese mappings to B = p(A) we
obtain isomorphisms. Of course we will prove these features of the natural mapping
in each case separately.

3 Nondeterministic nilpotent automata
Throughout the paper we restrict ourselves to the complete nondeterministic au-
tomata (see e.g. [1], [7]). Here, we recall its definition. A nondeterministic automa-
ton A = (X , A, <5) is called complete if S(a, x) 0 is valid, for all a £ A and x £ X.
In this paper, by nondeterministic automaton we mean a complete nondeterminis-
tic automaton. Moreover, we deal with a special class, the class of nondeterministic
nilpotent automata. As a generalization of the traditional nilpotent automaton, it
can be defined as follows.

A nondeterministic automaton A = (X, A, 5) is called nilpotent if there exist a
positive integer n and a state ao, such that ApA = {a0} is valid, for all p £ X+

with |p| > n (|p| denotes the length of the word p). The distinguished state o0 is
called the absorbent state of A.

Now, let us define the following relation on A: a < b if and only if a — b or
there is a p £ X+ such that b £ apA. It is easy to see that the introduced relation
is a partial ordering on A since A is nilpotent. If one of the relations a < b or
b < a is valid, then a and b are called comparable. In the opposite case, we say
that they are incomparable and it is denoted by a IX b. Furthermore, the absorbent
state ao is the greatest element in (A, <) and if A has at least two elements, then
there exists a bo i1 ao € A such that bo is a maximal element in (A\ {a0}, <). From
the maximality of ao and bo, it follows that ÜQXA = boxA is valid, for all x £ X.
Note that if there exists only one pair of states a ^ b which satisfies axA = bxA

for all x £ X, then these two states must be ao and bo- Throughout the paper we
will express this in a shorter way, using "the sentence "A has exactly one pair of
different states ao and bo for which aoa;A = bgXA holds, for all x £ X". In this case,
b0 is the greatest element in (A \ {ao}, <), because it is the only maximal element
in this set.

The following statement is a consequence of'Lemma 2 in [6] and it follows from
the observation taken at the end of the previous section.

Lemma 1 Let c and d be two different states of a nondeterministic nilpotent au-
tomaton A = (X,A,S). If cxA = dxA is valid, for all x £ X, then the factor-
automaton A/0Cid is also a nondeterministic nilpotent automaton.

In particular, if {c,d} = {a0,&o}, then it is easy to see that the corresponding
factor-automaton is a nondeterministic nilpotent automaton with the absorbent
state 6ao,b0(ao) = {ao,M-

Using the notion of incomparability, an other similar factor-automaton can be
defined as follows. Let A = (X, A, S) be a nondeterministic nilpotent automaton
with > 3 and let c M d £ A be incomparable states of A. Then, one can

246 Ildikó Székely

prove that A/9C^ is a homomorphic image of A under the homomorphism a —>
6Ctd{a), a £ A. This observation leads to the following statement:

Lemma 2 If a nondeterministic nilpotent automaton A = (X, A, 6) with |A| > 3
has two incomparable states c and d, then the factor-automaton A/9Ctd is also a
nondeterministic nilpotent automaton.

The following property is very important with respect to the inner structure of
the nondeterministic nilpotent automata. It shows that no "loops" or "circuits"
may appear on the states of a nondeterministic nilpotent automaton except for the
absorbent state.

Lemma 3 If A = (X , A, 6) is a nondeterministic nilpotent automaton with the
absorbent state ao, then a ^ apA holds, for all a € A \ {ao} and p £ X+.

We will also refer to the next Lemma, whose proof needs the following obser-
vation which is a direct consequece of the definitions. If A i , . . . , A^ are nondeter-
ministic nilpotent automata with the absorbent states a ° , . . . , respectively, then
their direct product is a nondeterministic nilpotent automaton with the absorbent
state (a ° , . . . , a°). Furthermore, every complete subautomaton of the direct product
is nilpotent with the absorbent state (a°,..., a°). This also means that if a nonde-
terministic nilpotent automaton A = (X, A, 6) with the absorbent state ao can be
embedded into Ai x • • • x Ak under the isomorphism fj,, then fi(ao) = (a ° , . . . , a°).

Lemma 4 Assume that A = (X, A, 5) is a nondeterministic nilpotent automaton
with the absorbent state ao and A has exactly one pair of different states ao, bo
for which aoxA = boxA holds, for all x 6 X. Let AR = (X, Ar,Sr),r = 1,..., k,
(k > 2) be nondeterministic nilpotent automata with the absorbent states a ° , . . . ,
respectively, and let ¡JL : A —> B C Ai x • • • x Ak be an isomorphism of A into
Ai x • • • x Ak- If we denote the image o/ 6o under ¡j, by (b j , . . . , and the set of
indices {i € {1,... ,k}\a° ± 6°} by I, then the components a1,b° with i 6 I may
appear in no other elements of B but p(ao) and fi(bo).

4 Isomorphic representation of nondeterminist ic
nilpotent automata

Theorem 1 Let A = (X, A, 6) be a nondeterministic nilpotent automaton with
|A| > 3, the absorbent state ao, and let bo be a maximal element in (A \ {ao}, <)•
If there exist a\, b\ 6 A, ax ^ b\, {ai,6i} / {ao,&o} such that beside aoxA = boxA,
aixA = b\ xA also holds for all x £ X, then A can be embedded isomorphically into
a direct product of nondeterministic nilpotent automata having fewer states than
\A\.

Proof. Case 1. {a0,60} H {ai,&i} = 0- Let Ax = A/9AOM and A2 = A/9NUBL.
Then, A can be embedded isomorphically into Ai x A 2 under the natural map-
ping denoted by p,. Let B = [¿(A). Since 9a0ib0 n 9aiii,i = A^, fx is a one-to-one

Isomorphic representation of nondeterministic nilpotent automata 247

mapping. To simplify the notation we will use Do for 0ao,bo(ao) = {ao,&o} and
Ui for 0ai,bi (ai) = {ai>&i}- To prove that p is an isomorphism, we have to show
that p(axA) = p(a)xAlxA2 n B, for all a £ A and x £ X. We can do this by
evaluating p(axA) and p(a)xAl x A 2 fl B in the following cases: a € A \ (U0 U UI)
and axA n (U0 U UI) = 0; a € A \ (U0 U UI) and axA NU0 = <D and axA D UI ± 0;
o é A \ (£ í 0 U Ui) a n d axA n U0 + 0 a n d axA D UI = 0; a £ A \ (U0 U UI) a n d
axA flUo ± 0 and axAr\U1 5 ¿ 0 ; a e Uv and axAnU0 = 0 and axAC\UI = 0; a € Ux
and axA n U0 = 0 and axA n U\ ± 0; a £ Ui and axA n U0 ± 0 and axA n U\ = 0;
a £ Ui and axA n U0 ± 0 and axA n £/i ^ 0; a G U0.
Case 2. {a0,b0} fl {ai,6i} ^ 0. {o0,6o} i1 {a i ,M> hence {a0,í>o} H {ai,6i} con-
tains exactly one element. Let {61} = {ao, &o}n{ai, 61}. There are two possibilities:
61 = a0 or b\ = bo- In both cases, aixA = boxA — a0xA = {a0}, for all x £ X. Con-
s e q u e n t l y , t h e f a c t o r - a u t o m a t a A i = A/8A0¿0, A 2 = A/9AO¡AI a n d A 3 = A /9B O > A I

are nondeterministic nilpotent automata. We show that A can be embedded iso-
morphically into A i x A 2 x A3 under the natural mapping denoted by ¡i. Let B =
n{A) C AixA-2xA3. The mapping/ais one-to-one since flaoi6on0aoiain0¡,oiai = Aa.
It also satisfies p,(axA) = p(a)xAl x A 2 x A 3 n B, for all a £ A and x £ X. To prove
this, we must evaluate once again p(axA) and p,(a)xAlxA2><A3 n B in the follow-
ing cases: a £ A \ {a0,6o,ax} and axA D {a0 ,6o,ai} = {ao} (or {60}, or {ai});
a £ A \ {a0 ,6o,ai} and axA ft {a 0 ,6 0 ,a i} = {a0,6o} (or {a0 ,a i}, or {60,ai});
a £ A \ {a 0 ,6 0 ,a i} and axA D {ao,6o, ai} = {ao,&o,ai}; a £ {a0 ,60 ,ai}. •

Corollary 1 If a nondeterministic nilpotent automaton A = (X , A, 6) cannot be
embedded into a direct product of nondeterministic nilpotent automata having less
states than \A\, then A has exactly one pair of different states ao,bo for which
OQXa = boxA holds, for all x £ X. These states are ao, the absorbent state and bo,
the greatest element in (A \ {ao}, <).

It is worth noting that, unlike for deterministic automata (see [3]), the converse -
statement is not true.

Lemma 5 Let A = (X, A, 5) be a nondeterministic nilpotent automaton (|A| > 3)
that has exactly one pair of different states ao, bo for which aoxA = boxA holds, for
all x £ X. If A can be embedded isomorphically into a direct product of nondeter-
ministic nilpotent automata having fewer states than then there must exist a
pair of incomparable states c N d £ A.

Proof. Let p. : A —> B C Ai x • • • x Af¡ be an embedding isomorphism, where
k > 2 is fixed and \Ar\ < for all r = 1 , . . . , k. Since \Ar\ < \A\, there exists a
state ar £ Ar, such that ar occurs in at least two different elements of B on the
r-th position, for all r = 1 , . . . , k. If we use the notation (a°,..., a°) for /¿(a0) and
(6°,. . . ,b°) for f¿{bo), then, because ao ^ bo and p is an isomorphism, there has
to be an index i £ {1 , . . . , k} such that a° 6°. Let b' and b" be two different
elements of B in which a¿ occurs on the i-th position, and let c, d £ A be the states
for which p(c) = b ' and p,(d) = b". p is an isomorphism, hence c ^ d. We will
show now, that c and d are incomparable in (A, <). Assume to the contrary that

248 Ildikó Székely

c < d (or d < c). Since c ^ d, there exists p G X+, such that d 6 cpA. In the
meantime, p is an isomorphism, so we can conclude that p(d) 6)i{c)pB, which
implies a¿ G a¡pA i . Thus, due to Lemma 3, the only possibility for a¿ is a¿ =
Since b0 is the greatest element in (A \ (a 0 } ,<) , it is obvious that d < b0, i.e.
d = bo or there exists a g e such that bo G dqA. If d = bo, then = o°
follows immediately and contradicts the assumption ^ a¿. If 6o £ dqA, then
under the isomorphism /¿ we have p(b°) € p(d)qB, which for the i-th component
means b° G a°qAi. This contradicts the nilpotency of A¿. •

Corol lary 2 If the partially ordered set (A, <) of a nondeterministic nilpotent au-
tomaton A = (A', A, S) with |A| > 3 is a chain, then A cannot be embedded into a
direct product of nondeterministic nilpotent automata having less states than \A\.

L e m m a 6 Let A = (X, A, 6) be a nondeterministic nilpotent automaton (|A| > 4)
that has exactly one pair of different states ao,bo for which oqxa — boXA holds, for
all x £ X. If there exist c fxl d G A such, that for all x G X, cxA fl {ao, 60} 0
and dxA fl {ao, 60} 0 jointly imply cxA fl {ao,6o} = dxA fl {ao,&o}, then A
can be embedded isomorphically into a direct product of nondeterministic nilpotent
automata having fewer states than \A\.

Proof . Since c and d are incomparable, {c, d} fl {ao,&o} = Let Ai = A/9a0,b0
and A2 = A/0c,d- Since c N d and a0xA — b0xA, for all x G X, both A/8a0tb0 and
A/9c¡d are nondeterministic nilpotent automata. Now, we will prove that A can
be embedded isomorphically into Ax x A2 under the natural mapping denoted by
p. Since #no,i>o n^c.d = ¡J, is a one-to-one mapping of A into A/8a0tb0 x A/6Ctd.
To prove that fi is an isomorphism, let B = fi(A). For the sake of simplity, let
us denote by U #O0,¡,0(a0) =. {«o, ^o} and by V 6c,d{c) = {c,d}. Then, we have
to evaluate fi(axA) and fi(a)xAl xA2 n B in the following cases: a G A \ (U U V)
and axA n (U UV) = Q; a e A \ (U UV) and axA D U = 0 and axA n V ¿ 0;
a G A \ (U U V) and axA n U / 0 and axA n V = 0; a G A \ (U U V) and
axA n U / 0 and axA n V £ 0; a G U\ a = c (or d) and cxA D U = 0 and
dxA n U = 0; a = c (or d) and cxA D U = 0 and dxA D U ± 0; a = c (or d) and
cxA fl U ¿ 0 and dxA n U = 0; a = c (or d) and cxA n U ¿ 0 and dxA n U ± 0. In
this latter case, we have to use the assumption of the lemma, namely, if cxA C\U / 0
and dxA n U ± 0, then cxA n U = dxA nU. •

Corol lary 3 Let A = (X,A,S) be a nondeterministic nilpotent automaton with
|A| > 4 that has exactly one pair of different states ao,bo for which aoXA = b0xA

holds, for all x G X. If A has exactly one pair of incomparable states c tX d and
A cannot be embedded into a direct product of nondeterministic nilpotent automata
having fewer states than |A|, then there has to be x G X such that cxAfl{ao, bo} Í 0,
dxA n {ao, 60} / 0 and cxA l~l {a0,60} # dxA fl {ao, 60} hold.

L e m m a 7 Assume that A = (X, A,<5) is a nondeterministic nilpotent automaton
(| AI > 4) that has exactly one pair of different states ao, bo for which aoxA = boxA

holds, for all x G X, and that A can be embedded isomorphically into a direct

Isomorphic representation of nondeterministic nilpotent automata 249

product of nondeterministic nilpotent automata having fewer states than \ A\. If for
c M d 6 A, there exists x £ X such that cxA n {ao, 60} ^ 0, dxA fl {ao, 60} / 0 and
cxA D {ao>^o} H {ao,fro} simultaneously hold, then there exists elX / 6 A
such that {e , /} {c, d}.

Proof. We use the same notations as in the proof of Lemma 5. Let n(c) = b' =
(b[,... ,ai,..., b'k), and p(d) = b" = (6'j,... , a¿ , . . . , b'¿). We must analyse the cases
in which the given conditions cxA n {ao, b0} ^ 0, dxA D {a0, bo} j1 0 and cxA n
{a0,60} H{a0,60} hold. Let us assume that cxA = {a0} and dxA = {60} (all
other cases can be proved similarly to this one). This yields that {a°, bf} C a¿xAi

and that there exists an index j ^ i, such that b'j £ b" and a° ^ b°. For this index
j, the relations "a° € b'jXA', b? ^ b)xA', a° # bpA¡ and 6° 6 b'jxAi also hold.
Consider now áj and two different elements of B in which a3 occurs on the j-th
position. Let e and / be those states of A whose images under the isomorphism
p are these two elements. Like in the proof of Lemma 5, one can see that e txl / .
We still have to prove that {e , / } ^ {c,d}. For a3 , there are three possibilities:
aj £ {b'j,b"}, ñj = b'j or ñj — b'J. In the first case, we have { e , f } l~l {c, d] = 0, in
the second case, {e, / } n {c, d} = {c} and in the third case, {e , / } n {c,d} = {d}.
Consequently, {e , / } fí {c,d}. •

Corollary 4 Let A = (X, A, S) be a nondeterministic nilpotent automaton with
|A| > 4 that has exactly one pair of different states ao,&o for which a 0 x A = hnxA

holds, for all x £ X. If A has exactly one pair of incomparable states c IX d
and there exists x £ X such.that cxA fl {ao,&o} 0; dxA fl {ao,&o} 0 and
cxA fl {ao, 60} dxA fl {ao,6o} are true, then A cannot be embedded into a direct
product of nondeterministic nilpotent automata having fewer states than |A|.

Lemma 8 Let A = (X, A, 8) be a nondeterministic nilpotent automaton (|A| > 4)
that has exactly one pair of different states a0,bo for which a0xA = boXA holds, for
all x £ X. If there are c IX d £ A and elX f £ A such that {c,d} n {e, / } = 0,
then A can be embedded isomorphically into a direct product of nondeterministic
nilpotent automata having fewer states than |A|.

Proof. Let Ai = A/0Oo,6o, A2 = A/0C)d and A3 = A/9EJ- Since a0xA — b0xA, for
all x £ X, and c tx d, e M / , the factor-automata Ai , A2, A3 are nondeterministic
nilpotent automata. On the other hand, 9A0TB(¡ n 9C¡¿ fl 9ej = Aa, and thus, the
natural mapping denoted by p is a one-to-one mapping. To prove that /i is an
isomorphism, as in the constructive proofs given above, we must calculate p(axA)
and n(a)xAlxA2XA3 n B in the corresponding cases, where B = p[A). •

Lemma 9 Let A = (X, A,S) be a nondeterministic nilpotent automaton (|A| > 5)
that has exactly one pair of different states ao, bo for which ÜQXa = boxA holds, for
all x £ X. If there are three pairwise incomparable states c M d £ A, d txl e £ A
and e IX c £ A, then A can be embedded isomorphically into the direct product of
nondeterministic nilpotent automata having fewer states than \A\.

250 Ildikó Székely

Proof . We construct the following three factor-automata: Ai = A/9Cii, A-» =
A/9dte and A3 = A/#e,c- Since c M d, d txi e and e M c~, each of the automata
Ai , A2, A3 is a nondeterministic nilpotent automaton. It can be proved that the
natural mapping is an isomorphism in this case. The proof goes similarly to the

Note that the condition that A has exactly one pair of different states ao, b0 for
which aoxA = boxA holds, for all x € X, was not used in this proof, hence, it is
not necessary.

Corollary 5 Let A = (X, A, S) be a nondeterministic nilpotent automaton with
|A| > 5 that has exactly one pair of different states ao,bo for which aoxA = boxA

holds, for all x € X. If A has at least two incomparable states and A cannot be
embedded into a direct product of nondeterministic nilpotent automata having fewer
states than \A\, then there has to be c £ A \ {ao, bo} such that for every e IX / £ A,
c £ {e, / } must hold.

Lemma 10 Let A = (X, A, 8) be a nondeterministic nilpotent automaton with
]A\ > 5 that has exactly one pair of different states ao, bo for which aoxA = boxA

holds, for all x £ X. If there are a natural number k >2 and c,e 1,... ,ek £ A with
c X er, r = 1,..., k, such that

\/x £ X (3i € {1 , . . . , k} : eiXA (~1 {a0, M C cxA n {a0, 60}) holds,

then A can be embedded isomorphically into a direct product of nondeterministic
nilpotent automata having fewer states than |A|.

Proof. We construct the following & + 1 automata: let A 0 = A/9a0}ba and for every
r = 1 , . . . , k, let A r = A/8C:er.

Since aoxA = boxA for all x € X and c M eT,r = 1,... ,r, each of the automata
Ao ,Ai , . . . ,Afc is a nondeterministic nilpotent automaton. We prove now that
the natural mapping is an isomorphism of A into Ao x Ai x • • • x Afc. Since
9ao,b0 H fl • • • n 9c eh = , p is a one-to-one mapping. To prove that n is an
isomorphism, we have to investigate more cases. For the sake of simplity, we shall
use the notations: U = 9a0ib0(a0) = {ao,6o} and for r = 1 , . . . , k, Vr — 9c^r(c) =
{c, e,-}. We will give the proof in detail for the following two cases.

Assume that a = c and cxA fl {ao, 60} i1 0- Then,

cases mentioned above. •

p(cxA) = p(cxA \ {ao, b0}) U n(cxA n {a0, fe0}) =

{(b,..., b)\b £ cxA \ U}ll{(U, b,..., b)\b € cxA n U}.

On the other hand,

p(c)xA°xAlX"'xAk = (c,V1,V2,...,Vk)x , A 0 x A i X- -X Ak _

= cxAo x VxxAl x • • • X VkxAh =

= ((cxA \U) U {[/}) x (cxA U e\xA) x • • • x (cx A U ekxA) =

Isomorphic representation of nondeterministic nilpotent automata 251

= ((cxA \ U) x (cxA U eixA) x • • • x ycxA U ekxA)) U

U ({[/} x (cxA U eiXA) x ••• x (cxA U ekxA)) ,

which implies

/ i (c) i A l x A l X ' " x A ' n 5 =

.= Ub,..., 6)|6 e cxA \ U) U Uu, b,..., b)\b e (n (cx A U erxA)) n U\ = r=1
= {(ft,..., b)\b G cxA \ U} U {(U, b,..., b)\b 6 (cxA n U) U (n (eriA D U))}.

Since there exists an index i such that e{XA fl {ao, bo} C cxA n {a0, bo}, the inclusion

n (erxA HU)CcxAnU also holds and p{cxA) = p(c)xA°xAlX -xAk n B. 7—1
Now, assume that a = ej for some j e {1 , . . . , k} and e jx A fl {a0,60} 0- Let

I = {l\et e ejXA} and J = {l\et 0 eja;A}. Then,

p(e3xA) = n(ejxA\({a0,b0}U{ei\l 6 J })) U /x(eja;A n {a0,60}) U p{{et\l e / }) =

= {(6,6,. . . ,b)\b e ejXA \ ({a0 ,b0} U {e,|I e / })}u

u{xA(U, b,...,b)\be ejX
A n {ao, 60}} U U^fa, et,..., e(, Vt, eh ..., e,)},

where VJ occurs on the (1+ l)-th position of the element (ej, e / , . . . , ej, VJ, e j , . . . , ej).

nip W A ° x A l X - ' X A J , _ (p . p. p. <[/. p. \ A 0 x A , x . . . x A f c _ nyt-jjx — , Cj , . . . , Cj , Vj, e^, . . . , —

= ejxA° x eja;Al x • • • x ejXA'~1 x VjXA> x ejXA'+1 x • • • x ejxAk =

= ({ejXA \U)U {[/}) x Mi x • • • x Mj-i x (cxA U ejXA) x Mj+1 x • • • x Mk,

where

Mi =
A if l e J ,

(e i x A \ V|) u {V|} if I ei,

for all I e {1, . . . ,j - 1, j + 1 , . . . , k}. Therefore,

/ i (e J > A o x A l X - x A * ' f l B =

= {(&,..., b)\b e ejxA \(u^juvl)}u{(u,b,...,b)\be nr(ejxA \ Vt) n{a0,b0}} U

and the proof of p(cxA) = p(c)xA°xAlX'"xAk C\B is complete in this case, too.
The proof of p(axA) = p(a)xA°xAlX"'xAk fl B is similar in all other cases. •
By studying in detail all the cases of the proof of Lemma 10, we can state the

following result.

252 Ildikó Székely

Corollary 6 Let A = (X,A,8) be a nondeterministic nilpotent automaton with
|A| > 5 that has exactly one pair of different states do,6o for which a0xA = bnxA

holds, for all x £ X. If there exists a natural number k > 2 and there are
c,e i,..., ejt £ A with c N er, r = I,... ,k, such that for all x E X,

cxA fl { a o , b0} = 0 or 3i £ { 1 , . . . , such that e j X A n { a 0 , £>o} Q cxA n { o o , b0}

holds, then A can be embedded isomorphicalhj into a direct product of nondeter-
ministic nilpotent automata having fewer states than |A|.

Theorem 2 Let A = (X, A, 5) be a nondeterministic nilpotent automaton with
\A\ > 4 that has exactly one pair of different states ao,bo for which aoxA = boxA

holds, for all x £ X . If there exists c £ A such that:

(a) for all e M / € A, c € {e, / } , and

(b) there exists x £ X such that cxA fl {ao, bo} ^ % and for all e £ A with c IX e,
exA n {a0, fco} 2 cxA fl {a0,60} holds,

then A cannot be embedded into a direct product of nondeterministic nilpotent au-
tomata having fewer states than |A|.

Proof. Assume to the contrary that A can be embedded into the direct product
of k > 2 nondeterministic nilpotent automata having fewer states than |A|. Let
Ai,...,Ak be these nondeterministic nilpotent automata with \AT\ < \A\, r =
l , . . . , f c , and let p : A —> B C Ai x • • • x Ak be the embedding isomorphism.
Let B denote the subautomaton of Ai x • • • x A^ with state set B. Let //(ao) =
(ai,...,a°k) and p(b0) = (bl,... ,b°k). We consider the following set of indices:
I = {r £ {1, . . . , /s} | a° ^ 6°}. Since ao and fx is an isomorphism, I 0.
Without loss of generality, we may assume that I = {1, . . . ,m} where m < k and
m is a fixed value.

For all i £ I, let us examine the state «¿. i.e. the state which occurs in at least
two different elements of B on the ¿-th position. The existence of a^ follows from the
fact that \ Ai\ < |A|. Due to Lemma 4 and the definition of I, Hi will appear neither
in the element (a°,..., a°k), nor in (b°,...,b°k). According to this and to Lemma 3
that guarantees that in a nondeterministic nilpotent automaton no state may have
"loops"or "circuits" except for the absorbent state, the ancestors with respect to \i
of these elements are incomparable in A. Consequently, for every a.i,i = 1 , . . . ,m,
we have in A a pair of incomparable states, that don't have to be different for
different a»-s. Due to (a) these states are of the form c IX ei,... ,c IX e„, where
v <m and v is a fixed value. According to this, fi(c) = (a i , . . . , a m , c m + 1 , . . . ,ck).

In the same time, cxA fl {ao,&o} ^ {ao3bo} and also eixA fl {ao,&o} # 0 holds
for all i £ I, because otherwise there would exist e £ A such that exA n {a0, bo} C
cxA fl {ao,6o} would be true in a trivial way and condition (b) would not be
satisfied. cxA fl {a0,&o} ^ 0 stated by (b) and cxA n {a0,&o} i1 {a0,60} implies
cxA fl {ao, 60} = {ao} or cxA l~l {a0,60} = { M -

Isomorphic representation of nondeterministic nilpotent automata 253

Let us analyse the case cxA fl {ao,&o} = {aoj- Because is an isomorphism
and B is a subautomaton of Ai x — x a° £ a¿xAí , for all i = 1 , . . . , m, and
a° £ cixA', for all I = m + 1 , . . . , k, must be true. Remember that a° = 6°, for all
I = m +1,..., k. This implies the existence of a j £ /-such that & a.jXAj because,
otherwise b° £ a¿xAí , for all i = 1 , . . . , m, and b° £ c{xAl, for a l l / = m + 1 , . . . , k
would hold, which would imply bo £ cxA. Let us denote by J the following set of
indices J = {i £ I\ 6° ^ ajXA>}. Then, by the statements above, it is obvious that
J 0. On the other hand, all e¡ with j £ J must satisfy (b). This means that
e j X A n {a0, ¿o} 2 {a0}, for all j £ J . We already observed that e¿zA n {a0, b0} / 0
for all i £ I, thus the single possibility for ej is £ a3xA', for all j £ J, which
contradicts the definition and the nonemptyness of the set J . The analysis of the
case cxA n {a0, b0} = {2>o} is similar. •

Theorem 3 Assume that A = (X , A, <5) is a nondeterministic nilpotent automaton
(|A| > 5) that has exactly one pair of different states ao,bo for which aoxA =
boxA holds, for all x £ X. If A cannot be embedded into a direct product of
nondeterministic nilpotent automata having fewer states than |A| and A has at
least two pairs of incomparable states, then there exists c £ A \ {ao, 60} such that
the following statements are simultaneously true:

(a) for all e M / £ A, c £ {e, / } , and

(b) there exists x £ X such that cxA f1 {ao, bo} ^ 0 and for all e £ A with c N e,
exA 0 {ao, 60} g cxA D {a0, i>o}-

Proof. Let our starting assumption be that A has exactly one pair of different
states ao, bo for which aoxA = boxA holds, for all x £ X, that |A| > 5, that A has
at least two pairs of incomparable states and that A cannot be embedded into a
direct product of nondeterministic nilpotent automata. The proof of (a) is given by
Corollary 5. To prove (b) assume to the contrary that for all x £ X, c i A n{ao , 60} =
0 or there exists ex £ A with c N ex such that exxA fl {ao, bo} C cxA D {ao, bo}.

Let E be the set of all states of A that are incomparable with c, i.e. E =
{e i , . . . , ejt}. By (a) we know that there are no other pairs of incomparable states
but c ixl e\,••• ,c N efc, where k > 2. Thus, we can reformulate the converse of
(b) as follows: there exist k > 2 and ex,... ,ek £ A such that c M e r , r = 1 , . . . , k,
and for all x £ X, cxA fl {a0,£>o} = 0 or there exists i £ { l , . . . , f c} such that
eiXA fl {ao,6o} Q cxA fl {ao,i>o} holds. Due to Corollary 6 A can be embedded
isomorphically into a direct product of nondeterministic nilpotent automata having
fewer states than \A\ which contradicts the starting assumption. •

Now, we can prove our main result.

Theorem 4 A nondeterministic nilpotent automaton A = (X, A,ó) with |A| > 2
cannot be embedded into a direct product of nondeterministic nilpotent automata
having fewer states than |A|, if and only if A has exactly one pair of different
states ao, bo for which a0xA = boxA holds, for all x £ X, and one of the following
statements is true:

254 Ildikó Székely

(1) The partially ordered set (A, <) is a chain,

(2) A has exactly one pair of incomparable states c tx) d and there exists x E X
such that cxA D {a0, 60} ^ H {a0,60} 0 and cxA D {a0, 60} # dSA n
{a0,60} hold,

(3) A has at least two pairs of incomparable states and there exists c E A such
that the following two statements are valid:

(a) for all e N / e A, c E {e, / } , and

(b) there exists x E X such that cxA D {ao,6o} i1 ® ani1 for all e E A with
c Me, exA n {a0,60} 2 cxA D {ao, 60} holds.

Proof. First, let us prove the necessity. Assume that A is a nondeterministic
nilpotent automaton with > 2 and that A cannot be embedded into a direct
product of nondeterministic nilpotent automata having fewer states than The
fact that there is exactly one pair of different states ao, bo for which aoxA = boxA

holds, for all x E X, is guaranteed by Corollary 1. Now, we will show that one
of the statements (1),(2) or (3) holds. Examining (A, <) we can distinguish the
following three cases: there are no incomparable states at all, there is exactly one
pair of incomparable states and there are at least two pairs of incomparable states.

If there are no incomparable states at all, then (A, <) is a chain and (1) holds.
If there is exactly one pair of incomparable states, then, by Corollary 3, (2) holds.
If there are at least two pairs of incomparable states, then, by Theorem 3, (3) holds
and the proof of the necessity is complete.

Now, let us prove the sufficiency. Assume that A is a nondeterministic nilpotent
automaton with |A| > 2 that has exactly one pair of different states ao, bo for which
aoxA = b0xA holds, for all x E X, and that also one of (1),(2) or (3) is true.

If (1) holds, then due to Corollary 2 A cannot be embedded into a direct product
of nondeterministic nilpotent automata having fewer states than If (2) holds,
then A cannot be embedded into a direct product of nondeterministic nilpotent
automata having fewer states than due to Corollary 4. If (3) is true, then the
fact that A cannot be embedded into a direct product of nondeterministic nilpotent
automata having fewer states than \A\ follows from Theorem 2; and the proof of
Theorem 4 is complete. •

The following statement presents the characterization of the isomorphic decom-
posability.

Theorem 5 A nondeterministic nilpotent automaton A = (X, A, 8) with > 2
can be embedded isomorphically into a direct product of nondeterministic nilpotent
automata having fewer states than if and only if it fulfills one of the following
conditions:

(i) 1^1 3, ao is the absorbent state, bo is a maximal element in (A \ {ao})
and there exist ai,bi E A, ai ^ bi, {ai,6i} {a0,6o} such that beside
ÜQXA = boxA, AIXA = bixA also holds, for all x E X.

Isomorphic representation of nondeterministic nilpotent automata 255

(ii) A (with |A| > 4) has exactly one pair of different states do, bo for which
a0xA = boxA holds, for all x £ X, and there exist c M d £ A such that
for all x £ X, the implication (cxA fl {do,60} 0 A d a ; A n {d0,b0} ¿ 0) =•
cxA n {d0, b0} = dxA n {do, bo} holds.

(iii) A (with |A| > A) has exactly one pair of different states do, bo for which
a0xA = boxA holds, for all x € X, and there exist c tX d £ A and e M / £ A
such that {c, d} fl {e, / } = 0.

(iv) A (with |A| > 5) has exactly one pair of different states do, bo for which
aoxA = boXA holds, for all x £ X, and there are three pairwise incomparable
states c IX d £ A, d IX e € A and e IX c £ A.

(v) A (with |A| > 5) has exactly one pair of different states do, bo for which
aoxA — boxA holds, for all x £ X, and there exist a natural number k > 2
and c,e\,... ,ek £ A with c N er,r = 1,...,k, such that, for all x £ X,

cxA fl {d0, b0} = 0 or 3i £ {1 , . . . , k) : axA fl {a0, b0} C cxA n {a0, b0}

holds.

Proof. We will prove the necessity by contradiction. One can see that in the
class of nondeterministic nilpotent automata the following eqivalence holds:

^((i) V (ii) V (iii) V (iv) V (v)) O (S A ((1) V (2) V (3))),

where S is the statement that there is exactly one pair of different states a0, bo in A
for which aoxA — boxA holds, for all x £ X . It yields hence, that by Theorem 4, A
cannot be embedded into a direct product of nondeterministic nilpotent automata
having fewer states than |A|, which is a contradiction.

The sufficiency immediately follows from Theorem 1, Lemma 6, Lemma 8,
Lemma 9 and Corollary 6, which imply (i), (ii), (iii), (iv) and (v), respectively. •

Acknowledgement. The author gratefully acknowledges the help and the
support of her superviser, Dr. Balázs Imreh.

References
[1] H.D. Burkhard, Zum Lángeproblem homogener Experimente an determi-

nierten und nichtdeterministischen Automaten, EIK 12 (1976), 301-306.

[2] Z. Esik and B. Imreh, Subdirectly irreducible commutative automata, Acta
Cybernetica 5 (1981), 251-260.

[3] B. Imreh, On finite nilpotent automata, Acta Cybernetica 5 (1981), 281-293.

[4] B. Imreh, On products of automata, Papers on Automata Theory IV (1982),
1-13.

256 Ildikó Székely

[5] B. Imreh, On finite definite automata, Acta Cybernetica 7 (1984), 62-65.

[6] B. Imreh, Compositions of nondeterministic automata, Symposium on Semi-
groups, Formal Languages and Computer Systems, RIMS Kokyuroku 960
(1996), 44-53.

[7] P.H. Starke, Abstrakte Automaten, VEB Deutscher Verlag, Berlin, 1969

[8] G. H. Wenzel, Subdirect irreducibility and equational compactness in unary
algebras, (A.f), Arch. Math. (Basel) 21 (1970), 256-263.

[9] M. Yoeli, Subdirectly irreducible unary algebras, Amer. Math. Monthly 74
(1967), 957-960.

Received lune, 1997

Acta Cybernetica 13 (1998) 257-275.

On the Information Content of Semi-Structured
Databases

Mark Levene *

Abstract
In a semi-structured database there is no cleax separation between the

data and the schema, and the degree to which it is structured depends on the
application. Semi-structured data is naturally modelled in terms of graphs
which contain labels which give semantics to its underlying structure. Such
databases subsume the modelling power of recent extensions of flat relational
databases, to nested databases which allow the nesting (or encapsulation) of
entities, and to object databases which, in addition, allow cyclic references
between objects.

Due to the flexibility of data modelling in a semi-structured environment,
in any given application there may be different ways in which to enter the
data, but it is not always clear when the semantics are the same. In order to
compare different approaches to modelling the data we investigate a measure
of the information content of typical semi-structured databases in order to
test whether such databases axe information-wise equivalent For the purpose
of our investigation we use a graph-based data model, called the hypernode
model, as our model for semi-structured data and formalise flat, nested and
object databases as subclasses of hypernode databases.

We use formal language theory to define the context-free grammar in-
duced by a hypernode database, and then formalise the information content
of such a database as the language generated by this context-free grammar.
Intuitively, the information content of a database provides us with a measure
of how flexible the database is in modelling the information from different
points of view. This enables us to prove the following results regarding the
expressive power of databases: (1) in general, hypernode databases and thus
semi-structured databases express the general class of context-free languages,
(2) the class of flat databases expresses the class of finite languages whose
words Eire of restricted length between one and four, (3) the class of nested
databases expresses the class of finite languages, and (4) the class of object
databases expresses the general class of regular languages.

We then define two hypernode databases to be information-wise equiva-
lent if they generate the same context-free language. This allows us to prove

'Department of Computer Science University College London Gower Street London WC1E
6BT, U.K. email: mlevene@cs.ucl.ac.uk

257

mailto:mlevene@cs.ucl.ac.uk

258 Mark Levene

the following results regarding the computational complexity of determin-
ing whether two databases are information-wise equivalent or inequivalent:
(1) the problem of determining information-wise equivalence of hypernode
databases and thus semi-structured databases is, in general, undecidable, (2)
the problem of determining information-wise equivalence of flat databases
can be solved in time polynomial in the size of the two databases, (3) the
problem of determining information-wise inequivalence of nested databases is
NP-complete, and (4) the problem of determining information-wise inequiva-
lence of object databases is PSPACE-complete.

Keywords semi-structured databases, flat databases, nested databases, object
databases, information content, information-wise equivalence

1 Introduction
In a traditional data model such as the relational model [Cod79] there is a clear
separation between the schema and the data itself. Recently it has been recognised
that there are applications where the data is self-describing in the sense that it does
not come with a separate schema, and the structure of the data, when it exists,
has to be inferred from the data itself. Such data is called semi-structured, the
Web providing us with a rich source of semi-structured data to experiment with.
Semi-structured data is also useful when integrating several databases, some of
which may be structured. In such an integration process the data may come from
several different sources and thus it may be difficult to constrain the integrated
database to a single unifying schema. (For two recent surveys on semi-structured
data, which provide more motivation and examples of semi-structured databases,
see [Abi97, Bun97].)

Semi-structured data is naturally modelled in terms of graphs which contain
labels that give semantics to the underlying structure [Abi97, Bun97]. Herein we use
the hypernode model [PL94, LL95] as our data model for semi-structured data. The
hypernode model is well-suited for this task as it is a graph-based data model that
supports both complex objects of arbitrary structure and cyclic references between
such objects. There have been several other previous proposals for graph-based
data models [KV85, CM90, GPG90], all having the common thread of modelling
objects as graphs (or subgraphs) which can reference each other. (See [BH90]
for the graph-theoretic terminology.) Intuitively a hypernode database (or simply a
database) is a collection of directed graphs, called hypernodes, each such hypernode
modelling a unique object in the database which can reference other hypernodes.

Traditionally flat databases, as in the relational model, have been sufficient to
model most applications, but recently, it has been proposed to extend the modelling
power of flat databases to nested (or complex object) databases [AFS89] which allow
the nesting (or encapsulation) of entities, and to object-oriented databases [Kim90]
which, in addition, allow cyclic references between objects. (For the purpose of
this paper we concentrate on the data modelling aspects of objects and ignore the

On the Information Content of Semi-Structured Databases 259

wider issues of object-orientation in databases.) The hypernode model, as are other
semi-structured models [Abi97, Bun97], is more general than the above extensions
to the flat relational model, and in the sequel we will define suitable restrictions of
hypernode databases that allow us to model flat, nested and object databases.

Due to the flexibility of data modelling in a semi-structured environment, in
any given application there may be different ways in which to enter the data,
but it is not always clear when the semantics are the same. In order to compare
different approaches to modelling the data we would like to measure the information
content of typical semi-structured databases in order to test whether such databases
are information-wise equivalent. Moreover, for practical purposes it is essential to
know what the computational cost of testing for such equivalence is, given that
the database designer may have to choose one of the representations for the actual
database. In particular, it would be useful- to compare the expressive power of the
above mentioned extensions to the basic flat data model in terms of the information
content of the databases which are in the subclass of databases induced by each
such extension.

We illustrate the modelling power of hypernode databases with a running exam-
ple showing part of a hypernode database, where the labels of hypernodes represent
unique identifiers.of hypernodes in the database, providing the means by which hy-
pernodes can reference each other. The hypernode shown in Table 1, which is
labelled EMPS, models an entity set of employees, where each entity in EMPS is
represented by an isolated node in the hypernode. Correspondingly, the hypernode
shown in Table 2, which, is labelled EDS, models the.subset of employees in EMPS
working in the Maths "department. The hypernode shown in Table 3 models the
information pertaining to EMP1, where each, attribute and value of EMP1 is rep-
resented by an arc in the hypernode. Similarly, the hypernode labelled DEPTS,
shown in Table 4, models an entity set of departments and the hypernodes labelled
DEPT1 and DEPT2, shown in Tables 5 and 6, respectively, model the informa-
tion pertaining to DEPT1 and DEPT2. Note that in DEPTS the actual address
of the department is missing and also that it has the additional attribute faculty
which is missing from DEPT1. Finally, the hypernode labelled WORKS, shown in
Table 7, models the relationship of an employee working in a department, where
each employee and their department is represented by an arc in the hypernode.
We observe that nesting (or alternatively encapsulation) is achieved by referencing
another hypernode from within a hypernode; for example, EMP1 and EMPS are
nested in DEPT1, and EDS and EMPS are nested in DEPTS. Note the difference
in modelling the set of employees working in a department from within DEPT1
and DEPTS. In addition, we observe that cyclic references are achieved by two
hypernodes referencing each other; for example a cyclic reference exists between
EMP1 and DEPT1, since EMP1 references DEPT1 and DEPT1 references EMP1.

We use formal language theory [HU79] in order to reason about the information
content of databases by showing that a hypernode database induces a context-free
grammar and thus generates a context-free language. We then define two hypernode

260 Mark Levene

EMPS
EMPl
EMP2
EMPZ
EMPA

ED 2
EMPZ
EMPA

EMPl
(attribute —» value)

ename —t -john
dept —> DEPTl
boss —> EMP2

Table 1: The entity Table 2: A subset Table 3: The entity E M P l
set EMPS of EMPS

DEPTS
DEPTl
DEPT2

Table 4: The entity set DEPTS

databases to be information-wise equivalent if they generate the same context-free
language. In general, the problem of information-wise equivalence of hypernode
databases and thus semi-structured databases is uridecidable, since we show that
the general class of hypernode databases expresses the general class of context-free
languages. Therefore, we restrict our attention to three subclasses of hypernode
databases: flat databases, nested databases and object databases, all of which are
defined as suitable syntactic restrictions of hypernode databases."

(For an interesting example of the use of formal languages in database theory,
see [Shm93] wherein it was shown that the problem of determining equivalence of
Datalog queries is undecidable, by reducing the equivalence problem for context-free
grammars to this problem; see also [U1192] which looks into additional relationships
between logic rules and formal languages.)

We prove the following results regarding the expressive power of different classes
of databases:

1. The class of flat databases expresses the class of finite languages whose words
are of length at most four.

2. The class of nested databases expresses the class of finite languages.

3. The class of object databases expresses the general class of regular languages.

We establish the following results regarding the computational complexity of
determining whether two databases are information-wise equivalent or inequivalent:

1. The problem of determining information-wise equivalence of flat databases
can be solved in time polynomial in the size of the two databases.

On the Information Content of Semi-Structured Databases 261

value)
maths
ED2

EMP3

science

DEPT2

WORKS
EMP1 DEPTl
EMP2 DEPTl
EMP3 DEPT2

Table 7: The relationship WORKS

2. The problem of determining information-wise inequivalence of nested
databases is NP-complete.

3. The problem of determining information-wise inequivalence of object
databases is PSPACE-complete.

It follows that in terms of information-content, object databases are strictly
more expressive than nested databases and nested databases are strictly more ex-
pressive than flat databases. The interpretation that we place on the notion of
being more expressive is that it affords us with more flexible means of modelling
information. With respect to our running example, we have modelled the fact
that EMP1 works in DEPTl in three different ways, through the relationship
WORKS, through the attribute dept in EMP 1 and through the attribute ernp in
DEPTl. (We note that if we view primary keys in the relational model [Cod79]
as object-identifiers, then relational databases can easily represent our notion of
object databases.)

The problem of measuring the information capacity of database schemas was
investigated in [Hul86] in the context of the relational data model, in [HY84, AH88]
in the context of a complex objects data model and in [KV85] in the context of
a graph-based data model, which supports cyclic references between objects. In
[Hul86] several notions of equivalence are considered. The most restrictive measure
is query equivalence, which informally holds between two database schemas when for
any query on the first schema there is an equivalent query on the second schema and
vice versa, and the least restrictive measure is absolute equivalence, which informally
holds between two database schemas when there is a one-to-one correspondence

DEPTl
(attribute value)

dname —> computing
emp -»• EMP 1- -
emp EMP2
head EMP2

address —ï london

Table 5: The entity DEPTl

DEPT2
(attribute
dname —>

emp —>
head ->

address
faculty —»

Table 6: The entity

262 Mark Levene

between the number of objects that can be constructed by using sets of domain
values over the attributes of both schemas. In the context of complex objects, a
complete set of restructuring operations on database schemas that preserve absolute
equivalence was exhibited in [HY84, AH88]. Moreover, it was shown in [KV85] that
every database schema that has cyclic references is query equivalent (with respect
to a well-defined query language which is given in [KV93]) to a database schema
without any cyclic references; the concluding remark in [KV85] is: "But it is not
clear that this measure is the ultimate one. We believe that the issue of cycles
deserves further study".

The first difference in our work in comparison to the work mentioned above is
that we concentrate on the information content of individual databases at the in-
stance level rather than on the information content of database schemas. Thus we
measure the information content of each database without regards to its schema.
This difference is not so fundamental when the data has an underlying structure.
As can be seen from the running example, a typical hypernode database may induce
a database schema over which it is defined. On the other hand, since a hypernode
database is only semi-structured it may not be possible to compare the informa-
tion content of hypernode databases with reference to a fixed schema. The second
difference is that we concentrate on the data modelling issues without reference to
query equivalence, and as a result our definition of information-wise equivalence
seems to be incomparable to the various definitions of equivalence referred to in
the above work. This difference is fundamental since, for example, a flat database
may be query equivalent to a nested database, in the sense that for every query
defined on the flat database there is an equivalent query on the nested database
and vice versa, but not information-wise equivalent to it according to our definition
of information-wise equivalence. Intuitively, as demonstrated in the running exam-
ple, nesting and/or cyclic referencing affords the database user with more flexible
means of data modelling and therefore with several alternative ways to query the
same information. Moreover, we also investigate the computational complexity of
determining information-wise equivalence which was not dealt with in the work
mentioned above.

The layout of the rest of the paper is as follows. In Section 2 we formalise the
concept of a hypernode database, which comprises our model for semi-structured
data. In Section 3 we introduce the necessary background material from formal
language theory and formalise the notion of the information content of a database.
In Section 4 we define flat, nested and object databases and prove our results
concerning their expressive power. In Section 5 we prove our results concerning the
computational complexity of determining whether two databases are information-
wise equivalent. Finally, in Section 6 we give our concluding remarks.

2 Hypernode Databases
We first introduce the basic concepts pertaining to hypernode databases. We re-
fer the reader to [PL94, LL95] for more detail on the hypernode model including

On the Information Content of Semi-Structured Databases 263

a computationally complete query and update language operating on hypernode
databases.

Definition 2.1 (Hypernodes) We assume two finite and disjoint sets of con-
stants are available. Firstly we have the set of labels L whose elements are denoted
by strings beginning with uppercase letters. Secondly we have the set of atomic
values (or simply values) A whose elements are denoted by strings beginning with
lowercase letters.

A hypernode is defined to be an equation of the form

' H = (N,E),

where H £ L is termed the defining label of the hypernode and (N , E) is a directed
graph, termed the graph of the hypernode, such that N C A U L is a set of nodes
and E C (TV x N) is a set of arcs. We denote the set of isolated nodes in N, i.e.
the set of nodes which do not appear in any arc in E, by isolated(H).

Definition 2.2 (Hypernode databases) A hypernode database (or simply a
database), say HD, is a finite set of hypernodes satisfying the following two condi-
tions:

(HI) No two (distinct) hypernodes in HD have the same defining label.

(H2) For any label, say H, in the node set of a graph of a hypernode in HD there
exists a hypernode in HD whose defining label is H.

We denote the set of all labels that appear in the hypernodes in HD by LA-
BELS(HD) and the set of all atomic values appearing in the hypernodes in HD by
ATOMIC(HD). Moreover, we assume that a (possibly empty) set of distinguished
labels in LABELS(HD) is associated with HD, which we denote by rooi(HD).

We note that condition HI above corresponds to the entity integrity require-
ment of the relational data model [Cod79], since each hypernode can be viewed as
representing a real-world entity. In object-oriented terminology labels are unique
and serve as system-wide object-identifiers [Kim90], assuming that all of the hy-
pernodes known to the system are stored in a single database. Similarly, condition
H2 corresponds to the referential integrity requirement of the relational data model
[Cod79], since it requires that only existing entities be referenced. The intuition
behind the set of labels in rooi(HD) is that they represent the set of objects in the
database through which all other objects in the database can be accessed.

The Hypernode Accessibility Graph (HAG) of a hypernode H - (N,E) in a
hypernode database HD (or simply the HAG of H, whenever HD is understood
from context) is the directed graph telling us which hypernodes in HD are nested
in the hypernode whose defining label is H, when considering nesting as a transitive
relationship.

264 Mark Levene

Definition 2.3 (The accessibility graph of a hypernode) The HAG of II,
denoted by (NH,EH)•. is the minimal directed graph which is constructed from
hypernodes in HD as follows: H £ NfJ. and if II' e NH and H' = (N'.E') g
HD (such a hypernode must exist by condition H2), then (L fl N') C N/i and
\/n' 6 (L nN'),(H',u') 6 EH.

A hypernode database HD is acyclic if for all H 6 root.(HD), the HAG of H is
acyclic, otherwise HD is cyclic.

We close this section with the definition of two operations on hypernode
databases which, in the next section, are shown to preserve the information content
of the database.

Definition 2.4 (Renaming and duplication) A hypernode database HD' is
the result of renaming some of the hypernodes in a hypernode database HD, if
HD' can be obtained from HD by renaming some of the labels in LABELS(HD) to
distinct labels in L - LABELS (HD).

A hypernode database HD' is the result of duplicating some of the hypernodes
in HD, if HD' is the union of HD and a hypernode database that, is obtained by
renaming some of the hypernodes in HD.

3 Information Content of Databases

We next present our notion of the information content of a database and briefly
introduce the relevant definitions and results from the theory of context-free gram-
mars [HU79].

Definition 3.1 (Context-Free Grammar) A context-free grammar (CFG) is a
quadruple (V, T, P, 5), where V and T are finite and disjoint sets of varia,bles and
terminals, P is a finite set of productions of the form X —y a such that X is a
variable and a is a finite and nonempty string of variables and terminals, and S €
V is a distinguished variable called the start symbol.

A CFG (V, T, P, S) is said to be a regular grammar (RG), if each of the
productions in P is either of the form X —t aY or X —> a, where a is a string of
terminals (in the production À' —» aY a may be empty).

From now we will assume that G = (T, V, P, S) is a CFG and will refer to a
finite string of variables and terminals as a string and to a finite string of terminals
as a word. We define the length of a string a to be the number of symbols in a.

Definition 3.2 (Derivations) If /3 and 7 are strings and À" —> a is a production
in P, then pXf directly derives ¡3aj in G, written (3X7 => ¡3aj.

On the Information Content of Semi-Structured Databases 265

We say that a string a derives a string P in G, written a [J, if for some
•naturafnumber n > 0

a=>pi,fa ^ p2,...,pn=> p.

Thus =>* is the reflexive and transitive closure of =>.

Definition 3.3 (The language generated by a CFG) The context-free lan-
guage (or simply language) generated by G, denoted by £(G), is the set of all
words that can be derived from the start symbol S in G; a context-free language
£(G) is said to be a regular language if G is an RG.

Two CFGs, Gi and G2, are equivalent written Gi = G2 if C(Gi) = C(G2),
otherwise they are inequivalent.

We note that according to Definition 3.1 the right-hand side of productions is
always nonempty and thus we only consider languages where the empty word is not
a member of C(G).

The next lemma allows us to simplify the productions in an RG.

Lemma 3.1 Every RG, G, has an equivalent RG, G', such that every production
of G' is either of the form X —> Y, X —• aY or X —> a, where X and Y are variables
and a is a terminal.

Proof. The result easily follows by an induction on the length of a in productions
of the form X -+ aY. Suppose that the length of a is greater than one and a — Pa
for some terminal symbol a. Then, replace the production X —> /3aY with the two
productions X —¥ PZ and Z —• aY, where Z is a nonterminal not appearing in any
other production in the resulting grammar. It is evident that the newly formed
grammar is an RG and is equivalent to G. •

Definition 3.4 (Chomsky Normal Form) A CFG, G, is in Chomsky Normal
Form (CNF) if all its productions are of the form X -» YZ or X a, where X, Y
and Z are variables and a is a terminal.

The next theorem is a well-known result [HU79].

Theorem 3.2 Every CFG, G, (such that £(G) does not contain the empty word)
has an equivalent CFG, G', which is in CNF and is equivalent to G.

Intuitively, the information content of a hypernode database HD is the context-
free language that is generated by the CFG induced by G, and two hypernode
databases are information-wise equivalent if they generate the same context-free
language.

266 Mark Levene

Def in i t ion 3.5 (Information content of databases) The CFG induced by a
hypernode database HD, denoted by CFG(HD), is a quadruple (V, T, P, S), where
S i LABELS(HD), V = LABELS(HD) U{5}, T = ATOMIC(HD) and P is the
smallest set of productions such that for every label R E root (HD), 5 - > / ? . € P,
and for every hypernode H = {N,E) E HD, H n € P, if n E isolated(N) and
H -4 71] 712 € P, if (7li,n2) E E.

The language generated by HD, denoted by £(HD), is the language generated
by CFG(HD), i.e. £(CFG(HD)).

The information context of a hypernode database HD is defined to be the lan-
guage generated by HD. Two hypernode databases HD1 and HD2 are infomnation-
•uiise equivalent (or simply equivalent), denoted by HD1 = HD2, if C F G (H D l) =
CFG(HD2), i.e. £(HD1) = £(HD2). Otherwise HD1 and HD2 are information-wise,
inequivalent (or simply inequivalent).

We note that the information content of a hypernode database may be the
empty language, for example, if HD contains the single hypernode, H = (0,0), or
if rooi(HD) is empty.

The next proposition can be verified from Definitions 2.4 and 3.5.

Propos i t i on 3 .3 Equivalence of hypernode databases is closed under renaming
and duplication.

We next show that every CFG can be represented by a hypernode database.

Def in i t ion 3.6 (The hypernode database represent ing a cfg) The hypern-
ode database representing a CFG, G = (V, T, P, 5) , denoted by DB(G), is con-
structed as follows. Firstly, by Theorem 3.2, G is converted into an equivalent CFG
in CNF, which we also refer to as G. Secondly, we assume tha t V C L and tha t T
C A, and say that the production X —> YZ G P induces the hypernode X = ({Y,
Z}, {(Y, Z)}) and the production X -> a £ P induces the hypernode X = ({a}, 0).
Finally, DB(G) is the smallest set of hypernodes induced by the productions in P
and where roo£(DB(G)) = {5}.

The next proposition is now immediate.

Propos i t i on 3.4 Two context-free grammars G\ and Go are equivalent if and only
if D B (G L) and D B (G 2) are equivalent.

On the Information Content of Semi-Structured Databases 267

4 The Expressive Power of Database Classes
We are now ready to investigate the expressive power of various classes of hypernode
databases in terms of the set of CFGs that they induce.

Definition 4 .1 (Expressive power of classes of hypernode databases) A
class of hypernode databases, D, is said to express a class of context-free languages,
C, if for every hypernode database, HD £ D, there is a CFG, G £ C, such that
£(HD) = £(G), and for every CFG, G £ C, there is a hypernode database, HD £
D, such that £(HD) = £(G).

A class, D l , of hypernode databases is more expressive than a class, D2, of
hypernode databases, if the class of context-free languages that is expressed by D l
is a proper superset of the class of context-free languages that is expressed by D2.
Two classes of hypernode databases, D l and D2, are equally expressive, if both
D l and D2 express the same class of context-free languages.

The next lemma, which is an immediate consequence of Proposition 3.4 and
Definition 3.6, establishes the expressive power of the general class of hypernode
databases.

Lemma 4/1 The general class of hypernode databases, and thus the general class
of semi-structured databases, expresses the general class of context-free languages.

•

For the rest of this section we investigate the expressiveness of various classes
of hypernode databases, which correspond to flat, nested and object databases.

Our view of flat databases corresponds closely to Chen's binary entity-
relationship model presented in [Che84], which in its essence captures the fun-
damental notions of the more general entity-relationship model [Che76, MM90,
Teo94]. (For the purpose of this paper we do not address the concepts of special-
isation and generalisation which are important notions in the entity-relationship
model.)

Definition 4.2 (Flat databases) A flat database is a hypernode database HD
such that the hypernodes H = (N, E) in HD are restricted to be one of the following
types:

1. An entity set, where N C L and E = 0.

2. A value set, where N C A and E = 0.

3. An entity, where (N , E) is a bipartite graph [BH90], such that N is partitioned
into two nodes sets N\ and N2, with JVC A and none of the nodes in N2 are
isolated, and there exists an entity set H' = (M', 0) in HD with H 6 M'\ the
nodes in Nj are called the attributes of the entity represented by H and the
nodes in N2 are called the values of the entity represented by H.

268 • Mark Levene

4. A relationship, where N = iVi U JV2, with (N , E) having no isolated nodes,
and such that there exist two entity sets Ht = (Mi,0) and H-2 = (M2 ,0) in
HD such that Ni C Mx and N2 C M2.

Moreover, rooi(HD) contains a (possibly empty) subset of the set of defining
labels of the entity sets, value sets and relationships in HD.

For example, the hypernodes shown in Tables 1, 2 and 4 represent entity sets,
the hypernodes shown in Tables 8 and 9 represent entities, the hypernode shown in
Table 7 represents a relationship, and the hypernode shown in Table 10 represents
a value set.

FLAT-EMP1
(attribute —> value)

ename john
dept. —» computing
boss —> jack

FLAT-DEPT1
(attribute —• value)
dname —• computing

emp —> john
emp jack
emp jill '
head —> jack

address —> london

Table 8: The entity FLAT- Table 9: The entity FLAT-
EMP1 DEPT1

EMP - VALUE
jack
jill

john

Table 10: The value set EMP-VALUE

It can easily be verified from Definition 4.2 that flat databases are acyclic and
that such databases have no nesting of entities or relationships. Moreover, we
observe that we represent attributes of entities by atomic values; see the hypernodes
of the running example, shown in Tables 3, 5 and 6.

The next lemma thus follows from Definition 3.5 and 4.2.

L e m m a 4.2 The class of flat databases expresses the class of finite languages hav-
ing nonempty words of length less than or equal to four.

We next define grouped databases which modify flat databases such that at-
tribute values of entities are modelled by grouping them into value sets.

On the Information Content of Semi-Structured Databases 269

Definition 4.3 (Grouped databases) A grouped database HD is a variation of
a flat database, where the definition of an entity is modified, as follows:

3. A hypernode H — (TV, E) is an entity, where (TV, E) is a bipartite graph, such
that TV is partitioned into two nodes sets and TV2, with TVi C A, TV2 C L
and none of the nodes in TV2 are isolated, there exists an entity set IIy =
(Mi,0) in HD with H £ Mi, and for all n £ TV2, there exists a value set
H-i = (M2,0) such that n = H2.

For example, the hypernode shown in Table 11 represents and entity in a
grouped database.

GROUPED-DEPT1
(attribute •> value)

dname computing
emp + EMP - VALUE
head •» jack

address -» london

Table 11: The entity GROUPED-DEPT1

The next result follows from Definitions 4.2 and 4.3 on using Definition 4.1.

Lemma 4.3 The classes of flat databases and grouped databases are equally ex-
pressive.

Our view of nested databases is to extend flat databases by allowing nesting of
entities. In particular, we disallow the nesting of relationships, since otherwise by
part (2) of Theorem 5.2, which is given in Section 5, equivalence of such databases
would be intractable.

Definition 4.4 (Nested databases) A nested database HD is an extension of a
flat database such that the definition of an entity is modified as follows, with the
restriction that HD is acyclic:

3. A hypernode H = (TV, E) is an entity, where (TV, E) is a bipartite graph, such
that TV is partitioned into two nodes sets Ni and TV2, with TVX C A, TV2 C
A U L and none of the nodes in TV2 are isolated, there exists an entity set
Hi = (Mi,0) in HD with H £ Mi, and for all n £ TV2, with n £ L, there
exists an entity set H2 = (M2 ,0) such that either n = H2 or n £ M2 .

For example, the hypdenodes shown in Tables 5 and 6 may represent entities in
a nested databases. In this case the employee entities in the nested database may
not reference either of the departments in order that HD be acyclic.

270 • Mark Levene

We observe that in nested databases we allow only the nesting of entity sets and
entities. The next result follows from Definitions 3.5 and 4.4 on using Lemma 3.1,
noting that any finite language can be generated by an RG.

L e m m a 4.4 The class of nested databases expresses the class of finite languages.

The next corollary follows from Lemmas 4.2 and 4.4.

Corol lary 4.5 The class of nested databases is more expressive than the class of
flat databases.

Our view of object-oriented databases is to extend nested databases by allowing
cycles as long as these do not involve relationships. This restriction is essential,
since otherwise by part (1) of Theorem 5.2, which is given in Section 5, equivalence
of such databases would be undecidable.

Def ini t ion 4.5 (Objec t da tabases) An object database is an extension of a
nested database such that the database may be cyclic.

For example, the database shown in the running example in Section 1 is an
object database.

We observe that as is the case of nested databases we disallow nesting of rela-
tionships in object databases.

L e m m a 4.6 The class of object databases expresses the general class of regular
languages.

Proof. By Definitions 3.5 and 4.5 on using Lemma 3.1, it is easy to see that the
class of object databases is at least as expressive as the general class of regular
languages. It remains to show that relationships do not add expressive power to
the class of object databases. By Definition 4.5 relationships are not nested and
thus any derivation of a word which uses a production such as R XiX2 must be
of the form

S R=> XiX2 =>* w,

where no other production of the form R' —• X[X^ is used in the derivation.
Therefore, w = iuiw2, where for i = 1 and 2, A'j =>* W{, implying that Wi is a
member of the language induced by the RG with start symbol X{. The result now
follows, since RGs are closed under concatenation [HU79]. •

The next corollary follows from Lemmas 4.4 and 4.6.

Corol lary 4.7 The class of object databases is more expressive than the class of
nested databases.

On the Information Content of Semi-Structured Databases 271

5 The Complexity of Determining Equivalence of
Databases

Herein we investigate the complexity of determining equivalence of hypernode
databases for the classes of databases defined in Section 4. We assume that the
reader is familiar with the notion of undecidability [HU79] and fundamental com-
putational complexity classes NP (nondeterministic polynomial time), PSPACE
(polynomial space) and NEXPTIME (nondeterministic exponential time) [G.J79].
(We define the size of a set S to be the cardinality of a standard encoding of S.)

Theorem 5.1 The following statements regarding the computational complexity
of decision problems for CFGs are true:

(1) Equivalence of CFGs is undecidable [HU79, Theorem 8.12] (see also [HRS79]).

(2) Equivalence of CFGs which generate finite languages is NEXPTIME-hard
[HRS79, Theorem 4.5].

(3) Inequivalence of RGs which generate finite languages is NP-complete [Hun73,
Theorem 2.3].

(4) Inequivalence of RGs is PSPACE-complete [Hun73, Theorem 3.8].

The next theorem presents the results of this section.

Theorem 5.2 The following statements regarding the computational complexity
of decision problems for hypernode databases are true:

(1) Equivalence of hypernode databases is undecidable.

(2) Equivalence of acyclic hypernode databases is NEXPTIME-hard.

(3) Equivalence of flat databases can be tested in polynomial time in the size of
the two databases.

(4) Inequivalence of nested databases is NP-complete.

(5) Inequivalence of object databases is PSPACE-complete.

Proof. (1) and (2) are immediate consequences of Proposition 3.4 and parts (1)
and (2) of Theorem 5.1, noting that acyclic hypernode databases are finite.

(3) Let HD be a flat database. We show that the size of the language generated
by HD is polynomial in the size of HD, implying the result. Let mi be the number
of entities and value sets in HD, m2 be the maximal number of arcs and isolated
nodes in any entity or value set in HD, rriz be the number of relationships in HD
and m4 be the maximal number of arcs in any relationship in HD. Now, let m be
the maximum of m,, for i = 1,2,3 and 4. Thus the number of words in £(HD) is
bounded above by 3m4, since we need to count the number of words induced by

272 • Mark Levene

entity sets, value sets and relationships. The result now follows, since by Lemma 4.2,
the length each word in £(HD) is at most four.

(4) NP-hardness follows by Proposition 3.4 and part (3) of Theorem 5.1, on
using Lemma 4.4. It remains to show that the equivalence problem for nested
databases is in NP.

Given a nested database HD, the maximal length of words in £(HD) is bounded
above by twice the size of HD, since we disallow nesting of relationships. Now, let
HD1 and HD2 be nested databases and nondeterministically guess a word, say
w, whose length is less than or equal to the maximal length of words in either
CFG(HDl) or CFG(HD2) and such that its atomic values are in ATOMIC(HDl) U
ATOMIC(HD2). The result now follows, since membership of a word w in a CFG
can be decided in polynomial time in the length of w [HU79].

(5) PSPACE-hardness follows by Proposition 3.4 and part (4) of Theorem 5.1,
on using Lemma 4.6. It remains to show that the inequivalence problem for object
databases is in PSPACE.

Let HD be an object database. If there are no relationships in HD, the result
follows from part (4) of Theorem 5.1, since it can easily be verified that CFG(HD)
is an RG. Otherwise, suppose that due to a relationship whose defining label is R
we have the production R —> XiX2 in CFG(HD). Due to the fact that relationships
cannot be nested, it follows that for i = 1 and 2, any derivation, Xi =>* w of a word
w, is induced by an RG whose start symbol is Xi. Thus a derivation R =>* w of a
word w £ £(HD) can be viewed as the derivation of two words uii and iu2 such that
wyiu2 = w and for i = 1 and 2, Wi is a word in the RG induced by X¿. Moreover, R.
can be chosen nondeterministically from the set of defining labels of relationships
in HD. Thus the inequivalence of two object databases HD1 and HD2 reduces to
the problem of finding a word w = wiw2, as above, which is a member of one of
the languages £(HD1) or £(HD2), but is not a member of the other language. The
result now follows by part (4) of Theorem 5.1, since both w\ and w2 can be derived
by RGs in PSPACE. •

6 Concluding Remarks

We have investigated the information content of semi-structured databases and
shown that the general class of databases expresses the general class of context-
free languages, the class of object databases expresses the general class of regular
languages, the class of nested databases expresses the class of finite languages,
and the class of flat databases expresses the class of finite languages whose words
are of length less than or equal to four. Moreover, we have shown that testing
the equivalence of hypernode databases and thus semi-structured databases is, in
general, undecidable, but for object databases it is PSPACE-complete, for nested
databases it is NP-complete and for flat databases it is polynomial time in the size
of the input. Our results support the view that relationships are not entities, since
otherwise, if we allow relationships to be nested within entities, by parts (1) and (2)

On the Information Content of Semi-Structured Databases 273

of Theorem 5.2 determining equivalence of nested databases would be intractable
and determining equivalence of object databases would be undecid'able.

The interpretation we place on the notion of being more expressive is that it
affords us with more flexible means of modelling information. (We refer the reader
back to the running example given in the introduction to verify this statement.)
From the user's point of view this flexibility provides several alternative ways of
viewing and querying the same information; for example, the fact that an employee
works in a department can be modelled in three different ways. Moreover, this
flexibility may be an advantage for the query optimiser, when there are several
alternative routes to obtain an answer to a query. Although testing for equivalence
of object and nested databases is, in general, intractable we can provide restruc-
turing operations as in [HY84, AH88] in order to transform a database into an
equivalent one having a different structure. The formulation of a complete set of
restructuring operations that preserve information-wise equivalence for object and
nested databases is an open problem.

We now briefly outline, through an example, an extension to measure the nav-
igation capacity of hypernode databases, and thus semi-structured databases. Let
HD1 be a hypernode database comprising the hypernodes with defining labels A and
B shown in Tables 12 and 13, respectively, and let HD2 be a hypernode database
comprising the hypernodes with defining labels C and D shown in Tables 14 and
15, respectively. It can easily be verified that both £(HD1) = £(HD2) = {a, b},
and thus HD1 and HD2 are information-wise equivalent. In this case the nesting
of hypernodes does not increase the information-content of the database. Despite
this equivalence, from a navigation point of view HD1 is less expressive than HD2,
since in HD1 we cannot directly navigate from A to B or from B to A, while in
HD2 it is possible to navigate either directly from C to D or directly from D to C.
Thus information content on its own is insufficient .to measure expressiveness of a
database from the point of view of navigation. We suggest to utilise the hypernode
accessibility graph (HAG) for this purpose (see Definition 2.3). In our example, it
is evident that with respect to navigation HD2 is more expressive than HD1, since
HD1 = HD2 and the HAGs of A and B are subgraphs of the HAGs of C and D,
respectively, up to an appropriate renaming of labels.

B
T

C
a
D

D
i r
C

Table 12: The hy-
pernode labelled A

Table 13: The hy-
pernode labelled B

Table 14: The hy-
pernode labelled C

Table 15: The hy-
pernode labelled D

Another open problem is to extend our formalism to deal with integrity con-
straints such as keys and cardinality constraints. Finally, we mention that an

274 • Mark Levene

important application of our formalism is in software engineering process mod-
elling [CK092], as it was shown-in [LS097] that the graph-based approach of the
hypernode model provides a suitable platform for such process modelling.

References
[Abi97] S. Abiteboul. Querying semi-structured data. In International Conference

on Database Theory, pages 1-18, Delphi, 1997. Invited talk.
ri

[AFS89] S. Abiteboul, P.C. Fischer and H.-J. Schek, editors. Nested Relations and
Complex Objects in Databases, volume 361 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1989.

[AH88] S. Abiteboul and. R. Hull. Restructuring hierarchical database objects.
Theoretical Computer Science, 62:3-38, 1988.

[BH90] F...Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood
City, Ca., 1990.

[Bun97] P. Buneman. Semistructured data. Proceedings of ACM Symposium on
Principles of Database Systems, Tucson, Az., 1997. Invited talk.

[Che76] P.P-S. Chen. The Entity-Relationship model - towards a unified view of
data, ACM Transactions on Database Systems, 1:9-36, 1976.

[Che84] P.P-S. Chen. An algebra for a directional binary entity-relationship model.
In Proceedings of IEEE International Conference on Data Engineering,
pages 37-40, Los Angeles, 1984.

[CK092] W. Curtis and M.I. Kellner and J. Over. Process Modelling. Communi-
cations of the ACM, 35:79-90, 1992.

[CM90] M.P. Consens and A.O. Mendelzon. Graphlog : A visual formalism for
real life recursion. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 406-416, Nashville, Tn., 1990.

[Cod79] E.F. Codd. Extending the database relational model to capture more
meaning. ACM Transactions on Database Systems, 4:397-434, 1979.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[GPG90] M. Gyssens and J. Paredaens and D. Van Gucht.A graph-oriented ob-
ject database model. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 417-424, Nashville, Tn., 1990.

[HRS79] H.B. Hunt III, D.J. Rosenkrantz and T.G. Szymanski.On the equiva-
lence, containment, and covering problems for regular and context-free
languages. Journal of Computer and System Sciences, 12:222-268, 1976.

On the Information Content of Semi-Structured Databases 275

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Reading, Ma., 1979.

[Hul86] R. Hull. Relative information capacity of simple relational database
schemata. SIAM Journal on Computing, 15:856-886, 1986.

[Hun73] H.B. Hunt III. On the time and tape complexity of languages I. Proceed-
ings of ACM Symposium on Theory of Computing, pages 10-19, Austin,
Tx., 1973.

[HY84] R. Hull and C.K. Yap. The format model: A theory of database organi-
zation. Journal of the ACM, 31:518-537, 1984.

[Kim90] W. Kim. Introduction to Object-Oriented Databases, MIT Press, Cam-
bridge, Ma., 1990.

[KV85] G.M. Kuper and M.Y. Vardi. On the expressive power of the logical data
model. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data, pages 180-187, Austin, Tx., 1985.

[KV93] G.M. Kuper and M.Y. Vardi. The logical data model. ACM Transactions
on Database Systems, 18:379-413, 1993.

[LL95] M. Levene and G. Loizou. A graph-based data model and its ramifications.
IEEE Transactions on Knowledge and Data Engineering, 7:809-823, 1995.

[LS097] M. Levene, L. Scott and R. Offen. A framework for seamless conceptual
data and process modelling. Research Report, Research Report No. 97/5,
Joint Research Centre for Advanced Systems Engineering, CSIRO - Mac-
quarie University, 1997.

[MM90] V.M. Markowitz and J.A. Makowsky. Identifying extended entity-
relationship object structures in relational schémas. IEEE Transactions
on Software Engineering, 16:777-790, 1990.

[PL94] A. Poulovassilis and M. Levene. A nested-graph model for the representa-
tion and manipulation of complex objects. A CM Transactions on Infor-
mation Systems, 12:35-68, 1994.

[Shm93] O. Shmueli. Equivalence of Datalog queries is undecidable. Journal of
Logic Programming, 15:231-241, 1993.

[Teo94] T.J. Teorey. Data Modelling & Design: The Fundamental Principles
Morgan-Kaufmann, San Francisco, Ca., 2nd edition, 1994.

[UU92] J.D. Ullman. The interface between language theory and database theory.
In J.D. Ullman, editor, Theoretical Studies in Computer Science, pages
133-151, Boston, Ma., 1992. Academic Press

Received October, 1997

Acta Cybernetica 13 (1998) 277-304.

Limitations of Rule Triggering Systems for Integrity
Maintenance in the Context of Transition

Specifications

Klaus -Die t e r Schewe * B e r n h a r d T h a l h e i m t

A b s t r a c t
Integrity Maintenance is considered one of the major application fields

of rule triggering systems (RTSs). In the case of a given integrity constraint
being violated by a database transition these systems trigger repairing actions.
Then it is necessary to guarantee the termination of the RTS, its determinacy
and the consistency of final states. Transition specifications provide some kind
of dynamic semantics requiring certasin effects on database states to occur.
In the context of transition specifications integrity maintenance has to cope
with the additional problem of effect preservation.

Limitations of RTSs with respect to this extended problems are inves-
tigated. It will be shown tha t for any set of constraints there exist non-
repairable transitions, which depend on the closure of t he constraint set.
This implies t h a t integrity maintenance by RTSs is only possible, if the con-
straint implication problem is decidable. Even if unrepairable transitions are
excluded, this does not prevent t he RTS to produce undesired behaviour.

Analyzing the behaviour of RTSs leads to the definition of critical paths in
associated rule hypergraphs and the requirement of such paths being absent.
It will be shown tha t this requirement can be satisfied if the underlying set
of constraints is stratified, but this notion turns out to be too strong to be
also necessary. A sufficient and necessary condition for the absence of critical
paths is obtained, if sets of constraints are required to be locally stratified.

K e y w o r d s : active databases, integrity maintenance, transition specifi-
cations

1 Introduct ion
Active databases (ADBs) aim at extending relational (or object oriented) DBMS by
rule triggering systems (RTSs), i.e. by sets of rules which on a given event and in

'Technical University of Clausthal, Computer Science Institute, Erzstr. 1, 38678 Clausthal-
Zellerfeld, Germany, e-mail: schewe@informatik.tu-clausthal.de

f Cottbus Technical University, Computer Science Institute, Karl-Marx-Str. 17, 03044 Cottbus,
Germany, e-mail: thalheim@informatik.tu-cottbus.de

977

mailto:schewe@informatik.tu-clausthal.de
mailto:thalheim@informatik.tu-cottbus.de

278 Klaus-Dieter Schewe. Bernhard Thalheim

the case of a condition being satisfied trigger actions on the database (ECA-rules).
Events can be external events, time conditions or internal events resulting from
operations on the database. Conditions are usually given by boolean queries that
have to be evaluated against the database. The action part consists of a sequence
of basic operations to insert, delete or update tuples (or objects respectively) in the
database.

The current research on ADBs (see e.g. [4]) is dominated by implementational
aspects, whilst foundations of RTSs are seldom approached. The work in [2, 3, 5,
10, 11] and partly in [4] considers the problem to enforce database integrity by the
use of RTSs. The results concern the generation of repairing ECA-rules and partly
the analysis of the resulting RTS. This analysis concentrates on the termination
of the rule system, the independence of the final database state from the chosen
selection order of the rules (determinacy) and on consistency.

These properties are orthogonal to one another. Therefore, it is reasonable to
investigate the consistency requirement alone and to neglect for the moment the
other two requirements.

Besides the specification of static semantics by the use of integrity constraints
there is an increasing interest in integrating dynamic aspects [1]. In general, not
all transitions between consistent states - with respect to the given set of integrity
constraints - will be allowed, e.g. allowing transitions from any consistent state to
the empty database state are not very useful. As a consequence, given a specifica-
tion of transitions, the consistency requirement for RTSs occurs to be too weak. In
a sense to be made precise in the sequel the final state resulting from an execution
of the RTS should be "close" to its inconsistent starting state.

Note that this formulation already assumes that there is a final state and that
this state is unique, i.e. the termination and determinacy properties are already
tacitly assumed. This formulation could be weakened for non-determinate RTSs
requiring the "closeness" for one or all of the possible final states. It could also be
weakened for non-terminating RTSs requiring the "closeness" only, if a final state
exists. This underlines again the orthogonality of the three basic requirements for
integrity maintenance.

In the presence of transition specifications an inconsistent starting state for the
RTS always occurs as the result of a specified transition. Therefore, one reasonable
additional requirement is to preserve the effect of the transition at hand. In this case
not only the static semantics expressed by the integrity constraints is sacrificed, i.e.
only consistent states will be reached, but also the dynamic semantics expressed by
transitions. This means that the allowed state pairs will always imply the effects
of prespecified transitions.

There may be other equally reasonable requirements how to handle transition
specifications. E.g., we may want only to undo some or even all effects of a transition
or only preserve as many effects as possible depending on some measure on effects.

In this paper we analyze limitations of the rule triggering approach for integrity
maintenance under the additional requirement to preserve the effects of transitions.
For a given set of constraints in implicational normal form we first investigate the
existence of non-repairable transitions. These are determined by the closure of

Limitations of B,ule Triggering Systems for Integrity Maintenance 279

the constraint set. It turns out that the decidability of the constraint implication
problem is necessary for integrity maintenance by RTSs.

Next we analyze, how to obtain RTSs that definitely repair constraint viola-
tions by a (repairable) transition without invalidating its intended effect. Given an
RTS we first associate with it a rule hypergraph which corresponds to the possible
sequences of triggered rules. Next we define critical trigger paths in these hyper-
graphs that correspond to the propagation of conditions. Indeed it can be shown
that the existence of a single critical trigger path makes the RTS work incorrectly
for at least one transition.

Finally, we analyze constraint sets in order to detect, whether it is possible
to define an RTS of repairing actions such that the critical trigger paths in its
associated hypergraph can only invalidate unrepairable transitions. For this we first
introduce stratified constraint sets that satisfy this condition. Since the converse
is not true, we finally weaken the concept to locally stratified constraint sets which
gives a necessary and sufficient conditions for the RTS to work correctly.

2 Non-Repairable Transitions

In the following we consider the relational datamodel with integrity constraints
given by formulae in implicative normal form

1 = p i (x i) A . . . A p „ (f n) =Mi(?7i) V . . . Vgm(2/m) , (1)

with predicate symbols Pi ,qj , which correspond either to a relation of the schema or
are comparison predicates (=, <, <). Variables on the left hand side are assumed
to be universally quantified, those occurring only on the right hand side are assumed
to be existentially quantified (with all V-quantifiers preceding all 3-predicates).

Moreover, we assume that there is at least one relation symbol on the left hand
side of each such T. Moreover, I should contain at least two relation symbols. The
first restriction guarantees the empty database to be consistent, i.e. it satisfies all
constraints I , and the second one just states that there is no explicit constraint
which requires a relation p to be always empty. We may always write J in clausal
form.

For the EC A -rules we use the notation ON (event) IF (condition) DO
(action) with (event) corresponding to an internal event, i.e. an insert- or delete-
operation. (condition) is a formula to be evaluated against the actual database
state, written as a negation -<L for a constraint J in implicative normal form (1).
(action) is a sequence of basic insert- or delete-operations to be triggered, i.e. to
be executed if the event occurred and the condition is satisfied.

In this paper, the assumed execution model for ECA-rules relies on a deferred
modus, i.e. the system RTS of rules is started after finishing a transition. Further-
more, we do not assume any order of the rules. Instead of this, the execution model
relies on demonic non-determinism, i.e. if the events of several rules ... ,rn oc-

280 Klaus-Dieter Schewe. Bernhard Thalheim

cur and their conditions evaluate to true, any of these r¿ may be executed unless
it is undefined.

Given a single constraint 1 in implicative normal form (1) we already get mini-
mum requirements for repairing rules. If a relation symbol p occurs on the left hand
side (right hand side) of (1), then each insert- (delete-)operation on p may violate
(1), hence give rise to event-parts. The corresponding condition-part is simply ->1.
However, for the action-part there are still several alternatives.

We call a system of ECA-rules complete iff for all these cases of events and con-
ditions there exists at least one repairing rule, i.e. whenever the rule is selectable
in some database state, the execution of the action part will establish I as a post-
condition. However, we exclude those rules, which simply invalidate the event. For
transitions we simply consider sequences of insert- and delete-operations.

Let us first demonstrate the insufficiency of a naive RTS approach by a simple
example. In "real" applications the situation of Example 1 will not occur in such an
obvious way, but there are always implied and in general not detectable constraints
leading to analogous problems as shown in [7].

E x a m p l e 1 Take two unary relations p and q and the constraints T\ = p(x) =>
q(x) and Z2 = p(x) A q(x) =>• false. This implies p to be always empty, hence
insertions into p should be abolished. Then we obtain the following repairing rules:

fli : ON insertp(z) IF ->ZL DO insert,(z)
R2 : ON delete,(a:) IF-.Zi DO deletep(a;)
R3 : ON insertp(a;) IF -.Z2 DO delete, (a;)
i?4 : ON insert, (a;) IF -.Z2 DO dele ters)

If we try to execute a transition insertp(a) on a database state satisfying q(a), then
we successively trigger the rules R3 and i?2 with the effect of only deleting a in q.
This contradicts the original intention of the transition. •

In order to analyze the unintended behaviour in Example 1 consider a set E of
constraints in implicational normal form. Let E* denote the (semantic) closure,
i.e. E* = {Z I E (= Z}. Now let Z € E* be non-trivial, i.e. it does not hold in all
database states. Write Z in implicational normal form

Z = Pi(x\) A . . . A p n (x n) Qi(yi) V ... V qm(ym)

and let Pii, • • • , Pik and qj¡,... , Pj, denote the relation symbols on the left and
right hand sides of Z respectively. We may define a transition T by

delete,^(t/jJ;. . . ¡delete,^ (y j t);insertp¡ i (£ ¿ 1) ; . . . ; insertp¡(¡ [xik) .

If we start T with values for the Xi and ijj such that the additional conditions on
the left hand side of Z are satisfied, whilst the additional conditions on the right
hand side are not, T will always reach a database state satisfying - Z . This effect of

Limitations of B,ule Triggering Systems for Integrity Maintenance 281

T is intentional and hence the only reasonable approach to integrity maintenance
in this case is to disallow such transitions.

More formally, the effect of a transition T in a state a is given by the strongest
(with respect to =>•) formula EffCT(T) = ip such that j=CT wp(T)(tp) holds. Here
•wp{T)(t}}) denotes the weakest precondition of ip under the transition T, i.e. starting
T in initial state a will reach a final state r satisfying ip.

Since we only consider sequences of insertions and deletions, EfFtr(T) can al-
ways be written as a conjunction of literals, i.e. in negated implicational normal
form, with the positive literals corresponding to insertions and the negative ones to
deletions. In addition, we may considei the effect of a sequence T; RTS, where T
is a transition and RTS a system of rules. We say that RTS invalidates the effect
of T iff ^ E S C { T) A EfT^T1; RTS) holds for some state a.

Then it is justified to call a transition T repairable with respect to the constraint
set £ iff ->EfF<r(T) £ £* holds for at least one state a. Then a complete terminating
system RTS of EC A-rules always invalidates the effect of a non-repairable transition
T. Hence the problem is to detect (and exclude) non-repairable transitions. In
order to decide whether a given transition T is repairable or not, we must be able
to decide, whether - lEfT^T) is in the closure £*. Hence the implication problem
for constraints must be decidable.

Proposition 1 Let £ be a set of constraints. The problem to decide, whether a
transition T is repairable with respect to £ is equivalent to the constraint implica-
tion problem for £, i.e. the problem to decide, whether a given constraint I is a
member of £* or not. •

Proposition 1 defines the first limit on integrity maintenance by rule triggering
systems. In the following sections we shall concentrate on repairable transitions.

Note that our treatment ignores the termination problem. Non-terminating
transitions have to be excluded as well, but this problem is independent from the
repairability problem, since non-termination of RTSs occurs as an orthogonal prob-
lem.

3 Critical Paths
Let us ask, whether we can always find a complete set of repair rules for all re-
pairable transitions. For this we introduce the notions of associated hypergraphs
and critical trigger paths.

Definition 2 Let S = {pi,... ,pn} be a relational database schema and RTS =
{i?i , . . . ,Rm} a system of ECA-rules on S. Then the associated rule hypergraph
(V, E) is constructed as follows:

• V is the disjoint union of S and RTS. We then talk of ¿»-vertices and RTS-
vertices respectively.

282 Klaus-Dieter Schewe. Bernhard Thalheim

Figure 1: Associated Rule Hypergraph

• If R € RTS has event-part Ev on p 6 S and actions on pi,... ,pk, then we
have a hyperedge from p to {i?} labelled by + or - depending on Ev being
an insert or delete, and a hyperedge from {R} to {p i , . . . ,pk} analogously
labelled by k values + or - . •

Figure 1 shows the associated rule hypergraph of Example 1 in which case we have
a simple graph.

Definition 2 ignores the condition part of the rules. These come into play if
we consider critical trigger paths in associated hypergraphs. These are defined in
several steps starting from paths in the associated hypergraph which correspond to
possible sequences of ECA-rules with respect only to their event- and action-parts.
Secondly we attach formulae to the 5-vertices in the path in such a way that pre-
and postconditions of the involved rules are expressed. Then we talk of trigger
paths.

A maximal trigger path with contradicting initial and final condition will then
be called critical. Then imagine a transition with an effect implied by the initial
formula, i.e. that there is an initial state such that running the transition in this
state results in a state which satisfies the initial condition of the trigger path. If
we execute this transition followed by the rule triggering system along the critical
trigger path will then turn the effect of the transition into its opposite. This means
that the RTS invalidates the effect of at least one transition.

Definition 3 Let G = (V, E) be the rule hypergraph associated with a system
RTS of rules. A trigger path in G is a sequence VQ , e\, v[, e[,... , e'(. Vf of vertices
and hyperedges with the following conditions:

• Vi € S holds for all i = 0 , . . . , £,

• v[e RTS holds for alH = 1 , . . . , t,

• e, is a hyperedge from Vi-i to v\ and

• e\ is a hyperedge from v[to V't with Vi 6 Vi 'and the same label as et+\.

Limitations of B,ule Triggering Systems for Integrity Maintenance 283

p(x) A ~^q(x) p(x) A q{x) ~^p(x) A q(x)

vo ei v[e[vi e2 v2 e'2 v2

p(x) A q(x) p(x) A -iq(x) -ip(x) A -iq(x)

Figure 2: Critical Trigger Paths

We call P. the length of the trigger path.
In addition we associate with each vertex Vi £ S (1 = 0 , . . . ,<) a formula

in negated implication normal form such that |= ipi =>- cond(v'i+1) holds for the
condition part cond(v'i+1) of rule v'i+i € RTS and |= wp(Ai+1)(ipi+}) holds
for the action-part Ai+1 of rule v'i+1 (i = 0 , . . . ,£ — 1). Furthermore, there is no
ee+i € E from v^ to with the same label as e'(such that |= <pe cond(v'(+l)
holds.

Then a trigger path is critical iff |= A ipe) holds. Such a critical trigger
path is called admissible iff there is a consistent state a and a repairable transition
T such that EffV(T) O liolds. •

Critical trigger paths for the associated rule hypergraph in Figure 1 are sketched
in Figure 2. Note that in this case both critical trigger paths are not admissible.
If a critical trigger path is not admissible, then only a non-repairable transition
can be invalidated by running the rules in the trigger path. Since we exclude non-
repairable transitions, we only have to consider admissible trigger paths. After
these remarks we are able to prove our first result.

Proposition 4 Let RTS be a complete set of rules associated with a set E of
constraints and let G = (V, E) be the associated rule hypergraph. Then G contains
an admissible critical trigger path iff there exists a consistent database state a and
a repairable transition T such that executing T in a and consecutively running
RTS invalidates the effect of T without leaving the database unchanged.

Proof. Let us first assume that G contains an admissible critical trigger path. Let
</jo, • • • ; Ve denote the formulae associated with the <S-vertices in this trigger path.

Case 1. Assume that e\ is labelled by +. Then ip0 contains at least one positive
literal p(x). Let a be a consistent state and T a repairable transition such that
EffCT(T) is given by (fo• We may assume that ->p(:v) holds and that the final

284 Klaus-Dieter Schewe. Bernhard Thalheim

action in T in an insertion into p. If we start T in the initial state a, then the
resulting state satisfies ipo-

T followed by the RTS may then result in a state r satisfying ipe. Hence the
effect of T\RTS in a is given by tpt. Since (= ->(<£>o A ipi) holds by the definition
of critical trigger paths, this implies that RTS invalidates the effect of T. Further-
more, T is consistent with respect to all constraints in £, since RTS is complete
and there is no hyperedge e^+i from V[to some v'e+l £ RTS with the same label
as e't such that f= ipt => cond(v'(+1) holds.

It remains to show r ^ a. If this does not hold, we get \=a tpi and consequently
there exists some if) such that tpi & ->p{x)f\ij) and <po p{x)Aip hold. This implies
i > 1, because otherwise the rule v[would have the form ON insertp(i) IF ->T DO
deletep(af) , which we excluded.

If i > 1 holds, there is at least one other literal q(y) (or ~>q(y)) in ip0 such that
delete, (y) (or insert ,(y) respectively) occurs in the action-part of v[. Then we may
consider the admissible critical trigger path vi,e-2,... ,ve of length I — 1 instead.
Following the argumentation above, we may choose a and T in such a way that
\=a -iq(y) (or \=a q(y) respectively) holds. This implies r ^ a as required.

Case 2. If e\ is labelled by —, then ip0 contains a literal ^p(x). Thus, we have
to consider a transition T containing deletep(x) as its final action and a consistent
state a with |=CT p(x) and EfFff(T) <£> (po• Then we may apply the same arguments
as for case 1.

Conversely, assume that there is no admissible critical trigger path. Let T be a
repairable transition and a a database state which is consistent with respect to E.
Now start T in a and assume that the resulting state a' is not consistent. Then
consider a trigger path of finite length such that \=a' tp0 holds. The consecutive
execution of the rules in this trigger path will result in a state r satisfying ipi. Thus,
we have EfFff(T) <p0 and EffCT(T; RTS) tpt.

According to our assumption, the used trigger path cannot be critical, i.e. tpe A
ipo is satisfiable. Hence RTS does not invalidate the effect of T. •

4 Stratified Constraint Sets

According to the result in Proposition 4 we may ask for constraint sets that allow
to define complete RTSs which exclude admissible critical trigger paths in their
associated hypergraphs. Let us start with a simple example.

E x a m p l e 2 Take again two unary relations p and q and the constraints T\ =
p(x) => q{x) and 12 = q(x) =>• p(x) which implies p to be always equal to q. Then

Limitations of B,ule Triggering Systems for Integrity Maintenance 285

we obtain the following repairing rules:

Ri : ON insertp(a;) IF ->Zi DO insert, (z)

R2 : ON delete,(z) IF -.Zi DO deletep(x)
R3 : ON insert, (z) IF -.Z2 DO insertp(x)
R4 : ON deletep(x) IF ->I2 DO delete, (x)

In this case there are no admissible critical paths in the associated rule hypergraph.
We omit further details. •

Let us now investigate the reason for the absence of admissible critical trigger paths
in Example 2. This leads us to the notion of a stratified set of constraints.

The motivation behind this is as follows: In Example 2 insertions (deletions)
on a relation p only trigger insertions (deletions) on q and vice versa. This should
be sufficient for not invalidating a once established effect. The corresponding con-
straints can therefore be grouped together.

D e f i n i t i o n 5 Let E be a set of constraints in implicative normal form (1) on a
schema S. The E is called stratified iff we have a partition E = Ei U . . . U £ „ with
pairwise disjoint constraint sets E» called strata such that the following conditions
are satisfied:

(i) If L is a literal on the left hand side (right hand side) of some constraint
Z € Ei, then all constraints J 6 E containing a literal L' on the right hand
side (left hand side) such that L and L' are unifiable also lie in s t ra tum E,j.

(ii) All constraints Z, J containing unifiable literals L and L' either on the left
or the right hand side must lie in different strata E j and E j . •

Now we can prove in general that stratified constraint sets always give rise to RTSs
without admissible critical trigger paths in the associated rule hypergraph.

P r o p o s i t i o n 6 Let E be a stratified constraint set on a schema S. Then there
exists a complete RTS such that for any repairable transition T on S the RTS does
not invalidate the effect of T.

Proof. Given a constraint Z in implicative normal form (1), then each relation
symbol pi on the left hand side gives rise to rules

ON insertPi(xi) IF - Z DO insertqj(yj) ,
ON insertPi(xi) IF - Z DO deletePj(yj)

with relation symbols qj occurring on the right hand side and pj (j ^ i) on the left
hand side of 1. Similarly, each predicate symbol qj on the right hand side gives rise
to rules

ON deleteqj(yj) IF ->I DO insertQi(yj) (i ^ j) ,
ON delet.eqj{y)) IF ->Z DO deletePi(yj)

286 Klaus-Dieter Schewe. Bernhard Thalheim

This defines a complete set RTS of rules. Now assume there exists a critical
trigger path v0,ei,v'l!e'1,... ,e't,vt in the associated rule hypergraph. Each RTS-
vertex v[corresponds to a constraint I ; € E. Since e\ and e;+i are equally labelled
corresponding to the action- or event-part respectively, the construction of the rules
above implies Zj and 2j + i to lie in the same stratum (i = 0 , . . . , t — 1).

However, the condition |= ->(<po A (f t) implies that (po contains a literal L, its
negation, hence the construction of rules implies Zx and 11 to lie in different strata.
Hence, there are only critical trigger paths of length I = 1.

According to our construction of RTS this implies |= <p0 ->I to hold for some
1 e E. Thus, -icpo 6 E* holds. Due to the definition of admissible critical trigger
paths and the definition of repairable transitions, we conclude that the trigger
paths of length I = 1 cannot be admissible. Then the proposition follows from
Proposition 4. •

Finally, we may ask for cases, where stratified constraint sets occur. Recall from [6]
that a relational database schema S with constraint set E is in Entity-Relationship
normal form (ERNF) - and hence is equivalent to an ER-schema - iff

• all inclusion constraints in E are key-based and non-redundant,

• there is no cycle of inclusion constraints in E,

• each relation schema R. e S is in BCNF with respect to the functional depen-
dencies in E* and

• there are only inclusion and functional dependencies in £*.

If a relational database schema S with constraint set E is in ERNF, then it is easy
to see that E is stratified.

Corol lary 7 Let S be a database schema in ERNF with respect to the constraint
set E. Then E is stratified. •

Hence, following the design approach of Mannila and Raiha in [6] - if this is suf-
ficient for the application - leads to schemata without any problems concerning
consistency enforcement by RTSs.

E x a m p l e 3 Let us look at the following constraints

li : p(x, y) =i> q(x, z) and
J2 : q(x,z) Aq(y,z) => x = y

Then this set of constraints corresponds to the Entity-Relationship diagram [9] in
Figure 3. Obviously, the constraint set is stratified. •

Limitations of B,ule Triggering Systems for Integrity Maintenance 287

Figure 3: Entity-Relationship constraints

5 An Algorithm for Checking Stratification
Before we analyze the converse of Proposition 6 and present the weaker notion of
locally stratified constraint sets, let us first concentrate on an algorithm for checking
stratification and its complexity. For this we consider the set

BW = { T , ± } U (1 N - { 0 }) U { { i i , . . . , j „ } | n > l , j f c e] N - { 0 } }

In the algorithm we successively add labels from BW to constraints. A label i £ IN
for a constraint 1 is used to indicate that I must lie in the stratum £j . A label
{jii • • • ; in} indicates that I must not lie in E^ for k = 1 , . . . , n. _L represents no
information and T an inconsistent assignment of stratum numbers.

For a more convenient terminology we call an element of BW black, if it is in
(IN — {0}) U {T}, otherwise white. Furthermore, we use a commutative, associative
binary operation © on BW defined by

x © -L = ; ,
a;© T = T ,

i®j
{ V

if i = j
otherwise '

{il,-- - >jn} ©{&!,. • • j {ii,-- • > in} U , . . . , km} and

¿©O' l , . • • • ,3n} {,T if % = jk for some k 6
otherwise

Algorithm 8 ((Stratification Check))
Input: a set £ = {T\,... ,ln} of constraints

in clausal form Ti = L^i V . . . V Lj in i

Output: a boolean value b
Method:

VAR gather : ARRAY 1 . . . n OF BW ,

288 Klaus-Dieter Schewe. Bernhard Thalheim

mb, mb' : BW ;
BEGIN

FOR i = 1 TO n DO
gather(i) := ±

ENDFOR ;
b := true ;
mb := 1 ;
WHILE E ^ 0 DO

CHOOSE i0 € {1, . . . ,n} WITH lio € E AND gather(i0) is maximal ;

IF gather(io) is white
THEN gather(i0) := mb ;

mb := mb + 1
ENDIF ;
mb' := gather(io) ;
FOR j = 1 TO nio DO

FOR ALL l k e E DO 0

FOR t = 1 TO nik DO
IF Lj0 i J - and Lk,t are unifiable AND gather(i0) ^ T

THEN gather(k) := gather(k) © {gather(i0)}
ELS IF Li0j and ~ Lk<t are unifiable
THEN gather(k) := gather(k) © gather(i0)
ENDIF

ENDFOR
ENDFOR

ENDFOR
ENDDO ;
FOR i = 1 TO n DO

IF gather(i) = T
THEN b := false
ENDIF

ENDFOR ;
RETURN (6)

END •

We have to check that the algorithm is correct. Then we analyze its time complexity.
Before we do this let us first look at a simple example.

E x a m p l e 4 Consider the following constraints:

E : = E - { l i 0 } ;

h
I 2

T3

14
1 5

-ip(x) V ~>q(x) V r(x) V s[x)
->q(x) V r(x) V -1 t(x) ,
p(x) V -ir(x) ,

0

->s(x) V t(x) and
q(x) V ->t{x) .

Limitations of B,ule Triggering Systems for Integrity Maintenance 289

Table 1: Stratification Check

L I A ¿ 1 , 2 ¿1,3 L 1,4 £3,2 -̂ 3,1 ¿2,1 ¿2,2 L 2,3 £4,1 £ 4 , 2 £5,2 ^5,1 gather
1 1 1 1 1 1
3 1 1 1 1 1
2 {1} {1} 1 T T T T
4 1 T T T T
5 1 T T T T T

Ii I3 T-1 I4 I5 b = false

Then consider Table 1.
Each row corresponds to a constraint I j and lists the values added to gather (i)

during the excution of the algorithm. The chosen order of the constraints in the
algorithm is 11; I3, I2, T4, lb- Then b will become false and hence £ is not
stratifiable. •

Let us now address the correctness of Algorithm 8.

Proposition 9 Let £ be a set of constraints. Then £ is stratifiable iff Algorithm
8 applied to the input £ computes the output b = true.

Proof. Let us first assume that £ is stratified. Let £ = £1 U . . . U £„ be a
decomposition into strata and assume that the £ j are taken minimal with the
required properties. We use induction on n.

For n = 1 there are no unifiable literals L and L' in different constraints I , J e
£. Hence gather(i) will become 1 for alle i and we obtain b = true.

For n > 1 we may assume without loss of generality that some constraint in £1
will be chosen first. Then, due to our minimality assumption, we get gat her (i) = 1
for all Zi G £1, whereas gather(j) will be white for all I , $ £1. Thus, all constraints
in £1 will be chosen first.

Since gather(j) was white for l j ^ £x and gather(i) = 1 for 1i € £1 before
chosing the first constraint in £2 U . . . U £„, we may apply the induction hypothesis
to £2 U . . . U £„, which gives gather(j) ^ T for all l j ^ <ti. This implies b = true
as claimed in the proposition.

Conversely, assume that the algorithm produces the result b = true. Then we
must have gather(i) £ IN — {0}. Define = {Ij 6 £ | gather(i) = k}. Assume
that the partition £ = £1 U . . . U £„ does not satisfy the conditions for strata in
Definition 5. Then there are two possible cases:

(i) There are literals L and L' in constraints 1\ € E/t and I j 6 £ ; with k ^ £
such that L and ~ L' are unifiable. Suppose that I j is chosen first by the
algorithm. Then k will be added to gather(j), which gives gather(j) = T
contradicting our assumption.

290 Klaus-Dieter Schewe. Bernhard Thalheim

(ii) There are unifiable literals L and V in constraints Ii,lj G £fc. If Tx is
chosen first by the algorithm, {k} will be added to gather(j), which also
gives gat her (j) = T contradicting our assumption.

Thus £1 U . . . U £„ is a partition into strata, which completes the proof. •

P ropos i t i on 10 Let S be a set of constraints in clausal form, n = # £ , k the
maximal arity of predicate symbols occurring in constraints I G S and let i be

v the maximum number of literals in these constraints. Then the time complexity of
Algorithm 8 for checking, whether £ is stratified is in 0(k • i2 • n2).

Proof. The initialization and the final computation of b can both be done in 0(n)
steps.

In the inner FOR-loop the test for unifiability can be done in O(k) steps, since
there are no function symbols. All other operations have a complexity in 0(1) .
Hence the inner FOR-loop has a total complexity in O(k). This loop is executed
I' • I" times, where I' is the number of literals in the chosen constraint I¿0 and I"
is the total number of literals in the remaining constraints. If Zj0 is the ¿'th literal
chosen by the algorithm, this can be estimated by I2 • (n — i).

Since each I G £ will be chosen by the algorithm, the outer WHILE-loop will be
executed n times. This gives the total complexity in

n
0{n)+0{L2 -^2(n-i))-0{k) + 0(n) = 0(k • i2 • n2)

i-1

as claimed in the proposition. •

It is easy to see that n • I can be replaced by the total number u = ni
literals in £ with u < n- i. Thus, the time complexity of the stratification checking
algorithm 8 is in 0(k • u2).

From Proposition 6 we know that active mechanisms can be effectively applied,
if the constraint set is stratified. In particular, this holds for schemata in ERNF
[6], which are equivalent to Entity-Relationship schemata. From Proposition 10 we
know that a stratification check can be done efficiently.

6 Locally Stratified Constraint Sets
Unfortunately, the converse of Proposition 6 does not hold, as seen in the next
example. The reason for this is that in the proof of Proposition 6 we considered
all repairing rules for a given constraint, whereas the constraint set in Example 5
allows to select only a subset thus gaining the required result without loosing the
completeness of the RTS.

E x a m p l e 5 Take three unary relations p and q and the constraints I\ = p(x) A

r(x) => q(x), 1-2 = q(x) => p(x) and I 3 = p(x) => r{x). It is easy to see that this
constraint set is not stratified.

Limitations of B,ule Triggering Systems for Integrity Maintenance 291

p(x) A ~*q(x) A r(x) p{x) A ~^q{x) A -<r(x) -ip(rc) À —>q{x) A ->r(x)

vq ei v[e\ vi e2 v2 e2 v2

Figure 4: An Admissible Critical Trigger Path

However, we may consider the following system of ECA-rules:

i?! : ON insertp(x) IF -<LX DO insert, (x)
R2 : ON delete,(i) IF -X\ DO deletep(x)
R3 : ON insert r(x) IF ->Zi DO insert,(x)
R4 : ON delete, (a;) IF -<L\ DO deleter(x)
i?5 : ON insert,(x) IF -1Z2 DO insertp(x)
R6 : ON deletep(a;) IF -<12 DO delete,(x)
R7 : ON insertp(x) IF ->13 DO insertr(x)
Rs : ON deleter(x) IF ->Z3 DO deletep(x)

We dispense with showing that there are no admissible critical trigger paths in the
associated rule hypergraph.

Note that the construction in the proof of Proposition 6 would result in two
more rules corresponding to insertions:

R§ : ON insertp(x) IF -.Zj DO delete,.(x)
R10 • ON insertr(x) IF ->Zi DO deletep(x)

These give rise to admissible critical trigger paths. The one shown in Figure 4
allows to invalidate the effect of the repairable transition insertp(x). •

The constraint set in Example 5 is not stratified, but nevertheless the associated
RTS does not invalidate the effect of repairable transitions. This shows that a
constraint set need not be stratified to allow a reasonable rule behaviour. Indeed,
replacing Zi in the example by 1[= p{x) => q(x) gives an equivalent constraint
set, which is stratified. However, equivalence of constraint sets is undecidable in
general. Therefore, we introduce the weaker notion of being locally stratified. In
this case we shall construct RTSs which only contain a subset of the set of rules
constructed in the proof of Proposition 6.

Definition 11 Let S be a set of constraints in implicative normal form on a
schema <S.

292 Klaus-Dieter Schewe. Bernhard Thalheim

A labelled subsystem consists of a subset £ ' = { I £ £ | pl(X) is defined }
together with a set of clauses £ " = {PL(1) \ T £ £ ' } and a literal L (the label)
such that each constraint 1 € £ ' can be written as the disjunction pl{1) V J ' with
\=T =>L.

Here pl(I) is defined iff the negation ~Z/ does not occur in 2 (written as
a clause). Then PL(T) results from I by omission of the literal L if the result
contains at least two literals. Otherwise PL(T) is simply X. We call 1' the label
part and pi(I) the label-free part of the constraint J . If L is understood from the
context, we drop the subscript and write p instead of pi-

A labelled subsystem (£ ' , £ " , L) is called stratified iff the set £ " is stratified in
the sense of Definition 5 or locally stratified as defined below.

The constraint set £ is called locally stratified iff £ = £ i U.. .U£^ with stratified
labelled subsystems (£•, £" , Li) (i = 1 , . . . , n) such that for each constraint I £
and each literal L occurring in its label part with respect to S^ there exists another
j with 1 6 and L occurring in its label-free part of I with respect to £ j . •

E x a m p l e 6 For the constraint set £ in Example 5 we obtain the parti t ion into
S i = { I i , X 3 } a n d £!, = .{Z i , I 2 } .

For the first of these we have the label Li = ~^p(x) and the label-free parts
defined by plA^i) = <l(x) v -'r(x) a n d = i j -

For S-2 we get the label L2 = ->r(x) and the label-free parts pl2{Zi) = ~*p{x) V
q(x) a n d P l 2 №) =

This shows that the constraint set in Example 5 is indeed locally stratified. •

Note that each stratified constraint set S is also locally stratified. In this case we
define depth(E) = 0. If £ is locally stratified by a partition S = S i U . . . U T,'n, we
define depth(S) = maxf= 1depi/ i (S") 4-1. We call depth(E) the depth of the locally
stratified constraint set £ .

Finally, we can strengthen Proposition 6 now dealing with locally stratified
constraint sets. This condition turns out to be sufficient and also necessary for the
absence of admissible critical trigger paths.

T h e o r e m 12 Let £ be a constraint set on a schema S. Then £ is locally stratified
iff there exists a complete RTS such that for any repairable transition T the RTS
does not invalidate the effect of T.

Proof. First assume that £ is locally stratified. Let the labelled subsystems'in the
partition be (£ - , S " ,L i) for i = 1 , . . . ,n. We shall use induction on the depth of
5 . For depth(T,) = 0 we are done by Proposition 6.

Let us now consider the case depth(H) = 1. As in the proof of Proposition 6 we
construct an RTS for £ . Since each £ " is stratified in the sense of Definition 5, we
first construct a rule system RTS• with respect to £ " as in the proof of Proposition
6. The condition parts in these rules have the form ->pLf(X) for 1 £ £•. Then let
RTSi result from RTS[by changing all conditio» parts replacing ~^pLi(T) by ->Z.
Finally, take RTS = lX=i RTSi.

Limitations of B,ule Triggering Systems for Integrity Maintenance 293

Due to the last property in the definition of locally stratified constraint sets in
Definition 11 we conclude that RTS is complete.

Now consider a critical trigger path vo,ei,v'i,e'i,vi,... ,e't,ve in the rule hy-
pergraph associated with RTS. Without loss of generality assume v\ 6 RTSi.
According to Proposition 4 we have to show that this trigger path is not admissi-
ble.

We use induction on the length I of this critical trigger path. For I — 1 we may
use the same argument as in the proof of Proposition 4. Therefore, assume £ > 1
and take a state a with |=a E and a transition T with f= EffCT(T) & ¡p0. Then we
have to show that T is not repairable.

Assume that T is repairable. Then there exists a state r with |= r E such that
- iEffT(T) ^ E*. We shall derive a contradiction from this.

For this regard the critical trigger path vx, e2, v2, e'2, v2,... , e'e, V(of length £ — 1.
By induction it is not admissible. If A\ is the action in the rule v[, we get |=
E f f a (T ; Ai) (pi and T; Ai cannot be repairable. In particular, this implies
->Eff r (T; A\) G E*.

Since Ai is a simple insertion or deletion, we get |= ->EffT(T) <p A L and
[= ->EfFr(T; Ai) ipA ~L for some literal L and its negation From this we
conclude ip G E* and G E*.

Then there must exist a resolution refutation for L from input E. Any literal
L' (except L) in this refutation must be selected at least once for building the
resolvent. Therefore, due to our construction of PLi{T) we may cancel all clauses
1 G E containing the literal ~ L i and simultaneously the literal Li in all clauses.
Thus, there must also exist a resolution refutation for L from input E".

On the other hand, each clause in E" contains at least two literals. Therefore,
any resolvent will also contain at least two literals unless we have some Zi e E"
with literals Li and L2 and another 12 6 £'/ with literals L[and ~Z/2 such that
Li, L[(and L2, L'2 respectively) are unifiable.

This property, however, means that E" is not stratified contradicting our as-
sumptions. Hence T cannot be repairable and we are done.

Next let depth(E) > 1. We proceed analogously. By induction, since E" is
(locally) stratified, there exists a rule system RTS[for E" with the required prop-
erty. The condition parts in these rules have the form -^¿¡(Z) for Z € E^. Then
let RTSi result from RTS[by changing all condition parts from -ipj^ (Z) to -<L.
Finally, take RTS = (JIU RTSi-

Again due to the last property in the definition of locally stratified constraint
sets (cf. Definition 11) RTS must be complete.

Now consider a critical trigger path vo, e\, v[, e[, vi,... ,e'e, ve in the rule hyper-
graph associated with RTS. According to Proposition 4 we have to show that this
trigger path is not admissible. Without loss of generality assume v[G RTSi • Then
take a maximal k such that v[,... , v'k G RTSi holds. Then for i = 0 , . . . , k we may
write (pi as a conjunction tyiAj with |= ipi => ~<pLi (Zj) for some Zj G E'x. Hence, if
we replace v • by the corresponding rule in RTS[, we obtain a critical trigger path
for RTS'i.

294 Klaus-Dieter Schewe. Bernhard Thalheim

Now take a state a with E and a transition T with |= E f f ^ T) <£> ip0. We
have to show that T is not repairable. Assume the contrary. Then there exists a
state r with (=T E and ->EfFT g £*.

Assume (=CT ->Li. Since (=ff E holds and each constraint 1 G E'j can be written
as a disjunction 2 ' V PL1 (2) with |= 2' L\, we conclude (=CT £" .

Since , ex, w'j, ei, wi, . . . ,E'K,VK is a critical trigger path for RTS{ and |=
EflV O <po holds, we may apply the induction hypothesis to E" with depth(T,'{) <
dept/i(£). Therefore, T cannot be repairable, i.e. for any state (with (=<; £ " we
get - . E f f J T) G (E")*.

In particular, take (= a. Then - . E f f ^ r) G (£'/)* implies ^ P L A 1) f o r

some 2 G E^ and further E* contradicting our assumption on a. Thus, we
must have j=CT L\.

Assume (=T ->L\. Then we must have (=r E" and consequently ->EffT(T) G
(E")*. As above this implies \=T ~'Pl1(1) for some 2 G E^ and hence ^ T E*
contradicting our assumption on r . Hence, we must have (=r L\.

Now let 2l G E correspond to the rule v[. Without loss of generality we may
assume |= <po =>• Otherwise, we must have ->T[and p£j(2i) must not
contain L\. This implies Li to occur in J , in which case we may change it to ->Li
without affecting the trigger path being critical.

Since 1=0- Li holds, T must involve an insertion (deletion) corresponding to a
negative (positive) literal L\. Hence, |= E f f T (T) A ->ipT holds. Due to the
independence of J from E" we may choose T in such a way that ipT G (E'/)* holds.

However, this implies (= -iEfF r(T) <=> L\ V tpT G E* contradicting the non-
repairability of T with respect to RTS[. This completes the sufficiency proof.

Conversely, assume that we are given a complete RTS for E which for any
repairable transition T does not invalidate its effect. According to Proposition 4
this implies that all critical trigger paths in the associated rule hypergraph are not
admissible. From this we have to construct a partition of E into stratified labelled
subsystems.

First consider a single rule R corresponding to a constraint 2 G E. In particular,
2 is the condition part of this rule. Since RTS is complete, the event part of R gives
rise to a negative (positive) literal Lev in 2 for the case of an insertion (deletion).
Similarly, an insertion (deletion) in the action part of R gives rise to a positive
(negative) literal La in 2.

Let p(2) = Lev V La. If 2 contains n > 1 more literals Li,... , Ln, let />¿(2) =
p(T) V Lx V . . . V V . . . V Ln. Then define E '¿R) = { J G E | pLi (J) is defined }

omi t
and E '¡{R) = {pL i(J) I J G E (F o r 2 o p(l) let Lx = Lev and L2 = La

and define E[(R) and E " (R) analogously.)
Define E (R) = {(E^(ii), EJ'(i?), Li) | E '¡(R) is locally stratified }, if this satisfies

the last condition of Definition 11. Otherwise let E (R) = 0. Then the elements of
E (R) define stratified labelled subsystems of E.

In order to check the local stratification for E '¡{R) first check, whether it is
'stratified. If not, define for each literal L in pi(T) the sets E[L(R) = {J G
E"(i?) | pL(J) is defined} and E '¡L{R) = {pL{J) \ J G E ' i<L{R)}- Consider

Limitations of B,ule Triggering Systems for Integrity Maintenance 295

{(T,'i L{R),T,'lL(R):L) | T,'lL(R) is locally stratified} and check the last condition
of Definition 11.

Now take LSS = UReRTS^iR)- If Z{R) ± 0 holds for all R G RTS, this
satisfies the last condition of Definition 11 and we obtain a partition of E into
stratified labelled subsystems. Then LSS is the required partition.

It remains to show £(i?) ^ 0 in the construction above. Assume E (R) =
0. Then there exists a sequence L±, L2,... , Lk of literals in I and a se-
quence (Ei, E", Li),... , (E'fc,E'¿,Lk) of non-stratified labelled subsystems such
that. = {J G £•' | pLi+1{J) is defined} and E'fc' contains two clauses I f
and I f with literals L1, L1' and L2, L2' respectively such that Ll, L2 and Lv, L2'
are unifiable.

i f and I f correspond to rules with respect to E'̂ that define an admissible
trigger path in the associated rule hypergraph. Since for ¿ = 1,2 I f is ->pLk (i f - 1) ,
we may successively replace these rules by rules corresponding to E ^ j , . . . , £" , E
and simultaneously replace the formulae <p!- by = ^¿A->L/t,... , tp® = tp]A->Li.
The resulting trigger path is still critical and due to our construction it is also
admissible with respect to E contradicting our assumption. This completes the
necessity proof. •

E x a m p l e 7 Let us extend Example 3 and add a third constraint

I3 = p(x, z) A q(y, z) false

In terms of the Entity-Relationship diagram in Figure 3 I3 corresponds to an ex-
clusion constraint B||D. It is easy to see that the new set { I i , l 2 , I 3 } of constraints
is not stratified.

In particular, any local stratification must contain a labelled subsystem with
label ~^q(x,z) with the reduced constraints 1!2 = ~^q{y,z) V x = y and I3 = I3.
However, ->q(x, z) cannot occur in the label-free part of some I'2, since this always
defines the same labelled subsystem. Hence, the given constraint set is also not
locally stratified. This shows that adding a single exclusion constraint to an Entity-
relationship schema may already destroy a reasonable rule behaviour. •

7 Complexity of Local Stratification
Let us now look at the check, whether a given set of constraints E is locally strat-
ified. In the second part of the proof of Theorem 12 we have seen that this check
can be done by direct construction of the desired partition into maximal stratified
labelled subsystems. The first part of that proof then indicates how to construct
the corresponding RTS. In [8] we gave an explicit algorithm which also produces
for each constraint the set of "reduced" constraints used in the RTS construction.
However, the time complexity of that algorithm was beyond any practicality, since
we could proof the following result.

P ropos i t ion 13 Let E be a set of constraints in clausal form, n = # E , I the
maximum number of literals in constraints I G E and k the maximal arity of

296 Klaus-Dieter Schewe. Bernhard Thalheim

predicate symbols occurring in these constraints. Then checking £ to be locally
stratified can be done with a time complexity in 0(k • t2 • n2n i). •

We now want to show that this complexity result is not accidentally. For this we
first show a technical lemma.

L e m m a 14 Let E be a set of clauses containing only propositional atoms. Let
I be a literal, such that ~ L does not occur in any of the clauses in E. Assume
E = Si U Eg such that L does not occur in any of the clauses in Ei , but in all
clauses of Eg. Moreover, £2 contains only clauses with exactly two literals. If £1
is locally stratified and £ 2 is stratified, then £ is locally stratified.

Proof. First assume that £2 contains a single clause C = L V L'. If £1 is not
stratified, there is a partition Si —-^ii U * * • U (ji > 2) with stratified labelled
subsystems (S^, S'/j, Li). Then at m'ost one Lk can be ~ V and we may define

E , = f s ' u if L i = ~ L '
1 | £ ' H U { C } otherwise

By induction (£•, £" , Li) is a stratified labelled subsystem. Thus, £ = E'x U - • - UE^
defines the required partition.

Now assume that £1 is stratified. Let £1 = E n U • • • U £ i „ be a partition into
pairwise disjoint strata. If £1 contains just one clause C' with ~ L' and no clause
with L', we are done, since C may be added to the stratum of C'. Analogously, C
may define its own stratum, if such a C' does not exist at all. Therefore, we are
reduced to the following two cases:

• There is more than one clause in Ei containing ~ L' (and hence none con-
taining L') and these clauses belong to different strata.

• There are exactly two clauses Ci and C2 containing ~ L' or L' respectively.
Inparticular, C\ and C2 belong to the same stratum Ei^.

In both cases we choose the literals L\ = ~ L and L2 = L' to define labelled
subsystems

(E i ,E i ,L i) and ({C} U £1 - {C" \ C" contains ~ L'}, E^', L2)

where £ 2 (and hence also £'2') are stratified by the previous remarks:
In the first case choose C' containing ~ L' and another literal L" to define a

labelled subsystem

(E j U i C } , ^ ' , ^)

Limitations of B,ule Triggering Systems for Integrity Maintenance 297

with L3 = ~ L", where E^ is a proper subset of Ei not containing C'. By induction
E3 must be locally stratified.

In the second case choose C 2 = L' V C 2 > a literal L" in C 2 and L3 =~ L", which
defines a labelled subsystem (E ^ E 3 , L 3) as before with £3 = E'x U {C} with a
proper subset Ei C Ei containing C\, but not C2. Thus, £3 and £3 are stratified.

In both cases we have obtained a partition £ = £1 U £ 2 U £3 with stratified la-
belled subsystems (£ i , £ i , L i) , (£ 2 , £2 , ¿2) and (E j , E 3 , L 3) . Since the additional
condition for local stratification is easily verified, we conclude that E is locally
stratified.

For the general case we may assume that E 0 = E i U (E 2 — { C }) is locally stratified
by successive application of the constructions in the first part of this proof. Then
we observe that in the case of non-stratified £0 we do not change labels, when we
add C. However, it may happen that one of these labels now is ~ L. This label
results (as label L\) from adding C' to some stratified constraint set. From the
construction of this local stratification and the fact that E2 is stratified we conclude
that the other labels L2 and L3 are different from ~ L, which guarantees the local
stratification condition to hold also in the general case. .

For the case of So being stratified the arguments are the same as before except
for the case that Eo contains exactly one clause C' with ~ V and none with L'.
Then the corresponding stratum may also contain clauses C, with literals ~ Li and
Lj+i (z = 1> • • • ; m) i where L\ occurs in C' and Lm+x = L.

In particular, we have Cm € £ 2 and adding C to this stratum is no longer-
possible. Since E2 is stratified, we must have m > 0, but then the literals L', L\
and ~ L define a local stratification with associated constraint sets £0 — {C'}U{C},
Eo - {Cm} U {C} and E0 respectively. •
We shall use Lemma 14 in the proof of NP-hardness to shrink prepositional con-
straint sets. Another way to reduce the technical complexity of that proof is to
drop the restriction on E to contain only clauses with at least one negative literal.
If E is a set of propositional clauses containing neither the atom q nor its negation,
we add ->q to each clause to form the set E e x t of clauses.

L e m m a 15 Let E be a set of propositional clauses each with at least two literals.
Then E e x t is locally stratified iff E is satisfiable and locally stratified.

Proof. First let £ be locally stratified and satisfiable. If E is not stratified, we
may choose the same labels to obtain a local stratification for £ e x t .

Thus, assume £ to be stratified. Then (£e x t ,£,->7) is a stratified labelled
subsystem. Since all clauses in all other labelled subsystems contain the literal -iq,
we have to isolate these clauses. Therefore, take a model for £ which is given by
a set {Li,..., Ln} of literals occurring in £ which must be interpreted as true.
Taking ~ Li as a label and the corresponding labelled subsystem (£ • ,£ • ' , ~ Li),
we obtain a proper subset C £ e x t . For #£• ' > 1 we may proceed with the other
literals ~ Lj. The last step results in unary sets {->q V Lk} which are obviously
stratified.

Conversely, given a local stratification for £ e x t we can remove ->q to obtain
a local stratification for E. It remains to show that £ is satisfiable. If £ e x t is

298 Klaus-Dieter Schewe. Bernhard Thalheim

stratified, this is obvious, because a literal L with ~ L occurring in some clause in
E cannot occur in any clause of E.

If £ e x t is not stratified, there is at least one stratified labelled subsystem
(£ ' . £ " ; ! ,) such that ->q occurs in all clauses in £ " , i.e. £ " = EQ5"- and S 0 is
satisfiable. This still holds if we put back the literal L and extend our interprete L
as false to satisfy clauses in E — So- •

T h e o r e m 16 Let E be a set of constraints. Then checking that E is locally
stratified is NP-hard.

Proof. We show that the disjoint cover problem (DCP) - which is known to
be NP-complete - can be reduced in polynomial time to the local stratification
problem. For this, let (X, S) be an instance of DCP, i.e. X is a finite set, say,
X = {xi,.... .'(;„} and S = { S i , . . . , S m } is a subset of the power set The
problem is to decide, whether a subset S' C S exists such that X is the disjoint
union of the sets in S'. Such a S' is called a solution for (X , S).

Without loss of generality we may always assume tha t X = (J S¿ holds.
s¡es

Moreover, we may allow S to be a multiset.
We now associate with (X, S) a set of constraints E. For this let pij be a

prepositional atom for all x¿ £ Sj. For S¿ = {xji,..., xj{} £ S we define clauses
~^p:jki V pjti and -•Pjgi V Pjki for k, i £ {1 , . . . , i}, k I. We refer to these clauses
as connection clauses with respect to S¿. For £ Sj fl S¿ (j ^ k) we define
an exclusion clause -¡pij V ->Pik- Finally, for each z¿ we define a cover clause
Pij, V • • • V Pij,„ for the sets Sj1,... ,Sjm £ S containing x¿ provided rri > 2. £
contains all these connection, exclusion and cover clauses.

Then we have to show that (X, S) has a solution iff E is locally stratified
and satisfiable. For this we introduce a partial order < on DCP-instances letting

< (X 2 ,S 2) iff

E i 5 i < E o r Í E = E a n d i s i i > i s 2 i)
Se-S] ses 2 \S€Si ses 2)

holds.
First let S' = {S¿ j , . . . , Sih} be a solution for (A",S). Then E is obviously

satisfiable. In order to use induction with respect to < we consider the following
two operations:

• Replace Sj 6 S' by Sj — { x a n d add S m + i = {xe} for some X(£ Sj.

• Replace Sj £ S' by Sj — {x¿] for some xg £ Sj.

In both cases we obtain a smaller DCP-instance which has a solution. By induction
the corresponding constraint set E^ is locally stratified.

In the first case we remove all clauses with literals Pi,m+1 from EJ. The resulting
subset £ " is still locally stratified. Now build the labelled subsystem (£ ' , £ " , L)
with the label L = ~^ptj.

Limitations of B,ule Triggering Systems for Integrity Maintenance 299

The clauses in £ ' (and hence in £") do not contain pej. i.e. we omit the cover
clause with respect to X(and connection clauses containing pf j with respect to
Xf 6 Sj. Clauses in £ " containing -~ptj arise from the restriction to keep at least
two literals, hence must also lie in £ ' . Therefore, we obtain £" = £1 U S 2 , where
£2 is stratified and contains only clauses with two literals, one of them is -<pij,
whereas clauses in £ j do not contain -<pij.

Thus, the remaining connection clauses with respect to xt E Sj and the exclu-
sion clauses with respect to X{ E Sj occur in £ 2 . This implies £1 = £" . From
Lemma 14 we conclude that £ " is locally stratified.

In the second case we build the labelled subsystem (£ ' , £ " , L) with the label
L = ptj. The clauses in £ ' (and hence in £") do not contain i.e. we omit
exclusion clauses and connection clauses containing ~^ptj with respect to xi £ Sj.
Again, the clauses in £ " containing pt j only arise from the restriction to keep at
least two literals. Hence, these clauses define a stratified subset £2 of £ " (and of
£') containing only clauses with two literals.

The remaining clauses form a subset £1 and clauses in £1 do not contain pgj, i.e.
the remaining connection clauses with respect to xg E Sj and the cover clause with
respect to xg (if it contains just two literals) occur in £ 2 , which implies £1 = £'j.
From Lemma 14 we conclude that £ " is locally stratified.

Since in the first case (xg E Sj E S') only the cover clause with respect to xg
and connection clauses containing pgj and in the second case (xe E Sj S') only
exclusion clauses with respect to xg E Sj and connection clauses containing -1pgj
are omitted in £ ' , the additional condition for local stratification is easily verified,
if all such choices are taken provided there are at least three such possibilities. The
only critical case arises, if there are only three choices of the second kind, all with
the same xg. In this case we must have another Sj = {x^} E S1 and we simply add
the labelled subsystem (£ ' , £ " , ~<pej) to satisfy the additional local stratification
condition.

If there are at most two choices, then either

• S = S' and there is exactly one Sj = {xk,xg} or

• S' contains only unary sets and these are exactly Sj = {xj} ^ S' and Sk =
M i S ' or

• S' contains only unary sets and there is exactly one Sj = {xk,xg} £ S'.

In the first case £ contains only two connection clauses with respect to Sj and
hence is obviously stratified. In the second case £ contains only four clauses

~>Pkk V -<pkk', Pkk V Pkv, ->Pjj V ->pjj> a n d pjj V pjj>

for Sj' = {xj} E S' and Sfc< = {a;*;} E S', hence £ is stratified.
In the third case we obtain six clauses

-^Pkj V p t j , -<pij V p k j , - i p k j V pkk', ->Ptj V pw, PkjV Pkk' a n d p t j V pw

300 Klaus-Dieter Schewe. Bernhard Thalheim

for Sk' = {za} G S' and = {xe} G S'. Using Lemma 14 it is easily verified
that the labels pkj, Ptj, ~^Pkj and ^pij define a partition into stratified labelled
subsystems.

For the converse let us first assume that E is stratified, i.e. there cannot exist
three clauses with literals L, L and ~ L respectively. In connection clauses we may
have L = ptj (or L = -<pij) and it follows that E does not contain exclusion or
cover clauses for z ; G Sj. This implies x; ^ Sk for all k ^ j. If we have an exclusion
clause for xi G Sj, say ->pej V ~^ptk, then we also have a cover clause ptj V ptk V C'
and vice versa, but there cannot be further exclusion clauses nor connection clauses
for xe G Sj, i.e. C' = false and Sj = {z;}.

To summarize, if xi occurs in more than one Sj, then #Sj = 1 and there are
just two such sets. Therefore, for a solution S' we take all Sj with # S j > 2 and
select a singleton set {xe} for the remaining elements.

Next assume that E is locally stratified, i.e. there is a local stratification with
labels L\,... ,Ln (n > 3). Again, we proceed by induction on DCP-instances.

For Li — ~~pij and the stratified labelled subsystem (E'i, E", L\) the cover clause
for X(and connection clauses for xi G Sj containing pij have been removed from E
to give E^, hence must occur in two other labelled subsystems such that for a label
-ipki we must have and for a label pki we must have i ^ j.

Analogously, for Li = pi j exclusion and connection clauses for X(G Sj, the
latter ones containing ->pij have been removed omitted in E'x and must occur in
two other labelled subsystems such that for another positive label pki we must have
k~>£ and for a negative label ~^Pki we must have i ^ j. Hence, for the minimum
number of three labels Li, L2 and L3 we obtain the following four cases:

Li = ~*Pej, L2 = -ipkih, L3 = -ipk2i2 with pairwise different I, ki, k2 ,
Li = ->pij, L2 = ->pfclil, L3 = pk2i2 with I ^ fci and j ± i2 ± ix ,

Li = -'Pij, L2 = pklit, L3 = pk2i2 with ki ^ k2 and h ^ j ^ i2 or
L\ = Pij, L2 — Pk1il, L3 = pk2i2 with pairwise different I, ki,k2

For a negative literal Li = ->pij or a positive literal Li = p t j it follows from Lemma
14 that replacing Sj by Sj — {xg} and {xi} defines a locally stratified constraint
set. Therefore, by induction in all four cases (with the restrictions for indices) we
obtain solutions for smaller DCP-instances with

Si = {Si,...,Sj - { z f } , . . . , S m , { z £ } } ,
S-2 = {S i , . . . ,5j, - {zjfcj},... , S m , {zfcl}} and

S3 = {Si,---,Si2-{xk2},...,Sm,{xk2}}

respectively. If any of these solutions contains both (or none) of the splitted com-
ponents, e.g. Sj - {xi} and {xg}, we also have a solution fof the original problem.

Therefore, assume that all solutionsjor (X,Sj) must contain exactly one of the
splitted components denoted as Si, S2 and S3. Let S,' = {Sj , . . , S J be a
solution for (yY, Si). For i ^ j we proceed in the following way:

Limitations of B,ule Triggering Systems for Integrity Maintenance 301

Start with Ti = S[- S'j, Tj = S'j — and T = { S j } and execute the following
steps until there are no more changes:

• Remove all sets from % intersecting some set in T and let these define a new
T.

• Remove all sets from Tj intersecting some set in T and let these define a new
T.

Finally, if Ti (and then also Tj) are non-empty, this means that we may replace
Tj C S'j by T or S'j — Tj by S- — Ti- According to our assumption on solutions we
always keep either Si or Sj. Consequently, the procedure above defines a chain

•c" Qi <>i
~ ~ Jij ¿2 °ik ¿j ,

where neighbouring sets have a common element. This is still true, if we replace
Si by the original Sj. Taking together all three choices for (i,j) we obtain an
odd-length cycle

Sit — Si2 — Sh — • • • — Sim — Sh

with intersecting neighbouring sets S,j € S. Let £ ' be the set of constraints
corresponding to {S j j , . . . , 5,m}. Then £ ' differs from a subset E0 C T, only by
the fact that cover clauses may have been shortened. Since omitted (positive)
literals in these cover clauses do not occur in any other clauses in £ ' , this must
be locally stratified iff £o is locally stratified. Therefore, the proof is completed, if
we can show that cycles as above always define constraint sets that are not locally
stratified or not satisfiable.

With each neighbouring pair (Si3.,Sij+1) we may associate a witness x € fl
Si j + j . Then without loss of generality (just rename indices) we can always assume
a cycle

Xl X2 Xm

S1 ~ S'2 — S3 — • • • — Sm ~ Sm+1 = S1

and show that the following conditions can be achieved:

• m is odd,

• the Xi are pairwise different,

• the Si are pairwise different and
• the cover clause in E' for X(has the form pu V pu+i V C'e, where literals in

C'(do not occur in any other clause in £ ' .

The last condition will allow us to assume without loss of generality that cover
clauses in £ ' only contain two literals.

In order to achieve such a cycle recall that our original cycle is composed of three
subpaths (called flanks) corresponding to a solution of a smaller DCP-instance and
each pair of flanks has a common set (called corner). If Si C Sj is such a corner,
then the following cases may arise:

302 Klaus-Dieter Schewe. Bernhard Thalheim

• The two nieghbours Si and Sk coincide which allows to remove the corner Sj
and to identify Si with Sk •

• If Si, Sj and Sk are pair wise different, we either obtain a simple cycle of
length 3 or let the cycle unchanged.

• If one of the neighbours equals Sj, say Sk = Sj, then Sk is not common in
the solutions for the flank with Sj and Sk, i.e. there must be some Sj< in the
same solution as S, with Sj n Sj< ^ 0. In this case we may replace the even
number of edges between Sj and Sy by a single edge. By the same argument
the even number of edges between the opposite edge S((in the same flank)
and some Sr by a single edge.

In all these cases the cycle length remains odd.
If Xi occurs twice, say between Si\ and Sl2 and between Si3 and Sj4 respectively,

we may assume paths from Si, to Sl4 and from Si2 to Si3 of length and n 2

respectively. Then there are cycles with Si2, Si3 and Sl4 connected by Xi
respectively and one of the corresponding lengths ni + 1 or n2 + 1 must be odd.
The only critical cases occur for Si2 = Sj4 or Sjt = Sj3, but these correspond to
corners that have already been removed.

Finally, in order to achieve the condition on cover clauses consider S j fl Sj / 0.

• If Si and Sj belong to different flanks, but to the same solution, then we have
Si = Sj and we may identify them and remove the even number of edges
between them.

• If Si and Sj belong to different flanks and different solutions, then for Sj ^ Sj
we may replace the odd number of edges between them by a single new edge,
whereas for Sj = Sj we may consider the odd number of edges between them
as our new cycle.

• If Si and Sj belong to the same flank, then the number of edges between
them is even iff Sj = Sj, thus may be .removed or replaced by a single new
edge.

The conditions on our cycle now allows clauses to be arranged in such a way that
we have

= {~h VL2, ~L2VL3,...,~LP-1VLP, -LpVLi}

for an even number p with Lp /2+j = ~ Li for i = 1 , . . . ,p/2. Such a £ ' , however, is
not satisfiable. •

8 Conclusion
In this article we investigated the limits of rule triggering systems (RTSs) for main-
taining database integrity under the additional requirement to preserve the effects

Limitations of B,ule Triggering Systems for Integrity Maintenance 303

of transitions. The first result assures the existence of non-repairable transitions.
In order to disallow such transitions the constraint implication problem must be
decidable.

Secondly, we analyzed critical trigger paths in rule hypergraphs associated with
RTSs. We could show that the existence of critical trigger paths leads to RTSs
which may invalidate the effect of some transitions, even if these are repairable.
Such a behaviour can only be excluded for locally stratified constraint sets. In this
case the needed RTS can be computed effectively, but checking local stratification
is NP-hard.

To summarize, both results limit the applicability of RTSs for integrity main-
tenance under the assumption that the intended effects of user-defined transitions
should be preserved. Fortunately, there is a stronger condition on a constraint
set to be stratified, which is only sufficient for reasonable rule behaviour, but not
necessary. Stratified constraint sets occur, if we have a relational database schema
in Entity-Relationship normal form, which means that it is equivalent to an ER-
schema without exclusion constraints. Checking stratification is not only effective,
but also efficient.

On the other hand, the RTS approach to integrity maintenance completely
ignores user-defined transitions. Thus, a second conclusion from our studies is that
these should be taken into consideration.

References

[1] S. Abiteboul, V. Vianu: Equivalence and Optimization of Relational Transac-
tions, Journal of the ACM, vol. 35(1), 1988, 70-120

[2] S. Ceri, J. Widom: Deriving Production Rules for Constraint Maintenance,
Proc. 16th Conf. on VLDB, Brisbane (Australia), August 1990, 566-577

[3] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca: Automatic Generation of Pro-
duction R.ules for Integrity Maintenance. ACM ToDS, vol. 19(3), 1994, 367-
422.

[4] S. Chakravarty, J. Widom (Eds.): Research Issues in Data Engineering —
Active Databases, Proc., Houston, Februar 1994

[5] M. Gertz, U. W. Lipeck: Deriving Integrity Maintaining Triggers from Tran-
sition Graphs, in Proc. 9th ICDE, IEEE Computer Society Press, 1993, 22-29

[6] H. Mannila, K.-J. Râihâ: The Design of Relational Databases, Addison-Wesley
1992

[7] K.-D. Schewe, B. Thalheim: Consistency Enforcement in Active Databases,
in S- Chakravarty, J. Widom (Eds.): Research Issues in Data Engineering —
Active Databases, Proc., Houston, Februar 1994

304 Klaus-Dieter Schewe. Bernhard Thalheim

[8] K.-D. Schewe, B. Thalheim: Active Consistency Enforcement for Repairable
Database Transitions, in S.Conrad, H.-J. Klein, K.-D. Schewe (Eds.): Integrity
in Databases, Proc. 6th Int. Workskop on Foundations of Models and Lan-
guages for Data and Objects, Schloß Dagstuhl, 1996, 87-102, available via
h t t p : //wwwiti . cs .uni-magdeburg.de/~conrad/IDB96/Proceedings . html

[9] B. Thalheim: Foundations of entity-relationship modeling, Annals of Mathe-
matics and Artificial Intelligence, vol. 7, 1993, 197-256

[10] S. D. Urban, L. Delcambre: Constraint Analysis: a Design Process for Specify-
ing Operations on Objects, IEEE Trans, on Knowledge and Data Engineering,
vol. 2 (4), December 1990

[11] J. Widom, S. J. Finkelstein: Set-oriented Production Rules in Relational
Database Systems, in Proc. SIGMOD 1990, 259-270

Received, April, 1997

Acta Cybernetica 13 (1998) 305-318.

Non-Markovian Policies in Sequential Decision
Problems

Csaba Szepesvári

Abstract
In this article we prove the validity of the Bellman Optimality Equation

and related results for sequential decision problems with a general recur-
sive structure. The characteristic feature of our approach is that also non-
Markovian policies are taken into account. The theory is motivated by some
experiments with a learning robot.

1 Introduction
The theory of sequential decision problems is an important mathematical tool for
studying some problems of cybernetics, e.g. control of robots. Consider for exam-
ple the robot shown in Figure 1. This robot, called Khepera1, is equipped with
eight infra-red sensors, six in the front and two at the back, the infra- red sensors
measuring the proximity of objects in the range 0-5 cm. The robot has two wheels
driven by two independent DC motors and a gripper that has two degrees of free-
dom and is equipped with a resistivity sensor and an object-presence sensor. The
robot has a vision turret mounted on its top. The vision turret has an image sensor
giving a linear image of the horizontal view of the environment with a resolution
of 64 pixels and 256 levels of grey. The task of the robot was to find a ball in the
arena, bring it to the stick and hit the stick by the ball so as to it jumps out of the
gripper. Macro actions such as search, grasp, etc. were defined and the expected
number of macro actions taken by the robot until the goal was reached was choosen
as the performance measure. Some digital, dynamic filters provide the "state in-
formation" necessary for making decisions (for more details concerning these filters
see [7]). The robot learnt on-line from the observations (x t , a t , c t) , where xt € X is
the actual output of the filters (X is a finite set, called the state space), a t _i G A
is the previous (macro-)action taken by the robot (A is also a finite set, called the

'Research Group on Artificial Intelligence, "József Attila" University, Szeged, 6720 Aradi
vértanúk tere 1., HUNGARY, e-mail: szepes@math.u-szeged.hu

tWork supported by the Central Research Fund of Hungarian Academy of Sciences (Grant No.
T014548)

1 Khepera is designed and built at Laboratory of Microcomputing, Swiss Federal Institute of
Technology, Lausanne, Switzerland and is available commercially.

305

mailto:szepes@math.u-szeged.hu

306 Csaba Szepesvári

action set), and Ct is the cost of transition (x t_ i , a t _i ,x t) which was 1 until the
goal was reached. The task turns out to be well approximated as a Markovian Deci-
sion Problem (MDP), i.e. one may assume the existence of transition probabilities
of form p{x,a,y), where p(x,a,y) gives the probability of going to state y from
state x when action a is used; and the existence of a cost-structure c{x,a,y) s.t.
ct = c(xt-i,at-i,xt). The objective is to minimize the total expected discounted
cost, o 7 t cí]i 0 < 7 < 1, by choosing an appropriate policy, a policy being any
function that maps past observations to actions (sometimes to distributions over
the action set). Because of the uniform cost structure and the absorbing goal state,
the discounted cost criterion can be shown to be equivalent to the undiscounted
one, i.e., to minimizing the expected number of steps until the goal is reached. The
reason of considering the discounted total cost criterion is that the presence of the
discount factor makes the theory of such MDPs quite appealing. In particular, it
is well known that policies which, for any given state x € X, choose the action
minimising '

P(x, a, y)(c(x, a, y) + jv* (y))
yex

are optimal. Here v* is the so-called optimal cost function, defined by

v*(x) — inf vn(x), x € X, xgll

where n is the set of policies. More importantly, v* is known to satisfy the Bellman
Optimality Equation

v*(x) = min p(x, a, y)(c(x, a, y) + 7v*(y)) , x 6 X,
a€A L—' yex

which is a non-linear equation for v*. Fortunately, because of the presence of the
discount factor, 7, v* can be found (approximately) in a number of ways. For
example, introducing the optimal cost operator, T :W.X Rx, defined by

(Tv)(x) = min Y]p(x,a,y)(c{x,a,y) + 7^(2/)), x £ X,
yex

gives that v* is the fixed point of T, which can be shown to be a contraction in the
sup-norm (in fact, ||T\> - Tu\\ < - u|| holds) and so the Banach fixed-point the-
orem yields that vn+i = Tvn converges to v* in the sup-norm for any choice of VQ.
This algorithm, called the value-iteration algorithm (or dynamic programming al-
gorithm) , served as the basis of the most successful learning algorithm for the above
robotic task. The idea of this learning algorithm is to estimate the transition prob-
abilities p(x, a, y) and the costs c(x, a, y) by their respective maximum-likelihood
estimates to obtain pt{x, a,y) and ct(x, a,y), respectively and then compute vt, the
£th approximation to the optimal cost function v*, as the fixed point of the approx-
imate optimal cost operator Tt which is defined as T but when p and c are replaced
by their respective estimates. After a few hours of learning the performance of the

Non-Markovian Policies in Sequential Decision Problems 307

l | j | s • ' j r p j - t ^ c ' - í iMwfflili l ^JjJUm a....- -„

Figure 1: T h e K h e p e r a r o b o t
The figures show a Khepera robot. The description of the sensors and actuators of the
robot can be found in the text.

robot using this learning strategy was comparable to that of a well designed control
strategy (whose design took a couple of days).

It is important to observe that the expected total discounted cost criterion, al-
though suitable in many cases, may yield undesirable behaviour in some cases. For
example, in safety-critical applications (like controlling a Mars-rover) the average-
case optimal policy may be too bold. Other criteria, such as the minimax criterion
which concerns only the long-term worst-case outcomes of the decisions, take safety
much better into account. There is a continuum of other criteria which are in be-
tween the expected and the minimax criteria. In this article we consider structural
questions, such as the validity of the Bellman Optimal Equation, associated with se-
quential decision problems given by general decision criteria. However, the problem
of learning optimal policies will not be considered here. Nevertheless, the theory
investigated here is important as the analysis of such learning algorithms should be
based on it. For further information on learning issues the reader is referred to the
articles [5, 9] and [6]. The main contribution of this article to the "static-theory",
which considers structural problems, is that here we do not restrict the analysis to
Markovian policies as it is usual in the literature (see, e.g. [1, 10]), but we also con-
sider general policies, which is important since learning policies are non-Markovian
by nature.

2 Results

Nota t ion . The set of natural numbers ({0,1,2,. . .}), integers and reals will be
denoted by N, Z and IK, respectively. 7Z(Z) will denote the set of extended real-

308 Csaba Szepesvári

valued functions over Z: 7Z(Z) = [—oo,oo]z, and B(Z) will denote the set of
bounded real-valued functions over Z: B(Z) C K z , s.t. if / G B(Z) then | | / | | =
sup2 € Z \f(z)\ < oo. The relation u < v will be applied to functions in the usual
way: u < v means that u(x) < v(x) for all x in the domain of u and v. Further,
u < v will denote that u < v and that there exists an element x of the domain of u
and v such that u(x) < v(x). We employ the symbol < for operators in the same
way, and say that Si < S2 {SUS2 : 11{Z) -4 K(Z)) if Siv < S2v for all v G K(Z).
If S : TZ(Z) —» TZ{Z) is an arbitrary operator then Sk (k = 1 ,2 ,3 , . . .) will denote
the composition of S with itself k times: S°v = v. Slv = Sv, S2v = S(Sv). etc. In
the following t, s, n,i,j, k will denote natural numbers.

D e f i n i t i o n 2 . 1 An operator S : H(Zi) TZ(Z2) is said to be Lipschitz with index
0 < 7 i f S maps B(Zi) into B(Z2) and if for allf,g £ B(ZI), | |S / -Sc / | | < 7 l l / - » | | -
S is said to be a contraction with index 7 if S is Lipschitz with index 7 < 1.

D e f i n i t i o n 2 . 2 An operator S : TZ(Zi) TZ(Z2) is said to be (weakly) continuous
if for all pointwise continuous function sequence { / n } C IZ(Zi) with limit function
f , also limn^oo (Sfn)(z) = (Sf)(z),\/zeZ2.

It is well known that S can be Lipschitz without being continuous and vice versa,
continuous in the topology induced by pointwise convergence: Let S : Z?(N) —• 23(N)
be defined as (S/)(i) = i n f ^ i f (j) if i = 0 and (S f) (i) = f(i), otherwise. Clearly,
S is Lipschitz with index 1. Let fn{i) = 1, if 0 < i < n and fn(i) = 0 otherwise.
Now, if we let f(i) = 1, i G N then fn—*f pointwise but not in the sup-norm, and
0 = limn^co(S/n")(0) ^ (S/)(0) = 1 showing that S is not continuous in the sense
of Definition 2.2.

Sequential Decision Problems.

D e f i n i t i o n 2 . 3 An sequential decision problem (SDP) is a quadruple (X, A, Q, I),
where X is the state space of the process, A is the set of actions, Q : [—00,00]^ —»
[—oo, oo]"^-4 is the so-called cost propagation operator and I G B(X) is the so-
called terminal cost function.

In most of the results we will assume that Q is a contraction and is continuous in
the sense of Definition 2.2.

The mapping Q makes it possible to define the cost of an action sequence in
a recursive way: the cost of action a in state x is given by (Q f) (x , a) provided
the decision process stops immediately after the choice of the first action and the
terminal cost of stopping in state y is given by f(y).

The history of a decision process up to the i t h stage is a sequence of state-
action pairs: (a't,xt,at-i,xt-i,... ,a o,£o)- Set Ht = (Ax X)1, t > 0. For brevity,
h = ((at,xt),... ,(ao,xo)) will be written as h = atxt •.. aoxo- Further, for any
pair hi = ((at,xt),..., (a0,xo)) and h2 = ((a's,x's),..., (a^Xg)) we will denote by
h\h2 the concatenation of hi and h2: ((at,xt),.. •, («0,2:0), (a's,x's),..., (ab,x'0)).
We admit the assumption that the ordering of the components of h = atxt... clo^o

corresponds to the time order, i.e., (at,xt) is the most recent element of the history.

Non-Markovian Policies in Sequential Decision Problems 309

D e f i n i t i o n 2 . 4 A policy is an infinite sequence of mappings: TT =
(710,71-1,... ,nt,...), where nt : X x Ht A, t > 0. If irt depends only on X
then the policy is called Markovian, otherwise, it is called non-Markovian. If a
policy is Markovian and irt = 7To for all t then the policy is called stationary. Ele-
ments of Ax are called selectors and every 7r £ Ax is identified by the associated
stationary policy (7r, 7r, 7r,...).

D e f i n i t i o n 2 . 5 If n £ Ax is an arbitrary selector let the corresponding policy-
evaluation operator T„ : TZ(X) —> TZ(X) be defined as

In the literature the evaluation of Markov policies is defined with the help of the
policy-evaluation operators:

D e f i n i t i o n 2 . 6 (B e r t s e k a s , 1 9 7 7) The evaluation function of a finite-horizon
Markov policy IT = (TT0, 7Ti, . . . , IRT) is defined as V„ = TnoTni ...TVt£, while the
evaluation function of an infinite-horizon Markov policy 7r = (710, 7Ti,..., 7r t,...) is
given by

assuming that the limit exists.

If the policy is stationary (7rt = 7r0 for all t > 0) the latter definition reduces to

Note that if Q : B(X) —>• B(X x A) is a contraction then Tn is a contraction with
the same index (n € Ax) and so is well defined. The evaluation of arbitrary
policies is more complicated and is the subject of the next section, but the following
example may shed some light on the forthcoming definitions.

E x a m p l e 2 . 7 Finite Markovian decision problems with the expected total cost cri-
terion [2, 8]. (X,A,p,c) is called a finite MDP if the following conditions hold:

1. X and A are finite sets;

2. p\ XxAx-X-^'R. and for each a £ A, p(-,a, •) is a transition probability
matrix, i.e., for all (x,a ,y) £ X x A x X, 0 < p(x,a,y) < 1; and for all
{:x,a) £ X x A, Y,yexP(x,a,y) = 1;

3 . c : X x Ax X —y R.

Now let 7r be any policy. Then, for any X-valued random variable "" generates
a probability measure P = P5oi3r over (X x _4)N which is uniquely defined by the
finite-dimensional probabilities

P(x0,a0,x1,a1,. ,.,xn,an)= p(£0 = x0)6(a0,Tr0(x0))p(x0, a0,x-i)...

(T,f)(x) = (Qf)(x,n(x)).

(1)

(2)

• • -p(xn-i,<in-i,xn)ö(an, Trn(xn, an_\xn-\ .. .a0a:o)

310 Csaba Szepesvár i

where S : A2 —> {0.1} is defined by S(a, b) = 1 iff a = b. Clearly,
one can construct a random" sequence (£n, an) E X x A (the controlled
object) s.t. P (f n + i | a n , £„ , . . . , a 0 ! Co) = p{Zn, a», £n+i) and where a.n =
i"n(£n><*n-i£n-i • • QoCo)- If is concentrated on {.'/;} for some x E X then
is d e n o t e d b y PX,TT-

Assume that P(£o = x) > 0 for all x E X. The evaluation of a policy n in state
x is defined as

Vjt(X) =f lc{ii,auit+\)
t=o

Co = X — ET, (x) <:(x) \
Lí=o

where 0 < 7 < 1 is the discount factor and the expectation is taken w.r.t. Pf0 „
(resp. Px,Tt) and {(&, ct^)} (resp. {(£jx \ a j^)}) is the controlled object correspond-
ing to 7t and the initial random state £0 (resp. initial state x). The second equality
in the above equation comes from the definitions and shows that vv(x) is indepen-
dent of the particular form of £o- Now, if N — (7ro, TTI, . . .) is any policy then by the
law of total probability

5,(1) = £ Px,TT = y) EXin

vex .t=0
Ci = v

E ^0(3;), v) c(x, TT0{x),y)+jEXt„
vex

E ^ í d í i . ^ i . í f ö)
i=0

i r ° --//

= E p(x' 7r°(a'); y) c(x> n0(x),y) +
yex

E ^ e ? » , ^ , ! ^)
_t=0

= E p(x' n° > y} (c (X j 770 (3;) > y) + ív** (y)) =
vex

= {QVx*)(x,TTo{x)), (3)
where irx denotes the policy executed after the first step, i.e., nx = (nfi, 7rf , . . .) with
ii'f(x,h) = 7rt+i(x, hito(x)x), {{£tV\ is the corresponding controlled object
given that the initial state is y, and Q : 7Z(X) -4 7Z(X x A) is defined by

(Qf){x,a) = Y^v(x,a,y){c{x,a,y) +yf(y))._
vex

(4)

Equation 3 is called the Fundamental Equation [3] and will be proved to hold for
general SDPs in the next section. Note that if ?r is Markovian then TTx = (7?!, 7r2,...)
for any x E X, and so Equation 3 yields that = Tno ... T1Tlv{lTl+uni+.2t,,).
Therefore, for any given I E B(X). v„ = limi-»«, T„0 ... TVl i = vn since

l|2V0 • • • I ^ i , ? r t + 2 , .) P^o • • • < 7 t+ii ..)-e\\<it+1c í+i r1 ¿ztfp 0.

Non-Markovian Policies in Sequential Decision Problems 311

for some C > 0, where we exploited that for any selector 7r, Tn is a contraction
with index 7 and that s u p ^ n < 00.

Interesting "risk-sensitive" criteria may be obtained if Q is given by
{Qf)(x,a) = (¿2y€XP(x>a>y)(c(x>a>y) + 7f(y))p)1/p, 1 < P < 00, where c and
/ are assumed to be non-negative. This definition can be shown to give the min-
imax criterion when p 00. The results derived below hold for these criteria as
well.

Objectives. The objective of the decision maker is to choose a policy in such a
way that the cost incurred during the usage of the policy is minimal. Of course,
the smallest cost that can be achieved depends on the class of policies available for
the decision maker.

D e f i n i t i o n 2 . 8 The sets of general, Markov and stationary policies are denoted
byHg, IIm aiid IIj, respectively. Further, let

v*A(x) = inf vn(x),
rrenA

be the optimal cost function for the class IIa, where A is either g or m or s.

For any e > CLand fixed x 6 X the decision maker can assure a cost less than
v*A(x) + e by the usage of an appropriate policy from IIa but this policy will
depend on x. Here we are interested in uniformly good policies:

D e f i n i t i o n 2 . 9 Let H A (v) = {-IT e H a \vn < t>}, that is I I A (i>) contains the poli-
cies from Ha whose cost is uniformly less than or equal to v. A policy is said to be
(uniformly) e-optimal if it is contained-in ns(w*fl +e) . 2

The objective of sequential decision problems is to give conditions under which
nA(f* s + e) is guaranteed to be non-empty when e > 0 or e = 0.

D e f i n i t i o n 2 . 1 0 Elements ofHg(v*g), nm(v*g), andlls(v*9) are called optimal,
optimal Markovian and optimal stationary policies, respectively.

The Fundamental Equation. Now we define the evaluation function associated
to non-Markovian policies and derive the fundamental equation.

D e f i n i t i o n 2 . 1 1 If IT = (7ro, 7Ti, . . . , 7 r t , . . .) is an arbitrary policy then 7r4 denotes
the ¿-truncation of -K: 7xl = (no, 7Ti,..., nt). Further, let Vt and V denote the set
of t-truncated (finite-horizon) policies and the set of (infinite horizon) policies,
respectively. The s-truncation operator for t-truncated policies is defined similarly
if s<t.

D e f i n i t i o n 2 . 1 2 The shift-operator, S(x>a) : V ->• V, for any pair (x,a) e X x A
is defined in the following way:

S(x,a)ir = (K'^l'- • •)>
2 l f v is a real valued function over X and e is real then v + e stands for the function v(x) + e.

312 Csaba Szepesvári

where tt) is defined by
T't(x.H) = 7rt+1(x, liax)

for all t > 0. M̂ e s/ia/Z wriie 7rx /or S^Ti-ofx))71" and call TTx the derived
policy. For t-truncated policies S(I)a) is defined in the same way, just :now
S M :Vi-*Vt-i,t > 1.

The above definition means that TTx G Vt-i holds for any n G Vt and x G X. The
following proposition follows from the definitions.

P r o p o s i t i o n 2 . 1 3 ?T1'X = TTx<1~1 and thus if TT £ Vt then TT1'x = TXX-L~L G Vt-l;

t> 1.

Now we are in the position to give the definition of the evaluation of policies with
finite horizon.

D e f i n i t i o n 2 . 1 4 If n G V0, i.e., TT = (ir0) then vn(x) = (Qi)(x.ir0(x)), where
i G V(X) is the terminal cost function. Assume that the evaluation of policies in
Vt is already defined. Let TT G Vt+i • Then

vn(x) = {QV^)(X,TT0(X)). (5)
Since TTX G Vt, v„* is already defined and thus (5) is well defined. One can interpret
this definition as follows: irx is the policy that is applied after the first decision.
The cost of the derived policy is vK*. This cost together with the cost of the first
action (the first being TTO(X) in state x) gives the total cost of the policy.

E x a m p l e 2.15 If tt is a ¿-horizon policy in an MDP (X,A,p,c) (cf. Example 2.7)
and we set

v^ix) = E
.71=0

£O = X

where {(£n,cin)} is the controlled object corresponding to 7r and the random initial
state The argument of Example 2.7 gives that v ^ = where v ^ is the
evaluation of tt in the sense of Definition 2.14 in the SDP (X,A,Q, £), with Q
given by (4) and where i(x) = 0 for all x G X.

The evaluation of an infinite horizon policy is defined as the limit of the evalu-
ations of the finite horizon truncations of that policy:

D e f i n i t i o n 2.16 Let TT G V = VCX}. Then the total cost of TT for initial state x is
given by

vn(x) — lim inf vnt (x),
t—too

x G X.

E x a m p l e 2.17 Continuing the above example, if 7r is an arbitrary policy then (by
the boundedness of c)

V?T (•'«) —f E E 7 " c (f n , c t „ , f „) I £o = ;
L;i.=0

and so v„ = in.

= lim E t-> oo

Í-1
Ifo = x

.11=0

Non-Markovian Policies in Sequential Decision Problems 313

D e f i n i t i o n 2 . 1 8 Q is said to be m,onotone if Qv < Qu whenever u < v.

In what follovis we will always assume that Q is monotone.
Equation 6 below, which in harmony with [3] we call the fundamental equation

(FE), has already been derived for MDPs in Example 2.7. Here we show that it
holds in general SDPs when Q is continuous.

T h e o r e m 2 . 1 9 If Q is continuous then

vn(x) = (QvK*)(x,w0(x)). (6)

Proof. Let vt = -(V and let n = nt+1. By definition v^(x) = (Qv^)(x, fi0(x)).
According to Proposition 2.13 nx = 7rt+1,x = 7rx,t and /xo — ttq, therefore

= (Qv„*.')(z;7ro(x)). (7)

Now, let t tend to infinity and consider the lim inf of both sides of the above
equation:

vw(x) = lim inf (£>?;„•*,i)(.'£, iro(x)) - (Q[liminfX* <]) 7r0(a,-)) = (Q v (x , 7 r 0 (x)) ,
t—> oo i V i—> oo /

where in the first equation we exploited the definition vn, in the second equation we
used that Q is monotone and is continuous, and in the third equation the definition
of vwas utilised. •

C o r o l l a r y 2 . 2 0 Assume that Q is a contraction and is continuous. Then v„t
converges to vn, i.e., in Definition 2.16 lim inf can be replaced by lim, and for any
Markovian policy IT, the evaluation function associated to n in the sense of Def-
inition 2.16 coincides with the evaluation function in the sense of Definition 2.6.
Moreover, if % is stationary, then T™vo converges to vn, where vq € B(X) is arbi-
trary, and vn = T,,-'!;^. •

Proof. Recall that in Definition 2.6 the evaluation of a Markovian
policy 7r = (7To, 7Ti,... ,7Tt,...) was defined as the limit vn(x) =

lim/.—»OO
^ . . . { T ^ i T ^ l)) . . } j . Easily, Tn0 • • • Tnt-iTntl — vnt, so the defini-

tion of Bertsekas coincides with that of ours. The rest of the statement follows
from the Banach fixed-point theorem. •

Uniformly Optimal Policies.

D e f i n i t i o n 2 . 2 1 Policy ir is said to be uniformly e-optimal i f , for all x e X:

v (x) < fv*3(x)+£> ifv*a(x) > -oq;
n \ — 1/e, otherwise.

314 Csaba Szepesvári

T h e o r e m 2 . 2 2 If the FE is satisfied then for all e > 0 there exists an e-optimal
policy.

Proof. Fix an arbitrary x 6 X. By the definition of v*9(x) there exists a policy
XIR = (xTXO,xTX\, . . .) for which vin(x) < v*9(x)+e when v*9(x) > —oo and viir(x) <
— 1/e, otherwise. We define a policy which will be e-optimal by taking the actions
prescribed by xn when x is the starting state of the decision process. The resulting
policy, called the combination of the policies XTX, is given formally by n0(x) =
XTXO(X) and 7r t (y ,hax) = Xixt{y,hax). We claim that v„(x) = vil,(x) and thus IT
is uniformly e-optimal. Indeed, ixx = (xTT)x and TTO(X) = XTTO(X) and so v7r(x) =
(QVXV*){X,TT0{X)) = (Qvx7r*){x,XTT0(x)) =vi7r(x). •

Finite Horizon Problems.

D e f i n i t i o n 2 . 2 3 The optimal cost function for n-horizon problems is defined by

vnA(x)= inf xev*

where = { TX11 \ TT E IIa }, and A 6 {g,m, s}.

D e f i n i t i o n 2 . 2 4 The optimal cost operator T : TZ(X) TZ(X) associated with
the SDP (X, A, Q, I) is defined by

(Tf)(x)= inf (Qf)(x,a).
aeA(x)

It is immediate from the definition and by the triangle inequality that if Q is a
contraction with index 7 then the optimal cost operator is a contraction with the
same index.

D e f i n i t i o n 2 . 2 5 Q is called upper semi-continuous if for every (pointwise) con-
vergent sequence of functions Vt G V-(X) for which Vt > lim^oo nt we have

lim Qvt = Q(lim vt) £—>00 t—¥ OO

T h e o r e m 2 . 2 6 (O p t i m a l i t y E q u a t i o n f o r F i n i t e H o r i z o n P r o b l e m s)

The optimal cost functions of the n-horizon problem satisfies

v*9 = v*rn = T n t (8)

provided that Q is USC and the FE is satisfied.

Proof. We prove the proposition by induction. OnS immediately sees that the
proposition holds for n = 1. Assume that we have already proven the proposition
for n. Firstly, we prove that Tn+1£ < v*l+l. Note that this inequality will follow
from the FE and the monotonicity of Q alone: no continuity assumption is needed
here.

Non-Markovian Policies in Sequential Decision Problems 315

Let IT € Vn+i- show that Tn+1£ < v„. By the induction hypothesis
(Tn+1 £)(x) = (T < s) (x) . According to the FE, v^x) = {Qv^)(x,n0{x)). Since
TTx € Vn so > v*-9. Since Q is monotone it follows that

{Tv*°)(x) = inf (Qv*B)(x,a) < inf (QvK,)(x,a) < (Qv„.)(x,w0(x) = v„(x).
a£ A(x) a£A(x)

This holds for arbitrary 7r e Vn+i and thus Tv^9 < v*?+1. Using the induction
hypothesis we find that Tn+1£ < v*n°+1.

Now let us prove the reverse inequality, i.e., that < Tn+li holds. Let us
choose a sequence of Markovian policies £ Vn such that vnk converges to v*"1.
Clearly, v„k > v*m. Now let nj : X —• A be a sequence of mappings satisfying
lim^ooT^.'ti*9 = Tv*9. Now consider the policies vk,j = 7 © M j € Vn+\ - the first
n actions of vk,j are the actions prescribed by -Kk while the last action is the action
prescribed by fij. It is clear that < < vVkj = Tlljv7Tk: the last equality-
follows from the FE. Taking the limitin k we get that

< lim THv«k = r , t . (lim v„J = TMjv*m
k—too k—too

holds owing to the choice of the policies 7rk and since Q is USC. Now taking the
limit in j the induction hypothesis yields that < v*™x < Tv*m = Tn+L£ which
finally gives that v*J+i — = Tn+1i, completing the proof. •

The following example shows that the conditions of the previous theorem are
indeed essential.

E x a m p l e 2 . 2 7 [1] L e t X = { 0 } a n d A = (0 , 1] , £ (0) = 0 , a n d (Q /) (0 , a) = 1, i f

/ (0) > 0 ; and (Q /) (0 , a) = a, otherwise. Note that Q is not U S C . It is easy to see
that 0 = Woo(0) = (Tn£) (0) < v*9(0) = 1 = v*9(0) if n > 2.

The Be l lman Opt imal i ty Equa t ion . According to Theorem 2.26, if v*-> con-
verges to v*a then v*9 can be computed as the limit of the function sequence vo = £,
vt+i = Tvt provided that Q is USC and the FE holds. The convergence of v*a to
v*'J expressed in another way means that the inf and lim operations can be inter-
changed in the definition of v*9:

v*9 = inf lim = lim inf = lim v*9. (9)
irev n—>oo n->oai\£V oo

t h e o r e m 2.28 (i) Assume that Q is continuous and set Voo = lim sup„_>00 Tni.
Then

Vvo < v*°. (10),

(ii) If we further assume that Q is a contraction then lim^^ca v*!J =
lim7l_>oo Tuvo = v*9 = v*m, where v0 £ B(X) is arbitrary, and

Tv*9 = v*u. (1 1)

316 Csaba Szepesvári

Proof, (i) Note that by Theorems 2.19 & 2.26 v^ = lim s u p n ^ c o . Let x £ X
and let c be a number s.t. c > v*9(x). By the definition of v*9 there exists a policy
7r £ V such that v7!(x) < c. Furthermore, since vn{x) = limn^oo v^ (x) there exists
a number n0 such that from n > no it follows that (x) < c. Thus if n > n0 then
v*fl (x) < c and consequently lim s u p , ^ ^ v*9 (x) < c. Since c and x were arbitrary,
we obtain the desired inequality.

(ii) By the Banach fixed-point theorem v = \imn^tooTni = lim n—>oo Wo
and Tvoo = Voo• It is sufficient to prove that v*9 < Tv*9 since then iterating this
inequality will yield v*9 < Tnv*9 Voo,ii -» oo, which together with Part (i) shows
(11). Let 7rn be a sequence of 1/n-uniformly optimal policies. Such policies exist
by Theorem 2.22. Further, let p n be a selector such that Tflnvltn < TvVn + l/n.
Then v*° < v < (Tv7rn) + l / n , and taking the limit in n yields the desired
inequality. n

Existence of Optimal Stationary Policies.

D e f i n i t i o n 2 . 2 9 A stationary policy $ is said to be greedy w.r.t. v £ TZ(X) if

7> = Tv,

i.e., if for each x £ X, (Qv)(x, <p(x)) = (Tv)(x) = infaeA(Qv)(x, a).

Note that the finiteness of A assures the existence of greedy policies w.r.t. any
function v £ 1Z(X). If A is infinite special continuity assumptions are needed on Q
for the existence of greedy policies (see [1] for further information on this). The next
theorem shows that greediness is a useful concept under the appropriate conditions
since the knowledge of the optimal cost function can be sufficient to find optimal
stationary policies.

T h e o r e m 2 . 3 0 If Q is a contraction and is continuous then optimal stationary
policies are greedy w.r.t. v*9; and vice versa.

Proof. If (j) is greedy w.r.t. v*9 then T^v*9 = Tv*9 = v*9 and by induction we get
that T£v*9 = v*° holds for all n. Since by Corollary 2.20 the l.h.s. converges to
Vtj, as n —• oo, we get that = v*9, i.e., <f) is optimal. Now, if cf> is an optimal
stationary policy then Tv*9 = v*9 = v^ = T^v^ = T^v*, showing the greediness of
4>. •

Theorems 2.28 & 2.30 are at the very core of the learning algorithms used in the
robotic experiments. In particular, a theorem was proven in [5] which shows that in
contractive models (i.e., when Q is a contraction) value iteration can be combined
with learning processes without effecting the convergence. In [9] and [6] examples
are shown for asymptotically optimal learning policies which use the adaptive value
iteration scheme.

Non-Markovian Policies in Sequential Decision Problems 317

Final Remarks. Similar statements hold for models when (Q£)(-, a) > £ or when
(Q£)(-, a) < I (a G A) in which cases we require Q to be lower (resp. upper) semi-
continuous on the set of functions {v G TZ(X) \v > £} (resp. {w G < £}). In
such cases the analysis should be based on the monotonicity of the various function
sequences involved. However, problems related to the existence of stationary opti-
mal policies become more complicated: in fact for models satisfying (Q£)(-,a) > £
(these are called increasing models) value iteration does not necessarily converge
to v*9, but greedy policies w.r.t. v*9 are optimal; whilst in models satisfying the
opposite inequality, (Q£)(-,a) < t (these are called decreasing models) value itera-
tion does always converge to v*9 but greedy policies w.r.t. v*9 are not necessarily
optimal. It is also worth noting that Howard's policy improvement theorem [4]
is valid in increasing or contractive models, and when iterated converges to opti-
mum in contractive models [5] but does not necessarily converge to optimum in
increasing ones. In certain contractive models one can estimate the speed of con-
vergence of both the value and the policy iteration methods which turns out to be'
pseudo-polynomial [5].

Acknowledgements. This work was partially supported by OTKA Grants.
F20132 and T014548 and by a grant provided by the Hungarian Educational Min-
istry under contract no. FKFP 1354/1997. I would like to express my sincere
gratitude to András Krámli for the many discussions on the topics of this article.

References

[1] D. P. Bertsekas. Monotone mappings with application in dynamic program-
ming. SI AM J. Control and Optimization, 15(3):438-464, 1977.

[2] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

[3] E. Dynkin and A. Yushkevich. Controlled Markov Processes. Springer-Verlag,
Berlin, 1979.

[4] R. A. Howard. Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, MA, 1960.

[5] M. L. Littman and Cs. Szepesvári. A Generalized Reinforcement Learning
Model: Convergence and applications. In Int. Con}, on Machine Learning,
pages 310-318, 1996.

[6] Cs. Szepesvári. Learning and exploitation do not conflict under minimax opti-
mality. In M. Someren and G. Widmer, editors, Machine Learning: ECML'97
(9th European Conf. on Machine Learning, Proceedings), volume 1224 of Lec-
ture Notes in Artificial Intelligence, pages 242-249. Springer, Berlin, 1997.

318 Csaba Szepesvári

[7] Zs. Kalmár. Cs. Szepesvári, and A. Lőrincz. Module based reinforcement
learning for a real robot. In Proc. of the 6th European Workshop on Learning
Robots, pages 22-32, 1997.

[8] S. Ross. Applied Probability Models with Optimization Applications. Holdén
Day, San Francisco, California, 1970.

[9] S. Singh, T. Jaakkola, M. L. Littman, and Cs. Szepesvári. On the convergence
of single-step on-policy reinforcement-learning algorithms. Machine Learning,
1997. submitted.

[10] S. Verdu and H. Poor. Abstract dynamic programming models under com-
mutativity conditions. SI AM J. Control and Optimization, 25(4) :990-1006,
1987.

Received October, 1997

Acta Cybernetica 13 (1998) 305-318.

On Decision-Mappings Related to Process Network
Synthesis Problem

Z. Blázsik * Cs. Hollót B. Imreht

Abstract

Process network synthesis (PNS) has enormous practical impact and a struc-
tural model can be given for it on the basis of a combinatorial approach. An
important tool of this approach is the notion of the decision-mapping. In the
present work, the number of the consistent decision-mappings is counted and
an upper bound is presented for the number of the feasible solutions of a P N S
problem.

Introduction

In a manufacturing system, materials of different properties are converted into de-
sired products through various physical, chemical, and biological transformations.
Devices in which these transformations are carried out are called operating units
and a manufacturing system can be considered as a network of operating units,
i.e., process network. Naturally, minimizing the cost of a process network is indeed
essential. For this purpose, several papers have appeared for solving PNS prob-
lems by global optimization methods (see, e.g., [2] and [8]) and by combinatorial
approach based on the feasible graphs of processes (cf. [3], [4], [5], [7], and [9]).

In this paper, using the combinatorial approach, the number of the consistent
decision-mappings is counted, furthermore, an upper bound is given for the number
of the feasible solutions of a PNS problem. The paper is organized as follows:
Section 1 reviews the precise definition of the structural model of PNS problem
and introduces some relevant basic concepts. In Section 2, the number of the
consistent decision-mappings over a nonempty set is calculated. On the basis of
the relationship between the maximal consistent decision-mappings and the feasible
solutions, an upper bound is presented for the number of the feasible solutions in
Section 3. Finally, Section 4 contains an example for illustrating this bound.

•Research Group on Artificial Intelligence of the Hungarian Academy of Sciences, Aradi
vértanúk tere 1, H-6720 Szeged, Hungary

tDept. of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary

319

320 Z. Blazsik, Cs. Hollo, B. Iinreh

1 Preliminaries
Let M be a given finite set of objects which are materials capable of being converted
or transformed by a process. Transformation between two subsets of M occurs in
an operating unit. It is necessary to link this operating unit to others through the
elements of these two subsets of M. The resultant structure is a process graph (see
[4] and [5]) defined as follows.

Let M be a finite nonempty set, and also let 0 C p ' (M) x p ' (M) with 0 ^ 0 and
MHO = 0, where p ' (M) denotes the set of all nonempty subsets of M. The elements
of O are called operating units: for operating unit u — (a, ¡3) £ O, a and /? are called
the input-set and output-set of u, respectively. Pair (M, O) is defined as process
graph or P-graph in short. The set of vertices of this directed graph is M u O , and
the set of arcs is A = Ai U A2 with A-y = {(X , Y) :Y = (a, /3) £ O and X £ a} and
A2 = {(Y,X) : Y = (a,/?) £ O and X £ /3}. If there exist vertices X1,X2, ...,Xn,
such that (Xi, X2), (X 2 , X 3) , . . . , (Xn-i,Xn) are arcs of process graph (M, O), then
[Xi, Xn] is defined to be a path from vertex X\ to vertex Xn. Let process graphs
(m, o) and (M, O) be given; (to, o) is defined to be a subgraph of (M, O), if m C M
and o C 0.

To define a structural model of PNS, the set of materials to be included in the
model need be specified. In the sequal, each material is an element of M*, an
arbitrarily specified infinite set of the available materials. From the technical point
of view, we suppose that M* fl (p'(M*) x p'(M*)) = 0. Now, a process design
problem can be defined from a structural point of view in the following way. By
a structural model of PNS, we mean the triplet, M = (P , R , 0) , where P C M*
and O C p'(M*) x p'(M*) are finite nonempty sets representing the set of desired
products and that of available operating units, respectively, and R C M* is a finite
set representing the set of raw materials. Moreover, PILR = 0, and A, /3 are finite
sets for all operating units u = (a, /3) £ 0 .

Now, let M = (P , R , 0) be a structural model of PNS; then, we can assign
a P-graph to M as follows. Let M' denote the set of materials belonging to the
operating units from 0 and M denote set M' U P U i i . It can be seen that M and
0 are nonempty finite sets and that 0 C p ' (M) x p ' (M) and M n O = 0. Thus,
(M, O) is a P-graph representing the interconnections among the operating units in
set 0. Since M f i O = 0, the vertices which are the points in (M , 0) can be divided
into the two disjoint sets, M and 0. The elements of M are called material points
and those of O, unit points of (M, 0) . A subgraph of (M, O) can be assigned to
each feasible process of the PNS problem; such a subgraph represents the structure
or network of the process under consideration. If additional constraints, e.g., the
material balance, are disregarded, the subgraphs of (M, 0) , which can be assigned
to the feasible processes, have common combinatorial properties. Such properties,
explored in [5], are given below.

Subgraph (m, o) of (M, O) is called a feasible solution of M = (P, R, O) if the
following properties are satisfied:

On Decision-Mappings Related to Process Network Synthesis Problem 321

(Al) P Cm,
(A2) MX G m, X G R O- there exists no (Y, X) arc in (m, o),
(A3) VF0 € o, 3 path [Y0,Yn] .with Yn G P,
(A4) VX G m, 3(a, /3) G o such that X G a U /3.

Let us denote the set of the feasible solutions of M by S(M). It is easy to see that
S(M) is closed under the finite union. Consequently,

U{(m,o) : (m,o) G S(M)}

is also a feasible solution provided that S(M) ^ 0; it is the greatest feasible solution
with respect to the relation, subgraph ordering. This distinguished graph is called
the maximal structure of M.

Now, a simple class of PNS problems can be defined, a class of such PNS
problems in which each operating unit has a positive fixed charge. We are to
find a feasible process with the minimum cost; by the cost of a process, we mean
the sum of the fixed charges of the operating units belonging to the process of
interest. Each feasible process in this class of PNS problems is uniquely determined
from the corresponding feasible solution and vice versa. Hence, the problem under
consideration can be formalized as follows:

Let a structural model of PNS problem M = (P , R , 0) be given; moreover, let
z be a positive real-valued function defined on O. The basic model is then

(i) min{]T z(u) : (m, o) G S(M)}.
u£o

It has been proved [1] that this PNS problem is NP-hard; therefore, the branch-
and-bound technique may be a possible tool for its solution (see [7] and [9]).

2 Consistent decision-mappings
In the branch-and-bound procedures for solving PNS problems, the notion of the
decision-mapping (see [6]) has been applied. Let M = (P , R , 0) be a structural
model of PNS. Then, P-graph (M, O) of M determines a function A of M\R into
p'(O) as follows. For any material X G M \ R, let

A(X) = {(a,/3) :(<*,/?) GO & X G/?}.

Let to be a subset of M \ R; furthermore, let S(X) be a subset of A(X) for each
X G m. Mapping S from set m into the set of subsets of O, 8[m] = {(X, <5(X)) : X G
to}, is called a decision-mapping belonging to M; 8[m] is said to be consistent when
i (J) n A (y) C <5(Y) is valid for all X,Y G m, and the set of all consistent decision-
mappings of M is denoted by J~2m- In particular, if 8[m] G Am and to = M \ R,
then sometimes we use the shorter notation 8 instead of 8[M \ i?].

A decision-mapping can be visualised as a sequence of decisions, each of which
is concerned with a single material involved in the process being synthesized; it

322 Z. Blazsik, Cs. Hollo, B. Iinreh

identifies the set of operating units to be considered for producing directly the
material of interest. The meaning of the consistency can be presented as follows.
Material X is to be produced by operating units included in ¿(X). Then, those
operating units of <5(X) that also participate in the production of material Y, i.e.,
S(X) D A(y) , must be considered for the production of material Y, and thus,
6{Y) D<5(X)nA(F).

We define function op on Qm for selecting the set of those operating units that
are decided to produce any of the materials in set m based on consistent decision-
mapping 5[m]. Formally, for any 8[m\ £ Am,

op{S[m]) = U{<5(X) : X £ m}.

In what follows, we need the following functions. For any finite set of operating
units o, let

matin(o) = U{a : (a, ¡3) £ o}, mat.out{o) = l){(3 : (a, /3) £ o}.

Let <5i[toi] and 52[m2] be arbitrary consistent decision-mappings. Then, S2[rn2}
is called an extension of ¿i[mi] if mi C m2 and ¿i(X) = S2(X) for all X £ rrii;
this is denoted by ¿i[rrti] < Relation extension is reflexive, antisymmetric
and transitive; hence, it is a partial ordering on Qm- Let us denote the set of all
maximal elements of this partially ordered set by fi}^. Regarding the number of
the consistent decision-mappings over a nonempty set to, the following statement
is valid.

T h e o r e m . For every 0 ^ m C M \ R, the number of the consistent decision-
mappings defined on m is 2lu{A№:;!<:eT,l}l.

Proof. We proceed by induction on \m\. If |m| = 1, then X —» Q is a consistent
decision-mapping for every subset Q of A(X) where X denotes the single element
of rn. Therefore, the required number is 2'A 'X".

Now, let 1 < i < |M \ i?| be an arbitrary integer, and let us suppose that the
statement is valid for all m C M \ R with |?n| = i. Let us consider an arbitrary
subset TO' (C M\R) consisting of i + 1 elements. Without loss of generality, it can
be assumed that TO' = {X1:... ,Xi,Xi+1}. Let W = A (X i + j) \ (U{A(A^) : t =
1, . . . ,«}) . The following two cases are distinguished depending on W.

Case 1. W = 0. From the definition of the consistent decision-mapping, the fol-
lowing observation can be directly obtained. For each consistent decision-mapping
5[rn'}, the restriction of <5[TO'] to set is .also consistent decision-
mapping. On the other hand, if two consistent decision-mappings defined on the
same set are different, then their extensions constitute two disjoint sets. In the
light of these observations, it is enough to prove that consistent decision-mapping
¿[{Xi , . . . , Arj}] has one and only one extension to { X i , . . . , Xi, Xi+1}.

First, we construct an extension of <5[{Xi,..., Xf}] to { X i , . . . , Xj, X; + i} . The
new decision-mapping is defined as follows. Let

On Decision-Mappings Related to Process Network Synthesis Problem 323

5'(Xi+1) = {(a,p) : (a,/3) G A(Xi+1) & (a,/3) G 6(Xj) for some j G {1,. . . ,»}},
and

S'(Xt) = S(Xt) for all t, t = 1 , . . . , i.

Regarding the consistency of <5'[{Xi,... ,Xi,Xi+i}], we have to prove that

(1) S'(Xt)nA(Xi+1) CS'(Xi+1),
and

(2) 5'(Xi+i) n A(Xi) C S'(Xt)

are valid for all Xt G { X i , . . . ,Xi}. The validity of (1) follows from the definition
of 5'. For verifying (2), let (a, ¡3) G. 8'{Xi+1) n A(Xt) for some t G {1 , . . . , i}. Since
(a,(3) G 8'{Xi+1), there exists a j G {1 , . . . , i} with (a,/?) G ¿(A'3-)nA(X i+i). Then,
(a,(3) G S(Xj) n A(A'.t). On the other hand, j,t G {1, . . . , i} and the consistency
of <5 results in S(Xj) D A(Xt) C 8(Xt) = S'(Xt). Consequently, (a,/?) G 8'{Xt)
yielding the validity of (2).

Now, let us suppose that decision-mapping ¿*[{Xi , . . . ,X , ,X i + 1 }] is an ex-
tension of ¿ [{ X i , . . . , ^ }] . We show that S'(Xt) = S*(Xt) is valid for all t,
t = 1,... ,i + 1. If 1 < £ < i, then the required equality obviously holds. Therefore,
it is enough to prove that <5'(Xj+i) C 6*(Xi+i) and D <5*(Xj+i). To do
so, let (a,(3) G ¿'(Xj+i) be an arbitrary operating unit. By the definition of 8',
(a,/3) G 5{Xj) n Apf i+ i) for some Xj G { X j , . . . , ATJ. But 5(Xj) = 8*(Xj) and
J* is consistent. Consequently,

{a,¡3) G 8*(Xj) n A(Xj + i) C 8*(Xi+1).

Conversely, let (a,(3) G <5*(A'"i+i). Since W = 0, there exists a j G {1, . . . , z} such
that (a,P) G A(Xj), and thus, (a,/3) G ¿ * (X i + i) n A (I j) . Now, by the consistency
of <5*, <J*(Xi+i) n A(Xj) C 8*(Xj) = 8{Xj). Therefore, (a,0) G A(X i + 1) n 8(Xj),
but then, (a,P) G 8'{Xi+\) from the definition of 8'.

Case 2. W ^ 0. Using the observations of Case 1 again, it is sufficient
to prove that consistent decision-mapping 8[{Xi,... ,Xi}] has 2lvvl extensions to
{A^i,..., Xi, Xi+x}. For this purpose, let

T = {(a,p) : (a,P) G A(X i + 1) & (a,p) G 8(Xt) for some t G { l , . . . , i }} -

From the definitions, T f)W = 0. Now, we show that decision-mapping 5' defined
by

, $ 8{X) MXz{X1,...,Xi),
1 j " l T u Q iiX=Xi+u

is consistent for every subset Q of W. Since <5[{Xi,..., Xi}\ is consistent, we have
to prove that the following inclusions

(3) ¿ ' (A ' 3) n A (I i + 1) C i ' (I i + 1) ,

324 Z. Blazsik, Cs. Hollo, B. Iinreh

and
(4) ¿ ' (A V O n A f A ^ C f f t) ,

are valid for all j, j = 1 , . . . , i.

To prove these inclusions, let j G {1, . . . ,«} be an arbitrary index. First, let
(a,/3) € í ' №) n A № + i) - Then, (a ,p) G T, and thus, (a,/3) G S'(Xi+1) resulting
in (1). Now, let (a, /3) G 5'(Xi+i) n A(Xj). Then, (a,P) G (T u Q) n A (I 3) =
TnA(A rj). Inclusion (a,0) G T implies that (a,P) G S(Xt) for some t G {1 , . . . ,i}.
Consequently, (a,P) G 5{Xt) fl A (X j) . Since 6 is consistent, 5(Xt) n A(Xj) C
5(Xj) = Ó'(XÓ) which yields (4).

By the construction above, different extensions of <5[{Xi,..., Xi}] are
presented. To complete the proof, it is shown that the decision-mapping un-
der consideration has no further extensions to { A i , . . . , Xi, Aj+i}. Indeed, let

... ,Xi,Xi+i}] be an arbitrary extension of S and (a,P) G T. Then,
(a,p) G S(Xt) n A(A i + i) = S'(Xt) n A(X i + i) for some t G {1, . . . ,»}. Since Ő'
is consistent, { ' (A ' () n i (I i + i) C <5'pQ+i), and thus, (a,P) G S'(Xi+1). Con-
sequently, T C <5'(Ai+i). On the other hand, (a,P) G <J'(Xi+i) \ T implies
(a,P) G W. In the opposite case, (a,P) G A(Xt) for some t G { l , . . . , i } , and
then, (a,P) G S'(Xt) = 5(Xt) because of the consistency of 6' which is a contradic-
tion. Then, <5'(Xj+i) CTÖW, and thus, 5' is equal to one of the given extensions
of 6.

Now, by the induction hypothesis, we obtain that the number of consistent
decision-mappings defined on { X i , . . . , } is

2 | U { A (X 1) : i = l , . . . , i } } | 2 l ^ l = 2 l U { A №) : t = 1 . — i + 1 } l

which completes the proof.

R e m a r k 1. In particular, if m — M\R, then from our Theorem it follows that
the number of the maximal consistent decision-mappings is This shows that
there is a strong relationship between the maximal consistent decision-mappings
and the subsets of 0 . Indeed, it can be proved that mapping 7 defined by 7(<i) =
op(S) is a one-to-one mapping of fi}^ onto p(0) where p(O) denotes the set of all
subsets of O.

Regarding the relationship between the maximal decision-mappings and the
feasible solutions, let us define mapping p in the following way. For any (m, o) G
S(M), let p(m,o) = 8 where 6 is defined by

S(X) = {u-.u = {a,P)eokXeP}

for all X £ M \ R. It can be easily proved that p is a one-to-one mapping of S(M)
into fi'M. Therefore,

is a trivial upper bound for |S(M)|. Taking into account
property (A2), this bound can be improved as follows.

On Decision-Mappings Related to Process Network Synthesis Problem 325

3 Bound calculation
Let (m,o) G S^M) be an arbitrary feasible solution and p(m,o) = 6. Then, (A2)
implies the following inclusion:

(ii) matin(op(8)) C matoui(op(5)) U R.

Indeed, if X G jnatm(op(6)), then there exists a u = (a, (3) e op{6) with X G a.
By the definition of 5, u G o, and thus, X G TO from the definition of the P-
graph. Now, (A2) implies that X G matcut(op(8))\jR, i.e., inclusion (ii) must hold.
Consequently, the number of the maximal consistent decision-mappings satisfying
(ii) is not less than |S(M)|.

Now, we are going to determine the number of the maximal consistent decision-
mappings satisfying (ii). It can be done by the Inclusion-Exclusion Formula. For-
tius purpose, let us denote by (M, O) the P-graph of PNS problem under consid-
eration and let O = {u i , . . . ,un} and M = {Xx,..., Xk}. Furthermore, let O(Xj)
denote the set, {u : u = (a,/3) G 0 & Xj G a}, for all Xj G M. Let j G {1 , . . . , k}
be an arbitrary index and let us define set Aj by

A,- = {<J : $ G i l ^ & Xi e matin(op(S)) \ (matout(op(8)) U R)}.
Then, (ii) is not satisfied by S G Aj and the reason is that X j G mattn(op(d)) and
Xj 0 matout(op(S)) U R. For every 0 ^ I C {1,...,A:}, let us define set Af by
Ai = flig/Ai, and in particular, let A@ = f i ^ . Then, the required number is

\ (¿ i U A2 U ... U Ak) | = S/c { i , . . . , / t }(- l) | / | • \Af\.

Obviously, if I — {i\,... ,ii}, then

A/ = {<5 : (5 G Q'M & {Xu ,...,Xi,}C matin(op(S)) \ (matout (op(S)) U R)}
R e m a r k 2. It is worth noting that the bound presented above is independent

of the set of the required products. It is valid under arbitrary P C M \ R.

Unfortunately, to count |A/| is a difficult problem. In general case, we have to cover
{ X j j , . . . , Xi,} with such a system, a ^ , . . . , aj a for which there are operating units
(an,Pjt) G 0 , t — 1 , . . . , s, with {Xil,...,Xil}r\f3jt = 0, t = l , . . . , . s , and |A/|
is equal to the number of the such covering systems. The determination of \Aj\ is
easier if we restrict ourselves to special classes of PNS problems. An interesting-
special case is the class containing separator type operating units, i.e., |a | = 1 is
valid for all u = (a,/3) G O. In what follows, we deal with this class.

Let us consider set I = {¿i, . . . again. Let 0*(Xij) = 0(Xij)\ (U iG/A (A^)).
Then, 0*(Xij) is the set of operating units such that they do not produce any
material from { X t : t G 1} and each of them has Xl} as input material. Now, it is
easy to check that

. 2 |0\(U{A(X i) : i 6 / })\ (U{0 (X l) : i e / })|

326 Z. Blazsik, Cs. Hollo, B. Iinreh

4 Illustration

For illustrating the calculation of the bound in general case, let us consider the
following example. Let M = {Xi,... ,Xi2}, 0 = { u i , . . . , u 7 } , P = {A'g}, and
R = {Xio, A'n,Xi2}. The input and output materials of the operating units are
given in Table 1 and the corresponding P-graph is shown in Figure 1.

Table 1: Operating units
unit inputs outputs
Ui -X̂ io Xi,X2

W2 Xn A3, X4 , A5

u3 XV2 X5,Xß
U4 Xx • x2,x$
U5 X2, X3 Xt, Ag
u6 X5, x6
U-j X6 X5,

Using the relationship between the maximal consistent decision-mappings and
the subsets of 0 provided by Remark 1, set A\ contains <5 if and only if op(6)
satisfies the following properties: u\ op(S) and U4 £ op(S). The number of such
maximal consistent decision-mappings is 25. Therefore, = 25. In a similar

On Decision-Mappings Related to Process Network Synthesis Problem 327

way, we obtain that \A2\ = 24, \A3\ = 25, \A5\ = 23, \A6\ = 3 • 24, and \Aj\ = 0 for
the remaining indices. Consequently,

£ = 136.
/C{l , . . . , fc } & |/|=1

Regarding the subsets of two elements, -̂{1,2} contains ő if and only if m,U4 £
op(5) and u4,u5 G op(6), and thus, ^{1,2} = 0- Similarly, ^{1,3} = 23 since
A{i,3} contains 5 if and only if ui,u2 0 op(S) and 1/4,u5 G op(S). Determining
the corresponding values for the all subsets of two elements and summarizing, we
obtain that

£ 1^1 = 60.
JC{l,...,fc} & |/|=2

Continuing the procedure, we obtain 12 for the subsets of three elements. Finally,
it can be seen that \Ai\ = 0 if | / | > 3. Consequently, the required number is

27 - 136 + 60 - 12 = 40.

We note that = 128 and |S(M)| = 19 in this example.

References

[1] Z. Blázsik and B. Imreh, A note on connection between PNS and set covering
problems, Acta Cybernetica 12 (1996), 309-312.

[2] C. A. Floudas and I. E. Grossmann, Algorithmic Approaches to Process Syn-
thesis: Logic and Global Optimization, AiChE Symposium Series No. 304, 91
(Eds: L. T. Biegler and M. F. Doherly), (1995), 198-221. .

[3] F. Friedler, L. T. Fan and B. Imreh, Process Network Synthesis: Problem
Definition, Networks, to appear.

[4] F. Friedler, K. Tarján, Y. W. Huang and L. T. Fan, Combinatorial Structure of
Process Network Synthesis, Sixth SIAM Conference on Discrete Mathematics,
Vancouver, Canada, 1992.

[5] F. Friedler, K. Tarján, Y.W. Huang and L.T. Fan, Graph-Theoretic Approach
to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci., 47(8) (1992),
1973-1988.

[6] F. Friedler, J. B. Varga, and L. T. Fan, Decision-mappings: a tool for consistent
and complete decisions in process synthesis, Chem. Eng. Sci., 50(11) (1995),
1755-1768.

328 Z. Blazsik, Cs. Hollo, B. Iinreh

[7] F. Friedler, J. B. Varga, E. Feher and L. T. Fan, Combinatorially Accerelated
Branch-and -Bound Method for Solving the MIP Model of Process Network
Synthesis, presented at the International Conference on State of the Art in
Global Optimization: Computational Methods and Applications, Princeton
University, Princeton, NJ, U.S.A., April 28-30, 1995; also to be published in
Nonconvex Optimization and its Applications, Kluwer Academic Publishers,
Nor well, MA, U.S.A. (in press).

[8] I. E. Grossmann, V. T. Voudouris and O. Ghattas, Mixed-Integer Linear Pro-
gramming Reformulations for Some Nonlinear Discrete Design Optimization
Problems, In: Recent Advances in Global Optimization (Eds: C. A. Floudas
and P. M. Pardalos) Princeton University Press, New Jersey, 1992.

[9] B. Imreh, F. Friedler and L. T. Fan, An Algorithm for Improving the Bound-
ing Procedure in Solving Process Network Synthesis by a Branch-and-Bound
Method, Developments in Global Optimization (Eds: I. M. Bonze, T. Csendes,
R. Horst, P. M. Pardalos), Kluwer Academic Publishers, 1997, 315-348.

Received August, 1997

Acta Cybernetica 13 (1998) 305-318.

On the reformulation of some classes of
PNS-problems as set covering problems

J. Fülöp * B. Irareh t F. Friedler 1

Abstract
Process network synthesis (PNS) has enormous practical impact; however,

its solution is difficult in general. This experience has been recently reasoned
by Blázsik and Imreh who pointed out that PNS-problems axe NP-hard. T h e y
proved that a simple subclass of PNS-problems is equivalent to the class of
set covering problems. In the present paper, it is shown that more general
classes of PNS-problems can also be reformulated as set covering problems.
This enables the sophisticated techniques developed for solving set covering
problems also to be applied for solving some PNS-problems.

1 Introduction
The importance of process network synthesis (PNS) and the background of the
combinatorial model studied here can be found in [5], [6], [7], [8], [9], and in the
work [2] of this journal. Therefore, we shall confine ourselves only to the recall
of the definitions. The combinatorial approach makes possible to show that the
search of an optimal solution is difficult in general. This experience has been
recently reasoned by Blázsik and Imreh [2] who pointed out that PNS-problems
with weights are NP-hard. They proved that a simple subclass of PNS-problems
with weights, to be discussed in Section 4, is equivalent to the class of set covering
problems. Also in [2], it was raised as an open problem if there exist equivalent
known optimization problems for more general classes of PNS.

In this paper, it is shown that the optimal solutions for a larger subclass of PNS-
problems than the subclass presented in [2] as well as the optimal solutions of PNS-
problems with nonnegative weights can be obtained by solving suitably constructed
set covering problems. This enables the sophisticated techniques developed for
solving set covering problems (see, e.g., [1, 4, 10] and the references therein) also
to be applied for solving these special classes of PNS-problems with weights. To

'Laboratory of Operations Research and Decision Systems, Computer and Automation Insti-
tute, Hungarian Academy of Sciences, H-1518 Budapest, P.O.Box 63, Hungary

^Department of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
^Department of Computer Science, University of Veszprém, Egyetem u. 10, H-8200 Veszprém,

Hungary

329

330 J. Fiilop, B. Imreh, F. Friedler

present our results, first we discuss the conjunctive normal form (CNF) proposed in
[3] for describing the solution-structures of PNS-problems in Section 3. Some special
classes of PNS-problems with weights, and the connection between the optimal
solutions of these PNS and CNF-problems with weights are detailed in Section 4.
The reformulation of a CNF with weights as a set covering problem is presented in
Section 5.

2 Notions and notations
In the combinatorial approach, the structure of a process can be described by the
process-graph (see [7] and [8]) defined as follows.

Let M be a finite nonempty set, the set of the materials. Furthermore, let 0 ^
O C p ' (M) x p '(M) with M f | O = 0 where p'(M) denotes the set of all nonempty
subsets of M. The elements of O are called operating units and for an operating unit
(a, P) 6 O, a and /3 are called the input-set and output-set of the operating unit,
respectively. Pair (M, O) is defined to be a process graph. The set of vertices of this
directed graph is M{JO, and the set of arcs is A = Ai U A2 where A\ = {(X, Y) :
Y = (a,0) £ 0 and I 6 a} and A2 = {(Y,X) : Y = (a,p) € 0 and X e P}-
If there exist vertices Xi:X2,...,Xn, such that (Xi, X2), (X2,X3),..., (Xn-i, Xn)
are arcs of process graph (M, 0), then the path determined by these arcs is denoted

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph
of (M, O), i f m C M a n d o C O .

Now, we can define the structural model of PNS for studying the problem in
structural point of view. For this reason, let M* be an arbitrarily fixed infinite set,
the set of the available materials. By structural model of PNS, we mean a triplet
(.P, R, 0) where P, R, 0 are finite sets, I / P C M* is the set of the desired
products, R C M* is the set of the raw materials, and O C p'(M*) x p'(M*) is the
set of the available operating units. It is assumed that P f) R = 0 and M* |~) O = 0.

Then, process graph (M , 0) , where M = U { a U P '• (a,P) € O}, presents
the interconnections among the operating units of 0. Furthermore, every feasible
process, producing the given set P of products from the given set R of raw materials
using operating units from O, corresponds to a subgraph of (M , 0) . Examining the
corresponding subgraphs of (M, 0) , therefore, we can determine an optimal process
in principle. If we do not consider further constraints such as material balance, then
the subgraphs of (M, 0) which can be assigned to a feasible process have common
combinatorial properties. They are studied in [7] and their description is given by
the following definition.

Subgraph (m,o) of (M , 0) is called a solution-structure of (P , R , 0) if the fol-
lowing properties are satisfied:

(51) P C m,
(52) \/X € m, X £ R no (F, X) arc in the process graph (m,o),

On the reformulation of sonic classes of PNS-problaus 331

(53) Vy0 € o , 3 path [K0, Yn] with Yn £ P,
(54) MX £ m, 3(a, (3) £ o such that X£a[jp.

Let us denote the set of solution-structures of (P , R , 0) by S(P,R,0). In the
sequel, we shall assume that S(P,R,0) 0. This can be checked in polynomial
time by using the algorithm presented in [9] for generating the maximal structure
of (P, R, O).

Let the set of the operating units be given by O = { (a i , f t) , . . . , (a / , f t)} ,
and let I = {1, . . . ,?}. Then, for any subgraph (m,o) of (M,O), an /-vector of
logical values iti, i £ I, can be associated with such that Ui is true if and only
if (a j , f t) £ o. It is easy to see that this is a one-to-one mapping between the
subgraphs of (M, 0) fulfilling (54) and the /-vectors of logical values. For logical
/-vector u, subgraph (m, o) associated with u is determined by m = UieT(u) Q« U Pi
and o = {(a,, ft) : i £ T(u)j where T(u) = {i £ I: Ui is true}.

3 C N F related to P N S
In [3], a logical expression given in CNF (v41)-(A4) below was used to describe some
structures of (M, 0).

(Al) A V "i ,
xeP

(.A2) A -W,
<€/

(A3) A (- "¿V V UH),
i gi he/

(A4) A U V V Ufc)-
• €/ »16/

In this section, the relationship between (S1)-(S4) and (AL)-(AA) will be dis-
cussed.

Proposition 1. For any solution-structure (m,o), the logical vector, u, associated
with (m,o) fulfills (AL)-(AA).

Proof. Let u be the logical vector associated with solution-structure (m,o). From
(Sl)-(S2) and P fl R = 0, we obtain that any X £ P is in the output-set of an
operating unit of (m,o). This gives (Al). (A2) follows directly from (52).

Concerning (A3), we have to show that if m is true for some i £ I and X e ai\R,
then there exists an h £ I such that u^ is true and X £ ft, i.e., X is in the output-
set of an operating unit of (m, o). This follows however immediatly from (52).

To prove (A4), it is sufficient to consider the case when u^ is true and P f l f t = 0.
From (53) we get that there exists a path in (m, o) from (qj, ft) to an element of P.

332 J. Fiilop, B. Imreh, F. Friedler

Since P C\ PI = 0, the vertex second to (AI,PI) in the path is an (AU>,PH>), h' £ I,
such that PI Pi A/,< ^ 0. This implies (AA) immediately. •

Proposition 2. For any logical vector u fulfilling (/ll)-(/14), the subgraph, {in, o),
associated with u satisfies (51), (52), and (54).

Proof. (,41) states that for every A £ P, there exists an i £ I such that ui is true
and X £ Pi. This gives X e m, and thus, (51) holds.

To prove (52), consider an J 6 m f l R From (/12) we get that Ui is false for
every i £ I with X £ Pi. The way of construction of (m,o) from u implies that
there exists no (Y,X) arc in (m,o).

Conversely, consider an X £ m\R. We show that there exists an arc (Y, X)
in (m,o), i.e., X is in the output set of an operating unit associated with a true
component of u. Since X £ m, there exists an i £ I such that Ui is true and
A' £ ai U Pi. If X £ pi, we are done. Otherwise, X £ a.i\R and (/13) implies that
there exists an h £ I such that uu is true and A £ Ph.

Finally, (S4) follows from the way of construction of (m, o) from u. •

It is worth noting that (/ll)-(/14) does not imply (53). Namely, considering a
general process graph, (M, O), there may exist an operating unit lo 6 o in subgraph
(7/1,0) constructed from u fulfilling (Al)-(AA) such that there is no path from Y0

to any element of P. However, for special PNS-problems, (53) is also implied by
(/ll)-(/14), thus, (S1)-(S4) and {Al)-{AA) are equivalent.

Proposition 3. If process graph (M,0) does not contain circuit, then (S1)-(S4)
and (/11)-(/14) are equivalent .

Proof. By Propositions 1 and 2, it is sufficient to show that (/14) implies (53) in
this case. Consider a Yio = (cti0,Pi0) £ o. If P f l f t 0 ^ 0, we can construct a
path from Yi0 to an element of P<iPi 0 . Otherwise, by (/14), there exists another
operating unit V',, = , p^) such that Yix £ o and Pi0 D ^ 0. We have now
path [l ' " , 0 ,] in (771,0), and we can repeat the investigation above now for YXi
instead of Yi0.

In a general step, we have operating unit Yik = (a i k , p i k) and path [Yio,Yik] in
(m,o). If P fl pih 0, we are ready. Otherwise, we can extend the path from Yik.
Since (M, ()) contains no circuit, every vertex of the path is different. However,
(M,0) is finite, thus, after constructing a finite number of arcs, the path has to
terminate in an element of P. •

Assume that in process graph (M, O) of a PNS- problem, with a suitable positive
integer k, we have M = Mi U. . . UM k+i where the sets, M\,..., Mk+1, are pairwise
disjoint nonempty sets. Furthermore, let 0 = 0\ U . . . U Ok with Oi C p'{Mi U . . . U
Mi) x p'(Mi+1), i - 1 , . . . , k. Let us call such a PNS-problem a PNSk-problem.
Then, it is easy to see that for any PNSfc-problem, there exists no circuit in its
process graph, and consequently, we have the following corollary.

Corollary 1. (S1)-(S4) and (Al)-(AA) are equivalent for PNSk-problems.

On the reformulation of sonic classes of PNS-problaus 333

4 PNS-problems with weights
Let us consider PNS-problems in which each operating unit has a weight. We are
to find a feasible process with the minimal weight where by weight of a process we
mean the sum of the weights of the operating units belonging to the process under
consideration. Every feasible process in such a class of PNS-problems is determined
uniquely from the corresponding solution-structure and vice versa. Therefore, the
above problem can be formalized in the following way.

Let a structural model of PNS-problem (P, R, O) be given. Moreover., let w be
a real-valued function defined on O, the weight function. The basic model is then

min {Y^w{U):(m,o)eS(P,R,0)}. (1)
ueo

We refer (1) as a PNSw-problem\ we denote the class of such problems by PNS,„.
PNSfc-problems with weights are referred as PNS^-problems, their subclass is
denoted by PNS,„fc. These latter problems were introduced, and the connection
between PNSMi-problems and set covering problems was also discussed in [2].

The feasible set of the optimization problem (1) is the set of the subgraphs (m, o)
fulfilling (S1)-(S4). According to the discussion of the relation between (Sl)-(S4)
and (A1)-(A4), another optimization problem based on the CNF (A1)-(A4) can
also be considered:

min { Y^ w i ' u f u l f i l l s O 4 1) - ^ 4 4) } (2)
i£T(u)

where Wi = w((ai, Pi)),i G I. We refer (2) as a CNF^-problem associated with
PNSW- problem (1), and denote the class of such problems by CNF.^.

By Propositions 1 and 2, CNF,„ can be considered as a relaxation of PNS„;.
This gives rise to the following statements.

P ropos i t ion 4. Both (1) and (2) have finite optimal value. The optimal value
of (1) is greater than or equal to that of (2). Furthermore, if (S3) holds in the
subgraph (m*,o*) associated with an optimal solution of (2), then (m*,o*) is mi
optimal solution of (1).

In the case of PNSfc-problems, the equivalence between (S1)-(S4) and (Al)-(A4)
implies a similar equivalence between the relating problems of PNS^fc and CNF^^.

Corollary 2. Consider problems (1) and (2) generated by a PNSk-problem. Then,
the subgraph, (m*,o*), associated with an optimal solution of (2) is optimal to (1),
and conversely, the l-vector of logical values associated with an optimal solution of
(1) is an optimal solution to (2) .

The following statements relate to special subclasses of PNS№.

.1. FiUojt, B. lunch. F. Fricillcr

Pro posit, in 11 5. If t.lie WC.ll/ll.l.S, 71!;, i £ I , arc]IOS ¡.title., t.he.ll SilJll/iapll. (ill.' . I)')
associated with, an optimal solution of (2) is ojit.iiaal l.o (I). anil, conne.rse.ly, t.h.e
I,-vector of logical values associated wit.h an. optimal solution, of (I) is an, iiptiiii.n.1
solution. In (2).

I'roof. Let n' I>c. an o p t i m a l so lut ion of (2) , and let (m*,(t*) b e t h e s u b g r a p h
a s s o c i a t e d wi 1.11 it*. Ity Propos i t i on 4, it is su l l i e ient to s h o w t h a t (S 3) h o l d s for
(•///*, / / ') . hot

b ---- \U e <>*• •• 3 path in (m*,o*) from U to a Y € P}, (3)

•in. = ^ r « ; U f t . (4)

.£/

Clearly, (•HI., i>) is a. s u b g r a p h of (in,*,a*). If o = <t*, we art; d o n e . O t h e r w i s e , wo
shall s h o w be low t h a t (vi.,o) is a s o l u t i o n - s t r u c t u r e of (P, R.,()). T h e n , the. logical
vec tor , it, a s s o c i a t e d wi th (m , o) is feasible to (2) . However , s ince w(U) > 0 for
every IJ € o:l \ it, the o b j e c t i v e funct ion value, of u is less t h a n that, of?/,*, a n d th i s
c o n t r a d i c t s the opt in ia l i ty of it* in (2) . Consequent ly , <>* = o m u s t hold .

We show now that (S 1) - (S 4) ho lds for (ill,, a). B y P r o p o s i t i o n 2, (vi*,<>*) fulf i l ls
(S I) , (S 2) , and (S' l) . T h u s , from (3) - (4) , w<; g e t i m n i e d i a t e l y t h a t (S i) , (S 3) , a n d
(S' l) hold for (iTi.,o).

T o prove (S 2) for (iii,,d), cons ider a n A' £ m f l R. Sincc; there e x i s t s 110 (V, A')
arc in ('///.',/>*), and (in, d) is a, subgraph of (in,*,<>*), there e x i s t s (Y, X) a n : n e i t h e r
in (i / t , «) . Converse ly , cons ider ail A" £ ih\R. In (in,*,<>*), there e x i s t s a, (V, A") arc.
hi add i t i on , s ince X £ n U ft for an (<v,(~t) £ it, there e x i s t s a. p a t h ill (ill, it) from
(<\ , f i) to an e l e m e n t of P, thus, a lso from Y to the saint! e l e m e n t of P. T h e r e f o r e ,
) ' £ o and ()', A) is an arc. in (ilk, it).

T h e s e c o n d pari, of the statement , can 1«! eas i ly proved by us ing P r o p o s i t i o n I
and the first part of the s t a t e m e n t . •

P r o p o s i t i o n G. if I.Iic. weights, w,_, i £ I, arc. nonncyal.ivc, then subgraph (iii.,d)
<le./iiicd by (3) - (4) for (in* , a*) associated with an optimal solution of (2) is optimal.
lo(I) .

I'roof. A c c o r d i n g l.o the. proof of P r o p o s i t i o n 5, (ih, it) is f eas ib le to (I) . II; m a y
h a p p e n now t h a t o' \ o ^ 0 but. from the l i on i i cga t iv i ty of the w e i g h t s ani l u s i n g
l.he s a m e reasoning as in the. proof of P r o p o s i t i o n 5, wo o b t a i n t h a t w(LJ) = 0 for
every (I £ o* \ it. T h e o b j e c t i v e funct ion va lues of (ih.o) ami (ill.*,a*) c o i n c i d e in
(I) . 'Therefore, (ih.it) is o p t i m a l to (I) . •

T h e sol. i> tleiiiie<I in (3) can eas i ly be .generated by us ing the c lass ical l a b e l i n g
t echn ique of graph theory [13]. A s imilar t echn ique is used a l so in [9] for g e n e r a t i n g
l.he. m a x i m a l s t r u c t u r e of a. process graph. It c a n bo s h o w n t h a t (i h , d) is the. u n i o n
of all s o l u t i o n - s t r u c t u r e s u b g r a p h s of (in*, it*). Soo [9] for m o r e deta i l s .

On the reformulation of sonic classes of PNS-problaus 335

5 Reformulation of a C N F with weights as a set
covering problem

By the results presented in the previous section, the optimal solution of some
important classes of PNS,„-problems, such as problems with nonnegative weights
and PNS,„A--1)1'<>1)1ciiis, can be obtained by solving the appropriate C N F , , , - problems
of form (2). However, it has not been discussed yet how to solve (2). In this section,
wo show that; (2) can be transcribed into the form of an equivalent set covering
problem. This can also be considered as an extension of the results presented in [2]
for P N S „ , i-problems.

For every Uj,t £ I, we introduce two 0-1 variable«, zf and z~, such that zf = 1
if and only if Ui is true, and z~ = 1 - zf. Then, at the expense of doubling the
number of variabilis and introducing some appropriate new constraints, (2) can lie
written into the equivalent form

mil. (5)
iei
£ zf > 1 for all X £ P, (G)

-ve i<i
z~ = 1 for all i £ I, R n ft ^ 0, (7)
z-r + Y^ 4. > 1 f o r a 1 1 6] < X e a' \ R> (8)

•V£ ft i,

z- + £ z+ > 1 for all i £ I, P n ft = 0, (9)
net

/J.n,,,,

zf + zr = 1 for all i £ I, (10)
zf,z~ £ {0,1} for all i £ / . (I I)

In (5)-(l l) , (5) and (G)-(9) are the direct transcription of the objective function
in (2) and the constraints (,41)-(/14), respectively. Constraints (10)-(11) describe
the relation among it,-, zf and z~. Since we have assumed that S(P,R.,0) y£ 0,
problems (1), (2), hence (5)-(l l) , too, have feasible solution and finite optimal
value.

Problem (5)-(l l) is a. set covering/partitioning problem for which efficient solu-
tion methods have been developed, see [4] and the references therein. Constraint
(7) means to fix z~ = 1 and zf = 0 for all i £ I, Rnfa ± 0, and these can entail the
possible fixation of further variables and the deletion of some constraints [1, 4, 10].

By using the well-known trick of converting sot partitioning constraints into soit,
covering ones (cf. e.g. [10]), we obtain the following statement.

P r o p o s i t i o n 7. Choose, any L > 52/g/ wi> consider the set. covering problem

mil. £ [(•„,; + L)z+ + Lz~] , (12)
iei

336 J. Fiilop, B. Imreh, F. Friedler

£ zf > 1 for all X eP, (13)

xe/j;
z¡~ > 1 for all i £ J, R n ft / 0,

zt
_ + £ > 1 for all i £ I,X e cti\R,

(14)

(15)
<>6/

ZÍ + z t > 1 f o r all i € J, P fl ft = 0, h (16)

^ + > 1 for all i € I,
z t

+ > 2 ~ e { 0] l } for all i £ I.
(17)
(18)

Then, problems (5)-(ll) and (12)-(18) have the same set of optimal solutions.

Proof. It is easy to see that any feasible solution of (5)-(ll) is feasible to (12)-(18)
as well, and the difference of the two objective function values is the constant, IL.
As a consequence, since the optimal value of (5)-(ll) is less than L, the optimal
value of (12)-(18) is less than (Z + 1)L.

Conversely, consider a feasible solution of (12)-(18) and assume that it is not.
feasible to (5)-(ll). Then, its objective function value in (12) is greater than or
equal to (I + 1)L. Thus, any optimal solution of (12)-(18) is feasible to (5)-(ll) ,
and this implies the statement. •

In set covering problem (12)-(18), as well, constraint (14) entails the possible
reduction of the problem size. For further size reduction techniques and for recent
sophisticated methods for solving set covering problems, see [1, 4] and the references
therein.

References
[1] E. Balas and M. C. Carrera, A Dynamic Subgradient- Based Branch-and-

Bound Procedure for Set Covering, Operations Research, 44(6), 1996, 875-890.

[2] Z. Blázsik and B. Imreh, A Note on Connection between PNS and Set Covering
Problems, Acta Cybernetica, 12, 1996, 309-312.

[3] M. H. Brendel, F. Friedler and L.T. Fan, Combinatorial Foundation for Logical
Formulation in Total Flowsheet Synthesis, Computers chem. Engng. (submit-
ted).

[4] ¡VI. L. Fisher and P. Kedia, Optimal Solution of Set Covering/Partitioning
Problems Using Dual Heuristics, Management Science, 36, 1990, 674-688.

[5] C. A. Floudas and I. E. Grossmann, Algorithmic Approaches to Process Syn-
thesis: Logic and Global Optimization, International Symposium on Founda-
tions of Computer Aided Process Design, Snowmass Village, CO, U.S.A., July
10-15, 1994 (in press).

On the reformulation of sonic classes of PNS-problaus 337

[6] F. Friedler, L. T. Fan and B. Imreh, Process Network Synthesis: Problem
Definition, Networks (to appear).

[7] F. Friedler, K. Tarjan, Y. W. Huang and L. T. Fan, Graph-Theoretic Approach
to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci., 47(8), 1992,
1973-1988.

[8] F. Friedler, K. Tarjan, Y. W. Huang and L. T. Fan, Combinatorial Structure of
Process Network Synthesis, Sixth SIAM Conference on Discrete Mathematics,
Vancouver, Canada, 1992.

[9] F. Friedler, K. Tarjan, Y. W. Huang and L. T. Fan, Graph-Theoretic Ap-
proach to Process Synthesis: Polynomial Algorithm for Maximal Structure
Generation, Computers chem. Engng., 17(9), 1993, 929-942.

[10] R. S. Garfinkel and G. L. Nemhauser, Integer Programming, Wiley, New York,
1972.

[11] I. E. Grossmann, V. T. Voudouris and 0 . Ghattas, Mixed-Integer Linear Pro-
gramming Reformulations for Some Nonlinear Discrete Design Optimization
Problems, In: Recent Advances in Global Optimization (Eds: C. A. Floudas
and P. M. Pardalos) Princeton University Press, New Jersey, 1992.

[12] B. Imreh, F. Friedler and L. T. Fan, An Algorithm for Improving the Bound-
ing Procedure in Solving Process Network Synthesis by a Branch-and- Bound
Method, in: Developments in Global Optimization (Eds: I. M. Bonze, T.
Csendes, R. Horst, P. M. Pardalos), Kluwer Academic Publishers, 1997, 315-
348.

[13] E. Lawler, Combinatorial Optimization, Holt, Rinehart and Winston, New
York, 1976.

Received August, 1997

CONTENTS

Márkus Lohrey: NP-completeness results concerning the transformation
of logic programs into attribute grammars 209

Alexander Meduna: Economical Transformations of Phrase-Structure
Grammars to Scattered Context Grammars 225

Ildikó Székely: Isomorphic representation of nondeterministic nilpotent
automata 243

Mark Levene: On the Information Content of Semi-Structured Databases 257
Klaus-Dieter Schewe, Bernhard Thalheim: Lirnitations-of Rule Triggering

Systems for Integrity Maintenance in the Context of Transition
Specifications 277

Csaba Szepesvári: Non-Markovian Policies in Sequential Decision Problems .. 305
Z. Blázsik, Cs. Holló, B. Imreh: On Decision-Mappings Related to Process

Network Synthesis Problem 319
J. Fülöp, B. Imreh, F. Friedler: On the reformulation of some classes of

PNS-problems as set covering problems 329

Sponsored by SYSDATA Ltd.

ISSN 0324—721 X

Feleifis szerkesztő ís kiadó: Csirik János
A kézirat a nyomdába érkezett: 1998. július

Terjedelem: 7,12 (B/S) ív

