
Volume 13 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: J. Csir ik (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary), A. Pluhár (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender (The Netherlands),
W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland), B. Courcelle
(France), J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet
(The Netherlands), Z. Ésik (Hungary), F. Gécseg (Hungary), J. Gruska (Slovakia),
B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 1997

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source TgX
file, if any, on a diskette to the Managing Editor. Having the l^X file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the Jozsef Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1997 Numbers 1-2 of Volume 13 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, Jozsef Attila University,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-311-184, Fax:(36)-(62)-312-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

E D I T O R A L B O A R D

Editor-in-Chief: J. Csirik Managing Editor: Z. Fülöp
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Assistants to the Managing Editor:

P. Gyenizse A. Pluhár
A. József University A. József University
Department of Computer Science Department of Computer Science
Szeged, Árpád tér 2. Szeged, Árpád tér 2.
H-6720 Hungary H-6720 Hungary

Editors:

M. Arato
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

W . Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

A. Kelemenová
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland

Courcelle
Universite Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAKI
Budapest, P.O.Box 63
H-1502 Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden IJniversity
Computer Science Department
P.O. Box 9512, 2300 RA LEIDEN
The Netherland

Z. Ésik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Budapest Múzeum krt. 6-8.
H-1088 Hungary

G. Paun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, R0-70700
Bucuresti, Romania

A. Prékopa
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Budapest, Múzeum krt. 6-8.
H-1088 Hungary

H. Vogler
Dresden University of Technology
Faculty of Computer Science
Foundations of Programming •
D-01062 Dresden, Germany

G. Wöginger
Technische Universität Graz
Institut für Mathematik (501B)
Steyrergasse 30
A-8010 Graz, Osterreich

Acta Cybernetica 13 (1997) 1-21.

Regular expression star-freeness is
PSPACE-complete

László Bernátsky *t

Abstract
It is proved that the problem of deciding if a regular expression denotes a

star-free language is PSPACE-complete. The paper also includes a new proof
of the PSPACE-completeness of the finite automaton aperiodicity problem.

1 Introduction
Star-free languages form an important subclass of regular languages: they are the
ones that can be obtained from the singleton languages by a finite number of appli-
cations of the operations of union, complement and product. By Schiitzenberger's
famous theorem [8], a regular language is star-free if and only if its syntactic monoid
is aperiodic, or equivalently, if it is recognized by an aperiodic DFA. Moreover, a
language is star-free if and only if it can be defined by a first-order formula of a
suitable formal language, see [10]. In his 1985 paper [9], Jacques Stern proved that
the problem of deciding whether a DFA is aperiodic is Co-NP-hard and belongs to
PSPACE. A few years later Sang Cho and Dung T. Huynh strengthened Stern's
result by showing that this problem is in fact PSPACE-complete, see [3]. Not
knowing about their work I proved the same result while Zoltán Esik and I were
working on the description of the free Conway theories, see [1]. The present paper
contains a slightly modified version of my original proof, which rests on the same
basic idea as the proof of Cho and Huynh, but uses a different construction, see
Construction 4.1. This different construction makes it easy to extend the proof to
regular expressions.

2 Definitions and preliminary facts

2.1 Sets and relations
The set of nonnegative integers is denoted N, and to stands for the set of positive
integers. For n £ N, [n] denotes thé set {1 , . . . ,n} , so that [0] is another name for
the empty set 0.

'Department of Computer Science, Attila József University, 6720 Szeged, Hungary, E-mail:
benny@inf.u-szeged.hu

^Supported in part by grant no. T7383 of the National Foundation of Scientific Research of
Hungary

1

mailto:benny@inf.u-szeged.hu

2 László Bernátsky

The power-set P (S) of a set S consists of all subsets of S, and the direct product
Ay. B of two sets A and B consists of all pairs (a, b) with a 6 A and b £ B. A
binary relation from A to B is just a subset of A x B, so that P {Ax B) is the set of
all binary relations from A to B. The composite of two binary relations p C A x B
and p' C B x C is the relation

pop' = { (a,c) | 3b 6 B (a,b) £ p A (6,c) £ p'} C AxC.

We use the infix notation apb instead of (a, b) 6 p. Suppose that A' is subset of A,
and B' is a subset of B. We write A'pB' if there exist a £ A' and b £ B' with apb.
The image of A' under p is denoted A'p, i.e.,

A'p = {b£B\3a£ A' apb}.

When A' = {a} is a singleton, we write ap instead of A'p.

2.2 Words and languages
Suppose that A and B are alphabets, i.e., nonempty finite sets. We denote by
A* the set of all finite words over A including the empty word e, while A+ stands
for A* \ {e}. The set Aw is the collection of all infinite words over A. The length
of a finite word u £ A* is denoted \u\, and the ith letter of a finite or infinite
word w £ A* U Aw is denoted Wi. Thus, any finite word u £ A* can be written as
U1U2 .. • U|u|, where each Ui is an element of A. A word v £ A* is called a prefix of
a word u £ A* U A" if u = vw, for some w £ A* U Aw. A function ip : A* ->• B* is
called a homomorphism if ip(uv) = ip(u)ip(v), for all words u,v £ A*. Note that
each homomorphism A* —> B* is totally determined by its restriction to A.

For the reader's convenience we restate the theorem of Schiitzenberger.

THEOREM 2.1 (Schiitzenberger [8]) A regular language I C S ' is star-free if and
only if there exists some integer k > 0 such that

uvkw £ L uvk+lw £ L,

for all words u,v,w £ £*.

A proof of the following lemma is given in the appendix.

LEMMA 2.1 Suppose that S = {eri,... ,<rn} is an alphabet and I = |~log2(n + 1)].
Then there exists an injective homomorphism tp : {0,1}* satisfying the fol-
lowing conditions.

• The ip-image of each letter a £ £ is a word of length 21 beginning with a
sequence of I zeros and containing the letter 1. In other words,

C 0 ' {0 ,1} '\ {0'2i}. (1)

Regular expression sfcar-freeness is PSPACE-complete 3

• For all words u,v,w e {0,1} *

uv2lw 6 ^>(E*) =>• 21 divides |v|. (2)

• For all regular languages L C S *

L is star-free <=> is star-free. (3)

2.3 Regular expressions
Let 7?. be the ranked alphabet consisting of the constant symbol 0, unary symbols
*, ~ and binary symbols U, fl. Suppose that E is an alphabet such that £f~l7£ = 0.
For any subset TV of TZ, the set SU71' can be considered as a ranked alphabet in
which the elements of E have rank 0, and the elements of TV have the same rank
as in TZ. An 72-'-type regular expression over E is a ground (E U 7£')-term,
i.e., a term over the ranked alphabet E U TV containing no variable symbols. A
{0, •, U, *}-type regular expression is simply called a regular expression, and an
(TZ \ {*})-type regular expression is also called a star-free regular expression.

As for the syntactical conventions, we use infix notation for the binary opera-
tions U, fl and •, postfix notation for *, and we write a instead of ~ a. The operation
symbol • is usually omitted. If E' = { o i , . . . , a n) is a subset of E, we simply write
E' instead of o\ U • • • U an.

The language L(E) C E* denoted by an 72,-type regular expression E over E is
defined in the usual way, see [7]. Note that a regular language L C E* is star-free
if and only if it is denoted by some star-free regular expression over E.

We recall from [7] that the star-height sh(E) of a regular expression E is
defined by

for all letters a S E and regular expressions E,F over E.

2.4 Finite automata
Most of our automata-theoretical notations and definitions are adopted from [4].

A (nondeterministic) finite automaton (NFA) is represented as a 5-tuple
A= (Q, E, r, I, F), where

sh(cr)
sh(0)

0
0
max{sh(£),sh(F)}
max{sh(E),sh(F)}
1 + sh (E),

sh(E U F)
sh(E • F)

sh (E*)

• Q is the finite set of states,

• E is the input alphabet,

4 László Bernátsky

• T : £ P(<2 x Q) is the transition function,

• I Q Q is the set of initial states,

• F C Q is the set of final states.

Note that for each input symbol a £ E, T(CT) is a binary relation on Q, called the
relation induced by a in the automaton A. We prefer the notation a^ to
T(CT). When u £ E* is an input word, ua denotes the relation induced by u in
A, defined by

uA := r(wi)o--or(w|u|).

Note that ca is the identity relation.
The automaton A can be visualized as a directed graph with vertices Q, and

edges labeled by input symbols in E. Motivated by this point of view, we shall
sometimes denote the relation UA by —*-A • Then q —*-A q' means that there is a
directed it-labeled path from vertex q to vertex q'.

The language L(A) recognized by A consists of those words it £ E* for which
there exists a w-labeled path from some initial state to a final state, formally

L(A) = {w £ £* | I-^aF}-

When A is understood, we sometimes omit the subscript in and ua-
We call A a deterministic finite automaton (DFA) if it has at most one

initial state, and each relation a a (C £ E) is a partial function Q —» Q. A deter-
ministic automaton is called complete if it has a unique initial state, and each of
its'input symbols induces a total function.

The automaton A is called a reset automaton if it has at most one initial
state and each input symbol a £ E induces either the identity function or a partial
constant function Q Q.

A state q of A is called accessible (respectively, coaccessible) if there exists
some input word u € E* with I-V4 {q} (respectively, {q} F). Note that each
initial state is accessible and each final state is coaccessible. A biaccessible state
is one which is both accessible and coaccessible. Two states q,q' £ Q are called
equivalent, denoted q ~a q', if

{9} - V a F <=> {q'}^AF,

for all input words u £ E*. Suppose that A is a DFA. Then A is called

minimal if all of its states are biaccessible, and it has no different equivalent states,

aperiodic if there exists an integer k > 0 such that (u k) A = (u k + 1) A , for all
u £ £*.

Observe that if A is a reset automaton then (u2)A = (u3)A, and if A is a complete
reset automaton then ua = (u2) 'A, for all words u £ E*.

Regular expression sfcar-freeness is PSPACE-complete 5

REMARK 2.1 It is well known (see [4]) that a deterministic automaton A —
(Q, £ , T, I, F) is aperiodic if and only if it satisfies the implication

uk u
Q—*-aq = > q-*-Aq,

for all states q £ Q, input words u 6 £+ and integers k > 2.

Suppose that n > 1, and Ai = (Qi,T,,Ti,Ii,Fi) is an NFA, for each i £ [n].
Then the product of the Aj's is the NFA

I I ^ = (I I G » E ' r > n **> I I
¿€[n] ¿G[rt] ie[n] »€["]

where

t(ct) = {((?!,• • .,qn), (r i , . . . , r n)) | Vi £ [n] (qi,ri) € n(a)},

for all a £ E. It is easy to see that

l(N A) = F | L

ie[n] ¿6(n]

2.5 Turing machines
A deterministic Turing machine (DTM) with a single one-way infinite tape is
a system M = (Q, T, E, 5, qo, q/), where

• Q is the finite set of states,

• T is the tape alphabet containing the special "blank" symbol b,

• E C T is the input alphabet, b ^ E,

• i : Q x T - > Q x T x { - l , 0 , l } i s the partial transition function,

• qo £ Q is the initial state,

• <7/ £ Q is the final state.

We say the machine M is in the configuration (q,i,u) for a state q £ Q, integer
i £ u) and infinite word u € if in state q it scans the ith tape cell and the
content of the tape is u. We define a binary relation Vm on the set Q x lo X RW of
configurations by

(q,i,u) \-M (r,j,v) S(q,Ui) = (r,Vi,j - i) A Vf € u (t ^ i => vt = ut).
«

Note that h ^ is a partial function. The machine M. accepts an input word u £ E*
if

(q0,l,ub") \-*M (qf,lX),

6 László Bernátsky

otherwise M. rejects u. The language L(M) C £* recognized by M. consists
of those words u £ £* which are accepted by M. Thus, for each word u £ L(M),
there exists a shortest sequence (gi,H,wi),..., (qk,U,uik) of configurations such
that

(ft, ¿1,101) = (9 0 , 1 , ^) ,
(qk,ik,wk) = (g/ , l ,bw) , and
Cqt,n,wt) hM (qt+i,it+i,m+i),

for all t £ [k — 1]. Then we define

SPACEJU(U) : = m a x it.
t€[fc]

Suppose that S : N —» N is a (space constructible) function. The machine M is said
to have space complexity S if SPACE^w) < S(|u|), for all words u £ L{M).
The language class PSPACE consists of those languages which are recognized by
some Turing machine M having space-complexity p, for some polynomial function
p : N-»N.

We assume the reader is familiar with the concept of logspace-reducibility (see
[2], for example).

Suppose L and L' are languages. In this paper, L <iog L' stands for "L is
logspace-reducible to L"'. The language L is called PSPACE-hard with respect
to logspace-reductions, written PSPACE <iog L, if every language in PSPACE
is logspace-reducible to L. Lastly, L is called PSPACE-complete with respect to
logspace-reductions if L £ PSPACE and PSPACE <log L.

3 Problems
We are interested in the computational complexity of the following decision prob-
lems:

1. The automata intersection problem (AIP):

INPUT: A sequence Ai,..., An (n > 2) of nondeterministic finite automata
with a common input alphabet.

QUESTION: Does flie[„] ¿ M ») ^ 0 hold?

2. A restricted version of the automata intersection problem (AIP^):

INPUT: A sequence Ai,...,An (n > 2) of minimal reset automata with a
common input alphabet.

*

QUESTION: D o e s FLIE[N] ^ ® h o l d ?

3. Automaton star-freeness (ASF):

Regular expression sfcar-freeness is PSPACE-complete 7

INPUT: A nondeterministic finite automaton A.
QUESTION: Does A recognize a star-free language?

4. A restricted version of automaton star-freeness (ASF/?):

INPUT: A minimal DFA A with input alphabet {0,1}.
QUESTION: Does A recognize a star-free language?

5. Regular expression star-freeness (RSF):

INPUT: A regular expression E.
QUESTION: Does E denote a star-free language?

6. A restricted version of regular expression star-freeness (RSF^):

INPUT: A regular expression E of star-height 2 over the alphabet {0 ,1 } .
QUESTION: Does E denote a star-free language?

Assuming some efficient encoding of automata and regular expressions (see [5])
with words over a fixed finite alphabet, all these problems can be considered as
languages. We are going to prove

PROPOSITION 3.1 The problems A I P , A I P f i , A S F , A S F f l , R S F and R S F f l are
PSPACE-complete with respect to logspace reductions.

4 Constructions
In this section we present the constructions of automata and regular expressions
which are needed to show that the restricted problems A I P a , A S F « and RSF/y are
PSPACE-hard. The first construction shows how can one replace a deterministic
Turing machine with a sequence of reset automata.

CONSTRUCTION 4.1 Input: A polynomial function p : N ->• N, a DTM M =
(Q, r, E, S, go, qf) of space-complexity p, and an input word u € £", n > 0.
Output: A sequence S, V,A\,..., Am of reset automata, where m = max{p(n), 1},
and

(4)
i € [m]

Description: Let

5 = (Q,A,TS, { ç 0 } , { g / })

V = ([m], A, Tp, {1},{1}),

and for each i G [m]

Ai = (R,A,TI,{(ybu)i},M),

8 László Bernátsky

where

A = {(q,k,-Y) \qeQ, k£[m], yeT}

and the transition functions ts, tv, n , . . . , rm axe defined as follows.

Suppose that a = {q, k, 7) is an element of A. If S(q, 7) is undefined then

Ts{a) = T-p (a) = n (o) = • • • = rm(a) = 0,

and if 5{q, 7) is defined, say S(q, 7) = (r, 7' , i) , then

r5(a)
tv (a)

Ti{a)

Proof. The intuition is that the automata S, V, Ai,..., Am together "simulate"
the computation of M. on the input word u, such that S knows the current state
of A4, V knows the position of the read-write head, and each Ai (i £ [m]) knows
the content of the ith tape-cell. An input symbol (q,k, 7) £ A corresponds to the
statement "the current state of M is <7, the position of the read-write head is k,
and the content of the fcth tape-cell is 7".

It is easy to see that each one of S, V, Ai,..., Arn is a reset automaton. (In fact
they are even more restricted: for all input symbols a £ A, the relation induced by
a in each one of the automata S,V,Ai,..., Am is either empty, or a singleton, or
the identity function.)

Consider the product automaton

A = S x V x JJ A{.
¿6[m]

We know

L{A) = L(S) fl L{V) fl p| L(Ai).
ie[m]

Observe that for all q, r £ Q, v, w £ r m , j, k £ [m], and a £ A

(q,j,v 1,... ,vm) {r,k,w 1,... ,wm)
a = (q,3,Vj) A S(q,Vj) = (r,Wj,k - j) A Vt € [m] (t ± j => wt = vt),

and thus

= { (9,r)}
Í {{k,k + t)} if k + t £ [m],
\ 0 iffc + i ^ [m] ,

_ Í 1 (7 , 7 ') } IF k = i
\ {(ff.tr) I ct € T} if k ^ i .

(q,j,vbw)\-M (r,k,wbu) 3 a e A(q,j,vi,... ,vm)-^A(r,k,W!,... ,wm).

Regular expression star-freeness is PSPACE-complete 9

It follows that

ueL(M) (q0,l,u\>«)^M(qf,\X)

^ 3v € A* (®»l , (« l»w) i> . . .) (ul»w)m) -V>t(g / , l>b> . . . I l>)

•

Although the automata S, V, Ai,. •., Am constructed above have a very simple
structure, they are not always minimal. In the next construction we show an
easy way of modifying these automata so that they become minimal. Note that
the standard procedure of automata minimization is not suitable for our purposes
since it requires linear space.

CONSTRUCTION 4.2 Input: A sequence Ai, • • • ,An (n > 2) of reset automata of
the form Ai = (Qi, E,Tj, {sj} , { /¿ }) .
Output: A sequence B\,..., Bn of minimal reset automata such that

F| L(Ai) = P) L(Bi). (5)
¿e[n] ¿e[n]

Description: For each i £ [n] let

Bi = (Qi.EUE'.r?, {«<},{/<}),

where

= {(q,3)\q£Qj, je N),

T '(t„i\\ - I i(p>q)\peQi> p^q} i f i = *>

rd{q,J)) - | 0 i i j ^ i ,

for all <7 € E, (q,j) € £'.
Proof. For each j £ [n] let Ê - denote the set {(q, j) | q € Qj}. Consider the
automaton Bi for some i g [n]. It is obvious that Bi is a reset automaton. Since
the elements of £ ' \ £• induce the empty relation in Bi,

L(Bi) C (EUE'a*.

Moreover, since each input symbol a £ E induces the same relation in Bi as in Ai,

L(Bi) fl E* = L(Ai).

These two observations and n > 2 imply (5). Lastly, for all states p, q £ Qi we have , <?,<> 9f Si => Si q,
, , (fiA ,

q r h = > q *~h,
pjiqAq^fi p(q,i)(fi,i) = {fi} A q{q,i){fi,i) =9,

I

10 László Bernátsky

showing Bi is minimal. •

The next construction shows that for each reset automaton A there exists a
"short" regular expression denoting the complement of the language recognized by
A. This fact plays a key role in proving that the problem RSF/j is PSPACE-hard.

CONSTRUCTION 4.3 Input: A reset automaton

A = (Q,Z,T,I,F).

Output: A regular expression E over the alphabet E such that

L(E) = L(A). (6)

Description: If I = 0 then (6) holds for the regular expression E = E*. From
now on we assume that A has an initial state qo. Let

Xq = {a G E | QaA = {q}}
Yg = {a G E | qaA = {?}}
Zq = {a G E | qaA = 0},

for all q G Q. Using these subsets of E we define the regular expressions

_ , E *XqYq* iíqjíqo
S Z*XqY' U Y* ifq = qQ,

for all q G Q. Lastly, let

Proof. We claim

and

E = (U E " I U I U

u G L{Eq) => q0u C { 9 } (7)

q0u = { 9 } u G L(Eg), (8)

for all q G Q, u G £*. Then (6) follows since the definition of E expresses the fact
that an input word u G £* is rejected by the automaton A either if qou = {<7} for
some non-final state q, or qou = 0.

As (7) is quite obvious, we only prove (8). Suppose that q$u = {g} for some state
q G Q and input word u G £ n , n > 0. Then there exist some states q\,..., qn~\
such that til tJ2 un-l tin q0 —qi — • • • qn-1 —q•

Regular expression sfcar-freeness is PSPACE-complete 11

If q0 = qx = • • • = qn_l = q then u £ Y* C L(Eq). Otherwise let k 6 [n] be the
largest index for which qu-i ^ q, so that

. Ufc Ufc + l v-n-l Un q ± qk-i — q • • • q —>- q.

Since A is deterministic it follows that Uk+i, • • • ,un £ Yq. Moreover, since q ^
q, the relation induced by u^ is not the identity function. Thus, u^

induces a partial constant function with range {<7}, so that u^ £ Xq. We see
u £ T,*XqY* C L(Eq). •

The next construction presents the main idea of reducing A I P « to A S F « . The
very same idea was used by Cho and Huynh in [3].

CONSTRUCTION 4.4 Input: A sequence B\,...,Bn {n > 2) of minimal reset au-
tomata of the form Bi = (Qi, S, Tj, /¿, Fi).
Output: A minimal DFA C such that

P| L(Bi) = 0 L(C) is star-free. (9)
¿e[n]

Description: If = 0 for some i £ [n] then let C be the minimal DFA with input
alphabet {0} recognizing the star-free language 0. From now on we assume that
each automaton Bi has a unique initial state Sj. Thus L(Bi) ± 0, for all i £ [n].
Let p be the least prime number with p > n. It is well known (see [6]) that p < 2n.
For integers i £ {n + l , n + 2 , . . . , p } let Bi = (Qi,S,Ti , {s i } ,Fi) be a minimal
DFA recognizing the language £*. For the sake of simplicity assume that the sets
Qi {i G [p]) are pairwise disjoint, and that # 0 S is a new input symbol. Let
u : N [p] be the function mapping each integer i to ((i — 1) mod p) + 1. Then
we define

C := (|J Qi.EU {#},•>-,•{*!}, W) .
¿e[p]

where

r(#) = \ j F t x {a„ (i+i)}
¿e[p]

t(V) = |J n(a) ,
ie[p]

for all input symbols a £ See Figure 1.

Proof. Clearly, C is a DFA with

L(C) = (L{Bl)#L{B2)#---L{Bn)#{?,*W-nY

12 Laszlo Bernatsky

Si B 2 B p

Figure 1: The automaton C

By Schiitzenberger's theorem, (9) is equivalent to the condition

P| L{Bi) ± 0 C is not aperiodic. (10)
ie[n]

The " = > " part of (10) is obvious: if u £ E* is a common element of the languages
L(Bi),..., L(Bn) then «i ^ ^ • c and si c S2 ^ si, so that C is not aperi-
odic by Remark 2.1. Before we prove the " part of (10) observe that if the
letter # appears I times in an input word u £ (E U { # }) * , and q £ Qi is a state
such that q(u#)c ± 0 then q(u#)c = {s„(j+ i + 1) } . Moreover, if S j (v #) c -fi 0 for
some integer j £ [p] and word v 6 E* then v £ L(Bj). Now suppose that C is not
aperiodic, i.e.

1 —+-c q, (11)

and

q - ^ c (12)

for some different states q .£ Qi, q' £ Q?, i, i' £ [p], input word u £ (E U { # }) +

and integer k > 2. Note that by (11) we have q(ut)c ^ 0, for all t > 0. Let I be the
number of # ' s in u, so that u can be written as

where i t ' 0 ' , . . . , u'1' are words in E*. If I were 0 then we would have i' — i,q " > g. q,
and q -VB, q' / q, contradicting the-fact that Bi is aperiodic. Thus, I > 0.

Let v denote the word • • • so that u = v#uO and

q —

where j = v(i + I). By (11) we have

u<"
-c Si —*~c q•

Regular expression sfcar-freeness is PSPACE-complete 13

If p were a divisor of I then it would follow that j = i and q —Si *-c q,
contradicting (12). Thus p is not a divisor of I.

Let j be an arbitrary element of [n]. As p is a prime not dividing I, there exists
some integer t > 0 such that v(i + It) = j. For this t we have

q *-c Sj.

Moreover, since ut~1v#u^uW# is a prefix of ut+1 and q(ut+l)c / 0, it follows
that

showing u^'w'0' £ L(Bj). Since j £ [n] was arbitrary,

u<'V°> € p| L(Bj).
¿GN

In order to prove C is minimal suppose that q £ Qj and r £ Qk are two different
states of the automaton C. For each i £ [p] choose an arbitrary word £ L(Bi).
Since q is a biaccessible state of Bj> there exist words v,w £ E* with

V U)
Sj -*-Bj q -+-B, Fj.

Then

si *~c q *-c si,

showing q is a biaccessible state of C. If j ^ k, say j < k, then

= { S l } and

- i + i j -

Lastly, suppose that j = k. Since Bj is minimal, there exists some word x £ £*
such that exactly one of the sets qxBJ C\Fj and rxnj n F j is empty, say rxsj P\Fj = 0.
Then q(xjf)c = {s„(.,+1)}, r (i #) c = 0 and we have

? № () ' + 1) f " # » (p) #) c = {si} and
w W #) c = 0.

•

The last construction gives the second part of the reduction AIP / j < i o g ASF/?-

CONSTRUCTION 4 . 5 Input: A minimal DFA C = (Q , E , T , I , F) .

Output: A minimal DFA C' with input alphabet {0,1} such that

L(C) is star-free L(C') is star-free. (13)

14 László Bernátsky

Description: Let ip : £* {0,1}* be an injective homomorphism satisfying the
conditions of Lemma 2.1. In particular, the image ip{a) of each symbol a € £ is a
word in {0, l } 2 i , where I = ["log2(|£| + 1)]. For each state q £ Q let

Sg " W ^ ' l a e E ,

so that Sq is a set of words over the alphabet {0 ,1 } U Q, more precisely, Sq C
{0,1 }2lQ- When 5 is a set of words and u is a word over the same alphabet, u\S
denotes the set {v) uv £ S } . For each integer j £ [21 - 1] let

Q) := M S , | q € Q, u £ {0, 1 } ' } \ {0} .

Thus each element of Q'j is a nonempty subset of {0, l} '2 l~JQ. Now let

C' := (Q U Q', {0, l } , r ' , I, F),

where

Q' = U Q'v
je[2/-i]

and T' is defined such that

{x\Sq} if x\Sq ^ 0,
otherwise,
if x\S = {<?'}, for some q' £ Q,

Sxc = ^ 0 if x\S — 0,
{a;\5} otherwise,

for all q £ Q, S £ Q', x £ {0 ,1} .

Proof. Let us denote Q by Q'0. It is easy to see that C' is a DFA satisfying

q-+oq' <!==> € £* it = ip(v) A q-^*-c q', (14)

and

Q'i - V c Q'j H=3-i (mod 21), (15)

for all q,q' £ Q, u £ {0,1}*, 0 < i,j < 21. It follows in particular that L(C') =
ip(L(C)), so that (13) holds by Lemma 2.1.

In order to prove C' is minimal suppose that s £ and s' £ Q'j (0 <i,j< 21)
are two different states of C'. It is clear from the description of C' that there exist
words v £ {0 ,1 } ' , v' £ {0, l } 2 i - t , and states q,q' £ Q such that q-^*-c< s - ^ - c q'•

Since C is minimal, there exist words u,u' £ £* with / - V c q and q' - % - c F. By
(14) we have

T </>(«) V v' , t/l(tl') 1 q —t-c- S —»-C' q *-c> F,

Regular expression sfcar-freeness is PSPACE-complete 15

showing s is a biaccessible state of C. If i ± j then s and s' are not equivalent by
(15), so suppose i = j. If i — j = 0 then s and s' are two different elements of
Q, and since C is minimal there exists a word w £ £* such that exactly one of the
two sets swc l~l F = stp(w)c, n F and s'wc fl F = s'ip(w)c, n F is empty. Lastly
suppose that i = j £ [21 — 1]. Then s and s' are two different subsets of the set
{0,1}2 '~*Q, say s % s'. Let uq be an arbitrary element in s which is not in s',
where u 6 {0, l } 2 i _ t and q £ Q. There are two possibilities: either s'uc = 0 or
s'uc = { ? ' } for some state q' £ Q,q' ^ q. In the first case we have suip(v)c, C\F ^ 0
and s'uip(v)c, fl F = 0, where v € £* is an arbitrary word with q -\-c F. (Such a v
exists since q is a coaccessible state of C.) The second case can be handled similarly
to the case i = j — 0. •

5 Results
THEOREM 5.1 The problems AIP and AIP^ are PSPACE-complete with respect
to logspace reductions.

Proof. We show

PSPACE <log AlPfl <i09 AIP € PSPACE.

Suppose that L C £* is a language in PSPACE. Then there exists a polynomial
function p : N —> N and a deterministic Turing machine M. of space-complexity
p such that L(A4) = L. Applying Construction 4.1 followed by Construction 4.2
to M and an input word u £ E*, we obtain a list A\,..., An of minimal reset
automata such that

U£L «=> f) L(Ai) ± 0.
¿eM

Since both constructions can be carried out by a logspace-bounded Turing machine,
PSPACE <iog AIP/j. The claim AIP« <log AIP is trivial. In order to prove
AIP £ PSPACE suppose that Ai,.".., An are NFA's with a common input alpha-
bet E, say Ai = (Qi,Yl,Ti,Ii,Fi). The following nondeterministic PASCAL-style
program accepts the automata A\,..., An if and only if flie^] ¿ M i) 0:

function Solve_AIP(X1 ; . . . An : NFA)-.boolean;
var

Si,...,S„ : set of state ;
a : input symbol;

begin
Si :=h;

16 László Bernátsky

while Si n Fx = 0 or • •• or Sn D Fn = 0 do
begin

guess a £ £ ;

Si := SiCMj ;

Sn -= Sn(7An

end;

Solve-AIP:=true;

end;

The space complexity of the program is linear. It follows by Savitch's theorem that
AIP 6 PSPACE. •

THEOREM 5.2 The problems ASF and ASFR are PSPACE-complete with respect
to logspace reductions.

Proof. We show

AIP^ <log ASFR <log ASF e PSPACE.

Suppose that B\,..., Bn (n > 2) are minimal reset automata with a common input
alphabet. Applying Construction 4.4 followed by Construction 4.5 to B i , . . . ,Bn ,
we obtain a minimal DFA C1 with input alphabet {0,1} such that

P| L(Bi) = 0 L(C') is star-free.

Since both constructions can be carried out by a logspace-bounded Turing machine,
AlPij <iog ASFr . The claim ASF^ <iog ASF is trivial. In order to prove
ASF e PSPACE suppose that A = (Q, S, T, / , F) is an NFA. By Schiitzenberger's
theorem, L(A) is star-free if and only if the minimal DFA recognizing L(A) is
aperiodic. Recall that the power automaton of A is the deterministic automaton

P M) = (P (Q) , S , T', { / } , F'),

where

F' = {SeP(Q) I S n F / 0 } ,
r ' (A) = { (S , S < M) | S € P (Q) } ,

for all a e S . The minimal DFA recognizing L(A) is obtained fr^m P(-4) by deleting
those states which are not biaccessible, and then identifying the equivalent states.
It follows that L(A) is star-free if and only if there exists some input word u € E*,
accessible state S of P(^4) and integer k > 2 such that S ~p(a) S(uk)A = S(uA.)k

and S t^p(a) Sua- The following nondeterministic procedure decides if S ^p(a) S'
holds for two states 5, S' of P(^l):

Regular expression sfcar-freeness is PSPACE-complete 17

function Not_Equiv(S, S' : set of state) ¡boolean;
var

a : input symbol;

begin

while (5 fl F = 0 and 5' n F = 0) or

(S n F ^ 0 and 5' n F ^ 0) do

begin

guess er £ £;

S := Sou;
£" := S'aA;

end;

Not_Equiv:=true;

end;

By Savitch's theorem we obtain a deterministic polynomial-space program Equiv
which decides if two states of P(-4) are equivalent. The following nondeterministic
program uses Equiv as a subroutine to decide if L(A) is not star-free:

function Not_ASF(yt : NFA) ¡boolean;

var

a : input symbol;

S, S' : set of state;

p : relation;
halt : boolean;

begin

S:=I;
repeat

guess a € £;

S := So a",
guess halt;

until halt;

repeat

guess a £ £;

p : = p o a a ;
guess halt;

until halt;
S' := Sp;
if Equiv (5, S') then

Not_ASF:=false

else begin

repeat

S' := S'p;
until Equiv(S, £');

Not_ASF:=true;

end;

18 László Bernátsky

end;

By Savitch's theorem and the fact that the language class PSPACE is closed
under complementation it follows that ASF 6 PSPACE. •

THEOREM 5.3 The problems RSF and RSF« are PSPACE-complete with respect
to logspace reductions.

Proof. We show

AIP* <iog RSFR <log RSF <log ASF.

The claim RSFr <iog RSF is trivial, and it is also easy to see that RSF <iog ASF:
given a regular expression E, a logspace-bounded Turing machine can construct a
nondeterministic automaton A such that L(E) = L(A).

Suppose that Bi,..., Bn (n > 2) axe minimal reset automata with a common
input alphabet E. Let C be the result of Construction 4.4 applied to the automata
B\,..., Bn. Then C is a minimal DFA with input alphabet E U { # } such that

P| L(Bi) = 0 L(C) is star-free.
t€[ra]

Applying Construction 4.3 to each one of the automata B\,..., Bn we get regular
expressions E\,...,En such that

L(Ei) = L(Bi),

for all i £ [n]. Recall that

L(C) = (L (B I) # L (B 2) # - - . L (B N) # (E * #) " - ") * ,

where p is the least prime number with p > n. It follows that a word v =
v (o) # v { i) # . . . v l k - i) # v W (k > 0) v(o) ^v(k) e belongs to L(C) if and only
if vW = e, k is a multiple of p, and v^ £ m0dP)+i)i for all i < k with
i mod p < n. The languages denoted by the regular expressions

Fj. = (EU #) * £

F2 = ((E*#)p)* [|J (£ * #) <] £ *
*e[p-i] J

F3 = ((E*#)*)* ((J] (EU #) '
Vi€[n) /

consist of those words v = t / C ' ^ l j j t • • • for which

Regular expression sfcar-freeness is PSPACE-complete 19

1. v ^ ± e,

2. k is not a multiple of p,

3. ^ ¿ (5 (i m o d p) + 1) for some i < k with i mod p < n,

respectively. Thus, the regular expression E := Ft UF? U-F-j denotes the complement
of the language L(C). Let ij) : (SU { # }) * -> {0,1}* be a homomorphism satisfying
the conditions of Lemma 2.1. Let E' be the regular expression obtained from
E by replacing each occurence of every letter i E S U { # } by the word tp(x) €
{0,1}*. Then E1 is a regular expression over the alphabet {0,1} having star-height
2. Moreover, L(E') = ip(L{E)) = rp(L(C)), so that

L(E') is star-free L(C) is star-free p| L(Bi) = 0.
i6[n]

The simple structure of E' assures that it can be constructed by a logspace-bounded
Turing machine. •

6 Open problems
The above results suggest that the following questions may be interesting.

1. What is the complexity of deciding whether n»e[n] L{Ai) ^ 0, for minimal
complete reset automata Ai,..., Anl

2. What is the complexity of deciding whether a regular expression of star-height
1 denotes a star-free language?

We conjecture that the answer for the first question is "NP-complete".
The second question seems to be harder. However, it is our conjecture that

restricting the problem RSF to regular expressions of star-height 1 substantially
decreases its computational complexity.

7 Acknowledgement
I would like to thank Zoltán Esik for encouragement and for many useful comments
and suggestions. I also thank Stephen L. Bloom and an anonymous referee whose
suggestions have been incorporated.

References
[1] L. Bernatsky and Z. Esik. Semantics of Flowchart Programs and the Free Con-

way Theories. Submitted for publication to RAIRO Theoretical Informatics
and Applications.

20 László Bernátsky

[2] D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Pren-
tice Hall, 1994.

[3] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSPACE-
complete. Theoretical Computer Science, 88:99-116, 1991.

[4] Samuel Eilenberg. Automata, Languages and Machines. Academic Press, New
York and London, 1974.

[5] Michael R. Garey and David S. Johnson. Computers and intractability, A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

[6] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 3rd edition, 1954.

[7] A. Salomaa. Theory of Automata. Pergamon Press, 1969.

[8] M. P. Schiitzenberger. On Finite Monoids Having Only Trivial Subgroups.
Information and Control, 8:190-194, 1965.

[9] Jacques Stern. Complexity of Some Problems from the Theory of Automata.
Information and Control, 66:163-176, 1985.

[10] H. Straubing. Finite Automata, Formal Languages and Circuit Complexity.
Birkhauser, 1994.

A Appendix
Proof of Lemma 2.1. First of all note that n < 2l — 1, so that I bits are sufficient
to represent the number n in binary. Let tp : £* —{0 ,1 } * be the homomorphism
mapping each letter crj £ £ (i £ [n]) to the 2/-bit binary representation of i. Then
ijj is injective and satisfies (1).

Proof of (2). Suppose that (2) is not true. Then there exist some words u,v,w £
{0,1}* such that uv2lw £ tp(T,*), but 21 is not a divisor of |u|. Let us denote |n| by
m. Then m > 0 and gcd(2Z, m) < 21. Since none of the integers 1 + 1,1 + 2,... ,21 —1
is a divisor of 21,

Moreover, since no word in i/»(£*) may contain 02' as a subword, the letter 1 occurs
in the word v21, and thus in v. Let j £ [m] be an integer such that the th letter
of v is 1. If i £ [2lm] is an integer satisfying

gcd(2Z, TO) < I. (16)

i j (mod m) (17)

Regular expression sfcar-freeness is PSPACE-complete 21

then the ith letter of v11 is 1. By (1) it follows that if 1 < i < \uv2lw\ is an integer
such that (i — 1) mod 21 < I, then the ith letter of uv2lw is 0. In other words, if
i £ [2Im] is an integer satisfying

i = t - |u| (mod 21) (18)

for some t £ [Z], then the ith letter of v21 is 0. The diophantic system (17,18) is
solvable in the variable i if and only if

t-\u\ = j (mod gcd(2/,m)), (19)

and in this case every solution can be written in the form

i = io + h • lcm(2Z, TO),

where io is a fixed solution and h is an integer. Let t be the unique element of
[gcd(2Z,m)] satisfying (19). Then t £ [/], by (16). For this t there exists a unique
integer i £ [lcm(2Z,m)] C [2/m] such that both (17) and (18) hold. But then we
have, the contradiction that the ith letter of v21 is equal to both 0 and 1. This
contradiction was caused by the assumption that (2) fails.

Proof of (3). Suppose that L C £* is a language and tp(L) C {0,1}* is star-
free. Then L is regular and there exists an integer k > 0 such that for all words
u,v,w € £*,

uvkw £ L %p(u)il)(v)kil){w) £ ip(L)
tp{u)ip(v)k+1ip(w) £ ip(L)

<==> uvk+1w £ L,

showing L is star-free. Thus, for this direction no special property of the homo-
morphism if) is needed other than its injectivity.

For the converse direction, suppose that L C E* is a star-free language. Then
there exists an integer k > 0 such that

xykz £ L xyk+1z £ L, (20)

for all words x,y,z £ E*. Let m be the maximum of 21 and k + 1. Suppose that
uvmw £ ip{L), for some u,v,w £ {0,1}*. We want to show that uvm+1w £ ip(L).
This is obvius if = 0, so suppose that > 0. By (2) it follows that |?j| is a
multiple of 21, so that |t>| >21. Let a be the shortest prefix of v such that the length
of the word ua is a multiple of 21. Then v can be written as a(3, for some word
/3 £ {0,1}*. Since uvmw = ua(Pa)m~1 f3w £ ip(L) and the length of the words ua,
Pa and (3w are multiples of 21, there exist words x,y,z £ E* such that ip(x) = ua,
ip{y) = Pot, ip(z) = (3w and xym~1z £ L. Since m - 1 > k, it follows by (20) that
xymz £ L. Thus,

i>(xymz) = ua(f3a)ml3w = uvm+1w £ tp{L).

The implication uvm+1w £ ip{L) => uvmw £ ip(L) is proved in a similar way. •

Received January, 1996

Acta Cybernetica 13 (1997) 23-39.

Server Problems and Regular Languages

B. Csaba * G. Dányi t

Abstract

The sequences of requests are considered as words over the alphabet of
vertices. We assume that the server problem is restricted, meaning that
the request words are chosen from a subset of all possible words, i.e. from a
language. We define the class ONLINE consisting of the languages, for which
there exists a 1-competitive satisfying on-line algorithm. Our main result is
a sufficient condition for languages to be in ONLINE and a construction
method of 1-competitive on-line algorithm for the ones, which satisfy that
condition. We perform this by characterizing a subclass ONREGo of the class
ONLINE fl REG, where REG is the class of regular languages. Moreover,
we prove some results, which help to show the on-lineness of certain other
(even nonregular) languages and we give sufficient conditions to prove that a
language is not on-line.

1 Introduction
The fc-server problem is a generalized model of certain scheduling problems as,
for instance, multi-level memory paging, disk caching and head motion planning
of multi-headed disks (see [MMS]). The paging and caching problems have been
studied for a long time. However, server problems are introduced in the 80's (see
[ST] and [MMS]).

The ¿-server problem can be stated as follows. Let M = (V, 6) be a finite metric
space, where V = {vi,..., vrl} are the vertices and 6 is the distance function. There
are k mobile servers occupy exactly k vertices of M. Repeatedly a request, v,, G V
appears. The request should be satisfied by moving some servers resulting that
a server appears on the point The cost of moving one server from v̂ to vj is
S(ví , Vj) and the cost of a satisfaction is the sum of the costs of the taken movements.

"Research of this author was supported by the Research Foundation of Hungary under Grant
F4204.
Dept. of Computer Science, József Attila University, H-6701 Szeged, P.O.Box 652, Hungary,
email: csaba@inf.u-szeged.hu

t Research of the author was supported by the Research Foundation of Hungary under Grant
F012852 and by the Hungarian Cultural and Educational Ministry under Grant 434/94.
Dept. of Foundations of Computer Science, József Attila University, H-6701 Szeged, P.O.Box
652, Hungary, email: danyi@inf.u-szeged.hu

23

mailto:csaba@inf.u-szeged.hu
mailto:danyi@inf.u-szeged.hu

24 B. Csaba, G. Daiiyi

We assume that the request sequences are finite. The goal is to find an algorithm
for M, which can satisfy request sequences with as little'cost as possible.

If an algorithm serves requests immediately without knowing what the future
requests will be, then we say that it is on-line. A widely used measure for the
performance of an on-line algorithm is the competitive ratio, introduced by [ST].
Denote the optimal cost of the satisfaction of a request sequence x by opt(a:). An
on-line algorithm A is called c-competitive, if there exists a number K such that,
for all allowed request sequences x, the total cost A(x), incurred by A on x, is at
most copt(x) + K.

Obviously, a finite request sequence can be considered as a word over the alpha-
bet V. It has been proved that, if the request sequences can be arbitrarily chosen,
that is, any word in V*, then the competitive ratio of any on-line algorithm is at
least k (see [MMS]). However, in practice the request sequences are generated by
programs, hence these sequences usually cannot be arbitrary, i.e. they are chosen
from a language L C V*. Then the server problem is said to be restricted. Knowing
that language, we may expect to find on-line algorithms with better performance.
We can assign competitive ratio to the languages, too. Actually, a language is
called c-competitive, if, for any distance function S, there exists c-competitive on-
line algorithm satisfying its request sequences. Observe that the competitive ratio
defines a hierarchy of language classes.

In this paper we consider the class ONLINE consisting of 1-competitive lan-
guages, called on-line languages. Note that this class is the bottom element of
the hierarchy mentioned above. However, ONLINE seems to be very hard to
characterize. For instance, it contains languages, which are event not recursively
enumerable. For that very reason, we looked for necessary and sufficient conditions
a language being in ONLINE.

Sufficient conditions can be found, if we consider appropriate subclasses of
ONLINE. Such subclass can be defined, for example, by intersecting ONLINE
with a well known language class. In this paper we choose the class REG of regular
languages for this purpose. This class is easy to handle, since the regular languages
are recognized by deterministic finite automata. On the other hand, REG is closed
for the operations concatenation, union and closure, which corresponds naturally
to the programming structures, namely the sequencing, the selection, and the it-
eration, respectively. Observe that, for any alphabet V, V* £ REG holds, hence
REG % ONLINE follows. We define the subclass ONREG0 C REG. The class
ONREGo is closed for concatenation, union and closure of singleton languages.
Roughly speaking, if we consider programming structures, there cannot be a selec-
tion inside an iteration. Our main result is that ONREGQ C ONLINE. Moreover,
we show that how the operations sublanguage construction and letter reduction can
help to prove the on-lineness of certain other, even nonregular languages, and we
give sufficient conditions to prove that a language is not on-line.

The outline of our paper is as follows. In the second section we introduce the
definitions and notations, which are necessary to understand the paper. Moreover,
we give some basic results. Our main result can be found in the third section, in
which we show that the language class ONREGO contains on-line languages. In

Server Problems and Regular Languages 25

the fourth section we give some sufficient conditions for regular languages not being-
on-line, and we discuss some other properties of the class ONLINE.

We note that there is an other way of studying restricted fc-server problems,
where the movements of the servers are restricted (see [FK], [BIRS]). This leads
to the use of an access graph. A server can be moved to a vertex from an other
one immediately, if they are adjacent vertices of the access graph. However, it can
be seen that an access graph also defines a language over V, namely the set of
satisfiable request sequences.

Acknowledgement. The authors are grateful to P. Hajnal (Dept. of Mathe-
matics, University of Szeged, Hungary) and László Bernátsky (Dept. of Computer
Science, University of Szeged, Hungary) for their valuable comments and sugges-
tions.

2 Preliminaries
In this section we introduce the notions and notations which are necessary to un-
derstand the paper. Moreover, we recall the preliminaries referred in our proofs
from other papers, and give some basic results.

We denote the set of real numbers by R, the set of nonnegative real numbers
by R + and the set of natural numbers by ui. If H is a set, then \H\ denotes its
cardinality.

We frequently use the principline of structural induction in our proofs. For more
information about inductions see, for example, [W].

2.1 Languages and automata
Words and languages. An alphabet V is a finite nonempty set of symbols. The
elements of an alphabet are called letters and denoted by u and v in this paper.

A word iu over an alphabet V is a finite sequence v\... vi of some letters in V.
The length of a word w, denoted by is the number of the letters composing
w. The empty string is denoted by e, thus |e| = 0. For w £ V* — {e}, we define
first(w) € V and last(w) £ V as the first and the last letter of w, respectively.

The concatenation W1W2 of two words w\ = v\...i>i and W2 — u\ .. .Uk is
the sequence vi...viu\ .. .Uk- We define the powers of a word w as iu° = e and
wn = w ™ - 1 f o r any integer n > 1. We say that a word wi is a prefix of a word w,
and denote this fact by wi C w, if there exists a word called a suffix of w, such
that w = W\W2- We use the symbols w, x and y to denote words in this paper.

The set of all finite words over an alphabet V is denoted by V*. A language over
V is a subset L C V*. For any languages L and L', we define their concatenation
as LL' = { W \ w £ L,w' £ L'}. For any language L, we put L° = {e} and
Ll = where i > 1. The closure of a language L is the set L* = U i^L1 . The
prefix language of a language L is L- = {x \ x C w holds for some w £ L}. We say
that the prefix problem is decidable for a language L over an alphabet V, if, for an
arbitrary word w € V*, it is decidable whether w £ L-.

26 B. Csaba, G. Daiiyi

We define the operation letter reduction, denoted by lr, over words as follows.
For any word w G V*, there exists a unique decomposition w = v"1 . . . v£k, where
ni,...,rik > 1 and vi,...,vk G V, such that Vi ^ Vi+1 with 1 < i < k. Then
lr(u)) = v\. . . Vk • Roughly speaking, the lr operation substitutes a sequence of a
letter by one. We extend the lr operation for languages as lr(L) = Utug£,lr(ii;).

Regular languages. The class REG of regular languages is the smallest class,
which obeys the following rules.

(1) For any alphabet V, if w G V* then {?/;} is in REG.
(2) If L, L' G REG then L U L', LL' and L* are in REG.

That is, REG is the smallest class, which contains every singleton language and
closed for the closure, the finite union and the concatenation. Clearly, for any
alphabet V, the language V* is regular.

The characterization of REG can be found in a wide range of books and papers
concerning automata theory and formal languages (e.g. [HU]). A convenient way
to define a regular language is to give its construction according to the above
construction rules (1) — (2). This yields an expression, possibly with parentheses,
where the members are singleton languages, and the operators are the union, the
concatenation and the closure, in growing precedence order. These expressions
are called regular expressions. For example, the regular expression ({a } U {b\)*c
defines the language of sequences of a and b followed by c. For brevity, we often
write simply w for a singleton language {vi} in regular expressions in the sequel.
Thus we have (all b)*c for the above expression. Note that a regular language can
be defined by several regular expressions.

Finite automata. A deterministic finite automaton (DFA) is a 5-tuple A =
(Q, V, r, qo,F), where Q is the finite nonempty set of states, V is the input alphabet,
T : Q x V —> Q is the total transition function, qo G Q is the initial state and
F C Q is the set of final states. We extend r for Q x V* with r(q, e) = q and
r(q,wv) = T(r(q,w), v), where q G Q, w G V* and v G V. A state q G Q is called
trap state if there exists no word w G V* such that r(q, w) G F. We assume every
state to be accessible, that is, for each q G Q, there exists a word w G V* such that
r(q0,w) = q.

A DFA can be represented as a directed labeled graph, where the vertices are
the states and the edges are the transitions labeled by the corresponding letters of
V. It should be clear that, for any q,q' G Q and w G V*, r(q,w) = q' implies that
there is a path from q to q' labeled by w. By the graph representation, it is easy
to show that, for any state q G Q, it can be decided in 0(|Q||V|) time, whether
q is a trap state. Hence, the subset T C Q of trap states can be determined in
0(\Q\2\V\) time.

We say that the DFA A = (Q,V,T,qo,F) recognizes the word w G V* if
T(qo,w) G F. The recognizability of any word w G V* by A can be decided in 0(\w\)
time. The language recognized by A is the set La = {u> G V* \ r{qo,w) G F}. We
say that the language L is recognizable if there exists a DFA A such that L = Lf\.
The following proposition, known as Kleene's theorem, is a fundamental result in
the theory, of automata.

Server Problems and Regular Languages 27

Proposition 2.1 A language is regular if and only if it is recognizable.

Moreover, given a regular expression E, a DFA recognizing the language defined
by E can be constructed effectively. Conversely, given a DFA A, a regular expression
defining La can be constructed effectively, too (see [HU]).

Prefixes. The prefix words and languages play very important role in this
paper, hence we pay more attention to them. Let A = (Q,V,r,q0,F) be a DFA.
Observe that, for any word w £ V*, w £ Lj holds if and only if r(qo,w) is not
a trap state. Recall that the set of trap states T C Q can be determined in
0(\Q\2\V\) time. Define the DFA B = (Q,V,r,q0,Q - T), then it should be clear
that Lb — Lj. By Proposition 2.1, we have that if L is a regular language, then
L- is also regular. Hence, the prefix problem is decidable for regular languages.

2.2 The language class ONREG0

We define a subclass ONREGQ of REG. The name ONREG0 refers to cer-
tain properties concerning server problems, which are explained later. The class
ONREGo is investigated for the first time in the present paper, hence, in addi-
tion to the definition, it is necessary to characterize it. We do this by presenting
three different definitions for ONREGo and proving their equivalence. The first
definition shows the inclusion ONREGo C REG immediately.

Definition 2.2 The class ONREGo is the smallest one, which obeys the following
rules.

(1) For any alphabet V, if w £ V* then {w} and {w}* are in ONREGQ.
(2) If L, V £ ONREGo then LV and LuL1 are in ONREGo •

That is, ONREGo is the smallest class, which contains every singleton language,
the closure of each singleton language, and closed for the finite union and the
concatenation. Roughly speaking, a language L £ ONREGo can be constructed
on the same way as a regular one, with the constraint that the closure operation
is allowed only for singleton languages. It can be shown that, if V is an alphabet
and |V| > 1, then V* $ ONREGQ. The second definition is very useful to prove
the main result of the paper.

Definition 2.3 ONREGo is the smallest class, which satisfies the following con-
ditions.

(1) For any alphabet V and w £ V*, { w } , {w }* £ ONREGQ.
(2) For any alphabet V, L £ ONREGQ and w £ V*,

L{w},L{w}* £ ONREGQ.
(3) If L, L' £ ONREGO then L U V £ ONREGQ .

The third definition describes explicitly, what kind of languages belongs to
ONREGQ.

28 B. Csaba, G. Daiiyi

Definition 2.4 Let V be an arbitrary alphabet and let L be a language over V.
Then L E ONREGQ holds if and only if L can be defined by a regular expressions
of the following form. There exist integers r, s > 0 and words Xi,j,yi,j E V*, where
1 < i < r and 1 < j < s, such that

L - LhKiKrXi^iy^i)* . ..Xij(yij)* . •. xitS(yitS)*.

Finally, we prove that the three definitions are equivalent. We perform this
showing that Definition 2.4 is equivalent to both the definitions 2.2 and 2.3. Sup-
pose that a language L can be defined by a regular expression of the form as in
Definition 2.4. Then it is easy to see that L can be constructed by the rules of
either Definition 2.2 or Definition 2.3. On the other hand, it is a routine exercise
to show by structural induction on the rules that any language obeying the rules
of either Definition 2.2 or Definition 2.3 can be defined by a regular expression of
the form as in Definition 2.4.

2.3 Server problems and satisfying algorithms
Let M = (V, <5) be a finite metric space, where V = {vi,... ,vn} is the set of
points and S : V x V —» R + is the distance function. Thus, for any u, v. v' E V,
6(u,v) = S(v,u) and 6(u,v) < S(u,v') +S(v',v) hold. Moreover, 6(u,v) = 0 if
and only if u and v are identical. Note that M can be represented as an n-vertex
complete graph Gm, where the vertices are labeled by the elements of V and the
edges are weighted as determined by 5. We put 8max — maxi<i j<n S(vl, Vj).

There are k mobile servers occupy exactly k vertices of Gm • We assume that
1 < k < n and n > 3. Note that the other cases are trivial and irrelevant from
the point of view of our paper (see later). Suppose that there is a server on the
vertex Vi and there is no one on Vj. Then moving the server from Vi to Vj costs
5(vi,vj). Let the metric space and the number of servers be arbitrary, but fixed in
the sequel. We use the symbols n and k to denote the number of vertices and the
number of servers, respectively.

A configuration (or a state) a is a word i\.. .ik E {1 , . . . ,n } f c , where ij < ij+i
holds for each 1 < j < k, showing that the servers are on the vertices v^,..., Vik.
It is easy to see that there are exactly (£) different configurations. A configuration
can be changed by moving a server from an occupied vertex to an empty one.

A request is a letter Vi E V. A satisfaction of the request in a given starting
configuration is a sequence of movements of some servers, such that the resulting
configuration contains i, that is, there is a server on the vertex Vi. The cost of the
satisfaction is the sum of the costs of its movements. Observe that a request vt can
be satisfied with no movements if and only if the starting configuration contains
i. Moreover, any request can be satisfied by one movement of one server in any
starting configuration.

A request word is a sequence of requests, that is a word over V. A satisfaction of
a request word u> = v\ . . . Vi in a given starting configuration is the sequence of the
satisfactions of the requests vi,...,vi after each other. The cost of a satisfaction is
the sum of the costs of the satisfactions of composing requests.

Server Problems and Regular Languages 29

Satisfactions are denoted by the symbol S in the sequel. By |S| we mean the
cost of the satisfaction S. For any satisfaction S, we denote the starting and
the resulting configuration of S by as and as, respectively. A decomposition of
the satisfaction S of a word w is a sequence Si,..., Si of satisfactions of words
w i , . . . ,wi, such that w = w i . . . u>i, as1 = as and as{ = f s i + i (1 < i < Z) hold,
and the satisfaction of w by applying S i , . . . ,5; after each other gives exactly S.
Then we write S = Si... Si.

Clearly, for any request word w, there is a satisfaction with minimal cost in
a given starting configuration a, called an optimal satisfaction of w. Denote that
cost by optCT(u;). Let a and a' be different configuration, then it should be obvious
that ¡opt„.(?/;) — opt0./(w)| < kSmax. If the starting configuration a is understood,
then we write simply opt(w). Let the starting configuration be arbitrary, but fixed
in the sequel.

Let w € V* be a word such that w = wivnw2 holds, for some wi,w2 £ V*,
v e V and n > 1. Then it is easy to show that o^t(wivnw2) = opt(wii;w2)- It
follows that, for any word w, opt(w) = opt(lr(w)) holds.

The following results characterize the word composition and decomposition from
the point of view of optimal satisfactions.

Lemma 2.5 Let w £ V*. Consider an arbitrary decomposition w = Wiw2, where
wi,w2 € V*. Then the following statements hold.

(1) opt(wi) + opt(w2) < opt(w) + kSmax

(2) opt(w) < opt(wi) + opt(w2) + kSmax

Proof. There exist satisfactions, denoted by S, Si and S2, with the costs
opt(w), opt(u)i) and opt('(«2) for the request words w, wi and w2, respectively,
in the starting configuration cr.

The satisfaction S can be decomposed as S = S'S", where S1 is a satisfaction
of wi in a, and S" is a satisfaction of w2 in as'• Observe that it is easy to
transform 5" to a satisfaction of w2 in a such that, before starting S", we change
the starting configuration a to as' by moving the appropriate servers. Clearly,
this modification costs at most k8max. Now suppose the contrary of (1), that is,
opt(wi) + opt(w2) > opt(w) + kSmax. Then, by the above results, it is easy to see
that either S' must be a more optimal satisfaction of wi than Si in a, or S" with
the above modification should cost less than S2 in a. Both contradict that Si and
S2 have optimal costs, hence the statement (1) holds.

Now consider the following satisfaction of w in a. Satisfy the prefix wi by Si,
then recover the starting configuration a and satisfy the suffix w2 by S2. The
satisfaction Si costs opt(wi), the recovery of the starting configuration costs at
most k5max and S2 costs opt (w2). Hence, the cost of the satisfaction is at most
opt(wi) + opt(w2) + kSmax, which implies (2). •

Roughly speaking, for a given metric space and number of servers, our goal is
to find satisfactions with minimal costs for request words. More precisely, we want
to find an algorithm, which gives server moving sequences with minimal cost to
satisfy any possible request word.

30 B. Csaba, G. Daiiyi

In this paper we consider such kind of algorithms, which are deterministic and
computes the satisfaction of any request word in any starting configuration, that
is, the server moving sequence of the satisfactions letter by letter. For the sort, we
call simply algorithm the ones in the sequel, which have the above properties.

Let A be an algorithm, let to be a request word and let a be the starting
configuration. Then the cost of the satisfaction of w given by A in a is denoted by
Aa(w). If a is understood, we write simply A(w).

We say that an algorithm is lazy, if, for any request and starting configuration,
it moves at most one server to satisfy the request. Otherwise, the algorithm is said
eager. Clearly, for any request word, there exists a lazy algorithm which satisfies
it. The following statement has been shown in [MMS].

Propositon 2.6 For every eager algorithm, there exists a lazy one such that, for
any request word, the satisfaction given by the lazy one costs no more than the
satisfaction given by the eager one.

This result provides that it is enough to find an eager algorithm, if we want to
show the existence of a lazy one with respect to any cost limit. If the type of an
algorithm is not defined explicitly, we mean eager one in the sequel.

There is an another classification of algorithms. An algorithm is said off-line,
if it reads the whole request word first, then computes a satisfaction of that one.
Moreover, an algorithm is called on-line, if it reads the request words from left to
right, and reading a letter it gives the satisfaction of that request before reading
the next one.

Let c > 1 be a real number and let L C V* be a language. An algorithm A
is said c-competitive on L (with the constant K), if A(w) < copt(w) + K holds
for each w £ L, where K depends on only A and L. Clearly, if an algorithm A is
c-competitive on a language L, then it is c-competitive on any sublanguage /.1 C L,
too. Hence, if an algorithm is efficient on V*, then it is efficient on any language over
V. Obviously, for any alphabet V, there exists a 1-competitive off-line algorithm
on V*.

We note that it has been proved in [CKPV] that there exists an off-line algo-
rithm, which gives the optimal satisfaction of any word w £ V* in 0{k\u>\2) time;
Hence, we can conclude that, for an arbitrary language L, there exists a polynomial
1-competitive off-line algorithm on L.

The class of on-line algorithms has not so nice property. Up to this time, the
known best competitive ratio of any on-line algorithm on V* is 2/c — 1 (see [KP]).
Moreover, a lower bound was presented in [MMS], which shows that the competitive
ratio of any on-line algorithm on V* is at least k. The question naturally arises that
is it possible to reduce the competitive factor of on-line algorithms, if we consider
only a special class of languages (e.g. ONREGo)? Recall that V* £ REG holds,
for any alphabet V, hence REG is not suitable for this purpose.

If it is not defined explicitly, by an algorithm we mean an on-line one in the rest
of the paper.

Server Problems and Regular Languages 31

A language L C V* is said c-competitive, if, for every M and k, there exists
an algorithm, which is c-competitive on it. The 1-competitive languages are called
on-line languages. The class of all on-line languages is denoted by ONLINE.

Lemma 2.7 Every finite language is on-line.

Proof. Suppose L = {wi,...,wm} is a finite language. We put I =
maxi<t<ni \wi\. Let A be an arbitrary algorithm for L. Clearly, for any w G L,
A(w) < opt(w) + lSmax. •

The properties of prefix words and prefix languages concerning the server prob-
lem are cornerstones in our proofs. Let L be an on-line language and let the algo-
rithm A be 1-competitive on L. Suppose that w £ L and w = w\w2. Then, by (2)
of Lemma 2.5, ^.(ui) = .A(wjiw2) < opt(w) + K < opt(u)i) + opt(ui2) + kSmax + K.
Now let S = S\S2 be the satisfaction of w given by A, where S\ is the satisfaction
of the prefix wi and ,S2 is the satisfaction of the suffix w2. Clearly, |Si| > opt(wi)
and kSmax + 1521 > opt(1^2)* Hence the following statements hold.

Observation 2.8 If A is a 1-competitive algorithm on a language L with the con-
stant K, w G L and w = W\W2, then

(1) A(wi) < opt(wi) + 2k5max + K and
(2) the cost of A on the suffix w2 is no more than opt(w2) -I- k6max + K.

By (1) of Observation 2.8, we have the following result immediately.

Theorem 2.9 If A is a 1-competitive algorithm on a language L with the constant
K, then A is 1-competitive on L- with the constant 2kSmax + K.

3 The languages in ONREGo are on-line
The name ONREGo refers to the property of this class that it consists of on-line
regular languages. However, it does not contain all on-line regular language.

In this section we prove that the languages in ONREGo are on-line. We do
this by executing structural induction on the rules of Definition 2.3.

As the basic step of the structural induction, we prove that the languages {w}
and {'(/;}* are on-line, for any word w (see (1) of Definition 2.3).

Lemma 3.1 Let w be an arbitrary word over an arbitrary alphabet. Then {w\ and
{w}* are on-line languages.

Proof. As for the on-lineness of the language {?/;}, it immediately follows from
Lemma 2.7. However, it also implied by the on-lineness of { w } * , since { w } C {-«;}*.

We construct a 1-competitive algorithm A on {«;}*. Informally speaking, A
works as follows. We find a satisfaction S on an appropriate »-sequence, which has
minimal cost density and results the same configuration as the starting one. Then
A applies S_ repeatedly on any w-sequence.

32 B. Csaba, G. Daiiyi

We need some preparations. A satisfaction 5 of a request word wms (ms > 1)
is called circular on w, if as = holds. Denote the set of all circular satisfactions
on w by CSATW. Moreover, a satisfaction 5 of a word wms (ms > 0) is called
noncircular on w, if either ms = 0, or ms > 1 and S = S\... Sms, where each
Si is a satisfaction of the word w and ast ^ ass, for any 1 < i < j < I. Denote
the set of all noncircular satisfactions on w by NCSATW. Observe that, since the
number of different configurations is (£), ms < (£) should hold for any noncircular
satisfaction S.

Let the satisfaction S_ € CSATW be such that is minimal in CSATW and
ms is minimal with respect to the subset of CSATW determined by the previous
condition. Roughly speaking, S is one of the shortest satisfactions in CSATW,
which has the minimal cost density.

We show that S_ exists arid it can be computed. We prove this by showing that
it is enough to consider only such kind of satisfactions S, for which ms < (1) — 1
holds. Suppose that ms > (£) — 1. Decompose S as S = S i . . . S m s , where each Si
is a satisfaction of the word w, for any 1 < i < ms- Clearly, as = <?Si = ^s = °sms

and a Si = • The number of different configurations is (£), hence at least one
of the following cases holds.

(i) There is an integer i, where 1 < i < ms, such that as; = Let S[=
Si... Si-1 and S2 = Si... Smi• Then S = 5(5^ and S[,S'2e CSATW hold.

Clearly, ms = m s ; + m S ; and \S\ = |S[| + \S^\. Hence, either Jgf < ^J or

< which contradicts the minimality of ms-

(ii) There are integers i and j, where 1 < i < j < ms, such that as, — as} • Let
S[= Si... Si-i, S2 = Si... Sj-i and S'3 = Sj... Sms. Then S_ — S^S^ and
S[S^,S!2 e CSATW hold. Clearly, ms = rnS[S'3 +ms~2 and |5| = +
It is easy to see that either j f ' '?3 ̂ < or < , which contradicts the

J mc/ c/ — ms mc/ — ms ' 13 — s2 — minimality of ms-

We have ms < (£) - 1- The subset of CSATW, which consists of the satisfactions
S obeying ms < — 1, is finite, hence S can be computed.

Let now the algorithm A work as follows. Starting the satisfaction of a re-
quest word in {iu}*, A changes the starting configuration to as, then applies the
satisfaction S repeatedly to the end of the input word. Clearly, A is on-line on
M * .

We prove that A is 1-competitive on {«;}*. Suppose that the input word is wm,
where m > 0. Let p the smallest integer such that p > Then, by the definition
of A,

A(wm) < kdmax+p\S\ (*)

holds. Denote by 5 an optimal satisfaction of wm in the given starting configu-
ration, thus |S| = opt(wm). It is an easy exercise to show that the satisfaction

Server Problems and Regular Languages 33

S can be decomposed as S — S0S1S1.5/5/, where 5i , 52 , • • •,5/ £ CSATW and
5o5i - . .5 / £ NCSATW. By the property of noncircular satisfactions, we have
mSa - Si < (fc)- Moreover, by the choice of S, < holds, for each 1 < i < I.
Now we can calculate as follows.

A(wm) - opt (u ; m) < p|5| + kSmax - J2i<i<i |5i|
(by (*) and \S\ = opt(wm))

< kSmax + (jmis-^i<i<imsi)^l
(b y M < jJd).

Moreover, since
Pms - E i ^ r c / ™ ^ ^ pms-m-1-(£)

(by m = Ei<,</m5,- +mSo-Sn mso-s, < H))

< ms + (nk)
(by the choice of p),

we have
< opt(wm) + (kSmax + |5| + - M (f)) .

m s Vs/
Hence A is 1-competitive on {w}*- •

In the next step of the structural induction, we prove that the two construction
rules defined in (2) of Definition 2.3 preserve the on-lineness.

Lemma 3.2 For any alphabet V, language L € ONREGq and word w £ V*, if L
is on-line, then L{w} and L{w}* are also on-line languages.

Proof. Since L{w} C L{w}* holds, it is enough to show that L{w}* is on-line
to prove the lemma.

The language L is on-line, hence there is an algorithm A\, which is 1-competitive
on it. Moreover, by Lemma 3.1, the language {u;}* is on-line. Let Ao be a 1-
competitive algorithm on {ui}*. We construct a 1-competitive algorithm A on
L{w}*. Informally, A applies A\ as long as possible, then finds the beginning of
the remainder -(«-sequence (if there is) and applies A2 to the end of the request
word.

Observe that every input word is of the form xwm, where x £ L and m > 0.
Let x £ L and m > 1 be arbitrary, but fixed in the sequel. (As for the case
m = 0, the 1-competitiveness of A will follow from its construction immediately.)
Observe that xwm can be decomposed unambiguously as xwmi wiw2wm2, where
m = mi + m2 + 1) w\w2 — w and xwmiw\ is the longest prefix of xwm, which is
in

Let the algorithm A work as follows.

1. While the scanned prefix of the input word xwm is in L-, A applies Ai.
Observe that in this way Ai is applied exactly on xwmi wi.

2. Then A reads the letters successing xwmiwi, satisfies them arbitrarily and
stores their concatenation, until the stored word is of the form yw or the

34 B. Csaba, G. Daiiyi

input ends. Since |xl»2| < |iw|, it should be clear that, for any input word, less
than 2\w\ letters are to be read in this step.

3. If there are no more letters left on the input, then A terminates. Otherwise,
observe that W2Wm2 = ywwm2~1y' should hold, for some y, where yy' = w2

and y' C w. Moreover, the rest of the input is wTrl2~1y', hence A) can be
applied on the remainder input without any difficulties. Let A apply A2 on
the rest of the input.

Now we prove that .4 is 1-competitive on L{w}*. Supposing xwm £ L- (m > 0),
by Lemma 2.9, A(xwm) < opt(a;u;n) + K\ 4- 2kdmax holds. Now suppose that
xwm g L-. Clearly, in this case TO > 1 should hold. We can calculate as follows.

A(xwn) < Ai(xwmiwi) + 2\w\8max + A2(wm»)
(by the construction of A)

< opt(a;u;miK;i) + Kx + 2 kSmax + opt(w™2) + K2 + 2\w\6max

(by Lemma 2.9)
< opt (xwmiw1w2) + opt (wm2) + K1+K2 + 2 (k + |w\)5max

< opt (M) m i wiw 2 w m !) + k8max + K1+K2 + 2{k + \w\)Smax

(by Lemma 2.5)
= opt(xwm) + (Ki + K2 + {3k + 2\w\)6max)

Hence A is 1-competitive on L{w}*. •

Finally, we have to check the construction rule defined in (3) of Definition 2.3
to complete the proof.

Lemma 3.3 For any languages Li,L2 £ ONREGq, if both L\ and L-2 are on-line
then the language L\ U L2 is on-line, too.

Proof. Since LI and L-2 are on-line languages, there exist algorithms AI and
A2 such that, for any words w 1 £ LI and W2 £ L2, .4i(wi) < opt(wi) 4- K\ and
A2(w2) < opt(i«2) + K2 hold, where K\ and K2 are constants. We construct an
algorithm A, which is 1-competitive on L\ U L-2.

Let the input word be an arbitrary w £ L\ U L2- The algorithm A works as
follows.

1. Reading the next letter of W, on the basis of the scanned prefix W' QW, A
tries to decide that W which of the languages LI and L2 belongs to. Recall
that both w' £ Lf or w' £ are decidable. While this cannot be decided
unambiguously, A computes the satisfactions and the new configurations de-
termined by both Ai and A2, but satisfies the request as suggested by At •
However, it stores the configuration computed by A2-

2. If A detects that w cannot be in L2, then it finishes the satisfaction of ru con-
tinuing by Ai. Otherwise, if it turns out that w is not in Lx, then A changes
the configuration to the one stored for A2, and completes the satisfaction of
w by A2.

Server Problems and Regular Languages 35

We show that it is 1-competitive on L\ U L2. Observe that, for any input word
w G L\ U L2, exactly one of the following two cases holds.

(i) w G Ly- By the construction of A, in this case A(w) = Ai(w) holds. Since
A\ is 1-competitive on L\, by Proposition 2.9 we have A(w) < opt(w) + K\ +
2к6тах , where K[is a constant.

(ii) w G (L2 — L f) . In this case A works as follows. The word го can be decom-
posed unambiguously as w — w\w2, where w\ is the longest prefix of w such
that u>i £ L f . The algorithm A implements A\ on w\, changes the config-
uration and implements A2 on w2. Recall that changing the configuration
costs at most k6max. We can calculate as follows.

_4(ги) < Ai(wi) + к6тах + opt(w2) + K2 k&max
(by (2) of Observation 2.8)

< opt(u;i) + Ki + 2 kSmax + opt(w2) + K2 + 2 k6max

(by Lemma 2.9)
< opt(i«) + (Кг + K 2 + Ш т а х)

(by (1) of Lemma 2.5)

We have that A is 1-competitive on L\ U L2. •

With this, we are ready to prove the main result of our paper.

Theorem 3.4 Every language in ONREGq is on-line. Moreover, given a language
L G ONREGo, an algorithm can be constructed effectively, which is 1-competitive
on L.

Proof. Recall that every language L G ONREGo can be constructed as de-
scribed in Definition 2.3. Hence, by the lemmas 3.1, 3.2, 3.3 and by the principline
of structural induction, we have that L G ONLINE holds. Moreover, by the ap-
plication of the constructions in the proofs of the above lemmas, a 1-competitive
algorithm can be given for L. •

Recall that opt(w) = opt(lr(w)) holds, for any word w. Moreover, the competi-
tive ratio of any algorithm on any sublanguage of a given language is no more, than
its competitive ratio on the whole language. By these observations, we can show
the on-lineness of certain other languages, which can be even not regular.

Corollary 3.5 For an arbitrary language L, if there exists a language L' G
ONREGo such that L C L' or lr(L) C L' hold, then L is on-line. Moreover,
in this case a 1-competitive algorithm can be constructed effectively for L.

Finally, we present three examples for the application of Corollary 3.5.

(1) The language Li = {anbncn | n > 0} is a well known nonregular language.
However, by Corollary 3.5, it is on-line, since lr(Li) = {e,abc} G ONREGo-

36 B. Csaba, G. Daiiyi

(2) Consider L2 = {w"w£ | n > 0}, where wi and w2 are arbitrary words. Note
that generally L2 is not regular. However, L2 G ONLINE follows from the
fact that L2 is a subset of the language (wi)*(w2)*, which is in ONREG0.

(3) It can be shown that L3 = (a U abc)* is not in ONREGo, but it is regular.
Observe that L3 can be defined by (a*abc)*a* as well. Since lr((a*abc)*a*) C
(abc)*a* G ONREGo, we have that L3 is on-line language.

4 Related results
The question obviously arises that if there exists an on-line language L, of which
the on-lineness cannot be proved by Corollary 3.5? (That is, such L that lr(Z-)
is not a subset of any language in ONREGo) Specially, is there such kind of
language in REG? These problems are open up to this time. However, we have
the following results, which shows that if there exists a language in REG with the
above property, then it should be very special one.

Recall that the construction of a language in ONREGo differs from the con-
struction of a general regular one in the point that the closure operation is al-
lowed only for singleton languages. Moreover, by Theorem 3.4, every language in
ONREGo is necessarily on-line. Hence one can guess that, roughly speaking, a
regular language may loose the on-lineness, when the closure is applied for a mul-
tielement set during its construction. The following lemma shows that this really
holds in most cases.

Theorem 4.1 Let V be an arbitrary alphabet with \V\ > 3. Consider any two
words Wi, w2 G V* such that Wi contains at least two different letters and there is
a letter in w2, which does not occur in wi. Then the language (Wi Uu^)* is not
on-line.

Proof. Assume that the number of servers (i.e. k) is 2. It is sufficient to show
that there exists a metric space M = (V, S), in which the competitive ratio of L is
greater than 1.

Denote by a the letter, which occurs in w2 and not contained by wi. For any
different letters u,v G V — {a}, let S(u,v) = 1 and, for each v G V — {a} , let
5(v, a) = D, where D is defined later-. Suppose that the starting configuration
always contains a server on a.

Let us consider a request-answer game, where a requester R plays against an
algorithm A. In each round, R gives a request, which is satisfied by A immediately.
We show that defining an appropriately large D, for any algorithm A, R has a
strategy providing that the difference of the costs of the satisfaction generated by
A and the optimal one grows unboundedly. This implies that the competitive ratio
of L is greater than 1.

Let H = {w2w\w2, • • • ,w2w[w2}, where t > 1 is defined later. We assume that
the request words composed by R are chosen from H*. Since H* C L, to prove the

Server Problems and Regular Languages 37

lemma, it is enough to show that H* is not on-line. Observe that any word w £ H*
consists of sections of the form w2w{w2, where 1 < s < t.

Let R compose its request words dynamically, sections by sections, obeying the
following rules.

Rule 1 If, for some 1 < s < t, there is a server on a, when w2wl~l is satisfied, and
A moves that server processing the next (sth) wi, then let this section be
w2wfw2- Specially, if A moves the server from a while satisfying the initial
W2, let R chose W2W\W2-

Rule 2 If A does not move the server from a while processing the wi-s, then let R
choose u)2w\w2.

We need some technical preparations. Since wi contains at least two different
letters, it should be clear that |lr(wi)| > 2. Moreover, for any wi, one of the
following cases holds, where s > 1.

Case 1 first (wi) ^ last(wi). Then |lr(wf)| = s|lr(wi)|.

Case 2 first (wi) = last(wj). Then |lr(wf)| = s(|lr(Wl)| - 1) + 1.

Suppose that a section is chosen by Rule 1. Then the cost of the satisfaction
by A is at least (s - l)|lr(iui)| + D in Case 1, and (s - 1)(|lr(it»i)| - 1) + 1 + D
in Case 2. However, if we do not move the server on a, then this section could
be satisfied with cost no more than |lr(iC2)| + s|lr(wi)| + |lr(u/2)| in Case 1, and
|lr(w2)| + s(|lr(wi)| - 1) + 1 + |lr(i02)| in Case 2. Hence, if

D > |lr(t«i)| + 2|lr(w2)|

holds, then A is more expensive on this section than the our one.
Now suppose that the section is determined by Rule 2, that is A does not move

the server from a during the processing of wi-s. Then the cost of A is at least
i|lr(wi)| in Case 1, and t(|lr(wi)| — 1) + 1 in Case 2. However, if we move the server
from a to first(wi) after the initial iw2, leave there while processing the Wi -s, and
move back to a before the final w2, then this section costs at most |lr(w2)| + D +
i(|lr(wi)|-l)+£> + |lr(w2)| in Case 1, and |lr(u>2)|+£> + f(|lr(u>i)|-2) + £> + |lr(w2)|
in Case 2. Therefore, if

t > 2|lr(u>2)| + 2D

holds, then A is more expensive than the our one.
For any words wi and w2, the values of D and t can be computed and fixed as

above. We have that, for an arbitrary on-line algorithm A, R has a strategy, which
proves that A costs more than an off-line algorithm. Since an input word w e H*
can contain arbitrary many sections, this difference grows unboundedly, hence A is
not 1-competitive. This implies that H* (and hence L) is not on-line language. •

Generally, a regular language is defined by a regular expression. The follow-
ing result shows that if a subexpression defines a not on-line language, then the
language defined by the whole expression cannot be on-line.

38 B. Csaba, G. Daiiyi

Theorem 4.2 Let the language L defined by the regular expression E. Consider
any subexpression E' of E. If the language defined by E' is not on-line then L is
not on-line, too.

Proof. It is a routine exercise to prove the theorem using structural induction
on the defining rules of REG. •

We show two examples for the application of theorems 4.1 and 4.2.

(1) The language (a U be)* is not on-line by Theorem 4.1.

(2) Consider the regular expression ((abc U bed)*d U abed)*. Its subexpression
(abcUbcd)* defines a not on-line language by Theorem 4.1, hence, by Theorem
4.2, the language defined by the whole expression is not on-line, too.

Finally, we summarize some abstract properties of the language class ONLINE
in the following theorem.

Theorem 4.3 Let Li and L2 be arbitrary on-line languages, then
(1) for any L C L\, L is on-line,
(2) £f is on-line,
(3) L\ P) L2 is on-line,
(4) if the prefix problem is decidable both for Li and L2,

then Li U L2 is on-line,
(5) LI is generally not on-line,
(6) L\ is generally not on-line.

Proof. The statements (1) and (2) have been proved earlier in this paper.
Moreover, (3) follows from (1) immediately. We can get (4) by slightly modifying
the proof of Lemma 3.3. The statement (5) can be proved by Theorem 4.1. For
proving (6), let us assume, that Li = {t/j}*, and let u be a letter, which is different
from the last letter of w. Let w\ and ui2 be any words satisfying the conditions
in Theorem 4.1. Then we have that (wiu\Jw2u)* C L\. Thus, L\ is not on-line
language. •

References
[BIRS] Borodin, A., Irani, S., Raghavan, P., Schieber, B., Competitive Paging with

Locality of Reference, STOC 91, pp. 249-259

[CKPV] Chrobak, M., Karloff, H., Payne, T. and Vishwanathan, S., New Results
on Server Problems, SIAM J. Disc. Math., Vol. 4, No. 2, May 1991, pp. 172-181

[FK] Fiat, A., Karlin, A., Randomized and Multipointer Paging with Locality of
Reference, STOC 95, pp. 626-634

Server Problems and Regular Languages 39

[KP] Koutsoupias, E. and Papadimitrou, C., On the k-Server Conjecture, STOC
94, pp. 507-511

[HU] Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Series in Computer Science, 1979

[MMS] Manasse, M. S., McGeoch L. A. and Sleator, D. D., Competitive Algorithms
for Server Problems, Journal of Algorithms 11 (1990), pp. 208-230

[ST] Sleator, D. D., Tarjan, R. E., Amortized Efficiency of List Update and Paging
Rules, Comm. of the ACM, February 1985, pp. 202-208

[W] Winskel, G., The Formal Semantics of Programming Languages, An Introduc-
tion, The MIT Press, Foundations of Computing Series, 1993

Received May, 1996

Acta Cybernetica 13 (1997) 41-54.

On a^-products of nondeterministic tree automata*

B. Imreht

Abstract
In this paper, we characterize the isomorphically complete systems of non-
deterministic tree automata with respect to the family of «¡-products. In
particular, our characterization yields that any finite nondeterministic tree
automata can be embedded isomorphically into a suitable serial product of
two-state nondeterministic tree automata.
Keywords: nondeterministic tree automata, composition, completeness

1 Introduction
Isomorphic representation of automata by different compositions is one of the cen-
tral problems in the theory of automata. One line of the researches is to char-
acterize those systems of automata which are isomorphically complete, i.e., every
automaton is an isomorphic image of a subautomaton of a product from them.
Most of the studies regarding characterizations of isomorphically complete systems
concern deterministic automata or deterministic tree automata. We quote only
[1],[3],[4],[7],[9],[10],[11], and [15]. On the other hand, together with the spread of
parallel computation, the importance of nondeterministic automata is increasing.
This is the motivation to deal with the representations of nondeterministic au-
tomata. The first description of the isomorphically complete systems of nondeter-
ministic automata with respect to the general product was given in [5]. In the work
[6], it is proved that the cube-product is equivalent to the general product regard-
ing isomorphically complete systems of nondeterministic automata. The isomorphic
representation of a special class of nondeterministic automata is investigated in [12].
The notion of c^-product (cf. [2], [3]) was extended to nondeterministic automata,
and the isomorphically complete systems were characterized with respect to this
hierarchy of products in [14]. From this characterization, it turns out that contrary
to the deterministic case, in the nondeterministic case, there exist finite isomorphi-
cally complete systems with respect to the a0-product, furthermore, the a,-product
is equivalent to the general product regarding isomorphically complete systems if
i > 1. The isomorphically complete systems of nondeterministic tree automata

'This work has been supported by the the Hungarian National Foundation for Scientific Re-
search, Grant 014888 and and the Ministry of Culture and Education of Hungary, Grant 223/95.

tDept. of Informatics, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary

41

42 B. Imreh

with respect to the general product and the cube-product are studied in [13] where
it is proved that these compositions are equivalent regarding isomorphically com-
plete systems. Here, using the characterization presented in [13] and extending the
notion of «¿-product to nondeterministic tree automata, we generalize the result of
[14] for nondeterministic tree automata. Namely, we prove that there exist finite
isomorphically complete systems of nondeterministic tree automata with respect
to the a0-product, moreover, the «¿-product is equivalent to the general product
regarding isomorphically complete systems of nondeterministic tree automata if
i > 1.

The paper is organized as follows. In Section 2, the necessary notions and
notations are introduced. The following part, Section 3, presents the characteri-
zation of the isomorphically complete systems of nondeterministic tree automata
with respect to the ao-product. Finally, Section 4 is devoted to the description of
the isomorphically complete systems of nondeterministic tree automata regarding
«¿-product with i > 1.

2 Preliminaries
To start the discussion, we introduce some notions and notations of relational
systems (cf. [8]). By a set of relational symbols, we mean a nonempty union
E = Ei U U . . . where £ m , m = 1,2, . . . , are pairwise disjoint sets of symbols.
For any m > 1, the set £ m is called the set of m-ary relational symbols. It is said
that the rank or arity of a symbol a £ E is m if a £ £TO. Now, let a set E of
relational symbols and a set R of positive integers be given. R is called the rank-
type of E if, for any integer m > 0, £ m / 0 if and only if m £ R. In the sequel, we
shall work under a fixed rank-type R.

Now, let E be a set of relational symbols with rank-type R. By a nondetermin-
istic E- algebra A, we mean a pair consisting of a nonempty set A and a mapping
that assigns to every relational symbol a £ E an m-ary relation aA C Am where
the arity of a is m. .The set A is called the set of elements of A and aA is the
realization of a in A. The mapping a aA will not be mentioned explicitly, we
only write A = (A, E). For every m £ R, a £ E m , and (a i , . . . , a m _ 1) G A771"1,
we denote the set {a : a G A & <rA(ai,..., aTO_i, a)} by (a i , . . . , am-i)aA. If
(a i , . . . ,am-x)aA is a one-element set {a}, then we write (a i , . . . , am_ i)crA = a.

It is said that a nondeterministic E-algebra A is finite if A is finite, and it is of
finite type if E is finite. By a nondeterministic tree automaton, we mean a finite
nondeterministic E-algebra of finite type. Finally, it is said that the rank-type of a
nondeterministic tree automaton A = (A, E) is R if the rank-type of E is R.

Let A = [A, £) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m G R and a £ E m ,
<Tb is the restriction of aA to Brn. A one-to-one mapping p, oi A onto B is called
an isomorphism of A onto B ifaA(ai,... ,am) if and only if aB(/j.(ai),... ,fi(am)),

On ai-products of nondeterministic tree automata 43

for all m E R, (ai, • • • , a m) E Am, o E Em . In this case, it is said that A and
B are isomorphic. It is easy to see that p, is an isomorphism of A onto B if and
only if (a i , . . . ,am-i)crAiJ. = (Mai)> • • • > M a m - h o l d s , for all m E R, a E E m ,
(a i , . . . , a m _ i) E A™-1.

In the case of classical automata, a composition of automata can be visualized
as a network in which each vertex denotes an automaton and the actual input sign
of a component automaton may depend on the input sign of the whole composition
and only on those automata which have a direct connection to the component
automaton under consideration. From practical point of view, one of the most
self-evident networks is the well-known serial or cascade connection. In this case,
the composition can be considered as a chain in which each machine has a direct
connection with all the previous ones. Generalizing this concept, F. Gecseg [2]
introduced a family of compositions, the aj-products, where i is a nonnegative
integer which denotes the maximal admissible length of feedbacks. Now, we extend
the notion of «¿-product to nondeterministic tree automata.

Let us denote the class of all nondeterministic tree automata with rank-type R
by U f i . In general, a composition of nondeterministic tree automata from UR can
be visualized as a network in which each vertex denotes a nondeterministic tree au-
tomaton in UR and the actual relation of a component automaton may depend on
the relational symbol of the whole composition and only on those nondeterministic
tree automata which have a direct connection to the component under considera-
tion. In particular, the formal definition of the «¿-product of nondeterministic tree
automata can be given as follows.

Let i be an arbitrary nonnegative integer. Let us consider the nondetermin-
istic tree automata A = (A, E) E Ur and Aj = E UR, j = L , . . . ,n.
Furthermore, let us take a family of mappings

:<{Ai x . . . x Aj+i- !)™- 1 x Em £ « , m E R, 1 < j < n .
>

It is said that A is the «¿-product, of Aj, j = 1 , . . . ,n, with respect to if the
following conditions are satisfied:

n
(i) A = l [A j ,

j=i

(ii) for any m E R, a E £ m and ((01,1,..., o i , n) , . . . , (am - i , i , • • •, am - i ,n)) £
A" ' - 1 ,

((al,l> • • • > al,ra), • • • , (Om-1,1) • • • , Om-l.n))«7"4 =

(«1,1,..., flm—x . . . x (a i , n , . . . , ,
where

44 B. Imreh

= ^7ni((ai ,ii • • • , a i j + i - i) , •. -, (am-i,i, • • •, am_i i i + :)_i), a), j — 1 , . . . ,n .

We shall use the notation

n

3 = 1
for the product introduced above. In particular, if Aj, j = 1 , . . . ,n, are identical
copies of some nondeterministic tree automaton B, then we speak of an ai-power
and we write $) for []"=i *) .

Let B be a system of nondeterministic tree automata from U^. It is said
that B is isomorphically complete for UR with respect to the oii-product if any
nondeterministic tree automaton from UR is isomorphic to a subautomaton of an
«¿-product of nondeterministic tree automata in B.

3 ao-product
In this section, we deal with the first member of this family of products, the a 0 -
product, which correspondes to the serial composition. In this case, the feedback
functions can be given as follows:

:E i - > E i i) , j = l , . . . , n , if 1 £ R ,

1 ¿meR,

<Hmj : (Ai x . . . x A , - !) " 1 - 1 1 / m e f l , 2 < i < n .

In what follows, we need a special two-state nondeterministic tree automaton
which is defined in the following way. For all m € R, let us assign a symbol to each
m-ary relation on {0 ,1} . Let S m denote the set of these relational symbols and let
S = U m 6 f iE m . Let us define the nondeterministic tree automaton Q = ({0 ,1 } , E)
such that, for every m £ R and a € E m , is the corresponding m-ary relation on
{0 ,1} .

The following theorem provides necessary and sufficient conditions for a system
of nondeterministic tree automata from UR to be isomorphically complete for U / j
with respect to the ao-product.

Theorem 1. A system B of nondeterministic tree automata from U/f is iso-
morphically complete for U^ with respect to the ao -product if and only if

On ai-products of nondeterministic tree automata 45

(a) there exists a nondeterministic tree automaton A* — (A*, £*) £ B such that
A* has two different elements aj, a{, and for every 1 / m £ fi, there is a om £ £*,
for which (a*Sl,... ,a*Srnl)o£* D { a j , a i } is valid, for all (s i , . . . s m _ i) £ {0, l } m _ 1 ,
furthermore, there is a o\ £ Ej with {aQ,aJ} C of if 1 £ R,

(b) for all rn £ R and i = (¿1,... ,im) £ {0, l}m, B contains a nondeterministic
tree automaton AW = (¿(D ,EW) satisfying the following conditions:

(bl) A'*' has two different elements a^ and a'1^,

(b2) there exists a <7; € with (a^,.. • .a j^Jai 4 ' 1 ' (~1 {a^^.a^} = { a j j } ,

(b3) for all 1 u £ R and s = (s i , . . . , s„_i) £ {0, l } 1 1 - 1 , there is a trj s £ E«^

for which { a ^ a ^ } C (ai*', . . . , K f g 1 ' > furthermore, there is a ctj £ E ^ with

{a£\a?}Cofh iflER.

Proof. To prove the necessity, let us suppose that B is an isomorphically com-
plete system of nondeterministic tree automata for U « with respect to the ao-
product. Then there are Aj = £ B, j = 1 , . . . ,n, such that Q is isomor-
phic to a subautomaton A — (A, E) of an ao-product n£=i Let p denote
a suitable isomorphism and let

M(0) = (ao,i,- • • ,a0,„) and /u(l) = (a l t l , . . . ,ai,„).
Let us denote by k the smallest index with ao:k ^ ai.fc- Then we prove that Ak
satisfies condition (a). For this purpose, we distinguish two cases depending on m.

Let us suppose that m ^ 1. By the definition of Q, each m-ary
relation on {0 ,1} has a relational symbol in Em . Thus, there exists a
o m 6 2jm such that CT^ is the complete m-ary relation on {0,1} . This
means that d^(si,... ,sm) is valid, for all (s i , . . . , s m) 6 {0, l } m . Therefore,
(s i , . . . , sm_!)5-5 = {0,1} , and thus, (s 1 ; . . . , sm-i)ofn n = {0, l } / i = {/¿(0),/x(l)}
is valid, for all (s i , . . . , s m _ i) £ {0, l } m _ 1 . Since /x is an isomorphism, we have
(s i , . . = (n{s i) , . . . , / i (s m _i))o£ . Consequently,

(p(si), . . . , / i(sm_i))CT^ = { / i (0) , / i (l) }

is valid, for all (s i , . . . , s m - i) £ {0, l } m _ 1 . By the definition of the ao-product, the
above equality implies

{ao,fc,ai,*} C (aS l i*, . . . ,aSm_uk)cr£kk

where s = (s i , . . . , sTO_i) and

fs,k — ®mfc((o«i,i> • • • ,aSi,A-i),..., (aSm_ui,..., aSm_uk-i),om).
If k = 1, then oSlk = imi(ffm)- If k > 1, then let us observe that, by the definition
of k, aSt,j = a0j, t = 1 , . . . , m - 1, is valid, for all j, j = 1 , . . . , k - 1. Therefore,

46 B. Imreh

Os,k = ®m*((ao,l, . . - , ao,fc-l), • • • , (ao.l, • • • , «O.fc-l),

In both cases, we obtain that as,k does not depend on s, and thus, there exists a
c m £ S™ such that

{ao,fc>ai,fc} £ (aSuk,---,a,Sm_ukWmh

holds, for all (s i , . . . , s m - i) € {0, l } " 1 - 1 which yields the validity of (a) if m ^ 1.
Now, let us suppose that 1 6 iJ and m = 1. By the definition of Q, there exists a

a € Si such that frG(0) and are valid. Since /i is an isomorphism, we obtain
that aA(/j,(0)) and aA(fi(1)) are also valid. Therefore, aA = {//(0),//(1)>. This
equality implies {ao,i : ,a^fc} C aAk where o\ = 'fit; (a-), and thus, Ak satisfies (a)
in this case, too.

Regarding validity of (b), it follows from the proof of Theorem 1 in [13]. For
the sake of completeness, we present its proof here as well. For this purpose, let
us denote the set {k : 1 < k < n & a0tk £ ai.fc} by K. Obviously, K ^ 0. Now,
let m £ R and i = (?i , . . . ,im) £ {0, l}™1 be arbitrary elements. We distinguish the
following two cases depending on m.

Case 1: m > 1. By the definition of Q, there is a am £ STO with
(¿ i , . . . ^ m - i) ^ — im. Since n is an isomorphism, this yields

(/ i (i i) , . . . , /i(iTO_!))aA = fi(im).

Therefore, aim:k £ (ail<k, • • - ,aim-i,k)&£k holds, for all k £ K, where

<?k = ^mi:((aii,l, • • • , a«i,k-l), • • • , (a»m_i,l, • • • ; aim-i,k-l), &m)-

But then there exists at least one index I £ K such that

(cnui,.. • ,aim_ui)af' D {a0 ,i,ai, ;} = {«¿m,i}.

Consequently, satisfies (bl) and (b2). To prove (b3), let 1 ^ u £ R and
s = (s i , . . . , s u _ i) £ {0 ,1 } U _ 1 be arbitrary elements. By the definition of Q, there
exists a crs £ £ „ with (s i , . . . , su-i)<rf = {0,1}. Since fi is an isomorphism, this
implies

(/ ¿ (s i) , . . . , / i (s u - l)) ^ = {^(0),/x(l)}.

Then {a0,fc,ai,fc} C (aS l i j t , . . . , aSu_ 1:k)(^s,k h o lds, for all k £ K, where

0S,fc = $ufc((a«i,l, • • • > 0«i,fc-l), • • • i (Os„_i,l> • • • i aSu_uk-i), crs)-

Therefore, {a0,i,ai,i} C (aSl,i, • • • ,aSu_lii)<Tg'r If 1 £ R and u = 1, then, by the
definition of Q, there is a ctj 6

Si with fff = {0,1}. But then a f = { /¿(0), / i (l)} ,
and consequently, {a0,i:, ai,*} C aAk, for all k £ K, where dk = i'ifc(o'i). Thus

On ai-products of nondeterministic tree automata 47

{«o,/: «1,;} Q of', i.e., A^ satisfies (b3) as well. This completes the proof of the
necessity when m / 1 .

Case 2: 1 6 R and 771 — 1. By the definition of Q, there is a <j\ £ Si with
of = '¿i. But then aA = fi(ii). Therefore, ailtk € aAk is valid, for all k £ K, where
crjt = i'i/t(a"i). Prom this it follows that there exists at least one I £ K such that

afl n {ao , i ,a i , i } = { « i i , i } -

Now, let u € R and s = (s i , . . . , s u - i) £ {0 ,1} U _ 1 be fixed arbitrarily. In a similar
way as above, it is easy to see that there is a as,/ £ such that {«oi, i iz} C
(aSli,..., aSu_1i)ag'l if u ^ 1, and there is a a* £ S^' with {a0)z, aiti}afA' if u = 1.
This completes the proof of the necessity.

For proving the sufficiency, let us assume that B satisfies the conditions of
Theorem 1. Let us define the sets W and W' by

W = {{0,l}m:meR} and W' = {(h, ..., im) : fa,..., im) £ W & im = 0}.

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . , n} onto W'. By
our assumption on B, for any p £ { l , . . . , n } , there exists a nondeterministic tree
automaton Ail,{p)) = £ B satisfying conditions (bl), (b2), and
(b3) with i = (¿1,..., im) = 7(p) where im = 0. For the sake of simplicity, let us
denote the elements ag7^^ and by 0 and 1, respectively. Furthermore, let
us denote by A* = (A*, S*) an automaton of B satisfying (a), moreover, let 0 and
1 denote the elements a3 and a*, respectively.

Now, let C = (C, S) £ Ujj be an arbitrary nondeterministic tree automaton
with C = { c i , . . . , c r } . We prove that C can be embedded isomorphically into an
ao-product of nondeterministic tree automata from {A*} U {^'TM) . j < p <n}.

For this purpose, let us take all the r-dimensional column vectors over {0,1}
and order them in lexicographically increasing order. Let denote the matrix
formed by these column vectors. Then is a matrix of type r x 2r over {0,1}, the
row vectors of Q ^ are pairwise different, moreover, for any subset V of { 1 , . . . , 7 },
there exists exactly one index k £ { 1 , . . . , 2 r } such that, for alii € { 1 , . . . , 7-}, t € V
if and only if q^ = 0. Let

Q = (Q W . . . Q W)

where the number of the occurences of is n -I-1 in the partitioned form of Q.
Finally, let us define the one-to-one mapping /i of { c i , . . . , cr} onto the set of the
row vectors of Q by /i(a) = (qia,... ,gj,(n+i)2-)> « = 1, . . . and let M = {n(ci) :
i - l , . . . , r } .

Now, let us construct the ao-product A — (A, S) =

48 B. Imreh

A* x • • • x A* x X (7 (1)) x • • • x .A'7'1» x • • • x AMn)) x • • • x .4 (7 (n)) (E , $)
> ,, ' V ' » V '

2 rtimes 2rtimes 2rtimes

in the following way. First of all, let us observe that M C A . To define the feedback
functions, let us consider the following two cases.

Case 1: 1 E R and TO = 1 . Let a E £ i (C E) be an arbitrary relational symbol,
furthermore, let ac = {cjt, , . . . ,c/t,} where 0 < I < r. Since 1 E R, the vector
i = (0) is contained in W', and thus, there exists a po E { l , . . . , n } such that
-y(po) = (0). On the other hand, by the definition of Q ' r \ there exists exactly one
index d E { 1 , . . . , 2 r] such that, for each s E { 0 , . . . , n } , the following assertion is
valid:

for all t E { 1 , . . . , r } , qt,S2r+d = 0 if and only if t E {h,..., A;*}.

Now, the feedback functions j = 1 , . . . , (n + 1)2'', are defined as follows:

=

(if 1 < j < 2 r ,
o"(o) if j = Po2r + d,
<7(0) if po2r < j < {po + l)2 r & j ± po2r + d,
al(p} if po^pE {!,...,n} & P2r <j < (p+l)2r,

where o\ E EJ satisfying (a), ct(o) 6 satisfying (b2), <j(0) E E j ' 0 " satisfying
(b3), finally, ff7(p) e E^7(p)) satisfying (b3).

Case 2: 1 ^ TO E R. Let a E £ m (C E) be an arbitrary m-ary relational
symbol and let us consider TO- 1 elments from M denoted by (qit<i,..., 1)2'-),
t = 1 , . . . , T O - 1. Then, fi(at) = {qu,i,. (n+i)2-)» t = l,...,m-l. Let us
suppose that (c ^ , . . . , Cim_1)ac = { c , • • •, Ck,} where 0 < I < r. Then there is one
and only one integer d E { 1 , . . . , 2 r } such that, for every s E { 0 , . . . , n } , we have
the following assertion:

for all t E { 1 , . . . , r } , qt,s2r+d. = 0 if and only if t E { f c i , . . . , kt}.

On the other hand, let us observe that, for any u g { l , . . . , 2 r } , the column vectors of
Q with indices s2r+v, s = 0 , . . . , n, are identical copies of some r-dimensional vector
over {0 ,1} . Consequently, the vectors {qiuS2r+v, • • • ,qim-i,s2r+v), s = 0 , . . . ,n, are
the copies of an (to — l)-dimensional vector over {0 ,1} . Let us denote the vector
(qiuv, •• -,Qim-i, v) by s„ if 1 < i; < 2 r , v ^ d, and the vector (qiud, •• ,qi„,.ud)
by (i[, • • • ,i'm_i). Let i = (¿1, • • . , im_i ,0) . Then i E W', and thus, there is a
po E {1 , . • • ,n} with 7(po) = i- Now, we define the feedback functions as follows.
For any j E { 1 , . . . , (n + l)2 r } , let

*mj((g»i,i, • • • 19»i,j-i)> • • • > (g»m_i,i> • • • j-i)>°') =

On ai-products of nondeterministic tree automata 49

' ffm if 1 < 3 < 2r,
£7j if j = Po 2r + d,

' 07(P),s„ if 3 Po2r + d&iv = j(mod 2r) & p2r < j < {p + l)2 r

where crTO £ satisfying (a), cfj G Sm satisfying (b2), and (^(p^s,, £ Snl^^
satisfying (b3).
In all the remaining cases, let us define the feedback functions TOJ arbitrarily in
accordance with the definition of the o0-product.

Regarding above definition, we have to verify that it is really an a0-product. If
1 £ R and m — 1, then our definition is obviously correct. Now, let 1 / m 6 ii.
Then if>mj depends only on m if 1 < j < 2 r . Let us consider the case when
2r < j < (n + l)2 r . Since the row vectors of Q ' r ' are pairwise different, each
element of M is uniquely determined by its first 2r components. Therefore, the
indices ii,... ,im-i are uniquely determined. Then ki,...,ki are determined by
<7. Furthermore, d, i and po are determined uniquely by k\,... fcj, the definition of

and the first 2r components of the elements in M under consideration. Now,
if j — p02r + d, then the definition of is in accordance with the definition of
the ao-product. If j ^ p02r + d, then j determines v and p uniquely, furthermore,
s„ is determined by v and the first 2r components of the considered elements of M.
Consequently, the definition of correspondes to the definition of the ao-product
in this case as well.

By the above observations, we have that A is an ay-product of nondeterministic
tree automata from : 1 < p < n}. Let us consider the subautomaton
of A determined by M and denote this subautomaton by M = (M, E). We prove
that C and M. are isomorphic, moreover, the mapping /i is a suitable isomorphism.

First, let us suppose that l e i ? and
Tii — 1. Let & E Ei be an arbitrary

relational symbol. We have to prove that crc(ck) if and only if <jM((i(ck)), for all
Ck € C, or equivalently, ocfi = crM. We distinguish the following two cases.

Let us suppose that ac = 0. Then d = 2r, furthermore, ,i,i,(p0+i)2'-(o') = cr(o),
and thus, the (po -I- l)2r-th component of each element of a A is not equal to 1.
On the other hand, the (po + l)2r-th component of each element of M is equal to
1. Therefore, 0 = aA n M = aM. Conversely, let us assume that aM = 0. If
ac ^ 0, then ac = {cJt1,... q , } for some 1 < I < r. Then, by the definition of ^ ,
j = 1 , . . . , (n + l)2 r , we obtain that

(JA D {0, l}P02"+d-l x x | 0) 1 j (n +l)2 ' -p 0 2 ' -d i

and the right-side set of the above inclusion contains fi(ckt), for all t, t = 1 , . . . ,1.
Therefore, aA fl M = oM / 0 which is a contradiction. Consequently, ac = 0.

Now, let us suppose that ac = { c , . . . ,ckl} for some 1 < I < r. Then

50 B. Imreh

aA D {0, l}P02-+<i-l x {q} x ^01|(n+l)2'--Po2"-d ;

and the right-side set contains p(ckt), for all t, t = 1 , . . . ,1. On the other hand, by
the definition of d, for all t E { 1 , . . . , r } , qt^^+d = 0 if and only if t E { f c i , . . . , kt}.
This yields that aA n M = { /x(c f c l) , . . . ,n(ck,)}, i.e., aM = {fi(ckl),... ,/x(cfc,)}.
Consequently, aCfi = a M .

Now, let 1 m € R, a € E m , cit E C, t = 1 , . . . ,m - 1, be arbitrary elements.
We have to show that

(ciL-.-.Ci^JffS = {p(cil),...,fJ,{cim_1))aM

is valid. Let (cll,..., Ciin_1)<rc = {ckl,..., ck,} for some integer 0 < I < r. Then,
by the definition of 3 = 1, •••,(« + l)2 r ,

[ix{cil),...,p{cim_1))aA 2 { O . l } « ' 2 ' ^ - 1 x {0} x { 0 , i }(n+i)2'-Po2'-d j

furthermore, {n(ckl),... ,fi{ck,)} = {(qkt,i, • • •, 9*t,(n+i)2' : 1 < i < / } i s a subset
of the right-side set. By the definition of d, for all t E { 1 , . . . , r } , qt,P02'+d = 0 if
and only if t E {ki,... ,ki}. This yields that

inici,),...,))<JA n M = {(g*t,i,...,gjfet,(„+i)2-) : 1 < t < 1} =

= {(i{ckl),..., /x(cfc,)}.

Consequently, (c^,... ,cim_1)ac/j, = ((¿(c^),..., ¡j,(cim_1))aM, and thus, fj, is an
isomorphism of C onto M..

This completes the proof of Theorem 1.

Remark. In particular, if R = {2} , then UJJ is the class of the nondeterministic
automata. Then as a special case of Theorem 1, we obtain the characterization of
the isomorphically complete systems of nondeterministic automata with respect to
the ao-product which was presented in [14].

It is easy to observe that the nondeterministic tree automaton Q satisfies the
conditions of Theorem 1. Therefore, every nondeterministic tree automaton from
U R can be embedded into an ao-power of Q. This implies the following corollary.

Corollary 1. Every nondeterministic tree automaton from U^ can be embed-
ded isomorphically into an ao-product of suitable two-state nondeterministic tree
automata.

On ai-products of nondeterministic tree automata 51

4 «¿-product with i > 1
In this section, we study the «¿-product with i > 1. For this reason, let i > 0 be
an arbitrarily fixed integer. Then the isomorphically complete systems of nonde-
terministic tree automata with respect to the «¿-product can be characterized as
follows.

Theorem 2. A system B of nondeterministic tree automata from U/ j is iso-
morphically complete for U/j with respect to the ai-product if and only if, for all
m E R and i = (« i , . . . ,im) G {0, l } m , B contains a nondeterministic tree automa-
ton = (A'1», E'1') satisfying the following conditions:

(I) AW has two different elements üq1' and a^,

(II) there exists a a-x E Em with (a i f , . . . , o£¡_1)af1) n { a ^ a ? } = { a ^ } ,

(III) for all 1 ^ u E R and s = (s i , . . . , s u _ i) E {0 ,1 } U _ 1 , there is a a¡ g G £ « '

for which {üq1', a ^ } C (o ^ , . . . , o«^-i)<T¡4g '> furthermore, there is a <r¡ G E ^ with

{ a ^ a f t c ^ ' if leR.

Proof. The necessity of the conditions follows from Theorem 1 in [13]; the proof
has the same idea as the proof of the necessity of (b) in Theorem 1 of Section 3.
In order to prove the sufficiency, let us suppose that B satisfies the conditions of
Theorem 2. Let us define the sets W and W' as above, i.e., let

W — { { 0 , 1 } " ' : m E R} and W' = { (¿ i , . . . ,im) : [iu ..., im) E W & im = 0}.

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . ,n} onto W'. By
our assumption on B, for any p E { 1 , . . . ,n}, there exists a nondeterministic tree
automaton _4<7(p)) = (AW?)), E ^ ») e b satisfying conditions (I), (II), and (III)
with i = (¿1,... ,im) = ~f(p) where im = 0. Again, let us denote the elements
and <47(p)) by 0 and 1, respectively.

Now, let C = (C, E) G UR be an arbitrary nondeterministic tree automaton
with C = { c i , . . . ,cr}. We prove that C can be embedded isomorphically into an
«¿-product of nondeterministic tree automata from {_4(T(P)) : 1 < p < n).

For this purpose, let

Q' = (Q M . . . Q W)

where the number of the occurences of is n + 1 in the partitioned form of
Q'. Furthermore, let us define the one-to-one mapping p, of { c j , . . . , cr} onto the
set of the row vectors of Q' by /J(C¿) = (qitl,..., g¿)(n+i)2'-), i = l , . . . , r , and let
M' = {/i(c¿) : i = l,...,r}.

52 B. Imreh

Let us construct the «¿-product A — [A, E) =

_4(7(1)) x . . . x _4(7(1)) x _4(7(1)) x . . . x _4(7(D) x . . . x _4<7(n)) x ..
* ,, ' v ' " '

2 'times 2rtimes 2rtimes

in the following way. First of all, let us observe that M' C. A. To define the feedback
functions, let us consider the following two cases.

Case 1: 1 G R and m = 1. Let a G Ei(C E) be an arbitrary relational symbol,
furthermore, let crc = { c ^ , . . . , c^,} where 0 < I < r. Since 1 G R, the vector
i = (0) is contained in W', and thus, there exists a po G { l , . . . , n } such that
j(p0) = (0). On the other hand, by the definition of Q ' r) , there exists exactly one
index d G { 1 , . . . , 2 r } such that, for each s G { 0 , . . . , n} , the following assertion is
valid:

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G { f c i , . . . , h}.

Let jo = Po2r + d. Now, the feedback functions , j = 1 , . . . , (n + 1)2'', are
defined as follows:

p 7 (i) i f l < j < 2 r ,
^ii(cr) = < °"(0) if J = Jo,

[o-7(p) if j # jo & p2r < j < (p + 1)27' for some p G { 1 , . . . , n}.

where cr7(1) G E<7(1)) satisfying (III), a{0) G E^(0)) satisfying (II), and d l { p) G s [7 b))

satisfying (III).

Case 2: 1 ^ m G R. Let a G E r a(C E) be an arbitrary m-ary relational
symbol and let us consider m —1 elments from M' denoted by (g j , , i , . . . , 9jil(,i+i)2'-),
t = 1,... ,m — 1. Then, fx(at) = (qiull ...,qiti („+1)2"), t = - 1. Let us
suppose that (c» 1,..., Cim_1)ac = {ckl,..., ckl} where 0 < I < r. Then there is one
and only one integer d G { 1 , . . . , 2 r } such that, for every s G { 0 , . . . , n } , we have
the following assertion:

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G {h,..., ki}.

On the other hand, let us observe that, for any v G { 1 , . . . , 2 r } , the column vectors of
Q' with indices s2r + v, s = 0 , . . . ,n, are identical copies of some r-dimensional vec-
tor over {0 ,1} . Consequently, the vectors (q ^ ^ + v , • • • ,9im_1,«2'-+v), s = 0 , . . . ,n,
are the copies of an (m —l)-dimensional vector over {0 ,1 } . Let us denote the vector
(gti,*, • • -Aim-i,v) by s„ if 1 < v < 2 r , v ± d, and the vector (qiud, • • • ,9im_i,d)
by (-¿i,... Let i = (¿i, . . . ,i'm_1,0). Then i G W', and thus, there is a
Po G { 1 , . . . with 7(po) = i- Let j0 = Po2r + d again. We define the feedback
functions in the following way. For any j G { 1 , . . . , (n -h l)2 r } , let

^mj((9t i , l , • • • , 9 » i , j + i - l) , • • • > (<7im_i,l, • • • , 9 i m _ i , j + i - l) , 0 ') =

On ai-products of nondeterministic tree automata 53

^7(1),Si if 1 < J < 2r ,
^ (l) , « , . . . ^ !) 1 {J=d>

if j = jo,
07(p),8. if j^jo&vEE j (mod 2 r) & p2r <j <(p + 1)2'-

for some;p € { 1 , . . . , n} ,

where tr7(I),Si,cr7(I),(I'II...II^_I) E £™ (1)) satisfying (III), CTJ <E satisfying (II),
and crT(p)is„ G satisfying (III). In all the remaining cases, let us define the
feedback functions 9 r n j in accordance with the definition of the «¿-product.

Regarding above definition, it is easy to verify that it is really an «¿-product,
and thus, A is an «¿-product of nondeterministic tree automata from {A^1'^ :
1 < p < n}. Let us consider the subautomaton of A determined by M'. Let
M ' = (M' ,E) denote this subautomaton. Then it is easy to prove that ¡jl is an
isomorphism of C onto M'.

This completes the proof of Theorem 2.

Since the characterization of the isomorphically complete systems of nondeter-
ministic tree automata with respect to the general product (see Theorem 1 in [13])
contains the same conditions as Theorem 2, we immediately obtain the following
corollary.

Corollary 2. The ai-product is equivalent to the general product regarding
isomorphically complete systems of nondeterministic tree automata provided that
i > 1.

References
[1] Z. Esik, On isomorphic realization of automata with «0-products, Acta Cy-

bernetica 8 (1987), 119-127.

[2] F. Gecseg, Composition of automata, Automata, Languages and Program-
ming, 2nd Colloquium, Saarbrücken, 1974, Lecture Notes in Computer Sci-
ence (Springer-Verlag, Berlin Heidelberg New York Tokyo) 14 (1974), 351-
363.

[3] F. Gecseg, Products of Automata, Springer-Verlag, Berlin Heidelberg New
York Tokyo (1986).

[4] F. Gecseg and B. Imreh, On «¿-product of tree automata, Acta Cybernetica
8 (1987), 135-141.

[5] F. Gecseg and B. Imreh, On completeness of nondeterministic automata,
Acta Math. Hungar. 68 (1995), 151-159.

54 B. Imreh

[6] F. Gecseg and B. Imreh, On the cube-product of nondeterministic automata
Acta Sci. Math. (Szeged) 60 (1995), 321-327.

[7] V. M. Glushkov, Abstract theory of automata, Uspekhi Mat. Nauk, 16:5
101 (1961), 3-62 (in Russian).

[8] G. Gratzer, Universal Algebra, 2nd edn. Springer-Verlag (New York Berlin
Heidelberg Tokyo, 1979)

[9] B. Imreh, On aj-products of automata, Acta Cybernetica 3 (1978), 301-307.

[10] B. Imreh, On complete systems of automata, in: Proc. of the 2nd Interna-
tional Colloquium on Words, Languages and Combinatorics, Kyoto, 1992,
World Scientific (Singapore-New Jersey-London-Hong Kong), 1994, 207-215.

[11] B. Imreh, On a special composition of tree automata, Acta Cybernetica 10
(1992), 237-242.

[12] B. Imreh, Compositions of nondeterministic automata, RIMS Symposium
on Semigroups, Formal Languages and Computer Science, Kyoto, 1996, to
appear in RIMS Kokyuroku.

[13] B. Imreh, On isomorphic representation of nondeterministic tree automata,
Acta Cybernetica 12 (1995), 11-21.

[14] B. Imreh and M. Ito, On a^-product of nondeterministic automata, submit-
ted to Algebra Colloq.

[15] M. Steinby, On the structure and realizations of tree automata, in Second
Coll. surles Arbres an Algebre et en Programmation Lille, 1979, 235-248.

Received July, 1996

Acta Cybernetica 13 (1997) 55-61.

On lexicographic enumeration of regular and
context-free languages*

Erkki Makinent

Abstract
We show that it is possible to efficiently enumerate the words of a regular

language in lexicographic order. The time needed for generating the next
word is O(n) when enumerating words of length n. We also define a class of
context-free languages for which efficient enumeration is possible.

1 Introduction
In [4] we considered the ranking and unranking algorithms for left Szilard languages
of context-free grammars. These algorithms imply similar algorithms for context-
free languages generated by arbitrary unambiguous context-free grammars. The
present paper concerns a somewhat similar but more difficult problem of enumer-
ating regular and context-free languages in lexicographic order. The widely studied
problem of coding binary trees [3, 7] can be considered as a subproblem of our
present problem. For example, in Zaks' coding method [7] we label the nodes and
the leaves of a binary tree by 1 and 0, respectively. By traversing the tree in pre-
order we obtain a code word consisting of n (the number of nodes) l's and n -f 1
0's. The same set of words is obtained by considering the context-free language
generated by productions S —» 1SS and S —t 0. However, in the general case
there are several nonterminals in the grammar in question. This means that the
nodes in the corresponding derivation trees have different labels, and the problem
of enumerating the "feasible codewords", i.e. the words in the language generated,
is much more difficult.

2 Preliminaries
If not otherwise stated we follow the notations and definitions of [1]. Context-free
grammars are denoted by G = (V, E, P, S), where E is the set of terminals and V
is the union of E and the set N of nonterminals.

* This work was supported by the Academy of Finland
^Department of Computer Science, University of Tampere, P.O. Box 607, FIN-33101 Tampere,

Finland

55

56 Erkki Makinen

If A is a nonterminal in a context-free grammar G = (V, E, P, S), then L(G, A)
stands for the language derivable from A according to the productions of G. The
length of a string ¡3 is denoted by len(fi).

For the sake of notational simplicity, we assume that context-free grammars are
in Chomsky normal form (CNF), so that all productions are of the form A -t BC or
A —» a, where A, B, and C are nonterminals, and a is a terminal. The productions
having A in their left hand side are called A-productions. We say that a production
of the form A —> a is terminating-, the other productions are continuing. In a regular
grammar [1] continuing productions have the form A -» aB.

When considering a lexicographic order in L(G) generated by a context-free
grammar G = (V, £, P, S), we suppose that there is a total order -<G defined in £
which imposes the lexicographic order of the words in L(G).

Throughout the paper, we use the unit-cost model for time and space. Hence,
we suppose that normal arithmetic operations for arbitrary integers are possible in
constant time and an arbitrary integer can be stored in one memory cell. All time
and space bounds are given as functions of the length of words. The numbers of
productions and nonterminals are always considered as constants.

3 Finding minimal words of given length
We first consider the problem of finding the lexicographically minimal words of
different length in a given language. This problem is somewhat related to a very
recently solved problem concerning the closure of context-free languages under min-
operation. Namely, given a context-free language L, the language Lrnirl is obtained
by taking from all words of L of the same length only the first in lexicographic
order [5]. Raz [6] has recently shown that L r n i n is context-free for an arbitrary
context-free langauge L. Given a context-free grammar G = (V,Y>,P,S), a total
order -<G in S, and a natural number n, our task in this section is to determine W
such that len(w) = n and w € Lmin.

In order to efficiently perform this task, we store in Amin[i], for each nonterminal
A and for each length i = 1 , . . . , n — 1, the lexicographically minimal terminal string
of length n obtainable from A according to the productions of G. Hence, each table
entry Amin[i] belongs to L(G,A)min.

The following algorithm tabulates the A m i n values for each nonterminal of the
grammar in question. To simplify the notations, we suppose that fi is not in X
and we define a -<c ^ f° r all a in E. fI will be used as a null value for undefined
table entries. Moreover, we use the notation conc(u,v) to stand for the normal
concatenation of strings u and v. i.e. conc(u,v) = uv.

Algorithm 3.1 (Min)
Input: A context-free grammar G = (V,E,P,S), a total order -<q in E, and a
positive integer n.
Output: Table Amin[l..n], for each nonterminal A 6 V \ min = Srnin[n] is the
minimal word of length n. '

On lexicographic enumeration of regular and context-free languages 57

Method:
for each nonterminal A do

if there is no terminating A-productions
then Amin[l] <- ft
else Amin[1] a where a -<o h holds for all other terminals b appearing
in the right hand sides of terminating A-production;

for i 2 . . . n do
for each nonterminal A do
min fi;
for each continuing A-production A -> BC do

for j <r- 1 . . . i — 1 do
if Bmin[j] ± fi and Cmin[i - il
then

if conc(Bmin [j]j Cmin [i - j]) -<G min
then min conc(Bmin\j], Cmin[i - jj)

od
od
Amin[i] -f- min;

od

End of Algorithm

As already mentioned, we consider the size of a grammar (including the numbers
of terminals, nonterminals and productions) as a constant. Noticing this assump-
tion it is clear that algorithm Min runs in time 0(n2).

We also consider the total order -i^,1 defined by letting a b if and only if
b -<G A• The minimal word in lexicographic order in L(G) according to is the
maximal one according to <g - This word is denoted by max (cf. min in Algorithm
3.1).

Theorem 3.1 Let G be a context-free grammar. The words min and max of length
n can be found in time 0(n2) and in space 0(n).

Theorem 3.1 can be sharpened if the input grammar is regular. Also the form of
the algorithm changes a bit. Next, we rewrite the whole algorithm for the regular
case.

58 Erkki Makinen

Algorithm 3.2 (Reg-Min)

Input: A regular grammar G = (V,T,,P,S), a total order -<Q in E, and a positive
integer n.
Output: Table Amin[l..n], for each nonterminal A 6 V \ £/ rnin — Smin[n] is the
minimal word of length n.
Method:

for each nonterminal A do
if there is no terminating A-productions

then Amin [1] <- fi
else Arnin[l] a where a -<q b holds for all other terminals b appearing
in the right hand sides of terminating A-production;

for i i— 2 . . . 7i do
for each nonterminal A do
min fi;
for each continuing A-production A —> aB do

if Bmin[i - 1] ^ fi
then

if conc(a, Bmin[i — 1]) -<G min
then min <— conc(a, Bmin[i — 1])
od

od
Amin[i] min;

od

End of Algorithm

In Algorithm RegJVIin only a constant number of operations is needed for de-
termining each table entry. Hence, we have the following theorem.

Theorem 3.2 Let G be a regular grammar. The words min and max of length n
can be found in 0(n) time and space.

4 Enumeration of regular languages
So far, we have been able to find the minimal and maximal words in L(G) of given
length in lexicographic order. The algorithm enumerating the words in L(G) of
given length can now' be given as follows using the words min and max:

Algorithm 4.1 (Enumerate)

Input: A context-free grammar G = (V, £,P,S), a total order <g in £, and a
positive integer n.
Output: The words on length n in L(G) in lexicographic order.
Method:

On lexicographic enumeration of regular and context-free languages 59

presentjword min;
while present-word / max do

find the next word in lexicographic order od
End of Algorithm

Obviously, our problem is to specify the step "find the next word in lexicographic
order". We first consider the problem in the case of regular languages.

Suppose G is a regular grammar and a\a2 . . . a„ is a word in L{G). We know
that there is a deterministic finite automaton accepting L(G) [1]. In terms of
grammars this means that there is a regular grammar H such that L(H) = L(G)
and, for each nonterminal A, the terminals appearing in the right hand sides of A-
productions are all different. Hence, without loss of generality, we can suppose that
G has this property. It follows that we can conclude the sequence of nonterminals
S = Ai, A2,..., An needed in deriving the word a\a2 ... an from the start symbol
5, and further, we can conclude the sequence of productions applied.

We start from the end of aia2 .. .an and look for a position in which we can
replace the symbol a, with a symbol b such that a; -<G b.

The last symbol an is the only one in aia2.. .an produced by a terminating
production. We first check whether or not there is a symbol b such that An —> 6 is
another terminating production and a -<a b. Provided that b is the first (accord-
ing to -<G) such symbol we have found out that aiA2 . . . AN-\B is the successor of
a\a2.. ,an. Otherwise (such b does not exist), we have to proceed further to the
left.

Suppose now that a¿, 1 < z < n — 1, is the first symbol that can be replaced.
This means that we have a continuing production A{ bB such that at <a b (and
b is before other such terminals according to -<q)• If now Bmin[n — i] is defined,
we can write the successor of ai a2 ... an as

conc(aia2 ... ai-ib,Bmin[n - ¿]).

Hence, when a symbol is changed then all positions in its right get the lowest
possible value. If the Bmin value is undefined for all possible B's appearing in the
right hand sides of ^¿-productions, we again have to proceed to the left.

If aia2 ... an ^ max then at least one of the symbols in aia2 ... an must be
changeable. Since the number of productions is considered to be a constant, linear
time is sufficient for finding the successor of a given word a\a2.. ,an . Hence, we
Jrave the following theorem.

Theorem 4.1 Given a regular grammar G, there is an algorithm for enumerating
the words in L(G) in lexicographic order such that the time needed for generating
the next word is 0(n).

Notice that the time bound of Theorem 4.1 holds also for the first word of the
enumeration, i.e. for the minimal word in lexicographic order. This follows from
Theorem 3.2.

60 Erkki Makinen

5 Enumeration of context-free languages
In the previous section we were able to show that regular languages have an efficient
enumeration algorithm. Unfortunately, it seems that the same does not hold for
context-free langauges.

For the sake of simplicity, we suppose that context-free languages considered in
the rest of the paper are generated by unambiguous context-free grammars. Sup-
pose now that we apply the same approach as we used for regular languages. Hence,
a word a\a-2 • • • an in L(G) is given, and we first find out the sequence of produc-
tions used in the leftmost derivation producing the word. A unique derivation is
always found because we suppose that G is unambiguous.

Let A,I be the symbol to be replaced with a symbol b having the property a; -<G b.
We have a leftmost derivation

5 =S> . . . => ai . . . ai-ia => Oi... ai-idiP

where /3 is a string of nonterminals such that 1 < len(fl) <n — i. We should now be
able to efficiently find the lexicographically minimal word of length n — i derivable
from ¡3. As in Algorithm 3.1 we have to check all possible combinations of the Amin

table entries, for each nonterminal instance A appearing in /?. In the general case,
there seems to be no efficient solution for this problem.

On the other hand, an inefficient method can be implemented even without the
preprocessing phase described in section 3: simply enumerate all the words in £*
and delete those not in L(G).

We end this section by defining a subclass of context-free grammars which allow
efficient enumeration of words in lexicographic order.

We say that a context-free grammar is strongly prefix-free if L(G, A) is prefix-
free for each nonterminal A. More formally, G is stronly prefix-free if derivations
A u and A =>+ v, where u and v are terminal strings, always imply that both
u = vw and v = uw are impossible for all non-empty strings w. The class grammars
generating left Szilard languages of context-free grammars [2] is an example of
strongly prefix-free grammars.

Moreover, we say that a context-free grammar G is length complete if the fol-
lowing condition is fulfilled for each nonterminal A:

• if w 6 L(G, A), len(w) = n, then, for each i, i = 1 . . . n — 1, L(G, A) contains
a word of length i.

If G is stronly prefix-free then it is sufficient to maintain the Am in table values
in lexicographic order and to consider only the minimal values from each table.
This follows from the fact that in strongly prefix-free grammars the set of Am in

values is always prefix-free. Amin values can be easily maintained in lexicographic
order by using radix sort. Moreover, if G is length complete, then there is no need
for backtracking because of lacking words of certain length.

The preprocessing phase (filling in the Am in tables) is now (asymptotically) as
simple as with regular languages. Similarly, the next word can always be found

On lexicographic enumeration of regular and context-free languages 61

(asymptotically) as efficient as in the case of regular languages. Hence, we have the
following theorem.

Theorem 5.1 Given a stronly prefix-free, length complete context-free grammar
G, there is an algorithm for enumerating the words in L(G) in lexicographic order
such that the time needed for generating the next word is 0(n).

References
[1] M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley,

1978).

[2] E. Makinen, On context-free derivations. Acta Universitatis Tamperensis 197
(1985).

[3] E. Makinen, A survey on binary tree codings. Comput. J. 34 (1991) 438-443.

[4] E. Makinen, Ranking and unranking left Szilard languages. Dept. of Computer
Science, University of Tampere. Report A-1997-2, January 1997.

[5] G. Paun and A. Salomaa, Closure properties of slender languages. Theoret.
Comput. Sci. 120 (1993), 293-301. '

[6] D. Raz, Context-free languages are closed under min operation. Manuscript,
submitted for publication.

[7] S. Zaks, Lexicographic generation of ordered trees. Theor. Comput. Sci. 10
(1980) 63-82.

Received March, 1997

Acta Cybernetica 13 (1997) 63-76.

Bounded Space On-Line Variable-Sized Bin Packing*

Rainer E. Burkard* Guochuan Zhang*

Abstract

In this paper we consider the fc-bounded space on-line bin packing prob-
lem. Some efficient approximation algorithms are described and analyzed.
Selecting either the smallest or the largest available bin size to start a new
bin as items arrive turns out to yield a worst-case performance bound of 2.
By packing large items into appropriate bins, an efficient approximation al-
gorithm is derived from fc-bounded space on-line bin packing algorithms and
its worst-case performance bounds is 1.7 for k > 3.

Keywords : On-line, bin packing, approximation algorithm.

1. Introduction
In the one-dimensional classical bin packing problem, a list L of items, i.e. numbers
ai (i = 1, • • •, n) in the range (0,1], are to be packed into bins, each of which has a
capacity 1, and the goal is to minimize the number of bins used. Since the problem
of finding an optimal packing is NP-hard, research has focused on finding near-
optimal approximation algorithms. The classical bin packing problem and many of
its variations are of fundamental importance, reflected in the impressive amount of
research reported [1].

A bin packing algorithm is on-line if it packs items aj solely on the basis of
the sizes of the items a-j. 1 < j < i (i.e. the preceding items) and without any
information on subsequent items.

For a list L of items and an on-line algorithm A, let s{A,L) and s(OPT,L)
denote the total size of bins used by algorithm A and an optimal off-line algorithm,
respectively. Then the worst-case performance bound of A is defined as

= lim sup{s{A,L)/s(OPT,L)\s{OPT,L) > k} k—>oo £

In classical bin packing s(A, L) is just the number of bins used by algorithm A and
s(OPT, L) is the number of bins used by an optimal algorithm.

"This work was supported by Spezialforschungsbereich F 003 "Optimierung und Kontrolle!',
Projektbereich Diskrete Optimierung.

tTU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria

63

64 Rainer E. Burkard, Guochuan Zhang

In this paper, we pay our attention to the following two restrictions of on-line
bin packing (For a rather complete survey on the worst case behaviour of on-line
bin packing algorithms, see Galambos and Woeginger [7]).
Bounded space algorithms

We say, a bin becomes active (open), when it gets its first item. Once it is
declared closed, it can never be active again. A bin packing algorithm uses k-
bounded space if for each item a;, the choice for the bin to pack it is restricted to
a set of k or fewer active (open) bins.

Lee and Lee [10] proved that for every bounded space on-line bin packing algo-
oo

rithm A, > /loo = £ l/fi~l-69103, where
i=i

¿1 = 1, ¿¿+1 = ti(ti - 1), for i > 1.

Galambos and Woeginger [6] even proved that the bound /ioo could not be beaten
by repacking.

Essentially, the following six types of bounded space on-line bin packing ap-
proximation algorithms have been studied.
(i) The first fit first close algorithm NkF (k > 2) is a simple extension of the Next

Fit algorithm (Johnson [8]). Csirik and Imreh [3] constructed lists of items for
which NkF is a factor 17/10 -I- 3/(lOfc - 10) away from the optimum. Mao
[11] proved that this indeed is the worst that can happen. Hence S ^ k F =
17/10 + 3/ (10*:- 10) holds.

(ii) Mao [12] showed for the best fit first close algorithm ABFk [k > 2) with bounded
space k the performance bound SA'BFk = 17/10 + 3/(10*:).

(iii) The best fit best close algorithm BBFk (k > 2) was introduced by Csirik and
Johnson [4]. They showed in a very sophisticated proof that "best is better
than first", since independently of the value of k, always SBBFh = 17/10 holds.

(iv) Zhang [15] showed that for the first fit best close algorithm AFBk (k > 2) which
was also introduced by Csirik and Johnson [4], S^pg^ . = 17 /10+3 / (10* : - 10)
holds.

(v) The HARMONIC algorithm HARMk by Lee and Lee [10]. They showed that
as k tends to infinity, S^ARMk tends to the number hcc.

(vi) The SIMPLIFIED HARMONIC algorithm SHk by Woeginger [14], works
similar to the HARMONIC algorithm but uses another (more complicated)
partition of the interval (0,1]. Moreover, SrgHk < SjfARMk for each k >2.

Variable-sized on-line bin packing
Only few results are known concerning the more general problem in which bins

need not be of a single given size [2,5,9,13,16]. The variable-sized bin packing
problem is a variant of the classical bin packing, in which bin capacities may vary.
We are given a list L of items, and several different types B1,..., Bl of bins with
sizes 1 = «(B1) > s(B2) > ••• > s(Bl) > 0. There is an inexhaustible supply of
bins of each size. The goal is to pack the given items into the bins so that the sum
of the sizes of the bins used is minimum. Observe that for the case that all bins

Bounded Space On-Line Variable-Sized Bin Packing 65

are of size one, this is just the classical one dimensional bin packing problem. This
model is considerably more realistic than that of the classical problem.

In the on-line version of variable-sized bin packing, we cannot preview and
rearrange the items of L before packing is started, but must instead accept and
immediately pack each item as it arrives.

Friesen and Langston [5] gave three approximation algorithms with worst-case
performance bounds of 2, 3/2, and 4/3. Only the first of these algorithms is on-line.
Essentially, it is a simple modification of Next Fit and also has the same worst-case
performance bound 2 as Next Fit. An off-line fully polynomial time approximation
scheme has been devised by Murgolo [13] using a linear programming formulation
of the problem. Kinnersley and Langston [9] presented fast on-line algorithms FFf
for the variable-sized bin packing. They devised a scheme based on a user specific
factor / > | and proved that their strategy guarantees a worst-case performance
bound not exceeding 1.5 + / / 2 > 1.75. By choosing / = 1/2, FFH, the best
among FFf algorithms, is obtained. Zhang [16] proved that the tight bound of
FFH is 1.7, the same bound as the First Fit algorithm in the classical bin packing.
Csirik [2] derived an algorithm with worst-case performance bound of < 1.7 from
the Harmonic Fit algorithm. To our knowledge, Csirik's algorithm is still the best
up to now, for a short discussion see Section 4.

In this paper, we consider algorithms for on-line variable-sized bin packing prob-
lem with the added constraint that the algorithms can assign items only to one of
k bins at a time. Two simple algorithms with bounds 2 are presented in Section
2. Section 3 analyses an algorithm with worst-case performance bound of 1.7 (for
k > 3), which derived from bounded space on-line bin packing.

2. Some Simple Algorithms
When we design an algorithm for /c-bounded space on-line variable-sized bin pack-
ing, we must answer the following questions.

• How to select the bin size when a new bin is required?
• Which bin among the k active bins is chosen for packing a;?
• Which bin among the k active bins is closed when a new bin has to be created

for di ?
For /c-bounded space on-line bin packing, Csirik and Johnson [4] presented two

packing rules and two closing rules. They are listed as follows.
P-FF Pack the current item a* into the lowest indexed active bin that has

enough space for it. Otherwise, open a new bin and place a, in it.
P-BF Pack the current item ai into the fullest active bin that has enough space

for it. Otherwise open a new bin and place aj in it.
C-FF Close the lowest indexed active bin.
C-BF Close the fullest active bin (with ties broken in favor of the lowest indexed

bin).
We use c(B) to denote the sum of the items in B. Given a list of L =

(a i , . . . ,an), let B\, ..., Bm denote the list of bins ordered in a /c-bounded space

66 Rainer E. Burkard, Guochuan Zhang

on-line variable-sized algorithm. Let ALfc(always largest) denote the algorithm
which always uses only bins of size 1, i.e. bins of largest size, packs items using the
P-FF or the P-BF rule, and closes bins using the C-FF or the C-BF rule.
Theorem 2.1. s(ALk, L) < 2s(OPT, L) + l,k>l, for any list L.

Proof. For 1 < i < m — 1, due to our packing rule c(Bi) + c(Bi+1) > 1. So,
m

s(ALk,L) =(m-l) + l<2^c(Bi) + l
¿=1

= 2 £ Oi + 1 < 2s(OPT, £,) + 1. •
t=i

Any list consisting of items of size f + £ and bins of size 1 and | + e for some
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight
for ALk.

While the worst-case behavior of Best Fit is superior to that of First Fit for the
fc-bounded space on-line bin packing problem, this is not the case for ALk where
always the largest possible bins in variable-sizéd bin packing algorithm are used.

• Now we consider the algorithm ASA;(always smallest) which uses smallest pos-
sible bins, packs items using the P-FF or the P-BF rule, and closes bins using the
C-FF or the'C-B'F rule,

Theorem 2.2. s{ASk, L) < 2s(OPT, L) + 1, A: > 1, for any list L.

Proof. For 1 < i < 771 — 1, c(Bi) 4- c (5 i + i) > s(Bi). Therefore, we have
m m

s(ASk,L) = £ s(Bi) < 2 J2 c(Bi) - c(Bx) - c(Bm) + s(Bm)
1=1 !=1

< 2 £ oj + 1 < 2s {OPT, L) + 1. •
i=1

Any list consisting of items of size | and bins of size 1 and 1 — e for some
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight
for ASk.

3. Algorithms Derived from ^-Bounded Space On-
Line Bin Packing
We start from the open, the packing and the closing rule.

Suppose that â is a large item (with size greater than 1 /2). If it can be contained
in a bin with size less than 1, it is called, a B-item, else it is called an L-item. The
smallest bin which can contain a large item cii is called an aj-home-bin. Obviously,
if ai is an L-item, then the size of the ai-home-bin is 1.

Open rule: Suppose that the current item to be packed is a,. If â is a B-item,
then open an aj-home-bin and pack a* into it. Otherwise, start a new bin of size 1
for Oj.

Bounded Space On-Line Variable-Sized Bin Packing 67

Packing rules:P-FF and P-BF.

Closing rules:
C-VF: Close one active bin with size less than 1 if such a bin exists, otherwise

use C-FF.
C-VB: Close one active bin with size less than 1 if such a bin exists, otherwise

use C-BF.

Since we only have one open rule, we always use it to start a new bin. For any
combination of a packing rule with a closing rule, we have four algorithms. The
combination of P-FF with C-VF yields VFFk and the combination of P-BF with
C-VB yields VBBk. Let VBFk denote the (P-BF, C-VF) combination and VFBk

denote the (P-FF, C-VB) combination. In the following, we only analyze VBBk

algorithm. For the others, some remarks are given in the next section.

Theorem 3.1. For any list L, we have

Svbb, = 1-7, for k > 3.
Obviously, if we only have one type of bins, VBBk is just BBFk. From [4], we

have > 1.7, for k > 3.
We prove that the lower bound is tight with the help of the weighting function

defined as follows. . .
We can divide all items in list L into 5 parts.

A1 = {A <E L | 0 < a < 1 / 6 } , A2 = {A € L | 1 / 6 < a < 1 / 3 } ,

A3 = {a e L | 1/3 < a < 1/2 } , A4 = {a 6 L | a is a B-item } ,

A5 = {a € L | a is an L-item }.

An item is called an ylj-item if it belongs to A{, i = 1,2,3,4,5. Ai-items and
A$-items are large items.

Let us define a weighting function as follows.

(6/5)a, if a £ Ax,
(9/5)a — 1/10, if a£A2,

= { (6 / 5) o + 1 / 1 0 l if a e A 3 ,
max{1.7a, s (5) } , if a e A4,
(6/5)a + 4/10, if a G As,

where B is the a-home-bin. W(B), the weight of the bin B, is defined to be the
sum of the weight of all items in bin B, i.e., W(B) = ^2a.eB W(at). And W(L),
the weight of the list L, is defined to be the sum of the weight of all items in L,

n
i.e., W(L) — J2 W(°t)- We are going to show that

i= 1

s{VBBk,L) - 4/5 < W(L) < 1.7s(OPT, L).

Lemma 3.1. For any list L, we have

68 Rainer E. Burkard, Guochuan Zhang

W(L) < 1.7s{OPT,L).

Proof. Similar as in [16].

Lemma 3.2. For any list L, we have

W(L) > s(VBBk,L) - 4/5, for к > 3.

Proof. It is obvious that at any time the size of at most one current active bin is
not greater than when we use VBBk. Note that except the last к bins, all of
the bins used in a V В Bk packing are declared closed one by one. These bins are
more than 1/2 full when they declared closed. In our analysis we first investigate
the closed bins, thereafter we turn our attention to the last к bins.

Claim 3.1. If a bin contains one Л5-item or two Аз-items, then its weight is not
less than 1. If Bi is used in a VВBk packing and s(Bi) < 1, then W(Bi) > s(Bi).

Proof. It is trivial. •
We shall analyze the packing as one active bin is to be closed. This active bin

is called the currently closed bin. The case that the currently closed bin is not
the lowest indexed active bin (the first active bin) will be considered in Claim 3.2.
Further cases are treated in Claims 3.3 and 3.4.

Claim 3.2. If the currently closed bin Bi is not the first active bin for a VBBk

packing, then W(Bi) > s(Bi).

Proof. Without loss of generality, let the current active bins be B\,..., Bi,..., Bk,
i Ф 1. By Claim 3.1 and inspection, we can assume that s(Bi) — 1 and Bi contains
two items at least, and no As-item, one Аз-item at most. From the algorithm, Bt is
the fullest bin at this time. If c(B\) > 5/6, it is easy to see that c(Bi) > c(B\) and
W(Bi) > 1. In the following, we only consider the case Вi < 5/6. If Вг contains
one B-item, Bi must contain another item a which can not be placed into BL, i.e.,
a > 1/6. Therefore we have W(B{) > 1.7(1/2) + (6 /5) (l /6) > 1. If Bi contains
no B-item, we can also assume that c(B\) > 2/3, otherwise Bi will belong to the
special cases in Claim 3.1.

We only need to consider the two bottommost items of Bi, a and /3.
Case 1 . Q É A2, P 6 A3,

W(Bi) >
>

Case 2. a € A2, /3 G A2,

W(Bi) > ^c(Bi) + |(1 - c(Bi)) • 2 - 1 • 2 > 1. •

In the following, we assume that the currently closed bin is the first active bin
as it is declared closed.

^c(Bi) + ^a>^c(Bi) + ^(l - c (B !))

6 / п ч 3 3 / r* \ 3 2 3 c(B1) + - - - c (B 1) > - . - + - = 1.

Bounded Space On-Line Variable-Sized Bin Packing 69

Claim 3.3. For a VBBk packing, the currently closed bin Bi is just the first active
bin and the next active bin is Bi+1. If s(Bi) = s(Bi+1) = 1 and c{Bi) > c(Bi+i) >

then we have, when Bi+1 contains no B-item,

(6/5)c(Bi) + W(Bi+1) > 1 + (6/5)c(B i + 1) (1)

and when Bl+i contains one B-item,

(6/5)c(Bi) + W(Bi+1)>2. (2)

Proof. When Bi+1 contains one B-item, Bi+i must also contain at least one small
item, say (3, which has been accepted before the B-item. This follows from the fact
that only bins with size < 1 can accept B-items as first items, but s(Bi+1) = 1.
Clearly, c(Bi)+(3 > 1, otherwise /3 should be placed in bin Bi. Moreover, w(Bi+1) >
|/3 + 1.7 • The last two inequalities imply

\c{Bi) + W(Bi+0 > 6/5 4- 1.7(1/2) > 2. 5

When Bi+i contains no B-item, we can assume that | < c(Bi) < | and Bi+i

contains no Л5-item and one Лз-item at most. Otherwise (1) is clear. Thus,
Case I! | > c{Bi) > |
In this case, every item in J5j+i must be greater than
If Bi+ i contains one A3-item,

= |c(B0 + \c{Bi+1) + |

6 \ 3 2 3
> 5 С № + 1) + - - З + 5

= 1 +®c (B i + 1) .

If Bi+1 contains no A3-item then it is easy to see that Bj+i contains two
items at least. Therefore

^c(Bi) + W{Bi+0 > ^с(Д) + ^ + 1) + ^(1-с(В0)-2-^-2

6 ч 6 1

= 5 С (Д + 1) + 5 - 5

= l + |c(Bi+i).

Case 2. | > с(В{) > \
In this case, every item in Bi+i is greater than i.e., belongs to A3 or Л5.

Therefore, Bl+\ must contain one A.r,-item or two Лз-items. From Claim 3.1,
W(Bi+1) > 1 but this is the easy case mentioned above. So, Claim 3.3 holds. •

70 Rainer E. Burkard, Guochuan Zhang

Claim 3.4. For a VBBk packing (k > 3), the currently closed bin Bi is just
the first active bin and the next active bin is Bi+1. Assume that s{Bi) = 1 and
c(Bi) < Assume, moreover, that the sum of items in B{+1 is currently <
but when the VBBk packing is finished, c(Bi+i) > 1/2. Suppose that Bj with
s(Bj) = 1 is the active bin next to Bl+\, when Bl+i accepts a new item 7 after Bi
has been closed.

(i) If Bj is closed before Bi+\, then

|c(Bi) + W{Bi+1) + W{Bj) >2 + | c (B i + 1) . (3)

(ii) If Bi+1 is closed before Bj, then

|c(B0 + W(Bi+1) + W(Bj) > 2 + ^c(Bj). (4)

Proof. If Bi+1 contains at least two items when Bi is closed, then it is easy to
prove that §c(-Bf) + W(Bi+1) > 1 + |c(B i+1) and (3) or (4) hold. Hence we only
have to consider the case that Bi+i contains just one item a, when Bi is closed.
We suppose that the bottommost item of Bj is /3. Then a is greater than | (if not,
a can be placed into B t) and /3 > 1 — a > Afterwards, an item 7 is placed into
Bi+\ and c(Bj) + 7 > 1.

(i) Bj is closed before Bl+\.
• If | < a < then, c{Bj) > / 3 > l - a > § , c(Bj) > §.

\c{Bi) + W{Bj) + W{Bi+1) 0

> ^(c{Bi)+c{Bj))+2- + \c(Bi+l)

6 4 2 6 / D N
> 5 ' 3 + 5 + 5 C (B i + l)

= 2 + ^ c (B i + 1) .

• If | < a < | and | < c(Bj) < |, then, 7 > | and 7 + c(Bj) > 1.
When | < 7 <

^c(Bi)+W(Bj) + W(Bi+1)

6 , „ * 2 6 , _ . 3
-c(Bi) + -c(Bj) + - + -c(Bi+1) + --

6 1 3 2 2 3 6
> 5 - 2 + 5 ' 3 + 5 + 5 + 5 C (B i + l)

Bounded Space On-Line Variable-Sized Bin Packing 71

When \ < 7,

^c{Bi) + W{Bj) + W(Bi+1)

6 , . 2 . 2
-c(Bi) + -c(Bj) + - + -c(Bi+1) + —

6 1 6 2 2 1 6
> 5 ' 2 + 5 ' 3 + 5 + 5 + 5 C (B I + L)

= 2+^c(Bi+1).

• If I < a < \ and \ < c(Bj) < §, then, 7 > §, c(Bi+1) > a + 7 > § and
c(Bj) > c(Bi+1). But this is impossible.

• If | < c(Bj), then

^c(Bi) + W(Bj) + W(Bi+1)
5

6 1 6 5 2 6 .

> 5 2 + 5 - 6 + 5 + 5 C (B i + l) g
= 2 + -c(Bi+1).

5

(ii) Bi+1 is closed before Bj.
It is clear that c(Bi+\) > c(Bj) when Bi+1 is closed. If c(Uj+i) < | at this

time, then (3 < c(Bj) < |. This implies that a > | and 7 > i.e., c(Bi+i) > |.
This is a contradiction. Therefore, we have c(Bi+1) > |.

• If i < a < i , then

6

5'
6 6 , 3 1 2 6

: c{Bi) + W{Bi+1) + W{Bj)

> -c(Bi) + -c(Bi+1) + - 5 a - - + - + -c(B3)

6 2 3 3 1 1 2 6 . .

> 5 - 3 + 5 + 5 - 2 - ï ô + 5 + 5 C (^

= 2 + ^c(Bj).

72 Rainer E. Burkard, Guochuan Zhang

i If i < a < | and | < 7 < §, then § < c(B,).

| c (B i) + + W (f l i)
0
6 6 2 6 3

> -c(Bi) + -c(Bj) + - + -c(Bi+1) + -7

> l \ + IciB,) + 1 + 1(1- c{Bj)) + \c{Bi)
3 3 2 3 2 6 , „ .

> 5 + 5 3 + 5 + 5 + 5 c №)

= 2 + j j c (B J -) .

If | < a < | and | < 7, then

6
_c(Bi) + W(Bi+1) + W{Bj)
5

6 1 6 2 2 1 6

If \ < a < \ and 7 < §, then c(Bi+1) > c(Bj) > 5
6 '

IdBj + WiBi+^ + WiBj) 5

> ^(Bi) + ^c(Bi+1) + | +

6 1 6 5 2 6 ,
> 5 ' 2 + 5 - 6 + 5 + 5 c (^

2 + ^ c (B j) . 5

Thus Claim 3.4 holds. •

Note 3.1. If the hypothesis in Claim 3.4 does not hold, i.e., when the VBBk

packing ends, Bj+i JS not greater than | yet, then Bj+i belongs to the last k bins.

Now, we consider the last k bins. Without loss of generality, suppose Si =
{B\,..., Bm} is the set of those closed bins (of size one) which are mentioned
in Claim 3.3 and Claim 3.4. And suppose that Bi is closed before B{+1, i =
1, . . . ,m — 1. We also denote by S2 = {Bm+i, ..., Bm+t}, t < k those bins among
the last k bins, whose weights are less than their sizes when the packing ends.

Bounded Space On-Line Variable-Sized Bin Packing 73

Note 3.2. If the size of the first one of the last k bins is less than 1, then all of
the closed bins have their sizes less than 1, i.e., Si = 0, by the closing rule of our
algorithm.

To see this, if there are some closed bins with size 1, let Bp denote the last
closed bin of size 1. After Bp is closed, the first active bin may not be a bin with
size less than 1 by our algorithm. It is a contradiction.

Claim 3.5. Each bin B used in VBBk packing but not in Si U S2 has a weight
W(B) not less than s(B).

Proof. Follows immediately from Claim 3.1 and Claim 3.2.

Claim 3.6. If the case in Note 3.1 happens, then

' m+1
£ W(Bi) > m + (6 /5)c (B m + i) , if Bm+1 contains no B-item,
¿=i
m + l
£ W(Bi) > m + 1, if Brn+i contains one B-item.

. ¿=i

Proof. Claim 3.6 follows directly from Claim 3.3 and Claim 3.4. •
Similarly, we get

Claim 3.7. If the case in Note 3.1 does not happen, then

m + l

£ W(Bi) > m - 1 + (6/5)c(Bm) + W(Bm+1) for a VBBk packing.
¿=i

In the following, we consider S2.

Claim 3.8. When Bm+i contains one B-item,

W(Bm+2) + • • • + W(Bm+t) >t- 1 - 4/5.

Proof. We will consider two cases.
Case 1. c(Bm+2), ..., c(Bm+t) > 1/2.
(i) If both Bm+i+1 and Bm+i+2 contain one B-item each, 1 < i < t — 2, then

W{Bm+i+i) + W{Bm+i+2) > 2.

(ii) If Bm+i+i contains no B-item and Bm+j+i contains a B-item (3, 1 < i <
j < t - 2 then

(6 /5) c (B m + i + i) + W(Bm+j+i) > 2.

(iii) If Bm+i+i and Bm+j+1 contain no B-item, 1 < i < j < i — 2 then

(6 /5)c (B m + i + 1) + W(Bm+j+1) > 1 + (6 /5)c (B m + j + 1) .

74 Rainer E. Burkard, Guochuan Zhang

(i), (ii) and (iii) can be proved in the similar way as in the proof of Claim 3.3.
Therefore,

W(Bm+2) + ••• + W(Bm+t) + | =

Case 2. There exists a bin c(Bm+j) < 1/2, 2 < j < t. In this case, all bins
following Bm+j contain one L-item, i.e., have their weights greater than 1. Thus it
is easy to show that

W(Bm+2) + • • • + W(Bm+t) > (t - 1) - 4/5. •

Similarly, it can be shown

Claim 3.9. When c(Bm+i) > 1/2 contains no B-item,

(6 /5)c (£ m + 1) + W(Bm+2) + • • • + W(Bm+t) > t - 4/5. •

Claim 3.10. Ifc(Bm+i) < 1/2, when the packing ends, then

m+t

£ W(Bi) + (6/5)c(Bm) >t + 1 - 4/5.
i=m+1

Proof. If c(Bm+1) < 1/2, when the packing ends, then Bj contains one A^-item
for j = то + 2 , . . . , m + t. Therefore,

m+t
W(Bi) + (6/5)c(Bm) >t- 1 + (6 /5) (с (Б т) + c(Bm+i)) > t - 4/5. •

¿=771-}-1

By Claims 3.5 to 3.10, we get W(L) > s{VBBk,L) - 4 / 5 . This completes the proof
of Lemma 3.1. •

Combining Lemma 3.1 with Lemma 3.2, we have SY'BBK < 1.7, for К > 3.
Therefore, we conclude that

^vBBt ~ к > 3.

Thus Theorem 3.1 is proven. •

4. Conclusions and Remarks
This paper deals with an on-line variable-sized bin packing problem which uses
bounded space. Up to now, the best bound of the known on-line variable-sized bin
packing algorithms [2] is a bit smaller than 1.7. In fact, the algorithm so-called
VHm in [2] which is derived from Harmonic Fit is a bounded space algorithm. Let
M > 1 be a positive integer and let M3 = \M • s(B'J)~\ (j = 1 ,2 , . . . , l) . Then the
algorithm uses fc-bounded space where

к = Mi + M2 + • • • + Mi - I + 1.

Bounded Space On-Line Variable-Sized Bin Packing 75

When Mi < 5, the worst-case performance bound of VHm is greater than 1.7. If
and only if Mi > 7, VHm can do better than V BBk where k > 61 + 1. To see
VBBk is efficient, we observe that it only needs k > 3 to reach the bound 1.7 which
does not depend on the number I of bin sizes.

We can also analyse the other three algorithms VFBk, VFFk and VBFk with
the similar technique. For example, with a modified weighting function

C max{1.7a, s{B)} + 3/{10k - 10), if a G A4,
f » = (6/5)a + 4/10 + 3/(10fc — 10), if a e As,

[W(a), otherwise

where W(a) is defined in Section 3, we can prove that Sy'FBk = 1.7 + , for
k > 2. It is clear that all the three algorithms can not beat algorithm VBBk.

Acknowledgement

The authors wish to thank the anonymous referee for his helpful comments on
an earlier Version of this paper.

References
[1] E.G. Coffman, Jr, M.R. Garey and D.S. Johnson, Approximation Algorithms

for Bin Packing: An Updated Survey. In Analysis and Design of Algorithms
• in Combinatorial Optimization, Ausiello and Lucertini (eds), Springer, New

York, 49-106 (1984).

[2] J. Csirik, An On-Line Algorithm for Variable-Sized Bin Packing. Acta Infor-
mática 26, 697-709 (1989).

[3] J. Csirik and B. Imreh, On the Worst-Case Performance of the NkF Bin
Packing Heuristic. Acta Cybernetica 9, 89-105 (1989).

[4] J. Csirik and D.S. Johnson, Bounded Space On-Line Bin Packing: Best is
Better than First. The Proceedings of 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms, 309-319 (1991).

[5] D.K. Friesen and M.A. Langston, Variable Sized Bin Packing. SI AM J. Corn-
put. 15, 222-229 (1986).

[6] G. Galambos and G.J. Woeginger, Repacking Helps in Bounded Space On-Line
Bin Packing, Computing 49, 329-338 (1993).

[7] G. Galambos and G.J. Woeginger, On-Line Bin Packing - A Restricted Survey.
Zeitschrift für Operations Research 42, 25-45 (1995).

[8] D.S. Johnson, Fast Algorithms for Bin Packing. J. Comput. System Sci. 8,
272-314 (1974).

76 Rainer E. Burkard, Guochuan Zhang

[9] N.G. Kinnersley and M.A. Langston, Online Variable-Sized Bin Packing. Dis-
crete Applied Mathematics 22, 143-148 (1988/89).

[10] C.C. Lee and D.T. Lee, A Simple On-Line Bin Packing Algorithm, J. Assoc.
Comput. Mach. 32, 562-572 (1985).

[11] W. Mao, Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing.
SIAM J. on Computing, 22, 46-56 (1993).

[12] W. Mao, Best-k-Fit Bin Packing. Computing 50, 265-270 (1993).

[13] F.D. Murgolo, An Efficient Approximation Scheme for Variable-Sized Bin
Packing. SIAM. J. Comput. 16, 149-161 (1987).

[14] G.J. Woeginger, Improved Space for Bounded Space On-Line Bin Packing
Algorithms, SIAM J. Discr. Math. 6, 575-581 (1993).

[15] G.C. Zhang, Tight Worst-Case Performance Bound For AFBk Bin Packing.
Technical Report No. 015 in Inst, of Appl. Math., Academia Sinica (1994). To
appear in Acta Mathematicae Applicatae Sinica.

[16] G.C. Zhang, Worst-Case Analysis of the FFH Algorithm for On-Line Variable-
Sized Bin Packing. Computing 56, 165-172 (1996).

Received March, 1996

Acta Cybernetica 13 (1997) 77-83.

Generalized Harary Games*

András Pluhár t

Abstract

There are a number of positional games known on the infinite chessboard.
One of the most studied is the 5-in-a-row, whose rules are almost identical
to the ancient Japanese Go-Moku. Along this line Harary asked if a player
can achieve a translated copy of a given polymino P when the two players
alternately take the squares of the board. Here we pose his question for
general subsets of the board, and give a condition under which a draw is
possible. Since a drawing strategy corresponds to a good 2-coloration of the
underlying hypergraph, our result can be viewed as a derandomization of the
Lovász Local Lemma.

1 Introduction and Results
Frank Harary proposed the following game on the infinite chessboard (two dimen-
sional lattice) which resembles both the k-in-a-row, and the Hex (see [5], [8]). Let
us recall that a polymino is a set of connected squares of the chessboard. Given a
polymino P, the players, I and II take one square of the chessboard at each turn.
I tries to take a translated copy of P, while II's goal is to prevent I from doing
this. A polymino P is a winner if I has a winning strategy, otherwise P is a loser.
Andreas Blass found most of the minimal loser polyminoes, using Hales-Jewett-
type of pairings (see [5]). The opposite task, that is to decide about the winners,
was carried out exhibiting some sequences of winning moves. Practically all of the
winner polyminoes are known, there are at most twelve of them. The status of the
largest one, called snaky, is still unsettled. Although it seems to be a winner, no
one has found a convincing proof yet (see [5]).
In this paper we are interested in a more general situation:

1. II has to prevent I from taking not only one, but several other polyminoes,
2. P is not necessary a polymino (i.e. connected set of squares).

"The author was partially supported by the Austrian-Hungarian Action Fund "Combinatorial
optimization - research and education" 20u2 and the Bilateral Intergovermental S & T Cooperation
between Italy and Hungary 1-14/95.

t Department of Computer Science, Attila József University, Árpád tér 2, H-6720 Szeged,
Hungary

77

78 András Pluhár

Figure 1: The polymino called snaky

The methods, used in the solution of the original problem, break down hopelessly in
the generalized cases. (Especially, when both modifications are considered.) If we
have some additional properties of the winning patterns, then the weight function
technique still can provide an answer. First we need to formalize the notion of a
hypergraph game.

Definitions:
An (X, H) pair is a hypergraph if H C 2X. Given a hypergraph (X , H) the players
I and II can play the following game that we call (p, q, H) hypergraph game (or
shortly (p,q,H) game):
I and II select p and q unselected elements of X in each turn, respectively. The
first, who selects all elements of an A 6 H, wins.
For 1 < i < k let Pi be a set of squares of the infinite chessboard, n* = |Pj| the
number of elements in Pi, and d(Pi) the diameter of Pi in Euclidean norm. Let
A(jp,q-,V) be an (p,q,H) game, where X is the infinite board and H consists of
the translated copies of P\,...,Pk- Furthermore, set n = min{rii : 1 < i < k} and
d = max{d(Pi) : 1 < i < fc}.

Theorem 1 If n > 501og2 d + 251og2 k + 25, then II can prevent I from winning
the game A(l, 1;V).

It is natural to ask what happens in general, that is if J wins the game A{p, q\ V),
or it is a draw. A similar argument like in [10] would show that I wins every
A(jp, q\ V) if p > q. (Omitting the details, we give just a sketch of I's strategy:
Take squares far from each other for some turn. In the subsequent turns neglect
those which are "too close" to squares taken by II. Since p> q, I can build up an
arbitrary pattern.) Hence the only open cases where p < q. The most intriguing
case the p = q = 1, although we believe that dropping the diameter restriction does
not really help I, which is spelled out in Conjecture 1.

Conjecture 1 There exists a function f(k) depending only on k such that, if n >
f(k), then II can prevent I from winning the game A(1, \\V).

Generalized Harary Gaines 79

2 Weight Functions
In this section we shall recall the most useful method in the theory of hypergraph
games, the method of weight functions. It is impossible to trace back when it did
first appear, in some sense the idea is as old as the exponential function. It has
surfaced in the recreational mathematics several times, eventually P. Erdos and
J. L. Selfridge put it to its proper place in mathematics (see [7]). Later a large
number of applications were found, both in the theory of games and in other parts
of discrete mathematics (see for example [1, 2, 3, 4]). The following result may be
called as the "Fundamental Theorem of Hypergraph Games"; for the case p = q = 1
it was proved in [7], the general form is from [2].

Theorem 2 [2, 7] II can prevent I from winning the (p,q, H)-game if

En 1

(1 + i) ' < Г Т ?
лен 4

This theorem cannot be used in our case directly, since Y^AeH is not
finite. Yet another difference is that it does not harm the player II if he gets extra
elements from X . Intuitively it is clear that I I is better off if in some turns he can
take more than q elements of X (even if he receives the extra elements randomly).
We call a hypergraph game relaxed (p, q, H) game if at each turn I takes at most p,
while II takes at least q elements of X . Theorem 2 holds for the relaxed (p, q, H)
games, too. For the sake of compactness, we repeat Beck's proof from [2], getting
Lemma 1.

Lemma 1 [2] II can prevent I from winning the relaxed (p, 1 ,H)-game if

Е„ _ Ш 1
2 ' < г' лея

Proof of Lemma 1.
For any A € H let Ak(I) and Ак (II) be the number of elements in A, after Ps kth

move, selected by I and II, respectively. Furthermore

0 otherwise

where A > 0 and for any x £ X

Wk{x) = wk(A).
xga,Аен

The numbers wk{A) and wk{x) are called the weight of A and x (in the kth step),
respectively.
For selecting an element in the ktl1 step II uses the greedy algorithm, i.e. he

80 András Pluhár

chooses an unselected element yk 6 X of maximum weight. Let xk+1, ...,xk+1 be
the elements selected by I in the (k + l)s t step and let

Wk = wk(A)
A€H

be the total sum or potential. The following inequality holds for the potential:

Wk ~ wk{yk) + (A" - 1)wk(yk) > wk+1

if к > 0. Indeed, wk decreases by wk(yk) upon selecting yk. On the other hand,
it is easy to see that the increase of the potential, caused by I's newly selected
elements, is the greatest in the case where:

1. wk(xk+1) is maximal for 1 < I < p
and
2. if wk(A) ф 0 {A S tf), then x f + 1 S A iff x<£+1) € A, 1 < I and m < p.

But the increase in this case is just (Ap — 1)wk(yk), therefore the inequality is
proved. Setting A = we get

wk > wk+1,

for к > 0, which justifies that wk is called potential.
Particularly

wi < 2(AP) 2 - W < 1.
Аен

Let us suppose that I wins the game in the kth step, occupying the set A. This
would imply

w k > A - W + ^ W = 0 ,

which contradicts the monotonicity of the potential. •

Remarks.
1. Intuitively, the potential measures the overall danger that the vertices of the
elements of H are being selected by I during the game. Most often it is done by
choosing an appropriate exponential function, and this exponentiality is to which
one can attribute the power of the weight function method. Practically speaking,
one may expect reasonable theorems via weight functions for a family of hyper-
graphs

T={(X,H):jE Г}
if there exists a polynomial p, such that

\H7\<p(\X,\)

for all 7 e Г. As we shall see, the special structure of the hypergraphs can also
help, even when \Н7\ = oo.

Generalized Harary Gaines 81

2. There is a deep connection between the random 2-colorings of a hypergraph
(X, II) and the (1,1, H)-game. The inequality

says that the expected number of monochromatic elements of H is less than 1, i.e.
there is a good 2-coloring. From this point of view the weight function technique is
nothing else but the derandomization of the well known first moment method. The
conditional probabilities for certain events can also be interpreted as weight function
values (see [1]). This method makes it possible to turn probabilistic algorithms into
effective, polynomial time deterministic ones (see [4)). On the other hand, if the
expected number of monochromatic sets is "small", then II might achieve a draw
in the corresponding hypergraph game.

3 Proof of Theorem 1
First we cut up the board into d x d squares, and call the set of these squares S.
For an S € S let S be the union of S and the other eight d x d squares surrounding
S• We shall refer to S's as the sub-boards. For an S the game (S, H(S)) is the hy-
pergraph game, where the winning sets are those elements of H, which lie entirely
in S. If II plays a strategy which prevents I from winning any of the (S, H(S)) for
S € S, then it prevents I from winning the A(l, l\V) also. Indeed, let us suppose
that I succeeds in taking all elements (squares) of a translated copy of Pi for some
i = 1,..., k. If this copy of Pi has a common element with an S € S, then, from the
diameter limitation, the whole copy lies within 5, i.e. I wins the game (S,H(S)),
too.
One of the difficulties in establishing a strategy which guarantees a draw for II
on every sub-board S is that the sub-boards are not disjoint. It means I's mark
appears on nine of the sub-boards, and although IPs answer is ninefold too, we
cannot expect it to be the best on all of these sub-boards. We shall just ignore
eight of them, and Concentrating on one of them at a time, we create a relaxed
(25,1; H(S)) game on every sub-board S. Similarly to the idea of Lemma 3 of [10],
we define a relation O on the set of the sub-boards, and use it to decide which
sub-board should receive the mark of II. At the beginning of the game O is empty.
We say Su owes Sw if (Su, Sw) G O. At the Ith step II selects a sub-board S* such
that:

1. S* contains xi, the last selection of I,
and
2. S* does not owe any sub-board 5 3

Then II updates the relation O. S* owes all 5 ^ 5 * which contain xt, and non
of these S's owe S* in the updated relation. Now, if a sub-board S 9 xi was not
selected, then a (say) S* was. S* owes S, and cannot be selected again until S is

AeH

82 András Pluhár

selected. Since at most 24 sub-boards may owe a sub-board S, at least every 25th

step on every sub-board is answered.
Within a sub-board S, selected by the previous rule, II plays accordingly to
Lemma 1. It gives that II draws in all relaxed (S,H(S)) game, provided that

Asms)

On the other hand \H(S)\ < 9d?k, so if

n > 50 log2 d + 25 log2 k -I-100,

then the above inequality holds, therefore I cannot win. •

4 Conclusion
Upon proving Theorem 1, we have reached the limits of the weight function tech-
nique. On one hand, there is no reason to believe that winning sets of larger and
larger diameter would really benefit I. On the other hand, the weight functions,
unless an ingenious idea is incorporated, cannot help on the growing sub-boards.
Indeed, Conjecture 1 is just a special case of an important open question in the
theory of hypergraph games. As we mentioned earlier, in a number of cases the
probabilistic heuristic works, that is one may prove a draw for II in the (1,1, H)-
game, when a random argument shows the existence of a good 2-coloring of the
hypergraph (X,H). It does not necessary break down when this existence of the
good 2-coloring is guaranteed only by the Lovász Local Lemma. According to the
Lovász Local Lemma there is a good 2-coloring of an even infinite hypergraph
(X, H) „ if the maximum degree of (X , H) is "small" and the size of any A G H is
"large" (see [6]). The natural direction of research is to find out if these conditions
guarantee draw for the second player. Although there are very deep and promising-
results in [2] and [4] for the finite cases, the general solution is still far away.

Acknowledgement. Many thanks to József Beck for the lots of help and en-
couragement. I am also grateful to an anonymous referee for the helpful comments.

References
[1] N. Alon and J. Spencer, The Probabilistic Method, Academic Press, New

York, (1992)

[2] J. Beck, "On positional games", J. of Combinatorial Theory Series A 30
(1981), 117-133.

[3] J. Beck, "Van der Waerden and Ramsey games", Combinatorica 1 (1981),
103-116.

Generalized Harary Gaines 83

[4] J. Beck, "An algorithmic approach to the Lovász Local Lemma. I.", Random
Structures and Algorithms 2(1991), 343-365.

[5] E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning Ways, Volume 2,
Academic Press, New York 1982.

[6] P. Erdős and L. Lovász, "Problems and results on 3-chromatic hy-
pergraphs and some related questions", in: Infinite and Finite Sets
eds.: A. Hajnal et al., Colloq. Math. Soc. J. Bolyai, 11, North-Holland, Am-
sterdam, 1975, 609-627.

[7] P. Erdős and J.L. Selfridge, "On a combinatorial game", J. Combinatorial
Theory Series B 14 (1973) 298-301.

[8] M. Gardner, "Mathematical Games", Scientific Amer. 225#2 (Aug.1971)
102-105; 232 # 6 (June 1975) 106-111; 233 #6 (Dec. 1975) 116-119; 240 #4
(Arp. 1979) 18-28.

[9] A.W. Hales and R.I. Jewett, "Regularity and positional games", Trans. Amer.
Math. Soc. 106(1963) 222-229; M.R. # 1265.

[10] A. Pluhár, "Generalizations of the game k-in-a-row", RUTCOR RESEARCH
REPORT, 15-1994.

[11] A. Pluhár, Positional Games on the Infinite Chessboard Ph.D. dissertation,
Rutgers University 1994.

Received, February 1997

Acta Cybernetica 13 (1997) 85-102.

Evaluation Strategies of Fuzzy Datalog

Ágnes Achs*

Abstract

A fuzzy Datalog program is a set of Horn-formulae with uncertainty de-
grees. The meaning of a program is the fixpoints of deterministic or nonde-
terministic consecutive transformations. In this paper we are going to deal
with the evaluation strategies of fuzzy Datalog programs. We will determine
the bottom-up and top-down strategies and show their equivalence.

1 Introduction
A logical data model consists of facts and rules. The facts represent certain knowl-
edge from which other knowledge can be deduced by the rules. . In classical deduc-
tive database theory ([CGT], [U]) the Datalog-like data model is widely spread. A
Datalog program is a set of Horn-clauses, that is a set of the formulae

A B i , . . . ,B n

where A, Bi(i — 1,..., n) are positive literals.
The meaning of a Datalog-like program is the least (if any) or a minimal model

which contains the facts and satisfies the rules. This model is generally computed
by a fixpoint algorithm.

In [AK2] there was given a possible extension of Datalog-like languages to fuzzy
relational databases using lower bounds of degrees of uncertainty in facts and rules.
This language is called fuzzy Datalog (/DATALOG). In this language the rules
are completed with an implication operator and a level. We can infer the level
of a rule-head from the level of the body, the level of the rule and the implication
operator of the rule. We defined the deterministic and nondeterministic semantics of
/DATALOG as the fixpoints of certain transformations, gave a method for fixpoint
queries, and showed that this fixpoint is minimal under certain conditions.

The aim of this paper is to give some evaluation strategies of /DATALOG
programs.

First we are going to summarize the concept of /DATALOG.

•Janus Pannonius University, Pollack Mihály College, Pécs, Boszorkány u. 2, Hungary,
e-mail:achs@mit. pmmfk.jpte.hu

85

86 Agnes Achs

2 Basic Concepts
A term is a variable, constant or complex term of the form / (i j , . . . , tn), where /
is a function symbol and t\,..., tn are terms. An atom is a formula of the form
p(t), where p is an n-arity predicate symbol and t is a sequence of terms of length
n (arguments). A literal is either an atom (a positive literal) or the negation of an
atom (a negative literal).

A term, atom, literal is ground if it is free of variables.
Let D be a set. The fuzzy set F over D is a function F : D —» [0,1]. Let T(D)

denote the set of all fuzzy sets over D. So F € T{D).

F U G(d) = m a x (F (d) , G { d))

F n G(d) d= min(F(d),G(d))

An ordering relation can be defined: F < G iff F(d) < G(d) Vd 6 D. As every
subset of T(D) has least upper bound and greatest lower bound, so (J~(D), <) is a
complete lattice. The top element of the lattice is U : D —» [0,1] : U(d) = 1 Vd £ D.
The bottom element is: 0 : D [0,1] : 0(d) = 0 Vd € I>.

Fuzzy sets are frequently denoted in the following way:

F= (J (d , a d)
deD

where (d,ad) e D x [0,1].
To make any deduction we need the concept of implication operator.
The features of implication operators are summarized in [DP]. In the next table

we give the most frequent operators:

symbol name formula
h(x,y) Gödel 1 if X < y

y otherwise
h(x,y) Lukasiewicz 1 if x < y

1 — x + y otherwise
h(x,y) Goguen 1 if x < y

y/x otherwise
Kleene-Dienes max(l — x, y)

h(x,y) Reichenbach 1 — x + xy

h(x,y) Gaines-Rescher 1 if x < y
0 otherwise

Evaluation Strategies of Fuzzy Datalog 87

3 The Concept of /DATALOG
Definition 1 An /DATALOG rule is a triplet (r; 7; (i), where r is a formula of the
form

Q<-Qo,---,Qn (n> 0)

where Q is an atom (the head of the rule), Qi,..., Qn are literals (the body of the
rule); I is an implication operator and (3 £ (0,1] (the level of the rule).

An /DATALOG rule is safe if

• All variables which occur in the head also occur in the body;

• All variables occurring in a negative literal also occur in a positive literal.

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a
ground atom. The rules of the form (A ; J; /3) are called facts.

The Herbrand universe of a program P (denoted by Hp) is the set of all possible
ground terms constructed by using constants and function symbols occurring in P.
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate
symbols occur in P and whose arguments are elements of Hp. A ground instance
of a rule (r; I; ¡3) in P is a rule obtained from r by replacing every variable x in r by
<&(.x) where $ is a mapping from all variables occurring in r to Hp. The set of all
ground instances of (r; / ; /3) are denoted by (ground(r)\ / ; (i). The ground instance
of P is

ground (P) = U (r ; / ; /}) ep(ground (r) ;I ; (3) .

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of
BP:

Np £ T(Bp), that is Np = |J (A,aA).
AeBp

Let for ground atoms Ai,..., An aA1/\...AA„ and a~,A be defined in the following
way:

ctAiA...A^„ = m i n ^ ! , . . .

def ! a-, A = I —a A-

Definition 3 An interpretation is a model of P if for each (ground(r) \ I; (3) £
ground(P), ground(r) = A A\,..., An

I(aAif,...AAn,ocA) > (3

A model M is the least model if for any model N,M < N. A model M is minimal
if there is no model N ^ M such that N < M.

88 Agnes Achs

To be short, we sometimes denote OLA1A.../\A„ by abody and o^by ahead-
The semantics of /DATALOG is defined as the fixpoints of consequence trans-

formations. Depending on these transformations we can define two semantics for
/DATALOG. The deterministic semantics is the least fixpoint of deterministic
transformation, the nondeterminic semantics is the least fixpoint of nondetermin-
istic transformation. With the aid of the deterministic transformation the rules
of a program are evaluated parallely, while in nondeterministic case the rules are
considered independently one after another.

These transformations are the following:

Definition 4 The consequence transformations DTp : T(Bp) —> T{Bp) and
NTP : T{BP) T{BP) are defined as

DTP(X) = { U { (A , C * A) } | (^ < - Au...,AN-I-p) e ground(P),

(|\Ai\,otAi) £ X for each 1 < i < n,

a A = max(0, min{7|/(abody , 7) > /3})} U X

and

; NTP(X) = {(A,aA)}uX

where (A <- Ai,...,An\I\{3) 6 ground(P),(\Ai\,aAi) £ X, 1 < i < n,

aA = max(0,min{7|/(abody,7) > P]

denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol
with arity k and c is a list of k ground terms.

We can define the powers of the transformations:
For any T : T(Bp) -> J7(Bp) transformation let

T0 = {U{(A,a,i)}|(yl £ gr<mnd{P),

a A = max(0,min{7|/(l,7) > /3})}
U{(A, 0)|3(B i- ... -,A...,;/; P) € graund(P)}

and let
Ti = T(T0)

Tn = T (T „ _ I)

In [AK2] it was proved, that starting from the set of facts (To), both DTp and
NTp have a fixpoint, which is the least fixpoint in the case of positive P. These
fixpoints are denoted by lfp(DTp) and Up(NTp).

It was also proved, that lip(DTp) and lfp(ATp) are models of P. These propo-
sitions are the background of the following definition:

Evaluation Strategies of Fuzzy Datalog 89

Definition 5 We define lfp(DTp) to be the deterministic semantics and lfp(yVTp)
to be the nondeterministic semantics of /DATALOG programs.

For function- and negation-free /DATALOG, the two semantics are the same, but
they are different if the program has any negation.

The set lfp(DTp) is not always a minimal model. In nondeterministic case,
however, it is minimal under certain conditions. This condition is stratification.
Stratification gives an evaluating sequence in which the negative literals are evalu-
ated first.

To stratify a program, it is necessary to define the concept of dependency graph.
This is a directed graph, whose nodes are the predicates of P. There is an arc from
predicate p to predicate q if there is a rule whose body contains p or -ip and whose
head predicate is q.

A program is recursive, if its dependency graph has one or more cycles.
A program is stratified if whenever there is a rule with head predicate p and a

negated body literal ->q, there is no path in the dependency graph from p to q.
The stratification of a program P is a partition of the predicate symbols of P

into subsets Pi,..., Pn such that the following conditions are satisfied:

a) if p £ Pi and q £ Pj and there is an edge from q to p then i > j

b) if p £ Pi and q £ Pj and there is a rule with the head p whose body contains
-iq, then i > j.

A stratification specifies an order of evaluation. First we evaluate the rules whose
head-predicates are in Pi then those ones whose head-predicates are in P2 and so
on. The sets Pi,... ,Pn are called the strata of the stratification.

A program P is called stratified if and only if it admits a stratification. There
is a very simple method for finding a stratification for a stratified program P in
[CGT],[U].

[AK2] proves that for stratified /DATALOG program P, there is an evaluation
sequence, - this is the order of strata - in which lip(NTp) is a minimal model of P.

More detailed:
Let P be a stratified /DATALOG program with stratification P±,... ,P„. Let

Pj* denote the set of all rules of P corresponding to stratum Pj, that is the set of
all rules whose head-predicate is in Pi.

Let
Li = lfp (NTP.)

where the starting point of the computation is the set of facts.

L-2 = lfp (NTp-)

where the starting point of the computing is L\,

Ln = lfp (NTp.)

90 Agnes Achs

where the starting point is L„_i .
In other words: at first we compute the least fixpoint L\, corresponding to the

first stratum of P. Then one can take a step to the next stratum, and so on.
It can be seen that Ln is a minimal fixpoint of P, that is Ln = lfp (NTp)

([AK2]).

4 Evaluation Strategies
An /DATALOG program can be evaluated with the aid of different strategies.
Starting from the facts, applying the rules, all of the computable facts can be
inferred, that is lfp (DTp) or lfp (NTp) can be determined. In this case, we speak
about bottom-up evaluation.

In many cases however, the whole evaluation is not necessary, because we only
want to get an answer to a concrete question. If a goal is specified together with
an /DATALOG program, it is enough to consider only the rules and facts which
are necessary to reach the goal. In the case of starting from the goal, and applying
the suitable rules we infer to the facts, we speak about top-down evaluation.

5 Bottom-up Evaluation
For simplicity, we denote consequence transformation with Tp. This doesn't cause
any trouble, because in the case of negation-free programs the fixpoints of the two
tranformations are the same, and if the program contains any negation, we will
consider only the nondeterministic transformation.

The fixpoint computation is a simple iteration with the following algorithm:

Algorithm 1

Procedure bottom-up
old := T0

new := Tp(To)
while old new do

old := new
new := TP (old)

endwhile
endprocedure

Note: In nondeterministic case, the halt condition means that none of the rules
results in any new facts.

The disadvantage of the algorithm is the great number of superflouos evalua-
tions. There are rules which are evaluated again and again in spite of the fact,
that they don't result any new facts. Therefore, it is practical to omit these rules.
Whether a rule can be omitted or not, depends on the path leading to the head
predicate of the rule in the dependency graph. If this path contains any circle -

Evaluation Strategies of Fuzzy Datalog 91

that is the rule is recursive - one can not omit the rule before obtaining the fix-
point. But if the path does not contain any circle, then probably it can be omitted
before terminating. A rule can be omitted, if the steps of the algorithm exceed the
length of the maximal path leading to the head predicate of the rule. Using this
observation a modified bottom-up evaluation strategy can be acquired.

6 Modified Bottom-up Evaluation
Let P = U{(r; / ; /3)}. Let h : P N be defined in the following way:

(n where n is the length of the longest loopfree path leading to

the headpredicate in dependency graph
oo if the path leading to the headpredicate contains any circle

Let T'n = TPii(Tn-i) where

i* =P-{(r;J;»,)!*(»•;/ ; /?) < n }

The sequence T^ has a limit, that is:

Proposition 1 For function- and negation-free program P 3 m € N : T'm = rpl rpt x m+1 ~ • • ' ~ ±oo
Proof: Let k be the number of predicates in P, n be the arguments' number of
predicate with maximum argument's number and c be the number of constants in
P. Then the proposition is true for m = kc11.

•

For this m let T^ be denoted with T'(P).

Proposition 2 For negation- and function-free /DATALOG program P
lfp(Tp) = T"(P).

Proof:

a) From the construction of T'(P), T ' (P) Ç lfp(TP).

b) Let (A,aA) <Elfp{TP).

Then there is (r; 15 /2) € J5, for which (.A 4— Ai,... 3 A.n; /5 (3) € grounder}. Let
%;/;/?) = k. Then (r;/; /3) £ P^, so (A,aA) € T'k Ç T'(P). '

•
The algorithm of modified bottom-up evaluation is the following:

92 Agnes Achs

Algorithm 2

Procedure bottomrup 2
k := 1
old := T0

new := Tp(To)
while old ^ new do

old new
P : = P - { (r ; J ; / 3) | / i (r ; / ; / ?) < fc}
new := TP (old)

endwhile
endprocedure

7 Modified Bottom-up Evaluation in the Case of
Stratified /DATALOG

The modified bottom-up evaluation can be applied in the case of stratified
/DATALOG. Then we can evaluate by strata. In details:

Let P be a stratified /DATALOG program with stratification P\,... , P„. Let
P* denote the set of all rules of P corresponding to stratum Pi, that is the set of
all rules whose head-predicates are in Pi.

Let
Li = lfp(NTPT)

where the starting point of the computation is Lj_ i, and Tp> = NTp- = DTp-.
Because, due to the stratification of P, all negative literals of stratum i cor-

respond to predicates of lower strata, the evaluation of P* is the same as the
evaluation of a negation-free program.

From this the following proposition can be made:

Proposition 3 Li can be evaluated by the modified bottom-up evaluation, that
is Li = T ' (Pi) .

8 Top-down Evaluation
In many cases we only want to get an answer to a concrete question. In such
cases a goal is specified together with an /DATALOG program. Then during the
evaluation it is enough to consider only the rules and facts which are necessary to
reach the goal.

A goal is a pair (Qa), where <5 is an atom, a is the level of the atom. It is
possible, that Q contains variables, and a can be either a constant or a variable.
An /DATALOG program enlarged with a goal is a query.

Evaluation Strategies of Fuzzy Datalog 93

A goal can be evaluated with the aid of sub-queries. This means, that all of
the rules, whose head-predicate can be unificated with the given goal-predicate are
selected, and the predicates of the body are considered as new sub- goals. This
procedure continues until obtaining the facts. This kind of evaluation is the top-
down evaluation.

To deal with this strategy, we need some basic concepts.

Definition 6 A substitution 9 is a finite set of the form {xi|ii , . . . ,xn\tn], where
Xi(i = 1 , . . . ,n) is a distinct variable and ti ^ Xi (i = 1,... ,n) is a term. The set of
variable {.x'i,..., xn} is called the domain of 0. If all terms ti,..., tn are constants,
then 9 is called a ground substitution. The empty substitution is denoted by e. If
9 is a substitution and t is a term, then td denotes the term which is defined as
follows:

If L is a literal then L9 denotes the literal which is obtained from L by simultane-
ously replacing each variable Xi that occurs in L by the corresponding term ti, iff
Xi\ti is an element of 6.

For example, let L = -<p{a,x,y,b) and 6 = {x\c, y\x), then L9 — ~^p(a,c,x,b).
If (r ; I ; p) is a /DATALOG rule, then [r9\I\ (3) denotes the rule, which is ob-

tained simultaneously applying the substitution 9 for all literals of r. In the body
of rO the atoms are considered with single multiplicity.

Definition 7 Let 9 = {xi|ti, • • •,xn\tn} and <r = {yi\ui,... ,yn\un} be two sub-
stitutions. The composition 9a of 9 and a is obtained from the set

{a;i|fia,.. ,,xn\tna,yi\ui,... ,ym\um}

by eliminating each component of the form z\z and by eliminating each component
for which 'tji = Xj for some j .

If (r;/ ; /3) is a rule then applying 9a to the rule has the same effect as first
applying 9 to r, yielding (r9\I-,(3), and then applying a to r9.

Definition 8 If for a pair of literals L and M a substitution 9 exists, such that
L9 = M9, then we say that L and M are unifiable and the substitution 9 is called
a unifier. Let 6 and A be substitutions. We say that 9 is more general than A iff a
substitution a such that 9a = A exists.

Let L and M be two literals. A most general unifier of L and M (mgu(L,M)) <
is a unifier which is more general than any other unifier.

The concept of mgu has been introduced in much more general contexts, where
terms may contain function symbols. There are different algorithms for determining
mgu ([P], [U]). As now we deal with function-free /DATALOG, therefore it is
practical to give a simple algorithm, which generates a mgu for each pair of literals
L and M if they are unifiable, or tells if they are not.

Let L — p(ti,... ,tn) and M = p'(t[,..., t'm) be two literals. The function
mgu(L, M) can be generated in the following way:

t otherwise.

94 Agnes Achs

Algorithm 3

Function mgu(L, M)
if p ^ p' or n^m then L and M are not unifiable
else

9 :=e
k := 1
unifiable := true
while k <n and unifiable do

if ue ± t\e
then if t\9 is a variable

then 9 := 0 (^0^0 }
else if tiO is a variable

then 0 := 9{ti9\t'i9}
else unifiable := false endif

endif
endif
k~k+ 1

endwhile
if unifiable then mgu(L, M) = 9 else L and M are not unifiable

endif
endfunction

From the algorithm one can see, that mgu(L,M) ^ rngu(M,L). Because of
this asymmetry we have to be very careful during the top-down evaluation.

We also need the concept of projection and join of substitutions.

Definition 9 Let 8 = {a;i |ii , . . . , xn\tn} be substitution and let H = {x^,..., xjk }
be a set. The projection of 8 to H is the substitution 9h = {x^ \ti1,..., Xik\tik}.

Definition 10 Let 9 = {xi\ti,... ,xn\tn} and a = {y\\u\,... ,yn\un} be substitu-
tions. Let us suppose that for each pair Xi\ti, yj\uj for which xi = y3 is true, i» = Uj
also comes true. Then the join of 9 and a is the set 9 <8> a = {a:i|ii,... ,xn\tn,
yi\ui,... ,ym\um}, from which the repeated components are omitted.

If for any pair Xi\ti,yj\uj,Xi = yj is true, but tn ^ u } . then the join of 9 and a
is not defined.

From this definition one can see, that the join is a partial operation. If we want
to apply the join and the composition together, the concept of partial composition
has to be defined.

Definition 11 The partial composition of substitutions 9 and a is 9a, if both of
them are defined and is not defined if any of substitutions is not defined.

First we deal with the evaluation of negtion-free /DATALOG programs. We
will search the solution with the aid of evaluation graph. This is a special AND/OR

Evaluation Strategies of Fuzzy Datalog 95

tree, a special hyper-graph. Every odd edge is a n-order hyper-edge with the set-
node of n elements, and every even edge is an ordinary edge with one node. More
precisely:

An evaluation hypergraph is a tree, whose root is the goal, the leaves are the
symbols "good" and "bad", and the nodes are defined recursively.

Let the level of the root be 0. On every even level of the graph there are sub-
goals, that is suitably unified heads, on every odd level there are bodies of rules.

Let Q be a node of level k = 2i, and let us suppose, that there are m rules in
the form

R RI,..., R*N; I) P

whose heads are unifiable with Q. Then this node has m children, and these children
are in the form

R\0,..., RN6

where 0 = mgu(Q,R),if n > 0; if n = 0, then the child is the symbol "good". If
there are not any unifiable rule, then the child is the symbol "bad".

We have to pay attention to rename the variables, namely it is important,
that the variables in the body of a unified rule let be different from the former
unifications. To solve this problem, we will identify these variables by subscribing
them with the level of the evaluation graph.

Let us attach labels to the edges of the form Q —> R\6,..., Rn6 ! Let the edge's
label be the triplet (0;I/3).

Let the rule-body of the form Qi,.. .,Qn be a node of level k = 2i + 1! Then
there is an n-order hyper-edge to the nodes Qi,..., Qn• The hyper-edge has no
label.

We can get an answer to the query from the labels of evaluating graph.
The path ending in the symbol "bad" doesn't give solution. Let us omit these

paths! In other words, let us omit all of the edges and nodes which lead to this
symbol independently from the fact, that these nodes are connected to each other
by hyper-edges or ordinary edges. (If there is a path from one node of a hyper-
edge to the symbol "bad", all of the nodes belonging to this hyper-edge and their
descendants are cancelled.) The given graph is called searching graph.

A solution can be achieved along the path ending in the symbol "good" in the
searching graph. The union of these solutions is the answer to the given query. The
level of the atoms in the answer can be computed with the aid of the uncertainty-
level function.

Definition 12 The function

f(I,a,0) =min({ 7 |/ (a , 7) > / ? })

is called uncertainty-level function.

In the case of the studied implication operators / (/ , a, ¡3) is the following:

/ (A , a,/?) = min(a,/3)

96 Agnes Achs

f(I2,a,0) = max(0, a +/3 - 1)

f(I3,a,0) = a-0

,,T „ /0 a + 0 < 1

/ (/ 5 > a, /3) = max(0,1 + (/3 - l) / o) , a ± 0

f(I6,a,0)=a.

Let us determine the substitution 6 along the hyper-path leading to the symbol
"good" in the following way: (As a path contains hyper-edges, therefore the path
may end in more leaves.)

For each hyper-node let us construct the join of the substitutions of the body's
atoms. Let us order this joins to the nodes of even levels (that is to the nodes of
the heads). Then let us construct the partial composition of these substitutions.

On answer to the query
(Q,<*)

is:
(Q0, Otgoai),

where agoai can be computed recursively with the aid of uncertainty-level function
f (I , a , 0) in the following way:

Starting at the leaves, we order to them the value a = 1, then we go backward
to the root. If the uncertainty level of a node on the odd level of the graph is a,
let the uncertainty level of the parent node be a = f(I,a,0), where / : (3 are the
values in the label of the edge. If the uncertainty level of the children of a node on
the odd level of the graph is ai,..., ak, then let the uncertainty level of the node
be a = min(ai , . . . , ak)- The uncertainty level of the root is agoai.

Example 1 Let us see next rules:

p(a) Ji;/?i

p(b) ; /2;

r(c) < - ; J 3 ; / 3 3

q(x,y) *- p(x),r(y)]I2-, fa

q{x,y) <r- q{y,x);I3,05

s(x) q(x,y);I3\.06

Let fa = 0.8,02 = O.7,03 = 0.6,04 = 0.7, ft = 0.8, & = 0.9
We want to determine q{x,y).
According to the following AND/OR graph,the solution is:

Evaluation Strategies of Fuzzy Datalog 97

{(ç(a,c),0.3), (q(b,c), 0.3), (q(c,a), 0.24), ; (q(c, b), 0.24)}
q(x,y)

£,12,0.7

p(x),r(y)

p(x) r(y)

x | a , 1 1 , 0 . 7

good good good

q(a, c), 0.3; q(b, c), 0.3

13,0.8

q{y,x)

y|c,I3,0.6 x|y,y|x 12,0.7

p(y),r(x)

y|a,Il,0.8 x|c,I3,0.6

good good good

q(c,a), 0.24; q(c,b), 0.24;

It can be seen, that in the case of finite evaluation graph the bottom-up and
the top-down strategy give the same result. More exactly:

Theorem 1 For a given goal and in the case of finite evaluation graph, the top-
down evaluation gives the same result as the fixpont query.

Proof: We prove the equivalence of the two evaluations by induction on the depth
of the evaluation graph.

Let us suppose that the depth of evaluation graph is one, that is all of the
children of the root are the symbols "good" or "bad". This can occur only in the
case if no rule's head can be unificated with the goal, or only facts can be unificated
with that. In the first case, there is no answer to the query either in bottom-up,
or top-down evaluations. In the second case, according to both of the evaluations,
the answer is the same.

Let us suppose, that the theorem is true for all evaluating graphs, containing
paths with length at least n.

Let us consider the evaluating graph, the maximum path-length of which is
n+ 1.

Let us examine the sub-goals on the second level of the graph. The depth of the
evaluation graph of these sub-goals is at least n—1, that is the induction assumption

98 Agnes Achs

is true. In bottom-up manner the goal can be reached only from these sub-goals.
Going up to the first level in bottom-up manner along the hyper-edges, we get the
bodies of the rules and the uncertainty level, from which we get the wanted answer.
Applying the suitable substitution and computing the uncertainty factor, we get
the same answer as in top-down manner.

Thus according to the induction hypothesis, the statement is true for all finite
evaluation graphs. •

We give an algorithm to evaluate the graph. This algorithm provides the answer
in the case of a given program and a given goal.

The algorithm consists of two procedures calling each other, one of these pro-
cedures evaluating a goal or a sub-goal, the other evaluating a rule-body.

The "goaLevalutaion" procedure determines all of the unified bodies in the
case of unificable rules, and evaluating these bodies gives the answer to the goal.
The "rule-evaluation" procedure evaluating the sub-goals of the body gives the
substitution belonging to the body and the uncertainty level of the body.

The order of the unificable rules in the "goal-evaluation", and that of the sub-
goals in the "rule_evaluation" are determined with the aid of a selection function.
The special symbols ("good", "bad") are not in the set of évaluable sub-goals,
because they are not évaluable. (In the case of "bad" there is no a unificable rule,
in the case of "good" we get an empty node after unifying, so we can determine
the answer immediately.)

It is practical to solve the join of the substitutions in top-down manner, that is
not to consider the sub-goals as independent evaluations, but to narrow the size of
the graph by a "sideways information passing". This means, that the substitution
getting by evaluation of a sub-goal can be applied immediately to the other members
of the body, so we can reduce the number of examinable paths.

During the evaluation of a sub-goal, it is possible to substitute such variables
which don't appear among the variables of the sub-goal, therefore it is enough to
consider only the projection of the substitution to the variables of the sub-goal.

If it is necessary, the variables can be renamed with the aid of the set of
substituting-terms. The set of substituting-terms of substitution
9 = {x i|i i , . . . , x„|tn} is the set { ¿ i , . . . , i „ } .

Algorithm 4

Evaluation:
begin

solution := 0
goalanswer := 0
goal-evaluation (goal, goalanswer)
while not-empty (goalanswer) do

(9, agoal) := element (goalanswer)
goalanswer := goalanswer —{(0, agoal)}
solution := solution U{(goal's-atom 9, agoal) }

endwhile
end

Evaluation Strategies of Fuzzy Datalog 99

Procedure goal-evaluation (goal, goalanswer)
goal-variables := { the set of the variables of the goal }
R :— {(r; I; [i)\ rule's-head (r) is unificable with the goal }
if R = 0 then return
while not-empty (R) do

(r;/; /3) := rule-selection (R)
R:=R-{(r;J;/3)}
body rule's.body (r)
for all variable € r do

if variable 6 substituting-terms (6)
then variable := newname (variable)

endfor
9 :— mgu(goal's-atom, rule'sJiead (r))
body := body 9
abody := 1
8 body := e
if body = 0 then goalanswer := goalanswer U{#, / (/ , abody, /3))}

else rule-evaluation (body, «body, 0body, goalanswer,
goal-variables, / , /3)

endif
endwhile

endprocedure

Procedure rule-evaluation (body, abody, flbody, goalanswer, goal-variables, I, fi)
atom := atom-selection (body)
newbody := body - { atom }
answer := 0
goal-evaluation (atom, answer)
if answer = 0 then return
while not-empty (answer) do

(9, aatom) := element (answer)
answer := answer —{(0,aatom)}
0body := 0body0
abody := min (abody, aatom)
if newbody 0 then

newbody := newbody 9
rule-evaluation (newbody, abody, #body, goalanswer,

goal-variables, I, /3)
endif
if newbody = 0 then

9 := projection (0body, goal-variables)
goalanswer := goalanswer U{(0 , / (/ ,abody, /3))}

endif
endwhile

endprocedure

100 Agnes Achs

Note: The order of the unificable rules and sub-goals is unimportant, but it has
an effect on the efficiency of the algorithm.

The uncertainty level of the goal (Q\a) is either constant or variable. If it is
variable, this variable gets value during the evaluation. If a is a constant, then the
uncertainty level received during the execution of the algorithm is a solution only in
that case, if this level is greater then a. In this case, however, it is unnecessary to
consider all the rules of the program. It is enough to take those, whose uncertainty
factors are greater then a. Thus, the size of the evaluation graph can be reduced.

As the above example shows, the top-down evaluation may not terminate. The
reason is the evaluation of recursive atoms, because the evaluation of nonrecursive
atoms terminates in finite steps. (The number of steps is 2t + 1, where t is the
longest path leading to the atom in the evaluating graph.)

If we order a depth limit to each recursive atom, the procedure can be stopped.
This limit can be determined in the following way:

In a dependency graph let h be the maximum length of the loops containing the
predicate of the atom, and let t be the maximum length of loop-free paths leading
to this predicate.

Let us enter the concept of recursion distance. This is the number of steps
in which we get the fixpoint respecting this atom in bottom-up evaluation. The
recursion distance depends on the number of constant in the program and the
"content" of the predicate.

For example in the case of the program

u(x, y) e(x, z), u(z, y)-1; fix

u{x,y) e{x,y)-r,02

where e is a fact and c is the number of constant in the program, the recursion
distance of atom u(x,y) is c — 1.

Let us denote the recursion distance by r! Then the depth limit is
k = 2h(r - 1) + 2t + 1.

Proposition 4 Let us order the previously defined depth limit to each atom of
program P\ Then the top-down evaluation terminates and gives all the solutions,
which satisfies the goal.

Proof : As the goal-evaluation is driven back to the evaluation of the sub-goals,
therefore it is enough to show the truth of the proposition for one recursive atom.

If there is no loop-free path to a rule's head-predicate in the dependency graph,
the rule can not be evaluated. Thus, it is enough to look at the atoms to which
there are loop-free paths.

If the length of a path leading to the predicate in the dependency graph is i,
the length of this path in the evaluating graph is 2f, because the evaluation graph
is built from a series of two steps: determining the rule-bodies, and dividing them
into sub-goals. There are additional edges leading to the ending symbols.

Along the 21 step-long path we get from the sub-goal to an atom of a fact-
predicate, which can be evaluated.

Evaluation Strategies of Fuzzy Datalog 101

The given atom - including other possible variables - occurs again in the evalu-
ation graph in 2h steps deeper. The new evaluation is necessary only, if it provides
a new solution. This possibility however can not occur more than the value of the
recursion distance. As in the case of the first recurrence, we are on the second
recursion level, so it is enough to allow the recurrence in r — 1 times.

As we don't get any new solution deeper then the given limit, we can leave these
branches.

Ordering the suitable depth limit to each atom, the algorithm terminates, and
gives all the solutions which satisfies the goal. •

Note: The recursion distance is not always as simple as in the example above, but
it can not be greater then cn , where c is the number of constants, n is the number
of atoms in the program.

9 Top-down Evaluation in the Case of Stratified
/DATALOG

It is easy to apply the top-down evaluation for stratified /DATALOG. In the case
of stratified /DATALOG, the head-predicate of a rule is at least as high stratum
as the predicates of the body. In other words, during the top-down evaluation
we approach from the higher strata to the lower ones, that is in the evaluation
graph the stratum of a parent node is not lower than the stratum of the children.
Therefore when we compute the uncertainty level, we are starting at the lowest
stratum. This observation can be used to handle the negated predicates. If a sub-
goal is negated, let us indicate this sub-goal, and pay attention to this marking
during the computation of the uncertainty level. If the atom is marked and the
uncertainty level computed up to this point is a, let us continue the computation
with value 1 — a.

10 Conclusion
In this article we have dealt with the evaluation of fuzzy DATALOG, given the
algorithms of bottom-up and top-down evaluation, and showed the equivalence of
two evaluations.

References
[AKl] Agnes Achs, Attila Kiss: Fixpoint query in fuzzy Datalog, Annates Univ.

Sci. Budapest, Sect. Comp. 15 (1995) 223-231

[AK2] Agnes Achs, Attila Kiss: Fuzzy Extension of Datalog, Acta Cybernetica
12 (1995) 153-166.

102 Agnes Achs

[CGT] S. Ceri G. Gottlob L. Талса: Logic Programming and Databases, Springer-
Verlag Berlin, 1990

[DP] Didier Dubois - Henri Prade: Fuzzy sets in approximate reasoning, Part 1:
Inference with possibility distributions, Fuzzy Sets and Systems 40 (1991)
143-202.

[GS] Yuri Gurevich, Saharon Shelah: Fixed-point extensions of first-order logic,
IEEEE Symp. on FOCS (1985), 346-353.

[K] Attila Kiss: On the least models of fuzzy Datalog programs, International
Conference on Information Processing and Management of Uncertainty in
Knowledge-based system, Mallorca 465-471.

[L] J. W. Lloyd: Foundations of Logic Programming, Springer-Verlag, Berlin,
1987.

[LL] Deyi Li, Dongbo Liu: A Fuzzy PROLOG Database System, Research Stud-
ies Press LTD., Taunton, Somerset, England, 1990.

[N] Vilém Nóvák: Fuzzy sets and their applications, Adam Hilger Bristol and
Philadelphia, 1987.

[P] Pásztorné Varga Katalin: A matematikai logika és alkalmazásai
Tankönyvkiadó, Bp., 1986.

[U] J.D. Ullman: Principles of database and knowledge-base systems, Com-
puter Science Press, Rockville, 1988.

Received July, 1996

CONTENTS

László Bernátsky: Regular expression star-freeness is PSPACE-complete 1
B. Csaba, G. Dányi: Server Problems and Regular Languages 23
B. Imreh: On «¿-products of nondeterministic tree automata 41
Erkki Mäkinen: On lexicographic enumeration of regular and

context-free languages 55
Rainer E. Burkard, Guochuan Zhang: Bounded Space On-Line Variable-Sized

Bin Packing 63
András Pluhár: Generalized Harary Games 77
Agnes Achs: Evaluation Strategies of Fuzzy Datalog 85

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
A kézirat a nyomdába érkezett: 1997. szeptember

Terjedelem: 7,12 (B/5) ív

