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Regular expression star-freeness is 
PSPACE-complete 

László Bernátsky *t 

Abstract 
It is proved that the problem of deciding if a regular expression denotes a 

star-free language is PSPACE-complete. The paper also includes a new proof 
of the PSPACE-completeness of the finite automaton aperiodicity problem. 

1 Introduction 
Star-free languages form an important subclass of regular languages: they are the 
ones that can be obtained from the singleton languages by a finite number of appli-
cations of the operations of union, complement and product. By Schiitzenberger's 
famous theorem [8], a regular language is star-free if and only if its syntactic monoid 
is aperiodic, or equivalently, if it is recognized by an aperiodic DFA. Moreover, a 
language is star-free if and only if it can be defined by a first-order formula of a 
suitable formal language, see [10]. In his 1985 paper [9], Jacques Stern proved that 
the problem of deciding whether a DFA is aperiodic is Co-NP-hard and belongs to 
PSPACE. A few years later Sang Cho and Dung T. Huynh strengthened Stern's 
result by showing that this problem is in fact PSPACE-complete, see [3]. Not 
knowing about their work I proved the same result while Zoltán Esik and I were 
working on the description of the free Conway theories, see [1]. The present paper 
contains a slightly modified version of my original proof, which rests on the same 
basic idea as the proof of Cho and Huynh, but uses a different construction, see 
Construction 4.1. This different construction makes it easy to extend the proof to 
regular expressions. 

2 Definitions and preliminary facts 

2.1 Sets and relations 
The set of nonnegative integers is denoted N, and to stands for the set of positive 
integers. For n £ N, [n] denotes thé set {1 , . . . ,n} , so that [0] is another name for 
the empty set 0. 
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2 László Bernátsky 

The power-set P (S) of a set S consists of all subsets of S, and the direct product 
Ay. B of two sets A and B consists of all pairs (a, b) with a 6 A and b £ B. A 
binary relation from A to B is just a subset of A x B, so that P {Ax B) is the set of 
all binary relations from A to B. The composite of two binary relations p C A x B 
and p' C B x C is the relation 

pop' = { (a,c) | 3b 6 B (a,b) £ p A (6,c) £ p'} C AxC. 

We use the infix notation apb instead of (a, b) 6 p. Suppose that A' is subset of A, 
and B' is a subset of B. We write A'pB' if there exist a £ A' and b £ B' with apb. 
The image of A' under p is denoted A'p, i.e., 

A'p = {b£B\3a£ A' apb}. 

When A' = {a} is a singleton, we write ap instead of A'p. 

2.2 Words and languages 
Suppose that A and B are alphabets, i.e., nonempty finite sets. We denote by 
A* the set of all finite words over A including the empty word e, while A+ stands 
for A* \ {e}. The set Aw is the collection of all infinite words over A. The length 
of a finite word u £ A* is denoted \u\, and the ith letter of a finite or infinite 
word w £ A* U Aw is denoted Wi. Thus, any finite word u £ A* can be written as 
U1U2 .. • U|u|, where each Ui is an element of A. A word v £ A* is called a prefix of 
a word u £ A* U A" if u = vw, for some w £ A* U Aw. A function ip : A* ->• B* is 
called a homomorphism if ip(uv) = ip(u)ip(v), for all words u,v £ A*. Note that 
each homomorphism A* —> B* is totally determined by its restriction to A. 

For the reader's convenience we restate the theorem of Schiitzenberger. 

THEOREM 2.1 (Schiitzenberger [8]) A regular language I C S ' is star-free if and 
only if there exists some integer k > 0 such that 

uvkw £ L uvk+lw £ L, 

for all words u,v,w £ £*. 

A proof of the following lemma is given in the appendix. 

LEMMA 2.1 Suppose that S = {eri,... ,<rn} is an alphabet and I = |~log2(n + 1)]. 
Then there exists an injective homomorphism tp : {0,1}* satisfying the fol-
lowing conditions. 

• The ip-image of each letter a £ £ is a word of length 21 beginning with a 
sequence of I zeros and containing the letter 1. In other words, 

C 0 ' {0 ,1} '\ {0'2i}. (1) 
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• For all words u,v,w e {0,1} * 

uv2lw 6 ^>(E*) =>• 21 divides |v|. (2) 

• For all regular languages L C S * 

L is star-free <=> is star-free. (3) 

2.3 Regular expressions 
Let 7?. be the ranked alphabet consisting of the constant symbol 0, unary symbols 
*, ~ and binary symbols U, fl. Suppose that E is an alphabet such that £f~l7£ = 0. 
For any subset TV of TZ, the set SU71' can be considered as a ranked alphabet in 
which the elements of E have rank 0, and the elements of TV have the same rank 
as in TZ. An 72-'-type regular expression over E is a ground (E U 7£')-term, 
i.e., a term over the ranked alphabet E U TV containing no variable symbols. A 
{0, •, U, *}-type regular expression is simply called a regular expression, and an 
(TZ \ {*})-type regular expression is also called a star-free regular expression. 

As for the syntactical conventions, we use infix notation for the binary opera-
tions U, fl and •, postfix notation for *, and we write a instead of ~ a. The operation 
symbol • is usually omitted. If E' = { o i , . . . , a n ) is a subset of E, we simply write 
E' instead of o\ U • • • U an. 

The language L(E) C E* denoted by an 72,-type regular expression E over E is 
defined in the usual way, see [7]. Note that a regular language L C E* is star-free 
if and only if it is denoted by some star-free regular expression over E. 

We recall from [7] that the star-height sh(E) of a regular expression E is 
defined by 

for all letters a S E and regular expressions E,F over E. 

2.4 Finite automata 
Most of our automata-theoretical notations and definitions are adopted from [4]. 

A (nondeterministic) finite automaton (NFA) is represented as a 5-tuple 
A= (Q, E, r, I, F), where 

sh(cr) 
sh(0) 

0 
0 
max{sh(£),sh(F)} 
max{sh(E),sh(F)} 
1 + sh (E), 

sh(E U F) 
sh(E • F) 

sh (E*) 

• Q is the finite set of states, 

• E is the input alphabet, 
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• T : £ P(<2 x Q) is the transition function, 

• I Q Q is the set of initial states, 

• F C Q is the set of final states. 

Note that for each input symbol a £ E, T(CT) is a binary relation on Q, called the 
relation induced by a in the automaton A. We prefer the notation a^ to 
T(CT). When u £ E* is an input word, ua denotes the relation induced by u in 
A, defined by 

uA := r(wi)o--or(w|u|). 

Note that ca is the identity relation. 
The automaton A can be visualized as a directed graph with vertices Q, and 

edges labeled by input symbols in E. Motivated by this point of view, we shall 
sometimes denote the relation UA by —*-A • Then q —*-A q' means that there is a 
directed it-labeled path from vertex q to vertex q'. 

The language L(A) recognized by A consists of those words it £ E* for which 
there exists a w-labeled path from some initial state to a final state, formally 

L(A) = {w £ £* | I-^aF}-

When A is understood, we sometimes omit the subscript in and ua-
We call A a deterministic finite automaton (DFA) if it has at most one 

initial state, and each relation a a (C £ E) is a partial function Q —» Q. A deter-
ministic automaton is called complete if it has a unique initial state, and each of 
its'input symbols induces a total function. 

The automaton A is called a reset automaton if it has at most one initial 
state and each input symbol a £ E induces either the identity function or a partial 
constant function Q Q. 

A state q of A is called accessible (respectively, coaccessible) if there exists 
some input word u € E* with I-V4 {q} (respectively, {q} F). Note that each 
initial state is accessible and each final state is coaccessible. A biaccessible state 
is one which is both accessible and coaccessible. Two states q,q' £ Q are called 
equivalent, denoted q ~a q', if 

{9} - V a F <=> {q'}^AF, 

for all input words u £ E*. Suppose that A is a DFA. Then A is called 

minimal if all of its states are biaccessible, and it has no different equivalent states, 

aperiodic if there exists an integer k > 0 such that (u k ) A = ( u k + 1 ) A , for all 
u £ £*. 

Observe that if A is a reset automaton then (u2)A = (u3)A, and if A is a complete 
reset automaton then ua = (u2) 'A, for all words u £ E*. 
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REMARK 2.1 It is well known (see [4]) that a deterministic automaton A — 
(Q, £ , T, I, F) is aperiodic if and only if it satisfies the implication 

uk u 
Q—*-aq = > q-*-Aq, 

for all states q £ Q, input words u 6 £+ and integers k > 2. 

Suppose that n > 1, and Ai = (Qi,T,,Ti,Ii,Fi) is an NFA, for each i £ [n]. 
Then the product of the Aj's is the NFA 

I I ^ = ( I I G » E ' r > n **> I I 
¿€[n] ¿G[rt] ie[n] »€["] 

where 

t(ct) = {((?!,• • .,qn), (r i , . . . , r n ) ) | Vi £ [n] (qi,ri) € n(a)}, 

for all a £ E. It is easy to see that 

l( N A ) = F | L 

ie[n] ¿6(n] 

2.5 Turing machines 
A deterministic Turing machine (DTM) with a single one-way infinite tape is 
a system M = (Q, T, E, 5, qo, q/), where 

• Q is the finite set of states, 

• T is the tape alphabet containing the special "blank" symbol b, 

• E C T is the input alphabet, b ^ E, 

• i : Q x T - > Q x T x { - l , 0 , l } i s the partial transition function, 

• qo £ Q is the initial state, 

• <7/ £ Q is the final state. 

We say the machine M is in the configuration (q,i,u) for a state q £ Q, integer 
i £ u) and infinite word u € if in state q it scans the ith tape cell and the 
content of the tape is u. We define a binary relation Vm on the set Q x lo X RW of 
configurations by 

(q,i,u) \-M (r,j,v) S(q,Ui) = (r,Vi,j - i) A Vf € u (t ^ i => vt = ut). 
« 

Note that h ^ is a partial function. The machine M. accepts an input word u £ E* 
if 

(q0,l,ub") \-*M (qf,lX), 
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otherwise M. rejects u. The language L(M) C £* recognized by M. consists 
of those words u £ £* which are accepted by M. Thus, for each word u £ L(M), 
there exists a shortest sequence (gi,H,wi),..., (qk,U,uik) of configurations such 
that 

(ft, ¿1,101) = ( 9 0 , 1 , ^ ) , 
(qk,ik,wk) = (g/ , l ,bw ) , and 
Cqt,n,wt) hM (qt+i,it+i,m+i), 

for all t £ [k — 1]. Then we define 

SPACEJU(U) : = m a x it. 
t€[fc] 

Suppose that S : N —» N is a (space constructible) function. The machine M is said 
to have space complexity S if SPACE^w) < S(|u|), for all words u £ L{M). 
The language class PSPACE consists of those languages which are recognized by 
some Turing machine M having space-complexity p, for some polynomial function 
p : N-»N. 

We assume the reader is familiar with the concept of logspace-reducibility (see 
[2], for example). 

Suppose L and L' are languages. In this paper, L <iog L' stands for "L is 
logspace-reducible to L"'. The language L is called PSPACE-hard with respect 
to logspace-reductions, written PSPACE <iog L, if every language in PSPACE 
is logspace-reducible to L. Lastly, L is called PSPACE-complete with respect to 
logspace-reductions if L £ PSPACE and PSPACE <log L. 

3 Problems 
We are interested in the computational complexity of the following decision prob-
lems: 

1. The automata intersection problem (AIP): 

INPUT: A sequence Ai,..., An (n > 2) of nondeterministic finite automata 
with a common input alphabet. 

QUESTION: Does flie[„] ¿ M » ) ^ 0 hold? 

2. A restricted version of the automata intersection problem (AIP^): 

INPUT: A sequence Ai,...,An (n > 2) of minimal reset automata with a 
common input alphabet. 

* 

QUESTION: D o e s FLIE[N] ^ ® h o l d ? 

3. Automaton star-freeness (ASF): 
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INPUT: A nondeterministic finite automaton A. 
QUESTION: Does A recognize a star-free language? 

4. A restricted version of automaton star-freeness (ASF/?): 

INPUT: A minimal DFA A with input alphabet {0,1}. 
QUESTION: Does A recognize a star-free language? 

5. Regular expression star-freeness (RSF): 

INPUT: A regular expression E. 
QUESTION: Does E denote a star-free language? 

6. A restricted version of regular expression star-freeness (RSF^): 

INPUT: A regular expression E of star-height 2 over the alphabet {0 ,1 } . 
QUESTION: Does E denote a star-free language? 

Assuming some efficient encoding of automata and regular expressions (see [5]) 
with words over a fixed finite alphabet, all these problems can be considered as 
languages. We are going to prove 

PROPOSITION 3.1 The problems A I P , A I P f i , A S F , A S F f l , R S F and R S F f l are 
PSPACE-complete with respect to logspace reductions. 

4 Constructions 
In this section we present the constructions of automata and regular expressions 
which are needed to show that the restricted problems A I P a , A S F « and RSF/y are 
PSPACE-hard. The first construction shows how can one replace a deterministic 
Turing machine with a sequence of reset automata. 

CONSTRUCTION 4.1 Input: A polynomial function p : N ->• N, a DTM M = 
(Q, r, E, S, go, qf) of space-complexity p, and an input word u € £", n > 0. 
Output: A sequence S, V,A\,..., Am of reset automata, where m = max{p(n), 1}, 
and 

(4) 
i € [ m ] 

Description: Let 

5 = (Q,A,TS, { ç 0 } , { g / } ) 

V = ([m], A, Tp, {1},{1}), 

and for each i G [m] 

Ai = (R,A,TI,{(ybu)i},M), 
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where 

A = {(q,k,-Y) \qeQ, k£[m], yeT} 

and the transition functions ts, tv, n , . . . , rm axe defined as follows. 

Suppose that a = {q, k, 7) is an element of A. If S(q, 7) is undefined then 

Ts{a) = T-p (a) = n ( o ) = • • • = rm(a) = 0, 

and if 5{q, 7) is defined, say S(q, 7) = (r, 7' , i) , then 

r5(a) 
tv (a) 

Ti{a) 

Proof. The intuition is that the automata S, V, Ai,..., Am together "simulate" 
the computation of M. on the input word u, such that S knows the current state 
of A4, V knows the position of the read-write head, and each Ai (i £ [m]) knows 
the content of the ith tape-cell. An input symbol (q,k, 7) £ A corresponds to the 
statement "the current state of M is <7, the position of the read-write head is k, 
and the content of the fcth tape-cell is 7". 

It is easy to see that each one of S, V, Ai,..., Arn is a reset automaton. (In fact 
they are even more restricted: for all input symbols a £ A, the relation induced by 
a in each one of the automata S,V,Ai,..., Am is either empty, or a singleton, or 
the identity function.) 

Consider the product automaton 

A = S x V x JJ A{. 
¿6[m] 

We know 

L{A) = L(S) fl L{V) fl p| L(Ai). 
ie[m] 

Observe that for all q, r £ Q, v, w £ r m , j, k £ [m], and a £ A 

(q,j,v 1,... ,vm) {r,k,w 1,... ,wm) 
a = (q,3,Vj) A S(q,Vj) = (r,Wj,k - j) A Vt € [m] (t ± j => wt = vt), 

and thus 

= { (9,r)} 
Í {{k,k + t)} if k + t £ [m], 
\ 0 iffc + i ^ [ m ] , 

_ Í 1 ( 7 , 7 ' ) } IF k = i 
\ {(ff.tr) I ct € T} if k ^ i . 

(q,j,vbw)\-M (r,k,wbu) 3 a e A(q,j,vi,... ,vm)-^A(r,k,W!,... ,wm). 
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It follows that 

ueL(M) (q0,l,u\>«)^M(qf,\X) 

^ 3v € A* (®»l , (« l»w ) i> . . . ) (ul»w )m ) -V>t(g / , l>b> . . . I l>) 

• 

Although the automata S, V, Ai,. •., Am constructed above have a very simple 
structure, they are not always minimal. In the next construction we show an 
easy way of modifying these automata so that they become minimal. Note that 
the standard procedure of automata minimization is not suitable for our purposes 
since it requires linear space. 

CONSTRUCTION 4.2 Input: A sequence Ai, • • • ,An (n > 2) of reset automata of 
the form Ai = (Qi, E,Tj, {sj} , { /¿ } ) . 
Output: A sequence B\,..., Bn of minimal reset automata such that 

F| L(Ai) = P) L(Bi). (5) 
¿e[n] ¿e[n] 

Description: For each i £ [n] let 

Bi = (Qi.EUE'.r?, {«<},{/<}), 

where 

= {(q,3)\q£Qj, je N), 

T '(t„i\\ - I i(p>q)\peQi> p^q} i f i = *> 

rd{q,J)) - | 0 i i j ^ i , 

for all <7 € E, (q,j) € £'. 
Proof. For each j £ [n] let Ê - denote the set {(q, j) | q € Qj}. Consider the 
automaton Bi for some i g [n]. It is obvious that Bi is a reset automaton. Since 
the elements of £ ' \ £• induce the empty relation in Bi, 

L(Bi) C (EUE'a*. 

Moreover, since each input symbol a £ E induces the same relation in Bi as in Ai, 

L(Bi) fl E* = L(Ai). 

These two observations and n > 2 imply (5). Lastly, for all states p, q £ Qi we have , <?,<> 9f Si => Si q, 
, , (fiA , 

q r h = > q *~h, 
pjiqAq^fi p(q,i)(fi,i) = {fi} A q{q,i){fi,i) =9, 

I 
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showing Bi is minimal. • 

The next construction shows that for each reset automaton A there exists a 
"short" regular expression denoting the complement of the language recognized by 
A. This fact plays a key role in proving that the problem RSF/j is PSPACE-hard. 

CONSTRUCTION 4.3 Input: A reset automaton 

A = (Q,Z,T,I,F). 

Output: A regular expression E over the alphabet E such that 

L(E) = L(A). (6) 

Description: If I = 0 then (6) holds for the regular expression E = E*. From 
now on we assume that A has an initial state qo. Let 

Xq = {a G E | QaA = {q}} 
Yg = {a G E | qaA = {?}} 
Zq = {a G E | qaA = 0}, 

for all q G Q. Using these subsets of E we define the regular expressions 

_ , E *XqYq* iíqjíqo 
S Z*XqY' U Y* ifq = qQ, 

for all q G Q. Lastly, let 

Proof. We claim 

and 

E = ( U E " I U I U 

u G L{Eq) => q0u C { 9 } (7) 

q0u = { 9 } u G L(Eg), (8) 

for all q G Q, u G £*. Then (6) follows since the definition of E expresses the fact 
that an input word u G £* is rejected by the automaton A either if qou = {<7} for 
some non-final state q, or qou = 0. 

As (7) is quite obvious, we only prove (8). Suppose that q$u = {g} for some state 
q G Q and input word u G £ n , n > 0. Then there exist some states q\,..., qn~\ 
such that til tJ2 un-l tin q0 —qi — • • • qn-1 —q• 
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If q0 = qx = • • • = qn_l = q then u £ Y* C L(Eq). Otherwise let k 6 [n] be the 
largest index for which qu-i ^ q, so that 

. Ufc Ufc + l v-n-l Un q ± qk-i — q • • • q —>- q. 

Since A is deterministic it follows that Uk+i, • • • ,un £ Yq. Moreover, since q ^ 
q, the relation induced by u^ is not the identity function. Thus, u^ 

induces a partial constant function with range {<7}, so that u^ £ Xq. We see 
u £ T,*XqY* C L(Eq). • 

The next construction presents the main idea of reducing A I P « to A S F « . The 
very same idea was used by Cho and Huynh in [3]. 

CONSTRUCTION 4.4 Input: A sequence B\,...,Bn {n > 2) of minimal reset au-
tomata of the form Bi = (Qi, S, Tj, /¿, Fi). 
Output: A minimal DFA C such that 

P| L(Bi) = 0 L(C) is star-free. (9) 
¿e[n] 

Description: If = 0 for some i £ [n] then let C be the minimal DFA with input 
alphabet {0} recognizing the star-free language 0. From now on we assume that 
each automaton Bi has a unique initial state Sj. Thus L(Bi) ± 0, for all i £ [n]. 
Let p be the least prime number with p > n. It is well known (see [6]) that p < 2n. 
For integers i £ {n + l , n + 2 , . . . , p } let Bi = (Qi,S,Ti , {s i } ,Fi ) be a minimal 
DFA recognizing the language £*. For the sake of simplicity assume that the sets 
Qi {i G [p]) are pairwise disjoint, and that # 0 S is a new input symbol. Let 
u : N [p] be the function mapping each integer i to ((i — 1) mod p) + 1. Then 
we define 

C := (|J Qi.EU {#},•>-,•{*!}, W ) . 
¿e[p] 

where 

r(#) = \ j F t x {a„ ( i+i)} 
¿e[p] 

t(V) = |J n(a) , 
ie[p] 

for all input symbols a £ See Figure 1. 

Proof. Clearly, C is a DFA with 

L(C) = (L{Bl)#L{B2)#---L{Bn)#{?,*W-nY 
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Si B 2 B p 

# 
Figure 1: The automaton C 

By Schiitzenberger's theorem, (9) is equivalent to the condition 

P| L{Bi) ± 0 C is not aperiodic. (10) 
ie[n] 

The " = > " part of (10) is obvious: if u £ E* is a common element of the languages 
L(Bi),..., L(Bn) then «i ^ ^ • c and si c S2 ^ si, so that C is not aperi-
odic by Remark 2.1. Before we prove the " part of (10) observe that if the 
letter # appears I times in an input word u £ (E U { # } ) * , and q £ Qi is a state 
such that q(u#)c ± 0 then q(u#)c = {s„( j+ i + 1 ) } . Moreover, if S j ( v # ) c -fi 0 for 
some integer j £ [p] and word v 6 E* then v £ L(Bj). Now suppose that C is not 
aperiodic, i.e. 

1 —+-c q, (11) 

and 

q - ^ c (12) 

for some different states q .£ Qi, q' £ Q?, i, i' £ [p], input word u £ (E U { # } ) + 

and integer k > 2. Note that by (11) we have q(ut)c ^ 0, for all t > 0. Let I be the 
number of # ' s in u, so that u can be written as 

where i t ' 0 ' , . . . , u'1' are words in E*. If I were 0 then we would have i' — i,q " > g. q, 
and q -VB, q' / q, contradicting the-fact that Bi is aperiodic. Thus, I > 0. 

Let v denote the word • • • so that u = v#uO and 

q — 

where j = v(i + I). By (11) we have 

u<" 
-c Si —*~c q• 
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If p were a divisor of I then it would follow that j = i and q —Si *-c q, 
contradicting (12). Thus p is not a divisor of I. 

Let j be an arbitrary element of [n]. As p is a prime not dividing I, there exists 
some integer t > 0 such that v(i + It) = j. For this t we have 

q *-c Sj. 

Moreover, since ut~1v#u^uW# is a prefix of ut+1 and q(ut+l)c / 0, it follows 
that 

showing u^'w'0' £ L(Bj). Since j £ [n] was arbitrary, 

u<'V°> € p| L(Bj). 
¿GN 

In order to prove C is minimal suppose that q £ Qj and r £ Qk are two different 
states of the automaton C. For each i £ [p] choose an arbitrary word £ L(Bi). 
Since q is a biaccessible state of Bj> there exist words v,w £ E* with 

V U) 
Sj -*-Bj q -+-B, Fj. 

Then 

si *~c q *-c si, 

showing q is a biaccessible state of C. If j ^ k, say j < k, then 

= { S l } and 

- i + i j -

Lastly, suppose that j = k. Since Bj is minimal, there exists some word x £ £* 
such that exactly one of the sets qxBJ C\Fj and rxnj n F j is empty, say rxsj P\Fj = 0. 
Then q(xjf)c = {s„(.,+1)}, r ( i # ) c = 0 and we have 

? № ( ) ' + 1 ) f " # » ( p ) # ) c = {si} and 
w W # ) c = 0. 

• 

The last construction gives the second part of the reduction AIP / j < i o g ASF/?-

CONSTRUCTION 4 . 5 Input: A minimal DFA C = ( Q , E , T , I , F ) . 

Output: A minimal DFA C' with input alphabet {0,1} such that 

L(C) is star-free L(C') is star-free. (13) 
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Description: Let ip : £* {0,1}* be an injective homomorphism satisfying the 
conditions of Lemma 2.1. In particular, the image ip{a) of each symbol a € £ is a 
word in {0, l } 2 i , where I = ["log2(|£| + 1)]. For each state q £ Q let 

Sg " W ^ ' l a e E , 

so that Sq is a set of words over the alphabet {0 ,1 } U Q, more precisely, Sq C 
{0,1 }2lQ- When 5 is a set of words and u is a word over the same alphabet, u\S 
denotes the set {v ) uv £ S } . For each integer j £ [21 - 1] let 

Q) := M S , | q € Q, u £ {0, 1 } ' } \ {0} . 

Thus each element of Q'j is a nonempty subset of {0, l} '2 l~JQ. Now let 

C' := (Q U Q', {0, l } , r ' , I, F), 

where 

Q' = U Q'v 
je[2/-i] 

and T' is defined such that 

{x\Sq} if x\Sq ^ 0, 
otherwise, 
if x\S = {<?'}, for some q' £ Q, 

Sxc = ^ 0 if x\S — 0, 
{a;\5} otherwise, 

for all q £ Q, S £ Q', x £ {0 ,1} . 

Proof. Let us denote Q by Q'0. It is easy to see that C' is a DFA satisfying 

q-+oq' <!==> € £* it = ip(v) A q-^*-c q', (14) 

and 

Q'i - V c Q'j H=3-i (mod 21), (15) 

for all q,q' £ Q, u £ {0,1}*, 0 < i,j < 21. It follows in particular that L(C') = 
ip(L(C)), so that (13) holds by Lemma 2.1. 

In order to prove C' is minimal suppose that s £ and s' £ Q'j (0 <i,j< 21) 
are two different states of C'. It is clear from the description of C' that there exist 
words v £ {0 ,1 } ' , v' £ {0, l } 2 i - t , and states q,q' £ Q such that q-^*-c< s - ^ - c q'• 

Since C is minimal, there exist words u,u' £ £* with / - V c q and q' - % - c F. By 
(14) we have 

T </>(«) V v' , t/l(tl') 1 q —t-c- S —»-C' q *-c> F, 
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showing s is a biaccessible state of C. If i ± j then s and s' are not equivalent by 
(15), so suppose i = j. If i — j = 0 then s and s' are two different elements of 
Q, and since C is minimal there exists a word w £ £* such that exactly one of the 
two sets swc l~l F = stp(w)c, n F and s'wc fl F = s'ip(w)c, n F is empty. Lastly 
suppose that i = j £ [21 — 1]. Then s and s' are two different subsets of the set 
{0,1}2 '~*Q, say s % s'. Let uq be an arbitrary element in s which is not in s', 
where u 6 {0, l } 2 i _ t and q £ Q. There are two possibilities: either s'uc = 0 or 
s'uc = { ? ' } for some state q' £ Q,q' ^ q. In the first case we have suip(v)c, C\F ^ 0 
and s'uip(v)c, fl F = 0, where v € £* is an arbitrary word with q -\-c F. (Such a v 
exists since q is a coaccessible state of C.) The second case can be handled similarly 
to the case i = j — 0. • 

5 Results 
THEOREM 5.1 The problems AIP and AIP^ are PSPACE-complete with respect 
to logspace reductions. 

Proof. We show 

PSPACE <log AlPfl <i09 AIP € PSPACE. 

Suppose that L C £* is a language in PSPACE. Then there exists a polynomial 
function p : N —> N and a deterministic Turing machine M. of space-complexity 
p such that L(A4) = L. Applying Construction 4.1 followed by Construction 4.2 
to M and an input word u £ E*, we obtain a list A\,..., An of minimal reset 
automata such that 

U£L «=> f ) L(Ai) ± 0. 
¿eM 

Since both constructions can be carried out by a logspace-bounded Turing machine, 
PSPACE <iog AIP/j. The claim AIP« <log AIP is trivial. In order to prove 
AIP £ PSPACE suppose that Ai,.".., An are NFA's with a common input alpha-
bet E, say Ai = (Qi,Yl,Ti,Ii,Fi). The following nondeterministic PASCAL-style 
program accepts the automata A\,..., An if and only if flie^] ¿ M i ) 0: 

function Solve_AIP(X1 ; . . . An : NFA)-.boolean; 
var 

Si,...,S„ : set of state ; 
a : input symbol; 

begin 
Si :=h; 
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while Si n Fx = 0 or • •• or Sn D Fn = 0 do 
begin 

guess a £ £ ; 

Si := SiCMj ; 

Sn -= Sn(7An 

end; 

Solve-AIP:=true; 

end; 

The space complexity of the program is linear. It follows by Savitch's theorem that 
AIP 6 PSPACE. • 

THEOREM 5.2 The problems ASF and ASFR are PSPACE-complete with respect 
to logspace reductions. 

Proof. We show 

AIP^ <log ASFR <log ASF e PSPACE. 

Suppose that B\,..., Bn (n > 2) are minimal reset automata with a common input 
alphabet. Applying Construction 4.4 followed by Construction 4.5 to B i , . . . ,Bn , 
we obtain a minimal DFA C1 with input alphabet {0,1} such that 

P| L(Bi) = 0 L(C') is star-free. 

Since both constructions can be carried out by a logspace-bounded Turing machine, 
AlPij <iog ASFr . The claim ASF^ <iog ASF is trivial. In order to prove 
ASF e PSPACE suppose that A = (Q, S, T, / , F) is an NFA. By Schiitzenberger's 
theorem, L(A) is star-free if and only if the minimal DFA recognizing L(A) is 
aperiodic. Recall that the power automaton of A is the deterministic automaton 

P M ) = ( P ( Q ) , S , T', { / } , F'), 

where 

F' = {SeP(Q) I S n F / 0 } , 
r ' ( A ) = { ( S , S < M ) | S € P ( Q ) } , 

for all a e S . The minimal DFA recognizing L(A) is obtained fr^m P(-4) by deleting 
those states which are not biaccessible, and then identifying the equivalent states. 
It follows that L(A) is star-free if and only if there exists some input word u € E*, 
accessible state S of P(^4) and integer k > 2 such that S ~p(a) S(uk)A = S(uA.)k 

and S t^p(a) Sua- The following nondeterministic procedure decides if S ^p(a) S' 
holds for two states 5, S' of P(^l): 
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function Not_Equiv(S, S' : set of state) ¡boolean; 
var 

a : input symbol; 

begin 

while (5 fl F = 0 and 5' n F = 0) or 

(S n F ^ 0 and 5' n F ^ 0) do 

begin 

guess er £ £; 

S := Sou; 
£" := S'aA; 

end; 

Not_Equiv:=true; 

end; 

By Savitch's theorem we obtain a deterministic polynomial-space program Equiv 
which decides if two states of P(-4) are equivalent. The following nondeterministic 
program uses Equiv as a subroutine to decide if L(A) is not star-free: 

function Not_ASF(yt : NFA) ¡boolean; 

var 

a : input symbol; 

S, S' : set of state; 

p : relation; 
halt : boolean; 

begin 

S:=I; 
repeat 

guess a € £; 

S := So a", 
guess halt; 

until halt; 

repeat 

guess a £ £; 

p : = p o a a ; 
guess halt; 

until halt; 
S' := Sp; 
if Equiv (5, S') then 

Not_ASF:=false 

else begin 

repeat 

S' := S'p; 
until Equiv(S, £'); 

Not_ASF:=true; 

end; 
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end; 

By Savitch's theorem and the fact that the language class PSPACE is closed 
under complementation it follows that ASF 6 PSPACE. • 

THEOREM 5.3 The problems RSF and RSF« are PSPACE-complete with respect 
to logspace reductions. 

Proof. We show 

AIP* <iog RSFR <log RSF <log ASF. 

The claim RSFr <iog RSF is trivial, and it is also easy to see that RSF <iog ASF: 
given a regular expression E, a logspace-bounded Turing machine can construct a 
nondeterministic automaton A such that L(E) = L(A). 

Suppose that Bi,..., Bn (n > 2) axe minimal reset automata with a common 
input alphabet E. Let C be the result of Construction 4.4 applied to the automata 
B\,..., Bn. Then C is a minimal DFA with input alphabet E U { # } such that 

P| L(Bi) = 0 L(C) is star-free. 
t€[ra] 

Applying Construction 4.3 to each one of the automata B\,..., Bn we get regular 
expressions E\,...,En such that 

L(Ei) = L(Bi), 

for all i £ [n]. Recall that 

L(C) = ( L ( B I ) # L ( B 2 ) # - - . L ( B N ) # ( E * # ) " - " ) * , 

where p is the least prime number with p > n. It follows that a word v = 
v ( o ) # v { i ) # . . . v l k - i ) # v W ( k > 0 ) v(o) ^v(k) e belongs to L(C) if and only 
if vW = e, k is a multiple of p, and v^ £ m0dP)+i)i for all i < k with 
i mod p < n. The languages denoted by the regular expressions 

Fj. = (EU # ) * £ 

F2 = ((E*#)p)* [ |J ( £ * # ) < ] £ * 
\*e[p-i] J 

F3 = ((E*#)*)* ( (J ] (EU # ) ' 
Vi€[n) / 

consist of those words v = t / C ' ^ l j j t • • • for which 
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1. v ^ ± e, 

2. k is not a multiple of p, 

3. ^ ¿ ( 5 ( i m o d p ) + 1 ) for some i < k with i mod p < n, 

respectively. Thus, the regular expression E := Ft UF? U-F-j denotes the complement 
of the language L(C). Let ij) : (SU { # } ) * -> {0,1}* be a homomorphism satisfying 
the conditions of Lemma 2.1. Let E' be the regular expression obtained from 
E by replacing each occurence of every letter i E S U { # } by the word tp(x) € 
{0,1}*. Then E1 is a regular expression over the alphabet {0,1} having star-height 
2. Moreover, L(E') = ip(L{E)) = rp(L(C)), so that 

L(E') is star-free L(C) is star-free p| L(Bi) = 0. 
i6[n] 

The simple structure of E' assures that it can be constructed by a logspace-bounded 
Turing machine. • 

6 Open problems 
The above results suggest that the following questions may be interesting. 

1. What is the complexity of deciding whether n»e[n] L{Ai) ^ 0, for minimal 
complete reset automata Ai,..., Anl 

2. What is the complexity of deciding whether a regular expression of star-height 
1 denotes a star-free language? 

We conjecture that the answer for the first question is "NP-complete". 
The second question seems to be harder. However, it is our conjecture that 

restricting the problem RSF to regular expressions of star-height 1 substantially 
decreases its computational complexity. 
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A Appendix 
Proof of Lemma 2.1. First of all note that n < 2l — 1, so that I bits are sufficient 
to represent the number n in binary. Let tp : £* —{0 ,1 } * be the homomorphism 
mapping each letter crj £ £ (i £ [n]) to the 2/-bit binary representation of i. Then 
ijj is injective and satisfies (1). 

Proof of (2). Suppose that (2) is not true. Then there exist some words u,v,w £ 
{0,1}* such that uv2lw £ tp(T,*), but 21 is not a divisor of |u|. Let us denote |n| by 
m. Then m > 0 and gcd(2Z, m) < 21. Since none of the integers 1 + 1,1 + 2,... ,21 —1 
is a divisor of 21, 

Moreover, since no word in i/»(£*) may contain 02' as a subword, the letter 1 occurs 
in the word v21, and thus in v. Let j £ [m] be an integer such that the th letter 
of v is 1. If i £ [2lm] is an integer satisfying 

gcd(2Z, TO) < I. (16) 

i j (mod m) (17) 
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then the ith letter of v11 is 1. By (1) it follows that if 1 < i < \uv2lw\ is an integer 
such that (i — 1) mod 21 < I, then the ith letter of uv2lw is 0. In other words, if 
i £ [2Im] is an integer satisfying 

i = t - |u| (mod 21) (18) 

for some t £ [Z], then the ith letter of v21 is 0. The diophantic system (17,18) is 
solvable in the variable i if and only if 

t-\u\ = j (mod gcd(2/,m)), (19) 

and in this case every solution can be written in the form 

i = io + h • lcm(2Z, TO), 

where io is a fixed solution and h is an integer. Let t be the unique element of 
[gcd(2Z,m)] satisfying (19). Then t £ [/], by (16). For this t there exists a unique 
integer i £ [lcm(2Z,m)] C [2/m] such that both (17) and (18) hold. But then we 
have, the contradiction that the ith letter of v21 is equal to both 0 and 1. This 
contradiction was caused by the assumption that (2) fails. 

Proof of (3). Suppose that L C £* is a language and tp(L) C {0,1}* is star-
free. Then L is regular and there exists an integer k > 0 such that for all words 
u,v,w € £*, 

uvkw £ L %p(u)il)(v)kil){w) £ ip(L) 
tp{u)ip(v)k+1ip(w) £ ip(L) 

<==> uvk+1w £ L, 

showing L is star-free. Thus, for this direction no special property of the homo-
morphism if) is needed other than its injectivity. 

For the converse direction, suppose that L C E* is a star-free language. Then 
there exists an integer k > 0 such that 

xykz £ L xyk+1z £ L, (20) 

for all words x,y,z £ E*. Let m be the maximum of 21 and k + 1. Suppose that 
uvmw £ ip{L), for some u,v,w £ {0,1}*. We want to show that uvm+1w £ ip(L). 
This is obvius if = 0, so suppose that > 0. By (2) it follows that |?j| is a 
multiple of 21, so that |t>| >21. Let a be the shortest prefix of v such that the length 
of the word ua is a multiple of 21. Then v can be written as a(3, for some word 
/3 £ {0,1}*. Since uvmw = ua(Pa)m~1 f3w £ ip(L) and the length of the words ua, 
Pa and (3w are multiples of 21, there exist words x,y,z £ E* such that ip(x) = ua, 
ip{y) = Pot, ip(z) = (3w and xym~1z £ L. Since m - 1 > k, it follows by (20) that 
xymz £ L. Thus, 

i>(xymz) = ua(f3a)ml3w = uvm+1w £ tp{L). 

The implication uvm+1w £ ip{L) => uvmw £ ip(L) is proved in a similar way. • 
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Server Problems and Regular Languages 

B. Csaba * G. Dányi t 

Abstract 

The sequences of requests are considered as words over the alphabet of 
vertices. We assume that the server problem is restricted, meaning that 
the request words are chosen from a subset of all possible words, i.e. from a 
language. We define the class ONLINE consisting of the languages, for which 
there exists a 1-competitive satisfying on-line algorithm. Our main result is 
a sufficient condition for languages to be in ONLINE and a construction 
method of 1-competitive on-line algorithm for the ones, which satisfy that 
condition. We perform this by characterizing a subclass ONREGo of the class 
ONLINE fl REG, where REG is the class of regular languages. Moreover, 
we prove some results, which help to show the on-lineness of certain other 
(even nonregular) languages and we give sufficient conditions to prove that a 
language is not on-line. 

1 Introduction 
The fc-server problem is a generalized model of certain scheduling problems as, 
for instance, multi-level memory paging, disk caching and head motion planning 
of multi-headed disks (see [MMS]). The paging and caching problems have been 
studied for a long time. However, server problems are introduced in the 80's (see 
[ST] and [MMS]). 

The ¿-server problem can be stated as follows. Let M = (V, 6) be a finite metric 
space, where V = {vi,..., vrl} are the vertices and 6 is the distance function. There 
are k mobile servers occupy exactly k vertices of M. Repeatedly a request, v,, G V 
appears. The request should be satisfied by moving some servers resulting that 
a server appears on the point The cost of moving one server from v̂  to vj is 
S(ví , Vj) and the cost of a satisfaction is the sum of the costs of the taken movements. 

"Research of this author was supported by the Research Foundation of Hungary under Grant 
F4204. 
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We assume that the request sequences are finite. The goal is to find an algorithm 
for M, which can satisfy request sequences with as little'cost as possible. 

If an algorithm serves requests immediately without knowing what the future 
requests will be, then we say that it is on-line. A widely used measure for the 
performance of an on-line algorithm is the competitive ratio, introduced by [ST]. 
Denote the optimal cost of the satisfaction of a request sequence x by opt(a:). An 
on-line algorithm A is called c-competitive, if there exists a number K such that, 
for all allowed request sequences x, the total cost A(x), incurred by A on x, is at 
most copt(x) + K. 

Obviously, a finite request sequence can be considered as a word over the alpha-
bet V. It has been proved that, if the request sequences can be arbitrarily chosen, 
that is, any word in V*, then the competitive ratio of any on-line algorithm is at 
least k (see [MMS]). However, in practice the request sequences are generated by 
programs, hence these sequences usually cannot be arbitrary, i.e. they are chosen 
from a language L C V*. Then the server problem is said to be restricted. Knowing 
that language, we may expect to find on-line algorithms with better performance. 
We can assign competitive ratio to the languages, too. Actually, a language is 
called c-competitive, if, for any distance function S, there exists c-competitive on-
line algorithm satisfying its request sequences. Observe that the competitive ratio 
defines a hierarchy of language classes. 

In this paper we consider the class ONLINE consisting of 1-competitive lan-
guages, called on-line languages. Note that this class is the bottom element of 
the hierarchy mentioned above. However, ONLINE seems to be very hard to 
characterize. For instance, it contains languages, which are event not recursively 
enumerable. For that very reason, we looked for necessary and sufficient conditions 
a language being in ONLINE. 

Sufficient conditions can be found, if we consider appropriate subclasses of 
ONLINE. Such subclass can be defined, for example, by intersecting ONLINE 
with a well known language class. In this paper we choose the class REG of regular 
languages for this purpose. This class is easy to handle, since the regular languages 
are recognized by deterministic finite automata. On the other hand, REG is closed 
for the operations concatenation, union and closure, which corresponds naturally 
to the programming structures, namely the sequencing, the selection, and the it-
eration, respectively. Observe that, for any alphabet V, V* £ REG holds, hence 
REG % ONLINE follows. We define the subclass ONREG0 C REG. The class 
ONREGo is closed for concatenation, union and closure of singleton languages. 
Roughly speaking, if we consider programming structures, there cannot be a selec-
tion inside an iteration. Our main result is that ONREGQ C ONLINE. Moreover, 
we show that how the operations sublanguage construction and letter reduction can 
help to prove the on-lineness of certain other, even nonregular languages, and we 
give sufficient conditions to prove that a language is not on-line. 

The outline of our paper is as follows. In the second section we introduce the 
definitions and notations, which are necessary to understand the paper. Moreover, 
we give some basic results. Our main result can be found in the third section, in 
which we show that the language class ONREGO contains on-line languages. In 
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the fourth section we give some sufficient conditions for regular languages not being-
on-line, and we discuss some other properties of the class ONLINE. 

We note that there is an other way of studying restricted fc-server problems, 
where the movements of the servers are restricted (see [FK], [BIRS]). This leads 
to the use of an access graph. A server can be moved to a vertex from an other 
one immediately, if they are adjacent vertices of the access graph. However, it can 
be seen that an access graph also defines a language over V, namely the set of 
satisfiable request sequences. 

Acknowledgement. The authors are grateful to P. Hajnal (Dept. of Mathe-
matics, University of Szeged, Hungary) and László Bernátsky (Dept. of Computer 
Science, University of Szeged, Hungary) for their valuable comments and sugges-
tions. 

2 Preliminaries 
In this section we introduce the notions and notations which are necessary to un-
derstand the paper. Moreover, we recall the preliminaries referred in our proofs 
from other papers, and give some basic results. 

We denote the set of real numbers by R, the set of nonnegative real numbers 
by R + and the set of natural numbers by ui. If H is a set, then \H\ denotes its 
cardinality. 

We frequently use the principline of structural induction in our proofs. For more 
information about inductions see, for example, [W]. 

2.1 Languages and automata 
Words and languages. An alphabet V is a finite nonempty set of symbols. The 
elements of an alphabet are called letters and denoted by u and v in this paper. 

A word iu over an alphabet V is a finite sequence v\... vi of some letters in V. 
The length of a word w, denoted by is the number of the letters composing 
w. The empty string is denoted by e, thus |e| = 0. For w £ V* — {e}, we define 
first(w) € V and last(w) £ V as the first and the last letter of w, respectively. 

The concatenation W1W2 of two words w\ = v\...i>i and W2 — u\ .. .Uk is 
the sequence vi...viu\ .. .Uk- We define the powers of a word w as iu° = e and 
wn = w ™ - 1 f o r any integer n > 1. We say that a word wi is a prefix of a word w, 
and denote this fact by wi C w, if there exists a word called a suffix of w, such 
that w = W\W2- We use the symbols w, x and y to denote words in this paper. 

The set of all finite words over an alphabet V is denoted by V*. A language over 
V is a subset L C V*. For any languages L and L', we define their concatenation 
as LL' = { W \ w £ L,w' £ L'}. For any language L, we put L° = {e} and 
Ll = where i > 1. The closure of a language L is the set L* = U i^L1 . The 
prefix language of a language L is L- = {x \ x C w holds for some w £ L}. We say 
that the prefix problem is decidable for a language L over an alphabet V, if, for an 
arbitrary word w € V*, it is decidable whether w £ L-. 
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We define the operation letter reduction, denoted by lr, over words as follows. 
For any word w G V*, there exists a unique decomposition w = v"1 . . . v£k, where 
ni,...,rik > 1 and vi,...,vk G V, such that Vi ^ Vi+1 with 1 < i < k. Then 
lr(u)) = v\. . . Vk • Roughly speaking, the lr operation substitutes a sequence of a 
letter by one. We extend the lr operation for languages as lr(L) = Utug£,lr(ii;). 

Regular languages. The class REG of regular languages is the smallest class, 
which obeys the following rules. 

(1) For any alphabet V, if w G V* then {?/;} is in REG. 
(2) If L, L' G REG then L U L', LL' and L* are in REG. 

That is, REG is the smallest class, which contains every singleton language and 
closed for the closure, the finite union and the concatenation. Clearly, for any 
alphabet V, the language V* is regular. 

The characterization of REG can be found in a wide range of books and papers 
concerning automata theory and formal languages (e.g. [HU]). A convenient way 
to define a regular language is to give its construction according to the above 
construction rules (1) — (2). This yields an expression, possibly with parentheses, 
where the members are singleton languages, and the operators are the union, the 
concatenation and the closure, in growing precedence order. These expressions 
are called regular expressions. For example, the regular expression ( {a } U {b\)*c 
defines the language of sequences of a and b followed by c. For brevity, we often 
write simply w for a singleton language {vi} in regular expressions in the sequel. 
Thus we have (all b)*c for the above expression. Note that a regular language can 
be defined by several regular expressions. 

Finite automata. A deterministic finite automaton (DFA) is a 5-tuple A = 
(Q, V, r, qo,F), where Q is the finite nonempty set of states, V is the input alphabet, 
T : Q x V —> Q is the total transition function, qo G Q is the initial state and 
F C Q is the set of final states. We extend r for Q x V* with r(q, e) = q and 
r(q,wv) = T(r(q,w), v), where q G Q, w G V* and v G V. A state q G Q is called 
trap state if there exists no word w G V* such that r(q, w) G F. We assume every 
state to be accessible, that is, for each q G Q, there exists a word w G V* such that 
r(q0,w) = q. 

A DFA can be represented as a directed labeled graph, where the vertices are 
the states and the edges are the transitions labeled by the corresponding letters of 
V. It should be clear that, for any q,q' G Q and w G V*, r(q,w) = q' implies that 
there is a path from q to q' labeled by w. By the graph representation, it is easy 
to show that, for any state q G Q, it can be decided in 0(|Q||V|) time, whether 
q is a trap state. Hence, the subset T C Q of trap states can be determined in 
0(\Q\2\V\) time. 

We say that the DFA A = (Q,V,T,qo,F) recognizes the word w G V* if 
T(qo,w) G F. The recognizability of any word w G V* by A can be decided in 0(\w\) 
time. The language recognized by A is the set La = {u> G V* \ r{qo,w) G F}. We 
say that the language L is recognizable if there exists a DFA A such that L = Lf\. 
The following proposition, known as Kleene's theorem, is a fundamental result in 
the theory, of automata. 
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Proposition 2.1 A language is regular if and only if it is recognizable. 

Moreover, given a regular expression E, a DFA recognizing the language defined 
by E can be constructed effectively. Conversely, given a DFA A, a regular expression 
defining La can be constructed effectively, too (see [HU]). 

Prefixes. The prefix words and languages play very important role in this 
paper, hence we pay more attention to them. Let A = (Q,V,r,q0,F) be a DFA. 
Observe that, for any word w £ V*, w £ Lj holds if and only if r(qo,w) is not 
a trap state. Recall that the set of trap states T C Q can be determined in 
0(\Q\2\V\) time. Define the DFA B = (Q,V,r,q0,Q - T), then it should be clear 
that Lb — Lj. By Proposition 2.1, we have that if L is a regular language, then 
L- is also regular. Hence, the prefix problem is decidable for regular languages. 

2.2 The language class ONREG0 

We define a subclass ONREGQ of REG. The name ONREG0 refers to cer-
tain properties concerning server problems, which are explained later. The class 
ONREGo is investigated for the first time in the present paper, hence, in addi-
tion to the definition, it is necessary to characterize it. We do this by presenting 
three different definitions for ONREGo and proving their equivalence. The first 
definition shows the inclusion ONREGo C REG immediately. 

Definition 2.2 The class ONREGo is the smallest one, which obeys the following 
rules. 

(1) For any alphabet V, if w £ V* then {w} and {w}* are in ONREGQ. 
(2) If L, V £ ONREGo then LV and LuL1 are in ONREGo • 

That is, ONREGo is the smallest class, which contains every singleton language, 
the closure of each singleton language, and closed for the finite union and the 
concatenation. Roughly speaking, a language L £ ONREGo can be constructed 
on the same way as a regular one, with the constraint that the closure operation 
is allowed only for singleton languages. It can be shown that, if V is an alphabet 
and |V| > 1, then V* $ ONREGQ. The second definition is very useful to prove 
the main result of the paper. 

Definition 2.3 ONREGo is the smallest class, which satisfies the following con-
ditions. 

(1) For any alphabet V and w £ V*, { w } , {w }* £ ONREGQ. 
(2) For any alphabet V, L £ ONREGQ and w £ V*, 

L{w},L{w}* £ ONREGQ. 
(3) If L, L' £ ONREGO then L U V £ ONREGQ . 

The third definition describes explicitly, what kind of languages belongs to 
ONREGQ. 
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Definition 2.4 Let V be an arbitrary alphabet and let L be a language over V. 
Then L E ONREGQ holds if and only if L can be defined by a regular expressions 
of the following form. There exist integers r, s > 0 and words Xi,j,yi,j E V*, where 
1 < i < r and 1 < j < s, such that 

L - LhKiKrXi^iy^i)* . ..Xij(yij)* . •. xitS(yitS)*. 

Finally, we prove that the three definitions are equivalent. We perform this 
showing that Definition 2.4 is equivalent to both the definitions 2.2 and 2.3. Sup-
pose that a language L can be defined by a regular expression of the form as in 
Definition 2.4. Then it is easy to see that L can be constructed by the rules of 
either Definition 2.2 or Definition 2.3. On the other hand, it is a routine exercise 
to show by structural induction on the rules that any language obeying the rules 
of either Definition 2.2 or Definition 2.3 can be defined by a regular expression of 
the form as in Definition 2.4. 

2.3 Server problems and satisfying algorithms 
Let M = (V, <5) be a finite metric space, where V = {vi,... ,vn} is the set of 
points and S : V x V —» R + is the distance function. Thus, for any u, v. v' E V, 
6(u,v) = S(v,u) and 6(u,v) < S(u,v') +S(v',v) hold. Moreover, 6(u,v) = 0 if 
and only if u and v are identical. Note that M can be represented as an n-vertex 
complete graph Gm, where the vertices are labeled by the elements of V and the 
edges are weighted as determined by 5. We put 8max — maxi<i j<n S(vl, Vj). 

There are k mobile servers occupy exactly k vertices of Gm • We assume that 
1 < k < n and n > 3. Note that the other cases are trivial and irrelevant from 
the point of view of our paper (see later). Suppose that there is a server on the 
vertex Vi and there is no one on Vj. Then moving the server from Vi to Vj costs 
5(vi,vj). Let the metric space and the number of servers be arbitrary, but fixed in 
the sequel. We use the symbols n and k to denote the number of vertices and the 
number of servers, respectively. 

A configuration (or a state) a is a word i\.. .ik E {1 , . . . ,n } f c , where ij < ij+i 
holds for each 1 < j < k, showing that the servers are on the vertices v^,..., Vik. 
It is easy to see that there are exactly (£) different configurations. A configuration 
can be changed by moving a server from an occupied vertex to an empty one. 

A request is a letter Vi E V. A satisfaction of the request in a given starting 
configuration is a sequence of movements of some servers, such that the resulting 
configuration contains i, that is, there is a server on the vertex Vi. The cost of the 
satisfaction is the sum of the costs of its movements. Observe that a request vt can 
be satisfied with no movements if and only if the starting configuration contains 
i. Moreover, any request can be satisfied by one movement of one server in any 
starting configuration. 

A request word is a sequence of requests, that is a word over V. A satisfaction of 
a request word u> = v\ . . . Vi in a given starting configuration is the sequence of the 
satisfactions of the requests vi,...,vi after each other. The cost of a satisfaction is 
the sum of the costs of the satisfactions of composing requests. 
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Satisfactions are denoted by the symbol S in the sequel. By |S| we mean the 
cost of the satisfaction S. For any satisfaction S, we denote the starting and 
the resulting configuration of S by as and as, respectively. A decomposition of 
the satisfaction S of a word w is a sequence Si,..., Si of satisfactions of words 
w i , . . . ,wi, such that w = w i . . . u>i, as1 = as and as{ = f s i + i (1 < i < Z) hold, 
and the satisfaction of w by applying S i , . . . ,5; after each other gives exactly S. 
Then we write S = Si... Si. 

Clearly, for any request word w, there is a satisfaction with minimal cost in 
a given starting configuration a, called an optimal satisfaction of w. Denote that 
cost by optCT(u;). Let a and a' be different configuration, then it should be obvious 
that ¡opt„.(?/;) — opt0./(w)| < kSmax. If the starting configuration a is understood, 
then we write simply opt(w). Let the starting configuration be arbitrary, but fixed 
in the sequel. 

Let w € V* be a word such that w = wivnw2 holds, for some wi,w2 £ V*, 
v e V and n > 1. Then it is easy to show that o^t(wivnw2) = opt(wii;w2)- It 
follows that, for any word w, opt(w) = opt(lr(w)) holds. 

The following results characterize the word composition and decomposition from 
the point of view of optimal satisfactions. 

Lemma 2.5 Let w £ V*. Consider an arbitrary decomposition w = Wiw2, where 
wi,w2 € V*. Then the following statements hold. 

(1) opt(wi) + opt(w2) < opt(w) + kSmax 

(2) opt(w) < opt(wi) + opt(w2) + kSmax 

Proof. There exist satisfactions, denoted by S, Si and S2, with the costs 
opt(w), opt(u)i) and opt('(«2) for the request words w, wi and w2, respectively, 
in the starting configuration cr. 

The satisfaction S can be decomposed as S = S'S", where S1 is a satisfaction 
of wi in a, and S" is a satisfaction of w2 in as'• Observe that it is easy to 
transform 5" to a satisfaction of w2 in a such that, before starting S", we change 
the starting configuration a to as' by moving the appropriate servers. Clearly, 
this modification costs at most k8max. Now suppose the contrary of (1), that is, 
opt(wi) + opt(w2) > opt(w) + kSmax. Then, by the above results, it is easy to see 
that either S' must be a more optimal satisfaction of wi than Si in a, or S" with 
the above modification should cost less than S2 in a. Both contradict that Si and 
S2 have optimal costs, hence the statement (1) holds. 

Now consider the following satisfaction of w in a. Satisfy the prefix wi by Si, 
then recover the starting configuration a and satisfy the suffix w2 by S2. The 
satisfaction Si costs opt(wi), the recovery of the starting configuration costs at 
most k5max and S2 costs opt (w2). Hence, the cost of the satisfaction is at most 
opt(wi) + opt(w2) + kSmax, which implies (2). • 

Roughly speaking, for a given metric space and number of servers, our goal is 
to find satisfactions with minimal costs for request words. More precisely, we want 
to find an algorithm, which gives server moving sequences with minimal cost to 
satisfy any possible request word. 
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In this paper we consider such kind of algorithms, which are deterministic and 
computes the satisfaction of any request word in any starting configuration, that 
is, the server moving sequence of the satisfactions letter by letter. For the sort, we 
call simply algorithm the ones in the sequel, which have the above properties. 

Let A be an algorithm, let to be a request word and let a be the starting 
configuration. Then the cost of the satisfaction of w given by A in a is denoted by 
Aa(w). If a is understood, we write simply A(w). 

We say that an algorithm is lazy, if, for any request and starting configuration, 
it moves at most one server to satisfy the request. Otherwise, the algorithm is said 
eager. Clearly, for any request word, there exists a lazy algorithm which satisfies 
it. The following statement has been shown in [MMS]. 

Propositon 2.6 For every eager algorithm, there exists a lazy one such that, for 
any request word, the satisfaction given by the lazy one costs no more than the 
satisfaction given by the eager one. 

This result provides that it is enough to find an eager algorithm, if we want to 
show the existence of a lazy one with respect to any cost limit. If the type of an 
algorithm is not defined explicitly, we mean eager one in the sequel. 

There is an another classification of algorithms. An algorithm is said off-line, 
if it reads the whole request word first, then computes a satisfaction of that one. 
Moreover, an algorithm is called on-line, if it reads the request words from left to 
right, and reading a letter it gives the satisfaction of that request before reading 
the next one. 

Let c > 1 be a real number and let L C V* be a language. An algorithm A 
is said c-competitive on L (with the constant K), if A(w) < copt(w) + K holds 
for each w £ L, where K depends on only A and L. Clearly, if an algorithm A is 
c-competitive on a language L, then it is c-competitive on any sublanguage /.1 C L, 
too. Hence, if an algorithm is efficient on V*, then it is efficient on any language over 
V. Obviously, for any alphabet V, there exists a 1-competitive off-line algorithm 
on V*. 

We note that it has been proved in [CKPV] that there exists an off-line algo-
rithm, which gives the optimal satisfaction of any word w £ V* in 0{k\u>\2) time; 
Hence, we can conclude that, for an arbitrary language L, there exists a polynomial 
1-competitive off-line algorithm on L. 

The class of on-line algorithms has not so nice property. Up to this time, the 
known best competitive ratio of any on-line algorithm on V* is 2/c — 1 (see [KP]). 
Moreover, a lower bound was presented in [MMS], which shows that the competitive 
ratio of any on-line algorithm on V* is at least k. The question naturally arises that 
is it possible to reduce the competitive factor of on-line algorithms, if we consider 
only a special class of languages (e.g. ONREGo)? Recall that V* £ REG holds, 
for any alphabet V, hence REG is not suitable for this purpose. 

If it is not defined explicitly, by an algorithm we mean an on-line one in the rest 
of the paper. 
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A language L C V* is said c-competitive, if, for every M and k, there exists 
an algorithm, which is c-competitive on it. The 1-competitive languages are called 
on-line languages. The class of all on-line languages is denoted by ONLINE. 

Lemma 2.7 Every finite language is on-line. 

Proof. Suppose L = {wi,...,wm} is a finite language. We put I = 
maxi<t<ni \wi\. Let A be an arbitrary algorithm for L. Clearly, for any w G L, 
A(w) < opt(w) + lSmax. • 

The properties of prefix words and prefix languages concerning the server prob-
lem are cornerstones in our proofs. Let L be an on-line language and let the algo-
rithm A be 1-competitive on L. Suppose that w £ L and w = w\w2. Then, by (2) 
of Lemma 2.5, ^.(ui) = .A(wjiw2) < opt(w) + K < opt(u)i) + opt(ui2) + kSmax + K. 
Now let S = S\S2 be the satisfaction of w given by A, where S\ is the satisfaction 
of the prefix wi and ,S2 is the satisfaction of the suffix w2. Clearly, |Si| > opt(wi) 
and kSmax + 1521 > opt(1^2)* Hence the following statements hold. 

Observation 2.8 If A is a 1-competitive algorithm on a language L with the con-
stant K, w G L and w = W\W2, then 

(1) A(wi) < opt(wi) + 2k5max + K and 
(2) the cost of A on the suffix w2 is no more than opt(w2) -I- k6max + K. 

By (1) of Observation 2.8, we have the following result immediately. 

Theorem 2.9 If A is a 1-competitive algorithm on a language L with the constant 
K, then A is 1-competitive on L- with the constant 2kSmax + K. 

3 The languages in ONREGo are on-line 
The name ONREGo refers to the property of this class that it consists of on-line 
regular languages. However, it does not contain all on-line regular language. 

In this section we prove that the languages in ONREGo are on-line. We do 
this by executing structural induction on the rules of Definition 2.3. 

As the basic step of the structural induction, we prove that the languages {w} 
and {'(/;}* are on-line, for any word w (see (1) of Definition 2.3). 

Lemma 3.1 Let w be an arbitrary word over an arbitrary alphabet. Then {w\ and 
{w}* are on-line languages. 

Proof. As for the on-lineness of the language {?/;}, it immediately follows from 
Lemma 2.7. However, it also implied by the on-lineness of { w } * , since { w } C {-«;}*. 

We construct a 1-competitive algorithm A on {«;}*. Informally speaking, A 
works as follows. We find a satisfaction S on an appropriate »-sequence, which has 
minimal cost density and results the same configuration as the starting one. Then 
A applies S_ repeatedly on any w-sequence. 
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We need some preparations. A satisfaction 5 of a request word wms (ms > 1) 
is called circular on w, if as = holds. Denote the set of all circular satisfactions 
on w by CSATW. Moreover, a satisfaction 5 of a word wms (ms > 0) is called 
noncircular on w, if either ms = 0, or ms > 1 and S = S\... Sms, where each 
Si is a satisfaction of the word w and ast ^ ass, for any 1 < i < j < I. Denote 
the set of all noncircular satisfactions on w by NCSATW. Observe that, since the 
number of different configurations is (£), ms < (£) should hold for any noncircular 
satisfaction S. 

Let the satisfaction S_ € CSATW be such that is minimal in CSATW and 
ms is minimal with respect to the subset of CSATW determined by the previous 
condition. Roughly speaking, S is one of the shortest satisfactions in CSATW, 
which has the minimal cost density. 

We show that S_ exists arid it can be computed. We prove this by showing that 
it is enough to consider only such kind of satisfactions S, for which ms < (1) — 1 
holds. Suppose that ms > (£) — 1. Decompose S as S = S i . . . S m s , where each Si 
is a satisfaction of the word w, for any 1 < i < ms- Clearly, as = <?Si = ^s = °sms 

and a Si = • The number of different configurations is (£), hence at least one 
of the following cases holds. 

(i) There is an integer i, where 1 < i < ms, such that as; = Let S[ = 
Si... Si-1 and S2 = Si... Smi• Then S = 5(5^ and S[,S'2e CSATW hold. 

Clearly, ms = m s ; + m S ; and \S\ = |S[| + \S^\. Hence, either Jgf < ^J or 

< which contradicts the minimality of ms-

(ii) There are integers i and j, where 1 < i < j < ms, such that as, — as} • Let 
S[ = Si... Si-i, S2 = Si... Sj-i and S'3 = Sj... Sms. Then S_ — S^S^ and 
S[S^,S!2 e CSATW hold. Clearly, ms = rnS[S'3 +ms~2 and |5| = + 
It is easy to see that either j f ' '?3 ̂  < or < , which contradicts the 

J mc/ c/ — ms mc/ — ms ' 13 — s2 — minimality of ms-

We have ms < (£) - 1- The subset of CSATW, which consists of the satisfactions 
S obeying ms < — 1, is finite, hence S can be computed. 

Let now the algorithm A work as follows. Starting the satisfaction of a re-
quest word in {iu}*, A changes the starting configuration to as, then applies the 
satisfaction S repeatedly to the end of the input word. Clearly, A is on-line on 
M * . 

We prove that A is 1-competitive on {«;}*. Suppose that the input word is wm, 
where m > 0. Let p the smallest integer such that p > Then, by the definition 
of A, 

A(wm) < kdmax+p\S\ (*) 

holds. Denote by 5 an optimal satisfaction of wm in the given starting configu-
ration, thus |S| = opt(wm). It is an easy exercise to show that the satisfaction 
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S can be decomposed as S — S0S1S1.5/5/, where 5i , 52 , • • •,5/ £ CSATW and 
5o5i - . .5 / £ NCSATW. By the property of noncircular satisfactions, we have 
mSa - Si < (fc)- Moreover, by the choice of S, < holds, for each 1 < i < I. 
Now we can calculate as follows. 

A(wm) - opt (u ; m ) < p|5| + kSmax - J2i<i<i |5i| 
(by (*) and \S\ = opt(wm)) 

< kSmax + (jmis-^i<i<imsi)^l 
( b y M < jJd). 

Moreover, since 
Pms - E i ^ r c / ™ ^ ^ pms-m-1-(£) 

(by m = Ei<,</m5,- +mSo-Sn mso-s, < H)) 

< ms + (nk) 
(by the choice of p), 

we have 
< opt(wm) + (kSmax + |5| + - M ( f ) ) . 

m s Vs/ 
Hence A is 1-competitive on {w}*- • 

In the next step of the structural induction, we prove that the two construction 
rules defined in (2) of Definition 2.3 preserve the on-lineness. 

Lemma 3.2 For any alphabet V, language L € ONREGq and word w £ V*, if L 
is on-line, then L{w} and L{w}* are also on-line languages. 

Proof. Since L{w} C L{w}* holds, it is enough to show that L{w}* is on-line 
to prove the lemma. 

The language L is on-line, hence there is an algorithm A\, which is 1-competitive 
on it. Moreover, by Lemma 3.1, the language {u;}* is on-line. Let Ao be a 1-
competitive algorithm on {ui}*. We construct a 1-competitive algorithm A on 
L{w}*. Informally, A applies A\ as long as possible, then finds the beginning of 
the remainder -(«-sequence (if there is) and applies A2 to the end of the request 
word. 

Observe that every input word is of the form xwm, where x £ L and m > 0. 
Let x £ L and m > 1 be arbitrary, but fixed in the sequel. (As for the case 
m = 0, the 1-competitiveness of A will follow from its construction immediately.) 
Observe that xwm can be decomposed unambiguously as xwmi wiw2wm2, where 
m = mi + m2 + 1) w\w2 — w and xwmiw\ is the longest prefix of xwm, which is 
in 

Let the algorithm A work as follows. 

1. While the scanned prefix of the input word xwm is in L-, A applies Ai. 
Observe that in this way Ai is applied exactly on xwmi wi. 

2. Then A reads the letters successing xwmiwi, satisfies them arbitrarily and 
stores their concatenation, until the stored word is of the form yw or the 
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input ends. Since |xl»2| < |iw|, it should be clear that, for any input word, less 
than 2\w\ letters are to be read in this step. 

3. If there are no more letters left on the input, then A terminates. Otherwise, 
observe that W2Wm2 = ywwm2~1y' should hold, for some y, where yy' = w2 

and y' C w. Moreover, the rest of the input is wTrl2~1y', hence A) can be 
applied on the remainder input without any difficulties. Let A apply A2 on 
the rest of the input. 

Now we prove that .4 is 1-competitive on L{w}*. Supposing xwm £ L- (m > 0), 
by Lemma 2.9, A(xwm) < opt(a;u;n) + K\ 4- 2kdmax holds. Now suppose that 
xwm g L-. Clearly, in this case TO > 1 should hold. We can calculate as follows. 

A( xwn) < Ai(xwmiwi) + 2\w\8max + A2(wm») 
(by the construction of A) 

< opt(a;u;miK;i) + Kx + 2 kSmax + opt(w™2) + K2 + 2\w\6max 

(by Lemma 2.9) 
< opt (xwmiw1w2) + opt (wm2) + K1+K2 + 2 (k + |w\)5max 

< opt (M) m i wiw 2 w m ! ) + k8max + K1+K2 + 2{k + \w\)Smax 

(by Lemma 2.5) 
= opt(xwm) + (Ki + K2 + {3k + 2\w\)6max) 

Hence A is 1-competitive on L{w}*. • 

Finally, we have to check the construction rule defined in (3) of Definition 2.3 
to complete the proof. 

Lemma 3.3 For any languages Li,L2 £ ONREGq, if both L\ and L-2 are on-line 
then the language L\ U L2 is on-line, too. 

Proof. Since LI and L-2 are on-line languages, there exist algorithms AI and 
A2 such that, for any words w 1 £ LI and W2 £ L2, .4i(wi) < opt(wi) 4- K\ and 
A2(w2) < opt(i«2) + K2 hold, where K\ and K2 are constants. We construct an 
algorithm A, which is 1-competitive on L\ U L-2. 

Let the input word be an arbitrary w £ L\ U L2- The algorithm A works as 
follows. 

1. Reading the next letter of W, on the basis of the scanned prefix W' QW, A 
tries to decide that W which of the languages LI and L2 belongs to. Recall 
that both w' £ Lf or w' £ are decidable. While this cannot be decided 
unambiguously, A computes the satisfactions and the new configurations de-
termined by both Ai and A2, but satisfies the request as suggested by At • 
However, it stores the configuration computed by A2-

2. If A detects that w cannot be in L2, then it finishes the satisfaction of ru con-
tinuing by Ai. Otherwise, if it turns out that w is not in Lx, then A changes 
the configuration to the one stored for A2, and completes the satisfaction of 
w by A2. 
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We show that it is 1-competitive on L\ U L2. Observe that, for any input word 
w G L\ U L2, exactly one of the following two cases holds. 

(i) w G Ly- By the construction of A, in this case A(w) = Ai(w) holds. Since 
A\ is 1-competitive on L\, by Proposition 2.9 we have A(w) < opt(w) + K\ + 
2к6тах , where K[ is a constant. 

(ii) w G (L2 — L f ) . In this case A works as follows. The word го can be decom-
posed unambiguously as w — w\w2, where w\ is the longest prefix of w such 
that u>i £ L f . The algorithm A implements A\ on w\, changes the config-
uration and implements A2 on w2. Recall that changing the configuration 
costs at most k6max. We can calculate as follows. 

_4(ги) < Ai(wi) + к6тах + opt(w2) + K2 k&max 
(by (2) of Observation 2.8) 

< opt(u;i) + Ki + 2 kSmax + opt(w2) + K2 + 2 k6max 

(by Lemma 2.9) 
< opt(i«) + (Кг + K 2 + Ш т а х ) 

(by (1) of Lemma 2.5) 

We have that A is 1-competitive on L\ U L2. • 

With this, we are ready to prove the main result of our paper. 

Theorem 3.4 Every language in ONREGq is on-line. Moreover, given a language 
L G ONREGo, an algorithm can be constructed effectively, which is 1-competitive 
on L. 

Proof. Recall that every language L G ONREGo can be constructed as de-
scribed in Definition 2.3. Hence, by the lemmas 3.1, 3.2, 3.3 and by the principline 
of structural induction, we have that L G ONLINE holds. Moreover, by the ap-
plication of the constructions in the proofs of the above lemmas, a 1-competitive 
algorithm can be given for L. • 

Recall that opt(w) = opt(lr(w)) holds, for any word w. Moreover, the competi-
tive ratio of any algorithm on any sublanguage of a given language is no more, than 
its competitive ratio on the whole language. By these observations, we can show 
the on-lineness of certain other languages, which can be even not regular. 

Corollary 3.5 For an arbitrary language L, if there exists a language L' G 
ONREGo such that L C L' or lr(L) C L' hold, then L is on-line. Moreover, 
in this case a 1-competitive algorithm can be constructed effectively for L. 

Finally, we present three examples for the application of Corollary 3.5. 

(1) The language Li = {anbncn | n > 0} is a well known nonregular language. 
However, by Corollary 3.5, it is on-line, since lr(Li) = {e,abc} G ONREGo-
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(2) Consider L2 = {w"w£ | n > 0}, where wi and w2 are arbitrary words. Note 
that generally L2 is not regular. However, L2 G ONLINE follows from the 
fact that L2 is a subset of the language (wi)*(w2)*, which is in ONREG0. 

(3) It can be shown that L3 = (a U abc)* is not in ONREGo, but it is regular. 
Observe that L3 can be defined by (a*abc)*a* as well. Since lr((a*abc)*a*) C 
(abc)*a* G ONREGo, we have that L3 is on-line language. 

4 Related results 
The question obviously arises that if there exists an on-line language L, of which 
the on-lineness cannot be proved by Corollary 3.5? (That is, such L that lr(Z-) 
is not a subset of any language in ONREGo ) Specially, is there such kind of 
language in REG? These problems are open up to this time. However, we have 
the following results, which shows that if there exists a language in REG with the 
above property, then it should be very special one. 

Recall that the construction of a language in ONREGo differs from the con-
struction of a general regular one in the point that the closure operation is al-
lowed only for singleton languages. Moreover, by Theorem 3.4, every language in 
ONREGo is necessarily on-line. Hence one can guess that, roughly speaking, a 
regular language may loose the on-lineness, when the closure is applied for a mul-
tielement set during its construction. The following lemma shows that this really 
holds in most cases. 

Theorem 4.1 Let V be an arbitrary alphabet with \V\ > 3. Consider any two 
words Wi, w2 G V* such that Wi contains at least two different letters and there is 
a letter in w2, which does not occur in wi. Then the language (Wi Uu^)* is not 
on-line. 

Proof. Assume that the number of servers (i.e. k) is 2. It is sufficient to show 
that there exists a metric space M = (V, S), in which the competitive ratio of L is 
greater than 1. 

Denote by a the letter, which occurs in w2 and not contained by wi. For any 
different letters u,v G V — {a}, let S(u,v) = 1 and, for each v G V — {a} , let 
5(v, a) = D, where D is defined later-. Suppose that the starting configuration 
always contains a server on a. 

Let us consider a request-answer game, where a requester R plays against an 
algorithm A. In each round, R gives a request, which is satisfied by A immediately. 
We show that defining an appropriately large D, for any algorithm A, R has a 
strategy providing that the difference of the costs of the satisfaction generated by 
A and the optimal one grows unboundedly. This implies that the competitive ratio 
of L is greater than 1. 

Let H = {w2w\w2, • • • ,w2w[w2}, where t > 1 is defined later. We assume that 
the request words composed by R are chosen from H*. Since H* C L, to prove the 
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lemma, it is enough to show that H* is not on-line. Observe that any word w £ H* 
consists of sections of the form w2w{w2, where 1 < s < t. 

Let R compose its request words dynamically, sections by sections, obeying the 
following rules. 

Rule 1 If, for some 1 < s < t, there is a server on a, when w2wl~l is satisfied, and 
A moves that server processing the next (sth) wi, then let this section be 
w2wfw2- Specially, if A moves the server from a while satisfying the initial 
W2, let R chose W2W\W2-

Rule 2 If A does not move the server from a while processing the wi-s, then let R 
choose u)2w\w2. 

We need some technical preparations. Since wi contains at least two different 
letters, it should be clear that |lr(wi)| > 2. Moreover, for any wi, one of the 
following cases holds, where s > 1. 

Case 1 first (wi) ^ last(wi). Then |lr(wf)| = s|lr(wi)|. 

Case 2 first (wi) = last(wj). Then |lr(wf)| = s(|lr(Wl)| - 1) + 1. 

Suppose that a section is chosen by Rule 1. Then the cost of the satisfaction 
by A is at least (s - l)|lr(iui)| + D in Case 1, and (s - 1)(|lr(it»i)| - 1) + 1 + D 
in Case 2. However, if we do not move the server on a, then this section could 
be satisfied with cost no more than |lr(iC2)| + s|lr(wi)| + |lr(u/2)| in Case 1, and 
|lr(w2)| + s(|lr(wi)| - 1) + 1 + |lr(i02)| in Case 2. Hence, if 

D > |lr(t«i)| + 2|lr(w2)| 

holds, then A is more expensive on this section than the our one. 
Now suppose that the section is determined by Rule 2, that is A does not move 

the server from a during the processing of wi-s. Then the cost of A is at least 
i|lr(wi)| in Case 1, and t(|lr(wi)| — 1) + 1 in Case 2. However, if we move the server 
from a to first(wi) after the initial iw2, leave there while processing the Wi -s, and 
move back to a before the final w2, then this section costs at most |lr(w2)| + D + 
i(|lr(wi)|-l)+£> + |lr(w2)| in Case 1, and |lr(u>2)|+£> + f(|lr(u>i)|-2) + £> + |lr(w2)| 
in Case 2. Therefore, if 

t > 2|lr(u>2)| + 2D 

holds, then A is more expensive than the our one. 
For any words wi and w2, the values of D and t can be computed and fixed as 

above. We have that, for an arbitrary on-line algorithm A, R has a strategy, which 
proves that A costs more than an off-line algorithm. Since an input word w e H* 
can contain arbitrary many sections, this difference grows unboundedly, hence A is 
not 1-competitive. This implies that H* (and hence L) is not on-line language. • 

Generally, a regular language is defined by a regular expression. The follow-
ing result shows that if a subexpression defines a not on-line language, then the 
language defined by the whole expression cannot be on-line. 
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Theorem 4.2 Let the language L defined by the regular expression E. Consider 
any subexpression E' of E. If the language defined by E' is not on-line then L is 
not on-line, too. 

Proof. It is a routine exercise to prove the theorem using structural induction 
on the defining rules of REG. • 

We show two examples for the application of theorems 4.1 and 4.2. 

(1) The language (a U be)* is not on-line by Theorem 4.1. 

(2) Consider the regular expression ((abc U bed)*d U abed)*. Its subexpression 
(abcUbcd)* defines a not on-line language by Theorem 4.1, hence, by Theorem 
4.2, the language defined by the whole expression is not on-line, too. 

Finally, we summarize some abstract properties of the language class ONLINE 
in the following theorem. 

Theorem 4.3 Let Li and L2 be arbitrary on-line languages, then 
(1) for any L C L\, L is on-line, 
(2) £f is on-line, 
(3) L\ P) L2 is on-line, 
(4) if the prefix problem is decidable both for Li and L2, 

then Li U L2 is on-line, 
(5) LI is generally not on-line, 
(6) L\ is generally not on-line. 

Proof. The statements (1) and (2) have been proved earlier in this paper. 
Moreover, (3) follows from (1) immediately. We can get (4) by slightly modifying 
the proof of Lemma 3.3. The statement (5) can be proved by Theorem 4.1. For 
proving (6), let us assume, that Li = {t/j}*, and let u be a letter, which is different 
from the last letter of w. Let w\ and ui2 be any words satisfying the conditions 
in Theorem 4.1. Then we have that (wiu\Jw2u)* C L\. Thus, L\ is not on-line 
language. • 
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On a^-products of nondeterministic tree automata* 

B. Imreht 

Abstract 
In this paper, we characterize the isomorphically complete systems of non-
deterministic tree automata with respect to the family of «¡-products. In 
particular, our characterization yields that any finite nondeterministic tree 
automata can be embedded isomorphically into a suitable serial product of 
two-state nondeterministic tree automata. 
Keywords: nondeterministic tree automata, composition, completeness 

1 Introduction 
Isomorphic representation of automata by different compositions is one of the cen-
tral problems in the theory of automata. One line of the researches is to char-
acterize those systems of automata which are isomorphically complete, i.e., every 
automaton is an isomorphic image of a subautomaton of a product from them. 
Most of the studies regarding characterizations of isomorphically complete systems 
concern deterministic automata or deterministic tree automata. We quote only 
[1],[3],[4],[7],[9],[10],[11], and [15]. On the other hand, together with the spread of 
parallel computation, the importance of nondeterministic automata is increasing. 
This is the motivation to deal with the representations of nondeterministic au-
tomata. The first description of the isomorphically complete systems of nondeter-
ministic automata with respect to the general product was given in [5]. In the work 
[6], it is proved that the cube-product is equivalent to the general product regard-
ing isomorphically complete systems of nondeterministic automata. The isomorphic 
representation of a special class of nondeterministic automata is investigated in [12]. 
The notion of c^-product (cf. [2], [3]) was extended to nondeterministic automata, 
and the isomorphically complete systems were characterized with respect to this 
hierarchy of products in [14]. From this characterization, it turns out that contrary 
to the deterministic case, in the nondeterministic case, there exist finite isomorphi-
cally complete systems with respect to the a0-product, furthermore, the a,-product 
is equivalent to the general product regarding isomorphically complete systems if 
i > 1. The isomorphically complete systems of nondeterministic tree automata 
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with respect to the general product and the cube-product are studied in [13] where 
it is proved that these compositions are equivalent regarding isomorphically com-
plete systems. Here, using the characterization presented in [13] and extending the 
notion of «¿-product to nondeterministic tree automata, we generalize the result of 
[14] for nondeterministic tree automata. Namely, we prove that there exist finite 
isomorphically complete systems of nondeterministic tree automata with respect 
to the a0-product, moreover, the «¿-product is equivalent to the general product 
regarding isomorphically complete systems of nondeterministic tree automata if 
i > 1. 

The paper is organized as follows. In Section 2, the necessary notions and 
notations are introduced. The following part, Section 3, presents the characteri-
zation of the isomorphically complete systems of nondeterministic tree automata 
with respect to the ao-product. Finally, Section 4 is devoted to the description of 
the isomorphically complete systems of nondeterministic tree automata regarding 
«¿-product with i > 1. 

2 Preliminaries 
To start the discussion, we introduce some notions and notations of relational 
systems (cf. [8]). By a set of relational symbols, we mean a nonempty union 
E = Ei U U . . . where £ m , m = 1,2, . . . , are pairwise disjoint sets of symbols. 
For any m > 1, the set £ m is called the set of m-ary relational symbols. It is said 
that the rank or arity of a symbol a £ E is m if a £ £TO. Now, let a set E of 
relational symbols and a set R of positive integers be given. R is called the rank-
type of E if, for any integer m > 0, £ m / 0 if and only if m £ R. In the sequel, we 
shall work under a fixed rank-type R. 

Now, let E be a set of relational symbols with rank-type R. By a nondetermin-
istic E- algebra A, we mean a pair consisting of a nonempty set A and a mapping 
that assigns to every relational symbol a £ E an m-ary relation aA C Am where 
the arity of a is m. .The set A is called the set of elements of A and aA is the 
realization of a in A. The mapping a aA will not be mentioned explicitly, we 
only write A = (A, E). For every m £ R, a £ E m , and (a i , . . . , a m _ 1) G A771"1, 
we denote the set {a : a G A & <rA(ai,..., aTO_i, a)} by ( a i , . . . , am-i)aA. If 
(a i , . . . ,am-x)aA is a one-element set {a}, then we write (a i , . . . , am_ i )crA = a. 

It is said that a nondeterministic E-algebra A is finite if A is finite, and it is of 
finite type if E is finite. By a nondeterministic tree automaton, we mean a finite 
nondeterministic E-algebra of finite type. Finally, it is said that the rank-type of a 
nondeterministic tree automaton A = (A, E) is R if the rank-type of E is R. 

Let A = [A, £ ) and B = (B, E) be nondeterministic tree automata with rank-
type R. B is called a subautomaton of A if B C A and, for all m G R and a £ E m , 
<Tb is the restriction of aA to Brn. A one-to-one mapping p, oi A onto B is called 
an isomorphism of A onto B ifaA(ai,... ,am) if and only if aB(/j.(ai),... ,fi(am)), 
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for all m E R, (ai, • • • , a m ) E Am, o E Em . In this case, it is said that A and 
B are isomorphic. It is easy to see that p, is an isomorphism of A onto B if and 
only if (a i , . . . ,am-i)crAiJ. = (Mai)> • • • > M a m - h o l d s , for all m E R, a E E m , 
( a i , . . . , a m _ i ) E A™-1. 

In the case of classical automata, a composition of automata can be visualized 
as a network in which each vertex denotes an automaton and the actual input sign 
of a component automaton may depend on the input sign of the whole composition 
and only on those automata which have a direct connection to the component 
automaton under consideration. From practical point of view, one of the most 
self-evident networks is the well-known serial or cascade connection. In this case, 
the composition can be considered as a chain in which each machine has a direct 
connection with all the previous ones. Generalizing this concept, F. Gecseg [2] 
introduced a family of compositions, the aj-products, where i is a nonnegative 
integer which denotes the maximal admissible length of feedbacks. Now, we extend 
the notion of «¿-product to nondeterministic tree automata. 

Let us denote the class of all nondeterministic tree automata with rank-type R 
by U f i . In general, a composition of nondeterministic tree automata from UR can 
be visualized as a network in which each vertex denotes a nondeterministic tree au-
tomaton in UR and the actual relation of a component automaton may depend on 
the relational symbol of the whole composition and only on those nondeterministic 
tree automata which have a direct connection to the component under considera-
tion. In particular, the formal definition of the «¿-product of nondeterministic tree 
automata can be given as follows. 

Let i be an arbitrary nonnegative integer. Let us consider the nondetermin-
istic tree automata A = (A, E) E Ur and Aj = E UR, j = L , . . . ,n. 
Furthermore, let us take a family of mappings 

:<{Ai x . . . x Aj+i- ! )™- 1 x Em £ « , m E R, 1 < j < n . 
> 

It is said that A is the «¿-product, of Aj, j = 1 , . . . ,n, with respect to if the 
following conditions are satisfied: 

n 
(i) A = l [ A j , 

j=i 

(ii) for any m E R, a E £ m and ((01,1,..., o i , n ) , . . . , (am - i , i , • • •, am - i ,n)) £ 
A" ' - 1 , 

((al,l> • • • > al,ra), • • • , (Om-1,1) • • • , Om-l.n))«7"4 = 

(«1,1,..., flm—x . . . x (a i , n , . . . , , 
where 
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= ^7ni((ai ,ii • • • , a i j + i - i ) , •. -, (am-i,i, • • •, am_i i i + : )_i), a), j — 1 , . . . ,n . 

We shall use the notation 

n 

3 = 1 
for the product introduced above. In particular, if Aj, j = 1 , . . . ,n, are identical 
copies of some nondeterministic tree automaton B, then we speak of an ai-power 
and we write $ ) for []"=i * ) . 

Let B be a system of nondeterministic tree automata from U^. It is said 
that B is isomorphically complete for UR with respect to the oii-product if any 
nondeterministic tree automaton from UR is isomorphic to a subautomaton of an 
«¿-product of nondeterministic tree automata in B. 

3 ao-product 
In this section, we deal with the first member of this family of products, the a 0 -
product, which correspondes to the serial composition. In this case, the feedback 
functions can be given as follows: 

:E i - > E i i ) , j = l , . . . , n , if 1 £ R , 

1 ¿meR, 

<Hmj : (Ai x . . . x A , - ! ) " 1 - 1 1 / m e f l , 2 < i < n . 

In what follows, we need a special two-state nondeterministic tree automaton 
which is defined in the following way. For all m € R, let us assign a symbol to each 
m-ary relation on {0 ,1} . Let S m denote the set of these relational symbols and let 
S = U m 6 f iE m . Let us define the nondeterministic tree automaton Q = ( {0 ,1 } , E) 
such that, for every m £ R and a € E m , is the corresponding m-ary relation on 
{0 ,1} . 

The following theorem provides necessary and sufficient conditions for a system 
of nondeterministic tree automata from UR to be isomorphically complete for U / j 
with respect to the ao-product. 

Theorem 1. A system B of nondeterministic tree automata from U/f is iso-
morphically complete for U^ with respect to the ao -product if and only if 
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(a) there exists a nondeterministic tree automaton A* — (A*, £*) £ B such that 
A* has two different elements aj, a{, and for every 1 / m £ fi, there is a om £ £*, 
for which (a*Sl,... ,a*Srnl)o£* D { a j , a i } is valid, for all ( s i , . . . s m _ i ) £ {0, l } m _ 1 , 
furthermore, there is a o\ £ Ej with {aQ,aJ} C of if 1 £ R, 

(b) for all rn £ R and i = (¿1,... ,im) £ {0, l}m, B contains a nondeterministic 
tree automaton AW = (¿(D ,EW) satisfying the following conditions: 

(bl) A'*' has two different elements a^ and a'1^, 

(b2) there exists a <7; € with (a^,.. • .a j^Jai 4 ' 1 ' (~1 {a^^.a^} = { a j j } , 

(b3) for all 1 u £ R and s = ( s i , . . . , s„_i ) £ {0, l } 1 1 - 1 , there is a trj s £ E«^ 

for which { a ^ a ^ } C (ai*', . . . , K f g 1 ' > furthermore, there is a ctj £ E ^ with 

{a£\a?}Cofh iflER. 

Proof. To prove the necessity, let us suppose that B is an isomorphically com-
plete system of nondeterministic tree automata for U « with respect to the ao-
product. Then there are Aj = £ B, j = 1 , . . . ,n, such that Q is isomor-
phic to a subautomaton A — (A, E) of an ao-product n£=i Let p denote 
a suitable isomorphism and let 

M(0) = (ao,i,- • • ,a0,„) and /u(l) = ( a l t l , . . . ,ai,„). 
Let us denote by k the smallest index with ao:k ^ ai.fc- Then we prove that Ak 
satisfies condition (a). For this purpose, we distinguish two cases depending on m. 

Let us suppose that m ^ 1. By the definition of Q, each m-ary 
relation on {0 ,1} has a relational symbol in Em . Thus, there exists a 
o m 6 2jm such that CT^ is the complete m-ary relation on {0,1} . This 
means that d^(si,... ,sm) is valid, for all ( s i , . . . , s m ) 6 {0, l } m . Therefore, 
(s i , . . . , sm_! )5-5 = {0,1} , and thus, ( s 1 ; . . . , sm-i)ofn n = {0, l } / i = {/¿(0),/x(l)} 
is valid, for all ( s i , . . . , s m _ i ) £ {0, l } m _ 1 . Since /x is an isomorphism, we have 
(s i , . . = (n{s i ) , . . . , / i ( s m _i ) )o£ . Consequently, 

(p(si), . . . , / i(sm_i))CT^ = { / i (0) , / i ( l ) } 

is valid, for all ( s i , . . . , s m - i ) £ {0, l } m _ 1 . By the definition of the ao-product, the 
above equality implies 

{ao,fc,ai,*} C (aS l i*, . . . ,aSm_uk)cr£kk 

where s = ( s i , . . . , sTO_i) and 

fs,k — ®mfc((o«i,i> • • • ,aSi,A-i),..., (aSm_ui,..., aSm_uk-i),om). 
If k = 1, then oSlk = imi(ffm)- If k > 1, then let us observe that, by the definition 
of k, aSt,j = a0j, t = 1 , . . . , m - 1, is valid, for all j, j = 1 , . . . , k - 1. Therefore, 
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Os,k = ®m*((ao,l, . . - , ao,fc-l), • • • , (ao.l, • • • , «O.fc-l), 

In both cases, we obtain that as,k does not depend on s, and thus, there exists a 
c m £ S™ such that 

{ao,fc>ai,fc} £ (aSuk,---,a,Sm_ukWmh 

holds, for all ( s i , . . . , s m - i ) € {0, l } " 1 - 1 which yields the validity of (a) if m ^ 1. 
Now, let us suppose that 1 6 iJ and m = 1. By the definition of Q, there exists a 

a € Si such that frG(0) and are valid. Since /i is an isomorphism, we obtain 
that aA(/j,(0)) and aA(fi( 1)) are also valid. Therefore, aA = {//(0),//(1)>. This 
equality implies {ao,i : ,a^fc} C aAk where o\ = 'fit; (a-), and thus, Ak satisfies (a) 
in this case, too. 

Regarding validity of (b), it follows from the proof of Theorem 1 in [13]. For 
the sake of completeness, we present its proof here as well. For this purpose, let 
us denote the set {k : 1 < k < n & a0tk £ ai.fc} by K. Obviously, K ^ 0. Now, 
let m £ R and i = (?i , . . . ,im) £ {0, l}™1 be arbitrary elements. We distinguish the 
following two cases depending on m. 

Case 1: m > 1. By the definition of Q, there is a am £ STO with 
(¿ i , . . . ^ m - i ) ^ — im. Since n is an isomorphism, this yields 

( / i ( i i ) , . . . , /i(iTO_!))aA = fi(im). 

Therefore, aim:k £ (ail<k, • • - ,aim-i,k)&£k holds, for all k £ K, where 

<?k = ^mi:((aii,l, • • • , a«i,k-l), • • • , (a»m_i,l, • • • ; aim-i,k-l), &m)-

But then there exists at least one index I £ K such that 

(cnui,.. • ,aim_ui)af' D {a0 ,i,ai, ;} = {«¿m,i}. 

Consequently, satisfies (bl) and (b2). To prove (b3), let 1 ^ u £ R and 
s = ( s i , . . . , s u _ i ) £ {0 ,1 } U _ 1 be arbitrary elements. By the definition of Q, there 
exists a crs £ £ „ with ( s i , . . . , su-i)<rf = {0,1}. Since fi is an isomorphism, this 
implies 

( / ¿ ( s i ) , . . . , / i ( s u - l ) ) ^ = {^(0),/x(l)}. 

Then {a0,fc,ai,fc} C (aS l i j t , . . . , aSu_ 1:k)(^s,k h o lds, for all k £ K, where 

0S,fc = $ufc((a«i,l, • • • > 0«i,fc-l), • • • i (Os„_i,l> • • • i aSu_uk-i), crs)-

Therefore, {a0,i,ai,i} C (aSl,i, • • • ,aSu_lii)<Tg'r If 1 £ R and u = 1, then, by the 
definition of Q, there is a ctj 6 

Si with fff = {0,1}. But then a f = { /¿(0), / i ( l)} , 
and consequently, {a0,i:, ai,*} C aAk, for all k £ K, where dk = i'ifc(o'i). Thus 
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{«o,/: «1,;} Q of', i.e., A^ satisfies (b3) as well. This completes the proof of the 
necessity when m / 1 . 

Case 2: 1 6 R and 771 — 1. By the definition of Q, there is a <j\ £ Si with 
of = '¿i. But then aA = fi(ii). Therefore, ailtk € aAk is valid, for all k £ K, where 
crjt = i'i/t(a"i). Prom this it follows that there exists at least one I £ K such that 

afl n {ao , i ,a i , i } = { « i i , i } -

Now, let u € R and s = ( s i , . . . , s u - i ) £ {0 ,1} U _ 1 be fixed arbitrarily. In a similar 
way as above, it is easy to see that there is a as,/ £ such that {«oi, i iz} C 
(aSli,..., aSu_1i)ag'l if u ^ 1, and there is a a* £ S^' with {a0)z, aiti}afA' if u = 1. 
This completes the proof of the necessity. 

For proving the sufficiency, let us assume that B satisfies the conditions of 
Theorem 1. Let us define the sets W and W' by 

W = {{0,l}m:meR} and W' = {(h, ..., im) : fa,..., im) £ W & im = 0}. 

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . , n} onto W'. By 
our assumption on B, for any p £ { l , . . . , n } , there exists a nondeterministic tree 
automaton Ail,{p)) = £ B satisfying conditions (bl), (b2), and 
(b3) with i = (¿1,..., im) = 7(p) where im = 0. For the sake of simplicity, let us 
denote the elements ag7^^ and by 0 and 1, respectively. Furthermore, let 
us denote by A* = (A*, S*) an automaton of B satisfying (a), moreover, let 0 and 
1 denote the elements a3 and a*, respectively. 

Now, let C = (C, S) £ Ujj be an arbitrary nondeterministic tree automaton 
with C = { c i , . . . , c r } . We prove that C can be embedded isomorphically into an 
ao-product of nondeterministic tree automata from {A*} U {^'TM) . j < p <n}. 

For this purpose, let us take all the r-dimensional column vectors over {0,1} 
and order them in lexicographically increasing order. Let denote the matrix 
formed by these column vectors. Then is a matrix of type r x 2r over {0,1}, the 
row vectors of Q ^ are pairwise different, moreover, for any subset V of { 1 , . . . , 7 }, 
there exists exactly one index k £ { 1 , . . . , 2 r } such that, for alii € { 1 , . . . , 7-}, t € V 
if and only if q^ = 0. Let 

Q = ( Q W . . . Q W ) 

where the number of the occurences of is n -I-1 in the partitioned form of Q. 
Finally, let us define the one-to-one mapping /i of { c i , . . . , cr} onto the set of the 
row vectors of Q by /i(a) = (qia,... ,gj,(n+i)2-)> « = 1, . . . and let M = {n(ci) : 
i - l , . . . , r } . 

Now, let us construct the ao-product A — (A, S) = 
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A* x • • • x A* x X ( 7 ( 1 ) ) x • • • x .A'7'1» x • • • x AMn)) x • • • x .4 ( 7 ( n ) ) (E , $ ) 
> ,, ' V ' » V ' 

2 rtimes 2rtimes 2rtimes 

in the following way. First of all, let us observe that M C A . To define the feedback 
functions, let us consider the following two cases. 

Case 1: 1 E R and TO = 1 . Let a E £ i ( C E) be an arbitrary relational symbol, 
furthermore, let ac = {cjt, , . . . ,c/t,} where 0 < I < r. Since 1 E R, the vector 
i = (0) is contained in W', and thus, there exists a po E { l , . . . , n } such that 
-y(po) = (0). On the other hand, by the definition of Q ' r \ there exists exactly one 
index d E { 1 , . . . , 2 r ] such that, for each s E { 0 , . . . , n } , the following assertion is 
valid: 

for all t E { 1 , . . . , r } , qt,S2r+d = 0 if and only if t E {h,..., A;*}. 

Now, the feedback functions j = 1 , . . . , (n + 1)2'', are defined as follows: 

= 

( if 1 < j < 2 r , 
o"(o) if j = Po2r + d, 
<7(0) if po2r < j < {po + l )2 r & j ± po2r + d, 
al(p} if po^pE {!,...,n} & P2r <j < (p+l)2r, 

where o\ E EJ satisfying (a), ct(o) 6 satisfying (b2), <j(0) E E j ' 0 " satisfying 
(b3), finally, ff7(p) e E^7(p)) satisfying (b3). 

Case 2: 1 ^ TO E R. Let a E £ m ( C E) be an arbitrary m-ary relational 
symbol and let us consider TO- 1 elments from M denoted by (qit<i,..., 1)2'-), 
t = 1 , . . . , T O - 1. Then, fi(at) = {qu,i,. (n+i)2-)» t = l,...,m-l. Let us 
suppose that ( c ^ , . . . , Cim_1)ac = { c , • • •, Ck,} where 0 < I < r. Then there is one 
and only one integer d E { 1 , . . . , 2 r } such that, for every s E { 0 , . . . , n } , we have 
the following assertion: 

for all t E { 1 , . . . , r } , qt,s2r+d. = 0 if and only if t E { f c i , . . . , kt}. 

On the other hand, let us observe that, for any u g { l , . . . , 2 r } , the column vectors of 
Q with indices s2r+v, s = 0 , . . . , n, are identical copies of some r-dimensional vector 
over {0 ,1} . Consequently, the vectors {qiuS2r+v, • • • ,qim-i,s2r+v), s = 0 , . . . ,n, are 
the copies of an (to — l)-dimensional vector over {0 ,1} . Let us denote the vector 
(qiuv, •• -,Qim-i, v) by s„ if 1 < i; < 2 r , v ^ d, and the vector (qiud, •• ,qi„,.ud) 
by (i[, • • • ,i'm_i). Let i = (¿1, • • . , im_i ,0) . Then i E W', and thus, there is a 
po E {1 , . • • ,n} with 7(po) = i- Now, we define the feedback functions as follows. 
For any j E { 1 , . . . , (n + l )2 r } , let 

*mj((g»i,i, • • • 19»i,j-i)> • • • > (g»m_i,i> • • • j-i)>°') = 
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' ffm if 1 < 3 < 2r, 
£7j if j = Po 2r + d, 

' 07(P),s„ if 3 Po2r + d&iv = j(mod 2r) & p2r < j < {p + l )2 r 

where crTO £ satisfying (a), cfj G Sm satisfying (b2), and (^(p^s,, £ Snl^^ 
satisfying (b3). 
In all the remaining cases, let us define the feedback functions TOJ arbitrarily in 
accordance with the definition of the o0-product. 

Regarding above definition, we have to verify that it is really an a0-product. If 
1 £ R and m — 1, then our definition is obviously correct. Now, let 1 / m 6 ii. 
Then if>mj depends only on m if 1 < j < 2 r . Let us consider the case when 
2r < j < (n + l)2 r . Since the row vectors of Q ' r ' are pairwise different, each 
element of M is uniquely determined by its first 2r components. Therefore, the 
indices ii,... ,im-i are uniquely determined. Then ki,...,ki are determined by 
<7. Furthermore, d, i and po are determined uniquely by k\,... fcj, the definition of 

and the first 2r components of the elements in M under consideration. Now, 
if j — p02r + d, then the definition of is in accordance with the definition of 
the ao-product. If j ^ p02r + d, then j determines v and p uniquely, furthermore, 
s„ is determined by v and the first 2r components of the considered elements of M. 
Consequently, the definition of correspondes to the definition of the ao-product 
in this case as well. 

By the above observations, we have that A is an ay-product of nondeterministic 
tree automata from : 1 < p < n}. Let us consider the subautomaton 
of A determined by M and denote this subautomaton by M = (M, E). We prove 
that C and M. are isomorphic, moreover, the mapping /i is a suitable isomorphism. 

First, let us suppose that l e i ? and 
Tii — 1. Let & E Ei be an arbitrary 

relational symbol. We have to prove that crc(ck) if and only if <jM((i(ck)), for all 
Ck € C, or equivalently, ocfi = crM. We distinguish the following two cases. 

Let us suppose that ac = 0. Then d = 2r, furthermore, ,i,i,(p0+i)2'-(o') = cr(o), 
and thus, the (po -I- l)2r-th component of each element of a A is not equal to 1. 
On the other hand, the (po + l)2r-th component of each element of M is equal to 
1. Therefore, 0 = aA n M = aM. Conversely, let us assume that aM = 0. If 
ac ^ 0, then ac = {cJt1,... q , } for some 1 < I < r. Then, by the definition of ^ , 
j = 1 , . . . , (n + l)2 r , we obtain that 

(JA D {0, l}P02"+d-l x x | 0 ) 1 j ( n +l)2 ' -p 0 2 ' -d i 

and the right-side set of the above inclusion contains fi(ckt), for all t, t = 1 , . . . ,1. 
Therefore, aA fl M = oM / 0 which is a contradiction. Consequently, ac = 0. 

Now, let us suppose that ac = { c , . . . ,ckl} for some 1 < I < r. Then 
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aA D {0, l}P02-+<i-l x {q} x ^01|(n+l)2'--Po2"-d ; 

and the right-side set contains p(ckt), for all t, t = 1 , . . . ,1. On the other hand, by 
the definition of d, for all t E { 1 , . . . , r } , qt^^+d = 0 if and only if t E { f c i , . . . , kt}. 
This yields that aA n M = { /x(c f c l) , . . . ,n(ck,)}, i.e., aM = {fi(ckl),... ,/x(cfc,)}. 
Consequently, aCfi = a M . 

Now, let 1 m € R, a € E m , cit E C, t = 1 , . . . ,m - 1, be arbitrary elements. 
We have to show that 

(ciL-.-.Ci^JffS = {p(cil),...,fJ,{cim_1))aM 

is valid. Let (cll,..., Ciin_1 )<rc = {ckl,..., ck,} for some integer 0 < I < r. Then, 
by the definition of 3 = 1, •••,(« + l )2 r , 

[ix{cil),...,p{cim_1))aA 2 { O . l } « ' 2 ' ^ - 1 x {0} x { 0 , i }(n+i)2'-Po2'-d j 

furthermore, {n(ckl),... ,fi{ck,)} = {(qkt,i, • • •, 9*t,(n+i)2' : 1 < i < / } i s a subset 
of the right-side set. By the definition of d, for all t E { 1 , . . . , r } , qt,P02'+d = 0 if 
and only if t E {ki,... ,ki}. This yields that 

inici,),..., ))<JA n M = {(g*t,i,...,gjfet,(„+i)2-) : 1 < t < 1} = 

= {(i{ckl),..., /x(cfc,)}. 

Consequently, (c^,... ,cim_1)ac/j, = ((¿(c^),..., ¡j,(cim_1))aM, and thus, fj, is an 
isomorphism of C onto M.. 

This completes the proof of Theorem 1. 

Remark. In particular, if R = {2} , then UJJ is the class of the nondeterministic 
automata. Then as a special case of Theorem 1, we obtain the characterization of 
the isomorphically complete systems of nondeterministic automata with respect to 
the ao-product which was presented in [14]. 

It is easy to observe that the nondeterministic tree automaton Q satisfies the 
conditions of Theorem 1. Therefore, every nondeterministic tree automaton from 
U R can be embedded into an ao-power of Q. This implies the following corollary. 

Corollary 1. Every nondeterministic tree automaton from U^ can be embed-
ded isomorphically into an ao-product of suitable two-state nondeterministic tree 
automata. 
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4 «¿-product with i > 1 
In this section, we study the «¿-product with i > 1. For this reason, let i > 0 be 
an arbitrarily fixed integer. Then the isomorphically complete systems of nonde-
terministic tree automata with respect to the «¿-product can be characterized as 
follows. 

Theorem 2. A system B of nondeterministic tree automata from U/ j is iso-
morphically complete for U/j with respect to the ai-product if and only if, for all 
m E R and i = ( « i , . . . ,im) G {0, l } m , B contains a nondeterministic tree automa-
ton = (A'1», E'1') satisfying the following conditions: 

(I) AW has two different elements üq1' and a^, 

(II) there exists a a-x E Em with (a i f , . . . , o£¡_1 )af1) n { a ^ a ? } = { a ^ } , 

(III) for all 1 ^ u E R and s = ( s i , . . . , s u _ i ) E {0 ,1 } U _ 1 , there is a a¡ g G £ « ' 

for which {üq1', a ^ } C ( o ^ , . . . , o«^-i)<T¡4g '> furthermore, there is a <r¡ G E ^ with 

{ a ^ a f t c ^ ' if leR. 

Proof. The necessity of the conditions follows from Theorem 1 in [13]; the proof 
has the same idea as the proof of the necessity of (b) in Theorem 1 of Section 3. 
In order to prove the sufficiency, let us suppose that B satisfies the conditions of 
Theorem 2. Let us define the sets W and W' as above, i.e., let 

W — { { 0 , 1 } " ' : m E R} and W' = { ( ¿ i , . . . ,im) : [iu ..., im) E W & im = 0}. 

Let \W'\ = n, and let 7 denote a one-to-one mapping of { 1 , . . . ,n} onto W'. By 
our assumption on B, for any p E { 1 , . . . ,n}, there exists a nondeterministic tree 
automaton _4<7(p)) = (AW?)), E ^ » ) e b satisfying conditions (I), (II), and (III) 
with i = (¿1,... ,im) = ~f(p) where im = 0. Again, let us denote the elements 
and <47(p)) by 0 and 1, respectively. 

Now, let C = (C, E) G UR be an arbitrary nondeterministic tree automaton 
with C = { c i , . . . ,cr}. We prove that C can be embedded isomorphically into an 
«¿-product of nondeterministic tree automata from {_4(T(P)) : 1 < p < n). 

For this purpose, let 

Q' = ( Q M . . . Q W ) 

where the number of the occurences of is n + 1 in the partitioned form of 
Q'. Furthermore, let us define the one-to-one mapping p, of { c j , . . . , cr} onto the 
set of the row vectors of Q' by /J(C¿) = (qitl,..., g¿)(n+i)2'-), i = l , . . . , r , and let 
M' = {/i(c¿) : i = l,...,r}. 
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Let us construct the «¿-product A — [A, E) = 

_4(7(1)) x . . . x _4(7(1)) x _4(7(1)) x . . . x _4(7(D) x . . . x _4<7(n)) x .. 
* ,, ' v ' " ' 

2 'times 2rtimes 2rtimes 

in the following way. First of all, let us observe that M' C. A. To define the feedback 
functions, let us consider the following two cases. 

Case 1: 1 G R and m = 1. Let a G Ei(C E) be an arbitrary relational symbol, 
furthermore, let crc = { c ^ , . . . , c^,} where 0 < I < r. Since 1 G R, the vector 
i = (0) is contained in W', and thus, there exists a po G { l , . . . , n } such that 
j(p0) = (0). On the other hand, by the definition of Q ' r ) , there exists exactly one 
index d G { 1 , . . . , 2 r } such that, for each s G { 0 , . . . , n} , the following assertion is 
valid: 

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G { f c i , . . . , h}. 

Let jo = Po2r + d. Now, the feedback functions , j = 1 , . . . , (n + 1)2'', are 
defined as follows: 

p 7 ( i ) i f l < j < 2 r , 
^ii(cr) = < °"(0) if J = Jo, 

[ o-7(p) if j # jo & p2r < j < (p + 1)27' for some p G { 1 , . . . , n}. 

where cr7(1) G E<7(1)) satisfying (III), a{0) G E^(0)) satisfying (II), and d l { p ) G s [ 7 b ) ) 

satisfying (III). 

Case 2: 1 ^ m G R. Let a G E r a(C E) be an arbitrary m-ary relational 
symbol and let us consider m —1 elments from M' denoted by (g j , , i , . . . , 9jil(,i+i)2'-), 
t = 1,... ,m — 1. Then, fx(at) = (qiull ...,qiti („+1)2"), t = - 1. Let us 
suppose that (c» 1,..., Cim_1)ac = {ckl,..., ckl} where 0 < I < r. Then there is one 
and only one integer d G { 1 , . . . , 2 r } such that, for every s G { 0 , . . . , n } , we have 
the following assertion: 

for all t G { 1 , . . . , r } , qt,s2r+d = 0 if and only if t G {h,..., ki}. 

On the other hand, let us observe that, for any v G { 1 , . . . , 2 r } , the column vectors of 
Q' with indices s2r + v, s = 0 , . . . ,n, are identical copies of some r-dimensional vec-
tor over {0 ,1} . Consequently, the vectors ( q ^ ^ + v , • • • ,9im_1,«2'-+v), s = 0 , . . . ,n, 
are the copies of an (m —l)-dimensional vector over {0 ,1 } . Let us denote the vector 
(gti,*, • • -Aim-i,v) by s„ if 1 < v < 2 r , v ± d, and the vector (qiud, • • • ,9im_i,d) 
by (-¿i,... Let i = (¿i, . . . ,i'm_1,0). Then i G W', and thus, there is a 
Po G { 1 , . . . with 7(po) = i- Let j0 = Po2r + d again. We define the feedback 
functions in the following way. For any j G { 1 , . . . , (n -h l )2 r } , let 

^mj( (9t i , l , • • • , 9 » i , j + i - l ) , • • • > (<7im_i,l, • • • , 9 i m _ i , j + i - l ) , 0 ' ) = 
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^7(1),Si if 1 < J < 2r , 
^ ( l ) , « , . . . ^ ! ) 1 {J=d> 

if j = jo, 
07(p),8. if j^jo&vEE j (mod 2 r) & p2r <j <(p + 1)2'-

for some;p € { 1 , . . . , n} , 

where tr7(I),Si,cr7(I),(I'II...II^_I) E £™ (1 ) ) satisfying (III), CTJ <E satisfying (II), 
and crT(p)is„ G satisfying (III). In all the remaining cases, let us define the 
feedback functions 9 r n j in accordance with the definition of the «¿-product. 

Regarding above definition, it is easy to verify that it is really an «¿-product, 
and thus, A is an «¿-product of nondeterministic tree automata from {A^1'^ : 
1 < p < n}. Let us consider the subautomaton of A determined by M'. Let 
M ' = (M' ,E) denote this subautomaton. Then it is easy to prove that ¡jl is an 
isomorphism of C onto M'. 

This completes the proof of Theorem 2. 

Since the characterization of the isomorphically complete systems of nondeter-
ministic tree automata with respect to the general product (see Theorem 1 in [13]) 
contains the same conditions as Theorem 2, we immediately obtain the following 
corollary. 

Corollary 2. The ai-product is equivalent to the general product regarding 
isomorphically complete systems of nondeterministic tree automata provided that 
i > 1. 
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On lexicographic enumeration of regular and 
context-free languages* 

Erkki Makinent 

Abstract 
We show that it is possible to efficiently enumerate the words of a regular 

language in lexicographic order. The time needed for generating the next 
word is O(n) when enumerating words of length n. We also define a class of 
context-free languages for which efficient enumeration is possible. 

1 Introduction 
In [4] we considered the ranking and unranking algorithms for left Szilard languages 
of context-free grammars. These algorithms imply similar algorithms for context-
free languages generated by arbitrary unambiguous context-free grammars. The 
present paper concerns a somewhat similar but more difficult problem of enumer-
ating regular and context-free languages in lexicographic order. The widely studied 
problem of coding binary trees [3, 7] can be considered as a subproblem of our 
present problem. For example, in Zaks' coding method [7] we label the nodes and 
the leaves of a binary tree by 1 and 0, respectively. By traversing the tree in pre-
order we obtain a code word consisting of n (the number of nodes) l's and n -f 1 
0's. The same set of words is obtained by considering the context-free language 
generated by productions S —» 1SS and S —t 0. However, in the general case 
there are several nonterminals in the grammar in question. This means that the 
nodes in the corresponding derivation trees have different labels, and the problem 
of enumerating the "feasible codewords", i.e. the words in the language generated, 
is much more difficult. 

2 Preliminaries 
If not otherwise stated we follow the notations and definitions of [1]. Context-free 
grammars are denoted by G = (V, E, P, S), where E is the set of terminals and V 
is the union of E and the set N of nonterminals. 

* This work was supported by the Academy of Finland 
^Department of Computer Science, University of Tampere, P.O. Box 607, FIN-33101 Tampere, 
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If A is a nonterminal in a context-free grammar G = (V, E, P, S), then L(G, A) 
stands for the language derivable from A according to the productions of G. The 
length of a string ¡3 is denoted by len(fi). 

For the sake of notational simplicity, we assume that context-free grammars are 
in Chomsky normal form (CNF), so that all productions are of the form A -t BC or 
A —» a, where A, B, and C are nonterminals, and a is a terminal. The productions 
having A in their left hand side are called A-productions. We say that a production 
of the form A —> a is terminating-, the other productions are continuing. In a regular 
grammar [1] continuing productions have the form A -» aB. 

When considering a lexicographic order in L(G) generated by a context-free 
grammar G = (V, £, P, S), we suppose that there is a total order -<G defined in £ 
which imposes the lexicographic order of the words in L(G). 

Throughout the paper, we use the unit-cost model for time and space. Hence, 
we suppose that normal arithmetic operations for arbitrary integers are possible in 
constant time and an arbitrary integer can be stored in one memory cell. All time 
and space bounds are given as functions of the length of words. The numbers of 
productions and nonterminals are always considered as constants. 

3 Finding minimal words of given length 
We first consider the problem of finding the lexicographically minimal words of 
different length in a given language. This problem is somewhat related to a very 
recently solved problem concerning the closure of context-free languages under min-
operation. Namely, given a context-free language L, the language Lrnirl is obtained 
by taking from all words of L of the same length only the first in lexicographic 
order [5]. Raz [6] has recently shown that L r n i n is context-free for an arbitrary 
context-free langauge L. Given a context-free grammar G = (V,Y>,P,S), a total 
order -<G in S, and a natural number n, our task in this section is to determine W 
such that len(w) = n and w € Lmin. 

In order to efficiently perform this task, we store in Amin[i], for each nonterminal 
A and for each length i = 1 , . . . , n — 1, the lexicographically minimal terminal string 
of length n obtainable from A according to the productions of G. Hence, each table 
entry Amin[i] belongs to L(G,A)min. 

The following algorithm tabulates the A m i n values for each nonterminal of the 
grammar in question. To simplify the notations, we suppose that fi is not in X 
and we define a -<c ^ f° r all a in E. fI will be used as a null value for undefined 
table entries. Moreover, we use the notation conc(u,v) to stand for the normal 
concatenation of strings u and v. i.e. conc(u,v) = uv. 

Algorithm 3.1 (Min) 
Input: A context-free grammar G = (V,E,P,S), a total order -<q in E, and a 
positive integer n. 
Output: Table Amin[l..n], for each nonterminal A 6 V \ min = Srnin[n] is the 
minimal word of length n. ' 
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Method: 
for each nonterminal A do 

if there is no terminating A-productions 
then Amin[l] <- ft 
else Amin[ 1] a where a -<o h holds for all other terminals b appearing 
in the right hand sides of terminating A-production; 

for i 2 . . . n do 
for each nonterminal A do 
min fi; 
for each continuing A-production A -> BC do 

for j <r- 1 . . . i — 1 do 
if Bmin[j] ± fi and Cmin[i - il 
then 

if conc(Bmin [j]j Cmin [i - j]) -<G min 
then min conc(Bmin\j], Cmin[i - jj) 

od 
od 
Amin[i] -f- min; 

od 

End of Algorithm 

As already mentioned, we consider the size of a grammar (including the numbers 
of terminals, nonterminals and productions) as a constant. Noticing this assump-
tion it is clear that algorithm Min runs in time 0(n2). 

We also consider the total order -i^,1 defined by letting a b if and only if 
b -<G A• The minimal word in lexicographic order in L(G) according to is the 
maximal one according to <g - This word is denoted by max (cf. min in Algorithm 
3.1). 

Theorem 3.1 Let G be a context-free grammar. The words min and max of length 
n can be found in time 0(n2) and in space 0(n). 

Theorem 3.1 can be sharpened if the input grammar is regular. Also the form of 
the algorithm changes a bit. Next, we rewrite the whole algorithm for the regular 
case. 
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Algorithm 3.2 (Reg-Min) 

Input: A regular grammar G = (V,T,,P,S), a total order -<Q in E, and a positive 
integer n. 
Output: Table Amin[l..n], for each nonterminal A 6 V \ £/ rnin — Smin[n] is the 
minimal word of length n. 
Method: 

for each nonterminal A do 
if there is no terminating A-productions 

then Amin [1] <- fi 
else Arnin[l] a where a -<q b holds for all other terminals b appearing 
in the right hand sides of terminating A-production; 

for i i— 2 . . . 7i do 
for each nonterminal A do 
min fi; 
for each continuing A-production A —> aB do 

if Bmin[i - 1] ^ fi 
then 

if conc(a, Bmin[i — 1]) -<G min 
then min <— conc(a, Bmin[i — 1]) 
od 

od 
Amin[i] min; 

od 

End of Algorithm 

In Algorithm RegJVIin only a constant number of operations is needed for de-
termining each table entry. Hence, we have the following theorem. 

Theorem 3.2 Let G be a regular grammar. The words min and max of length n 
can be found in 0(n) time and space. 

4 Enumeration of regular languages 
So far, we have been able to find the minimal and maximal words in L(G) of given 
length in lexicographic order. The algorithm enumerating the words in L(G) of 
given length can now' be given as follows using the words min and max: 

Algorithm 4.1 (Enumerate) 

Input: A context-free grammar G = (V, £,P,S), a total order <g in £, and a 
positive integer n. 
Output: The words on length n in L(G) in lexicographic order. 
Method: 
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presentjword min; 
while present-word / max do 

find the next word in lexicographic order od 
End of Algorithm 

Obviously, our problem is to specify the step "find the next word in lexicographic 
order". We first consider the problem in the case of regular languages. 

Suppose G is a regular grammar and a\a2 . . . a„ is a word in L{G). We know 
that there is a deterministic finite automaton accepting L(G) [1]. In terms of 
grammars this means that there is a regular grammar H such that L(H) = L(G) 
and, for each nonterminal A, the terminals appearing in the right hand sides of A-
productions are all different. Hence, without loss of generality, we can suppose that 
G has this property. It follows that we can conclude the sequence of nonterminals 
S = Ai, A2,..., An needed in deriving the word a\a2 ... an from the start symbol 
5, and further, we can conclude the sequence of productions applied. 

We start from the end of aia2 .. .an and look for a position in which we can 
replace the symbol a, with a symbol b such that a; -<G b. 

The last symbol an is the only one in aia2.. .an produced by a terminating 
production. We first check whether or not there is a symbol b such that An —> 6 is 
another terminating production and a -<a b. Provided that b is the first (accord-
ing to -<G) such symbol we have found out that aiA2 . . . AN-\B is the successor of 
a\a2.. ,an. Otherwise (such b does not exist), we have to proceed further to the 
left. 

Suppose now that a¿, 1 < z < n — 1, is the first symbol that can be replaced. 
This means that we have a continuing production A{ bB such that at <a b (and 
b is before other such terminals according to -<q)• If now Bmin[n — i] is defined, 
we can write the successor of ai a2 ... an as 

conc(aia2 ... ai-ib,Bmin[n - ¿]). 

Hence, when a symbol is changed then all positions in its right get the lowest 
possible value. If the Bmin value is undefined for all possible B's appearing in the 
right hand sides of ^¿-productions, we again have to proceed to the left. 

If aia2 ... an ^ max then at least one of the symbols in aia2 ... an must be 
changeable. Since the number of productions is considered to be a constant, linear 
time is sufficient for finding the successor of a given word a\a2.. ,an . Hence, we 
Jrave the following theorem. 

Theorem 4.1 Given a regular grammar G, there is an algorithm for enumerating 
the words in L(G) in lexicographic order such that the time needed for generating 
the next word is 0(n). 

Notice that the time bound of Theorem 4.1 holds also for the first word of the 
enumeration, i.e. for the minimal word in lexicographic order. This follows from 
Theorem 3.2. 
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5 Enumeration of context-free languages 
In the previous section we were able to show that regular languages have an efficient 
enumeration algorithm. Unfortunately, it seems that the same does not hold for 
context-free langauges. 

For the sake of simplicity, we suppose that context-free languages considered in 
the rest of the paper are generated by unambiguous context-free grammars. Sup-
pose now that we apply the same approach as we used for regular languages. Hence, 
a word a\a-2 • • • an in L(G) is given, and we first find out the sequence of produc-
tions used in the leftmost derivation producing the word. A unique derivation is 
always found because we suppose that G is unambiguous. 

Let A,I be the symbol to be replaced with a symbol b having the property a; -<G b. 
We have a leftmost derivation 

5 =S> . . . => ai . . . ai-ia => Oi... ai-idiP 

where /3 is a string of nonterminals such that 1 < len(fl) <n — i. We should now be 
able to efficiently find the lexicographically minimal word of length n — i derivable 
from ¡3. As in Algorithm 3.1 we have to check all possible combinations of the Amin 

table entries, for each nonterminal instance A appearing in /?. In the general case, 
there seems to be no efficient solution for this problem. 

On the other hand, an inefficient method can be implemented even without the 
preprocessing phase described in section 3: simply enumerate all the words in £* 
and delete those not in L(G). 

We end this section by defining a subclass of context-free grammars which allow 
efficient enumeration of words in lexicographic order. 

We say that a context-free grammar is strongly prefix-free if L(G, A) is prefix-
free for each nonterminal A. More formally, G is stronly prefix-free if derivations 
A u and A =>+ v, where u and v are terminal strings, always imply that both 
u = vw and v = uw are impossible for all non-empty strings w. The class grammars 
generating left Szilard languages of context-free grammars [2] is an example of 
strongly prefix-free grammars. 

Moreover, we say that a context-free grammar G is length complete if the fol-
lowing condition is fulfilled for each nonterminal A: 

• if w 6 L(G, A), len(w) = n, then, for each i, i = 1 . . . n — 1, L(G, A) contains 
a word of length i. 

If G is stronly prefix-free then it is sufficient to maintain the Am in table values 
in lexicographic order and to consider only the minimal values from each table. 
This follows from the fact that in strongly prefix-free grammars the set of Am in 

values is always prefix-free. Amin values can be easily maintained in lexicographic 
order by using radix sort. Moreover, if G is length complete, then there is no need 
for backtracking because of lacking words of certain length. 

The preprocessing phase (filling in the Am in tables) is now (asymptotically) as 
simple as with regular languages. Similarly, the next word can always be found 
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(asymptotically) as efficient as in the case of regular languages. Hence, we have the 
following theorem. 

Theorem 5.1 Given a stronly prefix-free, length complete context-free grammar 
G, there is an algorithm for enumerating the words in L(G) in lexicographic order 
such that the time needed for generating the next word is 0(n). 
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Bounded Space On-Line Variable-Sized Bin Packing* 

Rainer E. Burkard* Guochuan Zhang* 

Abstract 

In this paper we consider the fc-bounded space on-line bin packing prob-
lem. Some efficient approximation algorithms are described and analyzed. 
Selecting either the smallest or the largest available bin size to start a new 
bin as items arrive turns out to yield a worst-case performance bound of 2. 
By packing large items into appropriate bins, an efficient approximation al-
gorithm is derived from fc-bounded space on-line bin packing algorithms and 
its worst-case performance bounds is 1.7 for k > 3. 

Keywords : On-line, bin packing, approximation algorithm. 

1. Introduction 
In the one-dimensional classical bin packing problem, a list L of items, i.e. numbers 
ai (i = 1, • • •, n) in the range (0,1], are to be packed into bins, each of which has a 
capacity 1, and the goal is to minimize the number of bins used. Since the problem 
of finding an optimal packing is NP-hard, research has focused on finding near-
optimal approximation algorithms. The classical bin packing problem and many of 
its variations are of fundamental importance, reflected in the impressive amount of 
research reported [1]. 

A bin packing algorithm is on-line if it packs items aj solely on the basis of 
the sizes of the items a-j. 1 < j < i (i.e. the preceding items) and without any 
information on subsequent items. 

For a list L of items and an on-line algorithm A, let s{A,L) and s(OPT,L) 
denote the total size of bins used by algorithm A and an optimal off-line algorithm, 
respectively. Then the worst-case performance bound of A is defined as 

= lim sup{s{A,L)/s(OPT,L)\s{OPT,L) > k} k—>oo £ 

In classical bin packing s(A, L) is just the number of bins used by algorithm A and 
s(OPT, L) is the number of bins used by an optimal algorithm. 
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In this paper, we pay our attention to the following two restrictions of on-line 
bin packing (For a rather complete survey on the worst case behaviour of on-line 
bin packing algorithms, see Galambos and Woeginger [7]). 
Bounded space algorithms 

We say, a bin becomes active (open), when it gets its first item. Once it is 
declared closed, it can never be active again. A bin packing algorithm uses k-
bounded space if for each item a;, the choice for the bin to pack it is restricted to 
a set of k or fewer active (open) bins. 

Lee and Lee [10] proved that for every bounded space on-line bin packing algo-
oo 

rithm A, > /loo = £ l/fi~l-69103, where 
i=i 

¿1 = 1, ¿¿+1 = ti(ti - 1), for i > 1. 

Galambos and Woeginger [6] even proved that the bound /ioo could not be beaten 
by repacking. 

Essentially, the following six types of bounded space on-line bin packing ap-
proximation algorithms have been studied. 
(i) The first fit first close algorithm NkF (k > 2) is a simple extension of the Next 

Fit algorithm (Johnson [8]). Csirik and Imreh [3] constructed lists of items for 
which NkF is a factor 17/10 -I- 3/(lOfc - 10) away from the optimum. Mao 
[11] proved that this indeed is the worst that can happen. Hence S ^ k F = 
17/10 + 3/ (10*:- 10) holds. 

(ii) Mao [12] showed for the best fit first close algorithm ABFk [k > 2) with bounded 
space k the performance bound SA'BFk = 17/10 + 3/(10*:). 

(iii) The best fit best close algorithm BBFk (k > 2) was introduced by Csirik and 
Johnson [4]. They showed in a very sophisticated proof that "best is better 
than first", since independently of the value of k, always SBBFh = 17/10 holds. 

(iv) Zhang [15] showed that for the first fit best close algorithm AFBk (k > 2) which 
was also introduced by Csirik and Johnson [4], S^pg^ . = 17 /10+3 / (10* : - 10) 
holds. 

(v) The HARMONIC algorithm HARMk by Lee and Lee [10]. They showed that 
as k tends to infinity, S^ARMk tends to the number hcc. 

(vi) The SIMPLIFIED HARMONIC algorithm SHk by Woeginger [14], works 
similar to the HARMONIC algorithm but uses another (more complicated) 
partition of the interval (0,1]. Moreover, SrgHk < SjfARMk for each k >2. 

Variable-sized on-line bin packing 
Only few results are known concerning the more general problem in which bins 

need not be of a single given size [2,5,9,13,16]. The variable-sized bin packing 
problem is a variant of the classical bin packing, in which bin capacities may vary. 
We are given a list L of items, and several different types B1,..., Bl of bins with 
sizes 1 = «(B1) > s(B2) > ••• > s(Bl) > 0. There is an inexhaustible supply of 
bins of each size. The goal is to pack the given items into the bins so that the sum 
of the sizes of the bins used is minimum. Observe that for the case that all bins 
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are of size one, this is just the classical one dimensional bin packing problem. This 
model is considerably more realistic than that of the classical problem. 

In the on-line version of variable-sized bin packing, we cannot preview and 
rearrange the items of L before packing is started, but must instead accept and 
immediately pack each item as it arrives. 

Friesen and Langston [5] gave three approximation algorithms with worst-case 
performance bounds of 2, 3/2, and 4/3. Only the first of these algorithms is on-line. 
Essentially, it is a simple modification of Next Fit and also has the same worst-case 
performance bound 2 as Next Fit. An off-line fully polynomial time approximation 
scheme has been devised by Murgolo [13] using a linear programming formulation 
of the problem. Kinnersley and Langston [9] presented fast on-line algorithms FFf 
for the variable-sized bin packing. They devised a scheme based on a user specific 
factor / > | and proved that their strategy guarantees a worst-case performance 
bound not exceeding 1.5 + / / 2 > 1.75. By choosing / = 1/2, FFH, the best 
among FFf algorithms, is obtained. Zhang [16] proved that the tight bound of 
FFH is 1.7, the same bound as the First Fit algorithm in the classical bin packing. 
Csirik [2] derived an algorithm with worst-case performance bound of < 1.7 from 
the Harmonic Fit algorithm. To our knowledge, Csirik's algorithm is still the best 
up to now, for a short discussion see Section 4. 

In this paper, we consider algorithms for on-line variable-sized bin packing prob-
lem with the added constraint that the algorithms can assign items only to one of 
k bins at a time. Two simple algorithms with bounds 2 are presented in Section 
2. Section 3 analyses an algorithm with worst-case performance bound of 1.7 (for 
k > 3), which derived from bounded space on-line bin packing. 

2. Some Simple Algorithms 
When we design an algorithm for /c-bounded space on-line variable-sized bin pack-
ing, we must answer the following questions. 

• How to select the bin size when a new bin is required? 
• Which bin among the k active bins is chosen for packing a;? 
• Which bin among the k active bins is closed when a new bin has to be created 

for di ? 
For /c-bounded space on-line bin packing, Csirik and Johnson [4] presented two 

packing rules and two closing rules. They are listed as follows. 
P-FF Pack the current item a* into the lowest indexed active bin that has 

enough space for it. Otherwise, open a new bin and place a, in it. 
P-BF Pack the current item ai into the fullest active bin that has enough space 

for it. Otherwise open a new bin and place aj in it. 
C-FF Close the lowest indexed active bin. 
C-BF Close the fullest active bin (with ties broken in favor of the lowest indexed 

bin). 
We use c(B) to denote the sum of the items in B. Given a list of L = 

(a i , . . . ,an), let B\, ..., Bm denote the list of bins ordered in a /c-bounded space 
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on-line variable-sized algorithm. Let ALfc(always largest) denote the algorithm 
which always uses only bins of size 1, i.e. bins of largest size, packs items using the 
P-FF or the P-BF rule, and closes bins using the C-FF or the C-BF rule. 
Theorem 2.1. s(ALk, L) < 2s(OPT, L) + l,k>l, for any list L. 

Proof. For 1 < i < m — 1, due to our packing rule c(Bi) + c(Bi+1) > 1. So, 
m 

s(ALk,L) =(m-l) + l<2^c(Bi) + l 
¿=1 

= 2 £ Oi + 1 < 2s(OPT, £,) + 1. • 
t=i 

Any list consisting of items of size f + £ and bins of size 1 and | + e for some 
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight 
for ALk. 

While the worst-case behavior of Best Fit is superior to that of First Fit for the 
fc-bounded space on-line bin packing problem, this is not the case for ALk where 
always the largest possible bins in variable-sizéd bin packing algorithm are used. 

• Now we consider the algorithm ASA;(always smallest) which uses smallest pos-
sible bins, packs items using the P-FF or the P-BF rule, and closes bins using the 
C-FF or the'C-B'F rule, 

Theorem 2.2. s{ASk, L) < 2s(OPT, L) + 1, A: > 1, for any list L. 

Proof. For 1 < i < 771 — 1, c(Bi) 4- c ( 5 i + i ) > s(Bi). Therefore, we have 
m m 

s(ASk,L) = £ s(Bi) < 2 J2 c(Bi) - c(Bx) - c(Bm) + s(Bm) 
1=1 !=1 

< 2 £ oj + 1 < 2s {OPT, L) + 1. • 
i=1 

Any list consisting of items of size | and bins of size 1 and 1 — e for some 
arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically tight 
for ASk. 

3. Algorithms Derived from ^-Bounded Space On-
Line Bin Packing 
We start from the open, the packing and the closing rule. 

Suppose that â  is a large item (with size greater than 1 /2). If it can be contained 
in a bin with size less than 1, it is called, a B-item, else it is called an L-item. The 
smallest bin which can contain a large item cii is called an aj-home-bin. Obviously, 
if ai is an L-item, then the size of the ai-home-bin is 1. 

Open rule: Suppose that the current item to be packed is a,. If â  is a B-item, 
then open an aj-home-bin and pack a* into it. Otherwise, start a new bin of size 1 
for Oj. 
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Packing rules:P-FF and P-BF. 

Closing rules: 
C-VF: Close one active bin with size less than 1 if such a bin exists, otherwise 

use C-FF. 
C-VB: Close one active bin with size less than 1 if such a bin exists, otherwise 

use C-BF. 

Since we only have one open rule, we always use it to start a new bin. For any 
combination of a packing rule with a closing rule, we have four algorithms. The 
combination of P-FF with C-VF yields VFFk and the combination of P-BF with 
C-VB yields VBBk. Let VBFk denote the (P-BF, C-VF) combination and VFBk 

denote the (P-FF, C-VB) combination. In the following, we only analyze VBBk 

algorithm. For the others, some remarks are given in the next section. 

Theorem 3.1. For any list L, we have 

Svbb, = 1-7, for k > 3. 
Obviously, if we only have one type of bins, VBBk is just BBFk. From [4], we 

have > 1.7, for k > 3. 
We prove that the lower bound is tight with the help of the weighting function 

defined as follows. . . 
We can divide all items in list L into 5 parts. 

A1 = {A <E L | 0 < a < 1 / 6 } , A2 = {A € L | 1 / 6 < a < 1 / 3 } , 

A3 = {a e L | 1/3 < a < 1/2 } , A4 = {a 6 L | a is a B-item } , 

A5 = {a € L | a is an L-item }. 

An item is called an ylj-item if it belongs to A{, i = 1,2,3,4,5. Ai-items and 
A$-items are large items. 

Let us define a weighting function as follows. 

(6/5)a, if a £ Ax, 
(9/5)a — 1/10, if a£A2, 

= { ( 6 / 5 ) o + 1 / 1 0 l if a e A 3 , 
max{1.7a, s ( 5 ) } , if a e A4, 
(6/5)a + 4/10, if a G As, 

where B is the a-home-bin. W(B), the weight of the bin B, is defined to be the 
sum of the weight of all items in bin B, i.e., W(B) = ^2a.eB W(at). And W(L), 
the weight of the list L, is defined to be the sum of the weight of all items in L, 

n 
i.e., W(L) — J2 W(°t)- We are going to show that 

i= 1 

s{VBBk,L) - 4/5 < W(L) < 1.7s(OPT, L). 

Lemma 3.1. For any list L, we have 



68 Rainer E. Burkard, Guochuan Zhang 

W(L) < 1.7s{OPT,L). 

Proof. Similar as in [16]. 

Lemma 3.2. For any list L, we have 

W(L) > s(VBBk,L) - 4/5, for к > 3. 

Proof. It is obvious that at any time the size of at most one current active bin is 
not greater than when we use VBBk. Note that except the last к bins, all of 
the bins used in a V В Bk packing are declared closed one by one. These bins are 
more than 1/2 full when they declared closed. In our analysis we first investigate 
the closed bins, thereafter we turn our attention to the last к bins. 

Claim 3.1. If a bin contains one Л5-item or two Аз-items, then its weight is not 
less than 1. If Bi is used in a VВBk packing and s(Bi) < 1, then W(Bi) > s(Bi). 

Proof. It is trivial. • 
We shall analyze the packing as one active bin is to be closed. This active bin 

is called the currently closed bin. The case that the currently closed bin is not 
the lowest indexed active bin (the first active bin) will be considered in Claim 3.2. 
Further cases are treated in Claims 3.3 and 3.4. 

Claim 3.2. If the currently closed bin Bi is not the first active bin for a VBBk 

packing, then W(Bi) > s(Bi). 

Proof. Without loss of generality, let the current active bins be B\,..., Bi,..., Bk, 
i Ф 1. By Claim 3.1 and inspection, we can assume that s(Bi) — 1 and Bi contains 
two items at least, and no As-item, one Аз-item at most. From the algorithm, Bt is 
the fullest bin at this time. If c(B\) > 5/6, it is easy to see that c(Bi) > c(B\) and 
W(Bi) > 1. In the following, we only consider the case Вi < 5/6. If Вг contains 
one B-item, Bi must contain another item a which can not be placed into BL, i.e., 
a > 1/6. Therefore we have W(B{) > 1.7(1/2) + (6 /5) ( l /6) > 1. If Bi contains 
no B-item, we can also assume that c(B\ ) > 2/3, otherwise Bi will belong to the 
special cases in Claim 3.1. 

We only need to consider the two bottommost items of Bi, a and /3. 
Case 1 . Q É A2, P 6 A3, 

W(Bi) > 
> 

Case 2. a € A2, /3 G A2, 

W(Bi) > ^c(Bi) + |(1 - c(Bi)) • 2 - 1 • 2 > 1. • 

In the following, we assume that the currently closed bin is the first active bin 
as it is declared closed. 

^c(Bi) + ^a>^c(Bi) + ^( l - c ( B ! ) ) 

6 / п ч 3 3 / r* \ 3 2 3 c(B1) + - - - c ( B 1 ) > - . - + - = 1. 
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Claim 3.3. For a VBBk packing, the currently closed bin Bi is just the first active 
bin and the next active bin is Bi+1. If s(Bi) = s(Bi+1) = 1 and c{Bi) > c(Bi+i) > 

then we have, when Bi+1 contains no B-item, 

(6/5)c(Bi) + W(Bi+1) > 1 + (6/5 )c(B i + 1 ) (1) 

and when Bl+i contains one B-item, 

(6/5)c(Bi) + W(Bi+1)>2. (2) 

Proof. When Bi+1 contains one B-item, Bi+i must also contain at least one small 
item, say (3, which has been accepted before the B-item. This follows from the fact 
that only bins with size < 1 can accept B-items as first items, but s(Bi+1) = 1. 
Clearly, c(Bi)+(3 > 1, otherwise /3 should be placed in bin Bi. Moreover, w(Bi+1) > 
|/3 + 1.7 • The last two inequalities imply 

\c{Bi) + W(Bi+0 > 6/5 4- 1.7(1/2) > 2. 5 

When Bi+i contains no B-item, we can assume that | < c(Bi) < | and Bi+i 

contains no Л5-item and one Лз-item at most. Otherwise (1) is clear. Thus, 
Case I! | > c{Bi) > | 
In this case, every item in J5j+i must be greater than 
If Bi+ i contains one A3-item, 

= |c(B0 + \c{Bi+1) + | 

6 \ 3 2 3 
> 5 С № + 1 ) + - - З + 5 

= 1 +®c (B i + 1 ) . 

If Bi+1 contains no A3-item then it is easy to see that Bj+i contains two 
items at least. Therefore 

^c(Bi) + W{Bi+0 > ^с(Д) + ^ + 1 ) + ^(1-с(В0)-2-^-2 

6 ч 6 1 

= 5 С ( Д + 1 ) + 5 - 5 

= l + |c(Bi+i). 

Case 2. | > с(В{) > \ 
In this case, every item in Bi+i is greater than i.e., belongs to A3 or Л5. 

Therefore, Bl+\ must contain one A.r,-item or two Лз-items. From Claim 3.1, 
W(Bi+1) > 1 but this is the easy case mentioned above. So, Claim 3.3 holds. • 
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Claim 3.4. For a VBBk packing (k > 3), the currently closed bin Bi is just 
the first active bin and the next active bin is Bi+1. Assume that s{Bi) = 1 and 
c(Bi) < Assume, moreover, that the sum of items in B{+1 is currently < 
but when the VBBk packing is finished, c(Bi+i) > 1/2. Suppose that Bj with 
s(Bj) = 1 is the active bin next to Bl+\, when Bl+i accepts a new item 7 after Bi 
has been closed. 

(i) If Bj is closed before Bi+\, then 

|c(Bi) + W{Bi+1) + W{Bj) >2 + | c ( B i + 1 ) . (3) 

(ii) If Bi+1 is closed before Bj, then 

|c(B0 + W(Bi+1) + W(Bj) > 2 + ^c(Bj). (4) 

Proof. If Bi+1 contains at least two items when Bi is closed, then it is easy to 
prove that §c(-Bf) + W(Bi+1) > 1 + |c(B i+1) and (3) or (4) hold. Hence we only 
have to consider the case that Bi+i contains just one item a, when Bi is closed. 
We suppose that the bottommost item of Bj is /3. Then a is greater than | (if not, 
a can be placed into B t) and /3 > 1 — a > Afterwards, an item 7 is placed into 
Bi+\ and c(Bj) + 7 > 1. 

(i) Bj is closed before Bl+\. 
• If | < a < then, c{Bj) > / 3 > l - a > § , c(Bj) > §. 

\c{Bi) + W{Bj) + W{Bi+1) 0 

> ^(c{Bi)+c{Bj))+2- + \c(Bi+l) 

6 4 2 6 / D N 
> 5 ' 3 + 5 + 5 C ( B i + l ) 

= 2 + ^ c ( B i + 1 ) . 

• If | < a < | and | < c(Bj) < |, then, 7 > | and 7 + c(Bj) > 1. 
When | < 7 < 

^c(Bi)+W(Bj) + W(Bi+1) 

6 , „ * 2 6 , _ . 3 
-c(Bi) + -c(Bj) + - + -c(Bi+1) + --

6 1 3 2 2 3 6 
> 5 - 2 + 5 ' 3 + 5 + 5 + 5 C ( B i + l ) 
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When \ < 7, 

^c{Bi) + W{Bj) + W(Bi+1) 

6 , . 2 . 2 
-c(Bi) + -c(Bj) + - + -c(Bi+1) + — 

6 1 6 2 2 1 6 
> 5 ' 2 + 5 ' 3 + 5 + 5 + 5 C ( B I + L ) 

= 2+^c(Bi+1). 

• If I < a < \ and \ < c(Bj) < §, then, 7 > §, c(Bi+1) > a + 7 > § and 
c(Bj) > c(Bi+1). But this is impossible. 

• If | < c(Bj), then 

^c(Bi) + W(Bj) + W(Bi+1) 
5 

6 1 6 5 2 6 . 

> 5 2 + 5 - 6 + 5 + 5 C ( B i + l ) g 
= 2 + -c(Bi+1). 

5 

(ii) Bi+1 is closed before Bj. 
It is clear that c(Bi+\) > c(Bj) when Bi+1 is closed. If c(Uj+i) < | at this 

time, then (3 < c(Bj) < |. This implies that a > | and 7 > i.e., c(Bi+i) > |. 
This is a contradiction. Therefore, we have c(Bi+1) > |. 

• If i < a < i , then 

6 

5' 
6 6 , 3 1 2 6 

: c{Bi) + W{Bi+1) + W{Bj) 

> -c(Bi) + -c(Bi+1) + - 5 a - - + - + -c(B3) 

6 2 3 3 1 1 2 6 . . 

> 5 - 3 + 5 + 5 - 2 - ï ô + 5 + 5 C ( ^ 

= 2 + ^c(Bj). 
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i If i < a < | and | < 7 < §, then § < c(B,). 

| c ( B i ) + + W ( f l i ) 
0 
6 6 2 6 3 

> -c(Bi) + -c(Bj) + - + -c(Bi+1) + -7 

> l \ + IciB,) + 1 + 1(1- c{Bj)) + \c{Bi) 
3 3 2 3 2 6 , „ . 

> 5 + 5 3 + 5 + 5 + 5 c № ) 

= 2 + j j c ( B J - ) . 

If | < a < | and | < 7, then 

6 
_c(Bi) + W(Bi+1) + W{Bj) 
5 

6 1 6 2 2 1 6 

If \ < a < \ and 7 < §, then c(Bi+1) > c(Bj) > 5 
6 ' 

IdBj + WiBi+^ + WiBj) 5 

> ^(Bi) + ^c(Bi+1) + | + 

6 1 6 5 2 6 , 
> 5 ' 2 + 5 - 6 + 5 + 5 c ( ^ 

2 + ^ c ( B j ) . 5 

Thus Claim 3.4 holds. • 

Note 3.1. If the hypothesis in Claim 3.4 does not hold, i.e., when the VBBk 

packing ends, Bj+i JS not greater than | yet, then Bj+i belongs to the last k bins. 

Now, we consider the last k bins. Without loss of generality, suppose Si = 
{B\,..., Bm} is the set of those closed bins (of size one) which are mentioned 
in Claim 3.3 and Claim 3.4. And suppose that Bi is closed before B{+1, i = 
1, . . . ,m — 1. We also denote by S2 = {Bm+i, ..., Bm+t}, t < k those bins among 
the last k bins, whose weights are less than their sizes when the packing ends. 



Bounded Space On-Line Variable-Sized Bin Packing 73 

Note 3.2. If the size of the first one of the last k bins is less than 1, then all of 
the closed bins have their sizes less than 1, i.e., Si = 0, by the closing rule of our 
algorithm. 

To see this, if there are some closed bins with size 1, let Bp denote the last 
closed bin of size 1. After Bp is closed, the first active bin may not be a bin with 
size less than 1 by our algorithm. It is a contradiction. 

Claim 3.5. Each bin B used in VBBk packing but not in Si U S2 has a weight 
W(B) not less than s(B). 

Proof. Follows immediately from Claim 3.1 and Claim 3.2. 

Claim 3.6. If the case in Note 3.1 happens, then 

' m+1 
£ W(Bi) > m + (6 /5 )c (B m + i ) , if Bm+1 contains no B-item, 
¿=i 
m + l 
£ W(Bi) > m + 1, if Brn+i contains one B-item. 

. ¿=i 

Proof. Claim 3.6 follows directly from Claim 3.3 and Claim 3.4. • 
Similarly, we get 

Claim 3.7. If the case in Note 3.1 does not happen, then 

m + l 

£ W(Bi) > m - 1 + (6/5 )c(Bm ) + W(Bm+1) for a VBBk packing. 
¿=i 

In the following, we consider S2. 

Claim 3.8. When Bm+i contains one B-item, 

W(Bm+2) + • • • + W(Bm+t) >t- 1 - 4/5. 

Proof. We will consider two cases. 
Case 1. c(Bm+2), ..., c(Bm+t) > 1/2. 
(i) If both Bm+i+1 and Bm+i+2 contain one B-item each, 1 < i < t — 2, then 

W{Bm+i+i) + W{Bm+i+2) > 2. 

(ii) If Bm+i+i contains no B-item and Bm+j+i contains a B-item (3, 1 < i < 
j < t - 2 then 

(6 /5 ) c (B m + i + i ) + W(Bm+j+i) > 2. 

(iii) If Bm+i+i and Bm+j+1 contain no B-item, 1 < i < j < i — 2 then 

(6 /5)c (B m + i + 1 ) + W(Bm+j+1) > 1 + (6 /5 )c (B m + j + 1 ) . 
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(i), (ii) and (iii) can be proved in the similar way as in the proof of Claim 3.3. 
Therefore, 

W(Bm+2) + ••• + W(Bm+t) + | = 

Case 2. There exists a bin c(Bm+j) < 1/2, 2 < j < t. In this case, all bins 
following Bm+j contain one L-item, i.e., have their weights greater than 1. Thus it 
is easy to show that 

W(Bm+2) + • • • + W(Bm+t) > (t - 1) - 4/5. • 

Similarly, it can be shown 

Claim 3.9. When c(Bm+i) > 1/2 contains no B-item, 

(6 /5 )c (£ m + 1 ) + W(Bm+2) + • • • + W(Bm+t) > t - 4/5. • 

Claim 3.10. Ifc(Bm+i) < 1/2, when the packing ends, then 

m+t 

£ W(Bi) + (6/5)c(Bm) >t + 1 - 4/5. 
i=m+1 

Proof. If c(Bm+1) < 1/2, when the packing ends, then Bj contains one A^-item 
for j = то + 2 , . . . , m + t. Therefore, 

m+t 
W(Bi) + (6/5 )c(Bm ) >t- 1 + (6 /5) (с (Б т ) + c(Bm+i)) > t - 4/5. • 

¿=771-}-1 

By Claims 3.5 to 3.10, we get W(L) > s{VBBk,L) - 4 / 5 . This completes the proof 
of Lemma 3.1. • 

Combining Lemma 3.1 with Lemma 3.2, we have SY'BBK < 1.7, for К > 3. 
Therefore, we conclude that 

^vBBt ~ к > 3. 

Thus Theorem 3.1 is proven. • 

4. Conclusions and Remarks 
This paper deals with an on-line variable-sized bin packing problem which uses 
bounded space. Up to now, the best bound of the known on-line variable-sized bin 
packing algorithms [2] is a bit smaller than 1.7. In fact, the algorithm so-called 
VHm in [2] which is derived from Harmonic Fit is a bounded space algorithm. Let 
M > 1 be a positive integer and let M3 = \M • s(B'J)~\ ( j = 1 ,2 , . . . , l ) . Then the 
algorithm uses fc-bounded space where 

к = Mi + M2 + • • • + Mi - I + 1. 
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When Mi < 5, the worst-case performance bound of VHm is greater than 1.7. If 
and only if Mi > 7, VHm can do better than V BBk where k > 61 + 1. To see 
VBBk is efficient, we observe that it only needs k > 3 to reach the bound 1.7 which 
does not depend on the number I of bin sizes. 

We can also analyse the other three algorithms VFBk, VFFk and VBFk with 
the similar technique. For example, with a modified weighting function 

C max{1.7a, s{B)} + 3/{10k - 10), if a G A4, 
f » = (6/5)a + 4/10 + 3/(10fc — 10), if a e As, 

[ W(a), otherwise 

where W(a) is defined in Section 3, we can prove that Sy'FBk = 1.7 + , for 
k > 2. It is clear that all the three algorithms can not beat algorithm VBBk. 
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Generalized Harary Games* 

András Pluhár t 

Abstract 

There are a number of positional games known on the infinite chessboard. 
One of the most studied is the 5-in-a-row, whose rules are almost identical 
to the ancient Japanese Go-Moku. Along this line Harary asked if a player 
can achieve a translated copy of a given polymino P when the two players 
alternately take the squares of the board. Here we pose his question for 
general subsets of the board, and give a condition under which a draw is 
possible. Since a drawing strategy corresponds to a good 2-coloration of the 
underlying hypergraph, our result can be viewed as a derandomization of the 
Lovász Local Lemma. 

1 Introduction and Results 
Frank Harary proposed the following game on the infinite chessboard (two dimen-
sional lattice) which resembles both the k-in-a-row, and the Hex (see [5], [8]). Let 
us recall that a polymino is a set of connected squares of the chessboard. Given a 
polymino P, the players, I and II take one square of the chessboard at each turn. 
I tries to take a translated copy of P, while II's goal is to prevent I from doing 
this. A polymino P is a winner if I has a winning strategy, otherwise P is a loser. 
Andreas Blass found most of the minimal loser polyminoes, using Hales-Jewett-
type of pairings (see [5]). The opposite task, that is to decide about the winners, 
was carried out exhibiting some sequences of winning moves. Practically all of the 
winner polyminoes are known, there are at most twelve of them. The status of the 
largest one, called snaky, is still unsettled. Although it seems to be a winner, no 
one has found a convincing proof yet (see [5]). 
In this paper we are interested in a more general situation: 

1. II has to prevent I from taking not only one, but several other polyminoes, 
2. P is not necessary a polymino (i.e. connected set of squares). 

"The author was partially supported by the Austrian-Hungarian Action Fund "Combinatorial 
optimization - research and education" 20u2 and the Bilateral Intergovermental S & T Cooperation 
between Italy and Hungary 1-14/95. 

t Department of Computer Science, Attila József University, Árpád tér 2, H-6720 Szeged, 
Hungary 
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Figure 1: The polymino called snaky 

The methods, used in the solution of the original problem, break down hopelessly in 
the generalized cases. (Especially, when both modifications are considered.) If we 
have some additional properties of the winning patterns, then the weight function 
technique still can provide an answer. First we need to formalize the notion of a 
hypergraph game. 

Definitions: 
An (X, H) pair is a hypergraph if H C 2X. Given a hypergraph (X , H) the players 
I and II can play the following game that we call (p, q, H) hypergraph game (or 
shortly (p,q,H) game): 
I and II select p and q unselected elements of X in each turn, respectively. The 
first, who selects all elements of an A 6 H, wins. 
For 1 < i < k let Pi be a set of squares of the infinite chessboard, n* = |Pj| the 
number of elements in Pi, and d(Pi) the diameter of Pi in Euclidean norm. Let 
A(jp,q-,V) be an (p,q,H) game, where X is the infinite board and H consists of 
the translated copies of P\,...,Pk- Furthermore, set n = min{rii : 1 < i < k} and 
d = max{d(Pi) : 1 < i < fc}. 

Theorem 1 If n > 501og2 d + 251og2 k + 25, then II can prevent I from winning 
the game A(l, 1;V). 

It is natural to ask what happens in general, that is if J wins the game A{p, q\ V), 
or it is a draw. A similar argument like in [10] would show that I wins every 
A(jp, q\ V) if p > q. (Omitting the details, we give just a sketch of I's strategy: 
Take squares far from each other for some turn. In the subsequent turns neglect 
those which are "too close" to squares taken by II. Since p> q, I can build up an 
arbitrary pattern.) Hence the only open cases where p < q. The most intriguing 
case the p = q = 1, although we believe that dropping the diameter restriction does 
not really help I, which is spelled out in Conjecture 1. 

Conjecture 1 There exists a function f(k) depending only on k such that, if n > 
f(k), then II can prevent I from winning the game A( 1, \\V). 
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2 Weight Functions 
In this section we shall recall the most useful method in the theory of hypergraph 
games, the method of weight functions. It is impossible to trace back when it did 
first appear, in some sense the idea is as old as the exponential function. It has 
surfaced in the recreational mathematics several times, eventually P. Erdos and 
J. L. Selfridge put it to its proper place in mathematics (see [7]). Later a large 
number of applications were found, both in the theory of games and in other parts 
of discrete mathematics (see for example [1, 2, 3, 4]). The following result may be 
called as the "Fundamental Theorem of Hypergraph Games"; for the case p = q = 1 
it was proved in [7], the general form is from [2]. 

Theorem 2 [2, 7] II can prevent I from winning the (p,q, H)-game if 

En 1 

(1 + i ) ' < Г Т ? 
лен 4 

This theorem cannot be used in our case directly, since Y^AeH is not 
finite. Yet another difference is that it does not harm the player II if he gets extra 
elements from X . Intuitively it is clear that I I is better off if in some turns he can 
take more than q elements of X (even if he receives the extra elements randomly). 
We call a hypergraph game relaxed (p, q, H) game if at each turn I takes at most p, 
while II takes at least q elements of X . Theorem 2 holds for the relaxed (p, q, H) 
games, too. For the sake of compactness, we repeat Beck's proof from [2], getting 
Lemma 1. 

Lemma 1 [2] II can prevent I from winning the relaxed (p, 1 ,H)-game if 

Е„ _ Ш 1 
2 ' < г' лея 

Proof of Lemma 1. 
For any A € H let Ak(I) and Ак (II) be the number of elements in A, after Ps kth 

move, selected by I and II, respectively. Furthermore 

0 otherwise 

where A > 0 and for any x £ X 

Wk{x) = wk(A). 
xga,Аен 

The numbers wk{A) and wk{x) are called the weight of A and x (in the kth step), 
respectively. 
For selecting an element in the ktl1 step II uses the greedy algorithm, i.e. he 
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chooses an unselected element yk 6 X of maximum weight. Let xk+1, ...,xk+1 be 
the elements selected by I in the (k + l)s t step and let 

Wk = wk(A) 
A€H 

be the total sum or potential. The following inequality holds for the potential: 

Wk ~ wk{yk) + (A" - 1 )wk(yk) > wk+1 

if к > 0. Indeed, wk decreases by wk(yk) upon selecting yk. On the other hand, 
it is easy to see that the increase of the potential, caused by I's newly selected 
elements, is the greatest in the case where: 

1. wk(xk+1) is maximal for 1 < I < p 
and 
2. if wk(A) ф 0 {A S tf), then x f + 1 S A iff x<£+1) € A, 1 < I and m < p. 

But the increase in this case is just (Ap — 1 )wk(yk), therefore the inequality is 
proved. Setting A = we get 

wk > wk+1, 

for к > 0, which justifies that wk is called potential. 
Particularly 

wi < 2(AP) 2 - W < 1. 
Аен 

Let us suppose that I wins the game in the kth step, occupying the set A. This 
would imply 

w k > A - W + ^ W = 0 , 

which contradicts the monotonicity of the potential. • 

Remarks. 
1. Intuitively, the potential measures the overall danger that the vertices of the 
elements of H are being selected by I during the game. Most often it is done by 
choosing an appropriate exponential function, and this exponentiality is to which 
one can attribute the power of the weight function method. Practically speaking, 
one may expect reasonable theorems via weight functions for a family of hyper-
graphs 

T={(X,H):jE Г} 
if there exists a polynomial p, such that 

\H7\<p(\X,\) 

for all 7 e Г. As we shall see, the special structure of the hypergraphs can also 
help, even when \Н7\ = oo. 
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2. There is a deep connection between the random 2-colorings of a hypergraph 
(X, II) and the (1,1, H)-game. The inequality 

says that the expected number of monochromatic elements of H is less than 1, i.e. 
there is a good 2-coloring. From this point of view the weight function technique is 
nothing else but the derandomization of the well known first moment method. The 
conditional probabilities for certain events can also be interpreted as weight function 
values (see [1]). This method makes it possible to turn probabilistic algorithms into 
effective, polynomial time deterministic ones (see [4)). On the other hand, if the 
expected number of monochromatic sets is "small", then II might achieve a draw 
in the corresponding hypergraph game. 

3 Proof of Theorem 1 
First we cut up the board into d x d squares, and call the set of these squares S. 
For an S € S let S be the union of S and the other eight d x d squares surrounding 
S• We shall refer to S's as the sub-boards. For an S the game (S, H(S)) is the hy-
pergraph game, where the winning sets are those elements of H, which lie entirely 
in S. If II plays a strategy which prevents I from winning any of the (S, H(S)) for 
S € S, then it prevents I from winning the A(l, l\V) also. Indeed, let us suppose 
that I succeeds in taking all elements (squares) of a translated copy of Pi for some 
i = 1,..., k. If this copy of Pi has a common element with an S € S, then, from the 
diameter limitation, the whole copy lies within 5, i.e. I wins the game (S,H(S)), 
too. 
One of the difficulties in establishing a strategy which guarantees a draw for II 
on every sub-board S is that the sub-boards are not disjoint. It means I's mark 
appears on nine of the sub-boards, and although IPs answer is ninefold too, we 
cannot expect it to be the best on all of these sub-boards. We shall just ignore 
eight of them, and Concentrating on one of them at a time, we create a relaxed 
(25,1; H(S)) game on every sub-board S. Similarly to the idea of Lemma 3 of [10], 
we define a relation O on the set of the sub-boards, and use it to decide which 
sub-board should receive the mark of II. At the beginning of the game O is empty. 
We say Su owes Sw if (Su, Sw) G O. At the Ith step II selects a sub-board S* such 
that: 

1. S* contains xi, the last selection of I, 
and 
2. S* does not owe any sub-board 5 3 

Then II updates the relation O. S* owes all 5 ^ 5 * which contain xt, and non 
of these S's owe S* in the updated relation. Now, if a sub-board S 9 xi was not 
selected, then a (say) S* was. S* owes S, and cannot be selected again until S is 

AeH 
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selected. Since at most 24 sub-boards may owe a sub-board S, at least every 25th 

step on every sub-board is answered. 
Within a sub-board S, selected by the previous rule, II plays accordingly to 
Lemma 1. It gives that II draws in all relaxed (S,H(S ) ) game, provided that 

Asms) 

On the other hand \H(S)\ < 9d?k, so if 

n > 50 log2 d + 25 log2 k -I-100, 

then the above inequality holds, therefore I cannot win. • 

4 Conclusion 
Upon proving Theorem 1, we have reached the limits of the weight function tech-
nique. On one hand, there is no reason to believe that winning sets of larger and 
larger diameter would really benefit I. On the other hand, the weight functions, 
unless an ingenious idea is incorporated, cannot help on the growing sub-boards. 
Indeed, Conjecture 1 is just a special case of an important open question in the 
theory of hypergraph games. As we mentioned earlier, in a number of cases the 
probabilistic heuristic works, that is one may prove a draw for II in the (1,1, H)-
game, when a random argument shows the existence of a good 2-coloring of the 
hypergraph (X,H). It does not necessary break down when this existence of the 
good 2-coloring is guaranteed only by the Lovász Local Lemma. According to the 
Lovász Local Lemma there is a good 2-coloring of an even infinite hypergraph 
(X, H) „ if the maximum degree of (X , H) is "small" and the size of any A G H is 
"large" (see [6]). The natural direction of research is to find out if these conditions 
guarantee draw for the second player. Although there are very deep and promising-
results in [2] and [4] for the finite cases, the general solution is still far away. 

Acknowledgement. Many thanks to József Beck for the lots of help and en-
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Evaluation Strategies of Fuzzy Datalog 

Ágnes Achs* 

Abstract 

A fuzzy Datalog program is a set of Horn-formulae with uncertainty de-
grees. The meaning of a program is the fixpoints of deterministic or nonde-
terministic consecutive transformations. In this paper we are going to deal 
with the evaluation strategies of fuzzy Datalog programs. We will determine 
the bottom-up and top-down strategies and show their equivalence. 

1 Introduction 
A logical data model consists of facts and rules. The facts represent certain knowl-
edge from which other knowledge can be deduced by the rules. . In classical deduc-
tive database theory ([CGT], [U]) the Datalog-like data model is widely spread. A 
Datalog program is a set of Horn-clauses, that is a set of the formulae 

A B i , . . . ,B n 

where A, Bi(i — 1,..., n) are positive literals. 
The meaning of a Datalog-like program is the least (if any) or a minimal model 

which contains the facts and satisfies the rules. This model is generally computed 
by a fixpoint algorithm. 

In [AK2] there was given a possible extension of Datalog-like languages to fuzzy 
relational databases using lower bounds of degrees of uncertainty in facts and rules. 
This language is called fuzzy Datalog (/DATALOG). In this language the rules 
are completed with an implication operator and a level. We can infer the level 
of a rule-head from the level of the body, the level of the rule and the implication 
operator of the rule. We defined the deterministic and nondeterministic semantics of 
/DATALOG as the fixpoints of certain transformations, gave a method for fixpoint 
queries, and showed that this fixpoint is minimal under certain conditions. 

The aim of this paper is to give some evaluation strategies of /DATALOG 
programs. 

First we are going to summarize the concept of /DATALOG. 

•Janus Pannonius University, Pollack Mihály College, Pécs, Boszorkány u. 2, Hungary, 
e-mail:achs@mit. pmmfk.jpte.hu 
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2 Basic Concepts 
A term is a variable, constant or complex term of the form / ( i j , . . . , tn), where / 
is a function symbol and t\,..., tn are terms. An atom is a formula of the form 
p(t), where p is an n-arity predicate symbol and t is a sequence of terms of length 
n (arguments). A literal is either an atom (a positive literal) or the negation of an 
atom (a negative literal). 

A term, atom, literal is ground if it is free of variables. 
Let D be a set. The fuzzy set F over D is a function F : D —» [0,1]. Let T(D) 

denote the set of all fuzzy sets over D. So F € T{D). 

F U G(d) = m a x ( F ( d ) , G { d ) ) 

F n G(d) d= min(F(d),G(d)) 

An ordering relation can be defined: F < G iff F(d) < G(d) Vd 6 D. As every 
subset of T(D) has least upper bound and greatest lower bound, so (J~(D), <) is a 
complete lattice. The top element of the lattice is U : D —» [0,1] : U(d) = 1 Vd £ D. 
The bottom element is: 0 : D [0,1] : 0(d) = 0 Vd € I>. 

Fuzzy sets are frequently denoted in the following way: 

F= ( J ( d , a d ) 
deD 

where (d,ad) e D x [0,1]. 
To make any deduction we need the concept of implication operator. 
The features of implication operators are summarized in [DP]. In the next table 

we give the most frequent operators: 

symbol name formula 
h(x,y) Gödel 1 if X < y 

y otherwise 
h(x,y) Lukasiewicz 1 if x < y 

1 — x + y otherwise 
h(x,y) Goguen 1 if x < y 

y/x otherwise 
Kleene-Dienes max(l — x, y) 

h(x,y) Reichenbach 1 — x + xy 

h(x,y) Gaines-Rescher 1 if x < y 
0 otherwise 



Evaluation Strategies of Fuzzy Datalog 87 

3 The Concept of /DATALOG 
Definition 1 An /DATALOG rule is a triplet (r; 7; (i), where r is a formula of the 
form 

Q<-Qo,---,Qn (n> 0) 

where Q is an atom (the head of the rule), Qi,..., Qn are literals (the body of the 
rule); I is an implication operator and (3 £ (0,1] (the level of the rule). 

An /DATALOG rule is safe if 

• All variables which occur in the head also occur in the body; 

• All variables occurring in a negative literal also occur in a positive literal. 

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a 
ground atom. The rules of the form (A ; J; /3) are called facts. 

The Herbrand universe of a program P (denoted by Hp) is the set of all possible 
ground terms constructed by using constants and function symbols occurring in P. 
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate 
symbols occur in P and whose arguments are elements of Hp. A ground instance 
of a rule (r; I; ¡3) in P is a rule obtained from r by replacing every variable x in r by 
<&(.x) where $ is a mapping from all variables occurring in r to Hp. The set of all 
ground instances of (r; / ; /3) are denoted by (ground(r)\ / ; (i). The ground instance 
of P is 

ground (P) = U ( r ; / ; /} ) ep(ground (r) ;I ; (3 ) . 

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of 
BP: 

Np £ T(Bp), that is Np = |J (A,aA). 
AeBp 

Let for ground atoms Ai,..., An aA1/\...AA„ and a~,A be defined in the following 
way: 

ctAiA...A^„ = m i n ^ ! , . . . 

def ! a-, A = I —a A-

Definition 3 An interpretation is a model of P if for each (ground(r) \ I; (3) £ 
ground(P), ground(r) = A A\,..., An 

I(aAif,...AAn,ocA) > (3 

A model M is the least model if for any model N,M < N. A model M is minimal 
if there is no model N ^ M such that N < M. 
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To be short, we sometimes denote OLA1A.../\A„ by abody and o^by ahead-
The semantics of /DATALOG is defined as the fixpoints of consequence trans-

formations. Depending on these transformations we can define two semantics for 
/DATALOG. The deterministic semantics is the least fixpoint of deterministic 
transformation, the nondeterminic semantics is the least fixpoint of nondetermin-
istic transformation. With the aid of the deterministic transformation the rules 
of a program are evaluated parallely, while in nondeterministic case the rules are 
considered independently one after another. 

These transformations are the following: 

Definition 4 The consequence transformations DTp : T(Bp) —> T{Bp) and 
NTP : T{BP) T{BP) are defined as 

DTP(X) = { U { ( A , C * A ) } | ( ^ < - Au...,AN-I-p) e ground(P), 

(|\Ai\,otAi) £ X for each 1 < i < n, 

a A = max(0, min{7|/(abody , 7) > /3})} U X 

and 

; NTP(X) = {(A,aA)}uX 

where (A <- Ai,...,An\I\{3) 6 ground(P),(\Ai\,aAi) £ X, 1 < i < n, 

aA = max(0,min{7|/(abody,7) > P] 

denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol 
with arity k and c is a list of k ground terms. 

We can define the powers of the transformations: 
For any T : T(Bp) -> J7(Bp) transformation let 

T0 = {U{(A,a,i)}|(yl £ gr<mnd{P), 

a A = max(0,min{7|/(l,7) > /3})} 
U{(A, 0)|3(B i- ... -,A...,;/; P) € graund(P)} 

and let 
Ti = T(T0) 

Tn = T ( T „ _ I ) 

In [AK2] it was proved, that starting from the set of facts (To), both DTp and 
NTp have a fixpoint, which is the least fixpoint in the case of positive P. These 
fixpoints are denoted by lfp(DTp) and Up(NTp). 

It was also proved, that lip(DTp) and lfp(ATp) are models of P. These propo-
sitions are the background of the following definition: 
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Definition 5 We define lfp(DTp) to be the deterministic semantics and lfp(yVTp) 
to be the nondeterministic semantics of /DATALOG programs. 

For function- and negation-free /DATALOG, the two semantics are the same, but 
they are different if the program has any negation. 

The set lfp(DTp) is not always a minimal model. In nondeterministic case, 
however, it is minimal under certain conditions. This condition is stratification. 
Stratification gives an evaluating sequence in which the negative literals are evalu-
ated first. 

To stratify a program, it is necessary to define the concept of dependency graph. 
This is a directed graph, whose nodes are the predicates of P. There is an arc from 
predicate p to predicate q if there is a rule whose body contains p or -ip and whose 
head predicate is q. 

A program is recursive, if its dependency graph has one or more cycles. 
A program is stratified if whenever there is a rule with head predicate p and a 

negated body literal ->q, there is no path in the dependency graph from p to q. 
The stratification of a program P is a partition of the predicate symbols of P 

into subsets Pi,..., Pn such that the following conditions are satisfied: 

a) if p £ Pi and q £ Pj and there is an edge from q to p then i > j 

b) if p £ Pi and q £ Pj and there is a rule with the head p whose body contains 
-iq, then i > j. 

A stratification specifies an order of evaluation. First we evaluate the rules whose 
head-predicates are in Pi then those ones whose head-predicates are in P2 and so 
on. The sets Pi,... ,Pn are called the strata of the stratification. 

A program P is called stratified if and only if it admits a stratification. There 
is a very simple method for finding a stratification for a stratified program P in 
[CGT],[U]. 

[AK2] proves that for stratified /DATALOG program P, there is an evaluation 
sequence, - this is the order of strata - in which lip(NTp) is a minimal model of P. 

More detailed: 
Let P be a stratified /DATALOG program with stratification P±,... ,P„. Let 

Pj* denote the set of all rules of P corresponding to stratum Pj, that is the set of 
all rules whose head-predicate is in Pi. 

Let 
Li = lfp (NTP. ) 

where the starting point of the computation is the set of facts. 

L-2 = lfp (NTp-) 

where the starting point of the computing is L\, 

Ln = lfp (NTp.) 
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where the starting point is L„_i . 
In other words: at first we compute the least fixpoint L\, corresponding to the 

first stratum of P. Then one can take a step to the next stratum, and so on. 
It can be seen that Ln is a minimal fixpoint of P, that is Ln = lfp (NTp) 

([AK2]). 

4 Evaluation Strategies 
An /DATALOG program can be evaluated with the aid of different strategies. 
Starting from the facts, applying the rules, all of the computable facts can be 
inferred, that is lfp (DTp ) or lfp (NTp) can be determined. In this case, we speak 
about bottom-up evaluation. 

In many cases however, the whole evaluation is not necessary, because we only 
want to get an answer to a concrete question. If a goal is specified together with 
an /DATALOG program, it is enough to consider only the rules and facts which 
are necessary to reach the goal. In the case of starting from the goal, and applying 
the suitable rules we infer to the facts, we speak about top-down evaluation. 

5 Bottom-up Evaluation 
For simplicity, we denote consequence transformation with Tp. This doesn't cause 
any trouble, because in the case of negation-free programs the fixpoints of the two 
tranformations are the same, and if the program contains any negation, we will 
consider only the nondeterministic transformation. 

The fixpoint computation is a simple iteration with the following algorithm: 

Algorithm 1 

Procedure bottom-up 
old := T0 

new := Tp(To) 
while old new do 

old := new 
new := TP (old) 

endwhile 
endprocedure 

Note: In nondeterministic case, the halt condition means that none of the rules 
results in any new facts. 

The disadvantage of the algorithm is the great number of superflouos evalua-
tions. There are rules which are evaluated again and again in spite of the fact, 
that they don't result any new facts. Therefore, it is practical to omit these rules. 
Whether a rule can be omitted or not, depends on the path leading to the head 
predicate of the rule in the dependency graph. If this path contains any circle -
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that is the rule is recursive - one can not omit the rule before obtaining the fix-
point. But if the path does not contain any circle, then probably it can be omitted 
before terminating. A rule can be omitted, if the steps of the algorithm exceed the 
length of the maximal path leading to the head predicate of the rule. Using this 
observation a modified bottom-up evaluation strategy can be acquired. 

6 Modified Bottom-up Evaluation 
Let P = U{(r; / ; /3)}. Let h : P N be defined in the following way: 

( n where n is the length of the longest loopfree path leading to 

the headpredicate in dependency graph 
oo if the path leading to the headpredicate contains any circle 

Let T'n = TPii(Tn-i) where 

i* =P-{(r;J;»,)!*(»•;/ ; /?) < n } 

The sequence T^ has a limit, that is: 

Proposition 1 For function- and negation-free program P 3 m € N : T'm = rpl rpt x m+1 ~ • • ' ~ ±oo 
Proof: Let k be the number of predicates in P, n be the arguments' number of 
predicate with maximum argument's number and c be the number of constants in 
P. Then the proposition is true for m = kc11. 

• 

For this m let T^ be denoted with T'(P). 

Proposition 2 For negation- and function-free /DATALOG program P 
lfp(Tp) = T"(P). 

Proof: 

a) From the construction of T'(P), T ' (P) Ç lfp(TP). 

b) Let (A,aA) <Elfp{TP). 

Then there is (r; 15 /2) € J5, for which (.A 4— Ai,... 3 A.n; /5 (3) € grounder}. Let 
%;/;/?) = k. Then (r;/; /3) £ P^, so (A,aA) € T'k Ç T'(P). ' 

• 
The algorithm of modified bottom-up evaluation is the following: 
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Algorithm 2 

Procedure bottomrup 2 
k := 1 
old := T0 

new := Tp(To) 
while old ^ new do 

old new 
P : = P - { ( r ; J ; / 3 ) | / i ( r ; / ; / ? ) < fc} 
new := TP (old) 

endwhile 
endprocedure 

7 Modified Bottom-up Evaluation in the Case of 
Stratified /DATALOG 

The modified bottom-up evaluation can be applied in the case of stratified 
/DATALOG. Then we can evaluate by strata. In details: 

Let P be a stratified /DATALOG program with stratification P\,... , P„. Let 
P* denote the set of all rules of P corresponding to stratum Pi, that is the set of 
all rules whose head-predicates are in Pi. 

Let 
Li = lfp(NTPT) 

where the starting point of the computation is Lj_ i, and Tp> = NTp- = DTp-. 
Because, due to the stratification of P, all negative literals of stratum i cor-

respond to predicates of lower strata, the evaluation of P* is the same as the 
evaluation of a negation-free program. 

From this the following proposition can be made: 

Proposition 3 Li can be evaluated by the modified bottom-up evaluation, that 
is Li = T ' (Pi ) . 

8 Top-down Evaluation 
In many cases we only want to get an answer to a concrete question. In such 
cases a goal is specified together with an /DATALOG program. Then during the 
evaluation it is enough to consider only the rules and facts which are necessary to 
reach the goal. 

A goal is a pair (Qa), where <5 is an atom, a is the level of the atom. It is 
possible, that Q contains variables, and a can be either a constant or a variable. 
An /DATALOG program enlarged with a goal is a query. 
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A goal can be evaluated with the aid of sub-queries. This means, that all of 
the rules, whose head-predicate can be unificated with the given goal-predicate are 
selected, and the predicates of the body are considered as new sub- goals. This 
procedure continues until obtaining the facts. This kind of evaluation is the top-
down evaluation. 

To deal with this strategy, we need some basic concepts. 

Definition 6 A substitution 9 is a finite set of the form {xi|ii , . . . ,xn\tn], where 
Xi(i = 1 , . . . ,n) is a distinct variable and ti ^ Xi (i = 1,... ,n) is a term. The set of 
variable {.x'i,..., xn} is called the domain of 0. If all terms ti,..., tn are constants, 
then 9 is called a ground substitution. The empty substitution is denoted by e. If 
9 is a substitution and t is a term, then td denotes the term which is defined as 
follows: 

If L is a literal then L9 denotes the literal which is obtained from L by simultane-
ously replacing each variable Xi that occurs in L by the corresponding term ti, iff 
Xi\ti is an element of 6. 

For example, let L = -<p{a,x,y,b) and 6 = {x\c, y\x), then L9 — ~^p(a,c,x,b). 
If ( r ; I ; p ) is a /DATALOG rule, then [r9\I\ (3) denotes the rule, which is ob-

tained simultaneously applying the substitution 9 for all literals of r. In the body 
of rO the atoms are considered with single multiplicity. 

Definition 7 Let 9 = {xi|ti, • • •,xn\tn} and <r = {yi\ui,... ,yn\un} be two sub-
stitutions. The composition 9a of 9 and a is obtained from the set 

{a;i|fia,.. ,,xn\tna,yi\ui,... ,ym\um} 

by eliminating each component of the form z\z and by eliminating each component 
for which 'tji = Xj for some j . 

If (r;/ ; /3) is a rule then applying 9a to the rule has the same effect as first 
applying 9 to r, yielding (r9\I-,(3), and then applying a to r9. 

Definition 8 If for a pair of literals L and M a substitution 9 exists, such that 
L9 = M9, then we say that L and M are unifiable and the substitution 9 is called 
a unifier. Let 6 and A be substitutions. We say that 9 is more general than A iff a 
substitution a such that 9a = A exists. 

Let L and M be two literals. A most general unifier of L and M (mgu(L,M)) < 
is a unifier which is more general than any other unifier. 

The concept of mgu has been introduced in much more general contexts, where 
terms may contain function symbols. There are different algorithms for determining 
mgu ([P], [U]). As now we deal with function-free /DATALOG, therefore it is 
practical to give a simple algorithm, which generates a mgu for each pair of literals 
L and M if they are unifiable, or tells if they are not. 

Let L — p(ti,... ,tn) and M = p'(t[,..., t'm) be two literals. The function 
mgu(L, M) can be generated in the following way: 

t otherwise. 
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Algorithm 3 

Function mgu(L, M) 
if p ^ p' or n^m then L and M are not unifiable 
else 

9 :=e 
k := 1 
unifiable := true 
while k <n and unifiable do 

if ue ± t\e 
then if t\9 is a variable 

then 9 := 0 (^0^0 } 
else if tiO is a variable 

then 0 := 9{ti9\t'i9} 
else unifiable := false endif 

endif 
endif 
k~k+ 1 

endwhile 
if unifiable then mgu(L, M) = 9 else L and M are not unifiable 

endif 
endfunction 

From the algorithm one can see, that mgu(L,M) ^ rngu(M,L). Because of 
this asymmetry we have to be very careful during the top-down evaluation. 

We also need the concept of projection and join of substitutions. 

Definition 9 Let 8 = {a;i |ii , . . . , xn\tn} be substitution and let H = {x^,..., xjk } 
be a set. The projection of 8 to H is the substitution 9h = {x^ \ti1,..., Xik\tik}. 

Definition 10 Let 9 = {xi\ti,... ,xn\tn} and a = {y\\u\,... ,yn\un} be substitu-
tions. Let us suppose that for each pair Xi\ti, yj\uj for which xi = y3 is true, i» = Uj 
also comes true. Then the join of 9 and a is the set 9 <8> a = {a:i|ii,... ,xn\tn, 
yi\ui,... ,ym\um}, from which the repeated components are omitted. 

If for any pair Xi\ti,yj\uj,Xi = yj is true, but tn ^ u } . then the join of 9 and a 
is not defined. 

From this definition one can see, that the join is a partial operation. If we want 
to apply the join and the composition together, the concept of partial composition 
has to be defined. 

Definition 11 The partial composition of substitutions 9 and a is 9a, if both of 
them are defined and is not defined if any of substitutions is not defined. 

First we deal with the evaluation of negtion-free /DATALOG programs. We 
will search the solution with the aid of evaluation graph. This is a special AND/OR 
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tree, a special hyper-graph. Every odd edge is a n-order hyper-edge with the set-
node of n elements, and every even edge is an ordinary edge with one node. More 
precisely: 

An evaluation hypergraph is a tree, whose root is the goal, the leaves are the 
symbols "good" and "bad", and the nodes are defined recursively. 

Let the level of the root be 0. On every even level of the graph there are sub-
goals, that is suitably unified heads, on every odd level there are bodies of rules. 

Let Q be a node of level k = 2i, and let us suppose, that there are m rules in 
the form 

R RI,..., R*N; I) P 

whose heads are unifiable with Q. Then this node has m children, and these children 
are in the form 

R\0,..., RN6 

where 0 = mgu(Q,R),if n > 0; if n = 0, then the child is the symbol "good". If 
there are not any unifiable rule, then the child is the symbol "bad". 

We have to pay attention to rename the variables, namely it is important, 
that the variables in the body of a unified rule let be different from the former 
unifications. To solve this problem, we will identify these variables by subscribing 
them with the level of the evaluation graph. 

Let us attach labels to the edges of the form Q —> R\6,..., Rn6 ! Let the edge's 
label be the triplet (0;I/3). 

Let the rule-body of the form Qi,.. .,Qn be a node of level k = 2i + 1! Then 
there is an n-order hyper-edge to the nodes Qi,..., Qn• The hyper-edge has no 
label. 

We can get an answer to the query from the labels of evaluating graph. 
The path ending in the symbol "bad" doesn't give solution. Let us omit these 

paths! In other words, let us omit all of the edges and nodes which lead to this 
symbol independently from the fact, that these nodes are connected to each other 
by hyper-edges or ordinary edges. (If there is a path from one node of a hyper-
edge to the symbol "bad", all of the nodes belonging to this hyper-edge and their 
descendants are cancelled.) The given graph is called searching graph. 

A solution can be achieved along the path ending in the symbol "good" in the 
searching graph. The union of these solutions is the answer to the given query. The 
level of the atoms in the answer can be computed with the aid of the uncertainty-
level function. 

Definition 12 The function 

f(I,a,0) =min( { 7 |/ (a , 7 ) > / ? } ) 

is called uncertainty-level function. 

In the case of the studied implication operators / ( / , a, ¡3) is the following: 

/ ( A , a,/?) = min(a,/3) 
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f(I2,a,0) = max(0, a +/3 - 1) 

f(I3,a,0) = a-0 

,,T „ /0 a + 0 < 1 

/ ( / 5 > a, /3) = max(0,1 + (/3 - l ) / o ) , a ± 0 

f(I6,a,0)=a. 

Let us determine the substitution 6 along the hyper-path leading to the symbol 
"good" in the following way: (As a path contains hyper-edges, therefore the path 
may end in more leaves.) 

For each hyper-node let us construct the join of the substitutions of the body's 
atoms. Let us order this joins to the nodes of even levels (that is to the nodes of 
the heads). Then let us construct the partial composition of these substitutions. 

On answer to the query 
(Q,<*) 

is: 
(Q0, Otgoai), 

where agoai can be computed recursively with the aid of uncertainty-level function 
f ( I , a , 0 ) in the following way: 

Starting at the leaves, we order to them the value a = 1, then we go backward 
to the root. If the uncertainty level of a node on the odd level of the graph is a, 
let the uncertainty level of the parent node be a = f(I,a,0), where / : (3 are the 
values in the label of the edge. If the uncertainty level of the children of a node on 
the odd level of the graph is ai,..., ak, then let the uncertainty level of the node 
be a = min(ai , . . . , ak)- The uncertainty level of the root is agoai. 

Example 1 Let us see next rules: 

p(a) Ji;/?i 

p(b) ; /2; 

r(c) < - ; J 3 ; / 3 3 

q(x,y) *- p(x),r(y)]I2-, fa 

q{x,y) <r- q{y,x);I3,05 

s(x) q(x,y);I3\.06 

Let fa = 0.8,02 = O.7,03 = 0.6,04 = 0.7, ft = 0.8, & = 0.9 
We want to determine q{x,y). 
According to the following AND/OR graph,the solution is: 
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{(ç(a,c),0.3), (q(b,c), 0.3), (q(c,a), 0.24), ; (q(c, b), 0.24)} 
q(x,y) 

£,12,0.7 

p(x),r(y) 

p(x) r(y) 

x | a , 1 1 , 0 . 7 

good good good 

q(a, c), 0.3; q(b, c), 0.3 

13,0.8 

q{y,x) 

y|c,I3,0.6 x|y,y|x 12,0.7 

p(y),r( x) 

y|a,Il,0.8 x|c,I3,0.6 

good good good 

q(c,a), 0.24; q(c,b), 0.24; 

It can be seen, that in the case of finite evaluation graph the bottom-up and 
the top-down strategy give the same result. More exactly: 

Theorem 1 For a given goal and in the case of finite evaluation graph, the top-
down evaluation gives the same result as the fixpont query. 

Proof: We prove the equivalence of the two evaluations by induction on the depth 
of the evaluation graph. 

Let us suppose that the depth of evaluation graph is one, that is all of the 
children of the root are the symbols "good" or "bad". This can occur only in the 
case if no rule's head can be unificated with the goal, or only facts can be unificated 
with that. In the first case, there is no answer to the query either in bottom-up, 
or top-down evaluations. In the second case, according to both of the evaluations, 
the answer is the same. 

Let us suppose, that the theorem is true for all evaluating graphs, containing 
paths with length at least n. 

Let us consider the evaluating graph, the maximum path-length of which is 
n+ 1. 

Let us examine the sub-goals on the second level of the graph. The depth of the 
evaluation graph of these sub-goals is at least n—1, that is the induction assumption 
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is true. In bottom-up manner the goal can be reached only from these sub-goals. 
Going up to the first level in bottom-up manner along the hyper-edges, we get the 
bodies of the rules and the uncertainty level, from which we get the wanted answer. 
Applying the suitable substitution and computing the uncertainty factor, we get 
the same answer as in top-down manner. 

Thus according to the induction hypothesis, the statement is true for all finite 
evaluation graphs. • 

We give an algorithm to evaluate the graph. This algorithm provides the answer 
in the case of a given program and a given goal. 

The algorithm consists of two procedures calling each other, one of these pro-
cedures evaluating a goal or a sub-goal, the other evaluating a rule-body. 

The "goaLevalutaion" procedure determines all of the unified bodies in the 
case of unificable rules, and evaluating these bodies gives the answer to the goal. 
The "rule-evaluation" procedure evaluating the sub-goals of the body gives the 
substitution belonging to the body and the uncertainty level of the body. 

The order of the unificable rules in the "goal-evaluation", and that of the sub-
goals in the "rule_evaluation" are determined with the aid of a selection function. 
The special symbols ("good", "bad") are not in the set of évaluable sub-goals, 
because they are not évaluable. (In the case of "bad" there is no a unificable rule, 
in the case of "good" we get an empty node after unifying, so we can determine 
the answer immediately.) 

It is practical to solve the join of the substitutions in top-down manner, that is 
not to consider the sub-goals as independent evaluations, but to narrow the size of 
the graph by a "sideways information passing". This means, that the substitution 
getting by evaluation of a sub-goal can be applied immediately to the other members 
of the body, so we can reduce the number of examinable paths. 

During the evaluation of a sub-goal, it is possible to substitute such variables 
which don't appear among the variables of the sub-goal, therefore it is enough to 
consider only the projection of the substitution to the variables of the sub-goal. 

If it is necessary, the variables can be renamed with the aid of the set of 
substituting-terms. The set of substituting-terms of substitution 
9 = {x i|i i , . . . , x„|tn} is the set { ¿ i , . . . , i „ } . 

Algorithm 4 

Evaluation: 
begin 

solution := 0 
goalanswer := 0 
goal-evaluation (goal, goalanswer) 
while not-empty (goalanswer) do 

(9, agoal) := element (goalanswer) 
goalanswer := goalanswer —{(0, agoal)} 
solution := solution U{( goal's-atom 9, agoal ) } 

endwhile 
end 
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Procedure goal-evaluation (goal, goalanswer) 
goal-variables := { the set of the variables of the goal } 
R :— {(r; I; [i)\ rule's-head (r) is unificable with the goal } 
if R = 0 then return 
while not-empty (R) do 

(r;/; /3) := rule-selection (R) 
R:=R-{(r;J;/3)} 
body rule's.body (r) 
for all variable € r do 

if variable 6 substituting-terms (6) 
then variable := newname (variable) 

endfor 
9 :— mgu(goal's-atom, rule'sJiead (r)) 
body := body 9 
abody := 1 
8 body := e 
if body = 0 then goalanswer := goalanswer U{#, / ( / , abody, /3))} 

else rule-evaluation (body, «body, 0body, goalanswer, 
goal-variables, / , /3) 

endif 
endwhile 

endprocedure 

Procedure rule-evaluation (body, abody, flbody, goalanswer, goal-variables, I, fi) 
atom := atom-selection (body) 
newbody := body - { atom } 
answer := 0 
goal-evaluation (atom, answer) 
if answer = 0 then return 
while not-empty (answer) do 

(9, aatom) := element (answer) 
answer := answer —{(0,aatom )} 
0body := 0body0 
abody := min ( abody, aatom) 
if newbody 0 then 

newbody := newbody 9 
rule-evaluation (newbody, abody, #body, goalanswer, 

goal-variables, I, /3) 
endif 
if newbody = 0 then 

9 := projection (0body, goal-variables) 
goalanswer := goalanswer U{(0 , / ( / ,abody, /3))} 

endif 
endwhile 

endprocedure 
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Note: The order of the unificable rules and sub-goals is unimportant, but it has 
an effect on the efficiency of the algorithm. 

The uncertainty level of the goal (Q\a) is either constant or variable. If it is 
variable, this variable gets value during the evaluation. If a is a constant, then the 
uncertainty level received during the execution of the algorithm is a solution only in 
that case, if this level is greater then a. In this case, however, it is unnecessary to 
consider all the rules of the program. It is enough to take those, whose uncertainty 
factors are greater then a. Thus, the size of the evaluation graph can be reduced. 

As the above example shows, the top-down evaluation may not terminate. The 
reason is the evaluation of recursive atoms, because the evaluation of nonrecursive 
atoms terminates in finite steps. (The number of steps is 2t + 1, where t is the 
longest path leading to the atom in the evaluating graph.) 

If we order a depth limit to each recursive atom, the procedure can be stopped. 
This limit can be determined in the following way: 

In a dependency graph let h be the maximum length of the loops containing the 
predicate of the atom, and let t be the maximum length of loop-free paths leading 
to this predicate. 

Let us enter the concept of recursion distance. This is the number of steps 
in which we get the fixpoint respecting this atom in bottom-up evaluation. The 
recursion distance depends on the number of constant in the program and the 
"content" of the predicate. 

For example in the case of the program 

u(x, y) e(x, z), u(z, y)-1; fix 

u{x,y) e{x,y)-r,02 

where e is a fact and c is the number of constant in the program, the recursion 
distance of atom u(x,y) is c — 1. 

Let us denote the recursion distance by r! Then the depth limit is 
k = 2h(r - 1) + 2t + 1. 

Proposition 4 Let us order the previously defined depth limit to each atom of 
program P\ Then the top-down evaluation terminates and gives all the solutions, 
which satisfies the goal. 

Proof : As the goal-evaluation is driven back to the evaluation of the sub-goals, 
therefore it is enough to show the truth of the proposition for one recursive atom. 

If there is no loop-free path to a rule's head-predicate in the dependency graph, 
the rule can not be evaluated. Thus, it is enough to look at the atoms to which 
there are loop-free paths. 

If the length of a path leading to the predicate in the dependency graph is i, 
the length of this path in the evaluating graph is 2f, because the evaluation graph 
is built from a series of two steps: determining the rule-bodies, and dividing them 
into sub-goals. There are additional edges leading to the ending symbols. 

Along the 21 step-long path we get from the sub-goal to an atom of a fact-
predicate, which can be evaluated. 
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The given atom - including other possible variables - occurs again in the evalu-
ation graph in 2h steps deeper. The new evaluation is necessary only, if it provides 
a new solution. This possibility however can not occur more than the value of the 
recursion distance. As in the case of the first recurrence, we are on the second 
recursion level, so it is enough to allow the recurrence in r — 1 times. 

As we don't get any new solution deeper then the given limit, we can leave these 
branches. 

Ordering the suitable depth limit to each atom, the algorithm terminates, and 
gives all the solutions which satisfies the goal. • 

Note: The recursion distance is not always as simple as in the example above, but 
it can not be greater then cn , where c is the number of constants, n is the number 
of atoms in the program. 

9 Top-down Evaluation in the Case of Stratified 
/DATALOG 

It is easy to apply the top-down evaluation for stratified /DATALOG. In the case 
of stratified /DATALOG, the head-predicate of a rule is at least as high stratum 
as the predicates of the body. In other words, during the top-down evaluation 
we approach from the higher strata to the lower ones, that is in the evaluation 
graph the stratum of a parent node is not lower than the stratum of the children. 
Therefore when we compute the uncertainty level, we are starting at the lowest 
stratum. This observation can be used to handle the negated predicates. If a sub-
goal is negated, let us indicate this sub-goal, and pay attention to this marking 
during the computation of the uncertainty level. If the atom is marked and the 
uncertainty level computed up to this point is a, let us continue the computation 
with value 1 — a. 

10 Conclusion 
In this article we have dealt with the evaluation of fuzzy DATALOG, given the 
algorithms of bottom-up and top-down evaluation, and showed the equivalence of 
two evaluations. 
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