
Volume 12 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: J. Cs i r i k (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Assistants to the Managing Editor: P. Gyenizse (Hungary) , A . Pluhár (Hungary)

Editors: M. A ra tó (Hungary), S. L. B loom (USA), W . Brauer (Germany), L. Budach
(Germany) , H. Bunke (Swi tzer land) , B. C o u r c e l l e (France), J. D e m e t r o v i c s
(Hungary), B. Dömölk i (Hungary), J. Engelfriet (The Netherlands), Z. Ésik (Hungary),
F. Gécseg (Hungary), J. Gruska (Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada),
L. Lovász (Hungary), G. Piun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany)

Selected papers of the workshop
Grammar Systems: Receut Results on Perspectives,
Budapest, July 1996

Guest Editor: E. Csuhaj Varjú (Hungary)

Szeged, 1996

Editor-in-Chief: J. Csirik
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary
Assistants to the Managing Editor:
P. Gyenizse
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary
Board of Editors:
M. Arató
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary
S. L. Bloom
Stevens Institute of Technology
Department of Pure and Applied
Mathematics Castle Point, Hoboken
New Jersey 07030, USA
W. Brauer
Institut für Informatik
Technische Universität München
D-80290 München Germany
L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany
H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51., CH-3012 Bern
Switzerland
B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex, France
J. Demetrovics
MTA SZTAKI
Budapest, P.O. Box 63
H-1502 Hungary
B. Dömölki
IQSOFT
Teleki Blanka u. 15—17.
H-1142 Hungary, Budapest
J. Engelfriet
Leiden University
Computer Science Department
P.O. Box 9512, 2300 RA LEIDEN
The Netherlands
Z. Ésik
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

Managing Editor: Z. Fülöp
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

A. Pluhár
A. József University
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Szeged

F. Gécseg
A. József University
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia
B. Imreh
A. József University
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary
H. Jiirgensen
The University of Western Ontario
Department of Computer Science
Middlesex College
London, Ontario
Canada N6A 5B7
L. Lovász
Eötvös Loránd University
Budapest, Múzeum krt. 6—8.
H-1088 Hungary
G. Paun
Institute of Mathematics
Romanian Academy
PO Box 1 -764 , RO-70700
Bucuresti, Romania
A. Prékopa
Eötvös Loránd University
Budapest, Múzeum krt. 6—8.
H-1088 Hungary
A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland
L. Varga
Eötvös Loránd University
Budapest, Múzeum krt. 6—8.
H-1088 Hungary
H. Vogler
Dresden University of Technology
Faculty of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

Acta Cybernetica 12 (1996) 325-330.

Grammar Systems:
Recent Results and Perspectives

(Foreword)

Erzsébet CSUHAJ-VARJÚ *

On July 26-27, 1996, a workshop with the title Grammar Systems: Recent
Results and Perspectives was held in Budapest, at the Computer and Automation
Research Institute of the Hungarian Academy of Sciences1. The aim of the meeting
was to provide a forum for exchanging ideas about the state of the art of research
in the area of grammar systems and preview the trends and perspectives. The
presented talks and the fruitful informal discussions resulted in, among other things,
the present volume.

" Grammar systems" is a recent active field of formal language theory, pro-
viding syntactic models, frameworks and tools for describing and studying (the
behaviour of) multi-agent systems at the symbolic level. Several scientific areas
have motivated and influenced the developments in this theory: distributed and de-
centralized artificial intelligence, distributed and parallel computing, artificial life,
molecular computing, robotics, ecology, sociology, etc. Computer networks, parallel
and distributed computer architectures, distributed and cooperative text process-
ing, natural language processing are candidates for possible applications.

Roughly speaking, a grammar system (the term "grammar" is used here in a
general sense) consists of several language identifying devices (language processors
or linguistic agents) that jointly develop a common symbolic environment (usually,
a string or a finite set of strings) by applying string manipulating operations to it.
The symbolic environment can be shared by the components of the system, or it
can be given in the form of a collection of separated sub-environments, each be-
longing to a language processor. At any moment in time, the state of the system is
represented by the current string describing the environment (collection of strings
of the sub-environments). The functioning of the system is realized by changes in
its states. Depending on the variant of multi-agent systems that the actual gram-
mar system represents, in addition to performing derivation steps, the language
processors are allowed to communicate with each other. Usually, this is done by
exchange of strings that can be data (for example, sentential forms in derivation)

'Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u.
13-17, H - l l l l Budapest, Hungary. E-mail: csuhaj@sztaki.hu

'The workshop was supported by Hungarian Scientific Research Fund OTKA no. T 017 105.

325

mailto:csuhaj@sztaki.hu

326 Erzsébet Csuhaj-Varjú

or programs (productions or coded form of some operation). The behaviour of
the grammar system can be characterized by the set of sequences of environmental
states following each other, starting from an initial state, or by the set of all envi-
ronmental states originating from an initial state and satisfying some criteria (final
states).

Grammar systems are both computational and language identifying devices,
capturing several phenomena characteristic for multi-agent systems: cooperation,
distribution, communication, parallelism, emergent behaviour, etc.

To give a picture about the research directions in the area, without the aim
of completeness, we list some important frameworks and models. (The interested
reader can find detailed information in [6], [21], [14]).

The theory started in 1988 by introducing cooperating/distributed grammar sys-
tems (CD grammar systems) for modelling syntactic aspects of the blackboard
model of problem solving ([4],[5]). We should note, however, that the first appear-
ance of the term "cooperating grammars" was in [20] as a notion for extending
two-level substitution mechanism of grammars to a multi-level concept. A con-
cept, based on modularity and related to cooperation of grammars, motivated by
regulated rewriting, was introduced in [1].

In the basic form, a CD grammar system is a finite set of generative (usually
context-free) grammars that cooperate in deriving words of a common language.
At any moment in time there is exactly one sentential form in generation. The
component grammars generate the string in turns, under some cooperation proto-
col. In this model the cooperating grammars represent independent cooperating
problem solving agents that jointly solve a problem by modifying contents of a
global database, called blackboard, that is for storing information on the problem
solving process. In this architecture the agents communicate with each other only
through the blackboard.

The main research directions in the field of CD grammar systems concentrate,
among other things, on studying the question whether cooperation adds power to
the derivational capacity of the individual grammars or not, and, if the answer is
positive, how simple presentation of the components and the protocol is sufficient
to reach this power. While the original model was introduced for generative mech-
anisms, the framework has been extended and applied also to other computational
devices (accepting grammars ([2]), automata ([13]), tree processing devices ([16]),
etc). Parallel with this kind of enhancement, properties characterizing the model
have been studied in details: determinism in cooperation, comparison of systems
with components using hybrid and homogenous cooperation strategies, variants of
competence-based cooperation, systems with time limited activity of grammars, hi-
erarchies among the components, similarity, uniformity, etc. The achieved results
demonstrate the power of cooperation. Large language classes (ETOL, programmed
with apperance checking, context-sensitive) can be described in terms of systems
of a limited number of very simple cooperating language identifying devices.

While CD grammar systems realize sequential computing devices, team gram-
mar systems with simultaneous actions of some grammars (teams) on the sentential
form, introduce parallelism in the model ([19],[23]). These systems demonstrate an

Grammar Systems: Recent Results and Perspectives (Foreword) 327

equivalence between programming the sequence of actions and computation under
some kind of competence-based cooperation of freely chosen grammar teams with
a very limited number of components (pairs of grammars).

Colonies, motivated by subsumption architectures of R. Brooks, describe lan-
guage classes in terms of behaviour of collections of very simple, purely reactive,
situated agents with emergent behaviour ([17],[18]). In this model the agents are
represented by very simple regular grammars (each grammar generates a finite lan-
guage) that operate on a common sentential form. The basic variant of colonies
determines the context-free language class, while the more sophisticated models
(competition among the agents, timing, etc.) lead to considerably enhanced com-
putational power ([12],[22]).

Eco-grammar systems form a language theoretic framework for modelling
ecosystems: developing linguistic agents, represented by L systems, in a dynami-
cally changing population, interact with each other and with their shared evolving
symbolic environment ([9],[10]). Eco-grammar systems provide tools for describing
life-like phenomena (birth, death, hybernation, overpopulation, pollution, etc.) in
terms of formal grammars and languages.

Networks of language processors (this general term was introduced in [11] and
[3]) form an essential part of the area. In this case language processors are located
in nodes of a network (a virtual graph). Each processor works on its own sentential
form (on its own collection of sentential forms) and informs the others about its ac-
tivity by communicating strings that can be data and/or programs. Rewriting and
communication take place alternately, the system is functioning (usually) in a syn-
chronized manner. Parallel communicating grammar systems, a highly elaborated
field, with Chomsky and Lindenmayer grammars at the nodes, studies networks
with components communicating data strings by request ([24],[25]). Test tube dis-
tributed systems based on splicing and on cutting and recombination are particular
cases of the model with components using variants of DNA recombination and real-
ize computationally complete and universal machines (in some cases with a limited
number of components) ([8],[15]). Ideas of the WAVE paradigm of active knowl-
edge networks are implemented in [7] and networks of parallel language processors,
where the nodes are represented by L systems, are studied in [11].

In addition to the above mentioned areas, investigations have been started for
applications in related scientific areas, as natural language processing.

Recent developments that can be observed in grammar systems theory, are
trends

• from cooperating/distributed grammar systems to cooperating/distributed
systems of language processors,

• from parallel communicating grammar systems to networks of language
processors,

• from simple communities (colonies) of grammars to societies of linguistic
agents,

• from computing to nature-motivated computing,

328 Erzsébet Csuhaj-Varjú

• from (applications in) natural language processing to natural processing of
languages.

Contributions to the present volume fit into the above trends, by providing a
better understanding of cooperation and distribution through a deeper study of
the existing models and enhancing the concept to further computational phenom-
ena. The papers are clustered in the volume according to the subfield of grammar
systems they represent.

The first three articles are devoted to the study of cooperating/ distributed
language processors. Jiirgen Dassow and Victor Mitrana studied fairness in CD
grammar systems, Henning Bordihn and Erzsebet Csuhaj-Varju dealt with com-
petence and completeness of component grammars both in the case of generative
CD grammar systems and in the case of accepting ones. Henning Fernau and
Markus Holzer discussed accepting CD grammar systems in details, in compari-
son with the generating ones, taking new variants of cooperation protocols into
account. They also considered team behaviour of accepting CD grammar systems.
Networks of language processors are investigated in the next three papers. The
first is the survey of Gheorghe Pâun on parallel communicating grammar systems.
It also studies new variants and raises several open problems in the area. Valeria
Mihalache examined parallel communicating grammar systems with components
having own nonterminal alphabets and terminal alphabets, Lucian Ilie and Arto
Salomaa provided important characterizations of recursively enumerable languages
in terms of parallel communicating grammar systems with WAVE-like communi-
cation. Societies of grammars, nature-motivated computing and natural language
processing are represented by the last three papers. Maurice H. ter Beek inves-
tigated team grammar systems with teams using different cooperation strategies
and a new variant of derivation mode, called weak rewriting. A framework moti-
vated by DNA computing, a generalization of test tube systems, is introduced and
studied in the paper of Rudolf Freund and Franziska Freund. The last paper in
the volume is about the challenge that natural language understanding means for
grammar systems, by Carlos Martin-Vide.

References

[1] Atanasiu, A., Mitrana, V. (1989): The modular grammars. Intern. J.
Computer Math. 30, 17-35.

[2] Fernau, H., Holzer, M., Bordihn, H. (1996): Accepting multi-agent sys-
tems: the case of cooperating distributed grammar systems. Computers
and Artif. Intell. 15(2-3), 123-139.

[3] Csuhaj-Varjú, E. (1996): Networks of language processors. A survey. In:
Lenguajes Naturales Y Lenguajes Formales XII, (C. Martin-Vide, Ed.),
PPU, Barcelona, 169-189.

Grammar Systems: Recent Results and Perspectives (Foreword) 329

[4] Csuhaj-Varjú E., Dassow, J. (1990): On cooperating/distributed gram-
mar systems. J. Inf. Process. Cybern. EIK 26, 49-63.

[5] Csuhaj-Varjú, E., Kelemen, J. (1989): Cooperating grammar systems: a
syntactical framework for the blackboard model of problem solving. In:
Proc. AICSR'89, (I. Plander, Ed.), North Holland, Amsterdam, 121-127.

[6] Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Pâun, Gh. (1994): Grammar
Systems - A Grammatical Approach to Distribution and Cooperation.
Gordon and Breach Science Publishers, London

[7] Csuhaj-Varjú, E., Kelemen, J., Pâun, Gh. (1996): Grammar Systems with
WAVE-like Communication. Computers and Artif. Intell. 15(5), 419-436.

[8] Csuhaj-Varjú, E., Kari, L., Pâun, Gh. (1996): Test Tube Distributed
Systems Based on Splicing. Computers and Artif. Intell. 15(2-3), 211-232.

[9] Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Pâun, Gh. (1994):
Eco(grammar)systems - a preview. In: Cybernetics and Systems '94,
(R.Trappl, Ed.), World Scientific, Singapore, 941-948.

[10] Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Pâun, Gh. (1996): Eco-
grammar systems: a grammatical framework for studying lifelike interac-
tions. Artificial Life, to appear.

[11] Csuhaj-Varjú, E., Salomaa, A. (1997): Networks of language processors.
Developments in Regulated Rewriting and Grammar Systems, LNCS, to
appear.

[12] Dassow, J., Kelemen, J., Pâun, Gh. (1993): On Parallelism in Colonies.
Cybernetics and Systems 24, 37-49.

[13] Dassow, J., Mitrana, V. (1995): Pushdown Automata Systems. Submit-
ted.

[14] Dassow, J., Pâun, Gh., Rozenberg, G. (1997): Grammar systems. In:
Handbook of Formal Languages, (G. Rozenberg, A. Salomaa, Eds.),
Springer Verlag, Berlin, to appear.

[15] Freund, R., Csuhaj-Varjú, E., Wachtler, F. (1997): Test Tube Systems
with Cutting/Recombination Operations. In: Proc. PSB'97, to appear.

[16] Fülöp, Z. (1996): Distributed Tree Processing Devices. Submitted.

[17] Kelemen, J., Kelemenová, A. (1992): A subsumption architecture for
generative symbol systems. In: Cybernetics and System Research'92 (R.
Trappl, Ed.), World Scientific, Singapore, 1529-1536.

[18] Kelemen, J., Kelemenová, A. (1992): A grammar-theoretic treatment of
multiagent systems. Cybernetics and Systems 23, 621-633.

330 Erzsébet Csuhaj-Varjú

[19] Kari, L., Mateescu, A., Páun, Gh., Salomaa, A. (1995): Teams in coop-
erating grammar systems. J. Exper. and Theoretical AI, 7, 347-359.

[20] Meersman, R., Rozenberg, G. (1978): Cooperating grammar systems. In:
Proc. MFCS'78, LNCS 64, Springer Verlag, Berlin, 1978, 364-374.

[21] Páun, Gh. (1995): Grammar Systems: a grammatical approach to distri-
bution and cooperation. In: ICALP'95, (Z. Fülöp and F. Gécseg, eds.),
LNCS 995, Springer Verlag, Berlin, 429-443.

[22] Páun, Gh. (1995): On the generative capacity of colonies. Kybernetika,
83-97.

[23] Páun, Gh., Rozenberg, G. (1994): Prescribed teams of grammars, Acta
Informática, 31, 525-537.

[24] Páun, Gh., Santean, L. (1989): Parallel Communicating grammar sys-
tems: the regular case. Annales. Univ. Bucuresti., Ser. Matem.-Inform.
38, 55-63.

[25] Páun, Gh. (1995): Parallel communicating grammar systems. A survey.
In: Proc. XI Congress on Natural and Formal Languages, Tortosa (C.
Martin-Vide, ed.), 257-283.

Acta Cybernetica 12 (1996) 331-345.

Fairness in Grammar Systems

Jürgen DASSOW * Victor MITRANA t i

Abstract

The paper deals with two fairness concepts in cooperating distributed
grammar systems. The effect of this restriction on the protocol of cooperation
among the components of a grammar system is investigated. In all modes of
derivation, the fairness restrictions lead to an increase in the generative power.
Surprinsingly, even in the regular case.

1 Introduction
In modern computer science such notions as distribution, cooperation, parallelism,
communication, synchronization are more and more vividly investigated. As prac-
tical materializations one can mention computer networks, parallel computing, dis-
tributed data bases, etc. There are several approaches to these ideas. In this paper
we deal with grammar systems which form a grammatical approach.

A grammar system is a construct consisting of several usual grammars, working
together, in a specified way, for generating a language. If the grammars work to-
gether on the same sentential form, then the system is called cooperating/distributed
(CD for short) grammar system. If the grammars work on their own sentential
forms and, from time to time, send the result of their work to other components,
then the system is called parallel communicating grammar system.

This paper concerns CD grammar systems. Intuitively, such systems and their
work can be described as follows: Initially, the axiom is the common sentential
form. At each moment, one grammar is active, that means it rewrites the common
string, and the others are inactive. The conditions under which a component can
become active or it is disabled and leave the sentential form to other components are
specified by the cooperation protocol. The language of terminal strings generated
in this way is the language generated by the system. As basic stop conditions which
will also be considered in this paper we mention: each component, when active,
has to work for exactly k, at least k, at most k, or the maximal number of steps (a

*Otto-von-Guericke-Universitat Magdeburg, Fakultat fur Informatik, P.O.Box 4120, D-39016
Magdeburg, Germany

'Faculty of Mathematics, University of Bucharest, Str. Academiei 14, R-70109 Bucharest,
Romania

'Research supported by the Alexander von Humboldt Foundation

331

332 Jürgen Dassow, Victor Mitran a

step means the application of a rewriting rule). Many other starting and stopping
conditions were considered in the literature (see [3]).

Such systems were introduced by different motivations:

1. The generalization of the two-level substitution grammars was the main pur-
pose of the paper [5] where the sintagm " cooperating grammar system" was
proposed.

2. Modular grammars as an alternative for the time-varying grammars were
presented in [1].

3. In the architecture of a CD grammar system one can recognize the structure
of a blackboard model, as used in problem-solving area [6]: the common
sentential form is the blackboard (the common data structure containing the
current state of the problem to be solved), the component grammars are
the knowledge sources contributing to solving the problem, the protocol of
cooperation encodes the control on the work of the knowledge sources ([4]).
This was the explicit motivation in [2], the paper where CD grammar systems
in the form we consider here were introduced.

4. The increase of the computational power of components by cooperation.

5. The decrease of the complexity of different tasks by distribution.

In some sense, the theory of grammar systems is the theory of cooperation protocols;
the focus is not on the generative capacity, but on the functioning of the system,
and on its influence on the generative capacity and on other specific properties.

The aim of this paper is the investigation of a quite natural feature of the
strategy of cooperation: fairness. We require that all components of the system
have approximately the same contribution to the common work, concerning the
time spent by each of them during the derivation process. The first attempt in this
direction, called weak fairness, asks for that each component has to be activated
almost of the same number of times (the difference between the number of times
for which any two components are activated is bounded). But this concept says
nothing about the period of time in which a component is working. So, if we want
to have more precisely a fair behaviour of the system, called strong fairness, then
it is necessary to measure also this time, i.e. to count the number of applications
of rules of a component during the whole derivation.

The requirement that a system has to be "fair" increases, even for systems
with regular components (this situation contrasts the "unfair" case), the generative
power of the system.

2 Definitions
For an alphabet V, we denote by V* the free monoid generated by V under the
operation of concatenation; the empty string is denoted by A, and we set V+ =

Fairness in Grammar Systems 333

V* \ {A}. The length of x £ V is denoted by |z|. If x £ V* and U CV, then \x\v

is the number of occurrences of symbols of in x (the length of the string obtained
by erasing from x all symbols in V \ U). By REG, CF and ETOL we denote the
families of regular, context-free and ETOL languages, respectively (see [7], [8]).

A CD grammar system of degree n,n> 1, is a construct

r =(N,T,S,Pi,..:,Pn),

where N, T are disjoint alphabets, S £ N, and P\,... ,Pn are finite sets of rewriting
rules over N U T.

The elements of N are nonterminals, those of T are terminals; P\,... ,Pn are
called components of the system. Here we work with CD grammar systems having
only regular rules, i.e. rules of the form A —• aB or A —• a with A,b £ N, a € T,
or context-free rules, i.e. rules of the form A —• w with A £ N, w £ (N UT)*.

The domain of the ith component denoted by dom(Pi) is defined as dom(Pi) =
{A\A^xePi}.

On (N U T)* one can define the usual one step derivation with respect to Pi,
denoted by = > p , • The derivations consisting of exactly k, at most k (but at least
one), at least k such steps =>p, are denoted by , =>p. , = > p , respectively.
Furthermore, we write x y iff x y and there is no z G (N U T)* such
that y =>pi z.

Let
M = {<}U (J{< jfc,= Jb,> k}.

i> l

The language generated by the system T in the derivation mode / 6 M is

Lf{T) = {w\w£T*, S =i>fp. w1=>fp ...=>SP wm=w, *1 *2 'm
m > 1,1 < ij < n, 1 < j < m} .

The respective classes of languages are denoted by CDLn(X, /) , where n is the de-
gree of the grammar system, X 6 {REG, CF} indicates the type of the components
(regular or context-free) and / 6 M .

Let
D : S =>Zmi W! =>=m2 ... =*=mt wk

be a derivation in the /-mode, / £ M (i.e. mj gives the number of derivation steps
performed by the component Pj. in D; especially, if / £ { = £ } , then mj = k holds
for 1 < j < t, etc.) For any 1 < p < n, we write

TPD(P) = 1 a n d <PD(P) = ^ RNJ
ij=p ij=p

(i.e by IP£>(P) we count the number of applications of Pp, and by >PD(P) we count
the number of applications of rules of Pp). Conventionally, the empty sum delivers
zero.

334 Jürgen Dassow, Victor Mitran a

Let T be a CD grammar system with at least two components. Then we set

dw(D) = max{\ipD(i) - ipD(j)\ | 1 <i,j<n]

and
ds(D) = max{\vD{i) - 9d(j)I I 1 < t, j < "}•

By these two numbers we measure the maximal difference between the contribution
of components involved in the derivation D. The contribution of a component may
be expressed as the number of its applications and the number of rules applications
in the considered component, respectively. Moreover, for u G {tt>, s} , x E (N U T)*
and / G M , we define

du(x, f) = min{du(D) \ D is a derivation in the / — mode for x}.

In order to get a concept of fairness, we now restrict the numbers du(x,f) for the
words x which belong to the language. If u = w, then we get a weaker notion
since we only require that the components are used almost equally often, whereas
u = s gives a stronger notion where the times which the components work are
approximately equal. Formally, this leads to the following definitions.

For a CD grammar system T of degree n > 2, / 6 M and a natural number
q > 0, we define the weakly q-fair language generated by T in the / -mode as

Lf(T, w - q) = {x | x E Lj(T) and dw(x, f) < q}

and the strongly q-fair language of T as

Lj(T,s- q) = { z | x £ Lf{T) and ds(x,f) < q}.

For X € {REG, CF} and integers n > 2 and q > 0, by CDLn(X,f,w - q) and
CDLn(X, f, s — q) we denote the families of weakly and strongly q-fair languages,
respectively, generated by CD grammar systems with n components.

Let us illustrate the concepts of fairness by two examples. We shall give just
the components of the systems, the other components can easily be deduced under
the assumption that S is the axiom.

Example 1 We consider the grammar system Ti with the components

Pl = {S — aA', A — aA'}, P2 = {A' aA},

P3 = {A —> bB', B — 65 ' } , PA = {B' 65, B' 6}.

Then, for q > 0 and / G {t, = 1, > 1} U { < ifc | k > 1}, we obtain

Lf(T1)= {a2nb2m | n > l , m > 1 }

and

Lj(Ti,w-q) = L}(Tus-q) = {a2nb2m | n > 1, m > 1, |n - m\ < q}.

Note that each component of Ti is regular whereas the g-fair languages generated
by Tj are not regular.

Fairness in Grammar Systems 335

Example 2 Let r 2 be the grammar system having the components

Pi = {5 AB,A aAb,A ab},
P2 = {B C,C cC, C c}.

Clearly, for all / £ {<, = 1, > 1} U { < k \ k > 1} and q > 0,

Lf(T2) = L,(r 2 , w-q) = {a"6"c m | n, m > 1}

holds (use each component exactly once) whereas

Lj(T2, s — q) = {a"b"cm \n,m> 1, n = M+p or m = n + p, 0 < p < 9} .

We mention that the languages LJ(T2,S — q) of the context-free grammar system
1*2 are not context-free. Moreover, for all k > 2, we have

L=k(r2) = {anbncm | n = n • k - 1, m = r2 • k - 1, n > 1, r2 > 1},
L= t (r 2 , w - q) = { a " ^ ^ ' - 1 ^ - 1 |n, r2 > 1, |rx - r2| <
L=k(T2,8-q) = {a^-H^-1^*-1 | n , r 2 > 1, | (n - r 2) • * ! < ? } .

We add some remarks to the definitions.

1. The above definitions assume that the grammar system has at least two com-
ponents.

2. If / is the mode = k, then the weak and strong concepts of fairness are nearly
related to each other because

L=k(T,w-q) = L=k(T,s-q')

holds for k • q < q' < k • (q + 1). Particularly,

£=k(r, w — 0) = L=k(r, s — 0) .

3. It is also possible to allow the value 0 0 for q. Thus, we get the equalities

CDLn(X, f) = CDL„(X, F,w- 0 0) = CDLn(X, f , s - 0 0) .

In the sequel, we are going to investigate the influence of the fairness limitation on
the generative power.

3 The regular case
Let

Mi = {t,= 1 ,> 1} U { < k | k > 1}.
First we recall that

CDL„(REG, f) = REG

for all n > 1, / £ M. We now show that the situation is very different if we require
a fair behaviour of the systems.

336 Jürgen Dassow, Victor Mitran a

Theorem 1 (i) REG and CDLn(REG,f, s - 0) are incomparable, for all f G M
and n > 2.

(ii) REG C CDL„(REG, f,s — q), for all f G Mi, q > 1, n >2.
(Hi) REG and CDL„(REG, f,s — q) are incomparable, for all f G M\Mi, q >

1, and n > 2.

Proof. It is easy to observe that any language in CDLn(REG, f,s — 0),
/ G M, contains only words of length divisible by n. Thus the regular language
L = {am|m > 1} does not belong to the class CDL„(REG, f , s - 0).

On the other hand, the grammar system T consisting of the following compo-
nents:

Pi = { 5 —• aS, S —• 0^2},

/ (5¿ bSi> & bSi+1}. 2 < t < n - 1, i is even
l aSitSi — a S i + i } , 2 < i < n - 1, i is odd

p _ f {S„ —• bSn,Sn —• fr}, if n is even
I {"Sn aSn,Sn a}, if n is odd

generates the 0-fair languages

f { (a m 6 m) t I m > 1}, if n is even
\ { (a m 6 m) i f i a m I m > 1}, if n is odd

for /1 E Mi ,

({(amkbmk)% I m > 1}, if n is even
{ {(amkbmk):^1amk I m > 1}, if n is odd

for k > 1,

J { (a m 6 m) t |m>ife} , if n is even
\ { (a m 6 m) I ^ i a m I m > Jb}, if n is odd

for Jk > 1,

Lfl(T,8-0) =

L = l e (r , « - 0) =

L>k(T,s-0) =

which are not regular.
We prove now that the family of regular languages is contained in the families

of ?-fair languages generated in the / -mode, / G Mi , by regular grammar systems
as soon as q > 1.

For a regular grammar G = (N, T, S, P) we construct the grammar system with
regular components

T = (N',T,Si,Pi,P2,...,Pn),

with
N' = {Ai | A G N, 1 < i < n}

Fairness in Grammar Systems 337

and the sets of productions

Pi = {A,- aS , + 1 | A aB £ P} U {Ai a | A a G P } , for 1 < i < n - 1,
P„ = {An — aBl | A — a S G P } U { A „ a | A -* a £ P }

By this construction any component performs exactly one step and the i-th, 1 <
i < n — 1, and n-th component are followed by the (i + l)-st and first component,
respectively. Thus, L(G) = Lf(T, s — q), for all q > 1 and / G Mi .

Now, it suffices to note that

{amibm*am3bm* ...bm"\mi>l, |m,- - mj\ < q, 1 < i,j < n},
if n is even

{amibmiam*bm* . ..am».| m,- > l,|m,- - mj \ < q,l < i,j < n),
if n is. odd

for / G Mi , are not regular languages.
In order to prove the last assertion let us remark that for any k > 2, every lan-

guage in CDL„(REG,= k,s — q)L)CDL„(REG,> k,s—q) contains words of length
greater than k, only. Therefore, REG\(CDLn(REG, = k, s — q)L)CDL„(REG, >
k,s — q)) ^ 0, for all n > 2,q > 1. The grammar system considered in the proof
of the first statement provides languages for the converse part. Consequently, the
proof is complete. •

Lj(T,s-q) =

T h e o r e m 2 (i) CDL2(REG, f,w- 0) C REG, for f G {t, > 1}.
(ii) The families CDL„(REG, f,w — 0) and REG are incomparable, for all

n> 2 and f G Ufc>i{< k> = *}•
(in) For f £ {t,> 1} and n > 4, REG and CDLn(REG, /, w - 0) are incom-

parable.

Proof, (i) For T = (N, T, S, P\, P2) consider the right linear grammars

Gi = ({S1} \J{A',A"\A £ N},T,S,P)

where

P = {A' ->aB'\A-^aB£Pl}u{A'-+aB'\A-+aB£P2,A1ÍS}U
U {A' —* a\A a £ P2} U {A" aB"\A aB £ P2) U { 5 S', 5 S " }
U {A" aB"\A ^aB £ PUA± 5 } U {A" a\A a £ Pt]

and

G 2 = ({ S } U {Ai,A'i\A £ N, i = 1,2}, T,S,PU{S —>• Si, S —• S^})

338 Jürgen Dassow, Victor Mitran a

where

— {¿1 aBi IA aB G Pi, B G dom(Pi)} U
u M l - aB2\A -» aB G Pi, 5 g dom(Pi)} U
u {A2 aB2\A -*aB G P2,B G dom(P2)} U
u {a2 aBx\A —• aB E P2,B £ dom(P2)} U
u {A2 — a\A —* a G P2} U
u {A'2 - aB'2\A —• aB G P2, B G dom(P2)} U
u {A'2 — aB[\A — aB G P2, B £ dom(P2)} U
u K l - aB[\A -> aB £ Pi, Be dom(Pi)} U
u { A — aB'2\A — aB G P\,B£ dom(P\)} U

u K a\A -4 a G Pi}

The equalities

L>i (I\u>- 0) = L(Gi) and Lt(T, w - 0) = L(G2)

follow immediately. The inclusions are proper since any language in
CDL2(REG, f, w — 0), / G {t, > 1}, contains no word of length 1.

(ii) The second statement is completely proved if we provide, for all k > 1, n > 2,
a non-regular language in CDLn(REG,< k,w — 0). To this end, let us consider
two cases.

• n = 2. The grammar system T identified by the following regular components

> i = { 5 — aS, S aB}

P2 = {B bB, B -* b}

generates in the < ¿-mode the non-regular language

L<fc(r, w — 0) = {a*6m|l < t<m<ktoTl<m<t< km]

• n > 2. The grammar system T identified by the following regular components

Pi = {S^aS2}
Pi = —• aSi+i}, 2 < i < n - 2,

Pn-1 = {5„_i aS, 5„_i aB}
Pn = {B-+bB,B^b}

Observe that

L<t (r , u; — 0) = {a^n - 1^6m|l < t <m<ktorl<m<t< Arm}

which concludes the proof of the second item.

Fairness in Grammar Systems 339

(iii) Any language in CDLn(REG, / , - 0), / G {t, > 1}, contains only words
of length at least n since any component has to be applied at least once. Thus the
regular language {a, a 2 , . . . , a " } does not belong to the class CDLn(REG, f,w — 0).

If n = 4, then the statement follows from Example 1.
If n > 4, then we subsitute the component P2 of the grammar system Ti in

Example 1 by the components

P2¡1 = {A' —* aA2},
P2 i = {̂ 4,- —• a A , + i } for 2 < i < n - 4,

^2,7.-3 = {An-3 aA}

and obtain the grammar system Tj which generates the non-regular 0-fair language

L¡(V'lt f, w-Q) = {a^-2^mb2m I m > 1}.

•

By using similar ideas as those involved in the previous proofs one can get:

Theorem 3 For all q > 1 we have:

(i) REG = CDL2(REG,f,w-q),f E{t,> 1}.
(it) REG C CDLn(REG, < k,w-q),n > 2,k > 1.

(iii) REG C CDLm(REG,f,w- q),m>4,f e{t,> 1}.

At the end of this section we would like to mention that when considering
grammar systems with right-linear components (i. e. containing rules of the forms
A —* xB,A —• x, x £ T*, A,B £ N) the results are similar to those given in the
following section for the context-free case.

4 The context-free case
We start with a theorem which states a situation for context-free grammar systems
which differs from that in the regular case.

Theorem 4 For all n > 2, q > 0, u G {w, s } and f G M,

CDLn(CF, f,u-q)Ç CDLn+l(CF, f,u- q).

Proof. • u = w. For a CD grammar system T = (N, T, S, Pi, P2,..., Pn), we
construct the system

r' = (N't T, S, P[, P2, P3,..., Pn,K+i),

340 Jürgen Dassow, Victor Mitran a

with

N' •'= N U { X } with X
P[= Px\j{A^wX \A~* w <E P i } ,

P'n+1 = .{X-^X}

Obviously, Lj(T) = L/(T') and, because P[can be used as often as we obtain
L}(T,w-q) = Lf(T',w-q).

• u = s. For a CD grammar system T = (N , T, S, Pi, P2 , . . . , P„), we construct
the system

Y" = (N",T,S',Pi',PZ,...,PX,PZ+1),

with

TV" = N U { X , 5 ' } with X , S' £ N,

P" = Pi U{S" — wX | S-> w G Pi), l < i < n ,
Pn+1 = - A }

Obviously, Ly(T) = Ly (T') and, because the new introduced component can
work as long as we want, we infer Lj(r, s — q) = L/(T", s — q). •

T h e o r e m 5 i) For n > 1, q > 0, u G {w, s} and f G Mi,

CDLn(CF, f) C CDLn{CF, /,«-«)•

iij The aforementioned inclusion is proper in the following cases:

u = w, n > 4, q> 0
b) u = s, n > 2, ? > o
c) u - n > 6, f = t, 9 = 0
d) u = S, n = 2 or n > 7, f = t, 9 = 0

Proof. First we recall that, for n > 2, m > 3 and / G M\ \ { i } ,

CDL2(CF,t) = CDLn(CF,f) = CF and CDLm(CF,t) = ETOL. (1)

i) First we consider the case u = w and / ^t.
For a context-free grammar G = (N,T,S, P) , we construct the CD grammar

system T with the following two components

Pi = {A —> wX \ A w E P),
P2 =

where X is an additional nonterminal. Obviously, G and T generate the same
language and, moreover, any word can be derived in T by using each component
exactly once. This proves L = L(G) = Lf(T, w — q).

Fairness in Grammar Systems 341

Therefore, from (1) and Theorem 4, it follows that

CDLn(CF, f) = CFC CDL2{CF, f,w-q)C CDLn(CF, f,w-q).

This proof can be carried over the cases u — w, f = t and n = 2.
We now consider the case u = w, f = t and n > 3. Let L £ CDLn(CF,t). By

(1), L is generated by some ETOL system

G={V,T,S,T1,T2,...,Tm)

with the alphabet V, containing the set T of terminals, the start word S which
can be assumed without loss of generality as an element of V \ T and the tables
TuT2,...Tm.

For a £ V, 0 < i < m and 1 < k < 5, we introduce the new letters af and
extend this inductively to words by

(A for w = A
af for w = a

vfak for w = va, v E V*, a £ V

We now construct the CD grammar system

r = (N,T,S10,Pl,Pi,P3}

with

N = { F } U {a* | a G V, 0 < i < m, 1 < fc < 5}, Pi = {a} - > a ? | 0 < i < m,a € V } U {a? ^ a? | 0 < i < m,a G V}, P2 = { a ? af | 0 < i < m, a £ F } U {a j af | 0 < i < m, a £ V},

P3 = (^J{af |a—t-u>(ETi}U {oq a | a £ T }
»=i

U{aQ F | a G V \ T) U {af aj+ 1 | 1 < i < m, a £ V}.

Let us consider a word of the form xf. Note that the axiom is of this form.
If we apply the component Pi, we obtain x? and we have to apply P2 and P3 in

succession. If t > 1, then this yields t/J where x =>t, J/ is a derivation step in the
ETOL system G, i.e. we have simulated the application of table Ti to x. If i — 0
then we obtain x or a word containing F according whether x £ T+ or not and the
derivation is finished.

If we apply the component P2, we have to apply Pi and P3 and obtain xj+1.
From this explanation it is easy to see that we can simulate the application of

an arbitrary sequence of tables and finish the derivation by using any of the three
components exactly once for the simulation of one step. Hence

I t (r , w-q) = Lt(T, w - 0) = L(G) = L

342 Jürgen Dassow, Victor Mitran a

holds for any q which proves the statement.
Now let u = s and f £ Mi. Let T = (N,T, S, Pi,..., Pn), be a CD grammar

system. The grammar system

with

N' = N U { X } with X $ N,

P{ = Pi U {A — wX | A — w G Pi] U { X -> X , X A} for 1 < i < n

generates the same language as T. Therefore

LJ(r',f,s-q)CLJ(T)

for all q > 0.
By using the rules X —> X and X —* X, for any w G Lf(T'), we can find a

derivation D such that ds(D) = 0. Hence

Lj(T) = Lf(T')CL}(T',s-q).

Consequently, for any q > 0,

Lf(T) = Lf(T',s-q)

which concludes the inclusions CDLn(CF, /) C CDL„(CF,f) for all n > 2.

ii) a) The CD grammar system T with the components

Pi = {5 —• aAic, A —• aAic},

Pi = {Ai — ^i+x), 2 < i < n — Z,

Prx — 2 = { ¿ „ - 3 ^ } ,
P„_! = {A^bB',B -+bB'},

Pn = {B' B,B' A}

generates in any mode / G Mi \ { t } the weakly fair language

L}(T,w-q) - {anbmcn \ n > 1, m > 1, \n - m\ < q)

which is not context-free. Now the statement follows from (1).

b) The statement follows from Example 2, Theorem 4 and (1).
c) We consider the CD grammar system

T = ({A, A', A", B, B', D, D', F], {a, b,d},A, Pu P2, P3, P4, P5, P6)

Fairness in Grammar Systems 343

with

Px = {A^>BA',A->BA"},
P2 = {A'^A,A"^D},
P3 = {A F,A' —>• F, A" F,B B'b, D —• dD'},
P4 = {B' B,D' D, £>' —• d},
P5 = {B'^a,D'^D},
P6 = {B — F,B' F,D — dD'}.

It is easy to see that any derivation where any component works exactly n times is
given by the sequence

(PlP2)n (P3P4rP 3P5(P3P4)n -m - 1 (P6P5)"- 1P6P4

of components where m < n. Hence T generates in the ¿-mode the weakly 0-fair
language

L' = { (a6 m + 1) "d 2 n + 1 | n > m + 1 > 1}.

Using the closure properties of the family of ETOL languages and Corollary 2.2 of
Part V in [7] we obtain that L' £ ETOL. By i), (1) and Theorem 4, for n > 6,

CDn(CF,t) = ETOL c CDL6(CF,t, 0 - q) C CDLn(CF,t, 0 - q)

follows.
d) The strict inclusion for n — 2 follows from Example 2.
We shall prove the strict inclusion for n = 7, hence all inclusions for n > 7 are

consequences of the previous theorem.
Let us consider the CD grammar system

Pi = { 5 —• CAZXY, Y Y},
P2 = {C-+BC',X-+C'C'AZX',Y-+Y},
P3 = [C' —> C,X' X,Y y},

P4 = { B - + \ , C - * — A } ,
P5 = {A —• aA', A' —* bD', D —> bD',Y —• y } ,
P6 - - Y ^ - A } ,
P7 = {D \,Y -+Y,Y \}.

Here are some explanations about the working mode of the above system. The
sets Pi, P2 , P3 are used in order to obtain strings a with

M{B,C} = "i2 and |a|/i = \a\z = m

for all m > 1. Every terminal derivation has to use the component P4 only once
but for m(m + 1) steps. On the other hand, each component P,, i E {1 ,2 ,3 } can
be used either once or several times for a total amount of m(m + 1) steps.

344 Jürgen Dassow, Victor Mitran a

The component P5 is used first time for at least 2m steps and all the other times
for at least m steps.

The component P6 is used each time for at least m steps. Because, P5 and P$
are used together for introducing b's, the total number of 6's in the terminal words
of Lt(T, s — 0) is m2 . In conclusion,

Lt(T, s - 0) = { (a6")m | m > n > 1}

which is not an ETOL language (see [7]). Now the result follows due to (1). •

As one can see there remain plenty of open problems in this area. We do not
list them since the reader can easily identify them or can invent others.

Finally let us mention that there also are some other concepts of fairness which
can be introduced.

• For a given CD grammar system T = (N, T, S, P\, P2, • • •, Pn), we fix some
integers r i , r 2 , . . . , r „ and require that, for 1 < i < n, the component P,
is applied at most or exactly r,- times. However, since the application of
a component in one of the modes is equivalent to a finite or context-free
substitution we obtain only finite or context-free languages and, obviously,
we obtain all languages of this type.

• To each component Pi, 1 < i < n, and to any moment I of time, / > 0 (this
corresponds to the number of applications of components), we associate an
integer U(l) in the following way: Let <¿(0) = 0. If we apply the component
Pj in the moment /, then we set tj(l + 1) = 0 and increase the number of
all the other components, i.e. + 1) = <,(/) + 1 for i ^ j. The fairness
now consists in the requirement that in each moment / we can only apply
a component Pj such that *,•(/) = maxi<p<„ tp(l). The number ti(l) can be
interpreted as the period during that the component Pi was not active, i.e.
it is the waiting time of the component, and we can apply a component only
if it has been waiting a maximal amount of time.

Clearly, after the first activation, any component has to work after waiting
n — 1 steps. Thus this concept is nearly related to the weak fairness. We
only mention that - by using the same proofs - one can show that similar
statements as for weak fairness hold.

References

[1] A. Atanasiu, V. Mitrana, The modular grammars. Intern. J. Computer Math.
30 (1989) 17-35.

[2] E. Csuhaj-Varju, J. Dassow, On cooperating distributed grammar systems. J.
Inform. Process. Cybern. (EIK) 26 (1990) 49-63.

Fairness in Grammar Systems 345

[3] E. Csuhaj-Varjü, J. Dassow, J. Kelemen, Gh. Päun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation. Gordon & Breach,
London, 1994.

[4] J. Dassow, J. Kelemen, Cooperating distributed grammar systems: a link
between formal languages and artificial intelligence. Bulletin of EATCS 45
(1991) 131-145.

[5] R. Meersman, G. Rozenberg, Cooperating grammar systems. In: Proc. MFCS
78, LNCS 64, Springer-Verlag, Berlin, 1978, 364-374.

[6] P. H. Nii, Blackboard systems. In: The Handbook of AI, vol. 4 (Eds.: A. Barr,
P. R. Cohen, E. A. Feigenbaum), Addison-Wesley, Reading, Mass., 1989.

[7] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems. Academic
Press, New York, 1980.-

[8] A. Salomaa, Formal Languages. Academic Press, New York, 1973.

Acta Cybernetica 12 (1996) 347-360.

On Competence and Completeness in CD
Grammar Systems*

Henning BORDIHN * Erzsébet CSUHAJ-VARJÚ * §

Abstract

In this paper, different concepts of i-mode derivations in CD grammar sys-
tems which can be encountered in the literature and generalizations thereof
are considered both in generating and in accepting case. Moreover, the influ-
ence of completeness of the components as an additional requirement to the
derivational capacity of CD grammar systems is investigated.

1 Introduction
The theory of grammar systems is a recent vivid field of formal language the-
ory describing multi-agent symbol systems by tools of formal grammars and lan-
guages ([4]). Cooperating/distributed grammar systems, (CD grammar systems,
for short) is one the important subfields of the area, launched for syntactic mod-
elling distributed problem solving systems based on blackboard architectures ([3]).

. We note, however, that the term "cooperating grammars" was introduced first in
[9], as a generalization of two-level substitution grammars to a multi-level concept.

A CD grammar system consists of a finite set of grammars that cooperate in
deriving words of a common language. At any moment in time there is exactly
one sentential form in derivation and the grammars work on this string in turns,
according to some cooperation protocol. In this model, the cooperating grammars
correspond to the cooperating independent problem solving agents, the sentential
form in deriva tion represents information on the current state of the problem solving
stored in a global database, the blackboard, and the obtained language describes
the set of problem solutions.

'Research supported by the German-Hungarian Research Project "Formal Languages, Au-
tomata and Petri-Nets" (1995-1997), No. D/102 (formerly: No. OMFB-NPI-102) of the TÉT
Foundation, Budapest, Hungary, and No. 233.6. of Forschungszentrutn Karlsruhe, Germany

'Otto-von-Guericke-Universitat Magdeburg, Fakultát für Informatik, P.O.Box 4120, D-39016
Magdeburg, Germany. E-mail:bordihn@irb.cs.uni-magdeburg.de

'Research supported by Hungarian Scientific Research Fund OTKA T 017105
^Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u.

13-17, H-l l l l Budapest, Hungary. E-mail: csuhaj@sztaki.hu

347

mailto:bordihn@irb.cs.uni-magdeburg.de
mailto:csuhaj@sztaki.hu

348 Henning Bordihn. Erzsébet Csuhaj-Varjú

Turning to the original motivation, it is a sensible question whether some impor-
tant properties and features of agents that influence the behaviour of blackboard-
type problem solving systems can be formalized and interpreted in the syntactic
framework provided by CD grammar systems. In this paper we deal with two
of these properties: competence and completeness of components, moreover, we
study them both in the case of generating CD grammar systems and in the case of
accepting ones.

The idea of accepting grammars and systems ([11]) is the following: Starting
from a "terminal" word, the system tries to derive a given goal word (the axiom)
where, according to [1, 2, 6], the yield relation is defined by textually the same
words as in generating case. Possible restrictions to production sets are turned
"around", e.g., coming to productions of the form v —• a in the context-free case,
where v is a (possibly empty) word and a is a symbol.

CD grammar systems as accepting devices (CD grammar systems consisting of
accepting grammars), corresponding to backward deduction systems in contrast to
generating CD grammar systems which correspond to forward deduction systems,
were considered in [8].

Both competence and completeness can form a basis of the cooperation protocol.
According to our approach, an agent is competent in a current state of the problem
solving if it is able to contribute to the problem solution. In grammatical terms,
the component grammar is competent in the derivation of the current sentential
form if it is able to apply at least one of its productions to it.

So far there have been two kinds of cooperation protocols (¿-modes of derivation)
based on competence/incompetence of grammars introduced and examined: in the
first case (hard ¿-mode), a grammar can start with the derivation if it is competent
in the sentential form and stops with the derivation if it is no longer competent in
the actual string (it has no production to apply; the agent is not able to contribute
to the problem solving). In the second case, the start condition is the same but the
stop condition differs: the grammar finishes the derivation if it is not able to derive a
word different from the actual one (the competence of the grammar is not enough
to change the state of the problem solving). We generalize the latter concept
to a cooperation protocol called stagnation derivation mode (s-mode), where a
component has to continue its work until and unless a word is derived from which
no new word can be rewritten, i.e., it is impossible to derive a word which does
not appear in the derivation before. Thus, the competence of the agent (of the
component grammar) is not enough to leave a stagnating phase of the problem
solving (the derivation).

In this paper we compare the power of context-free CD grammar systems work-
ing on the basis of the above cooperation protocols. We show that the three variants
are equally powerful. In the case of generating CD grammar systems they identify
the class of ETOL languages and in the case of accepting CD grammar systems
they provide a description of the class of context-sensitive languages (supposing
that A-free productions are taken into account). These results, in the case of weak
t-mode and stagnation mode of derivation do not change if we incorporate some
requirement concerning completeness of the components.

On Competence and Completeness in CD Grammar Systems 349

The notion of completeness is well-known from Lindenmayer systems: For a
set of productions of a usual L system it is required that, for any symbol a of
the alphabet, there is at least one production rule replacing a. In [6], accepting L
systems were investigated, where this concept of completeness does not apply any
more.

Since a production set of an accepting (ET)OL system is seen as an inverse finite
substitution it is required that, for any symbol a, there is at least one rule of the
form v —• a. One might wish to replace this "right-completeness" condition by a
"left-completeness" condition as one is used to have in generating case, but such a
condition must be in accord with the finiteness of the set of productions.

One sensible approach to define completeness can be inherited from [9], where
the derivation strategy of the cooperating generative context-free grammars is de-
fined as follows: every component grammar can start with the derivation if it is full
competent in the generation of the current sentential form (if it has a production
for any nonterminal symbol appearing in the actual string) and stops with it if it
is no longer satisfies this criteria (there is at least one nonterminal in the string for
which the grammar has no rewriting rule).

Clearly, this idea can be transferred to the accepting case (also applying to ac-
cepting Lindenmayer systems): a grammar component / set of productions is com-
plete (thus full competent) for the current sentential form iff this sentential form
can be partitioned into non-overlapping subwords each of which can be rewritten by
a rule in the production set. We call this concept, that exhibits both completeness
and competence, sentential-form-completeness («/-completeness for short). Obvi-
ously, in generating case this concept coincides with the usual "left-completeness"
condition known from L systems.

In [9] it is shown that context-free CD grammar systems with components
working in « / -mode of derivation are equally powerful to the class of context-
free programmed grammars with appearance checking. We show that in the case
of accepting context-free CD grammar systems this protocol leads to the power of
context-sensitive grammars, morevover, to reach this capacity at most five cooper-
ating grammars are sufficient.

2 Basic definitions
We assume that the reader is familiar with the basic notions of formal language
theory, for further details we refer to [11], and [5]. With our notations, we mostly
follow [5]. Especially, we use C to denote inclusion, C to denote strict inclusion,
and A to denote the empty word. The length of a word w is denoted by |io|, N
denotes the set of positive integers. Two languages L\ and L2 are considered to be
equal iff L\ \ {A} = L2 \ {A}.

The family of languages generated by regular, context-free, context-sensitive,
type-0 Chomsky grammars, ETOL systems, context-free programmed grammars,
and context-free programmed grammars with appearance checking are denoted
by £ g e n (REG), £ g e n (CF), £g e n (CS), ¿ g e n ^ J ^ ¿ g e n ^ T O ^ £gen(p C F) i a n d

350 Henning Bordihn. Erzsébet Csuhaj-Varjú

£gen(P,CF,ac), respectively. In order to denote the family of languages accepted
by a device of the corresponding type, we write the superscript acc instead of gen.
If we want to exclude A-productions, we add —A in our notations. Whenever we
use bracket notations like £ee n(P,CF[-A]) c £g«n(P,CF[-A],ac) we mean that the
statement is true both in the case of neglecting the bracket contents and in the case
of ignoring the brackets themselves.

We define CD grammar systems in a way suitable for the interpretation of both
generating and accepting systems.

A CD grammar system of degree n, with n > 1, is an (n + 3)-tuple

G = (N,T,S,Plt...,Pn),

where N and T are two disjoint alphabets, the set of nonterminal and terminal
symbols, respectively, V = N U T is the total alphabet of G, S E N is the axiom,
and P\,... ,Pn are finite sets of rewriting rules of the form or —»• /3, a, /3 G (N U T)+.
In addition, we allow A-rules of the form a —» A in the generating case and A —* f3 in
the accepting case. For x, y E (N U T)*, we write x => y iff x = x\ax2, y = x\fix-z
for some a —• (3 G F,-. Hence, subscript i refers to the production set (component)
to be used. Furthermore, we denote by ==>• a derivation executed by the ¿-th

t
< k > k component according to some cooperation protocol / . For example, (—=> , i I

— k *
= > , or , respectively) denotes a derivation of at most k (at least k, exactly k,
or an arbitrary number of) derivation steps as above.

For some cooperation protocol / , the language generated in / -mode (e.g., in
< fc-mode) by a CD grammar system G of degree n is

£ f n (G) = {w G T*\S = w0 wi •••=U =J=> wm = w with J >1 '2 ' m — 1 "m

m > 1, 1 < ij < n, 1 < j < m} .

The language accepted in / -mode by G is defined by
£ « * (G) = {w £ T* \ w = w0 ==> wi => •••=U wm-i M- wm = S with 1 >1 "2 1 m — 1 'm

m > 1, 1 < ij < n, 1 < j < m} .

The families of languages generated (accepted, respectively) in the / -mode by CD
grammar systems with at most n [A — free] context-free components are denoted
by jC®en(CDn, CF[—A], /) (or £ a c c (CD„ , CF[—A], /)) . If the number of cdmponents
is not restricted then we write £ « e n (C D 0 0 l C F [- A]) /) (£ a c c (CDoo ,CF[-A] , /)) .

3 Cooperation and Competence
In this section we compare the derivational capacity of CD grammar systems work-
ing under cooperation protocols based on competence/incompetence of the cooper-
ating grammars. Since incompetence (disability of rewriting) realizes a terminat-
ing condition for the component grammar, these kind of cooperation protocols are
called i-modes of derivations.

On Competence and Completeness in CD Grammar Systems 351

Let us have formal definitions.
A derivation

D : x = xo => xi => X2 =>•••• => x„_i =}> xn = y

from x to y is said to be

(i) of type hard-t () iff there is no z such that y => z,

(ii) of type weak-t (t w) iff there is no z ^ y such that y z,

(iii) stagnating (s) iff there is no z ^ {z^ | 0 < i < n} such that y =>•* z.

Let G = (N, T, S, Pi,..., Pn) be a CD grammar system and let / £ {th,tw,s}-
For x, y 6 (N U T)m, we write x =>• y iff x =>• y and x ==>• y is a derivation of type
/• . . .

Then, ¿^ " (CDo^CF^u ,) is exactly the family of languages generated by CD
grammar systems with an arbitrary number of context-free components working in
<-mode as defined, e.g., in [4], whereas £gen(CDoo, CF,th) equals the corresponding
family as defined, e.g., in [8].

Observation 3.1 By definition, if a derivation is of type th then it is of type tw,
and if it is of type tw then it is stagnating.
Hence, for a CD grammar system G, we have

(i) Lf:n(G) C L?:n(G) C L f " (G) and

(ii) LJT(G) C L - C (G) C L r (G) . D

Note that productions of the form A —• A block derivations in hard-t-mode
whereas they can be neglected in CD grammar systems working in weak-<-mode.
Nevertheless, we find the following lemma.

Lemma 3.2 For n E N U {oo} , we have

£sen(CD„, CF\—\],th) = £Sen(CDn,CF[-\],tw) and
C*c{CDn,CF\-Xlth) = C*cc{CDn,CF\-\],tw)

Proof. Suppose we have a CD grammar system working in t^-mode. A simulating
CD grammar system working in </,-mode can be obtained by cancelling all rules of
the form A —• A from the productions sets of the original one. Conversely, if we
replace all rules of the form A —* A by A —* F, where F is a trap symbol, in a
CD grammar system working in th-mode, we obtain a simulating grammar system
working in the i^-mode of derivations. •

In order to compare these families of languages with that one generated (ac-
cepted) by CD. grammar systems working in s-mode, we take a better look at
stagnating derivations.

352 Henning Bordihn. Erzsébet Csuhaj-Varjú

Let
D : x = x0 => £1 =>•••=> xn =>• • • •

be a stagnating derivation which is not terminating. Then there is a finite language
Ls tag(Z)) which consists of all words appearing in D such that, for any pair (u, v) E
¿stag(^) x ¿stag(D), we have u v and v =>• u in D.

Lemma 3.3 Let G be a generating CD grammar system with context-free compo-
nents. For any derivation D of G which is stagnating, all words in Lstag(-D) have
one and the same length.

Proof. Assume the contrary. Let u be a word of maximum length in L s t a g (D) ,
i.e., if a rule is applicable to u then this rule has the form A —• B or A —• A, where
A and B are symbols. Here, renaming rules (A —* B) cannot introduce symbols B
to which productions B —• /3 with |/?| > 1 can be applied, since otherwise u is not
the word of maximum length in Lstag(-D)- Thus, we can apply only rules of the
form A —* B and A —• A also to any word derived from u. In particular, this holds
for any word u' E £stag(-D) with |u'| < |u|. This contradicts u' => u. •

In conclusion, if a derivation D is stagnating then there is a word in D such that
only renaming rules can be applied in the sequel or it is a terminating derivation.

Lemma 3.4 C^n{CD^, CF\-X),s) = Csen(ET0L).

Proof. The inclusion £®en(ET0L) C ^ " (C D » , CF[-A], s) follows by the con-
struction given in [4, pp. 40-42] for the <>,-mode case.

Thus, it is left to prove ¿^"(CDoo, CF[-A], s) C £8en(ET0L). Let T = (N,T,
Pi, P2,..., Pn, S) be a generating CD grammar system. For any nonterminal A
and 1 < i < n, we set L'A = SF(G'A) where G\ is the context-free grammar
G\4 = (N , T , Pi, A), i.e., L\ is the set of all sentential forms which can be generated
by the i-th component of T starting with A. Furthermore, let

Qi _ { la i f f la C n and> f o r a11 B G L\, we have UB = L\
A ~ ^ 0 otherwise '

M' = {B E iV | there is no j3 such that B ¡3 E Pi] ,

and

iVJtag =
AeN

Obviously, N*tag is the set of nonterminal symbols which induce stagnation of
the z'-th component, more precisely, if the i-th component is active, stagnation
appears iff a sentential form w E (-NgtagUT)* has been derived. Now, construct the
ETOL system G = (V,T,V,S), with V = N U T U {A{ \ A E N, 1 < i < n } U {F}
and, for 1 < i < n, "P contains the following tables:

Pi, 1 = {A^ Ai\Ae N}u{a-+ a\a£T}u{X ^ F\X $ NUT}
Pi,2 = {At hi(w) | A w E Pi} U {a a | a E T} U {At A{ | A E N} U

{Aj — F | A E N, j # i} U {A — F \ A E N} U {F F},

On Competence and Completeness in CD Grammar Systems 353

where hi is the morphism defined by hi(A) — Ai for A € N and hi(a) = a for
a£ T,

Pi,3 = {Ai^A\AeKtas}U{a^a\aeT}U{X ^N'stagUT}.

Here, table i ^ i simulates the selection of component P,- of T by "colouring" the
nonterminals in the sentential form (replacing them by their corresponding sub-
scripted version), P,-_2 simulates the application of the chosen component, and P,-^
allows the system to leave the z-th component iff stagnation appears. The rules
with the trap symbol F on their right-hand sides forbid shortcuts. Thus, we have
Z,gen(G) = L g e n (r) . •

The proof for £g e n (ET0L) C £ g e n (CD 3 , CF[-A], <) in [4, pp. 40-42] is given
by a construction of a CD grammar system working in hard-<-mode with three
components. Together with Observation 3.1, we can summarize the results as
follows.

Corollary 3.5 For f £ s}, we have

£sen(ET0L) = ^(CDoo.Cft-AJ.tft)
= £ « e n (C A ») C f t - A]) t I I ,)
= £gen(CT>oo, Cif—A],s)
= C*™{CD3,Cf\-\],f).

Let us turn to the accepting case. Clearly, it is impossible to get any terminating
or stagnating derivation of a component of an accepting CD grammar system if A-
rules, i.e., rules of the form A —• v, are present. Hence, we restrict ourselves to the
A-free case. Moreover, it is a direct consequence that as in the case of generating
CD grammar systems, also in the case of accepting CD grammar systems with
context-free components it holds that all words in Lstas(D) have one and the same
length for any stagnating derivation D.

In [8] it is shown how to construct an accepting CD grammar system with two
context-free A-free components working in hard-<-mode in order to simulate a given
context-senstive grammar. On the other hand, it is obvious that any accepting CD
grammar system with non-erasing context-free components in th- or <w-mode can
be simulated by a linear-bounded automaton. But even such a system working in
s-mode can be simulated by a linear-bounded automaton. This fact is obvious if
we take into consideration that a derivation is stagnating only if it is terminating
or after deriving a certain sentential form the rules that can be applied to the
sentential form are only certain renaming rules, that is, productions of the form
A—*B, with A,B £ N. Thus, we easily find the next theorem.

Theorem 3.6 For f £ {th,tw,s}, we have

£ g e n (CP) = £ a c c (CF) = £ a c c (CDi , CF — A , /)
C £ a c c (CD 2 , CF — A, /)
= £ a c c (C £ o o , C P - A , /)
= £g e n (CS) = £a c c (CS).

354 Henning Bordihn. Erzsébet Csuhaj-Varjú

4 Cooperation and Completeness
In this section we investigate how the derivational capacity of CD grammar systems
changes when the components satisfy some completeness criteria. We show that
these additional conditions do not necessarily alter the derivational power, even in
some i-mode cases, where, actually, the communication protocol is determined by
the incompleteness of the components.

First, let us discuss the concept of completeness.
From the theory of (generating) (ET)OL systems we know a condition called

left-completeness: For each symbol a of the alphabet V of the system there is at
least one production a —• v, v £ V*. Analogously, right-completeness (originally for
accepting (ET)OL systems) is defined: For each symbol a of the alphabet V there
is at least one production v —* a, v £ V*. These conditions can be modified for
CD grammar systems as follows: A set P of generating context-free productions (a
component of the CD grammar system) is said to be left-complete (right-complete)
iff there is at least one production of the form A —• ¡3 for each nonterminal A (at
least one production of the form A —+ x for each symbol x of the total alphabet,
respectively) in P. A set P of accepting context-free productions is called left-
complete (right-complete) iff there is at least one production of the form x —• A
for each symbol x of the total alphabet (at least one production of the form
for each nonterminal A, respectively) in P.

We concede that the above concept of right-completeness for the generating
case and that of left-completeness for the case of accepting sets of productions
are not very satisfying. For, e.g., the accepting case, one might take into account
the possibility to require the following: If w —• a, with |u>| = k, is in the set of

k
productions P then P Ç V* x V is surjective from |J V into V. This requirement

¿=1
is no restriction, since we can simply add rules of the form v —• F for such words

k
v £ (J V* which do not appear on left-hand sides in the given production set, and

: = 1
those "dummy rules" are out of any influence to the rewriting process. Moreover,
we get no genuine completeness at all.

Another concept of completeness which is appropriate both for generating and
for accepting devices can be defined, based on the cooperation protocol used in [9],
as follows:

Let V be an alphabet and let L Ç V* be a language over V. A set of production
rules P is said to be sentential-form-complete (sf-complete, for short) with respect
to L iff every word w £ L \ {A} has a factorization w = X\X2 • • xn such that, for
each i, 1 < i < n, there is a rule xt- —• ¡3 £ P, with ¡3 £ V*.

Then, e.g., in a (generating) EOL system G = {V,Y,, P,u), P has to be sf-
complete with respect to V*.

Observation 4.1 If a set of production rules P is left-complete then it is sf-
complete with respect to (domP)*, where domP denotes the set of all symbols ap-

On Competence and Completeness in CD Grammar Systems 355

pearing on left-hand sides of the rules in P.
For a generating context-free set P, we even find equivalence between these two

properties. •

A CD grammar system G = (N, T, S, Pi,..., Pn) is called left-complete or right-
complete iff each Pi, 1 < i < n, is left-complete or right-complete, respectively. G
is said to be s/-complete iff each Pi, 1 < i < n, is «/-complete with respect to N*
if G has generating context-free components, and with respect to (NUT)* if G has
accepting context-free components.

Note that it is sensible to differentiate between generating and accepting mode in
this definition since in generating mode only nonterminal symbols can be rewritten
whereas in accepting case there must also be rules for rewriting terminals.

Theorem 4.2 The requirement of left-completeness, right-completeness, and / or
sf-completeness does not alter the derivational power in the case of the following
grammars and systems:

(i) generating and accepting [E][T]0L systems,

(ii) generating and accepting context-free grammars,

(Hi) generating and accepting CD grammar systems with [A-free] context-free com-
ponents working in *-, in weak-t-, or in stagnating mode,

(iv) generating and accepting CD grammar systems with [A-/ree] context-free com-
ponents working in < k-, > k-, or = k-mode, with k > 1.

Proo f . Let N be the set of nonterminals and T be the set of terminals of the
system under consideration.

(i) Add rules x —• x for any x £ V to the set of productions (or to each
production table, respectively) both in the generating and in the accepting case.

(ii)-(iii) In the generating case, to the set of productions (or to each component,
respectively) add rules A —• A for any A £ N U{.F}, where F is a new nonterminal
symbol and add F —* a for any a £ T (in order to get right-completeness). In the
accepting case, add T' = {a' \ a £ T } to the set of nonterminal symbols. Then, to
the set of productions (or to each component, respectively), add rules A —» A for
each A £ NUT', and a —• a' for each a £ T. Moreover, in the case of CD grammar
systems working in weak-< or stagnating mode, we have to add the rules in {t; —• ¡3 \
v £ s(a), ot —• ¡3 £ Pj} to component Pi, where s is the finite substitution defined
by s(vl) = for A £ N, and s(a) = {a, a '} , for a £ T.

(iv) Let Fi and F2 be two new nonterminal symbols. Add Fi Fi and F2 —* F2

to each component. Moreover, add rules x —• Fi for x £ N in the generating case
and for x £ N UT in the accepting case, respectively. This guarantees left- and sf-
completeness. Furthermore, add rules F2 —i> x for x £ iVUT in the generating case

356 Henning Bordihn. Erzsébet Csuhaj-Varjú

and for i G in the accepting case, respectively, in order to get right-completeness,
too. •

The next theorem deals with the hard-i-mode of derivation where the situation
is different.

Theorem 4.3 (i) Right-completeness is no restriction for generating as well
as for accepting CD grammar systems with [A-free] context-free components
working in hard-t-mode.

(it) Both the family of languages generated by left-complete CD grammar systems
with [A-free] context-free components working in hard-t-mode and the family
of languages generated by sf-complete CD grammmar systems with [A-/ree]
context-free components working in hard-t-mode is equal to C(CF).
The corresponding families of languages in the accepting case are empty.

Proof. (i) Add rules F —* x for all symbols x of the total alphabet in the
generating case and for all nonterminal symbols in the accepting case, respectively,
and the rule F —» F, where F is a new nonterminal symbol, again. Statement (ii)
is obvious. O

5 Cooperation and sf-completeness
In [9], cooperating (generating) grammar systems were defined in such a way that
the concept of «/-completeness was used as the basis of the cooperation protocol. In
this section we present results about the derivational capacity and size complexity of
accepting CD grammar systems with components cooperating in the above manner.

Using our notation, we first give the following definition which is appropriate
both for generating and accepting CD grammar systems.

Let G = (N, T, S, Pi,..., Pn) be a context-free CD grammar system and let h be
a morphism defined by h(A) = A, for A € N and h(a) = A, for a £T. In sf-mode
of derivation the rewriting has to be performed by one and the same component Pi
until and unless it is disabled, i.e., a sentential form w has been derived such that
Pi is not s/-complete any more with respect to h(w) in the generating case and
with respect to w in the accepting case.

The family of languages generated by CD grammar systems with at most
n [A-free] context-free components working in the s / -mode is denoted by
£8 e n (CD„, CF[—A], sf). If there is no limit for the number of components then
we write the subscript oo instead of n. The language families defined by the corre-
sponding accepting devices are denoted analogously.

In contrast to the results about generating CD grammar systems with context-
free components working in (weak-)i-mode, for the systems defined by Meersman
and Rozenberg the following result is shown ([9]):

Theorem 5.1 ¿« " " (CA», CF[-X],sf) = &en(P, CF[-A], ac). •

On Competence and Completeness in CD Grammar Systems 357

As it concerns the A-free accepting case, we find the same hierarchical relation-
ship as for (hard-)i-mode proved in [8], but here, we have also nonempty families
of languages accepted by devices containing A-rules.

Theorem 5.2 (i) ¿ " » (C D « , , CF — A, sf) = £«e n(CS) = £ a c c (CS)

(ii) £a c c(CDoo, CF, sf) = £ g e n (RE) = £ a c c (RE)

Proof, (i) Since any CD grammar system from (CDoo,CF — A , s f) can be sim-
ulated by a linear-bounded automaton (that is, by a context-sensitive grammar),
we only show that the reverse inclusion holds. For, our proof is based on the
underlying idea of the proof of [5, Theorem 3.3]. Let us have a generating context-
sensitive grammar G = (N , T , P , S) in Kuroda normal form, without A produc-
tions. Assume that a unique label r is attached to any context-sensitive rule, of
the form XU —• YZ with X,U,Y,Z £ N, in P. Let us denote the set of labels by
Lab(P) = { r i , r 2 , . . . , r f i } . Let T = {d | a £ T } , { ? = {a | a £ T} and let h be
a morphism defined by h(a) = A for A £ N and h(a) = a for a £ T. For a string
w £ (N U T)* let us denote by w = h(w).

We construct an accepting CD grammar system

T — (N', T, S', Pi„it,PcF, Pi,i, Pi,2, Pi,3, P^i, P[t2> P[t3 • • • i PR,\I'PR,2> PR,3)

such that L°jc(T) = L(G) holds. Let T be defined with

N' = i V u T u f u { 5 ' , / 1 } U {[A, r], (A, r) \ A £ N and r £ Lab(P)}
U{x' | x £ W U T } U { < x , r > | x £ ./V U T and r £ Lab(P)}

(the unions being disjoint). The components of T are constructed as follows:

-Pinit = {a —• a, a -+ a, a —• a | a £ T } ,
PCF = {S->S'}U{x-+xlx£Nuf}U{w->CIC->w£P}U

{Y ->[Y,r]\r : XU ->YZ £ P}U{x' ^ x\x £ N u f } u
{a a\a £ T} ,

and, for 1 < r < R, r : XU — YZ:

Pr,i = { [>>] [y,r], Z — (Z,r)}U {x — x \x £ NUT} U {x' — x\x £ N U T)
Pr 2 = {[y, r](Z, r) F) U {x -»• x | x £ N U f } U {x —< x, r > | x £ N U T}
Pr3 = {[Y,r]->X,(Z,r)^U}U{x^x\x£NUT}U

{< x ,v >-• x'\x £ NUT}
P'r, i = {[Y,r]^[Y,r},Z^Z'}
Pr, 2 = {[Y,r]Z>-*F,[Y,r}^Y'}
Pr,3 = {Y'-+X,Z'-+U,X-+X}

Production set Pmit is for starting the derivation process. Obviously, by
PQF context-free derivation steps of G are simulated whereas the components

358 Henning Bordihn. Erzsébet Csuhaj-Varjú

Pr,i, Pr,2, Pr,3 and Pj. P{. 2, Pf. 3 simulate applications done by the rule with la-
bel r after replacing exactly one appearance of symbol Y in the sentential form
by [Y, r], The first group of production sets handles the situation when the sen-
tential form is of the form u[Y,r]Zv, with uv £ (N U T) + , and the second is for
the situation when the sentential form is [Y,r\Z. In the first case it is necessary
to replace a symbol < x , r > in order to leave Pr 3 which can only be introduced
by application of Pri2. But Pri2 can be active only if the symbols [V, r] and (Z, r)
are neighbouring in the "correct" manner or they do not appear at all. In the
latter case, the application of Pr<2 and Pr<3 remain without any effect. Shortcuts
are impossible since a component must be fully competent when applied. Similarly,
it is easy to see that production sets P'r t , Pf. 2 , P{. 3 can be successfully applied only
if the sentential form is of the form [Y,'r]Z. Hence, L a c c (r) = Lgen(G).

(ii) Without loss of generality we can assume the given type-0 grammar to have
only rules as a grammar in Kuroda normal form only having rules of the form
A —• A, with A £ N, in addition. Thus, we can use the same construction as in (i)
only giving additional rules A —• A to component Per if needed. The other direction
of the proof follows by the Church theses or it can be shown by construction of a
Turing machine. •

Finally, we investigate the question if the number of components can be re-
stricted for devices working in s/-mode. Indeed, we find that 5 components are
sufficient in order to describe the whole language family.

T h e o r e m 5.3 (i) £Sen(CDoo,CF[-A], sf) = £« e n (CD 5 , CF[-A], sf)

(ii) ¿ ^ (C D o c C F f - A] , * /) = £ a c c (C D 5 , C F [- A] , s /)

Proo f . Let G = (N, T, S, Pi,..., Pn) be a CD grammar system of degree n > 5
working in «/-mode. Construct a CD grammar system working in « / -mode of the
same type with 5 components according to the following basic idea:
Component 1 contains all rules of the given system, but the symbols in the rules
carry the number of the component of G, where they originally belong to, as sub-
script. For simulating work of component Pi, the symbols in the sentential form
must carry subscript i, too. Then, this component becomes disabled iff there is no
rule stemming from P,- which is applicable to the current sentential form, and one
can continue with component 2 or 3.
In component 2 to even subscripts i of the symbols of the sentential form, one is
added (modulo n) in order to change the production set of G which shall be simu-
lated.
Component 2' is the only component which can get active after applying compo-
nent 2. Here, it is checked whether all symbols have changed their subscript. If
yes, a continuation with component 1 or 3 is possible, otherwise the derivation is
blocked.
Components 3 and 3' do the analogous job as components 2 and 2' for odd sub-
scripts.

On Competence and Completeness in CD Grammar Systems 359

Now, we give the formal description of that system for the accepting case. The
construction for the generating case can be given analogously.

Let G' = {N',T,S',Pl,P2,P^P3,P^), where

N' = N U { 5 ' } U {At, A'0 A'l\ A £ N U T and 1 < i < n}

(the unions being disjoint). Furthermore, let hi be the morphism defined by hi(A) —
Ai for A £ NUT, 1 < i < n. Then, the components of G' are constructed as follows:

Pi = {hi(a) —> hj(P) | a —• /? £ P,-, 1 < i < n} U {A" —>• yl, 11 < i < n} U
{Si — S' 11 < i < n} ,

P2 = {A, Ai+1 | i = 0 mod 2} U {Ai+1 Ai+l \ i = 0 mod 2} U
{Ai A'i+11 i = 0 mod 2} U {A" A{ | i = 0 mod 2} U
{,4 -h. Ai | A £ N U T} U {A -* A\ \A £ N U T} U Q2,

P'2 = {Ai+i -* ,4i+i 11 = 0 mod 2}U {A'i+1 A"+l \i = 0 mod 2 } ,
P3 = {,4,- Ai+1 | i = 1 mod 2} U {Ai+1 Ai+1 \i = 1 mod^^2} U

{Ai — A'i+1 | i = 1 mod 2} U { A " — A{ | i = 1 mod 2} U Q3 ,
P^ = {^¿+1 —+ Ai+\ |« = 1 mod 2} U {A- + i —> A"+l | ? = 1 mod 2} ,

where
Au An ^ A[\Ae NUT}U

Q2 = {Ai Ai IA £ N U T} if n = 0 mod 2 and
if n = 1 mod 2

Ai , An A[| A £ N U T}U
Q3 = {Ai Ai | A £ N U T) if n = 1 mod 2 .

if n = 0 mod 2

Clearly, the system has to start with component P2 by rewriting any terminal
a by ai. The axiom can be derived after yielding Si for some i with Pi. Note that,
by technical reasons, after applying the rules in Q3 the system has to continue with
component P2 and then with P3. Moreover, each component is a set of accepting
context-free productions; in this connection the modifications are necessary for
proving the statement in the generating case. •

Acknowledgements: The authors are grateful to Henning Fernau and Markus
Holzer for discussions on the topic.

References
[1] H. Bordihn and H. Fernau. Accepting grammars with regulation. International

Journal of Computer Mathematics, 53:1-18, 1994.

[2] H. Bordihn and H. Fernau. Accepting grammars and systems via context
condition grammars. Journal of Automata, Languages and Combinatorics,
1(2):97-112, 1996.

360 Henning Bordihn. Erzsébet Csuhaj-Varjú

[3] E. Csuhaj-Varju and J. Dassow. On cooperating/distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.),
26(l/2):49-63, 1990.

[4] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Gh. Paun. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach,
London,1994.

[5] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory,
volume 18 of EATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

[6] H. Fernau and H. Bordihn. Remarks on accepting parallel systems. Interna-
tional Journal of Computer Mathematics, 56:51-67, 1995.

[7] H. Fernau and M. Holzer. Accepting multi-agent systems II. Acta Cybernetica,
1996. In this volume.

[8] H. Fernau, M. Holzer, and H. Bordihn. Accepting multi-agent systems: The
case of cooperating distributed grammar systems. Computers and Artificial
Intelligence, 15(2-3): 123-139, 1996.

[9] R. Meersman and G. Rozenberg. Cooperating grammar systems. In Proc.
MFCS'78, volume 64 of LNCS, pages 364-373. Berlin: Springer, 1978.

[10] Gh. Paun. On the generative capacity of hybrid CD grammar systems. J. Inf.
Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.), 30(4):231-244,
1994.

[11] A. Salomaa. Formal Languages. Academic Press, 1973.

Acta Cybernetica 12 (1996) 361-379.

Accepting Multi-Agent Systems II

Henning FERNAU * * * Markus HOLZER * *

Abstract

We continue our previous research on cooperating distributed grammar
systems (CDGS) and variants thereof as language acceptors [16]. Here, we
classify the accepting capacity of CDGS working in the modes recently intro-
duced by the authors together with Freund [14]. Moreover, we study (pre-
scribed) teams as language accepting mechanisms.

In this way, we solve an open problem from the area of accepting gram-
mars: there exists a grammar family such that its generating capacity is
strictly more powerful that its accepting capacity, see [6] for a recent survey.

1 Introduction
In Artificial Intelligence (AI) , a common methodology in order to achieve a goal,
which can hardly be done by a single expert or agent, is to create a so-called
multi-agent system which solves the task using distributed and cooperating agents,
see [29] for a survey on this area. Blackboard architecture models [10] can be seen
eis an approach to model the communication aspects of the agents.

On the other hand, one general concept in problem solving methods in AI are
production systems [23], which arise from a computational formalism proposed by
Post [27] that was based on string replacement. Many generalizations of produc-
tion systems are proposed in AI, e.g., rule-based systems, blackboard systems, or
pattern-directed-inference systems. Production systems are closely connected to
string rewriting, one of the backbones of formal language theory. In order to un-
derstand the nature of production systems, it is therefore natural to study them on
well-known and traditional formal language theoretical devices. Based on black-
board systems, Csuhaj-Varjii and Dassow [7] introduced cooperating distributed
grammar systems (CDGS), where each component (grammar) corresponds to the
particular knowledge source of the system (this is an expert or agent), and the global
database—the blackboard—is modelled by a common sentential form, where the

*Wilhelm-Schickard- Institut für Informatik, Universität Tübingen, Sand 13, D-72076
Tübingen, Germany. E-mail:fernau/holzer@informatik.uni-tuebingen.de

t Supported by Deutsche Forschungsgemeinschaft grant DFG La 618/3-1.
'Supported by German-Hungarian Research Project "Formal Languages, Automata and Petri-

Nets" (1995-1997), No. D/102 (formerly: No. OMFB-NPI-102) of the T&T Foundation, Bu-
dapest, Hungary, and No. 233.6. of Forschungszentrum Karlsruhe, Germany

361

mailto:holzer@informatik.uni-tuebingen.de

362 Henning Fern au, Markus Holzer

components perform their rewritings. Independently and sometimes with different
motivation, also other authors introduced similar computational models, see, e.g.,
[1 ,20 ,21] .

In the systems considered by Csuhaj-Varjú and Dassow and in a series of subse-
quent papers, all components work according to the same strategy; more precisely,
the rewriting by another component can be done, e.g., after a given number of
steps. For an overview on this topic, refer to [8, 25]. This model of multi-agent sys-
tems is not very realistic, because usually such agents have different capabilities.
Therefore, a generalization of CDGS called hybrid CDGS has been investigated
[22, 24, 25]. Another idea is to allow the formation of teams of agents, as proposed
in [18, 19, 26].

In this paper, we take the original above-sketched idea of CDGS, but contrary
to the approach of Csuhaj-Varjú et al. [8], we take, instead of generating grammars,
accepting grammars as agents. They try to derive a given goal word (axiom) in
a cooperating and distributive manner. In this way, we pursue our studies on
accepting grammars and systems [3, 4, 5, 6, 11]. Accepting CDGS have been
investigated in the works of the authors together with Bordihn [16] and Freund [12,
13]. For an intermediate approach, combining generating and accepting grammars
in CDGS, we refer to Fernau and Holzer [15].

Depending on the mode in which the grammars cooperate, we obtain, on the
one hand, equivalences between the accepting and generating case, but also, on the
other hand, results which are fundamentally different, this means that accepting
devices are much more powerful than generating ones or vice versa, thereby solving
an open problem in the theory of accepting grammars [3].

Observe that, when defining accepting counterparts of existing generating de-
vices, we want to carry over the original idea and motivation of the generating
mechanism in order to define the corresponding accepting mechanism. Formally,
such accepting grammars look like their generating counterparts, just turning the
core productions "around" and keeping the control mechanism ruling the applica-
tion of these productions textually the same. In the case of CDGS, this procedure
is very well motivated by the original ideas stemming from AI: while generating
devices correspond to forward deduction system, accepting devices correspond to
backward deduction systems.

The present paper extends our studies on accepting CDGS in three directions:
(1) We consider other working modes of the components which have been intro-
duced in [14] and (2) we consider (external) hybridizations of these new modes
(with the new and old ones). Finally (3) we briefly consider accepting CDGS with
(prescribed) teams.

This is reflected in the organization of our paper. In the next section, we in-
troduce the necessary notions. Section 3 lists the easy cases (the interval mode
and t combined with greater than or equal to k) where we can profit from our
previous results [16] on the i-mode. Section 4 contains the more interesting case
incorporating the i-mode combined with either equal than or less equal than k.
Strange things can be observed here, e.g., no unary infinite language can be ac-
cepted by CDGS working in (t A < fc)-mode. This leads to the first examples of

Accepting Multi-Agent Systems II 363

grammar mechanisms where the generating power of such CDGS is greater than
their accepting power. In Section 5, we we consider accepting hybrid CDGS, where
the (external) hybridization incorporates also the modes (t A < k), (t A = k), and
(t A >k). Furthermore, we consider the number of components in a CDGS as a
natural measure of descriptional complexity for CDGS. Since each component cor-
responds to one expert according to the original AI motivation, we may paraphrase
our results as follows: in backward deduction systems, two experts are enough.
This contrasts to the situation found in forward deduction systems where it is only
known that three or four experts are enough. Finally, we consider in Section. 6
CDGS with (prescribed) teams as language acceptors. Observe that similar sys-
tems have been studied in the context of array grammars from a quite practical
viewpoint, see [12, 13].

2 Definitions
We assume the reader to be familiar with some basic notions of formal language
theory, as contained in Dassow and Paun [9]. Especially, we consider two lan-
guages Li,L2 to be equal if and only if L\ \ {A} = L2 \ {A}, where A denotes
the empty word. We use C to denote inclusion, while C denotes strict inclusion.
The set of positive integers is denoted by N. The end of a proof or of a proved
statement is marked by Let £(FIN) be the family of finite languages. The
families of languages generated by regular, linear context-free, context-sensitive,
type-0 Chomsky grammars, ETOL systems, context-free ordered, context-free pro-
grammed, and context-free programmed grammars with appearance checking are
denoted by £« e n (REG), £" c n(LIN), £* e n (CF), £» e n (CS), £* e"(RE), £ 9 e n (ET0L),
£ g e n (0 , CF), Cgen(P, CF), and Cgen(P, CF, ac), respectively. A subscript fin (k,
or 1, respectively) denotes the family of languages generated by the appropriate
device restricting the derivation to be of finite index (finite index k, finite index 1,
respectively). For a definition of the finite index property we refer to [9].

A superscript acc instead of gen is used to denote the family of languages
accepted by the appropriate device. If we want to exclude A-rules, we. add —A in
our notations.

We use bracket notations like £gen(P, CF[-A]) C £ ? e n (P , CF[-A], ac) in order
to say that the equation holds both in the case of forbidding A-rules and in the case
of admitting A-rules (neglecting the bracket contents).

For the convenience of the reader, we repeat the basic definitions of CDGS,
hybrid CDGS, respectively, adapted from Paun [24], in a way suitable for the
interpretation both as generating and accepting systems.

A cooperating distributed grammar system (CDGS for short) of degree n, with
n > 1, is a (n + 3)-tuple G — (N, T, S, Pi,..., P„), where N, T are disjoint alpha-
bets of nonterminal and terminal symbols, respectively, S E N is the axiom, and
Pi,... ,Pn are finite sets of rewriting rules over N UT.

Throughout this paper, we consider only context-free rewriting rules. Since we
are interested in generating and accepting systems, we further distinguish between

364 Henning Fern au, Markus Holzer

so-called generating rules, which have the form A —• w, with A £ N and w E
(N U T)*, and accepting rules, which are of the form w —*• A, with A E N and
w € (NUT)m.

Let G be a CDGS with only generating rules. For x, y E (NUT)* and 1 < i < n,
we write x =>,• y if and only if x = x\Axi, y = x\zx2 for some A —• z E Pi- Hence,
subscript i refers to the component to be used. By =>f k , =>Tt > w e denote
a derivation consisting of at most k steps, exactly k steps, at least k steps, an
arbitrary number of steps, respectively. We also write x =>,' y if and only if x =>* y
and there is no 2 such that y =>•; z. Combining the former three modes with the
<-mode requirement we obtain the modes (t A <k), (t A = k), and (t A > k) which
are defined as follows: there exists a derivation which satisfies both properties e.g.,
x y if and only if there exists an m-step derivation from x to y using P<
such that m < k and there is no z such that y =>j z.

Let D := { *,t } U { < k, = k, > k \ k EN}U{(>k1A<k2),(tA<k),(tA=k),(tA
>k) | ki,k2,k € N and ki < k2 }.

The language generated in the /-mode, / E D, by a CDGS G with only gener-
ating rules is defined as:

Lg/n(G) := { w E T* | 5 =>l ai =>{a... =>{m_t Qm-l Mm <*m=w with
m > 1, 1 < ij < n, and 1 < j < m }.

If / E D, the families of languages generated in / -mode by [A-free] CDGS with
at most n components are denoted by £ s e"(CD„,CF[—A], /) . If the number of
components is not restricted, we write £ j 7 e"(CD0 0 , CF[—A],/).

For CDGS with only accepting rules, we define the relations x =i>,- y and x y
accordingly. Hence, we define the language accepted in /-mode, f £ D, by a
CDGS G with only accepting rules as follows:

Lf\G) := { w E T* | w a x =>{m_x a m _ x =>{m am = S with
m > 1, 1 < ij < n, and 1 < j < m }

If / E D, the families of languages accepted in / -mode by [A-free] CDGS with
at most n components are denoted by £ a c c (CD„ ,CF[—A], /) . If the number of
components is not restricted, we write £a c c(CDoo, CF[—A],/).

If each component of a CDGS may work in a different mode, then we get the
notion of (externally) hybrid CDGS of degree n, with n > 1, which is a (n + 3)-tuple
G = (N, T, S, (Pi, / 1) , . . . , (Pn,fn)), where N,T,S, Pu ..., P„ are as in CDGS, and
/, 6 D, for 1 < i < n. Thus, we can define the language generated by a hybrid
CDGS with only generating rules as:

L°en(G) := {w£T* \S ^ W! ^ ... 1 « W i =>{? wm = w with
m > 1, 1 < ij < n, and 1 < j < rn }

Accordingly, accepting hybrid CDGS can be defined. If F C D, the family of
languages generated (accepted, respectively) by [A-free] CDGS with at most n

Accepting Multi-Agent Systems II 365

components, each component working in one of the modes contained in F, are
denoted by £« e n (HCD„, CF[-A], F) (£0 C C(HCD„, CF[-A], F), respectively). Simi-
larly, ^ " (H C D o c C F l - A] , ^) , and £a c c(HCDoo, CF[—A], F), respectively, is writ-
ten when the number of components is not restricted.

3 When generating is weaker than accepting
The easiest case from the new modes is the interval mode. Fortunately, the ob-
servations given in [16, page 128, Theorem 3.2] showing that in case of classical
modes, except for the i-mode, equivalence between generating and accepting de-
vices prevails, readily transfers to the (>ki A < ¿2)-mode. Hence, we get:

Theorem 3.1 If N 6 N U {oo } and f £ {(> Jfcj A <k2) \ kx,k2 £ N.fci < k2},
then C"n(CDN,CF[-\],f) = £0 C C(CDW , C F [- A] , /) . •

We turn our attention to grammar systems working in (t A > fc)-mode. Note
that (t A > 1)- and the classical i-mode trivially coincide, which leads us to:

Theorem 3.2 / / N £ N U {oo} , then, for any N > 3,

£ j e n (C F) = £ s e " (C D i , CF[—A], (< A > 1)) = £ i e n (C D 2 , CF[—A], (i A > 1))
C £ s c n (C D ; v , CF[—A], (t A > 1)) = £ i e n (E T 0 L) .

For k in general, the situation is a little bit different from the previous one.

Theorem 3.3 If N £ N U {oo} , then, for any N > 3 and for each k > 2,

£ i e n (C F) = £ i e n (C D i , CF[-A] , (i A > k)) C £ a e n (C D 2 , CF[-A] , (t A > jfc))
C C°en(CDN, CF[-A] , (t A > fc)) = £ s e n (C D o o , CF[-A] , (t A > k)).

The latter class coincides with the family of E[P]T0L languages with random
context conditions [9, 28], as shown in [14], a special case of £ s e " (P , CF[—A], ac).

The case is totally different for accepting CDGS. Nevertheless, as in the case of
<-mode, the admittance of A-productions does not enhance the accepting power of
CDGS working in (t A > fc)-mode.

Theorem 3.4 If N £ N U {oo} , then, for any N > 2 and for each k > 1,

£ * e n (C F) = £ a c c(CDi,CF[—A],(< A >k)) C £0CC(CDat, CF[—A], (i A > k))
= £ a c c (C D 0 0 , CF[—A], (t A > k)) = C9en(CS).

Proof. The first relation is obvious. By [16, Theorem 4.5], we know that, for
each N > 2, ¿ « « (CDjv .CFt -A] ,*) = £ a c c (CDoo,CF[-A] , t) = £*e n(CS). Since t-
and (t A > l)-mode trivially coincide, the results carry over to the (t A > l)-mode.
By introducing prolongating rules, we obtain the desired result for (i A > fc)-mode
for k in general. •

366 Henning Fern au, Markus Holzer

Corollary 3.5 Let k £ N. Then, we have

C9'n(CF) = ¿ » • " (C D i . C F H M * A > *)) = £ a c c (C D i , CF[—A], (t A> k)).

Moreover, if N 6 N U {oo} with N >2, we get

Cgen(CDN, CF[-A], (t A > k)) C Cacc(CDN, CF[-A], (< A > it)),

where the inclusion is known to be strict only in the absence of X-rules. •

4 When accepting is weaker than generating
In the present section, we deal with CDGS working in (t A < k)- and (t A = i) -mode
with context-free components. Again, at first we mention the known results in the
generating case [14].

Theorem 4 . 1 If f 6 { (t A < k), (t A = k) | k 6 N} , then there exists a function
sj : N —* N so that for each n € N,

£(FIN) = £ j e n (C D i , C F [- A] , /) C £* e n (CD„, CF[-A], /)
C £ i e n (C D 5 / (n) , CF[-A], /) C £ s e n (CDoo, CF[—A], /) = £ £ n (P , CF[-A] , ac).

The preceding theorem demonstrates that both the (t A < k)- and the (t A = k)-
mode nicely fit into the known framework of formal language families. On the
other hand, the accepting counterparts behave very strange in comparison to earlier
results on accepting CDGS. This is shown in the next lemma.

Lemma 4.2 For every k E N, no infinite one-letter language can be accepted by a
CDGS working either in (t A < k) or (t A = k)-mode.

Proof. We only prove the statement for the (t A = fc)-mode. Assume that the
CDGS G = (N,T,S,Pi,.. .,Pn) accepts an infinite one-letter language L C {a}*
in (t A = fc)-mode. Set M = max{ m | am —> A € Pi for 1 < i < n } . Since L is
infinite, there exists a word am in L such that m > 3k • M. On this word, there is
no way to start the (accepting) derivation process, since every component is only
able to handle at most k • M symbols a due to the (t A = fc)-mode. Thus, am does
not belong L, which contradicts our assumption that L is infinite. •

Thus, {a}* G £» e n (REG) \ £ a c c (C D N , C F [- A] , /) , if N e N U { o o } and / 6
{ (t A < it), (t A = k) | Jfc e N } , but { # } { a } * € £ a " (C D 2 , CF - A, (t A = 1)), which
is shown in the following example.

Example. Let G = ({5 , A, A', B], { # , a} , 5, Pi,P2) be a CDGS with the sets
/>! = {#-* B, Aa A', Aa 5 } and P2 = { £ —• A, A' A}. It is easy to see
that G working in (< A = l)-mode accepts { # } { a } * .

Accepting Multi-Agent Systems II 367

The idea of a special marking symbol generalizes to arbitrary regular languages.
This shows that every marked regular language belongs to, e.g., the language family
£ a c c (C D 2 , C F - A,(< A = l)) .

Before we consider CDGS with an arbitrary number of components, we study
the case where two components are working in (<A< k)- or (t A — k)-mode together.
Again, we recall what is known for these language families [14].

Theorem 4.3 If f G { (t A < k), (t A = k) | k G N }, then

£« e n (LIN) C £ » e n (C D 2 , C F [- A] , /) C C3ken(P, CF[-A],ac).

The latter inclusion is known to be strict only in case k — 1.

First, consider the trivially coinciding modes (<A< 1) and (t A = 1) for accepting
CDGS with two components. Surprisingly, we find:

Theorem 4.4 £ a c c (CD 2 , CF[-A } , (t A = 1)) C £*e"(LIN).

Before we prove this theorem, let us mention that the preceding theorem answers
an open question stated in [3]: is there a grammar family such that the generating
mode is strictly more powerful than the accepting mode? Combining the previous
two theorems, we obtain:

Corollary 4.5 £ a c c (CD 2 , CF[-A], (i A = 1)) C £ f l e n (CD 2 , CF[-A], (t A = 1)). •

For the proof of the theorem, we need a detailed analysis of the accepting (t A= 1)
derivation of the grammar system. Assume that we are given a grammar system
G = (N,T, S, Pi, Pi). On input w the system can mainly behave as follows. By
the (< A = l)-mode (like in the t-mode), the only way to accept a word is by an "in-
terplay" of the two components, i.e., the sequence of production sets applied looks
like . . . , Pi, P2 , Pi, P 2 , W.l.o.g. assume that Pi starts the derivation process,
reducing a subword of w to some nonterminal, say A. The only way to continue is
an application of a rule of P2. At this point of derivation, we have to distinguish
two cases, as illustrated in Figure 1.
1. The rule chosen from P2 contains the previously introduced nonterminal A on the
left-hand side. Hence, A with a left- and right-context is replaced by another non-
terminal again. The only way to successively continue the derivation is to apply Pi
again, reducing a sub-word that contains the previously introduced nonterminal.
Otherwise, the previous application of a rule of Pi would have not been possible.
Further analysis of the derivation process shows that in this case the derivation has
a "fish-bone" structure like in a linear grammar.
2. The rule chosen from P2 does not contain the previously introduced nontermi-
nal A. Hence, after its application the derived sentential form contains exactly
two nonterminals, say A and B. Pi is not able to handle a derivation where A is
involved, as long as P2 has not changed the left- or right-context of A properly.
Otherwise, the previous application of a rule of Pi would have not been possible.

368 Henning Fern au, Markus Holzer

Figure 1: The cases 1. (left) and 2. (right; the case where A and B change their
roles are symmetric) of a (t A = 1) derivation of a CDGS with two components.

Thus, the applicable rule from Pi must contain nonterminal B on the left-hand side.
This interplay between Pi and P2 goes on while successively reducing the word at
the point where P2 has made the first application of a.rule at all. The derivation
is nothing else than a fish-bone again. Then at some point P,-, for 1 < i < 2,
has prepared the context for the other to make an application of a rule where
the nonterminal A is involved; this rule application breaks the fish-bone into two
parts, when looking at the derivation as a whole. Afterwards, the interplay of the
components continues, leading to a linear derivation structure.

We sketch the construction of a linear grammar that simulates the accepting
derivation of G in a generative manner. Let LS(Pi) denote the left-hand sides of
the product ions in P,-, i.e., LS(Pi) = {w\w—>BEPi}.

The nonterminal of the linear grammar contains the following (finite amount
of) information: (1) the actual nonterminal, (2) which component and rule starts
the original derivation, (3) the control for the interplay, (4) the information which
left-hand sides of the productions in both components are contained as sub-words
in the sentential form derived so far, and (5) additional information to compute (4).

Thus, the generating linear grammar'first guesses the component that starts
and ends the original derivation process. Additionally, the first rule ever applied in
the original derivation is guessed, say this is a —• A. Further, also the form of the
derivation (case 1. or 2.) is guessed. These cases are treated separately:
1. A linear derivation has to be performed, starting with the rule set that ends the
original derivation. The interplay as well as the application of a rule is controlled by
the information stored in the current nonterminal. In this situation, a rule u —• B (a
linear one!) from Pi, for 1 < i < 2, is applicable if and only if the sentential form 7
contains one occurrence of B, and no word from £S(P,) occurs in 7 . The latter can

Accepting Multi-Agent Systems II 369

be tested with information (4). During the derivation simulation, the information
(1), (3), (4), and (5) is updated. When terminating (simulating a —• ^4) in addition
it is checked (using information (2) and (3)) whether we actually simulate the
component that starts the original derivation process.
2. The second case consists of two symmetric cases (see Figure 1). Assume ¡3 —>
B is the rule applied in the second step of the original derivation. In the first
part of the derivation a linear derivation is done (see above). At some point, the
grammar guesses to apply the rule (which is member of the component Pi, for
1 < i < 2) that breaks the linear structure of the original derivation. This rule is
not linear anymore, i.e., it looks like, e.g., C —* uAvBw (the symmetric case C —»
uBvAw is similar). Then the derivation is continued as follows: apply the rule C —•
uavBw under the condition that no word of LS(Pi) is stored as information (4),
and then update information (4) and (5) according to C —* uAvBw. Thereafter,
the derivation process is continued in a linear manner like in case 1. The only
difference lies in the termination, because we already applied a —>• A. Therefore,
we must test that /? —• B is member of the set Pj, for 1 < j < 2, which does
not start the original derivation and that no word from { a } U LS(Pj) is stored as
information (4).

This completes our construction for £0CC(CD2, CF[-A], (t A = 1)) C £«e n(LIN).
The strictness of the inclusion follows from the lemma on one-letter languages. •

The question arises whether Theorem 4.4 generalizes to CDGS with more than
two components and for derivation modes (t A < k) or (t A = k) in general. First,
let us analyze the derivation trees obtained by such systems. We only discuss the
(t A — ik)-mode, but it generalizes to the other mode as well.

Let G be a two component system working in (t A = 2)-mode. Again, we must
have an interplay between the two grammars to accept a word successfully. The
number of possible tree structures, compared to the (t A = l)-case, increases sig-
nificantly, but remains finite. Why this? The start component can introduce at
most two nonterminals. Then, the application of the other grammar increases the
number of occurrences of nonterminals again at most by two. Now, there are only
three possibilities to continue the accepting derivation: either we reduce sub-words
in a linear manner (sequential rule application), or we replace two nonterminals
with some context in an application of a production set (parallel rule application),
or we combine several nonterminals into one (union step). Moreover, the first and
second step of the derivation can be only a sequential or a parallel one, but from
then on, a sequence of parallel steps can only be followed by a sequence of sequen-
tial steps, and afterwards a union step. Finally, only a sequence of sequential steps
mixed with a finite number of union steps can be performed until the axiom is
reached. At this point, one observes that the number of nonterminals occurring
in a sentential form is bounded. Obviously, with a similar construction as in the
preceding (t A = 1) case, a programmed grammar with appearance checking can do
the simulation job. Note that the whole derivation is of finite index, too.

With a much more detailed analysis also the case of CDGS with three grammars
working in (t A = 1) mode can be done. In general, for arbitrary number n and k,

370 Henning Fern au, Markus Holzer

the number of possible structures for the derivation trees is bounded, so that a pro-
grammed grammar with appearance checking fulfilling the finite index restriction is
able to simulate the original grammar system in a generating way. Thus, together
with the lemma on one-letter languages and Theorem 4.1) we obtain:

Theorem 4.6 Iff £ { (i A < k), (t A = k) \ k £ N }, then, for any N £ N U {oo},

£ f l C C (CDjv,CF[-A] , /) C £ i e n (CDoo, CF[-A], /) = £ £ n (P , C F [- A] , ac).

5 More on hybrid CDGS
As already observed in the previous section (see also [16]), accepting and generating
modes coincide when only considering the *-, < k-, = k-, > k, and (> ki A < k2)-
modes. We summarize these facts in the following theorem without proof.

Theorem 5.1 If F C {*} U { < k, = k, >k \ k £ N } U { (> ¿1 A < k2) | ¿1, k2 £ N,
ki < k2 }, then, for any N £ N U { 0 0 } ,

¿^"(HCDtv, CF[-A], F) = £a c c(HCDjv, CF[-A], F).

To exhibit the relations between other mode combinations, we have to explore
their generating and accepting power in more detail. From [14], we summarize:

Theorem 5.2 1. If® £ F C {*, t} U { < k | k £ N } U { = 1, > 1}, then

£ s e n(HCDoo, CF[-A], F U {(t A = 1)}) = Cgen{O, CF[-A]).

2. If F C{.= k,>k \k>2}u{(tA>k)\k >2}, then

£ s e n(HCDoo, CF[—A], F U { (i A = 1)}) = C9en{ P, CF[-A], ac).

3. If to ± F C {*, t) U { < k, = k, > k, (t A > k) | k £ N} U { (> fci A < k2) \
k\,k2 6 N and k 1 < k2 }, then

£ s e"(HCDoo, CF[—A], F U {(< A = 2)}) = £* e" (P, CF[-A], ac).

4. Let 0 ^ F C {*, t} U { < k | k £ N }. For every k £ N, k > 2,

Cgen(0, CF[-A]) C £ i e n (HCDoo, CF[—A], F U { (M < k)}) C £ i e n (P , CF[-A], ut).

Since ordered languages are strictly included in programmed languages with
unconditional transfer, at least one of the inclusions is strict.

Theorem 5.3 Let F C D contain one mode from {*} U{<fc , = fc,>fc|fcGN}U
{ (> * iA < k 2) \k1,k2£'N and ki < k2 } and one from { (tA< k), (<A= k) \ k £ N }.
Then, we have:

Accepting Multi-Agent Systems II 371

1. £a c c (HCDoo,CF — A, F) = £ s e n (CS) , and

2. r ^ i H C D o o . C F . F) = £" e n (RE) .

Proof. Our proof is very similar to the i-mode case shown in [16, Theorem 4.2].
We give only technical details here. First, we consider the A-free case. It is easy
to construct a simulating linear bounded automaton accepting Lacc(G) in case not
admitting A-rules. Therefore, the inclusion ¿"" (HCD,*, , CF[—A], F) C £9 e n (CS) is
clear. We have to show the other inclusion.

By a standard argument, it can be shown that (*) £a c c(HCDoo, CF[— A], F) is
closed under union and embraces the context-free languages. Let L G £ 5 e n (CS) ,
LCT*. Then, L = Ua.ft .cerCW^i&c} n L) U (L n T) U (L n T 2) U (L n T3).
Since L is context-sensitive, Latc — { w G T+ \ awbc EL) is context-sensitive due
to the closure of C g e n (CS) under derivatives. By (*), it is sufficient to show that
{a}M{bc} G £a c c(HCDoo, CF - A, F) provided that M C T+ is context-sensitive.

By simple prolongation arguments, it suffices to show that { a } M { 6 c } belongs to
£ a c c (H C D c o , C F - A , { * } U { (< A = l) }) provided that M C T + i s context-sensitive.

Let G — (N, T, S, P) be a context-sensitive grammar without A-productions in
Kuroda normal form generating M. Let us assume a unique label r being attached
to any genuine context-sensitive rule of the form XU —* YZ with X, U,Y, Z G N'y

the set of labels is denoted by Labcs = {r\,... ,r a}.
We construct a (HCDoo, CF - A, { * } U {(< A = 1)}) system

G' = (N', T, S',P0, Pi,i, Pi,2, Pi,3, Pi,4 PR,I,PR,2, PR, 3, PR,A)

accepting { a } M { 6 c } . The common terminal alphabet of these grammars is T, and
their nonterminal alphabet is

N' = N U { C i , . . .Cr) U { £>', £>" | DeNuT}u{A,B,C,S',F}

(the unions being disjoint).
The component PQ working in *-mode equals { a —• A,b —+ B,c C } U

{ASBC —* S'} U {w D \ D E N and D^wEP,w£T}U{D —* D', D —*
D" | D E N } and is used for four purposes: (1) It turns the left delimiter a into A
and the right delimiters b and c into B and C (initialization). (2) The check of the
correctness of this initialization application is postponed until the last applicable
production ASBC —• S' does its work (termination). (3) Context-free rules can be
simulated here. (4) Colouring of nonterminals into (double-)primed counterparts
prepares the simulation of a genuine context-sensitive rule.

Finally, we introduce four production sets working in (t A = l)-mode for the
simulation of a genuine context-sensitive production rp : XU —+ YZ £ P:

PpA = {C->Cp}U{Y'z^F\zj:Z"}U{yZ" ^F\y?Y'},
Pp,i = {C^F}U{C„ ^F | <r±p}\J

{Y' — X} U { D' F, E" F | D, E E N A E" £ Z"},
Pp,3 = {C^F}u{Ca^F\<r?p}U

372 Henning Fern au, Markus Holzer

{Z" U}U {L/ -* F, D" F \ D £ N}, and
PpA = {CP^C}U{C0^F\(T^P}U{D' ^F,D" ~^F\D€N).

Observe that the second production set only serves for checking whether the
first production set has correctly nondeterministically selected two adjacent marked
occurrences Y and Z. These checks are always possible, since we introduced left
and right end-markers A and B, respectively.

If we allow A-productions, these can be put in the Po-component, too. •

Corollary 5.4 Let F C {<} U { (t A < k), (t A = it), (t A > k) \ k £ N } . If F contain
one of the modes {<}Ll{ (t A> k) \ k £ N } and one of the modes { (t A< k), (t A = k) \
k e N } , then we have Cacc(RCD00,CF[-\],F) = Cgen(CS).

Proof. By our result [16, Theorem 4.2] regarding ¿-components only, it is only to
prove that additional components working in one of the { (t A < k), (t A = k) \ k £
N }-modes do not enhance the accepting power. Again, A-rules do not add to the
power, and an easy simulation by a linear bounded automaton shows the assertion.

•
When contrasting generating and accepting grammars, we obtain:

Theorem 5.5 1. Let F C D contain one of the modes {*, U { < k, — k, > k,
(t A > ifc) | ifc € N } U { (> ¿i A < k2) | Jbi, k2 £ N and kx < k2 } and one of the
modes {(t A <k),{t A — k) | k £ N }. Then, we have:

¿^" (HCDco , CF — A, F) c £ o c c (HCDoo, CF — A , F) .

2. Assume that F C D contains one of the modes {*} U { < k, = k, > k \ k £
N }U{ (> k iA< k2) | Jfei, k2 £ N, k\ < k2 } and one of the modes { (tA< k), (tA
— k) | k £ N } . Then, we have:

C9tn{HCDoo, CF, F) C £a c c(HCDoo, CF, F).

(a) This inclusion is known to be strict in case F contains none of the modes
{ (* A < k), (< A = k) | ifc £ N, k > 2 }.

(b) This inclusion is known to be non-strict in case F contains one of the
modes { (< A = i f c) | j b £ N , j f c > 2 } .

3. Let F C {<} U { (t A > ifc), (< A < k), (t A = k) \ k £ N } and let F contain one of
the modes {<}u{ (tA>k) \ k £ N } and one of the modes {(tA<k),(tA = k) \
ke N } .

(a) If F n ({ (t A = k) | k £ N, k > 2 } U { (t A > k) \ k £ N, k > 2 }) ^ 0, we
have

Cgen(CS) = £a c c(HCDoo, CF, F) C £ ? e n (HCDoo, CF, F) = Cgen(RE).

Accepting Multi-Agent Systems II 373

(b) Otherwise, ¿ " « (H C D « , , CF, F) ts not contained in ¿ ^ " (H C D ^ , CF, F),
since Cgen(CS) 2*5 not contained in C9en{0,CF). •

T h e o r e m 5.6 Let F C D contain one of the modes {*,t} U {<k, = k,>k \ k £
N } U { (> ¿i A < k2) | Jfei, k2 £ N and fci < k2 } U { (t A > k) \ k £ N } and one of
the modes { (t A < k), (t A = k) \ k £ N } . Then, we have:

£a c c(HCDoo, CF[—A], F) = £ a c c (HCD 2 , CF[-A], F).

Proo f . We can distinguish two cases:

1. If F D ({*} U { (t A > k) | k £ N }) 0, then [16, Theorem 4.5] is applied.

2. If F n ({ * } U { <k, = k,>k | k £ N } U { (> A <k2) \ klt k2 £ N A fci <
k2 }) ^ 0, then following idea is helpful: First, due to our last theorem, it
is sufficient to consider *- and (t A = l)-components, because every context-
sensitive (or even recursively enumerable, if A-rules are admitted) language
can be accepted in such a way. Then, possibly a prolongation argument is
applied. It is possible to colour each symbol of the originally given hybrid
CDGS with a special colour indicating the (t A = l)-component we are going
to apply next. Furthermore, we assume only coloured versions of terminals
appearing in the sentential form. All original (t A = l)-components are put
together, where each set of productions only works on its private alphabet. In
addition, mixtures are excluded introducing productions of the form XY —• F
(where X and Y are from different colours or terminal symbols). •

Naturally, Theorem 5.6 cannot be improved, since (hybrid) CDGS with context-
free rules having one component can accept at most the context-free languages. Just
as an aside, we remark in this place:

T h e o r e m 5.7 For every k £ N,

£(FIN) = £ a c c (CDi , CF[—A], (i A = k)) = £ 9 e " (CDi , CF[—A], (< A = k))
= £ o c c (CDi , CF[—A], (t A< k)) = £ s e " (C D i , CF[—A], (t A< k)). •

Theorem 5.6 contrasts sharply with our results in the generating case. Unfortu-
nately, many points are still open here. Therefore, we only quote two preliminary
results which prove that accepting hybrid systems are much more powerful than
their generating counterparts in many cases.

T h e o r e m 5.8 1. Iff £ {(i A < 1), (t A = 1)}, then, for n £ {1, 2}, we have

£ s e n (HCD„ , CF[—A], {* ,*} U { < k | k £ N } U { / }) = £« e n (CF) .

2. Let 0 # F C { i } U { (tA > k) \ k £ N } . For every f £ { (t A < k), (t A = k) \
k £ N } , we have

£5e"(HCDoo, CF[—A], F U { / }) = £ i e n (HCD 4 , CF[-A], FU {/}).

374 Henning Fern au, Markus Holzer

Especially, observe that

£ i e n (C F) = £ f f e"(HCD2 , CF[—A], { * } U {(< A = 1)})
C £ a c c (HCD 2 , CF[-A], { * } U {(< A = 1)}) = £ j e n (R E)

is an amazing jump from the generating to the accepting power.
Moreover, it is always interesting to see for what hybridization is really good. In

this respect, we want to contrast £ f e n (C F) = £ a c c (CD 2 , CF, *) and £* e n (LIN) =
£ o c c (CD 2 , CF, (< A = 1)) with £ i e n (R E) = £ a c c (HCD 2 , CF, {* } U {(< A = 1)}).

6 (Prescribed) Teams as acceptors
A cooperating distributed grammar system with prescribed teams (PTCDGS for
short), confer [17, 18, 19, 26], is a construct G = (N, T,S, Pi,..., P„, Q i , . . . , Qm),
with n,m £ N, where (N , T, S, P i , . . . , P„) is a usual CDGS and Qi,..., Qm are
teams, i.e., subsets of { P i , . . . , P n } . If each subset of { P i , . . . , P „ } can be a team,
then we say that G has free teams, G is called a cooperating distributed grammar
system with teams (TCDGS for short).

For x, y £ (N U T)*, we write x y for some team Q, = {Pj1,..., P , , } if and
only if x = xiAix2A2 • ..x!A,xi+i,y = xiyix2y2 • • x,y,xi+i, where xt £ (NUT)*,
l<£<s+l,Ar—*yr£ Pjr, 1 < r < s. Having defined the one-step derivation,
we can easily define derivations in Qi of k steps, at most k steps or at least k steps,
and of any number of steps, denoted again by = > q > =>q, 1 respectively.
For maximal derivations in a team Q,, we can consider three variants:

1. x =>q y if and only if x y and there is no z such that y =><?; z [18].

2. x y if and only if x y and for no component PJr G Qi and no z
there is a derivation y =>pjr z [19].

3. x =>Q. y if and only if x y and there is a component PjT £ Qi such that
for no z there is a derivation y =>pjr z [26].

Given a (P)TCDGS G working in mode / G {*,<o, tiM) U{ < k, = k, > k | k £ N } ,
we define the derivation relation x => y if and only if there exists a team Qi such
that x =>q. y. As usual, the language generated in / -mode by G is defined as

Ljen{G) := {w £T* | 5 ai ^ . . . ^ ^ ^ = with

I > 1, 1 < ij < m . a n d 1 < i < ^} -

We denote by £* e n ((P)TCD, CF[-A], /) the family of languages generated by [A-
free] (P)TCDGS. Correspondingly, accepted languages and language classes are
defined. We summarize the known results on generating (P)TCDGS.

Theorem 6.1 1. For all f £ {*} U { < k, = k, > k \ k £ N },

£ * e n (P T C D , C F [- A] , /) = £ ? e n (P , CF[-A]).

Accepting Multi-Agent Systems II 375

2. For all f e {t0,tut2),

£ s e n (T C D , CF[—A], /) = £ s e " (P T C D , C F [- A] , /) = £ s e n (P , CF[-A], ac).

The strictness of the inclusion £« e n (TCD, CF[-A], /) C £ f e n (P , CF[-A]), for
/ G { * } U { < k, = k,> k | k € N } is open. However, it is quite clear that the
generating and accepting capacity of (P)TCDGS working in one of the modes / G
{ * } U { < fc, = fc, > fc | Jfc G N } coincides.

Theorem 6.2 For all f G { * } U { < k, = k, > k \ k G N }, we have:

1. £ a c c (PTCD, CF[—A], /) = £ 5 e n (PTCD, CF[-A], /) = £* e n (P, CF[-A]),

2. £ a c c (TCD,CF[—A], /) = £ * e n (T C D , C F [- A] , /) . •

As regards the different i-modes, the observations sketched in the following
allow us to carry over our result contained in [16, Theorems 4.2, and 4.5]:

1. If we have only one-element teams, all i-modes introduced for PTCDGS co-
incide (with the classical i-mode). Hence, such PTCDGS accept all context-
sensitive languages.

2. The simulation also works when permitting larger (arbitrary) teams, since
it is possible to use different colours in the simulation of different genuine
context-sensitive rules (simulating a context-sensitive grammar in Kuroda
normal form). "Wrong" colours are alway sent to the failure symbol. Possibly,
if we choose teams containing more than one component, two or more rules of
the originally given context-sensitive grammar are simulated in parallel, but
this does no harm, since a sequentialization choosing singleton teams is always
possible. Further observe that a simulation of a genuine context-sensitive rule
by a i-mode component as given in [16, Theorems 4.2, and 4.5] always takes
the same number of steps, so that no garbage can be derived employing the
<2-mode. Hence, such TCDGS can also accept all context-sensitive languages.

3. As regards A-rules, they are simply useless in case of classical CDGS working
in i-mode, since such a rule is always applicable. A similar argument is
applied to (P)TCDGS working in <i-mode. The situation is different for
CDGS working in io-mode or in <2-m°de. Why? First, we can assume that
the type-O-grammar we are going to simulate has only one production of
the form E —» A, where £ is a special nonterminal symbol serving as a
place-holder for the empty word. Moreover, due to the closure properties
of £ 9 e " (RE) , we can assume an additional left-marker symbol # . Now, A-
productions can be simulated by three components, P\,i = { # —1* # , # —*
' } , PK2 = { # ' — # } , and Px,3 = {A — E}. When 'combining PXA and
P\ 3 into one team, arbitrarily many E's can be introduced. When using
free teams, other combinations are now possible which may block a <-mode
derivation prematurely. Therefore, this case remains as an open question.

376 Henning Fern au, Markus Holzer

We collect our observations in the following.

Theorem 6.3 For each f £ {<O1<I1<2}, we find in general

1. £ a " (P T C D , CF - A, /) = £ a c c (TCD, CF - A, /) = £» e n (CS), and

2. C°en{CS) C £ a c c (TCD, CF, /) C £ a c c (PTCD, C F , /) C £ f e n (R E) .

More specifically, we obtain by our third observation:

3. £ a c c (PTCD,CF,<i) = £ a c c (TCD,CF,<i) = £« e n (CS), and

4. £ a c c (PTCD, CF, t0) = £ a c c (PTCD, CF, t2) = £sen(RE). •

Comparing the generating versus the accepting capacity, we get:

Corollary 6.4 For each f £ { < o , < i , < 2 } , we find

1. £ f e n ((P)TCD, CF - A, /) C £ a c c ((P)TCD, CF - A, /) ;

2. £ a c c ((P)TCD, CF, /) C £ i c n ((P)TCD, CF, /) ;

3. £ a c c ((P)TCD,CF,<i) C £ 9 e n ((P)TCD,CF,< 1) ;

4. ^acc^pTCD, CF, g) — £ s e n (PTCD,CF, g), for g £ {<o,<2}- •

7 Conclusions

We continued our studies on accepting systems of grammars, paying special at-
tention towards internally hybrid modes and teams. In this way, we also found
first examples of grammar mechanisms whose generating power is greater than its
accepting power.

In [2], two variants of the <-mode, namely weak t and stagnation, have been
introduced: In weak <-mode a component Pj works on a string up to the point a
sentential form w is obtained with w =>pj v implies w = v. This corresponds to the
adult mechanism known from the theory of Lindenmayer systems. Now, another
component may start its work with w.

The stagnation-mode is defined as follows: a component Pj works on a string
deriving subsequently w\ =>pj w2 • • • wn, and wn v implies
W{ = v for some 1 < i < n. Now, another component may start its work with wn.

Analyzing the proof of [16, Theorem 4.2], we see that both variants also char-
acterize the context-sensitive languages when seen as language acceptors. These
results on the accepting capacity of these modes have been independently obtained
from [2].

Accepting Multi-Agent Systems II 377

References

[1] A. Atanasiu and V. Mitrana. The modular grammars. International Journal
of Computer Mathematics, 30:101-122, 1989.

[2] H. Bordihn and E. Csuhaj-Varjú. On Competence and Completeness in CD
Grammar Systems. In this volume.

[3] H. Bordihn and H. Fernau. Accepting grammars with regulation. International
Journal of Computer Mathematics, 53:1-18, 1994.

[4] H. Bordihn and H. Fernau. Accepting programmed grammars without non-
terminals. In 5. Gl Theorietag "Automaten und Formale Sprachen", Technical
Report 9503, Universität Gießen, Arbeitsgruppe Informatik, pages 4-16, 1995.

[5] H. Bordihn and H. Fernau. Accepting grammars and systems: an overview. In
J. Dassow, G. Rozenberg, and A. Salomaa, editors, Developments in Language
Theory II; at the crossroads of mathematics, computer science and biology,
pages 199-208. Singapore: World Scientific, 1996.

[6] H. Bordihn and H. Fernau. Accepting grammars and systems via context
condition grammars. Journal of Automata, Languages and Combinatorics,
1(2):97—112, 1996.

[7] E. Csuhaj-Varjú and J. Dassow. On cooperating/distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.),
26(l/2):49-63, 1990.

[8] E. Csuhaj-Varjú et al. Grammar Systems: A Grammatical Approach to Dis-
tribution and Cooperation. London: Gordon and Breach, 1994.

[9] J. Dassow and Gh. Päun. Regulated Rewriting in Formal Language Theory,
volume 18 of EATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

[10] R. Engelmore and T. Morgan. Blackboard Systems. Addison-Wesley, 1988.

[11] H. Fernau and H. Bordihn. Remarks on accepting parallel systems. Interna-
tional Journal of Computer Mathematics, 56:51-67, 1995.

[12] H. Fernau and R. Freund. Accepting array grammars with control mechanisms.
Unpublished manuscript, 1996.

[13] H. Fernau and R. Freund. Bounded parallelism in array grammars used for
character recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors, Ad-
vances in Structural and Syntactical Pattern Recognition (Proceedings of the
SSPR'96), volume 1121 of LNCS, pages 40-49. Berlin: Springer, 1996.

378 Henning Fern au, Markus Holzer

[14] H. Fernau, R. Freund, and M. Holzer. External versus internal hybridization for
cooperating distributed grammar systems. Technical Report T R 185 -2 /FR-
1/96, Technische Universität Wien (Austria), 1996.

[15] H. Fernau and M. Holzer. Bidirectional cooperating distributed grammar
systems. Technical Report WSI-96-1, Universität Tiibingen (Germany),
Wilhelm-Schickard-Institut für Informatik, 1996.

[16] H. Fernau, M. Holzer, and H. Bordihn. Accepting multi-agent systems: the
case of cooperating distributed grammar systems. Computers and Artificial
Intelligence, 15(2-3):123-139, 1996.

[17] R. Freund. Array grammars with prescribed teams of array productions. In
Developments in Language Theory II; at the crossroads of mathematics, com-
puter science and biology, pages 220-229. London: Gordon and Breach, 1996.

[18] R. Freund and Gh. Päun. A variant of team cooperation in grammar systems.
Journal of Universal Computer Science, 1(2): 105-130, 1995.

[19] L. Kari, A. Mateescu, Gh. Päun, and A. Salomaa. Teams in cooperating
distributed grammar systems. Journal of Experimental and Theoretical AI,
7:347-359, 1995.

[20] R. Meersman and G. Rozenberg. Cooperating grammar systems. In Proceed-
ings of Mathematical Foundations of Computer Science MFCS'78, volume 64
of LNCS, pages 364-374. Berlin: Springer, 1978.

[21] R. Meersman, G. Rozenberg, and D. Vermeir. Persistent ETOL systems. In-
formation Sciences, 18:189-212, 1979.

[22] V. Mitrana. Hybrid cooperating/distributed grammar systems. Computers
and Artificial Intelligence, 12(l):83-88, 1993.

[23] N. J. Nilsson. Principles of Artificial Intelligence. Berlin: Springer, 1982.

[24] Gh. Päun. On the generative capacity of hybrid CD grammar systems. J. Inf.
Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.), 30(4):231-244,
1994.

[25] Gh. Päun. Grammar systems: a grammatical approach to distribution and
cooperation. In Automata, Languages and Programming; 22nd International
Colloquium, ICALP'95, Szeged, Hungary, volume 944 of LNCS, pages 429-443.
Berlin: Springer, 1995.

[26] Gh. Päun and G. Rozenberg. Prescribed teams of grammars. Acta Informatica,
31:525-537, 1994.

[27] E. L. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65:197-215, 1943.

Accepting Multi-Agent Systems II 379

[28] S. H. von Solms. Some notes on ETOL-languages. International Journal of
Computer Mathematics, 5(A):285-296, 1976.

[29] M. J. Wooldridge and N. R Jennings. Agent theories, architectures and lan-
guages: a survey. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent
Agents; ECAI-94 Workshop on Agent Theories, Architectures, and Languages
(Amsterdam 1994), volume 890 of LNCS (LNAI), pages 1-39. Berlin: Springer,
1994.

Acta Cybernetica 12 (1996) 381-395.

Parallel Communicating Grammar Systems:
Recent Results, Open Problems*

Gheorghe PAUN*

Abstract

First, we recall several recent results concerning the generative power of
parallel communicating (PC) grammar systems, including characterizations
of recursively enumerable (RE) languages starting from PC grammar systems
and their languages. Then, we prove that the simple matrix languages can be
generated by PC grammar systems and finally we introduce a new class of PC
grammar systems: when a component has to communicate, it may transmit
any non-empty prefix of its current sentential form. Each RE language is
the morphic image of the intersection with a regular language of a language
generated by such a system. A series of open problems are pointed out in this
context.

1 Introduction

This paper deals with only one class of grammar systems, the parallel communicat-
ing (PC) grammar systems, introduced in [24]. We do not discuss here cooperating
distributed (CD) grammar systems, introduced in [4]. Of course, also in the case
of PC grammar systems we do not cover all the recent results; for instance, we are
not concerned here at all with a series of variants introduced in the last time.

Informally speaking, a PC grammar system consists of several usual grammars,
each of them having its own sentential form. In each time unit (a common clock
divides the time in units, in a uniform way for all components) each component
uses a rule, rewriting the associated sentential form. Special (query) symbols .are
provided, pointing to components of the system. When a component i introduces
the query symbol Qj, then the current sentential form of the component j will
be sent to the component i, replacing the occurrence(s) of Qj. One component is
distinguished as the master, and the language generated by it, alone or involving
communications, is the language generated by the system. Several variants can be

'Research supported by the Academy of Finland, Project 11281, and by Hungarian Scientific
Research Fund OTKA T 017105

^Institute of Mathematics of the Romanian Academy, PO Box 1-764, 70700 Bucure§ti, Roma-
nia. E-mail: gpaun@imar.ro

381

mailto:gpaun@imar.ro

382 Gheorghe Páun

considered, depending on the shape of the communication graph, on the action a
component has to perform after communicating, and so on.

The work of PC grammar systems is quite intricate, systems with a small num-
ber of components can generate one-letter non-regular languages, [5], characteri-
zations of recursively enumerable languages are obtained by (non-centralized) sys-
tems with context-sensitive components, [12], [25], each matrix language (generated
without appearance checking) can be generated by a PC grammar system, too,
[17], etc. Moreover, many basic questions proved to be very resistent and (with
the exception of some particular cases) are still open. For instance, does the num-
ber of components induce an infinite hierarchy of families of languages generated
by PC grammar systems with context-free components ? Which is the relation
between families of languages generated by non-centralized PC grammar systems
with context-free (arbitrary or A-free) rules and the family of context-sensitive lan-
guages ? Both grammatical techniques and complexity techniques were used, but
without settling this latter question.

Recently, several results were obtained which shed more light on the power of
PC grammar systems. We recall some of them in the next section. Without solving
the above mentioned questions, they provide a new indication about the difficulty of
these questions: characterizations of recursively enumerable (RE) languages were
obtained by adding to PC grammar systems certain features usual in language
theory (for instance, lefmost derivation). We shall recall some results of this type
in Section 3 below.

These results are not the first of this type. For instance, characterizations of
RE appear also in [19], using query words instead of query symbols, and in [6]
and [14], using a variant of PC grammar systems where the communication is done
by command, not on request (the component which sends the string to another
component starts the communication and the communicated string is accepted
only if it passes a given filter associated with the receiving component).

Because PC grammar systems with leftmost derivation characterize RE, they
trivially generate each simple matrix language; this has been proved in [17] without
noticing the equality with RE. However, the leftmost restriction is not necessary
in order to cover the power of simple matrix languages; we prove this in Section 4.

Then, we introduce a new class of PC grammar systems, where prefixes of the
current sentential forms may be communicated. Such systems are both very natural
from the point of view of the returning-non-returning feature (when the whole
string is communicated, then the component resumes working from its axiom; if
a part of the sentential form remains, then one continue from it) and because a
nice characterization of RE languages is again obtained: as the morphic image of
the intersection of a regular language with a language generated by a system as
above. (This is similar to the well-known Chomsky-Schützenberger characterization
of context-free languages.) The proof makes use of a powerful result in formal
language theory: a characterization of recursively enumerable languages starting
from a rather restricted class of languages, the so-called twin-shuffle languages, and
the operations of intersection with regular languages and erasing morphisms. This
result appears in [11]; a proof can be also found in [28]. A twin-shuffle language

PC Grammar Systems: Recent Results, Open Problems 383

over a given alphabet V is the set of all strings obtained by arbitrarily shuffling
each string over V with a "twin" of the string, obtained by marking each symbol
with a bar. Modulo an intersection with a regular language, such a language can be
generated in a relatively easy way by a PC grammar system with (A-free) context-
free rules allowed to communicate prefixes.

Several open problems are formulated, both for usual PC grammar systems and
for the new variant of PC grammar systems.

2 Parallel communicating grammar systems

As usual, for an alphabet V we denote by V* the free monoid generated by V under
the operation of concatenation; the empty string is denoted by A and V* — {A}
is denoted by V+. For x £ V*,U C V, |x| is the length of x and |x|c/ is the
number of occurrences in x of symbols in U. A Chomsky grammar is denoted by
G = (N, T, S, P), where N is the nonterminal alphabet, T is the terminal alphabet,
S is the axiom and P is the set of rewriting rules. The language generated by G
is denoted by L(G) and REG, LIN, CF, CS, RE are the families of regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively.
We also denote by MAT, MATX the families of languages generated by matrix
grammars (without appearance checking) with A-free context-free rules, and with
arbitrary context-free rules, respectively. Two languages L\, L-> are considered
equal if they differ only in the empty string, that is if L\ — {A} = Lo — {A}.

For basic elements of formal language theory we refer to [7], [26], [27].
A parallel communicating (PC, for short) grammar system of degree n,n > 1

([24], [5]), is a construct

T = (N,T,K,(P1,S1),...,(Pn,S„)),

where N,T,K are pairwise disjoint alphabets, with I\ = { Q i , . . . , Qn}, Si £ N,
and Pi are finite sets of rewriting rules over N U T U A", 1 < i < n; the elements of
N are nonterminal symbols, those of T are terminals-, the elements of K are called
query symbols, the pairs (Pi, Si) are the components of the system (often, the sets
Pi are called components). Note that the query symbols are associated in a one-to-
one manner with the components. When discussing the type of the components in
Chomsky hierarchy, the query symbols are interpreted as nonterminals. In general,
the axiom of component i is denoted by Si and its associated query symbol by
Qi] when this is the case, we do not explicitly specify these elements; if this is not
the case, then the axioms and the query symbols are explicitly defined for each
component of a PC grammar system.

For (x i , . . . , xn),(yi,..., yn), with Xi, yi £ (TVUTU A')*, \ < i < n (we call such
an n-tuple a configuration), and x\ £T*, we write (x i , . . . , x„) = > r (yi, • • •, yn) if
one of the following two cases holds:

(i) \xi\k = 0 for all 1 < i < n\ then x,- =>pt yi or Xj = yi £ T*, 1 < i < n;

384 Gheorghe Páun

(ii) there is i, 1 < i < n, such that \xi\n > 0; we write such a string x,- as

x,- = ziQilz2Qi3 • • • ztQi,zt+i,

for t > 1,2,- G (N U T) ' , 1 < i < t + 1; if |x { j\K = 0 for all 1 < j < t, then

Vi = z1xilz2Xi2 .. ,ZtXitZt+1,

[and i/ij = Si^ 1 < j < <]; otherwise y,- = x,-. For all unspecified i we have
Vi = Si-

Point (i) defines a rewriting step (componentwise, synchronously, using one rule
in all components whose current strings are not terminal), (ii) defines a commu-
nication step: the query symbols QXj. introduced in some x,- are replaced by the
associated strings i,- ., providing that these strings do not contain further query
symbols. The communication has priority over rewriting (a rewriting step is al-
lowed only when no query symbol appears in the current configuration). The work
of the system is blocked when circular queries appear, as well as when no query
symbol is present but point (i) is not fulfilled because a component cannot rewrite
its sentential form, although it is a nonterminal string.

The above considered relation = > r is said to be performed in the returning
mode: after communicating, a component resumes working from its axiom. If the
brackets, [and y,- . = 5 t j , 1 < i < t], are removed, then we obtain the non-returning
mode of derivation: after communicating, a component continues the processing of
the current string. We denote by the obtained relation.

The language generated by T is the language generated by its first component
(Gi above), when starting from (S i , . . . , 5„) , that is

LF(T) = {WET* | (5 i 1 . . . , 5 „) = > ; (u>, a 2) . . . ,<*„),
for ai G (N U T U / {) * , 2 < i < n} , / G { r ,n r } .

(No attention is paid to strings in the components 2 , . . . , n in the last configuration
of a derivation; moreover, it is supposed that the work of F stops when a terminal
string is obtained by the first component.)

Let us consider two examples. For the system

Ti = ({ 5 i , 5 2 , 53 } , { a ,6 , c } ,A ' , (P 1 , 5 i) , (P 2 , 52) , (/ J 3 ,5 3)) ,
Pi = {Si —> abc, Si —• a2b2c2,Si —• aSi, Si —• a3Q2, S2 —*• b2Q3, S3 —• c},
P2 = {S2 - 6 S 2 } ,

P3 = { S 3 - c S 3 } ,

we obtain
Lr(r) = Lnr(T) = {anbncn | n > 1}.

Here is a derivation in IV

(S 1 . S 2 . S 3) = > / (a S i , 6 S 2 , c S 3) = > / - . . = > / (a n S i , 6 n S 2 , c n S 3) ,

(a " + 3 Q 2 , 6 " + 1 S 2 , c " + 1 S 3) = » / (a n + 3 6 n + 1 S 2 , y 2 , c " + 1 S 3)

(an+3bn+3Q3,y'2,cn+2S3) =>} (a" + 3 6 n + 3 c n + 2 S 3 , y'2, y3)
= > , (a n + 3 6 n + 3 c n + 3 , y2, ¡/3), n > 0,

PC Grammar Systems: Recent Results, Open Problems 385

for / 6 { r ,nr } ; in the returning case we have y2 = S2,I/2 = bS2,]/2 —
b2S2,y3 = S3,?/i, = cS3, in the non-returning case y2 = 6n+1S2,t/2 = bn+2S2,x/2 =
bn + 3S2 ,y3 = cn + 2S3,y^ = cn + 3S3- Because the second and the third components
communicate only once to the first component, there is no difference between the
language generated in the returning mode and the language generated in the non-
returning mode. This is not the case for the following system.

T2 = ({ S i , S 2 } , { « } , K, (Pi, S1),(P2, S2)),
Pi = {Si aQ2, S2 —• aQ2, S2 —> a} ,
P2 = {S2 - aS2} .

The reader might check that we obtain

L r (r 2) = { a 2 " + 1 | n > 1},
(m + l) (m + 2)

Lnr(r2) = {aL <J 1 \m> 1}.

Two basic classes of PC grammar systems can be distinguished: centralized.
(only G i, the master of the system, is allowed to introduce query symbols), and non-
centralized (no restriction is imposed on the introduction of query symbols). There-
fore, we get four basic families of languages: denote by PCn(X), n > 1, the family of
languages generated in the returning mode by non-centralized PC grammar systems
with at most n components and with rules of type .Y; when centralized systems are
used, we add the symbol C, when the non-returning mode of derivation is used, we
add the symbol N, thus obtaining the families CPCn(X), NPCn(X), NCPCn(X).
When no restriction on the number of components is imposed, then we remove the
subscript n, obtaining PC(X), CPC(X), NPC(X), NCPC(X). In what concerns
the type X of rules, they can be A-free right-linear (denoted by RL), A-free context-
free (C F) , arbitrary right-linear (denoted by RLX), arbitrary context-free (C F X) ,
and so on. Note that because we consider as equal the languages differing at most
by A, we need no A-rule for introducing the empty string in our languages.

The diagram in Figure 1 indicates the relations between the eight basic families
of languages defined above, for the A-free case, as well as their relationships with
families in the Chomsky hierarchy. The arrows indicate inclusions, not necessarily
proper; the families not connected by a path are not necessarily incomparable.

Among the newest relations contained in this diagram, we mention:

1. NPC(RL) C PC(RL) and NPC(CF) C PC(CF). (The first result of this
type has been given in [18], NCPC(CF) C PC(CF), hence starting from
centralized systems, then a proof for the inclusion NPC(LIN) C PC(LIN)
has been done in [29]; the question was settled in [9].)

2. MAT C PC(CF) ([17]).

3. CPC(RL) C MAT ([20]).

4. LIN C PC(RL) ([10]).

386 Gheorghe Páun

5. The families CPC(RL), NCPC(RL) are incomparable and also incomparable
with LIN ([5] and [10]).

From the last item above we get the strictness of the inclusions of families
CPC(RL), NCPC(RL) in the families above them in this diagram. Not contained
in the diagram is the inclusion PC(RL) Ç CS proved in [3] (where, in fact, the
stronger result is proved that PC(LIN) Ç CS; the inclusion PC(RL) Ç CS is
already proved in [2]).

RE

Figure 1

Several problems concerning the generative power of PC grammar systems are
still open. We list here some of them.

1. Which of the hierarchies Yn(X),n> 1, Y 6 {PC,CPC, N PC, NCPC},X e
{RL,CF}, are infinite ? The answer is known only for CPCn(RL) and
NCPCn(RL), which, as expected, are infinite hierarchies; see [15].

2. Which of the inclusions not mentioned above as being proper are proper ?

3. Which is the relation between families CPC(CF) and NCPC(CF) ?

PC Grammar Systems: Recent Results, Open Problems 387

4. Which of the inclusions Y(X) C Y(Xx), for all possible X, Y, are proper ?

5. Which is the relation between PC(CF), NPC(CF) and CS ? The same when
A-rules are allowed. Several authors have announced proofs of the inclusion
PC(CF) C CS, but none of them is confirmed yet.

6. Which are the relations between LIN and NPC(RL) ? The same for the
families MAT and each of PC(RL), NPC(RL), NPC(CF).

3 Characterizing RE
First, we recall a result in [23], concerning PC grammar systems with leftmost
derivation. It is known from regulated rewriting area, [7], that such a restriction
increases the power of grammars with controlled derivation. This is the case also
for PC grammar systems. Moreover, the rather surprising result is obtained that
RE can be characterized by such systems with A-free rules. (The explanation lies
in the fact that we can use the components of the system other than the master
as working space where no erasing is necessary, because we ignore the contents of
these components at the end of a derivation.)

We say that a context-free rule A —» v is applied in the leftmost mode to a
string x, and we denote by x =>, y the derivation, if x = x\Ax2,y = X]_vx2

and |xi| dom(Pi) = 0, where dom(Pi) = {B£N\B-^z£ P,}. We denote
by Lg i(T),g G {r, nr}, the language generated by a PC grammar system T in
the mode g when using leftmost derivations. By PC,(X) we denote the family of
languages L r , (r) , for T a PC grammar system of type X\ in the non-returning case
we write NPCi(X).

The inclusions PC,(CP) C PC,(CPA), NPC,(CF) C NPC,(CFX) are obvi-
ous. We do not know how large the families NPCi(CF), NPCi(CFx) are, but,
surprisingly, we have

T h e o r e m 1. P C , (C P) = P C , (C P A) = RE.

The idea of the proof is the following.
Take a language L C T*, L G RE. It is known (see [27]) that there are two new

symbols ci,c2 and a language L' G CS such that L' C LlC\C2 and for each w G L
there is i > 0 such that wc\cl2 G L'.

Take a (A-free) grammar G = (NQ,TU { c i , C 2 } , So, Po) for the language L',
in Kuroda normal form, with the non-context-free rules labelled in a one-to-one
manner, r : AB —• CD. Assume that for all A, B G No there also is a rule AB —• AB
in P 0 .

One constructs the PC grammar system T working as follows.
Certain components of it generate strings of the form w'c'^'E, for №CjC2 G L'

(w' is obtained from w by priming its symbols). Then, other components take the
string W'C'YC^E generated by the previous group and adjoin to it a string y"Z, where
y G T+ and y" contains double primes. At the same time, one of the components
(specifically, P4 in the construction) produces a terminal string equal to y. The

388 Gheorghe Páun

string w'c'1c'2'Ey"Z is took by another group of components which check whether
or not w = y. When this is true, the master component can ask for the string of
P4. In this way, Pi receives a terminal string equal to w, hence a string in L.

In the characterization above, the use of context-free rules is esential. Because
LIN is incomparable with CPC(RLX) and NCPC(RLX) and it is conjectured
that the same result holds true for NPC(RLX), the known characterizations of RE
languages starting from linear languages, [1], [16], cannot be directly extended to
these classes of PC grammar systems. Still, such results are true for the family
NPC(RLX) at least. Moreover, the proof shows a very close similarity of linear
languages and copy languages. Note that every linear language L can be written
in the form L = {h(x mi(x)) \ x £ Lo}, for a regular language Lo and a morphism
h. Removing the mirror image, we get the copy languages, which characterize RE
in the same way as linear languages.

For a language L, denote copy(L) = { 11 | x £ L}. Proofs of the following
lemmas can be found in [23].

Lemma 1. For each language L £ RE there are two regular languages L\,L2

and three morphisms hi,h2,h3 such that L = h3(hi(copy(L\)) f) h2(copy(L2))).

Lemma 2. For each language L £ RE there are two regular languages L\,L2

and two morphisms h\,h2 such that L — hi(copy(Li))\h2(copy(L2)).
(\ denotes the left quotient: L\L' = {x \ zx E L', z £ L}.)

Lemma 3. For each regular language L and morphism h we have h(copy(L)) £
NPC(RLX).

Synthesizing Lemmas 1, 2, 3 above, we get

Theorem 2. For each language L £ RE we can find L\, L2, ¿3, £4 £
NPC(RLX) and a morphism h such that L = h(L 1 fl L2) = L3\L4.

In the proofs of Theorems 1, 2 above no bound on the number of components
of PC grammar systems characterizing the family RE is imposed. This is not the
case in [25] and [12], where two context-sensitive components in the non-returning
case and three in the returning case are enough (and necessary) for characterizing
RE using PC grammar systems. It is an open problem whether or not a bounded
number of components is enough also in the above theorems. It is also open the
case of non-returning PC grammar systems with context-free rules and leftmost
derivation; we conjecture that such systems cannot characterize RE.

4 Simple matrix grammars versus PC grammar
systems

In [17] it is proved that PC grammar systems with leftmost derivation can generate
each simple matrix language of [13]. The previous Theorem 1 trivially implies this
result. Still, one can prove that the simple matrix languages can be generated by

PC Grammar Systems: Recent Results, Open Problems 389

PC grammar systems with arbitrary context-free components in the usual mode of
derivation.

A simple matrix grammar (of degree n, n > 1) is an (n + 3)-tuple G =
(Ni,..., Nn,T, S, M), where

1. N\,..., Nn,T are disjoint alphabets (N{, 1 < i < n, are nonterminal alpha-
bets and T is the terminal one); we denote N = (J"=1 TV,-;

2. S £ NUT (the axiom);

3. M is a finite set of matrix rules of the forms:

a) (5 — ®), x&T*-

b) AXA2 ...An), Ai eNi,l<i< n,;

c) (Ai ->• ^n * xn), Ai £ Ni,Xi £ (Ni UT)*,\<i<n,

and = |xj |jVj for all 1 < i,j < n.

For w,z £ (N U T)* we write w ==> z if one of the following two cases holds:

(i) w = S and (5 — z) £ M ;

(ii) w = UIAIVIU2A2V2 .. .unAnvn, z = 111x^111-2x^2 . • .unxnv„, where Ui £ T*, Vi £ (Ni U T)*, 1 < i < n, and (^1 xu . .., A n *) £ M.

Therefore, the derivation is done in the leftmost manner on each of the n sub-
strings in (Ni U T)* of the derived string. Then,

L(G) = {X£T* I S =>* x}.

We denote by SM the family of languages generated by simple matrix grammars
(of arbitrary degree) with A-free context-free rules; when A-rules are allowed, we
write SMX for the corresponding family.

The following results are known (see proofs and references in [7]):

1. CF C SM C SMX C CS;

2. Each language in SMX is semilinear.

We shall essentially use below the following characterization of languages in the
family SMX.

Let V be an alphabet and n be a natural number. Denote

[V,n] = {(a,i) | a £ V, 1 < i < n),

and define the mapping rn : [V, n]* — • (K*)n by

1. r„(A) = (A , . . . ,A) ,
2. rn((a,i)x) = (xi,... ,xi-i,axi,xi+i,.. .,xn),

for a £ V, 1 < i < n, x £ [V, n]*,rn(x) = (x i , . . . , xn).

390 Gheoighe Paun

Consider also the mapping / : (V*)N —• V* defined by

f(xi,x2,• • • ,xn) = X1X2...x„.

Extend these mappings in the natural way to languages.
From Lemma 1.5.2 in [7] we get

Lemma 4. A language L C T* is in the family SMX if and only if there is an
integer n > 1 and a language L' £ CF, L C [T, n]*, such that L = f(rn(L')).

Using this characterization, we can obtain the following result.

Theorem 3. SMX C PC(CFX).

Proof. Because PC(CFX) contains non-semilinear languages (see [5]), it is
enough to prove the inclusion.

Consider a simple matrix language L C T*. If £ is finite, then trivially L £
PC(CFX). Assume that L is infinite. According to Lemma 4, consider V £
CF, L' C [T, n]*, such that L = / (r n (!'))• Let G = (N0, [T, n], S0, P0) be a context-
free grammar for the language L'. We construct the PC grammar system

r = (N, T, I<, (Su Pi), (S2, P2), (S3, P3), (S4, P4), (S4+1, P4+1), • • •, (5 4 + „ , P4+n)),

with

N = {Si,S< | 1 < i < 4 + n} U {(a, i) | a 6 T, 1 < i < n) U A 0̂ U {Z},

Pi = {•?! —»• Si, Si —• QsQG .. .Qa+U},
P2 = —• S2, S2 —> Q3, S'3 —> 53},
P3 = — Z , S 3 —• S3,53 —»• 53},
P4 = {5 4 - 5 0 } U P0,

P4+> = {^-(-i —» 54+i, 54+i —> 54+i, S'4+i —i> Q3, Z —• Q4}
U {(a, j) — A | a £ T, 1 < j < n, j ± »} U {(a, i) — a | a £ T } ,

for 1 = 1 ,2 , . . . ,n.

The idea behind this construction is the following. The component P4 gener-
ates a string in the language L' (over the alphabet [T, n]). When the work of P4
is finished, all the components PA+i,i = l , 2 , . . . , n , ask for the produced string.
The synchronization of these queries (and the fact that each component Pi+,- can
introduce only once the query symbol Q3) is ensured by the "trigger technique"
made possible by the synchronization feature of PC grammar systems and accom-
plished here by the components P 2 ,p3 (see details below). Each component Pj+i
erases from the received string all symbols (a,j) with j / i, and replaces (a, i) by
a, a £ T. In this way, together with Pi, they simulate at the same time the action
of Tn and of / : when communicated to the master, which introduces the string
QzQq • • • QA+n, the strings of P 5 , . . . , P4+n must contain only terminals and they
are now arranged in the order imposed by rn and / .

PC Grammar Systems: Recent Results, Open Problems 391

Here are some details of the work of I\
If P2 starts by introducing the symbol Q3, then it will receive either the symbol

Z and the derivation is blocked, or the symbol S3 and no terminal string will be
obtained, because Pj+j, 1 < i < n, cannot ask for Z at the first step. Thus, we have
to start with S2 —* S2 in the second component and S3 —• S'3 in the third one (if we
introduce Z in the third component, then the derivation is blocked, Z cannot be
rewritten here or communicated). This means that P3 will work an arbitrarily large
number of steps just using S'3 —• S'3. It can return to S3 only when P2 introduces
Q3. After receiving S3, the component P> will continue for ever with the rule
S3 —• S3. Therefore, at the next step P3 has to use S3 —• Z, otherwise Z will be
never introduced. If not all components P4+1, 1 introduce Q3 at the same
time, they must introduce it at the next step, otherwise they cannot receive the
symbol Z. But, after receiving Z, any component P4+i has to use Z —• Q4. At the
same step, P3 will either introduce S3 and no terminal string will be obtained (S3

is communicated to components P4+i which have not introduced Q3 before), or P3

will introduce Z. After satisfying the query symbols, P3 returns to its axiom, and
P4 does the same; the components which have received the symbol Z will introduce
Q4 and they will receive So from the fourth component. The derivation is blocked.

The only case when the derivation will continue leading to a terminal string is
that when all components P4+i, 1 < i < n, ask for the string of P4 at the same
time.

At any moment, the component P\ can ask for the strings of P4+i, 1 < i < n.
If it receives strings containing symbols in No or in [T, n], then the derivation is
blocked. Thus, the only terminal strings produced by T are those in / (r „ (L(G0))) ,
which completes the proof. •

5 Prefix communication in PC grammar systems

Let us consider a slight modification in the definition of a communication step in a
PC grammar system: when a component i introduces the query symbol Qj, then
component j communicates to component i a non-empty prefix of its current senten-
tial form. If the whole string is communicated, then component j resumes working
from its axiom; if a non-empty string remains in component j, then component j
continues processing this string. We denote by Lp (T) the language generated by a
system T in this way. We denote by PPCn{X) the family of languages generated
by prefix communicating PC grammar systems with at most n, n > 1, components
of type X; when n is not specified, we remove it. When centralized systems are
used, then we add the letter C, as usual.

One can consider several variants: to communicate only a terminal prefix, or,
deterministically, the maximal terminal prefix, or to allow also the communication
of the empty word. Their study, as well as the systematic study of the non-restricted
class considered above, is left to the reader. Here we give only one result, again a
characterization of RE languages.

392 Gheorghe Páun

Let x, y be strings over some alphabet V. Their shuffle is the set

x 111 y = {xiyix2y-2 • -.xnyn | x = x x x 2 ...xn,y = yxy2 •••yn,
Xi,Vi € V*,l < i < n,n > 1}.

Consider an alphabet V, take a new symbol a for each a £ V, denote V = {a |
a £ V} , and define the coding h : V* —• V by h(a) = a, a £ V. The string h(x)
is also denoted by x.

The twin-shuffle language over V, denoted twin(V), is defined by

twin(V) = y (x 111 x).
rev-

In [11] (see also [28], Theorem 6.10) one proves the following characterization
of recursively enumerable languages:

Lemma 5. For every recursively enumerable language L there is a twin-
shuffle language twin(V), a regular language R and a weak coding h such that
L = h(twin(V) n R).

Based on this result, we can obtain

Theorem 4. For every recursively enumerable language L there is a PC gram-
mar system r, a regular language R, and a weak coding h such that

L = h(Lp(T)nR).

Proof. For a language L £ RE, consider the morphism h and the regular
language R as in the previous lemma. Construct the PC grammar system

r = (N, 1/ U ? U {c, c}, I<, (Pi, Si), (P2, s2), (P3, S3), (P4, S4)) ,

with

N = { S i , S 2 , S 3 , S 4 , X } u { X a \a£V},

P i = { S i ^ S i , S i - ^ Q 2 S u S i Q 3 S 1 , S i - > Q2Q3, S i - Q3Q2},

P2 = {S2 Qa, X - T c } U {Xa aS2 | a £ V),
P3 = {S 3 - Qa, X c} U {Xa - aS3 | a £ V } ,
P4 = {S4 - Xa, Xa X a | a £ V} U {S4 X}.

No communication from the first component to another component is ever per-
formed. Component P4 introduces symbols Xa for a £ V, at each step components
P 2 ,P 3 ask for these symbols, hence component P4 has to send it to P 2 ,p3 and
resume working from its axiom. Components P 2 ,p3 produce in this way strings
x ,x , for the same x £ V*. When P4 introduces the symbol X, then it becomes
c in P2 and c in P3. Asking for prefixes of the strings produced by P2 and P3 ,
in all possible orders, component P\ builds a shuffle of the two strings, x and x.
Therefore, twin(V) C Lp(T).

PC Grammar Systems: Recent Results, Open Problems 393

The opposite inclusion is not true, because of the possibility of sending any prefix
to Pi (not necessarily covering the whole strings of P2, P3). However, L p (r) n ((V U
V)*{cc}) = twin(V){cc\: we have to communicate to Pi a string of the form xc
from P2 and a string yc from P3 (and nothing else); as we have seen above, we
must have x = y.

Consequently, L = h(Lp(T) fl R'), where

R' = J R n ((i / u F) * { c c }) .

This completes the proof. •

Corollary 1. For each family FL of language such thai FL C RE and FL is
closed under intersection with regular languages and arbitrary morphisms we have
PPC4(CF) -FL±%.

Proof. In view of Lemma 5 and the properties of family FL, the inclusion
PPCA(CF) C FL would imply RE C FL, a contradiction. •

Important families having the properties of FL above are MATX and ETOL (the
family of languages generated by tabled extended L systems without interaction,
known to be a full AFL strictly included in CS, [26]). Therefore, PPCn(CF), con-
tains languages outside these families for all n > 4. On the other hand, we believe
that MAT and ETOL contain languages which are not in PPC(CFX). If confirmed,
this conjecture will imply the incomparability of PPC(CF), PPC(CFX) with these
families, as well as the fact that PPC(CFX) is not closed under intersection with
regular languages (it is obviously closed under arbitrary morphisms).

References
[1] B. Baker, R. Book, Reversal-bounded multipushdown machines, J. Computer

System Sei., 8 (1974), 315 - 332.

[2] L. Cai, The computational complexity of PCGS with right-linear components,
Proc. Conf. DLT, Magdeburg, 1995, World Sei. Publ., Singapore, 1996, 209 -
219.

[3] L. Cai, The computational complexity of linear PCGS, Computers and AI, 15,
2-3 (1996), 199 - 210.

[4] E. Csuhaj-Varjü, J. Dassow, On cooperating distributed grammar systems, J.
Inf. Process. Cybern., EIK, 26, 1-2 (1990), 49 - 63.

[5] E. Csuhaj-Varjü, J. Dassow, J. Kelemen, Gh. Päun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London,1994.

[6] E. Csuhaj-Varjü, J. Kelemen, Gh. Päun, Grammar systems with WAVE-like
communication, Computers and AI, 15, 5 (1996), 419-436.

394 Gheorghe Páun

[7] J. Dassow, Gh. Päun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[8] J. Dassow, Gh. Päun, G. Rozenberg, Grammar systems, in Handbook of For-
mal Languages (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Heidelberg,
1996.

[9] S. Dumitrescu, Non-returning PC grammar systems can be simulated by re-
turning systems, Theor. Computer Sei., 165 (1996), 463-474.

10] S. Dumitrescu, Gh. Päun, On the power of PC grammar systems with right-
linear rules, submitted, 1996.

11] J. Engelfriet, G. Rozenberg, Fixed point languages and representations of re-
cursively enumerable languages, Journal of the ACM, 27, 3 (1980), 499 - 518.

12] R. Freund, Gh. Päun, C. M. Procopiuc, O. Procopiuc, Parallel communicating
grammar systems with context-sensitive components, in Artificial Life. Gram-
matical Models (Gh. Päun, ed.), Black Sea Univ. Press, Bucharest, 1995, 166
- 174.

13] O. Ibarra, Simple matrix languages, Inform. Control, 17 (1970), 359 - 394.

14] L. Ilie, A. Salomaa, 2-testability and relabeling produce everything, submitted,
1995.

15] J. Kari, L. Säntean, The impact of the number of cooperating grammars on
the generative power, Theor. Computer Sei., 98 (1992), 249 - 263.

16] M. Latteux, B. Leguy, B. Ratoandromanana, The family of one-counter lan-
guages is closed under quotient, Acta Informatica, 22 (1985), 579 - 588.

17] V. Mihalache, Matrix grammars versus parallel communicating grammar sys-
tems, in Mathematical Aspects of Natural and Formal Languages (Gh. Päun,
ed.), World Sei. Publ., Singapore, 1994, 293 - 318.

18] V. Mihalache, On parallel communicating grammar systems with context-free
rules, in vol. Mathematical Linguistics and Related Topics (Gh. Päun, ed.),
Ed. Academiei, Bucure§ti, 1995, 147 - 160.

19] V. Mihalache, Parallel communicating grammar systems with query words,
Ann. Univ. Buc., Matem.-Inform. Series, 45, 1 (1996), 81 - 93.

20] V. Mihalache, On the generative capacity of PCGS with regular components,
Computers and AI, 15, 2-3 (1996), 27 - 36.

21] Gh. Päun, Grammar systems: a grammatical approach to distribution and
cooperation, ICALP '95, LNCS 944 (Z. Fülöp, F. Gecseg, eds.), Springer-
Verlag, 1995, 429 - 443.

PC Grammar Systems: Recent Results, Open Problems 395

[22] Gh. Paun, Parallel communicating grammar systems. A survey, Proc. XI
Congress on Natural and Formal Languages, Tortosa, 1995 (C. Martin-Vide,
ed.), 257 - 283.

[23] Gh. Paun, Characterizations of recursively enumerable languages by means of
grammar systems, submitted, 1996.

[24] Gh. Paun, L. Santean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Buc., Series Matem.-Inform., 38 (1989), 55 - 63.

[25] 0 . Procopiuc, C. M. Ionescu, F. L. Tiplea, Parallel communicating grammar
systems: the context-sensitive case, Intern. J. Computer Math., 49 (1993), 145
- 156.

[26] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, New York, 1980.

[27] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[28] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press,
Rockville, Maryland, 1981.

[29] Gy. Vaszil, Linear non-returning PCGS can be simulated by returning PCGS,
manuscript, 1996.

Acta Cybernetica 12 (1996) 397-409.

Parallel Communicating Grammar Systems
with Separated Alphabets*

Valeria MIHALACHE t

Abstract

The generative capacity of parallel communicating grammar systems is
considered in the context that the component grammars have distinct ter-
minal and nonterminal sets. In the regular case, this results in strictly more
powerful systems in comparison to the classical ones. In the context-free case,
characterization of recursively enumerable languages is obtained when A-rules
are allowed in non-centralized returning systems, deriving in the synchronized
mode. Unsynchronized context-free systems with separated alphabets have
the same power as the corresponding usual systems.

1 Introduction
One of the main trends of our days in several fields of computer science is to solve
a complex problem by dividing it into subproblems, and then having it solved in
a cooperative mode by several "processors". The concretization of this trend in
grammar theory are the so-called grammar systems.

There are two basic models of grammar systems: cooperating distributed (CD,
for short) grammar systems, which have been introduced in [2] (a former variant can
be found in [7]; a particular case appears also in [1]), and parallel communicating
(PC, for short) grammar systems, which have been introduced in [10].

Roughly speaking, a grammar system consists of several (Chomsky) grammars
(called components) working together, towards generating a common language. In a
CD grammar system the component grammars work in turn, on the same sentential
form, only one being active at a given moment, according to a predefined protocol.
In a PC grammar system the components work simultaneously, in a synchronized
manner, each having its own sentential form and cooperating with the others by
communication, which is done by request. The Artificial Intelligence counterpart

"Research supported by the Academy of Finland, project 11281
'Faculty of Mathematics, University of Bucharest, Str. Academiei 17, 70109 Bucharest, Ro-

mania. Current address: Turku Centre for Computer Science (TUCS), Lemminkaisenkatu 14 A,
4th Floor, 20520, Turku, Finland

397

398 Valeria Mihalache

of a CD grammar system is the blackboard model in problem solving, whereas to
PC grammar system the classroom model corresponds (see [3]).

In the original definition, for parallel communicating grammar systems it is as-
sumed that all the grammars have the same terminal and nonterminal sets. This
is very convenient in terms of the classroom model. Thus, it is rather natural to
assume that all the pupils in a classroom have similar background and similar ab-
bilities (that is, the associated grammars in the system share the same nonterminal
set), and also that they are asked to perform similar tasks (in the corresponding
formal modélisation, this implies the same terminal set for all the grammars). How-
ever, if one considers that not pupils are working towards solving a problem, but
agents, instead, the working protocol being the same as in the classroom model,
such assumptions are not natural anymore. Agents can have to perform totally
different tasks, and they can have different skills.

Such a set-up can be modeled in the grammar systems framework by a slightly
modification of the original variant of PC grammar systems. One can consider that
any of the component grammars of the system has its own terminal and nonterminal
sets ([3], [9]). The main difference between these systems and the usual ones is that
here the same letter can act as terminal symbol in one grammar and nonterminal
in another one. In the regular case, PC grammar systems modified like that are
proved to be more powerful than systems of the initial form. Furthermore, in the
context-free case, characterization of recursively enumerable languages is obtained.

2 Preliminary definitions
Throughout this paper, we use the notation and basic results of formal language
theory from [4], [11] ; for grammar systems notions we refer to [3], [5]. We specify
here only some notation.

For an alphabet V, V* denotes the free monoid generated by V] the empty
string is denoted by A, |x| is the length of x G V* and \x\u is the number of
occurrences in x G V* of symbols of U C V. The classes of regular, context-free,
type-0 grammars and matrix grammars with appearance checking are denoted by
REG, CF, RE, MATac, respectively. Unless otherwise specified, we consider in this
paper only generative tools without A-productions.

For a class X of generative mechanisms, the family of languages generated by
elements of X is denoted by L (X) .

Definition 1 Let n > 1 be a natural number. A parallel communicating grammar
system of degree n with separated alphabets (PC grammar system of type s, for
short) is an (n + 1)-tuple

T = (K,G1,...,Gn),
where K — {Qi, ..., Q„} and

Gi = (Nil>I<,Ti,Pi,Si),l<i<n,

are usual Chomsky grammars (the sets Ni,Ti,K being mutually disjoint, for any
i, 1 < i < n).

PC Grammar Systems with Separated Alphabets 399

We write Vi = Nt U T{ U K and Vr = \J"=i(Ni u Ti) u K- T h e grammars
G>11 < 1 < i) are called components of the system, and the elements of K are
called query symbols; their indices, 1 , . . . , n, point to the components G\, • •., Gn,
respectively.

Remark that the definiton of PC grammar systems of type s does not require
Ni n Tj = 0 for 1 < i,j <n,i± j.

The convention throughout this paper is to denote the start symbol and the
production set of a component of a system with the same indices as the grammar
component is denoted. This convention holds for query symbols, too, so we do not
need to specify in details the set of query symbols for a given system.

The derivation in PC grammar systems of type s is defined in a similar manner
as for usual PC grammar systems, that is

Definition 2 Given a PC grammar system T = (K, Gi,..., Gn) as above, for two
n-tuples (xi,x2,...,xn),(yi, y2, ...,J/n), 6 ^ , l < i < n, xi £ Tf, we write
(x i , . . . , x „) ==>• (t / i , . . . , yn) if one of the next two cases holds:

(i) = 0,1 < i < n, and for each i, 1 < i < n, we have Xi yi in the
grammar Gi, or Xi E T* and x,- = yi;

(ii) there is an i, 1 < i < n, such that > 0; then for each such i, we write
Xi = ziQilz2Qi2 • • .ztQitzt+i,t > 1, for zj € Vp,\zj\K = 0,1 < j < t + 1;
*/ l^ijlif = 0,1 < j < t, then yi = ziXilz2Xi1... ztXitzt+\, providing that
yi € V*, [and yi:j = Si:j, 1 < j < t]; when, for some j, 1 < j < t, Ix.Jk #
then yi = xa for all i, 1 < i < n, for which yi is not specified above, we have
yi - Xi.

Point (i) defines (componentwise) derivation steps, whereas point (ii) defines
communication steps. * In a communication operation, when the communicated
string Xj replaces the query symbol Qj, we say that Qj is satisfied. The com-
munication has priority over the effective rewriting. If some query symbols are not
satisfied at a given communication step, then they will have to be satisfied at a
next one. No rewriting is possible when at least one query symbol is present.

The work of a PC grammar system with separated alphabets is blocked in three
cases: (1) when a component x,- of the current n-tuple (x i , . . . , x „) (sometimes we
shall call it a configuration) is not terminal with respect to Gi, but no rule of Gi can
be applied to Xj, or (2) when a circular query appears, that is (*?,-, introduces Qi3,Gi3

introduces Qi3, and so on, until Gik_1 introduces Qik and Gik introduces Qj,
(because only strings without query symbols can be communicated), or (3) when
after satisfying a query, the sentential form of a grammar is not a string over the
alphabet of that grammar, that is, in case (ii) we have z\Xilz2Xi3.. .z (x, (z(+i ^ V̂ -*
(we recall that for usual PC grammar systems case (3) does not appear).

Definition 3 The language generated by a PC grammar system T as above is

L(T) = {x € T ; | (Si, S2,..., Sn) (x, a2,..., an), G Vr*, 2 < i < n} .

400 Valeria Mihalache

Observe that due to the definition of the language generated by a PC grammar
system of type s we have that the terminal set of the system is actually the same
as the terminal set of the first component of the system. From the definition of
the derivation relation it follows that once the sentential form of Gi has become a
terminal string, the derivation cannot continue anymore in the system.

Just as in the case of usual PC grammar systems, one distinguishes several
variants.

Definition 4 If in Definition 2 only grammar G\ is allowed to introduce query
symbols, then we say that T is a centralized PC grammar system of type s; in
contrast, the unrestricted case is called non-centralized.

A PC grammar system of type s is said to be returning (to axiom) if, after
communicating, each component returns to axiom. A PC grammar system of type
s is non-returning if in point (ii) of Definition 2, the brackets,

[and yi} = S{j, I < j <t],

are omitted.

A PC grammar system is said to be regular, context-free, A-free, etc., when the
rules of its components are of these types.

For n > 1 and X £ {REG, CF}, we shall denote the families of languages
generated by non-returning centralized, non-returning non-centralized, returning
centralized, and returning non-centralized, respectively, PC grammar systems of
type s, of degree at most n and with components of type X by

L(NCPCnX, s) ; L(NPCnX,s) •, L(CPCnX,s) • L(PCnX,s).

When an arbitrary number of components is considered, we shall use * instead of
n.

If we still require in point (ii) of Definition 2 that those Xij which are to be
communicated must be terminal strings in the grammars whose sentential forms
they are, that is x^. G Tf, then we say that T derives in the terminal mode. The
language generated by T in this way is denoted by LT(V) and the family corre-
s p o n d i n g t o L(YNX, s), L(YMX, s) as a b o v e is d e n o t e d by Lx(Y„X, s), LT(Y*X, S).
Here and in the sequel Y ranges over {NCPC, NPC, CPC, PC) or some specified
subset of it.

If we replace point (i) in Definition 2 by
(i')!®«!^ = 0,1 < i < n and, for each i, 1 < i < n, we have either Xj =>• yi in

grammar Gi, or Xi = j/,-, then, just as in the case of usual PC grammar systems,
we get a PC grammar system of type s deriving in an unsynchronized manner.

Denote by ¿ t / (r) the language generated by T in this way. The family of lan-
guages generated by unsynchronized PC grammar systems of type s corresponding
to a family L(Y N X, s), L(Y,X, s) as above is denoted by LU(YNX, s), LU(Y,X , s).

PC Grammar Systems with Separated Alphabets 401

In order to illustrate the difference between usual PC grammar systems and the
ones studied here, let us consider an example.

Example : Let T = (K , G\, G2), be the returning non-centralized PC grammar
system with

Gj = ({SuA,B,Y},{X,a,b,c},
{Si XA, A XA, Si —• aB, B -+ aB, B aQ2, Y 6}, Si)

G2 = ({S2, X , A}, {Y, c}, {S2 —* YS2,S2 YQi,X —> c,A c} , S2)

If we start a derivation by using in G\ the production Si —• aB, then we have
either (Si, S2) ^(ak+1Q2,Yk+1Z), k> l,Ze{Qi,S2},

and then the derivation is blocked due to circular query, if Z is Q1, or due to
S ^ N t U T i , when attempting to satisfy the query in G1, if Z is S2,

or (Si,S2) (ak+1B, y f c + 1 Q i) , ib > 0,
and then the derivation is blocked because B £ N2 LI T2, and hence we cannot
satisfy the query in G2.

The only successful derivation is the one which starts as
(Si ,S 2) (. X k + 1 A , Y k + 1 Q 1) => (S i , Y * + 1 X * + U) (a'Q2,Yk+1a) =>
(a ' y ' + ^ . S a) ,
where k > 1 and a is obtained from the string Xk+1A by replacing some of the AT-s
and/or A with c, and / = |a|c, if a £ T2*, or / > k + 2, if a e T2* (i.e. a = ck+2).
If a ^ T2, in order to rewrite it as a terminal string, after a number of steps G2

must ask for the sentential form of Gi . But this sentential form contains symbols
a, which are not in the alphabet of G2 , and hence the query would not be satisfied.
This implies that it must be the case a 6 T2, and then the configuration above is

(a'Yk+1ck+2,S2),l >k + 2.

Because, as we have made the observation, G2 cannot accept a sentential form of
Gi containing symbol a, then the derivation has to end as

(a'Yk+1ck+2,S2) ^ (a'bk+1ck+2,Yk+1Z).

Thus we have that

L(r) = {ak+1+'bkck+1 | s > 0, k > 1},

a language which is not context-free. Note that what increases the power of the
system (for the usual PC grammar systems we have L (P C 2 R E G) C L (C F) , see
[13]) was the possibility of a component to rewrite symbols which are considered
terminals in another one, as well as the restriction that a communicated string has
to be a string over the alphabet of the grammar which required it.

3 Generative Capacity
We first present some general properties for parallel communicating grammar sys-
tems of type s, which are true also in case of usual parallel communicating grammar
systems.

402 Valeria Mihalache

L e m m a 1 For any Y G {PC, CPC, NPC, NCPC) and for any class X of gram-
mars, we have

(i) L(Y1X,s) = L(X);
Lu(Y1X,s) = L(X);
1LT(Y1X,s)=HX);

(ii) L (Y n X , s) C L (Y n + 1 X, s),n > 1,
Lu(YnX,s) C Lu(Yn+1X,s),n> 1,
LT(YnX, s) C LT(Yn+1X, s), n> 1,

(Hi) L { C P C n X , s) C L { P C n X , s) ; L (N C P C n X , s) C L(NPCnX,s),n > 1;
Lu(CPCnX, s) C L u (P C n X , s); L u (N C P C n X , s) C L v { N P C n X , s),
n > 1;
L T { C P C n X , s) C L T (P C n X , s); L T (i V C P C n X , s) C L r (ATPC„X, s),
n > 1;

(iv) L{CPC*X,s) C L (P C t I , s) ; L (iVCPC,X ,s) C L (iVPC,X , s) ;
L c / i C P C ^ , «) C L [/ (P a X , s) ; L ^ J V C P C . ^ . s) C L y (J V P C , I , s) ;
L r (C 7 P a X , s) C L r (P C J , i) ; LT(NCPCtX, s) C LT(NPCtX,s).

Proof : Directly from definitions. •

Each usual PC grammar system can be considered a PC grammar system of
type s (we simply skip N,T when writing T =' (N , K , T , G \ . . ,Gn)), hence we
also have

L e m m a 2 For any Y € {PC, CPC, NPC, NCPC} and for any class X of gram-
mars,

(i) L(YnX) C L(YnX,s),n > 1;

(ii) L u (Y n X) C L u (Y n X , s) , n > 1;

(Hi) L T (Y n X) C L T { Y n X , s) , n > 1 ;

Just as in the case of usual PC grammar systems, we have relations between
the families of generated languages, when considering various modes of derivation.

L e m m a 3 (i) L u { Y n X , s) C L(YnX, s), for any class X of grammars allowing
chain rules (that is rules of the form A —» B) and for any Y G {CPC, PC,
NCPC, NPC}-,

(ii) L T { Y n X , s) C L(YnX, s), for any class X of grammars and for any Y G
{CPC, NCPC}.

Proof : The proofs are entirely the same as for usual PC grammar systems, [3].
•

We next survey the properties known so far about regular PC grammar systems
with separated alphabets. For the proofs we refer to [9].

PC Grammar Systems with Separated Alphabets 403

Propos i t ion 1 (i) The family 1J(PCZREG,S) contains one-letter non-regular
languages.

(ii) The families L(NCPC2REG, s), L(NPC2REG, s) contain one-letter non-
regular languages.

(Hi) The families LU(NCPC2REG, S),L,U(NPC2REG,S) contain non-semi-
linear languages.

(iv) The family LT(CPC2REG, s) contains non-semi-linear languages.

Corollary 1 L (C P C n R E G) C L (C P C n R E G , s) , strict inclusion, for any n > 2.

So just as in the case of cooperating distributed grammar systems, by consid-
ering distinct terminal sets for the grammar components of the system, also in the
case of PC grammar systems, the generative power is increased (at least in the
regular centralized returning case).

But even if centralized returning PC grammar systems with regular components
of type s are able to generate non-finite index matrix languages, we still can find an
upper-bound for the languages generated by them among the regulated rewriting
tools with context-free rules. More exactly, we have

T h e o r e m 1 (i) L (C P C „ R E G , s) C L(MATac).

(ii) Lu(CPC*REG,s) c L(MATac).

(in) L T (C P C . R E G , a) C L (M A T a c) .

One can observe that although the preceding theorem is for the regular PC
grammar systems, it is true as well for the right linear case, and the proof is
entirely the same.

As we shall prove in the following, for unsynchronized derivation we can actually
find a more specific relation. First, we have the theorem

T h e o r e m 2 L u (C P C 2 R E G , s) - L(REG)

Proo f : Consider the following PC grammar system of type s with regular
components

T = (K,GuG2),

where

Gi = ({S1,A,B},{a,b},{S1-+aQ2,A^aQ2,B ^^A-.a}^!),
G 2 = ({ S 2 , B } , { A } , { S 2 - ¿ B } , S 2) ,

and consider the derivation mode to be the unsynchronized one.

404 Valeria Mihalache

Then a terminal derivation has to proceed as follows:

(Si , Sa) (aQ2, AB) => (aAB, S2) (a 2 Q 2 X , AB) => (a2ABX, S 2)

where X G { 6 , 5 } , a e {6,S}*,|a| = k - 1 and /3 G {S2 > J4B}.
We then have

L(T) = {ak+1bk | k > 1},

which is not a regular language. •

As a corollary, we obtain that also in the unsynchronized derivation, centralized
returning PC grammar systems are more powerful when considering distinct sets
of terminal and non-terminal symbols then in the case when we do not.

Corollary 2 Lv(CPCnREG) C Lu(CPC„REG, s), strict inclusion, for any n >
2.

Proof: The inclusion is by Lemma 2, and the strictness of it follows from the
above theorem and from L u (C P C , R E G) = L (R E G) , which is known from [3]. •

Our intention in the following is to present other properties concerning PC
grammar systems of type s deriving in the unsynchronized mode. We need to
recall the following definition.

Definition 5 Let F = (N, K, T, G\,G2,..., Gn) be a usual parallel communicating
grammar system. We say' that T is with multiple queries if there is a component
of T with a production A aQiPQa,a, 0,-f G (N U I< U T)*,i G { l , . . . , n } .
Otherwise, we say that F is without multiple queries.

The class of such grammar systems is denoted by WYnX, for Y G {PC, CPC,
NPC, NCPC}, n > 1, X a class of grammars.

Theorem 3 For any Y G {CPC, PC, NCPC, NPC) and for any n > 1,

(i) Lu(YnREG,s) C Lu(WYnCF);

(ii) Lu(YnCF,s) = Lu(YnCF).

(itt) Lu(WYnCF,s) = Lu(WY„CF).

Proof: To prove point (i), take a PC grammar system of type s with regular
components

T = (K, Gi,G2, ..., Gn),

with Gi = (Ni,Ti,Pi,Si), for any t, 1 < i < n.
Denote n

l/ = U ^ U T i) .
¿=1

PC Grammar Systems with Separated Alphabets 405

For each symbol a (E V, consider anew symbol a', denote by V' their set and define
the substitution h. as

h(a) = {<*,<*'}, for a G Ti,
h(a) = { a ' } , f o r a G V - Tu

h{Qi) = {Q , } , for 1 < i < n.

Construct the PC grammar system

r ' = (V'!K!T1,(P[,S[),...>(P^S'n))!

where
P< = {A' -+ y \ A x € Pi,y e h(x)}, for any 1 < i < n.

Note that even if we have started from a PC grammar system T with regular
components, because this is of type s, the resulted system, T', is with context-
free components and not with regular. This happens because we can have in a
component Gi,i > 1 a production A —* BC, where B is a terminal symbol with
respect to G, but is not a terminal symbol with respect a grammar to which it will
communicate a string containing that B.

Moreover, note that if T is returning, centralized, non-returning or non-
centralized, then T' is of the same type.

Because in any production of any grammar at most one query symbol can
appear, we have that T' is without multiple queries.

One can see that ¿[/ (T) = Lu(T'), and thus point (i) follows.

For point (ii), we have Lu(YnCF) C L u (Y n C F , s) by Lemma 2. To prove the
reverse inclusion, we only need to observe that the same construction that we have
considered for the proof of point (i) transforms a context-free PC grammar system
of type s into a corresponding usual context-free PC grammar system.

Point (iii) is a consequence of the relation in point (ii), by the observation that
the construction we have considered does not introduce multiple queries. •

Corollary 3 Lu(WCPC»CF,s) = L (C F) .

Proo f : It is simply a consequence of the preceding theorem, point (iii), by
Theorem 1 of [8], which states that LV(WCPC,CF) = L (C F) . •

Now we can improve the relation obtained in Theorem 1, for the case of unsyn-
chronized derivation. That is, we have

T h e o r e m 4 L (R E G) C L v (C P C t R E G , s) C L (C F) .

Proo f : The first inclusion is from Lemma 1 and from Theorem 2. The second
inclusion is a consequence of the preceding theorem, point (i), by Theorem 1 of [8].

•

406 Valeria Mihalache

Note that once again parallel communicating grammar systems of type s are
more powerful, but still not "too powerful" (from the generative capacity point
of view) than usual PC grammar systems, in case of regular components, because
we have L u (C P C „ R E G) = L (R E G) . But in case of context-free components, for
unsynchronized derivation, systems of type s are only as powerful as usual systems
are.

It is known, [8], that matrix languages can be generated by usual returning
non-centralized PC grammar systems with context-free components. When sepa-
rated terminal and nonterminal alphabets are considered for the components of the
system, one can simulate matrix grammars with appearance checking.

T h e o r e m 5 L(MATac) C L (P C t C F , s).

Proo f : The proof bears resemblance with the corresponding one in [8]. Let

G = (N,T,S, M,F)

be a context-free matrix grammar with the appearance checking set F . It is known
([4]) that for each matrix grammar there is an equivalent matrix grammar, of the
same type, in the 2-normal form, that is with

N = {S}UN!UN2l TViniV2 = 0, S^NiUNi,

and each matrix of M has one of the following forms:

(0 (s ^ x) , Ae Nu x e N2

(ii) (A —* a, X ^ Y), AeNu ae(N1UT)+,X,Y eN2,
(Hi) (A^a,X^a), A G Nu a G (JVi U T) + , X G N2,a G T,
(iv) (S ^ i) , i e r .

Moreover, the productions of F are only of the form A. —• o;, with A. £ Ni^cx £
(NUT)\

Let P\(M) be the set of matrices of type (i), let P2(M) be the set of matrices
of types (ii), (iii) and let r be the cardinality of P2(M). A matrix of P2(M) will
be denoted in the following by

mk : (Ak — ak,Bh -»• Ck) , 1 < k < r.

Denote

N' = N U {S ' , W, V, Z, Lu L2, L3j U {5 , , S„i , S a 2 } U { 5 l t , S2k | k = 1 , . . . , n]

(S', W, V,Z,LI,L2,L3 are new symbols). We construct the PC grammar system

T = (K, G,, Gii, G2I, GI2, G22,..., Gir, G2r, G a i , Ga2)

PC Grammar Systems with Separated Alphabets 407

as follows:

P,, - { S . 11(5, — x) G M, x G T * } U
U{5 , —• S', S' -* Q2k I & = 1, • • •, r } U
U{S, - » AB | (S - AB) G PI(M)} U

Pik = {Sit
U{Afc -+ CTK | m t : (AK -* AK,BK C t) } U

U { X Z\X G Ni UA^2}U
U f V — Q i t } , for each k = 1 , 2 , . . . , r,

P2k =
U{B f c — C* | m* : (i4 t a f c l B t — Ck)} U

U { X Z | X G iVi U AT2}, for each Jfc = 1, 2 , . . . , r,
Pal = {Sai -Q2iQ22...Q2r}U{K- V),

Pa2 = {S02 —1" Li, L\ —+ L2, L2 —• L3, L3 —• LiQ2iQ22...Q2r}.

The terminal sets of the components grammars of T are defined as

T, = Tai = Ta2 = T2k = T, for any k — 1,2,... ,r,

while for any k — 1 , 2 , . . . , r,

'TUNTUNX- {AK\MK :(AK ^AK,BK^CK)},
_ I if this occurrence of

14 ~ the production AK —>• AK G F
T, otherwise.

As for the nonterminal sets of the components of T, they are defined as

N, = N'-T,,

Nu = N' — T\k, for any k

N2k = N' — T2k, for any k

Nai. = N'-Ta 1,

Na2 = N' — Ta2.

One can verify that L(T) = L(G), and therefore the theorem follows. •

As an immediate corollary of the above theorem, characterization of recursively
enumerable languages results when A-productions are allowed in the system.

Corollary 4 L (P C . C F x , s) = L (R E) , where the notation PC,CFX stands for
returning non-centralized PC grammar systems with A-rules.

408 Valeria Mihalache

The similarity between PC grammar systems with separated alphabets and
usual PC grammar systems let us think that any proof of a relation between two
classes of usual PC grammar systems can be adapted as to result in a relation
between the corresponding classes of PC systems of type s. More precisely, we
conjecture that if L (Y n C F) C L (Y ^ C F) for two classes Y,Y' of PC grammar
systems, m,n,> 1, then L (Y „ C F , s) C L (Y „ C F , s) .

In particular, by [6], [12],

L { N P C . C F , s) C L (P C . C F , s)

would result.

References
[1] A. Atanasiu, V. Mitrana, The Modular Grammars, Internal. J. Corny. Math.

30 (1989), 101-122

[2] E. Csuhaj-Varjú, J. Dassow, On Cooperating Distributed Grammar Systems,
J. Inf. Processing and Cybern. EIK, 26 (1990), 49-63

[3] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Páun, Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach
Science Publishers Ltd, London, 1994

[4] J. Dassow, Gh. Páun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989

[5] J. Dassow, Gh. Páun, G. Rozenberg, Grammar Systems, in G. Rozenberg,
A. Salomaa (eds.), The Handbook of Formal Languages, Springer-Verlag, to
appear

[6] S. Dumitrescu, Non-returning parallel communicating grammar systems can
be simulated by returning systems, Theoretical Computer Science, 165 (1996),
463-474.

[7] R. Meersman, G. Rozenberg, Cooperating Grammar Systems, in Proc.
MFCS'78 Symp. LNCS 64, Springer-Verlag, Berlin, 1978, 364-37-4

[8] V. Mihalache, Matrix Grammars versus Parallel Communicating Grammar
Systems, in Gh. Páun (ed.), Mathematical Aspects of Natural and Formal Lan-
guages, World Scientific, 1994, 293-318

[9] V. Mihalache, Terminal versus Non-terminal Symbols in Parallel Communi-
cating Grammar Systems, Revue Roumaine de Mathématiques Purés et Ap-
pliquées, to appear

[10] Gh. Paun, L. Sántean, Parallel Communicating Grammar Systems: the Reg-
ular Case, Ann. Univ. Buc., Ser. Matem.-Inform., 38 (1989), 55-63

PC Grammar Systems with Separated Alphabets 409

[11] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973

[12] Gy. Vaszil, On Simulating Non-Returning PC Grammar Systems with Return-
ing Systems, submitted for publication

[13] S. Vicolov, Non-centralized Parallel Grammar Systems, Stud. Cere. Mat., 44
(1992), 455-462

Acta Cybernetica 12 (1996) 397-409.

On Regular Characterizations of Languages by
Grammar Systems*

Lucian ILIE t A r t o S A L O M A A *

Abstract

We show that grammar systems with communication by command and
with extremely simple rewriting rules are able to generate all recursively enu-
merable languages. The result settles several open problems in the area of
grammar systems.

1 Introduction
The purpose of this paper is to investigate the power of cooperation in rewriting
systems. This is done using the abstract model of a grammar system, [3]. We
show that grammar systems with the most simple components, all rewriting rules
being letter-to-letter, possess the power of generating all recursively enumerable
languages. This result and its corollaries settle several open problems in the area
of grammar systems. We now describe the contents of the paper in non-technical
terms.

A parallel communicating grammar system, as introduced in [12], consists of sev-
eral grammars which work synchronously, each of them rewriting its own sentential
form, the communication being made by request: when a component introduces a
query symbol (from a special set) for another component, then the latter one sends
its current sentential form to the former which rewrites it in place of the query
symbol. The language generated by -the system is the set of terminal strings gen-
erated (using communication or not) by a distinguished component called master.
(For results and references see [3].)

Another kind of parallel communicating grammar systems, with communication
by command, is introduced in [4] with suggestions from the WAVE paradigm for
data flow in highly parallel machines ([5], [6], [14]), Boltzmann machine ([7]), the
Connection Machine ([8], [15]), and other well-known parallel machines.

'Research supported by the Academy of Finland, Project 1X281
'Turku Centre for Computer Science, FIN-20520 Turku, Finland
'Academy of Finland and Mathematics Department, University of Turku, FIN-20014 Turku,

Finland

411

412 Lucían Ilie, Arto Salomaa

The communication by command means that when the current sentential form
derived in a component coresponds to another component, i.e., belongs to the
regular language associated to the respective component or fits the pattern (in the
sense of [1], [11]) associated to that component, then the sentential form is sent
to the other component. The language generated by the system is also the set of
terminal strings generated by a component designed as master. Here we investigate
only the case when each component has associated a regular language.

In [4] it is proved that any context-sensitive language can be generated by a
grammar system with communication by command with context-free components
while in [10] it is shown that the grammar systems with context-sensitive com-
ponents and the same type of communication can generate only context-sensitive
languages. The characterization of the family of context-sensitive languages as the
family of languages generated by grammar systems with context-free components
and communication by command follows. We shall strengthen this result by show-
ing that the family of context-sensitive languages is exactly the family of languages
generated by the grammar systems with regular components and communication
by command.

We consider also the case when the splitting is allowed in communication, that
is, if the current sentential form of a component is a concatenation of strings each
belonging to the regular language associated to another component, then the com-
munication can still be performed: each factor of the sentential form can be sent
to the respective component, with the restriction that only one factor can be sent
to one component.

As already mentioned in [4], this type of communication is natural: following
the logic flow paradigm proposed in [6] as a basic architecture for parallel symbolic
processing, we deed with a symbolic process which develops in a virtually complete
graph having processors which are able to handle data, in its nodes. The process
starts by injecting data in a node and each node having data can perform a local
processing; under well defined conditions, the local data are spread to other nodes
by replication or by splitting.

In this case we prove a characterization of recursively enumerable languages
by grammar systems with (non-erasing) regular rules. In fact, the rules have a
particularly simple form: a letter (nonterminal) always goes to a letter (terminal
or nonterminal).

2 Grammar systems

We shall denote by V* the set of all finite strings over the alphabet V, the empty
string is denoted by A, and V+ = V* — {A}. The set of regular, context-free, context-
sensitive, and recursively enumerable languages will be denoted by REG, CF, CS,
and RE, respectively. For further elements of formal language theory we refer to
[9] and [13].

A parallel communicating grammar system with communication by command o f

On RegulcLr Characterizations of Languages by Grammar Systems 413

degree n > 1 is a construct of the form

T = (N, T, (Si,P\,Ri),..., (Sn,Pn, Rn))>

where N is the nonterminal alphabet, T is the terminal alphabet, and (Si, Pi, Ri),
1 < t < n, are the components of the system: Si is the axiom, P; is the (finite) set
of rules, (note that we do not allow A-rules, that is rules in which the right-hand
member is empty), and Ri £ REG is the selector language for the component i.

Such a system works as follows:
- start from the initial configuration (Si, S2, • • •, Sn),
- at each step, the configuration of the system will be described by an n-tuple

(x1,x2,...,xn) e ((j v u t) *) " ,
- the configuration of the system can be modified either by rewriting steps or

by communication steps,
- rewriting steps are performed componentwise and the derivation must be

maximal in each component (that is the component can not rewrite its sentential
form any longer),

- communication steps are performed as follows:
(i) communication without splitting: when (after maximal derivations) some com-
ponents Si1,Si2,... ,Sik, 1 < ¿1 < »2 < • • • < n < n, have derived the strings
tf»i, u>2 , . . . , Wk £ Ri, for some 1 < i < n, i 0 {»1,»2, • • •) »*} (a component may not
communicate with itself) and these are all the components, at that moment, able to
communicate their sentential forms to the component i, then the string w\w2 • • • u>k
will replace the sentential form of the component i becoming the current senten-
tial form of this component; the components which send their sentential forms will
restart from the initial symbol,
(ii) communication with splitting: similar to the one without splitting, the difference
being that if the sentential form of a component is a catenation of strings each of
them belonging to the regular set associated to another component, then each factor
of the current string can be sent to the respective component with the following
restrictions:

1. only one string can be sent to one component,
2. a component cannot send a factor of its current sentential form to itself

(also not the entire string),
3. the catenation of the factors of the current string which are sent must be

the entire string (nothing is lost).
- if, after a sequence of rewriting/communication steps, the string on the first

position in the current configuration is a terminal one, then it belongs to the gen-
erated language (so the master is always the first component).

Formally , a rewriting step is

(x i , . . . , x „) =i> (y i , . . . , i / n) iff Xi = > * y, in Pi and
there is no 2,- £ (N U T)* with y, => 2,- in Pi.

In order to define a communication step without splitting, let us denote

S(r. - f A' if Xi^Rj ori = j ,
K X " J) ~ \ x i , ifxi £Rj andt^ j,

414 Lucían Ilie, Arto Salomaa

for 1 < i,j < n,

A (i) = 6(xi,i)6(x2,i) • • • 6(x„,i),

6(i) = 6(xi,l)6(xi,2)...6(xi,n),

for 1 < i < n.
A communication step without splitting is:

(A(i) , i f A (i) # A ,
(x i , . . . , x „) h (yi,...,yn) i f fyj = < xi, if A(t') = A and 6(i) = X,

{ Sit if A(») = A and S(i) # A.

Because the splitting will not be used very much, we define it rather informally.
A communication step with splitting is

(xltx2,...,xn) I " S (y i) J / 2 i • • •) î / n)

if and only if there is a set 0 ^ M Ç { 1 , 2 , . . . , n } (M is the set of indices of those
components which send their sentential forms) such that

(i) for any i £ M there is a permutation of n elements ir» £ Sn and a
decomposition x, = i,,» j(i)Xi i* i(2) • • :CiiTi(n) such that xt i, = A and, for any
1 < k < n, k ï irt~1(t")» *i,*i(k) G Rri(k) or xiiViW = X

(ii) for any i G { 1 , 2 , . . . , n } — M and any 1 < j < n, j = A,
(iii) for any 1 < j < n, if A ̂ Rj, then

x\,jx2,j •••xn,j, ^x\,jx2,j ^ A
if (there is no i £ M with Xij £ Rj) and j ^ M,

Sj, if (there is no i £ M with x,-j £ Rj) and j £ M.

If A G Rj, then, nondeterministically, the component j can receive A or can work
as in the case when X £ Rj.

Note that the communication without splitting is a particular case of the com-
munication with splitting and also that the empty string can be sent.

The generated language is

Le(T) = { w € T * I (Slt...,Sn)=> («i0, • • •, X™) h e (yW ..., =>

(.«,..., xL2)) hc (y?\ . . . , „ £ »)) = = » . . . = > (, « . . . , x<*>),
for some it > 1 such that w = x ^ } ,

where, for c = X, we identify £a(T) with £(T) and h* with h and, for c = 5 , we
have ¿ 5 (r) and I-5.

We denote by CCPCnX the family of languages L(r) , generated by grammar
systems of degree at most n, n > 1, with components of type X £ {REG, CF, C S } ,
working with communication without splitting, and by SCCPCnX the family of
languages L s (r) , generated by grammar systems of degree at most n ,n > 1, with
components of type X , working with communication with splitting. When the num-
ber of components is arbitrary, we write CCPCoqX and, respectively, SCCPCNX.

On RegulcLr Characterizations of Languages by Grammar Systems 415

3 The characterization results
We begin with the following simple observation. Because in the case when the
system has only two components no communication by splitting can be done, we
have

Lemma 1 For any family X, CCPC2X = SCCPC2X.

Our first theorem shows that, in the case of communication with splitting, any
recursively enumerable language can be generated using a system with four regular
components. Because the languages associated to the components are regular too,
we can say that this is a fully regular characterization of recursively enumerable
languages. (Note that we do not allow A-rules and also not the rewriting of the.
terminal symbols. The sets of nonterminals and terminals are defined at the level
of the system.)

Actually, three regular components suffice, as seen in Theorem 2 below. From
the point of view of exposition, it is convenient to consider first the weaker version.
A further reduction to two components is not possible because of Lemma 1 and a
result in [4] which shows that in the case of communication without splitting, using
two components, only regular languges can be produced.

Theorem 1 SCCPC^REG = RE.

Proof. Let L be a recursively enumerable language over the alphabet T. Then,
by a slight modification of Theorem 9.9 in [13], there is a context-sensitive language
L\ and two symbols a\,a2 &.T, such that:

(i) L\ consists of words of the form wa2a",n > 0, w G L, and
(ii) for every w G L, there is a n > 0 such that wa2a" G L\.
The main idea of our proof is: we construct a system (with four regular com-

ponents) which generates in one component (which is not the master) any string
tua2a" G L\ and then, by splitting, the string w is communicated to the master
and the garbage a2a" is communicated to another component. (In fact this is the
only moment when the splitting is used, the entire derivation, excepting this, being
as in a usual grammar system with communication by command.)

So let G = (N, TU {ai , <12}, S, P) be a context-sensitive grammar generating
L\. Suppose that G is in Kuroda normal form, that is, all productions in G are of
the form AB —• CD, A —• BC, and A —• a where A, B, C, D are nonterminals
and a is a terminal symbol. By introducing, whenever needed, productions of the
form A —• B, A, B nonterminals, we may suppose that if a production of the form
AB —• CD appears in P, then A ^ B.

For a reason that will be seen later, we introduce also the production S —•
S. We label all productions in P by natural numbers r, 1 < r < card(P). (We
construct a bijection between P and the set { 1 , 2 , . . . , card(P)}, each production
being uniquely identified by its associated number.)

Let S i ,S2 ,S3 ,X, and Y be symbols not in A ^ U T U { a i , a 2 } and let us put

N' = {A' I A G N} U { X ' }

416 Lucían Ilie, Arto Salomaa

V = {Ar | A 6 N, r : AB —• CD E P or r : BA —• CD € P } U
U {Ar \AEN,r: A — • a € P) U
U{Xr \ r:A — > B C e P } U

U {Za,Wa\AEN}.

We consider the system

T = (A r u T V ' U i S i . S ^ S ^ X . y j u V . T U i a x , ^ } ,
(S'i,Pi,RÎ), (S'2,P2, R2), (S3, P3, R3), (S4, P4, R4))

where S4 = S and

Pi = 0,
R! = T* U { y } ,

P2 = { S ^ X . S ^ Y } ,
R2 = a2a\,

P3 = {A'—>A I A E i V U { X } } U

U{A- — > a \ r \ A — » a e P j U
U{Ar —• B\r : A —> B E P}U
U{Ar —» C, Br —• D I r : AB — > C D £ P] U
U{Xr —• B,Ar —• C I r : A —• BC E P) U
U { Z a ^ A , W a ^ X \ A e N } ,

R3 = {axAra2 I a i , a 2 € (W U TU {ai,a2})*, r : A—»a£P}U
U{ai^ r a 2 I ai,a2 E (N'uTl) { a i , a2})*, r : A —> B E P) U
U{a\ArBTa2 I a i ,a 2 G (N' UT U {ai, a2})*, r : AB —• CD E P] U
U{aiXri4ra2 | ax , a2 E (N' U T U {c^, a2})*, r : A —> BC E P} U
U { a i Z A W A a 2 I ai ,a:2 E (N'UTU {a i , a2 })* , A £ N},

P4 = {A—>A! \AE Nl){X}}U
U{yl —> Ar\r:A —* a E P 01 r : A —»fiePjU
1){X ^ X r , A ^ A r |r : A^BCEP}U
U { y l — — B r I r : AB—*CDeP) U
U{X —• Za,A —• WA I A E N),

R4 = (N U { X } U 71 U {ai, o 2})+ -

(Note that A ^ R4, hence the fourth component cannot be restarted by receiving
A in a communication with splitting.)

On RegulcLr Characterizations of Languages by Grammar Systems 417

Let us prove that the construction is correct, that is Z-s(T) = L. We shall do
this by showing inclusion in both directions.

Claim 1. If wa2a" £ L\, then the system T can reach a configuration which has
in the third position the string wa2a".

Remark. If Claim 1 holds, then L C Ls(T). Indeed, for any w £ L, there is
an n > 0 such that wa2a" £ L\. But, by Claim 1, T can reach a configuration
with wa2a" as the current sentential form of the third component. In this case,
as w £ T* C Ri and a2a" £ R2, by splitting, w is communicated to the first
component and a2a" to the second one. Consequently, w is a terminal string and
it is the current sentential form of the master, hence w £ Ls(T).

Proof of Claim 1. Let wa2a" be a string in L\. It follows that there is a
derivation in G generating it. We show that if a and /? are two sentential forms of
G such that a = > G P, then, having a as the current sentential form of the third
component of T, we can obtain also /3 as the sentential form of the third component
of T.

Because the case when a = S requires some additional explanations, we shall
investigate it separately. (In fact, in the first case it will be shown that the deriva-
tion in T can simulate any beginning of a derivation in G, that is, we can obtain
any ¡3 with S =>G 0 as the sentential form of the third component of I\)

Case 1 a = S. Depending on the form of ¡3, we have three cases:
(i) /? = a £ T U {01,02} and r : 5 — • a £ P. (As an observation, because

L\ C La2a\, a cannot be aj.) We simulate this in T by

(Si, SJ, S3, S) = > r (Si, y, S3, Sr) (Y, S'2,Sr,S) = * r (Y, Y, a, S r) .

(ii) ¡3 = A £ N and r : S — • A. In T we have

(Si,S'2,S'3,S) =>r (Si, y , S3 , S r) Hr (Y, S'2,Sr, S) = > r (Y, Y, A, S r) .

(iii) 0 = AB, A,B £ N and r : S — • AB. Supposing that p : S — • S G P, we
perform in T

(Si, S2, S3, S) (Si, Y, S3 , S p) h r (Y, S'2,SP,S) =>r (Y, X , S, Sp) h r

h r (Y,S'2,SP,XS) =>r (Y,Y,S,XrST) hr (Y , S 2 , X r S r , S) (Y,Y,AB,SP).

In words, we have added the rule S —• S to P in order to be able to perform
this type of rule (S — • AB) with S on the left-hand side. If the rule S — • S is
not provided, then we are forced to apply in the fourth component another rule
instead of S — • Sp (p : S — • S) and, as at this moment we did not yet get an
X in the sentential form of the fourth component, after sending the current string
of the last component to the third one, only rules of the form S — • a, a £ T or
S — • A, A £ N, can be applied. Consequently, we would not be able to apply a
rule of the form S — • AB, A,B £ N, in this case.

Case 2 a £ (N U T U {ai , a 2 }) + - {S } . Depending on the form of the applied
production, we have four cases here.

418 Lucían Die, Arto Salomaa

(i) a = a i A A 2 , A £ N , 0 = a iaa 2 , a € T U { a i , a 2 } , r : A — • a £ P . We
simulate this in T as follows. If the current sentential form of a component is not
important at some moment, we shall replace it by —.

(-,Y,aiAa2,-) h r (Y,S'2,-,a^a,) =>r (Y,Y,-,ct\Ara'2) h r

h r (Y, S'2,a\Ara'2, -) (Y, Y, aiaa2, -)

(where for a £ (N U { X } U T U {a ! ,a 2 })* we have denoted by a' the string h(a)
where h : (N U { X } U T U {aia 2 })* — • (JV'UTU {aia 2 })* is the homomorphism
defined by h(A) = A', for any A £ N U { X } , h(a) = a, for any a £ T U {a i , a 2 }) .

(ii) a = a i A a 2 , 0 = a i B a 2 , A , B £ N,r : A —• B £ P. This is handled as
Case 2 (i).

(iii) a = a\ABa2,f3 = axCDa2,A,B,C,D £ N,r : AB —• CD £ P- This
rule is simulated in T by

(- , Y, aiABa2, -) hr (Y, S'2, - , aiABa2) =*r (Y, Y, - , a'^Br^) h r

hr (Y, S'2,a[ArBra'2, -) = » r (Y, Y, aiCDa2, -).

(iv) a = axAa2,(3 = <* iBCa 2 ,A ,B ,C € N,r : A —> BC £ P. Because
the string generated by P2 (X or Y) is communicated by the second component
(to the fourth component or to the first one, respectively) at each communication
step, the derivation in the second component is restarted after each communication
performed in the system. Therefore, after each communication step, the second
component is able to produce a new X, if needed. (It can also produce a Y if
an X is not needed.) As a / S, there exists a sentential form 7 of G such that
7 « and we can suppose that (*) when the current sentential form of the third
component of T is a, then the current string in the second component is X . (We
can suppose, for instance, that the second component has introduced an X when
7 was obtained in the third one. It is essential here that a ^ 5 ; we have seen in
Case 1 (iii) how the alternative a = S is handled.)

We may also suppose that the string a contains only nonterminal symbols.
(We may obviously suppose that, in a derivation in G, 'we can apply first only
productions of the form A —• B or A —• BC or AB —• CD, A, B,C,D 6 N,
and, after that, only productions of the form A —• a, A £ N,a £ T U { a i , a 2 } .)
Consequently, we can put a j = AXA2 ... Ak, A\,A2,..., At £N,k>0(k = 0
implies ai = A) and we can write (using (*))

(- , X, a, -) = (- , X, AXA2 ... AKAA2,-) h r (- , S'2,XAXA2 ... AKAA2) =»R

= > r (- , Y , - , WALA'2 .. .A'KAW2) h r (Y , S'2,ZALWALA'2 ... A'KA'A'2, -) =>R

= > r (Y , Y, AIXA2 .. .AKAA2, -) h r (Y , S2,—,AIXA2 ... AKAA2)

= > r (Y, Y, A i . ..Au.iXAUa,, -) h r (Y,S'2,-,A1.. .Ak^XAkAa2)
= > r (Y,Y,-,A[. . ¿ i . A ' a ' 3 , -) = > r

= > r (Y , Y , AI. ..AK.IATXAA,, -) h r (Y , S ' 2 , -,AL .. AK^AKXAA2)
= > r (Y , Y, - , A\... A'KXRARA'2) h r (Y , S'2,A\... A'KXRARA'2, -) =>R

= » r (Y, Y, AIA2 • • • AKBCA2,-) = (Y , Y , 0, -) .

(1)

On RegulcLr Characterizations of Languages by Grammar Systems 419

Thus Claim 1 is proved.

Claim 2. If w E T* was communicated to the msister component in T (by the
third one - this is the only possibility), then, at the moment of communication, the
current sentential form of the third component was wa2a" £ L\ and , by splitting,
w was communicated to the master and a2a" to the second component.

Remark. Obviously, Claim 2 implies Ls(T) C L.

Proof of Claim 2. Observe that the only possible communications among the
components of T are represented by the following graph. (An arrow from » to j is
present if and only if it is possible that the component i communicates, at some
moment, its sentential form to the component j ; some arrows are labeled by the
regular sets which control the communication.)

We make the following further observations:
1. The second component can communicate to the first one only the string Y

which is not terminal. (This communication takes place in order to restart the
second component, making it able to produce an X at any moment.)

2. The second component can communicate to the fourth one only the string

3. The communication from the third component to the first and the second
ones can be done only in the same time by splitting and only when the sentential
form of the third component is of the form wa2a.y, n > 0, w being communicated to
the master and a 2a" to the second component. (Note that the string communicated
to the first component can be empty.)

4. Always, after a maximal derivation in the third component, its current
sentential form can be communicated to the fourth component.

5. Due to the form of R3, if the current sentential form of the fourth component
is communicated to the third one (and only to the third one) then a production
in P will be correctly applied at the next step in the third component. Indeed,
everything should be clear in what concerns the productions of the form A —• a
or A —• B,A,B £ N,a ET U {ai , a 2 } . A discussion is needed only for the other
two types of productions.

(i) For r : AB —• CD E P; A, B,C,D £ N. In order to apply this production,
in the fourth component one performs A —• Ar and B —• Br (providing, of

1

X.

420 Lucían Ilie, Arto Salomaa

course, that these productions can be applied). After that, the current sentential
form is communicated to the third component if and only if the occurrences of Ar

and Br appear consecutively and in this order (i.e., ArBr). In the third component,
using the rules AT —• C and Br —• D, the string CD is obtained. Because we
have supposed that A £ B, there is no danger to apply the production AB —• DC
instead of AB —• CD.

(ii) For r : A —• BC G P,A,B,C€ N. As it was already seen, for applying
a production of this type an occurrence of an X in needed. Without it, the fourth
component applies A —• Ar but the current sentential form cannot be communi-
cated to the third component because an occurrence of the string ATXr is asked
by R3.

Because an occurrence of the symbol X can be communicated by the second
component to the fourth one at each communication step (we can apply in P2

only S2 —• X) there is only the danger that too many X ' s are contained in the
sentential form communicated between the last two components. But if the number
of X ' s communicated by the second component to the last one is strictly greater
than the number of productions of the form A —• BC applied, then the string can
be never communicated to the master (no string in R\ contains X). Hence nothing
will be produced in this case.

From the observations above, it should be clear that no parasitic string can be
obtained in T. Consequently, Claim 2 is proved so we have Ls(T) = L.

•
As said before, the number of the components can be reduced to three.

Theorem 2 SCCPC3REG = RE.
Proof. We use the same notations as in Theorem 1 with the only difference

that we consider here one new nonterminal symbol, Z , which is added to the set of
nonterminals of the system T (with three components)

r = (Nl>N'U{S[, S'2, X,Y, Z}L>V,Tu{ai,a2}, (ff^PuRi), (S'2, P2, R2), (S3, ft, R3))

where S3 = S and, supposing that p : S -—• S G P,

Pl = { y —• X, Y —• Z},
Ri = T* U { y } ,

Pi = {Sp —• Y } U
U { A ' —• A I A E N U { X } } U
U {Ar —* a\r : A —kiGP}U
U { A r — > B \ r : A — • B G P] U
U{ i4 r — C, Br —• D I r : AB —• CD 6 P) U
U { X r — - B, Ar —> C I r : A —• BC G P) U
U{ZA —> A, —» X \A £ N},

On RegulcLr Characterizations of Languages by Grammar Systems 421

R2 = {aiArQ2 | <*i,<*2 G (N'UT\J { a i , a 2 }) * , r : A—• a € P) U
U { « i ^ r a 2 | a b a 2 £ (N' U T U {a i , a 2 }) * , r : A — • В £ P} U
U{aiArBra2 | ai ,ct2 G (N' U T U { a b a 2 })* , r : AB — • CD £ P} U
U { a i X r A r a 2 | a b a 2 G (N' U T U { a b a2 })* , r : A — • ВС € P) U
U{ai ZAWAa2 \aua2£(N'uTU {аиа2})*,А £ N},

P3 = U { A —• A' | A £ N U { X } } U

и { Л —у A T \ r - . A — * а £ Р ox г : А — • .В € .Р} U
U { X — • ХТ,А —• Аг | г : А —у ВС £ Р} U

и { Л — > А Т , В — > В г \ г : А В — • CD £ Р } U
U{X ^Za,A^Wa\A£N},

R3 = (Л Г и { Х " } и Г и { а ь а 2 }) + Ua2aJ.

The system is working similarly to the one in the proof of Theorem 1. The only
differences are the following two:

1. Any string wa2a" £ L\ is produced here in the second component (instead of
the third) and, by splitting, w is sent to the master and а2а" to the third component
(instead of the fourth one). But, because the communication by splitting from the
second component to the other two is made only in the case when the sentential
form of the second component is of the form wa2a", w being necessarily sent to the
master and а2а" to the last component, this step is correctly performed.

2. The way in which the occurrences of X are handled in order to help us to use
the productions of the form A — • ВС, А, В, С £ N, is slightly different. However,
if the number of X's is too big, then no string will be produced (see observation 5
(ii) in the proof of Claim 2 above). We have only to show that indeed we can get
sufficiently many X ' s to be able to apply a rule of the form A — • В С anytime it
is needed. Supposing that the derivation in G is axAa2 =>G a\BCa2, we have
two cases:

(i) a i = а 2 = А,Л = S,r : S —у ВС £ P\B,C £ N. We have in Г (with
p:S ^SEP)

(S[,S'2,S) =>r (S[, S'2,SP) hr (S[,SP,S) =>r (Si , Y, Sp) b r

hr (У,S p ,S) = > г (X, S, Sp) K r (Si, S p , X S) = > r (S i , S , X r S r) h r (2)
hr (Si, X r S r , S) = > r (Si, ВС,S p) .

(ii) ariAa2 ф S,r : A —• ВС £ P,A,B,C £ N. Let us prove first that we can
have an X as the current sentential form of the first component anytime needed.

Any simulation in Г of a derivation in one step, say A =>G P, consists of one
or several iterations of the following sequence of steps: being the current sentential
form of the second component, a is sent to the third one, is rewritten there, is sent
back to the second component, and again rewritten. Because p : S —• S £ P,
we have Sp — • S £ P2 and S — • Sp 6 Рз- Thus, we can suppose that when

422 Lucían Ule, Arto Salomaa

the main string (that is the string which is at the beginning a and, rewritten and
communicated between the last two components, will be ¡3) is communicated from
component 2 to the component 3 (or from 3 to 2), then the string Sp is commu-
nicated from the component 3 to the component 2 (or from 2 to 3, respectively).
That can be also seen in (2).

Because we can perform in T

(- , - , Sp) br (- , Sp, -) =>r (- , Y, -) h r (Y, - , S) = * t (X, - , Sp),

using the observations above, it should be clear that we can get an X as the current
sentential form of the first component whenever we need one. (It is also seen that
the role of the production S —• S introduced in P is much more important here.)

Going back to our case, we can suppose (as in the proof of Claim 1, Case 2 (iv))
that when the current sentential form of the second component is a x A a 2 , then the
current string in the first component is X . We can also suppose (also as in the
proof of Claim 1, Case 2 (iv)) that « i = A\A2 .. .At £ N*. The derivation goes
now similarly to (1).

Consequently, the system constructed here generates the same language as the
one in the proof of Theorem 1. It follows that Ls(T) = L and the proof is over.

o
We notice that in the system T in Theorem 2, the splitting communication is

used only at the end when the string tu £ L is sent to the master and it will be
the output of the system and the garbage a2a" is sent to the third component. In
fact, the splitting communication is done in order to allow a workspace as big as
needed.

If the splitting communication is not allowed, we can still obtain (using only
regular rules) any context-sensitive language. The following result is a strength-
ening of Theorem 1 in [4] or of Corollary 3.4 in [10] (which establish that
CCPCooCF = CS.) It solves also the problem, open so far, of the hierarchy
('CCPCnREG)n>0.

Theorem 3 CCPC3REG = CS.

Proof. The construction is very similar to the one in Theorem 2. The difference
is that the second component there is the master one here because we do not need
any communication after obtaining the terminal string in the given language.

Let L be a context-sensitive language and let G = (N, T, S, P) be a context-
sensitive grammar generating L. We have seen in the proof of Theorem 1 that any
production of G can be supposed to be of one of the following forms: AB —• CD
with A^B, A —• BC, A —• B, or A —• a for some A,B,C,D £ N,a£ T.

Let S2, S3, X, and Y be symbols not in N UT and

N' = {A I A£ JVjufY'},

V = {Ar\AeN,r:AB —*CD £ P or r : BA —• CD £ P}U
\j{Ar \ A £ N ,r \ A — > a £ P}U
U{Xr I r : A —* BC £ P}U
U {Za,Wa\A£N}.

On RegulcLr Characterizations of Languages by Grammar Systems 423

The system is here:

r = (N U N' U S3,X, Y} U V, T, (Si, Pu fix), (S'2,P2, R2), (S'3, P3, R3))

where 5i = 5 and

Pi = {Sp — • Y } U
— A | A £ i i U { X } } U

U{Ar —> a\r \ A — > a £ P } U
U{ylr —> B\r: A —• B G P} U
U{Ar —• C, Br —>D\r:AB —• CD G P} U
U{Xr — B, Ar —* C | R : A — BC G P} U
U{Za —• A, WA —• X \Ae N},

Ri = {aiAra2\a1,a2€(N'uTy,r:A—• a G P} U
U{aiAra2 \alta2e(N'uTy,r:A —• B G P} U
U{ai^ r f l r a 2 | « i , «2 G (N'UTy,r : AB —• CD G P} U
U{«iX ryl ra2 | a i ,a 2 G (N'uT)*,r : A —• BC G P} U
U{aiZAWAai\al,ai€(N'uT)*,AeN}t

P2 = {A—* A' \Ae JVU{.Y}}U

U{A —y Ar\r\ A —• a G P or r : .A —• P £ P} U
U{A"—> XT, A—y AT |r :A—• BC G P} U
U{yl —• Ar, B —• Br I r : AB —• CD G P} U

—• Za,A —• Wa\A£ N),
fi2 = (J V U { I } U T) + .

P3 = {Y^X,Y-+Z},

Rs = {Y},

The proof for L(T) = L is very similar to the proof of Theorem 1 and therefore
omitted.

•
It is proved in [4] that CCPC2REG = REG hence, using Lemma 1, we obtain

that the results in Theorem 2 and Theorem 3 are optimal. Using also the results
CCPCooCS = CS from [10] and CS C CCPC2CF from [4], we can draw the
following diagram which shows the generative power of all types of systems with
communication by command investigated so far by comparing them with the fam-
ilies in Chomsky hierarchy. (The place of the families SCCPCnX, CCPC„X not
mentioned in the diagram is obvious.)

424 Lucían IJíe, Arto Salomaa

SCCPC3REG
SCCPC3CF
SCCPC3CS

R E

SCCPC2CF
SCCPC2CS }- - •{

CCPC3REG = • • • = CCPCooREG
CCPC2CF =••• = CCPCooCF
CCPCxCS = ••• = CCPC00CS

SCCPCiCF = C F = CCPCiCF

SCCPC2REG= R E G =CCPC2REG

References
[1] D. Angluin, Finding patterns common to a set of strings, J. Comput. Syst. Sci.,

21(1980), 46 - 62.

[2] K. Culik II, A purely homomorphic characterization of recursively enumerable sets,
Journal of the Association for Computing Machinery, 26(1979), 345-350.

[3] E. Csuhaj-Varjû, J. Dassow, J. Kelemen, Gh. P&un, "Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation", Gordon and Breach, London,

[4] E. Csuhaj-Varjú, J. Kelemen, Gh. Pàun, Grammar systems with WAVE-like com-
munication, Computers and AI, 15 (1996), 419-436.

[5] L. Errico, "WAVE: An Overview of the Model and the Language", CSRG, Dept.
Electronic and Electr. Eng., Univ. of Surrey, UK, 1993.

[6] L. Errico, C. Jesshope, Towards a new architecture for symbolic processing, tn "Arti-
ficial Intelligence and Information-Control Systems of Robots '94" (I. Plander, ed.),
World Sci. Publ., Singapore, 1994, 31 - 40.

[7] S. E. Fahlman, G. E. Hintón, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines, in "Proc. AAAI National Conf. on
AI", William Kaufman, Los Altos, 1983, 109 - 113.

1994.

On RegulcLr Characterizations of Languages by Grammar Systems 425

[8] W. D. Hillis, "The Connection Machine", MIT Press, Cambridge, 1985.

[9] J. E. Hopcroft, J. D. Ullman, "Introduction to automata theory, languages, and
computation", Addison-Wesley, Reading, Mass., 1979.

[10] L. Ilie, Collapsing hierarchies in parallel communicating grammar systems with com-
munication by command, Computers and AI, 15, 2-3(1996), 173 - 184.

[11] T. Jiang, E. Kinber, A Salomaa, K. Salomaa, S. Yu, Pattern languages with and
without erasing, Intern. J. Computer Math., 50(1994), 147 - 163.

[12] Gh. P&un, L. Santean, Parallel communicating grammar systems: the regular case,
Ann. Univ. due., Math.-Informatics Series, 38, 2(1989), 55 - 63.

[13] A. Salomaa, "Formed Languages", Academic Press, New York, 1973.

[14] P. S. Sapaty, "The WAVE Paradigm", Internal Report 17/92, Dept. Informatics,
Univ. of Karlsruhe, Germany, 1992.

[15] ***, "Connection Machine, Model CM-2. Tehnical Summary", Thinking Machines
T. R. HA 87 - 4, MIT, Cambridge, USA, 1987.

Acta Cybernetica 12 (1996) 397-409.

Teams in Grammar Systems:
Hybridity and Weak Rewriting *

Maurice H. ter BEEK f

Abstract
Some new ideas in the theory of teams in grammar systems axe introduced

and studied. Traditionally, a team is formed from a finite number of sets of
productions and in every derivation step, one production from each compo-
nent is used to rewrite a symbol of the sentential form. Hence rewriting is
done in parallel. Several derivation modes are considered, varying from using
a team exactly one time to using it a maximal amount of times. Here, the
possibility of different teams having different modes of derivation is defined,
as is a weaker restriction on the application of a team. The generative power
of such mechanisms is investigated.

1 Introduction
In [4], cooperating distributed grammar systems (CD grammar sytems for short)
were introduced to formalize a link, recognized in [6], between the so-called multi-
agent systems theory in Artificial Intelligence and the theory of formal languages.
Since then these systems have been studied intensively and this has already resulted
in the monograph [5], which contains an exhaustive survey of the state of the art
in the so-called theory of grammar systems until ca. 1992.

By now, many well-motivated enhancements have been introduced, resulting in
hybrid CD grammar systems (allowing the grammars to have different capabilities,
[22]) and team CD grammar systems (grouping the grammars in teams and rewrite
in parallel, [20]), to name but a few.

Here hybrid (prescribed) team CD grammar systems are defined, thus allow-
ing work to be done in teams while at the same time assuming these teams to
have different capabilities. Two basically different versions can be defined. One
can consider a hybrid CD grammar system and automatically form teams of its
components according to some strategy or one can consider a CD grammar system

"This research was supported by a scholarship from the Hungarian Ministry of Culture and
Education. Moreover, the facilities provided by the Department of General Computer Science
of the Eötvös Loránd University and in particular by the Computer and Automation Research
Institute of the Hungarian Academy of Sciences were essential.

tDepartment of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The
Netherlands. E-mail: mtbeek@wi.leidenuniv.nl

427

mailto:mtbeek@wi.leidenuniv.nl

428 Maurice H. ter Beek

with prescribed teams and simply associate a (possibly different) so-called mode
of derivation with each team. Concerning the latter one it will be shown that this
hybridity does not enlarge the generative power any further. However, every re-
cursively enumerable language can be generated by a hybrid prescribed team CD
grammar system with teams of two members. The question whether the automatic
forming of teams enlarges the generative power of hybrid CD grammar systems
remains an open problem.

Furthermore, a variant of the way teams work in the literature so far is pre-
sented. The motivation to introduce a different concept of rewriting is twofold. Not
only is the strict requirement that every component of the team must participate in
every step often bothering in generating languages but, perhaps more important,
it is definitely too restrictive in the most recent application of grammar systems as
a framework for natural language generation (see, e.g., [8] and [10]).

This new way of rewriting is called weak rewriting and it is investigated in the
case of teams in eco-grammar systems in [2]. It resembles the well-known concept
of appearance checking in regulated rewriting: every component of a team which
contains a production that can rewrite the sentential form must be used, but a
component which does not contain any production with a left-hand side that is
contained in the sentential form does not need to be used. The generative power of
CD grammar systems with prescribed teams of variable size operating in the weak
rewriting step will be shown to equal that of the class of programmed grammars
with unconditional transfer. This implies that these families and those of the
prescribed team CD grammar systems operating in the traditional rewriting step
and the same modes of derivation do not coincide.

Finally, in the special case of prescribed team CD grammar systems with only
one production per component and teams of variable size, an equality with the
class of unordered scattered context grammars is presented. This leads to the fact
that there are several cases when only one production per component suffices for
prescribed team CD grammar systems with teams of variable size.

2 Preliminaries

In this section, some prerequisites necessary for understanding the sequel are de-
fined. For details and unexplained notions, the reader is referred to [28] for formal
languages, [13] for regulated rewriting, [27] for Lindenmayer systems and [5], [9],
[11], [24] and [3] for (variants of) grammar systems.

The set of all non-empty strings over an alphabet V is denoted by V+. If the
empty string, A, is included, the notation becomes V*. The length of a string x is
denoted by |x|.

An inclusion is denoted by C, whereas a proper inclusion is denoted by C.
Sometimes, the notation for a family of languages contains a A between the

brackets [and]. This means that the statement holds in the case of allowing A-
productions (indicated by the A inbetween brackets) as well as in the case of a
restriction to A-free productions (thus neglecting the A inbetween brackets). Also

Teams in Grammar Systems: Hybridity and Weak Rewriting 429

other symbols between brackets must now be understood.
Without definition, the family of context-free languages (CF) is used in the

sequel. Its definition can be found in, e.g., [13]. The same holds for the family of
languages generated by ETOL systems (ETOL). Finally, also the family of languages
generated by [hybrid] CD grammar systems ([H]CD) shall not be defined here.
However, their definitions can be found in [5] and will become clear in the sequel.

None of the above families of languages will be used in any construction in the
proofs. Those families of languages that are used in (some of) the proofs below,
are defined next.

An unordered scattered context grammar with appearance checking ([21]) is a
construct G = (N,T,S,P,F), where N is the set of nonterminals, T is the set
of terminals, S 6 N is the axiom, P = {p\,p2, • • -,pn} is a finite set of rules
(rules are of the form pi : (ai,a2,...,ami) -4 (0i,02,• • -,0mi), where aj -¥ 0j
are productions over N L I T) and F is a set of occurrences of productions in P,
1 < i < n. For w,w' € (N U T)' and 1 < i < n it is said that w directly derives w',
written as

w=$-w' iff w = wiailw2ai2.. .wmaimwm+i, w'=wi(3iiw2Pi2. • .ivmpirnwm+i,
Pi • (<*i,a2,. ..,ap) -4 (0i,02,...,0p) € P, (c*ti><*i2,...,c*im) is a
permutation of a subsequence of (ai , a2,..., ap), wi G (N U T)*
and 1 < / < m + 1

and aj in {ai,a2,.. .,ap} and not in { a ^ , a i 2 , . . . , a ^ } implies that
aj is not contained in ui and aj —> 0j € F.

If F = 0, the unordered scattered context grammar is called an unordered scat-
tered context grammar without appearance checking and F is omitted from the con-
struct. Moreover, if F contains all occurrences of productions in P, the unordered
scattered context grammar is called with unconditional transfer. The language gen-
erated by G is L(G) = {w € T* | S iw}, where = > * denotes the reflexive and
transitive closure of = > .

The family of languages generated by unordered scattered context grammars
with A-free context-free productions in P is denoted by USCac in the case of gram-
mars with appearance checking; when grammars without appearance checking are
considered the subscript ac is omitted and when grammars with unconditional
transfer are considered the subscript ac is replaced by ut.

A matrix grammar with appearance checking is a construct G = (N, T, S, M, F),
where N is the set of nonterminals, T is the set of terminals, S £ N is the axiom,
M is a finite set of matrices of the form m : (r\,r2,.. .,rn), where rj : a j -4 0i
are productions over N UT and |a|/v > 1 , 1 < i < n and F, finally, is a set of
occurrences of productions in M. For w,w' € (N U T)* and m : (ai —• 0i,a2 -4
02,.. , , a n —i• 0n) € M it is said that ui directly derives w', written as

W => w' iff there exist WQ,Wx,...,WN E (N UT)* such that

430 Maurice H. ter Beek

wo = tv and w„ = w' and for ail 0 < i < n — 1 *

either Wi-i = tu^jQitw^j and W{ = w' i_ lP lw"_ l

for some w € (N u T) m

or the production c*j /3j cannot be applied to t
cti fa e F and Wi = Wi-i.

If F = 0, the matrix grammar is called a matrix grammar without appearance
checking and F is omitted from the construct. Moreover, if F contains all oc-
currences of productions in M, the matrix grammar is called with unconditional
transfer. The language generated by G is L(G) = {w 6 T* \ S = > * to}, where

denotes the reflexive and transitive closure of = > .
The family of languages generated by matrix grammars with A-free context-free

productions in M is denoted by MATac in the case of grammars with appearance
checking; when grammars without appearance checking are considered the subscript
ac is omitted and when grammars with unconditional transfer are considered the
subscript ac is replaced by ut.

For all generative devices mentioned above, only the notation in the case of
A-free context-free productions was given. When there is no restriction to A-free
productions a superscript A is added to the notation.

3 Teams in grammar systems
Definit ion 1 Let N and T be two disjoint alphabets. A production over (N, T) is
a pair (A,x) € N x (jVuT)* . Usually, A x shall be written instead of (A, x). If
x ± A, then A —• x is called a A-free production. A team over (N, T) is a multiset
of sets of productions over (N, T). The sets of productions occurring in a team
shall be referred to as components.

Traditionally, a team rewrites a string in the following manner. Here, this origi-
nal notion is renamed strong rewriting since another way of rewriting is introduced
after this definition.

Definit ion 2 Let N and T be two disjoint alphabets. Let Q be a team over (N, T)
and x,y e (N U T)*. Then x is rewritten by Q, in the strong rewriting step, into
y, written as

X y iff X = X1A1X2A2 .. .xnAnxn+i, y = xiyix2y2 • • .xnynxn+i,
Xie{NuT)*, 1 < i < n + 1, Aj -t yj G Pj, 1 < j < n and
Q = {P1,P2,...,Pn}.

A derivation step of a team thus consists of choosing a production from each
component of this team and applying these in parallel on the string to be rewritten.

Now the weak rewriting step for teams is introduced. It is loosely based on the
so-called weakly competitive rewriting step for colonies as introduced in [12].

Teams in Grammar Systems: Hybridity and Weak Rewriting 431

Definition 3 Let N and T be two disjoint alphabets. Let Q be a team over (TV, T)
and x,y £ (N U T)*. Then x is rewritten by Q, in the weak rewriting step, into y,
written as

X ==>Q y iff X = X1A1X2A2 .. ,xnAnxn+i, y = xxyix2y2 .. .xnynxn+i,
X i £ (N U T)*, l<i<n + l, Aj yj £ Pj, 1 <j<nand
{Pi , P2,..., Pn} C {Pi , P 2 , . . . , P„} = Q such that
for all Pq € Q \ {Pi , P2 , • • •, P n } i/iere exisis
no production a fi G Pq such that a £ xix2 .. .xn+i-

The weak rewriting step of a team thus works in the same way as the strong
rewriting step, as far as choosing a production from each component of this team
and applying these in parallel on the current sentential form is concerned. However,
a derivation according to the strong rewriting step is blocked (1) when a component
of the team does not contain a production with a left-hand side that is contained in
the current sentential form or (2) when two (or more) components can only rewrite
a symbol of the current sentential form that appears only once in that sentential
form. In the weak rewriting step neither case results in a blocked derivation, since
only every component containing a production that can rewrite a symbol from
the current sentential form, without clashing with another component for wanting
to rewrite the same symbol, applies these productions in parallel on the current
sentential form.

If Q is a singleton team, i.e. Q = { P } for some set of productions P , then
x ==>p y shall be written instead of x y, for — G {s,u>}. It is clear that in
that case only one symbol in x is rewritten, using a production from P.

So-called modes of derivation are used to prescribe halting requirements on the
use of a team. These modes can be divided into three groups. Firstly, mode * has
no restrictions whatsoever. Any number of derivation steps is allowed. Secondly,
modes <k,=k and >k restrict the number of derivation steps to at most, exactly
and at least k derivation steps, respectively. Thirdly, modes to, t\ and t2 are modes
that represent a so-called maximal number of derivation steps. All three prescribe
a slightly different condition which needs to be fulfilled before a team is considered
to have successfully worked in that mode. In the case of mode to the work of a
team ends successfully when no further derivation step can be done as a team, in
the case of mode fi the work ends when no component of the team can apply one
of its productions any longer and in mode i 2 , finally, the work of a team ends when
there is at least one component that can no longer apply one of its productions. For
these so-called maximal derivation modes, a distinction is made between the weak
and the strong rewriting step.

Definition 4 Let Q = { P i , P 2 , . . . , P „ } be a team over (N,T) and let f £ {<
k, = k, > k | k > 1} U {*, £0j ,<2} be a mode (of derivation). Furthermore, let

432 Maurice H. ter Beek

x,y,z G (N U T)* and k G N. Then x is rewritten by Q, in the weak (— = w) or
strong (— = s) rewriting step and working in mode f , into y, written as

L' .

iff x y for some k < k,

iff x=z>kQy,

iff x = > q y for some k' > k,

iff x =>Q y for some k,
iff x =>q y and there is no z such that y =>Q Z,

8 * iff x y and for no component Pi € Q and no z

there is a derivation y ==>ps z and
8 *

iff x y and there is a component Pi £ Q

for which there is no derivation y ==>pi z.

The three variants of the i-mode of derivation first appeared in [17] (io), [20]
(t\) and [26] (¿2); the other modes of derivation are the natural extension of the
modes in CD grammar systems (see [5]) to teams of grammars.

Now a more general definition of teams in the theory of grammar systems than
the original one from [20] and its generalization from [26] can be introduced.

Definition 5 A hybrid prescribed team CD grammar system is a construct

r = (N, T, S, PU P2, ..., Pn, (<?!, h), (Q2, / 2) , • • •, (Qm, fm)),

where N is the set of nonterminals, T is the set of terminals, with NC\T = 0, S E A^
is the axiom, PI,P2, • • - ,PN are sets of productions over (N , T) , QI,Q2, • • - ,QM are
teams with components from PI, P2,..., PN and /1, /2, • • •, /m are modes of deriva-
tion.

If, in this construct, fi = f j for all 1 < i, j < m, the definition of a prescribed
team CD grammar system as in [26] is obtained.

Note that in this definition, there is no restriction on the size of a team. In the
original definition of teams in [20], however, they are of constant size. A natural
number s > 1 is given and the teams are formed such that the number of compo-
nents of every team is exactly s; these teams are called of constant size s. Moreover,
in that definition the teams are not prescribed, but each set of components can be
a team (so-called free teams) as long as the size restriction is fulfilled.

It is now clear that one can differentiate between the following four variants
of teams in the theory of grammar systems. For all four, hybridity is another
possibility.

Free teams of constant size: this is the original definition of [20], as explained
above.

x

x

x

x

x

x

=k

>Q y
>Q y

>Q y

t3
>Q y

Teams in Grammar Systems: Hybridity and Weak Rewriting 433

Free teams of variable size: each subset of components can be a team.

Prescribed teams of constant size: all prescribed teams consist of the same number
of components.

Prescribed teams of variable size: these are defined in Definition 5.

In the case of teams of constant size, whether prescribed or free, a finite set
of axioms W Ç (N UT) " , with only one string in it containing nonterminals, is
allowed. This is done since otherwise in the case of A-free productions no string
shorter than s could be generated. In the case of free teams with teams of constant
size, the construct thus becomes T = (N,T,W,Pi,P%, . •., Pn). The modifications
in the other cases are obvious.

Definit ion 6 Consider a hybrid prescribed team CD grammar system Y as in Def-
inition 5. Then the language generated by T, operating in the weak (— = w) or
strong (— = s) rewriting step, is

L~{T) = {z€T*\S wh • • • ==>%p wip=z, 1 < ij < m, 1 < j < p}.

When dealing with a language generated by teams of constant size, the notation
of Definition 6 is modified to L~ (r, s). When the teams are not hybrid, the mode
of derivation is added as a subscript to this notation.

The family of languages generated by CD grammar systems with hybrid pre-
scribed teams of variable size, operating in the strong rewriting step and A-free
context-free productions is denoted by HPT+CD. When teams are of constant size
s, the * in the notation is replaced by s and when there is no restriction to A-free
productions, A is added to the notation as a superscript. When the teams are not'
hybrid (prescribed) the H (P) in the notation is omitted.

The weak rewriting step is only considered in the sequel for CD grammar sys-
tems with prescribed teams of variable size. The family of languages generated by
such systems, working in derivation mode / and operating in the weak rewriting
step, is denoted by PTwCD(f) in the case of A-free context-free productions; when
A-productions are allowed the superscript A is added.

Instead of prescribing the hybrid teams, another way to introduce hybrid teams
is defined next. Consider a hybrid CD grammar system and automatically form
teams by combining all components with a certain mode of derivation to form a
team with that mode of derivation. Because the teams are formed automatically,
they are not part of the system " hardware", but a way to define the work of the
system.

Definition 7 Consider a hybrid CD grammar system

r = (N,T, S, (Pi,fi), (P2, / 2) , • • -, (Pn, /„)),

434 Maurice H. ter Beek

where N is the set of nonterminals, T is the set of terminals, with NaT = 0, S G TV
is the axiom, Pi, P2,..., Pn are sets of productions over (N, T) and /1, /2, • • •, /m
are modes of derivation.

Then teams (Qugi) C { (P i , / i) , {P2,f2), • • (Pn,fn)} are automatically formed
in the following way. For gi € {*, ¿o>*i> <2} U {< k, = k, >k \ k > 1}

(QuSi) = {(Pk,fk) I fk = 9u 1 < k < n}.

Such a team (Qi,9i) = {{Pjx,), (P>2, /J 2) , • • •, (Pj,, }Ui)}> IS called an automati-
cally formed team working in mode gi.

The language generated by T with automatically formed teams is

Laut(n = {z e T' I s - • • =z,m> 1}.

The family of languages generated by hybrid CD grammar systems with auto-
matically formed teams of variable size and only A-free context-free productions
is denoted by HT*CD\ when A-productions are allowed the notation becomes
HT*CDX. Note that due to the automatical construction from a hybrid CD gram-
mar system (with a one-symbol axiom), the notion of teams of constant size is very
restricted. Only teams of constant size 1 could be constructed, but they obviously
have the same generative power as the underlying hybrid CD grammar system.
Naturally, it is possible to consider hybrid CD grammar systems with a string
axiom instead of a single nonterminal.

Some relations concerning the generative power of several of these grammar
systems discussed above are given next. A more complete overview can be found
in [1]. In the first paper on teams in grammar systems, [20], it was proved that, for
/ € { = ! , > ! , * } U { < f c | f c > 1},

CF = TiCD(f) C T2CD{f) and
ETOL = TiCD(t) C T2CD(ti).

These relations prove that there are modes of derivation for which the forming of
teams strictly increases the power of CD grammar systems, since CD(t) = ETOL
and CF = C D (= 1) = CD(> 1) = CD{*) = CD(< k) for a k > 1 were already
known to hold (see, e.g., [5]). In [7] it was proved that teams of size two suffice, i.e.
for s > 2

T,CD(ti)CT2CD(ti).

The main results of [26] are, for s > 2, / G { * } U { < k, = k, > k | k > 1} and
9 e {¿1,¿2})

p R W _ p T s C D ^ (f) = P T . C D M (f) and
PR[ax} = TsCD[x](g) = PT,CD^(g) = PT.CD^(g)

and the main result of [17] is, for s > 2 and h G {io,

MATW = T.CDW{h) = PTsCD^{h) = PT,CD^\h) = T.CD[x](h).

Teams in Grammar Systems: Hybridity and Weak Rewriting 435

4 Homogeneous versus heterogeneous teams
The next lemma follows immediately from the definitions stated in the previous
section.

Lemma 1 For s > 1 and f £ {*, io, ii, ¿2} U {<k, = k, >k \ k > 1}

(i) TsCD[x]{f) C PT„CD[x\f) C PT,CD^{f),
T.CDW(f) C PT.CD^U) C HPT.CDW and
PT.CD^(f) C HPTSCD[X] c HPT„C£>W ,

(iij HCDW = HTrCD^ C ffPT.CJD1*1 C HPT.CD^ and
HTiCDW C HT,CD[x] C ifPT,CDtA l and

(Hi) [H][P]TSCDM c [i f] [P] T s + i C £) ' A l .

It is natural to ask whether results similar to those that were stated in the
previous section, can be obtained for the new definitions concerning hybrid teams
of grammars. Indeed, some similar results for the hybrid cases will be proved below,
but some open problems remain.

To begin with, some results concerning hybrid prescribed team CD grammar
systems are presented. The next corollary follows immediately from Lemma 1 and
results stated in the previous section.

Corollary 1 For s> 2
p p w c hpt8CDW.

For the A-free case the next lemma is necessary to conclude that hybrid pre-
scribed team CD grammar systems cannot generate more than the non-hybrid ones.

Lemma 2

HPT,CD[X] C MAT[X}.

Proof Consider the hybrid prescribed team CD grammar system

r = (N,T, 5, P ! ,P 2 , . . ., P n , (Qx, / 0 , (Q2,h), . ..,{Qm, fm)).

Define the homomorphism h from (N U T)* into ({A ' | A £ N] U T)* by

h(a) = a for a £ T and h(A) = A' for A £ N.

436 Maurice H. ter Beek

Moreover, associate to a team Qi = {Pj j ,Pi3t..Pit}, 1 < i < m, all sequences of
productions such that from each component P^., 1 < j < Si, exactly one production
is included in such a sequence. Denote such a sequence by a = (Ai —txi,...,Aa

xa) and all such sequences associated to a team Qi by Seqi = . . .,<7^. } ,
1 < i < m.

To simulate this hybrid prescribed team CD grammar system, construct the
following matrix grammar

G' = (N',T',S',M',F'),

where

N' = WU{i4'| A€ JVJUiT.FJU^y.E;, \ I < j < h,l < i < m} U

{[QiJiJ} I (Qufi) € T . / i G {<k,=k,>k},l < i < m , 0 < j < k} U

{[Qi,<?i],[Qi,*o]' I {Qi,9i) G r , f l j G { » , t 0 , t i , t 2 } , l < i<m},

T' = Tu{z},

M' = {(S'->ST)}U

{(T -»• [Q i , / i , 0]) \ fi G { < f c , = f c , > f c } , l < t < m } U

{(71 [Qi,9i]) I 9i e { » . t o . t i . i a } , 1 < » < m } U
{([Qi,fi,j] [Qufi,j + l],Ai -> fc(®i),i42--> h(x2),...,Aa h{xa)) |

0 < j < fc - 1, {Qufi) = {Ph,Ph,- ..,Pj.},Ar xr £ Pirt

fi G {<k, = k, >k},l< i < m,l < r < s } U
{([Qu>k,k] [g<,>*,*:] , i4i - » h(xi),A2 h(x2),...,A, h(xa)) \

(Qu>k) = { P ^ P , , , • • , P ; , } , ¿ r • + i , e P i r , l < i < r a , l < r < « } U
{([Qi, Si] [Qi, 5»], Ai M^i). • • •, 4 . /»(a:.)) I

(Qi,Si) = { P j 1 1 P) 3 , . . . , P , . M r - > z r G P,r ,5i e•{*,to.ti , i 2} ,

l < i < m , l < r < s } U
{ ([Q i . t o] | l < i < m } U
{ (Ej j -> E< i + 1 ,Ai -> - • p a , . . . , A , V .) |

<7̂ . = (Ai x i , . . . , xa),<pr G {i4' r ,F},</j r = F must hold for
at least one r, 1 < r < s, 1 < j < /j - 1,1 < i < m } U

{ (S i , . [Qi ,*o] '>4l -KP2,---,AB~KP,)\

Oit. = (Ai xx,..., A„ x„), ipT G {A'r, F},tpr — F must hold for
at least one r, l < r < s , l < z < m } U

{ (s ; . Ei - .^ i F,A2 -4 F,...,A'k -4 F) I

Mi.Aj, • •A*} = AT, 1 < j < lu 1 < i < m } U
{(A' -+A) |AeJV}u
{([Qi, < k,j) -4 T),{[Qi, = k, k) T), ([Qi,>k, k] T), {[Qit *]->T)\

Teams in Grammar Systems: Hybridity and Weak Rewriting 437

1 < i < m, 0 < j < Jfc} U
{ ([Q i , to]' T, A[F, A'2 F,..., A'K F) \

{AUA2,...,AK} = N,1 < i < m } U

{ ([Qi. i i] T, Ax F, A[F,A2 F,A2 F,.. ,,A'R F) \

{ A x , A 2 , . . . , A r } = dorn(Pj), 1 < i < m } U
PjeiQiM)

{ ([Q i , t2] -*T,AI F, A[- t F,A2 F,A'2 F,...,A'R F) \

{AI,A2,. .., AR} = dom(Pj) for some Pj € {Qi,t2), 1 < i < m } U
{(T z)} and

in F' are all the productions A F appearing in M'.

The simulation of T starts with introducing the sentential form ST, in which S
is the start-symbol of T and T is a marker. The marker will control the derivation
and S will generate the language of the hybrid CD grammar system with prescribed
teams. This marker is non-deterministically replaced by a control symbol of the
form [Qi,fi,j] or [Qi.ffi]- In these nonterminals, Qi is the team working in mode
fi or gi and j is a counter, necessary for the modes fi £ { < k,= k,> fc}. With
teams working in mode gi e {*,to,ti,t2} we do not need to count and the third
component is omitted.

When the marker \Qi,fi,j] ([Qi, <?;]) is present in the sentential form a sim-
ulation by Qi in mode fi (gi) is simulated. The homomorphism h priming all
nonterminals in the matrices is necessary to guarantee that the productions are ap-
plied to nonterminals that were already existing in the sentential form before these
matrices were applied and not to those introduced by a production from these ma-
trices themselves. The counter in the case of modes <k, =k and > k guarantees
that a team rewrites the sentential form less than k, exactly k or at least k times,
respectively. In case of mode *, to, h and t2 there is no counting at all.

In case of t\ and t2, however, the productions in the set F guarantee that a
team does not stop rewriting until no more component or at least one component
of the team can no longer be used, respectively. Finally, in mode to the symbol
[Qi,<o] can be replaced only by E{,. This symbol can then be replaced by
and back to SiJ+1 until is reached. In this way the correct termination of Qi
in mode to is checked, by the following restrictions.

Firstly, T,ij can only be replaced by if the corresponding sequence of pro-
ductions indeed cannot be used anymore. An F is introduced otherwise, since each
sequence must have at least one <pr = F. Secondly, + i is allowed to be replaced
by £i .+ 1 only after all primed symbols have been replaced by their originals. Fi-
nally, £ ' . can only be replaced by [Qi, to]' after indeed none of the sequences ,
1 < j < /», can be used and then eventually be replaced by T.

In every case, afterwards the primes are removed and another team can non-
deterministically take the marker spot and start its simulation in its mode. Even-
tually a terminal string results from S followed by the marker T. This marker is
then replaced by z thus yielding L(G') = L (r) { z } . This symbol z can be removed

438 Maurice H. ter Beek

by a morphism and thus, since it is known from [13] that the family MATac is
closed under restricted morphisms, L(T) g MATac and the first statement of the
lemma is proved.

HPT.CDX C M AT xc can be proved directly by a similar construction, even
simplified since the marker can eventually be replaced by A, making the use of a
morphism unnecessary. •

It is known that PR\$ = M A T $ (see, e.g., [13]), hence the following corollary
follows directly from Lemma 2.

Corollary 2 HPT.CDM c PR

All these results for hybrid prescribed team CD grammar systems immediately
lead to a result for hybrid CD grammar systems with automatically formed teams,
presented next.

Corollary 3 For s > 1

HTXCD[X] C HT.CD[X] C PR[X}.

Combining these lemmas and corollaries concerning the new definitions, the
following theorem is obtained.

Theorem 1 For s > 2

HT.CD^ C HPT.CD^ = HPTsCDM = PRW.

5 Weak versus strong rewriting
It is not hard to see that the principle of weak rewriting, not having to.apply pro-
ductions if they cannot be applied, resembles the appearance checking feature in
regulated rewriting. Therefore, the following lemma does not come as a surprise.
In the sequel, a restriction to only one production per component will be indicated
by a 1 added as subscript. To be even more precise, denote UmSCut for the class of
unordered scattered context grammars with unconditional transfer and m scattered
context rules and denote PmTwCD\(f) for the class of prescribed team CD gram-
mar systems with m teams of variable size, 1 production per component, working
in mode / and operating in the weak rewriting step.

Lemma 3 For m > 1 and f 6 { = 1, > 1, *} U { < k | k > 1}

UmSC[$ = PmTwCD[x](f) and UmSCM = PmT.CD[x](f).

Teams in Grammar Systems: Hybridity and Weak Rewriting 439

Proof Only the inclusion from left to right of the first statement is proved
here, all other inclusions.can be proved in a similar straigthforward way. Consider
an unordered scattered context grammar

G = (N,T,S,P,F)

with unconditional transfer and m scattered context rules. Moreover, for P =
{P1,P2, • • ,Pm}, Pi • (a»,i,Q!i,2,---iQ!«,*i) {0i,i,Pi,2,---,0i,ki) and 1 < i < rn,
denote

ri,j = ai,j f°r 1 < j < ki-

To simulate this unordered scattered context grammar, construct the prescribed
team CD grammar system

r = (AT, T, S, Px, P2 , • • •, Pn, Qi, Qi, • • •, Q m) ,

where

Pi, P 2 , . . •, Pn are the components {rij } for 1 < j < ki and 1 < i < m and
Qi,Q2, •tQm are the teams {{rij}, {r2j}, • . . . { V j } } for 1 < j < h and

1 < i < m.

A parallel rewriting step of an unordered scattered context grammar is simulated
by a parallel rewriting step of a team, with its components being exactly the same
productions as in the scattered context rule. Every component contains exactly
one such a production and the number of teams equals the number of scattered
context rules. Any production in G as well as in T does not have to be applied, if
it cannot be applied to the sentential form.

Note that the proof requires the unordered character of the scattered context
grammar, for a component of a team can rewrite any occurrence of the left-hand
side of its production in the current sentential form. Since a team has to simulate
the use of a scattered context rule, its mode of derivation is restricted to the cases
as stated in the lemma. Clearly, L(T) = L(G) and the lemma is proved for the case
with as well as for the case without A-productions. •

This lemma has some interesting corollaries.

Corol lary 4 For x S {s , * } , / € { = 1, > 1, *} U { < it | k > 1} and g £ { * } U { <
k, = k,>k | k > 1}

Pi?LAt = PTwCD[x](f) £ PTxCD^(g).

Proof The equalities PR[$ = USC[$ can be found in [16] and Lemma 3
thus leads to the equality in the statement. In [19] it is proved that the language

440 Maurice H. ter Beek

{a2" | n > 1} cannot be generated by P R ^ . However, the programmed grammar
(with unconditional transfer)

Gi = ({S ,A ,P} , {a} ,S ,P) ,

where

P = { (l : S - 4 A 4 , { 1 , 2 , 5 } , { 1 , 2 , 5 }) ,
(2 : S - > P , { 3 } , { 3 }) ,
(3 : A S , {3 ,4 } , {3 ,4 }) ,
(4 : A F, {1}, {1}),
(5 : A - > a , { 5 } , { 5 }) }

generates L(Gi) = {a2" | n > 1} G PRluXJ and thus PR[X} £ Pi?W holds. Finally,
PPW = PTxCD^(g), for x e { s , * } andg € {*}U{<k, = k, >k \ k > 1 , is stated
in Section 3. •

Thus, for several modes of derivation, a prescribed team CD grammar system
with only 1 production per component and operating in the weak rewriting mode
cannot be simulated by a prescribed team CD grammar system operating in the
strong rewriting step not even when there is no limit of 1 production per component.

Corollary 5 For f G { = 1 , > 1 , * } U {<k \ k > 1}

CD(t) c PTwCDi(f) c PTwCD$(f).

Proof The equality CD(t) = ETOL can be found in [5]. The strict inclu-
sion ETOL C O , where O denotes the family of languages generated by the ordered
grammars (with context-free productions) as introduced in [18], can be found in
[13]. Furthermore, O C PRut can be found in [14]. In [16], PRut = USCut is
proved. Finally, in [15], it was proved that PRut C PR^t• Together with Lemma 3
these results lead to a proof of the statement. •

Hence, for several modes of derivation, already a prescribed team CD grammar
system with only 1 production per component and operating in the weak rewriting
step can generate more than a CD grammar system working in mode t can.

Corollary 6 For f G { = 1, > 1, *} U {<k \ k > 1}

PTmCD[x]{f) = PT.CD[x]{f).

Proof These results follow from Lemma 3 and the fact that USCW = Pi?W
(see, e.g., [13]) and P P W = PTtCD^(f) for / € { * } U {<k, = k, >k \ k > 1} (see

Teams in Grammar Systems: Hybridity and Weak Rewriting 441

Section 3) hold. •

Hence teams with one production per component suffice for prescribed team
CD grammar systems with teams of variable size operating in derivation mode = 1,
> 1, * or < k (for a A; > 1).

Remark 1 Note that CD{f) = CF (see Section 3), though CF C PT,CDx{f)
(see Section 3 and Corollary 6), for f 6 {= 1, > 1, *} U {< k | k > 1}. Hence even
CD grammar systems with n components cannot generate all languages that can be
generated by prescribed team CD grammar systems with teams of variable size and
only 1 production per component, for modes f £ { = 1 , > 1 , * } U { < A ; | A ; > 1}.

6 Open problems

It is clear that many open problems remain, both in the field of homogeneous
versus heterogeneous teams as in the case of weak versus strong rewriting. To start
with the latter: is strong rewriting more powerful than weak rewriting, or is the
class of programmed grammars with unconditional transfer equal to the class of
programmed grammars with appearance checking? My conjecture is the former,
since the latter would settle the conjecture P-R^ C Pi?Lc' in the negative and
this very interesting open problem in the theory of formal languages is very widely
conjectured to hold. In fact, in [29], the class of programmed grammars is claimed
to be closed under intersection with regular sets (which would result in a proper
inclusion indeed), but the proof is subject to disbelief (see, e.g., [15]).

A possible angle into solving this open problem is to investigate the generative
power of prescribed team CD grammar systems operating in the weak rewriting step
with a maximal derivation mode. This might help to fill or to definitely establish
the gap between programmed grammars with unconditional transfer and those with
appearance checking. More investigation into the weak rewriting step might also
finally prove PPW £

It is interesting to note that also for colonies (for a definition of colonies, see, e.g.,
[12]) and for teams in eco-grammar systems ([2]), the relation between weak and
strong rewriting is unknown. An answer to those relations would not necessarily
solve the case for teams in CD grammar systems, but it might shed light on some
intrinsic characteristics of weak versus strong rewriting. However, in the case of
colonies no relation between the two ways of rewriting is known yet, whereas in
the case of eco-grammar systems it was proved in [2] that strong rewriting can be
simulated by weak rewriting.

Concerning homogeneous and heterogeneous teams, the main open problem
is whether automatic forming of teams strictly increases the generative power of
hybrid CD grammar systems. The conjecture, at least for the A-free case, is yes
since this would result in confirmation of the conjecture, stated in [23], that the
inclusion HCD C MATac is proper. This might be a difficult open problem to settle

442 Maurice H. ter Beek

since several years after their introduction in [22] still many problems concerning
hybrid CD grammar systems are open.

Especially the relation with matrix grammars is wide open, since in [23] also
the relation between matrix grammars without appearance checking and hybrid
CD grammar systems is posed as an open problem. However, several different
angles have been provided so far. For example, in [1], graph controlled hybrid CD
grammar systems (GCHCD) were defined and they were proved to be included
in the matrix grammars with appearance checking and to include both the hybrid
CD grammar systems and the matrix grammars without appearance checking. It
is not known, however, whether these inclusions are proper or whether equalities
can be proved, but one of the inclusions of MAT C GCHCD C MATac must be
proper. A solution to (one of) these open problems could shed light on this relation
between hybrid CD grammar systems and matrix grammars without appearance
checking, or perhaps even solve this open problem.

Acknowledgements
This work has benefited from discussions with and comments and suggestions from
E. Csuhaj-Varju, H.C.M. Kleijn and Gh. Paun. This paper is an excerpt from
Part III: Teams in CD grammar systems of my master's thesis ([1]).

References
[1] M. H. ter Beek, Teams in grammar systems, IR-96-32 (master's thesis), Lei-

den University, 1996.

[2] M. H. ter Beek, Simple eco-grammar systems with prescribed teams. To ap-
pear in Grammatical Models of Multi-Agent Systems, Gordon and Breach,
London, 1997.

[3] M. H. ter Beek, Teams in grammar systems: sub-context-free cases. To ap-
pear in Developments in Regulated Rewriting and Grammar Systems, Lecture
Notes in Computer Science (1997).

[4] E. Csuhaj-Varju and J. Dassow, On cooperating distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK 26 (1990), 49 - 63.

[5] E. Csuhaj-Varju, J. Dassow, J. Kelemen and Gh. Paun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

[6] E. Csuhaj-Varju and J. Kelemen, Cooperating grammar systems: a syntacti-
cal framework for the blackboard model of problem solving. In Proc. AI and
information-control systems of robots '89 (I. Plander, ed.), North-Holland
Publ. , 1989, 121 - 127.

Teams in Grammar Systems: Hybridity and Weak Rewriting 443

[7] E. Csuhaj-Varjú and Gh. Páun, Limiting the size of teams in cooperating
grammar systems. Bulletin EATCS 51 (1993), 198 - 202.

[8] E. Csuhaj-Varjú, Grammar systems: a framework for natural language gener-
ation. In Mathematical Aspects of Natural and Formal Languages (Gh. Páun,
ed.), World Scientific Series in Computer Science 43 (1994), World Scientific,
Singapore, 63 - 78.

[9] E. Csuhaj-Varjú, Eco-grammar systems: recent results and perspectives. In
[25] (1995), 79 - 103.

[10] E. Csuhaj-Varjú, Generalized eco-grammar systems: a framework for natural
language generation. In Lenguajes Naturales Y Lenguajes Formales XII (C.
Martin-Vide,ed.), PPU, Barcelona, 1996, 13-27.

[11] J. Dassow, Cooperating grammar systems (definitions, basic results, open
problems). In [25] (1995), 40 - 52.

[12] J. Dassow, J. Kelemen and Gh. Páun, On parallelism in colonies. Cybernet.
Systems 24 (1993), 37 - 49.

[13] J. Dassow and Gh. Páun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, 1989.

[14] H. Fernau, Membership for 1-limited ETOL languages is not decidable. J.
Inform. Process. Cybern. EIK 30 (1994), 191 - 211.

[15] H. Fernau, On unconditional transfer. Proceedings of the MFCS'96, Lecture
Notes in Computer Science 1113, Springer-Verlag, Berlin, 1996, 348 - 359.

[16] H. Fernau, Scattered context grammars with regulation. Ann. Univ. Bu-
cure§ti, Math-Informatics Series 45, 1 (1996), 41 - 50.

[17] R. Freund and Gh. Páun, A variant of team cooperation in grammar systems.
J. UCS 1, 2 (1995), 105 - 130.
http: //hyperg.iicm.tu-graz.ac.at

[18] I. Fris, Grammars with partial ordering of the rules. Inform. Control 12
(1968), 412 - 425. Correction in Inform. Control 14 (1969), 5.

[19] D. Hauschildt and M. Jantzen, Petri net algorithms in the theory of matrix
grammars, Acta Informática 31 (1994), 719 - 728.

[20] L. Kari, A. M&teescu, Gh. Páun and A. Salomaa, Teams in cooperating
grammar systems, J. Exper. Th. All (1995), 347 - 359.

[21] O. Mayer, Some restricted devices for context-free languages. Inform. Control
20 (1972), 69 - 92.

[22] V. Mitrana, Hybrid cooperating distributed grammar systems. Computers
and AI2 (1993), 83 - 88.

444 Maurice H. ter Beek

[23] Gh. Päun, On the generative capacity of hybrid CD grammar systems, J.
Inform. Process. Cybern. EIK 30, 4 (1994), 231 - 244.

[24] Gh. Päun, Grammar systems: a grammatical approach to distribution and
cooperation. In Automata, Languages and Programming; 22nd International
Colloquium, ICALP'95, Szeged, Hungary, Lecture Notes in Computer Science
944 (1995), 429 - 443.

[25] Artificial Life: Grammatical Models (Gh. Päun, ed.), Black Sea Univ. Press,
Bucharest, Romania, 1995.

[26] Gh. Päun and G. Rozenberg, Prescribed teams of grammars. Acta Informát-
ica 31 (1994), 525 - 537.

[27] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Aca-
demic Press, New York, 1980.

[28] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[29] E. D. Stotskii, Control of the conclusion in formal grammars. Problems of
Information Transmission 7, 3 (1971, translated 1973), 257 - 270.

Acta Cybernetica 12 (1996) 397-409.

Test Tube Systems or How to Bake a DNA Cake

Rudolf FREUND * Franziska FREUND f

Abstract
We introduce various general models for test tube systems which not only

are a theoretical basis for the different test tube systems used for practical
applications (confer to [l], [2], [3], [12]), but also cover different theoretical
models to be found in literature, e.g. the test tube systems based on the
splicing operation introduced in [4] as well as test tube systems based on the
operations of cutting and recombination introduced in [9]. In test tube sys-
tems specific operations are applied to the objects in their components (test
tubes) in a distributed and parallel manner; the results of these computations
are redistributed according to specific input and/or output filters. We inves-
tigate relations between the different models of test tube systems introduced
in this paper and show how the results presented in [4] and [9] fit into our
general framework. Moreover, we investigate the computational power of test
tube systems with context-free productions and regular filters.

1 Introduction
Test tube systems were introduced as biological computer systems based on DNA
molecules ([1], [2], [3], [12]), and the practical solution of various problems (e.g.
even of NP complete problems like the Hamiltonian path problem in [1]) with such
systems was described. The theoretical features of test tube systems based on the
splicing operation were investigated in [4]; in [9] test tube systems based on the
operations of cutting and recombination were explored; in both cases, these test
tube systems were shown to have the computational power of Turing machines.

Most of the test tube systems to be found in literature have the following com-
mon features: in the components (test tubes) of the systems specific operations
are applied to the objects in the tubes in a distributed and parallel manner; the
results of these computations are redistributed according to specific output and/or
input filters which only allow specific parts of the contents of a tube to pass over
to other test tubes. As it was shown in the theoretical papers mentioned above
([4], [9]), even very restricted kinds of such filters testing for the existence respec-
tively non-existence of specific symbols respectively markings allow for reaching the

'Institut für Computersprachen, Technische Universität Wien Resselgasse 3, A-1040 Wien,
Austria. Email: radiologic.tuwien.ac.at

'Gymnasium der Schulbrüder, Strebersdorf, Anton Böck-Gasse 37, A-1215 Wien, Austria.
Email: freund@strebersdorf.ac.at

445

mailto:freund@strebersdorf.ac.at

446 Rudolf Freund, Franziska Freund

computational power of Turing machines. The computational universality of these
specific variants of test tube systems was proved in these papers, too.

In [5] and [6] a general framework for describing networks of language identifying
devices (networks of language processors) was introduced and investigated. In
this paper we shall restrict ourselves to introduce various general models for test
tube systems. We investigate relations between these models of test tube systems
and also consider their computational power with respect to the complexity of the
output/input relations and the filters we use. Moreover, we show how the results
presented in [4] and [9] fit into the general framework presented in this paper.

In the second section we start with defining the notions from formal language
theory needed in this paper; we introduce the formal definitions for the general
models of test tube systems to be investigated in this paper as well as the notions
of test tube systems based on the splicing operation ([4]) and the test tube systems
based on the operations of cutting and recombination ([9]); moreover, we give some
examples illustrating the notions of test tube systems and we show how the test tube
systems based on the splicing operation ([4]) and the test tube systems based on the
operations of cutting and recombination ([9]) can be interpreted in the framework
introduced in this paper. In the third section we investigate some characteristic
features of the different general models of test tube systems and also elaborate some
specific results for test tube systems which use context-free productions in the test
tubes and regular filters for redistribution. A short summary of the results obtained
in this paper and an overview of future research topics conclude the paper.

2 Definitions and Examples
In this section we define some notions from formal language theory and recall
the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and of cut-
ting/recombination schemes (CR schemes; confer to [8]). Moreover, we introduce
the general definitions of test tube systems and give some explanatory examples.

2.1 Formal language theory prerequisites
In this subsection we only define some notions from formal language theory that
we shall need in this paper. For general formal language theory prerequisites we
refer to [16].

The free monoid generated by the alphabet V is denoted by V*, its elements
are called strings or words over V\ A is the empty string, V+ = V* \ {A} .

A grammar scheme 7 is a triple (V}v, VT,P) , where V/v is a (finite) alphabet of
non-terminal symbols; VT is a (finite) alphabet of terminal symbols with V¿v fl VT =
0; P is a (finite) set of productions of the form (a , /?) , where a € (VKr U V T) + and
/? G (Vjy U VT)* . 'For two words x,y £ (V/v U VT)+ , the derivation relation h 7 is
defined if and only if x = uav and y = u¡3v for some production (a,/?) £ P and two
strings u,v £ (V/v U VT)* ; we then also write x h7 y. The reflexive and transitive
closure of the relation h7 is denoted by h* .

Test Tube Systems or How to Bake a DNA Cake 447

A grammar G is a quadruple (V/v, Vr,P,S), where 7 = (V/v, Vr,P) is a gram-
mar scheme and 5 G V/v; in a more general way, we can also take S G (V}v U VT)+ •
The A-free language generated by G is L (G) = {u; G VP | Sh* u>}.

The grammar G, G — (VN,VT,P,S), as well as the corresponding grammar
scheme (VN,VT,P) is called context-free, if every production in P is of the form
(A, w), where A G Vjv and w G (Vjv U Vr)* ; G is called regular, if every production
in P is of the form (A, w), where A G Vjv and w G Vf Vjv U V,j .

The family of (A-free) languages over VT generated by arbitrary, context-free,
and regular grammars is denoted by ENUM (V r) , CF(VR), and REG(VT),
respectively, and the family of finite (A-free) languages over VT is denoted by
FIN(VR)- The corresponding families of languages over arbitrary terminal al-
phabets are denoted by ENUM, CF, REG, and FIN, respectively. By REG+ we
denote the family of regular languages of the form W+ for some finite set W.

A grammar scheme YU (VT) with 7U (VT) = (V/v, VT, P) is called universal (for
VT) if for every L G ENUM (Vr) there exists a word AL such that the grammar
GL with GL = (Vyv, VT, P,AL) generates L. One of the important results of formal
language theory is that for every VT such a universal grammar ~F(J (VR) exists.

2.2 Splicing schemes and cutting/recombination schemes
We now recall the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and
of cutting/recombination schemes (CR-schemes; confer to [8]).

As the empty word has no meaningful representation in nature, A is not con-
sidered to be an object we have to deal with; as for grammars above, also in the
following only mechanisms for generating A-free languages will be considered (all
the definitions we shall give have been adapted in a suitable manner).

Definition 1. A splicing scheme (H-scheme) is a pair a, a = (V, R), where V is
an alphabet and R C V*#V*$V*#V*; # , $ are special symbols not in V. R is
the set of splicing rules. For x, y,z,w G V+ and r = tii#U2$W3#U4 in R we define
(a:, y) hr (z, w) if and only if x = «i«1^2X2, y = J/1M3U43/2, and 2 = x\u\u4y2, w =
y1u3u2x2 , for some x1,x2,yi,y2 G V*.

For any language L C V+, we write

<r(L) = {z G V+ | (x,y) hr (z,w) or (x, y) \-r (w,z), for some x,y E L,r € R],

and we define a* (L) — (Jt>o <T* .where
cr° (L) = L, <7*.+1 (L) = a* (L) U a (a1 (L)) f o r i > 0 .

An extended H-system (or extended splicing system) is a quadruple 7 , 7 =
(V,VT,A,R), where VR C V is the set of terminal symbols and A is the set
of axioms. The language generated by the extended H-system 7 is defined by
L(Y)=A*(A)NV+.

Definition 2. A cutting/recombination scheme (or a CR-scheme) is a quadruple
a = (V,M,C,R), where V is a finite alphabet; M is a finite set of markings; V
and M are disjoint sets; C is a set of cutting rules of the form u # / $ m # v , where

448 Rudolf Freund, Franziska Freund

u G V* U MV*, v e V* U V*M, and m,l G M, and # , $ are special symbols not in
V U M\ R C M x M is the recombination relation representing the recombination
rules. Cutting and recombination rules are applied to objects from 0 (V, M) , where
we define

O {V, M) = V+ U MV* U T M U MVM.

For x, y, z G 0 {V, M) and a cutting rule c = u # / $ m # v we define x he (y, z) if
and only if for some a G V* U MV* and ¡3 E V* U V*M we have x = auv/3 and
y = aul, z = mvj3. For x,y,z G 0 (V, M) and a recombination rule r = (/, m) from
R we define (x, y) h r z if and only if for some a G V* U MV* and /? E V* U V*M
we have x = al, y = m/3, and z = a/3. For a CR-scheme a = (V, M, C, i i) and any
language L C O (V, M) we write

a (L) = {y | x t-c (y, z) or x hc (2, y) for some x € L, c E C] U
{2 | (x, y) hr 2 for some x,y & L, r G -ft} ;

<7* (L) and <r' (L) for t > 0 are defined in a similar way as for splicing schemes.
An extended CR-system is a sextuple 7, 7 = (V, M,VT,A, C, R), where VT C V

is the set of terminal symbols, A is the set of axioms, and (V, M, C, R) is the
underlying CR-scheme. The language generated by the extended CR-system 7 is
defined by L (7) = <7* (A) NKT+. •

Thus <T(L) contains all objects obtained by applying one cutting or one recombi-
nation rule to objects from L\ A*(L) is the smallest subset of 0 (V, M) that contains
L and is closed under the cutting and recombination rules of cr. L (7) is the set of
all terminal words that can be obtained from the axioms by an arbitrary number
of cuttings and recombinations.

There is a close relationship between CR-schemes and splicing schemes (H-
schemes): For instance, applying the splicing rule ui#W2$t/3#ti4 to two strings
X1U1U2X2 and y\U3U^y2 yields the two strings X\u\u^y2 and yiU3U2X2 which cor-
responds to cutting the strings X1U1U2X2 and y\uzu^y2 into the strings xiiti [m]+ ,
[m]~ u2x2 and y\u$ [m]+ , [m]~ u$y2 by using the cutting rules Ui# [m]+ $ [m]~ #t«2
and ti3# [m]+ $ [m]~ #1x4 and recombining them immediately by applying the re-
combination rule , [m] - j in a crosswise way.

In [13] it was shown that H-systems with a finite set of axioms and a finite set
of splicing rules characterize REG, whereas with a regular set of splicing rules we
obtain ENUM. In [7] it was proved that by adding specific control mechanisms
like multisets or context conditions (permitting respectively forbidden contexts) to
extended H-systems with a finite number of axioms and a finite number of splicing
rules again the computational power of Turing machines or arbitrary grammars can
be obtained. Similar results for CR-systems were proved in [8].

2.3 Test tube systems
In this section we introduce several general models of test tube systems (confer to
[2], [3], [4], [12] for practical implementations). The idea of test tube systems is to

Test Tube Systems or How to Bake a DNA Cake 449

describe computational devices where the computations in each test tube are based
on specific operations and where any computation is done in a distributed way. As
a communication step the resulting contents of the test tubes then is redistributed
according to specific constraints, i.e. the contents of each test tube is distributed to
all test tubes according to specific output and input filters again, whereas the rest
remains in the test tube. These ideas have already be formalized-for the splicing
operation in [4] and for the operations of cutting and recombination in [9].

Definition 3. A test tube system with output and input filters (a TTSOI for short)
<r is a sextuple (B , n, A, p, O, I) , where

1. B is a s6t of objects;

2. n, n > 1, is the number of test tubes in <r;

3. A = (A\, . . . ,An) , where Aj is a set of axioms, which are elements from B,

4. p is a sequence (pi,...,pn) of sets of test tube operations, where pi contains
specific operations for the test tube Tj, 1 < i < n;

5. O = (Oi, ...,On), where O, C B is the output filter for the test tube Ti,

6. I = (7 i , . . . , I n) , where 7,- Ç B is the input filter for the test tube Ti, 1 < i < n.

In order to indicate the number n of test tubes, we also call <r a TTSOI„.
The computations in the system a run as follows: At the beginning of the

computation the axioms are distributed over the n test tubes according to A, i.e.
test tube Ti starts with Ai. Now let Li be the contents of test tube Ti at the
beginning of a derivation step. Then in each test tube the rules of Ti operate on
Li, i.e. we obtain pi (Li) . The next substep is the redistribution of the p? (L,) over
all test tubes according to the corresponding output and input filters. From p* (£ ,)
only the part (p* (L,) fl 0 ,) n / j that passes the output filter Oi as well as the input
filter Ij is distributed to the test tube Tj, 1 < j < n, whereas the rest

remains in Ti. The final result of the computations in a consists of all objects from
B that can be extracted from the final test tube T\ via the ouput filter Oi.

More formally, an instantaneous description (ID for short) of the system tr is
an n-tuple (Li, ...,Ln) with L, C B , 1 < i < n, where L, describes the contents of
test tube Ti at the beginning of a derivation step. The initial ID is (Ai , . . . , An),
i.e. at time t — 0 the test tubes Tj contain the axioms Ai. Let (L\ (<), ...,Ln (t))

1 < i < n;

1 < i < n;

450 Rudolf Freund, Franziska Freund

denote the ID at time t; then one derivation step with the system cr yields the ID
(Li (i + 1) , . . . , Ln (t + 1)), where

[Pi (Li (<)) \ (Ui<i<n ({Pi (Li (0) n o.-) n / ,))) .
We also write (Lx (t),.... L„ (t)) \-c (Lx (t + 1) , . . . , Ln (t + 1)). The language gen-
erated by the system a, L (a), then is defined by L (<r) = Ui^o (^i (0 n • More-
over, we say that a is of type (Fi, F2 , F3, F 4) , if Ai G Fi, pi G F?, Oi G F3 , and
Ii G F4 for all i with 1 < i < n. ' •

Definit ion 4. A test tube system with input filters (a TTSI for short) cr of type
(Fi,F2, F4) is a quintuple (B , n, A,p, I), where (B , n, A, p, (B , . . . , B) , I) is the cor-
responding TTSOI of type (Fi, F2, {B} ,F4). A test tube system with output filters
(a TTSO for short) a of type (F1.F2.F3) is a quintuple (B , n , A , p , 0) , where
(B,n,A,p,0,(B,...,B)) is the corresponding TTSOI of type (Fu F2, F3,{B}). In
order to indicate the number n of test tubes, we also call a a TTSIn and a TTSO n ,
respectively. n

We should like to mention that in general the TTSOI (B, n, A,p, (B, ...,B), I)
corresponding with a TTSI (B , n, A, p, I) of type (Fi, F2 , F4) need not be a TTSOI
of type (Fi, F2, F4 , F 4) , because B need not be an element of F4 .

Remark 1. The reader should observe that we are not dealing with multisets in
this paper; hence we assume that every object in any test tube is available in an
unbounded number. Moreover, in the phase of redistribution every object x from
the test tube Ti that passes the output filter Oi is distributed (in an unbounded
number) to each test tube Tj the input filter of which allows x to pass. In some sense
this corresponds to an intermediate step which in practice is called amplification,
e.g. in test tubes working with DNA strands (and the operation of splicing) copies
can be made by applying the polymerase chain reaction (see [3]). Moreover, it
would be a more practical assumption that instead of pi (L,) any arbitrary (finite)
subset of p* (Li) could evolve in the test tube Ti during a computation period.
Then only this subset would be distributed to all test tubes according to the input
filters. In fact, in most cases this would still allow us to generate all desired objects,
although it would never be clear, when these objets would evolve. In a practical
implementation the number and the size of objects that can be generated also
depends on the amount of original material of axioms we take at the beginning.
Moreover, if parts of (the subset of) pJ (Li) are to be redistributed over different
test tubes it is only necessary to assume that any allowed distribution of the whole
material will possibly happen; in practical implementations of test tube systems the
intermediate amplification (see [2], [3], [12]) of the material may already guarantee
that enough material is distributed to all the possible test tubes. •

A minimal requirement on the feasability of the input filters / , and the output
filters Oj is their recursiveness, i.e. we demand that it is decidable whether an
object from B can pass a filter or not.

Test Tube Systems or How to Bake a DNA Cake 451

The following example shows how under these constraints every recursive lan-
guage can be generated by a large class of TTSOi:
Example 1. Let L C V+ be an arbitrary recursive language and let be the
TTSOi cL = (B, 1, (A) , (p), (L)) such that p* (A) D L. Then we obtain (A) h„ t

(p* (A) n L) = (L) and therefore L (a) = (A D L) U (p* (A) DL) = L.
Hence, for any family of languages F3 with F3 C REC, a language L C F3

can be generated by a TTSOi of type (F\, F2, F3) if F\ contains a set A such that
p* (A) D L for some p € F2. •

Definition 5. A CR-TTSOI a is a TTSOI (O (V, M), n, A, p, O, I), where p =
(pi,...,pn), pi = Ci U Ri, 1 < i < n, and a¡ = (V, M,C¡, Ri) is a CR-scheme.
In order to emphasize that a is a CR-TTSOI, we shall also write (CÍ,RÍ) for pi
instead of QURi. An H-TTSOI <7 is a TTSOI (V+, n, A, p, O, I), where <r¿ = (V, p•),
1 < i < n, is an H-scheme. A G-TTSOI a is a TTSOI (W (VN,VT), n, A, p, O, I),
where VN and VT are disjoint alphabets, W (VN , Vt) denotes (Vjv U Vr)+ , and

= (VN,VT,PÍ) , 1 < i < n, is a grammar scheme; if every grammar scheme c¿,
1 < i < n, is context-free (regular), then also a is called context-free (regular). •

Remark 2. The notation W (VN ,VT) in a G-TTSOI a, a -
(W (Vjv, Vt) , n, A, p, O, I), allows us to distinguish the non-terminal symbols in
VN and the terminal symbols in VT\ <t is considered to work "correctly" only if
I (cr) C VT+. In a similar manner for a CR-TTSOI a, a = (O (V, M), n, A, p, 0,1),
we demand L (cr) C V+. •

We now exhibit an example of a regular G-TTSO7 of type (FIN, FIN, REG+)
which generates a non-context-free language:

Example 2. Let <r = (W (V^r, VT) , 7, A, p, O) be the G-TTSO7 with
VN = {X,Y},VT = {atb},
A = (0, {XX} , {XX} , {XX} , {XX} ,0 ,0) ,
P = (PI,P2,P3,P4,P5,P6,PT) , o = (0 i , 0 2 , O3, O4, O5, 06 ,07) .
P l = 0, P 2 = { (X , a) , (Y, a)} , p3 = {(X, b), (Y, b)} ,
P4 = {(X, aY) } , p5 = {(X, 6Y)} , P 6 = {(Y, a X) } , p7 = {(Y, W) } ,
Oi = 0 2 = O3 = {a, 6}+ , 0 4 = 0 5 = {a, 6, Y } + , 0 6 = Or = {a, 6, X}+ .
The generation of the words ww in this G-TTSO briefly can be described in the

following way:
From arbitrary words of the forms uXuX, u G {a, 6}* , and vYvY, v £ {a, 6 } + ,

respectively, by the productions in p2 we obtain uaua and vava, respectively,
whereas by the productions in p3 we obtain ubub and vbvb, respectively, i.e. we ob-
tain terminal words from {a, 6}+ , which then can be extracted from as terminal
results of the computations in cr. By the corresponding productions in £>4, ps, p$,
pi, the length of the current strings is prolongued by one more symbol in a syn-
chronized way, because only the strings of the forms uaYuaY, ubYubY, vaXvaX,
and vbXvbX, respectively, can pass the corresponding output filters 0¿ of the test
tubes Ti, 4 < i < 7. These observations show that L (a) = < ww \ w £ {a, 6 } + . •

452 Rudolf Freund, Franziska Freund

For CR-TTSOPthe following types of filters are suitable:
Definit ion 6i A subset of 0(V,M) is called a simple (V, M)2-filter if it equals

1. V+ or

2. { m } V* for some m 6 M or

3. V* {m} for some m G M or

4. { m } V* { n } for some m,n £ M.

A simple (y, M)2-filter is called a simple (V, M)1-ftlter, if it is not of the form
{ m } V* {n } . Any finite union of simple (V, M){-filters, i £ { 1 , 2 } , is called a
(V, M)i-filter; the families-of (V, M),-filters and simple (V, M)t-filters for arbitrary
V, M are denoted- by CRFi and CRSFi, respectively. •

The proof of the following result is obvious from the definitions and therefore
omitted:
L e m m a 1. The union and the intersection of two (V, M){-filters again is a (V., M)r

filter, i 6 {1, 2}. Moreover, O (V, M) is a (V, M)2-filter, but not a (V, M) r f i l ter .

The distribution of the contents of a test tube over all test tubes of the system
not only gives rise to theoretical problems (for obtaining filters- of a complexity as
low as possible) but also to practical problems ("waste" of the material that is put
into test tubes where on one hand it-cannot be processed or used any more and on
the other hand it nonetheless has to remain forever). Hence, a more natural and
realistic scenario is to assume that the contents of-the test tubes is only distributed
to selected test tubes that are prescribed from the beginning. In fact, most of the
test tube systems to be found in literature work in such a manner, i.e. programs
how to redistribute the contents of test tubes are described (see [1], [3], [12]).

A formalization of these ideas discussed above leads to the following definition:
Definit ion 7. A test tube system with prescribed output/input relations (a TTSPOI
for short) cr is a quintuple (B, n, A,p, D), where

1. B is a set of objects;

2. n, n > 1, is the number of test tubes in cr;

3. A = (A\,..., An) is a sequence of sets of axioms, where A, C B, 1 < i < n;

4. p is a sequence (p\, ...,pn) of sets of test tube operations, where pi contains
specific operations for the test tube T;, 1 < i < n;

5. D is a (finite) set of prescribed output/input relations between the test tubes
in o of the form (i, F,j) , where l < i < n , l < j < n and F is a (recursive)
subset of B; F is called a filter between the test tubes TJ and I } .

Test Tube Systems or How to Bake a DNA Cake 453

In order to indicate the number of test tubes, we also say that a is a TTSPOIn .
The computations in the system a run as follows: At the beginning of the

computation the axioms are distributed over the n test tubes according to A, i.e.
test tube Ti starts with A,-. Now let Li be the contents of test tube Ti at the
beginning of a derivation step. Then in each test tube the rules of p,- operate on
Li, i.e. we obtain p* (Li) . The next substep is the redistribution of the p* (Li) over
all test tubes according to the corresponding output/input relations from D, i.e. if
(h F j) £ D then the test tube Tj from p; (L,) gets p* (Li) fl F, whereas the rest of
p*i (Li) that cannot be distributed to other test tubes remains in Ti. The final result
of the computations in cr consists of all objects from B that can be extracted from
the final test tube Ti (hence usually we shall assume F = 0 for all (1, F,j) £ D).

More formally, an instantaneous description (ID for short) of the system a is
an ra-tuple (Li, ...,Ln) with L; C B, 1 < i < n, where Li describes the contents of
test tube Ti at the beginning of a derivation step. The initial ID is (A\,..., An),
i.e. at time t = 0 test tubes Ti contain the axioms A,-. Let (L\ (t),..., Ln (t))
denote the ID at time f; then one derivation step with the system cr yields the ID
(Li (t + 1) , . . . , Ln (t + 1)), where

Li (t + 1) = ((J (Pi ^ W) n F)) U I (^ (t)) \ (J (p* (Li (i)) n F)

We also write (L\ (t) , . . . , Ln (t)) (Li (t + 1),..., Ln (t + 1)). The language gen-
erated by the system cr, L (cr) , is defined by L (cr) — (Jt^o L\ (t) . Moreover, we say
that cr is of type (F\,F2, F3) , if A,- £ Fx, pi £ F2 for all i with 1 < i < n, and
F £ F3 for all F with (i, F,j) £ D for some i,j with 1 < i < n, 1 < j < n. •

Definition 8. A CR-TTSPOI a is a TTSPOI (O (V, M), n, A, p, D), where p =
(pi , . . . ,p„) , pi = (Ci,Ri), 1 < i < n, and (T,- = (V,M,Ci,Ri) is a CR-scheme.
An H-TTSPOI a is a TTSPOI (V+, n, A,p, D) where <n = (V,Pi), 1 < i < n,
is an H-scheme. A G-TTSPOI cr is a TTSPOI (W(VN, VT), n, A, p, D), where
f i = (VN, VT,pi), 1 < i < n, is a grammar scheme; if every grammar scheme cr,-,
1 < i < n, is context-free (regular), then also a is called context-free (regular). •

Remark 3. As already stated in Remark 2 for CR-TTSOI and G-TTSOI, respec-
tively, also for a CR-TTSPOI a, a = (0 (V, M), n, A, p, D), we demand L (a) C V+
and for a G-TTSPOI a, a = (W (VN,VT) ,n,A,p,D), we demand L(<r) C V / .

The following results were established in [9]:
Propos i t ion 1. For every L £ ENUM we can construct a CR-TTSI of type
(FIN,FIN,CRFi) which generates L.
Propos i t ion 2. For every L £ ENUM we can construct a CR-TTSPOI4 of type
(FIN, FIN, CRF2) which generates L.

For the CR TTSI in Proposition 1 it is an open question whether the number
of test tubes needed for generating arbitrary recursively enumerable languages can
be bounded or not.

454 Rudolf Freund, Franziska Freund

The following result was proved in [4]:
Propos i t ion 3. For every L € ENUM (VT) we can construct an H-TTSl8+card(vT)
of type (FIN, FIN, REG+) which generates L.

3 Results
In the first part of this section we elaborate some general relations between the
different models of test tube systems we introduced in the previous section; these
results even hold true for arbitrary objects and for arbitrary operations used in the
test tubes. In the second part of this section we shall prove some specific results
for test tube systems working on strings, e.g. we shall show how every recursively
enumerable string language can be generated by test tube systems using context-
free productions and a very restricted form of regular filters only.

3.1 General results for test tube systems

In this subsection we show some general results for the different models of test
tube systems introduced in the previous section; these results neither depend on
the operations used in the test tubes nor on the objects we consider. Moreover, we
give some applications of these general results for CR test tube systems.

For every TTSOI we can easily construct an equivalent TTSPOI generating the
same language:
L e m m a 2. Let a = (B,n,A,p,0,l) be a TTSOIn of type (F1,F2,F3,FA)
and let F0 be a set containing L(cr). Then the TTSPOI n + i a' =
(5 , n + 1 , (0 , p u . . . , p „) , (0 , A i , . . . , A n) , D) with

D={(i+l,OinIj,j+l) | 1 < i,j < n } u { (2 , F 0 n O ! , l) }

generates the same language as a, i.e. L (a1) = L (a). Let F\ and F2 contain
the empty set and denote n (F3, FA) = {X n Y \ X € F3 A Y € F 4 } ; then <r' is
a TTSPOI„+i of type (F1,F2,F5) for every family F5 with F5 D { F 0 n O i } U

' n (F3, F4).

Proof. The components (test tubes) T}'+1, 1 < i < n, in a' work in the same way as
the corresponding test tubes Ti in o, because by definition they contain the same
rules, i.e. = pi. We also start with the desired axioms Aj in each test tube
T'j+x, 1 < j < n. The output/input relations (i+ 1, Oi fl Ij,j + 1) , 1 < i < n,
1 ^ j < n, guarantee that the test tubes Tj'+1 in a' are distributed in the same
way as the test tubes T) in a after each computation step. The test tube T[is only
needed to extract the final objects in cr' in a similar way as by extracting these
strings from Ti in cr. In sum we obtain

(Alt..., An) K (Li («),...,£„(*))
(L\ (< + 1),..., Ln (t + 1))

Test Tube Systems or How to Bake a DNA Cake 455

if and only if

(01^1, . . . , A n) h ; , (L 0 (<) , L 1 (i) , . . , i „ W)
(Lo (0 U (Lx (t) n (F0 n Ot)) ,Ll(t+l),...,L„(t+ 1))

which immediately yields

L (•) = Ur=o Lo (0 = 0 U U^o (¿i (0 n (F0 0 0:)) =
(U ~ o Li (t) n 0 0 n F 0 = L (o-) n F 0 = L (<r).

•

Corol lary 1. For every L G ENUM (VT) we can construct a CR-TTSPOI of type
(FIN, FIN, CRFi) which generates L.
Proof. From Proposition 1 we know that for L we can construct a CR-TTSOI
<r = (0(V,M),n,p,(0(V,M),...,0(V,M)),I) of
type (FIN,FIN, {0(V,M)},CRFx) with L(a) = L. Now take F0 = V+ (ob-
serve that V+ G CRFx)] obviously, for any F G CRFX we have F n O (V, M) = F
and therefore {F0 D O J U (n ({O (V, M)} , CRFi)) C CRFu hence, we can apply
Lemma 2. •

Because of Lemma 1, the following result, for instance, holds true for CR-
TTSPOI of type (FI,F2,CRFi), i G {1,2} :
Lemma 3. Let a = (B,n,A,p,D) be a TTSPOI„ of type (F i , F 2 , F 3) . If the
family of filters F3 contains the empty set and is closed under union, then we can
construct an equivalent TTSPOI„ <r' = (B, n,A,p, £>') of the same type (Fi, F2, F3)
such that for any two test tubes there is exactly one output/input relation (by a
filter from F3), and moreover, the derivation relations b a and hCT< are identical.
Proof. The result is obvious by defining

D'= U U n

Observe that Fij is empty if in D no output/input relation between Ti and Tj
exists. •

Remark 4. If we want to use the filters Fij t i , . . . , F i j ^ only instead of the union
filter Um=i between the test tubes Ti and Tj, but still do not want to have
more than one connection between two test tubes, we have to add k additional test
tubes T i , j , i , - ,T i J i k , which with (time) delay one contain the same strings as Ti,
and then from T1 J] m by the filter F; J i m distribute this filtered part of TJ to Tj,
i-e. Pi,j,m = 0> and instead of the output/input relations (i, F>iJim,

j), 1 < m < k,
we have the relations (i, Fijim,(i,j, m)) and ((i,j, m) , Fijim,j) for all m with 1 <
m < k. •

456 Rudolf Freund, Franziska Freund

As an immediate consequence of these considerations, (V , M)i-filters, i G { 1 , 2 } ,
which by definition are finite unions of simple (V, M) i-filters, in the same way can
be split up into their components. Hence, Corollary 1 now can be sharpened to
the following result which shows that in CR-TTSPOI we only need simple (V, M) t -
filters in order to obtain full generative power:
Corol lary 2. For every L € ENUM we can construct a CR-TTSPOI of type
(FIN, FIN, CRSFi), i G {1 ,2 } , which generates L.

Under specific constraints, a TTSPOI„ can even be simulated by a TTSOI„ :
L e m m a 4. Let cr = (B, n, A, p, D) be a TTSPOI„ of type (FUF2, F3) such that

1. the family of filters F3 contains the empty set and is closed under union;

•2. for any two test tubes Ti and 7* with 1 < i < n, 1 < k < n, there is exactly
one output/input relation (i ,Fik ,k) with F^t G F3\

3. for all (i, Fij,j) and (i, F,^, k) in D with j ^ k we have F , j fl F,-^ = 0;

4. for all k with 1 < k < n we have F\tk = 0;

then we can construct an equivalent TTSOI« o' = (B , n , A , p , 0 , I) of the type
(Fi, F2 , F3, F3) such that L (<r') = L (a).
Proof. The desired result is obvious by defining Oi = U i < j < n ^ ' j and I{ =
Ui<j<n Fi.i for 2 < i < n as well as Oi = h = Ui<j<„ Fj,i- ~ ~ D

3.2 Some specific results for test tube systems
In this subsection we shall show how any recursively enumerable language can be
generated by test tube systems with context-free productions and regular filters:

T h e o r e m 1. For every L G ENUM(VT) we can construct a context-free G-
TTSPOI3 of type (FIN, FIN, REG) which generates L.
Proof. Without loss of generality we may assume that L is given by a grammar G in
Geffert normal form (see [10]), i.e. G = ({5 , A, B, C} , VT, Pc} U {ABC —• A} , S) ,
where Pc/ contains only context-free productions of the form (5, w). Now we define

= (W (VI,,VT), 3,(0, {S}, 0), (<D,p2,p3),D),
Vn = {S,A,B,C,A',B',C'},
V = {S,A,B,C}UVT,
p2 = PcJl){A-+A',B^B',C^C'},
P3 = {A' -+ A, B' —• A, C ' A} ,
D = {(2,V+,l),(2,V{A'B'C'}V*,3),(3,V+,l)t(3,V+\V+,2)}u

{ (1 , 0 , 1) , (1 , 0 , 2) , (1 , 0 , 3) , (2 , 0 , 2) , (3 , 0 , 3) } .

Whenever an application of the only non-context-free rule ABC —* A has to be
simulated in a, we have to apply the productions A —• A', B —• B', C —+ C' in T2 in

Test Tube Systems or How to Bake a DNA Cake 457

such a manner that the resulting word can pass the filter V* {A'B'C'} V*, which
checks the context condition; the final execution of the simulation is carried out by
the productions A' —• A ,B' —• A ,C' —1• A in T3. Only terminal words are passed
from T2 and T3 to T\. Hence we conclude L (<r) = L. •

As the construction elaborated in the preceding proof fulfills the necessary as-
sumptions, we immediately can apply Lemma 4, which shows that we can construct
a context-free G-TTSOI3 of type (FIN, FIN, REG) which generates L; yet we can
even get more, i.e. we only need a context-free G-TTSI3 or a G-TTSO3 of type
(FIN, FIN, REG) for generating L :

Corollary 3. For every L E ENUM (Vr) we can construct a context-free G-TTSI3
which generates L as well as a context-free G-TTSO3 of type (FIN, FIN, REG)
which generates L.
Proof. In a similar way as in the proof of Theorem 1 we define the context-free
G-TTSI3

= (W (Vif, VT), 3, (0, { 5 } , 0) , (0, P 2 , p3), I)

and the context-free G -TTS0 3

= (W (V^, VT), 3, (0, { 5 } , 0) , (0, P2, p3), 0)

where V', p2, p3 are defined as in the proof of Theorem 1 as well as

/1 = V^, /2 = F+ , J3 = V* {A'B'C'} V*, and
Oi = VC+, 02 = VjT U V* {A'B'C'} V',03=V+.

It is easy to verify that L (aj) = L ((To) = L (a) — L. •

The results in Theorem 1 and Corollary 3 are optimal in the sense that a
context-free G-TTSPOI2 of type (FIN, FIN, REG) can only generate context-free
languages:

Theorem 2. For every context-free G-TTSPOI2 a of type (FIN, FIN, REG),
L(a) E CF.
Proof. Let <r = (W (VN, VT), 2, (Ax, A2) ,(pi,p2), D) be a context-free G-TTSPOI
of type (FIN, FIN, REG), i.e. pi and p2 contain only context-free productions,
and the filters in D are regular. The elements of the first test tube must be terminal
words, hence no context-free productions can be applied any more to these words,
neither in the first test tube nor, after distribution according to an output/input
relation (1, 7̂ 1,2, 2) , in the second test tube, hence we can assume p\ = 0 as well
as D = {(2, F2,i,l), (2, F 2 , 2 ,2) , (1 ,0 ,1) , (1 ,0 ,2) } , where F2,1 and F7,2 are regular
languages. F2,1 only has the task to extract terminal strings from the contents of
the second test tube, i.e. the relation (2, ir2| 1,1) only works as a final intersection
with the regular set F2^. During the first derivation step, in T2 from A2 we obtain

458 Rudolf Freund, Franziska Freund

p2 (A2) . As p2 (A2) PI F2¡2 C p2 (A2) and p2 (p2 (A 2)) = p2 (A 2) , in further deriva-
tion steps no additional strings can evolve in T2. Hence, as the family of context-free
languages is closed under union as well as under intersection with regular sets, we
obtain p2 (A2) £ CF, L (<r) = p\ (A 2) n F2A, and therefore L (a) £ CF. •

Remark 5. In a similar way as above it is easy to show that for ev-
ery regular G-TTSPOI2 a of type (FIN, FIN, REG), L (a) £ REG. Obvi-
ously, for any context-free G-TTSPOIi <r of type (FIN, FIN, REG) with a =
(W(VN, Vr), (A i) , (/?i), {(1, F\t\, 1)}) we have L(a) = A\, because the words in
Ai must not contain non-terminal symbols; hence, only finite languages can be
generated. On the other hand, the language generated by a regular respectively by
a context-free G-TTSOi with a - (W (VN,VT), (A i) , (Pl), (f\)) is p\ (v^) D Fx,
i.e. as REG (Vr) and CF (Vr) are closed under union as well as under intersection
with regular sets, such G-TTSOj exactly characterize REG(VT) and CF(VR),
respectively. •

Remark 6. The existence of a universal grammar scheme 7u (Vr) for Vr
and the results shown above also imply the existence of a universal context-
free G-TTSI3 cv(VT) for VT, av (VT) = (W (V¿, VT), 3, (0 ,0,0) , (0, p2, p3), I),
where p2 and p3 contain context-free productions and the filters in I are regu-
lar, such that for every L £ ENUM(VT) the context-free G-TTSI3 <?L , =
(W (Vh, Vr) ,3, (0, { A l } , 0), (0, p2,p3) ,1), generates L, where Al denotes the ini-
tial word used for 7U (VT) to obtain a grammar generating L. •

4 Summary and Future Research
In this paper we introduced various general models of test tube systems. We in-
vestigated several general relations between different kinds of these models and
also showed some specific results, e.g. how to generate any arbitrary recursively
enumerable language by a test tube system with context-free productions and a
restricted type of regular filters.

Special practical variants have already been described in literature for solv-
ing very specific problems in the area of DNA computing and the construction of
molecular computers based on test tubes has been considered by using different op-
erations on the test tubes (e.g. see [1], [2], [3], [12]). In [4], test tube systems based
on the splicing operation were shown to allow the construction of universal mecha-
nisms; a similar result was shown for test tube systems based on the operations of
cutting and recombination in [9]. Various other types of test tube systems based
on context-free productions can also be shown to be computationally universal as
we have exhibited in the previous section.

The general results proved in the first part of the preceding section also hold
true for test tube systems working on other objects than strings, e.g. for circular
strings, graphs, and arrays. Hence, there is a wide field of interesting problems to
be considered in the future.

Test Tube Systems or How to Bake a DNA Cake 459

Acknowledgements
We gratefully appreciate fruitful discussions with Erzsébet Csuhaj-Varjú and Ghe-
orghe Páun on some of the topics considered in this paper.

References
[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Sci-

ence, 226 (Nov. 1994), 1021 - 1024.
[2] L. M. Adleman, On constructing a molecular computer, manuscript, January 1995.
[3] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, On the computational Power of DNA,

to appear.
[4] E. Csuhaj-Varj ú, Kari, and Gh. Páun, Test tube distributed systems based on

splicing, Computers and Artificial Intelligence, Vol. 15 (2) (1996), 211-232
[5] E. Csuhaj-Varj ú and A. Salomaa, Networks of parallel language processors, submit-

ted.
[6] E. Csuhaj-Varjú, Networks of language processors. A survey. In: Lenguajes Naturales

Y Lenguajes Formales XII, C. Martin-Vide, ed., PPU, Barcelona, 1996, pp. 169-1.89.
[7] R. Freund, L. Kari, and Gh. Páun, DNA computing based on splicing: The existence

of universal computers, Techn. Report 185-2/FR-2/95, TU Wien, 1995.
[8] R. Freund and F. Wachtler, Universal systems with operations related to splicing,

Computers and Artificial Intelligence, Vol. 15 (4) (1996), 273-294.
[9] R. Freund, E. Csuhaj-Varj ú, and F. Wachtler, Test tube systems with cut-

ting/recombination operations, Proceedings PSB'97, 1997.
[10] V. Geffert, Context-free-like forms for the phrase-structure grammars, Proceedings

MFCS'88, Lecture Notes in Computer Science, Vol. 324, Springer-Verlag, Berlin
(1988), 309 - 317.

[11] T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 - 759.

[12] R. J. Lipton, Speeding up computations via molecular biology, manuscript, December
1994.

[13] Gh. Páun, Regular extended H systems are computationally universal, J . of Au-
tomata, Languages and Combinatorics, Vol. 1, Nr. 1 (1996), 27 - 37.

[14] P. W. K. Rothemund, A DNA and restriction enzyme implementation of Turing
machines, manuscript, 1995.

[15] R. Siromoney, K. G. Subramanian, and V. R. Dare, Circular DNA and splicing sys-
tems, Lecture Notes in Computer Science, Vol. 654, Springer-Verlag, Berlin (1992),
260 - 273.

[16] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

Acta Cybernetica 12 (1996) 397-409.

Natural Language Understanding:
a New Challenge for Grammar Systems

Carlos MARTÍN-VIDE *

Abstract

We show the basic architecture of a natural language understanding sys-
tem. Given the well- known difficulties other simple grammar formalisms find
when attempting to model such an architecture, as well as the plausibility of
the modular hypothesis, we advocate the suitability of complex and modular
constructs like grammar systems for giving account of human language.

"Sentence processing is most plausibly modeled as a fully interactive parallel
process: each word, as it is heard in the context of normal discourse, is immediately
entered into the processing system at all levels of description, and is simultaneously
analysed at all these levels in the light of whatever information is available at each
level at that point in the processing of the sentence".

(W.D. Marslen-Wilson (1975), "Sentence perception as an interactive
parallel process", Science, 189: 226-228)

1 Postulates
Let us begin stating some postulates in order to contextualize our paper:

1. There exists a certain undesirable gap between the communities of linguists
and computer scientists, more specifically between the communities of com-
putational linguists and formal language theoreticians. Often, linguists ignore
all that is strictly beyond/outside the Chomsky hierarchy, and computer sci-
entists don't know precisely the kind of problems linguists are interested in.

2. Formed language theoreticians show an understandable obsession to design
mechanisms able to generate recursively enumerable languages. However,
no natural language is so large as recursively enumerable. Linguists need
formal tools endowed with a very rich internal structure, rather than with an
impressive generative power.

'Research Group in Mathematical Linguistics and Language Engineering (GRLMC), Rovira i
Virgili University, PI. Imperial Tarraco, 1, 43005 Tarragona, Spain, E-mail: cmv@astor.urv.es

461

mailto:cmv@astor.urv.es

462 Carlos Martin-Vide

3. For theories which try to become rich in applications (and we guess this is
the case with grammar systems), empirical well-foundedness is as important
as completeness.

4. In an initial step, one of the most essential features of a scientific theory is
its metaphorical content, as different from its technical content. Grammar
systems seem quite rich in this respect, and quite flexible too.

5. Grammar systems theory needs to assume and face all the complexities of
natural language if it wants to be accepted as a good candidate for the solution
of natural language processing problems.

6. Linguists are not as much interested in generative capacity aspects of
language-theoretical models as in other basic matters like descriptive ade-
quacy, expressiveness, naturality or computational easiness.

We are going to offer an introductory overview of natural language understand-
ing area for non-specialists, which perhaps will help somebody to bring his/her
research closer to natural language as it is regarded by current theoretical linguis-
tics. We'll show a picture of natural language from a computational viewpoint. If
one wishes the own work will become relevant for linguists, I'm sure one will share
the opinion that linguists have something to say about.

2 Language and the computer
It is generally accepted that computers serve not only to process numbers but
language too. Even it is a matter of public concern the idea of a machine that
could communicate with people in their own language to take commands or to
answer questions. In fact, many linguistic tasks, such as translation, improve if
performed by a machine with a knowledge of natural language.

We are going to survey the problem of giving a computer comprehension of
language. The focus will be on tasks that involve language carrying meaning,
rather than those, such as speech processing, that involve only the superficial form
of text without regard to its content.

Research in computational linguistics is generally taken as a branch of artifi-
cial intelligence, that part of computer science concerned with the computational
simulation of intelligent human behaviour (which surely includes language under-
standing). Most of the natural language research in artificial intelligence has been
directed implicitly or explicitly to the problem of computer understanding of lan-
guage. The converse of language understanding is language production or genera-
tion. For the computer, to produce text has proved to be an even harder problem
than comprehension.

Although linguists agree that human language is essentially oral, natural lan-
guage understanding deals almost exclusively with a simple form of language: writ-
ten text. The additional problems that arise with spoken input and output have
been traditionally taken to be primarily matters of physics and engineering.

Natural Language Understanding: a New Challenge.. 463

3 Understanding

3.1 What is understanding
A preliminary question needs to be posed: what means to say that a computer
understands? As one believes that understanding is a somewhat subjective state
that admits of degrees, it would not seem appropriate to attribute understanding
to a machine. We'll agree, however, with the idea that behaviour is the key fact:
if the machine always responds to sentences just as a human would in the same
situation, then it can meaningfully be said that it understands the sentences.

3.2 The illusion of understanding
Real understanding is hard to achieve in practice. It is not difficult for a computer
program to give us the illusion that it understands. One of the most famous exam-
ples is ELIZA system, built by Joseph Weizenbaum on 1966, which was not taken
as a serious model of understanding, because it used simple scripts and tricks for
the computer to keep up a conversation. It's doctor script simulated a psychother-
apist. It looked out for certain key words and sentence forms, and answered with
one of a few predetermined phrases for each. If the user of the program typed:

(1) I am depressed,

it might answer:

(2) I'm sorry to hear that you are depressed.

If the user's sentence included the word mother, the computer might say:

(3) Tell me more about your family.

If the user's sentence matched nothing at all in the script, it would either respond:

(4) What else does that bring to mind?, or

(5) Earlier, you mentioned your mother.

The illusion of understanding cannot be sustained for a long time. The computer
only encourages the user to continue, but it understands nothing.

3.3 Levels of understanding
Four levels of understanding can be identified:

a) The most superficial level is that involved in message passing. If a computer
is asked to:
(6) Tell George that I'll meet him next Monday in Salgótarján,
it needs not understand the message itself, or where Salgótarján is and so on,
in order to be able to pass on the message; but it does need to determine that
him here refers to George.

464 Carlos Martin-Vide

b) The second level is almost literal understanding within a very limited domain
of discourse. This level is a characteristic feature of many natural language
systems of the early 1990s, such as interfaces to databases.

c) The third level might be called complete understanding: a full apprehension
of all aspects and nuances of the sentence. It allows to read texts and inte-
grate the knowledge gained from them with its previous knowledge from other
linguistic sources. This depth of understanding, for instance, seems necessary
for unassisted machine translation.

d) The fourth and deepest level is emotional understanding, the level at which
people may understand poetry. Today computers are far from this sophisti-
cated level of comprehension.

3.4 Why language understanding is difficult for computers

Language understanding is difficult for computers because both language and the
world itself to which language refers are extremely complex, much more complex
than expected. But native speakers' facility with their own language is so great
and early in their lives that it is hard to see why it is difficult to design com-
puter programs to perform the same task. We only notice the difficulty of language
in the special situation of learning a second language, and the problems encoun-
tered there -learning things like vocabulary, morphology, conjugations, genders,
and irregularities- become memorization tasks which seem to be straightforward
to computerize. But these tasks are not as simple as they seem at first sight. The
syntax and morphology of natural languages are objects of high complexity. Words
and idioms may convey complicated meanings. Native speakers may make quite
subtle distinctions at any level of the structure of language. This big body of knowl-
edge is the main topic of theoretical linguistics, and the progress of computational
processing of language has been, is and will be closely linked to it.

Complexities of language are compounded by other minor problems that are
easy to handle for humans but can be extremely difficult for computers. It is the
case of ambiguity. Ambiguity appears at several levels of language:

a) at the lexical level: few dictionary entries list just one meaning for a word,

b) at the syntactic level: most sentences admit more than one parse tree,

c) at the pragmatic level: most sentences allow more than one analysis of the
pragmatic role they play in the context of discourse where they are being
uttered.

However, in spite of such potential multiplicity of choices, just a single interpre-
tation of the sentence is intended by the speaker: it is the task of the listener (and
of the computer) to recover it in order to achieve full understanding.

Natural Language Understanding: a New Challenge.. 465

3.5 Knowledge of the world
The difficulty of language understanding is also a reflection of the complexity of
the world, for one cannot understand language without becoming involved in the
speaker's knowledge of the world. Let we read a text in our native language on a
topic that we know nothing about, but written for an audience that does know the
topic. We may identify all the words and parse all the sentences, but have little
idea as to what the author is saying. Without the particular knowledge that the
author assumes of the reader, one cannot understand at more than a superficial
level. Knowledge of the language is not enough; knowledge of the world is required.

Knowledge of the world is particularly important in the resolution of ambiguity
and anaphors. Frequently, only one reading of an ambiguous sentence will make
sense, or one will be more plausible or more likely than the others, given the
appropriate knowledge. For example:

(7) George drank a glass of port.

(8) George went to the library to get a book.

The word port can refer to a drink or to a certain place besides the sea. In order
to interpret (7) correctly, we need to know from the world that only port as a drink
can be put in a glass. Sentence (8) admits two plausible readings of a book: it could
refer to a specific book that George is looking for or to any book. Both readings are
plausible; thus, our knowledge of the world will help us to decide which to choose
as probably intended by the speaker.

Although Bar-Hillel was the first, in 1960, to point out the need for knowledge of
the world, its importance for natural language understanding has been only recently
fully recognized. In the early days of computational linguistics, it was naively
thought, for instance, that machine translation would require little more than a
bilingual dictionary and a bit of morphological and structural analysis. Initial
failures of such an approach were attributed to underestimating the complexities of
syntax, and were unsuccessfully tried to solve by means of different kinds of syntax
of increasing complexity.

466 Carlos Martin-Vide

4 The architecture of a natural language under-
standing system

The architecture of a standard natural language understanding system is as follows:

natural language sentence
JJ-

grammar PARSER MORPHOLOGICAL ANALYZER }
parse tree 1J. lexicon

SEMANTIC INTERPRETER \

semantic representations ^ general knowledge base

PRAGMATICS MODULE semantic representations

APPLICATION PROGRAM

answer

(Capital letters stand for processes and bold types represent knowledge sources.
Arrows show the flow of information.)

The purpose of such a system depends on the application program, which could
be, for example, a database system or a travel reservation system. It allows the user
to easily ask in natural language, instead of having to learn some special formalism
in order to interact with the computer.

A natural language understanding system shows a modular architecture, con-
sisting of four major subsystems:

a) a morphological analyzer,

b) a parser,

c) a semantic interpreter, and

d) a module for discourse pragmatics.

Furthermore, the system has three main sources of knowledge:

a) a grammar,

b) a lexicon, and

c) a general knowledge base.

Natural Language Understanding: a New Challenge.. 467

Finally, the application program uses to have its own specific knowledge base.
The arrows are representative of the dynamic character of the system: the move-
ment of information through it. The input is a natural language sentence, and the
output is any form of answer from the application program. The answer could be
in natural language, by means of a natural language generator. In between, the
sentence is processed by each of the subsystems one after another, and then passed
to the application program. As the arrows suggest, the subsystems do not act in
an isolated way, but may interact to produce the final result.

Now, we are going to describe briefly each one of the subsystems and associated
knowledge sources.

4.1 Morphological analyzer and lexicon
The lexicon is the list of words that the system has to recognize. The information
listed for each word will typically include:

a) part of speech,

b) syntactic irregularities, and

c) representation of the meaning.

Irregular forms are usually listed as a cross-reference to the base form. If a
word has more than one meaning or belongs to more than one part of speech, all
are included. For instance:

(9) port = noun, regular; drink,
port = noun, regular; harbour,
port = verb, regular; to present (arms).

(10) men = plural, man.

The meanings shown are the names of knowledge representation structures
where the detailed semantics of the words can be found.

The first thing that a natural language understanding system must do with
each word it sees is to check that the word is in the lexicon. Normally, the lexicon
will contain only the root forms of regular words, not plurals or inflected forms
of verbs. If the word found is not in the lexicon, a morphological analyzer will
try to determine the uninflected form. For many'languages, this is a relatively
simple matter of removing affixes and adjusting the spelling to see if the resulting
word is included in the lexicon. In the case of agglutinative languages and others
with complex morphology, however, the task may be complex and require a lot of
interaction with the parser. The goal of this stage of the system is to discover all
possible analyses of the input word. If it finds the word drinks, for example, it
should report the possibility of a plural noun or a third-person singular verb.

If the system sees a word that it cannot find in the lexicon nor analyze morpho-
logically, it must consider several possibilities:

468 Carlos Martin-Vide

a) that the unknown word is actually a known word mistyped: in this case,
spelling correction techniques have to be attempted;

b) that it is a special word such as a bank account number, which could be the
subject of queries to a business application: in principle, this kind of words
can easily be recognized;

c) that the word is a name: the parser will have to determine whether a name
could occur at this point of the sentence;

d) that it is a word which has been unconsciously omitted from the vocabulary
of the system: then, if the system is interactive, the user will be asked to
either rephrase the sentence without it or add it to the lexicon.

4.2 Parser and grammar
The parser is the component of the system that determines the syntactic structure
of the sentence. The input to the parser is the sentence, and the output is a parse
tree or phrase marker.

As it is building the tree, the parser draws upon information from the lexicon
as well as from the morphological analyzer; if offered more than one possible mor-
phological analysis of a word, it takes the one that best fits the context. And, of
course, the parser needs to know the grammar of the language that it is parsing.
Usually, the grammar is represented separately, in such a way that the parser can
draw upon as it needs to. In theory, the parser can analyze any language whose
grammar, morphology, and lexicon are given; it contains the universal and general
principles of syntax, independent of any particular language. In practice, however,
most real parsers that have been developed so far have been limited to at most a
few typologically related languages (belonging to the same family).

There are many different kinds of parser, and many different ways of represent-
ing the grammar of a language. The two most common types in computational
linguistics are:

a) chart parsers, and

b) augmented transition network parsers (ATN's).

A chart parser attempts to find a combination of words allowed by the grammar
that matches the input sentence. This may involve much trial and error. A chart
parser maintains a chart of the alternatives tried and the hypotheses tentatively
accepted.

An ATN represents a grammar as a network; to parse a sentence is to traverse
the network, respecting the constraints on each path (for instance, that the next
word in the sentence must be a verb). If the parser finds itself unable to proceed,
it must backtrack to some previous point and try another alternative.

Often, a sentence will be syntactically ambiguous; that is, the grammar will
produce two or more different parse trees. For example, in:

Natural Language Understanding: a New Challenge.. 469

(11) George is seeing John with the telescope,

the prepositional phrase with the telescope could describe the seeing, that is,
complement the verb, or John, that is, complement the object noun. Deciding
which one is intended by the speaker requires considering the meaning and relative
plausibility of each. To find this out, the parser will have to ask the semantic
interpreter (connected to the general knowledge module) about the meanings of
the alternatives; thus, parsing generally alternates with semantic analysis.

4.3 Semantic interpreter and general knowledge base
The ultimate goal of the analysis is to determine the meaning of the sentence. The
semantic interpreter needs not wait until the parser has completed its job; usually,
it can begin to work on each constituent of the tree as soon as the syntactic analysis
of that constituent is complete, regardless of the state of the rest of the analysis.
Indeed, many systems rely on this possibility in order that semantics be able to
assist syntax.

Meaning is represented in a computer system by means of knowledge represen-
tation formalisms or logics. The lexicon gives the meaning of each individual word
in such a formalism, and the semantic interpreter must combine these in a manner
appropriate to the structure of the sentence and the meanings themselves, either in
strict accordance with the principle of compositionality or not. If a word conveys
more than one possible meaning, as most words do, then the semantic interpreter
must decide which one was intended by the speaker. Usually, this requires deter-
mining which makes more sense in the context. The result of this whole process is
a logical form that represents the literal meaning of the sentence.

4.4 Pragmatics module
Computers tend to carry out literal interpretations. For example, a computer asked
to:

(12) Give me the examination grades of all the mathematics students

might answer with just a list of anonymous marks. Humans often say things
obliquely or incompletely, leaving to the intelligence of the listener to determine
the intention and fill in the gaps. To be of practical use, a natural language under-
standing system must follow its literal semantic analysis with a pragmatic analysis,
determining what the speaker really meant and how the sentence fits into the con-
versation.

Imagine that a user says to a travel reservation system:

(13) I've been thinking about going to Hungary.

At the literal level, the user is just only stating a fact that the system could
merely take note of. But, at a deeper level, the user is asking the system to provide
information about schedules of travels to Hungary. The system must recognize that

470 Carlos Martin-Vide

the user is indirectly asserting that he/she has a goal of finding information about
travelling to Hungary, and is asking for help in achieving that goal; that is, the
computer has to recognize that the sentence is an indirect speech act. In order
to determine the speaker's intention, the system must use not only knowledge
of standard linguistic conventions, but also knowledge of how people plan and
how their goals can be achieved. Thus, at present the problem of plan inference
in natural language systems occupies an outstanding position in computational
linguistics.

Just at the pragmatic level the system must also determine how the sentence
relates to the preceding conversation or discourse. For example, it may exemplify
or elaborate on the previous sentence, or describe the next in a sequence of events,
or change the topic of conversation. Sometimes, speakers will make the relationship
explicit: for example might be used to mark an exemplification, and by the way a
change of topic. But often the relationship is left implicit and must be determined
from the meaning itself of the sentences. This task can be quite complex for com-
puters. Consider, for example, a sentence intended as a conclusion to be drawn
from the preceding sentence, as in the following pair:

(14) Nobody likes the new tax system. The government is certain to be defeated.

The system must determine that the second sentence could plausibly be a con-
sequence of the first one.

5 Parallelism in natural language processing
We have seen a decomposition of natural language automatic description into a
series of different coordinated levels. Models of sentence processing may or may not
refer to this decomposition. Natural language processing systems can be built for
quite practical reasons, and therefore efficient performance properties can be much
more important than attempting to reflect theoretical ideas coming from linguistics
or psychology. Since practical systems do not always have to deal with the full
range of natural language sentences - o r with an unlimited domain of discourse- ,
the natural decomposition we have provided does not need to be explicitly present
in language processing systems. From a psychological and linguistic point of view,
however, computer models of human sentence processing should be consistent with
theories developed in those fields. Having a model, it should be possible to simulate
phenomena of human sentence processing.

Human sentence processing was initially explained by means of a serial model.
This kind of models use a syntactic approach, where the syntactic processing task
must be successful before semantic processing can begin, which in turn must pre-
cede pragmatic processing. If, in this model of linear interaction between levels of
knowledge, higher-level information cannot be used to correct decisions at lower
levels, this approach inexorably leads to a combinatorial explosion of all syntac-
tic possibilities. For such reason especially, approaches combining different levels
closely interacting at different moments are now preferred.

Natural Language Understanding: a New Challenge.. 471

Models in which this latter type of sentence processing can be displayed are
called interactive or parallel. During parsing, a system is capable of using any
type of knowledge at any moment it needs. These models may exhibit different
appearances. They can take, for instance, the form of a system in which natural
language processing tasks are assigned to different processors and in which every
knowledge source interacts with every other. In the known blackboard model of
interaction, modules can process in parallel and cooperatively by means of a globally
accessible blackboard on which they can write and read intermediate results: the
modules communicate and interact solely through the blackboard. Some further
possibilities exist.

6 Thesis
Assuming the natural decomposition of language we have shown and the parallel
type of processing, we regard natural language as the final product of a parallel
communicating grammar system (PC) architecture, each one of whose processors
simulates one of the modules of natural language we have considered. In addi-
tion, each component of the parallel communicating grammar system consists of
several subprocessors working as cooperatively distributed grammar systems (CD).
We would have, then, a two-levels machinery: a macro-PC-system composed by
micro-CD-systems. Its functioning would be as follows. Several processors coop-
erate distributively in the complex task of producing a syntactically well-formed
(grammatical) sentence. Each one of such processors generates one of the levels we
can distinguish in the syntactic structure of the sentence. On the other hand, it
seems clear that human language is not produced/understood in a serial manner,
but in a parallel one: syntax is not strictly generated before semantics can inter-
vene, but in accordance with a complex synchronicity. Different levels and sublevels
of each module of language are successively integrated in accordance with a certain
protocol of integrative cooperation.

Computer scientists have now the task to formally define such two-levels ma-
chinery, and linguists the task to characterize the programme of synchronization of
the modules. Both works are strong challenges for the future. If carried out jointly,
the forecast is encouraging.

References
[1] Allen, J. (1987), Natural language understanding. Addison-Wesley, Reading,

Mass.

[2] Csuhaj-Varju, E. (1994), "Grammar systems: a multi-agent framework for nat-
ural language generation", in Gh. Paun, ed., Mathematical aspects of natural
and formal languages: 63-78. World Scientific, Singapore.

[3] Csuhaj-Varju, E. & R. Abo Alez (1995), "Multiagent systems in natural lan-
guage processing", unpublished ms.

472 Carlos Martin-Vide

[4] Csuhaj-Varjú, E., J. Dassow, J. Kelemen & Gh. Páun (1994), Grammar sys-
tems: a grammatical approach to distribution and cooperation. Gordon and
Breach, London.

[5] Dowty, D., L. Karttunen &; A. Zwicky, eds. (1989), Natural language parsing. .
Cambridge University Press, New York.

[6] Grishman, R. (1986), Computational linguistics. Cambridge University Press,
Cambridge.

[7] Grosz, B., K. Sparck Jones & B. Webber, eds. (1987), Readings in natural
language processing. Morgan Kaufmann, Los Altos, Ca.

[8] Páun, Gh. (1995), "Generating languages in a distributed way: grammar sys-
tems", in C. Martin Vide, ed., Lenguajes naturales y lenguajes formales, XI:
45-71. PPU, Barcelona.

[9] Páun, Gh. (1995), "Grammar systems: a grammatical approach to distribution
and cooperation", in Z. Fülöp & F. Gécseg, eds., Proceedings of ICALP'95:
429-443. Springer, Berlin.

[10] Páun, Gh. (1995), "Parallel communicating grammar systems. A survey", in
C. Martin Vide, ed., Lenguajes naturales y lenguajes formales, XI: 257-283.
PPU, Barcelona.

[11] Smith, G.W. (1991), Computers and human language. Oxford University Press,
New York.

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TfeK.

After acceptance, the authors will be asked to send the manuscript's source T^X
file, if any, on a diskette to the Managing Editor. Having the TgX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the Jozsef Attila University, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
1996 Numbers 3-4 of Volume 12 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests for
subscription information to: Department of Informatics, Jozsef Attila University,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-311-184, Fax:(36)-(62)-312-
292.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/local/acta.

CONTENTS

Erzsébet Csuhaj- Varjú: Grammar Systems: Recent Results
and Perspectives (Foreword) 325

Jürgen Dassow, Victor Mitrana: Fairness in Grammar Systems 331
Henning Bordihn, Erzsébet Csuhaj- Varjú: On Competence and

Completeness in CD Grammar Systems 347
Henning Fernau, Markus Holzer: Accepting Multi-Agent Systems II 361
Gheorghe Paun: PC Grammar Systems: Recent Results, Open Problems 381
Valeria Mihalache: PC Grammar Systems with Separated Alphabets 397
Lucian Ilie, Arto Salomaa: On Regular Characterizations of

Languages by Grammar Systems 411
Maurice H. ter Beek: Teams in Grammar Systems:

Hybridity and Weak Rewriting 427
Rudolf Freund, Franziska Freund: Test Tube Systems or How

to Bake a DNA Cake 445
Carlos Martin-Vide: Natural Language Understanding: a New Challenge

for Grammar Systems 461

Sponso red by Z e n o n C o m p u t e r E n g i n e e r i n g and T r a d i n g L T D
A f o l y ó i r a t o t a Z e n o n S z á m í t á s t e c h n i k a i és K e r e s k e d e l m i K f t . s z p o n z o r á l j a

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János
A kézirat a nyomdába érkezett: 1996. december

Terjedelem: 7,12 (B/5) ív .

