
Volume 12 Number 4 

ACTA 
CYBERNETICA 

Editor-in-Chief: J. Cs i r i k (Hungary ) 

Managing Editor: Z . Fülöp (Hungary ) 

Assistants to the Managing Editor: P. Gyenizse (Hungary) , A . Pluhár (Hungary ) 

Editors: M. A ra tó (Hungary), S. L. B loom (USA), W . Brauer (Germany), L. Budach 
(Germany ) , H. Bunke (Swi tzer land) , B. C o u r c e l l e (France), J. D e m e t r o v i c s 
(Hungary), B. Dömölk i (Hungary), J. Engelfriet (The Netherlands), Z. Ésik (Hungary), 
F. Gécseg (Hungary), J. Gruska (Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), 
L. Lovász (Hungary), G. Piun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland), 
L. Varga (Hungary), H. Vogler (Germany) 

Selected papers of the workshop 
Grammar Systems: Receut Results on Perspectives, 
Budapest, July 1996 

Guest Editor: E. Csuhaj Varjú (Hungary) 

Szeged, 1996 



Editor-in-Chief: J. Csirik 
A. József University 
Department of Computer Science 
Szeged, Árpád tér 2. 
H-6720 Hungary 
Assistants to the Managing Editor: 
P. Gyenizse 
A. József University 
Department of Computer Science 
Szeged, Árpád tér 2. 
H-6720 Hungary 
Board of Editors: 
M. Arató 
University of Debrecen 
Department of Mathematics 
Debrecen, P.O. Box 12 
H-4010 Hungary 
S. L. Bloom 
Stevens Institute of Technology 
Department of Pure and Applied 
Mathematics Castle Point, Hoboken 
New Jersey 07030, USA 
W. Brauer 
Institut für Informatik 
Technische Universität München 
D-80290 München Germany 
L. Budach 
University of Postdam 
Department of Computer Science 
Am Neuen Palais 10 
14415 Postdam, Germany 
H. Bunke 
Universität Bern 
Institut für Informatik und 
angewandte Mathematik 
Längass strasse 51., CH-3012 Bern 
Switzerland 
B. Courcelle 
Université Bordeaux-1 
LaBRI, 351 Cours de la Libération 
33405 TALENCE Cedex, France 
J. Demetrovics 
MTA SZTAKI 
Budapest, P.O. Box 63 
H-1502 Hungary 
B. Dömölki 
IQSOFT 
Teleki Blanka u. 15—17. 
H-1142 Hungary, Budapest 
J. Engelfriet 
Leiden University 
Computer Science Department 
P.O. Box 9512, 2300 RA LEIDEN 
The Netherlands 
Z. Ésik 
A. József University 
Department of Foundations of 
Computer Science 
Szeged, Aradi vértanúk tere 1. 
H-6720 Hungary 

Managing Editor: Z. Fülöp 
A. József University 
Department of Computer Science 
Szeged, Árpád tér 2. 
H-6720 Hungary 

A. Pluhár 
A. József University 
Department of Computer Science 
Szeged, Árpád tér 2. 
H-6720 Szeged 

F. Gécseg 
A. József University 
Department of Computer Science 
Szeged, Aradi vértanúk tere 1. 
H-6720 Hungary 
J. Gruska 
Institute of Informatics/Mathematics 
Slovak Academy of Science 
Dúbravska 9, Bratislava 84235 
Slovakia 
B. Imreh 
A. József University 
Department of Foundations of 
Computer Science 
Szeged, Aradi vértanúk tere 1. 
H-6720 Hungary 
H. Jiirgensen 
The University of Western Ontario 
Department of Computer Science 
Middlesex College 
London, Ontario 
Canada N6A 5B7 
L. Lovász 
Eötvös Loránd University 
Budapest, Múzeum krt. 6—8. 
H-1088 Hungary 
G. Paun 
Institute of Mathematics 
Romanian Academy 
PO Box 1 -764 , RO-70700 
Bucuresti, Romania 
A. Prékopa 
Eötvös Loránd University 
Budapest, Múzeum krt. 6—8. 
H-1088 Hungary 
A. Salomaa 
University of Turku 
Department of Mathematics 
SF-20500 Turku 50 
Finland 
L. Varga 
Eötvös Loránd University 
Budapest, Múzeum krt. 6—8. 
H-1088 Hungary 
H. Vogler 
Dresden University of Technology 
Faculty of Computer Science 
Foundations of Programming 
D-01062 Dresden, Germany 



Acta Cybernetica 12 (1996) 325-330. 

Grammar Systems: 
Recent Results and Perspectives 

(Foreword) 

Erzsébet CSUHAJ-VARJÚ * 

On July 26-27, 1996, a workshop with the title Grammar Systems: Recent 
Results and Perspectives was held in Budapest, at the Computer and Automation 
Research Institute of the Hungarian Academy of Sciences1. The aim of the meeting 
was to provide a forum for exchanging ideas about the state of the art of research 
in the area of grammar systems and preview the trends and perspectives. The 
presented talks and the fruitful informal discussions resulted in, among other things, 
the present volume. 

" Grammar systems" is a recent active field of formal language theory, pro-
viding syntactic models, frameworks and tools for describing and studying (the 
behaviour of) multi-agent systems at the symbolic level. Several scientific areas 
have motivated and influenced the developments in this theory: distributed and de-
centralized artificial intelligence, distributed and parallel computing, artificial life, 
molecular computing, robotics, ecology, sociology, etc. Computer networks, parallel 
and distributed computer architectures, distributed and cooperative text process-
ing, natural language processing are candidates for possible applications. 

Roughly speaking, a grammar system (the term "grammar" is used here in a 
general sense) consists of several language identifying devices (language processors 
or linguistic agents) that jointly develop a common symbolic environment (usually, 
a string or a finite set of strings) by applying string manipulating operations to it. 
The symbolic environment can be shared by the components of the system, or it 
can be given in the form of a collection of separated sub-environments, each be-
longing to a language processor. At any moment in time, the state of the system is 
represented by the current string describing the environment (collection of strings 
of the sub-environments). The functioning of the system is realized by changes in 
its states. Depending on the variant of multi-agent systems that the actual gram-
mar system represents, in addition to performing derivation steps, the language 
processors are allowed to communicate with each other. Usually, this is done by 
exchange of strings that can be data (for example, sentential forms in derivation) 

'Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u. 
13-17, H - l l l l Budapest, Hungary. E-mail: csuhaj@sztaki.hu 
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or programs (productions or coded form of some operation). The behaviour of 
the grammar system can be characterized by the set of sequences of environmental 
states following each other, starting from an initial state, or by the set of all envi-
ronmental states originating from an initial state and satisfying some criteria (final 
states). 

Grammar systems are both computational and language identifying devices, 
capturing several phenomena characteristic for multi-agent systems: cooperation, 
distribution, communication, parallelism, emergent behaviour, etc. 

To give a picture about the research directions in the area, without the aim 
of completeness, we list some important frameworks and models. (The interested 
reader can find detailed information in [6], [21], [14]). 

The theory started in 1988 by introducing cooperating/distributed grammar sys-
tems (CD grammar systems) for modelling syntactic aspects of the blackboard 
model of problem solving ([4],[5]). We should note, however, that the first appear-
ance of the term "cooperating grammars" was in [20] as a notion for extending 
two-level substitution mechanism of grammars to a multi-level concept. A con-
cept, based on modularity and related to cooperation of grammars, motivated by 
regulated rewriting, was introduced in [1]. 

In the basic form, a CD grammar system is a finite set of generative (usually 
context-free) grammars that cooperate in deriving words of a common language. 
At any moment in time there is exactly one sentential form in generation. The 
component grammars generate the string in turns, under some cooperation proto-
col. In this model the cooperating grammars represent independent cooperating 
problem solving agents that jointly solve a problem by modifying contents of a 
global database, called blackboard, that is for storing information on the problem 
solving process. In this architecture the agents communicate with each other only 
through the blackboard. 

The main research directions in the field of CD grammar systems concentrate, 
among other things, on studying the question whether cooperation adds power to 
the derivational capacity of the individual grammars or not, and, if the answer is 
positive, how simple presentation of the components and the protocol is sufficient 
to reach this power. While the original model was introduced for generative mech-
anisms, the framework has been extended and applied also to other computational 
devices (accepting grammars ([2]), automata ([13]), tree processing devices ([16]), 
etc). Parallel with this kind of enhancement, properties characterizing the model 
have been studied in details: determinism in cooperation, comparison of systems 
with components using hybrid and homogenous cooperation strategies, variants of 
competence-based cooperation, systems with time limited activity of grammars, hi-
erarchies among the components, similarity, uniformity, etc. The achieved results 
demonstrate the power of cooperation. Large language classes (ETOL, programmed 
with apperance checking, context-sensitive) can be described in terms of systems 
of a limited number of very simple cooperating language identifying devices. 

While CD grammar systems realize sequential computing devices, team gram-
mar systems with simultaneous actions of some grammars (teams) on the sentential 
form, introduce parallelism in the model ([19],[23]). These systems demonstrate an 
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equivalence between programming the sequence of actions and computation under 
some kind of competence-based cooperation of freely chosen grammar teams with 
a very limited number of components (pairs of grammars). 

Colonies, motivated by subsumption architectures of R. Brooks, describe lan-
guage classes in terms of behaviour of collections of very simple, purely reactive, 
situated agents with emergent behaviour ([17],[18]). In this model the agents are 
represented by very simple regular grammars (each grammar generates a finite lan-
guage) that operate on a common sentential form. The basic variant of colonies 
determines the context-free language class, while the more sophisticated models 
(competition among the agents, timing, etc.) lead to considerably enhanced com-
putational power ([12],[22]). 

Eco-grammar systems form a language theoretic framework for modelling 
ecosystems: developing linguistic agents, represented by L systems, in a dynami-
cally changing population, interact with each other and with their shared evolving 
symbolic environment ([9],[10]). Eco-grammar systems provide tools for describing 
life-like phenomena (birth, death, hybernation, overpopulation, pollution, etc.) in 
terms of formal grammars and languages. 

Networks of language processors (this general term was introduced in [11] and 
[3]) form an essential part of the area. In this case language processors are located 
in nodes of a network (a virtual graph). Each processor works on its own sentential 
form (on its own collection of sentential forms) and informs the others about its ac-
tivity by communicating strings that can be data and/or programs. Rewriting and 
communication take place alternately, the system is functioning (usually) in a syn-
chronized manner. Parallel communicating grammar systems, a highly elaborated 
field, with Chomsky and Lindenmayer grammars at the nodes, studies networks 
with components communicating data strings by request ([24],[25]). Test tube dis-
tributed systems based on splicing and on cutting and recombination are particular 
cases of the model with components using variants of DNA recombination and real-
ize computationally complete and universal machines (in some cases with a limited 
number of components) ([8],[15]). Ideas of the WAVE paradigm of active knowl-
edge networks are implemented in [7] and networks of parallel language processors, 
where the nodes are represented by L systems, are studied in [11]. 

In addition to the above mentioned areas, investigations have been started for 
applications in related scientific areas, as natural language processing. 

Recent developments that can be observed in grammar systems theory, are 
trends 

• from cooperating/distributed grammar systems to cooperating/distributed 
systems of language processors, 

• from parallel communicating grammar systems to networks of language 
processors, 

• from simple communities (colonies) of grammars to societies of linguistic 
agents, 

• from computing to nature-motivated computing, 
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• from (applications in) natural language processing to natural processing of 
languages. 

Contributions to the present volume fit into the above trends, by providing a 
better understanding of cooperation and distribution through a deeper study of 
the existing models and enhancing the concept to further computational phenom-
ena. The papers are clustered in the volume according to the subfield of grammar 
systems they represent. 

The first three articles are devoted to the study of cooperating/ distributed 
language processors. Jiirgen Dassow and Victor Mitrana studied fairness in CD 
grammar systems, Henning Bordihn and Erzsebet Csuhaj-Varju dealt with com-
petence and completeness of component grammars both in the case of generative 
CD grammar systems and in the case of accepting ones. Henning Fernau and 
Markus Holzer discussed accepting CD grammar systems in details, in compari-
son with the generating ones, taking new variants of cooperation protocols into 
account. They also considered team behaviour of accepting CD grammar systems. 
Networks of language processors are investigated in the next three papers. The 
first is the survey of Gheorghe Pâun on parallel communicating grammar systems. 
It also studies new variants and raises several open problems in the area. Valeria 
Mihalache examined parallel communicating grammar systems with components 
having own nonterminal alphabets and terminal alphabets, Lucian Ilie and Arto 
Salomaa provided important characterizations of recursively enumerable languages 
in terms of parallel communicating grammar systems with WAVE-like communi-
cation. Societies of grammars, nature-motivated computing and natural language 
processing are represented by the last three papers. Maurice H. ter Beek inves-
tigated team grammar systems with teams using different cooperation strategies 
and a new variant of derivation mode, called weak rewriting. A framework moti-
vated by DNA computing, a generalization of test tube systems, is introduced and 
studied in the paper of Rudolf Freund and Franziska Freund. The last paper in 
the volume is about the challenge that natural language understanding means for 
grammar systems, by Carlos Martin-Vide. 
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Fairness in Grammar Systems 

Jürgen DASSOW * Victor MITRANA t i 

Abstract 

The paper deals with two fairness concepts in cooperating distributed 
grammar systems. The effect of this restriction on the protocol of cooperation 
among the components of a grammar system is investigated. In all modes of 
derivation, the fairness restrictions lead to an increase in the generative power. 
Surprinsingly, even in the regular case. 

1 Introduction 
In modern computer science such notions as distribution, cooperation, parallelism, 
communication, synchronization are more and more vividly investigated. As prac-
tical materializations one can mention computer networks, parallel computing, dis-
tributed data bases, etc. There are several approaches to these ideas. In this paper 
we deal with grammar systems which form a grammatical approach. 

A grammar system is a construct consisting of several usual grammars, working 
together, in a specified way, for generating a language. If the grammars work to-
gether on the same sentential form, then the system is called cooperating/distributed 
(CD for short) grammar system. If the grammars work on their own sentential 
forms and, from time to time, send the result of their work to other components, 
then the system is called parallel communicating grammar system. 

This paper concerns CD grammar systems. Intuitively, such systems and their 
work can be described as follows: Initially, the axiom is the common sentential 
form. At each moment, one grammar is active, that means it rewrites the common 
string, and the others are inactive. The conditions under which a component can 
become active or it is disabled and leave the sentential form to other components are 
specified by the cooperation protocol. The language of terminal strings generated 
in this way is the language generated by the system. As basic stop conditions which 
will also be considered in this paper we mention: each component, when active, 
has to work for exactly k, at least k, at most k, or the maximal number of steps (a 
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step means the application of a rewriting rule). Many other starting and stopping 
conditions were considered in the literature (see [3]). 

Such systems were introduced by different motivations: 

1. The generalization of the two-level substitution grammars was the main pur-
pose of the paper [5] where the sintagm " cooperating grammar system" was 
proposed. 

2. Modular grammars as an alternative for the time-varying grammars were 
presented in [1]. 

3. In the architecture of a CD grammar system one can recognize the structure 
of a blackboard model, as used in problem-solving area [6]: the common 
sentential form is the blackboard (the common data structure containing the 
current state of the problem to be solved), the component grammars are 
the knowledge sources contributing to solving the problem, the protocol of 
cooperation encodes the control on the work of the knowledge sources ([4]). 
This was the explicit motivation in [2], the paper where CD grammar systems 
in the form we consider here were introduced. 

4. The increase of the computational power of components by cooperation. 

5. The decrease of the complexity of different tasks by distribution. 

In some sense, the theory of grammar systems is the theory of cooperation protocols; 
the focus is not on the generative capacity, but on the functioning of the system, 
and on its influence on the generative capacity and on other specific properties. 

The aim of this paper is the investigation of a quite natural feature of the 
strategy of cooperation: fairness. We require that all components of the system 
have approximately the same contribution to the common work, concerning the 
time spent by each of them during the derivation process. The first attempt in this 
direction, called weak fairness, asks for that each component has to be activated 
almost of the same number of times (the difference between the number of times 
for which any two components are activated is bounded). But this concept says 
nothing about the period of time in which a component is working. So, if we want 
to have more precisely a fair behaviour of the system, called strong fairness, then 
it is necessary to measure also this time, i.e. to count the number of applications 
of rules of a component during the whole derivation. 

The requirement that a system has to be "fair" increases, even for systems 
with regular components (this situation contrasts the "unfair" case), the generative 
power of the system. 

2 Definitions 
For an alphabet V, we denote by V* the free monoid generated by V under the 
operation of concatenation; the empty string is denoted by A, and we set V+ = 
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V* \ {A}. The length of x £ V is denoted by |z|. If x £ V* and U CV, then \x\v 

is the number of occurrences of symbols of in x (the length of the string obtained 
by erasing from x all symbols in V \ U). By REG, CF and ETOL we denote the 
families of regular, context-free and ETOL languages, respectively (see [7], [8]). 

A CD grammar system of degree n,n> 1, is a construct 

r =(N,T,S,Pi,..:,Pn), 

where N, T are disjoint alphabets, S £ N, and P\,... ,Pn are finite sets of rewriting 
rules over N U T. 

The elements of N are nonterminals, those of T are terminals; P\,... ,Pn are 
called components of the system. Here we work with CD grammar systems having 
only regular rules, i.e. rules of the form A —• aB or A —• a with A,b £ N, a € T, 
or context-free rules, i.e. rules of the form A —• w with A £ N, w £ (N UT)*. 

The domain of the ith component denoted by dom(Pi) is defined as dom(Pi) = 
{A\A^xePi}. 

On (N U T)* one can define the usual one step derivation with respect to Pi, 
denoted by = > p , • The derivations consisting of exactly k, at most k (but at least 
one), at least k such steps =>p, are denoted by , =>p. , = > p , respectively. 
Furthermore, we write x y iff x y and there is no z G (N U T)* such 
that y =>pi z. 

Let 
M = {<}U (J{< jfc,= Jb,> k}. 

i> l 

The language generated by the system T in the derivation mode / 6 M is 

Lf{T) = {w\w£T*, S =i>fp. w1=>fp ...=>SP wm=w, *1 *2 'm 
m > 1,1 < ij < n, 1 < j < m} . 

The respective classes of languages are denoted by CDLn(X, / ) , where n is the de-
gree of the grammar system, X 6 {REG, CF} indicates the type of the components 
(regular or context-free) and / 6 M . 

Let 
D : S =>Zmi W! =>=m2 ... =*=mt wk 

be a derivation in the /-mode, / £ M (i.e. mj gives the number of derivation steps 
performed by the component Pj. in D; especially, if / £ { = £ } , then mj = k holds 
for 1 < j < t, etc.) For any 1 < p < n, we write 

TPD(P) = 1 a n d <PD(P) = ^ RNJ 
ij=p ij=p 

(i.e by IP£>(P) we count the number of applications of Pp, and by >PD(P) we count 
the number of applications of rules of Pp). Conventionally, the empty sum delivers 
zero. 
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Let T be a CD grammar system with at least two components. Then we set 

dw(D) = max{\ipD(i) - ipD(j)\ | 1 <i,j<n] 

and 
ds(D) = max{\vD{i) - 9d(j)I I 1 < t, j < "}• 

By these two numbers we measure the maximal difference between the contribution 
of components involved in the derivation D. The contribution of a component may 
be expressed as the number of its applications and the number of rules applications 
in the considered component, respectively. Moreover, for u G {tt>, s} , x E (N U T)* 
and / G M , we define 

du(x, f ) = min{du(D) \ D is a derivation in the / — mode for x}. 

In order to get a concept of fairness, we now restrict the numbers du(x,f) for the 
words x which belong to the language. If u = w, then we get a weaker notion 
since we only require that the components are used almost equally often, whereas 
u = s gives a stronger notion where the times which the components work are 
approximately equal. Formally, this leads to the following definitions. 

For a CD grammar system T of degree n > 2, / 6 M and a natural number 
q > 0, we define the weakly q-fair language generated by T in the / -mode as 

Lf(T, w - q) = {x | x E Lj(T) and dw(x, f ) < q} 

and the strongly q-fair language of T as 

Lj(T,s- q) = { z | x £ Lf{T) and ds(x,f) < q}. 

For X € {REG, CF} and integers n > 2 and q > 0, by CDLn(X,f,w - q) and 
CDLn(X, f, s — q) we denote the families of weakly and strongly q-fair languages, 
respectively, generated by CD grammar systems with n components. 

Let us illustrate the concepts of fairness by two examples. We shall give just 
the components of the systems, the other components can easily be deduced under 
the assumption that S is the axiom. 

Example 1 We consider the grammar system Ti with the components 

Pl = {S — aA', A — aA'}, P2 = {A' aA}, 

P3 = {A —> bB', B — 65 ' } , PA = {B' 65, B' 6}. 

Then, for q > 0 and / G {t, = 1, > 1} U { < ifc | k > 1}, we obtain 

Lf(T1)= {a2nb2m | n > l , m > 1 } 

and 

Lj(Ti,w-q) = L}(Tus-q) = {a2nb2m | n > 1, m > 1, |n - m\ < q}. 

Note that each component of Ti is regular whereas the g-fair languages generated 
by Tj are not regular. 
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Example 2 Let r 2 be the grammar system having the components 

Pi = {5 AB,A aAb,A ab}, 
P2 = {B C,C cC, C c}. 

Clearly, for all / £ {<, = 1, > 1} U { < k \ k > 1} and q > 0, 

Lf(T2) = L,( r 2 , w-q) = {a"6"c m | n, m > 1} 

holds (use each component exactly once) whereas 

Lj(T2, s — q) = {a"b"cm \n,m> 1, n = M+p or m = n + p, 0 < p < 9} . 

We mention that the languages LJ(T2,S — q) of the context-free grammar system 
1*2 are not context-free. Moreover, for all k > 2, we have 

L=k(r2) = {anbncm | n = n • k - 1, m = r2 • k - 1, n > 1, r2 > 1}, 
L= t (r 2 , w - q ) = { a " ^ ^ ' - 1 ^ - 1 |n, r2 > 1, |rx - r2| < 
L=k(T2,8-q) = {a^-H^-1^*-1 | n , r 2 > 1, | ( n - r 2 ) • * ! < ? } . 

We add some remarks to the definitions. 

1. The above definitions assume that the grammar system has at least two com-
ponents. 

2. If / is the mode = k, then the weak and strong concepts of fairness are nearly 
related to each other because 

L=k(T,w-q) = L=k(T,s-q') 

holds for k • q < q' < k • (q + 1). Particularly, 

£=k(r, w — 0) = L=k(r, s — 0 ) . 

3. It is also possible to allow the value 0 0 for q. Thus, we get the equalities 

CDLn(X, f ) = CDL„(X, F,w- 0 0 ) = CDLn(X, f , s - 0 0 ) . 

In the sequel, we are going to investigate the influence of the fairness limitation on 
the generative power. 

3 The regular case 
Let 

Mi = {t,= 1 ,> 1} U { < k | k > 1}. 
First we recall that 

CDL„(REG, f) = REG 

for all n > 1, / £ M. We now show that the situation is very different if we require 
a fair behaviour of the systems. 
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Theorem 1 (i) REG and CDLn(REG,f, s - 0) are incomparable, for all f G M 
and n > 2. 

(ii) REG C CDL„(REG, f,s — q), for all f G Mi, q > 1, n >2. 
(Hi) REG and CDL„(REG, f,s — q) are incomparable, for all f G M\Mi, q > 

1, and n > 2. 

Proof. It is easy to observe that any language in CDLn(REG, f,s — 0), 
/ G M, contains only words of length divisible by n. Thus the regular language 
L = {am|m > 1} does not belong to the class CDL„(REG, f , s - 0). 

On the other hand, the grammar system T consisting of the following compo-
nents: 

Pi = { 5 —• aS, S —• 0^2}, 

/ (5¿ bSi> & bSi+1}. 2 < t < n - 1, i is even 
l aSitSi — a S i + i } , 2 < i < n - 1, i is odd 

p _ f {S„ —• bSn,Sn —• fr}, if n is even 
I {"Sn aSn,Sn a}, if n is odd 

generates the 0-fair languages 

f { ( a m 6 m ) t I m > 1}, if n is even 
\ { ( a m 6 m ) i f i a m I m > 1}, if n is odd 

for /1 E Mi , 

( {(amkbmk)% I m > 1}, if n is even 
{ {(amkbmk):^1amk I m > 1}, if n is odd 

for k > 1, 

J { ( a m 6 m ) t |m>ife} , if n is even 
\ { ( a m 6 m ) I ^ i a m I m > Jb}, if n is odd 

for Jk > 1, 

Lfl(T,8-0) = 

L = l e ( r , « - 0) = 

L>k(T,s-0) = 

which are not regular. 
We prove now that the family of regular languages is contained in the families 

of ?-fair languages generated in the / -mode, / G Mi , by regular grammar systems 
as soon as q > 1. 

For a regular grammar G = (N, T, S, P) we construct the grammar system with 
regular components 

T = (N',T,Si,Pi,P2,...,Pn), 

with 
N' = {Ai | A G N, 1 < i < n} 
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and the sets of productions 

Pi = {A,- aS , + 1 | A aB £ P} U {Ai a | A a G P } , for 1 < i < n - 1, 
P„ = {An — aBl | A — a S G P } U { A „ a | A -* a £ P } 

By this construction any component performs exactly one step and the i-th, 1 < 
i < n — 1, and n-th component are followed by the (i + l)-st and first component, 
respectively. Thus, L(G) = Lf(T, s — q), for all q > 1 and / G Mi . 

Now, it suffices to note that 

{amibm*am3bm* ...bm"\mi>l, |m,- - mj\ < q, 1 < i,j < n}, 
if n is even 

{amibmiam*bm* . ..am».| m,- > l,|m,- - mj \ < q,l < i,j < n), 
if n is. odd 

for / G Mi , are not regular languages. 
In order to prove the last assertion let us remark that for any k > 2, every lan-

guage in CDL„(REG,= k,s — q)L)CDL„(REG,> k,s—q) contains words of length 
greater than k, only. Therefore, REG\(CDLn(REG, = k, s — q)L)CDL„(REG, > 
k,s — q)) ^ 0, for all n > 2,q > 1. The grammar system considered in the proof 
of the first statement provides languages for the converse part. Consequently, the 
proof is complete. • 

Lj(T,s-q) = 

T h e o r e m 2 (i) CDL2(REG, f,w- 0) C REG, for f G {t, > 1}. 
(ii) The families CDL„(REG, f,w — 0) and REG are incomparable, for all 

n> 2 and f G Ufc>i{< k> = *}• 
(in) For f £ {t,> 1} and n > 4, REG and CDLn(REG, /, w - 0) are incom-

parable. 

Proof, (i) For T = (N, T, S, P\, P2) consider the right linear grammars 

Gi = ({S1} \J{A',A"\A £ N},T,S,P) 

where 

P = {A' ->aB'\A-^aB£Pl}u{A'-+aB'\A-+aB£P2,A1ÍS}U 
U {A' —* a\A a £ P2} U {A" aB"\A aB £ P2) U { 5 S', 5 S " } 
U {A" aB"\A ^aB £ PUA± 5 } U {A" a\A a £ Pt] 

and 

G 2 = ( { S } U {Ai,A'i\A £ N, i = 1,2}, T,S,PU{S —>• Si, S —• S^}) 
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where 

— {¿1 aBi IA aB G Pi, B G dom(Pi)} U 
u M l - aB2\A -» aB G Pi, 5 g dom(Pi)} U 
u {A2 aB2\A -*aB G P2,B G dom(P2)} U 
u {a2 aBx\A —• aB E P2,B £ dom(P2)} U 
u {A2 — a\A —* a G P2} U 
u {A'2 - aB'2\A —• aB G P2, B G dom(P2)} U 
u {A'2 — aB[\A — aB G P2, B £ dom(P2)} U 
u K l - aB[\A -> aB £ Pi, Be dom(Pi)} U 
u { A — aB'2\A — aB G P\,B£ dom(P\)} U 

u K a\A -4 a G Pi} 

The equalities 

L>i ( I\u>- 0) = L(Gi) and Lt(T, w - 0) = L(G2) 

follow immediately. The inclusions are proper since any language in 
CDL2(REG, f, w — 0), / G {t, > 1}, contains no word of length 1. 

(ii) The second statement is completely proved if we provide, for all k > 1, n > 2, 
a non-regular language in CDLn(REG,< k,w — 0). To this end, let us consider 
two cases. 

• n = 2. The grammar system T identified by the following regular components 

> i = { 5 — aS, S aB} 

P2 = {B bB, B -* b} 

generates in the < ¿-mode the non-regular language 

L<fc(r, w — 0) = {a*6m|l < t<m<ktoTl<m<t< km] 

• n > 2. The grammar system T identified by the following regular components 

Pi = {S^aS2} 
Pi = —• aSi+i}, 2 < i < n - 2, 

Pn-1 = {5„_i aS, 5„_i aB} 
Pn = {B-+bB,B^b} 

Observe that 

L<t (r , u; — 0) = {a^n - 1^6m|l < t <m<ktorl<m<t< Arm} 

which concludes the proof of the second item. 
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(iii) Any language in CDLn(REG, / , - 0), / G {t, > 1}, contains only words 
of length at least n since any component has to be applied at least once. Thus the 
regular language {a, a 2 , . . . , a " } does not belong to the class CDLn(REG, f,w — 0). 

If n = 4, then the statement follows from Example 1. 
If n > 4, then we subsitute the component P2 of the grammar system Ti in 

Example 1 by the components 

P2¡1 = {A' —* aA2}, 
P2 i = {̂ 4,- —• a A , + i } for 2 < i < n - 4, 

^2,7.-3 = {An-3 aA} 

and obtain the grammar system Tj which generates the non-regular 0-fair language 

L¡(V'lt f, w-Q) = {a^-2^mb2m I m > 1}. 

• 

By using similar ideas as those involved in the previous proofs one can get: 

Theorem 3 For all q > 1 we have: 

(i) REG = CDL2(REG,f,w-q),f E{t,> 1}. 
(it) REG C CDLn(REG, < k,w-q),n > 2,k > 1. 

(iii) REG C CDLm(REG,f,w- q),m>4,f e{t,> 1}. 

At the end of this section we would like to mention that when considering 
grammar systems with right-linear components (i. e. containing rules of the forms 
A —* xB,A —• x, x £ T*, A,B £ N) the results are similar to those given in the 
following section for the context-free case. 

4 The context-free case 
We start with a theorem which states a situation for context-free grammar systems 
which differs from that in the regular case. 

Theorem 4 For all n > 2, q > 0, u G {w, s } and f G M, 

CDLn(CF, f,u-q)Ç CDLn+l(CF, f,u- q). 

Proof. • u = w. For a CD grammar system T = (N, T, S, Pi, P2,..., Pn), we 
construct the system 

r' = (N't T, S, P[, P2, P3,..., Pn,K+i), 
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with 

N' •'= N U { X } with X 
P[ = Px\j{A^wX \A~* w <E P i } , 

P'n+1 = .{X-^X} 

Obviously, Lj(T) = L/(T') and, because P[ can be used as often as we obtain 
L}(T,w-q) = Lf(T',w-q). 

• u = s. For a CD grammar system T = (N , T, S, Pi, P2 , . . . , P„), we construct 
the system 

Y" = (N",T,S',Pi',PZ,...,PX,PZ+1), 

with 

TV" = N U { X , 5 ' } with X , S' £ N, 

P" = Pi U{S" — wX | S-> w G Pi), l < i < n , 
Pn+1 = - A } 

Obviously, Ly(T) = Ly (T') and, because the new introduced component can 
work as long as we want, we infer Lj(r, s — q) = L/(T", s — q). • 

T h e o r e m 5 i) For n > 1, q > 0, u G {w, s} and f G Mi, 

CDLn(CF, f ) C CDLn{CF, /,«-«)• 

iij The aforementioned inclusion is proper in the following cases: 

u = w, n > 4, q> 0 
b) u = s, n > 2, ? > o 
c) u - n > 6, f = t, 9 = 0 
d) u = S, n = 2 or n > 7, f = t, 9 = 0 

Proof. First we recall that, for n > 2, m > 3 and / G M\ \ { i } , 

CDL2(CF,t) = CDLn(CF,f) = CF and CDLm(CF,t) = ETOL. (1) 

i) First we consider the case u = w and / ^t. 
For a context-free grammar G = (N,T,S, P) , we construct the CD grammar 

system T with the following two components 

Pi = {A —> wX \ A w E P), 
P2 = 

where X is an additional nonterminal. Obviously, G and T generate the same 
language and, moreover, any word can be derived in T by using each component 
exactly once. This proves L = L(G) = Lf(T, w — q). 
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Therefore, from (1) and Theorem 4, it follows that 

CDLn(CF, f ) = CFC CDL2{CF, f,w-q)C CDLn(CF, f,w-q). 

This proof can be carried over the cases u — w, f = t and n = 2. 
We now consider the case u = w, f = t and n > 3. Let L £ CDLn(CF,t). By 

(1), L is generated by some ETOL system 

G={V,T,S,T1,T2,...,Tm) 

with the alphabet V, containing the set T of terminals, the start word S which 
can be assumed without loss of generality as an element of V \ T and the tables 
TuT2,...Tm. 

For a £ V, 0 < i < m and 1 < k < 5, we introduce the new letters af and 
extend this inductively to words by 

(A for w = A 
af for w = a 

vfak for w = va, v E V*, a £ V 

We now construct the CD grammar system 

r = (N,T,S10,Pl,Pi,P3} 

with 

N = { F } U {a* | a G V, 0 < i < m, 1 < fc < 5}, Pi = {a} - > a ? | 0 < i < m,a € V } U {a? ^ a? | 0 < i < m,a G V}, P2 = { a ? af | 0 < i < m, a £ F } U {a j af | 0 < i < m, a £ V}, 

P3 = (^J{af |a—t-u>(ETi}U {oq a | a £ T } 
»=i 

U{aQ F | a G V \ T) U {af aj+ 1 | 1 < i < m, a £ V}. 

Let us consider a word of the form xf. Note that the axiom is of this form. 
If we apply the component Pi, we obtain x? and we have to apply P2 and P3 in 

succession. If t > 1, then this yields t/J where x =>t, J/ is a derivation step in the 
ETOL system G, i.e. we have simulated the application of table Ti to x. If i — 0 
then we obtain x or a word containing F according whether x £ T+ or not and the 
derivation is finished. 

If we apply the component P2, we have to apply Pi and P3 and obtain xj+1. 
From this explanation it is easy to see that we can simulate the application of 

an arbitrary sequence of tables and finish the derivation by using any of the three 
components exactly once for the simulation of one step. Hence 

I t ( r , w-q) = Lt(T, w - 0) = L(G) = L 



342 Jürgen Dassow, Victor Mitran a 

holds for any q which proves the statement. 
Now let u = s and f £ Mi. Let T = (N,T, S, Pi,..., Pn), be a CD grammar 

system. The grammar system 

with 

N' = N U { X } with X $ N, 

P{ = Pi U {A — wX | A — w G Pi] U { X -> X , X A} for 1 < i < n 

generates the same language as T. Therefore 

LJ(r',f,s-q)CLJ(T) 

for all q > 0. 
By using the rules X —> X and X —* X, for any w G Lf(T'), we can find a 

derivation D such that ds(D) = 0. Hence 

Lj(T) = Lf(T')CL}(T',s-q). 

Consequently, for any q > 0, 

Lf(T) = Lf(T',s-q) 

which concludes the inclusions CDLn(CF, / ) C CDL„(CF,f) for all n > 2. 

ii) a) The CD grammar system T with the components 

Pi = {5 —• aAic, A —• aAic}, 

Pi = {Ai — ^i+x), 2 < i < n — Z, 

Prx — 2 = { ¿ „ - 3 ^ } , 
P„_! = {A^bB',B -+bB'}, 

Pn = {B' B,B' A} 

generates in any mode / G Mi \ { t } the weakly fair language 

L}(T,w-q) - {anbmcn \ n > 1, m > 1, \n - m\ < q) 

which is not context-free. Now the statement follows from (1). 

b) The statement follows from Example 2, Theorem 4 and (1). 
c) We consider the CD grammar system 

T = ({A, A', A", B, B', D, D', F], {a, b,d},A, Pu P2, P3, P4, P5, P6) 
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with 

Px = {A^>BA',A->BA"}, 
P2 = {A'^A,A"^D}, 
P3 = {A F,A' —>• F, A" F,B B'b, D —• dD'}, 
P4 = {B' B,D' D, £>' —• d}, 
P5 = {B'^a,D'^D}, 
P6 = {B — F,B' F,D — dD'}. 

It is easy to see that any derivation where any component works exactly n times is 
given by the sequence 

(PlP2)n (P3P4rP 3P5(P3P4)n -m - 1 (P6P5)"- 1P6P4 

of components where m < n. Hence T generates in the ¿-mode the weakly 0-fair 
language 

L' = { ( a6 m + 1 ) "d 2 n + 1 | n > m + 1 > 1}. 

Using the closure properties of the family of ETOL languages and Corollary 2.2 of 
Part V in [7] we obtain that L' £ ETOL. By i), (1) and Theorem 4, for n > 6, 

CDn(CF,t) = ETOL c CDL6(CF,t, 0 - q) C CDLn(CF,t, 0 - q) 

follows. 
d) The strict inclusion for n — 2 follows from Example 2. 
We shall prove the strict inclusion for n = 7, hence all inclusions for n > 7 are 

consequences of the previous theorem. 
Let us consider the CD grammar system 

Pi = { 5 —• CAZXY, Y Y}, 
P2 = {C-+BC',X-+C'C'AZX',Y-+Y}, 
P3 = [C' —> C,X' X,Y y}, 

P4 = { B - + \ , C - * — A } , 
P5 = {A —• aA', A' —* bD', D —> bD',Y —• y } , 
P6 - - Y ^ - A } , 
P7 = {D \,Y -+Y,Y \}. 

Here are some explanations about the working mode of the above system. The 
sets Pi, P2 , P3 are used in order to obtain strings a with 

M{B,C} = "i2 and |a|/i = \a\z = m 

for all m > 1. Every terminal derivation has to use the component P4 only once 
but for m(m + 1) steps. On the other hand, each component P,, i E {1 ,2 ,3 } can 
be used either once or several times for a total amount of m(m + 1) steps. 



344 Jürgen Dassow, Victor Mitran a 

The component P5 is used first time for at least 2m steps and all the other times 
for at least m steps. 

The component P6 is used each time for at least m steps. Because, P5 and P$ 
are used together for introducing b's, the total number of 6's in the terminal words 
of Lt(T, s — 0) is m2 . In conclusion, 

Lt(T, s - 0) = { (a6")m | m > n > 1} 

which is not an ETOL language (see [7]). Now the result follows due to (1). • 

As one can see there remain plenty of open problems in this area. We do not 
list them since the reader can easily identify them or can invent others. 

Finally let us mention that there also are some other concepts of fairness which 
can be introduced. 

• For a given CD grammar system T = (N, T, S, P\, P2, • • •, Pn), we fix some 
integers r i , r 2 , . . . , r „ and require that, for 1 < i < n, the component P, 
is applied at most or exactly r,- times. However, since the application of 
a component in one of the modes is equivalent to a finite or context-free 
substitution we obtain only finite or context-free languages and, obviously, 
we obtain all languages of this type. 

• To each component Pi, 1 < i < n, and to any moment I of time, / > 0 (this 
corresponds to the number of applications of components), we associate an 
integer U(l) in the following way: Let <¿(0) = 0. If we apply the component 
Pj in the moment /, then we set tj(l + 1) = 0 and increase the number of 
all the other components, i.e. + 1) = <,(/) + 1 for i ^ j. The fairness 
now consists in the requirement that in each moment / we can only apply 
a component Pj such that *,•(/) = maxi<p<„ tp(l). The number ti(l) can be 
interpreted as the period during that the component Pi was not active, i.e. 
it is the waiting time of the component, and we can apply a component only 
if it has been waiting a maximal amount of time. 

Clearly, after the first activation, any component has to work after waiting 
n — 1 steps. Thus this concept is nearly related to the weak fairness. We 
only mention that - by using the same proofs - one can show that similar 
statements as for weak fairness hold. 
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On Competence and Completeness in CD 
Grammar Systems* 

Henning BORDIHN * Erzsébet CSUHAJ-VARJÚ * § 

Abstract 

In this paper, different concepts of i-mode derivations in CD grammar sys-
tems which can be encountered in the literature and generalizations thereof 
are considered both in generating and in accepting case. Moreover, the influ-
ence of completeness of the components as an additional requirement to the 
derivational capacity of CD grammar systems is investigated. 

1 Introduction 
The theory of grammar systems is a recent vivid field of formal language the-
ory describing multi-agent symbol systems by tools of formal grammars and lan-
guages ([4]). Cooperating/distributed grammar systems, (CD grammar systems, 
for short) is one the important subfields of the area, launched for syntactic mod-
elling distributed problem solving systems based on blackboard architectures ([3]). 

. We note, however, that the term "cooperating grammars" was introduced first in 
[9], as a generalization of two-level substitution grammars to a multi-level concept. 

A CD grammar system consists of a finite set of grammars that cooperate in 
deriving words of a common language. At any moment in time there is exactly 
one sentential form in derivation and the grammars work on this string in turns, 
according to some cooperation protocol. In this model, the cooperating grammars 
correspond to the cooperating independent problem solving agents, the sentential 
form in deriva tion represents information on the current state of the problem solving 
stored in a global database, the blackboard, and the obtained language describes 
the set of problem solutions. 
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Turning to the original motivation, it is a sensible question whether some impor-
tant properties and features of agents that influence the behaviour of blackboard-
type problem solving systems can be formalized and interpreted in the syntactic 
framework provided by CD grammar systems. In this paper we deal with two 
of these properties: competence and completeness of components, moreover, we 
study them both in the case of generating CD grammar systems and in the case of 
accepting ones. 

The idea of accepting grammars and systems ([11]) is the following: Starting 
from a "terminal" word, the system tries to derive a given goal word (the axiom) 
where, according to [1, 2, 6], the yield relation is defined by textually the same 
words as in generating case. Possible restrictions to production sets are turned 
"around", e.g., coming to productions of the form v —• a in the context-free case, 
where v is a (possibly empty) word and a is a symbol. 

CD grammar systems as accepting devices (CD grammar systems consisting of 
accepting grammars), corresponding to backward deduction systems in contrast to 
generating CD grammar systems which correspond to forward deduction systems, 
were considered in [8]. 

Both competence and completeness can form a basis of the cooperation protocol. 
According to our approach, an agent is competent in a current state of the problem 
solving if it is able to contribute to the problem solution. In grammatical terms, 
the component grammar is competent in the derivation of the current sentential 
form if it is able to apply at least one of its productions to it. 

So far there have been two kinds of cooperation protocols (¿-modes of derivation) 
based on competence/incompetence of grammars introduced and examined: in the 
first case (hard ¿-mode), a grammar can start with the derivation if it is competent 
in the sentential form and stops with the derivation if it is no longer competent in 
the actual string (it has no production to apply; the agent is not able to contribute 
to the problem solving). In the second case, the start condition is the same but the 
stop condition differs: the grammar finishes the derivation if it is not able to derive a 
word different from the actual one (the competence of the grammar is not enough 
to change the state of the problem solving). We generalize the latter concept 
to a cooperation protocol called stagnation derivation mode (s-mode), where a 
component has to continue its work until and unless a word is derived from which 
no new word can be rewritten, i.e., it is impossible to derive a word which does 
not appear in the derivation before. Thus, the competence of the agent (of the 
component grammar) is not enough to leave a stagnating phase of the problem 
solving (the derivation). 

In this paper we compare the power of context-free CD grammar systems work-
ing on the basis of the above cooperation protocols. We show that the three variants 
are equally powerful. In the case of generating CD grammar systems they identify 
the class of ETOL languages and in the case of accepting CD grammar systems 
they provide a description of the class of context-sensitive languages (supposing 
that A-free productions are taken into account). These results, in the case of weak 
t-mode and stagnation mode of derivation do not change if we incorporate some 
requirement concerning completeness of the components. 
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The notion of completeness is well-known from Lindenmayer systems: For a 
set of productions of a usual L system it is required that, for any symbol a of 
the alphabet, there is at least one production rule replacing a. In [6], accepting L 
systems were investigated, where this concept of completeness does not apply any 
more. 

Since a production set of an accepting (ET)OL system is seen as an inverse finite 
substitution it is required that, for any symbol a, there is at least one rule of the 
form v —• a. One might wish to replace this "right-completeness" condition by a 
"left-completeness" condition as one is used to have in generating case, but such a 
condition must be in accord with the finiteness of the set of productions. 

One sensible approach to define completeness can be inherited from [9], where 
the derivation strategy of the cooperating generative context-free grammars is de-
fined as follows: every component grammar can start with the derivation if it is full 
competent in the generation of the current sentential form (if it has a production 
for any nonterminal symbol appearing in the actual string) and stops with it if it 
is no longer satisfies this criteria (there is at least one nonterminal in the string for 
which the grammar has no rewriting rule). 

Clearly, this idea can be transferred to the accepting case (also applying to ac-
cepting Lindenmayer systems): a grammar component / set of productions is com-
plete (thus full competent) for the current sentential form iff this sentential form 
can be partitioned into non-overlapping subwords each of which can be rewritten by 
a rule in the production set. We call this concept, that exhibits both completeness 
and competence, sentential-form-completeness («/-completeness for short). Obvi-
ously, in generating case this concept coincides with the usual "left-completeness" 
condition known from L systems. 

In [9] it is shown that context-free CD grammar systems with components 
working in « / -mode of derivation are equally powerful to the class of context-
free programmed grammars with appearance checking. We show that in the case 
of accepting context-free CD grammar systems this protocol leads to the power of 
context-sensitive grammars, morevover, to reach this capacity at most five cooper-
ating grammars are sufficient. 

2 Basic definitions 
We assume that the reader is familiar with the basic notions of formal language 
theory, for further details we refer to [11], and [5]. With our notations, we mostly 
follow [5]. Especially, we use C to denote inclusion, C to denote strict inclusion, 
and A to denote the empty word. The length of a word w is denoted by |io|, N 
denotes the set of positive integers. Two languages L\ and L2 are considered to be 
equal iff L\ \ {A} = L2 \ {A}. 

The family of languages generated by regular, context-free, context-sensitive, 
type-0 Chomsky grammars, ETOL systems, context-free programmed grammars, 
and context-free programmed grammars with appearance checking are denoted 
by £ g e n (REG), £ g e n (CF), £g e n (CS), ¿ g e n ^ J ^ ¿ g e n ^ T O ^ £gen(p C F ) i a n d 
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£gen(P,CF,ac), respectively. In order to denote the family of languages accepted 
by a device of the corresponding type, we write the superscript acc instead of gen. 
If we want to exclude A-productions, we add —A in our notations. Whenever we 
use bracket notations like £ee n(P,CF[-A]) c £g«n(P,CF[-A],ac) we mean that the 
statement is true both in the case of neglecting the bracket contents and in the case 
of ignoring the brackets themselves. 

We define CD grammar systems in a way suitable for the interpretation of both 
generating and accepting systems. 

A CD grammar system of degree n, with n > 1, is an (n + 3)-tuple 

G = (N,T,S,Plt...,Pn), 

where N and T are two disjoint alphabets, the set of nonterminal and terminal 
symbols, respectively, V = N U T is the total alphabet of G, S E N is the axiom, 
and P\,... ,Pn are finite sets of rewriting rules of the form or —»• /3, a, /3 G (N U T)+. 
In addition, we allow A-rules of the form a —» A in the generating case and A —* f3 in 
the accepting case. For x, y E (N U T)*, we write x => y iff x = x\ax2, y = x\fix-z 
for some a —• (3 G F,-. Hence, subscript i refers to the production set (component) 
to be used. Furthermore, we denote by ==>• a derivation executed by the ¿-th 

t 
< k > k component according to some cooperation protocol / . For example, (—=> , i I 

— k * 
= > , or , respectively) denotes a derivation of at most k (at least k, exactly k, 
or an arbitrary number of) derivation steps as above. 

For some cooperation protocol / , the language generated in / -mode (e.g., in 
< fc-mode) by a CD grammar system G of degree n is 

£ f n ( G ) = {w G T*\S = w0 wi •••=U =J=> wm = w with J >1 '2 ' m — 1 "m 

m > 1, 1 < ij < n, 1 < j < m} . 

The language accepted in / -mode by G is defined by 
£ « * ( G ) = {w £ T* \ w = w0 ==> wi => •••=U wm-i M- wm = S with 1 >1 "2 1 m — 1 'm 

m > 1, 1 < ij < n, 1 < j < m} . 

The families of languages generated (accepted, respectively) in the / -mode by CD 
grammar systems with at most n [A — free] context-free components are denoted 
by jC®en(CDn, CF[—A], / ) (or £ a c c (CD„ , CF[—A], / ) ) . If the number of cdmponents 
is not restricted then we write £ « e n ( C D 0 0 l C F [ - A ] ) / ) ( £ a c c (CDoo ,CF[ -A] , / ) ) . 

3 Cooperation and Competence 
In this section we compare the derivational capacity of CD grammar systems work-
ing under cooperation protocols based on competence/incompetence of the cooper-
ating grammars. Since incompetence (disability of rewriting) realizes a terminat-
ing condition for the component grammar, these kind of cooperation protocols are 
called i-modes of derivations. 
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Let us have formal definitions. 
A derivation 

D : x = xo => xi => X2 =>•••• => x„_i =}> xn = y 

from x to y is said to be 

(i) of type hard-t ( ) iff there is no z such that y => z, 

(ii) of type weak-t ( t w ) iff there is no z ^ y such that y z, 

(iii) stagnating (s) iff there is no z ^ {z^ | 0 < i < n} such that y =>•* z. 

Let G = (N, T, S, Pi,..., Pn) be a CD grammar system and let / £ {th,tw,s}-
For x, y 6 (N U T)m, we write x =>• y iff x =>• y and x ==>• y is a derivation of type 
/• . . . 

Then, ¿^ " (CDo^CF^u , ) is exactly the family of languages generated by CD 
grammar systems with an arbitrary number of context-free components working in 
<-mode as defined, e.g., in [4], whereas £gen(CDoo, CF,th) equals the corresponding 
family as defined, e.g., in [8]. 

Observation 3.1 By definition, if a derivation is of type th then it is of type tw, 
and if it is of type tw then it is stagnating. 
Hence, for a CD grammar system G, we have 

(i) Lf:n(G) C L?:n(G) C L f " (G) and 

(ii) LJT(G) C L - C ( G ) C L r ( G ) . D 

Note that productions of the form A —• A block derivations in hard-t-mode 
whereas they can be neglected in CD grammar systems working in weak-<-mode. 
Nevertheless, we find the following lemma. 

Lemma 3.2 For n E N U {oo} , we have 

£sen(CD„, CF\—\],th) = £Sen(CDn,CF[-\],tw) and 
C*c{CDn,CF\-Xlth) = C*cc{CDn,CF\-\],tw) 

Proof. Suppose we have a CD grammar system working in t^-mode. A simulating 
CD grammar system working in </,-mode can be obtained by cancelling all rules of 
the form A —• A from the productions sets of the original one. Conversely, if we 
replace all rules of the form A —* A by A —* F, where F is a trap symbol, in a 
CD grammar system working in th-mode, we obtain a simulating grammar system 
working in the i^-mode of derivations. • 

In order to compare these families of languages with that one generated (ac-
cepted) by CD. grammar systems working in s-mode, we take a better look at 
stagnating derivations. 
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Let 
D : x = x0 => £1 =>•••=> xn =>• • • • 

be a stagnating derivation which is not terminating. Then there is a finite language 
Ls tag(Z)) which consists of all words appearing in D such that, for any pair (u, v) E 
¿stag(^) x ¿stag(D), we have u v and v =>• u in D. 

Lemma 3.3 Let G be a generating CD grammar system with context-free compo-
nents. For any derivation D of G which is stagnating, all words in Lstag(-D) have 
one and the same length. 

Proof. Assume the contrary. Let u be a word of maximum length in L s t a g (D) , 
i.e., if a rule is applicable to u then this rule has the form A —• B or A —• A, where 
A and B are symbols. Here, renaming rules (A —* B) cannot introduce symbols B 
to which productions B —• /3 with |/?| > 1 can be applied, since otherwise u is not 
the word of maximum length in Lstag(-D)- Thus, we can apply only rules of the 
form A —* B and A —• A also to any word derived from u. In particular, this holds 
for any word u' E £stag(-D) with |u'| < |u|. This contradicts u' => u. • 

In conclusion, if a derivation D is stagnating then there is a word in D such that 
only renaming rules can be applied in the sequel or it is a terminating derivation. 

Lemma 3.4 C^n{CD^, CF\-X),s) = Csen(ET0L). 

Proof. The inclusion £®en(ET0L) C ^ " ( C D » , CF[-A], s) follows by the con-
struction given in [4, pp. 40-42] for the <>,-mode case. 

Thus, it is left to prove ¿^"(CDoo, CF[-A], s) C £8en(ET0L). Let T = (N,T, 
Pi, P2,..., Pn, S) be a generating CD grammar system. For any nonterminal A 
and 1 < i < n, we set L'A = SF(G'A) where G\ is the context-free grammar 
G\4 = ( N , T , Pi, A), i.e., L\ is the set of all sentential forms which can be generated 
by the i-th component of T starting with A. Furthermore, let 

Qi _ { la i f f la C n and> f o r a11 B G L\, we have UB = L\ 
A ~ ^ 0 otherwise ' 

M' = {B E iV | there is no j3 such that B ¡3 E Pi] , 

and 

iVJtag = 
AeN 

Obviously, N*tag is the set of nonterminal symbols which induce stagnation of 
the z'-th component, more precisely, if the i-th component is active, stagnation 
appears iff a sentential form w E (-NgtagUT)* has been derived. Now, construct the 
ETOL system G = (V,T,V,S), with V = N U T U {A{ \ A E N, 1 < i < n } U {F} 
and, for 1 < i < n, "P contains the following tables: 

Pi, 1 = {A^ Ai\Ae N}u{a-+ a\a£T}u{X ^ F\X $ NUT} 
Pi,2 = {At hi(w) | A w E Pi} U {a a | a E T} U {At A{ | A E N} U 

{Aj — F | A E N, j # i} U {A — F \ A E N} U {F F}, 
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where hi is the morphism defined by hi(A) — Ai for A € N and hi(a) = a for 
a£ T, 

Pi,3 = {Ai^A\AeKtas}U{a^a\aeT}U{X ^N'stagUT}. 

Here, table i ^ i simulates the selection of component P,- of T by "colouring" the 
nonterminals in the sentential form (replacing them by their corresponding sub-
scripted version), P,-_2 simulates the application of the chosen component, and P,-^ 
allows the system to leave the z-th component iff stagnation appears. The rules 
with the trap symbol F on their right-hand sides forbid shortcuts. Thus, we have 
Z,gen(G) = L g e n ( r ) . • 

The proof for £g e n (ET0L) C £ g e n (CD 3 , CF[-A], <) in [4, pp. 40-42] is given 
by a construction of a CD grammar system working in hard-<-mode with three 
components. Together with Observation 3.1, we can summarize the results as 
follows. 

Corollary 3.5 For f £ s}, we have 

£sen(ET0L) = ^(CDoo.Cft-AJ.tft) 
= £ « e n ( C A » ) C f t - A ] ) t I I , ) 
= £gen(CT>oo, Cif—A],s) 
= C*™{CD3,Cf\-\],f). 

Let us turn to the accepting case. Clearly, it is impossible to get any terminating 
or stagnating derivation of a component of an accepting CD grammar system if A-
rules, i.e., rules of the form A —• v, are present. Hence, we restrict ourselves to the 
A-free case. Moreover, it is a direct consequence that as in the case of generating 
CD grammar systems, also in the case of accepting CD grammar systems with 
context-free components it holds that all words in Lstas(D) have one and the same 
length for any stagnating derivation D. 

In [8] it is shown how to construct an accepting CD grammar system with two 
context-free A-free components working in hard-<-mode in order to simulate a given 
context-senstive grammar. On the other hand, it is obvious that any accepting CD 
grammar system with non-erasing context-free components in th- or <w-mode can 
be simulated by a linear-bounded automaton. But even such a system working in 
s-mode can be simulated by a linear-bounded automaton. This fact is obvious if 
we take into consideration that a derivation is stagnating only if it is terminating 
or after deriving a certain sentential form the rules that can be applied to the 
sentential form are only certain renaming rules, that is, productions of the form 
A—*B, with A,B £ N. Thus, we easily find the next theorem. 

Theorem 3.6 For f £ {th,tw,s}, we have 

£ g e n (CP) = £ a c c (CF) = £ a c c (CDi , CF — A , / ) 
C £ a c c (CD 2 , CF — A, / ) 
= £ a c c ( C £ o o , C P - A , / ) 
= £g e n (CS) = £a c c (CS). 
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4 Cooperation and Completeness 
In this section we investigate how the derivational capacity of CD grammar systems 
changes when the components satisfy some completeness criteria. We show that 
these additional conditions do not necessarily alter the derivational power, even in 
some i-mode cases, where, actually, the communication protocol is determined by 
the incompleteness of the components. 

First, let us discuss the concept of completeness. 
From the theory of (generating) (ET)OL systems we know a condition called 

left-completeness: For each symbol a of the alphabet V of the system there is at 
least one production a —• v, v £ V*. Analogously, right-completeness (originally for 
accepting (ET)OL systems) is defined: For each symbol a of the alphabet V there 
is at least one production v —* a, v £ V*. These conditions can be modified for 
CD grammar systems as follows: A set P of generating context-free productions (a 
component of the CD grammar system) is said to be left-complete (right-complete) 
iff there is at least one production of the form A —• ¡3 for each nonterminal A (at 
least one production of the form A —+ x for each symbol x of the total alphabet, 
respectively) in P. A set P of accepting context-free productions is called left-
complete (right-complete) iff there is at least one production of the form x —• A 
for each symbol x of the total alphabet (at least one production of the form 
for each nonterminal A, respectively) in P. 

We concede that the above concept of right-completeness for the generating 
case and that of left-completeness for the case of accepting sets of productions 
are not very satisfying. For, e.g., the accepting case, one might take into account 
the possibility to require the following: If w —• a, with |u>| = k, is in the set of 

k 
productions P then P Ç V* x V is surjective from |J V into V. This requirement 

¿=1 
is no restriction, since we can simply add rules of the form v —• F for such words 

k 
v £ (J V* which do not appear on left-hand sides in the given production set, and 

: = 1 
those "dummy rules" are out of any influence to the rewriting process. Moreover, 
we get no genuine completeness at all. 

Another concept of completeness which is appropriate both for generating and 
for accepting devices can be defined, based on the cooperation protocol used in [9], 
as follows: 

Let V be an alphabet and let L Ç V* be a language over V. A set of production 
rules P is said to be sentential-form-complete (sf-complete, for short) with respect 
to L iff every word w £ L \ {A} has a factorization w = X\X2 • • xn such that, for 
each i, 1 < i < n, there is a rule xt- —• ¡3 £ P, with ¡3 £ V*. 

Then, e.g., in a (generating) EOL system G = {V,Y,, P,u), P has to be sf-
complete with respect to V*. 

Observation 4.1 If a set of production rules P is left-complete then it is sf-
complete with respect to (domP)*, where domP denotes the set of all symbols ap-
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pearing on left-hand sides of the rules in P. 
For a generating context-free set P, we even find equivalence between these two 

properties. • 

A CD grammar system G = (N, T, S, Pi,..., Pn) is called left-complete or right-
complete iff each Pi, 1 < i < n, is left-complete or right-complete, respectively. G 
is said to be s/-complete iff each Pi, 1 < i < n, is «/-complete with respect to N* 
if G has generating context-free components, and with respect to (NUT)* if G has 
accepting context-free components. 

Note that it is sensible to differentiate between generating and accepting mode in 
this definition since in generating mode only nonterminal symbols can be rewritten 
whereas in accepting case there must also be rules for rewriting terminals. 

Theorem 4.2 The requirement of left-completeness, right-completeness, and / or 
sf-completeness does not alter the derivational power in the case of the following 
grammars and systems: 

(i) generating and accepting [E][T]0L systems, 

(ii) generating and accepting context-free grammars, 

(Hi) generating and accepting CD grammar systems with [A-free] context-free com-
ponents working in *-, in weak-t-, or in stagnating mode, 

(iv) generating and accepting CD grammar systems with [A-/ree] context-free com-
ponents working in < k-, > k-, or = k-mode, with k > 1. 

Proo f . Let N be the set of nonterminals and T be the set of terminals of the 
system under consideration. 

(i) Add rules x —• x for any x £ V to the set of productions (or to each 
production table, respectively) both in the generating and in the accepting case. 

(ii)-(iii) In the generating case, to the set of productions (or to each component, 
respectively) add rules A —• A for any A £ N U{.F}, where F is a new nonterminal 
symbol and add F —* a for any a £ T (in order to get right-completeness). In the 
accepting case, add T' = {a' \ a £ T } to the set of nonterminal symbols. Then, to 
the set of productions (or to each component, respectively), add rules A —» A for 
each A £ NUT', and a —• a' for each a £ T. Moreover, in the case of CD grammar 
systems working in weak-< or stagnating mode, we have to add the rules in {t; —• ¡3 \ 
v £ s(a), ot —• ¡3 £ Pj} to component Pi, where s is the finite substitution defined 
by s(vl) = for A £ N, and s(a) = {a, a '} , for a £ T. 

(iv) Let Fi and F2 be two new nonterminal symbols. Add Fi Fi and F2 —* F2 

to each component. Moreover, add rules x —• Fi for x £ N in the generating case 
and for x £ N UT in the accepting case, respectively. This guarantees left- and sf-
completeness. Furthermore, add rules F2 —i> x for x £ iVUT in the generating case 
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and for i G in the accepting case, respectively, in order to get right-completeness, 
too. • 

The next theorem deals with the hard-i-mode of derivation where the situation 
is different. 

Theorem 4.3 (i) Right-completeness is no restriction for generating as well 
as for accepting CD grammar systems with [A-free] context-free components 
working in hard-t-mode. 

(it) Both the family of languages generated by left-complete CD grammar systems 
with [A-free] context-free components working in hard-t-mode and the family 
of languages generated by sf-complete CD grammmar systems with [A-/ree] 
context-free components working in hard-t-mode is equal to C(CF). 
The corresponding families of languages in the accepting case are empty. 

Proof. (i) Add rules F —* x for all symbols x of the total alphabet in the 
generating case and for all nonterminal symbols in the accepting case, respectively, 
and the rule F —» F, where F is a new nonterminal symbol, again. Statement (ii) 
is obvious. O 

5 Cooperation and sf-completeness 
In [9], cooperating (generating) grammar systems were defined in such a way that 
the concept of «/-completeness was used as the basis of the cooperation protocol. In 
this section we present results about the derivational capacity and size complexity of 
accepting CD grammar systems with components cooperating in the above manner. 

Using our notation, we first give the following definition which is appropriate 
both for generating and accepting CD grammar systems. 

Let G = (N, T, S, Pi,..., Pn) be a context-free CD grammar system and let h be 
a morphism defined by h(A) = A, for A € N and h(a) = A, for a £T. In sf-mode 
of derivation the rewriting has to be performed by one and the same component Pi 
until and unless it is disabled, i.e., a sentential form w has been derived such that 
Pi is not s/-complete any more with respect to h(w) in the generating case and 
with respect to w in the accepting case. 

The family of languages generated by CD grammar systems with at most 
n [A-free] context-free components working in the s / -mode is denoted by 
£8 e n (CD„, CF[—A], sf). If there is no limit for the number of components then 
we write the subscript oo instead of n. The language families defined by the corre-
sponding accepting devices are denoted analogously. 

In contrast to the results about generating CD grammar systems with context-
free components working in (weak-)i-mode, for the systems defined by Meersman 
and Rozenberg the following result is shown ([9]): 

Theorem 5.1 ¿« " " (CA», CF[-X],sf) = &en(P, CF[-A], ac). • 
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As it concerns the A-free accepting case, we find the same hierarchical relation-
ship as for (hard-)i-mode proved in [8], but here, we have also nonempty families 
of languages accepted by devices containing A-rules. 

Theorem 5.2 (i) ¿ " » ( C D « , , CF — A, sf) = £«e n(CS) = £ a c c (CS) 

(ii) £a c c(CDoo, CF, sf) = £ g e n (RE) = £ a c c (RE) 

Proof, (i) Since any CD grammar system from (CDoo,CF — A , s f ) can be sim-
ulated by a linear-bounded automaton (that is, by a context-sensitive grammar), 
we only show that the reverse inclusion holds. For, our proof is based on the 
underlying idea of the proof of [5, Theorem 3.3]. Let us have a generating context-
sensitive grammar G = ( N , T , P , S ) in Kuroda normal form, without A produc-
tions. Assume that a unique label r is attached to any context-sensitive rule, of 
the form XU —• YZ with X,U,Y,Z £ N, in P. Let us denote the set of labels by 
Lab(P) = { r i , r 2 , . . . , r f i } . Let T = {d | a £ T } , { ? = {a | a £ T} and let h be 
a morphism defined by h(a) = A for A £ N and h(a) = a for a £ T. For a string 
w £ (N U T)* let us denote by w = h(w). 

We construct an accepting CD grammar system 

T — (N', T, S', Pi„it,PcF, Pi,i, Pi,2, Pi,3, P^i, P[t2> P[t3 • • • i PR,\I'PR,2> PR,3) 

such that L°jc(T) = L(G) holds. Let T be defined with 

N' = i V u T u f u { 5 ' , / 1 } U {[A, r], (A, r) \ A £ N and r £ Lab(P)} 
U{x' | x £ W U T } U { < x , r > | x £ ./V U T and r £ Lab(P)} 

(the unions being disjoint). The components of T are constructed as follows: 

-Pinit = {a —• a, a -+ a, a —• a | a £ T } , 
PCF = {S->S'}U{x-+xlx£Nuf}U{w->CIC->w£P}U 

{Y ->[Y,r]\r : XU ->YZ £ P}U{x' ^ x\x £ N u f } u 
{a a\a £ T} , 

and, for 1 < r < R, r : XU — YZ: 

Pr,i = { [>>] [y,r], Z — (Z,r)}U {x — x \x £ NUT} U {x' — x\x £ N U T ) 
Pr 2 = {[y, r](Z, r) F) U {x -»• x | x £ N U f } U {x —< x, r > | x £ N U T} 
Pr3 = {[Y,r]->X,(Z,r)^U}U{x^x\x£NUT}U 

{< x ,v >-• x'\x £ NUT} 
P'r, i = {[Y,r]^[Y,r},Z^Z'} 
Pr, 2 = {[Y,r]Z>-*F,[Y,r}^Y'} 
Pr,3 = {Y'-+X,Z'-+U,X-+X} 

Production set Pmit is for starting the derivation process. Obviously, by 
PQF context-free derivation steps of G are simulated whereas the components 
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Pr,i, Pr,2, Pr,3 and Pj. P{. 2, Pf. 3 simulate applications done by the rule with la-
bel r after replacing exactly one appearance of symbol Y in the sentential form 
by [Y, r], The first group of production sets handles the situation when the sen-
tential form is of the form u[Y,r]Zv, with uv £ (N U T ) + , and the second is for 
the situation when the sentential form is [Y,r\Z. In the first case it is necessary 
to replace a symbol < x , r > in order to leave Pr 3 which can only be introduced 
by application of Pri2. But Pri2 can be active only if the symbols [V, r] and (Z, r) 
are neighbouring in the "correct" manner or they do not appear at all. In the 
latter case, the application of Pr<2 and Pr<3 remain without any effect. Shortcuts 
are impossible since a component must be fully competent when applied. Similarly, 
it is easy to see that production sets P'r t , Pf. 2 , P{. 3 can be successfully applied only 
if the sentential form is of the form [Y,'r]Z. Hence, L a c c ( r ) = Lgen(G). 

(ii) Without loss of generality we can assume the given type-0 grammar to have 
only rules as a grammar in Kuroda normal form only having rules of the form 
A —• A, with A £ N, in addition. Thus, we can use the same construction as in (i) 
only giving additional rules A —• A to component Per if needed. The other direction 
of the proof follows by the Church theses or it can be shown by construction of a 
Turing machine. • 

Finally, we investigate the question if the number of components can be re-
stricted for devices working in s/-mode. Indeed, we find that 5 components are 
sufficient in order to describe the whole language family. 

T h e o r e m 5.3 (i) £Sen(CDoo,CF[-A], sf) = £« e n (CD 5 , CF[-A], sf) 

(ii) ¿ ^ ( C D o c C F f - A ] , * / ) = £ a c c ( C D 5 , C F [ - A ] , s / ) 

Proo f . Let G = (N, T, S, Pi,..., Pn) be a CD grammar system of degree n > 5 
working in «/-mode. Construct a CD grammar system working in « / -mode of the 
same type with 5 components according to the following basic idea: 
Component 1 contains all rules of the given system, but the symbols in the rules 
carry the number of the component of G, where they originally belong to, as sub-
script. For simulating work of component Pi, the symbols in the sentential form 
must carry subscript i, too. Then, this component becomes disabled iff there is no 
rule stemming from P,- which is applicable to the current sentential form, and one 
can continue with component 2 or 3. 
In component 2 to even subscripts i of the symbols of the sentential form, one is 
added (modulo n) in order to change the production set of G which shall be simu-
lated. 
Component 2' is the only component which can get active after applying compo-
nent 2. Here, it is checked whether all symbols have changed their subscript. If 
yes, a continuation with component 1 or 3 is possible, otherwise the derivation is 
blocked. 
Components 3 and 3' do the analogous job as components 2 and 2' for odd sub-
scripts. 
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Now, we give the formal description of that system for the accepting case. The 
construction for the generating case can be given analogously. 

Let G' = {N',T,S',Pl,P2,P^P3,P^), where 

N' = N U { 5 ' } U {At, A'0 A'l\ A £ N U T and 1 < i < n} 

(the unions being disjoint). Furthermore, let hi be the morphism defined by hi(A) — 
Ai for A £ NUT, 1 < i < n. Then, the components of G' are constructed as follows: 

Pi = {hi(a) —> hj(P) | a —• /? £ P,-, 1 < i < n} U {A" —>• yl, 11 < i < n} U 
{Si — S' 11 < i < n} , 

P2 = {A, Ai+1 | i = 0 mod 2} U {Ai+1 Ai+l \ i = 0 mod 2} U 
{Ai A'i+11 i = 0 mod 2} U {A" A{ | i = 0 mod 2} U 
{,4 -h. Ai | A £ N U T} U {A -* A\ \A £ N U T} U Q2, 

P'2 = {Ai+i -* ,4i+i 11 = 0 mod 2}U {A'i+1 A"+l \i = 0 mod 2 } , 
P3 = {,4,- Ai+1 | i = 1 mod 2} U {Ai+1 Ai+1 \i = 1 mod^^2} U 

{Ai — A'i+1 | i = 1 mod 2} U { A " — A{ | i = 1 mod 2} U Q3 , 
P^ = {^¿+1 —+ Ai+\ |« = 1 mod 2} U {A- + i —> A"+l | ? = 1 mod 2} , 

where 
Au An ^ A[\Ae NUT}U 

Q2 = {Ai Ai IA £ N U T} if n = 0 mod 2 and 
if n = 1 mod 2 

Ai , An A[ | A £ N U T}U 
Q3 = {Ai Ai | A £ N U T) if n = 1 mod 2 . 

if n = 0 mod 2 

Clearly, the system has to start with component P2 by rewriting any terminal 
a by ai. The axiom can be derived after yielding Si for some i with Pi. Note that, 
by technical reasons, after applying the rules in Q3 the system has to continue with 
component P2 and then with P3. Moreover, each component is a set of accepting 
context-free productions; in this connection the modifications are necessary for 
proving the statement in the generating case. • 

Acknowledgements: The authors are grateful to Henning Fernau and Markus 
Holzer for discussions on the topic. 
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Accepting Multi-Agent Systems II 

Henning FERNAU * * * Markus HOLZER * * 

Abstract 

We continue our previous research on cooperating distributed grammar 
systems (CDGS) and variants thereof as language acceptors [16]. Here, we 
classify the accepting capacity of CDGS working in the modes recently intro-
duced by the authors together with Freund [14]. Moreover, we study (pre-
scribed) teams as language accepting mechanisms. 

In this way, we solve an open problem from the area of accepting gram-
mars: there exists a grammar family such that its generating capacity is 
strictly more powerful that its accepting capacity, see [6] for a recent survey. 

1 Introduction 
In Artificial Intelligence (AI) , a common methodology in order to achieve a goal, 
which can hardly be done by a single expert or agent, is to create a so-called 
multi-agent system which solves the task using distributed and cooperating agents, 
see [29] for a survey on this area. Blackboard architecture models [10] can be seen 
eis an approach to model the communication aspects of the agents. 

On the other hand, one general concept in problem solving methods in AI are 
production systems [23], which arise from a computational formalism proposed by 
Post [27] that was based on string replacement. Many generalizations of produc-
tion systems are proposed in AI, e.g., rule-based systems, blackboard systems, or 
pattern-directed-inference systems. Production systems are closely connected to 
string rewriting, one of the backbones of formal language theory. In order to un-
derstand the nature of production systems, it is therefore natural to study them on 
well-known and traditional formal language theoretical devices. Based on black-
board systems, Csuhaj-Varjii and Dassow [7] introduced cooperating distributed 
grammar systems (CDGS), where each component (grammar) corresponds to the 
particular knowledge source of the system (this is an expert or agent), and the global 
database—the blackboard—is modelled by a common sentential form, where the 
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components perform their rewritings. Independently and sometimes with different 
motivation, also other authors introduced similar computational models, see, e.g., 
[1 ,20 ,21 ] . 

In the systems considered by Csuhaj-Varjú and Dassow and in a series of subse-
quent papers, all components work according to the same strategy; more precisely, 
the rewriting by another component can be done, e.g., after a given number of 
steps. For an overview on this topic, refer to [8, 25]. This model of multi-agent sys-
tems is not very realistic, because usually such agents have different capabilities. 
Therefore, a generalization of CDGS called hybrid CDGS has been investigated 
[22, 24, 25]. Another idea is to allow the formation of teams of agents, as proposed 
in [18, 19, 26]. 

In this paper, we take the original above-sketched idea of CDGS, but contrary 
to the approach of Csuhaj-Varjú et al. [8], we take, instead of generating grammars, 
accepting grammars as agents. They try to derive a given goal word (axiom) in 
a cooperating and distributive manner. In this way, we pursue our studies on 
accepting grammars and systems [3, 4, 5, 6, 11]. Accepting CDGS have been 
investigated in the works of the authors together with Bordihn [16] and Freund [12, 
13]. For an intermediate approach, combining generating and accepting grammars 
in CDGS, we refer to Fernau and Holzer [15]. 

Depending on the mode in which the grammars cooperate, we obtain, on the 
one hand, equivalences between the accepting and generating case, but also, on the 
other hand, results which are fundamentally different, this means that accepting 
devices are much more powerful than generating ones or vice versa, thereby solving 
an open problem in the theory of accepting grammars [3]. 

Observe that, when defining accepting counterparts of existing generating de-
vices, we want to carry over the original idea and motivation of the generating 
mechanism in order to define the corresponding accepting mechanism. Formally, 
such accepting grammars look like their generating counterparts, just turning the 
core productions "around" and keeping the control mechanism ruling the applica-
tion of these productions textually the same. In the case of CDGS, this procedure 
is very well motivated by the original ideas stemming from AI: while generating 
devices correspond to forward deduction system, accepting devices correspond to 
backward deduction systems. 

The present paper extends our studies on accepting CDGS in three directions: 
(1) We consider other working modes of the components which have been intro-
duced in [14] and (2) we consider (external) hybridizations of these new modes 
(with the new and old ones). Finally (3) we briefly consider accepting CDGS with 
(prescribed) teams. 

This is reflected in the organization of our paper. In the next section, we in-
troduce the necessary notions. Section 3 lists the easy cases (the interval mode 
and t combined with greater than or equal to k) where we can profit from our 
previous results [16] on the i-mode. Section 4 contains the more interesting case 
incorporating the i-mode combined with either equal than or less equal than k. 
Strange things can be observed here, e.g., no unary infinite language can be ac-
cepted by CDGS working in (t A < fc)-mode. This leads to the first examples of 
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grammar mechanisms where the generating power of such CDGS is greater than 
their accepting power. In Section 5, we we consider accepting hybrid CDGS, where 
the (external) hybridization incorporates also the modes (t A < k), (t A = k), and 
(t A >k). Furthermore, we consider the number of components in a CDGS as a 
natural measure of descriptional complexity for CDGS. Since each component cor-
responds to one expert according to the original AI motivation, we may paraphrase 
our results as follows: in backward deduction systems, two experts are enough. 
This contrasts to the situation found in forward deduction systems where it is only 
known that three or four experts are enough. Finally, we consider in Section. 6 
CDGS with (prescribed) teams as language acceptors. Observe that similar sys-
tems have been studied in the context of array grammars from a quite practical 
viewpoint, see [12, 13]. 

2 Definitions 
We assume the reader to be familiar with some basic notions of formal language 
theory, as contained in Dassow and Paun [9]. Especially, we consider two lan-
guages Li,L2 to be equal if and only if L\ \ {A} = L2 \ {A}, where A denotes 
the empty word. We use C to denote inclusion, while C denotes strict inclusion. 
The set of positive integers is denoted by N. The end of a proof or of a proved 
statement is marked by Let £(FIN) be the family of finite languages. The 
families of languages generated by regular, linear context-free, context-sensitive, 
type-0 Chomsky grammars, ETOL systems, context-free ordered, context-free pro-
grammed, and context-free programmed grammars with appearance checking are 
denoted by £« e n (REG), £" c n(LIN), £* e n (CF), £» e n (CS), £* e"(RE), £ 9 e n (ET0L), 
£ g e n ( 0 , CF), Cgen(P, CF), and Cgen(P, CF, ac), respectively. A subscript fin (k, 
or 1, respectively) denotes the family of languages generated by the appropriate 
device restricting the derivation to be of finite index (finite index k, finite index 1, 
respectively). For a definition of the finite index property we refer to [9]. 

A superscript acc instead of gen is used to denote the family of languages 
accepted by the appropriate device. If we want to exclude A-rules, we. add —A in 
our notations. 

We use bracket notations like £gen(P, CF[-A]) C £ ? e n (P , CF[-A], ac) in order 
to say that the equation holds both in the case of forbidding A-rules and in the case 
of admitting A-rules (neglecting the bracket contents). 

For the convenience of the reader, we repeat the basic definitions of CDGS, 
hybrid CDGS, respectively, adapted from Paun [24], in a way suitable for the 
interpretation both as generating and accepting systems. 

A cooperating distributed grammar system (CDGS for short) of degree n, with 
n > 1, is a (n + 3)-tuple G — (N, T, S, Pi,..., P„), where N, T are disjoint alpha-
bets of nonterminal and terminal symbols, respectively, S E N is the axiom, and 
Pi,... ,Pn are finite sets of rewriting rules over N UT. 

Throughout this paper, we consider only context-free rewriting rules. Since we 
are interested in generating and accepting systems, we further distinguish between 
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so-called generating rules, which have the form A —• w, with A £ N and w E 
(N U T)*, and accepting rules, which are of the form w —*• A, with A E N and 
w € (NUT)m. 

Let G be a CDGS with only generating rules. For x, y E (NUT )* and 1 < i < n, 
we write x =>,• y if and only if x = x\Axi, y = x\zx2 for some A —• z E Pi- Hence, 
subscript i refers to the component to be used. By =>f k , =>Tt > w e denote 
a derivation consisting of at most k steps, exactly k steps, at least k steps, an 
arbitrary number of steps, respectively. We also write x =>,' y if and only if x =>* y 
and there is no 2 such that y =>•; z. Combining the former three modes with the 
<-mode requirement we obtain the modes (t A <k), (t A = k), and (t A > k) which 
are defined as follows: there exists a derivation which satisfies both properties e.g., 
x y if and only if there exists an m-step derivation from x to y using P< 
such that m < k and there is no z such that y =>j z. 

Let D := { *,t } U { < k, = k, > k \ k EN}U{(>k1A<k2),(tA<k),(tA=k),(tA 
>k) | ki,k2,k € N and ki < k2 }. 

The language generated in the /-mode, / E D, by a CDGS G with only gener-
ating rules is defined as: 

Lg/n(G) := { w E T* | 5 =>l ai =>{a... =>{m_t Qm-l Mm <*m=w with 
m > 1, 1 < ij < n, and 1 < j < m }. 

If / E D, the families of languages generated in / -mode by [A-free] CDGS with 
at most n components are denoted by £ s e"(CD„,CF[—A], / ) . If the number of 
components is not restricted, we write £ j 7 e"(CD0 0 , CF[—A],/). 

For CDGS with only accepting rules, we define the relations x =i>,- y and x y 
accordingly. Hence, we define the language accepted in /-mode, f £ D, by a 
CDGS G with only accepting rules as follows: 

Lf\G) := { w E T* | w a x =>{m_x a m _ x =>{m am = S with 
m > 1, 1 < ij < n, and 1 < j < m } 

If / E D, the families of languages accepted in / -mode by [A-free] CDGS with 
at most n components are denoted by £ a c c (CD„ ,CF[—A], / ) . If the number of 
components is not restricted, we write £a c c(CDoo, CF[—A],/). 

If each component of a CDGS may work in a different mode, then we get the 
notion of (externally) hybrid CDGS of degree n, with n > 1, which is a (n + 3)-tuple 
G = (N, T, S, (Pi, / 1 ) , . . . , (Pn,fn)), where N,T,S, Pu ..., P„ are as in CDGS, and 
/, 6 D, for 1 < i < n. Thus, we can define the language generated by a hybrid 
CDGS with only generating rules as: 

L°en(G) := {w£T* \S ^ W! ^ ... 1 « W i =>{? wm = w with 
m > 1, 1 < ij < n, and 1 < j < rn } 

Accordingly, accepting hybrid CDGS can be defined. If F C D, the family of 
languages generated (accepted, respectively) by [A-free] CDGS with at most n 
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components, each component working in one of the modes contained in F, are 
denoted by £« e n (HCD„, CF[-A], F) (£0 C C(HCD„, CF[-A], F), respectively). Simi-
larly, ^ " ( H C D o c C F l - A ] , ^ ) , and £a c c(HCDoo, CF[—A], F), respectively, is writ-
ten when the number of components is not restricted. 

3 When generating is weaker than accepting 
The easiest case from the new modes is the interval mode. Fortunately, the ob-
servations given in [16, page 128, Theorem 3.2] showing that in case of classical 
modes, except for the i-mode, equivalence between generating and accepting de-
vices prevails, readily transfers to the (>ki A < ¿2)-mode. Hence, we get: 

Theorem 3.1 If N 6 N U {oo } and f £ {(> Jfcj A <k2) \ kx,k2 £ N.fci < k2}, 
then C"n(CDN,CF[-\],f) = £0 C C(CDW , C F [ - A ] , / ) . • 

We turn our attention to grammar systems working in (t A > fc)-mode. Note 
that (t A > 1)- and the classical i-mode trivially coincide, which leads us to: 

Theorem 3.2 / / N £ N U {oo} , then, for any N > 3, 

£ j e n ( C F ) = £ s e " ( C D i , CF[—A], (< A > 1)) = £ i e n ( C D 2 , CF[—A], (i A > 1)) 
C £ s c n ( C D ; v , CF[—A], (t A > 1)) = £ i e n ( E T 0 L ) . 

For k in general, the situation is a little bit different from the previous one. 

Theorem 3.3 If N £ N U {oo} , then, for any N > 3 and for each k > 2, 

£ i e n ( C F ) = £ i e n ( C D i , CF[ -A] , (i A > k)) C £ a e n ( C D 2 , CF[-A] , (t A > jfc)) 
C C°en(CDN, CF[-A] , (t A > fc)) = £ s e n ( C D o o , CF[-A] , (t A > k)). 

The latter class coincides with the family of E[P]T0L languages with random 
context conditions [9, 28], as shown in [14], a special case of £ s e " (P , CF[—A], ac). 

The case is totally different for accepting CDGS. Nevertheless, as in the case of 
<-mode, the admittance of A-productions does not enhance the accepting power of 
CDGS working in (t A > fc)-mode. 

Theorem 3.4 If N £ N U {oo} , then, for any N > 2 and for each k > 1, 

£ * e n ( C F ) = £ a c c(CDi,CF[—A],(< A >k)) C £0CC(CDat, CF[—A], (i A > k)) 
= £ a c c ( C D 0 0 , CF[—A], (t A > k)) = C9en(CS). 

Proof. The first relation is obvious. By [16, Theorem 4.5], we know that, for 
each N > 2, ¿ « « (CDjv .CFt -A] ,* ) = £ a c c (CDoo,CF[-A] , t ) = £*e n(CS). Since t-
and (t A > l)-mode trivially coincide, the results carry over to the (t A > l)-mode. 
By introducing prolongating rules, we obtain the desired result for (i A > fc)-mode 
for k in general. • 



366 Henning Fern au, Markus Holzer 

Corollary 3.5 Let k £ N. Then, we have 

C9'n(CF) = ¿ » • " ( C D i . C F H M * A > * ) ) = £ a c c ( C D i , CF[—A], (t A> k)). 

Moreover, if N 6 N U {oo} with N >2, we get 

Cgen(CDN, CF[-A], (t A > k)) C Cacc(CDN, CF[-A], (< A > it)), 

where the inclusion is known to be strict only in the absence of X-rules. • 

4 When accepting is weaker than generating 
In the present section, we deal with CDGS working in (t A < k)- and (t A = i ) -mode 
with context-free components. Again, at first we mention the known results in the 
generating case [14]. 

Theorem 4 . 1 If f 6 { (t A < k), (t A = k) | k 6 N} , then there exists a function 
sj : N —* N so that for each n € N, 

£(FIN) = £ j e n ( C D i , C F [ - A ] , / ) C £* e n (CD„, CF[-A], / ) 
C £ i e n ( C D 5 / ( n ) , CF[-A], / ) C £ s e n (CDoo, CF[—A], / ) = £ £ n ( P , CF[-A] , ac). 

The preceding theorem demonstrates that both the (t A < k)- and the (t A = k)-
mode nicely fit into the known framework of formal language families. On the 
other hand, the accepting counterparts behave very strange in comparison to earlier 
results on accepting CDGS. This is shown in the next lemma. 

Lemma 4.2 For every k E N, no infinite one-letter language can be accepted by a 
CDGS working either in (t A < k) or (t A = k)-mode. 

Proof. We only prove the statement for the (t A = fc)-mode. Assume that the 
CDGS G = (N,T,S,Pi,.. .,Pn) accepts an infinite one-letter language L C {a}* 
in (t A = fc)-mode. Set M = max{ m | am —> A € Pi for 1 < i < n } . Since L is 
infinite, there exists a word am in L such that m > 3k • M. On this word, there is 
no way to start the (accepting) derivation process, since every component is only 
able to handle at most k • M symbols a due to the (t A = fc)-mode. Thus, am does 
not belong L, which contradicts our assumption that L is infinite. • 

Thus, {a}* G £» e n (REG) \ £ a c c ( C D N , C F [ - A ] , / ) , if N e N U { o o } and / 6 
{ (t A < it), (t A = k) | Jfc e N } , but { # } { a } * € £ a " ( C D 2 , CF - A, (t A = 1)), which 
is shown in the following example. 

Example. Let G = ( {5 , A, A', B], { # , a} , 5, Pi,P2) be a CDGS with the sets 
/>! = {#-* B, Aa A', Aa 5 } and P2 = { £ —• A, A' A}. It is easy to see 
that G working in (< A = l)-mode accepts { # } { a } * . 
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The idea of a special marking symbol generalizes to arbitrary regular languages. 
This shows that every marked regular language belongs to, e.g., the language family 
£ a c c ( C D 2 , C F - A,(< A = l ) ) . 

Before we consider CDGS with an arbitrary number of components, we study 
the case where two components are working in (<A< k)- or (t A — k)-mode together. 
Again, we recall what is known for these language families [14]. 

Theorem 4.3 If f G { (t A < k), (t A = k) | k G N }, then 

£« e n (LIN) C £ » e n ( C D 2 , C F [ - A ] , / ) C C3ken(P, CF[-A],ac). 

The latter inclusion is known to be strict only in case k — 1. 

First, consider the trivially coinciding modes (<A< 1) and (t A = 1) for accepting 
CDGS with two components. Surprisingly, we find: 

Theorem 4.4 £ a c c (CD 2 , CF[ -A } , ( t A = 1)) C £*e"(LIN). 

Before we prove this theorem, let us mention that the preceding theorem answers 
an open question stated in [3]: is there a grammar family such that the generating 
mode is strictly more powerful than the accepting mode? Combining the previous 
two theorems, we obtain: 

Corollary 4.5 £ a c c (CD 2 , CF[-A], (i A = 1)) C £ f l e n (CD 2 , CF[-A], (t A = 1)). • 

For the proof of the theorem, we need a detailed analysis of the accepting (t A= 1) 
derivation of the grammar system. Assume that we are given a grammar system 
G = (N,T, S, Pi, Pi). On input w the system can mainly behave as follows. By 
the (< A = l)-mode (like in the t-mode), the only way to accept a word is by an "in-
terplay" of the two components, i.e., the sequence of production sets applied looks 
like . . . , Pi, P2 , Pi, P 2 , . . . . W.l.o.g. assume that Pi starts the derivation process, 
reducing a subword of w to some nonterminal, say A. The only way to continue is 
an application of a rule of P2. At this point of derivation, we have to distinguish 
two cases, as illustrated in Figure 1. 
1. The rule chosen from P2 contains the previously introduced nonterminal A on the 
left-hand side. Hence, A with a left- and right-context is replaced by another non-
terminal again. The only way to successively continue the derivation is to apply Pi 
again, reducing a sub-word that contains the previously introduced nonterminal. 
Otherwise, the previous application of a rule of Pi would have not been possible. 
Further analysis of the derivation process shows that in this case the derivation has 
a "fish-bone" structure like in a linear grammar. 
2. The rule chosen from P2 does not contain the previously introduced nontermi-
nal A. Hence, after its application the derived sentential form contains exactly 
two nonterminals, say A and B. Pi is not able to handle a derivation where A is 
involved, as long as P2 has not changed the left- or right-context of A properly. 
Otherwise, the previous application of a rule of Pi would have not been possible. 
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Figure 1: The cases 1. (left) and 2. (right; the case where A and B change their 
roles are symmetric) of a (t A = 1) derivation of a CDGS with two components. 

Thus, the applicable rule from Pi must contain nonterminal B on the left-hand side. 
This interplay between Pi and P2 goes on while successively reducing the word at 
the point where P2 has made the first application of a.rule at all. The derivation 
is nothing else than a fish-bone again. Then at some point P,-, for 1 < i < 2, 
has prepared the context for the other to make an application of a rule where 
the nonterminal A is involved; this rule application breaks the fish-bone into two 
parts, when looking at the derivation as a whole. Afterwards, the interplay of the 
components continues, leading to a linear derivation structure. 

We sketch the construction of a linear grammar that simulates the accepting 
derivation of G in a generative manner. Let LS(Pi) denote the left-hand sides of 
the product ions in P,-, i.e., LS(Pi) = {w\w—>BEPi}. 

The nonterminal of the linear grammar contains the following (finite amount 
of ) information: (1) the actual nonterminal, (2) which component and rule starts 
the original derivation, (3) the control for the interplay, (4) the information which 
left-hand sides of the productions in both components are contained as sub-words 
in the sentential form derived so far, and (5) additional information to compute (4). 

Thus, the generating linear grammar'first guesses the component that starts 
and ends the original derivation process. Additionally, the first rule ever applied in 
the original derivation is guessed, say this is a —• A. Further, also the form of the 
derivation (case 1. or 2.) is guessed. These cases are treated separately: 
1. A linear derivation has to be performed, starting with the rule set that ends the 
original derivation. The interplay as well as the application of a rule is controlled by 
the information stored in the current nonterminal. In this situation, a rule u —• B (a 
linear one!) from Pi, for 1 < i < 2, is applicable if and only if the sentential form 7 
contains one occurrence of B, and no word from £S(P,) occurs in 7 . The latter can 



Accepting Multi-Agent Systems II 369 

be tested with information (4). During the derivation simulation, the information 
(1), (3), (4), and (5) is updated. When terminating (simulating a —• ^4) in addition 
it is checked (using information (2) and (3)) whether we actually simulate the 
component that starts the original derivation process. 
2. The second case consists of two symmetric cases (see Figure 1). Assume ¡3 —> 
B is the rule applied in the second step of the original derivation. In the first 
part of the derivation a linear derivation is done (see above). At some point, the 
grammar guesses to apply the rule (which is member of the component Pi, for 
1 < i < 2) that breaks the linear structure of the original derivation. This rule is 
not linear anymore, i.e., it looks like, e.g., C —* uAvBw (the symmetric case C —» 
uBvAw is similar). Then the derivation is continued as follows: apply the rule C —• 
uavBw under the condition that no word of LS(Pi) is stored as information (4), 
and then update information (4) and (5) according to C —* uAvBw. Thereafter, 
the derivation process is continued in a linear manner like in case 1. The only 
difference lies in the termination, because we already applied a —>• A. Therefore, 
we must test that /? —• B is member of the set Pj, for 1 < j < 2, which does 
not start the original derivation and that no word from { a } U LS(Pj) is stored as 
information (4). 

This completes our construction for £0CC(CD2, CF[-A], (t A = 1)) C £«e n(LIN). 
The strictness of the inclusion follows from the lemma on one-letter languages. • 

The question arises whether Theorem 4.4 generalizes to CDGS with more than 
two components and for derivation modes (t A < k) or (t A = k) in general. First, 
let us analyze the derivation trees obtained by such systems. We only discuss the 
(t A — ik)-mode, but it generalizes to the other mode as well. 

Let G be a two component system working in (t A = 2)-mode. Again, we must 
have an interplay between the two grammars to accept a word successfully. The 
number of possible tree structures, compared to the (t A = l)-case, increases sig-
nificantly, but remains finite. Why this? The start component can introduce at 
most two nonterminals. Then, the application of the other grammar increases the 
number of occurrences of nonterminals again at most by two. Now, there are only 
three possibilities to continue the accepting derivation: either we reduce sub-words 
in a linear manner (sequential rule application), or we replace two nonterminals 
with some context in an application of a production set (parallel rule application), 
or we combine several nonterminals into one (union step). Moreover, the first and 
second step of the derivation can be only a sequential or a parallel one, but from 
then on, a sequence of parallel steps can only be followed by a sequence of sequen-
tial steps, and afterwards a union step. Finally, only a sequence of sequential steps 
mixed with a finite number of union steps can be performed until the axiom is 
reached. At this point, one observes that the number of nonterminals occurring 
in a sentential form is bounded. Obviously, with a similar construction as in the 
preceding (t A = 1) case, a programmed grammar with appearance checking can do 
the simulation job. Note that the whole derivation is of finite index, too. 

With a much more detailed analysis also the case of CDGS with three grammars 
working in (t A = 1) mode can be done. In general, for arbitrary number n and k, 



370 Henning Fern au, Markus Holzer 

the number of possible structures for the derivation trees is bounded, so that a pro-
grammed grammar with appearance checking fulfilling the finite index restriction is 
able to simulate the original grammar system in a generating way. Thus, together 
with the lemma on one-letter languages and Theorem 4.1) we obtain: 

Theorem 4.6 Iff £ { (i A < k), (t A = k) \ k £ N }, then, for any N £ N U {oo}, 

£ f l C C (CDjv,CF[-A] , / ) C £ i e n (CDoo, CF[-A], / ) = £ £ n ( P , C F [ - A ] , ac). 

5 More on hybrid CDGS 
As already observed in the previous section (see also [16]), accepting and generating 
modes coincide when only considering the *-, < k-, = k-, > k, and ( > ki A < k2)-
modes. We summarize these facts in the following theorem without proof. 

Theorem 5.1 If F C {*} U { < k, = k, >k \ k £ N } U { (> ¿1 A < k2) | ¿1, k2 £ N, 
ki < k2 }, then, for any N £ N U { 0 0 } , 

¿^"(HCDtv, CF[-A], F) = £a c c(HCDjv, CF[-A], F). 

To exhibit the relations between other mode combinations, we have to explore 
their generating and accepting power in more detail. From [14], we summarize: 

Theorem 5.2 1. If® £ F C {*, t} U { < k | k £ N } U { = 1, > 1}, then 

£ s e n(HCDoo, CF[-A], F U {(t A = 1)}) = Cgen{O, CF[-A]). 

2. If F C{.= k,>k \k>2}u{(tA>k)\k >2}, then 

£ s e n(HCDoo, CF[—A], F U { ( i A = 1)}) = C9en{ P, CF[-A], ac). 

3. If to ± F C {*, t) U { < k, = k, > k, (t A > k) | k £ N} U { ( > fci A < k2) \ 
k\,k2 6 N and k 1 < k2 }, then 

£ s e"(HCDoo, CF[—A], F U {(< A = 2)} ) = £* e" (P, CF[-A], ac). 

4. Let 0 ^ F C {*, t} U { < k | k £ N }. For every k £ N, k > 2, 

Cgen(0, CF[-A]) C £ i e n (HCDoo, CF[—A], F U { ( M < k)}) C £ i e n ( P , CF[-A], ut). 

Since ordered languages are strictly included in programmed languages with 
unconditional transfer, at least one of the inclusions is strict. 

Theorem 5.3 Let F C D contain one mode from {*} U{<fc , = fc,>fc|fcGN}U 
{ (> * iA < k 2 ) \k1,k2£'N and ki < k2 } and one from { (tA< k), (<A= k) \ k £ N }. 
Then, we have: 
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1. £a c c (HCDoo,CF — A, F ) = £ s e n (CS) , and 

2. r ^ i H C D o o . C F . F ) = £" e n (RE) . 

Proof. Our proof is very similar to the i-mode case shown in [16, Theorem 4.2]. 
We give only technical details here. First, we consider the A-free case. It is easy 
to construct a simulating linear bounded automaton accepting Lacc(G) in case not 
admitting A-rules. Therefore, the inclusion ¿"" (HCD,*, , CF[—A], F) C £9 e n (CS) is 
clear. We have to show the other inclusion. 

By a standard argument, it can be shown that (*) £a c c(HCDoo, CF[— A], F) is 
closed under union and embraces the context-free languages. Let L G £ 5 e n (CS) , 
LCT*. Then, L = Ua.ft .cerCW^i&c} n L) U (L n T) U (L n T 2 ) U (L n T3). 
Since L is context-sensitive, Latc — { w G T+ \ awbc EL) is context-sensitive due 
to the closure of C g e n (CS) under derivatives. By (*), it is sufficient to show that 
{a}M{bc} G £a c c(HCDoo, CF - A, F) provided that M C T+ is context-sensitive. 

By simple prolongation arguments, it suffices to show that { a } M { 6 c } belongs to 
£ a c c ( H C D c o , C F - A , { * } U { ( < A = l ) } ) provided that M C T + i s context-sensitive. 

Let G — (N, T, S, P) be a context-sensitive grammar without A-productions in 
Kuroda normal form generating M. Let us assume a unique label r being attached 
to any genuine context-sensitive rule of the form XU —* YZ with X, U,Y, Z G N'y 

the set of labels is denoted by Labcs = {r\,... ,r a}. 
We construct a (HCDoo, CF - A, { * } U {(< A = 1)}) system 

G' = (N', T, S',P0, Pi,i, Pi,2, Pi,3, Pi,4 .... PR,I,PR,2, PR, 3, PR,A) 

accepting { a } M { 6 c } . The common terminal alphabet of these grammars is T, and 
their nonterminal alphabet is 

N' = N U { C i , . . .Cr) U { £>', £>" | DeNuT}u{A,B,C,S',F} 

(the unions being disjoint). 
The component PQ working in *-mode equals { a —• A,b —+ B,c C } U 

{ASBC —* S'} U {w D \ D E N and D^wEP,w£T}U{D —* D', D —* 
D" | D E N } and is used for four purposes: (1) It turns the left delimiter a into A 
and the right delimiters b and c into B and C (initialization). (2) The check of the 
correctness of this initialization application is postponed until the last applicable 
production ASBC —• S' does its work (termination). (3) Context-free rules can be 
simulated here. (4) Colouring of nonterminals into (double-)primed counterparts 
prepares the simulation of a genuine context-sensitive rule. 

Finally, we introduce four production sets working in (t A = l)-mode for the 
simulation of a genuine context-sensitive production rp : XU —+ YZ £ P: 

PpA = {C->Cp}U{Y'z^F\zj:Z"}U{yZ" ^F\y?Y'}, 
Pp,i = {C^F}U{C„ ^F | <r±p}\J 

{Y' — X} U { D' F, E" F | D, E E N A E" £ Z"}, 
Pp,3 = {C^F}u{Ca^F\<r?p}U 
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{Z" U}U {L/ -* F, D" F \ D £ N}, and 
PpA = {CP^C}U{C0^F\(T^P}U{D' ^F,D" ~^F\D€N). 

Observe that the second production set only serves for checking whether the 
first production set has correctly nondeterministically selected two adjacent marked 
occurrences Y and Z. These checks are always possible, since we introduced left 
and right end-markers A and B, respectively. 

If we allow A-productions, these can be put in the Po-component, too. • 

Corollary 5.4 Let F C {<} U { (t A < k), (t A = it), (t A > k) \ k £ N } . If F contain 
one of the modes {<}Ll{ (t A> k) \ k £ N } and one of the modes { (t A< k), (t A = k) \ 
k e N } , then we have Cacc(RCD00,CF[-\],F) = Cgen(CS). 

Proof. By our result [16, Theorem 4.2] regarding ¿-components only, it is only to 
prove that additional components working in one of the { (t A < k), (t A = k) \ k £ 
N }-modes do not enhance the accepting power. Again, A-rules do not add to the 
power, and an easy simulation by a linear bounded automaton shows the assertion. 

• 
When contrasting generating and accepting grammars, we obtain: 

Theorem 5.5 1. Let F C D contain one of the modes {*, U { < k, — k, > k, 
(t A > ifc) | ifc € N } U { (> ¿i A < k2) | Jbi, k2 £ N and kx < k2 } and one of the 
modes {(t A <k),{t A — k) | k £ N }. Then, we have: 

¿^" (HCDco , CF — A, F) c £ o c c (HCDoo, CF — A , F ) . 

2. Assume that F C D contains one of the modes {*} U { < k, = k, > k \ k £ 
N }U{ (> k iA< k2) | Jfei, k2 £ N, k\ < k2 } and one of the modes { (tA< k), (tA 
— k) | k £ N } . Then, we have: 

C9tn{HCDoo, CF, F) C £a c c(HCDoo, CF, F). 

(a) This inclusion is known to be strict in case F contains none of the modes 
{ (* A < k), (< A = k) | ifc £ N, k > 2 }. 

(b) This inclusion is known to be non-strict in case F contains one of the 
modes { ( < A = i f c ) | j b £ N , j f c > 2 } . 

3. Let F C {<} U { (t A > ifc), (< A < k), (t A = k) \ k £ N } and let F contain one of 
the modes {<}u{ (tA>k) \ k £ N } and one of the modes {(tA<k),(tA = k) \ 
ke N } . 

(a) If F n ({ (t A = k) | k £ N, k > 2 } U { (t A > k) \ k £ N, k > 2 } ) ^ 0, we 
have 

Cgen(CS) = £a c c(HCDoo, CF, F) C £ ? e n (HCDoo, CF, F) = Cgen(RE). 
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(b) Otherwise, ¿ " « ( H C D « , , CF, F) ts not contained in ¿ ^ " ( H C D ^ , CF, F), 
since Cgen(CS) 2*5 not contained in C9en{0,CF). • 

T h e o r e m 5.6 Let F C D contain one of the modes {*,t} U {<k, = k,>k \ k £ 
N } U { (> ¿i A < k2) | Jfei, k2 £ N and fci < k2 } U { (t A > k) \ k £ N } and one of 
the modes { (t A < k), (t A = k) \ k £ N } . Then, we have: 

£a c c(HCDoo, CF[—A], F ) = £ a c c (HCD 2 , CF[-A], F). 

Proo f . We can distinguish two cases: 

1. If F D ({*} U { (t A > k) | k £ N } ) 0, then [16, Theorem 4.5] is applied. 

2. If F n ( { * } U { <k, = k,>k | k £ N } U { (> A <k2) \ klt k2 £ N A fci < 
k2 } ) ^ 0, then following idea is helpful: First, due to our last theorem, it 
is sufficient to consider *- and (t A = l)-components, because every context-
sensitive (or even recursively enumerable, if A-rules are admitted) language 
can be accepted in such a way. Then, possibly a prolongation argument is 
applied. It is possible to colour each symbol of the originally given hybrid 
CDGS with a special colour indicating the (t A = l)-component we are going 
to apply next. Furthermore, we assume only coloured versions of terminals 
appearing in the sentential form. All original (t A = l)-components are put 
together, where each set of productions only works on its private alphabet. In 
addition, mixtures are excluded introducing productions of the form XY —• F 
(where X and Y are from different colours or terminal symbols). • 

Naturally, Theorem 5.6 cannot be improved, since (hybrid) CDGS with context-
free rules having one component can accept at most the context-free languages. Just 
as an aside, we remark in this place: 

T h e o r e m 5.7 For every k £ N, 

£(FIN) = £ a c c (CDi , CF[—A], (i A = k)) = £ 9 e " (CDi , CF[—A], (< A = k)) 
= £ o c c (CDi , CF[—A], (t A< k)) = £ s e " ( C D i , CF[—A], (t A< k)). • 

Theorem 5.6 contrasts sharply with our results in the generating case. Unfortu-
nately, many points are still open here. Therefore, we only quote two preliminary 
results which prove that accepting hybrid systems are much more powerful than 
their generating counterparts in many cases. 

T h e o r e m 5.8 1. Iff £ {(i A < 1), (t A = 1)}, then, for n £ {1, 2}, we have 

£ s e n (HCD„ , CF[—A], {* ,*} U { < k | k £ N } U { / } ) = £« e n (CF) . 

2. Let 0 # F C { i } U { (tA > k) \ k £ N } . For every f £ { (t A < k), (t A = k) \ 
k £ N } , we have 

£5e"(HCDoo, CF[—A], F U { / } ) = £ i e n (HCD 4 , CF[-A], FU {/}). 
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Especially, observe that 

£ i e n ( C F ) = £ f f e"(HCD2 , CF[—A], { * } U {(< A = 1)}) 
C £ a c c (HCD 2 , CF[-A], { * } U {(< A = 1)}) = £ j e n ( R E ) 

is an amazing jump from the generating to the accepting power. 
Moreover, it is always interesting to see for what hybridization is really good. In 

this respect, we want to contrast £ f e n ( C F ) = £ a c c (CD 2 , CF, *) and £* e n (LIN) = 
£ o c c (CD 2 , CF, (< A = 1)) with £ i e n ( R E ) = £ a c c (HCD 2 , CF, {* } U {(< A = 1)}). 

6 (Prescribed) Teams as acceptors 
A cooperating distributed grammar system with prescribed teams (PTCDGS for 
short), confer [17, 18, 19, 26], is a construct G = (N, T,S, Pi,..., P„, Q i , . . . , Qm), 
with n,m £ N, where (N , T, S, P i , . . . , P„) is a usual CDGS and Qi,..., Qm are 
teams, i.e., subsets of { P i , . . . , P n } . If each subset of { P i , . . . , P „ } can be a team, 
then we say that G has free teams, G is called a cooperating distributed grammar 
system with teams (TCDGS for short). 

For x, y £ (N U T)*, we write x y for some team Q, = {Pj1,..., P , , } if and 
only if x = xiAix2A2 • ..x!A,xi+i,y = xiyix2y2 • • x,y,xi+i, where xt £ (NUT)*, 
l<£<s+l,Ar—*yr£ Pjr, 1 < r < s. Having defined the one-step derivation, 
we can easily define derivations in Qi of k steps, at most k steps or at least k steps, 
and of any number of steps, denoted again by = > q > =>q, 1 respectively. 
For maximal derivations in a team Q,, we can consider three variants: 

1. x =>q y if and only if x y and there is no z such that y =><?; z [18]. 

2. x y if and only if x y and for no component PJr G Qi and no z 
there is a derivation y =>pjr z [19]. 

3. x =>Q. y if and only if x y and there is a component PjT £ Qi such that 
for no z there is a derivation y =>pjr z [26]. 

Given a (P)TCDGS G working in mode / G {*,<o, tiM) U{ < k, = k, > k | k £ N } , 
we define the derivation relation x => y if and only if there exists a team Qi such 
that x =>q. y. As usual, the language generated in / -mode by G is defined as 

Ljen{G) := {w £T* | 5 ai ^ . . . ^ ^ ^ = with 

I > 1, 1 < ij < m . a n d 1 < i < ^} -

We denote by £* e n ( (P)TCD, CF[-A], / ) the family of languages generated by [A-
free] (P)TCDGS. Correspondingly, accepted languages and language classes are 
defined. We summarize the known results on generating (P)TCDGS. 

Theorem 6.1 1. For all f £ {*} U { < k, = k, > k \ k £ N }, 

£ * e n ( P T C D , C F [ - A ] , / ) = £ ? e n ( P , CF[-A]). 
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2. For all f e {t0,tut2), 

£ s e n ( T C D , CF[—A], / ) = £ s e " ( P T C D , C F [ - A ] , / ) = £ s e n (P , CF[-A], ac). 

The strictness of the inclusion £« e n (TCD, CF[-A], / ) C £ f e n ( P , CF[-A]), for 
/ G { * } U { < k, = k,> k | k € N } is open. However, it is quite clear that the 
generating and accepting capacity of (P)TCDGS working in one of the modes / G 
{ * } U { < fc, = fc, > fc | Jfc G N } coincides. 

Theorem 6.2 For all f G { * } U { < k, = k, > k \ k G N }, we have: 

1. £ a c c (PTCD, CF[—A], / ) = £ 5 e n (PTCD, CF[-A], / ) = £* e n (P, CF[-A]), 

2. £ a c c (TCD,CF[—A], / ) = £ * e n ( T C D , C F [ - A ] , / ) . • 

As regards the different i-modes, the observations sketched in the following 
allow us to carry over our result contained in [16, Theorems 4.2, and 4.5]: 

1. If we have only one-element teams, all i-modes introduced for PTCDGS co-
incide (with the classical i-mode). Hence, such PTCDGS accept all context-
sensitive languages. 

2. The simulation also works when permitting larger (arbitrary) teams, since 
it is possible to use different colours in the simulation of different genuine 
context-sensitive rules (simulating a context-sensitive grammar in Kuroda 
normal form). "Wrong" colours are alway sent to the failure symbol. Possibly, 
if we choose teams containing more than one component, two or more rules of 
the originally given context-sensitive grammar are simulated in parallel, but 
this does no harm, since a sequentialization choosing singleton teams is always 
possible. Further observe that a simulation of a genuine context-sensitive rule 
by a i-mode component as given in [16, Theorems 4.2, and 4.5] always takes 
the same number of steps, so that no garbage can be derived employing the 
<2-mode. Hence, such TCDGS can also accept all context-sensitive languages. 

3. As regards A-rules, they are simply useless in case of classical CDGS working 
in i-mode, since such a rule is always applicable. A similar argument is 
applied to (P)TCDGS working in <i-mode. The situation is different for 
CDGS working in io-mode or in <2-m°de. Why? First, we can assume that 
the type-O-grammar we are going to simulate has only one production of 
the form E —» A, where £ is a special nonterminal symbol serving as a 
place-holder for the empty word. Moreover, due to the closure properties 
of £ 9 e " (RE) , we can assume an additional left-marker symbol # . Now, A-
productions can be simulated by three components, P\,i = { # —1* # , # —* 
# ' } , PK2 = { # ' — # } , and Px,3 = {A — E}. When 'combining PXA and 
P\ 3 into one team, arbitrarily many E's can be introduced. When using 
free teams, other combinations are now possible which may block a <-mode 
derivation prematurely. Therefore, this case remains as an open question. 
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We collect our observations in the following. 

Theorem 6.3 For each f £ {<O1<I1<2}, we find in general 

1. £ a " ( P T C D , CF - A, / ) = £ a c c (TCD, CF - A, / ) = £» e n (CS), and 

2. C°en{CS) C £ a c c (TCD, CF, / ) C £ a c c (PTCD, C F , / ) C £ f e n ( R E ) . 

More specifically, we obtain by our third observation: 

3. £ a c c (PTCD,CF,<i ) = £ a c c (TCD,CF,<i ) = £« e n (CS), and 

4. £ a c c (PTCD, CF, t0) = £ a c c (PTCD, CF, t2) = £sen(RE). • 

Comparing the generating versus the accepting capacity, we get: 

Corollary 6.4 For each f £ { < o , < i , < 2 } , we find 

1. £ f e n ( (P )TCD, CF - A, / ) C £ a c c ( (P )TCD, CF - A, / ) ; 

2. £ a c c ( (P )TCD, CF, / ) C £ i c n ( (P )TCD, CF, / ) ; 

3. £ a c c ( (P)TCD,CF,<i ) C £ 9 e n ( (P)TCD,CF,< 1 ) ; 

4. ^acc^pTCD, CF, g) — £ s e n (PTCD,CF, g), for g £ {<o,<2}- • 

7 Conclusions 

We continued our studies on accepting systems of grammars, paying special at-
tention towards internally hybrid modes and teams. In this way, we also found 
first examples of grammar mechanisms whose generating power is greater than its 
accepting power. 

In [2], two variants of the <-mode, namely weak t and stagnation, have been 
introduced: In weak <-mode a component Pj works on a string up to the point a 
sentential form w is obtained with w =>pj v implies w = v. This corresponds to the 
adult mechanism known from the theory of Lindenmayer systems. Now, another 
component may start its work with w. 

The stagnation-mode is defined as follows: a component Pj works on a string 
deriving subsequently w\ =>pj w2 • • • wn, and wn v implies 
W{ = v for some 1 < i < n. Now, another component may start its work with wn. 

Analyzing the proof of [16, Theorem 4.2], we see that both variants also char-
acterize the context-sensitive languages when seen as language acceptors. These 
results on the accepting capacity of these modes have been independently obtained 
from [2]. 
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Parallel Communicating Grammar Systems: 
Recent Results, Open Problems* 

Gheorghe PAUN* 

Abstract 

First, we recall several recent results concerning the generative power of 
parallel communicating (PC) grammar systems, including characterizations 
of recursively enumerable (RE) languages starting from PC grammar systems 
and their languages. Then, we prove that the simple matrix languages can be 
generated by PC grammar systems and finally we introduce a new class of PC 
grammar systems: when a component has to communicate, it may transmit 
any non-empty prefix of its current sentential form. Each RE language is 
the morphic image of the intersection with a regular language of a language 
generated by such a system. A series of open problems are pointed out in this 
context. 

1 Introduction 

This paper deals with only one class of grammar systems, the parallel communicat-
ing (PC) grammar systems, introduced in [24]. We do not discuss here cooperating 
distributed (CD) grammar systems, introduced in [4]. Of course, also in the case 
of PC grammar systems we do not cover all the recent results; for instance, we are 
not concerned here at all with a series of variants introduced in the last time. 

Informally speaking, a PC grammar system consists of several usual grammars, 
each of them having its own sentential form. In each time unit (a common clock 
divides the time in units, in a uniform way for all components) each component 
uses a rule, rewriting the associated sentential form. Special (query) symbols .are 
provided, pointing to components of the system. When a component i introduces 
the query symbol Qj, then the current sentential form of the component j will 
be sent to the component i, replacing the occurrence(s) of Qj. One component is 
distinguished as the master, and the language generated by it, alone or involving 
communications, is the language generated by the system. Several variants can be 
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considered, depending on the shape of the communication graph, on the action a 
component has to perform after communicating, and so on. 

The work of PC grammar systems is quite intricate, systems with a small num-
ber of components can generate one-letter non-regular languages, [5], characteri-
zations of recursively enumerable languages are obtained by (non-centralized) sys-
tems with context-sensitive components, [12], [25], each matrix language (generated 
without appearance checking) can be generated by a PC grammar system, too, 
[17], etc. Moreover, many basic questions proved to be very resistent and (with 
the exception of some particular cases) are still open. For instance, does the num-
ber of components induce an infinite hierarchy of families of languages generated 
by PC grammar systems with context-free components ? Which is the relation 
between families of languages generated by non-centralized PC grammar systems 
with context-free (arbitrary or A-free) rules and the family of context-sensitive lan-
guages ? Both grammatical techniques and complexity techniques were used, but 
without settling this latter question. 

Recently, several results were obtained which shed more light on the power of 
PC grammar systems. We recall some of them in the next section. Without solving 
the above mentioned questions, they provide a new indication about the difficulty of 
these questions: characterizations of recursively enumerable (RE) languages were 
obtained by adding to PC grammar systems certain features usual in language 
theory (for instance, lefmost derivation). We shall recall some results of this type 
in Section 3 below. 

These results are not the first of this type. For instance, characterizations of 
RE appear also in [19], using query words instead of query symbols, and in [6] 
and [14], using a variant of PC grammar systems where the communication is done 
by command, not on request (the component which sends the string to another 
component starts the communication and the communicated string is accepted 
only if it passes a given filter associated with the receiving component). 

Because PC grammar systems with leftmost derivation characterize RE, they 
trivially generate each simple matrix language; this has been proved in [17] without 
noticing the equality with RE. However, the leftmost restriction is not necessary 
in order to cover the power of simple matrix languages; we prove this in Section 4. 

Then, we introduce a new class of PC grammar systems, where prefixes of the 
current sentential forms may be communicated. Such systems are both very natural 
from the point of view of the returning-non-returning feature (when the whole 
string is communicated, then the component resumes working from its axiom; if 
a part of the sentential form remains, then one continue from it) and because a 
nice characterization of RE languages is again obtained: as the morphic image of 
the intersection of a regular language with a language generated by a system as 
above. (This is similar to the well-known Chomsky-Schützenberger characterization 
of context-free languages.) The proof makes use of a powerful result in formal 
language theory: a characterization of recursively enumerable languages starting 
from a rather restricted class of languages, the so-called twin-shuffle languages, and 
the operations of intersection with regular languages and erasing morphisms. This 
result appears in [11]; a proof can be also found in [28]. A twin-shuffle language 
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over a given alphabet V is the set of all strings obtained by arbitrarily shuffling 
each string over V with a "twin" of the string, obtained by marking each symbol 
with a bar. Modulo an intersection with a regular language, such a language can be 
generated in a relatively easy way by a PC grammar system with (A-free) context-
free rules allowed to communicate prefixes. 

Several open problems are formulated, both for usual PC grammar systems and 
for the new variant of PC grammar systems. 

2 Parallel communicating grammar systems 

As usual, for an alphabet V we denote by V* the free monoid generated by V under 
the operation of concatenation; the empty string is denoted by A and V* — {A} 
is denoted by V+. For x £ V*,U C V, |x| is the length of x and |x|c/ is the 
number of occurrences in x of symbols in U. A Chomsky grammar is denoted by 
G = (N, T, S, P), where N is the nonterminal alphabet, T is the terminal alphabet, 
S is the axiom and P is the set of rewriting rules. The language generated by G 
is denoted by L(G) and REG, LIN, CF, CS, RE are the families of regular, linear, 
context-free, context-sensitive, and recursively enumerable languages, respectively. 
We also denote by MAT, MATX the families of languages generated by matrix 
grammars (without appearance checking) with A-free context-free rules, and with 
arbitrary context-free rules, respectively. Two languages L\, L-> are considered 
equal if they differ only in the empty string, that is if L\ — {A} = Lo — {A}. 

For basic elements of formal language theory we refer to [7], [26], [27]. 
A parallel communicating (PC, for short) grammar system of degree n,n > 1 

([24], [5]), is a construct 

T = (N,T,K,(P1,S1),...,(Pn,S„)), 

where N,T,K are pairwise disjoint alphabets, with I\ = { Q i , . . . , Qn}, Si £ N, 
and Pi are finite sets of rewriting rules over N U T U A", 1 < i < n; the elements of 
N are nonterminal symbols, those of T are terminals-, the elements of K are called 
query symbols, the pairs (Pi, Si) are the components of the system (often, the sets 
Pi are called components). Note that the query symbols are associated in a one-to-
one manner with the components. When discussing the type of the components in 
Chomsky hierarchy, the query symbols are interpreted as nonterminals. In general, 
the axiom of component i is denoted by Si and its associated query symbol by 
Qi] when this is the case, we do not explicitly specify these elements; if this is not 
the case, then the axioms and the query symbols are explicitly defined for each 
component of a PC grammar system. 

For ( x i , . . . , xn),(yi,..., yn), with Xi, yi £ (TVUTU A')*, \ < i < n (we call such 
an n-tuple a configuration), and x\ £T*, we write ( x i , . . . , x„) = > r (yi, • • •, yn) if 
one of the following two cases holds: 

(i) \xi\k = 0 for all 1 < i < n\ then x,- =>pt yi or Xj = yi £ T*, 1 < i < n; 
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(ii) there is i, 1 < i < n, such that \xi\n > 0; we write such a string x,- as 

x,- = ziQilz2Qi3 • • • ztQi,zt+i, 

for t > 1,2,- G (N U T ) ' , 1 < i < t + 1; if |x { j\K = 0 for all 1 < j < t, then 

Vi = z1xilz2Xi2 .. ,ZtXitZt+1, 

[and i/ij = Si^ 1 < j < <]; otherwise y,- = x,-. For all unspecified i we have 
Vi = Si-

Point (i) defines a rewriting step (componentwise, synchronously, using one rule 
in all components whose current strings are not terminal), (ii) defines a commu-
nication step: the query symbols QXj. introduced in some x,- are replaced by the 
associated strings i,- ., providing that these strings do not contain further query 
symbols. The communication has priority over rewriting (a rewriting step is al-
lowed only when no query symbol appears in the current configuration). The work 
of the system is blocked when circular queries appear, as well as when no query 
symbol is present but point (i) is not fulfilled because a component cannot rewrite 
its sentential form, although it is a nonterminal string. 

The above considered relation = > r is said to be performed in the returning 
mode: after communicating, a component resumes working from its axiom. If the 
brackets, [and y,- . = 5 t j , 1 < i < t], are removed, then we obtain the non-returning 
mode of derivation: after communicating, a component continues the processing of 
the current string. We denote by the obtained relation. 

The language generated by T is the language generated by its first component 
(Gi above), when starting from ( S i , . . . , 5„ ) , that is 

LF(T) = {WET* | ( 5 i 1 . . . , 5 „ ) = > ; (u>, a 2 ) . . . ,<*„), 
for ai G (N U T U / { ) * , 2 < i < n} , / G { r ,n r } . 

(No attention is paid to strings in the components 2 , . . . , n in the last configuration 
of a derivation; moreover, it is supposed that the work of F stops when a terminal 
string is obtained by the first component.) 

Let us consider two examples. For the system 

Ti = ( { 5 i , 5 2 , 53 } , { a ,6 , c } ,A ' , (P 1 , 5 i ) , (P 2 , 52 ) , ( / J 3 ,5 3 ) ) , 
Pi = {Si —> abc, Si —• a2b2c2,Si —• aSi, Si —• a3Q2, S2 —*• b2Q3, S3 —• c}, 
P2 = {S2 - 6 S 2 } , 

P3 = { S 3 - c S 3 } , 

we obtain 
Lr(r) = Lnr(T) = {anbncn | n > 1}. 

Here is a derivation in IV 

( S 1 . S 2 . S 3 ) = > / ( a S i , 6 S 2 , c S 3 ) = > / - . . = > / ( a n S i , 6 n S 2 , c n S 3 ) , 

( a " + 3 Q 2 , 6 " + 1 S 2 , c " + 1 S 3 ) = » / ( a n + 3 6 n + 1 S 2 , y 2 , c " + 1 S 3 ) 

(an+3bn+3Q3,y'2,cn+2S3) =>} (a" + 3 6 n + 3 c n + 2 S 3 , y'2, y3) 
= > , ( a n + 3 6 n + 3 c n + 3 , y2, ¡/3), n > 0, 
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for / 6 { r ,nr } ; in the returning case we have y2 = S2,I/2 = bS2, ]/2 — 
b2S2,y3 = S3,?/i, = cS3, in the non-returning case y2 = 6n+1S2,t/2 = bn+2S2,x/2 = 
bn + 3S2 ,y3 = cn + 2S3,y^ = cn + 3S3- Because the second and the third components 
communicate only once to the first component, there is no difference between the 
language generated in the returning mode and the language generated in the non-
returning mode. This is not the case for the following system. 

T2 = ( { S i , S 2 } , { « } , K, (Pi, S1),(P2, S2)), 
Pi = {Si aQ2, S2 —• aQ2, S2 —> a} , 
P2 = {S2 - aS2} . 

The reader might check that we obtain 

L r ( r 2 ) = { a 2 " + 1 | n > 1}, 
( m + l ) ( m + 2 ) 

Lnr(r2) = {aL <J 1 \m> 1}. 

Two basic classes of PC grammar systems can be distinguished: centralized. 
(only G i, the master of the system, is allowed to introduce query symbols), and non-
centralized (no restriction is imposed on the introduction of query symbols). There-
fore, we get four basic families of languages: denote by PCn(X), n > 1, the family of 
languages generated in the returning mode by non-centralized PC grammar systems 
with at most n components and with rules of type .Y; when centralized systems are 
used, we add the symbol C, when the non-returning mode of derivation is used, we 
add the symbol N, thus obtaining the families CPCn(X), NPCn(X), NCPCn(X). 
When no restriction on the number of components is imposed, then we remove the 
subscript n, obtaining PC(X), CPC(X), NPC(X), NCPC(X). In what concerns 
the type X of rules, they can be A-free right-linear (denoted by RL), A-free context-
free ( C F ) , arbitrary right-linear (denoted by RLX), arbitrary context-free ( C F X ) , 
and so on. Note that because we consider as equal the languages differing at most 
by A, we need no A-rule for introducing the empty string in our languages. 

The diagram in Figure 1 indicates the relations between the eight basic families 
of languages defined above, for the A-free case, as well as their relationships with 
families in the Chomsky hierarchy. The arrows indicate inclusions, not necessarily 
proper; the families not connected by a path are not necessarily incomparable. 

Among the newest relations contained in this diagram, we mention: 

1. NPC(RL) C PC(RL) and NPC(CF) C PC(CF). (The first result of this 
type has been given in [18], NCPC(CF) C PC(CF), hence starting from 
centralized systems, then a proof for the inclusion NPC(LIN) C PC(LIN) 
has been done in [29]; the question was settled in [9].) 

2. MAT C PC(CF) ([17]). 

3. CPC(RL) C MAT ([20]). 

4. LIN C PC(RL) ([10]). 
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5. The families CPC(RL), NCPC(RL) are incomparable and also incomparable 
with LIN ([5] and [10]). 

From the last item above we get the strictness of the inclusions of families 
CPC(RL), NCPC(RL) in the families above them in this diagram. Not contained 
in the diagram is the inclusion PC(RL) Ç CS proved in [3] (where, in fact, the 
stronger result is proved that PC(LIN) Ç CS; the inclusion PC(RL) Ç CS is 
already proved in [2]). 

RE 

Figure 1 

Several problems concerning the generative power of PC grammar systems are 
still open. We list here some of them. 

1. Which of the hierarchies Yn(X),n> 1, Y 6 {PC,CPC, N PC, NCPC},X e 
{RL,CF}, are infinite ? The answer is known only for CPCn(RL) and 
NCPCn(RL), which, as expected, are infinite hierarchies; see [15]. 

2. Which of the inclusions not mentioned above as being proper are proper ? 

3. Which is the relation between families CPC(CF) and NCPC(CF) ? 
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4. Which of the inclusions Y(X) C Y(Xx), for all possible X, Y, are proper ? 

5. Which is the relation between PC(CF), NPC(CF) and CS ? The same when 
A-rules are allowed. Several authors have announced proofs of the inclusion 
PC(CF) C CS, but none of them is confirmed yet. 

6. Which are the relations between LIN and NPC(RL) ? The same for the 
families MAT and each of PC(RL), NPC(RL), NPC(CF). 

3 Characterizing RE 
First, we recall a result in [23], concerning PC grammar systems with leftmost 
derivation. It is known from regulated rewriting area, [7], that such a restriction 
increases the power of grammars with controlled derivation. This is the case also 
for PC grammar systems. Moreover, the rather surprising result is obtained that 
RE can be characterized by such systems with A-free rules. (The explanation lies 
in the fact that we can use the components of the system other than the master 
as working space where no erasing is necessary, because we ignore the contents of 
these components at the end of a derivation.) 

We say that a context-free rule A —» v is applied in the leftmost mode to a 
string x, and we denote by x =>, y the derivation, if x = x\Ax2,y = X]_vx2 

and |xi| dom(Pi) = 0, where dom(Pi) = {B£N\B-^z£ P,}. We denote 
by Lg i(T),g G {r, nr}, the language generated by a PC grammar system T in 
the mode g when using leftmost derivations. By PC,(X) we denote the family of 
languages L r , ( r ) , for T a PC grammar system of type X\ in the non-returning case 
we write NPCi(X). 

The inclusions PC,(CP) C PC,(CPA), NPC,(CF) C NPC,(CFX) are obvi-
ous. We do not know how large the families NPCi(CF), NPCi(CFx) are, but, 
surprisingly, we have 

T h e o r e m 1. P C , ( C P ) = P C , ( C P A ) = RE. 

The idea of the proof is the following. 
Take a language L C T*, L G RE. It is known (see [27]) that there are two new 

symbols ci,c2 and a language L' G CS such that L' C LlC\C2 and for each w G L 
there is i > 0 such that wc\cl2 G L'. 

Take a (A-free) grammar G = (NQ,TU { c i , C 2 } , So, Po) for the language L', 
in Kuroda normal form, with the non-context-free rules labelled in a one-to-one 
manner, r : AB —• CD. Assume that for all A, B G No there also is a rule AB —• AB 
in P 0 . 

One constructs the PC grammar system T working as follows. 
Certain components of it generate strings of the form w'c'^'E, for №CjC2 G L' 

(w' is obtained from w by priming its symbols). Then, other components take the 
string W'C'YC^E generated by the previous group and adjoin to it a string y"Z, where 
y G T+ and y" contains double primes. At the same time, one of the components 
(specifically, P4 in the construction) produces a terminal string equal to y. The 
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string w'c'1c'2'Ey"Z is took by another group of components which check whether 
or not w = y. When this is true, the master component can ask for the string of 
P4. In this way, Pi receives a terminal string equal to w, hence a string in L. 

In the characterization above, the use of context-free rules is esential. Because 
LIN is incomparable with CPC(RLX) and NCPC(RLX) and it is conjectured 
that the same result holds true for NPC(RLX), the known characterizations of RE 
languages starting from linear languages, [1], [16], cannot be directly extended to 
these classes of PC grammar systems. Still, such results are true for the family 
NPC(RLX) at least. Moreover, the proof shows a very close similarity of linear 
languages and copy languages. Note that every linear language L can be written 
in the form L = {h(x mi(x)) \ x £ Lo}, for a regular language Lo and a morphism 
h. Removing the mirror image, we get the copy languages, which characterize RE 
in the same way as linear languages. 

For a language L, denote copy(L) = { 11 | x £ L}. Proofs of the following 
lemmas can be found in [23]. 

Lemma 1. For each language L £ RE there are two regular languages L\,L2 

and three morphisms hi,h2,h3 such that L = h3(hi(copy(L\)) f) h2(copy(L2))). 

Lemma 2. For each language L £ RE there are two regular languages L\,L2 

and two morphisms h\,h2 such that L — hi(copy(Li))\h2(copy(L2)). 
(\ denotes the left quotient: L\L' = {x \ zx E L', z £ L}.) 

Lemma 3. For each regular language L and morphism h we have h(copy(L)) £ 
NPC(RLX). 

Synthesizing Lemmas 1, 2, 3 above, we get 

Theorem 2. For each language L £ RE we can find L\, L2, ¿3, £4 £ 
NPC(RLX) and a morphism h such that L = h(L 1 fl L2) = L3\L4. 

In the proofs of Theorems 1, 2 above no bound on the number of components 
of PC grammar systems characterizing the family RE is imposed. This is not the 
case in [25] and [12], where two context-sensitive components in the non-returning 
case and three in the returning case are enough (and necessary) for characterizing 
RE using PC grammar systems. It is an open problem whether or not a bounded 
number of components is enough also in the above theorems. It is also open the 
case of non-returning PC grammar systems with context-free rules and leftmost 
derivation; we conjecture that such systems cannot characterize RE. 

4 Simple matrix grammars versus PC grammar 
systems 

In [17] it is proved that PC grammar systems with leftmost derivation can generate 
each simple matrix language of [13]. The previous Theorem 1 trivially implies this 
result. Still, one can prove that the simple matrix languages can be generated by 
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PC grammar systems with arbitrary context-free components in the usual mode of 
derivation. 

A simple matrix grammar (of degree n, n > 1) is an (n + 3)-tuple G = 
(Ni,..., Nn,T, S, M), where 

1. N\,..., Nn,T are disjoint alphabets (N{, 1 < i < n, are nonterminal alpha-
bets and T is the terminal one); we denote N = (J"=1 TV,-; 

2. S £ NUT (the axiom); 

3. M is a finite set of matrix rules of the forms: 

a) ( 5 — ®), x&T*-

b) AXA2 ...An), Ai eNi,l<i< n,; 

c) (Ai ->• ^n * xn ), Ai £ Ni,Xi £ (Ni UT)*,\<i<n, 

and = |xj |jVj for all 1 < i,j < n. 

For w,z £ (N U T)* we write w ==> z if one of the following two cases holds: 

(i) w = S and (5 — z) £ M ; 

(ii) w = UIAIVIU2A2V2 .. .unAnvn, z = 111x^111-2x^2 . • .unxnv„, where Ui £ T*, Vi £ (Ni U T)*, 1 < i < n, and (^1 xu . .., A n * ) £ M. 

Therefore, the derivation is done in the leftmost manner on each of the n sub-
strings in (Ni U T)* of the derived string. Then, 

L(G) = {X£T* I S =>* x}. 

We denote by SM the family of languages generated by simple matrix grammars 
(of arbitrary degree) with A-free context-free rules; when A-rules are allowed, we 
write SMX for the corresponding family. 

The following results are known (see proofs and references in [7]): 

1. CF C SM C SMX C CS; 

2. Each language in SMX is semilinear. 

We shall essentially use below the following characterization of languages in the 
family SMX. 

Let V be an alphabet and n be a natural number. Denote 

[V,n] = {(a,i) | a £ V, 1 < i < n), 

and define the mapping rn : [V, n]* — • (K*)n by 

1. r„(A) = (A , . . . ,A) , 
2. rn((a,i)x) = (xi,... ,xi-i,axi,xi+i,.. .,xn), 

for a £ V, 1 < i < n, x £ [V, n]*,rn(x) = ( x i , . . . , xn). 
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Consider also the mapping / : (V*)N —• V* defined by 

f(xi,x2,• • • ,xn) = X1X2...x„. 

Extend these mappings in the natural way to languages. 
From Lemma 1.5.2 in [7] we get 

Lemma 4. A language L C T* is in the family SMX if and only if there is an 
integer n > 1 and a language L' £ CF, L C [T, n]*, such that L = f(rn(L')). 

Using this characterization, we can obtain the following result. 

Theorem 3. SMX C PC(CFX). 

Proof. Because PC(CFX) contains non-semilinear languages (see [5]), it is 
enough to prove the inclusion. 

Consider a simple matrix language L C T*. If £ is finite, then trivially L £ 
PC(CFX). Assume that L is infinite. According to Lemma 4, consider V £ 
CF, L' C [T, n]*, such that L = / ( r n (!'))• Let G = (N0, [T, n], S0, P0) be a context-
free grammar for the language L'. We construct the PC grammar system 

r = (N, T, I<, (Su Pi), (S2, P2), (S3, P3), (S4, P4), (S4+1, P4+1), • • •, ( 5 4 + „ , P4+n)), 

with 

N = {Si,S< | 1 < i < 4 + n} U {(a, i) | a 6 T, 1 < i < n) U A 0̂ U {Z}, 

Pi = {•?! —»• Si, Si —• QsQG .. .Qa+U}, 
P2 = —• S2, S2 —> Q3, S'3 —> 53}, 
P3 = — Z , S 3 —• S3,53 —»• 53}, 
P4 = {5 4 - 5 0 } U P0, 

P4+> = {^-(-i —» 54+i, 54+i —> 54+i, S'4+i —i> Q3, Z —• Q4} 
U {(a, j) — A | a £ T, 1 < j < n, j ± »} U {(a, i) — a | a £ T } , 

for 1 = 1 ,2 , . . . ,n. 

The idea behind this construction is the following. The component P4 gener-
ates a string in the language L' (over the alphabet [T, n]). When the work of P4 
is finished, all the components PA+i,i = l , 2 , . . . , n , ask for the produced string. 
The synchronization of these queries (and the fact that each component Pi+,- can 
introduce only once the query symbol Q3) is ensured by the "trigger technique" 
made possible by the synchronization feature of PC grammar systems and accom-
plished here by the components P 2 ,p3 (see details below). Each component Pj+i 
erases from the received string all symbols (a,j) with j / i, and replaces (a, i) by 
a, a £ T. In this way, together with Pi, they simulate at the same time the action 
of Tn and of / : when communicated to the master, which introduces the string 
QzQq • • • QA+n, the strings of P 5 , . . . , P4+n must contain only terminals and they 
are now arranged in the order imposed by rn and / . 
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Here are some details of the work of I\ 
If P2 starts by introducing the symbol Q3, then it will receive either the symbol 

Z and the derivation is blocked, or the symbol S3 and no terminal string will be 
obtained, because Pj+j, 1 < i < n, cannot ask for Z at the first step. Thus, we have 
to start with S2 —* S2 in the second component and S3 —• S'3 in the third one (if we 
introduce Z in the third component, then the derivation is blocked, Z cannot be 
rewritten here or communicated). This means that P3 will work an arbitrarily large 
number of steps just using S'3 —• S'3. It can return to S3 only when P2 introduces 
Q3. After receiving S3, the component P> will continue for ever with the rule 
S3 —• S3. Therefore, at the next step P3 has to use S3 —• Z, otherwise Z will be 
never introduced. If not all components P4+1, 1 introduce Q3 at the same 
time, they must introduce it at the next step, otherwise they cannot receive the 
symbol Z. But, after receiving Z, any component P4+i has to use Z —• Q4. At the 
same step, P3 will either introduce S3 and no terminal string will be obtained (S3 

is communicated to components P4+i which have not introduced Q3 before), or P3 

will introduce Z. After satisfying the query symbols, P3 returns to its axiom, and 
P4 does the same; the components which have received the symbol Z will introduce 
Q4 and they will receive So from the fourth component. The derivation is blocked. 

The only case when the derivation will continue leading to a terminal string is 
that when all components P4+i, 1 < i < n, ask for the string of P4 at the same 
time. 

At any moment, the component P\ can ask for the strings of P4+i, 1 < i < n. 
If it receives strings containing symbols in No or in [T, n], then the derivation is 
blocked. Thus, the only terminal strings produced by T are those in / ( r „ (L(G0) ) ) , 
which completes the proof. • 

5 Prefix communication in PC grammar systems 

Let us consider a slight modification in the definition of a communication step in a 
PC grammar system: when a component i introduces the query symbol Qj, then 
component j communicates to component i a non-empty prefix of its current senten-
tial form. If the whole string is communicated, then component j resumes working 
from its axiom; if a non-empty string remains in component j, then component j 
continues processing this string. We denote by Lp (T) the language generated by a 
system T in this way. We denote by PPCn{X) the family of languages generated 
by prefix communicating PC grammar systems with at most n, n > 1, components 
of type X; when n is not specified, we remove it. When centralized systems are 
used, then we add the letter C, as usual. 

One can consider several variants: to communicate only a terminal prefix, or, 
deterministically, the maximal terminal prefix, or to allow also the communication 
of the empty word. Their study, as well as the systematic study of the non-restricted 
class considered above, is left to the reader. Here we give only one result, again a 
characterization of RE languages. 
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Let x, y be strings over some alphabet V. Their shuffle is the set 

x 111 y = {xiyix2y-2 • -.xnyn | x = x x x 2 ...xn,y = yxy2 •••yn, 
Xi,Vi € V*,l < i < n,n > 1}. 

Consider an alphabet V, take a new symbol a for each a £ V, denote V = {a | 
a £ V} , and define the coding h : V* —• V by h(a) = a, a £ V. The string h(x) 
is also denoted by x. 

The twin-shuffle language over V, denoted twin(V), is defined by 

twin(V) = y (x 111 x). 
rev-

In [11] (see also [28], Theorem 6.10) one proves the following characterization 
of recursively enumerable languages: 

Lemma 5. For every recursively enumerable language L there is a twin-
shuffle language twin(V), a regular language R and a weak coding h such that 
L = h(twin(V) n R). 

Based on this result, we can obtain 

Theorem 4. For every recursively enumerable language L there is a PC gram-
mar system r, a regular language R, and a weak coding h such that 

L = h(Lp(T)nR). 

Proof. For a language L £ RE, consider the morphism h and the regular 
language R as in the previous lemma. Construct the PC grammar system 

r = (N, 1/ U ? U {c, c}, I<, (Pi, Si), (P2, s2), (P3, S3), (P4, S4 ) ) , 

with 

N = { S i , S 2 , S 3 , S 4 , X } u { X a \a£V}, 

P i = { S i ^ S i , S i - ^ Q 2 S u S i Q 3 S 1 , S i - > Q2Q3, S i - Q3Q2}, 

P2 = {S2 Qa, X - T c } U {Xa aS2 | a £ V), 
P3 = {S 3 - Qa, X c} U {Xa - aS3 | a £ V } , 
P4 = {S4 - Xa, Xa X a | a £ V} U {S4 X}. 

No communication from the first component to another component is ever per-
formed. Component P4 introduces symbols Xa for a £ V, at each step components 
P 2 ,P 3 ask for these symbols, hence component P4 has to send it to P 2 ,p3 and 
resume working from its axiom. Components P 2 ,p3 produce in this way strings 
x ,x , for the same x £ V*. When P4 introduces the symbol X, then it becomes 
c in P2 and c in P3. Asking for prefixes of the strings produced by P2 and P3 , 
in all possible orders, component P\ builds a shuffle of the two strings, x and x. 
Therefore, twin(V) C Lp(T). 
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The opposite inclusion is not true, because of the possibility of sending any prefix 
to Pi (not necessarily covering the whole strings of P2, P3). However, L p ( r ) n ( ( V U 
V)*{cc} ) = twin(V){cc\: we have to communicate to Pi a string of the form xc 
from P2 and a string yc from P3 (and nothing else); as we have seen above, we 
must have x = y. 

Consequently, L = h(Lp(T) fl R'), where 

R' = J R n ( ( i / u F ) * { c c } ) . 

This completes the proof. • 

Corollary 1. For each family FL of language such thai FL C RE and FL is 
closed under intersection with regular languages and arbitrary morphisms we have 
PPC4(CF) -FL±%. 

Proof. In view of Lemma 5 and the properties of family FL, the inclusion 
PPCA(CF) C FL would imply RE C FL, a contradiction. • 

Important families having the properties of FL above are MATX and ETOL (the 
family of languages generated by tabled extended L systems without interaction, 
known to be a full AFL strictly included in CS, [26]). Therefore, PPCn(CF), con-
tains languages outside these families for all n > 4. On the other hand, we believe 
that MAT and ETOL contain languages which are not in PPC(CFX). If confirmed, 
this conjecture will imply the incomparability of PPC(CF), PPC(CFX) with these 
families, as well as the fact that PPC(CFX) is not closed under intersection with 
regular languages (it is obviously closed under arbitrary morphisms). 
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Parallel Communicating Grammar Systems 
with Separated Alphabets* 

Valeria MIHALACHE t 

Abstract 

The generative capacity of parallel communicating grammar systems is 
considered in the context that the component grammars have distinct ter-
minal and nonterminal sets. In the regular case, this results in strictly more 
powerful systems in comparison to the classical ones. In the context-free case, 
characterization of recursively enumerable languages is obtained when A-rules 
are allowed in non-centralized returning systems, deriving in the synchronized 
mode. Unsynchronized context-free systems with separated alphabets have 
the same power as the corresponding usual systems. 

1 Introduction 
One of the main trends of our days in several fields of computer science is to solve 
a complex problem by dividing it into subproblems, and then having it solved in 
a cooperative mode by several "processors". The concretization of this trend in 
grammar theory are the so-called grammar systems. 

There are two basic models of grammar systems: cooperating distributed (CD, 
for short) grammar systems, which have been introduced in [2] (a former variant can 
be found in [7]; a particular case appears also in [1]), and parallel communicating 
(PC, for short) grammar systems, which have been introduced in [10]. 

Roughly speaking, a grammar system consists of several (Chomsky) grammars 
(called components) working together, towards generating a common language. In a 
CD grammar system the component grammars work in turn, on the same sentential 
form, only one being active at a given moment, according to a predefined protocol. 
In a PC grammar system the components work simultaneously, in a synchronized 
manner, each having its own sentential form and cooperating with the others by 
communication, which is done by request. The Artificial Intelligence counterpart 
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of a CD grammar system is the blackboard model in problem solving, whereas to 
PC grammar system the classroom model corresponds (see [3]). 

In the original definition, for parallel communicating grammar systems it is as-
sumed that all the grammars have the same terminal and nonterminal sets. This 
is very convenient in terms of the classroom model. Thus, it is rather natural to 
assume that all the pupils in a classroom have similar background and similar ab-
bilities (that is, the associated grammars in the system share the same nonterminal 
set), and also that they are asked to perform similar tasks (in the corresponding 
formal modélisation, this implies the same terminal set for all the grammars). How-
ever, if one considers that not pupils are working towards solving a problem, but 
agents, instead, the working protocol being the same as in the classroom model, 
such assumptions are not natural anymore. Agents can have to perform totally 
different tasks, and they can have different skills. 

Such a set-up can be modeled in the grammar systems framework by a slightly 
modification of the original variant of PC grammar systems. One can consider that 
any of the component grammars of the system has its own terminal and nonterminal 
sets ([3], [9]). The main difference between these systems and the usual ones is that 
here the same letter can act as terminal symbol in one grammar and nonterminal 
in another one. In the regular case, PC grammar systems modified like that are 
proved to be more powerful than systems of the initial form. Furthermore, in the 
context-free case, characterization of recursively enumerable languages is obtained. 

2 Preliminary definitions 
Throughout this paper, we use the notation and basic results of formal language 
theory from [4], [11] ; for grammar systems notions we refer to [3], [5]. We specify 
here only some notation. 

For an alphabet V, V* denotes the free monoid generated by V] the empty 
string is denoted by A, |x| is the length of x G V* and \x\u is the number of 
occurrences in x G V* of symbols of U C V. The classes of regular, context-free, 
type-0 grammars and matrix grammars with appearance checking are denoted by 
REG, CF, RE, MATac, respectively. Unless otherwise specified, we consider in this 
paper only generative tools without A-productions. 

For a class X of generative mechanisms, the family of languages generated by 
elements of X is denoted by L (X) . 

Definition 1 Let n > 1 be a natural number. A parallel communicating grammar 
system of degree n with separated alphabets (PC grammar system of type s, for 
short) is an (n + 1 )-tuple 

T = (K,G1,...,Gn), 
where K — {Qi, ..., Q„} and 

Gi = (Nil>I<,Ti,Pi,Si),l<i<n, 

are usual Chomsky grammars (the sets Ni,Ti,K being mutually disjoint, for any 
i, 1 < i < n). 
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We write Vi = Nt U T{ U K and Vr = \J"=i(Ni u Ti) u K- T h e grammars 
G>11 < 1 < i ) are called components of the system, and the elements of K are 
called query symbols; their indices, 1 , . . . , n, point to the components G\, • •., Gn, 
respectively. 

Remark that the definiton of PC grammar systems of type s does not require 
Ni n Tj = 0 for 1 < i,j <n,i± j. 

The convention throughout this paper is to denote the start symbol and the 
production set of a component of a system with the same indices as the grammar 
component is denoted. This convention holds for query symbols, too, so we do not 
need to specify in details the set of query symbols for a given system. 

The derivation in PC grammar systems of type s is defined in a similar manner 
as for usual PC grammar systems, that is 

Definition 2 Given a PC grammar system T = (K, Gi,..., Gn) as above, for two 
n-tuples (xi,x2,...,xn),(yi, y2, ...,J/n), 6 ^ , l < i < n, xi £ Tf, we write 
( x i , . . . , x „ ) ==>• ( t / i , . . . , yn) if one of the next two cases holds: 

(i) = 0,1 < i < n, and for each i, 1 < i < n, we have Xi yi in the 
grammar Gi, or Xi E T* and x,- = yi; 

(ii) there is an i, 1 < i < n, such that > 0; then for each such i, we write 
Xi = ziQilz2Qi2 • • .ztQitzt+i,t > 1, for zj € Vp,\zj\K = 0,1 < j < t + 1; 
*/ l^ijlif = 0,1 < j < t, then yi = ziXilz2Xi1... ztXitzt+\, providing that 
yi € V*, [and yi:j = Si:j, 1 < j < t]; when, for some j, 1 < j < t, Ix.Jk # 
then yi = xa for all i, 1 < i < n, for which yi is not specified above, we have 
yi - Xi. 

Point (i) defines (componentwise) derivation steps, whereas point (ii) defines 
communication steps. * In a communication operation, when the communicated 
string Xj replaces the query symbol Qj, we say that Qj is satisfied. The com-
munication has priority over the effective rewriting. If some query symbols are not 
satisfied at a given communication step, then they will have to be satisfied at a 
next one. No rewriting is possible when at least one query symbol is present. 

The work of a PC grammar system with separated alphabets is blocked in three 
cases: (1) when a component x,- of the current n-tuple ( x i , . . . , x „ ) (sometimes we 
shall call it a configuration) is not terminal with respect to Gi, but no rule of Gi can 
be applied to Xj, or (2) when a circular query appears, that is (*?,-, introduces Qi3,Gi3 

introduces Qi3, and so on, until Gik_1 introduces Qik and Gik introduces Qj, 
(because only strings without query symbols can be communicated), or (3) when 
after satisfying a query, the sentential form of a grammar is not a string over the 
alphabet of that grammar, that is, in case (ii) we have z\Xilz2Xi3.. .z (x, (z(+i ^ V̂ -* 
(we recall that for usual PC grammar systems case (3) does not appear). 

Definition 3 The language generated by a PC grammar system T as above is 

L(T) = {x € T ; | (Si, S2,..., Sn) (x, a2,..., an), G Vr*, 2 < i < n} . 
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Observe that due to the definition of the language generated by a PC grammar 
system of type s we have that the terminal set of the system is actually the same 
as the terminal set of the first component of the system. From the definition of 
the derivation relation it follows that once the sentential form of Gi has become a 
terminal string, the derivation cannot continue anymore in the system. 

Just as in the case of usual PC grammar systems, one distinguishes several 
variants. 

Definition 4 If in Definition 2 only grammar G\ is allowed to introduce query 
symbols, then we say that T is a centralized PC grammar system of type s; in 
contrast, the unrestricted case is called non-centralized. 

A PC grammar system of type s is said to be returning (to axiom) if, after 
communicating, each component returns to axiom. A PC grammar system of type 
s is non-returning if in point (ii) of Definition 2, the brackets, 

[and yi} = S{j, I < j <t], 

are omitted. 

A PC grammar system is said to be regular, context-free, A-free, etc., when the 
rules of its components are of these types. 

For n > 1 and X £ {REG, CF}, we shall denote the families of languages 
generated by non-returning centralized, non-returning non-centralized, returning 
centralized, and returning non-centralized, respectively, PC grammar systems of 
type s, of degree at most n and with components of type X by 

L(NCPCnX, s) ; L(NPCnX,s) •, L(CPCnX,s) • L(PCnX,s). 

When an arbitrary number of components is considered, we shall use * instead of 
n. 

If we still require in point (ii) of Definition 2 that those Xij which are to be 
communicated must be terminal strings in the grammars whose sentential forms 
they are, that is x^. G Tf, then we say that T derives in the terminal mode. The 
language generated by T in this way is denoted by LT(V) and the family corre-
s p o n d i n g t o L(YNX, s), L(YMX, s) as a b o v e is d e n o t e d by Lx(Y„X, s), LT(Y*X, S). 
Here and in the sequel Y ranges over {NCPC, NPC, CPC, PC) or some specified 
subset of it. 

If we replace point (i) in Definition 2 by 
(i')!®«!^ = 0,1 < i < n and, for each i, 1 < i < n, we have either Xj =>• yi in 

grammar Gi, or Xi = j/,-, then, just as in the case of usual PC grammar systems, 
we get a PC grammar system of type s deriving in an unsynchronized manner. 

Denote by ¿ t / ( r ) the language generated by T in this way. The family of lan-
guages generated by unsynchronized PC grammar systems of type s corresponding 
to a family L(Y N X, s), L(Y,X, s) as above is denoted by LU(YNX, s), LU(Y,X , s). 
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In order to illustrate the difference between usual PC grammar systems and the 
ones studied here, let us consider an example. 

Example : Let T = ( K , G\, G2), be the returning non-centralized PC grammar 
system with 

Gj = ({SuA,B,Y},{X,a,b,c}, 
{Si XA, A XA, Si —• aB, B -+ aB, B aQ2, Y 6}, Si) 

G2 = ({S2, X , A}, {Y, c}, {S2 —* YS2,S2 YQi,X —> c,A c} , S2) 

If we start a derivation by using in G\ the production Si —• aB, then we have 
either (Si, S2) ^(ak+1Q2,Yk+1Z), k> l,Ze{Qi,S2}, 

and then the derivation is blocked due to circular query, if Z is Q1, or due to 
S ^ N t U T i , when attempting to satisfy the query in G1, if Z is S2, 

or (Si,S2) (ak+1B, y f c + 1 Q i ) , ib > 0, 
and then the derivation is blocked because B £ N2 LI T2, and hence we cannot 
satisfy the query in G2. 

The only successful derivation is the one which starts as 
(Si ,S 2 ) ( . X k + 1 A , Y k + 1 Q 1 ) => ( S i , Y * + 1 X * + U ) (a'Q2,Yk+1a) => 
( a ' y ' + ^ . S a ) , 
where k > 1 and a is obtained from the string Xk+1A by replacing some of the AT-s 
and/or A with c, and / = |a|c, if a £ T2*, or / > k + 2, if a e T2* (i.e. a = ck+2). 
If a ^ T2, in order to rewrite it as a terminal string, after a number of steps G2 

must ask for the sentential form of Gi . But this sentential form contains symbols 
a, which are not in the alphabet of G2 , and hence the query would not be satisfied. 
This implies that it must be the case a 6 T2, and then the configuration above is 

(a'Yk+1ck+2,S2),l >k + 2. 

Because, as we have made the observation, G2 cannot accept a sentential form of 
Gi containing symbol a, then the derivation has to end as 

(a'Yk+1ck+2,S2) ^ (a'bk+1ck+2,Yk+1Z). 

Thus we have that 

L(r) = {ak+1+'bkck+1 | s > 0, k > 1}, 

a language which is not context-free. Note that what increases the power of the 
system (for the usual PC grammar systems we have L ( P C 2 R E G ) C L ( C F ) , see 
[13]) was the possibility of a component to rewrite symbols which are considered 
terminals in another one, as well as the restriction that a communicated string has 
to be a string over the alphabet of the grammar which required it. 

3 Generative Capacity 
We first present some general properties for parallel communicating grammar sys-
tems of type s, which are true also in case of usual parallel communicating grammar 
systems. 
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L e m m a 1 For any Y G {PC, CPC, NPC, NCPC) and for any class X of gram-
mars, we have 

(i) L(Y1X,s) = L(X); 
Lu(Y1X,s) = L(X); 
1LT(Y1X,s)=HX); 

(ii) L ( Y n X , s ) C L (Y n + 1 X, s),n > 1, 
Lu(YnX,s) C Lu(Yn+1X,s),n> 1, 
LT(YnX, s) C LT(Yn+1X, s), n> 1, 

(Hi) L { C P C n X , s ) C L { P C n X , s ) ; L ( N C P C n X , s ) C L(NPCnX,s),n > 1; 
Lu(CPCnX, s) C L u ( P C n X , s); L u ( N C P C n X , s) C L v { N P C n X , s), 
n > 1; 
L T { C P C n X , s) C L T ( P C n X , s); L T ( i V C P C n X , s) C L r (ATPC„X, s), 
n > 1; 

(iv) L{CPC*X,s) C L ( P C t I , s ) ; L ( iVCPC,X ,s ) C L ( iVPC,X , s ) ; 
L c / i C P C ^ , « ) C L [ / ( P a X , s ) ; L ^ J V C P C . ^ . s ) C L y ( J V P C , I , s ) ; 
L r ( C 7 P a X , s ) C L r ( P C J , i ) ; LT(NCPCtX, s) C LT(NPCtX,s). 

Proof : Directly from definitions. • 

Each usual PC grammar system can be considered a PC grammar system of 
type s (we simply skip N,T when writing T =' ( N , K , T , G \ . . ,Gn) ), hence we 
also have 

L e m m a 2 For any Y € {PC, CPC, NPC, NCPC} and for any class X of gram-
mars, 

(i) L(YnX) C L(YnX,s),n > 1; 

(ii) L u ( Y n X ) C L u ( Y n X , s ) , n > 1; 

(Hi) L T ( Y n X ) C L T { Y n X , s ) , n > 1 ; 

Just as in the case of usual PC grammar systems, we have relations between 
the families of generated languages, when considering various modes of derivation. 

L e m m a 3 (i) L u { Y n X , s ) C L(YnX, s), for any class X of grammars allowing 
chain rules (that is rules of the form A —» B) and for any Y G {CPC, PC, 
NCPC, NPC}-, 

(ii) L T { Y n X , s ) C L(YnX, s), for any class X of grammars and for any Y G 
{CPC, NCPC}. 

Proof : The proofs are entirely the same as for usual PC grammar systems, [3]. 
• 

We next survey the properties known so far about regular PC grammar systems 
with separated alphabets. For the proofs we refer to [9]. 
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Propos i t ion 1 (i) The family 1J(PCZREG,S) contains one-letter non-regular 
languages. 

(ii) The families L(NCPC2REG, s), L(NPC2REG, s) contain one-letter non-
regular languages. 

(Hi) The families LU(NCPC2REG, S),L,U(NPC2REG,S) contain non-semi-
linear languages. 

(iv) The family LT(CPC2REG, s) contains non-semi-linear languages. 

Corollary 1 L ( C P C n R E G ) C L ( C P C n R E G , s ) , strict inclusion, for any n > 2. 

So just as in the case of cooperating distributed grammar systems, by consid-
ering distinct terminal sets for the grammar components of the system, also in the 
case of PC grammar systems, the generative power is increased (at least in the 
regular centralized returning case). 

But even if centralized returning PC grammar systems with regular components 
of type s are able to generate non-finite index matrix languages, we still can find an 
upper-bound for the languages generated by them among the regulated rewriting 
tools with context-free rules. More exactly, we have 

T h e o r e m 1 (i) L ( C P C „ R E G , s) C L(MATac). 

(ii) Lu(CPC*REG,s) c L(MATac). 

(in) L T ( C P C . R E G , a) C L ( M A T a c ) . 

One can observe that although the preceding theorem is for the regular PC 
grammar systems, it is true as well for the right linear case, and the proof is 
entirely the same. 

As we shall prove in the following, for unsynchronized derivation we can actually 
find a more specific relation. First, we have the theorem 

T h e o r e m 2 L u ( C P C 2 R E G , s) - L(REG) 

Proo f : Consider the following PC grammar system of type s with regular 
components 

T = (K,GuG2), 

where 

Gi = ({S1,A,B},{a,b},{S1-+aQ2,A^aQ2,B ^^A-.a}^!), 
G 2 = ( { S 2 , B } , { A } , { S 2 - ¿ B } , S 2 ) , 

and consider the derivation mode to be the unsynchronized one. 
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Then a terminal derivation has to proceed as follows: 

(Si , Sa ) (aQ2, AB) => (aAB, S2) ( a 2 Q 2 X , AB) => (a2ABX, S 2 ) 

where X G { 6 , 5 } , a e {6,S}*,|a| = k - 1 and /3 G {S2 > J4B}. 
We then have 

L(T) = {ak+1bk | k > 1}, 

which is not a regular language. • 

As a corollary, we obtain that also in the unsynchronized derivation, centralized 
returning PC grammar systems are more powerful when considering distinct sets 
of terminal and non-terminal symbols then in the case when we do not. 

Corollary 2 Lv(CPCnREG) C Lu(CPC„REG, s), strict inclusion, for any n > 
2. 

Proof: The inclusion is by Lemma 2, and the strictness of it follows from the 
above theorem and from L u ( C P C , R E G ) = L ( R E G ) , which is known from [3]. • 

Our intention in the following is to present other properties concerning PC 
grammar systems of type s deriving in the unsynchronized mode. We need to 
recall the following definition. 

Definition 5 Let F = (N, K, T, G\,G2,..., Gn) be a usual parallel communicating 
grammar system. We say' that T is with multiple queries if there is a component 
of T with a production A aQiPQa,a, 0,-f G (N U I< U T)*,i G { l , . . . , n } . 
Otherwise, we say that F is without multiple queries. 

The class of such grammar systems is denoted by WYnX, for Y G {PC, CPC, 
NPC, NCPC}, n > 1, X a class of grammars. 

Theorem 3 For any Y G {CPC, PC, NCPC, NPC) and for any n > 1, 

(i) Lu(YnREG,s) C Lu(WYnCF); 

(ii) Lu(YnCF,s) = Lu(YnCF). 

(itt) Lu(WYnCF,s) = Lu(WY„CF). 

Proof: To prove point (i), take a PC grammar system of type s with regular 
components 

T = (K, Gi,G2, ..., Gn), 

with Gi = (Ni,Ti,Pi,Si), for any t, 1 < i < n. 
Denote n 

l/ = U ^ U T i ) . 
¿=1 
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For each symbol a (E V, consider anew symbol a', denote by V' their set and define 
the substitution h. as 

h(a) = {<*,<*'}, for a G Ti, 
h(a) = { a ' } , f o r a G V - Tu 

h{Qi) = {Q , } , for 1 < i < n. 

Construct the PC grammar system 

r ' = (V'!K!T1,(P[,S[),...>(P^S'n))! 

where 
P< = {A' -+ y \ A x € Pi,y e h(x)}, for any 1 < i < n. 

Note that even if we have started from a PC grammar system T with regular 
components, because this is of type s, the resulted system, T', is with context-
free components and not with regular. This happens because we can have in a 
component Gi,i > 1 a production A —* BC, where B is a terminal symbol with 
respect to G, but is not a terminal symbol with respect a grammar to which it will 
communicate a string containing that B. 

Moreover, note that if T is returning, centralized, non-returning or non-
centralized, then T' is of the same type. 

Because in any production of any grammar at most one query symbol can 
appear, we have that T' is without multiple queries. 

One can see that ¿[ / (T) = Lu(T'), and thus point (i) follows. 

For point (ii), we have Lu(YnCF) C L u ( Y n C F , s ) by Lemma 2. To prove the 
reverse inclusion, we only need to observe that the same construction that we have 
considered for the proof of point (i) transforms a context-free PC grammar system 
of type s into a corresponding usual context-free PC grammar system. 

Point (iii) is a consequence of the relation in point (ii), by the observation that 
the construction we have considered does not introduce multiple queries. • 

Corollary 3 Lu(WCPC»CF,s) = L ( C F ) . 

Proo f : It is simply a consequence of the preceding theorem, point (iii), by 
Theorem 1 of [8], which states that LV(WCPC,CF) = L ( C F ) . • 

Now we can improve the relation obtained in Theorem 1, for the case of unsyn-
chronized derivation. That is, we have 

T h e o r e m 4 L ( R E G ) C L v ( C P C t R E G , s ) C L ( C F ) . 

Proo f : The first inclusion is from Lemma 1 and from Theorem 2. The second 
inclusion is a consequence of the preceding theorem, point (i), by Theorem 1 of [8]. 

• 
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Note that once again parallel communicating grammar systems of type s are 
more powerful, but still not "too powerful" (from the generative capacity point 
of view) than usual PC grammar systems, in case of regular components, because 
we have L u ( C P C „ R E G ) = L ( R E G ) . But in case of context-free components, for 
unsynchronized derivation, systems of type s are only as powerful as usual systems 
are. 

It is known, [8], that matrix languages can be generated by usual returning 
non-centralized PC grammar systems with context-free components. When sepa-
rated terminal and nonterminal alphabets are considered for the components of the 
system, one can simulate matrix grammars with appearance checking. 

T h e o r e m 5 L(MATac) C L ( P C t C F , s). 

Proo f : The proof bears resemblance with the corresponding one in [8]. Let 

G = (N,T,S, M,F) 

be a context-free matrix grammar with the appearance checking set F . It is known 
([4]) that for each matrix grammar there is an equivalent matrix grammar, of the 
same type, in the 2-normal form, that is with 

N = {S}UN!UN2l TViniV2 = 0, S^NiUNi, 

and each matrix of M has one of the following forms: 

(0 ( s ^ x ) , Ae Nu x e N2 

(ii) (A —* a, X ^ Y), AeNu ae(N1UT)+,X,Y eN2, 
(Hi) (A^a,X^a), A G Nu a G (JVi U T ) + , X G N2,a G T, 
(iv) ( S ^ i ) , i e r . 

Moreover, the productions of F are only of the form A. —• o;, with A. £ Ni^cx £ 
(NUT)\ 

Let P\(M) be the set of matrices of type (i), let P2(M) be the set of matrices 
of types (ii), (iii) and let r be the cardinality of P2(M). A matrix of P2(M) will 
be denoted in the following by 

mk : (Ak — ak,Bh -»• Ck) , 1 < k < r. 

Denote 

N' = N U {S ' , W, V, Z, Lu L2, L3j U {5 , , S„i , S a 2 } U { 5 l t , S2k | k = 1 , . . . , n] 

(S', W, V,Z,LI,L2,L3 are new symbols). We construct the PC grammar system 

T = (K, G,, Gii, G2I, GI2, G22,..., Gir, G2r, G a i , Ga2) 
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as follows: 

P,, - { S . 11(5, — x) G M, x G T * } U 
U{5 , —• S', S' -* Q2k I & = 1, • • •, r } U 
U{S, - » AB | (S - AB) G PI(M)} U 

Pik = {Sit 
U{Afc -+ CTK | m t : (AK -* AK,BK C t ) } U 

U { X Z\X G Ni UA^2}U 
U f V — Q i t } , for each k = 1 , 2 , . . . , r, 

P2k = 
U{B f c — C* | m* : ( i4 t a f c l B t — Ck)} U 

U { X Z | X G iVi U AT2}, for each Jfc = 1, 2 , . . . , r, 
Pal = {Sai -Q2iQ22...Q2r}U{K- V), 

Pa2 = {S02 —1" Li, L\ —+ L2, L2 —• L3, L3 —• LiQ2iQ22...Q2r}. 

The terminal sets of the components grammars of T are defined as 

T, = Tai = Ta2 = T2k = T, for any k — 1,2,... ,r, 

while for any k — 1 , 2 , . . . , r, 

'TUNTUNX- {AK\MK :(AK ^AK,BK^CK)}, 
_ I if this occurrence of 

14 ~ the production AK —>• AK G F 
T, otherwise. 

As for the nonterminal sets of the components of T, they are defined as 

N, = N'-T,, 

Nu = N' — T\k, for any k 

N2k = N' — T2k, for any k 

Nai. = N'-Ta 1, 

Na2 = N' — Ta2. 

One can verify that L(T) = L(G), and therefore the theorem follows. • 

As an immediate corollary of the above theorem, characterization of recursively 
enumerable languages results when A-productions are allowed in the system. 

Corollary 4 L ( P C . C F x , s ) = L ( R E ) , where the notation PC,CFX stands for 
returning non-centralized PC grammar systems with A-rules. 
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The similarity between PC grammar systems with separated alphabets and 
usual PC grammar systems let us think that any proof of a relation between two 
classes of usual PC grammar systems can be adapted as to result in a relation 
between the corresponding classes of PC systems of type s. More precisely, we 
conjecture that if L ( Y n C F ) C L ( Y ^ C F ) for two classes Y,Y' of PC grammar 
systems, m,n,> 1, then L ( Y „ C F , s ) C L ( Y „ C F , s ) . 

In particular, by [6], [12], 

L { N P C . C F , s) C L ( P C . C F , s) 

would result. 
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On Regular Characterizations of Languages by 
Grammar Systems* 

Lucian ILIE t A r t o S A L O M A A * 

Abstract 

We show that grammar systems with communication by command and 
with extremely simple rewriting rules are able to generate all recursively enu-
merable languages. The result settles several open problems in the area of 
grammar systems. 

1 Introduction 
The purpose of this paper is to investigate the power of cooperation in rewriting 
systems. This is done using the abstract model of a grammar system, [3]. We 
show that grammar systems with the most simple components, all rewriting rules 
being letter-to-letter, possess the power of generating all recursively enumerable 
languages. This result and its corollaries settle several open problems in the area 
of grammar systems. We now describe the contents of the paper in non-technical 
terms. 

A parallel communicating grammar system, as introduced in [12], consists of sev-
eral grammars which work synchronously, each of them rewriting its own sentential 
form, the communication being made by request: when a component introduces a 
query symbol (from a special set) for another component, then the latter one sends 
its current sentential form to the former which rewrites it in place of the query 
symbol. The language generated by -the system is the set of terminal strings gen-
erated (using communication or not) by a distinguished component called master. 
(For results and references see [3].) 

Another kind of parallel communicating grammar systems, with communication 
by command, is introduced in [4] with suggestions from the WAVE paradigm for 
data flow in highly parallel machines ([5], [6], [14]), Boltzmann machine ([7]), the 
Connection Machine ([8], [15]), and other well-known parallel machines. 

'Research supported by the Academy of Finland, Project 1X281 
'Turku Centre for Computer Science, FIN-20520 Turku, Finland 
'Academy of Finland and Mathematics Department, University of Turku, FIN-20014 Turku, 

Finland 
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The communication by command means that when the current sentential form 
derived in a component coresponds to another component, i.e., belongs to the 
regular language associated to the respective component or fits the pattern (in the 
sense of [1], [11]) associated to that component, then the sentential form is sent 
to the other component. The language generated by the system is also the set of 
terminal strings generated by a component designed as master. Here we investigate 
only the case when each component has associated a regular language. 

In [4] it is proved that any context-sensitive language can be generated by a 
grammar system with communication by command with context-free components 
while in [10] it is shown that the grammar systems with context-sensitive com-
ponents and the same type of communication can generate only context-sensitive 
languages. The characterization of the family of context-sensitive languages as the 
family of languages generated by grammar systems with context-free components 
and communication by command follows. We shall strengthen this result by show-
ing that the family of context-sensitive languages is exactly the family of languages 
generated by the grammar systems with regular components and communication 
by command. 

We consider also the case when the splitting is allowed in communication, that 
is, if the current sentential form of a component is a concatenation of strings each 
belonging to the regular language associated to another component, then the com-
munication can still be performed: each factor of the sentential form can be sent 
to the respective component, with the restriction that only one factor can be sent 
to one component. 

As already mentioned in [4], this type of communication is natural: following 
the logic flow paradigm proposed in [6] as a basic architecture for parallel symbolic 
processing, we deed with a symbolic process which develops in a virtually complete 
graph having processors which are able to handle data, in its nodes. The process 
starts by injecting data in a node and each node having data can perform a local 
processing; under well defined conditions, the local data are spread to other nodes 
by replication or by splitting. 

In this case we prove a characterization of recursively enumerable languages 
by grammar systems with (non-erasing) regular rules. In fact, the rules have a 
particularly simple form: a letter (nonterminal) always goes to a letter (terminal 
or nonterminal). 

2 Grammar systems 

We shall denote by V* the set of all finite strings over the alphabet V, the empty 
string is denoted by A, and V+ = V* — {A}. The set of regular, context-free, context-
sensitive, and recursively enumerable languages will be denoted by REG, CF, CS, 
and RE, respectively. For further elements of formal language theory we refer to 
[9] and [13]. 

A parallel communicating grammar system with communication by command o f 
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degree n > 1 is a construct of the form 

T = (N, T, (Si,P\,Ri),..., (Sn,Pn, Rn))> 

where N is the nonterminal alphabet, T is the terminal alphabet, and (Si, Pi, Ri), 
1 < t < n, are the components of the system: Si is the axiom, P; is the (finite) set 
of rules, (note that we do not allow A-rules, that is rules in which the right-hand 
member is empty), and Ri £ REG is the selector language for the component i. 

Such a system works as follows: 
- start from the initial configuration (Si, S2, • • •, Sn), 
- at each step, the configuration of the system will be described by an n-tuple 

(x1,x2,...,xn) e ( ( j v u t ) * ) " , 
- the configuration of the system can be modified either by rewriting steps or 

by communication steps, 
- rewriting steps are performed componentwise and the derivation must be 

maximal in each component (that is the component can not rewrite its sentential 
form any longer), 

- communication steps are performed as follows: 
(i) communication without splitting: when (after maximal derivations) some com-
ponents Si1,Si2,... ,Sik, 1 < ¿1 < »2 < • • • < n < n, have derived the strings 
tf»i, u>2 , . . . , Wk £ Ri, for some 1 < i < n, i 0 {»1,»2, • • •) »*} (a component may not 
communicate with itself) and these are all the components, at that moment, able to 
communicate their sentential forms to the component i, then the string w\w2 • • • u>k 
will replace the sentential form of the component i becoming the current senten-
tial form of this component; the components which send their sentential forms will 
restart from the initial symbol, 
(ii) communication with splitting: similar to the one without splitting, the difference 
being that if the sentential form of a component is a catenation of strings each of 
them belonging to the regular set associated to another component, then each factor 
of the current string can be sent to the respective component with the following 
restrictions: 

1. only one string can be sent to one component, 
2. a component cannot send a factor of its current sentential form to itself 

(also not the entire string), 
3. the catenation of the factors of the current string which are sent must be 

the entire string (nothing is lost). 
- if, after a sequence of rewriting/communication steps, the string on the first 

position in the current configuration is a terminal one, then it belongs to the gen-
erated language (so the master is always the first component). 

Formally , a rewriting step is 

( x i , . . . , x „ ) =i> ( y i , . . . , i / n ) iff Xi = > * y, in Pi and 
there is no 2,- £ (N U T)* with y, => 2,- in Pi. 

In order to define a communication step without splitting, let us denote 

S(r. - f A' if Xi^Rj ori = j , 
K X " J ) ~ \ x i , ifxi £Rj andt^ j, 
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for 1 < i,j < n, 

A ( i ) = 6(xi,i)6(x2,i) • • • 6(x„,i), 

6(i) = 6(xi,l)6(xi,2)...6(xi,n), 

for 1 < i < n. 
A communication step without splitting is: 

( A( i ) , i f A ( i ) # A , 
( x i , . . . , x „ ) h (yi,...,yn) i f fyj = < xi, if A(t') = A and 6(i) = X, 

{ Sit if A(») = A and S(i) # A. 

Because the splitting will not be used very much, we define it rather informally. 
A communication step with splitting is 

(xltx2,...,xn) I " S ( y i ) J / 2 i • • • ) î / n ) 

if and only if there is a set 0 ^ M Ç { 1 , 2 , . . . , n } ( M is the set of indices of those 
components which send their sentential forms) such that 

(i) for any i £ M there is a permutation of n elements ir» £ Sn and a 
decomposition x, = i,,» j(i)Xi i* i(2) • • :CiiTi(n) such that xt i, = A and, for any 
1 < k < n, k ï irt~1(t")» *i,*i(k) G Rri(k) or xiiViW = X 

(ii) for any i G { 1 , 2 , . . . , n } — M and any 1 < j < n, j = A, 
(iii) for any 1 < j < n, if A ̂  Rj, then 

x\,jx2,j •••xn,j, ^x\,jx2,j ^ A 
if (there is no i £ M with Xij £ Rj) and j ^ M, 

Sj, if (there is no i £ M with x,-j £ Rj) and j £ M. 

If A G Rj, then, nondeterministically, the component j can receive A or can work 
as in the case when X £ Rj. 

Note that the communication without splitting is a particular case of the com-
munication with splitting and also that the empty string can be sent. 

The generated language is 

Le(T) = { w € T * I (Slt...,Sn)=> («i0, • • •, X™) h e (yW ..., => 

(.«,..., xL2)) hc (y?\ . . . , „ £ » ) ) = = » . . . = > ( , « . . . , x<*>), 
for some it > 1 such that w = x ^ } , 

where, for c = X, we identify £a(T) with £(T) and h* with h and, for c = 5 , we 
have ¿ 5 ( r ) and I-5. 

We denote by CCPCnX the family of languages L(r ) , generated by grammar 
systems of degree at most n, n > 1, with components of type X £ {REG, CF, C S } , 
working with communication without splitting, and by SCCPCnX the family of 
languages L s ( r ) , generated by grammar systems of degree at most n ,n > 1, with 
components of type X , working with communication with splitting. When the num-
ber of components is arbitrary, we write CCPCoqX and, respectively, SCCPCNX. 
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3 The characterization results 
We begin with the following simple observation. Because in the case when the 
system has only two components no communication by splitting can be done, we 
have 

Lemma 1 For any family X, CCPC2X = SCCPC2X. 

Our first theorem shows that, in the case of communication with splitting, any 
recursively enumerable language can be generated using a system with four regular 
components. Because the languages associated to the components are regular too, 
we can say that this is a fully regular characterization of recursively enumerable 
languages. (Note that we do not allow A-rules and also not the rewriting of the. 
terminal symbols. The sets of nonterminals and terminals are defined at the level 
of the system.) 

Actually, three regular components suffice, as seen in Theorem 2 below. From 
the point of view of exposition, it is convenient to consider first the weaker version. 
A further reduction to two components is not possible because of Lemma 1 and a 
result in [4] which shows that in the case of communication without splitting, using 
two components, only regular languges can be produced. 

Theorem 1 SCCPC^REG = RE. 

Proof. Let L be a recursively enumerable language over the alphabet T. Then, 
by a slight modification of Theorem 9.9 in [13], there is a context-sensitive language 
L\ and two symbols a\,a2 &.T, such that: 

(i) L\ consists of words of the form wa2a",n > 0, w G L, and 
(ii) for every w G L, there is a n > 0 such that wa2a" G L\. 
The main idea of our proof is: we construct a system (with four regular com-

ponents) which generates in one component (which is not the master) any string 
tua2a" G L\ and then, by splitting, the string w is communicated to the master 
and the garbage a2a" is communicated to another component. (In fact this is the 
only moment when the splitting is used, the entire derivation, excepting this, being 
as in a usual grammar system with communication by command.) 

So let G = (N, TU {ai , <12}, S, P) be a context-sensitive grammar generating 
L\. Suppose that G is in Kuroda normal form, that is, all productions in G are of 
the form AB —• CD, A —• BC, and A —• a where A, B, C, D are nonterminals 
and a is a terminal symbol. By introducing, whenever needed, productions of the 
form A —• B, A, B nonterminals, we may suppose that if a production of the form 
AB —• CD appears in P, then A ^ B. 

For a reason that will be seen later, we introduce also the production S —• 
S. We label all productions in P by natural numbers r, 1 < r < card(P). (We 
construct a bijection between P and the set { 1 , 2 , . . . , card(P)}, each production 
being uniquely identified by its associated number.) 

Let S i ,S2 ,S3 ,X, and Y be symbols not in A ^ U T U { a i , a 2 } and let us put 

N' = {A' I A G N} U { X ' } 
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V = {Ar | A 6 N, r : AB —• CD E P or r : BA —• CD € P } U 
U {Ar \AEN,r: A — • a € P) U 
U{Xr \ r:A — > B C e P } U 

U {Za,Wa\AEN}. 

We consider the system 

T = ( A r u T V ' U i S i . S ^ S ^ X . y j u V . T U i a x , ^ } , 
(S'i,Pi,RÎ), (S'2,P2, R2), (S3, P3, R3), (S4, P4, R4)) 

where S4 = S and 

Pi = 0, 
R! = T* U { y } , 

P2 = { S ^ X . S ^ Y } , 
R2 = a2a\, 

P3 = {A'—>A I A E i V U { X } } U 

U{A- — > a \ r \ A — » a e P j U 
U{Ar —• B\r : A —> B E P}U 
U{Ar —» C, Br —• D I r : AB — > C D £ P ] U 
U{Xr —• B,Ar —• C I r : A —• BC E P) U 
U { Z a ^ A , W a ^ X \ A e N } , 

R3 = {axAra2 I a i , a 2 € ( W U TU {ai,a2})*, r : A—»a£P}U 
U{ai^ r a 2 I ai,a2 E (N'uTl) { a i , a2})*, r : A —> B E P) U 
U{a\ArBTa2 I a i ,a 2 G (N' UT U {ai, a2})*, r : AB —• CD E P] U 
U{aiXri4ra2 | ax , a2 E (N' U T U {c^, a2})*, r : A —> BC E P} U 
U { a i Z A W A a 2 I ai ,a:2 E (N'UTU {a i , a2 } )* , A £ N}, 

P4 = {A—>A! \AE Nl){X}}U 
U{yl —> Ar\r:A —* a E P 01 r : A —»fiePjU 
1){X ^ X r , A ^ A r |r : A^BCEP}U 
U { y l — — B r I r : AB—*CDeP) U 
U{X —• Za,A —• WA I A E N), 

R4 = (N U { X } U 71 U {ai, o 2})+ -

(Note that A ^ R4, hence the fourth component cannot be restarted by receiving 
A in a communication with splitting.) 
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Let us prove that the construction is correct, that is Z-s(T) = L. We shall do 
this by showing inclusion in both directions. 

Claim 1. If wa2a" £ L\, then the system T can reach a configuration which has 
in the third position the string wa2a". 

Remark. If Claim 1 holds, then L C Ls(T). Indeed, for any w £ L, there is 
an n > 0 such that wa2a" £ L\. But, by Claim 1, T can reach a configuration 
with wa2a" as the current sentential form of the third component. In this case, 
as w £ T* C Ri and a2a" £ R2, by splitting, w is communicated to the first 
component and a2a" to the second one. Consequently, w is a terminal string and 
it is the current sentential form of the master, hence w £ Ls(T). 

Proof of Claim 1. Let wa2a" be a string in L\. It follows that there is a 
derivation in G generating it. We show that if a and /? are two sentential forms of 
G such that a = > G P, then, having a as the current sentential form of the third 
component of T, we can obtain also /3 as the sentential form of the third component 
of T. 

Because the case when a = S requires some additional explanations, we shall 
investigate it separately. (In fact, in the first case it will be shown that the deriva-
tion in T can simulate any beginning of a derivation in G, that is, we can obtain 
any ¡3 with S =>G 0 as the sentential form of the third component of I\) 

Case 1 a = S. Depending on the form of ¡3, we have three cases: 
(i) /? = a £ T U {01,02} and r : 5 — • a £ P. (As an observation, because 

L\ C La2a\, a cannot be aj.) We simulate this in T by 

(Si, SJ, S3, S) = > r (Si, y, S3, Sr) (Y, S'2,Sr,S) = * r (Y, Y, a, S r ) . 

(ii) ¡3 = A £ N and r : S — • A. In T we have 

(Si,S'2,S'3,S) =>r (Si, y , S3 , S r ) Hr (Y, S'2,Sr, S) = > r (Y, Y, A, S r ) . 

(iii) 0 = AB, A,B £ N and r : S — • AB. Supposing that p : S — • S G P, we 
perform in T 

(Si, S2, S3, S) (Si, Y, S3 , S p ) h r (Y, S'2,SP,S) =>r (Y, X , S, Sp) h r 

h r (Y,S'2,SP,XS) =>r (Y,Y,S,XrST) hr ( Y , S 2 , X r S r , S ) (Y,Y,AB,SP). 

In words, we have added the rule S —• S to P in order to be able to perform 
this type of rule (S — • AB) with S on the left-hand side. If the rule S — • S is 
not provided, then we are forced to apply in the fourth component another rule 
instead of S — • Sp (p : S — • S) and, as at this moment we did not yet get an 
X in the sentential form of the fourth component, after sending the current string 
of the last component to the third one, only rules of the form S — • a, a £ T or 
S — • A, A £ N, can be applied. Consequently, we would not be able to apply a 
rule of the form S — • AB, A,B £ N, in this case. 

Case 2 a £ (N U T U {ai , a 2 } ) + - {S } . Depending on the form of the applied 
production, we have four cases here. 
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(i) a = a i A A 2 , A £ N , 0 = a iaa 2 , a € T U { a i , a 2 } , r : A — • a £ P . We 
simulate this in T as follows. If the current sentential form of a component is not 
important at some moment, we shall replace it by —. 

(-,Y,aiAa2,-) h r (Y,S'2,-,a^a,) =>r (Y,Y,-,ct\Ara'2) h r 

h r (Y, S'2,a\Ara'2, -) (Y, Y, aiaa2, - ) 

(where for a £ (N U { X } U T U {a ! ,a 2 } )* we have denoted by a' the string h(a) 
where h : (N U { X } U T U {aia 2 } )* — • (JV'UTU {aia 2 } )* is the homomorphism 
defined by h(A) = A', for any A £ N U { X } , h(a) = a, for any a £ T U {a i , a 2 } ) . 

(ii) a = a i A a 2 , 0 = a i B a 2 , A , B £ N,r : A —• B £ P. This is handled as 
Case 2 (i). 

(iii) a = a\ABa2,f3 = axCDa2,A,B,C,D £ N,r : AB —• CD £ P- This 
rule is simulated in T by 

( - , Y, aiABa2, - ) hr (Y, S'2, - , aiABa2) =*r (Y, Y, - , a'^Br^) h r 

hr (Y, S'2,a[ArBra'2, - ) = » r (Y, Y, aiCDa2, -). 

(iv) a = axAa2,(3 = <* iBCa 2 ,A ,B ,C € N,r : A —> BC £ P. Because 
the string generated by P2 (X or Y ) is communicated by the second component 
(to the fourth component or to the first one, respectively) at each communication 
step, the derivation in the second component is restarted after each communication 
performed in the system. Therefore, after each communication step, the second 
component is able to produce a new X, if needed. (It can also produce a Y if 
an X is not needed.) As a / S, there exists a sentential form 7 of G such that 
7 « and we can suppose that (*) when the current sentential form of the third 
component of T is a, then the current string in the second component is X . (We 
can suppose, for instance, that the second component has introduced an X when 
7 was obtained in the third one. It is essential here that a ^ 5 ; we have seen in 
Case 1 (iii) how the alternative a = S is handled.) 

We may also suppose that the string a contains only nonterminal symbols. 
(We may obviously suppose that, in a derivation in G, 'we can apply first only 
productions of the form A —• B or A —• BC or AB —• CD, A, B,C,D 6 N, 
and, after that, only productions of the form A —• a, A £ N,a £ T U { a i , a 2 } . ) 
Consequently, we can put a j = AXA2 ... Ak, A\,A2,..., At £N,k>0(k = 0 
implies ai = A) and we can write (using (*)) 

( - , X, a, - ) = ( - , X, AXA2 ... AKAA2,-) h r ( - , S'2,XAXA2 ... AKAA2) =»R 

= > r ( - , Y , - , WALA'2 .. .A'KAW2) h r ( Y , S'2,ZALWALA'2 ... A'KA'A'2, - ) =>R 

= > r ( Y , Y, AIXA2 .. .AKAA2, - ) h r ( Y , S2,—,AIXA2 ... AKAA2) 

= > r (Y, Y, A i . ..Au.iXAUa,, - ) h r (Y,S'2,-,A1.. .Ak^XAkAa2) 
= > r (Y,Y,-,A[ . . ¿ i . A ' a ' 3 , - ) = > r 

= > r ( Y , Y , AI. ..AK.IATXAA,, - ) h r ( Y , S ' 2 , -,AL .. AK^AKXAA2) 
= > r ( Y , Y, - , A\... A'KXRARA'2) h r ( Y , S'2,A\... A'KXRARA'2, - ) =>R 

= » r (Y, Y, AIA2 • • • AKBCA2,-) = ( Y , Y , 0, - ) . 

(1) 
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Thus Claim 1 is proved. 

Claim 2. If w E T* was communicated to the msister component in T (by the 
third one - this is the only possibility), then, at the moment of communication, the 
current sentential form of the third component was wa2a" £ L\ and , by splitting, 
w was communicated to the master and a2a" to the second component. 

Remark. Obviously, Claim 2 implies Ls(T) C L. 

Proof of Claim 2. Observe that the only possible communications among the 
components of T are represented by the following graph. (An arrow from » to j is 
present if and only if it is possible that the component i communicates, at some 
moment, its sentential form to the component j ; some arrows are labeled by the 
regular sets which control the communication.) 

We make the following further observations: 
1. The second component can communicate to the first one only the string Y 

which is not terminal. (This communication takes place in order to restart the 
second component, making it able to produce an X at any moment.) 

2. The second component can communicate to the fourth one only the string 

3. The communication from the third component to the first and the second 
ones can be done only in the same time by splitting and only when the sentential 
form of the third component is of the form wa2a.y, n > 0, w being communicated to 
the master and a 2a" to the second component. (Note that the string communicated 
to the first component can be empty.) 

4. Always, after a maximal derivation in the third component, its current 
sentential form can be communicated to the fourth component. 

5. Due to the form of R3, if the current sentential form of the fourth component 
is communicated to the third one (and only to the third one) then a production 
in P will be correctly applied at the next step in the third component. Indeed, 
everything should be clear in what concerns the productions of the form A —• a 
or A —• B,A,B £ N,a ET U {ai , a 2 } . A discussion is needed only for the other 
two types of productions. 

(i) For r : AB —• CD E P; A, B,C,D £ N. In order to apply this production, 
in the fourth component one performs A —• Ar and B —• Br (providing, of 

1 

X. 
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course, that these productions can be applied). After that, the current sentential 
form is communicated to the third component if and only if the occurrences of Ar 

and Br appear consecutively and in this order (i.e., ArBr). In the third component, 
using the rules AT —• C and Br —• D, the string CD is obtained. Because we 
have supposed that A £ B, there is no danger to apply the production AB —• DC 
instead of AB —• CD. 

(ii) For r : A —• BC G P,A,B,C€ N. As it was already seen, for applying 
a production of this type an occurrence of an X in needed. Without it, the fourth 
component applies A —• Ar but the current sentential form cannot be communi-
cated to the third component because an occurrence of the string ATXr is asked 
by R3. 

Because an occurrence of the symbol X can be communicated by the second 
component to the fourth one at each communication step (we can apply in P2 

only S2 —• X) there is only the danger that too many X ' s are contained in the 
sentential form communicated between the last two components. But if the number 
of X ' s communicated by the second component to the last one is strictly greater 
than the number of productions of the form A —• BC applied, then the string can 
be never communicated to the master (no string in R\ contains X). Hence nothing 
will be produced in this case. 

From the observations above, it should be clear that no parasitic string can be 
obtained in T. Consequently, Claim 2 is proved so we have Ls(T) = L. 

• 
As said before, the number of the components can be reduced to three. 

Theorem 2 SCCPC3REG = RE. 
Proof. We use the same notations as in Theorem 1 with the only difference 

that we consider here one new nonterminal symbol, Z , which is added to the set of 
nonterminals of the system T (with three components) 

r = (Nl>N'U{S[, S'2, X,Y, Z}L>V,Tu{ai,a2}, (ff^PuRi), (S'2, P2, R2), (S3, ft, R3)) 

where S3 = S and, supposing that p : S -—• S G P, 

Pl = { y —• X, Y —• Z}, 
Ri = T* U { y } , 

Pi = {Sp —• Y } U 
U { A ' —• A I A E N U { X } } U 
U {Ar —* a\r : A —kiGP}U 
U { A r — > B \ r : A — • B G P] U 
U{ i4 r — C, Br —• D I r : AB —• CD 6 P) U 
U { X r — - B, Ar —> C I r : A —• BC G P) U 
U{ZA —> A, —» X \A £ N}, 
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R2 = {aiArQ2 | <*i,<*2 G (N'UT\J { a i , a 2 } ) * , r : A—• a € P) U 
U { « i ^ r a 2 | a b a 2 £ (N' U T U {a i , a 2 } ) * , r : A — • В £ P} U 
U{aiArBra2 | ai ,ct2 G (N' U T U { a b a 2 } )* , r : AB — • CD £ P} U 
U { a i X r A r a 2 | a b a 2 G (N' U T U { a b a2 } )* , r : A — • ВС € P) U 
U{ai ZAWAa2 \aua2£(N'uTU {аиа2})*,А £ N}, 

P3 = U { A —• A' | A £ N U { X } } U 

и { Л —у A T \ r - . A — * а £ Р ox г : А — • .В € .Р} U 
U { X — • ХТ,А —• Аг | г : А —у ВС £ Р} U 

и { Л — > А Т , В — > В г \ г : А В — • CD £ Р } U 
U{X ^Za,A^Wa\A£N}, 

R3 = ( Л Г и { Х " } и Г и { а ь а 2 } ) + Ua2aJ. 

The system is working similarly to the one in the proof of Theorem 1. The only 
differences are the following two: 

1. Any string wa2a" £ L\ is produced here in the second component (instead of 
the third) and, by splitting, w is sent to the master and а2а" to the third component 
(instead of the fourth one). But, because the communication by splitting from the 
second component to the other two is made only in the case when the sentential 
form of the second component is of the form wa2a", w being necessarily sent to the 
master and а2а" to the last component, this step is correctly performed. 

2. The way in which the occurrences of X are handled in order to help us to use 
the productions of the form A — • ВС, А, В, С £ N, is slightly different. However, 
if the number of X's is too big, then no string will be produced (see observation 5 
(ii) in the proof of Claim 2 above). We have only to show that indeed we can get 
sufficiently many X ' s to be able to apply a rule of the form A — • В С anytime it 
is needed. Supposing that the derivation in G is axAa2 =>G a\BCa2, we have 
two cases: 

(i) a i = а 2 = А,Л = S,r : S —у ВС £ P\B,C £ N. We have in Г (with 
p:S ^SEP) 

(S[ ,S'2,S) =>r (S[, S'2,SP) hr (S[,SP,S) =>r (Si , Y, Sp) b r 

hr (У,S p ,S) = > г (X, S, Sp) K r (Si, S p , X S ) = > r ( S i , S , X r S r ) h r (2) 
hr (Si, X r S r , S) = > r (Si, ВС,S p ) . 

(ii) ariAa2 ф S,r : A —• ВС £ P,A,B,C £ N. Let us prove first that we can 
have an X as the current sentential form of the first component anytime needed. 

Any simulation in Г of a derivation in one step, say A =>G P, consists of one 
or several iterations of the following sequence of steps: being the current sentential 
form of the second component, a is sent to the third one, is rewritten there, is sent 
back to the second component, and again rewritten. Because p : S —• S £ P, 
we have Sp — • S £ P2 and S — • Sp 6 Рз- Thus, we can suppose that when 
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the main string (that is the string which is at the beginning a and, rewritten and 
communicated between the last two components, will be ¡3) is communicated from 
component 2 to the component 3 (or from 3 to 2), then the string Sp is commu-
nicated from the component 3 to the component 2 (or from 2 to 3, respectively). 
That can be also seen in (2). 

Because we can perform in T 

( - , - , Sp) br ( - , Sp, - ) =>r ( - , Y, - ) h r (Y, - , S) = * t (X, - , Sp), 

using the observations above, it should be clear that we can get an X as the current 
sentential form of the first component whenever we need one. (It is also seen that 
the role of the production S —• S introduced in P is much more important here.) 

Going back to our case, we can suppose (as in the proof of Claim 1, Case 2 (iv)) 
that when the current sentential form of the second component is a x A a 2 , then the 
current string in the first component is X . We can also suppose (also as in the 
proof of Claim 1, Case 2 (iv)) that « i = A\A2 .. .At £ N*. The derivation goes 
now similarly to (1). 

Consequently, the system constructed here generates the same language as the 
one in the proof of Theorem 1. It follows that Ls(T) = L and the proof is over. 

o 
We notice that in the system T in Theorem 2, the splitting communication is 

used only at the end when the string tu £ L is sent to the master and it will be 
the output of the system and the garbage a2a" is sent to the third component. In 
fact, the splitting communication is done in order to allow a workspace as big as 
needed. 

If the splitting communication is not allowed, we can still obtain (using only 
regular rules) any context-sensitive language. The following result is a strength-
ening of Theorem 1 in [4] or of Corollary 3.4 in [10] (which establish that 
CCPCooCF = CS.) It solves also the problem, open so far, of the hierarchy 
('CCPCnREG)n>0. 

Theorem 3 CCPC3REG = CS. 

Proof. The construction is very similar to the one in Theorem 2. The difference 
is that the second component there is the master one here because we do not need 
any communication after obtaining the terminal string in the given language. 

Let L be a context-sensitive language and let G = (N, T, S, P) be a context-
sensitive grammar generating L. We have seen in the proof of Theorem 1 that any 
production of G can be supposed to be of one of the following forms: AB —• CD 
with A^B, A —• BC, A —• B, or A —• a for some A,B,C,D £ N,a£ T. 

Let S2, S3, X, and Y be symbols not in N UT and 

N' = {A I A£ JVjufY'}, 

V = {Ar\AeN,r:AB —*CD £ P or r : BA —• CD £ P}U 
\j{Ar \ A £ N ,r \ A — > a £ P}U 
U{Xr I r : A —* BC £ P}U 
U {Za,Wa\A£N}. 
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The system is here: 

r = (N U N' U S3,X, Y} U V, T, (Si, Pu fix), (S'2,P2, R2), (S'3, P3, R3)) 

where 5i = 5 and 

Pi = {Sp — • Y } U 
— A | A £ i i U { X } } U 

U{Ar —> a\r \ A — > a £ P } U 
U{ylr —> B\r: A —• B G P} U 
U{Ar —• C, Br —>D\r:AB —• CD G P} U 
U{Xr — B, Ar —* C | R : A — BC G P} U 
U{Za —• A, WA —• X \Ae N}, 

Ri = {aiAra2\a1,a2€(N'uTy,r:A—• a G P} U 
U{aiAra2 \alta2e(N'uTy,r:A —• B G P} U 
U{ai^ r f l r a 2 | « i , «2 G (N'UTy,r : AB —• CD G P} U 
U{«iX ryl ra2 | a i ,a 2 G (N'uT)*,r : A —• BC G P} U 
U{aiZAWAai\al,ai€(N'uT)*,AeN}t 

P2 = {A—* A' \Ae JVU{.Y}}U 

U{A —y Ar\r\ A —• a G P or r : .A —• P £ P} U 
U{A"—> XT, A—y AT |r :A—• BC G P} U 
U{yl —• Ar, B —• Br I r : AB —• CD G P} U 

—• Za,A —• Wa\A£ N), 
fi2 = ( J V U { I } U T ) + . 

P3 = {Y^X,Y-+Z}, 

Rs = {Y}, 

The proof for L(T) = L is very similar to the proof of Theorem 1 and therefore 
omitted. 

• 
It is proved in [4] that CCPC2REG = REG hence, using Lemma 1, we obtain 

that the results in Theorem 2 and Theorem 3 are optimal. Using also the results 
CCPCooCS = CS from [10] and CS C CCPC2CF from [4], we can draw the 
following diagram which shows the generative power of all types of systems with 
communication by command investigated so far by comparing them with the fam-
ilies in Chomsky hierarchy. (The place of the families SCCPCnX, CCPC„X not 
mentioned in the diagram is obvious.) 
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SCCPC3REG 
SCCPC3CF 
SCCPC3CS 

R E 

SCCPC2CF 
SCCPC2CS }- - •{ 

CCPC3REG = • • • = CCPCooREG 
CCPC2CF =••• = CCPCooCF 
CCPCxCS = ••• = CCPC00CS 

SCCPCiCF = C F = CCPCiCF 

SCCPC2REG= R E G =CCPC2REG 
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Teams in Grammar Systems: 
Hybridity and Weak Rewriting * 

Maurice H. ter BEEK f 

Abstract 
Some new ideas in the theory of teams in grammar systems axe introduced 

and studied. Traditionally, a team is formed from a finite number of sets of 
productions and in every derivation step, one production from each compo-
nent is used to rewrite a symbol of the sentential form. Hence rewriting is 
done in parallel. Several derivation modes are considered, varying from using 
a team exactly one time to using it a maximal amount of times. Here, the 
possibility of different teams having different modes of derivation is defined, 
as is a weaker restriction on the application of a team. The generative power 
of such mechanisms is investigated. 

1 Introduction 
In [4], cooperating distributed grammar systems (CD grammar sytems for short) 
were introduced to formalize a link, recognized in [6], between the so-called multi-
agent systems theory in Artificial Intelligence and the theory of formal languages. 
Since then these systems have been studied intensively and this has already resulted 
in the monograph [5], which contains an exhaustive survey of the state of the art 
in the so-called theory of grammar systems until ca. 1992. 

By now, many well-motivated enhancements have been introduced, resulting in 
hybrid CD grammar systems (allowing the grammars to have different capabilities, 
[22]) and team CD grammar systems (grouping the grammars in teams and rewrite 
in parallel, [20]), to name but a few. 

Here hybrid (prescribed) team CD grammar systems are defined, thus allow-
ing work to be done in teams while at the same time assuming these teams to 
have different capabilities. Two basically different versions can be defined. One 
can consider a hybrid CD grammar system and automatically form teams of its 
components according to some strategy or one can consider a CD grammar system 
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with prescribed teams and simply associate a (possibly different) so-called mode 
of derivation with each team. Concerning the latter one it will be shown that this 
hybridity does not enlarge the generative power any further. However, every re-
cursively enumerable language can be generated by a hybrid prescribed team CD 
grammar system with teams of two members. The question whether the automatic 
forming of teams enlarges the generative power of hybrid CD grammar systems 
remains an open problem. 

Furthermore, a variant of the way teams work in the literature so far is pre-
sented. The motivation to introduce a different concept of rewriting is twofold. Not 
only is the strict requirement that every component of the team must participate in 
every step often bothering in generating languages but, perhaps more important, 
it is definitely too restrictive in the most recent application of grammar systems as 
a framework for natural language generation (see, e.g., [8] and [10]). 

This new way of rewriting is called weak rewriting and it is investigated in the 
case of teams in eco-grammar systems in [2]. It resembles the well-known concept 
of appearance checking in regulated rewriting: every component of a team which 
contains a production that can rewrite the sentential form must be used, but a 
component which does not contain any production with a left-hand side that is 
contained in the sentential form does not need to be used. The generative power of 
CD grammar systems with prescribed teams of variable size operating in the weak 
rewriting step will be shown to equal that of the class of programmed grammars 
with unconditional transfer. This implies that these families and those of the 
prescribed team CD grammar systems operating in the traditional rewriting step 
and the same modes of derivation do not coincide. 

Finally, in the special case of prescribed team CD grammar systems with only 
one production per component and teams of variable size, an equality with the 
class of unordered scattered context grammars is presented. This leads to the fact 
that there are several cases when only one production per component suffices for 
prescribed team CD grammar systems with teams of variable size. 

2 Preliminaries 

In this section, some prerequisites necessary for understanding the sequel are de-
fined. For details and unexplained notions, the reader is referred to [28] for formal 
languages, [13] for regulated rewriting, [27] for Lindenmayer systems and [5], [9], 
[11], [24] and [3] for (variants of) grammar systems. 

The set of all non-empty strings over an alphabet V is denoted by V+. If the 
empty string, A, is included, the notation becomes V*. The length of a string x is 
denoted by |x|. 

An inclusion is denoted by C, whereas a proper inclusion is denoted by C. 
Sometimes, the notation for a family of languages contains a A between the 

brackets [ and ]. This means that the statement holds in the case of allowing A-
productions (indicated by the A inbetween brackets) as well as in the case of a 
restriction to A-free productions (thus neglecting the A inbetween brackets). Also 
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other symbols between brackets must now be understood. 
Without definition, the family of context-free languages (CF) is used in the 

sequel. Its definition can be found in, e.g., [13]. The same holds for the family of 
languages generated by ETOL systems (ETOL). Finally, also the family of languages 
generated by [hybrid] CD grammar systems ([H]CD) shall not be defined here. 
However, their definitions can be found in [5] and will become clear in the sequel. 

None of the above families of languages will be used in any construction in the 
proofs. Those families of languages that are used in (some of) the proofs below, 
are defined next. 

An unordered scattered context grammar with appearance checking ([21]) is a 
construct G = (N,T,S,P,F), where N is the set of nonterminals, T is the set 
of terminals, S 6 N is the axiom, P = {p\,p2, • • -,pn} is a finite set of rules 
(rules are of the form pi : (ai,a2,...,ami) -4 (0i,02,• • -,0mi), where aj -¥ 0j 
are productions over N L I T ) and F is a set of occurrences of productions in P, 
1 < i < n. For w,w' € (N U T)' and 1 < i < n it is said that w directly derives w', 
written as 

w=$-w' iff w = wiailw2ai2.. .wmaimwm+i, w'=wi(3iiw2Pi2. • .ivmpirnwm+i, 
Pi • (<*i,a2,. ..,ap) -4 (0i,02,...,0p) € P, (c*ti><*i2,...,c*im) is a 
permutation of a subsequence of (ai , a2,..., ap), wi G (N U T)* 
and 1 < / < m + 1 

and aj in {ai,a2,.. .,ap} and not in { a ^ , a i 2 , . . . , a ^ } implies that 
aj is not contained in ui and aj —> 0j € F. 

If F = 0, the unordered scattered context grammar is called an unordered scat-
tered context grammar without appearance checking and F is omitted from the con-
struct. Moreover, if F contains all occurrences of productions in P, the unordered 
scattered context grammar is called with unconditional transfer. The language gen-
erated by G is L(G) = {w € T* | S iw}, where = > * denotes the reflexive and 
transitive closure of = > . 

The family of languages generated by unordered scattered context grammars 
with A-free context-free productions in P is denoted by USCac in the case of gram-
mars with appearance checking; when grammars without appearance checking are 
considered the subscript ac is omitted and when grammars with unconditional 
transfer are considered the subscript ac is replaced by ut. 

A matrix grammar with appearance checking is a construct G = (N, T, S, M, F), 
where N is the set of nonterminals, T is the set of terminals, S £ N is the axiom, 
M is a finite set of matrices of the form m : (r\,r2,.. .,rn), where rj : a j -4 0i 
are productions over N UT and |a|/v > 1 , 1 < i < n and F, finally, is a set of 
occurrences of productions in M. For w,w' € (N U T)* and m : (ai —• 0i,a2 -4 
02,.. , , a n —i• 0n) € M it is said that ui directly derives w', written as 

W => w' iff there exist WQ,Wx,...,WN E (N UT)* such that 
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wo = tv and w„ = w' and for ail 0 < i < n — 1 * 

either Wi-i = tu^jQitw^j and W{ = w' i_ lP lw"_ l 

for some w € ( N u T ) m 

or the production c*j /3j cannot be applied to t 
cti fa e F and Wi = Wi-i. 

If F = 0, the matrix grammar is called a matrix grammar without appearance 
checking and F is omitted from the construct. Moreover, if F contains all oc-
currences of productions in M, the matrix grammar is called with unconditional 
transfer. The language generated by G is L(G) = {w 6 T* \ S = > * to}, where 

denotes the reflexive and transitive closure of = > . 
The family of languages generated by matrix grammars with A-free context-free 

productions in M is denoted by MATac in the case of grammars with appearance 
checking; when grammars without appearance checking are considered the subscript 
ac is omitted and when grammars with unconditional transfer are considered the 
subscript ac is replaced by ut. 

For all generative devices mentioned above, only the notation in the case of 
A-free context-free productions was given. When there is no restriction to A-free 
productions a superscript A is added to the notation. 

3 Teams in grammar systems 
Definit ion 1 Let N and T be two disjoint alphabets. A production over (N, T) is 
a pair (A,x) € N x ( jVuT)* . Usually, A x shall be written instead of (A, x). If 
x ± A, then A —• x is called a A-free production. A team over (N, T) is a multiset 
of sets of productions over (N, T). The sets of productions occurring in a team 
shall be referred to as components. 

Traditionally, a team rewrites a string in the following manner. Here, this origi-
nal notion is renamed strong rewriting since another way of rewriting is introduced 
after this definition. 

Definit ion 2 Let N and T be two disjoint alphabets. Let Q be a team over (N, T) 
and x,y e (N U T)*. Then x is rewritten by Q, in the strong rewriting step, into 
y, written as 

X y iff X = X1A1X2A2 .. .xnAnxn+i, y = xiyix2y2 • • .xnynxn+i, 
Xie{NuT)*, 1 < i < n + 1, Aj -t yj G Pj, 1 < j < n and 
Q = {P1,P2,...,Pn}. 

A derivation step of a team thus consists of choosing a production from each 
component of this team and applying these in parallel on the string to be rewritten. 

Now the weak rewriting step for teams is introduced. It is loosely based on the 
so-called weakly competitive rewriting step for colonies as introduced in [12]. 
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Definition 3 Let N and T be two disjoint alphabets. Let Q be a team over (TV, T) 
and x,y £ (N U T)*. Then x is rewritten by Q, in the weak rewriting step, into y, 
written as 

X ==>Q y iff X = X1A1X2A2 .. ,xnAnxn+i, y = xxyix2y2 .. .xnynxn+i, 
X i £ ( N U T)*, l<i<n + l, Aj yj £ Pj, 1 <j<nand 
{Pi , P2,..., Pn} C {Pi , P 2 , . . . , P„} = Q such that 
for all Pq € Q \ {Pi , P2 , • • •, P n } i/iere exisis 
no production a fi G Pq such that a £ xix2 .. .xn+i-

The weak rewriting step of a team thus works in the same way as the strong 
rewriting step, as far as choosing a production from each component of this team 
and applying these in parallel on the current sentential form is concerned. However, 
a derivation according to the strong rewriting step is blocked (1) when a component 
of the team does not contain a production with a left-hand side that is contained in 
the current sentential form or (2) when two (or more) components can only rewrite 
a symbol of the current sentential form that appears only once in that sentential 
form. In the weak rewriting step neither case results in a blocked derivation, since 
only every component containing a production that can rewrite a symbol from 
the current sentential form, without clashing with another component for wanting 
to rewrite the same symbol, applies these productions in parallel on the current 
sentential form. 

If Q is a singleton team, i.e. Q = { P } for some set of productions P , then 
x ==>p y shall be written instead of x y, for — G {s,u>}. It is clear that in 
that case only one symbol in x is rewritten, using a production from P. 

So-called modes of derivation are used to prescribe halting requirements on the 
use of a team. These modes can be divided into three groups. Firstly, mode * has 
no restrictions whatsoever. Any number of derivation steps is allowed. Secondly, 
modes <k,=k and >k restrict the number of derivation steps to at most, exactly 
and at least k derivation steps, respectively. Thirdly, modes to, t\ and t2 are modes 
that represent a so-called maximal number of derivation steps. All three prescribe 
a slightly different condition which needs to be fulfilled before a team is considered 
to have successfully worked in that mode. In the case of mode to the work of a 
team ends successfully when no further derivation step can be done as a team, in 
the case of mode fi the work ends when no component of the team can apply one 
of its productions any longer and in mode i 2 , finally, the work of a team ends when 
there is at least one component that can no longer apply one of its productions. For 
these so-called maximal derivation modes, a distinction is made between the weak 
and the strong rewriting step. 

Definition 4 Let Q = { P i , P 2 , . . . , P „ } be a team over (N,T) and let f £ {< 
k, = k, > k | k > 1} U {*, £0j ,<2} be a mode (of derivation). Furthermore, let 
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x,y,z G (N U T)* and k G N. Then x is rewritten by Q, in the weak (— = w) or 
strong (— = s) rewriting step and working in mode f , into y, written as 

L' . 

iff x y for some k < k, 

iff x=z>kQy, 

iff x = > q y for some k' > k, 

iff x =>Q y for some k, 
iff x =>q y and there is no z such that y =>Q Z, 

8 * iff x y and for no component Pi € Q and no z 

there is a derivation y ==>ps z and 
8 * 

iff x y and there is a component Pi £ Q 

for which there is no derivation y ==>pi z. 

The three variants of the i-mode of derivation first appeared in [17] (io), [20] 
(t\) and [26] (¿2); the other modes of derivation are the natural extension of the 
modes in CD grammar systems (see [5]) to teams of grammars. 

Now a more general definition of teams in the theory of grammar systems than 
the original one from [20] and its generalization from [26] can be introduced. 

Definition 5 A hybrid prescribed team CD grammar system is a construct 

r = (N, T, S, PU P2, ..., Pn, (<?!, h), (Q2, / 2 ) , • • •, (Qm, fm)), 

where N is the set of nonterminals, T is the set of terminals, with NC\T = 0, S E A^ 
is the axiom, PI,P2, • • - ,PN are sets of productions over ( N , T ) , QI,Q2, • • - ,QM are 
teams with components from PI, P2,..., PN and /1, /2, • • •, /m are modes of deriva-
tion. 

If, in this construct, fi = f j for all 1 < i, j < m, the definition of a prescribed 
team CD grammar system as in [26] is obtained. 

Note that in this definition, there is no restriction on the size of a team. In the 
original definition of teams in [20], however, they are of constant size. A natural 
number s > 1 is given and the teams are formed such that the number of compo-
nents of every team is exactly s; these teams are called of constant size s. Moreover, 
in that definition the teams are not prescribed, but each set of components can be 
a team (so-called free teams) as long as the size restriction is fulfilled. 

It is now clear that one can differentiate between the following four variants 
of teams in the theory of grammar systems. For all four, hybridity is another 
possibility. 

Free teams of constant size: this is the original definition of [20], as explained 
above. 

x 

x 

x 

x 

x 

x 

=k 

>Q y 
>Q y 

>Q y 

t3 
>Q y 
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Free teams of variable size: each subset of components can be a team. 

Prescribed teams of constant size: all prescribed teams consist of the same number 
of components. 

Prescribed teams of variable size: these are defined in Definition 5. 

In the case of teams of constant size, whether prescribed or free, a finite set 
of axioms W Ç (N UT) " , with only one string in it containing nonterminals, is 
allowed. This is done since otherwise in the case of A-free productions no string 
shorter than s could be generated. In the case of free teams with teams of constant 
size, the construct thus becomes T = (N,T,W,Pi,P%, . •., Pn). The modifications 
in the other cases are obvious. 

Definit ion 6 Consider a hybrid prescribed team CD grammar system Y as in Def-
inition 5. Then the language generated by T, operating in the weak (— = w) or 
strong (— = s) rewriting step, is 

L~{T) = {z€T*\S wh • • • ==>%p wip=z, 1 < ij < m, 1 < j < p}. 

When dealing with a language generated by teams of constant size, the notation 
of Definition 6 is modified to L~ (r, s). When the teams are not hybrid, the mode 
of derivation is added as a subscript to this notation. 

The family of languages generated by CD grammar systems with hybrid pre-
scribed teams of variable size, operating in the strong rewriting step and A-free 
context-free productions is denoted by HPT+CD. When teams are of constant size 
s, the * in the notation is replaced by s and when there is no restriction to A-free 
productions, A is added to the notation as a superscript. When the teams are not' 
hybrid (prescribed) the H ( P ) in the notation is omitted. 

The weak rewriting step is only considered in the sequel for CD grammar sys-
tems with prescribed teams of variable size. The family of languages generated by 
such systems, working in derivation mode / and operating in the weak rewriting 
step, is denoted by PTwCD(f) in the case of A-free context-free productions; when 
A-productions are allowed the superscript A is added. 

Instead of prescribing the hybrid teams, another way to introduce hybrid teams 
is defined next. Consider a hybrid CD grammar system and automatically form 
teams by combining all components with a certain mode of derivation to form a 
team with that mode of derivation. Because the teams are formed automatically, 
they are not part of the system " hardware", but a way to define the work of the 
system. 

Definition 7 Consider a hybrid CD grammar system 

r = (N,T, S, (Pi,fi), (P2, / 2 ) , • • -, (Pn, /„)), 



434 Maurice H. ter Beek 

where N is the set of nonterminals, T is the set of terminals, with NaT = 0, S G TV 
is the axiom, Pi, P2,..., Pn are sets of productions over (N, T) and /1, /2, • • •, /m 
are modes of derivation. 

Then teams (Qugi) C { ( P i , / i ) , {P2,f2), • • (Pn,fn)} are automatically formed 
in the following way. For gi € {*, ¿o>*i> <2} U {< k, = k, >k \ k > 1} 

(QuSi) = {(Pk,fk) I fk = 9u 1 < k < n}. 

Such a team (Qi,9i) = {{Pjx, ), (P>2, /J 2 ) , • • •, (Pj,, }Ui )}> IS called an automati-
cally formed team working in mode gi. 

The language generated by T with automatically formed teams is 

Laut(n = {z e T' I s - • • =z,m> 1}. 

The family of languages generated by hybrid CD grammar systems with auto-
matically formed teams of variable size and only A-free context-free productions 
is denoted by HT*CD\ when A-productions are allowed the notation becomes 
HT*CDX. Note that due to the automatical construction from a hybrid CD gram-
mar system (with a one-symbol axiom), the notion of teams of constant size is very 
restricted. Only teams of constant size 1 could be constructed, but they obviously 
have the same generative power as the underlying hybrid CD grammar system. 
Naturally, it is possible to consider hybrid CD grammar systems with a string 
axiom instead of a single nonterminal. 

Some relations concerning the generative power of several of these grammar 
systems discussed above are given next. A more complete overview can be found 
in [1]. In the first paper on teams in grammar systems, [20], it was proved that, for 
/ € { = ! , > ! , * } U { < f c | f c > 1}, 

CF = TiCD(f) C T2CD{f) and 
ETOL = TiCD(t) C T2CD(ti). 

These relations prove that there are modes of derivation for which the forming of 
teams strictly increases the power of CD grammar systems, since CD(t) = ETOL 
and CF = C D ( = 1) = CD(> 1) = CD{*) = CD(< k) for a k > 1 were already 
known to hold (see, e.g., [5]). In [7] it was proved that teams of size two suffice, i.e. 
for s > 2 

T,CD(ti)CT2CD(ti). 

The main results of [26] are, for s > 2, / G { * } U { < k, = k, > k | k > 1} and 
9 e {¿1,¿2}) 

p R W _ p T s C D ^ ( f ) = P T . C D M ( f ) and 
PR[ax} = TsCD[x](g) = PT,CD^(g) = PT.CD^(g) 

and the main result of [17] is, for s > 2 and h G {io, 

MATW = T.CDW{h) = PTsCD^{h) = PT,CD^\h) = T.CD[x](h). 
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4 Homogeneous versus heterogeneous teams 
The next lemma follows immediately from the definitions stated in the previous 
section. 

Lemma 1 For s > 1 and f £ {*, io, ii, ¿2} U {<k, = k, >k \ k > 1} 

(i) TsCD[x]{f) C PT„CD[x\f) C PT,CD^{f), 
T.CDW(f) C PT.CD^U) C HPT.CDW and 
PT.CD^(f) C HPTSCD[X] c HPT„C£>W , 

(iij HCDW = HTrCD^ C ffPT.CJD1*1 C HPT.CD^ and 
HTiCDW C HT,CD[x] C ifPT,CDtA l and 

(Hi) [H][P]TSCDM c [ i f ] [ P ] T s + i C £ ) ' A l . 

It is natural to ask whether results similar to those that were stated in the 
previous section, can be obtained for the new definitions concerning hybrid teams 
of grammars. Indeed, some similar results for the hybrid cases will be proved below, 
but some open problems remain. 

To begin with, some results concerning hybrid prescribed team CD grammar 
systems are presented. The next corollary follows immediately from Lemma 1 and 
results stated in the previous section. 

Corollary 1 For s> 2 
p p w c hpt8CDW. 

For the A-free case the next lemma is necessary to conclude that hybrid pre-
scribed team CD grammar systems cannot generate more than the non-hybrid ones. 

Lemma 2 

HPT,CD[X] C MAT[X}. 

Proof Consider the hybrid prescribed team CD grammar system 

r = (N,T, 5, P ! ,P 2 , . . ., P n , (Qx, / 0 , (Q2,h), . ..,{Qm, fm)). 

Define the homomorphism h from (N U T)* into ( {A ' | A £ N] U T)* by 

h(a) = a for a £ T and h(A) = A' for A £ N. 
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Moreover, associate to a team Qi = {Pj j ,Pi3t..Pit}, 1 < i < m, all sequences of 
productions such that from each component P^., 1 < j < Si, exactly one production 
is included in such a sequence. Denote such a sequence by a = (Ai —txi,...,Aa 

xa) and all such sequences associated to a team Qi by Seqi = . . .,<7^. } , 
1 < i < m. 

To simulate this hybrid prescribed team CD grammar system, construct the 
following matrix grammar 

G' = (N',T',S',M',F'), 

where 

N' = WU{i4'| A€ JVJUiT.FJU^y.E;, \ I < j < h,l < i < m} U 

{[QiJiJ} I (Qufi) € T . / i G {<k,=k,>k},l < i < m , 0 < j < k} U 

{[Qi,<?i],[Qi,*o]' I {Qi,9i) G r , f l j G { » , t 0 , t i , t 2 } , l < i<m}, 

T' = Tu{z}, 

M' = {(S'->ST)}U 

{(T -»• [ Q i , / i , 0 ] ) \ fi G { < f c , = f c , > f c } , l < t < m } U 

{(71 [Qi,9i]) I 9i e { » . t o . t i . i a } , 1 < » < m } U 
{([Qi,fi,j] [Qufi,j + l],Ai -> fc(®i),i42--> h(x2),...,Aa h{xa)) | 

0 < j < fc - 1, {Qufi) = {Ph,Ph,- ..,Pj.},Ar xr £ Pirt 

fi G {<k, = k, >k},l< i < m,l < r < s } U 
{([Qu>k,k] [g<,>*,*: ] , i4i - » h(xi),A2 h(x2),...,A, h(xa)) \ 

(Qu>k) = { P ^ P , , , • • , P ; , } , ¿ r • + i , e P i r , l < i < r a , l < r < « } U 
{([Qi, Si] [Qi, 5»], Ai M^i). • • •, 4 . /»(a:.)) I 

(Qi,Si) = { P j 1 1 P ) 3 , . . . , P , . M r - > z r G P,r ,5i e•{*,to.ti , i 2} , 

l < i < m , l < r < s } U 
{ ( [ Q i . t o ] | l < i < m } U 
{ (Ej j -> E< i + 1 ,Ai -> - • p a , . . . , A , V . ) | 

<7̂ . = (Ai x i , . . . , xa),<pr G {i4' r ,F},</j r = F must hold for 
at least one r, 1 < r < s, 1 < j < /j - 1,1 < i < m } U 

{ ( S i , . [Qi ,*o] '>4l -KP2,---,AB~KP,)\ 

Oit. = (Ai xx,..., A„ x„), ipT G {A'r, F},tpr — F must hold for 
at least one r, l < r < s , l < z < m } U 

{ ( s ; . Ei - .^ i F,A2 -4 F,...,A'k -4 F) I 

Mi.Aj, • •A*} = AT, 1 < j < lu 1 < i < m } U 
{(A' -+A) |AeJV}u 
{([Qi, < k,j) -4 T),{[Qi, = k, k) T), ([Qi,>k, k] T), {[Qit *]->T)\ 
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1 < i < m, 0 < j < Jfc} U 
{ ( [ Q i , to]' T, A[ F, A'2 F,..., A'K F) \ 

{AUA2,...,AK} = N,1 < i < m } U 

{ ( [Qi. i i ] T, Ax F, A[ F,A2 F,A2 F,.. ,,A'R F) \ 

{ A x , A 2 , . . . , A r } = dorn(Pj), 1 < i < m } U 
PjeiQiM) 

{ ( [ Q i , t2] -*T,AI F, A[ - t F,A2 F,A'2 F,...,A'R F) \ 

{AI,A2,. .., AR} = dom(Pj) for some Pj € {Qi,t2), 1 < i < m } U 
{(T z)} and 

in F' are all the productions A F appearing in M'. 

The simulation of T starts with introducing the sentential form ST, in which S 
is the start-symbol of T and T is a marker. The marker will control the derivation 
and S will generate the language of the hybrid CD grammar system with prescribed 
teams. This marker is non-deterministically replaced by a control symbol of the 
form [Qi,fi,j] or [Qi.ffi]- In these nonterminals, Qi is the team working in mode 
fi or gi and j is a counter, necessary for the modes fi £ { < k,= k,> fc}. With 
teams working in mode gi e {*,to,ti,t2} we do not need to count and the third 
component is omitted. 

When the marker \Qi,fi,j] ([Qi, <?;]) is present in the sentential form a sim-
ulation by Qi in mode fi (gi) is simulated. The homomorphism h priming all 
nonterminals in the matrices is necessary to guarantee that the productions are ap-
plied to nonterminals that were already existing in the sentential form before these 
matrices were applied and not to those introduced by a production from these ma-
trices themselves. The counter in the case of modes <k, =k and > k guarantees 
that a team rewrites the sentential form less than k, exactly k or at least k times, 
respectively. In case of mode *, to, h and t2 there is no counting at all. 

In case of t\ and t2, however, the productions in the set F guarantee that a 
team does not stop rewriting until no more component or at least one component 
of the team can no longer be used, respectively. Finally, in mode to the symbol 
[Qi,<o] can be replaced only by E{,. This symbol can then be replaced by 
and back to SiJ+1 until is reached. In this way the correct termination of Qi 
in mode to is checked, by the following restrictions. 

Firstly, T,ij can only be replaced by if the corresponding sequence of pro-
ductions indeed cannot be used anymore. An F is introduced otherwise, since each 
sequence must have at least one <pr = F. Secondly, + i is allowed to be replaced 
by £i .+ 1 only after all primed symbols have been replaced by their originals. Fi-
nally, £ ' . can only be replaced by [Qi, to]' after indeed none of the sequences , 
1 < j < /», can be used and then eventually be replaced by T. 

In every case, afterwards the primes are removed and another team can non-
deterministically take the marker spot and start its simulation in its mode. Even-
tually a terminal string results from S followed by the marker T. This marker is 
then replaced by z thus yielding L(G') = L ( r ) { z } . This symbol z can be removed 
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by a morphism and thus, since it is known from [13] that the family MATac is 
closed under restricted morphisms, L(T) g MATac and the first statement of the 
lemma is proved. 

HPT.CDX C M AT xc can be proved directly by a similar construction, even 
simplified since the marker can eventually be replaced by A, making the use of a 
morphism unnecessary. • 

It is known that PR\$ = M A T $ (see, e.g., [13]), hence the following corollary 
follows directly from Lemma 2. 

Corollary 2 HPT.CDM c PR 

All these results for hybrid prescribed team CD grammar systems immediately 
lead to a result for hybrid CD grammar systems with automatically formed teams, 
presented next. 

Corollary 3 For s > 1 

HTXCD[X] C HT.CD[X] C PR[X}. 

Combining these lemmas and corollaries concerning the new definitions, the 
following theorem is obtained. 

Theorem 1 For s > 2 

HT.CD^ C HPT.CD^ = HPTsCDM = PRW. 

5 Weak versus strong rewriting 
It is not hard to see that the principle of weak rewriting, not having to.apply pro-
ductions if they cannot be applied, resembles the appearance checking feature in 
regulated rewriting. Therefore, the following lemma does not come as a surprise. 
In the sequel, a restriction to only one production per component will be indicated 
by a 1 added as subscript. To be even more precise, denote UmSCut for the class of 
unordered scattered context grammars with unconditional transfer and m scattered 
context rules and denote PmTwCD\(f) for the class of prescribed team CD gram-
mar systems with m teams of variable size, 1 production per component, working 
in mode / and operating in the weak rewriting step. 

Lemma 3 For m > 1 and f 6 { = 1, > 1, *} U { < k | k > 1} 

UmSC[$ = PmTwCD[x](f) and UmSCM = PmT.CD[x](f). 
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Proof Only the inclusion from left to right of the first statement is proved 
here, all other inclusions.can be proved in a similar straigthforward way. Consider 
an unordered scattered context grammar 

G = (N,T,S,P,F) 

with unconditional transfer and m scattered context rules. Moreover, for P = 
{P1,P2, • • ,Pm}, Pi • (a»,i,Q!i,2,---iQ!«,*i) {0i,i,Pi,2,---,0i,ki) and 1 < i < rn, 
denote 

ri,j = ai,j f°r 1 < j < ki-

To simulate this unordered scattered context grammar, construct the prescribed 
team CD grammar system 

r = (AT, T, S, Px, P2 , • • •, Pn, Qi, Qi, • • •, Q m ) , 

where 

Pi, P 2 , . . •, Pn are the components {rij } for 1 < j < ki and 1 < i < m and 
Qi,Q2, •tQm are the teams {{rij}, {r2j}, • . . . { V j } } for 1 < j < h and 

1 < i < m. 

A parallel rewriting step of an unordered scattered context grammar is simulated 
by a parallel rewriting step of a team, with its components being exactly the same 
productions as in the scattered context rule. Every component contains exactly 
one such a production and the number of teams equals the number of scattered 
context rules. Any production in G as well as in T does not have to be applied, if 
it cannot be applied to the sentential form. 

Note that the proof requires the unordered character of the scattered context 
grammar, for a component of a team can rewrite any occurrence of the left-hand 
side of its production in the current sentential form. Since a team has to simulate 
the use of a scattered context rule, its mode of derivation is restricted to the cases 
as stated in the lemma. Clearly, L(T) = L(G) and the lemma is proved for the case 
with as well as for the case without A-productions. • 

This lemma has some interesting corollaries. 

Corol lary 4 For x S {s , * } , / € { = 1, > 1, *} U { < it | k > 1} and g £ { * } U { < 
k, = k,>k | k > 1} 

Pi?LAt = PTwCD[x](f) £ PTxCD^(g). 

Proof The equalities PR[$ = USC[$ can be found in [16] and Lemma 3 
thus leads to the equality in the statement. In [19] it is proved that the language 
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{a2" | n > 1} cannot be generated by P R ^ . However, the programmed grammar 
(with unconditional transfer) 

Gi = ( {S ,A ,P} , {a} ,S ,P) , 

where 

P = { ( l : S - 4 A 4 , { 1 , 2 , 5 } , { 1 , 2 , 5 } ) , 
( 2 : S - > P , { 3 } , { 3 } ) , 
(3 : A S , {3 ,4 } , {3 ,4 } ) , 
(4 : A F, {1}, {1}), 
( 5 : A - > a , { 5 } , { 5 } ) } 

generates L(Gi) = {a2" | n > 1} G PRluXJ and thus PR[X} £ Pi?W holds. Finally, 
PPW = PTxCD^(g), for x e { s , * } andg € {*}U{<k, = k, >k \ k > 1 , is stated 
in Section 3. • 

Thus, for several modes of derivation, a prescribed team CD grammar system 
with only 1 production per component and operating in the weak rewriting mode 
cannot be simulated by a prescribed team CD grammar system operating in the 
strong rewriting step not even when there is no limit of 1 production per component. 

Corollary 5 For f G { = 1 , > 1 , * } U {<k \ k > 1} 

CD(t) c PTwCDi(f) c PTwCD$(f). 

Proof The equality CD(t) = ETOL can be found in [5]. The strict inclu-
sion ETOL C O , where O denotes the family of languages generated by the ordered 
grammars (with context-free productions) as introduced in [18], can be found in 
[13]. Furthermore, O C PRut can be found in [14]. In [16], PRut = USCut is 
proved. Finally, in [15], it was proved that PRut C PR^t• Together with Lemma 3 
these results lead to a proof of the statement. • 

Hence, for several modes of derivation, already a prescribed team CD grammar 
system with only 1 production per component and operating in the weak rewriting 
step can generate more than a CD grammar system working in mode t can. 

Corollary 6 For f G { = 1, > 1, *} U {<k \ k > 1} 

PTmCD[x]{f) = PT.CD[x]{f). 

Proof These results follow from Lemma 3 and the fact that USCW = Pi?W 
(see, e.g., [13]) and P P W = PTtCD^(f) for / € { * } U {<k, = k, >k \ k > 1} (see 
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Section 3) hold. • 

Hence teams with one production per component suffice for prescribed team 
CD grammar systems with teams of variable size operating in derivation mode = 1, 
> 1, * or < k (for a A; > 1). 

Remark 1 Note that CD{f) = CF (see Section 3), though CF C PT,CDx{f) 
(see Section 3 and Corollary 6), for f 6 {= 1, > 1, *} U {< k | k > 1}. Hence even 
CD grammar systems with n components cannot generate all languages that can be 
generated by prescribed team CD grammar systems with teams of variable size and 
only 1 production per component, for modes f £ { = 1 , > 1 , * } U { < A ; | A ; > 1}. 

6 Open problems 

It is clear that many open problems remain, both in the field of homogeneous 
versus heterogeneous teams as in the case of weak versus strong rewriting. To start 
with the latter: is strong rewriting more powerful than weak rewriting, or is the 
class of programmed grammars with unconditional transfer equal to the class of 
programmed grammars with appearance checking? My conjecture is the former, 
since the latter would settle the conjecture P-R^ C Pi?Lc' in the negative and 
this very interesting open problem in the theory of formal languages is very widely 
conjectured to hold. In fact, in [29], the class of programmed grammars is claimed 
to be closed under intersection with regular sets (which would result in a proper 
inclusion indeed), but the proof is subject to disbelief (see, e.g., [15]). 

A possible angle into solving this open problem is to investigate the generative 
power of prescribed team CD grammar systems operating in the weak rewriting step 
with a maximal derivation mode. This might help to fill or to definitely establish 
the gap between programmed grammars with unconditional transfer and those with 
appearance checking. More investigation into the weak rewriting step might also 
finally prove PPW £ 

It is interesting to note that also for colonies (for a definition of colonies, see, e.g., 
[12]) and for teams in eco-grammar systems ([2]), the relation between weak and 
strong rewriting is unknown. An answer to those relations would not necessarily 
solve the case for teams in CD grammar systems, but it might shed light on some 
intrinsic characteristics of weak versus strong rewriting. However, in the case of 
colonies no relation between the two ways of rewriting is known yet, whereas in 
the case of eco-grammar systems it was proved in [2] that strong rewriting can be 
simulated by weak rewriting. 

Concerning homogeneous and heterogeneous teams, the main open problem 
is whether automatic forming of teams strictly increases the generative power of 
hybrid CD grammar systems. The conjecture, at least for the A-free case, is yes 
since this would result in confirmation of the conjecture, stated in [23], that the 
inclusion HCD C MATac is proper. This might be a difficult open problem to settle 
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since several years after their introduction in [22] still many problems concerning 
hybrid CD grammar systems are open. 

Especially the relation with matrix grammars is wide open, since in [23] also 
the relation between matrix grammars without appearance checking and hybrid 
CD grammar systems is posed as an open problem. However, several different 
angles have been provided so far. For example, in [1], graph controlled hybrid CD 
grammar systems (GCHCD) were defined and they were proved to be included 
in the matrix grammars with appearance checking and to include both the hybrid 
CD grammar systems and the matrix grammars without appearance checking. It 
is not known, however, whether these inclusions are proper or whether equalities 
can be proved, but one of the inclusions of MAT C GCHCD C MATac must be 
proper. A solution to (one of) these open problems could shed light on this relation 
between hybrid CD grammar systems and matrix grammars without appearance 
checking, or perhaps even solve this open problem. 
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Test Tube Systems or How to Bake a DNA Cake 

Rudolf FREUND * Franziska FREUND f 

Abstract 
We introduce various general models for test tube systems which not only 

are a theoretical basis for the different test tube systems used for practical 
applications (confer to [l], [2], [3], [12]), but also cover different theoretical 
models to be found in literature, e.g. the test tube systems based on the 
splicing operation introduced in [4] as well as test tube systems based on the 
operations of cutting and recombination introduced in [9]. In test tube sys-
tems specific operations are applied to the objects in their components (test 
tubes) in a distributed and parallel manner; the results of these computations 
are redistributed according to specific input and/or output filters. We inves-
tigate relations between the different models of test tube systems introduced 
in this paper and show how the results presented in [4] and [9] fit into our 
general framework. Moreover, we investigate the computational power of test 
tube systems with context-free productions and regular filters. 

1 Introduction 
Test tube systems were introduced as biological computer systems based on DNA 
molecules ([1], [2], [3], [12]), and the practical solution of various problems (e.g. 
even of NP complete problems like the Hamiltonian path problem in [1]) with such 
systems was described. The theoretical features of test tube systems based on the 
splicing operation were investigated in [4]; in [9] test tube systems based on the 
operations of cutting and recombination were explored; in both cases, these test 
tube systems were shown to have the computational power of Turing machines. 

Most of the test tube systems to be found in literature have the following com-
mon features: in the components (test tubes) of the systems specific operations 
are applied to the objects in the tubes in a distributed and parallel manner; the 
results of these computations are redistributed according to specific output and/or 
input filters which only allow specific parts of the contents of a tube to pass over 
to other test tubes. As it was shown in the theoretical papers mentioned above 
([4], [9]), even very restricted kinds of such filters testing for the existence respec-
tively non-existence of specific symbols respectively markings allow for reaching the 
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computational power of Turing machines. The computational universality of these 
specific variants of test tube systems was proved in these papers, too. 

In [5] and [6] a general framework for describing networks of language identifying 
devices (networks of language processors) was introduced and investigated. In 
this paper we shall restrict ourselves to introduce various general models for test 
tube systems. We investigate relations between these models of test tube systems 
and also consider their computational power with respect to the complexity of the 
output/input relations and the filters we use. Moreover, we show how the results 
presented in [4] and [9] fit into the general framework presented in this paper. 

In the second section we start with defining the notions from formal language 
theory needed in this paper; we introduce the formal definitions for the general 
models of test tube systems to be investigated in this paper as well as the notions 
of test tube systems based on the splicing operation ([4]) and the test tube systems 
based on the operations of cutting and recombination ([9]); moreover, we give some 
examples illustrating the notions of test tube systems and we show how the test tube 
systems based on the splicing operation ([4]) and the test tube systems based on the 
operations of cutting and recombination ([9]) can be interpreted in the framework 
introduced in this paper. In the third section we investigate some characteristic 
features of the different general models of test tube systems and also elaborate some 
specific results for test tube systems which use context-free productions in the test 
tubes and regular filters for redistribution. A short summary of the results obtained 
in this paper and an overview of future research topics conclude the paper. 

2 Definitions and Examples 
In this section we define some notions from formal language theory and recall 
the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and of cut-
ting/recombination schemes (CR schemes; confer to [8]). Moreover, we introduce 
the general definitions of test tube systems and give some explanatory examples. 

2.1 Formal language theory prerequisites 
In this subsection we only define some notions from formal language theory that 
we shall need in this paper. For general formal language theory prerequisites we 
refer to [16]. 

The free monoid generated by the alphabet V is denoted by V*, its elements 
are called strings or words over V\ A is the empty string, V+ = V* \ {A} . 

A grammar scheme 7 is a triple (V}v, VT,P) , where V/v is a (finite) alphabet of 
non-terminal symbols; VT is a (finite) alphabet of terminal symbols with V¿v fl VT = 
0; P is a (finite) set of productions of the form (a , /? ) , where a € (VKr U V T ) + and 
/? G (Vjy U VT)* . 'For two words x,y £ (V/v U VT)+ , the derivation relation h 7 is 
defined if and only if x = uav and y = u¡3v for some production (a,/?) £ P and two 
strings u,v £ (V/v U VT)* ; we then also write x h7 y. The reflexive and transitive 
closure of the relation h7 is denoted by h* . 
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A grammar G is a quadruple (V/v, Vr,P,S), where 7 = (V/v, Vr,P) is a gram-
mar scheme and 5 G V/v; in a more general way, we can also take S G (V}v U VT)+ • 
The A-free language generated by G is L (G) = {u; G VP | Sh* u>}. 

The grammar G, G — (VN,VT,P,S), as well as the corresponding grammar 
scheme (VN,VT,P ) is called context-free, if every production in P is of the form 
(A, w), where A G Vjv and w G (Vjv U Vr)* ; G is called regular, if every production 
in P is of the form (A, w), where A G Vjv and w G Vf Vjv U V,j . 

The family of (A-free) languages over VT generated by arbitrary, context-free, 
and regular grammars is denoted by ENUM ( V r ) , CF(VR), and REG(VT), 
respectively, and the family of finite (A-free) languages over VT is denoted by 
FIN(VR)- The corresponding families of languages over arbitrary terminal al-
phabets are denoted by ENUM, CF, REG, and FIN, respectively. By REG+ we 
denote the family of regular languages of the form W+ for some finite set W. 

A grammar scheme YU (VT) with 7U (VT) = (V/v, VT, P) is called universal (for 
VT) if for every L G ENUM (Vr) there exists a word AL such that the grammar 
GL with GL = (Vyv, VT, P,AL) generates L. One of the important results of formal 
language theory is that for every VT such a universal grammar ~F(J (VR) exists. 

2.2 Splicing schemes and cutting/recombination schemes 
We now recall the definitions of splicing schemes (H-schemes; see [4], [7], [13]) and 
of cutting/recombination schemes (CR-schemes; confer to [8]). 

As the empty word has no meaningful representation in nature, A is not con-
sidered to be an object we have to deal with; as for grammars above, also in the 
following only mechanisms for generating A-free languages will be considered (all 
the definitions we shall give have been adapted in a suitable manner). 

Definition 1. A splicing scheme (H-scheme) is a pair a, a = (V, R), where V is 
an alphabet and R C V*#V*$V*#V*; # , $ are special symbols not in V. R is 
the set of splicing rules. For x, y,z,w G V+ and r = tii#U2$W3#U4 in R we define 
(a:, y) hr (z, w) if and only if x = «i«1^2X2, y = J/1M3U43/2, and 2 = x\u\u4y2, w = 
y1u3u2x2 , for some x1,x2,yi,y2 G V*. 

For any language L C V+, we write 

<r(L) = {z G V+ | (x,y) hr (z,w) or (x, y) \-r (w,z), for some x,y E L,r € R], 

and we define a* (L) — (Jt>o <T* .where 
cr° (L) = L, <7*.+1 (L) = a* (L) U a (a1 (L)) f o r i > 0 . 

An extended H-system (or extended splicing system) is a quadruple 7 , 7 = 
(V,VT,A,R), where VR C V is the set of terminal symbols and A is the set 
of axioms. The language generated by the extended H-system 7 is defined by 
L(Y)=A*(A)NV+. 

Definition 2. A cutting/recombination scheme (or a CR-scheme) is a quadruple 
a = (V,M,C,R), where V is a finite alphabet; M is a finite set of markings; V 
and M are disjoint sets; C is a set of cutting rules of the form u # / $ m # v , where 
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u G V* U MV*, v e V* U V*M, and m,l G M, and # , $ are special symbols not in 
V U M\ R C M x M is the recombination relation representing the recombination 
rules. Cutting and recombination rules are applied to objects from 0 (V, M) , where 
we define 

O {V, M) = V+ U MV* U T M U MVM. 

For x, y, z G 0 {V, M) and a cutting rule c = u # / $ m # v we define x he (y, z) if 
and only if for some a G V* U MV* and ¡3 E V* U V*M we have x = auv/3 and 
y = aul, z = mvj3. For x,y,z G 0 (V, M) and a recombination rule r = (/, m) from 
R we define (x, y) h r z if and only if for some a G V* U MV* and /? E V* U V*M 
we have x = al, y = m/3, and z = a/3. For a CR-scheme a = (V, M, C, i i ) and any 
language L C O (V, M) we write 

a (L ) = {y | x t-c (y, z) or x hc (2, y) for some x € L, c E C] U 
{2 | (x, y) hr 2 for some x,y & L, r G -ft} ; 

<7* (L) and <r' (L) for t > 0 are defined in a similar way as for splicing schemes. 
An extended CR-system is a sextuple 7, 7 = (V, M,VT,A, C, R), where VT C V 

is the set of terminal symbols, A is the set of axioms, and (V, M, C, R) is the 
underlying CR-scheme. The language generated by the extended CR-system 7 is 
defined by L ( 7 ) = <7* (A) NKT+. • 

Thus <T(L) contains all objects obtained by applying one cutting or one recombi-
nation rule to objects from L\ A*(L) is the smallest subset of 0 (V, M) that contains 
L and is closed under the cutting and recombination rules of cr. L (7) is the set of 
all terminal words that can be obtained from the axioms by an arbitrary number 
of cuttings and recombinations. 

There is a close relationship between CR-schemes and splicing schemes (H-
schemes): For instance, applying the splicing rule ui#W2$t/3#ti4 to two strings 
X1U1U2X2 and y\U3U^y2 yields the two strings X\u\u^y2 and yiU3U2X2 which cor-
responds to cutting the strings X1U1U2X2 and y\uzu^y2 into the strings xiiti [m]+ , 
[m]~ u2x2 and y\u$ [m]+ , [m]~ u$y2 by using the cutting rules Ui# [m]+ $ [m]~ #t«2 
and ti3# [m]+ $ [m]~ #1x4 and recombining them immediately by applying the re-
combination rule , [ m ] - j in a crosswise way. 

In [13] it was shown that H-systems with a finite set of axioms and a finite set 
of splicing rules characterize REG, whereas with a regular set of splicing rules we 
obtain ENUM. In [7] it was proved that by adding specific control mechanisms 
like multisets or context conditions (permitting respectively forbidden contexts) to 
extended H-systems with a finite number of axioms and a finite number of splicing 
rules again the computational power of Turing machines or arbitrary grammars can 
be obtained. Similar results for CR-systems were proved in [8]. 

2.3 Test tube systems 
In this section we introduce several general models of test tube systems (confer to 
[2], [3], [4], [12] for practical implementations). The idea of test tube systems is to 
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describe computational devices where the computations in each test tube are based 
on specific operations and where any computation is done in a distributed way. As 
a communication step the resulting contents of the test tubes then is redistributed 
according to specific constraints, i.e. the contents of each test tube is distributed to 
all test tubes according to specific output and input filters again, whereas the rest 
remains in the test tube. These ideas have already be formalized-for the splicing 
operation in [4] and for the operations of cutting and recombination in [9]. 

Definition 3. A test tube system with output and input filters (a TTSOI for short) 
<r is a sextuple (B , n, A, p, O, I) , where 

1. B is a s6t of objects; 

2. n, n > 1, is the number of test tubes in <r; 

3. A = (A\, . . . ,An ) , where Aj is a set of axioms, which are elements from B, 

4. p is a sequence (pi,...,pn) of sets of test tube operations, where pi contains 
specific operations for the test tube Tj, 1 < i < n; 

5. O = (Oi, ...,On), where O, C B is the output filter for the test tube Ti, 

6. I = (7 i , . . . , I n ) , where 7,- Ç B is the input filter for the test tube Ti, 1 < i < n. 

In order to indicate the number n of test tubes, we also call <r a TTSOI„. 
The computations in the system a run as follows: At the beginning of the 

computation the axioms are distributed over the n test tubes according to A, i.e. 
test tube Ti starts with Ai. Now let Li be the contents of test tube Ti at the 
beginning of a derivation step. Then in each test tube the rules of Ti operate on 
Li, i.e. we obtain pi (Li ) . The next substep is the redistribution of the p? (L,) over 
all test tubes according to the corresponding output and input filters. From p* (£ , ) 
only the part (p* (L,) fl 0 , ) n / j that passes the output filter Oi as well as the input 
filter Ij is distributed to the test tube Tj, 1 < j < n, whereas the rest 

remains in Ti. The final result of the computations in a consists of all objects from 
B that can be extracted from the final test tube T\ via the ouput filter Oi. 

More formally, an instantaneous description (ID for short) of the system tr is 
an n-tuple (Li, ...,Ln) with L, C B , 1 < i < n, where L, describes the contents of 
test tube Ti at the beginning of a derivation step. The initial ID is (Ai , . . . , An), 
i.e. at time t — 0 the test tubes Tj contain the axioms Ai. Let (L\ (<), ...,Ln (t)) 

1 < i < n; 

1 < i < n; 
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denote the ID at time t; then one derivation step with the system cr yields the ID 
(Li (i + 1) , . . . , Ln (t + 1)), where 

[Pi (Li (<)) \ (Ui<i<n ({Pi (Li (0) n o.-) n / ,))) . 
We also write (Lx (t),.... L„ (t)) \-c (Lx (t + 1) , . . . , Ln (t + 1)). The language gen-
erated by the system a, L (a), then is defined by L (<r) = Ui^o (^i ( 0 n • More-
over, we say that a is of type (Fi, F2 , F3, F 4 ) , if Ai G Fi, pi G F?, Oi G F3 , and 
Ii G F4 for all i with 1 < i < n. ' • 

Definit ion 4. A test tube system with input filters (a TTSI for short) cr of type 
(Fi,F2, F4) is a quintuple (B , n, A,p, I), where (B , n, A, p, (B , . . . , B) , I) is the cor-
responding TTSOI of type (Fi, F2, {B} ,F4). A test tube system with output filters 
(a TTSO for short) a of type (F1.F2.F3) is a quintuple ( B , n , A , p , 0 ) , where 
(B,n,A,p,0,(B,...,B)) is the corresponding TTSOI of type (Fu F2, F3,{B}). In 
order to indicate the number n of test tubes, we also call a a TTSIn and a TTSO n , 
respectively. n 

We should like to mention that in general the TTSOI (B, n, A,p, (B, ...,B), I) 
corresponding with a TTSI (B , n, A, p, I) of type (Fi, F2 , F4 ) need not be a TTSOI 
of type (Fi, F2, F4 , F 4 ) , because B need not be an element of F4 . 

Remark 1. The reader should observe that we are not dealing with multisets in 
this paper; hence we assume that every object in any test tube is available in an 
unbounded number. Moreover, in the phase of redistribution every object x from 
the test tube Ti that passes the output filter Oi is distributed (in an unbounded 
number) to each test tube Tj the input filter of which allows x to pass. In some sense 
this corresponds to an intermediate step which in practice is called amplification, 
e.g. in test tubes working with DNA strands (and the operation of splicing) copies 
can be made by applying the polymerase chain reaction (see [3]). Moreover, it 
would be a more practical assumption that instead of pi (L, ) any arbitrary (finite) 
subset of p* (Li) could evolve in the test tube Ti during a computation period. 
Then only this subset would be distributed to all test tubes according to the input 
filters. In fact, in most cases this would still allow us to generate all desired objects, 
although it would never be clear, when these objets would evolve. In a practical 
implementation the number and the size of objects that can be generated also 
depends on the amount of original material of axioms we take at the beginning. 
Moreover, if parts of (the subset of ) pJ (Li) are to be redistributed over different 
test tubes it is only necessary to assume that any allowed distribution of the whole 
material will possibly happen; in practical implementations of test tube systems the 
intermediate amplification (see [2], [3], [12]) of the material may already guarantee 
that enough material is distributed to all the possible test tubes. • 

A minimal requirement on the feasability of the input filters / , and the output 
filters Oj is their recursiveness, i.e. we demand that it is decidable whether an 
object from B can pass a filter or not. 
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The following example shows how under these constraints every recursive lan-
guage can be generated by a large class of TTSOi: 
Example 1. Let L C V+ be an arbitrary recursive language and let be the 
TTSOi cL = (B, 1, (A) , (p), (L)) such that p* (A) D L. Then we obtain (A) h„ t 

(p* (A) n L) = (L) and therefore L (a) = (A D L) U (p* (A) DL) = L. 
Hence, for any family of languages F3 with F3 C REC, a language L C F3 

can be generated by a TTSOi of type (F\, F2, F3) if F\ contains a set A such that 
p* (A) D L for some p € F2. • 

Definition 5. A CR-TTSOI a is a TTSOI (O (V, M), n, A, p, O, I), where p = 
(pi,...,pn), pi = Ci U Ri, 1 < i < n, and a¡ = (V, M,C¡, Ri) is a CR-scheme. 
In order to emphasize that a is a CR-TTSOI, we shall also write (CÍ,RÍ) for pi 
instead of QURi. An H-TTSOI <7 is a TTSOI (V+, n, A, p, O, I), where <r¿ = (V, p•), 
1 < i < n, is an H-scheme. A G-TTSOI a is a TTSOI (W (VN,VT), n, A, p, O, I), 
where VN and VT are disjoint alphabets, W (VN , Vt) denotes (Vjv U Vr)+ , and 

= (VN,VT,PÍ) , 1 < i < n, is a grammar scheme; if every grammar scheme c¿, 
1 < i < n, is context-free (regular), then also a is called context-free (regular). • 

Remark 2. The notation W (VN ,VT) in a G-TTSOI a, a -
(W (Vjv, Vt) , n, A, p, O, I), allows us to distinguish the non-terminal symbols in 
VN and the terminal symbols in VT\ <t is considered to work "correctly" only if 
I (cr) C VT+. In a similar manner for a CR-TTSOI a, a = (O (V, M), n, A, p, 0,1), 
we demand L (cr) C V+. • 

We now exhibit an example of a regular G-TTSO7 of type (FIN, FIN, REG+) 
which generates a non-context-free language: 

Example 2. Let <r = (W (V^r, VT) , 7, A, p, O) be the G-TTSO7 with 
VN = {X,Y},VT = {atb}, 
A = (0, {XX} , {XX} , {XX} , {XX} ,0 ,0 ) , 
P = (PI,P2,P3,P4,P5,P6,PT) , o = ( 0 i , 0 2 , O3, O4, O5, 06 ,07 ) . 
P l = 0, P 2 = { (X , a) , (Y, a)} , p3 = {(X, b), (Y, b)} , 
P4 = {(X, aY ) } , p5 = {(X, 6Y)} , P 6 = {(Y, a X ) } , p7 = {(Y, W ) } , 
Oi = 0 2 = O3 = {a, 6}+ , 0 4 = 0 5 = {a, 6, Y } + , 0 6 = Or = {a, 6, X}+ . 
The generation of the words ww in this G-TTSO briefly can be described in the 

following way: 
From arbitrary words of the forms uXuX, u G {a, 6}* , and vYvY, v £ {a, 6 } + , 

respectively, by the productions in p2 we obtain uaua and vava, respectively, 
whereas by the productions in p3 we obtain ubub and vbvb, respectively, i.e. we ob-
tain terminal words from {a, 6}+ , which then can be extracted from as terminal 
results of the computations in cr. By the corresponding productions in £>4, ps, p$, 
pi, the length of the current strings is prolongued by one more symbol in a syn-
chronized way, because only the strings of the forms uaYuaY, ubYubY, vaXvaX, 
and vbXvbX, respectively, can pass the corresponding output filters 0¿ of the test 
tubes Ti, 4 < i < 7. These observations show that L (a) = < ww \ w £ {a, 6 } + . • 
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For CR-TTSOPthe following types of filters are suitable: 
Definit ion 6i A subset of 0(V,M) is called a simple (V, M)2-filter if it equals 

1. V+ or 

2. { m } V* for some m 6 M or 

3. V* {m} for some m G M or 

4. { m } V* { n } for some m,n £ M. 

A simple (y, M)2-filter is called a simple (V, M)1-ftlter, if it is not of the form 
{ m } V* {n } . Any finite union of simple (V, M){-filters, i £ { 1 , 2 } , is called a 
(V, M)i-filter; the families-of (V, M),-filters and simple (V, M)t-filters for arbitrary 
V, M are denoted- by CRFi and CRSFi, respectively. • 

The proof of the following result is obvious from the definitions and therefore 
omitted: 
L e m m a 1. The union and the intersection of two (V, M){-filters again is a (V., M)r 

filter, i 6 {1, 2}. Moreover, O (V, M) is a (V, M)2-filter, but not a (V, M) r f i l ter . 

The distribution of the contents of a test tube over all test tubes of the system 
not only gives rise to theoretical problems (for obtaining filters- of a complexity as 
low as possible) but also to practical problems ("waste" of the material that is put 
into test tubes where on one hand it-cannot be processed or used any more and on 
the other hand it nonetheless has to remain forever). Hence, a more natural and 
realistic scenario is to assume that the contents of-the test tubes is only distributed 
to selected test tubes that are prescribed from the beginning. In fact, most of the 
test tube systems to be found in literature work in such a manner, i.e. programs 
how to redistribute the contents of test tubes are described (see [1], [3], [12]). 

A formalization of these ideas discussed above leads to the following definition: 
Definit ion 7. A test tube system with prescribed output/input relations (a TTSPOI 
for short) cr is a quintuple (B, n, A,p, D), where 

1. B is a set of objects; 

2. n, n > 1, is the number of test tubes in cr; 

3. A = (A\,..., An) is a sequence of sets of axioms, where A, C B, 1 < i < n; 

4. p is a sequence (p\, ...,pn) of sets of test tube operations, where pi contains 
specific operations for the test tube T;, 1 < i < n; 

5. D is a (finite) set of prescribed output/input relations between the test tubes 
in o of the form (i, F,j) , where l < i < n , l < j < n and F is a (recursive) 
subset of B; F is called a filter between the test tubes TJ and I } . 
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In order to indicate the number of test tubes, we also say that a is a TTSPOIn . 
The computations in the system a run as follows: At the beginning of the 

computation the axioms are distributed over the n test tubes according to A, i.e. 
test tube Ti starts with A,-. Now let Li be the contents of test tube Ti at the 
beginning of a derivation step. Then in each test tube the rules of p,- operate on 
Li, i.e. we obtain p* (Li) . The next substep is the redistribution of the p* (Li) over 
all test tubes according to the corresponding output/input relations from D, i.e. if 
(h F j) £ D then the test tube Tj from p; (L,) gets p* (Li) fl F, whereas the rest of 
p*i (Li) that cannot be distributed to other test tubes remains in Ti. The final result 
of the computations in cr consists of all objects from B that can be extracted from 
the final test tube Ti (hence usually we shall assume F = 0 for all (1, F,j) £ D). 

More formally, an instantaneous description (ID for short) of the system a is 
an ra-tuple (Li, ...,Ln) with L; C B, 1 < i < n, where Li describes the contents of 
test tube Ti at the beginning of a derivation step. The initial ID is (A\,..., An), 
i.e. at time t = 0 test tubes Ti contain the axioms A,-. Let (L\ (t),..., Ln (t)) 
denote the ID at time f; then one derivation step with the system cr yields the ID 
(Li (t + 1) , . . . , Ln (t + 1)), where 

Li (t + 1) = ( (J (Pi ^ W) n F) ) U I (^ (t)) \ (J (p* (Li (i)) n F) 

We also write (L\ (t) , . . . , Ln (t)) (Li (t + 1),..., Ln (t + 1)). The language gen-
erated by the system cr, L (cr) , is defined by L (cr) — (Jt^o L\ (t) . Moreover, we say 
that cr is of type (F\,F2, F3) , if A,- £ Fx, pi £ F2 for all i with 1 < i < n, and 
F £ F3 for all F with (i, F,j) £ D for some i,j with 1 < i < n, 1 < j < n. • 

Definition 8. A CR-TTSPOI a is a TTSPOI (O (V, M), n, A, p, D), where p = 
(pi , . . . ,p„ ) , pi = (Ci,Ri), 1 < i < n, and (T,- = (V,M,Ci,Ri) is a CR-scheme. 
An H-TTSPOI a is a TTSPOI (V+, n, A,p, D) where <n = (V,Pi), 1 < i < n, 
is an H-scheme. A G-TTSPOI cr is a TTSPOI (W(VN, VT), n, A, p, D), where 
f i = (VN, VT,pi), 1 < i < n, is a grammar scheme; if every grammar scheme cr,-, 
1 < i < n, is context-free (regular), then also a is called context-free (regular). • 

Remark 3. As already stated in Remark 2 for CR-TTSOI and G-TTSOI, respec-
tively, also for a CR-TTSPOI a, a = (0 (V, M), n, A, p, D), we demand L (a) C V+ 
and for a G-TTSPOI a, a = (W (VN,VT) ,n,A,p,D), we demand L(<r) C V / . 

The following results were established in [9]: 
Propos i t ion 1. For every L £ ENUM we can construct a CR-TTSI of type 
(FIN,FIN,CRFi) which generates L. 
Propos i t ion 2. For every L £ ENUM we can construct a CR-TTSPOI4 of type 
(FIN, FIN, CRF2) which generates L. 

For the CR TTSI in Proposition 1 it is an open question whether the number 
of test tubes needed for generating arbitrary recursively enumerable languages can 
be bounded or not. 
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The following result was proved in [4]: 
Propos i t ion 3. For every L € ENUM (VT) we can construct an H-TTSl8+card(vT) 
of type (FIN, FIN, REG+) which generates L. 

3 Results 
In the first part of this section we elaborate some general relations between the 
different models of test tube systems we introduced in the previous section; these 
results even hold true for arbitrary objects and for arbitrary operations used in the 
test tubes. In the second part of this section we shall prove some specific results 
for test tube systems working on strings, e.g. we shall show how every recursively 
enumerable string language can be generated by test tube systems using context-
free productions and a very restricted form of regular filters only. 

3.1 General results for test tube systems 

In this subsection we show some general results for the different models of test 
tube systems introduced in the previous section; these results neither depend on 
the operations used in the test tubes nor on the objects we consider. Moreover, we 
give some applications of these general results for CR test tube systems. 

For every TTSOI we can easily construct an equivalent TTSPOI generating the 
same language: 
L e m m a 2. Let a = (B,n,A,p,0,l) be a TTSOIn of type (F1,F2,F3,FA) 
and let F0 be a set containing L(cr). Then the TTSPOI n + i a' = 
( 5 , n + 1 , ( 0 , p u . . . , p „ ) , ( 0 , A i , . . . , A n ) , D ) with 

D={(i+l,OinIj,j+l) | 1 < i,j < n } u { ( 2 , F 0 n O ! , l ) } 

generates the same language as a, i.e. L (a1) = L (a). Let F\ and F2 contain 
the empty set and denote n (F3, FA) = {X n Y \ X € F3 A Y € F 4 } ; then <r' is 
a TTSPOI„+i of type (F1,F2,F5) for every family F5 with F5 D { F 0 n O i } U 

' n (F3, F4). 

Proof. The components (test tubes) T}'+1, 1 < i < n, in a' work in the same way as 
the corresponding test tubes Ti in o, because by definition they contain the same 
rules, i.e. = pi. We also start with the desired axioms Aj in each test tube 
T'j+x, 1 < j < n. The output/input relations (i+ 1, Oi fl Ij,j + 1) , 1 < i < n, 
1 ^ j < n, guarantee that the test tubes Tj'+1 in a' are distributed in the same 
way as the test tubes T) in a after each computation step. The test tube T[ is only 
needed to extract the final objects in cr' in a similar way as by extracting these 
strings from Ti in cr. In sum we obtain 

(Alt..., An) K (Li («),...,£„(*)) 
(L\ (< + 1),..., Ln (t + 1)) 
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if and only if 

(01^1, . . . , A n ) h ; , ( L 0 ( < ) , L 1 ( i ) , . . , i „ W ) 
(Lo ( 0 U (Lx (t) n (F0 n Ot)) ,Ll(t+l),...,L„(t+ 1)) 

which immediately yields 

L ( • ) = Ur=o Lo (0 = 0 U U^o (¿i (0 n (F0 0 0:)) = 
( U ~ o Li (t) n 0 0 n F 0 = L (o-) n F 0 = L (<r). 

• 

Corol lary 1. For every L G ENUM (VT) we can construct a CR-TTSPOI of type 
(FIN, FIN, CRFi) which generates L. 
Proof. From Proposition 1 we know that for L we can construct a CR-TTSOI 
<r = (0(V,M),n,p,(0(V,M),...,0(V,M)),I) of 
type (FIN,FIN, {0(V,M)},CRFx) with L(a) = L. Now take F0 = V+ (ob-
serve that V+ G CRFx)] obviously, for any F G CRFX we have F n O (V, M) = F 
and therefore {F0 D O J U (n ({O (V, M)} , CRFi)) C CRFu hence, we can apply 
Lemma 2. • 

Because of Lemma 1, the following result, for instance, holds true for CR-
TTSPOI of type (FI,F2,CRFi), i G {1,2} : 
Lemma 3. Let a = (B,n,A,p,D) be a TTSPOI„ of type ( F i , F 2 , F 3 ) . If the 
family of filters F3 contains the empty set and is closed under union, then we can 
construct an equivalent TTSPOI„ <r' = (B, n,A,p, £>') of the same type (Fi, F2, F3) 
such that for any two test tubes there is exactly one output/input relation (by a 
filter from F3), and moreover, the derivation relations b a and hCT< are identical. 
Proof. The result is obvious by defining 

D'= U U n 

Observe that Fij is empty if in D no output/input relation between Ti and Tj 
exists. • 

Remark 4. If we want to use the filters Fij t i , . . . , F i j ^ only instead of the union 
filter Um=i between the test tubes Ti and Tj, but still do not want to have 
more than one connection between two test tubes, we have to add k additional test 
tubes T i , j , i , - ,T i J i k , which with (time) delay one contain the same strings as Ti, 
and then from T1 J ] m by the filter F; J i m distribute this filtered part of TJ to Tj, 
i-e. Pi,j,m = 0> and instead of the output/input relations (i, F>iJim, 

j), 1 < m < k, 
we have the relations (i, Fijim,(i,j, m)) and ((i,j, m) , Fijim,j) for all m with 1 < 
m < k. • 
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As an immediate consequence of these considerations, (V , M)i-filters, i G { 1 , 2 } , 
which by definition are finite unions of simple (V, M) i-filters, in the same way can 
be split up into their components. Hence, Corollary 1 now can be sharpened to 
the following result which shows that in CR-TTSPOI we only need simple (V, M ) t -
filters in order to obtain full generative power: 
Corol lary 2. For every L € ENUM we can construct a CR-TTSPOI of type 
(FIN, FIN, CRSFi), i G {1 ,2 } , which generates L. 

Under specific constraints, a TTSPOI„ can even be simulated by a TTSOI„ : 
L e m m a 4. Let cr = (B, n, A, p, D) be a TTSPOI„ of type (FUF2, F3) such that 

1. the family of filters F3 contains the empty set and is closed under union; 

•2. for any two test tubes Ti and 7* with 1 < i < n, 1 < k < n, there is exactly 
one output/input relation ( i ,Fik ,k ) with F^t G F3\ 

3. for all (i, Fij,j) and (i, F,^, k) in D with j ^ k we have F , j fl F,-^ = 0; 

4. for all k with 1 < k < n we have F\tk = 0; 

then we can construct an equivalent TTSOI« o' = ( B , n , A , p , 0 , I ) of the type 
(Fi, F2 , F3, F3) such that L (<r') = L (a). 
Proof. The desired result is obvious by defining Oi = U i < j < n ^ ' j and I{ = 
Ui<j<n Fi.i for 2 < i < n as well as Oi = h = Ui<j<„ Fj,i- ~ ~ D 

3.2 Some specific results for test tube systems 
In this subsection we shall show how any recursively enumerable language can be 
generated by test tube systems with context-free productions and regular filters: 

T h e o r e m 1. For every L G ENUM(VT) we can construct a context-free G-
TTSPOI3 of type (FIN, FIN, REG) which generates L. 
Proof. Without loss of generality we may assume that L is given by a grammar G in 
Geffert normal form (see [10]), i.e. G = ( {5 , A, B, C} , VT, Pc} U {ABC —• A} , S ) , 
where Pc/ contains only context-free productions of the form (5, w). Now we define 

= (W (VI,,VT), 3,(0, {S}, 0), (<D,p2,p3),D), 
Vn = {S,A,B,C,A',B',C'}, 
V = {S,A,B,C}UVT, 
p2 = PcJl){A-+A',B^B',C^C'}, 
P3 = {A' -+ A, B' —• A, C ' A} , 
D = {(2,V+,l),(2,V{A'B'C'}V*,3),(3,V+,l)t(3,V+\V+,2)}u 

{ ( 1 , 0 , 1 ) , ( 1 , 0 , 2 ) , ( 1 , 0 , 3 ) , ( 2 , 0 , 2 ) , ( 3 , 0 , 3 ) } . 

Whenever an application of the only non-context-free rule ABC —* A has to be 
simulated in a, we have to apply the productions A —• A', B —• B', C —+ C' in T2 in 
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such a manner that the resulting word can pass the filter V* {A'B'C'} V*, which 
checks the context condition; the final execution of the simulation is carried out by 
the productions A' —• A ,B' —• A ,C' —1• A in T3. Only terminal words are passed 
from T2 and T3 to T\. Hence we conclude L (<r) = L. • 

As the construction elaborated in the preceding proof fulfills the necessary as-
sumptions, we immediately can apply Lemma 4, which shows that we can construct 
a context-free G-TTSOI3 of type (FIN, FIN, REG) which generates L; yet we can 
even get more, i.e. we only need a context-free G-TTSI3 or a G-TTSO3 of type 
(FIN, FIN, REG) for generating L : 

Corollary 3. For every L E ENUM (Vr) we can construct a context-free G-TTSI3 
which generates L as well as a context-free G-TTSO3 of type (FIN, FIN, REG) 
which generates L. 
Proof. In a similar way as in the proof of Theorem 1 we define the context-free 
G-TTSI3 

= (W (Vif, VT), 3, (0, { 5 } , 0) , (0, P 2 , p3), I) 

and the context-free G -TTS0 3 

= (W (V^, VT), 3, (0, { 5 } , 0) , (0, P2, p3), 0) 

where V', p2, p3 are defined as in the proof of Theorem 1 as well as 

/1 = V^, /2 = F+ , J3 = V* {A'B'C'} V*, and 
Oi = VC+, 02 = VjT U V* {A'B'C'} V',03=V+. 

It is easy to verify that L (aj) = L ((To) = L (a) — L. • 

The results in Theorem 1 and Corollary 3 are optimal in the sense that a 
context-free G-TTSPOI2 of type (FIN, FIN, REG) can only generate context-free 
languages: 

Theorem 2. For every context-free G-TTSPOI2 a of type (FIN, FIN, REG), 
L(a) E CF. 
Proof. Let <r = (W (VN, VT), 2, (Ax, A2) ,(pi,p2), D) be a context-free G-TTSPOI 
of type (FIN, FIN, REG), i.e. pi and p2 contain only context-free productions, 
and the filters in D are regular. The elements of the first test tube must be terminal 
words, hence no context-free productions can be applied any more to these words, 
neither in the first test tube nor, after distribution according to an output/input 
relation (1, 7̂ 1,2, 2) , in the second test tube, hence we can assume p\ = 0 as well 
as D = {(2, F2,i,l), (2, F 2 , 2 ,2) , (1 ,0 ,1) , (1 ,0 ,2 ) } , where F2,1 and F7,2 are regular 
languages. F2,1 only has the task to extract terminal strings from the contents of 
the second test tube, i.e. the relation (2, ir2| 1,1) only works as a final intersection 
with the regular set F2^. During the first derivation step, in T2 from A2 we obtain 
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p2 (A2) . As p2 (A2) PI F2¡2 C p2 (A2 ) and p2 (p2 (A 2 ) ) = p2 ( A 2 ) , in further deriva-
tion steps no additional strings can evolve in T2. Hence, as the family of context-free 
languages is closed under union as well as under intersection with regular sets, we 
obtain p2 (A2) £ CF, L (<r) = p\ ( A 2 ) n F2A, and therefore L (a) £ CF. • 

Remark 5. In a similar way as above it is easy to show that for ev-
ery regular G-TTSPOI2 a of type (FIN, FIN, REG), L (a) £ REG. Obvi-
ously, for any context-free G-TTSPOIi <r of type (FIN, FIN, REG) with a = 
(W(VN, Vr), ( A i ) , (/?i), {(1, F\t\, 1)}) we have L(a) = A\, because the words in 
Ai must not contain non-terminal symbols; hence, only finite languages can be 
generated. On the other hand, the language generated by a regular respectively by 
a context-free G-TTSOi with a - (W (VN,VT), ( A i ) , (Pl), ( f\ ) ) is p\ (v^) D Fx, 
i.e. as REG (Vr) and CF (Vr) are closed under union as well as under intersection 
with regular sets, such G-TTSOj exactly characterize REG(VT) and CF(VR), 
respectively. • 

Remark 6. The existence of a universal grammar scheme 7u (Vr) for Vr 
and the results shown above also imply the existence of a universal context-
free G-TTSI3 cv(VT) for VT, av (VT) = (W (V¿, VT), 3, (0 ,0,0) , (0, p2, p3), I), 
where p2 and p3 contain context-free productions and the filters in I are regu-
lar, such that for every L £ ENUM(VT) the context-free G-TTSI3 <?L , = 
(W (Vh, Vr) ,3, (0, { A l } , 0), (0, p2,p3) ,1), generates L, where Al denotes the ini-
tial word used for 7U (VT) to obtain a grammar generating L. • 

4 Summary and Future Research 
In this paper we introduced various general models of test tube systems. We in-
vestigated several general relations between different kinds of these models and 
also showed some specific results, e.g. how to generate any arbitrary recursively 
enumerable language by a test tube system with context-free productions and a 
restricted type of regular filters. 

Special practical variants have already been described in literature for solv-
ing very specific problems in the area of DNA computing and the construction of 
molecular computers based on test tubes has been considered by using different op-
erations on the test tubes (e.g. see [1], [2], [3], [12]). In [4], test tube systems based 
on the splicing operation were shown to allow the construction of universal mecha-
nisms; a similar result was shown for test tube systems based on the operations of 
cutting and recombination in [9]. Various other types of test tube systems based 
on context-free productions can also be shown to be computationally universal as 
we have exhibited in the previous section. 

The general results proved in the first part of the preceding section also hold 
true for test tube systems working on other objects than strings, e.g. for circular 
strings, graphs, and arrays. Hence, there is a wide field of interesting problems to 
be considered in the future. 
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Natural Language Understanding: 
a New Challenge for Grammar Systems 

Carlos MARTÍN-VIDE * 

Abstract 

We show the basic architecture of a natural language understanding sys-
tem. Given the well- known difficulties other simple grammar formalisms find 
when attempting to model such an architecture, as well as the plausibility of 
the modular hypothesis, we advocate the suitability of complex and modular 
constructs like grammar systems for giving account of human language. 

"Sentence processing is most plausibly modeled as a fully interactive parallel 
process: each word, as it is heard in the context of normal discourse, is immediately 
entered into the processing system at all levels of description, and is simultaneously 
analysed at all these levels in the light of whatever information is available at each 
level at that point in the processing of the sentence". 

(W.D. Marslen-Wilson (1975), "Sentence perception as an interactive 
parallel process", Science, 189: 226-228) 

1 Postulates 
Let us begin stating some postulates in order to contextualize our paper: 

1. There exists a certain undesirable gap between the communities of linguists 
and computer scientists, more specifically between the communities of com-
putational linguists and formal language theoreticians. Often, linguists ignore 
all that is strictly beyond/outside the Chomsky hierarchy, and computer sci-
entists don't know precisely the kind of problems linguists are interested in. 

2. Formed language theoreticians show an understandable obsession to design 
mechanisms able to generate recursively enumerable languages. However, 
no natural language is so large as recursively enumerable. Linguists need 
formal tools endowed with a very rich internal structure, rather than with an 
impressive generative power. 
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3. For theories which try to become rich in applications (and we guess this is 
the case with grammar systems), empirical well-foundedness is as important 
as completeness. 

4. In an initial step, one of the most essential features of a scientific theory is 
its metaphorical content, as different from its technical content. Grammar 
systems seem quite rich in this respect, and quite flexible too. 

5. Grammar systems theory needs to assume and face all the complexities of 
natural language if it wants to be accepted as a good candidate for the solution 
of natural language processing problems. 

6. Linguists are not as much interested in generative capacity aspects of 
language-theoretical models as in other basic matters like descriptive ade-
quacy, expressiveness, naturality or computational easiness. 

We are going to offer an introductory overview of natural language understand-
ing area for non-specialists, which perhaps will help somebody to bring his/her 
research closer to natural language as it is regarded by current theoretical linguis-
tics. We'll show a picture of natural language from a computational viewpoint. If 
one wishes the own work will become relevant for linguists, I'm sure one will share 
the opinion that linguists have something to say about. 

2 Language and the computer 
It is generally accepted that computers serve not only to process numbers but 
language too. Even it is a matter of public concern the idea of a machine that 
could communicate with people in their own language to take commands or to 
answer questions. In fact, many linguistic tasks, such as translation, improve if 
performed by a machine with a knowledge of natural language. 

We are going to survey the problem of giving a computer comprehension of 
language. The focus will be on tasks that involve language carrying meaning, 
rather than those, such as speech processing, that involve only the superficial form 
of text without regard to its content. 

Research in computational linguistics is generally taken as a branch of artifi-
cial intelligence, that part of computer science concerned with the computational 
simulation of intelligent human behaviour (which surely includes language under-
standing). Most of the natural language research in artificial intelligence has been 
directed implicitly or explicitly to the problem of computer understanding of lan-
guage. The converse of language understanding is language production or genera-
tion. For the computer, to produce text has proved to be an even harder problem 
than comprehension. 

Although linguists agree that human language is essentially oral, natural lan-
guage understanding deals almost exclusively with a simple form of language: writ-
ten text. The additional problems that arise with spoken input and output have 
been traditionally taken to be primarily matters of physics and engineering. 
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3 Understanding 

3.1 What is understanding 
A preliminary question needs to be posed: what means to say that a computer 
understands? As one believes that understanding is a somewhat subjective state 
that admits of degrees, it would not seem appropriate to attribute understanding 
to a machine. We'll agree, however, with the idea that behaviour is the key fact: 
if the machine always responds to sentences just as a human would in the same 
situation, then it can meaningfully be said that it understands the sentences. 

3.2 The illusion of understanding 
Real understanding is hard to achieve in practice. It is not difficult for a computer 
program to give us the illusion that it understands. One of the most famous exam-
ples is ELIZA system, built by Joseph Weizenbaum on 1966, which was not taken 
as a serious model of understanding, because it used simple scripts and tricks for 
the computer to keep up a conversation. It's doctor script simulated a psychother-
apist. It looked out for certain key words and sentence forms, and answered with 
one of a few predetermined phrases for each. If the user of the program typed: 

(1) I am depressed, 

it might answer: 

(2) I'm sorry to hear that you are depressed. 

If the user's sentence included the word mother, the computer might say: 

(3) Tell me more about your family. 

If the user's sentence matched nothing at all in the script, it would either respond: 

(4) What else does that bring to mind?, or 

(5) Earlier, you mentioned your mother. 

The illusion of understanding cannot be sustained for a long time. The computer 
only encourages the user to continue, but it understands nothing. 

3.3 Levels of understanding 
Four levels of understanding can be identified: 

a) The most superficial level is that involved in message passing. If a computer 
is asked to: 
(6) Tell George that I'll meet him next Monday in Salgótarján, 
it needs not understand the message itself, or where Salgótarján is and so on, 
in order to be able to pass on the message; but it does need to determine that 
him here refers to George. 
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b) The second level is almost literal understanding within a very limited domain 
of discourse. This level is a characteristic feature of many natural language 
systems of the early 1990s, such as interfaces to databases. 

c) The third level might be called complete understanding: a full apprehension 
of all aspects and nuances of the sentence. It allows to read texts and inte-
grate the knowledge gained from them with its previous knowledge from other 
linguistic sources. This depth of understanding, for instance, seems necessary 
for unassisted machine translation. 

d) The fourth and deepest level is emotional understanding, the level at which 
people may understand poetry. Today computers are far from this sophisti-
cated level of comprehension. 

3.4 Why language understanding is difficult for computers 

Language understanding is difficult for computers because both language and the 
world itself to which language refers are extremely complex, much more complex 
than expected. But native speakers' facility with their own language is so great 
and early in their lives that it is hard to see why it is difficult to design com-
puter programs to perform the same task. We only notice the difficulty of language 
in the special situation of learning a second language, and the problems encoun-
tered there -learning things like vocabulary, morphology, conjugations, genders, 
and irregularities- become memorization tasks which seem to be straightforward 
to computerize. But these tasks are not as simple as they seem at first sight. The 
syntax and morphology of natural languages are objects of high complexity. Words 
and idioms may convey complicated meanings. Native speakers may make quite 
subtle distinctions at any level of the structure of language. This big body of knowl-
edge is the main topic of theoretical linguistics, and the progress of computational 
processing of language has been, is and will be closely linked to it. 

Complexities of language are compounded by other minor problems that are 
easy to handle for humans but can be extremely difficult for computers. It is the 
case of ambiguity. Ambiguity appears at several levels of language: 

a) at the lexical level: few dictionary entries list just one meaning for a word, 

b) at the syntactic level: most sentences admit more than one parse tree, 

c) at the pragmatic level: most sentences allow more than one analysis of the 
pragmatic role they play in the context of discourse where they are being 
uttered. 

However, in spite of such potential multiplicity of choices, just a single interpre-
tation of the sentence is intended by the speaker: it is the task of the listener (and 
of the computer) to recover it in order to achieve full understanding. 
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3.5 Knowledge of the world 
The difficulty of language understanding is also a reflection of the complexity of 
the world, for one cannot understand language without becoming involved in the 
speaker's knowledge of the world. Let we read a text in our native language on a 
topic that we know nothing about, but written for an audience that does know the 
topic. We may identify all the words and parse all the sentences, but have little 
idea as to what the author is saying. Without the particular knowledge that the 
author assumes of the reader, one cannot understand at more than a superficial 
level. Knowledge of the language is not enough; knowledge of the world is required. 

Knowledge of the world is particularly important in the resolution of ambiguity 
and anaphors. Frequently, only one reading of an ambiguous sentence will make 
sense, or one will be more plausible or more likely than the others, given the 
appropriate knowledge. For example: 

(7) George drank a glass of port. 

(8) George went to the library to get a book. 

The word port can refer to a drink or to a certain place besides the sea. In order 
to interpret (7) correctly, we need to know from the world that only port as a drink 
can be put in a glass. Sentence (8) admits two plausible readings of a book: it could 
refer to a specific book that George is looking for or to any book. Both readings are 
plausible; thus, our knowledge of the world will help us to decide which to choose 
as probably intended by the speaker. 

Although Bar-Hillel was the first, in 1960, to point out the need for knowledge of 
the world, its importance for natural language understanding has been only recently 
fully recognized. In the early days of computational linguistics, it was naively 
thought, for instance, that machine translation would require little more than a 
bilingual dictionary and a bit of morphological and structural analysis. Initial 
failures of such an approach were attributed to underestimating the complexities of 
syntax, and were unsuccessfully tried to solve by means of different kinds of syntax 
of increasing complexity. 
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4 The architecture of a natural language under-
standing system 

The architecture of a standard natural language understanding system is as follows: 

natural language sentence 
JJ-

grammar PARSER MORPHOLOGICAL ANALYZER } 
parse tree 1J. lexicon 

SEMANTIC INTERPRETER \ 

semantic representations ^ general knowledge base 

PRAGMATICS MODULE semantic representations 

APPLICATION PROGRAM 

answer 

(Capital letters stand for processes and bold types represent knowledge sources. 
Arrows show the flow of information.) 

The purpose of such a system depends on the application program, which could 
be, for example, a database system or a travel reservation system. It allows the user 
to easily ask in natural language, instead of having to learn some special formalism 
in order to interact with the computer. 

A natural language understanding system shows a modular architecture, con-
sisting of four major subsystems: 

a) a morphological analyzer, 

b) a parser, 

c) a semantic interpreter, and 

d) a module for discourse pragmatics. 

Furthermore, the system has three main sources of knowledge: 

a) a grammar, 

b) a lexicon, and 

c) a general knowledge base. 
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Finally, the application program uses to have its own specific knowledge base. 
The arrows are representative of the dynamic character of the system: the move-
ment of information through it. The input is a natural language sentence, and the 
output is any form of answer from the application program. The answer could be 
in natural language, by means of a natural language generator. In between, the 
sentence is processed by each of the subsystems one after another, and then passed 
to the application program. As the arrows suggest, the subsystems do not act in 
an isolated way, but may interact to produce the final result. 

Now, we are going to describe briefly each one of the subsystems and associated 
knowledge sources. 

4.1 Morphological analyzer and lexicon 
The lexicon is the list of words that the system has to recognize. The information 
listed for each word will typically include: 

a) part of speech, 

b) syntactic irregularities, and 

c) representation of the meaning. 

Irregular forms are usually listed as a cross-reference to the base form. If a 
word has more than one meaning or belongs to more than one part of speech, all 
are included. For instance: 

(9) port = noun, regular; drink, 
port = noun, regular; harbour, 
port = verb, regular; to present (arms). 

(10) men = plural, man. 

The meanings shown are the names of knowledge representation structures 
where the detailed semantics of the words can be found. 

The first thing that a natural language understanding system must do with 
each word it sees is to check that the word is in the lexicon. Normally, the lexicon 
will contain only the root forms of regular words, not plurals or inflected forms 
of verbs. If the word found is not in the lexicon, a morphological analyzer will 
try to determine the uninflected form. For many'languages, this is a relatively 
simple matter of removing affixes and adjusting the spelling to see if the resulting 
word is included in the lexicon. In the case of agglutinative languages and others 
with complex morphology, however, the task may be complex and require a lot of 
interaction with the parser. The goal of this stage of the system is to discover all 
possible analyses of the input word. If it finds the word drinks, for example, it 
should report the possibility of a plural noun or a third-person singular verb. 

If the system sees a word that it cannot find in the lexicon nor analyze morpho-
logically, it must consider several possibilities: 
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a) that the unknown word is actually a known word mistyped: in this case, 
spelling correction techniques have to be attempted; 

b) that it is a special word such as a bank account number, which could be the 
subject of queries to a business application: in principle, this kind of words 
can easily be recognized; 

c) that the word is a name: the parser will have to determine whether a name 
could occur at this point of the sentence; 

d) that it is a word which has been unconsciously omitted from the vocabulary 
of the system: then, if the system is interactive, the user will be asked to 
either rephrase the sentence without it or add it to the lexicon. 

4.2 Parser and grammar 
The parser is the component of the system that determines the syntactic structure 
of the sentence. The input to the parser is the sentence, and the output is a parse 
tree or phrase marker. 

As it is building the tree, the parser draws upon information from the lexicon 
as well as from the morphological analyzer; if offered more than one possible mor-
phological analysis of a word, it takes the one that best fits the context. And, of 
course, the parser needs to know the grammar of the language that it is parsing. 
Usually, the grammar is represented separately, in such a way that the parser can 
draw upon as it needs to. In theory, the parser can analyze any language whose 
grammar, morphology, and lexicon are given; it contains the universal and general 
principles of syntax, independent of any particular language. In practice, however, 
most real parsers that have been developed so far have been limited to at most a 
few typologically related languages (belonging to the same family). 

There are many different kinds of parser, and many different ways of represent-
ing the grammar of a language. The two most common types in computational 
linguistics are: 

a) chart parsers, and 

b) augmented transition network parsers (ATN's). 

A chart parser attempts to find a combination of words allowed by the grammar 
that matches the input sentence. This may involve much trial and error. A chart 
parser maintains a chart of the alternatives tried and the hypotheses tentatively 
accepted. 

An ATN represents a grammar as a network; to parse a sentence is to traverse 
the network, respecting the constraints on each path (for instance, that the next 
word in the sentence must be a verb). If the parser finds itself unable to proceed, 
it must backtrack to some previous point and try another alternative. 

Often, a sentence will be syntactically ambiguous; that is, the grammar will 
produce two or more different parse trees. For example, in: 
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(11) George is seeing John with the telescope, 

the prepositional phrase with the telescope could describe the seeing, that is, 
complement the verb, or John, that is, complement the object noun. Deciding 
which one is intended by the speaker requires considering the meaning and relative 
plausibility of each. To find this out, the parser will have to ask the semantic 
interpreter (connected to the general knowledge module) about the meanings of 
the alternatives; thus, parsing generally alternates with semantic analysis. 

4.3 Semantic interpreter and general knowledge base 
The ultimate goal of the analysis is to determine the meaning of the sentence. The 
semantic interpreter needs not wait until the parser has completed its job; usually, 
it can begin to work on each constituent of the tree as soon as the syntactic analysis 
of that constituent is complete, regardless of the state of the rest of the analysis. 
Indeed, many systems rely on this possibility in order that semantics be able to 
assist syntax. 

Meaning is represented in a computer system by means of knowledge represen-
tation formalisms or logics. The lexicon gives the meaning of each individual word 
in such a formalism, and the semantic interpreter must combine these in a manner 
appropriate to the structure of the sentence and the meanings themselves, either in 
strict accordance with the principle of compositionality or not. If a word conveys 
more than one possible meaning, as most words do, then the semantic interpreter 
must decide which one was intended by the speaker. Usually, this requires deter-
mining which makes more sense in the context. The result of this whole process is 
a logical form that represents the literal meaning of the sentence. 

4.4 Pragmatics module 
Computers tend to carry out literal interpretations. For example, a computer asked 
to: 

(12) Give me the examination grades of all the mathematics students 

might answer with just a list of anonymous marks. Humans often say things 
obliquely or incompletely, leaving to the intelligence of the listener to determine 
the intention and fill in the gaps. To be of practical use, a natural language under-
standing system must follow its literal semantic analysis with a pragmatic analysis, 
determining what the speaker really meant and how the sentence fits into the con-
versation. 

Imagine that a user says to a travel reservation system: 

(13) I've been thinking about going to Hungary. 

At the literal level, the user is just only stating a fact that the system could 
merely take note of. But, at a deeper level, the user is asking the system to provide 
information about schedules of travels to Hungary. The system must recognize that 
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the user is indirectly asserting that he/she has a goal of finding information about 
travelling to Hungary, and is asking for help in achieving that goal; that is, the 
computer has to recognize that the sentence is an indirect speech act. In order 
to determine the speaker's intention, the system must use not only knowledge 
of standard linguistic conventions, but also knowledge of how people plan and 
how their goals can be achieved. Thus, at present the problem of plan inference 
in natural language systems occupies an outstanding position in computational 
linguistics. 

Just at the pragmatic level the system must also determine how the sentence 
relates to the preceding conversation or discourse. For example, it may exemplify 
or elaborate on the previous sentence, or describe the next in a sequence of events, 
or change the topic of conversation. Sometimes, speakers will make the relationship 
explicit: for example might be used to mark an exemplification, and by the way a 
change of topic. But often the relationship is left implicit and must be determined 
from the meaning itself of the sentences. This task can be quite complex for com-
puters. Consider, for example, a sentence intended as a conclusion to be drawn 
from the preceding sentence, as in the following pair: 

(14) Nobody likes the new tax system. The government is certain to be defeated. 

The system must determine that the second sentence could plausibly be a con-
sequence of the first one. 

5 Parallelism in natural language processing 
We have seen a decomposition of natural language automatic description into a 
series of different coordinated levels. Models of sentence processing may or may not 
refer to this decomposition. Natural language processing systems can be built for 
quite practical reasons, and therefore efficient performance properties can be much 
more important than attempting to reflect theoretical ideas coming from linguistics 
or psychology. Since practical systems do not always have to deal with the full 
range of natural language sentences - o r with an unlimited domain of discourse- , 
the natural decomposition we have provided does not need to be explicitly present 
in language processing systems. From a psychological and linguistic point of view, 
however, computer models of human sentence processing should be consistent with 
theories developed in those fields. Having a model, it should be possible to simulate 
phenomena of human sentence processing. 

Human sentence processing was initially explained by means of a serial model. 
This kind of models use a syntactic approach, where the syntactic processing task 
must be successful before semantic processing can begin, which in turn must pre-
cede pragmatic processing. If, in this model of linear interaction between levels of 
knowledge, higher-level information cannot be used to correct decisions at lower 
levels, this approach inexorably leads to a combinatorial explosion of all syntac-
tic possibilities. For such reason especially, approaches combining different levels 
closely interacting at different moments are now preferred. 
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Models in which this latter type of sentence processing can be displayed are 
called interactive or parallel. During parsing, a system is capable of using any 
type of knowledge at any moment it needs. These models may exhibit different 
appearances. They can take, for instance, the form of a system in which natural 
language processing tasks are assigned to different processors and in which every 
knowledge source interacts with every other. In the known blackboard model of 
interaction, modules can process in parallel and cooperatively by means of a globally 
accessible blackboard on which they can write and read intermediate results: the 
modules communicate and interact solely through the blackboard. Some further 
possibilities exist. 

6 Thesis 
Assuming the natural decomposition of language we have shown and the parallel 
type of processing, we regard natural language as the final product of a parallel 
communicating grammar system (PC) architecture, each one of whose processors 
simulates one of the modules of natural language we have considered. In addi-
tion, each component of the parallel communicating grammar system consists of 
several subprocessors working as cooperatively distributed grammar systems (CD). 
We would have, then, a two-levels machinery: a macro-PC-system composed by 
micro-CD-systems. Its functioning would be as follows. Several processors coop-
erate distributively in the complex task of producing a syntactically well-formed 
(grammatical) sentence. Each one of such processors generates one of the levels we 
can distinguish in the syntactic structure of the sentence. On the other hand, it 
seems clear that human language is not produced/understood in a serial manner, 
but in a parallel one: syntax is not strictly generated before semantics can inter-
vene, but in accordance with a complex synchronicity. Different levels and sublevels 
of each module of language are successively integrated in accordance with a certain 
protocol of integrative cooperation. 

Computer scientists have now the task to formally define such two-levels ma-
chinery, and linguists the task to characterize the programme of synchronization of 
the modules. Both works are strong challenges for the future. If carried out jointly, 
the forecast is encouraging. 
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