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On graphs with perfect internal matchings* 

Miklós Barthat Éva Gombás* 

Abstract 

Graphs with perfect internal matchings are studied as underlying objects 
of certain molecular switching devices called soliton automata. A perfect 
internal matching of a graph is a matching that covers all vertices of the 
graph, except possibly those with degree one. Such a matching is called a 
state of the graph. It is proved that for every two states there exists a so 
called mediator alternating network which can be used as a switch between 
those two states. As a consequence of this result it is shown how transitions 
of soliton automata can be decomposed into a sequence of simpler moves. 
Elementary graphs having a perfect internal matching axe defined through an 
equivalence relation on their edges. Another equivalence relation on the set 
of vertices is introduced to characterize the well-known canonical partition of 
elementary graphs in the new generalized sense. 

1 Introduction 
The results of this paper were motivated by the developments of a research aiming 
to construct a computer based on molecular switching components. Molecules 
exhibiting a switching behavior have long been investigated by chemists, cf. [4], 
but it was not until recently that the first mathematical model of a switching 
molecular device was introduced in [5] under the name soliton automaton. 

The underlying object of a soliton automaton is a so called soliton graph, which 
is a finite undirected graph modeling the topological structure of a molecule. Atoms 
are represented by vertices and chemical bonds by edges. The multiplicity of bonds 
(single or double) is set by a weight assignment to the edges of the corresponding 
soliton graph. It is assumed that the molecule consists of carbon and hydrogen 
atoms only, and that among the neighbors of each carbon atom there exists a 
unique one to which the atom is connected by a double bond. This latter property 
can nicely be captured by the concept of matching in graphs. 

"This work was supported by Natural Science and Engineering Research Council of Canada, 
Operating Grant 335591 and by National Scientific Research Fund of Hungary, Grant T 014202. 

tOn leave from Department of Computer Science, József Attila University, Szeged, 6720, Hun-
gary, Department of Computer Science, Memorial University of Newfoundland, St. John's, New-
foundland, Canada A1B 3X5 
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The above topological model of molecules has already been used earlier to study 
some other properties of a chemical compound. The reader is referred to [10, Sec-
tion 8.7] for a detailed discussion on Hiickel graphs, which are models of molecules 
having the same alternating pattern of single and double bonds that we are con-
cerned with in this paper. The only essential difference between Hiickel graphs 
and soliton graphs in terms of matching theory is the following. Hiickel graphs 
are generally supposed to have a perfect matching, whereas in soliton graphs only 
the internal vertices (i.e. those with degree greater than one) are required to be 
covered by an appropriate matching. Such a matching is called a perfect internal 
matching. Vertices with degree one are considered to be external in soliton graphs. 
The collection of such vertices is treated as an interface for the internal part of the 
graph, so that these vertices need not be covered by a perfect internal matching. 

A state of a soliton automaton is a perfect internal matching of the underlying 
soliton graph. State transitions are induced by directing a particle (electron, soli-
ton) from one external vertex of the graph to another or even the same external 
vertex along an alternating walk. Making the walk will then result in a new state 
by switching all the bonds to the opposite throughout the walk in a dynamic way. 
For more details, see e.g. [5]. 

The aim of this paper is to develop a suitable mathematical arsenal for the study 
of soliton automata. There has already been some previous work done towards this 
goal. Soliton automata with some special properties have been investigated in [6], 
[7] and [8]. In [1], an algebraic framework has been introduced to provide a new 
calculus for dealing with finite undirected multigraphs. Concerning matchings, 
the Gallai-Edmonds Structure Theorem has been proved for maximum internal 
matchings in [2]. This theorem plays a central role in the algebra of graphs having 
a perfect internal matching, which has been described in [3]. Although the present 
paper is self-contained, some familiarity with [10] will be helpful for the reader. 

2 Review of basic concepts and notations 
By a graph we mean, throughout the paper, a finite undirected non-empty graph 
with loops, and multiple edges allowed. If G is a graph, then V{G) and E(G) will 
denote the set of vertices and the set of edges of G, respectively. An edge e G E(G) 
connects two vertices vi,v2 6 V(G), which are called the endpoints of e, and e is 
said to be incident with vi and V2• If vi = V2, then e is called a loop around ui. 
Two edges sharing at least one endpoint are said to be adjacent in G. 

For a vertex v in graph G, we define the degree of v to be the number of 
occurrences of v as an endpoint of some edge in E(G). By this definition, the 
endpoints of a loop are considered to be two different occurrences of the same 
vertex. The vertex v is called isolated if its degree d(v) is zero, external if d{v) = 1 
and internal if d(v) > 2. An edge e 6 E(G) is an internal edge if both endpoints of 
e are internal. External edges are those that are incident with at least one external 
vertex. 

A matching of/iri graph G is a subset M C E(G) such that no vertex of G 
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occurs more than once as an endpoint of some edge in M. Again, it is understood 
that loops, having themselves two occurrences of the same endpoint, cannot be 
present in M. The endpoints of the edges contained in matching M are said to 
be covered by M. A matching M is called perfect if it covers all of V(G). A 
perfect internal matching is one that covers all the internal vertices of G. An edge 
e 6 E(G) is allowed (mandatory) if e is contained in some (respectively, all) perfect 
internal matching(s) of G. Forbidden edges are those that are not allowed. A 
perfect internal matching in G will also be referred to as a state of G. 

In graph G, a trail is a sequence a = e i , . . . ,e„ (n > 0) of distinct adjacent 
edges EI 6 E(G), i E. [n] = { 1 , . . . , n} such that no vertex of G occurs more than 
twice as an endpoint of some e .̂ The integer n is said to be the length of the trail 
a. If, in addition, en is adjacent to e\, or n = 0, then a is called a cycle, otherwise 
a is a path. In the latter case, if ei and en are both external edges, then a is 
said to be a crossing. Note that every trail a in G can be uniquely specified as an 
appropriate connected subgraph of G if we are not concerned about the way A is 
actually traversed. Moreover, if a is non-empty, then this subgraph can be uniquely 
identified with the set of edges contained in a. Two trails are said to be disjoint if 
they are such as subgraphs of G. Since in this paper, except for Section 5, we shall 
not be interested in the traversal of trails, we shall often refer to a non-empty trail 
a = e i , . . . ,e„ as a set, i.e. as a = { e i , . . . , e n } , without causing any confusion. 
Note, however, that disjointness of two trails is ambiguous in general under this 
assumption. 

Let M be a perfect internal matching of G. A trail a = e\,..., e„ is an alternat-
ing trail with respect to M (M-alternating trail, for short) if for every i s [n — 1], 
ei € M iff ei+i $ M. An M-alternating trail a is called complete if a is either 
a crossing or it is a non-empty even length cycle. An alternating network with 
respect to M (or M-alternating network) is a set of pairwise disjoint, complete 
M-alternating trails. Observe that if two complete alternating trails are running 
on disjoint sets of edges, then they must be disjoint as subgraphs of G, too. Thus, 
identifying complete alternating trails with the set of their edges does not cause 
ambiguity regarding the disjointness of such trails. Also note that, although an 
M-alternating network T consists of non-empty trails only, the network F itself can 
be empty. 

Let M be a state (i.e., a perfect internal matching) of graph G and a be a 
complete alternating trail. By making a in state M we mean exchanging the status 
of the edges in a regarding their being present or not present in M. It is easy to 
see that this process results in another perfect internal matching of G, which will 
be denoted by SG{M,O) or simply by S(M,A) if G is understood. Making an M -
alternating network T in state M means making all the trails of F simultaneously 
in M. Since the trails contained in T do not intersect each other, the resulting 
state, denoted SQ{M, T), is well-defined. 



114 Miklós Bartha, Éva Gombás 

3 Characterizing state transitions by alternating 
networks 

Our starting theorem relates two arbitrary states of a graph by means of a suitable 
alternating network that takes the one state into the other. This theorem also 
manifests the basic inductive proof technique applied in the paper: to obtain a 
simpler graph, cut an internal edge of the graph at hand and make a correspondence 
between the complete alternating trails of the original graph and those of the cut 
graph. Thus, the induction eventually goes by the number of internal edges. 
Theorem 3.1 For any two states Mi, M2 of graph G, there exists a unique Mi -
alternating network T for which SQ (MI , T) = M2 . 
Proof. We prove the existence of T by induction on the number of internal edges 
of G. If G has no internal edges, then all of its components are either star graphs 
or single edges connecting two external vertices. In such components we can switch 
from one state to another by making a straightforward crossing. 

Suppose now that G has at least one internal edge e, and assume that the 
assertion holds true for all graphs having fewer internal edges than G. Let v\ and 
V2 denote the two endpoints of e. We cut e by replacing it with two new external 
edges ei and e2 that are incident with v\ and i>2, respectively. Let G' denote the 
resulting graph. Obviously, G' has fewer internal edges than G and it has a perfect 
internal matching. Moreover, the perfect internal matchings of G are in a one-
to-one correspondence with those perfect internal matchings M' of G' for which 
d € M' iff e2 6 M1. Applying the induction hypothesis for graph G' and states 
M j , M 2 corresponding to the states Mi ,M 2 of G, we obtain an M[-alternating 
network T' = {a ' j , . . . , in G' satisfying Sc,"(M[, T') = M'2. If neither e\ nor 
e2 is present in any of the trails of T', then by putting T = T' we are through. 
Otherwise one of the two cases below is met. 

Case 1. There exists a unique j G [k] such that a'j is a crossing which connects 
ei to e2. See Fig. la. Since M[ corresponds to state Mi of G, we have e\ e M{ 
iff e2 € M[. This implies that the length of a'j is odd. Remerging ei with e2 then 
gives rise to an alternating cycle ctj in G with respect to M\. Moreover, making 
a'j in G' and remerging ei with e2 after has the same effect as making ctj directly 
in G. Making the network r = T' — a'j U aj in G will therefore take state Mi to 
state M2 as required. 
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e e 

Figure 1. 

Case 2. There exist two different crossings a'^., i = 1,2, ji 6 [k] such that 
ei 6 a'j.. See Fig. lb. In this case the remerging of ei and e2 results in an M\-
alternating crossing a in G. Using the same argument as in Case 1, the desired 
alternating network is obtained as T = r" - {a'^, a^2} U a. 

To prove the uniqueness of T we need the following lemma. 
Lemma 3.2 For a graph G, let C = {C\,... ,Cn} and V = {D\,...,Dm} be two 
sets of pairwise disjoint connected subgraphs of G. If UC = UV, then C = V. 

Proof. By symmetry it is sufficient to prove that for every j £ [m] there exists 
some i € [n] such that Dj = Cj. Since the subgraphs contained in C are pairwise 
disjoint and Dj is connected, Dj is a subgraph of some Ci. i €. [n]. But then Dj 
must be equal to Ci, otherwise Ci would be covered by more than one subgraph 
taken from V, contradicting the fact that C, is connected. • 

Now we turn back to the proof of Theorem 3.1. Let us assume that F and A are 
complete alternating trails such that S(Mi,T) = S(Mi, A) = M2. Obviously, both 
u r and UA consist of exactly those edges e € E(G) for which e £ Mi iff e $ M2. 
Therefore u r = UA, and by Lemma 3.2, T = A. 

• 
Observe that Theorem 3.1 is symmetric in Mi and M2, for T is an alternating 

network with respect to Mi iff it is one with respect to M2 = 5g(Mi, T). In other 
words, 

Ml = S G ( S G ( M i , r ) , r ) . 
The network T is called the mediator alternating network between states Mi and 
M2 , and is denoted by Med (Mi, M2). 

Let us fix a graph G having a perfect internal matching for Sections 3 and 4. An 
edge e € E(G) is said to be constant in state M of G if no complete M-alternating 
trail passes through e. 
Corollary 3.3 An edge e is constant in some state of G iff e is either forbidden 
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or mandatory. 
Proof. By Theorem 3.1, e is constant in some state of G iff it is such in all states 
of G. • 

Now we recall the concept of impervious edge from [5]. Although our definition 
is different from [5, Definition 4.2], it is easy to see that the concepts captured by 
the two definitions are essentially the same. 
Definition 3.4 An edge e € E(G) is viable in state M if there exists an M -
alternating path e i , . . . , en from some external vertex of G to one of the endpoints 
of e such that 

(i) e / e ; for any i € [n]; 
(ii) en and e are M-alternating in the sense that en 6 M iff e ^ M. 

The edge e is impervious if it is not viable (in state M). 

Intuitively, e is viable in state M if there exists an M-alternating path that 
starts from an external vertex, reaches one endpoint of e without passing through 
e itself, and it can be continued on e in an alternating fashion. This continuation, 
however, need not be a path as shown by Fig. 2. In Fig. 2, double lines indicate 
edges belonging to the matching M rather than multiple edges in the graph G. The 
reader is referred to [5, Figure 11] for examples of impervious edges in graphs that 
are connected and have external vertices, too. 

Corollary 3.5 An edge is impervious in some state of G iff it is impervious in all 
states of G. 

Proof. It is sufficient to prove that if e € E(G) is viable in some state Mi , then 
it is viable in any other state M2. Assuming that e is viable in state Mi , let us 
cut e as described in the proof of Theorem 3.1 to obtain a graph G' with two new 
external edges ei,e2 . Again, let M[ and M2 be the states of G' corresponding to 
Mi and M2, respectively. By assumption, there exists an M[-alternating crossing 
a1 in G' containing exactly one of ei and e2. It follows that exactly one of e\ and e2 

will be present in some crossing of Med(M2, Sc (M[, a')). From this crossing, after 
remerging ex with e2, we obtain a suitable M2-alternating path in G that reaches 
one endpoint of e and can be continued on e in an alternating fashion. • 
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4 Elementary equivalence and canonical parti-
tion of elementary graphs 

Recall from [10] that a graph G is elementary if it has a perfect matching and its 
allowed edges form a connected subgraph. If G has only a perfect internal matching, 
then consider the equivalence relation e on E(G) by which e\ e e2 iff either ei = e2 or 
e\ and e2 are in the same connected component of the restriction of G to its allowed 
edges. Our aim is to characterize the relation e in terms of complete alternating 
trails. 
Definition 4.1 Two complete alternating trails a and ß with respect to the same 
state M of G are conjugated if Med (S(M,a) , S(M, ß)) is a singleton. 

It is immediate by the above definition that if a and ß are conjugated, then they 
must intersect each other without being identical themselves. Indeed, if a and ß are 
complete alternating trails, then a f1/3 = 0 implies that Med (S(M,a) , S(M, ß)) = 
{a,ß} and a = ß implies that Med (S (M,a ) ,S {M,ß ) ) = 0. (Remember that all 
complete alternating trails are non-empty, by definition.) 
Lemma 4.2 Let a and ß be two complete alternating trails with respect to the 
same state M. Then, for every edge e £ ß — a there exists a complete alternating 
trail 7 with respect to some M 6 {M,S(M,a)} passing through e such that a and 
7 are either conjugated or disjoint. 
Proof. Let riß(a) be the number of edges contained in ß — a. The proof is an 
inductive argument on nß(a). The basis case n.ß(a) = 0 is trivial. 

Let np(a) > 1, and assume that the assertion of the lemma holds for all triples 
(a', ß', M') such that a' and ß' are complete alternating trails with respect to state 
M', and nßi(a') < nß(a). Choose ß' to be the complete alternating trail of the 
network r = Med(S(M, a),S(M, ß)) containing e. Since the trails of T are running 
exclusively on those edges of a and ß that are not contained in their intersection, 
riß: (a) < nß(a). Moreover, nß'(a) = nß(a) iff either ß1 = ß is disjoint from a or T 
is a singleton, in which cases there is nothing to prove. If, however, nß< (a) < rip (a), 
then the induction hypothesis can be applied for a' = a and ft', which are complete 
alternating trails with respect to state M' — S(M,a). To complete the proof, one 
must take into account that S(S(M,a),a) = M. 

• 
Corollary 4.3 Let a be a complete alternating trail in G with respect to state 

M, and let e 6 E(G) be an allowed edge adjacent to some edge in a. Then for 
every e' € a there exists a complete alternating trail 5 with respect to some M E 
{M,S(M,a)} which contains both e and e'. 

Proof. We can assume that e fca. If e were mandatory, then every edge adjacent 
to e would be forbidden, contradicting the fact that all the edges of a are allowed. 
Thus, by Corollary 3.2, there exists a complete alternating trail ß with e £ ß — a. 
Applying Lemma 4.2 we obtain a complete alternating trail 7 with respect to some 
M 6 {M,S(M,a)} which also contains e and, moreover, a and 7 are conjugated. 



118 Miklós Bartha, Éva Gombás 

It is now clear that the required complete alternating trail 6 can be chosen either as 
S = 7 or as S = Med(S(M,a),S(M,j)), depending on whether 7 passes through e 
or not. 

• 
Now we redefine the relation of elementary equivalence introduced at the be-

ginning of this section. 
Definition 4.4 Two edges ei,e2 are elementary equivalent if either e\ = e2 or 
there exists a complete alternating trail with respect to some state of G containing 
both e\ and e2. 

The relation of elementary equivalence will be denoted by e. 
Theorem 4.5 Elementary equivalence is an equivalence relation on E(G). 

Proof. We only have to address transitivity of e. Let ei, e2, be such that ei e e2 

and e2ee3. Then there exists a complete Mi-alternating trail a joining e\ to e2 

and a complete M2-alternating trail joining e2 to e3, where Mi and M2 are some 
states of G. It follows that can be reached from some vertex lying on a by a 
path r consisting of allowable edges only. Using Corollary 4.3, a straightforward 
induction on the length of r shows that there exists a complete alternating trail <5 
with respect to some state M3 which contains both e\ and e$. Thus, e\ eez, which 
was to be proved. 

• 
It turns out from the proof of Theorem 4.5 that if ei and e2 are adjacent edges 

in G, then either eiee 2 or one of e\ and e2 is forbidden. This means that the 
relation e coincides with the one that we intended to characterize at the beginning 
of this section. Spelling this out, the equivalence classes of e that are different from 
a single forbidden edge are exactly the connected components of the restriction of 
G to its allowed edges. 

Consider the relation ey on V(G) by which vx ey v2 iff either v\ = v2 or Wj 
and V2 can be connected by a complete alternating trail with respect to some 
state of G. By virtue of Theorem 4.5, ey is also an equivalence relation. Slightly 
modifying the original definition given in [10], we call G elementary if ey is the 
universal relation on V(G). Note that if G is elementary, then the relation e is not 
necessarily universal on E(G), for G might contain some forbidden edges as well. 

For the rest of this section we shall assume that G is elementary. Our goal is to 
find the analog of the canonical partition V(G) of V(G), where G is a graph with 
a perfect matching, for the case when G has just a perfect internal matching. The 
partition V(G) has been described in [10, Theorem 5.2.2] in many different ways, 
based on the concepts of extreme set and barrier. Unfortunately, we have not been 
able to generalize these concepts for graphs with perfect internal matchings yet, 
but we can still characterize V(G) by the following very simple relation 

Definition 4.6 For two vertices V\,V2 € V(G), vi ~ w2 if an extra edge e connect-
ing vi and V2 becomes forbidden in G + e (i.e. in the extension of G by e). 

According to part (b) of [10, Theorem 5.2.2], if G does not contain loops and 
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external vertices, then ~ is an equivalence relation and V(G) is the partition in-
duced by Here we prove that ~ is an equivalence anyhow. 
Theorem 4.7 The relation ~ is an equivalence on V(G). 

Proof. Since loops are forbidden edges, ~ is reflexive. It remains to show the 
transitivity of Let ~ t>2 and v? ~ for distinct vertices Vi,«2,«3 € V(G). 
We have to prove that an extra edge e connecting v\ with v3 becomes forbidden in 
G+e . Assume, on the contrary, that e is allowed. It is clear that e is not mandatory, 
hence G + e is still elementary. Moreover, due to the elementary property, there is 
an allowed edge e' incident with i>2 such that eee' holds in G + e. Therefore, by 
Theorem 4.5, there exists a complete alternating trail a with respect to some state 
M of G + e containing e and reaching V2 on the way. We distinguish two cases. 

Case 1: a is an even length cycle, see Fig. 3a. 
Since each of the edges (ui, V2) and (1^2,̂ 3) would become forbidden when adding 

them to G, the subpaths of a connecting v\ with v2 and v2 with v3 are of even 
length. Thus, together with e, the length of a turns odd, which is a contradiction. 

Case 2: a is a crossing that connects two external vertices x,y, see Fig. 3b. 
Without loss of generality we may assume that v\ lies between w2 and V3 on a 

and that e $ M. Again, the length of the subpath of a connecting v\ and is 
even, for V\ ~ w2. 

Consequently, the crossing x,..., V2, V3,..., y is M-alternating in G + (w2, u3), con-
tradicting the assumption that u2 ~ v3. 

• 
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5 Connection to soliton automata 
According to [5], a soliton graph is a pair (G,ui), where G is an undirected graph 
and to is a weight function from B(G) into the set of positive integers such that 
these data satisfy the following conditions: 

(a) G has no loops or multiple edges; 

(b) every connected component of G has at least one external node; 

(c) for every v £ V(G), d(v) < 3; 

(d) for every internal vertex v, w(v) = d(v) + 1, where w(v) stands for the sum 
of the weights of all edges incident with v, 

(e) if v is an external vertex, then w(v) £ {1,2}. 

Conditions (d) and (e) imply that the weight of every edge in G is either 1 or 2, 
and for every internal vertex v there exists exactly one edge e incident with v such 
that w(e) = 2. Let M C E{G) consist of those edges which have weight 2. Clearly, 
M is a perfect internal matching of G. Conversely, every perfect internal matching 
of G corresponds to a suitable weight function w satisfying (d) and (e) above. Hence 
our approach to soliton automata based on matching theory. Conditions (a), (b) 
and (c) impose restrictions on the graph structure only, so that they are irrelevant 
as far as matchings are concerned. We believe that the concept "soliton graph" 
should be independent of the particular weight function (perfect internal matching) 
chosen for it, that is why we would rather define a soliton graph simply to be a 
graph having a perfect internal matching. 

Now we quote the definition of soliton path from [5]. Note that the terminology 
of the authors of [5] differs from ours in that they call a path what we defined as a 
walk in Section 2. Moreover, since their discussion excludes graphs with loops and 
multiple edges, it was sufficient for them to specify a path as a sequence of vertices 
rather than a sequence of edges. 

Thus, according to [5], a partial soliton path in a soliton graph (G,w) is a path 
vq , vi,..., Vk satisfying the following conditions: 

(a) wo is an external vertex; 
(b) V\,V2, • • • ,Vk-i are internal vertices; 
(c) there is a sequence (G,wo),..., (G,Wk) of weighted (not necessarily soliton) 

graphs 
that are constructed as follows: 

( c l ) w0 = w; 
(c2) for i = 0 ,1 , . . . , k — 2, the function Wi+i is defined iff Wi is defined 

and \wi(vi,vi+1) - Wi{vi+i, i>i+2)| = 1- In this case, for all edges 
(v,v')eE(G), 

,»>• r „ - / w * ( v > v ' ) i f ( v ' v > ) ( w » . « i + i ) wl+1(v,v)~ | 3_wi{vuv.+i) if („,„') = 
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(c3) Wk is defined iff Wk-\ is defined. In this case, for all (v,v ' ) £ E(G), 

(w^ivy) 
{ 3-wk-i(u 

'0 if {v,v') # (Vk-l,Vk) 
(Vk-i,Vk) if (v,v') = (Vk-l,Vk). 

A partial soliton path is called a (total) soliton path if above is an external 
vertex. 

Intuitively, a soliton path (walk) is an alternating walk with respect to some 
state M of the graph G that starts and ends at an external vertex. However, the 
status of each edge in the walk regarding its presence in M changes dynamically step 
by step while making the walk. More precisely, this status changes to the opposite 
right after having traversed the edge. Thus, by the time the walk is finished, a new 
state M' of G is reached. See [5, Lemma 3.3] for a proof of this last statement. 

Here we provide a somewhat simpler definition of soliton walks using our own 
terminology. For the sake of convenience and unambiguity, we shall specify a walk 
of length n in graph G as a sequence a = v0:e\,... ,en,vn of alternating vertices 
and edges, indicating also the starting point i>o £ V(G) of a and the vertex Vj, 
j € [n], that the walk has reached after traversing the j-th edge e3. For every 
j 6 [n], na(j) will denote the number of occurrences of the edge ej in the prefix 
vo , e i , . . . ,ej. By a backtrack in a walk we mean the traversal of the same edge 
twice in a consecutive way. 

Let us again fix a graph G having a perfect internal matching for the rest of 
this section. 

Definition 5.1 A soliton walk in G with respect to state M is a walk a = 
«o, e i , . . . , en , vn subject to the following two conditions: 

(a) i>o and vn are external vertices with n > 1; 
(b) for every j £ [n — 1], na(j) and na(j + 1) have the same parity iff e3 and 

ej+1 are 
M-alternating, i.e., ej £ M iff ej+\ £ M. 

It is left to the reader to check that, for soliton graphs in the sense of [5], Defini-
tion 5.1 is equivalent to the above definition of soliton path with the only difference 
that we allow soliton walks to make a backtrack on external edges, too. Any back-
track in a soliton walk is, however, a redundant move as shown by Proposition 5.2 
below. Making the walk a in state M means creating a new state M' — S(M, a) 
by setting for every e € E(G) 

In the light of [5, Lemma 3.3] it should be clear that S(M,a) is indeed a state. 

e 6 M and e occurs an even number of times in a 
e € M' iff < or 

e £ M and e occurs an odd number of times in a. 

Proposition 5.2 For every soliton walk a with respect to some state M there ex-
ists a backtrack-free soliton walk (3 with respect to M such that S(M, a) = S(M, 0). 
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Proof. Obvious induction on the number of backtracks contained in a, omitted. 
• 

Now we reformalize the definition of soliton automata [5] in our matching the-
oretic framework. 

Definition 5.3 A soliton automaton with underlying graph G is a finite state 
nondeterministic automaton 

.4(G) = (S{G),X x X,S) 

subject to the following conditions: 

(a) G has a perfect internal matching and has at least one external vertex; 

(b) S(G), the set of states of .4(G), is the set of all states of G; 

(c) X x X is the input alphabet, where X C V(G) denotes the subset of all 
external vertices. 

(d) <5 : 5(G) x (X x X) -> 2S(°) is the transition function defined as follows. 
For every state M and external vertices v\,v2 E X(G), M' E 6(M, (vi,v2)) 
if there exists a soliton walk a from vi to v2 with respect to M such that 
M' = S(M,a). 

Let a be a soliton walk in G with respect to state M. From Theorem 3.1 we 
know that making a is equivalent to making an appropriate alternating network T 
with respect to M. The network T will consist of a number of alternating cycles 
Pi,.. • ,(3n, and, in the case when the two endpoints of a are distinct, an additional 
crossing 7. We are going to prove that the cycles f3\,..., 0n can be made separately 
one after the other as suitable soliton walks from the starting point of a back to 
the same vertex in such a way that making these walks and then finishing up with 
7 has the same effect as making a directly in state M. This result will admit a 
decomposition of the transitions of the automaton A(G) into simpler ones. 

Lemma 5.4 For any state M of G let T be an alternating network consisting of 
a number of cycles. Furthermore, let vo be an external vertex and v E V(G) be 
arbitrary. If there is an alternating path from VQ to v with respect to M, then there 
is also one with respect to S(M,T). 

Proof. This lemma is in fact a consequence of Corollary 3.4. Let a be an M-
alternating path from vo to v. Without loss of generality we can assume that a 
is non-empty, i.e., vq v. Then the last edge e of a is incident with v and it is 
viable in state M. Therefore, by Corollary 3.4, e is viable in state S(M,T), too. 
Let v' denote the other endpoint of e. By checking the proof of Corollary 3.4 the 
reader can verify that the alternating path a' demonstrating that e is viable in state 
S(M, T) will consist of those edges only that are either in a or in ur . Consequently, 
since u r does not contain any external edges, the path A' will connect VQ with either 
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v or v', and it will have an alternating continuation on e. From this point the proof 
is obvious. • 

Let v be an external vertex of G. A soliton walk a is called a v-saucepan if it 
can be decomposed in the form a(5a~x, where a is an alternating path from v to 
some internal vertex u, p is an alternating cycle starting and ending at u such that 
P does not go through any vertices covered by a, and a - 1 is the reverse of a. See 
Fig. 2 for an example of a saucepan. 

Theorem 5.5 Let Pi,...,pn be disjoint alternating cycles with respect to state 
M that are reachable from an external vertex vo of G by a suitable M-alternating 
path. Then for every i € [n] there exists a vq-saucepan <5 with respect to state 
S(M, {Pi,... ,/3j_i}) such that 

S(S(M, {Pi,.. .,Pi-i}),6i) = S(M, {pi,.. .,Pi}). 

Proof. Induction on n. The basis case n = 0 is vacuously true. Assuming that the 
statement holds for some n > 0, let Pi,. • • ,Pn+1 be alternating cycles satisfying 
the conditions of the theorem. By assumption, there exists an M-alternating path 
a to some vertex v lying on Pn+i which starts from vq and does not go through any 
vertices lying on Pn+i • Lemma 5.4 then implies that there is another alternating 
path a' with respect to S(M, {Pi,... ,Pn}) having the same properties. Therefore 
we can compose the required uo-saucepan 5l+\ by going down to v from vo on a', 
making the cycle Pi+i, and returning to VQ on the reverse of a'. • 

Corollary 5.6 Every transition of A{G) on input (vi,v2) can be decom-
posed into a sequence of simpler transitions induced by suitable soliton walks 
Pi,... ,Pn,Pn+1 such that Pi is a Vi-saucepan for every i £ [n], and, in the case of 
Vi ^ v2, Pn+i is a crossing from i>i to v2 • 
Proof . Immediate by Theorems 3.1 and 5.5. • 

6 Conclusion 
We have made a few simple observations on graphs having a perfect internal match-
ing and on soliton automata. The heart of our results is Theorem 3.1, which spec-
ifies the relationship between two perfect internal matchings in a graph in terms 
of alternating paths and cycles. We have also introduced two equivalence relations 
e and For a graph G, the relation e can be used to isolate elementary compo-
nents within the restriction of G to its allowed edges, while the equivalence ~ tells 
which of the vertices contained in the same elementary component are or could be 
connected by a forbidden edge in G. Finally, we devoted a section to specify the 
connection between our work and the study of soliton automata. We would like 
to use the main result of this section, Theorem 5.5, to provide a decomposition of 
soliton automata in the spirit of [9]. 

It is not only the mere fact that we are dealing with perfect internal matchings 
instead of perfect matchings which makes our results different from the correspond-
ing existing or nonexisting ones in classical matching theory. The difference also 
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appears in the technique by which we prove these results. Rather than using the 
trick of deleting an appropriate vertex or several vertices in a graph, which seems 
to be dominant in the classical approach, we almost exclusively rely on the oper-
ations of cutting and remerging the edges of graphs. This technique makes our 
approach edge-oriented as opposed to the vertex-oriented classical approach. Our 
way of thinking about matchings is based entirely on the method of dealing with 
alternating paths and cycles, and it fits into the algebraic framework outlined in 
[1] and [3]. 
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Remarks on the Interval Number of Graphs 

A. Pluhár* 

Abstract 

The interval number of a graph G is the least natural number t such that 
G is the intersection graph of sets, each of which is the union of at most t 
intervals. Here we propose a family of representations for the graph G, which 
yield the well-known upper bound [ 1 ) ] , where d is the maximum degree 
of G. The extremal graphs for even d are also described, and the upper bound 
on the interval number in terms of the number of edges of G is improved. 

1 Introduction and Results 
It is a very natural idea to represent a graph G as the intersection graph of some 
sets. That is, we assign a set to each vertex of G so that v is adjacent to w if and only 
if the common part of the assigned sets is not empty. At — interval representation 
is an assignment, where each set consists of at most t closed intervals. The interval 
number of G, denoted by i(G), is the least integer t for which a ¿-representation of 
G exists. Finally, a representation is displayed if each set of the representation has 
an open interval disjoint from the other sets. Such an interval is called displayed 
segment. 
There are a number of published results concerning bounds on i(G), as well as 
applications of the interval representations [1-8]. Since for the complete graph Kn 

(on n vertices) i(G) = 1, the main interest lies in finding upper bounds in terms of 
the maximum degree, the number of vertices and the number of edges of a graph 
G, see in [2], [3], [6] and [8]. 

Theorem 1 (3) If G is a graph with maximum degree d, then i(G) < \^(d+ 1)]. 

The bound of Theorem 1 is sharp, since the equality is attained for example a 
(¿-regular, triangle-free graphs G. We shall give a new proof of Theorem 1, which is 
also useful in investigating the extremal graphs of the degree bound. 

Theorem 2 If a graph G has no d-regular, triangle-free component, then i(G) < 

'Department of Computer Science, Attila József University, Árpád tér 2, H-6720 Szeged, 
Hungary 
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That is to say, in the case d = 2k the extremal graphs are just the d-regular, 
triangle-free graphs. Unfortunately, one cannot expect to get such a simple result 
when d = 2k + 1. For example the graph which arise from Ki,3 subdividing all its 
edges [7], or Cn , n > 5 with a chord have interval number 2 with d = 3. 
It is possible to bound i(G) in terms of e, where e is the number of edges in G. It 
was conjectured in [3] that i(G) < \\\Je 1 + 1, which would be best possible because 
of the graphs Kim,2m for m e N. The best published result is in [6], stating that 
i{G) < ix/f 1 + 1- We shall improve on the estimations used in [6], and show 

Theorem 3 Every graph with e edges has a displayed interval representation with 
at most 1 -I- ] intervals for each vertex. 

It is necessary to state one more earlier result in order to prove Theorem 3. 

Theorem 4 (2) If a graph G has n > 1 vertices, then i(G) < \\(n+ 1)], and this 
bound is the best possible. 

2 Proofs 
Proof of Theorem 1 

We shall construct a displayed representation for the graph G such that at 
most + 1)1 intervals are assigned to each vertex v, where d(v) designates 
the degree of the vertex v. A walk W in G is just a sequence of vertices W = 
{v\,v2, ...,vi} such that, there is an edge between Vi and 1̂ +1 for each ¿ = 1,2,...,/ — 
1. Let us partition the edges of G into minimal number of edge disjoint walks 
{Wi}Ji=l . Now represent the walk Wi = (uj ,v\, for 1 < i < j, assigning 
an Jp interval to the vertex vlp such that two intervals have intersection if and 
only if the corresponding vertices are next to each other in the walk Wi. This 
procedure leads to a displayed interval representation of G. Since a vertex v can 
be an endvertex of the walks at most two times, if v is represented by I intervals, 
then d(v) >2{l-2) + 2 = 2l-2. Hence 

\\(d{v) + 1)1 > \\{2l - 2 + 1)1 = \l - I ] = /. 

• 
Proof of Theorem 2 

We can assume that d = 2k because of Theorem 1. Let us choose among all 
partitions of the edge set into a minimum number of edge disjoint walks a partition 
{ w h i c h also minimizes the size of the set Q of vertices occuring k + 1 times 
in the walks {Wi}3i=1. The representation is the same as in the proof of Theorem 1. 
If Q = 0, we are done. For an x € Q there exists a p 6 {1, •••, j } such that x = v^, 
x = vp, 1 and x Wi for all I ^ p. The last statement follows from the minimality 
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of j, since in case of x — vls 6 Wi we could replace the walks Wp and Wi by the 
walk 

W* = {v[,vl2,...,vls,v%,...,vpn{p),vls+1,...,vln(l)). 

For any vertex y = vvs / x from Wp, we can transform the walk Wp into the walk 
w; = 

That is, by the minimality of Q, y occurs in the walks {Wi}i^p U {W*} k + 1 
times. Then again, all neighbors of y are in Wp. That is the vertex set of Wp is a 
2k—regular component of G. Now we can conclude the proof by showing that if a 
2k—regular graph G is not triangle-free, then i{G) < k. Suppose that u, v and w 
span a triangle in G. If k = 1, then G = K3, and we are done. For k > 1 there is 
is an Euler circuit C in G, starting by v,u,w,v,x and finishing at v. But it can be 
represented by k intervals per vertex as in the proof of Theorem 1, just take the 
convex hull of the two intervals which represent v at the beginning of the walk. • 

Proof of Theorem 3 

We need the definition of the degree sequence of a graph G first. Let us suppose 
that is an order of the vertices of G such that di > dj if i < j, where 
di = deg(vi) denotes the degree of the vertex Our argument closely follows the 
one in [8]. The crucial difference is the additional information about the degree 
sequence of G. It is gained by using Theorem 1 and an idea, which first appeared 
in [4]. 

Lemma 1 Let d\ > d2 > ... > dn be the degree sequence of a graph G. If i(G) > 
t + 1, then dt > 2t - i + 1. 

Proof of Lemma 1 

Let Vi be a vertex of degree di. By Theorem 1 

l\id i +1)1 >i(G) >t + l, 

that is £¿1 > 2t + 2. Now we partition the edges of G into directed forests, represent 
them one by one and remove the edges of the represented forest from G. The idea 
is that the representation of the Ith forest exhausts all edges adjacent to vi, and 
decreases the degree of all vertices in the remaining graph which still has non zero 
degree. The construction of the first forest F\ starts with choosing a breadth-first-
search tree 2\, rooted in vi, all edges directed toward V\. If there are vertices 
outside of Ti, just pick arbitrary trees in which the edges are directed toward the 
root. The procedure for selecting Ft is similar, we take vi, the vertex of degree di as 
a root of a tree, and also take other trees if the remaining graph is not connected. 
The main point is that Ft is maximal, and all edges adjacent to vi are in U...Ui^. 
For the maximum degree A1 in the remaining graph Gl = G\Fi U.. .Ui^-i we have 
show that 

A i <di-{i- 1) 
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by induction. On the other hand, we can represent the edges of U ... U i ) by 
using at most I + 1 intervals for each vertex. First assign intervals Iv to each vertex 
v of G such that Iv D Iw = 0 for v ^ w. Then, for each i 6 {1,..., / } if the directed 
edge (v,w ) is in Fi, assign a small interval to v inside in Iw, which has no common 
points with the other intervals. 

Because of Theorem 1 and the previous representation we have 

i(G) < i + i(G\Fi U ... U Fi_x) < i + + 

Since t + 1 < i(G) < i + [ d i ~ ' + 2 l , it follows that 
di-i + 2 t + 3 / 2 < i + - l — 2 , 

that is di > 2t - i + 1. • 

Now, with a few modifications, we may repeat the argument presented in [8]. 
First, partition the vertices of G into two classes, A and B. A contains the vertices 
of degree at least r|-\/el + 1> while the degree of a vertex from B is at most 
The edges between the elements of A can be represented by using at most [|(|/1| + 
1)] intervals for each vertex because of Theorem 4. Let us make this system of 
intervals displayed by adding an isolated interval for each vertex of G in a same 
way as in the proof of Lemma 1. For each edges between A and B, or inside B, take 
an endpoint from B, and place a small interval for it into a displayed segment for 
its neighbor. This procedure produces at most [|\/e] + 1 intervals for an element 
of B. That is 

i(G) < max(|J>/el + 1, \\(\A\ + 1)1 + 1). 

In order to estimate = k, we need the identity 2e = di, where {(¿¿}"=1 is the 
degree sequence in decreasing order. There is nothing to prove if i(G) 
so we may assume that 

by Lemma 1. Thus 
if 1 k n 

2e= di+ Y, di+ J2 di> 
i=1 i=\§\/£l + l i=k+1 

which implies 

r l v ^ l 2 * „ 
2 e > £ ( 2 f - > / S l - i + l ) + £ ( ^ 1 + 1). 

i=1 i= r|\/?l+i 

Simple computation shows that k < |ye— 1. Plugging in this estimation, one gets 
the bound 

i(G) < m a x ( r ^ l + 1, r ¿ ( f v G - 1 + 1)1 + 1) < T ^ l + 1-
• 
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Right group-type automata* 

I. Babcsányi t A. Nagyt 

Abstract 

In this paper we deal with state-independent automata whose character-
istic semigroups are right groups (left cancellative and right simple). These 
automata axe called right group-type automata. We prove that an A-finite 
automaton is state-independent if and only if it is right group-type. We de-
fine the notion of the right zero decomposition of quasi-automata and show 
that the state-independent automaton A is right group-type if and only if 
the quasi-automaton A*s corresponding to A is a right zero decomposition 
of pairwise isomorphic group-type quasi-automata. We also prove that the 
state-independent automaton A is right group-type if and only if the quasi-
automaton A j corresponding to A is a direct sum of pairwise isomorphic 
strongly connected right group-type quasi-automata. We prove that if A is 
an A-finite state-independent automaton, then |S(A)| is a divisor of |AS(.i4)|. 
Finally, we show that the quasi-automaton A's corresponding to an A-finite 
state-independent automaton A is a right zero decomposition of pairwise iso-
morphic quasi-perfect quasi-automata if and only if |.AS(yl)| = |S(A)|. 

In his paper [5], A. C. Fleck introduced the notion of the characteristic semi-
group of automata. This notion is a very useful tool for the examination of au-
tomata from semigroup theoretical aspects. In particular, it seems to be successful 
for state-independent automata. In this case the characteristic semigroup is left 
cancellative (Lemma 2). If a state-independent (quasi-) automaton is also A-finite, 
then its characteristic semigroup is a right group (see [9] or Lemma 3). 

In 1966, Ch. A. Trauth ([8]) introduced the notion of the group-type automa-
ton (state-independent automaton whose characteristic semigroup is a group) and 
characterized the quasi-perfect (strongly connected and group-type) automata. He 
proved that if A j (i £ I) is a family of quasi-perfect (quasi-) automata and Gi 
(i £ I) is the family of corresponding characteristic semigroups, then a quasi-perfect 
(quasi-) automaton A is decomposable into an A-direct product of automata AJ if 
and only if the characteristic semigroup of A is á direct product of the groups Gi 
. In 1975,1. Babcsányi ([2]) dealt with the decomposition of group-type generated 
automata. He proved that every generated group-type quasi-automaton is a direct 
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sum of pairwise isomorphic quasi-perfect quasi-automata. In 1976, Y. Masunaga, S. 
Noguchi and J. Oizumi (.[7]) proved that every strongly connected state-independent 
A-finite (quasi-) automaton is isomorphic to a A-direct product of a quasi-perfect 
(quasi-) automaton and a strongly connected reset (quasi-) automaton. 

In this paper we extend the investigations to the (not necessarily A-finite) state-
independent automata whose characteristic semigroups are right groups. 

For notations and notions not defined here, we refer to [4] and [6]. 
Let A = {A,X, 6) be an arbitrary automaton. We suppose that the transition 

function <5 is extended to A x X+ ( X + denotes the free semigroup over X) as 
usually, that is, 6(a,px) = S(S(a,p),x) (p £ X + , x £ X). For brevity, let S(a,p) be 
denoted by ap. For an arbitrary automaton A = (A, X, 5), we consider the following 
quasi-automata A* = (A, S(A), 6*) and A*s = (AS(A),S(A),6*), where S(A) is the 
characteristic semigroup of A, 6* is defined by 6*(a,p) — S(a,p) (a £ A, p £ X + ) 
and AS(A) = {<5*(a,s); a £ £ 5 (A) } . A*s will be called the quasi-automaton 
corresponding to the automaton A. 

Definition 1. An automaton or a quasi-automaton A is called a (right) group-
type automaton if it is state-independent and S(A) is a (right) group. 

It is clear that an automaton A is state-independent if and only if A* is state-
independent. As S(A) = S(A*), it follows that A is a (right) group-type automaton 
if and only if A* is (right) group-type. 

Definition 2. Let {5 e : e £ E} be an E right zero semigroup decomposition 
of a semigroup 5, that is, E is a right zero semigroup and 5 is a disjoint union 
of its subsemigroups Se, e £ E such that SeSj C S e / = Sf, for every e,f £ E. 
We say that a quasi- automaton A = (A,S,S) is a right zero decomposition of 
quasi-automata Ae = (AeiSe,Se) (e £ E) with Ae D Aj = 0 for all e ± f £ E, if 
A = UeeEAe and ASe = {5(a, s) : a £ A,s £ Se} C Ae. 

Lemma 1. A state-independent automaton A is right group-type if and only if 
the quasi-automaton AJ corresponding to A is right group-type. 

Proof. Let A be a state-independent automaton. Then A* and so AJ is state-
independent. Moreover, S(A) = S(A*) = 5(AJ). If A is right group-type, then 
A*s is right group-type, too. 

Conversely, let A*s be right group-type. As A* is state-independent and 
S(A*) = S{A*s), we get that S(A*) is a right group. As S(A) S S(A*), the 
automaton A is right group-type. • 

Theorem 1. A state-independent automaton A is right group-type if and only 
if the quasi-automaton A*s corresponding to A is a right zero decomposition of 
pairwise isomorphic group-type quasi-automata. 

Proof. Let the state-independent automaton A be right group-type. Then, by 
Lemma 1, the quasi-automaton A*s corresponding to A is right group-type. Since 
S(A*s) is a right group, it is a right«zero semigroup E of its subgroups Ge, where 
Ge = Ge for some subgroup G of S(AJ). Let Ae = AGe, e £ E. It is evident 
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that AE = (Ae,Ge,Se) are group-type qusi-automata. We show that Ae fl Af = 0 
if e ^ / . Let us suppose that age = 6/1/ e Ae C\ Af for some a,b € A, g,h e G 
and e,f £ E. Then agf = bhf from which it follows that age = agf. As A is 
state-independent we have e = / . Hence Ae = Af. It is evident that AGe C Ae and 
Aij = Ue££;Ae. Consequently, A*s is a right zero decomposition of the group-type 
quasi-automata Ae, e € E. To complete the proof we show that the quasi-automata 
Ae,e € E are isomorphic with each other. Let aej : Ae —• Af and (3ej : Ge —• Gf 
defined by 

aeJ(age) = agf, /3e,/(ge) = gf, ae A, geG. 

It is easy to check that ( a e j , 0 e j ) is an isomorphism of AE onto AF. 
Conversely, assume that A*s is a right zero decomposition of pairwise isomorphic 

group-type quasi-automata AE = (Ae,Ge,Se), e £ E. Then it is easy to see that 
S(A*s) is a right group, and so, A*s is right group-type. Therefore, by Lemma 1, 
we obtain that A is right group-type. • 

The following example shows that if an automaton A is right group-type then 
it is not necessarily a right zero decomposition of pairwise isomorphic group-type 
automata. 

Example 1. Let the state-independent automaton A = (A, X, 8) be the di-
rect sum of the automata AJ = (A j ,X , (5 j ) and A2 = (A2,X,($2) ((^1 = 
{1,2,3,4,5}, (Az = {6,7,8,9,10,11}, X = {x,y,z}) which are defined by the fol-
lowing transition tables: 

A 1 1 2 3 4 5 a 2 6 7 8 9 10 11 
X 2 3 2 2 3 x 7 8 7 7 8 7 
y 3 2 3 3 2 y 8 7 8 8 7 8 
z 5 4 5 5 4 z 10 9 10 10 9 10 

The Cayley-table of the characteristic semigroup S(A): 

X y 
X V X 

y X V 
z y X 

z* X V 

The quasi-automaton A*s is a direct sum of the quasi-automata AJS and A25 
given by the following transition tables: , 

A* 1 s 2 3 4 5 A * 
2S 7 8 9 10 

X 3 2 2 3 X 8 7 7 8 
y 2 3 3 2 y 7 8 8 7 
~z 4 5 5 4 z 9 10 10 9 

z* 5 4 4 5 ** . 10 9 9 10 
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It is easy to check that A*S is right group-type and is a right zero decomposition 
of the group-type quasi-automata Bi and B2 given by the following transtion tables. 
(We note that {S(BI),S{B2)} is a right zero semigroup decomposition of 5(A). ) 

B 1 2 3 7 8 B 2 4 5 9 10 
X 3 2 8 7 z 5 4 10 9 
y 2 3 7 8 4 5 9 10 

Lemma 2. ([3]) The characteristic semigroup of a state-independent quasi-
automaton is left cancellative. 

Lemma 3. An A-finite automaton is state-independent if and only if it is right 
group-type. 

Proof. Let A be an A-finite state-independent automaton. Then, by Lemma 
2, 5(A) is a (finite) left cancellative semigroup. It is easy to show that 5(A) is 
also right simple. Hence 5(A) is a right group, that is A is a right group-type 
automaton. The converse statement follows from the definition. • 

The following example shows that the assertion of Lemma 3 is not true in infinite 
case. 

Example 2. Let A = (A,X,S) be an automaton where A is the set of all 
positive integers, X = {a;} and 6 is defined by S(n, i ) = n + l ( n 6 i ) . It is easy to 
see that A is state-independent whose characteristic semigroup is an infinite cyclic 
semigroup. 

Lemma 4. Every group-type quasi-automaton A*S corresponding to a state-
independent automaton A is a direct sum of pairuiise isomorphic quasi-perfect 
quasi-automata. 

Proof. See Lemma 2 and Lemma 4 of [2]. • 

The following theorem is a generalization of Lemma 4 for right group-type 
(quasi-) automata. 

Theorem 2. A state-independent automaton A is right group-type if and only if 
the quasi-automaton A*S corresponding to A is a direct sum of pairwise isomorphic 
strongly connected right group-type quasi-automata. 

Proof. Let the state-independent automaton A be right group-type. Then, 
by Lemma 1, the quasi-automaton A*s corresponding to A be right group-type. 
For an arbitrary a £ A5(A), we consider the following A-subautomaton A (a) = 
(A(a),S(A),<5a) of A*S, where A(a) = {as : s £ 5(A) } . As-5(A) is a right 
group, therefore A(a) is strongly connected. As every A-subautomaton of a state-
independent (quasi-) automaton A is also state-independent such that its charac-
teristic semigroup is 5(A), we get that A (a) is a right group-type automaton. It 
is easy to see that A(a) fl A(b) ^ 0 implies A(a) = A(6) for every a, b £ A5(A). 
Moreover as —¥ bs (a,b £ A5(A), s £ 5(A)) is an isomorphism of A (a) onto A (b). 
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Thus A*S is a direct sum of the pairwise isomorphic different A-subautomata A (a). 
The converse statement of the theorem is evident. • 

We note that the quasi-automaton A*S considered in Example 1 is a direct sum 
of isomorphic strongly connected right group-type quasi-automata Ais and A 2s. 
It shows that the components of the direct sum are different from the components 
of the right zero decomposition. 

Lemma 5. If a quasi-automaton A = (A,S,S) is quasi-perfect, then \A\ = 
|S(A)| (see Lemma 6 and Theorem 3 of [1]). 

Corollary 1. If A is an A-finite state-independent automaton, then ¡S(A)I is 
a divisor of \AS(A)\. 

Proof. Let A be an A-finite state-independent automaton. Then, by Lemma 
3, A is right group-type. By Lemma 1 and Theorem 1, A*S is a right zero decompo-
sition of pairwise isomorphic group-type quasi-automata AE = (Ae,Ge,Se), e 6 E. 
Then |AS(A)| = |Ae||S| for arbitrary e € E. By Lemma 4 and Lemma 5, 
\Ae\ = n\Ge\ for some positive integer n. Hence |>1S(A)| = n\Ge\\E\ = n|S(A)|. • 

Corollary 2. The quasi-automaton A*S corresponding to an A-finite state-
independent automaton A is a right zero decomposition of pairwise isomorphic 
quasi-perfect quasi-automata if and only if |j4S(A)| = |5(j4)|. 

Proof. Let the quasi-automaton A*S corresponding to an A-finite state-
independent automaton A be a right zero decomposition of pairwise isomor-
phic quasi-perfect quasi-automata Ae = (Ae,Ge,Se), e £ E. By Lemma 5, 
\Ae\ = \Ge\. Hence |AS(A)| = |S(A)|. 

Conversely, let A be an A-finite state-independent automaton such that 
|A5(A)| = |5(A)|. By Lemma 3, A is right group-type. Then, by Lemma 1 and 
Theorem 1, A*S is a right zero decomposition of pairwise isomorphic group-type 
quasi-automata Ae = (Ae,Ge,Se), e £ E. (Here Ge = Ge, for some subgroup G 
of S(A), and Ae = AGe.) It is sufficient to show that Ae are strongly connected. 
It is evident that |S(A)| = |G||.E| and \AS{A)\ = \Ae\\E\, for every e <E E. Then 
\Ae\ = |G|, for every e 6 E. As A is state-independent,'we have |aGe| = |G| = |Ae|, 
for every e £ E and a 6 Ae. From this it follows that Ae is strongly connected, for 
every e £ E. • 

We note that the quasi-automata AJS and A25 in Example 1 satisfy the con-
ditions of Corollary 2. For example, the quasi-perfect components of the right zero 
decomposition of A* s are: 

A 3 2 3 a 4 4 5 
X 3 2 z 5 4 
V 2 3 z* 4 5 

It is easy to check that these components are isomorphic. 



136 I. Babcsanyi, A. Nagy 

References 
[1] Babcsányi, I., A félperfekt kváziautomatákról (On quasi-perfect quasi-auto-

mata), Mat. Lapok, 21, 1970, 95-102 (in Hungarian with English summary) 

[2] Babcsányi, I., Endomorphisms of group-type quasi-automata, Acta Cyber-
netica, 2, 1975, 313-322 

[3] Babcsányi, I., Characteristically free quasi-automata, Acta Cybernetica, 3, 
1977,145-161 

[4] Clifford, A.H. and G.B. Preston, The Algebraic Theory of Semigroups, 
Amer. Math. Soc., Providence, 1(1961), 11(1967) 

[5] Fleck, A.C., On the automorphism group of an automaton, J. Assoc. Comp. 
Machinery, 12, 1965, 566-569 

[6] Gécseg, F. and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó, 
Budapest, 1972 

[7] Masunaga, Y., S. Noguchi and J. Oizumi, A characterization of automata 
and a direct product decompostion, Journal of Computer and System Sci-
ences, 13, 1976, 74-89 

[8] Trauth, Ch. A., Group-type automata, J. Assoc. Comp. Mach., 13, 1966, 
170-175 

[9] Watanabe, T. and S. Noguchi, The amalgamation of automata, Journal of 
Computer and System Sciences, 15, 1977, 1-16 

Received January, 1995 



Acta Cybernetica 12 (1995) 137-143. 

Some Properties of H-functions 

Ivan Mirchev* Borislav Yurukov* 

1 Introduction 
Some basic results in the theory of separable and c-separable sets were obtained 
in [l]-[7]. In this paper some problems concerning with separable and c-separable 
sets for fc-valued functions are considered. 

We investingate the properties of fc-valued functions when some of their vari-
ables are replaced with constants. The investigations of properties of H-functions 
are connected with separability and c-separability of functions. 

2 Definitions and Notations 
Definition 1 [1] A function f(xi, ...,a:n) on A(\A\ > 2) depends essentially on the 
variable Xi, 1 < i < n if there exist n — 1 constants ci, . . . ,ci_i,cj+i,. . . ,cn such 
that the unary function f(c\, . . . , C j _ i , x , C t + i , ...,cn) takes on at least two different 
values. 

Ess(f) denotes the set of all variables which / depends essentially on. 
F n denotes the set of all functions which depend essentially exactly on n vari-

ables. 

Definition 2 [1] A function / and the functions obtained from / by replacing some 
of its variables with constants are called subfunctions of / (g </ denotes that g 
is a subfunction of / ) . 

Definition 3 [4] The variable i i , 1 < i < n, n > 1 is a H-variable for a function 
/ € Fn if for any two tuples of constants differing only in the i~th component, the 
function has different values. 

Definition 4 [4] The function / is a H-function if all its essential variables are 
H-variables. 

Hf denotes the set of all fc-valued H-functions from Fn. Hp denotes the set 
i n 1 

of all fc-valued H-functions. 
'Faculty of Mathematics and Natural Sciences "Neofit Rilski" South-West University 66 " A l . 
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3 Basic Results 
The following assertion is obvious. 

Statement 1 A function f G Fn, n > 2 is a H-function if and only if all of its 
subfunctions from Fk, 1 < k < n are H-functions too. 

Theorem 1 Let p > 3 be a prime number and let f 6 Fn, n > 2, be a non-linear 
p-valued function. If there exists fi, fi <f, |£ss(/i)| = 1 which as polynomial 

mod p is of degree p— 1 then / ^ H¡n. 

Proof. By Statement 1 it is sufficient to prove that every polynomial 

fi(x) = ao + aix + ... + a p _ ix p _ 1 (mod p), ap_i ± 0 

cannot take on all values from the set {0,1, ...,p — 1}. Consider the polynomial 

g(x) = a\x + a2x2 + .... + a p _ ix p _ 1 (mod p), ap_i ^ 0. 

Let us assume that 

g(i) = bi, i = 1,2, - 1, bi ± bj when i j and 6¿ ^ 0, if i ± 0. 

The determinant of the system 
a\i + a2i2 + ... + a p _i¿ p _ 1 = bj, i = 1,2, ...,p - 1 

is 

1 l 2 IP-1 

2 22 2 p-i 
A = 3 32 3 P _ 1 = 1.2...(p — l ) .W(l ,2 , . . . ,p — 1) 

(P- 1) ( P : 1 ) 2 • • ( P - 1 ) " " 1 

Using the facts that 
W(cl,...,ck) = (ci-cj) 

k>i>j>i 

a n d ( p - 1)! + 1 = 0 (mod p), we have A ^ 0. 

Consequently the system has only one solution. As we know ap_i = , where 

1 l 2 . p - 2 bi 
2 22 2 p - 2 b2 

Ap_1 = 3 32 3p-2 b3 

( P - 1) ( P - 1 ) 2 • • ( P - I ) " - 1 bp-1 
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But 

Ap_! = 

1 l 2 jp-2 bi 
2 22 2p-2 b2 
3 32 3p-2 b3 

Si s 2 Sp_ 2 s 

where 

Sk = lk + 2k + ... + (p-l)k, k = 1,2,..., (p - 2), 

S = bi + b2 + ... + bp-1 = 1 + 2 + 3 + ... + [p - 1) = Si. 

The numbers 1,2, •••,p— 1 axe solutions of the equation x p _ 1 — 1 = 0 (mod p). 
Consequently for the elementary symmetric polynomials Ti,T2, ...,rp_2 of 1,2, ...,p— 
1 we have 

Ti = T2 = ... = Tp_2 = 0. 

On the other hand from Newton's formulas 

SK - N.SK-L + T2-Sk-2 + ( - l ) * - 1 ^ - ! ^ ! + ( - 1 )k.kTk = 0, 

when k < p — 1. 
If A; < p — 1, then Sfc = 0. Consequently A p_i = 0 implies ap_i = 0. This 

contradicts the condition ap_i ^ 0. 
Therefore the values of the polynomials g(x) and fi(x) cannot form a whole 

system modulo p. This completes the proof. • 
Remarks: 

1. If p = 2, then according to Lemma 4.2 [3], Theorem 4.1 [3] and Lemma 4.10 
[3] it follows that / £ if and only if / is a linear function. 

2. When p = 3 this theorem was proved by K. Chimev in [4] and now was 
improved (by Mirchev and Drenski) for p > 3, where p- a prime number. 

3. It is obvious that if / £ Lp then / £ Hpf (Lv denotes the set of all linear p-
valued functions). The converse statement is not valid and this fact is evident 
from the following example. • 

Example 1 Let f(x 1,22) = + (mod 5). For the function / , / € Hj2 but 
f $ L5 (Here x? = Xi.Xi.Xi, i = 1,2). 

Now we will consider some results which give us good possibilities to construct 
catalogues of H-functions modulo 3. 

Definition 5 We will say that f(x\,...,xn) and g(xi, ...,xn) are distinguishable 
everywhere if for each tuple of constants c\,..., cn the relation 

/ ( c i , . . . , c n ) g(ci,...,cn) holds. 



140 Ivan Mirchev, Borislav Yurukov 

We denote by f <> g that / and g are distinguishable everywhere. 

Let *(*) = { ¿'. 'x = Y 

If f(xi, ...,xn), n > 2, is a fc-valued function then it is obvious that Vp( 1 < p < 
n) 

fc-i 
f(x i,...,xn) = J t ( x p ) . / ( x i , . . . , a : p - 1 , i , x p + i , . . . , x n ) . 

i=o 

If fi(xi,...,xn-i) = f(xi,...,xn-i,0), 

fk(xi, ...,x„_i) = f(xi, ...,xn-i,k - 1), then 

n 

»=0 

Theorem 2 (Theorem 1 [6]) / £ i i ^ , n > 2, if and only if fc £ and 
fi <> f j fori,j = l,...,k, j. 

According to this result each function f £ Hjn can be derived from fi, f2, /3, 
where for each l < i < 3 , l < j < 3 and i'^ j the relations 

fi £ H3fn i and fi < > f j hold. 

We denote by / = (/1, /2, /3) the fact that f £ Hj is derived from fi,f2,h £ 

Lemma 1 Let f = ( /1 , /2 , /3 ) , 9 = (91,92,93) and f,g £ Hzfn. Then f <> g if 
and only if /1 <> gi, /2 < > 92 and /3 <> g3. 
Proof. 

" =i> " Let / < > g. Then f(x 1, . . . ,xn_i ,0) < > g(xi, ...,xn-i,0), i.e. /1 < > 31. 
Analogously /2 < > g2 and /3 < > S3-

" " Let fi <> gi, i = 1,2,3. Let us* suppose that there exist ci,..., cn so that 
/ ( c i , •••,cn) — g(ci, ...,cn). 

If c„ = 0, then we obtain / i ( c i , . . . , c „_ i ) = gi(ci , . . . ,c„_i) which contradicts 
the condition /1 < > g\. 

If Cn = 1 or c„ = 2 we obtain a contradiction with / 2 < > g2 or /3 < > g3. • 

Theorem 3 If f £ , n >2 then there exist g and h, g <> h and g, h £ , 
such that f <> g and f <> h. 
Proof. 

Let / = ( / i , / 2 , / 3 ) ; 9 = ( /2 , /3 , /1) ; and h = (/3,/1,/2). 
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Since /1) /2 j /3 are pairwise distinguishable everywhere then according to 
Lemma 1, f,g and h are pairwise distinguishable everywhere too. By Theorem 
2 we have 

g E Hfn and h € Hjn. • 

Theorem 4 If f & Hj^ then there exist only two functions g, h £ Hjn, such that 
f , g and h are pairwise distinguishable everywhere. 
Proof. We will prove the theorem by induction on the number of the variables. 

The case n = 1 is trivial. 
Let us assume that for functions from Fn_ 1 the statement is true. 
Let now / G Hj^. By Theorem 3, it is sufficient to prove that there exist only 

two functions g and h. 
Let 

/ = (/1, /2, /3), where f, <> f j when i ^ j ; 

9 = (9i,92,53), where gl < > gj when i ± j; 

h = (hi,h2,h3), where hi < > hj when i j\ 

g,h£H3fn, g <> f, h<> f, g <> h and /¿, ft^G H3fn i, 1 <.i, j < 3. 
Since f,g and h are pairwise distinguishable everywhere then according to 

Lemma 1, fi,g\ and h\ are distinguishable everywhere too. 
By the induction hypothesis on /1 there exist only two functions which are 

distinguishable everywhere from /1. Therefore {31,^1} = {/2, /3}-
Similarly we get: 

{ S 2 , M = { / l , / 3 } , { i ? 3 , M = { / l> /2} . (1) 

Withoutloss of generality we can assume that 

gi = / 2 and hi = / 3 . ( 2 ) 

If we suppose h2 = /3, then from hi = /3 we obtain hi = h2, which contradicts 
the condition hi <> h2. Therefore from (1) we obtain 

52 = /3 and h2 = fi. (3) 

If we assume gz — f2, then from gi = f2 we obtain 51 — g3, which contradicts 
the condition 31 < > g3. Therefore from (1) 

03 = /1 and h3 = f2. (4) 

Consequently g and h are exactly determined by f. • 

Theorem 5 If f,g,h€ Hzu, g ± h, f <> g and f <> h then g <> h. 
Proof. We will prove the theorem by induction on the number of the variables. 

Let n = 1. Then: ' 

/ ( 0 ) = 0 1 , / ( 1 ) = a 2 ) / ( 2 ) = o 3 ; g(0) = a[, 9 ( 1 ) = a'2, g(2) = 
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h(0) = a'{, h( 1) = a'i, h{2) = a i . e. 

/ = (ai a,2 03), where a* ^ aj when i ^ j\ 

g = (a[ a'2 a'3), where a\ / a'j when i ^ j; 

h = (a" a'2 a'3), where a" / a '̂ when i ^ j . 

Let us assume that 9 < > h doesn't hold. Without loss of generality we may 
assume that a[ = a". Then {a'2,03} = {a2,03 }. 

If we suppose that a'2 = a2 then we get a'3 = a'3. Therefore g — h which is a 
contradiction. 

Let us now suppose that a'2 = a'3 and a'3 = a2, i.e., that 

g = (ai a'2 a'3) and h = (a[ a'3 a'2). 

But 02 ^ {a!2, (23} and 03 ^ {03,02} therefore 02 — a3. This contradicts the condi-
tion f &H3fi. 

So, if n = 1 the statement is true. 
Let us assume that the statement is true for all functions from -Fn_i. We will 

prove the statement for the functions from Fn, n> 2. 
Let 

/ = (/1, /2, /3), where f{ <> f j when i ± j\ 

9 = (91,92,93), where gi < > g3 when i ^ j; 
h = (hi,h,2,h,3), where hi < > hj when i ^ j 

and fi,gi,hi 6 (1 < i,j < 3). As we know / < > g, f <> h and g ^ h. 
Consequently gi h\ or 52 i1 h2 or g3 ^ h3. 

Whitout loss of generality we can assume that gi ^ hi. 
From the conditions of the Theorem we obtain /1 < > gi and fx <> hi. But 
fi,gi,hi £ Hjn t . From this fact and our inductive supposition it follows that 

9i <> hi. ' (5) 

Since /1, /2, /3 and fi,gi, hi are pairwise distinguishable everywhere it follows 
from Theorem 4 that 

{ / 2 , / 3 } = { » l , M . 

Let us assume now that 

fli = /2 and hi = / 3 . 

Since pi , <72,33 and /1, /2, /3 are pairwise distinguishable everywhere and gi = / 2 

it follows from Theorem 4 that 

{92,93} = {fufs}-

Similarly as above, we have 

{h2,h3} = {fi,f2}-
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If we suppose that g2 = h2 or g2 = h3 then we obtain 

92 £ {/1, /3} H { / i , /2} = { / i } -

Therefore g2 = /1, <73 = /3, which contradicts 33 < > /3. 
If we suppose that g3 = h3 — /1 then we have h2 = f2, which contradicts 

h2 < > /2. Consequently g3 = h2 = flt g2 = f3, h3 = f2 which implies 

Finally we note, that some algorithms, computer programs and catalogues for 
H-functions are given in [3]. 
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Quasioptimal Bound for the Length of Reset Words 
for Regular Automata 

I.K. Rystsov * 

1 Introduction 
In 1964 J. Cerny stated the hypothesis that in a finite reset automaton with n 
states there is a reset (synchronizing) word whose length is at most (n — l)2 and 
showed that this bound can be achieved [1]. In [2] this hypothesis was proved.by 
direct enumeration of automata with small number of states. J. Pin used algebraic 
methods to prove this hypothesis for cyclic automata with prime number of states 
[3]. The general upper bound (n3 — n)/6 has been obtained in [4] for any reset 
n-state automaton. 

The aim of this paper is to obtain the quasioptimal bound 2 • (n — l)2 for regular 
reset automata with n states and to extend the class of automata for which the 
optimal bound is valid. 

2 Basic notions 
A finite deterministic automaton A is a function A : S x X —> S, where 5 is a 
nonempty finite set of states and X is a finite alphabet of input letters. This function 
can be considered as a function from X to the multiplicative monoid Map(S) of 
unary mappings on S• So it can be naturally extended to a homomorphism from 
the free monoid X* of words generated by X to the monoid Map(S): 

A: X* ^ Map(S). 

This homomorphism associates with a word w = xi... xm the composition of 
mappings A(tu) = A(x\) •... • A(xm). Note that the empty word is mapped to the 
identical mapping. The submonoid A(X*) of Map(S) is called the monoid of the 
automaton A. 

Denote by A(s,w) the value of the mapping A(w) in the state s 6 S. For a 
subset of states T C S let us define A(T,ui) = (A(s,io) | s £ T}. The rank of a 
word W with respect to A is equal to the number of states in the subset A(S, ID). 
A word is said to be reset for A if its rank with respect to A is equal to one . An 
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automaton is called reset if there is a reset word for it. The following proposition 
is evident. 

Proposition 1 A finite automaton A is reset if and only if, for every pair of states 
s, t, there is a word w such that A(s, w) = A(t, w). 

For a word w = x\ ... xm, l(w) = m denotes its length. The set of all input 
words of length less than m is denoted by Xm. A finite nonempty set of input 
words will be called a collection. The length l(W) of a collection W is the length 
of a longest word in it. 

Let n be the number of states in A. A collection W is transitive for A if its 
length is less than n and for every pair of states s, t there is a word w E W such that 
A(s,w) = t. An automaton is said to be transitive (strongly-connected) if there is a 
transitive collection for it. In the sequel we shall consider only transitive automata 
because it is sufficient to prove the Cerny's hypothesis for this class of automata 
[51; 

Definition 1 A transitive collection of words W is called regular for A if it contains 
the empty word and there is a natural number k > 1 such that for every pair of 
states s, t, there are exactly k words in W which take the state s into the state t. 
The constant k will be called the regularity degree. 

An automaton is called regular if there is a regular collection of words for it. 
For example, an automaton is regular if there is an input letter which cyclically 
permutates all its states. More generally, an automaton A with n states is regular if 
the subset of mappings A(Xn) contains a regular subgroup of permutations. Note 
that a regular group of permutations is a (noncommutative) scheme of relations [6]. 

3 Directed automata 
The preimage of a subset T C S under the inverse action of a word w is defined in 
the following way: 

A°(T,w) = {s \ A{s,w) eT}. 

The next proposition is evident. 

Proposition 2 A word w is reset for A if and only if there is a state s for which 
A°{s,w) = S. 

The number of states in a subset T is denoted by | T \. A word w is said to be 
increasing for a subset T if | A°(T,w) |>| T |. A subset of states is proper if it is 
nonempty and is not equal to S. 

Definition 2 A collection of words W is called increasing for A if for any proper 
subset of states in A there is an increasing word in W. 
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An automaton is called directed if there is an increasing collection of words for 
it. 

Theorem 1 An automaton is directed if and only if it is reset and transitive. 

Proof. Let A be a reset transitive automaton and w be a reset word for A. 
Then A(S,w) = { s i } , for some state si. From transitivity of A it follows that 
for any state Sj £ S, there is a word Wi such that ^(si ,« ; , ) = Sj, 1 < i < n. 
Thus we have A°(si,wwi) = S, for all 1 < i < n, hencei the collection of words 
{wwi | 1 < i < n} will be increasing for A. 

Conversely, let A be a directed automaton and W be an increasing collection 
for it. Let us fix any state si as an initial state. Then there is an increasing word 
w\ 6 W for the subset { s i } . Let Si = >l°(si, tt>i). If the subset Si is proper then 
there is an increasing word w2 '£ W for Si and we take S2 = A°(Si,W2). This step 
can be repeated several times until the set S will be obtained. By construction, we 
have the following series: 

1 <| Si |<| S2 |< ... <| S m \=n. (1) 

As the result we obtain the word w = wm .. .wi such that A°(si,u>) = S. So, by 
proposition 2, the word w is reset for A. It is also easy to see that A is transitive, 
because an initial state can be choosed arbitrarily. Thus the theorem is proved. • 

Let res(A) be the minimal length of reset words for a directed automaton A 
and inc(A) be the minimum over the lengthes of increasing collections of words for 
A. Theorem 1 implies the following relationship between these functions. 

Theorem 2 For any directed automaton A with n > 1 states, the inequality 
res(A) < inc(A) • (n - 2) + 1 is valid. 

Proof. Let A be a directed automaton and W be an increasing collection for 
it of minimal length inc(A). According to theorem 1 A is reset, therefore there is 
an input letter xi £ X for which the mapping A(xi) is not bijective. Then there 
is a state si such that | ^"(si jXi) |> 1. Let us fix si as an initial state and repeat 
the procedure from theorem 1 with wi — X\. From (1) it follows that the length of 
the resulting reset word is at most l(W) • (n — 2) + 1. This completes the proof. • 

This theorem shows that inequality inc(A) < n implies Cherny's hypothesis. 
Since it is difficult to obtain this bound by combinatorial methods, in the next 
section, we shall use more powerful methods of linear algebra. 

4 Linear extensions of automata 
Let R be the field of real numbers and Rn the n-dimensional vector space over 
R. Denote by (u,v) the scalar product of vectors u and v in this space. The 
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standard basis E in this space consists of binary vectors a, 1 < i < n, where the 
i-th component of ê  is equal to one and the others are zeros. 

For a collection of vectors V, denote by Af(V) its affine span which consists 
of affine linear combinations of vectors in V with real coefficients [7]. If a set of 
vectors is equal to its affine span, then it is called an affine subspace of Rn. The 
dimension of an affine subspace is defined as the dimension of the parallel linear 
subspace [7]. 

The sum of basic vectors will be called the unit vector e = (1, . . . 1). This vector 
defines the linear function from Rn to R in the usual way | v |= (e,v). The unit 
vector belongs to the following hyperplane: 

Pn = {v\(e,v)=n}, 

which is an (n — l)-dimensional affine subspace of Rn. 
We say that a collection of vectors V C Pn is .complete if Af(V) = Pn. The 

centre c(V) of a collection V = {ui , . . . ,tim} is defined by the formula: 

1 m 

c(V) = - 5 > 
• • ¿=i 

A collection of vectors V is central if c(V) = e. 

Definition 3 A collection of vectors is called balanced if it is complete and central. 

Let A be a finite deterministic automaton with a set of states S = { s i , . . . , s n } . 
Then there is a one-to-one correspondence / between S and the standard basis E 
of the space Rn which is defined as follows / ( s j ) = e*, 1 < i < n. Note that e* is 
the characteristic vector of the subset {si}-

Now we define an isomorphic automaton LA on the set E by the formula 
¿^(ejjX) = EJ iff A(si,x) = SJ. Then we can extend the transition function to 
the whole linear space as follows: 

Ti-ei,x) = « ' LA(ei, x). 
i = i t=i 

Thus we obtain the linear automaton LA which is called the linear extension of the 
automaton A over the field R. 

In general case when the basis is fixed, a linear automaton can be considered 
as a function from X into the algebra Matn(R) of n x n matrices over R. In our 
case every matrix LA(X) is binary and row-monomial, because A is deterministic. 
The element (i,j) of the matrix LA(X) is equal to one if A(sj,x) = Sj, otherwise it 
is zero. The product of matrices LA{W) = LA{Xi) •... • L ^ ( x m ) corresponds to the 
input word W = xi... xm. The value of the transition function LA(V,W) is equal 
to the product of the row-vector v and the matrix LA{W). 

Let us fix the unit vector e = (1 , . . . ,1) as the initial state of the automaton 
LA- The collection of vectors W) = {LA(E,W) \ UI 6 W} is associated with 
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a collection of words W. It is easy to see that LA(C,W) C PN for any collection 
W. A collection of words W is called complete (central, balanced) for LA if the 
collection of vectors LA{S,W) is complete (central, balanced). 

The product (concatenation) of two collections of words W,Y is defined in the 
usual way WY = {wy \ w £ W, y £ Y}. The following proposition is linear analog 
of well-known Moore's theorem [9]. 

Theorem 3 For any directed automaton A with n states, the collection of words 
Xn is complete for its linear extension LA-

Proof. Let w be a reset word of length res(A) and W be a transitive collection 
of words for A of length n— 1. Then we have £>i(e, {w}W) = n-E. So the collection 
of words Xm, where m = res(A) + n, is complete because it contains the complete 
subcollection { w } W . 

Now let us consider the increasing sequence of affine sub-
spaces AF(LA{e,Xi)),\ < i < m. Dimensions of these subspaces are less than 
n, so there is a positive integer i < n such that Af(LA(e,Xi)) = Af(LA{e,Xi+1)). 
Hence, we conclude that AJ(LA{C,Xj)) = AF(LA{E,XJ)), for all j > i. Therefore, 
we have 

Af(LA(e,Xi)) = Af(LA(e,Xn)) = Af(LA(e,Xm)) = Pn . 

and our theorem is proved. • 

Let f(T) be the binary characteristic vector of a subset T C S of length n. Note 
that the number of states in T is equal to the scalar product (e, f(T)). 

Lemma 1 If a collection of words W is complete for LA , then for any proper subset 
T of S there is a word w £ W satisfying (LA(e, w), f{T)) T |. 

Proof. Consider the following hyperplane: 

P(T) = {v\(v,f(T))=\T\}. 

The intersection Q = P(T) fl Pn is a proper affine subspace of Pn because 
f(T) £ Pn. Hence, LA{z, W) g Q since the collection of vectors i/^(e, W) is 
complete. Thus the lemma is proved. • 

The inverse transition on a vector ej and a letter x in the automaton LA is 
defined as the product of ej and the transposed matrix LA{X)°. Note that the ma-
trix LA{X)° is column-monomial, and so, there is an isomorphism between inverse 
transitions in automata A and LA which can be described for a subset T and a 
word w by the following formula: 

f(A°(T,w)) = f(T)-LA(w)°. (2) 

There is also the following well-known relationship between the scalar product and 
inverse action of a matrix which holds for any vectors u,v and word ui [8]: 

(U-LA(W),V) = (U,V-LAH°)- (3) 

Now we can prove one of the main theorem. 
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Theorem 4 If a collection of words is balanced for the linear automaton LA , then 
it is increasing for A. 

Proof. Let W = { w i , . . . , iom } be a balanced collection of words for LA and T 
be a proper subset of states in A. Denote the collection of vectors LA(G, W) by V. 
By our assuption, we have the following equalities: 

(c(V),f(T)) = (eJ(T))=\T\. 

By the definition of c(V), we have the following property: 

m 
J£(LA(e>wi),f(T))=m-\T\. (4) 
¿=1 

Then by Lemma 4, we conclude that there is a word Wj in W for which the following 
inequlity holds: 

(LA(e,Wj),f[T))>\T\. (5) 

Indeed, in the opposite case we should have (¿^(e.iyj), / ( T ) ) <| T |, for all i, 1 < 
i < m. Then Lemma 4 implies a contradiction because in this case the left-hand 
side of (4) should be less than the right-hand side. 

Properties (2) and (3) implies the following equalities: 

(LA(e,wj)J(T)) = (e,f(T)-LA(wj)°)=\A°(T,wj) |. 

So the inequality | A°(T,Wj) |>| T \ will be hold for the word Wj satisfying (5). 
Thus the word Wj is increasing for the subset T, which completes the proof. • 

5 Regular automata 
Let A denote a regular reset automaton of n states. Let us fix a regular collection 
of words Y = {yi, • • • ,ym} for this automaton with regularity degree k > 1. By 
definition 1, the parameters k,m,n satisfy the equality k • n = m. Recall that the 
collection Y contains the empty word and l(Y) < n. 

Consider the linear extension LA of A, over the field R. The bistochastic matrix 
each element of which is equal to l / n is denoted by Jn. It is easy to see that the 
following matrix equality holds: 

1 m 

- ^ L A { y j ) = J n . (6 ) 
j = i 

From this we obtain the next proposition. 

Lemma 2 For any collection W, the collection of words WY is central for LA-



Quasioptimal Bound for the Length of Reset Words for Regular Automata 151 

Proof. Let W = {wi,... ,wi}. If we multiply the equality (6) from left by the 
vector c(L>i(e, W)), then we get the following equality: 

^ l m 

¿=1 j=i 

Therefore, the lemma is proved. • 

Now we can prove the main result. 

Theorem 5 There is a reset word for A whose length is at most 2 • (n - l)2. 

Proof. Consider the collection of words W = XnY. Since the collection Y 
contains the empty word, we have the inclusion Xn C W. Hence, from Theorem 3 
we conclude that the collection W is complete for LA- Lemma 6 implies that the 
collection W is central, and so, it is balanced for LA- Then by Theorem 5, we get 
that the collection W is increasing for A. So we have the following inequalities: 

inc(A) < l(W) < l(Xn) + l(Y) < 2 • (n - 1). 

Now using Theorem 2, we obtain the following bounds: 

res{A) < 2 • (n - 1) • (n - 2) + 1 < 2 • (n - l)2. 

Thus the theorem is proved. • 

At last we give a sufficient condition which implies the validity of Cerny's hy-
pothesis. 

Theorem 6 If the collection of words XY is complete for the linear extension of 
A, then res(A) < (n - l )2 . 

Proof. Indeed, by Lemma 6, the collection XY is central, and so, it is balanced. 
Then by Theorem 5 we conclude that inc(A) < n. Thus the required statement 
follows from Theorem 2. 

6 Conclusion 
Note that theorem 8 gives the largest class of automata for which the optimal bound 
is known, because cyclic automata from papers [1] and [3] satisfy its condition. It 
is interesting to study the following hypothesis. 

Hypothesis. Any transitive automaton is regular. 

If this hypothesis is valid, then from Theorem 7 it follows that the quasioptimal 
bound 2 • (n - l )2 holds for any reset n-state automaton. 
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Fuzzy Extension of Datalog* 

Ágnes Achs * Attila Kiss* 

Abstract 

In this paper we define the fuzzy Datalog programs as sets of Horn-
formula« with degrees and give their meaning by defining the deterministic 
and nondeterministic semantics. In the second part of the paper we show a 
possible extension of /DATALOG on fuzzy data. 

1 Introduction 
In knowledge-base systems there are given some facts representing certain know-
ledge and some rules which in general mean that certain kinds of information imply 
other kinds of information. In classical deductive database theory ([CGT], [U]) the 
Datalog-like data model is widely spread. Its most general type allows the use of 
both function symbols and negation. The meaning of a Datalog-like program is 
the least (if it exists) or a minimal model which contains the facts and satisfies the 
rules. This model is generally computed by a fixpoint algorithm. 

The aim of this paper, which is partially a further development of [AK] and 
[K], is to give a possible extension of Datalog-like languages to fuzzy relational 
databases using lower bounds of degrees of uncertainty in facts and rules. We give 
a method for fixpoint queries. We show that this fixpoint is minimal under certain 
conditions. 

We define the deterministic and nondeterministic semantics of /DATALOG and 
give a possible extension on fuzzy data. 

2 The Concept of Fuzzy Datalog Program 
To define the idea of fuzzy Datalog program (/DATALOG) we need some basic 
concepts. 

A term is a variable, a constant or a complex term of the form / ( t i , . . . ,tn), 
where / is a function symbol and f i , . . . , tn are terms. An atom is a formula of the 
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form p(t), where p is a predicate symbol of a finite arity (say n) and t is a sequence 
of terms of length n (arguments). A literal is either an atom (a positive literal) or 
the negation of an atom (a negative literal). 

A term, atom, literal is ground if it is free of variables. 
An implication operator is a mapping of the form 

I(x v) = ( 1 i t x - y 
I f(x,y) O t h e r w i s e 

where x,y £ [0,1] and 0 < f(x,y) < 1. 
Let D be a set. The fuzzy set F over D is a function F : D [0,1]. Let T(D) 

denote the set of all fuzzy sets over D. So F £ T(D). 

F U G{d) d= max(F(d), G(d)) 

F n G(d) d= min (F{d),G(d)) . 
We can define an ordering relation: F < G iff F(d) < G(d), for d £ D. 
The support of fuzzy set F is a classical set 

Supp(F) = {d|F(d) ? 0}. 

We can see that (T(D), <) is a complete lattice. The top element of the lattice 
is U : D [0,1] : U(d) = 1, for d £ D. The bottom element is: 0 : D [0,1] : 
0(d) = 0, for d£D. 

Fuzzy sets are frequently denoted in the following way: 

F = ( J ( d , a d ) , 
d€D 

where (d,ad) £ D x [0,1]. 
In general the (d, ad) pairs where = 0 are omitted from F, and sometimes 

SuppiF) in enlarged with (d, 0) pairs, where d £ D but d £ Supp(F). 
Below we will define the fuzzy Datalog language which is a possible extension 

of Datalog, using lower bounds of degrees of uncertainty in facts and rules. In this 
language the rules are completed with an implication operator and with a level. 
We allow for each formula to use any implication operator from a given set. Thus 
we fix a set of implication operator. We can infer the level of a rule's head from 
the level of the body and the level of the rule and the implication operator of the 
rule. 

Definition 1 An /DATALOG rule is a triplet (r; I; /3), where r is a formula of the 
form 

Q*-Qu---,Qn ( n > 0 ) 

where Q is an atom (the head of the rule), Qi,..., Q n are literals (the body of the 
rule); / is an implication operator and /3 £ (0,1] (the level of the rule). 
An /DATALOG rule is safe if 
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• All variables which occur in the head also occur in the body; 

• All variables occuring in a negative literal also occur in a positive literal. 

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a 
ground atom. The rules of the form (A « - ; 7; /3) are called facts. 

The Herbrcmd universe of a program P (denoted by Hp) is the set of all possible 
ground terms constructed by using constants and function symbols occuring in P. 
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate 
symbols occur in P and whose arguments are elements of Hp. A ground instance of 
a rule (r; / ; /3) in P is a rule obtained from r by replacing every variable x in r by 
$(x) where $ is a mapping from all variables occurring in r to Hp. The set of all 
ground instances of (r;/ ; /3) are denoted by (ground(r); / ; /3). The ground instance 
of P is 

ground(P) = U{rj]0)ep(ground(ry, I; /3). 

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of 
Bp, 

Np E T(BP), that is Np = |J {A, a A). 
AeBp 

Let for ground atoms A 1 > • • • ) c*AiA...AAn and a^A be defined in the following 
way: 

«i4iA...Ai4n = min(a i41 , . . . )a i4„), 
def 

a^A = 1 - <*A-

Definition 3 An interpretation is a model of P if for each 
(ground(r)\ I; ¡3) E ground(P), ground(r) = A A 

I((*A1/\...KAn,OtA) > 0 

A model M is the least model if for any model N,M < N. A model M is minimal 
if there is no model N ^ M such that N < M. 

To be short we sometime denote a^j by abody and a a by ahead-

3 The Semantics of Fuzzy DATALOG 
We will define two kinds of consequence transformations. Depending on these 
transformations we can define two semantics for /DATALOG. In this chapter we 
will show that the two semantics are the same in the case of positive programs, but 
they are different when the program has negative literals. 

Definition 4 The consequence transformations DTP : T(BP) —• T(BP) and 
NTP : T(Bp) T(BV) are defined as 

DTp(X) = {\J{(A,aA)}\(A Au... ,An,I;P) E ground(P), 
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(|j4í|j"X.-) 6 X for each 1 < i < n,ctA = max(0,min{7|J(abody,7) > /?})} U l 
and 
NTP(X) = {(A,aA)}|3(i4<- Au... ,An-I;/3) £ ground(P), 

ctAi) e X for each 1 < i < n,otA = max(0,min{7|J(abody,7) > / ? } ) } U X , 
denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol 

with arity k and c is a list of k ground terms. 

Note: NTP(X) has at most one more element than X while DTP(X) may have 
many new elements. 

For any T : T(BP) —> T(BP) transformation let 

T0 = {u{(A,a^)}|(yl < - ; / ; £ ) e ground(P),aA = max(0,min{7|/(l,7) > 

{(,4,0)13(5 . . . - . A . . . ; / ; /9) € ground(P)} and let 
TI = T(T 0 ) 

Tn = T(Tn_o 

Tq = least upper bound {T7|7 < <5} if <5 is a limit ordinal. 

Proposition 1 Both DTP and NTP have a fixpoint, i.e., there exists X € F{BP) 
and Y € T{BP) : DTP{X) = X and NTP{Y) = Y. 
If P is positive, then X = Y and this is the least fixpoint. (That is for any 
Z = T(Z) :X<Z.) 

Proof: As [CGT] and [GS] show, if T is an inflationary transformation over a 
complete lattice L, then T has a fixpoint. (T is inflationary if X < T(X) for every 
X £ L). If T is monotone ( T ( X ) < T(Y) if X < Y), then T has a least fixpoint 
(see in [I/]). 

Since DTP and NTp are inflationary and T(BP) is a complete lattice, thus they 
have an inflationary fixpoint. 

If P is positive, then DTP = NTP and this is monotone, which proves the 
proposition. • 

We denote the fixpoints of the transformations by lfp(DTp) and lfp(NTp). 
We show, that these fixpoints are models of P, so we can define the meaning of 

programs by these fixpoints. 

Theorem 1 lfp{DTp) and lfp(NTp) are models of P. 

Proof: 
For T = DTP and T = NTP in ground(P) there axe rules in the following forms: 
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a. (A ; 1,13). 
b. (A « - A i , . . . ,AN\/;/3); {A,AA) G lfp(T) and 

(|Ai|, AAI) € lfp(T), 1 < i < n. 
c. X¿<-Ai,..-,An-,I;0);3i:(\Ai\,aAJé lfp(T). ' 

It was shown in [AK] that .in all of these cases /(»body, > (3. 
This model for function- and negation-free /DATALOG is the least model of P 

and this fixpoint can be reached in finite steps as given in [AK]. • 

Now we can define the semantics of /DATALOG programs. 

Definition. 5 We define lfp (DTP ) to be the deterministic semantics and 
lfp(ATp) to be the nondeterministic semantics of /DATALOG programs. 

The next statement is obvious by Proposition 1.: 

Proposition 2 For function- and negation-free /DATALOG, the two semantics 
are the same. 

We can choose many kinds of implication operators, but we will use only four 
of those which were discussed in [AK]. They are: 

T ( \ _ / * i f x — y t ( \ — I * • if 35 < 3/ 
h{x,y) - | y o t h e r w i s e - | i _ _ y) otherwise 

TÍ if £ < 2 / j , , J l i f i < y 
W>V>-\ y/x otherwise h{x,y) - | Q otherwise 

As the next example shows, if the program has any negation, the two semantics 
are different. 

Example 1 

1. r(a) < - ; I i ; 0.8 
2. p(x) < - r ( x ) , - g ( x ) ; / i ; 0 . 6 
3. q(x) r ( x ) ; / i ; 0 . 5 
4. p(x) < - 9 ( x ) ; J i ; 0 . 8 

Then lfp(£>Tp) = { ( r (a ) , 0.8); (p(a), 0.6; (q{a ) , 0.5)} . 
In nondeterministic evaluation we can get different solutions, depending on the 

order of applied rules. 
If the order of rules is 1., 2., 3., 4. then (lfpNTP) = {(r(a),0.8); (p(a),0.6; 

[q(a), 0.5)}, but if the evaluating order is 1., 3., 2., 4. then the lfp(ATp) = 
{(r(a), 0.8); (p(a),0.5); (q(a), 0.5)}. 

• 
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The set lfp(DTP) is not always a minimal model as shown in the example above. So 
in applying the deterministic semantics it is not certain that the obtained fixpoint 
is minimal. In the nondeterministic case however it is minimal under "certain con-
ditions. This condition is the stratification. The stratification gives an evaluating 
sequence in which the negative literals are evaluated at first. 

To stratify a program, it is necessary to define the concept of dependency graph; 
This is a directed graph, whose nodes are the predicates of P. There is an arc from 
predicate p to predicate q if there is a rule whose body contains p or ->p and whose 
head predicate is q. 

A program is recursive, if its dependency graph has one or more cycles. 
A program is stratified if whenever there is a rule with head predicate p and a 

negated body literal there is no path in the dependency graph from p to q. 
The stratification of a program P is a partition of the predicate symbols of P 

into subsets Pi,... ,Pn such that the following conditions are satisfied: 
a. if p £ Pi and q € Pj and there is an edge from q to p, then i > j 
b. if p 6 Pi and q € Pj and there is a rule with the head p whose 

body contains q, then i > j. 
A stratification specifies an order of evaluation. First we evaluate the rules 

whose headrpredicates are in Pi then those ones whose head-predicates are in P2 

and so on. The sets P i , . . . ,Pn are called the strata of the stratification. 
A program P is called stratified if and only if it admits a stratification. 
There is a very simple method for finding a stratification for a stratified program 

P in [CGT], [U]. 
Let P be a stratified /DATALOG program with stratification Pi,... ,Pn. Let 

P? denote the set of all rules of P corresponding to stratum P f, that is the set of 
all rules whose head-predicate is in Pi. 

Let 
Li=lip(NTPl) 

where the starting point of the computation is To defined earlier. 

L2=lfp(JVrp ; ) 

where the starting point of the computing is Li, 

Ln = \fp(NTK) 
where the starting point is L n - i -

In other words we first compute the least fixpoint Li corresponding to the first 
stratum of P. Once we computed this fixpoint we can take a step to the next 
strata. 

Note: 
lfp(NTp;) = lfp(BTp.). 

We will show by induction that Ln is a minimal model of P. For this purpose we 
need the next lemma. 
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Lemma 1 Let P be an /DATALOG program such that for each negated predicate 
in a rule body there is not any rule whose head-predicate would be the same, but 
this predicate can occur among the facts. Then P has a least model: 

L = lfp(ATp)(= lfP(£>Tp)). 

Proof: 
Let p be a negated predicate in a rulé body of P. As there is not any new rule 

for p, therefore the degree of p will never change during the computation. For such 
P NTP (or DTP) is monotone and therefore lfp(iVTp) is the least model of P. 

• 
According to this lemma, L\ is the least fixpoint of Pf. Generally L¿ is the 

least fixpoint of P*, because due to the stratification of P, all negative literals of 
stratum i correspond to predicates of lower strata, so there is not any rule in P* 
whose head-predicate would be this one. 

From this we get the following theorem: 

Theorem 2 If P is a stratified /DATALOG program then L„ is a minimal fixpoint 
of P. 

Theorem 3 For stratified /DATALOG program P, there is an evaluation se-
quence, in which lfp(jVTp) is a minimal model of P. 

Proof: 
The above construction gives this sequence. In this sequence Ln = lfp(ATp). 

• 

4 Connection Between /DATALOG and Fuzzy 
Relations 

The ordinary Datalog maybe interpreted by relations such, that to every predicate 
p with arity k corresponds a relation P with arity k. The rows of P are those for 
which the predicate p is true. 

Similarly it is possible to associate relations with /DATALOG predicates. The 
problem is that in the literature there are different definitions of fuzzy relations. 
Below we will deaf with two kinds of fuzzy relations. 

Definition 6 A first type fuzzy relation R in D\,..., Dn is characterised by an 
h-varíate membership function: 

M : ¿ 1 X . . . X D „ - > [ 0 , 1 ] . 

In other words a first type fuzzy relation is a fuzzy subset of the Cartesian Product 
of Du...,Dn. 

We will denote this relation by: 

, . . . , ! > „ ) , / m ) . 
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Example 2 The relation ( F ( X , Y ) , f i p ) is a first type fuzzy relation, where F 
denotes the friends relation: 

F: X Y hf 
John Tom 0.1 
Jim Bob 0.6 

• 
It is obvious that we can relate a first type fuzzy relation to each predicate of 

an /DATALOG program P so that 

i = ( o i , . . . , o„) e (R{Di,..., Dn) if and only if 

( r (o l t . . . , 0 , M f l W ) G IfP (DTP) or lfp (NTP). 

The first type fuzzy relations show the closeness of the connection among crisp data. 
However, sometimes we need to use fuzzy data. So we will define the second type 
fuzzy relation and will give a possible extension of /DATALOG on these relations. 

Definition 7 Let Di,...,Dn be n universal sets and J~(T)i),..., !F(Dn ) be all 
their fuzzy sets. Then a second type fuzzy relation R is defined by an n-variate 
membership function: 

rn • H D i ) x . . - X T{Dn) [ 0 , 1 ] . 

Example 3 Let R be the following: 

R : Name Age Salary fiR 
John 31 {0.8/3000,0.7/3500} 07T 
Tom middle aged 3300 0.8 
Ann young {0.6/2000,0.8/2500} 0.9 

R is a second type fuzzy relation. • 

5 Extension of /DATALOG for Fuzzy Data 
We want to extend the /DATALOG programs so that the predicates of the pro-
grams can be related to second type fuzzy relations. Therefore we allow that the 
constants be any fuzzy data and the variables can have any fuzzy value. 

Formally an /DATALOG rule is the same as above. Evaluating an extended 
. /DATALOG program, we would have difficulties with the unification of fuzzy data, 
therefore we will complete these rules with similarity predicates, so the unification 
will be crisp and the uncertainty is expressed by the similarity. 

Definition 8 simo : T(D) x T(D) [0,1] is a similarity predicate if it is reflexive 
and symmetric, that is, if simD(z,a:) = 1 and sim.o(a;,2/) = sim£>(y,i). 

A similarity matrix is a matrix corresponding to similarity predicate. 
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A similarity is transitive if 

sim£>(a:,z) > max{min(sim£)(x,T/),sim£)(?/,z))}. 
y€D 

Definition 9 An extended /DATALOG program is an /DATALOG program on 
fuzzy data completed with similarity matrices. 

If we want to evaluate an extended /DATALOG program, we have to trans-
form it to an /DATALOG program. For this purpose we will build the similarity 
predicates into the rules. In rewriting predicates there are the following rules: 

a. p is the head predicate of a fact 

p (a i , . . . , an) «-;/;/?. 

Instead of this rule, we get: 

p(x!,..., xn) < - p ( a i , . . . , a n ) , s i m o . J o i . i i ) , . . . , simDj!n (an ,x„) ;I ; /3, 

where sim/^. denotes the similarity predicate on the domain of X{. 
b. X is a variable in the rule 

Suppose that x is in the predicates p ,p i l t . . . ,Pik and there is no another oc-
curence of x in this rule: 

p ( . . . , x , . . .),pix (..., x,.. ,),pik ( . . . , x , . . . ) . 

Instead of this sequence we can write: 

p( . . . , x , . . .),Pii ( . . . , x i , . . . ) , s im D i ( x i , x ) ,p i 2 ( . . . , x 2 , . . . ) , 

simDi (x2, x), simDi (x2, x x ) , . . . , 
p i f c ( . . . ,x f c , . . . ) , s i m ^ x ^ x ) , s i m c j x ^ x i ) , . . . , simDic(xfc,xjfc_i) 

independently of whether p is in the head or in the body and independently of the 
order of the predicates (because of symmetry of sim). 

Then the head of the new and of the original rule will be the same. 

c. x is a repeated variable in predicate p: 

p ( . . . , x,..., x,..., x , . . . ) — x occurs k + 1 times. 

Instead of this we get: 

p(. . ,,x,...,xi,...,xk,...) simDx(xi,x), s im D i ( x 2 , x ) , . . . , 

sim^(xfc,x), sim£)a ;(xi,x2) , . . . , s im D i (x i ,x f c ) , . . . , simDx(xfc.-i,Xfc). 
In this case the head of the new rule is the same if p is in the body and it is of the 
form p ( . . . , x , . . . , x i , . . . , x* , . . . ) if p is the head predicate. 
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Proposition 3 Completing the rewriting of rules we get an ordinary /DATALOG 
program. 

This program can be evaluated by deterministic or nondeterministic semantics. 

Proposition 4 If simD* is transitive then 

simD.in,®), s im C l ( i 2 ) a ; ) , . . . , s im^ ( x k , x), s i m D x ( x 2 , x i ) , . . . , 

s\mDl{xk,xi),..., simjofc(xk,xk~i) 

can be simplified to: 

simojxx,!), sim^(x2,x),..., simDi(xk,x). 

Proof: We will prove that sim/^ {x2 ,xi ) can be ignored. The proof is similar for 
other cases. Because of transitivity 

sim/j^a^.zi) > min( sim.Dx(x2,x), simDI(i,a;i)). 

As in case of the rule A «- Av,..., An abody = minia^j , . . . , ) so it is possible 
to leave out s imc^a^z i ) - • 

We give an algorithm of rewriting an extended /DATALOG program P. 

Algorithm: 

Procedure rewriting 
facts := { the set of facts of P} 
rules := { the set of rules of P } - facts 
C := { the set of all possible constants } 

(that is the union of domains) 
V := { the set of variables of P} 

while not-empty (facts) do 
fact := select (facts) 
axglist := { the list of arguments of the fact } 
i := 1 
body := 0 
for a e C do 

while a € arglist do 
change (a, Xi) 

body : = body A simD„(a:»,a) 
i := i + 1 

endwhile 
endfor 
facts := facts - fact 

endwhile 
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while not-empty (rules) do 
rule := select (rules) 
variable Jsit := {the list of variables of the rule } 
body := { the body of the rule } 
for x € V do 

if x £ variable-list then 
rest-list leave-out (x, variable-list) 
i := 1 
while a£ rest -list do 

change (x,xi) 
body := body A s im^ (x*, x) 
if non.transitive (sim^) then 

for j :=1 to i — 1 do 
body := body A sim£>i(xJ, Xi) 

endfor 
endif 
i:=i + 1 

endwhile 
endif 

endfor 
rules := rules - rule 

endwhile 
endprocedure 

Example 4 

p(a) <- ; / i ;0.7 

r(b) < - ; J i ; 0 . 8 

q{x) p(x), r(x); I\; 0.9 

sim a b c 
a 1 0.8 0.1 
b 0.8 1 0.7 
c 0.1 0.7 1 

The rewritten rules: 
p{a) <- ; / i ;0.7 

r(b) < - ; J i ; 0 . 8 

sim(a, a) ; 7j; 1 

p(x) p(a), sim(x, a); h; 0.7 

r(x) <-r(b), simx, b); I\\ 0.8 
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q(x) p(xi), sim(ii,i),r(a ;2), sim(:E2,20. sim(a;2, a^); Ii\ 0.9 

It is simpler to write the solution in matrix-form, so 
lfp(iVTp) = lfp (DTP) : 

p: a b c r : a b c q: a b c 
" 0 7 0.7 0.1 " 0 8 0.8 0.7 ~0?7 0.7 0.7 

and the similarity matrix is the original. • 

Example 5 

p(a,b) 7i; 0.9 

p{c,d) <-; / i ;0.8 

q(x,y) p{x,y)\A;0.7 

q(x,y) <-p(x,z),q(z,y)-, A; 0.8 

sim a b c d e 
a 1 0 0.1 0.2 0.8 
b 0 1 0.9 0.1 0 
c 0.1 0.9 1 0.2 0 
d 0.2 0.1 0.2 1 0.1 
e 0.8 0 0 0.1 1 

The rewritten rules (without facts and similarity matrix): 

p(x,y) p(a, b), sim(x, a), sim(y, 6);/i;0.9 

p(z,y) p(c,d), sim(x, c), sim(y,6);/i;0.8 

?(x,y) «-pfai . f f i ) , sim(xi,a;), sim(yi,y);/i;0.7 

9(1,y) <-p( i i ,z i ) ,g (z 2 ,y i ) sim(ii,x), sim(yx,y), sim(zi,z2);/i ;0.8 

The fixpoint is: 

P • a b c d e 9 : a b c d e 
a 0.1 0.9 0.9 0.1 0.1 a 0.2 0.7 0.7 0.7 0.2 
b 0.2 0.1 0.2 0.8 0.1 b 0.2 0.2 0.2 0.7 0.2 
c 0.2 0.1 0.2 0.8 0.1 c 0.2 0.2 0.2 0.7 0.2 
d 0.2 0.2 0.2 0.2 0.1 d 0.2 0.2 0.2 0.2 0.2 
e 0 0.8 0.8 0.1 0 e 0.2 0.7 0.7 0.7 0.2 

and the original similarty matrix. • 
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Example 6 

n(a) <-; Ji;0.9 

s(x,x) « - n ( i ) ; / i ; 0 .8 

sim a b c 
a 1 0.7 0.1 
b 0.7 1 0 
c 0.1 0 1 

The rewritten rules (without facts and similarity matrix): 

n(x) n(a), sim(x,a); / i ;0.9 

s (x ,x i ) « - sim(xi ,x) ,n(x2 ) , sim(x2,x), s im(xi ,x2 ) ; / i ;0 .8 

The fixpoint is: 

n : a b c s : a b c 
0.9 0.7 0.1 a 0.8 0.7 0.1 

b 0.7 0.7 0 
c 0.1 0 0.1 

6 Conclusion 
In this paper we gave a possible extension of Datalog-like languages. We defined 
the deterministic and nondeterministic semantics of /DATALOG and using the 
similarity relations we gave a possible extension on fuzzy data. 
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Some Remarks On Generating Armstrong And 
Inferring Functional Dependencies Relation* 

János Demetrovics* Vu Due Thi* 

Abstract 
The main purpose of this paper is to give some results concerning algo-

rithms for generating Armstrong relation and inferring functional dependen-
cies ( FDs for short ). Firstly, we present some algorithms for solving these 
two problems. In the second part of the paper some NP-complete problems 
related to generating Armstrong relation and inferring FDs are given. 

Key Words and Phrases: relation, relational datamodel, functional depen-
dency, relation scheme, generating Armstrong relation, dependency inference, 
minimal key, antikey. 

1 Introduction 
Problems that construct a relation r such that r is an Armstrong relation of a 
given relation scheme ( generating Armstrong relation ) and a relation scheme s 
such that FDs of s hold in a given relation ( inferring FDs ) have been applied for 
for database design, query optimization, and artificial intelligence. These problems 
have been investigated in a lot of papers [3,9,12,16,17,18]. 

In this paper we give some results related to generating Armstrong relation 
and inferring FDs. The paper is structured as follows. In Section 2, we present 
some characterizations of the Armstrong relation of a given relation scheme, and 
construct an algorithm for finding all minimal transversals of a given hypergraph. 
From these and the results, presented in [9], we construct algorithms for generating 
Armstrong relation and inferring FDs. 

Section 3 gives some NP-complete problems related to generating Armstrong 
relation and inferring FDs. 

Let us give some necessary definitions and results that are used in the next 
sections. The concepts given in this section can be found in [1,3,4,6,7,8,10,11,13,19]. 

Let R = { d i , . . . , a „ } be a nonempty finite set of attributes. A functional 
dependency is a statement of the form A B, where A,BCR. The FD A -> B 
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holds in £L relation T — { / l i , . . . , HM } over R if V/ii, hj £ r we have h{(a) = hj(a) for 
all a e -A implies hi(b) =-hj(b) for all b 6 B. We also say that r satisfies the FD 
A-+ B. 

Let Fr be a family of all FDs that hold in r. Then F = FT satisfies 

(1) A^AeF, 

(2) (A B e F, B C £ F) => (A -t C £ F), 

(3) (A -t B £ F, A C C, D C B) => (C D £ F), 

(4) (A B £ F, C D £ F) => (A U C B U D £ F). 

A family of FDs satisfying (l)-(4) is called an f-family ( sometimes it is called 
the full family ) over R. 

Clearly, Fr is an /-family over R. It is known [1] that if F is an arbitrary 
/-family, then there is a relation r over R such that Fr = F. 

Given a family F of FDs, there exists a unique minimal f-family F+ that contains 
F. It can be seen that F+ contains all FDs which can be derived from F by the 
rules (l)-(4). 

A relation scheme s is a pair < R,F >, where R is a set of attributes, and F is 
a set of FDs over R. Denote A+ = {a: A {a} £ F+}. A+ is called the closure of 
A over s. It is clear that A ->• B £ F+ iff B C A+. 

Clearly, if s =< R, F > is a relation scheme, then there is a relation r over R 
such that FT = F+ ( see, [1] ). Such a relation is called an Armstrong relation of s. 

Let r be a relation, s =< R,F > be a relation scheme. Then A is a key of r ( a 
key of s) if A R € Fr ( A R £ F + ) . A is a minimal key of r(s) if A is a key 
of r(s) and any proper subset of A is not a key of r(s). 

Denote Kr(Ks) the set of all minimal keys of r(s). 
Clearly, Kr,Ks are Sperner systems over R, i.e. A,B £ Kr implies A% B. 

Let i f be a Sperner system over R. We define the set of antikeys of K, denoted 
by K - 1 , as follows: • 

K-1 = {A C R : (B £ K) => {B % A)and(A c C) = > (3B € K)(B C C)}. 

It is easy to see that K~l is also a Sperner system over R. 

Let R be a nonempty finite set, P(R) its power set, and I C P(R), R £ I, and 
A,B £ I => A n B £ I. I is called a meet-semilattice over R. Let M C P(R). 
Denote M+ — {C\M' : M' C M}. We say that M is a generator of I if M+ = I. 
Note that R £ M+ but not in M, by convention it is the intersection of the empty 
collection of sets. 

Denote N = {A € / : A ± D{A' £ I : A C A ' } } . 
It can be seen that N is the unique minimal generator of I. 
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2 Algorithms 
It is known [3,9,17] that the worst-case time complexities of generating Armstrong 
relation and inferring FDs are exponential. In this section we present some char-
acterizations of the Armstrong relation of a given relation scheme. An effective 
algorithm finding all minimal transversals of a given hypergraph is also given. 
These results and the results, presented in [9], are used to construct algorithms 
for generating Armstrong relation and inferring FDs. 

Let s =< R,F > be a relation scheme. A FD A {a } G F+ is called 
the primitive maximal dependency ( PMD for short ) of s if a $ A and for all 
A' C A : A' {a } € F+ implies A — A'. 

Denote Ta = {A : A {a } is a PMD of s}. It can be seen that {a } , i ? £ Ta, 
and Ta is a Sperner system over R. It is possible that Ta = 0.. 

Let s =< R,F> be a relation scheme, a G R. Set Ka = {A C R: A —• {a} , 
,BB: (B {a})(B C A)}. Ka is called the family of minimal sets of the attribute 
a. 

Clearly, R & Ka, {a} G Ka and Ka is a Sperner system over R. It is easy to 
see that Ka — {a } = Ta. 

Based on the results, presented in [9], we show some characterizations of the 
Armstrong relation of a given relation scheme. 

Lemma 2.1 [9] Let F be an /-family over R, a G R. Denote LF(A) = {a 
G R: (A, {a} ) 6 F},ZF = {A: LF(A) = A}. Clearly, RE ZF, A,B E ZF => ANB 
€ ZF. Denote by NF the minimal generator of ZF. Set MA = {A € NF:a £ A, 
FIB € NF:a £ B, A C B}. T h e n MA = MAX(F,a), where MAX(F, a) = { K 
R : A is a nonempty maximal set such that (A, {a} ) ^ F } . 

Let r be a relation over R. Clearly, FR is an f-family over R. Denote LFR(A) = 
{a € R : A {a } £ FR}, ZFR = {A : LFR (A) = A}. Put 

Er = {Eij : 1 <i<j< |r|}, where Eij = {a 6 R : hi(a) = hj(a)}. Er is called 
the equality set of r. 

From Er we compute N = {A 6 Er : A ± 6 Er : A C A ' } } . It can be 
seen that N is the minimal generator of ZFr. Then for each a € R we have 

Ma = {A e N : a $ A, £B e N : A C B). 
It can be seen that Ma = {A e Er : a £ A, fiB G Er : A C B}. 

It is known [5] that an arbitrary full family of FDs can be uniquely determined 
by its primitive maximal dependencies. 

From the result, presented in [9] ( see, Remark 2.9 ), and Lemma 2.1 we obtain 
K~l = Ma for all a G R. Clearly, if K is a Sperner system, then K and K'1 are 
uniquely determined by each other. Consequently, the next proposition is clear 
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Proposition 2.2 Let s be a relation scheme, and r a relation over R. Then r is 
an Armstrong relation of s if and only if for every a £ R 

K-1 = Ma. 

Now we present the concept of hypergraph that is in [4]. 

Let R be a nonempty finite set and P{R) its power set. The family H = 
{Ei'.Ei £ P(R),i — l , . . . , m } is called a hypergraph over R if Ei ^ 0. ( In [4] 
author requires that the union of EiS is R, in this paper we do not). 

A hypergraph H is simple if Ei c Ej implies i = j, i.e., H is a Sperner system 
over R. 

The elements of R are called vertices, and the sets E\,..., Em axe the edges of 
the hypergraph H. 

It is easy to see that a simple graph is a simple hypergraph with |i?i| = 2. 
Let H = {Ei,..., Em} be a hypergraph over R. Set 
m(H) = {Ei £ H: fiEj £ H : Ej C Ei}. 
It can be seen that m(H) is a simple hypergraph, and the family H uniquely 

determines the family m(H). 
Let H be a hypergraph over R. A set A C R is called a transversal of H 

(sometimes it is called a hitting set ) if E £ H implies A D E ± 0. 
The family of all minimal transversals of H is called the transversal hypergraph 

of H, and denoted by tr(H). Clearly, tr(H) is a simple hypergraph. 

Remark 2.3 Let K be a Sperner system over R. Based on the definitions of K~l 

and tr(K) we can see that tr(K) = {R- A: AE K'1}. 

Denote Na = {R - A : A £ Ma}. From Proposition 2.2 and Remark 2.3 we have 

Proposition 2.4 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a £ R 

tr(Ka) = Na. 

It is known [4] that if H, H' are two simple hypergraph over R, then H = tr(H') 
iff H' = tr(H). From this and Remark 2.3, we can see that if K is a Sperner system, 
then tr({R — A : A £ K-1}) = K. According to the definitions of the set of all 
antikeys, the family of all minimal transversals, and Proposition 2.2 we obtain 

Proposition 2.5 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a £ R 

Na-1 = {B : R - B £ Ka)-

Clearly, from Proposition 2.4 we have 
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Proposition 2.6 Let r be a relation, and s a relation scheme over R. Then r is 
an Armstrong relation of s iff for all a G R 

Ka= tr(Na). 

It is obvious that a G R - A, where A 6 Ma. Clearly, Ta = Ka - {a} . Thus, 
from the definition of the transversal hypergraph we obtain Ta = tr({(R — a) — A : 
A G M a } ) for all a G R(*). 

Let r be a relation over R. A FD A —> {a} G Fr is called the primitive maximal 
dependency of r if a A and for all A! C A : A' {a } € Fr implies A = A'. 

Denote Va = {A : A {a } is a PMD of r } , and N^ = {(R - a) - A : A G Ma). 
By (*) and according to the definitions of Fr, and F+ we have 

Proposition 2.7 Let r be a relation over R. Then for all a 6 R, Va = tr(N'a). 

Proposition 2.7 was independently discovered in [18]. 
In this paper, we consider the comparison of two attributes as an elementary 

step of algorithms. Thus, if we assume that subsets of R are represented as sorted 
lists of attributes, then a Boolean operation on two subsets of R requires at most 
\R\ elementary steps. 

Now we construct an algorithm that finds all minimal transversals of a given 
hypergraph. 

Algorithm 2.8 ( Finding all minimal transversals ). 
Input: Let H = {E\,..., Em} be a hypergraph over R. 
Output: tr(H). 
Step 1: Set Li = {{a} : a G ¿?i}. It is obvious that L\ = tr({Ex}). 
Step q-f-1 (q <m) : 
Assume that Lq = Sq U {Bi,..., Bt<1}, where Bi H = 0, i = 1 , . . . , tq and 

Sq = {A G Lq : A fl Eq+i # 0 } . 
For each i (i = 1 , . . . , tq) construct the set {Bi Ub.be Eq+j}. Denote them by 

A[,...,Ai. (i = l,...,tq). Let 

Lq+1 = 5 , U {A], : A G Sq => A £ A],, 1 < i < tq, 1 < p < r4}. 

Set tr(H) = Lm. 

Theorem 2.9 For every q (1 < q < m), Lq = tr({Eu • • -,Eq}), i.e., Lm = tr(H). 

Proof. We prove this theorem by induction. It is obvious that Li = tr({E\}). 
We have to show that Lq+\ = tr({Ei,... ,Eq+i}). For this using the inductive 
hypothesis Lq = tr({Ei,... ,Eq}). 

Firstly, assume that D is the minimal subset of R such that D n Et 0 (t = 
1 , . . . , q + 1). By the inductive hypothesis, there is a X £ Lq such that X C D. 

If X e Sq, then X fl Et ^ 0 for all t = 1 , . . . ,q + 1. Because D is the minimal 
subset of R such that Etr\D ± %(t = 1 , . . . , q + 1), we have X = D. Hence, D G Sq 

holds. Consequently, we obtain D e Lq+\. 
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If X n Eq+i = 0, then X = Bi holds for some i in { 1 , . . . , tq}. By D n Eq+1 ± 0 
we have J3j c D. Thus, (D - Bi) fl Eq+i £ 0 holds. According to the construction 
of Lq+1, we have Alp C D for some p in {1 , . . . ,r¿}. Clearly, Alp n E¡ / 0 for all 
I = 1 , . . . , q + 1, i.e., A'p is a transversal of the family {Ei,..., Eq+1}. By D £ 
tr({E\,..., we obtain D = Ap. Because D does not contain the elements of 
Sq, we have D £ Lq+i. 

Conversely, assume that D £ Lq+1. If D £ 5 , , then DC\EP 0 (p = 1 , . . . , q) and 
D is minimal for this property, and at the same time D n Eq+i £ 0. Consequently, 
we have D £ tr(E\,.. .,Eq+i). 

Let D £ Lq+i - Sq. Clearly, there is an Ap (1 < i < tq and 1 < p < r¿) such 
that D = Ap. Our construction shows that Ei D Ap ^ 0 for all / = 1 , . . . , q 4-1. By 
the construction of algorithm we obtain Alp = B¡ U {b} for some b £ Eq+\. 

Suppose that C is a proper subset of Alp, and C £ tr({Ex,..., Eq+1}). Clearly, 
b £ C holds. According to the definitions of the transversal and the family of 
all minimal transversals, C is a transversal of the collection {E\,..., Eq}. By the 
inductive hypothesis (Lq = tr({E\,.-.., Eq})), if there is A £ Sq such that A C C, 
then we have A C A^. This contradicts A Ap for all A £ Sq. If there is B j (1 < 
j <tq) Bj n Eq+1 = 0 such that Bj C C, then b g Bj and Bj C Bj. This conflicts 
with the fact that Lq is a simple hypergraph. Hence, D £ tr({E\,..., Eq+\}) holds. 

Thus, Lq+1 = tr({Eu... ,Eq+i}). Hence, Lm = tr(H) holds. The theorem is 
proved. 

It can be seen that the hypergraph H uniquely determines the family tr(H), 
and the determination of tr(H) based on our algorithm does not depend on the 
order of Ei,..., Em. 

Remark 2.10 Denote Lq = Sq U {Bx,... ,Btq), and lq (1 < q < m - 1) is the 
number of elements of Lq. It can be seen that the worst-case time complexity of 
our algorithm is 

m—1 
0(\R\2 Y, w , 

<,=0 

where IQ = to = 1 and 

_ J lq — tq if lq > tq, 
U 9 - \ l if lq=tq. 

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known 
that the size of arbitrary simple hypergraph over R can not be greater than CÍT^, 
where n = |ü|. Cln/2] is asymptotically equal to 2n+1 /2 /(7r • n)1/2. From this, the 
worst-case time complexity of our algorithm can not be more than exponential in the 
number of attributes. In cases for which lq < lm(q = 1 , . . . , m — 1), it is easy to see 
that the time complexity of our algorithm is not greater than 0{\Rf\H\\tr{H)\2). 
Thus, in these cases this algorithm finds tr(H) in polynomial time in |fl|, \H\ and 
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|ir(if)|: Obviously, if the number of elements of H is small, then this algorithm is 
very effective. It only requires polynomial time in |ii|. 

It can be seen that our algorithm is better than the algorithm, presented in [4], 
finding all minimal transversals. 

We give the next example which illustrates our algorithm. 

Example 2.11 Let R = {1,2,3,4,5,6} , and 
# = {(1,2), (2,3,4), (2,4,5), (4,6)}. 

From Algorithm 2.8 we obtain 

U = { ( 1 ) , ( 2 ) } ; 

¿2 = {(1,3), (1,4), (2)}; 

L3 = {(1,3,5), (1,4), (2)}; 

¿4 = {(2,6), (2,4), (1,3,5,6), (1,4)}. 

Clearly, tr(H) = L4. 
Now we give the algorithm, presented in [9], that finds Ka 

Algorithm 2.12 [9] ( Finding a minimal set of the attribute a ). 
Input: Let s =< R,F > be a relation scheme, A = { a i , . . . ,at} —• {a}. 
Output: A' £ Ka. 
Step 0: We set L{0) = A. 
Step i+1: Set 

L(i + 1) = I L^ ~ ai+1 if L® ~ °i+1 ^ \ L(i) otherwise. 

Then set A' = L(t). 

Algorithm 2.13 [9] ( Finding a family of all minimal sets of attribute a ). 
Input: Let s =< R, F > be a relation scheme, a € R. 
Output: Ka. 
Step 1: Set L( 1) = E^ = {a}. 
Step i+1: If there are C and A -4 B such that C € L(i), A -¥ B e F, VE G 

L(i) => E % A U (C - B), then by Algorithm 2.12 construct an Ei+1, where 
Ei+1 C i u ( C - B ) , Ei+1 e Ka. We set L{i + 1) = L(i) U Ei+1. In the converse 
case we set Ka = L(i). 
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It is shown [9] that there exists a natural number n such that Ka = L(n). 
It can be seen that the worst-case time complexity of algorithm is 

Thus, the time complexity of this algorithm is polynomial in |iZ|, |F|, and \Ka\. 
Clearly, if the number of elements of Ka for a relation scheme s =< R, F > is 

polynomial in the size of s, then this algorithm is effective. Especially, when \Ka\ 
is small. 

Based on Proposition 2.4, Algorithms 2.8 and 2.13 we construct the next algo-
rithm. 

Algorithm 2.14 ( Generating Armstrong relation). 
Input: Let s =< R,F> be a relation scheme. 
Output: A relation r such that Fr = F + . 
Step 1: For each a G R by Algorithm 2.13 we compute Ka, and from Algorithm 

2.8 find tr(Ka). 
Step 2: N — U H^a) 

a€i? 
Step 3: Denote elements of TV by A\,... ,At construct a relation 
R = {ho, hi,..., ht} as follows: 
For all a G R, h0(a) = 0, Vi = 1 , . . . , t 

h (a) = / i if a G Ai 
' \ 0 otherwisi otherwise 

It is known [16] that if s =< R, F > is a relation scheme. Denote Zs — {A: A+ = 
A}, and Ns is a minimal generator of Zs. Then 

N„= [J MAX(F+,a) 
aeR 

where 

MAX{F+,a) = {AC R: A -t {a } 0 F+, A C B B {a } € F+}. 

From this and the definitions of Ma, and Na of the relation r we have tr(Ka) = 
Na for all aeR. Consequently, by Proposition 2.4 we obtain Fr = F+. 

The estimation and the effectiveness of this algorithm are analogous to the 
algorithm, presented in [9] ( see, Remark 2.12 in [9] ), so its proof will be omitted. 

Now we give the algorithm finding all antikeys, presented in [20]. 
Let K — { B i , . . . , Bm} be a Sperner system over R. 
For each q = 1 , . . . , m we construct Kq = {B\,..., Bq}_1 by induction: 
Set K\ = {R — {a } : a G S i } . It is obvious that Kx - { £ i } - 1 . 
By the inductive hypothesis we have constructed Kq = { S i , . . . , 5 ? } _ 1 for 

(q <m). 
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We assume that Kq = Fq U { X i , . . . , Xtq}, where Xi,..., Xtq containing B q + i 

and' Fq = {A € Kq : Bq+l % A}. 
Fór all i (i = 1 , . . . ,tq) construct the antikeys of {£?g + 1} on Xi in an analogous 

way as K\. Denote them by A\,..., A\. (i = 1 , . . . , tq).-Let 

Kq+1 = Fq U {A* : A 6 Fq A'p <£_ A, 1 < i < tq> 1 < p < n}. 

Set K-1 = Km. 
Denote Kq = Fq U { X i , . . . ,Xtq} and lq (1 < q < m - 1) is the number of 

elements of Kq. 

Remark 2.15 [20] The time complexity of algorithm finding all antikeys is 

According to Proposition 2.5 and the algorithm finding all antikeys we will 
construct the following algorithm. 

Algorithm 2.16 ( Inferring FDs ). 
Input: r be a relation over R. 
Output: s =< R, F > such that F+ = Fr. 
Step 1: From r compute the equality set Er 

Step 2: Set N = {A e Er: A ^ n { £ e Er: A C B}} 
Step 3: For each a € R find Ma = {A G NR: a £ A, fiB e NR: a g B, A C B}: 

Compute Na = {R - A : A e Ma}. 
Step 4: By the algorithm finding all antikeys, for each a £ R construct 
Step 5: Construct s =< R,F >, where F = {R - B {a} : Va £ R: B e 

By Proposition 2.5 we have Fr = F+. 

Remark 2.17 Clearly, for all o € R Na is computed in polynomial time in the 
size of r. It can be seen that the complexity of Algorithm 2.16 is the complexity of 
step 4. By Remark 2.15, it is easy to see that the worst-case time complexity of 
Algorithm 2.16 is 

m—1 

0(\R\2 Y W 

where 

N-\R-B*{a}} 

¿=i q=o 

where R = { a i , . . . , a„ } , m* = | and 
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Meaning of liq, ¿¿9, Uiq see Remaxk 2.15. 
In cases for which hq < lmi (Vi, V<j: 1 < q < rrij) the time complexity of our 

n 2 ' 
algorithm is 0(n2 J2 |N0,l|Arai-1| ). Thus, the complexity of Algorithm 2.16 is 

i=l 
polynomial in |AT0i |, |A â>.-1|. Clearly, in these cases if |A 0̂>._1| is polynomial 
(Especially, it is small ) in the size of r, then our algorithm is effective. 

According to Proposition 2.6 and algorithm 2.8 we give the next algorithm for 
inferring FDs. 

Algorithm 2.18 ( Inferring FDs ). 
Input: r be a relation over R. 
Output: s —< R,F> such that F+ = FT. 
Step 1: From r compute the set Na for all a £ R. 
Step 2: By Algorithm 2.8, construct ir(JVQ), for every a £ R. 
Step 3: Construct s =< R,F >, where F = {A {a}:Va G R, A € 

tr(Na), A ^ { a } } . 

By Proposition 2.6 we have Fr = F+. 
The estimation of Algorithm 2.18 is analogous to Algorithm 2.16, so its proof 

, will be omitted. 

It can be seen that Algorithm 2.18 is similar to the algorithm inferring FDs, 
presented in [18]. However, it can be seen that Algorithm 2.8 is better than the 
algorithm, presented in [4], that is used in [18]. 

3 NP-complete Problems 
In this section, we present some NP-complete problems related to PMDs, and the 
sets MCT. In Section 2, we show that these sets play important roles in generating 
Armstrong relation and inferring FDs. 

Let s = < R,F > be a relation scheme over R. Denote La = {A : A —y {a } , 
a & A}. It can be seen that La contains all PMDs concerning a, i.e., Ta C La. 

Firstly, we introduce the following problem related to the set La. 

Theorem 3.1 The following problem is NP-complete: 
Let s =< R,F> be a relation scheme over R, a G R, and an integer m (m < 

|ii|), decide whether there is an A such that a & A, A {a} , ( i.e., A G La), and 
|A| < m. 

Proof. We nondeterministically choose a set A so that < m, a g A, and decide 
whether A {a} is an element of F+. Clearly, by the polynomial time algorithm 
finding the closure ( see [2] ), our algorithm is nondeterministic polynomial. Thus, 
our problem lies in NP. 



Some Remarks On Generating Armstrong 177 

Now we shall show that our problem is NP-hard. It is known [15] that the 
problem deciding whether there exists a key having cardinality less than or equal 
to a given integer for relation scheme is NP-complete. Now we prove that this 
problem is polynomially reducible to our problem. 

Let s' =< P,F' > be a relation scheme over P. Now we construct the relation 
scheme s =< R, F > , as follows: 

R = P U a, where a £ P and F = F' U P -* {a}. 
It is obvious that s is constructed in polynomial time in the sizes of P and F'. 

Based on the construction of s and the definition of the minimal key we can see 
that if A G Ks', then A € Ks. Conversely, if B is a minimal key of s, then by 
R —» {a } G F we have a B. On the other hand, by the definition of the minimal 
key B G Ks>. Thus, K,- = Ks holds. By P {o } G F, and a $ P, if B {a } is 
a PMD of s, then B e Ks. It can be seen that if A G Ks>t then A ->• {a} G F+. 
According to the definition of PMD, A —• {a} is a PMD of s. Consequently, C is a 
key of s' if and only if a £ C, and C —• {a} e F+. The theorem is proved. 

Now we give the NP-complete problem concerning Ma, ( see, Lemma 2.1 ). 

Theorem 3.2 The following problem is NP-complete: 
Let s =< R, F > be a relation scheme over R, a € R, and an integer m(m < 

|i?|), decide whether there is an A such that a $ A, A {a } 0 F+, and m < |A|. 

Proof. By the proof of Theorem 3.1, it is clear that our problem lies in NP. 
It is known [14] that the independent set problem is NP-complete : 
Given integer m and a non-directed graph G =< V,E >, where V is the set of 

vertices and E is the set of edges. An independent set in G is a subset A C V such 
that for all a, b G A, the edge (a, b) is not in E. The independent set problem is 
deciding whether G contains an independent set A having cardinality greater than 
or equal to m. 

We shall prove that the independent set problem is polynomially reducible to 
our problem. 

Let G =< V, E > be a non-directed graph, m < Set 
s' =< V,F' >, where F1 = { {c^a,-} -+ V : (a u a j ) G E}, and 
s = < R,F >, where R = V I) {a} , a £ V, and F = F' U V ->• {a}. 
Clearly, s, s1 are constructed in polynomial time in the size of G. 
According to the definition of the set of edges, E is a simple hypergraph over 

V. From this, we can see that s' is in BCNF. Because E is the set of edges, and 
by the definition of the minimal key, we can see that if (aj,aj) G E, then {a;, a ; } 
is a minimal key of s'. Conversely, if £ € Ks>, then there is an {ai,a,j} such that 
{ai,a,j} C B. Because B is a minimal key, we have {a;,a^} = B. Hence, Ks> = E 
holds. 

Consequently, A is not a key of s' if and only if {a*, } £ A for all (ai, aj) G E. 
Thus, A is not a key of s' if and only if A is an independent set of G. 

On the other hand, by the proof of Theorem 3.1 C is a key of s' if and only if 
C {a } G F+, and a £ C. Consequently, A is not a key of s' if and only if a g A, 
and A {a}$F+}. 
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Thus, A is an independent set of G if and only if A does not contain a, and 
A—y {a } ^ F+. The theorem is proved. 

Now we will show that Theorem 3.1 is still true for the relations. 

Theorem 3.3 The following problem is NP-complete: 
Let r be a relation over R, a £ R, and an integer m (m < |i?|), decide whether 

there is an A such that a & A, A -y {a} € Fr, and < m.N 

Proof. 
We nondeterministically choose a set A so that |A| < m, a g A, and decide 

whether A —y {a } £ FT. Clearly, using the definition of the functional dependency, 
we can test in polynomial time that the functional dependency A -y { o } holds or 
does not hold in r. It is obvious that our algorithm is nondeterministic polynomial. 
Thus, the problem lies in NP. 

It is shown [14] that the the vertex cover problem is NP-complete: 
Given integer m and a non-directed graph G =< V,E >, where V is the set 

of vertices and E is the set of edges, decide whether G has a vertex cover having 
cardinality not greater than m. 

Let G =< V, E > be a non-directed graph, m < | V j. Put R = V U a, where 
a 

Denote the elements of E by E\,..., Et construct a relation 
r = {ho, .,ht}, as follows: 
For all b £ R, h0(b) = 0, Vi = 1 , . . . , t 

h ffj\ — f * if b £ Ei or b = a 
*. \ 0 otherwise. 

Clearly, the set E is a Sperner system. From this and by the definition of 
Na we can see that Na = { {a j ,a , , a} : (a{, a,j) £ E}. Consequently, we obtain 
N'a = {{aj,aj} : (a{,aj) £ E}. According to Proposition 2.7, Va = tr({{a,i,a,j} : 
(aj, a,j) £ E}). On the other hand, by the definition of the vertex cover we can see 
that A is a vertex cover of G if and only if A does not contain a, and A —y {a } is 
an element of Fr. The proof is complete. 

Thus, for the relations Theorem 3.1 is still true. However, the next proposition 
shows that the problem, presented in Theorem 3.2, can be solved in polynomial 
time if the relation scheme is changed to the relation. 

Proposition 3.4 Let r be a relation over R, a £ R, and an integer m(m < |i?|). 
Then the problem deciding whether there is an A such that a & A, A -yg Fr, and 
m <\A\ can be solved by a polynomial time algorithm. 

Proof. 
According to the difinitions of Ma and the antikey, and by Proposition 2.2 we 

can see that Ma is the family of all maximal sets A such that A doesn't contain 
a, and A -y {a } £ FT. Clearly, for every a £ R, we can compute the family Ma in 
polynomial time in the size of r. 
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Consequently, for relations, given an attribute a, and an integer m the problem 
deciding whether there is an A such that a & A, A —> {a} , and the cardinality of A 
is greater than or equal to m can be solved by a polynomial time algorithm. The 
proposition is proved. 
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A Lattice View of Functional Dependencies in 
Incomplete Relations 

Mark Levene * 

Abstract 

Functional Dependencies (or simply FDs) are by far the most common 
integrity constraint in the real world. When relations are incomplete and 
thus contain null values the problem of whether satisfaction is additive arises. 
Additivity is the property of the equivalence of the satisfaction of a set of func-
tional dependencies (FDs), F, with the individual satisfaction of each member 
of F in an incomplete relation. It is well known that, in general, satisfaction 
of FDs is not additive. Previously we have shown that satisfaction is additive 
if and only if the set of FDs is monodependent. Thus monodependence of 
a set of FDs is a desirable property when relations may be incomplete. A 
set of FDs is monodependent if it satisfies both the intersection property and 
the split-freeness property. (The two defining properties of monodependent 
sets of FDs correspond to the two defining properties of conflict-free sets of 
multivalued data dependencies.) 

We investigate the properties of the lattice £ (F) of closed sets of a mon-
odependent set of FDs F over a relation schema R. We show an interesting 
connection between monodependent sets of FDs and exchange and antiex-
change lattices. In addition, we give a characterisation of the intersection 
property in terms of the existence of certain distributive sublattices of £(F). 
Assume that a set of FDs F satisfies the intersection property. We show that 
the cardinality of the family .M(F) of meet-irreducible closed sets in £(F) is 
polynomial in the number of attributes associated with R; in general, this 
number is exponential. Thus an Armstrong relation for F having a polyno-
mial number of tuples in the number of attributes associated with R can be 
generated. As a corollary we show that the prime attribute problem can be 
solved in polynomial time in the size of F; in general, the prime attribute 
problem is NP-complete. We also show that F satisfies the intersection prop-
erty if and only if the cardinality of each element in A'i(F) is greater than 
or equal to the cardinality of the attribute set of R minus two. Using this 
result we are able to show that the superkey of cardinality k problem is still 
NP-complete when F is restricted to satisfy the intersection property. Finally, 
we show that separatory sets of FDs are monodependent. 

* Department of Computer Science, University College London Gower Street, London, W C 1 E 
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1 Introduction 
In order to handle incomplete information, Codd [CODD79] suggested the addition 
to the database domains of an unmarked null value, denoted by unk, whose meaning 
is "value at present exists but is unknown". We call relations, whose tuples may 
contain the null value unk, incomplete relations. The semantics of an incomplete 
relation r are defined in terms of the possible worlds relative to r. Each possible 
world relative to r is a complete relation, i.e. a relation without any occurrence of 
unk, emanating from a possible substitution of all the occurrences of unk in r by 
nonnull values in the underlying database domains. 

Functional Dependencies (or simply FDs) are by far the most common integrity 
constraint in the real world [ULLM88, ATZE93, MANN92] and the notion of a key 
(derived from a given set of FDs) [CODD79] is fundamental to the relational model. 
Given a set of FDs F over a relation schema R and an incomplete relation r over 
R, it is therefore natural to say that r satisfies F if there is a complete relation s, 
in the set of possible worlds relative to r, such that s satisfies each of the FDs in 
F. This gives rise to the additivity problem, which is the problem of whether the 
statement that r satisfies F is equivalent to the statement that r satisfies each FD in 
a reduced cover G of F [LEVE94, LEVE95a] (cf. [ATZE93]); if these two statements 
are equivalent for a class of incomplete relations and a class of sets of FDs then 
we say that satisfaction is additive with respect to these classes. It is well known 
that, in general, satisfaction of FDs is not additive [ATZE86, LEVE94, LEVE95a]. 
If satisfaction is not additive, then a set of FDs F in this nonadditive class may be 
viewed as contradictory. Thus we consider the solution of the additivity problem 
to be an important prerequisite for any relational database system supporting FDs 
in the context of incomplete information, since otherwise semantic anomalies may 
arise. 

In [LEVE94] we introduced the class of monodependent sets of FDs. A set of 
FDs F over a relation schema R is monodependent if the following two properties 
are satisfied. The first property, called the intersection property, informally states 
that for each attribute A in the attribute set associated with R, there is a unique 
nontrivial and reduced FD in the closure of F that functionally determines A. 
The second property, called the split-freeness property, informally states that there 
are no two nontrivial FDs in the closure of F such that the right-hand side of 
each of the two FDs splits the left-hand side of the other FD. The main result 
in [LEVE94] shows that satisfaction is additive with respect to the class of all 
incomplete relations and a class of sets of FDs FC, if and only if all the sets of 
FDs in FC are monodependent sets of FDs. Therefore, monodependence provides 
a solution to the additivity problem. 

In [LEVE95b] we studied the impact on normalisation theory in relational 
databases of assuming that sets of FDs are monodependent, and in [LEVE95a] 
we extended the results in [LEVE94] to the wider class of sets of FDs and unary 
inclusion dependencies [C0SM9C)]. 

It is well known that the family of all closed sets, with respect to a set of 
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FDs F, is a lattice partially ordered by set inclusion; we denote this lattice by 
£(F) [DEME92, DEME93]. An in-depth investigation concerning the connection 
between the structure of a set of FDs and the type of lattice of closed sets it induces 
was carried out in [DEME92], Herein we investigate the properties of £(F) when 
F is monodependent. 

We next briefly outline the main results of this paper. The set of equivalence 
classes of a set of FDs F over R is a partition of F such that two FDs are in 
the same equivalence class if and only if the closures of their left-hand sides are 
the same [MAIE80, MANN83]. Assume that F satisfies the intersection property. 
We then show that £(F) is exchange [GRAT78] if and only if F satisfies the split-
freeness property and the cardinality of all the nonempty equivalence classes of F 
is maximal. Correspondingly, we show that £(F) is antiexchange [JAMI85] if and 
only if F satisfies the split-freeness property and the cardinality of all the nonempty 
equivalence classes of F is minimal, i.e. one. We conclude that the lattice of closed 
sets of a monodependent set of FDs is something in between an exchange and 
antiexchange lattice according to the cardinalities of its equivalence classes. 

We also investigate some of the characteristics of the lattice ¿ (F) when the set 
of FDs F satisfies the intersection property but not necessarily the split-freeness 
property. We give a characterisation of the intersection property in terms of the 
existence of certain distributive sublattices of £(F). We then present a polynomial 
time algorithm in the size of F to compute the set of meet-irreducible closed sets in 
£(F), which we denote by .M(F) (see Definition 6.1). Let n be the cardinality of 
the attribute set of R. As a corollary of this algorithm we show that the cardinality 
of .M(F) is at most (n™2)> ' n general> this number is exponential in n. Thus an 
Armstrong relation having ( n " 2 ) + 1 tuples can be generated [MANN86]. As an 
additional corollary of this algorithm we show that testing whether an attribute is 
prime (see Definition 4.2) when F satisfies the intersection property can be done in 
polynomial time in the size of F; in general, testing whether an attribute is prime 
is NP-complete [LUCC78]. We also show that F satisfies the intersection property 
if and only if the cardinality of each element in .M(F) is greater than or equal to 
n — 2. Another well known problem, which is NP-complete in the general case, is 
the problem of deciding whether there exists a superkey for R of cardinality k or 
less [LUCC78, DEME88]. Utilsing this result we are able to show that this problem 
is still NP-complete when F satisfies the intersection property. Finally, we show 
that separatory sets of FDs are monodependent. 

The layout of the rest of the paper is as follows. In Section 2 we formalise the 
notion of incomplete relations. In Section 3 we define the notion of a functional 
dependency being satisfied in an incomplete relation. In Section 4 we present 
the relevant properties of FDs which axe utilised in the paper. In Section 5 we 
introduce monodependent sets of FDs and give some technical results, which are 
utilised in the following sections. In Section 6 we introduce the lattice-theoretic 
concepts that are used in the remaining sections. In Section 7 we give some negative 
results concerning the structure of £(F) when F is monodependent. In Section 8 
we investigate the connection between exchange and antiexchange lattices of closed 
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sets and monodependent sets of FDs. In Section 9 we investigate some of the 
characteristics of lattices of closed sets of FDs that satisfy the intersection property. 
In Section 10 we show that separatory sets of FDs axe monodependent. Finally, in 
Section 11 we give our concluding remarks. 

2 Relations that model incomplete information 
Herein we formalise the notion of an incomplete relation, which allows us to model 
incomplete information of the form "value at present exists but is unknown". 

We use the notation |S| to denote the cardinality of a set S. If S is a subset of 
T we write S C T and if S is a proper subset of T we write S C T. Furthermore, S 
and T are incomparable if S T and T % S. At times we denote the singleton { A } 
simply by A, and the union of two sets S and T, i.e. S U T , simply by ST. The 
power set of a set S is denoted by V(S). 

Definition 2.1 (Relation schema and relation) A relation schema R is a fi-
nite set of attributes which we denote by schema(R); we denote the cardinality of 
schema(R) by type(R). From now on we abbreviate schema(R) to sch(R). 

We assume a countably infinite domain of constants, Dom, containing a distin-
guished constant unk, denoting the null value "unknown". 

A tuple over R is a total mapping t from sch(R) into Dom such that \M¿ 6 
sch(R), t(Aj) e Dom. The projection of a tuple t over R onto a set of attributes Y 
C sch(R), denoted by t[Y], is the restriction of t to Y. 

An incomplete relation (or simply a relation) over R is a finite set of tuples over 
R. A relation over R having no occurrences of unk is called a complete relation. 

From now on we let R be a relation schema and r is a relation over R. As usual 
uppercase letters (which may be subscripted) from the end of the alphabet such as 
X, Y, Z will be used to denote sets of attributes, while those from the beginning of 
the alphabet such as A, B, D will be used to denote single attributes. 

In [LEVE94, LEVE95a] we defined the semantics of incomplete relations in 
terms of possible worlds by defining a partial order, C, in Dom, such that u Q v 
if and only if either u = unk or u = v, where u, v 6 Dom. The partial order C is 
extended to tuples over R in a natural way. The set of all possible worlds relative 
to r, denoted by POSS(r), is the set of all complete relations that emanate from all 
possible substitutions of occurrences of unk in r by nonnull values in Dom — {unk}. 

3 Functional dependencies in incomplete rela-
tions 

Herein we formalise the notion a functional dependency being satisfied in an in-
complete relation. 
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Definition 3.1 (Functional dependency) A functional dependency over R (or 
simply an FD) is a statement of the form X -> Y, where X, Y C sch(R). 

We call an FD of the form X Y, where Y C X, a trivial FD. Two. nontrivial 
FDs of the forms X —> A and Y —• A are said to be incomparable if X and Y are 
incomparable. Two nontrivial FDs of the forms XB A and YA B are said to 
be cyclic. 

We stress the fact that we allow FDs whose left-hand side is the empty set. 
From now on we let F be a set of FDs over R. We define the size of an FD X -¥ 
Y to be |X| + |Y|, and the size of F, denoted by ||F||, to be the sum of the sizes of 
all the FDs in F. 

Definition 3.2 (Satisfaction of an FD) An FD X Y is satisfied in a relation 
r, denoted by r f= X Y, whenever Vii,i2 € r, if V A € X, ii[A] ^ unk and ii[X] 
= ta[X] then V B € Y, either ix[B] = unk, £2[B] = unk or ij[B] = t2[B]. 

The reader can verify that when the relation, r, in Definition 3.2 is a complete 
relation then the definition of satisfaction of an FD in r reduces to the standard 
definition of satisfaction of an FD [ULLM88, MANN92, ATZE93]! It was shown 
in [LEVE94, LEVE95a] that X Y is satisfied in r if and only if there exists a 
complete relation s € POSS(r) that satisfies the FD in the standard way. 

Definition 3.3 (Logical implication) A set of FDs F over R logically implies 
an FD X —> Y, written F |= X —• Y, if whenever r is a relation over R then the 
following condition is true: 

if VW —»-Z6F, r ( = W - » Z holds then r (= X ->• Y also holds. 

4 Some properties of sets of functional depen-
dencies 

We assume that the reader is familiar with Armstrong's axiom system for FDs 
[ARMS74, ULLM88, MANN92, ATZE93], consisting of the inference rules: reflex-
ivity, augmentation and transitivity. A fundamental result in relational database 
theory is that Armstrong's axiom system is sound and complete for FDs holding 
in complete relations. We denote the closure of a set of FDs F over R with respect 
to Armstrong's axiom system by F+. Lien [LIEN82], and Atzeni and Morfuni 
[ATZE86] have shown that the inference rules: reflexivity, augmentation, decom-
position and union, are sound and complete for FDs holding in incomplete relations; 
we call this axiom system, Lien and Atzeni's axiom system. That is, by dropping 
the transitivity rule from Armstrong's axiom system and adding the decomposition 
and union rules, we obtain Lien and Atzeni's axiom system. We denote the closure 
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of a set of FDs F over R with respect to Lien and Atzeni's axiom system by F*. The 
soundness and completeness of Lien and Atzeni's axiom system for FDs holding in 
incomplete relations can be written symbolically as the statement: F ]= X —> Y if 
and only if X - > YEF*. 

The following useful property of derivations of FDs, using Armstrong's axiom 
system, which appears as Lemma 2 in [BEER79], will be used in subsequent proofs. 

Proposition 4.1 Let F be a sefc of FDs and assume that W -> Z € F is used 
nonredundantly in a derivation of an FD X Y £ F+ from F by using Armstrong's 
axiom system. Then X W 6 (F - { W -¥ Z})+. 

Definition 4.1 (Closure of a set of attribute) The closure of a set of at-
tributes X C sch(R), with respect to a set of FDs F, denoted by C f ( X ) (or simply 
C(X) whenever F is understood from context), is given by 

C(X) = I J { Y | X - > Y € F + } . 

A set of attributes X C sch(R) is closed with respect to F (or simply closed 
whenever F is understood from context) if C f ( X ) = X. 

We note that C(X) can be computed in linear time in the size of F [BEER79]. 
In the sequel we will use the equivalent statements Y C CV(X) and X —> Y 6 F+, 
interchangeably. 

Definition 4.2 (Superkey, key and antikey) A set of attributes X C sch(R) 
is a superkey for R with respect to F (or simply a superkey for R whenever F is 
understood from context), if C f ( X ) = sch(R). A set of attributes X C sch(R) is a 
key for R with respect to F (or simply a key for R whenever F is understood from 
context), if X is a superkey for R with respect to F and, in addition, for no proper 
subset Y C X, is it the case that Y is a superkey for R with respect to F. We denote 
the set of all keys for R with respect to F by £(F) . 

An attribute A 6 sch(R) is prime with respect to F (or simply prime whenever 
F is understood from context) if A € X for some X 6 £(F); otherwise A is nonprime 
with respect to F. 

An antikey for R with respect to F (or simply an antikey for R whenever F is 
understood from context) is a maximal subset X of sch(R) such that X is not a 
superkey for R. We denote the set of all antikeys for R with respect to F by -4(F). 

Definition 4.3 (A cover of a set of FDs) A set of FDs G over R is a cover of 
F if F+ = G + . 

By Definition 4.1 if G is a cover of a set of FDs F then C F (X ) = C G (X) . 
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Definition 4.4 (Reduced and canonical sets of FDs) An FD X Y € F+ 

is reduced [BEER79] if there does not exist a set of attributes W C X such that W 
-4 Y e F+. A set of FDs F is reduced if all the FDs in F are reduced; F is canonical 
if it is reduced and the right-hand sides of all the FDs in F are singletons. 

A reduced cover G of F can be obtained in polynomial time in the size of F 
[BEER79]. 

Definition 4.5 (A minimum set of FDs) A set of FDs F is a minimum 
[MAIE80] set of FDs if there is no cover G of F such that G has fewer FDs than 
F, all the FDs in F are reduced and for every FD X Y £ F and for every Z C 
Y, ((F - {X Y } ) U {X Z})+ F+. 

In [MAIE80] a minimum set of FDs is called an LR-minimum set of FDs. Fur-
thermore, a minimum cover G of a set of FDs F can be obtained in polynomial 
time in the size of F [MAIE80], 

Definition 4.6 (An optimum set of FDs) A set of FDs F is an optimum 
[MAIE80, MANN83] set of FDs if there does not exist a cover G of F such that 
||G|| < ||F||. We denote an optimum cover of a set of FDs F by opt(F). 

In [MAIE80] it was shown that, in general, finding an optimum cover is NP-
complete [MAIE80]. 

Definition 4.7 (Equivalent sets of attributes) Given a set of FDs F, the sets 
of attributes X, Y C sch(R), are equivalent under F, if X Y, Y -> X £ F+. 
We denote the subset of FDs in F whose left-hand sides are equivalent to a set of 
attributes X C sch(R) by jBf(X); we call the sets Ep(X) the equivalence classes of 
F. 

5 Monodependent Sets of Functional Dependen-
cies 

Given a set of FDs F and an incomplete relation r it is natural to say that r 
satisfies F if there is some complete relation, s £ POSS(r), such that s satisfies each 
of the FDs in F. This gives rise to the additivity problem, which is the problem 
of whether the statement that r satisfies F is equivalent to the statement that r 
satisfies each FD in a reduced cover G of F [LEVE94, LEVE95a] (cf. [ATZE93]); if 
these two statements are equivalent for a class of incomplete relations and a class 
of sets of FDs then we say that satisfaction is additive with respect to these classes. 
If satisfaction is not additive, then F may be viewed as contradictory. Thus we 
consider the solution of the additivity problem to be an important prerequisite 
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for any relational database system supporting FDs in the context of incomplete 
information, since otherwise semantic anomalies may arise. 

Obviously satisfaction is additive with respect to the class of complete relations 
and the class of all sets of FDs. On the other hand, it is well known that sat-
isfaction is not additive with respect to the class of incomplete relations and the 
class of all sets of FDs [ATZE86, LEVE94]. In [LEVE94] we introduced the class 
monodependent sets of FDs. Informally, a set of FDs F over R is monodependent if 
for each attribute A € sch(R), there is a unique nontrivial and reduced FD in F+ 

that functionally determines A, and in addition there are no two nontrivial FDs in 
F+ such that the right-hand side of each of the two FDs splits the left-hand side 
of the other FD. The main result in [LEVE94] shows that satisfaction is additive 
with respect to the class of all incomplete relations and a class of sets of FDs, FC, 
if and only if all the sets of FDs in FC are monodependent sets of FDs. 

In [LEVE95b] we studied the impact on normalisation theory in relation 
databases of assuming that sets of FDs are monodependent, and in [LEVE95a] 
we extended the results in [LEVE94] to the wider class of sets of FDs and unary 
inclusion dependencies [COSM90]. 

Definition 5.1 (A monodependent set of FDs) A set of FDs F is a monode-
pendent set of FDs over R (or simply monodependent whenever R is understood 
from context) if V A 6 sch(R), the following two conditions are true: 

1. Whenever there exist incomparable FDs, X 4 A, Y A G F+, then X D Y 
—• A G F+; we call this property the intersection property. 

2. Whenever there exist cyclic FDs, XB -> A, YA B £ F+, then either Y 
B € F+ or (X n Y)A B € F + ; we call this property the split-freeness 

property. 

An immediate consequence of the above definition is that if G is a cover of F 
then F is monodependent if and only if G is monodependent. In addition, we have 
shown in [LEVE94] that monodependence of a set of FDs F can be checked in 
polynomial time in the size of F. 

We observe that the two defining properties of monodependent sets of FDs corre-
spond to the two defining properties of conflict-free sets of multivalued dependencies 
(MVDs) [SCI081, LIEN82, BEER86]. We further observe that the set of MVDs 
that is logically implied by a monodependent set of FDs may not be conflict-free 
and thus monodependence is a weaker notion than conflict-freeness. For example, 
let F = {A - » B, B -4 A}, with sch(R) = {A, B, D}. It can easily be verified 
that R is monodependent but that the set of MVDs logically implied by R is not 
conflict-free. 

The next theorem from [LEVE94] shows that if F satisfies the intersection prop-
erty, then the closure of F with respect to Armstrong's axiom system (i.e. F+) is 
equal to the closure of F with respect to Lien and Atzeni's axiom system (i.e. F*). 



A Lattice View of Functional Dependencies in Incomplete Relations 189 

This result is fundamental to the theory of FDs in incomplete relations, since it 
justifies the use of Armstrong's axiom system in the context of incomplete relations 
when F is monodependent. 

Theorem 5.1 If F satisfies the intersection property then F+ = F*. 

The converse of Theorem 5.1 is, in general, false. For example, let F = {A -4 
D, B D} , with sch(R) = {A, B, D} . It can be easily verified that F+ = F*, 
however, F does not satisfy the intersection property, since 0 D g F+. 

The following technical results, which are utilised in the sequel, are proved in 
[LEVE95b]. 

Lemma 5.2 Let F be a set of FDs that is minimum and satisfies the intersection 
property. Then V A G sch(R), there is at most one FD, X -> Y G F, such that A 
G Y. 

Lemma 5.3 Let F be a set of FDs which is monodependent and minimum, and 
let F f ( X ) be an equivalence classes of F such that |.Ef(X)|> 1. Then any two FDs 
in EF(X) are reduced and of the form, WA -)• B and WB ->• A. 

Lemma 5.4 Let F be a set of FDs which is monodependent and minimum, and 
let EF{X) and EP(V) be distinct and nonempty equivalences classes of F, with W 
-4 Z £ EP(X). Then V A G WZ, A does not appear in the right-hand side of any 
F D in EF(V). 

Lemma 5.5 Let F be a set of FDs which is monodependent and minimum, and 
let E = {EF(XI), EF(X2), • • •, EP(XK)} be the set of all nonempty equivalence 
classes of F. Then the number of keys for R is given by 

k 
| JC(F) |= J] I EF(Xi) | • 

i=l 

Theorem 5.6 If a set of FDs F is minimum and satisfies the intersection property 
then it is also an optimum set of FDs. 

An immediate result of Theorem 5.6 is that finding an optimum cover of a set 
of FDs which satisfies the intersection property can be computed in polynomial 
time. This is due to the fact that finding a minimum cover of a set of FDs can 
be computed in polynomial time [MAIE80, WILD95]. In general, when a set of 
FDs does not satisfy the intersection property, then finding an optimum cover is 
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NP-complete [MAIE80]. We note that in [LEVE95b] we have also shown that the 
optimal cover of a set of FDs F that satisfies the intersection property is unique, 
implying that the minimum cover of F is also unique. 

The next corollary follows from Theorem 5.6 Lemma 5.2, and the fact that if 
X —• Y is an FD, with X fl Y = 0, then the size of X -4 Y is less than or equal to 
type(R). 

Corollary 5.7 If a set of FDs F is optimum and satisfies the intersection property, 
then |F| < type(R) and ||F|| < (type(R))2. 

We close this section with an interesting result showing that monodependent 
sets of FDs which are also optimum are closed under the proper subset operation. 

Proposition 5.8 Let F be a monodependent set of FDs and let G = opt(F). Then 
V H C G, H is a monodependent and optimum set of FDs over R. 

Proof. Let H C G. By Lemmas 5.3 and 5.4, and Proposition 4.1 we can deduce 
that X -4 A € G+ and A € Z for some FD W -4 Z 6 H if and only if X -4 A e H+. 
We call this statement Observation 1. Therefore, H must satisfy the intersection 
property, since otherwise there must exist incomparable FDs X -4 A, Y -4 A G 
H+, but X n Y 4 A e G + - H+, which contradicts Observation 1. Similarly, 
H must satisfy the split-freeness property, since otherwise there must exist cyclic 
FDs, XB -4 A, YA 4 B G H+, but either Y 4 B e G+ — H+ or (X D Y)A -4 B 
£ G+ — H+, which again contradicts Observation 1. 

Next, suppose that H is not optimum and that J = opt(H), with ||J||<||H||. 
Therefore, (G - H) U J)+ = G+. This leads to a contradiction that G is optimum, 
since ||(G - H) U J||<||G||. The result that H is optimum follows. • 

6 The Lattice of Closed Sets 
Herein we give the definitions of the lattice-theoretic concepts used in the rest of 
the paper. The reader is referred to [DAVE90] for an introduction to lattice theory 
and to [GRAT78] for more advanced material. 

The operator CF (see Definition 4.1) which closes sets of attributes in sch(R) is 
a closure operator in the lattice-theoretic sense [DAVE90]. It follows by [DAVE90, 
Theorem 2.21] that the family of all the closed sets in the power set of sch(R) 
is a lattice partially ordered by set inclusion, which we denote by £(F) (see also 
[DEME92, DEME93]). The lattice £(F) is, by definition, cover insensitive and thus 
G is a cover of F if and only if £(F) = £(G). It is easy to see that £(F) is closed 
under intersection and thus the greatest lower bound of two closed sets in £(F) is 
just their intersection. On the other hand, it can be verified that the the least upper 
bound, denoted by U, of two closed sets X, Y £ £(F) is given by X U Y = C(X U 
Y). We refer the reader to [DEME92] for an in-depth investigation concerning the 



A Lattice View of Functional Dependencies in Incomplete Relations 191 

connection between the structure of a set of FDs and the type of lattice of closed 
sets it induces. 

The following result shown in [DEME92, DEME93] shows the basic connection 
between a set of FDs F over R and its induced lattice of closed sets ¿(F) . 

Proposition 6.1 There is a one-to-one correspondence between F+ and ¿(F) . 

Definition 6.1 (Meet-irreducible elements) A closed set X € ¿ (F) is meet-
irreducible [DAVE90] if V Y, Z G ¿(F), X = Y n Z implies that either X = Y or X 
= Z. The family of all meet-irreducible closed sets in ¿ (F) is denoted by .M(F). 

The following result shows the basic connection between ¿ (F) and .M(F) 
[BEER84, MANN86, WILD95]. 

Proposition 6.2 .M(F) is the unique minimal subset of ¿ (F) such that X G £(F) 
if and only if X is the intersection of all the closed sets in M (F) that are supersets 
of X. 

The following result, which was shown in [MANN86], gives an alternative char-
acterisation of .M(F). 

Lemma 6.3 Let MAX(F, A) be the family of all the maximal closed sets ¿ (F) 
such that V X G MAX(F, A), A £ X. Then the following equality holds: 

X ( F ) = ( J M A X ( F . A ) . 
A€sch(R) 

For completeness of the paper we include the definitions of the various types 
of lattices referred to hereafter. In particular, we define distributive, modular 
[GRAT78, DAVE90], semimodular [GRAT78], exchange [GRAT78] and antiex-
change [JAMI85] lattices. 

Definition 6.2 (Distributive lattice) ¿ (F) is distributive if 

VX, Y, Z G ¿(F) ,X n (Y U Z) = (X n Y) U (X n Z). 

Definition 6.3 (Semimodular and modular lattice) We say that X is covered 
by Y, denoted by X —< Y, where X, Y G ¿(F), if X C Y and X C Z C Y implies 
that Z = X, with Z G ¿(F). 

¿ (F) satisfies the upper covering condition if 

VX, Y, Z G ¿(F) , X - < Y implies that XUZ^YUZORXUZ = YUZ. 

The lower covering condition is the dual statement of the upper covering con-
dition. 

¿ (F) is semimodular if it satisfies the upper covering condition. ¿ (F) is modular 
if it satisfies both the upper and lower covering conditions. 
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.Definition 6.4 (Exchange property) £(F) satisfies the exchange property (or 
simply £(F) is exchange) whenever 

\/A,B e sch(R), VX C sch(R), if A, B <£ C(X) and A 6 C(XB) then B <E C{XA). 

Definition 6.5 (Antiexchange property) £(F) satisfies the antiexchange prop-
erty (or simply £(F) is antiexchange) whenever 0 

VA,B 6 sch(R), VX C sch(R), if A,B $ C(X) and A 6 C{XB) then B £ C{XA). 

The reader can also verify that the intersection property can be redefined as 
follows in terms of a property of the lattice £(F) of closed sets. 

Definition 6.6 (Intersection property) Let -j- be the symmetric difference op-
erator, i.e. X v Y = (X - Y) U (Y - X), where X, Y C sch(R). Then £(F) satisfies 
the intersection property if 

C(X n Y) - (X -h Y) = (C(X) n C{Y)) - (X Y). 

The reader can also verify that the split-freeness property can be redefined as 
follows in terms of a property of the lattice £(F) of closed sets. 

Definition 6.7 (Split-freeness property) £(F) satisfies the split-freeness prop-
erty if 

W1,B € sch(R), VX, Y C sch(R), if B £ C(YA),B £ C(Y) 

and B £ C((X n Y)A) then A $ C(XB). 

We say that a lattice £(F) embeds the figure M, if 3 W, X, Y, Z G £(F) such 
that W c X, Y C X and Y C Z. It can be verified that if £(F) does not embed the 
figure M, then £(F) satisfies the split-freeness property. 

When F is a monodependent set of FDs, we say that £(F) is monodependent. 
We close this section by defining the concept of a sublattice. 

Definition 6.8 (Sublattice) A subset S C £(F) is a sublattice [DAVE90] of £(F) 
if X, Y G S implies that both X u Y G S a n d X n Y e S . 
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7 Counterexamples for monodependent set of 
FDs 

Herein we present some negative results concerning the structure of £(F) when F 
is monodependent. We first show that £(F) may not even be semimodular and 
that a distributive lattice of closed sets may not be monodependent. We then 
show that, in general, the concepts of monodependence and exchange, and also of 
monodependence and antiexchange are incomparable. 

Proposition 7.1 The lattice of closed sets of a monodependent set of FDs F is 
not, in general, semimodular. 

Proof. Let R be a relation schema with sch(R) = {A, B, D} and let F = {AB D, 
BD —> A}. It can easily be verified that F is monodependent. Furthermore, 0 - < 
B but it is not true that (0U A = A) - < (A U B = ABD). Therefore, £(F) is not 
semimodular. O 

In [WILD89] it was shown that when £(F) is modular then an optimum cover 
of F can be obtained in polynomial time in the size of F. By Proposition 7.1, Theo-
rem 5.6 is incomparable with Wild's result, since £(F) may satisfy the intersection 
property but not be modular. Furthermore as the next example shows £(F) being 
modular does not imply that a minimum cover of F is also optimum. 

Example 7.1 Let F = {D AB, E -> AB, AB DE}, with sch(R) = {A, B, 
D, E}. It can easily be verified that £(F) is modular and that F is minimum. On 
the other hand, F is not optimum, since it can be verified that G = {D —> AB, E 
—• D,. AB —> DE} is an optimum cover of F. 

Proposition 7.2 Distributive lattices of closed sets are not, in general, monode-
pendent. 

Proof. We give two counterexamples of a relation schema R and a set of FDs F 
such that £(F) is distributive but F is not monodependent. In the first example F 
violates the intersection property and in the second example F violates the split-
freeness property. 

Counterexample 1. Let R be a relation schema with sch(R) = {A, B, D} and 
let F = {B A, D A}. It can easily be verified that £(F) is distributive. Fur-
thermore, the set of FDs F is not monodependent, since it violates the intersection 
property due to the fact that 0 A £ F+. 

Counterexample 2. Let R be a relation schema with sch(R) = {A, B, D} and 
let F = {B - t AD, AD B}. It can easily be verified that £(F) is distributive. 
Furthermore, the set of FDs F is not monodependent, since it violates the split-
freeness property due to the fact that both A B 0 F+ and D —> B ^ F+. • 
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Proposition 7.3 The lattice of closed sets of a monodependent set of FDs F is 
not, in general, exchange. 

Proof. Let R be a relation schema with sch(R) = {A, B) and let F = {A —> B}. It 
can easily be verified that F is monodependent. Furthermore, A,B £ C(0) and A 
e C(B) but B £ C(A). • 

Proposition 7.4 Exchange lattices of closed sets are not, in general, monodepen-
dent. 

Proof. Let R be a relation schema with sch(R) = {A, B, D} and let F = {A ->• B, B 
->• A, A D, D - t A} . It can easily be verified that £(F) is exchange. Furthermore, 
the set of FDs F is not monodependent, since it violates the intersection property. 

• 

Proposition 7.5 The lattice of closed sets of a monodependent set of FDs F is 
not, in general, antiexchange. 

Proof. Let R be a relation schema with sch(R) = {A, B) and let F = {A —> B, B -> 
A}. It can easily be verified that F is monodependent. Furthermore, A,B £ C(0), 
A € C(B) and also B 6 C(A). • 

Proposition 7.6 Antiexchange lattices of closed sets are not, in general, monode-
pendent. 

Proof. Let R be a relation schema with sch(R) = {A, B, D} and let F = {B A, 
D A}. It can easily be verified that £(F) is antiexchange. Furthermore, the set 
of FDs F is not monodependent, since it violates the intersection property. • 

8 The connection between exchange and antiex-
change lattices and monodependence 

Herein we investigate the connection between exchange and antiexchange lattices 
of closed sets, and sets of FDs that satisfy the split-freeness property. We first 
show that if F satisfies the intersection property and £(F) is either exchange or 
antiexchange then F is monodependent. We then show that when F satisfies the 
intersection property then £(F) is exchange if and only if F satisfies the split-
freeness property and the cardinality of all the nonempty equivalence classes of F 
is maximal, i.e. for each such equivalence class the said cardinality is the size of 
any FD in the class (see Lemma 5.3). Finally we show that when F satisfies the 
intersection property then £(F) is antiexchange if and only if F satisfies the split-
freeness property and the cardinality of all the nonempty equivalence classes of F 
is minimal, i.e. the said cardinality is one. We conclude that the structure of the 
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lattice of closed sets of a monodependent set of FDs is something in between an 
exchange and antiexchange lattice according to the cardinalities of its equivalence 
classes. 

Several properties of exchange and antiexchange lattices of closed sets have been 
investigated in [DEME92]. When £(F) is exchange then Boyce-Codd normal form 
[ULLM88, MANN92, ATZE93] can be characterised in terms of a uniform closure. 
In addition, if £(F) is exchange and C(0) = 0, then second normal form and third 
normal form are equivalent. (See [ULLM88, MANN92, ATZE93] for the definitions 
of the various normal forms.) When £(F) is antiexchange then for every subset X 
C sch(R), there is a unique reduced FD such that Y - ) X e F+. In particular, 
when £(F) is antiexchange, then |/C(F)|= 1 [BISK91]. 

Lemma 8.1 Let F be a set of FDs that satisfies the intersection property. Then if 
£(F) is either exchange or antiexchange, then F satisfies the split-freeness property, 
i.e. F'is monodependent. 

Proof. Assume to the contrary that F does not satisfy the split-freeness property. 
Therefore, by Definition 5.1 there exist cyclic FDs, XB A, YA - ) B e F+, but 
both Y B £ F+ and (X D Y)A B £ F+. We can assume without loss of 
generality that XB - t A and YA —> B are reduced FDs. Thus it is also the case 
that X A $ F+. Now, Y % X holds, otherwise (X n Y)A B is simply YA 
B, which is assumed to be in F+. There are two case to consider. 

Firstly, assume that X C Y and thus YB 4 A e F+ but X A -4 B ^ F+, since 
the FDs are reduced. Thus £(F) is not exchange, since A, B £ C(X) and A £ 
C(XB) but B £ C(XA). Furthermore, £(F) is not antiexchange, since A, B £ C(Y) 
and B £ C(YA) but also A £ C(YB). 

Secondly, assume that X and Y are incomparable. Now, we have that A, B £ 
C(X) and A £ C(XB). Assume that £(F) is exchange and thus B £ C(XA). Thus, 
XA ->• B € F+ and YA -> B £ F+ are incomparable FDs. It follows that (X n 
Y)A —> B € F+ by the intersection property, which contradicts the fact that F does 
not satisfy the split-freeness property. Thus B 0 C(XA) and £(F) is not exchange. 
Now, if A £ C(XY), then X —> A € F+ by the intersection property, and similarly 
if B £ C(XY), then Y -»• B € F+ also by the intersection property. If X A 
£ F+ then fact that XB —> A is reduced is contradicted, and correspondingly, if Y 

B € F+ then the fact that YA B is reduced is contradicted. So, we conclude 
that A, B $ C(XY). It follows that £(F) is not antiexchange, since A £ C(XYB) 
but also B £ C(XYA). The result that F satisfies the split-freeness property and is 
thus monodependent follows as required. • 

Theorem 8.2 Let F be a set of FDs that satisfies the intersection property, and 
let E = {Eg(Xi),Eg(X2), • • • ,EG(Xk)} be the set of all nonempty equivalence 
classes of G, where G = opt (F) . Then the following statements are equivalent: 

1. £(F) is exchange. 
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2. F satisfies the split-freeness property, i.e. F is monodependent, and 
VEG{XÍ) G E, I EO(XI) |=| XY I, for some F D X Y ë EG(XÍ). 

Proof. (1 => 2.) By Lemma 8.1 F satisfies the split-freeness property. Now, assume 
that for some £ G № ) 6 E and X Y G EG(XÍ), |£G(X¿)|<|XY|. Thus, by 
Lemma 5.3, 3 A, B G sch(R) such that WB - ) A ë EG(XI) but WA -4 B 0 EG(XI). 
Furthermore, also by Lemma 5.3, W A, W -¥ B £ F+, leading to a contradiction 
of the fact that £(F) is exchange. 

(2 => 1.) Suppose to the contrary that £(F) is not exchange. Then for some set 
of attributes, V C sch(R), 3 A, B e sch(R) such that A, B £ C(V), A € C (VB) 
but B £ C(VA). Thus VB -> A G F+ and there is some equivalence class EG(X) 
G E such that X Y G EG{X), with A G Y. If |XY| = 1, then X = 0 and V -> A 
G F+, leading to a contradiction. So, it must be the case that |XY|> 1 and thus by 
Lemma 5.3 Y = {A } . Now, if B ^ X, then by the intersection property, it follows 
that (X n VB) ->• A G F+ and thus V -4 A G F+, since B g (X n VB). So, it must 
be the case that B G X and thus ( X - B ) A -> B G EG(X), since |£G(X)|=|XA|. Let 
W = ( X - B ) n V. Then by the intersection property WB A G F+, with W C 
V. Furthermore, by Lemma 5.3, X = WB, since X A is reduced. Thus WA — B 
G EG(X) and VA B G F+ leading to a contradiction. It follows that B G C(VA) 
and thus £(F) is exchange as required. . • 

Theorem 8.3 Let F be a set of FDs that satisfies the intersection property, and let 
E = {EG(X1),EG(X2),..., EG(XK)} be the set of all nonempty equivalence classes 
of G, where G = opt(F). Then the following statements are equivalent: 

1. £(F) is antiexchange. 

2. F satisfies the split-freeness property, i.e. F is monodependent, and 
MEG{XI) G E , I E G { X I ) \ = 1. 

Proof. (1 => 2.) By Lemma 8.1 F satisfies the split-freeness property. Furthermore, 
by [JAMI85, DEME92] |£(F)|= 1, since £(F) is antiexchange. Now, assume that 
for some EG(XI) G E, |£g(XÍ)|> 1. Thus, by Lemma 5.5 |£(F)|> 1, leading to a 
contradiction of the fact that £(F) is antiexchange. 

(2 1.) Suppose to the contrary that £(F) is not antiexchange. Then for some 
set of attributes, V C sch(R), 3 A, B G sch(R) such that A, B g C(V), A G C (VB) 
but also B G C(VA). Thus VA B, VB A G F+. Now, there exist equivalence 
classes EG(X1),EG(X2) G E such that X Y G with A e Y, and W -> 
Z G EG(X2), with B G Z. 

Assume that EG(Xi) = EG(X2). There are two cases to consider. Firstly, if X 
Y and W —> Z axe distinct FDs then \EC(XI)\> 1, leading to a contradiction. 

Secondly, if X Y and W Z are in fact the same FD, then X -T AB G F+, 
with A, B F X. Now, VA g X, since A £ X, and also X g VA, since otherwise X Ç 
V and V A É F + leading to a contradiction. Therefore, X B G F+ and VA 
- t B E F+ are incomparable FDs. It follows by the intersection property that (X 
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n VA) -4 B € F+, with (X n VA) Ç V. Therefore, V -4 B e F+ again leading to 
a contradiction. 

So, assume that EQ(Xi) and EQ(X2) are distinct equivalence classes of G. 
Thus, by Lemma 5.4, A £ WZ and B £ XY. Now, VA £ W, since A £ W, and 
also W % VA, since otherwise W Ç V and V -4 B € F+ leading to a contradiction. 
Therefore, W 4 B É F + and VA -4 B € F+ are incomparable FDs. It follows 
by the intersection property that (W D VA) -4 B 6 F+, with (W n VA) Ç V. 
Therefore, V -4 B £ F+ again leading to a contradiction. It thus follows that B 
# C(VA) and thus £(F) is antiexchange as required. • 

9 Characteristics of lattices satisfying the inter-
section property 

Herein we investigate some of the characteristics of lattices of closed sets of FDs 
that satisfy the intersection property. We first utilise the concept of an interval, 
which is defined below, to investigate how the lattice of closed sets changes from 
one that does not necessarily satisfy the intersection property to one that does 
(cf. [BUR087]). We then give a characterisation of the intersection property in 
terms of the existence of certain distributive sublattices of £(F). We also present 
a polynomial time algorithm in the size of F in order to compute the set of meet-
irreducible closed sets, A4(F), when F satisfies the intersection property. As a 
corollary of this algorithm we show that when F satisfies the intersection property 
then the cardinality of .M(F) is at most (Jj^Ryí 2) • As an additional corollary 
of this algorithm we show that testing whether an attribute is prime can be done 
in polynomial time in the size of F, when F satisfies the intersection property; 
in general, the problem of testing whether an attribute is prime is known to be 
NP-complete [LUCC78]. 

Definition 9.1 (Intersection property descriptor) The intersection property 
descriptor of a set of FDs F over a relation schema R, denoted by 1(F), is defined 
by 

1(F) = {X n Y -4 A I there exist incomparable FDs, 

X - 4 A,Y -4 A £ F+, but XDY -4 A 0 F + } . 

The next lemma, which characterises the lattice of closed sets of a set of FDs 
that satisfies the intersection property, follows from Definition 6.6 and [DEME92, 
Theorem 3.1]. We begin by defining the concept of an interval. 

Definition 9.2 (Interval) The interval between X and Y, where X C Y C sch(R), 
denoted by [X, Y], is given by [X, Y] = {Z | X C Z C Y} . 
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Lemma 9 .1 Given a set of FDs F, let G = F U 1(F). Then the lattice £(G) of 
closed sets of G is given by 

C{G) = C(F) - |J [X n Y, sch(Ji) - A] 
XNY-FAEX(F) 

= C(F) - (J (J [X nY,sch{R) - ABD}. 
XnY-+A£l(F) B€{X-Y) 

D € ( V - X ) 

A closed set X G S, where S C £(F), is maximum if V Y G S, Y C X. 

Lemma 9 .2 Let F be a set of FDs and T~L be the family of closed sets defined by 

n = C(F)n ( J (J \XnY,sch{R) - ABD}. 
x n Y ^ t A e l ( F ) B€(X-Y) 

De(Y-X) 

Then all the maximum elements in % are in -M(F), i.e. all the maximum elements 
in H are meet-irreducible closed sets in £(F). 

Proof. Let X be a maximum element of % and Y, Z £ £(F) be two closed sets 
such that X = Y n Z. We need to show that either X = Y or X = Z. Suppose to 
the contrary that X ^ Y and X ^ Z and thus both X C Y and X C Z hold. Now, 
by Lemma 9.1, Y, Z € £(G), where G = F U 1(F). A contradiction has arisen, 
since it must be the case that X G £(G), due to the fact that £(G) is closed under 
intersection. • 

Definition 9 .3 (The family of left-hand sides of a set of FDs) The family 
of left-hand sides of a set of FDs F with respect to A G sch(R), denoted by F(A), 
is defined by 

F(A) = {X | X A G F+ is a nontrivial FD}. 

The schema of F(A), denoted by sch(F(A)), is defined by 

sch(F(A)) = |J{X | X G F(A)}. 

We observe that F(A) C P(sch(R)) - £(F). In other words, the family of left-
hand sides of F with respect to A is a subset of the complement of the lattice of 
closed sets of F. 

Definition 9 .4 (Lattice of sets) A lattice of sets over a finite set S is a subset 
of the power set, V{S), which is closed under union and intersection [DAVE90]. 

The if part of the next theorem follows from the definition of the intersection 
property and the only if part of the theorem follows from Definition 9.3. 
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Theorem 9.3 A set of FDs F satisfies the intersection property if and only if V A 
G sch(R), F(A) is a lattice of sets over sch(F(A)). 

An immediate consequence of Theorem 9.3 is that F(A) is distributive, since it 
is well known that a lattice of sets over S is distributive [DAVE90]. 

We now give the pseudo-code of an algorithm, designated MEET JRR(F), which 
will be shown to return the family .M(F) of meet-irreducible closed sets of £(F), 
where F satisfies the intersection property. 

Algorithm 1 (MEETJRR(F)) 
1. begin 
2. Meetirr := 0; 
3. G := opt(F); 
4. for each A 6 sch(R) do 
5. if JB X Y G G, with A € Y then 
6. MeetJrr := MeetJrr U {sch(R) -A} ; 
7. else 
8. let X ->• Y be the FD in G with A G Y; 
9. for each B G X do 
10. Meetirr := Meet-irr U (sch(R)-AB); 
11. end for 
12. end if 
13. end for 
14. return MeetJrr; 
15. end. 

On using Corollary 5.7 the reader can verify that Algorithm 1 executes in poly-
nomial time in type(R). The next theorem establishes the correctness of Algo-
rithm 1. 

Theorem 9.4 If F is a set of FDs that satisfies the intersection property, then 
Algorithm 1 returns M(F). 

Proof. We need to show that M = M(F), where M = MEETJRR(F) is the set 
returned by Algorithm 1. 

M C M(F). Let W G M. By Lemma 6.3 it remains to show that W G MAX(F, 
A) for some A G sch(R). Consider the for loop beginning at line 4 and ending at 
line 13, with A G sch(R). If W was added to M at line 6, then the condition of the 
if statment beginning at line 5 is true, and obviously W = sch(R)—A G MAX(F, 
A). Otherwise, let W = sch(R)-AB be the set added to M at line 10. Now, W 
A £ F+, otherwise by the intersection property W D X -> A G F+, with |W fl X| 
< |X|, contradicting the fact that G is optimum. Furthermore, W is a maximal set 
of attributes such that W ->• A g F+, since X C WB. 
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M(F) C M. Let W € jM(F). Then by Lemma 6.3 W e MAX(F, A) for some A 
£ sch(R). It remains to showthat W 6 M. Suppose to the contrary-that W 0 M. 

Consider the if statement beginning at line 5 and ending at line 12. There are 
two cases to consider. Firstly the condition of line 5 is true and thus jB X —• Y 6 
G, with A £ Y. It follows that W C sch(R)—A and thus it is not a maximal subset 
of sch(R) such that W -)• A g F+, contradicting the fact that W £ MAX(F, A). 
Secondly the condition of line 5 is false and thus by Lemma 5.2 there is a unique X 

Y € F, with A £ Y. Let X Y be the FD, with A £ Y, that is chosen in line 8. 
Therefore, by the for loop beginning at line 9 and ending at. line 11, it follows that 
either X c W or W C Z, for some Z e M, due to the fact that |W|< type(R) -2 
and A £ W. Both cases lead to a contradiction of the fact that W 6 MAX(F, A). 
The result that M = M(F) follows. • 

The next corollary, which gives a polynomial upper bound in type(R) for the 
cardinality of jVi(F), is an immediate consequence of Theorem 9.4 on inspecting Al-
gorithm 1. In general, when a set of FDs does not satisfy the intersection property, 
the cardinality of X ( F ) may be exponential in type(R) [BEER84, MANN86]. 

Corollary 9.5 If a set of FDs F satisfies the intersection property, then |A4(F)| < 
I type(R) \ 
vtype(R)—2/ ' 

An immediate consequence of Corollary 9.5 is that an Armstrong relation having 
i ty leW-J + 1 tup- l e s c a n b e S e n e r a t e d [MANN86]. The following result, which is 
immediate from Theorem 9.4 and Proposition 5.8, shows that when removing an 
FD X —• Y from an optimum set of FDs that satisfies the intersection property, 
then the sets MAX(F, A) attain their simplest structure. 

Corollary 9.6 Let F be set of FDs that is optimum and satisfies the intersection 
property. Then V X - t Y e F , V A £ Y, MAX(F - {X ->• Y} , A) = { s ch (R) -A} . 

In general, the problem of deciding whether an attribute A 6 sch(R) is prime 
with respect to F is known to be NP-complete [LUCC78]. Our next result shows 
that when F satisfies the intersection property this problem, known as the prime 
attribute problem, can be decided in polynomial time in the size of F. 

Corollary 9.7 If a set of FDs F satisfies the intersection property, then deciding 
whether an attribute A £ sch(R) is prime can be solved in polynomial time in the 
size of F. 

Proof. By [MANN89, Theorem 2] an attribute A £ sch(R) is prime with respect to 
F if and only if for some W £ MAX(F, A), C(WA) = sch(R); recall that C(WA) can 
be computed in linear time in the size of F [BEER79]. Furthermore, by [MANN89, 
Lemma 1], given a set of attributes X C sch(R), testing whether X £ MAX(F, 
A) can be done in polynomial time in the size of F. The result now follows by 
Corollary 9.5 on using Algorithm 1 to compute .M(F). • 

The next theorem gives a characterisation of the intersection property in terms 
of the cardinality of the elements in jM(F). 
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Theorem 9.8 A set of FDs F satisfies the intersection property if and only if V X 
€ M(F), |X| > type(R)-2. 

Proof. The only if part of the theorem is an immediate consequence of Theorem 9.4 
on inspecting Algorithm 1. 

We prove the ¿/part of the theorem by contraposition. Suppose that F violates 
the intersection property. Therefore, for some A 6 sch(R), there exist incomparable 
FDs, X ->• A, Y -> A e F+, but X D Y A £ F+. We can assume without loss 
of generality that X —• A and Y —> A are reduced FDs. 

Now, since X and Y are incomparable there is an attribute B € X—Y and an 
attribute D € Y - X . Let W = sch(R)-ABD, and thus |W| = type(R)-3. There 
are two cases to consider. 

Firstly, W A e F+ and thus there exists some Z C W such that Z e MAX(F, 
A); note that 0 A g F+, since X D Y -> A $ F+. The result now follows by 
Lemma 6.3. 

Secondly, W —¥ A ^ F+ and thus by the construction of W we have that W £ 
MAX(F, A). The result now follows by Lemma 6.3. • 

The next proposition establishes which meet-irreducible elements of £(F) are 
antikeys (in [DEME92] antikeys are called coatoms). 

Proposition 9.9 A set of attributes X C sch(R) is an antikey for R if and only if 
X is a maximal set in .M(F). 

It follows from Theorem 9.4 on using Proposition 9.9 that the set of antikeys for 
R, i.e. .4(F), can be computed in polynomial time in type(R); in general, computing 
.4(F) can only be done in exponential time in type(R) [THI86]. We observe that an 
alternative proof to Corollary 9.7 can utilise a result in [DEME87] which states that 
an attribute A € sch(R) is nonprime if and only if A is a member of the intersection 
of all the antikeys in .4(F). 

The next result establishes the connection between superkeys and antikeys 
[DEME88]. 

Proposition 9.10 A set of attributes X C sch(R) is a superkey for R if and only 
ifV Y 6 -4(F), X g Y. 

In [DEME88] Proposition 9.10 is used to derive an algorithm which computes 
the set of all keys /C(F) given the set of all antikeys .4(F). 

In general, the problem of finding a superkey for R with respect to F, whose 
cardinality is less than or equal to a natural number k, is known to be NP-complete 
[LUCC78, DEME88]. Our next result shows that this problem, known as the su-
perkey of cardinality k problem, is still NP-complete when F satisfies the intersec-
tion property 
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Theorem 9.11 The superkey of cardinality k problem is NP-complete, when F is 
a set of FDs that satisfies the" intersection property. 

Proof. The problem is known to be in NP [LUCC78]. It remains to show that the 
problem is NP-hard. 

By [DEME88, Lemma 2.4] the vertex cover problem, which is known to be 
NP-complete [GARE79], can be reduced to the following problem. Given a set of 
antikeys for R, say S, such that V X £ S, |X| = type(R)-2, solve the superkey of 
cardinality k problem. 

By the remark made after Proposition 9.10 it follows that S can be used to 
derive the set of keys /C(F) for some set of FDs F over R. Furthermore, we can 
assume, without loss of generality, that the set {X -> sch(R) | X € £ (F) } is a cover 
of F. It follows by Proposition 9.9 that S = M(F). The result that F satisfies the 
intersection property now follows by Theorem 9.8. • 

It is interesting to note that when F is monodependent then the superkey of 
cardinality k problem can be solved in polynomial time in the size of F [LEVE95b]. 
This is a corollary of the fact that when F satisfies the split-freeness property then 
all the keys for R have the same cardinality [LEVE95b]. 

10 Separatory sets of FDs are monodependent 
Several properties of separatory lattices of closed sets are investigated in [DEME92]. 
In particular when £(F) is separatory, then |/C(F)|= 1 and F has a cover whose 
cardinality is at most (type(R))2 [BISK91, DEME92], Herein we show that sepa-
ratory sets of FDs are monodependent. We also give an example of a set of FDs 
which is monodependent but not separatory. 

Definition 10.1 (Separatory set of FDs) A set of FDs F is separatory 
[DEME92] if it has a cover of the form {Xi AI,X2 A2,...,XM ->• AM}, 
where XI C X2 C . . . C XM. We let RHS(F) denote the set {AI,A2..., AM}. 

The next lemma is useful in proving the ensuing theorem. 

Lemma 10.1 A set of FDs is separatory if and only if it has a canonical cover F 
of the form {XI ALTX2 A2,... ,XM -T AMJ, where XI C X2 C . . . C XM 

and Vi 6 { l , 2 , . . . , m } , X i n RHS(F) = 0. 

Proof. We can assume without loss of generality that V A £ sch(R), F does not 
contain distinct FDs of the form X —> A and Y —» A. If this were the case then one 
of X A or Y A is redundant, since either X C Y or Y C X. Next, let X A 
be an FD in F. 

Claim 1. The FD X - » A is not reduced but Y A € F+ is reduced, with Y C 
X, if and only if X = YZ, where Z / I , Z C RHS(F) and Y n RHS(F) = 0. 
(We observe that |F| > |Z|.) 
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For the if part of the claim let Z = {Bi,B2,.. •, Bk}, with k > 0. We use an 
induction on k to prove the result. For the basis step assume that k = 1 and thus 
X = YjB\. It follows that W C Y, where W Bi E F, since F is separatory, and 
also that YB\ g W. Therefore, on using Armstrong's axiom system, Bi 6 C(Y) 
and thus A 6 C(Y) also. Furthermore, Y -> A is reduced, since Y D RHS(F) = 0. 

For the induction step assume that the result holds when |Z| = k, with k > 1; 
we then need to prove that the result holds when |Z| = k+1. Let V = Y(Z—Bk). 
It follows that W C V, where W -t Bk € F, since F is separatory, and also that 
V £ W. Therefore, on using Armstrong's axiom system, Bk £ C(V) and thus A 
£ C(V) also. The result follows by inductive hypothesis. 

For the only if part of the claim consider a nonredundant derivation of Y —> 
A from F that uses n FDs, with n > 0, in the following order: Yi B\,Y2 

B2,..., Yn Bn and X -¥ A, all of which are in F. It follows that Yi C Y , Y2 C 
YBU ..., Yn C YBiB2 ... Bn-1 and finally X C YBXB2 ...Bn. Therefore, since 
Y C X, we have that X = YZ, where Z C RHS(F). It remains to show that Y D 
RHS(F) = 0. Suppose that this is not the case and hence there is an attribute 
B € Y n RHS(F). Thus there is an FD W B € F, with W C Y - B , since 
F is separatory, and Y % W. Therefore, on using Armstrong's axiom system, B 
€ C ( Y - B ) , contradicting the fact that Y —> A is reduced. The claim now follows. 

From Claim 1 it follows that we can rewrite X\ C X2 C ... C Xm as Y\Z\ C 
Y2Z2 C . . . C YmZm, where Vi e {1 ,2 , . . . ,m) , i^n RHS(F) = 0 and C RHS(F). 
The result now follows, since by Claim 1 {Yi A\, Y2 A2,..., Ym -t Am} is a 
reduced cover of F, with Yi C Y2 C . . . C Ym. • 

The lattice £(F) of closed sets is said to be separatory if ,P(sch(R)) — £(F) is a 
semilattice, i.e. if it is closed under intersection [GOTT90, LIBK92]. It was shown 
in [DEME92, Proposition 6.10] that a set of FDs F is separatory if and only if the 
lattice of closed sets £(F) is separatory. The next result shows that separatory sets 
of FDs are also monodependent. 

Theorem 10.2 If a set of FDs F is separatory, then it is monodependent. 

Proof. Assume by Lemma 10.1 that F is canonical and has the form { X i -4 
Ai,X2 A2,...,Xm Am}, where Xi C X2 C . . . C Xm and Vi € 
{ 1 , 2 , . . . , ™ } , ^ RHS(F) = 0 . 

By [DEME92, Proposition 6.10] P(sch(R)) - £(F) is a semilattice. Let A 
G sch(R). It remains to show that F(A) is a sublattice of 73(sch(R)) — £(F), 
whereupon by Theorem 9.3 F satisfies the intersection property. If there is no FD 
in F of the form X -> A then the result follows, since F(A) = 0. So, let X —> A in 
F be the reduced FD whose right-hand side is A. 

We claim that if Y —• A 6 F+ is a nontrivial FD, then X C Y. Suppose that 
X g Y and that B € X - Y . By Proposition 4.1 it must be the case that Y X 
€ F+ and thus Y B £ F+ is a nontrivial FD. However, by Claim 1 in the proof 
of Lemma 10.1 it is also true that B 0 RHS(F) and therefore there cannot be a 
nontrivial FD in F+ whose right-hand side is B, which leads to a contradiction. 
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The result that F satisfies the intersection property now follows, since we have that 
F(A) = [X, sch(R)-A]. 

It remains to show that F satisfies the split-freeness property. Suppose to the 
contrary that there exist cyclic FDs XB -4 A, YA -4 B e F+, but Y -4 B £ F+ 

and (X n Y)A -4 B ^ F+. We assume without any loss of generality that YA -4 
B is reduced. Now, by Claim 1 in the proof of Lemma 10.1 it follows that there 
is an FD W 4 A 6 F such that B £ W, due to the fact that XB -4 A e F+ is a 
nontrivial FD. Therefore, on using Armstrong's axiom system, WY -4 B G F+. It 
follows by the intersection property that Y 4 B 6 F + , since A £ W. Hence YA -4 
B is not reduced leading to a contradiction of our assumption. The result that F 
satisfies the split-freeness property follows as required. • 

As the following example shows a set of FDs may be monodependent but not 
separatory. 

Example 10.1 Let F = {A -4 B, D -4 E}, with sch(R) = {A, B, D, E}. It can 
easily be verified that F is monodependent but not separatory. 

11 Concluding Remarks 
Monodependence is a desirable property of sets of FDs when assuming that relations 
may be incomplete. We have investigated the structure of the lattice of closed sets 
£(F) when F is monodependent. As a consequence of this investigation we have 
shown that monodependent sets of FDs give rise to several desirable properties. 
Moreover, several difficult problems in relational database theory become tractable 
when F is monodependent. The connection between lattice theory and relational 
database theory is important, since it provides us with additional insight into the 
semantics of data dependencies such as FDs. A lattice-theoretic investigation of 
MVDs was carried out in [DAY93]. We conclude by giving a brief summary of the 
main results. 

Assume that F satisfies the intersection property. In Theorem 8.2 we show that 
£(F) is exchange if and only if the cardinality of all the nonempty equivalence 
classes of F is maximal. On the other hand, in Theorem 8.3 we show that £(F) is 
antiexchange if and only if the cardinality of all the nonempty equivalence classes 
of F is minimal, i.e. it is one. 

In Theorem 9.3 we give a characterisation of the intersection property in terms 
of the existence of certain distributive sublattices of £(F). In Corollary 9.5 we 
show that the cardinality of .M(F) is at most m, where m = (typ^R^) • Thus an 
Armstrong relation having m + 1 tuples can be generated. In Corollary 9.7 we show 
that the prime attribute problem can be solved in polynomial time in the size of F. 
In Theorem 9.8 we show that F satisfies the intersection property if and only if the 
cardinality of each element in A1(F) is greater than or equal to type(R)—2. Using 
this result we are able to show in Theorem 9.11 that the super key of cardinality k 
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problem is still NP-complete, when F is restricted to be a set of FDs that satisfies 
the intersection property. Finally, in Theorem 10.2 we show that separatory sets 
of FDs are monodependent. 
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On a tour construction heuristic for the asymmetric 
TSP 

I. Bartalos * T. Dudást B. Imreh * 

Abstract 

In this paper we deal with a new tour construction procedure for the asym-
metric traveling salesman problem. This heuristic is based on a new patching 
operation which joins three subtours together. Regarding the efficiency of 
this procedure, we present an empirical analysis. 

It is well-known that the assignment problem is a relaxation of the traveling 
salesman problem (TSP). Thus, if the optimal assignment is a tour, then it is also 
an optimal solution of the TSP. Otherwise it consists of disjoint cycles. For some 
special cases of the TSP, these cycles can be patched into an optimal tour. The 
first algorithm based on this technique was presented by P. C. Gilmore and R. 
E. Gomory in [1]. Their idea was involved in several procedures solving different 
special TSP models. A nice discussion of the well-solved cases can be found in [3]. 

For the general TSP there is no effective procedure to convert the optimal as-
signment into an optimal tour. Nevertheless as the computational experiments of 
E. Balas and P. Toth (see [3]) show, the lower bound resulting from the assignment 
problem is often very tight. On the other hand, the number of the cycles of the 
optimal assignment is not large in general. These facts suggest that a suitable sub-
tour patching method may result in a good TSP heuristic. The first such heuristic 
for the asymmetric TSP was presented by R. M. Karp [5] and a similar one was 
given in [3]. In both cases the method converts the optimal assignment into a tour 
by a sequence of patching operations, each of which joins two cycles together. Our 
procedure is based on such a patching operation which joins three cycles together if 
the number of the cycles of the optimal assignment is not large. Algorithms joining 
four or more cycles in each step have too high complexity. 

As far as the number of the cycles is concerned, it is known that if we choose 
a permutation of {1 , . . . ,n ) at random, then the expected number of its cycles is 
log(n) (see e.g. [4]). We can, however, restrict our consideration for permutations 
without a fixpoint. Indeed, without loss of generality we may assume that the 
optimal assignment does not contain diagonal elements. Such an assignment can 
be achieved by choosing suitably large coefficients in the diagonal of the cost matrix. 
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The expected number of cycles in a randomly chosen permutation without a fixpoint 
has not been calculated as yet. Here we prove that the approximate value of this 
number is still log(n). 

To start with, let us denote by Rn the set of permutations without a fixpoint 
on the set { 1 , . . . ,n } and let |i?„| = rn . It is known (see [2] p.10) that 

r n = „ ! ( l - i + . . . + ( - l ) " i ) » ^ . 
I! n\ e 

Let 2 < k < n — 2 be an arbitrary fixed integer and i £ { 1 , . . . , n} where n > 5. 
Let us count those permutations of Rn in which i is contained in a cycle of length 
k. There are (£ l j ) possible ways to choose the elements of this cycle and (k — 1)! 
ways to order them. The number of the permutations without a fixpoint of the 
remaining n — k elements is rn-k- Therefore, the number we seek is 

It is obvious that the number of the permutations in which i is contained in a cycle 
of length n is (n — 1)!. 

Now let us consider Rn as a sample space in which each permutation is assigned 
a probability l/r„. For any i 6 {1 , . . . n} and fee {2,3 . . . , n - 2, n} , let us denote 

Ik) by Q the random variable on RN for which 

£(*) _ 11 if i is contained in a fc-cycle, 
1 10 otherwise. 

Using the numbers determined above, we obtain 

£ ( £ « ) = ^ " ^ ( f c - l ) ! ^ if 2 < k < n — 2 and 

£ ( d n ) ) = ( n - i ) ! - . 
rn 

Now + . . . + is the number of points which are contained in fc-cycles, and 
Vk = is the number of /c-cycles. The expected value of i]k is 

rn 

Then Tf2+T]3...+ i]n-2 + Vn is the number of cycles and for the expected value it„ 
of this number, we obtain 
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1 ( . nh 
k)\ • 

Now substituting rn -k and exchanging the order of the summation, we get that un 

is equal to 

" \ t=2 k=2 / 

r . L . i i ic ¿ -I h i ' 

Let 

rn \ n i\ ' k i\ k " \ ¿=2 fc=2 t=3 Jfc=n-t+l 

1 1 
Wi = n E i' i = 3>->n-2-

k=n—i-fl 

Then 

I /-I n—2 / n —2 - n —2 

n \ ¿=2 k=2 ¿=3 
It is easy to see that w3 > . . . > w„-2 > 0, and so, 

n-2 
0 < < w3. 

t = 3 

On the other hand, 

1 1 1 7 
+ x : x < n 3! n - 2 6(n — 2) 

Therefore, 

(n—2 , n—2 -, \ i / _ n—2 / n—2 n! n! / 7 ^ ( - 1 ) ' ^ 1 
r n I Z . ¿1 J < < r n 1 6 ( n _ 2) + i! k 

" \ t = 2 fc=2 / n \ V ' -i=2 fc=2 

If n is large enough, then 

n t = 2 v ' fc=2 

and so, log(n - 1) - 1 < un < log(n — 2). 

Now we recall the definition of the patching operation (see [3]). For this reason 
let us consider an asymmetric TSP of n cities with cost matrix C and let ip denote 
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an optimal assignment which is not a.tour. For the sake of notation simplicity, we 
shall identify every cycle with the set of its cities. Assuming that <p has no fixpoint, 
let i and j be two cities that occur in two distinct cycles U and V. Then deleting 
the arcs (i,tp(i)), (j, f(j)) and inserting the arcs (i,(p(j)), (j,ip(i)), we join U and 
V into a new cycle, and thus obtain a new assignment (p. This operation is called 
the (i,j)-patching operation. For the cost of the new assignment, we get 

z(<p) = z(<p) + civ(j) + Cjip{i) - citp{i) - cjv(j) • 

The difference z(<p) - z(ip) = civ>^ + - - Cjvyj is called the patching 
cost of the (i, j)-patching operation. The minimal patching cost with respect to U 
and V is 

A(¥>, U, V) = min{cr¥,(s) + cMr) - crtp{r) - csv>(s) : r £ U, s E V} . 
This means that the cycles U and V can be joined into a new cycle with cost 
A((p,U,V), but they cannot be joined with a lower cost by any (i,^-patching 
operation. Therefore we say that the 2-patching cost of the cycles U and V is 
A (<p,U,V). 

Now we are ready to present the algorithm developed in [3]. 

The 2-patching algorithm 

Step 1. Determine an optimal assignment <p. 
Step 2. If the current ip is a cyclic permutation then terminate. 

Otherwise go to Step 3. 
Step 3. Choose two cycles U and V of ip such that |£/| and |V| are maximal. 

Calculate A (ip, U, V) and let i € U, j e V such cities for which the patching 
cost is A ( ip ,U,V) . Perform the (i, j)-patching operation and consider the 
new assignment as the current (p. Return to Step 2. 

Extending the patching idea for three cycles, we can define the (i,j, k)-patching 
operation as follows. 

Let i,j,k be three cities which occur in three distinct cycles U,V,W. Then delet-
ing the arcs (i,<p(i)), (j, vO')). (k,<Pik)) and inserting the arcs ( i , tp( j ) ) , (j,<p(k)), 
(fc, <p(i)), we join U, V and W into a new cycle. The patching cost of this operation 
is 

CMj) + CMk) + CM*) ~ CMi) ~ CjfU) ~ Ck<p(k) • 

The minimal patching cost with respect to U, V, W is 
®{<P,U,V,W) = min{c rv ,(s)+cs¥3( t)+c t¥ ,( r)-c r¥ ,( r)-cs¥ ,(s)-c tv ( t): 

reu,sev,tew}. 
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Then there are cities ieU,j£V,keW such that the cycles U,V,W can be 
joined into a cycle with cost 0(</>, U, V, W). This cost is called the 3-patching cost 
of the cycles U,V,W. 

Now we present a procedure based on the introduced (i, j, fc)-patching opera-
tions. Since 9 ~ log(8100), the expected value of the disjoint cycles is not greater 
than 9 under the problem size 8100. In practical point of view this limit of problem 
size is enough large, and so, our procedure uses (i, j, A;)-patching operations while 
the number of the disjoint cycles is not greater than 9. For the extreme cases, 
when the number of the disjoint cycles is greater than 9, we apply an additional 
step (Step 3) to pair the small cycles with the large ones and to join them by 
suitable (i, j)-patching operations. 

The 3-patching algorithm 
Step 1. Determine an optimal assignment <p. 

Step 2. If the current </? is a cyclic permutation then terminate. 
Otherwise go to Step 3. 

Step 3. Let m denote the number of the cycles of ip. If m < 9 then go to Step 4. 
Otherwise order the cycles with respect to the number of vertices belonging 
to them. Let Ui,..., Um denote the sequence of the cycles in increasing 
order. Calculate the 2-patching cost drs of the cycles Ur and Um-i+s for all 
1 < r < I and 1 < s < I, where / = [m/2]. Solve the assignment problem 
of type I x I with the cost matrix D = (drs). Let r denote an optimal 
assignment. For all 1 < r < I, join the cycles Ur and Um-i+T(r) with 
patching cost drT{r), using a suitable (i, j)-patching operation. Consider 
the assignment obtained after the I joins as the current assignment <p and 
repeat Step 3. 

Step 4- If rn = 2, then determine the 2-patching cost of the two cycles of join 
them with a suitable (i, j)-patching operation and terminate. If m > 2, 
then choose three cycles U, V,W of ip for which 0(ip, U, V, W) is minimal. 
Determine three cities i£U,j£V,k£W with the 3-patching cost 
Q(cp,U,V,W). Perform the (i,j, /c)-patching operation and consider the 
new assignment as the current tp. If (p is a cyclic permutation then termi-
nate. Otherwise repeat Step 4 with the current ip. 

In order to efficiently find the three cycles having minimal 3-patching cost re-
quired in Step 4, we maintain a 3-dimensional array of the values 0(<p, U,V,W). 
To set up this array we firstly need 0(n 3 ) operations, but during the iterations one 
can compute the new array from the previous one easily. 

In both patching procedures above the starting point is an optimal assignment 
which can be computed by the Hungarian method in 0(n3) steps. This method 
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starts with an independent set of zeroes in the reduced cost matrix. These in-
dependent zeroes can be determined randomly. In general, different independent 
sets of zeroes result in different optimal assignments. Using this observation and 
executing the procedure k times, we can obtain k distinct heuristic solutions and 
we choose the best of them. 

To test the efficiency of our procedure we performed the following computational 
experiment on a 33MHz 486 machine. We randomly generated 100-100 problems 
under n = 100, n = 150, n = 200 n = 250, respectively, with costs independently 
drawn from a uniform distribution of the integers over the interval [0,100]. We 
applied some classical tour construction heuristics and three versions of both the 
2-patching and the 3- patching methods to obtain heuristic solutions for the gen-
erated problems. The difference among the three versions appears in the number 
k of executions under a randomly choosen independent set of zeroes. We worked 
with the values k = 1,3,5. Simultaneously, we solved these problems by a branch 
and bound procedure, using the best heuristic solution as the best known feasible 
solution. Regarding the classical heuristics we applied the all cities versions of the 
nearest addition, nearest insertion and farthest insertion algorithms, and our cheap-
est insertion procedure started from a shortest two city subtour. The results of our 
computational experiments axe reported in Table 1. Here the first column gives the 
averages of the ratios z(heuristic solution)/z(optimal solution), the second column 
contains the averages of the run-times in seconds and the third column shows how 
many times the suitable heuristic gave the best solution among the ones provided 
by all the 11 heuristics considered. 
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n = 100 
• 

n = 150 n = 200 n = 250 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 
average 

ratio 
average 

sec. 
best 

value 

BkB 1.000 40.78 _ 1.000 87.69 - 1.000 194.1 - 1.000 320.9 , 

3- patchini 
k=5 1.054 19.53 88 1.056 58.55 81 1.052 190.2 82 1.059 370.8 80 

3- patching 
k—3 1.061 11.60 70 1.063 34.93 67 1.061 122.0 54 1.078 218.6 48 

3- patchini 
k=l 1.069 3.84 55 1.096 11.90 39 1.094 39.8 25 1.134 72.6 24 

2- patchini 
k=5 1.090 11.14 33 1.082 29.70 38 1.069 88.4 40 1.101 158.3 37 

2- patchini 
k=3 1.092 6.69 28 1.097 17.92 26 1.085 53.1 27 1.119 94.8 23 

2- patchini 
k=l 1.108 2.21 21 1.127 6.04 15 1.127 17.7 13 1.177 31.5 12 

cheapest 
insertion 4.654 7.77 0 6.794 37.48 0 9.934 89.7 0 18.11 175.4 0 
nearest 
insertion 4.392 9.19 0 7.047 43.66 0 11.39 104.6 0 18.60 205.1 0 
farthest 
insertion 4.534 8.76 0 7.110 43.71 0 11.39 104.6 0 18.60 205.3 0 
nearest 
addition 18.43 7.09 0 33.84 32.72 0 57.51 77.0 0 98.43 149.7 0 

Table 1 

According to the obtained results, both patching algorithms appear to be better 
than the investigated insertion procedures. Moreover, the 3-patching method seems 
to provide a good approximate solution almost independently of the problem size. 
Due to the very good starting feasible solution, the branch and bound method also 
turns out to be rather effective. 
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