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Mealy-automata in which the
output-equivalence is.a congruence®

1. Babcesényit A. Nagy!

Dedicated to Professor A. ADAM on his 60th birthday

A_bs_tract

Every Mealy-automaton whose output equivalence is not the universal
relation has a non-trivial simple state-homomorphic image. Thus the simple
Mealy-automata play an importante role in the theory of Mealy-automata. It
is very difficult to describe the structure of these automata. Contrary to the
earlier investigations, in our present paper we concentrate our attention only
to a special kind of simplicity, namely the strongly simplicity. Besides we give
a construction for strongly simple Mealy-automata, we also describe the struc-
ture of all Mealy-automata which have strongly simple state-homomorphic
image.

1 Preliminaries

By a Mealy-automaton we mean a system A = (4, X,Y, 6, \) consisting of a state
set A, an input set X, an output set Y, a transition function § : A x X — A
and an output function A : A X X — Y. In that case when |4|,|X],|Y] are finite,
A= (A, X,Y,5,)) is called finite (|S| denotes the cardinality of a set S). A Mealy-
automaton A is called a Moore-automaton if

6((11,{81) = 6((12,3:2) e )\(al,zl) = /\(az,zz)

for all a;, a; € A and z;,z2 € X. It means that the function A can be given in the
form

Ma,z) = p(é(a,z)) (e € 4,z € X),

_where p: A — Y is a single-valued mapping. The function u is said to be the sign
function of A. .

*Research supported by project 11281 of the Academy of Finland, the Basic Research
ASMICS II Working Group, and, in the case of the second author, also by the Alexander
von Humboldt Foundation.

tDepartment of Mathematics, Transport Engineering Faculty, Technical University of
Budapest, H-1111 Budapest, Mfiegyetem rkp. 9., Hungary
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Let X* and Xt denote the free monoid and the free semigroup over a non-
empty set X, respectively. We extend the functions § and A of A in the usual forms
§:AXX*— A" and A: AX X* — Y* asfollows :

6(a,e) = a, &(a,pz)= 6(a,p)é(ap,z),

A(a,e) = e, XA(a,pz)= Xa,p)A(ap,z),

where a € A, p € X*, z € X, ap denotes the last letter of §(a,p) and e denotes the
empty word.

An equivalence relation 7 of a state set A of a Mealy-automaton
A= (A4,X,Y,4,]) is called a congruence on 4 if

(a,0) € 1 => (ap,bp) €7 and A(a,p) = A(b,p)

foralla,b€ Aand pe X*. (If r € Y* then 7 denotes the last letter of r.)

_ Let ppnqz denote the relation on the state set A of a Mealy-automaton
A= (A, X,Y,6,]) defined by

(a,b) € pmaz <= A(a,p) = A(b,p) forall pe Xt ([2]).

The pmaz-class of A containing the state a of A is denoted by pmaz|a]-
Denoting the identity relation of a Mealy-automaton A by ¢, we say that A is
simple if ppaz = ¢.

It is easy to see that p,,4, is the greatest congruence of A and A/p,,q. is simple.

Let A = (A4, X,Y,6,)) and 4 = (4, X,Y,§,)) be arbitrary Mealy-
automata. We say that a mapping « : A — A’ is a state-homomorphism of
Ainto A’ if

a(8(a,z)) = 6'(a(a),z), A(a,z) = X(a(a),z)

for all e € A and z € X. If a is surjective then A’ is called a state-homomorphic
image of A. If « is bijective then a is called a state-isomorphism and the automata
A and A’ are said to be state-isomorphic.

Let A= (4, X,Y,6,2) be a Mealy-automaton. By the output-equivalence of A
we mean the equivalence p defined as

p={(a,b)eAxA: (VzeX) Aa,z)=2A(b2)} ([3].

It is evident that pmerz © p. Moreover p is a congruence if and only if p = g4z
If p is the universal relation of A then, for every a,b € A, ¢ € X* and z € X,

AMa, gz) = A(aq, z) = A(bq, z) = A(b, ¢z).
From this it follows that if p is the universal relation of A then p = pqz.

For notations and notions not defined here, we refer to [4] and [5].
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2 Strongly simple Mealy-automata

Definition A Mealy-automaton will be called a strongly simple Mealy-automaton
if p=1.

The next construction plays an importante role throughout this paper.

Construction 1 Let A = (4, X,Y,6,)) be a Mealy-automaton. To arbitrary states
a of A, we can assoctate mappings ag of X into Y defined as follows:

ag:z — Ma,z).
Consider the set A = {aq;a € A} and, for everya € A and z € X, let
§'(aas ) = A5(a,z),  A'(aa,z) = ag(z).

Theorem 1 For an arbitrary Mealy-automaton A = (A, X,Y,6,}), the following
four conditions are equivalent:

(i) The quintuple A = (A, X,Y,8', X'}, where A, §', X are defined as4n Construc-
tion 1, 13 a Mealy-automaton; '

(15} p = pmaz in A;
(i11) A and A/pmaz are state-isomorphic;
(1v) A/pmaz 13 strongly simple.

Proof. Assume that A is a Mealy-automaton. Then a, = a; implies
®5(a,z) = 5(b,z) for every a,b € A and z € X, because §' is well-defined. We
show that p = ppe; in A. Consider two arbitrary elements @ and b of A with
(a,0) € p. Then ag = ap and s0 we get s(q,2) = X5(b,2) for every z € X. Using
this idea and the fact that 6 is extended to A X X*, we get a,, = ay, for every
p € X*. Thus

AMa, pz) = Map, z) = A(bp, z) = A(b, pz)

for every p € X* and z € X. Consequently {a,b) € pmas which implies that
P = Pmaz in A. Thus (i) implies (ii).

Assume that p = p,qz In a Mealy-automaton A. To show that 4 is a Mealy-
automaton, it is sufficient to prove that §' is well-defined. Let a and b be arbi-
trary elements of A with a; = ap. Then }éa, b) € p = pmaz from which we get
(6(a,2),6(b,2)) € p = pmaz for every z € X. Thus Q5(a,z) = X5(b,z) (z € X) and
so §' is well-defined. Consequently, (ii) implies (i).

To show that (ii) implies (iii), assume p = pypqz in 4. Then o, = a4 if and only
if (a,b) € pmaz Which implies that a, — pmasz(a], @ € A is a state-isomorphism of
A onto A/pmaz. Consequently, (iii) is satisfied.

Assume (iii). Then £ is a Mealy-automaton. Thus )X’ is well-defined. From this
it follows that 4 and so A/pmaz is strongly simple. Therefore, {iv) is true.

Condition (ii) follows from (iv) in a trivial way.

Construction 2 Let M be a non-empty subset of the set YX of all mappings
of X into Y, where X and Y are arbitrary non-empty sets. Consider the Mealy-
automaton M = (M, X,Y,6%,X*), where §* 1s arbstrary and A* 1s defined as follows:

AM(a,z) =afz), a€eM, z€X.



124 L Babcsidnyi, A. Nagy

For non-empty sets X and Y, denote M[X,}Q the set of all Mealy-automata
defined in Construction 2. It is evident that 4 € M[X, Y] supposing that p = p,,0,
in the Mealy-automaton 4 = (4, X, Y, §, )).

Theorem 2 A Mealy-automaton s strongly simple if and only if it 1s state-
tsomorphic to a Mealy-automaton M = (M, X,Y,6*,2*) defined in Construction 2
for some X,Y, §* and A*.

Proof. It is trivial that Mealy-automata defined in Construction 2 are strongly
simple.

Conversely, let A = (A,X,Y,6,)) be an arbitrary strongly simple Mealy-
automaton. For this Mealy-automaton consider £ = (4, X,Y,6’, X’} with 4, &' X
defined in Construction 1. By Theorem 1, A is isomorphic to 4 € M[X,Y]. 0

Lemma 1 M,, M, € M[X,Y] are state-tsomorphic if and only if
M1=M2-

Proof. Assume that M;, M, € M|X,Y] are state-isomorphic. Let ¢ be a state-
isomorphism of M, onto M,. Then, for every a € M; and z € X,

a(z) = Al(@,2) = A3(p(a), 2) = p(a)(2)
and :
(61 (@, 2)) = &3 (p(), 2).

From the first expression we get that ¢ is identical and so M; = M;, A} = Aj.
Then the second expression implies 7 = §;. Consequently, M, = M,. O

Corollary 1 If X and Y are fintte non-empty sets then

Iy |1

IMX, Y= 3 (lyllclx')kkl’d-

k=1

Proof. Let X and Y be arbitrary finite non-empty sets. Then |YX| = |Y|IX]. Let
M C YX be arbitrary with |M| = k. By the Lemma, the number of all different
Mealy-automata defined in Construction 2 with the state set M is k*IX|, because
we can choose §* : M x X — M in k*IX! different way. This implies our assertion.

It is known that every Mealy-automaton is equivalent ([4]) to some Moore-
automaton. Therefore, it is interesting for us to know how we can construct the
strongly simple Moore-automata. We note that a Mealy-automaton M defined in
Construction 2 is a Moore-automaton if and only if we choose 6* such that

01(21) ?é a2(22) == 5‘(&1, :Cl) ;é 6‘((!2,.‘1:2)

for every a;, a2 € M and z;,z; € X. Moreover, the output function A* of M does
not depend on the input signs if and only if all mappings a € M are constant. In
this case M can be considered as a special Moore-automaton ([1}) with the sign
function A* and the output function A defined by A(a, z) = A*(6*(a, z)). Thus the
number of these special Moore-automata belonging to M[X,Y| is

¥

z_: (li’l) RHXT



Mealy-automata in which the output-equivalence is a congruence 125

supposing that X and Y are finite.

Introduce a partially ordering ”<” on M[X, Y] as follows: M, < M, if and only
if M1 € M, and §; equals the restriction of §; to M; X X. Under this ordering an
element of M[X,Y] is maximal if and only if its state set is Y*. If X and Y are
finite then the number of maximal elements of M[X,Y] is

v | (¥ 1%ixt?,

It can be easily verified that the number of maximal elements of M[X, Y] which are
special Moore-automata (see above) is |Y|I¥1IXI,

3 Mealy-automata having a strongly simple
state-homomorphic image

In this chapter we give a construction for Mealy-automata which has the property
P = Pmaxzx-

Construction 8 Let M = (M, X,Y,56*,)*) be a strongly simple Mealy-automaton
(defined in Construction 2). Consider a family of sets B,,, m € M such that
BnNBp =0 ifm#m'. Forallz € X and m € M, let p,, » be a mapping of
By, into Bge(im,z). Let B =Upem By Define the functions 6°: Bx X — B and
A°:Bx X —Y as follows. For arbitrary b € B,,, let

6°(b,2) = Pm.z(b) and A°(b, z) = m(z).

It can be easily verified that 6° and A° are well-defined and so B = (B, X,Y,6°,)°)
13 a Mealy-automaton. :

Theorem 38 A Mealy-automaton has the property that p = pa. of and only if 1t
can be defined as tn Construction 3.

Proof. Let B be a Mealy-automaton defined in Construction 3. We prove that
P = Pmaz- Forallme M, p€ X* and z € X let o pz = Pmp,z © Pm,p, Where mp
denotes the last letter of §*(m, p). It is clear that ¢, ,(a) = ap for all a € B,, and
p € X*, where ap denotes the last letter of §°(a,p). Assume (a,b) € p for some
a,b € B. Then a,b € B,, for some m € M. For arbitrary p€ X* and z € X,

A°(a, pz) = A°(ap, ) = 3°(pm,p(a), 2) = A°(Pm 5 (b), ) = A°(bp, ) = X° (b, pz).

From this it follows that (a,}) € pmaz-

Conversely, assume that p = py4; in a Mealy-automaton A = (4, X, Y, §,1).
By Theorem 1, 4 = (4, X,Y,6',)') is a Mealy-automaton which is state-isomorphic
with the strongly simple Mealy-automaton A/p,,... Using Construction 3 for M =
A4, consider the Mealy-automaton B = $B, ,Y,8°,2°) such that B,, = pmaz|al
and @q, ; defined by 4, 2(b) = 5&6,1) or arbitrary a € A, b€ B, ,,z€ X. Tt is
easy to see that A= B, § =6° and A = A°. Thus A = B. O
Remark. If the output equivalence p of a Mealy-automaton A is the universal
relation of A then A is simple if and only if it is strongly simple if and only if it
is trivial (it has only one state). Thus our problems are trivial in this case. We
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note that if A = (4, X,Y,4,]) is a Mealy-automaton in which p is the universal
relation then the congruences of A are the same as the congruences of the pro-
jection” A, "="(4, X, 6) of A. But the simplicity of automata without outputs is
modified as follows: An automaton B without outputs is called simple if its every
state-homomorphic image is trivial or isomorphic to B. It is easy to see that this
simplicity is different from the strongly simplicity. (Here the strongly simplicity
means that the automaton is trivial.)
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Measure of Infinitary Codes

Nguyen Huong Lam * Do Long Van *

Abstract

An attempt to define a measure on the set A" of infinite words over an
alphabet A starting from any Bernoulli distribution on A is proposed. With
respect to this measure, any recognizable (in the sense of Biichi-McNaughton)
language is measurable and the Kraft-McMillan inequality holds for measur-
able infinitary codes. Nevertheless, we face some “anomalies” in contrast with
ordinary codes.

1 Introduction

In this paper we need only very basic concepts and facts from the formal language
theory and the theory of codes, for which we always refer to [Ei] and [Be-Pe|. Let
A be a finite or countable alphabet and A* be the set of (finite) words on A (that is
A* is the free monoid with base A) with the empty word (the unit of A*) denoted
by €. The set of nonempty words is denoted by A* = A* — ¢. The product of two
words u and v is the concatenation uv of them.

A factorization of a word w on a given subset X of A* is a sequence uy,...,u,
of words of X such that w =u;...u,. A subset X of A* is a code if every word of
A* has at most one factorization on X.

Intuitively, a code may not contain too many words and this idea has been stated
mathematically in the remarkable Kraft-McMillan inequality. Let us mention it
now.
A Bernoulli distribution on A is a function

p:A— Ry

associating with each letter a nonnegative real number such that

Z p(a) = 1.

aEA

A distribution p is posstive if p(a) > O for all a € A. We extend p in a natural way
to a word u = a3 ...a, of A* (ay,...,a, are letters) by

p(s) = [T (e

*Institute of Mathematics, P. O. Box 631, 10 000 Hanoi, Vietnam.
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and then to a subset X of A* by

P(X) = p(u)-

ueX

The value p(X) is called the measure of X, which may be finite or infinite. If finite,
the measure is the sum of an absolutely convergent numerical series, so the order
of summation is not important and the definition is correct.

The well-known in the information theory Kraft-McMillan inequality ([Mc] or
[Be-Pe]) says that:

For any Bernoulls distribution, the measure of any code does not exceed
1.

The presentation that follows is an attempt to resolve a question, quite natural, in
the mainstream of extensive studies on infinite words: how can one define a measure
(in some sense) on the set of infinite words A¥ so that this measure should be well
compatible with the measure structure and properties of languages in A*? Besides,
we want this measure to satisfy our own demand: to prove something like the
Kraft-McMillan inequality for infinitary codes, introduced in [Va]. To do this we
come to the theory of measure, making use of its very basic concepts (Lebesgue
extension of measures, infinite product of probability spaces) and we also exploit
some techniques suggested by [Sml].

2 Measure Theory
2.1 Basic

We give a brief survey of facts for furthergoing treatment. For more details the
reader is referred to [Ha]. Let X be any fixed set; we always deal with subsets of X,
so in the sequel sets always mean subsets of this “base” set. Also we use the Euler
fraktur alphabet to indicate classes (collections) of sets, for example, P (X) is the
class of all subsets of X (the power set). A class ® is called a (Boolean) ring of sets
provided for any E, F € ® the set-theoretic difference £ — F and union EU F are
alsoin # . A ring is called o-ring if ® is closed under the formation of countable
unions, i.e., U2, E; isin R for any countable sequence of sets E1, E;,...of ® . A
ring (o-ring) containing the base set X, is said to be an algebra (a o-algebra resp.).
Since ENF =EUF — ((E-F)U(F—E)) and N2, E; = X — U2, (X — E;),
we see that a ring is also closed under the formation o} finite, and moreover if 1t
is a o-algebra, of countable intersections. Since the intersection of any number of
rings (o-rings) is also a ring (o-ring), for any class € there exists the smallest ring
(o-ring) containing it, which 1s called the ring (o-ring) generated by ¢ and denoted
by Rg ) (S(¢ ) resp.). We say that € is a hereditary class if for every E € €
F C E implies F € ¢ . Clearly, the hereditarity of classes is preserved under any
intersection therefore we can say of the smallest hereditary class H(€ ) containing
a given class € .
Let ¢ be any class of sets. A set function on € is a mapping

f:¢ = RiUoo

defined on ¢ , taking real nonnegative values including infinity. A set function f is
called
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— additive, if for any disjoint sets Ey, E; of € such that By UE; € ¢

f(E1U Eg) = f(E1) + f(E2);

— countably additive, or o-additive, if for any countable sequence of mutually
disjioint sets Ey, Es,... of € such that U2, E; € ¢

f(_U E)= Z F(E:).

A o-additive set function u on aring ® is said to be a measure (on ® ). The
value u(E) is the measure of E. A measure u is finite if every E of ® has finite
measure and is o-finite if every E of ® is a countable union of sets of ® , all of
them having finite measure.

2.2 Lebesgue Extension of Measures

Let u1, uz be measures respectively on the rings ® ; and ® 2 with ® ; C ® 5,
then p; is an eztension of p if restricted to ® q, uq is equal to ;.

Provided the o-additivity of the measure uz on some ring ® , we can extend it
considerably further to a o-ring which is in some sense maximal as follows.

Let H(% ) be the smallest hereditary o-ring containing ® . For any set E €
H(® ), we define the outer measure of E

/.t‘(E) = inf{ip(E,') :EC G E, E;en }

i=1

Indeed, p*(E) = u(E) for E € ® . Following [Ko-Fo|, a set E € H(® ) is called
measurable if for any € > 0 there exist Eyg € ® such that

p*(EAE,) < ¢

where EAE, = (E — Ep) U (E — Ep) is the symmetric difference of E and F.

It is proved that the class M of all measurable sets is a o-ring and the function
p* is o-additive on it and S(® ) C m [Ko-Fol.

Thus the measure y on % has been extended to the measure u* on the o-ring
S(® ) generated by ® and certainly u*(E) = p(E) when E € ® . Usually, the
triple (X, ,u) consisting of the base set X, a o-ring 2 of subsets of X and
a measure px on M is called a measure space; when X € M and p(X) = 1 the
measure space is called a probability space. :

We now make a remark that will be useful in the sequel. Sometimes, the starting
point is not the ring R itself, but some subclass & such that it can generates ® and
the latter is easily constructed from &. An example of such classes are semirings,
considered in {Ko-Fo|: a class & is a semsring provided, first, it is closed under the
formation of finite intersections and, second, if £, F € 6, E C F then F splits into
a finite number of mutually disjoint subsets Eg, E1,..., E, of & such that £ = Ey:
F =] E:i If 6 isa semiring, R(6) is then the class of all finite unions of
subsets of &. It is easy to see also that if 4 is g-additive on &, so is in R(&).
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2.3 Infinite Product Measure

‘Another fundamental construction we need here is the infinite product measure.
More specifically, we treate only the countable product.

Let (Xi, M ;, 1:),5 = 1,2,... be a countable collection of probability spaces, i.e.
measure spaces with X; € M ; and p;(X;) = 1. Further, let X = [[72, X; be the
set-theoretic Cartesian product of the sets X;, X5,.... A subset A of X of the form

o«
A= H A, A;em g

=1
and A; = X, for alrr}ost all 1, is called a measurable rectangle. The class of mea-
surable rectangles is obviously a semiring and is denoted by @ . Let us denote
m = S(2 ) the o-ring generated by the measurable rectangles. Theorem 2 of [Ha,
Chapter VII, §38 | states, in fact, that there exists uniquely a measure p on M
such that if

A=A; x...x A, XXn+1 XX,-,+2 X .o

is a measurable rectangle then

#(A) = p1(A41) ... pn(44)-

Since u;ng;) = 1 for all ¢, p is well-defined on 2 and u(X) = 1. Therefore, the
triple (X, 9 , u) is a probability space that is called the product measure space of
spaces (X;, M ;,p:) and the measure p on M is then called the product measure
of measures y;.

This construction ensures the existence of a measure on the set of infinite words,
which we shall consider in the next section.

3 Measure on AY

An infinite word « on the alphabet A is an infinite sequense of letters indexed by
natural numbers '
. =a182....

The set of all infinite words on A is denoted by AN . We consider also the set A® =
A* U AV | on which we define the monoid structure as follows [Va]: for o, 8 € A%,
if @ € A* then the product « - 8 is the concatenation af of a and f; otherwise, if
a € AN« - 8 is defined to be a. Naturally, the product of words can be extended
for languages, i.e. subsets of A®: XY = {a-fla€ X C A, B€Y C A*}. Not
to be too strict, in the folowing, we omit the dot in the product of words and when
a set is a singleton we frequently identify it with its element.

Let now p be any Bernoulli distribution on A, as before extended to A*; then
(A, (A),p) actually forms a probability space, where P (A} is the set of all
subsets of A. Next, we can view AV as the Cartesian product of w (the cardinality

of N) copies of A
AV=T] 4

seN
and we can say of the class % of measurable rectangles R

R=ﬁA;, A;em

=1
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with A; = A for almost all ¢, which is, needless to say, a semiring. We define a set
function 4 on 2 by

w(m) = [ o(40).

Clearly, by consideration of product measure in 2.3, p is o-additive on % and thus
issoon ® = R(2 ). Now we can extend u further to a o-algebra m = S(% ) =
S(2 ) by measure extension procedure.

Beside measurable rectangles we also consider a subclass & of measurable rect-
angles S of the special form

S =(a1,...,an,4,4,...), a; €A n>1

which are nothing but the subset wAY of AN, where w = a;...a, € A*. Clearly,
each measurable rectangle of 2 is a union no more than countable of sets from &,
and consequently S(6)=S(2 )=mm .

As an immediate consequence of the existence of the product measure on AY,
we have

Theorem 1 If X C A* is a code of A* such that AN = X AN, then X is a prefiz
code and for any Bernoulli distribution p on A, p(X) = 1, so X is a mazimal code.

Proof. Set X' = X — XA*t. Then X' is a prefix code and AN = XAN = X'AVN =
Uwex'wAY . The union is certainly countable and disjoint, therefore

1= p(A¥) = p( | wA¥) = 3 p(wa") = 3 plw) = p(X') < p(X).

weX! weX! weX!'

But X is a code, by the Kraft-McMillan inequality, p(X) < 1, which implies p(X') =
p(X) =1 and X = X’ is a maximal prefix code. O

For any subset X C A¥, a cover of X is a finite or countable collection ¢ of
sets from | such that X C Ugee¢ E. Since every set of ® is a finite or countable
union of sets of G, so we can assume that a cover is always a countable collection of
sets from 6 and we write ¢ = {w; AN :{ € I}, where ] C N. From ¢ we discard
the redundant subsets, that is, the subsets having no intersection with X = @ or
containing another subset ¢ to obtain a subclass ¢ ' = {w'AY : v € J C I}

which, evidently, is still a cover of X and besides {w' : w'AY € ¢ '} is a prefix
subset of A*. From now on, speaking of covers, we always mean covers with these
properties. Obviously, the outer measure of X is

pX)=inf S pwAN)=inf 3 plu).

wANEge ¢ wANge
We prove now one simple property of the measure u*.
Proposition 2 For any set X C AN and w € A*, p*(wX) = p(w)u*(X).

Proof. For any € > 0 let ¢ = {w; AN :i € I} be a cover of X such that

B (X) < Y mlwiA™) = 3 plu) < w°(X) + ¢
i€l el
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then ¢ ' = {ww; AN : ¢ € I} is a cover of wX and

pX) <Y pluwa”) = Y plww)

s€l s€l
=p(w) Y _p(wi) = p(w) Y u(w;A¥) < p(w)(u"(X)+e)
tel sel

that means p*(wX) < p(w)p*(X).
For the reverse inequality, suppose that ¢ = {w; AV :1i € I} is a cover of wX,

wXTg:LJURAN (1)
s€rl
such that
B (wX) <D p(w;AY) < p*(wX) + e (2)
sel

If w = w;w' for some ¢ and w' € A%, then, in fact, ¢ must be a singleton class,
I = {1}, hence
B (wX) + > p(wi) 2 p(w) 2 p(w)p*(X).
If now for all 7, w is a prefix of w;, w; = ww!, from (1) we have
XcC U w‘f'AN
i€l

that means ¢’ = {w} A" :i € I} is a cover, for which from (2) we get

p(w)u®(X) < p(w) D p(w/4Y) = )~ p(wuwja®)

s€l t€l
= Z p(w;AV) < p*(wX)+e
€l

That is, in both cases, € abitrarily small, we have p(w)p*(X) < p*(wX) that
concludes the proof. O

For any word w € A® and any subset £ C A™ we define
wlE = {feA®:(wfeE)&(we AV) = g =¢};
Ew™! = {c€A®:(aweE)&(ace€ AV) = w=¢}.

The fisrt set is clear; the last one has the following meaning: empty word is the
only one to be allowed to cut on the right of an infinite word in E. For any subset
F C A™, we write

F'E=|Jw'E, EF'=|JEuv"
weF w€EF

Further on, p is assumed to be positive.

Proposition 8 Let X be a subset of AN and w a finite word . Then X 1s

0 *
measurable if and only if wX is measurable and p(wX) = p(w),ué().
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Proof. 1t is easy to check that
w(XAE) = (wXAwE) (3)

for any subset E C AY. Set E; = w™1E, we have

wX-wE, = wX-E,
wE, ~wX C FE-uwlX.
Hence
w(XAE;) = (wXAwE,) C (WXAE). (4)
Proposition 2, monotonicity of u*, (3) and (4) imply that
p(w)p* (XAE) b (wXAwE),

p(w)p*(XAE,) ; p*(wWXAE).

Note that if E € ® then wE,w™!E € ® , s0 X is measurable iff wX is measurable.
The second claim immediately follows from Proposition 2. O

Any language X C A® is a disjoint union of its finitary part X5, = X N A*
and its infinitaty part Xijns = X N AV:

X = Xga U Xjns.

For a langague of finite words X C A*, commonly, X* denotes its Kleene closure,
that is X* = {e} J;2, X*, or in other words, X* is the smallest submonoid of A*
(thus of A®®) containing X. We can extend this notion for any language X of A>,
namely, X* by definition is the smallest submonoid of A* containing X, which, as
one can easily verify, is Xz U Xg Xins.

We recall now the concept of codes on A [Va]. Given any language X of
A® and a word w € A®, a factorization of w on X is a finite sequence of words
Z1,...,Zn—1,Zp such that ,...,2,1 € Xy, zp € X andw =21 ...2,-12,. X
is said to be an tnfinttary code, or code for short, if every word of A has at most
one factorization on X. Clearly, if restricted to A*, the infinitary codes are just the
ordinary ones.

Naturally, we say that a subset X C A™ is measurable if its infinitary part Xjys
is measurable, and the measure u(X) is defined to be

p(X) = p(Xan) + #(Xine)-

Now we are in a position to prove the Kraft-McMillan inequality for infinitary
codes. :

Theorem 4 (Kraft-McMillan Inequality) For any measurable code X of A%,
p(X) <1

Proof. Set f = p(Xgn),t = p(Xins). We have f < 1 by Kraft-McMillan Inequality
for ordinary codes. Since X is an infinitary code, the union

*
XiaXint= | wXint
wEXEn
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is disjoint. Therefore, by Proposition 2

WX Xin)) = Y pwXiw)= D p(w)u(Xin) =

- -
wEXﬁn wGXﬁn

P(Xga)8(Xint) < 1= p(AV).

If f <1, then
PXGa) =1+ f+ 4= 7.

Consequently, T—:T < 1,ie, p(X) =1+ f < 1. In the case f = 1, we show
that + = 0. In fact, for all n, p(Xg, U --- U X7 )us(Xing) = ni. Hence, if i > 0,
p(X§, Xint) = limp o0 74 = 00, a contradiction. O

Example 5 A prefiz of a word a € A is a finite word w such that « = wp for
some § € A® — ¢; a subset X C A is called prefiz if for any two words in X none
of them is a prefix of the other i.e. Xan(A® —€)N X = 0; X is prefiz-mazimal
if for any prefix subset Y, X C Y implies ¥ = X. Evidently, a prefix subset is a
code. Every prefix-maximal subset P is measurable and u(P) = 1. Indeed, since
P is prefix-maximal, every word not in P,y has a prefix in Pgy, therefore

AN= inf U wAN
wePgy

is a disjoint union. Consequently

1=pu(A") = p(Pu) + D s(wA)=p(Pu)+ D p(Pan) =n(P). D
w€Pgy w€Pgy

When A is a finite alphabet, any recognizable language is measurable, thus we
have got a large class of measurable languages, which, by the way, are algorith-
mically constructible by finite means. Recall that a language X C AY is said to
be recognizable if it is recognized by a finite Biichi automaton [Ei]. It has been
well-known that the family Rec AN of recognizable languages of AV is the Boolean
closure of the family Det A" of deterministic recognizable ones (Biichi-McNaughton
Theorem), i.e. the languages recognized by finite deterministic Bichi automata,
which are the finite unions |J{_, B;C¢, where B;, C; are (regular) prefix subsets of
A* and CY stands for the set of infinite words obtained by infinite concatenation
of nonempty words of C; : C¥ = {z123...: 21,23,... € Ci}.

Proposition 8 Every recognizable language X of AV 1is measurable, i.e. Rec AN C
m .

Proof. For any subset B;CY with B;, C; préﬁx subsets of A* we have
(o]
B;cY = (] B:.crAM.
n=1

By proposition 2, B;C*AY is measurable for all n. Since the o-algebra m of
measurable subsets is closed under the formation of Boolean operations, moreover,
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of countable unions and intersections, B;C¥ is measurable, hence DetAN C o
and thus RecAYN Cam . O

We now resume the assumption that A is finite or countable. A code is said to
be mazimal if it cannot be included properly in another code. The existence of a
maximal code containing a given code X is easily verified by mean of the Zorn’s

lemma. A maximal code must has a “nonnegligible” fraction of words in A" . More
precisely, we have

Proposition 7 For every mazsmal code X, the outer measure of Xins 13 positive:
/“ (Xinf) > 0.
Proof. Let

FD (Xint) = {a € AN : Jw € A" : wa € Xing}.
be the subset of suffizes of Xins. Suppose that p*(Xint) = 0, hence pu*(FD (Xiu)) =
0. For any w € A%, w(w™ 1 Xiys) C Xing, we have

0 < p*(w(w ! Xing)) = p(w)s* (v ! Xins) < B (Xing) = 0,
hence p(w)p* (w™ ! Xint) = 0 and so p*(w~!Xjy¢) = 0. Consequently

0 < u*(FD (Xin)) = 4*( |J @ ' Xind) € D 4" (@™ Xing) =0

wEA* wEA®*

(subadditivity of u*).
On the other hand, being a maximal code, X is complete [Va], ie., AN =
FD (Xf‘inXinf)' By I“(Xinf) =0

0 < p*(XgnXint) < Z B (wXint) = Z p(w)p* (Xiar) = 0,
that is p* (X3, Xins) = 0, therefore
4 (FD (X3 Xine)) = 0 = u(AY) = 1,

a contradiction. O

Example 8 (2 non-measurable subset of A¥) A suffiz of a word & € A is a
word A such that & = wp for some w € At; X C A® is called a suffiz subset
if there are no words in X one of which is a suffix of the other, i.e. for every
we At : XNnwX = 6. A suffix set of AV is called suffiz-mazimal if it is not
contained properly in any other suffix subset of AY. Let S be any suffix-maximal
subset of AN, Suppose that S is measurable; it is easy to see that S U A is a code,
so we have p(S) = 0. On the other hand, since S U A is even a maximal code, the
previous proposition shows that p(S) = u*(S) > 0. This contradition means that
S is not measurable.

In the propositions that follow we prove some properties of codes imposed with
special conditions.

Proposition 9 Let X be a measurable code of A% with u(X) =1 and p(Xiat) > 0,
then Xg, s a prefiz code.
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Proof. We show that X}, is left unitary, ie., X3 = (X7.)"1 X}, whose base Xg,
is then a prefix code. Always, Xg, C (X3,)”'Xj,. For the converse inclusion,
we take any nonempty word w € (X3,) !Xz, so there exist u,v € X3 such that
uw = v. Since p(X) = 1, u(Xg, Xing) = T:-—/ =% =1, we have wXintN X}, Xint # 0

otherwise '
#(wXint U X5, Xing) = p(wXing) + #( X5 Xint) = p(w)i +1> 1

that is an obvious contradiction. So there exist z € Xi ,a,f € Xjur such that
wa = zf. Hence va = uzf, that implies v = uz, a8 X isa code. Thusw =z € Xg, .
O

Theorem 10 If X is a measurable mazimal code with u(X) = 1 then Xg, 1s a
prefiz code.

Proof. By Proposition 7, p(Xins) > 0 and by the previous proposition the result
immediately follows. O

A language X C A® is called finite-state provided the collection {w™!X :w €
A*} is finite. It is not difficult to prove that the family of finite-state languages is
closed under the formation of finite unions, of finite intersections and the w-product.
It is noteworthy that Rec A¥ is a subfamily of finite-state languages.

Proposition 11 If X is a mazsmal code over A satisfying (X7, )71 X}, = A*, then
Xint 13 not a finite-state language tf A consists of at least two elements.

Proof. Under the assumption (X3, )"'X;, = A*, X is a (maximal) code iff Xyt is
a suffix(-maximal) set. We show that a suffix-maximal language is not finite-state
(the fact that it is not recognizable is shown in Example 8).

Fix z € A*, for any r € AT we take a word
a=(A*(rz)Y UFD (rz*)) N Xint # 0.

This can be done, as Xy is suffix-maximal. We write a = a(rz)¥, where a € A*,
hence a = arz(rz)¥ and (rz) € (arz) ! Xins. Thus for any z, there exists u € A*
such that (uz)~! X, # 0. Consequently, there exists an infinite sequence vy, vo,. ..
such that v; is a suffix of v;4; and U;.lXinf # @ for all 1. As X, is a suffix set,
7 Xint # 07 Xing fori # 5. O

Proposition 12 If X 1s a mazimal code with X5, a nonsingleton prefiz code, then
Xint ts not finite-state.
Proof. Suppose on the contrary that X is finite-state. Consider the subset
o Y= X N X3, C X35, (5)
which is nonempty, since X is a maximal code. For every w € X}, it is clear that
w—lYinf = w_IXinf nXgn C X:i'n (6)
Let now ¢ be a coding morphism for Xg,

¢: B — Xg,,
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where B is an a]phabet of the same cardinality as Xg,. As X is a prefix code, we
may correctly extend ¢ to an injective morphism of monoids 4

¢: B® — Xg°,

where X2 _denotes Xzn U Xg,. Therefore (5) and (6) and the fact that X is finite-

state maximal code imply that BUc™ SD int) is also a finite-state maximal code on
B* with Card B > 2 that contradicts ropos1t10n 11. Thus X is not ﬁmte-state
0

Putting the propositions 6, 10 and 12 all together, we are lead to a sxtuatlon
quite opposxte to the case of ordlna.ry codes

Theorem 13 Let X bé a code on the finite alphabet A with Xins a recognizable
language of AN, then the following two assertions are sncompatible

1. p(X)=1

2. X 1s a mazimal code.
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A Universal Unification Algorithm Based on
Unification-Driven Leftmost Outermost
Narrowing

Heinz Fafbender ! * Heiko Vogler !

Abstract

We formalize a universal unification algorithm for the class of equational
theories which is induced by the class of canonical, totally-defined, not strictly
subunifiable term rewriting systems (for short: ctn-trs). For a cin-trs R and
for two terms f and s, the algorithm computes a ground-complete set of
(Er, A)-unifiers of t and 3, where Eg is the set of réwrite rules of R viewed
as equations and A is the set of constructor symbols. The algorithm is based
on the unification-driven lefimost outermost narrowing relation (for short: ulo
narrowing relation) which is introduced in this paper. The ulo narrowing rela-
tion interleaves leftmost outermost narrowing steps with decomposition steps
taken from the usual unification of terms. In its turn, every decomposition
step involves a consistency check on comstructor symbols combined with a
particular form of the occur check. Since decomposition steps are performed
as early as possible, some of the nonsuccessful derivations can be stopped
earlier than in other universal unification algorithms for ctn-trs’s. We give a
proof that our algorithm really is a universal unification algorithm.

1 Introduction

The untfication problem is to determine whether or not, for two given terms ¢t and
s, there exists a unifier ¢ of ¢ and s, i.e., a substitution ¢ such that p(t) = ©(s).
It is well-known that the unification problem for first-order terms is decidable [27].

The problem of unification generalizes to the problem of E-unification, if one
considers the equality modulo a set E of equations, denoted by =g, rather than
the usual equality; =g is also called the equational theory induced by E. The
E'-untfication problem is to determine whether or not, for two given terms ¢ and s,
there exists a substitution ¢ such that ¢(t) =g ¢(s); then o is called an E-unifier of

*The work of this author has been supported by the Deutsche Forschungsgemeinschaft
(DFG).

tDept. of Theoretical Computer Science, University of Ulm, D-89069 Ulm, Germany,
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t and s. Clearly, the decidability of the E-unification problem depends on the set E
of equations. If, e.g., E is the empty set, then the E-unification problem coincides
with the unification problem and therefore it is decidable. As another example,
if E consists of the algebraic laws of associativity and distributivity, then the E-
unification problem becomes undecidable; if the law of associativity is dropped,
then it is not known whether the problem is decidable. Surveys about the problem
of E-unification can be found in [‘2)8,20,18].

For a class £ of equational theories, a universal unification algorithm for £ (for
gshort: uu-algorithm for £) is a nondeterministic algorithm which takes as input an
equational theory =g from the class £ and two terms t and s, and which computes a

. complete set of E-unifiers of ¢ and s l(lil'or the definition of complete set of E-unifiers
cf., e.g., [28]). In this paper, we will concentrate on uu-algorithms for classes of
equational theories which are induced by particular term rewriting systems (for
short: trs’s). A trs R induces the equational theory =g,, where Ep is the set of
rules of R viewed as equations.

Until now, a lot of research has been carried out to construct uu-algorithms for
classes £ of equational theories which are induced by trs’s. There exist approaches
which are extensions of the unification algorithm in 23] (cf. [19,12,18]). In these
approaches there are additional transformation rules which perform the application
of equations. Other approaches to construct uu-algorithms are based on the con-
cept of narrowing [21]. More precisely, in every such investigation, a uu-algorithm
is constructed for some particular class of trs’s where the algorithm is based on
a particular narrowing relation (plus some additional actions as, e.g., the usual
unification of trees). Here we list some pairs (consisting of a class of trs’s and a
narrowing relation), for which uu-algorithms have been constructed.

e canonical trs’s and narrowing [10,16]

canonical trs’s and basic narrowing [16,24]

left-linear, non-overlapping trs’s and D-narrowing [29]

canonical, uniform trs’s and leftmost outermost narrowing strategy [25]

e canonical, totally-déﬁned, not strictly subunifiable trs’s and any narrowing
strategy [3]. '

We note that a narrowing strategy is a narrowing relation in which the narrowing
occurrence is fixed. We also recall that a trs is canonical, if it is confluent and
noetherian.” A trs is constructor-based, if its ranked alphabet {1 is partitioned into
sets F and A of function symbols and constructor symbols, respectively; moreover,
the left-hand side of every rule is a linear term f(ty,...,t,) where f is a function
symbol, t;,...,t, are terms over AUV where V is the set of variables (cf. [30]).
This particular structure of the left hand sides induces that every constructor term
is irreducible. A trs is totally-defined, if it is constructor-based and every function
gsymbol i1s completely defined over its domain or, equivalently: every normal form
is a constructor term (cf., e.g., [3]); A trs which is not strictly subunifiable (cf. [3]
. and Subsection 3.1 of the present paper), satisfies a kind of local determinism, e.g.,
two rules cannot be applied at the same occurrence under the same substitution.
In [25] totally-defined, not strictly subunifiable trs’s are called uniform trs’s.

In all mentioned narrowing-based approaches, the narrowing derivation results
into two terms t' and s'; then, it has to be checked whether ¢’ and s’ are unifiable.
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In [11] a uu-algorithm for totally-defined trs’s is defined which interleaves unifi-
cation with the narrowing derivation. More precisely, he considers any innermost
narrowing strategy and interleaves decomposition steps without any occur check.
Since the decomposition steps are performed as early as possible, it is clear that
this can lead to a more efficient computation of Eg-unifiers.

There exist some other narrowing relations as, e.g., lazy narrowing [26], outer
narrowing [30] which were shown to be complete with respect to the unrestricted
narrowing relation. It was not shown that a uu-algorithm which is based on one of
the narrowing relations mentioned above, computes a complete set of Ep-unifiers.
However, for canonical trs’s, this statement is clearly true (cf., e.g., {18] for a
complete list of these narrowing relations).

In this paper we construct a uu-algorithm for the class of equational theories
which are induced by canonical, totally-defined, not strictly subunifiable trs’s (for
short: ctn-trs’s). This algorithm shall serve as a source for efficient implementations
of Eg-unification on deterministic abstract machines. Thus, we formalize our uu-
algorithm in a way from which an operational approach can be derived easily. This
is one of the reasons why we will introduce the uu-algorithm on the basis of a
narrowing relation and not as a system of transition rules. The second reason for
choosing the formalism of a narrowing relation is that we refine the uu-algorithm
of [3] which, in its turn is based on a narrowing relation. The uu-algorithm in
[3]l improves the algorithm in [16] which is based on the unrestricted narrowing
relation, by choosing an arbitrary narrowing strategy. For a particular narrowing
strategy, our algorithm improves in its turn the uu-algorithm of [3] by following the
idea of interleaving decomposition steps with the narrowing derivation as in [11].
However, we consider the leftmost outermost narrowing strategy and we implement
a particular occur check. The relationships between the approaches of [16], [3], and
[11], and our approach are illustrated in Figure 1.

- More precisely, our uu-algorithm is based on the so-called unification-driven
leftmost outermost narrowing relation (for short: ulo narrowing relation) which is
introduced in this paper. For a trs R, the ulo narrowing relation is denoted by

u u . . . . . .

~+g. In ~ag leftmost outermost narrowing is interleaved with the application of
decomposition-rules (cf., e.g., L213]) which check the consistency of the root symbols
of the terms to be unified. Moreover, the applicability of a decomposition-rule
depends on a particular version of the occur check. Since decomposition-rules are
applied as early as possible, the ulo narrowing relation is called ’unification-driven’.

Actually, for a ctn-trs R with some set A of constructors and two terms ¢t and
s, our uu-algorithm computes a ground complete set of (Eg,A)-unifiers of t and
s. An (Eg, A)-unifier of t and s is an Eg-unifier in which all the images are terms
over AUV, where V is the set of variables; in particular, this means that we do
not consider unifiers of the form [z; /f}t)] for some function symbol f. Roughly
speaking, a set S of (Eg,A)-unifiers of ¢ and s is ground complete, if, for every
ground (Eg, A)-unifier ¢ of t and s (i.e., the images of ¢ do not contain variables),
there is a ¢ € S which is more general than . This notion will be formalized in .
Section 3. : '

Let us give an example at which we can illustrate the ulo narrowing relation.
In Figure 2 a set R; of rules of the ctn-trs R, is shown where we assume to have.
a ranked alphabet F; = {sh(?),mi(1)} of function symbols and a ranked alphabet
A, = {0(?),al®} of constructor symbols. Intuitively, R, defines two functions
shovel and mirror with arity 2 and 1, respectively; mirror reflects terms over
A at the vertical center line, and shovel accumulates in its second argument the
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Hullot [16):

F—_— —m e e — - —— canonical trs’s, =} - - - - — — — = — — = — — 4
unrestricted narrowing

choosing
a strategy

Echahed [3):

e e e e e m - - - — ctn-trs’s,
any narrowing strategy

interleaving of
decomposition rules

Fribourg {11]:
P —_——— - - - - == totally defined trs’s, - — - — — — i
any innermost strategy

adding an
occur check

this paper:

F— —T— — Jetntrs’s, 0000000 b e e e e e e mm - - - - - i
leftmost outermost narrowing

. outermost narrowing — innermost narrowing
Figure 1: Relationship between some narrowing based approaches.
mirror-image of the second subterm of its first argument. If we consider, e.g., the

term t; = o(o(a, 31), 32) for some terms s; and s, then for an arbitrary term t,,
shovel(ty, t2) is the term o(mirror(sy), o(mirror(sz),t2)).

shly) — (1)
sh(o(z1,2z2),v1) — sh(z1,0(mi(z2), 1)) (2)
mifa) — a (3)
mi(o(z1,22)) —  o(mi(z2),mi(z1))  (4)

Figure 2: Set of rules of the ctn-trs R;.

Now we consider the Eg,-unification problem, where the set Eg, of equations



A Universal Unification Algorithm Based 143

is obtained from R; by simply considering the rules as equations. In particular, we
want to compute an Eg,-unifier for the terms sh(z;, a) and mi(o(22, «)) in which
z; and z; are free variables. Similar to Hullot in [16], we combine the two terms
into one term e u(ls\{h(Zh a), mi(o(22, a))) with a new binary symbol equ (which is
called H in [16]3. ext we enrich R; by the set R(A) of decomposition-rules of A

(cf. Figure 3). This enrichment yields the trs R..

equ(a,a) — a ()
equ(o(z1, 22),0(zs5,24)) — o(equ(z1, z3), equ(za, z4)) (6)

Figure 3: Set of decomposition-rules of A;.

Then a derivation by ’&ﬁx starting from equ(sh(z,, a), mi(o(22,a))) may look
as follows where we have attached to ~» 7 in every step the narrowing occurrence

Sin Dewey’s notation{, the applied rule, and the unifier as additional indices; g
enotes the empty substitution; A denotes the empty word.

equ(sh(z1, a), mi(o(22, a)))

'&i;,l,(z),[n Jo(s,e0)] equ(sh(zs, o(mi(24), a)), mi(o(22, a)))
A‘»i;,l,(l),lz;'/al equ(o(mi(z4), a), mi(o(22, a)))

* '&'2\1,2,(4),91 equ(a(mi(z4), @), o (mi(a), mi(22)))
% - l&fx.A.(G).m o(equ(mi(zq), mi(a)), equ(a, mi(2;)))

'{‘»}'2‘1.11.(3).[1./01 o(equ(a, mi(a)), equ(a, mi(2z2)))
4‘»51,12'(3)'“ o(equ(a, a), equ(a, mi(22)))
4‘»3"1'(5)’“ o(a, equ(a, mi(z2)))
4‘»51,22'(3),[22/41] o(a,equ(a,a))
N )en o(a,a)

If we compose the unifiers which are involved in the narrowing steps, then we
obtain the substitution ¢ = [z1/0(a, @), z2/al; in fact, p is a ground (Eyg,, A;)-
unifier of sh(zy,a) and mi(o(22,a)). Note that ¢ is not an Ep -unifier, be-
cause the equational theory is generated by Eg,. The narrowing step at * shows
how the ulo narrowing relation deviates from the leftmost outermost narrowing
relation. For the latter relation, 11 is the narrowing occurrence in the term
equ{o(mi(z4), @), mi(o(22,a))), and then the subterm mi(z4) has to be narrowed.
Note that, since R is constructor-based, every normal form s} of the first argument
81 = o(mi(z4), @) of equ has the root label o. Thus, s} is unifiable with a normal
form s} of the second argument sz = mi(o (22, @)) of equ only if the constructors at
the root of s} and s} are identical. Because of reasons of efficiency, it is important
to check this consistency as soon as possible. And since the root of s, is already
a constructor symbol (i.e., s; is evaluated sn constructor head normal form), we
narrow s, at step * and try to get it also into head normal form. Actually, this
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form is reached as the result of the application of rule 54) Then, at step *#, the
consistency of root symbols is checked by applying the decomposition-rule (6).

This paper is organized in five sections where the second section contains prelim-
inaries. In Section 3 we recall the definitions of the leftmost outermost narrowing
relation and of ctn-trs’s; we recall the uu-algorithm of [3]. In Section 4 we de-
fine the ulo narrowing relation and an algorithm of which we prove that it is a
uu-algorithm, i.e., that it computes a ground complete set of (Eg, A)-unifiers for
the class of equational theories Ep which are characterized by ctn-trs’s. Finally,
Section 5 contains some concluding remarks and indicates further research topics.

2 Preliminaries

We recall and collect some notations, basic definitions, and terminology which will
be used in the rest of the paper. We try to be in accordance with the notations in
[14] and [2] as much as possible.

2.1 General Notations

We denote the set of nonnegative integers by IN. The empty set is denoted by 4.
For j € N, lbj] denotes the set {1,...,7}; thus [0] = . For a finite set A, P(A) is
the set of subsets of A and card(A) denotes the cardinality of A. As usual for a set
A, A* denotes the set |J, y{a103...a, | for every 1 € [n] : a; € A} that is called
the set of words over A; A denotes the empty word. :

2.2 Ranked ‘Alphabets, Variables, and Terms

A pair (2, rankq) is called ranked alphabet, if 1 is an alphabet and rankq : 1 —
1IN is a total function. For f € 11, rankn(fj is called rank of f; mazrank(l denotes
the maximal image of rankg. The subset 0{™) of {1 consists of all symbols of rank
m (m > 0).. Note that, for i # j, () and N0G) are disjoint. We can define a
ranked alphabet (£, rankq) either by enumerating the finitely many subsets Q(™)
that are not empty, or by giving a set of symbols that are indexed with their
(unique) rank. For example, if @ = {a,b,c} and rankq : 0 — IN with
rankq(a) = 0, rankq(b) = 2, and rankq(c) = 7, then we can describe (2, rankq)
either by 0% = {a}, Q? = {8}, and O = {c} or by {a(® b(2) (D}, If the
ranks of the symbols are clear from the context, then we drop the function rankq
from the denotation of the ranked alphabet (Q,rankq) and simply write 1.

In the rest of the paper we let V denote a fixed enumerable set.
Its elements are called variables. In t!le following we use the notations
Z,%1,%2,--, %, Y1,Y2,---, 2,21, 22, .. . for variables.

Let £ be a ranked alphabet and let S be an arbitrary set (in the sequel S will
be instantiated by sets of variables). Then the set of terms over {1 indezed by S,
denoted by T(Q1){S), is defined inductively as follows: (i) § C T(Q2)(S) and (ii) for
every f € (%) with k > 0 and t,,...,t € T(R)(S) : f(t1,...,tx) € T{OQ)(S). The
set T(Q2)(0), denoted by T((2), is-called the set of ground terms over (1.

For a term t € T(Q)(V), the set of occurrences of t, denoted by O(t), is a subset
of IN* and it is defined inductively on the structure of ¢ as follows:
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(i) If t = z where z € V, then O(t) = {A},
(ii) if t = f where f € Q(%), then O(t) = {4}, and

(iii) if ¢ = f(t1,...,tn) where f € 0(*) and n > 0, and for every i € [n]: ¢; €
T(Q)(V), then O(t) = {A} U (iu | v € O(8:)}.

The prefix order on O(t) is denoted by < and the lexicographical order on O(t&
is denoted by <j.,. The reflexive closures of < and <;.; are denoted by < an
<iez, Tespectively. Clearly, < C <.,. Note that <., is a total order, whereas, in
general, < is a partial order. The minimal element with respect to <;., in a subset
S of O(t) is denoted by min;.-(S). For a term t € T(Q2)(V) and an occurrence u
of t, t/u denotes the subterm of t at occurrence 4, and t[u] denotes the label of ¢
at occurrence u. We use V(t) to denote the set of variables occurring in ¢; that is,
z € V(t), if z € V and there exists a u € O(t) such that ¢/u = z. Finally, we define
tju — s| as the term ¢ in which we have replaced the subterm at occurrence u by
the term s.

2.3 Algebras, Substitutions, and Congruences

Let (Q?,rankq) be a ranked alphabet. An (l-algebra is a pair (4,ints), where A
is a set and int, is a mapping such that int,(f) € A, if rankg(f) = 0, and
inta(f) : A™ — A, if rankg(f) = n.

The N-algebra (T(N)(V),intr), where for every f € (") and for every t; €
T(QZ(V) with 1 € [n] : intr(f)(t1,...,tn) = f(t1,...,tn), i8 called the {1-term
algebra. 1t is a free (-algebra (cf. [15}).

If (A,ints) and (B,intp) are two {l-algebras, we say that h : A — Bis a
homomorphism, if for every f € (") with n > 0 and for every a; € A with 1 € [n],

we have ) )
h(int4(f)(a1,...,an)) = tntg(f)(h(a1),..., h(ay)).
A mapping v: V — A is called an A-assignment.

The property that every A-assignment can be extended in a unique way to a
homomorphism from T{Q)(V) to A is called the universal property for the free
(1-algebras in {15]. We use v to denote both the A-assignment and its extension.

A (V,Q)-substitution is a T(Q2)(V)-assignment p, where the set {z | p(z) #
z,z € V} is finite. The set {z | go(:? # z} is denoted by D(p) and it is
called the domain of p. I D(p) = {zi1,...,2n}, then @ is represented by
[:cl/(p(zl),...,xn/p(znﬁ. If D(p) = 0, then o is denoted by py. We say that
p is ground, if for every z € D(p) : V(p(z)) = 0. The set U,¢p(,) V(p(z)) is de-
noted by J(p) and is called the set of variables sntroduced by . The set of (V,0)-
substitutions and the set of ground (V, 1)-substitutions are denoted by Sub(V, (1)
and gSub 'V,ﬂ%,/ respectively. The composition of two (V,1)-substitutions ¢ and
1 is the T(Q2)(V)-assignment which is defined by 11)(90(2:)5 forevery z € V. It is
denoted by @ o .

An equivalence relation ~ on T(2)(V) is called an 01-congruence over T(0)(V),

if for every f € (") with n > 0 and for every t1,31,...,tn, 8, € T(Q)(V) with
t1 ~ 81,...,tn ~ 8y, the relation f(t;,...,t,) ~ f(s1,...,8,) holds.
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2.4 E-Unification

An equation over {l and V is a pair (¢,s), where t,s € T(02)(V). As usual we
denote an equation (t,s) by t = s. Thus, we consider an equation as an ordered
pair. In the rest of the paper, we let E denote a finite set of equations over 01
and V. The E-equality, denoted by =g, is the finest (i.e., smallest) congruence
relation over T ﬂ%('\)) containing every pair (¢(t), ¥(s)), where t =s € E and ¢
i8 an arbitrary (V,(1)-substitution. If ¢ =g s, then ¢t and s are called E-equal (cf.
[15]). Two terms t,s € T(Q)(V) are called E-unifiable, if there exists a (V,(1)-
substitution ¢ such that ©(t) =g ©(s). The set {9 | p(t) =g ¥(s)} is called
the set of E-unifiers of t and s, and it is denoted by Ug(t,s) (cf. [28]). Let V
be a finite subset of V. We define the preorder <g (V) on (V,(1)-substitutions
by ¢ =Xg ¢ (V), if there exists a (V, (1)-substitution ¢ such that for every

z €V : ¥(p(z)) = ¢'(2) (cf. [28]).

2.5 TRS, Reduction, Narrowing, and Narrowing Trees

A term rewrsting system, denoted by R, is a pair ({1, R), where Q1 is a ranked
alphabet and R is a finite set of rules of the form | — r such that I,r € T(02)(V)
and V(r) € V() Scf. (14]). For every term rewriting system R = (1, R), the related
set of equations, denoted by Ep, is the set {{=1r Fl — r € R} (cf. [24]).

The reduction relation associated with R, denoted by =, is defined as follows:
for every t,s € T(Q)(V) : t =>z s, if there exist u € O(t) with t/u ¢ V,p €
Sub(V,Q),l — r € B with p(l) = t/u, and 5 = t{u — go(r{] (cf. [14]). We use the
standard notation =="* to denote the transitive-reflexive closure of =—>.

A term rewriting system is canonical, if it is confluent and noetherian (cf. [15]).
A term t is a normal form of a term 3, if s =>% t and ¢ is irreducible, i.e., there
does not exist any term t’' such that ¢t =>g t'. For a canonical term rewriting
system R, every term t has exactly one normal form (cf. [15]) which is denoted by
nfz(t). A (V,()-substitution ¢ i8 in normal form if for every z € D(p), p(z) is
irreducible.

The set of narrowing snterfaces for R and t € T(Q)(V), denoted by
narI(R,t), is the set é(u,p,l — np) | u € Ot)t/lu ¢ VI —
r € R,pisarenaming of variables in ! such that 'V(lp‘(l) Nyt = d,(p €
Sub(V,Q) is the most general unifier of p(l) and B/u . The set of narrowing oc-
currences for R and t € T(Q1)(V), denoted by narO(K,t), is the set {u | (u,p,l —
r,p) € narI(R,t)}. The narrowsng relation associated with R, denoted by ~ap, is
defined as follows. For every t,s € T()(V) and ¢,¢' € Sub(V,Q) : (¢t,¢) ~ze

(s, ¥'), if the following three conditions hold:

1. There is a narrowing interface (u,,! — r, p) € narI(R,t).

2. 3= p(tfu « p(r)})-

8. ¢' = ¢ o (plv)) (cf. [24]), where composition is read from left to right.

It is obvious that there are two types of nondeterminism involved in the narrow-

ing relation. Starting from a term ¢, first, there may be more than one narrowing
occurrence in t, and second, for a fixed narrowing occurrence, there may be more
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than one narrowing interface. As usual, for a given starting term ¢ and for given
orders on the set of occurrences of t and on the set R of rules, one can collect all
the possible narrowing sequences which start from ¢, into one tree which is called
narrowing tree for t.

3 Ejp-Unification by LO Narrowing and Unifica-
tion

As starting point of our considerations we recall the uu-algorithm which is induced
by Theorem 3 in [3]. Here we impose the leftmost outermost narrowing strategy
on the narrowing relation of the algorithm.

Before we recall the approach of [3], let us first state that the approach of [25] is
technically a bit too complicated for the present purpose although it would theoreti-
cally also be a possible starting point. In [25] a uu-algorithm for equational theories
induced by canonical, uniform trs’s, is presented, where only leftmost outermost
narrowing steps are allowed; in fact, ctn-trs’s are canonical, uniform trs’s.

Furthermore, we note that for ctn-trs, outer narrowing [30] is the same as outer-
most narrowing. But, in [30], there is no uu-algorithm presented, only a universal
matching algorithm.

3.1 The Leftmost Outermost Narrowing Relation and
CTN-TRS’s ‘

In the leftmost outermost narrowing relation, a pair (t,y) derives to a pair (', ')
at the minimal element (with respect to <i¢z) of the set of narrowing occurrences
in t.

Definition 3.1 Let R = (2, R) be a term rewriting system and let t € T(Q)(V).

o The leftmost outermost narrowing occurrence for R and t, denoted by lo-
narO(R,t), is the narrowing occurrence msny., (narO(R,t)). '

o The set of leftmost outermost narrowing interfaces for R and t, denoted by
lo-narI(R,t), is the set

{(v, 0,0 = 1,p) | (u,0,8 = 1,p) € narI(R,t) and u = lo-narO(R,t)}.

e The leftmost outermost narrowing relation associated with R, denoted by 'Ievg,

is defined as follows: for every t,s € T(01)(V) and 9,9’ € Sub(V,Q): (¢, ¥)

derives to (s,9') by %2, denoted by (t, ¢) EU (s,9), if the following three
conditions hold:

1. there is a leftmost outermost narrowing interface (u,,l — r,p) € lo-
narI(R,t)

2. s = p(t{u — p(r)])
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= ¢°(S°|v(t)) 37)

It is obvious, that "\?bg Crup.

In Example 1 of [3] it is shown that the uu-algorithm of [16] which is based on
the unrestricted narrowing relation, is not complete if one imposes a strategy on
the narrowing relation. In particular, this negative result holds for the leftmost
outermost narrowing relation.

However, Echahed also proves a positive result: the uu-algorithm of [16] stays
complete for an a.rbltra.ry strategy imposed on the narrowing relation if one re-
stricts to canonical trs’s that have the property of free strategies. We call these
trs’s canonical, totally defined, not strictly sub-unifiable term rewriting systems, for
short: ctn-trs’s.

A ctn-trs R = (01, R) is a canonical trs, where (1 is divided into two disjoint
ranked alphabets, denoted by F and A. F is called the set of function symbols
and A is called the set of working symbols or constructors. The left hand sides
of the rewrite rules in R are linear in V; function symbols only occur at the root
of a left hand side. Thus, ctn-trs’s are partlcular constructor-based trs’s (cf. [30]).
Furthermore, every function symbol in F is totally defined over its domain (cf.
Definition 12 in 3]{ i.e., if a term is in normal form, then it is in T{A)(V). Finally,
the left hand sides of the rules in R must be pairwise not strictly sub-unifiable.

Definition 3.2 (cf. [3] Definition 10 and Definition 11). Let ¢, ¢' € T(Q)(V).

o t and t' are sub-unifiable, if there exists an occurrence u in O(t) N O(¢t') such
that the following two conditions hold:

1. t/u and p(¢'/u) are unifiable with most general unifier o, where p is a
variable-renaming such that V(t/u) N V(p(¢t'/u)) = 0.

2. For all occurrences w with w < u, t/w and t'/w have the same label at
the root.

e t and t' are strictly sub-unsfiable, if there exists an occurrence u where ¢ and
t' are sub-unifiable and the corresponding most general unifier o, is neither
a variable renaming nor the empty substitution.

Example 3.8 Let R = (0}, R) be a canonical trs where {1 = {f@,41), a0} and
let R contain the following rules:

fla,a) — «a (1)
fl(v(z),a) — 7(a) (2)
flzv(y) = v((a)) (3)

e For the trs R, the left hand sides of rule 1 and rule 3 are strictly sub-unifiable
at occurrence 1; the same holds for rule 2 and rule 3.

o The left hand sides of rule 1 and rule 2 are sub-unifiable at occurrence 2 but
not strictly sub-unifiable, because the most general unifier o is the empty
substitution.
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o Let R' = (11, R’) be a trs where R’ contains rules 1 and 2 in R and additionally
the following two rules:

fle,7(y)) — () (3)
f((=)h(y) — (v(e)) (4)

The left hand sides of the rules in R’ are pairwise not strictly sub-unifiable.
Furthermore, the left hand sides of the rules 2 and 3 are not sub-unifiable
and the left hand sides of the rules 1 and 4 are not sub-unifiable. (23]

Now, we are able to define ctn-trs.

Definition 3.4 Let R = ({3, R) be a trs. R is a canonical, totally defined, not
strictly sub-unifiable term rewrsting system, for short cin-trs, if the following con-
ditions hold:

R is canonical.
N=FulAand FNA=40.
Every left hand side is linear in V.

o o

. Every left hand side has the form f(ti,...,t,) where f € F(*) and for every
i €[n]: t; € T(A)(V).

For every t € T(Q)(V) : nfr(t) € T(A)(V).

6. The left hand sides of the rewrite rules in R are pairwise not strictly sub-
unifiable.

o

In the sequel we will denote a ctn-trs by the triple (F, A, R). In fact, the trs in
Figure 2 1s a ctn-trs. To give the reader an idea about the computational power
of ctn-trs’s, we mention that every primitive recursive tree function [17] can be
described by a ctn-trs (which follows from [6]). But in fact, ctn-trs’s are even more
powerful.

In general, it is not decidable whether a trs is canonical (cf., e.g., {15]). However,
if R is canonical, then the conditions (2)-(6) in Definition 3.4 are decidable.

3.2 The UU-Algorithm of Echahed

Here we recall the uu-algorithm of Echahed.: This algorithm computes particular
Eg-unifiers which are called ground (Eg, A)-unifiers. The range of such a unifier is
a subset of T(A), i.e., function symbols and variables are not allowed. For a ctn-trs
R, this point of view is reasonable, because, in particular, R is totally defined and
every function call can be evaluated into an element of T(A). Thus, e.g., if we
consider the ctn-trs R; in Figure 2 and we want to compute Eg,-unifiers of the
terms m'i(:czl and z, then we are not interested in the minimal Eg ,-unifier [z/mi(z)];
rather we should be able to compute the unifier [2/a,z/al.

Definition 8.5 Let R = (F, A, R) be a ctn-trs, let t,s € T(F U A)(V), and let
@ € Ug, (t,s) be an Eg-unifier of ¢t and s.
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o pisan (Eg,A)-unifier of t and s, if p € Sub(V, A).
e ¢ is a ground (Eg, A)-unifier of t and s, if p € gSub(V, A).

The sets of (Eg, A)-unifiers and of ground (Eg, A)-unifiers of ¢ and s are denoted
by U(g,.a)(t 3) and gl g, a)(t, 8), respectively.

Similar to the situation of E-unifiers of two terms ¢ and s, we do not have to
compute the whole set gl/(£,,4)(t, 8), but rather an approximation of it. It suffices

to compute a ground complete set of (Er,A)-unifiers of ¢t and s.

Definition 3.6 (cf. [s‘l page 92) Let R = (F,A,R) be a ctn-trs. Let t,s €
T(F UA)(V) and let W be a finite set of variables containing V = V() U V(s). A
set S of ,A‘z,-substitutions is a ground complete set of (Eg, A)-unifiers of t and
s away from W, if the following three conditions hold:

1. Forevery o € S: D(p) CV and I(p) "W =0.
2. SC U(Eg,A)(t)3)-
3. For every p € gll(g,,4)(t,9) there isa ¢ € S such that ¥ Xg, o (V). @

For ctn-trs’s, Theorem 3 of [3{ shows a uu-algorithm which computes a ground com-
plete set of (E'g, A)-unifiers based on an arbitrary narrowing strategy. We present
an instance of this theorem where we choose the leftmost outermost strategy, We

assume that ',\?*g is extended to objects of the form (equ(t,s), ) where equ is a
new binary symbol, in the way as it is done in, e.g., {16] and [3].

Theorem 8.7 (cf. [3] Theorem 3) Let R = (F,A,R) be a ctn-trs. Let ¢t,s €
T(FUA)(V), and let V be the set V() U V(s). Let S be the set of all (V, A)-

substitutions ¢ such that ¢ is in S iff there exists a derivation by A R:

¢ {
(equ(tns)) ¥’0) ’\aﬂ (cqu(tlsal)’Pl)
1 1 1
'&R (Cqu(tm 32))%) '8’2 ce "?‘R (‘qu(tn;sn):pn)»

where for every 1 € [n] : ¢; is in normal form, t, and s,, are in normal form and
unifiable with most general unifier u, and ¢ = (pn o p)|y. Then S is a ground
complete set of (Eg, A)-unifiers of t and s away from V.

Clearly, in the leftmost outermost narrowing relation only one type of nondeter-
minism occurs, i.e, for a fixed narrowing occurrence, there may be more than one
rule applicable. Thus, the leftmost outermost narrowing tree for a term equ(t, s)
results from the narrowing tree for equ(t, s) by deleting the branches which do not

correspond to derivations by A . In Figure 4 we illustrate the leftmost outer-
most narrowing tree for the term equ(sh(z1,a), mi(o zg,a))% and we compare it
with the narrowing tree for equ(sh(z1, a), mi{o(z2,a))). The latter one consists of
the shaded and the non-shaded areas, whereas the former one only contains the
non-shaded areas. We note that, for the computation of the Eg-unifier, it must
be checked after the computations of the narrowing derivations, whether the two
subtrees contained in the labels of the leaves are unifiable.
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equ(sh(sy, a), mi(o(x3, a)))

equ(a, mi(o(s3, a)))

|

equ(a, o(mi(a), mi(x3)))

equ(sh(xs, o(mi(z4), a)), mi(o(s2, a)))

b

equ(a(mi(s4), @), mi(o(s3, a)})

equ(o(a, a), mi{o(x3, a))) A%

equ(o(a, a), o(mi(a), mi(x3)))

equ(a, o(a, mi(23)))

/ \

egb(a/o(m

equ(o{a, a), o(a, mi(23)})

d

equ({o(a, a), o{a, a})

Figure 4: Leftmost outermost narrowing tree for equ(sh(z1, a), mi(o(z2, @))).
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In general, by fixing one narrowing occurrence the breadth of the narrowing
trees is reduced. Moreover, by choosing the leftmost outermost narrowing strategy,
also the depth of narrowing trees is possibly reduced: arguments of functions are
only evaluated on demand.

If we regard the shape of narrowing trees as a measure of the complexity of a
uu-algorithm, then the uu-algorithm which is induced by Theorem 3.7, is as efficient
as the uu-algorithm in [16] which is based on the unrestricted narrowing relation.
But in some cases it is even more efficient. This is the reason for paying the price
of a reduced expressiveness of ctn-trs’s with respect to canonical trs’s, because we
want to introduce an efficient uu-algorithm.

4 FEjp-Unification by Unification-Driven LO-
Narrowing

In this section we increase the efficiency of the uu-algorithm implied by Theorem
3.7 as follows. Consider a leaf n of some leftmost outermost narrowing tree. Now
we view the unification which takes place at n, as a sequence of decomposition steps
[23]. Next we split up this sequence and apply every decomposition step as early
as possible. Moreover, whether a decomposition step is applicable or not depends
on a particular occur check. By means of this technique, some of the derivations
that do not yield unifiers, are blocked earlier than in the uu-algorithm of Echahed.

Every decomposition step is formalized as the application of one of the additional
rules called decomposition-rules. The union of the decomposition-rules and R itself
is called the exztenston of R. Then the ulo narrowing relation is defined on the basis

of the extension of R.

We start this section with the definition of the ulo narrowing relation. As an
intermediate result, we rephrase Theorem 3.7 by using the ulo narrowing relation
(restricted to decomposition-rules) to unify two terms. Finally, based on the ulo
narrowing relation, we present a uu-algorithm which computes a ground complete
set of (Eg, A)-unifiers for every equational theory =g, where R is a ctn-trs.

. 4.1 The Unification-Driven Leftmost Outermost Narrow-
ing Relation '

Definition 4.1 Let R = (F, A, R) be a ctn-trs.

o Let 0 € A%) with k > 0. The decomposition-rule for o has the form
equ(o(z1,- -+, k), 0(Th41y- - - T2k)) — o(equ(z1, Zht1),. .., equ(zk, z2k)).
o The decomposition-part of R, denoted by R(A), is the triple (F, A, R(A))

where F = F U {equ} and equ is a new binary symbol, and R(A) is the set
of all decomposition-rules for elements in A.

e The eztension of R, denoted by f, is the triple (ﬁ,A,ﬁ’) where R is the set
RUR(A).
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sh(a,91) — wn (1)
sh(o(z1,22),91) — sh(z1,0(mi(z2),y1)) (2)

mi(fa) - a (3)

mi(o(z1,22)) — o(mi(z3), mi(z;)) (4)

equ(a,a) — a (5)
equ(o(z1,22),0(z3,24)) — o(equ(z1,2s), equ(z3,z4)) (6)

Figure 5: Set of rules of an extension.

In Figure 5 the rules of the extension fl = (ﬁl, Al,ﬁl) of Ry (cf. Figures 2 and
3) are shown where Fi = {sh(?), mi(1) equ(?} and A, = {0(),al®)}.

Roughly speaking, the ulo narrowing relation is almost the same as the leftmost

outermost narrowing relation associated with R. But there are the following three
differences between the two relations. Let (¢, ) be the current derivation form.

1. Consider the term t = equ(a, o(mi(a), mi(z;))) at occurrence 11 in the left-
most outermost narrowing tree of Figure 4. The leftmost outermost narrowing
occurrence of ¢ is 21. However, it i8 clear that none of the branches start-
ing from t will yield an Eg,-unifier, because the two direct subterms « and
o(mi(a), mi(22)) of t have different root symbols which cannot be changed in
further derivation steps (this is due to the fact that R, is constructor-based);
hence, the terms a and o(mi(a), mi(2;)) cannot be Eg,-unified. Thus, we
will define the ulo narrowing relation in such a way that it blocks at this
point. We realize this property by requiring that rules may only be applied
at the leftmost occurrence of equ in the current derivation form ¢. This occur-
rence of equ is called smportant occurrence of t, denoted by ¢mpO(t), because
the nonunifiability of the two subterms of t is recognized exactly here. In
our concrete situation, impO(t) = A and none of the decomposition rules is
applicable at tmpO(t); hence, the derivation blocks.

2. If t/impO(t) = equ(z;,t') or t/impO(t) = equ(t',z;) where t’ is a term the
root of which is labelled by a construtor symbol, e.g. o, then we can ap-
ply the decomposition-rule for . Clearly, this leads to an instantiation of
;. Since, in this situation, the algorithm for usual unification of terms [23]
would apply the rule for ’elimination of variables’ and since this elimination
rule requires an occur check, we also have to restrict the applicability of the
decomposition-rules by an occur check. However, we may only check whether
z; occurs in the (A U V)-skeleton of ¢’ (note that the (A U V)-skeleton is
called shell in [22]) or not. For instance, the (A U V)-skeleton of the tree
o(o(a(z1, ), 22}, 0(sh(a, 21),a)) is the pattern o(o(o(21,a),22),0(.,2)). In
general, our algorithm would be incomplete if we would check the whole term
t', e.g., if we have the following situation: ¢/ = o(f(a,2),a) where f is a
new function symbol of rank 2, and there exists a rule f(a,y1) — a, then
[2i/0(c, @)] is an Eg-unifier of z; and ¢’ which would not be computed if we
would apply the occur check to the whole term ', because z; occurs in ¢'.

3. If t/impO(t) = equ(z, 2;) for two variables z; and z;, then, using the leftmost
outermost narrowing relation associated with R in a naive way, (¢, ) derives
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to (i, (tfimpO(t) — 8(!)' @ o p,) for every s € T(A) where p, = [z.-/s,z,;(s].
That means, @, would be computed as the most general unifier of 2; and z;
which is certainly wrong. The most general unifier of z; and 2; is [2;/ 2k, z; /2k]
where k — 1 is the maximal index of a free variable in use (cf. [23]). Thus, we
define the ulo narrowing relation in such a way that a derivation form (¢, )
with t/smpO(t) = equ(z;, z;) derives as follows: t/impO(t) is replaced by 2z,
every occurrence of z; and 2; in ¢t is replaced by 2, and ¢ is composed with
the substitution [2;/2k, 27/ zk].

Before we introduce the ulo narrowing relation, we define some auxiliary notions.

Definition 4.2 Let R = (F, A, R) be a ctn-trs and let t € T(F U A)(V).

e The tmportant occurrence sn t, denoted by impO(t), is the occurrence

ming., ({u € Ot) | t{u] = equ}).

e t is in binding mode, if timpO(t)1], timpO(t)2] € V.
e The (AU V)-skeleton of t is the set

{u € O(t) | there does not exist any v € O(t),v < u and t[v] € F}.

e The occur check for t succeeds, if the following conditions hold:

1. t is not in binding mode.

2. there is an ¢ € [2] such that t{impO(t)i] € V and t[impO(t)(3 —
1)] ¢ V and there exists an occurrence u in the (A U V)-skeleton of

t/(smpO(t)(3 — 1)) such that t/(impO(t)(3 — 1))[u] = t[impO(t):]. @D

Definition 4.3 Let R = (F,A, R) be a ctn-trs. The unification-driven leftmost
outermost narrowing relation associated with R, denoted by ~» ., is defined as

R?

follows: for every t,s € T(FUA)(V) and ¢,¢' € Sub(V,4) : (t,¥) derives to
(s, 9') by f\'f»»i, denoted by (t,v) '&f (s,9'), if t/impO(t) = equ(ty,t;) where
t1,t2 € T(F U A)(V) and one of the following four conditions holds:

1.

2.

(Jl[A],tz[A € A and tlc{A] = t3[A]) or (SEtIIA] € A and t2[A] € V? or (t1[A] €
and t3[A] € A)) and the occur check fails for ¢t) and the following three
conditions hold:

(a) (equits,ta), v9) Sr(a) (¢, #)-

(b) s =¢'(t[fmpO(t) ~ ¢']).

() ¥ = o

e t;,t; €V, t; # tz, and the following three conditions hold where k =

mini | 2 € \(V{8) U DY) U I($)}:
(a) o' =[t1/2k,t2/ 2.
(b) s = ¢'(t[tmpO(t) «— z]).
(c) ¥ =9oyp'.
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IfarulelﬁrERlsa.pplled i.e., in cases 1, 3, and 4, we write ~»»

we write ~+»,  to indicate that the current term is in binding mode.

e t1,ta €V, t; =t;, and the following two conditions hold:
(a) s =t[impO(t) « t1].
(b) ' =
3. t1{A] € F and the following three conditions hold:

(a) (t1,98) B (¢ 9).
(b) s = ¢'(t[impO(t)1 — ¢']).
(c) ¥ =4o

4. t;]A] ¢ F and t2[A] € F and the following three conditions hold:

(a) (tz,p0) Mg (¢, ¢).
(b) s = ¢'(tlimpO(¢£)2 — ¢']).
(c) ¥'=49o

Rl
R,bm
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@

. In case 2

In the following example we show three derivations by the ulo narrowing relation
which illustrate the involved occur check.

Example 4.4 Consider the ctn-trs R; and its extension R, (cf. Figure 5).
(a) Consider the terms sh(z;,0(a,22)) and o(mi(z1),0(22,a)). A possible deriva-
tion by ~>~ runs as follows:

R

(equ(sh(z1, o(a, 23)), o(mi(z1), o (22, @))), pp)

'{"’E (1) (equ(o(a, 22),0(mi(a), o(23, a))), [21/a])
By (oleaula,mi(a), equlea,o(ea, @), /o)
Bgaa (Oleaula,a),equ(za,0(22, @), [21/a])
’{"';’z‘ 1,(5) (o(a, equ(zz,0(23, @))), [21/a])

Here the derivation stops, because the occur check succeeds.

Sb) Consider the terms sh(z;,o(a,22)) and o(mi(z1),0(23,a)). The first four

erivation steps are analogous to those one in (a).

(equ(sh(zy, o, 22)), a(rﬁi(zl), a(zs,la))), ©p)

'{"’;’51 (o(a, equ(2a, 0(23, @), [21/])

Saoage  (lonolequ(za, 2s), equlzs, a))), [1/a, 22/0 (24, 25)])
4‘»31,21""" (o(a,0(z6, equ(zs, @))), |21/, 22 /0 (26, 25), 23 / z6])
'&f;,zz () (o(a,0(ze, @), [21/a, 22/ o (26, @), 23/ z6])
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Here the derivation yields the Eg,-unifier (23 /a, 22 /0(z6, @), 23/ 26].

(c) Now enrich Ry by the rules sh(B,y)— f (with number (7)) and mi(8) — B
(with number (8)) where 8 € A{%). Denote this ctn-trs by R, and its extension by

R2 where the decomposition-rule for § has the number (9). Consider the terms 2,
and o(a, sh(zz, 21)).

(equ(z1,0(a, sh(z2,21))), pp) .
"\"'E,,A,(e) (o(equ(zs, @), equ(z4, sh(23,0(23, 24)))), [21/ (23, 24)])
'&i,,l,(s) (o(a, equ(za, 8h(232,0(a, 24)))), [21/0(a, 24)])
(*)  ~g2m (lasequ(zi, B, [21/0(a, 24), 22/B))
't\"’fhg’(g) (o(a, B), [21/0(a, B), 22/ B])
Hence, this derivation yields the Eg,-unifier [z;/o(a, B),22/B]. Note that at (¥)
the occur check is only applied to the (A U V)-skeleton of sh(zz,0(a, 24)).

4.2 Unification by ~sg(a)

As an intermediate result between Theorem 3.7 and the intended uu-algorithm
in Theorem 4.7 which is based on the ulo narrowing relation, we show in this
subsection that the usual unification of two terms t,s € T(A)évg can be realized
by a derivation by the ulo narrowing relation associated with R(A).

Lemma 4.5 Let R = (F,A, R) be a ctn-trs and let t,s € T(A)(V). The terms
t and s are unifiable with most general unifier ¢ iff there exists a derivation by

~oz(a) of the following form (equ(t, s), vg) '&;(A) (t',9) and t' € T(A)(V).

Proof: For the usual term unification, we consider the algorithm in [12] which trans-
forms sets of unordered pairs. Let us briefly recall this algorithm. The unification
of t and s starts with the set P = {(¢t, s)}. Then, a finite number of transformations
is applied step by step to this set. Every transformation is of one of the following
three types:

1. If (2;,z;) € P, then P is transformed into the set P\{(z;,z)}.

2. If iU(tl,---,tk),0(81,---,8k)) € P, then P is transformed into the set
P\{(0(t1,--188),0(s1,-- - sk} U {{ta, 1), (tis 35))-

3. If (z;,s) € P such that z; does not occur in s, then P is transformed into
e(P\{{z,s)})U{(z,s)}, where o = [z; /3] and the p-image of a set is defined
as the set of the p-images of its elements.
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The algorithm stops, if P is in solved form, i.e., P = {{z,t) | 1+ € [n]} where
for every 1,7 € [nr: z; # z; for + # y and % does not occur in any ¢;. Then,
[z1/t1,...,2n/ts] is the most general unifier of ¢ and s.

Let us note that the algorithm computes the same unifier (modulo variable
renaming) if a strategy is imposed on the order in which the transformation steps
are applied. Thus, we can choose the order which corresponds to leftmost outermost

narrowing by ~ g (a)-
Each transformation of the unification algorithm corresponds to the following
derivations by ~»g(a) where (¢, ) € T(A)(V) x Sub(V, ).

1. A transformation of type 1 corresponds to the derivation step (t, ) ~» R(A)
(t[tmpO(t) — z),9), because t/impO(t) = equ(zi,2). Then, the substitu-
tion ¢ is not changed.

2. A transformation of type 2 corresponds to the derivation step (¢, ¢) g (8)
(t',p), where ' = tlimpO(t) « o(equ(t1,51),...,equ(tk, sx))] and @ is not
changed, because t/smpO(t) = equ(o(t1,...,tx),0(s1,...,3%)). Thus, an ap-
plication of an decomposition-rule covers the transformation of type 2.

3. The correspondence of a transformation of type 3 is split up into two cases.
Case 1: If s ¢ V, then the transformation corresponds to the derivation

*
(t,p) ~r(a) (', 0|2/s]), where ' is the term that results from ¢ by re-

placing every occurrence of z; by s. The length of this derivation is size(s),
because decomposition-rules are applied node by node in s. Note that the
applicability of decomposition-rules is subjected to an occur check {cf. Defi-
nition 4.3 1.).

Case 2: If s = z; with 5 # 1, then ¢ is in binding form and the transformation

corresponds the derivation step (t, ) "\‘»; (a)om (t's P 0|2/ 2k, 2/ 2]) Where
2 1S a new variable.

Conversely, in the definition of ~» R(a), there occurs exactly one of the cases 1, 2,

3.1, and 3.2. In every of these cases, the derivation step by ~» R(a) corresponds to
the transformation of the unification algorithm which is mentioned above. (4]

The unification of the terms t = 0(2;, z;) and s = o(0(22, @), a) via a derivation
by ~+g,(a,) is shown in Figure 6 (for Ry and A; cf. Figure 2). The most general
unifier is § = [z, /o(a, @}, 22/a].

Now we rephrase Theorem 3.7 by replacing the unification by a derivation in-
duced by #»R(A).

Theorem 4.6 Let R = (F, A, R) be a ctn-trs. Let t,s € T(FUA)(V), and let V
be the set V(t) U V(s). Let S be the set of all (V, A)-substitutions ¢ such that ¢

is in S iff there exists a derivation by A RS
1
(equ'(t! s)’ pﬁ) ’\32 (equ(tlssl)) 901)

| { i
'&R (equ(tﬁr 32): WZ) '\?'R Tt '&R (eq“(tnv sn)) pn))



158 Heins FaBlbender, Heiko Vogler

(equ(o(21, 33),a(a(22, @), @), 0)

A2, (A1),(6) (o(equ(z1, (22, @), equ(z3, @), p)

A5 2.(41),(6) (0(o(equ(zs, 23), equ(24, @), equ(22, @), [21/0 (23, 24)])
AR (B4)bm (0(o(25, equ(24, a)), equ(2s, @)), [21 /0 (25, 24}, 22/ 25))
'&R 1(8,),(5) (0(0(7‘5' a), cqu(z5, a))v [21/0(257 a), z2/25])

Ao 21(81),(5) (¢(0(a,a),a),[z1/0(a,a), 22/a])

Figure 6: A unification by a derivation by ~sp 1)

where for every 1 € [n] : ¢; is in normal form, ¢, and s, are in normal form, and
there exists a derivation by ~» R(A):
-
(equ(tn, sn), ¥n) '{"’R(A) (', ¢'),

such that t' € T(A)(V) and @ = ¢'|v. Then S is a ground complete set of (Eg, A)-
unifiers of ¢t and s away from V.

Proof: The correctness of Theorem 4.6 immediately follows from Theorem 3.7 and
from Lemma 4.5. (4]

4.3 Ep-Unification by 5

We finish this section by showing that we can compute a ground complete set of
(Er, A)-unifiers of two terms ¢ and s by derivations induced by the ulo narrowing
relation.

Theorem 4.7 Let R = (F, A, R) be a ctn-trs. Let t,s € T(FUA)(V), and let V
be the set V(t) UV(s). Let S be the set of all (V, A)-substitutions ¢ such that ¢

is in S iff there exists a derivation by ~»

.
~L

R
(equ(ts 8)) Wﬂ) 'uvf (tly Pl) '{"‘f (tZ) ¢2) 'uvi v 'e"f (tnrpn))v

where for every i € [n] : p; is in normal form, t, € T(A)(V), and o = p,|v. Then
S is a ground complete set of (Eg, A)-unifiers of t and s away from V.

Proof: We show that there exists a derivation
lo* u * . a
(eqult, s), g) Vg (equ(t!, o'), ') ~og(a) (8, 9%), (1)
where t',¢',t* € T(A)(V) and ¢, p* € Sub(V, A) iff there exists a derivation

(equ(t, s), vp) '{"}2\ (t*¢°) (2)

Then from Theorem 4.6 the correctness of the present theorem follows.
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Derivation 1 = Derivation 2

First, we show that for every derivation 1, there exists a derivation 2. For this
purpose, we introduce the function egpos : T(FU A)(V) x T(Fu A)(V) - N
that yields, for two terms t; and t3, the maximal number of steps which can be

performed by ""R(A) on the term equ(ti,t3). In order to describe this function,

we first have to find out the first occurrence notequ tl,tzlin t, or t; at which no
decomposition-rule is applicable; notequ(t1,t3) is defined

mingez({u € O(t1) UO(tz) | ti|u] € F or t3[u] € F or
(t1]u] € A and t3[u] € A and t;[u] # t2[u]) or
the occur check for equ(t;[u], t2[u]) succeeds})

Then egpos(t;,t2) is defined by summing up the number of possible applications of
decomposition-rules at occurrences which are common to ¢; and ¢,.

equsteps(t;,ta, u)
{u€O0(t1)NO(t1) | u<iesnotequ(ti,ta)}

equsteps(ty,tz, u) is the number of possible applications of decomposition-rules at
occurrence u. Let t' = t3_;/u.

(1 if t1]u],t2[u] € A and t;[u] = t2[y]
1 if tyu],tzfu]€ Y
if, for some ¢ € [2] : t;[u] € V,t' € T(A)(V)\V
equsteps(ty, tz, u) = < and n = card(O(t'))
n if, for some s € [2]: t;[u] € V,
t' e T(FUA)(V)\T(A)(V) and n =
card({w € O(t') | w <fex min.({v | t'[v] € F})})

\

ive an example, consider the following two terms t; = o(o(o(a,a),z),
F a)) and tz = o(o(23, 23), a(aia ,a),a)) (in Figure 7, the occurrences at
1ch a ecomposition-rule is applicable, are enclosed).

Obviously, notequ(ti,tz) = 21. Hence, egpos(ti,t2) = equsteps(ty,t2,A) +
equsteps(ty,t2, 1) + equsteps(ty,t2, 11) + equsteps(ty, t2, 12) + equsteps(ty, t2,2

And equsteps(t;,t2,A) = equsteps(tl, t2,1) = equsteps(ty,tz, 12) =
equsteps(ty,t2,2) = 1, and equsteps(t,tz,1 1) = 3. Thus, eqpos(t1,tz) = 7. This
means that, starting from equ(ty,t2), it is possible to perform exactly 7 apphcatlons
of some decomposmon-rule he result after application of 7 decomposition-rules
is the term

o(o(o(a, a),24),0(equ(f(a),o(a, a)), equ(a, a)))

which is shown in Figure 8, where 24 results from the handling of the binding mode.

Furthermore, we prove the following Claim by induction on k.

Claim 1 For every k >0, ¢,¢, € T(FUA)(V), ¢ € T(Fu A)(V), and for every
o, € Sub(V,A): If there exists a derivation

(equ(t, o), op) B (equlcer )y 0) o) (¢, 9),
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equ

Figure 7: The term equ(ty,t3).

then there exists a derivation

u li+eqpo-(ce,c.)

(equ(t,s), pﬂ) MR (f: 'l’)

Induction on k:
u €qpos (e, s

k=0:¢=tand ¢ =s. We have (equ(t, s), pp) ~z(a) ) (s,4)-

From R(A) C B follows (equ(t, ), es) S5~ (5, ¥).

k—k+1; There exist ¢/,¢! € T(FUA)V), ¢ € T(FuA)Y), ¢, ¢ €

Sub(V, A), and there exists the following derivation:

u €qpoa(s;,s,

k
(equ(t, s), 0p) 232 (equlci,a)s0) Sz (eau(sh, 1) ') Saimy o (o', 9').

Now we split the derivation by ~» R(a) into two derivations: There ‘exist { €
T(F U A)(V), @ € Sub(V, A), and there exists the following derivation:

o’c o u € 03( ts -) -
(equ(t, s), vp) S (equlse &), 9) Aor (equlsh ¢0), ') Sriny " (&)

u €qpoa(s;,¢,) —cqpos(st,ca

)
~r(a) (S.') '/")

There exist & € T(FUA)(V), & € Sub(V, A), and there exists the following
derivation by changing the order of applications of rules in the previous derivation:

k u ¢qpos(¢t.Ce "n o _
(eqult, s), vo) “Sx (equleer )y ) Srray ™) (,8') B3 (5, 0)

u eqpos(si,ci)—eqapos(si,ce

)
~R(a) (¢, ¥").
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2N
AN

P 24 €qu equ
/\ f/ (A
I /\

Figure 8: Resulting term t* after application of seven decomposition-rules.

Changing the order of the derivation is correct, because in the derivation step

(equ(ge, ¢s)s @) ,’&R (equ(¢f, ¢t), ¥'), afunction f is applied at the leftmost outermost
narrowing occurrence. From the definition of egpos it follows that f is also the label
of the leftmost outermost narrowing occurrence in §’. Furthermore, in the case of

a function application, the relations 8 z and ~o # Yield the same result.

Ezample: Let ¢ = t; and ¢, = t2 in Figure 7 and let f(a) — a be arule in R. The
leftmost outermost narrowing occurrence in equ(ty,t2) in Figure 7 is occurrence
121 which is labelled by the function symbol f. After egpos(t1,t2) = 7 applications
of decomposition-rules we get the term t* in Figure 8 which is denoted by & in the
proof. The leftmost outermost narrowing occurrence in t* is the occurrence 211

which is also labelled by f. Furthermore, the next step in the derivation by A R
starting with equ(t,t2) in Figure 7 is analogous to the next step in the derivation

by '{‘»f starting with t* in Figure 8. _ O
The existence of the following derivation follows from the induction hypothesis:

u €qpoa(s),¢s) —eqpos(ge,¢s)

k+eqpos(st,¢e) _ w o ,
TR ) g (5,0) Priay (', ).

(equ(t, o), vu) ~5
The existence of the following derivation follows from R(A) C R:

u k+1+egpos(¢;,¢l)
(equ(t, s), pg) Vg (¢",¥").

This finishes the proof of Claim 1.

Especially, if k is equal to the length of the derivation by A & in derivation 1,
it follows that for every derivation 1, there exists a derivation 2.
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Derivation 2 = Derivation 1

Now we show that for every derivation 2, there exists a derivation 1. For this
purpose, we introduce the function egapp : T(F U A)(V) — IN that yields, for a
term ¢, the sum of applications of decomposition-rules and steps started by a term

in binding mode, in the derivation by '{‘»i up to t.

eqapp(t) = card({u € O(t) | u <jcx impO(t)})

Furthermore, we prove the following claim by induction on k.

Claim 2 For every k> 0, ¢ € T(Fu A)(V), and ¢ € Sub(V,A) : If there exists
a derivation

uk
(equ(tv 3)’ pﬂ) ~R (f) ’r”))
then there exist ¢, ¢, € T(F UA)(V), o € Sub(V, A), and there exists a derivation

k—eqapp(¢) : u €gapp(s)
(equl(t, s), pp) “o ¢ (equl$erea)s @) SRy (63 ¥)-

Induction on k:
k=0:¢=cequ(t,s), ¥ =pp. Thus, eqapp(¢) = 0. We have
1600 u0
(eqult,s), pp) Mo (equlse, sa) 08) ~r(a) (6 ¥)-

k — k+1: There exist ¢' € T{(F U A)(V), ¢' € Sub(V, A), and there exists the

following derivation:

u k u
(equ'(ta 3): ﬂoﬂ) ~R (fa 'I’) et (glz ¢,)
From the inductAion' hypothesis it follows that there exists the following derivation:

ok—anPP(f) u eqapp(s) u
(equ(t, s), pp) ~op (equlse, s0), ) Sr(ay - (69) Bg (')

Now we have to distinguish the following two cases:

Case 1: eqapp(¢’) = eqapp(¢). Then, the k + 1th derivation step is a function
application. The same function application can be applied to the term equ(¢,¢,)
in a derivation step by f’&g. ,

Ezample: Let ¢, = t; and ¢, = t; in Figure 7 and let ¢ be the term t* in Figure
8; eqapp(t*) = 7. The next derivation step in the derivation by '{‘»E starting with

t* is the application of the rule f(a) — a which simply replaces the subterm f(a)
in t* by a. The resulting term is denoted by ¢’ in the proof. The next step in the

derivation by 'l\?»;g starting with equ(ty,t2) is the application of the same rule. O

Furthermore, the egapp(¢) derivation steps by ’{"‘R(A) work only on occurrences
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that are less with respect to <j., than the occurrence where the function is ap-
plied. Thus, there exist ¢/,¢! € T(FUA)(V), ¢’ € Sub(V, A), and there exists a
derivation:

o k—eqapp(s) o u egapp(s’)
(equ(t) 3)) P@) 'l\”k (equ’(ft) ga)) P) }\"R (cqu(ft,) fal), ¢’) MRq(Am)) f (f's ¢')

Then we obtain the following derivation:

o k+1—eqapp(s') u eqapp(c’)
(equ(t, s), pg) S p (equlshsl), @) Sy (¢ ¥).

Case 2 : eqapp(¢') = eqapp(¢) + 1. Onme of the cases 1 and 2 in Definition 4.3 is
applied in the added step. In these cases ~» » exactly works as ’{"’R(A) (e.g., suppose

that the subterm f(a) is replaced by o(c, a) in Figure 8, then the decomposition-
rule for o is applied in the added step.). We get the following derivation:

o F—eaapp(s) u_eqapp(s) u
(equ(t, s), vo) g (equ(sesa)y ) "”Rq(g’), 750 #) Sori) (6, 9):

From eqapp(¢') = eqapp(¢) + 1 follows:

ok—(eqapp((')-—l) w eqapp(s')
(equ(t, s), vp) S (equlse, o), ©) Briay (£ 9').

Here we obtain the following derivation:

(g 1= aam(s) —
(equ(t) 3),P@) MR (equ(f't)gs))‘p) "*;24(:) (§’s¢l)-

Especially, if &k is equal to the length of the derivation by "\‘»f in derivation 2,

it follows that for every derivation 2, there exists a derivation 1. This finishes the
proof of Claim 2.

The unification-driven leftmost outermost narrowing tree of R, for the Ep, -
unification of the terms sh(z;,a) and mi(o(z;, a)) is shown in Figure 9. At leaves
which are labeled by ‘clash!?’, the derivations are stopped by the ulo narrowing rela-
tion. Thus, in an intuitive sense, the uu-algorithm induced in Theorem 4.7 is more
efficient than the uu-algorithm of Theorem 3.7. (Compare the ulo narrowing tree
of Figure 9 with the leftmost outermost narrowing tree in Figure 4.)
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equ(sh(s), a), mi(o(s3, a}))

/

equ{a, mi{e(33, a)))

equ(a, o(mi(a}. mi(s3}))

equ(sh(zs, o(mi(x4), a)), mi{o(32, a)))

a

equ(a(mi(zy), a), mi{o(s3,a})) f i

equ{a(mi(z4), @), o(mi(a), mi(z3)))

a(equ(mi(z,), mi(a)), equ(a, mi(z3)))

/\

o(equ(a, mi{a}), equla, mi(s1))) o{equ(o(mi(zg), mi(25)), mi(a)), equ(a, mi(13)))

a(equla, a), equ{a, mi(x3})} o(equio(mi(ss), mi(z5)), ), cqu(a. mi(22)))

o(a, equ(a, mi(23}})

/
o(a, equ(a, a))

o(a, equla, o{mi(x,), mi(23))})

o
success!

Figure 9: Ulo narrowing tree for equ(sh(zy, a), mi(o(zz, a})).
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5 Conclusion

In this paper we have formalized a universal unification algorithm for equational
theories which are characterized by ctn-trs’s. This algorithm is at least as efficient
as the algorithm which is implied by Theorem 3 in |3}, but sometimes it is more
efficient. The universal unification algorithm is based on the unification-driven left-
most outermost narrowing relation which i8 a combination of leftmost outermost
narrowing and unification. It is inspired by the idea of the uu-algorithm in [11]
which combines every innermost narrowing strategy with interleaving decomposi-
tion steps. The advantage of our uu-algorithm in comparison to the uu-algorithm
in [11] is that arguments of function calls are only evaluated on demand which leads
to a more efficient algorithm.

The conditions that the considered trs’s are canonical and not strictly subunif-
able, cannot be weakened, because the uu-algorithm would loose its completeness.
Furthermore, the condition that the trs’s are constructor-based, cannot be weak-
ened. Otherwise, the decomposition-rules would make no sense. We are not sure,
whether the condition that the trs’s are totally-defined, can be weakened.

As mentioned in the introduction, there exist a lot of other uu-algorithms which
are based on narrowing strategies. But none of them combines the narrowing
strategy with interleaving decomposition steps. Thus, nonsuccessful derivations are
computed up to the end, whereas they are immediately stopped in our algorithm.

Two implementations of leftmost outermost reduction for special ctn-trs’s which
are called macro tree transducers g1,4,5], are formalized in [8,13]. A nondeterminis-
tic implementation of the universal unification algorithm of the present paper which
is an extension of the implementation in [8] by adding features for unification, is
presented in {7]. In our current research [9] we construct a deterministic implemen-
tation of the universal unification algorithm by adding features for unification and
backtracking to the implementation of leftmost outermost reduction shown in [13].
In the deterministic implementation a depth-first left-to-right traversal over the
ulo narrowing tree is formalized. Clearly, this implementation does not produce a
ground complete set of (Eg, A)-unifiers, because otherwise the (Er, A)-unification
problem would be decidable. Rather there are three possibilities:

e The machine stops and it has computed one (Eg, A)-unifier.
o The machine does not stop.

e The machine stops and it has computed no (Eg, A)-unifier. In fact, in this
situation, the tree traversal has returned to the root and it is clear that there
is no (Egr, A)-unifier at all.

As further research investigation, we will generalize the scope of this implementa-
tion from macro tree transducers to modular tree transducers [6]. Modular tree
transducers are ctn-trs’s which compute exactly the class of primitive recursive tree
functions.
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Radical Theory for Group Semiautomata

Y. Fong* F.K. Huang* R. Wiegandt!

Abstract

A Kurosh-Amitsur radical theory is developed for group semiautomata.
Radical theory stems from ring theory, it is apt for deriving structure the-
orems and for a comparative study of properties. Unlikely to conventional
radical theories, the radical of a group semiautomaton need not be a sub-
semiautomaton, so the whole scene will take place in a suitably constructed
category. The fundamental facts of the theory are described in § 2. A special
feature of the theory, the existence of complementary radicals, is discussed
in § 3. Restricting the theory to additive automata, which still comprise
linear sequential machines, in § 4 stronger results will be achieved, and also
a (sub)direct decomposition theorem for certain semisimple group semiau-
tomata will be proved. Examples are given at appropriate places. The paper
may serve also as a framework for future structural investigations of group
semiautomata. ’

Key Words : Kurosh-Amitsur radical, group semiautomaton.

0 Introduction

The purpose of this paper is to develop a Kurosh-Amitsur radical theory for group
semiautomata which may serve as a framework for future radical theoretical inves-
tigations and for describing the structure of semisimple group semiautomata.

In the variety of group semiautomata there is a one to one correspondence
between homomorphisms and kernels, so it is meaningful to designate a kernel of
a group semiautomaton as its radical. Doing so, however, there is an obstacle : a
kernel is not always a subsemiautomaton, but only a normal subgroup subject to
some additional requirement. This shortcoming can be overcome, if we work in an
appropriately constructed category comprising group semiautomata and groups as
objects. In this way kernels can be considered as subobjects.

The category suitable for a radical theory of group semiautomata will be con-
structed in § 1 analogously as done for semifields in [12]. Following the framework
of [8], the fundamental notions of radical theory along with their characterizations,
are given in § 2 in a self-contained way. A special feature of the radical theory
of group semiautomata is the existence of complementary radical and semisimple
classes which are discussed in § 3. Restricting the investigations to additive group

‘Department of Mathematics, National Cheng-Kung University Tainan, 70101, Tai-
wan, R.O.C.

tMathematical Institute, Hungarian Academy of Sciences P.O. Box 127, H-1364 Bu-
dapest, Hungary
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semiautomata introduced in [4], we can get more explicit results. We shall see in § 4
that semisimple classes of additive group semiautomata are always hereditary, and
we shall prove asubdirect décomposition theorem for additive group sémiautomata
which are semisimple with respect to a certain radical. Examples are supplied at
appropriate places.

1 Preliminaries

A group semiautomaton (for short, a GS-automaton) is a quadruple (A, +,X,4)
consisting of an additive (not necessarily commutative) group (A, +) as a set of
states, of an input set X # @ and a state transition function 6§ : A x X — A. The
input set X, as usual, can be extended to the free monoid X* over X, and then it
is required that the transition function § satisfies

6(a,zy) = 6(6(a,z),y)

for all z,y € X*.

The notion of GS-automaton is a generalization of that of linear sequential ma-
chine (3] or linear sequential automaton |1}, and has been investigated, for instance,
in [5],[6] (cf. also [9(})

In terms of universal algebra a GS-automaton is nothing but a universal algebra
(A, Q1) with underlying set A and a set of operations {} = {+}U6 where + is a binary
operation making (A, +) a group and & consists of unary operations f; : a — §(a, z),
for all ¢ € A and z € X. Hence we know that GS-automata over a fixed input
set X form a variety, and it is clear what a subsemiautomaton, a homomorphic
image, an isomorphism, a direct or subdirect sum, a subdirectly irreducible GS-
automaton, etc. means. Also the meaning of the homomorphism theorem and of
the isomorphism theorems is obvious.

Throughout this paper the set X of inputs will be fixed, or equivalently, the set
6 of unary operations will be a given one, and so a GS-automaton on the set A of
states will be denoted by (A, +, §), or sometimes briefly by A, if there is no fear of
ambiguity. Moreover, for the clumsy notation §(a, z) we shall write simply az.

A congruence relation x of a GS-automaton (A, +, §) is a congruence on the
group (A, +), and therefore x determines uniquely the coset K containing 0, which
is a normal subgroup of (A,+). Since x is a congruence of the GS-automaton
(A, +,68), < is compatible with the unary‘operations f, € §, z € X, that is, f.(a+k)
is congruent to f;(a) modulo «, that is,

(%) (a+k)z—azeK

for every z € X,a € A and k € K. Conversely, if K is a normal subgroup of
(A, +) and satisfies condition (%), then the equivalence relation « defined by K on
the set A is a congruence on (A, +,§). Thus by the homomorphism theorem every
homomorphism

p:(A,+,8)— (B, +,96)

has a kernel K which is precisely a normal subgroup of (A, +) subject to the re-
quirement ().

Let us observe a fact of importance for our investigations. A kernel of a GS-
automaton need not be a subsemiautomaton, and a subsemiautomaton (B, +, §) of
a GS-automaton (A, +, §) with normal subgroup (B, +) in (A, +), is not necessarily
a kernel.
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PROPOSITION 1.1. A kernel K 13 a subsemiautomaton if and only 1f 0X C K. If
K contains a subsemiagutomaton, then K stself 1s a subsemiautomaton.

PROOF: Since
kz —0z=(0+k)z—-0z€K

holds for arbitrary elements k € K and z € X, the assertion follows. The second
statement is now clear. a

EXAMPLE 1.2. A subsemiautomaton (B, +,§) of a GS-automaton (A, +,6f need
not be a kernel even if (B,+) is normal in (A, +). Let us consider, namely, the
Klein 4-group (A, +) = {0,a,b,c} as the set of states and X = {z} as the set of
inputs. Define 6 by the following graph

T z x x
c—b—a—0—70.

It can be easily seen that {0,a}, forms a subsemiautomaton (which is trivially a
normal subgroup in A with 0X = 0 € {0, a}), but it is not a kernel, for

(b+a)z—bz=cz—bz=b—a=c¢{0,a}.

The fact that there is a one-to-one correspondence between kernels and homo-
morphisms of GS-automata, but kernels are, in general, not subsemiautomata, adds
a special flavor to the radical theory of GS-automata. A similar situation occurs
also in the case of semifields 7], for which a radical theory has been developed in
a category (universal class) comprising semifields and groups as objects [12]. In
setting the scene we shall employ ideas of [12 and follow the framework of the
Kurosh-Amitsur radical theory as developed in [8]. Thus we shall work in a univer-
sal class § of GS-automata and groups, and it is our purpose in this note to develop
a Kurosh-Amitsur radical theory in $ yielding specific results for GS-automata.
Due to the high level of generality in [8], the adaptation of the results of [8] to our
case is not quite straightforward, therefore for the sake of understandability and
clarity we shall present the Kurosh-Amitsur radical theory of GS-automata in a
self-contained way, though following the pattern of [8] and using ideas of [12].

Our investigations will take place within a suitable category €, the objects
thereof are GS-automata and groups. Let 2 denote the class of all GS-automata
over a fixed input set X and & the class of all groups, and we set ObC = A UG,
For all A,B € A U® we consider the following three types of morphisms ¢o: A — B

1) All GS-automaton homomorphisms ¢: (A, +,6) — (B, +,6) for A,Be .

2) All group homomorphisms ¢: (A, +) — (B, +) for A,B€ &.

3) All group homomorphisms ¢: (A, +) — (B,+,8) for A€ ® and Be 2
where one does not care about the transition function § (or equivalently,
about the unary operations f, € §,z € X) defined on B.

The morphisms of types 1), 2) and 3) will consititute the morphisms of €. It is
clear that € has become a category. Designating the subclass

¢ = {all surjective morphisms of types 1) and 2} in €}

and
M = {all injective morphisms in €},

both £ and M, along with the objects of €, form obviously subcategories in €.
Moreover, £ and M consist of epimorphisms and monomorphisms, respectively,
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and £ N M is the class of all isomorphisms in €. Every morphism ¢o: A — B in ¢
factors as
A5 B=A5C-5B

where ¢ € £ and p € M. Thus € is endowed with a bicategory structure.

For developing a radical theory, it is sufficient and sometimes also useful to
restrict the investigations to a certain subcategory of €. A non-empty subcategory
$H of € is called a universal class, if $ satisfies the following conditions :

(i) $ is closed with respect to all surjective morphisms ¢: A — B of types

1) and 2).

(i1} $ is closed under taking kernels : for any morphisms ¢: A — B in $

also K = kerp is in §, (or equivalently, if K is a kernel in A € §), then
also K€ 9).

(i) (A,+,6) € H implies (A, +) € 5.

Concerning the universal class $ we shall work with, we make some observa-
tions.

1. The identical mapping ¢ of the set of states A induces a bijection ¢: (A, +) —
(A, +,6) which is not an isomorphism, for its inverse does not exist in € (in fact,
it is not defined).

2. $ contains an initial object (0,+) and a terminal object (0, +,5) whenever
$HNA # . We call (0,+) and gO, +, 8) the trivial objects of $, and we shall write T
for the class of trivial objects. Since (0, +) and (0, +, §) are not isomorphic, in view
of [11] we can predict a peculiar feature of the radical theory of GS-automata, and
Ehfat §is:,3 )the existence of non-trivial complementary radical and semisimple classes

cf. .

3. If (A,+,6) € $ and p: A — B is a morphism, then K = ker ¢ is either a
subsemiautomaton (K, +,6) (this is the case whenever K is a subsemiautomaton)
or a normal subgroup (K, +) (this is the case when K is not a subsemiautomaton).
In the first case (K, +) 1s a subobject of (A, +, §) which is contained in the subobject
(K, +, 8), but they are not equivalent subobjects.

4. The image of a kernel need not be a kernel. For instance, let (K,+) be a
kernel of a group (A,+) and

v (A, +) — (A, +,6)
the identical embedding. Since (K, +) is merely a normal subgroup of (A, +),

(K, +) = (K,+)  if K is not a subsemiautomaton,
“Whhr) = (K,+,8) if K is a subsemiautomaton,

but (K, +) need not be a kernel of (A, +) = (A, +, ), regardless as whether it is
a subsemiautomaton or not (cf. EXAMPLE 1.2

5. We have to be careful in applying the second isomorphism theorem in .
Let (L, +) be a subgroup of (A,+) in a GS-automaton}éA, +,8). If K is a kernel of
(A, +,8), then L/(LNK) is only a group, although L+ K may be a subsemiautoma-
ton, for instance, if L is a kernel of (A, +, §) and K is also a subsemiautomaton. In
this case we have

(L/(LNK),+) = ((L + K)/K,+) — (L + K)/K, +,5)

and the left hand side is not isomorphic to the right hand side.
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6. In the category € (and therefore also in $) direct sums, in general, do not
exist; more precisely, the (complete) direct sum 39 A, of objects Aq,a € A, exists
in € if and only if either all A, are GS-automata, or all of them are groups.

Kernels of an object A of § form clearly a complete lattice isomorphic to the
lattice of congruences of A. Unions and intersections in the lattice of kernels will
be denoted by V and A, respectively. As usual, V over the empty set and A over
the empty set in the lattice of kernels of an object A, will mean the trivial kernel
of A and A itself, respectively.

PROPOSITION 1.3. If K and L are kernels of a GS-automaton (A,+,6), then
either KVL = (K+L,+) or KVL = (K+L,+,6). In particular, iff K 15 a
subsemiautomaton, then KVL = (K+L,+,$).

PROOF: K + L is obviously a normal subgroup in A. Let a € A,k +1€ K+ L and
z € X be arbitrary elements. Then

(a+k+l)z—az=(a+k+l)z—(a+k)z+(a+k)z—aze€K+L

holds proving the first assertion. Hence in view of PROPOSITION 1.1 the second
statement follows. O

2 Radical operator, radical class, semisimple
class

In this section we fix a universal class 5. Whenever we consider a subclass C of
objects of $, we suppose that C is an abstract class (that is, C is closed under
isomorphisms) and that ¥ C C. Moreover, we introduce the following notation :

A—>B means a nonzero surjective morphism of type 1) or 2),
K < A means that K is a nonzero kernel of A.

In the sequel we are going to give the fundamental definitions and characteri-
zations of radical theory in a self-contained way for GS-automata. Further results
can be proven in a similar way as in [12] or can be derived from [8].

An operator ¢ which assigns to each object A €5 a kernel pA of A is called a
radical operator, if g satisfies the following set of conditions for all A,B €5 :

pa) if ¢: A — B is a surjective morphism, then p(pA) C ¢B holds,
ob I,Q(A};QA%}I =1,
gc) 1if pPB=DB <A, then B C g4,
ed) oA = gA.
PROPOSITION 2.1. Let ¢ be a radical operator. The class
R,={A€H|cA=A}
fulfils the following conditions for all A BE€ § :

(Ra) if A € R, then for every A—>B there ezists a K<B with K€ R,,
(Rb) if A€ 9 and for every A—>B there exists a K< B with K € R, then
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A€ER,,
(Rk) if (A, +,6) € $ and there ezists a Ka (A, +) such that K€ R, then
‘there ezists an L'a (A, +,8) with L€ R,.

PROOF: Let A € R, and ¢: A—>B be arbitrarily chosen. By (ga) we have
B = p(A) = p(eA) C op(A) = ¢B C B,

and hence B € R,. Thus (Ra) is trivially satisfied.

Let A € H\T be an object such that for each A—>B there exists a K < B with
KeR,. If A¢€R,, then gA # A, and so for B = A/pA we have |B| > 1. By the
hypothesis there exists a K <« B such that gK = K, and hence (goc) yields K C ¢B.

Thus we have got
1< |K| < |eB| = |o(A/eA)]

contradicting (gb). Consequently A € R,, proving (Rb).

Finally, let us suppose that (A, +, 6) € § is a GS-automaton such that Ka(A, +)
with some K € R,. Then (gc) yields K C o(A,+). Further, for the morphism
v (A, +) — (A, +,8) in view of (ga) we get

UK) S (e(A, +)) € e(e(A, +)) = o(A, +,6),

and so

1 < [K|=[(K)| < |e(A,+,9)]

holds. Since by gc? we have also g(A, +,8) € R,, the validity of condition (Rk)
has been established. O

PROPOSITION 2.2. If a subclass R of ) satisfies conditions (Ra), (R)), (Rk), then
R fulfils also the following ones :

(RA) the class R is homomorphically closed : if A € R and p: A—>B, then
BeR,
(Re) f (A, +,6) €9 and (A,+) €R, then (A, +,6) € R,
(Re) the class R 1s closed under eztensions : f KaA€$H,KeR and
A/K €R, then A €R,
(Rz) the class R has the snductive property: if K; C--- C K, C --- is any
ascending chain of kernels of an object A € § such that K, € R for
each index ¢, then VK, € R,
(Rt) T CR.
PROOF: Let A € R and ¢: A—>B, and let us consider an arbitrary 4: B—C.
Then also $p: A—>C holds, and so by (Ra) there exists a K « C with K € R.
Hence (Rb) is applicable on B yielding B € R. This proves (Rh).
Let (A,+,58) be a GS-automaton in $ such that (A,+) € R, and K be an
arbitrary kernel of (A, +, §) with K # (A, +, §). Then we have

(A/K,+) = (A/K, +,9)
and also (A/K,+) € R\% in view of (Rh). Hence (Rk) infers the existence of a

kernel L of (A/K,+,§) such that L € R\%. Since the choice of K was arbitrary,
by (Rb) we conclude (A, +,8) € R, proving the validity of (Rc).
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For proving (Re), let L be an arbitrary nonzero kernel of A. We wish to apply
(Rb) on A. If K C L, then the isomorphism

A/K

and the already demonstrated condition (Rh) yield A/L € R. If K € L, then
g{/(L N K)| > 1 and again by (Rh) also K/{(L N K) € R is valid. Further, by
ROPOSITION 1.3 we have

K/(LNnK) = (L+K)/L = (LVK)/L1A/L

and so by (Rc), if needed, also (L VK)/L € R holds. Thus A/L possesses always a
nonzero kernel in R, and therefore (Rb) infers A € R. This proves (Re).

For demonstrating (Ri]{, put L = VK,. If L ¢ R, then in view of (Rb) there
exists an M qL such that [L/M| > 1 and L/M has no nonzero kernel in R. Further,
by (Rh) we have K,/(MNK,) € R for each a. From PROPOSITION 1.3 we have

Ko./(MNK,) 2 (Ko + M)/M — (K, VM)/M<L/M

and so (Rc) infers (K, VM)/M € R for every a. Hence by the choice of M it follows
K4 C M for every «, and so also L = VK, C M, contradicting |L/M| > 1.
(Rt) is a trivial consequence of (Rb).

PROPOSITION 2.3. Let a subclass R of §) satisfy conditions (Rh), (Re), (Ri), (Rt),
(RKk). If the operator g is defined as

eA=V(K<A|KeR), VAes$,

then
i)pAER, VA€ H and R={A € H |gA = A},

i1) ¢ 1s a radical operator.

PROOF: First we prove that R fulfils (Rc). Suppose the contrary: there exists an
automaton (A, +,6) € 5 \ R such that (A,+) € R\ ¥. By (R:) and Zorn’s Lemma
there exists a kernel I of (A, +, §) such that I € R and I is maximal with respect to
this property. Let us consider the automaton A/I = (A/I, +,6). Since R has (Rh),
we have (A/I,+) € R. Take any kernel L/I of (A/I, +6) such that L/I € R. Then
by I€ R and (Re) we get L € R. Hence the maximality of I gives us L = I. Thus
there is no kernel LKK of (A/I,+,6) such that |L/K|> 1 and L/K € R. Applying
(Rk) we conclude that there is no kernel K/I of (A/I,+) such that [K/I] > 1 and
K/I € R. This and (A/I,+) € R imply A =1 € R, contradicting A € $ \R. Thus
(Rc) has been established.

ow we prove gA € R. By (R¢) Zorn’s Lemma is applicable yielding the
existence of a kernel K of A being maximal with respect to K € R. Let L be any
other kernel of A with L € R. By (Rh) we have L/(LNK) € R and so in view of

L/(LNnK) = (L +K)/K — (LVK)/K

condition (Rc), if needed, yields (L V K)/K € R. Hence by condition (Re) we get

LV K € R which implies L C K by the choice of K. Thus K is the unique kernel of

A such that K is maximal with respect to K € R. This means exactly pA = K € R.
Now the assertion that R = {A € $ | gA = A} is obviously true.
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For proving that g is a radical operator, we notice that (gc) and (gd) are clearly
satisfied, both by gA € R.

Next we exhibit (gb). Let L/pA 9A/pA and L/pA € R. As we have already
seen, gA € R, hence condition (Re) implies L € R. Thus by the definition of pA
we conclude L C pA which imphes |[L/pA| =1 as well as |p(A/gA)| = 1.

For demonstrating (ga& it suffices to exhibit its validity for morphisms ¢: A—>B
and ¢ (A,+) — (A, +, 8) because every surjective morphism ¢ is a composition of
such morphisms or J»AL = 1, and this latter case is covered by condition (Rt).
For any morphism y: A—>B we have ¢(K) < B or M(}II() = 1 whenever K q A,
in particular for K = gA. Furthermore, also pA € holds as we have seen,
and so condition (Rh) infers ¥(pA) € R. Thus by definition ¥(¢A) C ¢B holds.
In the case u:(A,+) — &A,+,5), let us suppose that (ga) is not true, that is,
(o(A,+)) € oA, +,6). Then we have

le(A,+)/(e(A,+) N (A, +,6))| > 1

and

oA, )/ (oA +) N e(A +6) = (oA +) + (A, +8))/e(A, +6)
q (A/Q(A’+’6):+)'

Moreover, condition (Rk) implies
o(A,+)/(e(A,+) Nno(A,+,8)) € R.

Hence condition (Rk) applies to K = (o(A,4) + o(A, +, 8))/e(A, +, ) yielding the
existence of an L a A/p(A, +,48) with L € R. This, by |L| > 1, contradicts the
already demostrated condition (gc). Thus ¢(g(A, +)) € o(A, +, §) holds. 0

A subclass R of § is called a radical class if it satisfies condition (Ra), (Rb),
(Rk). PROPOSITION 2.1, 2.2 and 2.3 can be summarized as follows

THEOREM 2.4. Let p be an operator assigning to each object A € § a kernel pA

of A, and let R be a subclass of objects in $. Then the following three conditions
are equivalent :
1) ¢ is a radical operator and R, = R,

2) R 1s a radical class and pA =V(K<A|K€R), VA€ H,
3) R satisfies conditions (Rh), (Re), (R2), (Rk), (Rt) and
0A=V(K<A|K€ER), VA 5. 0

Let ¢ be a radical operator. The class
S, ={A€ 5 ||eA| =1}

is called the semisimple class of g (or equivalently, of the radical class R,). Obvi-
ously R, NS, = T holds. It is useful introduce the semisimple operator S acting
on subclasses C of objects of $ and defined by

SC={Ae % |KaA=>K¢gC}.

If g is any radical operator and R, the corresponding radical class, then by THE-
OREM 2.4 we have
S,=SR,

which justifies the terminology.
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PROPOSITION 2.5. If ¢ 1s a radical operator in §), then the semisimple class S,
satisfies the following conditions :
(Sa) if A €S, then for every Ka A there ezists a K—>B with B€ S,
(Sb) sf A € 5 and for every K a A there ezists a K—>B with B € S,, then
A €ES,.
(Sc) if (A, +,6) €8, then (A,+) €S,.

PROOF: For exhibiting (Sa), let us consider an object A € S, = SR, and an
arbitrary K<A. Now we have gK € R, and so |K/gK| > 1. Also K/¢K € S, holds
in view of (gb). Hence K—>B € S, is satisfied with B = K/gK.

Next, let us suppose that for every K< A there exists a K—>B with B € S, but
A ¢ S,. Then |gA| > 1. In particular, for K = pA there exists a pA—>C € S, and
by (oa) (or (Rh)) we conclude also gC=C (or CER,). ThusCeS,NR, =T,
contradicting pA—>C. This proves the validity of (Sb).

Finally, assume that (A,+,6) € $ and (A,+) € S,, that is, o(A,+) 9 (A, +)
and ¢(A,+) € R,. By THEOREM 2.4 condition (Rk) is applicable yielding the
existence of an L < (A, +,8) with L € R,. Hence by (gb) it follows L C p(A, +, §)
implying (A, +,6) € S,. This proves (Sc). o

For any subclass C C " we define an operator U as

UC={AEH|A—>B=>B¢C}.

The operator U, which is defined dually to the semisimple operator §, is called the
upper radical operator.

PROPOSITION 2.6. If a subclass 8 C §) satisfies conditions (Sa), (Sb), (Sc), then
R = US is a radical class, and 8 = SR = 8, where g denotes the radical operator
correponding to the radical class R.

PROOF: Since the relation — is transitive, the class R = S is homomorphically
closed, that is, US satisfies (Rh) and hence also the weaker condition (Ra).

For demonstrating (Rb), let us consider and object A € $ \ T such that for
every A—>B there exists a K< B with K € US. If A ¢ US, then there exists an
A—>B with B € S and by (Sa) to every K 4B there exists a K—>C € S, that is,
K & US. This contradicts the assumption on A, and so (Rb) is satisfied. Let us
notice that an object A € T trivially satisfies (Rb).

Let (A, +,6) € $ be an object such that K< (A, +) and K € R = IS for some
kernel of (A, +). To prove (Rk) we have to show that (A,+,6) & S, because then
by (Sb% there exists an L (A, +, §) such that L € US = R, and this means exactly
the validity of (Rk). Suppose that (A,+,6) € S. Then by (Sc) also (A,+) € S
is valid, and so by (Sa) we have K—>B € S for the kernel K of (A, +) with an
appropriate B € . This means K ¢ US, contradicting K € US. Thus (Rk) has
been established.

Since R = US satisfies (Ra), (Rb) and (Rk), by THEOREM 2.4 we conclude that
R is a radical class.

As one readily checks, (Sa) is equivalent to S C SUS and (Sb) is equivalent
to SUS C S. Hence S = SR as well as S = S, hold by the remark proceding
PROPOSITION 2.5. 0

PROPOSITIONS 2.5 and 2.6 infer immediately

COROLLARY 2.7. A subclass S C §) s the semisimple class of a radical class (or
equivale)ntly, of a radical operator) if and only if S satisfies conditions (Sa), (Sb)
and (Sc).
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For a subclass S of objects, let us define the operator n as
nA=AK<A|A/KEeS)
which assigns to each A € §) a kernel of A.

PROPOSITION 2.8. If S i3 the semisimple class corresponding to a radical operator
o, then

(Ss) S 1s closed under subdirect sums : A= ), A, and A, € S for all

subdirect

imply A € S, or equivalently : A/nA €S,
(Se) nA=0pA forall A€ 9,
(Sn) nnA is e kernel of A for all A€ 9,
(Se) S is closed under eztensions.

PROOF: Firstly we prove (Ss). Let us consider an object A € § such that A isa
subdirect sum of objects A,, & € A, each in S. Then there exists a set {K, |a € A}
of kernels of A such that A/Ka = A, €S and |AK,| = 1. Let L< A be arbitrary.
Now by |L| > 1 there exists an index a such that L € K,, and hence

(LVK,)/Ka <A/K,4 €8.
Thus, condition (Sa) infers the existence of an
(LVK,)/Ka—>B €S.
Hence either
L—sL/(LAKa) 2 (LVKa)/Ke—>B e S
or by (S¢)
(L, +)—=(L/(LAKL), +) = (L + Kq)/Kq, +)—>(B,+) €8

yields L—>C € S where C = (B, +, §) or (B, +). Hence by (Sb) we conclude that
A € S, proving (Ss).

For demonstrating (Se), let us consider a K < A such that K€ S and A/K € S.
Further, let L < A be arbitrary. If L C K, then by L 4K and K € S condition (Sa)
implies the existence of an L—>B € S. If L € K, then we have

(LVK)/K<A/K €S,
and so by (Sa), (L VK)/K—>B € S with an appropriate B € . The isomorphism
L/(L AK) 2 (L+K)/K % (LVK)/K

and condition (Sc), if necessary, infer L—>C € S where either C = (B, +,6) or
C = (B, +). Thus by (Sb) we obtain A € S which proves (Sc).

Next, we are going to prove (Sg). By condition (gb) we have |p(A/pA)| = 1, and
therefore A/gA € S, = S. Hence nA C pA holds by the definition of n.  Suppose
that nA # gA. Then gA/nA <A is valid as |pA/nA| > 1. Moreover, by (ga) and

(ed) we obtain

eA/nA = geA/nA C o(eA/nA),
yielding ¢A/nA € R, = US. Since A/nA € S by (Ss), condition (Sa) applied to
0A/nA < A/nA yields the existence of a pA/nA—>C € S, contradicting pA/nA €
US. Thus nA = pA has been proved.

Finally, condition (Sn) is a trivial consequence of nA = gA and condition (gd).
a
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PROPOSITION 2.9 . Let S be a subclass of $ which fulfils conditions (Sa),
(Sc), (Se), (Ss), (St),(Sn). Then S s a semisimple class.

PROOF: In view of COROLLARY 2.7 all what we have to prove is the validity of
condition (Sb). So, let us consider an object A € $ such that for every K< A there
exists a K—>B with B € S. By way of contradiction, let us suppose that A ¢ S.
Then by (Ss) we have A/nA € S, and so |[pA| > 1, that is, nA 9 A. By (Sn) also
nA/nnA < A/nnA holds, and by (Ss) we have nA/nnA € S. Since

A/nnA

———— =2 A/nA €S,

nA/nnA /n
condition (Se) yields A/nnA € S which implies nA C nnA. Thus by the definition
of 1, nA has no non-zero isomorphic image in S, contradicting (Sa). O

COROLLARY 2.10. A subclass S of ) 13 a semisimple class if and only if S satisfies
conditions (Sas), (Sc), (Se), (Ss), (St) and (Sn). Moreover, the operator n occuring
in condstion (Sn) 1s just the radical operator corresponding to the semisimple class

PROOF: Trivial by PROPOSITIONS 2.8 and 2.9. O

THEOREM 2.11. The subclasses R and S are corresponding radical and
semi-simple classes (that 1, R = US and S = SR) 1f and only if
a) A€R and A—>B imply B¢ S, that 15, R C US,
b} A€S and B<A tmplyB¢ R, that1s, S C SR,
¢) for each A € §) there ezists a kernel K of A such that K€ R and
A/KeS.
d) S fulfils (Sc) or R satisfies (Rk).

PROOF: We already know that these properties hold true for a radical class R. with
semisimple class S = SR.

Conversely, we apply c) to each A € §R. Since A € SR implies B ¢ R for
all B < A, necessarily |K| = 1 and hence A € S, that is SR C S. This together
with b) yields S = SR. Applying c) to each A € US, from A/B ¢ S for all kernel
B # A, we get |JA/K| =1, and so A =K € R, that is, US C R. This and a) gives
us R = /S, Thus R = USR and S = SUS hold. As one easily sees, R = SR
is equivalent to (Ra) and (Rb) and S = SUS is equivalent to (Sa) and (Sb). This
along with d) proves that R and S are corresponding radical and semisimple classes
in view of COROLLARY 2.7 or by the definition of R. O

Before giving explicit examples, let us notice that there are plenty of concrete
radical classes, for instance, to every partition of simple GS-automata there is a
radical class containing exactly one class of the partition (and the other class will
be included in the corresponding semisimple class).

EXAMPLE 2.12. We say that a GS-automaton (A, +,6) has the relative 0-reset
property, if to every element a € A there exists an z € X* depending on a, such
that az = 0. The class

R = {A € A | A has the relative O-reset property} U {(0,+)}

is a radical class. Conditions (Rh), (Ri), (Rk), (Rt) are trivially fulfilled. In view
of THEOREM 2.4 we still have to show the validity of (Re). Let K be a kernel of
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A € 9 such that Ke R and A/K € R. If [K| = 1, then we are done. So let K< A.
Since K € R and |K| > 1, K is a subsemiautomaton, and therefore A has to be
GS-automaton. Let ¢ € A be an arbitrary element. Since A/K € R, there exists
an z € X* such that (a + K)z C K, that is,

(a+k)zeK, VkeK.

K is a kernel of A, so also
(a+k)z—az €K

holds. These together yield
aze KeR.

Hence there exists a y € X* such that (az)y = 0, that is, a(zy) = 0 with zy € X*,
proving that A has the relative O-reset property. Thus R satisfies also condition
(Re), and consequently R is a radical class.

EXAMPLE 2.13. In a GS-automaton A, 0 is a reset if there exists an z € X* such
that Az = 0. Restricting the universal class to

H = {all finite GS — automata } U {all finite groups},

the class
R={A€eANS5H|01saresetin A} U {(0,+)}

is a radical class. Again, conditions (Rh), (Rz), (REk), (Rt) are trivially satisfied.
Notice that (R¢) would not be satisfied for infinite GS-automata. The same proof
as in EXAMPLE 2.12 infers the validity of condition (Re), because there the element
z(é ))(* may be chosen such that Az C K and y € X* such that Ky = 0, whence
A(zy) =0.

EXAMPLE 2.14. A GS-automaton (A, +,6) is said to be 0-connected, if for every
a € A there exists an z € X such that 0z = a. Then

R ={A €2 |A is O-connected} U {(0,+)}
1s a radical class. Conditions (Rh), (Rt), (Rk){, (Rz& are trivially satisfied, only (Re)
needs verification. So, let K < A such that K € R and A/K € R. Now K has to
be a subsemiautomaton, and therefore KX C K. Since A/K € R, for each a € A

there exists an z € X such that Kz C a + K. Hence KX C K implies a € K, and
by K € R there exists a y € X with Oy = a. Clearly, we have also

R={Ae|A=0X}U{(0,+)}

3 Complementary radical and semisimple classes
We start this section with
EXAMPLE 3.1. The class
R={Ae2|(0,+,6) is a subsemiautomaton in A} U {(0,+)}
ts @ radical class and

S=SR={A€2|0is not a subsemiautomaton in A}U®
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1s the corresponding semistmple class in the universal class €, as one readily checks.
Moreover, RUS = €, though R# € and S # €.

Motivated by this EXAMPLE we introduce the following definition.

Let o be a radical operator in $ with corresponding radical class R and semisim-

ple class S. We say that g is complementary, or that (R and S) are complementary,
if

A=A or |gA|=1, forall A€ 5,

or equivalently,

RuS=#9.

The existence of non-trivial complementary radical operators (here non-trivial

means R # T # S} is a consequence of the fact that in the category $ the
initial object (0,+) is not equivalent to the terminal object (0, +,6) (cf. {11]).

THEOREM 3.2. Let g be a radical operator in §5 with radical class R and semisim-
ple class S. If

1) R contains at least one nonzero GS-automaton and all GS-automata of

J $) with one-element subsemiautomaton,
an

2} S contains all groups of 9,
then ¢ 13 a non-trivial complementary radical operator.

If © is closed under forming finite direct sums ( in the sense of 6 of §1) and o
15 a non-trivial complementary radical operator in ), then R fulfils 1) and S fulfils

2).

PROOF: Assume that 1} and 2) are satisfied, and let A € $ be an arbitrary nonzero
object. If(lgA] =1, then A € S. Suppose that |pA] > 1. Since all groups are in S,
we conclude by gA = gpA € R that pA is a GS-automaton with subsemiautomaton
(0,+, 8), and hence so is A. Thus A € R, proving that g is complementary.

Next, suppose that $ has finite direct sums and g is a non-trivial complementary
radical operator. In virtue of (Sc) the semisimple class S contains at least one
group (A,+) & T. Let (B,+) € $ \ T be arbitrary. By the assumption on § we
have (A, +) ® (B, +) € . Now (A,+) @ (B, +) € R is not possible because then
(A, +)®(B,+)—>(A, +) and (Rh) would imply (A, +) € R. Thus (A, +)®(B,+) €
S, as g is complementary. Since SN & is a semisimple class of groups, SN & is
hereditary, and hence

(B,+)«(A,+)®(B,+)eSn®

yields (B,+) € SN® C 8, proving that S contains all groups of 5.

Since S contains all groups and p is non-trivial, R has to contain at least one
nonzero GS-automaton. Assume that R does not contain all GS-automata of
with one-element subsemiautomaton. Then there exists an (A, +,64) € H such
that (0,+,684) is a subsemiautomaton of (A’+’6A{> and (A,+,64) € R, that is,
(A,+,64) € S by ¢ complementary. Let (B, +, 6} be an arbitrary GS-automaton
in §. By the assumption on §) the direct sum (A, +, 64}®(B, +, 6p) isin 5. By (Rh)
and (A, +,64)® (B, +, 88)—>(A, +,04) € S the relation (A, +,64)®(B,+,08) € R
is not possible whence by ¢ complementary it follows (A,+,0,) & (B, +,6p) € S.
Thus by 64(0,z) =0, (B, +,68) < (A, +,64) @ (B, +, 65) and hence by (Sa), there
exists a (B, -+ 65)—>(C, +,5c) € S. Thus by (Rh) we get (B, +,83) ¢ R, and
since g is complementary, we conclude (B,+,6g) € S. Hence S=$ and R=%
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follows, contradicting the assumption that g is non-trivial. Thus R contains all
GS-automata of $§ with one-element subsemiautomaton. O

COROLLARY 3.3. The class

Ro={A€H NA|(0,+,6) 1s a subsemiautomaton of A} U {(0,+)}

13 ¢ complementary radical class in . If H has finite direct sums and R # T 15 a
complementary radical class, then Rg C R.

PROOF: The first statement follows from EXAMPLE 3.1 and the second one from -
THEOREM 3.2. : O

THEOREM 3.4. R 13 a complementary radical class in $ if and only if R satisfies
(Rh), (Rc), (Rt) and

(C) BeR and BaA € H imply AcR.
S 15 a complementary semisimple class in $ if and only if S satisfies (Sc),

St) ¥C8, .

Sh) A€S and BaA implyBeS,

(D) BeS,A€$ and A—>B imply A € S.

PROOF: Let R be a complementary radical class. If A € § \ R, then A € SR and
hence B € R for any B <« A, which implies (C).

Conversely, let us assume that R satishes (RR}, (Rc), (Rt) and (C). Condition
(C) readily implies (Re) and (Rz). To show (Rk), let us consider a GS-automaton
(A,+,6) such that K< (A,+) and K € R for some K € $. Now condition (C)
implies (A, +) € R and condition (Rc) infers (A, +, 6) € R, proving (Rk). Thus by
THEOREM 2.4 R is a radical class. Suppose that A & R for some A € §. Then
(C) yields A € S, and hence R is complementary.

Assume that S is a complementary semisimple class. (St) is always satisfied by
(Sa) and (Sb) or (Sp). f Ba A and B & S, then B € R and hence A ¢ S. This
proves (Sh). If A€ $ \'S, then A € R and hence A—>B implies B € R by (Rh).
This means that (D) is satisfied.

Conversely, let us suppose that S satisfies (Sc), (St}, (Sh) and (D). Condition
(Sh) implies trivially (Sa). We want to see the validity of (Sb). Assume that A € $

is such an object that for every B <« A there exists a B—>C € S. From B—C € S
and (D) we get B € S for every B< A, in particular for B = A. If there is no B< A,
then |A| =1, and (St) infers A € S. Thus (Sb) holds and so by COROLLARY 2.7 8
is a semisimple class. We still have to see that S is complementary. If A € $ \ US,

then there exists an A—>B € S and so (D) yields A € S. Thus S is complementary.
O

4 Additive automata

An element zo € X is called a zero-input, if 0zp = 0. A GS-automaton (A, +,6) is
said to be additive, if there exists a zero-input zo € X with the following properties

i) decomposition property : az = azg +0z, Va€ A, VzeX,
11) zero-input additivity : (a + b)zo = azo + bzo, Va,be€ A.
Obviously on every additive group (A,+) of at least two elements one can define
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at least two non-isomorphic GS-automata. Concerning additive GS-automata the
reader is refered to [4].

In the sequel we suppose that all the GS-automata in the universal class $
considered, are additive ones.

PROPOSITION 4.1. Let A be an additive GS-automaton and Ca(B, +, §)<(A, +, §).
If (C,+) is a normal subgroup of (A,+), then C 1s a kernel of A.

PROOF: We have to show that
(a+k)jz—azeC
holds for alla € A, k€ C and z € X. Since A is additive, we have
(¢ + k)z — az = (a + k)zo + 0z — 0z — azop = azo + kzo — azp.
Taking into account that C is a kernel of (B, +, §), it follows
bzo + kzo — bzo = (b + k)zo + 0z — 0z — bzg = (b + k)zo — bzo € C

for all b € B. Since (C,+) is a normal subgroup of (A, +), we may conjugate by
(azo — bzo) € A obtaining

azo + kzo — azo = (azo — bzo) + (bzo + kzo — bz0) — (azo — bzo) € C,
regardless as whether kz is in C or not. Thus also
(a+k)z—azeC
holds proving the assertion. O
PROPOSITION 4.2. Let g be an operator assigning to each A €  a kernel gA of

A and satisfying condition (ga). If (B,+,8) a(A,+,6) € 5, then ¢(B,+,6) is a
kernel of A.

PROOF: In virtue of PROPOSITION 4.1 we have to prove that (gB, +) is a normal
subgroup of (A,+). Since (B, +) is normal in (A, +), for every element a € A the
mapping

palb) =a+b—a, Vb € B,

is an isomorphism of (B, +) onto itself. Hence condition (ga) yields

va(eB) € epa(B) = ¢B,
proving that (¢B, +) is a normal subgroup in (A, +). m]

'(I‘HI)BOREM 4.3. Every semisimple class S in $ 13 hereditary, that 1s, S satisfies
Sh).

PROOF: Let g be the radical operator corresponding to S. If (B, +, §}<(A, +, §) € S,
then by PROPOSITION 4.2 ¢(B, +, §) is a kernel of (A, +, 6) and by (gc) and (¢d

we have
' o(B,+,6) C (A, +,6) € T.

Thus also (B, +,6) € S holds.

If (B, +) < (A, +,6), then also (B, +) < (A, +{ is valid. Moreover, condition (Sc)
infers (A,+) € S. As is well-known, semisimple classes of groups are hereditary.
Hence we conclude (B, +) € S, and the Theorem is proved. O

From THEOREMS 2.11 and 4.3 we obtain immediately.
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COROLLARY 4.4. Subclasses R and S of H§ are corresponding radical and
semistmple classes if and only sf

a) RNSe%,

b) R is homomorphically closed, that is, (RR) is fulfilled

c) S is strongly hereditary, that 13, S satisfies (Sc) and (Sh),

d) for each A € ) there ezists a kernel K of A such that Ke R and
A/KeS. O

In order to get more explicit results and derive a structure theorem (COROL-
LARY 4.7) for semisimple objects, we shall restrict our investigations to a universal

class § in which all the groups are commutative. This class still includes linear
sequential machines.

PROPOSITION 4.5. Let us suppose that LaK < (A, +,8) € $. If 2o is a O-input
for A then La(A,+,6) if and only if Lzyg C L. IfL<(K,+,8) < (A, +,6), then
La(A,+,9).

PROOF:

La(A,+,6) & (a+l)z—azelforallacAleLlandz€X,
& lzgeLforalllel,
=4 L$0§L.

For the second assertion, note that by L « (K,+,52 it follows (k +l)z —kz € L
forallk € K, l € L and z € X, and hence lzg € L for all | € L. Thus the first
statement yields L 1 (A, +,6). 0

A kernel K of an object A € § is said to be essenttal in A, if for any other
kernel L < A it follows KA L & % . This fact will be denoted by K<oA. A subclass
M of § is said to be closed under essential eztensions, if K<aoA and K € M imply
AeM. )

THEOREM 4.6. Let M be a subclass of § NA such that M 13 hereditary, closed
under essential extensions and satisfies condition

(F) LaK<A€e$H and K/LEeM imply LaA.
If M denotes the subdirect closure of M that 1s

M= {A € H |A is a subdirect sum of objects from M}

then the class S = MU ( N &) is a semisimple class.

PROOF: First, we show that every kernel K of a GS-automaton A € M is a

subsemiautomaton. For this end it suffices to prove that 0X = 0. Since A € M,
there are kernels I, a € A, of A such that A/I, € M foreach a € A and A(l4 |a €

A) € . The class M consists of GS-automata, so by the hereditariness of M every
kernel, in particular the trivial kernel of A/I, is a subsemiautomaton, and therefore
I.X C 1, for each @ € A. This implies

0X = (Al)X C A, =0.

Next, we are going to prove that_ﬁ is hereditary. Let us consider an arbitrary
kernel K of a GS-automaton A € M. If K € T, then by the previous statement
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K = (0,+, 6) holds, and so K € M C M. So, let us assume that K< A. Since K is
a subsemiautomaton, we have

K/(KAL)=(Kv,)/I,<A/l, eM

for all @ € A. Thus the hereditariness of M yields K/(K A 1) € M. Moreover,
by A (KAL) = (A L) AK =0 We conclude K € M, proving that M is, in fact,
hereditary. '

The hereditariness of M readily yields that of the class S = MU ($ N®), and
therefore S satisfies (Sa) trivially.

To prove the validity of (Sb), let us consider an object A € $ such that every
K aA has a nonzero homomorphic image K/Lin S=MU($ U ). If A = (A,+) €
$H NG, then A € S. Hence we shall consider the case A = (A, +,6). Let us suppose
that A € S. Since A is a GS-automaton, we get A ¢ M. Hence

K =A(Ks<A|A/Kg € M) #0.

Since M is hereditary and consists of GS-automata, the trivial kernel of A/Kg is a
subsemiautomaton, which implies K5X € Kg, and so each Ky is a subsemiautoma-
ton. Hence so is K as well. By the hypothesis on A, K has a nonzero homomorphic

image K/L in S and also K/L € M holds, for K is a subsemiautomaton. Hence
there exists a kernel J/L of K/L such that

K/Jz%eM\T.

Using condition (F) we conclude that J is a kernel of A. Let us choose a kernel M
of A being maximal with respect to the property M A K = J. By Zorn’s Lemma
such a kernel M does exist. Now we have

K/J=K/(MAK) = (K+M)/MaA/M.
For any Q/M < A/M the choice of M yields J g Q A K, and therefore

(QAK)/I<K/I € M.

Thus the hereditariness of M infers that (Q AK)/J is a GS-automaton, and so
0# (QAK)/I=((QAK)VM)/MC ((KVM)/M) A (Q/M),

proving that (KV M)/M is essential in A/M. Hence by

(KvM)/M=K/JeM
and by M being closed under essential extensions, we conclude A/M € M. This
implies by the definition K that K C M, and so ] = M A K = K holds, yielding
K/J € ¥, contradicting K/J ¢ T. Thus A € S has been proved, establishing the
validity of condition (Sb).

Since N $H C S by definition, the class S fulfils condition (Sc), too. Thus in
view of COROLLARY 2.7 S is a semisimple class. O
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COROLLARY 4.7. Let M be a subclass of H NA such that M 13 heredstary, closed
under essential eztensions and satisfies condition (F). Then

R={A€$ N |A—>B=BgM}u{(0,+)}

1s a radical class. Denoting by p the corressponding radical operator, gA = 0 for a
GS-automaton A€ H NA ifandonlyif A= ) (Aa|Ac EM). In particular

subdirect
if A satisfies also the descending chain condition on kernels, then A 1s a finite
direct sum of GS-automata from the class M.

PROOF: The assertions are immediate consequences of THEOREM 4.6, because
R = US. The last assertions can be proved by standard reasoning (cf. [2] Corollary
5). O

PROPOSITION 4.8. The radical class R of COROLLARY 4.7 has the following hered-
itary property :

if (K, +,6) <(A, +,6) €R, then (K, +,6) € R.

PROOF: Suppose that (K,+,6) € R. Then there exists a kernel L of K such that

K/L € S\ T. Since K is a GS-automaton, necessarily K/L € M holds. Thus also
K/J € M holds with an appropriate L C J < K. Applying condition (F) on M,
it follows J < A. Let M be a kernel of A being maximal relative to the property
K AM = J. As we have seen in the proof of THEOREM 4.6,

K/J =K/(KAM) 2 (KV M)/M<oA/M.

Since K/J € M and M is closed under essential extensions, we get A/MeM C S.
Thus A/M C SNR = %, which yields A =M, and also ] = KAM =K, as well as
K/J € ¥, a contradiction. Thus K = (K, +,6) € R has been proved. ]

Recall that an object A € $) is said to be subdirectly srreducible, if H = A(K <«

A) &€ T. The kernel H of A is referred to as the heart of A.
In the sequel we give a concrete class M of GS-automata which satisfies the
conditions required in THEOREM 4.6, COROLLARY 4.7 and PROPOSITION 4.8.

THEOREM 4.9. The class
M={A=(A+,6) € H|A ts subdirectly irreducible and 0X = 0}

is hereditdary, closed under essential extensions and satisfies condition (F).
Furthermore, for the radical class

R={Ae€H N |A—>B=BgM}u{(0,+)}

the followtng two conditions are equivalent :
(i) AeR\T
(i) A€ H NYA and if Ka A and K—>L, then L 1s not a simple GS-automaton
with subsemiautomaton 0.

In analogy with ring theory we may call this radical R the entisimple radical
of commutative additive GS-automata.
PROOF: Since 0X = 0, every kernel K of any A € M is a subsemiautomaton. Hence
by PROPOSITION 4.5 every kernel L of K is also a kernel of A. Thus the heart of A
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is contained in every L <K, and therefore K is subdirectly irreducible, proving that
M is hereditary.

For proving that M is closed under essential extensions, let us considera K € M
and KqaoA. We have to show that A is subdirectly irreducible. Let IqA be arbitrary.
Since K g 0A, it follows KAI & ¥, and so the heart H of K is contained in KA I
and also in I. Since I was arbitrary, also H C A(I < A) holds, proving that A is
subdirectly irreducible.

In order to show the validity of condition (F), let us suppose that L K «
A € $ and that K/L € M. Since K/L € M, we have LX C L. Thus L is a

subsemiautomaton of A, and consequently K as well as A are GS-automata. Hence
PROPOSITION 4.5 yields L g A.

By COROLLARY 4.7 R is a radical class. Assume that K<A € R and K—>L.
If K is merely a group, then so is L too, and condition (ii) is trivially fulfilled. So
we may suppose that K is a subsemiautomaton. By PROPOSITION 4.8 it follows
that K € R which implies L ¢ M. Since simple GS-automata are subdirectly
irreducible, by the definition of M we conclude that either L is not simple or 0 is
not a subsemiautomaton of L or both, proving the validity of (ii).

Suppose that A € R. Then either A is a group or A/J € M with a suitable
kernel J of A. In the second case, since the class M is hereditary, also the heart L of
A/Jis in M and in view of PROPOSITION 4.5 L has to be a simple GS-automaton.
Since L = K/J with an appropriate kernel K of A, we see that (ii) is not satisfied.

a

As is well known [10] the subdlrectly irreducible abelian groups are precisely the
(quasi)-cyclic groups C(p")}, n = 1,2,..., 0o for all primes p. Obviously, on every
subdxrectly irreducible abelian group we may define an additive GS-automaton
by assigning a homomorphism z¢: C(p {) C(p™), which will be a 0-input, and by
defining 0X = 0. There are, however subdirectly irreducible additive GS-automata
the additive group thereof is not subdlrectly irreducible. Consider, for instance, the
direct sum C(p) & C(p) of two coples of a simple cyclic group, the automorphlsm Zg
1nterchangmg the components of C(p) ® C(p). zo can be regarded as a O-input of

C(p)®C(p), further define 0X = 0. Thus we have got a simple and hence subdirectly
irreducible additive GS-automaton (C(p) & C(p), +, §), though (C(p) ® C(p), +) is
not a subdirectly irreducible group. Moreover, there are sub irectly irreducible
additive GS-automata, which are not in M, for instance ‘a (p),+,6) where the
O-input zo may be any homomorphism zg: C (p) — C(p), but OX # 0 for some
z € X. These observations demonstrate that COROLLARY 4.7 applied to the class
M of THEOREM 4.9 provides a subdirect decomposition for some additive GS-
automata only, and that the subdirectly irreducible components are not necessarily
subdirectly irreducible groups.
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Structuring grammar systems by priorities and
| hierarchies*

Victor Mitrana ! Gheorghe P{un? Grzegorz Rozenberg §

Abstract

A grammar system is a finite set of grammars that cooperate to gener-
ate a language. We consider two generalizations of grammar systems: (1)
adding a priority relation between single grammar components, and (2) con-
sidering hierarchical components which by themselves are grammar systems.
The generative power of these generalized grammar systems is investigated,
and compared with the generative power of ordinary grammar systems and of
some well-known types of grammars with regulated rewriting (such as matrix
grammars). We prove that for many cooperating strategies the use of priority
relation increases the generative capacity, however this is not the case for the
maximal mode of derivation (an important case, because it gives a charac-
terization of the ETOL languages). We also demonstrate that in many cases
the use of hierarchical components does not increase the generative power.

1 Introduction

A cooperating grammar system (introduced in [7&, and motivated by considerations
related to two level grammars), is a set of usual Chomsky grammars which cooper-
ate in rewriting sentential forms. In {7] a component that is currently rewriting a
sentential form cannot quit until it introduces a symbol which it cannot rewrite (the
current sentential form is not a sentential form of this component). Only one com-
ponent at a time rewrites a sentential form. The set of terminal strings obtained in
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this way is the language generated by the system. It is shown in [7] that this type
of cooperating grammar systems (equiped with a control over the sequencing of the
individual components) generates the family of -programmed languages (which is
equal to the family of languages generated by matrix grammars).

The cooperating grammar systems were rediscovered in |1}, under the name
of modular grammars (a term related to the time varying grammars). A rather
intensive study of cooperating grammar systems has been initiated in 2], where the
grammar systems were related to the notions from artificial intelligence, such as the
blackboard model in problem solving [9]. (See also Chapter 1 of [3i for further links
between grammar systems and topics in artificial intelligence, computer science,
and cognitive psychology.) Within this framework, more conditions on enabling and
disabling of individual components were considered. Two, quite basic, examples of
this type are: the step limitations {(a component must work exactly, or at least, or
at most a given prescribed number of steps), and the maximal competence strategy
(a component must work as long as it can) — this is similar in some extent to the
stoping condition from [7]. The latter strategy is particularly interesting, because
it yields a characterization of the family of ETOL languages.

A number of novel cooperating strategies has been considered recently — forming
the teams of components, as in [6] and [9), is one of such strategies.

In this paper we consider two quite natural modifications of the basic model.
The first of these is adding a priority relation between the components of a system.
A component can become active only when no other component with a greater
priority can rewrite the current string. The other modification consists of allowing
components which by themselves are grammar systems, or systems of grammar
systems, etc.

We demonstrate that neither of the two modifications increases the generative
capacity when maximal competence strategy is used. For the other strategies,
adding the priority relation strictly increases the generative power.

We end this section by pointing out that both modifications of grammar systems
we consider in this paper, viz. priorities and hierarchies, are very natural. Adding
priorities in rewriting systems in order to ensure the deterministic applicability
of rules is a rather standard mechanism - e.g. it is used in regulated rewriting
in context-free grammars and in term rewriting systems. Also, the way that a
computation in a grammar system is defined on the base of computations of basic
units (grammars) may be seen as just a specific cooperation mechanism. In order to
understand its power, it is natural to consider the bootstrapping of this mechanism

- take grammar systems as basic units and obtain ”grammar systems of depth
2” by organizing their work together by a given cooperation mechanism,

and proceeding inductively

— take grammar systems of depth 4+ > 2 and organize their work together by a
given cooperation mechanism obtaining " grammar systems of depth ¢ + 1”.

Then a way to understand a given cooperation mechanism as defined in grammar
systems is to investigate the relationship between the generative power of grammar
systems of different depth. This leads one then to hierarchical grammar systems.
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2 Basic definitions

For an alphabet V, V* denotes the free monoid generated by V'; the empty string
is denoted by A, and |z| denotes the length of z € V*. The families of context-free,
contextsensitive and recursively enumerable languages are denoted by CF, CS, and
RE, respectively; ETOL denotes the family of ETOL languages.

A matriz grammaris a construct G = (N, T, S, M, F), where N, T are disjoint al-
phabets, S € N, M is a finite set of sequences, called matrices, (4; — z1,..., A, —
zn),n 2 1, of context-free rules over N UT, and F is a set of occurrences of rules
in matrices of M.

For m = (Ay = z1,..., 4, — z,) € M, and w,w’ € (N UT)*, we define
w ==, w' iff there are w;, wo,...,w,41 in (NUT)* such that w = w;, v’ = w, 44,
and for each 7,1 < 1 < n, either w; = wA;w!, wiy; = wlz;w!, or A; does not occur
in w;, w;+1 = w; and A; — z; appears in F.

If F =0, then the grammar is said to be without appearance checking (and the
component F is omitted from the specification of G).

We denote by M AT, (respectively, MAT2.) the family of languages generated
by A-free {arbitrary) matrix grammars; when the appearance checking feature is
not present we remove the subscript ac.

A (context-free) ordered grammar is a construct G = (N, T, S, P,>), where
N,T,S, P are as in a context-free grammar, and > is a partial order relation over
P. Arule A — zin P can be used for rewriting a string w only if norule B — y
in Pwith B—y > A — z can rewrite the string w. The family of languages

generated by M-free ordered grammars is denoted by ORD, and ORD? is used for
the case when A-rules are allowed.

It is known that

CF € MAT c MAT,. c CS,

MAT c MAT* c MAT), = RE,
CF c ETOL c ORD C MAT,..

For the basic elements of formal language theory the reader is referred to [11]; for
Lindenmayer systems we refer to [10? and for regulated rewriting to [4].

Definition 1 A cooperating distributed (cd, for short) grammar system s a con-

struct .
r=(N,T,S,P,P,,...,P,),

where N, T are disjoint alphabets, S € N, and P;;1 < t < n, are finite sets of
contezt-free rules over NUT. :

The sets P; are called the components of T'; we also say that I' is a ¢cd grammar
system of degree n.

For a component P; from a grammar system I' as above, dom(P;) = {A € N

A — z € P;}, and we define the derivation relation =>p, in the usual way.
hen we can consider derivations in P; of exactly k successive steps, of at least k
steps, at most k steps, and of an arbitrary number of steps; they are denoted by

=>;i", =>12,',k, =>;<;‘_k, and =}, respectively. Another important relation is
gz =% y iff £ =>p, y and there is no z € (N UT)" such that y =>p, z

(the derivation is maximal in the component F;).
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In this way we have specified stop conditions for the components, i.e. conditions
under which an active component must/can become inactive.

For f € {:,t{u {<k,=k,2 k| k>1} the language generated by T in the f
mode is defined by "

LI(I‘) = {z eT* I S =>{,'_‘ z =>{-_.‘," z7 =>{,

r>1,1<{;<n1<5<r}

...=>§,',' zZ, =1z,

()

The family of such languages, generated by systems with at most n components
(all of them without A-rules) is denoted by CD,(f) (if A-rules are allowed, then we

write CD)(f)). The union of the families CD,(f) for all n is denoted by C D, (f).

In 2] and [3] it is proved that:

CF = CDoy(= 1) = CDoo (2 1) = CDoo (#) = CDeo (< k), k = 1,
CF C CD.(=k)NCDu(2 k), n2> 2,k > 2,
CDq(=k) C MAT, CDy (> k) C MAT, k2> 1,
CF = CD,(t) = CD;(t) c CD,(t) = ETOL
(hence also CD)(t) = ETOL), n > 3.

3 Introducing orderings and hierarchies into
grammar systems

We introduce now new classes of grammar systems which will be investigated in
this paper. )

Definition 2 A grammar system with priorities (pcd grammar system) is a con-
structT' = (N,T,S,Py, ..., Py,>), where NJT,S,Py,..., P, are as in a cd gram-
mar system, and > ts a partial order relation over the set of components. For a
derivation mode f, two strings z,y € (NUT)*, and a component P; of T we write
z =>£,{,’>)

no stringz € (NUT)*, z =>£,j z holds.

y if and only if z =>{,'_ y and for no component P; with P; > P; and

Note that if z :{p'. y, then no P; with P; > P; can rewrite z in the f mode

— but there may be P; with P; > P; that can rewrite z in some way (e.g. P; can
make only one rewriting step on z while f = » > 27).

We denote by PCD,(f) the family of languages generated by (A-free) pcd
grammar systems of degree at most n in the derivation mode f. Again, we add the
superscript A when also A-rules may be used, and we replace n with co when the
degree is not bounded.
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Here is an example of a pcd gramar system. Let

I = ({S,4, B, A',B' A", B"},{a,b,¢}, S, P1, P, P3, Py, Ps, >),
P, ={A— aA'b, B— cB'},
P, = {A— A", B— B"},
P;={A'"— A, B'— B, A" —ab, B" — ¢},
Pe={A' - A", B' -+ B', A" - A", B" - B"},
Ps={A— A, B— B, S— AB),
and P4>P1, P4>P2, Py > P;.

Then _
L;(T) = {a™b"c" | n > 1},

forall f € {*,> 1}U{< k| k> 2} (and also for f € {= 2,> 2}).

Indeed, take a string a” Ab™c" B, n > 0; after using Ps, the component in which
we must start any derivation, we have n = 0. We can apply either P; or P,, using
only one or both rules from each of these components. If we use only one rule, then
we obtain either a®t1A’b"*1c™ B or a" Ab"c" ! B’ when using P;, and we obtain
either a” A"b"c™ B or a™ Ab"c" B" when using P,. In all cases, both P; and P; can
be used afterwards (and one of them has to be used, because they have the priority
over Py, Py, Py). However, nothing changes then in the current string, and so the
derivation is blocked. Consequently, when using P;, P, we must use both rules from
each of them, thus obtaining either a”t1A'b" 1c 1 Blor a™ A”b"c" B"'. Now P; is
applicable and it changes nothing, but it does not forbid the use of Py (Ps is not
applicable). If, using Ps, only one of A’, B’ in a®*?A’b"+1c"*1 B’ is replaced by
A, B, respectively, then again the derivation is blocked in the components Py, Ps,
hence we must produce a®t1 A"t 1" 1 B — this is a string of the form that we have
started with, hence the derivation can be iterated. If from a™ A"b"c™ B’ we produce
either a® 15"t 1c™ B” or a® A"b"c™*1, then the only applicable components are Ps
and P4; P, changes nothing, hence we eventually will use P; again, and get in this
way a terminal string a®¥1pntlcntl,

Definition 8 A hierarchical grammar system (hcd grammar system) of depth
h,h 20, 1s

1. a contezt-free grammar T = (N, T,S,P) if h =0,

2. a construct I' = (N,T,S,91,72,++-,¥m), m > 1, tf h > 1, where [; =
(N,T,S,%),1 <t < m, are grammar systems of depth h — 1.

Thus, at the bottom level of a hcd grammar system we have sets of context-free
rules, on the next level it contains sets of such sets, then sets of sets of sets and
so on. The systems 7;,...,vmn from the specification of T' in point 2 of the above
definition are called components or subsystems of I' of depth h — 1.

Here is an example of a hecd grammar system of depth 2:
level two : T = ({5, A4, B, A', B'}, {a,b,¢}, S,71,72),
level one : 71 = {71,1,71,2}»

T2 = {’72,1},
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level zero : 41,1 = {A — aA’b, B— cB'},
71,2 = {A' -— A,, B' — B},
Y21 ={S— AB, A— A, A—ab, B—c}.
We known how to define a derivation step in a system of depth 0 (t];is is a
usual derivation step in a context-free grammar), and we know how to define the
derivation modes =>{p, for f € {s,t}U {<k,=k,>2 k| k > 1} in a set P of rules.

Then, for a system of depth h > 2, T' = (N,T,S,v;,...,7m) we define, for the
component v;, 1 <7 < m,

=k : =k =k =k _
="y iff z = TV T, ST Y
V5.i.:1 17 < k, are components of ~;;
<k - <k __ <k <k
=3y iff z =30 Niva *t T 50, Te = Y
Vjins 1 £ 7 < s, are components of v;,r <k,
2k, 3 2k 2k 2k —
z ="y iff z =Tia Tiva "0 T 5jne Te = Y5
Y5.i,s 1 £ r < s, are components of v;,r > k,
* : . - * _
T=>.Y iff z =i Nivg *t a5, To = Y5

Y,4,51 £ r <8, are components of v;,r > 0,
z =>f1j y iff z=>] y and thereisnoze (NUT)*

=1
such that y =, Z

Continuing the previous example, let us consider the = 2 derivation mode.
Starting from S, we must use 2, which contains only one subsystem, hence
=2 =2 =2
S =27z means S =>oa T1 =, T
Hence after using S — ABand A — A Sthree times) we obtain z = AB. Now 7;
must be applied, that is we must find a derivation

=2 =2
AB :'“_.- B3 ﬁ,“’j Y2,

for ¢,7 € {1,2}. The only possibility ist = 1,7 = 2, hence we get
AB =>37? aAbcB, because AB =32, aA'bcB' =372, aAbcB.

This step can be iterated, obtaining a® Ab®c¢"B,n > 0, and then 2 can be used
for replacing A, B with ab, ¢, respectively. If the current string contains only one
nonterminal, then «; cannot be applied, hence after using <, either a nonterminal
string as above is produced or a terminal string must be obtained. It is easy to see
that the generated language is

L=o(F) = {a™b"c" | n > 1}.

We denote by H;,CD(f) the family of languages generated by grammar systems
of depth at most h, h > 1, in the derivation mode f; we also set HoCD(f) = CF,
for all f.
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4 The generative power of grammar systems
with priorities

In this section we will consider the effect of adding a priority relation on the gen-
erative power of grammar systems.

The next results follow directly from the definitions.

The example from the end of the previous section implies that PC’D,,(f} ~CF #
0, forn > 5,f € {*,>2 1}U{< k| k > 2}. Since CD,(f) = CF, for all n > 1,
and f as above (see the end of Section 2), this demonstrate that adding priorities
strictly increases the generative power. This result can be extended also to modes
of derivation other than ¢.

Theorem 1 PCD,(f) —CD(f) #8, n>10,f e {s}U{< k,=k, > k| k> 1}.
Proof. Consider the system

I'=({S,A4,4,B,B',B"},{a},S, P, Ps,..., Pio,>),
with the components and the priority relations given in the following figure, where

the components P;, P; are in relation P; > Pj iff P; is placed above P; in one of
the "composite boxes” below:

! ' . — N
Pl:gn:%u PS'B B ,Ps:i_‘ﬁB
P,A'—»A'

A—A 4: A~ A B—~ B
PQZA_'AIAI B— B

PG:B"—'B”
B”—’a
AN, A
P7'A A Pg:gl—_-:%l
B'— B
Ps: B~ B p A=A
B' — B" 10° 4 —a

Notice first that the components Py, P, Pr, Py consist of rules of the form X —
X only, hence their application doés not change the current string. The same
18 true for Ps, except for the first step of a derivation, because S never appears
later in a sentential form. Therefore, all components Py, Ps, P7, Py (as well as Pg
after the first step) check the appearance of the corresponding nonterminals and
block the components Py, Py, Py, Pio (and Pg), respectively. For this reason we will
call Py, Pa, Py, P7, Py the control components and P, Py, Ps, Pg, Pyo the rewriting
components.
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The derivation starts in P; by producing the string AB (if we have a derivation
mode = k or > k for k > 2, then we can use k — 1 times the rule A — A; this is true
for all rewriting components, because they contain rules of the form X — X, which
do not modify the current string). Assume then that we have already generated
a string A"B,n > 1. The presence of the rules A —+ A and B — B in Ps and
Py forbides the use of components Pg and Pjg; P; and P are not applicable to
A and B. Thus P, is the only component which changes the current string. The
obtained string will contain occurrences of both A and A’ (and of B). Due to the
presence of A we cannot use Pg, and due to the presence of B we cannot use P,
and Pjp; Pj is not applicable. Therefore we must again use P, until all occurrences
of A are replaced by A’. The so obtained string is of the form A’>"B. Now the
only applicable component which changes the string is Py, and.its use leads to a
string of the form A’?"B’, which allows the use of P, (and only of P;, with the
exception of control components like Py and Py which do not change the string
under rewriting) which replaces occurrences of A’ by A. As long as A, A’ and B’
are present, the only possibility is to continue to apply P4 until each A’ is replaced
by A, obtaining in this way A" B’. Now one can apply P; (and only P with the
exception of Py, Pg, Py which do not change the string under rewriting). If A2"B,
is obtained, then the above process can be iterated. If A" B’is obtained, then the
only applicable component (which changes the string) is Pjg; it must be then used
until each A is replaced by a. When A is not present anymore, one can use Fg,
finishing the derivation by replacing B" with a.

Consequently,
Ly(T) = {a®*' [n21}.

Since L;(T) is not context-free, it is not in CDy(f), for f € {*,= 1,> 1}U
{< k| k > 1}. Moreover, it is proved in [5] that the length set of every infinite
language in CD(f), for f € {=k,> k | k > 1}, contains an infinite arithmetical
progression. This implies that Ly (T) is not in CDoo(f), for f€e{=k,> k| k > 1},
which concludes the proof. :

O

Our proof of the above theorem holds for n > 10. The question: *what is the
smallest n for which Theorem 1 holds ?” remains open. Of course, the equalities
PCD,(f) = CD,(f) = CF are true for all f. Moreover, PCD;(=1) C CF.
Indeed, for T = (N, T, S, Py, P;,>) with Py > P, (the same argument holds for
Py > P;) we may assume that dom(P;) Ndom(P;) = # (the rules A — z € P, with
A € dom(P;) can never be used, hence they can be eliminated). Thus L=, (T) =
L(G) for G = (N, T, S, Py U P;) (the derivations in G and in T are the same up to
a change of the order of using the rules).

The above language {a®"*! | n > 1} is probably not in the family M AT (it is
conjectured already in [11] that the one-letter matrix languages are regular). Since
CDg(f) € MAT for all f as in Theorem 1 (and in some cases, C Do, gf) = CF),
the increase in generative power by adding priorities is quite considerable for those
derivation modes. Hence it is somewhat surprising that for the ¢ mode of derivation
adding a priority relation does not increase the generative power.

Theorem 2 PCDy(t) = CDy(t).

Ay

Proof. We have to prove only the inclusion C.
For a pcd grammar system I' = (N, T, S, Py,..., P,,>), we construct the cd
grammar system I as follows.

I‘, = (Nl,T,S',Po,P{,P{',Pé,Pé’,...,P'I”P'I:,Pn_*,l),
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N' = NU{S,X,#}U{X:|1<i<n),

Po={S'= SX}U{X; = X |1<i<n},

Pl=PU{X > #}U{X; = #|1<j<n,j#1},1<i<n,
P!'={X->X;}u{A—> #|Bedom(F),P; > P;,,1<j<n},1<i<n,
Popi={X—A}u{d—-#|Ae N}

Once introduced in a sentential form, the symbol # cannot be removed (it is a
”trap-symbol”}). The symbols X, ..., X,, identify the components Pj,..., P, of T.
In the presence of X; the component F; will be simulated by P/ and X; can appear
(introduced by P/') only when no component P; with P; > P; is applicable to the
current string.

Let us see how these principles work in I by examining in some detail a deriva-
tion. Consider a sentential form wX (initially we have w = S, obtained after using
Py, which is the only component which can be applied to $'). The component
P, +1 can be used only if w € T - hence only as the final step of the derivation. A
component P} introduces the trap-symbol #. If P; is maximal with respect to the

relation > among the components which can be applied to w, then P!’ can be used
without blocking the derivation; it changes X into X;, thus leading to wX;. Now to
a string wX; we can apply either Py, replacing again X; with X (hence not achiev-
ing anything) or the component P!, which will simulate the application of P; to w.
The string w’' X; obtained in this way can be rewritten only by P,, which leads to
w'X, and so the process can be iterated. In the presence of X;, every component
Pl,3 # 1, will introduce the trap-symbol. Consequently, Li(I') = L(I"). (Note

that the A-rule in P, 41 causes no problem, because C Do, (t) = CD2 (t) = ETOL.)
0

Let us return to families PCDy, (f) for f # t. It is quite natural to compare
these families with ORD), the family of languages generated by ordered grammars.
Given an ordered grammar G = (N, T, S, P,>), it is obvious that we have L(G) =

L_1(T) = L<1(T) where T is a pcd grammar system obtained by considering each

rule of P as a separate component and the relation > defined as in G. Therefore
ORD C PCDy(= 1) = PCDy (<L 1). This implies that the families PC D (f),
f € {=1, < 1}, strictly include ETOL (and hence C D (t)).

A similar result is obtained for the = k and < k modes of derivation for all
k>1. ‘

Theorem 3 ORD C PCDy(f),f e {<k,=k|k2>1}.

Proof. For k = 1 the statement follows by the argument as above. Consider k > 2.
Let G = (N, T, S, P,>) be an ordered grammar with

P= {rln---"n}, ritA;— i, 1<1<n, n>1
We construct the pcd grammar system
= (NT,S,Py, Py, Ps...,P,,>),
where

N'=NU{4;|1<i<n1<57<k-1},
P0={Ai'j—’A1',j I ISzSn,ISJSk—l},
Pi={A; = Aj1,Aig = Aigye o Ajpeg = Aik—1, Aoy — 2}, 1 <9<,
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and

Py > P; foral1<:1<n,
P; > Py iff r; > r;in G.

Then L(G) = L=«(T) = L<k(T).

Indeed, if we have a sentential form w to which Py can be applied, then on the
one hand no other component of I' can be used for rewriting w, while on the other
hand the use of Py does not change the string w. Consequently, the derivation is
blocked, and Po is a trap-component. As Py can be applied whenever any of the
symbols in N’ — N is present, it follows that the components F;,1 <1 < n, upon
completing their derivations cannot produce strings conta.mmg symbols in N’ —

This implies that using a component P;;1 < 1+ < n, in < k or in = k mode of
derivation, means to use all the rules from "P; exactly once, hence to replace an
occurrence of A; first by 4,1, then by A;p,..., then by A;x_1, and finally by z;.
This is exactly the effect of using the rule A; — z;. As the priority relation among
the components F; of T’ corresponds to the order relation among the rules of G, the
equalities L(G) = L=k (T) = L<k(T) follow.

O

It is an open question whether or not Theorem 3 holds also for the > k& mode
of derivation.

We will now demonstrate that all the families PCDy,(f) with f # t, are in-
cluded in M AT,.. In view of the strong generative power of matrix grammars with
appearance checking this inclusion is somewhat expected, however is really cumber-
some to write the detailed proof of this result. This is due to the fact that we have
to check whether or not all the components greater than a given component (in
the sense of the > relation) are applicable to a given string in a specified mode of
derivation. This is easy for modes *,= 1,> 1, < k, for all k, but much more difficult
for the cases = k, > k, for k > 2, when all combinations of k rules in a component
must be checked. For this reason the proof of the following theorem will be rather
sketchy, but certainly containing enough information so that the interested reader
may complete it to a detalied proof.

Theorem 4 PCDy(f) C MAT,., fe{s}U{<k,=k>k|k >1}.

Proof. (1) For f € {#} U{< k | k > 1}, consider a system I' = (N, T,
S, P1,..., Pa,>), and construct the matrix grammar

¢ = (N',Tu{c},S', M, F),
N =Nu{X,S #}u{li,s]]|1 <1 <n,0< 5 <k},
M={(8' - SX)}u
U{(X = [5,0], Ay = #,..., A — #) | {A1,...,4,} =
{Aedom(P;)| P;> P,1<7<n},1<i<n}u
U{(lt,5] = 5,7 +1],A—-z)|A—z€ P,1<i<n,
0<j<k-1}u
U{([5,5] = X)|1<i<n,0<j5<k}u
WX = o)), |
F contains all rules A — # (# is a trap — symbol).



Structuring grammar systems by priorities and hierarchies 199

We have L(G) = L<i(T){c}. The first component of nonterminals [1, 7] specifies
the simulated component, while the second one counts the used rules. The symbol
X is replaced by [1,0], starting the simulation of P;, only when no component Py
‘with P; > P; can use at least one of its rules for rewriting the current sentential
form. After using j rules of P;, for some 0 < j < k, the symbol [z, j] can be replaced
by X and another component of I' can be simulated.

If all symbols [z, 5] are replaced by [i%, and no reference is made to the number of
used rules, then we obtain L(G) = L.(I'){c}. As M AT, is closed under restricted
morphisms, the new symbol ¢ can be erased, and so L;(I') € MAT,,, for f €
{*}U{<k|k2>1}

(2) In the case of the derivation mode = k, starting from I' = (N, T, S, P, ...
ooy Pny>) with N = {4,,..., A,}, we shall use again the closure of the family
M AT,. under restricted morphisms. We construct a matrix grammar G with ap-
pearance checking working as follows. The new axiom S’ introduces a string SX,
where S is the axiom of I' and X a control symbol; X or its variants will be present
during all derivation steps. Moreover, for each symbol A € N we have its copy A..
In order to be able to check whether a component P; can be applied to the current
string w, we introduce a copy of each nonterminal appearing in w, obtaining in this
way a string w, scattered among the symbols of w; we try to use the rules of P; on
w, so that the original string w is not destroyed.

Here is a "sub-routine” for such a copying, called for by the control symbol X,
(here and in the matrices below, # is a trap-symbol):

X.— X.,,A— A'A.), foreach A€ N
( :
(Xc_’X,)Al —’#a-'-:A- _'#)’

(X' = X', A" — A), for each A€ N,
(X' = X" A, = #,...,A) = #).

(In the presence of X,, each symbol A € N is replaced by A’A.; when all symbols
A € N have been so replaced, X, can be replaced by X', and then in the presence
of X' each A’ is rewritten back to A; when this has been completed, X’ is removed
and the symbol X" is introduced.)

Then, the control symbol X" will guess a component, say P;, to be used, by
changing to X;. Now all the components P; > P; must be tested and if any of
them can be used, then the derivation is blocked. This can be done as follows.

Having an ordered list GR(F;) = (Pj, ..., P;, ), of components that are
"greater” than P;, we inspect them in this order Pj,,..., P;, . If some P;, is ap-

plicable, then the derivation is blocked; if P;, is not applicable, then we pass to
Pj,,,. Finally when also Pj, is not applicable, the control symbol is changed to

some Y;, which leads to the simulation of P;. This is done as in the < k mode,
introducing a counter which terminates the simulation of P; when exactly k rules
were used; then again the ”general controller” X is introduced in order to start the
simulation of another component. The derivation terminates (the control symbol,
the copy symbols and their variants are replaced by the new terminal ¢) when no
nonterminal from N is present in the current string.

Hence to complete the proof of the theorem for the = k mode we have to show
how to test whether or not a given component P; is applicable in the = k mode to
the current string w (hence to the corresponding nonterminal string w, containing
copies of the nonterminals in w).
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Consider the set PJ’.‘ of all sequences of k rules in P;,

PJ"‘ = {mls ma,.. -)mq})q = (card(PJ;))k’
m = (Alx - zh:"')A‘A —011.), Al' =, € Pj’l Srsk.

We have to check all these sequences - if at least one of them is applicable, then
P; is applicable. By appropriately modifying the control symbol, we check, one by
one all the sequences m;, mz, ..., my. If some my is applicable, then the derivation
is blocked by introducing the trap-symbol #; if my is not applicable, then we pass
to my4y. Finally, when mg is not applicable, then we conclude that P; is not
applicable.

We explain now the basic idea behind the checking whether or not some my =
Ay — z,.ee. .. yAi, — z,) is applicable. Assume that the current string
contains the control symbol [z, 7,1} (meaning: ”for using P;, we must be sure that
P; > P; is not applicable, and we will try the sequence rmy in PJ’F”). Consider the
set of all sequences C(m;) associated with m; as follows

Clmi) = {(A, = iy A = ) [, € {zi,, #},
1 <r <k, and at least for one r we have a;, = #}.

If my is applicable, then each sequence in C(my), considered as a matrix with the
rules A — # used in the appearance checking manner, will introduce at least one
occurrence of #. Conversely, if m; is not applicable, then there is exactly one
sequence in C(my) which can be used without introducing the trap-symbol. -

Indeed, take a rule 4;, — z;,. If it is applicable in m; to the current string w,
then it is also applicable in all sequences of C(my), whether or not it is replaced
by A;, — #. If it is applicable in m; to a symbol not in w, but introduced by
a previous rule A;, — z;,, with z;, containing A4, , then we examine this rule,
A, — z;,. If it remains unchanged in a sequence of C(m;), then it introduces
Aj,, hence also A;, — ¢, is applicable, introducing # when oy, = #. If it is
replaced by A;, — #, then the above argument can be iterated again, considering
two possible cases for A : either it appears in w or it is introduced by a previous
rule. Since each sequence in C(my) contains at least one rule A;, — # whenever m,
is applicable, at least one # is introduced. When m; is not applicable, at least one
of its rules is not applicable. If we replace all not applicable rules by A;, — #, then
we obtain a sequence in C(m;) which can be applied in the appearance checking
mode without introducing the trap-symbol.

Consequently, for checking whether or not my is applicable it suffices to guess
which sequence in C(my) is applicable in the appearance checking mode (if the
guessing 1s incorrect, then the derivation is blocked).

To this aim, the current control symbol [¢, 7, 1] is non-deterministicaly replaced
by [7,7,1; ], where h is the label of a sequence (A;, — ay,,..., A;, — aq,) in C(my).
Here 1s the "sub-routine” for this step:

([i»]‘: l; h] - [i,]',l;OK], (Alx)c - (ah)c" "!(Alk)c - (O‘lk)C)t

where (a;,). = # if oy, = # and it.is obtained by replacing in z;, (whenever
a;, = z;,) all nonterminals B € N by their copies B, and removing all the terminals;
the terminal rules B — z are replaced by B, — D, where D is a special nonterminal
(we do not introduce A-rules).
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Then, because the copy symbols have been altered, we replace all of them by D
and for checking the next sequence in P,’F (namely m; ;1) we produce a new series
of copy symbols, using the following matrices:

(¢,7,5, OK| — [1,5,;; OK], Ac — D), A€ N,

(5,7, 5, OK| — [¢, 7, L copy), (A1)e = #, -+ -y (As)e — #),
(5,7, copy} — [5,7,8; copy|, A — A", D — A.), A€ N,
(4,5, copy] — [, 7, copy], A — A’Ac), A€ N,

([5, 7,4 copy] — [, 7,4 copy’], Ay — #,..., A, = #),
([5,7, 8 copy'] = [£, 7, copy’}], A" — A), A€ N,

(I5,5, G copy’] = [5, 7,1 + 1], A} — #,..., A — #).

In this way the new copies of nonterminals in the current string of ' as simulated
in G use ”the places” of the old copies (the order is not relevant if matrices are
used only for testing their applicability); new places for copies of nonterminals are
introduced only when we do not have enough occurrences of the ”place holder”
symbol D (this is important when we pass from the simulation of P;, which can
introduce new nonterminals, to the simulation of another component). Therefore
the length of the string is not increased more than by a factor of three (more exactly,
fclwr |a stxiing z € L_4(T') we can obtain in L(G) a string with the length less than
2|z{ +1).

We believe that the description of G given above allows one to give a formal
(quite tedious) construction of a matrix grammar G with appearance checking such
that L-x(T') = h(L(G)), where h : (TU &:})‘ — T* is a 3-bounded morphism
defined by h(a) = a for a € T, and h(c) = A. Consequently, L=x(T') € M AT,..

The modifications for the > k mode of derivation concern only the counting of
rules used in P; whenever the use of P; is permitted. (A component P; > P; is
applicable in the > k mode if and only if it is applicable in the = k mode, hence
the ”checking part” of the construction from the above proof remains unchanged.)

a

5 The power of hierarchical grammar systems
We begin by pointing out the relations which follow directly from definitions:

L 2 CF = Hy,CD C H,CD = CDy C H,CD C H;CD
T I ST Re ) € FaCDU) & HODU)

For many derivation modes, this hierarchy is finite.
Theorem 5 H,CD(t) = HCD(t), for each h > 1.

Proof. We only have to prove the inclusion H,CD(t) C H,CD(t), and to this aim
it suffices to show that H,CD(t) C H,CD(t) (by induction: having a system of
arbitrary depth h > 2, if its subsystems of depth A—1 can be reduced to systems of
depth 1, then we replace them by such systems and obtain in this way a system of
depth 2 equivalent with the initial one; then again using the reduction from depth
2 to depth 1, we prove the theorem).
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Hence consider asystem I' = (N, T, S,71,...,7m) of depth 2, withv; = {~; 1, ...
T i 21,154 < m, where ; ; are sets of context-free rules over NUT.
We construct the system I, of depth 1, with the nonterminal alphabet

N ={S,#}U{[A,4]|A€e N,1<i < m},
the terminal alphabet T, the axiom §’, and the following components:
P ={8—-[51], 8 —][S2,...,8 = [S,m|},
Pj = {[Ai] o hi(z) |A—=z€m,;}, 1<i<m1<j<r,
Fi;j = {[A] = [A,5]| A€ N — (UL dom(:,,)) U
U{[4,i] = # | A€ UL dom(y;,. )}, 16,5 Smyi # 7,

where, for each 1 <4 <m, h; : (NUT)* — (N'UT)* is the morphism defined by
hi(A) = [A,?] for all A € N, and hi(a) =aforalla € T.

Each derivation in I begins by a rule S’ — [S,1], which selects a component
v: of T which is simulated first. Assume we use now a component P; ;,1 <5< r;.
All the introduced nonterminals will be of the form [A,i], A € N. The derivation
will be maximal in P; ;, hence it corresponds to a maximal derivation in «; ;. After
finishing the derivation in P; ;, another component P; , for 1 < s < r;, can i)e used,
and so on. At each moment, all the nonterminals present in the current string are
of the form [A,1], for the chosen . When no component P; ;,1 < j < r;, can be

used (this corresponds to a maximal derivation in +;), a component P,-"J-, 7 #1, of

I’ can be used. It changes all nonterminals in the sentential form from [A4,1] to
[4,7]. A component P|-”J-,1.' # 7, can be used without blocking the derivation only
when no derivation step in P;,,1 < s < r;, can be done, that is the corresponding
derivation in 7; is maximal (otherwise a rule [A,i] — #, A € dom(~;,,), for some
1 < s < r;, can be used, which introduces the trap-symbol #). Consequently, the
terminal derivations in I simulate derivations in T'.

Conversely, it is obvious that each derivation in I' can be simulated in I'.

Consequently, L (I') = Ly(I"), that is HoCD(t) € H1CD(t) = CDy(t), which
concludes the proof.

O

Theorem 6 H,CD(f) = HiCD(f) = CF, for f € {#,= 1,2 1}U{< k| k > 1},
and h > 1.

Proof. We proceed again as in the previous proof, reducing the problem to the
inclusion HgC’D(fz C H,CD(f); because we know that H{CD(f) = CF, for f as
in the statement of the theorem, we shall prove the relation H,CD(f) C CF.
Consider a system of depth 2, I' = (N, T, S,71,...,9m), with v; = {7 1,...
«veyVi,si 1y for each 1 <1 < m, where «;,; is a set of context-free rules, 1 < 5 < s;.
Let G be the context-free grammar (N, T,S,{A 2 z|A—oz€v;,1<i<m, 1<
< 84}). :
! —E\‘/B‘y derivation in I' ammounts to the use of rules from sets «y; ;, hence the
inclusion L;(I') C L(G) is obvious (and actually holds for all modes of derivation,
and not only for the modes f as in the statement of the theorem). Conversely, every

derivation in G is correct with respect to the f mode in I'; because we can reproduce
all derivations in G as = 1 derivations in I'. Consequently, L(G) = L (T'), that is

LI(F)ECF. ]
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It is an open problem whether Theorem 6 can also be extended to the derivation
modes = k and > k, for k > 2. This question seems to be related to the unsolved
problems about usual grammar systems concerning (1) the relations between fam-
ilies CDg, (= kg,' and CD, (= j) for k # j, and (2) the strictness of the inclusions
CDq (> k) € CDyo (2 k+ 1) for k > 2 (weak inclusions are proved in [3]). In the
example from Section 3 we have seen that a derivation in the = 2 mode at the level
of the system corresponds, in some sense, to a derivation in the = 4 mode at the
level of components: two rules from the first sub-component and two rules from
the second sub-component are used.

We will demonstrate now that the result analogous to Theorem 3 holds for hed
grammar systems.

Theorem 7 H,CD(f) C MAT, for allh>0 and for f € {=k,> k | k > 2}.

Proof. First of all notice that for each f as in the statement of the theorem,
HoCD(f) = CF, and H{CD(f) = CD(f) - thus (see also the end of Section 2)
HoCD(f) € MAT and H,CD(f) C MAT. Hence we may assume that A > 2.

Let ' be a hcd grammar system of depth kh, I' = (N, T, S,71,...,7m). Using a
component 7; in the = k mode for k > 2, means to use k of its subsystems. This
in turn means that k sub-subsystems are used, and so on until one reaches the
level O (of sets of rules) where we use k rules from each set chosen by the previous
steps. This means that from the sets P; on the level 0 we use sequences in the

sets PJ’F; then ”concatenating” such sequences, we obtain sequences corresponding

to the next level and so on. The so obtained sequences are matrices of rules, and
so the work of T' in the = k mode can be simulated in a matrix grammar which is
defined as follows.

For a sequence of matrices of context-free rules, m; = (r;1,...,7,,),1 <1 <
p, we define (my,...,mp) = (ri1,...,75,0,,72,15-++, 72,03, 73,15 -+ -, Tp,s,), Which is
again a matrix of rules.

For a set P of context-free rules let mat(P, k) = P* (all matrices, in all orders

and combinations, of k rules in P), and then, for a system § = (N,T,S,éy,...
.+.,6,) of depth h > 1, we define recursively »

mat (6, k) = {mat(6;, k), mat (63, k), ..., mat(5,, k)}*.

The matrix grammar G = (N, T, S, mat(T, k)} has the property L(G) = L=¢(T),
which proves the inclusion H,CD(= k) C M AT.

The inclusion H,CD(> k) € M AT can be obtained in the same way, using the
observation that every derivation in a system I in the mode > k can be decomposed
into one or more derivations in the mode = j, for k < 7 < 2k — 1. Therefore,

if we define now mat'(P, k) = U?ﬁilmat(P, 7) and we modify in the same way
the definition of mat(6, k), then we obtain a matrix grammar G’ generating the
language Lyx(T).

0

Note that in the above theorem we have dealt with matrix grammars without
appearance checking.
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Normal Forms and Minimal Keys in the
Relational Datamodel®

J. Demetrovics T Vu Duc Thit

Abstract

The normalization of relations was introduced by E. F. Codd. The main
purpose of normalization is to delete undesired redundancy and anormalies.
The most desirable normal forms are second normal form ( 2NF ), third
normal form { 3NF ) and Boyce-Codd normal form ( BCNF ) that have
been investigated in a lot of papers. The concepts of minimal key and prime
attribute ( recall that an attribute is prime if it belongs to a minimal key,
and nonprime otherwise ) directly concern 2NF, 3NF and BCNF. This paper
investigates connections between these normal forms and sets of minimal keys.
Lucchesi and Osborn showed [11] that the problem to decide if an arbitrary
attribute is prime is NP-complete for relation scheme. We proved [9] that
a set of all nonprime attributes is the intersection of all antikeys { maximal
nonkeys } and this prime attribute problem can be solved by polynomial time
algorithm for relation. From these results some problems are NP-complete
for relation scheme, but for relation these problems are solved by polynomial
time algorithms. It is known [5] that a set of all minimal keys of a relation
scheme ( and a relation ) is a Sperner system ( sometimes it is called an
antichain ) and for an arbitrary Sperner system there exists a relation scheme
the set of all minimal keys of which is exactly this Sperner system. In this
paper the following concepts are introduced.

A Sperner system K is in 2NF ( 3NF, BCNF, respectively ) if for each
relation scheme s such that K, = K then s is in 2NF ( 3NF, BCNF, respec-
tively ), where K, is a set of all minimal keys of s. This paper gives necessary
and sufficient conditions for an arbitrary Sperner system is in 2NF or 3NF
or BCNF. We prove that problems of deciding whether K, is in 2NF ( 3NF,
respectively ) are NP-complete. However, we show that if a relation scheme
is changed to a relation then these problems are solved by polynomial time
algorithms. We give a new characterization of relations and relation schemes
that are uniquely determined by their minimal keys. From this character-
ization we give a polynomial time algorithm deciding whether an arbitrary
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relation is uniquely determined by its set of all minimal keys. Osborn [14]
gives a polynomial time algorithm testing BCNF property of a given relation
scheme. This paper gives a polynomial time algorithm recognizing BCNF
and finding a set of all minimal keys and 2 minimum cover if a given relation
scheme is in BCNF.

Key Words and Phrases: database, relation, relational datamodel, func-
tional dependency, relation scheme, second normal form, third normal form,
Boyce-Codd normal form, closure, closed set, minimal generator, key, minimal
key, antikey.

1 Introduction
Let us give some necessary definitions and results that are used in next section.

Definition 1.1 Let R = {a1,...,a,} be a nonempty finite set of attributes, r =
{h1,..., hm} be a relation over R, and A,B C R. Then we say that B functionally

depends on A in r ( denoted A%»B) off
(Vha, by € r)((Ya € 4)(hs(a) = hy(a)) => (¥ € B)(hs(t) = hy(3)).

Let F, = {(A,B) : A,B C R, ALB}. F, is called the full family of functional

dependencies of r. Where we write (A, B) or A — B for A 2.B when r, f are clear

from the context.

Definition 1.2 A functional dependency over R 1s a statement of the form A — B,
where A, B C R. The FD A — B holds in a relation r if A —i—r B. We also say that
r satisfies the FD A — B.

Clearly, F, s a set of all FDs that hold in r.
Definition 1.3 Let R be a nonempty finite set, and denote P(R) sts power set. Let
y C P(R) x P(R). We say that y is an f-family over R sff for all A,B,C,D C R

1. (A, A) ey,

2. (A,B)ey, (B,C)ey= (A,C) €y,

3. (A,B)ey,ACC,DC B=(C,D) €y,

4. (A,B) €y, (C,D) € y=> (AUC,BU D) € y. Clearly, F, is an f-family
over R.

1t is known [1] that if y is an arbitrary f-family, then there is a relation r over
R such that F,. = y.

Definition 1.4 A relation scheme s 1s a pasr < R, F >, where R i3 a set of at-
tributes, and F 13 a set of FDs over R. Let F* be a set of all FDs that can be
derived from F by the rules in Definition 1.8. Denote A* = {a: A — {a} € F*}.
At s called the closure of A over s. It is clear that A— B € F+ iff B C A*.
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It is known [3] that there is a polynomial time algorithm which finds A* from

. Clearly, if s =< R, F' > is a relation scheme, then there is a relation r over R
such that F,. = F* (see, [1]2 Such a relation is called an Armstrong relation of s.
It is obvious that all FDs of s hold in r.

Definition 1.5 Let r be a relation, s =< R, F > be a relation scheme, y be an
f-family over R and A C R. Then A is a key of r ( a key of s, a key of y) if

A—':vR (A— ReF* (A R)€y). Aisa minimal key of r(s,y) if A is a key of

r(s,y), and any proper subset of A is not a key of r(s,y). Denote K, (K,, K,) the
set of all minimal keys of r(s,y). Clearly, K., K,, K, are Sperner systems over R.

Definition 1.6 Let K be a Sperner system over R. We define the set of antikeys
of K, denoted by K~1, as follows:

K'={AcCR:(BeK)=(BZ A)and(Ac C)= (3B € K)(B < C)}
It is easy to see that K~ is also a Sperner system over R,

It is known [5] that if K is an arbitrary Sperner system over R then there is a
relation scheme s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of the
set of minimal keys ( antikeys ), then this Sperner system is not empty (doesn’t
contain R). We consider the comparison of two attributes as an elementary step
of algorithms. Thus, if we assume that subsets of R are represented as sorted
lists of attributes, then a Boolean operation on two subsets of requires at most |R|
elementary steps.

Definition 1.7 Let I C P(R), ReI,eand A, B = AnB € l. Let M C P(R).
Denote M+ = {nM' : M' C M}. We say that M is a generator of I iff M+ = 1.

Note that R € M* but not in M, since it 1s the intersection of the empty collection
of sets.

Denote N={A€l:A#n{A' €l:Ac A'}}.
In [6] it is proved that N is the unique minimal generator of I. Thus, for any
generator N' of I we obtain N C N'.

Definition 1.8 Let r be a relation over R, and E, the equality set of r, t.e. E, =
{Eij : 1 <1< g < |r|}, where E;; = {a € R : hi(a) = hj(a)}. Let T, = {A €
P(R):3E;; = A, AE,: AC Epy}. Then T, is called the mazimal equality system
of r.

Definition 1.9 Let r be a relation, and K a Sperner system over R. We say that
r represents K iff K, = K. The following theorem is known ([8]).

Definition 1.10 Let K be a non-empty Sperner system and r a relation over R.
Then r represents K iff K~ = T,, where T, 1s the mazimal equality system of r.

Definition 1.11 Let s =< R, F > be a relation scheme over R. We say that an
attribute a 15 prime if it belongs to a minimal key of 3, and nonprime otherwise.
s=<R,F>1isin

1. 2NF if A— {a} & F¥ for each K€ K,, AC K, a & A, and a is nonprime.



208 J. Demetrovics, Vu Duc Thi
2. SNFif A— {a} € F* for AY # R, a & A, a 1s nonprime.
3. BONFif A— {a} ¢ F* for A* # R, a & A.

Clearly, if s 1s in BCNF (SNF, respectively) then s is in SNF (2NF, respectively).
If a relation scheme 13 changed to a relation we have the definition of 2NF, SNF
and BCNF for relation.

Definition 1.12 [4] Let P be a set of all f-families over R. An ordering over P 1s
defined as follows:

For F\F' € P let F < F' iff for all AC R, Hp:/(A) C Hp(A). where Hp(A) =
{a € R:(A,{a}) € F}.

Theorem 1.13 (7] Let K be a Sperner system over R. Let

= Nacs B
L(4) = { ifBB' €K 1:ACB R otherwise

and F = {};C, D):D C L(C)}.
Then F' 13 an f-family over R, Hp = L, and Kr = K. If F’ is an arbitrary
f-family over R such that Kp: = K then F < F' holds.

2 Results

In this section we give some results related to 2NF, 3NF, BCNF and sets of minimal
keys.

Definition 2.1 Let K be a Sperner system over R. We say that K 1sin 2NF (SNF,
BCNF, respectively) if for every relation scheme s =< R, F > such that K, = K
then s 1s in 2NF (SNF, BCNF, respectively).

Now we give a necessary and sufficient condition for an arbitrary Sperner system
is in 2NF.
Let K be a Sperner system over R. Denote K, = {a € R:34A € K:a € A}, and
K.,=R-K, K, (Knllis called the set of prime ( nonprime ) attributes of K.
Given a relation scheme s =< R, F >, we say that a functional dependency
A — B € F is redundant if either A = B or there s C — D € F such that C C A.

Theorer&x 2.2 Let K be a Sperner system over R. Then K 13 tn 2NF if and only
if K, = 0.

Proof. According to definitions of 2NF relation, 2NF Sperner system and K,, we
can see that if K,, =@ then K is in 2NF.

Now, assume that K is in 2NF. Denote K~ ! the set of all antikeys of K. From
K, K~! we construct the following relation scheme. )

For each A C R there is B € K1 such that A C B. Denote C = N{B €
K~':AC B}. Weset A— C. Denote T the set of all such functional dependencies.
Set F={(F - REc K}U(T-Q),where Q={X—-2YeTl:X >Yisa
redundant functional dependency }. From Theorem 1.13 and definition of Sperner
system we obtain K, = K. Clearly, for each arbitrary relation scheme s’ =< R, F' >
such that K, = K and A C R we have AY, C A}, where AY, = {a: 4 — {a} €
F'*t}. We showed (9] that K, is the intersection of all antikeys of K. Based on the
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construction of s =< R, F > and according to definition of 2NF Sperner system
we obtain K,, = 0. Our proof is complete.

It is easy to see that a 3NF relation scheme is in 2NF and if a set of all non-
prime of arbitrary relation scheme is empty then this relation scheme is in 3NF.
Consequently, Theorem 2.2 immediately implies the following corollary.

Corollaléy 2.3 Let K be a Sperner system over R. Then K s in SNF if and only
if K, = 0.

Definition 2.4 Let K be a Sperner system over R. We say that K 1is unique if
K uniquely determines the relation scheme s =< R, F >, 1. e. for every relation
scheme s’ =< R, F! > such that K,, = K we have F* = F'+,

From definttion of BCNF Sperner system and Definition 2.4 we obtain

Proposition 2.5 K s tn BCNF iff K 1s unique.
Now we introduce the following problem.

Theorem 2.6 The following problem is NP-complete:
Given a relation scheme s, decide whether K, s in 2NF.

Proof. For each a € R we nondeterministically choose a subset B of R such that
a € B. By an algorithm finding the closure of B over s ( see [3] ) and based on
definition of minimal key we decide whether B is a minimal key of s. From this we
can decide whether a is prime of s. According to Theorem 2.2 if for every a € R a
is prime then K, is in 2NF, in the converse case K isn’t in 2NF. It is obvious that
this algorithm is nondeterministic polynomial. Thus, our problem lies in NP.

Now we shall show that our problem is NP-hard. It is known [11] that the
prime attribute problem for relation scheme is NP-complete. Now we prove that
this problem is polynomially reducible to our problem.

Let s =< P,F' > be a relation scheme over P, and ¢ € P. Without loss of
generality we assume that P is not a minimal key of s, i.e. if A € K, then A C P.
By a polynomial time algorithm finding a minimal key of relation scheme ( see [11]
) we can find a minimal key Q of s’ from P and F'. Denote T' = {l:l € P-Q, {I} —
P ¢ F't}. Assume that T = {a;,...,a;}. Now we construct the relation scheme
s =< R, F > as follows:

R=PU{becde1,...,e4—1}, where b,c,d,ey,...,e,—1 & P and F contains F'
and the following functional dependencies:

{3,
- s 8 {2 :: }QZ’U {c
- ?{ai:ai-f-l)ei} — %’ 1<7<t -1}

It can be seen that s is constructed in polynomial time in the sizes of P and F'.
According to the construction of s =< R, F > and definition of minimal key and by
QU{c} — R, for all A € K,» we have AU{c} € K,(1). Based on QU {b} — QU {c}
and {6} — {a} if A € K, we obtain (A —a) U {b} € K,(2). By {{ai,ais1,6} —
R:1 <t < t—1} we have {ai,ai41,6;}(1 £ <t - 1) € K,. From this and (1)
Va' € P,b,c,e1,...,6:—; are prime attributes of s. According to the construction of
s and definition of 3NF relation scheme we can see that s is in 3NF. Now we prove
that K, is in 2NF iff a is prime attribute of s'.

Assume that K, is in 2NF. According to Theorem 2.2 we can see that d is
prime attribute of s. Consequently, there is a minimal key B of s such that d € B.



210 J. Demetrovics, Vu Duc Thi

It can be seen that a,b,e;,...,e:—1 € B. Since there is only functional dependency
c,d} — {b} the left side of which contains d we obtain ¢ € B. According to
b} — {a}, {c,d} — {b} and (2) it is easy to see that (BUa) — {c,d} € K,/. Thus,

@ is prime attribute of s’.

Now we assume that K, is not in 2NF, By Theorem 2.2 d is nonprime attribute
ofs.Ifa € A: A€ K, thenby {¢,d} — {a} € F* and from (2) {¢,d}U(A-a) € K,
holds. This conflicts with the fact that d is nonprime attribute of s. Consequently,
a is nonprime attribute of s’. The theorem is proved.

Theorem 2.6 immediately implies the following corollary

Corollary 2.7 The problem of deciding whether K, 1s in SNF 1s NP-complete for
given a relation scheme s,

It i3 known (8] that there is a polynomial time algorithm whick from a given
relation r finds the mazimal equality system T,. Based on Theorem 1.10 and because
the set of all nonprime attributes is the intersection of all antikeys we have the
Jollowing proposition.

Proposition 2.8 There 1s an algorithm that for a given relation r decides if K, 1s
in 2NF or SNF. The time complezity of this algorithm is polynomial tn the sizes of
R and r.

From Theorem 2.2 we tmmediately obtain the following corollary.

Corollary 2.9 There 1s a polynomsal time algorithm that decides whether a given
Sperner system 13 in ZNF or SNF. Let s =< R, F > be a relation scheme over R,
K, is a set of all minimal keys of s. Denote K, ! the set of all antikeys of s. From
Theorem 1.10 we obtain the following corollary.

Corollary 2.10 Let s =< R, F > be a relation scheme and r a relation over R.

We say that r represents s if K, = K,. Then r represents s 1ff K;* = T, where
T, is the mazimal equality system of r. In [1] we proved the following theorem.

Theorem 2.11 Let r = {hy,...,hy,} be a relation , and F an f-fomily over R.
Then F, = F off for every A € P(R)

_ [ Nace, B
Hp(4) = { if BE;; € E,: ACE;; R otherwise

where Hp(A) - {a € R: (A, {a}) € F} and E, is the equality set of r.

Let s =< R, F > be a relation scheme over R. From s we construct Z(s) =
{X* : X C R}, and compute the minimal generator N, of Z(s). We put

T,={A€eN,:ABEN,: Ac B}

It is known [1] that for a given relation scheme s there is a relation r such that
r is an Armstrong relation of s. On the other hand, by Corollary 2.10 and Theorem
2.11 the following proposition is clear

Proposition 2.12 Let s =< R, F > be a relation scheme over R. Then
K;'=T,.

It is known [5] that for given a Sperner system K there exists a relation scheme
s ( a relation r, respectively ) such that K, = K (K, = K, respectively ). We say
that s ( r, respectively ) 1s unique if K, ( K,, respectively ) uniquely determines s
(7, respectively ), i.e. K, ( K,, respectively ) is unique.

Now we give a necessary and sufficient condition for given a relation scheme 1s
unique.
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Theorem 2.13 Let s =< R, F > be a relation scheme over R. Then s 15 unique
iffforallac A,A€K;' : A—a=n{B€ K;':(A-a)C B} holds.

Proof. It is known [4] that a Sperner system K is unique iff for all B C A, A €
K~!, B is an intersection of antikeys. Denote P, = {A—a: 4 € K;!,a € A}.

It can be seen that if s =< R, F > is unique then B € P, implies B is an
intersection of antikeys, i.e. B=nN{4A € K;: B C A}.

Conversely, assume that for every B € P, we have B=n{A € K;1: B C
A}(*). Now we shall prove the following result : s =< R, F > is in BCNF iff for
all B € P,, B* = B(1) holds.

It is easy to see that if s is in BCNF then we obtain (1). Now, we assume that
for each B € P,, B* = B. Suppose C — {d} € F* and d ¢ C(2). If C* # R then
by definition of antikey and Proposition 2.12 there exists an A € K ! such that
C* C A and by (2) d € A holds. Clearly, C C A — d holds. It is easy to see that
(A-d)* — {d} holds. By A—d € P, we have (A —d)* # A — d. This conflicts
with the fact that (A — d)* = A — d. Hence, C* = R holds, i.e. s is in BCNF.

From this result and according to Proposition 2.12 we have N, C (P, U K, 1).
It can be seen that s is in BCNF. Based on definition of N, and Proposition 2.12
K;! C N, holds. According to (*) we obtain K, ! = N,. Because s is in BCNF we
can see that for all BC A, A€ K, ! : Bt = B holds. Thus, B is an intersection
of antikeys of s. The proof is complete.

According to definition of BCNF Sperner system and based on Theorem 2.13

and Proposition 2.5 we give a necessary and sufficient condition for an arbitrary
Sperner system is in BCNF.

Theorem 2.14 Let K be a Sperner system over R. Then K 1s in BCNF iff for all
a€A, Ae K~ : A-a=n{B€ K 1:(A-a) C B} holds.

By a polynomial time algorithm finding a set of all antikeys of a given relation
and according to Theorem 2.18 we obtain the following proposition.

Proposition 2.15 There ezists an algorithm dectding whether a given relation r
1s unique. The time complezity of this algorithm 1s polynomsial in the sizes of R
and r.

Theorem 2.14 and Proposition 2.15 smmediately imply the following

Proposition 2.16 There ezists a polynomsial time algorithm deciding whether a
set of all minimal keys of a given relation 1s tn BCNF.
Theorem 2.18 immediately implies the nezt corolllary.

Corollary 2.17 Let K be a Sperner system over R. Then there ezists a polynomial
time algorithm deciding whether a Sperner system H 1s unique, where H™1 = K.

Now we introduce the following problems : Given a relation scheme s ( a Sperner
system K, respectively ), decide whether s ( K, respectively ) is unique.

It is obvious that these problems are equivalent to the next problems: Given
a relation scheme s ( a Sperner system K, respectively ), decide whether K, ( K,
respectively ) is in BCNF.

It is unknown that these problems have polynomial time complexity. We con-
sider these problem as interesting open problems.

Osborn [14] gives a polynomial time algorithm deciding whether a relation
scheme is in BCNF. It is known [10, 12] that a relation scheme s =< R, F > is in
BCNF iff its minimum cover contains functional dependencies {K; — R, ..., K, —
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R}, where K;(1 <1 < t) are minimal keys of s. From this the BCNF property of
relation scheme also is recognized in polynomial time.

Let s =< R, F > be a relation scheme over R. From rules (3) and (4) of Defini-
tion 1.3 we can see that the functional dependency A — {ay,...,a:} is equivalent
to the set of functional dependencies {A — {a1},...,4 — {Ggi}. Thus, we can
assume that F only contains the functional dependencies form A — {a}.

Definition 2.18 Let s =< R, F > be a relation scheme. We say that s 1s an a-
relation scheme over R if F = {A — {b}: A# b, AB: (B — {b})(B C A)}, where
beR.

Definition 2.19 Let s =< R, F > be a relation scheme, b € R. Denote K, =
{AC R:A — {b}, BB: (B — {b})(B < A)}. K, s called the family of minimal sets
of the attribute b. Clearly, R € K,, {b} € K, and K 13 a Sperner system over
R.

Algorithm 2.20 ( Finding a minimal set of the attribute b )
Input: Let s =< R, F > be a relation scheme, A = {a1,...,a¢} — {b}.
Output: A’ € K,
Step 0: We set L(0) = A
Step ++1: Set

- Li-—a,-l ifLi—a,-l
Le+1)= { —f gb} * L(i)( gtherw-:'se.

Then we set A' = Lt).
Lemma 2.21 L(t) € K,

Proof. By the induction it can be seen that L(t) — {b}, and L(t) C ... € L(0)
. If L(t) = b, then by the definition of the minimal set of attribute b we obtain
t) € Kp. Now we suppose that there is a B such that B C L(t) and B # 0.
Thus, there exists a; such that a; € B, a; € L(t). According to the construction
of algorithm we have L(j — 1) — a; / {b}. It is obvious that by (1) we obtain
L(t) — a; € L(5 — 1) — a;(2). It is clear that B C L(t) — a;. From (1),(2) we have
B # {b}. The lemma is proved.
Clearly, by the linear-time membership algorithm in [3] the time complexity of

Algorithm 2.20 is O(|R[*|F)).

Algorithm 2.22 ( Finding an a-relation scheme )

Input: Let s =< R, F > be a relation scheme.

Output: an a-relation scheme s' =< R, F' > such that F't = Ft,

Step 1: By rules (8) and (4) of Definition 1.8 from s we construct s” =<
R, F» = {A — {b}: b€ R} > such that F** = F+.

Step 2: For each A — {b} € F” we use algorithm 2.20 to find a minimal set A’
of attribute b over s”. Set F* = {A’ = b:Yb € R}.

Step 8: Set ' =< R,F' =F* - Q) >, where Q={X Y e F*: X ->Y isa
redundant functional dependency }.

According to definition of a-relation scheme, based on Definition 2.19 and
Lemma 2.21 we can see that s’ is an a-relation scheme and F't = F+,

It can be seen that the ttme complezity of Algorithm 2.22 1s polynomaial in the
sizez of R and F.
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Theorem 2.28 Let s =< R, F > be a relation scheme. Then s 13 tn BCNF if and
only if there exists an a-relation scheme &' =< R, F' > such that F't = Ft and
for every A — {b} € F! A € K, holds.

Proof. Assume that s is in BCNF. By Algorithm 2.22 we can construct an a-
relation scheme s’ =< R, F’ > such that F'* = F* By Step 3 of this algorithm
for each A — {b} € F' b & A holds. Since &' is in BCNF we have At = R. Clearly,
if there is a C C A such that C* = R then C — {b} holds. This is a contradiction.
Thus, A € K, holds.

Conversely, we assume that there is an a-relation scheme s’ =< R, F' > such
that F+ = F'* and for every A — {b} € F' A € K, holds. By Lemma 3 in [14] &'
is in BCNF. Thus, s is in BCNF. Our theorem is proved.

In Theorem 2.23 we set K = {A: A — {b} € F'}. We have the following.
Proposition 2.24 K = K,.

Proof. By definition of BCNF relation scheme K,» = K, holds. From Theorem
2.23 K C K, holds. Suppose B € K,,,B C R and B ¢ K. Because K,  is a
Sperner system over R we can see that K U B also is a Sperner system over R. It
can be seen that according to definition of a-relation scheme Bt = B over s'. This
conflicts with the fact that B is a minimal key of s'. The proof is complete.

Theorem 2.23 immediately implies the following.

Proposition 2.25 Let s =< R, F > be a relation scheme. Then s 1s in BCNF if
and only if there ezists an a-relation scheme s’ =< R, F' > such that F'* = F*¥
and for every A — {b} € F' A is a key of &'

It can be seen that based on definition of a-relation scheme, in Proposition 2.25 if
A — {b} € F' then A is a minimal key of ¢'.

Clearly, the time complexity of Algorithm 2.22 ( finding an a-relation scheme )
is polynomial and deciding whether a set of attributes is a key also takes polynomial
time, It is known [10, 12| that a relation scheme s =< R, F' > is in BCNF iff its
minimum cover contains functional dependencies {K; — R,..., K¢ — R}, where
K;(1 <1 £t} are minimal keys of s. We can give a polynomial time algorithm rec-
ognizing the BCNF property of arbitrary relation scheme s, and if relation scheme
s 1s in BCNF then this algorithm finds a minimum cover and a set of all minimal
keys of s.

Algorithm 2.26 Input: Let s =< R, F > be a relation scheme.

Output: Deciding whether s 1s in BCNF, if s 13 in BCNF then finding K,, and
an a-relation scheme s' =< R, F' > such that s’ 13 a minimum cover of s.

Step 1: Use Algorithm 2.22 we construct an a-relation scheme 3" =< R, F” =
{A— {b}:b€ R} > such that F*T = F*.

Step 2: If there 15 an A — {b} € F” such that A s not a key of s” then s isn’t
in BCNF and stop. In the converse case go to the following step.

Step 8: Set K, = {A: A — {b} € F"}.

Step 4: Denote elements of K, by Ay,...,A¢. Set F' = {A; 2 R: 1<1i<t}.

It can be seen that s' =< R, F' > s a mintmum cover of s.
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3 Conclusion

Our further research will be devoted to the following problems:
Given a relation scheme s.

1. What is the time complexity of deciding whether s is in unique?
Given a Sperner system K over R.

1. What is the time complexity of deciding whether K is unique?
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On Strong-Generalized Positive Boolean
Dependencies*

Le Thi Thanh -

Abstract
Strong-Generalized Positive Boolean Dependencies are introduced.

Key Words and Phrases: relation, data base, functional dependency, Boolean
dependency, positive Boolean dependency, generalized positive Boolean dependency,
Armstrong relation, strong generalized posstive Boolean dependency.

1 Introduction

In the theory of relational databases, connections between functional and multival-
ued dependencies and a certain fragment of propositional logic have been investi-
gated in several papers.

The full family and the possible mathematical structure of functional depen-
dencies was first axiomatized by W.W.Armstrong [1]. Different kinds of functional
dependencies have also been investigated. The full family of strong dependencies
has been introduced and axiomatized [5,7,8,9,14,15].

The family of Boolean dependencies is introduced {13]. In [2,3], the large sub-
class of positive Boolean dependencies, that is, Boolean combinations of attributes
and the logical constant TRUE in which neither negation nor FALSE occur are
studied. In [4], the class of equational dependencies is introduced. This class in-
cludes the class of functional dependencies as well as the Boclean dependencies, the
positive Boolean dependencies and the classes of dependencies considered in [6,10].

In the papers mentioned above, the connection between dependencies and the
fragment of propositional logic is built on the set of truth assignments T of a given
relation R. Namely, for each pair of distinct tuples of R, the set Tg contains the
truth assignment that maps an attribute A to TRUE if the two tuples are equal on
A and to FALSE if the two tuples have different values for A.

In [11] a large class of mappings for constructing the truth assignments of rela-
tions was introduced. This class includes the equality mappings mentioned above.
The class of Generalized Positive Boolean dependencies is introduced on these map-
pings.

In this paper we introduce a class of strong-Generalized Positive Boolean de-
pendencies. We present a characterization of Armstrong relations for a given set
of strong Generalized Positive Boolean dependencies.

*Research supported by Hungarian Foundation for Scientific Research Grant 2575.
tComputer and Automation Institute, Hungarian Academy of Sciences, H-1111 Bu-
dapest, Ligyményosi u. 11. Hungary.
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The paper is structured as follows. In Section 2 we give some basic definitions.
The concept of strong Generalized Positive Boolean dependencies is introduced in
Section 3. In Section 4 we investigate connections between full families of strong
Generalized Positive Boolean dependencies, s-semillatice and strong operations.
Armstrong relation, the update problem and membership problem for strong Gen-
eralized Positive Boolean dependencies are studied in Section 5, Section 6 and
Section 7.

2 Basic Definitions

We assume that the reader is familiar with the relational model of database systems
and with the basic concepts of relational database theory [12,16]. In this paper we
use the following notation.

Let U = {A1,..., A} be a set of attributes. Corresponding to each attribute A;
is a set d;, 1 <1 < n, called the domatn of A;. We assume that every d; contains
at least two elements. )

A relation R over U is a subset of d; X ... X d,,. Elements of R are called tuples
and we usually denote them by u, v or t. The class of all relations over U is denoted
by R. For k > 0, R denotes those relations in R that have at most k tuples. If
Re R, t€ R, A€l and X C U, then we denote by ¢[A] the value of ¢ for the
attribute A, and by ¢[X] the set {¢{A]| 4 € X}.

By 7 we denote the set of all formulas that can be constructed from U using
the logical connectives A, V, —, -, and logical constants 1 (TRUE) and 0 (FALSE).

For X = {A:,,...,Ai,} € U, AX denotes the formula 4;, A...A 4;,, and VX
denotes the formula A;, V...V 4;,.

Let 8 = {0,1}. A valuation is any function z : U — B. The notation z =
(z1,...,2Zn) € B™ means that z(4;) = z;, A, €U, 1<1<n.

If f€ ¥ and z € B", then f(z) denotes the truth value of f on the valuation z.
For a finite subset- L of 7 and for a valuation z in 8", we denote I(z) = A{f(z) |
f ez} :

Let}, f be a formula in 7. We denote Ty = {z € B™ | f(z) = 1}. For a subset T of
7, we denote Tg =N{Ty | f € £}. Then z € Tt if and only if (Vf € Z) (f(z) = 1)).

Definition 2.1 Let f and g be two formulas. f implies g, written f g, of Ty C T,,.
f and g are equivalent, f = g, if Ty = Ty. For Z,T C #,E+F T if Ty C It, and
=T 1Tg =Tr.

Let e = (1,...,1) be the valuation that consists of all 1. A formula f in 7 is
positive if f(e) = 1. Let 7, denote all positive formulas on U. We know that 7, is
equivalent to the set of all formulas that can be built using the connectives A, Vv, —
and constant 1 [10].

For each domain d;, 1 € ¢+ £ n, we consider a mapping «; : d;? — B. We
assume that the mappings a; satisfy the following properties.

(i) (Va € d;) (@i(a,a) = 1),
(1) (Va,b € i) (ai(a, b) = ai(b,a)), and
(iii) (3a,b € d;) (ai(a,b) = 0).
Example 2.2 It ts easy to see that the equality mappings on d;,

: _J 1 sfa=b
o;(a,b) = { 0 otherwise
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a,bed;, 1<1<n

satisfy the properties (i) — (ii5).

Example 2.8 Let U = {A, B,C}, where d4 ts the set of positive integers, dp 1s
the set of real numbers and a null-value 1, and dc 1s the set of words w on a
nonempty alphabet P, where the length of w 38 not greater than k, k > 1. We define
the mappings a s, ap, and ac as follows.

(a,b) = 1 if both a and b are ssmultaneously odd or even numbers
@Al =1 0 otherwise

ap(ab) = 1 if both a and b are simultaneously real or 1
BAPI =1 0 otherwsse

(a,b) = 1 if both a and b have the same length
*ClOT =\ 0 otherwise

It is not hard to versfy that the mappings ay, ap, and ac satisfy the properties

(i) - (5i).
Let R € R. For u,v € R we denote by a(u,v) the valuation
(a1(u[A1],v[A1]), ... ) an(u]4n], v[4n]))-

Now for R € R we denote T = {a(u,v) | u,v € R}. Note that for every u in R,
a(u,u) = ¢, so eis in Tr.

Definition 2.4 Elements of 7, are called generalized positive Boolean dependencies
(GPBD).

Definition 2.6 For R € R and f € %,, we say that R satisfies the GPBD f,
written R(f), of Tr C Ty.

Definition 2.6 Let R € R and T C 7,, we say that R satisfies the set of GPBDs
B, written R(Z), +f R(f) for all f € . This 13 equivalent to Tp C Tg.

For £C 7, and f € 7,, £ |= f means that, for all R € R, if R(X) then R(f).
T |=2 f means that, for all R € R,, if R(Z) then R(f). In other words, T |= f if
and only if for all R € R, Tg C Ty implies Tp C Ty.

For the equality mappings mentioned in Example 2.2 several classes of Boolean
dependencies were investigated. Boolean dependencies were introduced in [13]. Pos-
itive Boolean dependencies are studied in {2,3]. Equational dependencies were in-
troduced in [4]. Boolean dependencies of a special form ‘are studied in [6,10]. These
papers consider dependencies equivalent to the Boolean dependencies AX — AY
(functional dependency), AX — VY (weak dependency), VX — AY (strong de-
pendency), and VX — VY (dual dependency). In [3], the authors shown that the
consequence relation for positive Boolean dependencies is the same as the conse-
quence relation for propositional logic.
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3 Strong-Generalized Positive Boolean Depen-

dencies
Definition 3.1 Let R = {¢;,.. Lbc a relation over the finite set of atiributes
U, and X, Y C U. We say that GPBD VX — AY is strong-GPBD (for short s-

GPBD) in R denoted f5(X,Y) = VX—'AY or X—vY or XY if

(Vti,t; € R)(34 € X)(aa(t:|A],t;]4]) = 1) —
(VB € Y)(ap(t:|B], t;|B]) = 1).
Let Sg = {X—;rY}. Sg 18 called a full famsly of s-GPBDs of R.

Definition 3.2 A s-GPBD over U is a statement of the form X Y, where X,Y C
U. The s-GPBD X =Y holds in a relation R iin»Y. We also say that R satisfies

the X Y.

We now introduce five inference s-axioms for s-GPBDs, Let U be a finite set of
attributes, and denote by P(U) its power set. Let G C P(U) x P(U). We say that
G is a full family of s-GPBDs over B if forall X,Y,Z,W ClU,and A€l

(S1.) f*(A,4) €G

(S2) f(X,Y)€G,f(Y,2)€GY #0 — f(X,2Z) G
(83.) f*(X,Y)€G,ZCX,WCY — f(Z,W)eq

(S4.) f(X,Y)€EG,f(Z,W)eG — f(XUZYNW)EG
(S5.) f*(X,Y)€G,f(Z,W)eG — f(XNZYUW)EG

Let £, be a set of s-GPBDs over U. The closure of X,, written £}, is the
smallest set containing I, such that s-axioms cannot be applied to the set to yield
an s-GPBD not in the set. Since £} must be finite, we can compute it by staring
with I,, applying S1, S2 and S5 and adding the derived s-GPBDs to X, until no
new s-GPBDs can be derived.

It can be seen {11] that there is a relation R over U such that Sg = I7. Such
a relation is called Armstrong relation for L,.

Definition 3.8 X %Y 15 a s-GPBD over U if X and Y are both subsets of U. 2,
13 a set of s-GPBDs over U if every s-GPBD in L, ts s-GPBD over U.

Definition 3.4 If ¥, 13 a set of 3-GPBDs over U and G 1s the set of all possible
s-GPBDs over U, then X7 — I}, I s the ezterior of T,.
If ¥, is a set of s-GPBDs over U and X is a subset of U/, then there is s-GPBD

X =Y in I} such that Y is maximal: for any others-GPBD X % Zin £},Y D Z.
This result follows from S5. Y is called the closure of X, and is denoted by X*.

Definition 8.5 Let T, be a set of s-GPBDs over . X C U, A€ U. Then {A} =
(Bel|{A}>{B)ez}}), Xt ={Bel|X>{B}eZL?})
{A}" is called the closure of {A}.
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Theorem 3.8 Inference azsoms S1 to S5 are complete.
Proof: Given a set I, of s-GPBDs over U, for any ssGPBD X %Y in Z;. We

shall axhibit a relation R that satisfies £} but not X -+ Y. Hence, we can see that
there are no s-GPBDs implied by X, that are not derived by Z,. Relation R will

satisfy most of the s-GPBDs in I}, for a s-GPBD (W = Z) in T}.

Let U = {A1,As,...,An} a.nd let a;,b;,¢; be distinct elements of dom(4;),
1 <t < n. There w1ll be only two tuples in R, t; and t3. Tuple ¢; will be
< a1az...a, > . Tuple t; is defined as

VA; € X1, a,,(t1]A] taA]) =1

and
VA; & X+ aA.(t]_[A,-] tglA"]) =0.

First we show that R does not satisfy X — Y. From the definition of R, 3B € X
that aB(tl[B] t2[B]) = 1. Suppose ac(t;[C],t2[C]) = 1for all C €Y, and hence
YCX

But since (X = X*) € T}, by S3, we obtain that X -Y is in T}, a contradic-
tion to X Y is in I .

Now we show that R satisfies all the s-GPBD in L}. Let {B} € X, hence by
Definition 3.5. we obtain that {B}" = X*. By the definition of s-GPBDs, we have
(W2 X*) € TF. Since (W = Z) € T}, and by S5, we obtain (W (Xt U Z)) €
Lh so (Xt UZ)eW?. Hence ZC X%, and ac(t,[C),t2[C]) =1forall C € Z.

0

4 Strong-Generalized Positive Boolean Depen-
dencies and s-semilattice

Definition 4.1 Let I C P(U). We say that I 13 a N-semslattice over U if U € I, and
X,YelI—XnY €l Let M C P(U). Denote by M* the set {nM' | M' C M}.
Then we say M generates I tff M =1,

Theorem 4.2 [4] Let I C P(U) be a N-semilattice over U. Let N = {X € I :
VZWel: X=2Z0W — X =Zor X =W}. Then N generates I and if N'

generates I, then N C N'. N is called the minimal generator of I (It 1s obvious
that Ul € N).

Definition 4.8 [15] Let I C P(U). We say that I 1s an s-semalattice over U of I
satisfies

(1.) I i3 a N-semilattice,
(2.) foral X C N\ U
(BA€ X)(VZ e N\U)(X ¢ 2) — (A2 2),

where N 1s the minimal generator of I.
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Definition 4.4 [15] The mapping F : P(U) — P(U) s called a strong operation
over U if for every A,B € U and X € P(U), the followsng properties hold:

(1.) F(8) =,

(2) A€ F({4)), |

(s.) B e F({A}) — F({B}) c F({4}),
(4.) F(X)= N F({4}).

AeX

Theorem 4.5 [15] Let F be a strong operation over U. Let Ir = {F(X) | X €
P(UZ}. Then Ir is an s-semilattice over . Conversely, if I is an s-semilattice over

U, then there is ezactly one strong operation F such that Ir = I, where F(0) = U,
and forall A€l

N W f3IW:AeW (N the minimal generator of I),
AEW
WeN\U
v otherwise.

F({a}) =

Theorem 4.6 Let G C P(UT) x P(U). G 1s a full family of s-GPBDs over U. Let
(X,Y)e P(U)x P(UY\G. There 1s an A € X, and an E4 C U such that

(‘l) A € E,4,
(i) ({A}>E4) €G,
(i5.) E' D E4 implies that ({A} 2 E') ¢ G.

Proof: If for any A € X we have ({A},Y) € G. By S5 we have (X,Y) € G. Hence
there is an A € X such that ({A} >Y) & G. If for every B€ Y, ({A} 2{B}) € G
holds, then by S4 ({A} >Y) €G.

Thus there is a B € Y such that ({A}{B}) ¢ G. By S1 and S3 there is an

E4 C U such that A € E4, ({4} —’»EA) € G and E, is maximal to this property.
0

Theorem 4.7 Let G C P(U) x P(U). G is a full family of s-GPBDs over U if and
!
only if there is a family {E; : i = 1,...,1; |J E; = U} of subsets of U such that

(i.) foral X CU, (8-> X) €G,

(#i.) forany X,YC [} — (X>Y)E€EQG,
E;NnX#¢

(1) (Z>W)EG, ZNE# 0 — W C E,.
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Proof: Only if: Assume that G is a full family of s-GPBDs over . Then by
Theorem 4.6, S1, S3, and S5 for each A € U we can construct an E;(E; C U) such

that ({A} % E;) € G, and VE' | E; C E' implies ({A} > E') ¢ G. By Theorem 4.8,
it is obvious that A € E; and we have n such E;-s, where n =| U | . Thus, we
have the set E = {E; : ¢+ = 1,...,n; |J E; = U}. Assume X = {4;A4;... Ay :
=1
A;ell,j=1,...,k} # § and Y; is a set such that (X >Y;) €G,VY;:Y; C Y;
implies (X = Y2) € G. By the construction of E, we have that for each A; there
k k
is an E; € E such that ({A} > E;) € G. By 54 we have (] 4;,> ) E;) =
=1 7=1
k k
(X—‘—v (N E;) € G. By Theorem 4.6 and the definition of Y; we have | E; C Y;.
=1 : =1

By (X Y1) € G and by S3, we have ({4;} Y1) € G for all 5( = 1,...,k).
k k

Thus, Y7 C [ E; holds. Hence, Y; = [} E;. It is obvious that
Jj=1 =1

Thus, for all

Hence (X >Y) € G holds.

If (ZHW)EGQG, ZNE; # 8. Let A} € ZN E;. Suppose that W n (U \ E;) # 0.
Let D, e Wn (U \ E).

By S3 we have ({4;} ={D1}) € G, and by S1 we have ({41} ={4:}) € G. Let
A € E;, then ({A} = E;) € G implies that ({4, 4;} >{A4;}) € G by S5. Hence by
S3 we have ({A} 2{A1}) € G. Since ({A} >{A1}) € G, ({A1} >{D,}) € G and
by S2 we have ({A} ={D1}) € G. Thus, by S4 we have ({A} > E; U{D;}) € G.

On the other hand, by Theorem 4.6 we have ({A} = E;) € Gand VE : E; Cc E'
implies ({4} 2 E') € G. Hence W C E;.

!
If : Assume that there is a family {E; : 1 = 1,...,l: |J E; = U} such that
2

satisfies g;t), (¢2) and (d21).
By Theorem 4.6 we can construct an E;(E; C U) so that VA € U,

({4}~ E)eg,

and VE' : E; C E' implies ({4} > E') ¢ G.
It is obvious that A € E;, and easy to see that I = n, where n =| U |.
Then, from (i1), easy to see that VA € U, we have ({A} >{A}) € G. Assume

S5 does not hold, that is if (X >Y) € G and (Z W) € G then
(XnZ)Suw)) eq. (4.7.1)
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Suppose XN Z =@ and Y UW = U. From (4.7.1), we have (# - U) & G. This
contradiction to (z), so S5 holds.

Assume S4 does not hold, that is if (X -Y) € G and (Z > W) € G, then
(XnZ)S(Yuw)) ¢ G. (4.7.2)

Suppose XU Z = z,
Ynw=wgc [) E.
EnX#9

From (4.7.2), we have (Z' BN W') & G. this contradiction to (3z), so S4 holds.
From (1), (212) it is easy to see that S2, S3 hold too.

Theorem 4.8 Let G be a full family of s-GPBDs over U. We define the mapping
Fg : P(U) x P(U) as follow:

Fe(X)={Ael|(X>{4}) eG}.

Then Fg 1s a strong operation over U. Conversely, if F is an arbitrary strong
operation over U, then there i3 ezactly one full family of s-GPBDs G such that
Fg = F, where

G={(X>Y)|X,YeP(U):Y C F(X)}.
Proof: 1. Assume G is a full family of s-GPBDs over {/. We show that F is a
strong operation. Since Fg(X) = {4 € U | (X >{A}) € G}, so

Fo({A}) ={B el |({A}{B}) e G}. (4.8.1)
By S1, we have that VA € U, A € Fg({A}). By (i) in Theorem 4.7,

vecu,(>c)eq.

So we have F(#) = U. By Theorem 4.6, and by (4.8.1), we obtain that for 4 € U,
FGLEA}) = E4. So, by (i1) in Theorem 4.6, we have for B € U, ({ B} = Fz({B})) €
G. ({hu}s), assume B € Fg({A}), and by (i1:) in Theorem 4.7, we have Fg({B}) C
Fe({A}).
On the other hand, from (4.8.1) and Theorem 4.6, we have for A € U,
A} Fo({A))) € G.
Ao A2

C U, then by S5 we obtain

(x> ) F({a})) €G.

AeX

That is
N F{A}S Fe(X).
A€X

By the definition of Fg(X), we have (X = Fg(X)) € G. Since for VA € X, X n
Fc({A}) # 0, by Theorem 4.7, we obtain Fg(X) C Fg({A}). So
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Fo(X) S [ F({4}).

AEX

Hence

Fx)= () P(A)).

AEX

2. Assume that F is a strong operation over U,and G = {(X >Y) | Y C F(X)}.
We have to show that G is a full family of s-GPBDs. That is, we show that it
satisfies (1), (12) and (471) in Theorem 4.7.

By Theorem 4.6 and Theorem 4.7, we set

E={F{A}):AelU,n=|U|}.

Assume

[\ F({A)C F(X).

F{ADNX#D

Since G = {(X >Y)|Y C F(X)}. Soif

Yyc [} F(ay,

F({A})aX#9

then it satisfies (7¢) in Theorem 4.7

Assume (V,W) € G, and VN F({A}) # 0. Let Be VN F({A}),so BeV
and B € F({A}). Thus, by (:72) in the definition of strong operation B € F({A})
implies F({B}) € F({A}). By the definition of G, we have W C F(V). By (21¢) in
the definition of strong operation, we have

FvV)= (] F{D}).
Since B €V, so

(| F{DY)<S F({B}).

DeVv

Hence D C F({A}), i.e. it satisfies (1iz) in Theorem 4.7. It is clear that YA € U,
(#={a}) eaq. D

5 Armstrong relation for s-GPBDs

Definition 5.1 Let T, be a set of s-GPBDs on U, and let R be a relation on . R

ezactly represents £, if Sg = L. If R ezactly represents T, then we also say that
R 1s an Armstrong relation for 53,.
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Definition 5.2 Let R = {t1,...,t;} be a relation over U. We set E;; = {A el |

ayp (ti[A]’tJ'[A]) =1},and Ep = {EtJ» 1<4,5 < m}. We denote E(A) = N E;;
AE€E;;

if there ts a such E;;, in the converse case set E(A) = U, where A € U. Denote

Ey = {E(A) | A€ U)}. Ey 1s called the a-attribute-equality set of R.

A strong relation scheme is a pair (U, Z,), where U is a set of attributes and X,
is a set of s-GPBGs on U.

Definition 5.8 Let H =< U, L, > be a strong relation scheme, X C U. We set
Xt ={Ael|(X>{A}) € T}}. X* is called the closure of X. Denote I(H) =

{X*|Xe P(N)} It can be seen that I(H) (for short I(3,)) 1s a s-semilattice over
U. Denote by N(H) (for short N(E,)) the minimal generator of I(H

It is easy to see that N(H) satisfies (2) in Definition 4.3 and Xt NnY* =
(Xuy)t,x+= N {4}".
AeX

Theorem 5.4 Let G be a full family of s-GPBDs, and R = {t1,...,t,} be a
relation over U. Then R represents G sff for each A€l

N E;; +f3E;: A€ Ey,
FG({A}) = A€EE;;
U

otherwsise.

Where FGSX) = {A€ U | (X {A}) € G}, and E;; is the equality set of R.
Proof: Only 1f: By Theorem 4.8 Sp = G if and only if Fg, = F, where F is
strong operation over {{. We have show that Fg,({a}) = FG({A}) for all A € U.

Clearly,
Fs,({A}) = {Bel: ({4} >{B})}. (5.4.1)

According to the definition of s~GPBDs we know that for any A € U, and A # ¢
({A}=>Y) iff

(th,tg € R)aA(tllA],tglA]) =1— (VB € Y)(!B (tI[B],tg[B]) = 1.
Let T = {E;; | A € Ei;}. It is easy to see that if T = @, then Fs, ({A}) = U holds.
If T #49. Let
X= () E;j-
A€E:j

If T = E (E is the set of all a-attribute equality sets of R), then ({4} 2 X). If
T C E, then for all E;; € T, we have ay (tllA],th'A]) # 1. By (5.4.1), we obtain

Fs,({4})= () Ei-
AEE;;
If: If Fg holds to (5.4.1), then we have Fg({A}) = Fs, ({A}). By Theorem 4.8,

we obtain Fg = Fg,.
O
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Definition 5.5 Let R be a relation, an F a strong operation over U. We say that
the relation R ezectly represents F sff Fg, = F.

Lemma 5.6 [15] Let F be a strong operation and R a relations over U. Then R
represents F iff forall A€ U,

n E.'_,' ‘l'f BE‘-,' tA€e E.'j,
F({A}) = AEE;;

U otherwsise.

Theorem 5.7 Let I, be a set of s-GPBDs on U, and let R be a nonempty relation
on U. Then R is an Armstrong relation for T, if and only if

N(Z,) € ER € I(Z,).
Pro'{ Only if: If R is an Armstrong relation for X,, then by Definition 5.1
Sp = We set Fp+ = X for all X € P(U) and .
Fsp(X)={AclU]| (X-'*{A})}-

By Theorem 4.8, Sg = &} if and only if Fs, = F, where F is a strong operation
over U. Tt follows that FE+ = Fg,.

By Theorem 4.5 and Definition 5.3, I(Z,) = Ir,, and N(Z,) = N, where N is
the minimal generator of IpsR . In other hand, since

FSR (X) = n an ({A})
AeX

for all X € P(U), so we have to show that Fg,({A}) = E(A) for each A€ U.
Clearly, Fs, ({A}) = {B € U | ({A} ={B})}. By the definition of s-GPBD, we
know that for any A € U, A # 0, ({A} >Y) iff

(Vti, t; € R)(aa(ts[A),t5[A]) = 1) — ((VB € Y)(ap(t:(B],t;|B]) = 1)).
Assume Q = {E;; | A € E;;}. It is obvious that if Q = @ then Fr({A}) =U. If
Q = 0, then assume that
x= () Ey

‘ A€E;;

then it is obvious that ({4} X) and for all Ey; : E;; € Q,
(xa(t:[4], t5]4]) # 1).
Hence,
Fsa({A}) = n E;; = E(A)
A€E;;

for all A € U. Therefore, by Definition 5.3, ER C Ir,.
Now we show that N(X,) C E}. By Definition 4.3, Theorem 4.2, and Theorem
4.5, clearly to see that N(X,) C Ej.
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If: Assume that N(Z,) C Ej C I(Z,). Since E}, C I(%,), and I(Z,) = {X* :
X € P(U)},

t={Ael|(XS{A}) ez},

Thus we obtain E = {Fy+({A}) : A € U}. By above proof for each A € U, we
have that E(A) = Fs,({A}). Hence,

(Fys ((A)) : A€ U} = (Fs, ({A)) A € U},

Suppose A € U that Fp+({A}) # Fs,({A}). By Definition 4.4 and Theorem 4.5
we assume that Fp+ = Y, where Y € N(Z,). Since N(Z,) € Ef, so Fg+ € E},.
Clearly to see that FE+ ({A}) = E(A). This is a contradiction. Therefore, we obtain
that F+({4}) = an_({A}) for each a € U. Thus, Fy+ = Fs,, and by Theorem
48, Sp =T%. '

* O

Algorithm 5.8 (Finding T,)
(Input :) Given relation R = {t,...,t,} over U.
(Output :) Construct £,, such that Sp = L}
(Step 1 :) From R we compute Eg.
(Step 2 :) From Egp we construct E}, = {E(A) : A€ U}.
(Step 8 :) Set T, = ({A} ~.E(4)) | Ael)
Clearly, the time complexity of this algorithm is polynomial in the size of R.
Algorithm 5.9 (Finding {A})
(Input :) Given T, = {(A: > B;)|i=1,...,m}and A€ U.
(Output :) Compute {A}*
(Step 1:) Aell, let Ly = {A}
(Step i+1 :) If there is an (A; > B;) € L,
so that A; N XC) £ @ and B  XO) then

xtH=xu( |J By
A,-nx“)

In the converse case we set {A}T = X(t),

It can be seen that the time complexity of this algorithm is polynomial in the
sizes of ¥, and U.
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6 Update Problem

In [11], the update problem is introduced for a set of GPBDs X. Let R be a relation
that satisfies a set of GPBDs X and t be a tuple d; X ... x d,,. We say that ¢ can
be added to R if RU {t} satisfies Z.

Theorem 6.1 [11] Let R be a relation satisfying a set of GPBDs L, and let t be a
tuple indy X...Xdy. Thent can be added to R if and only if (Vu € R)(a(t, u) € Tx).

Let T, be a set of s-GPBDs, T, = {X; >Y;}, where X;,Y; C U. Let M =
UX;, N = UY;. By Theorem 6.1 and definition of s-GPBDs, we get the following
result.

Theorem 6.2 Let R be'a relation satisfying a set of s-GPBDs £,, &, = {X; > Y;},
and let t be a tuple in dy X ... X d,. Then t can be added to R if and only if
(Vu € R)(VA € N)(aa(t[A], u[4]) = 1).

It is easy to see that, if (Yu € R)(VA € M)(aa(t[A], u[A]) = 0). Then ¢ is added
to R too.

7 Membership Problem for s-GPBDs

In [11], the membership problem for GPBDs is introduced. Given a set of GPBDs
L and a GPBD f, decide whether T = f.

From Algorithms 5.8, 5.9 and X+ = U{A}" 4 € X. We have the following.

Proposition 7.1 Let &, be a set of s-GPBDs on U and X, Y C U. Then, there 1s
an algorithm deciding whether that X Y € £} .

The time complexity of this algorithm is polynomial in the sizes of ¥, and U.
Theorem 7.2 (11] Let T be a set of GPBDs on U, and X,Y,Z C U. Then

LZEAX -AY &
(vz € Tc)(((34 € X) (2(4) = 0)) v (VB € ) (z(B) = 1))).

2TEAX—-VY &

(Vz € Tc)(((34 € X) (2(4) = 0)) v (3B € ) (2(B) = 1))).
3. ZEVX—AY &

(vVz € Te)(((VA € X) (2(4) = 0)) v (VB € Y) (z(B) = 1)).
4. TEVX VY &

(Vz € Tz)(((v4 € X) (2(4) = 0)) v (3B € ) (2(B) = 1)).
5. SEAX = (AY VAZ) & (Vz € T )(((34 € X) (z(4) =0))v

(VB € Y) (z(B) = 1)) v ((¥C € Z) (z(C) = 1)))).
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Theorem 7.3 Let L, be a set of s-GPBDs on U, and X,Y C U. Then

L, EFvX —<
E,}:VX—< Z,EAX =AY
Z, EAX —a{
Proof:
By Theorem 7.2 and definition of s-GPBDs. It is easy to see that Theorem 7.3
holds. O
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Partitioning Graphs into Two Trees*

Ulrich Pferschy ' Gerhard J. Woegingert* ~ En-Yu Yao!

Abstract

We investigate the problem of partitioning the edges of a graph into two
trees of equal size. We prove that this problem is NP-complete in general,
but can be solved in polynomial time on series-parallel graphs.

1 Introduction
In this note, we will examine the partitioning problem PG2T defined as follows.

PARTITIONING GRAPHS INTO TwoO TREES (PG2T)
Input. A graph G = (V, E).

Question. Does there exist a partition of E = E,UE; with |E,| = |E,|,
V1,V C V, such that the two edge-induced subgraphs G; = (V1, E})
and G, = (Vz, E;) of G both are trees ?

If the trees G; and G are required to be spanning trees of G, the problem can
be solved in polynomial time by matroid partitioning techniques, see Lawler [4].
In contrast to this polynomial time result, we will show that detecting a partition-
ing into two arbitrary gnot necessarily spanning) equal-sized trees is NP-complete.
Our reduction is done from the Hamiltonian Path problem in cubic graphs (Garey
and Johnson [2(1) To simplify the presentation, we will introduce an intermediate
problem TCT (defined below) and prove that it is also NP-complete.

On the positive side, we will show that PG2T is polynomial time solvable for
the class of series-parallel graphs.

The paper is organized as follows: Section 2 presents the NP-completeness
result, Section 3 gives the polynomial time algorithm for series-parallel graphs and
Section 4 finishes with the discussion.
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2 Why the problem is NP-complete

In this section, we prove that PG2T is NP-complete. The proof is done by a two-step
reduction from the following special case of the Hamiltonian Path problem.

HAMILTONIAN PATH IN CUBIC GRAPHS (HP3)

Input. A graph G’ = (V', E') such that all vertices in V' are of degree
three with the exception of the degree one vertices s and t.

Question. Does there exist a Hamiltonian Path of G’ that starts in s
and ends in ¢ ?

Two COVERING TREES PROBLEM (TCT)
Input. A graph G” = (V”, E"), two disjoint subsets Fy and F; of E".

Question. Do there exist two edge-disjoint trees Ty and T3 in G" such
that 7T; contains all edges in F;, 1 =1,2 7

To be precise, we will show that HP3 is polynomial time reducible to TCT, and
then that TCT is polynomial time reducible to PG2T. This clearly establishes the
NP-completeness result claimed above.

Hence, let us consider some instance G' = (V', E'), s,t € V' of HP3. We will
construct a corresponding instance of TCT that is solvable if and only if HP3 is
solvable. This is done in three steps as follows.

(i) First, we subdivide every edge ¢ = (u,v) € E' into two subedges (u,e(m))
and (e(m), v) by introducing a new vertex e(m). Furthermore we introduce
a single new vertex ¢. Vertex c is connected to all vertices ¢(m) by an edge
which is put into Fs.

(ii) We perform the following construction for every v € V' of degree three: Two
new vertices v* and ¥ are introduced together with the two edges (v,v*) and
(v,9). The edge (v, v*) is put into Fy, the edge (v, 9) into F5.

(iii) Finally, we introduce two new vertices s* and t* and two edges (s, s*) and
(t,t*) that are both put into Fj.

We claim that the designed instance of TCT is solvable if and only if G’ has a
Hamiltonian Path.

(If)': Assume, a Hamiltonian Path exists. Our tree T} simply consists of all
edges 1 F) together with all subdivided edges of the Hamiltonian Path (i.e. if the
edge e = (u,v) is in the Hamiltonian Path, we put the two edges (u, e(m)ﬂ, (e(m), v)
into the tree). It is trivial to check that this edge set is connected, without cycles
and contains all edges in F).

Hence, it remains to show that the set E* of remaining edges also forms a tree.
First, we will argue that E* is connected. Consider some vertex v of V' and the
three incident subedges (v,e;(m)), (v,e2(m)) and (v, es(m)). The Hamiltonian
Path uses exactly two of the edges e1, e; and es. Therefore, the edge (v,9) is
connected to vertex ¢ via the unused edge.

E* contains all edges (c, e;(m)) incident to c. Some of the vertices e;(m) are of
degree one in E*, some of them are incident to two edges (u, ¢;(m)) and (v, e;(m)).
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Finally, there are the corresponding edges (u, u*) and (v, v*) appended to u respec-
tively v. Hence, E* is a tree of radius three with center ¢ and the proof of the
(If)-part is complete.

(Only if): Now we assume that the TCT-instance is solvable. Consider T; and
call an edge e = (u,v) in E' complete iff both subedges (u, e(m)) and (¢(m), v) are
in T;. We claim that the complete edges constitute a Hamiltonian Path in G'.

Every degree three vertex v in G’ is incident to at most two complete edges
(otherwise, the edge (v, 9) in F3 would be separated from T3). Vertices s and ¢ are
incident to exactly one complete edge.

We remove from T; all edges that are neither in F; nor subedge of a complete
edge. It is easy to check that these removals cannot disconnect T;. Then we remove
all edges in F; and replace the remaining subedges by the corresponding complete
edges. Since each vertex is of degree at most two and since s and t are of degree
one, the resulting graph is a path spanning all vertices in V’. This completes the
proof of the (Only If)-part.

What we proved till now suffices to establish the NP-completeness of TCT.
However, we are interested in proving the NP-completeness of PG2T, and to this
end we need the following lemma.

Lemma 2.1 Given an instance of HP3, we can compute sn polynomial time an
instance G = (V",E"), Fy, Fy of TCT, such that HP3 1ts solvable iff TCT s’
solvable and such that the following four conditions hold.

(C1) TCT 1s solvable if and only if there ezist two edge-disjoint connected subgraphs
S, and S; such that S; contains all edges in F;, 1 =1,2.

(C2) If TCT 1s solvable, then there ezists a solution that uses all edges in E".
(CS) |Fi| and |F2| are two distinct prime numbers.
(C4) Fy and Fy both contain at least one edge with one endvertez of degree one.

Proof. To see (C1), we just have to check that in the proof of the (Only If)-part
above, we did not exploit the fact that 7} is a tree but only the connectedness of
Ty. (C2) follows from the proof of the (If)-part.

To ensure that (C3) and (C4) hold, we first compute a prime p; with |Fy| < p; <
2|Fy|. Such a prime exists by Chebyshev’s theorem. The prime can be computed
in polynomial time, since |F}| is unary encoded by enumerating its elements. By
similar arguments, we can find another prime p; # p; with |F2| < p2 < 4|F,|.

Then for 1 = 1,2, we take an edge ¢; = (v;, u;) € F;, create p; — | F;| new vertices
for V"' and connect all these new vertices to v; by new edges that are added to F;.
Obviously, this new instance of TCT fulfills (C3) and (C4), it is solvable if and only
if the original instance was solvable, and conditions (C1) and (C2) still hold. O

Now we consider an instance G" = (V", E"), Fi,F, C E of TCT as described
in the statement of Lemma 2.1. We construct an instance of PG2T that is solvable
exact}y if TCT is solvable. Our construction is as follows (let n = 2|E"|, p; = |F1|,
p2 = |F2)

(1) We subdivide every edge e in E” by a new vertex v(e). If e € F}, we append
to v(e) a path of length pan?. Similarly, if ¢ € F; then we append to its
subdividing vertex a path of length p;n2.
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(ii) Let e; = (us,v;) € F; with degree of v; equal to one, 1 = 1,2, denote the two
edges that exist by (C4). We connect v; and v; by a path of length 2|E"|.

Clearly, the size of the new graph G = (V, E) is polynomial in the size of G”,
and the construction can be performed in polynomial time. The total number |E|
of edges in the new graph is 2p,pan? + 4{E”|. We claim that the designed instance
of PG2T is solvable if and only if TCT has a solution.

(If): Let Ty and T, constitute a solution of TCT that uses all edges in E"'. Let
- ny denote twice the number of edges in T}, 0 < n; < 2|E”|. We put into E; all
the edges corresponding to T}, i.e. subdivided edges of G and the corresponding
appended paths. Moreover, we put into E; the 2|E”|—n, edges of the path defined
in (ii) that are nearest to v;.

Thus, E, contains p; appended paths with p;n? edges per path, together with
a number n; of subdivided edges from G", together with 2| E”| — n; edges from the
path defined in (ii). This gives a total number of p;pzn? + 2|E"| = |E|/2 edges in
E;. It is easy to see that E) is cyclefree and connected, since T} is cyclefree and
connected. The same holds for £ — E;.

(Only If): Assume, the PG2T-instance has a solution E;, E;. Each of the
appended paths defined in (i) is contained as a whole either in E} or in E;.

We claim that all p; paths of length pan? are in one of the E;, and all p,
paths of length p;n? are in E;_;. Suppose otherwise: Let E; contain z; paths of
length p1n? (0 < z; < p2) and z; paths of length pzn? (0 < z2 < p1). Then the
facts 0 < z; < py and 0 < z; < p; imply z1p1n? + zopan? # p1pon?. W.lo.g.
E,; contains at least as many edges of the appended paths as F,. This yields a
contradiction, since

|E1| 2 p1pan® + n? > p1pan?® + 2|E”| = |E|/2.

To complete the proof, we show that there exists a connected subgraph S; of
G" that covers Fy. Using a symmetric argument for F; and condition (C1) of
Lemma 2.1, this implies the existence of a solution to the TCT-instance. W.l.o.g.
let E) connect all appended paths corresponding to edges in F;. We define S to
contain all edges in F; together with all edges in E” for which both subedges are
in E; (if only one of the subedges is in E}, it cannot contribute to the connectivity
of Ey). It is easy to check that S is connected.

Summarizing, we have proved the following theorem.

Theorem 2.2 The problem PG2T 13 NP-complete. O

3 Series-parallel graphs are easy to treat

The class of series-parallel graphs is a well-known model of series-parallel electrical
networks. Many difficult combinatorial problems for graphs become easy when
restricted to series-parallel graphs, see e.g. Tamkamizawa, Nishizeki and Saito [5].
In this section, we show that the same holds for the partitioning problem of a grap
into two trees, i.e. we will give a polynomial time algorithm for this problem on
series-paralle]l graphs.

One possibility to define series-parallel graphs is via two-terminal graphs, cf.
Duffin [1]. A two-terminal graph G = (V, E) is a graph with two special vertices
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Figure 1: A TTSP graph and its binary decomposition tree
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that are called the left terminal ¢; and the right terminal t,. For two-terminal
graphs G; = (V;, E;) with terminals ¢} and ti, 1 <1 < 2, we define the following
two operations. : : .

o The series connection G, = G; % G; of G; and G, results from identifying
the right terminal of G; with the left terminal of Ga. The obtained graph
G, is regarded as a two-terminal graph with with left terminal ¢} and right
terminal ¢2.

o The parallel connection G, = G1//G; of G, and G results from identifying
both right terminals with each other and both left terminals with each other.
The terminal vertices of Gp simply are the identified terminals.

Now a two-terminal series-parallel graph (TTSP) is defined as follows: .
(1) The graph consisting of two terminals connected by a single edge is a TTSP.
(ii) If G1 and G, are TTSPs, then G, * G2 and G1//G2 are TTSPs.

(iii) No other graphs than those defined by (i) and (ii) are TTSPs.

Finally, a graph is a sertes-parallel graph iff it is the underlying graph of a TTSP
(i.e. the terminals are considered as ordinary vertices).

It is well-known that decomposing a series-parallel graph into its atomic parts
according to the series and parallel operations can be done in linear time. Essen-
tially, such a decomposition corresponds to a binary tree where all interior vertices
are labeled by s or p (series or parallel connection) and where all leaves correspond
to edges of the graph (see Figure 1 for an illustration). We associate with every
interior vertex v of the decomposition tree the series-parallel graph G(v) defined
by the subtree rooted in v.

The usual way to deal with problems on series-parallel graphs is dynamic pro-
gramming via the decomposition tree, and this approach also works in our case.

Let us consider a TTSP graph G = (V, E), and one of the TTSP components
G(v) of G associated with one of the vertices v of the decomposition tree of G,
and let £; and t, denote the terminals of G(v). Let T be a subtree of G, and let
T’ denote the edge-induced subgraph of T induced by the edges in T N G(v). We

distinguish five combinatorial types for T".

(T1) T’ consists of two connected components, one containing terminal ¢; and the
other one containing ¢,.

(T2) T'is connected and contains both terminals ¢; and ¢,.
(T3) T' is connected and contains only terminal ¢; but not ¢,.
(T4) T' is connected and contains only terminal t, but not .
(T5) T’ is connected and contains neither ¢, nor ¢;.

Clearly, type (T1) covers the only possibility of not connected T’ (In this case,
T can only be connected via some path going from ¢; to t, outside of G(v)). The
remaining four types (T2), (T3), (T4), and (T5) cover all possibilities for connected
graphs T'. Note that a T’ of type l}Tl) consists of exactly two trees, and a T of
one of the other types is a tree itself.

We introduce twenty-five two-dimensional boolean arrays A;;[v,m], 1 <1,5 < 5.
The first index v runs through all vertices of the binary decomposition tree, the
second index m runs from 1 to |V|. A;j[v, m] will be set to TRUE if and only if
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there exists a partition of G(v) into two edge-disjoint subgraphs 7] and
T3 such that 77 is of type (T:) and T3 is of type (T's) with respect to
G(v), and such that T] has exactly m edges.

If we compute the truthvalues of all entries of all arrays A;j[+,+], we solve the
PG2T-problem as a by-product: The root r of the decomposition tree corresponds
to the graph G = (V, E; itself. The problem PG2T has a solution if and only if | E|
is even and at least one of the sixteen entries A;;{r,|E|/2| with 2 < 1,7 < 5 is set
to true.

Hence, our goal is to compute all entries of the array. This is done in a bottom-up
fashion according to the decomposition tree: We start with the entries correspond-
ing to leaves of the decomposition tree, and move up towards the root. The entries
corresponding to some vertex v of the decomposition tree are calculated only if all
entries corresponding to both sons have already been computed.

The initialization step is trivial, since the leaves of the decomposition tree cor-
respond to TTSPs consisting of a single edge.

The computation of entries corresponding to interior vertices v of the decompo-
sition tree is a little bit more complicated and depends on whether v is labeled s or
labeled p. We just sketch two of the 50 possible cases and leave the other cases to
the reader as an exercise. (Some combinations like Agg[#,*| will only have entries

set to FALSE).

(1) Computation of Au;}, m)] if v is labeled s: Let v; and v, denote the right and
left son of v. In this case, Ty may consist of (i) a not-connected part of type (T1)
in G(v1) and a connected part of type (T2) in G(vg) (or the symmetric possibility
with G(v1) and G(v;) exchanged), or (ii) of a part of type (T2) or (T3) in G(v;)
and a part of type (T4) in G(v;) (or again some symmetric possibilities). The same
possibilities hold for T5.

We just check whether there exist corresponding true entries A;;{vy,m;] and
Agi{v2, m2], where m;, my denote two non-negative integers with m; + mg = m
and 1,7, k,l correspond to appropriate types as explained above.

(2) Computation of Aso[v, m] if v is labeled p: Again, let v; and v, denote the
right and left son of v. In this case, T} must consist of a part of type (T5) in G(v;)
and G(v;) and of an empty part in the other subgraph. T, must consist of a part
of type (T2) in G(v;) and a part that is not of type ?TS) in G(v2) (or vice versa).
Similarly as above, Az5[v, m] can be computed by investigating appropriate entries
Aijlv1, my] and Ag[vz, mg], with numbers {m;,m;} = {0, m}.

Since all the operations used in the computations of the A;;[v, m] can be per-
formed in polynomial time, we may formulate the following summarizing theorem.

Theorem 3.1 The problem PG2T s solvable sn polynomial time if the graph under
consideration 13 series-parallel. O

4 Discussion

In this paper, we proved that the problem of partitioning a graph into two trees is
NP-complete in general, and that the problem is polynomial time solvable for the
class of series-parallel graphs.

A similar but simpler version of the dynamic programming approach used for
series-parallel graphs in Section 3 succeeds to show that the problem can be solved
in polynomial time for trees.
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The problem is also polynomial time solvable on the classes of interval graphs,
cographs, circular arc graphs, chordal graphs and split graphs (see Johnson []3 for
definitions). These results are rather éasy to see:” The-graphs-in-these graph classes
tend to be rather dense and to contain large cliques, whereas a graph G = (V, E)
that is partitionable into two trees must fulfill |E| < 2|V| — 2 and cannot contain
cliques of size greater or equal to five. Consequently, most of the graphs in these
classes may be a priori disregarded, whereas the remaining ‘reasonable’ graphs
possess a rather rigid and primitive structure. (E.g. a ‘reasonable’ split graph
consists of a clique C with at most four vertices, an independent set I and some
edges between C and I).

We do not elaborate on these questions. The surprising part of our results is
not that the problem is easy on specially structured graphs, but that the problem
is hard in general.
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