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On the randomized complexity of monotone 
graph properties 

Groger Hans Dietmar * 

1 Introduction 
Let CR(P) be the number of questions of the form 'Does the graph 
G contain the edge e(t, j) V that have to be asked in the worst 
case by any randomized decision tree algorithm for computing an n-
vertex graph property P. For non-trivial, monotone graph properties 
it is known, that the deterministic complexity is ft(n2) (see [4]). 
R. Karp [5] conjectured, that this bound holds for randomized algorithms as well. 
As far as this conjecture we know the following results. The best uniform lower 
bound for all non-trivial, monotone graph properties is Din4/3) due to P. Hajnal 
I1!-

No non-trivial, monotone graph property is known having a randomized com-
plexity of less than n 2 /4 . Some properties have been proven to have complexity of 
ft(n2) (see A. Yao [6]). 

In this paper we refine the idea of Yao. This leads to a further improvement in 
the reductions of arbitrary graph properties to bipartite graph properties, (see [l], 
[3]) and yields a uniform lower bound for the subgraph isomorphism properties of 
f i (n3 /2 ) . Furthermore we show, that a large variety of isomorphism properties as 
well as fc-colourability require fl(n2) questions. 

2 Preliminaries, notations 
A decision tree is a rooted binary tree with labels on each node and edge. Each inner 
node is labeled by a variable symbol and the two edges leaving the node are labeled 
by 0 and 1. Each leaf is also labeled by 0 or 1. Obviously, any truth-assignment of 
the variables determines a unique path from the root to a leaf. 

A decision tree A computes a boolean function f if for all input x the corre-
sponding path in A leads to a leaf labeled by f(x). 

Let cost(A, x) be the number of questions asked when the decision tree A is 
executed on input x. This is the length of the path induced by x. The deterministic 
decision tree complexity of a boolean function / is C(f) = min^ max, cost{A, x), 
where the minimum is taken over all decision trees A computing the function / . 

'Department of Applied Computer Sciences József Attila University 6720 Szeged, Árpád tér 
2. 
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120 Groger Hans Diet mar 

In a randomized decision tree the question asked next not only depends on the 
answers it got so far but also on the outcome of a trial. Since all trials can be done 
in advance we can view a randomized decision tree as a probability distribution 
on the set of deterministic trees. A randomized decision tree computes a boolean 
function f iff the distribution is non-zero only on deterministic trees computing / . 

Definition 2.1 Let { A j , . . . , A / / } be the set of all deterministic decision trees com-
puting f. Let R - { p i , . . . , pn} be a randomized decision tree, where pi denotes the 
probability of A,. The cost of R on input x is cost(R,x) = • cosi(A,-, x). The 
randomized decision tree complexity of a function f is 

CR(f) = min max co3t(i2, x), 
It X 

where the minimum is taken over all randomized decision trees computing the func-
tion f. The following lemma yields the base of all lower bound proofs for randomized 
decision tree complexity so far. 

Lemma 2.2 (A. Yao [6j) Let d be a probability distribution on the set of all possible 
inputs and let d(x) be the probability of input x. We define the average case per-
formance of a deterministic tree A computing f as av(A,d) = Ylx)d{x)co3t(A, a;). 

Then for any boolean function / 

CR(f) = maxmina«(i4, d), 
d A 

where the minimum is taken over all deterministic decision trees computing / . 
A boolean function / is called non-trivial, monotone iff / (0 ) = / (1) = 1 and 

/ ( 2 i ) ^ /(^2) f ° r all i j < i 2 . Here we mean component wise less or equal. In this 
paper we deal only with graph properties and bipartite graph properties. Since 
a graph on n vertices can be identified with a (0, l)-string of length (") , a graph 
property can be given by a boolean function which takes equal values on isomorphic 
graphs. So, by graph property we mean a suitable boolean function and sometimes 
instead of the function we give the property by the set of all graphs having this 
property. A graph property is called non-trivial, monotone iff the corresponding 
boolean function is non-trivial, monotone. 

Let us denote the set of all n-vertex by Qn and the set of all non-trivial, mono-
tone graph properties defined on QN by PN. Clearly, a property P € PN can be 
characterized by the set of minimal graphs having that property. Let min(P) be 
the list of minimal graphs for P. If min(P) contains up to isomorphism only one 
graph G, we call P a subgraph, isomorphism property and denote it by PQ. 

Let us denote by da(x) the degree of a node x in G, by D{G) the maximal 
degree of G, by 6 (G) the minimal degree of G and by d(G) the average degree of 
G. Furthermore, denote VlG) the set of vertices with non-zero degree of G, E(G) 
the set of edges of G and Kn, E„ the complete and the empty graph on n nodes, 
respectively. Sometimes we use the disjoint union of Kn-r and Er, and this graph 
is denoted by K„_T. 

Let 0 < m < n and P E P„. Using the property P, we can define two (not 
necessarily non-trivial) monotone graph properties on Qm . For this reason, divide 
the set of nodes, P is defined on, into disjoint sets V\ and V2 so that |Vi| = m 
and IV2I = n — m. Let ind(P\m) and red(P\m) denote the following m-vertex 
properties: 
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G e ind(P\m) iff adding all nodes in V2 to G and keeping the original edge-set, 
we obtain a grapn having property P. 

G € red(P\m) iff adding all nodes in V2 together with all possible edges incident 
to them to G, we get a graph having property P. 

Obviously CK(»n<i(P|m)) < CR{P) and C f i(red(P|m)) < CR(P). 
We have to build up the same system of notions for tne universe of labeled bi-

partite graphs with colour classes V — { 1 , 2 , . . . , n } and W = { l , 2 , . . . , m} denoted 
by 9n,m• The set of all non-trivial, monotone bipartite graph properties on Qn,m 
is denoted by PntTn. We also use the other corresponding notions CR(P), min(P) 
and E(G). 

If G S §n,m and U is a subset of the vertices then let us denote by dm&Xtu{G) 
and dav<u(G) the maximal and average degree in the set U, and by Kn<m, En<m 

the complete bipartite graph and the empty bipartite graph, respectively 
Let 0 < r < n and P 6 Pn,m• Divide V into disjoint sets Vi and V2 so that 

jVx| = r and |Va| = n — r. Let »ndy(P|r) and redv(P\r) denote the following 
bipartite graph properties defined on Qn,m-

G € »ndv,(.P|'0 iff adding all nodes of V2 to G, we obtain a bipartite graph 
having property P. 

G E redy (P|r) iff adding all nodes of V2 together with all possible edges between 
V2 and W to G, we get a bipartite graph having property P. 

Obviously C*(tWv(P|r) ) < CR(P) and CR {redv (P\r)) < CR(P). 
Finally let 

C^fn, m) = min{C'R(P)|P S Pn,m}-
In lower bound proofs for the complexity of monotone graph properties the following 
reduction to bipartite graph properties plays an important role. 

Let P € Pn and 0 < r < n. Furthermore, let bipart(P\r, n — r) be the following 
bipartite graph property defined on $r,n-r 

G S bipart(P\r, n — r) iff adding all edges between nodes in W, we obtain a 
graph having property P. 

Obviously CR(bipart(P\r, n - r)) < CR{P) and so if bipart(P\r, n - r) is non-
trivial, then CR(r, n- r) <CR(P). 

A good survey of previous techniques can be found in [1]. We only mention 
those, we will apply. 

Theorem 2.S (Basic Method [6]) (i) Let P & Pn and G € min(P) be any minimal 
graph for P. Then 

C R ( P ) > | J B ( G ) | . 

(ii) Let P e Pn,m G G min(P) be any minimal graph for P. Then 

CR(P) > |£(G)|. 

Definit ion 2.4 Let £ be a list of graphs from Gn>m. For each G € C let us consider 
the sequence of degrees »n colour clas V. Let di > dj > • • • > dn be the ordered list 
of degrees. If (dy, ¿2, • • •, dn) is the lexicographically minimal sequence considering 
all the ordered lists then we refer to G as the V-lexicographically first element of t 

Theorem 2.5 (Yao's Method [7]) Let P € Pn,m and G be the V-lexicographically 
first graph of min(P). Then 

c H ( p ) = n ( W ( g ) . | v [ ) 

dav,V l^j 
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A very useful tool for proving lower bounds is dualiy. For every non-trivial, mono-
tone boolean function f we can define the dual function fD as follows: 

fD(x) = -VHe). 

It is easy to see that f is also non- trivial, monotone and CR(fD) = CR{f). 

Definit ion 2.6 (i) Let G,H G $n with vertex sets V and V', respectively. A 
packing is an identification between V and V' such that no edge of G is identified 
with any edge of H. 

(iij Let G,H G 5 n,m with colour classes V,W and V',W, respectively. A 
bipartite packing is an identification between V and V' and between W and W' 
such that no edge of G is identified with any edge of H. 

L e m m a 2.7 (Yao [6]) (i) If P e Pn,G 6 min(P) and H G m i n ( P D ) then G and 
H can't be packed, (ii) If P e Pn,m> G G min(P) and H G m i n ^ ) then G and H 
can't be packed as bipartite graphs. 

3 Results 
By a covering of a graph G we mean a subset K óf V such that any edge of G is 
adjacent to at least one vertex in K. A covering K is minimal if G has no covering 
K' with \K'\< \K\. 

The width of a graph G denoted by width(G) is the size of a minimal covering 
of G. The trace of a graph G denoted by trace(G) is the minimal number of edges 
we have to remove from G in order to decrease its width. 

Now we extend these notions to monotone graph properties. The width of a 
monotone graph property P is defined as follows: 

width(P) = minttw'dí/iíGJlG e min(P)} 

The trace of a monotone graph property P is defined by 

trace(P) = min{íroce(G)|G G min(P) and width(P) = width(G)} 

The following assertions show some fundamental properties of these notions. 

L e m m a S. l If P G Pn and 1 < r < n is a fixed integer then 
(i) width(P) > r iff K*+Í_T G PD 

(ii) If width(P) > r then 

red(P\n-r) G Pn-r, width[red(P\n-r)) = width(P)-r,trace(red(P\n-r)) = trace(P). 

L e m m a S.2 If P G calPn and width(P) = 1 then for any G G P°,G has at least 
• (n— trace(P)) edges. 

P r o o f . Since PD is a non-trivial, monoton graph property, it is sufficient to prove 
the statement for G G minfP^). Indeed, let G G miniP£>) be arbitrary and let 
H G min(P) such a graph for which width(fT) = width(P) and trace(/íJ = trace(P) 
holds. With other words, i f is a star with trace(P) mary edges. According to 
Lemma 2.7. G and H can't be packed. This implies > |V(<7)| - trace(H) = 
n -trace{H), therefore |£(G)| > |n • (n - trace(H)). 
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Lemma S.S For any P 6 Pn the following assertions hold: 
(i) CR{P) > width[P)- trace(P). 
(ii) CR(P) > ¿(n + 1- width{P)) • (n + 1 - (width (P)+ trace(P))). 
(Hi) For any 0 < e < I, if width(P) < (l-e) n then CR(P) > j^n- width(P). 

Proof . Assertion (i) is a straightforward consequence of Theorem 2.3. To prove 
(ii) choose in Lemma 3.1. r =width (P) — 1 and apply Lemma 3.2. to the reduced 
property re a(P|n - (width (P) - l j ) . Finally Theorem 2.3. yields the result. If 
trace(P) > n, then assertion (iji) follows from (i), else it can be proved, using 
(ii) and assumption width (P) < (1 — e) • n. 

Before we state our main results we apply this method to some special graph 
properties. For this reason let us denote the property that an n-vertex graph 
contains a Hamiltonian cycle by PHn and the property that an n-vertex graph has 
a vertex colouring with k colours by PCk,n-

Theorem 3.4 

CR{PHn)>\(^-l) 

C R { P C n , ) > ^ \ - k ) . 

Proof . We have only to determine the width and trace of the given properties. 
The required values are: 

width(PHn) = r^l, 

trace(PHn) = { J- *n!80dd 
v ' ^ 2, if n is even 

Since PCk,n itself is not monotone, we consider instead of PCk,n the property 
-iPCk,n which is non-trivial, monotone and obviously, CR{->PCk,n) = (PCk n). 
It can be seen that the corresponding values are: 

width(-^PCk<n) = k 

trace(-<PCk,n) = 1. 

The following theorem improves the known reductions of non-trivial, monotone 
graph properties to bipartite graph properties. Although King [3] has already 
stated a similar result, the new approach can help to prove better uniform lower 
bounds, since the reduction is to colour classes both of size 0(n) 

Theorem 3.5 The randomized decision tree complexity of any non-trivial, mono-
tone graph property P e Pn is 
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P r o o f . We have only to consider the case that the property P can't be reduced to a 
non-trivial bipartite graph property bipartP|[ j J , | This implies i f f * j E P or 
i f j ^ l E PD. Therefor, it remains only to prove, that for any P E Pn, if i f ^ E P 

then CR(P) > ^ • n 3 / 2 holds. 
Let us suppose that we found a property P E Pn with K^E P and CR(P) < 

^ . n 3 / 2 . Let us construct the following sequence of induced graph properties 

(P,|0 < i < J}, P, = ind(P\\ln + \i • n 1 / 2 ! ) . 

Since Kf^-1 E P and for any » P,- is an induced property of P on at least [|n] 
vertices, P, is non-trivial and 

CR(Pi) <CR{P)< — n3'2 (1) 
40 

Jff i ] £ PQ implies width(P0) < f - 1 < Assertion (iii) of Lemma 3.3. yields 
CR(P0) > width(Po). Hence 

width(Po) < (2) 

Obviously G E Pi implies G E Pi+i- Therefore 

mtiih(P,+ 1 ) < width(Pi),x > 0. (3) 

Let us suppose, that for some » > 0 width(P,+i) = width(P,) holds. Then 
trace(P<+1) < trace(Pi). Now Lemma 3.3. yields 

CR(Pi+1) > |(r|» + + 1) • + 1 - ««difci/»^!)) • 

(f \n + ¿ ( t + 1) • n 1 / 2 ! + 1 - (width(Pi+1) + t r a « ( P i + 1 ) ) ) 

> \ {\n+\n^-width{P0))-

(\n + U • n1'2 + 1 - [width{Pi) + trace(Pi)) + - n 1 / 2 ) 
4 2 2 

> l n 3 / 2 > J _ n 3 / 2 

- 16 40 
which contradicts (1). 

The sequence of positive integers {width (P<)|0 < i < [| n l / ' 2 J} therefore de-
creases strictly monotone, and so 

width(Po) > [\n1'2\ + 1, 

which contradicts (2). 
Since our assumption CR(P) < J^n3/2 led to a contradiction we have completed 

the proof. 
A straightforward consequence of the improved reduction is the following result. 
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Theorem S.6 For the randomized decision tree complexity of any subgraph iso-
morphism property Pa £ Pn 

CR(PG) = fl(n3/2). 

Proof . According to Theorem 3.5., we have only to settle the case that 
bipart(Pc|[f J)T2 1) is nontrivial. Depending on width(Pc) and trace(Pc) we shall 
distinguish three cases. 

Case 1. Assume that width (P<j) > ^n. Since bipart(P<3|[ jJ , is non-trivial, 
we get width(Pg) < |n and assertion (iii) of Lemma 3.3. implies a lower bound of 
0 ( n 2 ) . 

Case 2. If width(Pc) < ^n and trace (PG) < |n, then we can apply assertion 
(ii) of Lemma 2.5. and get also a lower bound of n(n 2 ) . 

Case S. Suppose that width(Pc) < ^n and trace(Pc) > |n. Since trace(Pc) > 
|n the corresponding bipartite graph property bipart(Po|[^J, has only such 
minimal graphs H for that Dv{H) > |n holds. If bipart(PG|LfJ, [a ] ) has a 
minimal graph with at least n3 /2 edges we can apply Theorem 2.3. Otherwise we 
can apply Theorem 2.5. In both cases we get a lower bound of ft(n3//2) which 
completes the proof. 

Before we prove the sharper version of Theorem 2.6. we consider some special 
bipartite graph properties. Let us denote by 5„,m the graph which has one vertex 
of positive degree in V and m edges. 

Lemma 3.7 Let Ps €E Pn,m denote the property of containing a subgraph isomorph 
to Snrn. Then 

CR{PS) >\m n. 

Proof , (analogue to Yao [7]). We consider the dual property Pj?, which is easy to 
see to contain exactly those graphs, that have no isolated nodes in colour class W. 
According to Lemma 2.2. wee choose as a "hard" input distribution the uniform 
distribution over all minimal graphs. Let be A an optimal deterministic decision 
tree, that computes our Pg . We denote by Xi (G) the number of edges incident to 
Wi asked by A. Then 

m 
CR{P°) > £(£*(<?)) 

»=1 
m 

t = l 

Since for any value of t we have to find one edge out of n edges, we get 

£? (* (G) ) > \n 

and finally 
CR{Ps)>\mn. 
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Lemma 8.8 Let P E Pn,m ^uch a property, that every G E min(P) has exactly 
k < vertices of positive degree in colour class V. Then 

CR(P) > -m-n. 
v ' ~ 6 

Proo f . We consider the reduced graph property P1 = redv[P\n+l — k). Obviously, 
P' is non-trivial and min(P') contains up to isomorphy exactly one graph. This 
graph has exactly one vertex with positive degree (d) in the colour class V'. We 
distinguish two cases. 

Case 1. Assume that d.< |m. Since the minimal graphs of P1 and P'D can't be 
packed as bipartite graphs, any G E min (P ' D ) has at least ( n + 1 — A;) • ( m + 1 — d) > 
|m • n edges. Hence Theorem 2.1. implies the required lower bound. 

Case £. If d > |m then let us consider the induced property »r»c¿^y(P,|<i) on 
colour classes of size n + 1 — fc and d, respectively. Since incfyy (P'|d) = 
Lemma 3.7. yields the statement. 

Lemma 3.9 The randomized decision tree complexity of any subgraph isomorphism 
property Pa E Pn with width at most |n fulfUles 

CR(PA) > ¿ ( » 2 - 1). 

Proo f . Depending on width(PG) and trace(PG) we distinguish six cases. 
Case 1. If < width{Pc) < §n and trace(PG) > ^ n , then assertion (i) of 

Lemma 3.3. implies the lower bound. 
Case S. If < width(PG) < | n and trace(PG) < j^n, then assertion (ii) of 

Lemma 3.3. implies the lower bound. 
Case S. If #L*n/2j e PG, then width(PG)+ trace(PG) < V Therefore, by 

assertion (ii) of Lemma 3.3., we obtain CR(Pa) > |n2 > ^j»»2. 
So far we have considered all the cases, when P G can't be reduced to a non-

trivial bipartite graph property bipart(PG)|[^ j , [ f 1)-
Case 4- If y < width(PG) < then we can apply assertion (iii) of Lemma 3.3. 

for e = i and get the required lower bound. 
Case 5. If width(PG) < J and trace(PG) > |n, then G contains width(PG) 

vertices with degree at least |n. In our reduction to the bipartite graph property 
bipartPG|[^, [ j ] ) we have to put them all into V. On the other hand, these vertices 
build a covering of the graph G. Hence G contains no edge independent of this 
vertex set. Therefore any minimal graph of the property bipart(PG|[^-, f y ] ) has 
exactly width(PG) vertices of positive degree in V and Lemma 3.8. implies 

CR(Pg) > {bipart{PG\[^\, R£L)) > ^ > 2 ~ 1) 

Case 6. If width(PG) < j and trace(PG) < §n, then by assertion (ii) of Lemma 
3.3., we get that 
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which completes the proof. 
The following statement is an immediate consequence of this theorem and gen-

eralizes the results of Yao [6]. 

Assertion 3.10 For every e > 0 we can find a A > 0 which depends only on 
e, such that the randomized decision tree complexity of any subgraph isomorphism 
property Pa G Pn with d(G) < e fulfUles: 

CR(PQ) > A(e) • n 2 . 

After finishing this manuscript the author has learnt that M. Karpinski et al [2] 
independently proved Theorem 3.5. 
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On the interaction between closure operations 
and choice functions with applications to 

relational databases* 

János Demetrovics * Gusztáv Hencsey* Leonid Libkin* 

Ilya Muchnik* 

Abstract 
A correspondence between closure operations and special choice functions 

on a finite set is established. This correspondence is applied to study func-
tional dependencies in relational databases. 

1 Introduction 
Having been introduced in connection with some topological problems, closure op-
erations were applied in various branches of mathematics. In the last years they 
were successfully applied to study so-called functional dependencies (FDs for short) 
in relational databases. Now we recall some definitions and facts; they can be found 
in [DK],[DLM1]. 

Let U = { o i , . . . , a „ } be a finite set of attributes (e.g. name, age etc.) and W(a,) 
the domain of Then a subset R C W(aj) x . . . X W(a n ) is called a relation over 
U. 

A functional dependency (FD) is an expression of form X —^ Y, X, Y C U. 
We say that FD X —• Y holds for a relation R if for every two elements of R 
with identical projections onto X, the projections of t hese elements onto Y also 
coincide. According to [Ar], the family 7 of all FD's that hold for R satisfies the 
properties (Fl)-F4): 

(Fl) (X —• X) e 7-, 
(F2) (X-—*Y)e7 and (Y —• V) 6 7 imply (X —• V) 6 7\ 
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(F3) (X —• Y) e 7 and X C V, W C Y imply (V —• W) € 7} 
(F4) (X — - Y) G 7 and (V — W) 6 7 imply (XW —>YuW)e7. 

Conversely, given a family of FD's satisfying (Fl)-(F4) (so-called full family), 
there is a relation R over U generating exactly this family of FD's, see [Ar] and 
also [BDFS] for a constructive proof. 

We shall write a,- instead of {a , } throughout the paper. Let R be a relation 
over U, X C U and put LR(X) = {o 6 U\X —• a holds for i l } . Then LR satisfies 

( C I ) XCLR{X)-, 
(C2) X c y ^ i j i f X j C i ^ ) ; 
(C3) Lr(Lr[X)) = Lr(X), 

i.e. LR is a closure operation. Note that the properties (Cl)-(C3) may be concisely 
expressed as X C LR(Y) iff LR(X) C LR[Y). Given a closure L (sometimes we 
shall omit the word "operation"), there is a relation R over U with L = LR, see 
[Del], 

A set X C U is called closed (w.r.t. a closure L) if L(X) = X. Let Z(L) stand 
for the family of all closed sets w.r.t. L. Then 

(SI) UEZ(L), 
(S2) X, Y € Z[L) implies X n Y € Z(L), 

i.e. Z{L) is a semilattice. Given a semilattice Z C 2 y define L(X) = n {y|X C Y, 
Y G Z}. Then L is a closure with Z(L) = Z. Therefore, we can think of semilattices 
providing an equivalent description of closures and full families of FD's. 

A closure is an extensive operation (X C L(X)). The operations satisfying the 
reverse inclusion (called choice functions) were also widely studied in connection 
with the theory of rational behaviour of individuals and groups, see [AM],[Ai],[Mo]. 
We give some necessary definitions. 

A mapping C : 2U —• 2U satisfying C(X) C X for every X C U, is called a 
choice function. U is interpreted as a set of alternatives, X as a set of alternatives 
given to the decision-maker to choose the best and C (X ) a s a choice of the best 
alternatives among X. 

There were introduced some conditions (or properties) to characterize the ratio-
nal behaviour of a decision-maker. The most important conditions are the following 
(see [AM],[Ai],[Mo]): 
Heredity (H_ for short): 

V X,Y CU:XCY=> C(Y) n X C C{X)-, 

Concordance (C_ for short): 

V X, Y C U : C(X) n C{Y) C C{X\JY)-, 

Out casting (O for short): 
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VX,YCU: C(X) CYCX=> C{X) = C (Y) ; 

Monotonicity [M for short): 

V X,Y CU : X CY => C(X) C C(Y). 

Let P be a binary relation on U, i.e. P C U X U. Let CP{X) = { o e X\(fib e 
X:(b,a)eP)}. 

One of the central results of the theory of choice functions states that a choice 
function can be represented as Cp for some P iff it satisfies H_ and C_. 

Given a closure operation L, we can define choice functions C(X) = L{U — X)f1 
X and C(X) — U — L(U — X). In Section 2 we characterize the choice functions 
of the second type as satisfying M_ and 0. In the other sections we use this cor-
respondence to transfer the properties of choice functions to closures and to apply 
them to the study of FD's. In Section 3 we use the logical representation of choice 
functions (see [VR],[Lil]) to construct a similar representation and characterization 
of closure operations. 

In Section 4 new properties of closure operations are obtained and studied by 
new properties being added to M_ and O. 

Finally, in the Section 5, we use choice functions to construct a structural rep-
resentation for so-called functional independencies (cf. [Ja]) in the same way as 
closures were used to represent FD's. 

2 The main correspondence 
Let L be a closure operation. Define two choice functions associated with L as 
follows: 

CL{X) = L(U -X)KX, 

CL(X) = U-L(U-X),XCU. 

Note that both CL and CL uniquely determine the closure L, in fact, L(X) = 
I U C L ( U - X ) and L(X) = U-CL(U-X). For every X C U the sets CL(X) and 
CL{X) form a partition of X, i.e. CL[X) n CL{X) = 0 and CL{X) U CL(X) = X. 

Theorem 1 The mapping L —• CL establishes a one-to-one correspondence be-
tween the closure operations and the choice functions satisfying O and M. 

P r o o f . Let L be a closure operation. We prove that CL satisfies M_ and O. 
Let x € CL(X) and X CY. Then x g L{U - X) and since U-Y CU-X, we 

have x£L(U- 7 ) , i.e. x e CL(Y). Hence, CL satisfies M. 
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Let XCU. Then L(L(U - X) ) = L(U - X). Using L(U - X) = U - CL(X), 
we obtain that U- CL(U - (U - CL (X)) = U-CL{X), i.e. CL(CL[X)) = CL{X). 
Now let CL{X) CY CX] Since CL satisfies M, CL(CL(X)) C CL(Y)) C CL{X) 
and CL(X) = CL(Y). Therefore, CL satisfies O. 

Let C be a choice function satisfying O and M. Consider L(X) = U — C(U — X). 
We prove that L is a closure. Clearly, X C L(X). If X C Y and z € L(X), then 
i £ C{U-X) and z £ C(U-Y), i.e. z G L(Y). Since C satisfies O, C[C(U-X)) = 
C(U - X). Applying C{U - X) = U - L(X) we obtain L(L(X)) = L(X). Hence, 
L is a closure and CL = C. 

To finish the proof, note that the mapping L —• CL is injective, because for 
two distinct closures Xj and L2 with Li(X) / one has CLl(U — X ) / 
CL' (U — X). The theorem is proved. 

• 
Let K be a property of choice functions. We say that a choice function C 

satisfies if its complement C satisfies K. (The complementary function C of C 
is defined as follows: C{X) = X- C(X) for X C U.) 

Corollary 1 The mapping L —• CL establishes one-to-one correspondence be-
tween the closure operations and the choice functions satisfying H_ and O. 

Proof . It follows from the facts that Ci and CL are complementary choice func-
tions and that H_ = M_, M = H, see [Ai]. 

• 

3 On logical representation of closure operations 
and choice functions 

The family of all choice functions on U equipped with the operations U,n and 
is a Boolean algebra. Logical representation of the choice functions was introduced 
in [VR] to show that this Boolean algebra is isomorphic to one consisti ng of tuples 
of n Boolean functions, each depending on at most n — 1 variables. 

Let U = { o ! , . . . , a„} , X C U. Define 

F(X) = (Pi (X), . . . , f)i-i(X), Pi+i(X),..., f)n{X)) and 
0*(X) = (A, (*),... ,/M*)) 

where {av t , . . . , Oik } = U — Z and ii < . . . < ik-
Definition [VR]. A family (ff • • fn) °f Boolean functions, each depending 

on n — 1 variables, is called a first logical form of a choice function C if for every 
a,- eU and X C U: 
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a,- e C{X) iff a,- e X and / f ( / 9 ' (X ) ) = 1. 

Definition [Lil]. A family (fjf, •.., / y ) o/ Boolean functions indexed by 
subsets of U, is called a second logical form of a choice function C if for every 
Z,XCU: 

Z = C{X) iff Z C X and f§(PZ{X)) = 1. 

Note that depends on n — \Z\ variables. 
Each logical form uniquely determines a choice function. By [VR], every tuple 

of Boolean functions, each depending on n — 1 variables, is a first logical form of 
some choice function, moreover, C —• ( f i , . • •, f„) is a n isomorphism of Boolean 
algebras. 

A family (/0 fu), fz depends on n — \Z\ variables, is a second logical form 
of some choice function iff for each Z C U the set {fz(flz (X)) : Z C X} contains 
a unique one. 

Let L be an operation satisfying (Cl), i.e. X C L(X) for all X C U. We can 
introduce two logical forms as before. 

Definition. A family (ft} • • •, f„) °f Boolean functions, each depending on at 
most n — 1 variables, is called a first logical form of L if for every ai 6 U and 
XCU: 

ai e L{X) iff a,- 6 X or ftL{?(X)) = 1. 

Let Z = { a t l , . . . ,a<t},t'i < . . . <« f c , and 0Z(X) = (A, PQ, • • •, ft* (*))• 

Definition. A family (ffc,... ffc) of Boolean functions indexed by subsets ofU, 
fz depends on \Z\ variables, is called second logical form of L if for every Z, X C U: 

Z = L(X) iff X C Z and fz{Pz{X)) = 1. 

We use these logical forms to characterize the closure operations among all the 
operations satisfying (Cl). 

Theorem 2 Let L satisfy (Cl). Then L is a closure operation iff all the functions 
f^,i = 1 , . . . , n; /J1, Z C U, are monotonic. 

Proof . Since at e_L{X) iff a, € X or a,- G CL{U - X), we have ftL{^{X)) = 
f?L {P'(U ~ X))> i e- ft = i / / 7 ' ) * . w h e r e /* stands for the dual function. Analo-
gously, we obtain that = [fy-zY (note that /J" and fylz depend on the same 
variables). Since / ,C t = f f L theorem 1 and the following facts imply the theorem: 
(1) CL satisfies M iff all the functions fPL , * " = ! , . . . , n, a re monotonic (cf. [VR]); 
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QL 
(2) CL satisfies O iff all the functions f z , Z C U, are monotonic (cf. [Lil]). The 
theorem is proved. 

• 
Remark. A set of attributes X C U is called a candidate key (w.r.t. a relation 

R) if LR(X) = U and for every Y C X : LR(Y) ± U. The problem of finding the 
candidate keys (or a candidate key) is one of the most important problems in the 
theory of relational databases, see e.g. [BDFS],[De2j. According to the previous 
theorem, the candidate keys are exactly the lower units of monotonic function f y R . 
Hence, we can apply a recognition algorithm for monotonic Boolean functions to 
construct an algorithm of finding the candidate keys. (Note that if we are given 
a set of FD's, we can calculate a value fy R in polynomial time in the size of the 
set of FDs. However, the problem of finding all the candidate keys is NP-hard, see 
[BDFS]). 

Some other aspects of the applications of recognition of monotonic Boolean 
functions to the study of choice functions satisfying M_ and O (and, hence, closure 
operations) can be found in [Li2]. 

4 On the properties of closures induced by the 
properties of choice functions 

In this section we consider the closures for which choice functions Cx and CL defined 
in Section 2 satisfy some additional properties. Note that in the theory of choice 
functions such properties are ussually studied in some fixed combinations. These 
combinations explain the use of C^ and CL. E.g., the property C (Concordance) 
ia usually studied together with H_ (see [Ai], [AM],[Mo],[Lil]). Thus, studying this 
property we consider C/, (moreover, the property C implies monotonicity and there 
is no reason to consider CL). 

Property C. As it was mentioned, we consider the functions Cj,. 
Let £ be a closure and a corresponding full family of FD's. Recall that an 

FD X —> Z is called nontrivial [De2],[DLMl] if J f n Z = 0. Let P6 stand for the 
(Post) class consisting of conjunctions and constants, cf. [Po]. 

Proposition 1 Let L be a closure operation on U. The following are equivalent: 
1) CL satisfies the property Cj 
£) L(X) n L{Y) - ( J f u F ) C L(X n Y) for all X, Y C U; 
8) If X —• Z and Y —* Z are nontrivial FD's from TL, then ATl Y —• 

Z e TL; 
4] (X — a) 6 7L iffU ~ {a,6> —• a for all b <£ X, where a £ X; 
5) For alli= l , . . . , n : / / - € P6. 

Proof . 1 —• 2. Let CL satisfy C. Then for aU X, Y C U : CL(U - X) n 
CL[U ~ Y) C CL(U - X n Y). Using CL{Z) = L(U - Z)R\Z we obtain L{X) n 
L[Y) - (X U Y) C L(X n Y) - (X fl Y). Hence, 2 hold s. 



On the interaction between cJosure 135 

2 —• 3. Let X —• Z and Y —> Z be nontrivial FD's from TL- Then so are 
X — • a and Y —• o for all o G Z. Since o G L(X) n L(Y) - (X U Y), we have 
that o e L(X n Y), i.e. X f\Y —• a G JL- Then by (F4) XC\Y —> Z e TL. 

3 —• 1. Let 3) hold and a G CL(X) n CL(Y), X, Y C U. Then U-X —• a 6 
?L and U - Y —• a e / t and both FD's are nontrivial. Hence, U - (XuY) —• 
a € ?L and o e L(U - (X U F)) . Since a G (X U K), we have a G CL(X U Y). 
Therefore, CL satisfies C. 

1 <—• 4. Let a & X. Then X —• a € fL iff o G CL[U-X), and U-{a,b} —• 
a G 7L iff a € Ci ( {a ,6 } ) . Hence, 4) is equivalent to: a e CL(Z) iff a e C7i,({o,6}) 
for all 6 e Z. According to [AM],[Mo] the last property holds iff CL, satisfies C. 

1 <—• 5. Since CL satisfies H_, it satisfies C iff all the functions f?Li = 1 n 
can be represented as /* , where / G P6, see [VR],[Lil]. Since f ^ = , we have 
that CL satisfies C iff ftL 6 Pe for all t. The proposition is proved. 

• 
Property of submission. This property was introduced in [Lil] as a dual 

form of C. We say that a choice function satisfies the submission property (S for 
short) if 

VX.YCU: C(X n Y) C C(X) U C(Y). 

Recall that a closure is called topological if L(X U Y) = L(X) U L(Y) for all 
X, Y C U. 

Let Sg stand for the class of Boolean functions consisting of disjunctions and 
constants, cf. [Po]. 

Proposit ion 2 Let L be a closure operation. Then the following are equivalent: 
1) CL satisfies Sj 
S) L is a topological closure; 
3) X —>a€iLiffb —• aeJL for some b G X; 
4) For alli = l,...,n: ft € S6. 

Proo f . 1 — > 2 . Let CL satisfy S. Then for a l l X , F C U : L(X U Y) = 
XUYUCl{U-XuY) = XUYUCL{(U -X)n(U -Y)) c (XUCl(U -X))U 
(Y UCL(U- y ) ) = L(X) U L{Y). Since (C2 ) holds, L(X) U L(Y) C L{X U y ) , 
i.e. L is topological. 

2 —• 1. Let L be topological. Then for all X,Y C U : CL(Xf\Y) = L{U-Xn 
Y)nXr\Y = L((U-X)u(U -Y))r\XnY C [L(U - X)uL{U-Y))nXnY C 
(L(U -X)nX)U (L(U -Y)n Y)) = CL(X) U CL[Y) , i.e. CL satisfies S. 

2 <—• 3. It was proved in [DLM2]. 
1 <—• 4. According to [Lil], CL satisfies 5 iff for all t = 1 , . . . , n : {f?L)* G S6, 

i.e. iff ft G SQ. The proposition is proved. 
• 

The topological closures are known to have simple matrix representations. Con-
sider two binary relations PL and TL on U as follows: 
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(dtjOy) S PL iff every closed subset X (w.r.t. L) either contains ay or does 
not contain a,. 

(ai,a,)eTL i f f f l j - 6 % ) . 
For a closure L, PL is a reflexive relation. Given a reflexive relation P suppose 

that L(X) is the intersection of all Y 2 X such that for all (aj,ay) € P either 
a,- 0 y or ay S Y. Then L thus constructed is a topological closure with PL — P, 
see [DLM2]. 

For a topological closure L, TL is a transitive binary relation. Conversely, given 
a transitive binary relation T, define L(X) = X u { o 6 U\3b e X : (6, o) € T). Then 
L is a topological closure with TL = T. Moreover, TL is t he minimal transitive 
binary relation containing PL, see [DLM2] 

It is known that the choice functions satisfying H_ and 5 can be represented by 
binary relation as follows [Lil]: 

CP{X) = {a e X|36 £ X : (b,a) & P 3c & X : [c,a) € P}. 

Hence, P thus constructed can be considered as a representation of a topological 
closure with CL = Cp. 

Propos i t ion 3 CL = CTl holds for any topological closure L. 

Proo f . Let a e X. Since TL is reflexive, a g CTl (X) iff for some c £ X : 
(c, a) S TL, i.e. iff a 6 L(c). Since L is topological, the last is equivalent to 
a 6 L{U — X) n X, i.e. o 6 CL(X). 

a 
Property of multi-valued concordance. This property also has been introduced 

in [Lil] in order to be studied together with the property O. 
A subset of U x 2U was called in [AM] a hyper-relation. We will call a hyper-

relation correct [Lil] if for every X C U there is a unique Y C. X such that for all 
a €E X — Y the pairs (a, Y) belong to the hype r-relation. 

Propos i t ion 4 Let L be a closure operation. Then the following are equivalent: 

1. CL satisfies the property of multivalued concordance, i.e. if Z = CL(X) = 
CL(Y) then Z = CL(X U Y ) ; 

2. For all X, Y C U : L(X) = L(Y) implies L(X) = L[X n Y); 

S. For allZCU : /f e P6; 

4. For all X C U : CL{X) = Y, where (a, Y) € D for all a € X - Y and D is a 
correct hyper-relation. 

P r o o f . The equivalence of 1 and 2 is evident. The equivalences 1 <—• 3 and 
1 <—• 4 follow from [Lil]. 

• 
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5 Structural representation of functional inde-
pendencies 

Let R be a relation over U. We say that a functional independency (FID for short) 
X —• Y holds for R if there are two elements of R with coinciding projections 
onto X and distinct projections onto Y (i.e. FD X —• Y does not hold), see [Ja]. 
A review of properties of FID's can be found in [Ja], In this section we construct 
the representations of FID's via operations on a power set and semilattices. 

Let R be a relation and 7IR the family of all FID's that hold for R. A family 
71 of FID's is called full if for some relation R one has 71 = 7 IR. 

Given a full family 71, define for X C U CRI(X) = {a G X\(U - X) — • a G 
71}. Conversely, given a choice function C, define a family of FID's 7 Ic as follows: 

X —• Y G Tic iff Y C C(U - X). 

Let C be a choice function. Define £{C) = {X C U\C{X) = X } . For a 
join-semilattice (£ C 2U, 0 G £, X, Y 6 L => X U Y G L) define Cc as follows: 

Cc(X) = u(Y\YCX,Ye£). 

Theorem 3 a) The mappings 71 • CJI and C • 7Ic establish mutually in-
verse one-to-one correspondences between full families of FID's and choice functions 
satisfying M. aid O. 

bj The mappings C —• L(C) and £ —• C£ establish mutually inverse one-
to-one correspondences between choice functions satisfying M_ and O and join-
semilattices. 

Proo f , a) Let 71 = 7IR be a full family of FID's. Then o G Cri(X) iff 
a 0 LR{U - X), i.e. CFI(X) = U - LR{U - X) and C satisfies O and M by 
theorem 1. 

Let C satisfy O and M. Then C = CL for some closure L, and X — • Y G 71c 
iff Y n L(X) = 0, i.e. ( X — • Y) $ 7L. Hence 7Ic is a full family. Moreover, 
a G CfIc (X) iff {U - X ) —• o G 7IC iff o G C{X). Part a is proved. 

b) Let L be a closure. Then L(CL) = { X C U\CL(X) = X} = {X C U\L(U -
X) = U - X) = { X C U\U - X G Z(L)}. Hence, part b follows from theorem 
1 and the well-known correspondence bet ween (meet)-semilattices and closure 
operations, see [DK],[DLMl]. The theorem is proved. 

• 
The last question to be considered is as follows: when is a full family of FID's 

also a full family of FD's? In other words, when is a closure operation L(X) = 
X U {a £ X\X — » a G 7IR }? 

Proposi t ion 5 Let R be a relation over U. Then the following are equivalent: 

1. L[X) = X U {a £ X\X — • a G 7IR} is a closure operation; 
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2. There is Z Ç U such that LR[X) = XUZ for all X C U. 

Proof . Let L(X) = X U {a g X\X —• a 6 7IR) be a closure. Then CL 

satisfies H_ (see theorem l) and since CL satisfies M we have that for some V C 
U : CL(X) = X n V for all X Ç U, see [AM]. Therefore, for Z = U - V one has 
Lr(X) = XUZ. 

Conversely, if LR is as in 2, then L(X) = X U {o £ X\X -•—• a € TIR} = 
X U (o £ X\X —• a £ TR} is obviously a closure operation. The proposition is 
proved. 

• 
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Abstract 
A new characterization of relational database schemes in normal forms 

is given. This characterization is based on the properties of the semilattice 
of closed sets of attributes. For the problems testing third and Boyce -Codd 
normal forma, which are known to be ^/ / ' -complete for relation schemes, this 
new characterization helps establish polynomial algorithms if the input is a 
relation (matrix) rather than a relation scheme. The problem of approxima-
tion of an arbitrary family of functional dependencies by one in a normal form 
is also addressed. 

1 Introduction 
The relational datamodel defined by E.F. Codd remains one of the most powerful 
database models. In this model a relation is just a matrix in which rows correspond 
to records and columns to attributes. Theoretical and practical aspects of this 
model have been studied over the past 20 years. Database design has always been 
and still is among the most important aspects attracting the attention of almost all 
database theorists. For relational databases, the design theory is based on the well-
developed theory of dependencies and constraints. Functional dependencies, being 
the simplest and easiest to understand, underwent a deep investigation. Enormous 
number of papers on functional dependencies have been written, (10,11,18,22,23,24] 
being just examples of surveys referring to hundreds of other papers and books. 
Surprisingly enough, many issues in dependency theory, lying on the very surface, 
have not been paid attention to for many years. One of them is the lattice-theoretic 
approach to the study of functional dependecies. It was observed very early that 
families of functional dependencies correspond to closure operators and to semilat-
tices, but very little has been done in order to bring the methods and tools of lattice 
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theory to the database theory. The situation started changing a few years ago, and 
in a number of papers functional dependencies were investigated from the lattice 
theoretic point of view [4,6,7,25]. For example, an easily described relationship 
between relations and irreducible elements of the semilattice of closed sets made it 
possible to design a polynomial algorithm for a problem that is well-known to be 
^//'-complete if the input is a relation scheme rather than a relation, see [8,9]. 

Functional dependencies are closely related to normalization of relations or re-
lations schemes. Being in a normal form, or normalized, means that a family of 
functional dependencies satisfies certain properties. The basic idea behind nor-
malization is that a relational database must be unambigously reconstructed from 
some of its projections which are normalized. Databases in normal forms are easy 
to work with, and normal forms are well motivated from the practical point of view, 
see [5,22,24]. 

However, to the best of the authors' knowledge, no attempts have been made to 
apply lattice theoretic techniques, used for functional dependencies, to normaliza-
tion. We think that doing so would benefit both normalization theory by looking 
at normalization from a new point of view, and lattice theoretic approach to the 
study of functional dependencies by extending it to normalization. 

The main goal of this paper is to give a lattice theoretic characterization of 
relation schemes in normal forms, i.e. to describe normal form relation schemes 
by the semilattices of closed sets they generate. Doing only this would be of little 
interest. We prefer to view the characterization theorems as important tools in 
demonstrating advantages of the lattice theoretic approach. In this paper we are 
going to elaborate on two points: 

• the lattice characterization of normal forms will enable us to prove that two 
problems related to normalization, which are known to be ^ - complete for 
relation schemes, are solved in polynomial time for relations (i.e. databases 
themselves); 

• it will turn out that arbitrary families of functional dependencies can be 
approximated by normalized ones, and these approximations are effectively 
computable for relations; for relation schemes, however, it may take exponen-
tial time to find approximations. 

Let us give a brief sketch of the rest of the paper. The next section contains 
all necessary definitions and facts. Most of them are standard, but some are not. 
We define all the concepts because we feel that a paper in an area where different 
people use slightly different terminology and completely different notation, must 
be self-contained. 

Section 3,4 and 5 deal with the second, third and Boyce-Codd normal forms, 
respectively. (First normal form basically says that a database is just a relation. 
Therefore, functional dependency families can be characterized in one word - arbi-
trary). For each normal form we consider four problems: 

• a lattice-theoretic characterization; 

• closure properties in the lattice of families of functional dependencies; 

• algorithms testing relations and relation schemes for this normal form and 
their complexity; 

• approximation of arbitrary relation schemes by those in normal forms. 
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Characterisation theorems will be stated in the following form: a relation 
scheme is in normal form iff the semilattice of sets closed under the closure op-
eration induced by the given scheme satisfies certain properties. 

It is known that closure operations on an arbitrary set form a lattice [4,7]. We 
will show the properties of the subsets of this lattice corresponding to normal form 
schemes. 

Before giving the results on complexity, recall that the prime attribute problem is 
to decide whether a given attribute is prime, i.e. belongs to a minimal key. It is not 
a complete description of the prime attribute problem for we did not indicate what 
the input is - a relation scheme or a relation. In the first case the problem is known 
to be .VP-complete [12,17]. However, it was shown in [8] that the problem becomes 
polynomial for relations. It was done by using the representation of irreducible 
elements of the semilattice of closed sets which can be obtained from a relation in 
polynomial time. 

Two important problems related to normalization - 3NFTEST and BCNFTEST 
- are known to be .VP-complete [1,14]. They test whether a given relation scheme or 
its subscheme is in third or Boyce-Codd normal form. Using the techniques similar 
to those in [8] and our lattice characterization or normal forms, we shall prove that 
these problems can be solved in polynomial time if the input is a relation. 

By approximation we mean finding a relation scheme that approximates a given 
one. "Approximates" should be explained here. First, the approximation must 
be taken from the class in which it is sought (otherwise the name would not be 
justified!). Second, it must be greater than the given scheme in some sense. Here we 
use the ordering on the families of functional dependencies (or closures) introduced 
and studied in [4,7] to define "greater". Finally, it is desired that approximation be 
unique. Uniqueness, as it will be shown, depends on closure properties of the given 
normal form, and can be guaranteed for third and Boyce-Codd normal forms. 

If we want to find an approximation, we would like to know the complexity of 
an algorithm. It will turn out that the situation here resembles the one in the case 
of testing normal forms: for relations there exist polynomial algorithms, while for 
relation schemes the problems are superpolynomial1, provided that P MP. 

2 Basic definitions and results 
In this section, that we shall try to make as concise as possible, all definitions and 
facts to be used in the sequel will be given. Theorems in this section will have 
negative numbers so that our first result is theorem 1. 

Let U = { A i , . . . , A n } be a set of attributes. With each attribute AI asso-
ciate a domain of its values dom(Ai). A relation over U is a subset of Carte-
sian product of all dom(At')'s. Relations will be usually denoted by R, possi-
bly with indices. Alternatively, we can think of a relation R as being a set 
of maps h : U U, dom(A,), /i(A,-) 6 dom(Ai) rather than a set of tuples. 
This does not change the nature of relations, but often makes the notation eas-
ier. R = {/&!,..., hm} means that J? is a relation consisiting of m tuples/maps 
hi,...,hm. 

A functional dependency (FD for short) is an expression X —* Y, where X, Y C 
U. If A e U, we shall write X -* A instead of X {A} . A FD X Y holds in 
a relation R = {hi,..., hm} if for any h{, h} € R the following holds: VA G Y : 
hi(A) = hs(A) whenever VA e X : hi (A) = /iy(A). A family of FDs FR = {X 
Y :X->Y holds in R} is called a full family of FDs. 

'That io, there are no polynomial algorithms that solve these problems. 



144 J. Demetrovics, G. Hencsey, L.O. Libkin, I.B. Muchnik 

Let P(U) be the powerset of U. We can think of —• as being a binary relation 
on P(U), thus representing a family of functional dependencies as a binary relation 
(i.e. a set of pairs (X, Y)) as well. A subset F of P(U) x P(U) is called an f-family 
if the following (Armstrong's Axioms) hold: 

Fl ) [X,X)eF; 
F2) (X, Y) e F, (Y, Z) G F imply [X, Z) e F\ 
F3 (X, Y)(=F,XC X', Y' C Y imply IX', Y') e F\ 
F4) (X, y ) e F, (Z, V) e F imply (XUZ,YUV)€F. 

For any binary relation F C P(U),F+ stands for the minimal binary relation 
containing F and satisfying (F1)-(F4). The existence of F+ is ensured by the fact 
that /-families are closed under intersection. FR is an /-family for any relation R, 
i.e. F+ = FR. 

A map L : P{U) —* PIU) is called a closure if it is expanding, monotone and 
idempotent, i.e. X C L(X),X C Y implies L{X) C L{Y) and L[L(X)) = L(X). 
For a binary relation F on P(U) define LF(X) = {A 6 U : ( X { A } ) £ F+. LF thus 
defined is known to be a closure. If F — FR, we write LR instead of LFr . 

A family of subsets S C P(U) is called a (meet)-semilattice if it is closed under 
intersection, i.e. X, Y 6 S implies X n Y 6 S. Given a closure L, define SL = 
{X CU : L(X) = X} and FL = { (X , Y) : Y C ¿ ( X ) } . The elements of SL are 
called closed sets. Given a semilattice S containing U, define a map L$ on P(U) 
by LS(X) = C\{Y :Y€S,XCY}. 

Theorem -3 a) F C P(U) x P(U) is an f-family iff there is a relation R such that 
Fr = F. 

b) The maps F —+ Lp and L —* FL defined above are mutually inverse and set 
up a 1-1 correspondence between closures and f-families on U. 

c) The maps L SL and S —* Ls defined above are mutually inverse and 
set up a 1-1 correspondence between closures on U and semilattices of subsets ofU, 
containing {U}. • 

This theorem shows that we do not have to redefine concepts, once introduced 
for families of FDs or relations or closures or semilattices, if we need their interpre-
tations for other objects - they can be easily obtained from the 1-1 correspondences 
of theorem -3. 

In the sequel, by relation scheme we shall mean a pair (ll,F). All concepts 
defined for a relation scheme are automatically defined for any relation R by taking 
the relation scheme (U ,FR ) . 

Given a relation scheme ( U , F ) , a set K C U is called a key if K —+ U € F+ 

(equivalently, LF(K) — U). A key is called minimal (sometimes candidate) if 
it contains no key as a proper subset. All minimal keys form an antichain (i.e. 
Ki % K.2 for any two distinct minimal keys Ki , K^) and vice versa: any antichain 
in P(ll) can be represented as a family of minimal keys of a relation scheme or a 
relation over U. 

Given a relation or a relation scheme, an attribute A is called prime if it be-
longs to a minimal key, and nonprime otherwise. The sets of prime and nonprime 
attributes will be denoted by UP and UN (or UP(F), UP(L), UP(R) etc. if R or F or 
L is not clear from the context). 

Given a relation scheme (U, F) , it is said to be in 

• Second Normal Form (or 2NF for short) if for any minimal key K and a 
nonprime attribute A, K' —* A € F+ for no K' C K\ 
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• Third Normal Form (or 3NF for short) if for any nonprime attribute A and 
X not containing A, X is a key whenever X —• A e F+; 

• Boyce-Codd Normal Form (or BCNF for short) if X is a key whenever X —+ 
A € F+ for A <£ X. 

All the definitions given above are fairly standard. Now we introduce some 
terminology that appeared relatively recently in [4,7,8,9]. 

An antikey is a maximal non-key. In other words, let K = {Klp..., Kr} be a 
family of minimal keys of a relation or a relation scheme. Then X is an antikey if 
Ki C X for no t and X is maximal such. The set of antikeys will be denoted by 
K-1. 

Given a semilattice S, M(5) stands for the set of (meet)-irreducible elements, 
i.e. such X E S that X = Y DZ,Y,Z & S implies either Y = X or Z = X. Every 
element of a finite semilattice is an intersection of irreducibles. Maximal elements 
of S — {Zi} are called coatoms. The set of coatoms is denoted by CA(S) . 

T h e o r e m - 2 [8,9] \J< = U - f ] < ~ 1 - • 

T h e o r e m - 1 [8,9] Given a closure L, the set of antikeys it generates is CA(SL). 
• 

Given a relation R = {HI,...,HM}, let EI} = {A S U : HI(A) = fcy(A)}, and 
ER = {EÍJ : 1 < t < j < m} |J{Zi}. ER is called the equality set of R. It turns out 
that ER contains all information about dependencies in R, i.e. LR can be obtained 
from ER by LR(X) = f W : Y £ ER,X C Y ) . CA{SR) contains exactly the 
maximal sets from ER — { u } [8,9]. 

Let Clu be the set of all closures on U. Without loss of generality we shall also 
denote it by Cln if \U\ = n. Define > on Cln by letting Lx > L2 iff £ i P 0 £ L2{X) 
for all X (in other words, L\ • = ¿2)-

T h e o r e m 0 [7] Cln is a lattice in which infimum (a) and supremum (v) are defined 
as follows: L = L1AL2iffSL = SLl f) SL„ L = ¿1 Vl2 iff SL = SLl U^, Ui-X'n 
Y : X&SLl,Y eSLi}. • 

In fact, A and V can be expressed directly, but for our purposes this semilattice 
definition suffices. 

A subset of Cln closed w.r.t. A (V or both A and V) is called a meet-
subsemilattice (join-subsemilattice and sublattice) respectively. 

Given X C U, let Cln(X) = {L e Cln : UP(L) = X J L K ^ 1 } , where L1 is the 
top element of C7„, i.e. i / 1 (Y) = Y for any Y. 

The last definition to be given in this section is that of interval: if X C Y CU, 
then [A", Y\ is the family of Z C U such that X C Z C Y. 

2.1 Second Normal Form 
In this section we give a semilattice characterization of the second normal form 
(2NF). The set 2NFn C Cln of the closures generated by relation schemes in 2NF 
will be shown to be neither meet- nor join- subsemilattice of Cln. An approximation 
of a closure defined as the one generated by a 2NF relation scheme and having the 
same set of prime attributes will be shown to exist. 
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Let L be a closure. A closed set, which can be obtained as the closure of a 
proper subset of a minimal key, will be called prime. In other words, a closed set 
X is prime if X = L(Y) where Y C K and K is a minimal key. 

Theorem 1 Let R be a relation over U. Then R is in SNF iff \X n UP, X] C SR 
for any prime X C U. 

P r o o f . Suppose [ X n UP,Xj C SR for all prime X C U. Assume R is not in 2NF, 
i.e. for some A 6 UN, a minimal key K and K' C K one has K' A 6 FR 
and A & K'. Let X = LR(K'). Clearly, X is prime. X ^ II and A <= X. Since 
X is closed, X — A —* A 6 FR, and X — A SR (if X — A 6 SR, X — A is a 
closed set containing K' which is a subset of X) . On the other hand, A UP, and 
X n Z / p C X - A C X , i.e. X - A € [X n UP, X] C SR, a contradiction. Thus, R is 
in 2NF. 

Conversely, let R be in 2NF. Take a prime X where X = L(Y),Y C K, K a 
minimal key. Let A € UNR\X. Then A & Y. If X - A AE FR, then Y -* A e FR, 
which contradicts our assumption that R is in 2NF. Hence X — A —• A ^ FR, and 
since X is closed, so is X — A. Since SR is a semilattice, [X — UN, X ] = \XC\UP, X ] C 
SR. The theorem is proved. 

Define 2 N F n C Cln to be the subset of Cln consisting of all closures induced 
by relation schemes in 2NF. This set does not have any particular structure as 
a subset of Cl„, i.e. it is neither meet- nor join- subsemilattice, as the follow-
ing examples show. Let U = { A I , . . . , AN} , and consider three semilattices: 
S = {0,A1,A2,A3,lA1,A2,A4},{A1,A3,A6},Z/>, S1 = S\J{{AltA2,A4,A6}, 
{ A i , A 3 , A6, A 7 } , Aio} , S2 = <Su{ {Ai , A2 , A4 , A 8 } , {Ax, A3, A6, A0), A n } . Then 
both Lsi and Ls, are in 2NFn, but Ls = Lsx A £5. is not. A counterexample 
in the case of V is even simpler. Let U = { A I , . . . , A4}, and again, consider three 
semilattices: = [p. { ¿ 2 , A3}1 { ^ 1 ^ 4 } , U}, S2 = [0, {A2, A3 , A 4 } ] 
and S = Si ( J 5 2 . T h e n both LSl and Ls, are in 2 N F i t but Ls - LSl V Ls,, is 
not. 

The approximation problem was studied for so-called choice functions [16] (i.e. 
functions on sets satisfying G(X) C X ) , and it was shown that being closed un-
der intersection/union is necessary and sufficient for the existence of a unique up-
per/lower approximation. This result can be easily generalized for the functions 
that, being ordered, form a distributive lattice (notice that choice functions ordered 
by C form a Boolean lattice). Unfortunately, the lattice Cln is not close to dis-
tributive (its properties are studied in [7] and [15]), and a counterexample can be 
found that shows nonexistence of the unique approximation for the 2NF. 

However, we can try to approximate an arbitrary scheme by that in 2NF with 
the same set of prime attributes. In other words, we say that a closure V is a 
SNF-approximation of a closure L if V > L and V 6 Cln(Up(L)) n2NFn. (Notice 
that we speak of a 2NF-approximation). 

Let us give a procedure that finds a 2NF-approximation of a given closure 
L 6 Cln. 

1. For all prime X in SL add [XC\UP(L),X\ to SL• Denote the extended S by 

2. Extend § to a semilattice. Denote this semilattice by S'. (In other words, S' 
is the minimal semilattice containing 5. 

3. Let 2 N F ( L ) = Ls>. 

Propos i t ion 1 Given a closure L, 2NF(L) is a 2NF-approximation of L. 
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Proo f . Since S C S',2NF{L) > L in Ci„ . Moreover, since no new coatom 
appeared in 5 ' , by theorems -2 and -1 UP{L) = UP{2NF{L)), i.e. 2NF(L) G 
Cln(UP(L)). To prove that 2 N F ( L ) G 2NF N , consider an arbitrary prime X in S'. 
Since the families of antikeys of S and S' coincide and the antikeys unambiguously 
determine the keys, the keys of L and 2 N F ( L ) are the same. Let X = 2 N F [ L ) ( Y ) , 
where Y C K and K is a minimal key. Then X ' = L(Y) is prime in S. Moreover, 
X C X' since L < 2 N F ( L ) . Since X G S', X is the intersection of all sets in S' 
that include X, X' among them. Let X = X' n X x n . . . n XK. Assume A G Z/„ n X . 
Thenm A G UNNX', and X'-A G S' as a set lying in [X'F\UP, X'] , which was added 
to S to get S, and therefore lies in S'. Thus X - A = (X ' - A) n X x n . . . n X * G S', 
which proves [X— UN,X] = [X F\UP,X\ C S'. Now, according to theorem 1, 
2NF{L) e 2NFn. • 

2.2 Third Normal Form 
In this section a lattice-theoretic characterization of the third normal form is given. 
Based on this characterization, the polynomiality of the 3NFTEST problem is 
proved for relations.2 The approximation problem is solved in the case of 3NF for 
relations and relations schemes. 

Theorem 2 Let R be a relation over U. Then R is in SNF iff [X D Up, X ] C SR 

for any X G SR - {U}. 

Proo f . Let R be in 3NF and X G SR,X ± U. Suppose A G UN. As in the 2NF 
case, it is enough to show that X — A G SR. Assume X — A is not closed; since X 
is, LR[X - A) = X . Therefore X - A A G FR, and X U G FR for R is in 
3NF. Closedness of X now implies X = U, a contradiciton. 

To prove the other direction, suppose [X n TLP, X] C SR for any X G SR — {U}', 
We must show that R is in 3NF. Let X A G FR, A G LLNTA <£ X. Let us 

A&X. closed. But Y - A G [Y NUP, Y] C SR 

and is therefore closed. This contradiction proves LR(Y) = U and finishes the proof 
of the theorem. • 

We denote the subset of Cln generated by 3NF relation schemes by 3 N F n . 
Similarly to the 2NF case, this subset is not closed under the operations of Cln. 
One only has to observe that the closures L s i , Ls, constructed in the previous 
section (for both V— and A— cases) belong to 3NFn while Ls does not since it is 
not in 2NFn c 3NFn . 

It is well-known that recognizing 3NF is .VP-complete in the case of relation 
schemes [14]. The situation is much better in the case of relations, where the 
problem has polynomial time complexity, as the following theorem shows. 

Theorem S There is an algorithm that, given a relation R over U, decides whether 
R is in 3NF in a polynomial time in the number of rows and columns of R. 

Proo f . Let us present an algorithm which, when given R as its input, produces a 
boolean variable x as the output: 

1. Find the set UP = UP(R). 

2. Find the equality set ER. 

2 The problem is known to be ^ - c o m p l e t e for relation schemes [14]. 

prove Suppose LR{X) = Y / U. Since 
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3. x := 1. 

4. For all X £ ER and A G UN = U - UP such that A & X and X ? U do the 
following: find the closure LR{X — A); if it equals X — A, go to the next pair 
(X, A), otherwise x := 0 and go to step 5. 

5. Stop. 

We claim that this algorithm works in polynomial time and that the output 
x = 1 iff R is in 3NF. Letus prove the first claim. Finding Up can be done in 
polynomial time as shown in [8]. Constructing ER is evidently polynomial in the 
size of R, and so is its own size. Finally, closure of any set can be found in O(|ER |) 
time, see [9]. Thus, the algorithm works in polynomial time. 

Now, assume x produced by the algorithm is 0. Then for some X € ER C SR 
and A & UN we have X — A SR. Then R is not in 3NF by theorem 3. Let x 
be 1. Let X 6 SR,X ^ U. Since M(SR) C ER [9], X = XI n . . . n XK, where 
X\,..., XK are the elements of ER which are supersets of X. Let A G XF\UN- Since 
i = l , XI - Ae SR for each t. Hence X - A = (X x - A) n . . . n (XK - A) € SR 
and [X D UP, XI C SR. Thus, R is in 3NF by theorem 3. • 

Although 3JVFn is not closed under the operations of Cln, we nevertheless are 
able to find the 3NF approximation which is defined as follows: 

Definition Let L G Cln. Then V S Cl„ is called the 3NF-approximation of L if 
the following holds: 

1. V > L] 

2. V e Cln(Up(L)) D ZNFn (i.e.Up(L) = UP(L') and V is in 3NF)-, 

3. L' is the minimal such, i.e. if L" 6 Cln{Up(L)) D 3 N F n and L" > L, then 
L" > L'. 

Given a closure L, construct a closure denoted by 3 N F ( L ) using the following 
procedure: 

1. Add all intervals [ X n W p , X ] for X & Si to Si,. Denote Si thus extended by 
s. 

2. Extend S to the semilattice, i.e. let S' be the minimal semilattice containing 
S. 

3. 3NF{L) = Ls 

Proposi t ion 2 Given a closure L, 3NF(L) is its SNF-approximation. 

Proo f . Since Si C S',3NF(L) > L. According to the procedure given above, no 
new coatom may appear in S' and since S' is an extension of Si, CA(Si) = C A ( 5 ' ) . 
Therefore UP(L) = UP(3NF{L)) by theorems -2 and -1. 

To prove 3 N F ( L ) e 3 N F n , consider XeS',X^U, and a nonprime A e X . X 
can be represented as X = X i f l . . . f~l Xk, where X,- G [Xj1 n UP, X? ] and X ? 6 Si. 
Therefore, X< - A € [X? n Up, X? ] C S' and X - A = (Xi - A) n . . . (X fc - A) G S'. 
thus 3NF(L) 6 3NFn by theorem 3. 

If L" is as in 3 of the definition of the 3NF-approximation, Si C Si» and by 
theorem 3 [X D Up, X] C SL a for any X G Si, X ti U. Since Sin is a semilattice, 
this shows Sii C Sia and L" > 3 N F ( L ) . The proposition is proved. • 
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Having described the 3NF-approximation, we have a natural question: how hard 
is it to find the approximation. Notice that the question asked is ambiguous - we 
did no.t specify what is given as an input: a relation or a relation scheme. That is, 
we have two different problems: 

(3NF-APPROXIMATION FOR SCHEMES): Given a relation scheme {U,F), 
find a scheme (U,F') which is a SNF-approximation of (U,F) (to put it another 
way. LF< = 3NF(LF)). 

(3NF-APPROXIMATION FOR RELATIONS): Given a relation R, find a re-
lation R' which is R's SNF-approximation (i.e. LR> = 3NF(LR)). 

The complexity result for these problems is very similar to the one for 3NFTEST 
- the problem is polynomial for relations and superpolynomial for schemes. 
Theorem 4 The problem SNF-APPROXIMATION FOR RELATION can be 
solved in a polynomial time. The problem SNF-APPROXIMATION FOR 
SCHEMES is superpolynomial provided that P ^ MP. 

Proo f . Let R be a relation. Let E'„ = ER[}{X - A : X S ER,A € U„{R)}. 
Since constructing both ER and Un[R) takes polynomial time in the size of R 
[8,9], E'R can be found in polynomial time too. FYom theorem 3 we conclude that 
M{SL) C E'R c SL, where L = 3NF(LR), and a relation R! satisfying LR< = L 
can be found by using the polynomial algorithms from [19]. This relation R' is a 
sought 3NF-approximation of R. 

To prove the second part, show how we can use 3NF- APPROXIMATION FOR 
SCHEMES to solve 3NFTEST. Given a scheme (U,F), let (U,F') be its SNF-
approximation. Notice that (U,F) is in 3NF iff F+ = (F') + . Since checking the 
equality F * = for two arbitrary families of FDs takes polynomial time [18], 
knowing F' gives rise to a polynomial algorithm that tests 3NF. Since 3NFTEST is 
.VP-complete, P ^ MP implies that approximation can not be found in a polynomial 
time. Note that an exponential time complexity algorithm was provided before 
proposition 2. The theorem is proved. • 

2.3 Boyce-Codd Normal Form 
In this section we discuss our main topics - characterization, testing, approximation 
- for BCNF. The characterization is the simplest one and corresponds to a well-
known mathematical object: the order ideals. BCNFn turns out to be a sublattice 
of Cln, moreover, a distributive one. This ensures the existence of approximation, 
which, as in the 3NF case, can be found in polynomial time for relations and 
superpolynomial time for schemes. 

Theorem 5 Let R be a relation over U. Then R is in BCNF iff [0,X] C SR for 
anyXeSRlX^U. 

Proo f . Let R be in BCNF. Suppose X - A & SR for X 6 SR - {U}, A € X. Then 
X - A -+ A 6 FR, implying X — U € FR. Thus X - A € SR and [0, X ] C SR. 
Conversely, if the condition of the theorem holds, suppose X —* A g FR, A ^ X . If 
X — U & FR, then I f i f X ) JIU and X € \<»,LR(X)\ C SR, i.e. X is closed. This 
contradiction shows LR{XJ = U, i.e. R is in BCNF. • 

Some similar results for BCNF were established earlier, e.g. in [20]. The fol-
lowing corollary gives some alternative characterizations, all of them immediately 
derivable from theorem 5. 
Corol lary 1 Given a relation scheme (U, F), the following are equivalent: 
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1. (U,F) it in BCNF; 

S. [0, X ] C SF for every X E SF - {U}; 

3. SF — where Xi,...,Xt are the antikeys; 

4- P(U) -SF = (U,r=i[#.>2/]) ~ {U}, w>"rc Ki,...,Kr are the minimal keys.3 

Let BCNFn stand for the subset of Cln generated y schemes in BCNF. Clearly, 
BCNFn C 3NFn C 2NF n . 

Proposit ion 3 BCNFn w a distributive sublattice of Cln. 

Proo f . Let LuL2 E BCNFn. Since Sx,, f l S i , evidently satisfies the condition 
of theorem 5, t i A L2 G BCNFn. To prove Li V Lj 6 BCNFn, represent SLl 

and SLt as U - i f f , U W and U!=i[0> ^ J U M respectively, see corollary 1. 
Let Zi,...,Zp~bt the maximal sets among X\ XT,Yi,... ,Yt. Then U 
SL, U { X n Y : X E SLi,Y E SL,} = U?=1[0,Z {\\J{U} = SLl U SLj. Thus 
Lj V L2 6 BCNFn. The sublattice BCNFn is distributive because the join and 
meet operations correspond to union and intersection of semilattices. • 

BCNFTEST is known to be ^ -complete for relation schemes. BCNFTEST 
here is the problem that tests whether a subscheme of a relation scheme (U,F) 
generated by a proper subset X C U is in BCNF. (Notice that checking whether 
the scheme itself is in BCNF takes polynomial time: one has to construct the 
canonical minimal cover [25] and check if it consists only of key dependencies). As 
in the 3NF case, the analogue of BCNFTEST problem for relations can be solved 
in polynomial time. 

Proposit ion 4 Given a relation R over U, BCNFTEST can be solved in polyno-
mial time in the size of R. 

Proo f . Let R be a relation and X C U. Let Rx denote the projection of R onto 
X . Denote the set of maximal elements of ERx — { X } by Ex- Then, according to 
theorem 5, Rx is in BCNF iff for all Y € Ex and all A e Y : Y - A is closed, i.e. 
LRX (Y — A) = Y — A. Since constructing Ex takes polynomial time and closure 
can be computed in polynomial time too, the whole algorithm has polynomial time 
complexity. • 

Similarly to th 3NF case, there exists unique approximation of a given closure by 
the one in BCNF. More precisely, we define the BCNF-approximation of a given clo-
sure L as the minimal closure V such that V > L and L' E Cln(Up(L)) n BCNF„. 
Let BCNF(L) be the closure whose semilattice of closed sets is U!=i[fli Xi] U{^}> 
where X i , . . . , X< are the antikeys of L. It follows immediately from corollary 1 
and the definition of approximation: 

Proposit ion 6 Given a closure L, BCNF(L) is its BCNF-approximation. • 

BCNF-approximation has clear interpretation in terms of FDs. If L = LF for 
a relation scheme (U, F), let F' = {Ki -* U,...,KT -* U), where Ki,...,Kr are 
the keys of (U,F). Then LF. = BCNF(L). 

We finish this section by proving the complexity result for the approximation 
problem. As in the 3NF case, we have two problems: 

s This result was proved by J. Biskup [3]. 
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(BCNF-APPROXIMATION FOR SCHEMES): Given a relation scheme (U, F), 
find its BCNF-approximation, i.e. a relation scheme (U,F') such that LF< = 
BCNF{LF). 

(BCNF-APPROXIMATION FOR RELATIONS): Given a relation R, construct 
a relation R' which is R's BCNF-approximation, i.e. LR< = BCNF(LR). 

T h e o r e m 6 The problem BCNF-APPROXIMATION FOR RELATIONS can be 
solved in a polynomial time. The problem BCNF-APPROXIMATION FOR 
SCHEMES has exponential complexity. 

Proo f . Let R be a relation and Xi,..., X% its antikeys. Let S = (J*=1[0, 
Then LS € BCNFN by corollary 1 and LS = BCNF(LR) because the family of 
antikeys unambiguously determines the family of keys. Let MR = { X — A : A 6 
U,i = 1 , . . . ,t}. Then M(S) C. MR C S, and applying the polynomial algorithm of 
[19] we can construct a relation R' with SRI = S. Since finding the antikeys takes 
polynomial time [8,9], R' can be constructed in a polynomial time if R is the input. 
Notice that LR. = LS = BCNF{LR). Thus R' is R's BCNF-approximation. 

As it was mentioned before, an exponential complexity algorithm for BCNF-
APPROXIMATION FOR SCHEMES exists: one has to find all minimal keys. On 
the other hand, it is clear that the size of the approximation F' is about the size 
of its canonical minimal cover [25] which consists of FDs Ki —* U,...,Kr —+ U, 
where Ki Kr are the minimal keys of (U,F) and it can be exponential: Yu 
and Johnson [26] have given an example of a scheme consisting of k functional 
dependencies on A:3 attributes with k\ minimal keys. For a detailed discussion of 
schemes reaching this extremal number of minimal keys, see [2]. • 

Note that the polynomial algorithm for approximation problem for relations, 
described in the proof of theorem 6, was used in [13] to construct an algo-
rithm that, given a relation, finds its minimal keys. This problem has exponene-
tial time complexity, but it can be decomposed into two subproblems: BCNF-
APPROXIMATION, which has polynomial time complexity, and dependency in-
ference problem [21] for which good practical algorithms exist. 
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On Unambiguous Number Systems with a 
Prime Power Base 

Juha Honkala* 

Abstract 
We study unambiguous number systems with a prime power base. Given 

a prime p and a p-recognizable set A, it is decidable whether or not A is 
representable by an unambiguous number system. Given an arbitrary integer 
n and n-recognisable set A, the unambiguous representation of A is unique if 
it exists, provided that A is not a finite union of arithmetic progressions. 

Keywords : Number system, unambiguity, decidability. 

1 Introduction 
We study representation of integers in arbitrary number systems. Here " arbitrary" 
means that the digits may be larger than the base and that completeness is not 
required, i.e., every integer need not have a representation in the system. Also the 
number of the digits is arbitrary. These number systems were defined and studied 
by Maurer, Salomaa and Wood in [14]. The work was continued by Culik II and 
Salomaa in [5] and Honkala in [8]. These references discuss the connections to the 
theory of L systems and cryptography. Further results on number systems have 
been obtained in [9]-[ll]. For closely related work see [1,7,13]. 

The study of number systems is closely connected with the study of sets of inte-
gers recognizable by finite automata. By definition, a set A of nonnegative integers 
is ¿-recognizable if and only if there exists a finite automaton which recognizes the 
representations of the integers of A written at base k. Here fc > 2 is a positive 
integer. Now, if A is represented by a number system N, the representations of the 
integers of A can be recognized by an automaton with a single state if the digit 
set ( 0 , 1 , . . . , k — 1} is replaced by the digit set of N. Thus, representability by a 
number system implies simplicity of recognition when the choice of the base and 
the digits is optimal. 

In this paper we study unambiguous number systems with a prime power base. 
By definition, a number system is unambiguous if no integer has more than one 
representation in the system. The assumption concerning the base makes it possible 
to apply the theory of finite fields. 

Suppose p is a prime. By Christol, [2], a set A of nonnegative integers is p-
recognizable if and only if there exists a nonzero polynomial P(z, t) over the finite 
field Fp such that P(z,aA) = 0. Here aA is the series £\ g y l o f Fp\\z]}- Using 
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this result we show that it is decidable whether or not a given p-recognizable set 
is represented by an unambiguous number system. Consequently, given a number 
system N with a prime power base, it is decidable whether or not there exists an 
unambiguous number system equivalent to N, i.e., representing the same set of 
integers as N. 

Consider an n-recognizable set A. Here n is an arbitrary integer, not neces-
sarily a prime. It is well known that A is also nfc-recognizable for each positive 
integer k. We show that, on the contrary, the set A has at most one unambiguous 
base, provided that A is not a finite union of arithmetic progressions. More specif-
ically, if A is not a finite union of arithmetic progressions, there exists at most one 
unambiguous number system representing exactly the integers of A. 

2 Definitions 
By a number system we mean a (v + l)-tuple N = (n, m i , . . . , m„) of positive 
integers such that v > 1, n > 2 and 1 < mi < m? < . . . < m„. The number n is 
referred to as the base and the numbers m, as the digits of the number system N. 
A nonempty word 

Wik-i •••miimio, 1 < *) < v (1) 

over the alphabet { m i , . . . , m„} is said to represent the integer 

miknk + mik_lnk~1 + . . . + mj,n + m,0. (2) 

The word (1) is said to be a representation of the integer (2). The set of all repre-
sented integers is denoted by S(N). By definition, a number system is unambiguous 
if no integer has more than one representation. 

A set A of positive integers is called representable by a number system, shortly 
RNS, if there exists a number system N such that A = S(N). 

Suppose k > 2 and denote k = {0 ,1 , . . . ,k — 1}. Define the mapping vk from 
k* to N by 

m 
uk{a0ai... am ) = a.*"""' K G k). 

»=0 

The mapping vk is extended in the natural way to concern languages L C k*. 
Hence vk[L) = {vk(x)\x G L}. By definition, a set A of nonnegative integers is 
k-recognizable if there exists a rational language L C k* such that A = vk(L). For 
the basic properties of ^-recognisable sets see [6] and [15]. 

The following result is essentially due to Culik II and Salomaa, [5]. For a proof, 
see [9]. 

Lemma 2.1 If N = (n, mi , . . . , m„) is a number system, the set S(N) is n-
recognizable. 

If p is a prime, we denote by Wp the field of integers modulo p. The polynomial 
ring over Fp in z is denoted by 7Fp[zj. The quotient field of Fp\z\ is denoted by 
IFp(z). The ring of formal power series over IFP in z is denoted by jFp[[z]]. An 
element a belonging to an extension field of IFp(z) is algebraic over IFp(z) if there 
exists a nonzero polynomial P(t) G IFp(z)\t\ such that P(a) = 0 . If a is algebraic 
over FP(z) there exists a polynomial R(t) € Fp(z)\t\ of minimal degree such that 
R(a) = 0 and the leading coefficient of R(t) is 1. This polynomial R(t) is called the 
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minimal polynomial of a. Notice that R(t) is necessarily irreducible. By definition, 
the degree of a equals the degree of the minimal polynomial of a. The basic facts 
about minimal polynomials and algebraic extensions of fields which will be needed 
in the sequel can be found in [12]. 

Suppose A is a set of nonnegative integers. Then the series aA over Wp is defined 
by 

C A - Y . * ' 
i£A 

The following theorem is due to Christol, [2], and Christol et al., [3]. 

Theorem 2.2 Suppose that p is a prime and A is a set of nonnegative integers. 
The set A is p-recognizable. if and only if the series 

<jA = Ylzi 
i€A 

of lFp[[z]] is algebraic over the field Fp(z). If A is p-recognizable there exists a 
nonzero polynomial P in Fp[z, t] such that 

P(z,aA(z))= 0 

and the degree of P in t is at most p' — 1. Here s is the number of states in the 
minimal deterministic automaton recognizing the set 

{ a 0 o i . . .o/,[/i > 0, a,- e p ,o 0 + aYp + . . . + ahph e A}. 

The bound given above for the degree of P can be deduced from [3, pages 
407-408]. 

In the sequel we need a characterization of the sets A such that aA has degree 
one over lFp(z). By definition, a set A of nonnegative integers is recognizable if A 
is a finite union of arithmetic progressions. 

Lemma 2.3 A nonempty set A C IN is recognizable if and only if there exists a 
nonzero polynomial P in Fp\z, t) of degree one in t such that P(Z,CTA{Z)) = 0. 

Proof . If A is recognizable, the existence of P is clear. On the contrary, suppose 
that 

R(z) + Q{Z)OA = 0, 

where R(z), Q[z) € Without loss of generality we suppose that Q(0) ^ 0. 
Therefore aA is an IFp-rational power series. Because Fp is finite, the set A = 
{ i | aA contains the term z ' } is recognizable (see [16], Theorem II 5.2). 

• 

3 The Main Results 
Suppose p is a prime. In this section we repeatedly use the following fact. If 
r = X^r.z' belongs to 2F"p[[z]] and q > 1, then 
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Lemma S.l Suppose that N = (n, mi , . . . ,m,, ) is an unambiguous number system. 
Suppose furthermore that n = pq, where p is a prime and q > 1. Define a(z) = 
£¿=1 z f n ' • Then os[N) € JFp[[z]] satisfies the equation 

at" -1 + a = 0 

m Fp\\z)). 

Proof . Clearly 

v 
S(N) = [J (m,- + nS{N)) U { m 1 ( . . . , m.}. 

» = i 

Because N is unambiguous, 

(mi, + nS(N)) n (mi, + nS(N)) = 0 

if M ^ *2 aid 1 < M, »2 < v. Therefore 

= a(z) + j T ( * m i E 
.=l jes(N) 

= «w + «w E *ny 
yes(Ar) 

= a( , ) + « ( , ) ( E 
yes(^) 

= a(z) + a(z)<7%{n). 

Lemma 3.2 Suppose that R(t) £ Fp(z)\t\ has degree k > 2 in t. Suppose further-
more that #(t) divides 

P[t) = atp' - t + a 

where a €E Fp\z\, the degree mi of the lowest term of a is at least one and q > 1. 
Then 

g < l ° g p ( m i * ( A ; - l ) + l) . 

Proo f . Because the derivative of P(t) equals —1, the roots of P(t) are simple. 
At least two of the roots of P{t), say 71 and 73, are also roots of ii(t). Denote 
P = ll -12- Now 

aP' - ft = P{n) - = 0. (3) 
Because ft is the difference of two roots of a polynomial of degree k, the degree 
of the minimal polynomial of /? is at most kCk — 1). Suppose that the minimal 
polynomial of /? multiplied by an element of Fp\z\ equals 

S(t) = a m t m + . . . + M + ao( 
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where a< €E S?p\z\ for 0 < « < m, and am ^ 0. Now 

W = a ^ i ^ ' r + . - . + a i y + a g ' 
= a^V1)"/*™+ ••• + «! V 1 )^«? ' -

Here the last equation follows by (3). Therefore, fi is a root of the polynomial 

5X (t) = « £ [a'1 )mtm + ... + o f (a~1 )t + a f . 

Because the degrees of S and Si are equal to the degree of the minimal polynomial 
of /3, we have 

„p*— 1 „m„P*— 1 / j \ 
" m = a a 0 ( 4 ) 

Denote the degrees of the lowest terms of am and Oo by » and j , respectively. Then 

( t - y ) ( P « - i ) <mik[k-i). 

Because the degree of the lowest term of a is positive, » > j , and the claim follows. • 
Theorem S.S Suppose p is a prime. Given a p-recognizable set A, it is decidable 
whether or not there exists an unambiguous number system N such that A — S{N). 

Proof . By Theorem 10 of [10], it is decidable whether or not A is recognizable. 
Suppose first it is not. 

Consider the series a a S iPp[[«]]. By Theorem 2.2, is algebraic over JFp(z) 
and the degree of the minimal polynomial R[t) of a A is a t most p* — 1. Here s is an 
effectively obtainable positive integer. By Lemma 2.3, the degree of R(t) is at least 
2. Suppose now that A = S(N) where N = ( n , m i , . . . , m«) is an unambiguous 
number system. By Lemma 2.1 and Cobham's theorem, [4], there exists a positive 
integer q such that n = pq. Denote 

a(z) = zmi + ... + zm' 

and 
P(t) = at"' - t + a. 

By Lemma 3.1, we have P(<TA) = 0. Therefore, because R(t) is the minimal 
polynomial of <XA, the polynomial R(t) divides P[t). By Lemma 3.2, 

q < logp(mi (p* - l)(p* - 2) + 1) < 2a + logp mx . 

Here mi is necessarily the least positive element of A. Therefore, to decide whether 
or not A is representable by an unambiguous number system, it suffices to decide 
whether or not A = Ŝ"(TV) for an unambiguous number system N with a base 
p', t < 2s + logp mx. This can be done by Theorem 6.3 of [5]. 

Suppose then that A is recognizable. The decidability in this case will be shown 
in the next section of this paper. 

• 
Corollary 3.4 Given a number system N with a prime power base, it is decidable 
whether or not there exists an unambiguous number system Ni such that SIN) = 
Si*). 
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The decidability status of the problems considered in Theorem 3.3 and Corollary 3.4 
is open in the general case. In the last result of this section, however, no primality 
assumptions are needed. 

Theorem 3.5 Suppose A is a k-recognizable set for some k > 2. Furthermore, 
suppose that A is not recognizable. Then there is at most one unambiguous number 
system N such that A = S(N). 

Proof . Suppose that Ni = ( n i . m i , . . . , ^ ) and N2 = (ri2, m', , . . . ,m(,) are dis-
tinct unambiguous number systems such that A = S(N1) = 5(yVr2)- Because A is 
not recognisable there exist positive integers n > 2, t and j such that ni = n* and 
«2 = n } . Denote 

a(z) = zmi + ... + zm* 

and 
b(z) = zm' + ... + zm'. 

Now 
aA(z)=a[z) + a(z)aA{zni) (5) 

and 
<rA(z)=b(z)+b(z)aA(zn'). (6) 

Here aA belongs to JFp\\z\\. The choice of the prime p is free. Replace in (5) z by 
zn' and in (6) z by zn'. Hence 

aA(zni) = a(zn') + a(znS)aA(zn'*') (7) 

and 
vA(zni) = b(z»') + b(zn<)aA(zni+J). (8) 

Now (5)-(8) imply that 

aA(z)[b(z)a(zni) - a(z)6(z"')] = a(z)b(z)\a(zni) - (9) 

Because necessarily mi = m[, the lowest terms of a{z) and b(z) have the same 
degree. Therefore, if n} ^ n*, the right-hand side of (9) is nonzero. K n3 = n', 
necessarily a(z) jt b(z), and again the right-hand side of (9) is nonzero. By Lemma 
2.3 this implies that A is recognizable. This contradiction proves the claim. 

• 
Theorem 3.5 does not hold true for recognizable sets (see e.g. Example 4.4 

below). 

4 Representation of Recognizable Sets 
In this section we give a proof of Theorem 3.3 in the case of a recognizable set. 

Suppose A C ffl is recognizable. Given k 6 ]N, it is decidable whether or not 
A C kJN. Denote by d the greatest common factor of the elements of A. Because d 
necessarily divides the least nonzero element of A, d can be found out effectively. If 
A = S(N) where N = (n, m i , . . . , mt) is a number system, d divides all the digits 
of N. Therefore 

d~lA = {x\dx e A} = S(N') 
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where N' = (n, d - 1 m i d - 1 mt) . Clearly, N is unambiguous if and only if N' 
is unambiguous. Hence we suppose without loss of generality in the rest of this 
section that d — 1. Define now the w-word w(A) = 010203... by 

/0 ifi&A 
a i = \ 1 if»' e A. 

Because A is recognizable, there exist words i i , » £ { 0 , s u c h that w(A) = uvu. 
(Here vu = vvv...). The words u and v can be obtainea effectively. In the sequel 
we always assume that v is a primitive word, i.e., that there does not exist a word 

and an integer k > 2 such that v = vf. If i, j > 1, we denote 

i] ~ o.o.+ i • • • ai+]-l-

The length of a word to is denoted by |tu|. 

Lemma 4.1 Suppose A is a recognizable set with w(A) = uvw. If N = 
(n, mi,..., mA is an unambiguous number system representing A with n > |u|+ |v|, 
then the length of v divides n. 

Proof . Suppose that A = S(N) where N = ( n 1 m i l . . . l m ( ) is an unambiguous 
number system and n > |u| + ]v|. Suppose m is a digit of N. Denote 

u>i = w(A)[mn + |u| + 1,\v\\ 

and 
w2 = w(A)[|u|+ l,|w|]. 

Clearly, if rm e {|ul + 1 |u| + |v|}, then mn + m,- € (mn + |u| + 1 , . . . ,mn + 
|u|+|t>[}. On the otner hand, any integer in the set {|uj + 1 , . . . , |u|+ |v|} belonging 
to A is a digit of N. Therefore the word uii is obtainea from by replacing some 
O's by l's. However, the number of l's in tui is equal to the number of l's in w?. 
Therefore u>i = 103. Because a primitive word equals no nontrivial conjugate of 
itself, 

mn + |u| + 1 = |u| + 1( mod |u|). 

Hence |v| divides mn. Because this holds for any digit m and the greatest common 
factor of the digits is 1, |v| divides n. 

• 
If A C W, we denote A° = A U {0}. If a set B is a disjoint union of the sets 

Bi,...,B,, we denote B = Bx U B 3 U . . . U B , . 
Lemma 4 .2 Suppose that A is a recognizable set of positive integers with w(A) = 
uvu. Then there is an unambiguous number system N = (n, m i , . . . , m«) represent-
ing A with rt > |u|-f |v| if and only if there exist a positive integer k and nonnegative 
integers xi, x2,..., ijt such that 

zi + A ° U . . . U i f c + A0 = IN (10) 

and, furthermore, for each x E A there are infinitely many elements of A congruent 
to x modulo the length of v. 
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P r o o f . Suppose first that A = S(N), where N = (n, mj , . . . .ггц) is an unambigu-
ous number system such that n > |u[+ |u|. By Lemma 4.1, |i>] divides n. Therefore 
there exists an integer t with 1 < t < n such that 

{x\x = t( mod n)} П A = i -I- nlN. 
Suppose that ¡ / i , . . . , j /k are the digits of N that are congruent to t modulo n. 
Because N is unambiguous, we have 

t/i + nA° U . . . U yk + nA° = »' + nJV. 
Hence 

-(У1 - i) + A0 U. . .U - ( у * - г) + А0 = IN. п п 
It is clear that if x G A there are infinitely many elements of A congruent to x 
modulo the length of v. 

Conversely, suppose that there exist x\,...,xk such that (10) holds. Fix n > 
|u| + |t)| such that |u| divides n. The digits are chosen as follows. Consider an 
integer » with 1 < » < n. If 

{x\x = t'( mod n)} П A = t + nlN, 
then 

1 + п5С1 + п А 0 и . . . й г + пхк + пА° = t + nlN (11) 
and we take the integers г + n x i , . . . , % + nxk as digits. If 

{x\x = i( mod n)} П A = i + n + nlN, 
then 

t + n + nxx + nA° U . . . U t + n + nxk + nA° = i + n+ niv (12) 
and we take » + n + n i j , . . . , » + n + nxk as digits. Let N be the number system 
that has base n and has all the digits chosen above. An inductive argument shows 
that A = S{N). The unambiguity of N follows because we have disjoint unions in 
(11) and (12). 

• 
Notice that there exists at most one sequence x \ , X k of nonnegative integers 

such that (10) holds. The existence of the sequence is easy to decide. 
Suppose A is a recognizable set with w(A) = uvw. Theorem 6.3 of [5] implies 

that all unambiguous number systems N = (n, m i , . . . , mt) representing A with 
n < |u| + can be constructed effectively. Lemmas 4.1 and 4.2 give all unam-
biguous representations with base greater than or equal to |u| + |f|. (This follows 
because no set has two distinct unambiguous representations with the same base.) 
In particular, given a recognizable set A, it is decidable whether or not there is an 
unambiguous number system N such that A = S(N). This concludes the proof of 
Theorem 3.3. 
Example 4.3 Denote N = (2,1,4). By [5, Example 2.3], S(N) = {x\x £ 
2( mod 3), x > l ) . Clearly N is unambiguous. This example snows that sometimes 
a recognizable set has unambiguous bases smaller than the period. By Lemma 4.2, 
S(N) does not have other unambiguous representations. 
Example 4.4 Denote A = {z|x = 0, l(mod4), x > 1). Then 

А0 и 2 + A0 = IN. 
Therefore, by the proof of Lemma 4.2, the set A has unambiguous base 4m if m > 1. 
Hence A has infinitely many unambiguous bases. This shows that Theorem 3.5 does 
not hold true for recognizable sets. 
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Symbiotic EOL Systems 

Alexander Meduna* 

Summary : Cell symbiosis is described by EOL systems whose (direct) derivations 
are introduced on free monoids generated by finite sets of words consisting of one 
or two symbols. A single symbol represents a cell existing separately while two 
cells living symbiotically are represented by a pair of symbols. By using these 
systems, context sensitive and recursively enumerable languages are characterized. 
Thus, the presented modification remarkably increases the generative capacity of 
the classic concept of EOL systems. 

K e y words : Cell symbiosis - EOL systems - Monoids - Generative capacity 

1 Introduction 

1.1 Three points of view 
From the biological point of view, this paper attempts to describe cell symbiosis 

(see [l]-[2]) in a simple and formal way. To do so, the classic concept of EOL 
systems (see [3]-[4], [11]) is modified so that their derivations are introduced on 
free monoids generated by finite sets of words consisting of one or two symbols. 
Single symbols represent cells living separately while pairs of symbols represent 
cells living symbiotically. Attempting to propose our formal model as universal as 
possible, we do not differentiate between associations of plant-plant, animal-animal, 
and plant-animal cells or between prokaryotic and eukaryotic cells. It is proved 
that our approach remarkably increases the generative capacity of EOL systems. 
Or, more biologically speaking, it allows us to describe some developments of cell 
organisms than the classical approach does not. 

From the mathematical point of view, such a generalization of EOL systems is 
very natural: rather that allowing only letter monoids as domains of derivations we 
now introduce the derivations on free monoids generated by words consisting of one 
or two symbols. In other words, we investigate single finite substitutions iterated 
on free monoids generated by finite number of words having one or two symbols. 

From the formal language theory point of view, the resulting grammars are very 
simple in comparison with some other rewriting mechanisms (see, eg, [5]-[7], [9] 
and references therein). Moreover, they characterize both context sensitive and 
recursively enumerable languages in a natural way. 
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1.2 Relation to some other rewriting systems 
Although there are some similarities between our generalization of EOL systems 

and EIL systems (see [ll]), both of the concepts are fundamentally different: in 
EIL systems the way a letter is rewritten depends on its neighbors while in our 
systems it does not. What is restricted in our approach are derivation domains. 

There sire also some analogies between this paper and [8]. The latter introduces 
the notion of a derivation on word monoids generated by finite sets of words over 
total vocabularies of context free grammars. By using generators of length at most 
two, context sensitive and recursively enumerable languages are characterized by 
such modification of context-free grammars. The analogical result is proved for 
the generalization of EOL systems in this paper. Thus, we get the same generative 
power of both parallel and sequential context-independent rewriting defined on free 
monoids generated by finite words having one or two symbols. Since both ways of 
rewriting generate quite different language families when defined on letter monoids 
(see [ll]), this result may be of some interest. 

2 Preliminaries 

2.1 Basic Notions 
We assume that the reader is familiar with formal language theory (see [12]), in 

particular, with the theory of L systems (see [ll]). Some notations and definitions 
need perhaps an additional explanation. 

For a vocabulary V, V* denotes the letter monoid (generated by V under the 
operation of concatenation), e is the unit of V*,V+ = V" — {e}. For a word 
x &V*, [x| denotes the length of x. For a finite set of words W over V, W* denotes 
the word monoid (generated by W under the operation of concatenation). 

A context free grammar is a quadruple G — (V, P,S,T), where, as usual, V 
is a finite alphabet, P is a finite set of productions of the form A —• x, where 
A G V - T,x €V*,S eV - T in the axiom, and T C V is a terminal alphabet. 

A context sensitive grammar is specified in Penttonen Normal Form G = 
(V, P, S, T), where V, S, and T have the same meaning as for a context free gram-
mar and every production in P is either of the form AB —• AC or A —• i , where 
A,B,C EV -T,x€{Tu(V - T)2), see Theorem 2 in [10]. 

A phrase structure grammar is also specified in Penttonen Normal Form 
G = (V, P, S, T), where V, S, and T are as for a context free grammar and ev-
ery production in P is either of the form AB —• AC or A —• x, where 
A,B,C eV-T,x€ ({e} U T U (V - T)2), see Theorem 4 in [10]. 

Given a (context free, context sensitive, or phrase structure) grammar G, in the 
standard manner we can introduce the relations = > , = > " , and = > * on the 
free monoid generated by its alphabet. If we want to express that x => y in G 
according to production p, then we write x => y [p]. 

2.2 Basic Definition 
We now introduce a new concept of EOL systems, the subject of investigation in 

this paper, namely the notion of a symbiotic EOL system. 
Let V be an alphabet. A symbiotic EOL system (SEOL-system for short) is a 

4-tuple G = (W, P, S,T), where W C (V U V2), P is a finite set of productions of 
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the form A —• x, where A e V, x e V*, S € V - T, and T C V. G is said to be 
propagating if A — • x € P implies x ^ e. G is called an EOL system if V = W. 

The direct derivation relation ==> is now defined on W* as follows: For arbitrary 
words x,y G W* such that x = aia2. ..an,Oi € V,y = yi«/2 • • • J/niy« G V*, and 
productions ox — • j/i, o2 — • t/21 • • • j a„ —• yn € P, we say that x directly derives 
y according to a± —• yi, a2 —• y2,..., on —>y n (in G), in symbols 

x => yx => y [ox—*yi,a2—• ya.•••,an—• yn] 

The list of applied productions (written in the brackets) is usually omitted when 
no confusion arises. We denote the t-fold product of = > (for some i > 0) by =>* , 
the transitive closure of = > by ==>+, and the reflexive and transitive closure of 
==>• by = > * . The language of G, denoted by L(G,W), is defined by L(G) = {t; e 
T* : S =>* u}. 

2.3 Denotation of Language Families 
We denote by SEOL and EOL the families of languages generated by SE0L- and 

GOL-systems, respectively. The families of languages generated by propagating 
SEOL- and EOL-systems are denoted by SEPOL and EPOL, respectively. The 
family of context-free, context-sensitive, and recursively enumerable languages are 
denoted by CF, CS, and RE, respectively. 

3 Results 

3.1 Aim and Preliminary Results 
In this section, we examine the generative capacity of (propagating) SE0L-

systems. It follows immediately from the definitions and some basic results of 
formal language theory (see [11]-[12]) that 

CF c EPOL = EOL c CS c RE 

and 

EPOL = EOL C SEPOL Ç SEOL 

Next we will give precision to these relationships when proving that 
(i) a language is context sensitive if and only if it is generated by a propagating 

SEOL-system and 
(ii) a language is recursively enumerable if and only if it is generated by a 

SEOL-system. 
We close Section 3.1 by recalling a technical lemma from [8] yielding a normal 

form for context-sensitive grammars similar to the one given by Penttonen (see 
Section 2.1). We will find it useful when proving Theorem 1. 

Lemma 1 Every L € CS can be generated by a context sensitive grammar 
G = (NEF U NCS U T,P,S,T), where NCF,NCS, anti T are pairwise disjoint 
alphabets and every production in P is either of the form AB —• AC, where 
B 6 NCs, A,C E NCF, or of the form A — • x, where A e NCF, X 6 NCSVTUN%F 
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3.2 Main Result 
Now we consider the relationship between CS and SEPOL. 

Theorem 1 CS = SEPOL. 

Proof . It is straightforward to prove that SEPOL C CS, hence it suffices to prove 
the converse inclusion. 

Let £ be a context sensitive language generated by a context sensitive grammar 
G = (NCF U NCS U T, P, S, T) of the form described by Lemma 1. 

Let 
V = (NCF u NCS U T) 

and 
V' = V\J Q, 

where 
Q = {< A, B, C >: AB —• AC € P, A, C E NCF, B e NCS}-

Clearly, without loss of generality, we can assume that Q f l V = 0. 
The SEPOL-grammar, G\ is defined as follows: 

G' = (W,P,,S,T), 

where the set of productions f is defined in the following way: 

(0) for all A e V', add A —• A to P' ; 
(1) if A — > x e P , A & NCF, x £ NCs uTuN%F, then add A —• x to P 
(2) if AB —• AC e P, A, C e NCF, B e Ncs, then add the set of two produc-

tions {B —•< A,B,C >,< A, B,G >—» C) to P'. 

The set W C (V U V2 ) is defined as follows: 

W = {A < A, B,C >:< A, B, C >€ Q(A E JVCF)} U V. 

Obviously G is an SEPOL grammar. 
Let us now introduce a function h from (V ' )* into V* defined by: 
for all D € V, HID) = D, 
for all < XtD,Z > e Q, h(< X,D,Z >) = D\ 

let h~1 be the inverse of h. 
To show that L(G) = L[G'), we first prove two claims: 

Claim 1 If S =*m w in G,weV+, for some m> 0, then S =>•* v in G', where 
v 6 h~1(w). 

Proo f of Claim 1: This is established by induction on the length m of derivations 
in G. 

Let m = 0. The only w is S because S =>° S in G. Since S e W*, S =>° S 
in G' and by the definition of A - 1 , 5 e h~1(S). 

Let us suppose that our claim holds for all derivations of length at most m 
for some m > 0 and consider a derivation S =>-m+1 x in G,x e V*. Since 
m + 1 > 1, there is some y € V+ and p 6 P such that S =»m y => x[p] in G 
and by the induction hypothesis there is also a derivation 5 =>n y' in G' for some 
y' £ h~1(y),n > 0. By the definition, ¡ / e W*. 
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(i) Let us first assume that p = D —• y2 S P,D 6 NCF, J/2 € NCs U T U 
NCF> y ~ yiDy3, and x = yiy2y3,yi = ax...o,-,y3 = bi...bj, where ak,bt 6 
V, 1 < Jfc < t, 1 < / < j, for some t, j> 0 ( » = 0 implies yi = e and j = 0 
implies y3 = e). Since from the definition of h i t is clear that h-1(Z) = {Z} 
for all Z e NQF w e can write y' = z±Dz3, where zx € h - 1 ( y i ) and z3 €. h~1(y3), 
that is to say, Zi = c i . . . c;,Z3 = dx. . .dy, where c* e /i -1(afc), di € /i_1(6(), for 
1 < fc < t, 1 < J < J. It is clear that D —• y2 € P1, see (1). 

Let di ^ Q. Then, it is easy to see that y2 z3 € W* and so 

z iDz s = • z1y2z3 [ci — • c i , . . . , Ci —> Ci,D — • ya, dx — • d i , . . . , dy — • dy] 

in G'. Therefore, 5 =>•" Z\Dz3 = > z\y2z3 and ziy2z3 e h - 1(yij/2y3)-
Let dx € Q, that is, Dh(di) —• DC G P (for some C € NCF)> see the definition 

of /i. Hence, we have fc(dx) — • di in P', see (2) (observe that this production is the 
only production in P' that has di appearing on its right-hand side). It is clear, by 
the definition of W, that d2 Q. Thus, {ziDh(di)d2 ... dy, z\y2h(di)d2 ... dy) C 
W*. Since S =>n z\ Ddi . . . dy in G', there must exist the following derivation in 
G': 

S = » n _ 1 ziDh{di)d2 . . . dy 
= > ziDd\d2 . . . dy [ cx—• c 1 , . . . , c < — > c i t D — • D, 

—* ¿U <̂2 — • d 2 , . . . , dy — • dy] 

in G'. So, we get 

S z1Dh(d1)d2...d]-
=> ziy2h(di)d2 . . . dy [ cx—• c 1 , . . . , c < — • C i , D — • y2, 

fc(di) — » /i(dx), ^ — J , , . . . , dy — » dy] 

such that ziy2h(di)d2 . . . dy is in h~1(x). 
(ii) Let p = AB —* AC E P,A,C € NCF,B e NCS,y = yiABy2,yx,y2 e 

= yxACy3 ,y' = z iArz 2 ,z< 6 /T^y , ) , » e 1 ,2 ,F e / i _ 1 (5)> and yx = 
ox . . . DI, y3 = bi... bj, AK, bi e V, 1 < k < t, 1 < / < y, for some t',y > 0. Let Z\ = 
c1...ci,z3 = dx.. .dy,c f c € fc-1(ofc),dj S fc_1(6,),l < k < i,l < I < j. Clearly, 
{ 5 —•< A, J3,C > , < A,J3,C > — • C } C P>, see (2), and A< A, B,C > 6 W, 
see the definition of W. 

Let 7 = B. Since y' 6 W* and B 6 NCs,di & Q. Consequently, zxA < 
A,B,C> z2 and z\ACz2 are in W* by the definition of W. Thus, 

5 = > n ZxABZ2 

=> ziA < A,B,C > z2 [cx —• cx CI —• CI, A —• A, 
B —•< A,B,C>,d1 —• dx , . . . , dy — • dy] 

ZI ACZ2 [cx —• c x , . . . , CI — • CI, A —• A, 
< A, B,C >—• C, dx — • dx , . . . , dy — • dy] 

and Z\ACZ2 e / » _ 1 ( z ) . 
Let Y € Q. Clearly, h(Y) must be equal to B. By (2) and the definition of Q, 

we have B —• Y G P1. Clearly, z\ACz2 is in W* for d\ & Q as we have already 
shown. Thus, since 5 = > n z\AYz2 in G', the word zxAYz2 can be derived in G' 
as follows: 
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S =>n~1 zi ABz-i 
= > Z\ AYZ2 [c i — • c j , . . . , CÍ — • cy, A —• A, 

B —• Y,d\ —* di,...,dj —• dj\. 

Since z\A < A, B, C > z2 and z\ACz2 belong to W*, we get 

S = V » - 1 ziABz-x 
=>• ZI A < A,B,C> Z2 [CI —• CJ,..., A —• CI, A —• A, 

B —•< A,B,C>,d1 —• du ..., dj- —• dj\ 

ZxACZ2 [ci — > c i t . . . , c i — • Ci, A —• A, 
< A, B,C >—• C, DY —• DI DJ —• <FY] 

in G', where z\AGz2 e h~1(x). 
The points (i) and (ii) cover all possible rewriting of y in G. Thus, the claim 

now follows by the principle of induction. 

Claim 2 If S u in G', u € W*, for some m > 0, then S =»•* /i(u) tn G. 

P r o o f o f Claim 2: This is established by induction on the length m of derivations. 
For n = 0 the only u is S because S S in G'. Since S = h(S) we have 

S S in G. 
Let us assume the claim holds for all derivations of length at most n, for some 

n > 0, and consider a derivation S = > n + 1 y, where u € W*. Since n + 1 > 1, there 
is some v e W", such that S =>n v => uipl in G' and by the induction hypothesis 
S h(v) in G. 

We will first prove the following statement (*): 

Let v = rDs and p = D —• z £ P in G'. Then h(v) ==>•' /i(r)/i(z)A(a) in G, 
for some t = 0,1. (*) 

To verify (*), consider the following three cases: 
(i) Let h[z) = h{D), Bee (2). Then = > ° /i(r)^(z)/»(s) in G. 
(ii) Let z E (TUNCSUNCF)> D e NCF Then there is a production B —• z 6 P, 

see (1), and by the definition of h we have B —• z = h(B) —• híz). Thus, 
h{r)h(D)h(s) /l(r)A(3r)/l(3)[/i(JB) —+ A(Z)1 in G. 

(iii) Let z = C e NCF and D =< A,B,C > for some < A,B,C > S Q, 
see (2). By the definition of W, we have r = tA, where í 6 W* and so « = 
tACs. By the definition of Q, there is a production AB —• AC & P. Thus, 
tABs => tACs[AB —• AC] in G where tABs = h{tA)h(< A,B,C >)/i(3) and 
tACs = h(tA)h(C)h(s). 

By inspection of P1, the points (i) through (iii) cover all possible types of pro-
ductions in P', proving (*). 

It should be clear that by using (i) through (iii) we can construct the derivation 
h(v) =>* h(u), for some » 6 { 0 , . . . , |u|}, in the following way: first we rewrite all 
occurrences of symbols corresponding to the case (iii) and then all occurrences of 
symbols corresponding to (ii); the technical details are left to the reader. 

Thus, 5 =>•" A(u) h(u) in G. Hence, by the principle of induction, we 
have established Claim 2. 
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Now, the proof of the equivalence of G and G' can be derived from Claim 1 and 
2: 

By the definition of A - 1 , we have h~1{a) = {a } for all o £ T. Thus, by Claim 
1, we have for any x G T * : 

S ==>* x in G implies S =>* x in G', 

that is, L{G) C L{G'). 
Conversely, since T* C W", we get, by the definition of h and Claim 2, for any 

i 6 T' : 
S =>* x in G' implies S ==>•* x in G, 

that is, L(G') C L(G). 
Thus, L(G) = L(G') and so CS = SEPOL, which proves the theorem. 

• 

3.3 Some Corollaries an Conclusion 
First of all, Theorem 1 and the definitions yield the following normal form: 

Corollary 1 Let L be a context sensitive language over an alphabet T. Then L can 
be generated by an SEPOL system G = (W, T, P, S), where W is over an alphabet V 
such thatT CW,(W-V) C (V-T)2, and if A —* x and 1 < |x| then x g (V-T)2. 

Let us now turn to the investigation of SEX)L-grammars with erasing produc-
tions. We will show that these grammars generate precisely the family of recursively 
enumerable languages. 

Corollary 2 R E = SEOL. 

Proof . Clearly we have the containment SEOL C RE, hence it suffices to show 
R E C SEOL. 

Each language L 6 R E can be generated by a phrase structure grammar G in 
Penttonen Normal Form (see Section 2.1) which can be converted to the grammar 
of an analogical form to the one described by Lemma 1 (except that the former may 
contain some erasing productions), see [8]. Thus,' the containment R E C SEOL 
can be proved by analogy with the techniques used in the proof of Theorem 1. The 
details are left to the reader. 

• 
Since the forms of the resulting SE10L-grammar in the proof of Corollary 2 and 

that in the proof of Theorem 1 are analogical, we get the following: 

Corollary 3 Let L be a recursively-enumerable language over on alphabet T. Then 
L can be generated by an SEOL system G — (W, T, P, S), where W is over an 
alphabet V such that T C W, (W - V) C (V - T)2, and if A —* x and 1 < |x| then 
x € (V — T)2. 

Finally, summing up the main results of this paper, we obtain: 

Corollary 4 SEPOL = CS c SEOL = RE. 

Acknowledgement. The author is indebted to Anton Novacky for useful discus-
sions during preparation of this paper. 
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Alternation bounds for tree automata 

Kai Salomaa * 

Abstract 

We consider alternation depth bounds for tree automata, that is, we limit 
the number of alternations of existential and universal computation steps. We 
show that a constant bound guarantees that the forest recognized is regular, 
whereas already a logarithmic bound enables the automata to recognize a 
strictly larger class of forests. As a corollary we obtain results on other types 
of alternation bounds for tree automata. We consider also commutation prop-
erties of independent computation steps of an alternating tree automaton. 

1 Introduction 
An alternating computation generalizes a nondeterministic one by allowing the au-
tomaton to both make existential choices and branch the computation universally. 
Alternation has been used to model parallelism of various machine models, cf. e.g. 
[2], [6], [8], 19], [10]. The alternating computations of tree automata are particularly 
interesting Decause there parallelism occurs on two levels: the automaton reads in 
parallel independent subtrees of the input and, furthermore, the computation can 
branch universally. 

It is well known that alternating finite automata recognize only the regular lan-
guages. Also alternating top-down finite tree automata recognize just the regular 
forests, cf. [18]. On the other hand, alternation increases dramatically the com-
putational power of finite bottom-up tree automata, cf. [14], [15], [17]. These au-
tomata define as yield-languages even all recursively enumerable languages. Other 
alternating tree automaton models are studied in [11], [12], [16]. 

Because of the great computational power of alternating tree automata it seems 
natural to consider restrictions on the alternating computations that would limit 
the family of recognized forests. Alternation bounds on various Turing machine 
models and multihead finite automata have been investigated in [3], [5], [6], [7], 
[10], [13]. There one restricts the width or leaf-size of the computation trees, (or 
equivalently the number of universal computation steps in an alternating computar 
tion.) Also bounds that restrict the size of the alternating computation trees have 
been investigated, this corresponds to limiting together the length and parallelism 
of the computation. 

Alternation depth of Turing machines, that is the number of alternations of 
existential and universal configurations in a computation path, is considered in 
[2]. A similar measure called alternation size which restricts the total number of 
alternations in a computation tree is defined in [l], and the alternation size of a 
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Turing machine is shown to correspond closely to the number of reversals of an 
auxiliary pushdown automaton. 

Here we study alternation depth bounds in the context of bottom-up tree au-
tomata. For tree automata, the configurations cannot be divided into existential 
and universal ones as in the case of Turing machines (a tree configuration can 
contain an arbitrary number of states) and, therefore, we will in fact limit the 
alternation of existential and universal computation steps in any branch of the 
computation tree. Intuitively, one may think the edges of the computation tree to 
be labeled by E or U depending on whether the computation step is existential or 
universal. On a path from the root to a leaf a sequence of consequtive symbols E 
(respectively U) that is limited on both sides by symbols U (resp. E) is said to be 
an existential (resp. universal) computation segment. In an alternation bounded 
computation tree the number of computation segments on each path is limited by 
a function on the size of the input. 

Clearly even a computation tree with a constant alternation bound may contain 
an arbitrary number of universal computation steps and thus its width can be 
linear in the size of the input. However, it is shown that forests recognized by 
tree automata with a constant alternation bound are regular. This illustrates the 
fact that the power of alternating tree automata is not only due to an unlimited 
number of parallel computations but also to the capability of alternating existential 
and universal computation steps and reading independent subtrees of the input 
differently in distinct branches of the computation. As a special case it follows 
that also automata with constant width computation trees define only the regular 
forests. 

On the other hand, it is shown that already a logarithmic alternation bound 
enables the finite tree automata to recognize also nonregular forests. The main 
open question is whether the same is true for some sublogarithmic (nonconstant) 
functions. 

In order to establish the above results we need to consider the commutation 
properties of independent computation steps in an alternating computation. (That 
is, computation steps at independent nodes of the input tree.) In general, the order 
in which the recognizer reads independent subtrees of the input can be essential. 
However, clearly two existential (i.e., nondeterministic) independent computation 
steps always commute, and the same is true for universal computation steps. Fur-
thermore, a universal and existential computation step semi-commute, that is, a 
universal computation step may be assumed to be performed first. 

In Section 2 we recall the definition of an alternating tree recognizer and es-
tablish the above commutation properties. Alternation bounded computations are 
defined in Section 3 and there it is also shown that constant bounds define only the 
regular forests. Sections 4 and 5 consider the logarithmic bound and some related 
alternation measures. 

2 Alternating tree automata 
The reader is assumed to be familiar with trees and tree automata, cf. e.g. [4]. 
Here we recall the definition of an alternating finite bottom-up tree recognizer, 
cf. [14], [15], [17]. Since we will consider computations with a bounded number 
of alternations of existential and universal computation steps, we use a slightly 
different definition from that of op. cit. There at each computation step the 
automaton was able to make both an existential and a universal choice. It is shown 
that in terms of recognition power these models are essentially equivalent. 

The set of (nonempty) words over a set X is denoted by X" (respectively X + ) 
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and the empty word by X. The length of a word w is denoted tu|. The catenation 
of A, B C X* is defined by AB = [w € X*|(3tux £ A)(3tU2 £ B)w = tuitu2}. The 
set of subsets of X is denoted p(X). If X is finite, the cardinality of X is denoted 
by If X is a [proper) subset of Y this is denoted by X C Y(X C F) . The 
symbol N+ stands for the set of positive integers. 

A tree domain D is a nonempty subset of N+ that satisfies the conditions 
ÍTD1) and (TD2) below. 
ÍTD1) If u £ -D, then every prefix of u belongs to D. 
(TD2J For every u € D there exists i € N+ U {0 } such that uj £ D iff 1 < j < 
». (t = 0 if xi has no daughters.) 

Let A be a set. An A- labeled tree is a mapping t: D —» A, where D is a tree 
domain. The elements of D are called nodes of the tree t and D is denoted d o m ( t ) . 
A node u is said to be labeled by t(u)(£ A). We use freely notions such as the 
height, root, a leaf, and a subtree of a tree. The height of t is denoted hg( t ) (a tree 
with one node is defined to have height zero), and the set of leaves of t is denoted 
leaf(t) . The subtree of t at node u is denoted t / u . A node v is a successor of u £ 
dom(t) if u is a prefix of t/, and u and v are said to be independent, u||t>, if neither 
one is a successor of the other. If « i , . . . , u m £ dom(t) are pairwise independent, 
then t(ui «— tx um «— tm) denotes the tree obtained from t by replacing t /u; 
with t,-, i — 1 , . . . ,m. 

In the term notation one assumes that a node with t daughters (immediate 
successors) is always labeled by a symbol of rank ». Letters E and 0 denote here 
finite ranked alphabets and the set of m-ary, m > 0, symbols of I] is denoted by 
E m . The rank of an element a £ E m is denoted rankE(f) or just rank(cr) if the 
alphabet E is known. Let A be a (finite) set. The set óA-trees , FE(A), is the 
smallest set such that (i) Eo U A C (A), and (ii) if a £ E m , m > 1, f x , . . . , tm £ 
F E (A) , then ff(ti,...,tm) € F e U ) - The set of ó-trees, Fs, is defined to be FE(0J. 
Subsets of are called E-foresta. Let t,ti,... ,tm £ Fe (A) and o x , . . . , am £ A. 
Then t(ax *— t\,...,am *— tm) denotes the EA-tree obtained from i by replacing 
every occurrence of a symbol a,- with t¿. To a given E-tree t one associates in 
the natural way the corresponding tree domain dom(t). For t £ Fe we denote 
size(t) = #domit ) . A (E—)tree t is said to be balanced if every path from the 
root of t to a leaf has equal length. 

We still recall the notion of tree homomorphism, cf. [4]. For every m > 1, let 
Hm = { , . • •, £m} be a set of variables. Assume that for every m > 0 such that 
E m ^ 0 we are given a mapping hm : E m —* Fn(3 m ) . Then the mappings hm 
determine inductively a tree h o m o m o r p h i s m h : Fe (A) —• FQ (A) as follows. 

(i) h(a) = a for a £ A. 
(ii) Let m > 0,<r € Em , tx t m £ F E (A) . Then 

M»(t l , • • • • «-»)) = Mi l ) . • • • . tm — Htm)). 

It is clear that E-trees can be seen as E-labeled trees (graphs) where each node 
having i daughters is labeled by an element of rank i and conversely every E-labeled 
tree with the above property corresponds to a unique E-tree. In the following, we 
speak about trees using interchangeably the above notions of a E-labeled graph 
and an element of Fe-

Definition 2.1 An alternating ( bo t t om-up ) tree recognizer is a four-tuple 
A = (E, A, A', G), where 

(%) E is a finite ranked alphabet, 
(ii) A is a finite set of states, 
(Hi) A' C A is the a set of final states, and 
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(iv) G is the state transition relation defined as follows. The relation G asso-
ciates with every a € E m , m > 0, a mapping 

cG : A m - » p(A) x {E,U}. 

The class of alternating tree recognizers is denoted by A T R . Let A be as in 
Definition 2.1. Elements of F^(A) are called A-configurations. A configuration 
tree o f A is a tree where the nodes are labeled A-configurations, and the set of 
configuration trees of A is denoted by CT(A). Let T € C T J A) . Then conf(T) 
denotes the set of all A-configurations labeling some node of T. 

Let K be an A-configuration. Subtrees of K of the form o(a\t... ,am), 
m > 0, a G E m , a i , . . . , a m € A are said to be active subtrees, and the set 
of (occurrences of) active subtrees is denoted by act ( i f ) . Let Z é {E, U} and 
assume that 

c7 G (o 1 , . . . ,a m ) = ( B , Z ) , (1) 

where a 6 E m , o i , . . . , am G A and B C A. Then we denote 

ffZ(G)(al>---,am) = B, 

or simply, 
<Tz(a li • • • l am) = B 

if G is known. We also denote G = E(G)Ul/(G) or simply G = EuU. This notation 
can be justified by the fact that always exactly one of the sets CTE(CII, • • •, a m ) and 
^ { / ( f i i . . ..dm) is defined. 

If in (1) Z = E,vre say that the active subtree / = o(a\,..., am) is existential 
(or o f type E), and if Z = U, f is said to be universal (or of type U) . Also 
oz(ai,..., a m ) is denoted simply by fz- If fz consists of only one element, we 
say informally that the corresponding computation step is deterministic. When 
considering specific examples, the state-transition relation G is usually convenient 
to define by listing all nonempty sets fz where / is an active subtree. 

Intuitively, oz (oi, • • •, o m ) denotes the set of next states the automaton A 
reaches after reading the input symbol a in states a i , . . . , o m . If cr (o i , . . . , a m ) 
is existential, the automaton chooses nondeterministically one of the next states in 
which it continues the computation. If Z = U, the computation has to be continued 
in all states of cru(ai> • • • > am)- This is defined formally below. 

Definition 2.2 The transition relation of a recognizer A € ATR is the 
binary relation on CT(A) defined as follows. Let Ti,T2 € CT(A) . Then 
Ti =>\ T2 if T2 is obtained from T\ as follows. Let n be a leaf of T\ that is 
labeled by an A-configuration K. Let f G act[lQ be of type Z, Z 6 {E,U}, and 
fz = { o i , . . . , o m } , Oj e A,*' = 1 m. If Z = E, then T2 is obtained from 2\ by 
attaching for the node n a daughter labeled by K(f «— a+) for some i € {1,..., m}. 
If Z = U. then in T2 the node n has m daughters labeled by the configurations 
K(f+-a0 K(f *— o m ) . 

Let K £ F e (A) . The set of Üf-computation trees of A is defined by 

COM(A, K) = {T e CT(A)|tf =>*A T). 

Above K denotes the configuration tree with one node labeled by K. A computation 
tree is accepting if all its leaves are labeled by elements of A', and the set of 
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accepting if-computation trees is denoted ACOM(A, K). We say that A accepts 
a configuration K if ACOM(A, K) jt 0. The set of accepted A-configurations is 
denoted by ACC(A). The forest recognized by the recognizer A is 

L(A) = f E n ACC(A). 

The family of forests recognized by alternating tree recognizers is denoted L(ATR). 
Let Ti,T2 € COM(A, t) for some input t and Ti T2. We use the notation 

Ti BT2 (resp. Ti => a UT2) to indicate that T2 is obtained from l i using an 
existential (resp. universal) computation step in some configuration labeling a leaf 
of 2\. A computation tree T is said to be complete if each leaf of T is labeled by 
an element of A (i.e.. each branch of the computation of T has reached the root of 
t.) 

Example 2.3 Let A = (E, A, A',G) e ATR where E = E0UE2 ,E0 = {r,7},E2 = 
{w},A = {<!,&}, A' = {a} and the relation G = E(G) U U{G) is defined by the 
following: 

RU(G) = {<*,&},7£(G) = {o,&},wB(G)(o,a) = w E(G)(b,b) = {a}, 

Wi/(G)(O.6) =w t / (G ) (6 )o) = {6}. 

Let t = w(r, 7). We construct an accepting t-computation tree of A. Below we de-
note a computation tree T with leaves labeled by configurations K_i,..., Km, m > 
1, simply by [ # ! , . . . , f fm ] . 

It is easy to see that this is the only accepting t-computation tree of A, i.e., in an 
accepting computation on t, A must always read the leaf labeled by r before the 
leaf 7. (Of course, the computation steps in different branches of the computation 
tree can be performed in arbitrary order.) 

Let A = (E, A, A', G) € ATR. The recognizer A is said to be nondeterminis-
tic if all active subtrees of A are existential. If, furthermore, for all active subtrees 
/ the set f s contains at most one element, the recognizer A is said to be deter-
ministic. If A is deterministic and fs = {6}, b 6 A, we denote fs simply by 6. 
(A deterministic recognizer could of course also be defined as a special case of a 
universal one.) It is clear that this definition of nondeterministic and deterministic 
tree recognizers is equivalent to the usual definitions, cf. [4]. Nondeterministic and 
determinisitic bottom-up recognizers both recognize the family of regular forests 
R E G . 

It is known from [14], [15], [17] that alternating bottom-up tree recognizers rec-
ognize also nonregular forests. In order to simplify some constructions, in op. cit. 
one uses an automaton model that in each computation step can branch the com-
putation both existentially and universally. In the following we refer to this model 
as the generalized alternating automaton (or recognizer). The definition used 
here is more restricted as each computation step has to be purely existential or 
universal. The automaton model of Definition 2.1 cannot straightforwardly, sim-
ulate the generalized alternating recognizers, however the models are "essentially 
equivalent" in the sense described below. 
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Let E be a ranked alphabet and M a E-forest recognized by a generalized 
alternating tree automaton B. Define the ranked alphabet 0 = E U A where 
A = {(/¡a e E} and i l m = E m if m ^ 1 and nx = Ei U A. Let h : FE Fn be the 
tree homomorphism defined by 

M < r ) = ^ ' M f i i • • •, £m)), m > 0, cr G E m . 

Intuitively for t G Fz, h(t) is obtained simply by attaching above each node labeled 
by a symbol a a node labeled with the unary symbol a' . We claim that an automa-
ton A of Definition 2.1 can recognize the R-forest h(M). The proof of this result 
is essentially the same as the proof of Theorem 4.4 of [14] and we just explain it 
intuitively below. At a node labeled by <r, A performs the existential choice of the 
generalized alternating automaton B recognizing M, and then at the node above 
labeled by a ' the recognizer A simulates the universal choice of B. Note that by 
Lemma 2.6 below, without restriction one can assume that A performs the univer-
sal computation step in a' immediately after reading the symbol a, (this could also 
be seen directly as in the proof given in [14].) Thus it is clear that all computa-
tions of A on a tree h(t), t 6 FE, correspond to a computation of the generalized 
automaton on t, and L(A) = L(B). 

Intuitively, the above result means that corresponding to every forest L recog-
nized by a generalized alternating automaton, the family L(ATR) contains a forest 
essentially similar to L. Now by the results of [14], [15], [17] it is immediate that 
L(ATR) contains forests that Eire not regular, and even not context-free (that is, 
algebraic). Also for instance the emptiness and equivalence problems are undecid-
able for L(ATR). The tree homomorphism h above does not affect the yield (or 
frontier), cf. [4], of a forest and hence by [17] it follows that every recursively 
enumerable language is the yield of a forest in L(ATR). 

Finally we define a complete recognizer. An ATR-recognizer is said to be c o m -
plete if fz ^ 0 for all active subtrees / of type Z, Z € {E, U). The proof of the 
following lemma is then immediate. 

Lemma 2.4 Every forest of L(ATR) can be recognized by a complete ATR-
recognizer. 

Example 2.5 Let A = (E, A, A',G) G ATR when E = E 0 U Ei U E 2 , E 0 = 
{r, l}, Ei = {<r}, E2 = { ( j ) , A = {a, b, 6i, 62, c, cx, c2 , d, du d2, e, eu e2, / } , A' = { / } 
and the relation G — E U U is defined by the following: 

(i) w = {a, 6} 
(») IB ={di,d2,e} 
(Hi) trB(o) = { c } 
(iv) av(c) = { c i , c 2 } 
(v) * B ( 6 ) = { 6 i , 6 2 } 
(vi) <Ju(bi) = {6,},« = 1,2 
(vii) <ru{di) = {di},i= 1,2 
(viii) au(e) = {ei,e2} 
(ix) u B ( i , y ) = {/} if(x,y) - (Ci,di) or (x,y) = (6,-,e,),»' G {1 ,2} . 

The relation G is undefined in all cases not covered by (i)-(ix). We denote 
t = w(<7a(r), ff(if)) and construct an accepting t-computation tree of A . As in the 
previous example we denote a computation tree with the sequence of configurations 
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labeling its leaves: 

' =*A ^ M 0 ) . <"M*)> » ( f ) ) ] 

(=>"A U)2MciMl))Me2><r[l))>u(a a(b)>ei)M< T<T(b)>e2)\ 

(=>A B)4[w(ci.£T(di)).w(c2.^(^2)),w(iT(61),ei)1a;(cr(62),e2)] 
(=>A U)4[^[ci>di)>u{c2,d2),^(bi,ei),u[b2,e2)} 

(=>A V I Z . / - / - / I 

It can be verified that the computation tree constructed above is the unique 
accepting t-computation tree of A . Of course the computation steps in parallel 
branches of the computation tree can be performed in different order, but the 
resulting computation tree will always be unique (if it is accepting.) Also one 
sees that in the computation starting from the configuration u(crcr(a), <7(7)) one 
must read both a-symbols in the subtree 00(a) before the symbol 7 whereas in the 
computation starting from w(<7cr(fc)>cr(7)) the automaton necessarily has to read 
the subtree ^(7) before continuing the computation in the subtree crcr(b). 

This example illustrates the fact that in an alternating computation tne order in 
which subtrees of the input are processed can be very essential. This is the reason 
why an alternating computation cannot in general be simulated by a nondetermin-
istic one using a subset construction. The above example was constructed to be as 
simple as possible and here of course L(A) is regular, (in fact L(A) = {t} . ) For 
examples of alternating tree recognizers defining nonregular forests see [14], [15], 
I " ] -

In Examples 2.3 and 2.5 we noticed that the order in which independent subtrees 
of the input are read can be important. To conclude this section we investigate 
when computation steps in independent subtrees commute. 

As was done in the previous examples, it is many times convenient to denote a 
computation tree T with the sequence of configurations [if 1 , . . . , KM] labeling the 
leaves of T. The configurations Jf,-,t = 1 , . . . , m , contain all information needed 
to continue the computation of T and also their order is irrelevant. We say that 
computation trees TI and T2 are equivalent if the leaves of both 7\ and T2 are 
labeled by the same sequence of configurations. In this case Ti can be completed to 
an accepting computation tree iff the same holds for T2- In general the computation 
tree gives also the structure of the computation and we cannot for all purposes 
replace it with the sequence of its leaves. 

An arbitrary sequence of A-configurations [K\,..., Km] does not necessarily 
correspond to any computation tree but we can extend the relation =>a ^ e 
natural way for arbitrary sequences of configurations: 

[Kl Km\ =*A [•^»•••i'®») 

iff for some t £ { l , . . . , m } there exists a computation tree T with 
leaves labeled by M \ M r such that Ki => a T and the multiset 

f Ki,..., Ki-i, M\,..., Mr, Ki+i,..., Km} equals to the multiset {Hi,..., Hn). 

Here T is a tree of height one with the root labeled by K{.) Note in particular that 
if \KX,..., KM\ is the sequence of leaves of a computation tree TI and [HI,..., HN] 
are the leaves of T2 then [KI i^ML^A *\HI> •••>#»] TOLDS ^ r i = * A *Ta-

In the next lemma we prove commutation properties of alternating compu-
tations. There it is notationally more convenient to consider sequences of con-
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figurations instead of computation trees. Using the above definition the al-
ternating computations can be defined also for sequences that do not corre-
spond to any computation tree and we thereby prove a slightly more general 
result. We still introduce some notation. Let A = { E , A , A ' , G ) G ATR. Let 
Z G ( E , U } and Ki, Hj G Fz(A),i = 1 , . . . , ^ ; ' = 1 a. Then the notation 
[ X i , . . . ,K r )=> A z ( « , * ) № € {1 r } , u e dom(Jfi), is used to denote 
that the sequence of configurations \H\,... ,H,\ is obtained from \K\,..., KT] by 
applying a Z-computation step at node u in the configuration Ki. If r = 1 or t is 
otherwise clear we denote =>A Z ( u > 0 simply by => A Z ( u ) -

Lemma 2.6 Let A = (E, A, A', G) e ATR and K G FE{A),u,v G dom(K). As-
sume that u||v and K/u,K/v G act(if) . Denote K/u = f,K/v = g, and let 
fx ={oi am},gY = {b1,...,b„},m,n>l,X,Y e{E,U\. 

(i) Assume that f and g are existential, (i.e., X = Y = E.J Let 

\K\ = > A B W ( * i ] = * A 
Then there exists K' G such that 

(ii) Assume that f is existential and g universal. Let 

\K\ ^ M I ^ K a " ^ 

Then there exist configurations H^,* — 1 ,...,n, such that 

\K] =>A U(v)[H[,...,H'n][=>A ...,Hn\. 

(Hi) Assume that / and g art universal. Suppose that 

[K\ ffm]=>A>.»') 

(*) \KU..., Ki-u Ki(v - fei), ...,Ki(v*~ bn), Ki+1, ...,Km}=>A*[Mu..., Mr], 

where v & dom(Aiy) or M}(v) G A, 1 < j < r, i.e., in each of the configurations 
Mj the active subtree g has been read. 

Then there exists a computation 

I*] =>A » № - M. . . . , * ( « « - &„)]=> A u(u, 1) 
[XxC - M, h), K(V - b3) K(v «- bn)}(=>A U(u))n~1 

(«) [¿Mv - h) Km(v - bx) J^« «- bn) Km(v « - 6„)] 
=>A*\Mu...,Mr\. 

Proof , (i) This is immediate since K\ = K(u *— a,) and K2 = K(u *— a, , v «— 
by), i G {1 m}, j G { 1 , . . . , n}, and clearly we can choose K' = K(v <— b}). 
(ii) Now Ki = K(u «— ai),i G { l , . . . , m } , and Hj — K(u *— an, t> «— bj), j = 
1 n. Thus we have 

[K\ =>Au(v)[K(v^b1),...,K(v^bn)) 
B(u, l)[tf(u Oi, I> - bj, K( V - b2), ...,K{v+- bn)\ 

^AB(u,2)...^AE{u,n)\H1 Hn]. 



Alternation bounds for tree automata 181 

(iii) Clearly Ki = K(u « - o<),» = 1 , . . . , m. Let NX}-,..., N,j be the configurations 
from the sequence Mi MT that are successors of Kj,j e {1 i — 1, » + 
1, . . . , m}. Since the configurations Ki(v <— 6i) Ki(v «— bn) appear in both (*) 
and (**), it is sufficient to show that 

[K,{v ^bi),... K}( v - fc„)] =CA *[JVWl..., NtJ],j e {1 m},j ft i. ( 2 ) 

Let j 6 { 1 , . . . , t—l , t+ l , . . . , m}. Let Hi,..., Hq be the configurations appearing in 
each branch of the computation [Kj\ =>A * [ATiy,..., Nt] \ just before the automaton 
reads the subtree g at node v. Thus \Kj\ Hq\ using only computation 
steps at nodes that are independent with v. From this it follows that 

[K,(v - 6r)] =>A *[#!(„ - br) Hq(v br)\,r = 1 n. (3) 

By the choice of Hi,..., Hq, 

[Hi(v «- 60, ...,Hi(v+- bn), ...,Hq{v+- bi) Hq{v - &„)] 

and hence (2) holds by (3). (Note that one may arbitrarily permute the configure 
tions Pi,...Px in a sequence [P i , . . . , P*]-) Q- E. D. 

In the above lemma, case (i) states that one may always permute two inde-
pendent (i.e., corresponding to independent nodes) existential computation steps 
and (ii) states that an existential computation step followed by a universal com-
putation step may be replaced by first making the universal step and thereafter 
the corresponding existential computation steps. Case [iii) states that always two 
independent universal computation steps commute. This is the most complicated 
case as one does not directly obtain identical configurations but has to consider the 
computation so far that in each branch both universal active subtrees have been 
read. This is not a restriction when considering accepting computation trees where 
each branch ends at the root of the input. 

The fourth case would be a universal computation step followed by an indepen-
dent existential computation step. These cannot [in general) be permuted since in 
each universal branch the automaton can make different existential choices. Thus 
one can say that independent existential and universal computation steps semi-
commute: one may always replace EU with UE but not in the other direction. 

3 Depth bounded alternation 
As observed in the previous section, alternation is a very powerful mode of com-
putation for bottom-up tree automata. For this reason we consider alternating 
computations where in each path the number of alternations of the existential and 
universal computation steps is bounded by some function on the size of the input 
tree. 

Definition 3.1 We define a mapping alt: {E, U}+ -+ N+ as follows. Let u e 
{E, i/}+. Then alt(u) is the least integer n such that we can write 

u = ui...un, Ui 6 E+ uU+,i = 1, ...,n. 
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Definition 3.2 Let A = (£, A . A ' G ) G AT.R,t G FE and T G COAf(A , t ) . We 
define a mapping <f>r • dom(T) —• {E, U}' inductively at follows. 

(i)t r(A) = A. 
(ii) Let u € dom(T) be labeled by an A.-configuration K. Suppose that in the 

computation of T in the configuration K the recognizer reads an active subtree of 
type Z, Z G {E, U). Let n = max{t'|ut G dom(T)}. Then for every j = 1 n : 

4>T(uJ) — 

(Note that n< 1 if Z = E.) 
Now we define the function alt: COM(A,t) —* N+ by 

alt (T ) = max{alt ( « ^ t H ) | « G leaf ( T ) } . 

Let u be a node of a computation tree T. Then <¡>T(V) gives the sequence in 
which existential and universal computation steps are performed along the path 
from the root of T to u. Thus alt(^r(u)) denotes the number of existential and 
universal computation segments in the computation corresponding to the node u. 
Now depth bounded alternating computations can be defined by restricting the 
value alt(T). 

Definition S.S Let A = (£, A, A', G) G ATR,t G Fj¡, and 6 : N+ N+ be a 
function. The set of ^-bounded t-computation trees of A ú 

COM(A,t)[0] = {T G COM(A, i)|alt(T) < 0(sise(t))}. 

A forest L C is ^-bounded recognized by A if 
(i) L = L{A), and 
(ii) for every t G L, COM(A, t)[^lri ACOM[A, t) ¿ 0. 
In this case we denote L = L{AJ[0]. The family of forests 6-bounded recognized 

by alternating tree recognizers is denoted L(ATR)\0\. 

Thus L is ^-bounded recognized by A if each tree t of L has an accepting 
computation tree with alternation depth at most 0(size(t)) and any tree not in L 
does not have an accepting computation. If ¿(A)[0] is defined, we say also that the 
recognizer A is 0-bounded. Note that if one would define L(A)[0] just to consist of 
trees t e F j such that there exists an accepting computation tree in COM(A, i)[0], 
then the automaton would be able to use the counting properties of the function 6 
to check properties of the inputs. This would clearly be unnatural, especially if the 
function 6 is not well behaved. Note that £(A)[0] is not defined if L(A) contains 
trees that cannot be accepted in ^-bounded computations. 

Let t and A be as in Example 2.5 and let T be the t-computation tree considered 
there. Then altir) = 6. Thus L(A)\6) = { t } for every function $ such that 5(6) > 6. 
(Note that sizeft) = 6.) 

Lemma 3.4 For every function 6, the family L(ATR)[8] is closed with respect to 
intersection with regular sets. 

Proof . This is seen easily by adding to the states of an ATR-recognizer second 
components that simulate the computation of a deterministic recognizer for the 
regular forest in question. Clearly the simulation can be done at the same time 
preserving the type (existential or universal) of each computation step. Q.E.D. 
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Theorem 3.5 Suppose that <?i(n) < ^2(1) almost everywhere, i.e., there exists 
M & N+ such that for all n> M, 0i(n) < 0 2 M - Then 

L(ATR)[9I] C L(ATR)[62}. 

Proof. Let £ be a E-forest 0i-bounded recognized by A € ATR. Denote F(>) = 
{ t e F z | size(t) > M } and f ( < ) = {i G f E | size(t) < M} . Now 

L = (L(A)[ii] n #•(>)) U (L(A)[ii] n ^(c)). 

By Lemma 3.4 there exists B G ATR such that L(B)[0i] = L(A)[0i] D F{>). By 
the choice of M, furthermore, £(B)[0i] = I(B)[02)- Since F(<) is finite, using B 
one can easily construct a recognizer B' such that 

L(B')[02] = ¿(B)[tfa] U (L(A)[iiJ n F(<)) = L. 
Q . E . D . 

Clearly L(ATR]J»d] = L(ATR) where id denotes the identity function. In 
the following we will consider constant and logarithmic alternation bounds. Let 
c(k),k > 1. denote the function that maps every element of N+ to k. Then 
L(aTR)[c(1)] = REG because both the purely existential and purely universal 
tree automata recognize only the regular forests. Next we will show that in fact 
X(ATR| [c(k)\ = REG for all jfc > 1. In the following we denote the function c(k) 
simply fey k. 

A first idea for a regularity proof for the forests of i(ATR)|fc] might be to 
simulate the ¿-bounded alternating computations by a deterministic tree recog-
nizer using a subset construction where the sets would additionally contain the 
information which existential (resp. universal) segment of the computation one is 
simulating. (There can be at most k segments.) However, this approach does not 
work because it may be the case that in different branches of the computation a 
given node must be read in different segments. 

To illustrate the difficulty, let us consider again from Example 2.5 the t-
computation tree which is the unique accepting computation tree for the input 
t = tjj (¿To*(t), o ('y)) • For instance, in the left branch of the computation the symbol 
7 has to be read in the second existential segment whereas in the right branch it is 
necessarily read in the first existential segment. 

It turns out that a deterministic automaton simulating the computations of 
A will need to store in the states the information concerning the partition into 
existential and universal segments of all possible computation trees of the input 
scanned so far, this will be called the computation schema. It will be seen that for 
¿-bounded computations the number of distinct computation schemata is finite. 
Let A e ATR, t = a ( i i , . . . , im) G i s and T be a complete t-computation tree 
of A. The computation tree T is obtained by combining ¿¿-computation trees, 
» = 1 , . . . , m, and finally in each branch reading the root symbol a. Thus it is clear 
that one can construct an arbitrary (¿-bounded) ¿-computation tree if one knows 
all possible (¿-bounded) ¿¿-computation trees. 

In the following A = (E, A, A', G) e ATR is always assumed to be complete. By 
Lemma 2.4 this is not a restriction. (Clearly the analogy of Lemma 2.4 holds also 
for arbitrary ^-bounded computations.) We say that K G (A) is an existential 
configuration if all active subtrees of K are existential and otherwise K is said to 
be universal. In particular, if if G A then act ( i f ) = 0 and hence K is existential. 
Lemma 3.6 Let K be a universal configuration. Then there exist unique existential 
configurations i f j , . . . , Kn such that 

(4) 
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(Of courte Ki,...,Kn may be arbitrarily permuted.) 

P r o o f . Since A is complete, there are existential configurations Ky,..., Kn such 
that (4) holds Tone computes universal active subtrees until there are none left.) By 
Lemma 2.6 (iii) universal computation steps commute and hence the configurations 
Ki,..., Kn are unique. 

Definition S.7 Let t Ç. Fz and к > 1. The k - b o u n d e d t - computat ion schema 
of A , SC{t, fc, A ) it the configuration tree S defined at followt. The root of S 
is labeled by t. Suppote that a node u 6 dom(S), |u| < к — 1, is labeled by a 
configuration K. 

(i) Suppote that К it universal and let Ki,..., Kn be the (by Lemma 3.6 unique) 
existential configurations tuch that [-&](=>• A u)*[ifi, • • • > Kn]- Then the node u has 
n daughters (immediate successors) labeled by K\,... ,Kn. 

(ii) Let К be existential, К & A. Denote by С the set of ail configurations K' 
such that B)*[-K"'] and K' is universal or К' e A. Then for every К' € С 
the node u has a daughter labeled by K'. 

(iii) If К 6 A then и is a leaf of S. 
Finally, if u € dom(S) and |u| = k, then u has no daughters. 

If u is a leaf of S and £(u) A, then this branch corresponds to a computation 
that does not reach the root of the tree f in A; existential and universal computation 
segments. These computations cannot be a part of any ¿-bounded computation on 
an input with subtree t and thus the corresponding branches can be pruned from 
the schema. 

The pruned schema, prlS), is obtained from S by recursively repeating the 
following. Choose a leaf u of S labeled by an element not belonging to A and let v 
be the mother (immediate predecessor) of u. If the configuration SÏv) is existential 
then remove the node u. If S(v) is universal then remove all daugnters of v. (If a 
universal configuration К has a daughter leading to failure then the computation 
has failed already in K. ) Note that pr(S) is the empty tree iff there does not exist 
a complete ¿-bounded ¿-computation tree of A. In this case t is not a subtree of 
any tree of i(A)[fc]. 

The pruned computation schema pr(SC(i, k, A ) ) will be denoted by PSC(i, k, A ) 
and in the following, when not otherwise mentioned, by a computation schema we 
always mean the pruned schema. 

Suppose that S = PSC(t, k, A) . An A-configuration tree T is said to be a 
configuration tree associated with the schema S if T is constructed as follows. 
The root of Г is labeled by t. Suppose that u e dom(5) — leaf (5) is labeled by a 
configuration K. 

ii) If К is universal, then the node u has in T all the same daughters as in 5 . 
(ii) If Я is existential, then u has exactly one daughter labeled by some config-

uration that is a daughter of i f in 5 . 
Thus a configuration tree associated with the schema S is essentially a t-

computation tree where some intermediate nodes in the existential and universal 
computation segments have been removed. 

Example S.8 Let A = ( £ ,A , A',G) be the recognizer from Example 2.3 and 
t = w(w(r, 7)17) • Then the 2-bounded t-computation schema SC(t, 2, A ) w given in 
Figure 1. The configuration! a, w(w(a, 7), 7 ) , and ш{ш(Ь, 7) , 7) are exittential, all 
other configuraient appearing in the tchema are universal. The pruned computa-
tion tchema PSC(t, 2, A ) is obtained by removing all leavet except the onet labeled 
by a. The tchema PSC{t, 2, A ) has only one associated configuration tree and it 
equalt to PSC(t, 2, A ) . 
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w(w(r,7),7) 

ui(u>(a, b) 

a 

w(w(a,6),a) 
a) a) 

Figure 1. 

It is clear that every configuration tree associated with a schema corresponds 
to a computation tree of the recognizer A . In fact we have the correspondence also 
in the converse direction. 

Let A = (E,A,A' ,G) G ATR and t eFv,k> 1. We say that T G COM(A,i ) 
is normalized if the following condition holds. If some leaf of t is universal (i.e., t 
is a universal configuration), then at the root of T the recognizer reads a universal 
active subtree. 

Lemma 3,9 Let A and t be as above and k > 1. Then there exists a complete 
normalized computation tree in COM[A., t)[fc] with leaves labeled by « i , . . . , an(ai G 
A) iff there is a configuration tree associated with the schema PSC(t, k, A ) having 
leaves oi,... ,o„. 

Proof . The proof in the " if-direction is immediate since a configuration tree T 
associated to the schema is clearly a computation tree of A where some inter-
mediate nodes are left out. According to the definition of PSC(t, k,A) if t has a 
universal leaf-symbol, then the computation of T first branches universally, i.e., the 
corresponding computation tree is normalized. 

Suppose then that T € COM(A, is normalized and has leaves a i t . . . , o„. 
Using the commutation properties of Lemma 2.6 we show that there exists an 
equivalent Ti G COM(A,i)[A] (i.e., also 2\ has the leaves o i , . . . , a „ ) that follows 
the computation in the schema PSC(i, k, A ) . 

Since T is normalized, if t contains a universal leaf-symbol the automaton first 
makes a universal computation step. By Lemma 2.6 universal computation steps 
commute with each other and semi-commute with existential computation steps. 
Thus in an equivalent computation tree one can first make all possible universal 
computation steps (in arbitrary order). Now the computation of 7\ begins as in 
the schema PSC(t, k, A) . Always in an existential configuration K the automaton 
makes an arbitrary number of consequtive existential computation steps that lead 
to some universal configuration K'. Thus i f ' is a daughter of K in PSC(t, k, A ) . 
In K', A makes a universal computation step and thus again by Lemma 2.6 it can 
be made to read all universal active subtrees of K' successively yielding a number 
of existential configurations. By Lemma 3.6, these are exactly the daughters of 
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K' in PSC(t,¿, A ) . (Note that if a configuration K contains a universal active 
subtree / then by Lemma 2.6 in a Jf-computation tree A could always first read / . 
In general this could cause additional alternations of the existential and universal 
computation steps. However here this problem does not occur because the original 
computation step made in K' is universal and thus one can make thereafter an 
arbitrary number of universal steps "for free".) 

Since T is ¿-bounded so is also T\ (any operations above do not increase the 
existential-universal alternations.) Thus T is equivalent to a configuration tree 
associated with the schema PSC(t, k, A ) . Q.E.D. 

The previous lemma gives almost a criterion for checking whether ¿ e £(A)[&] 
using only the schema PSCit, k, A ) . There is still the restriction that the compu-
tation tree has to be normalized. This restriction can be removed by considering 
(k + l)-bounded schemata. 

Lemma S.10 Let A = (£, A, A', G) € ATR, k > 1, and L = £(A)[ifc]. Then t G L 
iff there exists a configuration tree W associated with the schema PSC(t,k + 1, A ) 
such that all leaves ofW are labeled by elements of A'. 

Proo f . Let t € L and T 6 COM(A, ¿ [̂¿1 be accepting. Assume that at least one 
leaf of t is labeled by a universal symbol. Then, by Lemma 2.6, T can be trans-
formed to an equivalent computation tree 2\ where first the automaton performs 
all possible universal computation steps, i.e., Tj is normalized. Furthermore, from 
the proof of Lemma 2.6 it follows that 7i is (k + l)-bounded. Moving a number of 
universal computation steps to the beginning may introduce an additional universal 
computation segment if the computation of T starts existentially. (Of course it is 
also possible that alt (7}] < k, but for our purposes it is sufficient just to know the 
upper bound alt(Ti) < k + 1.) On the other hand, if all leaves of t are existential 
then already the computation tree T is normalized. Thus in both cases by Lemma 
3.9 there exists a configuration tree W associated with the schema PSC(t, ¿ -f 1, A ) 
such that the leaves of W are labeled by elements of A' (since Ti is accepting). 

Conversely assume that W as above exists. Then by Lemma 3.9, there exists 
an accepting computation tree in COM(A, t)[A: + 1]. Thus t S ^ ( A ) and there 
necessarily exists also an accepting fc-boundea ¿-computation tree. Q.E.D. 

According to Lemmas 3.9 and 3.10 the schema PSC(¿, ¿ + 1,A) contains the 
information on all complete ¿-bounded ¿-computation trees of A. We want to 
define a deterministic tree automaton that stores the schemata in its states. For 
this purpose we need to consider the composition of schemata. 

Definition 3.11 Let a e Em,tu...,tm e FE and 5,- = P5C(¿j) ¿, A), ¿ > 1. 
We define the a-composition of the schemata Si,i = 1,... ,m,a[Si,..., Sm), 
as follows. First we construct a tree S (that will be the corresponding unpruned 
schema). The root of S is labeled by a(ti,... ,tm). Suppose that a node u 6 
dom(S), |u{ < fc — 1, is labeled by o(K Km) where Ki = S^(v,'),t = 1,..., m, 
and the node v< G dom(5,) has r4- daughters. (Note that ¿,- = iSj(A),t = l , . . . , m . ) 

(i) Let a(Ki,..., Km) be existential (i.e., Kit..., Km are all existential). Then 
the node u has daughters labeled by all configurations a(K[,..., K^) where 

(iaj K! is a daughter of Ki (in 5 , ) or K• = Ki, and, 
(ib) there exists at least one j such that K'}- / K}- and K'} & A, (i.e., jfy is 

universal.) 
(ic) Furthermore, if a,- mo daughter of Ki »'n 5,-,t = 1 and a(oi , . . . . a J 

is existential, then u has daughters labeled by all elements of c e ^ i , ..., amJ. If 
ff(ai,... ,am) is universal, then u has a daughter labeled by cr(ai , . . . , a m ) . (Note 
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that these conditions guarantee that all daughters of <r(Ki,..., Km) are universal 
configurations or elements of A.) 

(ii) Suppose that <r(KI,...,KM) is universal and that KJ is universal iff J S 
{ « ! , . . . , »'„}, c > 1,1 < »! < . . . < t'c < m. Then the node u has r^ ... ric daughters 
labeled by the configurations CT(K[, ..., K'M) where 

K > = { K ) » / y £ { * l * c } 
1 | some daughter of Kj if j 6 {t'i »<.}• 

Furthermore if for some a(K[,..., K'm) above K[ = o< € A,x = 1 , . . . , m, and 
<r(ai,. . . , a m ) is universal, then the node < r ( K [ , K'm) is replaced by nodes labeled 
by elements of au{ai,. •., om). 

Finally, if u 6 dom(S) and |u| = k, then u is a leaf of S. 

Now the composition <r{Si,..., Sm) is defined to be pr(S) where pr is the prun-
ing function defined after Definition 3.7. 

Clearly the cr-composition of fc-bounded schemata is a tree of height at most k 
such that existential and universal configurations alternate as internal nodes in each 
branch and all leaves are labeled by elements of A. The composition of schemata 
respects the composition of trees as follows. 

Lemma S.12 Let k > 1, 171 ^ 1,(7" G £fn; CITid ¿l)>*>)£m e Denote t = 
c(fi,...,TM),S = PSC (t,k,A) and 5< = PSC (ti,k,A),i = L , . . . , m . Then 

S = <r(Su...,Sm). 

Proo f . This follows straightforwardly from the definition of cr-composition. In 
the schema S the daughters of an existential node o(Ki,..., Km) are all universal 
configurations K such that a(Ki,..., Km)(=>j^ E)+K. (Here K may be also ex-
istential if K € A.) These are exactly the configurations where at least one K{ is 
replaced by its daughter in 5,- as in Definition 3.11 (i) (where the case K € A is 
handled separately.) 

Similarly, the daughters of a universal configuration ..., Km) in S are 
exactly all configurations obtained from a(Ki Km) by reading all the universal 
active subtrees. These are obtained from the daughters of universal configurations 
Kj as in Definition 3.11 (ii). (Note that if Kj is not universal then each / G act (Ay) 
is existential and Kj necessarily remains unchanged in the universal computation 
segment starting from a(J£i , . . . Km).) 

Finally the branches in the composition c r ^ , . . . , Sm) are terminated after the 
kth level exactly as in the schema S. Q.E.D. 

Next we define the reduced simplified computation schemata that will contain 
all essential information about the corresponding ¿-bounded computation trees. 
Intuitively, the reduced simplified schema is obtained by removing the labels of 
internal nodes and then identifying identical subtrees. This means that the set of 
reduced simplified schemata will be finite. 

Let S = PSC( i ,k ,A) , t € Fz,k > 1; the simplified schema corresponding 
to 5, sim(S), is defined by relabeling each internal existential and universal node 
respectively by E and U. The reduced simplified schema, redsim(S), is obtained 
by identifying identical subtrees of a given node of sim(5) recursively in the bottom-
up direction. 

Set So = sim(S). Suppose that ui,uj € dom(S r),r > 0, u 6 N+,t,j € N+,i < 
j, and Sr/ui = Sr/uj. Furthermore we assume that Sr/vii ^ Sr/vi2 always when 
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»1 / »2 and u is a proper prefix of v, i.e., u is chosen to be maximal. Then one 
defines S r+i to be the tree obtained by removing the subtree Sr/uj from Sr. There 
exists C G N+ such that ST = Sr+l always when r > C and we define 

redsim(5) = Sc . 

The construction of S r +i from Sr was defined nondeterministically. However be-
cause u is always chosen to be maximal, it is clear that redsim(5) is well defined. 
(Equivalently one could consider some fixed order for the identification process.) 

Now for each k > 1, the cardinality of the set 

D{k) = {redsim(PSC(t, A:, A))|i G FE} 

is finite. Already the simplified schema sim(5), S = PSC(i, A;, A ) , is a tree of height 
at most k where the nodes are labeled by elements of A U {E, U). However, the 
number of daughters of a given node of sim(iS') is in general unbounded (since t can 
be arbitrary). In redsim(5) one obtains a bound for the arity of the nodes (assuming 
that also k is fixed). In fact, #£>(l) < 2(2#A - 1) + 1 = 2#A+l - 1 ( PSC(i, k, A ) 
may also be the empty schema), and in general #D(k + 1) < 

Thus a finite automaton can use the reduced simplified schemata to remember 
all possible ¿-bounded computation trees of the input processed so far. We still 
need to define the compositions of simplified schemata. This is done completely 
analogously with Definition 3.11. In fact, these definitions could both be obtained 
as special cases from a more general notion of composition of schemata. However, 
we presented Definition 3.11 separately because it has a very clear intuitive meaning 
which makes also the idea behind the next definition more transparent. 

Definition 3.1S Let A G ATR and k > 1. Let m > I,a e E m , and S1,...,Sm 
be simplified schemata (i.e., computation schemata where the internal nodes are 
labeled just by E and U J. Then the composition of Si,..., Sm, 

S = <r[Si,.. .,Sm) 

is defined by the following. First we define a tree T as follows. Nodes of 
T are labeled by elements of A or elements of the form <r(xi xm) where 

= (^(u,),«^),«!, ' £ dom(Si). An element o(xi,..., xm) is said to be univer-
sal if 

there exists x,- = (u^), u,) such that <Si(ti,) = U, or (5) 

S i ( u i ) , . . . , S m ( u m ) € A and ct(i5i(ui), . . . , 5 m ( u m ) ) is a universal active subtree. 
(6) 

Otherwise <r(®i,..., xm) is existential. 
The root of T is labeled by ct((5x(A), A ) , . . . , (SMIA), A)). Assume that 

a node u € dom(T), |u| < k — 1, is labeled by an element R = 
< r ( ( S i ( u i ) . w i ) , • • •. ( S m ( u m ) , u m ) ) . 

(i) Suppose that R is existential. Then u has daughters labeled by elements 

<7( (S iM, t> i ) , . . . , (S m (v m ) , t , m ) ) (7) 
where (o)ut- = m or (6)t>, = u,n,n € N+.tiin G dom(5,), and for at least one 
i G { l , . . . , m } the case (6) holds with 5i(u,) = U. Furthermore, if ai & A is 
a daughter of the node u,- tn 5,-,» = 1, ...,m, and a(ai,... ,am) is an existential 
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active subtree of A, then u has also daughters labeled by elements ofas(a li • • •, <*m)-
If a(ai,... .am) is a universal active subtree, then u has a daughter labeled by 
<7((ai.Ul«l).---i(<»m.Wm*m)) w h e r e = ,S«(u»n»)'n« 6 N+>* = • • • « m -

(ii) Suppose that R is universal. Then u has daughters labeled by elements 

cr((S1(v1),v1),...,(Sm(vm),vm)) (8) 

where (o)«j = 14 »/S,(uj) = E, and (b)v{ is a daughter of u,(t'n S<) ifS^tii) = U,i = 
1 m. Furthermore if for some element as in (8), S,(t>i) = a,- 6 A,i = 1 , . . . , m, 
and cr(ai am) is a universal active subtree of A. then this node is replaced by 
nodes labeled by elements of cry (ay,..., a m ) . 

Next we relabel the existential inner nodes of T by E and the universal inner 
nodes by U. The nodes ofT are said to be universal or existential according to (5) 
and (6). The labels of leaves of T are left unchanged tn the relabeling. We denote 
by T\ the tree obtained from T as the result of the relabeling. 

Now the composition S is obtained by pruning the tree T\, i.e., 

o(S1,...,Sm)=pr(T1). 

Here for the definition of the pruning function pr one considers the internal 
nodes of 7\ labeled by E to be existential and those labeled by U to be universal. 
Thus in . . . , Sm) all leaves are labeled by elements of A and it is a simplified 
computation schema. Note that the composition cr(Si, . . . , 5 m ) need not be reduced 
even if the schemata Si Sm are reduced. 

Lemma S.14 Let a £ Em , and Si,..., Sm be k-bounded computation schemata of 
A, Jfc > 1. Then 

aim(er(Si,. . . ,Sm)) = a(sim(5i) I . . . ,s im(5m ) ) . 

Proof . This follows immediately from the Definitions 3.11 and 3.13. For the <7-
composition of the computation schemata S i , . . . , Sm (in Definition 3.11) one uses 
the configurations labeling the internal nodes of Si, i = 1 , . . . , m, only to determine 
whether the node is existential or universal. Hence it does not make a difference 
whether the configurations are replaced by the symbols E and U before or after 
the composition. Q.E.D. 

Lemma 3.15 Let a £ and Si,...,Sm be simplified k-bounded computation 
schemata of A, k> 1. Then 

red(<r(red(5x) red(5m))) = r e d ^ , . . . , ^ ) ) . 

Proof . Denote Rx = <r(red (S i ) , . . . , red(Sm)) and R? = c r (5 i , . . . ,S m ) . Since 
red (Si) is obtained by identifying some identical subtrees of S,,t = 1 , . . . , m, it 
follows that Ri is obtained from J?3 by identifying some subtrees. Thus it is clear 
that red(i2i) = red^a). Q.E.D. 

Lemma 3.16 Let k > 1,m > 1 ,a e S m ) t i , . . . , t m e Fa, and denote t = 
<r(ti,...,tm). Then 

redsim(PSC(t, A:, A)) = (9) 

red(a(redsim(PSC(ti, Jfc, A ) ) , . . . , redsim(PSC(tm, Jfc, A)))). 
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Proof. Denote S; = PSC(i ,k,A) and S{ = PSC(i<,jb, A),»' = l , . . . , m . , By Lemma 
3:12;. : • • » . • . . - • . 

; - , :' - S — <r(5i,-...,5m). . 

Thus by Lemma 3.14, v' r ' 

sim(5) = <r(8im(5i),..., sim(5m ) ) 

and (9) follows from Lemma 3.15. Q.E.D. 
Now using Lemma 3.16, corresponding to an alternating recognizer A we can 

construct a deterministic tree recognizer that arrives at the root of an input tree t 
in the state redsim(PSC(t, A;, A)). 

Theorem 3.17 For every k > 1, 

£(ATR)[Jfc] = REG. 

Proof. Clearly it is sufficient to show that I(ATR)[Jfc] C REG. Let A = 
(E, A, A', G) e ATR and suppose that L = I(A)(Jfc], Jfc > 1. 

Denote by A-SCHEMAifc, A) the set of all fc-bounded computation schemata 
of A, 5 = PSC(t,A:, A) , such that 5 has an associated configuration tree with all 
leaves labeled by elements of A'. Now we construct a deterministic recognizer 

B = (E ,B,B',H) 

where 
(i) B = {redsim(PSC(t, k + 1, A))|t e Ft}, 
ii) B' = {redsim(PSC(t, A; + l,A))|t e F^, PSC(t, k 4- 1 ,A) € A - SCHEMA 
k + 1,AU, 
iii) the relation H is defined by 

(a) 0E(H) — redsim(PSC(<r,A;+ 1, A ) ) if <r € E 0 , 
(b) .. <rB(H)lSi Sm) = redMSx Sm)), 

if m > 1,(7 6 E m , — , Sm 6 B. (Here a ( 5 i , . . . , 5 m ) denotes of course the 
<7-compo8ition of simplified schemata.) 

The set of final states B' is well defined. If S = PSC(t,A;-|- 1, A) then 5 is of 
course not determined by redsim(5). However, using redsim(5) one can determine 
whether S € A — SCHEMA (A: + 1 ,A) . One constructs the associated trees of 
redsim(5) by taking all successors of universal nodes and exactly one successor of 
an existential node. Since redsim(5) is obtained from S by relabeling internal nodes 
and identifying identical subtrees it is clear that there exists an associated tree of 
redsim(S) with all leaves labeled by elements of A' iff S 6 A - SCHEMA(A: + 1, A) . 
This observation also guarantees that the construction of B is effective. 

Now we claim that for every t € Fa the recognizer B reaches the root of t in 
the state redsim(PSC(i, A; + 1 ,A)) . If t € Eo this follows from the definition of 
H. Suppose then that m > 1,(7 6 E m , t = <r(t\,... ,tm) and the claim holds for 

• • • i tm- Then B reaches the root of t in the state 

FFE(H)(red8im(PSC(ii,A; + 1 , A ) ) , . . . , redsim(PSC(im,A; + 1 ,A) ) ) 
= red((7(redsim(PSC(ti, Jfc + 1, A ) ) , . . . ,redsim(PSC(tm, Jfc + 1, A)))) 
= redsim(PSC(t,Jfc + l , A ) ) . 

The second equality follows from Lemma 3.16. FYom Lemma 3.10 it follows that 
redsim(PSC(i, Jfc + 1, A)) € B' iff t € L(A)[Jfc]. Thus 1 ( B ) = I(A)[Jfc]. Q.E.D. 
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4 The logarithmic bound 
In this section we show that a logarithmic alternation depth bound defines a family 
of forests strictly larger than the regular forests. We denote by log the function 
n - * [log2(n)] where [log2(n)] is the smallest positive integer not less than the 
2-based logarithm of n. 

Let E = E 0 U Ei U E 3 where E 0 = f y } , Ei = {tx} and E 3 = {w} , and denote 
n = Eo U E 3 . Define the tree homomorphism h : Fa —1• F¡¡ by the following: 

M t ) = 7 and h2(u) = a(u(xi,x2)). 

The E-tree h{t) is obtained from an fi-tree t simply by attaching above every w-node 
of t a node labeled by the unary symbol o. 

L e m m a 4.1 Let E, O and h be as above and denote 

L = {/i(r)|r € Fa and r is balanced}. 

Then L 6 L{ATR)[2log]. 

Proo f . Clearly the set h(Fa) is regular. Hence by Lemma 3.4 it is sufficient to 
construct a recognizer A = (E, A, A',G) G ATR such that 

for every t 6 h[Fa) : t 6 L(A) if and only if t is balanced, (10) 
and for every balanced tree h(r), r € Fn, 

COM(A, fc(r))[21og] n ACOM(A, h(r)) ¿ 0. (11) 
That is, we can assume that the inputs are of the form h(r), r & Fa. Choose 

A = {c<, di,ei, fi,gi\x = 1,2,3}, and 
A' = A-{d1,d2,d3}. 

The state-transition relation G — ELlU is defined by the following. Below addition 
is always performed modulo three. 

1E = { c i } ; ( 1 2 ) 

e>u(ci,ci) = {e<, </,},»' = 1,2,3; (13) 

<7£(e.) = { c i + i , d , } , » = 1,2,3; (14) 

<rB(x) = { i } if x 6 {dud2,d3,fi,f2,f3,g1,g2)g3y, (15) 

wb(<7<,<7.) = {9i},i= 1,2,3; (16) 

UB{di,di) = {di},i= 1,2,3; (17) 

WB(*,V) = { /<} if = R . f t } , » € {1 ,2 ,3 } ; (18) 
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= {/<} if x,y € {dt, gt.fi) and/ , € { s , y } , » 6 {1,2,3}." (19) 
The state-transition relation is undefined in all other cases. We say that a config-
uration K € ^e(A) is well f ormed if K = h(r) for some OA-tree r. (The tree 
homomorohism h is extended to FQ(A) by setting h(O) = a for all a € A.) Let 
K 6 f E ( { ° i i • • • i a n} ) ^ such that K aoes not contain the nullary symbol 7, and 
«it• • • 1 <*» £ A. If each element a,-,«' = 1 , . . . ,n , occurs at least once in K, it is 
called an [a^ a^j-configuration. First we show that (11) holds. 

Claim 1 Let K\ be a well formed balanced [ci\-configuration, i £ {1 ,2 ,3} , and 
denote m = hg(i i i ) . We claim that there exists T € ACOM(A, Ki) such that 
alt(T) < m. 

P r o o f o f Claim 1. Since Ki is well formed, each subtree of Ki of height two 
is of the form a(o;(c,-,c,)). In the computation of T the recognizer reads first all 
(universal) active subtrees ai(c,-, cA in arbitrary order using the rule (13). Thus 
one obtains one [e,-¡-configuration a (1 ) , one [<7,-¡-configuration K(2) ana a number 

[«,) 9«¡-configurations / f (3) . In each configuration K(3) the recognizer reads 
all active subtrees aie,) making the existential choice d,, this results in a [¿«, <7,]-
configuration if(4). Since K(4) contains both states di and ¡7,-, it follows that the 
recognizer reaches the root of K(4) in the accepting state /,• by the deterministic 
rules (15)-(19). Similarly the computation starting from K(2) reaches the root in 
the state gi using rules (15) and (16). Finally, in i f ( l ) the recogniser makes in each 
active subtree cr(et) the existential choise c,-+i, which yields a [c,+1 ¡-configuration 
K2. Furthermore Ki is balanced because K\ is balanced. 

Above the computations starting from configurations Ki.2), K(3) and K(4) are 
purely existential. Thus there exists a ifi-computation tree 7\ such tnat alt(Ti) = 2 
and one leaf of 7\ is labeled by K2 and all other leaves by elements of A'. Now 
hgi-^a) = hg(ii"i) — 2. By inductive reasoning it follows that Ti can be completed 
to an accepting computation tree T, where alt(T) = m = hg(Jfi). (Since K\ is well 
formed, m is even. The configuration K^m/2+i) will be of the form Cj , j 6 {1 ,2 ,3} . ) 
This concludes the proof of the claim. 

Now let t € h(Fn) be balanced. We construct T € COM(A,t) as follows. First 
the recognizer reads the leaves of t using the rule (11) yielding a [cj ¡-configuration 
Ki . By Claim 1 there exists an accepting Ki-computation tree 7\ such that 
alt(Ti) = hg( i f i ) (= hgit)) where furthermore in each branch the first computation 
segment is universal. Thus T can be constructed so that 

alt(r) = hg(i) + 1. 

(The first computation segment corresponding to rules (12) is existential.) Since t 
is balanced, hg(t) < 21og(sise(t)) and (12) holds. 

It remains to verify that also (10) holds. The " i f direction follows from (11). 
The intuitive idea of the proof in tne "only if" direction is to show that in an 
accepting i-computation tree there necessarily exists a branch where the recogniser 
essentially reads the input in a layered fashion as in the proof of Claim 1 and thus 
checks that the input tree t is balanced. First we prove a number of claims. Denote 

Qi = {e,i di, git /,},»' = 1,2,3. 

Claim 2 Let K € i s (A) and assume that K contains elements of Qi and Q}-, 
i ft j. Then K is not accepting. 
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P r o o f o f Cla im 2. Let T 6 COM(A, K) be arbitrary and let H label a node 
of T. If H contains an element of Qk,k £ {1 ,2 ,3 } , then one daughter of i f in 
T also contains an element of Qk- This follows immediately from the definition 
of the rules that read elements of Qk, note that in rule (13) one can choose the 
daughter corresponding to Now since K contains elements of both Qi and Q}, 
the computation tree T contains a branch where each configuration has elements 
of Qi and Q j and this computation cannot terminate successfully. 

Claim 3 Let K £ Fz(A) and assume that states e¿ and c,+a appear in K, (i + 2 
is computed modulo S.) Then K is not accepting. 

P r o o f o f Claim 3. We can assume that e¡ appears in an active subtree ri = cr(et ) 
and e,+2 in an active subtree = w(e¿+2, c<+2) because otherwise the computation 
is blocked already in the states in question. Let T be an arbitrary ÜT-computation 
tree of A . Assume that in T the recognizer reads r\ before r2 . The existential 
rule (14) yields the state c¿+1 or d\ which cannot appear together with c<+2 in 
an accepting configuration bv Claim 2. Thus necessarily the recognizer reads first 
r2 using the universal rule (13). Consider the branch of the computation corre-
sponding to the state g.+a- FYom rules (15), (16), (18) and (19) it follows that all 
configurations in this branch contain one of the states <¡r¿+a or fi+2, (<7.+a can only 
be deleted by changing it to /<+a using rule (18) or (19).) So when the recognizer 
reads the active subtree ri at an arbitrary time in the computation, both existential 
choices c 1 + j and d, yield a configuration that is not accepting by Claim 2. Thus 
T<¿ ACOM(A, i f ) . 

Claim 4 Denote D = {c i ,c2,c3,ei ,ea,e3,di ,d2,d3} . Assume that all leaves of a 
configuration K are labeled by elements of D and K contains at least one element 
of {dx,d2,d3}. Then K is not accepting. 

P r o o f o f Claim 4. Let T £ COM(A. K) be arbitrary. Consider the branch B of 
T that in universal computation steps (13) follows the choice e,-. All configurations 
in this branch have leaves labeled by elements of D and furthermore contain at 
least one element of {di , d2, This is because the elements d,- can be deleted 
only by rules (18) and (19) which do not become applicable as the configurations 
do not contain elements & or /,-. Thus B cannot end with an accepting final state. 

Claim 5 Let K be an A.-configuration with all leaves labeled by ei,i £ {1 ,2 ,3 } , 
and hg(K) > 1. Assume that T is an accepting K-computation tree of A . Then T 
contains a configuration Ki with all leaves labeled by e¿+i. Furthermore, 

K = i f i ( e i + i « - w(<r(e<),<r(e,))). (20) 

P r o o f o f Claim 5. Necessarily the mother (immediate predecessor) of each node 
ei is labeled by <r because otherwise the computation would be blocked in the state 
e¿. The computation of T first reads an arbitrary number of the active subtrees 
er(e¿) making the choice c,+x. The existential choice d¿ is prohibited by Claim 4. In 
the states the recognizer can then apply only the universal rule (13). Consider 
the branch B of the computation that corresponds to universal choices e¿+ j . Note 
that above the recognizer needs not read all subtrees cr(e,) before starting to read 
the subtrees w(c¿+ 1 ,c¿+ 1 ) . However, before continuing the computation from the 
states e¿+i the recognizer must read all active subtrees cr(e,) and w(c , + i , c¿+ 1) . 
This is seen as follows. 

The state e¿+i can only be read by rule (14) where by Claim 4 furthermore the 
recognizer needs to make the existential choice c¿+ 2 . (The current configuration 
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contains only states e,-, c^+i, e t+i.) By Claims 2 and 3, the state c,+2 cannot appear 
with c , + 1 or e,- in an accepting configuration. Thus we can choose Kx to be the 
configuration that appears in the branch B just before the first symbol e,+1 is 
read. Then all leaves of K1 are labeled by e,+ i and also clearly (20) holds. The 
assumption hg(Jif) > 1 prohibits the possibility that K = <r(e,). 

Now we can proceed to prove that the "only if" side of (10) holds. Assume that 
t e X,(A) and let T € COM(A, i) be accepting. Without restriction we can assume 
that in T the recognizer first reads all leaf symbols 7 . Note that the rule (12) is 
deterministic so it commutes with all other rules. Thus one obtains a configuration 
K = t(7 *— c i ) . Consider the branch of T that corresponds to the universal choices 
ex in the computation steps (13) in the configuration K. (Note that (13) is the 
only computation step applicable in K.) In this branch of the computation the 
recognizer must read all states cx before reading any of the states t\ by rule (14). 
(This is seen using Claims 2-4 exactly as in the proof of Claim 5.) Thus one obtains 
a configuration with all leaves labeled by ex such that 

t = i i i (e i - 0 , ( 7 , 7 ) ) . 

Denote by Wllthe smallest positive integer congruent to j modulo 3. By Claim 5, 
if Ki G conf(r) is a configuration with all leaves labeled by «¡,-j and having height 
at least two, there exists a configuration if,+x £ conf(T) with all leaves labeled by 
e|,+1] 8Uch that 

Ki = # i + i ( e | t + i | — <•>(?(«[{]), <r(e|j|))). (21) 

Denote m = (hg(Jïx) + l ) /2 . Then Km = ff(e(m|). (Since t 6 h(Fn ) , it is easy to 
see that the string of symbols labeling a path from a leaf of K\ to the root always 
belongs to (aw)*a. Hence hg(jfx) is odd and the last configuration in the chain 
defined by (21) is cr(e[mj).) From (21) it follows that K\ and hence t is balanced. 
Q.E.D. 

In Lemma 4.1 the function 2 log can be reduced by an arbitrary constant factor. 
The construction in the proof is independent of the rank of the elements u and by 
increasing rank (a;) the number of distinct existential and universal segments in a 
computation on an input t can be made to be smaller than C~1 log(size(t)) for any 
natural number C. 

Let m > 2 and define T = T0 U Tx U Tm , where T0 = W . T x = {<7} and 
r m = {w} , i.e., T is as £ in Lemma 4.1 except the binary symbol u> is replaced by 
w of rank m. Define L(m) to be the T-forest that is obtained from the forest L of 
Lemma 4.1 by relabeling each w-node with ZS and attaching for it m — 2 additional 
copies of the subtrees. In other words, L(m) consists of all balanced T-trees t such 
that the string of labels of each branch from the root of t to a leaf belongs to 
(aw) '7. Define A = (r , A, A', Gim|) € ATR otherwise exactly as in Lemma 4.1 
except the rules (13), (16), (17), (18) and (19) are replaced by the following: 

« i / ( c< , . . . , c < ) = { e „ i / , } , i = 1,2,3; (13)' 

.. •, 9i) = { f t j . t = 1,2,3; (16)' 

*B{di,...,di) = {di),i = 1,2,3; (17)' 

w B ( x i , . . . , x m ) = { /<} if { n i m } = {di,gi},i e {1 ,2 ,3 } ; (18)' 

ÛE(xi,--,xm) = {fi} if xi,...,xm € {di,gi,fi}, and (19)' 
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U £ { * ! , . . . , « „ , } , « 6 {1,2,3} . 
Then exactly as in the proof of Lemma 4.1 it is seen that 

1(A) = L(m), 
and furthermore for every t € L(m) there exists T 6 ACOM(A, t) such that 
alt(T) = hg(i) + 1. Let С € N+ be arbitrary and choose m > 2°. Then for 
every t £ L(m), 

hg(í) < (2/C)log(size(i)). 
Denote by C~1 log the function га —+ [ С - 1 log3(ra)]. Thus we have: 
Theorem 4.2 For every С £ N+: 

REG с L{ATR)\C~l log]. 
(Here С denotes strict inclusion.) 

5 Conclusions 
Here we briefly discuss open questions and results on other types of alternation 
bounds. We have shown that 

REG = i(ATR)[&] с L(ATR)[C _ 1 log] 
for all constants к and C. A central open question is whether it is possible to 
separate L(ATR)[01 from REG for some sublogarithmic function в. Also we do 
not know whether L (ATR) [log] с Z/(ATR). We conjecture that the simple forest 
L = {w(o,n('y),o-'l(7))|ra > 0} does not belong to ATR)[los] but do not have a 
proof for this. It is easy to see that L € I (ATR), cf. [14], [15]. 

One can restrict the computation trees of an alternating recognizer in many 
different ways. A natural variant of Definition 3.3 would be to require that the 
number of distinct existential and universal computation segments corresponding 
to any given path from a leaf to the root in the input tree is bounded by some func-
tion 9. Similarly as in Definitions 3.2 and 3.3, in every branch of a computation 
tree one can associate a word w over {E , U} to the computation steps performed 
on a given path from a leaf to the root in the input tree t. Then one requires that 
for all such words w, alt(u>) is at most 0(sizem). With this definition it is not 
difficult to see that already a constant bound (in fact even the constant 2) allows 
the alternating automata to recognize forests that are not regular. The detailed 
construction is omitted here. Note that since the computations in independent sub-
trees can be performed in arbitrary order, a ¿-computation tree may have 0(sise(t)) 
computation segments (in the sense of Definition 3.2) even if the computation on 
any fixed path of t has only 2 segments. 

Also one can restrict the width of the computation trees or, equivalently, 
the number of universal computation steps analogously with the bounds on par-
allelism considered in [5], [7]. Let в be a function on the natural numbers, 
A = (£, A, A', G) £ ATR and Г be a computation tree of A . We denote by 
# T the number of leaves of T. We say that the recognizer A accepts a S-forest 
L with the width-bound $ if L = LÍA) and for every t £ L there exists T £ 
ACOM(A,t ) such that # T < 0(size(t)l. This is denoted L = I ( A l [ 0 L . The 
family of forests recognized with the width bound 6 is denoted ¿(ATRjjíjuj. As a 
corollary of Theorem 3. 17 we have: 
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Theorem 5.1 ¿(ATRjffcju, = REG. (Again we denote the constant function c(k) 
simply by k.J 

Proo f . Suppose that L = £ ( A ) A = (E, A, A', G). Without restriction we can 
assume that if / is an active suDtree of type Z of A , ¿ 6 {E, U}, and fz consists of 
only one element of A, then / is existential, i.e., Z = E. (A suitable modification 
of the relation G does not change the number of leaves of any computation tree.) 
Thus for every computation tree T of A we have 

T is at least the number of universal computation steps in T plus one.) Thus 
= L(A)[2k - 1] and L is regular by Theorem 3.17. Q.E.D. 
Also the question whether £(ATR)[log]w contains nonregular forests remains 

open. Note that this does not follows from the results of the previous section 
because in the construction of Lemma 4.1 the recognizer uses 0(size(f)) universal 
computation steps on an input t. 
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Initial and Final Congruences 

Virgil Emil Cázünescu Rodica Ceterchi* 

Abstract 
The paper contains some results which establish connections between dif-

ferent types of algebraic structures which appeared in the process of algebriza^ 
tion of the theory of flowchart schemes [3,4,5,6,7]. Two basic constructions 
[2,4] are used, first separately, and afterwards combinations between them or 
their duals, in order to obtain the theorems. 

1 Introduction 
We recall the definitions of the algebraic structures which will be used subsequently 
in the paper. 

Let B be a category whose objects form a monoid ( M , + , 0 ) and such that for 
each a,b, c,d (E M a sum operation is given 

+ : B{a,b) x B[c,d)—>B(a + c,b + d) 

B is called a strict monoidal category (smc for short) if Axioms 1-4 from Table 1 
are satisfied. If B satisfies the weaker axioms 1, 2, 3, 4a and 4b of Table 1, then B 
is called a nonpermutable strict monoidal category (nsmc for short). 

!•/ + (? + h) = (f + g) + h 
2.f + I0 = f = I0 + / 
3 .Ia + lb = la+b 

4 . ( / + s)(u + w) = / « + < ? « 4a.( / + ? ) ( / 6 + t>) = f + gv 
4b.(f + Id)(u + v) = fu + v 
4c.(Ic+d + f){cXd + Ib)=cXd+f 

5 .aXc(g + f)dXb = f + g 5a.aXc(Ic + f)eXb = f + Ic 

for / : a —• b and g : c —• d for / : a — • b 

6.aX° = Ia 
7 aX6+c _ + /c)(/b + aXcy 

Table 1: Axioms for ssmc and snsmc 

'University of Bucharest, Faculty of Mathematics 14, Academiei str. 70109 Bucharest, 
Romania 
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Suppose that for every a,b G M some distinguished morphisms aXb G B(a + 
b,b + a) are given. An smc is called symmetric (ssmc for short) if Axioms 5, 6, 7 of 
Table 1 are satisfied. An nsmc is called symmetric [snsmc for short) if Axioms 4c, 
5a, 6 and 7 are satisfied. Obviously, every ssmc is an snsmc. 

Let us notice that an snsmc which satisfies either Axiom 4 or Axiom 5 of Table 
1 is an ssmc. Moreover, this remains true if we replace Axiom 4 ( or Axiom 5) with 
the following weaker axiom: 

f + 9 = (/« + <?)(/ + Id) 

for every / € B(a, 6) and g G B(c, d). 

In an snsmc an aa-morphism is a composite of morphisms of the form I a + 
bXa 

+ Id- Axiom 4 of Table 1 is satisfied in an snsmc for g or u aa-morphisms. In 
an snsmc B we denote by Ba the subcategory of aa-morphisms and we notice that 
Ba is an ssmc. Note also that every aa-morphism is an isomorphism, its inverse 
being also an aa-morphism. 

The concept of an xy-ssmc depends on two parameters, x G {a, b, c, d] and y G 
{a , ¡3,7,5}. For every e G M we will use the distinguished morphisms Te G B(0, e), 
1' G B(e, 0), Ve G B(e + e, e) and A« G B(e, e + e). Table 2 shows for every value of 
the parameters the distinguished morphisms which are involved. The axioms which 
are satisfied by the distinguished morphisms are chosen from Table 3 for each xy 
case according to the rule: select all those axioms (and only those) in which the 
distinguished morphisms of the xy case appear. 

X distinguished morphisms y distinguished morphisms 

a none a none 
b ±e ß T e 

c Ae 1 ve 

d ± e and Ae S Te and Ve 

Table 2: Distinguished morphisms for zy-ssmc and xy-snsmc 

Thus, an ssmc (snsmc) will be called an xy-ssmc (xy-snsmc) if every object 
e G M is endowed with the distinguished morphisms which appear in Table 2 
corresponding to the xy case and if all axioms of Table 3 which contain only these 
distinguished morphisms are fulfilled. 

Notice that in an xy-ssmc axioms P T , P X , P V , and PA are automatically sat-
isfied as a consequence of Axiom 4 in Table 1. 
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A.(va + 7„)V„ = ( /„ + v a ) v a A". A° (A° + la) = A°(7 0 + A») 
B.aXaVa = Va B°. Aa = A° 
C.(Ta + 7a)Va = la C°.Aa{±a + Ia) = Ia 
D. V„ ± a = ± a + ± ° X>0 .TaAa = T „ + Ta 

E. Ta_La = /0 
F. V a A° = (Aa + A°)(7 0 -I- o x o + / a ) ( V „ + Va) 
G. Aa Va = la 

SVI.T0 = /0 5V1°.±° = /0 
5V2.T0+b = T 0 + Tfc SV2°.±a+b = ±a + ±b 

SV 3.V0 = /0 5V3°.A0 = /0 
5 V 4 . V a + 6 = (/a + bXa + 7 6 ) ( v 0 + V6) SV 4 ° .A° + f c = (Aa + Ab)(Ia + + 76) 

F T . g ( T a + 7C) = T a + g P±.(Ia + ff)(±B + Ic) = ±a + g 

P V . ( 7 a + a + s)(Va + le) = Va + <7 P A .(7a + <7)(A° + 7C) = A° + g 
for g : b —• c 

Table 3: Axioms for xy-ssmc and xy-snsme 

ST.Taf = Tb S±.flb = ±a 

S V . ( / + / ) V 6 = V . / SA.Aa(f + f) = fAb 

for / : a —• 6 
Table 4: Axioms for strong xy-ssmc 

Let us consider the order <L on {a, 6, c, d} given b y o <L b <L d and a <L 
c <L d, and the same order <a on the corresponding Greek letters, so that, e.g. 
a <a P <a S. For x' <l x and y' < g y, we define an x'y'-strong xy-ssmc to be an 
xy-ssmc in which all the axioms in Table 4 corresponding to the x y* case hold. A 
strong xy-ssmc will be, by definition, an zy-strong xy-ssmc. 

Suppose that in an snsmc B we are given, for each a,b,c G M, an unary 
operation 

t a . : B{a + 6, a + c) —• B(b, c) 

called (left) feedback. 
A biflow (flow) is an ssmc (snsmc) endowed with a feedback which satisfies 

all the axioms in Table 5. As we will use sometimes the right feedback _ 
B(b + o, c + o) —• B(b, c) we mention the connections between the two feedbacks: 

/ |°=ta (aXbf 9fa ) for / : b + a — c + a. 

î ° / = [bXaf <Xc)]a for / : a + 6 —• a + c. 
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1. /(t° 9)h = t° [ ( / - + /)<?(/» + >0] 
2. Ta / + /d = t a ( / + Id) 
3 t a + 6 [ / { 6 x a + / d ) ] = í b + a j ^ a + J ^ J 

for / : a + 6 + c — • 6 + a + d 
4. f f / = f + a / 
5. t a / a = /o 
6. t a a X a = /«• 

Table 5: Axioms for feedback 

All the algebraic structures previously defined form categories whose morphisms 
are functors which are monoid morphisms on objects and which preserve the ad-
ditional algebraic structure. Sometimes we will be interested in certain subcat-
egories, namely those in which the monoid of objects, M, is kept fixed (called 
M-smc, M-nsmc,. . . , M-biflow), and where the morphisms are object-preserving 
functors (called Af-smc morphism, . . . , M-biflow morphisms). These subcategories 
are equational varieties in the sense of the many-sorted universal algebra. Examples 
of the above algebraic structures may be found in [4,5,6]. 

Some of the results in the rest of the paper provide the construction of left 
adjoints for the following forgetful functors: 

a) for x e. {b, d} and y £ {a,jJ, -y, 5} 
6a-strong xy-ssmc — • xy-ssmc 
biflow over a 6a-strong xy-ssmc — » biflow over an xy-ssmc 

b) for x e {b, d) and y € {0, 5} 
6/9-strong xy-ssmc —• xy-ssmc 
biflow over a 6^-strong xy-ssmc — • biflow over an xy-ssmc 

c) 6a-ssmc —• ssmc 
biflow over a 6a-ssmc — • biflow 

d) for y £ 
6a-8trong 6y-s8mc — • ay-ssmc 
strong 6y-ssmc —• strong ay-ssmc 
biflow over a 6a-strong 6y-ssmc — • biflow over an ay-ssmc 
biflow over a strong 6y-ssmc — • biflow over a strong ay-ssmc 

e) 6a-8smc and a^-ssmc — • ssmc 
biflow over a 6a-ssmc and af}-ssmc — • biflow. 

Even if the existence of left adjoints follows from general principles, our con-
structions are more effective than the general ones. 
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Table 6 represents the structure of the paper as a graph, where each section 
(vertex) depends only on the sections at higher levels with which it is linked. 

2 Final congruences 
In this section we will show that the congruence relation introduced by Bloom and 
Tindell [2] in an algebraic theory is useful also in the study of more general algebraic 
structures. We mention that, instead of the name "zero-congruence" used in [2], 
we will use the name "final congruence", one reason being that it can be dualized 
into "initial congruence". 

In an smc B a congruence relation = is called final if / = g for every f,g & 
B(a, 0). Notice that if 0 is a weak final object in B, i.e. B(a, 0) ^ 0 for every 
a € M, then factorization with a final congruence makes 0 a final object. 

Definition 2.1 [2] For every f,g 6 B(a, b) we have fPg iff there exist: an object 
x e M and morphxsms B(a,b + x) and u, v g B(x, 0), such that 

f = h(Ib + u) and g = h(Ib + u). 

Since a final congruence relation identifies any two morphisms u and v in B(x, 0) 
it obviously includes the relation P . 

Note that for every a,b 6 M the relation P is reflexive and symmetric on B(o, 6). 
The above defined relation was introduced in [2], and was used for different 

purposes in [lj. 
Lemma 2.2 In an ssmc, relation P is compatible with composition and sum. 

Proo f . With the notations of Definition 2.1, let fPg. 
a) Compatibility with composition. Suppose pPq in B(b, c), that is there exist 

j £ B(b, c + y) and w, t S B(y, 0) such that p = j(Ic + to) and q = j(Ie + t). Notice 
that 

jp = h{Ib + u)j(Ie + w) = [h(j + IX)](IC + w + u) 
and similarly, 

0 9 = [ M i + 4 ) l ( / c + * + »). 
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b) Compatibility with sum. Suppose pPq in B(c, d), i.e. there exist j £ B(c, d + 
y) and w,t € B(y,0) such that p = j(Id + tu) and q = j(Id + t). Notice that 

/ + P = {h + j)(Ib + u + IA + u) = [{h + j)(4 + 'Xd + Iy)}(Ib+<i + u + 1») 

and similarly, 

9 + 9 = \{h+3){h + xXd + / „ ) ] ( / b + d + w + t)-

It is known that in a E-algebra the transitive closure of a reflexive and symmetric 
relation, compatible with the operations, is a congruence. This implies that P + , 
the transitive closure of P , is. an ssmc congruence. 

Propos i t i on 2.3 The congruence P + is the least final congruence. 

To simplify the notation in the following, each time R is a reflexive and symmetric 
relation on A, we will denote by A/R the quotient of A by R + . 

Propos i t i on 2.4 If B is a ba-ssmc, then B/P is a strong ba-ssmc. If C is a 
strong ba-ssmc and G : B —• C is a ba-ssmc morphism, then there exists a unique 
ba-ssmc morphism H : B/P —• C such that G = FB»H, where FB : B —• B/P 
is the canonical factorization morphism. 

Proo f . It is sufficient to notice that fPg implies G(f) = G(g). 

The above proposition tells us that the forgetful functor from strong 6a-ssmc 
to iia-ssmc has a left adjoint. The same construction can be used in other cases 
as well, giving us the left adjoints for the forgetful functors from the categories 
of fca-strong ¡rj/-8smc to the categories of zy-ssmc, for every x & {6, d) and every 
y £ {ot,fi, 1,6}. If we note furthermore that in a biflow, relation P is compatible 
with the feedback, then the above result remains true for biflows over an xy-ssmc. 

3 Congruences which are simultaneously initial 
and final 

The concept of initial congruence is dual to that of final congruence, and the con-
struction and results of the previous section can be readily dualized. 

The purpose of this section is to show that the factorization from the previous 
section and its dual can be merged into a single factorization. 

Definit ion 3.1 In an ssmc B we define relationTL by the following: fTLg in B(a, b) 
iff there exist objects x,y £ M and morphism h £ B(a 4- y,b + x),u,v £ B[x, 0) 
and p, q € B(0, y) such that we have decompositions 

f = [Ia+P)h{lb + U) 
9 = {la + q)h(Ib + vj. 

Obviously, R is reflexive and symmetric. Since an initial and final congruence 
relation identifies any two morphisms u and t; in B(x, 0) and any two morphisms p 
and q in B(0, y) it obiously includes the relation R . 

L e m m a 3.2 The relation R is compatible with composition and sum. 
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Proof . With the above notation let fRg in B(a,b). 
a) Compatibility with composition. Suppose we have f'Rg' in B(b,c), i.e. there 

exist h' G B(b + !/,c + x'), u',v' G J3(x',0), p',q' G B(0,t/) such that / ' = 
(/„ + p')h'(Ic + u') and </ = [Ib + q')h'{Ic + t/). 

It follows that 

//' = (I* + p)h(Ib + u)(Ib + p')h'(Ic + u') 

= (Ia + p + p'){h + Iy.)(Ib + u + Iy.)h!(Ic + u') 

= [ la + (P + + V ) ( 4 + + h W c + («' + «)], 

and similarly, 

99' = \h + {q +1')№ + iy)(h + xx»')(h' + Ix)\\ic + («,' + «,)], 

which imply / f'Rgg'. 
b) Compatibility with sum. Suppose that f'Rg' in B(c,d), i.e. there exist 

h' G B[c + y',d+ x'),u',v' G B(x',0),p',q' G B(0,y') such that 

/ ' = (Je + P')h'(ld + « ' ) and J = (Ic + q')h'(Id + «')• 

It follows that 

/ + /' = (Ia + p + lc+p'){h + h')(lb + u + ld + u') 
= \Ia+c + (p + p')][(JB + ex« + I„.)(h + h')(Ib + 'Xd + Ix.)}\h+d + (tt + «')], 

and 

g + g' = [Ia+e + (g + ç')][(Ja + °X» + I„.)(h + h')(Ib + 'Xd + Ix.)\\Ib+d + (v + v % 

which imply ( / + / ' )R (g + g'). 

Proposition S.3 The congruence R + is the least initial and final congruence. 

Proposition 3 .4 If B is a bfi-ssmc, then B/R is a strong b/3-ssmc. If C is a 
strong bp-ssmc and G : B —• C is a bf)-ssmc morphism, then there exists a unique 
b/3-ssmc morphism H : B/R —• C such that G = FB»H, where FB : B —• B/R 
is the canonical factorization morphism. 

The same factorization gives us the left adjoints for the forgetful functors from the 
categories of i/J-strong xy-same to the categories of xy-ssmc, for every x G {b, d) 
and every y G {fi, 6}. Since in any biflow, R is compatible with the feedback, the 
result holds also for biflows over the above xy-ssmc-ies. 

4 The adjunction of JL 
We recall here briefly, following [4[, the construction which associates to every ssmc 
a 6a-ssmc. We give some motivation. First, we mention the following identities in 
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a ba-ssmc: 

a) f(±x + Ib)g(±" + Ic) = [ / ( / , + ff)l(±-+" + Ie) 
for / : o —• 1 + 6 and g : b — • y + c. 

b) / ( X - + Ib) + g(-L" + Id) = [ ( / + , ) ( / . + bX« + Id)}{±'+" + Ib+d) 
for / : o —• i + 6 and g : c —• y + d. 

c) f = / ( 1 ° + 4 ) for / : o — » 6. 
d) ± » = J , ( ± « + /o). 

To obtain a ia-ssmc from an ssmc B we have to add for every object x a new 
morphism ±* : x — • 0. Consequently, it will be necessary to add for every 
morphism / : o —• x + b the morphism / (-L1 + Ib). The above identities imply that 
this suffices for our purpose. We represent the newly added morphism /(-L1 + Ib) 
as a pair ( / , x) : a —• b. Since in any ssmc /_LX = ± w for every aa-morphism 
j : y —• x, we have g(±.v + A ) = g(j + Jfc)(_L* + Ib) for every g : a —• y + b. 
We deduce that the pairs (g, y) and (g(j + Ib),x) represent the same morphism. 
Therefore we shall need a factorization which identifies them in order to accomplish 
our construction. 

Let B be an ssmc with (M, + , 0) the monoid of its objects. Consider category 
K(B), having the same objects as B, with morphism defined for every o, 6 6 M by 

K(B)(a, b) := {(/, x)\x€M,fe B(a, x + b)} 

and with composition defined by 

(/.*)(*,») := {f{i* + g),x + y)-

Note that the identity morphism of a £ M in K(B) is (7a ,0). 
K(B) becomes an snsmc defining the sum of ( / , x) : a — • 6 and (g, y) : c — • d 

to be 
(/ , *) + (g, y) := (( / + g)(/x + + Id), X + y) 

and the distinguished morphism aXb as ( a X l , 0 ) . 
In K(B) the distinguished morphisms ± a := ( / „ , a ) e K(B){a, 0) have the 

following properties: _L° = J0 and ± a + t = 1 ° + ± 6 . 
We define IB B —• K(B) as being the identity on objects and mapping every 

morphism / of B to Ie(f) = ( / ,0 ) . IB will be an Af-snsmc morphism, and for 
every ( / , x) £ K(B)(a, b) we will have ( / , x) = IB(f)(±* + Ib), which is called the 
canonical decomposition of ( / , x). 

Definition 4 .1 [4] For every a,b £ M we define a relation ~ on K{B)(a,b) in the 
following manner : ( / , x) ~ (fif, y) in K(B)(a,b) iff there exists an aa-morphism 
j £ Ba(y,x) such that f = g(j + Ib). 

Note that ~ is a congruence and that K(B)/ ~ is a 6a-ssmc. 
The ssmc morphism KB '• B — • K{B)/ ~ is by definition the composite of IB 

with the canonical factorization morphism. 

Propos i t ion 4.2 For every ba-ssmc C and every ssmc morphism F : B — • C 
there exists a unique ba-ssmc morphism H : K(B)[~ —• C such that F = KB*H. 
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Suppose now B is a biflow. Defining in K(B) the right feedback of ( / , x) : 
a + c —• 6 + c to be 

( / , * ) r = ( / t e , * ) 

we note that K(B) becomes a flow. Because congruence ~ is a flow congruence, 
K(B)/ ~ becomes a biflow over a 6a-ssmc and KB becomes an M-biflow morphism. 
The next proposition is a version of Proposition 4.2. 
Proposition 4.3 For every biflow over a ba-ssmc C and every biflow morphism 
F : B —• C there exists a unique biflow and ba-ssmc morphism H : K(B)/ ~ —• 
C such that F = KB*H. 

5 The strong adjunction of ± 
The results of Sections 2 and 4 imply that the passage from an ssmc B to a strong 
¿a-ssmc is a three step contraction: we construct first K(B) and then we factor 
succesively through ~ and P + . In this section we show that the two succesive 
factorzations can be replaced by a single one. 

We give some motivation for the next definition. Since in any strong ba-ssmc 
we have the identity g(q + IfcM-L* + h) = ffi-L" + h) f ° r every g : a —• y + b 
and q : y —• z, we deduce that the pairs (<7, y) and (g(q -I- Ib),z) from K(B) 
represent the same morphism. Analogously, for / : a —• x + 6 ana p : x —• z, the 
pairs ( / , x ) and (f(j> + h ) , z ) represent the same morphism. Therefore, the equality 
f(p + lb) = g{q + lb) is a sufficient condition to identify the pairs ( / , x) and (g, y). 
Definition 5.1 For (f,x),(g,y) 6 K(B)(a,b) we say that (f,x)Q(g,y) iff there 
exist an object z 6 M ana morphisms p € B(x,z) and q 6 B(y,z) such that 
f{p + h) = 9(q + Ib). 
Notice that Q is a reflexive and symmetric relation. 
Lemma 5.2 Relation Q is compatible with composition and sum. 

Proof . With the above notation, suppose lf,x)Q(g,y). 
a) Compatibility with composition. Let ( / ' , x')Q(3', y') in K(B)(b, c), i.e. there 

exist an object z' € M and morphisms p' G B(x',z') and q' E B(y',z') such that 
f'(p> + Ic) = g'tf + Ic). We note that 

[(/(/x + f')\[(p + p') + /«] = f(p + h)(I» + f'(p' + Ic)) 

= 9(q + Ib)(l, + g'(q' + lc)) 
= [<7(/y + ^)][(g + ?') + U 

which impUes that i ( / , x ) ( / ' , y ) ( f l r ' , y ' ) l -
b) Compatibility with sum. Suppose ( / ' , x')Q(g', y') in K(B)(c,d), i.e. there 

exist an object z' € M and morphisms p' G B(x',z') and q' € B(y',z') such that 
/ V + Id) = g'(q' + Id). We note that 

[(/ + /')(/, + "X'' + Id)][(p + p') + /6+d] 

= [/(P + h) + / V + /„ ) ] ( / , + bX*' + Id) 

= [\g{q + h) + g'(q' + ld)\(l. + bX'' + ld) 

= Kflf + g')(Iy + "X»' + /„))[(« + q') + Ib+d 1, 
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which implies [( / , x) + ( / ' , x')]Q[(<7, y) + W , • ) ] . 

It follows that the transitive closure Q + of Q is a congruence. We denote by 
QB the composite of the morphism IB, defined in Section 4, with the canonical 
factorization morphism K(B) —• K(B)/Q. 

Propos i t i on 5.3 K(B)/Q is a strong ba-ssmc. For every strong ba-ssmc C and 
for every ssmc morphism F : B — • C, there exists a unique ba-ssmc morphism 
H : K(B)/Q —» C, such that F=QB*H. 

P r o o f . We show first that K ( B ) / Q is an ssmc. For (f,x) € Jf(B)(a,6) and 
(?> y) € K(B)(c, d), taking into account that 

\h + (9, y)][(/,*) + Id] = ((/ + g)(*+bX» + Id), y + x), 

we note that there exists VXX € B(y + x,x + y) such that 

(/ + g)(*+»X» + Id)(»X* + Ib+d) = (/ + g){I, + bX» + Id), 

and thus [Ia + (g, y)][(/, x) + Id]Ql(f,x) + (g,y)]. 
The existence of the distinguished morphisms ± ° = ( / 0 , a ) € /f(J3)(a, 0) and 

their properties make K(B)/Q a 6a-ssmc. To prove that it is strong, let ( / , x ) € 
K{B)(a, 0). The equality f \Is + 70) = / „ ( / + Ip) implies ( / , x )QJL a . 

Let F : B — • C be an ssmc morphism, with C a strong 6a-ssmc. We define 
G : K(B) —• C in the following way: 

G(o) := F(a), for every object a € M, 

G(f,x) ~ F(f)(±FW + IFlb)), for every (f,x)eK(B)(a,b). 

It follows that G is the unique snsmc morphism such that F = IB »G and G(_La) = 
_L°H for every a e M. 

We now prove that ( / , x)Q(y, y) in K[B)(a,b) implies G(f,x) = G^g, y). Let 
p € B[x,z) and q e B(y,z) be sucn that / ( p + Ib) = g(q + Ib). Applying F and 
then composing on the right with + ^f(b) we deduce that 

F(/)(J/1«) + JF(6)) = F {G){±FM + IR (6)). 

So, there exists H : K(B)/Q —• C a unique fca-ssmc morphism such that F = 
Qb*H. 

Corollary 5.4 {K(B)f ~)/P is isomorphic to K(B)/Q. 

Propos i t i on 5.5 If B is an ay-ssmc, where y & { a , / ? , 7 , 5 ) , then K(B)/Q is a 
ba-strong by-ssmc and QB : B —• K(B)/Q is an ay-ssmc morphism. If C is a 
ba-strong by-ssmc and F : B —• C is an ay-ssmc morphism, then the unique ba-
ssmc morphism H : K(B)/Q —• C, suck that F = Qb • H, given by Proposition 
5.S, is a by-ssmc morpnism. 

P r o o f . Case y = a is precisely Proposition 5.3. For the remainder of the cases, 
from the distinguished morphisms of B, T a 6 B(0, a) or Va 6 B ( a + a , a) we obtain 
the distinguished morphisms of i f ( 5 ) / Q , Q b ( T 0 ) or Q b ( v « ) -
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The axioms fulfilled by T „ and/or V„ in B, will be also fulfilled in K(B)/Q. 
The only axioms which remain to be verified are those relating ± " with QB(T„) 
and Q b ( v 0 ) I ^ ^ i® 

<?fl (T„)±° = I0 and QB(Va)±a = l a + ± a . 

Their validity is a consequence of the fact that K(B)/Q is fca-strong. 

Proposition 5.6 If B is a strong ay-ssmc, where y € {a, ft, 1,5}, then K(B)/Q 
is a strong by-ssmc. If C is a strong by-ssmc and F : B —• C is an ay-ssmc 
morphism, then there exists a unique by-ssmc morphism H : K(B)/Q —• C such 
that F = QB • H. 

Proo f . We prove only the first assertion. Assume ( / , x ) € K(B)(a,b). 
For the distinguished morphism T 0 of B, using the equalities 

/ B ( T 0 ) ( / , X ) = ( T a , 0 ) ( / , x ) = ( T a ( / 0 + / ) , « ) = (T af,x) = ( T , + 6 L X ) 

and noting that 
T x + b ( I x + Ib) = T f c(Ta + Ib), 

it follows that [ I B ( T a ) ( f , X)]Q/B(TJ,). 
For the distinguished morphisms Va of B, using the equalitites 

/ B ( V a ) ( / , x ) = ( V a / , x) 

[(/, x) + (/, x)\IB (Vt) = ( ( / + / ) ( / , + bX* + Ib)(Ix+x + Vb), x + x) 

and noting that 

[(/ + /)(/, + bX' + Ib)(Ix+x + V6)](V, + Ib) = WJ{IX + / 6 ) , 

we deduce that [ ( ( / ,x ) + ( / , x ) ) / B (V 6 ) ]Q[ /B (V 0 ) ( / , x ) j . 

Suppose now that B is a biflow. Because the relation Q is compatible with the 
feedback, it follows that K(B)/Q is a biflow over a strong fca-ssmc, and we obtain 
the corresponding version of Propositions 5.5 and 5.6. 

Proposition 5.7 If B is a biflow over an ay-ssmc, where y € {a , / ? ,7 ,6} , then 
K(B)/Q is a biflow over a ba-strong by-ssmc and QB »« a biflow and ay-ssmc 
morphism. If C is a biflow over a ba-strong by-ssmc and F : B —• C »s a biflow 
and ay-ssmc morphism, then there exists a unique biflow and by-ssmc morphism 
H : K{B)/Q —• C, such that F = Qb • H. 

Proposition 5.8 If B is a biflow over a strong ay-ssmc, where y g 
then K(B)/Q is a biflow over a strong by-ssmc. If C is a biflow over a strong 
by-ssmc and F : B —• C is a biflow and ay-ssmc morphism, then there exists a 
unique biflow and by-ssmc morphism H : K(B)/Q —• C such that F = QB • H. 
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6 The simultaneous adjunction of T and _L 
In this section we show that the construction of Section 4, together with its dual, 
can be merged into a single one. 

To understand the construction which follows we mention that for every / : 
a + y — • i + 6 the triple (y, / , x) represents the morphism ( / „ + ~Ty)f(±.x + /¿,), 
where _L* : x — • 0 and T v : 0 — • y are the newly added morphisms. The 
definitions for composition and sum are based on the following identities which 
hold in any ssmc which is simultaneously an a/7-ssmc and a 6a-ssmc: 

O) Ua + T y)f[±* + lb) [lb + T , ) f f ( l . - + Ic) 

= (/a + T y + , ) [ ( / + / , ) ( / , + + Ic) 

where / : a + y — • x + 6 and g : 6 + z —• to + c, 

*) (I. + T„ ) / ( .L' + h) + ( / . + + Id) 
= (Ia+c + T„ + , ) [ (J 0 + eX» + / , ) ( / + g)(Ix + bX» + 7< J)](±'+« ' + Ib+d) 

where / : o + y — • x + b and g : c + z —• ti> + d. 
Let B be an ssmc, with a fixed monoid of objects (M, + , 0). Consider the 

category J(B), having the same objects as B, and as morphisms, for each a, 6 £ M, 

J(S) (a ,6) := { ( y , / , i ) | y , z e M , / e S ( a + y , x + 6 ) } 

with composition defined by 

{y,f,x)(z,g,w) := (y + z, (/+ /,)(/, +g),x + w). 

Notice that the identiy morphism of a e M in J(B) is (0, Ia, 0), and it will be 
subsequently denoted by 7„. 

In J(B) define the sum of ( y , / , x ) G J(B)(a,b) and (z, g,w) G J(B)[c,d) as 

(V, /> *) + (*, 9,») := (y + (Ia + °X? + /,)(/ + g)(I, + "X™ + Id), x + w). 

We prove next that J(B) is an nsmc. 
Let (u, h, v) G J(B)(p, q). We have 

!(y, / > + 9, «01 + K >». w) = 

= (y + a + u, ( I a + e + + / „ ) [ ( / „ + c JP + /,)(/ + g)(Ix + 6 J T + Id) + h\* 

•( / .+• + b+dXv + / , ) , x + w + v) = 

= (y + a + U| (7 0 + c + *X»+* + /„)(/„ + eXy + IM+P+U 

•(/, + bX" + Id+tt+v)(Ix+a + + / , ) , x + t* + v ) = 

= (y + * + u, (7« + C+"JC + 7 , + u ) ( / 0 + w + c + "X' + /„). 

•(/ + 9 + h)(Ix+b+m + dXv + Iq)(Ix + + 7 d + i ) , x + «; + «) = 

. [ / + (7C + " X ' + Iu)(g + h)(Ia + dX° + /,)](/. + + Id+q), x + w + v) = 
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= (y, / , s) + [(*, 9, «>) + (u, h,«)]. 
It is easy to prove that (y, / , x) +10 = (y, f, x) = I0 + (y, / , x) and that Ia + Ib = 

I<t+b-
For Axiom 4a, we take (y, f,x) : a —• b, (z, g, w) : c —> d and (u, h,v) : d —• e, 

and we have 
[(y./.*) + (*. <7- to)][4+(u,/i, »)] = 

= (y+z+u,[(Ia+cX>'+I,)(f+g)(Ix+bXw+Id)+Iu}{Ix+vl+(Ib+h)(bXv+Ie)],x+w+v) = 

= (y + z + u, (/„ +CF + /,+„)[/ + (<7+ /„)(/. + *)](/« + 6 A""*" +/,),« + „ + ») = 

= (y, / , + <7,«")(«. M ) -

The proof of Axiom 4b is analogous. 
Define now the distinguished symmetry morphisms of J(B) to be aXb := 

(0,aXb ,0). It can be proven that J(B) is now a snsmc. We prove here only 
the validity of Axiom 5a. 

aXc(Ic + (y,f,x))cXb = 

= (y, (*X° + Iy)(/C + f){cXx + Ib)(Ix + cXb), x) = 

= (y,(aXe + Iy)(Ic + fyX*+b,x) = 

= (y,(aX<1 + IyyXa+»(f + Ic)tx) = 

= (y,(Ia + eX»)(f + Ic),x) = 

= (y. / . x) + Ic. 

Define the canonical M-snsmc morphism IB : B —• J ( 5 ) to be, for every 
feB(a,b), 

W ) •= ( 0 , / , 0 ) . 

In J[B) we define the distinguished morphisms 

± ° := (0, Ia, o) and T a := (a,/a , 0) 

and we notice that 

= J0 = To 

JL" + J.6 = ± a + b and T a + T6 = T a + 6 . 

For every (y, / , x) € J(B)(a, b) the following identity holds: 
(y,f,x) = (Ia + Tv)IB(f)(±' + Ib). 

Definition 6.1 For every a, b 6 M. we define relation = in J(B){a,b) in the 
following manner: (y, / , x ) = (z,g.w) iff there exist morphisms k 6 Ba(y,z) and 
j € Ba(w, x) such that /=(/<,+ k)g(j + Ib). 

Lemma 6.2 The relation = is a congruence. 



212 Virgil Emil Cäzänescu, Rodica Ceterchi 

P r o o f . Because every aa-morphism is invertible, its inverse being also an aa-
morphism, it follows easily that = is an equivalence. 

To prove compatibility with composition, using the same notation as in Defi-
nition 6.1, let ( y , / , x) = (z,g,w) and let ( y ' , / ' , x') = w') in J(B)(b, c), i.e. 
there exist k' G Ba(y',z') and j' G Ba{w',x') such that / ' = (Ib + k')g'(j' + Ic). 
We have 

(f + iV')(i* + n = 

= (Ia + k + Iyi) (g + Iy,)(j + Ib+y.)(Ix+b + k')(Ix + g')(Ix + f + Ic) = 

= [/„ + (k +>)][(* + /,.)(/. + </')][(> + 3") + U 

which implies that ( y , / , x ) (yY/ ' , x') = (z, g, w)(z', g1, w'). 
To prove compatibility with sum, let (y , / , x) = (z, g, tw) again as in Definition 

6.1, and (y',f',x') = (z',tf,w') in J(B)(c,d), i.e. there exist k' G Ba(y',z') and 
j' G Ba(w', x') such that / ' = (Ic + H)g'{j' + Id). It follows that 

(/„ + CX« + /„-)(/ + /')(/- + bX~' + Id) = 

= (/„ + CX» + /„,)(/« + k + Ic + k')(g + g')(j + Ib+ j' + Id)(Ix + bXx' + Id) = 

= \Ia+c + (k + fc')][(/a + eX* + IM.)[g + g')(Iw + bJC"' + Id))[[j + j') + h+d}> 

which implies that (y, f, x) + (y', / ' , x') = (z, g, w) + (z't g1, w'). 

Propos i t ion 6.3 J(B)/ = is an ap-ssmc and a ba-ssmc. 

P r o o f . We will prove only the permutability of J(B)/ = , that is, we will show, for 
every (y, / , x) G J(B)(a,b) and (z ,g ,w ) G J(B)(c,d), that 

(y. / . *) + {*, 9, w) = {la + (z, g, tw))((y, f , x) + Id). 

This follows easily from the following calculations: 

{Ia + {z,g, w)){{y,f,x)+Id) = 

= (z, (Ia + + Id), w) . (y, ( / „ + "X».)(f + Id), x) = 

= (z + y,(Ia + g + Iy)(aXw + Id+y)(I^a + dX»)(Iw + f + Id),w + x) = 

= (z + y,(I° + 9 + /»)(/« + ->+'1Xv)(a+''Xw + Id)[Iw + f + Id),w+x) = 

= (z + y, ( / „ + c+'X»)(Ia+y + g)(f + j11)+d)(«+fcjr + Id), w + x) = 

= ( x + y, (Ia+C + >X")[(/„ + '°X» + /,)(/ + 9)(IX + bX'° + Id)\{'X* + Ib+d), w + x). 

Let JB : B — • J ( 5 ) / = be the ssmc morphism obtained by compsoing IB with 
the canonical factorization morphism. 

Propos i t ion 6 .4 If C is an afi-ssmc and a ba-ssmc and F : B —• C is an 
ssmc morphism, then there exists a unique afi-ssmc and ba-ssmc morphism H : 
J{B)/ =—• C such that F = JB • H. 
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P r o o f . We will prove that there exists a unique snsmc morphism G : J(B) — • C 
such that F = IB»G, G(±a) = ±G<a) and G(T A ) = T G ( A ) . Define G as follows: 

G(a) := -F(a), for every object a £ M, 

G(y, f, x) := (IF{a)+TF{y]).F(f).(±FW + IF[b),) for every ( y , f , x ) G J(B)(a,b). 

For / G B(a,b), notice that 

G ( 7 B ( / ) ) = G ( 0 , / , 0 ) = F ( / ) , 

from which foUows also that 

G(Ia) = IG(a) and G(aXb) = G ( « ) x ° ( 6 ) . 

For (y,f, x) G J(B){a,b) and (z,g, w) G J(B)(b,c) we have: 

G((y, /, x)(z, g, w)) = (IF{a) + TF{v+,))F((f + /,)(/. + i))(l#'<-+-> + IFle)) = 

= (/F(A) + TF{y])(F(f) + T f{z])(±FM + F(g))(±FW + IF{C)) = 

= (i>(„) + T , ( y ) ) / ( / ) ( ± ' W + J m ) (J><6) + TF{z))F(g)(±FW + IF(C)) = 

= G(y,f,x)»G{z,g, w). 
For (y,f,x) G J(B)(a, b) and (z,g,w) G J(B)(c,d) we have: 

G((y, f,x) + (z, g, w)) = 

= [Iria) + T , ( „ ) + IF(e) + T , ( , ) ) f ( / + *) ( ! '<«> + IF{b) + J . * » + IF{d)) = 
= G{y,f,x) + G(z,g,w). 

We also note that 

G(±a) = G(0, Ia, a) = (IF(a) + TF(0))F(Ia)(±FW+IF(0)) = ±G(") 

and, similarly, 

G(Ta) = G(a, 7 0 , 0 ) = ( / ^ O , + TF(a))F(/a)(±''^ + 7 R ( A ) ) = T G ( O ) . 

^ (y> /> x ) = {z> w ) i using the same notations as in Definition 6.1, we have 

G(y, / , * ) = (IF{a) + TF[y])F(f)(±FM + IF{b)) = 

= (Ir {a) + T , w ) ( J , ( o ) + F(k))F(g)(F(j) + IF{b))(lF^ + IF(b)) = 

= (/#•(-) + TF{Z) )F(g) (±F^ + IF(b)) = G(z,g,w), 

from which we deduce the existence of the morphism H with the required properties. 

Suppose for the rest of this section that B is a biflow. 
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For (y, / , i ) G J(B)(c + a, c + 6) we define the left feedback 

r (s/i ftx) ~ ( y , r \HZXC + /„)], x) 

and we prove that J(B) becomes a flow. 
For (z, g,w) : d —• a, we have: 

r ¡(Ic + {z,9,w))(yJ,x)\ = 

= r (z + y, ( 4 + g + J „ ) ( e X - + 4 + v ) ( 4 , + f),w + x) = 

= (z + y, r [ (4 + 9 + /„)(**" + Ia+y)(Iw + f)(">+*Xc + 4 ) ] , u, + x) = 

= (z + y,(9 + 4 ) ( 4 , + t c ( f ( ' X c + J6))), w + x) = 

= (z,g,u>)» Tc (y,f,x). 
For (z, g,w) : b —• d we have 

r [(y. /. x)(Ic + (z,g,w))} = 

=V [(y, / , *)(*, (Ic + g)(eX° + 4 ) ,u , ) ] = 
=TC (y + ( / + / , ) ( / , + . + 9)(I* +CX» +Id),x + w) = 
= (y + *, r [ ( / + Iz)(I*+c + 9)(xxc + Iw+d)}, x + w) = 

= (» + *, f [(f('Xc + h) + /.)(/«+ + 9)], « + «») = 
= (» + «, (V [f('Xe + 4 ) + / , ] ) ( / , + g),x + w) = 
= (y + z, ( t c (f(xXc + 4 ) ) + / , ) ( / , + » ) , x + u » ) = 

=TC (y»/ .®) • 
Furthermore, 

f [(y, / , « ) + 4 ] = f c (y, ( 4 + „ + ' * » ) ( / + 4 ) , x ) = 

= (y. tC [(4+a +dX*)(f + Id)(XXC + 4+d]|X) = 

= (y, ( 4 + dX«)ir (f(xXc + 4 ) ) + 4 ] , x) = r (y, / , *) + 4 -
For (y,f,x):c + d + a —• c + d + Jwe have: 

t d + c [ ( d X c + 4 ) ( y , / , x ) ( c X d + 4 ) ] = 

=T D + C (y, ( D A " + 4 + » ) / ( 4 + c * d + 4 ) , X) = 

= (y, f d + c l ( d * c + 4 + v ) / ( 4 + cXd + 4 ) ( * * d + c + 4 ) ] , x ) = 

= (y, Td+C [ ( d * c + la+y)f('Xc+d + lb)(cxd + 4+b ) ] , « ) = 

= (y, T c + d [ / rAT c + d + 4)J ,» ) = T c + d (y, / , x). 
Noticing that for / G B(c + a,c + b) we have 

r iB(f) = t c (0 , / ,0 ) = ( 0 , r / , 0 ) = / B ( t c / ) , 

it follows easily that Tc 4 = 4 and | c CXC = I c . 
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We prove now that = is a flow congruence. Suppose (y, / , x) = (z, g, w) in 
J(B)(c + a, c + 6), i.e. there exist aa-morphisms k € Ba(y,z) and j £ Ba(w,x) 
such that / = (/c+a + k)g{j + Ie+b), and we notice that 

Te (y, f , X) = (y, r [(/c+a + k)g(j + Ic+b)('Xe + Ib)}, x) = 

= (y, (/« + k)(r I g C X c + /„)])( ; + Ib), x) = r (*, 9, «I»). 
It follows that J(B)/ = is a biflow and JB : B —• J(B)/ = is a biflow 

morphism. 
Proposition 6.5 If C is a biflow over an afi-ssmc and a ba-ssmc and if F : B —• 
C is a biflow morphism, then there exists a unique biflow, a/3-ssmc and ba-ssmc 
morphism H : J(B)/ =—• C, such that F = JB»H. 

Proof . Using the proof of proposition 6.4 and keeping the same notation, it is 
sufficient to prove that G is a flow morphism. 

Let (y, / , i ) e J{B)(c + a,c + b). Then we have: 

G(y,f,x) = t ' ( c ) [(/#•(.+.) + T , ( j f ) ) F ( / ) ( j / W + J , ( e + 6 , ) ] = 

= (IfH + TF(y)) TOH'WX'M + /F(6,)](±'W + IF(6)) = 

= (/f(.) + TFM)F(r If(xx< + + JF(b)) = 
= G(r(y,f,x)). 
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A note on intersections of isotone clones 

János Demetrovics and Lajos Rónyai * 

Abstract 
We show that for every k > 3 there exists two chains P¡, Pi over a base set 

A, |A| = k such that the only isotone functions Pi and Pi have in common are 
the constants and projections. This settles a question raised by Demetrovics, 
Miyakawa, Rosenberg, Simovici and Stojmenovié. We prove a related result 
which generalizes the observation that two 3-element chains over the same 
ground set always admit a nontrivial common order preserving operation. 

1 Introduction 
Let A be a nonempty finite set. An n-ary operation over A is a function from A n 

to A. 0 „ ( A ) denotes the set of all n-ary operations over A and we put O(A) = 
Un>oO„(i4). A set of operations C C 0 (A ) is a clone over A if it contains 
the projections and is closed under arbitrary superpositions (cf. Jablonskii [J58], 
Póschel. Kaluznin [PK79], Szendrei [SZ86]). The set of all clones over A is denoted 
by L(A). L(A) is a partially ordered set with respect to inclusion and is closed 
under intersection. Clearly the set KA of all projections and constant operations 
form a clone over A. 

Let P =< A, <> be a partial order (a poset for short) on A. We say that an 
operation / e On(A) preserves P if xx < yj, x2 < y2,..., xn < yn implies that 
f(xi,x2l...,xn) < f[yi,y2,...,y„), for every xityi e A. In this case / is called 
an isotone function (with respect to P). It is easy to see that 

Pol(P) = { / € 0 (A) ; / preserves P } 

is a clone over A and Pol{P) D KA. In [DMRSS90J Demetrovics, Miyakawa, 
Rosenberg, Simovici and Stojmenovid studied intersections of clones of the form 
Pol(P). In the context of semirigid relations they proved that if |A| > 7 or J Aj = 6 
then there exists two posets Pi,P2 over A for which we have Pol(Pi) H Pol(P2) = 
KA. Also, they constructed four chains Qi , Qi, Qs, QA over A for which the clones 
Pol(Qi) intersect in KA. The objective of this note is to improve the latter result. 
For |AÍ > 3 we exhibit two chains Pi,P2 over A with the property Pol(Pi) n 
Pol(P2) = KA (Theorem A). It is easy to see that any two chains over a 3-element 
set admit a common order preserving function. This observation is generalized in 
Theorem B. We show for a large class of posets P that any two isomorphic copies 
of P over the same ground set have a common order preserving operation. This 
class, besides the 3-element chain, includes the diamond and the pentagon. The 
note is concluded with a problem for further research. 

'Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Victor Hugo 
u. 18-22. H-11S2 Hungary. Research partially supported by OTKA Grant 2581. 
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2 The results 
Recall that a pair of elements o < 6 of a poset P forms a cover if there is no c 6 P 
such that a < c < b. In this case we say also that b is an upper cover of a and a 
is a lower cover of b. A poset P is bounded if there exist x,y 6 P such that for 
every z 6 P we have i < z < y. In the sequel we shall use the following result (cf. 
[LP84], [P84]). 

Lemma 1 Let |A| > 2 and C be a clone over A. Then C = KA if and only if 
CnOi{A) = KA n O x ( A ) . 

In simple terms, Lemma 1 states that a clone C is KA exactly when the unary 
fuctions in C are the constants and the identity function. For fc > 0 let A* denote 
the set { 0 , 1 , . . . * ; - 1}. 

Theorem A . For every integer k U S there exists two chains Pi, P2 on Ak such 
that Poi(Px) n PoI(P2) = KAk. 

Proof . We give first the definitions of Pi and Pi by specifying the covers in the 
respective orders: 

Px\ 0 < 1 < 2 < . . . < * ; — 2 < f c — 1. 

In the definition of P2, we distinguish two cases, corresponding to the parity of k. 
If k — 2m then we put 

P2: 2m — 2 < 2m — 4 < . . . < 2 < 0 < 2m — 1 < 2m — 3 < . . . < 3 < 1. 

If fc = 2m + 1 then we set 

P2: 2m — 2 < 2m — 4 < . . . < 2 < 2m < 0 < 2m — 1 < 2m — 3 < . . . < 3 < 1. 

In other words, Pi is the standard ordering of Ak, while in P2 we have first 
the even integers from the interval [0, k — l] in a decreasing order (with respect 
to the standard ordering) followed by the odd numbers listed decreasingly again, 
provided that k is even. If *; is odd then a little perturbation is introduced: k — 1 
is placed between 2 and 0 rather than to the beginning of the sequence. This is 
possible because k > 3 and therefore 2 ^ 2m. 

As for the proof, let / € Pol(Pi) n Pol(P2) be a nontrivial unary function (i.e. 
/ is not constant and not the identical function on Afc). Chains have no nontrivial 
automorphisms, therefore there exists o ^ 6 6 Ak such that / ( a ) = f(b). Using that 
/ € Pol(Pi), we can assume that b = a + 1, hence a and b have different parities. 
Now from / 6 Pol(P2) we infer that / (0) = f(k-1) if A: is even and / (0 ) = / ( f c - 2 ) 
if *: is odd. Switching back to Pi we obtain that / (0) = / (1) = ••• = / ( £ - 1) for 
k even. In this case the proof is finished. For k odd the same argument gives that 
flO) = fll) = / (2 ) = • • • = f(k-2). From the relations 2 < 2m < 0 in P2 we infer 
/ (0) = / (2m) = / (2 ) and conclude that / is a constant. The proof is complete. 

• 
The unary functions over A2 are the identity function and the constants. If Pi 

and P2 are chains over A3 then an easy argument shows that Pol(Px) D Pol(P21 
is nontrivial. Next we prove a generalization of this observation. A finite bounded 
poset has the cover property if every element, except possibly the least and the 
greatest elements, has either a unique lower cover or a unique upper cover. We argue 
that there are many posets having the cover property. In fact, if P is an arbitrary 
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bounded poset then if we replace every z E P (except possibliy the greatest and 
the least elements of P) by a two-element chain then the resulting poset will have 
the cover property. 

Theorem B. Let P be a bounded poset on the finite base set A. Let 0,1 € A denote 
the least and the greatest elements of P. Suppose that there is an element a £ P 
such that 0 < a and a < 1 are covers and that the poset P \ { a } has the cover 
property. Let Q be an other poset on the base set A isomorphic to P. Then Pol(P) 
and Pol(Q) have a nontriviai intersection, i.e. Pol(Pi) n Poi(P2) D KA-

Proo f . Let <j> •. A —* A denote the map establishing an isomorphism phi : P —* Q 
and put b = <t>(a). Observe first that an arbitary map / : P —* P which is the 
identical map on P \ { a } is actually an order preserving map of P. For this reason 
if b = o then for the map g : A —• A defined as p(a) = 1 and g(y) = y if y a 
we have g E Pol(P) n Pol(Q). We can henceforth assume that a ^ b. If b £ {0 ,1} 
then we can easily construct a nontivial function h E Pol(P) n Pol(Q) as follows. 
As P\ {a } has the cover property, b E P has either a unique upper cover in P or 
a unique lower cover in P. We shall assume that c E P is a unique upper cover of 
6 in P (the other case can be treated in exactly the same way). Now set h(b) = c 
and h(z) = z if z E A \ {6}. From the fact that c is a unique upper cover of b in 
P \ { a } an therefore in P, we obtain that h E Pol(P). By our first observation we 
have h E Pol(Q) as well. 

We are left with four cases to consider: a ^ 6, b E {0 ,1 } and (by symme-
try) a E (0(0), (^(1)}. In each case we shall define a nontriviai unary function 
h E Pol(P) n Pol(Q) , 
ii) If 6 = 0 and a = ¿(0) then we set h(a) = h(b) = a and h(y) = 1 if y g { a , i } . 
(ii) Analogously, if b = 1 and a = ^>(1) then we set h(a) = h{b) = a and h(y) = 0 if 
y {a, fc}. 
(iii) If b = 0 and o = ^(1) then we set h(a) = h(b) = a and h(y) = 1 if y £ (a, b}. 
(iv) Analogously, if b = 1 and a = <£(0) then we put h(a) = h(b) = a and h[y) = 0 
if y & 

In all cases we have \Im(h) \ = 2 therefore h neither is constant nor is the identity 
function on A. The easy verification of the fact that h is an isotone function with 
respect to both P and Q is left to the reader. 

• 
Corol lary C . Let P and Q be two posets on A& isomorphic to the pentagon 

ii.e. the poset on Ag defined by the covers 0 < 1 < 2 < 3 and 0 < 4 < 3 ) . Then 
}ol(P) and Pol(Q) have a nontriviai intersection. 

• 
Example . In contrast to Corollary C, consider the posets R and S over the 

base set Ag defined by covers as follows: 

R : 0 < 1 < 2 < 3 and 0 < 4 < 5 < 3. 

5 : 1 < 3 < 0 < 5 and 1 < 4 < 2 < 5. 
Note that R is obtained from the pentagon by inserting a new element between 4 
and 3. Clearly R and S are isomorphic posets. We show that Pol(R) and Pol(S) 
have a trivial intersection, i.e. Pol(R) n Pol(S) = • 

To this end, let / e Pol(R) n Pol(S) be a unary function. We consider first the 
case when / ( 0 ) / 0 or / (3 ) ^ 3. We claim that in this case \Im(f)\ < 2. Indeed, 
/ € Pol{R) implies then that Im(f) is bounded in R and is consequently a subset 
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of one of the following four sets: {0,1,2}, {0,4,5}, {1 ,2,3} and {3,4,5} . On the 
other hand, I m ( f ) is a bounded poset with respect to 5 as well. As neither of 
the above four subsets of Ae form a bounded subposet of S, the claim follows. If 
/ is not a constant then we have |/>t»(/)| = 2 and / (0 ) / / (3) . Now an inspection 
of S reveals that f(l) = / (3 } and / (5) = / (0) . Using again that / 6 Pol(R) we 
obtain that / (2 ) = / (3 ) and / (4) = / (5) . The latter implies in S that / (2 ) = / (5) , 
showing that / is a constant, a contradiction. 

PYom now on we can assume that f(0) = 0 and / (3 ) = 3. Now / S Pol(S) 
implies that / (5 ) e {0,5} and / (1) 6 {1,3} . But / (5) = 0 would imply in R that 
/ (4) = 0 which in S leads to fl2) = 0. The latter in R implies / (1 ) = 0 which 
in S leads to the contradictory / (3) = 0. A similar argument switching back and 
forth between R and S shows that f( 1) = 1. At this point we have / ( t ) = t for 
i € {0,1.3,5> and (from R) / (4) € {0,4,5} . Here / (4 ) £ {0 ,5} would give (in S) 
that / (2 ) € (0,5} , which contradicts the relation 

(*) / ( 2 ) G { 1 , 2 , 3 } 

obtained from R. We infer that / (4) = 4 and this gives in S that / (2 ) & {2 ,4 ,5} . 
This together with (*) implies that / (2) = 2, i.e. / is the identity function of Ae. 
This proves the statement. 

Motivated by our considerations we propose the follwing open research prob-
lem. 
Problem. Find a characterization of the (bounded) posets P = < A, <p > for 
which there exists a poset Q = < A, <Q> such that P and Q are isomorphic and 
Pol(P) n Pol(Q) = KA. 
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