
Volume 9 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor: J. Csirik (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), W. Brauer (Germany), L. Budach
(Germany), R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France), J.
Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet (The Netherlands), Z . Esik
(Hungary), J. Gruska (Czechoslovakia), H. Jürgensen (Canada), L. Lovász (Hungary),
Á. Makay (Hungary), A. Prékopa (Hungary), A. Salomaa (Finland), L. Varga (Hungary)

Szeged, 1990

Information for authors: Acta Cybernetica publishes only original papers in English in the field of
computer sciences. Review papers are accepted only exceptionally. Manuscripts should be sent in
triplicate to one of the Editors. The manuscript must be typed double-spaced on one side of the paper
only. For the form of references, see one of the articles previously published in the journal. A list
of special symbols should be supplied by the authors.

Editor-in-Chief: F. Gécseg
A. József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

Managing Editor: J. Csirik
A. József University
Department of Applied Computer Science
Szeged
Árpád tér 2.
H-6720 Hungary

Board of Editors:

M . Arató
University of Debrecen
Department of Mathematics
Debrecen
P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Jersey 07030
USA

W . Brauer
Institut für Informatik
der T U München
D-8000 München 2.
Postfach 202420
Germany

L. Budach
A d W der D D R
Forschungsbereich Mathematik
und Informatik
Rudower Chaussee 5
Berlin-Adlershof
Germany

R. G. Bukharaev
Kazan State University
Lenin str. 2.
420012 Kazan
USSR

H. Blinke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Länggass strasse 51
CH-3012 Bern
Switzerland

B. Courcelle
Université de Bordeaux I
Mathématiques et Informatique
351, cours de la Liberation
33405 TALENCE Cedex
France

J. Demetrovics
M T A S ZT A K I
Budapest
P.O. Box 63
H-1502 Hungary

B. Dömölki
SZKI
Budapest
Donáti u. 35—45.
H-1015 Hungary

J. Engelfriet
Rijksuniversiteit te Leiden
Subfaculteit der
Wiskunde & Informatica
Postbus 9512
2300 R A LEIDEN
The Netherlands

Z . Ésik
A . József University
Department of Computer
Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Technical
Cybernetics
Slovak Academy of Science
Dúbravska 9
Bratislava 84237
Czechoslovakia

H. Jiirgensen
The University of Western
Ontario
Department of Computer
Science
Middlesex College
London N 6 A 5B7
Canada

L. Lovász
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

Ä. Makay
A . József University
Kalmár Laboratory of
Cybernetics
Szeged
Árpád tér 2.
H-6720 Hungary

A. Prékopa
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland

L. Varga
Eötvös University
Budapest
Bogdánfy u. 10/B
H-1117 Hungary

Acta Cybernetica. Tom. 9, Fasc. 4, Szeged, 1990

Recognizable sets of finite bilabelled transition
systems

A. Arnold
Laboratoire d'Informatique *

Université Bordeaux I

Abstract

In this note we propose a definition of a notion of automaton recognizing
finite bilabelled transition systems, i.e. finite directed graphs with labels
attached to both vertices and edges. The family of recognizable sets is a
boolean algebra. Moreover every recognizable set contains the images and
the inverse images of each of its element under surjective homomorphisms.

1 Introduction

Recognizable sets of finite words and of finite trees are defined by mean of
automata: a recognizable set consists in all the elements recognized by such an
automaton. Since words are special kinds of trees, the notion of tree automaton
is an extension of the notion of word automaton. But trees are special kinds of
directed acyclic graphs (dags, for short) and indeed a notion of dag automaton was
recently introduced [3], which is an extension of the notion of tree automaton.

Since dags are special kinds of graphs, one can think of a notion of graph
automaton which is an extension of the notion of dag automaton. However there is
a major distinction between dags and graphs: when an automaton reads in a dag it
goes from vertices to vertices along the directed edges, and, because of acyclicity, it
never reads in twice the same vertex; therefore it is possible to assign a unique state
of the automaton to every newly read in vertex according to the states assigned
to previous vertices as specified by the transition function of the automaton. For
graphs, the situation is different, since a vertex can be read in several times and then
the state assigned to a vertex can change during the computation of the automaton.

But it is possible to interpret the results of Buchi on infinite words [4j, and of
Rabin on infinite trees [8], as an intuitive support to the thesis that there is a close
connection between the notion of recogniz ability and the notion of definability by
some monadic second order logic (see for instance [5]). Therefore one can investigate
for a characterization of the set of graphs which axe models of a given monadic
second order formula in terms of automata.

'Unité de Recherche associée au Centre National de la Recherche Scientifique n° 1304

333

334 A. Arnold

Since Branching Time Temporal Logics as well as the ¿»-calculus [6] are special
cases of monadic second order logics which are used to express properties of pro-
cesses, and since processes are usually represented by finite transition systems, one
can expect to get a notion of automaton which recognizes those transition systems
satisfying some given temporal properties. Indeed, the /¿-calculus already gives a
precious hint on what a graph automaton could be: when computing the value
of a formula over a graph, the boolean value of each subformula is computed at
every vertex of the graph; hence one can see every vector of boolean values of these
subformulas as a possible state of the automaton. This set of states is naturally
ordered by a partial order. This led us to consider as the set of states of a graph
automaton a finite partially ordered set. Provided this set has a minimal element
and the transition function is monotonic, one can define a computation of such an
automaton in the following way: initially the minimal state is assigned to every
vertex; due to the monotonicity of the transition function, when the state assigned
to a vertex has to change it can only increase; when the states assigned to the
vertices cannot be increased, the computation ends. In other words the assigment
reached at the end of the computation is the least fixed-point of some mapping
associated with the transition function. Let us remark that in the case of infinite
trees, a run is sometimes defined as an assigment of states to nodes which satisfies
some relations determined by the transition relation of the automaton.

In the first part we consider the simple case of complete deterministic bilabelled
transition systems. They are defined as a set of vertices with a label attached
to each vertex and with a mapping from the set of vertices into itself associated
with each element of some alphabet. We define our notion of automaton in this
simple case. In the second part, we consider the more general case where, with
each element of the alphabet is associated a mapping from the set of vertices into
its powerset. In the third part we define the product of automata and in then
we define the acceptance criteria for these automata and give some properties of
recognizable sets: the family of recognizable sets is a boolean algebra and each
recognizable set is closed under surjective homomorphisms and inverse surjective
homomorphisms. Therefore, every recognizable set is a union of fibers, where a
fiber is a set of inverse surjective homomorphic images of one bilabelled transition
system, and we show that a fiber is a recognizable set. The automata previously
defined are deterministic and the sets they recognized are called "deterministically
recognizable"; we define also "nondeterministically recognizable sets" as beeing the
projections of deterministically recognizable ones.

This note consists mainly in definitions although some elementary open ques-
tions remain to be answered. But the main question raised by this definition of
recognizable sets is the following: it is well known that, in the cases of words and
of trees, there exist special kinds of grammars (the regular grammars) which ge-
nerates exactly the recognizable sets; thus, among the large number of kinds of
graphs grammars already introduced in the litterature, do there exist some kinds
of them which can generate exactly the determistically or non deterministically
recognizable sets of bilabelled transition systems. 1

2 A simple case
2.1 Complete deterministic bilabelled transition systems
A complete deterministic bilabelled transition system over an alphabet A and a set
L of labels is a tuple S =< V, 7, A > where

- V is a finite set of vertices,

Recognizable sets of finite bilabelled transition systems 335

- 7 is a mapping from AX V into V; 7(0, v) is the unique vertex of V which is
reachable from v by an edge labelled by a,

- A is a mapping from V into L.

2.2 Deterministic cdbts automata
A deterministic cdbts automaton is a tuple S =< A,L,Q, qo, 6 > where

- A is an alphabet and £ is a set of labels,
- Q is a finite partially ordered set of states, and qo is its minimal element,

- 6, the transition function, is a monotonic mapping from L x QA, ordered
componentwise, into Q.

Given a cdbts S =< V, 7, A > over A and L and a deterministic automaton A =
< A, L,Q,qo,S > , the set A of assignments is the ordered set Qv, the minimal
element of which is {90 The mapping 6 is extended into a monotonic mapping
6$ from A into A defined as follows:

Let a be an element of A = Qv; let t; be an element of V; its environment
under a is the tuple env|(v) = < A(t>),0(7(01, t>)),.. . ,a(-f(an , v)) >, where A =
{01,. . . , a „ } , which is an element of L X QA and 5(envJ(v)) is an element of Q.
Then 5s (a) is the element of A defined by 6$ (a)(v) = i (env| (u)).

Obviously the mapping 6s is monotononic, and since A has a minimal element,
6s has a least fixed point in A which will be denoted by ¡16$.

The following example mainly shows in which sense deterministic word auto-
mata are a special kind of cdbts automata. This construction can easily be extended
to bottom-up deterministic tree automata.

Example 1. Let us consider a usual deterministic word automaton A over an
alphabet L with Q as a set of states.

With a word u = /1. . .ln we associate the cdbts Su over a single-letter alphabet
and with L U {h } as set of labels defined as follows:

- the set of vertices is {0 ,1 , . . . , n},
- there is an edge from i to t — 1 (with 0—1 = 0)
- 0 is labelled with b, and t, for 1 < i < n is labelled with ¡¿,
Then we define a cdbts automaton over a single-letter alphabet and the set of

labels L U {I-} by
- the set of states is Q U { ± } , where X is less than any other element,
- the transition function is defined by

— 9) is the initial state of Q, for every q in Q U {X } ,
— 6(1, _L) =_L for every I in L,
— 6 (I, q) is the state obtained by applying the transition function of the

deterministic word automaton to I € L and q&Q.

It is easy to see that in the assignment which is the least fixed point of , the
initial state of A is assigned to the vertex 0 and the state reached by A reading
l\... and starting in the initial state is assigned to the vertex i. •

336 A. Arnold

2.3 Homomorphisms of cdbts
Let Si = < V i , 7 i ,A i > and S2 = < V2,12>^2 > be two cdbts. An homomorphism
from Si into $2 is a mapping h : Vi — • Vj such that h(71 (a ,«)) = 72(01 h{v)) and
Ai(t>) = A 2 (M f)) -

If A =< A, L, Q, go, S > is a cdbts automaton over A and L, let n&sl and (16$,
be the least fixed points of Sst and 8$,.

For every assignment f) in Qv*, ¡3 o h, defined by

0oh{v) = P{h{v))

is an assignment in QVl. In particular we have:

L e m m a 2.1 If h is a homomorphism from Si into S2, and if f) is an assignment
in Qv*, then for any v in Vi,

e n vSa (Mw)) = envj°' l(t;)

P r o o f By definition of env we have

envSj(Mw)) =< Hh[v)),P('12{ai,h(v))),...,^2(an,h(v))) >

and
envf°h = < \1(v),p(h(11{auv))),...,{}(h{'n(an,v))) >

Since h is an homomorphism, the two right-hand sides of these equations are equal,
hence the result. •

It follows

L e m m a 2.2 If h, is an homomorphism from Si into S2, and if ¡3 is an assignment
in QVl, then

6Sl(P°h) = 6S,(P)oh

P r o o f For any v in Vi we have

6Sl(P°h)(v)=e nvf^H

and
6Si (0) O h(v) = 6s, (/9)(fc(«)) = env* (*(„))

and the result immediately follows from Lemma 2.1 •

Then we get

T h e o r e m 2.1 If h is an homomorphism from Si into S2, then

fiSSl = fiSs2 o h

Recognizable sets of finite bilabelled transition systems 337

Proof Let us denote by J.*, for k = 1, 2 the least mapping in QVk which associates
the minimal element qo of Q with every vertex v of V*.

a, the least fixed point of S$1, is the limit of the increasing sequence (a{)¿>o
defined by ao =-Li and a¿+i = Ssl (a¿). Similarly, /3, the least fixed point of S¡,, is
the limit of the increasing sequence (/9»)»>o defined by fio =J-2 and fii+i — 8s3 (&)•

We prove by induction that a¿ = # o h.
Obviously

fio o h =J_2 oh =-Li= ao
and, by Lemma 2.2,

ft+1 oh = 6s,[Pi)oh = 6Sl№ o h)
which is equal, by induction hypothesis, to

¿Si (<*•) = a«+i
•

3 A more general case
We want to extend the previous definition of automata to the case of non determi-
nistic bilabelled transition systems (bts). In this case "i(a,v) is no longer a single
vertice, but a set (possibly empty) of vertices. Hence the following definition:

3.1 Non deterministic bilabelled transition systems
A non deterministic bilabelled transition system over an alphabet A and a set L of
labels is a tuple S =< V, 7, A > where

- V is a finite set of vertices,
- 7 is a mapping from A x V into p(V); 7(0, v) is the set of vertices of V which

are reachable from v by an edge labelled by a,
- A is a mapping from V into L.

3.2 The powerset of states
If Q is a partially ordered set of states with a minimal element ± , we can still define
the image of a set of vertices under an assignment in Qv, but, for the mapping
S being monotonic we need some partial order on p{Q)- We choose to use the so
called Egli-Milner preorder [7] defined by

X C Y iff Vx € X, 3y 6 Y : x < y
and Vy e Y, 3x G X : x < y.

This preorder has the following properties:
Proposition 3.1

• The empty set is not comparable with any non empty set.

• The set { J L } is less than any non empty set.

• If a and P are two assignments in Qv, and if U is a set of vertices, then
ct<P implies a(U) C p(U)

338 A. Arnold

3.3 Deterministic bts automata
A deterministic bts automaton is a tuple S =< A, L, Q, qo, 6 > where

- A is an alphabet and £ is a set of labels,

- Q is a finite partially ordered set of states, and qo is its minimal element,
p(Q) being ordered by the Egli-Milner preorder,

- 6, the transition function, is a monotonic mapping from L x p(Q)A, ordered
componentwise, into Q.

Given a bts 5 = < V, 7, A > over A and L and a deterministic automaton A =
< A, L,Q,qo,6 > , the set A of assignments is the ordered set Qv, the minimal
element of which is {io}V ' - The mapping 8 is extended into a monotonic mapping
6s from A into A defined as in the previous case, where the notion of environment
is modified to take into account the fact that the bilabelled transition system S is
no longer deterministic:

Let a be an element of A = Qv; let v be an element of V\ its environment under
a is the tuple envj («) = < A(t>), a{i(ai, t i)) , . . . , a.(~)(an, t>)) > , which is an element
of L x p(Q)A and 5(env| (v)) is an element of Q. Then 6s (a) is the element of A
defined by ¿5(a)(v) = 6(envf (u)).

Obviously the mapping 6s is monotononic, and since A has a minimal element,
6s has a least fixed point in A which will be denoted by /¿¿5.

3.4 Homomorphisms of bts
Let 5i = < Vi, 7i, Ai > and S2 ' T ' * " v " 1 * 1 * '

72(0, h(v)) are equal and Ai(w) = A2 .
This definition of an homomorpnism is related to the notion of bisimulation

of transition systems [ll: two transition systems (all vertices of which having the
same label) are in the Disimulation relation if and only if they have a common
image under two surjectives homomorphisms.

It is clear from the definitions of homomorphisms and of environments that the
Lemma 2.1 remains true (its proof does not change) and also the Lemma 2.2 and
the Theorem 2.1.

Theorem 3.1 If h is an homomorphism from Si into S?, then

3.5 Other extensions
The value of the transition function 6 of an automaton at some vertex v of a
transition system S under an assignment a depends on the environment of v under
a, which consists in the label of v and the image under a of some sets of vertices
associated with v. One can imagine others transition functions which depend on
larger environments of a vertex. Here we present two such extensions. In the first
one 6 take into account the state assigned to the vertex and we show that this
extension is not more powerful. In the second one we put in the environment of v
under a the sets 7 - 1 (o , t;), equal to G 7(0, u)}. If one considers bts automata
as bottom-up automata because states are propagated back along the edges (the

from Si into $2 is a mapping

fi6Sl = n6Sl o h

Recognizable sets of finite bilabelled transition systems 339

state of v depends on the states of 7(0, v)), then top-down automata are those where
only the sets 7 " 1 (a, v) are in the environments, instead of the sets 7(a, t>), and, when N

both are in the environment, we get something like a bidirectional automaton.

3.5.1 Vertices need not to be in their environment.

Here we assume that the transition function of an automaton is a monotonic map-
ping from Q X L x p(Q)A, ordered componentwise, into Q. Then ¿5 (a) is the
element of A defined by «s (<*)(«) = 6(a(v),envs(t>)).

Let us define the mapping 6* from L x p(Q)A into Q by:
6*(I, Xai,..., Xan) is the limit of the sequence (?,)»<0 defined by

• 90 is the least element of Q,

• 9i+i = S(qi,l,Xai,...,XaJ.

This sequence is increasing and we have

6*(l,Xait.. .,-XcJ = 6 (6* (I, Xai,. ..,Xan),l,Xait.. .,XaJ

Let a and ¡3 be the least fixed points of 6$ and of Sg. Then we can show that
a = /3.

Prom the definitions of 5J, 6s, and by the previous equality, we have

m = ¿I (£)(«)
= tf*(envfW)
= Bvf(u)),envf(«))
= *(0(«»),envf(«))

and then a is less than p.
Conversely, let us define ¡3 as the limit of the increasing sequence (A)»<o with

Po =-L and /3i+1 = 8$ (Pi). We prove by induction that Pi is less than a.
Obviously, Po is less than a.
Since Pi+i = 6$ (Pi), since, by induction hypothesis, Pi is less than a, and since
is monotonic, we get

Pi+i <S*s(a)
and it remains to prove:

For any v we have
i| (o) (»)=^ (envg (v))

and let 6*(envç(v)) be the limit of the increasing sequence (?,)«<o with qo = ± and
1 = 6(qi, envj(v)). We prove by induction that g» < a(v)> hence the result.
qo is less than a(u). Let us assume that qi is less than a. Then Çj+i =

S(qi,envj(v)), and since 6 is monotonic, < 6(a(v), env|(f)). But
5(a(u),env2(t;)) = 6s(a)(v) = a(w), which ends the proof.

340 A. Arnold

a b b

a b

Figure 1.

3.5.2 Bidirectional automata

Let us consider the two following cdbts pictured in figure 1 with {a, 6} as set of
labels and a single-letter alphabet.

Let us consider the set Q — {go, 9i, 92} with 90 < 91 < 92, and the function 6
from {a, 6} x p(Q) x fp(Q) inti Q, where the second argument of 6 corresponds to
7 - 1 and the third one to 7, defined by:

6(a,X,Y) = q0,VX,YCQ
¿ (M ? o } , y) = VF C Q

S(b,X,Y) = q2>VX,YCQ,XjL{qo}

Then, on the first bts of the figure 1, the assigment a which is the least fixed
point of 5 is

a (l) = q0

a(2) = q i

a(3) = q2

and for the second one, the least assignment p is

№ • qo
№ = 92

On the other hand, the mapping which sends 1 on 4 and 2 and 3 on 5 is a surjective
bts homomorphism, and because of Theorem 2.1, the least assigment a and y9 of a
"bottom-up"deterministic bts automaton should satisfy a (l) = /9(4) and a(2) =
a(3) = /9(5), which shows up that bidirectional bts automata are more powerful
than bottom-up bts automata.

Recognizable sets of finite bilabelled transition systems 341

4 Products of deterministic bts automata
Let Ai = < A,L,Qi,ii,Si > and A2 = < A, L, Q2>*2i $2 >, where

SuLx p(Qi)A —» Qi

for i = 1,2, be two deterministic bts automata over the alphabet A and the labels
L.

The product A = AI x A2 of AI and A2 is the deterministic bts automaton
< A, L, Q, i, 8 > with

Q = QI x g 2 ,

t =< ilt%2 >,

6 :Lx p(QI x Q2)A —• QI x Q2 defined by '
8(1 1 Pai) • • • 1 Pan) —^ Si (I, »1 (P«x),.... Tl(PaJ) , 62H, 1*2 (Pa,) , T2(P„ J) >

where is the canonical projection of Q1 x Q2 onto Q,-.
Indeed, it is straightforward from its definition that 8 is monotonic because it

is very easy to prove that if P E P', P, P' C x Q2, then 7r,(P) C N(P')-

Let us consider a bts S =< V, 7, A >. If a is an assigment in (Qi x Q2)V, it can
be seen as the product ai X c*2 of the assignments a; in Q̂ f defined by ai x 0:2(u) =
< ai (v) ,a2(f) > . It follows:

Ss[oc) = ¿iS(<*i) x i 2 s ("2)

and the least fixed point n&s of 8 is equal to the product /¿¿15 X fi82s of the least
fixed points of 6\ 5 and 62 s •

Theorem 4.1 If 8 = 81 x 62 then ¡x8s = p8iS x /¿52 j

5 Acceptance criterion
In order to have a notion of recognizable set of bts we have to define an accep-
tance criterion for the bts automata. The criterion we choose is such that boolean
combinations of recognizable sets are still recognizable, which is a very natural
assumption.

5.1 Definitions
Let A =< A,L, Q,%,8 > be a bts automaton. An acceptance criterion for A is a
set 7 of subsets of Q.

Given a bts S =< V, 7, A > and the least fixed point fi6s in Qv of 8, we say that
S is accepted by the pair < A, 7 > iff /¿5$ (V) is an element of 7. A recognizable
set is the set of all bts accepted by some pair < A, 7 >.

5.2 Properties of recognizable sets
Let B(A, L) the set of all bts over the alphabet A and the labels L.

342 A. Arnold

The following property is a straightforward consequence of the definitions:

Lemma 5.1 If R is a subset of B(A,L) recognized by the pair < A, 7 > then its
complement is recognized by the pair < A, p(Q) — 7 >.

Let us consider two bts automata Aj =< A, L, Q]t ij, 6j > for j = 1,2, and
two acceptance criteria 7j in p(Qj). Let us denote by Qu (resp. § n) the set of all
subsets F of Qi x Qi such that tti [F) € 7i or (resp. and) ^(F) £ 72 where Try is
the canonical projection of Qi X Q2 on Q} .

Lemma 5.2 A bts is accepted by the pair < Ai X A2, Qu > iff it is accepted by the
pair < A1, 7\ > or by the pair < A2, ?2 >•

A bts is accepted by the pair < Ai X Ai, $n > iff 13 accepted by the pair
< A1, 7\ > and by the pair < A2, 7i >•

Proof We consider only the first case; the second one is proved exactly the same
way.

From the definition of the product of automata we have (Theorem 4.1)

n6s = p6 l s x nS2s

Hence Ki(n6s(V)) = p6ij{V), and /16$ (V) belongs to (Ju iff M^is(^) belongs to 7\
or /¿62s (m belongs to J2- •

Theorem 5.1 The set of all recognizable subsets of B(A,L) is a boolean algebra.

Proo f By lemma 5.1, this set is closed under complement. By lemma 5.2 the
union and the intersection of the two subsets recognized by the pairs < Ai,7i >
and < A2, 72 > are recognized by the pairs < A\ X A2, $u > and < Ai X A2, 9n >•
•

A less usual property is:

Proposition 5.1 Let h : Si —• 52 be a surjective homomorphism of bts. Then Si
is accepted by the pair < A, 7 > iff $2 is accepted by this pair.

Proof We already know, by Theorem 3.1 that /ifisj = /xij, oh. Hence /¿5$, (V) =
n6Sl(h(V)) = rfS2(V') = Q. •

6 Fibers
Let us define the following binary relation between bts: two bts tire in the relation
if they have a common homomorphic image. It can be proved (see Jl]) that this is
an equivalence relation and, moreover, that each equivalence class has a canonical
representant which is minimal in the following sense: it is an homomorphic image
of every bts in its equivalence class. Therefore we call fiber such an equivalence
class. From proposition 5.1 every recognizable set is a union of fibers. Here we
prove that every fiber is recognizable.

Let S =< V, A > be a bts. Let us define, for every vertex v and for every
natural number n the bts T(v, n), which is indeed a tree, as follows:

• T{v, 0) is a single vertex labelled by a special symbol, say ± ,

Recognizable sets of finite bilabelled transition systems 343

• T(v, n+1) is the disjoint union of all T(v', n) for all v' in [JaeA 7(a, t>) together
with a new vertex t>o labelled by A(v) and, for any letter a in A, a set of edges
labelled by a from «0 to every T(v', n), for v' in 7(0, w).

For short, T(v, n + 1) can be written as A(t>)(|Jo€il U»'ei(o,») 0 " T(v >>n))-
The set of all such T(v, n) can be ordered, by induction on n, by:

• T(v, 0) is less than anything,

• T(v, n + 1) is less than T(v', n' + 1), for n < n' iff

- A(v) = X(v'),
- for any a in A, the set {T(v", n) | v" € 7(a, w)} is less (with respect to the

induced Egli-Milner ordering) than the set {T(u", n') | v" e 7(0, «')}.

Lemma 6.1 If T(v, n + 1) = T(v', n + 1), then T(v, n) = T(v', n).

Proof The proof is by induction on n.
•If T(v, 1) = t(v', 1), then obviously T(v, 0) = T(v', 0) = ± .

•If T (v ,n+2) = T(v',n+ 2), then A(v) = A(«') and for any a, {T(v", n + 1) | v" e
7(a, w)} = {T(v", n+1) | v" € 7(a, w')}. Then for any u G 7(0, v), (resp. € 7(0, w'))
there exists « ' € 7(a, w') (resp. € 7 (0,«)) such that T(u, n + 1) = T (u ' , n + 1).
By induction hypothesis, T(u, n) = T(u', n); hence {T(v", n) | v" e 7(0, v)} =
{T{v", n) I v" S 7 (a, v')} and T{v, n + 1) = T(v', n + 1) . •

Then we define the following family of equivalence relations between the vertices
of a bts.

vt- v' iff T(w,i) = T(v',i)

By the previous lemma we get

*+i / » / v ~ v => v ~ v

Let ki be the number of classes of We have

• 1 < A;» < |V̂ |, where |VJ is the number of elements of V;

• ki < ki+i;

• if ki — ki+i then ~ = , i 1 = ' i J for every j > 1.

This last point can be easily proved in the following way: since 'i-1 is included
in if they have the same number of classes, they are equal. Now let us assume
that ~ = n i 1 . T(v, n + 2) can be written as

A H (U U « - 2 V . » + !)) ,
a€A v'ei(a,v)

344 A. Arnold

and T(u, n + 2) as

A(u)(|J U « - r i « 1 , » + !)) •
aBA o'€7(O,B)

If they are equal, it means that A(t>) = A(u) and that for every o, if v1 € 7(0, u),
there is some u' €E 7(0, u) (and conversely) such that T(v', n + 1) = T(u', n + 1),
hence T(t/, n) = T(u', n) and T[v, n + l) = T(u, n+ 1).

Thus we get the following lemma:

Lemma 6.2

Let us define ~ to be ~ and let us denote by [v] the equivalence class of v for
and for any subset V of V, by [V] the set {[«] | v € V'}. We can define the

quotient bts $ / ~ = < [V], 7'', A'" > of S in the following way:

• A'([v]) = A(v); this is independent on the choice of v in [v] because of the
very definition of

• 7'(o, [w]) = [7(0, t>)|; this is also independent on the choice of v because v ~ v'

implies v '^ii1 v', hence T(v, \V\ + l) = T(v', \V\ -f l) ; it follows that
{ T W , |V|) I e 7(0,«)} = (T(v",|F|) I v" e 7(a,«/)} , hence [7(0,»)] =

«'Ji-
lt follows from this definition that 5 / ~ is the image of S under a surjective

homomorphism, from which we derive the lemma:

Lemma 6.3 If S is minimal, then S = S/ and this implies that v v' =>
T{vt\V\)?T(v',\V\).

Now let us consider a minimal bts $. Let us define the finite set Q as beeing the
set of all (tree-shaped) transition systems obtained by deleting some subtrees in
some T(v, jV^) and replacing them by a vertex labelled by _L. This set is obviously
ordered and contains {T(v, n) | v € V, n < |V|} as an ordered subset. Let us define
the following bts automaton A =< A, L, Q U {a } , ± , 5 > where Q is defined as
above, a is a new state greater than any other state and where S is defined by

S(l,Xai,...,Xan) = t

where r is defined as follows:
•first, let t' be

i (U U «•»)>
a£A ueX„

•second, replace all subtrees of r' at depth greater than \V\ by _L, getting r",
•then if r " € Q then r = r" otherwise r = a.

It is easy to see that 5 is increasing.
Finally let us define the acceptance condition as consisting only of the set F =

{T(v, |V|) | v € V) which is obviously included in Q.

Recognizable sets of finite bilabelled transition systems 345

Let now ¡16$ the least fixed point of the transition function 6 over S. Then it
can be shown that fi6s(v) = T(v, |V|): clearly all the states assigned to v during
the computation of uS$ are less than T(v, |V|); let us assume that some (¿6$ (t>) is
strictly less than T(v, |V|); that means that in this state iiSs(v), ±&appears at a
depth less than |V | which implies by an inductive argument that fiSs(t/) =_L for
some v1 which is impossible because every vertex is assigned at least a tree whose
root is labelled by the label of this vertex.

Thus S is accepted by the pair < A, {F} >.
Conversely, let us assume that some $' is also accepted by the pair < A, { F } >.

We have to show that 5 is a homomorphic image of S'.
Let at = fiSg. Let us define the mapping associating with a vertex v of S' a

vertex u of S such that a(u) = T(u, |V|); the result does not depend on the choice
of u since, S beeing minimal, by lemma 6.3, T(u, |V|) = T(u\ implies u = u'.
Moreover it is suriective since for every vertex v of S, there exists a vertex v' of
S' such that a(t / j = T(v, |V|). It remains to prove that this mapping is a bts
homomorphism, which is a straightforward consequence of the fact that a is a fixed
point of the transition function S and of the definition of 6.

7 N o i deterministic bts automata
The bts automata previously defined are deterministic in the sense that the transi-
tion relation S is indeed a function from L x p(Q)A into Q. If an automaton is non
deterministic, then 6 has to be one-to-many, but in this case it is difficult to define
a condition of monotonicity which guarantees the existence of a least fixed point.

A first approach to this problem is to consider that a non deterministic transi-
tion relation is not a one-to-many mapping but a set of functions: applying such a
transition relation consists in choosing one of the function in the set and applying
it. In this case, one has just to assume that each one of these functions is monoto-
nic. Such a point of view about non deterministic functions (sets of deterministic
functions rather than multivocal functions) has already been fruitfully applied to
the semantics of non deterministic recursive program schemes [2j. For the classical
cases (words, trees), a transition function can always be defined this way provided
two sets 7 and 7' of functions are considered equivalent if for every argument x
the two sets { / (x) | / 6 7} and {/(x) | / G 7'} are equal, which means that the
two sets define the same multivocal function.

This is probably not enough to guarantee the exixtence of a least fixed point:
each time a vertex is "visited* one has to apply one of the transition functions
appliable to this vertex; since it is not necessarily the same one which is chosen at
every visit, there is no reason for the value of the state assigned to this vertex only
increases. This problem disappears if, once one of the function appliable to some
vertex is chosen, at each further visit, this function will be chosen too. In this case
we are sure that a least fixed point will be reached.

But then, it is equivalent to add to each vertex another label, which indicates
which is the function to be applied at this vertex and, on such a transition system,
the automaton becomes deterministic. Therefore one can say that a set of bts is
non deterministically recognizable if it is the projection of a set recognized by a
(deterministic) bts automaton, where the projection of a bts is defined as follows:

A bts S = < V, 7, A > over A and L is a projection of S' = < V , 7', A' > over A
and L' if there exist a bijection ft between V' and V and a mapping p from L' in
L such that

o for every v in V, A'(/3(v)) = p(X(v));

346 A. Arnold

• for every v in V and for every a in A, ~f(a, P(v)) = v)).

In other words, S is obtained from S' by replacing the label of every vertex by its
image under p.

A n example Let us define the binary operator © which associates, with two bts,
their disjoint union. Let us extend this operator to sets of bts by

K © K' = {S © S' | S € K, S' € K'}.

It is easy to see that if K and K' are both recognizable by (deterministic) automata,
then K © K' is non deterministically recognizable:

• first of all, consider two isomorphic copies Ki and K2 of K and K', with
disjoints sets of vertex labels.

• Ki and K2 are still recognizable by two deterministic automata and one can
assume that they have disjoint sets of states.

• the "disjoint union" (the intuitive meaning of this notion is obvious) is still a
deterministic bts automaton and one can easily define an acceptance criterion
such that it recognizes Ki ©

Then if © i f ' is the projection of K\ © K2- Intuitively speaking the modifications
of the vertex labels of K and K' simply allows to select which automaton has to
run when visiting some vertex of K or K'.

On the other hand the disjoint union (in the sense defined above) of two de-
terministically recognizable sets is not necessarily deterministically recognizable.
Indeed, it seems probable that there exist examples of deterministically recogni-
zable sets, disjoint union of which is not. But it remains to find out such examples
and to show that their disjoint union is not deterministically recognizable, which
could be not so easy.

Also the family of nondeterministically recognizable sets need not to be a bo-
olean algebra: it is obviously closed under union but probably not under comple-
mentation, nor even under intersection. Here again counter-examples and proofs
have to be given and are presumably not immediate.

8 Recognizable sets and graph grammars
It is well known that in the cases of words and of trees, there exist some kinds
of grammars, the regular grammars, which generate exactly the recognizable sets
of words and of trees. The question is quite open for the case studied here: a lot
of different kinds of graph grammars have already been defined in the litterature;
do there exist some kinds of graph grammars which generate exactly the determi-
nistically and/or the nondeterministically recognizable sets of bilabelled transition
systems, and which, therefore, will be deserved to be named regular, as far as
the notion of recognizability defined in this paper can be considered as a correct
extension of the similar notion for words and trees.

References
[l] A. Arnold and A. Dicky. An algebraic characterization of transition system

equivalences. Technical Report 1-8603, Université de Bordeaux I, 1986.

Recognizable sets of finite bilabelled transition systems 347

[2] A. Arnold, P. Naudin, and M. Nivat. On semantics of non deterministic program
schemes. In M. Nivat and J. Reynolds, editors, Algebraic methods in semantics,
pages 1-33, Cambridge University Press, 1985.

[3] F. Bossut and B.Warin. Rationalité et reconnaissabilité dans des graphes. PhD
thesis, Université de Lille, 1986.

[4] J. R. Bûchi. On a decision method in restricted second order arithmetic. In
E. Nagl, editor, Logic, Methodology, and Philosophy of Science, pages 1-11,
Stanford Univ. Press, 1960.

[5] B. Courcelle. Some applications of logic of universal algebra, and of category
theory to the theory of graph transformations. Bull. EATCS, 36:161-218, oc-
tober 1988.

[6] D. Kozen. Results on the propositional /¿-calculus. Theoretical Comput. Sci.,
27:333-354, 1983.

[7] G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5:452-487,
1976.

[8] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc., 141:1-35, 1969.

(Received September 25, 1989)

Acta Cybernetica. Tom. 9. Fasc. 4. Szeged, 1990

A note on axiomatizing flowchart schemes

V. E. Cazanescu * Gh. §tefanescu*

Abstract
A biflow is an equationally presented algebraic structure which completely

characterizes flowchart schemes from the algebraic point of view. - Usually
it is presented using summation, composition, (left or right) feedbackation,
identities, and block transpositions. In the present paper we give a new
presentation for the biflow structure, without making use of composition and
block transpositions, but using an extended feedbackation.

1 Introduction
The axiomatization of flowchart schemes is a basic step toward an algebraic theory
of computation (see [CS87b], for example). A series of papers [CU82 & CG84],
[BE851, [St86b], [Ba87] and [CS87a & 88b] has lead to an algebraic structure,
called billow, which completely characterizes flowchart schemes from the algebraic
point of view. This structure uses a new looping operation, called feedbackation
(introduced in [St86al), which is in some cases better than iteration or repetition,
cf. [St86b], [CS88a].

The biflow structure has been introduced in [St86b], without axiomatizing bi-
jections. The bijections were axiomatized in [Ba87] and [CS87a] leading to the
actual presentation for the biflow structure.

A usual flowchart scheme is built up from some atomic schemes connected by
arrows. Note that a natural structure of biflow may be given on the collection of
the sets of arrows used to connect atomic elements in flowchart schemes. The main
interest in the biflow structure comes from the following theorem [CS88b, Theorem
8.2] (also presented in Section 4 of [CS87b]):

"Flowchart schemes have a universal property similar to that of poly-
nomials, i.e. the flowchart schemes obtained using elements in a biflow
T, as connections, and elements in a double-ranked set X, as atomic
schemes, form the biflow freely generated by adding X to T."

Hence in our theory of program schemes the biflow of flowchart schemes have the
same role as the ring of polynomials in classical algebra. In other words the axioms
which define the biflow structure give a complete axiomatization for the concrete

'Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest,
ROMANIA

* Institute of Mathematics, Romanian Academy of Sciences, Bd. Pacii 220, 79622
Bucharest, ROMANIA

349

о

350 V. Е. Cazanescu and Gb. §tefanescu

Table 1: Axioms Bl-16 define a biflow, while Bl-5, B6a,b,c, B7a, B8-16 define a
flow.

Bl f • (g • h) = (f • g) • h
52 la / = / = / •
53 f + (g + h) = (f + g) + h
54 Io + / = / = / + Io
55 la + Ifc = I<jb

Вв {f + f') {g + g') = f g+f' g' Вва (/ + h.) • (g + J) = f • g + h. <f
566 (/ + / ') • (1ъ + gO = / • 1ь + / ' • ^
Вбс (U + /) (aXb+Id) = U a X b + f ld

Bl cXa(f + g)bXd = g+f B7a cXa • (f + I*) • bXc = 1« + /
for / : a—• b,g : с —• d for / : a —• 6

BS aX° = la

B9 a X ь = (aXb + Ic) • (lb + a X е)
5 Ю / i / T e = ((/ + Ia) ?)T a

J3U / Г g =(f (g +1»)) Г
в 12 f + g t a = (/ + g) Ta

B13 (/ • (Id +<• x 6)) тЬ о= ((Ic Xb) • f) Tai>

514 / t i b = / t b t a

515 I„ Io
516 ° X a t ° = I a

flowchart schemes in the context of Manysorted Equational Logic. An element in
an abstract biflow may be regarded as an abstract flowchart scheme.

A comparison between feedbackation, Elgot's itération and Kleene's repetition
is given in (CS88a). As a by-product there are given certain axiom systems for
defining the concept of "biflow over an algebraic theory", in terms of iteration, and
the concept of "biflow over a matrix theory", in terms of repetition.

The aim of this paper is to give an axiom system for defining the biflow structure,
without making use of composition and block transpositions, but using an extended
feedbackation, i.e. we allow a feedback to connect an arbitrary output with an
arbitrary, compatible input. (In the previous papers we have used only the right
and the left feedbackation.) Consequently the operations we use in this paper are:
summation, (extended) feedbackation, and identities.

The inspiration for the present note came from a reading of Parrow's axioma-
tization [Pa87] for a certain kind of nets, called synchronization flow networks.
A comparison between the present axiom system for biflow and Parrow's axiom
system is given [CS89].

* * *

Let (Af, + , 0) be a free monoid. We agree to omit the writing of " + " , that is
we write, for example, ab insted of a + 6. The letters a, b, c, d, e, u, v, w will denote
elements of M.

Definition 1 An M-biflow (resp. M-flow) B is an abstract structure given by:

- a family of sets (5 (o , 6)}a,b€M;

A note on axiomatizing flowchart schemes 351

Table 2: These axioms define a BIFLOW, while the subset of all the axioms denoted
by S.. or F.. define a FLOW

51 f + (g + h) = (f + g) + h
S2 / + Io = / 52° / = Io + /

S3 la + Ifc = I«6
^ f /

FHh f ta(uu)6— f ta(u)<,fctaM6 IY)7i° f fMwWM«)«1— f rV0 J <c(uv)d~ J 'c(u)vd'c(v)d r U 0 ' l<i«(u)c I d(«)c J ld(«u)c

^ / t:((S + » = (/ + F 1 ° ^+f) *+/ t\t
p„ r >.a(u)(wc .̂ab(v)c r >.aub(v)c .̂a(u)6c
' £<1 J lo'(u)6'oc' lo'b'(u)c'— J lo'ub'(u)c'la'(«)6'c'
* J Ia'u6'(u)c' la'(u)6'c'— * ' a'(«)b'uc' I a'6'(u)c'

(I- + /) t S j $ = / FV f = (f + la)fb((:]o

Mo (! « + /) T°H6o=/ FZ°0 / = (/ + I0)to((°„))a

« i . rs| : is=io

P (f + 9) t & g = (g + f) t i t

- two kinds of constants:
Identities L, G B(a, a) for a G M and
Block Transpositions a X b G B(ab, ba) for a, b G M;

- three operations:
Summation +:B(a, b) X B(c, d) —• Blac, bd) for a, 6, c, d G M,
Composition • : B[a, b) x Bjffc, c) —• B(a, c) for a, b, c G M, and
(Right) Feedbackation t°: d(ba, ca.) B(b, c) for a,b,c€M

and fulfilling axioms Bl-16 (resp. Bl-5, B6a,b,c, B7a and B8-16) in Table l1. •
We declare that feedbackation has the strongest binding power, then composi-

tion, then summation. For instance, / • g + f • g1 means (f • g) + (/ ' • </), while
/ + g f ° means / + (g f °) . The sign of composition " • * is usually omitted.

In an M-(bi)flow B, defined as above, one may define an extended feedbackation
a<»(«)(> u
1lc(u)<i D y

/ €(u)d= K 1« + 6 X") • / • (Io + u x d)] T- for / G B(aub, cud). (l) '

Definition 2 Let us say that B is an M-BIFLOW (resp. M-FLOW) if it is given
by a family of sets {B(a, 6)}a,6€M, a summation, identities, and an

Extended Feedbackation Tc("jd: B(aub, cud) —+ B(ab, cd) for a, b,c,d,uG M

and fulfilling the axioms in Table £ (resp. all the axioms in Table 2 denoted by
strings starting with letter "S" or "F"). •

'The algebra of representations of £-flowcharts over Pfn in [CS87a] is an
example of flow which is not a biflow (provided E / 0).

352 V. E. Caa an esc u and Gh. §tefanescu

Consequently an M-BIFLOW is an AT-FLOW which fulfills axiom (P).
In an M-(BI)FLOW B one may define a composition "o° by

fog =(f + g) for / G B(a, b), g G B(b, c), (2)

block transpositions a X b by

• X ^ P a + fc + U T S S K for a, 6 G M (3)

and a (right) feedbackation _ | a by

/ t a = / t « B S for /GB(6a , C a) . (4)

The aim of this note is to prove that the concept of M-biflow coincides with the
concept of M-BIFLOW, i.e. the above definitions give two different presentations
of the same algebraic structure. As a by-product we also get the equivalence of the
concepts of M-flow and AT-FLOW.

More precisely, let us consider the following transformations
B = (B, + , T°, Ia,0Xb) a(B) = (B, +, la),

where ftcfujd ^ fchat defined in B by formula (1) and

C = IC> + . T"(")d. la) 0(C) = (C, +, o, r , la, aX 6)

where "X6, and are those defined in C by formulas (2), (3), (4), respectively.
We shall prove the following theorem.

Theorem 1 (i) I/B is an M-biflow, then a(B) is an M-BIFLOW.

(ii) IfC is an M-BIFLOW, then /3(C) is an M-biflow.

(iii) If B is an M-biflow then 0(a(B)) = B, and if C is an M-BIFLOW then
a(0(C)) = C.

The proof of this theorem is based on the analogous theorem for flows which is
stated below.

. Theorem 2 (i) If B is an M-flow, then a(B) is an M-FLOW.

(ii) IfC is an M-FLOW, then /9(C) is an M-flow.

(iii) If B is an M-flow then P(a(B)) = B , and if C is an M-FLOW then
«00(C)) = C.

The difficult part of the proof is the passing from (Bl) FLOWS to (bi) flows. In
order to make the proof easier to understand we insert a section with deductions
of certain identities that are valid in a (BI)FLOW.

In the sequal we shall use two types of duality, briefly presented here.
Duality. We denote by o° the opposite of the word a G M. Let t G B(a, b) be

a term written with sum, extended feedback and identities.
The "-dual term t° G B(a°,b°) is obtained by using the following inductive

procedure:

A note on axiomatizing flowchart schemes 353

the dual term of a variable x € B(a, b) is another variable i ° € B(a°, b°), and

(/ + g)° = 90 + (/ = / ° t S ^ S ; (la)0 = ^

The o -¿«a/ term tQ G 5(6, o) is obtained by using the rules:
the o-dual term of a variable x € 5(o , 6) is another variable x0 € 5(6, a), and

(/ + 9)O = / . + 3o; (/ t S) o = /o t ® ; (Ia)o = la

Lemma 1 ("-duality). If E is an identity which is valid in every M-FLOW, then
E° is an identity which is valid in every M-FLOW.

(o-duality) If E is an identity which is valid in every M-FLOW, then E0 is
an identity which is valid in every M-FLOW.

Proof. It is enough to see that the "-dual (resp. 0-dual) identity corresponding
to a FLOW-axiom in Table 2 is also in Table 2, and the rules for deduction of valid
identities (i.e. Manysorted Equational Logic) are invariant under "-duality (resp.
under o-duality). •

Clearly, for every E we have (E°)0 = (E0)°-, in the sequel we shall denote it
simply by E°. From Lemma 3 it follows that:

Corollary ("-duality). If E is an identity which is valid in every M-FLOW,
then El is an identity which is valid in every M- FLOW. •

In order to simplify the calculation we shall use the following convention.
Convention. The writing of 0, which denotes the neutral element of the un-

derlying monoid M, is usualy omitted.
If we are given two strings of letters, namely a = oo(ti,7(i))ai . . . an_i(u<7(nj)a„

and P = 6o(ui)6i . . .6„_i(u„)6„ where each letter denotes an element in M, if
moreover a : [n] —• [n]2 is a bijection and u i , . . . , un are all distinct letters, then
by we mean the multiple feedbackation computed, say, from right to left with
respect to p. (By axioms (F2a) & (F2b) the order in which the feedbacks are
computed is without importance.)For instance

J • (a)(u)b(v)c V - / lo(a)0(u)6(«)c) m e a n s J Iau6(«)c la(u)6c I (a)be '

This rule is ambiguous when some letters in u i , . . . , u n are equal. In that case
we use numbers to indicate the correct feedbacks (and not the order in which the
feedbacks are computed, which is without importance). For instance

f t (2 ,u)6 (l ,u)a f t (u)6ua t b (u)a
J ' (l,u)d(2,u)c m e a n s J I ud(u)c I (u)dc •

•
With this convention the axioms (FOb) and (F0b°), which are equivalent in the

presence of (F2a), may be easily written as / / •

Lemma 2 In the presence of (FO-2) the axioms (FS) & (FS are equivalent to
(FS0) & (FS

> 1 = {1,2 « }

354 V. E. Cazanescu and Gh. §tefanescu

Table 3: These identities are valid in a FLOW
^ (i o + m f i N / * / = (/ + 1 .) T :B°

d . + /) i ! " ^ / / = (/ + 1 .) n i i

™ d„+ /) tikiskj: - / / u + u T S : ; ^ : !
(= ^) (/ + Iu + 3) t ^ a r g ' i ^ (/ + 5) t ^ i for / : a - 6uc, g : vuu,d

FT (= F70)(g+f) C(ffba= (g+Iu+f) tfittltt {°Tf : a Cub>

&+/) (/+ U nil

Proof. Suppose (F3) ana (F 3°) hold. Then [FS°) may be proved as follows:

(/ + U t S r (b y then F W U + ((/ + L.) Tig, +U) T ($) TgS
= (Ia + / + U) Ttl^SH'ii,^ (Ia + / + U) T(a1^tS= (by F3o. then F3)f.

We have proved that
(x) (F3) & F3| F3°.

By applying J-duality to (x) it follows that (F3°)& (F3) = > F30. By applying
"-duality to (x) it follows that (F3°)k(F$ 0) => (F3), and by applying „-duality
to (x) it follows that (_F,30)&(ii'30) = • (F3°). •

Lemma 3 The identities in Table S are valid in a FLOW.

Proof. Proof of (F5):

(I- + /) T $ f = (by f a » , and F30)[U + ((I. + /) T ® 6 + U) t l g f 1 Tift"
_ (•[. / i T \ t^^2 '0^1 '^^)"6— fir J . f J . 1 1 t(ca)aba X I f(ab)ab
- IW + / + *ab) I c(l,a)(c)(2,a)(6) _ U1«« + / + M I co(ca) I c(ab)
=(by F30 and F3°) / .

Proof of (F6):

ft.+/) (by ^) (i b + + /) r i ^ j ^ i p C :
= 0 * + /) r + ' > (by F^ .

Proof of (F7):
({ - L l 4 . n\ t o(l , t t)w(2 ,u) io_ / , F f i o W / , T , , t \ t a(3 ,u)« (2 ,u)« ; (4 ,u)
(J + iu + 9) T 6 (i i U) c (2 ,u)d ~ I » y + 1« + + M T 6 (4 i U) c (2 , „) d (3 ,u)

= (/ + (r j i S S S i " *) T

= (by F6) (/ + (g + I u) r^ ; " ! " " 1) T ^
= (f + 9 + i u) (b y « •) (/ + 9) r ^ i ; •

Proof of (F8):

(1«.+/) t $ c b) = (f 5 ° H f t > + /) t S ? t c B a = + > + u T (S S a

= (lb + (/ + /a) T ^ C N (by F5)(f + Ia) .
The proof ekf the remaining identities in Table 3 may be obtained from these

ones by using "-duality, 0 - duality, or "-duality. •

A note on axiomatizing flowchart schemes 355

Proof of Theorem l.fi) (resp. of Theorem 2.(i)). Clearly the identities in Table
2 hold in the algebras of flowchart schemes (resp. of flowchart scheme representati-
ons), hence by Theorem 8.2 in [CS88b] (resp. by Theorem 2.b.5. in [CS87a]} they
hold in every biflow (resp. flow). Hence every biflow (resp. flow) is a BIFLOW
(resp. FLOW). Direct deductions are given in [CS89]. •

Lemma 4 The following identities hold in a FLOW.
(Tl) f o (I6 + cXd) = (/ + Ic) T^L for f : a - bed

(T1S) (Ic + /) № + h) o / for f : deb - a
(T2) f o (>X< + U) = (Ic + /) T $:) d for f : a - bed

(T2 °)(/ + Ic) fa[fc= (Lj + 0X5)0 / for f : deb - a
o and "X" are those defined by formulas (2) and (S), respectively; aXb :=bXa).

Proof. First we prove (Tl):
/ o (Ib + <x«) = (/ + w r { j%ll c c ld c= ((/ + M t & J L +1«) TSfclde
= (b y P 3 °) (/ + Ic) 4 V

For (T2) note that
/ o (*x< + I„) = (/ + hebd) t $ № b ? L = (by m f + Ua) t ^ i ^ L

= (by F5.Jft + (/ + I c M)

= ((Ic + / + Ic) tcb(2,c)d(l!c) t"(bdjbd
= (by F6° and i'5°)(Ic + /) t i ^ .

The other identities (Tl°) and (T2°) follows by using "-duality. •

Proof of Theorem 2. (ii). Let C = (C, +, T*((")d, la) be an M-FLOW. We have
to show that (C, +, o, la, aXb) is an M-flow, where "o" , B aXb n , and are
those defined in C by formulas (2), (3), and (4), respectively. That is, we have to
verify the validity of the axioms (Bl-5), (B6a,b,c), (B7a), (B8-16| in Table 1.

By using (Flj, (F1°), and (F2a) one may easily see that (Bl) is valid, and by
using (F3) and (F3 °) it follows that (B2) is valid. (B3-5) are common axioms. For
(B6a) suppose / : a —• b,g : b —• c and g' : b' —• c'. Then

(/ + M ° (9 + 91) = (/ + h. + 9 + g1) T " ^

= (by F3°)((f + lb.+g + 9') + W) itlil"

= (f+(i.+*+•+/«,) r & t : ! ^) t i e ' s '
= (by F6)(f + (, + g> + u o t S 3 - [) i\H{X)

= (((/ + 9) t(i,6J + •) + u - l T ^ ' i t r (by F3°)f °g + g' = fog + lb,og>.
A proof of (F6b) may be obtained from the above proof of (F6a) by using "-duality.

In order to prove the axioms for block transpositions we use the identities (Tl),
(Tl°) and (T2) in Lemma 6. For (B6c) note that

(U + /) o («X" + Id) = (by T2)(I6 + Iab + /) i ^ S
= W tfflt) + / = (by F8)IabQ + / = "X* + / = Iab o «X" + / o Id.

For (B7a) note that

356 V. E. Cazanescu and Gh. §tefanescu

CX° o (/ + 1«) o 6XC = (by T1) 'X° o (/ + Ic + M
= (by r i ;) (i e + (/ + u) t (b cg) r { $ l = ((i c + /) + / c b) t $ $ = (b y ^ 0) 1 0 + / .

The proof of (B8) is obvious. For (B9) note that
(»X" + Ie) O (fc + °XC) = (by Tl) («X b + U + U) t ^ l

= (U . + lea) (by F 7) W , " X K
The right feedback - •ft" is defined by formula (4), i.e.

/ r= f T^J for / = ba —» ca-

Axiom (BIO) is valid. Indeed, if / : d —• b and g : ba —• ca, then
((/ + la) ° 9) r= (f + h + 9) t f f i i S) ^ (/ + (I- + 4 t M c ^) t®

= (by #•«)(/ + T'S}) Tg,*2= / <» U -iT).
The proof of (Bl l) is similar. Axiom (B12) is a particular case of (Fl°) . For (B13)
suppose / : cba —• dab. Then

(fo (u +• X")) (by Tl)(f + la) (by F6°)f rd\%\%,
and similarly

(f t , + • X") O f) rb= (by T2°)(f + Ifc) t J S g i (by FV)f T ^ J f f i .
hence (B13) is valid. Axiom (B14) is a particular case of (FOfc0) and (B15) is (F4).
For (B16) note that
"X* r = Iaaa T ^ i t ^ ^ ^ (la. + la) T ^ g ^ (by F6°)Iaa (by F3)Ia.

•
Proof of Theorem 2. (Hi). Suppose B = (B, + , •, |a , Ia,aX6) is an M-flow. The

new composition "o" in p(a(B)) acts as follows
fog=(f + g) [(Ia+°X") (/ + g) • (Io+bX<=)] f
= ((/ + g) • 6XC) r 6= / • [(lb + g) • 6 x c] r 6 = / • (6Xb • (g + I«,)) f
= / • (5X6 f) -9 = f • h • 9 = f • g.

Hence / o g = f g.
The new block transposition °Xb in /9(a(B)) is
° x " = u , [(u + o x °) • u , • (io + a x t a) i t°
= « X ^ t ° = [(aX"-|-Ia) (l6+aX0)] t ° = aX 6 (Ib+aX° r) = °X6-(Ifc + I«) = °Xb .

Hence a X b = °Xb .
The new right feedbackation - fia in /3(a(B)) acts as follows. For / : 60 —•

ca , / r = [(l6+°Xa) • / • (I ^ X 0)] t ° = / T° •
Hence . fta= . Ta.

Conversely, suppose C = (C, +, Ia) is an M-FLOW. The new extended
feedbackation in a(/9(C)) acts as follows. For / : aub —• cud

' /Ci„u))d=[(i<. + 6 x «) ° / o (i c + « x d)] r
= (by ri)[(ia + bxu) o (/ + iu) r
= (by T2°0){(f + Iu) +lul i ^ M ")

= (by F6°)U + Itt) t ^ t ^ (by F6°)f T .

Hence C f c ^ T i t * °

A note on axiomatizing flowchart schemes 357

Table 4: These axioms define a scalar BIFLOW, while the subset of all the axioms
denoted by SS.. or SF.. define a scalar FLOW

SSI f+[g+h) = (f + g)+h
SS2 / + M i = / SS2° / = 1. f i + /
SF1 f]) +g = (/ + g) Tj SFl° (g + f) = g + f Tj for g : c — - d

SF2a f T|:!f+11T|X1= / tlStJatlSiSx for / : asbtc a'sb'tc'

SF2b f t| j;f+at|S|ii- / t|i|i?t| j j f + 1 ^ / : asbtc — a'tb'sc'
SF3 (I l l + . . . I . . + /) T S + B T n i r " 1 " - t ? + 1 = / for/—a
SF31 f = (f+l.n+.. -+I.J tk°l+nTL0i+r_1 • • • tla|+1 for / : o —»<„...

SP (/ + g) i ^ - t L - l r - 1 . . . Ha | + 1= (g + /) T^J^n-i • • • T|6|+i
for / : a —• 3i ...sn,q : Si ...3n — » 6

It has to be noted that a biflow is a flow fulfilling (B7). Indeed, (B6) may be
proved by using (B7) as follows: if / ' : a' —• b' and g : b —• c, then

g + f = (by B7)bXa' (/' + g)bXc = (by B6a)bX"' (/' + I6)(Ifc, + g)b'Xc

= (by J37a)(L> + f)bXb' •»' Xb(g + I*) = (by S7a)(Ife + f'){g + I6,)
therefore if moreover / : a —• b and g1 : b' —• c', then

(/ + /')(* + if) = (by B6a)(f + L,.)(l6 + f')(g + Ib')(Ic + <f)
= (/ + Ia)(g + f')(Ic + if) = (by B6a){fg + / ')(Ic + if) = (by B6b)fg + / y .
Proof of Theorem 1. The proof of this theorem is based on Theorem 2 and we

shall use the notation in the above proof of Theorem 2. Suppose B is an M-biflow.
We still have to show that fulfils axiom (P). Indeed, if / : a —• b and
g : 6 —• c then

(/ + 9) <) i = [(Ia+°Xb)(/ + <7)(Io+bX<)] ((/ + < №)
= (by 57)(«X"(3 + /)) t "= [(Io+°X")(? + /) (Ic+6X0)] Tb= (g + f) •
(ii) Suppose C is an M-BIFLOW. We still have to show that axiom (B7) holds.

Indeed, if / : a —• 6 and g : c —• d then
c X a o(f + g)obXd=(by Tl and T1°)(IC + f + g + h)

= [(Ic + /) + (» + 16)] (b y + (Ic + /)] tSsgsy
= (by F3°)(g + lbc + f + lca) (, + (!* + / + U) t f t S) t f f i
= (by F50)(g + / + U) T^(ic0)= (by F3°)g + /. •
Since the monoid M is a free monoid 5*, feedbackation may be restricted to

letters. More precisely a
Scalar Extended Feedbackation is a family of operations
Ty: B(si. ..sm,ti ...tn) —• B(s i.. .Si_iSj+i. ..sm,t i . . . ty_i iy + i . . ,tn),
where s i , . . . , s m , i i , . . . , tn € S, t € [m], j e [n] are such that s; = tj.
The resulting axiom system is presented in Table 4. In this table the letters

s ant t range over S, while the others over S*, and |a| denotes the lenght of a
word a € S*. Axioms (SSl) and (SS2 & 552°) show the sum is associative with
neutral element I„ . Axioms (SF1 & Si 1 ! 0) show the feedback commutes with

358 V. E. Caz an esc u and Gh. §tefanescu

sum. Axioms (SF3 & SF3°) show identities behave in a natural way, and finally
axiom (SP) is a permutability axiom.

References
[Ba87] BARTHA M., A finite axiomatization of flowchart schemes, Acta Cy-

bernetica 8 (1987), 203-217.

[BEW80a] BLOOM S. L., ELGOT C. C. and WRIGHT J. B., Solution of the
iteration equation and extensions of the scalar iteration operation.
SI AM Journal of Computing, 9, 1(1980), 26-45.

[BE85] BLOOM S.L. AND ÉSIK Z., Axiomatizing schemes and their behavi-
ours, J. Comput. System Sci. 31 (1985), 375- 393.

[C G 8 4] CAZANESCU V.E. AND GRAMA S., "On the definition of M-
flowcharts", Preprint Series in Mathematics No. 56/1984; also in: An.
Univ. "Al. I. Cuza" Iasi, Mat XXXIII, 4 (1987), 311-320.

[CS87a] CAZANESCU V.E. AND STEFANESCU GH., » A Formal Repre-
sentation of Flowchart Schemes," Preprint Series in Mathematics No.
22/June 1987, INCREST, Bucharest; also in: An.Univ. Bucuresti,
Mat.-Inf. XXXVII, 2 (1988), 33-51.

[CS87b] CAZANESCU V.E. AND STEFANESCU GH., "Towards a New Al-
gebraic Foundation of Flowchart Scheme Theory," Preprint Series in
Mathematics No. 43/December 1987, INCREST, Bucharest; Funda-
menta Informaticae XIII (1990), 171-210.

[CS88a] CAZANESCU V.E. AND STEFANESCU GH., "Feedback, Iteration
and Repetition," Preprint Series in Mathematics No. 42/August 1988,
INCREST, Bucharest.

[CS88b] CAZANESCU V.E. AND STEFANESCU GH., "A Formal Repre-
sentation of Flowchart Schemes II," Preprint Series in Mathematics
No.60/November 1988, INCREST, Bucharest; also in: Stud. Cere.
Mat 41 (1989), 151-167.

[CS89] CAZANESCU V.E. AND STEFANESCU GH., "An axiom system for
biflow using summation, (extended) feedbackation, and identities",
Preprint Series in Mathematics No. 19/May 1989, INCREST, Bucha-
rest.

[CU82] CAZANESCU V.E. AND UNGUREANU C., " Again on advice on
structure compilers and proving them correct", Preprint Series in Mat-
hematics No. 75 November 1982, INCREST, Bucharest; published in
two parts in Rev. Roumaine Math. Pures Appl. 33 (1988), 561-573
and 34 (1989), 281-302.

[E175] ELGOT C.C., Monadic computation and iterative algebraic theories.
J. C. Shepherson, editor, Logic Colloquium 1973, Studies in Logic,
volume 80. North Holland, Amsterdam, 1975.

[Éb80] ÉSIK Z. Identities in iterative and rational theories. Computational
Linguistics and Computer Languages, 14(1980), 183-207.

A note on axiomatizing flowchart schemes 359

[Pa87] PARROW J., "Synchronisation flow algebra," Report ECS-LFCS-87-
35, Computer Science Department, University of Edinburgh, August
1987.

[St86a] STEFANESCU GH., An algebraic theory of flowchart schemes (exten-
ded abstract), in: Proceedings CAAP'86 (ed. P. Franchi-Zannettacci),
LNCS 214, Springer Verlag 1986, 60-73.

[St86b] STEFANESCU GH.," Feedback Theories (A Calculus for Isomorphism
Classes of Flowchart Schemes)," Preprint Series in Mathematics No.
24/April 1986, INCREST, Bucharest; Rev. Roumaine Math. Pures
Appl. Vol. 35, No. 1(1990), 73-79.

(Received October 17, 1989)

Acta Cybernetica, Tom. 9, Fasc. 4, Szeged, 1990

On the multidimensional vector bin packing

J. Csirik* J.B.G. Frenk M. Labbe* S. Zhang

Econometrisch Instituut, Erasmus Universiteit Rotterdam, P.O. Box
1738, 3000DR Rotterdam, the Netherlands

Abstract

The multidimensional vector bin packing problem consists in packing Tri-
dimensional items into a minimum number of m-dimensional bins with unit
capacity in each of the m dimensions in such a way that the sum of each
coordinate of the items received by any bin is not larger than one. We improve
the lower bound of the First-Fit-Decreasing heuristic when m > 5 and odd,
and prove that this heuristic is optimal when m = 2 if each item has at least
one coordinate larger than 1/2. Finally, if this last condition holds and m > 3,
we show that the problem remains NP-hard.

1 Introduction
In the multidimensional vector bin packing problem (MDVPP), we are given a list

L = (xi,x2,...,xn)

of n items, where the items are vectors of form

(si(a:<),s2(a;¿),...,sm(x<)), t = 1,2, . . . , n , •

with 0 < sy(zt-) < 1, j = 1,2, . . . ,m. Then, the problem is to pack the items
into a minimum number of bins, of unit capacity in each dimension, in such a way
that the vector sum of the items received by any bin does not exceed (l, 1 , . . . , 1).
Since this problem is a generalization of the classical one-dimensional bin packing
problem, it is clearly NP-hard.

Garey et al.[l) analyse some heuristics to find an approximate solution to
MDVPP. Specifically, they provide an exact worst-case bound for the First-Fit (FF)
heuristic, but only lower and upper bounds for a variant of the First-Fit-Decreasing
(FFD) method.

In this note, we improve Garey et al.'s lower bound. Then, for the special case
where each item has at least one coordinate larger than 1/2, we show that FFD is
optimal if m = 2 and that the problem remains NP-hard when m > 3.

* On leave from the Department of Computer Science, University of Szeged
" ^Fellow of the European Institute for Advanced Studies in Management, Brussels

361

362 J. Cairik, J.G.B. Frenk,№• Labbd and S. Zhang

2 Definitions and the lower bound for FFD
We denote the optimal number of bins for the list L = (i i , i2» • • • i xn) by OPT(L).
For a heuristic algorithm A, we denote the number of bins used when applying A
to L by A(L). Let

i^(Jfc) = max{A{L)/OPT{L) : OPT(L) = k}.

The asymptotic worst-case ratio of algorithm A is defined as

RA = lim sup RA (K).
fc—oo

We consider the following generalization of the one-dimensional FFD algorithm.
Generalized First-Fit-Decreasing heuristic (6 F F D)

Step 1 Reorder the list L — (xi, x2,..., xn) in such a way that

S m a x (z i) > S m w (l 2) > ' ' ' > S m a x (l f l) ,

where smax(ar) - maxJ=1 m 3j (i) .

Step 2 Apply the FF heuristic to the ordered list fas for the one-dimensional case
(cf.[iD)-

Garey et al. [l] prove that for this heuristic

For the special cases where 1 < m < 3, they obtain slightly better bounds. Speci-
fically, for m = 1, the exact ratio is 11/9, and for m = 2 or 3, the lower bound is
m + 11/60.

We now improve Garey et al.'s bound on RGFFD for m > 5 and odd.
Lemma 1 For m > 5 and odd,

RGFFD ^ M H -. -R-T —R. m + 2 m (m + l) (m + 2)

Proof . We use the following "bad" list (the first part is the same as given in
Graham et al. [l]). Let A; be an arbitrary positive integer which is a multiple of
m(m + l)(m + 2). The list L is composed of m regions, the items in region i occur
in L before the items in region t + 1, 1 < » < m. The items in region t are denoted
by

Xi, 1,11,21 • • •,xi,g(i)

where q(i) = (t + 1)(fc - l) for 1 < i < m, and q(m) = (m + 2)A;. Furthermore, let
0 < e < k~*. We define the item coordinates as follows.
For 1 < t < m,

if 1 < j < i(k - 1),

if i(k — 1) < j < q(i),

«+1 + et, hi i

i iet' .

On the multidimensional vector bin packing 363

where Uj = k - [^ J , t j j = j + 1 - t'(Jfc - 1) and

s, (xi j) = e/m2 for 1 < I < m, I ± i and 1 < j < g(t).

For the items of the last region,

si(xmJ) - e/(2 • m2) for 1 < I < m - 1 and 1 < j < q(m),

and

m + 1 + m (m + l) (m + 3) ^ + 2 » 1 - J - k

Sm[Xm,j) = <

m-1
2 '

1 i 1 t :r ¡.m—1 ^ <"
m + 2 ^ (m + l) (m + 2) (m + 3) m + 2 ' U K 2 ^ J ^ K

 2 '

. ^ + 3 + m (m + l ? (m + 3) » ~ ^ + 2 ' i f fc2^1 < J < 9 (m) .

So, specifically, items in the first region have the following sizes:
s(xi,i) = (1/2 + ke, e/m2 , e/m2,..., e/m2),
i (« i ,2) = (1/2 + (k - 1) • e, e/m2 , e / m 2 , . . . , e/m2),

*(zi,fc-i) = (1/2 + 2 • e, e/m2 , e / m 2 , . . . , e/m2),

s(xi,fc) = (1/2 - 2 • e, e/m2 , e / m 2 , . . . , e/m2),
«(*i,fc+i) = (1/2 - 3 • e, e/m2 , e / m 2 , . . . , e/m2),

s(si,2(fc-i)) = (1/2 - A: • e, e/m2 , e / m 2 , . . . , e/m2).
Accordingly, in the i-th region (2 < i < m) (the "big" coordinates are in the i-th
position):

s (x i , i) = a (x < i 2) = . . . = a(xi , i) =

= (e /m 2 , . . . , e /m2 , ^ - j - + ke, e / m 2 , . . . , e /m2) ,

s(Xt,i+l) = s(lj,,+2) = . . . = s(xj,2,') =

- (e /m 2 , . . . , e /m2 , ^ - j - + (A; - l)e, e / m 2 , . . . , e/m2) ,

s(x<,(fc-2).+l) = a(Xi,(fc_2)<+2) = • • • = 3(zi,(fc_i)i) =

= (e /m 2 , . . . , e/m2 , + 2e, e / m 2 , . . . , e /m2) ,
t + l

s(s,\(fc-i)i+i) = (e /m 2 , . . . , e/m2 , ^ - 2 • t • e, e / m 2 , . . . , e /m2) ,

364 J. Csirik, J.G.B. Freak, M. Labte and S. Zhang

s(*i,(fc-i)«'+2) = [s/m2 e/m2, ^ - 3 • t • e, e/m2,..., e/m2).

a(a:i,(fc-i)(.+i)) = {e/m2 e/m2, ^ - k i e , e/m2,..., e/m2).
When applying GFFD to our list L, we may also partition the set of bins used

into m subsets, each bin of subset t containing only items from region t of list L.
For 1 < % < m — 1, we have (k — 1) bins in subset *, the Z-th bin of them contains
exactly t items with Sj = ^ - + (£+1 —/)e and one item with Si = t(A:+l —i)e.
With these items, the bin is full in the t-th dimension. So, we use (m — l)(k — 1)
bins for the items in the (m — 1) first regions of L, and we can not pack items from
the later regions in these bins, even if their t-th coordinate is just e/m2.
Concerning the items in the m-th region, their "large" coordinate is the last one
and can be of three different types. It is easy to check that all of these items will
be packed in some bin together with other items, the "large" coordinate of which
being of the same type. Hence, we use k • m^/m bins for the items with large
coordinate of the first type, k/(m + l) bins for the items of the second type and

t !
when applying GFFD to £ is
k • m^-/[m + 2) for the third type. Consequently, the total number of bins used

(t - 1) (m - 1) + t . (1 + _ i _ _ m (m + ; ') (m + 2) l

On the other hand, the optimal packing uses at most k bins. To see this, we
provide the following packing with k bins. Each bin contains m + 2 items from the
last region, i.e. (m — 1)/2 items of the first type, one item of the second type and
(m + 3)/2 items of the third type. With these items, the sum of item sizes at each
bin is

,m + 2 m + 2 m + 2 .
I r t * ~2rrP~e' ~ £)•

Moreover, each bin contains items from each of the other regions. Specifically:

• The first bin contains the first t items from each region i (t < m), these are
the items with size = l / (t + l) + k • e.

• The last bin contains the ((A: — 1)» + l)-th item of each region t < m.

• Each remaining bin contains t + 1 items from each subset i, i.e. t items with
size Si = l /(* + 1) - t • e and one item with Si = l / (t + 1) +1 • (i - 1) • e (for
an appropriate t).

Note that for all bins and in each dimension, the capacity used by "large" coordina-
tes is never bigger than 1 — e so that we leave place enough for "small" coordinates.

In conclusion, for our list L,

» . „ („ • ,) + t (1 + _ l _ - m (m + i i) (m + 2)) 1

, 1 1 m — 1 = m-\ — ,
m + 2 m(m + l) (m + 2) k

On the multidimensional vector bin packing 365

which can be made arbitrarily close to
1 1

m + m + 2 m(m + l)(m + 2)

by choosing k large.
•

3 The special case
We study here the MDVPP for lists L = (xx , i2> • • • i XN) such that

Smaxfci) > 1 / 2 for i = 1, 2, . . . , n. (l)

A. When m = 2, we prove that GFFD is optimal. The idea behind this result
is that, in such a case, each bin can contain at most two items, a situation which
also occurs in the classical bin packing when all items have a size larger than 1/3
and this case is known to be polynomial.
Lemma 2 If m=2, then for all lists for which (l) holds, G¥¥D(L)=0¥T(L).
Proof . Assume that the elements in L are ranked by decreasing value of their
largest coordinate. Furthermore, let L = Li U L2 with L\ = (xi, X2,.. . , xp) and
¿2 = (yi ,y2 , - - - ,y q) such that sm a x(x,) = Si(xj), i = l , 2 , . . . , p and sm a x(y,) =
32 (y«01 * = 1| 2 , . . . , q. Without loss of generality, we may assume that L\C\L2 = 0.

Now, define a bipartitate graph G = (LI,L2, E) where (x,-, t/y) € E iff s*(xj) +
sfc(yy) < 1, k = 1,2. Since each bin can contain at most two elements (one from
¿ i and the other one from L2), the optimal packing of L corresponds to maximum
matching M* of G. Hence, to prove that GFFD is optimal, we shall show that
the matching M G F F D corresponding to the GFFD solution is optimal in G, i.e.
there exists no augmenting path with respect to M G F F D in G (see e.g. Papadimit-
riou and Steiglitz [3]). At the end of this proof, such a heuristic solution and its
corresponding matching are illustrated by an example.

To begin with, remark that if xt- e L% and y}- E L2 are both free vertices for
Mgffd, then (x,-, yA 4. E, for otherwise they would have been put together in a
bin when applying GFFD.

Now, assume, by contradiction, that there exists an alternating path with res-
pect to MGFFD- From the above remark, we know that such a path contains more
that one edge, i.e. at least three edges. Let

F = (x»I, yy, , Xi,, yy3 , . . ., yy,_!, Xi,, yy,}
be a minimal alternating path with respect to MGFFD- Hence, and yy, are free
vertices, (x^ .yy j € E\MG FFD for A; = 1,2,..., I and (x<i t+1 ,yyj € M G F F D for
k = 1,2,... ,1 — 1. (see Figure 1 in which the edges of M G F F D are indicated in
waved lines). Furthermore, we denote by iiK >- x;k the fact that Xih has been
considered before x^ when applying GFFD (i.e. 3i(x,\) > si(x,-fc)). The same
notation applies for items in L2.
Claim. Xifc+l >- nk and yik+l >• yik for k = 1 ,2 , . . . , i — 1.
Proof . By induction.

a) k = 1. From the definition of P, (x .^yy j E E \ M G F F D and (yy,,x,-,) E
MGFFD, i-e- GFFD put y}l and Xj, in the same bin. Since Xj, fits also with yy, in
a bin, this means that >- n , .

366 J. Csirik, J.G.B. Freak, M. Labbe and S. Zhang

Next, if yy, -< yy,, we have that

si (z f l) + si (yy,) < si (x f ,) + si (yy,),

since Xi, >- Xilt and the right size is bounded above by 1, since (x,-,,yy,) G E; and

S2(i<i) + s2(yy3) < s2) + s2(yyt),

since yy, -< yy,, and the right size is bounded above by 1, since (a:,-,, yy,) G E.
Hence yy, -< yy, implies that (z^, yy,) G E, which is impossible. Indeed, if

(^»UJ/JA) E MGFFD, then P is not minimal. If (in.yy,) G M G F F D > then P
contains a cycle. Consequently, yy, >- yy,.

b) Assume n > Xi, x,-, and yik_l > . . . > - yi7 >- yit. Since y}k_1

is not free and y]k_l > yJk_, has been matched before yyt_, when using GFFD.
Because both yyfc_, and yyfc_, could have been matched with , the item
with which yyk_, has been matched must be such that >- Xik_l.

Now, as in a), if y}k -< yJk_1, we have that

ai fan-i) + s i (y jJ ^ « l i ^ J + s i (yyJ,

since Xik >• Xik_l, and the right size is bounded above by 1, since (xik, y]k) G E;
and

S2 (Xik_ ,) + S2 (yyfc) < 32) + 32 (yJfc_ ,),

since y3k -< yyJk_l, and the right size is bounded above by 1, since , y ^ ^) G E.
Hence yyfc -< y]k_l implies that {xik_1,y]k) G E.

Then, if (^i/t.n yyj G E \ M Q F F D , P is not minimal and if (xt(t_,, y y j G
MqffDi M g f f d contains two edge incident to z,p_1, which is impossible. Hence,

This completes the proof of the claim.
Finally, we know that the free item yy, of P which is also in £2 is such that

yy, >- yy, _,. This is a contradiction, since, when applying GFFD, we considered it
before yy,_, and we did not matched it with , though it was possible.

On the multidimensional vector bin packing 367

example.

Example: Consider the following list

L = ((0.90,0.10), (0.80,0.30), (0.20,0.75), (0.40,0.70), (0.65,0.30),

(0.60,0.20), (0.05,0.55)).

When applying heuristic GFFD, we get GFFD(L)=5 and the corresponding bins
are

Bi = {(0.90,0.10) (0.05,0.55)},
5 2 = {(0.80,0.30)},
B3 = {(0.20,0.75) (0.60,0.20)},
BA = {(0.40,0.70)},
5 6 = {(0.65,0.30)}.

The graph associated with L is presented in Figure 2 where the edges of the maxi-
mum matching M Q F F D are indicated in waved lines.

B. When the dimension of the items in a list L is at least three, MDVPP remains
unfortunately NP-hard even if each item has at least one coordinate larger than
V2-

To see this, we first define the decision version of the 3-dimensional vector bin
packing problem for which condition (1) holds (we call it 3-DVPP with sm a x large.)
3 - D V P P with s m a x large (Pi)

INSTANCE: A finite set L of 3-dimensional nonnegative integer vectors

o, = (siioij.saiaij.aaioj)), t = l , 2 , . . . , n .

A positive integer bin capacity B such that max(si(ai), S2(°«)i «3(0»)) > 5 / 2 for
t = 1 ,2 , . . . , n, and a positive integer K.

QUESTION: Is there a partition of L into disjoint sets L\, L2,..., LK such that
Ea.6Lk < B for j = 1,2,3 and h= 1,2,..., K1

368 J- Csirik, J.G.B. Frenk, M. Labbi and S. Zhang

Lemma 8 S-DVPP with amax large is NP-complete.

Proof . Clearly, this problem belongs to NP. To prove it is NP-complete we show
that NUMERICAL S-DIMENSIONAL MATCHING (which is NP-complete, (cf.[2],
p.224)) reduces to a special case of our problem where n = 3m and K = m.

N U M E R I C A L S-DIMENSIONAL M A T C H I N G (P2)
INSTANCE: Three disjoint sets X, Y and Z, each containing m elements, a

nonnegative integer size c(a) for each element a € X U Y U Z, and a nonnegative
integer bound B.

QUESTION: Can XuYuZbe partitioned inte m disjoint sets Li, ¿2 Lm
such that each Li contains exactly one element from each set X, Y and Z such that
for t = 1 ,2 , . . . , m:

a€Li
We construct the instance of (Pi) based on the instance of (P2) in the following
way.

• For a € X, define si(o) = 25/3 , s2(o) = 0, and 33(o) = c(o)/2.
• For a e y , define si(a) = 0, s2(a) = 25 /3 , and s3(a) = c(a)/2.
• For a S Z, define s^a) = 0, a2(a) = 0, and s3(a) = 5 / 2 + c(a)/2.

Now, consider a nontrivial instance of (P2), i.e. where maxagxuyuz c(a) < B and
Eaexuyuz c (a) = m B • H e n c e . c(a)/2 < B/2 < B for a € X U Y U Z and the
reduced instance of (P2) is indeed an instance of (PI).

Assume now that the answer to the reduced instance is yes. Then, since each
item has at least one coordinate larger than 5 / 2 , each set Li, L2 Lm contains
at most three items, i.e. at most one from X, one from Y and one from Z. Further,
n = 3m implies that each set £t-,t = 1,2,. . .m contains exactly three items, say
H 6 X, yi € Y and Zi&Z. Furthermore, we know that

as(a:<) + 33(w) + «3(zi) < B for t = 1 ,2 , . . . , m. (2)
However,

£ „ («) = c(a)/2 + £ c(a)/2 + £ (5 / 2 + c(a)/2)
aeXUYUZ a€X a€Y a€Z

= - Y, c(a) + — \Z\= mB/2 + mB/2 = mB.
2 aeXUYUZ 2

In consequence, (2) must be satisfied as an equality, i.e.
B = s3{xi) + s3{yi) + s3(z,) = c(xi)/2 + c{yi)/2 + B/2 + c(z<)/2.

Hence, c(z,)+c(yj)+c(zj) = 5 . for t = 1 ,2 , . . . , m, and the partition Li, L2)..., Lm
also provides a yes answer to (P2).

Conversely, if a partition L\, L2,..., ¿m provides a yes answer to (P2), it follows
directly from the definition of s, (a), for t = 1,2,3 and a e X U Y U Z that this
partition also provides a yes answer to (PI) with n = 3m and K = m.

•
From Lemma 3, we can immediately conclude that MDVPP with at least one

coordinate larger that 1/2 is NP-hard for any m > 3.

On the multidimensional vector bin packing 369

References
[1] Garey, M.R., Graham, R.L., Johnson, D.S.: Resource Constrained Scheduling

as Generalized Bin Packing, J. Combinatorial Theory (A), 21(1976), 257-298.

[2] Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the
theory of NP-Completeness, Freeman, New York, 1979.

[3] Papadimitriu, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, New Jersey, 1982.

(Received April 15,1990)

Acta Cybernetica, Tom. 9, Fasc. 4, Szeged, 1990

Product hierarchies of automata and
homomorphic simulation

P. Domosi * Z. Esik tt

Abstract
A (/,-product is a network of automata such that each automaton is fed

back to at most t of the component automata. We show that the f.-hierachy
is proper with respect to homomorphic simulation.

For all notions and notations not defined here, see [2], [3] or [6]. An automaton
A = (A,X,6) is a finite automaton with state set A, input set X and transition
5 : A x X —• A. The transition is also used in the extended sense, i.e. as a function
6 : A x X* —• A where X* is the free monoid of all words over X.

Let A = Ai x . . . x A n (X , ip) be a general product (or g-product) of automata
A j = (Ay, Xj, 6y), j = 1 , . . . , n, n > 1. A function

7 : { 1 , . . . , n} —• 2Í1 »>

is a neighbourhood function of A if each feedback function ipj is independent of the
actual state of any component Ak with k Thus the concept of a general
product with a neighbourhood function is essentially the same as the automata
networks of [7]. A general product A with a neighbourhood function satisfying
card(7(7)) < » for all j = 1 , . . . , n, where t is a fixed positive integer, is referred to
a i/i-proauct, cf. [4]. An c*o — Vi-product is a ^¿-product which is also an cco-product
(i.e. loop-free product).

Let A = (A, X, S) and B = (B, Y, 6') be automata. We say that A homomorp-
hically simulates B if there are A' C A and mappings hi : A' —* B and h2 : Y —* X*
such that hi is onto, moreover, 5(a, h2(y)) € A' and

M«(o,My))) =«'(Mo).y)
for all a & A' and y € Y. The function h2 will be used also in the extended
sense, i.e. as a monoid homomorphism Y* —> X*. Thus A homomorphic ally
simulates B if and only if the transformation monoid corresponding to B is covered
by the transformation monoid corresponding to A, cf. [5]. If X = Y and B is a
homomorphic image of a subautomaton of A then B is homomorhpically realized
by A, cf. [6].

"L. Kossuth University, Mathematical Institute, Debrecen, Egyetem tér 1, H-4032
^A. József University, Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720
*This research of the second author was carried out with the assistance of the Alexander

von Humboldt Foundation.

371

372 P. Domosi and Z. £sik

Let K be a class of automata and let f) refer to one of the above particular cases
of the product. If an automaton A is homomorphically realized (simulated) by a
^-product of automata from K then we write A € HSP0(K) (A € HS*P0{K)).

Now let n > 1 be an integer and let C „ = (C„, { x } , with Cn = (0 , . . . , n— 1}
and Sn(i,x) = t + 1 mod n, for all i € Cn. Thus C „ is a counter with length
n. Let E = (£, {x, y},50) be an elevator, so that E = {0,1} , 6o(0,x) = 0 and
¿o(0, y) = ¿o(l, x) = M l , y) = 1- W e ^ t

K = {E } U {Cp|p > 1 is a prime}

and prove that there exists an automaton M € HSPao-Ui^l(K) which does not
belong to HS*PVi(K), where t > 1 is any fixed integer.

Let m be the product of the first t + 1 prime numbers. We define M =
(M, {x, t/}, <S') with M = { 0 , . . . , m} and

+ 1 mod m if j = 0 , . . . , m — 1
m if j = m

mod m if j = 1 , . . . , m — 1
if j = 0 or j = m.

Proof that M £ HS* PUi (K). Assume to the contrary that a i/,-product with
neighbourhood function 7

A = (A, X, S) = Ai x . . . x A„(A", <p)

of automata form K homomorphically simulates M . We may suppose that n is
minimal with this property, i.e., if B is a ¿/.--product of automata from K which
homomorphically simulates M, then the number of factors of B is at least n. Let
A' C A and let H\ : A' —* M, : {x, j/} —+ X* be mappings such that HI is onto
and

6'{hi{a),z) = h1{6{a,h2(z)))

for all a € A' and z = x,y, where it is assumed that 6(a,h2(z)) £ A'. We may
choose A' and the functions hi and h2 such that card(A') is minimal.

Let us partition A' as A' — AQ U Ai where A0 = H^1(M — {m}) and AI =
/ ^ (m) . If a € Ao and 6 € A' then, by the minimality of card(A'), there is a word
u € (x, j/}* with S(a, ̂ (u)) = 6. Therefore, if pry(oo) = 1 and Ay = E for some
j = 1 , . . . , n and oo 6 Ao, then pr}(a) = 1 for all a € A'. (Of course, pry denotes
the j'-th projection.) But then we can get rid of the j'-th component obtaining a 1/,-
product of n — 1 factors that homomorphically simulates M. Since this contradicts
the minimality of n we have pry (a) = 0 for all a £ Ao and j e (l n} with
Ay = E. By the construction of A and the minimality of card(A') it is easy to see
that for every o 6 Ai there exists j € (1 , . . . , n} with prj (a) = 1 and Ay = E.

Now let a €E / ^ (O) be a fixed state. We have 5(o,h2 (y)) G AI, so that
pr}(S(a, A2(y))) = 1 and Ay = E for some f e (l n}. Let -y(;) = { j l t . . .jt},
t < x. For s = 1 , . . . , t, define r, = p if Ay = C p and r, = 1 if Ay = E. Let
r be the product of the integers r,. It is clear that m is not a divisor of r.
Thus, for u = h2(x), 6(a,ur) = b € A^fa) w i t h 9 e { l , . . . , m - 1}. Since
pry.(6) = pr]t(a) for all s = 1, . . . ,£, it follows that pry(£(6,h2(y)}) = 1, which
contradicts S(b,h2(y)) € Ao-

Product hierarchies of automata and homomorphic simulation 373

Proof that M € HSPao-„i+1(K). For each j = 1,. . . ,» ' + 1, let py denote the
j-th prime number. We construct a n a o - i/<+i-product

A = Cpx x . . . x CP i + 1 x E({®, y}, <p)
with

<Pj(k1,...ki+uk,z) - | ^ | if k\ = . . . = fci+i = 0, j = i + 2 and z = y
otherwise.

It is straightforward to show that A maps homomorphically onto M.
Theorem 1 The i/,--hierarchy is proper with respect to both homomorphic simu-
lation and homomorphic realization. There exists a class K with the following
properties, where i > 1 is any integer:

(i) HSPVi(K) c HSPVi„(K),
(ii) HS*PVi(K) c HS'PVi+l(K),
(in) HSPao.Ui(K) C HSPao-„i+1(K),
(iv) HS*Pao-Ui(K) c HS*Pao.^(K).

Remarks. For the class K exhibited in the proof we even have HSPao(K) =
HSPg(K). Consequently

HSPVi(K) c HSPao[K) and HS*PVi(K) c HS*Pao{K)
hold, too. One might wish to modify the definition of homomorphic simulation by
requiring that only nonempty words occur in the range of function h2. Our result
holds with the same proof for this notion or homomorphic simulation, too. Part i)
has been already proved in [2] and part ii) in [1]. Nevertheless the class K given
above is considerably simpler than that in [1] or [2].

References
[1] Domosi, P., Products of automata and homomorphic simulation, Papers on

Automata and Languages, K. Marx Univ. of Economics, Dept. of Math., Bu-
dapest, submitted.

[2] Domosi, P., and £sik, Z., On the hierarchy of ¿/¿-products of automata, Acta
Cybernet., 8(1988), 253-257.

[3] Domosi, P., and £sik, Z., On homomorphic simulation of automata by ao-
products, Acta Cybernet., 8(1988), 315-323.

[4] Domosi, P. and Imreh, B., On j/,--products of automata, Acta Cybernet.,
6(1983), pp. 149-162.

[5] Eilenberg, S., Automata, Languages and Machines, vol. B, Academic Press,
New York, 1976.

[6] G^cseg, F., Products of Automata, Springer-Verlag, Berlin, 1986.
[7] Tchuente, M., Computation on finite networks of automata, in: C. Choffrut

(Ed.), Automata Networks, LNCS 316, Springer-Verlag, Berlin, 1986, 53-67.

(Received June 16, 1989)

Acta Cybernetica, Tom. 9, Fase. 4, Szeged, 1990

A note on the axiomatization of iteration
theories

Z. Esik*

Institut für Informatik
Technische Universität München

Arcisstr. 21, D-8000 München 2 Deutschland

Abstract

Iteration theories are a basic underlying structure in many investigations
in theoretical computer science. The paper, contains some remarks on the
aximatization of iteration theories.

Iteration theories were defined in [BEWl] and [BEW2] as the variety genera-
ted by pointed iterative theories, which are iterative theories with the operation
of iteration made totally defined in an essentially unique way, cf. [E]. Evidence
gathered since that time indicates that iteration theories are the basic underlying
stucture whenever one is interested in solving .fixed point equations (see [BÉs2],
[BÉs3], [BÉs4], [BÉs5], [BÉsT] and [St2] for some recent results). One axiomatiza-
tion of iteration theories was given in [Esl]. The purpose of the present note is to
present a "scalar axiomtization", one which involves as much as possible morphisms
1 —• p. An application of this axiomatization appears in [BÉs5]. We assume the
reader is familiar with algebraic theories as defined e.g. in [E], jBÉsl], or [Ésl]. A
preiteration theory is an algebraic theory with an operation of iteration subject to
no particular condition. Recall that iteration maps a morphism / : n —• n + p to
/ t : n - p .

1. Theorem [Ésll A preiteration theory is an iteration theory if and only if it
satisfies the following identities.
1.1. Left zero identity

(0„ © /) t = / , f : n - * p

"Permanent address: A. József University, Bolyai Institute, Szeged, Hungary. Research
supported by the Alexander von Humboldt Foundation.

375

376 Z. ikik

1.2. Right zero identity

(/ © 0 ,) t = / t © 0 „ / : n —» n + p
1.3. Dual pairing identity

</,?)t = (At.fo-ipeipMMfct.lp», f :n-*n + m + p, g.m-+n + m + p
where p = (Om © 1„, 1„ © Om) is the block transposition n + m —• m + n and

h. = / • (1„ © 0P) (g • (p © l p)) t , 0n © l p) : n n + p
1.4. Commutative identity

(lm • P • f • (pi © lp), • • •, mm • p • f • (pm © l p)) t = p • (/ • (p © l p)) t
where f:n—tm + p,p:m—*nis surjective base, and where each pi : m m is
base with p,- • p = p.

2. The above identities have a number of consequences. In particular, the
following identities hold in any iteration theory.
2.1. Fixed point identity

/ . < / t , l p) = / t , f : n ^ n + p

2.2. Pairing identity

</.»>* = </*•(**. lp),**), / : n - n + m + p, ? : m - n + m + p

where k = g • (/ t , l m + p)
2.3. Permutation identity

(p / (p " 1 ® l p)) t = P " / t , / : n —+ n + p
where p : n - » n i s a base permutation.

3. Remark The permutation identity is a special case of the commutative identity.
The fact that the fixed point identity is implied by the conditions 1.1-1.4 was only
recognized in [i)s3]. A stronger statement, following a suggestion of a referee, is
proved in Lemma 5 below. For the pairing identity we mention the following result.

4. Lemma Let T be a preiteration theory which satisfies the permutation identity.
Then the pairing identity holds in T if and only if the dual pairing identity holds.

Proof. We only prove that the dual pairing identity is implied by the pairing identity
and the permutation identity. Let f : n n + m + p, g:m—>n + m + p and, as
before, denote by p the block transposition n + m —* m + n. By the permutation
identity and the pairing identity we have

{f,g)] = (p p - M / . f f M p e i p M p - 1 ® ^)) 1

= P (P_1 • (f,g) -(p©ip))t

- p - (< 7 - (p © l p) , / ' (p © l p)) t

= p - U i r ^ i p j j t . ^ i ^ f c t)

= (^ . (f f - i p e i p H ^ ^ . i p) } ,

A note on the axiomatization of iteration theories 377

where

k = f • (p © 1 P) • ({g • (p © l p)) t , l „ + p)

= / • (l » ® O p , (0 - (p © l p)) t , O „ © l p) .

The proof is complete.

Besides that presented in Theorem 1, several equivalent axiomatizations of ite-
ration theories are known. The following results are taken from [Stl],[CSt] and
[6s2j.

5. Lemma [CSt] Let T be a preiteration theory which satisfies the left zero
identity 1.1, the dual pairing identity 1.3 and the permutation identity 2.3. Then
the fixed point identity 2.1 holds in T.

Proof. Let / : n —• n + p and define g = (0„ © / , 1„ © 0 n + p) . Using 1.1 and 1.3
we obtain

(l n © 0 „) - g t = ((0 n © /) { l n ® 0 p , (0 f l © l „ © 0 p) t , 0 „ © l p)) t

= ((On©/) (l „©Op, l n f f iO p ,O n f f i lp)) t

= / t .

Similarly, by 1.1 and 2.2,

(i » © o n) - f f t = ^ „ © / ^ . (((^ © O n + p j - a O n e / j t . i ^ j t . i , ,)

= / (((l „ © O n + p) (/ , l n + p)) t , l p)

= f (fhp)-

The proof is completed using Lemma 4.

6. Theorem [Stll, [CSt] A preiteration theory is an iteration theory if and only
if the following nold.
6.1. Parameter identity

{f • (1„ © ff))t = / t • g, / : n - » n + p , g : p - » i

6.2. Composition identity

/ • ((f f - (/ , 0 m f f i l p })
i
, l p) = (/ - < f f , 0 B f f i l p » t I f:n->m + p, g : m n + p

6.3 Double dagger identity

(/•(<lr»,ln) ©lP))t = /tt, f : n - n + n + p

6.4. The commutative identity 1.4.

7. Theorem [Es2l A preiteration theory is an iteration theory if and only if the
following identities nold.

378 Z. £sik

7.1. The special left zero identity, i.e. 1.1 with n = 1.
7.2. The special parameter identity, i.e. 6.1 with n = 1.
7.3. The special dual pairing identity 1.3 with m = 1.
7.4. Special permutation identity

/ t • ((g • </t, i 1 + p)) t , i p) = (/ . (i , © 0 p) (g • (p © l p)) t , Oi © l p)) t

where f,g:l—*l + l + p and p : 2 —• 2 + p is the nontrivial base permutation.
7.5. Special commutative identity

l m • < l m • P • / (Pi ® l p) , • • •, mrn • p • f • (pm © l p)) t = I n • (/ • (p ® l p)) ^

where f •. n m + p, p : m n is a monotone surjective base morphism, and
where each p,- : m —• m is base with pi • p— p.

8. Remark In addition to 7.1-7.5, the special fixed point identity 2.1 with n = 1
was also required in [£)s2]. This is however already implied, for taking / = Oi © h
and g = ls+p = l i © 0 i + p in the special permutation identity we obtain

/*•<(»•</*. l i + p ^ . l p) = (0 i©fc) t - ((l 9 + p - ((0 1 ©A)t > l 1 + p))t | i p)

and

(/ • (lx © O p , (g • (p © l p)) t , O i © l p » t =

= ((Oi © h) • (lx © O p , (0 X © l x © 0 p) t , O x © l p » t

= ((Oi © h) • (l i © O p , l i © 0 P , O i © l p)) t

= h t

by 7.1. Thus h • {/it, l p) = /it.

We note that it is enough to require the special parameter identity (/ • (l i ©
g))t = / t • g in Theorem 7 only for / : 1 -+ 1 + p and base g : p —• q, cf. [£s2]. A
result closely related to Theorem 7 was found independently in [CU], see also [Ca],
As a part of the proof of Theorem 7, the following result was established in [6s2].
A scalar preiteration theory is an algebraic theory with iteration defined on scalar
morphisms / : 1 —* 1 + p.

9. Theorem j£s2] Let T be a scalar preiteration theory satisfying the special
parameter identity and the special permutation identity. Extend the definition of
iteration by the special dual pairing identity, i.e. let o|+ p = 0P and for / : n —•
n + 1 + p and g : 1 —• n + 1 + p,

(/ , = (^t, (g • (p ® lp))^ • C»t, lp))

with p and h as in 1.3. Then T becomes a preiteration theory in which the identities
1.1-1.3, 2.1 and 2.3 hold.

A note on the axiomatization of iteration theories 379

10. Corollary The preiteration theory of Theorem 9 also satisfies the parameter
identity 6.1, the composition identity 6.2 and the double dagger identity 6.3.

Proof. It is proved in [6sl] that any preiteration theory T in which 1.1-1.3 and 2.3
hold satisfies the parameter identity. By the main result of [BlSsl], T satisfies any
identity valid for flowchart schemes. Therefore the double dagger identity holds
in T. A direct proof, starting with o = (/ , 1„ © 0„+p), f : n —• n + n + p, may
be obtained by a calculation similar to that given below (cf. [Stl]). Now for the
composition identity. Given / : n —• m + p and g : m —• n + p, define

a = (0 „ © /, g • (1 „ © 0 m © l p)) : n + m - » n + m + p .

The pairing identity 2.2, which holds in T by Lemma 4, and the left zero identity
1.1 imply

(l „ © 0 m) o t = (0 n © /) t • {(<7 • (1 „ © 0 m © l p) • { (0 „ © l m + p)) t , l p)

= / • { (< / • (I n © 0 m © l p) • (/ , i m + P)) t , 1 P)

= / • ((f f - (/ , 0 m © l p)) t > l p) .

By the dual pairing identity 1.3 and the left zero identity again,

(l n © 0 m) • a t =

= (K © /) • (In © Op, {g • (1„ © 0 m © l p) • (p © l p)) t , 0„ © l p)) t

= ((o n w wp, I vim
© 3) t , 0 „ © l p)) t

= (/• (s r ,0»©lp»^ >

where p denotes the block transposition n + m —• m + n.
Except for 7.5, the axiomatization given in Theorem 7 is based on scalar itera-

tion, for the special dual pairing identity can be thought of as a definition of vector
iteration (together with 0P = 0p which is already forced by the theory identities).
Nevertheless both sides of the special permutation identity can be expressed in
terms of scalar iteration. Below we present another axiomatization of this sort.
11. Theorem Let T be a scalar preiteration theory such that the special parameter
identity, the special composition identity 6.2 with n = m = 1, and the special double
dagger identity 6.3 with n = 1 hold. If iteration is extended by the special dual
pairing identity then T becomes a preiteration theory satisfying the identities 1.1
- 1.3, 2.1 and 2.3. Moreover, T satisfies the parameter identity, the composition
identity and the double dagger identity.

Proof. We show that the special fixed point identity and the special permutation
identity hold in T. For the special fixed point identity just take g = 11 @ 0P = l i+ p
in the special composition identity

/ • ((f f - < / , 0 i f f i l p)) t , l p) = (/ - < f f > 0 i ® l p » t .

380 Z. £sik

For the special permutation identity first we prove that

(H / t , i i + p » 1 = ((» (p e i p n t ^ / t . O x e i p j j t , 11.1
where p : 2 —• 2 is the nontrivial base permutation. We use the special parameter
identity and the special double dagger identity.

((< r (p © i p)) t . < / t) 0 l © i p)) t =

= (« / (p e i p J i i i a ^ . O i e i p))) ^
= (g • (p © lp) • <l i © 0 1 + p , 0 i © / t , 02 © l p)) t t

= (i - < 0 i © / t , l i © 0 i + p i 0 a © l p » ^

= (9 • <0i © / t , l x © 0 1 + p , 0 2 © l p > • « l x , l x) © l p)) t

= (ff • <0x © ft, l x © Ox+p, 0 2 © l p) • (l x © 0 P) l x © Op, Ox © l p)) t

= (j r < / t , l I + p » t

Next, by the special composition identity,

•<((fl-(P®li»)) t-</ t .Oi®lp»t> lp> = (/ t ((g (p © l p)) t) O i © l p)) t . 11.2
Finally, we observe that

(/• (lx©Op, (! 7 . (p©lp)) t) Oi®lp)) t = (/ t . ((? . (p © i p)) t) o 1 © l p)) t . n . 3

Indeed, by the special parameter identity and the special double dagger identity,

(/ t . ((f f . (p © l p)) t) 0 i © l p)) t =

= (/ - (l i ©<(!T (P ® Ip)) * . Ox © l p))) t t

= (/ ' <lx © O x + p , O x © (g • (p © l p)) t , 0 2 © l p)) t t

= (/ " (lx © O x + p , O x © (g • (p © l p)) t , 0 2 © l p) • « l x , l x) © l p)) t

= (/ • (l x © O p , {g • (p © l p)) t , Ox © l p)) t .

The proof is now easily completed. By 11.1-11.3,

(/ • (lx © 0 P I {g • (p © l p)) t , O x © l p)) t = (/ t . ((g . (p © i p)) t , 0 l © l p)) t

= / t - (((f f - (p e i p)) t . { / t , 0 1 f f i l p)) t , l p >

= / t ((g (/ t , l x + P)) t , l p) .

Theorem 11 implies Theorem 2, Chapter 13 in [C] for matrix theories, see also
[B£s5]. A consequence of Theorem 11 and the previous results is given below.

12. Theorem A preiteration theory is an iteration theory if and only if the
special parameter identity, the special composition identity, the special double dag-
ger identity, the special dual pairing identity and the special commutative identity
hold.

A note on the axiomatization of iteration theories 381

It is interesting to compare Theorem 12 with the following result, essentially
taken from [£s2j.

13. Theorem [f&s2] A preiteration theory is an iteration theory if and only if the
special left zero identity, the special parameter identity, the special pairing identity
and the following variant of the commutative identity hold:

l m (l m p / (p i © l p) , . . . , m m p / (p m 8 1 p)) t = l m p (/ (p © l p)) t 13.1

where / , p and pi,i = 1 , . . . , m, are as in the commutative identity 1.4.

14. Remark By Lemma 4, the dual pairing identity 1.3 can be replaced by the
pairing identity 2.2 in Theorem 1. Similarly, we may use the special pairig identity
2.2 with m = 1 (or n = 1) in Theorems 7, 9, 12 and 13. In Theorems 7, 9, 11 and
13 one can also use the special symmetric pairing identity

(/ l i 7)t = (fct.fct),

where fin —• n + l + p, g : l — • n + 1 + p, and where h and k are defined as in
1.3 and 2.2. In Theorem 12, instead of the special commutative identity, we may
require 13.1 for monotone surjective p : m —• n.

Let T be a preiteration theory such that the the parameter identity, the per-
mutation identity and the dual pairing identity (or pairing identity) hold. Suppose
that

/ • (a © lp) = a • $
for / : n —> n + p, g : m —• m + p and an injective base morphism a : n —» m. It is
a routine calculation to prove that

/ t = a • gt.

A preiteration theory has a weak functorial dagger if

/•(p©lp) = p - 9 = > / t =p . f l ft 14.1

for all / : n —• n + p, g : m m + p and surjective base morphism p : n —• m. It is
known that the commutative identity holds in any preiteration theory with weak
functorial dagger, cf. [¿si]. Most known iteration theories have weak functorial
dagger. The existence of an iteration theory not satisfying 14.1 was pointed out in
[&4].

15. Proposition Let T be a preiteration theory such that the parameter identity,
the permutation identity and the dual pairing (or pairing) identity hold. Then T
has weak functorial dagger if and only if 14.1 holds with m = 1.

Proof. Since the permutation identity holds in T, it suffices to prove 14.1 for
monotone surjective base morphisms p : n —* m. Our argument uses induction on
m. The basis case m = 1 holds by assumption. Supposing the statement holds for
m > l , l e t / : n — * n + p, g : m + l — t m + l + p and p : n —• m + 1 be such that

/ • (P © l p) = P 9 , 1 5 . 1

382 Z. £sik

where p: n —* m + l i s a monotone surjective base morphism. We can write

/ = (/1./2), /1 : " l - » n + p, /2 : «2 n + p
g = (ffi.to), ffx:m-»m+l + p, < f t : l - » m + l + p
p = pi © P2, px : —• m, p2 : n2 —• 1

where px and P2 are monotone surjective base morphisms with

/<(pi©P2©lp) = Pift, » = 1,2. 15.2

The induction hypothesis and the parameter identity yield

/l-(P2©lp) = Pl'ffl- 1 5 3

Now let h = /2 • {/J, ln2+P) : n2 —• n2 + p and k = g2 • (rf, li+P> : 1 1 + p. We
have

M p 2 © l P) = 1 5 4

Indeed,

/» •(P2©lp) = /2 • (/J, l„,+p) • (P2 © lp)

= /2 (/J (p 2 ©lp) ,P2f f i lp)

= /2 (Pi ffi,P2©lp),
by 15.3,

= /2 • (p i®P2©lp) - (f f i . l i+p)

= P2 -92 (gi,li+p)
= P2 • k,

by 15.4. From 15.4, by the induction hypothesis, we obtain

ht=p 2 . f c t . 15.5

The proof is completed by using the pairing identity.

/ t = (f j • (/it, l p) , /it)

= { / J • (P2 • fct, l p) , p 2 • fct),

by 15.5,

= (fl " (P2 © lp) • lp),P2 • k^)

A note on the axiomatization of iteration theories 383

by 15.3,

= (pi ® P2) • (ffi • lp), fct)

= pg^-

An equivalent statement is proved independently in |B]. Proposition 15 also appears
in [B £ S 4] .

16. Corollary An iteration theory has weak functional dagger if and only if 16.1
/ • (p © l p) = p • g =• l n • ft = pt for all / : n —• n + p, g : 1 —• 1 + p with n > 1,
where p is the unique base morphisms n —> 1.

By an example given in [6s4], it is not possible to impose an upper bound
on the integer n appearing in 16.1. Nevertheless it is enough to require 16.1 for
any infinite set of integers n. Combining Corollary 16 with Theorems 1, 5, 6, or
11, one obtains axiomatizations of the quasivariety of iteration theories with weak
functorial dagger studied under the name of strong iteration theories in [Stl]. Thus
we have e.g. the following statement.

17. Corollary A preiteration theory is an iteration theory with weak functorial
dagger if and only if it satisfies 16.1 and the special parameter identity, the special
composition identity, the special double dagger identity and the special dual pairing
identity.

Finally we mention some simplifications of the commutative identity. It is imp-
licit in Lemmas 1.1 and 3.2 in [£sl] that the commutative identity reduces to the
special case that each Pi is a bijective base morphism or that each one is an aperio-
dic base morphism. Similarly, it suffices to require the special commutative identity
in Theorems 7 and 12 above in one of these two cases. However it is not known if
it is enough to require the commutative identity for n = 1.

Open problem Find an essential simplification of the commutative identity.

References

[B] Bartha, M., On two constuctions of models for systolic sytems, Technical Re-
port, Oxford Univ. Computing Lab., 1988.

[Bfel] Bloom, S.L. and £sik, Z., Axiomatizing schemes and their behaviours, J. of
Comput. Sys. Sci., 31(1985), 375-393.

[B !̂s2] Bloom, S.L. and fCsik, Z., The equational logic of circular data type speci-
fications, Theoret. Comput. Sci., 63(1989), 303-331.

[B£S3] Bloom, S.L. and 6sik, Z., Floyd-Hoare logic in iteration theories, Research
Report, Stevens Institute of Technology, 1988, J. Assoc. Comput. Machinery,
to appear.

384 Z. £sik

[Bfis4] Bloom, S.L. and £sik, Z., Iteration theories: the equational logic of iterative
processes, manuscript, 1988.

[B&5] Bloom, S.L. and fisik, Z., Matrix and matricial iteration theories, 1989,
submitted for publication.

[BfisT] Bloom, S.L., fisik, Z. and Taubner, D., Iteration theories of synchroni-
zation trees, Information and Computation, to appear; extended abstract in:
Semantics for Concurrency, LNCS, Springer-Verlag, 1990, 96-115.

[BEWl] Bloom, S.L., Elgot, C.C. and Wright, J.B., Solutions of the iteration equ-
ation and extensions of the scalar iteration operation, SIAM J. Computing,
9(1980), 26-45.

[BEW2] Bloom, S.L., Elgot, C.C. and Wright, J.B., Vector iteration in pointed
iterative theories, SIAM J. Computing, 9(1980), 525-540.

[C] Conway, J.H., Regular algebra and finite machines, Chapman and Hall, Lon-
don, 1971.

[Ca] Cazanescu, V.E., On algebraic theories with iterate, Rev. Roumaine Math.
Pures Appl., 33(1988), 561-573.

[CStl Cazanescu, V.E. and Stefanescu, Gh., Feedback, iteration and repetition,
Research Report 42(1988), National Institute for Scientific and Technical Cre-
ation, Bucharest.

[CU] Cazanescu, V.E; and Ungureanu, C., Again an advice on structuring com-
pilers and proving them correct, Preprint Series in Mathematics, 75(1988),
National Institute for Scientific and Technical Creation, Bucharest.

[E] Elgot, C.C., Monadic computation and iterative algebraic theories, in: Logic
Colloquium'73, Studies in Logic, vol. 80, North Holland, 1975, 175-230.

[fisl] fesik, Z., Identities in iterative and rational algebraic theories, Computational
Linguistics and Computer Languages, XIV(1980), 183-207.

[6s2] £sik, Z., On generalized iterative algebraic theories, Computational Linguis-
tics and Computer Languages, XV(1982), 95-110.

[£s3] £sik, Z., Algebras of iteration theories, J. of Comput. Sys. Sci., 27(1983),
291-303.

[£S4] fcsik, Z., The independence of the equational axioms of iteration theories, J.
of Comput. Sys. Sci., 36(1988), 66-76.

[Stl] Stefanescu, Gh., On flowchart theories, Part 1: The deterministic case, J.
Comput. Sys. Sci., 35(1986), 163-191.

[St2] Stefanescu, Gh., On flowchart theories, Part 2: The nondeterministic case,
Theoret. Comput. Sci., 52(1987), 307-340.

(Received May 19, 1989)

Acta Cybemetica , Tom. 9. Fasc. 4, Szeged, 1990

Investigations on Armstrong relations,
dependency inference, and excluded functional

dependencies

G. Gottlob and L. Libkin
Department of Applied Computer Science*

University of Technology
Vienna - Austria

Abstract

This paper first presents some new results on excluded functional depen-
dencies, i.e., FDs which do not hold on a given relation schema. In particular,
we show how excluded dependencies relate to Armstrong relations, and we
state criteria for deciding whether a set of excluded dependencies characte-
rizes a set of FDs. In the rest of the paper, complexity issues related to the
following three problems are studied : to construct an Armstrong relation
for a cover F of functional dependencies (FDs), to construct a cover of FDs
that hold in a relation R (dependency inference), and, given a cover F and
a relation R, to decide if all the FDs that hold in R can be derived from F.
The first two problems are known to have exponential complexity. We give a
new proof for the second problem by showing that dependency inference can
be used to compute all keys of a relation instance. We prove that the third
problem is co-V/'-complete. Further, it is shown that the problems can be
solved in polynomial time if it is known that a relation scheme satisfies some
additional properties, which are polynomially recognizable themselves.

1 Introduction

In order to express the information conveyed by a set of functional dependencies
(FDs) that hold on a relation scheme, one can alternatively specify the set of all
dependencies that do not hold on the scheme. These dependencies, called excluded
functional dependencies (XFDs) , are closely related to Armstrong relations. Note,

'Mailing address: Institut für Angewandte Informatik, TU Wien, Paniglgasse 16, A-
1040 Wien, Austria. Internet e-mail of first Author: gottlob@vexpert.at

385

mailto:gottlob@vexpert.at

386 G. Gottlob and L. Libkin

however, that not every arbitrary set of XFDs corresponds to a set of FDs. In this
paper we therefore introduce the notion of completeness of sets of XFDs. Informally,
a set of XFDs is complete if it unambiguously characterizes a set of FDs. We also
present completeness criteria which can be tested in polynomial time.

In the rest of the paper we study complexity issues related to several problems
concerning functional dependencies (FDs for short) in relational databases. The
three problems which we are interested in are the following.

Problem 1 (Constructing Armstrong Relation) [BDFS84], [MR86] Given a set F
of FDs, construct an Armstrong relation R for F.

Problem 2 (Dependency Inference Problem) [MR87], [MR90] Given a relation R,
construct a cover F of FDs that hold in R.

Problem 3 (FD-Relation Implication Problem) Given a relation R and a set F of
FDs, decide whether ail the FDs thai hold in R can be derived from F.

The first two problems are of high practical importance, see [BDFS84, MR86,
MR87, MR89]. However, it is known that these problems are inherently exponen-
tial and hence it is impossible to design polynomial algorithms for their solution
[BDFS84, MR87, MR86]. The third problem seems to be important for design
theory too. To our knowledge, its complexity is still unknown. We show that the
problem of finding all the minimal keys of a relation instance can be polynomi-
ally transformed to the second problem. Then we prove that the Problem 3 is
co-NP-complete.

Let us introduce a new problem which is close to the Problem 3.

Problem 4 (FD-Relation Equivalence Problem) Given a relation R and a set F of
FDs, decide whether the sets of FDs that hold in R and that can be derived from F
coincide. In other words: decide whether R is an Armstrong Relation for F.

This problem can be decomposed into two subproblems:

• Decide whether all the FDs that hold in R can be derived from F, i.e., whether
FR C F+. Note that this subproblem is identical to Problem 3; and

• Decide whether each FD of F also holds in R, i.e., whether F+ C FR. Note
that this subproblem is easily solvable in polynomial time.

Problem 4 thus consists of the conjunction of a co-.VP-complete subproblem and a
polynomially decidable subproblem. Unfortunately, this knowledge does not allow
us to determine its complexity. It seems rather difficult to find the complexity class
of Problem 4. To our best knowledge, this problem has never been dealt with in
the literature. We therefore want highlight the complexity analysis of Problem 4 as
an interesting open problem to which we plan to dedicate further research efforts.

We show that the complexity of Problems 1-4 becomes polynomial if it is known
that F satisfies certain additional properties. These additional properties will be

Investigations on Armstrong relations ... 387

formulated for a set F of FDs and for the associated closure operator and semilat-
tice. We also show that these properties can be recognized in polynomial time.

The paper is organized as follows. In Section 2 we state some basic definitions. In
Section 3 we derive our new results concerning excluded functioned dependencies.
In Section 4 we show that the key-generating problem for relation instances can be
solved by using dependency inference. The fifth Section is dedicated to the proof
of the co-.VP-completeness of Problem 3. In Section 6 we study special cases in
which our four problems become polynomial. Some concluding remarks are made
in Section 7.

2 Basic Definitions

In this section we briefly remind the necessary concepts of relational database
theory (cf. [Ma83], [PBGV89]) and state some preliminary results.

Let U be a set of attributes. With each attribute A G t/ associate its domain D(A).
A relation (or relation instance) over U is a subset of [J A € U D(A). We can think
of a relation as being a set of tuples t : U —• [JAeu D[A) with i(A) G D(A) for
each A & U. Note that some authors distinguish between the terms "relation" and
"relation instance" while here both terms have the same meaning.

If X and Y denote sets of attributes and A denotes an attribute, we often write
XY, XA, X - A, etc. instead of respectively X U Y, X U { A } , X - { A } , etc.

A FD is an expression of form X -* Y, X, Y C U. We say that FD X -* Y holds
in R if for every t\, t2 G R, <i(A) = t2(A) for all A G X implies that ti(A) = t2(A)
for all A G Y.

The set of all FDs that hold for a given relation R is denoted by FR. FR satisfies
the following properties : X -* Y G FR for all Y C X(pseudoreflexivity), and
XZ -F V G FR if X Y G FR and YZ -> V G FR (pseudotransitivity).

If we are given a set F of FDs, F+ stands for the set of all FDs that can be derived
from F by the above rules being used. Of course, for each relation R, F£ = FR.
Furthermore, for each set F of functional dependencies, there is a relation R with
F+ = FR; such a relation is called Armstrong Relation [FA82].

A set F of FDs is called a cover of G if F+ = G+. A cover F is called nonredundant
if for each / G F we have / & (F — /) + . A cover F is called minimum if |F| < |f'|
for all other covers F'.

It is well-known that each set F of FDs is equivalent to a set F' of FDs containing
only single attributes as right hand sides. Indeed, each FD X —• A\A2... An can
be replaced by the following n FDs: X —* Ai, X —* A2 ..., X —• An. Therefore,
we can always assume without loss of generality that a given set of FDs has only
single attributes as right hand sides.

A set X is called a key if X —» U G F+. A key is called minimal if each K c X i s
not a key.

388 G. Gottlob and L. Libkin

A pair < U,F> is called a relation scheme, or RS for short. A RS is in Boyce-
Codd normal form (BCNF) if for each X -» A € F+, where A & X, it holds:
X^UeF+.

Given a set F of FDs, define the mapping CF(X) = {A e U : X A G F+J (we
will write CR instead of CFR). Then CF is a closure, that is, X C CF(X), X C Y
implies CF(X) C CF{Y) and CF(CF(X)) = CF(X). If F is understood then
CF(X) is also denoted by X+.

The following well-known algorithm computes the closure CF(X) of a set of attri-
butes X. Here we assume that F has only single attributes as right hand sides.

Algorithm CLOSURE
Input: a set F of FDs over U

and a set X C U o f attributes.
Output: CF(X)
Method:
result := X\
WHILE there exists an attribute A&TJ such that

A 0 result AND
there is a FD Y AG F such that Y C result

DO result := result U A;
RETURN {result).

A set X is closed (w. r. t. CF) if CF(X) = X. Denote by SF the family of all closed
sets (again, we write SR instead of SFr). Then U & SF and SF is a semilattice, i.e.
X,Y eSF implies X n Y G SF.

A set X G SF is called (meet)-irreducible if X = Y (~l Z, Y, Z € SF imply X = Y or
X = Z. The family of all irreducible sets is denoted by GEN(F). Notice that the
usual mathematical notation for GEN(F) is M(SF), but we adopt the terminology
of database theory here.

GEN(F) is the unique minimal subfamily of generators in SF such that each mem-
ber of SF can be expressed as an intersection of sets in GEN(F) (where the set U
is considered to be the intersection of an empty collection of sets).

It has been shown by Mannila and Raiha [MR86] that for a set F of FDs on U it
holds that

GEN[F) = MAX(F) = |J MAX(F, A)
Aeu

where MAX(F, A) = {Y C U : Y is a nonempty maximal set (with respect t o C)
such that Y -» A 0 F+}.

In [MR86 an algorithm is presented which computes an Armstrong relation R for
a given FD-set F from GEN(F) in time polynomial in the size of GEN(F). On
the other hand, if R is a given relation, then the MAX-sets for FR, and hence also
GEN(FR), can be computed in polynomial time (this follows easily from results in
[BDFS84], [MR86], [MR87]).

Each X € MAX(F, A) can be written and interpreted as excluded functional de-
pendency (XFD) with maximal left hand side, i.e., as an expression X A such

Investigations on Armstrong relations .

that VB € U-X : XB —» A.

389

3 Some Results on Excluded Functional Depen-
dencies

Excluded functional dependencies (in a similar way as MAX-sets) are just an al-
ternative way of representing the information conveyed by a cover F of functioned
dependencies. When we speak about sets of excluded FDs we always assume that
these FDs have single attributes as right hand sides, that the right hand side attri-
bute of an XFD does not occur in the left hand side of the same XFD, and that all
left hand sides corresponding to the same right hand side are maximal w.r.t. set
inclusion, i.e., the set contains no pair of distinct XFDs X A, Y A, such that
X C Y.

Excluded functional dependencies appear to be more intuitive than MAX-sets.
However, when dealing with excluded FDs, some care has to be taken. If a set X
of XFDs on a set of attributes U is given, we wish that this set represents all those
dependencies which do not hold in a given situation. The corresponding set of all
FDs which do hold is then represented by the cover:

Fx ={X->A:XCUAAeU A A&XA flYA e X : X C K}.

Consider for example the set of excluded FDs X = {AB C, AC /• fl,B /•
A,C A} defined on a set of attributes U = ABC. Then Fx = \ BC —• A} . It is,
however, important to note that there exist sets X of excluded FDs with maximal
left hand sides, for which Fr is "unreasonable" because it implies FDs which should
be forbidden (i.e. excluded) according to X. The following example displays such
a situation.

Consider a set X containing a single excluded FD X = {B •/* A } defined on a set
of attributes U = ABC. Then Fx is equivalent to the cover {C —+ A, A —+ B,C —»
B, A'—* C,B —* C} Of course the FD B —• A follows from Fx; hence this FD is
both excluded and requested. It can be seen that such situations arise when a set
of excluded FDs is incomplete, in the sense that some necessary excluded FDs (in
our case, for instance, C •/* A or B •/* C) are missing. Let us therefore define tne
notion of complete set of XFDs.

A set X of excluded FDs is complete if Fx does not imply any excluded FD, i.e., if
no FD X —• A can be derived from Fx, such that X A € X.

According to the semantics we give to sets of XFDs, only complete sets of XFDs
make sense. Indeed, if a set of XFDs is incomplete, then it expresses that certain
FDs are both forbidden and valid.

The following theorem relates complete XFD-sets to MAX-sets.

Theorem 1 Let X be a set of XFDs defined on a set of attributes U. Let
RHS(X, A) = {X : X -/* A € X} for each AeU. X is a complete set of XFDs iff
VA&U:RHS(X,A) = MAX{Fx,A).

390 G. Gottlob and L. Libkin

Proof.

if. Assume that VA G U : ¿*#5(;r ,A) = MAX(Fx,A). Each MAX (Fx, A), by
definition, contains only sets of attributes which do not determine A w.r.t. Fx •
Thus there cannot be any FD X A which follows from Fx such that X is equal
to any element of MAX(Fx, A) = RHS(X, A). Hence X is complete.

only if. Let X be a complete set of XFDs.

• We show that VA G U : RHS(X,A) C MAX(Fx,A).
Assume that for some A € U, RHS(X,A) g MAX(Fx,A). Then there
exists a XFD X A G X such that X & MAX(Fx, A). X must be a (proper)
subset of some element Y of MAX(Fx,A), otherwise X —* A would hold, and
X would not be complete. Thus there is an Y C U with XY G MAX(Fx, A)
and Y ^ 0 and Y n XA = 0. On the other hand, since the XFD X A
of X has a maximal left hand side, it must hold by definition of Fx that
XY A G Fx- This is in contradiction to XY G MAX(Fx,A). We thus
have shown that RHS(X, A) C MAX(Fx, A).

• We show that VA G U : MAX(Fx,A) C RHS(X, A).
Assume that for some A G U, MAXlFx,A) g RHS(X,A). Then there
exists X G MAX (Fx, A) such that X £ RHS(X, A). There are two cases to
consider. In the first case X is not a subset of any element of RHS{X, A).
Then X —* A G Fx • Contradiction to X G MAX(Fx, A). In the second case,
X is a proper subset of some Y G RHS(X, A). Since X G MAX(Fx, A) and
Y is a proper superset of X the FD Y —• A can be derived from Fx", but
Y A is an excluded FD in X. Thus X is not complete. Contradiction.
Hence MAX(Fx,A) C RHS(X,A).

The theorem is proved. •

If a set X of XFDs is complete, then an Armstrong relation R for Fx can be
computed in polynomial time: Construct GENiFx) by uniting all sets RHS(X,A)
and then apply the polynomial algorithm of [MR86] to construct an Armstrong
relation for Fx from GEN(Fx). Note also that the cardinality of Fx can be
exponential in the cardinality of X.

Assume that a set X of XFDs on a set of attributes U is given. Assume furthermore
that one has to compute the closure Cpx (X) of a set of attributes X C. U. One
way is to compute first Fx and then use the CLOSURE algorithm as described in
Section 2. However, this is not advisable since the size of Fx may be exponential
in the one of X. Fortunately there is a much simpler way of computing Cfz (X).
The following algorithm XFD-closure computes Cpz (X) directly from X and X:

Algorithm XFD-CLOSURE
Input: a set X of XFDs over U

and a set X C U of attributes.
Output: CFz (X)
Method:
result := X;
WHILE there exists an attribute A G U such that

A £ resuit AND

Investigations on Armstrong relations ... 391

there is no XFD Y /* Ae X such that result C Y
DO result := result U A\
RETURN(resuit).

Theorem 2 The XFD-CLOSURE algorithm applied to X, U, and X effectively
computes CFx (X).

Proof. Let U be a set of attributes, let A e U, and let X be a set of XFDs on U.
By definition of Fx, the following statements (1) and (2) are equivalent:

(1) there is a FD Y -* A e Fx

(2) there is no X F D Z /+ A in X such that Y C Z.

Now let result be an arbitrary subset of U. It follows that the following statements
(l ') and (2') are equivalent:

(1') there is a F D Y -» A e Fx such that Y C result

(2') there is no X F D Y A in X such that result C Y.

Indeed, (1') is equivalent to the statement result —* A e Fx which in turn is
equivalent to (2').

Now consider the XFD-CLOSURE algorithm for X and note that condition (2')
occurs in the body of the algorithm. If we replace this condition with condition
(1') we get exactly the body of the CLOSURE algorithm for Fx • Hence the output
of the XFD-CLOSURE algorithm is CFx (X). - •

From the above theorem it follows that for each set X C U, CFx(X) can be
computed in polynomial time from X and U. Moreover, the XFD-CLOSURE
algorithm can be used as a tool for testing in polynomial time whether a given set
X of XFDs is complete. Indeed, the following criterion follows trivially from the
definition of completeness:

Completeness Criterion A A set X of XFDs is complete iff for each XFD
X -h Ae X, A<0CFx(X).

Obviously, the test A & CFx(X) can be performed by using the XFD-CLOSURE
algorithm.

Let us now derive a simple sufficient (but not necessary) condition for the comple-
teness of a set X of XFDs:

Completeness Criterion B A set X of XFDs is complete if for each XFD
X A £ X and for each B eU - IX A) there is an XFD Y -/+ B € X such that
XCY.

392 G. Gottlob and L. Libkin

Proof. Assume that Criterion B is satisfied. Let X •/* A be an XFD of X. Note
that the XFD-CLOSURE algorithm applied to X and X stops immediately with
output X. Hence Cpx(X) = X. Therefore, by Completeness Criterion A, we
conclude that X is complete. •

We will use this criterion in the proof of a theorem in Section 5.

Let us now make a remark which emphasizes the importance of the notion of
completeness. Assume that an incomplete set of XFDs is given. We will show that
such a set, in general, can be extended to several different (minimal) complete sets
of XFDs. Hence incomplete sets of XFDs do not contain enough information for
characterizing FD-families unambiguously. We will show this on hand of a simple
example.

Consider again the set X containing a single excluded FD X = {B / • A} defined
on a set of attributes U = ABC. We have already seen that this set is incomplete.
We can extend X to a complete set either by enlarging the lhs of its XFD, yielding
Xi = {BC A}, or by adding another XFD, yielding X2 = {B /* A. B •/* C).
It can be easily seen by applying Completeness Criterion B that both X\ and X2
are complete. Of course X\ and X2 correspond to different sets of FDs Fxx and
Fx, • Furthermore, Xi and X2 are both minimally complete in the sense that any
omission of an attribute or of an XFD would result in incompleteness.

We conclude this Section by making a few comments on related work. Excluded
FDs are also studied by Thalheim in [Tha88] where their use for database design is
motivated; moreover [Tha88l introduces the notion of excluded multivalued depen-
dency (XMVD) and states derivation rules for FDs, MVDs, XFDs, and XMVDs.
The notion of functional independency which is similar to the one of an XFD has
been introduced by Janas [Ja88, Ja89j. Janas analyzes covers consisting of both,
FDs and functional independencies. According to Janas, a set G of FDs and func-
tional independencies is free of contradictions if there is no FD X —*Y such that
both X —* Y and X Y are implied by G. This concept seems to be close to

• the one of completeness; there is, however, a main difference between our approach
and the one of Janas: We make the closed world assumption to sets of XFDs but
Janas does not make this assumption for sets of functional independencies. For
example, in the setting of Janas, the set {B A } is free of contradictions, while
in our setting this set is incomplete and thus expresses contradictory information.

4 Generating all Keys of a Relation Instance

The Dependency Inference Problem (Problem 2) is inherently exponential. Man-
nila and Raiha [MR87] show an example of a relation instance R containing Ofn)
tuples, where n = \U\, such that there is a minimum cardinality cover F of FR
containing 0(2n/2) FDs. Nevertheless, a useful and practical algorithm for infer-
ring dependencies from relation instances is developed in |MR87|. This algorithm
has demonstrated a satisfactory efficiency when being used for "real-life" database
design problems.

We will now show that the problem of finding all keys of a relation instance can be
polynomially transformed to the Dependency Inference Problem. This transforma-
tion is useful because it allows to use highly practical algorithms for dependency

Investigations on Armstrong relations ... 393

inference (such as the one presented in [MR87]) for generating all keys to a given
relation instance.

As a by-product of our polynomial transformation we also get a new proof for the
exponential complexity of dependency inference. This complexity result follows
directly from our transformation and from a well known result on the complexity
of key-generation. Consider the following algorithm.
/
Algorithm Input: a relation R— { t i , . . . , tm) over U.

Output: a set F of FDs.

Step 1. Find the equality set ER = {EIJ : 1 <i < j < m}, where EI: = {A € U :
U(A) = ty(A)}.
Step 2. Find the maximal sets among ER — {17}. Denote them by X\,..., XP.
Step S. Construct a family {X,- — A : A £ U,x = 1,... ,p} and denote its elements
by Yi Yr. Suppose Y0 = U.
Step 4• Construct a relation R' = {to,..., t'r) where

if A e Y i «M? « t'. _
otherwise, A € U,i = 1, ...,r

Step 5. Using the algorithm for solving the dependency inference problem, find a
cover F' of FR>.
Step 6. Find a minimum cover F of F'.

Clearly, all the steps except step 5 require polynomial time in |iZ|, that is, in n • m.
For a discussion and characterization of the equality sets ER and E{J see [DT88].

Theorem 3 The output F of the above algorithm consists of FDs K\ —* U,...,
Ki —* U, where K\,. ..,Ki are all the minimal keys of R.

Proof. According to [DT88
keys. According to [MR86

, Xi,..., Xp are so-called antikeys, i.e. maximal non-
, R' is a relation whose antikeys are Xi,...,Xp and

by [BDK, theorem 3] the families of keys of R and R' coincide. Moreover, by
[DHLM89] FRI is in BCNF, and hence its minimum cover consists of FDs KI —* U
for KI,i = 1 , . . . , I, the minimal keys of R'. •

It is shown in [MR87] that in many cases the algorithm solving dependency inference
problem may work efficiently. In these case one can use the above algorithm to find
the minimal keys of a relation. Remind, that this problem is inherently exponential
as the number of keys of a given relation instance can be exponential in the size
of the instance [BDFS84,DT87]. The last mentioned fact together with theorem 3
implies

Corollary 1 The dependency inference problem has exponential complexity. •

5 Deciding FR Ç F+ is Co-NP-Complete
In this Section we turn our attention to Problem 3. It is possible to show that
this problem (FD-Relation Implication Problem) is co-A/P-complete. In order to

394 G. Gottlob and L. Libkin

do this, we will first define another problem and prove its co-.VP-completeness and
then show the polynomial transformability of that problem to our problem.
The problem we will first consider can be described as follows:

Name: SUBSET DELIMITER COMPLEMENTARITY (SDC)
Instance: a finite set 5, a collection Gt.. ,Gn of subsets of S, and a
collection Di... Dm of subsets of 5.
Question: Is it true that VX C S : ((3», 1 < t < n : Gi C X) or
{3j,l<j<m:XCD}))7

In order to show the co-.V P-completeness of SDC, we will use the MONOTONE
3SAT problem which is known to be .VP-complete [Go78, GJ79]: «

Name: MONOTONE 3SAT (M3SAT)
Instance: a finite set U of propositional variables and a collection C of
clauses over U such that each clause contains exactly three literals and
each clause contains either only negated or only un-negated literals.
Question: Is there a satisfying truth assignment for C ?

Theorem 4 The SDC Problem is co-HP-complete.

Proof. It is easy to see that the problem is in co-MP. In order to show that
its solution is negative, guess a subset Z C S nondeterministic ally such that Z is
neither a superset of any Gi nor a subset of any Dj.
Let us now show that the complement of M3SAT can be reduced polynomially
to our problem. Consider an instance (U, C) of M3SAT. Assume without loss of
generality that C consists of k clauses C i . . . Cfc such that the first n clauses are
positive and the remaining m clauses are negative (with m = k — n).
We construct an instance of the SDC problem from (17, C) as follows. Let S = U.
For each 1 < j < n let Dj = U — Cy and for each 1 < i < m let Gi = {p : ->p €
C„ + j } . Clearly the Dj and Gi can be constructed in polynomial time from C.
In the sequel of this proof, any truth value assignment for the propositional variables
of U is represented as the subset of U consisting of all those propositional variables
which are assigned "true".
C is unsatisfiable, iff for each truth value assignment r C U there exists a clause
Ci, 1 < * < k such that Ci is falsified by r. In particular:
• A positive clause Cj € C is falsified by r iff no propositional variable appearing
in r also appears in (7y, i.e., iff r C U — Cj = Dj.
• A negative clause C< € C is falsified by r iff all propositional variables occurring
in Ci (in negated form) have truth value "true" under r, i.e., iff G,_„ C r.
Thus C is unsatisfiable iff for each r C 5, it holds that (3t, 1 < i < n : G,- C r) or
(3j, 1 < j < m : r C Dy). We thus have polynomially transformed the complement
of the M3SAT problem to the SDC problem. This.completes our proof. •
The following Corollary shows the co-.VP-completeness of a slightly stronger version
of the SDC problem.

Corollary 2 The SDC problem remains co-MP-complete even if it is restricted to
those instances for which the family of set3 Dj is an antichain, i.e., no Dj is a
subset of a Di, for i ^ j and 1 < i, j < m.

Investigations on Armstrong relations ... 395

Proof. Consider an instance of SDC whose sets Dj do not form an antichain. By
eliminating all those Dj which are contained in any other Di, we get an equivalent
instance satisfying our restriction. Of course this transformation can be done in
polynomial time. •
We are now ready for proving our complexity result for Problem 2.

Theorem 5 It is co-MP-complete to decide whether for a given relation (instance)
R and for a given set F of FDs it holds that FR C F+.

Proof. Clearly the problem is in co-M P. Indeed, in order to show that FR g F+

it is sufficient to guess nondeterministically an FD which is in FR (testable in
polynomial time) but which is not in F+ (again testable in polynomial time). Let
us now show completeness in co-M P.
Consider an instance of the SDC problem consisting of a set S and of families of
subsets Gi... Gn and Di... Dm. According to Corollary 2 we may assume that
the sets Di... Dm form an antichain.
From this instance we will construct a set F of FDs and a set X of XFDs as follows.
Let us view the elements of S as attributes and consider a new attribute A £ S.
In the sequel of this proof, all FDs and XFDs are defined on the set of attributes
S' = Su{A}.
Let F = {GI-* A : 1 < i < n} and
let X = {DjZ*A : 1 < j < m} U {(S ' - B) B : B e S}.
Note that the set Fx contains only FDs with right hand side A. More precisely,
Fx consists of all FDs of the form X —• A such that X C S and X g Dj for
1 < j < m. Furthermore, , besides the trivial FDs over S', contains exactly the
FDs of Fx • (This follows from the fact that the pseudotransitivity rule cannot be
applied to the FDs of Fx in order to generate new nontrivial FDs.)
On the other hand, the set F+ consists of all FDs X —* A such that X is a superset
of some Gi with 1 < t < n plus the trivial FDs over S'.
From these observations it follows that C F+ iff each subset of S which is not
a subset of any Dj is a superset of some G<. In other words, C F+ iff our SDC
Problem-instance has a positive solution.
Since the Dj (1 < j < m) form an antichain, the XFDs of X all have maximal
left hand sides. Moreover, the set X of XFDs satisfies the Completeness Criterion
B of Section 3. Hence X is complete and a relation instance R can be found in
polynomial time such that FR = . Now our SDC problem instance has a positive
solution iff FR C F+.
We thus have shown how an instance of the SDC problem can be transformed into
an instance of the FD-Relation Implication Problem (Problem 3). It is immediately
verifiable that this transformation can be performed in polynomial time in the size
of the given SDC instance. It follows that Problem 3 is co-.VP-complete. •

Of course, the converse problem, that is, to check up if F+ C FR, can be solved in
polynomial time. However, as pointed out in the introduction, it is still unknown if
the problem 4 (FD-Relation Equivalence Problem) is polynomially solvable or not.
Here we show that if F does not contain FDs with small left-hand sides then both
problems 3 and 4 can be solved in polynomial time.

Proposition 1 Suppose for each X —• Y G F one has |i/| — < k, where k is a

396 G. Gottlob and L. Libkin

constant. Then both problems S and 4 can be solved in polynomial time.

Proof. Given a relation instance R and a set X C U, to find CR(X) requires
polynomial time in liZ|. Hence we can check in polynomial time if CR(X) = X for
all X with \U\ - |X| = k - 1. Since SR is a semilattice, for each nontrivial FD
X Y E FR it holds that |(7| - < k. Therefore, to make sure that FR C F+,
we just have to consider all sets X with \U\ — < k (there are less than |£/|fc)
and to check that CR(X) C CF(X). •

6 Complexity of the Main Problems : Special
Cases

As it has been shown at the end of the previous section, the problem which is
generally co-.VP-complete can be solved in polynomial time if some additional
properties hold. This fact leads us to the idea to study several special types of
relation schemes in order to find out if problems 1-4 are polynomial for these relation
schemes.
In this section we are going to study three types of relation schemes. All these types
have already been investigated more or less widely. We formulate the properties
for a relation scheme < U,F > and for its associated closure LF and semilattice
SF.

Property 1 There is a cover of F consisting of unary FDs, i.e. of FDs of type
A B,A,B € U.

Property 2 There is a cover of F of type {-X"i —• AI,...,XR —* AT} such that
XIQ ...Ç XR.

Property 3 A relation scheme <U,F > is in BCNF.

The properties 1 and 3 seem to be simply explained from the practical point of view,
note that property 3 is very desirable. Property 2 is interesting from a mathematical
point of view because it corresponds to a relevant class of semilattices and closures.

First, we establish the equivalent formulations of the main properties.

Proposition 2 Given a relation scheme <U,F >, the following are equivalent:
1) < U, F > satisfies property 1,
2) CF is topological, i.e. CF[XuY) = CF(X) U CF(Y),
8) SF is a distributive lattice.

The proof is straightforward. •

Proposition 3 ([DLM89]) Given a relation scheme < U, F >, the following are
equivalent:

Investigations on Armstrong relations ... 397

1) < U,F> satisfies property 2,
2) CF is separatory, that is, if CF{X) / X and C F (Y) ^ Y, then CF{X n Y) /
XnY,
S) SF is separatory, that is, 2U — SF is a semilattice again. •

Proposition 4 ([DHLM89]) Given a relation scheme < U,F >, the following are
equivalent:
1) < U, F > satisfies property S,
2) For each XCU either CF{X) = X or CF{X) = U,
S) SF - {U} is an ideal of 2U, i.e. if Y C X 6 SF - {U}, then Y € SF. •

Further we will show that some considered problems can be solved in polynomial
time if it is known that a relation scheme satisfies property 1 or 2 or 3. Hovewer, in
order to use an algorithm solving a problem in a special case one has to make sure
that either scheme or relation satisfies the required property. Therefore, it would
be desirable if all the properties 1-3 could be recognized in polynomial time. The
next Theorem shows that this fact holds.

Theorem 6 All the properties 1-3 are polynomially recognizable for both relation
schemes and relations.

Proof. Property 1. a) for relation schemes. It is almost obvious that unary FDs
cannot be derived from other FDs. Hence, a relation scheme satisfies property 1 iff
a nonredundant cover of F consists of unary FDs only.

b) For relations. Given a relation R, we can find GEN(FR) in polynomial time
in l-RI, see[DT88]. Let us first prove that FR satisfies property 1 iff X U Y € SR
for every X, Y € GEN(FR). Really, if FR satisfies property 1, then it follows from
proposition 2 that X U Y = CR{X) U CR{Y) = CR(X U Y) and X U Y e SR.
Conversely, if X U Y € SR for every X, Y € GEN(FR), consider arbitrary V,W €
SR. Suppose V = Xi n . . . n X fc, W = Yi n . . . n Yj, where X i , . . . , X f c , Y i , . . . , Yz G
GEN(FR). Then VL>W = (Xxn.. .n* f c)U(Yin.. NY,) = n?=i fly=i(*.-UYy) e S r ,
i.e. CR is topological. Since to find a closure CR requires polynomial time, the
above property can be checked polynomially.

Property 2. a) For relation schemes. First we prove that if a relation scheme
< U,F > satisfies property 2 and X A, Y -» B e F+ then either X n Y - »
A e F+ or X n Y B € F+, where A & X,B & Y. Really, if it is not true,
then A,B& CF(X n Y). Hence, both X U CF(X n Y) and Y U CF(X n Y) are
nonclosed, and by proposition 3 C F (X n Y) = (X U C F (X n Y)) n (Y u C F (X n Y))
is nonclosed, a contradiction.

Suppose without loss of generality that F consists of FDs X —* A, where A is
an attribute. Hence, if a relation scheme satisfies property 2, for every two FDs
X - A,Y - B E F either (F - { X - » AV) U (X O Y — A) or (F - {Y -
B}) U { X n Y —• J9} is a cover of F. Since the membership problem for FDs is
polynomial |Ma83], we need only the following to finish the proof: if we are given a
family A = { X i , . . . , Xfc} of subsets of U, and by one step we can change either X;

398 G. Gottlob and L. Libkin

or Xj to Xi fl Xj, then A can be transformed to a chain by a polynomial number
of steps.

First we show how to transform A to A' = { X [, . . . , X ¿ } where X{ = Xi for some
t and Xj C X¡ for all j ^ i. We use induction on k.

If A contains unique maximal element Xi, we are done. If Xi, Xj are two maximal
elements of A, consider A — {-X.} and transform it to A0 = {-X",0 : I jt t} where
X£ = Xp for some p and Xj° C X® for all I ^ t. If Xp C Xi, we are done. If X;
and Xp are incomparable, consider all the pairs {Xi , X,0}, I ^ t. If for some I we
can change Xi to Xi fl X°, then A' = A0 U {X< n Xj0}. If for all the pairs we can
only change to X, n Xj>, then A' = {X¿} U {X¿ n Xp : / ± »}.

If A: = 2, it takes one step to transform A to a chain. Since each tth iteration takes
no more than t additional steps, it takes 0(k2) steps to transform A to A'. Then,
if we apply the above algorithm to A' — {X¿} etc, we obtain a chain by no more
than A; — 1 iterations. Hence, A can be transformed to a chain by 0(k3) steps being
used. This shows the polynomiality of the recognition of property 2 for relation
schemes.

b) For relations. It follows immediately from proposition 3 that if FR satisfies
property 2, then all the elements of GEN(FR) have cardinality n, n — 1 or n — 2.
Moreover, SR is separatory if and only if the matrix o =|| ||, t, j — 1, ...,n :

r 1 if U-{Ai,Aj}ESR
1 | 0 otherwise,

where U = {J4I, ..., An} is absolutely determined, that is, each submatrix of a has
a saddle point [GL90]. The last property can be checked in time 0(n 4) [GL90].

Property 3. a) For relation schemes. It is wellknown that the BCNF property of
relation schemes can be tested in polynomial time. It can be shown, for instance,
as follows. It is almost evident that a relation scheme < U,F > is in BCNF iff its
minimum cover consists of FDs {Ki —> U,i = 1 , . . . , /}, where Ki,i = 1 a r e
the minimal keys of < U, F >. Since to find a minimum cover takes polynomial
time [Ma83], and testing whether a set of arttributes is a minimal key also takes
polynomial time, BCNF can be recognized in polynomial time.

b) For relations. See [DHLM89] for a polynomial algorithm.

The proof is complete. •

Now we are ready to present the main result about the complexity of problems
1-4 if it is known that a relation scheme < U, F > (or < U, FR > if input is R)
satisfies additional properties.

Theorem 7 The problems 1-4 can be solved in polynomial time if it is known that
a relation scheme < U,F > (for problems 1,3,4) or < U,FR > (for problem 2)
satisfies property 1 or 2.

Investigations on Armstrong relations ... 399

Proof. Property 1. The polynomiality of constructing Armstrong relation was
proved in [MR89], the polynomiality of the other problems is almost evident.

Property S. a) Problem 1. According to the proof of previous theorem (see also
[GL90]) GEN{F) can be computed in polynomial time. Applying algorithm of
[MR86, p. 136], we find an Armstrong relation.

bj Problem 8. We use the concepts of nec(A) and gendep(A) (see [MR87H. Let
R = { i i , . . . , t „ } be a relation over U. Let disag[i,j) = {A 6 U : i,(A) ^
tj(A)} and nec(A) = {disag(i, j) — A : A € disag(i, j]}. Suppose gendep(A) —
{ { A i , . . . , A r } —• A : AI 6 XI,i = 1 , . . . , r } , where nec(A) = i X i , . . . , X R \ . Then
(\{gendep(A) : A € U} is a cover of FR. Suppose XA = f") ({Ai , . . . , A r } : A< 6
A,, i = 1 , . . . , r). If a relation scheme < U, FR > satisfies property 2, it follows from
the proof of Theorem 6 that {XA A : A & U} is a cover of FR . Clearly, B € XA
iff {B} = XI for some XI € nec(A), and nec(A) can be computed in polynomial
time. Therefore, it takes polynomial time to find a cover of FR.

cj Problems S-4. According to [DLM89], FR C F+ iff SF C SR, or iff GEN(F) C
SR. Since GEN(F) can be computed in polynomial time, the checking of the last
condition takes polynomial time too.

The theorem is completely proved. •

Property 1 can be easily generalized if we allow FDs X —* A with |X| < k, k > 1.
However, as the following theorem shows, it is impossible to get a polynomiality
result for Problem 1 w.r.t. such relation schemes.

Proposition 5 Problem 1 has exponential complexity even if it is known that a
relation schema < U,F > satisfies the property: for each FD X —*• A e F+ there
is an FD Y A e F+ with Y Ç X and \Y\ < k, k > 1.

Proof. In [BDFS84] an example of a RS with k = 2 was constructed that satisfies
the above property and provides a minimal Armstrong relation exponential in the
number of FDs. •

Finishing this section, we discuss the complexity of the main problems for relations
and relation schemes in BCNF.

Let < U, F > be a relation scheme in BCNF. We can think without loss of generality
that F consists of FDs Ki —» U, i = 1 , . . . , I, where if, , t = 1 , . . . , are the minimal
keys (if not, we compute a minimum cover in polynomial time). Let R be an
Armstrong relation for < U,F>. Then we can find antikeys, that is, maximal
nonkeys [Thi86], in polynomial time in |i?|, see [DT88]. Conversely, if we have the
family of antikeys, we can construct an Armstrong relation for < U, F > according
to the algorithm of section 2. Thus, we obtain

Proposition 6 Problem 1 for relation schemes in BCNF is polynomially equivalent
to finding the antikeys of a family of minimal keys. •

The last problem was discussed in [Thi86]. The problem is inherently exponential.

400 G. Gottlob and L. Libkin

Hovewer, it can be solved in polynomial time, with some additional conditions
being added.

Proposition 7 Problem 1 for relation schemes in BCNF can be solved in polyno-
mial time if the number of minimal keys is bounded by a constant.

Proof. It follows from [Thi86] and proposition 6. •

Now we prove an auxiliary result.

Proposition 8 Problem 2 can be solved in polynomial time if the number of tuples
of a relation is bounded by a constant.

Proof. Let m be the number of tuples of a relation R. Then nec(A) contains no
more that m2 sets (see the proof of theorem 7), and gendep(A) has no more that
nm' FDs. Hence, a cover of FR can be computed in polynomial time. •

Corollary 3 If the number of tuples of a relation is bounded by a constant, it takes
polynomial time to find all its minimal keys.

Proof. According to [DT88], the number of antikeys is no more than m2 , where
m is the number of tuples of R. Hence, the number of minimal keys is no more
than n • m2 . By proposition 8, we can compute a cover of FR in polynomial time,
and, by [L078J, given a relation scheme, we can find its minimal keys in polynomial
time in size of input and output. Hence, the minimal keys of R can be found in
polynomial time. •

Now we immediately obtain from theorem 6, proposition 7, and corollary 3:

Proposition 9 The problems S and 4 can be solved in polynomial time for a rela-
tion scheme in BCNF if either the number of minimal keys or the number of tuples
of a relation is bounded by a constant. •

We can demonstrate another example providing the problem 4 to be polynomial
for relation schemes in BCNF. Remind that an antichain A is called saturated
[BDK87,Thi86] if A U { X } is not antichain for every X & A.

Proposition 10 Let < U,F > be a relation scheme in BCNF and R a relation in
BCNF. If either the family of minimal keys of < U,F > or the family of antikeys
of R is saturated, the problem 4 can be solved in polynomial time.

Proof. Let the family {K\,.. .¡K{\ of the minimal keys of < U, F > be saturated.
Find in polynomial time the family { X i , . . . , Xr} of antikeys of R [DT88]. Then

Investigations on Armstrong relations ... 401

{ X i , . . . , Xr} is the family of antikeys of (K i , . . . , Ki} iff for all * = 1 , . . . , I, Ki
is a minimal set that is not contained in some X,-,j = 1 , . . . , r. Clearly, the last
condition can be checked in polynomial time. If the family of antikeys of R is
saturated, the proof is the same. •

Several criteria providing the families of minimal keys and antikeys to be saturated
are established in [Thi86].

7 Conclusion

In this paper we have investigated several aspects of Armstrong relations, depen-
dency inference, and excluded functional dependencies. In particular, we have
characterized those sets of excluded dependencies which effectively correspond to
sets of FDs (and hence to Armstrong relations). We have shown that the problem
of findings all minimal keys of a given relation instance can be solved by using prac-
tical algorithms for dependency inference. We proved that the problem whether all
FDs that are valid in a given relation instance R do follow from a given cover F
is co-.VP-complete. Finally, we have analyzed several conditions under which the
main problems become polynomially solvable.

One relevant problem remains open: given a relation instance R and a cover F
of FDs, what is the complexity of deciding whether FR = F+ ? This problem is
important; it can be reformulated as follows: what is the complexity of recognizing
that a given relation is an Armstrong relation for a given set of FDs. We plan to
dedicate further research to this problem.

A C K N O W L E D G M E N T S . The authors are grateful to Maddalena Boschetti,
Thomas Eiter, and Ernesto Noce for useful comments and corrections to the first
version of the manuscript.

References

[BDFS84] C.Beeri, M.Dowd, R.Fagin and R.Statman,
On tne structure of Armstrong relations for functional dependencies,
J.Assoc. Comput. Mack. 31 (1984), 30-46.

[BDK87] G.Burosch, J.Demetrovics and G.O.H.Katona,
The poset of closures as a model of changing databases,
Order 4 (1987), 127-142.

[DHLM89] J.Demetrovics, G.Hencsey, L.O.Libkin and I.B.Muchnik,
Normal form relation schemes : a new characterization, Manuscript.

[DLM89] J.Demetrovics, L.O.Libkin and I.B.Muchnik,
Functional dependencies and the semilattice of closed classes,
MFDBS 89, Springer LNCS 364 (1989), 136-147.

402 G. Gottlob and L. Libkin

[DT87] J.Demetrovics and V.D.Thi, Keys, antikeys and prime attributes,
Annates Univ. Sci. Budapest Sect. Comp. 8 (1987), 35-52.

[DT88] J.Demetrovics and V.D.Thi, Some results about functional dependencies,
Acta Cybernetica 8 (1988), 273-278.

[FA82] R. Fagin, Horn Clauses and Database Dependencies, Journal of the ACM
29:4 (1982), 952-985.

[GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide to
the Theory of NP-Completeness, Freeman and Company, New York, 1979.

[Go78] E.M. Gold, Complexity of Automaton Identification from Given Data, In-
formation and Control, 37 (1978), 302-320.

[GL90] V.A.Gurvich and L.O.Libkin, Absolutely determined matrices,
to appear in Math. Soc. Sci.

[Ja88l J.M.Janas. On Functional Independencies, In: Foundations of Software
Technology and Theoretical Computer Science, K.V. Nori and S. Kumar Eds.,
Springer LNCS SS8 (1988) 487-508.

[Ja89] J.M.Janas, Covers for Functional Independencies, In: Proceedings of the
MFDBS 89 Conference, J.Demetrovics and B. Thalheim Eds., Springer LNCS
364 (1989) 254-268.

[L078] C.L.Lucchesi and S.L.Osborn, Candidate keys for relations,
J. of Computer and System Sciences 17 (1978), 270-279.

[Ma83l D.Maier, "The Theory of Relational Databases", Comp.Sci.Press, Rockville,
MD, 1983.

[MR86] H.Mannila and K.-J.Raiha, Design by example: an application of Armst-
rong relations,
J. of Computer and System Sciences 33 (1986), 126-141.

[MR87] H.Mannila and K.-J.Raiha, "Algorithms for Inferring Functional Depen-
dencies" (Extended Abstract), Proceedings of the Thirteenth International
Conference on Very Large Data Bases, Brighton, September 1987; Full paper
submitted for publication.

[MR89] H.Mannila and K.-J.Raiha,
Practical algorithms for findiding prime attributes and testing normal forms,
PODS 89, pp. 128-133.

[MR90] H.Mannila and K.-J.Raiha,
On the Complexity of Inferring Functional Dependencies, manuscript, submit-
ted for publication, 1990.

[PBGV89] J.Paredaens, P.De Bra, M.Gyssens and D.Van Gucht,
The Structure of the Relational Database Model, Springer-Verlag, Berlin,
1989.

[Tha88] B. Thalheim, Logical Relational Database Design Tools Using Different
Classes of Dependencies, J. of New Generation Comput. Syst, 1:3 (1988), 211-
228.

[Thi86] V.D.Thi, Minimal keys and antikeys, Acia Cybernetica 7 (1986), 361-371.
(Received May 10, 1990)

Acta Cybernetica, Tom. 9, Fasc. 4, Szeged, 1990

The complexity of a
counting finite state automaton

C. A. Rich1 and G. Slutzki2

Abstract

A counting flnite-state automaton is a nondeterministic finite-state automaton
which, on an input over its input alphabet, (magically) writes in binary the number
of accepting computations on the input. We examine the complexity of computing
the counting function of an NFA, and the complexity of recognizing its range as a
set of binary strings. We also consider the pumping behavior of counting flnite-state
automata. The class of functions computed by counting NFA's

(1) includes a class of functions computed by deterministic finite-state transducers;
(2) is contained in the class of functions computed by polynomial^ time- and

linearly space-bounded Turing transducers;
(3) includes a function whose range is the composite numbers.

1. Introduction
A counting finite-state automaton is a nondeterministic finite-state automaton
which, on an input over its input alphabet, (magically) writes in binary the number
of accepting computations on the input. Tne counting finite-state automaton—or
counting NFA—is a finite-state analogue of the counting Turing Machine of Valiant
l7l- . '

It is known that the class # P of functions computed by polynomially time-
bounded counting TMs includes the class FP of functions computed by polynomi-
ally time-bounded Turing transducers; however, it is riot known if this inclusion is
proper. Valiant [7,8] has shown several functions to be complete for #P, and these
functions in # P are not computable in polynomial time if P ^ NP. These results
suggest that FP is properly included in #P.

1 Computer Science Department, California State Polytechnic University, Po-
mona, Pomona, CA 91768-4034, USA

2 Computer Science Department, Iowa State University, Ames, IA 50011, USA

404 C. A. Rich and G. Slutzki

We consider finite-state analogues of these questions. We show that the class
#NFA of functions computed by counting NFAs includes a class #DFT of counting
functions computed by deterministic finite-state transducers. Although it is not
known whether FP ^ #P , we show that #DFT is properly included in #NFA by
exhibiting a counting NFA whose range as a set of binary strings is not context-free,
whereas the ranges of deterministic finite-state transducers are regular [2]. While
some functions in # P are apparently not computable in polynomial time, we show
that functions in #NFA can be computed using time polynomial and space linear
in the the length of the input.

Since functions in #DFT have ranges which are regular and functions in #NFA
have ranges which are not necessarily context-free, it is natural to investigate the
complexity of counting NFA ranges. Intuitively, one might expect the range of a
counting NFA to be efficiently recognizable simply because it is a finite-state model,
but that is apparently not the case. We establish an upper bound by showing
that the range of a counting NFA is recognizable nondeterministically using space
linear in the length of the input, i.e., a context-sensitive language. We suggest an
intractable lower bound by showing that the composite numbers—which are not
known to be in P—are the range of a counting NFA.

In §2, we give notational conventions and formally define, the counting function
of an NFA. In §3, we show that the counting functions computed by deterministic
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not
context-free. In §4, we examine the complexity of computing the counting function
of an NFA, and the complexity of recognizing its range as a set of binary strings. In
§5, we consider the pumping behavior of a counting finite-state automaton. For a
fixed input string, we show that the number of accepting computations—considered
as a function of the number of times a fixed substring is pumped—satisfies a ho-
mogeneous linear recurrence equation of finite degree having integer coefficients.

2. Preliminary Definitions
In this section, we present notational conventions and our notions of counting func-
tion computed by finite-state automata. A string x is a finite sequence of symbols
from a finite alphabet. The length of x, denoted |z], is the number of symbols
composing x. The empty string, denoted e, is the string having length 0. The
concatenation of two strings x and y is the string consisting of the symbols of x
followed by the symbols of y, denoted xy. A language £ is a set of strings over an
alphabet, and ||£]| denotes the cardinality of L. The empty set is denoted by <f>; the
set of integers { . . . , — 1,0,1, . . . } is denoted by Z; and the set of natural numbers
{0 ,1 ,2 , . . . } is denoted by M.

In this work, we frequently consider natural numbers as binary strings and vice
versa. Formally, these conversions are functions s: M —* {0, l }* and {0,1}* —* M
defined by

s(k) = the binary representation of k without leading zeroes,
(z) = the number represented in binary by x.

Note that s(0) = e. We extend s and # to sets of natural numbers and binary strings
in the usual way by defining s(K) = {s(ifc) I KE K), and # (L) = {#(-e)J X e £}.

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, E, 6,1, F),
where Q is a finite set of states', E is a finite input alphabet; S is a transition function

The complexity of a counting finite-state automaton 405

from QxS* to subsets of Q; I C Q is a set of initial states; and F C Q is a set of
final states. The counting function #5 : QxE* —* M is defined recursively by

Intuitively, the counting function #M(x) (if 6 (q. x)) is the number of accepting com-
putations of M on input x (starting from state q). We extend the counting functions
to languages L C E* in the usual way by defining #6(q, L) = { #6(q, x i I x G L },
and (L) = { # M (x) | x € L } . We consider the range of a counting NFA M to
be the set of binary strings s(#M(E*)) . The class of counting functions of NFAs is
defined by #NFA = { # M | M is an NFA }, and the class of their ranges is defined
by range(#NFA) = { s(#Af(E*)) | M is an NFA with input alphabet E } .

We also want to consider a deterministic counterpart of the counting NFA
which produces a binary string by transduction rather than counting accepting
computations. Intuitively, our deterministic finite-state transducer is a special case
of the deterministic Generalized Sequential Machine (GSM) [l] in which the out-
put alphabet is fixed to be {0,1} and all states are considered final, so that its
computation on any input produces a binary string.

Formally, a deterministic finite-state transducer (DFT) is a 5-tuple D = (Q, E,
?l)> where Q is a finite set of states; E is a finite input alphabet, 6: Q x E —» Q

is a transition function; X: QxE —• {0,1}* is an output function; and qi & Q
is the initial state. The transition function and output function are extended to
6: QxE* Q and A: QxE* {0,1}*, defined recursively by

The output function D: E* —• {0,1}* is defined by D(x) = A(?i, x) and the counting
function #D: E* M is defined by #£»(x) = #(D(x)). Intuitively, the counting
function #D(x\ is the number represented by the binary string produced by the
transduction of D on input x. We extend the output and counting functions to
languages L C E* in the usual way. We consider the range of a DFT to be the
set of binary strings s(#D(E*)). Note that it can be obtained from D(E*) by
truncating the leading zeroes of each string. The class of counting functions of
DFTs is defined by #DFT = { #Z> I D is a DFT }, and the class of their ranges is
defined by range(#DFT) = { s(#I>(E*)) | D is a DFT with input alphabet E } .

#%, ax) = £ #S(p, x).
peS(q,a)

The counting function #M: E* —» M is defined by

M (x) = £ # % . *) •
qel

S(q,e) = q,

6(q,ax) = 6(S(q,a),x)-,
A (q, e) = e,

A(g. <rx) = A(g, <r)A(%, <r), *)•

k

406 C. A. Rich and G. Slutzki

3. Inclusions among Counting Functions and
their Ranges
In this section, we show that the counting functions computed by deterministic
finite-state transducers are properly included among those computed by nonde-
terministic finite-state automata, and give a counting NFA whose range is not
context-free. We denote the class of regular and context-free languages by REG
and CFL, respectively. Since the range of every deterministic Generalized Sequen-
tial Machine (DGSM) is regular [2], and a DFT is a special case of a DGSM, it
follows that the range of a DFT (with leading zeroes truncated) is regular.
Theorem 3.1. range(#DFT) C REG.
Theorem 3.2. #DFT C #NFA.
Proof. Let D = [Q, E, 6, A, be a DFT, and construct an NFA M with input
alphabet E such that for x & E*, # M (x) = #D(x). Suppose Q = { f l i , . . . , ? « } ,
and let I = max{ |A(g, tr)| | q G Q A a 6 E }. Let M = (Q £ , S\ {qi}, F) , where
Q' = Q U { | 1 < » < s A 1 < j < 2l } , F = { q{ | 1 < t < a A 1 < j < 2l } , and 6'
is defined by

Next we prove, by induction on |x|, the claim (*) #5'(qf,-, x) = #(A(g,-, x)). For the
empty string e,

and for strings ax of length at least 1,

6 \ q l a x) = £ #5 ' (p ,z)
p€S'(qf,a)

l<j<2lA(«t>',)l

. = 2|A(?<,<7)A(i(9il<7)|iC)|

= 2lA(i»'tTI)l.

#S'(qi,e)= | 1, i f 9 , e F ;
0, if q i ? F = 0 = # (€) = # (A (g,-,e)),

and for strings ax of length at least 1,

407

p€6'{qito)

E # S ' (S (q i , a) j , x)) + *)
l<J<#(A(9<1a))

= a)) • + # (A (% - , a) , x))

= # (A (g f , a) A (% t - , < 7) , x))

= # (A (9 i , a x)) .

Proof idea, (addition) Let M' = [Q1, E, 6', P, F'), M" = (Q",H,S",I",F") be
(VT U A a nn/4 «/vtta^miof i n MPA Kjf «ri 'ik i n r v n a ItvIi kat V1 aii/*lt f Vi o + f/M« rt> d V?* NFAs, and construct an NFA M with input alphabet E such that for x € E*,
M (x) = # M ' (x) + # M " (x) . M is obtained by a disjoint union construction.
The states, transitions, initial states, and final states of M are the disjoint unions
of those in M' and M".

(multiplication) Let M' = (Q't E, £', / ' , F'), M" = (<?", E, 6", I", F") be
NFAs, and construct an NFA M with input alphabet E such that for x (= E*,
#Af(x) = #Af ' (x) • # M " (x) . M is obtained by a cartesian product construc-
tion. The states, transitions, initial states, and final states of M are the cartesian
products of those in M' and M " . 1

In this research, we give two examples of counting NFAs whose ranges tire not
context-free. The first is presented here, and the second—whose range is the binary
encodings of the composite numbers—is presented in §4.
Example. A counting NFA whose range is L = { l n 0 " l " | n € M }.
We construct an NFA M with input alphabet {0} such that s (#M(0*)) = L. For
k 6 M, define an NFA Mk = (Q, {0} , 6,1, F), where Q = (qi,..., q2k,Pi, • •
p2/t+i}, 1 = {91}, F = { p i , . . . , p 2 f c + i } , and 6 fe defined by

First we prove, by induction on n, that #<5(pt-,0") = 2(f c+1)n. For n = 0,

£(Pi,0) = {Pl»---,P2fc+i}-

1, i f p , e f ;
0, if Pi<£F

= 1 = 2(f c + 1)°,

and for n > 0,
6 (p i , o n) = E o " " 1)

pes(Pi.o)

= E # « (P > , ° n _ 1)
l < j < 2 f c + 1

_ 2*+l . 2(*+l)(n-l) = 2(Jt+1)n.

408 C. A. Rich and G. Slutzki

Next we prove, by induction on n, the claim (*) # % , - , 0") = 2 (t + 1) n - 2 k n . For
n = 0,

#«<*•«>={£ "IIf = °=2{k+1)0-2k0>
and for n > 0,

% • , o n) = E # ^ (p . o n - 1)
pe«(9i, o)

= (E #6(qitW-lj) + (E #S(Pj,0n~1))
l<J<2fc l<y<2fc '

= 2* • (2(f c + 1)(n-1) - 2*(n~1)) + 2* • 2(*+ 1Kn -1)
_ 2(M-l)i _ 2k n

Using Lemma 3.3, construct an NFA Af with input alphabet {0} such that for
n € M, # M (0 ") = #M 2 (0 n) + #M 0 (0 n) . If we take t" = 1 in (*), then

s(#M(0*)) = { s (# M (0 ")) | n e > / }
= { s (#M 2 (0") + #M 0 (0 ")) | n<=M}
= { s((23n - 2 2 n) + (2n - 2°)) | n € M }
= { s(8n - 4n + 2n - 1) | n e U }
= { i n o n i " \ne JJ} = L. •

Corollary 3.4. range(#NFA) % CFL.
Corollary 3.5. range(#DFT) c range(#NFA) frange(#DFT) is properly conta-
ined in range(#NFA)).
Proof. It follows from Theorems 3.1, 3.2, Corollary 3.4, and the fact that REG C
CFL. •

4. The Complexity of Counting Functions and
their Ranges
In this section, we examine the complexity of computing the counting function of
an NFA, and the complexity of recognizing its range. The latter problem—deciding
whether a given binary string represents the number of accepting computations on
some input—is considered both for a fixed NFA and when the NFA is given as
an additional parameter. We show that a fixed counting NFA's range is context-
sensitive, and suggest an intractible lower bound by showing that the composite
numbers—which are not known to be in P—are the range of a counting NFA. The
second of these is called the range membership problem for counting NFAs and is
shown to be PSPACE-complete.

An important tool which we use in solving these problems is a matrix algebraic
characterization of the counting function of an NFA which allows us to compute it
in polynomial time and linear space. Let M = (Q, E, 6, /, F) be an NFA with state

The complexity of a counting finite-state automaton 409

set Q = { g i , . . . , qt), and let x = an ...o\ S E*. For each a e E, let e, A", f be
the lxs , 3X3, s x l matrices defined by

' I \ ^ / 1 , if iy e / ;
= {ei e2 ... et), where e, = | Q> jf / f

A° =

f =

U'n A|a . . .
Af i A\2 • • • A\t

\ Aii Kl A?,

, where A?, = { I' " « ¡ H M ' *J \0, if qj<£6(qi, a),

ts J
(h\

h
, where /,• = #%,- ,€) .

The symbol * denotes the usual matrix multiplication.

Lemma 4.1. e* A°n * • • • * Aai * / = #M(x).

Proof. We prove, by induction on n, the following claim for 1 < i < s:

(*) (A"» . • • • * * f)i = #5(<7,-, <rn... <7X).

For n = 0, {f)i = fi = e), and for n > 0,

{A°n * •••* A"! * f)i= E Afr» • (A ^ - i * • • • * A*! * /),•
j= l

= E A ^ - ^ ^ . a , » . ! . . . ^)
i= i

Applying (*), we have

e* A°n *•••* A"1 * / = E ey • (A»» * - *Aai*f)j

J=1
t

= E ey #6{qj,x)
3 = 1

= E # % , *)

= #M(x). •

410 C. A. Rich and G. Slutzki

The algebraic characterization of Lemma 4.1 gives us the following algorithm
for computing #A/ (x) which processes the symbols of x from right to left, producing
an a-entry column vector after each of n matrix multiplications.

input x; { = <rn ...<7i € E*}

for t := 1 to n do
v := Aai * v;

output e * v

After n multiplications, we obtain A°n * • • • * A"1 * / , whose tth entry is x).
This computation can be done in time polynomial in n and, since #6(<7,-, x) < a ,
each entry can be represented in binary using space linear in n.

In the remainder of this section, we turn our attention to the ranges of counting
NFAs. We apply the method of computing (x) given by the previous algorithm
to show that the range a(#M(E*V) of a counting NFA M is context-sensitive, i.e.,
is in NSPACE(n).

Given a binary string y, how can we decide if y € a(#Af(E*))? That is, how
can we decide if y represents the number of accepting computations of M on some
input x? A first approach using Lemma 4.1 is to guess symbols a i , . . . , a n of x
from right to left, computing after each guess a column vector v whose tth entry
is V,- = x), and accepting if and only if y is the binary representation of
e-*v = # M (x) :

input y;
v:=f;
while true do

begin
if s(e*v) = y then accept;
guess a € E;
t>:= A" *v

end
Some computations of this nondeterministic algorithm may not halt and will require
an unbounded amount of space in which to store the entries of v. In the following
development, we show how to impose a linear space bound on the computations of
this algorithm by placing a cap on the size of the entries of v.

Let y e {0,1}*. We define cap^: M —> M by cap„(m) = min{m, # (y) + 1}.
We extend captf to matrices of natural numbers by applying capv to each entry of
the matrix. We will need the following properties of the cap function in order to
impose a bound on the space required by the previous algorithm and maintain its
correctness.

Lemma 4.2. Let y € {0,1}*; m, I e M; and A, B compatible matrices of natural
numbers.

(1) a(cap„(m)) = y a(m) = y
(2) capy(m + /) = capy(capy(m) + capy(/))
(3) capy(m • Z) = cap„(m • captf(Z))
(4) capy(A * B) = capv(A * capv(£))

The complexity of a counting finite-state automaton 411

Proof. (1) s(capy(m)) = y <=> s(min{m,#(y) + 1}) = y <=> s(m) = y.
(2) We consider two cases. If m + / > #(y) , then cap„(m + I) = cap„(capy(m) +
capy(/)) = #(y) + l- If m+l < #(y) , then capy(m+/) = capy (capy (m)+capy (/)) =
m + l.
(3) Proof is similar to (2).

W / \ capy(A * B)I¡k = capy A,;- • BJKJ

= capy capy(A i j • Bjkf), by (2);

= capy (E c a P y { A i j ' caPy(5ifc)))> b y (3);

= capy (¿2 Aij • caPy {Bjk)), by (2);

= capy(A*capy(B))tifc. •
Theorem 4.3. range(#NFA) C CSL.
Proof. We show that for a fixed NFA M with input alphabet E, s(#M(E*)) is in
NSPACE(n). Consider the following modification of our previous algorithm which
decides whether or not y € s(#M(E*)) :

input y;

while true do 1

begin
if s(capy(<T* w)) = y then accept;
guess a € E;
v := capy(Aff * v)

end

The matrices e, A", and / can be kept in finite control and the space required
by v is 0(|y|), since its entries are at most #(y) + 1; therefore, this algorithm
can be implemented by a nondeterministic linear space-bounded Turing machine.
To show correctness, let a\,.. .,<rn be a sequence of guesses of the algorithm and
x = on.. .<x\. By Lemma 4.2(4), the value of v at the beginning of the while-loop
after guessing x will be

v = captf (A"n * capy (A*7"-1 * • •• * capy(A"i «/)•••))

= capy(Aan * • • • * A"1 * f).

By this observation, Lemma 4.1, and Lemma 4.2(1,4), we have

s(capy(r* «)) = y s(capy(e * cap y(A"n * •• •* A"1 * /))) = y
s(caPy(e * A"n *•••* A"1 * f)) = y

«=>s(cap y (#M(x))) = y

<=> s(#M{x)) = y,

412 C. A. Rich and G. Slutzki

so the algorithm accepts y if and only if s{SM(x)) = y, for some i g E * . I
It is interesting to consider whether tne information in this algorithm can be

farther compressed into space which is logarithmic in |y|, giving us an
NSPACEflogflyl))' algorithm for recognizing the range of a counting NFA. In the
following example, we give evidence that, if possible, it will be difficult to achieve,
by showing that the composite numbers—which are not known to be in P—are the
range of a counting NFA.
Example. A counting NFA whose range is Composites U {0}.
We construct an NFA M with input alphabet E such that #Af (E*) = CompositesU
{0}. First, construct an NFA M ' with input alphabet E = {0,1} such that

= m • I. Let M' be the NFA pictured in the transition graph of
Figure 4.1.

0

0

Figure 4.1. A counting NFA which multiplies unary numbers

We prove, by induction on I, the following claims:

#% 2 ,o ') = i.

For I = 0,

and for I > 0,
« (« i , o ») = E #«(P, o ' " 1)

pei(ii.o)

= (/ - l) + l = Z;

= # % 2,0'

pes(q2fi)
n ' - l

The complexity of a counting finite-state automaton 413

Next we prove, by induction on m, the following claims:

#5(g i ,0 r o10') = m Z ;

For m = 0,
% 1 , 1 0 ') = £ #i(p,0<) = 0 = 0 i ;

pefffai.i)

i (? 2 , i o ') = E #HP,O')
p £ % 2 li)

and for m > 0,

o m i o ') = E ^ (p .O^-HO 1)
pes{q i,0)

= ^ (« . o — h o 1) + #5(92, o™-1 io')
= [m-l) 1+1 = m l;

#6(q2,0m10l) = E # * (p . ° m - 1 1 0 ')
PG% 2.0)

= # % 2 , o w l - 1 i o ') = z.

Therefore, we have #M'(0m10l) = # % i , 0 m 1 0 ') = m • Z. Consider the regular
language R = { 0m10J \m,l>2}. Let M" be a DFA which accepts R. Then

#M»(0"10-) = { J :

Using Lemma 3.3, construct an NFA M such that # M (x) = #M' (x) • #Af"(x) .

#A/(0m10') = #M'(0m10') • #M"(0 m 10 ')
_ (m l, if m,l> 2;

\ 0, otherwise,

so # A f (E *) = Composites U {Ok •
When the range membership problem is considered as a function of both a

given NFA and binary string, we are able to pinpoint its complexity by giving a
completeness result for PSPACE.
Range Membership

Instance: M, an NFA with input alphabet E; y € {0, l}*.
Question: y € s(#M(E*))?

414 C. A. Rich and G. Slutzki

Theorem 4.4. Range Membership is PSPACE-compIete. °
Proof. We have shown in Theorem 4.3 that membership can be decided nonde-
terministically using space 0(||Q|| • |t/|), where ||Q|| is the number of states in M.
By Savitch's Theorem, Range Membership G NSPACE(n2) C PSPACE. We show
hardness by logspace reduction from the nonuniversality problem for NFAs, which
was proved PSPACE-complete by Stockmeyer and Meyer [5,6]. Let M be an NFA
with input alphabet E.

L{M) ± E* <=> 3x e E*, x # L(M)
3x e E*, #M(x) = 0

< i = > o e # M (E *)
<^ees(#M(E*)). •

5. Pumping Behavior and Linear Recurrences
In this section, we consider the pumping behavior of a counting finite-state automa-
ton. For a fixed input string, we show that the number of accepting computations—
considered as a function of the number of times a fixed substring of the input is
pumped—satisfies a homogeneous linear recurrence equation of finite degree having
integer coefficients. We precede this result with some relevant definitions and facts
from the theories of recurrence equations and matrices.

Let g: H —• M. g satisfies a homogeneous linear recurrence equation of degree
s having integer coefficients if there exist ai o , e 2 such that for n € M,

i
+ s) = £ ajfc • ff(n + s - A).

Jfc=l

Let A be an sXs matrix of integers, and I be the 3X3 identity matrix with l's on the
diagonal and O's elsewhere. The characteristic polynomial of A is the polynomial p
defined by p(A) = det(A — X I) , where det is the determinant function. Note that
the characteristic polynomial is of degree s and has integer coefficients, since A has
integer entries. The characteristic equation of A is the equation det (A — A • /) = 0.
The characteristic polynomial is said to be monic, since the coefficient of Xs is
(—1)J = ±1; therefore, the characteristic equation can be written as

fc=l

where o i , . . . , ae £ Z. One of the most important results in matrix theory is the
Cayley-Hamilton Theorem, which states that a matrix satisfies its own characteris-
tic equation. We use it to analyze the pumping behavior of a counting finite-state
automaton.

The complexity of a counting finite-state automaton 415

Theorem 5.1. Let M = (Q, £, 6,1, F) be an NFA with state set Q = {qlt..., gs},
and let w, x, z G E*. There exist ai,..., aa € Z such that for every n € M,

#M{wxn+'z) = E at • #M{wxn+'-kz).
Jfc= 1

Proof. Let e, A", f be defined as in section 4, and let Ax = A°i * • • • * Aa\x\,
where x = o\ ... j- We define Aw and A' similarly. As discussed before, the
characteristic equation of Ax can be written as

Jt=l

where aB € Z. By the Cayley-Hamilton Theorem,

A*' = E akAx'~k.
k=l

By this observation and Lemma 4.1, we have for 1 < t < a and n £E M,

wxn+"z) = {Aw * Axn+' * A* * /"),-

= (Aw * Axn * Ax' * Az * f)i

= (A* * Ax" * (£ afc • Ax"k) * A* * f) .

= (E *k- (A* * A'n * Ax'~k *Az*f)Y

t
= E«* (Aw* Ax * Az * f)i

k=l

= E ak #6(qi,wxn+*-kz).
k=l

#M(wxn+*z) = £ #6(qi>wxn+>z)

= E (E a* » « - + • - * »))
9,-Gl k=l '

= X > * (E # % , « « » + • - * *))
*=i \ei '

= E a* • #M(wxn+'-kz). •
k=l

Stearns and Hunt [4] showed that the number of accepting computations over
all inputs of a given length—considered as a function of the length—satisfies a
homogeneous linear recurrence equation of finite degree having rational coefficients.

416 C. A. Rich and G. Slutzki

The technique of Theorem 5.1 can be used to strengthen and simplify the proof
of their result, obtaining integer coefficients and a recurrence equation which is
satisfied regardless of which state is considered to be the start state, by applying
the Cayley-Hamilton Theorem with the matrix A = £ A".

<res

6. Summary and Open Questions
We summarize some of the results contained heretofore, and ask open questions
about improvements and extensions of our results.

In §3, we showed that range(#NFA) includes range(#DFT)—the ranges of
deterministic finite-state transducers. It follows from the Generalized Sequential
Machine results of Ginsburg and Greibach [2] that the latter is the class of all
regular languages comprised of binary strings without leading zeroes. Is the class
of all context-free languages comprised of binary strings without leading zeroes
included in range(#NFAl?

In §4, we showed tnat the range s (#M(S*)) of a counting NFA M is in
NSPACE(n). How tight is this upper bound? Respecting the fact that the compo-
site numbers are the range of a counting NFA, is there a subclass of NSPACE(n)
which contains range(#NFA)? Are there ranges of counting NFAs which are comp-
lete for NSPACE(n)? NP? some other time- or space-bounded complexity class?

In §5, we showed that for a fixed input string, the number of accepting comput-
ations—considered as a function of the number of times a fixed substring of the
input is pumped—satisfies a homogeneous linear recurrence equation of finite degree
having integer coefficients. Does this lead to a simple pumping lemma which can be
used to show that a function is not in #NFA or a language is not in range(#NFA)?
Which arbitrary functions satisfying linear recurrences as in Theorem 5.1 are com-
puted by counting NFAs? That is, can we precisely characterize #NFA as a class
of functions satisfying a restricted class of recurrence equations?

References

[1] Ginsburg, S. "Examples of abstract machines," IEEE Trans, on Electronic Com-
puters 11: 2 (1962), 132-135.

[2] Ginsburg, S., and Greibach, S.A. "Abstract families of languages," Studies in
Abstract Families of Languages, pp. 1-32, Memoir No. 87, American Mat-
hematical Society, Providence, R.I., 1969.

[3] Hopcroft, J.E., and Ullman, J.D. "Introduction to automata theory, languages,
and computation," Addison-Wesley, Reading, Mass., 1979.

[4] Stearns, R.E., and Hunt, H.B. III. "On the equivalence and containment prob-
lems for unambiguous regular expressions, regular grammars, and finite
automata," SIAM J. Comput. 14 (1985), 598-611.

[5] Stockmeyer, L.J., and Meyer, A.R. "Word problems requiring exponential time,"
Proc. Fifth Annual ACM Symposium on the Theory of Computing (1973),
1-9.

The complexity of a counting finite-state automaton 417

[6] Stockmeyer, L.J. "The Complexity of Decision Problems in Automata Theory
and Logic," Doctoral Thesis, Dept. of Electrical Engineering, Massachu-
setts Institute of Technology, Cambridge, Mass., 1974.

[7] Valiant, L.G. "The complexity of computing the permanent," Theor. Corn-
put. Sci. 8 (1979), 189-201.

[8] Valiant, L.G. "The complexity of enumeration and reliablity problems," SIAM
J. Comput. 8: 3 (1979), 410-421.

(Received July 29, 1988)

Acta Cybernetica, Tom. 9, Faac. 4, Szeged, 1990

Decision problems arising from knapsack
transformations

Arto Salomaa*

Abstract

The transformations of knapsack vectors by modular multiplications give
rise to various intriguing decidability questions. While the most important
applications of the resulting algorithms belong to cryptanalysis, the algo-
rithms are certainly of interest on their own right. The basic problem we
are considering is whether or not a given vector is obtained from a super-
increasing vector by one or several modular multiplications. Various formu-
lations of this problem, as well as various other problems connected with it,
will also be discussed. Some interesting problems remain open.

1 Introduction. Connection with cryptography
It is well known that the knapsack problem is NP-complete. It is an especially lucid
example of an NP- complete problem - easily explainable even for a layman. We
are given a vector B = (6 j , . . . , bn) consisting of distinct positive integers, as well
as another positive integer a. If possible, we have to find a subset of the set (6 i , . . .
, £>„} such that the elements in this subset sum up to a. Equivalently, we have to
find a column vector C consisting of 0's and l's such that BC = a.

Knapsack vectors B can be used to encrypt messages as follows. A message is
divided into blocks C consisting of n bits. Such a block is encrypted as the number
BC. Even if one knows the vector B, decryption still amounts to solving the NP-
complete knapsack problem. However, decryption is equally difficult for the legal
recipient of the message and an illegal eavesdropper, usually called a cryptanalyst.
To obtain a public-key cryptosystem, the legal recipient must be given some secret
trapdoor information about the publicized vector B. In the earliest public-key
cryptosystem, [l], this is done in terms of super-increasing vectors.

A vector A = (o i , . . . , an) is termed super-increasing iff each entry in A exceeds
the sum of the preceding entries. The resulting knapsack problems (A, a) are easy
and can be solved as follows by just scanning A once from right to left. Thus,
we want to determine a bit vector C = (c i , . . . , cn)T such that AC = a. Clearly,
cn = 1 iff a > an. (If we do not include an in the sum, we cannot reach a because
E^Tj1 a,- < a„.) Next we compare o n _i with a — an or a, depending whether
cn = 1 or cn = 0. And so forth, until we reach a^. As a consequence we observe
that every knapsack problem (A, a), where A is super-increasing, possesses at most

'Mathematics Department, University of Turku, SF-20500 Turku, Finland

419

420 A. Sa.loma.ci.

one solution. This is a property of knapsack vectors referred to as injectivity in the
sequel.

A super-increasing knapsack vector A can be scrambled by modular multipli-
cations. One chooses a multiplier t and modulus m and reduces, for each t, the
product tai modulo m. The resulting vector B = (61,. . . , 6„) is publicized. For
technical reasons, it is assumed that the greatest common division (i, m) = 1 and
that m > £ r = i a». Consequently, t possesses an inverse t - 1 = u (mod m). The
pair (t, m) constitutes the trapdoor information known to the legal recipient who
can form the superincreasing A and decrypt a cryptotext fi by using A and the
smallest positive remainder a of u/3 modulo m. More details and examples can be
found in [2] and [3].

A cryptanalyst has to solve the knapsack problem determined by A' and a'
that looks like an arbitrary knapsack problem. However, it only looks like it be-
cause very few knapsack vectors are reachable by a modular multiplication from a
superincreasing vector. Indeed, Shamir, [5], gave an algorithm working in random
polynomial time for finding a super-increasing vector A' (not necessarily the same
as the original A) such that the given B results from A' by a modular multiplica-
tion. A deterministic polynomial-time algorithm, based on different considerations,
was given in [4].

The present paper discusses decision problems and algorithms arising in this
set-up. In what follows, the interconnections with cryptography will not any more
be important. All definitions and results will be given in terms of ordered n-tuples
of positive integers. The exposition is self-contained. A brief outline of the contents
of the paper follows.

In Section 2, the basic definitions and notations are given. They include also
concepts needed for our technical apparatus. Section 2 contains also some basic
results. Our technical tools will be developed in Sections 3 and 4 which include
also illustrative examples.

By definition, a vector B is super-reachable iff B results from some super-
increasing vector by a modular multiplication. The two algorithms given in Section
5 decide whether or not the given vector is super-reachable and, in the positive case,
produce the corresponding multiplier and modulus. Consequences, related decision
problems and modifications are discussed in Section 6. Section 7 deals with a
variant, where also permutations of given vectors are taken into account.

A vector is hyper-reachable iff it results from some super-increasing vector by
a sequence of modular multiplications. The wellknown example presented in the
basic paper [lj starts with the super-increasing vector A = (5,10,20). Using the
multiplier 17 and modulus 47, we obtain A' = (38,29,11). Another multiplier 3 and
modulus 89 are applied to A', yielding B = (25,87,33). Thus, B is hyper-reachable.
It is easy to show that B cannot be reached from A by one modular multiplication.
However, B is still super-reachable. It results, for instance, from (2,3,66) using the
multiplier 62 and modulus 99. (This result is obtained by the initial part of the
algorithm presented in Section 5.)

It is shown in Section 5 that there are properly hyper-reachable vectors, that
is, hyper-reachable vectors which are not super-readiable. Two algorithms for
hyper-reachability with a bounded number of modular multiplications are given
in Section 8. Section 8 also discusses some other decision problems dealing with
hyper-reachability. The concluding Section 9 contains some open problems.

Decision problems arising from knapsack transformations 421

2 Definitions and notations
An ordered n-tuple of distinct positive integers A = (a i , . . . , an), n > 3, is referred
to as a knapsack vector of dimension n. A knapsack vector A is increasing (resp.
super-increasing) iff

i-1
ay > ay_i (resp. ay > ^ O j)

t=i
holds for all j = 2,..., n. Clearly, every super-increasing vector is inreasing. For a
knapsack vector A, we define

max A = max {ay | 1 < j < n}.

For a positive number x, we denote by [x] the integer part of x, that is, the
greatest integer < x. For integers x and m > 2, we denote by (x, mod m) the least
nonnegative remainder of x modulo m. Clearly,

(x, mod m) = x — [x/m] • m

This equation will be often written in the form

x = (x, mod m) + [x/m] • m. (1)

We now define two different notions of modular multiplication. Consider a
knapsack vector A, an integer m > max A and a positive integer t < m such that
the greatest common divisor (t, m) = 1. If B = (6 i , . . . , 6„) is a vector such that

bi = (tai, modm), for t = 1 , . . . , n,

we write
A - + B . (2)

(t,m)

The integers t and m are referred to as the multiplier and the modulus, respectively.
Since every knapsack vector A satisfies max A > 3, we have always m > 4. The

condition t < m is no loss of generality because if t > m, we can subtract [t/m] • m
from t without affecting the result of modular multiplication. The equation t = m
is not possible because (t, m) = 1. The latter condition guarantees also that t
possesses an inverse t - 1 = u such that

iu = 1 (mod m)

and 1 < tx < m. Since clearly m > max B, we have also

B - ^ A . (3)
(u,m)

We now come to the other notion of modular multiplication. It means simply
the strengthening of our previous notion, where we make the additional assumption
that m > o,-. If this condition is satisfied and (2) holds, we write

A —• B. (4)
(M,t,m)

Observe that now a condition analogous to (3) does not necessarily hold because
we cannot conclude that m > bi. Clearly, (4) implies (2) but not vice versa.

422 A. Salomaa

The vector B is (A, t, m)-reachable (resp. {A,t, m)-super-reachable) iff (2) holds
and A is increasing (resp. (4) holds and A is super-increasing). B is super-reachable
iff B is (A, t, m)-8uper-reachable, for some triple (A, t, m).

Observe that a notion of reachability, defined analogously to that of super-
reachability, does not make much sense because apparently every vector would be
reachable.

Let r > 1 be an integer. A knapsack-vector B is r-hyper-reachable iff there is a
sequence of vectors Ao, A i , . . . , Ar = B such that Ao is super-increasing and, for
each t = 0 , . . . , r — 1, there are t, m such that

A, —» A,-+i.
(M,t,m)

Observe that t and m may be different for different values of t. The notions of
1-hyper-reachability and super-reachability coincide.

In the Introduction the vector B = (25,87,33) was defined in way which showed
that it is 2-hyper-reachable. It was also observed that B is, in fact, super-reachable.
Similarly, the derivation chains

and

i1-2> 4) ,«77*J5'2'4), JTi J1'10'8) = Bl
(M, 5,8) (AI,5,12)

(2,4,7) —» (14,4,1) —• (2,12,3) —• (4,1,6) = jB2

show that the vectors Bi and B2 are 2-hyper-reachable and 3-hyper-reachable,
respectively. It will be seen in Example 2 of Section 5 that B2 is super-reachable,'
whereas B± is not super-reachable.

We would like to emphasize that all our examples only illustrate some points in
the theory and are, therefore, "small". Cryptographic ally interesting vectors would
have to be much bigger, say n = 200.

A vector is hyper-reachable iff it is r-hyper-reachable, for some r. We now
define a notion that enables us to construct easily examples of non-hyper-reachable
vectors.

A knapsack vector A = (a i , . . . , a „) is infective iff the function f(C) = AC,
defined for n-dimensional bit column vectors C, is injective. Equivalently, the
injectivity of A means that, for every a, the knapsack problem determined by A
and a possesses at most one solution.

Theorem 1 Every hyper-reachable vector is injective. Hence, every super-
reachable vector is injective.

Proof. The theorem is a consequence of the following two facts (i) and (ii).
(i) Every super-increasing vector A is injective. Indeed, assume that AC = AC'

holds for some bit column vectors C and C'. Then the last components of C and C'
coincide, because if one of c„ and c'n equals 0 and the other equals 1, the numbers
AC and AC' cannot be the same. Similarly we conclude by descending induction
that, for all t = 1 , . . . , n, c,- = Consequently, C = C'.

(ii) The relation (4) preserves injectivity. Assume the contrary: A is injective
and there are two distinct vectors C and C' such that BC = BC'. We obtain by
(4)

B —• A,
(u,m)

Decision problems arising from knapsack transformations 423

where u is the inverse of t modulo m. This implies that uBC = uBC' and, con-
sequently, AC = AC' (modm). Since m > Oj, we conclude that AC = AC',
contradicting the injectivity of A. •

Theorem 1 shows that if a knapsack vector is not injective, it cannot be hyper-
reachable. For instance, every vector, where some component equals the sum of
some other components, is noninjective. We now come to notions that are quite
essential in the subsequent proofs.

Consider a knapsack vector A = (01 , . . . , o„), an integer m > max A and posi-
tive integer t < m such that (t, m) = 1. The growing sequence associated with the
triple (A, t, m) is the sequence of triples (A(&), t,m+ kt), k = 0 ,1 ,2 , . . . , where

A(k) = (ai + k • [io i /m] , . . . , a„ + k • [tan/m\).

Thus, the growing sequence associated with (A, t, m) begins with (A, t, m). The
terms multiplier and modulus refer also to the numbers t and m + kt in the triple
(A(k),t,m + kt).

For instance, if A = (1,2,3),t = 4, m = 5, then the growing sequence begins
with the triples

((1, 2, 3), 4,5), ((1,3,5), 4,9) and ((1,4,7), 4,13).

If A = (1,4,7), t = 3, m = 8, then the growing sequence is

((1,4 + k, 7 + 2k), 3,8 + 3Jfc), A: = 0,1, 2 ,

As the third example, take A = (1,5,6), t = 7, m = 8. Then the associated growing
sequence is

((1,5 + 4k, 6 + 5k), 7,8 + 7k), k = 0 ,1 ,2 ,
A number t, 2 < t < n, is termed a violation point in a knapsack vector A iff
a,- < E ' l . j ay. Thus, the tth componenet of A violates the requirement of A being
super-increasing. If A is increasing, every violation point t in A satisfies t > 3.

The goal of a triple (A, t, m) (defined as above) is the first triple (A(k), t, m+kt)
in the growing sequence such that A(k) is super-increasing and m + kt is greater
than the sum of the components of A (A;), provided such triples exist. Clearly, a
triple can be its own goal and some triples have no goal. In particular, if A is not
increasing, then (A, t, m) cannot possess a goal. This follows because a,- > a,+ i
implies that [taj/m] > [taj+i/m] and consequently, for all k,

ai + A; • \tai/m} > a,+i + k • [iaj+i/m].

Returning to the three examples considered above, t = 3 is a violation point in
the initial vector of the first and third example. In the second example the initial
vector, as well as all vectors in the growing sequence are super-increasing. The
goal in the first example is the third triple in the growing sequence, although in
the first triple neither the vector is super-increasing nor the modulus big enough.
The sequences in the second and third examples possess no goals. In the second
example the modulus will never become big enough. The same holds true for the
third example, although the violation point t = 3 in the initial vector is "rescued"
already by the second vector (1,9,11). (The formal definition of a rescuer will be
given below.)

The following more general result concerning super-reachable vectors can be
established already at this stage.
Theorem 2 The vector (t,» —l,t — 2 , . . . ,i—j), i—j > 1, is super-reachable exactly
in case if both j = 2 and i > 4.

424 A. Salomaa

Proof. If j < 2, the vector is not at all a knapsack vector. If j > 2, then the vector
is not injective and hence, by Theorem 1, cannot be super-reachable. The same
conclusion can be made if j = 2 and i = 3, because (3,2,1) is not injective. If j = 2
and t > 4, we have

(1,3,5) — . (» , » • 2) . (5)
(AF,T,2« + 1)

If j = 2 and t = 4, we have

^ ' V ^ s / 4 ' 3 ^
In this case (5) does not hold because the modulus is too small but we may use the
second triple in the growing sequence. •

We define finally a notion in some sense dual to that of a growing sequence.
Let A, B, t, m be such that (2) is satisfied, t < maxB and m > 2 max B. Then the
diminishing sequence associated with the triple (A, t, m) is the sequence of triples

(A(-lfc), t,m- kt), 0 <k<s,

where s is the smallest integer such that m — st < 2 max B and the vectors
A(—k) are defined by descending induction as follows. A(—0) = A. Assume that
A(k) = (di,..., dn) has been defined, and that we still have m — kt > 2 max B.
(By the choice of m, this condition holds for k = 0.) Then

A(-k - 1) = (dx - [tdi/(m - At)], ...,dn- \tdn/(m - At)]).

Observe that t < m — st. Diminishing sequences are always finite, whereas growing
sequences are infinite. However, in the sequel only finite initial segments of growing
sequences will be of interest.

3 Fundamental lemmas I
We will now develop the technical tools needed. As will be seen, most of the
technical apparatus deals with growing and diminishing sequences. We begin with
properties of growing sequences. In Lemmas 1-3, the notation A, t, m and A(k) is
the same as in the definition of a growing sequence.

Lemma 1 If A is increasing or super-increasing, then each vector in the growing
sequence associated with (A,t,m) is increasing or super-increasing, respectively.

Proof. The inequality a»_i < a< implies the inequality [ia^-i/m] < [ta;/m]. Hence,
if A is increasing then so is every A(&).

Assume, next, that

t - i

J'=I Consequently,
« - i ¿-1
5 > a y / m] < [(t £ a y) / m] < [toi/m].
i=l]=i

This implies that, whenever A is super-increasing, then so is every A(k).

Decision problems arising from knapsack transformations 425

Lemma 2 Assume that A —• B holds for some B. Then A(k) —• B holds
(t,m) V (t,m+fct)

for all k. If B is (A,t,m)-reachable fresp. (A. t,m)-super-reachable), then, for all
k,B is also (A(k),t,m+kt)-reachable (resp. (A(k),t,m+ kt)-super-reachable).

Proof. Denoting B = (6 i , . . . , 6n), we infer by the assumption:

bi = (tai, modm), for 1 < t < n.

Clearly, (t, m + kt) = 1. By (1), for all k,

t(ai + k • [toi/m]) = bi + [tcii/m] • m + [toj/m] • kt = 6,- + [ioj/mJ(m + kt).

Since by the definition of bi we have bi < m + kt, we conclude that

(t(aj + k • [ia,/m]), mod (m + kt)) = bi.

Therefore,
A(k) • B. (6)

By Lemma 1, A(k) is increasing if A is and hence, by (6), the claim concerning
reachability follows.

Assume that B is (A, t, m)-super-reachable. By Lemma 1, each A (A:) is super-
increasing. Moreover, n

<H < m.
i=l

This implies that
n n

+ k[tai/m\) < m + ^2,k • [tai/m] < m + k\t(ai + ... + an)/m]
»=1 »=i

< m + k - [t] = m + kt.
Consequently, B is (A(k), t, m + fct)-super-reachable. •

It is an immediate consequence of Lemma 2 that every super-reachable vector
can be obtained from infinitely many super-increasing vectors by modular multip-
lication with a big enough modulus. The special case, where \tOi/rn\ = 0 for all t,
can be easily handled separately.

We now investigate the question of which triples (A, t, m) possess goals. Recall
that every violation point t of A satisfies, by definition,

» - l

i=i
Assume that also

[iai/m] + . . . + [iaj_i/m] < [ia</m]. (8)
(Observe that (7) and (8) are by no means contradictory.) Then the smallest integer
x such that

»- l » - i
Y^ ay + * Y y t a i ! m 1 < a< + z • [toi/m] (9)

426 A. Salomaa

is called the rescuer of t. Explicitly,
t - i »-1

* = i ((E a i) - «vifaM - E f t a i / m]) i + 1 -
3=1 3=1

By (7) and (8), x is a positive integer.
If (8) holds for every violation point t, then the rescuer of A is defined to be

the maximum of the rescuers of all violation points t.
We consider, next, the situation where the modulus is not big enough:

n
m < Y < H - (10)

•=i

Assume that also n
5>Oi/m] < t. (11)
»=i

Then the smallest integer y such that
n n

I T " » ' ^ H K ' / H < " » + ! / * (1 2)
i=l t=l

is called the rescuer of m. Explicitly,

» = i ((E « i) - » ») / (* - ¿ [« « . - / H i i + i -
«=i »=i

We infer by (10) and i l l) that the rescuer of m is a positive integer. It is important
to notice that if (9) (resp. (12)) holds for some x (resp. y) then it holds for all
integers > x (resp. > y) as well. This means that if i ' is rescued by fc', that is, t' is
not a violation point in A(k'), then t' is not a violation point in any A(k), k > k'.
Hence, if we have to rescue several numbers (possibly including m), then we may
go further in the growing sequence until all of them have been rescued (if ever).
For the sake of completeness, we say that 0 is the rescuer of t (resp. m) if (7) resp.
(10)) does not hold.

Lemma 3 A triple (A,t, m) possesses a goal iff (8J holds whenever (7) holds and,
moreover, (ll) holds in case (10) holds. If these conditions are satisfied, the goal
is (A(ko),t,m+ k(,t), where ko is the maximum of the rescuers of A and m.

Proof. If ko is defined as in the statement of the lemma, then A(k0) is super-
increasing (because it has no violation points) and m + kot is greater than the sum
of the components of A(fco). The definition of ko guarantees that we obtain the
smallest number satisfying these conditions. On the other hand, if some t satisfies

Шbut in (8) we have > instead of <, then i is a violation point in every A(k).
nilarly, if (10) holds but (l l) does not hold, then for all k,

n
YA« + fc[tOi/m]) > m + kt.
»=l

Decision problems arising from knapsack transformations 427

Hence, the modulus is too small in every triple of the growing sequence. •
We now give some illustrations. The examples are given in terms of tables,

where A, t, m, B and the goal are listed. Here B is the result of modular multipli-
cation (that is, the vector satisfying (2)). By the second sentence of Lemma 3, the
goal gives items showing that B is super-reachable. If no goal exists, we use the
abbreviations NR(t = »') and NR(m) to mean that a violation point t = »' or too
small a modulus m does not possess a rescuer (that is, (8) or (11) is not satisfied).
In some examples there may be several such failures. The existence of one failure
already shows that there is no goal.
Example 1 We begin with some vectors considered above in Section 2.

A t m B Goal
(1,2,3) 4 5 (4,3,2) k = 2, (1,4,7),4,13
(1,4,7) 3 8 (3,4,5) NR (m):0 + 1 + 2 > 3
(1,5,6) 7 8 (7,3,2) k = 1 rescuer of t = 3, NR (m)
(1,3,5) 4 9 (4,3,2) k= 1, (1,4,7),4,13

We continue with some other illustrations. Different cases concerning which
numbers can be rescued will be included.

A t m B Goal
(1,3,6) 3 7 (3,2,4) NR (m)
(2,3,4) 5 6 (4,3,2) NR (i = 3), NR (m)
(1,2,3) 5 6 (5,4,3) fc = l , (1,3,5),5,11
(1,5,12) 8 13 (8,1,5) NR (m)
(1,2,10) 8 15 (8,1,5) Own goal

(1,8,13,36,57) 87 200 (87,96,131,132,159) k = 2,(1,14,23,66,105),87,374
(1,34,67) 97 100 (97,98,99) k = 3,(1,130,259,),97,391

(1,15,29,44) 93 100 (93,95,97,92) ifc = 2,(1,41,81,124),93,286
(2,3,5,8) 4 9 (8,3,2,5) NR (i = 4), NR (m),

k — 1 rescuer of t = 3.

4 Fundamental lemmas II
The first lemma in this section deals with an interplay between the multiplier and
the modulus. We then discuss properties of diminishing sequences. Finally, growing
and diminishing sequences are tied together.

Lemma 4 Assume that max B < t < m and

A—• B (resp. A —• B) (13) (t,m) V (M,t,m) ' V '

holds. Then the items A',t' < max B and m! defined below satisfy

A! —» B' (resp. A' —> B'). (14)
(t ' ,m') V (M ' , t ' ,m ') ' V '

If B is super-reachable, then B is (A',t',m')- super-reachable with t' < max B.

428 A. Salomaa

Proof. Assume that in (13) max B <t < m. We define another triple (Ai, ti, mj)
such that ti < t and (14) holds with (A', f , m') replaced by (Ai, tit mi). (14) with
t1 < max B is then established by repeating this construction as many times as
necessary.

Our definition interchanges the multiplier and the modulus as follows:

mi =t,ti- (- m , modi), Aj = ([tai /m], . . . , [tan/m]).

Clearly, ti < t and (t i ,mi) = 1. By (l) and our assumption (13) we obtain, for
1 < t < n,

ti[taj/m] = bi — tai = bi (modi).
Since bi < max B <t, we may write further

(ti[taj/m], modi) = 6,-.

Corresponding to the "resp."-statement in parentheses in (13) and (14), we still
have to show that if m exceeds the sum of the components of A, then t exceeds the
sum of the components of Ai. But this is clear. If m > then also

n n

t > E t a i / m ^]D t a i / m i -
•=1 t = l

To prove the last sentence of Lemma 4, we show that if A is super-increasing then
so is Ai. If A is super-increasing, we have for 2 < * < n,

t - i
y^ taj/m > tdi/m.
J'=I

(The original inequality is multiplied by t/m.) Hence,

¿ - 1
X > a y / m] < [tai/m]. (15)
3=1

Assume that we have equality in (15). Then

<-i
^^m[iay/m] = m[ioi/m],
j ' = i

Applying again (1) we obtain

« - i
^(ioy - b}) = tdi - bi
3 = 1

and, hence,

¿ - 1 « - l

3 = 1 3 = 1

Decision problems arising from knapsack transformations 429

The coefficient of t on the right side is positive and, consequently,
»-1

t < bi — ^ bj < bi < maxB,
J'=I

which contradicts the assumption t > max B. This implies that we must have strict
inequality in (15). Hence, Ai is super-increasing. •

As an illustration of the technique of Lemma 4, observe first that the vector
(7,3,2) is ((7,15,38), 73, 84)-super- reachable. Here the multiplier 73 is much too
big. The technique yields, successively, the following triples.

((6,13,33), 62,73), ((5,11,28), 51,62),

((4,9,23), 40,51), ((3,7,18), 29,40),

((2,5,13), 18,29), ((1,3,8), 7,18).
The vector (7,3,2) is super-reachable with respect to all of these triples. In the last
triple the multiplier is sufficiently small.

Similarly, the vector (46,45,40,30) is ((4,5,10,20), 49,50)-super-reachable. It is
also super-reachable for each of the triples

((3,4,9,19),48,49), ((2,3,8,18),47,48), ((1,2,7,17), 46,47).

In case of the ((2,5,8,17),32,33)-super-reachability of the vector (31,28,25,16) only
one interchange between multiplier and modulus makes the new multiplier suffici-
ently small. The vector (31,28,25,16) is also ((1,4,7,16),31,32)- super-reachable.

In the following lemma we use the same notation as in the definition of dimi-
nishing sequences.

Lemma 5 Every triple (A(—k),t, m— kt), 0 < k < s, in the diminishing sequence
associated with the triple (A, t, m) satisfies

A(-k) B. (16)

Moreover, if A is increasing, then so is every vector A(—k), 0 < k < s.

ace by induction on k. For k — 0, (16) h
quence. Assume that (16) holds and we

m — kt > 2 max 5 . (17)

Proof. We prove the first sentence by induction on k. For k — 0, (16) holds by the
definition of the diminishing sequence. Assume that (16) holds and we still have

We will show that
A(-k-l) —• B. (18)

(i,m-(fc+l)t)
Denote A(-Jb) = (d i , . . . , dn). Then the ith component of A[—k — 1), 1 < %< n, is

di - [tdi/(m- Art)].

Multiplying this by t and using (1) and (16), we obtain

tdi - t[tdi/(m - A;t)] = bi + (m - kt)\tdi/(m - A:i)] - t[tdi/[m - Jfct)] =

= bi + (m - (k + l)t)[idj/(m — Art)] = &i(modm - (A;+ l)t).

430 A. Salomaa

By (17) and the assumption t < max B made in the definition of the diminishing
sequence,

m- (Jfc+ l)f > max B > bi.
This implies that

(t[di - [tdi/[m - to)]), mod m — (k + l)t) = 6<

and, consequently, (18) holds.
The second sentence of Lemma 5 is established also by induction on k. Assume

that A = A(—0) is increasing. We make the inductive hypothesis that =
(di...., dn) is increasing and (17) holds. Denote A(—k — l) = (e i , . . . , en). Because
of (17) ana the inequality t < max B, we obtain

m — kt> 2t. (19)

Consider now an arbitrary t, 1 < t < n — 1. Since A(—k) is increasing,

¿,•+1 = di + a for some a > 1.

Assume first that a > 1. Then

ei+i = di + a- [t(di + a)/m- ibt)] > di + a - (1 + [id,/(m - Jfct)] + [ta/(m - Jfci)])

= ei + (a - 1) - [i a / (m - kt)} > ei.
Here the first inequality follows because always [x + y] < [x] + [y] + 1, and the
second because, by (19),

[ta/(m - kt)} < ta/(m - kt) < a/2.

Assume, secondly, that a = 1. In this case [ta/(m — fct)] = 0. If

[t(di + 1)/(m - kt)\ = \tdi/(m - to)),

we obtain ej+i > ê . Hence, suppose that

[t{di + 1)/(m - Ai)] = \tdi/(m - to)] + 1. (20)

(By the above estimate for e^+i there are no other possibilities. (20) would imply
that e,+ i = Cj.) Denote the right side of (20) by /J + 1. Hence,

(m - kt)P <tdi<{m- kt)(0 + 1) < t(di + 1).

Assume that tdi < (m - kt)(0 + |). Hence, by (19),

tdk + t < (m - kt){/3 + i) + t = (m - kt){0 + 1) + t - < (m - kt){0 + 1),

L 2,

a contradiction. Hence, tdi > (m- kt)(/3 + i) . But now, by (16),
bi = tdi ~ P{m - kt) > (m - to)/2.

This implies that m-kt < 26,- < 2 maxB, contradicting (17). This shows that (20)
cannot hold. •

Decision problems arising from knapsack transformations 431

It is important to note that certain properties preserved by the growing sequ-
ences are not preserved by the diminishing sequences. A may be super-increasing
although the other vectors in the diminishing sequence are not. For instance, choose

A = (1,14,23,66,105), t = 87, m = 374,

implying that B = (87,96,131,132,159) and, hence t < maxB and m > 2 max B.
Now

A (- l) = (1,11,18,51,81),
which is not super-increasing. Similarly, we see that

(^ ' V W 4 ' 3 ' 2)
but when we go to the first triple in the diminishing sequence, we observe that not

(1.3,5) (4,3,2)
(M,4,9)

because 9 = 1 + 3 + 5. Thus, the M-relation is not preserved. In the second triple
((1,2,3),4,5,) of the same diminishing sequence neither is the M-relation satisfied
nor is the vector super-increasing. Such negative results are natural in view of the
following lemma and reflect the fact that some properties are rescued from a certain
point on in the growing sequence. The same properties are lost at this point in the
diminishing sequence.

In the statement of the following lemma, the notation A,t,m,s, B is the same
as in the definition of the diminishing sequence.
Lemma 6 Assume that (A(—k), t,m— kt), 0 < k < s, is the diminishing sequence
associated with the triple (A, t, m). Denote A(—s) = C. Consider the initial segment

(iC(k), t,m-st + kt), 0 <k<s,

of the growing sequence associated with the triple (C = C(0),t, m— si). Then, for
each k such that 0 < k < s,

C(k) = A (- (s - A:)). (21)
Proof. Our intention is to use induction on k. For this purpose, it is useful to
denote

A(- (a -k)) = (ak,..., ak), C(k) = (ck, ...,ck),
for 0 < k < s. Clearly, A(—(s — s)) = (o i , . . . , o„) = A. We consider an arbitrary k
and i in their respective ranges. To simplify notation, we write ak = af and ck = ck.
By the definitions of growing and diminishing sequences,

ck+1 = ck + [ico/a] and afc+i = afc + [tafc+i/(a + (jfc + 1jtj]| (22)

where a = m — st. We have to establish ck = ak, for all k with 0 < k < s, in order
to establish (21). By the choice of C(0), we have a0 = c°. Using (22), we show that
c1 = a1. Thus, we have to prove that

[to/a] = [ta.1 /[a + t)], (23)

where we denote c° = o° = a. By Lemmas 2 and 5,

ta1 = tc1 and, hence, a1 = c1 (moda + í).

432 A. Salomaa

Because a0 = c°, we infer that

[to/a] = [ta1 /[a +1)] (moda + t) . (24)

(24) can hold without (23) holding only in case that the absolute value of the
difference between the two bracket expressions is a positive multiple of a + t. We
prove that this is impossible by showing that both of the bracket expressions (which
clearly are nonnegative) are less than a + t. Since a > maxC(O) = max A(—a) >
a, we obtain

[ta/a\ <t <a + t.

The bracket expression on the right side of (24) is estimated by repeated use of the
principle [z] < x, yielding when we denote t/(a + t) = x

[ta1/(a + t)l < ta1/{a + t)= -^—{a + [ta1/{a + t)])
Oc •+• v

a -+- t a +1

<a{x + x2 + ... + xp) + x^a1

< o/(1 - x) + xP+V = a + at/a + x^a1

< a + t + xp+1a1.

This holds for arbitrarily large p, which means that the term xp+lal can be made
arbitrarily small. Consequently,

[ta1/(a + t)] < a + t.

By (24), (23) holds. We have shown that a1 = c1.
The inductive step from ak = ck to a f c + 1 = c f c + 1 is now very easy. We consider

only the initial segment of the diminishing sequence to the triple (A(—(a — k)), t, m—
(a — A;)t). We start the growing sequence from this triple. Also now we have to
establish (23), where now a = m — (a — k)t, a = ak = ck anda1 = a f c + 1 . The proof
is exactly the same as above. This completes the induction and, hence, (21) holds.

5 Super-reachability
We are now in the position to establish one of our main results.

Theorem 3 A knapsack vector B is super-reachable iff B is (A,t,m)-reachable,
where t < m a x B , m < 2maxB and the triple (A, t, m) possesses a goal.

Proof. We already have developed all the necessary technical apparatus. The " i P -
part follows by Lemma 2 and the definition of the goal. Lemma 3 gives a simple
method for deciding whether or not a given triple possesses a goal.

For the "only if"-part, assume that B is super-reachable. By Lemma 4, B
is (A, t, m)-super-reachable with t < maxB. If m < 2 maxB, we are finished.
Otherwise, we form the diminishing sequence

(A(-fc) , t, m - kt), 0 <k <s,

Decision problems arising from knapsack transformations 433

where m — st < 2 max B. Since A is increasing, we conclude, by Lemma 5, that B
is (A(—s), t, m — st)-reachable and, by Lemma 6, that the triple (A(—s), t,m — st)
possesses a goal. •

The algorithm due to Theorem 3 can be described as follows. Given B, choose
max B < m < 2 max B and u < mwith(u, m) = 1. Check whether the vector A
satisfying

B —• A
(u,m)

is increasing and u - 1 = t < maxB. If not, choose another pair (u, m). Else check
whether the triple [A, t, m) possesses a goal. If not, choose another pair (u, m).
Otherwise, B is super-increasing. The goal also gives a super-increasing vector,
multiplier and modulus showing this.

The time complexity of the algorithm is estimated in [4] . Complexity in terms
of max B is at most cubic. Complexity in terms of n depends on the upper bound
for max B in terms of n. Such upper bounds are given, for instance, in [1] and
[5]. They are always arbitrary and leave out most of the instances, whereas the
algorithm of Theorem 3 works independently of any bounds, for max B. Reductions
in the estimates can possibly be made by a more detailed analysis of the number
of successful pairs (u, m).

Example 2 We now give some illustrations of the algorithm of Theorem 3.
Again, for the sake of readability, the illustrations are very small in size. We
consider first the vectors (1,10,8) and (4,1,6) shown 2- and 3-hyper-reachable in
Section 2. Consider first the vector (4,1,6). The pairs (u, m) to be investigated are
listed in the following table.

m 12 11 10 9 8 7
u 5,7,11 2,3,...,10 3,7,9 2,4,5,7,8 3,5,7 2,3,4,5,6

The next table shows the actual application of the algorithm. The leftmost column
lists all the pairs (u, m) which might lead to success, that is, u - 1 = t < maxB = 6
(inverse is taken modulo m), and the vector A obtained from B = (4,1,6) by
modular multiplication due to (u, m) is increasing. The items t and A are listed
in the next two columns. If A is not super- increasing or m < oi + o2 + 03, we
investigate whether or not the violation point »' (here only t' = 3 is possible) and
the modulus m can be rescued. If they can, the last column indicates the value of
k for which the goal is reached in the growing sequence associated with the triple
(A, t, m). The last column also indicates the three items of the goal. If at least one
of the numbers cannot be rescued, we use the abbreviations NR(t = *') and NR(m)
as before.

u, m t = u - 1 A Goal
3,11 4 (1,3,7) k = 1, (1,4,9),4,15
9,11 5 (3,9,10) NR(i = 3), NR(m)
5,8 5 (4,5,6) NR(i = 3), NR(m)
2,7 4 (1,2,5) k = 2, (1,4,9),4,15

It is interesting to note that in both cases leading to success we obtain the same
triple ((1,4,9),4,15). Thus, this triple can be visualized as the minimal or prime
triple for which (4,1,6) is super-reachable. More specifically, whenever (4,1,6) is
(A, t, m)-super-reachable, then t > 4 and m > 15. This follows because the algo-
rithm would produce any smaller values of t and m. Of course, m can be made

434 A. Salomaa

arbitrarily large in the growing sequence. Also t can be made larger by applying
an argument similar to that used in Lemma 4 in the reverse order.

The vector (4,1,6) = B shows also that it is in general not sufficient to investi-
gate candidates m < 2maxB, without taking into account the growing sequence.
If this would be done for (4,1,6), we would never find the solution. However, it is
possible to obtain the following general result.

Theorem 4 A knapsack vector B is super-reachable iff B is (A, t,m')-super-
reachable where t < max B and m' < 2 max5(1 + max B).

Proof. The upper bound for t is obtained by Lemma 4 exactly as before. To obtain
an upper bound for the modulus, we have to deduce an upper bound for the moduli
m + kt in the initial segment of the growing sequence consisting of triples up to
the goal. We know that t < max B and m < 2 max B. Since a goal is reached,
the difference between the sum of the components of the vector and the modulus
decreases at least by one in every step from a triple to the next triple in the growing
sequence. This holds true also as regards the difference defined by any violation
point. The goal is reached when all of these differences are negative. Hence, the goal
is reached latest in m (= the original modulus) steps, implying that k < 2 max B.
Consequently, rri < 2 max B + (2 max B) maxB. •

The statement of Theorem 4 is simpler than that of Theorem 3. However, the
resulting algorithm is considerably less efficient, as shown even by examples of small
size.

Example 3 Consider now the vector (1,10,8), shown 2-hyper-reachable in Sec-
tion 2. We have to consider moduli m < 20. For each m, we must have u < m and
(u, m) = 1. The following table of pairs (u, m) that may lead to success is obtained
exactly as in Example 2.

u, m t = u - 1 A Goal
7,20 3 (7,10,16) NR (i = 3), NR (m
9,20 9 (9,10,12) NR (» = 3), NR (m

'2,17 9 (2,3,16) NR (m)
6,17 3 (6,9,14) NR (»' = 3), NR (m
5,14 3 (5,8,12) NR (i = 3), NR (m
3,13 9 (3,4,11) NR (m)
4,11 3 (4,7,10) NR (»' = 3), NR (m
5,11 9 (5,6,7) NR (i = 3), NR (m

We conclude that (1,10,8) is not super-reachable. Hence, we have established the
following result.

Theorem 5 There are 2-hyper-reachable knapsack vectors that are not super-
reachable.

It is an open problem whether or not r-hyper-reachable vectors form a strictly
increasing hierarchy with r increasing. Other examples of strictly 2-hyper-reachable
vectors are easy to construct.

Example 4 We now give the table for each permutation of the vector (2,3,4).
In each case only values m < 8 have to be considered.

(2,3,4): No candidates (u, m)

Decision problems arising from knapsack transformations 435

u, m t -= u" 1 A Goal
(3,4,2): 3,8 3 (1,4,6) NR (m)

2,5 3 (1,3,4) k = 1 rescues t = 3, NR (m)
(4,2,3): 2,7 4 (1,4,6) NR (m)
(2,4,3): 4,7 2 (1,2,5) k = 2, (1,2,7),2,11

3,5 2 (1,2,4) k = 3, (1,2,7), 2,11
(3,2,4): (5,7) 3 (1,3,6) NR (m)
(4,3,2) (4,5) 4 (1,2,3) k = 2, (1,4,7),4,13

The study of (4,3,2) is interesting because it shows that we cannot reject non-
injective candidates A in spite of Theorem 1. This is due to the fact that injectivity
can be gained later on in the growing sequence.

We now investigate similarly all permutations of the vector (1,2,4).
(1,2,4): super-increasing

u, m t = u~1 A Goal
(1,4,2): 3,8 3 (3,4,6) NR (»' = 3), NR (m)

2,5 3 (2,3,4) NR (t = 3), NR (m)
(2,1,4): 5,7 3 (3,5,6) NR (i = 3), NR (m)
(2,4,1): 4,7 2 (1,2,4) k = 1, (1,2,5),2,9

3,5 2 (1,2,3) k = 2, (1,2,5),2,9
(4,1,2): 2,7 4 (1,2,4) k= 1, (1,3,6),4,11
(4,2,1): 4,5 4 (1,3,4) k = 1 rescues t = 3, NR (m)

Summarizing we obtain the following result.

Theorem 6 Consider knapsack vectors with all components < 4. Exactly the fol-
lowing ones are super-reachable:

(2,4,3), (4,3,2), (1,2,4), (2,4,1), (4,1,2)

Proof. By Theorem 1, no permutation of any of the vectors (1,3,4), (1,2,3), (1,2,3,4)
can be super-reachable. The remaining cases were classified in Example 4. •

6 Consequences and modifications
Several other decidability results can be obtained using our basic technique of
growing and diminishing sequences. We mention a minimization result concerning
the multiplier and the modulus.

Theorem 7 Assume that B is super-reachable. Then the smallest m (resp. the
smallest t) such that B is (A, t,m)-super-reachable for some A and t (resp. A and
m) is effectively computable.

Proof. By Theorem 3 or Theorem 4, some triple (A, t, m) is obtained. A straight-
forward way of minimizing the modulus would be a systematic search through all
values m' < m. For each m', it suffices to test the finitely many triples (A', f', m'),
where t' < m' and the sum of the components of the super-increasing A' is less
than m'. However, a much more efficient algorithm (running in time at most cubic

436 A. Salomaa

in terms of max B) is obtained by Theorem 3: the smallest modulus can be fo-
und from the triples produced by Theorem 3. The same holds true as regards the
smallest multiplier t. We have presented several examples, where it is necessary
to go into the growing sequence in order to find the smallest modulus, as well as
examples, where the smallest multiplier is considerably less than max B. •

A consequence of Theorem 3, apparent also in the examples above, is that
a vector B is not super-reachable if there are no candidates (A,t ,m) , where A
is increasing, t = u~1 < max B, m < 2 max B and A results from B by modu-
lar multiplication using u and m. The special case, where B itself is increasing
but not super-increasing, is interesting. Considering small examples, one is temp-
ted to conjecture that growing sequences do not at all come into use, that is,
one may restrict the attention to vectors A reachable from B by modular mul-
tiplication using u and m. However, the following example shows that this con-

jecture is false. Choose B = (87,96,131,132,159), m = 200andn = 23. Then
t = 87 and A = (1, 8,13, 36, 57), which is not super-increasing. However, the triple
(A, t, m) possesses the goal

((1,14,23,66,105), 87, 374),
reached for k = 2. Here 374 > 2 max B.

The following result can be obtained along these lines.
Theorem 8 If B = (61,62,63) is increasing and super-reachable, then B is
(A, t,m)-super-reachable, for some t < maxB,m < 2maxJ5.
Proof. There must be an increasing A such that

B —• A
(u,T7l)

where m < 2 max B, t = u~1 < max B. Suppose that no such A is super-increasing.
Consider an arbitrary A = (oi, a2,03). Hence, 3 is a violation point: a3 < ai + 02.
This implies that ta3 < ta\ + ta2. Denote tai = bi + ctim,i = 1,2,3. (Hence,
[toi/m] = a,-.) We obtain

63 + a 3 m < 61 -I- 62 + (a i + Q2)m.

If now <23 > ai + 0:2, we obtain further

63 + m < 63 + (a3 - ai - 02)»^ < 61 + 62 + (ai + a2 - oc3)m + (a 3 - a x — a 2)m =

= &i + 62 < 61 + m.
Consequently, 63 < 61, which contradicts the assumption of B being increasing.
This implies that a3 < ai + 012, which shows that the triple (A, t, m) possesses no
goal. Since A was arbitrary, we conclude that B is not super-reachable, contrary
to the assumption. •

It was seen above that the result of Theorem 8 does not hold true if the number
n of the components of the vectors equals 5. It is an open problem whether or not
the result holds for n = 4.

Our final example in this section is of a somewhat different nature.
Example 5 Shamir's algorithm (see [5] or [2]) is based on the assumption that

the given vector B is super-reachable. Tne algorithm usually produces an interval
such that, whenever the number u/m written in lowest terms lies in this interval,
then B is (A, t, m)-super-reachable, t = u - 1 and

B —> A.
(u , m)

Decision problems arising from knapsack transformations 437

Without explaining any details of Shamir's algorithm, we show by a couple of
examples how one can go back to the algorithm of Theorem 3.

Consider the vector B = (7,3,2). We get an open interval (5/7, 3/4). The
number 8/11 in this interval yields A = (1,2,5). This sows that B is (A, 7,11)-
super-reachable. Here both 7 and 11 are within the limits of Theorem 3 and, thus,
the result is obtained by the "first part" of our algorithm, where one does not use
growing sequences. The number 41/56 in this interval yields A = (7,11, 26). Since
41 is its own inverse, B is ((7,ll,26),41,56)-super-reachable. The multiplier 41 is,
however, too big to be reached by the algorithm of Theorem 3. Using Lemma 4,
we get successively the following triples:

((5, 8,19), 26,41), ((3,5,12), 11,26), ((l, 2,5), 7,11).

Here the last triple (in fact, the same as the one obtained for 8/11) falls within the
size limits of Theorem 3.

As regards the number 61/84 from the interval in question, the procedure is
slightly different. The inverse of 61 is 73 and, hence, B is ((7,15,38),73,84)-super-
reachable. Again, the multiplier is too big. Lemma 4 yields, in succession, the
triples

((6,13,33), 62,73), ((5,11,28), 51,62),

((4,9,23), 40,51), ((3,7,18), 29,40),

((2, 5,13), 18,29), ((1,3,8), 7,18).
In the last triple the multiplier t = 7 satisfies t < max 5 . In fact, we already carried
out the computation this far after Lemma 4. However, m > 2 maxB and cannot
be obtained in the first part of the algorithm. Taking one step in the diminishing
sequence we obtain our old friend ((1,2,5),7,11), which completes our argument.

In the example considered in [2],

B = (43,129,215,473,903,302,561,1165,697,1523)

is the vector to be analyzed. Shamir's algorithm produces the interval (1/43,
36/1547). Choosing u = 37 and m = 1590, we get the number 37/1590 in this
interval, as well as the vector

A = (1,3,5,11,21,44,87,175,349,701)

which is super-increasing. Now u - 1 = t = 43 and, thus, both t and u lie within
the bounds of the first part of the algorithm of Theorem 3. In fact, the solution
obtained equals the one used by the cryptosystem designer in [2] .

Consider next u = 72 and m = 3095. We get the vector

A = (1, 3, 5,11, 21, 79,157,315,664,1331).

Also now i = 43 but m > 2 max B. When we go two steps back in the diminishing
sequence, we get the triple

((1, 3, 5,11,21, 77,153,307,646,1295), 43,3009).

Now also m is within the size limits.

438

7 Permutations
«

A. Salomaa

For a cryptanalyst it is certainly sufficient to find a permutation of a publicized
vector B that is super-reachable. When such a permutation is known, cryptanalysis
works as before - only the inverse permutation has to be applied to the plaintext
bit vectors.

Let us call a vector B permutation-super-reachable iff some permutation of B is
super-reachable. For instance, it was seen in Example 3 that (1,10,8) is not super-
reachable. Clearly, it is permutation-super-reachable. By our theory it is easy to
see that every injective (01,02,03) is permutation-super-reachable. The following
result is established exactly as Theorem 1.

Theorem 9 Every permutation-super-reachable vector is injective.

Permutations were investigated already in Example 4. The following example is of
a similar nature.

Example 6 We use the same notation as in Example 4 to classify the permu-
tations of (3,4,5).

u, m t = u" 1 A Goal
(3,4,5): 3,8 3 (1.4,7) NR (m)
(3,5,4): 7,10 3 (1,5,8) NR (m)

5,7 3 (1,4,6) NR (m)
(4,3,5): 5,9 2 (2,6,7) NR (»' = 3), NR (m)

7,9 4 (1,3,8) NR (m)
4,7 2 (2,5,6) NR (t' = 3), NR (m)

(4,5,3): 2.7 4 (1,3,6) NR (m)
(5,3,4): 2,9 5 (1,6,8) NR (m)

3,7 5 (1,2,5) k=2, (1,4,11),5,17
(5,4,3): 5,8 5 (1,4,7) NR (m)

5,6 5 (1,2,3) k= 1, (1,3,5),5, 11

Thus, only (5,3,4) and (5,4,3) are super-reachable.

8 Hyper-reachability
Various decidability results and polynomial-time algorithms concerning hyper-
reachability can be obtained using the techniques developed above. We mention
here some such results. All of them concern r-hyper-reachability for a fixed or boun-
ded r. This is basically due to the fact that a characterization of hyper-reachability
is missing. Do the r-hyper-reachable sets of vectors form an infinite hierarchy (when
r is growing)? It is conceivable that, for some target vectors B, the "derivation
chain" is arbitrarily long with irregular fluctuations in the sizes of the intermediate
vectors and moduli.

The following Theorems 10-12 correspond to Theorems 3,4 and 7, respectively.

Theorem 10 It is decidable of a given knapsack vector B and positive integer r
whether or not B is r-hyper-reachable.

Decision problems arising from knapsack transformations 439

Proof. Consider first the case r = 2. Then B is 2-hyper-reachable iff there exist
t, m, t', m', C and a super-increasing A such that

A —• C —• B. (25)
(M,t',m') (Af,t,m)

The method of Theorem 3 is now applicable with the exception that we cannot
use Lemma 4 in connection with C. The construction leading from (13) to (14)
is valid but does not necessarily preserve the super-reachability of the vectors in-
volved. In (25) C is super-reachable, whereas the vector obtained form C by the
construction of Lemma 4 might not be super-reachable. However, the strict sepa-
ration t < max B, m > 2 maxB is needed only in (19) to prove that diminishing
sequences preserve the property of being increasing. We do not need this property
in connection with C. The proofs of the Lemmas 2,3 (where the goal is defined
only for m), 5 (where the requirement t < max JB is omitted from the definition of
a diminishing sequence) and 6 remain valid.

We proceed as follows. For arbitrary u < m < 2 maxB, we form the vector
E = (e i , . . . , en) such that

B — E.
(u,m)

(E need not be increasing and not necessarily u - 1 = t < maxB.) If m > e,-,
the vector E qualifies as a candidate for C. Otherwise, we test by Lemma 3
whether or not the modulus can be rescued in the growing sequence associated
with (jE,t,m). If it can, then the resulting vector E' qualifies as a candidate for
C. Then all candidates are obtained according to Theorem 3. If originally in (25)
m > 2 max 5 , a modulus of the right size is obtained in the diminishing sequence.
The result need not be super-reachable because the original C is recovered in the
growing sequence.

The case of a general r is now obvious by induction. Assuming the validity of the
assertion for a fixed r, to test (r + l)-hyper-reachability we first form intermediate
candidates exactly as above. The only difference is that we are now dealing with
candidates for r-hyper-reachability rather than for super-reachability.

Theorem 11 A vector B is r-hyper-reachable iff it is r-hyper-reachable for a
chain of modular multiplications, where each multiplier and modulus is less than
(max B)3'.

Proof. We replace the upper bound 2maxB(l+maxB) in Theorem 4 by the much
ruder upper bound (max5) 3 . Theorem 11 now follows because always the com-
ponents of the vectors are smaller than the modulus.

Theorem 12 Assume that B is r-hyper-reachable. Then the smallest m such that
the r-hyper-reachability of B can be shown using only moduli < m is effectively
computable.

Proof. One can use either the algorithm described in Theorem 10 or the more
simply stated but less efficient algorithm due to Theorem 11. •

The part of Theorem 7 dealing with multipliers cannot be generalized by this
technique. This is due to the fact that Lemma 4 cannot be applied in case of r-
hyper-reachability. It is conceivable that a smaller t will work with a big increase
in m.

It is clear that, for a fixed r, the algorithms due to Theorems 10-12 work in
polynomial time (with respect to max B), where the degree of the polynomial
depends on r.

Our final result is an immediate consequence of Theorem 10.

440 A. Salomaa

Theorem 13 If B is known to be hyper-reachable, then the smallest r such that B
is r-hyper-reachable can be effectively computed.

9 Conclusion
The techniques developed here seem to be applicable to a great variety of to-
pics dealing with knapsacks. We have mentioned above many open problems. In
our estimation, the following are the most important among them, (i) Present
criteria, other than Theorem 1, for constructing classes of vectors that are not
super-reachable (resp. not r-hyper-reachable, not hyper-reachable), (ii) Do the
r-hyper-reachable vectors form a strictly increasing hierarchy? (iii) Decidability of
hyper-reachability?

10 References
1] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor
tnapsack. IEEE Transactions on Information Theory IT-24 (1978) 525-530.
2] A. Salomaa. Computation and Automata. Cambridge University Press (1985).
3] A. Salomaa. Knapsacks and superdogs. Formal Language Theory Column in

EATCS Bulletin (June 1989).
4] A. Salomaa. A cubic-time deterministic algorithm for modular knapsack prob-
ems. To appear in Theoretical Computer Science.
5] A. Shamir. A polynomial time algorithm for breaking the basic Merkle - Hellman

cryptosystem. Proceedings of the 3rd FOCS Symposium (1982) 145-152.

(Received October 23, 1989)

Acta Cybernetica, Tom. 9, Faac. 4, Szeged, 1990

Preserving two-tuple dependencies under
projection

B. Thalheim* S. Al- Fedhagi*

Abstract
In relational databases, the semantics is modelled by dependencies defi-

ned for the whole set of attributes U and the relations on U. Given a set
of dependencies on U and a relation R defined on a subset X of U, does
there exist an extension of R to a relation R' on U which satisfies the set of
dependencies. This problem is analyzed and a general solution is given in the
context of two-tuple constraints.

1 Introduction
To achieve a certain level of scientific treatment of its subject-matter, many pro-
posed descriptions of database models adopt different types of symbolic notations.
Typically symbols of set theory, formal logic, graph theory, algebra, etc. are utilized
to build a semi-formal language to express the main concepts of the subject matter.
The relational model is the most obvious example of these models. It is typically
described as having "mathematical elegance" and this mathematical characteristic
is mentioned as one of its main advantages.

Dependency theory is a sub-field of the theory of relational database [1] that
deals with formalizing integrity constraints and studying their mathematical struc-
tures. The importance of the theory stems from its implication on the design of
the relational database. Dependency theory started with the very known inference
rules for functional dependencies called Armstrong axioms and has grown into a
very considerable field in the last fifteen years (see for instance [2], [3], [4]).

The influence of dependency theory and normalization theory, in general, on the
database design process is definite. The rigorous treatment of the design process
followed by the dependency theory is the sole attempt in that direction. Even
though its full practicality is still to be proven, dependency theory forms the "show-
case" to the claim that the database design field lends itself to formal treatment.
Other attempts to formalize the database design process reflect types of "rules-off-
thumb" and involve art more than science.

This paper deals with a type of dependency, called propositional dependencies,
that are slightly more general than functional dependencies but still weaker than
join dependencies. All issues that are related to functional dependencies can be

"Department of Mathematics, Faculty of Science, Kuwait University, KUWAIT
^Department of Electrical Ac Computer Engineering, Faculty of Engineering and Pet-

roleum, Kuwait University, KUWAIT

441

442 B. Thalheim and S. Al- Fedhagi

analyzed on a better formal ground in the context of propositional dependencies.
This is a major motivation for introducing propositional dependencies since there
is still a great deal of interest in functional dependencies. Section three introduces
few samples of the benefit of injecting propositional dependencies in the relational
database issues.

Furthermore, propositional dependencies have their own significance since they
form a constraint language. The language is rich as such that it encompasses
all two-tuple constraints, still propositional dependencies are simple to identify,
understand, and manipulate.

Additionally, propositional dependencies are interesting mathematical objects
on their own. The study of their properties and their relationship to several tech-
nical issues, e.g., losslessness, may prove to be beneficial in the future.

The primary goal of this work is to show that propositional dependencies can
be used to develop better solutions to the problems related to the issue of projected
two-tuple constraints. The given set of propositional dependencies are converted in
a standard disjunctive normal form and represented as "constraints tableau". The
constraints tableaux, can be treated as ordinary relations, hence, different relational
operations such as join and project can be applied to these tableaux. Certain
modifications to the join and project operations are necessary since the operands
are now constraints and not instances. In this paper the following problems are
analyzed:

1. Given a set of functional dependencies £ over the universal set of attributes
U, and a relation S(X), X C U such that 5 satisfies 7rx(S), i-e. the projection
of I! over X, then under what conditions does there exist a relation R(U) that
satisfies E such that S = ttjc (R), i.e. 5 is the projection of R.

2. Since functional dependencies are not preserved under projection, then under
what conditions can we have a constraint preserving projection.

These problems are important in the design of the relational database. Let I
be the set of all possible relations that satisfies E. A desired property of database
schemes is that whenever the projection set nx(I) satisfies "projected constraints"
it follows that I satisfies the constraints E. These problems are connected with
three other well known database problems [5]. '

A . The extensibility problem: Let E be a set of integrity constraints on U and
let R be a relation which satisfies E. Suppose that U' is an extension of U
and E' is a set of some additional restrictions. Does there exist an extension
of R on U' which satisfies both E and £ ' ? This problem was considered
in the context of weak instances and the realization of the universal relation
assumption [6]. Problem 1 gives a partial solution to this problem.

B. The view update problem: Given a conceptual scheme (U, E) and a set of views
(Ui, E i) . . . , (Un, En)) let R\,..., Rn be relations for these views. Does there
exist an algorithm to decide whether an update of one relation is consistent
with the other relations?

C. The implied constraint problem: Let Sx = ({7I,E2) and S2 = £2) be two
conceptual schemes. Consider the database mapping 7 : Si —• S2 . Such a
mapping induces in a natural way a mapping 7* : SAT (Si) —• SAT (S2)
where SAT(Sj) denotes the set of all relations on Ui satisfying £,-. We ask
whether 7 is correct, i.e. 7*(SAT(5i)) = SAT(S2). In general, this problem
is undecidable [7]. A solution is known only for some special cases. Problem
2 can contribute to a general solution of this problem.

Preserving two-tuple dependencies under projection 443

Known solutions to problem 1 mentioned previously above require that S(X)
should satisfy additional non-two-tuple constraints in order to guarantee the exis-
tence of R{U). Our solution characterizes the conditions under which there exists
a relation R(U), utilizing only the given two-tuple constraints such as functional
dependencies or propositional dependencies. Similarly, we characterize conditions
under which we can have a constraint preserving projection, utilizing only two-tuple
constraints.

We assume that reader is familiar with relational database theory, and with
some background in propositional logic. U is used to denote the set of attributes
of the universal relation. X, Y, Z, W (possibly subscripted) are used to denote
relation schemes. R(X) are used to denote relations instances over X Ç U.
The relations S(X) and i2(A) may be written as S and R, respectively, when X
is understood or immaterial. Small letters u and w are used to denote tuples in
relation instances (e.g. ui 6 ii). Let us denote by R (or R(U)) the set of all
relations on U. The projection of R to a subset X of U is denoted by iZ[X], i.e.

= {u[-X"]|u € /Z} where u[X] is the restriction of u to X.
A relation R satisfies a set of constraints £ if it satisfies each constraint in E.

SAT(X, E), X Ç U, is the set of all relations over X that satisfy E. SAT(X, E) may
be written as SAT (E) or SAT(X) when E or X are understood respectively.

2 Propositional Dependencies (PDs)
Propositional dependencies form a formal apparatus to express constraints on two-
tuples relations. They provide a foundation based on propositional calculus that is
suitable for this purpose.

Let U = { A i , . . . , A n } be the given set of attributes. With each attribute A
there is associated a propositional variable A'. For two different tuples t,t' on U,
the propositional variable A' denotes the proposition: "The two tuples agree in the
A-value". The negation of A',—A', denotes the contrary, that these tuples have
different A-values. Without any loss of generality we denote by A the attribute
and the propositional variable.

Given the set {A, V, —, —<-•} of logical connectives (conjunction, disjunction,
negation, implication, equivalence) and the set U, the set L(U) of propositions on
U is defined as follows:

1. Any propositional variable is a proposition.

2. If H and H' are propositions then -H, (H A H'), (H V H'), (H — H'), {H ~
H') «ire propositions.

For any pair of different tuples (t, t') and the set L(U) we define an interpretation
of propositions as follows:

1. The propositional variable A is true for [t, t'), if i[A] = t'[A] and otherwise A
is false.

2. —H is valid for (f, t') if H is false; furthermore, for (t, i ') : H A H') is said to
be valid for (t, t ') if H and H' are valid for (i, t') (if ' H and H'")\ analogously
the validity of (- H V H') is defined by " H or H'",(H — H') by (-H V H')
and (H <-> H') by ((# ' — • H) A (H —• H')).

444 B. Thalheim and S. Al- Fedhagi

The validity of H for different t, t' is denoted by (t,t')| — H.
For a set of attributes X = {Bi,..Bm) the set X is also used to denote the

proposition Bi A . . . A Bm -
The notation (tit<) | = H can be extended to R | = H as follows:

The proposition H is valid in the relation R (denoted by /j| = H) iff for any pair
of different tuples (t, t') from R,H is valid; i.e. (t,t')l = H-

A set H_ of propositional dependencies is valid in R (denoted by R | = H_) if all
elements of H_ is valid in R. Note that we will use the under bar notation whenever
sets of relations or formulae are to be denoted.

For a subset /2' of R, a given set H_ of propositional dependencies and a pro-
positional dependency H we say that the set H_ implies H in R if for any relation
R from R' in which H_ is valid, it holds also R \ — H (denoted by H_ R> \ = H or by
H\ = H for R' C R).

Corollary 1 For any relation R with |ii| < 1 and any proposition in L(U)\H_R\ =
H.

The "world of two tuple relations" [8] R2 denotes the set of two-tuple relations that
can be constructed from possible relations with two or more tuples. A two-tuple
constraint is a condition that is imposed in the world of two-tuple relations. For
example, the proposition H = ((—X A Y) V (X A —Y)) expresses the following
constraint: for any two different tuples t, t', (t t/j | = H iff the two tuples differ in
the X-value and match in the Y-value or they match in the X-value and they differ
in the y-value. Functional dependencies are examples of two-tuple constraints.

Any formula from L(U) is called propositional dependency.

Corollary 2 For any set R' which contains R2> any set H_ of propositional depen-
dencies and a propositional dependency H the following are equivalent:

Example 1 [1]. Let U = {A, B, C, D, E}, H = {A E, B —* E, CE —* D}.
Then the following propositional dependencies are equivalent to the dependencies
in E:

-AVE
- B V E
— (C E) V D

E implies that AC is a key of any relation satisfying E. This property is expressed
by the propositional dependency —(AC).

Example 2. Suppose that XY = U where X Y denotes the union of the sets X
and Y. For a functional dependency X —• Y, e.g. X is the key of U, the equivalent
propositional dependency is —X. That is, for any two tuples in the relations on U,
the two tuples differ in the X-value.

Example 2 shows two propositional formulae that have the same meaning on
a given universe U because of the definition of the interpretation of H and the
formula H A -U. The disjunct -U = (- A i V . . . V - A „) for U = { A x , . . . , A n } is
always assumed because relations are defined to be sets and two tuples of a relation
should be different. Therefore, the disjunct — U can be eliminated in all proposi-
tional dependencies or can be added to all propositional dependencies. Instead of
considering the whole propositional logic L(U) we add to all dependency sets H the
axiom (—Ai V . . . V — An) as an axiom in our propositional logic called dependency
propositional logic, DPL.

Preserving two-tuple dependencies under projection 445

Delobel and Casey [9] were the first to relate the functional dependencies to
material implications in the two-valued Boolean algebra which is equivalent to pro-
positional logic. In [17], Demetrovics et al. considered the extension of functional
dependencies to different classes of Boolean dependencies. Using the theory of Bo-
olean functions, there can be derived different algorithms for scheme design [2].
Propositional dependencies were first introduced by Sagiv et al. as "Boolean de-
pendencies" [10]. They were studied in details, independently by Thalheim [12],
Al-Fedaghi [11] and Berman and Blok [13]. In [10] it is claimed that the consequ-
ence relation for the class of Boolean dependencies is equivalent to the consequence
relation for propositional logic. Unfortunately this is not true because If is a con-
sequence of \H A — U) but (H A — U) is not a consequence of H. We notice that the
idea of propositional dependencies is basically a dependency system which can rep-
lace the formal system of functional dependencies. There is a set of propositional
dependencies that is equivalent to any given set of functional dependencies but not
vice versa. For example, the formula (A - t (5 v C)) is not equivalent to any set
of functional dependencies. Therefore the family of propositional dependencies has
more expressive power. Furthermore the simplicity of the propositional calculus
makes the propositional dependencies a very practical tool.

A formula G is said to be in the disjunctive normal form if G has the form of
Gi V (t2 V . . . V Gm, m > 1, where each Gi, 1 < t < to, is a conjunction of literals. A
standard disjunctive normal form (SDNF) is a disjunctive normal form where each
conjunction contains all propositional variables.

Any set E of propositional dependencies corresponds to a unique propositional
logic formula in the standard disjunctive normal form. It is sometimes very con-
venient to work with these standard forms instead of E. Several issues such as
"equivalence" can be easily analyzed through studying standard forms. A constra-
int tableau, c-tableau, E is a 0— 1 matrix that corresponds to the disjunctive normal
form of E. This tableau is denoted by T(E) or T when the set E is understood.

Let Ej\r = (Ci VC2 V. . .VCfc) be the SDNF of E(i7). Each conjunct C, includes
TO = |C/| literals. The tableau T(E) is the 0 — 1 matrix where row t corresponds to
Ci and column j corresponds to attribute (i.e. propositional variable) Ay S U. The
entry (t, j) of T is defined as follows:

Example 3: The set of functional dependencies E, given in Example 1 can be
represented by the c- tableau of Figure 1.
We use the names of attributes to denote the columns of the c-tableau. Since any
row of the c-tableau represents a conjunction of literals in the SDNF, it makes sense
to say that the two-tuple relation R satisfies that row. In general, we say that a
given relation R satisfies that row or it satisfies a given c-tableau T. Furthermore,
SAT(E) may be denoted by SAT(T(£)) or SAT (T) when E is understood.

Definition: Let T be a c-tableau and (A i , . . . , A „ } be the set of its attributes
(i.e. the columns names). Without loss of generality, the projection of T over
X = { A i , . . . , A m } , TO < n, is defined as follows:

3 The Propositional Constraints Tabelaux

7Tx (T) = {t|t is the subrow of T over the attributes X such that

(«[AI] = 0) V (U[A3] = 0) V . . . V (U[AM] = 0)}

446 B. Thalheim and S. Al- Fedhagi

That is, the all l's sub-row is dropped out of nx{T).
A B C D E
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
1
1

0
0
0
0
1
1
1
0
0
1
0
0
1
0
0

0
0

0
1

0
1
0
1
0
0
1
1
1
1
1
1
1
1
1

Figure 1: T(E) of dependencies in example 2
Example 3. (continued). For the tableau presented in Figure 1 the following

projections are denned.
A B C D A B C
0
0
0
0
0
0
0

0
0
0
0
1
1
1
0
0
0
1
1

0
0
1
1
0
0
1
0
0
1
0
0

0
1
0
1
0
1
1
0
1
1
0
1

0
0
0
0
1
1
1

0
0
1
1
0
0
1

0
1
0
1
0
1
0

ÎTABCD(T) TABC{T)

An fl-table au i l (X) is defined as the two-tuple < T(X),R2(X) > where T (X)
is a 0-1 matrix and R2(X) is a set of pairs of labels {(u,-, uy),t < j}. An 0 - tableau
may correspond to a relation R{X) as follows. The set R2(X) represents all pairs
of tuples of Hence |il3(X)| = (f) , n = |i2(X)|. A mapping n is defined
between the pairs {(tij, uy)},t ^ j, in R2(X) and the rows in T(X) as follows:

The Afc-value in row fi(ui, uy) of

T(X) = i 1 u = u^Ak
* ^ 0 otherwise

Preserving two-tuple dependencies under projection 447

Tuple Ai A2

«1 ai bi
«2 Ol b2

«3 02 62
U4 o2 63

T(AI A2)

A1 A2 A2)

1 0 Ui, tt2

00 «1, «3
00 Ui, u4
0 1 «2, «3
00 «2, «4
1 0 «3, «4

(a) *(Aii43) (6) 0 (^ 2)
Figure 2 : Relation and its n — tableau.

for all AK € X.
Example 4: Figure 2 shows a given relation and its corresponding fl-tableau.
Now we formalize this approach.

For any c-tableau T and a relation R on U = { A i , . . . , An} that satisfies T we can
define another extended tableau as follows. Let a be the following function:

, > f 1 if u = to aftt, tw) = < , v ' ^ 0 if u t̂ to

where u, w are values from the domains of R. Then we define a set of rows as
follows:

fi (R) = {(*!,..., <rn,bu Win = «7(6! [Ai], 6 2 [*]) }
where 6^62 are labels of tuples of R.
Notice that for T(R) = {(cti,«r^Kai,. . .er„, 61(62) S il(R)| for 6i, 62 <= R} and
the c-tableau T we get T(R) < T. Furthermore the projection of Cl(R) can be
formalized as follows:
?rx(n(i2)) = {i|i is the projection of a row of £l(R) on X leaving the labels out }.

Example 5. Consider the following relations Ri, R^ defined on U =
{A, B, C, D} and their fi-tableaus.

R1 : A B C D fi(fli) = A B c D ti t2

"1 1 3 5 7 0 0 1 0 "2
«2 2 4 5 8 1 0 0 0 «1 «3
«3 1 4 6 8 0 1 0 1 u2 «3

R2: A B C D fi№) = A B c D ti *2
«1 1 3 5 8 0 0 1 1 u2

«2 2 4 5 8 0 1 0 1 u2 «3
«3 1 4 6 8 1 0 0 1 «1 «3

We can define arbitrary tableaus in the following way. Given a finite abstract
set of tuple names { u j , . . . , u m } and a domain set {Ai,..., An}. Then any set

{(cti, .. Ui, uy)|l < t < j < m,(Tfc e {0,1, } }

448 B. Thalheim and S. Al- Fedhagi

form an Q-tableau.
Example 6. Let u = {A, B}. Consider the following fl-tableau

0 A B h t2

0 0 til U2
1 0 ui u3

1 0 ti2 U3
There exists no relation R with fl = ft(Jt). To prove this, we show that if R exists
then the tuples ui and U2 should be equal on the attribute A. Since " i [A] = «3(A)
and u3[A] = u2[A] then ui[A] = u2[A]. Clearly, this contradicts the ft-tableau
where ui
The tableau fi is said to be realizable if there exists a relation R with fl = Cl(R).
Let us first consider the readability of fl-tableaus. We define a relation for any
attribute AeU= { A i , . . . , A4} as follows:
?^.,o{(ui»u2)| (such that there is a row

f i i 01-, • •• 1 c»i "3s «4) G ft with <7,-= 1, and

((« 3 = «1) « 4 = « 2) or (u3 = u2, u4 = ui)) or ui = u 2 }
Theorem 3 The tableau ft is realizable iff for all A in U $A,N is an equivalence
relation.

Proof .
1. For some A in U let be not an equivalence relation. Since „ is

reflexive and symmetric then there exists in fl three tuples (a j , . . . , cr*, t»i, v2), (crj,
. . . V2, ws)(ffi > • • •, ®SiVi>V3) such that a} = of = 1 and af = 0. Consequ-
ently, we get «i[Aj] = v2[A;] = «3(^1], and vi[Aj] = u2[A<], i.e. a contradiction.
Therefore, ft is not realizable.

2. If for all A in U £4,0 is an equivalence relation and { u i , . . . , u m } is the set of
abstract tuples used in ft then we can define a relation R — { u i , . . . , u m } using the
partitions PA,A defined by fx.n- For PA,A = {Vj, • • •, V/t} where Vj; is an equivalence
class we define u»[A] = j iff Vi € Vy. Obviously ft(-ff) is equal to ft.
For equivalence relations ft, f2 on R = { u i , . . . , u m } , the following operations are
defined: ft A f2 (intersection), ft + f2 (the smallest equivalence relation containing
ft and f2) , and the comparison ft < < ?2 iff («1, u2) G ft implies that
(ui,u2) G f2) .

Corollary 4 Let R be a relation on U = {Ax,..., An}, and X =
{BLT...,BM},Y = {Clt...CK},Z C

{DI,...,D[} C U. Furthermore assume the
il-tableau ft(-ft), and the equivalence relations $A,CI(R) for A&U. Then: i) X —*Y is valid in R iff f B l n (R) A . . . A fBmi0(«, ^ SciiOW for all i, l<i<k.

ii) X -*Y,Z —*Y is valid in R iff for all i,l<i<k (ft,lo(Jl) A... Aft,m n(Jl)) +
&>i,n(«) A . . . A fo (i 0 (J l)) <

Proo f : Suppose that X —*Y is valid in R. Consequently for two tuples ttj, ti2 in R
if ui[X] = u2[X) then m [Y] = u2[y2]. Hence, («1, u2) G (?B1 0 (r) A . . . A ftjm,n(il))
and (ui, u2) G ic. n(R) f o r a n y Ci G Y.
In ft(i?) the property ft?li0(R) A . . . A ft?m>n(R) < is easy to check. If for a
row (CTI , . . . , <rn, u, v) in ft(-R), cr< = 1 for all Aj G X then for any Aj &Y a} = 1.

Example 7: Consider the relations R\ and R2 given in example 5. The re-
lations RUR2 G SAT ({AC D,BC £>}). The dependencies A D,B

Preserving two-tuple dependencies under projection 449

D,C -* D are also valid in R2 whereas only B —• D is valid in Ri- Furthermore
D —* B is valid in Ri but D —• B is invalid in R2.

1) Let fl = Cl(Ri). The relationships

£4,f) £ $B,Q,SA,0 % iD,O,

?B,n £ % ?C,Cli?B,n < iD,n,

?D,n £ ftt.OjfD.O < $B,n,$D,n £ ?C,0
can be represented by

< CA,f) ?B.n ?C,n ?£>,»
ftt.n 1 0 0 0
ft?,n 0 1 0 1

0 0 1 0
0 1 0 1

2) Let fl = n (# 2) . We get the following table

£A.o ?B,n fc.n £d.o
fc.n 1 0 0 1
to, n o i o i

0 0 1 1
0 0 0 1

Notice that corollary 4 can be extended to propositional dependencies. For instance,
the dependency D —• A V B V C is valid in R2. Generally, the dependency X —»
Yi V . . . V Yk is valid in R iff for ft = ft(R)

where U denotes the union of sets, i.e. for sets ft", f 2 of sets ft U f 2 = {V| there are
ViesuVieb-.v = v1uv2}.

4 Projections of Constraints and Relations
According to Maier [ll the notion of "projected constraints" is well defined for
functional and multivalued dependencies. If W C U, and E is a set of functional
and multivalued dependencies then TTW(E) consists of those X —*Y and X —• Y
such that:

i) there is some X —• Z or X —+—» Z in E + where E + is the closure of E,
ii) X C W , and
iii) Y = Z n W.

For functional dependencies, it is always assumed that Y = Z. Hence, for the given
set of attributes U and set of functional dependencies (over U), nw (E) = { X —• Y
in E + A T C W) where E+ is the closure of E.

Example 8. Consider the sets U = {A,B,C,D,E}, E = {A E,B
E. CE D} of example 1. Then for X = { A , B, C, D), TTJE) = {AC — D,BC
D).

450 B. Thalheim and S. Al- Fedhagi

In a similar way, the projections of disjunctive normal forms and of c-tableaus are
defined.
Given a standard disjunctive normal form £/ / = C\ V C2 V . . . V Ck of propositional
dependencies over U. If X C U, then the projection of £jv over X is defined as the
propositional dependency

ME*) = (C'1VC!2V...VC,k)A(-A1V-A2V...V-Al)

where X = {Ai , A2,.. . Aj} C U and C[is the disjunct produced from Cj after
removing all propositional variables not in X.

Example 9. The standard disjunctive normal form of £ is
Ejv = -A-B-C-D-Ev-A-B-C-DEv-A-B -CD-EM-A-B -CDE

V-A-BC-D-EV-A-BCD - E v - A - BCDE
V - AB -C - DEV-AB - CDE
V - ABCDE V A- B - C - DEv A- BCDE V AB - CDE
for X= {A,B,C,D}.

Then vrx(Eiv) = (- A - B - C - D V-A - B - CD V-A - BC - D
V - A - BCD V - A B -C-DV-AB -CDv-ABCD
VA-B-C-DVA-BCD V AB- CD) A (- A V -B V -C V D).

Now let us introduce the extension of fl-tableaux. Given the sets

X =, An}, Y={A1,...,An,B1,...,Bk}

and a set
ft = {(alt. ,.,an,v,w)}.

A tableau ft' = {(cri , . . . , ct„, o\, ..., ok, v, to)} defined on Y is said to be an exten-
sion of ft to Y if Trx(ft') = ft.
For realizable ft-tableaux we introduce the set ^ y = ^y (CI) = {ft'|ft' is an exten-
sion of ft to Y.}

Example 10. Given X = {A, B, C, D}, Y = {A, B, C, D, E}. The following set
of ft'-tableaux are extensions of fti = Cl(Ri) to Y where Rx is given in example 5.

ft^ A B C D E h t2 ft'12 A B C D E t± t2

0 0 1 0 0 «1 «2 0 0 1 0 1 Ul U2
0 1 0 1 0 «2 «3 0 1 0 1 0 «2 "3
1 0 0 0 0 «1 «3 1 0 0 0 0 «1 «3

fi'13 A B c D E h t2 ft'14 A B c D E «1 t2
0 0 1 0 0 «1 «2 0 0 1 0 0 «1 «2
0 1 0 1 1 «2 «3 0 1 0 1 0 «2 «3
1 0 0 0 0 «1 «3 1 0 0 0 1 Ul «3

» i s A B c D E «1 <2
0 0 1 0 1 «1 «2
0 1 0 1 1 «2 «3
1 0 0 0 1 «1 «3

Example 11. Given X = {A, B, C, D}, Y = {A, B, C, D, E} and ftx = n(R2)
where the relation R2 is given in example 5. The set ^y = ^yiftz) can be repre-
sented by the following table

Preserving two-tuple dependencies under projection 451

CL'N ABCD M2 TT^-.E N '22:E N '23-.E N'24 : E n *M:E
0 0 11 «1 «2 0 1 0 0 1
0 10 1 u2 u3 0 0 1 0 1
1 0 0 1 «1 «3 0 0 0 1 1

The first problem presented in section 1 can now be stated as follows: Given a set
E of integrity constraints defined on U and a relation R £ SAT (TTX(E)) where R is
defined on X, then does there exist a relation R' € SAT(E) such that R = 7rx(iZ')?
This problem is equivalent to the following problem: Given a relation R e SAT
(^ (E)) where R is defined on X and E is defined on U. Does there exist a relation
R' E S A T (E) such that IL{R') €
For a given set E of functional dependencies let Eq (E) denote the set of relations-
hips defined in corollary 4.

Example 12. Consider E and Ex given in example 8.

E q ({ A —* E,B E, CE —* D}) = < to, to < to, to A to, < to}

Eq({AC —• D, BC —» £>}) = A i c < to, to A to, < to}-
As a corollary of Theorem 3 and corollary 4 we get directly the solution of the last
problem.
Theorem 5 Let E be a set of functional dependencies defined on X, and let X be
a subset of U. For a relation R defined on X such that R satisfies 7rx(E) there
exists an extension R' in SAT (E) if and only if there is in ¥P(ft(J2)) a set FL' such
that the relationships of Eq(E) are fulfilled in il'.

Example 13. Let us continue examples 5, 8, 10, 11, 12.
The relationship £4 < to from Eq (E) is violated in n ' n , violates
to ^ to, violates to A to — to • Therefore there does not exist any relation
extending relation i2i € SAT (ttx(E)) which satisfies E. The relationships < to
and to ^ to are n o t valid in Cl'21, Cl'22, ̂ 23, ^24- ^he s e t 18 valid for fi25.
Therefore there exists a relation R' in SAT (E)-with R = •KX(R'). An example of
such a relation is the following relation R3

R3 A B C D E
« ! 1 3 5 8 9
u2 2 4 5 8 9
u3 1 4 6 8 9

Based on theorem 5, an algorithm can be developed for the computation of an fl'
tableau if there exists such a set for a given R, E, and ii(R).

Algorithm.

Input. U = { A i , . . . , A„ } , X = { B i , . . . , Bk} Q U, E is a set of functional depen-
dencies defined on U, and the relation R defined on X.

Output. A relation R' € SAT (E) with R = NX(R') if there exists such a relation.

(i) C o n s t r u c t 7TX(E).

(ii) Compute Cl(R).

452 B. Thalheim and S. Al- Fedhagi

(iii) Compute Eq (E), and Eq (Trx(E))

(iv) If ft (.ft) violates Eq (TTX(E)) then output that there does not exist a relation
R.

(v) Construction of ^ tables.

1. If for some YCU-X,ZQX. there is a dependency Z -> Y e E (Z =
(C i , . . . , Cm), Y = {Di,..Dp}) then copy the 1-entries in the columns of
Z'to all columns of Y. The result is the table fti-

2. Compute the 1-entries according to theorem 3. (All columns in U — X must
be represented by equivalence relations). The result is ft2-

3. If for some Y C U - X,Z C X, there is a dependency Z Y e E (Z =
{C1,..., Cm}, Y = {Dx,..., Dp) and a row with O-entry in one of the Z-
columns and for alll Y-columns except one there are 1-entries in that row
then write a 0 in the remaining K-column in that row. The result is ft3.

4. If for some column in U — X, u<[A] = Uj[A] and Ui[A] = Ufc[A] then enter 0 in
this column for the (uy, Ufc)-row (this is the closure for equivalence relations).
The result is ft4.

5. If O4 violates Eq(E) then output that there can not exist such a relation R'.

6. Compute $(^4) and check against Eq (E). If ^ (f ^) is empty then there is
no relation R' satisfying the requirement. If ^(fU) is not empty then use the
proof of theorem 3 for the computation of R'.

Example 14 [15]. Given U = {A, B, C, E, F, G,H),H = {A -+ G,B
G,C H,E —> H, GH —> F), X = {A, B, C, E, F), and the relation R:

R A B C E F
ux 1 1 1 1 1
u2 2 2 2 2 2
ti3 3 3 1 2 3
u4 1 2 3 3 4

We get after (i) in the algorithm:
TI-3 (E) = {AC F,AE-> F, BC —• F, BE —• F} , and after (ii) the O-tableau:

n(JZ) A B C E F tj t2

0 0 0 0 0 u2

0 0 1 0 0 uj tt3

0 0 0 1 0 . tt2 u3

0 1 0 0 0 u2 u4

0 0 0 0 0 u3 u4
1 0 0 0 0 m u4

Since obeys ^ A t c < SF,$A A < fr , A < <rF, and ft? A < ft-
we continue with step (v) using Eq (E) = {FTI < < ?G,?C < <

A f/r < The following table represents the step (v) of the algorithm:

Preserving two-tuple dependencies under projection 453

after applying applying
the first 4 equivalence to a to < to check of

relationships relations on to iî2 : Eq(E)
ABCEF tit2 UiGH fix : 0 2 GH ft a G H in 0 3

0 0 0 0 0 uxu2 1 1 11 contradiction
0 0 1 0 0 uiu3 1 1 0 1
10000 uiu4 1 1 10
0 0 0 1 0 u2u3 1 1 01
0 1 0 0 0 « 2 « 4 1 1 10
0 0 0 0 0 u3u4 00

Therefore we conclude that there can not exist a relation R' in SAT (E) such that
R = nx(R'). Using our approach we get usually a set of contradictions or a set
rp' Ç rp(Ù(R)) of candidate fi-tableaus for extensions of R.

Example 15. Let us continue example 13.
In step (v) we get for = i i f f l j) , and Eq(E) = < to. to ^ to. to A çE < to}-
The following table is the result of the application of the algorithm.

A B C D ii t2 ftn E ftl2 E
0 0 1 0 u2 1 contradiction
0 1 0 1 «2 «3 1 1
1 0 0 0 «1 «2 1 1

For ft2 = Cl(R2) and £g(E) we obtain

A B C D h t2 n 2 i E ÎÎ22 = ÎÎ23 = ÎÎ24 E
0 0 1 1 «2 1
0 1 0 1 u2 «3 1 1
1 0 0 1 «1 «4 1 1

In step (vii) we get the relation

Rs A B C D E
1 3 5 8 9
2 4 ,5 8 9
1 4 6 8 9

For the relations and the dependency sets used in examples 13 and 14, Fagin [14]
defines the following "curious dependency" using the equality generality dependen-
cies as an additional condition to guarantee the preservation of dependencis under
projection:

if U l (5) = u2(B),u1{C) = u3(C),u2(A) = u3(A) and «i(Z?) = u2(D) then
ui(D) = «3>(D):
This condition is not a sufficient condition as it is shown in the following example.

Example 16. Consider U, E, X, 7ra(S) of example 8, and the following relation
R:

454 B. Thalheim and S. Al- Fedhagi

A B C D
«1 1 3 5 7
u2 2 3 6 8
«3 2 4 5 9

Obviously, R obeys AC —• D and BC —• D and the curious dependency. Nevert-
heless, there does not exist an extension of R in SAT (£).
Using our algorithm we obtain

tl j tj t2 A B C D E
ui u2 0 1 0 0 1
ui u3 0 0 1 0 1
u2 u3 1 0 0 0 1

and fa A % iD- This contradicts the dependency CE —* D.
Maier [l] defines the following additional condition: if «i[A| = u3[A], u2[-B] =
u3[5], and ui[C] = tt2[C] then ui[£>] = u2[Z?]. The relation R\ used in examples
5, 10, 13 indicates that this condition is not sufficient. It can be shown that for
any k there does not exist an equality formula

ai A a 2 A . . . A a j —• a

which could be used as a necessary and sufficient condition for the extensibility of
relations in SAT (ira(E)) to relations in SAT (£).
Ginsburg and Zaiddan [15] have shown that the projection of Fd-families is not
necessarily an FD-family. In example 14 it is possible to show that no Horn formula
can be used to express conditions for the extensibility of relations in SAT (TTx (£))
to relations in SAT (E) (see [8]). For example 14 an equality formula similar to the
'curious' dependency presented in example 15 has the form

(ai A a 2 A a 3 A a 4) (fa V fa V . . . V fa).

Formulae of this form are clearly not Horn formulae.

5 Preserving Constraints
We would like to know the conditions under which whenever the relation iffpf)
satisfies TTX(T(E)) it follows that S(X) is a projection of a relation SAT (£({ /)) .
The relations discussed in examples 14 and 15 show that if £ is a set of functi-
onal dependencies over U then functional dependency families or classes are not
preserved under projection.

It should be noted that the above mentioned problem is a special case of the
database satisfaction problem. To solve this problem, some definitions axe needed.

An all l's row or subrow over columns X of T will be denoted by < 1 > x - The
X may be dropped when it is understood. Similarly, an all O's subrow over X is
denoted by < 0 >x - If a row or subrow over X has at least one zero then it is
denoted by < *0 > x -

Let Zn denotes the 2"0 - 1 strings of length n. Given the c-tableau T(X)
then Tz (U) denotes the c-tableau that is constructed as the Cartesian product

Preserving two-tuple dependencies under projection 455

T(X) X Zn where n=\U-X\,XCU. For example if U = ABC, X = AB, and
T(X) is the following c-tableau:

A B
0 0
0 1

when n = 1, Zn = {0, l } ; and Tz(U) is the following c-tableau:

A B C
0 0 0
0 0 1
0 1 0
0 1 1

o
We define a new table called oc-tableau, denoted as T{X), of a given c-tableau

T(X) as follows:

i p r) = r (x) U { < i > x }

o
That is, T(X) is constructed from T(X) plus the all l's row over X.

Definition: The c-join of Ti(Xi) and T2(X2), written T{*T2, is the c-tableau
T(X1X2) = T1(X1)*T2{X2).

The c-join operation is defined in terms of the join operation after adding the
l's rows to the c-tableaux participating in the c-join. Notice that T(X\X2) in
the definition above is a c-tableau and not an oc-tableau, thus the all l's row is
eliminated in T(XiX2). By definition the c-tableau does not include an all 0's row.

Example 17. Let T^(AB) = {(0,1)}, and T2(BC) = {(1,0)}, then:

A B C
0 1 0

TX*T2= 0 0 1
0 1 0

Let Ti(AB) = {(0,1), (0,0)} and T2(BC) = {(0,1), (0,0)}, then:

A B C
0 1 1

Ti * T2 = 0 0 1
0 0 0
1 0 0

Example 18. Let ITABCD(T) be the c-tableau shown in Example 3. As it is
discussed in Example 1, U = ABCDE and U-ABCD = E hence, Z = {(0), (1)}.
Figure 4 shows Tz(U). If T = Tz{U), we can claim that whenever a relation R(X)
satisfies xx{T) it follows that R(X) is a projection of a relation SAT (T).

Theorem 6 SAT (Wx(T(E))) = nx{SAT{T{E))) iff T(U) = TZ(T).

456 B. Thalheim and S. Al- Fedhagi

A B C D E
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 1 0

Figure 4 : Tz of example 18

Proof : Suppose that SAT ¥x(T(S))) = îrx (SAT(r(E))) . Thus S ^ X) €
SAT [irx (r(E))) may be joined with any relation S2{U-X) producing R = Si* S2
where R € SAT (T{£/)) since Xi){U -X)=0. All possible relations over U - X
are projections of R e SAT IT). Thus, a subrow t\U - X\ in T(U) is an ele-
ment in Zn,n = \U - X|; and T(U) = TZ{T{U)Y, where TZ[T(U)) is the Carte-
sian product ¥x(T({ /)) x Zn. Suppose that TZ[T(U)) = T(U). If S ^ X) satisfies
Wx(T),X Ç U, then for any relation S2{U - X), the join 5j * S2 satisfies T(U).
Conversely, if R[U) satisfies T(U) then any projection irx[R) satisfies 7rx(T). Thus
5AT(?x (r (E))) = XSAT(T(É))).

6 Conclusion
Given a set of propositional dependencies E(U) and a relation S over X Ç U, we
have identified conditions under which there exists a relation R € SAT (E(U)) such
that S = irx(R). Also, we have identified the conditions under which whenever the

Preserving two-tuple dependencies under projection 457

projection J T X U) , X C U satisfies i r x SAT (T(E)) it follows that I satisfies T(E),
where I = SAT (E(t/)).

These results are applicable to functional dependencies since they are special
type of propositional dependencies. Only propositional dependencies are utilized
whereas in [6], [8] and [10] non-two-tuple constraints are suggested. The theoretical
significance of our results is clear since our approach is completely new. The prac-
tical significance of these results in the area of the relational database is similar to
the previously mentioned work.

References
[i

[2

D. Maier: The theory of relational databases. Computer Science Press, Eng-
lewood, 1983.

C. Delobel, M. Adiba: Relational databases. North-Holland, Amsterdam,
1985.

J. D. Ullman: Principles of database systems. Computer Science Press, Rock-
ville, 1980.

G. Vossen: Datenbankmodelle, Datenbanksprachen and Datenbank-
Management-System. Addison-Wesley, Bonn, 1987.

B. Thalheim: Open problems in Database Theory. Bulletin EATCS, 40, 1989.

P. Atzeni, R. Torlone: Approaches to updates over weak instances. Lecture
Notes in Computer Science 364, 1989, 12-23.

B.E. Jacobs, A.R. Aronson, A.C. Klug: On interpretations of relational langu-
ages and solutions to the implied constraint problem. ACM TODS, 7,2, 1982,
291-315.

S.S. Al-Fedaghi, B. Thalheim: Logical foundation for two-tuple constraints in
the relational database model. Kuwait 1988. Submitted for publication.

C. Delobel, R.G. Casey: Decomposition of data base and the theory of Boolean
switching functions. IBM J. Res. Dev., 17, 5, 1973, 374-386.

Y. Sagiv, C. Delobel, D.S. Parker, R. Fagin: An equivalence between relational
database dependencies and a fragment of propositional logic. JACM, 28, 3,
435-453.

S.S. Al-Fedaghi: Dependency theory. Draft copy of this book is available as
Technical Report TR 85-0202, Electrical and Computer Engineering Depart-
ment, Kuwait University, Kuwait 1985.

B. Thalheim: Functional dependencies in relational databases. Journal Inf.
Process and Cybernetics, 21,1/2, 1985, 23-33.

J. Berman, W. J. Blok: Positive Boolean dependencies. University of Chicago,
Research Report in Computer Sciences, No. 5, June 1985.

R. Fagin: Horn clauses and database dependencies. JACM 29, 4, 1982, 952-
985.

458 B. Thalheim and S. Al- Fedhagi

[15] S. Ginsburg, S. M. Zaiddan: Properties of functional dependency families.
JACM 29,3, 1982, 678-698.

[16] E. Sciore: Improving database schemes by adding attributes. ACM PODS,
Atlanta, Georgia, 1983, 379-382.

[17] J. Demetrovics, Gy. Gyepesi: On the functional dependency and some gene-
ralizations of it. Acta Cybernetica 5(1981), 295-305.

(Received February 12, 1990)

Subscription information:

For Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean
People's Republic, Mongolia, Poland, Romania, USSR. Vietnam
orders should be addressed to:

Kultura
Hungarian Foreign Trading Co.
H-1389 Budapest 62
P.O. Box 149
Hungary

For all other countries orders should be adressed to :
J. C. Baltzer A G
Scientific Publishing Company
Wettsteinplatz 10
CH-4058 Basel
Switzerland

Mailing address for editorial correspondence:

Acta Cybernetica
Árpád tér 2.
Szeged
H-6720 Hungary

I N D E X — T A R T A L O M

A. Arnold: Recognizable sets of finite bilabelled transition systems 333
V. E. Cazanescu, Gh. Stefanescu: A note on axiomatizing flowchart schemes 349
J. Csirik, J. B. G. Frenk, M. Labbe, S. Zhang: On the multidimensional vector bin packing. . 361
P. Domosi, Z. Esik: Product hierarchies of automata and homomorphic simulation 371
Z. Esik: A note on the axiomatization of iteration theories 375
G. Gottlob, L. Libkin: Investigations on Armstrong relations, dependency inference, and exclu-

ded functional dependencies 385
C. A. Rich, G. Slutzki: The complexity of a counting finite-state automaton 403
A. Salomaa: Decision problems arising from knapsack transformations 419
B. Thalheim, S. Al-Fedhagi: Preserving two-tuple dependencies under projection 441

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1990. dec.

Terjedelem: 11,2 (A/5) ív
, Készült ofszetnyomással

az MSZ 6601 és az MSZ 5602—55 szabvány szerint
90-7063 — Szegedi Nyomda — Felelős vezető: Kónya Antal mb. igazgató

