
Volume 9 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor: J. Csir ik (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA),W. Brauer (FRG), L. Budach (G D R) ,
R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France), J. Demetrovics
(Hungary), B. Dömölki (Hungary), J. Engelfriet (The Netherlands), Z. Ésik (Hungary),
J. Gruska (Czechoslovakia), H. Jürgensen (Canada), L. Lovász (Hungary), Á. Makay
(Hungary), A. Prékopa (Hungary), A. Salomaa (Finland), L. Varga (Hungary)

Szeged, 1990

Information for authors: Acta Cybernetica publishes only original papers in English in the field of
computer sciences. Review papers are accepted only exceptionally. Manuscripts should be sent in
triplicate to one of the Editors. The manuscript must be typed double-spaced on one side of the paper
only. For the form of references, see one of the articles previously published in the journal. A list
of special symbols should be supplied by the authors.

Editor-in-Chief: F. Gécseg
A. József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1
H—6720 Hungary

Managing Editor: J. Csirik
A. József University
Department of Applied Computer Science
Szeged
Árpád tér 2
H—6720 Hungary

Board of Editors:
M. Aratö
University of Debrecen
Department of Mathematics
Debrecen
P. O. Box 12
H-4010 Hungary
S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Jersey 07030
USA

W. Brauer
Institut für Informatik
der TU München
D-8000 München 2.
Postfach 202420
FRG

L. Budach
AdW der DDR
Forschungsbereich
und Informatik
Rudower Chaussee
Berlin-Adlershof
GDR-1199

R. G. Bukharaev
Kazan State University
Lenin str. 2.
420012 Kazan
USSR
H. Blinke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Länggass strasse 51
CH-3012 Bern
Switzerland

B. Courcelle
Université de Bordeaux I
Mathématiques et Informatique
351, cours de la Liberation
33405 TALENCE Cedex
France
J. Demetrovics
MTA SZTAKI
Budapest
P. O. Box 63
H-1502 Hungary

B. Dömölki
SZKI
Budapest
Donáti u. 35—45.
H-1015 Hungary

J. Engelfriet
Rijksuniversiteit te Leiden
Subfaculteit der
Wiskunde & Informatica
Postbus 9512
2300 RA LEIDEN
The Netherlands

Z. Ésik
A. József University
Department of Computer
Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Technical
Cybernetics
Slovak Academy of Science
Dúbravska 9
Bratislava 84237
Czechoslovakia

H. Jürgensen
The University of Western
Ontario
Department of Computer
Science
Middlesex College
London N6A 5B7
Canada

L. Lovász
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

Ä. Makay
A. József University
Kalmár Laboratory of
Cybernetics
Szeged
Árpád tér 2.
H-6720 Hiingary

A. Prékopa
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland

L. Varga
Eötvös University
Budapest
Bogdánfy u. 10/B
H-1117 Hungary

Mathematik

5

Towards Languages that Support Program Derivation,
or

Control Modularity Considered Harmful*

REINO KURKI-SUONIO

Tampere University of Technology
Box 527, SF-33101 Tampere, Finland

e-mail: rks@tut.fi ,

Abstract

Of current trends in programming languages, the paper concentrates on the need to support
formal specification and derivation of software, mainly in the context of reactive systems that are
in continual interaction with their environments. The non-programming facilities of operational
specifications are briefly analyzed, and their inclusion in design oriented specification languages is
considered. Early commitment to control-oriented decisions is found harmful, which leads to a
language basis with implicit concurrency and no notion of control flow. The advantages of this
approach for certain intuitively natural methods of program derivation are demonstrated. The
paper ends with general comments about the diversification of languages along the dimension of
specification, design, prototyping, and implementation.

1. Introduction

Software objects are artifacts that cannot be classified either as concrete objects
or as pure abstractions. An executable machine language program might be considered
a concrete object with the original source code as its abstraction. However, source
programs are also executable, at least in principle, and therefore equally concrete.
On the other hand, no matter which level of languages is considered, each program
is an abstraction of something that gets concrete only in its physical execution.
Therefore, as pointed out by Lamport [La89], every program is a specification, and
some specifications are implementations of other specifications.

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

1 Acta Cyberaetica IX/3

mailto:rks@tut.fi

180 R. Kurki-Suonio

The evolution of programming languages shows continual rise in the level of
abstraction, which means that the specification nature of programs becomes more
and more obvious. The programmer needs to worry less about "concrete" or "effi-
cient" representations, and can concentrate more on "abstractions" that are easier
to reason about and can be automatically compiled into lower levels. Some per-
spective on this trend is provided by the remark by Parnas [Pa85] that the term
"automatic programming" was probably used for the first time in the 1940s in a
paper by Saul Gorn on the possibilities of building a simple assembler.

Another direction, which is evident especially in the current development of
so-called object-oriented languages [SW87], is towards structures that facilitate
prototyping, easy modification, and evolutionary development of systems. It is not
entirely clear, however, whether the resulting language flexibility can be adequately
reconciled with the security and provability requirements of many applications.

Thirdly, only very small programs can be written directly, and software main-
tenance involves changes in their specifications. The increasing significance of prog-
ram reliability and correctness therefore requires explicit support for software deri-
vation from specifications. Although most abstractions in programming languages,
such as block structure, subroutines, and modules, support various methodologies
for programming-in-the-small, explicit support for program derivation has usually
not been considered a programming language issue. Instead, extra-linguistic tools
have been provided in operating systems and programming environments for com-
bining pieces of software, as well as for version control and related aspects of soft-
ware maintenance. Even though some languages like Lisp and Smalltalk come with
integrated programming environments, and Ada was claimed to extend the scope
of programming languages towards programming methodologies and utilization of
program libraries, only elementary language support is presently available for the
derivation of software.

Any substantial support for program derivation requires the use of formal
specifications instead of the informal and semiformal approaches that still dominate
in programming practice. Like programs, formal specifications cannot be given
directly, and their derivation is similar to that of programs. Existing components
are used in this process, new properties are introduced in a stepwise manner, the
level of abstraction is lowered for reasons like efficient implementability, and the
results need to be verified and validated. Attempts to support software derivation
have lead to experimental wide spectrum languages [Ba&89] within which specifi-
cations can be transformed into implementations through correctness-preserving
transformations.

Notice that it is not only the result of the derivation process that is important,
since the higher levels provide important abstractions and insight that are lacking
in the final (high-level language) form. The development of tools to analyze finished
designs, in order to recover the insight that was never made explicit in the first place,
is a backward approach, and is no substitute for the derivation of programs in a
manageable way from higher-level specifications. In particular this is currently
a problem with concurrent systems, where most so-called specification languages
have no better abstractions of concurrency than those available in programming
languages.

The above trends in programming languages provide the background for this
paper. We shall mainly focus on reactive computations [Pn86], in which the system

Towards Languages that Support Program Derivation 181

is in continual interaction with its environment. Obviously, traditional input-
output computations are a special case of these.

The structure of the paper is as follows. First we address the question of what
distinguishes some specifications from programs. In Section 3 the problems of con-
currency — or, rather, independence of sequentiality — lead us to a somewhat radi-
cal conclusion about the usefulness of traditional control flow oriented modularity.
When the notion of control flow is abandoned, statecharts [Ha87] are shown to be
suitable for the structuring of the global state. In Section 4 we demonstrate how
independence of control decisions leads to a language basis that is suited for certain
intuitively natural methods of program derivation. The paper ends with some general
comments about the diversification of languages along the dimension of specifica-
tion, design, prototyping, and implementation.

The paper is heavily influenced by and biased towards joint action systems,
developed together with Ralph Back [BK83, BK88a, BK88b]. Case studies of
such systems and design methods for their development have been investigated in
[BK83, BK84, Ku86, KK88, Ku89], and [KJ89, Ja&89] report on an experimental
specification language DisCo (for Distributed Cooperation) that is based on these
ideas. The reader is also reminded of the close similarity between joint action systems
and the Unity language by K. Mani Chandy and Jay Misra [CM88a].

2. Operational Specifications and Programs

Formal specifications are commonly understood to express safety and liveness
properties of programs [AS85]. Informally, the former state that nothing bad will
ever take place, while the latter express the requirement that the desired good things
will eventually happen. Temporal logics are well-established formalisms in which
such properties can be expressed [MP83, Pn86]. Obviously, such specifications do
not cover all formalizable requirements: statistical efficiency properties, for instance,
remain inexpressible.

Programs are operational and executable specifications. In general, an opera-
tional specification consists of two components: a generative mechanism that is
based on computational steps, and a set of constraints [Fe87]. The former generates
a collection of potentially possible (finite or infinite) computations, which is then
restricted to a subset by the constraints. Notice that operationality is more a view-
point than a well-defined property. Temporal logic specifications, for instance, can
be understood in these terms by viewing the temporal properties as constraints on
the implicitly generated collection of all possible sequences of events.

In programs the emphasis is on the generative mechanism, which determines
safety properties only. Liveness properties are given by implicit constraints that
exclude those finite computations that have not yet terminated, as well as such in-
finite computations that do not satisfy certain fairness requirements [Fr86]. Since
we are interested in programs as abstract specifications, we ignore here the practical
non-constructivity and non-verifiability issues of fairness constraints [Di88, SL88,
CM88b].

.Since each program is a specification, and all specifications have an operational
interpretation, the question arises whether there is any fundamental distinction

182 R. Kurki-Suonio

between specifications and programs. Is the difference only in efficiency, whose
significance changes rapidly with the development of hardware and software tech-
nology?

Based on Dijkstra's weakest precondition calculus of predicate transformers
[Di76], Ralph Back was the first to introduce a mixed formalism in which specifica-
tions and programs coexist on equal basis [Ba78, Ba80, Ba88a]. For specifications,
one of Dijkstra's healthiness conditions for programs had to be relaxed. The reason
was in the need for unbounded nondeterminism. By this we understand the selection
of a value that satisfies a given condition, when the number of potential alternatives
is infinite. If several alternatives satisfy the condition, then the choice between them
is nondeterministic.

Unbounded nondeterminism is equally non-constructive as fairness. Notice that
describing the input of an arbitrary integer as a single event leads to unbounded
nondeterminism, while replacing this by a sequence of separate input events for an
arbitrary number of digits requires fairness instead.

Similarly to the bounded nondeterminism in [Di76] this nondeterminism is of
the demonic variety, which means that each possible choice must lead to a correct
computation.

Recently Back and von Wright [BW89] have extended this work to remove also
the other healthiness conditions, except for monotonicity. The results are mathema-
tically appealing, and they can be interpreted to lead to two further possibilities in
specification languages: angelic nondeterminism, which only requires that at least
one of the alternative choices leads to a correct computation, and miracles, which
miraculously succeed in establishing conditions by impossible assignments. Similar
generalizations have been found desirable also elsewhere [dB80, Mo87, Ne87,
Mo88a, Mo88b], and their need for describing practical specification languages
has been observed [Mo88b, Ba88b].

From a more practical viewpoint, at least the following quasi-executable facili-
ties have been found useful in operational specifications:

• The generative mechanism may involve unbounded nondeterminism [BB87,
KJ89]. Notice that unbounded nondeterminism is implicitly present in speci-
fications that do not use an explicit generative mechanism, as is the case with
temporal logic [Pn86] and algebraic specifications [Ba89].

• A computation may refer to its past history without having explicitly recorded
it [BG79, Fe87, AL88].

• There can be "oops conditions" that are not allowed to become true [BG79,
Fe87]. If the generative mechanism leads to such situations, the constraints
are assumed to exclude those computations.

• A computation may contain prophetic references to its future [BG79, Fe87,
AL88]. The constraints are then assumed to exclude computations where such
predictions would turn out to be incorrect.

Of these facilities, references to past history are the least problematic for direct
implementation, as further recording of history can always be added. Unbounded
nondeterminism also looks rather innocent. Existential quantification provides,
however, extremely poweiful possibilities for implicit solutions of problems for
which no algorithms are known.

Towards Languages that Support Program Derivation 183

In the absence of unbounded nondeterminism, oops conditions cause no obstacles
for classical input-output computations, and backtracking is a standard technique
for their implementation. With unbounded nondeterminism this need not succeed,
however, and with reactive computations the situation becomes totally different,
as there is no way for an implementation to withdraw interactions that have already
taken place between the system and its environment.

The situation with prophetic references is no simpler, as they can be understood
as nondeterministic guesses about the future, combined with oops conditions to be
evaluated later.

From this discussion we can conclude that all specifications are not programs,
even if efficiency considerations are totally ignored, and that the differences are even
more significant for reactive systems. A good specification language therefore needs
facilities that do not satisfy the constructivity criteria for programming. In view of
the problems in removing their use by systematic transformations [LF82] one should,
however, be cautious in introducing them in design-oriented specification languages.
Some form of unbounded nondeterminism seems to be a minimum that is required
by reasonable design methodologies [Ku89].

3. On Concurrency, Control Modularity, and Structure of Global State

Concurrency is often thought of as an auxiliary feature that can be added after-
wards to any description language. Its use seems to complicate matters, and one may
therefore try to avoid it as far as possible. Even when concurrency is crucial for the
design, one may resort to the backward approach of first designing a sequential
solution and then parallelizing this. Notice that for the description of reactive systems
concurrency is always essential, even when the system is to be implemented as a
single process, since the environment works concurrently with the system itself.

Our view of concurrency is different: to us sequentiality or any particular choice
of parallelism is an implementation-oriented design decision, of which specifications
should be independent. We therefore argue that good support for deriving software
from specifications cannot be provided by amending a sequential base language
with additional constructs for concurrency. In fact, instead of having specific con-
structs for sequential and concurrent control, the base language should be independent
of any such choices. In other words, it is not concurrency in itself that is important,
but independence of control decisions.

• In mathematics it is often the case that a more general formulation makes a
problem easier to manage. The same has also been observed in programming. For
instance, the advantages of nondeterminism over strictly deterministic descriptions
were clearly demonstrated by Dijkstra [Di76], even in situations where the pro-
grammer would later restrict the design by purely deterministic choices. The situation
with concurrency is similar, and we claim that it is the conventional control-oriented
modularity that has prevented us from realizing this.

Any execution model of computing involves a state (memory, registers, variables)
and actions (instructions, statements, transitions) that modify this state. Conven-
tionally the state is partitioned into a data part (accumulators, variables) and control
part (instruction counters, control states). In the light of sequential programming

184 R. Kurki-Suonio

and von Neumann computer architecture this approach is natural, and the control-
oriented modularity of structured programming may therefore seem inherent to
any well-structured description of computations. It is this assumption that we chal-
lenge, and in doing so we need to abandon the early partitioning of state into data
and control parts. For further discussion on why control modularity is especially
harmful in the design of parallel programs, the reader is referred to Chandy and
Misra [CM88a].

Without the special role of control state the conventional control flow oriented
modularity becomes inapplicable. Even though independence of control decisions
can easily be achieved, the result may be chaotic. Similar ideas have been used
(with different motivation) in production system languages like OPS5 [FD77],
and the drawbacks are well-known. With no notion of control flow there is no built-in
structure >n the collection of actions, and one is easily led to encode the missing
control flow in unstructured collections of bits and flags. Obviously, such an un-
modular system is even more difficult to understand than one where the control
state has been explicitly separated from data.

In the following our purpose is to show that abandoning control flow does not
imply lack of structuring and modularity. On the contrary, our conclusion will be
that this can lead to another kind of modularity that is especially suited for software
derivation. We start by inspecting how to impose structure on a state that has no
dedicated control components.

We assume that the global state of a system is partitioned into components
called objects. The state of a single object is called its local state. From an implemen-
tation point of view objects may be thought of as either data structures or processes.
Avoiding the notion of control flow implies that no distinction is made bétween
passive objects (data structures) and active agents (processes). Therefore, objects
require structuring capabilities that are equally suited for both.

Harel's statecharts [Ha87] turn out to be an ideal visual formalism for this
purpose. From the viewpoint of active agents, their hierarchical state structure
generalizes the notion of ordinary finite-state systems, and can be interpreted as the
nested control structures in conventional high-level languages. Associating data
items with the states makes this analogy even more complete. On the other, hand,
from the viewpoint of passive objects, statecharts can be interpreted as rècord struc-
tures containing tagged unions of alternatives. The state transitions of a statechart
correspond to the actions of the system, which are now separated from the structure
of the global state.

As a simple example, Figure 1 gives a statechart description of database clients.
On the outermost level a client object has three exclusive states: idle, starting a
transaction, and engaged in one. When engaged, a client is either ready to issue
another request or waiting for a response. A waiting client is expecting a response
either to an end request (ending) or to a read or write request (accessing). Transi-
tions of the statechart are labeled by identifiers in italics, referring to actions whose
descriptions have beèn omitted. For simplicity, the data items that are associated
with the states have also been left out.

This simple example illustrates or decomposition of states, in which case the
immediate substates of a state are exclusive alternatives to each other. Another
useful possibility is and decomposition, which means that the actual state is a Carte-
sian product of states in each component. : , .

Towards Languages that Support Program Derivation 185

r
idle

Call_Begin

Rec Failed
starting

Rec Finished

engaged
RecJKey j»-

Call Abort

ready

Call_Read
Call_Write
Call End

J
waiting

Rec Access

ending accessing

Figure 1. Statechart description of database clients

In the DisCo language the same information (except for the transitions) would
be given in textual form as the following class declaration:

class Client is
state idle, starting, engaged;
extend engaged by

state ready, waiting;
extend waiting by

state accessing, ending;
end waiting;

end engaged;
end Client;

The keyword extend is used to emphasize the possibility to abstract away in-
ternal structure of states, and to extend them later with further detail.

When the global state of a system is partitioned into objects with local states,
the description of actions needs to be separated from objects. As there is no control
flow to enable an action that can be executed next, each action requires a guard
expression to determine its enabledness. Since any number of actions can be enabled
at the same time (even though only one is selected for execution), nondeterminism
is inherent in this kind of systems.

In principle, any number of objects may participate in an action in the sense
that their local states are required and possibly updated in its execution. From the
viewpoint of active agents the execution of an action can be interpreted as follows:
first the participants determine by mutual communication that the action is enabled
and perform a joint handshake to become committed to its execution; while com-
mitted to the action they exchange the data that are necessary for each participant
to update its own local state appropriately; after updating its own local state and
providing the other participants with the data they require, each object becomes
free for another action. On the other hand, from the viewpoint of passive objects

186 R. Kurki-Suonio

we can think in terms of a centralized scheduler that evaluates guards and triggers
the execution of enabled actions. It is important that both views are equally possible,
i.e., that the base language has no explicit constructs for concurrency or commu-
nication, and is therefore independent of any control decisions.

4. Support for Program Derivation

The main topic of this paper is the development of language support for program
derivation. So far we have described a language basis that is independent of control
decisions; in this section we shall demonstrate how such a base language is suited
for such useful methods of program derivation that would be much more complicated
to express with conventional control flow oriented languages.

The main design method to be considered here is superimposition or super-
position. This is a layered approach where, starting from an initial solution that
satisfies some basic requirements, further properties are imposed without violating
those already established. Superposition has been mainly used in connection with
distributed systems, and different formulations of it have slightly different properties.
An early use of the technique and the term was in [DS80]; in [LS84] it was described
as the reverse of a protocol verification method; recently it has been suggested as a
control structure for concurrent and distributed programming [Ka87, BF88]; in
[CM88a] it was introduced as one of the main facilities for designing Unity programs
in a modular fashion; in connection with joint action systems the technique has been
applied in [BK83, BK84, Ku86, Ku89].

Here we introduce the method by a simple example that has sometimes been
used in comparing different specification and design methods. The problem is to
describe a doctors' office, which involves patients that are cured by doctors, and a
receptionist that organizes the free doctors to treat the waiting patients.

We start with the simplest possible projection of the system that exhibits complete
behavior by itself. In this case such a system contains only one kind of objects,
patients, with two possible states, well and sick, and two kinds of actions: each
patient that is well may become sick, and a sick patient may become well. In DisCo
this could be described as follows:

system Patients is
class patient is

state well, sick;
end;
action get _ sick by p: patient is
when p.well do

p.sick;
end;
action get _ well by p: patient is
when p.sick do

p.well;
end;

end Patients;

Towards Languages that Support Program Derivation 187

Each of the two actions has just one participant, a patient p, and a guard indi-
cating that p is well or sick, respectively; the effect of the actions is to change the
state of p as indicated by the state transition statements (—). Only the class declara-
tion for the patient objects is given here; the actual creation of patient objects is
assumed to be given separately in system initialization.

This first approximation of the system is easy to understand: patients just get
sick and are cured nondeterministically. (For simplicity we omit here fairness ques-
tions like whether each sick patient is eventually cured.) Another layer is now super-
posed on this system, introducing the property that no patient is cured without a
doctor. Each doctor has two states: free, or busy with a patient p. The state well
of patients needs to be extended with two substates at this stage, to distinguish
whether a cured patient has already checked out from the office or not. Action
get_ well is also refined to indicate the need of a doctor in this action, and a third
action is introduced for releasing a cured patient from the office:

system Doctors with Patients is

class doctor is
state free, busy(p: patient);

end;

extend patient.well by
state released, hide*checking_out;

end;

refined get_well by ... d: doctor is
when ... d.free do

- d.busy(p);

end;

action release by p: patient; d: doctor is
when d.busy.p=p Ap.well.checking_out do

— d.free;
-• p.well.released;

end;
end Doctors;

Ellipses (...) belong to the language and indicate parts taken directly from the
previous level. The refinement of get-well introduces an additional participant d
and another conjuct to the guard, indicating that d must be free, and makes d become
busy with patient p. The state patient.well is extended in such a way that a cured
patient always enters the default substate p.well, checking -out (indicated by the star).
This substate is hidden (hide) from the previous level in the sense that get sick
cannot be enabled in it. Therefore p has to participate in the new action release
before getting sick again, i.e., a cured patient cannot get ill before leaving the office.

Provided that some number of doctors are initially created, the system is again
complete, although it still lacks some of the required properties. In the next step
we introduce a receptionist that organizes the free doctors and the waiting patients.
Again, the creation of the initial state is omitted:

188 R. Kurki-Suonio

system Office with Doctors is

class receptionist is
pq: sequence patient;
dq: sequence doctor;

end;

refined get_sick by ... r: receptionist is
when ... do

r.pq: = r.pq & p;
end;

refined get_well by ... r: receptionist is
when ... p=first (r.pq) A d=first (r.dq) do

r.pq: = tail(r.pq);
r.dq : = tail (r.dq);

end;

refined release by ... r: receptionist is
when ... do

r.dq: = r.dq & d;

end;
end Office;

Notice that although the receptionist is needed in all actions, it does not create
a bottleneck for a concurrent implementation. In get .well, for instance, the role of
the receptionist is only to remove the doctor and the patient from their respective
queues, after which it can start participation in some other action, while the doctor
and the patient still continue in action get. well.

This example gives rise to the following general observations about superposi-
tion:

• It is a top-down design method in which even partially specified systems are
given as complete systems exhibiting well-defined behavior.

9 The global state of a system can be extended by adding new objects and by
extending the local states of old ones. Statechart structuring of objects is espe-
cially suited for the addition of new substructures and new data components.

• New functionality can be added and new properties can be introduced by
providing new actions and by refining the old ones. Atomicity of actions and
absence of control flow for individual objects are significant for doing this
smoothly. Additions and refinements are restricted to ones that do not affect
the old state components.

• .Nondeterminism of the system can be restricted by strengthening the guards
of! actions. For instance, the design may utilize unbounded nondeterminism
until a basis for deterministic selections has been superposed.

. • With the notions of objects and actions, all modifications have good locality:
one logical change does not lead to several small changes in different places.

Towards Languages that Support Program Derivation 189

• The preservation of all safety properties can be guaranteed by language rules;
the restrictions enforced are similar to what has been called complete compati-
bility in connection with object-oriented programming [WZ88]. Because of
guard strengthening and the potential possibility for takeover by new actions,
liveness properties have to be checked.

By this we hope to have demonstrated that, once the self-evidence of control
flow oriented modularity is given up, it is possible to support effectively such intui-
tively natural approaches to structured derivation of programs that are quite compli-
cated to manage with conventional language bases. In an ordinary multi-process
program, for instance, a simple modification of a single action would correspond
to changes scattered in the codes of all processes involved.

For brevity we" have described here only one design method, superposition,
which is based on a top-down approach. Similar observations concern, however,
the bottom-up design method that is dual to superposition in the light of the above
notions. This method introduces modularity with communication-closed layers [EF
82]. In our language it uses a mechanism called inheritance [KJ 89] and is especially
suited for the development and utilization of reusable modules. As described in
[Ja & 89], the mechanisms for supporting these two design methods can be under-
stood as two well-structured variants of object-oriented inheritance. In other words,
these ideas can also be described as an object-oriented approach to specification.
Notice, however, the fundamental departure from conventional object-oriented
programming that objects are not assumed to have individualistic behavior; the
methods of individual objects are replaced by roles in cooperative, multi-object
actions.

5. Concluding Remarks

In this paper we have investigated some novel language directions to which we
may be led by the need to support program specification and derivation effectively,
especially in the context of reactive systems. In particular, we hope to have demon-
strated that early commitment to decisions on control is harmful for certain natural
approaches to software derivation. Therefore, languages with a possibility for in-
dependence of control decisions are foreseen, and some capabilities of a simple
experimental specification language of this flavor have been presented.

More generally, with this direction of language development the practical
significance of the following views are expected to be emphasized:

• The apparent need of better tools for program analysis is an indication of in-
adequate languages; ultimately the only way to reliable programs is by formal
specifications with proper abstractions and by well-structured derivation of
programs from them.

• In providing effective support for program derivation it is insufficient to restrict
to constructive programming facilities; programs have to be considered as
special cases of more general constructions.

In order to cope with different language requirements for program specification,
derivation, prototyping, implementation, etc., a wide spectrum language would need

190 R. Kurki-Suonio

a huge arsenal of capabilities. Various current trends in language development have
different emphases in this respect, and we do not believe in the creation of languages
that are very large along this axis. In spite of its size and ambitious objectives, Ada,
for instance, extended the scope of programming languages only modestly towards
supporting program development. Integrating effective support for program deriva-
tion with all the facilities of an efficient implementation language would necessarily
lead to a language with even much greater complexity. To us this seems a hopeless
direction, but, deciding from [Ga 89], the idea of such language dinosaurs has not
been abandoned.

With a collection of different and more specialized languages the role of con-
ventional high-level languages would change, which would also affect their require-
ments. Program specification and the initial design transformations could be carried
out in languages with only little support for efficient executability, which was the
area of the technical contributions in this paper. High-level languages that can be
automatically compiled into efficient machine code would be needed as target lan-
guages for such design systems, and also as languages for efficiency-oriented transfor-
mations. However, the design motivations of current high-level languages have
been quite different, and it would be instructive to evaluate them in the light of
theses new uses.

Acknowledgments

The joint action approach was developed together with Ralph Back from Abo
Akademi. Its use as a basis for a specification language, and the development of
associated tools and design methodologies are the topics of project DisCo at Tam-
pere University of Technology. This project is part of the FINSOFT programme of the
Technology Development Centre of Finland (TERES), and is supported by four
industrial partners. Fruitful discussions with other project members and with a
seminar group are gratefully acknowledged.

References

[A L 88] M . ABADI and L . LAMPORT, The existence of refinement mappings. Res. Rep. 2 9 , Digital
Equipment Corporation, Systems Research Center, Aug. 1988.

[A S 85] B . ALPERN and F . B . SCHNEIDER, Defining liveness. Information Processing Letters 21,
(Oct. 1985), 181—185.

p a 78] R. J. R. BACK, On the correctness of refinement steps in program development. Report
A—1978—4, Department of Computer Science, University of Helsinki, 1978. •

P a 80] R. J. R. BACK, Correctness preserving program refinements: proof theory and applica-
tions. Mathematical Centre Tracts 131, Mathematical Centre, Amsterdam 1980.

P a 88a] R. J. R. BACK, A calculus of refinements for program derivations. Acta Informatica 25,
6 (1988), 593—624.

p a 88b] R. J. R. BACK, Refining atomicity in parallel algorithms. Report A 57, Department of
Computer Science, Abo Akademi, 1988. To appear in Conference on Parallel Architec-
tures and Languages Europe, 1989.

p K 83] R. J. R. BACK and R. KURKI-SU'ONIO, Decentralization of process nets with a centralized
control. Distributed Computing 3, 2 (1989), 73—87. An earlier version in Proc. 2nd
ACM SIGACT—SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Canada, Aug. 1983, 131—142.

Towards Languages that Support Program Derivation 191

[B K 84] R . J. R . BACK and R . KURI-SUONIO, A case study in constructing distributed algorithms:
distributed exchange sort. In Proc. Winter School on Theoretical Computer Science,
Lammi, Finland, Jan. 1984. Finnish Society of Information Processing Science, 1—33.

[B K 88a] R . J. R . BACK and R . KURKI-SUONIO, Serializability in distributed systems with hand-
shaking. In Proc. ICALP 88, Automata, Languages and Programming (Ed. T. Lepisto
and A. Salomaa), LNCS 317, Springer-Verlag, 1988, 52—66.

[B K 88b] R . J . R . BACK and R . KURKI-SUONIO, Distributed cooperation with action systems. ACM
Trans. Programming Languages and Systems 10, 4 (Oct. 1988), 513—554.

[BW 89] R. J. R. BACK and J. VON WRJGHT, Duality in specification languages: a lattice-theore-
tical approach. Report A 77, Department of Computer Science, Abo Akademi, 1989.
To appear in Mathematics in Program Construction, LNCS, Springer-Verlag.

[dB 80] J . DE BARKER, Mathematical Theory of Program Correctness. Prentice-Hall, 1980.
[B G 7 9] R. BALZER and N . GOLDMAN, Principles of good software specification and their impli-

cations for specification languages. In Specification of Reliable Software, IEEE Computer
Society, 1979, 5 8 — 6 7 .

[Ba & 89] F. L . BAUER, B . MOLLER, M . PARTSCH and P . PEPPER, Formal program construction by
transformations — computer-aided, intuition-guided programming. IEEE Trans, on
Software Engineering 15. 2 (Feb. 1989), 165—180.

[B B 87] T. BOLOGNESI and E. BRINKSMA, Introduction to the ISO specification language LOTOS.
Computer Networks and ISDN System 14, (1987), 25—59.

[B F 88] L . BOUOE and N . FRANCEZ, A compositional approach to superimposition. In Proc.
15th ACM Symposium on Principles of Programming Languages, San Diego, California,
Jan. 1988, 240—249.

[C M 88a] K . M . CHANDY and J. MISRA, Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[C M 88b] K . M . CHANDY and J . MISRA, Another view of "fairness". ACM Software Engineering
Notes 13, 3 (July 1988), 20.

[Di 76] E. W. DUKSTRA, A Discipline of Programming. Prentice-Hall, 1976.
[Di 88] E. W. DISJKSTRA, Position paper on "fairness". ACM Software Engineering Notes 13,

2 (April 1988), 18—20.
[D S 80] E. W. DUKSTRA and C. S . SCHOLTEN, Termination detection for diffusing computations.

Information Processing Letters 11, 1 (Aug. 1980), 1—4.
[E F 82] T. ELRAD and N. FRANCEZ, Decomposition of distributed programs into communica-

tion-closed layers. Science of Computer Programming 2, 3 (Dec. 1982), 155—173.
[Fe 87] M. S. FEATHER, Language support for the specification and development of composite

systems. ACM Trans. Programming Languages and Systems 9, 2 (April 1987), 198—234.
[F D 77] C . FORGY and M . C . DERMOT, O P S , a domain independent production system language.

In. Proc. Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass.,
Aug. 1977, Morgan Kaufmann, 1977, 933—939.

[Fr 86] N. FRANCEZ, Fairness. Springer-Verlag, 1986.
[Ga 89] R. P. GABRIEL (ED.), Draft report on requirements for a common prototyping system.

ACM Sigplan Notices 24, 3 (March 1989), 93—165.
[Ha 87] D. HAREL, Statecharts: a visual formalism for complex systems. Science of Computer

Programing 8, 3 (June 1987), 231—274.
[JA & 89] H.-M. JARVINEN, R . KURKI-SUONIO, M. SAKKINEN and K . SYSTA, Object-oriented specifi-

cation of reactive systems. Proc. 12th International Conference in Software Engineering,
Nice, France, March 1990, IEEE Computer Society Press, 63-71.

[Ka 87] S. KATZ, A superimposition control construct for distributed systems. Microelectronics
and Computer Technology Corporation, Report STP—268—87, Aug. 1987.

[Ku 86] R. KURKI-SUONIO, Towards programming with knowledge expressions. In Proc. 13th
ACM Symposium on Principles of Programming Languages, St. Petersburg Beach,
Florida, Jan. 1986, 140—149.

[Ku 89] R. KURKJ-SUONIO, Operational specification with joint actions: serializable databases.
To appear in Distributed Computing.

[KJ 89] R. KURKI-SUONIO and H—M. JARVINEN, Action system approach to the specification and
design of distributed systems. In Proc. 5th International Workshop on Software Specifica-
tion and Design, ACM Software Engineering Notes 14, 3 (May 1989), 34—40.

[K K 88] R . KURKI-SUONIO and T. KANKAANPAA, On the design of reactive systems. BIT 28 ,3
(1988), 581—604.

192 R. Kurki-Suonio: Towards Languages that Support Program Derivation

[LS 84] S. S. LAM and A. U. SHANKAR, Protocol verification via projections. IEEE Trans, on
Software Engineering SE—10, 4 (July 1984), 325—342.

[La 89] L. LAMPORT, A simple approach to specifying concurrent systems. Comm. ACM 32,
1 (Jan. 1989), 32—45.

[L F 82] P. E. LONDON and M. S. FEATHER, Implementing specification freedoms. Science of
Computer Programming.2, 1 9 8 2 , 9 1 — 1 3 1 .

[M P 8 3] Z . MANNA and A . PNUELI, HOW to cook a temporal proof system for your pet language.
In Proc. 10th ACM Symposium on Principles of Programming Languages, Austin, Texas,
Jan. 1983, 141—154.

Mo 88a] C. MORGAN, Data refinement by miracles. Information Processing Letters 26, (Jan. 1988),
243—246.

Mo 88b] C. MORGAN, The specification statement. ACM Trans. Programming Languages and
Systems 10, 3 (July 1988), 403—419.

[Mo 87] J. MORRIS, A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming 9, 3 (Dec. 1987), 287—306.
G. NELSON, A generalization of Dijkstra's calculus. Res. Rep. 16, Digital Equipment
Corporation, Systems Research Center, April 1987.
D. L. PARNAS, Software aspects of strategic defense systems. Comm. ACM 28, 12 (Dec.
1985), 1326—1335.
A. PNUELI. Applications of temporal logic to the specification and verification of reactive
systems: a survey of current trends. In Current Trends in Concurrency (Ed. J. W. ae
Bakker, W.-P. de Roever and G. Rozenberg), LNCS 224, Springer-Verlag, 1986, 510—
5 8 4 .
F. B . SCHNEIDER and L . LAMPORT, Another position paper on "fairness". ACM Soft-
ware Engineering Notes 13, 3 (July 1 9 8 8) , 1 8 — 1 9 .

[S W 8 7] B . SHRIVER and P. WEGNER (ED.), Research Directions in Object-Oriented Programming.
MIT Press, 1987.

[W Z 88] P. WEGNER and S. B. ZDONIK, Inheritance as an incremental modification mechanism
• or what like is and isn't like. In Proc. European Conference on Object-Oriented Program-

ming '88, Springer-Verlag, 1988, 55—77.

[Ne 8 7]

[Pa 8 5]

[Pn 86]

[S L 8 8]

Techniques for Modular Language Implementation*

KAI KOSKIMIES

Department of Computer Science, University of Tampere
Box 607, SF—33101 Tampere, Finland

e-mail: koskimie@ondake.uta.fi

Abstract

It is argued that the modularization of language implementation software should be based on the
concepts of the source language rather than on certain implementation techniques: this would lead
to more maintainable and reusable software components. Various techniques supporting source
language oriented modularization are explored, covering both syntactic and semantic issues. For
scanning and parsing, a lazy LL(1) method based on independent nonterminal modules is proposed;
in this method the scanner and the parser are partially constructed during parsing according to the
needs of a particular input. For semantic aspects, an object-oriented approach is suggested in which
the source program is viewed as a collection of objects. The classes are derived systematically on the
basis of a disciplined syntactic specification of the language.

1. Introduction

A crucial question of any software development is how to divide the software
into managable pieces, modules, with simple mutual relationships. The answer can
vary considerably, depending on the way a system designer thinks about the system.
There are at least two basic approaches. In the implementation-oriented approach
the system is viewed as a hierarchy of abstract machines; then the modules provide
services required by the abstract machines. In the task-oriented approach the system
is divided into pieces according to the logical task of the system, so that different
modules implement different subtasks. An important advantage of the latter approach
is that if the task is slightly changed, the system can be relatively easily updated by

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

mailto:koskimie@ondake.uta.fi

194 K. Koskimies

replacing the corresponding modules with new ones. The latter view is normally
taken also in object-oriented programming.

As a software product, a language system (analyzer, compiler, translator,
interpreter) is perhaps one of the most studied. The structure of such a system has
become practically standard, and the components can be usually developed using
well-known systematic techniques, often supported by automatic generation tools.
The standard structure of a language system follows basically the implementation-
oriented approach: typical modules are an input buffer, a scanner, symbol table,
code generation services (see e.g. [WeM 80]). These modules can be understood as
an abstract implementation machine for a particular language.

It is somewhat surprising that alternative modularization techniques, in particular
the task-oriented approach, have not been applied in practical language implementa-
tion. The task-oriented approach (which can be called language-oriented approach
in the context of language systems) has obvious advantages over the implementation-
oriented approach:

• the number of modules depends on the size of the language, implying that the
sizes of the modules remain small;

• during language development, some part of the language can be easily changed
by replacing the module corresponding to that part with another module;

• components of existing language systems can be reused in the development of
new languages;

• system maintenance becomes easier because of fine-grained modularization that
can be understood on a high conceptual level (i.e., on the level of the source
language).

Although the language-oriented modularization principle has not been applied
in practical implementations of programming languages (to my knowledge), it is
not a completely new idea in the research. From a theoretical point of view, the
subject has been studied by Watt [Wat 85]. Some experimental language implemen-
tation systems provide a modular specification language (e.g. [Toe 88]). In some
implementation systems ([Gro 84], [HeR 75]) a language implementation can be
developed in a step-wise way that is ideologically close to the language-oriented
modularization.

In this paper we study the language-oriented modularization on the level of a
general-purpose modular implementation language (say, Modula-2 or Oberon
[Wir 88]). Our results can be applied to writing modular language systems by hand,
but they can equally well be used in the design of a generator producing (modular)
implementations on the basis of high-level specifications. We feel that even in a
system providing a modular specification language the generated code should also
be modular: otherwise a small change in some of the specification modules requires
a complete recompilation of the generated code (even though the other specification
modules perhaps need not be reprocessed).

We proceed as follows. In the next section we introduce a notation for describing
the construction of programs; we will use this notation throughout the paper. Sec-
tion 3 is an informal introduction to a parsing technique supporting modular imple-
mentations; this part is essentially a summary of the results given in [Kos 89]. In

Techniques for Modular Language Implementation 195

Section 4 we present a method for constructing an abstract representation of a
program in a modular way. Section 5 discusses briefly the problems in modularizing
the dynamic semantics. Sections 4 and 5 are mostly extensions of the ideas presented
in [Kos 88]. Finally, in Section 6 we present some concluding remarks.

2. Program generation tools

We make use of static statements enclosed in brackets; these statements can be
regarded as advanced "macro" facilities that can be used within normal program
text. They are assumed to be executed by a preprocessor (or by the compiler) to
produce the actual source code to be inserted in their places. Hence, the information
on which the execution depends must be static. We use three kinds of static state-
ments. The let statement allows the value of a static expression to be inserted in the
code:

[letX = E'.p\

where E is a (static expression) and J? is an arbitrary string. As a result, the string
obtained from /? by replacing every occurrence of X with the string representation
of the value of E is inserted into the source code at this point. A short-hand notation
can be used for nested let statements:

[letXj. = Ex\ [letXa = E2: ...: J?]]

can be written in the short form:
[letXl=E1,X2 = E2,...:p\.

Static if statement is given in the form:
[ifE:P]

where E is a condition (Boolean expression) and jS is an arbitrary string. The con-
dition must be a static expression; if it yields true ft is included in the program;
otherwise the entire statement is ignored by the compiler. Similarly, a static for
statement

[forXinS:p\

denotes a sequence of strings, each obtained from /? by replacing the occurrences
of X with one element in the ordered set S. The above statement then generates :

PiP»-Pk
where is obtained from /? by replacing every occurrence of X with the z'th element
of S. We assume that all sets discussed here are ordered; if the order is not explicitly
given some arbitrary order is assumed. Static statements may be nested, in which
case the outermost statements are executed first. Note that we use italic bold for the
keywords of static statements to distinguish them from the keywords of the normal
program text.

We use these static statements mainly to express the generation of programs in
a compact way: a program containing static statements can be understood as an
algorithm.for producing a normal program.

2 Acta Cybernetica IX/3

196 K. Koskimies

3. Scanning and parsing

We define first some basic concepts. A context-free grammar (CFG) is a 4-tuple
(Vr, Vn, S, P), where VT is the set of terminal symbols, VN is the set of nonterminal
symbols, S is the start symbol and P is the set of productions of the form A-*fi,
where A is a nonterminal and /? is a possibly empty string of terminals and non-
terminals. A production of the form A-+B, where B is a nonterminal, is called a
chain production. A CFG is reduced if every nonterminal is used in the derivation
of a terminal string. A CFG in non-circular if there is no nonterminal that can pro-
duce a string consisting of this nonterminal only.

Assuming that the modularization is based on language concepts that are
(mostly) represented by certain syntactic structures, we decide that for each non-
terminal of the language there is a separate module that implements this nonterminal.
It might be argued that this decision leads to a huge number of modules in some
cases (say, several hundreds), but on the other hand it allows very fine-grained reuse
of language structures. We do not regard the possibly great number of modules as
a serious problem, assuming that the module library is organized in some sensible way.

The natural way to proceed is then to introduce a handling procedure for each
nonterminal module, taking care of the processing of the structure generated by
that nonterminal in the well-known recursive descent style. However, the basic mo-
dularization principle requires that when writing one module we are not allowed to
make use of the detailed knowledge of the tasks of the other modules. This principle
guarantees that the modules are interchangeable, as long as the interfaces remain
the same. When applied to nonterminal modules, this means that we must be able
to replace the implementation part of a nonterminal module into another one without
affecting the implementation of the other modules. In language terms, if we change
the productions of a nonterminal, it must be sufficient to change the implementation
part of that nonterminal only. Note that if the processing procedures are written in
the traditional way, this does not hold because the starter and follower symbols of
nonterminals are assumed to be known globally, and because all the terminal tokens
of the language are assumed to be known by a scanner.

Hence, our problem is the following: how can we write the analysis procedure
for one nonterminal module on the basis of the productions of that nonterminal
only, without using any knowledge about the productions of other nonterminals
and the tokens appearing in them? This implies that the global information about
the entire language cannot be embedded statically into the program code, but it
must be computed at run-time. The key question is when and how to collect this
information. In a nondeterministic top-down analyzer (e.g. [Gro 84], [HeR 75]) the
necessary information is essentially recomputed every time it is needed. The other
extreme is to compute all the information before the analysis of an input begins.
In both cases some loss of efficiency is expected: the former method involves back-
tracking (which is unpleasent also for the semantic processing), the latter method
implies that the analysis time of every program is increased by the time required
for parser and scanner construction which is particularly unsatisfactory for small
programs of a large language.

Our choice is a method which is between these two extremes. We find out the
necessary information about the grammar on the fly during parsing, and store it so
that it need not be recomputed when the same parsing situation occurs later. This

Techniques for Modular Language Implementation 197

means that we construct the parser during parsing, but only as far as is needed to
analyze a particular input text. This approach can be called lazy in the sense that the
analyzer is constructed in a lazy manner. The lazy approach has been previously
taken in the context of LR parsing by Heering, Klint and Rekers in [HKR 88].

In a traditional recursive descent parser, gljbal grammar information is used
only to select the alternative production of a nonterminal, when the procedure of
the nonterminal has been activated. Hence, this part of an analyzer procedure must
be removed so that the selection can be based on some global data structure that is
built during parsing. The analyzer will therefore be partly table-driven (the global
data structure for selecting the alternative), partly hard-coded (the code for analyzing
the right-hand sides of productions).

Obviously it is possible to give each nonterminal module a procedure that com-
putes the starter symbols of that nonterminal (say A), using the corresponding pro-
cedures of those nonterminals appearing on the left-hand sides of the productions
of A. Then a straightforward way to construct a lazy recursive descent parser would
be to augment each analyzer procedure with an initial action that computes and
stores the starter symbols of that nonterminal, together with information that in-
dicates which production must be selected for each starter symbol, if they have not
been already computed. By matching the current input symbol with one of the
starter symbols the correct alternative can be selected, and the parsing proceeds in
the normal way. If none of the starter symbols matches with the input, and there
is an alternative that produces the empty string (assuming this can be decided),
this alternative can be safely selected. If there is no such alternative, a syntax error
must be reported. Obviously this works at least for LL(1) grammars: the fact that
the parser makes a "default" move corresponding to the derivation of an empty
string does not essentially change the behaviour of the parser. However, this scheme
leads to an unnecessarily inefficient parser because the same current input symbol
will be matched with a starter symbol many times on different nonterminal levels
when the right-hand side of a production begins with another nonterminal. Note
that when a starter symbol is matched with the current input in a nonterminal pro-
cedure, all the subsequent productions that are applied next to expand the leading
nonterminal symbols on the right-hand sides of productions are in fact known in
LL parsing. We call these productions the left-corner productions of the nonterminal
in that context. So, our aim is a global data structure that supplies for each nonter-
minal not only pairs (a, p) where a is a starter symbol and p is the production to be
applied, but sequences of the form (a, p1, ..., pk), where px, ...,pk is the sequence
of the left-corner productions of the nonterminal in the parsing situation determined
by the starter symbol a. The analysis procedures will then select the alternatives of
the nonterminals according to this sequence, without consulting any more the
current input symbol. The required data structure will be a labelled directed graph
called the start tree of the nonterminal.

Suppose that the productions of each nonterminal are numbered 1, ..., n; i.e.
the alternative production rules of a nonterminal are given by unique numbers.
The leaves of the start tree of A will be the starter tokens of A, and some additional
special symbols for handling empty derivations. The essential property of the start
tree of A is the following: if there is a leaf labelled t (terminal symbol), then the
labels of the arcs on the path from this leaf node to the root give the (numbers of the)
left-corner productions when an A produces something that begins with t. In additi-

2•

198 K. Koskimies

on, if there is a leaf labelled (A), the labels of the arcs on the path from this leaf
to the root give the (numbers of the) left-corner productions when an A produces
the empty string.

Assuming that we know how to build the start trees we can parse as follows.
When the analyzer procedure of the nonterminal A is called, we first check whether
the start tree of A is already constructed. If not, we construct it. Then the current
input symbol is compared with the leaves of the start tree of A. If it matches with
one of the leaves, the production numbers found on the path from the leaf to the
root (in the reverse order) are applied in the subsequent activations of analyzer
procedures of other nonterminals without consulting the current input symbol,
until all these production numbers are consumed. If there is no match, but one of
the leaves is (A), we know that A produces the empty string and this is the only
possible correct choice in this context. Hence we use the production numbers on
the path from this leaf to the root as before. If there is no match and no (A) leaf,
we report a syntax error. When all the production numbers have been consumed,
the parser switches its "mode" and starts to process the right-hand side of the last
selected rule in the normal way.

Here we will not discuss the construction of the start trees in detail (see [Kos 89]),
but instead we show how to write the analyzer procedures. For that purpose we
use some notations:

Primary Starters (A) = {/ in VT\ there are productions A',,—X^.., ..., Xk...,
where £>0 , X0=A, Xk=l};

Path(y4, x) = the sequence of numbers associated with the arcs from
the (leaf) node x to the root in the start tree of A, in the
reverse order;

Variants (A) = the number of alternative productions for the nonter-
minal A;

RhsLength(/i, /') = the number of terminal and nonterminal occurrences on
the right-hand side of A's production /;

Rhsltem(/i, i,j) = the /th terminal or nonterminal occurrence on the right-
hand side of A's production /;

Sym(A, i,j) = the terminal or nonterminal symbol corresponding to
Rhsltem(y4, i,j).

Further, we use the following procedures that are assumed to be provided by a
general support module called MLI:

procedure Rule(): Integer;
var ProdNumber: Integer;
begin

ProdNumber: = Head (LeftCorners);
LeftCorners: = Tail (LeftCorners);
if LeftCorners is empty then Mode: = Examine; end;
return ProdNumber;

«nd Rule;

Techniques for Modular Language Implementation 199

procedure Scan(f: Token);
begin

if t is in the current input position then
advance the input pointer past token /;

else SyntaxError;
end;

end Start;

For each nonterminal A we construct procedure Create as follows (the choice of the
name will become understandable later), to be included in the module of the non-
terminal:

procedure Create;
begin

if MLI.Mode=MLI.Examine then
if there is no start tree for A then construct the start tree of A end;
if there is terminal t such that

a) t is in the current input position, and
b) t is a leaf node of the start tree of A

then
if / belongs to Primary Starters (A) then

advance the input position past t\
end;

MLI.LeftCorners: = Path (A,t);
else

if there is (A) in the leaves of the start tree of A then
MLI.LeftCorners : = Path (A, (A))

else
MLI.SyntaxError;

end;
end;

MLI.Mode: = MLI.Parsing;
end;
case MLI.RuIe() of

[for i in 1..'Variants (A):
i: [for j in l..RhsLength(v4, /):

[i/RhsItem(/i, i,j) is terminal and 1:
[fe/ S = Sym(A, / , j) : MLI.Scan(S);]]

[i/RhsItem(yi, /,./) is nonterminal:
[let 5=Sym(^, i,j): ¿'.Create;]]]]

end;
end Create;

Here LeftCorners and Mode are global variables provided by the general support
module MLI, initially Mode = Examine. Note that we pay no attention to error
recovery. Traditional error recovery techniques are in general not applicable, because
there is no global grammar information that could be used e.g. to skip tokens after
an error.

200 K. Koskimies

A modular recursive descent parser has some interesting properties. The fact
that we make a default move leading to empty derivation implies that even some
non-LL(l) grammars can be parsed succesfully. For example, the classical dangling
else problem is solved simply by parsing according to the productions

If Statement -• " i f" Expr "then" Statement ElsePart
Else Part—"else" Statement |

which makes the grammar ambiguous. In this case the parser will always try to
recognize a non-empty else part for the innermost preceding " i f" instead of an
empty one, if possible.

Another interesting feature is due to the fact that there is no global scanner,
but the scanner is distributed in the start trees. This leads to "syntax-directed"
scanning: only those tokens are considered in the scanner that are possible in the
syntactic context. For example, consider the well-known Pascal subrange problem:
the scanning of a subrange definition, say "1...10", fails because the principle of
maximal length forces the scanner to expext a real constant after reading "1.".
The problem does not appear in our method because a real constant cannot start
a subrange and will not be considered at all.

Our method introduces also some new problems. Note that in principle the
LL(l)-ness of the grammar is never known in advance, when the parsing begins
(indeed, as shown above, the grammar need not be LL(1) in some cases.) Since only
those parts of the grammar are examined that are actually used in analyzing a parti-
cular input, the LL(l)-ness cannot be decided at all. The method guarantees a correct
parse for all LL(1) grammars, and the parser cannot accept an invalid input for any
grammar, but it can a) produce a correct parse for some non-LL(l) grammars and
b) report a syntactic error for a correct input of some non-LL(l) grammars. Problem
b) is of course unpleasent: it would be more appropriate to report a grammar error
than a syntactic error. Although most of the non-LL(l) cases must be eliminated
during parsing in order to construct the start trees in a sensible way, some cases
remain undetected. For a discussion, see [Kos89].

The syntax-directed scanning scheme implies certain problems, too. Because the
scanner is distributed in the start trees, there may be conflicts between the tokens
that are not known by the scanning process. For example, it is in general impossible
to prevent a keyword belonging to one part of the grammar to be interpreted as an
identifier when processing another part. Our method supports the convention that
keywords are not reserved symbols but, can be used e.g. as identifiers, as long as the
left context determines uniquely the identity of the token.

The method described above has been implemented and some preliminary
experiments have been carried out [Kos89]. The results show — somewhat surpris-
ingly — that a modular scanner/parser is as fast as a. traditional recursive descent
one, reaching the speed of 300 000 tokens/min. It turns out that in practice the con-
struction of start trees takes very little time: only for very small programs a difference
in the running time was observed, when compared to a traditional recursive descent
parser. The start trees tend to be rather small: for a subset of Pascal the average
depth of the start trees was less than 2, and the average number of leaves was 2.7.

It is interesting to note that the behaviour of the modular parser is sensitive to

Techniques for Modular Language Implementation 201

the properties of the grammar, and even to the properties of a particular input. If the
grammar is "modular" in the sense that it consists of several relatively independent
subgrammars, and only one or some of them are typically used in one input text,
the start trees need to be constructed only for a small part of the grammar.

4. Construction of an abstract representation

We consider a program as a set of interrelated objects that, when put into a
particular environment, behaves in a certain way implied by the language semantics.
Consequently, there are two kinds of concepts involved in language implementation:
program concepts that have more or less obvious concrete counterparts in the syntax
of the language, and environmental concepts that are not represented in the program
text, but belong to the "abstract machine" that executes the program. Our intention
is to view both kinds of concepts in the object-oriented setting; correspondingly,
instead of concepts we will speak of program classes and environmental classes. The
program classes will be implemented by regarding nonterminals as classes, and by
adding certain parts into the nonterminal modules constructed in Section 3. We
shall use the term nonterminal class as a synonym for program class. The environ-
mental classes could be provided by some general implementation support module
(like MLI, see Section 3), or they could be implemented by additional modules;
we use the latter approach in the sequel. The connection between these two class
categories is established by the fact that some nonterminal classes are considered as
subclasses of the environmental classes.

Let us first consider the problem of constructing an abstract representation of a
program. To establish a sensible class hierarchy for the classes represented by non-
terminal symbols we require that the syntactic specification is given in a certain form.

A context-free grammar is structured1 if for each nonterminal A, either

(i) there is only one production that has A on the left-hand side, or
(ii) all the productions that have A on the left-hand side are chain productions;

but not both. Further, we say that a grammar is well-structured, if it has the following
properties:

(i) it is structured;
(ii) it is reduced and non-circular;

(iii) there is no nonterminal A such that the only production having A on the
left-hand side is a chain production;

(iv) each nonterminal appears on the right-hand side of a chain production at
most once.

The basic idea is to interpret chain productions as presentations of class hier-
archies. This is a natural interpretation: the fact that a nonterminal A has the
productions A—B1, ..., A—Bk is just another way of saying that a Br is an A, ...,

1 This grammar form has been used (independently) by Jürgen Uhl [Uhl 86]. However, he
used this form for establishing equivalence relations between nonterminals rather than class hierar-
chies. We adopt his term ("strukturierte Grammatik").

202 K. Koskimies

a Bk is an A. A production that is not a chain production expresses only the consti-
tuent parts of a concept that is "basic" in the sense that it does not have subclasses,
whereas a chain production A-+B expresses the relation "B is a subclass of A".

We say that the nonterminals having only chain productions are superclass
nonterminals, and the nonterminals having no chain productions are basic nonter-
minals. The properties listed above for well-structuredness guarantee that

(a) each nonterminal is either a superclass nonterminal or a basic nonterminal,
but not both;

(b) there are no needless or circular classes;
(c) there are no identical classes;
(d) the class structure is purely hierarchical (i.e. there is no multi-inheritance).

The properties (a), (b), (c) ,and (d) are implied by (i), (ii), (iii), and (iv), respecti-
vely. In the following we assume that a grammar is well-structured. Note that the
well-structuredness of a grammar is easy to check using well-known techniques,
and that an arbitrary context-free grammar can be automatically transformed into
a well-structured one in a straightforward way, without affecting the essential pro-
perties of the grammar (like the generated language or the parsing properties');
this requires only the introduction of some new nonterminals and possibly some
renaming of the nonterminals. Also note that although class nonterminals cannot be
circular they can be (and often are) recursive: there is no reason why a class non-
terminal could not appear on the right-hand side of a production of one of its sub-
class basic nonterminals. The reader is invited to confirm that no nonterminal can
appear both on the left-hand side and on right-hand side of some production (i.e.
there are no directly recursive nonterminals).

Basically, the existance of an instance of a basic nonterminal in a syntax tree
implies the existance of an object of the class corresponding to the nonterminal. In
contrast, an instance of a superclass nonterminal merely establishes a new class level
for an object that corresponds to the basic nonterminal instance somewhere below
the superclass nonterminal.

To express classes in a program, we assume an Oberon-like [Wir88] type exten-
sion facility2: a record type may be extended with additional fields to create a new
record type (subclass) that is upwards compatible with the original record type
(superclass). Type extension is given as

type T = record (U)... fields... end;

where U is the superclass type that is extended with the new fields, yielding the sub-
class type T. As in Oberon, if a record type is given in the definition part of a module,
it can be extended in the implementation part; this is only a means to introduce
"invisible" fields for a visible record type. This minor feature turns out to be very
useful in our method.

Consider the nonterminal modules constructed following the method described
in the previous chapter. For each nonterminal module we specify a record type that
provides all the local data for objects of the nonterminal class; we call this the instance

2 The new object-oriented extension of Oberon [MTG 89] might have been even more suitable
for our purposes; but we stick to a presentation language that is close to Oberon because we assume
it is widely known,

Techniques for Modular Language Implementation 203

type of the nonterminal. If thé nonterminal has a superclass, this type is defined as
an extension of the corresponding type in the module of the (immediate) superclass
nonterminal. We will modify the "Create" procedure introduced in Section 2 so
that it will return as its value a reference to the instance object. In the case of a super-
class nonterminal the reference-, to be .returned is provided directly by a call of a
"Create" procedure of a subclass nonterminal; in the case of a basic nonterminal
the instance object is explicitly created.

In an abstract representation of a program, certain fields of the instance type
refer to objects whose (instance) type is provided by the modules of the constituent
nonterminals. These fields can bp.declared only in the. body of the module: the fact
that nonterminals may be recursive prohibits thè déclaration of these fields in the
definition part (otherwise there would be circular importing between the definition
parts). This is natural also because these fields are internal knowledge of the objects
that should be used only by the methods of the corresponding class (i.e. by the
procedures of the module). However, the instance type itself must be declared in
the definition part of the module^ because it is needed by other modules. This con-
tradiction can be nicely solved using the Oberon-like feature which allows the adding
of new "invisible" fields in the module body into a record given in the definition part.

In addition to the special notations introduced in Section 3, we use the following
notation :

Super (A) denotes the immediate superclass nonterminal of A, if it exists;
otherwise A ;

In the following we give a scheme for generating à nonterminal module together
with the parts that are needed for constructing an abstract representation of the
program.

definition NontName;
import MLI

D/NontName has a superclass: , [let S=Super (NontName): 5]];
type Class=pointer to InstanceType;
type Instance Type=record

[i/NontName has a superclass :
([let S=Super (NontName): S. InstanceType])]

end;

var Descriptor: MLI.DescriptorType;
procedure Prepare;
procedure Create(): Class;

end NontName; • • • • - .

module NontName;
- import MLI

[for N in {A | there is a production.NontName— ... A ...}: ,N];
« • [t/NontName is a basic nonterminal :

type InstanceType=record
' - • [for j in /..RhsLength(NontName, /) :

: [if Rhsltem(NontName, 7,y) is nonterminal:

204 K. Koskimies

[let Y=Sym (NontName, l,j), Z =j:
comp_Z_Y: Y. Class;]]]

end;]

* procedure Prepare;
for constructing the start tree, see Section 3....

end Prepare;
procedure Create0: Class;

var NewObj: Class;
begin

[if NontName is a superclass nonterminal:
if MLI.Mode = MLI.Examine then

... as in Section 3 ...
end;

case MLI.Rule() of
[for i in /..Variants(NontName):

[let X = Sym (NontName,/, 1):
i: return AXreateO;]]

end;]

[if NontName is a basic nonterminal:
New (NewObj);
[for jin 7..RhsLength (NontName,7):

[j/RhsItem(NontName, 1,j) is terminal:
, [let t = Sym (NontName, l,j): MLI.Scan (/);]]

- [i/RhsItem(NontName,J,j) is nonterminal:
[let Y = Sym (NontName,7,y), Z =j:

NewObj ~.comp_Z_ Y:= 7.Create();]]]
return NewObj;]

end Create;
end NontName;

Note that we have slightly modified the parsing scheme presented in Section 3
to make use of the well-structuredness of the grammar. Since a basic nonterminal
has only one syntactic alternative, there is no need for a case statement and for the
preceding if statement in the Create procedure. Hence these statements can be omit-
ted, provided that the arcs corresponding to the productions of basic nonterminals
are removed from the start trees as well.

The above scheme produces a structure which is exactly the abstract syntax
tree of the program. However, we are aiming at a more elaborated structure that
would be more amenable to further processing. For this purpose we need new en-
vironmental classes.

As an example, suppose that we have an environmental class providing the
abstract concept of a general list. To be able to conveniently specify the sequential
execution of a statement list we would like to represent a statement list as a list
rather than as a tree structure. Hence, we say that the nonterminal class "State-
mentList" is a subclass of the environmental list class. Consequently, the nonterminal
class that gives the element of the list ("Statement") must be a subclass of another

Techniques for Modular Language Implementation 205

environmental class that gives the abstract concept of a list element. Since these
environmental classes are obviously closely related, they are provided by the same
module:

definition List;
type List=record end; (* only invisible fields *)
type Elem=record end;
type ListClass=pointer to List;
type ElemClass=pointer to Elem;
procedure CreateList(): ListClass;
procedure Insert(L: ListClass; E: ElemClass);
... other procedures ...

end List;

We make use of these classes in the instance types of StatementList,
type InstanceType=record (List.List) end;

and Statement,

type InstanceType=record (List.Elem) end;

Note that in principle the environmental superclasses are treated in the same
,way as nonterminal superclasses. However, in StatementList there are no (invisible)
fields of the instance type that would contribute to the abstract representation; the
structure of a statement list is implicitly accessible through the operations provided
by the list module. An element of a list (Statement) is created normally using New
in the creation operation of the basic nonterminal (e.g. If Statement), and then inserted
into the list using the appropriate list operation. In contrast, a list (StatementList)
must be created using directly the creation operation provided by module List
because this requires certain initializing actions that cannot be given in the nonter-
minal module.

Note that the class hierarchy must be consistent in the sense that all the instances
of a nonterminal class X have the same class levels, independently of the context.
The class levels of the objects do not depend on the syntactic context, but only on
the existance of certain chain productions. Hence, even though X is not produced
by its superclass nonterminal Y in a particular context, the object created for the
instance of X has a F-level. This holds for environmental, superclasses as well: for
example, a statement has to be a list element in every context, even though it is (syn-
tactically) not an element of a statement list.

Since we regard a list element as a superclass of a statement, this must be true
for every instance of a statement: the class hierarchy must be consistent in this sense.
Hence a statement should always appear in a list of statements.

Let us consider a more complicated example, the implementation of name en-
vironments (i.e. symbol tables). Again we may assume the existance of an additional
module providing certain environmental superclasses. For example, we could have:

definition NameEnv;
import ... ;
type Decl= record name: String; end;
type Region=record ... end;

206 K. Koskimies

type DeclClass=pointer to Decl;
type RegionClass=pointer to Region;
procedure CreateRegion (): RegionClass;
procedure DeleteRegion(X: RegionClass);

end NameEnv;

Suppose that we have the grammar fragment

Declaration = VariableDeclaration|TypeDeclaration|...
VariableDeclaration = "var"... _
TypeDeclaration = "type"...

Nonterminal Declaration (or its instance type) should then be a subclass of
Decl, and the nonterminals generating visibility regions like modules or blocks
should be subclasses of Region; VariableDeclaration and TypeDeclaration are
subclasses of Declaration as usual. The creation operation of VariableDeclaration
(a basic nonterminal) creates a new object in the normal way, and then inserts it to
the region using an appropriate operation provided by NameEnv. The creation
operation of a region nonterminal (say, Block) also creates the region object using
New, but it must also apply other operations provided by NameEnv to "enter" and
"exit" the region.

It should be noted that above we have only sketched the basic guidelines that
could be followed in the implementation. The details depend on the source language,
and it is possible that even the basic principles may have to be adjusted to fit a par-
ticular language.

5. Semantics

The (dynamic) semantics of a language is essentially more irregular than the
parts discussed previously. Hence it is difficult to develop techniques that would be
generally applicable. The basic principle, however, should be that the dynamic
semantics of the instances of nonterminal classes should be based on the methods
of the classes. We illustrate this by an example.

Consider the following fragment of a language:

Statement—AssStatement|If Statement!...
AssStatement—VariableDenotation :=" Expression
If Statement—"if" Expression "then" Statement

Here Statement is a superclass nonterminal, while AssStatement and If Statement
are basic nonterminals. Each statement has the property that it can be executed;
hence a semantic field of the instance type of Statement provides a procedure (method)
for executing a statement object.

definition Statement;
import MLI;
type Class=pointer of InstanceType;

Techniques for Modular Language Implementation 207

type StatEx=procedure(X: Class);
type InstanceType=record

execute: StatEx;
end;

end Statement;

Module Statement does not provide any value for field "execute"; using the
object-oriented terminology this is a virtual method of the class Statement. The
value of "execute" is given at the lower level where the kind of the statement is
known:

definition IfStatement;
import MLI, Statement;
type InstanceType=record (Statement.InstanceType) end;
type Class=pointer to InstanceType;
procedure Create(): Class;

end IfStatement;
module IfStatement;

inport MLI, Statement, Expression;
ty pe InstanceType=record

comp_l_Expression: Expression.Class;
comp_ 2_ Statement: Statement .Class;

end;

procedure ExecuteIf(S: Statement.Class);
begin

with S: Class do
if S".comp_l .Expression ~.evaluate()=i (* true *)
then S *.comp_ 2 _ Statement ".execute

end
end Executelf;
procedure Create(): Class;

var NewObj: Class;
begin

New (NewObj);
NewObj ".execute :=Executelf; (* determine the execution method *)
Scan ("if");
NewObjcomp_ 1 .Expression : = Expression.Create();
Scan ("then");
NewObj ~.comp_2_ Statement: = Statement. Create();
return NewObj;

end Create;

end IfStatement;

In this way every creation of a statement, instance, carried out by the basic
statement nonterminals like IfStatement, must assign an appropriate value for the

208 K. Koskimies

execution operation. Hence, when the execute-field of a statement object is called,
the actual routine will depend on the kind of the statement. We have followed here
the Oberon conventions which require that the actual procedure has the same para-
meter types as the virtual one; therefore If Statement's parameter has to be of type
Statement. Class (and not Class which would be more natural). Explicit subclass
checking (with statement) guarantees that the parameter statement is really an if
statement.

6. Discussion

The starting point of this work has been the observation that so far the modula-
rization of language implementation software has been based on very implemen-
tation-oriented thinking. Implementation aspects have always had deep effect on the
way we design and view programming languages. We argue that the conventional
modularization technique which treats the source language as a black box has led
to the view that languages are in principle indivisable, and that it is not sensible to
try to reuse parts of existing language implementation software in the development
of other languages. It is characteristic that programming languages are often regarded
as a means to communicate with a computer, as a "formal language", suggesting
a close relationship with natural languages. However, programming languages are
not like natural languages: they are most of all technical tools to build systems.
Like other complex industrial tools they should be composed of relatively specialized
parts that can nevertheless be used as such in many kinds of system building tools.
This would give us the same benefits that are now regarded as self-evident in other
engineering branches: new production (i.e. programming) systems could be rapidly
developed for different purposes using existing building blocks, old systems could
be modernized by replacing certain parts with more advanced parts, and system
maintenance would be easy because the system consists of small modules with clean
interfaces.

References

GROSSMANN R., HUTSCHENREITER J . , LAMPE J . , LÖTZSCH J . , MAGER K.: Depot 2a —
Metasystem für die Analyse und Verarbeitung Verbundener Fachsprachen. Anwender-
handbuch, Sektion Mathematik, Technische Universität Dresden, 1984.
HEERING J . , K L I N T P., REKERS J. G.: Incremental Generation of Parsers. Report CS—
R 8 8 2 2 , Centre for Mathematics and Computer Science (CWI), Amsterdam 1 9 8 8 (also
in the Proc. of Sigplan '89 Symposium on Design and Implementation of Programming
Languages).
HEINDEL L. E., ROBERTO J. T . : Lang-Pak — An Interactive Language Design System.
Elsevier, New York—London—Amsterdam 1975.
KOSKIMIES K.: Software Engineering Aspects in Language Implementation; In: Proc.
of Workshop on Compiler-Compiler and High-Speed Compilation, Berlin, Oct. 1988.
KOSKIMIES K . : Lazy Recursive Descent Parsing for Modular Language Implementation.
Arbeitspapiere der GMD 376, Gesellschaft für Mathematik und Datenverarbeitung,
Forschungsstelle Karlsruhe, April 1989.

[Gro 84]

[HKR88]

[HeR 75]

[Kos 88]

[Kos 89]

Techniques for Modular Language Implementation 209

[M T G 89] MÖSSENBÖCK H., TEMPL J., GRIESEMER R. : Object Oberon — A n Object-Oriented Ex-
tension of Oberon. ETH Zürich, Institut für Computersysteme, Report 1 0 9 (June 1 9 8 9) .

[Toc 8 8] TOCZKI J. , GYIMOTHY T . , HORVATH T., Kocsis F.: Generating Modular Compilers in
PROF-LP. In: Proc. of Workshop on Compiler-Compiler and High-Speed Compilation,
Berlin, Oct. 1988.

[Uhl 86] UHL J.: Spezifikation von Programmiersprachen und Übersetzern. GMD-Bericht Nr.
161, Gesellschaft für Matematik und Datenverarbeitung, 1986.

[Wat 85] WATT D. A.: Modular Description of Programming Languages. Report A-81-734,
Computer Science Division — EECS, University of California, Berkeley 1985.

(WeM 8 0] WELSH J., M C K E A G M.: Structured System Programming. Prentice-Hall 1 9 8 0 .
(Wir 8 8] WIRTH N.: The Programming Language Oberon. Software Practice and Experience

18 (7) . 6 7 1 — 6 9 0 (July 1 9 8 8) .

An Error-Recovering Form of DCGs*

JUKKA PAAKKI

Nokia Research Center
P.O.Box 156, 02101 Espoo, Finland

KARI TOPPOLA

Department of Computer Science, University of Helsinki
Teollisuuskatu 23, 00510 Helsinki, Finland

Abstract

In this paper an alternative implementation of Prolog's Definite Clause Grammars (DCGs)
is presented. The DCG variant is based on the context-free grammar class LL(1) and it solves some
of the problems with parsing programming languages using conventional DCGs, such as nondeter-
minism and intolerance to syntax errors.

1. DCGs and Context-Free Grammars

The programming language Prolog has been connected to parsing right from
its very birth: the first real implementation of the logic programming idea [Col 73]
was actually developed for processing (i.e. parsing) natural languages. Since then,
several special notations especially for parsing have been introduced in Prolog, the
most popular one being the Definite Clause Grammars (DCGs) [PeW80]. DCGs
can be considered as an executable form of context-free grammars that have tradi-
tionally been the leading notation in specifying the syntax of programming languages.

Informally, a context-free grammar consists of a finite set of nonterminal symbols,
à finite set of terminal symbols, and a finite set of productions of the form

A—~S1,S2,...,SB(nz~=0)

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages and
Software Tools, Szeged, Hungary, August 8—11,1989.

3 Acta Cybernetica IX/3

212 J. Paakki, K. Toppola

where A is a nonterminal symbol, and each 5,- is either a nonterminal or a terminal
symbol. A context-free grammar represents all the syntactically legal sentences
(programs) of the language. A sentence can be derived from the grammar by begin-
ning with a symbol string consisting of the designated start symbol and by repeatedly
replacing a nonterminal in the symbol string with the right-hand side of a production
for that nonterminal, until the string contains only terminal symbols; that terminal
string is a sentence of the language. The language defined by the context-free grammar
consists of exactly those sentences that can be derived from the start symbol.

As an example, simple arithmetic expressions can be defined with the following
context-free grammar where the set of nonterminal symbols is {expr, term, factor,
number}, the set of terminal symbols is {" + ", "*", "(" , ")", "0", "1", "2", "3",
"4", "5", "6", "7", "8", "9"}, and the start symbol is expr:

expr -—• expr, " -I-", term
expr —• term
term —- term, "*", factor
term —- factor
factor -— "(",expr,")"
factor — number
n u m b e r - - "0"
number ----- "1"
number - "2"
number---— "3"
number — "4"
number - - "5"
number - — "6"
n u m b e r - - " 7 "
number — "8"
number "9"

DCGs, as a notation, resemble much context-free grammars. In a DCG, non-
terminal symbols are represented by Prolog terms and terminal symbols by Prolog
lists. For example, the context-free grammar given above can be modified into
Quintus Prolog [Qui 86] simply by terminating each production with a period.

2. DCGs and Language Processing

The DCG facility is in most Prolog dialects implemented with a transformation
from DCG into ordinary Prolog. The transformation is straightforward: each non-
terminal is translated into a predicate with two extra arguments (representing the
input symbol list before and after processing the corresponding nonterminal), and
each terminal is translated into a call for a special built-in predicate (corresponding
to advancing the input pointer to the next input symbol).

As an example, the DCG for simple arithmetic expressions outlined in chapter 1
would be translated into the following Prolog program (for clarity, we present the
terminals explicitly, instead of using their ASCII codes):

An Error-Recovering Form of DCGs 213

expr(S0, S) :— expr(S0, Sl),shift(Sl,' + ', S2),term(S2, S).
expr(S0, S) : - term (SO, S).
term (SO, S) : - term(S0, SI), shift (SI, '*', S2), factor(S2, S). .
term (SO, S) : - factor(S0, S).
factor (SO, S) : - shifc(S0,'(', SI), expr(Sl, S2), shift (S2,')', S).
factor (SO, S) : - riumber(SO, S).
number (SO, S) : - shift(S0, '0', S).
number (SO, S) : - shift (SO, '1', S).
number (SO, S) : - shift (SO, '2', S).
number (SO, S) : - shift (SO, '3', S).
number (SO, S) : - shift (SO, '4', S).
number(S0, S):— shifc(S0, '5', S).
number (SO, S) : - sh i f t (SO,'6', S).
number (SO, S) : - shift (SO, '7', S).
number (SO, S):— shift(S0, '8', S).
number(S0, S):— shift(S0, '9', S).

Here shift is the built-in scanning predicate:

shift([Z| £], X, S).

It can be interpreted as "removing symbol X from input stream [AIS], producing
stream S".

Sentences of a language are recognized by a parsing process. Most parsing
strategies lay some restrictions on the underlying context-free grammar of the lan-
guage: for instance ambiguous grammars are usually forbidden. Conventionally
a DCG is applied, i.e. the input program is "parsed", by executing the corresponding
ordinary Prolog program. The operational semantics of Prolog thus implies that a
DCG implemented this way produces a top-down, left-to-right, recursive descent,
backtracking parser. This characterization in terms of normal Prolog brings but
some problems with DCGs when considering practical parsing of programming
languages:

(1) the order of alternative productions for a nonterminal has great significance
on the speed of the parser (parsing is nondeterministic),

(2) left-recursive grammars cannot be handled,
(3) no recognition or recovery of syntax errors is provided, and
(4) lexical analysis cannot be interleaved with parsing (since the source program

is represented as a list of symbols); this leads to two passes over the source
program for parsing it.

On the other hand, reducing DGCs into ordinary Prolog makes them more
general than context-free grammars:

(i) grammar symbols can have an arbitrary number of arguments, and
(ii) procedure calls can be embedded within productions.

. These additional features make DCGs closely related with attribute grammars
[Knu 68]: arguments can be considered as "attributes" and procedure calls as "se-
mantic rules". - -

As an example, our DCG for arithmetic expressions can be revised in such a
way that the value of an expression is evaluated during parsing. Note that the original

3«

214 J. Paakki, K. Toppola

version is left-recursive; we have to remove left-recursion and for instance replace
it with right-recursion in order to make the DCG correctly executable. The argu-
ments represent the values of the subexpressions, and procedure calls are enclosed
in {...}.

expr(Val) — - term (VI), " + ", expr(V2), {Val is V1+V2}.
expr(Val) •• - term (Val).
term (Val) -- factor(VI), "*", term(V2), {Val is V1*V2}.
term (Val) - - factor (Val).
factor (Val) -- "(", expr(Val),")".
factor (Val) • — number (Val).
number (0) • — "0".
number (1) -— "1".
number (2) • - "2".
number(3) •
number (4) -- "4".
number (5) -— "5".
number (6) -— "6".
number (7) -— "7".
number (8) --— "8".
number(9) •• • - "9".

3. A More Practical Form of DCGs

We have implemented the DCG formalism in a way that is more related to the
parsing theory of context-free grammars. Most notably, we have tried to remove
the shortcomings (1)—(3) of the conventional DCG implementation strategy discussed
in the previous chapter. The initial idea was to support primarily syntax error hand-
ling, but the resulting system was expected to contribute to other parsing aspects
as well, such as efficiency. In the sequel we shall briefly present the main charac-
teristics of the system.

Determinism

Since the normal execution model in Prolog is a complete depth-first traversal
of the search tree, it was a natural choice to retain the top-down parsing strategy
in our DCG facility as well. However, the general backtracking mechanism of Prolog
contradicts the standard parsing principles in language processing: conventional
DCGs parse the input program nondeterministically, while traditionally deterministic
parsing is preferred. Nondeterministic parsing also torpedos syntax error handling
since it makes hard to connect a recognized error to the erroneous grammar symbol.
Moreover, nondeterministic parsing (although being a more general approach than
deterministic one) is rarely actually needed in the context of programming languages
because most programming languages are designed to be deterministically parsable.

Because of these reasons, we have based our DCG implementation on the
context-free grammar class LL(/), i.e. parsing is a top-down left-to-right process

An Error-Recovering Form of DCGs •215

using a lookahead of length J. This choice makes our notation more restricted than
the conventional one; the resulting formalism is rather related to one-pass attribute
grammars or affix grammars [Kos 71] than to general attribute grammars.

Left recursion

Since our system can only process LL(/) grammars, left recursion is still for-
bidden. However, the system provides some relief in this restriction by automatically
eliminating left-recursion from the original grammar, when asked. It also provides
two other grammar transformations: left factoring, and elimination of useless pro-
ductions. All these transformations have been implemented according to [ASU 86].

One shortness in these grammar transformations is that they are applied merely
to the context-free part of the DCG; if the original grammar makes use of symbol
arguments or procedure calls, these have to be updated on the transformed grammar
by the user. The reason for excluding the semantic aspects from the DCG transfor-
mations is that a well-known result with attribute grammars shows that in' general
it is impossible to transform even an L-attributed grammar into an equivalent
LL-attributed form [GiW 78] (preserving the level of semantic information during
the transformation); thus an automatic semantic conversion would be doomed to
failure.

Error recovery

Because we have based our implementation on deterministic parsing, we can
employ standard syntax error handling techniques instead of just giving up, as is
the case with the conventional DCG implementation. Our error recovery method is
a combination of panic mode and phrase-level methods, as described in [WeM 80].

The idea is to always keep the parser in synchron with the input stream. This
means that when detecting an error, the parser skips symbols in the input, until a
symbol is found that matches the current state of the parser. The parser and the
input are synchronized both at entry and at exit of each nonterminal under parse.
Synchronization is based on the FIRST and FOLLOW sets of nonterminals (see
e.g. [ASU 86]).

The principle of error handling can be illustrated by giving as an example a
procedure for parsing nonterminal A with production A-*B:

procedure A (Followers);
begin

if not (Next in FIRST (A)) then begin
Error ...;
Skipto (FIRST (A)+Followers);

end;
if Next in FIRST (A) then begin

B; — parse the right-hand side
if not (Next in Followers) then begin

Error ...;
Skipto (Followers);

end
end

end.

216 J. Paakki, K. Toppola

Here the set Followers includes all the symbols in
FOLLOW^) + (FOLLOW(XJ + FOLLOW(XJ + . . . + FOLLOW(Xn)), « > = 0 ,

where the symbols Xt represent the nonterminals on the path from A to the root in
the underlying parse tree, i.e. all the nonterminals which have been entered but not
yet exited. The FOLLOW^) sets guarantee that within any underlying parse tree
a lower-level nonterminal cannot inadvertently skip over a token which a higher-

• level nonterminal expects to deal with.
Next represents the current input token, Error emits an appropriate error

message, and Skipto(.S) skips the input stream until a token in set S is found.
; Because of the interactive nature of working with a Prolog interpreter, we have

enriched this automatic form of recovery with the possibility for local correction'.
Vif requested, the parser always halts when detecting an error and asks the user to
correct the current erroneous token. The available operations are replacement,
•insertion, and deletion.

We demonstrate the system by giving in the Appendix an example session.

Our deterministic error-recovering DCG notation has been implemented using
a meta-interpreter (see e.g. [StS 86]) that "interprets" the input grammar. Thus the
solution is different from the conventional implementation where a DCG is first
translated into ordinary Prolog and after that executed by a standard Prolog inter-
preter or compiler. The difference can be characterized more explicitly by sketching
in Figures 1 and 2 the conventional implementation strategy and the metainterpreter
strategy, respectively.

In our implementation the grammar is transformed into an internal representa-
tion of the DCG interpreter. This interpreter (a Prolog program) parses the source
program by recursively applying a universal parser predicate with the current gram-
mar symbol as parameter. The interpretation follows the principles discussed in
chapter 3.

4. Implementation

Tile G
Prolog interpreter

s — > a,b. consult(G)
a — > CPl-
b — > [q].

s(S0,S):-a(SO,SI),p(Sl,S).
a(S0,S):-shift(SO,p,S).
b(S0,S):-shift(SO,q,S).

read(P,S)

c p / U -

File S

Figure 1. Conventional implementation of DCGs

An Error-Recovering Form of DCGs •217

File G

s — > a,b.
a — > CP! -b — > [qj-

read qr(G)

read_source(P)

Prolog Interpreter

DCG interureisr

s > a,b.
a — > CP] -
b --> i q i -

[p - q]

parse.

pq

File S

Figure 2. Meta-interpreter implementation of DCGs

In order to support lexical analysis, the system includes a standard scanner
(read_source) that can be used for reading the source program and for converting
it into a list of tokens. The lexical analyzer makes the conversion assuming "normal"
patterns of "ordinary" token classes, such as identifiers, numbers, and. operators.
In case the lexical form of the source language does not match the assumptions
made by the system, the user must either modify the standard analyzer or supply
an analyzer of her/his own.

The system is embedded in Quintus Prolog [Qui 86], and it is described in more
detail in [Top 89].

5. Experiences

Our DCG variant has been applied to several toy examples, such as arithmetic
expressions. In these simple cases the system is superior to the conventional imple-
mentation: all the syntactic errors can be uncovered quite rapidly and even corrected
on-the-fly. The automatic transformations free the user to some extent from artificial
grammar constructions, such as right recursion.

Since the design of the system stems from practical problems with using Prolog
for parsing, we have tested it in a more realistic case as well. The syntax of the prog-
ramming language Edison [Bri 82] was specified as a DCG which was then executed
both using our system and using Quintus Prolog. The efficiency of these parsers was
analyzed and the results are given in Tables 1 and 2. The length of the source programs
is indicated by lines, our system by Meta-DCG, and Quintus Prolog by Quintus-
DCG. For Quintus Prolog we have assigned two figures, the first one being for the
compiled parser and the second one for the interpreted parser. All the figures for
our system are for the compiled parser. The tests have been carried out in a VAX/8800
under VMS,

218 J. Paakki, K. Toppola

Table. 1. Execution time of DCGs (seconds of cpu time)

lines Quintus-DCG Meta-DCG

1 0 0 . 0 1 / 0 . 1 7 . 8
6 0 0 . 0 6 / 0 . 7 8 8 . 4

1 0 0 0 . 0 8 / 0 . 8 1 0 1 . 8

TABLE 2. MEMORY CONSUMPTION OF D C G S (KBYTES)

LINES QUINTUS-DCG M E T A - D C G

1 0 5 9 4 / 6 6 0 1 3 6 8
6 0 6 5 4 / 8 9 9 4 7 4 2

1 0 0 6 5 4 / 8 9 9 4 8 7 5

As can be noticed, the meta-interpreter implementation unfortunately resulted
in drastic loss of efficiency when compared to the conventional implementation by
translation into ordinary Prolog. Even for relatively small Edison programs (less
than 100 lines) the meta-interpreter was far too slow for practical consideration, and
for source programs larger than 100 lines the Quintus Prolog system might run out
of memory. Also parser initialization (loading the meta-interpreter, reading the
DCG, checking the LL(7) property) took clearly more time than in the conventional
case (reading the DCG, converting it into Quintus Prolog).

The main reason to this unfortunate inefficiency lies certainly in meta-interpre-
tation. On one hand the program is quite complex and on the other hand the DCG
is represented as data; thus no optimizations on the grammar can be done by the
Prolog system as is the case with the conventional implementation. One part of the
difference can be explained by the fact that our system has to check for syntactic
correctness of the source program which task is totally outside the normal DCG
model.

The primary goal of the system, automatic syntactic error recovery, has been
reached to the extent that seems to be normal for this technique ([Har 77], [Pem 80]).
The quality of error handling was analyzed by parsing syntactically erroneous Edison
programs with the system. In ordinary cases the parser was able to find most of the
actual errors, but on the other hand it reported quite many nonexistent errors (in
some extreme cases the number of extraneous error messages was even larger than
the number of actual error messages). When recovering from an error, the parser
also skips some' portion of the source program which in Edison's case is typically
the whole incoirect structure (expression, statement, etc.). In the correction mode
the amount of omitted text is usually smaller since user-supplied corrections can
locally turn an invalid structure into a legal one.

6. Discussion and Future Work

This work shares some of the contributions with previous research on parsing
and Prolog. Deterministic parsing with Prolog based on LL(7) grammars is discussed
in [Abr 86], some systems circumvent the problems with left-recursion by employing
bottom-up parsing (e.g. BUP [MTK 86], AID [Nil 86]), etc. However, as far as we

An Error-Recovering Form of DCGs •219

know the automatic error handling mechanism is unique in our system. Also the
DCG transformations (albeit merely on the context-free part of the grammar) are
something new. We emphasize the methodological aspect in our system; of course
the same tasks could be carried out by the user as well (we have produced yet another
Edison parser as a DCG with explicit error handling [Paa 89]) but that would signi-
ficantly lower the conceptual level of the DCG notation.

Restricting the implementation on LL(i) grammars with FIRST and FOLLOW
sets imposes some problems compared with the conventional implementation (be-
sides reducing the set of accepted grammars). In our DCG variant it is not sensible
to make use of terminal variables, as in

number—[C], (is_number(C)}.

This would include variable C in FIRST (number), and the consequence would
be that a syntactically erroneous number symbol would not be detected by the parser
(since each possible token t would be considered valid through unification C = /).
Another problem of similar nature is that a grammar with the following alternative
productions is not LL(7) in our sense:

factor — [C], {is _ number (C)}.
factor — [id].

The reason to this is that the sets FIRST([C]) and FIRST ([id]) are not considered
disjoint (again since C always unifies with id). A general solution to these problems
is hard to find. In both example cases we could and actually should use procedure
is _ number to generate all the possible ground patterns for C and make use of this
pattern set instead of C in computing the FIRST and FOLLOW sets, but in general
such lexical auxiliary procedures are rather hard to automatically locate in a DCG.

One interesting problem to be solved in the future is to integrate lexical analysis
with parsing in DCGs. As noted in chapter 2, the traditional DCG formalism does not
support such an integration, and we also have excluded it from our implementation.
Another topic for the future is to base parsing and error recovery on the translation
from DCG into ordinary Prolog, as is done in conventional implementations. This
strategy would certainly be more efficient than our current one: besides that meta-
interpretation as the implementation method was shown to be rather inefficient,
conceptually the relation between a translation-based implementation and the meta-
interpreter-based implementation clearly bears an analogy to the relation between
(faster) parser programs and (slower) table-driven parsers. In the translation mode
it would also be easier for the user to correct a non-LL(i) grammar or to retain the
semantics during context-free transformations, since all the implementation-depen-
dent information (such as the FIRST and FOLLOW sets) that is currently hidden
within the meta-interpreter would be explicitly available in terms of Prolog.

Acknowledgements. We appreciate Prof. Esko Ukkonen's participation in a
number of fruitful discussions on the topic.

220 J. Paakki, K. Toppola

References

[Abr 86] ABRAMSON H.: Sequential and Current Deterministic Logic Grammars. In: Proc. of the
3rd International Conference on Logic Programming, London, 1986. Lecture Notes in
Computer Science 225, Springer-Verlag, 1986, 389-395.

[A S U 86] A H O A . V., SETHI R., ULLMAN J. D.: Compilers — Principles, Techniques and Tools.
', Addison-Wesley, 1986.

[Bri 82] BRINCH HANSEN P.: Programming a Personal Computer. Prentice-Hall, 1982.
[Col 73] COLMERAUER A. : Les systemes-Q ou un Formalisme pour Analyser et Synthesizer des

Phrases sur Ordinateur. Publication Interne No. 43, Dept. d'Informatique, Université
de Montréal, 1973.

[GiW 78] GŒGERICH R., WILHELM R.: Counter-One-Pass Features in One-Pass Compilation — A
Formalization Using Attribute Grammars. Information Processing Letters 7, 6, 1978,
279—284.

[Har 77] HARTMAN A. C.: A Concurrent Pascal Compiler for Minicomputers. Lecture Notes in
Computer Science 50, Springer-Verlag, 1977.

[Knn 68] K N U T H D. E.: Semantics of Context-Free Languages. Mathematical Systems Theory 2,
2, 1968, 127—145.

[Kos 71] KÖSTER C. H. A.: Affix Grammars. In: Peck J. E, L.: Aleol 68 Implementation, North-
Holland, 1971, 95—109.

[M T K 86] MATSUMOTO V., TANAKA H., KIYONO M . : BUP : A Bottom-Up Parsing System for Natural
Languages. In : Logic Programming and Its Applications (van Caneghem M., Warren D.,
eds.), Ablex Publishing Co., 1986.
NILSSON U.: Alternative Implementation of DCGs. New Generation Computing 4, 4,
1986, 383—399.
PAAKKI J.: Comparison of Compiler Writing Methods: An Experiment. In: Proc. of
the 13th Information Technologies Conference, Sarajevo, 1989. Science and Research
Council of Bosnia and Hertzegovina, 1989, R 122.
PEMBERTON S. : Comments on an Error-Recovery Scheme by Hartmann. Software Practice
and Experimence 10, 3, 1980, 231—240.
PEREIRA F., WARREN D.: Definite Clause Grammars for Language Analysis — A Survey
of the Formalism and a Comparison with Augmented Transition Networks. Artificial
Intelligence 13, 1980, 231—278.
Quintus Computer Systems, Inc: Quintus Prolog Reference Manual, Version 6, 1986.
STERLING L., SHAPIRO S.: The Art o f Prolog. T h e M I T Press, 1986.
TOPPOLA K . : An Error-Recovering DCG Feature (in Finnish). Report C—1989—23,
Department of Computer Science, University of Helsinki, 1989.

[WeM 80] WELSH J . , M C K E A G M . : Structured System Programming. Prentice-Hall, 1980.

[NU 86]

[Paa 89]

[Pem 80]

[PeW 80]

[Qui 86]
[StS 86]
[Top 89]

Appendix

An example session, starting with automatic error recovering and finishing
with user-supplied local correction. The commands by the user are given in bold.
? — consult(dcg).
yes
? — read_grammar(gl).
The grammar is not LL(1).
yes . .
?— list .grammar.
(1) expr —* expr,"+",term.
(2) expr —- term.
(3) term — term, "*",factor.
(4) term —••factor.

An Error-Recovering Form of DCGs •45

(5) factor — "(",expr,")".
(6) factor - "id",

yes
? — transform(e).
Eliminating left recursion ...
yes
? — list-grammar.
(1) expr "(",expr,")",terml,exprl.
(2) expr "id", terml,exprl.
(3) term "(",expr,")",terml.
(4) term .—• "id",terml.
(5) factor "(",expr,")".
(6) factor — "id".
(7) exprl "+",term,exprl.
(8) exprl
(9) terml "*",factor,terml.

(10) terml —

yes
? — parse("id+id").
Parsing completed, 0 errors detected,
yes
? — parse("id*(id—id)+id").
id* (id
•— Error 1 —
Unexpected symbol(s) met and skipped:
— id
Parsing completed, 1 errors detected,
yes
? — correction(on).
yes
? — parse("id*(id—id)+id")
id* (id
•— Error 1 —-
* * * *

One of the following expected:
* +)
Replace(r)/insert(i)/delete(d) token: .
— r(-f) .
Parsing completed, 1 errors detected,
yes

Uniform approach to parameter
transmission mechanisms, coercions,
optional parameters and patterns*

MATTI JOKINEN

Computer Center
University of Turku
SF—20500 Turku

Finland

Abstract

The formal parameter part of a procedure can be regarded as a mapping from the set of argu-
ments into the set of environments. If environments and environment-valued functions are treated
as first-class objects, a number of useful linguistic features can be constructed from a small set of
elementary building blocks; such features include the most parameter transmission mechanisms,
implicit conversions, conditional clauses based on pattern matching, and optional, repeatable and
variable-type parameters.

1. Introduction

Programming languages use numerous variants of mappings of the general
form 5—V, where S is a finite set of character strings and V is the universe of data
objects. Such mappings can be divided into three main categories:

• Evaluation environments bind the free identifiers of programs into data objects.
Although they are defined by declarations embedded in the program text, they
tend to belong to the meta universe outside the domain of data objects. Most
programming languages provide no method of identifying them by name or
referring to them as entities.

• Packages are used as library modules, and their components are mostly types
and procedures. They are often used for information hiding. They are typical
second-class objects which may have names but must be completely defined at
compile time.

• Records are designed for storing runtime data. In most modern programming
languages they are first-class objects which can be created and modified at
runtime.

The distinction between the three concepts makes implementation simpler, but
conceptually it is more or less arbitrary. Advantages of a uniform approach are
obvious [1, 4, 9]. The idea of combining the concepts is not new: Simula classes
[2] are used in all three roles.

* Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11,1989.

224 M. Jokinen

2. Language

Records, packages and evaluation environments are treated uniformly in this
paper and they are all called environments. We shall design a programming language
that uses environments extensively as first-class objects. Details of syntax and seman-
tics are of minor interest here, and the language will not be defined rigorously; it is
solely a tool for discussing various cases where environment-valued functions prove
to be useful.

2.1. Environments

An environment can be created with a clause

{ell'~*'e12

where etJs are arbitrary expressions. Clauses e1 and e2 can be evaluated in any order
or interleaved; this allows some extra freedom in optimization. Each ea must evaluate
to a string. The resulting environment binds the strings to the values of expressions
ei2. Standard procedure select can be used to find the value of an identifier in an en-
vironment. The value of select [e, x] is the value bound to string x in environment e.
Both operands can be arbitrarily complex expressions. Procedure econcat con-
catenates two or more environments. Clause econcaifa, ..., e„] returns an environ-
ment that contains the combination of bindings from environments ex, ...,e„. If
an identifier is bound in more than one eh its value is taken from the last one. An
environment can also be used in a clause

with ex do e2

where clause e1 evaluates to an environment. The value of this clause is the value
of e2, whose free identifiers are bound as in the environment yielded by e1. The
whole program is implicitly embedded in an environment that contains the definitions
of standard identifiers.

2.2. Procedures

The definition of a procedure usually looks something like

p = proctor/!, ...,x„:t„)e

where e is the body of the procedure. The call of this procedure is written as

P(eu..., e„)

where the result of clause et is of type /,-. In the simplest case the effect of the call is
that the body e of p is evaluated in an environment in which each is bound to
the value of et. But in many programming languages parameter transmission is
more complicated. The values may undergo various conversions before they are
bound to formals. Parts of the data objects may be copied. Sometimes the conversion
process may involve more than a single formal-actual pair and the number of actuals;
may be different from the number of formals. There may be optional parameters
which get certain default values if omitted in the call, or a single actual may define
the values of several formals, as conformant array parameters in Pascal [6]. Implicit

Uniform Approach to Parameter Transmission Mechanisms 225

actions allow a more compact notation and their proper use may thereby improve
readability. Unfortunately the rules are usually built into the language, and although
modern languages allow the definition of application-specific types they rarely [8]
provide any way to extend implicit actions to user-defined types.

The FEXPR feature of Lisp [7] is one method to give the programmer more
control over the actual parameters. The list of actual parameters is passed as such
and can be freely manipulated in the called routine. The method relies on the represen-
tation of programs as list structures and the existence of a user-callable EVAL
function. Another approach to handle optional, repeatable and variable-type para-
meters has been suggested by Ford and Hansche [3] and Prasad [5]. Their methods
include syntax extensions to specify formal and/or actual parameters with such
properties, and special statements or standard functions to test the existence of
optional parameters, the number of repeatable parameters and the actual type of
variable-type parameters. These mechanisms, unlike the FEXPR feature, were
designed as extensions to strongly typed languages.

If parameters are passed by value, the call is equivalent to the following with-
clciUSC *

with {"Xi'Wx,. . . , W „ } do e.

Thus the formal parameter part (jq: tx, ..., x„: /„) can be regarded as a function
that maps the argument tuple into an environment. Since environments are first-class
objects, it is natural to consider also the formal parameter part as an ordinary pro-
cedure. Any environment-valued procedure can then be freely used as a formal
parameter part of another procedure. A procedure object is created with a clause

proc ¿i=>e2

where e1 is an arbitrary clause that evaluates to an environment-valued procedure
(from now on all such procedures will be called formals).

It is convenient to reduce multi-argument procedures into single-argument
procedures by treating the argument list as a tuple. A tuple object is created with
a clause [elt ..., en]. A one-element tuple is not identical with its element. Expressions
et can be evaluated in an arbitrary order, or interleaved. Procedures with no para-
meters formally take an empty tuple as an argument. Procedure invocations are
written as

eie2

where clause e1 evaluates to a procedure and e2 evaluates to its argument. If the value
of e1 is proc f=>b, the invocation is equivalent to with fe2 do b. For convenience,
certain operators will be written in their familiar infix or postfix notation. For examp-
le, we shall write x:=y instead of :=[x, y].

2.3 Basic formal generators

The language must contain a set of standard formals, or formal generators, as
elementary building blocks for user-defined procedures. We shall first introduce a
procedure named atomf, which generates "atomic" formals. It accepts as an ar-
gument a 2-tuple [i, t], where s is a string and t is a type. The value of the clause

atomf [s,t]

226 M. Jokinen

is a procedure that maps an object x (of type /) into an environment that binds s to x.

, r{I>-<-A-}, if JC is of type /.
atomf[s,t] x = |a|,ort otherwise

If x is not of type /, the call causes a failure, a termination without any result, repre-
sented by the clause abort. Failures can be trapped in case-clauses, as will be seen
later; untrapped failures are propagated to upper-level clauses. Note that s may
be an arbitrary string-valued expression, and it is the value of s (rather than the
identifier s) that becomes bound in the environment. For example,

atomf["n", int] 4 = { 'V '~4} .

To make formals look more familiar, the following sugared syntax is defined
for calls of atomf:

x:t = atomf [x, /].

For tuple arguments we first introduce a procedure, denoted by nullf, that
accepts an empty tuple as its argument and returns an empty environment. Thus

nullf [] = { }
nullf x = abort, if x J* [].

Next we introduce a procedure, denoted by fconcat, that maps 2-tuples of formals
to formals. The value of the clause fconcat[fx, f2] is a formal that accepts as its
argument a nonempty tuple whose first element is accepted by the formal fx and
whose tail is accepted by the formal f2. The result of the concatenated formal is an
environment which is constructed by combining the environments yielded by fx
and f2.

fconcat[/i,/2][eu en] = econcat [(A <?j),f2[e2, ...,<?„]]
fconcat[fuf2][] = abort
fconcat [fx, f2JX = abort, if JC is not a tuple.

For convenience, we shall often use an additional formal generator tuplef, which
can be defined in terms of nullf and fconcat:

tuplef [] = nullf
tuplef [fx, f2, ...,/„] = fconcat [fx, tuplef [f 2 , ...,/„]].

2.4. Types

Since type checks occur at runtime, there must be a sensible action taken when
a type check fails. A failing type check is defined equivalent to the execution of
abort. In the examples to follow we will use standard types int, real, string, anyenv,
any tuple, any and type, and type constructors ref, union, tuple and Type reft
is the type of pointers to /-typed cells. Type union[t1, ...,/„] is a coalesced union of
types tx, ..., /„. The value space of a union type is the set-theoretic union of the
value spaces of component types. Type tuple * ..., /„] is the type of tuples [xl5 ..., x„],
where jc,- is of type /¡. Clause /—« denotes the type of functions with domain / and
range u. Identifier anyenv denotes the type of all environments, anytuple denotes the
union of all tuple types and any denotes the union of all (nonunion) types. Identifier
type denotes the type of all types (including ox excluding type).

Uniform Approach to Parameter Transmission Mechanisms 227

Union types (either the union constructor or any) are essential to the expressive
power of the abstraction mechanism. Other types are more or less optional, replace-
able by each other, or required only in specific examples.

2.5. Case-clause

Many modern languages have union types and a conditional clause that allows
a safe access to the contents of a union. Such a clause will be needed in all the examples
below. The syntax and semantics of the clause can be defined elegantly with gene-
ralized formals. The syntax is

case ein/1=>e1, ...,/„=>e„else/n+1=>en+1

where the values of clauses / i to / n + 1 are formals. The else-part is optional. The
clause is evaluated by first evaluating the clause e and then invoking formals fx
to f„ (in an unspecified order) using the value of e as the argument. If the invoked
formal / f returns an environment, the clause et is evaluated in that environment
and the value of et becomes the value of the case-clause. If f{ fails, the next formal
is tried. If all the formals / i to /„ fail, the optional formal fn+l is invoked and
the clause e„+1 is evaluated in the resulting environment. If / n + 1 fails, or if there
is no else-part, the case-clause fails.

3. Applications

S.I. Implicit type conversions

As a simple example, let us define a generator for formals that accept either a
real or an integer as their actual argument and convert it into a real in the latter
case. Standard procedure inttoreal performs the conversion explicitly.

intreal = proc("id": string)=>
proc (' V : union [int, real])=>

(id: real) (case * in ("/•": real)=>r,
("n": int)=>inttoreal n)

Here the case-clause is used to compute the argument of (id: real). Type union [int, real]
could be replaced with the type any. Formal intreal[x] would normally be used in
definitions of arithmetic functions. However, atomf[x, real] could be used in cases
where an integer argument makes no sense. For example, assume that we need a
procedure that computes the integral of a given function / over a closed interval
[a, b] in the accuracy eps. The header of the procedure might look like this:

proc tuplef ["f": real-* real,
intreal "a",
intreal "6",
"eps": real]^ ...

As an analogous but more specialized example, let us define a generator for
formals that accept as an argument a month represented either as an integer or as a
string:

4 Acia Cyberaetica IX/3

228 M. Jokinen

proc("id": string)=>
proc (' V : union [int, string\)=>

(id: int) (case x in
"«": int=>

if n < 1 or n> 12 then abort else n,
"s": strings-

its =" January" then 1
else if s=" February" then 2

else if s=" December" then 12
else abort)

3.2. Parameter transmission mechanisms

Transmission mechanisms are closely related to types. If the type system of the
language is rich enough, transmission by various mechanisms can be reduced to
transmission of various types of data [10]. Call by reference is equivalent to trans-
mission of a parameter of type ref t. Call by name is equivalent to transmission of
a parameter of type void—t, where void=tuple[]. Call by need is equivalent to
transmission of a recipe, an object of type ref union [i, void^t]. However, the pro-
grammer may still want to think in terms of transmission mechanisms rather than
in terms of types. To make the underlining type system transparent, an argument
should undergo an implicit type conversion when it is transmitted further by a
different method.

We shall first define two auxiliary procedures. Rep-value generates procedures
that compute, values of recipes:

rep-value=proc ("t": type)=>
proc ("x": ref union [f, void— t])=>

case xt in
("/': t)=>y,
("/": void-t)=>(with {z~~/[]} do (x:=z\ z)).

- Here Jtt denotes the contents of the cell pointed to by x. Components of the serial
clause (x:=z; z) are evaluated from left to right, and the value of the clause is the
value of the last component. The other auxiliary procedure repdefs just generates
two shorthand notations, rep and u:

rcpdefs=vroc("t": type)=>
{'rep"*— ref union [i, void— /],
"«"•-»union [/, void— t, ref t, rcp]\.

Call by value, name, need and reference, and all the required conversions, can
now be defined with the following procedures:

value=j>roc tuplef["id": string, "t"; type]=>
' " with repdefs t do

proc("x": u)=>

Uniform Approach to Parameter Transmission Mechanisms 229

{/i/i—case x in ("y": t)=>y,
("/>": ref t)=>p\,
("/": void^t)^f[],
("r": rcp)=>rcp-value t r)

name=proc tuplef["id": string, "/": type]=>
with rcpdefs t do

procf'jt": u)=>
{/i/i-«-case x in ("y": i)=KProc nullf=>y),

(V : ref /)=Kproc nullf=>p\),
("/": void+t)^f,
("/•": rc/>)=>(proc nullf=>-rcp-value t r)}

«m/=proc tuplef["id": string, "t": type\=>
with rcpdefs t do

proc('V: u)=>
{/¿•-•case x in ("/': t)=>new rep y,

("p": ref t)=>n?w rep (/>t),
("/": void-*t)=> lew rep f ,
("r": rcp)=*r}

where clause (new rep e) allocates a new cell of type rep, initializes its contents to
e and returns a pointer to the cell.

reference = proc tuplef["id": string, "t": type]=>
with rcpdefs t do

procf'*": u)=>
{W>-»case x in ("7": t)=>new t y,

("/?": ref t)=>p,
("/": void^t)^new t (/[]),
("/•": rcp)=>new t {rep-value t /•)}.

Call by result cannot be implemented in this way because it involves implicit
actions at the termination rather than at the start of the called procedure.

3.3. Procedures with varying number of parameters

Procedures with optional parameters can be constructed by treating the list of
arguments as a tuple. One possibility is to define a fixed number of normal arguments
and bind the rest of the argument tuple to one identifier. For example, in the following
formal the length of the fixed part is one:

fconcat["head" : t, "tail" : anytuple]

Another possibility is to define optional arguments that receive default values if
omitted in the call. The following procedure takes a list L of 5-tuples [name, type,
default- value] and returns a formal that accepts a tuple A whose i"1 element corre-
sponds to the ith element of the tuple L. The length of A may be smaller than the
length of L, in which case the missing elements are given default values from L.

4*

230 M. Jokinen

optlist=proc ("L": anytupte)=>
case L in

nullf=>nullf,
fconcat[tuplef[" name" : string, "t": type, "default": any],

"tail" : anytuple]=>
proc ("A": anytuple)=>

case A in
nullf=>defaults L,
fconcat["x": t, "rest": any tuple] =>

econcat[(name: t) x, optlist tail rest]

where

defaults=proc ("L": anytuple)=>
case L in

nullf^Q,
fconcat[tuplef["name": string, "/": /v/je, "default": any],

"tail": anytuple]=>
econcat[(name: t) default, defaults tail].

If there are many optional parameters, it is more convenient to identify them
by name than by position. In the list of actual arguments, an optional argument is
specified as a (sub)tuple [name, value] in the argument list. The following procedure
takes the specification of optional arguments in the same form as above, but the
resulting formal accepts a list of 2-tuples in an arbitrary order:

optset = proc ("L": any tuple)
prcc ("T": anytuple)=>econcat [defaults L, values [types L, J]].

Procedure types computes an environment that maps the names of the formal argu-
ments to their types. This environment is used in the other auxiliary procedure to
check the types of actual arguments :

types=proc ("L": anytuple)=>
case L in

nullfs{},
fconcat[tuplef["name": string, "/": type, "default": any],

"tail": anytuple\=>
econcat[(name: type) t, types tail]

values=proc tuplef["ttable" : anyenv, "T": anytuple]=>
case T in

mllf=>{),
fconcat [tuplef["name" : string, "value" : any],

"tail": anytuple]=>
econcat[(name: select[ttable, name])value, values[ttable, /a//]]

Uniform Approach to Parameter Transmission Mechanisms 231

3.4. Patterns

In recent years it has become popular to write the formal parameter part as a
pattern. A pattern is a data structure in which certain elements denote variables to
be bound in an invocation. Patterns can be easily defined in our system. Below is a
generator for patterns of possibly nested tuples. Variables are denoted by strings
that begin with a capital letter.

pattern=froc ("/>"): any)=>
case p in

nullf=>nullf,
('V': string)^i[lls'/ and s[l]s'Z'

then (s: any)
else (proc("t": string)=>

if s=t then {} else abort),
fconcat["head": any, "tail": anytuple]=>

fconcat [pattern head, pattern tail]
For example, the value of the clause

pattern ["/", ["X", "Y"], ["g'\ "Z"]]
is a formal that accepts all tuples that can be constructed by replacing "X", " Y" and
"Z" with any objects in the tuple " / " , ["Z", "Y"], "Z"]]. Patterns for other
data types can be defined in an analogous way.

In a more realistic program the types of the variables would be included in
patterns and the formal generator would take care of multiple occurrences of a
variable. A quotation mechanism is also desirable to permit arbitrary constant
terms in patterns (for example, strings beginning with a capital letter). These features
can be defined in the language without difficulty.

4. Implementation

The programming language designed in the preceding sections is based on late
binding and runtime type checks. That is typical of interpreted languages, and the
reader may wonder whether the ideas presented in this paper are of any use in com-
piled languages where efficiency is considered more important. Fortunately the
quality of the code can be greatly improved with relatively simple optimization
methods.

General environments can be represented as association lists, hash tables, .
binary trees, or combinations of these (and possibly other) structures. However,
in the special case in which the bound identifiers are known at compile time, an
environment can be represented exactly like a conventional record: the components
of the environment can be stored in consecutive memory locations and the value
of an identifier is found by adding a static offset of the base address of the environ-
ment. A single-element environment {x~~v} is represented exactly as the object v.
Assume that in an invocation (p e) the value of p is completely known at compile
time and defined by

p = (proc (x: t) =>u)

232 M. Jokinen

If, in addition, x is a string constant and e is guaranteed to be of type t, the environ-
ment produced by the formal can be used as the lower part of the activation record
of a procedure as in conventional languages and the invocation can be translated
into the instruction sequence

code(e)\ jsub(u)

where code(e) evaluates e and leaves its value on the top of the stack, and jsub(u)
saves the program counter and transfers control to the body u of the procedure.

Next assume that p is defined by . '
P = (proc tuplef[fu ...,/„] => u)

where each / , is completely known at compile time, et is known to be of type suitable
as an argument for fh and the result of ft is a mini-environment where
x,s are string constants and x ^ x j whenever i ^ j . The invocation can now be trans-
lated into the instruction sequence

codee,); ...; code(f„ e„)\ jsub(y).

Procedure calls involving more complicated formals can usually be optimized
with partial evaluation. From the semantics of the language the following evaluation
rules can be derived:

1. Clause (proc ex=>e^)e3 can, by definition, be reduced to (with et e3 do e2).
2. Clause (if true then eY else e2) reduces to elt and (if false then ex else e2)

reduces to e2.
3. Clause (case e in f ^ ^ x , ...,/„ =>e„ else fn+x=>en+1) reduces to (with f e

do e,), where f is the first such formal that {f e) does not fail. If all in-
vocations (f e) fail, the case-clause reduces to (e; abort). In the latter case
the clause e can be eliminated if the compiler can conclude that e has no side
effect. Note that the actual value of the clause e need not be known.

4. Clause (with ..., do e) can, under certain conditions, be
reduced by substituting the occurrences of xt with et in e; the substituted
e replaces the with-clause. This reduction rule can always be applied if
clauses et have no side effects. But even if et does have a side effect, the sub-
stitution is legal if X; occurs in e exactly once. If left to right evaluation is
to be guaranteed, an additional constraint is be required: identifier xt can
be replaced by et in e only if there is no subclause in e that precedes the
occurrence of xt and may have a side effect. This additional constraint is
actually satisfied in most cases that occur in practice, but the compiler may
have difficulties in verifying it. The rule becomes simpler and more general
if the requirement of left-to-right evaluation is relaxed.

5. The first component of a serial clause (et; e^ can be moved into the front
of a structured clause in the following cases:

[•••> (er, e2), ...]
proc (ex; e2)=>e3
(ei> e2)e3
e3 (ei5 ei)
{...(ex;e2)~~e3,...}
{...e3~~(ex; e2), ...}

Uniform Approach to Parameter Transmission Mechanisms 233

with (et; e2) do e3
if (ei'i ei) then ea else et
case (<?j; e2) in en=>e;12, ...

The reader is encouraged to apply the rules to the formals defined in the preceding
section.

Rules 1 and 4 together may lead to a nonterminating sequence of reductions.
Since compilers have difficulties in recognizing the diverging clauses, it is probably
better to let the programmer specify which clauses shall be evaluated at compile
time. Abstract formals could then be regarded as sophisticated macros rather than
ordinary procedures.

Acknowledgments
®

The author wants to thank Reino Kurki-Suonio and Robert Johnson for their
helpful comments.

References

[1] BURSTALL R . and LAMPSON B . W . , 'A kernel language for abstract data types' and modules,
Proceedings of the International Symposium on Semantics of Data Types, Sophia-Antipolis,
France, 1—50 (1984).

[2] D A H L O - J . , MYRHAUG B . and NYGAARD K . , Common Base Language, Norwegian Computing
Centre (1970).

[3] FORD G . and HANSCHE B . , 'Optional, repeatable and varying type parameters', SIGPLAN
Notices 17:2, 41—48 (1982).

[4] GELENTER D . , JAGANNATHAN S . and LONDON T . , 'Environments as first class objects', Proceed-
ings of the 14th conference on Principles of Programming Languages, Munich, West Germany,
98—110(1987).

[5] PRASAD V. R . , 'Variable number of parameters in typed languages', Software—Pratice &
Experience, 10, 507—517 (1980).

[6] Specification for Computer Programming Language Pascal, International Organization for
Standardization, Switzerland (1983).

[7] STOYAN H., Lisp-programmierhandbuch, Akademie-Verlag, Berlin (1978).
[8] STROUSTRUP B . , C + 4- Programming Language, Addison-Wesley (1986).
[9] WEGNER P . , 'On the unification of data and program abstraction in Ada', Proceedings of the

10th conference on Principles of Programming Languages, Austin, Texas, 257—264 (1 9 8 3) .
[1 0] VAN WIJNGAARDEN A . et al., Revised Report on the Algorithmic Language Algol 68, Springer-

, Verlag (1976).

Generation of test cases for simple Prolog programs*

PEKKA KILPELÄINEN, HEIKKI MANNILA

University of Helsinki, Department of Computer Science
Teollisuuskatu 23, SF-00510 Helsinki

Abstract

We describe a general method for producing complete sets of test data for Prolog programs.
The method is based on the classical competent programmer hypothesis from the theory of testing,
which states that the program written by the programmer differs only slightly from the correct one.
The nearness is expressed by postulating a class of possible errors, and by assuming that the written
program contains only errors from this class. Under this assumption the test cases produced by the
method are enough to ensure the correctness of the program. The method is based on a result showing
that it is sufficient to consider programs from which the written one differs by a single error. Test
cases are produced by forming a path condition consisting of equations and universally quantified
inequations, and solving the condition. The method is particularly easy to implement for the class
of iterative programs; for general programs it can be used as a component of an interactive tool.

1. Introduction

One of the attractive properties of the Prolog programming language is that
testing is quite easy. Each predicate can be tested as soon as it has been written.
One does not have to write separate test programs, as in many conventional pro-
gramming languages and environments.

Although testing Prolog programs is easy, the problem of choosing sets of
test data is as difficult as in conventional languages. How do we know that the in-
puts we use for testing really test the program adequately?

There is a fairly large amount of research on testing of programs and systems
written in conventional programming languages (see, e.g., the books by Beizer

* This work is supported by the Academy of Finland.
** Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages

and Software Tools, Szeged, Hungary, August 8—11, 1989.

236 P. Kilpelainen, H. Mannila

[Be84] and Myers [My79]). Also the theory of testing has been developed [BA82,
GG75, DMLS78, MR89, H086]. This paper shows how these ideas can be applied
to the generation of test cases for Prolog programs.

We describe a method for producing sets of test cases which are complete in
a certain exact sense. For example, for the program

member (A, Ml-]).

member (A, [-MO) :- member (A, X).

our method generates the test queries

?—member (a, [6]).
?—member (a, [a]).
?—member fa, [b, b]).
?—member (a, [b, a]).
These queries can be seen to test the member predicate in a quite natural way.
Our method is based on the competent programmer hypothesis [DMLS78,

GG75], which assumes that the program P written by the programmer is fairly
close to the intended program Q. We formalize this along the lines of [DMLS78]
and [Br80] by assuming there is a class M of possible modifications, and that P and
Q differ only by one or more modifications from M. Intuitively the modifications
are inverses of possible programming errors. In Prolog the class M can contain
modifications like exchanged variables, missing or extraneous functors or missing
arguments. The competent programmer hypothesis is used by generating test cases
which show the difference between the written program and any other nonequivalent
program which differs from it only by modifications in class M. Hence the test cases
show the difference of the written and the intended program (if there is any). The
equivalence criterion used is based on the box model trace of the predicates. Hence
top level tracing must be used in running the test cases to observe all their
properties.

The above test cases for member were produced by considering errors in variable
names. If the class of modifications contains also missing functors, then the test
case set would include the additional query

?—member (a, a).
The choice of the class of modifications M is fairly important for the usefulness

of the method: the larger M is, the more likely it is that the formalization of the
competent programmer hypothesis holds. On the other hand, a large set M tends
to produce more test cases. Fortunately, our method is not very dependent on the
properties of M, so that variety of choices can be used.

Our method faces the difficulties inherent in every test data generation method.
If the predicate p to be tested calls some other predicate, say q, we have to be able
to generate inputs satisfying q. No system can automate this for all possible predicates
q, as determining whether q ever can succeed is an unsolvable problem. Therefore
our system is particularly well suited for simple programs, e.g., the iterative programs
defined in [SS86]. Our work is fairly close in spirit to the mutation testing approach
[DMLS78] and especially to the work of Brooks [Br80] on generating test cases for
Lisp programs.

Generation of Tests Cases for Simple Prolog Programs 237

Work on generating test data is in a sense complementary to the interesting
work done on debugging Prolog programs by Shapiro and others (see [Sh82, Pe86]).
Algorithmic debugging aims at methods for finding the cause of an erroneous test
output; test data generation tries to help in the process of finding the inputs showing
the presence of an error. Our work can also be seen to be complementary to the
work done on program synthesis [Sh82, MCM83, MCM86], which tries to move
from illustrative examples to programs. We move in the opposite direction.

The rest of this paper is organized as follows. Section 2 describes the general
framework by defining the concept of complete test data. It also describes a naive
method for producing test data and points out its deficiencies. Section 3 contains
the theoretical result showing that instead of all programs which can be obtained
from the original program P by one or more modifications it suffices to consider
those programs which differ from P by one modification only. This is crucial in
obtaining reasonably sized sets of test cases.

Section 4 discusses how we find a test case which illustrates the difference of
program P and a program obtained from P by applying one modification. We show
that the existence of such an input can be characterized by giving a formula contain-
ing equations and universally quantified inequations [LMM86]. In Section 5 we
discuss how inputs satisfying these formulas are found for simple programs. Section 6
is a short conclusion. For reasons of space some straightforward technical definitions
have been omitted.

2. Framework

We consider the testing of a predicate p which has been defined by giving a
program P for p, consisting of a list of clauses for p and the definitions of other
predicates. We want to generate queries of the form

l-p(d1,d2, ...,dk).

where k is the arity o f p and dl, ...,dk are terms, such that these queries test predicate
p completely in some sense. We call d—dx, ..., dk an input for the program P to
achieve compatibility with the usual terminology in the theory of testing. To discuss
testing one has to specify the properties of program one is interested in. The basic
choice is to consider input-output relations, i.e., the function/relation computed
by the program. However, this gives little information about the program. Therefore
in the theory of testing it is usual to consider traces of program execution, which
give more information about the computations (see, e.g., [Br80] for a discussion
of the usefulness of traces).

Given a program P, we define the top-level trace of P on input d, denoted by
P(d). This is, intuitively, the box model trace of the query

1-p(d).

'imited to the definition of p and with the unification attempts explicitly represented.
For example, let P denote the following definition of append

append([], X).
a p p e n d ^ *] , Y, [A\Z])> a p p e n d Y , Z).

238 P. Kilpelainen, H. Mannila

Then the top-level trace of P on ([1, 2, 3], [4, 5], U) is

CALL append ([1, 2, 3], [4, 5], U)
UNIFY with append X, X) FAILED
UNIFY with a p p e n d ^ ! *] , Y, [A\Z]):- ...SUCCEEDED

CALL append([2, 3], [4, 5], Z)
EXIT append([2, 3], [4, 5], [2, 3, 4, 5])

EXIT append([1, 2, 3], [4, 5], [1, 2, 3, 4, 5]).

Note that the recursive call is not traced; only the CALL and EXIT of it are
represented. We omit the straightforward formal definition of the top-level trace.

Two programs P and Q for predicate p are equivalent, if for all inputs d the
traces of P and Q are equal, i.e., P(d) = Q(d) for all d. If P and Q are equivalent,
we write P ^ Q .

Example 1. Let P be the program

p(A') :- sort (A', Y),process (F).
sor t (X , Y) :- ...

with sort implemented by merge sort, and Q the same program, but sort implemented
by quicksort. Then P and Q are equivalent, since the traces P(d) and Q(d) do not
include any details of the sort computation. •

The above definition of equivalence is rather strict. Two equivalent programs
not only have to compute the same relation for predicate p, but they have to compute
it in the same way at the level of p's definition.

Equivalence of programs is undecidable, as, e.g., the halting problem can be
reduced to it. Therefore one cannot expect too much from a test method which tries
to generate instances separating the given program from all nonequivalent programs
in a given class. If the class is wide enough, even recognizing the (non)equivalent
programs cannot be done.

As mentioned in the introduction, our work is based on the competent program-
mer hypothesis [DMLS78]. That is, we assume that the program written by the
programmer is reasonably close to the one he/she meant to write.

Following Brooks [Br80] and DeMillo, Lipton, and ' Sayward [DMLS78],
we use this assumption by postulating a set of possible modifications M.

Example 2. We use mainly list processing programs in our examples. For such
programs, a suitable class of modifications consists of the following.

• replace an occurence of variable x by variable y, for all variables x and y
• replace term [/11'\ by term t or t'
• replace variable x by term [/|x] where t is a variable or an atom

We omit the formal definition of this class. •

We assume, that the programmer has made only errors which are inverses of
some modifications in the class M. That is, the intended program differs from the
written one only by one or more modifications from the class M. We assume the
errors occur only in the clauses of predicate p, i.e., the testing concentrates on this
one predicate. -

Generation of Tests Cases for Simple Prolog Programs 239

The neighbourhood M*(P) of P consists of programs Q such that P can be
transformed to Q by application of zero or more modifications from M. We denote
the result of applying a single modification m to a program P by P.m. The neigh-
bourhood M (P) of P is defined as follows.

M°(P) - {P}

M'(P) = {Q.m\QtMi-1(P),m£M},i > 0

M*(P) = U M\P)
¡ s o

Formalized in this framework the competent programmer hypothesis states that
the intended program P' belongs to M*(P).

Let D be a set of inputs for program P. D is an (M-) complete test data set for
P, if for all programs Q£M*(P), such that Q is not equivalent with P, there is an
input d£D such that P(d)r±Q(d). If the program works correctly on such a set D,
then by the competent programmer hypothesis the program is the intended one.

Example 3. The five queries for member given in the introduction form a
complete set of test data for member under the errors of Example 2. •

Let C be a set of programs and P a program, and D a set of test cases for P.
We say that D separates P from C, if for each Q£C, Q^P. there is an input d£D
such that P(d)?±Q(d). Thus a complete set of test cases for P separates P from
M*(P).

How does one generate complete sets of test data? A naive approach would
be to generate for each Q£M*(P), Q^P, an input dQ such that Q(dQ)^P(dg),
and to collect these inputs into the test data set. However, M*(P) may be infinite
and usually is very large. The naive method takes time proportional to the size of
M*(P) and probably produces test sets having about as many elements as M*(P)
has, which is unacceptable. In the next section we show how this problem can be
avoided by considering only a small subset of M*(P).

The second problem is: given programs P and Q, how do we decide whether
they are quivalent or not, and if they are not, how do we generate a test revealing
the nonequivalence (i.e., an input d for which P(d)7iQ(d))'? These questions are
considered in Sections 4 and 5.

We close this section by giving another example of a complete test data set.

Example 4. Let P be the familiar append program:

append ([], X, X).
append(M|Z], Y, [A\Z]) :- append^ , Y, Z).

Let M be the class of modifications consisting of variable name changes and errors
in list functors. Then the following queries are a complete test data set for P.

?—append ([], a, a).
?-append([a], [], [a]).
?—append ([a], a, [a, a]).
?—append (a, a, a). •

240 P. Kilpelainen, H. Mannila

3. Local neighbourhoods

Let a class M of modifications and a program P be given. We want to generate
a test case set D separating P from each program in M*(P). Given a program
Q£M*(P), we know that Q can be obtained from P by applying the modifications
from M. That is

Q = P.m1.m2....m„

for some modifications mlt ..., ma£M.

Example 5. Let the member program be as in the introduction; denote it by
P. Let Q be the program

member(.4).
m e m b e r [A \ X]) : - member(Z, Z).

Then Q=P. mv m2. m3, where drops the second argument of the fact and m2
and m3 change variable names in the second clause. Thus Q£M*(P). •

Our goal is to avoid considering the entire neighbourhood M* (P). For this, we
define the local (M-)neighbourhood M(P) of program P by

M(P) = M\P)
= {P.m\m£M}

That is, M(P) consist of those programs obtained from P by applying one modi-
fication from M; thus M(P)aM*(P).

Example 6. The program Q in Example 5 belongs to M*(P), but not to M(P). •

The class M(P) is far smaller than the entire neighbourhood M*(P). If there
are k subgoals in the program and for each subgoal there are on the average b modi-
fications that can change it, then M(P) contains about kb elements, whereas M*(P)
has about bk elements.

In order to be able to consider only the local M-neighbourhood of P, we need
to restrict the possible sets of modifications. A set of modifications M is term-closed
for P if all programs Q£M*(P) differing from P only with respect to a single term
belong to M(P). In other words, we require that all sequences of modifications to
one term can be expressed as one modification. We also assume, that modifications
are shape preserving in the sence of Brooks [Br80]. A modification is shape preserving,
if it does not change the ordering and number of heads and goals in the program.
Thus a shape preserving modification may change argument lists, but it preserves
the overall structure of the program. These assumptions are realistic, if we think
modifications as inverses of typing errors, for example.

The next theorem shows that under our assumptions a set of test cases separating
the program from its local environment is enough to completely test the program.

Theorem 1. Let P be a program for predicate p, M a term-closed set of shape
preserving modifications to the clauses of predicate p, and D a set of test cases that
separates P from M(P). Then D is a complete set of test cases for P and M, i.e.,
D separates program P from M*(P).

Generation of Tests Cases for Simple Prolog Programs 241

Proof. Let Q be a program in M*(P), Q&P. We need to show that there is a
test case din D for which the traces Q(d) and P(d) differ from each other. Let d'
be a test case, for which Q i d ^ ^ P i d ^ . Consider the first differing lines in the
traces Q(d') and P(dr); let them be the ith ones. We have the following lemma.

Lemma 1. The first differing lines in Q(d') and P(d') are of one of the following
forms.

1. UNIFY with h' and UNIFY with h, where h' is a clause head in program
Q, ha clause head in P, and h^h',

2. CALL r(ti, ..., t'„)d and C A L L . . . , tn)9, where r{t[,..., Q is a sub-
goal of program Q, r{tlt ..., /„) a subgoal of P, and i,'0^t,8 for some
i'€ 1, ..., n, or

3. the difference in the traces follows immediately calls to a predicate r (i.e.,
one trace contains an EXIT or a FAIL line, and the other contains adifferent
line or no line at all). Note that because only the definition of predicate p
may be modified, the call to r must be a direct or indirect call to p. •

The proof of the theorem uses induction on the number of the recursive calls
of p that must be executed before the first differing lines in the traces Q(d') and
¿>(¿0 are encountered.

For the base case, only the first two cases of the lemma are possible. In the
first case the ith line of Q(d') is

UNIFY with hi :—... (1)

and the corresponding line in trace P(d') is

UNIFY with A : —... (2)

Let m be a modification that changes the head h. Then P. m£M(P), and P-m^P,
since the ith lines in the traces P. m(dr) and P{d') differ. Therefore there is an input
d in D such that P(d)^P. m(d). Let the first lines where the traces P(d) and P. m(d)
differ from each other be theyth ones. Now, if the traces Q(d) and P(d) differ before
line j, Q(d)^P(d). Otherwise the y'th lines are (1) and (2), i.e., they are different,
and again Q(d)^P(d).

In the second case the ith line in trace Q(d') is

CALLr(/i,

and the corresponding line in P(d') is

CALL r(t1,...,tn)d

and there is a 1, ..., n such that t'k9?±tk6. By the term-closedness of M there is a
modification m£M for which tk• m=t'k. Now the ith line in the trace P. m(d') is

CALL rih tk.m, ...,tn)9

and the corresponding line in P(dr) is

CALL#•(*!, ...,tk, ...,t„)9

242 P. Kilpelainen, H. Mannila

Because the traces differ, P. m&P. Since P. m£M(P), there is an input d£D such
that P(d)^P. m(d). Assume that these traces are the same up to they'th line. Let
the j th line of P(d) be

CALL rfa tk,...,tn)y

and the corresponding line in P. m{d)

CALLr (t u . . . , t k .m , ...,t„)y
with a substitution y, for which tky?itk. my. If the traces Q(d) and P(d) differ
before they'tb hne, then Q(d)?iP(d). Otherwise theyth line of Q(d) is

CALL r(t{,..., tk.m, ...,/„')>

which is different from the corresponding line in P(d), since tky^tk.my.
The induction assumption is that for all d" such that Q(d") and P(d") differ

and the number of recursive calls to p before producing the first different lines in
Q{d") and P{d") is smaller than the number of recursive calls preceding the first
difference in Q(d') and P(d'), there exists a d£D such that Q(d) and P(d) differ.

Assume that there are recursive calls of p in the* execution preceding the first
differing lines in top-level traces Q(dr) and P(d'). Now all the three cases of the
lemma are possible. The first two cases are as in the base case. The third case is
that the first line where the traces Q(d') and P(ci') differ is immediately after a line

CALL/• (« ! , . . . , wm),

Because the programs Q and P can differ at the definitions of predicate p only, the
execution of the call r(ult ..., um) must contain a recursive call p(tlt ..., t„)6, and
the result of this call differs in Q and P. Let d"=txQ, ..., tx6. Now Q(d")?iP{d"),
and the number of recursive calls of p before the first difference of Q{d") and P(d")
is smaller than the corresponding number before the first difference between
Q{d') and P(dr). By the induction assumption there exists a d^D such that Qid)^
*P(d). •

Now we have reduced the problem of generating complete sets of tes cases for
P to the problem of separating P from the class M(P) = {P. m\m£M}. Our test
data generation method can thus be formulated as follows:

for each modification m£M do
H P ^ P . m then

generate a d such that P(d)^P.m{d)\
D-.=D{J{d}-,

The method outlined above has connections to the classical testing method
known as path testing [Be84], This method requires that every path in the program
is traversed by execution of some test case. We have the following simple result.

Theorem 2. Let a class of modifications M and a program P be given. If for
each subgoal in the clauses of predicate p there is a modification m altering that
subgoal so that P . m ^ P , then the execution of all the queries in a complete set
of test data for P traverses every subgoal of the predicate p. •

Generation of Tests Cases for Simple Prolog Programs 243

4. Path conditions and separation
r. . ; "

Suppose we are given a program P and a modification m. How do we test whether
P and P m are equivalent and if they are hot, generate an input d such that P(d) ^
r¿P. m(d)l Such a d (if one exists) must cause the execution of P to proceed to the
subgoal c altered by the modification m; additionally, d must be such that it causes
different trace lines to be output by subgoals c and c.m.

Suppose p is defined by the clauses

/ > (' l) ; - ? l l (' l l) > •••» W l a x) -

P(tk)[-qkl(tkl)'---,'lkak(tkak)-

P(tu) ><l»l(Jul)
Here ..., tu, tu, ..., tMu are parameter lists. Let m alter the goal qkh(tkh)

in clause k (1 l ^ h S a k) . Then an input d such that P(d)?±P. m(d) must
satisfy at least the following conditions.

1. d unifies with tk; let 6 be the unifying substitution,
2. the subgoal (qkl(tki), •••, qkh-i(tkh-i))0 succeeds
3. the goals qkh(tkh6) and (qkh(tkh)- produce different trace lines.

Here (1) states that execution of the altered clause must be able to start; (2), that this
execution proceeds to subgoal qkh; and (3), that the resulting traces are different.

These conditions are not enough, however. We must know that unification of
clause k in p?s definition is attempted. There are two ways to guarantee this: we can
require that no previous clause is applicable, or that no previous clause succeeds
(or meets a cut). A third possibility arises when the clauses 1, ...,k— 1 contain no
cuts. Then clause k can be reached by backtracking.

The first alternative of the condition (4) is formally expressed as

(a) tf and d do not unify for each i=l,...,k—l,

and the second

(b)for each i = l, ...,k— 1, either tt and d do not unify, or, if they do (with
substitution 0(), the execution of the resulting subgoal (^a(ia), ..., qiai(tia))Ot
does not succeed.1

The conjunction of (1), (2), (3), and (4a) is called the (strong) path condition
for modification m. The conjunction of (1), (2), (3), and (4b) is the regular path
condition for m, and the conjunction of (1), (2) and (3) the weak path condition for m.

*

Example 7. Let P be the append-program of Example 4 and let P'=P. m
be the program where the second clause is

append([y4|Ar], Y, [A\Z})\- append(X, Y, Y).
The strong path condition for the modification m is that input d unifies with
([A\X], Y, [A\Z]), d does not unify with ([], X, X), and the tracing of append

1 For simplicity we do not discuss cuts here.

5 Acta Cybernetics IX/3

244 P. Kilpelainen, H. Mannila

(X, Y, Y) and appendix, Y, Z) is different on d. A d satisfying these conditions is,
e.g., ([1], [1], [1]). •

To generate a d such that P(d)^P. m(d), we form the path condition for m
and try to generate an input satisfying it. For this, we need a formal way of describing
path conditions. This is easy to do using the concepts of unification and universally
quantified inequalities [LMM86, LM87]. An example should explain how this is
done.

Example 8. The path condition in the previous example can be formalized
as follows.

U = dA\X],Y,[AlZ]) A VAT': U * ([], X', X') A (X^XN Y^Y\/ Y*Z).

Here U stands for the input d. The last conjunct comes from the requirement that
the traces of append(X, Y, Z) and append^ , Y, Y) differ. •

The reason for introducing regular path conditions is that sometimes the strong
path condition is unsatisfiable. For example, let p be defined as follows.

p(A',B'):-A' ^B,q(A\B').
p (A,B)>r(A,B).

The path condition for subgoal r(A, B) altered to r(A, A) is

(MA', B':U * (A', B')) A U = (A, B) A . . .

which clearly cannot be satisfied. An input reaching the end of the second clause
necessarily unifies with the first clause, but fails in its body. The regular path con-
dition contains the subformula

U = (A', B') A (-1 (A' < BT) V ~iq(A', B)),

which can be satisfied by letting A' and B' be integers and A'^B'.
The technique we use is first to try the strong path condition. If that cannot be

satisfied, we move towards the regular path condition by allowing some previous
unifications to succeed but requiring that some subgoal in that clause fails. In our
example this would mean including the subformula

U = (A',B,)A~\(A' <£')

in the path condition. In this fashion the path condition is weakened, until it can
be satisfied.

Weak path conditions arise in situations where we want to check backtracking
behaviour of a program. We omit the discussion on this; in the sequel we concentrate
on strong path conditions.

Generation of Tests Cases for Simple Prolog Programs 245

5. Generating inputs satisfying the path condition

Given a path condition, how do we generate an input satisfying it? Here we
have to restrict our class of Prolog programs. A path condition can contain con-
ditions of the form q(t), where q is an arbitrary predicate. Generating inputs satis-
fying q is an unsolvable problem, as, e.g., the halting problem is reduced to it.

There are two ways out of this problem. We could try to generate inputs satisfying
the subgoals just by running the subgoals. This alternative seems to be feasible in
practice, but it is hardly amenable to an exact analysis.

The second way is to restrict ourselves to programs where the subgoals are
easily analyzable. One such class (but by no means the only) is the class of iterative
programs, defined in [SS86]. An iterative program for predicate p consists of clauses,
where the last subgoal in each clause can be a recursive call and all other goals are
calls of system predicates. For example the programs for append and member are
iterative.

Given a conjunction of equations and universally quantified inequations, we
collect first the equations and solve them by using (Robinson's) unification algorithm.
This gives us a structure, possibly with free variables, representing the most general
solution of the equations.

We then process the universally quantified inequations one by one. If for the
inequation \jX\ U^t(X) the right hand side matches the structure formed so far,
we develop the structure by adding functors or atoms so that the inequation holds.

Example 9. Let p be defined by the clauses
p([]) : - . . .
p([A', B'\L']) >...
p ([^ | L]) : - 5 i s ^ + l , p (L) .

and let m be the modification changing the last L in the third clause to a new variable,
say X. The path condition for m is

C/ 5* [] A (\/A', B',L':U ^ [A', B'\L']) KB = A + l hU = [A\L] A L ^ Z a

We start by considering the equations in this conjunction: U—[A\L], B=A+1.
We form a structure representing the value of U:

U cons

Next we check the inequations for U. The right hand side of the equation {/?*[]
does not match the above partially instantiated value of U, so we proceed to the
next inequation, \jA',B',L': U^[A\ B'\L']. The right hand side of this matches
the above structure, so we have to ensure that \jB', L'\ L^\B'\L% This can be
done by instantiating L to the empty list.

The method outlined above is fairly easy to implement by brute force: we use
a Prolog query, which first generates the structure from the equations and then
tries possible alternatives for the free variables until a suitable case is found. A more
refined method would also be quite simple to implement.

8 Note that this inequation is not universally quantified; it comes from the requirement
that the altered subgoal behave differently from the original one.

5*

246 P. K¡lp:laimn, H. Mannila: Generation of Tests Cases for Simple Prolog Programs

6. Concluding remarks

We have described a general method for producing complete sets of test data
for Prolog programs. The method is based on the competent programmer assumption
and on a theoretical result showing how one can concentrate on the local neighbour-
hood M(P). The test cases were produced by forming path conditions for each
modification and by solving them.

Several open problems remain. One is the exact class of programs for which
the method can be made fully automatic. For iterative programs this can be done,
but they probably do not form the largest such class. Another such class might be
the programs without function symbols (Datalog).

Another problem is dealing with general programs. For those interaction with
the user is necessary for succesful generation of test cases. How should the inter-
action be organized?

7. Acknowledgements

We wish to thank Tiina Hakka for implementing a prototype of the system.

References

BUDD, T. & ANGLUIN, D . , Two Notions of Correctness and Their Relation to Testing.
Acta Informática 18 1982, pp. 31—45.
BEIZER. B. , Software System Testing and Quality Assurance. Van Nostrand Reinhold.
USA 1984.
BROOKS, M . , Determining Correctness by Testing. Report No. S T A N — C S — 8 0 — 8 0 4 .
Computer Science Department, Stanford University. May 1980.

[D M L S 7 8] DEMILLO, R . & LIPTON, R . & SAYWARD, F . , Hints on Test Data Selection: Help for
the Practicing Programmer. Computer Vol. 11 No. 4 April 1978, pp. 34—41.

[G G 7 5] GOODENOUGH, J. & GERHART, S., Toward a Theory of Test Data Selection. IEEE
Transactions on Software Engineering Vol. SE—1 No. 2 (1 9 7 5) , pp. 1 5 6 — 1 7 3 .

[Ho86] HOWDEN, W., A Functional Approach to Program Testing and Analysis. IEEE Trans-
actions on Software Engineering Vol. SE—12 No. 10 (1986), pp. 997—1005.

[L M 8 7] " LASSEZ, J - L . & MARRIOT, K . , Explicit Representation of Terms Defined by Counter
Examples. Journal of Automated Rea'soning, 3 (1 9 8 7) , pp. 3 0 1 — 3 1 7 .

[L M M 8 6] LASSEZ, J - L . & MAHER, M . & MARRIOT, K . , Unification Revisited. RC 1 2 3 9 4 . I B M -
T. J. Watson Research Center Yorktown Heights, NY. November 1986.

[MCM83] MICHALSKI, R. & CARBONELL, J. & MITCHELL, T. (eds.). Machine Learning: an Arti-
ficial Intelligence Approach, Morgan Kaufmann, 1983.

[MCM86] MICHALSKI, R. & CARBONELL, J. & MITCHELL, T. (eds.), Machine Learning: an Artifi-
cial Intelligence Approach, Vol. II, Tioga 1986.

[M R 8 9] MANNILA, H . & RAIHA, K . - J . , Automatic Generation of Test Data for Relational
Queries. Journal of Computer System Sciences 3 8 , 2 (April 1989) , 2 4 0 — 2 5 8 .

[MY79] MYERS, G., The Art of Software Testing. Wiley. New York 1979.
[Pe86] PEREIRA, L„ Rational Debugging of Prolog programs. Proceedings of the Third Inter-

national Conference on Logic Programming, London 1986, pp. 203—210.
[Sh82] SHAPIRO, E., Algorithmic Program Debugging. Ph. D. Thesis, Yale University, 1982.
[S S 8 6] STERLING, L. & SHAPIRO, E . , The Art of Prolog. The MIT Press. Massachusetts 1986 .

[BA82]

[Be84]

[Br80]

CONSTRUCTOR: A Natural Language Interface
Based on Attribute Grammar*' **

Z . ALEXIN1, J . DOMBI1, K . FABRICZ,2 T . GYIMOTHY,1 T . HORVÁTH1

1 Research Group on Theory of Automata
Hungarian Academy of Sciences. Somogyi u. 7., H—6720 Szeged

a Attila József University, Egyetem u. 2., H—6722 Szeged

Abstract

The paper gives an overview of a natural language interface currently being developed at the
Research Group on Theory of Automata at the Hungarian Academy of Sciences in collaboration
with the Attila József University, Szeged. The interface supports natural language communication
between the user issuing commands as steps in plane geometry constructions and the actual graphical
presentation. The Natural Language Interface named CONSTRUCTOR is described and the expe-
riences of the authors are outlined with a view to generalizing the results thus obtained.

1. Introduction

Natural Language Interfaces [NLIs] are one of the most common applications
of natural language processing. The majority of such interfaces have been developed
for manipulating databases [Cliff 88].

The literature on the methodology for NLI evaluation is by and large restricted
to interfaces to databases [Schr 88]. Other kinds of NLIs do not only lack general
principles for objective evaluation; their value is rather hard to assess due to the
fact that they are usually oriented to some special task with a microcosm of words,
rules, and knowledge.

We can roughly distinguish two types of Natural Language Interfaces. Less
complicated Natural Language Interfaces are based on a sentence-by-sentence
analysis. As a rule, they extract information from the main constituents of sentences.

*The computer facilities provided by the Alexander von Humboldt Foundation have greatly
contributed to the completion of this project.

** Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989,

248 Z. Alexin et al.

This approach allows for skipping different parts of the input while restricting parsing
to finding the words of direct semantic relevance. In case of a simple NLI, knowledge
representation does not go hand in hand with natural language analysis. In fact,
here natural language understanding is replaced by pattern matching and pre-wired
procedures. These interfaces are relatively easy to construct and they can even be
made portable. An example of such a system is JAKE [JAKE 88].

On the other hand, more detailed analysis along with deeper understanding is
achieved by interfaces which do not omit parts of the input considering them irrele-
vant. Rather, they are designed to capture the overall content of the input, therefore
they are suitable for analyzing intersentential relations. Their construction, however,
presupposes global understanding of what the input is about. Therefore, they can
provide insight into what representing knowledge or understanding natural language
means. Although, in principle, their transportability is per se precluded, later in
this paper some considerations suggest that this should not be the case.

2. CONSTRUCTOR — an NLI for plane geometry constructions

CONSTRUCTOR, the NLI we are currently working on belongs to this latter
group of interface systems. It has been designed to accept English sentences used as
instructions for plane geometry constructions. The basic idea is to let the user issue
commands whose output is a step in producing a more or less complicated geomet-
rical construction. (A prototype NLI for plane geometry constructions is described
in [Arz 85], where an interface of the simpler kind is presented.)

With CONSTRUCTOR, the main steps to be taken are:

(i) analyze the input in its entirety,
(ii) translate the result into a semantic representation,

(iii) produce, on the basis of (ii), a visualized construction,
(iv) keep track of the sequence of inputs in order to:

a) maintain control over the whole procedure of construction,
b) supply the user with a means of feed-back (evaluation).

Thus, CONSTRUCTOR is part of a program package that consists of the
following basic modules.

CONSTRUCTOR itself consists of the following parts:

a lexical analyzer
a syntactic parser
an attribute evaluator
a semantic interpreter
a construction creator

These moduls can be briefly described as follows.

A Natural Language Interface Based on Attribute Grammars 249

INPUT
Figure 1.

, 2.1. The lexical analyzer

The lexical analyzer consists of a machine dictionary, a scanner and a morpho-
logical analyzer. .. _
,>' The dictionary of CONSTRUCTOR contains a lexicon of more than 300 items
necessary for issuing commands (a typical set of instructions is provided with the
description of the syntactic analyzer). The word stock incorporated in the lexicon
makes it possible to maintain ease of reference. Thus the information contained
in one instruction is related to other pieces of information from a sequence of com-
mands.

A lexical entry consists of a word-stem (canonical form) and a set of codes that
are necessary for subsequent analysis. In fact, it is in the lexical entry that basic
morphological, syntactic, and semantic information is stored. Morphological features
involve data for the derivation of inflected forms. From the point of view of syntax,
the lexicon helps the parser assign a token to a particular word. The semantic in-
formation contained in the entry is the basic synthetised attribute underlying the
final process of analysis, i.e. attribute evaluation.

The lexicon holds synonymous words to account for the fact that there is a
difference in word usage among students depending on age and/or level of training

250 Z. Alexin et al.

(see, e.g: selection from synonymous verbs like "name", "mark", "label", "denote",
or "designate" according to the above factors).

The lexical module is virtually extended by a morphological analyzer. Its func-
tion is to trace all the word-forms not found in the lexicon to their canonical lexeme.
Its work is based on a tagging algorithm for the derivation of inflected word-forms.
The relevant information for finding the base form (stem) of a lexeme is encoded in
the lexical entry. The algorithm facilitates the derivation of all the four major parts
of speech: verbs (past tense, past participle, third person in the present tense, and
gerund), nouns (plural forms), adjectives (comparative and superlative degree),'and
adverts (degrees and "-ly" traced back to adjectival canonical forms with the deriva-
tional path recorded). The inclusion of a morphological analyzer reduces the size of the
lexicon to a minimum, while the overall amount of actual word-forms is potentially
well over a thousand. In some cases actual word-forms appear in the lexicon along
with their canonical form. This is due to matters of conversion, that is, some inflected
forms may represent products of a change in linguistic status. For instance,- the
word-form "circumscribed" appears to be an adjective rather than a past participle.
In this case the algorithm would yield a false result in the sense that it would analyze
the form as the past participle of "circumscribe" instead of assigning it to the class
of adjectives in base form. Here we create a lexical entry for "circumscribed" with
the codes for an adjective. As dictionary look-up takes place prior to derivation,
a match for "circumscribed" is found with no conflict with the analyzer. "Table 1
shows the main morphological derivations handled by the analyzer. j;

Table 1.

MORPHOLOGICAL CATEGORIES STEMS VARIATIONS INFLECTIONS

VERBAL MORPHEMES:

(Canonical form: 'apply')

apply
applie-
applie-

-in.g
-s
. -d

NOMINAL MORPHEMES:

(Canonical form: 'copy')

copy
copie- -s • •

ADJECTIVAL/ADVERBIAL MORPHEMES:
(Canonical form: 'big')
(Canonical form: 'great')
(Canonical form: 'equal')

big

great
equai .

bigg- ' -er
-er
-iy :

A Natural Language Interface Based on Attribute Grammars 251

2:2. Syntactic parsing - \

The input to the syntactic parser is a string of tokens and terminals to b.e pro-
cessed inio. a sentence (or a list of sentences) with some structure assigned, to the
input'on the basis of about two hundred re-writing rules. The parser is a hypothesis-
driven (top-down) depth-first left-to-right syntactic analyzer. The syntactic rules
represent a context-free grammar description. As for the type of look-ahead, the
syntax is basically of the LL(1) type. The only exceptions are conjunctions together
vyith a conjunction and more or less optional commas (","), and a few minor con-
structs.

The sentences that can be processed by the parser may be fairly complex. The
only significant restriction imposed is that one sentence may refer to but one step
of construction. It means that issuing commands like "Draw and move a right
triangle..." is prohibited. On the other hand, nested sentences for object specification
can be used. It means that; sentences like "Draw a segment that connects points
"A and ~B." or "Label the line that crosses circle ~C at points ~A and ~B by "1."
can be freely used. To get a grasp of the range of sentences accepted by CONSTRUC-
TOR, consider the table below:

•"; • Table 2.: - . . . - .

FRAME SENTENCE STRUCTURES

1. Draw two parallel lines.
(Verb Phrasej(Noun Phrase)

2. Construct a triangle inside the circle.
(Verb Phrase)(Noun Phrase)(Prep Phrase)

3. From point "A, drop a vertical line.
(Pre-Specifier) (VP) (NP)

4. Label by "e a straight line that is above the
circle.- - "•'• • L.•.••.:•'.
(VP) (NP) (Specifier)

5. Label by "J a point that divides segment "0~B
into parts with a proportion of 1:3."
(VP) (NP) (Specifier within Specifier)

6. By measuring off the length of segment ~A"B,
draw two circles with radius 'A'B at a distance
equal to the difference between the base of the
triangle and side "U"V of the heptadecagon.
(PreVP) (VP) (NP) (Specifier within Specifier)

252 Z. Alexin et al.

2.3. Attribute evaluation for the basic grammatical structures

The system uses an L-attribute evaluation strategy. Its task is to compute the
basic features of grammatical structures. For example, the attributes of the verbal
object can be computed from the attributes synthetized for the noun phrase, the
adjectival phrase, and the apposition. This computation mostly involves synthetized
attribute evaluation, whereas further specification of the object (localization, related-
ness etc.) requires the use of inherited attributes.

Facing the complexity of the sentences above does not appear to be a simple
enterprise. Nevertheless, there do seem to be clues to semantic interpretation.

For one thing, there are some observations that can be made use of for a more
thorough understanding of the semantic relations involved.

Prepositions, for example, correspond to markers of localization. Localization
is taken to refer to either a place or a direction in the plane cf.:

Mark a point on the circle.

Move the triangle up.

Adjectives and nouns enter into relations of selectional restrictions, cf.:

* Draw a parallel circle.

Verbs appear to invoke one or more of the following actions:

drawing,
marking,
measuring,
manipulating.

These action types often result in overlapping actions due to the vagueness present
in natural languages, cf.:

Label by "e an arbitrary line.
1. Draw an arbitrary line.
2. Label it by ~e.

Drop a vertical line "e.
1. Drop a vertical line.
2. Label it by ~e.

2.4. Semantic interpretation

The result of syntactic parsing, attribute evaluation, and the observations all
serve as input for semantic interpretation. The main bulk of analysis at this stage,
however, is done through a metalevel description for building complex noun phrases.
A part of the metalevel description is shown in Figure 2 below:

A Natural Language Interface Based on Attribute Grammars 253

Objects are
{POSITION data structures}

IntegerPosition
IntegerPosition
RealPosition
RealPositioii

coordinate): IntegerNumber;
coordinate): IntegerNumber;
coordinate): RealNumber;
coordinate): RealNumber;

is X (alias X"
is Y (alias Y'
is X (alias X"
is Y (alias Y"

{DESIGNATION Data structures}

is ObjectName (alias Name);
has IntegerPosition (alias Locus);
has RealPosition (alias Locus);

is IntegerPosition;
is RealPosition;
has Designation (alias Name);

{TRIANGLE data structures}

TriangleBySideType — (EquiAngular (alias EquiLateral),
Isosceles, Scalene (alias General));

TriangleByAngleType = (Acute, Right, Obtuse);

Designation
Designation
-Designation

Dot
Dot
Dot

Triangle is Dot;
Triangle is Dot;
Triangle is Dot;
Triangle is Designation (alias Name);
Triangle is ofSizeType;
Triangle is of TriangleBySideType;
Triangle is of TriangleByAngleType;
Triangle has Edge [3] (alias Side): Line;
.Triangle has Angle [3];
Triangle has Center "Line [3]: Line;
Triangle has MidPoint [3]: Dot;
Triangle has Circumscribed "Circle: Ellips;
Triangle has Inscribed "Circle: Ellips;
Triangle has Circumference: Length;
Triangle has Area: RealNumber; .

Figure 2.

Another difficulty is computing the relations between the objects involved in
•some construction. Different kinds of specifiers get evaluated by way of logical
expressions and mathematical functions and equations. For example, the location
"on the triangle" is computed from the equations relating to the three sides of the
triangle and defining a set of points to be found "on" the triangle.

From the nodes of a given triangle we can compute the equations for the edges
•of the triangle. If the coordinates of the point are within the sets of points defined
by the equations, then the relation "on the triangle" holds.

254 Z. Alexin et al.

2.5. The execution of commands - • ••

The action creator receives as an input a complete specification of the object
to be created and it-defines the procedure to be executed with all the parameters set
The definition does not involve arriving at a possible solution of the specifications
but also questions of a suitable appearance are of relevance.

Although the set of sentences presented above may seem impressive as far as
syntactic and semantic complexity are concerned, the most prominent feature of
CONSTRUCTOR is most likely its ability to handle reference to some previously
defined object or action. This feature of CONSTRUCTOR does not simply imply
a syntactic sugar of using words like "it" or "its" but, from a broader perspective,
it opens the way to picturing a series of instructions as related steps of some geo-
metrical construction. Keeping a record of what has been done makes it possible
to resolve or, at least, detect, cases of ambiguity.

3. Summary

The kind of natural language interface under consideration appears to be a
perspective candidate for a large scale, of applications from CAD through text
editors to intelligent database query languages. Our aim has been to develope a
software tool for generating NLIs of this kind.

Since a software generator is considered the right tool in case
a) it can generate a major part.of.the sóftwáre, and
b) it can provide some high level user friendly means for the description of the

variable parts (cf. [Mart 83]),. .
we have tried to find the more or. less readily standárdizáble .parts of CONSTRUCT
TOR and provide a metalanguage for thé specification of the variable parts.

In the case of CONSTRUCTOR that has basically been generated by a genera-
tor based on attribute grammars, the following modules seem to have been apt to
generation:

— its lexical analyzer is highly suitable for generation.
— the algorithm for morphological derivation áppears as a standard procedure

of the lexical analyzer. We have constructed a convenient tool for dictionary
maintenance.

— the syntactic parser is easily generated by PROF—LP [Gyim88] as long
as the number of LL(1) conflicts is kept to a minimum. In other cases,
procedures defined by the user can be implemented (this has only partly
been carried out in,the present version). Slight modifications, in the syntactic

• description of CONSTRUCTOR might be sufficient for applications . in
syntactically related domains. 1. :
á considerable amount of attribute evaluation can be standardized. In cases
where linguistic structure shows .significant variation (e.g. the structure
of objects), the . metalevel description can be used for. object, definition.

. .. This description is the basis of the procedures that handle the, object tab_le.
There are several parts of the specification, which are suitable forgeneraliza-

A Natural Language Interface Based on Attribute Grammars 255

tion, but others are problem-specific. Here, again, the metalevel description
can provide a possible way-out by defining clues for establishing relations
between objects.

— although the implementation of relations depends on the very application,
it seems probable that a natural language interface connected to some CAD
or data-base would have much in common with CONSTRUCTOR,

— at present we cannot give a positive answer as to whether the actions in-
voked by CONSTRUCTOR could be straightforwardly transferred to some
other Natural Language Interface, if at all, but a deeper insight in the se-
mantic configuration of the class of verbs might lead to some result in the
future.

4. Further research

Our farther research in the area of Natural Language Interface generation will
mainly be oriented to developing a generator that generates Natural Language
Interfaces in a unique framework (now PROF—LP and metalevel object descrip-
tions are separate entities). Another field of interest would be developing further
methods for generalization.

References

[Arz85] ARZ, J.: TRICON Ein System für geometrische Konstruktionen mit natürlichsprach-
licher Eingabe, Technische Bericht, Universität des Saarlandes, Saarbrücken, KI—
LABOR.

[Cliff88] CLIFFORD, J.: Natural Language Querying of Historical Databases, Computational
Linguistics 1988, 14 (4), 10—34 pp.

[Gyim88] GYIMÖTHY, T . , HORVATH, T . , KOCSIS, F., TOCZKI, J . : Incremental algorithms in PROF—
LP, Lecture Notes in Computer Science Vol. 371, 93—102 pp.

[JAKE88] JAKE The application-independent natural language user interface, English Knowledge
Systems, Inc. Scotts Valley, California, 1988.

[Mart83] MARTIN, P., APPELT, D., PEREIRA, F.: Transportability and Generality in a Natural
Language Interface System, Proceedings of IJCAI—83. Vol. 1, 573—581 pp.

[Schr88] SCHRÖDER, M.: Evaluating User Utterances in Natural Language Interfaces to Data-
. bases, Computers and Artificial Intelligence 1988 (7), 317—337 pp.

Data Pictures on the Desktop*

ÁGNES HERNÁDI, ALADÁR HEPPES a n d ELOD KNUTH

Computer and Automation Institute
Hungarian Academy of Sciences

Kende u. 13—17., H-1052 Budapest, Hungary

Abstract

An overview of the coDB database management system is presented, focusing on the system
substratum and the facilities provided to build and manage data contents called Pictures. The
experimentally implemented system provides an unusual database interface which makes multi-
contextual data dialogues intersession-resident and responsive to appropriate changes of the data-
base. Contextual access to the data provides an important degree of functional separation. The
information base splits into two parts: the database and the so-termed Gallery, the repository of
Pictures.

1. Introduction

Single user graphical workstations which provide a multiwindow environment
are becoming more and more common. Whereas a plenty of application programs
are offered which deal skilfully with data like Excel [lj, Cardfile (SAPANA) or
even HyperCard [2], none of these pursue real database functions.

The idea is appealing: a kind of visual "data object editor" having the power
for performing all database functions formerly associated with entry forms, query
specifications and pieces of the schema separately. The appeal is to the inexperienced
end-user who manipulates heterogenous, ill-structured data and not to the professio-
nal database person.

The challenge facing us, then, is to provide a highly flexible user friendly man-
machine interface facility which not only allows for concealing the traditional con-
cepts of schemas, data definition languages and data manipulation languages but
also provides a single unifying tool serving simultaneously various purposes for
entering and updating data, query interpretation, report generation and schema
manipulation.

* Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

258 Á. Hernádi, A. Heppes, E. Knuth

A database interface inspired by office-, management- and personal information
systems recently coming into view (such as Hyper-systems, the remarkable pheno-
menon of Macintosh etc. [2], [3], [4]) has been experimentally developed at our
institute for AT & T UNIX PCs. This interface facility [5], [6], [7], [8], [9,] [10], [11]
supports simultaneous usage of multiple views or data contexts, moreover makes
these contexts intersession resident, sensitive to the current alteration of the database
and is the only tool for accessing the database. Last but not least this facility is
easy to understand, to learn and its putting to use is quick, requiring no programming
knowledge.

2. On the Data Model of the Experimental System

We have developed an experimental system called cooperative Databases (co
DB) [12]. This relies on an ultimately simple data scheme. In order to allow us to
keep our attention intently fixed on . the problems of that interface facility we have
chosen a completely unsophisticated and practicable data'model. Namely

• We apply a binary relationship model [13] with no subtyping, however, relation-
ships are non-directed many-to-many.

• Types and relationships are maintained automatically by entering their instan-
tiation, and destroyed utterly on deleting their last instantiation. Instances of
types are called atoms, and that of relationships are called connections..

• - .Two constituents ¡are put together to form an atom that is to say a.(type) class-
description appointing the type to which the atom belongs and a (value):

(type) (value).

Both constituents are character strings although implementations may have
restrictions laid on them. There are no arithmetical operations interpreted on

, values and for the time being we don't even pjan to introduce them.

• A connection is an unordered pair of atoms belonging to a particular relation,
so three constituents are put together to form a connection like a (relname) and

. an unordered pair ((type 1) (value 1), (type 2) (value 2)). So it seems a relation
is made up of a (relname) taking the place of role and an unordered pair of

.. existing types ((type 1), (type 2)). .
Relation names are — they may even be empty ones — character string objects
which are unique for any given pair of types. Two binary relationships are con-
sidered identical if and only if all three of their corresponding constituents are
identical (disregarding the order of types).
A type might as well he related to itself, and an atom might be a constituent of

:. any number of connections within a given relation. Two. connections are con-
sidered to be identical if and only if all three of their corresponding constituents
are identical (neglecting the order of atoms). Accordingly the same pair of
atoms might be connected in as many ..relations as one could desire and still
appearing once at most in a given relationship. : . : ,.,'..• "- . . • ."

s Data Pictures on the Desktop 259

3. The Way of Displaying Data and Context

We believe it helps to view a binary relationship as a paragraph of two lines
marked by the indentation of the second one.

Accordingly the first line displays an atom or a type and the second one the
related atom or type preceded of course by the relation name if it is not actually
an empty string. So a relation (relname)((typel), (type2)) or a connection (rel-
name)((typel)(valuel), (type2)(value2)) may appear in either form shown by Fi-
gure 1.

(i) type 1:
[relname] type 2:

or
type 2:

[relname] type 1:

(ii) type 1: value 1
[relname] type 2: value 2

or
type 2: value 2

[relname] type 1: value 1
Figure 1. Equivalent ways of displaying (i) a relation and (ii) a connection

As an example let us explore a database that records the main features of the
twelve animal categories in the ancient Chinese lunar calendar. To represent this
we select three types such as "category", "in-the -cycle" and "year", and two
sorts of relations for the relationship between "category", and "in-the -cycle",
and R2 for the relationship between "category", and "year". Information about the
Goat should appear in one of those forms in Figure 2, depending on our taste or
purpose. We will see later, that any number of indentations are allowed.

Notice that no matter how we name ii l and R2 they remain redundant and
even disturb us in understanding the represented connections. If both relation names
were empty strings it would be quite similar to the traditional way of jotting. That's
the reason why we allow relation names to be empty strings.

(i) category: the Goat
[Rl] in_the_cycle: 8th
[R2] year: 1907

(ii) category: the Goat
[R2] year: 1907
[Rl] in_the_cycle: 8th

(iii) in_the_cycle: 8th
[Rl] category: the Goat

[R2] year: 1907
(iv) year: 1907

[R2] category: the Goat
[Rl] in_the.cycle: 8 th
Figure 2. Alternative reflections of the same information

6 Acta Cybernetica IX/3

260 Á. Hernádi, A. Heppes, E. Knuth

4. Pictures as the unified tools of interaction

A picture consists of an arbitrary number of hierarchically indented lines -
displaying atoms, types and relation names occasionally. More formally a picture
is a forest of picture lines with the definition of

(picture line) :=[(relname):] (type): (domain)
(domain) :=BLANK | (value) | (expression)

where (expression) is a selection criteria (e.g. a regular expression in terms of UNIX),
and BLANK stands for any or all (no selection criteria).

In root lines no (relname) may appear. In non-root lines however theoretically
a (relname) always appears at the very most it is empty (theoretically present but
invisible). In a manner consistent with the above definition each picture line has a
unique parent line unless it is a root line.

4.1. Validity and other characteristic properties of pictures

Informally speaking a picture is called valid if all the types, atoms, relations
and connections referred to by any of its lines exist.

A valid picture is filled if each indented line in it possesses the following pro-
perty: if its parent line contains a value, then it enumerates all the values connected
to the atom displayed in its parent line by the named relationship.

A valid picture is saturated if each line in it which has at least one indented
line, also has all possible indented lines in this very picture.

Ah empty picture trivially possesses all of these characteristic states.

5. Operations on Pictures

Any kind of user action can be carried out by using the appropriate operations.

5.1. Property Enforcing Transformations

To enforce picture properties and to carry out report generation we provide
i'our transformations each of which acts on the whole picture.

VALIDATE

All the types, atoms, relations and connections appearing in the picture spring
into existence if they have not existed in the database (see definition of valid picture).

FILL

The picture is to be converted into a filled one (see definition of filled picture).
All the values fitting into a given place will be listed. In case of domain expression
only values satisfying the expression will be included.

Data Picture» on the Desktop 261

SATURATE

The picture is to be completed to become saturated (see definition of saturated
picture).

EVALUATE

All feasible valid sequences satisfying every single domain specifications are to
be determined.

Each value displayed on the picture is regarded as a restriction. Feasible pathes
between two lines displaying atoms must fit on both ends. Reports are typically
generated by this operation.

5.2. Operation modes

In order to reduce the number of depicting operations operation modes were
introduced. These serve as distinctive marks of the particular classes of effects.
There are three operation modes:

FREE mode serves for temporal depicting with no effect on the database.

CHECK mode is the default mode for all valid pictures. This mode serves
the purpose to develop our view on data. Therefore in this mode
no operation has update effect and operations violating the validity
constraint are refused.

ENFORCE mode provides the only way to alter the database. In this mode the
VALIDATE transformation is called after each depicting operation
the result of which violates the validity constraint.

The FREE—CHECK mode transition is refused whenever the picture is not valid.
Other mode transitions are never refused. The FREE-»ENFORCE mode tran-
sition is equivalent to a call of the picture state transformation VALIDATE, and as
such must be confirmed.

5.3. Depicting Operations

These operations act on the selected part, that is on a subtree, a line or a token
of a picture. They may or may not change the database itself depending on the
current operation mode, however, according to the What You See Is What You Get
paradigm no invisible change may occur. The whole interaction is supported with
forms and icons requiring no syntactic knowledge of the user.

On selecting a subtree, we speak about a weak subtree if no restriction applies
to the selection. But if the remainder must still constitute a picture, we speak about
a strong subtree, see Figure 3.

6*

262 Á. Hernádi, A. Heppes, E. Knuth

category: the Ox
in _ the .cycle: 2nd
year: 1913
[best _ marriage-partners] category: the Snake

year: 19U5

[should.avoid] category: the Monkey
in_the.cycle: 9th

[best_marriage.partnars] category: the Rat
in_the_cycle: 1st
[should.avoid] category: the Horse

year: 1906
year: 1908

(0 (ii)

business: the are good in business being very shrewd and
comnletelv reliable

Figure 3. Example of (i) a weak and (ii) a strong subtree

REMOVE (strong subtree) (option)
The selected subtree disappears recursively from the picture. In the ENFORCE

mode data objects are to be deleted too.
Option Actions taken

with root The whole selected subtree disappears. In the ENFORCE mode
(default) each atom included in the selected subtree is to be deleted with all

their connections. Corresponding types and relations can be de-
stroyed utterly. No other inductive effect is taken.

without root If differs from the default option in that the root line of the subtree
does not disappear. In the ENFORCE mode each atom displayed
by the root lines of the disappearing part is to be disconnected from
the atom displayed by the root line of the selected subtree. The cor-
responding relation can be destroyed utterly.

disconnect The whole selected subtree disappears. In the ENFORCE mode the
atom displayed by the root line of the selected subtree is to be di-
sconnected from the atom in its visible parent line, if there is any.
The corresponding relation can be destroyed utterly.

CLEAR (weak subtree)

All the domains in the selected subtree are to be made blank. Identical lines
with no indented hierarchy are only to be displayed once. It never alters the data-
base.

MOVE (strong subtree)

The selected subtree is to be moved. The subtree disappears from the source
picture. This operation can be used in an inter-picture sense too. See PASTE for
terminating a MOVE.

s Data Pictures on the Desktop 263

COPY (weak subtree)

The selected subtree is to be copied. The source picture remains unchanged.
This operation can be used in an inter-picture sense too. See PASTE for terminating
a COPY.

PASTE (line)(option)

This operation terminates a COPY or MOVE operation. The subtree to be
copied or moved is inserted into the picture according to the option specified. In
the ENFORCE mode database update requires confirmation.

Option

after
(default)

before

under

Actions taken

The copied/moved subtree is to be inserted after the selected line
(skipping of course all the lines marked by a longer indentation).
The root line of this subtree is to be marked by the same indentation
as the selected line.

The copied/moved subtree is to be inserted prior to the selected line,
and its root line is to be marked by the same indentation as the
selected line.

The copied/moved subtree is to be inserted immediately after the
selected line. Its root line is to be marked by an indentation as
compared to the selected line.

ADD LINE (line) (option)

A line is to be created and inserted into the picture according to the option
specified. In the ENFORCE mode database update may occur.

Strings to be displayed in the inserted line should be entered through a form
asking for them. Menus of tokens already entered into the database are available.

Option

after
(default)

Actions taken

The created line marked by the same indentation as the selected one
is to be inserted after the selected line (skipping of course all the
lines marked by a longer indentation).

before The created line marked by the same indentation as the selected one
is to be inserted ahead of the selected line.

under The created line marked by an indentation as compared to the selec-
ted one is to be inserted immediately after the selected line.

Suppose we have a picture including the portion of Figure 4. If we want to
enter some other information about the Goat let us say the nature of those born in
the Year of the Goat right after the line displaying it, then we have to select (mark)
either the line displaying the name of this category and to ADD LINE under it,
or the line displaying its serial number in the cycle of Twelve and to ADD LINE
before it, see Figure 5.

264 Á. Hernádi, A. Heppes, E. Knuth

category: the Goat
in_the_cycle: 8th
year: 1907

Figure 4. A portion of a picture

If we want to display another category let's say the Pig right after the informa-
tion about the Goat, we can select the line displaying the name of this latter category,
and ADD LINE after it, see Figure 5.

category: the Goat
nature: generous and shy, blessed with many

virtues and just as many failings
in_the_cycle: 8th
year: 1807

category: the Pig

Figure 5. Result of the two ADD LINE operations on the picture in Figure 4

UNFOLD (line) (option 1, option 2)

Our view of information displayed in the selected line is to be opened out by
revealing all the Hnes which could come up as indented ones according to the data-
base's content. It never alters the database.

Option 1

natural only
(default)

full

Actions taken

If the selected line displays an atom then all the atoms connected
to it should be displayed. If however the selected line does not display
an atom, all. the. relations interpreted on the type in the selected line
should be displayed. •

All the relations interpreted on the type in the selected line are to be
involved neglecting whether they have any connections referring to
the atom in the selected line.

Option 2 Actions taken

non-repeating The parent line of the selected one is not to be displayed between the
(default) indented lines.
repeat parent Even the connection or relation between the selected line and its

parent line is to be involved.

For the indented lines of the selected one which are already in the picture the following
rules apply:

• Already existing lines will not be repeated;

• If the selected line displays an atom and the already existing indented one
displays a blank domain then this blank domain will be filled with appropriate
values instead of repeating this latter line;

s Data Pictures on the Desktop 265

• If the indented line contains a domain expression, it remains unchanged, and
an other indented line will be inserted with the same relation and type names

displaying values or not depending on the selected line.

category: the Goat
nature: generous and shy, blessed with many

virtues and just as many failings
in_the_cycle: 8th
year: 1907

category: the Pig
in_the_cycle: 12th
[should, avoid] category : the Snake
[best, marriage, partners] category: the Rabbit
year: 1911

1923
1935

Figure 6. After unfolding the line which displays the category "Pig" (with default options)

ADD VALUE (domain) (option)

A new atom of the type specified in the line of the selected domain is to be
inserted. If the domain did not contain a valué no option is offered. The required
value will be inserted in that very domain, however, it must not contradict the se-
lection criteria, if there is any specified.

If the selected domain already contains a value, the new value is to be inserted
according to the option specified.

In the ENFORCE mode database update may occur.
The value to be displayed in the selected domain should be entered through a

form asking for it. The menu of values already entered into the database are available.

Option Actions taken

after The line containing the new atom will be placed right after the fo-
refault) dented hierarchy of the line displaying the selected domain. The

skeleton of the indented hierarchy of the selected line if there is such
a hierarchy at all, will be inserted after the line containing the new
atom. This skeleton contains all relation and type names but domains
remain empty.

before The line containing the new atom will be inserted above the line
displaying the selected domain.

DELETE. VALUE (domain)

The selected domain must contain a value which is to be abandoned. In the
ENFORCE mode the atom is to be deleted with all its connections. Nó type or
relation can be destroyed, however.

266 Á. Hernádi, A. Heppes, E. Knuth

EDIT EXPRESSION (domain)

A selection criteria is to be defined or modified. Editing the selected domain
is refused if it contains a value (see EDIT TOKEN). No value may be specified
(see ADD VALUE).

category: the Goat
nature: generous and shy, blessed with many

virtues and just as many failings
in_the_cycle: 8th
year: 1907

category: the Rooster
nature:
in_the_cycle:
year:

category: the Pig
in_the_cycle: 12th
[should.avoid] category: the Snake
[best_marriage.partners] category: the Rabbit
year: 1911

1923
1935

Figure 7. Result of the ADD VALUE operation with an argument displaying the category "Goat"
and the option after

EDIT TOKEN (token)

One of the strings displayed in the selected line is to be altered either in the
picture containing the selected token (FREE mode), or in the database, and in all
pictures displaying this very string (ENFORCE mode). This operation is unavailable
in the CHECK mode.

Respectively either the relation or the type is to be renamed or the value is to
be changed keeping all the connections. Editing the selected domain is refused if it
is either empty (see ADD VALUE) or contains an expression (see EDIT EXPRES-
SION).

6. Galleries

Our pictures are stored in a special directory called Gallery which supports
transactions dealing with pictures.

6.1. Picture Qualification

Pictures stored in a Gallery are qualified but their quality can be altered any
time.

• A Sketch is a picture which need not be valid. Pictures to be depicted in FREE
mode, or having become invalid are always requalified to this quality. This is
the quality of created pictures too.

s Data Pictures on the Desktop 267

• A Composition is a valid picture which however can become invalid and requali-
fied to Sketch as the database changes.

• A Protected picture may never turn invalid. Depicting operations in ENFORCE
mode on any picture violating this restriction are refused.

• A Master Piece moreover may not be changed at all. Depicting operations in
ENFORCE mode on any picture violating this restriction are refused.
Beside these there are two standard, read-only pictures in each Gallery. The

picture Types contains all the existing types. The picture Scheme contains all the
existing relationships. These pictures or any of their parts can be copied freely
however.

6.2. Gallery Organization
A Gallery consists of two main parts

• the Exhibition in which all pictures are updated according to the EDIT TOKEN
operations and checked up on being valid or not; and

• the Archive in which pictures are not maintained at all.

6.3. Transactions dealing with pictures

Each Gallery belongs to a single co DB. On opening the Gallery its Exhibition-
menu is displayed. At request the Archive-menu is displayed too but in a separate
window. From these menus the user can access the picture transactions namely:

• Create Picture
• Open Picture
• Delete Picture
• Copy/Move Picture
• Rename Picture
• Requalify Picture

All pictures have to be created except the standard ones. Opening a picture the
operations on pictures are available. From an opened Gallery any number of pic-
tures can be opened simultaneously. The other transactions work roughly in a way
as can be expected.

7. Implementation issues

As we have already mentioned, co DB is experimentally developed for AT & T
UNIX PCs. The implementation exploits

• the hierarchic file system of UNIX;
• the multiple window management capability supported by TAM routines; and
• the manipulation of abstract objects at the operation system's level provided

by UA.
We manipulate two abstract objects at the operation system's level: the co DB

database and the Gallery.
Commands assumed to be applicable to all ordinary abstract objects of this

level such as create, open, close, delete, move, copy, rename are also defined on both
of these objects.

268 A. Hernádi, A. Heppes,.E. Knuth: Data Pictures on the Desktop

Apart from the fact that each Gallery refers to a single co DB, any number of
Galleries can be associated with a co DB. On opening a co DB the menu of Galleries
associated with it is displayed.

8. Summary

We have expounded a new,, non language oriented approach of interactive
database interface in contrast to [15], [16], [17], [18] etc. This approach by matching
modern requirements gives náivé users démanding dátabase süpply altering dynami-
cally an éásy-t'o-use tool to interact directly with database.

We introduced the cöncept~óf picture which áre user friendly abstract objects,
having no fixed structure. Their content is transient, and they serve as a unified tool
for accessing the database.

Our approach also provides a consolidated mechanism to draw computer
aided comparison between independent databases containing diverse data, and to
settle database communication protocols aiding interaction between them.

References

[1] JONES, E„ Using Excel TM for the PC, (Osborne McGraw-Hill, Berkeley, California, 1 9 8 8) .
[2] Macintosh, HyperCard User's Giude (Apple Computer, Inc., 1988).
[3] CHRISTIE, B. (ed.), Human factors of the user-system interface, (North-Holland, Amsterdam,

1985).
[4] SHU, N. C., Visual Programming, (Van Nostrand Reinhold Company, New York, 1 9 8 8) .
[5] HERNÁDI, Á . , BODÓ, Z . , KNUTH, E . , A different interactive interface for database management

systems, Proceedings of the 11th Int'l Seminar on Database Management Systems', Seregelyes,
Hungary (Oct. 3—7, 1988), pp. 85—94.

[6] KNUTH, E . , VAINA, A. M . , BODÓ, Z . , HERNÁDI, A., Beyond data crunching: A new approach
to database interaction, Proceedings of the 3rd Austrian—Hungarian Informatics Conference
on "Beyond number crunching", Retzhof, Austria (Sept. 14—16, 1988), pp. 91—104.

[7] BODÓ, Z., HERNÁDI, A., KNUTH, E., Adatok mint "kepek", Proceedings of the 4th National
Congress of the John von Neumann Society for Computing Sciences on "Application '89",
Pecs, Hungary (March 28—Apr. 1, 1989), Vol. H, pp. 308—318 (in Hungarian).

[8] HERNÁDI, Á., BODÓ, Z., KNUTH, E., Context-reflecting pictures of a database, Proceedings öf
the EUUG Spring '89 Conference "UNIX: European Challenges", Brussels, Belgium (Apr.

. 3—7, 1989), pp. 273—282.
[9] KNUTH; E., HERNÁDI, A., BODÓ, Z „ Pictures at a Data Exhibition, in: Chang,. S . K „ (ed.),

Visual Languages and Visual Programming (Plenum Publishing Company, in print).
[10] KNUTH, E., HERNÁDI, Á . , BODÓ, Z . , GYENESE, J., Data Gallery, Proceedings of the World Con-

ference on Information Processing and Communication, Seoul, Korea (WOCON—INFOR
89 , June 1 3 — 1 6 , 1989) . . • R

[11] KNUTH, E . , HERNÁDI, Á . , HEPPES, A., BEECH, D., Visual database management, Proceedings
of the 4th IFIP Working Conference on User Interfaces, Napa Valley Lodge in Yountville,
CA (Aug. 21—25, 1989, NORTH HOLLAND, in print.

[12] BODO, Z. et al., Data Gallery— Common Base Definition, Reference manual Version 9. (Com-
puter & Automation Institute, Hungarian Academy of Sciences, Budapest, December 1988.)

[13] BRACCHI, G . , PAOLINI, P . and PELAGATTI, G . , Binary Logical Associations in Data Modelling,
in: NUSSEN, G . M., (ed.), Modelling in Database Management Systems (North-Holland,
Amsterdam, 1976).

[14] VERMEIR, D. and NUSSEN, G. M.,.A Procedure to Define the Object Type Structure of Concep-
tual Schema, Information Systems, Vol. 7 No. 4 (1982) pp. 329—336.

[15] LANS, R. F. VAN DER, Introduction to SQL (Addison—Wesley, 1988).
[16] HARTMAN, P. A., R: BASE System V and 5000, (TAB Books Inc., USA, 1988).
[17] dBASE m User Manual (Copyright Ashton—Tate, 1984).
[18] INFORMIX (Registered trademark of Relational Database Systems Inc., USA).

YYY-A database design tool*

HARRI LAINE

University of Helsinki, Department of computer science
Teollisuuskatu 23, SF—00510 Helsinki, Finland '

Abstract

YYY is an interactive, graphical tool set for designing databases. Presently it contains tools
for the design of the enterprise (conceptual) schema and an expert system for generating the schema
for the relational database. On the enterprise level the data model supported in YYY is a variant of
the Entity — Relationship Model. A relational database schema is represented as SQL 'create
table' — statements. This paper discusses the overall structure of the tool set, the data dictionary,
the principles of the user interface and the rules that control the generation of the relational data-
base schema.

1. Introduction

During its design the database is described in various levels of abstraction. Most
researchers identify three levels. We call these levels the enterprise level, the represen-
tation level and the internal level. On the enterprise level (often called conceptual
level [ElNa89]) the main concern is on what is described in the database, i.e. on how
the object of the data is structured. On the representation level (called also logical
level or implementation level [TeFr82, ElNa89]) we are concerned about the logical
data structures that are used in representing the data. On the internal level the techni-
cal structures and access paths of the database are considered. As related to each
level of abstraction, there is a schema that contains the description. Database design
is a process of constructing a schema for each level of abstraction. A natural course
of action is to proceed from the user oriented enterprise schema to the computer
oriented internal schema. The intermediate representation schema is needed because
most of the current database management systems rely on it.

Database design process is often divided into four steps: requirements collection
and analysis, conceptual design, data model mapping (logical design) and physical

* Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—II, 1989.

270 H. Laine

design [TeFr82, ElNa89]. During the first step the needs of the users as related to
the contents and the use of the database are collected and written down. In conceptual
design these needs are analyzed and the enterprise schema is constructed to reflect
the needs about the contents of the database. Thus, the enterprise schema should
be considered as a part of the documentation of the user requirements. Especially,
when the users take active part in the design, the two first steps of the design proceed
simultaneously.

Conceptual design is an iterating process. Many preliminary versions of the
enterprise schema are usually constructed, evaluated and modified before a satis-
factory result is concluded. The schema should be made available in various forms
for inspection and evaluation. This is a proper place for a computer assisted tool.
Actually, some tools, such as ER—Modeler, IEW, Excelerator, to support the con-
ceptual design have been developed, within the last few years [Xeph88]. These
tools differ from each by their technical environment, their functionality, and by the
data models that they support. Tools to assist the conceptual design are the kernel
components of the YYY database design tool- These tools will be described ir
section 3.

The next design step, data model mapping, produces the schema for the data-
base management system. If the database management system would use the same
data model that is used in representing the enterprise schema this step would not be
needed. However, database management systems that are based on semantic data
models are not yet common in practice [HuKi87]. Thus, a mapping is needed. The
data model, on which the enterprise schema is mapped, is presently increasingly the
relational model of data [Codd70]. YYY tool set contains a mapping tool that
produces relational database schemata. The mapping tool is discussed in section 4.

Section 2 describes YYY database design tool as a whole, and section 5 outlines
the further development of the tool set.

2. YYY tool set

YYY database design tool set is the" present phase in a series of experimental
database design tools constructed during the last ten years at the department of
computer science in the University of Helsinki. We started with a semantic data
model [LaMP79], and developed a data definition language (HULDA) based on
that data model [Lain81]. A compiler to produce the data dictionary representation
of HULDA schemata was constructed. Connection matrices and diagram represen-
tations could be obtained via a plotter. The tools were implemented in a maim frame
(Burroughs) environment. They were experimented in a few database design projects.
The conclusions of the experiments are reported in [Lain86]. The data definition
language representation of the enterprise schema was found to be good as a detailed
document for the adp-professionals. It was not considered good as a document for
the end users, nor as an input medium. The further development of the main frame
tools ceased when our main frame computer was changed.

The user interface and the end users were of main concern when the next gene-
ration of our database design tools were developed. Database design tools that are
intended to the end users must be based on their native language. There are many
examples of database design projects in Finland, where the end users have. not

YYY — A Database Design Tool 271

accepted the documents that contain both English and Finnish [Kall89]. Due to
this, we decided to use Finnish language as the only language in our tools.

We used fast prototyping as our development technique. Our starting point
was to develop an interactive graphics editor that works in IBM compatible micro
computer and could be used for constructing both the diagram and the data dictionary
representation of the enterprise schema. The first version of the schema editor was
programmed in Basic, because it was the only high level programming language
which, at that time, provided the necessary graphic primitives for our Olivetti high
density graphics. The prototype proved out to be quite handy in education and in
constructing small schemata. For the next version, three alternatives were considered
for the implementation tool: Windows graphics environment, Turbo Pascal and
compiled Turbo Basic. Because of limited resources, the last alternative was selected.
This version has been in educational use for over a year and works well also with
large schemata.

One of our goals was to develop a tool that is able to work with 640K of me-
mory. All extensions to the schema editor reduce the maximum size of the schemata
that can be processed. To facilitate large schemata we split the functions of the
conceptual design tool into three separate tools: the schema editor, the dynamics
editor, and the output facility. It was decided that the further development of the
tools should be carried out mainly in Turbo Pascal. Pascal versions of the dynamics
editor and the output facility are ready and in use. The Pascal version of the schema
editor (version 3) is still under development.

In addition to the tools for the conceptual design, YYY tool set contains a data
model mapping tool to produce the relational database schema. This tool is imple-
mented in Turbo Pascal and in Prolog. All the tools can be started from a start up
menu. The contents of the present YYY tool set is depicted in Fig. 2.1.

Figure 2.1. Components of the YYY tool set

2.1. Data dictionary

YYY design tools store an enterprise schema as four text files: a file for the
static structures ((schema).DDA), a file for the definitions related to the static
structures ((schema).DDB), a file for the description of the dynamics ((schema).DDC)
and a file for the definitions related to the dynamics ((schema).DDD). The schema

272 H. Laine

files are stored as Prolog like fact files. The structure of the facts is shown in Fig.
2.2. The definition files contain multiple definition text blocks. Each text block
starts with a header line, that identifies the object to be defined. This is followed by
at most 200 lines of definition text. The text block ends with a footer line. Definition
files can be edited with any text editor.

For the processing the whole schema is loaded in memory. Dynamic data
structures with multiple indexes are used. The definition files are transformed into
indexed files (version 3 of the editor). A definition is loaded into memory only when
needed. At the end of the session the indexed definition files are transformed back
to text files.

Entity statement:

yksilo(
{entity type name), (x-coordinate), (y-coordinate),
(position in hierarchy), (population size),
(schema version identifier)).

Property statement:
ominaisuus(

{entity or event type name): {property type name)/{value type),
{functionality), {necessity), {identifier!),
{changeability), {schema version identifier)).

Relationship statement:
yhteys(

{relationship type name),
{role name)-.{entity type name)

((iminimum restriction), (maximum restriction)),
{role name): {entity type name)

((minimum restriction), {maximum restriction)),
{duplicate counter),
{x-coordinate), { y-coordinate).
{original duplicate counter),
{schema version identifier)).

Hierarchy statement:
hierarkia((entity type name), {entity type name)).

Version statement:
verSio((yyy version identifier),

{schema version identifier),
{drawing technique)).

Event statement:
tapahtuma((event name), {frequency), {schema version identifier)).

Effect statement:
vaikutus ({event name), (affected object name),

(affected property name), (type of effect),
(schema version identifier)).

Figure 2.2. Fact structures in schema files

YYY — A Database Design Tool 273

3. Tools for the conceptual design

3.1. The data model

One of the main differences between the conceptual design tools is the data
model supported by the tools. There are tools that support multiple data models,
but only as far as the drawing technique is concerned. To fully support a data model,
is to allow only such constructs that obey the constraints embedded in the model.
These constraints vary between different models and also between the variations
of the same base model [HuKi87]. The most commonly supported data model in
the design tools is the Entity—Relationship Model, and its numerous variations
[Xeph88, HuKi87]. The original Entity—Relationship model [Chen76] imposes
very few restrictions on the constructs. Relationship types of any degree may be
defined. Both entities and relationships may have attributes. Only entities may
participate in relationships. On my experience it is hard to work with such a loose
model. There are too many ways to model the same phenomena, and the model
does not force to select any of them.

YYY supports an Entity—Relationship Model variant. The kernel of this variant
is the simplified Entity-Relationship model variant recommended by the Finnish
Standardization Association [SFS88, Sorv88]. YYY data model supplements this
model with concepts needed in describing the dynamics of the object system and
with constraints that restrict the generalization hierarchy. It divides the phenomena
of the object system (mini world) into four categories: entities, relationships, proper-
ties and events. Relationships are restricted to the binary ones. Entities and events
may have properties, but relationships can not have properties. Only entities may
participate in relationships. Properties are represented with (attribute, value) -pairs.
It is assumed that the database contains facts about the existence of entities, the
existence of relationships and the existence of the properties of entities. Events are
phenomena that affect entities, relationships and properties. They are not repre-
sented directly in the database.

The design task is to specify the types of entities, relationships, properties and
events. The relations between the specified types must also be determined. In YYY
a specification is more than just naming the type. All the types can be attached with
textual definitions. Property types must be characterized as identifying or noniden-
tifying, fixed or varying, single-valued or multi-valued, and necessary or just nice
to know. Application depended value types can be specified as related to the pro-
perty types. A selection of about thirty pre-defined value types is provided. Partici-
pation restrictions (minimum and maximum) and the use in identification, are used
in characterizing relationship types. A generalization hierarchy can be defined
between entity types. Some of the entity types must be defined as base types. The
others are either super types or subtypes.

The dynamics of the object system is modelled with event types. The kind of
effect (creation, change, termination) characterizes the relations between event types
and entity, relationship or property types.

Diagrams play an important role in conceptual design. They are the means of
providing the overview of the design. YYY provides only entity level diagrams.
These diagrams hide out the property types. The diagrams show only the static
structures. There is a large variety of drawing techniques attached to Entity—Rela-

274 H. Laine

tionship models. It is fairly easy for a tool to provide multiple drawing techniques
if their symbol sets have a lot of common symbols. YYY design tool provides four
drawing techniques that are all rather well known in Finland. Chen's original drawing
technique [Chen 76] is not included. Fig. 3.1. gives an overview of the default drawing
technique in YYY.

The schema editor is used for defining the static structures of the object system,
i.e. the entity, relationship and property types. It provides a graphical interactive
user interface. The screen is split into three windows. The diagram window shows a
part of the diagram. The name window shows the names that correspond to the short
identifiers appearing in the diagram window. The communication window is used for
user communication, entering specifications and selecting the functions from the
menus. Fig. 3.2. shows an example of the schema editor screen.

The user communication is based on menus and on questions asked by the
program. The main menu is explained in Table 3.1.

An employee works for exactly one department. A de-
partment has many employees, at least one.
A department controls many projects, not necessarily any.
A project belongs to one department and is identified via
the department.
Manager is a subtype of employee.
Unit is a super type of department and project.
A manager manages multiple units. A unit has only one
manager.

Figure 3.1. An example of an YYY diagram

3.2. The schema editor

YYY — A Database Design Tool 275

KUVAZI, kp = (0, 0), pages: 1

r RELATIONSHIPS - |

1 = works_for

2=works_on

3 — controls

4=manages

Ed = (Fl>, Seur=(-F2)

communication window

KuvatUlos — NaytonKuva
Tulostus kestaa jonkin alkaa
Tulostus tiedostoon MK2. FIC Voit va'htaa tiedostonimen alkuosan
— Anna uusi alkuosa tai (Enter) Jos hyvaksyt oletusarvon:

Figure 3.2. An example of the schema editor screen

Table 3.1. The main menu of the schema editor

Entity Operations on entity types: specify a new type, remove an existing
type, change or view the specification, re-position the entity type
symbol in the diagram, integrate two types.

Relationship Operations on relationship types: specify a new type, remove an
existing type, change or view the specification, change the partici-
pant, re-position the center point of the connection line.

Hierarchy Operations on generalization hierarchies: specify a new subset rela-
tion, remove a subset relation.

Diagram Operations on the diagram: re-position entity type symbols, zoom,
re-position the diagram window, change the drawing technique,
insert/remove page limit lines, expand the diagram window over
the whole screen.

Diagram Output Operations to obtain sketch quality output: Select the output device,
print the screen image, print the expanded diagram window image,
print entity names, print relationship names.

Exit The construction of the data dictionary files. Exit the program, if
wanted.

To make the use of the tools easier some of the menu alternatives activate a bunch
of actions. For example, the selection 'specify new entity type'-activates the following
actions:

7 Acta Cyberneiica IX/3

276 H. Laine

repeat {
Name the entity type,
Specify the population size, position in hierarchy and textual definition,
Position the entity type Symbol in the diagram,
repeat {

Identify an entity type to which the new one is connected,
Specify the relationship

} until empty name is provided,
if the new type is'super type' then

repeat {identity the type that is 'lower' in hierarchy
} until empty name is provided

else if the new type is'sub-type' then
identify the type that is 'upper' in hierarchy,

when 'wanted'
repeat {Specify a property type
} until'no more property types'

} until empty name is provided.

YYY schema editor requires the user to position the entity symbols in the
diagram. The connection lines that represent the relationships are drawn automati-
cally, but may be edited later on. Manual positioning of symbols requires more user
effort than automatic positioning. An advantage of manual positioning is that the
user has the control over the diagram, a small change does not re-organize the hole
diagram. YYY schema editor offers a default answer for most of its questions.
This makes the construction of the enterprise schema easy. As related to each modi-
fication of the schema the editor makes some integrity tests. These tests are not,
however, complete. The new version of the editor will perform a more complete
integrity and quality test each time the schema is written in the data dictionary.

YYY schema editor has been used in database design education in the Univer-
sity of Helsinki for three years. It has had several hundreds of users. It has proven
to be easy to learn and quite useful.

3.3. The output facility

High quality paper documents of the enterprise schema are very important in
database design; These documents are used as working papers within the design
project. In addition, they are the means to distribute information about the design
to the users and to the environment. One requirement for the documents is that they
should be obtained quickly. The printing time of about ten minutes per page, which
is quite common in many design tools, is just too much.

YYY produces all its paper output via auxiliary files. The schema editor can
produce output files of the diagram on screen image basis. The files are produced
for IBM Graphics Printer/Epson graphics compatible matrix printers. It takes less
than a minute to produce an output file and about a minute to print the file with a
matrix printer.

YYY tool set contains a separate output facility for the production of high
,quality paper documents. Diagrams are coded in PostScript. The output facility
provides many alternatives to determine how the diagram shall be split for output.

YYY — A Database Design Tool 277

These include: the whole diagram into one A4-sheet (recommended if the diagram
is not very large, example as Appendix 1), one or two diagram pages in one A4-sheet
and user specified area per one A4-sheet. Diagram output ca be obtained in any
of the four drawing techniques supported by YYY.

Text documents represent the data dictionary information as a formatted
report. Users may control the amount of definition texts in the report (without de-
finition, with entity and relationship level definitions only, and with exhaustive
definition texts). The document can be restricted to coyer only those objects that
have changed since a certain version of the schema. Fig. 3.3 shows an example of a
textual report.

SCHEMA: EXAMPLE 04.0.8.1989 15:46:06 ' page: 2

Entity type: employee —base type, population about: 100

Property Value type Characteristics

ssn sos—sec—no identifier
fname name necessary
lname name necessary
sex sex necessary fixed
bdate date necessary fixed
address address necessary
silary money necessary

Relationship type Role Holder Restr.
works - on employee employee 0—n

project project 1—n
works-for employee employee 1—1

department department 1—n

Hierarchy upper Hierarchy lower

employee manager

Figure 3.3. An example of a textual report (translated into English)

3.4. The dynamics editor

The dynamics editor can be used in describing the 'real world' events and their
effects on entities, relationships and properties. No graphical symbol is used for an
event type. In the diagram the affected objects are high-lighted with color. It is
possible to define event types that affect multiple objects, both entity types and
relationship types. When effects are defined the affected objects are selected from
a pick list. The present version of the dynamics editor is the first prototype and it is
not yet complete. Output facilities are still missing and the user interface should be
improved. Our intention is to implement the textual reports and the effect matrices
in the near future. We are also going to implement a cluster analysis program and
apply it to the effect matrices to see whether it can assist the specification of the
database update programs.

7*

278 H. Laine

4. The mapping tool

YYY contains also an expert system for generating the relational database
schema. The reulting schema is represented as a collection of SQL 'Create table'-
statements. Four variations of SQL are supported ORACLE—SQL [Orac87],
DB2—SQL [DaWh88], INGRES—SQL and a slightly extended ISO SQL-standard
(proposed features of the forthcoming SQL2 standard are included) [ISOS7]. The
resulting schema specifies the structures of the relations, their primary keys and also
their foreign keys (inclusion dependencies). When the SQL variation does not con-
tain means to define the primary keys or the foreign keys, information about them
is included as a comment.

The generation is carried out in three phases. The first phase pre-processes the
enterprise schema and eliminates certain characters of the Scandinavian character
set that cannot be used in SQL.

The second phase applies the transformation rules. It produces a file that spe-
cifies the relations, their attributes, their keys and their foreign keys. It also gives
an explanation on what rules were used for each decision. The transformation can be
done either in automatic or in interactive mode. In automatic mode default rules are
used in certain problematic situations, such as, whether to represent a subtype (by
default no) or a super type (by default yes) as a relation of its own, and whether to
introduce artificial identifiers to replace large user keys that are widely used as
foreign keys (by default no). In interactive mode the situation is explained to the user,
a solution is proposed and acceptance or rejection is requested.

The third phase constructs the SQL statements. Application dependent value
types are transformed into SQL data types. A conversion table is included for the
pre-defined value types. Users may add new items in this table or replace it with a
table of their own. The conversion table defines the conversion between the applica-
tion dependent value sets and the SQL standard. Rules that are embedded in the
program take care of adjusting the type definitions for the supported database mana-
gement systems. If there is no conversion rule for some value type the corresponding
data type will become 'undefined'. Column names may be problematic in the generation
of the SQL statements. The SQL variations accept names with the length from 8 to
32 characters. The enterprise schema accepts property names of up to 24 characters
and the second step of the transformation may generate foreign key names of up to
128 characters. No automatic cut off is provided. If the user works in interactive
mode, it is possible for her to rename all the tables and columns. The names that are
longer than what is allowed are indicated. YYY keeps track on the items that have
been renamed. When the relational schema is re-generated the renaming made
during the past generation runs can be taken into account, even in the automatic
mode of the transformation.

Several rule sets to map an Entity—Relationship schema to a relational schema
have been proposed e.g. [MaSh89, Chen76, ElNa89]. Our rule set consists of twenty
rules. We aim to a minimal set of relations. Thus we accept null values, express the
properties of a subtype in the relation attached to the corresponding base type, and
represent all 1-to-n relationships with foreign keys. It is not allowed to specify iden-
tifying properties for sub- and super types. If a super type is represented as a relation
of its own (the default) this relation will contain an artificial key, and an add-on
attribute 'type' to indicate the base type. We have also the rule "If the user key of the

YYY — A Database Design Tool 279

relation is big and it should be used in many references then consider an artificial
key".

To produce normalized relations, our mapping rules as all the other rules,
presuppose that the Entity—Relationship Schema is normalized, i.e. redundancy is
eliminated, properties are attached to correct entity types, and the relationship types
are defined between the correct entity types. The analysis of the quality of the enter-
prise schema cannot be done automatically based on the information in the schema.
But, it is possible to look for the potential problems and show them to the user
to reconsider.

5. Future development

In the present system the definition texts must be written with a separate editor.
This problem will be corrected already in the next version of the schema editor that
will contain an embedded text editor. The tool set does not contain any tool for
view integration. A simple integration tool that renames the objects and reorganizes
the diagrams so that the schema editor can be used for integration has been designed.
An add-on function that makes it possible to directly utilize data item lists as pick
lists in specifying properties is planed, as well as the improved integrity and quality
test for the enterprise schema.

References

[Chen76] CHEN P. P., The Entity-Relationship Model — Towards a Unified View of Data, ACM
Trans, on Database Systems, 1, 1 (March 1976), pp. 9—36.

[Codd70] CODD E., A Relational Model for Large Shared Data Banks, Communications of the
ACM, 13: 6, 1970.

[DaWh88] DATE C. and WHITE C., A guide to DB2, Second Edition, Addison-Wesley, 1988.
[ElNa89] ELMASRI R. and NAVATHE S. B., Fundamentals of Database Systems, Benjamin Cum-

mings, 1989.
[HuKi87] H U L L R. and K I N O R., Semantic database modeling: Survey, applications and research

issues, Computing Surveys, 19, 3 (Sept. 1987), pp. 201—260.
[IS087] ISO: ISO 9075, Information processing systems — Database language SQL + adden-

dum 1, 1987.
[Kall89] KALLIALA E., IEW — Case software and SRM, Univ. of Helsinki, Dept. of Computer

Science, Series C—1989—35, (in Finnish), 1989.
[Lain81] LAINE H., A Data Definition Language and its Use in Data Base design, Report of the

Fourth Scandinavian Research Seminar on Systemeering, Univ. of Oulu, 1981, pp.
188—197.

[Lain86] LAINE H . , User Interface in a Database design tool, Report of the Eighth Scandinavian
Research Seminar on Systemeering, Aarhus University, Denmark, 1986, pp. 262—277.

[LaMP78] LAINE H . , MAANAVILJA O . , and PELTOLA E., Grammatical Data Base Model, Information
Systems, 4:4, 1978.

[MmSh89] MARKOWTTZ V . M . and SHOSHANI A., On the Correctness of representing Extended En-
tity-Relationship Structures in the Relational Model, Proc. ACM SIGMOND—89
Conf., 1989, pp. 430—439.

(Orac87] ORACLE CORP., S Q L * P I U S Reference Guide, 1987.
[SFS88] Finnish Standardization Association: Methods of Systems Development; ERTT—Con-

ceptual Analysis, Handbook 106, 1988 (in Finnish).
[Sorv88] SORVARI J., ERTT — A method for Conceptual Analysis and Modeling of Information,

Joint Finnish Soviet Software Symposium, Helsinki 15—18. 11. 1988, Proceedings to
appear in 1989.

[TeFr82] TEOREY T . and F R Y J., Design of Database structures, Prentice Hall, 1982.
[Xeph88] Xephon Inc.: Case Systems: Xephon Buyers Guide, 1988.

280 H. Laine: YYY — A Database Design Tool

Appendix 1: High quality diagram output-all in one page

TTS 23X17.1939 21:26:15

(5) ©
j' WI.WlA |
j^-T ^ ^ | f adm_ \ ^ f adnjatk̂

y ' / J y ^ ^

--1— 7 •m»" XT . / Mok \ ete«, \ N H. /* 11 '"() » nun«« • / *»®B Ui —• N^ ^ V J

f OMM. \ / count \ \ 1 occurenc* H*<—H -«-a 1 \

1. job_assigrttfl 2. job_history 3. hired_for 4. reachable 5. supervisor 6. examiner 7. ie$t_for 8. tako_p!ace 9. rcscrvcd_fOr 10. where 11. task_&ssigiKd 12. servtce_available 13. subjeci 14. respomible_for 15. non..overlapping ftf. unit^of 17. occurence of 18. who 19. whai

Frames for protocol description*

SALLY WAGNER-DIBUZ

Central Research Institute for Physics
H—1525 Budapest, 114, P.O.B. 49., Hungary

1. Introduction

The increasing number of computer networks and their spreading application
leads to the production of new computer network protocols. The specification,
implementation, and test sequence generation for these protocols is a tiring work,
which has to be supported by software tools. Expert system technology can be
applied well in the field of communication protocols.

This paper deals with the application of frames for protocol description, which
gives a formal description of the protocol. The transformation from other formal
description methods into the protocol representation with frames can be given. The
frame representation is a new method for protocol description, which provides a
flexible and well-structured description of the protocol.

Frames are useful for representing the protocol development process too. Using
a frame-based knowledge representation method data and procedural knowledge can
be represented in the same way, with frames. However frames describing the proto-
col can be easily separated from the frames and demons representing the procedures
of the protocol engineering process. This means that the protocol description with
frames can be the knowledge base of an expert system for protocol engineering
[WAG87], [TAR88].

In the paper examples are shown for the frame representation of protocols,
and for the usage of the protocol description for the simulation of the communica-
tion between two transport entities. For demonstration the frame-based language
FAIR developed in SZKI is used.

Section 2 contains a brief overview of communication protocols. In Section 3
we write about knowledge representation with frames. In Section 4 a protocol model
is given, which can be represented with frames as it is described in Section 5. Section
6 summarizes the conclusions.

* Lecture presented at the 1st Finnish—Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11,1989.

282 S. Wagner-Dibuz

2. Communication protocols

PROTOCOLS

The reference model defines seven layers in a communication network. Each
entity in a layer communicates with the entities in the lower layer, with the entities
in the upper layer and with the peer entities which are placed in the same layer but
in other nodes. The peer entities communicate with each other according to the pro-
tocol (fig. 1.). The protocol defines the messages which can be sent during the com-
munication, it determines the semantics of the communication and its time attributes.
For the communication with the upper and the lower layers the entity uses service
primitives (SP), and for the communication with the peer entity protocol data units
(PDU) are used. Protocols have to be standardized so that computers produced by
different producers are able to communicate with each other. There are several
protocols in one layer especially in the application layer, where each application
needs a new protocol.

N + l . Layer

N. Layer

N — 1. Layer
PROTOCOL

PDU

N + l . Layer

N. Layer

N - l . Layer

SP

SP

Fig. 1. The communication between the entities

PROTOCOL ENGINEERING

The protocol standard is a long and complicated description of the protocol
in English. It defines everything that have to be stated about the protocol: the syntax
of the messages (the bit-map), the possible responses to a given message, the para-
meters and their values, and the protocol mechanisms. The process in which the
protocol standard is realized with an entity that is able to communicate with other
entities using the protocol is called protocol engineering. (Fig. 2.) It consists of the
following tasks:

— protocol specification,
— protocol verification,
— protocol implementation,
— conformance testing.

All of these activities need tiring and mostly manual work. There is a great need
for software tools which support protocol engineering. Formal methods for protocol
description are needed for these software tools. These formal descriptions give a
more exact and clearly arranged description of the protocol, which is called the

Frames for Protocol Description 283

Verification

Fig. 2. Protocol engineering

protocol specification. It is easier to understand the protocol operation from the
protocol specification and easier to implement the protocol in a programming
language using the protocol specification. The testing of the implemented protocol
is also based on the protocol specification.

3. Knowledge representation with frames

Frame—based systems usually treat information on three different levels:

— frames,
— frame—structures, and
— worlds.

Generally a frame can be considered as a structured symbolic model of a concept.
Actually it is a (usually ordered) set of arguments, called slots, each of which is
used to represent a property of the concept to be modelled. Every slot may have a
value, which can be another frame, or an expression in some formal language.

In order to cope with the complexity of real world concepts meta—information
can be associated to any part of a frame:

— to the frames,
— to the slots, and
— to the values.

The meta—information is also formalised in frames, these are called meta—frames,
and the pieces of meta—information are stored in the slots of the meta—frames. This
information can be used to define the range of the slot values, demons for describing
the protocol activities, new frames for storing further and deeper information about
the slot values, questions for filling in the slots with a given protocol etc. In this
paper we use meta—frames only for describing range of values, and demons, which
specify the "active" part of the program.

284 S. Wagner-Dibuz

Frame—structures are used to represent the relations among the concepts mo-
delled by the frames. This means that if certain slots are not found in a given frame,
then search is made by the system along the relations to see if the slot and its value
are contained in another frame accessible from the present one along such relations.
If so then the slot and its value will be inherited by the original frame. In our example
we shall use only the "is_a" relation. If two frames are in "is_a" relation it means
that the first will inherit all lacking information from the other one.

Worlds are groups of frames, which can represent several things, like hypotheti-
cal alternatives, processes changing with time etc.

THE FAIR

FAIR (Frames in Artificial Intelligence Representation of knowledge) is a
frame—based system integrated with M PROLOG. The form of a frame in the
FAIR language is the following:

frame: name;
slot_l: value_ll, value_12,..., value. lnx;
slot_2: value_21, value_22,..., value. 2n2;

slot_m: value.ml, v a l u e _ m 2 , v a l u e . m n n ;
end.

The language contains several predicates for manipulating the frames. Here
we enumerate only those predicates which are used in the example in Section 5:

create, frame erf
access, value acv
find
The interested reader can find further details about frame—based knowledge

representation in [BAR86] and in [ECS88], and about the FAIR language in [ECS
89].

4. A model for protocols

In this paper we use the abstract state machine (ASM) model of the protocol.
The model is defined by seven sets:

(5, / , O, V, A, P, T)

where
S: is the finite set of states.
I: is the finite set of the incoming messages of the protocol.
0 : is the finite set of the outgoing messages of the protocol.
V: is the finite set of variables, which can be divided into two distinct sets:

— local variables
— global variables.

A: is the finite set of actions, there are local actions concerning local variables,
and global actions concerning all the variables.
P: is the finite set of predicates, which map the variables into the values true or
false. There are three subsets of predicates:

Frames for Protocol Description 285

— controlled,
— settable,
— non-controlled.

T: is the finite set of transitions, a transition is defined by the following:

0, i, p, a, o, jO
which means that the automaton in the state "s" receives an input "i", and if predi-
cate "p" is true it executes action "a", sends an output "o" and goes into state "s"'.

ÇcLOSED^

TCONreg/CR /
/

/

/
/

^ WFCC ^

CÇTCONconf

N
N

\

N
\

N
\

N CRITCONind
N

N

TDISregjDR ^

^ WFTR ^

/
DRJTDISreg y

 /

/
 / TCONresplCC

J*

^ OPEN ^

Li
DT, predljTDTind, actionl
DT,pred2/—
TDTregjDT, action2

Fig. 3. Simplified state transition graph of transport protocol class 0

Fig. 3 shows the simplified state transition graph of the transport protocol
class 0. Its ASM model is the following:

S = { CLOSED, WFCC, WFTR, OPEN }
/ = { TCONreq, TCONresp, TDISreq, TDTreq, CR, CC, DT, DR }
O = { TCONind, TCONconf, TDISind, TDTind, CR, CC, DT. DR }
Vlocal = { SZEGM, ... }
Vglobal = { 0 }
P = {predl, pred2, ...},
A = {actionl, actionl, ...},
T = { (CLOSED, TCONreq, CR, WFCC), ... }

(The elements of the transitions which do not have values can be omitted.)

286 S. Wagner-Dibuz

This is a very simple protocol, but the ASM model is capable of describing more
complex protocols. The ASM model can be the basic model of the protocol in an
expert system for protocol engineering. In the next section we demonstrate how this
model can be stored in a frame structure.

S. A frame based approach to protocol description

Frames describing the ASM model can be divided into three groups:

— atomic,
— complex,
— pattern.

An atomic frame contains a state transition. The form of the generic frame for
a transition is the following:

frame: transition;
start „state: ;
input: ;
predicate: ;
action: ;
output: ;

metaslot: output-meta;
if-accessed-demon: output-demon',

meta-end
endstate: ;

méta slot: end state -meta;
if-accessed_ demon: end_ state-demon;

meta-end
end.

The slots of the meta—frames contain demons which are activated when the
value of the slot is accessed-during the operation of the program. These demons
can be for instance procedures writing out the output and the end—state on the
display. The frame of a transport protocol state transition is the following:

frame: edgeS ;
is-a: transition',
start state: open;
input: dt\
predicate: ;

metaslot: ;
if-accessed-demon: predl;

meta-end
action: actionl;
output: tdtind;
endstate: open',

end.

Frames for Protocol Description 287

Complex frames store the information about the elements of the sets defining
the ASM model. The following is the generic frame for the inputs, and the next
frame represents the inputs of our transport protocol example:

frame: inputs;
asp _ from _ upper _ layer : ;
asp-from-lower-layer: ;
pdu: ;

end.
frame: trans-inputs-,

asp-front-upper-layer: tconreq, tconresp, tdisreq, tdtreq;
pdu: cr, cc, clr, dt;

end.

The bit format of the messages, their parameters with their values, can also be
represented by complex frames.

Pattern frames store test suits, or subgraphs of the state transition graph. This
information is available also in the atomic frames in the description of the transitions.
Such redundant information is useful in the procedures of protocol engineering.

frame: pattern;
states: ;
inputs: ;
outputs: ;
transitions: ;
represented-actions: ;
fixed-variables: ;

end.

This is the example of a pattern frame representing the connection establishment
phase of the transport protocol:

frame: connection-establishment;
is-a: pattern;
states: closed, wfcc, open;
inputs: tconreq, cc;
outputs: cr, tconconf;
transitions: edgel, edge2;

end.

COMMUNICATION SIMULATION

The communication of two transport protocol entities can also be described
with frames. For this all the information stored about the protocol in the frames
have to be put in work. This can be done by demons, which are procedures written
in Prolog in our case, as the FAIR language uses PROLOG. Two frames represent the
protocol entities, and one more frame represents the channel connecting the entities.
They are the following:

288 S. Wagner-Dibuz

frame: transport -entity _1;
actual state: ;
input: ;

metaslot: ;
range : tconreq, tconresp, tdisreq, tdtreq, cr, cc, dr, dt;
i f - added- demon: state_ transition;

meta-end
end.
frame: channel;

message: ;
metaslot: ;

if-added^demon: transmit;
meta-end

end.

The state_ transition demon is activated when the input slot of the transport,
entity frame gets a new value. This demon searches through the state transition
graph of the protocol (frames edge-1,..., edge-n) to find the transition, which the
protocol presents in this part of its operation. The frame: transport -entity _/ tells
the actual state of the protocol and the message it receives from the other entity.
The appropriate transition can be found using this information. If such a frame is
found, then its predicate has to be examined. If it succeeds, the demon in the action
slot of the frame representing the transition is run, and the output message and the
new state of the protocol can be found in the frame. If the examined predicate
doesn't succeed, the search through the transitions is continued, as there must be
a transition which has the same start_state, input, and which predicate succeeds.
The following PROLOG statement is the activity part of the state_ transition demon:

state-transition-activity: —
acv (actual- entity,name,N),
acv(N,input,I),
acv (N, actual-state,S),
find(Frame .[start state, input,predicate], [S1,1, succeed]),
run(Frame, action),
acv{Frame, output, O),
acv(Frame, endstate, E),
crf(N, actual state, E).

6. Conclusions

In this paper we described a method for representing a protocol in a knowledge
base. The frame—based language can be used in a natural manner for specification
of protocol data units and the communication itself. This kind of protocol specifica-
tion is:

— Comprehensible even by non-expert user.
— Executable directly by machines.
— It can be used as a protocol description for protocol engineering methods.

Frames for Protocol Description 289

The examples given in the paper show some further advantages:
— Every aspect of the protocol can be described as deeply in the hierarchy of

frames as it is needed by the user.
— The data types and the control mechanisms of the protocol can be defined by

frames in an identical way.
— It gives a runnable description of the protocol, the operation of the protocol

can be easily simulated and demonstrated.

References

[BAR86] BARR, A . , FEIGENBAUM, E . A . , The handbook of artificial intelligence I — H I . , Heuris-
TECH Press, Stanford, 1986.

[ECS88] ECSEDI-TÔTH, P., A frame-based approach to protocol engineering, Technical report
ofSZKI, 1988.

[E C S 8 9] ECSEDI-TÔTH, P., WAGNER, P. A . , " F A I R , a frame-based system integrated with MProlog",
Proc. of Expert Systems Conf. Visegrad, 1989.

[TAR88] TARNAY, K . , WAGNER-DIBUZ, S., " A protocol consultant", Proc. of DECUS Europe
Symposium, Cannes, Sept. 1988.

[WAG87] WAGNER-DIBUZ, S., Protocol consultant, an expert system for protocol engineering.
KFKI report 28—M, Budapest, 1987.

A Programming Environment for a Transputer-Based
Multiprocessor System*

M . ASPNÄS a n d R . J . R . BACK

Abo Akademi University, Department of Computer Science
Lemminkäisenkatu 14, SF—20520 Turku, Finland

Abstract

This paper presents a transputer-based multiprocessor system, Hathi—2, and the programming
environment being developed for this system. Hathi—2 is mainly programmed in the language
Occam, and thus the programming environment is based on the Occam model of parallelism and
communication. The programming environment gives the user an abstraction of the physical struc-
ture of the multiprocessor system. The user sees the multiprocessor system as a pool of resources
(processors and communication links), which are allocated to the users program and connected
to the topology described by the program structure. The environment is implemented on a Sun
graphical workstation.

1. Introduction

This paper describes the design of a graphical programming environment for a
transputerbased multiprocesor system. The programming environment consists of
a number of program development tools integrated under a common graphical user
interface.

The Hathi-2 multiprocessor system was designed and built in a joint project
between the Department of Computer Science at Abo Akademi and the Technical
Research Center of Finland (VTT/TKO) in Oulu. As a part of the project, a number
of application programs have been implemented on Hathi-2. The experiences
gained from the applications show that more sophisticated program development
tools are needed for multiprocessor systems of this kind. At present, programming
multiprocessor systems is considered more difficult than programming sequential
computer system. This is mainly due to the lack of programming tools available
for use in the design and debugging of parallel programs.

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

8 Acta Cybernetics DC/3

292 M. Aspnás, R. J. R. Back

A parallel program for a MIMD-type multiprocessor system is normally de-
signed as a number of independent sequential processes, which communicate with
each other by sending and receiving messages through point-to-point commuication
channels. When writing a parallel program, the logical process network is first desig-
ned. The logical process network describes the structure of the processes in the
program and their interconnections through logical communication channels. The
processes are written and tested separately, until the programmer is confident in
their behaviour. After this, the programmer decides how these processes are placed
on physical processors and executed in parallel. Two steps are required to do this:
first, one must describe how the processes are placed on physical processors and
what communication links connecting these are needed, and second, the multi-
processor system has to be connected (reconfigured) into this topology.

Both these steps involve a substantial amount of work for the programmer and
introduce an additional source of errors. When the programmer has written a parallel
program, he wants to experiment with different processor interconnection topologies
and process placement schemes and make the program as well balanced and effective
as possible. This is done by monitoring the execution of the parallel program and
identifying the bottlenecks of the program. Information about the utilization of the
physical resources used by the program during execution is gathered and presented
to the user. The bottlenecks in a parallel program are usually caused by either over-
loaded physical communication channe!s or by processors which are allocated
too much computation. In the ideal case, all physical resource? have an evenly
distributed utilization, and no bottlenecks exist in the program. To remove an
identified bottleneck, the programmer has to change the logical process network,
the placement of the logical processes on the physical processes or the interconnec-
tion structure of the physical processors. Often all these are changed simultaneously,
and the programmer has to place the logical processes onto the physical structure
again, and the design cycle is repeated.

To identify and remove logical errors in a parallel program, the programmer
wants to observe the logical behaviour of the program during execution. In a parallel
program, this can be done by using algorithm animation techniques, in which the
program execution is presented to the user in a graphical way as an animation of
the execution. Traditional methods for program debugging (traces, breakpoints
etc.) can not generally be used, as there is no global control of the system.

Thus, the programming cycle for parallel programs consists of designing the
logical process network and the processes, reconfiguring the pysical process network
into a suitable topology, mapping the logical process structure onto the physical
processor network, debuging and correcting logical programming errors and moni-
toring the execution of the program to identify bottlenecks, which often leads to
changes in the logical program structure, and so the cycle is repeated.

At present, the programmer has to do all these steps manually. Clearly, some
of these steps could be done automatically by a set of programming tools. The
programming environment presented in this paper gives the user this type of utili-
ties, by providing an integrated set of tools for mapping a process structure onto
a physical processor network, monitoring the resource utilization of an executed
program and animating the logical behaviour of a program. The presented program-
ming environment provides the user with an abstract view of the multiprocessor
system by hiding the physical interconnection structure of the system from the user.

A Programming Environment for a Multiprocessor System 293

The paper is organized as follows: the architecture of the Hathi—2 system is
presented in Section 2. In Section 3 we give a short description of the programming
language Occam. In Section 4 we describe the programming environment and finally,
in Section 5 we describe the future developments of the presented programming
environment.

2. The Hathi-2 Multiprocessor System

Hathi-2 is a reconfigurable general purpose multiprocessor system consisting
of 100 32-bit IMS T800 transputers [Inml], 25 16-bit IMS T212 transputers and
25 IMS C004 crossbar switches. The system can be characterized as a loosely coupled
MIMD multiprocessor, with a reconfigurable distributed interconnection network
and a modular design. A more detailed description of the Hathi-2 architecture
and its use can be found in [AsBaMa], [AsMa] and [Peh]. The distributed switching
network is described in [Âij].

Hathi-2 consists of 25 identical boards, each containing four T800 transputers,
one T212 transputer and one 32 link crossbar switch. The T800 transputers are
connected pairwise to each other via one of the four communication links. The
three remaining links are connected to the crossbar switch (see Fig. 1). Three links
from each switch are used as I/O links, i.e., to connect users host computers and
peripheral units to the system. The remaining 16 links from the crossbar switch are
used to form a statical torus connection between the boards in the Hathi-2 system,
thus forming the distributed switching network.

Figure I. Hathi-2 board architecture

The C004 crossbar switch is controlled by the T212 transputer via a control
link. One link on the T212 is connected to the crossbar switch and can be connected
via the switch to any other transputer link. The two remaining links on the T212
(links 0 and 1) are used to connect the T212 transputers into a ring, thus forming
the distributed control system.

The crossbar switches on the Hathi-2 boards are connected to each other in
a static torus connection by connecting each pair of neighbouring boards to each

8»

294 M. Aspnás, R. J. R. Back

Figure 2. Hathi-2 board connections

other with four links (see Fig. 2). The crossbar switches form a distributed switching
network connecting the communication links of the T800 transputers, which enables
the system to be reconfigured by software.

Hathi-2 is used as a back-end computing resource. The user edits, compiles
and links his programs on a host computer, i.e., a Sun workstation. The program
can then be loaded on to the multiprocessor system and executed.

The Hathi-2 system can be shared between a number of simultaneous users
by paritioning it into several smaller independent multiprocessor systems (see Fig. 3).
All users are allocated a separate partition which is independent of all other parti-
tions. A user has full control over his own partition, but can not interfere with other
users.

The T212 transputers are connected to each other in a ring, thus forming a
separate control system which controls the switching network (see Fig. 4). The control
system is totally independent from the rest of the system. The only connection between
the user and the control system is via a link connecting one T212 transputer to the

Figure 3. Partitioning the system

A Programming Environment for a Multiprocessor System 295

users host computer. The user can request system services by sending commands
to the control system via this link.

The control system has two main tasks: to control the distributed switching
network and to monitor the activities in the system. The Hathi-2 architecture
contains hardware dedicated to monitoring the resource utilization in the system.
The monitoring hardware consist of a CPU load meter which measures the CPU
utilization by observing the bus activity and a FIFO buffer connecting all T800
transputers on a board to the controlling T212 transputer. The FIFO buffer can be
used for sending reports about resource utilization from the T800 to the T212 without
affecting the communication links.

The control system also contains an interrupt subsystem implemented using
the transputers EVENT interrupt. A processor in the control system can send an
interrupt signal to all processors in the same partition. This interrupt is used in the
monitoring system to generate a synchronizing signal which divides the time into
short time intervals. The CPU and link utilization are measured for each interval
and reported to the user.

3. The Occam programming language

Occam [Inm2], [JoGo] is a high-level programming language based on the
CSP language [Hoa]. An Occam program consists of a number of sequential proces-
ses, which communicate with each other via unidirectional channels using synchro-
nous message passing.

A channel connects two processes, of which one acts as a sender and the other
as a receiver. A process sends a message M via a channel c with an output statement
clM, and the receiving process inputs a message from the channel to a local variable
with an input statement clM. A process can wait for input from a number of channels
at the same time, using an ALT construct. The sending process can not choose
between different communication alternatives, but commits itself to a communica-
tion when it executes an output statement. Communication is synchronous, i.e.,
the process which first executes a communication statement remains waiting until its
communication partner executes a corresponding communication statement.

Parallelism is expressed in occam by the PAR construct, which specifies that

296 M. Aspnás, R. J. R. Back

PAR
SEQ

X:=5
c ! X

SEQ
c ? Y
Y Y * 2

Figure 5. Communicating processes in Occam

two or more processes are executed in parallel. Sequential execution is specified
with the SEQ construct. Scope is expressed in Occam by indentation. In the example
in Figure 5, two processes communicate with each other via a channel c.

More than one process can be executed simultaneously on one transputer. The
transputer divides its time between processes using a simple round-robin scheduler,
which is built into the transputer hardware. Communication between processes
executed on the same transputer is implemented through memory locations.

To execute a program with real parallelism on more than one transputers the
programmer has to describe on which transputers the processes are to be executed
and which communication links are used for communication between the processes.
This is done by an Occam-like configuration language. The example in Figure 6
describes a ring of three processors, each executing a process Calculate. The processes
communicate with each other by inputting from link 3 and sending on link 2. The
user thus has to explicitly describe on which processor each process is executed and
which communication links are used for communication between the processes.
This means that the user has to have detailed knowledge about the hardware structure
of the multiprocessor system.

CHAN OF INT CO. C l . C2:

„ SC PROC Calculate (CHAN O F INT From.previou8. To.next)

PLACED PAR

PROCESSOR 0 T 8
PLACE CO A T 2 Hnk2out
PLACE C2 A T 7 : - BnlOln
Calculate (C2. CO)

PROCESSOR 1 T 8
PLACE CO A T 7 : - Hnk3In
PLACE C I A T 2 Onttout
Calculate (CO. C I)

PROCESSOR 2 T8
PLACE C1 A T 7 : - 0nk3ln
PLACE C2 A T 2 Dnttout
Calculate (C l . C2)

9
1

9 3 ? 0 1 2

Figure 6. Placing processes on processors

A Programming Environment for a Multiprocessor System 297

4. The programming environment

The programming environment developed for the Hathi-2 multiprocessor
system , is designed by integrating a number of tools and utilities under a graphical
user interface. The approach taken has been to use as much as possible of already
existing software, i.e., editors, compilers, configurers, network loaders and debuggers.
This is possible, because the Hathi-2 architecture is fully software compatible with
Inmos transputer products.

The utilities that have been developed for Hathi-2 in the project are based on
the specific hardware characteristics of the system and are not directly portable to
other architectures. These tools include a utility wich allows the user to reconfigure
the topology of the system, a monitoring utility which is used for monitoring the
utilization of the resources of the system, and an animation tool which is used to
visualize the execution of a parallel program.

The goal of this work is to make the multiprocessor system easier to use for the
programmers by building a user-friendly graphical interface to the tools, and to
hide the physical structure of the multiprocessor system from the programmer.
The user should be able to construct a parallel program for the Hathi-2 system
entirely within the programming environment. The whole cycle of editing a program,
compiling, loading the program onto a number of processors and executing it,
debugging the program and monitoring the performance of the program can be
carried out within the programming environment.

4.1. The user interface

The user interface of the programming environment is based on a hierarchical
graph editor. The user describes the process structure of a distributed program by
drawing a graphical representation of the processes and their interconnections. The
graph representing a parallel program consists of a number of nodes and arcs, the
nodes representing processes and the arcs representing communication channels
between the processes. A node in the process graph is associated either with a sub-
graph or directly with the code of the process. The source code describing a process
can be edited by selecting the node representing the process by clicking on it with
the mouse. This will bring up the Occam folding editor, and the code of the process
can be edited in the normal way.

The processes in the process graph are grouped together to form tasks. A task
is a separately compiled unit of code (in Occam called a SC), which is executed on
one processor and usually consists of a number of parallel communicating processes.
The processes constituting a task are executed on one transputer using the trans-
puters timeslicing scheduler. Thus, the process graph is condensed into a task graph,
which determines the physical structure of the processor network on which the
program is to be executed. In Figure 7 is an example of a process graph, which is
condensed into a task graph using four processors connected into a pipeline. The
physical communication links connecting processors are drawn with fat lines, and
are always bidirectional (consisting of two unidirectional links).

The utilities in the programming environment use the information about the
distributed program contained in the process graph, the source code of the processes
and the grouping of the processes into tasks. The editor used is a stand-alone

298 M. Aspnás, R. J. R. Back

> - • 0
Router

^ P r o c e s s 2 ^

Figure 7. A process graph partitioned into a task graph

Occam folding editor. Similarly, the compiler, the configurer, the network loader
and the debugger are the stand-alone Occam program development tools from
Inmos. When the user invokes one of these tools by selecting an apropriate entry from
a menu in the user interface or by clicking on a node in the process graph, this is
translated to a corresponding Unix call which activates one of these utilities.

4.2. The mapping utility

The mapping utility developed for Hathi-2 automatically maps a task graph
onto the transputers in Hathi-2 and establishes the needed link connections between
the transputers. The input from the user to the mapping utility consists of the task
graph of the distributed program. As output, it generates the configuration statements
needed by the Occam configurer to place this program structure onto a physical
topology. The mapping utility also generates the commands needed by the recon-
figuration software to connect the transputers into the topology described by the
task graph.

The mapping utility makes it possible to hide the physical structure of Hathi-2
from the user. The user does not have to explicitly specify which of the four links on a
transputer should be used for communication with other processors. This is a very
useful feature when writing parallel programs, since the design of the configuration
statements is considered to be difficult and very error-prone. The mapping of the
processor graph onto the physical structure of Hathi-2 is done by a simulated
annealing algorithm [Bok].

It is possible to find processor structures that cannot be mapped to the hardware
structure of the multiprocessor system. First, not all graphs can be established on a
transputer network, because a transputer has only four links. One example of this
is a 5-dimensional hypercube, which requires a node degree of five. Second, the
architecture of the distributed switching network in Hathi-2 imposes some limi-
tations on which graphs can be established. The main limiting factor here is that
there are only four links available.between every pair of neighboring boards,in the
static torus interboard connection. Finally, the algorithm used in the mapping utility
does not guarantee that a mapping of a graph to the structure of Hathi-2 is found.
However, the mapping algorithm has proved to work well in practice for a large
class of problems.

A Programming Environment for a Multiprocessor System 299

4.3. The monitoring utility

The monitoring utility is used for monitoring the utilization of the resources
in the multiprocessor system during program execution. It is used for finding bottle-
necks in parallel programs executing on the system, and to provide information
about the load balance of the programs. Monitoring is done by observing the CPU
and link activity in the transputer network. The monitoring software is based on the
monitoring hardware built into the Hathi-2 architecture, which makes it possible
to monitor the system without introducing any substantial overhead on the main
computation.

Monitoring data, i.e., data about CPU and link utilization on the transputers
executing the monitored program, is gathered by the transputers in the control
system. This data is sent through the control system to the users host computer,
where it is stored in a file and presented to the user.

The time during which monitoring is done is divided into short time intervals
(typically 100 to 500 milliseconds), and for each interval the monitoring system
records the percentual utilization of the CPU, the number of bytes transmitted
over a link and the time a process has spent waiting for a communication to take
place.

The monitoring data is presented to the user as the average percentual utilization
of the CPUs and links during an interval. The presentation is based on the task graph
of the distributed program. For each transputer, its percentual CPU utilization is
presented as a number written inside the node representing the transputer in the
graph. Similarly, the percentual utilization of each link is written above the arc
representing the link in the graph. In Figure 8 there is an example of how the results
from a monitored program is presented to the user.

1 A 1
)

< r ()
7 6 %

Figure 8. Presentation of monitoring data

The user can control the length of the time interval. Monitoring data is sampled
with a fixed interval during program execution, but the data can be presented with
any interval longer than this. If the user wants to see the result of the monitoring in
an interval longer than the sampling interval, the mean values from a sufficient
number of sampling intervals are calculated. The user can browse through the moni-
toring data both backwards and forwards in time. Normally, the first time a program
is monitored, the user wants to view the result using a rather large timestep, to get
an overall picture of the behaviour of the program. The user can later examine the
execution of the program more closely, using a smaller time interval.

300 M. Aspnás, R. J. R. Back

4.4. The animation utility

A program animation is a graphical visualization of the execution of a program
[Sol]. Program animation is used as a high-level debugging tool, which gives the
programmer an understanding of how his program behaves during execution. This
is especially important for parallel programs, as it is very difficult to get a picture
of the overall behaviour of a program executing on a large number of processors.

Animation of parallel programs on the Hathi-2 system is implemented using
the same hardware features as the monitoring system, i.e. the FIFO buffers. In the
animation system, the data sent from the transputers to the control system contain
information that controls the graphical animation of the executed program. This
data is interpreted as graphical commands, which are executed by an animation
process and which result in a graphical illustration of the program execution.

The animation is done by inserting commands into the animated processes,
which send messages about their present state of execution to the animation process.
The animation process receives these messages and translates them into graphical
commands that update the screen. The user has to specify on which points in the
execution the state of the program should be reported. The user also has to describe
how each state should be represented in the animated picture. This is done by a
graphical tool, which allows the user to draw the pictures of which the animation
consists.

The execution of the animated program must also be slowed down, so that the
user has time to register the updates on the screen. The program is slowed down
uniformly, without affecting the logical behaviour of the program. This is implemen-
ted using the synchronization mechanism in Hathi-2. All processes are forced to
wait for a synchronization signal, which is sent from the control system.

5. Conclusions and future work

This report describes work in progress in the Millipede project at Abo Akademi.
The tools that have been described have already been implemented and are now
beeing separately tested arid evaluated. The design of the graphical user interface
which integrates the tools into a programming environment has recently started and
is scheduled to be ready in the last quarter this year. After that, the environment
will be evaluated and any possible further improvements and features will be consi-
dered.

Several components of the environment will be developed further. The routing
algorithm used by the reconfiguration software for establishing link connections
between processors through the distributed switching network will be developed
[ShenI]. Also the mapping algorithm which is used for mapping a task graph to a
physical configuration of Hath-2 will be improved by investigating different types
of heuristic algorithms [Shen2], [Shen3], Finally, the graphical user interface will be
developed, based on the experiences of the users. The goal is to make the environ-
ment as simple as possible to use for the programmers.

A Programming Environment for a Multiprocessor System 301

Acknowledgements

The Hathi-2 multiprocessor system was designed and built in the Hathi pro-
ject, which was financed by TEKES, The Academy of Finland, Abo Akademi and
VTT. Part of the work has been done in the FINSOFT III research program, finan-
ced by TEKES. The authors also wish to thank Kaisa Sere for comments on the
paper.

References

[AsBaMa] M. ASPNAS, R. J. R. BACK, T - E . MALEN, The Hathi-2 Multiprocessor System, Reports
on Computer Science, Ser. A, No. 80, Abo Akademi, 1989.

[AsMa] M. ASPNAS, T-E. MALEN, Hathi-2 Users Guide, version 1.0, Reports on Computer
Science, Ser. B, No. 6, Abo Akademi, 1989.

[Ber] F. BERMAN, Experience with an Automatic Solution to the Mapping Problem, in The
Characteristics of Parallel Algorithms, Jamisson, Gannon and Douglas (ed.), MIT
Press, 1987.

[Bok] S. BOKHARI, On the Mapping Problem, IEEE Transactions on Computers, C-30, no. 3
(March, 1981), pp. 207—214.

[CrMa] P. CROL and G. MANSON, Configuration Tools for a Transputer Workstation, in Applying
Transputer Based Parallel Machines, A. Bakkers (ed.), Proceedings of the 10th Occam
User Group Tecnical Meeting, Enschede, Netherlands, IOS, 1989.

[EkMa] P. EKLUND, T - E . MALEN, Block Placement in Switching Networks, Proc. CONPAR-88,
Manchester, Great Britain, Cambridge University Press, 1988, pp. 289—295.

[EMMM] J. EUDES, F. MENNETEAU, L. MUGWANEZA and T. MUNTEAN, PDS: Advanced Program
Development System for Transputer Based Machines, in Applying Transputer Based
Parallel Machines, A. Bakkers (ed.), Proceedings of the 10th Occam User Group Tecnical
Meeting, Enschede, Netherlands, IOS, 1989.

[Hoa] C. A. R. HOARE, Communicating Sequential Processes, Communications of the ACM,
21, 8 (Aug. 1978), pp. 666—677.

[Inmll Inmos Limited, Transputer Reference Manual, Prentice-Hall, 1988.
[Inm2] Inmos Limited, Occam 2 Refernce Manual, Prentice-Hall, 1988.
[JoGo] G. JONES and M. GOLDSMITH, Programming in Occam 2, Prentice-Hall, 1988.
[Peh] K. PEHKONEN, A Dynamically Reconfigurable Parallel Computer Hathi-2, Licentiate

thesis, University of Oulu, Department of Electrical Engineering, 1989.
[Shenl] H. SHEN, Fast Path-disjoint Routing in Transputer Networks, to appear in Proc. First

Finnish—Hungarian Workshop on Programming Languages and Software Tools,
Szeged, Hungary, 1989.

[Shen2] H. SHEN, Mapping Parallel Programs onto Transputer Networks, to appear in Proc.
Australian Transputer and OCCAM User Group Conference, Melbourne, Australia,
1989.

[Shen3] H. SHEN, Self-adjusting Mapping: A Heuristic Mapping Algorithm for Mapping Parallel
Programs onto Transputer Networks, to appear in Proc. 11th Occam User Group
Technical Meeting, Edinburgh, Great Britain, 1989.

[Sol] U. SOLIN, Animation Techniques for Parallel Agorithms, Proc. International Conf. on
Parallel Processing and Applications, 23—25. 9. 1987, L'Aquila, Italy.

[Aij] T. AIJANEN, Distributed Interconnection of a Reconfigurable Multicomputer System,
Microprocessing and Microprogramming, 3—1988, pp. 243—246.

PICA — À graphical program development tool*

AIMO A . TORN

Abo Akademi, Dep. Comput. Sci., DataCity
SF—20520 ÂBO, Finland

Abstract

A technique and a tool PICA for rigorous program development with flowcharts is presented.
This technique uses stuctured program flowcharts extended with assertion nodes containing program
variable names and assertions about their values. An assertion node is connected to or from a state-
ment node depending on if it represents a pre-condition or a post-condition. A tool for convenient
use of the technique has been implemented as an Add-On to the Design software of Meta Software
on a Macintosh II. The feasibility of using PICA is demonstrated by developing an algorithm for
a small non-trivial programming task. The incentive for presenting the PICA technique is to create
broader interest for rigorous programming methods by presenting one technique applicable to
program development using flowcharts.

Index Terms—Automatic programming, computer-aided design, graphics,
flowcharting, program correctness, rigorous programming, software design.

1. Introduction

There exists a rather extensive littérature on rigorous program development
only to mention the text books [Jones 1980, 1986; Gries 1981; Reynolds 1981;
Bj0rner and Jones 1982; Backhouse 1986]. However, at large rigorous methods are
still rather seldom used by programmers in practice. Reasons for this may be that
rigorous methods require additional knowledge from their users, that the methods
are deemed as labourious and thus unpractical, and that they are not easily integrated
with generally used informal program development methods.

In order for a technique to be accepted by a larger group the technique should
not be more formal than necessary and should be naturally integrateable with some
well known informal program development method. Our choice of informal method
upon which to build the rigorous tool is the graphical flowchart based method used

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—.11, 1989.

304 A. A. Torn

in HOS [Hamilton and Zeldin 1976] and there adjusted to structured programming
practice. For rigorous program development using plain text several techniques
exist, however, since Floyd presented his technique [Floyd 1967] techniques for
flowcharting tools seem to have rendered very little interest. Despite the fact that
flowcharts are more expressive and allow easier screening because of their ability to
efficiently use the possibilities of the two-dimensional medium (paper, screen) used
by man, their use have decreased over the years. One explanation of this might be
the shift from off-line to on-line program design using text editors, which normally
do not support graphical representation. The programmer has thus been forced to
choose between on-line working — plain text representation or off-line working —
graphical representation. The effect has been further increased by the same change
towards plain text representation which can be noticed in the programming literature.

The rapidly increasing number of installed workstations with graphics makes
the technique on-line working — graphical representation available to an increasing
number of programmers. There seems to be a rising interest today in using graphical
representation to increase the quality (e.g., readability and correctness) of inter-
mediate and final program designs by the proponents of rigorous program develop-
ment [Buhr et al 1989]. We will here demonstrate the use of a graphical tool PICA
(Program—Information Charts with Assertions) supporting rigorous program devel-
opment. The tool has been implemented as an Add-On to the Design software of
Meta Software. In PICA pre-and post-conditions are added to the flowcharts as
explicite graph elements showing the program variable names together with asser-
tions on their values [Torn 1980, 1981].

The PICA technique will be explained in Sec. 2 using a trivial programming
task. In Sec. 3 the PICA tool is used to derive a program for The Longest Upsequence
problem [Gries 1981].

2. The PICA Technique and Tool

We first discuss formal program development and then illustrate the PICA
technique and tool using a simple programming task.

2.1. Formal Program Development. Programming aims at establishing the result
condition R. Correctness of a program S thus means both finding S and verifying
that R is true when the program stops (partial correctness) and verifying that the
program will always stop (correctness).

Normally developing S and verifying R can be made only if some precondition
Q is valid when the program starts. For instance, when a program for computing
the square root of a real number is developed it is naturally assumed that the real
number is greater than or equal to zero. However, the programmer cannot be sure
that the program will always be used as intended and good programming practice
therefore means that the program should address also the complementary case.

A well designed program should therefore contain an initial part that decides
whether Q is valid or not and produces some "natural" result (e.g. an error message)
for ~i Q represented by the truthness of an exception condition Re. Correctness
further requires that Q and —l Q are evaluable and therefore a pre-initial part S0 of
the program (possibly containing inputs, must be written that secures this. This is

PICA — A Graphical Program Development Tool 305

in accordance with Floyd's, PROMP-READ-CHECK-ECHO implementing the
idea that each component of a program should be protected from input for which
that component was, not designed [Floyd 1979]).

A program specified in this way can be said to be properly specified because for
each possible pre-condition a specification of the corresponding wanted result exists.
A properly specified program thus has the following general appearance

S';
where

S": i f -] Q - 5 e

I Q - s fi

2.2. The Flowchart Technique. The flowchart elements used to describe sequence,
choice, iteration, refinement and assertions are shown in Fig. 1. The elements are
those used in HOS, with exception for the element of choice here represented struc-
tured in the same way as the element for iteration. Assertions are represented by
dotted boxes divided into an upper and a lower part. The upper part contains the
name of a variable, the lower part a predicate on that variable. The implied assertion
is that the predicate is true.

Several assertion boxes may be connected by the logical operators and, or
and =>•. A dotted arrow pointing from a statement box to an assertion box means
that the assertion is valid after the execution of the statements in the statement box.
A dotted arrow from an assertion box to a statement box shows that the assertion
in the assertion box is valid when the computation reaches the statement box.

The flowchart in PICA notation corresponding to a properly specified program
is shown in Fig. 2. The usual flowchart notation for the conditions valid at the
branches of the //-statement (case statement) is used.

For proving that the program is correct we have to find Se, S and to assert the
result conditions in the PICA graph. For iterations it must also be proved that they
are finite. The proof procedure consists of recursive applications of refinements of
S, R and correctness proofs until such a program detail is reached that every step
is sufficiently convincingly proved.

2.2. A Simple Programming Task. The result of using PICA for designing a
program for adding the elements of a vector ..., xn is shown in the Appendix A.
Some details of the PICA tool is also explained in the "text pages".

First a crude design is made. If a statement box must be refined a new flowchart
page may be opened. On this child page an empty box with the surrounding of the
refined box from the parent page will be exposed. The details of the design may then
be introduced into the empty box. For each flowchart page there is a corresponding
text page which can be used to complement the design so that a complete documen-
tation of the design is obtained.

The tool is used in a three stage procedure. First the flowcharts together with
the comments on the text pages are produced. For flowcharting a palette is available
from which the flowchart elements needed are chosen and copied to the flowchart
page. The tool is implemented on a Macintosh 11 with big screen which admits to
have the plaette, the flowchart page and the text page open simultaneously. When
the flowchart is ready the proof stage is entered. Unproved statement boxes have

A. A T8rn

Sequence

SI; S2

SI
Choice

Iteration

Assertion

if B1 •> SI
Q B2 •> S2

0 Bn •> Sn
n

do B •> S od

{x>sO}
x:= x+l
iX5«l}

Fig. 1. PICA flowchart notations

PICA — A Graphical Program Development Tool 307

thicker border lines than proved boxes. The PICA tool will keep track of the proof
procedure so that the most refined parts have to be proved prior to cruder ones.
There is no theorem proving facility available in the tool, i.e., the proofs are made
informally by the user. In this activity the corresponding text page may be used to
document the proofs. The tool will however check that pre- and post-conditions,
and variants are existing where there must be such. It also reminds the user what

... -te
n

: integer

ft»
s u m : = l / 0

s u r a
s u m : = l / 0

: overflow

| s u m
sum:=x. l+. .x .n —*>• sum:=x. l+. .x .n rl

j =x. l+. .x .n

Fig. 2. General form of a program in PICA

have to be checked in order for a ptoof step to be complete. When the whole design
has been proved correct the third stage which produces a skeleton program text may
be entered. A printout from this stage is presented on the second text page of the
design in Appendix A.

3. The Longest Upsequence Problem

The PICA tool will here be applied to the problem of designing an algorithm
for finding the length of the longest upsequence lup (longest up) of a given vector
X i , x n , » s 0 . Based on the experiences of this some points are then discussed.

9 Acta Cybernetica IX/3

308 A. A. Torn

3.1. The Lenght of the Longest Upsequence. Let a up over x be defined as

up: (x,{),...,x{l+k)), fcsO,
(..., JC(/+1),..., = (Xi,..., X„),

The resulting PICA design is shown in Appendix B.

3.2. Discussion. The development of an algorithm for the length of longest up
starts with the division of the task to be performed into two cases, one of which is
executed on each application of the algorithm. In order to be able to make refirement
of the algorithm S knowledge about the problem to be solved is needed. This know-
ledge is presented as theorems about problem entities. The development then proceeds
by successive refinement, using the knowledge contained in the theorems, and verifi-
cation until such a detail is achieved that the algorithm can easily be coded using
the target programming language.

4. Conclusions

The feasibility of using a specific rigorous program development technique PICA
with flowcharts has been demonstrated by developing an algorithm for a non-trivial
but small programming task. The PICA design is more easily screened and checked
because of the greater freedom of flowchart representation. The technique is equiv-
alent to several suggested techniques for plain text algorithm representation. The
incentive for presenting the PICA technique is to create broader interest for rigorous
programming methods by presenting one technique for those programmers who are
proponents of flowcharting techniques for program development. In order to aid
in using PICA a graphical tool supporting formal program development based on
PICA is available. In addition to supporting the graphical representation and ad-
ministering the proof procedure the tool is also able to automatically generate the
equivalent plain text representation of the design including the assertions. This
skeleton program can then be transformed into a compile ready version by further
editing.

References

[Backhouse 1986] R. C. BACKHOUSE, Program construction and verification, Prentice-Hall, Englewood
Cliffs, N. J.

[Bjorner and Jones 1 9 8 2] D . BJ0RNER and C. B . JONES, Formal specification and software development,
Prentice-Hall, Englewood Cliffs, N. J.

[Buhr et al 1 9 8 9] R . J . BUHR, G . M . KAREM, C . J . HAYES and C . M . WOODSIDE, Software CAD: A
revolutionary approach, IEEE Trans, on Software Eng. 15 , 2 3 5 — 2 4 9 .

[Dershowits 1980] N. DERSHOWITS, The evolution of programs, Technical Report UIUCDCS—R—
80—1017, Department of Computer Science, Uni. of Illinois at Urbana-Campaign, 212 pp.

[Floyd 1967] R. W. FLOYD, Assigning meaning to programs, In: Mathematical aspects of computer
science 19, Amer. Math. Society, 19—32.

[Floyd 1979] R. W. FLOYD, The paradigms of programming. Comm. of ACM 22, 455—460.

PICA — A Graphical Program Development Tool 309

[Gries 1981] D. GRIES, The science of programming, Springer-Verlag, New York.
[Hamilton and Zeldin 1 9 7 6] M . HAMILTON and S. ZELDIN, Higher order software — A methodology

for defining software. IEEE Trans. Software Eng. SE—2, 9 — 3 2 .
[Hoare 1 9 6 9] C. A . R . HOARE, An axiomatic bases for computer programming. Comm. ACM 1 2 ,

5 7 6 — 5 8 0 , 5 8 3 .
[Hehner 1 9 8 4] E. C. R . HEHNER, The logic of programming, Prentice-Hall, Englewood Cliffs, N . J .
[Jones 1980] C. B. JONES, Software development, a rigorous approach, Prentice-Hall, Englewood

Cliffs, N. J.
[Jones 1986] C. B. JONES, Systematic software development using VDM, Prentice-Hall, Englewood

Cliffs, N. J.
[Reynolds 1981] J. C. REYNOLDS, The craft of programming, Prentice-Hall, Englewood Cliffs, N. J.
[Torn 1980] A. TORN, Structured programming using program flowcharts containing explicite represen-

tation of data including assertions, Technical Report 10, Department of Computer Science,
A b o Akademi, Finland, 16 pp.

[Torn 1981] A. TORN, PICA — A flowchart tool for structured programming supporting proving,
Technical Report 16, Department of Computer Science, Abo Akademi, Finland, 17 pp.

9*

A. A. Töra

Vector Addition

A program for computing the sum of the elements of a vector xl+...+xn is to be
designed. It is decided that n less than or equal to 0 is an exception and that the
result produced in this case is an overflow condition.

The first part of the program is an initial part that guarantees that an integer
is assigned to n. This is shown by the dotted arrow pointing from the box SO to
the box I.

From.the condition box we have the two cases n<=0 and n>0. The box Se produces
the exception and the" box S the result for n>0.

The boxes have been copied from a palette similar to the one below.

LINE is chosen when connecting statement
boxes and COND LINE when connecting a
statement box and a assertion box.

There is a menu named FLOWCHART with the
following options:

Open Palette

Open T e x t Page

Name Node
Fill in Guard
Refine-BOK

Set Obj. Horisontal
Set Obj. Uertical

Quit

We choose the box S and use the option Refine
Box from the menu. This will produce a new
flowchart page like the one on the next page
but with initially empty inner part. Below
S is initially only the box pointed to from the
borde r .

START

n>A
<z>

LINE

AND

=s>

COND-LINE

STOP

PICA — A Graphical Program Development Tool 311

136 A. A . Torn

The refinement of die box S on the parent page is shown here. In the box SI the
initialization for the iteration is made and this makes the invariant P valid.. The
guard is given in box S2 and the variant n+l-i is shown at the end-of-iteration
symbol.

The iteration bpx .is connected to the assertion box below S which shows the
falsification of the guard and P. These together give the postcondition R.

In the proof stage a menu PROOF is used with the options shown in the box
below:

Proue node
Unproue node

Print flowchart on file

Quit

The proif starts by proving. SI and S21 and then
S2. It will be checked that the variant box has text

After proving S2 the remaining boxes on the parent
page may be proved. After this we may use the
Print-flowchan-on-file option. The result is shown
below.''

SO: Initialize
{n : integer)
i f n < = 0 ->

Se: sum:=l/0
{sum : overflow)

D n > 0 ->
S: sum:=x.l+..x.n
{sum =x.l+..x.n}

S:
SI: sum:= x.l
i:=2
{Invariant: {sum =x.l+.,x.(i-l)}
Variant: n+l-i)

do i/=n+l ->
S21: sum:=sum+x.i

i:= i+1
od
{i =n+l'andsum =x.l+. .x.(M)}
=>{sum =x.l+..x.n)

PICA — A Graphical Program Development Tool 313

138 A. A. Torn

The longest upsequence problem

T h e length of the longest upsequence of elements given a vector x.t ..x.n is to be deter-
mined. W e use the notation LUP(n,x) for this number. T h e result of our algorithm is to be
stored Into the variable tup. Assume further that it is decided that the result for-n<l shall
b e o .

•i
A crude design of our algorithm is given in the page to the right. The following variables
are used:.

. integer :
n = number of elements in the vector ,

: x.1..x.n = vextor containing the n integers
lup = the variable to contain the result of the algorithm.

The algorithm consists of a conditional statement covering all values of n. For n<1 Se gives
lup the value 0 as required, and lor n>0 the statement S assigns the correct value to lup.
T h e design is obviously correct providing that LUP(n,x) is computed correctly. The
refinement of S is shown on the next two pages.

PICA — A Graphical Program Development Tool 315

140 A. A. Torn

In order to show how to compute LUP(n.x) we need to state some results. Let LSE(i,x) be the
longest upsequence ending in x.i. Then

T H E O R E M 1: LUP(n,x) = max LSE(i,x), where/f=[l.n]. Obvious,
i in I

Our problem has now been reduced to computing LSE(i,x). For LSE(i,x) the following is
valid:

T H E O R E M 2: LSE(1 ,x) = 1 and LSE(l.x) s i, i= 2,...,n. Obvious.

T H E O R E M 3: Let ns 2. Then

LSE(l,x) = 1 + max LSE(j,x), I = 2,..., n If A * a
jinA

and
LSE(i.x) = 1 if A = 0, •

where
A ={j 115 j £ i-1 and x.j i x.i].

P R O O F : For all upsequences ending in x.j, 1< j s i-1 for which x.j £ x.i the element x.i
can be added giving an upsequencs one element longer. If A = s then x.i is (he

smallest element among x.1 x.i and therefore an upsequence ending in x.i
consists of just the single element x.i, a sequence whose length is 1.

We use the vector e.1..e.n to store the results of computing LSE(i,x), I = 1..n.
The computation of e.i can then be performed as follows:

i=1:
e.i := 1,

i = 2..n:
e.i > 1 + max e.J,

j in A

where A = { j 1 1 i j £¡-1 and x.j s x.i}. The design of computing the vector e.1.. e.n is shown
to the right. The following variables are used:

i n t e g e r :
e. l . .e.n = vector to store LSE(l .x)

i= i n d e x

The only nontrrvial task is now lo compute e.i. The node Ei is therefore refined-,
and its design is shown on the next page.

PICA — A Graphical Program Development Tool 317

142 A. A. Torn

The computation of e.i given e.1..e.(i-1) is shown to the right. The set B in the loop invariant is

B=(j | 15 j s k-1 and x.j s x.j}.

For k=i, B is equivalent to A.

The following variables are introduced:

i n t e g e r :
m: used to store (max j in B: e.j) for k = 1..I-1
k = index.

Note that in the box Ei1 code is written instead for showing the design in the form of a flowchart.
By utilizing this feature the trivial parts can be written more condensed and only parts where
formal reasoning is of help are shown as charts. This possibility makes it possible to use the tool
in a very flexible way and may therefore suit different tastes of programming.

When the design is ready an explicite proof stage is entered by quitting the PICA Flowchart and
choosing the PICA Proof Add On from the apple menu. An unproved box has a thicker border line.
Proving the correctness of a node is done by klicking on the node. The prover then checks that
subordinate nodes are proved and that the node has necessary pre- and postconditions.

It is supposed that by separating the design part and the proof part the user will have a better
chance of finding an error than if both tasks are interviened.'

When the design is proved correct one may choose the Print Flowchart on File option from the
Poof menu. This will give a skeleton program consistent with the design given in the flowcharts.
This program may then be completed by further editing. The skeleton program resulting from the
design presented in this example Is shown on the next page. A n edited running version in Simula
is also presented.

PICA — A Graphical Program Development Tool 319

320 A. A. Torn

SO: Initialize'
{n, x.l..x.n integers)
i f n c l ->

Se: lup :=0
{lup = 0 }

Q n > 0 ->
S: lup := LUP(n^t)

{lup = LUP(n,x)}

S:
e.l := 1
i : = 2
{Invariant: {i in [2,n+l] and e.j, (j=l. . i- l) =LSE(j,x))
Variant: n-i+1)
do i < n+1 ->

Ei: e.i :=LSE(i,x)
i := i+1

od
{e.i, (i=l..n) = LSE(i,x)}
lup :=
(max i in [l ,n]: e.i)
{lup =maxLSE(i,x)}
=>{lup = LUP(n,x)J

Ei:
{i in [2,n+1] and e.j, (j=l..i-l) = LSE(j,x))
m : = 0
k := 1
(Invariant: {m = (maxj inBre . j) }
Variant: i-k)

do k * i ->
Eil: ifx.k Sx.i and m <e.k

- > m : = e J c
• x.k > x.i or m 2 e.k

->skip fi
k := k+1

od
{m = (max j in A: e.j)}
e.i := 1+m

{e.i = LSE(ipc))
i := i+1
{i in [2,n+1] and e.j, (j=l..i-l) = L S E (j » }

PICA — A Graphical Program Development Tool 321

comment (lup = 0);

comment (lup = LUP(n,x)>;

integer procedure lup (n, x); integer n; integer array x;
** lup = length longest upsequence

(n, x. l . . .x.n integers)
begin

integer procedure plup (n, x); ... ;
if n It 1 then

Se; lup: = 0;
if n gt 0 then

S ; lup : = plup (n,x);
end;

integer procedure plup(n, x); integer n; integer array x;
begin

integer procedure pise (i,x,e); ... ;
integer array e(l :n);
integer i, max;
e (l) : = l ;
i : = 2;
(Invariant: (i in (2,n+ 1) and e.j, (j = l...i— 1) = LSE(j,x))
Variant : n - 1 + 1)
while i It n + 1 do

Ei; begin e(i): = pise (i,x,e);
i: = i + l

end;
<e.i, (i= 1, , n) = LSE(i, x)>
max: = e (l) ;
for i := 2 step 1 until n do if max It e(i) then max: = e(i);
plup:= max;
(plup = max LSE(i.x))

end;
integer procedure pise (i,x,e); integer i; integer array x, e;
begin

(i in (2, n + 1) and e.j, (j = l . . . i - l) = LSE(j.x)>
integer m, k;
m: = 0;
k : = 1 ;
(Invariant: (m = (max j in B: e.j))
Variant : i—k)
while k ne i do

Eil; begin if x(k) Ie x(i) and m It e(k)
then m : = e (k) ;

k: = k + 1
end;

(m = (max j in A: e.j))
plse:= 1 + m;
(pise (i,x,e) = LSE(i,x))

end;

comment
of x. l . . .x.n;

comment

comment;

comment
»

comment

comment >

comment >

comment
I

comment

»

comment

comment

comment

MICROTEST — A Testing Tool on PC*

ISTVÁN FORGÁCS, ATTILA HORVÁTH a n d ENDRE SOMOS

Computer and Automation Institute
Hungarian Academy of Sciences

H—1518 Budapest. Fob. 63 Kende u. 13—17, Hungary

Abstract

The MICROTEST system is described, which is a tool for decentralized "distributed" testing
of application programs targeted to run on large mainframe computers. It detaches the testing
process from the host environment, thus the programs can be tested on PC. The system includes a
high-level test language for validating program results against the specification. Unlike the other
testing tools, it does not use instrumentation but it compiles the source program into an object code
which is interpreted. (This is the key to the transportation of testing to PC.) MICROTEST has five
components. The Static Analyzer compiles the source program into an intermediate language, and
produces data for a series of quality metrics. The Static Report Generator makes the Static Usage,
the Branch and the Module Quality reports. The Assertion Compiler compiles the test program into
the same intermediate language as the one used by the Static Analyzer. The Dynamic analyzer
links the compiled programs and interprets it. The Dynamic Report Generator makes the Test Log,
the Dynamic Test Path, the Data Coverage, and the Program Coverage reports.

Introduction

In the last few years the theory and practice of program testing came into pro-
minence. The reason of the research is in the recognition of the fact that maintenance
cost is the strongest component of software development expencies. Since error
correcting is about two third of the entire cost of maintainability, the great effort
seems intelligible [1, 2, 3].

There is a lot of testing techniques in the theory, but in the practice only three
of them are used:

* Lecture presented at the 1st Finnish-Hungarian Workshop on Programming Languages
and Software Tools, Szeged, Hungary, August 8—11, 1989.

10 Acta Cybernetics IX/3

324 I. Forgács, A. Horváth, E. Somos

— structural testing,
— functional testing,
— code reading.

In case of structural testing, the program is investigated as a white box. The
test cases are created based on the flow-graph of the program to reach a high pro-
gram coverage ratio. Many criteria for program coverage were suggested from state-
ment testing to path testing. The partial ordering of these strategies are in [4, 5].
In [4] a worst case estimation is given for the number of test cases.

In case of functional testing the program is investigated as a black box. The
test cases are gathered from the specification and from other user information
named 'oracle' [6, 7].

In case of code reading the function of the program is determined manually and
compared against the specification. Although this method seems the less effective,
experience shows that code reading sometimes can do better then the two others [8].

The development of testing tools

Most of the tools are based upon instrumentation. During instrumentation, traps
or counters are inserted into the source code to measure the program coverage.
These tools work on the basis of the structural testing method.

In case of earlier tools the test data was typed manually from the keyboard,
while the result was read from the screen. The inserted counters measured the test
coverage.

The next step was the automatic validation of the program. The validation
procedures (assertions) were built into thé program conditionally, thus the program
could be executed with or without validation. (E.g. in [9], assertions were written as
special comments, and an optional preprocessor compiled them into the source
code.) This way the output can be validated but the input is not a basic component
of the validation system (especially in the case of keyboard input). These assertion
instructions were the predecessors of the test languages.

Since one of the essential requirements of testing is the reproducibility of tests,
it is necessary to store the test data for all the test cases. This is done in some testing
tools (e.g. in [10] the inpu tis received from the keyboard, it is recorded in a file, and
when the test is repeated, this file substitutes the input device).

The last generation of testing tools detaches the description of test data (both
input and output) from the program. It provides an opportunity to generate the
test data from the specification itself (either manually or automatically) even before
the implementation of the program. This method summarizes the advantages of
structural and functional testing.

An example is the assertion language of the SOFTEST system [11] which uses
first order predicate logic to define the program specification. The program behavior
is specified in terms of PRE and POST assertions for the data states and INPUT/
OUTPUT assertions for the data base file accesses. The test data is generated from
the PRE and INPUT assertions and the test results are checked against the POST
and OUTPUT assertions. All the assertions can be given in the forms, of individual

MICROTEST — A Testing Tool on PC 325

values, sets, ranges, functions, and relations. The SOFTEST system instruments the
object code with assembly routines, to execute the assertions.. Directly the program
variables are used, therefore the object code of the program should be handled by
the testing system, which decreases the portability.

Now we can summarize the lequirements of a good test system:
-r-. the input and output test, data should be stored separately from the program

under test,
— the test data should be described with the help of a high level test language

which supports all the conditional and cyclic data assignments,
— both the program under test and the test program should be compiled and

linked into one executable or interpretable code, .
— the system should be independent from the hardware environment,
— both the executed program and all kinds of data should be under complete

control of the test system.

The MICROTEST system

The MICROTEST is a module test system which can test and debug COBOL
programs on PC-s. The system contains two compilers to translate both the COBOL
and the assert program into the same binary code named AL (assembly like) lan-
guage. In this AL language the commands are coded binary and the Dynamic Analy-
zer interprets the commands. For example the COMPUTEp3—pl J-p2 statement is
translated to ADD p\,p2,p3 which are four integers in the command table. The
first integer stores the code of the addition, the others store the pointers to the
pl,p2 a n d p3.

The system consists of five elements:

— Static Analyzer,
— Static Report Generator,
— Assertion Compiler,
— Dynamic Analyzer,
— Dynamic Report Generator.

The Static Analyzer has two functions. First, it compiles the source code into
the AL; second, evaluates the source program to produce data for a series of analy-
tical reports and a number of quality metrics. The Static Analyzer differs from the
others not only in compiling the program but in the instrumentation, too. It is
needless to instrument the source code. During the static analysis, each I/O and
external function calls are translated into an assertion call which calls the appro-
priate assertion program module. The Static Analyzer was made with the: PROFLP
compiler generator which was very useful in making the compiler part of the static
analyzer for different COBOL versions.

The Static Report Generator produces the following reports:

— Module Quality Report (see TABLE I),
— Static Data Usage Report (see TABLE II),
— Branch Report (see TABLE III).

10»

326 I. Forgács, A. Horváth, E. Somos

TABLE I

MODULE QUALITY REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1;

Static Metrics:
Data Complexity = 0.31
Control Flow Complexity = 0.92
Data Flow Complexity = 0.33
Interface Complexity = 0.27
Portability = 0.78
Maintainability = 0.46
Testability = 0.31

TABLE II

STATIC DATA USAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Data
no.

Lv
no Data Name Strg

Type
Data
Type

Data
Lng. Dim Picture Data usage

file
1 1 REC—1 disp 10 a t
2 2 KEY—1 disp 3 X(3) P r
3 2 SAL—1 disp 7 9(5)V99 a
4 1 REC—2 disp 10 a t
5 2 KEY—2 disp 3 X(3) P r
6 2 SAL—2 disp 7 9(5)V99 a
7 1 OUTREC disp 10 r . t
8 2 KEY—3 disp 3 X(3) *
9 2 SAL

work
disp 7 9(5) V99 *

10 1 W disp 17 *
11 3 SUM—SAL disp 10 9(8)V99 a r
12 3 MAX—SAL disp 7 9(5)V99 P a r
13 77 N '-! comp3 3 9(5) a r i
14 77 PAR—SAL disp 7 9(5)V99 P à r
15 77 DISP—RESULT

link
disp 8 ZZZZ9.99 a r

16 1 LINK—DATA disp 8 *
17 2 PAR disp 1 A P a
18 2 RESULT disp 7 9(5)V99 a r

Number of predicates: 5 Nùmber of arguments: 11
Number of results: 9 Number of transients: 3
Number of inits: 1

Total number of data items used : 14
Total number of data items not used: 4 •

MICROTEST — A Testing Tool on PC 327

The Module Quality Report computes the following static metrics:
— data complexity,
— control flow complexity,
— data flow complexity,
— interface complexity,
— maintainability,
— testability.

The Static Data Usage Report contains information on the data fields which
can be gained from the source code: data names, level number, data length, data
type, dimension, picture, and data usage. A data can be predicate, argument, result,
transient (parameter of an I/O or CALL statement), or it can get an initial value.
A '*' character indicates when the data is not used at all.

The Branch Report describes the control flow of the program under test. The
branches are identified by a branch number. The report contains the line number,
the branch number and the source program lines.

The Assertion Compiler compiles the assertions into the AL language. The
original SOFTEST language was developed to a high level language. In our system
the assertion variable declaration, FOR, REPEAT—UNTIL, WHILE—DO, and
CASE statements permit the sophisticated input and output test data assignment/
validation. An example:

FOR $i = 1 TO 10 DO
ASSERT IN abc[$i] E SET(1, 2, $i)

END;

At the first call the ten array elements of abc get the value 1, at the second call
get 2, while at the third call abc[1] = 1, ..., a6c[10]^10.

The compiler has a built-in editor too.
The Dynamic Analyzer first links the compiled COBOL and test programs then

interprets the linked code. This way the Dynamic Analyzer contains a driver, which
interprets the object code and produces all the necessary statistics. During the run it
reads the test data either from the assert file or from the keyboard, and validates
the results against the data read from the assertion file. It produces statistics in order
to obtain some dynamic metrics which qualify the program and the testing process.

The MICROTEST Dynamic Analyzer operates in an interactive dialogue mode;
the user has the opportunity

— to stop the run at any moment,
— to take breakpoints into the program,
— to use step-by-step execution,
— to display/change any'data item.

Though these are debugger functions, they can help the testing, too.
Whenever a validation error occurs (the actual data differs from the prescribed

one), an assertion violation interrupt is executed. The error message contains both
the COBOL and the assertion line number, the data name as well as ¡the prescribed
value or interval, and the actual value. !

328 í . Forgács, A. Horváth, E. Somos

TABLE III

STATIC BRANCH REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 2

Line Brch. PROCEDURE DIVISION statement no. no.

93A 26 * * * EMPTY BRANCH for statement in line 92 * * *
94 *
95 27 FILE—READ—2.
96 27 MOVE SAL—2 TO PAR—SAL.
97 27 PERFORM SAL—COMP.
98 27 WRITE OUTREC FROM REC—2.
99 27 READ INFILE—2

100 28 AT END MOVE ALL HIGH—VALUES TO KEY—2.
100 A 29 * * * EMPTY BRANCH for statement in line 99 * * *
101 1 2c.
102 30 SAL—COMP.
103 30 IF PAR — „A"
104 31 ADD PAR—SAL TO SUM—SAL
105 31 A D D 1 TO N
106 ELSE
107 32 IF PAR—SAL > MAX—SAL
108 33 MOVE PAR—SAL TO MAX—SAL.
108A 34 * * * EMPTY BRANCH for statement in line 107 * * #
109 35 FINISH SECTION.
110 35 STOP RUN.

Total number of statements : 51
Total number of branches: 35

TABLE IV

DYNAMIC TEST PATH REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Testcase Date Time
Branch Start Statements

1 12. 5. 1988 12:39:21
51 52, 53A, 55, 59, 62, 64, 65, 67, 83, 85, 88, 102, 104, 65, 67, 83, 87 , 95, 102,
104, 100, 100A, 65, 67, 83, 85, 88, 102, 104, 65, 67,83,85,88, 102 104, 93,
93A, 65, 68A, 69, 75, 78, 100

2 12. 5. 1988 12:41:19
51, 52, 54, 55, 59, 62, 64, 65, 67, 83, 87, 95, 102, 107, 108, 65, 67, 83, 87, 95,
102, 107. 108 100, 100A, 65, 67, 83, 85, 88, 102, 107,108A.93, 93A, 65, 68A,
69, 77, 78, 100, *
Error message : Assert violation

MICROTEST — A Testing Tool on PC

TABLE V

329

PROGRAM COVERAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Branch no. Start stmt. Total execution Last execution Not executed

1 51 3 1
2 52 3 1
3 53A 2 1
4 54 1
5 55 3 1
6 58 1 1
7 58A 1
8 59 3 1
9 61 1 1

10 61A 1 1
11 62 3 1
12 64 3 1
13 65 10 1
14 67 7
15 68A 3 1
16 69 3 1
17 75 1 0
18 77 1 0
19 78 2 0
20 82 0 0 *
21 83 7 0
22 85 4 0
23 87 3 0
24 88 4 0
25 93 2 0
26 93A 2 0
27 95 3 0
28 100 2 0
29 100 A 2 0
30 102 7 0
31 104 4 0
32 107 3 0
33 108 2 0
34 108A 1 0
35 110 2 0

Total number of branches: 35
Number of brartches executed: 34
Program coverage ratio: 97.14%

Dynamic Metrics:
Reliability = 0.33
Integrity = 0 . 1 1
Test Coverage = 0.79

330 I. Forgács, A. Horváth, E. Somos

TABLE VI

D A T A COVERAGE REPORT

Module name: CMERGE Date: 12. 5. 1988 Page: 1

Data
nr.

Lv.
nr. Data Name

Static Usage Dynamic Usage
Data
nr.

Lv.
nr. Data Name

Prd Arg Res Trn Ini Pre Inp Post Out N.
A.

FILE SECTION
1 1 REC—1 a t *
2 2 KEY—1 P r in
3 2 SAL—1 a in
4 1 REC—2 a t *
5 2 KEY—2 P r. in
6 2 SAL—2 a in
7 1 OUTREC r t *
8 2 KEY—3 out
9 2 SAL out

WORKING—STORAGE SECTION
10 1 W *
11 3 SUM—SAL a r *
12 3 MAX—SAL P a r *
13 77 N a r i *
14 77 PAR—SAL P a r *
15 77 DISP—RESULT a r *

LINKAGE SECTION
16 1 LINK—DATA *
17 2 PAR P a pre
18 2 RESULT a r post

Total number of data items (without Filler-s): 18
Number of predicates : 5 : Number of PRE asserted data: 1
Number of arguments 11 Number of INPUT asserted data: 4
Number of results: 9 Number of POST asserted data: 1
Number of transients: . 3 : Number of OUTPUT asserted data: 2
Number of units: 1 Number of NOT asserted data: 10

Data coverage ratio : 61.54 %

The dynamic report generator produces the following reports:

— Test Log,
— Dynamic Test Path Report (see TABLE IV),
— Program Coverage Report (see TABLE V),
— Data Coverage Report (see TABLE IV).

Test Log contains everything which was displayed during the test run including
all the assertion violations.

The Dynamic Test Path Report describes the test paths of each test case run
executed by the Dynamic Analyzer. The report contains the test case number and
the executed program path by printing the branch numbers in the same order as
they were executed.

MICROTEST — A Testing Tool on PC 331

The Program Coverage Report is a table of program branches with their number
of traversions since testing began. Branches which were not traversed are marked,
this way new test data can be created to cover them, or unexecutable paths of the
program can be revealed.

The Data Coverage Report describes the behavior of data items during the
test run. It repeats some entries of the Static Data Usage Report to help the user to
compare the static and dynamic results. The report describes the relation between the
data items and the assertions. It indicates which data was input and/or output asserted
or which data was not used at all.

The testing process using MICROTEST

The best known structural testing strategies are segment, branch and path testing.
Segment testing requires each statement to be executed at least once during the test.
Branch testing requires each branch (including the empty branches too) to be
executed at least once. Path testing requires that all the paths in the program to be
tested by at least one test case.

We chose the branch testing strategy because the segment testing is not effective
enough [8] while the others require 0(n2) [4] or more test paths in worst case, where
n is the number of branches. (Branch testing requires 0(n) test paths.)

The process is the following: the programmer develops the COBOL program,
and the tester develops the test program, independently. The tester selects test data
from the specification. Then the Static Analyzer compiles the COBOL module, while
the Assertion Compiler compiles the test program. The Dynamic Analyzer links the
object codes and interprets it. If there are assertion violations, then either the COBOL
or the test program should be corrected and compiled again.

In lack of assertion violations, the reports are investigated. If all the branches
are covered then the testing is over, else new test data should be selected from the
structure of the program. The new test program should be compiled again, and the
process goes on until there are no assertion violations, and the branch coverage is
acceptable.

Conclusions

We reviewed the development of test systems, and described the requirements
of a high effective testing tool. The MICROTEST system is a result of these specifi-
cations. In the test data selection, both the functional and the structural methods
are present.

The test data are separated from the program, so the test run can be repeated.
At program execution, however, both the program and the test data are in a single
interpretable binary program code. Since the Static Analyzer compiles the source
code into the AL code, it is needless to instrument the source. Moreover, each
module can be executed independently from the others since the assertion program
simulates the calling and the called module. Thus bottom-up, top-down, and mixed
testing strategies can be used as well.

332 I. Forgâcs, A. Horvâth, E. Somos: MICROTEST — A Testing Tool on TC

The thorough evaluation of reports (especially the static and the coverage infor-
mation) can significantly improve the program quality. The built-in debugger func-
tions help program development.

The authors wish to express their gratitude to Mr. Harry Sneed, who has
initiated the MICROTEST project and was the source of many ideas included in
the system.

References

[1] M. V. ZELKOWITZ, Perspectives on Software Engineering, Computing Surveys, Vol. 10, No. 2,
p p . 1 9 7 — 2 6 0 , 1 9 7 8 .

[2] D. S. ALBERTS, "The Economics of Software Quality Assurance," Proc of National Computer
Conference 1976, pp. 433—442.

[3] P. J. SMITH, "The Requirement for Quality in the Design of Programming System," Proc. of
Pragmatic Program and Sensible Software Conf., pp. 491—508, 1978.

[4] S. C. NTAFOS, A "Comparison of Some Structural Testing Strategies," IEEE Trans. Software
Eng., vol. 14. no. 6 , pp. 8 6 8 — 8 7 5 , June 1 9 8 8 .

[5] M. D. WEISER, J. D. GANNON, and P. R. MCMULLIN, "Comparison of Structured Test Coverage
Metrics," IEEE Trans. Software Eng., vol. 2. no. 2, pp. 8 0 — 8 5 , March 1 9 8 5 .

[6] W. E. HOWDEN, Functional Program Testing, IEEE Trans. Software Eng., vol. 6. no. 3, pp.
162—169, May 1980.

[7] W. E. HOWDEN, "The Theory and Practice of Functional Testing," IEEE Software vol, 2. no. 5,
pp. 6—17, Sept. 1985.

[8] W . R . BASILI, R . W . SELBV, "Comparing the Effectiveness of Software Testing Strategies, "IEEE
Trans. Software Eng., vol. 13. no. 12, pp. 1278—1296, Dec. 1987.

[9] J. C. HUANG, "Program Instrumentation and Software Testing," IEEE Computer vol. 11, pp.
25—32, April 1978.

[10] T. J. MCCABE, G. G. SCHULMEYER, "System Testing Aided by Structured Analysis: A Practical
Experience," IEEE Trans. Software Eng., vol. 11. no. 9, pp. 917—921, Sept. 1985.

[11] M . MAJOROS, H. M . SNEED "The Softests Program Test System," Systems and Software vol. 2.
pp. 289—296, 1982.

Subscription information:

For Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean
People's Republic, Mongolia, Poland, Romania, USSR, Vietnam
orders should be addressed to:

Kultura
Hungarian Foreign Trading Co.
H—1389 Budapest 62
P. O. Box 149
Hungary

For all other countries orders should be adressed to :
J. C. Baltzer AG
Scientific Publishing Company
Wettsteinplatz 10
CH—4058 Basel
Switzerland

Mailing address for editorial correspondence:

Acta Cybernetica
Árpád tér 2.
Szeged
H—6720 Hungary

INDEX — TARTALOM

R. Kurki-Suortio: Towards Languages that Support Program Derivation, or Control Modula-
rity Considered Harmful 179

K. Koskimies: Techniques for Modular Language Implementation 193
J. Paakki, K. Toppola: An Error—Recovering Form of DCGs 212
M. Jokinen: Uniform Approach to Parameter Transmission Mechanisms, Coercions, Optional

Parameters and Patterns 223
P. Kilpelainen, H. Mannila: Generation of Test Cases for Simple Prolog Programs 235
Z. Alexin, J. Dombi, K. Fábricz, T. Gyimóthy, T. Horváth: A Natural Language Interface Based

on Attribute Grammars 247
Á. Hernádi, A. Heppes, E. Knuth: Data Pictures on the Desktop 257
H. Laine: YYY — A Database Design Tool 269
S. Wagner-Dibuz: Frames for Protocal Description 281
M. Aspnas, R. J. R. Back: A Programming Environment for a Transputer-Based Multiprocessor

System 291
A. A. Torn: PICA — A Graphical Program Development Tool 303
I. Forgács, A. Horváth, E. Somos: MICROTEST — A Testing Tool on PC). 323

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1990. február

Terjedelem: 13,75 (A/5) ív
Készült monószedéssel, íves magasnyomással

az MSZ 6601 és az MSZ 5602—55 szabvány szerint
90-703 — Szegedi Nyomda — Felelős vezető: Surányi Tibor igazgató

