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On the worst-case performance of the NkF bin-packing heuristic* 

J . C s i r k , B. IMREH 

Bolyai Institute, Department of Computer Science, 
Aradi vértanúk tere 1. H—6720 Szeged, Hungary 

Introduction 

In bin packing, we are given a list 

L = fa, s2, ...j J„) 

of items (elements) with a weight function on items and a sequence of unit-capacity 
bins Bt, B2, .... In this paper, we assume that the item weights are real numbers in 
the range (0, 1] and that the list is given by the weights. The problem is to find a 
packing of the items in the bins such that the sum of the items in each bin is not grea-
ter than 1, and the number of bins used is minimized. 

This problem is NP-hard [GJ] and therefore heuristic algorithms which give 
"good" solutions in an acceptable computing time are investigated [J], [JDUGG]. 
We are interested in the worst-case behaviour of the Next-k Fit' (NkF) algorithm. 
For this, an upper and a lower bound were given in Johnson's paper. We shall im-
prove both bounds. 

For a list L, let OPT(L) be the number of bins in optimal packing. For a givea 
heuristic algorithm A, let A(L) be the number of bins used by A to pack L. Let 

* This paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr. 
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1135.) 
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The asymptotic worst-case ratio of A is then defined as 

Ra = l imsup R.%. 
Let 

s(L)= 2 si 
i=1 

and let s(Bj denote the sum of the weights of the items in B-,. 
We investigate the NkF algorithm, which is defined as follows: we always use k 

bins at the same time. If the next .element, aJ} is coming, we place it into the first of 
the k used bins which has enough room for it. If no such bin has enough room, we 
close the first (oldest) of these k bins, open a new one, and put a, into this bin (this 
will now be the k-th or youngest bin). 

Johnson has proved for the asymptotic worst-case ratio of NkF that 

In this paper we prove that 
^N2F = 2 

and that for 
3 7 

L 7 + 1 0 ( * - 1 ) lJ5+4(2k+3)-

However, vhe exact worst-case ratio is not known for 

Results 

First we give an upper bound on RNkF for k^3. Let L be an arbitrary list and 
let us pack the elements of L by means of NkF. Let Bt, Z?2,.,., Br denote the sequence 
of bins used and let m be a fixed nonnegative integer. For any positive integer i.s 
S r + 1 — m the sequence of the bins 5 , , Bi+l, ..., Bi+m_i is called a parcel consisting 
of m bins if the following conditions hold 

( ; 0 s ( B , ) > l / 2 (f = / , . . . , i + m - 1 ) , 

(b) i+m-l = r or i+m-1 < r&s(Bi+m) S 1/2. 

We classify the bins of a parcel consisting of m bins with respect to their contents as 
follows: 

(A) Is, S 2/3 & (31) (st > 1 / 2 ) , 

(B) I s , ^ 2/3&(W)Cy,S 1/2), 

(C) Is, < 2/3&(3/)( j , > 1/2), 

( D ) l i t < 2 / 3 & ( V / ) ( J , S 1/2), 
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where t runs through the set of indices of the items contained in the considered bin. 
Obviously, we obtain a partition of the bins B i t ..., B t + n ^ . We shall use the termi-
nology X-bin for a bin which is contained in the class determined by the property X, 
where X£ {A, B, C, D}. It may be observed that any D-bin contains at least two 
items; moreover, it contains an item with s , ^ 1/3. 

For the D-bins, the following statement holds. 

Lemma 1. There are at most two D-bins among any k+l successive bins of 
any parcel consisting of m S i + 1 bins. 

Proof. Let B*, B%, ..., B%+1 denote the considered bins. Let and 
let us suppose that B* is the D-bin with smallest index and that BJ is the D-bin with 
second smallest index. If j=k+1, then the statement obviously holds. Now let us 
assume that j^k+1. After the packing of L the empty room in Bf is greater than 
1/3. Accordingly, the empty room in it is greater than 1/3 when the first item is packed 
in BJ. Therefore 1/3<5X holds for this item. By our assumption, BJ is a D-bin; 
thus, j ^ l / 2 and during the further packing at least one item with weight less than 
1/3 will be packed in Bj. Let us investigate the circumstance of the packing of the 
first such item. It should be observed that the bin Bf contains enough empty room 
for this item. Therefore, the packing of this item in BJ implies that at this time the 
bin B* is already closed. This results that, up to the closing of Bf the content of BJ 
is not greater than 1/2. But then, the weight of the first packed item in BJ+U is greater 
than 1/2 if «€ (1, ..., fc+1 —7'}. This means that BJ+1, ..., B£+1 are of types A or C, 
which yields the validity of our statement. 

Lemma 2. For any k+1 successive bins of any parcel consisting of m^k+l 
bins if there exists a C-bin among the considered bins and if there exists a Z>-bin 
among the bins succeeding the C-bin, then the bins succeeding the D-bin are of 
types A or C. 

Proof. In the proof of Lemma 1 we only made use of the fact that Bf has empty 
room greater than 1/3 and this property holds for any C-bin, too; thus, by repeating 
the proof of Lemma 1, we obtain the validity of Lemma 2. 

Any k+2 successive bins of a parcel consisting of m S i + 2 bins is called a 
block. We classify the blocks as follows: 

(1) it contains at most one D-bin, 
(2) it contains two D-bins or it contains three D-bins and at least one Z?-bin, 
(3) it contains three D-bins and at least one ^4-bin; moreover, the remaining 

k—2 bins are of types A or C, 
(4) it contains three D-bins and k— 1.C-bins. 
From Lemma 1 it follows that any block contains at most three D-bins, and so 

the above classification induces a partition of the blocks. We shall use the terminology 
j-block or block of type j if it has the>th property for some {1, ..., 4}. 

Now let us consider an arbitrary block of a parcel consisting of m ^ k + 2 bins.. 
Let s denote the sum of the weights of the items contained in the bins of the block and 
let q' and q be the numbers of its .¿-bins and C-bins, respectively. 

The following statement then holds. 
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Lemma 3. For any r€{1, ..., 4} if a block is of type r, then the r-th assertion 
holds for it among the following ones: 

(1) j S № + 2 ) y - ( i + l ) i , 

( 2 ) 5 S ( * + 2 ) y - ( i + 2 ) I , 

(3) s £ {k+2)\-(q + V^&q + q' = k-l&q' > 0, 
J o 

( 4 ) i £ ( H 2 ) y - ( i + 3 ) i | l ? = fc-l. 

Proof. In the cases r = 1, /-=3 and r = 4 the statement follows from the defi-
nitions. If r=2 and the block contains only two D-bins, then the assertion is again 
obvious. 

Now let us suppose that the considered block contains three Z>-bins and at least 
one £-bin. Let B f , ..., B%+2 denote the bins of the block. Since it contains three D-
bins, by using Lemma 1 twice, we obtain that and B%+2 are D-bins. Let us assume 
that BJ is the intermediate D-bin for some + By our assumption, the block 
contains a £-bin. Let B* denote this bin, where 2 s / « A : + l and l ^ j . We distin-
guish the following two cases. 

Case 1. Let us suppose that /</". Then l^k, and so, at the time of opening of 
B*, the bin B* is open. On the other hand, B* is a D-bin, and so, after the packing of 

all elements of L, the bin B* contains empty room with weight y + ^ > where 

But then B* contains empty room with weight at least when the first 

item is packed in the bin B*. Therefore, y - j - J - c ^ holds for this item. Moreover, 
since B* is a fi-bin, 1/2. We now distinguish two subcases. 

If at the time of the packing of the second item of B*, the bin B* is open, then 

for the weight s2 of this item y a g a i n holds. But then 

and so 
s = s(Bt)+s(Bt)+ 2 t^l.t^l J J o 

which yields the validity of our statement. 
If at the time of the packing of the second item of B* the bin B* is closed, then 

up to the closing of B\ the content of B* is not greater than . This results that the 
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weight of the first packed item in B*+u is greater than 1/2 if H£{1, 1—/}. 
This means that the bins B*+1, ..., B%+1 are of types A or C, which contradicts our 
assumption on B*. Therefore, this case is impossible. 

Case 2. Let us suppose that /«=/. Then and so, at the opening 

of B* the bin B* is open. Next, in the same way as in Case 1 we obtain that y 

< j j S l / 2 holds for the first packed item in B*. 
If at the time of the packing of the second item of B* the bin B) is open, then, 

similarly as in Case 1, we obtain the validity of (2). 
If at the considered time B*} is closed, then up to the closing of B* the content 

of B* is not greater than 1/2. This yields that the weight of the first packed item in 
B*+u is greater than 1/2 if {1, ..., k+2—/}. But then, B*+1,..., B%+2 are of types 
A or C, which contradicts our assumption. Therefore this case is impossible, which 
completes the proof of Lemma 3. 

Lemma 4. For any parcel consisting of m bins, the following assertions hold: 
(I) there exists at most one D-bin among the last z=min {k, m) bins of the 

parcel; 
(II) if m^k+2, then the type of the block consisting of the last k+2 bins of 

the parcel is less than 4; 
(III) if the first block among two successive blocks of the parcel is of type 4, 

then the type of the second block is 1 or 2, and in the last case the block contains at 
least one ¿-bin. 

Proof. For assertions (I) and (II), we have to distinguish two subcases according 
to the definition of the parcel. 

Case IIa. Let us suppose that the last z bins of the considered parcel are the last 
z bins of the packing of L. Then, these bins are all open at the packing of the very 
last item of L. Let B\, ..., B* denote the considered bins and let us assume that Bf 

and Bj are Z>-bins, where 1 Then Bf has empty room with weight - i -+A, 

where J > 0 . Therefore, y + J c ^ ^ l / 2 holds for the first packed item (s,) in B*, 

and so 1/3 holds for the weight s2 of the second item of Bj. At the time of the 

packing of this item, the bin B* is open and has empty room with .weight y +A; 

thus the NkF algorithm places this item in B f , which is a contradiction. Therefore, 
there exists at most one D-bin among the considered z bins. 

Case I/b. Let us suppose that the considered B*, ..., B* bins are not the last z 
bins of the packing of L and that i(B*+i) —1/2 holds for the following bin B*+1 of 
the packing. Now let us assume that Bf and Bj are Z)-bins, where 1 Then 

B* has empty room with weight where A>0. Therefore, y - M < i i S l / 2 

holds for the first packed item (Jx) in B*, and so 1 /3 holds for the weight s2 
of the second item of Bj. Thus, at the time of the packing of this item the bin Bf 
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is closed. This yields that, up to the closing of B* the content of B* is not greater 
than 1/2. But then, the weight of the first packed item in B*+u is greater than 1/2 if 
H£{ 1, ..., z—7 + 1}. This contradicts our assumption on B*+1. Therefore, there is at 
most one D-bin among the considered z bins. 

Case Ilja. L e t u s assume that the bins of the considered block are the last k+2 
bins of the packing of Z, and that the block is of type 4. Let us B*, ..., B%+2 denote the 
considered bins. Then, by using Lemma 1 twice, we obtain that B* and are D-
bins. Now let us suppose that B* is the intermediate D-bin for some + 
If 2, then B% is a C-bin, since the block contains only D-bins and C-bins. But then, 
by Lemma 2, we obtain that the bins B*+1,..., B%+ 2 are not of type D, which is a 
contradiction. Thus, j=2 and ..., Bl+l are of type C. Since the considered k+2 
bins are the last k+2 bins of the packing, the bins ..., Bf+2 are all open 
when the second item is placed in B%+ 2. On the other hand, is a C-

bin, and so it has empty room with weight y + A , where A > 0 . Thus, + ^ < ^ g 

=s1/2 holds for the weight ^ of B%+2 and s 2 < 1/3 holds for the weighty of the second 
item of B%+2. But, at the time of the packing of this item, is open and it has empty 

room with weight y J thus the NkF algorithm places this item in Bt, which is a 

contradiction. Therefore, the type of the considered block is less than 4. 

Case II/b. Let us suppose that the considered m bins are not the last m bins of the 
packing and that s(B')~l/2 holds for the bin B' immediately succeeding the last 
bin of the parcel. Moreover, let us assume that the block is of type 4. Let B*, ..., B%+2 
denote the bins of the block, and let B%+3 denote the bin B'. Then, by our assumption, 
s(B%+3)^\/2. Now, in the same ways as in Case Il/a, we obtain that B*, B2, B%+2 
are D-bins and ..., B%+1 are C-bins. Since B% is a C-bin, it has empty room with 

weight y + J , where 0. Thus, y 1 / 2 holds for the weight of 

the first packed item in B%+2. On the other hand, B%+2 is a D-bin, and so s2< 1/3 
holds for the weight s2 of the second item of Bf+2. Thus, at the time of the packing of 
this item, the bin B% is closed. Therefore, up to the closing of B% the content of B%+2 
is not greater than 1/2. But then, the weight of the first packed item in B£+s is greater 
than 1/2, which contradicts our assumption. Therefore, the type of the considered 
block is less than 4. 

Case III. Let us suppose that the parcel contains two successive blocks and that 
.the first of them is of type 4. Let B*, ..., B%+2 denote the bins of the first block and 
B%+ 3 , ..., B^+4 the bins of the second block. Then, in the same way as above, we 
obtain that B$, B2, are D-bins and is a C-bin. But then, by Lemma 2, the 
bins , .. ., Btk+1 are of types A or C. On the other hand, ..., 4 are 
k+\ successive bins of the parcel, and so, by Lemma 1, there are at most two 
D-bins among these bins. Since B%+3 is of type A or C, we obtain that the second 
block contains at most two D-bins. Now let us investigate the bins B%+3, ..., B*k+1. 
Since ¿ ^ 3 , the number of the investigated bins is at least 2. If there exists an A-bin 
among these bins, then assertion (III) obviously holds. In the opposite case, B%+3 
and Bl+i are C-bins. On the other hand, the bins ..., B^+4 are k+1 successive 
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bins of the parcel, and so, by Lemma 2, we obtain that there exists at most one D-
bin among these bins, which results the validity of assertion (III). 

This ends the proof of Lemma 4. 
For any parcel consisting of m bins let s denote thé sum of the weights of the 

items contained in the bins of the parcel and let q' and q denote the numbers of its 
^4-bins and C-bins, respectively. Let w=q+q'. Then, the following statement holds. 

Theorem 1. For any parcel consisting of m bins 

2 1 , ,, 1 m—1 
s S -Tm--r(w +1)— 3 6 v ' ' 3 k+2 

Proof. Depending on the value of m, we distinguish five cases. 
1. m=0 . In this case the statement obviously holds. 
2. l ^ m ^ k . Then, by assertion (I) of Lemma 4, we obtain that the parcel con-

tains at most one D-bin, and so 

2 1 , ' 2 1 . 1 m - 1 
. . - g - v - T ^ ' 3 T + 2 -

3. m=k+1. Then, by Lemma 1, the parcel contains at most two Z>-bins, and so 

2 1 , „ 2 1 . ' . 1 m - 1 
3 6 V J 3 6 \ ' 3 /k+2 

4. m=r(k +2) where r is a positive integer. Let us index the successive blocks 
with the numbers 1, . . . , r according to their sequence, and let /={1 , ..., r}. Lét 
z£/ and let q\ and qx denote the numbers of v4-bins and C-bins of the /-th block, res-
pectively. For any index yí {1, ..., 4}, let Uj denote the number ofy'-blocks and I3 
the set of indices of these blocks. By assertion (II) of Lemma 4, the /--th block is not 
a 4-block, and so, there exists a further block for any 4-block from the considered 
blocks. On the other hand, by assertion (III) of Lemma 4, the block succeeding some 
4-block of the parcel is of type 1 or 2. Using this observation, we classify the 4-bIocks 
into the following two classes. 

The first class contains all 4-blocks for which the following block is of type 1. 
Let h41 denote the number of these 4-blocks and /4] the set of their indices. 

The other class contains the remaining 4-blocks. 
The block succeeding some 4-block from this class is then of type 2. Let w42 

denote the number of the blocks of the second class and /42 the set of their indices. 
It is now obvious that w4=«41+w42, /4=/41 U/42, M1+M2+M3+w4=r and 

4 
U I j=I - Using the introduced notations, by Lemma 3, we obtain 
j=i 

¿ ' 2 [ ( * + 2 ) 4 - ( Í Í + : / ) 4 : 1 + z . f ( k + 2 ) - | - ( ? i + 3 ) i | . • j=I i í / j l J ° J i£/sU/4 I- J . OJ 
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and so 

I V c + 2 ) 2 1 - 4 - 2 2 - 1 2 3 = 
l€I J 0 i f / 0 ¡6/, 0 i€/t 0 <e/,u/« 

2 1 1 2 3 , = _ m _ _ i _ _ U l _ _ H a _ _ ( M 3 + U4) = 

2 1 2 , N 1 1 1 
= -jrrt-jq-—(u1+ut + u3+ui) + j u 1 - j u 3 - — ui = 

2 1 1 1 1 1 1 

2 1 1 m l , . 1 1 

From the definition of utl, it follows that Thus 

2 1 1 m l 1 

2 I , . ^ . v l l ^ . l m 1 1 

From the definition of 3-blocks, we obtain that 2 "3^0 , moreover, from 
. ¡¿'a 

Lemma 4 and from the definition of w42 it follows that 2 e l i~ u 42-0- Therefore, 

2 1 . • . 1 m 1 1 „ - , , On the other hand, 2 — a n d so we obtain the following inequality: 
2 1 , 1 m—1 1 1 

(i) s S T m - 7 ( w + l ) - T — - + - -3 6 v ' 3 A:+2 ' 6 3(fc+2) ' 

Since ks3, - I - — - i — s 0 . But then 
6 3(&+2) 

2 1 , 1 m - 1 
i S 3 m - 6 { w + 1 ) - T T + T ' 

which completes the proof of this case. 
5. m=r(k+2)+l, where r and / are positive integers and l ^ / s f c + l. We 

distinguish two cases depending on the r-th block. 
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Case 5/a. Let us suppose that the r-th block is not of type 4. Then disregarding 
the last / bins, for the remaining r(k+2) bins the same conditions holds as in the 
previous case. Thus, for the sum s of the weights of the items contained in these bins 
the inequality (i) holds, i.e. 

On the other hand, it may be observed that the last I bins form a parcel consisting o f / 
bins. Thus for the sum s of the weights of the items contained in these bins, it holds 
that 

_ 2 . 1 1 / - 1 
5 1) — 3 6 ' * ' ' 3 lc + 2 

where q and q' denote the numbers of .¿-bins and C-bins, respectively, for the last / 
bins. Now, using the above inequalities, we obtain that 

. . 2 1 . 1 m - 1 
s = s+s ^ —m——(w+\)-3 6y J 3 k + 2 " 

Case 5/b. Now let us suppose that the r-th block is of type 4. Then, by assertion 
(III) of Lemma 4, the (r—l)-th block is not of type 4, assuming that there exists 
such a block, i.e. r > 1. Then, disregarding the last k+2+l bins, for the remaining 
(r— +2) bins the same conditions hold as above, and so, for the sum s of the 
weights of the items contained in these bins the inequality (i) holds. Thus, 

- 2 1 „ ' - i 1 ( r - l ) ( J f c + 2 ) - l 1 1 
^ Vf. i x „ 3 k + 2 6 3(k+2) • 

It may be observed that the right-hand side of the inequality is equal to 0, if r=1. 
Therefore, we may use it in the case r = 1, too. 
We now investigate the remaining k+2+l bins. Let B*, ... B%+2+l denote them. 
Since the bins ... B%+2 form a 4-block, the bins B*, B£, B%+2 are D-bins and 
2?3 ..., B l + 1 are C-bins. Let us distinguish two cases depending on /. 

If lsk—l then, by Lemma 2, the bins 3 , ... B%+2+t are of type A or C. 
Thus, for the sum s of the weights of the items contained in the considered k + 2 + i 
bins the following inequality holds 

J S j(k+2)-j(q, + 3 ) + j l - j q = l(k+2 + l ) - j ( q r + q + 3), 

where q denotes the number of C-bins with respect to the last / bins. 
If k- 1 then it may be observed that since B%+1 is a C-bin and B%+2 

is a D-bin, by Lemma 2, the bins B%+3,..., B*k+1 are of types A or C. 
If there exists at least one A-bin among B%+3, ..., B^k+1, then q ' s l , where q' 

denotes the number of yl-bins for the last / bins. On the other hand, the bins B%+ 4,... 
..., B k + Z + I form the last /— 1 bins of the parcel, and so, by (I) of Lemma 4, there 
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exists at mt >sl one D-bin among them. Therefore, we obtain that there is at most one 
£>-bin amo.ig the last / bins. Thus for s we have 

S §= j ( k + 2)-j(qr + 3)+jI-j(q+l) = 

= l(/c + 2 + l ) - j ( q r + q + q' + 3) + j(q'-l)lZ 

* l ( k + 2 + l)-j(qr+q+q' + 3). 

If the bins B%+3, ..., B^+i are all C-bins, then after the packing Btk+1 has empty 
room with weight where A >0 . From this, similarly as in the proof of asser-

tion (I) of Lemma 4, we obtain that the remaining bins \Btk+2 

are not of type D. But then there is no D-bin among the last / bins, and so 

3 S j ( k + 2)-j(qr+3) + j l - j q = j(k+2 + l ) - j ( q r + q + 3) 

where q denotes the number of C-bins for the last / bins again. 
Now, using the common lower bound, we obtain the following inequalities: 

s = g + J s i m 4 ( i + g f + g + r + | ( g i + g ; ) ) - | - 4 ( r ~ l ^ 2
+ 2 ) 4 = 

2 1 , 1 , 1 r(k+2) 

2 1 . 1 m - 1 / - 1 1 , 
= 3 w - 6 ( w + 1 ) - 3 T T T + l ( k T 2 ) + J q -

Since and / ^ 1 , we obtain that 

2 1 , 1 m - 1 
S-Jm~J(w+l)~JT+2 

which completes the proof of Theorem 1. 
Now let L be an arbitrary list and let us pack the elements of L with the NkF 

algorithm. Let B1, ..., Bm denote the sequence of bins used by NkF and let w denote 
the number of all bins containing items with weight greater than 1/2. Then, for 
i = i ( L ) , the following statement holds. 

Theorem 2. 
2 1- m 

s S -r-m——w — • 3 6 3(k+2) 6 ' 

Proof. We distinguish two cases, depending on the contents of the bins. 
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Case 1. Let us suppose that j(2?,)>1/2 ( /=1 , ..., m). Then, the considered bins 
form a parcel consisting of m bins, and so, by Theorem 1, we obtain the validity of 
Theorem 2. 

Case 2. Let us suppose that there exists a bin B, (1 S / ^ m ) with s(Bt)^]/2. 
Let i l s i 2 , ...,/,. denote the increasing sequence of indices of allsuch bins. Let /Ç {/l5 ... 
...,/P} be arbitrary, and let us investigate the contents of Bt and Bt+1, ..., Bl+k, 
assuming that there exist such bins. After the packing of L, the relation s(B,)^ 1/2 
holds; thus, throughout the packing too, s(Bt)^l/2. But then, the weight of the 
first packed item in Bt+U is greater than 1/2 if u£{ 1, ..., k}. Therefore, iq+k< 
< f s + 1 (q = 1, ..., r—1) and, if / r < w , then the weight of the first packed item in 
Bir+U is greater than 1/2 for any 1 ^ w S z = m i n {k, m—ir). We now distinguish 
further two cases. 

Case 2ja. Let us suppose that ir +k^m. Then the weight of the first packed item 
in Bit+U is greater than 1/2 if 1 = / ë r ; 1 ^.u^k. Thus, for the sum s, of the weights 

of the items contained in the bins Blt, Bit+1, ..., J5/t+1» the inequality + — 

holds, since s(Bit)+s(Bit+1)> 1 and s(fi, t +„)=-l/2 if 2^usk. On the other hand, 
it may be observed that the sequence 

Blf..., -1; Bil+k+1,..., -S,-,_i; ...; Biri+k+1,...,Bir^1\ Bir+k+1,..., Bm 

form parcels consisting of ix — 1, i2—i1—k—l,...,ir—ir_1—k—l, m—ir—k bins, 
respectively, where any parcel of them may be an empty one. Let = / \ — 1, m 2 = 
=i2—il—k— 1, ..., mr=ir—ir_1—k—\, mr+1=m—ir—k and let W; denote thé 
number of ^4-bins and C-bins of the z-th parcel for any *£{1,..., r + l } . Then, by 
Theorem 1, for the sum Si of the weights of the items contained in the bins of the /-th 
parcel the following inequality holds: 

But then for the sum s of the weights of the items contained in the bins Blt..., B, 
we obtain 

3(k+2) ' 

r+l r+l 1 
s = 2 si+ Z*t s 2 Si+r(k+i)T 2 -

r+1(2 1 
s 2 \ j m - j ( » , + ! ) - Hk+2) 

•) + r ( f c + l ) I 

r+l 
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r+l r+1 
Since m= 2 /w ( +r( fc+l ) and w= 2 w, + rk, we have 

¡=1 ¡ = 1 

2 1 r 1 Im-. r + l 
s S w —— w —— — — — ———- + -

3 6 3 6 3(Jfc+2) 3(/c+2) 

2 1 r w , + /-(fc+2) 1 r + l 
= w ' . , v — — + -

3 6 3(fc+2) 6 ' 3(k+2) 

- — —L m 1 1 
~ 3m 6W 3{k+2) + 3(k+2) 6 ' 

B u t W T 2 ) - J - - J ' s o ' 
2 1 m 

s S -r-m—— w — -3 6 3( /c+2) 6 
which completes the proof of this case. 

Case 2\b. Let us assume that ir+k>m. Then the number of bins succeeding the 
bin .B iris l—m—ir. Moreover, if / > 0 , then the weight of the first packed item in 
Bir+U is greater than 1/2 for any u£ {1, ..., /}. Thus, for the sum s* of the weights of 
the items contained in the bins Bir, ...,Bm the following inequality holds 

s*^s(Bit)+(m-ir)j. 

On the other hand, for the sum s, of the weights of the items contained in Blf, 

Bit+1, ..., Bit+k again s,^(k+ \ ) — holds if t<r. Finally, the sequences Bx, ... 

Bil+k+1, -Bj.-i; ...;Bir_1+k+1, again form parcels. Thus, 
with the notations of the previous case and inequality (a), for the sum s of the weights 
of the items contained in Bx, ..., Bm, the following inequalities hold: 

2 s,+ 5,+** ^ ¿StHr-mk+vif+s*^ 
¡—1 t=i >=i ^ 

¿ ( « « - 1 ) 1 2 -

~ ± J ( k T 2 j ~ + S ( B ' ' ) + ( m ~ / ' ) T = T ( ^ M r - m + D + i r n - Q ) -

! r ¿ K - 1 ) 
- J ( 2 w, •+ ( r - № +1)+(« - ir)+0- ' ~ 3 ( f c + 2 ) + j ( j B'> )-
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Since 2 mi+(r—l)(k + l)+m—ir=m—l, we obtain that 
1=1 

9 , r 1 ¿ ( « i - l ) 
s S ±(m-l)--(2wt+(r-l)k+m-ir)-j(2r-l)- +s(BJ. 

r 
Now, it may be observed that w= 2 Wi+(r— \)k+m — ir, and so 

2 1 r - 1 1 r 

2 j (r-\)(k+2)+ 2 m r ! 
= 3 ( f f l " 1 ) " 6 1 V 3(fc+2) ' = 1 + 3 ( f c W " 6 - + S ( B J = 

2 j ' ¿ m i + ( r - l ) ( * : + l ) j | 

- , 2mt+(r-l)(k+l)+m-ir+l 
^ x - v 1 1 = 1 W 1 v 

2 1 m m—i. + 2 5 . 
= jm~6w~ T+s(B>> 

„ m—ir+2 5 . 5 , B u t a n d s o 

2 1 m 5 
s £ —-m—— w —-3 6 3(Jfc+2) 6 

which completes the proof of Theorem 2. 
We can now prove the following result. 

Theorem 3. 
7 7 1 

&NkF — — + — -
4 4 2k+3 ' 

Proof. Let L be an arbitrary list and let us pack its elements with the NkF algo-
rithm. Let m denote the number of bins used by NkF and let s denote the sum of the 
weights of the items contained in these bins. Moreover, let w denote the number of 
those bins which contain some item with weight greater than 1/2. Now, depending 
on w we distinguish three cases. 
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Case 1. Let us suppose that w=0. Then, by Theorem 2, we obtain 

2 m 5 
S - J m - W T 2 ) ~ 6 : 

On the other hand s^OPT(L) , and so 

m m 1 
OPT(L) s 2 1 

3 3(k+2) 6 m 

1 l(k+2) 
2 1 4k+6 1 5_ 7(fe + 2) 5 ' 
3 6 ' l(k+2) 3(k+2) 6m + m 6 

Case 2. Let us assume that w?£ 0 and — g p f 0 m ^ definition of 
w 4k+ 6 

w it follows that wSOPT(L). But then 

m ^ m ^ l(k+2) 
OPT(L) ~ ~vv ~ 4fc+6 ' 

Case 3. Let us suppose that w^O and ^ ^ ^ Again, by Theorem 2, 

2 1 m 5 
S s ——W —77 =7- —-r> 

3 6 3(k+2) 6 
and so, 

m m m 1 rS 
OPT(L) j ~ 2 1 m 5 2 1 w 1 

- r - m — - w -
3 6 3(/fc+2) 6 . 3 6 m 3(k+2) 6m 

By our assumption on mlw, — < , and so 
m 7(k+2) 

m 1 7(k+2) 
OPT(L) ~ 2 1 4/c+6 1 5_ 7(fe+2) 5 ' 

3 6 7(*+2) 3(A:+2) 6m + m 6 

Now let 3 be a fixed integer. It may be observed that if OPT(Z,)—°° then 

» , and so, 

Therefore 

m—°o, and so, under the fixed k, o . 
m 6 

l(k+2) =]_+L 1 

4 k + 6 4 4 2&+3 ' 

which completes the proof of Theorem 3. • 
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We now improve the lower bound given by Johnson. For this purpose, we define 
a sequence of lists such that OPT(L,)—°° and the lists have bad behaviour on NkF 
packing. Let j now be a fixed positive integer. 

Let n(j) denote the number of elements in the j'-th list and let 

n(j) = 30j(k—2)+30j. 
Let 

5 « 18 - J» -» 

and let L„u) denote the j'-th list in the sequence. We divide the items into three parts: 
(1) In the first part there are elements about 1/6; there are j(k—2) blocks, with 

10 items in each (thus, in the first part there are 10/(k—2) items). Let us denote the 
items of the i-th block by 

flo>> a u i •••> am-

The exact definition of the weights is as follows. Let 

5f = 5 • 18**-»- ' j(k-2)) 
and 

aoi = 1/6+335,., 

a u = 1/6-3(5;, 

% = 1/6-7 Si = % , 

On = 1/6 —135 

a6i = 1/6+95;, 

fl6i = 1 /6-25; = an = au = am. 

Then, the first 10/(fc—2) items of the list are am, an an, a02, a12, ..., a92, ... 

•••'ao,;(t-2)) •••> a9,j(k-2)• Clearly 

% + «if + <hi + % + «« = 5/6-+35,-, 

an+a6i+an + a8i+a9i = 5/6+5; , 

and thus we fill 2j(k—2) bins with this part. 
(2) In the second part, there are elements about 1 /3; there are also j(k—2) blocks, 

with 10 items in each. Let us denote the items of the z'-th block by 

and the items 

fr»» •••» 9̂1» 0̂2> 1̂2» •••) 9̂2» •••) &0,J(k-2)> •••> 

follow the items of the first part. 
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The exact definition of these items is as follows: 
b„ = 1/3+465,, 
bu = 1/3—34<5j, 
b2i = 1/3 + 65, = ¿3i, 
bit = 1/3 + 125,, 
6„ = 1/3-105, , 
¿8, — 1/3+5, = 67, = ¿8, = £>91 -

Clearly 
b0l+bu = 2/3+125,, 
b2i + b3i = 2/3 + 12 5„ 
&«+*« = 2/3+25,, 
t>6, + b7, = 2/3+25, , 
i>8,+i>9, = 2/3+25,, 

and thus we fill 5j(k—2) bins with the second part. 
(3) In the third part, there are elements about 1/2. We have here 10/ blocks, with 

k +1 items in each. In the i-th block, the first item is 1/2—5/(/+1), and the second is 
1/2+5//. Then, we have a number (¿—2) of 1 /2+5 items and the last item of this 
block is a 5. Thus, with this part we exactly fill 10jk bins. 

On summing the number of bins in the three parts, we obtain: 

NkF(LnU)) = 2j(k-2)+5j(k-2)+\0jk = \ljk-\Aj. 

In the optimal packing of Ln(j), we have to pack all 1 /2+5 items in separate 
bins. Thus, we pair the items from the first and second part in the following way: 

i) a i , i+h i> i f 2 / s 9, 1 isj(k-2), 

ii) aoi+bu, if l ^ i s j ( k - 2 ) , 

iii) a„+6 0 > ( i + 1 ) , if 

Clearly, we can pack all pairs with a 1/2+5 element together. Accordingly, we fill 
I0j(k—2)—1 bins, and b01, alJ(k^2) are not used. From the third part, one 1 /2+5 
item, a number 10/ of 5 items and the following items are not used: 

i + i . 
2 2 ' 2 + 1 ' 

U L 
2 3 ' 2 + 2 ' 

1 5 J_ _ 5 _ 
2 10y + 1 5 2 + 10 / ' 
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Here 1/2—<5// and 1/2+<5// fill a bin ( i=2 , 3, ..., 10/') and so we have a further 
10/'— 1 bins. All other items can be packed into three bins, if 3 is small enough. Thus, 

OPT(£.„0)) 10/(^—2) — 1 + 1 0 / — 1 + 3 = lOjk-lOj+l. 
Then 

NkF(LnU)) ^ 17/fc—14/ 
OPT(L„ 0 , ) - 10/fe—10y+l ' 

and hence 

* - ^ l i m i n f - 1 7 f e ~ 1 4 RNkF = hminf 0pT(£nU)) - m _ 1 0 -

We have obtained 

Theorem 4. For A: s 3 

1 0 ( ^ - 1 ) ' 

From Theorem 3 and Theorem 4, we conclude our 

Main results. For k ^ 3 

3 _ 7 7 1 
1-7+ „ =S ¿ W S - + - • 10(A:— 1) ~ í" lF ~ 4 4 2fe + 3 * 

To conclude this paper, we give RN2F. For this, we define a sequence of lists as 
follows. Here the j'-th list has a numbef n(j)=30j of items. Let 

_ ( 1 < 5 1 < 5 1 < 5 1 <5 J_ <5 1 , S \ 
• L"Oi - l T ~ T ' 2 + T ' d ' 2 3 ' 2 + 2 ' • 2 10 /+1 ' 2 + 10/ ' ) ' 

Then we use 20/ bins in the N2F packing, and 10/+1 bins in the optimal packing. 
Thus, we get : 

Corollary 1. RN2F=2. 
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Abstract 

We consider the performance of the greedy algorithm and of on-line algorithms 
for partition problems in combinatorial optimization. After surveying known results 
we give bounds for matroid and graph partitioning, and discuss the power of non-
adaptive adversaries for proving lower bounds. 

1. Introduction 

There are several combinatorial optimization problems where a set is to be parti-, 
tioned into a minimal number of classes having certain properties. Examples of such 
problems are graph coloring and bin packing. A general heuristic to find an approxi-
mate solution is the greedy (or first-fit) method where the partition is constructed by 
processing the elements in some order and placing each element into the first class it 
fits into.' 

A partitioning algorithm is on-line if it considers the elements one after the 
other and puts each element into a class at the time when it is considered according to 
some rule, based on information about elements processed earlier (thus the greedy 
method is a special case). The main feature of an on-line algorithm is that the deci-
sion made about an element cannot be modified later on. An on-line algorithm in 
general does not have to be polynomial time computable or even computable.. 

There are several interesting results about the performance of on-line algorithms 
for various partition problems. After giving a general problem formulation in Sec-
tion 2. we survey these results in Section 3. 

* Supported by Hungarian Academy of Sciences. (OTKA Nr. 1135) 
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In Section 4. we consider the matroid partitioning problem and the special cases 
of graphic matroids and graphs. There are polynomial time algorithms solving this 
problem (Edmonds [6], see also Lawler [18]), but these algorithms are not on-line. 
We show that the performance ratio of the greedy algorithm on n element matroids 
is 0(log n) and that the performance ratio of every on-line matroid partitioning algo-
rithm is fl(log «/log log n). We also show that bounded performance is not possible 
even in the special case when we want to partition a graph into forests. 

All known lower bound proofs for on-line algorithms are based on the construc-
tion of an adversary which plays against the algorithm by providing the new elements 
of the input so that the algorithm is forced to produce more classes than necessary. 
In many cases the adversary satisfies a condition called non-adaptiveness. In Section 
5. we consider examples comparing the power of non-adaptive adversaries and general 
ones for lower bound proofs. 

Section 6. contains some further remarks and open problems. 

2. Partition problems, definitions 

First we give a list of partition problems discussed later on. For definitions not 
given here see Bollobás [2], Lawler [18], Lovász [22], Welsh [30]. 

MATROID PARTITIONING: given a matroid M=(E, 3?), partition the 
ground set E into a minimal number of independent subsets. 

GRAPHIC MATROID PARTITIONING: the same as above for a graphic 
matroid M. 

(As the complexity of the algorithms is not taken into consideration we may 
assume that the matroids are presented by listing their independent subsets.) 

GRAPH PARTITIONING: given a graph G=(V,E), partition E into a 
minimal number of forests. 

GRAPH COLORING: given a graph G=(V, E), partition V into a minimal 
number of independent subsets. 

CHAIN DECOMPOSITION OF ORDERED SETS: given an ordered set 
P=(V, < ) , partition V into a minimal number of chains. 

GRAPH EDGE COLORING: given a graph G=(V, E), partition E into a 
minimal number of matchings. 

BIN PACKING: given A = {aly ..., a„} ( 0 < a ; S l ) , partition A into a minimal 
number of . sets each having sum s i . 

GRAPH BIN PACKING: given a fixed "pattern" graph G0=(V0, E0) and a 
graph G=(V, E), partition E into a minimal number of sets each being a subgraph 
of G„. 

A common framework for considering these problems can be described using 
independence systems. 

An independence system is a pair I=(E, where E is the ground set and 
&<g0>{E) is a set of subsets of E such that if F£ & and F'QF then OF. An 
independence system is ordered if in addition there is a linear ordering < on E. All 
ordered independence systems considered here are finite, we write I„=(E„, á*,), 
E„={e1, ..., en}, . . .<e„. An ordered independence system Ik=(Ek,&r

k) is an 
initial segment of /„ (denoted by / f c < / J if t á n , Ek — , ..., ek) and for every 
FcgEk it holds that F£^k iff F<iFn. 
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An independent partition of I=(E, ¿F) is an ordered partition (F1, ..., F,) 
of £ such that 37 (1Sz '^/ ) . Let p ( / ) m i n {/: there is an independent partition 
(Fly ...,F,) of E). 

Let J be a class of finite independence systems. The PARTITION PROBLEM 
FOR is the following problem: given I=(E, find an independent partition 
of E into p{I) sets. 

Assume that furthermore J consists of ordered independence systems and is 
closed under taking initial segments (i.e. /£</, / ' < / imply /'€</)• 

An on-line algorithm A for the partition problem f o r i s a function defined on J 
such that for every I=(E, ¡F) £ £ A (I) is an ordered independent partition o f / a n d 
if / ' = ( £ " , J t h e n A{I')=A{I)\E' i.e. A(I') is the restriction of A(I) to E\ or 
equivalently, A(I) is an extension of A(I'). Thus A provides an approximate solution 
to the partition problem for J . 

For the greedy algorithm Agr, Agr(I„) is obtained from y4gr(/„_i) by placing e„ 
into the first subset in the ordered partition Agt(l„_which remains independent if e„ 
is added to it, and opening a new set for en if there is no such set. 

For an on-line algorithm A let M(/) | be the number of subsets in the partition 
A(I) and let (with some abuse of notation) 

A(n):= max {\A(I)\/p(I): J = (E, SF)<Lf, \E\ = n} 

be the performance ratio function of A. A has bounded performance with bounding 
func t ion / : N - N if for every /€</ it holds that \A(I)\^f(p(I)). (Thus if Ain)-^ 
by considering inputs with p(I) bounded by some constant then A does not have 
bounded performance.) The performance ratio of A is 

rA:= inf{r s 1: s rp(I) for every l^J} 

and the asymptotic performance ratio of A is 

r°X\= inf{r s i : 3c: A(l) ^ rp{I)+c for every 

(thus rA, r j eRUi««}) . Let 
rj/:= inf {rA: A is an on-line algorithm for the partition problem for J}, 
rj inf {rj : A is an on-line algorithm for the partition problem for ./}. 

For matroid partitioning (resp. graphic matroid partitioning) the class J could 
be the class of all finite ordered matroids (resp. finite ordered graphic matroids) on a 
fixed countable set. For graph partitioning the class J could consist of all finite 
(edge-)ordered subgraphs of a countable complete graph. For bin packing the class J 
could consist of all finite ordered subsets of countably many copies of (0, 1]. 

There is a difference between the first two and the last two examples. For matroid 
partitioning and graphic matroid partitioning we may assume that if / ! < / 2 < . . . < / „ , 
/ j < /2 < . . . < and Ij=Ij (1 =«) then the partitions determined by A are 
also isomorphic, in particular \A(I^\ = \A(I'n)\. Thisholds because J is homogeneous, 
i.e. every isomorphism of two inputs I and / ' can be extended to an automorphism 
of J . With other words on-line algorithms for these problems can only use informa-
tion about independence. 

For the other two problems there is additional information provided by specify? 
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ing edges resp. numbers: 2 edges with or without a common endpoint are isomorphic 
as independence systems but none of their isomorphisms can be extended to an auto-
morphism of J ; resp. there is no automorphism of £ for bin packing mapping a 
copy of 1/2 to a copy of 1/3. 

3. A survey of results about on-line algorithms 

a) Graph coloring 
Johnson [12] observed that AgT(n)=Q(n) even for bipartite graphs. Szegedy [25] 

showed that for every on-line graph coloring algorithm A(n) = Q(n/(log«)2). Lo-
vász, Saks and Trotter [23] gave an on-line algorithm with A(n) = 0(nlk>g* n)=o(n). 
For trees Bean [1] and Gyárfás and Lehel [11] noted that j4(n) = fi(log n) for every 
on-line algorithm. Kierstead and Trotter [16] gave an on-line algorithm coloring inter-
val graphs with r ~ = 3 and showed that this is best possible. Kierstead [15] showed 
that for this problem Gyárfás and Lehel [11] showed that r j g r < ° ° for 
several special classes of graphs such as split graphs, complements of bipartite graphs 
and complements of chordal graphs. 

b) Chain decomposition of ordered sets 
Kierstead [14] proved that there is an on-line algorithm for this problem which 

has bounded performance with bounding function (5"—1)/4. This appears to be the 
first result on on-line algorithms formulated in the language of recursion theoretic 
combinatorics. For the greedy algorithm AgT(n) — Q(n). Szemerédi [26] showed 
that for every on-line algorithm A and every w there are orders P with width w 
and \A(P)\ = Q(wi) thus for every on-line algorithm A r¿=°An order is an 
interval order if it is isomorphic to a set of intervals {J15 ..., /„} on a line with 
Ji^Jj iff/,- is completely to the left of J¡. Kierstead and Trotter [16] gave an on-line 
algorithm for interval orders with r°X = 3 and showed that this is optimal. (We note 
that the difference between the chain decomposition problem and the graph coloring 
problem for incomparability graphs is that comparable pairs form an ordered resp. 
an unordered pair.) An order is series-parallel if it can be obtained from orders on 
one element by repeated application of series composition ("place order P1 above 
P2") and parallel composition ("let all elements of Px be incomparable to all elements 
of P2"). If the orders are restricted to be series-parallel then the greedy algorithm 
always gives an optimal solution [7]. 

c) Graph edge coloring 
If A is the maximal degree of the graph G=(V, E) then clearly &A colors 

are needed for an edge coloring of G (by Vizing's theorem [29] (see also Bollobás [2]) 
A + 1 colors are always sufficient). It is easy to see that the greedy algorithm never 
uses more than 2 A — 1 colors. On the other hand every on-line algorithm A uses 
S 2 A — 1 colors for some forest with maximal degree A (here the minimal number of 
colors needed is easily seen to be A). TO see this, consider first a forest of (A — 1) • 

(2 ^ 
1 + 1 S T A R S WITH A — 1 edges. Then A either uses S 2 A - 1 colors or 

there will be A stars colored with the same set of A — 1 colors. Add A new edges by 
connecting a new root to the root of these stars to get a forest with maximal degree A. 
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Every new edge must be colored with a color not occurring in the stars selected and 
thus s 2 a —1 colors will be used. 

d) Bin packing 
Johnson, Demers, Ullman, Garey and Graham [13] showed that r ~ r = 1.7. 

Yao [31] gave an on-line algorithm with rA = 5/3. The on-line algorithm of Lee and 
Lee [19] has r j ^ 1.692 and it also satisfies the additional requirement of having only 
a bounded number of active bins at any time. Brown [4] and Liang [20] showed that 
r ^ s 1.536 for every on-line algorithm. This result is generalized by Galambos [8] 
to the case when items are from (0, a] (a< 1). We note that there are polynomial time 
algorithms Ae (which are not on-line) with rA< l + e for every s^O (de la Vega 
and Lueker [28]). On-line algorithms for dual bin packing (where the aim is to fill as 
many bins as possible) are considered by Csirik and Totik [5]. For the graph bin pack-
ing problem it is shown in [27] that for complete bipartite graphs G0=KkJ, k^l, 
r^ s r=@(max (k, l/k)), thus for fixed / the greedy algorithm has the best performance 
guarantee when k~]/L 

We note that there are results about on-line algorithms for problems of a dif-
ferent nature than the ones discussed here (see Borodin, Linial and Saks [3], Manasse, 
McGeoch and Sleator [24] and the further references in these papers). 

4. Matroid partitioning 

First we consider the performance of the greedy algorithm. The upper bound 
holds for matroids in general, the lower bound already holds in the special case of 
graphs. 

Theorem 1. a) For the matroid partitioning problem Agr(n)sln (n). 
b) For the graph partitioning problem ^4gr(n)s[log nj/2. 

Proof, a) Let I„=(E„, J^) be a matroid and (F l s ..., F,) be the partition formed 
by the greedy algorithm. Then f j is a maximal independent set in E„\(F1 U... 
...UFi_1). As /„ restricted to í „ \ ( / i U . . . U i j - O is again a matroid, F( is also a 
maximum independent set in E^F-lU... Ufl-x). Thus (Ft, ..., F,) is a greedy 
solution of the set covering problem for /„. The performance ratio of the greedy algo-
rithm for set covering is S in («) (Johnson [12], Lovász [21]). 

b) For 1 let Gk:=(Vk,Ek), where 

k-1 
Vk = H , ..., Ek = U Pit 

¡=o 

Pi = fe, %+i)2'): j = 0 , . . . , 2k~1~i— 1}. 

For later use let v0 be the initial vertex of Gk and v2«-i be the terminal vertex of Gk. 
Order the edges in Gk in such a way that edges in Pt precede edges in Pi+1 ( O s / s 
^k—2). Then the greedy algorithm gives a different color to each P, (we refer to 
this partition of Ek as the greedy partition), hence for this ordering |Agr(Gk)\ =k. 
Note that 1^1 =2k—1. On the other hand coloring the edges of Pt alternatingly red 
and blue (for every i) gives a partition of Ek into 2 trees and so p(Gk)=2. • 



112 U. Faigle, W. Kern and Gy. Túrán 

Theorem 1. can be generalized to the case when J consists of independence 
systems that are the intersections of k matroids (thus for every I=(E, 
there are k matroids I'=(E, J5"*) ( l s / s f c ) such that for every FQE, iff 

OF1. for every i = l , ..., k). 

Corollary 2. Assume that for every K J , I is the intersection of k matroids. 
Then for the partitioning problem for J it holds that A g I (n)^k • In («). 

Proof. Korte and Hausmann [17] showed that if I=(E, is the intersection of 
k matroids, F is a maximal independent set in 2F and F' is a maximum independent 
set in SF then |F | s ( l jk) • |F ' | . Thus the partition given by the greedy algorithm is a 
"l/£-greedy" solution to the set covering problem on I in the sense that we always 
choose a set which has size s i \k times the size of a largest set in the system. The 
proof of Johnson [12] and Lovász [21] can be applied to this case to show that the 
number of sets used in the covering is ^ k • In («) times the optimal. • 

Now we turn to the discussion of on-line algorithms. 

Theorem 3. For every on-line matroid partitioning algorithm A A(n) = 
=í2(lög w/log log n). 

Proof. For Gi constructed in the proof of Theorem 1. let s • Gt be the graph ob-
tained by taking a sequence of s copies of and identifying the terminal vertex of 
each copy (except the last one) with the initial vertex of the next one. 

For a graph G let M(G) be the cycle matroid of G. 
Then M(sGi) is the direct sum of s copies of M(G i). (The direct sum of matroids 

on disjoint ground sets is obtained by taking the union of the ground sets as the new 
ground set and letting a subset be independent if its intersection with each ground set 
is independent.) If M is a matroid isomorphic to M(sG{) then it has a unique decom-
position into s matroids isomorphic to M(Gi), called the components of M. An or-
dered partition of M into independent subsets is called the greedy partition if on 
each component it corresponds to the greedy partition of (?,. 

The graph 2Gt is a subgraph of Gi+1 and therefore a matroid M^M(Gt) © M(Gt) 
(where © denotes the direct sum) can be extended to a matroid isomorphic to 
M(Gi+1) by adding one more element to it. 

Now let g( 1):=1, ^ ( fc ) := (A: - l ) (2^ (A: - l ) - l ) + l for £ > 1 and f(k):= 
: = 2 s i i ) f o r ¿ S i . 

isk 
We show that the algorithm A uses Sfc colors to partition some 2-partitionable 

matroid on f(k) elements. 
Using an adversary strategy we prove that giving g(k)+...+g(k—i) elements 

(O^i^k—2) to A it can be forced either to use sA: colors or to form the greedy 
partition on a submatroid isomorphic to M(2g(k—i—\)Gi+i). 

For i = 0 , giving g(k) independent elements to A it either uses Sfc colors or it 
assigns the same color to 2g(k— 1) elements and M(GX) consists of a single element. 

For the induction step assume that after adding g(k)+...+g(k—i+1) ele-
ments to A it formed the greedy partition on a submatroid Mi^M(2g(k—i)Gl). 
Pair the components of M{ and add g(k—i) elements (one to each pair) to extend 
each pair to a matroid isomorphic to M(Gi+1). As A cannot use any of the / colors 
used for Mi it either uses sfc—/ colors different from these or it assigns the same 
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color to 2g(k—i— 1) new elements. The union of these components is M i + 1 = 
= M(2g(k—i— 1)(J,+I) and A formed the greedy partition on Mi+1. 

For i=k—2 we get M f c _ 1 ^M(2G k _ 1 ) such that A formed the greedy partition 
on M t _ 1 . Adding a new element to obtain Mk=M(Gk) forces A to use the kth 

color. 
As the components of the matroid M formed by all elements given to A are 

isomorphic to M(G,) for some i, M is 2-partitionable. 
Finally the bound follows from noting that g(k)s2kg(k—l), thus g(k)s 

2k -k\. Hence f(k)^2k -k-k\ and so fc = i2(log n/log log n). • 

Corollary 4. For every on-line algorithm A partitioning graphic matroids 
A (n)=Q (log njlog log n). 

Proof. All matroids constructed in the previous proof are graphic. • 

We remark that the proof of Theorem 3. does not work for graphs. This is related 
to the remarks made following the definitions in Section 2. For graphs the adversary 
is in a more difficult situation as e.g. 2 independent elements in the first phase of the 
construction can be completed to a triangle by adding a new element if we are dealing 
with general (or graphic) matroids but in graphs this can only be done if the 2 edges 
have a common endpoint. 

Let g - ( l ) := l , < ?(A:) :=(2A:) ( t- 1 ) ( 2^- 1 )- 1>+ 1- l for and f(k):= £ g(i) 
isk 

for k ^ l . 

Theorem 5. Every on-line graph partitioning algorithm A forms at least k classes 
for some 2-partitionable graph having f ( k ) edges. 

Proof. We describe an adversary strategy by induction on k, for k=1 the state-
ment is obvious. First we prove a lemma. 

Lemma 6. For every I (2slsk), by building a forest on #( / ) + 1 vertices A 
can be forced either to use at least / colors or to form a monochromatic path P of 
length 2g(l—l). 

Proof. A forest is rooted if each of its components has a distinguished vertex 
called the root. An /-edge colored rooted forest with j roots is an (/,_/)-forest if there 
are numbers tlt . . . , / , with /! + . . . + / , = / such that for every root v and every r 
(1 S r S / ) v is the endpoint of a monochromatic path of color r and length tr. 

We show that for every i=0, ..., (l—\)(2g(l— 1)—1) + 1 by building a forest A 
can be forced either to use s / colors or to form an (/, (#(/)+l)/(2/) ' )-forest . 

For / = 0 the empty graph on g(l) + 1 vertices is a (0, g(l) + l)-forest. Assume we 
constructed an ( i - l , (g(/) + l)/(2/)( ,-1>)-forest. Add (^( / ) + l)/(2(2/)('-1>) new 
edges forming a matching of the roots. Then A either uses s / colors to color these 
edges or s ( g ( / ) + l)/(2/)' new edges get the same color. In this case select an end-
point of each of these edges and let them be the new roots. Deleting the components. 
without a selected root we get an (/, (g(l)+l)/(2/)')-forest and the whole graph built is 
a forest. 

For / = ( / - l ) ( 2 ^ ( / — 1 ) - 1 ) + 1 we get an (/, l)-forest, i.e. a tree with ?! + ... 
. . .+ / ,= ( / -= l ) ( 2 g ( / - l ) - l ) + l . Thus f o r s o m e r ( l s r s i / ) it holds that tr^2g(l-\). 
The path P required can be chosen to be the corresponding path of color r. • 



114 U. Faigle, W. Kern and Gy. Túrán 

Now we describe the adversary strategy Sk. 

1) Force A either to use ^k colors or to form a monochromatic path P of 
length 2g{k— 1) by building a forest on a set Vk of g(k) +1 vertices. (This can be done 
by Lemma 6.) 

2) Apply iSfe_! to the set Vk_1 consisting of every second vertex of P (thus 

Note that after completing phase 1) Vk_1 is an independent set of vertices and 
in later stages the color of the path P cannot be used as otherwise a monochromatic 
cycle is created. Thus by induction Sk indeed forces A to use s f c colors and the 
construction implies that the graph G built by the adversary has ^ f ( k ) edges. 

Finally we claim that G is 2-partitionable. This follows by induction. Assume 
that the graph G' built on is 2-partitionable and let (Fx, F2) be a partition of its 
edges into 2 forests. Then adding the edges of P to F1 and F2 alternatingly and adding 
the remaining edges of G arbitrarily we get a 2-partition of G. • 

By definition, Theorem 5. implies the following. 

Corollary 7. For every on-line graph partitioning algorithm A A(n)-+ °° and A 
does not have bounded performance. • 

5. Non-adaptive adversaries 

Several lower bounds for on-line algorithms are based on the existence of ins-
tances / such that for every independent partition of J there is an initial segment 
of / for which the restriction of the partition is far from being optimal. This shows 
that no on-line algorithm can have good performance on every initial segment of I. 

Thus the adversary providing I is non-adaptive in the sense that for every algo-
rithm A it provides a counterexample which depends on A in a very restricted way 
only through the choice of the initial segment of I. With other words the only liberty 
the adversary has is to decide when to stop giving new elements. 

All known lower bounds for bin packing are non-adaptive. On the other hand 
the lower bounds for graph coloring and chain decomposition (e.g. [25], [14], [16]), 
and the lower bounds of the preceding section are adaptive, i.e. when the adversary 
determines the next extension of the current instance it takes into consideration the 
previous decisions made by the algorithm. 

For /„=(£„, let / ! < . . . < / „ be the initial segments o f / „ , Pn=(F1, ..., F,) 
be an independent partition of E„ and Pk=P„\Ek (l^k^n) be the restriction of P„ 
to Ek. With these notations let 

£ : = i n f { r : 3cV/ne./3PnVP*: \Pk\ ^ rp(Ik)+c) 

(jjr could be defined analogously). By the argument above s y ^ r y . We consider the 
question of how good a lower bound is sy to ry. 

For graph coloring restricted to forests clearly sy = l and as mentioned in 
Section 3. = (as A (n) = Q (log ?i) for every on-line algorithm). We mention 
another example where both sy and ry are finite but different. 
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As it is mentioned in Section 3., Kierstead and Trotter [16] showed that r y = 3 
for the chain decomposition problem restricted to interval orders. 

Proposition 8. For the chain decomposition problem restricted to interval 
orders 

Proof. The bound follows directly from the proof of Kierstead and Trotter [16]. 
Let P be an interval order of width w on the ground set V = {t^, ..., t>„}. Then V 
is partitioned into w sets ..., Lw by considering the elements ..., v„ one after 
the other and putting each element into the first set so that the conditions 
w i d t h ^ l Z ^ U . . . U L t ) = i remain satisfied for every i^w such that L^Q- It is 
shown in [16] that then width(L ;)^2 for every / s w . The proposition follows by 
considering a chain decomposition of P which consists of the chain Lx and 
chains covering L ; for 2 s i ^ w . • 

Now we give an example where s y = r y . 
Let RESTRICTED BIN PACKING be the bin packing problem restricted to 

items with sizes (1/2)—e and ( l /2)+e (for some fixed e-== 1/6). We denote (1/2)—s 
by a and (1/2)+e by b. 

Theorem 9. For the restricted bin packing problem j J = r ^ = 4 / 3 . 

Proof. The lower bound is noted e.g. in Liang [20]. Consider / ' < / 
where I contains n a-i terns followed by n ¿-items and / ' is the first half of /. If an 
algorithm A fills k bins with 2 a-items each after processing / ' then 

\A{I')\lp{n = 2-2(k/n), \A(I)\/p(I) s i + (k/n) 
which implies the bound for sy. 

To prove the upper bound we describe an on-line algorithm with r J = 4 / 3 . 
We distinguish 4 types of bins: a-bins, ¿»-bins, aa-bins and «¿-bins, corres-

ponding to the items contained in the bin. The algorithm will also pair some bins, 
the possible bin-pair types will be (aa, a), (aa, b), and (aa, ab). If a bin is not paired 
with any other bin it is called unpaired. 

A new element is processed according to the following rules: 
a) for a new element a*: 

if there is a ¿-bin B then put a* into B 
else if there is an unpaired a-bin B then put a* into B 

else if there is an unpaired aa-bin B then put a* 
into a new bin B' and pair B and B' 

else open a new bin B for a*; 
b) for a new element b*:. 

if there is an a-bin B then put b* into B 
else if there is an unpaired aa-bin B then put b* into a 

new bin B' and pair B and B' 
else open a new bin B for b*. 

If there are several bins satisfying a condition then the choice is arbitrary, for 
definiteness let us always choose the first one. 

It is easy to see that all possible bin-pair types that may be formed by the algo-
rithm are indeed (aa, a), (aa, b) and (aa, ab). 
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Let us assume thatafter processing a list / the algorithm created cx unpaired a-
bins, c2 unpaireb ¿-dins, c3 impaired aa-bins, c4 unpaired «¿-bins, c5 (aa, a) bin-pairs, 
cg (aa, b) bin-pairs and c7 (aa, ab) bin-pairs. 

By definition 

= c1 + c 2 +c 3 +c 4 + 2c5 + 2c6 + 2c7, (1) 

as the number of ¿-items is a lower bound to /?(/) 

p(I) S c 2 + c 4 + c 6 + c 7 , (2) 

and as the half of the number of items is a lower bound to p ( I ) 

p(I) s (1 /2 ) C l +(1 /2 )c 2 +c 3 +Q + (3/2)c5+(3/2)ce+2c7 . (3) 

Subtracting (2) resp. (3) from (1) we get 

M ( / ) | - p O O s C l + c 3 + 2 c 5 + c 6 + c 7 , (4) 

\A(I)\ - p ( I ) S (l/2)c1 + (l/2)c2 + (l/2)c5 + (l/2)c6 . (5) 

We note that there cannot be both an a-bin and a ¿-bin in the packing as in this 
case the item arriving later would not be put into a separate bin. 

Lemma 10. cj + c 3 + c 6 s 1. 

Proof. We consider 6 different cases. 
1) There cannot be 2 unpaired a-bins as otherwise the a-item arriving later would 

not have to be put in a separate bin. 
2) There cannot be an unpaired a-bin B and an unpaired aa-bin B'. Indeed, if 

the a-item in B comes last, then B could be paired with B', if one of the a-items in B' 
comes last then before the arrival of this element we get a contradiction to 1). 

3) There cannot be 2 unpaired aa-bins as otherwise before the arrival of the last 
item we get a contradiction to 2). 

4) There cannot be an unpaired a-bin and an (aa, b) bin-pair by the remark 
preceding the lemma. 

5) There cannot be an unpaired aa-bin and an (aa, b) bin-pair. Again by the 
remark preceding the lemma the item coming last must be the ¿-item. But then before 
the arrival of this item v/e get a contradiction to 3). 

6) There cannot be 2 (aa, b) bin-pairs. Again, the last item arriving must be a b-
item. But then before the arrival of this item we get a contradiction to 5). • 

In the proof of the theorem we distinguish 2 cases. 

Case 1. c2=0. 

Then using Lemma 10., (5) and c5s(2/3)/>(/) following from (3) we get 

\A(I)\-p(I) S (1/2)cs+(1/2) s ( l /3) /? ( / )+( l /2) hencc 
\A(I)| S (4/3)/>(/)+(l/2). 



On the performance of on-line algorithms for partition problems 117 

Case 2. c 2 >0. 
From the remark preceding Lemma 10. in this case c 5 = 0 and so we get from 

(4) and (5) using Lemma 10. 

\A(I)\-p(I)S i + c7 (6) 

\A(I)\-p{l) s (1/2)+(1/2)c2. (7) 

Adding (7) twice and (6) and using c2+c7^p(I) (cf. (2)) 

3 ( M ( / ) | - / ? ( / ) ) S 2 + C 2 + C 7 2+p(I) 
and so 

| ^ ( / ) | == ( 4 / 3 ) P ( / ) + ( 2 / 3 ) . • 

6. Some remarks and problems 

1. (Greedy algorithm vs. on-line algorithms.) 
The chain decomposition problem for series-parallel orders is an example where 

the greedy algorithm gives an optimal solution. For the edge coloring problem =2 
and no on-line algorithm can have better performance. Thus for these problems on-
line algorithms cannot perform better than the greedy algorithm. 

On-line algorithms give a large improvement for the general chain decomposition 
problem (where AgI(n)=Q(n) and there is an on-line algorithm with bounded per-
formance), for the graph coloring problem (where Agr(n) = Q(n) and there is 
an on-line algorithm with A(n) = o(n)) and for the bin packing problem (where 
rX r =1.7 and there is an on-line algorithm with r J=5 /3 ) . 

There appears to be no example known where the greedy algorithm is not opti-
mal but there is an on-line algorithm giving an optimal solution. Also for none of the 
examples considered does it hold that r j r = ° ° but there is an on-line algorithm A 
with /-j<oo. 

2. (Bounds for particular problems.) 
It would be interesting to improve the bounds for the performance of on-line 

algorithms for matroid and graph partitioning, in particular to decide if on-line 
algorithms can perform better than the greedy algorithm for partitioning graphs. 

Concerning adversaries it appears to be not known if adaptive adversaries can 
lead to stronger lower bounds for the bin packing problem. Another question is the 
following: is = for the graph coloring problem? (Coloring optimally with i 
new colors those initial segments for which the chromatic number is i gives a coloring 
which uses s / ( / + l ) / 2 colors for every initial segment of chromatic number /.) 

A related partition problem which does not fit into the class of problems dis-
cussed here, but which would be interesting to study in the context of on-line algo-
rithms is the. m-machine scheduling problem: given n tasks with execution times 
tlt ..., t„ find a schedule for m machines to minimize finishing time (thus here the 
number of the classes is fixed and we want to minimize the maximal weight). The 
greedy algorithm has performance ratio 2—(1 ¡m) (Graham [10]). No on-line algorithm 
appears to be known which improves this for any m. The lists (1, 1, 2) and (1, 1, 1, 
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3, 3, 3, 6) show that no improvement is possible for m=2 and m=3. The list (1 m 
times, 1 + / 2 / Í ! times, 2(1 + / 2 ) once) shows that 1 +(1 / / 2 ) is a lower bound for the 
performance ratio of on-line algorithms for every m s 4 . 

Acknowledgement. We thank Collette Coullard, János Csirik, Gábor Galambos 
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Summary 

The class S) contains the (0, l)-matrices having row and column sum 
vectors R and S, respectively. The problem of the structure of sf(R,S) is considered, 
that is the problem of determining the sets of invariant l's, invariant 0's and variant 
positions. Two methods are given, whereby the structure can be determined if an 
element of s/(R, S) or the vectors R and S are known. Furthermore, a new proof is 
given to Ryser's theorem constructing the variant and invariant positions of the class 
j / . 

1. Definitions 

Let A be a (0, l)-matrix of size n by m. The sum of row i of A is denoted by r, : 

m 
rt= 2 au 0 = 2' •••> ")> 

J = I 

and the sum of column j of A is denoted by Sj: 

n 
S j = 2 0ij ( j — 1, 2 , . . . , tri). 

We call R=(r1,ri, ..., r„) the row sum vector and S=(s1, s2, ..., sm) the column 
sum vector of A. R and S are also called the projections of A. There is an extensive 
literature on different questions concerning binary matrices and their projections (for 
surveis see e.g. [9] and [l]). Let s4(R, S) denote the class of nXm (0, l)-matrices with' 
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row sum vector R and column sum vector S. Gale [2] and Ryser [6] have proved that 
the class st(R, S) is non-empty if and only if 

k k 
Z s j 

j=i ;=l 

for all k = l, 2, ..., m, where S=( s j , s2, •••> sm) is the column sum vector of binary 
matrix A defined as 

where 

M 
A = h 5 

A, 
S, = (1, 1, - 1,0, 0, 

with rf number of l's and (m—/•,) number of O's ( 0 g r . ^ w ) . There is exactly one 
matrix in s?(R, S) if and only if 

k k 
2 h = 2 *j j=i 

for all ¿ = 1 , 2 , . . . ,m (see e.g. [10]). 
Consider the matrices 

A, = (J i ) and A, = ( J ¿) • 

An interchange is a transformation of the elements of A that changes a minor of 
type Ay into type A2 or vica versa and leaves all other elements of A unaltered. We 
say that the four elements of the minor form a switching component in A. The inter-
change theorem of Ryser [6] says that if A and A' are in si{R, S), then A is transfor-
mable into A' by a finite sequence of interchanges. 

Let A$_si(R, S). A is ambiguous (with respect to R and S) if there is a dif-
ferent A'£ s/(R, S) (A'?±A). In the other case, A is unambiguous. It is easy to prove 
(see e.g. [2]) that A is ambiguous if and only if it has a switching component. 

An element a^ = 1 (or 0) of A is called an invariant 1 (or 0) if there is no sequ-
ence of interchanges which, when applied to A, replaces it by 0 (or 1). Otherwise, au 
is a variant element of A. By the interchange theorem, if au is an invariant 1 (or 0) 
of A£ si(R, S), then ay is also an invariant 1 (or 0) of every A'£ s/(R, S). In this 
sense, we can speak about the invariant 1, invariant 0 and variant (i,j) positions of the 
class sf(R, S). 

Without loss of generality, we can suppose that 

and 
rx S r2 rn > 0 

Si È . . . Ë Î , > 0, 

(1.1) 

(1.2) 
because this situation can be reached by excluding zero rows and zero columns and 
Hy permuting rows and columns so that the row-sums and the column-sums are non-
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increasing. A non-empty class si(R, S) with R and S satisfying (1.1) and (1.2) is said 
to be normalized. 

In the determining of the invariant positions of the normalized class si(R, S), 
a useful device is the structure matrix [8]. Let A be in the normalized class si (R, S) 
and let us write 

A = (Y Z}> 

where Wis o f size eXf (O^e^n, Osf^m). L e t Q be a (0, l ) -ma t r ix , a n d let N0(Q) 
denote the number of 0's in Q, let N^Q) denote the number of l 's in Q. Now let 

tef = *om+N1(Z) 

e=0, 1, ...,n\ / = 0 , 1, ...,m. W e call t he (n + l ) X ( w + l ) m a t r i x 

T = (te/) 

the structure matrix of si(R, S). It is easy to see that 

n I 
te/ = e-f+ 2 ri~ 2sJ-

i = e+1 j = 1 

Ryser proved the following 

Theorem 1.1 [7]. The normalized class sd{R, S) is with invariant 1 's if and only if 
the matrices in si (R, S) are of the form 

-(is)-
Here O is a zero matrix and J is a matrix of l's of size eXf (0<esn. m) 

specified by 
tef = 0. 

(The integers e and / are not necessarily unique, but they are determined by R and S 
and are independent of the particular choice of A in 

By Theorem 1.1, one can construct the structure of class s4 (R, S) with the help 
of matrix T. In this paper, another way is given to construct the invariant and variant 
positions of class s i . First, the structure of the variant elements of the (not necessarily 
normalized) class s i is given. From the determination of the positions of the variant 
elements, it is also possible to give the whole structure of si. In Section 3, the case of 
the normalized class is discussed applying the idea of double-projection used earlier 
in characterization problems of binary matrices [5]. A direct and demonstrative 
relation between the structure of si and the vectors R and S is given in Section 4, 
from which the mode of construction of the structure of si follows. 
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2. The structure of the class st(R, S) 

First, consider the variant elements of sf(R, S). 

Lemma 2.1. Let A be a matrix in s/(R, S), and let 

aih' aih> •••» 

aiii' ahJ' • • • >
 aiii-> 

be variant elements of yi such that l^ij, i2, ..., 
0*1» • ••» 'ih j t l / i ' J s , • - 'Ah where l < / s « and Then, a r J . is 

variant for all ( i " , / ) 6 { / l f / „ '/}X{A (see Fig. 1/a). 

V £ v 

V £ 
V V V v V V V 

V 

v v V V 

V v V V 4 

V V V V V V V 

£ 0 1 H 
fifr/i/v /. The variant elements a induced by the variant elements 0 according to 

a) Lemma 2.1, h) Lemma 2.2 and c) Lemma 2.3 

Proof. The assumptions of Lemma 2.1 include that au is a variant element of A. 
Let ( / ' , / ) O'V/, 7'Vy) be an otherwise arbitrary element of ft, /2, ..., i,}x 
X-UiJz, —,jk}- if 

(2.1) 

(2.2) 
(2.3) 

then atJ, aVj, air and aVj. form a switching component in A, and hence arj. is variant. 
If any of the equalities (2.1)—(2.3) is not satisfied, then, since atJ, arj and atj. are 

avr = 1 -at.j, 

arr = 1 -air, 
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variant, it is possible to alter any of them (occasionally all of them) by a suitable 
interchange in order to get a switching component at {/', i'}X{j,j'}. That is, 
( / ' , / ) is a variant position in si(R, S). A simple consequence of Lemma 2.1 is the 
following 

Lemma 2.2. Let A be a matrix in si (R , 5 ) , and let 

J = {/i> Jii •••>jk}> 3' = { j i ' j L • ••>.//}> 

JC\J' 0, 

such that ahh,ailh, ...,ahJk and a-^,..., aij; are variant. Then, atJ is 
variant for all ( i j ) 6 {/ls /2}x(/U7') (see Fig. 1 ¡b). 

Proof. By Lemma 2.1, the elements of A at {¡i, i2}XJ and {/j, / 2 }X/ ' are 
variant. 

Lemma 2.3. Let A be a matrix in s/(R, S), and let J={h,j2, ...,jk) be the 
indices of variant elements in row / ( l ^ ' S n ) . If there is a row i' (i'^i) such that 
the elements a i V l , ai,Ji, ..., arjk also include 0 and 1, then aVh, aVji, ..., aVJk are 
variant elements (see Fig. 1/c). 

Proof. Let us suppose that arh=0 and ai,h = 1 (by a suitable rewriting of the 
indices, we can always reach such a situation). We shall construct a switching com-
ponent at {/, ;"}X {j\,j2}'- If a th = 1 and a l h = 0 , then we are ready. If a i j i = 1 
and aih — \, then, since aih is variant, there is a switching component whereby alJt 
will be 0 (alh and remain unchanged). Similarly, if alh=0 and aijt=0, then 
there is a switching component whereby aih will be 1 (in this case aih and aVn remain 
unchanged). In the last case, if a O l = 0 and aijl = 1, then we can change aih and 
aiJt by at most two interchanges (without changing aVh and arjl). 

Theorem 2.1. The variant positions of class si (R, S), if there are any, are in 
sets r l s T2,..., Tp (p=0 is also possible) such that 

Ts = ISXJ„ 

s=l, 2, ...,p, where Is are pairwise disjunct subsets of {1,2, . . . ,«} and Js are pair-
wise disjunct subsets of (1,2, ..., m}. 

Proof. Consider the set of column indices of the variant elements in row i, denoted 
by /¡. Let 

/, = {/|/,n7, * 0}, 
and let _ • . • -

J, = U Ji-

By Lemma 2.2, every position (i,j) is variant for which (/,./ ')£/¡xJf. By definition, 
it is clear that (i,j), ( / ' , / ) ( : / ¡ X J j if and only if 

IiXJ, = IVXJV. 
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That is, by applying the procedure for all / = 1,2, . . . ,«, we get disjoint subsets 
/ l 5 / 2 , ..., Ip and Jx, J 2 , ..., Jp, and the sets 

Ts = ISXJS, 

i = l , 2, ...,p, contain all of the variant positions of si{R, S). 

3. The structure of the normalized class si(R, S) 

Henceforth, we take si(R, S) normalized. 

Lemma 3.1. Let A be a binary matrix in the normalized class si (R, S), and let 

{max {jWij = 1}, if atj = 1 for some j — 1, 2, ..., m 

0, if atJ= 0 for all / = 1 , 2 , . . . ,m and 

{min {/|fly = 0}, if fly = 0 for some j=\,2,...,m 

m +1 , if fly = 1 for all y ' = l , 2 , ..., m 
for all / = 1 , 2 , ..., n. If z^Ui for some /, then a^ is variant for all /', z^j^Ui. 

Proof. If there is an i, l s / s « , such that fly=0, a y = l, / = / ' , then, since 
Sj^Sy, there is an / ' , l s / ' ^ w , such that avj = l, aVy=0. That is, ay , air, aVJ 
and arJ> form a switching component. Therefore, all of the positions between z ; 
and ut are variant. 

An analogous lemma is true for the columns: 

Lemma 3.2. Let A be a (0, l)-matrix in the normalized class si (R, S), and let 

{max {/|fly = 1}, if fly = 1 for some i = 1, 2, ..., n 
0, if fly = 0 f o r a l l i=\,2,...,n 

and 

{min {/|fly = 0}, if fly = 0 for some i = 1,2, ..., n 
n +1, if fly = 1 for all / = 1 , 2 , . . . , « 

for all 7 = 1, 2 , . . . , m. If Wj<Vj for some /', then fly is variant for all /, W j ^ i ^ V j . 

Theorem 3.1. The variant positions of the normalized class si(R, S) are in the 
sets 7 i , r 2 , ..., Tp (p = 0 is also possible) such that 

Ts = I s X J s y 
5 = 1 , 2 , ...,/>, where 

is = №,is+1,..Q, i / r < 4 < / 2 • / ; ^ « , 

= { ; ; , n , i s y ; < r ; < < y ; _ i ^• • • <a' < x ^ m. 

Proof We know that the variant elements of ^ ( R , S), which are recognized by 
Lemmas 3.1 and 3.2, follow in rows and in columns consecutively.Following the same 
idea as in the Proof of Theorem 2.1, we have that the sets TS=ISXJS, j = 1 , 2, ...,p, 
are the places of variant elements, where /s and Js contain the indices of consecutive 
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rows and columns, respectively. Furthermore, /SO/S .=0 and Jsf]Js.=Q if s^s'. 
From this construction, it is clear that ({1, 2,,..., i's — 1}XJS)U(ISX {1,2, ...,7/ — 1}) 
contains only l 's and ({/s" + l, £ + 2 , . . . , m}X/ s)U(/ sX{7,f+ 1, ¿ " + 2 , ..., w}) con-
tains only 0's. Since the elements of R and S are in decreasing order, 1 S r , 
s ^ p , if and only if j r^ j ' s - That is, if T1, T2, ...,TP are indexed so that 

It is easy to see that the set {1, 2, . . . ,«} X {1, 2 , . . . , m}\ U STS contains only invariant 
positions and so U s r s is the set of the variant positions of the normalized class 
ji(R, S). 

The following algorithm can be used to determine the sets of the indices of the 
variant elements, Is={i's, i's + 1,. . . , i's"} and Js= {j's,j's +1, ...,ys"}: 

Step 1: First, the indices zf and Wj are computed for each row i. It is clear that 
Z ^ M j + l (1 Si^n). 

Step 2: The sequence of indices is modified taking the rows from down to up 
such that if M1+1>M,- then let M,=M,+I (n — l s / > l ) . 

Step 3: The rows are scanned one by one from / = 1 to /=»« with an initial 
value J=0. If z ts-u t then there is no variant element in the row /. In the other 
case, i.e. if z t s u t , theii there are variant elements in this row and let S=J + 1, 
i's=i, j's—Zi (initially) and j'i =u t . The indices j's and i'J can be determined by scan-
ning the rows further while _// ̂  ut such that meanwhile if j ' s >z i then let j ' t=Zi. 
In the row, where let i'^—i—l (this condition will be satisfied at least once 
if we set w„+i—zn+1 = —1 at the beginning of the procedure). 

Let us see two examples: 

Example 3.1. Let the (0, l)-matrix A be defined as 

/ = 1 ,2 , . . . ,« , 7 = 1 , 2 , . . . , « . In this case «¡=z, z , = l , i = l ,2 , ...,n (with the 
exception that z1=2). Applying the algorithm, we get that the set 7i containing the 
indices of the variant elements is 

then 
1 % < i'2 < ii < i'P < ^ n, 

•1, if i=j 
.0, if / 7 

7; = {1,2, ..., n}X{l, 2, ..., n}, 

that is the whole matrix. 

Example 3.2. Let A be given by Figure 2. Then 

ux = 13, zx = 14, w2 = 11, z2 = 12, M3 = 10, z3 = 11, 

«4 = 10, z4 = 11, w 6 = l l , z5 = 9, m6 = 7, ze = 8, 

«7 = 5, z7 = 3, M8 = 6, z8 = 4, «9 = 1, Zg = 2, 

i'l = 3, /T = 5, 7'i = 9, jx = 1 1 
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11 
10 
10 
9 

1 1 1 1 1 
71 1 1 1 0 0 

p 0 0 
g 0 0 

a & i 0 0 
0 0 0 0 0 0 

4 1 1 m p T O p i O p 0 0 o 0 o 
I M 1 0 1 0 1 ö l o j o l o I o I o f o I o I o I o I 

9 8 7 7 7 7 6 5 4 4 3 1 1 

and 

That is, 

Figure 2. The structure of the normalized 
class Jtf(R, S) of Example 3.2 

i'% = 7, i'i = 8, j 2 ' = 3 , j? = 6. 

71 = {3, 4, 5}x{9, 10, 11}, T2 = {7, 8}x{3 ,4 , 5, 6}, 

4. Determination of the structure of class S) from the projections 

Consider the matrices and A(y> defined by R and S as 

fO, if y > 

and 

fU, 
a.(?) = I , J l l , 

fO. 
» H i , 

otherwise, 

0, if / > Sj; 
otherwise, 

(4.1) 

/ = 1 , 2, ...,n, j= 1, 2, ..., m (see [5]). The projections of A(x) are (R(x>, S(x>), where 
R(x)=R. The projections of A(y) are (RM, SM), where S(y)=S. Similarly, the 
matrices A(xy) and A(yx) are defined by S(x) and R(y) as 

fO, if / : 

and 

fU, 
affy) = i 

" 11, otherwise, 

** = 11, 

0, if j 
otherwise 

(4.2) 

/ = 1 , 2 , y'= 1, 2, ..., m. The projections of A(xy) and A(yx) are denoted by 
(R(xy), S(xy)), and (R'yx), S(yx)), respectively. It is easy to see that A(xy) and A(yx) 

are unambiguous (they have no switching component). From the construction, it 
follows that R(xy> consists of the elements of R in decreasing order and S(yx) consists 
of the elements of S in decreasing order. That is, by constructing a (0, l)-matrix B 
with projections (R(xy\ S{yx)) and making a suitable permutation of its rows and 
columns, we get a binary matrix of stf(R, S). 
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If A(xy)=A(yx), then let B=A(xy)(=A(yx)). As B is uniquely determined by its 
projections, it has no variant element, and so there is no variant element of A that 
can be constructed from B by suitable row and column permutations. 

If A(xy) A(yx), then from matrix A(xy) the matrix B can be constructed by suc-
cessively shifting the l 's from the left to the right in the rows of A(xy\ similarly as in 
[10]: 

Procedure to construct (0, l)-matrix B: 

Step 1: j:= 1, B:=A<**K 
Step 2: Consider they'th column of B. If the number of l 's in this column is 

greater than sjyx) , then find the first row, begin from the bottom position upward, 
which contains a 1 in the y'th column and a 0 nearest to the right. Interchange the 1 
and the 0 in B. Repeat in this fashion until only s(jyx) l 's are left in this column. 

Step 3: j:=j+l. If j—m, stop. Otherwise, go to Step 2. 

The result of this Procedure is a (0, l)-matrix B having row and column projec-
tions R(xy) and S(yx), respectively. 

If A(xy)^A(yx), then S(xy)^S(yx\ but even in this case 

2 *(jxy) ^ 2 $ x ) 

j=i J = I 

for all k, l g f c g m , so that there is inequality for at least one k. Let < 
« = / p _ x ^ j p ( p = 1) be the column indices such that 

> 2 s ? * (4.3) 
i=i J=i 

if for all j = 1 , 2, ...,p, and 

= 2 s ( / x ) 

i j=I 

otherwise. It is easy to see that during the Procedure only they'th columns of B can be 
modified, where It is also clear that, if a = 1 was the bottom 1 in the 
j's th column, then finally it will be in the y's" column of B: £>,«y=0 and bi»j»= 1. 
Applying Lemma 3.1, we have =j's' and z,» = j ' s . Hence, the elements of 

Ts = I,XJ, 
are invariant, where 

/ . = { « , < + 1, - . £ } 
and 

During the Procedure, the column j is unaltered if j ^ j s j i ' is not satisfied for 
any j'„ a n d 1 ^s^p. These columns of B are the same as these columns of A(xyK 
Therefore, all of the variant elements of si (R(xy\ Slyx)) are in the columns j, where 
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for an s, 1 Ss^p. From the definition of A(xy\ it follows that 

W j : = sfS>+\ = / ; 

and ' ' (4.4) 
(xy) .// 

v j : = sk = 

where w,» and t>,» are defined for the class S(yx)), as in Lemma 3.2. An 'f Jm 
analogous procedure and philosophy for the rows gives that all of the variant elements 
of s/(R(xy\ Siyx)) are in the rows i, where 

i s / s C , 

s=\,2,...,p, where ip=\) are the row indices 
such that 

2 rp x ) > 2 *\xy) (4-5) ;=i ¡=i 

if J=1, 2, ...,/?, and 

2 r[yx) = 2 rixy) 

¿=1 • i=i 
otherwise. That is, from the projections S(xy) and 5,(yjc) we can give the sets of the 
variant elements of B, Ts, s=\,2, ...,p, by (4.3) and (4.4) (or equivalently by (4.3) 
and (4.5)) explicitly, as they are described in Theorem 3.1. 

Let 7tx denote a permutation of S^yx) such that Kx(S^yx))=S, and let ny denote a 
permutation of R(xy) such that ny(R<xy))=R. Let 

ny(Q = KO'D, + « , (£)} 
and 

= K U ' ) , nAj!)}. 

Since the sets T,=ISXJ„ s=l, 2, ...,p, contain the indices of the variant elements 
of . a f ( R l x y \ S(yx)), the sets 

n(Ts) = ny(I,)XKx(J,), (4.6) 

s= 1,2, ...,/>, contain the indices of the variant elements of the class si(R, S). 

Theorem 4.1. The variant elements of the class s/(R, S), if there are any, are in 
the sets n(Ts), s=l, 2, ...,/> (p=0 is also possible), defined by (4.1)—(4.6). 

Let us see two examples. 

Example 4.1. Let R=( 1 ,1 , . . . , 1) and S = ( l , 1, ..., 1). Then 

S^ = (n, 0 , 0 , . . . , 0 ) , Siyx) = (1, 1, ..., 1), Ji = 1, X = n, /i = l, i'i = 1, 

p = 1, A = {1,2, ..., «}, / , = {1, 2 , . . . , n}, Ji = (1, 2, ..., n), 

Hy(Ii) = {1, 2, ..., n), n ^ J J = {1, 2, ..., «}, 7i(T,) = {1, 2, ..., H}X{1, 2, ..., «}. 

Example 4.2 (see Figure 3). 
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Figure 3. Determination of the structure of s?(R, S) from the projections R and S, • and 0 denote 
the invariant 0's and the variant positions, respectively 

Consequence 4.1. The ( i j ) elements, / = 1 , 2 , . . . , n, j—\, 2, ..., m, can be 
divided into three sets: the positions of invariant 0's, invariant l 's and variant ele-
ments. From the construction of Tx, T2,..., Tp from R(xy) and S( j ,J°, it follows that 

the set of invariant l 's of the class st(Rixy\ S(yx)) is 

{ ( i j M j x y ) = 1 } \ U Ts; 
S = 1 

the set of variant elements of the class sf(R<-xy), S(yx)) is 

U Z -, 
s=1 

t he set o f inva r i an t 0 ' s o f t h e class ssf(R<xy\ S(yx)) is 

{1, 2, ..., n } x { l , 2, ..., m}\{(i,j)\a^ = 1 } \ ( U Ts). 
S = 1 
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Similarly, the set of invariant l 's of the class s/(R, S) is 

{('> J)\aij = 1 } \ U n(T3); s=1 
the set of variant elements of the class s/(R, S) is 

U <Tsy, 5 — 1 
the set of invariant 0's of the class sf(R, S) is 

{1, 2, ..., и}х{1 ,2 , ..., m}\{(i,j)\au = 1 } \ ( U n(Ts)), 
5=1 

where A is an arbitrary element of the class s4(R, S). 

Consequence 4.2. From Ryser's Theorem [6], we know that if A, A% S), 
then A is transformable into A' by a finite sequence of interchanges. From the struc-
ture of sf{R, S) given by Theorem 4.1, it is also clear that the four elements of an 
interchange are in one of the sets n(Ts). That is, if A, A'£ s2(R, S), then A is trans-
formable into A' by a finite sequence of separate interchanges in я(7j) , u(T^), ... 
..., я(Гр). Let ns denote the number of different binary matrices generated from an 
A£jrf(R,S) by interchanges only in tc(Ts), s=l, 2, ...,p. The number of elements 
of sf(R,S) is an interesting unsolved problem (see [4] and [11]), which can be reduced 
to the determination of the numbers ns, 5=1 ,2 , . . . , / » , in the following way: 

5 = 1 

The author thanks Mrs. S. Siloczki and Mrs. E. Vida for the technical assistance 
in the preparing of the manuscript. 
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Parallel programming structures and attribute grammars* 
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1. Introduction 

The attribute grammars are useful tools to give the semantics of programming 
languages for compiler construction, thus many complier generators based on attri-
bute grammars have been developed [4] [*/] [8] [9] [11] [12]. 

Many papers deal with attribute grammars describing structure of sequential 
languages for compiler construction, but only a few deals with parallel programming 
structures. 

In this paper we give the semantics of the bracket pair cobegin-coend and the 
symbol and in words, and afterwards we give the object which the parallel program-
ming constructions will be translated to. In section 3 we give an attribute grammar 
able to perform the required translation. The concept of attribute grammars and the 
notations used can be seen in [1]. In section 4 we mention some experiences got in the 
implementation by means of attribute grammars of a parallel programming language 
in which processes communicate through Hoare's monitors. 

The methods given in the paper were tested successfully in a CDC 3300 computer 
of the Hungarian Academy of Sciences with the help of the HLP/SZ compiler genera-
tor system [11]. 

* Supported by the Research Foundation of Hungary, Grant No. 1066, 1143. 
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2. Semantics and translation of the bracket pair 
cobegin-coend and the constructor and 

The constructor and is used to separate instructions such as the symbol;, but 
the instructions separated by and may be executed in parallel. The priority of the 
symbol and is higher than the priority of the symbol;. Thus in the following part of 
a program: statement,; statement2 and statement3; statements statement and 
statement3 are executed parallel, but after finishing the execution of s tatement 
and before beginning the execution of statement4. 

The bracket pair cobegin-coend is used to ecnlose a statement list such as the brac-
ket pair begin-end, but the statement of a statement list enclosed in a bracket pair 
cobegin-coend are executed parallel. To separate the statements enclosed in cobegin-
coend's can be used; as well as and or mixing the two symbols. 

For the translation of these parallel programming constructions we will use three 
primitives: fork, join and quit [2] [3]. We have selected these primitives because the 
operations fork and quit are available in all languages including the psosibility to 
creating and terminating processes, while join can be realized by a "go to" statement 
and a semafor. 

Execution of the operation fork w creates a new process starting at the statement 
labelled w. If a process executes a primitive join t, w it is equivalent with / := t — 1; 
if / = 0 then goto w as a unique and indivisable operation. 

To determine the tasks statically we have to decompose the program into seg-
ments representing processes or parts of processes. Of course, processes are not uni-
quily determined. For example let's see the following program: 

begin statementj; statement^ statement3; 
cobegin begin statement^ statements end; 

begin statement^ statement, and statements; 
statement^, statement^ end 

coend; 
statementu ; statement^; 
begin statement13; statement^ end and statement^ 

end 

This program can be partitioned into the following segments: 

tx: statementj; statement^, statement3 

f2 : statement,,; statements 
f3 : statement 
/4: statement, 
i5: statements 
t6: statement;,; statement^ 
t7: statementn ; statement^ 
f8 : statement^; statement^ 
tg: statement». 
Moreover we can associate to the program a task flow graph [10] in which each edge 
corresponds to the execution of a segment: 
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t* 

One of the possibilities to translate our program partitioned into those seg-
ments with the above primitives is the following: 

begin tt: statement!; statement^, statement3; K1:=2; fork f2 ; quit; 
t2: fork ts; statement^, statements; join « l 5 ?7; quit; 
t3: statement6; n3\—2; fork /4; quit; 
t4: fork tb; statement,; join n3, t6; quit; 
i5 : statement8; join n3, i6; quit; 
ts: statement9; statement10; join n l 5 /7; quit; 
t7\ s t a t emen t^ statement12; n7:— 2; fork ta; quit; 
ts: fork t9; statement13; statement14; join n7, end; quit; 
ta: statement15; join n7, end; quit; 

end: end 

An attribute grammar is able to define that kind of decomposition into segments 
and of translation to processes. 

3. An attribute grammar to describe parallel programming 
structures for compiler construction 

The translation of a structure cobegin statement^ . . . ; s ta tement coend or 
statement! and ... and s ta tement will be as follows : 
free m; t:—n; fork Jj; quit; 
5X: fork j2 ; occ m l 5 mi; ... code of statement!.. .; free m^, 

join t, end; quit; 

s„: nop; occ m„, m'„; ... code of statement« . . . ; free m„; 
join t, end; quit; 

end: occ m, m'; 
where free an occ are newly introduced macros to allocate and deallocate work-areas 
for processes. 

We use the well known attributes "codelength" (synthesized) and "codeloc" 
(inherited) which give the length and the localization of the generated code. Another 
synthesized attribute is "level" to calculate the size of the work-area necessary for 
each process. 

The code generation of parallel structures can be performed at the root of the 
subtree associated with them in the derivation tree after the generation of the code of 
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each segment (statement!, ..., statement,,). For the generation of the correct primiti-
ves and macros it is enough to know the size of the work-area and the localization of 
each statement, because the localization of a statement can be used to obtain the label 
of the work-area of the statement. 

We use some other attributes in the grammars. The synthesized attribute "csloc" 
gives the necessary information (the localization of the generated code and the size 
of the work-area of each statement) upwards to the root of the subtree. The inherited 
attribute "loclev" is a pair (m, m') giving the label and the size of the work-area 
which has to be allocated at the beginnig and has to be deallocated at the end of the 
execution of a parallel structure. The inherited attribute "costat" tells us whether a 
statement is in a parallel structure or not. 

The code generation can be performed by a synthesized attribute which is to be 
evaluated during the last pass. We do not deal with it, because it would have a long 
and trivial description in the 4-th, 7-th and 8-th syntactical rules of the attribute 
grammar. Furthermore in a syntactical rule p:X,0::=X1...Xn we will omit the se-
mantical rules of the form X0.a=Xj.a when there is no other Xt (1 s z ' s 

and zVy) which has the same attribute "a" , and also the rules of the form 
Xj.a=X0.a (1 —«p). 

Now see the attribute grammar: 
Nonterminal symbols and their attributes: 
program has no attributes 
block has codelength, level, codeloc, loclev 
coblock has codelength, codeloc, loclev 
stat_list has codelength, level, csloc, codeloc, loclev, soctat 
statement has codelength, level, codeloc, loclev, costat 
partstat_list has codelength, csloc, codeloc 
Syntactical rules with their semantical rules: 

i) program ::= block 
block.codeloc=2 
block.loclev=(l, block.level) 

ii) program ::= coblock 
coblock.codeloc = 1 
coblock.loclev=(0, 0) 

iii) block::=beginstat_listend 
stat_list.costat=false 

iv) coblock: := cobegin stat _list coend 
coblock.codelength =stat_list.codelength+5 
stat_list.codeloc=coblock.codeloc+4 
stat_list.loclev=(0, 0) 
stat_list.costat=true 

v) stat_listx::=statement; stat_list2 

stat_listj.codelength =statement.codelength+stat_list2.codelength 
stat list l e v e l = j s t a t e m e n t - l e v e l , if statement, level ^ stat_list2.level 

| stat_list2.level, if statement, level < stat_list2.level 
stat_list1.csloc=((statement.codeloc, statement, level), (ax, 6j), ..., (ak, bk)), 
where ((alt bx, ...,(ak, bk))=stat_list2.csloc 
stat_list2.codeloc=stat_listx.codeloc+statement.codelength 
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vi) stat_list: := statement 
stat_list.csloc=((statement.codeloc, statement.level)) 

vii) stat_list1: :=parstat_list; stat_list2 

stat.list^codelength = 

f parstat_list.codelength+stat_list2.codelength+5, 
if stat_list1.costat=false 

parstat_list.codelength+stat_list2.codelength, 
if stat_list1.costat=true 

stat_list1.csIoc=((a ], è j ) , . . . , (ak, bk), (ct, dt),..., (c,, dt)), where 
((aL, by), ..., (ak, bk)) =parstat_list.csloc and 
((Cj, dy),..., (c,, dt)) =stat_list2.csloc 

rstat_listj.codeloc+4, if 
stat_list1.costat=false 

stat_list1.codeloc, if 
stat_list1.costat=true 

stat_list1.codeloc+ 
parstat_list.codelength+5, if 

stat_list1.costat=false 
stat_list1.codeloc+ 
parstat_list.codelength, if 

stat_list1.costat=true 

parstat_list.codeloc= 

stat_list2.codeloc= 

Note: in this syntactical rule there is code generation if stat_list1.costat=fa1se 

viii) stat_list::=parstat_list 

stat_list.codelength = 

stat_list.level=0 

parstat_list.codeloc= 

parstat_list.codelength+5, 
if stat_list.costat=false 

parstat_list.codelength, 
if stat_list.costat=true 

stat_list. codeloc+4, 
if stat_list.costat=false 

stat_list.codeloc, 
if stat_list.costat=true 

Note: in this syntactical rule there is code generation if stat_list.costat=false 

ix) parstat_listx::= statement and parstat_list2 
parstat_list1.codelength=statement.codelength+parstat_list2.codelength 

parstat.listj.csloc=((statement.codeloc, statement.level), 
(aj, bt),..., (ak, bk)), where ((ax, bj, ..., 
..., (ak, bk)) =parstat_list2.csloc 

statement.loclev=(0, 0) 
statement.costat=true 
parstat_list2.codeloc=parstat_list1.codeloc+statement.codelength 
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x) parstat_list::= statement! and statement2 
parstat_list.codelength=statementi.codelength+statement2.codelength 
parstat_list.csloc=((statementj.codeloc, statementj.level), 

(statement2.codeloc, statement2.level)) 
statementj.loclev=(0, 0) 
statementj.costat=true 
statemen t2.codeloc=pars tat _list. codeloc+statement!.codelength 
statement2.loclev=(0,0) 
statement2.costat=ture 

xi) statement block 

statement.codelength = 

block.codeloc= 

block. loclev= 

block.codelength+5, if 
statement.costat=true 

block.codelength, if 
statement.costat=false 

statement.codeloc+3, if 
statement.costat=true 

statement.codeloc, if 
statement.costat=false 

' (statement.codeloc+1, statement.level), if 
statement.costat=true 

statement.loclev, if 
statement.costat=false 

xii) statement : := coblock 

statement.codelength = 

coblock.codelength+5, if 
statement.costat=true 

coblock.codelength, if 
statement.costat=false 

statement.level=0 

coblock.codeloc = 

statement.codeloc+3, if 
statement.costat=true 
statement.codeloc, if 
statement.costat=false 

The method given here was tested in the CDC 3300 computer of the Hungarian 
Academy of Sciences with the help of the HLP-SZ compiler generator system. 
A sequential programming language was augmented with the bracket pair cobegin-
coend and the symbol and, and we have produced a compiler based on an ASE (alter-
nating semantics evaluator) attribute evaluation strategy [6] which has the same 
number of passes (five) as the compiler generated for the basic sequential language 
has. This fact and the introduction of only three new attributes show us that the 
complexity of a compiler based on an ASE strategy does not increase by the introduc-
tion of the parallel structures discussed here. 
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4. Some remarks about the implementation of processes communicating 
through Hoare's monitors 

We have implemented a very simple experimental language in which parallel 
processes communicate through Hoare's monitors [5]. The language is block struc-
tured, and the scope rule for monitors is the usual: a monitor reference can appear 
in the block where the monitor was declared, or in a block contained in it. The 
structure of a block is the following: 
begin 
declarations of monitors local to the block; 
declarations of variables local to the block; 
... the block body ... 
end; 

A declaration of monitors has the form: 
monitor mt, m2, ..., m„ of m; 
and creates the monitors m1, mz, ...,m„ of type m, where m is a monitor type dec-
lared at the beginning of the program. For simplicity each monitor type must be 
declared at the beginning of the program. (In other implementations monitor types 
could be declared at the beginning of the blocks with the same scope rule of moni-
tors). The structure of a monitor type is the following: 
type monitor.type_name monitor; 

begin 
declaration of the condition variables; 
declarations of variables local to the monitor; 
procedure procedure-name (...formal parameters...); 

declarations of the normal parameters; 
begin 
.. .the procedure body... 
end; 

...declarations of other procedures local to the monitor...; 

...initialization of local data of the monitor... 
end; 

In the implementation of the experimental language each monitor has its local 
data area which contains the variables of the monitor, the queues of processes waiting 
on a condition or on a monitor call, and the queue of processes waiting after an issue 
of a signal operation. 

We have to introduce many new attributes. Four of them are the most important, 
and they will be described here: the synthesized attributes MTL and MINTRN, and 
the inherited attributes LMT and MTOTAL. 

The attribute MTL is used to construct a table in which informations are collected 
about the declared monitor types. We put into the table the following informations 
about each monitor type: 

— monitor type name; 
— list of the variables local to the monitor type; 
— list of the condition variables of the monitor type; 
— list of the procedures local to the monitor type which contains on each pro-

cedure the parameters of the procedure, the name of the procedure, and the 
list of condition variables which appear in a "wait" statement in the procedure; 
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— the object code of the initialization of the data local to the monitor and the 
length of the code. 

The attribute LMT leads the table (the address of the table) from the root daw-
nwards the leafs of the derivation tree. 

The attribute MINTERN is used to construct a table collecting information 
about the declared monitors. We put into the table the following informations about 
each monitor: 

— the monitor name; 
— the monitor type of the monitor; 
— the number of condition variables of the monitor and the number of vari-

ables local to the monitor; 
— addresses and lengths of the queues of the condition variables of the monitor; 
— address and length of the queue of processes waiting in a monitor call; 
— address and length of the queue of processes waiting by an executed "sig-

nal" statement. 
The attribute MTOTAL gives the table of the monitors valid in the environment 

wilh respect to the scope rule for monitors. 
The HLP/SZ is based on the programming language SIMULA, so we can use 

classes and objects, and attributes of type reference to work with tables. In other 
compiler generator systems based on attribute grammars the concept of global attri-
bute is introduced to make it easy to work with tables. 

Abstract 

This paper gives an attribute grammar for the translation of parallel program-
ming structures: the bracket pair cobegin-coend and the symbol and. The introduc-
tion of these constructions into a programming language does not increase the com-
plexity of a compiler based on an ASE attribute evaluation strategy. We discuss the 
implementation of Hoare's monitors by means of attribute grammars. The methods 
given here were tested in a CDC 3300 computer of the Hungarian Academy of Sciences. 
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70109 ROMANIA 

We investigate those languages generated by (context-free) grammars in which 
all nonterminals are regarded as axioms (problem raised by S_. Horvâth, at a formal 
language workshop, in Budapest, 1987). Among the considered topics, we can list: 
motivations, necessary conditions, right/left — regular/linear variants (generative 
capacity and closure properties), and other questions. 

1. Motivations 

In a usual context-free grammar (in general, in a Chomsky grammar), a nonter-
minal symbol is distinguished and taken as axiom (all derivations have to start from 
this nonterminal). This is motivated by mathematical reasons, as well as by the 
"classical" applications of Chomsky grammars, namely in modelling the syntax of 
natural or programming languages. However, there are many circumstances where 
this restriction is not important. This was the reason for which S. Horváth proposed 
to consider grammars in which a certain amount of nonterminals are allowed to be 
axioms. In [3], [9], grammars in which all nonterminals are axioms are considered 
(they are called fully initial). • 

Besides the naturalness of this idea, many further reasons can be invoked for 
dealing with several-axiom grammars. Here are some of them. (1) For instance, in 
W-grammars (two-level grammars) [11], the meta-level is a context-free grammar for 
which no axiom is distinguished. (2) In pure grammars [7], one considers finite sets of 
axioms. (3) According to the well-known Ginsburg—Rice—Schutzenberger theorem, 
each context-free language is a component of the minimal solution of a system of 
equations on a free monoid [4]; the study of equation systems does not involve special 
variables ("start" variables). (4) Moreover, in [6] systems of equations in which the 
iteration process starts from an arbitrary «-tuple, of finite sets (not from an «-tuple 
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of empty sets, as usual) are considered; in this way a characterization of EOL langua-
ges is obtained. (5) The ADJ group [1] associates a many-sorted initial algebra with a 
context-free grammar so that the language generated by this grammar is the homo-
morphic image of a certain carrier of the initial algebra. The construction of this 
many-sorted initial algebra does not depend on the start symbol of the corresponding 
context-free grammar. (6) Generalizing the definition of hipernotions in PF-grammars, 
in [2] //-systems are introduced and investigated; in them the start symbol is replaced 
by an arbitrary (not necessarily finite) language; the language generated by an H-
system is then defined by using homomorphisms, not production rules. 

As one can see, there are enough reasons for further investigation of grammars in 
which more than one (or all) nonterminals are axioms. Moreover, as an a posteriori 
reason, the problems raised and the results obtained about these grammars prove 
that the subject is worth considering, leading to interesting new insights about Chom-
sky grammars. 

2. Definitions and notations 

For a vocabulary V, we denote by V* the free monoid generated by V under the 
operation of concatenation, and X is the null element. The length of a string x£ V* 
is denoted by |x\. Inclusion and strict inclusion are denoted by Q and c , respectively. 

A Chomsky grammar is a quadruple G=(VN,VT, S, P); VN is the nonterminal 
vocabulary, VT is the terminal one, S^VN is the axiom and P is the production set. 
The usual language generated by G is defined by 

L(G) = x). 

The fully initial language generated by G is 

Lia(G) = {x£V?\A U x for some A$VN}. 

Clearly, L(G)QLin(G). The family of languages generated by Chomsky grammars of 
type i, i—0, 1, 2, 3, is denoted by The family of fully initial languages generated 
by grammars of type i is denoted by J^S?;, z =0, 1, 2, 3. 

When dealing with the fully initial language only, we shall write a grammar in 
the form G=(VN,VT, P), thus omitting the useless axiom. 

Usually, a language is said to be of type 3 if it can be generated by a right-linear 
or a left-linear grammar, in the classical case. (Right-linear and left-linear grammars 
have the same generative power.) For fully initial grammars this is not true, therefore 
we shall distinguish several classes of "type-3" grammars. 

A grammar G=(VN,VT, P) is called right-linear (left-linear) if P^VNX 
X(V?UVT*VN) (PQFnX(V^ U W ) ) . We denote by J ^ l l i n the corres-
ponding families of fully initial languages. Moreover, we distinguish between gram-
mars with rules of the form A—xB with an arbitrary string x£Vf as above and 
grammars in which x must be a terminal. A grammar G = (VN,VT,P) is called 
right-regular (left-regular), if P<gVNX(yT\JVTVN) (PQVNx (VTUVNVT)). The cor-
responding families of fully initial languages are denoted by !FS£„e%, 
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The above family is, in fact, We shall also denote this 
family by and we shall consider the following families too: 

as CPU — OP q> \ <V 

•^•^reg = -^^rreg H ¿flreg-
As in many cases, we shall consider two languages identical if they differ by at 

most the empty string A. 

The sets of prefixes, suffixes and subwords of a given string x are denoted by 
Init (x), Fin (x), Sub (x), respectively, and these notations will be extended in the 
natural way to languages. When considering only proper prefixes, suffixes and sub-
words, we shall write Initp (x), Finp (x) and Subp (x), respectively. 

For further details in formal language theory, the reader is referred to [10]. 

3. Necessary conditions for the context-free case 

We shall consider here some necessary conditions for a-language to be in 
some of these conditions will be also particularized to J 2 ^ or to subfamilies of 

Lemma 1. For each language Z i J ^ there is a A-free grammar G=(VN, 
VT, P) such that P does not contain chain rules (rules of the form A-*B, A, B£VN) 
and L=Lin(G). 

Proof. The same as for usual context-free languages. 

Lemma 2. For each language 1S?2, LQV*, there are two positive integers 
p, q such that each z£L, \z\ can be written as z=uvwxy, u, v, u>, x, y£V*, so 
that 

(i) \vwx\ S q, \vx\ > 0, 
- (ii) for all k s 0, uvkwxkydL and vkwxk£L. 

Proof. The same as for usual context-free languages, with the following two 
remarks: 

— we start from a reduced grammar, G, in the sense of Lemma 1 (see Lemma 
3.1.1 in [4]), not from a Chomsky normal form grammar (as in Theorem 6.4 in [10]); 

— given a derivation tree T, all subtrees having the roots in the nonterminals 
of T correspond to substrings of the string associated to T and which belong to the 
fully initial language generated by the grammar; therefore, when we have a deriva-
tion uAyS> uvAxy uvwxy, then both uvk wxky and ifwy? belong to L-tn(G). 

Corollary 1. If then there is a constant/? such that for all z£L, |z|>/?, 
we have . Subp (z) f! L ^ 0. 

Proof. Take p as in Lemma 2 and, for z£L, |z|>/7, write z=uvwxy with the 
above properties. As vkwxk£L for k^0, when k=0, we obtain wiLDSub(z) . 
Morepver, |ux |>0, hence we have, in fact, vv6LDSubp(z). 
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Corollary 2. If is an infinite language, then also LDSubp(L) is 
infinite. 

Proof. L e t p , q be the constants of Lemma 2 and take z£L, \z\>p, z=uvwxy. 
Each string vkwxk, 0, is in L. Clearly, u*wjc*£Subp(L) and vlcwxk^i/t+1w.x*+1, 
fcsO(wehave |tyc|=~0), therefore LDSubp(L) contains the infinite set {¡/wa^A:^0}. 

Lemma 3. The conditions (properties) in the above two corollaries are 
independent from one another. 

Proof. We consider the languages 

Ly = {a}U{abna\n £ 1} 
and 

L2 = {ba"b, cba"bc\n ^ 1). 

The first language fulfils the condition in Corollary 1 (take p = 1; Subp(a6"A)n 
C\L1 = {a) for all w ^ l ) , but not that in Corollary 2 ( S u b p i Z - J f l X ^ l a } ) . The 
second language fulfils the condition in Corollary 2 (L2nSubp(L2) = {6a n 6 |«s 1}), 
but not that in Corollary 1 (the strings bcfb, irrespective of their length, have no 
proper subwords in L2). 

This lemma shows that none of the conditions in Corollaries 1 and 2 is suffi-
cient for a language to be in even they together are insufficient for that, as it 
follows from the next result. 

Lemma 4. The condition in Lemma 2 is strictly stronger than the conditions in 
Corollaries 1 and 2 together. 

Proof. We consider the language 

L = {b}{J{bc^b, cba"bc\n s 1}. 

It is easy to see that both conditions in Corollaries 1 and 2 are fulfilled (similarly to 
languages Lx, L2 in the above proof), but that in Lemma 2 is not. Indeed, let p and 
q be two positive integers and take z—bcfb, \z\>p (there are arbitrarily long such 
strings in L). We must have z=uvwxy such that vkwxk£L, k^O, | ux |>0 . It 
follows "that ox£ {a"|/2£l}, hence vkwxk is of the form aa or of the form aa, <x£{a, b}*. 
Such strings cannot be in L, a contradiction. 

Lemma 5. The condition in Lemma 2 is not sufficient for a language to be in 
. 

Proof. Let us consider the language 

L = {a"\n s 0}U{6"|n S 0}U{a"b2m\n, m 1}. 

The language L is not context-free; as #".S?2<r JS?2 [3], it follows that 
However, this language fulfils the condition in Lemma 2. Take, for instance, p = 1, 
q = \. For z=(f or z—b", we clearly have all conditions in lemma fulfilled. If 
z=cfb2m we take u=k, v=a, w=A, x=X, y=cf~1b2m. Obviously, z=uvwxy, 
|t>vwc|=S? = l, |UJC|>0, uvfwxky=dtcf-1bimiL for all ArisO (for A:=0, n = 1 we 
can obtain uvkwxky=b2"', which is in L too), and vkwxk=ak(iL for all k^O. 
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Conjecture 1. If L is a context-free language which fulfils the condition in Lemma 
2, then 

We consider now a necessary condition of different type, similar to the one used 
in the theory of Marcus contextual languages [8]. 

Definition. For a given language LQV*, let 

Min(JL) = {z6L|Subp(z)riL = 0} 
and define 

Ri(L) = Min(X) 

R((L) = i ? , - _ ! ( L ) U M i n ( i — ( L ) ) , i s 2. 

We say that L has property R iff all the sets /?,(£), z s l , are finite. 
Lemma 6. If then L has property R. 

Proof. Let Le^jSfa, LQV*, be a language and take a grammar G=(VN, 
VT, P) such that Lia(G)=L and G does not contain 1-rules and chain rules (Lemma 
1). For a string x l e t T(x, G) be the set of all derivation trees describing deri-
vations of x in G starting from a nonterminal in VN (which is the root of a tree). 
Denote by hei(T) the height of a given tree T(x, G), i.e. the maximum of lengths 
of paths linking the root of J to its leafs (symbols in x). For a given string x we define 

hei0(x) = max { h e i ( r ) | r £ r ( x , G)}. 
Then we have 

R,(L) g (x€L|heiG(x) ^ /}, i s 1. 

Indeed, let x£Min(L) be a string and take a derivation D: A => x in G 
corresponding to a tree T. If h e i ( r ) s 2 , then the derivation D is of the form D: 
A=>ct1ix2...ccki> pip2...pk~x, 0Li£VN\JVT, Pi, 1 si^k, fcs2, and for some i, 
lSz '^2 , oiidVpf. This implies /?;£Z,nSubp(z), hence Min(L), a contradiction. 
In conclasiDn, h e i ( r ) = l , heiG (x)=l , and the inclusion Ri(L)Q {x£L|heiG(;t)s/} 
holds for /=1 . 

Let us assume, this relation is true for / = 1 , 2 , . . . , / , / s 1, and consider 
x£Ri+1(L). If x£Ri(L), then hei c (x)S/ by the induction hypothesis. Assume that 
x£Ri+1(L)-Ri(L), that is x£Min (L-Ri(Lj). In other terms, Subp(x)D 
n ( L - R i ( L ) ) = 0 . Suppose that heiG(x)=-z +1, and take a derivation tree T£ T(x, G) 
such that hei ( r ) > / + 1 . There is a derivation D, associated with this tree, haying the 
form D: A=^ala2...oik^> P1P2... pk=x, such that Uj€VnUVt, ccj^> Pj, 1 S / ^ f c 
(ccj=Pj if otj£VT), fcs2, and there is an ocj£VN for some j, l ^ j ^ f c . All strings Pj, 
l s j ^ k , belong to Subp(x)f)L. As Subp(x)D(L—Ri(L))=0, we must have 
PjdRi(L). By the induction hypothesis we get heiG(/?j)s/, l S / S f c . This implies 
that the tree T consists of a "root level" describing the rule a1a2 ...cl y and of all 
trees associated with subderivations a¡=> Pj, for a I n conclusion, hei (T)s . . 
S / + 1 , a contradiction. We obtain he i G (x )S /+ l , which completes the induction-
argument. 

The sets {x€£|heiG(x)s/}, / s 1, are clearly finite, therefore the sets Ri(L), 
i s 1, are finite too, and the proof is completed. 



148 A. Mateescu and G. Paun 

Lemma 7. The property R implies conditions in Corollaries 1, 2, but there are 
languages fulfilling both these conditions without having the property R. 

Proof. Consider again the language L in the proof of Lemma 4 (it satisfies the 
conditions in Corollaries 1 and 2). We obtain 

R,(L) = {*>}, 

R2{L) = {b)U{banb\n^ 1}, 

hence R2(L) is infinite, L does not have the property R. 
Define now, for a given language L, 

p = max {|*| 1*6^(1.)} 

If z£L, \z\>p, then z^Rj(L), hence Subp(z)flZ.? i0. The property R implies 
thus the condition in Corollary 1. 

Consider an infinite language L having the property R but not having the pro-
perty in Corollary 2, that is Z,f) Subp(L) is finite, card (L H Subp(L)) = t. As L 
is infinite, but all sets RXL), / s i , are finite, it follows that Ri(L)<zRi+1(L), i s 1 
(if Rj(L)=Rj+i(L), then Rj(L) = RJ+k(L), 1, hence LQRj(L), a contradic-
tion). As Ri+1(L)-Ri(L)=Min ( L - R t ( L ) ) ^ 0 , it follows that K i + 1 (L )n (Z .n 
nSubp(L))Ti0 and R^L) fï (L fl Subp(L)) c= tf i + 1 (L) H (L D Subp(L)) for all 

y s l . This implies card (i? (+i(L)flZ-nSubp(Z.))s/ +1, therefore card (LPl 
DSubp(L))si-f 1, a contradiction. 

Lemma 8. The condition R is not sufficient for a (context-free) language to be 
in 

Proof. We consider the language 

L = {a"|n s \}\J {aV aT\ri S 1}. 

This is a context-free language and we have 

Ri(L) = {a}, 

*,(L) = {aJ| 1 S/S' /}U{ab>a>11 = y = / — 1}, / S 2, 

therefore the property R is observed. 
However, this language is not in Assume the contrary, and factorize a 

long enough z=alfcC in L into z=ùvwxy as in Lemma 2. Then we must have 
t>=6', x=d, /=• 0, which implies that all if wxk—bik waik, k^O, are in L, a contra-
diction to the form of strings in L. 

Remark 1. The above proof shows that if Conjecture 1 were proved then, for 
context-free languages, the condition in Lemma 2 would be stronger than property R. 

Conjecture 2. For arbitrary languages, the condition in Lemma 2 is stronger than 
property R. 

Remark 2. If in condition (ii) of Lemma 2 we take / c s l instead of /csO 
(sometimes, the pumping lemma is formulated in this weaker form; see [4], for ins-
tance), then the modified condition will be independent of condition R. The language 
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L in the above proof supports one of the implications; the other one can be proved 
using the language 

L = {banba?bma\n, m s 1}U{a"ban\n s 1}. 

Taking p = 1, q = 3 we obtain the modified property in Lemma 2, but we have 

RX(L) = {aba}, 

R2(L) = {aba, a2ba2}\J{bababma\m s 1}, 

hence property (condition) R is not satisfied. 
Lemma 2 has some particular forms for right/left linear grammars. 

Lemma 9. (i) If then there are two positive integers p, q such that, 
for all z£L, \z\>p, we can write z=uvw, 0 < \ v \ ^ q and uv'w^L, v'w^L, for all 
i sO. 

(ii) If L^^Stfllin, then there are two positive integers p,q such that, for all 
z££, \z\>p, we can write z—uvw, 0 < ^q and uv'w(LL, uv'ZL, for all zsO. 

Proof. Obvious particularizations of the proof of Lemma 2 to right/left linear 
grammars. 

4. Fully initial languages in the Chomsky hierarchy 

As we have mentioned, in [3] it is proved that A more precise (and 
more general) result is true, namely we have. 

Theorem 1. The following diagram holds: 

.se» 

where indicates a strict inclusion; the families a r e incomparable. 

Proof. As {¿>a"6|nsl} is not in (it fulfils no necessary condition in 
the previous section), it follows that hence also i?2— 
g z - p g ^ t y . On the other hand, is in J ^ - i f g , hence 

and J5?3, are incomparable. -
Consider now a grammar G of arbitrary type, G—(VA,VT,P) and construct 

the grammar F r , 5 ' , P U Clearly, G' is of the 
same type as G and L(G')=Lia(G), hence P S e ^ & i , / = 0 , 1 , 2 , 3 . 
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In order to complete the proof, we have to prove that / = 0 , 1. Take 
a language LdSPj, LQV*. We can write 

L= U {a}aoLU{x€L||x|s2} 
a€ V 

(daL is the left derivative of L with respect to a). As Jz^, / = 0 , 1 , are closed under 
left derivative, daL£&i. Let Ga={VN<a,V, Stt, Pa) be a type-/ grammar for daL. 
Assume the VNia are pairwise disjoint and define G=(VN, V, S, P) with 

P = {S~ x\x£L, \x\ S 2}U{S - XaSa\a£V}{J 
U{ai/'.- <ZV'\X£Vn, U —• v£Pa, a£V}U 
U{Xab' - ab\a, biV}{){ab' - ab\a, b£V} 

where u' is the string obtained from u by replacing each a<£V by a'dVN. It is 
easy to see that no derivation A^>w, A£VN, is possible in G unless A=S, there-
fore L(G)=L,„(G). Moreover, L(G)=L. In conclusion, / = 0 , 1, and 
the proof is ended. 

This theorem shows that families and request no further investiga-
tions. 

5. Type-3 fully initial languages 

First, let us consider some characterizations and representations of languages in 
azrcp eza> <3H(P 

Lemma 10. (i) L£&Se„ t g if and only if L$_<e3 and L=¥m{L). (ii) 
if and only if Lese3 and L = I n i t (L). (iii) L £ i f and only if Sf3 and 
L=Sub(L). 

Proof, (i) Let L£ J ^ r r c g be a language such that L=Lm(G), G=(VN,VT,P). 
Clearly, '3 and LQFin(L). Take a string w€Fin(.L). There is a ukVr such 
that uw£L. Therefore, there is a derivation A^> uw in G. As G is a right-regular 
grammar, there is a B£VN such that A^>- uB =y uw, which implies w£Lin(G) = L. 
In conclusion, w£L, Fin(L)QL. 

Conversely, let L=¥\n (L), and consider a reduced right-regular 
grammar G, G=(VN,VT, S, P), without useless nonterminals, L=L(G), PQVNX 
X(VT\JVTVN). Clearly, L(G)QLio(G). Take a string w£Lia(G). There is a 
derivation A=>- w in G, A£VN. As G is reduced, there is a derivation uA, 
u£Vf, therefore S => uA uw is possible in G. This implies if£Fin(L((?))=Z,, 
that is w£L, hence Lin(G)^L(G). In conclusion, Lia(G)=L, L£ J ^ r r e g and (i) 
is proved. 

(ii) Analogously. 
(iii) Follows from the definition of the above parts (i) and (ii) and the 

relations Sub(L)=Fin(Init (L))=Init (Fin(L))=Init(Sub(£))=Fin (Sub(Z)). 
Denote by Mi(w) the mirror image of a string w and extend this operation to 

languages. 
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Lemma 11. (i) L€#"if r r e g if and only if Mi(L)Ç^5f, r e g . (ii) if 
and only if M i ( L ) e J ^ I l i n . 

Proof, (i) Take a language L € ^ ? r r e g , generated by G=(VN, VT, P) and 
define G'=(Vn, Vt, {A-+m(x)\A-*x£P}). Clearly, £in(G')=Mi(L(G))=Mi(L), 
hence Mi (L)€^S i r e g . The converse implication is analogous, 

(ii) Similar. 

Lemma 12. (i) Each language in J ^ r l i n is a homomorphic image of a language 
in ^2?rrCg. (i) Each language in is a homomorphic image of a language in 
•^"â'ireg-

Proof (i) Let L%=V*, be a language generated by the grammar 
G=(VN,V,P). We define the grammar G'=(VN,V, P') by 

V'.= {[«]|AT - <xY or Z - a is in P, a£F*, X, Y£VN}, 

P' = {X - [oc]7 |Z - aT€P}U{JSr - [ a ] | Z - a<EP}. 

Consider also the homomorphism h: V'*—V* defined by /i([a])=a, [a]£F' . 
Clearly, G' is a right-regular grammar and h(LiB(G'))=L. 

(ii) Analogously. 

Theorem 2. The inclusion relations between the above discussed families of 
type-3 fully initial languages are those in the next diagram (-»- indicates a strict 
inclusion; the unlinked families are incomparable). 

, i 
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Proof. All inclusions are obvious. Moreover, we have: b a * £ i ^ r e g — , 
a*bZ&,£?rreg—tFJ£llcg (use Lemma 10, parts (i), (ii)). This settles the relations on the 
bottom face of the "cube" in the diagram. Moreover, c ( a b ) * ^ i £ n S n - ( ^ S £ l V i a U 
U J ^ e g ) and (ab)*c£&r£erl in-(&r&mn\J&£erreg). This settles the relations on the 
upper face of the "cube", as well as those indicated by the vertical edges, except 

This, however, follows from (use condition 
(iii) in Lemma 10). The inclusion J^if,^ = c:¿f3 was shown in Theorem 1. 

Theorem 3. The closure properties of the above discussed families of type-3 
fully initial languages are as presented in Table 1 (Y indicates a positive closure 
result, N points out a negative closure result). 

Table 1. 

J ^ n 

Union N Y Y Y N V V 1 I 
Complementation N N N N N N N N 
Intersection N N N N N Y Y Y 
Concatenation N N N N N N N N 
Kleene closure Y Y Y Y Y Y Y Y 
Homomorphism Y Y Y Y N N N N 
Inverse 

homomorphism N N N N Y Y Y Y 
Mirror image Y N N Y Y N N Y 
Right quotient N N Y N N N Y N 
Left quotient N Y N N N Y N N 
Init, Fin, Sub Y Y Y Y Y Y Y Y 
gsm mapping N N N N N N N N 
Inverse gsm mapping N N N N N N N N 
Intersection 

with regular sets N N N N N N N N 

Proof. Union. If Li , L2 are in ^"i?rreg, i^JSflreg or then LX{JL2 belongs 
to the same families, as it easily follows from Lemma 10 (L1 \JL2{£?3 and Lx UL2 = 
=Fin(X] UL2), Lx UL 2=Ini t (L 1 U L2), L 1 UL 2 =Sub(L J UL2), respectively). J^?re

u
g 

is not closed under union, because, for instance, Li=a*b, L2=ba* are in 
but LiULa is not in &&& (XiUZ.2 is neither in &&tXia nor in use 
Lemma 9). The closure of j ^ r l i n , J ^ f i can be proved by direct, stan-
dard constructions. 

Complementation. The language L=a*b* is in , but {a, b}*—L is 
not in" J ^ j y (use Lemma 9). 

Intersection. The closure of ^Sf r r e 8 , !FS£x„.g, can again be proved using 
Lemma 10 (Fin (L^ 0 L2) Q FinCLj) fl F i n ( L 2 ) = P i L2 hence L, f)L2=Fm(L, f)L2), 
I ^ O L ^ s etc.). For take L,=a*b+, L2=a+b*, both in this family; 
LjC\L2=a+b+ aoes not belong to J^S 5 ^. For the other families take 

Ly = c(aab)*c U (aab)*c U c(aab)* U (aab)*, 
L2 = ca(aba)*abcU(aba)*abcUca(aba)*U(abay. 

They belong to but I ^ O L ^ c a i a b a f a b c is not in J ^ u . 
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Concatenation. The languages L^—a*, L2=b+ are in , but 
—a+b+ is not in which settles all cases. 

Kleene closure. Given a right-regular or a right-linear grammar G—(VN,VT,P), 
construct the grammar G'=(VN,V,P') with P' =P\J {X-*aY\X^aiP, aeVT*, 
X, Y€ VN}. It is easy to see that Lin(G')=L(G)+. The left-regular and left-linear 
cases can be treated similarly. 

Homomorphism. A standard construction proves the positive results. For regular 
families take L=a+ (it belongs to and the homomorphism h: a*->-{a,b}* 
defined by h(a)=ab. The language h(L) = (ab)+ is not #LSfreg, which implies the 
nonclosure cases in Table 1. 

Inverse homomorphism. Let h: V* — V* be a homomorphism and LQV* 
a language in J^Vg- According to Lemma 10, Ld£f s and L —Sub(L). Clearly, 
h^me&s and Subf/rH^))- Consider now a string u in Sub(/i -1(£))-
There are v, w(V* such that vuw£h~1(L), hence h(v)h(u)h(w)€L. This implies 
h(u)dSub(L)=L, hence h(u)£L, that is «£/t_1(L). In conclusion, Sub(/;_ 1(L))^ 
Qh'^L), which shows that Sub(h-1(L)=h-1(L), hence h'HL)^^^ (Lemma 
10, part (iii)). Similar arguments hold for , 

Consider now the language L=(ab)*c{Jc(ab)*lS(ab)*. It belongs to 
but h~1(L)=ab*c, for h defined by h(a)=a, h(b)=ba, h{c)=bc\ this language is 
not in P&tfn, which implies nonclosure under inverse homomorphism for , 

Mirror image. The closure cases follow from Lemma 11, the nonclosure ones 
are settled by examples of the form: a+be^rSCtree, Mi(a+b)=ba+$^£?mn. 

Right quotient. We have L={abc, ab,bc, a,b, but L/{c}={ab, 6}(£ 
fj#j£?lreg, hence these families are not closed under right quotient. Similarly, 
L={abc,ab,a}£&r&vg, but L/{c}={ab}$ Similar languages can be cons-
tructed for P& l l i n , J ^ J

n (take L=a+bcUa+b(Jbc(Ja+(J{b, 
respectively, L=ba+bcUba+£J5^). 

Consider now g and an arbitrary language L'. According to Lemma 
10, we have L=Fin(L). As L/L' is a regular language, we have only to prove that 
F i n ( L l L ' ) = L / L ' . Let w£Fin(Z,/Z/) be an arbitrary string. There is a v such that 
vu€L/L', hence there is a w£L' such that vuw£L. Therefore wvvgFin (L)=L, 
that is u£L/L'. In conclusion, F i n ( L / L ' ) Q L / L ' , hence F in{L \L ' )=L\L ' , and 
#j5f r reg is closed under right quotient (with arbitrary languages). 

Finally, consider a language Le#j$? rHn, L=Lin(G), G=(VN,V,P); let L' 
be an arbitrary language. For X£VN set LX=L(GX), GX—(VN, V, X, P). We 
define the grammar G'=(VN,V,P') by 

P' = {P-{X - a|aev*, X£VN})U 

- a\x - <xp£P, for some a, fcV*, p£L', XeVN} 

U{JT - a\X «.pY^P, for some a, p£V*, X£VN, {P}LYf)L' * 0}. 

It is easy to see that Lin(G')=LIL', which completes the proof. 
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Left quotient. Simmetrically. 

Init, Fin, Sub. Let L^S£nt%\ in view of Lemma 10, we have Fin(L)=L, 
Clearly, Init(L), Fin(L), Sub(L) are regular languages. As L=Fin(L) , we 
have Fin(Init(L))=Init(Fin(L)) = Init(L), Fin(Fin(L)) = Fin(£), Fin(Sub(L)) = 
= Sub(L). This implies that Init(L), Fin(L), Sub(L) are in J^S?rreg, too. Similarly 
for Sr&ireg, hence also are closed. The family J*Jz?rlin is closed 
under right quotient; as Init (L)=L/V*, we obtain the closure under Init. 
Consider now L=Lin(G), G=(VN,V,F), and define the grammar 
G'=(V;, V, P') by V^ = VN\JV;\ P'=P\JP", where, for each production r: 
X^a1a2...anY£P, a£V, 1 sisn, Y£VNU{A}, we introduce in P" all productions 

-*aJ+1...anY, 1 =j=n 1, simultaneously introducing the new symbols 
[X, r,j] in V^. Clearly, L in(<?')=Fin (L), hence is closed under Fin. Now the 
closure under Sub follows from the closure under Init. 

Similar arguments show that , hence also and J ^ n are closed 
under Init, Fin, Sub. 

Gsm mapping. L=a+ is in it is easy to construct a gms g such that 
g(L)=ba+b. This language is not in (Corollary 1), hence none of the above 
families is closed under gsm mappings. 

Inverse gsm mapping. Consider the gsm g=({q0, qlt q2), {a,b}, {a}, q0, {q2}, 
{q0b-^aq1, q-^a—aqx, q1b-<-aq2}). We have g~1(a+)=ba*b$J*j£?2 (Corollary 1), 
hence none of the above families is closed under inverse gsm mappings. 

Intersection with regular sets. As F*€ J^i?,1^, for each V, but 
the assertion is obvious. 

6. Further questions 

In the proof of inclusions J ^ Q J ^ - , z=0, 1,2, 3, in Theorem 1, starting from 
the grammar G, used in fully initial manner, we constructed a grammar G' such that 
Prod(G')=Prod(G) + Var(G). (For an arbitrary grammar G=(VN,VT, S, P) 
we denote, as in [5], Prod(G)=card P, Var(G)=card VN.) Can the difference 
between Prod(G') and Prod(G) be diminished? More generally, given a language 
L Z ^ i , define 

Prod(L) = inf (Prod(G)|L = L(G)}, 

Prod in(L) = inf {Prod(G)|L = £ in(G)}. 

What is the relation between Prod(Z.) andProd in (L)? The construction in the proof 
of Theorem 1 (used also in [3]) shows that Prod(Z,)sProd i n(L)+Var ! n(Z.). We 
shall prove that this relation cannot be essentially improved (which shows that, in 
some sense, the fully initial mode of generating a language is more economical than 
the usual mode, at least for certain languages). 

Indeed, consider the context-free grammar G=({Ax, A2, ..., An}, {at,a2, ... 
...,an,b), P) with 

P = {Ai - atAtat\ 1 ̂  i s n}U 

U{A, - a,A,„a,\l S i S n-\}U{A„ - anban}-
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We have 

LJG) = {al'al'H ... ak
n"bak

n"... cfri'^'ll ^ i ^ kj S i , «}. 

Consequently, Prod i n (Z i n (G))s2«, Var i n (L i n (G))^«. It is easy to see that, in 
fact, we have Var i n (L i n (G))=« (for each i we need a derivation X t^> a{XiCi{, 
y ' s 1), hence also Prod i n(L i n(G))=2«. 

Consider now a usual context-free grammar G' =(VN, VT, S, P') such that 
L(G')=LiB(G). Again, for each /, 1 s / s n , we need a derivation a{Xta{, 
. / s i , one of the form a/fli+i^i+iflr+i0?' 7> m,/?sO, as well as one of the 
form S => a}XiC^, j,kSO. Two symbols Xt,Xj cannot be identical when i ^ j 
(otherwise strings containing both substrings «¡a,-, ¿^fl; on the same side of b could be 
obtained). Moreover, the axiom S must differ from every Xt, is2. In conclusion, 
Prod (G') S3« - 1 = Prod(G)+Var(G) - 1 , therefore Prod (L in(G)) s P r o d i n ( L i n ( G ) ) 
+ V a r i n ( L i n ( G ) ) - l . 

Consider now another question. Given a language L and a grammar G for it, 
L=L(G), what one can say about L i n(G)? For example, taking L = {a"b"\n^\} • 
• {a, b}* and the grammar G=({S,A,B}, {a, b), S, {S^AB, A^aAb, A^ab, 

B-^aB, B^bB, B-X}) we obtain L(G)=Le<£2-<£3, Lia(G) = {a, b}*e^3. 
Are there languages L for which this is not possible (no grammar G, L=L(G) 

with L i n(G) regular)? The answer is affirmative: take L = { a " 6 " | « S l } and consider 
a context-free grammar G=(VN, {a, b}, S, P) such that L=L(G) and G is reduced. 
Clearly, each recursive derivation a.X[i, a, {a, b}* must have a = d , P=bl, 
i s i . For each symbol A£VN, consider the set LA={w(i {a, b}*\A w in G}. 
If La is finite for some A, then, replacing each occurrence of A in the right-hand 
sides of rules in P by a string in LA (and removing all rules A-»y), we obtain a 
grammar G', L(G)=L(G'), Lin(G)—Lin(G') is finite. The grammar G' obtained in 
this way be removing all VN with finite LA is linear. (If rule X—x1Yx2Zx3 
is in G', then Ly, Lz must be infinite, hence must involve recursive derivations in the 
generation of their strings, hence Lx contains strings of the form a'b'z2aJbJz , i, 
j s 1, a contradiction.) If Lin(G) is regular, then L,„(G') is regular too (it differs 
from Lin(G) by a finite set). However, each derivation in G', besides its maximal 
recursive subderivations, contains at most card VN further steps. These steps intro-
duce at most 7i=card VN • max { |x | \A-~x^P} occurrences of a and of b. In conclu-
sion, each string in Lia(G') is of the form an+pb"+q, nSi, p = n, q^n. This implies 
Lia (G') $ J5?3, a contradiction. 

A further situation which can be looked for is the following. Are there languages 
L£J£?2—S£3 such that each context-free grammar G, L=L(G), has Lin(G)££f3l 
(Such a language can be called inherently fully initial regular, whereas the above 
L={cf Z>"|«sl} can be called inherently fully initial context-free.) This last problem 
remains open. 
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On fully initial grammars with regulated rewriting 

T . BALANESCU, M . GHEORGHE, G H . PAUN 

The Computer Centre of the University of Bucharest, Str. Academiei 14, 
Bucuresti, 70109 ROMANIA 

We investigate the fully initial version of context-free grammars added with 
various control devices: regular control, matrices, programming, random context, 
Indian parallelism and ordering, each of them with or without A-rules and (when 
appropriate) appearance checking. It is shown that the fully initial feature decreases 
the generative power of programmed, random context ¿-free grammars with or 
without appearance checking, and of ordered and Indian parallel ones. In all remain-
ing cases the generative capacity is not modified. On the other hand, regulated rew-
riting increases the generative capacity of fully initial context-free grammars. 

1. Definitions and notations 

The fully initial (fi, for short) variant of context-free grammars was defined by 
S. Horváth and investigated in [2], [3]. Such a grammar is a usual context-free gram-
mar (cfg, for short) having no distinguished start symbol. The language generated in 
this way by a grammar G=(VN,VT,P) is L(G)={x£Vf\A^> x for some A£VN}. 
(As usual, VN is the nonterminal vocabulary, VT is the terminal vocabulary and P is 
the set of rewriting rules; V* denotes the free monoid generated by V under the ope-
ration of concatenation and X is the null element.) Inclusion and strict inclusion are 
denoted by £ and c , respectively. 

Similar to regulated rewriting for context-free grammars [1], [4], we consider 
here the languages generated by fi regular control, matrix, programmed, random 
context, Indian parallel and ordered cfg's. We give only informal definitions and 
refer to [1], [4] for details. 

Given a grammar G as above, Lab (P) denotes the set of labels of rules in G 
(each rule has a distinct label). 
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A fi regular control (fic, for short) grammar G=(VS, VT, P, K, F) consists of 
a fi cfg (V/f, VT, P), a regular control language K over Lab (P) and a set F of labels. 
We write y in G if there exists a string pLp2...p„£K, ^ ¡ i Lab (P), such that 
A=x0=> *!...=> xn=y, and for each i we have either Xi_x=> Xi or x¡_j=Xi, 

PI Pn Pi 
the rule p{ is not applicable to and p^F. 

A fi matrix (fim, for short) grammar G=(VN,VT, P, M, F) consists of a cfg 
(^N>f/r> a finite set M of matrices and a finite set F of occurrences of produc-
tions in matrices of M. A matrix is a sequence m=(A1—u1, ...,An-*un), « s i , of 
productions in P. We write x => y for a matrix m as above if there are x±=x, x2, ... 

m 
..., xn=y such that either xj=xj+1, the rule r}\ Aj—Uj is in Fand it is not appli-
cable to X: or X: => X:+1. rJ 

In a programmed (fip, for short) grammar G=(VN, VT, P) the rules are of the 
form (b: A-*-u, S(b), F(b)) , where b is the label of the production, S(b) and F(b) 
are sets of labels referred to as the success and the failure field. If A-*u is appli-
cable to a string x, then, after applying it, we continue the derivation with a rule 
having the label in S(b); if A-»u is not applicable to x, then we pass to a rule with 
its label in F(b) (the string x remains unchanged). 

A fi random context (fire, for short) grammar G=(VN,VT, P) has the rules of 
the form (A—u, Q, R), where Q, R are subsets of VN, referred to as permitting and 
forbidding sets of symbols, respectively. Such a rule is applicable to a string x iff 
x contains all nonterminals of Q and contains no nonterminal in R. 

A fi Indian parallel (flip, for short) grammar is a cfg grammar in which each rule 
A—w is used in a derivation u=>v for rewriting all occurrences o[A in w, thus obtain-
ing v. 

A fi ordered (fio, for short) grammar (G, > ) consists of a fi cfg G and a partial 
order > on P. A rule A—u is applicable to a string x iff no rule B—v is applicable 
to x and B->-v>A-+u. 

We denote by F I „ FlCac,x, FIM f l C ,„ F I P ^ , FIRCac>A, F I I P „ and FIO* the 
families of languages generated by fi, fic, fim, fip, fire, flip and fio grammars, res-
pectively. The corresponding families generated in the usual mode are denoted by 
Qc,a> PaCjA, RCaCiA, IP^, Ox, respectively. When the appearance checking 
feature is not present, that is when F=& for fic and fim, F(b)=0 for fip and R=& 
for fire grammars, we erase the subscript ac; when no A-rules are allowed we erase 
also the subscript X. As usual, the families of recursively enumerable, context sensiti-
ve, context-free and regular languages are denoted by i?0, SPlt Z£2, respectively. 

Two languages are identified if they differ by at most the empty string. 

2. The generative capacity of fully initial regulated grammars 

Lemma 1. FlCac X = C„CiX, FIC, = FlCac=Cac, F I C = C . 

Proof. Let G=(Vn. Vt, S, P, K, F) be a regular control grammar. We consider 
the fic grammar G'=(VN, VT, P, K', F), where K'=KC\T-Lab (P)*, 7 being the 
set of labels of rules of the form u in P. Clearly, L(G)=L(G') and G' is of the 
same type as G. 



On fully initial grammars with regulated rewriting -159 

Conversely, for a fic grammar G=(VN,VT, P, K, F) we consider the regular 
control grammar VT, S, P', K', F), where S is a new nonterminal, 
P' =P\J {S*A\A£Vn}, K'=I-K and I is the set of labels of rules S^A, A£VN. 
Obviously, L(G)=L(G'). 

Lemma 2. FIMac>A = Moc>A, FIMA = MA, FIMflC = M0C, FIM = M. 

Proof. Let G=(Vn,Vt, P, M, F) be a fim grammar. We construct the grammar 
G'=(VNU{S},VT,S,P,M', F), where S is a new symbol and M'=M\J{{S^A)\ 
A£Vn}. Clearly, L(G)=L(G'), hence we have the inclusions Q. 

Conversely, let LQV* be a matrix language in a family M^p, a=ac or it is 
empty, [>=?. or it is empty. We write 

L = U { f l R ( L ) . U { * € L | | * | ^ l } 
aiV 

(da(L) is the left derivative of L with respect to a). Each language da(L) is a matrix 
language of the same type as L; let Ga=(VN,a, V, Sa, Pa, Ma, Fa) be a matrix 
grammar for each. Without loss of generality we may suppose that the vocabularies 
VN,a are pairwise disjoint and that each Ma contains matrices m=(r1, ..., r„) with at 
least one occurrence of productions not in Fa (otherwise we remove m and the corres-
ponding occurrences of rules from Ma and Fa, respectively, and we introduce all 
matrices mi=(r1, ..., r„), 1 sisn, containing the same rules as m but with the rule 
occurring on the position i not in Fa). 

A fim grammar generating L is G'=(V^, V, P', M', F'), where 

Vt = U (*5r..U{[a]})U{S}, S is a new symbol, 
a£V 

P' = U (PaV{S-*[a]Sa, [a] - [à], [a] - a})U{S - x\x€L, \x\ S 1}, 

and M' is constructed as follows: 
a) (S-+ x), x£L, S1 , is in M', 
b) for each aÇV we introduce in M' the matrices 

b.2) ([a] - [a], rx, ..., rn), for (rx, ..., r„)£Ma, 

b-3) ([a] - a, rx, ..., r„), for (r}, ..., r„)£Ma. 

Finally, F'= U Fa. 
a£ V 

It is easy to see that in each derivation of a string x£L, |* |>1, all sentential 
forms are of the form [a]w, moreover, no derivation can start from a symbol dif-
ferent from S (remember that for all a£ V, each matrix in Ma contains a rule not in 
Fa). In conclusion, L(G')=L, hence M a i iQFIM a >p, a,/? as above. 

Lemma 3. FIPac> ,=Pac>A , F I P , = P „ FIPo egP f l C , F I P ^ P . 

Proof. Let G=(Vn,Vt, P) be a fip grammar and consider the programmed 
grammar G'=(VN(J {S},VT, S, P'), where S is a new symbol and P'=PU{(rA: 
S-»A, Lab (P), 0)\A£Vn}. We have L(G)=L{G'), hence F l P ^ g P ^ , a=ac 
or it is empty, or it is empty. 
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Conversely, let G=(VN,VT, S, P) be a programmed grammar. We construct 
the fip grammar G'=(V£,VT,P), where 

V£=VnU{X, Y,N}, X, Y, N are new symbols, and P' contains the next rules: 

a) (s: X SY, S(s), 0), i i L a b ( P ) , S ( j ) = { / | ( / : S — w, S(i), F(ij)tP), 

b) (r: A - uN, S(r) U {/}, F(r)), / $ L a b ( P ) and 

(r: A - u, S(R), F(r))£P, 

c) ( / : Y X, {/„}, 0), 

d) ( f N : N-* A, {/„}, 0), M Lab (P). 

It is easy to see that the symbol N cannot be erased without erasing first symbol Y. 
Therefore, no rule in group b) can be successfully used without starting the deriva-
tion by the rule of type a). In consequence, L(G)—L(G'), hence Pa A g F I P a A, 
where a is as above. 

Lemma 4. FIRC o c , A =RC a c , A , F I R C ^ R Q , F I R C a c i « o c , F I R C Q R C . 

Proof. Given a fire grammar G=(VN, VT, P), we construct the random context 
grammar G'=(VNU {5}, VT, S, P'), where S is a new symbol and P' =PU { ( S - A 
0, ®)\A£Vn}. We have L(G)=L(G'), hence F I R Q ^ R C ^ , a=ac or it is empty, 
/}=A or it is empty. 

Conversely, for a random context grammar G—(VN,VT,S,P), we construct 
the fire grammar G' =(VN\J {X, Y},VT, P'), where X, Y are new symbols and P' 
contains the following rules: 

a) (X - SY, 0, 0), 

b) (Y - A, 0, 0), 

c) (A - u, QU{Y}, R), for (A - u, Q, R)£P. 

Obviously, L(G)=L(G'), which completes the proof. 

Lemma 5. — F l O x ^ 9 . 

Proof. Let us consider the regular language L = {ab"a\n SO} and suppose that L 
is generated by the fio grammar (G, > ) , G=(VN, {a, b}, P). Define / c=max {|w| 
\A-~uÇ_P) and consider a derivation A=u0=>u1=>... =>up=abka in (G, >), AÇ.VN. 
As \abka\>k, we have Let i be the greatest index such that ut=u[Bu" and 
u't => A, A and B => abka in (G, > ) . It follows that B=>uCv=> abka, abka— 
=xyz, x, C => y, z and y^X. Clearly, y^abka, hence ydL(G, >) 
and y is a proper subword of abka, contradiction. 

Corollary. F I O ^ c O * , and F I O c O . 

Lemma 6. ¿ f 3 - ( F I P a c U F I R C J ? i 0 . 

Proof. Let us consider the language L={ab"a\n^0} as above and suppose that 
L is generated by a fip (fire) grammar G=(VN, VT,P) without A-rales. Let k = 
= m a x {\u\\A—u£P} and take x—abkaÇ.L(G). There exists a derivation A =>Xj =>•... 
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...=>x„=abla, ÀÇVN. The lastly used rule is 2?—u, with u=ab', or u=bqa ,OT 
u—b", 0 S t , q<k, isssk. It follows that u£L(G), a contradiction. 

Corollary, (i) ¿ ? 2 - ( F I P « U F I R C o c ) ^ 0 , (ii) ' F I P « C P „ , FIPCZP, F I R C a c c 
c R C a c , F I R C c R C . 

Lemma 7. Let L be a language over a vocabulary V and let c be a symbol not 
in V. a) If L€Pac (L£P), then L{c}UFU {c}6FIPac (FIP, respectively), b) If 
L£RC a c ( ¿€RC) , then L{c}U{c}6 FIRCa c (FIRC, respectively). 

Proof, a) For a programmed A-free grammar G=(VN, V, S, P) generating !,, 
we construct the fip grammar G'=(V^, VU{c},P') with V^ = VNU {a'{a£V}U 
U {X, F} where X, Y are new symbols, and with P' containing the next produc-
tions : ' . 

a) (s: X—SY, S(s), 0), with si Lab (P) , 5 ( i ) = { i | ( i : S—-u, S(i), F(i))£P} 
b) (r: A-*u', 5 ( r )U{/} , F(r)), for each (r: A^u, S(r), F(r))eP; f$Lab(P) 

and u' is obtained from u by replacing each a€V by a'Ç M> 
c ) ( / : Y-*c, № € F } , 0 ) , 
d)(fa:a'-~a, {/„|6€K},0), for all a€V; / .$Lab(/»). 

The equality L(G')=L {c}UFU {c} is obvious, hence we have proved the first part 
of the lemma. 

b) If G=(Vn, V, S, P) is a random context grammar generating L, then we 
construct the fire grammar G'=(V£, FU{c}, P'), where 

V£ = VN\J{X, y}, with new symbols X and Y, 
P' = {(X - SY, 0, 0), (Y - c, 0, 0)} U 

U{(̂ < - fiU{r>, - M, Q, 
We obviously have L(G')=L{c}\J {c}, which completes the proof. 

Corollary 1. FIP - ¿?2^0, F I R C - S C ^ Q . 
Proof. Follows from R C — t h e above lemma and the closure 

properties of 
Corollary 2. FIRC—FIPa c?i0. 
Proof. The language L = {abna\ri^Q}{c}U {c} is in FIRC, but not in FIP a c 

(this follows as in the proof of Lemma 6). 
Lemma 8. F I P - F I O ^ 0 . 
Proof. The language L={abnac\n^0}\J {a, b, c J Ç F I P - F I i V The relation 

LCFIP follows from Lemma 7, and L$FIOA can be proved as in the proof of 
Lemma 5. 

Corollary. F I R C - F I O . ^ 0 , F I P a c - F I O ? i 0 . 
Lemma 9. F I O c F I P a e . 
Proof. Let (G, >), G=(Vn, Vt, P), be a fio grammar. Without loss of gene-

rality we may assume that whenever A—u and A—v are both in P, then these rules 
are incomparable. We construct the fip grammar G' =(VN U {X}, VT, P') , where X 
is a new symbol and P' is constructed as follows. For any rule r: A P write 
g(r) = {A1^-u1, ...,A„~u„}, where A^u^A^u, lsisn. 
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For every rule r: A-+u in P, introduce in P' all the rules (r ( , ) : A^UiX, 
0, {r(i+1)}), l s / s n - l , as well as the rule (r ( n ) : An~unX, 0, {r'}); then, add also 
to P' the rule (r' : A-*u, E, 0), with E={pm\p: B-vÇP, g(p)*0}U{p'\p: 
B ^ v t P , g(p)=0}. 

A derivation in G' develops as follows: the use of a rule (r': A — u, E, 0) is 
preceeded by the application with appearance checking of all the rules r ( i ) , l ^ i ' S 
Scard (g(r)); if such a rule r ( i ) can be applied, then the derivation is blocked. There-
fore L(G, > )=L(G ' ) , hence FIOQFIP a c . The proper inclusion follows from the 
corollary to Lemma 8. 

Lemma 10. FIP01.cFIRC f l c. 

Proof. Let G=(Vn,Vt,P) be a fip grammar. We construct the fire grammar 
G'={Vs,VT,P'\ where 

K = {M, r]\A£VK, r€Lab(P)}U{(U, r)|(r. A - u, S(r), F(r))€P} 
and, for every rule (r: A-*-u, S(r), E(r))ÇP, the set P' contains the following ran-
dom context rules: 

a) ([A, r ] ' - (u,r), 0, Cr), for any jÇS(r), 

• :b) ([5, r] - [B, S], {(M, S)}, Cr>s —{(M, J)}), for any s£S(r) and B£VN, 

c) ((«, s) - [w, s] ,0 ,C s -{(w, s)}), for any s£S(r), 

d) ([B, r] - [.B,f ], 0, C r>/U.{M, r]}), for any / € F ( r ) , 
and B ?£ A, 

with C r=^-{[X,r]}JZ<EF„}, ^[A-ÇÏ^} and if 
^ ¡ e ^ ; « ë 0 , then [m, 

An arbitrary derivation v=> w in G is simulated in G' as follows. If r is not appl -
i-

cable to1 tv then simply apply thè rules of the form d) and continue according to the 
failure field F(r). Otherwise, a rule of the form a) is applied, provided all nontermi-
nals are marked with the label r. The new by introduced nonterminal, (u, i), enables 
us to continue the derivation according to the success field S(r); it assists the appli-
cation of the rules of thé form b) until all nonterminals are marked by s. Next, the 
rewriting of A by u is simply accomplished by a rule of the form c); note that all 
nonterminals of the sentential form must be marked by s. The process continues with 
the rules derived from the rule s£S(r). Obviously, L(G)QL(G'). Similarly, each 
derivation in G'corresponds to one in G, hence L(G')QL(G), hence FIPo cQFIRC a ( ; . 
Thè inclusion is proper, as it follows from Corollary 2 of Lemma 7. 

Let us investigate now the Indian parallel grammars. 
Similarly to the equality IP=IP A , we also have FI IP=FIIP^ . 
Lemma 11. F I I P c I P and F I I P c F I P « . 
Proof. If G=(VN,VT, P) is a fiip grammar, we construct G '=(J^U {S}, VT, 

SiP'), S a new symbol, P'=P{J {S-~A\A£VN}, for proving F H P g l P , and 
G" = (VNU{A'\AeVN},VT,P"), 

P" = {(r: A^xA,{r),{rA))\r. A-xiP}YJ{(rA. A'-A, {r^ Lab 
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for proving FIIPQFIP„C (xA is the string obtained by replacing each occurrence 
of A in x by A'). 

As {a6"a|MS0}(|IP—FIPac and the Dyck language over {a, b} is in FI (it is 
generated by the cfg ({S}, {a, b), {S^SS, S-^X, S^aSb})), but not in IP, both 
inclusions above are proper. 

Corollary 1. JSP-FIHV0 for all families J§?€ {FI, ¿?2, FIO}. 

Corollary 2. IP is incomparable with all families FI, J§?2, FIO, FIP, FIP a c , 
FIRC, FIRCac . 

Lemma 12. FI IP-J? 2 7i0 , F I I P - F I ^ O . 

Proof. L = {a2"|"=0} is in FIIP as it is generated by the grammar ({51}, {a}, 
{S-+SS, S—a}), but it is not context-free, hence nor is it in FI. 

Summarizing the results in the previous lemmas, we obtain: 
Theorem 1. The following diagram holds: 

F l C ^ . i = C a f l i = FIMac,* = M^.A = 

= FIPflC.A = P„c,x = FIRC,,,* = RCflfi<l = 

\ 
o 

FIIP = FIIPA FI = FI, 
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where — • indicates strict inclusion and — • points out an inclusion which is not 
known to be strict. 

Theorem 2. a) The families in the next pairs are incomparable : (i?2, FIO), 
(¿ f 2 ,FIO,) , (¿?2 ,FIPo c), (¿?2,FIRC f l c), (JSP,, FIIP), (FI, FIIP) , (IP, FI), (IP, FIO), 
(IP, FIP), (IP, FIPa c), (IP, FIRC), (IP, FIRCa c), (IP, if2) . b) The following rela-
tions hold: F I P a c - F I O ^ 0 , F I R C f l C - F I O A ^ 0 , J S P . - F I R C « ^ , ¿ f 3 - F I P a c ? i 0 , 
i f 3 - F I O F I O - F I I P 5 * 0 . 

Theorem 3. The following diagram holds 

FI = FI, 
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Theorem 4. a) The families in the next pairs are incomparable: (JS?2,FIP) 
(i?2 ,FIRC). b) The following relations hold: F I R C - F I P f l C ^ 0 , F I P - F I O ^ 0 
F I R C - F I O A ? i 0 . 

3. Final remarks and open problems 

As it may be noticed from the previous results, any recursively enumerable set 
can be generated by fully initial context-free grammars with the following regulated 
rewriting: matrices, programming, regular control and random context, provided 
that the appearance checking mode of derivation is present. If A-rules are not allowed, 
then the fully initial regular control and matrix grammars are weaker than the con-
text sensitive grammars and they are stronger than the context-free ones. Moreover, 
the fully initial context-free ordered, programmed, random context and matrix 
A-free grammars give a hierarchy of languages (appearance checking is supposed). The 
family of context-free languages strictly includes the fully initial corresponding family, 
but it is strictly contained in the family of fully initial regular control and matrix 
languages. Both the families of regular and context-free languages are incomparable 
with the families of fully initial ordered and of Indian parallel languages, as well as, 
with the families of fully initial A-free programmed and random context languages. 
The incomparability of the fully initial ordered family (with A-rules) with the fully 
initial random context and programmed families is only partially solved: we said 
nothing about FIO*—FIPflC and FIO*—FIRCoc. Without appearance checking 
but with A-rules, it seems that the fully initial random context grammars are weaker 
than the regular control, the matrix and the programmed grammars. Moreover, in 
the A-free case, the fully initial programmed and random context grammars are 
stronger than the fully initial context-free grammars, but the relation between them 
remains open (we know only that FIRC—FIP;¿0). As these open problems corres-
pond to some unsettled questions about usual regulated grammars, the answers are 
not expected to be easy. 

Similarly to the usual case, the Indian parallel family has a "lateral" position 
(incomparable with FI, i f 2 etc.). 
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On star-products of automata 
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The study of complete systems of automata was initiated by V. M. Gluskov in 
[3]. In this work he characterized isomorphically complete systems with respect to the 
Gluskov-type product. Further characterizations of isomoprhically complete systems 
with respect to different kinds of products were presented in the. works fl], [2] and [5]. 
In this paper we deal with star-products which have been deeply investigated in [6] 
and [7], and study isomorphic completeness for this kind of products. It will turn out 
that there exists no finite isomorphically complete system, however, as shown in [6], 
there are finite isomorphically S-complete systems with respect to it. 

1. Definitions 

By an automaton we mean a system A=(X, A, 6), where A and X are finite 
nonvoid sets, and 8: AXX*-+A is the transition function. (Here and in the sequel 
X* denotes the free monoid generated by X.) The concepts of subautomaton and iso-
morphism will be used in the usual sense. 

Let At=(Xt,A,,8t) (/=1, ..., k) be a system of automata. Moreover, let Xbe 
a finite nonvoid set and q> a mapping of A1X---XAkXX into X 1 X . . X A ' t such 
that <p can be given in the form 

<p(alt ..., ak, x) = (<Pi(flj, ..., ak, x), (p2(au a2, x),..., (pk(ax, ak, x)). 
We say that 

A = (X,A,S) 

is a star-product of AT (¿=1, ...,k) with respect to Xand q> if A=A1X..-XAk and 
for arbitrary (ax,..., ak)£A and x£X 

5((aj, ..., ak), x) = (¿li«!, <Pi(oi,ak, x)), 52(aa, <p2(«i, «2, *)),-.—»-
• ••» 8k(ak, <pk(au ak,x))). 
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For this product we use the notation 

7 7 <p). »=i 

As regards the introduced composition, let us observe the following: if the pro-
duct-automaton is in the state (alt ..., ak) and receives an input sign x, then the auto-
maton Ax receives the input sign x1=q>1(a1,..., ak, x) which depends on x and all the 
actual states, and for every index 2 s / s f c the automaton A ; receives the input 
sign xJ = (pj(a1, aj, x) which depends on the actual states aj and x. Therefore, at 
a given moment the working of Ax depends on all component automata, while the 
working of Aj ( 2 ^ / s / c ) depends on A t and Aj only. This connection can be realized 
if the automaton Ax is placed in the centre and it is connected directly to each Aj 

as illustrated in Fig. 1. This network of automata corresponds to the sim-
plest computer network. 

2. Isomorphic realization 

Let I be a system of automata. I is called isomorphically comptete with respect to 
the star-product if every automaton can be embedded isomorphically into a star-
product of automata from I . Furthermore, I is a minimal isomorphically complete 
system if I is isomorphically complete and for arbitrary A t h e system I \ { A } 
is not isomorphically complete. 

For arbitrary positive integer n, let us denote by 

D, = ({*«: 1 Sr.JSn}, {1, . . . , n}, <5„) 

the automaton, where <5„ is determined in the following way: for arbitrary /€ {1, . . . ,«} 
and input sign xrs (1 sr,ssri), 

5„0'> *rs) = { . 
if i - r, 
otherwise. 

Now we present a necessary and sufficient condition for the isomorphic comp-
leteness. 
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Theorem 1. A system I of automata is isomorphically complete with respect to 
the star-product if and only if for every positive integer n, there exists an automaton 
Ad I such that D„ can be embedded isomorphically into a star-product of A with a 
single factor. 

Proof. First we show that D„ («>1) can be embedded isomorphically into a 
star-product of automata from I with at most two factors if D„ can be embedded iso-
morphically into a star-product of automata from I . For this, suppose that D„ can 
be embedded isomorphically into the star-product 

k 
n A t({x„: 1 S r, s =S «}, (p), 

r = i 

where A ( / = 1, ...,&) and k > 2 . Let us denote by/ i such an isomorphism, and 
for arbitrary /£ {1, . . . , "} let (an, ..., aik) be the image of i under ¡i. Now take an m 
(Ismsk), and assume that all=aJ1 and aim=aJm hold for some indices zVy 
(1 Moreover, let u£{l, . . . ,«} be arbitrary. Then S„(i, xiv)=v, 5n(j,xiv)= 
—j, and since n is an isomorphism, we obtain 

<5m(«im, <Pm(an, aim, xiv))=avm, 
Sm (ajm, <pm (an, aJm, x,„))=aJm. 

From this, by our assumption a i l =f l J i and aim=aJm, it follows that avm=a]m. 
Since v is arbitrary, ajm=aum ( o = l , .. . ,«). Therefore, there is an index ( 2 S m S k ) 
such that the pairs ( a n , alm) ( / = 1, . . . ,«) are pairwise different. But then the auto-
maton D„ can be embedded isomorphically into a star-product of Ax and Am, which 
yields the validity of our statement. 

Now in order to prove the necessity, let us assume that I is isomoprhically 
complete with respect to the star-product. Let n be an arbitrary positive integer. The 
case « = 1 being obvious, we may assume that « > 1 . Let w—n2. Since I is isomor-
phically complete, Dw can be embedded isomorphically into a star-product 

Tf At({xrs: lsr,ssw},(p) 
t=i 

of automata from I . From this, by the above assertion, it follows that Dw can be 
embedded isomorphically into a star-product of A, and Am for some Ismsk. 
But in this case it is easy to see that D„ can be embedded isomorphically into a star-
product of one of the automata Ax and Am with a single factor, which results the ne-
cessity of the condition. 

To prove the sufficiency, it is enough to show that arbitrary automaton with n 
states can be embedded isomorphically into a star-product of D„ with a single factor, 
which is obvious. This ends the proof of Theorem 1. 

Corollary. There exists no system of automata which is isomorphically comp-
lete with respect to the star-product and minimal. 

Proof. Let I be isomorphically complete with respect to the star-product, and 
take an A w i t h \A\=n. Let m>n be a fixed positive integer. Then A can be 
embedded isomorphically into a star-product of Dm with a single factor. On the other 
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hand, by Theorem 1, there exists an A* 6 1 such that Dm can be embedded isomorphi-
cally into a star-product of A* with a single factor. But then A can also be embedded 
into a star-product of A* with a single factor. This results that I \ { A ) is isomorphi-
cally complete with respect to the star-product. Therefore, I is not minimal. 

3. Isomoprhic simulation 

In [2] products are generalized in such a way that feedback functions take their 
values from the set of input words of the factors. Moreover, in homomorphic and 
isomorphic representations the words are permitted as counter images of input signs. 
It turned out that these new concepts are more powerful than the old ones. Under 
these new concepts completeness results for af-products are presented in [2], while [1] 
is dealing with the corresponding problems concerning v,-products. The represen-
tation of automata by isomorphic simulation and generalized products corresponds 
to the computation of functions on networks of automata. Going on this line, we 
introduce the concept of the generalized star-product, and study complete systems 
with respect to such products and isomorphic simulation. 

We start with the definition of the generalized star-product. Let A,=(Xt, A,, St) 
(t=1,..., k) be a system of automata. Moreover, let X be a finite nonviod set and <p 
a mapping of A1X...XAkXX into X^X-.-XXk such that <p can be given in the 
form 

<P(a•••,ak,x) - (<Pi(fli, ...,ak,x), <p¡¡fa, a2,x),..., <pt(a,, ak, x)). 

It is said that the automaton 

A = (X, ]] A,, S) 
t=I 

is a generalized star-product of A, (/ = 1, ...,k) with respect to Z a n d (p is for arbitrary 
k 

(ax, ..., ak)£ ¡J A„ and x£X, 
1=1 

S((al5 ..., ak), x) = (¿JK, (pA^i, ..., ak,x)), 

S2(a2,(p2(a1,a2,x)}, ...,dk (ak, q>k {ax, ak, x))). 

Obviously, if for each automaton A, its characteristic semigroup is equal to X„ 
then the generalized star-product is simply the star-product. 

Let A = ( X , A , S) and B = ( 7 , B, 5') be arbitrary automata. We say that A 
isomorphically simulates B if there exist one-to-one mappings fi : B—A and T : Y-»X* 
such that p(5'(b, y))=S(p(b), r ( j ) ) for arbitrary state b£B and input sign yd Y. 

As far as the isomorphic simulation is concerned, we have 

Lemma 1. If A isomorphically simulates B and B isomorphically simulates C, 
then C can be simulated isomorphically by A, too. 

Now we define isomorphic S-completeness. 
A system I of automata is isomorphically S-complete with respect to the generali-

zed star-product if every automaton can be simulated isomorphically by a generalized 
star-product of automata from I . 
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We shall use the following special automata. For arbitrary n £ 1, let us denote by 
T„ =(Tn, N, 5n) the automaton for which N= {1, .. ., n}, Tn is the set of all transfor-
mations of N and 5„(i,t) = t(ij for all /6N and t£Tn. 

Now we are ready to prove the following result giving necessary and sufficient 
conditions for S-completeness. 

Theorem 2. A system Z of automata is isomorphically S-complete with respect 
to the generalized star-product if and only if Z contains an automaton A=(X, A, 5) 
which has two different states a, b and two (not necessarily different) words p, qdX* 
with S(a, p)=b and 5(b,q)=a: 

Proof. The necessity of the conditions is obvious. The sufficiency can be derived 
from Theorem 1 in [6]. Here, using a different approach, we present a constructive 
proof. For this let us suppose that the conditions are satisfied by A£Z under the 
states 0, 1 and words p, q. Let s=qp and r=pq. Then ¿(0, r)—0 and <5(1, s) = l . 

From the definition of T„ it follows that every automaton B=(X, B, S) can be 
embedded isomorphically into T„ if n^\B\. Therefore, by Lemma 1, it is enough to 
show that for arbitrary 1, T„ can be simulated isomorphically by a generalized 
star-product of automata from I . On the other hand, in [4] it is proved that the map-
pings i l 5 t 3 generate the full transformation semigroup over N, where tlt f2 , h 
are determined as follows: 

Therefore, the automaton T„ can be simulated isomorphically by the subautomaton 
T^=({ij, t2, /3}, N, of the automaton T„. Therefore, again by Lemma 1, we ob-
tain that if for every n the automaton T^ can be simulated isomorphically by a gene-
ralized star-product of automata from I , then Z is isomorphically S-complete with 
respect to the generalized star-product. 

Obviously, if n s 2, then Tn can be simulated isomorphically by a generalized 
star-product of A with a single factor. Thus, suppose that n > 2 is an arbitrarily 
fixed integer. To obtain a simulation of T^ by a generalized star-product of automata 
from Z, consider the generalized star-power A"(Y,cp), where Y=^{ys: 1 sj^n), 
and using a function 4' '• {0> 1}— {i-, i}, the mappings <pj are defined in the following 
way: for arbitrary a , b , a t , ..., ak£ {0, 1}, 

i1(i) = / + l if l s / < n and h(n) = 1, 

i2(l) = 2, i2(2) = 1 and i2(i) = i if 3 s i s n, 

/3(1) = i3(2) = 1, and >a(0 = / if 3 i s n. 

if a = 1 

(q, if a = 0, b - 1, 

<P]{a, b, yx) = il/(b)(j = 3, ..., «), 
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9i(fli, •••, <*„, y,) = P, 
.Had 

if flx = 1, 
if ax = 0 , a, = 1, (/ = 2, 
otherwise, 

-, n) 

(Pj(a,b,yj) = 

<P№> b> yi) = 
Take the mappings 

p, if a = 1, 
q, if a = 0, 6 = 1 , ( j = 2, ..., n) 
\]/(b) otherwise, 

tl/(b) (2 á / i n , 2 á ) S n, / y ) . 

(1,0, . . . ,0 ,0) , 
(0,1, . . . ,0 ,0) , 

and 
. « - ( 0 , 0 , . . . ,0 ,1) , 

T: 
J V - J ' n , 
J2, 
A-

The validity of the equalities n(ô'n(i, tj))=ôKn(fi(i), t(tj)) ( / = 1 , 2 , 3 ) can be chec-
ked in a trivial way. This completes the proof of Theorem 2. 

Remark. Let us consider the automaton A2=({x, y}, {0,1}, 5) with the transi-
tion function 5(0, x)=<5(l, >>) = 1, <5(1, x)=<5(0, y)=0. From the above constructive 
proof it follows that Z = {Aa} is isomorphically S-complete with respect to the star-
product. 

Acknowledgement. The authors are grateful to Z. Ésik for calling their atten-
tion to the papers [6] and [7], and for suggesting a simplification in the original proof 
of Theorem 2. 
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Dedicated to Professor Miyuki Yamada on his 60th birthday. 

Abstract 

The purpose of this paper is to investigate the characteristic semigroup of a 
Mealy automaton. We show that there exists a bijection from the set of regular 
^-classes of a characteristic semigroup S'(M) of a Mealy automaton M onto the 
set of regular ^-classes of the semigroup S(M*) of the projection M*. 

1. Introduction 

For a set / , the cardinality of / is denoted by | / | . I* is the free monoid with an 
identity e generated by I, and I+ =1*— {E}. If is a nonempty word, then we 
denote by w the last letter of w. We use the symbol 0 for the empty set. 

Let <5: S-*SX and A: S1—S2 be mappings of S and St, respectively. We read 
a product <5A from left to right: (s)dA=((.s)<5)A, s£S. The set (S) <5 is called the image 
of 8 and it is denoted by Im 5. The equivalence relation Ker 8 defined on £ by 
( j l 5 i2)6Ker 8 if and only if is called the kernel of <5. 

An automaton A is a triple A=(S, 1,8), where S is a nonempty set of states, I 
is a nonempty set of inputs, <5 is a state transition function such that 8(s, xy) = 
=¿(¿(5, x), y) and <5(s, e)=s for all s£S and all x, y£l*. 

A Mealy automaton M is a quintuple M—{S, I, U, 8, A), where M*=(S, I, 8) 
is an automaton, U is a nonempty set of outputs, X: SXl-*U is an output function. 
The output function is also used in the extended sence; for S and xy£I* such that 
xO* and y£l, X(s,e)=e and X(s, xy)=X(s, x)A((5(s, x),y). 

The automaton M* mentioned above is called the projection of the Mealy auto-
maton M. 

Let M=(S, / , U, 8, X) be a Mealy automaton. To each x£l+ we assign the 
transformation 8X on S, where 8X: s—8(s,x), s£S. Let S'(M*)={<5;c|x€/+}. 
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Then S(M*) is a subsemigroup of the full transformation semigroup on S. To each 
x£I+ we assign the mapping Ax: s-*X(s,x), s£S. If xy is an element of / + such 
that both x and y are in then (s)Axj,:=(s)5xA,,. 

The congruence q on I+ is defined by xgy if and only if Sx=8y and Ax — A,. 
Put S" (M) = {(AX, 5x)\x£I+}. In S'(M) we introduce the multiplication as follows: 

( A x , , 5 x ) ( A „ « 5 y ) = ( < 5 X A „ M , ) -
Since (dxXy, 8xdy)=(Xxy, 5xy)€S'(M), the set S'(M) forms a semigroup which is 
isomorphic to I+/g. In this paper S' ( M ) is called the characteristic semigroup of M. 
We note that if Ax=A, and 5X=52 (x, y, z£I+), then (Xy, dz)=(Xx, Sx) as a pair of 
mappings and (Xy, dz)€S'(M). 

We shall remark on another aspect of the characteristic semigroup of a finite 
Mealy automaton. 

Remark. Assume that S is a finite set. On the output set U we define a multipli-
cation by ab=b, (a, ¿6 U). In such a way we obtain a right zero semigroup U. To 
each (A,-, 3X) in S'(M) we define the \S\X row-monomial matrix M(Xx,Sx) 
by 

tun ^ i f { s ) 5 ' = *' M ( l x , 5 x ) a = [ 0 o t h e r w . s e 

Two matrices are multiplied in the obvious way, and the set of all matrices forms a 
semigroup. Since the mapping (Ax, <5X)—M(Xx, Sx) is an isomorphism, S'(M) is 
isomorphic to a subsemigroup of the wreath product UWTS(M*) of U and 
S(M*) (see [7]). 

2. Regular ©-class 

On a semigroup T Green's relations are defined by 

aWboaTi^bT1, a&b^T1 a = Tlb, 

a&b <=>• aSSc and c0ib for some c£7 \ 

The intersection of two equivalences &t and is denoted by . An element x of 
á semigroup T is called regular if there exists y in T with xyx=x. If D is a ©-class, 
then either every element of D is regular or no element of D is regular. Therefore we 
call a ©-class regular if all its elements are regular. In a regular ©-class each ál-
dass and each -class contains at least one idempotent. 

Let T be a subsemigroup of the full transformation semigroup on a set S, and 
let D be a regular ©-class of T. If x, y£D, then we have x£Cy in T-o-Im x = I m y, 
and x0Ly in t o - K e r x = K e r y (see [2, p 39]). 

The proof of the next lemma is omitted. . 

Lemma 1. Let 5 be a transformation on a set iS\ such that <52=<5, and let A be 
a mapping from St to S2. Then <5A=A if and only if Ker Ő ^ K e r A. 

. In what follows AT means a Mealy automaton such that M=(S, I, U, <5, A). 
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Theorem 1. (Xx, 8X)£S'(M) is a regular element if and only if <5X is a regular 
element of S(M*) and Ker <5xg;Ker Ax. 

Proof, "only i f" part. Since (Ax, 8X) is a regular element, there exists some (Xy, 8y) 
in S'(M) such that 5x5y8x=8x and 8X8yXx=Ax. This implies that Ker 5X<^ 
^ K e r <5x£,,Ax=Ker Ax. " i f" part. Since 8X is a regular element, 8x8y8x=8x for 
some 8y in S(M*). From SxSy(%8x we have Ker <5^=Ker SxQKer Xx. 

Since 8xy is an idempotent, by Lemma 1, 8xyXx=Xx. Therefore we have (Xx, 8x) • 
• (Ay,,5,,)(Ax,,5x)=(Ax,<5x).Q.E.D. 

For a subset H of S'(M) we define the sets of mappings by 
H^ = {Xx\(Xx,5xKH}, H^ = {8x\(lx,8x)eH}. 

Theorem 2. If L is an if-class contained in a regular ©-class of S'(M), then 
L(2) is an if-class of 5'(M*). 

Proof. It is clear that there exists some regular if-class L* of S(M*) such that 
L ( 2 )^L*. Now we show the validity of the reverse inclusion. Let (Xe, 8e)£L be an 
idempotent of S'(M). Then 8e is an idempotent of L* and 8e is a right identity for L*. 
Hence for every 8X in L* we have 8x8e=dx and Sp8x=8e for some 8P in S(M*). 
Consequently, (<5xAe, 8x)=(Xxe, 8xe)£S'(M) and (8xXe, 8x)(Xe, 8e)=(8xXe, 8X). 
Moreover, we have (Ap, 8p)(8xXe, 8x)=(Xe, 8e). This yields that (Ae, ¿ e ) i f (8xXe, 8X) 
in S'(M), and therefore <5X£L(2). Q.E.D. 

Theorem 3. If L is an if-class contained in a regular ©-class of S'(M), then 
(Xx, 8X)—SX is a bijection from L onto Z,(2). 

Proof. An idempotent (Ae, 8e) in L is a right identity for L. If (Ap, 8X), (Xq, SX)£L, 
then 

( A p , 8X) = ( A p , 8x)(Xe, 8e) = (8xXe, 8X) = ( A „ 8x)(Xe, 8e) = ( A „ 8X). 
Q.E.D. 

Let Hx and H2 be Jf-classes contained in the same ©-class of S'(M). Then, 
using Green's lemma, it can be seen that l / i ^ l = \H&2)\ holds (see [5]). However, 
there are examples that show that in general the equality = does not 
hold. Therefore, in the next theorem, the condition that boht Hx and H2 are in the 
same if-class is indispensable. 

Theorem 4. Let L be an if-class in a regular ©-class of S'(M). If Hx and H2 
are two ^"-classes contained in L, then |#i (1) | = |ffa

(1)|. 
Proof. Let (Ae, 8e) be an idempotent of L, and let H be an Jf-class of (Ae, 8e). 

If A2€# (1), then 8eXz=Xz since (Xe, 8e) is an identity of H. Let Xx, Xy£Hm and 
Xx^Xy. Then (s)8eXx7i(s)8eXy for some s£S, therefore Xx and Xy are distinct 
mappings on Im 8e. Let Hx be an arbitrary -class in L. Then (Xp, 8P)H—HX for 
some (Ap, <5P) in S'{M). Thus H^ = {8„XJXweH(1)}. Assume that 8pXx=8pXy 
for some Xx, Xy£Hm, (Xx^Xy). Then 8p8eXx=8p8eXy. Since 8pSe£H}2\ we have 
that 8pSe£?8e, and so, Im <5p<5,,=Im <5e. Therefore for every sZIm 8e there exists 
some t£S with ( t )8 p 8 e =s. Then (s)Xx=(t)8pSeXx=(t)Sp8eXy=(s)Xy holds for 
every s in Im 8e, which is a contradiction. Hence Xx^Xy implies 8pXx7±8pXy. This 
shows that the mapping 6: defined by (Xw)9=8pXw is a bijection from 
Hw onto Hj». Q.E.D. 
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Theorem 5. If R is an -class contained in a regular ©-class of S'(M), then R<2) 

is an ^-class of S(M*). 

Proof. It is clear that there exists an 32-class R* of S(M*) such that Ri2)QR*. 
We shall show that the reverse inclusion holds, too. Let (/>.„, Sj£ R be an idempontent. 
Then 8e is an idempotent in R*, and therefore, 8e8x=8x for every 8X£R*. For the 
word ex£l+ we have (?-ex, 8ex)=(Se?.x, 8x)(iS'(M). Since 8x£%8e, there exists 
some 8p£S(M*) such that 8x8p=8e. In this case (8eXx, 8x)(Xpe, 8pe)—(Xe, 8e) 
and (Ae,«5J(<5eAx,<5x)=((5eAx,<5x). Therefore (8eXx, SX)£R and <5X€Ri2). Q.E.D. 

Theorem 6. ([6]). Let D be a regular ©-class of S'(M) and (AX,<5X), (Xy,8y)£D. 
Then (Ax, 8x)M(Xy, 8y) if and only if Ker <5x=Ker <5yg(Ker A, f i l t e r Xy). 

Theorem 7. If Rj and Rz are distinct ^-classes in the same regular ©-class of 
S'(M), then /?< 2>fl^ 2 )=0. 

Proof. If R^DR^^d then, by Theorem 5, we have R'f>=Ri,2\ If ( 4 , ¿ j t ^ 
and (Xy,Sy)€R2, then 8X and <5j, arc in R[2\ thus Ker <5z=Ker Sy. By Theorem 1, 
Ker <5x£Ker Ax and Ker ¿ y £ K e r Xy. Therefore, by Theorem 6, we have that 
(Xx,8x)8%(Xy,8y), and so R1=Ri, which is a contradiction. Q.E.D. 

Theorem 8. If D is a regular ©-class of S" (M), then Z>(2) is a regular ©-class of 
S(M*). 

Proof. It is obvious that there exists a regular ©-class D* such that D(2)QD*. 
We show that the reverse inclusion holds. Let 8X£D* and let L* be an if-class of D* 
containing 5X. If R is an -class of D then, by Theorem 5, R{1) is an -class of D*. 
Hence « ( 2 ) n L V 0 . If <5,,€ &(2) f U * , then (Xp,8y)eD for some A Let L b e a n 
jSf-class containing (Ap, <5y). Then ¿ ¿ L ^ D L * . Thus, by Theorem 2, L{ 2 )=L*. 

This means that 5x€L (2 )g£> (2 ), and so D*QD™. Q.E.D. 

Theorem 9. Let D be a regular ©-class of S'(M), and let DR and D^ be sets 
of ^-classes of D and Di2), respectively. Then |/)K | = |Z)^2)|. 

Proof. By Theorems 7 and 8, the mapping R-*~R(2) is a bijection from the set of 
^-classes of D onto the set of ^-classes of D(2\ Q.E.D. 

If D is a finite regular ©-class, then D and Z)(2) consists of the same number of 
^-classes. However, note that we cannot in general assert that D and Z>(2) have the 
same number of <£-classes. 

Lemma 2. If (Aw, 8e) is a regular element of S' ( M ) such that Se is an idempotent, 
then (Aw, 8e) is an idempotent and Xw=5eXw. 

Proof. There exists some idempotent (Xf, 8f) such that (Xw, 8e)^(?,f, 8f). Since 
(Ar, 8f) is a right identity in its JSf-class, we obtain that (Aw, 8e) (Xf, 8f)=(8e Xf, 8e 8f) = 
=(XW, 8e). Thus 8eXs—Xw. From this we have that (Aw, 8e) is an idempotent and 
Xw=8eXw. Q.E.D. 

Theorem 10. If D* is a regular ©-class of S(M*), then there exists a unique 
regular ©-class D of S'(M) such that D(2) = £>*. 
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