
Volume 9 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor:]. Csirik (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA),W. Brauer (FRG), L. Budach (GDR),
R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France), J. Demetrovics
(Hungary), B. Dömölki (Hungary), J. Engelfriet (The Netherlands), Z. Ésik (Hungary),
J. Gruska (Czechoslovakia), H. Jürgensen (Canada), L. Lovász (Hungary), Á. Makay
(Hungary), A. Prékopa (Hungary), A. Salomaa (Finland), L. Varga (Hungary)

Szeged, 1989

Information for authors: Acta Cybernetica publishes only original papers in English in the field of
computer sciences. Review papers are accepted only exceptionally. Manuscripts should be sent in
triplicate to one of the Editors. The manuscript must be typed double-spaced on one side of the paper
only. For the form of references, see one of the articles previously published in the journal. A list
of special symbols should be supplied by the authors.

Editor-in-Chief: F. Gécseg
A. József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1
H—6720 Hungary

Managing Editor: J. Csirik
A. József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1
H—6720 Hungary

Board of Editors:
M. Arató
University of Debrecen
Department of Mathematics
Debrecen
P. O. Box 12
H-4010 Hungary
S. L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Yersey 07030
USA

W. Brauer
Institut für Informatik
der TU München
D-8000 München 2.
Postfach 202420
FRG
L. Budach
AdW der DDR
Forschungsbereich Mathematik
und Informatik
Rudower Chaussee 5
Berlin-Adlershof
GDR-1199

R. G. Bukharaev
Kazan State University
Lenin str. 2.
420012 Kazan
USSR
H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Länggass strasse 51
CH-3012 Bern
Switzerland

B. Courcelle
Université de Bordeaux I
Mathématiques et Informatique
351, cours de la Liberation
33405 TALENCE Cedex
France

J. Demetrovics
MTA SZTAK1
Budapest
P. O. Box 63
H-1502 Hungary

B. Dömölki
SZKI
Budapest
Donáti u. 35—45.
H-1015 Hungary

J. Engelfriet
Rijksuniversiteit te Leiden
Subfaculteit der
Wiskunde & lnformatica
Postbus 9512
2300 RA LEIDEN
The Netherlands

Z. Ésik
A. József University
Department of Computer
Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Technical
Cybernetics
Slovak Academy of Science
Dúbravska 9
Bratislava 84237
Czechoslovakia

H. Jiirgensen
The University of Western
Ontario
Department of Computer
Science
Middlesex College
London N6A 5B7
Canada

L. Lovász
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

Á. Makay
A. József University
Kalmár Laboratory of
Cybernetics
Szeged
Árpád tér 2.
H-6720 Hungary

A. Prékopa
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland

L. Varga
Eötvös University
Budapest
Bogdánfy u. 10/B
H-1117 Hungary

On the worst-case performance of the NkF bin-packing heuristic*

J . C s i r k , B. IMREH

Bolyai Institute, Department of Computer Science,
Aradi vértanúk tere 1. H—6720 Szeged, Hungary

Introduction

In bin packing, we are given a list

L = fa, s2, ...j J„)

of items (elements) with a weight function on items and a sequence of unit-capacity
bins Bt, B2, In this paper, we assume that the item weights are real numbers in
the range (0, 1] and that the list is given by the weights. The problem is to find a
packing of the items in the bins such that the sum of the items in each bin is not grea-
ter than 1, and the number of bins used is minimized.

This problem is NP-hard [GJ] and therefore heuristic algorithms which give
"good" solutions in an acceptable computing time are investigated [J], [JDUGG].
We are interested in the worst-case behaviour of the Next-k Fit' (NkF) algorithm.
For this, an upper and a lower bound were given in Johnson's paper. We shall im-
prove both bounds.

For a list L, let OPT(L) be the number of bins in optimal packing. For a givea
heuristic algorithm A, let A(L) be the number of bins used by A to pack L. Let

* This paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr.

Preliminary definitions and notations

1135.)

90 J. Csirik and B. Imreh

The asymptotic worst-case ratio of A is then defined as

Ra = l imsup R.%.
Let

s(L)= 2 si
i=1

and let s(Bj denote the sum of the weights of the items in B-,.
We investigate the NkF algorithm, which is defined as follows: we always use k

bins at the same time. If the next .element, aJ} is coming, we place it into the first of
the k used bins which has enough room for it. If no such bin has enough room, we
close the first (oldest) of these k bins, open a new one, and put a, into this bin (this
will now be the k-th or youngest bin).

Johnson has proved for the asymptotic worst-case ratio of NkF that

In this paper we prove that
^N2F = 2

and that for
3 7

L 7 + 1 0 (* - 1) lJ5+4(2k+3)-

However, vhe exact worst-case ratio is not known for

Results

First we give an upper bound on RNkF for k^3. Let L be an arbitrary list and
let us pack the elements of L by means of NkF. Let Bt, Z?2,.,., Br denote the sequence
of bins used and let m be a fixed nonnegative integer. For any positive integer i.s
S r + 1 — m the sequence of the bins 5 , , Bi+l, ..., Bi+m_i is called a parcel consisting
of m bins if the following conditions hold

(; 0 s (B ,) > l / 2 (f = / , . . . , i + m - 1) ,

(b) i+m-l = r or i+m-1 < r&s(Bi+m) S 1/2.

We classify the bins of a parcel consisting of m bins with respect to their contents as
follows:

(A) Is, S 2/3 & (31) (st > 1 / 2) ,

(B) I s , ^ 2/3&(W)Cy,S 1/2),

(C) Is, < 2/3&(3/)(j , > 1/2),

(D) l i t < 2 / 3 & (V /) (J , S 1/2),

On the worst-case performance of the NkF. bin-packing heuristic 91

where t runs through the set of indices of the items contained in the considered bin.
Obviously, we obtain a partition of the bins B i t ..., B t + n ^ . We shall use the termi-
nology X-bin for a bin which is contained in the class determined by the property X,
where X£ {A, B, C, D}. It may be observed that any D-bin contains at least two
items; moreover, it contains an item with s , ^ 1/3.

For the D-bins, the following statement holds.

Lemma 1. There are at most two D-bins among any k+l successive bins of
any parcel consisting of m S i + 1 bins.

Proof. Let B*, B%, ..., B%+1 denote the considered bins. Let and
let us suppose that B* is the D-bin with smallest index and that BJ is the D-bin with
second smallest index. If j=k+1, then the statement obviously holds. Now let us
assume that j^k+1. After the packing of L the empty room in Bf is greater than
1/3. Accordingly, the empty room in it is greater than 1/3 when the first item is packed
in BJ. Therefore 1/3<5X holds for this item. By our assumption, BJ is a D-bin;
thus, j ^ l / 2 and during the further packing at least one item with weight less than
1/3 will be packed in Bj. Let us investigate the circumstance of the packing of the
first such item. It should be observed that the bin Bf contains enough empty room
for this item. Therefore, the packing of this item in BJ implies that at this time the
bin B* is already closed. This results that, up to the closing of Bf the content of BJ
is not greater than 1/2. But then, the weight of the first packed item in BJ+U is greater
than 1/2 if «€ (1, ..., fc+1 —7'}. This means that BJ+1, ..., B£+1 are of types A or C,
which yields the validity of our statement.

Lemma 2. For any k+1 successive bins of any parcel consisting of m^k+l
bins if there exists a C-bin among the considered bins and if there exists a Z>-bin
among the bins succeeding the C-bin, then the bins succeeding the D-bin are of
types A or C.

Proof. In the proof of Lemma 1 we only made use of the fact that Bf has empty
room greater than 1/3 and this property holds for any C-bin, too; thus, by repeating
the proof of Lemma 1, we obtain the validity of Lemma 2.

Any k+2 successive bins of a parcel consisting of m S i + 2 bins is called a
block. We classify the blocks as follows:

(1) it contains at most one D-bin,
(2) it contains two D-bins or it contains three D-bins and at least one Z?-bin,
(3) it contains three D-bins and at least one ^4-bin; moreover, the remaining

k—2 bins are of types A or C,
(4) it contains three D-bins and k— 1.C-bins.
From Lemma 1 it follows that any block contains at most three D-bins, and so

the above classification induces a partition of the blocks. We shall use the terminology
j-block or block of type j if it has the>th property for some {1, ..., 4}.

Now let us consider an arbitrary block of a parcel consisting of m ^ k + 2 bins..
Let s denote the sum of the weights of the items contained in the bins of the block and
let q' and q be the numbers of its .¿-bins and C-bins, respectively.

The following statement then holds.

92 J. Csirik and B. Imreh

Lemma 3. For any r€{1, ..., 4} if a block is of type r, then the r-th assertion
holds for it among the following ones:

(1) j S № + 2) y - (i + l) i ,

(2) 5 S (* + 2) y - (i + 2) I ,

(3) s £ {k+2)\-(q + V^&q + q' = k-l&q' > 0,
J o

(4) i £ (H 2) y - (i + 3) i | l ? = fc-l.

Proof. In the cases r = 1, /-=3 and r = 4 the statement follows from the defi-
nitions. If r=2 and the block contains only two D-bins, then the assertion is again
obvious.

Now let us suppose that the considered block contains three Z>-bins and at least
one £-bin. Let B f , ..., B%+2 denote the bins of the block. Since it contains three D-
bins, by using Lemma 1 twice, we obtain that and B%+2 are D-bins. Let us assume
that BJ is the intermediate D-bin for some + By our assumption, the block
contains a £-bin. Let B* denote this bin, where 2 s / « A : + l and l ^ j . We distin-
guish the following two cases.

Case 1. Let us suppose that /</". Then l^k, and so, at the time of opening of
B*, the bin B* is open. On the other hand, B* is a D-bin, and so, after the packing of

all elements of L, the bin B* contains empty room with weight y + ^ > where

But then B* contains empty room with weight at least when the first

item is packed in the bin B*. Therefore, y - j - J - c ^ holds for this item. Moreover,
since B* is a fi-bin, 1/2. We now distinguish two subcases.

If at the time of the packing of the second item of B*, the bin B* is open, then

for the weight s2 of this item y a g a i n holds. But then

and so
s = s(Bt)+s(Bt)+ 2 t^l.t^l J J o

which yields the validity of our statement.
If at the time of the packing of the second item of B* the bin B* is closed, then

up to the closing of B\ the content of B* is not greater than . This results that the

On the worst-case performance of the NkF. bin-packing heuristic 93

weight of the first packed item in B*+u is greater than 1/2 if H£{1, 1—/}.
This means that the bins B*+1, ..., B%+1 are of types A or C, which contradicts our
assumption on B*. Therefore, this case is impossible.

Case 2. Let us suppose that /«=/. Then and so, at the opening

of B* the bin B* is open. Next, in the same way as in Case 1 we obtain that y

< j j S l / 2 holds for the first packed item in B*.
If at the time of the packing of the second item of B* the bin B) is open, then,

similarly as in Case 1, we obtain the validity of (2).
If at the considered time B*} is closed, then up to the closing of B* the content

of B* is not greater than 1/2. This yields that the weight of the first packed item in
B*+u is greater than 1/2 if {1, ..., k+2—/}. But then, B*+1,..., B%+2 are of types
A or C, which contradicts our assumption. Therefore this case is impossible, which
completes the proof of Lemma 3.

Lemma 4. For any parcel consisting of m bins, the following assertions hold:
(I) there exists at most one D-bin among the last z=min {k, m) bins of the

parcel;
(II) if m^k+2, then the type of the block consisting of the last k+2 bins of

the parcel is less than 4;
(III) if the first block among two successive blocks of the parcel is of type 4,

then the type of the second block is 1 or 2, and in the last case the block contains at
least one ¿-bin.

Proof. For assertions (I) and (II), we have to distinguish two subcases according
to the definition of the parcel.

Case IIa. Let us suppose that the last z bins of the considered parcel are the last
z bins of the packing of L. Then, these bins are all open at the packing of the very
last item of L. Let B\, ..., B* denote the considered bins and let us assume that Bf

and Bj are Z>-bins, where 1 Then Bf has empty room with weight - i -+A,

where J > 0 . Therefore, y + J c ^ ^ l / 2 holds for the first packed item (s,) in B*,

and so 1/3 holds for the weight s2 of the second item of Bj. At the time of the

packing of this item, the bin B* is open and has empty room with .weight y +A;

thus the NkF algorithm places this item in B f , which is a contradiction. Therefore,
there exists at most one D-bin among the considered z bins.

Case I/b. Let us suppose that the considered B*, ..., B* bins are not the last z
bins of the packing of L and that i(B*+i) —1/2 holds for the following bin B*+1 of
the packing. Now let us assume that Bf and Bj are Z)-bins, where 1 Then

B* has empty room with weight where A>0. Therefore, y - M < i i S l / 2

holds for the first packed item (Jx) in B*, and so 1 /3 holds for the weight s2
of the second item of Bj. Thus, at the time of the packing of this item the bin Bf

94 J. Csirik and B. Imreh

is closed. This yields that, up to the closing of B* the content of B* is not greater
than 1/2. But then, the weight of the first packed item in B*+u is greater than 1/2 if
H£{ 1, ..., z—7 + 1}. This contradicts our assumption on B*+1. Therefore, there is at
most one D-bin among the considered z bins.

Case Ilja. L e t u s assume that the bins of the considered block are the last k+2
bins of the packing of Z, and that the block is of type 4. Let us B*, ..., B%+2 denote the
considered bins. Then, by using Lemma 1 twice, we obtain that B* and are D-
bins. Now let us suppose that B* is the intermediate D-bin for some +
If 2, then B% is a C-bin, since the block contains only D-bins and C-bins. But then,
by Lemma 2, we obtain that the bins B*+1,..., B%+ 2 are not of type D, which is a
contradiction. Thus, j=2 and ..., Bl+l are of type C. Since the considered k+2
bins are the last k+2 bins of the packing, the bins ..., Bf+2 are all open
when the second item is placed in B%+ 2. On the other hand, is a C-

bin, and so it has empty room with weight y + A , where A > 0 . Thus, + ^ < ^ g

=s1/2 holds for the weight ^ of B%+2 and s 2 < 1/3 holds for the weighty of the second
item of B%+2. But, at the time of the packing of this item, is open and it has empty

room with weight y J thus the NkF algorithm places this item in Bt, which is a

contradiction. Therefore, the type of the considered block is less than 4.

Case II/b. Let us suppose that the considered m bins are not the last m bins of the
packing and that s(B')~l/2 holds for the bin B' immediately succeeding the last
bin of the parcel. Moreover, let us assume that the block is of type 4. Let B*, ..., B%+2
denote the bins of the block, and let B%+3 denote the bin B'. Then, by our assumption,
s(B%+3)^\/2. Now, in the same ways as in Case Il/a, we obtain that B*, B2, B%+2
are D-bins and ..., B%+1 are C-bins. Since B% is a C-bin, it has empty room with

weight y + J , where 0. Thus, y 1 / 2 holds for the weight of

the first packed item in B%+2. On the other hand, B%+2 is a D-bin, and so s2< 1/3
holds for the weight s2 of the second item of Bf+2. Thus, at the time of the packing of
this item, the bin B% is closed. Therefore, up to the closing of B% the content of B%+2
is not greater than 1/2. But then, the weight of the first packed item in B£+s is greater
than 1/2, which contradicts our assumption. Therefore, the type of the considered
block is less than 4.

Case III. Let us suppose that the parcel contains two successive blocks and that
.the first of them is of type 4. Let B*, ..., B%+2 denote the bins of the first block and
B%+ 3 , ..., B^+4 the bins of the second block. Then, in the same way as above, we
obtain that B$, B2, are D-bins and is a C-bin. But then, by Lemma 2, the
bins , .. ., Btk+1 are of types A or C. On the other hand, ..., 4 are
k+\ successive bins of the parcel, and so, by Lemma 1, there are at most two
D-bins among these bins. Since B%+3 is of type A or C, we obtain that the second
block contains at most two D-bins. Now let us investigate the bins B%+3, ..., B*k+1.
Since ¿ ^ 3 , the number of the investigated bins is at least 2. If there exists an A-bin
among these bins, then assertion (III) obviously holds. In the opposite case, B%+3
and Bl+i are C-bins. On the other hand, the bins ..., B^+4 are k+1 successive

On the worst-case performance of the NkF. bin-packing heuristic 95

bins of the parcel, and so, by Lemma 2, we obtain that there exists at most one D-
bin among these bins, which results the validity of assertion (III).

This ends the proof of Lemma 4.
For any parcel consisting of m bins let s denote thé sum of the weights of the

items contained in the bins of the parcel and let q' and q denote the numbers of its
^4-bins and C-bins, respectively. Let w=q+q'. Then, the following statement holds.

Theorem 1. For any parcel consisting of m bins

2 1 , ,, 1 m—1
s S -Tm--r(w +1)— 3 6 v ' ' 3 k+2

Proof. Depending on the value of m, we distinguish five cases.
1. m=0 . In this case the statement obviously holds.
2. l ^ m ^ k . Then, by assertion (I) of Lemma 4, we obtain that the parcel con-

tains at most one D-bin, and so

2 1 , ' 2 1 . 1 m - 1
. . - g - v - T ^ ' 3 T + 2 -

3. m=k+1. Then, by Lemma 1, the parcel contains at most two Z>-bins, and so

2 1 , „ 2 1 . ' . 1 m - 1
3 6 V J 3 6 \ ' 3 /k+2

4. m=r(k +2) where r is a positive integer. Let us index the successive blocks
with the numbers 1, . . . , r according to their sequence, and let /={1 , ..., r}. Lét
z£/ and let q\ and qx denote the numbers of v4-bins and C-bins of the /-th block, res-
pectively. For any index yí {1, ..., 4}, let Uj denote the number ofy'-blocks and I3
the set of indices of these blocks. By assertion (II) of Lemma 4, the /--th block is not
a 4-block, and so, there exists a further block for any 4-block from the considered
blocks. On the other hand, by assertion (III) of Lemma 4, the block succeeding some
4-block of the parcel is of type 1 or 2. Using this observation, we classify the 4-bIocks
into the following two classes.

The first class contains all 4-blocks for which the following block is of type 1.
Let h41 denote the number of these 4-blocks and /4] the set of their indices.

The other class contains the remaining 4-blocks.
The block succeeding some 4-block from this class is then of type 2. Let w42

denote the number of the blocks of the second class and /42 the set of their indices.
It is now obvious that w4=«41+w42, /4=/41 U/42, M1+M2+M3+w4=r and

4
U I j=I - Using the introduced notations, by Lemma 3, we obtain
j=i

¿ ' 2 [(* + 2) 4 - (Í Í + : /) 4 : 1 + z . f (k + 2) - | - (? i + 3) i | . • j=I i í / j l J ° J i£/sU/4 I- J . OJ

96 J. Csirik and B. Imreh

and so

I V c + 2) 2 1 - 4 - 2 2 - 1 2 3 =
l€I J 0 i f / 0 ¡6/, 0 i€/t 0 <e/,u/«

2 1 1 2 3 , = _ m _ _ i _ _ U l _ _ H a _ _ (M 3 + U4) =

2 1 2 , N 1 1 1
= -jrrt-jq-—(u1+ut + u3+ui) + j u 1 - j u 3 - — ui =

2 1 1 1 1 1 1

2 1 1 m l , . 1 1

From the definition of utl, it follows that Thus

2 1 1 m l 1

2 I , . ^ . v l l ^ . l m 1 1

From the definition of 3-blocks, we obtain that 2 "3^0 , moreover, from
. ¡¿'a

Lemma 4 and from the definition of w42 it follows that 2 e l i~ u 42-0- Therefore,

2 1 . • . 1 m 1 1 „ - , , On the other hand, 2 — a n d so we obtain the following inequality:
2 1 , 1 m—1 1 1

(i) s S T m - 7 (w + l) - T — - + - -3 6 v ' 3 A:+2 ' 6 3(fc+2) '

Since ks3, - I - — - i — s 0 . But then
6 3(&+2)

2 1 , 1 m - 1
i S 3 m - 6 { w + 1) - T T + T '

which completes the proof of this case.
5. m=r(k+2)+l, where r and / are positive integers and l ^ / s f c + l. We

distinguish two cases depending on the r-th block.

On the worst-case performance of the NkF. bin-packing heuristic 97

Case 5/a. Let us suppose that the r-th block is not of type 4. Then disregarding
the last / bins, for the remaining r(k+2) bins the same conditions holds as in the
previous case. Thus, for the sum s of the weights of the items contained in these bins
the inequality (i) holds, i.e.

On the other hand, it may be observed that the last I bins form a parcel consisting o f /
bins. Thus for the sum s of the weights of the items contained in these bins, it holds
that

_ 2 . 1 1 / - 1
5 1) — 3 6 ' * ' ' 3 lc + 2

where q and q' denote the numbers of .¿-bins and C-bins, respectively, for the last /
bins. Now, using the above inequalities, we obtain that

. . 2 1 . 1 m - 1
s = s+s ^ —m——(w+\)-3 6y J 3 k + 2 "

Case 5/b. Now let us suppose that the r-th block is of type 4. Then, by assertion
(III) of Lemma 4, the (r—l)-th block is not of type 4, assuming that there exists
such a block, i.e. r > 1. Then, disregarding the last k+2+l bins, for the remaining
(r— +2) bins the same conditions hold as above, and so, for the sum s of the
weights of the items contained in these bins the inequality (i) holds. Thus,

- 2 1 „ ' - i 1 (r - l) (J f c + 2) - l 1 1
^ Vf. i x „ 3 k + 2 6 3(k+2) •

It may be observed that the right-hand side of the inequality is equal to 0, if r=1.
Therefore, we may use it in the case r = 1, too.
We now investigate the remaining k+2+l bins. Let B*, ... B%+2+l denote them.
Since the bins ... B%+2 form a 4-block, the bins B*, B£, B%+2 are D-bins and
2?3 ..., B l + 1 are C-bins. Let us distinguish two cases depending on /.

If lsk—l then, by Lemma 2, the bins 3 , ... B%+2+t are of type A or C.
Thus, for the sum s of the weights of the items contained in the considered k + 2 + i
bins the following inequality holds

J S j(k+2)-j(q, + 3) + j l - j q = l(k+2 + l) - j (q r + q + 3),

where q denotes the number of C-bins with respect to the last / bins.
If k- 1 then it may be observed that since B%+1 is a C-bin and B%+2

is a D-bin, by Lemma 2, the bins B%+3,..., B*k+1 are of types A or C.
If there exists at least one A-bin among B%+3, ..., B^k+1, then q ' s l , where q'

denotes the number of yl-bins for the last / bins. On the other hand, the bins B%+ 4,...
..., B k + Z + I form the last /— 1 bins of the parcel, and so, by (I) of Lemma 4, there

98 J. Csirik and B. Imreh

exists at mt >sl one D-bin among them. Therefore, we obtain that there is at most one
£>-bin amo.ig the last / bins. Thus for s we have

S §= j (k + 2)-j(qr + 3)+jI-j(q+l) =

= l(/c + 2 + l) - j (q r + q + q' + 3) + j(q'-l)lZ

* l (k + 2 + l)-j(qr+q+q' + 3).

If the bins B%+3, ..., B^+i are all C-bins, then after the packing Btk+1 has empty
room with weight where A >0 . From this, similarly as in the proof of asser-

tion (I) of Lemma 4, we obtain that the remaining bins \Btk+2

are not of type D. But then there is no D-bin among the last / bins, and so

3 S j (k + 2)-j(qr+3) + j l - j q = j(k+2 + l) - j (q r + q + 3)

where q denotes the number of C-bins for the last / bins again.
Now, using the common lower bound, we obtain the following inequalities:

s = g + J s i m 4 (i + g f + g + r + | (g i + g ;)) - | - 4 (r ~ l ^ 2
+ 2) 4 =

2 1 , 1 , 1 r(k+2)

2 1 . 1 m - 1 / - 1 1 ,
= 3 w - 6 (w + 1) - 3 T T T + l (k T 2) + J q -

Since and / ^ 1 , we obtain that

2 1 , 1 m - 1
S-Jm~J(w+l)~JT+2

which completes the proof of Theorem 1.
Now let L be an arbitrary list and let us pack the elements of L with the NkF

algorithm. Let B1, ..., Bm denote the sequence of bins used by NkF and let w denote
the number of all bins containing items with weight greater than 1/2. Then, for
i = i (L) , the following statement holds.

Theorem 2.
2 1- m

s S -r-m——w — • 3 6 3(k+2) 6 '

Proof. We distinguish two cases, depending on the contents of the bins.

On the worst-case performance of the NkF. bin-packing heuristic 99

Case 1. Let us suppose that j(2?,)>1/2 (/=1 , ..., m). Then, the considered bins
form a parcel consisting of m bins, and so, by Theorem 1, we obtain the validity of
Theorem 2.

Case 2. Let us suppose that there exists a bin B, (1 S / ^ m) with s(Bt)^]/2.
Let i l s i 2 , ...,/,. denote the increasing sequence of indices of allsuch bins. Let /Ç {/l5 ...
...,/P} be arbitrary, and let us investigate the contents of Bt and Bt+1, ..., Bl+k,
assuming that there exist such bins. After the packing of L, the relation s(B,)^ 1/2
holds; thus, throughout the packing too, s(Bt)^l/2. But then, the weight of the
first packed item in Bt+U is greater than 1/2 if u£{ 1, ..., k}. Therefore, iq+k<
< f s + 1 (q = 1, ..., r—1) and, if / r < w , then the weight of the first packed item in
Bir+U is greater than 1/2 for any 1 ^ w S z = m i n {k, m—ir). We now distinguish
further two cases.

Case 2ja. Let us suppose that ir +k^m. Then the weight of the first packed item
in Bit+U is greater than 1/2 if 1 = / ë r ; 1 ^.u^k. Thus, for the sum s, of the weights

of the items contained in the bins Blt, Bit+1, ..., J5/t+1» the inequality + —

holds, since s(Bit)+s(Bit+1)> 1 and s(fi, t +„)=-l/2 if 2^usk. On the other hand,
it may be observed that the sequence

Blf..., -1; Bil+k+1,..., -S,-,_i; ...; Biri+k+1,...,Bir^1\ Bir+k+1,..., Bm

form parcels consisting of ix — 1, i2—i1—k—l,...,ir—ir_1—k—l, m—ir—k bins,
respectively, where any parcel of them may be an empty one. Let = / \ — 1, m 2 =
=i2—il—k— 1, ..., mr=ir—ir_1—k—\, mr+1=m—ir—k and let W; denote thé
number of ^4-bins and C-bins of the z-th parcel for any *£{1,..., r + l } . Then, by
Theorem 1, for the sum Si of the weights of the items contained in the bins of the /-th
parcel the following inequality holds:

But then for the sum s of the weights of the items contained in the bins Blt..., B,
we obtain

3(k+2) '

r+l r+l 1
s = 2 si+ Z*t s 2 Si+r(k+i)T 2 -

r+1(2 1
s 2 \ j m - j (» , + !) - Hk+2)

•) + r (f c + l) I

r+l

100 J. Csirik and B. Imreh

r+l r+1
Since m= 2 /w (+r(fc+l) and w= 2 w, + rk, we have

¡=1 ¡ = 1

2 1 r 1 Im-. r + l
s S w —— w —— — — — ———- + -

3 6 3 6 3(Jfc+2) 3(/c+2)

2 1 r w , + /-(fc+2) 1 r + l
= w ' . , v — — + -

3 6 3(fc+2) 6 ' 3(k+2)

- — —L m 1 1
~ 3m 6W 3{k+2) + 3(k+2) 6 '

B u t W T 2) - J - - J ' s o '
2 1 m

s S -r-m—— w — -3 6 3(/c+2) 6
which completes the proof of this case.

Case 2\b. Let us assume that ir+k>m. Then the number of bins succeeding the
bin .B iris l—m—ir. Moreover, if / > 0 , then the weight of the first packed item in
Bir+U is greater than 1/2 for any u£ {1, ..., /}. Thus, for the sum s* of the weights of
the items contained in the bins Bir, ...,Bm the following inequality holds

s*^s(Bit)+(m-ir)j.

On the other hand, for the sum s, of the weights of the items contained in Blf,

Bit+1, ..., Bit+k again s,^(k+ \) — holds if t<r. Finally, the sequences Bx, ...

Bil+k+1, -Bj.-i; ...;Bir_1+k+1, again form parcels. Thus,
with the notations of the previous case and inequality (a), for the sum s of the weights
of the items contained in Bx, ..., Bm, the following inequalities hold:

2 s,+ 5,+** ^ ¿StHr-mk+vif+s*^
¡—1 t=i >=i ^

¿ (« « - 1) 1 2 -

~ ± J (k T 2 j ~ + S (B ' ') + (m ~ / ') T = T (^ M r - m + D + i r n - Q) -

! r ¿ K - 1)
- J (2 w, •+ (r - № +1)+(« - ir)+0- ' ~ 3 (f c + 2) + j (j B'>)-

On the worst-case performance of the NkF. bin-packing heuristic 101

Since 2 mi+(r—l)(k + l)+m—ir=m—l, we obtain that
1=1

9 , r 1 ¿ (« i - l)
s S ±(m-l)--(2wt+(r-l)k+m-ir)-j(2r-l)- +s(BJ.

r
Now, it may be observed that w= 2 Wi+(r— \)k+m — ir, and so

2 1 r - 1 1 r

2 j (r-\)(k+2)+ 2 m r !
= 3 (f f l " 1) " 6 1 V 3(fc+2) ' = 1 + 3 (f c W " 6 - + S (B J =

2 j ' ¿ m i + (r - l) (* : + l) j |

- , 2mt+(r-l)(k+l)+m-ir+l
^ x - v 1 1 = 1 W 1 v

2 1 m m—i. + 2 5 .
= jm~6w~ T+s(B>>

„ m—ir+2 5 . 5 , B u t a n d s o

2 1 m 5
s £ —-m—— w —-3 6 3(Jfc+2) 6

which completes the proof of Theorem 2.
We can now prove the following result.

Theorem 3.
7 7 1

&NkF — — + — -
4 4 2k+3 '

Proof. Let L be an arbitrary list and let us pack its elements with the NkF algo-
rithm. Let m denote the number of bins used by NkF and let s denote the sum of the
weights of the items contained in these bins. Moreover, let w denote the number of
those bins which contain some item with weight greater than 1/2. Now, depending
on w we distinguish three cases.

102 J. Csirik and B. Imreh

Case 1. Let us suppose that w=0. Then, by Theorem 2, we obtain

2 m 5
S - J m - W T 2) ~ 6 :

On the other hand s^OPT(L) , and so

m m 1
OPT(L) s 2 1

3 3(k+2) 6 m

1 l(k+2)
2 1 4k+6 1 5_ 7(fe + 2) 5 '
3 6 ' l(k+2) 3(k+2) 6m + m 6

Case 2. Let us assume that w?£ 0 and — g p f 0 m ^ definition of
w 4k+ 6

w it follows that wSOPT(L). But then

m ^ m ^ l(k+2)
OPT(L) ~ ~vv ~ 4fc+6 '

Case 3. Let us suppose that w^O and ^ ^ ^ Again, by Theorem 2,

2 1 m 5
S s ——W —77 =7- —-r>

3 6 3(k+2) 6
and so,

m m m 1 rS
OPT(L) j ~ 2 1 m 5 2 1 w 1

- r - m — - w -
3 6 3(/fc+2) 6 . 3 6 m 3(k+2) 6m

By our assumption on mlw, — < , and so
m 7(k+2)

m 1 7(k+2)
OPT(L) ~ 2 1 4/c+6 1 5_ 7(fe+2) 5 '

3 6 7(*+2) 3(A:+2) 6m + m 6

Now let 3 be a fixed integer. It may be observed that if OPT(Z,)—°° then

» , and so,

Therefore

m—°o, and so, under the fixed k, o .
m 6

l(k+2) =]_+L 1

4 k + 6 4 4 2&+3 '

which completes the proof of Theorem 3. •

On the worst-case performance of the NkF. bin-packing heuristic 103

We now improve the lower bound given by Johnson. For this purpose, we define
a sequence of lists such that OPT(L,)—°° and the lists have bad behaviour on NkF
packing. Let j now be a fixed positive integer.

Let n(j) denote the number of elements in the j'-th list and let

n(j) = 30j(k—2)+30j.
Let

5 « 18 - J» -»

and let L„u) denote the j'-th list in the sequence. We divide the items into three parts:
(1) In the first part there are elements about 1/6; there are j(k—2) blocks, with

10 items in each (thus, in the first part there are 10/(k—2) items). Let us denote the
items of the i-th block by

flo>> a u i •••> am-

The exact definition of the weights is as follows. Let

5f = 5 • 18**-»- ' j(k-2))
and

aoi = 1/6+335,.,

a u = 1/6-3(5;,

% = 1/6-7 Si = % ,

On = 1/6 —135

a6i = 1/6+95;,

fl6i = 1 /6-25; = an = au = am.

Then, the first 10/(fc—2) items of the list are am, an an, a02, a12, ..., a92, ...

•••'ao,;(t-2)) •••> a9,j(k-2)• Clearly

% + «if + <hi + % + «« = 5/6-+35,-,

an+a6i+an + a8i+a9i = 5/6+5; ,

and thus we fill 2j(k—2) bins with this part.
(2) In the second part, there are elements about 1 /3; there are also j(k—2) blocks,

with 10 items in each. Let us denote the items of the z'-th block by

and the items

fr»» •••» 9̂1» 0̂2> 1̂2» •••) 9̂2» •••) &0,J(k-2)> •••>

follow the items of the first part.

104 J. Csirik and B. Imreh

The exact definition of these items is as follows:
b„ = 1/3+465,,
bu = 1/3—34<5j,
b2i = 1/3 + 65, = ¿3i,
bit = 1/3 + 125,,
6„ = 1/3-105, ,
¿8, — 1/3+5, = 67, = ¿8, = £>91 -

Clearly
b0l+bu = 2/3+125,,
b2i + b3i = 2/3 + 12 5„
&«+*« = 2/3+25,,
t>6, + b7, = 2/3+25, ,
i>8,+i>9, = 2/3+25,,

and thus we fill 5j(k—2) bins with the second part.
(3) In the third part, there are elements about 1/2. We have here 10/ blocks, with

k +1 items in each. In the i-th block, the first item is 1/2—5/(/+1), and the second is
1/2+5//. Then, we have a number (¿—2) of 1 /2+5 items and the last item of this
block is a 5. Thus, with this part we exactly fill 10jk bins.

On summing the number of bins in the three parts, we obtain:

NkF(LnU)) = 2j(k-2)+5j(k-2)+\0jk = \ljk-\Aj.

In the optimal packing of Ln(j), we have to pack all 1 /2+5 items in separate
bins. Thus, we pair the items from the first and second part in the following way:

i) a i , i+h i> i f 2 / s 9, 1 isj(k-2),

ii) aoi+bu, if l ^ i s j (k - 2) ,

iii) a„+6 0 > (i + 1) , if

Clearly, we can pack all pairs with a 1/2+5 element together. Accordingly, we fill
I0j(k—2)—1 bins, and b01, alJ(k^2) are not used. From the third part, one 1 /2+5
item, a number 10/ of 5 items and the following items are not used:

i + i .
2 2 ' 2 + 1 '

U L
2 3 ' 2 + 2 '

1 5 J_ _ 5 _
2 10y + 1 5 2 + 10 / '

On the worst-case performance of the NkF. bin-packing heuristic 105

Here 1/2—<5// and 1/2+<5// fill a bin (i=2 , 3, ..., 10/') and so we have a further
10/'— 1 bins. All other items can be packed into three bins, if 3 is small enough. Thus,

OPT(£.„0)) 10/(^—2) — 1 + 1 0 / — 1 + 3 = lOjk-lOj+l.
Then

NkF(LnU)) ^ 17/fc—14/
OPT(L„ 0 ,) - 10/fe—10y+l '

and hence

* - ^ l i m i n f - 1 7 f e ~ 1 4 RNkF = hminf 0pT(£nU)) - m _ 1 0 -

We have obtained

Theorem 4. For A: s 3

1 0 (^ - 1) '

From Theorem 3 and Theorem 4, we conclude our

Main results. For k ^ 3

3 _ 7 7 1
1-7+ „ =S ¿ W S - + - • 10(A:— 1) ~ í" lF ~ 4 4 2fe + 3 *

To conclude this paper, we give RN2F. For this, we define a sequence of lists as
follows. Here the j'-th list has a numbef n(j)=30j of items. Let

_ (1 < 5 1 < 5 1 < 5 1 <5 J_ <5 1 , S \
• L"Oi - l T ~ T ' 2 + T ' d ' 2 3 ' 2 + 2 ' • 2 10 /+1 ' 2 + 10/ ') '

Then we use 20/ bins in the N2F packing, and 10/+1 bins in the optimal packing.
Thus, we get :

Corollary 1. RN2F=2.

Acknowledgement. We are grateful to E. Máté for valuable discussions.

References

[GJ] GAREY, M. R., JOHNSON, D. S.: Computers and intractability, W. H. Freeman and Com-
pany, San Francisco, 1979.

[J] JOHNSON, D. S.: Fast algorithms for bin-packing. Journal of Computer and Systems Scie-
ces 8 (1974) , 2 7 2 — 3 1 4 .

[J D U G G] JOHNSON, D . S . , DEMERS, A . , ULLMAN, J. D . , GAREY, M . R . , GRAHAM, R . L . : W o r s t -
case performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput. 3
(1974) , 2 9 9 — 3 2 5 .

(Received February 13, 1989)

On the performance of on-line algorithms for partition problems*

ULRICH FAIGLE,1 WALTER KERN 1 a n d GYÖRGY TÚRÁN 2 , 3

1 Faculty of Applied Mathematics, University of Twente NL-7500 AE Enschede,
The Netherlands

2Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago, Chicago, IL, 60680, USA

and
3Automata Theory Research Group of the Hungarian Academy of Sciences, Szeged, 6720, Hungary.

Abstract

We consider the performance of the greedy algorithm and of on-line algorithms
for partition problems in combinatorial optimization. After surveying known results
we give bounds for matroid and graph partitioning, and discuss the power of non-
adaptive adversaries for proving lower bounds.

1. Introduction

There are several combinatorial optimization problems where a set is to be parti-,
tioned into a minimal number of classes having certain properties. Examples of such
problems are graph coloring and bin packing. A general heuristic to find an approxi-
mate solution is the greedy (or first-fit) method where the partition is constructed by
processing the elements in some order and placing each element into the first class it
fits into.'

A partitioning algorithm is on-line if it considers the elements one after the
other and puts each element into a class at the time when it is considered according to
some rule, based on information about elements processed earlier (thus the greedy
method is a special case). The main feature of an on-line algorithm is that the deci-
sion made about an element cannot be modified later on. An on-line algorithm in
general does not have to be polynomial time computable or even computable..

There are several interesting results about the performance of on-line algorithms
for various partition problems. After giving a general problem formulation in Sec-
tion 2. we survey these results in Section 3.

* Supported by Hungarian Academy of Sciences. (OTKA Nr. 1135)

108 U. Faigle, W. Kern and Gy. Túrán

In Section 4. we consider the matroid partitioning problem and the special cases
of graphic matroids and graphs. There are polynomial time algorithms solving this
problem (Edmonds [6], see also Lawler [18]), but these algorithms are not on-line.
We show that the performance ratio of the greedy algorithm on n element matroids
is 0(log n) and that the performance ratio of every on-line matroid partitioning algo-
rithm is fl(log «/log log n). We also show that bounded performance is not possible
even in the special case when we want to partition a graph into forests.

All known lower bound proofs for on-line algorithms are based on the construc-
tion of an adversary which plays against the algorithm by providing the new elements
of the input so that the algorithm is forced to produce more classes than necessary.
In many cases the adversary satisfies a condition called non-adaptiveness. In Section
5. we consider examples comparing the power of non-adaptive adversaries and general
ones for lower bound proofs.

Section 6. contains some further remarks and open problems.

2. Partition problems, definitions

First we give a list of partition problems discussed later on. For definitions not
given here see Bollobás [2], Lawler [18], Lovász [22], Welsh [30].

MATROID PARTITIONING: given a matroid M=(E, 3?), partition the
ground set E into a minimal number of independent subsets.

GRAPHIC MATROID PARTITIONING: the same as above for a graphic
matroid M.

(As the complexity of the algorithms is not taken into consideration we may
assume that the matroids are presented by listing their independent subsets.)

GRAPH PARTITIONING: given a graph G=(V,E), partition E into a
minimal number of forests.

GRAPH COLORING: given a graph G=(V, E), partition V into a minimal
number of independent subsets.

CHAIN DECOMPOSITION OF ORDERED SETS: given an ordered set
P=(V, <) , partition V into a minimal number of chains.

GRAPH EDGE COLORING: given a graph G=(V, E), partition E into a
minimal number of matchings.

BIN PACKING: given A = {aly ..., a„} (0 < a ; S l) , partition A into a minimal
number of . sets each having sum s i .

GRAPH BIN PACKING: given a fixed "pattern" graph G0=(V0, E0) and a
graph G=(V, E), partition E into a minimal number of sets each being a subgraph
of G„.

A common framework for considering these problems can be described using
independence systems.

An independence system is a pair I=(E, where E is the ground set and
&<g0>{E) is a set of subsets of E such that if F£ & and F'QF then OF. An
independence system is ordered if in addition there is a linear ordering < on E. All
ordered independence systems considered here are finite, we write I„=(E„, á*,),
E„={e1, ..., en}, . . .<e„. An ordered independence system Ik=(Ek,&r

k) is an
initial segment of /„ (denoted by / f c < / J if t á n , Ek — , ..., ek) and for every
FcgEk it holds that F£^k iff F<iFn.

On the performance of on-line algorithms for partition problems 109

An independent partition of I=(E, ¿F) is an ordered partition (F1, ..., F,)
of £ such that 37 (1Sz '^/) . Let p (/) m i n {/: there is an independent partition
(Fly ...,F,) of E).

Let J be a class of finite independence systems. The PARTITION PROBLEM
FOR is the following problem: given I=(E, find an independent partition
of E into p{I) sets.

Assume that furthermore J consists of ordered independence systems and is
closed under taking initial segments (i.e. /£</, / ' < / imply /'€</)•

An on-line algorithm A for the partition problem f o r i s a function defined on J
such that for every I=(E, ¡F) £ £ A (I) is an ordered independent partition o f / a n d
if / ' = (£ " , J t h e n A{I')=A{I)\E' i.e. A(I') is the restriction of A(I) to E\ or
equivalently, A(I) is an extension of A(I'). Thus A provides an approximate solution
to the partition problem for J .

For the greedy algorithm Agr, Agr(I„) is obtained from y4gr(/„_i) by placing e„
into the first subset in the ordered partition Agt(l„_which remains independent if e„
is added to it, and opening a new set for en if there is no such set.

For an on-line algorithm A let M(/) | be the number of subsets in the partition
A(I) and let (with some abuse of notation)

A(n):= max {\A(I)\/p(I): J = (E, SF)<Lf, \E\ = n}

be the performance ratio function of A. A has bounded performance with bounding
func t ion / : N - N if for every /€</ it holds that \A(I)\^f(p(I)). (Thus if Ain)-^
by considering inputs with p(I) bounded by some constant then A does not have
bounded performance.) The performance ratio of A is

rA:= inf{r s 1: s rp(I) for every l^J}

and the asymptotic performance ratio of A is

r°X\= inf{r s i : 3c: A(l) ^ rp{I)+c for every

(thus rA, r j eRUi««}) . Let
rj/:= inf {rA: A is an on-line algorithm for the partition problem for J},
rj inf {rj : A is an on-line algorithm for the partition problem for ./}.

For matroid partitioning (resp. graphic matroid partitioning) the class J could
be the class of all finite ordered matroids (resp. finite ordered graphic matroids) on a
fixed countable set. For graph partitioning the class J could consist of all finite
(edge-)ordered subgraphs of a countable complete graph. For bin packing the class J
could consist of all finite ordered subsets of countably many copies of (0, 1].

There is a difference between the first two and the last two examples. For matroid
partitioning and graphic matroid partitioning we may assume that if / ! < / 2 < . . . < / „ ,
/ j < /2 < . . . < and Ij=Ij (1 =«) then the partitions determined by A are
also isomorphic, in particular \A(I^\ = \A(I'n)\. Thisholds because J is homogeneous,
i.e. every isomorphism of two inputs I and / ' can be extended to an automorphism
of J . With other words on-line algorithms for these problems can only use informa-
tion about independence.

For the other two problems there is additional information provided by specify?

110 U. Faigle, W. Kern and Gy. Túrán

ing edges resp. numbers: 2 edges with or without a common endpoint are isomorphic
as independence systems but none of their isomorphisms can be extended to an auto-
morphism of J ; resp. there is no automorphism of £ for bin packing mapping a
copy of 1/2 to a copy of 1/3.

3. A survey of results about on-line algorithms

a) Graph coloring
Johnson [12] observed that AgT(n)=Q(n) even for bipartite graphs. Szegedy [25]

showed that for every on-line graph coloring algorithm A(n) = Q(n/(log«)2). Lo-
vász, Saks and Trotter [23] gave an on-line algorithm with A(n) = 0(nlk>g* n)=o(n).
For trees Bean [1] and Gyárfás and Lehel [11] noted that j4(n) = fi(log n) for every
on-line algorithm. Kierstead and Trotter [16] gave an on-line algorithm coloring inter-
val graphs with r ~ = 3 and showed that this is best possible. Kierstead [15] showed
that for this problem Gyárfás and Lehel [11] showed that r j g r < ° ° for
several special classes of graphs such as split graphs, complements of bipartite graphs
and complements of chordal graphs.

b) Chain decomposition of ordered sets
Kierstead [14] proved that there is an on-line algorithm for this problem which

has bounded performance with bounding function (5"—1)/4. This appears to be the
first result on on-line algorithms formulated in the language of recursion theoretic
combinatorics. For the greedy algorithm AgT(n) — Q(n). Szemerédi [26] showed
that for every on-line algorithm A and every w there are orders P with width w
and \A(P)\ = Q(wi) thus for every on-line algorithm A r¿=°An order is an
interval order if it is isomorphic to a set of intervals {J15 ..., /„} on a line with
Ji^Jj iff/,- is completely to the left of J¡. Kierstead and Trotter [16] gave an on-line
algorithm for interval orders with r°X = 3 and showed that this is optimal. (We note
that the difference between the chain decomposition problem and the graph coloring
problem for incomparability graphs is that comparable pairs form an ordered resp.
an unordered pair.) An order is series-parallel if it can be obtained from orders on
one element by repeated application of series composition ("place order P1 above
P2") and parallel composition ("let all elements of Px be incomparable to all elements
of P2"). If the orders are restricted to be series-parallel then the greedy algorithm
always gives an optimal solution [7].

c) Graph edge coloring
If A is the maximal degree of the graph G=(V, E) then clearly &A colors

are needed for an edge coloring of G (by Vizing's theorem [29] (see also Bollobás [2])
A + 1 colors are always sufficient). It is easy to see that the greedy algorithm never
uses more than 2 A — 1 colors. On the other hand every on-line algorithm A uses
S 2 A — 1 colors for some forest with maximal degree A (here the minimal number of
colors needed is easily seen to be A). TO see this, consider first a forest of (A — 1) •

(2 ^
1 + 1 S T A R S WITH A — 1 edges. Then A either uses S 2 A - 1 colors or

there will be A stars colored with the same set of A — 1 colors. Add A new edges by
connecting a new root to the root of these stars to get a forest with maximal degree A.

On the performance of on-line algorithms for partition problems 25

Every new edge must be colored with a color not occurring in the stars selected and
thus s 2 a —1 colors will be used.

d) Bin packing
Johnson, Demers, Ullman, Garey and Graham [13] showed that r ~ r = 1.7.

Yao [31] gave an on-line algorithm with rA = 5/3. The on-line algorithm of Lee and
Lee [19] has r j ^ 1.692 and it also satisfies the additional requirement of having only
a bounded number of active bins at any time. Brown [4] and Liang [20] showed that
r ^ s 1.536 for every on-line algorithm. This result is generalized by Galambos [8]
to the case when items are from (0, a] (a< 1). We note that there are polynomial time
algorithms Ae (which are not on-line) with rA< l + e for every s^O (de la Vega
and Lueker [28]). On-line algorithms for dual bin packing (where the aim is to fill as
many bins as possible) are considered by Csirik and Totik [5]. For the graph bin pack-
ing problem it is shown in [27] that for complete bipartite graphs G0=KkJ, k^l,
r^ s r=@(max (k, l/k)), thus for fixed / the greedy algorithm has the best performance
guarantee when k~]/L

We note that there are results about on-line algorithms for problems of a dif-
ferent nature than the ones discussed here (see Borodin, Linial and Saks [3], Manasse,
McGeoch and Sleator [24] and the further references in these papers).

4. Matroid partitioning

First we consider the performance of the greedy algorithm. The upper bound
holds for matroids in general, the lower bound already holds in the special case of
graphs.

Theorem 1. a) For the matroid partitioning problem Agr(n)sln (n).
b) For the graph partitioning problem ^4gr(n)s[log nj/2.

Proof, a) Let I„=(E„, J^) be a matroid and (F l s ..., F,) be the partition formed
by the greedy algorithm. Then f j is a maximal independent set in E„\(F1 U...
...UFi_1). As /„ restricted to í „ \ (/ i U . . . U i j - O is again a matroid, F(is also a
maximum independent set in E^F-lU... Ufl-x). Thus (Ft, ..., F,) is a greedy
solution of the set covering problem for /„. The performance ratio of the greedy algo-
rithm for set covering is S in («) (Johnson [12], Lovász [21]).

b) For 1 let Gk:=(Vk,Ek), where

k-1
Vk = H , ..., Ek = U Pit

¡=o

Pi = fe, %+i)2'): j = 0 , . . . , 2k~1~i— 1}.

For later use let v0 be the initial vertex of Gk and v2«-i be the terminal vertex of Gk.
Order the edges in Gk in such a way that edges in Pt precede edges in Pi+1 (O s / s
^k—2). Then the greedy algorithm gives a different color to each P, (we refer to
this partition of Ek as the greedy partition), hence for this ordering |Agr(Gk)\ =k.
Note that 1^1 =2k—1. On the other hand coloring the edges of Pt alternatingly red
and blue (for every i) gives a partition of Ek into 2 trees and so p(Gk)=2. •

112 U. Faigle, W. Kern and Gy. Túrán

Theorem 1. can be generalized to the case when J consists of independence
systems that are the intersections of k matroids (thus for every I=(E,
there are k matroids I'=(E, J5"*) (l s / s f c) such that for every FQE, iff

OF1. for every i = l , ..., k).

Corollary 2. Assume that for every K J , I is the intersection of k matroids.
Then for the partitioning problem for J it holds that A g I (n)^k • In («).

Proof. Korte and Hausmann [17] showed that if I=(E, is the intersection of
k matroids, F is a maximal independent set in 2F and F' is a maximum independent
set in SF then |F | s (l jk) • |F ' | . Thus the partition given by the greedy algorithm is a
"l/£-greedy" solution to the set covering problem on I in the sense that we always
choose a set which has size s i \k times the size of a largest set in the system. The
proof of Johnson [12] and Lovász [21] can be applied to this case to show that the
number of sets used in the covering is ^ k • In («) times the optimal. •

Now we turn to the discussion of on-line algorithms.

Theorem 3. For every on-line matroid partitioning algorithm A A(n) =
=í2(lög w/log log n).

Proof. For Gi constructed in the proof of Theorem 1. let s • Gt be the graph ob-
tained by taking a sequence of s copies of and identifying the terminal vertex of
each copy (except the last one) with the initial vertex of the next one.

For a graph G let M(G) be the cycle matroid of G.
Then M(sGi) is the direct sum of s copies of M(G i). (The direct sum of matroids

on disjoint ground sets is obtained by taking the union of the ground sets as the new
ground set and letting a subset be independent if its intersection with each ground set
is independent.) If M is a matroid isomorphic to M(sG{) then it has a unique decom-
position into s matroids isomorphic to M(Gi), called the components of M. An or-
dered partition of M into independent subsets is called the greedy partition if on
each component it corresponds to the greedy partition of (?,.

The graph 2Gt is a subgraph of Gi+1 and therefore a matroid M^M(Gt) © M(Gt)
(where © denotes the direct sum) can be extended to a matroid isomorphic to
M(Gi+1) by adding one more element to it.

Now let g(1):=1, ^ (fc) := (A: - l) (2^ (A: - l) - l) + l for £ > 1 and f(k):=
: = 2 s i i) f o r ¿ S i .

isk
We show that the algorithm A uses Sfc colors to partition some 2-partitionable

matroid on f(k) elements.
Using an adversary strategy we prove that giving g(k)+...+g(k—i) elements

(O^i^k—2) to A it can be forced either to use sA: colors or to form the greedy
partition on a submatroid isomorphic to M(2g(k—i—\)Gi+i).

For i = 0 , giving g(k) independent elements to A it either uses Sfc colors or it
assigns the same color to 2g(k— 1) elements and M(GX) consists of a single element.

For the induction step assume that after adding g(k)+...+g(k—i+1) ele-
ments to A it formed the greedy partition on a submatroid Mi^M(2g(k—i)Gl).
Pair the components of M{ and add g(k—i) elements (one to each pair) to extend
each pair to a matroid isomorphic to M(Gi+1). As A cannot use any of the / colors
used for Mi it either uses sfc—/ colors different from these or it assigns the same

On the performance of on-line algorithms for partition problems 113

color to 2g(k—i— 1) new elements. The union of these components is M i + 1 =
= M(2g(k—i— 1)(J,+I) and A formed the greedy partition on Mi+1.

For i=k—2 we get M f c _ 1 ^M(2G k _ 1) such that A formed the greedy partition
on M t _ 1 . Adding a new element to obtain Mk=M(Gk) forces A to use the kth

color.
As the components of the matroid M formed by all elements given to A are

isomorphic to M(G,) for some i, M is 2-partitionable.
Finally the bound follows from noting that g(k)s2kg(k—l), thus g(k)s

2k -k\. Hence f(k)^2k -k-k\ and so fc = i2(log n/log log n). •

Corollary 4. For every on-line algorithm A partitioning graphic matroids
A (n)=Q (log njlog log n).

Proof. All matroids constructed in the previous proof are graphic. •

We remark that the proof of Theorem 3. does not work for graphs. This is related
to the remarks made following the definitions in Section 2. For graphs the adversary
is in a more difficult situation as e.g. 2 independent elements in the first phase of the
construction can be completed to a triangle by adding a new element if we are dealing
with general (or graphic) matroids but in graphs this can only be done if the 2 edges
have a common endpoint.

Let g - (l) := l , < ?(A:) :=(2A:) (t- 1) (2^- 1)- 1>+ 1- l for and f(k):= £ g(i)
isk

for k ^ l .

Theorem 5. Every on-line graph partitioning algorithm A forms at least k classes
for some 2-partitionable graph having f (k) edges.

Proof. We describe an adversary strategy by induction on k, for k=1 the state-
ment is obvious. First we prove a lemma.

Lemma 6. For every I (2slsk), by building a forest on #(/) + 1 vertices A
can be forced either to use at least / colors or to form a monochromatic path P of
length 2g(l—l).

Proof. A forest is rooted if each of its components has a distinguished vertex
called the root. An /-edge colored rooted forest with j roots is an (/,_/)-forest if there
are numbers tlt . . . , / , with /! + . . . + / , = / such that for every root v and every r
(1 S r S /) v is the endpoint of a monochromatic path of color r and length tr.

We show that for every i=0, ..., (l—\)(2g(l— 1)—1) + 1 by building a forest A
can be forced either to use s / colors or to form an (/, (#(/)+l)/(2/) ')-forest .

For / = 0 the empty graph on g(l) + 1 vertices is a (0, g(l) + l)-forest. Assume we
constructed an (i - l , (g(/) + l)/(2/)(,-1>)-forest. Add (^(/) + l)/(2(2/)('-1>) new
edges forming a matching of the roots. Then A either uses s / colors to color these
edges or s (g (/) + l)/(2/)' new edges get the same color. In this case select an end-
point of each of these edges and let them be the new roots. Deleting the components.
without a selected root we get an (/, (g(l)+l)/(2/)')-forest and the whole graph built is
a forest.

For / = (/ - l) (2 ^ (/ — 1) - 1) + 1 we get an (/, l)-forest, i.e. a tree with ?! + ...
. . .+ / ,= (/ -= l) (2 g (/ - l) - l) + l . Thus f o r s o m e r (l s r s i /) it holds that tr^2g(l-\).
The path P required can be chosen to be the corresponding path of color r. •

114 U. Faigle, W. Kern and Gy. Túrán

Now we describe the adversary strategy Sk.

1) Force A either to use ^k colors or to form a monochromatic path P of
length 2g{k— 1) by building a forest on a set Vk of g(k) +1 vertices. (This can be done
by Lemma 6.)

2) Apply iSfe_! to the set Vk_1 consisting of every second vertex of P (thus

Note that after completing phase 1) Vk_1 is an independent set of vertices and
in later stages the color of the path P cannot be used as otherwise a monochromatic
cycle is created. Thus by induction Sk indeed forces A to use s f c colors and the
construction implies that the graph G built by the adversary has ^ f (k) edges.

Finally we claim that G is 2-partitionable. This follows by induction. Assume
that the graph G' built on is 2-partitionable and let (Fx, F2) be a partition of its
edges into 2 forests. Then adding the edges of P to F1 and F2 alternatingly and adding
the remaining edges of G arbitrarily we get a 2-partition of G. •

By definition, Theorem 5. implies the following.

Corollary 7. For every on-line graph partitioning algorithm A A(n)-+ °° and A
does not have bounded performance. •

5. Non-adaptive adversaries

Several lower bounds for on-line algorithms are based on the existence of ins-
tances / such that for every independent partition of J there is an initial segment
of / for which the restriction of the partition is far from being optimal. This shows
that no on-line algorithm can have good performance on every initial segment of I.

Thus the adversary providing I is non-adaptive in the sense that for every algo-
rithm A it provides a counterexample which depends on A in a very restricted way
only through the choice of the initial segment of I. With other words the only liberty
the adversary has is to decide when to stop giving new elements.

All known lower bounds for bin packing are non-adaptive. On the other hand
the lower bounds for graph coloring and chain decomposition (e.g. [25], [14], [16]),
and the lower bounds of the preceding section are adaptive, i.e. when the adversary
determines the next extension of the current instance it takes into consideration the
previous decisions made by the algorithm.

For /„=(£„, let / ! < . . . < / „ be the initial segments o f / „ , Pn=(F1, ..., F,)
be an independent partition of E„ and Pk=P„\Ek (l^k^n) be the restriction of P„
to Ek. With these notations let

£ : = i n f { r : 3cV/ne./3PnVP*: \Pk\ ^ rp(Ik)+c)

(jjr could be defined analogously). By the argument above s y ^ r y . We consider the
question of how good a lower bound is sy to ry.

For graph coloring restricted to forests clearly sy = l and as mentioned in
Section 3. = (as A (n) = Q (log ?i) for every on-line algorithm). We mention
another example where both sy and ry are finite but different.

On the performance of on-line algorithms for partition problems 115

As it is mentioned in Section 3., Kierstead and Trotter [16] showed that r y = 3
for the chain decomposition problem restricted to interval orders.

Proposition 8. For the chain decomposition problem restricted to interval
orders

Proof. The bound follows directly from the proof of Kierstead and Trotter [16].
Let P be an interval order of width w on the ground set V = {t^, ..., t>„}. Then V
is partitioned into w sets ..., Lw by considering the elements ..., v„ one after
the other and putting each element into the first set so that the conditions
w i d t h ^ l Z ^ U . . . U L t) = i remain satisfied for every i^w such that L^Q- It is
shown in [16] that then width(L ;)^2 for every / s w . The proposition follows by
considering a chain decomposition of P which consists of the chain Lx and
chains covering L ; for 2 s i ^ w . •

Now we give an example where s y = r y .
Let RESTRICTED BIN PACKING be the bin packing problem restricted to

items with sizes (1/2)—e and (l /2)+e (for some fixed e-== 1/6). We denote (1/2)—s
by a and (1/2)+e by b.

Theorem 9. For the restricted bin packing problem j J = r ^ = 4 / 3 .

Proof. The lower bound is noted e.g. in Liang [20]. Consider / ' < /
where I contains n a-i terns followed by n ¿-items and / ' is the first half of /. If an
algorithm A fills k bins with 2 a-items each after processing / ' then

\A{I')\lp{n = 2-2(k/n), \A(I)\/p(I) s i + (k/n)
which implies the bound for sy.

To prove the upper bound we describe an on-line algorithm with r J = 4 / 3 .
We distinguish 4 types of bins: a-bins, ¿»-bins, aa-bins and «¿-bins, corres-

ponding to the items contained in the bin. The algorithm will also pair some bins,
the possible bin-pair types will be (aa, a), (aa, b), and (aa, ab). If a bin is not paired
with any other bin it is called unpaired.

A new element is processed according to the following rules:
a) for a new element a*:

if there is a ¿-bin B then put a* into B
else if there is an unpaired a-bin B then put a* into B

else if there is an unpaired aa-bin B then put a*
into a new bin B' and pair B and B'

else open a new bin B for a*;
b) for a new element b*:.

if there is an a-bin B then put b* into B
else if there is an unpaired aa-bin B then put b* into a

new bin B' and pair B and B'
else open a new bin B for b*.

If there are several bins satisfying a condition then the choice is arbitrary, for
definiteness let us always choose the first one.

It is easy to see that all possible bin-pair types that may be formed by the algo-
rithm are indeed (aa, a), (aa, b) and (aa, ab).

116 U. Faigle, W. Kern and Gy. Túrán

Let us assume thatafter processing a list / the algorithm created cx unpaired a-
bins, c2 unpaireb ¿-dins, c3 impaired aa-bins, c4 unpaired «¿-bins, c5 (aa, a) bin-pairs,
cg (aa, b) bin-pairs and c7 (aa, ab) bin-pairs.

By definition

= c1 + c 2 +c 3 +c 4 + 2c5 + 2c6 + 2c7, (1)

as the number of ¿-items is a lower bound to /?(/)

p(I) S c 2 + c 4 + c 6 + c 7 , (2)

and as the half of the number of items is a lower bound to p (I)

p(I) s (1 /2) C l +(1 /2)c 2 +c 3 +Q + (3/2)c5+(3/2)ce+2c7 . (3)

Subtracting (2) resp. (3) from (1) we get

M (/) | - p O O s C l + c 3 + 2 c 5 + c 6 + c 7 , (4)

\A(I)\ - p (I) S (l/2)c1 + (l/2)c2 + (l/2)c5 + (l/2)c6 . (5)

We note that there cannot be both an a-bin and a ¿-bin in the packing as in this
case the item arriving later would not be put into a separate bin.

Lemma 10. cj + c 3 + c 6 s 1.

Proof. We consider 6 different cases.
1) There cannot be 2 unpaired a-bins as otherwise the a-item arriving later would

not have to be put in a separate bin.
2) There cannot be an unpaired a-bin B and an unpaired aa-bin B'. Indeed, if

the a-item in B comes last, then B could be paired with B', if one of the a-items in B'
comes last then before the arrival of this element we get a contradiction to 1).

3) There cannot be 2 unpaired aa-bins as otherwise before the arrival of the last
item we get a contradiction to 2).

4) There cannot be an unpaired a-bin and an (aa, b) bin-pair by the remark
preceding the lemma.

5) There cannot be an unpaired aa-bin and an (aa, b) bin-pair. Again by the
remark preceding the lemma the item coming last must be the ¿-item. But then before
the arrival of this item v/e get a contradiction to 3).

6) There cannot be 2 (aa, b) bin-pairs. Again, the last item arriving must be a b-
item. But then before the arrival of this item we get a contradiction to 5). •

In the proof of the theorem we distinguish 2 cases.

Case 1. c2=0.

Then using Lemma 10., (5) and c5s(2/3)/>(/) following from (3) we get

\A(I)\-p(I) S (1/2)cs+(1/2) s (l /3) /? (/)+(l /2) hencc
\A(I)| S (4/3)/>(/)+(l/2).

On the performance of on-line algorithms for partition problems 117

Case 2. c 2 >0.
From the remark preceding Lemma 10. in this case c 5 = 0 and so we get from

(4) and (5) using Lemma 10.

\A(I)\-p(I)S i + c7 (6)

\A(I)\-p{l) s (1/2)+(1/2)c2. (7)

Adding (7) twice and (6) and using c2+c7^p(I) (cf. (2))

3 (M (/) | - / ? (/)) S 2 + C 2 + C 7 2+p(I)
and so

| ^ (/) | == (4 / 3) P (/) + (2 / 3) . •

6. Some remarks and problems

1. (Greedy algorithm vs. on-line algorithms.)
The chain decomposition problem for series-parallel orders is an example where

the greedy algorithm gives an optimal solution. For the edge coloring problem =2
and no on-line algorithm can have better performance. Thus for these problems on-
line algorithms cannot perform better than the greedy algorithm.

On-line algorithms give a large improvement for the general chain decomposition
problem (where AgI(n)=Q(n) and there is an on-line algorithm with bounded per-
formance), for the graph coloring problem (where Agr(n) = Q(n) and there is
an on-line algorithm with A(n) = o(n)) and for the bin packing problem (where
rX r =1.7 and there is an on-line algorithm with r J=5 /3) .

There appears to be no example known where the greedy algorithm is not opti-
mal but there is an on-line algorithm giving an optimal solution. Also for none of the
examples considered does it hold that r j r = ° ° but there is an on-line algorithm A
with /-j<oo.

2. (Bounds for particular problems.)
It would be interesting to improve the bounds for the performance of on-line

algorithms for matroid and graph partitioning, in particular to decide if on-line
algorithms can perform better than the greedy algorithm for partitioning graphs.

Concerning adversaries it appears to be not known if adaptive adversaries can
lead to stronger lower bounds for the bin packing problem. Another question is the
following: is = for the graph coloring problem? (Coloring optimally with i
new colors those initial segments for which the chromatic number is i gives a coloring
which uses s / (/ + l) / 2 colors for every initial segment of chromatic number /.)

A related partition problem which does not fit into the class of problems dis-
cussed here, but which would be interesting to study in the context of on-line algo-
rithms is the. m-machine scheduling problem: given n tasks with execution times
tlt ..., t„ find a schedule for m machines to minimize finishing time (thus here the
number of the classes is fixed and we want to minimize the maximal weight). The
greedy algorithm has performance ratio 2—(1 ¡m) (Graham [10]). No on-line algorithm
appears to be known which improves this for any m. The lists (1, 1, 2) and (1, 1, 1,

118 U. Faigle, W. Kern and Gy. Túrán

3, 3, 3, 6) show that no improvement is possible for m=2 and m=3. The list (1 m
times, 1 + / 2 / Í ! times, 2(1 + / 2) once) shows that 1 +(1 / / 2) is a lower bound for the
performance ratio of on-line algorithms for every m s 4 .

Acknowledgement. We thank Collette Coullard, János Csirik, Gábor Galambos
and László Lovász for their valuable remarks.

References

[1] D. BEAN: Effective coloration, J. Symb. Logic 41 (1976), 469—480.
[2] B. BOLLOBÁS: Extremal Graph Theory, Academic Press, London, 1976.
[3] A. BORODIN, N. LINIAL, M. SAKS: An optimal on-line algorithm for for metrical task systems,

19. STOC (1987), 373—382.
[4] D. J. BROWN: A lower bound for on-line one-dimensional bin packing algorithms, Tech. Rep.

No. R-864, Coord. Sci. Lab., Univ. of Illinois, Urbana, IL, 1979.
[5] J. CSIRIK, V. TOTIK: On-line algorithms for a dual version of bin packing, Discr. Appl. Math. 21

(1988), 163—167.
[6] J. EDMONDS: Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur. St.

69B (1965), 67—72.
[7] U. FAIGLE, GY. TÚRÁN: Notes on on-line algorithms, Proc. Conf. SOR (1988), to appear.
[8] G. GALAMBOS: Parametric lower bound for on-line bin packing, SIAM J. Alg. Disc. Meth. 7

(1986), 362—367.
[9] M. R. GAREY, D. S. JOHNSON: Computers and Intractability: a Guide to the Theory of NP-

Completeness, Freeman, New York, 1979.
[10] R. L. GRAHAM: Bounds for certain multiprocessing anomalies, Bell Syst. Tech. J. 45 (1966),

1563—1581.
[11] A. GYÁRFÁS, J. LEHEL: On-line and first-fit colorings of graphs, J. Graph Th. 12 (1988), 217—

227 .
[12] D. S. JOHNSON: Approximation algorithms for combinatorial problems, J. Comp. Syst. Sci. 9

(1974) , 2 5 6 — 2 7 8 .
[13] D . S . JOHNSON, A . DEMERS, J . D . ULLMAN, M . R . GAREY, R . L . GRAHAM: W o r s t - c a s e p e r f o r -

mance bouns for simple one-dimensional bin packing algorithms, SIAM J. Comp. 3 (1974),
2 9 9 — 3 2 5 .

[14] H. A. KIERSTEAD: An effective version of DUworth's theorem, Trans. AMS 268 (1981), 63—77.
[15] H. A. KIERSTEAD: The linearity of first-fit coloring of intervail graphs, SIAM J. Disch. Math.

1 (1988), 526—530.
[16] H. A. KIERSTEAD, W. T. TROTTER: An extremal problem in recursive combinatorics, Congr.

Numer. 33 (1981), 143—153.
[17] B. KÖRTE, D. HAUSMANN: An analysis of the greedy heuristic for independence systems, in:

Algorithmic Aspects of Combinatorics (B. Alspach, P. Hell, D. J. Miller eds.), Annals of Discr.
Math. 2 (1978), 65—74., North-Holland, Amsterdam.

[18] E. L. LAWLER: Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and
Winston, New York, 1976.

[19] C. C. LEE, D. T. LEE: A simple on-line bin packing algorithm, J. ACM 32 (1985), 562—572.
[20] F. M. LIANG: A lower bound for on-line bin packing, Inf. Proc. Lett. 10 (1980), 76—79.
[21] L. LOVÁSZ: Covers, packings and some heuristic algorithms, Proc. 5th British Comb. Conf.,

Util. Math. (1976), 417—429.
[22] L. LOVÁSZ: Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, and North-

Holland, Amsterdam, 1979.
[23] L. LOVÁSZ, M. SAKS, W. T. TROTTER: An on-line graph coloring algorithm with sublinear per-

formance, preprint (1988).
[24] M. S. MANASSE, L. A. MCGEOCH, D. D. SLEATOR: Competitive algorithms for on-line problems,

2 0 . S T O C (1988) , 3 2 2 — 3 3 3 .
[25] M . SZEGEDY, u n p u b l i s h e d (1986) .
[26] E . SZEMERÉDI, u n p u b l i s h e d (1982) .

On the performance of on-line algorithms for partition problems 119

[27] GY. TÚRÁN: On the greedy algorithm for an edge-partitioning problem, in: Coll. Math. Soc. J.
Bolyai 44. Theory of Algorithms, (L. Lovász, E. Szemerédi eds.), Pécs (Hungary), 1984, 405—
423.

[28] W. F. DE LA VEGA, G. S. LUEKER: Bin packing can be solved within 1 + E in linear time, Combi-
natorica 1 (1981), 349—355.

[29] V. G. VIZING: On the value of the chromatic class of a /»-graph, Discr. Anal. 3 (1964), 25—30.,
Novosibirsk. (In Russian.)

[30] D. J. A. WELSH: Matroid Theory, Academic Press, London, 1976.
[31] A . C . YAO: N e w a l g o r i t h m s f o r b i n p a c k i n g , J. A C M 2 7 (1980) , 2 0 7 — 2 2 7 .

(Received January 5, 1989)

Determination of the structure of the class S) of (0, l)-matrices

A . KUBA

Kalmár Laboratory of Cybernetics József Attila University
Szeged, Árpád tér 2. H-6720 Hungary

Summary

The class S) contains the (0, l)-matrices having row and column sum
vectors R and S, respectively. The problem of the structure of sf(R,S) is considered,
that is the problem of determining the sets of invariant l's, invariant 0's and variant
positions. Two methods are given, whereby the structure can be determined if an
element of s/(R, S) or the vectors R and S are known. Furthermore, a new proof is
given to Ryser's theorem constructing the variant and invariant positions of the class
j / .

1. Definitions

Let A be a (0, l)-matrix of size n by m. The sum of row i of A is denoted by r, :

m
rt= 2 au 0 = 2' •••> ")>

J = I

and the sum of column j of A is denoted by Sj:

n
S j = 2 0ij (j — 1, 2 , . . . , tri).

We call R=(r1,ri, ..., r„) the row sum vector and S=(s1, s2, ..., sm) the column
sum vector of A. R and S are also called the projections of A. There is an extensive
literature on different questions concerning binary matrices and their projections (for
surveis see e.g. [9] and [l]). Let s4(R, S) denote the class of nXm (0, l)-matrices with'

122 A. Kuba

row sum vector R and column sum vector S. Gale [2] and Ryser [6] have proved that
the class st(R, S) is non-empty if and only if

k k
Z s j

j=i ;=l

for all k = l, 2, ..., m, where S=(s j , s2, •••> sm) is the column sum vector of binary
matrix A defined as

where

M
A = h 5

A,
S, = (1, 1, - 1,0, 0,

with rf number of l's and (m—/•,) number of O's (0 g r . ^ w) . There is exactly one
matrix in s?(R, S) if and only if

k k
2 h = 2 *j j=i

for all ¿ = 1 , 2 , . . . ,m (see e.g. [10]).
Consider the matrices

A, = (J i) and A, = (J ¿) •

An interchange is a transformation of the elements of A that changes a minor of
type Ay into type A2 or vica versa and leaves all other elements of A unaltered. We
say that the four elements of the minor form a switching component in A. The inter-
change theorem of Ryser [6] says that if A and A' are in si{R, S), then A is transfor-
mable into A' by a finite sequence of interchanges.

Let A$_si(R, S). A is ambiguous (with respect to R and S) if there is a dif-
ferent A'£ s/(R, S) (A'?±A). In the other case, A is unambiguous. It is easy to prove
(see e.g. [2]) that A is ambiguous if and only if it has a switching component.

An element a^ = 1 (or 0) of A is called an invariant 1 (or 0) if there is no sequ-
ence of interchanges which, when applied to A, replaces it by 0 (or 1). Otherwise, au
is a variant element of A. By the interchange theorem, if au is an invariant 1 (or 0)
of A£ si(R, S), then ay is also an invariant 1 (or 0) of every A'£ s/(R, S). In this
sense, we can speak about the invariant 1, invariant 0 and variant (i,j) positions of the
class sf(R, S).

Without loss of generality, we can suppose that

and
rx S r2 rn > 0

Si È . . . Ë Î , > 0,

(1.1)

(1.2)
because this situation can be reached by excluding zero rows and zero columns and
Hy permuting rows and columns so that the row-sums and the column-sums are non-

Determination of the structure of the class si(R, S) of (0, l)-matrices. , 123

increasing. A non-empty class si(R, S) with R and S satisfying (1.1) and (1.2) is said
to be normalized.

In the determining of the invariant positions of the normalized class si(R, S),
a useful device is the structure matrix [8]. Let A be in the normalized class si (R, S)
and let us write

A = (Y Z}>

where Wis o f size eXf (O^e^n, Osf^m). L e t Q be a (0, l) -ma t r ix , a n d let N0(Q)
denote the number of 0's in Q, let N^Q) denote the number of l 's in Q. Now let

tef = *om+N1(Z)

e=0, 1, ...,n\ / = 0 , 1, ...,m. W e call t he (n + l) X (w + l) m a t r i x

T = (te/)

the structure matrix of si(R, S). It is easy to see that

n I
te/ = e-f+ 2 ri~ 2sJ-

i = e+1 j = 1

Ryser proved the following

Theorem 1.1 [7]. The normalized class sd{R, S) is with invariant 1 's if and only if
the matrices in si (R, S) are of the form

-(is)-
Here O is a zero matrix and J is a matrix of l's of size eXf (0<esn. m)

specified by
tef = 0.

(The integers e and / are not necessarily unique, but they are determined by R and S
and are independent of the particular choice of A in

By Theorem 1.1, one can construct the structure of class s4 (R, S) with the help
of matrix T. In this paper, another way is given to construct the invariant and variant
positions of class s i . First, the structure of the variant elements of the (not necessarily
normalized) class s i is given. From the determination of the positions of the variant
elements, it is also possible to give the whole structure of si. In Section 3, the case of
the normalized class is discussed applying the idea of double-projection used earlier
in characterization problems of binary matrices [5]. A direct and demonstrative
relation between the structure of si and the vectors R and S is given in Section 4,
from which the mode of construction of the structure of si follows.

124 A. Kuba

2. The structure of the class st(R, S)

First, consider the variant elements of sf(R, S).

Lemma 2.1. Let A be a matrix in s/(R, S), and let

aih' aih> •••»

aiii' ahJ' • • • >
 aiii->

be variant elements of yi such that l^ij, i2, ...,
0*1» • ••» 'ih j t l / i ' J s , • - 'Ah where l < / s « and Then, a r J . is

variant for all (i " , /) 6 { / l f / „ '/}X{A (see Fig. 1/a).

V £ v

V £
V V V v V V V

V

v v V V

V v V V 4

V V V V V V V

£ 0 1 H
fifr/i/v /. The variant elements a induced by the variant elements 0 according to

a) Lemma 2.1, h) Lemma 2.2 and c) Lemma 2.3

Proof. The assumptions of Lemma 2.1 include that au is a variant element of A.
Let (/ ' , /) O'V/, 7'Vy) be an otherwise arbitrary element of ft, /2, ..., i,}x
X-UiJz, —,jk}- if

(2.1)

(2.2)
(2.3)

then atJ, aVj, air and aVj. form a switching component in A, and hence arj. is variant.
If any of the equalities (2.1)—(2.3) is not satisfied, then, since atJ, arj and atj. are

avr = 1 -at.j,

arr = 1 -air,

Determination of the structure of the class si(R, S) of (0, l)-matrices. , 125

variant, it is possible to alter any of them (occasionally all of them) by a suitable
interchange in order to get a switching component at {/', i'}X{j,j'}. That is,
(/ ' , /) is a variant position in si(R, S). A simple consequence of Lemma 2.1 is the
following

Lemma 2.2. Let A be a matrix in si (R , 5) , and let

J = {/i> Jii •••>jk}> 3' = { j i ' j L • ••>.//}>

JC\J' 0,

such that ahh,ailh, ...,ahJk and a-^,..., aij; are variant. Then, atJ is
variant for all (i j) 6 {/ls /2}x(/U7') (see Fig. 1 ¡b).

Proof. By Lemma 2.1, the elements of A at {¡i, i2}XJ and {/j, / 2 }X/ ' are
variant.

Lemma 2.3. Let A be a matrix in s/(R, S), and let J={h,j2, ...,jk) be the
indices of variant elements in row / (l ^ ' S n) . If there is a row i' (i'^i) such that
the elements a i V l , ai,Ji, ..., arjk also include 0 and 1, then aVh, aVji, ..., aVJk are
variant elements (see Fig. 1/c).

Proof. Let us suppose that arh=0 and ai,h = 1 (by a suitable rewriting of the
indices, we can always reach such a situation). We shall construct a switching com-
ponent at {/, ;"}X {j\,j2}'- If a th = 1 and a l h = 0 , then we are ready. If a i j i = 1
and aih — \, then, since aih is variant, there is a switching component whereby alJt
will be 0 (alh and remain unchanged). Similarly, if alh=0 and aijt=0, then
there is a switching component whereby aih will be 1 (in this case aih and aVn remain
unchanged). In the last case, if a O l = 0 and aijl = 1, then we can change aih and
aiJt by at most two interchanges (without changing aVh and arjl).

Theorem 2.1. The variant positions of class si (R, S), if there are any, are in
sets r l s T2,..., Tp (p=0 is also possible) such that

Ts = ISXJ„

s=l, 2, ...,p, where Is are pairwise disjunct subsets of {1,2, . . . ,«} and Js are pair-
wise disjunct subsets of (1,2, ..., m}.

Proof. Consider the set of column indices of the variant elements in row i, denoted
by /¡. Let

/, = {/|/,n7, * 0},
and let _ • . • -

J, = U Ji-

By Lemma 2.2, every position (i,j) is variant for which (/,./ ')£/¡xJf. By definition,
it is clear that (i,j), (/ ' , /) (: / ¡ X J j if and only if

IiXJ, = IVXJV.

126 A. Kuba

That is, by applying the procedure for all / = 1,2, . . . ,«, we get disjoint subsets
/ l 5 / 2 , ..., Ip and Jx, J 2 , ..., Jp, and the sets

Ts = ISXJS,

i = l , 2, ...,p, contain all of the variant positions of si{R, S).

3. The structure of the normalized class si(R, S)

Henceforth, we take si(R, S) normalized.

Lemma 3.1. Let A be a binary matrix in the normalized class si (R, S), and let

{max {jWij = 1}, if atj = 1 for some j — 1, 2, ..., m

0, if atJ= 0 for all / = 1 , 2 , . . . ,m and

{min {/|fly = 0}, if fly = 0 for some j=\,2,...,m

m +1 , if fly = 1 for all y ' = l , 2 , ..., m
for all / = 1 , 2 , ..., n. If z^Ui for some /, then a^ is variant for all /', z^j^Ui.

Proof. If there is an i, l s / s « , such that fly=0, a y = l, / = / ' , then, since
Sj^Sy, there is an / ' , l s / ' ^ w , such that avj = l, aVy=0. That is, ay , air, aVJ
and arJ> form a switching component. Therefore, all of the positions between z ;
and ut are variant.

An analogous lemma is true for the columns:

Lemma 3.2. Let A be a (0, l)-matrix in the normalized class si (R, S), and let

{max {/|fly = 1}, if fly = 1 for some i = 1, 2, ..., n
0, if fly = 0 f o r a l l i=\,2,...,n

and

{min {/|fly = 0}, if fly = 0 for some i = 1,2, ..., n
n +1, if fly = 1 for all / = 1 , 2 , . . . , «

for all 7 = 1, 2 , . . . , m. If Wj<Vj for some /', then fly is variant for all /, W j ^ i ^ V j .

Theorem 3.1. The variant positions of the normalized class si(R, S) are in the
sets 7 i , r 2 , ..., Tp (p = 0 is also possible) such that

Ts = I s X J s y
5 = 1 , 2 , ...,/>, where

is = №,is+1,..Q, i / r < 4 < / 2 • / ; ^ « ,

= { ; ; , n , i s y ; < r ; < < y ; _ i ^• • • <a' < x ^ m.

Proof We know that the variant elements of ^ (R , S), which are recognized by
Lemmas 3.1 and 3.2, follow in rows and in columns consecutively.Following the same
idea as in the Proof of Theorem 2.1, we have that the sets TS=ISXJS, j = 1 , 2, ...,p,
are the places of variant elements, where /s and Js contain the indices of consecutive

Determination of the structure of the class s i (R, S) of (0, l)-matrices. , 127

rows and columns, respectively. Furthermore, /SO/S .=0 and Jsf]Js.=Q if s^s'.
From this construction, it is clear that ({1, 2,,..., i's — 1}XJS)U(ISX {1,2, ...,7/ — 1})
contains only l 's and ({/s" + l, £ + 2 , . . . , m}X/ s)U(/ sX{7,f+ 1, ¿ " + 2 , ..., w}) con-
tains only 0's. Since the elements of R and S are in decreasing order, 1 S r ,
s ^ p , if and only if j r^ j ' s - That is, if T1, T2, ...,TP are indexed so that

It is easy to see that the set {1, 2, . . . ,«} X {1, 2 , . . . , m}\ U STS contains only invariant
positions and so U s r s is the set of the variant positions of the normalized class
ji(R, S).

The following algorithm can be used to determine the sets of the indices of the
variant elements, Is={i's, i's + 1,. . . , i's"} and Js= {j's,j's +1, ...,ys"}:

Step 1: First, the indices zf and Wj are computed for each row i. It is clear that
Z ^ M j + l (1 Si^n).

Step 2: The sequence of indices is modified taking the rows from down to up
such that if M1+1>M,- then let M,=M,+I (n — l s / > l) .

Step 3: The rows are scanned one by one from / = 1 to /=»« with an initial
value J=0. If z ts-u t then there is no variant element in the row /. In the other
case, i.e. if z t s u t , theii there are variant elements in this row and let S=J + 1,
i's=i, j's—Zi (initially) and j'i =u t . The indices j's and i'J can be determined by scan-
ning the rows further while _// ̂ ut such that meanwhile if j ' s >z i then let j ' t=Zi.
In the row, where let i'^—i—l (this condition will be satisfied at least once
if we set w„+i—zn+1 = —1 at the beginning of the procedure).

Let us see two examples:

Example 3.1. Let the (0, l)-matrix A be defined as

/ = 1 ,2 , . . . ,« , 7 = 1 , 2 , . . . , « . In this case «¡=z, z , = l , i = l ,2 , ...,n (with the
exception that z1=2). Applying the algorithm, we get that the set 7i containing the
indices of the variant elements is

then
1 % < i'2 < ii < i'P < ^ n,

•1, if i=j
.0, if / 7

7; = {1,2, ..., n}X{l, 2, ..., n},

that is the whole matrix.

Example 3.2. Let A be given by Figure 2. Then

ux = 13, zx = 14, w2 = 11, z2 = 12, M3 = 10, z3 = 11,

«4 = 10, z4 = 11, w 6 = l l , z5 = 9, m6 = 7, ze = 8,

«7 = 5, z7 = 3, M8 = 6, z8 = 4, «9 = 1, Zg = 2,

i'l = 3, /T = 5, 7'i = 9, jx = 1 1

A. Kuba

11
10
10
9

1 1 1 1 1
71 1 1 1 0 0

p 0 0
g 0 0

a & i 0 0
0 0 0 0 0 0

4 1 1 m p T O p i O p 0 0 o 0 o
I M 1 0 1 0 1 ö l o j o l o I o I o f o I o I o I o I

9 8 7 7 7 7 6 5 4 4 3 1 1

and

That is,

Figure 2. The structure of the normalized
class Jtf(R, S) of Example 3.2

i'% = 7, i'i = 8, j 2 ' = 3 , j? = 6.

71 = {3, 4, 5}x{9, 10, 11}, T2 = {7, 8}x{3 ,4 , 5, 6},

4. Determination of the structure of class S) from the projections

Consider the matrices and A(y> defined by R and S as

fO, if y >

and

fU,
a.(?) = I , J l l ,

fO.
» H i ,

otherwise,

0, if / > Sj;
otherwise,

(4.1)

/ = 1 , 2, ...,n, j= 1, 2, ..., m (see [5]). The projections of A(x) are (R(x>, S(x>), where
R(x)=R. The projections of A(y) are (RM, SM), where S(y)=S. Similarly, the
matrices A(xy) and A(yx) are defined by S(x) and R(y) as

fO, if / :

and

fU,
affy) = i

" 11, otherwise,

** = 11,

0, if j
otherwise

(4.2)

/ = 1 , 2 , y'= 1, 2, ..., m. The projections of A(xy) and A(yx) are denoted by
(R(xy), S(xy)), and (R'yx), S(yx)), respectively. It is easy to see that A(xy) and A(yx)

are unambiguous (they have no switching component). From the construction, it
follows that R(xy> consists of the elements of R in decreasing order and S(yx) consists
of the elements of S in decreasing order. That is, by constructing a (0, l)-matrix B
with projections (R(xy\ S{yx)) and making a suitable permutation of its rows and
columns, we get a binary matrix of stf(R, S).

Determination of the structure of the class si(R, S) of (0, l)-matrices. , 129

If A(xy)=A(yx), then let B=A(xy)(=A(yx)). As B is uniquely determined by its
projections, it has no variant element, and so there is no variant element of A that
can be constructed from B by suitable row and column permutations.

If A(xy) A(yx), then from matrix A(xy) the matrix B can be constructed by suc-
cessively shifting the l 's from the left to the right in the rows of A(xy\ similarly as in
[10]:

Procedure to construct (0, l)-matrix B:

Step 1: j:= 1, B:=A<**K
Step 2: Consider they'th column of B. If the number of l 's in this column is

greater than sjyx) , then find the first row, begin from the bottom position upward,
which contains a 1 in the y'th column and a 0 nearest to the right. Interchange the 1
and the 0 in B. Repeat in this fashion until only s(jyx) l 's are left in this column.

Step 3: j:=j+l. If j—m, stop. Otherwise, go to Step 2.

The result of this Procedure is a (0, l)-matrix B having row and column projec-
tions R(xy) and S(yx), respectively.

If A(xy)^A(yx), then S(xy)^S(yx\ but even in this case

2 *(jxy) ^ 2 $ x)

j=i J = I

for all k, l g f c g m , so that there is inequality for at least one k. Let <
« = / p _ x ^ j p (p = 1) be the column indices such that

> 2 s ? * (4.3)
i=i J=i

if for all j = 1 , 2, ...,p, and

= 2 s (/ x)

i j=I

otherwise. It is easy to see that during the Procedure only they'th columns of B can be
modified, where It is also clear that, if a = 1 was the bottom 1 in the
j's th column, then finally it will be in the y's" column of B: £>,«y=0 and bi»j»= 1.
Applying Lemma 3.1, we have =j's' and z,» = j ' s . Hence, the elements of

Ts = I,XJ,
are invariant, where

/ . = { « , < + 1, - . £ }
and

During the Procedure, the column j is unaltered if j ^ j s j i ' is not satisfied for
any j'„ a n d 1 ^s^p. These columns of B are the same as these columns of A(xyK
Therefore, all of the variant elements of si (R(xy\ Slyx)) are in the columns j, where

130 A. Kuba

for an s, 1 Ss^p. From the definition of A(xy\ it follows that

W j : = sfS>+\ = / ;

and ' ' (4.4)
(xy) .//

v j : = sk =

where w,» and t>,» are defined for the class S(yx)), as in Lemma 3.2. An 'f Jm
analogous procedure and philosophy for the rows gives that all of the variant elements
of s/(R(xy\ Siyx)) are in the rows i, where

i s / s C ,

s=\,2,...,p, where ip=\) are the row indices
such that

2 rp x) > 2 *\xy) (4-5) ;=i ¡=i

if J=1, 2, ...,/?, and

2 r[yx) = 2 rixy)

¿=1 • i=i
otherwise. That is, from the projections S(xy) and 5,(yjc) we can give the sets of the
variant elements of B, Ts, s=\,2, ...,p, by (4.3) and (4.4) (or equivalently by (4.3)
and (4.5)) explicitly, as they are described in Theorem 3.1.

Let 7tx denote a permutation of S^yx) such that Kx(S^yx))=S, and let ny denote a
permutation of R(xy) such that ny(R<xy))=R. Let

ny(Q = KO'D, + « , (£)}
and

= K U ') , nAj!)}.

Since the sets T,=ISXJ„ s=l, 2, ...,p, contain the indices of the variant elements
of . a f (R l x y \ S(yx)), the sets

n(Ts) = ny(I,)XKx(J,), (4.6)

s= 1,2, ...,/>, contain the indices of the variant elements of the class si(R, S).

Theorem 4.1. The variant elements of the class s/(R, S), if there are any, are in
the sets n(Ts), s=l, 2, ...,/> (p=0 is also possible), defined by (4.1)—(4.6).

Let us see two examples.

Example 4.1. Let R=(1 ,1 , . . . , 1) and S = (l , 1, ..., 1). Then

S^ = (n, 0 , 0 , . . . , 0) , Siyx) = (1, 1, ..., 1), Ji = 1, X = n, /i = l, i'i = 1,

p = 1, A = {1,2, ..., «}, / , = {1, 2 , . . . , n}, Ji = (1, 2, ..., n),

Hy(Ii) = {1, 2, ..., n), n ^ J J = {1, 2, ..., «}, 7i(T,) = {1, 2, ..., H}X{1, 2, ..., «}.

Example 4.2 (see Figure 3).

Determination of the structure of the class si(R, S) of (0, l)-matrices. , 131

>(xl M S)

D D D O i f a C i n H 1 1 9

13
11
10
10

R(xy)= 9

7
4
4
1

n n n u 1 a a u u
1 1 1 T ± L
1 1 • 1

1
| 1 1

• 1
1
| 1

1
- —

1 1 1 2 I
| 1

1
- —

- L_

1
1

glX)
1

(9 8 8 8 6 6 6 5 5 4 2 1 1)

Slxy}
1 1 1 1 1_

r f '•J Ff 1 1 1

— — LL P 1
1

— — FT 1 1 1
— —

i 1 H i
1

1 1 I i
- j 1 1 i 1 - j f j _ MM ,

7 4 7 9 8 5 7 7 6 1 3 4)
I

S(y)-

9 8 7 7 7 7 6 5 4 4 3 1 1

S(yx>

A (x y) | Alyx)

R ' I

ft? 11

' e #
7
6
?

1 1 1 1 1 1 1 1 1 1 1 1
ft? 11

' e #
7
6
?

1 1 1 1 1 1 1 1 1 1
i

ft? 11

' e #
7
6
?

1l i 1 1 1 1 1
1
i

ft? 11

' e #
7
6
?

1 1 1 1 1 1 w
I

ft? 11

' e #
7
6
?

1 F
1 1 1 1 1 1 I

ft? 11

' e #
7
6
?

1 F 1 1
1

1
1 -1 1 1

ft? 11

' e #
7
6
? H 1 1 H

N
1
1

1
1 -1

f f

ft? 11

' e #
7
6
? H 1 1 H 1

T
1

ft? 11

' e #
7
6
? 1

T
1

A(yJ

Figure 3. Determination of the structure of s?(R, S) from the projections R and S, • and 0 denote
the invariant 0's and the variant positions, respectively

Consequence 4.1. The (i j) elements, / = 1 , 2 , . . . , n, j—\, 2, ..., m, can be
divided into three sets: the positions of invariant 0's, invariant l 's and variant ele-
ments. From the construction of Tx, T2,..., Tp from R(xy) and S(j ,J°, it follows that

the set of invariant l 's of the class st(Rixy\ S(yx)) is

{ (i j M j x y) = 1 } \ U Ts;
S = 1

the set of variant elements of the class sf(R<-xy), S(yx)) is

U Z -,
s=1

t he set o f inva r i an t 0 ' s o f t h e class ssf(R<xy\ S(yx)) is

{1, 2, ..., n } x { l , 2, ..., m}\{(i,j)\a^ = 1 } \ (U Ts).
S = 1

132 A. Kuba: Determination of the structure of the class sf(R, S) of (0, l)-matrices

Similarly, the set of invariant l 's of the class s/(R, S) is

{('> J)\aij = 1 } \ U n(T3); s=1
the set of variant elements of the class s/(R, S) is

U <Tsy, 5 — 1
the set of invariant 0's of the class sf(R, S) is

{1, 2, ..., и}х{1 ,2 , ..., m}\{(i,j)\au = 1 } \ (U n(Ts)),
5=1

where A is an arbitrary element of the class s4(R, S).

Consequence 4.2. From Ryser's Theorem [6], we know that if A, A% S),
then A is transformable into A' by a finite sequence of interchanges. From the struc-
ture of sf{R, S) given by Theorem 4.1, it is also clear that the four elements of an
interchange are in one of the sets n(Ts). That is, if A, A'£ s2(R, S), then A is trans-
formable into A' by a finite sequence of separate interchanges in я(7j) , u(T^), ...
..., я(Гр). Let ns denote the number of different binary matrices generated from an
A£jrf(R,S) by interchanges only in tc(Ts), s=l, 2, ...,p. The number of elements
of sf(R,S) is an interesting unsolved problem (see [4] and [11]), which can be reduced
to the determination of the numbers ns, 5=1 ,2 , . . . , / » , in the following way:

5 = 1

The author thanks Mrs. S. Siloczki and Mrs. E. Vida for the technical assistance
in the preparing of the manuscript.

References

[1] R. A. BRUALDI: Matrices of zeros and ones with fixed row and column sum vectors Linear
Algebra and Its Applications 33, 159—231 (1980).

[2] S.-K. CHANG: The reconstruction of binary patterns from their projections Comm. ACM 14,
2 1 — 2 5 (1971) .

[3] D. GALE: A theorem on flows in networks Pacific J. Math. 7, 1073—1082 (1957).
[4] W. HONGHUI: Structure and cardinality of the class S) of (0, l)-matrices J. Math. Res.

E x p o s i t i o n 4 , 8 7 — 9 3 (1984) .
[5] A. KUBA: On the reconstruction of binary matrices Pubbl. 1st. Anal. Globale Apply., Serie

„Problemi non ben posti ed inversi", No. 28. Firenze (1986).
[6] H. J. RYSER: Combinatorical properties of matrices of zeros and ones Canad. J. Math. 9, 371—

3 7 7 (1957) .
[7] H. J. RYSER: The term rank of a matrix Canad. J. Math. 10, 57—65 (1958).
[8] H. J. RYSER: Traces of matrices of zeros and ones Canad. J. Math. 12, 463—476 (1960).
[9] H. J. RYSER: Matrices of zeros and ones Bull. Amer. Math. Soc 66, 442—464 (1960).

[10] Y. R. WANG: Characterization of binary patterns and their projections IEEE Trans. Computers
C-24, 1032—1035 (1975).

[11] W.-D. WEI: The class $i(R, 5) of (0, l)-matrices Discrete Mathematics 39, 301—305 (1982).

(Received February 6, 1989)

Parallel programming structures and attribute grammars*

R . ALVAREZ GIL a n d A . MAKAY

Kalmár Laboratory of Cybernetics, Áprád tér 2, H-6720 Szeged, Hungary

1. Introduction

The attribute grammars are useful tools to give the semantics of programming
languages for compiler construction, thus many complier generators based on attri-
bute grammars have been developed [4] [*/] [8] [9] [11] [12].

Many papers deal with attribute grammars describing structure of sequential
languages for compiler construction, but only a few deals with parallel programming
structures.

In this paper we give the semantics of the bracket pair cobegin-coend and the
symbol and in words, and afterwards we give the object which the parallel program-
ming constructions will be translated to. In section 3 we give an attribute grammar
able to perform the required translation. The concept of attribute grammars and the
notations used can be seen in [1]. In section 4 we mention some experiences got in the
implementation by means of attribute grammars of a parallel programming language
in which processes communicate through Hoare's monitors.

The methods given in the paper were tested successfully in a CDC 3300 computer
of the Hungarian Academy of Sciences with the help of the HLP/SZ compiler genera-
tor system [11].

* Supported by the Research Foundation of Hungary, Grant No. 1066, 1143.

134 R. Alvarez Gil and Â. Makay

2. Semantics and translation of the bracket pair
cobegin-coend and the constructor and

The constructor and is used to separate instructions such as the symbol;, but
the instructions separated by and may be executed in parallel. The priority of the
symbol and is higher than the priority of the symbol;. Thus in the following part of
a program: statement,; statement2 and statement3; statements statement and
statement3 are executed parallel, but after finishing the execution of s tatement
and before beginning the execution of statement4.

The bracket pair cobegin-coend is used to ecnlose a statement list such as the brac-
ket pair begin-end, but the statement of a statement list enclosed in a bracket pair
cobegin-coend are executed parallel. To separate the statements enclosed in cobegin-
coend's can be used; as well as and or mixing the two symbols.

For the translation of these parallel programming constructions we will use three
primitives: fork, join and quit [2] [3]. We have selected these primitives because the
operations fork and quit are available in all languages including the psosibility to
creating and terminating processes, while join can be realized by a "go to" statement
and a semafor.

Execution of the operation fork w creates a new process starting at the statement
labelled w. If a process executes a primitive join t, w it is equivalent with / := t — 1;
if / = 0 then goto w as a unique and indivisable operation.

To determine the tasks statically we have to decompose the program into seg-
ments representing processes or parts of processes. Of course, processes are not uni-
quily determined. For example let's see the following program:

begin statementj; statement^ statement3;
cobegin begin statement^ statements end;

begin statement^ statement, and statements;
statement^, statement^ end

coend;
statementu ; statement^;
begin statement13; statement^ end and statement^

end

This program can be partitioned into the following segments:

tx: statementj; statement^, statement3

f2 : statement,,; statements
f3 : statement
/4: statement,
i5: statements
t6: statement;,; statement^
t7: statementn ; statement^
f8 : statement^; statement^
tg: statement».
Moreover we can associate to the program a task flow graph [10] in which each edge
corresponds to the execution of a segment:

Parallel programming structures and attribute grammars 135

t*

One of the possibilities to translate our program partitioned into those seg-
ments with the above primitives is the following:

begin tt: statement!; statement^, statement3; K1:=2; fork f2 ; quit;
t2: fork ts; statement^, statements; join « l 5 ?7; quit;
t3: statement6; n3\—2; fork /4; quit;
t4: fork tb; statement,; join n3, t6; quit;
i5 : statement8; join n3, i6; quit;
ts: statement9; statement10; join n l 5 /7; quit;
t7\ s t a t emen t^ statement12; n7:— 2; fork ta; quit;
ts: fork t9; statement13; statement14; join n7, end; quit;
ta: statement15; join n7, end; quit;

end: end

An attribute grammar is able to define that kind of decomposition into segments
and of translation to processes.

3. An attribute grammar to describe parallel programming
structures for compiler construction

The translation of a structure cobegin statement^ . . . ; s ta tement coend or
statement! and ... and s ta tement will be as follows :
free m; t:—n; fork Jj; quit;
5X: fork j2 ; occ m l 5 mi; ... code of statement!.. .; free m^,

join t, end; quit;

s„: nop; occ m„, m'„; ... code of statement« . . . ; free m„;
join t, end; quit;

end: occ m, m';
where free an occ are newly introduced macros to allocate and deallocate work-areas
for processes.

We use the well known attributes "codelength" (synthesized) and "codeloc"
(inherited) which give the length and the localization of the generated code. Another
synthesized attribute is "level" to calculate the size of the work-area necessary for
each process.

The code generation of parallel structures can be performed at the root of the
subtree associated with them in the derivation tree after the generation of the code of

136 R. Alvarez Gil and Â. Makay

each segment (statement!, ..., statement,,). For the generation of the correct primiti-
ves and macros it is enough to know the size of the work-area and the localization of
each statement, because the localization of a statement can be used to obtain the label
of the work-area of the statement.

We use some other attributes in the grammars. The synthesized attribute "csloc"
gives the necessary information (the localization of the generated code and the size
of the work-area of each statement) upwards to the root of the subtree. The inherited
attribute "loclev" is a pair (m, m') giving the label and the size of the work-area
which has to be allocated at the beginnig and has to be deallocated at the end of the
execution of a parallel structure. The inherited attribute "costat" tells us whether a
statement is in a parallel structure or not.

The code generation can be performed by a synthesized attribute which is to be
evaluated during the last pass. We do not deal with it, because it would have a long
and trivial description in the 4-th, 7-th and 8-th syntactical rules of the attribute
grammar. Furthermore in a syntactical rule p:X,0::=X1...Xn we will omit the se-
mantical rules of the form X0.a=Xj.a when there is no other Xt (1 s z ' s

and zVy) which has the same attribute "a" , and also the rules of the form
Xj.a=X0.a (1 —«p).

Now see the attribute grammar:
Nonterminal symbols and their attributes:
program has no attributes
block has codelength, level, codeloc, loclev
coblock has codelength, codeloc, loclev
stat_list has codelength, level, csloc, codeloc, loclev, soctat
statement has codelength, level, codeloc, loclev, costat
partstat_list has codelength, csloc, codeloc
Syntactical rules with their semantical rules:

i) program ::= block
block.codeloc=2
block.loclev=(l, block.level)

ii) program ::= coblock
coblock.codeloc = 1
coblock.loclev=(0, 0)

iii) block::=beginstat_listend
stat_list.costat=false

iv) coblock: := cobegin stat _list coend
coblock.codelength =stat_list.codelength+5
stat_list.codeloc=coblock.codeloc+4
stat_list.loclev=(0, 0)
stat_list.costat=true

v) stat_listx::=statement; stat_list2

stat_listj.codelength =statement.codelength+stat_list2.codelength
stat list l e v e l = j s t a t e m e n t - l e v e l , if statement, level ^ stat_list2.level

| stat_list2.level, if statement, level < stat_list2.level
stat_list1.csloc=((statement.codeloc, statement, level), (ax, 6j), ..., (ak, bk)),
where ((alt bx, ...,(ak, bk))=stat_list2.csloc
stat_list2.codeloc=stat_listx.codeloc+statement.codelength

Parallel programming structures and attribute grammars 137

vi) stat_list: := statement
stat_list.csloc=((statement.codeloc, statement.level))

vii) stat_list1: :=parstat_list; stat_list2

stat.list^codelength =

f parstat_list.codelength+stat_list2.codelength+5,
if stat_list1.costat=false

parstat_list.codelength+stat_list2.codelength,
if stat_list1.costat=true

stat_list1.csIoc=((a], è j) , . . . , (ak, bk), (ct, dt),..., (c,, dt)), where
((aL, by), ..., (ak, bk)) =parstat_list.csloc and
((Cj, dy),..., (c,, dt)) =stat_list2.csloc

rstat_listj.codeloc+4, if
stat_list1.costat=false

stat_list1.codeloc, if
stat_list1.costat=true

stat_list1.codeloc+
parstat_list.codelength+5, if

stat_list1.costat=false
stat_list1.codeloc+
parstat_list.codelength, if

stat_list1.costat=true

parstat_list.codeloc=

stat_list2.codeloc=

Note: in this syntactical rule there is code generation if stat_list1.costat=fa1se

viii) stat_list::=parstat_list

stat_list.codelength =

stat_list.level=0

parstat_list.codeloc=

parstat_list.codelength+5,
if stat_list.costat=false

parstat_list.codelength,
if stat_list.costat=true

stat_list. codeloc+4,
if stat_list.costat=false

stat_list.codeloc,
if stat_list.costat=true

Note: in this syntactical rule there is code generation if stat_list.costat=false

ix) parstat_listx::= statement and parstat_list2
parstat_list1.codelength=statement.codelength+parstat_list2.codelength

parstat.listj.csloc=((statement.codeloc, statement.level),
(aj, bt),..., (ak, bk)), where ((ax, bj, ...,
..., (ak, bk)) =parstat_list2.csloc

statement.loclev=(0, 0)
statement.costat=true
parstat_list2.codeloc=parstat_list1.codeloc+statement.codelength

138 R. Alvarez Gil and Â. Makay

x) parstat_list::= statement! and statement2
parstat_list.codelength=statementi.codelength+statement2.codelength
parstat_list.csloc=((statementj.codeloc, statementj.level),

(statement2.codeloc, statement2.level))
statementj.loclev=(0, 0)
statementj.costat=true
statemen t2.codeloc=pars tat _list. codeloc+statement!.codelength
statement2.loclev=(0,0)
statement2.costat=ture

xi) statement block

statement.codelength =

block.codeloc=

block. loclev=

block.codelength+5, if
statement.costat=true

block.codelength, if
statement.costat=false

statement.codeloc+3, if
statement.costat=true

statement.codeloc, if
statement.costat=false

' (statement.codeloc+1, statement.level), if
statement.costat=true

statement.loclev, if
statement.costat=false

xii) statement : := coblock

statement.codelength =

coblock.codelength+5, if
statement.costat=true

coblock.codelength, if
statement.costat=false

statement.level=0

coblock.codeloc =

statement.codeloc+3, if
statement.costat=true
statement.codeloc, if
statement.costat=false

The method given here was tested in the CDC 3300 computer of the Hungarian
Academy of Sciences with the help of the HLP-SZ compiler generator system.
A sequential programming language was augmented with the bracket pair cobegin-
coend and the symbol and, and we have produced a compiler based on an ASE (alter-
nating semantics evaluator) attribute evaluation strategy [6] which has the same
number of passes (five) as the compiler generated for the basic sequential language
has. This fact and the introduction of only three new attributes show us that the
complexity of a compiler based on an ASE strategy does not increase by the introduc-
tion of the parallel structures discussed here.

Parallel programming structures and attribute grammars 139

4. Some remarks about the implementation of processes communicating
through Hoare's monitors

We have implemented a very simple experimental language in which parallel
processes communicate through Hoare's monitors [5]. The language is block struc-
tured, and the scope rule for monitors is the usual: a monitor reference can appear
in the block where the monitor was declared, or in a block contained in it. The
structure of a block is the following:
begin
declarations of monitors local to the block;
declarations of variables local to the block;
... the block body ...
end;

A declaration of monitors has the form:
monitor mt, m2, ..., m„ of m;
and creates the monitors m1, mz, ...,m„ of type m, where m is a monitor type dec-
lared at the beginning of the program. For simplicity each monitor type must be
declared at the beginning of the program. (In other implementations monitor types
could be declared at the beginning of the blocks with the same scope rule of moni-
tors). The structure of a monitor type is the following:
type monitor.type_name monitor;

begin
declaration of the condition variables;
declarations of variables local to the monitor;
procedure procedure-name (...formal parameters...);

declarations of the normal parameters;
begin
.. .the procedure body...
end;

...declarations of other procedures local to the monitor...;

...initialization of local data of the monitor...
end;

In the implementation of the experimental language each monitor has its local
data area which contains the variables of the monitor, the queues of processes waiting
on a condition or on a monitor call, and the queue of processes waiting after an issue
of a signal operation.

We have to introduce many new attributes. Four of them are the most important,
and they will be described here: the synthesized attributes MTL and MINTRN, and
the inherited attributes LMT and MTOTAL.

The attribute MTL is used to construct a table in which informations are collected
about the declared monitor types. We put into the table the following informations
about each monitor type:

— monitor type name;
— list of the variables local to the monitor type;
— list of the condition variables of the monitor type;
— list of the procedures local to the monitor type which contains on each pro-

cedure the parameters of the procedure, the name of the procedure, and the
list of condition variables which appear in a "wait" statement in the procedure;

140 R. Alvarez Gil and Â. Makay

— the object code of the initialization of the data local to the monitor and the
length of the code.

The attribute LMT leads the table (the address of the table) from the root daw-
nwards the leafs of the derivation tree.

The attribute MINTERN is used to construct a table collecting information
about the declared monitors. We put into the table the following informations about
each monitor:

— the monitor name;
— the monitor type of the monitor;
— the number of condition variables of the monitor and the number of vari-

ables local to the monitor;
— addresses and lengths of the queues of the condition variables of the monitor;
— address and length of the queue of processes waiting in a monitor call;
— address and length of the queue of processes waiting by an executed "sig-

nal" statement.
The attribute MTOTAL gives the table of the monitors valid in the environment

wilh respect to the scope rule for monitors.
The HLP/SZ is based on the programming language SIMULA, so we can use

classes and objects, and attributes of type reference to work with tables. In other
compiler generator systems based on attribute grammars the concept of global attri-
bute is introduced to make it easy to work with tables.

Abstract

This paper gives an attribute grammar for the translation of parallel program-
ming structures: the bracket pair cobegin-coend and the symbol and. The introduc-
tion of these constructions into a programming language does not increase the com-
plexity of a compiler based on an ASE attribute evaluation strategy. We discuss the
implementation of Hoare's monitors by means of attribute grammars. The methods
given here were tested in a CDC 3300 computer of the Hungarian Academy of Sciences.

References

[1] ALVAREZ, R.: Giving mathematical semantics of nondeterministical and parallel programming
structures by means of attribute grammars. Acta Cybernetica, Tom. 7. Fasc. 4. 1986. 413—423.

[2] CONWAY, M.: A multiprocessor system design. Proc. AFIPS 1963, Fall Joint Comput. Conf.,
24. Spartan Books, New York, 139—146.

[3] DENNIS, J. B. and VON HORN, E. C.: Programming semantics for multiprogrammed computa-
tions. CACM 9, 3 (March 1966), 143—155.

[4] GANZINGER, H., RIPKEN, K. and WILHELM, R.: Automating Generation of Optimizing Multi-
pass Compilers. In Information Processing '77, North-Holland Publ. Co., 1977, 535—540.

[5] HOARE, C. A. R.: Monitors: An Operating System Structuring Concept. CACM 17, 10 (October
1974) , 5 4 9 — 5 5 7 .

[6] JAZAYERI, M. and WALTER, K. G.: Alternating Semantic Evaluator. In Proc. of ACM 1975
Ann. Conf., 230—234.

[7] KASTENS, U.: GAG: A Practical Compiler Generator. Lecture Notes in Computer Sciences 141,
1982.

[8] LEWI, J., D E VLAMINCK, K . , HUENS, J. a n d HUYBRECHTS, M . : A P r o g r a m m i n g M e t h o d o l o g y i n
Compiler Construction. Part 1: Concepts. North-Holland Publ. Co., 1982.

Parallel programming structures and attribute grammars 141

[9] RAIHA, K . J., S o AKIN EN, M . , SOISOLON-SOINEN, E . a n d TEINARI, M . : T h e C o m p i l e r W r i t i n g
System HLP (Helsinki Language Processor), Department of Computer Science, Report A-1978-2,
University of Helsinki.

[10] SHAW, A. C.: The logical design of operating systems. Prentice Hall Inc., 1974.
[11] SIMON, E. and GYIMÓTHY, T.: Attributum nyelvtanok és alkalmazásuk. Akadémiai Pályamunka.

MTA Automataelméleti Tanszéki Kutató Csoport, Szeged, 1983.
[12] MAKAY, Á . , GYIMÓTHY, T . , SIMON, E . : A n i m p l e m e n t a t i o n o f the H L P . A c t a Cyberne t i ca , T o m .

6. Fasc. 3, 1984. 315—327.

(Received January 11, 1989)

Further remarks on fully initial grammars

ALEXANDRU MATEESCU a n d GHEORGHE PÂUN

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, Bucurefti,
70109 ROMANIA

We investigate those languages generated by (context-free) grammars in which
all nonterminals are regarded as axioms (problem raised by S_. Horvâth, at a formal
language workshop, in Budapest, 1987). Among the considered topics, we can list:
motivations, necessary conditions, right/left — regular/linear variants (generative
capacity and closure properties), and other questions.

1. Motivations

In a usual context-free grammar (in general, in a Chomsky grammar), a nonter-
minal symbol is distinguished and taken as axiom (all derivations have to start from
this nonterminal). This is motivated by mathematical reasons, as well as by the
"classical" applications of Chomsky grammars, namely in modelling the syntax of
natural or programming languages. However, there are many circumstances where
this restriction is not important. This was the reason for which S. Horváth proposed
to consider grammars in which a certain amount of nonterminals are allowed to be
axioms. In [3], [9], grammars in which all nonterminals are axioms are considered
(they are called fully initial). •

Besides the naturalness of this idea, many further reasons can be invoked for
dealing with several-axiom grammars. Here are some of them. (1) For instance, in
W-grammars (two-level grammars) [11], the meta-level is a context-free grammar for
which no axiom is distinguished. (2) In pure grammars [7], one considers finite sets of
axioms. (3) According to the well-known Ginsburg—Rice—Schutzenberger theorem,
each context-free language is a component of the minimal solution of a system of
equations on a free monoid [4]; the study of equation systems does not involve special
variables ("start" variables). (4) Moreover, in [6] systems of equations in which the
iteration process starts from an arbitrary «-tuple, of finite sets (not from an «-tuple

144 A. Mateescu and G. Paun

of empty sets, as usual) are considered; in this way a characterization of EOL langua-
ges is obtained. (5) The ADJ group [1] associates a many-sorted initial algebra with a
context-free grammar so that the language generated by this grammar is the homo-
morphic image of a certain carrier of the initial algebra. The construction of this
many-sorted initial algebra does not depend on the start symbol of the corresponding
context-free grammar. (6) Generalizing the definition of hipernotions in PF-grammars,
in [2] //-systems are introduced and investigated; in them the start symbol is replaced
by an arbitrary (not necessarily finite) language; the language generated by an H-
system is then defined by using homomorphisms, not production rules.

As one can see, there are enough reasons for further investigation of grammars in
which more than one (or all) nonterminals are axioms. Moreover, as an a posteriori
reason, the problems raised and the results obtained about these grammars prove
that the subject is worth considering, leading to interesting new insights about Chom-
sky grammars.

2. Definitions and notations

For a vocabulary V, we denote by V* the free monoid generated by V under the
operation of concatenation, and X is the null element. The length of a string x£ V*
is denoted by |x\. Inclusion and strict inclusion are denoted by Q and c , respectively.

A Chomsky grammar is a quadruple G=(VN,VT, S, P); VN is the nonterminal
vocabulary, VT is the terminal one, S^VN is the axiom and P is the production set.
The usual language generated by G is defined by

L(G) = x).

The fully initial language generated by G is

Lia(G) = {x£V?\A U x for some A$VN}.

Clearly, L(G)QLin(G). The family of languages generated by Chomsky grammars of
type i, i—0, 1, 2, 3, is denoted by The family of fully initial languages generated
by grammars of type i is denoted by J^S?;, z =0, 1, 2, 3.

When dealing with the fully initial language only, we shall write a grammar in
the form G=(VN,VT, P), thus omitting the useless axiom.

Usually, a language is said to be of type 3 if it can be generated by a right-linear
or a left-linear grammar, in the classical case. (Right-linear and left-linear grammars
have the same generative power.) For fully initial grammars this is not true, therefore
we shall distinguish several classes of "type-3" grammars.

A grammar G=(VN,VT, P) is called right-linear (left-linear) if P^VNX
X(V?UVT*VN) (PQFnX(V^ U W)) . We denote by J ^ l l i n the corres-
ponding families of fully initial languages. Moreover, we distinguish between gram-
mars with rules of the form A—xB with an arbitrary string x£Vf as above and
grammars in which x must be a terminal. A grammar G = (VN,VT,P) is called
right-regular (left-regular), if P<gVNX(yT\JVTVN) (PQVNx (VTUVNVT)). The cor-
responding families of fully initial languages are denoted by !FS£„e%,

Further remarks on fully initial grammars 145-

The above family is, in fact, We shall also denote this
family by and we shall consider the following families too:

as CPU — OP q> \ <V

•^•^reg = -^^rreg H ¿flreg-
As in many cases, we shall consider two languages identical if they differ by at

most the empty string A.

The sets of prefixes, suffixes and subwords of a given string x are denoted by
Init (x), Fin (x), Sub (x), respectively, and these notations will be extended in the
natural way to languages. When considering only proper prefixes, suffixes and sub-
words, we shall write Initp (x), Finp (x) and Subp (x), respectively.

For further details in formal language theory, the reader is referred to [10].

3. Necessary conditions for the context-free case

We shall consider here some necessary conditions for a-language to be in
some of these conditions will be also particularized to J 2 ^ or to subfamilies of

Lemma 1. For each language Z i J ^ there is a A-free grammar G=(VN,
VT, P) such that P does not contain chain rules (rules of the form A-*B, A, B£VN)
and L=Lin(G).

Proof. The same as for usual context-free languages.

Lemma 2. For each language 1S?2, LQV*, there are two positive integers
p, q such that each z£L, \z\ can be written as z=uvwxy, u, v, u>, x, y£V*, so
that

(i) \vwx\ S q, \vx\ > 0,
- (ii) for all k s 0, uvkwxkydL and vkwxk£L.

Proof. The same as for usual context-free languages, with the following two
remarks:

— we start from a reduced grammar, G, in the sense of Lemma 1 (see Lemma
3.1.1 in [4]), not from a Chomsky normal form grammar (as in Theorem 6.4 in [10]);

— given a derivation tree T, all subtrees having the roots in the nonterminals
of T correspond to substrings of the string associated to T and which belong to the
fully initial language generated by the grammar; therefore, when we have a deriva-
tion uAyS> uvAxy uvwxy, then both uvk wxky and ifwy? belong to L-tn(G).

Corollary 1. If then there is a constant/? such that for all z£L, |z|>/?,
we have . Subp (z) f! L ^ 0.

Proof. Take p as in Lemma 2 and, for z£L, |z|>/7, write z=uvwxy with the
above properties. As vkwxk£L for k^0, when k=0, we obtain wiLDSub(z) .
Morepver, |ux |>0, hence we have, in fact, vv6LDSubp(z).

146 A. Mateescu and G. Paun

Corollary 2. If is an infinite language, then also LDSubp(L) is
infinite.

Proof. L e t p , q be the constants of Lemma 2 and take z£L, \z\>p, z=uvwxy.
Each string vkwxk, 0, is in L. Clearly, u*wjc*£Subp(L) and vlcwxk^i/t+1w.x*+1,
fcsO(wehave |tyc|=~0), therefore LDSubp(L) contains the infinite set {¡/wa^A:^0}.

Lemma 3. The conditions (properties) in the above two corollaries are
independent from one another.

Proof. We consider the languages

Ly = {a}U{abna\n £ 1}
and

L2 = {ba"b, cba"bc\n ^ 1).

The first language fulfils the condition in Corollary 1 (take p = 1; Subp(a6"A)n
C\L1 = {a) for all w ^ l) , but not that in Corollary 2 (S u b p i Z - J f l X ^ l a }) . The
second language fulfils the condition in Corollary 2 (L2nSubp(L2) = {6a n 6 |«s 1}),
but not that in Corollary 1 (the strings bcfb, irrespective of their length, have no
proper subwords in L2).

This lemma shows that none of the conditions in Corollaries 1 and 2 is suffi-
cient for a language to be in even they together are insufficient for that, as it
follows from the next result.

Lemma 4. The condition in Lemma 2 is strictly stronger than the conditions in
Corollaries 1 and 2 together.

Proof. We consider the language

L = {b}{J{bc^b, cba"bc\n s 1}.

It is easy to see that both conditions in Corollaries 1 and 2 are fulfilled (similarly to
languages Lx, L2 in the above proof), but that in Lemma 2 is not. Indeed, let p and
q be two positive integers and take z—bcfb, \z\>p (there are arbitrarily long such
strings in L). We must have z=uvwxy such that vkwxk£L, k^O, | ux |>0 . It
follows "that ox£ {a"|/2£l}, hence vkwxk is of the form aa or of the form aa, <x£{a, b}*.
Such strings cannot be in L, a contradiction.

Lemma 5. The condition in Lemma 2 is not sufficient for a language to be in
.

Proof. Let us consider the language

L = {a"\n s 0}U{6"|n S 0}U{a"b2m\n, m 1}.

The language L is not context-free; as #".S?2<r JS?2 [3], it follows that
However, this language fulfils the condition in Lemma 2. Take, for instance, p = 1,
q = \. For z=(f or z—b", we clearly have all conditions in lemma fulfilled. If
z=cfb2m we take u=k, v=a, w=A, x=X, y=cf~1b2m. Obviously, z=uvwxy,
|t>vwc|=S? = l, |UJC|>0, uvfwxky=dtcf-1bimiL for all ArisO (for A:=0, n = 1 we
can obtain uvkwxky=b2"', which is in L too), and vkwxk=ak(iL for all k^O.

Further remarks on fully initial grammars 147-

Conjecture 1. If L is a context-free language which fulfils the condition in Lemma
2, then

We consider now a necessary condition of different type, similar to the one used
in the theory of Marcus contextual languages [8].

Definition. For a given language LQV*, let

Min(JL) = {z6L|Subp(z)riL = 0}
and define

Ri(L) = Min(X)

R((L) = i ? , - _ ! (L) U M i n (i — (L)) , i s 2.

We say that L has property R iff all the sets /?,(£), z s l , are finite.
Lemma 6. If then L has property R.

Proof. Let Le^jSfa, LQV*, be a language and take a grammar G=(VN,
VT, P) such that Lia(G)=L and G does not contain 1-rules and chain rules (Lemma
1). For a string x l e t T(x, G) be the set of all derivation trees describing deri-
vations of x in G starting from a nonterminal in VN (which is the root of a tree).
Denote by hei(T) the height of a given tree T(x, G), i.e. the maximum of lengths
of paths linking the root of J to its leafs (symbols in x). For a given string x we define

hei0(x) = max { h e i (r) | r £ r (x , G)}.
Then we have

R,(L) g (x€L|heiG(x) ^ /}, i s 1.

Indeed, let x£Min(L) be a string and take a derivation D: A => x in G
corresponding to a tree T. If h e i (r) s 2 , then the derivation D is of the form D:
A=>ct1ix2...ccki> pip2...pk~x, 0Li£VN\JVT, Pi, 1 si^k, fcs2, and for some i,
lSz '^2 , oiidVpf. This implies /?;£Z,nSubp(z), hence Min(L), a contradiction.
In conclasiDn, h e i (r) = l , heiG (x)=l , and the inclusion Ri(L)Q {x£L|heiG(;t)s/}
holds for /=1 .

Let us assume, this relation is true for / = 1 , 2 , . . . , / , / s 1, and consider
x£Ri+1(L). If x£Ri(L), then hei c (x)S/ by the induction hypothesis. Assume that
x£Ri+1(L)-Ri(L), that is x£Min (L-Ri(Lj). In other terms, Subp(x)D
n (L - R i (L)) = 0 . Suppose that heiG(x)=-z +1, and take a derivation tree T£ T(x, G)
such that hei (r) > / + 1 . There is a derivation D, associated with this tree, haying the
form D: A=^ala2...oik^> P1P2... pk=x, such that Uj€VnUVt, ccj^> Pj, 1 S / ^ f c
(ccj=Pj if otj£VT), fcs2, and there is an ocj£VN for some j, l ^ j ^ f c . All strings Pj,
l s j ^ k , belong to Subp(x)f)L. As Subp(x)D(L—Ri(L))=0, we must have
PjdRi(L). By the induction hypothesis we get heiG(/?j)s/, l S / S f c . This implies
that the tree T consists of a "root level" describing the rule a1a2 ...cl y and of all
trees associated with subderivations a¡=> Pj, for a I n conclusion, hei (T)s . .
S / + 1 , a contradiction. We obtain he i G (x)S /+ l , which completes the induction-
argument.

The sets {x€£|heiG(x)s/}, / s 1, are clearly finite, therefore the sets Ri(L),
i s 1, are finite too, and the proof is completed.

148 A. Mateescu and G. Paun

Lemma 7. The property R implies conditions in Corollaries 1, 2, but there are
languages fulfilling both these conditions without having the property R.

Proof. Consider again the language L in the proof of Lemma 4 (it satisfies the
conditions in Corollaries 1 and 2). We obtain

R,(L) = {*>},

R2{L) = {b)U{banb\n^ 1},

hence R2(L) is infinite, L does not have the property R.
Define now, for a given language L,

p = max {|*| 1*6^(1.)}

If z£L, \z\>p, then z^Rj(L), hence Subp(z)flZ.? i0. The property R implies
thus the condition in Corollary 1.

Consider an infinite language L having the property R but not having the pro-
perty in Corollary 2, that is Z,f) Subp(L) is finite, card (L H Subp(L)) = t. As L
is infinite, but all sets RXL), / s i , are finite, it follows that Ri(L)<zRi+1(L), i s 1
(if Rj(L)=Rj+i(L), then Rj(L) = RJ+k(L), 1, hence LQRj(L), a contradic-
tion). As Ri+1(L)-Ri(L)=Min (L - R t (L)) ^ 0 , it follows that K i + 1 (L)n (Z .n
nSubp(L))Ti0 and R^L) fï (L fl Subp(L)) c= tf i + 1 (L) H (L D Subp(L)) for all

y s l . This implies card (i? (+i(L)flZ-nSubp(Z.))s/ +1, therefore card (LPl
DSubp(L))si-f 1, a contradiction.

Lemma 8. The condition R is not sufficient for a (context-free) language to be
in

Proof. We consider the language

L = {a"|n s \}\J {aV aT\ri S 1}.

This is a context-free language and we have

Ri(L) = {a},

*,(L) = {aJ| 1 S/S' /}U{ab>a>11 = y = / — 1}, / S 2,

therefore the property R is observed.
However, this language is not in Assume the contrary, and factorize a

long enough z=alfcC in L into z=ùvwxy as in Lemma 2. Then we must have
t>=6', x=d, /=• 0, which implies that all if wxk—bik waik, k^O, are in L, a contra-
diction to the form of strings in L.

Remark 1. The above proof shows that if Conjecture 1 were proved then, for
context-free languages, the condition in Lemma 2 would be stronger than property R.

Conjecture 2. For arbitrary languages, the condition in Lemma 2 is stronger than
property R.

Remark 2. If in condition (ii) of Lemma 2 we take / c s l instead of /csO
(sometimes, the pumping lemma is formulated in this weaker form; see [4], for ins-
tance), then the modified condition will be independent of condition R. The language

Further remarks on fully initial grammars 149-

L in the above proof supports one of the implications; the other one can be proved
using the language

L = {banba?bma\n, m s 1}U{a"ban\n s 1}.

Taking p = 1, q = 3 we obtain the modified property in Lemma 2, but we have

RX(L) = {aba},

R2(L) = {aba, a2ba2}\J{bababma\m s 1},

hence property (condition) R is not satisfied.
Lemma 2 has some particular forms for right/left linear grammars.

Lemma 9. (i) If then there are two positive integers p, q such that,
for all z£L, \z\>p, we can write z=uvw, 0 < \ v \ ^ q and uv'w^L, v'w^L, for all
i sO.

(ii) If L^^Stfllin, then there are two positive integers p,q such that, for all
z££, \z\>p, we can write z—uvw, 0 < ^q and uv'w(LL, uv'ZL, for all zsO.

Proof. Obvious particularizations of the proof of Lemma 2 to right/left linear
grammars.

4. Fully initial languages in the Chomsky hierarchy

As we have mentioned, in [3] it is proved that A more precise (and
more general) result is true, namely we have.

Theorem 1. The following diagram holds:

.se»

where indicates a strict inclusion; the families a r e incomparable.

Proof. As {¿>a"6|nsl} is not in (it fulfils no necessary condition in
the previous section), it follows that hence also i?2—
g z - p g ^ t y . On the other hand, is in J ^ - i f g , hence

and J5?3, are incomparable. -
Consider now a grammar G of arbitrary type, G—(VA,VT,P) and construct

the grammar F r , 5 ' , P U Clearly, G' is of the
same type as G and L(G')=Lia(G), hence P S e ^ & i , / = 0 , 1 , 2 , 3 .

150 A. Mateescu and G. Paun

In order to complete the proof, we have to prove that / = 0 , 1. Take
a language LdSPj, LQV*. We can write

L= U {a}aoLU{x€L||x|s2}
a€ V

(daL is the left derivative of L with respect to a). As Jz^, / = 0 , 1 , are closed under
left derivative, daL£&i. Let Ga={VN<a,V, Stt, Pa) be a type-/ grammar for daL.
Assume the VNia are pairwise disjoint and define G=(VN, V, S, P) with

P = {S~ x\x£L, \x\ S 2}U{S - XaSa\a£V}{J
U{ai/'.- <ZV'\X£Vn, U —• v£Pa, a£V}U
U{Xab' - ab\a, biV}{){ab' - ab\a, b£V}

where u' is the string obtained from u by replacing each a<£V by a'dVN. It is
easy to see that no derivation A^>w, A£VN, is possible in G unless A=S, there-
fore L(G)=L,„(G). Moreover, L(G)=L. In conclusion, / = 0 , 1, and
the proof is ended.

This theorem shows that families and request no further investiga-
tions.

5. Type-3 fully initial languages

First, let us consider some characterizations and representations of languages in
azrcp eza> <3H(P

Lemma 10. (i) L£&Se„ t g if and only if L$_<e3 and L=¥m{L). (ii)
if and only if Lese3 and L = I n i t (L). (iii) L £ i f and only if Sf3 and
L=Sub(L).

Proof, (i) Let L£ J ^ r r c g be a language such that L=Lm(G), G=(VN,VT,P).
Clearly, '3 and LQFin(L). Take a string w€Fin(.L). There is a ukVr such
that uw£L. Therefore, there is a derivation A^> uw in G. As G is a right-regular
grammar, there is a B£VN such that A^>- uB =y uw, which implies w£Lin(G) = L.
In conclusion, w£L, Fin(L)QL.

Conversely, let L=¥\n (L), and consider a reduced right-regular
grammar G, G=(VN,VT, S, P), without useless nonterminals, L=L(G), PQVNX
X(VT\JVTVN). Clearly, L(G)QLio(G). Take a string w£Lia(G). There is a
derivation A=>- w in G, A£VN. As G is reduced, there is a derivation uA,
u£Vf, therefore S => uA uw is possible in G. This implies if£Fin(L((?))=Z,,
that is w£L, hence Lin(G)^L(G). In conclusion, Lia(G)=L, L£ J ^ r r e g and (i)
is proved.

(ii) Analogously.
(iii) Follows from the definition of the above parts (i) and (ii) and the

relations Sub(L)=Fin(Init (L))=Init (Fin(L))=Init(Sub(£))=Fin (Sub(Z)).
Denote by Mi(w) the mirror image of a string w and extend this operation to

languages.

Further remarks on fully initial grammars 151-

Lemma 11. (i) L€#"if r r e g if and only if Mi(L)Ç^5f, r e g . (ii) if
and only if M i (L) e J ^ I l i n .

Proof, (i) Take a language L € ^ ? r r e g , generated by G=(VN, VT, P) and
define G'=(Vn, Vt, {A-+m(x)\A-*x£P}). Clearly, £in(G')=Mi(L(G))=Mi(L),
hence Mi (L)€^S i r e g . The converse implication is analogous,

(ii) Similar.

Lemma 12. (i) Each language in J ^ r l i n is a homomorphic image of a language
in ^2?rrCg. (i) Each language in is a homomorphic image of a language in
•^"â'ireg-

Proof (i) Let L%=V*, be a language generated by the grammar
G=(VN,V,P). We define the grammar G'=(VN,V, P') by

V'.= {[«]|AT - <xY or Z - a is in P, a£F*, X, Y£VN},

P' = {X - [oc]7 |Z - aT€P}U{JSr - [a] | Z - a<EP}.

Consider also the homomorphism h: V'*—V* defined by /i([a])=a, [a]£F' .
Clearly, G' is a right-regular grammar and h(LiB(G'))=L.

(ii) Analogously.

Theorem 2. The inclusion relations between the above discussed families of
type-3 fully initial languages are those in the next diagram (-»- indicates a strict
inclusion; the unlinked families are incomparable).

, i

152 A. Mateescu and G. Paun

Proof. All inclusions are obvious. Moreover, we have: b a * £ i ^ r e g — ,
a*bZ&,£?rreg—tFJ£llcg (use Lemma 10, parts (i), (ii)). This settles the relations on the
bottom face of the "cube" in the diagram. Moreover, c (a b) * ^ i £ n S n - (^ S £ l V i a U
U J ^ e g) and (ab)*c£&r£erl in-(&r&mn\J&£erreg). This settles the relations on the
upper face of the "cube", as well as those indicated by the vertical edges, except

This, however, follows from (use condition
(iii) in Lemma 10). The inclusion J^if,^ = c:¿f3 was shown in Theorem 1.

Theorem 3. The closure properties of the above discussed families of type-3
fully initial languages are as presented in Table 1 (Y indicates a positive closure
result, N points out a negative closure result).

Table 1.

J ^ n

Union N Y Y Y N V V 1 I
Complementation N N N N N N N N
Intersection N N N N N Y Y Y
Concatenation N N N N N N N N
Kleene closure Y Y Y Y Y Y Y Y
Homomorphism Y Y Y Y N N N N
Inverse

homomorphism N N N N Y Y Y Y
Mirror image Y N N Y Y N N Y
Right quotient N N Y N N N Y N
Left quotient N Y N N N Y N N
Init, Fin, Sub Y Y Y Y Y Y Y Y
gsm mapping N N N N N N N N
Inverse gsm mapping N N N N N N N N
Intersection

with regular sets N N N N N N N N

Proof. Union. If Li , L2 are in ^"i?rreg, i^JSflreg or then LX{JL2 belongs
to the same families, as it easily follows from Lemma 10 (L1 \JL2{£?3 and Lx UL2 =
=Fin(X] UL2), Lx UL 2=Ini t (L 1 U L2), L 1 UL 2 =Sub(L J UL2), respectively). J^?re

u
g

is not closed under union, because, for instance, Li=a*b, L2=ba* are in
but LiULa is not in &&& (XiUZ.2 is neither in &&tXia nor in use
Lemma 9). The closure of j ^ r l i n , J ^ f i can be proved by direct, stan-
dard constructions.

Complementation. The language L=a*b* is in , but {a, b}*—L is
not in" J ^ j y (use Lemma 9).

Intersection. The closure of ^Sf r r e 8 , !FS£x„.g, can again be proved using
Lemma 10 (Fin (L^ 0 L2) Q FinCLj) fl F i n (L 2) = P i L2 hence L, f)L2=Fm(L, f)L2),
I ^ O L ^ s etc.). For take L,=a*b+, L2=a+b*, both in this family;
LjC\L2=a+b+ aoes not belong to J^S 5 ^. For the other families take

Ly = c(aab)*c U (aab)*c U c(aab)* U (aab)*,
L2 = ca(aba)*abcU(aba)*abcUca(aba)*U(abay.

They belong to but I ^ O L ^ c a i a b a f a b c is not in J ^ u .

Further remarks on fully initial grammars 153-

Concatenation. The languages L^—a*, L2=b+ are in , but
—a+b+ is not in which settles all cases.

Kleene closure. Given a right-regular or a right-linear grammar G—(VN,VT,P),
construct the grammar G'=(VN,V,P') with P' =P\J {X-*aY\X^aiP, aeVT*,
X, Y€ VN}. It is easy to see that Lin(G')=L(G)+. The left-regular and left-linear
cases can be treated similarly.

Homomorphism. A standard construction proves the positive results. For regular
families take L=a+ (it belongs to and the homomorphism h: a*->-{a,b}*
defined by h(a)=ab. The language h(L) = (ab)+ is not #LSfreg, which implies the
nonclosure cases in Table 1.

Inverse homomorphism. Let h: V* — V* be a homomorphism and LQV*
a language in J^Vg- According to Lemma 10, Ld£f s and L —Sub(L). Clearly,
h^me&s and Subf/rH^))- Consider now a string u in Sub(/i -1(£))-
There are v, w(V* such that vuw£h~1(L), hence h(v)h(u)h(w)€L. This implies
h(u)dSub(L)=L, hence h(u)£L, that is «£/t_1(L). In conclusion, Sub(/;_ 1(L))^
Qh'^L), which shows that Sub(h-1(L)=h-1(L), hence h'HL)^^^ (Lemma
10, part (iii)). Similar arguments hold for ,

Consider now the language L=(ab)*c{Jc(ab)*lS(ab)*. It belongs to
but h~1(L)=ab*c, for h defined by h(a)=a, h(b)=ba, h{c)=bc\ this language is
not in P&tfn, which implies nonclosure under inverse homomorphism for ,

Mirror image. The closure cases follow from Lemma 11, the nonclosure ones
are settled by examples of the form: a+be^rSCtree, Mi(a+b)=ba+$^£?mn.

Right quotient. We have L={abc, ab,bc, a,b, but L/{c}={ab, 6}(£
fj#j£?lreg, hence these families are not closed under right quotient. Similarly,
L={abc,ab,a}£&r&vg, but L/{c}={ab}$ Similar languages can be cons-
tructed for P& l l i n , J ^ J

n (take L=a+bcUa+b(Jbc(Ja+(J{b,
respectively, L=ba+bcUba+£J5^).

Consider now g and an arbitrary language L'. According to Lemma
10, we have L=Fin(L). As L/L' is a regular language, we have only to prove that
F i n (L l L ') = L / L ' . Let w£Fin(Z,/Z/) be an arbitrary string. There is a v such that
vu€L/L', hence there is a w£L' such that vuw£L. Therefore wvvgFin (L)=L,
that is u£L/L'. In conclusion, F i n (L / L ') Q L / L ' , hence F in{L \L ')=L\L ' , and
#j5f r reg is closed under right quotient (with arbitrary languages).

Finally, consider a language Le#j$? rHn, L=Lin(G), G=(VN,V,P); let L'
be an arbitrary language. For X£VN set LX=L(GX), GX—(VN, V, X, P). We
define the grammar G'=(VN,V,P') by

P' = {P-{X - a|aev*, X£VN})U

- a\x - <xp£P, for some a, fcV*, p£L', XeVN}

U{JT - a\X «.pY^P, for some a, p£V*, X£VN, {P}LYf)L' * 0}.

It is easy to see that Lin(G')=LIL', which completes the proof.

154 A. Mateescu and G. Paun

Left quotient. Simmetrically.

Init, Fin, Sub. Let L^S£nt%\ in view of Lemma 10, we have Fin(L)=L,
Clearly, Init(L), Fin(L), Sub(L) are regular languages. As L=Fin(L) , we
have Fin(Init(L))=Init(Fin(L)) = Init(L), Fin(Fin(L)) = Fin(£), Fin(Sub(L)) =
= Sub(L). This implies that Init(L), Fin(L), Sub(L) are in J^S?rreg, too. Similarly
for Sr&ireg, hence also are closed. The family J*Jz?rlin is closed
under right quotient; as Init (L)=L/V*, we obtain the closure under Init.
Consider now L=Lin(G), G=(VN,V,F), and define the grammar
G'=(V;, V, P') by V^ = VN\JV;\ P'=P\JP", where, for each production r:
X^a1a2...anY£P, a£V, 1 sisn, Y£VNU{A}, we introduce in P" all productions

-*aJ+1...anY, 1 =j=n 1, simultaneously introducing the new symbols
[X, r,j] in V^. Clearly, L in(<?')=Fin (L), hence is closed under Fin. Now the
closure under Sub follows from the closure under Init.

Similar arguments show that , hence also and J ^ n are closed
under Init, Fin, Sub.

Gsm mapping. L=a+ is in it is easy to construct a gms g such that
g(L)=ba+b. This language is not in (Corollary 1), hence none of the above
families is closed under gsm mappings.

Inverse gsm mapping. Consider the gsm g=({q0, qlt q2), {a,b}, {a}, q0, {q2},
{q0b-^aq1, q-^a—aqx, q1b-<-aq2}). We have g~1(a+)=ba*b$J*j£?2 (Corollary 1),
hence none of the above families is closed under inverse gsm mappings.

Intersection with regular sets. As F*€ J^i?,1^, for each V, but
the assertion is obvious.

6. Further questions

In the proof of inclusions J ^ Q J ^ - , z=0, 1,2, 3, in Theorem 1, starting from
the grammar G, used in fully initial manner, we constructed a grammar G' such that
Prod(G')=Prod(G) + Var(G). (For an arbitrary grammar G=(VN,VT, S, P)
we denote, as in [5], Prod(G)=card P, Var(G)=card VN.) Can the difference
between Prod(G') and Prod(G) be diminished? More generally, given a language
L Z ^ i , define

Prod(L) = inf (Prod(G)|L = L(G)},

Prod in(L) = inf {Prod(G)|L = £ in(G)}.

What is the relation between Prod(Z.) andProd in (L)? The construction in the proof
of Theorem 1 (used also in [3]) shows that Prod(Z,)sProd i n(L)+Var ! n(Z.). We
shall prove that this relation cannot be essentially improved (which shows that, in
some sense, the fully initial mode of generating a language is more economical than
the usual mode, at least for certain languages).

Indeed, consider the context-free grammar G=({Ax, A2, ..., An}, {at,a2, ...
...,an,b), P) with

P = {Ai - atAtat\ 1 ̂ i s n}U

U{A, - a,A,„a,\l S i S n-\}U{A„ - anban}-

Further remarks on fully initial grammars 155-

We have

LJG) = {al'al'H ... ak
n"bak

n"... cfri'^'ll ^ i ^ kj S i , «}.

Consequently, Prod i n (Z i n (G))s2«, Var i n (L i n (G))^«. It is easy to see that, in
fact, we have Var i n (L i n (G))=« (for each i we need a derivation X t^> a{XiCi{,
y ' s 1), hence also Prod i n(L i n(G))=2«.

Consider now a usual context-free grammar G' =(VN, VT, S, P') such that
L(G')=LiB(G). Again, for each /, 1 s / s n , we need a derivation a{Xta{,
. / s i , one of the form a/fli+i^i+iflr+i0?' 7> m,/?sO, as well as one of the
form S => a}XiC^, j,kSO. Two symbols Xt,Xj cannot be identical when i ^ j
(otherwise strings containing both substrings «¡a,-, ¿^fl; on the same side of b could be
obtained). Moreover, the axiom S must differ from every Xt, is2. In conclusion,
Prod (G') S3« - 1 = Prod(G)+Var(G) - 1 , therefore Prod (L in(G)) s P r o d i n (L i n (G))
+ V a r i n (L i n (G)) - l .

Consider now another question. Given a language L and a grammar G for it,
L=L(G), what one can say about L i n(G)? For example, taking L = {a"b"\n^\} •
• {a, b}* and the grammar G=({S,A,B}, {a, b), S, {S^AB, A^aAb, A^ab,

B-^aB, B^bB, B-X}) we obtain L(G)=Le<£2-<£3, Lia(G) = {a, b}*e^3.
Are there languages L for which this is not possible (no grammar G, L=L(G)

with L i n(G) regular)? The answer is affirmative: take L = { a " 6 " | « S l } and consider
a context-free grammar G=(VN, {a, b}, S, P) such that L=L(G) and G is reduced.
Clearly, each recursive derivation a.X[i, a, {a, b}* must have a = d , P=bl,
i s i . For each symbol A£VN, consider the set LA={w(i {a, b}*\A w in G}.
If La is finite for some A, then, replacing each occurrence of A in the right-hand
sides of rules in P by a string in LA (and removing all rules A-»y), we obtain a
grammar G', L(G)=L(G'), Lin(G)—Lin(G') is finite. The grammar G' obtained in
this way be removing all VN with finite LA is linear. (If rule X—x1Yx2Zx3
is in G', then Ly, Lz must be infinite, hence must involve recursive derivations in the
generation of their strings, hence Lx contains strings of the form a'b'z2aJbJz , i,
j s 1, a contradiction.) If Lin(G) is regular, then L,„(G') is regular too (it differs
from Lin(G) by a finite set). However, each derivation in G', besides its maximal
recursive subderivations, contains at most card VN further steps. These steps intro-
duce at most 7i=card VN • max { |x | \A-~x^P} occurrences of a and of b. In conclu-
sion, each string in Lia(G') is of the form an+pb"+q, nSi, p = n, q^n. This implies
Lia (G') $ J5?3, a contradiction.

A further situation which can be looked for is the following. Are there languages
L£J£?2—S£3 such that each context-free grammar G, L=L(G), has Lin(G)££f3l
(Such a language can be called inherently fully initial regular, whereas the above
L={cf Z>"|«sl} can be called inherently fully initial context-free.) This last problem
remains open.

156 A. Mateescu and G. Paun: Further remarks on fully initial grammars

References

[1] ADJ. — J. A . GOGUEN, J. W . THATCHER, E . G . WAGNER, J. B . WRIGHT, Initial a lgebra s e m a n -
tics and continuous algebra, Journal of ACM, 24, 1 (1977), 68—95.

[2] J. ALBERT, L. WEGNER, Languages with homomorphic replacements, Led. Notes Computer
Sci., 85, Automata, Languages and Programming, Ed. J. W. de Bakker, J. van Leeuwen,
Springer-Verlag, 1980, 19—29.

[3] J. DASSOW, On fully initial context-free languages, Papers on Automata and Languages (Ed. I.
Pedk), X (1988), 3—6.

[4] S. GINSBURG, The mathematical theory of context-free languages, McGraw Hill Book Comp.,
New York, 1966.

[5] J. GRUSKA, Descriptional complexity of context-free languages, Proc. Symp. Math. Found.
Computer Sci., High Tatras, 1973.

[6] G. T. HERMAN, A biologically motivated extension of ALGOL-like languages, Inform. Control,
22, 5 (1973), 487—502.

[7] H . A . MAUREF, A . SALOMAA, D . WOOD, Pure g r a m m a r s , Inform. Control, 49 (1980) , 4 7 — 7 2 .
[8] GH. PAUN, Contextual grammars, The Publ. House of the Romanian Acad, of Sci., Bucure§ti,

1982 (in Roumanian).
i91 GH. PAUN. A note on fully initial context-free languages, Papers on Automata and Languages
' ' (Ed. I. Peak), X (1988), 7—11.
[10] A. SALOMAA, Formal languages, Academic Press, New York, London, 1973.
[11] A. VAN WIJNGAARDEN, Orthogonal design and description of formal languages, Math. Centrum,

Amsterdam, 1965.

(Received June 21, 1988)

On fully initial grammars with regulated rewriting

T . BALANESCU, M . GHEORGHE, G H . PAUN

The Computer Centre of the University of Bucharest, Str. Academiei 14,
Bucuresti, 70109 ROMANIA

We investigate the fully initial version of context-free grammars added with
various control devices: regular control, matrices, programming, random context,
Indian parallelism and ordering, each of them with or without A-rules and (when
appropriate) appearance checking. It is shown that the fully initial feature decreases
the generative power of programmed, random context ¿-free grammars with or
without appearance checking, and of ordered and Indian parallel ones. In all remain-
ing cases the generative capacity is not modified. On the other hand, regulated rew-
riting increases the generative capacity of fully initial context-free grammars.

1. Definitions and notations

The fully initial (fi, for short) variant of context-free grammars was defined by
S. Horváth and investigated in [2], [3]. Such a grammar is a usual context-free gram-
mar (cfg, for short) having no distinguished start symbol. The language generated in
this way by a grammar G=(VN,VT,P) is L(G)={x£Vf\A^> x for some A£VN}.
(As usual, VN is the nonterminal vocabulary, VT is the terminal vocabulary and P is
the set of rewriting rules; V* denotes the free monoid generated by V under the ope-
ration of concatenation and X is the null element.) Inclusion and strict inclusion are
denoted by £ and c , respectively.

Similar to regulated rewriting for context-free grammars [1], [4], we consider
here the languages generated by fi regular control, matrix, programmed, random
context, Indian parallel and ordered cfg's. We give only informal definitions and
refer to [1], [4] for details.

Given a grammar G as above, Lab (P) denotes the set of labels of rules in G
(each rule has a distinct label).

158 T. Balanescu, M. Gheorghe and Gh. Paun

A fi regular control (fic, for short) grammar G=(VS, VT, P, K, F) consists of
a fi cfg (V/f, VT, P), a regular control language K over Lab (P) and a set F of labels.
We write y in G if there exists a string pLp2...p„£K, ^ ¡ i Lab (P), such that
A=x0=> *!...=> xn=y, and for each i we have either Xi_x=> Xi or x¡_j=Xi,

PI Pn Pi
the rule p{ is not applicable to and p^F.

A fi matrix (fim, for short) grammar G=(VN,VT, P, M, F) consists of a cfg
(^N>f/r> a finite set M of matrices and a finite set F of occurrences of produc-
tions in matrices of M. A matrix is a sequence m=(A1—u1, ...,An-*un), « s i , of
productions in P. We write x => y for a matrix m as above if there are x±=x, x2, ...

m
..., xn=y such that either xj=xj+1, the rule r}\ Aj—Uj is in Fand it is not appli-
cable to X: or X: => X:+1. rJ

In a programmed (fip, for short) grammar G=(VN, VT, P) the rules are of the
form (b: A-*-u, S(b), F(b)) , where b is the label of the production, S(b) and F(b)
are sets of labels referred to as the success and the failure field. If A-*u is appli-
cable to a string x, then, after applying it, we continue the derivation with a rule
having the label in S(b); if A-»u is not applicable to x, then we pass to a rule with
its label in F(b) (the string x remains unchanged).

A fi random context (fire, for short) grammar G=(VN,VT, P) has the rules of
the form (A—u, Q, R), where Q, R are subsets of VN, referred to as permitting and
forbidding sets of symbols, respectively. Such a rule is applicable to a string x iff
x contains all nonterminals of Q and contains no nonterminal in R.

A fi Indian parallel (flip, for short) grammar is a cfg grammar in which each rule
A—w is used in a derivation u=>v for rewriting all occurrences o[A in w, thus obtain-
ing v.

A fi ordered (fio, for short) grammar (G, >) consists of a fi cfg G and a partial
order > on P. A rule A—u is applicable to a string x iff no rule B—v is applicable
to x and B->-v>A-+u.

We denote by F I „ FlCac,x, FIM f l C ,„ F I P ^ , FIRCac>A, F I I P „ and FIO* the
families of languages generated by fi, fic, fim, fip, fire, flip and fio grammars, res-
pectively. The corresponding families generated in the usual mode are denoted by
Qc,a> PaCjA, RCaCiA, IP^, Ox, respectively. When the appearance checking
feature is not present, that is when F=& for fic and fim, F(b)=0 for fip and R=&
for fire grammars, we erase the subscript ac; when no A-rules are allowed we erase
also the subscript X. As usual, the families of recursively enumerable, context sensiti-
ve, context-free and regular languages are denoted by i?0, SPlt Z£2, respectively.

Two languages are identified if they differ by at most the empty string.

2. The generative capacity of fully initial regulated grammars

Lemma 1. FlCac X = C„CiX, FIC, = FlCac=Cac, F I C = C .

Proof. Let G=(Vn. Vt, S, P, K, F) be a regular control grammar. We consider
the fic grammar G'=(VN, VT, P, K', F), where K'=KC\T-Lab (P)*, 7 being the
set of labels of rules of the form u in P. Clearly, L(G)=L(G') and G' is of the
same type as G.

On fully initial grammars with regulated rewriting -159

Conversely, for a fic grammar G=(VN,VT, P, K, F) we consider the regular
control grammar VT, S, P', K', F), where S is a new nonterminal,
P' =P\J {S*A\A£Vn}, K'=I-K and I is the set of labels of rules S^A, A£VN.
Obviously, L(G)=L(G').

Lemma 2. FIMac>A = Moc>A, FIMA = MA, FIMflC = M0C, FIM = M.

Proof. Let G=(Vn,Vt, P, M, F) be a fim grammar. We construct the grammar
G'=(VNU{S},VT,S,P,M', F), where S is a new symbol and M'=M\J{{S^A)\
A£Vn}. Clearly, L(G)=L(G'), hence we have the inclusions Q.

Conversely, let LQV* be a matrix language in a family M^p, a=ac or it is
empty, [>=?. or it is empty. We write

L = U { f l R (L) . U { * € L | | * | ^ l }
aiV

(da(L) is the left derivative of L with respect to a). Each language da(L) is a matrix
language of the same type as L; let Ga=(VN,a, V, Sa, Pa, Ma, Fa) be a matrix
grammar for each. Without loss of generality we may suppose that the vocabularies
VN,a are pairwise disjoint and that each Ma contains matrices m=(r1, ..., r„) with at
least one occurrence of productions not in Fa (otherwise we remove m and the corres-
ponding occurrences of rules from Ma and Fa, respectively, and we introduce all
matrices mi=(r1, ..., r„), 1 sisn, containing the same rules as m but with the rule
occurring on the position i not in Fa).

A fim grammar generating L is G'=(V^, V, P', M', F'), where

Vt = U (*5r..U{[a]})U{S}, S is a new symbol,
a£V

P' = U (PaV{S-*[a]Sa, [a] - [à], [a] - a})U{S - x\x€L, \x\ S 1},

and M' is constructed as follows:
a) (S-+ x), x£L, S1 , is in M',
b) for each aÇV we introduce in M' the matrices

b.2) ([a] - [a], rx, ..., rn), for (rx, ..., r„)£Ma,

b-3) ([a] - a, rx, ..., r„), for (r}, ..., r„)£Ma.

Finally, F'= U Fa.
a£ V

It is easy to see that in each derivation of a string x£L, |* |>1, all sentential
forms are of the form [a]w, moreover, no derivation can start from a symbol dif-
ferent from S (remember that for all a£ V, each matrix in Ma contains a rule not in
Fa). In conclusion, L(G')=L, hence M a i iQFIM a >p, a,/? as above.

Lemma 3. FIPac> ,=Pac>A , F I P , = P „ FIPo egP f l C , F I P ^ P .

Proof. Let G=(Vn,Vt, P) be a fip grammar and consider the programmed
grammar G'=(VN(J {S},VT, S, P'), where S is a new symbol and P'=PU{(rA:
S-»A, Lab (P), 0)\A£Vn}. We have L(G)=L{G'), hence F l P ^ g P ^ , a=ac
or it is empty, or it is empty.

160 T. Balanescu, M. Gheorghe and Gh. Paun

Conversely, let G=(VN,VT, S, P) be a programmed grammar. We construct
the fip grammar G'=(V£,VT,P), where

V£=VnU{X, Y,N}, X, Y, N are new symbols, and P' contains the next rules:

a) (s: X SY, S(s), 0), i i L a b (P) , S (j) = { / | (/ : S — w, S(i), F(ij)tP),

b) (r: A - uN, S(r) U {/}, F(r)), / $ L a b (P) and

(r: A - u, S(R), F(r))£P,

c) (/ : Y X, {/„}, 0),

d) (f N : N-* A, {/„}, 0), M Lab (P).

It is easy to see that the symbol N cannot be erased without erasing first symbol Y.
Therefore, no rule in group b) can be successfully used without starting the deriva-
tion by the rule of type a). In consequence, L(G)—L(G'), hence Pa A g F I P a A,
where a is as above.

Lemma 4. FIRC o c , A =RC a c , A , F I R C ^ R Q , F I R C a c i « o c , F I R C Q R C .

Proof. Given a fire grammar G=(VN, VT, P), we construct the random context
grammar G'=(VNU {5}, VT, S, P'), where S is a new symbol and P' =PU { (S - A
0, ®)\A£Vn}. We have L(G)=L(G'), hence F I R Q ^ R C ^ , a=ac or it is empty,
/}=A or it is empty.

Conversely, for a random context grammar G—(VN,VT,S,P), we construct
the fire grammar G' =(VN\J {X, Y},VT, P'), where X, Y are new symbols and P'
contains the following rules:

a) (X - SY, 0, 0),

b) (Y - A, 0, 0),

c) (A - u, QU{Y}, R), for (A - u, Q, R)£P.

Obviously, L(G)=L(G'), which completes the proof.

Lemma 5. — F l O x ^ 9 .

Proof. Let us consider the regular language L = {ab"a\n SO} and suppose that L
is generated by the fio grammar (G, >) , G=(VN, {a, b}, P). Define / c=max {|w|
\A-~uÇ_P) and consider a derivation A=u0=>u1=>... =>up=abka in (G, >), AÇ.VN.
As \abka\>k, we have Let i be the greatest index such that ut=u[Bu" and
u't => A, A and B => abka in (G, >) . It follows that B=>uCv=> abka, abka—
=xyz, x, C => y, z and y^X. Clearly, y^abka, hence ydL(G, >)
and y is a proper subword of abka, contradiction.

Corollary. F I O ^ c O * , and F I O c O .

Lemma 6. ¿ f 3 - (F I P a c U F I R C J ? i 0 .

Proof. Let us consider the language L={ab"a\n^0} as above and suppose that
L is generated by a fip (fire) grammar G=(VN, VT,P) without A-rales. Let k =
= m a x {\u\\A—u£P} and take x—abkaÇ.L(G). There exists a derivation A =>Xj =>•...

On fully initial grammars with regulated rewriting -161

...=>x„=abla, ÀÇVN. The lastly used rule is 2?—u, with u=ab', or u=bqa ,OT
u—b", 0 S t , q<k, isssk. It follows that u£L(G), a contradiction.

Corollary, (i) ¿ ? 2 - (F I P « U F I R C o c) ^ 0 , (ii) ' F I P « C P „ , FIPCZP, F I R C a c c
c R C a c , F I R C c R C .

Lemma 7. Let L be a language over a vocabulary V and let c be a symbol not
in V. a) If L€Pac (L£P), then L{c}UFU {c}6FIPac (FIP, respectively), b) If
L£RC a c (¿€RC) , then L{c}U{c}6 FIRCa c (FIRC, respectively).

Proof, a) For a programmed A-free grammar G=(VN, V, S, P) generating !,,
we construct the fip grammar G'=(V^, VU{c},P') with V^ = VNU {a'{a£V}U
U {X, F} where X, Y are new symbols, and with P' containing the next produc-
tions : ' .

a) (s: X—SY, S(s), 0), with si Lab (P) , 5 (i) = { i | (i : S—-u, S(i), F(i))£P}
b) (r: A-*u', 5 (r)U{/} , F(r)), for each (r: A^u, S(r), F(r))eP; f$Lab(P)

and u' is obtained from u by replacing each a€V by a'Ç M>
c) (/ : Y-*c, № € F } , 0) ,
d)(fa:a'-~a, {/„|6€K},0), for all a€V; / .$Lab(/»).

The equality L(G')=L {c}UFU {c} is obvious, hence we have proved the first part
of the lemma.

b) If G=(Vn, V, S, P) is a random context grammar generating L, then we
construct the fire grammar G'=(V£, FU{c}, P'), where

V£ = VN\J{X, y}, with new symbols X and Y,
P' = {(X - SY, 0, 0), (Y - c, 0, 0)} U

U{(̂ < - fiU{r>, - M, Q,
We obviously have L(G')=L{c}\J {c}, which completes the proof.

Corollary 1. FIP - ¿?2^0, F I R C - S C ^ Q .
Proof. Follows from R C — t h e above lemma and the closure

properties of
Corollary 2. FIRC—FIPa c?i0.
Proof. The language L = {abna\ri^Q}{c}U {c} is in FIRC, but not in FIP a c

(this follows as in the proof of Lemma 6).
Lemma 8. F I P - F I O ^ 0 .
Proof. The language L={abnac\n^0}\J {a, b, c J Ç F I P - F I i V The relation

LCFIP follows from Lemma 7, and L$FIOA can be proved as in the proof of
Lemma 5.

Corollary. F I R C - F I O . ^ 0 , F I P a c - F I O ? i 0 .
Lemma 9. F I O c F I P a e .
Proof. Let (G, >), G=(Vn, Vt, P), be a fio grammar. Without loss of gene-

rality we may assume that whenever A—u and A—v are both in P, then these rules
are incomparable. We construct the fip grammar G' =(VN U {X}, VT, P') , where X
is a new symbol and P' is constructed as follows. For any rule r: A P write
g(r) = {A1^-u1, ...,A„~u„}, where A^u^A^u, lsisn.

162 T. Balanescu, M. Gheorghe and Gh. Paun

For every rule r: A-+u in P, introduce in P' all the rules (r (,) : A^UiX,
0, {r(i+1)}), l s / s n - l , as well as the rule (r (n) : An~unX, 0, {r'}); then, add also
to P' the rule (r' : A-*u, E, 0), with E={pm\p: B-vÇP, g(p)*0}U{p'\p:
B ^ v t P , g(p)=0}.

A derivation in G' develops as follows: the use of a rule (r': A — u, E, 0) is
preceeded by the application with appearance checking of all the rules r (i) , l ^ i ' S
Scard (g(r)); if such a rule r (i) can be applied, then the derivation is blocked. There-
fore L(G, >)=L(G ') , hence FIOQFIP a c . The proper inclusion follows from the
corollary to Lemma 8.

Lemma 10. FIP01.cFIRC f l c.

Proof. Let G=(Vn,Vt,P) be a fip grammar. We construct the fire grammar
G'={Vs,VT,P'\ where

K = {M, r]\A£VK, r€Lab(P)}U{(U, r)|(r. A - u, S(r), F(r))€P}
and, for every rule (r: A-*-u, S(r), E(r))ÇP, the set P' contains the following ran-
dom context rules:

a) ([A, r] ' - (u,r), 0, Cr), for any jÇS(r),

• :b) ([5, r] - [B, S], {(M, S)}, Cr>s —{(M, J)}), for any s£S(r) and B£VN,

c) ((«, s) - [w, s] ,0 ,C s -{(w, s)}), for any s£S(r),

d) ([B, r] - [.B,f], 0, C r>/U.{M, r]}), for any / € F (r) ,
and B ?£ A,

with C r=^-{[X,r]}JZ<EF„}, ^[A-ÇÏ^} and if
^ ¡ e ^ ; « ë 0 , then [m,

An arbitrary derivation v=> w in G is simulated in G' as follows. If r is not appl -
i-

cable to1 tv then simply apply thè rules of the form d) and continue according to the
failure field F(r). Otherwise, a rule of the form a) is applied, provided all nontermi-
nals are marked with the label r. The new by introduced nonterminal, (u, i), enables
us to continue the derivation according to the success field S(r); it assists the appli-
cation of the rules of thé form b) until all nonterminals are marked by s. Next, the
rewriting of A by u is simply accomplished by a rule of the form c); note that all
nonterminals of the sentential form must be marked by s. The process continues with
the rules derived from the rule s£S(r). Obviously, L(G)QL(G'). Similarly, each
derivation in G'corresponds to one in G, hence L(G')QL(G), hence FIPo cQFIRC a (; .
Thè inclusion is proper, as it follows from Corollary 2 of Lemma 7.

Let us investigate now the Indian parallel grammars.
Similarly to the equality IP=IP A , we also have FI IP=FIIP^ .
Lemma 11. F I I P c I P and F I I P c F I P « .
Proof. If G=(VN,VT, P) is a fiip grammar, we construct G '=(J^U {S}, VT,

SiP'), S a new symbol, P'=P{J {S-~A\A£VN}, for proving F H P g l P , and
G" = (VNU{A'\AeVN},VT,P"),

P" = {(r: A^xA,{r),{rA))\r. A-xiP}YJ{(rA. A'-A, {r^ Lab

On fully initial grammars with regulated rewriting -163

for proving FIIPQFIP„C (xA is the string obtained by replacing each occurrence
of A in x by A').

As {a6"a|MS0}(|IP—FIPac and the Dyck language over {a, b} is in FI (it is
generated by the cfg ({S}, {a, b), {S^SS, S-^X, S^aSb})), but not in IP, both
inclusions above are proper.

Corollary 1. JSP-FIHV0 for all families J§?€ {FI, ¿?2, FIO}.

Corollary 2. IP is incomparable with all families FI, J§?2, FIO, FIP, FIP a c ,
FIRC, FIRCac .

Lemma 12. FI IP-J? 2 7i0 , F I I P - F I ^ O .

Proof. L = {a2"|"=0} is in FIIP as it is generated by the grammar ({51}, {a},
{S-+SS, S—a}), but it is not context-free, hence nor is it in FI.

Summarizing the results in the previous lemmas, we obtain:
Theorem 1. The following diagram holds:

F l C ^ . i = C a f l i = FIMac,* = M^.A =

= FIPflC.A = P„c,x = FIRC,,,* = RCflfi<l =

\
o

FIIP = FIIPA FI = FI,

164 T. Balanescu, M. Gheorghe and Gh. Paun

where — • indicates strict inclusion and — • points out an inclusion which is not
known to be strict.

Theorem 2. a) The families in the next pairs are incomparable : (i?2, FIO),
(¿ f 2 ,FIO,) , (¿?2 ,FIPo c), (¿?2,FIRC f l c), (JSP,, FIIP), (FI, FIIP) , (IP, FI), (IP, FIO),
(IP, FIP), (IP, FIPa c), (IP, FIRC), (IP, FIRCa c), (IP, if2) . b) The following rela-
tions hold: F I P a c - F I O ^ 0 , F I R C f l C - F I O A ^ 0 , J S P . - F I R C « ^ , ¿ f 3 - F I P a c ? i 0 ,
i f 3 - F I O F I O - F I I P 5 * 0 .

Theorem 3. The following diagram holds

FI = FI,

On fully initial grammars with regulated rewriting -165

Theorem 4. a) The families in the next pairs are incomparable: (JS?2,FIP)
(i?2 ,FIRC). b) The following relations hold: F I R C - F I P f l C ^ 0 , F I P - F I O ^ 0
F I R C - F I O A ? i 0 .

3. Final remarks and open problems

As it may be noticed from the previous results, any recursively enumerable set
can be generated by fully initial context-free grammars with the following regulated
rewriting: matrices, programming, regular control and random context, provided
that the appearance checking mode of derivation is present. If A-rules are not allowed,
then the fully initial regular control and matrix grammars are weaker than the con-
text sensitive grammars and they are stronger than the context-free ones. Moreover,
the fully initial context-free ordered, programmed, random context and matrix
A-free grammars give a hierarchy of languages (appearance checking is supposed). The
family of context-free languages strictly includes the fully initial corresponding family,
but it is strictly contained in the family of fully initial regular control and matrix
languages. Both the families of regular and context-free languages are incomparable
with the families of fully initial ordered and of Indian parallel languages, as well as,
with the families of fully initial A-free programmed and random context languages.
The incomparability of the fully initial ordered family (with A-rules) with the fully
initial random context and programmed families is only partially solved: we said
nothing about FIO*—FIPflC and FIO*—FIRCoc. Without appearance checking
but with A-rules, it seems that the fully initial random context grammars are weaker
than the regular control, the matrix and the programmed grammars. Moreover, in
the A-free case, the fully initial programmed and random context grammars are
stronger than the fully initial context-free grammars, but the relation between them
remains open (we know only that FIRC—FIP;¿0). As these open problems corres-
pond to some unsettled questions about usual regulated grammars, the answers are
not expected to be easy.

Similarly to the usual case, the Indian parallel family has a "lateral" position
(incomparable with FI, i f 2 etc.).

References

[1] J. DASSOW, GH. PÄUN, Regulated rewriting in formal language theory, Akademie Verlag,
Berlin, 1989.

[2] J. DASSOW, On fully initial context-free languages, Papers on automata and languages (Ed. I. Peäk),
X (1988), 3—6.

[3] GH. PÄUN, A note on fully initial context-free languages, Papers on automata and languages (Ed.
I. Peäk), X (1988), 7—11.

[4] A. SALOMAA, Formal languages, Academic Press, New York, London, 1973.

(Received June 21,1988)

On star-products of automata

F . GÉCSEG, B . IMREH

Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

The study of complete systems of automata was initiated by V. M. Gluskov in
[3]. In this work he characterized isomorphically complete systems with respect to the
Gluskov-type product. Further characterizations of isomoprhically complete systems
with respect to different kinds of products were presented in the. works fl], [2] and [5].
In this paper we deal with star-products which have been deeply investigated in [6]
and [7], and study isomorphic completeness for this kind of products. It will turn out
that there exists no finite isomorphically complete system, however, as shown in [6],
there are finite isomorphically S-complete systems with respect to it.

1. Definitions

By an automaton we mean a system A=(X, A, 6), where A and X are finite
nonvoid sets, and 8: AXX*-+A is the transition function. (Here and in the sequel
X* denotes the free monoid generated by X.) The concepts of subautomaton and iso-
morphism will be used in the usual sense.

Let At=(Xt,A,,8t) (/=1, ..., k) be a system of automata. Moreover, let Xbe
a finite nonvoid set and q> a mapping of A1X---XAkXX into X 1 X . . X A ' t such
that <p can be given in the form

<p(alt ..., ak, x) = (<Pi(flj, ..., ak, x), (p2(au a2, x),..., (pk(ax, ak, x)).
We say that

A = (X,A,S)

is a star-product of AT (¿=1, ...,k) with respect to Xand q> if A=A1X..-XAk and
for arbitrary (ax,..., ak)£A and x£X

5((aj, ..., ak), x) = (¿li«!, <Pi(oi,ak, x)), 52(aa, <p2(«i, «2, *)),-.—»-
• ••» 8k(ak, <pk(au ak,x))).

168 F. Gécseg and B. Imreh

For this product we use the notation

7 7 <p). »=i

As regards the introduced composition, let us observe the following: if the pro-
duct-automaton is in the state (alt ..., ak) and receives an input sign x, then the auto-
maton Ax receives the input sign x1=q>1(a1,..., ak, x) which depends on x and all the
actual states, and for every index 2 s / s f c the automaton A ; receives the input
sign xJ = (pj(a1, aj, x) which depends on the actual states aj and x. Therefore, at
a given moment the working of Ax depends on all component automata, while the
working of Aj (2 ^ / s / c) depends on A t and Aj only. This connection can be realized
if the automaton Ax is placed in the centre and it is connected directly to each Aj

as illustrated in Fig. 1. This network of automata corresponds to the sim-
plest computer network.

2. Isomorphic realization

Let I be a system of automata. I is called isomorphically comptete with respect to
the star-product if every automaton can be embedded isomorphically into a star-
product of automata from I . Furthermore, I is a minimal isomorphically complete
system if I is isomorphically complete and for arbitrary A t h e system I \ { A }
is not isomorphically complete.

For arbitrary positive integer n, let us denote by

D, = ({*«: 1 Sr.JSn}, {1, . . . , n}, <5„)

the automaton, where <5„ is determined in the following way: for arbitrary /€ {1, . . . ,«}
and input sign xrs (1 sr,ssri),

5„0'> *rs) = { .
if i - r,
otherwise.

Now we present a necessary and sufficient condition for the isomorphic comp-
leteness.

On star-products of automata 169

Theorem 1. A system I of automata is isomorphically complete with respect to
the star-product if and only if for every positive integer n, there exists an automaton
Ad I such that D„ can be embedded isomorphically into a star-product of A with a
single factor.

Proof. First we show that D„ («>1) can be embedded isomorphically into a
star-product of automata from I with at most two factors if D„ can be embedded iso-
morphically into a star-product of automata from I . For this, suppose that D„ can
be embedded isomorphically into the star-product

k
n A t({x„: 1 S r, s =S «}, (p),

r = i

where A (/ = 1, ...,&) and k > 2 . Let us denote by/ i such an isomorphism, and
for arbitrary /£ {1, . . . , "} let (an, ..., aik) be the image of i under ¡i. Now take an m
(Ismsk), and assume that all=aJ1 and aim=aJm hold for some indices zVy
(1 Moreover, let u£{l, . . . ,«} be arbitrary. Then S„(i, xiv)=v, 5n(j,xiv)=
—j, and since n is an isomorphism, we obtain

<5m(«im, <Pm(an, aim, xiv))=avm,
Sm (ajm, <pm (an, aJm, x,„))=aJm.

From this, by our assumption a i l =f l J i and aim=aJm, it follows that avm=a]m.
Since v is arbitrary, ajm=aum (o = l , .. . ,«). Therefore, there is an index (2 S m S k)
such that the pairs (a n , alm) (/ = 1, . . . ,«) are pairwise different. But then the auto-
maton D„ can be embedded isomorphically into a star-product of Ax and Am, which
yields the validity of our statement.

Now in order to prove the necessity, let us assume that I is isomoprhically
complete with respect to the star-product. Let n be an arbitrary positive integer. The
case « = 1 being obvious, we may assume that « > 1 . Let w—n2. Since I is isomor-
phically complete, Dw can be embedded isomorphically into a star-product

Tf At({xrs: lsr,ssw},(p)
t=i

of automata from I . From this, by the above assertion, it follows that Dw can be
embedded isomorphically into a star-product of A, and Am for some Ismsk.
But in this case it is easy to see that D„ can be embedded isomorphically into a star-
product of one of the automata Ax and Am with a single factor, which results the ne-
cessity of the condition.

To prove the sufficiency, it is enough to show that arbitrary automaton with n
states can be embedded isomorphically into a star-product of D„ with a single factor,
which is obvious. This ends the proof of Theorem 1.

Corollary. There exists no system of automata which is isomorphically comp-
lete with respect to the star-product and minimal.

Proof. Let I be isomorphically complete with respect to the star-product, and
take an A w i t h \A\=n. Let m>n be a fixed positive integer. Then A can be
embedded isomorphically into a star-product of Dm with a single factor. On the other

170 F. G6cseg and B. Imreh

hand, by Theorem 1, there exists an A* 6 1 such that Dm can be embedded isomorphi-
cally into a star-product of A* with a single factor. But then A can also be embedded
into a star-product of A* with a single factor. This results that I \ { A) is isomorphi-
cally complete with respect to the star-product. Therefore, I is not minimal.

3. Isomoprhic simulation

In [2] products are generalized in such a way that feedback functions take their
values from the set of input words of the factors. Moreover, in homomorphic and
isomorphic representations the words are permitted as counter images of input signs.
It turned out that these new concepts are more powerful than the old ones. Under
these new concepts completeness results for af-products are presented in [2], while [1]
is dealing with the corresponding problems concerning v,-products. The represen-
tation of automata by isomorphic simulation and generalized products corresponds
to the computation of functions on networks of automata. Going on this line, we
introduce the concept of the generalized star-product, and study complete systems
with respect to such products and isomorphic simulation.

We start with the definition of the generalized star-product. Let A,=(Xt, A,, St)
(t=1,..., k) be a system of automata. Moreover, let X be a finite nonviod set and <p
a mapping of A1X...XAkXX into X^X-.-XXk such that <p can be given in the
form

<P(a•••,ak,x) - (<Pi(fli, ...,ak,x), <p¡¡fa, a2,x),..., <pt(a,, ak, x)).

It is said that the automaton

A = (X,]] A,, S)
t=I

is a generalized star-product of A, (/ = 1, ...,k) with respect to Z a n d (p is for arbitrary
k

(ax, ..., ak)£ ¡J A„ and x£X,
1=1

S((al5 ..., ak), x) = (¿JK, (pA^i, ..., ak,x)),

S2(a2,(p2(a1,a2,x)}, ...,dk (ak, q>k {ax, ak, x))).

Obviously, if for each automaton A, its characteristic semigroup is equal to X„
then the generalized star-product is simply the star-product.

Let A = (X , A , S) and B = (7 , B, 5') be arbitrary automata. We say that A
isomorphically simulates B if there exist one-to-one mappings fi : B—A and T : Y-»X*
such that p(5'(b, y))=S(p(b), r (j)) for arbitrary state b£B and input sign yd Y.

As far as the isomorphic simulation is concerned, we have

Lemma 1. If A isomorphically simulates B and B isomorphically simulates C,
then C can be simulated isomorphically by A, too.

Now we define isomorphic S-completeness.
A system I of automata is isomorphically S-complete with respect to the generali-

zed star-product if every automaton can be simulated isomorphically by a generalized
star-product of automata from I .

- On star-products of automata 171

We shall use the following special automata. For arbitrary n £ 1, let us denote by
T„ =(Tn, N, 5n) the automaton for which N= {1, .. ., n}, Tn is the set of all transfor-
mations of N and 5„(i,t) = t(ij for all /6N and t£Tn.

Now we are ready to prove the following result giving necessary and sufficient
conditions for S-completeness.

Theorem 2. A system Z of automata is isomorphically S-complete with respect
to the generalized star-product if and only if Z contains an automaton A=(X, A, 5)
which has two different states a, b and two (not necessarily different) words p, qdX*
with S(a, p)=b and 5(b,q)=a:

Proof. The necessity of the conditions is obvious. The sufficiency can be derived
from Theorem 1 in [6]. Here, using a different approach, we present a constructive
proof. For this let us suppose that the conditions are satisfied by A£Z under the
states 0, 1 and words p, q. Let s=qp and r=pq. Then ¿(0, r)—0 and <5(1, s) = l .

From the definition of T„ it follows that every automaton B=(X, B, S) can be
embedded isomorphically into T„ if n^\B\. Therefore, by Lemma 1, it is enough to
show that for arbitrary 1, T„ can be simulated isomorphically by a generalized
star-product of automata from I . On the other hand, in [4] it is proved that the map-
pings i l 5 t 3 generate the full transformation semigroup over N, where tlt f2 , h
are determined as follows:

Therefore, the automaton T„ can be simulated isomorphically by the subautomaton
T^=({ij, t2, /3}, N, of the automaton T„. Therefore, again by Lemma 1, we ob-
tain that if for every n the automaton T^ can be simulated isomorphically by a gene-
ralized star-product of automata from I , then Z is isomorphically S-complete with
respect to the generalized star-product.

Obviously, if n s 2, then Tn can be simulated isomorphically by a generalized
star-product of A with a single factor. Thus, suppose that n > 2 is an arbitrarily
fixed integer. To obtain a simulation of T^ by a generalized star-product of automata
from Z, consider the generalized star-power A"(Y,cp), where Y=^{ys: 1 sj^n),
and using a function 4' '• {0> 1}— {i-, i}, the mappings <pj are defined in the following
way: for arbitrary a , b , a t , ..., ak£ {0, 1},

i1(i) = / + l if l s / < n and h(n) = 1,

i2(l) = 2, i2(2) = 1 and i2(i) = i if 3 s i s n,

/3(1) = i3(2) = 1, and >a(0 = / if 3 i s n.

if a = 1

(q, if a = 0, b - 1,

<P]{a, b, yx) = il/(b)(j = 3, ..., «),

172 F. Gécseg and B. Imreh: On star-products of automata

9i(fli, •••, <*„, y,) = P,
.Had

if flx = 1,
if ax = 0 , a, = 1, (/ = 2,
otherwise,

-, n)

(Pj(a,b,yj) =

<P№> b> yi) =
Take the mappings

p, if a = 1,
q, if a = 0, 6 = 1 , (j = 2, ..., n)
\]/(b) otherwise,

tl/(b) (2 á / i n , 2 á) S n, / y) .

(1,0, . . . ,0 ,0) ,
(0,1, . . . ,0 ,0) ,

and
. « - (0 , 0 , . . . ,0 ,1) ,

T:
J V - J ' n ,
J2,
A-

The validity of the equalities n(ô'n(i, tj))=ôKn(fi(i), t(tj)) (/ = 1 , 2 , 3) can be chec-
ked in a trivial way. This completes the proof of Theorem 2.

Remark. Let us consider the automaton A2=({x, y}, {0,1}, 5) with the transi-
tion function 5(0, x)=<5(l, >>) = 1, <5(1, x)=<5(0, y)=0. From the above constructive
proof it follows that Z = {Aa} is isomorphically S-complete with respect to the star-
product.

Acknowledgement. The authors are grateful to Z. Ésik for calling their atten-
tion to the papers [6] and [7], and for suggesting a simplification in the original proof
of Theorem 2.

References

[1] DÖMÖSI, P . a n d B . IMREH, O n v , - p r o d u c t s o f a u t o m a t a , A c t a C y b e r n e t . , v . 6 , 1 9 8 3 , p p . 1 4 9 — 1 6 2
[2] GÉCSEG, F., On products of abstract automata, Acta Sci. Math. (Szeged), v. 38, 1976, pp. 21—43
[3] GLUSKOV, V. M., Abstract theory of automata (Russian), Uspehi matematiCeskih nauk, 16:5

101 (1961), pp. 3—62.
[4] GLUSKOV, V. M., On complete systems of operations in computers (Russian), Kibernetika, v.

2, 1968, pp. 1—5.
[5] IMREH, B., On a,-products of automata; Acta Cybernet., v. 3, 1978, pp. 301—307.
[6] TCHUENTE, M., Computation on binary tree-networks, Discrete Applied Mathematics, v. 14,

1986, pp . 2 9 5 — 3 1 0 .
17] TCHUENTE, M., Computations on finite networks of automata, Lecture Notes in Computer

Science, v. 316, 1988, pp. 53—67.

(Received February 20, 1989)

On characteristic semigroups of Mealy automata

G . TANAKA

Hiroshima Shudo University Numata-cho, Asaminami-ku Hiroshima 731—31, JAPAN

Dedicated to Professor Miyuki Yamada on his 60th birthday.

Abstract

The purpose of this paper is to investigate the characteristic semigroup of a
Mealy automaton. We show that there exists a bijection from the set of regular
^-classes of a characteristic semigroup S'(M) of a Mealy automaton M onto the
set of regular ^-classes of the semigroup S(M*) of the projection M*.

1. Introduction

For a set / , the cardinality of / is denoted by | / | . I* is the free monoid with an
identity e generated by I, and I+ =1*— {E}. If is a nonempty word, then we
denote by w the last letter of w. We use the symbol 0 for the empty set.

Let <5: S-*SX and A: S1—S2 be mappings of S and St, respectively. We read
a product <5A from left to right: (s)dA=((.s)<5)A, s£S. The set (S) <5 is called the image
of 8 and it is denoted by Im 5. The equivalence relation Ker 8 defined on £ by
(j l 5 i2)6Ker 8 if and only if is called the kernel of <5.

An automaton A is a triple A=(S, 1,8), where S is a nonempty set of states, I
is a nonempty set of inputs, <5 is a state transition function such that 8(s, xy) =
=¿(¿(5, x), y) and <5(s, e)=s for all s£S and all x, y£l*.

A Mealy automaton M is a quintuple M—{S, I, U, 8, A), where M*=(S, I, 8)
is an automaton, U is a nonempty set of outputs, X: SXl-*U is an output function.
The output function is also used in the extended sence; for S and xy£I* such that
xO* and y£l, X(s,e)=e and X(s, xy)=X(s, x)A((5(s, x),y).

The automaton M* mentioned above is called the projection of the Mealy auto-
maton M.

Let M=(S, / , U, 8, X) be a Mealy automaton. To each x£l+ we assign the
transformation 8X on S, where 8X: s—8(s,x), s£S. Let S'(M*)={<5;c|x€/+}.

174 G. Tanaka

Then S(M*) is a subsemigroup of the full transformation semigroup on S. To each
x£I+ we assign the mapping Ax: s-*X(s,x), s£S. If xy is an element of / + such
that both x and y are in then (s)Axj,:=(s)5xA,,.

The congruence q on I+ is defined by xgy if and only if Sx=8y and Ax — A,.
Put S" (M) = {(AX, 5x)\x£I+}. In S'(M) we introduce the multiplication as follows:

(A x , , 5 x) (A „ « 5 y) = (< 5 X A „ M ,) -
Since (dxXy, 8xdy)=(Xxy, 5xy)€S'(M), the set S'(M) forms a semigroup which is
isomorphic to I+/g. In this paper S' (M) is called the characteristic semigroup of M.
We note that if Ax=A, and 5X=52 (x, y, z£I+), then (Xy, dz)=(Xx, Sx) as a pair of
mappings and (Xy, dz)€S'(M).

We shall remark on another aspect of the characteristic semigroup of a finite
Mealy automaton.

Remark. Assume that S is a finite set. On the output set U we define a multipli-
cation by ab=b, (a, ¿6 U). In such a way we obtain a right zero semigroup U. To
each (A,-, 3X) in S'(M) we define the \S\X row-monomial matrix M(Xx,Sx)
by

tun ^ i f { s) 5 ' = *' M (l x , 5 x) a = [0 o t h e r w . s e

Two matrices are multiplied in the obvious way, and the set of all matrices forms a
semigroup. Since the mapping (Ax, <5X)—M(Xx, Sx) is an isomorphism, S'(M) is
isomorphic to a subsemigroup of the wreath product UWTS(M*) of U and
S(M*) (see [7]).

2. Regular ©-class

On a semigroup T Green's relations are defined by

aWboaTi^bT1, a&b^T1 a = Tlb,

a&b <=>• aSSc and c0ib for some c£7 \

The intersection of two equivalences &t and is denoted by . An element x of
á semigroup T is called regular if there exists y in T with xyx=x. If D is a ©-class,
then either every element of D is regular or no element of D is regular. Therefore we
call a ©-class regular if all its elements are regular. In a regular ©-class each ál-
dass and each -class contains at least one idempotent.

Let T be a subsemigroup of the full transformation semigroup on a set S, and
let D be a regular ©-class of T. If x, y£D, then we have x£Cy in T-o-Im x = I m y,
and x0Ly in t o - K e r x = K e r y (see [2, p 39]).

The proof of the next lemma is omitted. .

Lemma 1. Let 5 be a transformation on a set iS\ such that <52=<5, and let A be
a mapping from St to S2. Then <5A=A if and only if Ker Ő ^ K e r A.

. In what follows AT means a Mealy automaton such that M=(S, I, U, <5, A).

On characteristic semigroups of Mealy automata 175

Theorem 1. (Xx, 8X)£S'(M) is a regular element if and only if <5X is a regular
element of S(M*) and Ker <5xg;Ker Ax.

Proof, "only i f" part. Since (Ax, 8X) is a regular element, there exists some (Xy, 8y)
in S'(M) such that 5x5y8x=8x and 8X8yXx=Ax. This implies that Ker 5X<^
^ K e r <5x£,,Ax=Ker Ax. " i f" part. Since 8X is a regular element, 8x8y8x=8x for
some 8y in S(M*). From SxSy(%8x we have Ker <5^=Ker SxQKer Xx.

Since 8xy is an idempotent, by Lemma 1, 8xyXx=Xx. Therefore we have (Xx, 8x) •
• (Ay,,5,,)(Ax,,5x)=(Ax,<5x).Q.E.D.

For a subset H of S'(M) we define the sets of mappings by
H^ = {Xx\(Xx,5xKH}, H^ = {8x\(lx,8x)eH}.

Theorem 2. If L is an if-class contained in a regular ©-class of S'(M), then
L(2) is an if-class of 5'(M*).

Proof. It is clear that there exists some regular if-class L* of S(M*) such that
L (2)^L*. Now we show the validity of the reverse inclusion. Let (Xe, 8e)£L be an
idempotent of S'(M). Then 8e is an idempotent of L* and 8e is a right identity for L*.
Hence for every 8X in L* we have 8x8e=dx and Sp8x=8e for some 8P in S(M*).
Consequently, (<5xAe, 8x)=(Xxe, 8xe)£S'(M) and (8xXe, 8x)(Xe, 8e)=(8xXe, 8X).
Moreover, we have (Ap, 8p)(8xXe, 8x)=(Xe, 8e). This yields that (Ae, ¿ e) i f (8xXe, 8X)
in S'(M), and therefore <5X£L(2). Q.E.D.

Theorem 3. If L is an if-class contained in a regular ©-class of S'(M), then
(Xx, 8X)—SX is a bijection from L onto Z,(2).

Proof. An idempotent (Ae, 8e) in L is a right identity for L. If (Ap, 8X), (Xq, SX)£L,
then

(A p , 8X) = (A p , 8x)(Xe, 8e) = (8xXe, 8X) = (A „ 8x)(Xe, 8e) = (A „ 8X).
Q.E.D.

Let Hx and H2 be Jf-classes contained in the same ©-class of S'(M). Then,
using Green's lemma, it can be seen that l / i ^ l = \H&2)\ holds (see [5]). However,
there are examples that show that in general the equality = does not
hold. Therefore, in the next theorem, the condition that boht Hx and H2 are in the
same if-class is indispensable.

Theorem 4. Let L be an if-class in a regular ©-class of S'(M). If Hx and H2
are two ^"-classes contained in L, then |#i (1) | = |ffa

(1)|.
Proof. Let (Ae, 8e) be an idempotent of L, and let H be an Jf-class of (Ae, 8e).

If A2€# (1), then 8eXz=Xz since (Xe, 8e) is an identity of H. Let Xx, Xy£Hm and
Xx^Xy. Then (s)8eXx7i(s)8eXy for some s£S, therefore Xx and Xy are distinct
mappings on Im 8e. Let Hx be an arbitrary -class in L. Then (Xp, 8P)H—HX for
some (Ap, <5P) in S'{M). Thus H^ = {8„XJXweH(1)}. Assume that 8pXx=8pXy
for some Xx, Xy£Hm, (Xx^Xy). Then 8p8eXx=8p8eXy. Since 8pSe£H}2\ we have
that 8pSe£?8e, and so, Im <5p<5,,=Im <5e. Therefore for every sZIm 8e there exists
some t£S with (t)8 p 8 e =s. Then (s)Xx=(t)8pSeXx=(t)Sp8eXy=(s)Xy holds for
every s in Im 8e, which is a contradiction. Hence Xx^Xy implies 8pXx7±8pXy. This
shows that the mapping 6: defined by (Xw)9=8pXw is a bijection from
Hw onto Hj». Q.E.D.

176 G. Tanaka

Theorem 5. If R is an -class contained in a regular ©-class of S'(M), then R<2)

is an ^-class of S(M*).

Proof. It is clear that there exists an 32-class R* of S(M*) such that Ri2)QR*.
We shall show that the reverse inclusion holds, too. Let (/>.„, Sj£ R be an idempontent.
Then 8e is an idempotent in R*, and therefore, 8e8x=8x for every 8X£R*. For the
word ex£l+ we have (?-ex, 8ex)=(Se?.x, 8x)(iS'(M). Since 8x£%8e, there exists
some 8p£S(M*) such that 8x8p=8e. In this case (8eXx, 8x)(Xpe, 8pe)—(Xe, 8e)
and (Ae,«5J(<5eAx,<5x)=((5eAx,<5x). Therefore (8eXx, SX)£R and <5X€Ri2). Q.E.D.

Theorem 6. ([6]). Let D be a regular ©-class of S'(M) and (AX,<5X), (Xy,8y)£D.
Then (Ax, 8x)M(Xy, 8y) if and only if Ker <5x=Ker <5yg(Ker A, f i l t e r Xy).

Theorem 7. If Rj and Rz are distinct ^-classes in the same regular ©-class of
S'(M), then /?< 2>fl^ 2)=0.

Proof. If R^DR^^d then, by Theorem 5, we have R'f>=Ri,2\ If (4 , ¿ j t ^
and (Xy,Sy)€R2, then 8X and <5j, arc in R[2\ thus Ker <5z=Ker Sy. By Theorem 1,
Ker <5x£Ker Ax and Ker ¿ y £ K e r Xy. Therefore, by Theorem 6, we have that
(Xx,8x)8%(Xy,8y), and so R1=Ri, which is a contradiction. Q.E.D.

Theorem 8. If D is a regular ©-class of S" (M), then Z>(2) is a regular ©-class of
S(M*).

Proof. It is obvious that there exists a regular ©-class D* such that D(2)QD*.
We show that the reverse inclusion holds. Let 8X£D* and let L* be an if-class of D*
containing 5X. If R is an -class of D then, by Theorem 5, R{1) is an -class of D*.
Hence « (2) n L V 0 . If <5,,€ &(2) f U * , then (Xp,8y)eD for some A Let L b e a n
jSf-class containing (Ap, <5y). Then ¿ ¿ L ^ D L * . Thus, by Theorem 2, L{ 2)=L*.

This means that 5x€L (2)g£> (2), and so D*QD™. Q.E.D.

Theorem 9. Let D be a regular ©-class of S'(M), and let DR and D^ be sets
of ^-classes of D and Di2), respectively. Then |/)K | = |Z)^2)|.

Proof. By Theorems 7 and 8, the mapping R-*~R(2) is a bijection from the set of
^-classes of D onto the set of ^-classes of D(2\ Q.E.D.

If D is a finite regular ©-class, then D and Z)(2) consists of the same number of
^-classes. However, note that we cannot in general assert that D and Z>(2) have the
same number of <£-classes.

Lemma 2. If (Aw, 8e) is a regular element of S' (M) such that Se is an idempotent,
then (Aw, 8e) is an idempotent and Xw=5eXw.

Proof. There exists some idempotent (Xf, 8f) such that (Xw, 8e)^(?,f, 8f). Since
(Ar, 8f) is a right identity in its JSf-class, we obtain that (Aw, 8e) (Xf, 8f)=(8e Xf, 8e 8f) =
=(XW, 8e). Thus 8eXs—Xw. From this we have that (Aw, 8e) is an idempotent and
Xw=8eXw. Q.E.D.

Theorem 10. If D* is a regular ©-class of S(M*), then there exists a unique
regular ©-class D of S'(M) such that D(2) = £>*.

s

Subscription information:
For Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean
People's Republic, Mongolia, Poland, Romania, USSR. Vietnam
orders should be addressed to:

Kultura
Hungarian Foreign Trading Co.
H—1389 Budapest 62
P. O. Box 149
Hungary

For all other countries orders should be adressed to:
J. C. Baltzér AG
Scientific Publishing Company
Wettsteinplatz 10
CH—4058 Basel
Switzerland

Mailing address for editorial correspondence:
Acta Cybernetica
Aradi vértanúk tere 1.
Szeged
H—6720 Hungary

CONTENTS

J. Csirik, B. Imreh: On the worst-case performance of the NkF bin-packing heuristic 89
Ulrich'Faigle, Walter Kern, György Túrán: On the performance of on-line algorithms for parti-

tion problems 107
A. Kuba: Determination of the structure of the class $i(R, S) of (0, l)-matrices 121
R. Alvarez Gil, Á. Makay: Parallel programming structures and attribute grammars 133
Alexandru Mateescu. Gheorghe Páun: Further remarks on fully initial grammars 143
T. Bálánescu, M. Gheorghe, Gh. Páun: On fully initial grammars with regulated rewriting 157

*F. Gécseg, B. Imreh: On star-products of automata 167
G. Tanaka: On characteristic semigroups of Mealy automata 173

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1989. április

Terjedelem: 8,05 (A/5) ív
Készült monószedéssel, íves magasnyomással

az MSZ 6601 és az MSZ 5602—55 szabvány szerint
88-1143 — Szegedi Nyomda — Felelős vezető: Surányi Tibor igazgató

