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On isomorphic realization of automata with o,-products

Z. Esik

1. Notions and notations

In this section we give a brief summary of some basic concepts to be used in
the sequel.

An automaton is a triplet A=(4, X, §) with finite state set A, finite input set
X and transition 6: AXX—A. The sets A and X are nonempty. The transition is
also treated in the extended sense, i.e., as a mapping AX X*—+4, where X* is the
free monoid generated by X. Take a word p€X*. The transition induced by p is
the state map d8,: A—~A4 with J,(a)=d(a, p) (a€4). The collection of these transi-
tions forms a monoid S(A) under composition of mappings. We call S(A) the char-
acteristic monoid of A.

The concepts as subautomaton, homomorphism, congruence relation and iso-
morphism are used with their usual meaning. Given an automaton A=(4, X, §)
and a state a€d, the subautomaton generated by a has state set {d(a, p)|p€ X*}.
An automaton (B, Y, §’) is an X-subautomaton of an automaton (4, X, §) if BC A4,
YS X and &' is the restriction of dto BXY. The factor automaton of an automaton
A with respect to a congruence relation 6 of A is denoted A/f. We write 0,<06,
to mean that 6, is a refinement of @, and 8,60,. An automaton is called simple
if it has only the trivial congruence relations @ (identity relation) and 1 (total rela-
tion). Thus frivial (i.e., one-state) automata are simple.

Let A;=(4;, X;, §;) (i=1, ..., n, n=0) be automata. Take a finite nonempty set
X and a family of feedback functions @;: AX.. X AXX~X; (i=1, ...,n). By
the product A.X...XA,[X, ¢] we mean the automaton (4,X...X4,; X, 6), where

6((“1’ ey an)’ x) = (51(‘11, xl), seey 5n(am xn))

x=@ay,...,a,,%x) (i=1,..,n

with

for all (ay, ..., a,)EA;X...X 4, and x€X. The integer n is referred to as the length
of the product. If, for every i, ¢; is independent of the state variables a,, ..., a,,
we speak about an oy -product. In an oy-product a feedback function ¢, is alternatively
treated as a mapping A4;X...X4; ;X X—~X;: Moreover, ¢; extends to a mapping
A X . XA X X*~XF¥ in a natural way.

1 Acta Cybernetica VIIIj2



120 Z. Esik

Let A be a (possibly empty) class of automata. We will use the following
notations:

P, (X"):=all ay-products of automata from ’;
P,,,(4"):=all a)-products with length at most 1 of automata from J&’;
S(o):=all subautomata of automata from ¢;
H () :=all homomorphic images of automata from ;
I(o4"):=all isomorphic images of automata from ¢ ;

X *:=the collection of all automata A=(4, X, §) such that there is an
automaton B=(4, Y, §")€4 with the following properties: (i) B is an X-subauto-
maton of A; (ii) for every sign x€X there is a word p€Y* inducing the same
transition as p, i.e., 8,=9,. (Note that we have S(A)=S(B).)

We call a class P of automata an ap-variety if it is closed under H, S and P,,.
An a,-variety is never empty. An oj-variety is an ay-variety S'with A *S . For
later use we note that HSP, (") (HSP, (™)) is the smallest a,-variety (a-variety)
containing a class . Sxmllarly, ISP, (.9{ ) is the smallest class conta1n1ng A and
closed under i, S and P,,. it is worth noting that SP,, (%) contains ali X-sub-
automata of automata in Ji’

A class X is said to be isomorphically ay-complete for A" if A" SISP, (Ay):
The following statement is a direct consequence of results in [5] (see also [3], [4]):

Proposition 1.1. If A, is isomorphically «,-complete for o and A€ is a
simple automaton then A€ISP,, ().

Thus; any isomorphically «y-complete class for o4 must “essentially** contain
all simple automata in 2. The converse fails in general, yet it holds for some impor-
tant classes: the class of all automata and the classes of permutation automata,
monotone automata and definite automata are equally good examples (see [2], [3],
[6], 7], [9]). Isomorphically o,-complete classes for the class of all commutative
automata essentially consist of automata very close to simple commutative auto-
mata (cf. [7]). In a sense there is a unique nontrivial simple nilpotent automaton.
On the other hand no finite subclass of nilpotent automata is isomorphically ay-com-
plete for the class of all nilpotent automata. Thus, the class of nilpotent automata
is a counterexample. Isomorphically «,-complete classes for nilpotent automata are
studied in [8].

Some more notation. The cardinality of a set A is denoted |4|. The symbol E
denotes the automaton ({0, 1}, {xo, x;},6) with (0, x0)=0, (0, x;)=5(1, xp)=
=4(1, x;)=1. We call E the elevator.

The relation of the oy-product to other product concepts is explained in
[3). The Krohn—Rhodes Decomposition Theorem gives a basis for studying
og-products. For this, see [1], [3], [4].

2. Preliminary results

Let A=(4, X, ) be an automaton. As usual, we say that A is strongly con-
nected if it is generated by any state a€ A. Further, A is called a cone if there is a
state a,€A4 with the following properties:

(i) é(a,, x)=a,, for all xcX,
(i) A—{a,} is nonempty and every state acA4—{a,} generates A.



On isomorphic realization of automata with «,-products 121

Obviously, the state g, with the above properties is unique, whence it will be
referred to as the apex of A. The set A— {a,} constitutes the base of A. It should
be noted that every simple automaton is either a strongly connected automaton or
a cone or an automaton ({a;, a4}, X, 6) with 6(a;, x)=a;, i=1, 2, x€X.

Theorem 2.1. Let A be a class of automata with H(A)E A, S(A)S 4 and
A*So. If E€ then for an arbitrary class ;, A SISP, () if and only
if every strongly connected automaton and every cone belonging to X is in
ISP, ().

Proof. The necessity of the statement is trivial. For the sufficiency let
A=(4, X, 5) be an automaton in 2. We are going to apply induction on |4] to
show that A€ISP, (). Since X ™*So and ISP, (A) is closed under X-sub-
automata, it can be assumed that for every word p€ X™* thereis a sign p€X inducing
the same transition as p, i.e., é(a, p)=4d(a, p) for all acA.

If |4|=1 then A is strongly connected and A€ISP, (#;). Suppose that
|[4]=1. If A is strongly connected or a cone then A€ISP, (#;) by assumption.
Otherwise two cases arise.

Case 1: A contains a nontrivial proper subautomaton B=(B, X, ) generated
by a state by€B. Let ¢ SAX A be the relation defined by agb if and only if a=b
or a,bcB. A straightforward computation proves that ¢ is a congruence relation
of A. For every state b€B fix an x,€X with 6(by, x,)=b. Take the ay-product

C=(C X, ) =AloxBIX, ¢],
where ¢,(x)=x,
_[x, if &(a, x)¢B,
v:({a} x) = {x,, if 8(a,x)=becB

and @,(B, x)=x for every x€X and a€A—B. Set
C’' = {({a}, b(,)laEA—B}U {(B, b)| b€ B}.

It is immediately seen that C'=(C’, X, §’) is a subautomaton of C isomorphic
to A. Since both A/¢ and B are in & and have fewer states than A, we have A/p,
B¢ISP, (Ap) from the induction hypothesis. The result follows by the fact that
ISP, () is closed under I, S and P,.

Case 2: There are distinct states a,, a,€A with d(a;, x)=a;, i=1,2, x€X.
Define ¢S AXA by apb if and only if a=b or g, b€ {a;, a,}: Again, g is a con-
gruence relation of A. Let

C=(C X, ) = AlgXE[X, ¢]
be the «,-product with ¢, (x)=x,

Cfr i 6(a, %) = ay,
os({a}, x) = {x,, otherwise

and @,({a,a.}, x)=x,, where x¢ X and ac A—{a,, a,}. It follows that C'=(C", X, &)
with
C’'= {({a}’ 0) ac4—{ay, az}}U{({an as}, 0), ({01, as}, 1)}

1*



122 Z. Esik

is a subautomaton of C isomorphic to A. Since X is closed under homomorphic
images and A/g has fewer states than A we have A/g€ISP, () from the induc-
tion hypothesis. On the other hand, E€ and E is a cone. Thus E€ISP, ()
and we conclude A€ISP, (A).

Remark. Let o be a class as in Theorem 2.1, i.e. A*CH, H(H)S 24 and
SNCSH. Assuming E¢ ¢ it follows that 2 consists of permutation automata.
(See the last section for the definition of permutation automata.) Every permuta-
tion automaton is the disjoint sum of strongly connected permutation automata.
Now obviously, if 5 contains a nontrivial strongly connected automaton then
A CISP, (A;) for a class X, if and only if A€ISP, (;) for every strongly con-
nected permutation automaton A€ (Or even, the same holds if «,-product is
replaced by the so-called quasi-direct product.) If in addition 2 is closed under
X-subautomata then, as we shall see later, 4 SISP, (#;) if and only if every
simple strongly connected permutation automaton in 2 is already contained by
ISP, (). Suppose now that every strongly connected automaton in J¢ is trivial.
Then, if A contains a nontrivial automaton, we have % SISP, () if and only if
({0, 1}, {x}, 6)€ISP,, (A;) with 6(0,x)=0 and (1, x)=1. Further, # SISP, (#;)
holds for every X, if 5 consists of trivial automata. .

The following two lemmas establish some simple facts about homomorphic
realization of cones and strongly connected automata in the presence of E.

Lemma 2.2. Let A=(4, X, 8) be a cone in HSP, (¢ U{E}). There exist an
automaton D€EP, (X) and an a,-product DXE[X, ¢] containing a subautomaton
that can be mapped homomorphically onto A.

Proof. Let B=(B, X, 6)=B,X...XB,[X, y] be an «,-product with B,c.#'U
U{E}, t=1,...,n. Let C=(C, X, ) be a subautomaton of B and h: C—4 a
homomorphism of C onto A. We may assume C to be in a sense minimal: no proper
subautomaton of C is mapped homomorphically onto A.

Denote by a, the apex and by 4, the base of A. Set C,=h~1(4,), C,=h"({a,}).
Clearly then C,=(C, X, &) is a subautomaton of C, and C is generated by any
state a€C,.

Let 1=i{<..<i,=n be all the indices ¢=1,...,n with B, If
(@, ..., a,), (by, ..., b,)EC,, we have a,=b, whenever t¢{i, ...,i,} for otherwise
C would not be generated by every state in C,. Let ji, ..., j€{1, ..., n}— {iz, ..., i}
be those indices ¢ such that for any (ay, ..., a,)€Cy, a,=0 if and only if #€{j;, ..., j;}.
Forevery a=(ay, ..., a,)¢B; X ...X B, put a=(@a,, ..., a,)éB with 4, =a,, ..., a;, =
=a,,d;=...=a; =0 and a,=1 otherwise.

To end the proof we give an ay-product B’=B; X...XB; XE[X, §'] and a
subautomaton C’'=(C’, X, ) of B’ such that A is a homomorphic image of C'.
For every a¢B;X...XB,,i=0,1, xc¢X and j=1,...,r, define

!p;'(a’ i; x) = lpij(a’ x),

x, if 6(a, x)eC,,
X, otherwise.

Vinata i x) = {
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Let C’ be the subautomaton generated by the set
Co = {(a, 0)|a€B; X... XB,,, acCp}.

Set Cj=C’—Cj;. It is clear from the construction that states in Cy have 1 as their
last components. Therefore, Cj is the state set of a subautomaton of C’. Moreover,
for every (a, 0), (b, 0)€C; and x€X we have 6”((a, 0), x)=(b, 0) if and only if
8'(a, x)=b, while 6”((a, 0), x)€C; if and only if 6'(@, x)€C;. It follows that A is
a homomorphic image of C’, a homomorphism being the map that takes each state
in Ci to a, and each state (a, 0)€Cy to h(a).

If A were strongly connected we would not need the last factor of the o-product
B’ either. This gives the following: '

Lemma 2.3. Every strongly connected automaton in HSP, (2# U{E}) is con-
tained in HSP, (X").

Let A=(4, X, 5) be a cone with apex g, and base 4,. Suppose that the rela-
tion ¢S AX A defined by agb if and only if a=b=a, or a, b€ A, is a congruence
relation of A, which is to say that for every x€ X either 8(4,, x) S A4, or §(4,, x)=
={a,}. Set X,={x€X|6(4,, x)SA4,}. Assuming X,70, the automaton A,=
=(A4y, X,, ) is a strongly connected X-subautomaton of A, which is guaranteed if
|4,]=>1. By definition, we call A a 0-simple cone if and only if X,=8 and A, is
simple. Thus, E is both a simple cone and a 0-simple cone. Given a strongly con-
nected automaton A,=(A4,, X,, &), there is a natural way to imbed A, into a
O-simple cone A§: define A§=(4U {a,}, X,U {x,}, 5) where a, ¢ 4y, x4 Xy, 6(a, xo)=a,
for every a€A,U{a,} and é&(ay, x)=a,, d(a, x)=38y(a, x) if acA4,, x€X,. Obvi-
ously, A§ is O-simple if and only if A, is simple.

If A is a simple cone (i.e., a simple automaton that is a cone) then A€ISP, ()
for a class & if and only if A€ISP,, (#"). In the next statement we investigate
what can be said about " if ISP, (") contains a O-simple cone.

Lemma 2.4. If a O-simple cone A=A§ is in ISP, () then either A€ISP,, (X")
or E€ISP,, (") and there is an automaton D€ such that A is isomorphic to
a subautomaton of an a,-product of E with D.

Proof. Let A,=(4,, Xy, 8) and A=(4, X, §) so that 4=4,U{a,}, X=X,U
U{xo} where aOQAO’ xOQXm 5((1, xo)zao (aEA)a 5(00, x)=a0 and 5(‘19 x)=50(a, x)
(ac 4y, x€X,). Since A€ISP, (X)) there exist an oy-product B=(B, X, &)=
=B;X...XB,[X, ¢] B,£A, t=1, ...,n) and a subautomaton C=(C, X, ) of B
such that A is isomorphic to C under a mapping h: A—~C. We may assume that »
is minimal, i.e., whenever an a,-product of automata from " contains a subauto-
maton isomorphic to A, the length of that product is at least n.

Suppose that A¢ISP,, (#). We then have n>1. Let a=(a,...,a,) and
b=(b,, ..., b,) be arbitrary states in C. For every t=1, ...,n, put af,b if and only
if a,=b,, ...,a,=b,. Further, let agb if and only if a=b=h(a,) or a, b€h(A4,).
Each of these relations is a congruence relation of C, and since n is minimal,
6,>...>0,(=w) and 0,51. Since A is O-simple this leaves n=2, 6,=¢ and 6,=o.
It then follows that E is isomorphic to a subautomaton of an «,-product of B,
with a single factor and A is isomorphic to a subautomaton of an «,-product of E
with B,.
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Let Af=(4,U{ay}, XoU{x,},d) be a O-simple cone with A,=(4,, Xy, &),
and take an arbitrary automaton B=(B, Y, §"). It is not difficult to give a necessary
and sufficient condition ensuring that A§ is isomorphic to an «,-product of E with B.
Clearly this can happen if and only if there are a pair of functions h: 4,—B,
¢: Xo—~Y, astate bycB and two not necessarily distinct signs y,, y,€Y such that:

(1) h is injective;

(ii) for every al,azer and x€X, we have &,(a;,x)=a, if and only if
&' (h(a), 9 (x))=h(ay)

(i) &’ (h(Ao), J’o) {bo}, 9'(bo,y1)=bhy.

If also b,¢h(A4,) and y,=y, then A§ is isomorphic to an «y-product of B with a
single factor.

3. The main result

An automaton A=(4, X, d) is called permutation automaton if é, is a permuta-
tion of the state set for every x€X. This is equivalent to saying that 5 is a permuta-
tion for every pc¢ X* orthat S(A)is a group. Let X, denote the class of all permuta-
tion automata. It is known that 7}, is an ao-varlety, see [1]. Moreover, from the
Krohn—Rhodes Decomposition Theorem we have o, =HSP, ({A(G)|G is a simple
group)) where the group-like automaton A(G) on *a (ﬁmte) group G is defined
to be the automaton (G, G, ) with 8(g, h)=gh, g, h¢G.

Another class of automata we shall be dealing with is the class 2, of all
monotone automata. By definition, an automaton A=(4, X, ) is monotone if
d(a, pg)=a implies 6(a, p)=a, for all ac4 and p,gcX™* This is equivalent to
requiring the existence of an ordering = on A such that a=§(a, p) for all acA
and pEX* (or a=6(a, x) for all aéA and x€X). The class %, is known to be
an ag-variety. Further, it is the «,-variety generated by E, i.e. Ji” HSP, ({E})
(see [1], [10], [11]).

Having defined the classes 2, and £, put X%,,=HSP, (¥, ,UX,)=
=HSP, (4, U {E})=HSP, ({A(G)IG Is a simple group}U{E}) 1t follows from
Stiffler’s switching rules that A€, if and only if there is an oy-product B of a
permutation automaton with a monotone automaton such that A€ HS({B}). For
this and other characterizations of the class J£,,, see [1] and [10]. It is immediate
from our definition that X, is an «y-variety. Or even, it is an «g -variety.

Lemma 3.1. Let A be a strongly connected automaton. Then ACX,, if and
only if A€,

Proof. Use Lemma 2.3.

Corollary. If A=A§ is a cone in X, then A, a strongly connected permuta-
tion automaton.

Lemma 3.2, Let A=(4, X, §)€.X,, be a cone with apex a, and base 4,. If
é(a, p)=06(b, p)c A4, holds for some a, b¢ 4, and pcX* then a=b.

Proof. From Lemma 2.2 it follows that A is a homomorphic image of a sub-
automaton C=(C, X, 8') of an ay-product BXE[X, ¢] where B is a permutation
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automaton, say B=(B, X;, §,). Denote by h an onto homomorphism C—A. Set
Co,=h"1(4,). We may assume that every state in C, is a generator of C. Each state
in C, must have 0 as its second component since otherwise we would have C S BX {1},
and this would yield that C and A are permutation automata.

Let (ay, 0), (b,, 0)€C, with h(a,, 0)=a, h(b,, 0)=>b. Take a word g€X* with
8(a,pg)=a. We have 6(a, (pq)")=6(b,(pg)")=a, and hence & ((as,0),(pg)"),
&' (b1, 0), (pg)")€C,, for all n= 1. Define r = ¢,(pg). For every integer n=1 we have
5,((‘11: O)’ (PQ)") = (51 (al H r"): O) and 5’((b1’ 0)’ (PQ)") = (51 (blx rn)’ 0)’ Since B is a
permutation automaton, there is an n= 1 with a, = 0,(ay, ¥") and b, = 6,(by, r"). Thus
we obtain a=h(ay, 0)=h(&' ((ay, 0), (pg)"))=h(5'((5r, 0), (pg)))=h(b1, 0)=b]

Theorem 3.3. Let 4 <., be a class containing E, closed under X-subauto-
mata and homomorphic images and such that #™*C . A class J; is isomor-
phically oy-complete for & if and only if the following conditions hold: \

(i) every simple cone and every simple strongly connected permutation auto-
maton belonging to X is in ISPy, (%),

(i) for every O-simple cone A§c o thereis a Be#; such that A§is isomorphic
to a subautomaton of an «,-product of E with B.

Proof. The necessity of (i) comes from Proposition 1.1 while (ii) is necessary
in virtue of Lemma 2.4.

For the converse recall that £ satisfies the assumptions of Theorem 2.1. There-
fore, by Theorem 2.1, it suffices to show that every strongly connected automaton
and every cone belonging to " is contained by ISP, ().

Let A=(4, X, 8)¢4 be a cone with base 4, and apex a,. Since A *CH"
and ISP, (%) is closed under X-subautomata, we may assume that for every p€X*
there is a p€X inducing the same transition as p. If A is simple then A€ISP, (#;)
by (i). If A is O-simple then A is isomorphic to an «,-product A§[X, ¢] with a single
factor where A§eA” is a O-simple cone. (Recall that # is closed under X-sub-
automata.) Therefore, we may assume that A is of the form A§. Now, by (ii), A is
isomorphic to a subautomaton of an «,-product of E with B where B€Jf;. Since
E is a simple cone we have E€ISP,, (/). It follows that A€ISP, (;). Suppose
that A is neither simple nor O-simple. We proceed by induction on |A4|. If |A]=2
our statement holds vacantly. Let ]4|=2. There exists a congruence relation =@
of A such that afb implies a=b or a, b€ A,, and such that 4, contains at least
two blocks of the partition induced by 6.

Let Co={ay}, Cy, -..,C, (n=2, |Cy]=1) be the blocks of 6. Since A is gen-
erated by any state in A4,, from Lemma 3.2 we have the following: for every
i,je{l, ..., n} there exists a word pcX* with &(C;, p)=C;. Consequently, for
every i€{l, ..., n} there is a pair of words (p;, ;) with 6(C,, p,)=C;, 6(C;, g)=C,
and such that p;q; induces the identity map on C, while g;p; induces the identity
map on C;.

Set X' ={x€X|6(Cy, X)) SC,UC,}, C=(CoUC,y, X', §"), where &(c, x)=(c, x)
for all c€CyUC; and x€X’. Obviously, both A/6 and C are cones in . Fix a
sign xp€ X’ with &(Cy, xy)=C,. Take the ay-product

B = (B, X, ") = AJOXC[X, ¢]
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where ¢,(x)=x and

Xo if 6(Ci,x)=Cy

It is easy to check that B'=(B’, X, 6”) is a subautomaton of B where
B’ = {(Cy, ap)}U{(C;,a)li=1,...,n, a€C,).

Further, the map (C,, ap)—a,, (C;, a)—~d(a, p;) (i=1, ...,n, acC,) is an isomor-
phism of B’ onto A. Hence the result follows from the induction hypothesis.

Suppose now that A=(4, X, 6)€4 is a strongly connected automaton. From
Lemma 3.1 we know that A is a permutation automaton. Just as before, we may
assume that for every p€X* there is a sign p€X with §,=d;. If A is simple then
A€ISP,, (#)EISP, (). Otherwise let 6 be a congruence relation of A different
from @ and 1. Denote by C,,...,C, n=2, |C,|>1) the blocks of the partition
induced by 8. Set X’'={x€X|5(C;, x)=C;}. One shows that A is isomorphic to an
o-product of A/8 with C, where C=(C,, X’, &), §(c, x)=04(c, x) (c€C,, x€X’).

We note that a substantial part of the above proof as well as the proofs of
Theorem 2.1 and Lemma 2.2 follow well-known ideas (see [1], [4], [5]).

Corollary. Let S S, be closed under X-subautomata and homomorphic
images and suppose that #™*C . If X contains a nontrivial strongly connected
automaton then a class Jf; is isomorphically «,-complete for 2 if and only if
A€ISP,, () holds for every simple strongly connected automaton A in X"

$2(C;, x) = {

Let 4 be a nonempty class of (finite) simple groups closed under division.
(Recall that G, divides G, for groups G, and G,, written G,|G,, if and only if G,
is a homomorphic image of a subgroup of G,.) Denote by # (%) the class
HSP, ({A(G)IGE%)); (%) is an of-variety contained in . It follows from the
Krohn—Rhodes Decomposition Theorem that every og-variety of permutation auto-
mata is of the form 2" (%) except for the af-variety consisting of all automata (4, X, )
such that 8, is the identity map for each x€X. Moreover, if ¢ contains a nontrivial
simple group then for every permutation automaton A we have A€ (%) if and
only if G|S(A) implies G€¥ for simple groups G. Since X (¥9)E&,, also
Hr($)=HSP, (A (HU A,) S A,,,. We obviously have

A (%) = HSP, (4 (9)U{E}) = HSP,,({A(G)IGEF}U{E)).
Thus, A#,,(¥)is an a,-variety in X, or even, it is an og-variety.
Corollary. £, (9)S1ISP, () if and only if the following hold:

() for every simple cone A€X, (¥) we have ACISP,, (),
(ii) for every O-simple cone A§SEA,, (%) there is a B€X, such that A§ is iso-
morphic to a subautomaton of an ay-product of E with B.

Proof. Use Theorem 3.3 and the following fact: every simple strongly con-
nected (permutation) automaton in (%) is isomorphic to an X-subautomaton of
a O-simple cone A§ in A,,(%).

Corollary [2]. A class o, is isomorphically «,-complete for X%, if and only
if ECISP,, ().
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Proof. Let ¢ be the class of trivial groups. We have X%,=X,(%). On the
other hand, every cone in 4, is similar to E. More exactly, if A€, is a cone then
A is isomorphic to an «,-product in Py, ({E}).

An automaton A=(4, X, ) is called commutative if (a, xy)=06(a, yx) for
all acA4 and x, y€X, ie., if S(A) is commutative. Denote by X the class of all
commutative automata; ) is closed under X-subautomata and homomorphic
images. Moreover, X *S4 and X &A,,. For a prime p>1 let C, be a fixed
automaton of the form A(Z,)¢, where Z,, is the cyclic group of order p. Every simple
commutative automaton is in the class ISP, ({C,lp>1 is a prime}), and every
0-simple commutative cone is in ISP, ({C:|p>1 is a prime}).

Corollary [7]. A class A is isomorphically ay-complete for the class of all com-
mutative automata if and only if the following hold:

(l) EE HSPlao ('%)’

(i) for every prime p=>1 there is an A€, such that C¢ is isomorphic to a
subautomaton of an «,-product of E with A.

Abstract

Every isomorphically a,-complete class for a class £ of auntomata must essentially contain all
simple automata belonging to - In this paper we present some classes J for which also the con-
verse is true, or isomorphically ag-complete classes can be characterized by means of automata
in o close to simple automata.
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On metric equivalence of v-products

F. Gfcsec and B. IMREH

In [7] it is shown that the v;-product is metrically equivalent to the product.
Here we strengthen this result by proving that already the v,-product is metrically
equivalent to the general product. It is also obtained that, if a class 4 of auto-
mata is not metrically complete for the product, then HSP,(%")=HSP, ().

In this paper by an automaton we mean a finite automaton. The only excep-
tions are varieties of automata; they may contain automata with infinite state-
sets. For all notions and notations not defined here, see [1], {7], [8] and [9].

We start with

Lemma 1. If a finite class & of automata is not metrically complete for the
product, then every finitely generated automaton W=(X, 4, §) from HSPP, (A1)
is in HSP, (X).

Proof. First let us note that the concept of the v,-product can be generalized
in a natural way to products with infinitely many factors, and every automaton
in PP, () is a v;-product with possibly infinitely many factors. Thus, take a

v; -product
B = (X, B,5) =[] (WlieDIX, ¢, 7]

with |[X|=m and W;=(X;, 4;, §;)€" (i€I). Let {a,, ...,a,} be a generating set
of A. Suppose that a subautomaton of B can be mapped homomorphically onto
9, and let b; be a counter image of a; (i=1, ..., n) under this homomorphism.
Denote by B’=(X, B’,4”) the subautomaton of B generated by {by, ..., b,}.
Moreover, set u=max {|4;] i€I} and v=|xA"|. Let k=0 be a fixed integer such
that, for arbitrary C=(Xg, C, 6c)€H, c€C, p€X¢ with |p|=k and x;, x,€Xg,
cpx,=cpx,. (Since A is not metrically complete, there exists such a k.) We shall
show the existence of a v;-product B=(X, B, ) of automata from {;jicI} with

k41
if m=1, and t=k+1
m—1

for m=1, such that a subautomaton B’=(X, B’, §") of B is isomorphic to B’

Define the binary relation ¢ on I in the following way: i=j(o) (i, j¢I) if and
only if A,=A; and &,(pr;(b,), @:(b,, p))=5;(pr; (b,), @;(b,, p)) hold for arbi-
trary r (1=r=n) and p€ X* with |p|=k. By the choice of k, 8;(pr;(b,), @:(b,, g))=
=8;(pr; (b)), ¢,;(b,, q)) is valid for any r (1=r=n) and g€X*. Moreover, since

a number of factors not exceeding vu™, where =
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t is the number of words over X with length less than or equal to k, we have at most
o™ p-classes. From every g-class take exactly one element, and let {i, ..., i} be
their set. Form the v, -product

B=(X,B,8=[(U,li=1,... DX, ¢,7]
in the following way:

‘ (@) For every j (1=j=/, y'(i)=90 if y(i)=9, and y'()=1{i;} (Lic{l,....1})
if 'Y(ij)= {Jz} and ij,Efz(Q)-

(i) For every j (1=j=[) and x€X, ¢}, (x)=9;,(x) if y'(i)=0.

(iii) For every j (1=j=l), if y'(i)={i,}, then go’,-j(a, x)=qo,-j(a, x) (ac4
x€X).

Moreover, let b; (i=1, ..., n) be those states of B which, for every j(=1, ..., 1),
satisfy the equality pr; (b)=pr;, (b;). Denote by B’=(X, B’, §") the subautomaton
of B generated by {b,, ..., b,}. Moreover, consider the mapping : B’—~B’ given
by ¥ (b;p)=b;p (p€X*, i=1, ..., n). Clearly, ¢ is an isomorphism of B’ onto B’. I

ijl’

Lemma 2. If a finite class o of automata is not metrically complete for the
product, then the equality HSPP, (o¢)=HSPP, (%) holds.

Proof. Obviously, HSPP, (#)SHSPP,(X). Thus, it is enough to show
HSPP, () SHSPP, (). This latter inclusion holds if and only if HSPP ()N
Ny SHSPP, ()N A for all input alphabet X, where Ay is the similarity class
of all automata with input alphabet X. Since automata identities have at most two
variables, HSPP, (/)N A#x=HSP({¥,}), where U, is a free automaton of the
variety HSPP, ()N % generated by two elements. Let U, be a free automaton in
HSPP, ()N Ay generated by a single element. One can show that every finitely
generated automaton in HSPP, ()N is in HSP,(X), U, can be represented
homomorphically by a quasi-direct square of U,, or by a quasi-direct product of
A, by a two-state discrete automaton with a single input signal depending on the
forms of the p-identities holding in U, (see the Theorem in [3} and the proof of
Theorem 2.1 from [5]). Since every finitely generated automaton from HSPP, (X")
is in HSP, (), by the Theorem of [3] and Proposition 12 from [4], if a two-state
discrete automaton is in HSPP () then it is in HSQ(J¢'), where Q is the quasi-
direct product operator. Therefore, to prove HSPP,(#)SHSPP, (%) it is suffi-
cient to show that ;€ HSPP, (o¢') for an arbitrary input alphabet X. By the proof
of Theorem 2 of [7], we may suppose that there is a largest positive integer ¢ such
that for an automaton €=(X, C, éc) in X, a state ¢€C and a word re X* with
|[r|=t—1 the state cr is ambiguous.

Assume that the identity zp=zq (p, g¢¢ X*) does not hold in U,, where z is a
variable, p=x;.. X Xg41..-Xpm> §=X1... XeVks1---Vu> A0d Xp 4172y if m,n=>k:
If m,n=t, or m<t and n=t, then by the proof of Theorem 2 in [7], zp=2zq is
not satisfied by P, (2¢). Thus, we may assume that m, n=t.

Since A;€HSPP,(X), there are an automaton U=(X, 4, ) in A, a state
€A and two words p'=xj...X}Xj41..-Xms § =X1...X] Y}41...¥s in X* such that
ayp’#ayq’, 1=k and x{,,#y;,, if m,n>l We shall suppose that there are no
words p=X,...%,%,41... X, a0d §=3%;...%,5,41... 7, in X *with g,p#a,4 and r=1.
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Let a;=ayx;...x; (i=1, ..., m) and

agxy...x; if 1sisl
bi= ’ VW ’ . =
X1 .. X} Yipr.y; If l=i=n

In the sequel we can confine ourselves to the case m, n>1. Assume to the contra-
ry, say m=[. Consider the v,-product B=(X, B, §)=U[X, ¢, y] with y(1)={1},

(p(bhxi+1) = xi,+1 (l = 0’ () min {m'—ls u})’
o, yis1) = J’i,+1 (i=1 ..., min {n—-l, u})

where u is the largest index for which the states by, ..., b, are pairwise distinct,
and ¢ is given arbitrarily in all other cases. Observe that if b;=b; for O=i<j=n
then 6(b,, x)=6(b,,y") for arbitrary r=i and x’,y’€X; otherwise A would
be metrically complete for the product. (This observation will be used silently through-
out the paper.) By the construction of B, a,ps=a,py and a,qs=a,q4y. Therefore,
Gppe#dpgs.-

We say that a,, and b, induce disjoint cycles, if the subautomata generated by
a,, and b, are disjoint. Otherwise they induce the same cycle.

Let us distinguish the following cases.

Case 1. The states a,, and b, induce disjoint cycles. By our assumptions on p’
and q%, {1415 s G}V {brs1s ooy b}=0. Let u; (0=u;<m) be the largest index
such that the elements a,, a,, ..., a,, are pairwise distinct. The number u, (0=u,<n)
has the same meaning for by, by, ..., b

Take the v, -product

B = (X, B,§) = UX, ¢, 7]
y() = {1},

QA gsis Xig) = Xi_gqipn O=is=uy+k-I),

where

CObisis YerirD) = Vivinn O=i=u—0),

and in all other cases ¢ is given arbitrarily. Take b=(ag;_,). Then bp=
=W X ki1 XX %) and bg=(G1_; X]_g41---XI Yis1.-- VX' ¥), where X€X is
arbitrary. (Remember that m, n=t.) Therefore, bp=bg.

Case 2. The states a,, and b, induce the same cycle, i.e., in the intersection of
the subautomata generated by a,, and b, there is a cycle C of length w. We distinguish
some subcases. :

Case2.1. m#zn (modw). Then w=1. Take an arbitrary v;-product
B=(X, 4, ") of A with a single factor. In B, for any c€C, we have cp=cq.

Case 2.2. m=n (mod w). Some further subcases are needed.
Case 2.2.1. a,,, b,€C or m=n.
If {a+1,..s G} {b111s ..., b}=9, then let u; (0=u;<m) be the largest
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index such that the elements ay, g, ..., a,, are pairwise distinct. The number u,
(0=u,<n) has the same meaning for by, by, ..., b,,.
Take the v,-product

= (X, B, &) = (UX...XW[X, ¢, 7]
— pr——
I—k+1times
YD) ={1}; »@={i-1} (=2,..,1-k+1),
01(1—k4is> XisD) = Xi—gpisr 0= i=wu+k-1I),
O1(Brais Vewiv)) = Vigrer (0=i=up—1),
and for every j(=2,..,1-k+1),

where

Oi(A_k—(j-2y+i> Xiv) = Xi—k—G-y4i O =i =u—l+k+j-2),
fx,-'_(j_g;+; if 0= l§.]—2

(pj(bl—(.i—2)+i’yk+i+1) = y’,—(j_z)” i j—2<imuy—ltj—2,

and in all other cases ¢ is given arbitrarily in accordance with the definition of the
v,-product.

Take b=(a;—4, &—4_1, ..., ). Then bp=(a_,py, a1_x_1P1, - A » and
bg=(a,-190> G1—x~191> --., Qpq;—;) Where, for every Jj(=0, ..., I- k), Pi=Xi_g—ji1--

. x,,,x""" and ¢;= x,’ kmjt1e--XI Yig1---YaX'~%¥=J and 7cX is arbitrary. Thus
pi=p  and g, k—q, implying bp“bg.

If {ais1, .. @} {b1ss, ... by} #0, then let r (I+1=r=m) be the least index
for which there is a b; with a,= b Moreover, let s (I+1=s5= n) be the least index
such that b,=a,. Then rss, since in the opposite case p=Xx7...X;Xr11... X, and
G=Xxi...X,Y741...Yx would contradict the choice of p’ and ¢'. Assume that r<s.
Let u (0=u<m) be the largest index for which the states a,, ..., a, are pairwise
distinct. Take the v;-product

B =(X, B, &) = (AX... XWX, ¢, 7]
N— —

I—k+1times
y(D)={1}; y@)={i—-1} Q=i=Il-k+1),
O1(@—psis XirD) = Xigsi41 (0= i = utk-1),
O1(bisis VerisD) = Vipirn O=i=r-I),
and for every j(=2,...,1—k+1),

where

(@ k- (j-2y+is Xivn) = Xi—k—g-n+1 O Si=u—I4+k+j-2),

x{_(1_2)+‘ if 0 § i éj_2,

i(bi-G-2y+is Veri+) = {yl’-(j—2)+i if j—2<isr-I+j-2,

and in all other cases ¢ is given arbitrarily. Take the state

b = (a)-ks G1—k-15 --»A)EB.



On metric equivalence of v,;~products 133

Then bp=(b3, ..., bj_v, aop’) and bg= (b7, ..., bk, apx}... x| Y1 41..-y. G) where ge X *
satisfies the equality [g|=n—~r. One can easily check that a,p’=ayx1...X[¥Vi41..- Vi q.
Indeed, in the opposite case let §” be the initial segment of § with length m—r if
m=n, and otherwise let §’=gq, where gcX* is arbitrary with |gg|=m—r. From
our assumptions it follows that a@gxi...X;¥141..-¥: @ #aeq’. Therefore, by r=1I;
the pair xi...x{y141...¥+4’, ¢ contradicts the choice of p” and ¢’.

Case 2.2.2. m>#n and at least one of a,, and b, is not in C.

Case 2.2.2.1. None of a, and b, is in C and m<mn. Then the states by, ..., b,
are pairwise distinct. Take the v;-product

B = (X, B, &) = U[X, ¢, 7]

where
(1) = {1},
_ xl,+1 if 0=i< l,
(P(bis xi+1) - {yi'+1 lf l = l <m,
fxia if k=i<l],
oy = T2 )

and ¢ is given arbitrarily in all other cases. Taking b=(b,) we obtain bp=(b,,)
and bg=(b,).

Case 2.2.2.2. a,4C, b,cC and n>m; or a,4C, b,¢C and n<m. The states
ay, Oy, ..., 4, are pairwise distinct. Take the v, -product

B = (X, B, 6") = U[X, ¢, ]
(1) = {1},

@(a;, X)) = x{p1 (0=i<m),
o(ay, Yis) = Xi41 (k = i < min {m, n}),

and g is given arbitrarily in the remaining cases. Let b=(a). If n>m, then bp=(a,)
and bg=(a,x"~™), where X€X is arbitrary. Obviously, a,+#a,X"~™, since in the
opposite case a,cC. If n<m, then bp=(a,) and bg=(a,). 0O

where

Remark. Let A be an arbitrary class of automata. In [3] it is shown that if
an identity does not hold in an infinite product of automata from &, then there
is a finite product of automata from 5 which does not satisfy the given identity
either. (See also [2], where this result is generalized to automata with infinite input
alphabets.) Moreover, by Theorem 1 of [7], the v,-product is equivalent to the
product as regards metric completeness. Therefore, if A" is metrically complete
for the product, then none of the nontrivial p-identities holds in HSPP, (£"). Thus,
using Lemma 2, we obtain that HSPP,(2¢)=HSPP, () for arbitrary class of
automata. However, Lemma 2 will be sufficient to prove our main result.

By Lemmas 1 and 2, we obtain

Corollary 3. If a class & of automata is not metrically complete for the product,
then HSP,()=HSP, (X).
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Proof. The inclusion HSP, (#)SHSP,(X) is obvious. If AECHSP, (),
then there exists a finite subset 'such that ACHSP, (). Therefore, by Lemmas 1
and 2, ACHSP, (#). O

Let us note that by the proof of the Theorem in [6], HSP, (#)=HSP, (%)
if 2 is not metrically complete for the product. Thus, for such classes 2, the equality
HSP,_ (o)=HSP, (o) holds, too.

Now we are ready to state and prove the main result of the paper.

Theorem 4. The v,-product is metrically equivalent to the general product.

Proof. Let A be an arbitrary class of automata. If 2 is metrically complete
for the product, then by Theorem 1 in {7}, & is metrically complete with respect
to the v, -product. If £ is not metrically complete, then HSP,(X")=HSP, (), as
it is stated in Corollary 3. [
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On «-product of tree automata

F. GfcseG and B. IMREH

In the theory of finite automata it is a central problem to represent a given
automaton by composition of — possibly simpler — automata. The composition
of tree automata has received little attention. Namely, the cascade product of tree
automata was studied in [4] and the work [5] contains the investigation of the gen-
eral product of tree automata (see also [1]). In this paper generalizing the notion of
arproduct (cf. [2]), we introduce the a;-product of tree automata, and using the
idea in [3] give necessary and sufficient conditions for a system of tree automata
to be isomorphically complete with respect to the «;-product. From the charac-
terizations of complete systems we obtain the o;-products constitute a proper hier-
archy, '

1. Definitions

By a set of operational symbols we mean the nonempty union £=ZX,UZ,U...
of pairwise disjoint sets of symbols, and for any nonnegative integer m, X,, is called
the set of m-ary operational symbols. It is said that the rank or arity of a symbol
6cX is mif o€ZX,. Now let a set ¥ of operational symbols be given. A set R of
nonnegative integers is called the rank-type of X if for any m, X, if and only
if meR. Next we shall work always under a fixed rank-type R.

Let X be a set of operational symbols with rank-type R. Then by a Z-algebra
& we mean a pair consisting of a nonempty set 4 (of elements of &) and a mapping
that assigns to every operational symbol ¢€X an m-ary operation ¢%: A™—+A4,
where the arity of ¢ is m. The operation ¢ is called the realization of o in /. The
mapping ¢—o“ will not be mentioned explicitly, but we write &/=(4, X). The
Z-algebra 7 is finite if A is finite, and it is of finite type if X is finite. By a tree auto-
maton we mean a finite algebra of finite type. We say that the rank-type of a tree
automaton &/=(4, X) is Rif the rank-type of Z is R. Let us denote by Uy the class
of all tree automata with rank-type R.

Now let i be a fixed nonnegative integer, and let

o = (4, Z)eUp, 'le = (Aj, Z"’)EQ[IC G=1,..,k.
Moreover, take a family  of mappings

Vgt (A1 X XA)"XE, ~ 24, mER, 1=j=k.

2 Acta Cybernetica VIIIf2
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It is said that the tree automaton & is the a-product of &; (j=1, ..., k) with
respect to ¥ if the following conditions are satisfied:

W 4= 4,

(2) for any me€R, je{l,...,k},
((all’ ey alk), LA ] (amly veey amk))E(Alx--- XAk)m
the mapping ¥, is independent of elements g,, (1=r=m, j+i=s),

(3) fOI' any meR, 0'62",, ((alls sy alk)s L] (am1’ LS ] amk))e(Alx"'XAk)m,

ad((alla ceey alk)’ (33} (aml’ bR ] amk)) = (afl(all, [AR3) aml)’ sy dek(alka neey amk)):

where

Gy = ="hmj((all’ ceey alk)’ LA (amla eees amk), 5\ (J’ =1.., k)

For the above product we shall use the notation ]] ; (2 ¥) and sometimes
we shall write only those variables of ¥m; on which |,b,,, j depends

Finally, we shall denote by [Vn] the largest integer less than or equal to Vn

2. Completeness

Let i be a fixed nonnegative integer and BE ;. B is called isomorphically
complete for Ax with respect. to the a-product if any tree automaton from Ay
can be embedded isomorphically into an o;-product of tree automata from 9B.
Furthermore, B is called minimal isomorphically complete system if B is isomor-
phically complete and for arbitrary &€ B, B\ {«/} is not isomorphically complete.

For any natural number n>0 let us denote by %,=({0, ...,n—1}, 6") the
tree automaton where for every m-ary operation ¢: {0, ..., n— 1}"'—»{0 L n—1}
there exists exactly one ¢€8% with o%=p provided that meR

The following statement is obvious.

Lemma. If o/, Uy (j=1,2,3) and &; can be embedded isomorphically into
and a-product of .sz! /;+1 With a smgle factor (j=1,2) then &4 can be embedded
isomorphically into an arproduct of «f; with a single factor.

First we consider the special case R={0}. Then the following statement is
obvious.

Theorem 1. BE A, is isomorphically complete for W, with respect to the
arproduct if and only if there exists an /€% such that &, can be embedded iso-
morphically into an a;-product of & with a single factor.

Now let us suppose R#={0}. Then the results of completeness is based on
the following Theorem.

Theorem 2. If the tree automaton 4, (n=1) can be embedded isomorphically
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into an a;product ]] s£;(6", ¥) of the tree automata ;€W (=1, ...,k) then
.%[ can be embedded isomorphically into an a;-product of «/; with a smgle factor
for some J€{l, ..., k}, where i*=i if i>0 and i*=1 else.

Proof. If k=1 then the statement is obvious. Now let k>1 Assume that
2%, can be embedded isomorphically into the a;-procut o= j]] ;(0",¥) and let

u denote a suitable isomorphism. Let p(2)=(ay, ..., ag) (= —~1). We may
suppose that there exist natural numbers u=p (O<u, v=n— 1) such that a,7#a,,
since otherwise %, can be embedded isomorphically into an eapproduct of &
(j=2, ..., k). Now assume that there exist natural numbers ps=q (0S D, q=n— 15

with a,=a, (s=1, ...,i%). For any t (0=t=n-1) let us denote by a,, the m-ary
operation of 4, for whlch 620, ...: 0,p)=t and o630, ...,0,9)=g, for some
mER. Such operations exist since Rs~{0}. Then for any tE {0, ey B—

(@ns s 80) = () = p(opr(0; .., 0, p) = o3 0), ..., u(0), u(p)) =
= (af"(am, cees Go1s Gp1)s 0¥ (ags, .., Aoz, ay2); e o7 (agy, +.» Aoz au)
holds, and so a,1=a'i°’ Y(@g15 -+e» Gp1> @) Where /
01 = Vm((Gors > Aa)s o5 (@ors +oes Q)5 (@15 oo Apa), O ) =
= Y1 (@o1s ++0r Qoixs Aprs ooy Apit, Op) A >0
and 0,=V,,(o,) if i=0. In the same way we obtain the equality

_of
a = 01 (@15 ---» Aors aql)
where

61 = ll/ml(a(n, coey aOit, aql, cevy aqit, apt) ].f i> 0

01=Ymoy) if i=0.

Since a,=a, (s=1,...,i*) we obtain that ¢,=&; which implies the equality
ay=an for any € {0 ..,n—1}. This contradicts our assumption a,>a,;, there-
fore the elements (a,, ..., ay) (0=t=n—1) are pairwise different: Now we shall
show that in this case %, can be embedded isomorphically into an «;-product

and

-
o= [] ;(0", ¢). Indeed, let us define the family ¢ of mappings as follows: for
j=1

any meR, je{l, ...,i*}, (@, ..., a}), ..., (@, ..., ab))E ]]A,, c€0" elements
(1) if i=0 then
':bmj((aull’ see au,k)a Rhs (aumla B au,,.k)s 0')
if there exist u, ..., #,€{0, ..., n— 1}
Pmi((als ... ab), ..., (ak, ..., aby), 0) =9such that af = a,,,,(t =1,..i%s=1,..,m),
arbitrary operational symbol from
) otherwise,

2.
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(2) if i=0 then ¢,;(6)=y,;(0).

It is clear that ¢,,; is well defined. On the other hand, it is easy to see that
the mapping v(t)=(ay, ..., ap») (=0, ..., n—1) is an isomorphism of 4, into .
Using this isomorphism v we prove that &?[,, /7] ¢an be embedded isomorphically

into an «-product of & with a single factor for some j€{l,...,i*}. If i=0 or
i=1 then this statement obviously holds. Now assume that i>1. Since the elements
@g, ...s @) (2=0,...,n—1) are pairwise different, there exists an s€{l, ..., i*}
such that the number of pairwise different elements among ay, ayg, ..., @,_,, iS
greater than or equal to v=["}n]. Without loos of generality we may assume that
s, ... Ay_q, are pairwise different elements of «7,. For any m€ R, ¢€6?, let us denote
by & an operational symbol from 6}, for which 6%y, ,—yymy=0%. Now let us
define the a-product #,(8°%, ) as follows: for any m¢R, 6€03, (@, ..., a,, )EA™

((pms((auxl’ LR auli*)’ (RS ] (au,,.la cees aumi‘)’ 6) if
Pm(@yss s Ay, 5,0) =10=u, =010 =1,...,m),
arbitrary operational symbol from X%, otherwise.

It can be easily see that the correspondence v': t-a,, (t=0,...,v—1) is an iso-
morphism of &, into &, (6°, $), which completes the proof of Theorem 2.

Theorem 3. BC A, is isomorphically complete for W with respect to the
ag-product if and only if for any natural number n>1 there exists an €3B such
that 4, can be embedded isomorphically into an «,-product of &/ with a single
factor.

Proof. The necessity follows from Theorem 2. To prove the sufficiency let us
observe that any tree automaton /€W, with |4|=n can be embedded isomor-
phically into an «,-product of %, with a single factor. From this fact, by our Lemma,
we obtain the completeness of B.

Now let i>0 be a fixed nonnegative integer, Then in a similar way as above
we obtain the following result.

Theorem 4. BE A, is isomorphically complete for A with respect to the
arproduct if and only if for any natural number n>1 there exists an /€8 such
that %, can be embedded isomorphically into an «;-product of & with a single
factor.

Since an a;product with a single factor is an «,-product with a single factor,
by Theorem 4, we get the next corollary.

Corollary 1. BC A, is isomorphically complete for W, with respect to the
oy -product if and only if B is isomorphically complete for € with respect to the
o-product.

Now let i be a nonnegative integer. Then we have the following result for the
minimal isomorphically complete systems in the case R {0}.

Theorem 5. There exists no system 8BS A which is isomorphically complete
for A with respect to the a;product and minimal.
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Proof. Let BS Ui be isomorphically complete for A, with respect to the
aproduct. Moreover, let /€38 with |4A]=n. It is obvious that &/ can be embedded
isomorphically into an a;-product of %, with a single factor if s=n. Take a natural
number s=>n. By Theorem 3 and Theorem 4, there exists an &/¢®B such that
2, can be embedded isomorphically into an eo;-product of & with a single factor.
Therefore, by our Lemma, & can be embedded isomorphically into an a;-product
of of with a single factor. From this it follows that B\ {«/} is isomorphically
complete for A, with respect to the a;-product, showing that B is not minimal.

3. The hierarchy of «;-products

Let R:={0} be a fixed rank-type. Take a nonempty set M S g, and let i
be an arbitrary nonnegative integer. Let o;(}) denote the class of all tree auto-
mata from Wy which can be embedded isomorphically into an a;-product of tree
automata from M. It is said that the a-product is isomorphically more general
than the «;-product if for any set M S Uy the relation o;(M)ESa;(M) holds
and there exists at least one set MS C A, such that a;(M) is a proper subclass of

o;(M). This notion was introduced in [2].

As far as the hierarchy of the o;products is concerned, we have the following

Theorem.

Theorem 6. For any i, j (i, j€ {0, 1, ...}) the a;-product is isomorphically more
general than the «; product if j<i.

Proof. We shall prove that the o;-product is isomorphically more general than

the o,-product and the o;,,-product is isomorphically more general than the
a-product if i=1.

First let M= {sf,}, where Z,=({l,2}, U {Gm> 6me)) and the operations of

o, are defined as follows: for any O0=m, mER (@15 ... an)e{1, 2}
o, 1 i a,=2,
Omi (al’ ceey am) - {2 if am — 1,
a,","';g’(al, cves Apy) = Gy,
and o5 = 1, ogst = 2 if OCR.

Now let us denote by o£=({1, 2,3}, ) the tree automaton where for any
0#mER 6€Z,, (4y; ..., a,)€{1,2, 3}

and 6% =1 if 0€R and G€Z}.

It is easy to see that o do(M) and Z€a,(M) which yields the required
inclusion ay(M)Coy (M).
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Now let i=1 and M={%,}. Then, by the proof of Theorem 2, we obtain
that By+1§;(M). On the other hand, we shall show that Z.i+:€a;,,(M) which
yields the required inclusion o;(M)cCe;,,(M): To prove the above statement it
is enough to show that Bu€a (M) if i>1. Indeed, let us take the aproduct

A= H @2(62 ) where the family ¢ of mappings is defined as follows: for any
i=
0=m, aEG
if
a1 i i i : @
o (J a2 ., 2 a2 ) =w=a,2"" and G *(ayj, ..., Am) = Gy,
=1 t=1 =1
then

((au, LRE] ali)’ cres (amb eeey amg))E({O, l}l)m

VUni((@115 o5 31y ooy (@mas -5 Q) 0) = 6.

o »

II] the case 0'6831 iI g :— Za,, 2'—' dna O_Q_= Vj Lhell q[m.,(a')___

It is easy to see that .%z can be embedded isomorphically into & under
the 1somorph15m u defined as follows: if w= Z’a,Z"' then pw)=(a,, ..., a;)
w=0,...,2'=1).

4. A decidability result

In this section we show that it is decidable if an algebra can be represented
isomorphically by an a;-product of algebras from a given finite set,

Theorem 7. For any nonnegative integer i, /€W and finite set MCS U,
it can be decided whether or not /€a;(M).

Proof. Let us suppose that o/ with A={a,, ...,q;} can be embedded iso-
morphically into an ayproduct #= .]] o;(Z, ) of tree automata from M. Let

V=max {|4,|: #€M} andlet (a,, ..., a,,_,,) denote the image of a, under a suitable
isomorphism u (u= 1,...,k). We define an equivalence relation z on the set of
indices of the a-product & as follows: for any /, n (1=/, n=5), Ian holds if and
only if o=/, and a,=a,, for all t=1, .., k.

It is easy to see that the partition corresponding to = has at most |M|.V*
blocks. Since u(A) is a subalgebra of 4, if a,=a,, (¢=1, ..., k) then the J-th and
n-th components of u(o(al, ..., a™)are equal, where m¢ R, oE Z.,alcd(j=1, ..., m).
F-om this it follows that .g! can be embedded isomorphically into an a;-product
ot tree automata from M with at most |[M|-V* factors.
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On a problem of Adim concerning precodes assigned
to finite Moore automata

Masasal KATSURA

To investigate the structure of finite Moore automata, the concepts of code,
precode and complexity are introduced by Adam [1] and investigated in [1—S8].
Main motivation is the following.

Basic Problem [1]. For arbitrary finite X, let a constructive description of
all reduced finite Moore automata, whose input set equals to X, be given.

Relating to this problem Ad4m raised four open problems, one of which is the
following.

Problem 3 [1]. Consider all pairs (D, D’) of precodes with finite com-
plexity such that D <D’ holds. Either determine the maximal value of Q(D")—
— Q(D) (as a function of the cardinality of input set) or prove that the set of
these differences is unbounded.

In autonomous case, this problem is solved in {8]. The answer is that the difference
is unbounded. However, we show in [8] that the quotient Q(D")/R2(D)

(D < D', 2(D) =0, QD) < =)

is bounded by 2. In this note, it is shown that, in multiple-input case, not only the
difference but also the quotient is unbounded.

For the background and fundamental facts concerning codes, precodes and
complexity, see [1} and [2].

L

N and N, mean the sets of positive integers and of nonnegative integers, respec-
tively. For ¢, k€N,, we denote [t:k]=(ENy|t=i=k). For n,meN, we write
X(,,)—(xl, .y X,y and Y(,,,)—( Vis s Ymp- A partial automaton is a 5-tuple

( D], X(,,), Y(m), 5 }») here:

(1) v, n and m are positive integers. [1:v), X, and Y, are called the state set,
the input set and the output set of 4, respectively.
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(2) disa partlal mapping of [1:v]X X, into [1:v] called a state transition func-
tlon (6 is extended as usual to a partial mapping of [1:v]X(X(;)* into [1:v]):

(3) Zis a mapping of [1:v] onto Y, called an output function.

(4) For any a€[l:v] there exists a p€X* such that §(1, p)=a.

If 6 is defined for any element of [1:v]X X{,, then 4 is said to be an (initially
connected finite) Moore automaton.

Let A=([1:0], X(n), ¥(m), 6, 4) be a Moore automaton. If 1(5(a, p))=A((b, p))
holds for a, be[l:v] and pe X*, * “then we say that p distinguishes between g and b.
w(a, b) is the minimal length of p which distinguishes between a and b. If there
is no word which distinguishes between a and b, then we denote w(a, b)= . Espe-
cially, a=b implies w(a, b)=-c. The complexity £2(A) of A is defined by

Q(A) = min{w(a, b)la, b€[1:v),a # b).

If v=1 then Q(A)=O.

The notions of codes and precodes were introduced in {1} as tools tc describe
Moore automata constructively. The following definition is from [6, 7]. It is of
course essentially equivalent to Ad4m’s definition in [1].

Let néN. A 6-tuple D=(r, s, B, 7, ¢, ) is said to be an n-input precode 1f
the following eight postulates are fulfilled:

(A) r, sare nonnegatxve integers.

(B) B and ¢ are mappings of [2:r+s+1] into [1:r+1].
7 is a mapping of [2:r+s+1] into [1:n].
4 is a mapping of [1:r+1] into N.

(©) B(a)<a for any ac[2:r+1].

(D) For. a, be[2:r+1], if a<b then (B(a), y(a))<(B (1), (b)) in the lexicographic
order.

(E) For a€l[r+2:r+s+1], (ﬂ (a), y(a)) is the lexicographically smallest element in
((1zr+1]X[L:n])— (B(B), y(B))IbE[2:a~ 1]).

(F) For a¢2:r+1), p(@)=a.

(G) For a€[r+2:r+s+1], p(a)=1 or (B(e(a)), y(go(a)))<(ﬂ(a),y(a)) in the lexi-
cographic order.

(H) p(@)e1YU(u(b)+11bel1:a—1).

We denote u(D)=max {(u(a)lac[l:r+1]). If m=u(D) then D is said to be an
m-output precode.

It can be easily be seen that r+s=n(r+ 1) ie, s=nr+n—r. If s=nr+n—r,
then the precode is said to be a code.

Let D=(r,s,8,v, 0, 1) and D'=(", 5", B, 7, ¢’, ') be n-input precodes. If
r+s=r'+s" and f,y', ¢’, @ are extensions of §, y, ¢, p then we denote D=D’.
We denote D<D’ if D=D’ and r+s<r’+s’. If D<D’ and r’+s'=r+s+1
then we write D—<D’. '

It can easily be seen that, for any precode D, there exists a code C such that
Db=cC.

Let D=(r,s, 8,7, ¢, ) be an n-input m-output precode. Deﬁne a partial
mapping dp of [1:r+1]X X, into [1:r+1] by

op(B(a), X)) = @(a) for any a€[2:r+s+1].
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Define a_mapping Ap of [1:r+1] onto Y(!,) by
Ap(a@) = ypa for any ac[l:r+1].

Then it is easy to verify that ¥(D)=([1:r+1], X(»), ¥Y(m) Op, Ap) is a partial auto-
maton. ¥ (D) is an automaton iff D is a code.

The complexity Q(D) of a precode D is defined by
(D) = min (Q(¥(C))IC is a code such that D= C).

2.

Let n, w, t be positive integers such that n=2 and wx=2. Define an n-input
precode D=(r, s, B, y, @, p) as follows:

(1) r=4+4w~-2 and s=nr+n—r—1. .
(@ (B@b), y(2b), p(2b)) = (b, 1,2b) and (B(Qb+1),y(2b+1), p(2b+1)) =
=(b,n,2b+1) for any be[l:2t+2w—1].
(3 up(a)=a for any é€[1:3t+3w—1].
u(@) =a—w—t for any a€[3t+3w:dt+4w—1].
(4) For each a¢[r+2:r+s+1], the a-th row is determined as follows:
(a) B(a), y(a) are determined uniquely by Postulate (E).
(b) If B(a)€[2¢+2w:3¢4+3w—2]U[37+3w:44+4w—2] and y(a) =1 then
pl@)=a+l.
If (B(a),7(a)) = (3t+3w—1,1) then ¢(a)=2t+2w.
If (B(a),y(a)) = (4t+4w—1,1) then ¢(a)= 3t+3w.
© If ﬁ(a)€t2t+2w:3t+2w—l] and y(@) =n then ¢(a) =3¢+
+3w—1L. '
If B(a)e[3t+3w:4t+3w—2] and y(a)=n then ¢(a)=4t+
+4w—1. ' ] '
(d) Otherwise, ¢(a)=1:
It is easy to verify that D satisfies Postulates (A)—(H).

The state transition function and the ouiput function of the partial automa-
ton ¥(D)=([1:4t+4w—1), X(), Y (mys Op, Ap) 1s shown in the following table:
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do(a, x;)
a do(a, x DA™ 24 d " Apla
PN 1) (ER: n—1)) o(a, x,) (@)

1 2 1 3 1

2 4 1 5 2

? 6 1 7 3
2t +2w—2 4t +4w—4 i 4t +4w—3 2t+2w—2
2t+2w—1 4t+4w—-2 1 4t4-4w—1 2t+2w—1
2142w 2t42w+1 1 3t4-3w-1 2t 4+ 2w
21+?w+1 2t+2'w+2 1 3t+3w—1 2t+2w+1
3t+2w—2 3t+2w—1 i 3t+3w—1 3t+2w—2
31+2w—-1 3t+2w 1 3r+3w-1 3t+2w—1
3¢42w 342w+ 1 1 1 3t+2w
3t+;w+1 3t+2_w+2 1 1 3t+2w+1
3+2w—2 3t+3w—1 i i 3t+3w—2
3t+3w—1 2t4+2w 1 1 3t+3w—1
3143w 3t+3w+1 1 dt+4w—1 2142w
3t+§w+1 3t+3_w+2 1 4t+4w—1 2t+2w+1
at+3w—2 at+3w—1 i 4t +dw—1 3t+2w—2
4r+3w—1 4r4 3w 1 1 3t+2w-—1
4143w 4t+3w+1 1 1 3t+2w
41+3w+1 41+3w+2 1 1 314+2w+1
4t +4w—2 4t+4w—1 i 1 3t+3w—2
4t +4w—1 3t+3w 1 — 3t+3w—1

Let D'=(r,s+1, B, 7, ¢, 1) be a precode such that D <D". Then D’ is a code,
i.e., ¥ (D) is a Moore automaton. We have (B(r+s+2), y(r+s+2))=(4t+4w—1, n)
and D’ is determined only by the value ¢(r+s+2). It can easily be seen that arbi-
trary choice of @(r+s+2)€[1:4w+4t—1] makes D’ to satisfy the postulates for
codes. We shall show that ¢(r+s+2)#1 implies Q(D)=w, and ¢ (r+s+2)=1

implies Q(D)=t+w.

Case 1: ¢(r+s5s+2)#1, ie., op(dt+dw—1, x,)=1.

Let a,b€[l:4t4+4w—1] such that a<b. We have w(a, b)=0 iff Ap(a)=
=Ap(b) iff a=2t4- 2w+, b=3t+3w-tifor some i€[0:t+w—1]. Let i€[0:t+w—1].

Since

Op (2t +2w+i, x;) = 0p (3t+3w+i, x;) for any je[2:n—1],
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we have
oQ2t+2w+i, 3t+3w+i) =
= min {@(Sp (2t +2w+i, x,), 6p. (3143w +i, X))+ 1,
0(8p 2t +2w+i, x,), 6p 3t+3w+i, x))+1).

Thus we have
o@t+2w—1,4t4+3w-1) =

= min{w(3t+2w, 4t+3w)+1, 0Bt +3w—1, D+1) = 1.
o@Bt+3w—1,4t+4w—-1) =
= min (@ (2t+2w, 3t+3w)+1, o(1, 6p. (42+4w—1, x,))+1) = 1.
For ic[0:1—2],
oQt+2w+i, 3t4+3wti) =
= min{(@Q2¢+2w+i+1, 3t4+3w+i+1)+1, 0Bt +3w—1,4t+4w—1)+1) = 2.
For ic[0:w—2],
oB3t+2w+i, 41+ 3w+i) = 0(Bt+2w+i+1, 41 +3w+i+ 1)+ 1.

Hence,
o(3t+3w—2,4t+4w-2) =2,

w@Bt+3w—3,4t+4w—-3) = 3,

0 (3t+2w, 4t+3w) = w,
Consequently, Q(D')=max(0, 1,2, ..., w)=w.

Case 2: ¢(r+s+2)=1, ie., 6p(dt+4w—1, x,)=1.
Let a, b¢[1:4t+44w—1] such that a<b. Just as in Case 1, we have

w(a,b) #0 iff a=2t+2w+i, b=3t+3w+i for some ic[0:t+w—1].
w(@t+2w—1, 4t+3w—1) = min (@ (3t+2w, 41+ 3w)+1, 0Bt +2w—1, )+1) = 1.
o@t+2w+i, 4t43w+i) = 0(3t+2w+i+ 1,414 3w+i+1)+1 for any i€[0:w—-2].

We have
o@Gt+3w—1,4t4+4w—1) = 0 (2142w, 3t+3w)+1.

For ic[0:¢—2],
0 t+2w+i, 3t4-3w+i) =

= min{(@QRt+2w+i+1, 3t+3w+i+1)+1, 0o(3r+3w—1,4+4w—-1)+1) =
=min (@2t +2w+i+1, 3t+3w+i+ 1) +1, o (242w, 3t+3w)+2).
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It follows that
oGt+2w—1, 41+ 3w—1) = 1,

o(3t+2w—2,4t+3w—-2) =2,
w(3t+2w—3,4t4+3w—3) =3,

o(2t+2w, 3t+3w) = ¢,
oBt+3w—1,4t+4w—1) = t+1,
oGt+3w—2,4t+4w—-2) =142,

o(3t4+2w, 41+3w) = t+w.

Consequently, Q(D)=max{0, 1,2, ..., t+w)=1+w.

We have shown that @(r+s+2)#1 implies Q(D)=w and @(r+s+2)=1
implies Q(D)=w+t. It follows that Q(D)=min {w, w+ t)—w We have shown
the following.

Theorem 1. For any n, w, t€N with n=2 and w=2, there exist n-input pre-
codes D and D’ such that D<D’, Q(D)=w and Q(D)=t+w. 0O

In autonomous case, Problem 3 of Ad4m is solved in [8] as follows:

Proposition 1. The set

(Q(D)—Q(D)|D and D’ are 1-input precodes such that D<D’ and Q(D")< )
coincides with all nonnegative integers. O

In multiple-input case, we have the following similar result which is an immediate
consequence of Theorem 1. :

Corollary 1. For any n€N with n=2, the set
(Q(D’)—Q(D)ID and D’ are n-input precodes such that D<D’ and Q(D")< <)
coincides with all nonnegative integers. O

Consider the quotient 2(D’)/Q(D) instead of the difference Q2(D)— 2(D).
In autonomous case, we have the following result [8].

Proposition 2, The set
(Q(D")/Q(D)D and D’ are l-input precodes such that D<D’, Q(D)0 and
QD)<=
coincides with all rational numbers between 1 and 2. O

Though the quotient is bounded in autonomous case, it is unbounded in multi-
ple-input case. The following is also immediate from Theorem 1.
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Corollary 2. For any n€N with n=2, the set
(Q(D")/2(D)ID and D’ are n-input precodes such that D<D’, Q(D)#0 and
QD)<=
coincides with all rational numbers not less than 1. O

Contrary to expectation, the solution of the problem does not contribute to
our investigation, especially to the Basic Problem. If we wish to proceed further in
this line, we should make refinements of the problem, e.g., not only n but also r, s
and/or m should be taken into account.

3.

In this section, we consider a modification of our problem in the sense that,
instead of the cardinality n of the input set, the cardinality m of the output set is
taken into account. Analogous to Theorem 1, we have the following result:

Theorem 2. For any m, w, t€eN with m=2 and w=2, there exist m-output
precodes D and D’ such that D<D’, Q(D)=w, Q(D)=t+w.

Proof. Define a (2¢+2w)-input precode D=(r, s, B, 7, ¢, ) as follows:
(D) r=2+2w+m—2 and s=2r+2w)r+Q2t+2w)—r—1.
2 (B@),y@), 9@)=(a—1,1,a) for any a€[2:m—1].
3) (B(@), 7(a), p(a)) = (m—1,a—m+1,a) for any a€[m:2t+2w+m—1].
4 p@=a for any a€[l:m-—1].
u(@=m for any a€[m:2t4+2w+m-—1].
(5) For each ac[r+2,r+s+1], the a-th row is determined as follows:
(@) p(a), y(a) are determined uniquely by Postulate (E).
(b) If B(a)elm:t+w+m—-2]U[t+w+m:2t+2w+m—2] and
y(@) =1 then ¢(@)=a+l.
If (B(a),y(a)) =(t+w+m—1,1) then ¢(a)=m.
If (B(a),7(@)=Qt+2w+m~1,1) then ¢(a)=1+w+m.
(© If B(a)—-(m—2)=y(a)€[2:t+w+1] then ¢(a)= p(a).
If Bla)—(t+w+m—2)=y(@)€[2:t+w+1] then ¢(a)= B(a).
(@ I Ba)elm:t+m—1] and y(a) =2t+2w then ¢(a)=1t+w
+m—1.
If Bla)e[t+w+m:2t+w+m—2] and y(a) =2¢+2w then
¢(a@) =2t+2w+m—1.
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(e) Otherwise, p(a)=1.
Let D'=(r,s+1, B, 7, ¢, u) be a precode such that D<D’. Let
a, be[l1:2t4+ 2w+ m—1]

such that a<b. If a€[l:m—1] then Ap(a)#Ap(d) and thus w(a, b)=0. If
a€[m:2t+2w+m—1] then there exist 7, j€[0: t+w—1] such that

a=m+i or a=t+w+m+i,
b=m+j or b=t+w+m+j.
If i#j then Ap(@)=m=2p(b) and
2p:(Bp (@, x142) = Ap(@) = m # 1 = 25, (1) = Ap:(Jp: (b, X;40)-

Hence w(a, b)=1. Consequently w(a, b)=2 implies that a=m+i and b=t¢+
+w+m+i.
Similarly as in Theorem 1, we have, for any i€[0:t+w—1],

o(m+i, t+w+m+i) =
= min (@(8p. (M +i, xp), Sp- (t+w+m+i, x))+1,
o(8p(m+1i, x,), 6p (t+w+m+1i, x,))+1).

Since 8p (t+m—1, xp40,)=t+w+m—1 and Sp.(t+w+m—1, x5 ,2,,)=1, we have
o(t+m—1, t+w+m—1)=1. In a similar way as in Theorem 1, we can verify the
following:

If e(r+s+2)#1 then QD) =ow(t+m,2t+w+m)=w.

If o(r+s+2)=1 then QWD) =w(+m,2t+w+m)=t+w. O

The folloWings results are immediate from the above theorem.

Corollary 3. For any meéN with m=2, the set

{Q(D")—Q(D)|D and D’ are m-output precodes such that D< D’ and Q(D") < )
coincides with all nonnegative integers. 0O

Corollary 4. For any meN with m=2, the set

(Q(D)/Q(D)ID and D’ are m-output precodes such that D<D’, Q(D)»0 and

(D) <)

coincides with all rational numbers not less than 1. O
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An infinite hierarchy of tree transformations
in the class /2%

S. VAGgvoLGyr and Z. FULOP

Introduction

Let S={9%, DR, N DR, LNDR, #, LH, NH} where DX is the class
of all deterministic root-to-frontier tree transformations, 4 is the class of all homo-
morphism tree transformations, moreover, for both 92 and ##, their linear, non-
deleting and linear-nondeleting subclasses are denoted by prefixing them by .2, A~
and LA, respectively. Let [S] be the set of classes of tree transformations gen-
erated by S with composition o: [S]={Xjo...ofjn=1, H€S, 1=i=n}. The set
[S] was introduced and examined in [1] where several equalities and inclusions were
obtained with respect to elements of [S]. However, the question that whether [S]
is a finite or an infinite set was only raised and not answered.

In Section 2 of this paper we show that, in fact, [S] is infinite by proving that
(LN DRoN Y (LN DRoNH)"+1 for each m=]1. This infinite proper hier-
archy was already suggested by Theorem 12 of [1]. '

It is well known that A#'22 is closed under composition (proof, for example,
in [1]). Thus we have (LA DRo N H)Y" N DR for each m=1. In the second half

of Section 2 we show that the stronger proper inclusion |J (£ A PR o N H)"C
m=1

CH' DR is also valid.
The paper, apart from some simple reference to [1], is self-containing. Both
in [1] and this paper, most of the notions and notations are adopted from [2].

1. Notions and notations

For an arbitrary set ¥, we denote by Y * the free monoid generated by Y, with
empty word A. The prefix ordering = in ¥* is meant as usual: for any «, f€Y*,
a=p if and only if « is a prefix of B, that is, there exists a y€Y* such that f=ay.
The relation a<p is defined by a=pf and o=p.
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The set of nonnegative integers is denoted by N. For each nEN, [n] denotes
the set {1, ...,n}. Thus [0]=0.

By a ranked alphabet we mean an ordered pair (F,v) where F is a finite set
and v: F—N is the arity function. Elements of F are called function symbols,
more exactly, if f€F and v(f)=n then fis an n-ary function symbol. For any
nEN we put F,={f€F|v(f)=n}. Hence, for any ranked alphabet (F,v), we
have the equivalent notation F= |j F,, where F, are pairwise disjoint finite sets.

neEN
Let F=|J F, be a ranked alphabet and Y be a set, disjoint with F. Then
nEN
the set of all terms or trees over Y of type F is defined as the smallest set T:(Y)
satisfying:

(@) YSTp(Y) and

®) f(p1, ..., P)ETE(Y) whenever f¢F, and py, ..., p,€Tp(Y).

For f() we write /. If Y=0 then Tp(Y) is written as T¢.

We shall need a few of the usual functions on the elements of T(¥): for any
pETe(Y) the frontier fr(p)€Y*, the set of subtrees or subierms sub (p)& T(Y),
the paths path (p) EN* and for each m¢N the m-rank m,, (p)€N of p are defined
by induction as follows:

(@ if peY then
fr(p)=p, sub(p)={p} path(p)={}) and m,(p)=0

) if p=f(ps,...,p,) forsome neEN, feF, and p,,...,p,€Te(Y)then
fr(p) = fr () .. fr (p),
sub(p) = (U sub(p))U{p},

path (p) = {A}U {iali€[n], acpath (p,)} and

2 m,(p) if n#m .

_ Jiem
mn(p) = 1+ > m,(p) if n=m.
i€n]

We mention that rn,, (p) means the number of occurrences of the m-ary function
symbols in p. Moreover we define m (p)= 2’ o, (p).

Now let p€Tp(Y) and acpath (p). We introduce the notion of the subtree
str (p, @) and the symbol lab (p, @) of p determined by a, moreover, the two length
l¢lg of a in p in the following way:

(a) if p€Y then

str(p,0) =p, lab(p,0) =p and |af, = 0;

) if p=f(p1,...,p,) for some néEN, f€F, and p,,...,p,€Tr(Y) then «

is either A or of the form ia’ for some i€[n] and o'€path(p;). Thus

3.
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we define
_Jr if a=2
str (p, @) = {str (pi,o) if a=id,
' _[f if a=24
1ab(p, @) = {lab (g @) if o= id,
0 if a=1 and n<2,
(o], = 1 if a=1 and nx=2,
27 Nole if a=i0’ and n<2,

1+, if a=ia’ and n=2.

We note that in this latter definition [a’[, is meant in p,, We mention what the
above three functions informally mean. It is well known that p can be considered
as an ordered tree labelled by elements of FUY, moreover « can be thought of as a
path leading from the root to a node x of p. Now, str(p, ) is the subtree of p
the root of which is x, lab (p, &) is the symbol in FUY x is labelled by, finally
|of is the number of the occurrences of function symbols with arity m=2 along
the path a. We also note that o may be in path (g) for some g=p and |a}, in p
may differ from |a,] in g. However it will always be clear from the context in what
p la]y is meant.

The countably infinite set X={x;, x,, ...} of variable symbols will be kept
fix throughout this paper. The set of the first m elements x, ..., x,, of X is denoted
by X,,. The set T¢(X,,) will be written as T, ,.

T, is the linear-nondeleting subset of Tg,,: for p€Tg n, p€Ts  iff each
x; appears exactly once in p (i€[m]).

For p, g€Ty,, and i€[m], by thei product p-,g of p by ¢ we mean the tree
obtained from p by substituting each occurrence of x; in p by g¢.

Let peTg,,, and y4, ..., y,€Y. We denote by p(yy, ..., y,,) the tree obtained
from p by substituting each occurrence of x; in p by y; for each i€[m]. Of course we
have p(yla ’ym)eTF(Y)

We introduce one more definition concerning T%,,. For p€Ty, and i€[m],
the set of i paths path;(p) of p is given as follows:

(a) if p=x; for some je€[m] then
Ay if i=j
path"(”)'{ﬂ i i,
) if p=f(py, ..., p,) for some n=0, f€F, and p,, ..., p,€TF,, then
path; (p) = {jal j€[n], «€path, (p))}.

It is clear that path;(p)Spath(p), moreover path,(p) consists of all the ele-
ments of path (p) leading from the root to a terminal node of p labelled by x;.
A tree transformation 7 is defined as a subset of TpXT; where F and G are
arbitrary ranked alphabets. In this way, 7 can alternatively be considered as a rela-
tion from Ty to T§.
For the sake of convenient proofs, we introduce the concept of the extended
tree transformation. It is a subset 7 of Tp(X)X T¢(X).



156 S. Vagvolgyi and Z. Fiilop

Since (extended) tree transformations are in fact relations, for any (extended)
tree transformations 7 and o, the domain dom 7 and the composition oo of
and ¢ are defined as it is usual for relations. Moreover, for any two classes J¢; and
A, of tree transformations we put:

Aoy = {t107,|1,€4, and 1,€4;} and

= {Ji’i if n=1
Ul if > 1.
We are interested only in tree transformations which can be induced by deter-
ministic root-to-frontier tree transducers.
A deterministic root-to-frontier tree transducer (DR transducer in the sequel)
is a system
' A =(F, A4, G, P,a,) where (¢))]
(a) F and G are ranked alphabets;
(b) A, the state set of U, is a ranked alphabet consisting of l-ary function
symbols, disjoint with F, G and X;
(c) a,, the initial state of 2, is a distinguished element of 4;
(d) P is a finite set of so called rewriting rules (or simply rules) of the form

af (X1, .oy X)) > g @)
' where a€Ad, n=0, fcF, and q€T¢(AX,);
(e) different rules of P have different left-hand sides.

We mention that above and in what follows we use the following notations. If A4
is the state set of a DR transducer and T is a set of terms then AT={a(¢)|ac 4, t€T}.
Moreover, for any a€A and :¢T, a(t) is written as at.

Then it is clear that each rule (2) of P can also be written in both of the fol-
lowing two forms:

af(Xy, ..oy X)) =~ q(arx;s .. AmX;,) 3)
for some m=0, g€y, ,, a;€4 and x;€X, (j€[m]);

af(xla R xn) - q(a11x19 At a.lml X1s eees dn,_xna sers a"m,, xn) (4)

where m;=0, a; €4 (i€[n], j€[m;]) and g¢ TG,,,, (m=my+...+m,).
Next we show how U can be used to rewrite (or transform) terms of Ty to
terms of Tg. To this end, we define the relation = called direct derivation on the

set T(AT(X)) in the following manner: for p, g€ Tg(AT¢(X)), p3> q if and only
if g can be obtained from p by replacing an occurrence of a subtree of the form
af(py, ..., p,) in p by the tree §(a,p;,, ..., a,p;,) and the rule (3) is in P. The reflex-
ve-transitive closure of = is denoted by g» and called derivation. The tree trans-

-formation induced by 2 with the state a€ A is introduced as
' *
tu@ = {(p, D)IPETr, €T and ap= g},
moreover, the tree transformation 1y induced by U is meant Ty,,):

*
= {(p, )Ip€Tr, q€Tc and aop q}-
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Now we define the extended tree transformation induced by «”. To this end,
we need the following concept. Let ¢’€ Tg(AX). We say that g€ T¢(X) belongs
to ¢’ if it satisfies the following conditions:

(a) if ¢'=ax; for some acA4 and i€N then g=x;,

®) if ¢g'=glq1, ..., q,) for some n=0, g€G, and g, ..., ¢.€Tc(AX) then

q=g(q1, ..., 4,) where g; belongs to g; for each j¢[n).
Informally, we say that g belongs to ¢’ if and only if ¢ can be obtained from g” by
substituting each subtree of the form ax; of ¢’ by x;.

The extended tree transformation 74, induced by U with the state a€4 is
given as follows: for any p€Tp(X) and ¢€Ts(X), (p, 9)€1q if and only if
3¢’¢ T¢(AX) such that ap;‘& g’ and ¢ belongs to ¢g’. The extended tree transforma-

tion 4 induced by U is defined as éy,,):

We say that a tree transformation 7 can be induced by some DR transducer
A if t=7a holds.

The tree transformations which can be induced by DR transducers are in
fact partial mappings. This follows from (e) of the definition of the DR transducer.

Next we introduce some restrictions on DR transducers. We say that a DR
transducer (1) is

(a) totally defined if for each a€A and f¢F there is a rule (2) in P;

(b) linear (L) if for each rule (4) of P and i€[n), m=1;

(¢) nondeleting (N) if for each rule (4) of P and i€[n], m=1;

(d) linear-nondeleting (LN) if it is linear and nondeleting;

(e) uniform (U) if for each rule (4) of P and i€[n], a4y=...=ay, .

It is obvious that if a DR transducer (1) is a UDR transducer then each rule
of P can also be written in the form af(x,, ..., x,)~g(a,x;, ..., a,x,) for some
gcTg,, and ay, ..., a,€A. Any LDR transducer is a UDR transducer, too.

A DR transducer (1) is an H transducer if it is totally defined and has only
one state, i.e., A={a,} holds. The LH, NH and LNH subclasses of the class of
H transducers are defined in a naturai way. Each H transducer is a UDR trans-
ducer, by definition.

The class of all tree transformations which can be induced by K transducers
is denoted by 2 where K stands for any of DR, LDR, NDR, LNDR, UDR, H,
LH, NH and LNH.

2. The problems and the solutions

Following[1], let S consist of 24, 3# and their linear, nondeleting and linear non-
deleting subclasses, that is, let S={9%, LDR, N DR, LN DR, K, LK, NH}.
Moreover, define [S] as the set of all the classes of tree transformations which can be
obtained as compositions of elements of S: [S]={Hjo...0HIn=1, H€S, 1=i=n}.

In [1), it was raised the problem that whether [S] is an infinite set. We shall prove
that [S] is infinite by showing that [S] contains an infinite proper hierarchy of classes
of tree transformations. Namely, we prove, in Theorem 3, that (LA DRo N H)"C
C(LN DRoNH)"+! for each m=1.

In connection with this hierarchy one more problem can be raised. By defini-
tion, LN DR and NH# are subclasses of /DR, moreover it is not difficult to
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see that /D2 is closed under composition (a proof is given, e.g., in [1]). These,
together with the infinite proper hierarchy mentioned above yield the proper inclusion
(BN DRoN HY " CN DR for each m=1. In the second half of this section we

show that the proper inclusion U (LN DRONFH) C N DR also holds. Namely,

in Lemma 17; we give an NDR transducer A for which there does not exist m
with ta€(L N DRo N H)™.

We set out to solve the first problem.

First we make a trivial observation on UNDR transducers. Let A=
=(F, A, G, P, a,) be a UNDR transducer and the rule af (x,, ..., x,)~q(a; x1, ..., a,x,)
in P. Then for each j€[n] and y€path;(g) the condition

if n=>1 then |y;=1

holds, since from [y],=0 it would follow that U is a deleting DR transducer. Our
first Lemma is essentially a consequence of this observation.

Lemma 1. Let A=(F, A4, G, P,a,) be a UNDR transducer, moreover, m=0,
PETe 1y 9€T6,, and a€A4 be such that (p, g)€ta. Then
(a) for each j¢[m] and acpath;(p) there exists a fcpath;(q) for which
|el.=Bl> and
(b) for each j€[m] and acpath;(q) there exists a pcpath; (p) with |fl,=
=|af,.

Proof. We prove only the part (a) of our statement since (b), as a converse
of (a), can be shown in a similar way. We follow an induction on p.

If p=x; for some i€[m] then g=x; hence (a) trivially holds.

Now let p=f(ps, ..., p,) for some n=0, fcF, and py, ..., p,.€Tp,,. By our
supposition, there exists a rule af(xy, ..., x,)—~q(a;x;, ..., a,x,) in P and there
are gy, ..., anTG m for Wthh (pu q:)etm(a) (IE[n]) and q= 61(41, ceey qn) Slnce
the case n=0 is again trivial we may suppose that n=1. Then a=ix’ for some
i€[n] and a’€path; (p,).

Let y be an arbitrary element of path, (g), which is not empty since U is non-
deleting, and let p’€path; (g;) be such that |o'|,=|p’|,. Put f=yp. We mention
that B exists because of the induction hypothesis and, obviously, Bé&path; (g).
Now we distinguish the cases n=1 and n>1.

If n=1 then

laly =[]y = |o']s = |]5 = [Ple +1Bls = yB']2 = 1Bl
On the other hand, in the case n=1, by our above note on [y], we have
lolz = tio'ls = 1+1e’ly = [yla+1B'le = 178l = |Bls-
The proof is complete. [J

Now we recall what we mean by the syntactic composition of two DR trans-
ducers. The exact definition can be found in [1].

Let WA,=(F° 4,, FY, P;,a,) and U,=(F, 4,, F? P,,a,) be two arbitrary
DR transducers. Their syntactic composition is the DR transducer W, o U,=
—(F A1 X Ay; F?, P, (ay, a;)) where P is constructed in the following way. When-
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ever bf(xy, ..., X,)~q(byxy,, ..., byx;)) isarule in P, and it holds that ccjg:j:»
9=T>q(c11x1, cer €1, X1 +0s CXms 2 Cm, x,) we put the rule (b, c)f(x, -, x,,)_’.
~q((B1, €1)%15 - (Bys €1, Yty -++> B Cmy) Xis -+ (B €, )%3,.) in P. Tt is well known
that this construction yields the application of U, after A, in a *“step
by step” way. A very useful property of the syntactic composition is the
following: if A, is an NDR transducer then 7g .u,=7y,07a, (for a proof, see
Lemma 3 in [1]).

We shall need the generalisation of the syntactic composition and the above
equality for any m=2. Therefore we make the following definition.

Definition 1. Let m=2 and let U; be a DR transducer for each i€[m)]. By the
syntactic composition of 2, ..., A, we mean the DR transducer defined above if
m=2 and the DR transducer (Wo...0A,,_,)o A, if m=>2.

Then, using Lemma 3 of [1] as a basis, the following statement can be verified
by an induction ‘on m: if s, ..., A, are NDR transducers then 7Ty, ..ou, =
=‘Cul0 . .O‘tgm.

The next lemma says that this equality is also valid for extended tree trans-
formations. '

Lemma 2. Let m=2 and let WA,=(F-%, 4,, F}, P;,a;) be a DR transducer
for each i€[m] such that A, ..., A, are NDR transducers. Then 14 ,...00, =
=Tg,0...0T .

Proof. Induction on m. For m=2 it is enough to show that for each n=0,
PETpo,ns € T2, 0, b1€ A, and by€A, the following equivalence holds:

(P, Q)€ Ta 0u, b € Are€Te (P, N€Ta,6p 2nd (1, 9)ETH,0y)-

This can be verified by an induction on p. The detailed proof is omitted.
Finally, the induction step of m is shown by the following computation

’ ’ ’ ’ ’ ’
Tdyo...0%,, = T(Wo...08,_Jod, = Tdo..om, OTy = TgO...0Ty . [
At this point we declare our main theorem.

Theorem 3. For any m=2 and 1=k<m (LN DRo N H)Y (LN DRo NH)",

Proof. Because the complete proof is rather long we structured it in the fol-
lowing way. First we give a tree transformation t,, which is in (& ' @%0 A )™,
Then we present Lemma 4 which concers any 4 2% transducer which induces z,,.
After this we suppose that 7,6(LN DRoN H) for some k=m and, during a
series of lemmas from 5 to 14, show, in Lemma 14, that k<m is impossible.

Take an arbitrary integer m=2 and keep it fixed in the rest of the proof of
this theorem. To define 7,, we introduce an LNDR transducer U« and an NH trans-
ducer B as follows.

Let the LNDR transducer U=(F, {a, d}, F’, P, a) be determined by the fol-
lowing conditions:

(@) F=F,URUF,, F;={%)}, F,={f} and F;={g}; .
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(b) F'=FUFUF;, Fi={#}, F;={f2,f:} and Fg={gs};
(c) P consists of the rules (i)—(vi) listed below
(i) as —~ %
(i) afy(xy, xp)—~f7 (dxy, dxs)
(iil) ags(xy, X2, X3)—~ ga(dxy, ax,, dx,)
C(iv) di—~ #
v) dfy(x1, x9)—fo(dxy, dx)
(i) dgs(xy, x5, X5)~ g5(dxy, dx,, dx;).

Moreover, introduce the NH transducer B=(F’, {b}, F, P’,b) with P’ con-
taining the following rules:

() b#~ #

(i) bfy (x5, X2)— ga(bx,, bxy, bxy)
(iii) bfa(x1, x2)—fa(bx;, bxy)
(iv) bgs(xy, Xa, x3)— g3(bxy, bXs, bxs).

1t is not difficult to see how U and after that B works on a tree p€Tp. First
9, with its state a€ 4, searches for the first occurrence of f; on the path of p leading
along the “middle branches” of a (possibly empty) sequence of g;’s and if it is found
then rewrites it to f; producing a tree p’€Tp.. Any other symbol of p stays as it
was. Then B looks for this f; in p” and duplicates the subtree on the first branch of
/2 by substituting f; by g;. The other symbols of p” remain unchanged.

We put 7,=(tq07g)". Of course, 1,6(FLANDRoN H)".

Now, for each i=1, we define a pair of trees P;, Q;€ T, Tecursively as
follows:

(@) P, =fa(x2,x), Q1 = 8a(x2, X2, X1),
(b) P, =1, (Pi—l(xz’ s Xig1)s xl)’ Qi = ga(Pi—1(x2, cors Xip1)s Qic1 (X5 -0y Xig1),
x) if i=1.

To make it clearer, P, and 0, are visualized in Fig. 1.
Let us introduce the notation 7,,=(t4073)™ By the definitions of U and B,
it can easily be verified that (P,, Q,)€t,, moreover, that for each 1, ..., 1,,,,€T¢

it holds
(Pm(tn voos bt 1)s Oml(trs o tm+1))57m- ®)

Lemma 4. Let 8=(F,C, F, P”, c;) be an NDR transducer with to=1,. Then
we have (P,, Q,)€Te. .
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X,
mi1 Xy Xm+1 Xm Xm+1 Xm Xmi1 Xm Xm+1l Xm Xmsy Xm+1

Xm
fz/xm-x Lo ¥ Zn-1 £l Xn-r fi}f Xe-1f,
&
Xm-1
2V Fmes Lo Fm=2’ L Xm-z folf Xme2
/ /17
A
f/

& O

Figure 1.

Proof. First we note that P,c€dom 7¢ since, among others,
P,(#, ..., #)edom 1, = dom 1
thus (P,, R,) must be in 73 for some R, €Tg i1 It is obvious that R, can be

n, times n,, 4+ times
written in the form R, (X1, ...s X1sec0s X1 +oos Xmsq) fOr some nm=1 (i€[m-+1]),
R,.€ T, where n=n,+...+n,.,. Then it follows that for each t,, ..., #,,.€ Ty the
tree rg(P (t1,---5tm+1)) can be writtenin theform R, (#y,, ... s bmatysenstmes, )
where for each i€[m-+1] and j€[n] (4 t,j)Erg(ci, for some ¢;€C. Using thése
notatlons we have that for each 1, ..., 1,416 Tr

Qm(tl’ cery m+1) - m(tlp veey tlnla RERF] tm+11: seey tm+1,,m+l)°

We shall use this equality under different choices of ¢, ..., ¢,,; in the sequel of

this proof.
Now suppose that Q,#R,. This means that for some a€path(Q,)N

Npath (R,,), 1ab(Q,,, ®)#=lab (R,,, @). Then four different cases are possible, each
of which yields a contradiction:
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(a) lab(Q,,, ®)=f, lab(R,, x)=g for some f, g¢ F such that f>g. But then
f=1ab(Q,, ®)=1ab(Q, (3, ..., #),a)=lab(R,(#,, ..., #1,5 s Fmazgs oo
os Fmas, s a) =lab(R,,a)=g
which is impossible.
(b) 1ab(Q,,, )=x;, lab(R,,, ®)=g for some i€[m+1] and g€F. Now, on
the one hand g= #, by #=1ab(Q,(#, ..., #), ®)=lab(R,(#y,, ..., 1, 5 e
Fmatys oo Fmst, s «)=lab (R,, ®)=g. On the other hand, for any €7}

i— th
t =1ab(Qn(3, ..s by .oy #), ) =
= lab(ﬁm(#ll, veny #1”1’ reey ti1’ reey tn‘, ceey :H:m-i-ll’ cery #m+1"m+1)’ a) =

=lab(R,,a) =g = ¥,
a contradiction.

(c) lab (Q,,, ©)=f, lab (R,,, x)=x; for some SEF and i€[m+1]. Then it can
be seen from the definition of Q,, (see Fig. 1) that in this case str (Q,,, @) contains
at least one x; with j=i whatever i be. But then for any 7€T} it holds that ¢ is a

th
subtree of str (Q,(3, ...J .» %), ). It also holds that

Jj—th
St Qs (35 e by ooy #), ) =
= Str(R_m(#l‘, ey #1" s tjl.’ aaey ""J aey #m+11’ eeey #m+l"m+1)’ a) = 4

for some /¢[n;]. Contradiction since #; does not depend on ¢ chosen arbitrarily.
(d) lab (Q,,, @)=x;, lab (R,, ®)=x; for some i,jc[m+1] such that i) Let
t be an arbitrary element of T with r (t)=0. We have that

j—th
=1ab(Qn(3#, ..n ty ..y #),0) =
= lab (R, (#1,, -+ Fps oo s oes Ly s vovs Fmadgs ooes ity LD @) =t

for some I€[n;], moreover (¢, “)Erg(c ) for some c;€C. But 2 is an NDR trans-
ducer hence rn (;)=0 which is agam impossible. [J

Let k=m and assume that 7,6 (LN DRo N 2#)*. This means in a more detailed
form that for each i€[2k] there exists a DR transducer U;=(F'~%, 4;, F’, P,, a;)
such that the following conditions hold

(a) F*=F*=F,

(b) if i is odd then UA; is an LNDR transducer 6)

{c) if i is even then A; is an NH transducer

(d) 7a,0...0Tq, =Tp.
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Since each ?; is an NDR transducer too, cbmbining Lemmas 2 and 4 we
have that

(P Om)E€T0,0 ...0Ta,, M

or in other words, for each i€[2k] there exists a pair of trees 7;_;€Tpt-1, 41 and
ri€Tr mey for which ry=P,, ry,=0, and (r;_;,r)€tq,. In fact, (7) is the rela-
tion which leads us to a contradiction in Lemma 14.

Lemma 5. For each i€[2k] it holds that rn, (r;—;)=0, that is, r,_; does not
contain any symbol of arity O.

Proof. We observe that if g (r;_,)0 then rn, (r;)#0 since %, is an NDR
transducer. Now if for some i€[2k] rn, (r;_)20 then we obtain that rn, (ry)#0
which, by the definition of ry, is a contradiction. 3

Next we make a remark on the paths of r, and ry; leading to xjs (j€[m+1]).
Namely, we observe that whenever j€[m-+1] and « is an element of either path; (ry)
or path; (ry), by the definition of r, and ry, we have

_fi if jem]
lo‘12—{m if j=m+l. ®

This can easily be read from Figure 1.

Lemma 6. For each i€[2k], jé[m+1] and a€path;(r;~y), |a|; is the same
as in (8).

Proof. By part (a) of Lemma 1, for each a€path;(r;_,) there exists a
pepath; (r) with |a);=]pl.. Hence, if for some i€[2k] je[m+1] and a€path; (r;_,),
|el,=j when jé[m] and |a|,>m when j=m-+1 holds then we obtain that for
some fe€path; (ry), |Ble>j if jé[m] and |Bl;=>m if j=m+1. This, however,
contradicts (8).

In a similar way, using part (b) of Lemma 1, the condition |x|,<j if j€[m]
and |a|,<m if j=m+1 yields the existence of a f€path; (r,) with the same prop-
erty as « has, contradicting again (8). O

Lemma 7. Let i€[2k] and r;{¢Tg(4;X,,4+,) be such that
* 7’
a;Ti-1 ?E Ti.

Suppose that the rule cf(xy, ..., x,)~q(c1 X1, ...;¢,X,) was applied in the above
derivation, where fcF,~! for some n=l, ¢, ¢, ...,c,€4; and g€Ty ,. Then for
each j€[n] and ycpath;(g) it holds

7], = {0 if n=1,
=11 if n>1.
(We mention that r; belongs torf.)

Proof. By the conditions of our lemma, there exist the terms  §;_1€ Tri-1 40,
By woes L€ Tpt-1 s, SE€Tpt mee and Gy, oovs §€ Tht, 1 such that each of the fol-
lowing conditions is satisfied.
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(a) s;_, contains exactly one occurrence of x,,,,,
® rici=Sic1 mee Sty s 1),
(C) = si‘m+2‘1(‘h, sery qn):

d (31—1,51)6741,, (fp‘Ij)ET;J,(c,) (je).

Let us suppose that for some j€[n] and y€path;(q) |yl violates the condi-
tion stated by our lemma. By Lemma 5 and (a) we can choose an /€[m+1] such
that for some a€path;(r;,—) o can be written in the form «=a, ja, where
oy €path,, o (5;_y) and a,€ path, (¢;). Moreover, by Lemma 1, there exist f,€ path,,, ,(5;)
and f.€path;(g;) with |oy[,=[Bil. and |ayo=|Bsl.. Letting B=Pp17B. we obvi-
ously have that S€path, (r).

First consider the case n=1. By our indirect assumption, |y|;=>0, from which
we have

[ale = oy jaiale = {0l +ittale < {Bale+iVie+1Bela = |B17Bel2 = 1Bi2

contradicting Lemma 6. ‘

Now assume that n>1: In this case |y],=0 is impossible by our observa-
tion made at the beginning of this section hence the indirect assumption is [p],> 1.
But then

el = log jorely = lotalz+ 1+ [atelo < |Bale+ ¥l2+1Bele = |B17Bel = 1Bles
a contradiction. O
Lemma 8. For each i€[2k] and n=4, m, (r;_,)=0.
Proof. Suppose it does not hold. Let i€[2k] be the greatest integer for which
rn, (r;_;)=>0 for some n=4. Then in the derivation a,-r,-_I;*w{ (ri€ Tr(4: X0 40)

it has to be applied at least one rule ¢f(x;; ..., x,)—>q(cxy, ..., 'cx,,) for which n=4
and m,; (g)=0 for each /=4. Since U; is an NDR transducer it can be possible
only if |yl;>1 for some j¢[n] and y€path;(g). This is a contradiction, by
Lemma 7. O

At this point of the proof we can declare that for each i€[2k], every function
symbol of r;_, is in Fi-'UFi-*UFi-*,

Lemma 9. Let i€[2k] and r/€ Tn(A4;X,,,) be such that
. .
a‘ri_.1=m>' T

Suppose that in the above derivation it was applied a rule ¢f(x,, ..., x,)~g where
JEFi-1 n=1, ccA; and q€Tr(A;X,). Then n€[3] and ¢ can be written in one of
the following three forms, for some suitable ug, 4, u,, us€ T,y €1, €25 C5€4,;, € F}

and heF}:
(a) if n=1 then g = u(e;xy),
(b) if n =2 then either
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q= uo(g (u(erx1,)s uz(czxi,))) where {i;, i} =[2] or )]

q= uo(h(“1(‘-'1xi1), up(CaX;,)s ua(caxia))) where

{ila iz, i3} = [2]a

(¢) if n =73 then

q= “o(h(lh(cl-"?i1 ’ uz(czxi,), ua(caxi,))) with

{ils i23 13} = [3]'
(We note that in the notation T ,, F} is considered a ranked alphabet. Thus the con-
dition ;€T ; means that every function symbol of u; is in Fi (j=0,1,2,3).

' Fi,1 J

Proof. Immediate from Lemmas 5, 7, 8 and from the fact that U; is an NDR
transducer. [

Definition. We say that for some i€[2k] r;_, has property (10) if
m41? f(pl, Dz, p3)esub (ri—l)
and 10

(a) for some fEFi™' and p,,ps, Ps€Tpi-1

(b) for each j€[3], n; >0 where n;=max {|al,|acpath,(p)), I€[m+1]}.
Lemma 10. There exists no i€[2k] for which r;_; has property (10).

\
Proof. 1t is enough to show that whenever r;_, has property (10) then so does r;.
This proves our lemma since ry, by its definition, does not have property (10).
To this end, let us suppose that r;_, has property (10) (i€[2k]). Then, from
Lemma 9, it follows that for some suitable s _;€Tpi-1mizs Si€TF1, mezs

Up, Uy, Us, UsE TF{,I »Cy C1, Co, C3€4; and gy, ¢o, gs€ Tpt, 4y the following rela-
tions hold:

@) -1 = Si—1* m+2S(P1, Des P2)s

(B) 1y =5i" ms2 uo(h(ul(‘h), ACAN ua(%))),

©) of(x1, Xz, x3) ~ uo(h (“1(C1xi1 s Us(C2x;), u3(c3xi3)))€Pi’ {i1, iz, ia}=[3],
(@) (si-1» $DETa,, (Pyy» 4)€ETw,cp for each je€[3].

Moreover, for each j€[3], there exist /;,€[m+1] and o;cpath; (p;) with |oyl,=n;,.
By Lemma 1, there _exist B;€path,, (g;) such that |o;l,=|B;ls- This shows that 7,
has property (10) Wth h("l(Ql): u:(q2), ua(Qa))- O

Definition. Let i€[2k]. We say that r,_, has property (11) if
. (a) for some f€Fj~' and py, Pa; Pa€Tr-1,m+15 f(P1, Pos Pa)ESUD (ri_1) 1
an

(b) there exists exactly one j€[3] with n;->0 where n; is the same as in the
definition of property (10).

Lemma 11. There exist no i€[2k] such that r;_; has property (11).
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Proof. Since ry does not have property (11), we can use the same technique
as in the proof of Lemma 10. Assume that r;_; has property (11). Then, using the
notations of Lemma 10, we again have (a)—(d) as in Lemma 10 and, without loss of
generality, may suppose that [o4],=>0, [o]s=]as],=0 or, in other words,
Piy» Pi,€ T2,y Hence, from Lemmas 1 and 9 it follows that [B,[,=>0 and

92> 9s€ Trt, 1y, meaning that r; has property (11). O

We shall need one further property.

Definition. We say that for some i€[2k], r;_, has property (12) if there exist
o, fepath (r;_,) satisfying the following conditions:
(@ a%pand B£o,
(b) str(r;_1, @) = f(p1, P2, p5) for some f€FiY,
Py Pes PsETpi-n | (12)

© str(ri_1, B =1 (Pl,Pza p3) for some f'€ Fi~Y,
Pis P2, P3€TF- o
Lemma 12. There exist no i€[2k] for which r;_; has property (12).

Proof. If r;_, has property (12) then, by Lemma 9, so does r;. This proves our
lemma since r,, does not have property (12). 0O

Lemma 13. Let i€[2k] be an odd integer. Then rn, (r;_,)=rn, (r;).

Proof. It obviously follows from Lemma 9 that rmn, (r,_1)<m3 (r;). Let us
assume that rng (7;_,)<rng (r;). Then in the derivation ag;r,_ 1=> F (i€ Tp(4; Xppi1))

it has to be apphed at least one rule of the form (9). However this is impossible
since, for odd 7, A, is an LNDR transducer. [

Lemma 14. k=m.

Proof. On the contrary; assume that k<m: Then, since 1y, (r,)=0 'and
my (rg)=m, it follows from Lemma 13 that for some even integer i€[2k], rn, (r;_;)=
=rn, (r;)— 2. It means that there exist «, f€path (r;_;) such that a=p, str (r;_,, €)=
—f(.plap2) str (rl—19 B)_f’(.plspz) for some ff E 2 s P;’PJETF‘ Im+1 (]6[2])
moreover, in the derivation g; r‘_1=> r{ (r, ETp(A; X, 4 1)) both f and f” were

rewritten by applying a rule of the form (9).

First we claim that either a<pf or f<a. Really, from a<4f; f«« and ax=p
it would follow that r; has property (12) contradicting Lemma 12,

Suppose that a< /3 and that the rule (9) was applied to rewrite f'in the deriva-
tion g r,__1=> r;. Then, without loss of generality, we may assume that the fol-

lowing relatlons hold for some suitable s;_;, ;1€ Tri-1,ms5, S€ Thi,msz and
q1s 92> 95€ TP m+1’
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(@) 7121 = Si~1" m+2 f(D1, Po)s
(®) P = timy v w2 f(PL, DD,
© ri=s- m+2u0(h (11(q0), u2(go), ua(‘]a))),
(d) (Si-1> )E€Tw,» (P1y» 4;)€ 70, for each je[3].
Let us introduce the following notations:
= max (s a€pathy (p,) for some Ie[m+1]} (jeL2D,
n; = max {la|;la€path, (g;) for some I€[m+1]} (j€l3)).

We know, by (b), that m,>0. Moreover m,=0 since from m,>0 it would
follow, by (d) and Lemma 1, that n;>0, n,>0 and n;=>0. This, however would
mean that r; has property (10) which is impossible by Lemma 10. Hence we have
PzETFg'l,mH'

We also know, by (9), that {i, iy, i3}=[2] which means that ; duplicates
either p, or p,. We show that both cases are impossible.

First let us suppose that 1 appears once and 2 appears twice in the sequence
iy, iy, i3. Then we obtain, by Lemmas 1 and 9, that for exactly one j€[3], n;>0,
contradicting Lemma 11.

Next assume that 1 appears twice and 2 appears once in the sequence 7, &, i,.
But then, since f* was also rewritten by a rule of type (9) we have that r; has prop-
erty (12) yielding again a contradiction, by Lemma 12.

Hence we have k=m. O

With this we also completed the proof of Theorem 3. O

Now we present Theorem 3 in an alternative form. It is not difficult to see that
LN DRON H =UN DR. Really, for any LNDR transducer A and NH trans-
ducer B, by Lemma 3 of [1], Tu.s=1y07s and it can easily be verified that in this
case AoB is a UNDR transducer. Conversely, given a UNDR transducer £,
with the help of the usual relabeling technique (see, for example, Lemma 3.1 in [2],
pp. 155) we can construct an LNDR transducer % and an NH transducer 8B with
To=1907y. Thus Theorem 3 can be given in the following form as well

Theorem 15. For any m=1, UN DR"CUN DR™+1,
The first problem, presented at the beginning of this sectxon is answered by

Theorem 16. [S] is an infinite set.

Proof. Immediately follows from Theorem 3. O ]
Now we deal with the second problem. The following lemma can be proved.

Lemma 17. There exists an NDR transducer A=(F, {a, b}, F’, P, a) such that
1w (LN DRo N H) for any k=1.

4 Acta Cybernetica VIII/2
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Proof. Let A be determined by the following conditions:
(@) F= F,UF,, F,= {#}, F.= {3},
(b) F'=FUF;UF;, Fo={%}, F;={f}, F;={gs}
(c) P is the set of the rules;
() a% —~ #, b# - i, .
(i) af(x1,s x2) = galbxy, axy, bxy), bfa(x1, x3) = fo(bx1, bxy).
Let P, and Q,, be defined in the same way as in the proof of Theorem 3. 1t is

not difficult to verify that for each m=1, (P,, Q,)€ .
Moreover, let Q,, be written in the form

m+1 times

O (X105 Xy Xoy coey Xmi1s ooos Xmsr) Where Q,.€Tp, (n=1+2+..+m+1).

Then we can say that for any 7, ..., 1,,4,€TF

m times

—_ e pmmn, ,
(Pm(t19 s tm+])a Qm(tla t2’ t2, (] tm+1, st tm+1’ tm+1))€‘rﬁl
holds where ¢, ,;=7u(f,+1). Using this notation, the following lemma can be
proved in a similar way as Lemma 4. Therefore we omit the proof.

Lemma 18. If £ is an NDR transducer with tq=7 then for each m=1
(P,, 0)ete holds. O

Now we can complete the proof of Lemma 17. Suppose that
Tu€(LN DRo N H)Y

for some k=1. Then for each i€[2k] there exists a DR transducer ;=
=(F'-%, A,, F', P;, a;) with properties (a)—(c) of (6) and Ty=1Ty,0...0Tq,,. Let
m be chosen such that k<m. It follows from Lemmas 2 and 18 that
(P> Om)€19,0...07q, . However, if we follow the proof of Theorem 3 from (7)
then we see in Lemma 14 that this is a contradiction. This ends the proof of
Lemma 17. O

The last theorem is an immediate consequence of Lemma 17.

_ Theorem 19. |J (LN DRoN H)C N DR.
k=1
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Evaluated grammars

ALEXANDR MEDUNA

1. Introduction

|

Mechanisms which regulate the application of the rules belong to the most
important devices in order to enlarge the generative capacity of context free gram-
mars. A common idea is that not every derivation leading from the start symbol
to a terminal word is acceptable, but there is a control device which lets through
acceptable derivations only. For instance, an application of some production deter-
mines which productions are applicable in the next step (this is called a programmed
grammar), or some productions can never be applied if any other applicable (an
ordered grammar). In a matrix grammar one has to apply only certain previously
specified strings of productions or, more generally, the string of productions cor-
responding to a derivation must belong to a set of previously specified strings (a
grammar with a control set) — see [3].

In this paper, the notion of evaluated grammar is introduced. The derivation
process in this generative mechanism is regulated by a certain evaluation of some
symbols occurring in sentential forms.

We believe that the introduction of the new type of grammar with a restric-
tion in derivation introduced here is very useful because of three reasons:
(i) evaluated grammars represent a simple and very natural extension of con-
text-free grammars;

(i) evaluated grammars are considerably more powerful than context-free

grammars;

(iii) some classes of languages generated by parallel rewriting systems (e.g.

EOL languages) can be characterized by evaluated grammars in anatural way.

2. Preliminaries

We introduce here only briefly the notions needed in this paper. For a more
detailed discussion, as well as for background material and motivation, the reader
is referred to [2, 3].

49
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Let « be a word over an alphabet X. The alphabet of «, alph «, is the set of all
symbols (from X) that appear at least once in o.

A context free grammar is quadruple G=(Z, P, S, 4) where, as usual, X is a
finite alphabet, 4S X is the terminal alphabet and X\ 4 is the nonterminal alpha-
bet, PC(IN\4)XZ* is a finite set of productions, where a production (4, a) is
usually written as A—a, and Sin 2\ 4 is the start symbol. For arbitrary words
x, y€Z* and production A-o we write xAy=xap, and denote the reflexive,
transitive closure of = by =* The language generated by G, denoted L(G),
is defined by L(G)={x€4*: S=*x}.

A context free grammar G=(Z, P, S, 4) is called regular if every production
A—a from P satisfies acA(2\4)U 4.

An ETOL system G consits of m+3(m= 1) components G=(Z, P,, ..., P,,, S, 4)
where X, 4, S are defined identically as for context free grammars, and where every
P; is a finite subset of XX X* such that for every a€Z at least one pair (a, o)
occurs in P, The pairs in P; are again called productions and usually written as
a—a. For an arbitrary word x=a,4a,...q,, a;¢Z, and productions a,—ay, ...,a,—~>%,
of the same set P; we wrlte a,8,...a,=u,0,...0, and denote the reflexive, tran-
sitive closure of = by =*. The language generated by G, L(G), is defined by L(G)—
={x€4*: S=*x}. An ETOL system with a single set of productions is called EOL
system.

For n>0, an n-parallel right linear grammar (see [1]) is a quintuple
G=(Z, P, S, 4, n) where X, 4, S are defined identically as for context free grammars,
and PS(Z\(4U{SHX(A*(Z\(4U{SP)U4)U{SIx (4*U(E\(AU{S))) is a
finite set of rules, where a production (4, «) is usually written as A—a. The yield
relation is defined as follows: for x,y€X* x=y if and only if either
x=S and S-ypeP or x=y,X;...3,X, and y=y;x;...y,x,, where y,€4* x;¢
641*(2’\({S}UA))UA+ XQZ\A and X;~x€P, l=i=n. The relation = can
be extended to give =* as above. The notion of the language generated by G
can be introduced just as for context free grammars. (An n-parallel right linear
grammar G is in normal form if

G=UUKU..UK,U{S}, B S, 4, n),
S is not in AUK,U...UK,, K; are mutually disjoint nonterminal sets, if
S_’Xl...X"EP and Xl---XnE(KIU ...UK")* then XiEKi’ léién, and ile-’yYJE P,
X€K,; and Y;€K; then i=j)
The families of languages generated by context free, regular and n-parallel
right linear grammars are denoted by £ (CF), Z(RG) and Z(n—PRL), respec-
tively. Let Z(PRL)= U & (i—PRL). Families of languages generated by ETOL

systems, ETOL systems of finite index (see [2]) and EOL systems are denoted by
ZL(ETOL), Lun(ETOL) and Z(EOL), respectively.

3. Definition of evaluated grammars

Intuitively, an evaluated grammar is very much like a context free grammar.
However, some symbols (including terminals) in a given sentential form of an eval-
uated grammar can have a certain value associated (a non-negative integer). In
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one derivation step either a nonterminal without associated value in a usual “con-
text free” way or a nonterminal with the least value that occurs in the given sen-
tential form is rewritten. In the latter case the nonterminal is rewritten again in a
usual way but, in addition new evaluation is assigned to apriori specified (on the
right side of the rule applied) symbols.

Formally, let N be the set of non-negative integers and let X be an alphabet
We denote members of ¥=XXN by a;, where gisin 2 and i is in N, then in a
natural way we can define V'*. Define the letter-to-letter homomorphism v: (VU Z)*—~
—X* by v(ay)=a foralla;yin ¥ and v(a)=a for all acZ. An evaluated grammar,
EG, is a construct G=(Z, P, S, A) where AC X is a terminal alphabet, PC (Z\A4)X
XWFUZX)* is a finite set of productions, where (4, )€ P is usually written as
A—~a, and S€X\4 is a start symbol. For all «, fe(FUZ)* we write a=p
(or simply a=p if G is understood) if f=o;px, for some «;,0,€(FUZ)* and
either y€2*, a=a, Aoy and A—y€P or a=a; Ao, for some AyEV,

Y= 5OBl(i+k )6 n(,+k )6n’A -~ Bl(k ) 61 "(kn) 6n€P

where §;€2*, B 0, J(;+k NS 4 (ie. BjcZ, i, ki¢N), O0=j=n for some n=0
(where n=0 implies y=8, and A—06,£P) and i=m for every X,€alph
oy, V. The language generated by G, L(G), is defined by L(G)= {v(x): v(x)€4*
and Sgy=*x} where =% is the transitive,reflexive closure of =.

Now we introduce some special cases of evaluated grammars. Let G=(Z, P S, 4)
be an EG and let n be a positive integer. We say that G is n-regular if it has the fol-
lowing properties:

(1) if S—acP then v{x)=2X; .. X,
with X;eZ\(4U{S})), 1=i=n;
2) if A—~acP and A4S then

p(@EA(ENAU{S})U4.

We say that the EG G is regular, RGEG, if it is n-regular for some positive integer n.
We say that an EG G is binary, BEG, if

PS CN\DHX((dX{0PU(EN\)x{1})U 4)~
A binary regular EG (i.e. an EG which is as regular, as binary) will be denoted by
BRGEG.
We use £ (E), £(RGE), Z(BE) and Z(BRGE) to denote the families of
languages generated by evaluated, regular evaluated, binary evaluated and binary
regular evalvated grammars, respectively.

4. Examples

We now consider some examples to give insight into evaluated grammars. We
usually define evalnated grammars by simply listing their productions in Backus-
Naur form. In this case we use S to denote the start symbol, early upper case Roman
letters to denote nonterminals and early lower case Roman letters to denote ter-
minals.
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Example 1. Let
G,: S~ AyBayCpuy; A~ adpylag;
B — bB,lb,; C — cCpley
be a BRGEG. Then, e.g., for the word aabbcc there exists a derivation in G:
S = 4@y Bay Cay = a4y By Cay = a4 @ bBey Coy =
= aA@bBycCy = aA g bbe cCpy =
and thus we get = aA)bbyccyy = aaybbyce,
v(aaybbsyceny) = aabbcc.
Clearly, G generates a well-known context-sensitive language:
| L(G) = {a"b"c": n=1}.
Example 2. Consider the RGEG
Gy: S > AyBuyAwy; A~ adglagy;
B — bB3)|b, Clbyy; C — belb.
The reader can easily check that
L(Gy) = {a*b'd*: 1=k = 1}.
It is well-known (see [2]) that L(G,) is not an EOL language.

Example 3. Let
G3: S - S(l)S(l)la(o)

L(Gy)={a*": n=1}

be a BEG. It is not difficult to show that which is not an ETOL language of finite
index (see [2]).

5. Generating power of evaluated grammars

From the definition of an EG it is easy to see that every context free language
can be obtained as the language of some EG. Moreover, from examples in the pre-
vious section it follows that the class of context free languages is properly con-
tained in .#(E). The purpose of this section is to show that #(E) is included in
Z(ETOL).

Theorem 1. Z(E)S ¥ (ETOL).



Evaluated grammars 173
Proof. Let :
G=C,P,S5,4)

be an EG and let k be an arbitrary but fixed non-negative integer such that for every
production A—-o, B;0,€ P, where A€ I\ A4,, ¢;06(V U X)*, B€V, it -holds that
i=k. Consider a new alphabet Z={[4,i]: A€Z and O=i=k} and let F be a
new “block” symbol. Let 4={[a, i]: ac4 and 0=i=k}; clearly 4CZ. Now we
define four new tables of productions P;, 1=i=4, as follows:

Pl = {[A’ 0] - xO[Bl‘a kl]xl [Bn’ kn]x :

A - xoBl(kl)xl e Xn EP

B %
AEINA, x,€2% By €,
0=j=n for some n=0}U
U{x ~ x: XGEU{F}U{[a,O]: a€d}U{l4,i]: A€Z and 1 =i=k}}U
U{4, 0] ~ F: Aex2\4};
P, = {[4,i] ~[4,i—1]: A¢X and 1 =i=k}U
U{[4,0] ~ F: A¢Z}U{X -~ X: XeZU{F}};
Py={A—~a: A~ a€P and acZ*}U{X ~ X: XeZU{F}UZ}
and
Py ={X ~ F: XeXNAUSNAU{F}}U{a ~ a: ac4}U
U{la,i] - a: [a,i]led(acd, 0 =i=k)}.
Consider the ETOL system
G = (EUZU{F}, Py, P, Py, Py, [S, 0], J, 4).
From the construction it is clear that L(G)=L(G); hence the theorem holds. [

In the end we want to mention that it is not known whether or not the inclusion
Z(E)S Z(ETOL) is proper.

6. Subfamilies of £ (E)

In this section we prove a few results about some special cases of evaluated
grammars which were defined in Section 3.

Theorem 2. £ (EOL)= % (BE).
Proof. 1. #(EOL)C #(BE): Let
G=(,PS, 4)
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be an EOL system. Define a new alphabet A= {a: a€4} and a coding
h:2*~((E\4X {1))U(I% {1}))* defined by
@) h(X)=X, forall XcI\d;
(i) h(X) =X, for all XcA.
We define a new set of productions
P={h(4) - h(0): A~ acP}U{ay ~ aq: acd(@cd)}.

Consider the BEG _ _
G =(U4, P, S, 4).

Clearly L(G)=L(G) and thus 2(EOL)S £ (BV).
2. 2 (EOL)2 #(BE): Let

G=(,P, S, 4)

be a BEG and, clearly, we may assume without loss of generality that every non-
terminal in G is useful ie. that for every A€X\4 there exists a word
ae(((Z\A)x{l})U(AX {0y U4)* such that A-—~a€cP. Define a new alphabet
Y= A€ X} and a new “block” symbol F. We define the substitution

g: (AU XU x{o})* -~ (auzy*
() g(a) ={a’,a} for all acd;
(i) g(dw)=4" forall AyeE\AHX{1};
(ili) glag) =a for all agE4X{0}.

by

Let
P’ ={A"—~ g(a): A~ acP}U
Uf{a’~ a’,a’ =~ a, a > F:ac4}U
U{F - F}.
Now, let

G’ = (Z’U4U{F}, P’, S’, 4)

be an EOL system, then, clearly, L(G)=L(G") and thus ¥ (EOL)2 .Z(BE). Hence,
we have Z(EOL)=#(BE) and the theorem holds. [
From this proof we obtain:

Corollary 1. For every Lc % (BE) there exists a BEG G=(Z, P, S, 4) such
that L(G)=L and PS(Z\A)X((4X {0)U((2\A)X {1}))*

It is a straightforward to prove the following four lemmas.
Lemma 1. #(BE)c Z (E).

Proof. The inclusion Z(BE)C % (E) is an immediate consequence of the
definitions of BEG and EG. That the inclusion is strict follows from Example 2 in
Section 4 and Theorem 2. 0O
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Lemma 2. % (BE)¢ £ (RGE).

Proof. From the construction in the proof of Theorem 1 follows that ¥ (RGE)S
C Zn(ETOL). On the other hand, L(G3)€.¥(BE)/ Lun(ETOL); see Example3
in Sect. 4. Hence, the lemma holds. 0O

Lemma 3. #(RGE)d £(BE).

Proof. It is an immediate consequence of Example 2 in Sect. 4 and Theo-
rem2. O

Lemma 4, ¥ (RGE)c Z(E).
Proof. Clear. O

It is quite clear that £ (RG)c £ (BRGE); see the definition and Example 1
in Sect. 4. We now prove this result:

Lemma 5. . (BRGE)S £(PRL).

Proof. Let »
=(£’P’S’A) ’

be n-regular BRGEG for some n=1.

From the definition of BRGEG it follows that in any sentential form (except the
last one) of a derivation of any word from L(G), no symbol gy, ac4X {0}, is con-
tained. Thus, we can construct the following n— parallel right linear grammar:

=(2U4, P, S, 4)
where
4 = {a: acd}
and
P={S—~X,...Xp: S~ Xy, .. X, ( € P, X, EEN(AU{SHX {1}, 1 =i =n,n>0}U
U{d4 -~ aB: 4 ~ aBy€P, acd, AcT\(AU{S}), Buc((E\(4U{s})x{1})}U
U{4 ~a: 4~ ag€P, A¢2\(4U{S}), ac(4x{0})}U
U{4d~a, A~3d,a—~a, a—~a: A~ acP, ACI\(4U{S}), ac4}.
Clearly L(G)=L(G). The lemma is proved. 0O
Lemma 6. £ (CF) and #(BRGE) are incomparable but not disjoint.

Proof. The lemma is a direct consequence of Example 1 (see Sect 4), Lemma 5
and a diagram from Sect. 6 in [1]. O

Lemma 7. % (CF)¢ % (RGE).

Proof. By proof of Lemma 2, ¥ (RGE)C Z¢n(ETOL). But it is well-known
that Z(CF)d £un(ETOL) (see, e.g., [2]). Thus the lemma holds. O

Lemma 8. £ (BRGE)S .# (BE)N.Z (RGE).
Proof. From definition. [
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7. The relationship diagram
The aim of this section is to establish the relationship diagram among various
classes of langunages considered in this paper. We get the following theorem.

Theorem 3.
Z(ETOL)

7

(BE) = #(EOL) £(RGE)

A 4
g?\.‘é’(BRGE)

R 2(RG) A

(If there is a directed chain of edges in the diagram leading from a class X to a class
Y then XY, an undirected chain means that we do not know whether the inclusion
is proper. Otherwise X and Y are incomparable but not disjoint.)

Proof. From the results of Sect. 5 and 6 together with the fact that £ (RG)c
CcZ(CFHc Z(EOL) —see[2. O

2(E)

-Abstract

Evaluated grammars are based on context free grammars but the derivation process in these
grammars is regulated by a certain evaluation of some symbols occurring in their sentential forms.

Fundamental properties of the farmly of languages generated by evaluated grammars are
investigated. This family of languages is contained in the family of ETOL languages and properly
contains the family of EQL languages.

In addition, we propose and study some spemal cases of evaluated grammars.
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EBE: a language for specifying the expected behavior
of programs during debugging

NcuyeN Huu CHIEN

1. Introduction

In [1] Bruegge B. and Hibbard P. used GPEs (Generalized Path Expression)
for specifying expected behavior of programs. GPEs are slightly extended version
of a BPE (Basic Path Expression) with predicates and counters.

A BPE is a regular expression with operators sequencing(;), exclusive selec-
tion(+) and repetition(* ). The operands, called PFs (Path Function), are the names
of statements or groups of statements defined in the source program. For each
PF two counters are defined: the counters ACT and TERM. These represent the
activation and termination number of a PF respectively. Predicate is a logical
expression involving the counters and the variables of the program and debugger.
BPE is extended by associating predicates with PFs.

In this paper we extended GPE by adding the operator shuffle (4). This does
not increase the power of GPEs, but we can describe the expected behavior of a .
program in a simpler way. In the next sections we define the syntax and semantics
of the extended G PEs, called EBEs (Expected Behavior Expression). The purpose
of EBE;s is to specify the order of execution of PFs, the semantics of EBEs there-
fore can be defined by specifying a set of actual behaviors that are valid with respect
to a given EBE. In section IV we discuss some properties of FBEs. According to the
syntax and semantics we introduce the syntactical and semantical equivalence of
EBEs. A sufficient condition for the semantical equivalence of two EBES is given.
It is shown that the syntactical equivalence is more powerful than the semantical
equivalence. It is also proved that EBEs are not more powerful than GPEs. In
section V we present an implementation of EBEs. The implementation is formally
defined omitting details of actual implementation, and then its semantics is also
defined similarly to that of EBEs, that is, by specifying a set of actual behaviors
that are valid with respect to a given implementation. Correctness of the implementa-
tion is proved by showing a given EBE and its implementation recognize the same
set of actual behaviors.

In order to make an implementation effective it is necessary to reduce EBEs.
We give some rules for reducing EBEs in section VI.
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II. The syntax of EBEs

Assume that the notions (identifier), (integer number) and {arithmetic expres-
sion) are known. The other notions are defined in terms of the above ones.
{path function)::={procedure name)
{procedure name)::=(identifier)
(counter)::= ACT ({procedure name))|TERM ({procedure name))
{counter exp)::={counter)|(integer variable)|
(integer constant)|((counter exp))|
{counter exp)(binary op){counter exp)
(binary op)::=+|—|X
(integer variable)::=(identifier)
(integer constant)::={integer number)
(counter rel)::={counter exp){rel){counter exp)
{arithmetic rel)::=(arithmetic expression)rel)
{arithmelic expression)
(rel):=<|=|=|=|=
(predicatey::=(counter rel)(arithmetic rel)|({predicate))
(predicate)(logic op){predicate)| 1{predicate)
(logic op)::= A| V|-~
(operand)::=(path function)|{path function)[{predicate)]
(EBE)::=(operand)|((EBE))|{EBE);(EBE )|(EBE )+ (EBE)|
(EBE)« |(EBE)A(EBE)

Let E be an EBE, we define the language L(FE) as follows:

If E=o, where o an operand, then L(E)={o}. Let LI=L(El), L2=
=L(E2), then

L(E1;E2) = L1L2, L(E1+E2) = L1+ L2, L(E1%) = L1 %,
L(E14E2) = L1AL2 = {0,0}...0,0;}0,...0,€ L1 and 0]...0,€ L2, it may happen

that o; and o] are ¢}.

Now we give some examples of EBEs.

Example.

Initstack; (Push[TERM (Push)— TERM (Pop)< N]+

Pop[TERM (Push)— TERM (Pop)= o]+

Top[TERM (Push)— TERM (Pop)=0]) .
This EBE specifies an expected behavior of the program which states the operational
constraints on a bounded stack of length N: first the procedure Initstack has to
be called. One of the following can then happen: either procedure Push can be called
if the size of the stack is smaller than N, or Top or Pop can be called if the size of
the stack is larger than o.

Example. The EBE
(p; 9A(r; 3)
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is used to look for activation of the procedure p when p has been called 5 times and
the value of the variable 4 is 4.

Example. The EBE
p;qdr;s

permits possible sequences of the execution of the procedures p, g, r and s as follows:

pgrs, prqs, prsq, rpsq, rpgs, rspq.

IIL. The semantics of EBEs

First we define some notions.

Let OB be an arbitrary set (representing a set of all data objects), P a finite set
of procedures, and P'cP.

A state is a pair (S, cou), where SCOB, and cou= {a,, t,lpe P}c N+ =
={0,1,2,...} (the numbers a, and ¢, represent the activation and termination
number of the procedure p), and the “cou” is called counter-state.

A concrete (actual) event is an activation of the procedure p at a state (S, cou).
We denote it by e.={p, S, cou). .

A concrete behavior B is a sequence of concrete events eﬁ...e'c'. Let B be the set
of all concrete behaviors.

A computational system is a S-tuple (OB, P, P', f,,f), where f, and f, are
maps: B—{g|g is function, g: P'-~N+} which are defined as follows:

The definition of f,: f,(®)(p)=0 for all pe P,

Jo(B{p, S, cow))(p") = fo(B)(p)+1 if p'=p
= f,(B)(p") otherwise, p’€P’, BEB.
The definition of f,: f;(®)(p)=0 for all pcP’,
f(B(p, S, cow))0") = i(BYD)+1 if p'=p
= fi(B)(p") otherwise, p’€P’, BB (P isthe empty sequence).
Let E be an EBE, then
P, = {plp is a path function in E},
Vg = {ov|lv is variable in E, and v ¢ ACT and v # TERMY,
Cz ={c|c is constant in E}, assume that CzCOB,
ATE = {ACT(p), TERM(p)|p€P"),
= {4qlq is predicate in E}.

An abstract event e, is a 4-tuple (P, q, Vg, ATg), where pc Py, qc Q.

An abstract event expression Ea of E is an expression obtained as follows. All
operands p[q] or p in E are substituted by abstract events e,={p, q, Vg, ATgy or
e,=(p, true, Vg, ATy respectively.

Let e.={(p, s, cou), then the counter-state “cou’ and the maps f, and f; match
under a concrete behavior B, if a,=f,(Be.)(p), a,=f,(B)(p"), p’¢ Pe\{p}, and
ty=f(B)(p'), p’€ Pg. This fact is denoted by Matchs(cou, f,, f;, B
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An Interpretation is a function I: V ;UCUAT—~OBUN+ suchthat I(v)cOB
for vEVEg, I(c)€OB for ccCg, I(v)EN+ for v€ATg and I preserves constants
and usual arithmetic operators, that is

(1) IKc)=c for all c€Cy,
(2) I(expl op exp2) = I(expl) op I(exp2), where op€{+, —, X, /, 1}.

A concrete event e.=(p, S, cou) and an abstract event e,=(p’, q, Vg, ATg)
match under an interpretation /, if p=p” and {I(v){v€V g} S and I{(ACT(p"))=a,,
I(TERM (p'))=t, for all p’¢ Pg. This is denoted by Matchel(e., e,, I).

Now we introduce the sets R, BE and EN for Ea. First we supply the abstract
events of Ea with indexes 1, 2, ... continuously, in such a manner that any e, should
receive different indexes at different occurrences. If the index of ¢, is #, then e, (i)
denotes an indexed event of e,, and the resulting expression is called an indexed
expression of Ea and denoted E. Then the sets R(E), BE(E) and EN(E) are defined
as follows.

(1) If £ =e,(k) then R(E) =0, BE(E) = EN(E) = {e,(K)}.
(2) Assume that Ri = R(Ei), BEi = BE(Ei) and ENi = EN(E), i = 1,2,
then

P N
R(E1;E2) = RIUR2U(EN1XBE2); BE(El;E2)= BE],

N
BE(E1%; E2) = BE1UBE2,

N N
EN(E1; E2) = EN2, EN(E1; E2%) = ENIUEN?2,
R(E1+E2) = RIUR2, BE(E1+E2) = BE1UBE2,

/\
EN(E1+E2)=EN1UEN2,
N TN TN
R(El%) = RIU(EN1XBE)), BE(E1%) = BEl, EN(El1x)=ENI,

N _ _ =
R(E14ED) = RIUR2U(R1 xR2)U(R2 X R1)
where R=RUR, and R={al|(a’,a)cR} and R={al(a,a’)€R},

/\ /\

BE(E14E2) = BE1UBE?2, EN(FE14E2)= EN1UEN2.

In the following if (e, (i), e,(k))€R(E), then it is written e,(i)>¢; (k).

Let Exp (£)={e,(i)le,(i) is an indexed event in E}.

Let e,(i))¢Exp(E) and McCExp(E), then &,(i)={e,(k)le,(i)>¢e,(k)}, and
M= U &) 4

e, EM
From the construction of the sets R(E), EN(E) and BE(E) it is easy to see the
following properties.
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Statement 1.

a) e, (k)€ BE(E) iff there is a u such that e,,(k)uEL(E),
e,(k)c EN(F) iff there is a u such that wue, (k)€ L(E),
e,(k)>e,(n) iff there are u, v such that ue,(k)e,(n)ve L(E),

b) e.(ky) > ...>e(k,), el(k,)EBE(E) iff there is u such that
erky)...er(k,)uc L(E).

Example. Let E((plg]+g[r]); f*)*. Then
Ea = ((el+€3); ea%) %,
E = ((e2()+€2(2)); €3(3) * ) *,
BE(E) = {;(1), ¢2(2)}, EN(E) = {€i(1), &2(2), &3(3)},
R(E) = {(e3(D), €2(3)), (€2(2), €2(3)), (€3(3), €2(3)), (ea(D), €3 (1)),
(€3(2), €4(2)), (€2(3), €x(1)), (e2(3)s €2(2)), (€2(2), ex (1)), (ea(D), €2(2))},
where el={p, q, Vg, ATy), e2=(g, r, Vg, ATy &¢=(f, true, Vg, ATg).

Definition. Let R={(OB, P, P’,f,, f;) be a computational system and E an
EBE such that P’=Pg. The semantics of E is defined by the predicate Validg: B~
—{true, false} with the partial map Nexty: B—~{M|McExp (E)}, in such a way
that Nextgz(B) is defined iff Validy(B)=true. The Validg and Nexty are defined
recursively as follows.

(1) Let e,=(p, S, cou), then Validg(e))=Matchs(cou, f,, f;, D&M =0, where

M = {e,(i)le;())eBE(E) & e, = {p, 4, Vi ATz) & QI)(Matche(e,, e,, 1) & Sat(q, I))
=true} (Sat is defined later). And Nexty(e.) is defined iff Validg(e,)=true,
and then Nextp(e) = M.
(2) Let ec={p, S, cou) and BEB, then
Validg(Be,) = Validg(B)& Nexty(B) = N&Matchs(cou, f,, f,, B)&M = 0, where
M = {e,()le,()e N&e, = (p, 4, Vs, ATg)&(AI)(Matche(e,, ¢,, )& Sat(q, I)) = true}.
And Nextg(Be,) is defined iff Validg(Be,)=true, and then Next;(Be)=M.

The definition of the predicate Sat, Sat(g, I) is defined according to the syntax
of the predicate g.

Sat ({counter exp) {rel) {counter exp), I) =

= I((counter exp)) (rel) I({counter exp))
Sat((arithmetic exp) (rel) (arithmetic exp), I) =

= I({arithmetic exp)) (rel) I((arithmetic exp))
Sat ({predicate) (logic op) (predicate), I) =

= Sat({predicate), I) {logic op) Sat({predicate), I
Sat("predicate), I) = Sat({predicate), I).
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Let B(E)={B|BcB and Validy(B)=true}.

From the definition of the semantics of EBEs it is easy to see the following
fact.

Fact 1. Let Bn=el...e", ei=(p;, Si, cou;), i=1, ..., n, then
Valid(Bn) = true iff
Matchs(cou;, f,, f;, Bi—y), i=1,...,n, By =9, and there is a sequence {Mi}}.,
such that
Mi = {e,(k)le,(k)eM;_, & e, =
= (pi, q, Vg, ATg)& I I(Matche(é., e,, I)& Sat(q, I) = true} # 0,
an_d Nextg(Bi) = Mi, i =1, ..., n, Mo = BE(E).

IV. Some properties of EBE

Definition. Two EBEs E and E’ are syntactically equivalent iff L(E)=L(E’).
Definition. Two EBEs FE and E’ are semantically equivalent iff B(E)=B(E’).

Theorem 1. If £ and E’ are EBEs such that L(E)cL(E’) and for all
u€ L(E’)\L(E) there are v€L(E) and w for which v=ww then E and E’
semantically equivalent.

Proof. According to the construction of Fa we can identify Fa with E, thus
L(Ea) with L(E). First we prove the following facts.
For any E and Bn=el...e%, e.=(p;, S;, cou;).

Fact 2. If there is a sequence {Mi}!.; such that
Mi = {e,(Rle(EMi_1 8 ¢, =
" ={pi, 4, Vg, ATp) & I(Matche(é., e,, I) & Sat(q, I)) = true} = 0,
 i=1,..n Mo = EBE),

then there is a sequence {ei(k)}=1, €i={(pi, i, Vg, ATy), for which ei(k)€Mi,
1.._1’ ./ and €} (k1)> >en( n)

The existence of the desired sequence is shown by induction as follows.

Since Mn>0, thus there is an ej(k,)EMn, e;=(p,, q,, V&, ATs). From the
definition of Mn there is an e*~*(k,_,)¢M,_, for which e’-(k, _1)>e"(k) el l=
={Pp—-15qu-1, Ves ATg). Assume that the sequence {e’(k Wi—i i>1, is con-
structed. Then from the definition of Mi there is an ei- 1(k, VEM;_, for which
ei-1(k;_)=ei(k;). So we get the desired sequence.



EBE: a language for specifying the expected behavior of programs during debugging 183

Fact 3. If there is a sequence {el(k)}i-1, €,=(pi,qi> Vg, ATs), such that
there is a u for which e(ky)...e5(k,)u€ L(E), and for each i=n there is an I for
which Matche(él, €., I) and Sat(q;, [)=true, then e.(k)eMi, i=1,...,n (Mi is
defined in Fact 2, i=1, ..., n).

This can easily be proved by induction on i=n (using Statement 1),

Now we prove Theorem 1.

We have to prove that B(E)=B(E").

From Fact 1 it is sufficient to prove that for any Bn=el...e", ei=(p,, S;, cou;),
i=1, ..., n, the following holds.

Matchs(cou;, f,, f;, Bi_y), i=1,...,n, Bo =0, and there is
a sequence {Mi}_; such that
(AN Mi = {e,(R)e()eM;_, & e, = {p;, 4, Vi, ATy & AI(Matche(eéi, e,, ) &
Sat(g, I)) = true} # 0, .
and Nextz(Bi) = Mi, i =1,...,n, Mo = BE(E).
iff
Matchs(couy, f;, fis Bi—y), i =1, ..., n, Bo =0, and there is
a sequence {Ni}}, such that
(+ ) Ni = {e,(Dle,(DEN,_, & e, = (pi, 4, VE , AT )& FI(Matche(él, e,, I) &
Sat(q, I)) = true} #= 9,
and Next. (Bi) = N, i=1,..,n No= BE(E").

~This is shown by induction on n.

1) It is easy to show that the statement holds for n=1.

2) Assume that the statement holds for n. Now we prove that the statement
holds for n+1 too.

(+)=(++). Assume that (+) holds for n+1. Then (4+) holds for n.
We have yet to prove that N,.,>0 and Nextgp (B,,1)= N,.+1

According to Fact 2 there is a sequence {ei(k;)}i*1, ek={(p;, g, V};, ATyg), for
which ei(k)eMi, i=1,...,n+1, and ei(k,)>...>e * (k,.,). Since e}(k,)€ BE(E),
thus, by Statement 1, there is a u for which e,i(kl)...e:‘l(k,,+1)uEL(E) which
implies that there is a v for which el...e?*'v€ L(Ea). Since L(Ea)cL(E’a)
thus ej...e3*'v€ L(E’a) which implies that there are a sequence {/;};*} and a v’
for which erl)...er* (. )wecL(E"). Then, by Fact 3, we have ei(l)ENi;
i=1,...,n+1. So N,;;+0. Since (++) holds for n, thus Nextzp(Bn)=N, and,
by Factl Validg. (Bn)=true, therefore Validg (B,,,)=true (by the deﬁmtlon of
Semantics of EBEs) which implies Nextg.(B, ;1) is defined and is N, ;.

(++)=(+). Assume that (4 +) holds for n+1. Then (+) holds for n. We
have yet.to prove that M,.,# and NextE(B,,H) M, ... Similarly to the above
argument we have the sequence {e,,(k,)}"“, et={(p:, q;, V&, ATg.), for which
el(k)ENI, i=1, ...,n+1, and there is a v such that e!...e"+*'v€ L(E’a). We have
two cases: ,

either e ... e&¢*1ve L(Ea)

Q-

or el ... et ¢ L(E’a)\ L(Ea).

5 Acta Cybernetica VIIIj2
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In the second case there is a v’ for which el...e2*pv’€ L(Ea). So in both cases we
have that there are a sequence {I/;}*3} and w for which el(},)...eit*(l,,)we L(E).
Therefore by Fact3 el(l)eMi, i=1,...,n+1. So M,,,#P. Again by the same
argument seen above we get that Nextg(B,,,)=M,,,.

Theorem 2. a) if E and E’ are syntactically equivalent then they are seman-
tically equivalent too.

b) There exist two EBEs E and E’ which are semantically equivalent but not
syntactically equivalent.

Proof. a) It is a corollary of Theorem 1.
b) In order to prove this we give an example.
Let E=p,+(py; p2) and E’=p,; p,, it is clear that E and E’ satisfy Theorem 1,
therefore £ and E’ are semantically equivalent but not syntactically equivalent
because L(E)#L(E’).

An EBE is a GPE (Generalised Path Expression) if the operator 4 does not
occur in it.

Theorem 3. For every EBE E there exists a GPE E’ such that E and E’ are
semantically equivalent.

Proof. First we construct an automaton M for which L(M)=L(E). In order
to do this we define the sets R(E), BE(E) and EN(E) similarly to those of Section
IIl. The automaton M=(Z, St,s,, 0, F) is then constructed as follows. Let
Z={e,e, is in Ea}={e], ..., e5}. Let 5, be an arbitrary symbol. Then &8(s,, €)=
={el(k)let (k)¢ BE(E)}=s%. So we have defined states s,, 51, 5%, ..., s7 of St. Sup-
pose that a state s of St is defined, then

(s, ef) = {eb ()| Fef(m) (el (m)€s& ef(m) > e (k) = true}, i=1,2,..,n
Finally let
F’ = {s|sNEN(E) # 0} and F= F'U{s,} if e€cL(Ea)=F,
and F=F’, otherwise.

It is easy to see that L(M)= L(Ea). It is known that there is a regular expression
E’ over X for which L(M)=L(E’). Thus we have L(Ea)= L(E’). From the con-
struction of Ea we can identify Ea with E, thus L(Fa) with L(E). Therefore, by
Theorem 2, E and E’ are semantically equivalent.

V. Implementation of EBE

The implementation of EBE is defined using the concept of automaton.
Let R=(0B, P, P', f,, f;,) be a computational system. Let Q= {q|q is predicate,
q:0B" X {f.(B)(p)|BEB, pc P'}" X { f(B)(p)|BEB, pc P'}" — {true, false},

and M=(Z, St, 5, 8, F) a deterministic finite automaton, where X< P’X Q. For
all pe P’ the set Condition (p)={(s, g)l6(s, (p, g)) is defined} is called condition
of the procedure p.



EBE: a language for specifying the expected behavior of programs during debugging 185

Definition. An Implementation is a set I(M)={(p, Condition(p))|p€ P’}. For
simplicity we often omit the argument M.

Restriction.

It is assumed about the automaton M that if s,=8(s;—1, b), bi={P:, ¢;)»
bi={(p1q:), i=1,2,...,n, then there is a u such that b,b,...b,uc L(M).

Now we define the semantics of Implementations.

Definition. Let I be an Implementation. The semantics of I is defined by the
predicate Valid; with the partial map Next;, where Valid;: B— {true, false} and
Next;: B—2%, in such a way that Next;(B) is defined iff Valid,(B)=true. The Valid;
and Next; are defined recursively as follows.

(1) Let e.={(p, S, cou) be an actual event, then

Valid,(e,) = Matchs(cou, f,, f;, 8) & 3{so, 4)({s0, 9)€ Condition(p) & Sat(q, e,, %)),

(Sat is defined later).
Next;(e.) is defined iff Valid;(e.)=true, and then

Nexty(e.) = {s|s€ St & 3q(q€ Q & s=05(s,,{p, ))& Sat(q, e, ¥))=true}.
() Let e,=(p, S, cou) and BEB, then

Validy(Be,) = Valid, (B) & Next;(B) =
= G & Matchs(cou, fo, fi, B)& 3539 (s€ G & g€Q & s, q)€ Condition(p) &
Sat((q, e, B)).

Next;(Be,) is defined iff Valid;(Be)=true, and then Next;(Be)=H, where
H={s|s€St & 35’ 3q(s'€G & q€Q & s=6(5, (p, q)) & Sat(g, e, B))=true}.

The definition of Sat. Sat(g, e., B) is defined simply as follows.

Sat(q, e, B) = (S, fu(Be) (0), { L (BY@)Ip' € P\{p}}, {£(BY(@)Ip'E€P"}).

Similarly to Fact 1 it is easy to see the following fact (from the definition of
the semantics of Implementation).

Fact 4. For any Bn=¢el...e’, e.={(p;, S;, couy), Valid(Bn)=true iff

Matchs(couy, £, fy Bi—1), i=1,...,n, Bo=0, and there is a sequence {H,}{—,
so that

Hi={s|353q(s’¢ H;_, & g€ Q& = &(s, (p:, q)) & Sat (g, €, B;_,)) = true} = 6,

and Next;(Bi)=Hi, i=1, ..., n, Ho={s}.
Let B(I)={B|B¢B and Valid,(B)=true).

Definition. An Implementation of an EBE E is an Implementation
I = {{p, Condition(p))|p€ P’} such that P’ = Py and B(I) = B(E).
Now we give an algorithm for transforming an EBE E to its Implementation:

5*



186 N. H. Chien

Algorithm.

1. Transforming E to the following: we substitute all operands p[q] orpof E
by e=(p,q) or e=(p,true) respectively. The resulting expression is denoted
‘by Ee. .

2. From Ee constructing an automaton M=(Z, S, sy, 6, F) as that of Theo-
rem 3, where X={ee is in Ee}.

3. For all pe Pg constructing the set Condition(p), obtaining

I = {(P, Condition (p))| p€ Pg}.

Theorem 4. I is an Implementation of E.

Proof. First we prove the following facts. For any implementation I and actual
behavior Bn=e¢l...e%, ei=(p;, S;, cou;)

Pact 5. If there is a sequence {Hi)?., such that
= {s|35'Iq(s’€ H;_1& q€Q &s = §(s', {p;, q)) & Sat (g, €., B;_y)) = true} > 0,
i=1,...,n, Ho = {so},

then there are sequences {s:}i-0and {e;}i_,, €= {p;, q), for which s,€ Hi, 5;=6(s5;_;, €")
and Sat(g;, €., B;_))=true, i=1, ..., n.

This can be proved by induction as follows. Since Hns0, there is an s, Hn.
From the definition of Hn there are s,_,€H,_, and e"=(p,, q,) for which
$p=0(5,—1, €") and Sat(g,, ¢", B,~;) =true. Assume that the sequences {s;}7.; and
{e Yi=i+1, are constructed. Then from the definition of Hi there are s;_,€H,_;
and e'=(p;, q;), for which s;=86(s;_;,¢), and Sat(g;, €., B;_;)=true. So we get
the desired sequences.

Fact 6. If there are sequences {5}, and {e} _1, €=(p;, q;), for Wthh
6(s_1, €) and Sai(g;, €', Bi_y))=true, i=1,...,n, then s,6€Hi i=0,]1,
(Hz is defined in Fact 5).

This can easily be proved by induction on i=n.

Now we prove the Theorem. It is easy to see that:

1. The automaton M satisfies the Restriction. .

2. L(M)=L(FEe).

Now we show that B(E)=B(I). By Fact 1 and Fact 4 it is suﬁic1ent to prove
that for any EBE E and Implementation I if Bn=el...el, ei={p;, S;, cou;),
i=1,2,...,n, then

Matchs (cou;, f,, fis Bi-1), i=1, ..., n, Bo =0, and there is a
sequence {Mi}}_, such that

() \Mi = {e,(K)le,(KEM;_ & e, = (p;, g, Vi, ATE)&3 interpretation 7
(Matche (¢t, e,, 1) & Sat(q, 1)) = true} # @, and Nexty (Bi) = Mi,
i=1,..,n Mo = BE(E)
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iff
Matchs (cou;, fys [, Bi-1), i =1, ..., n, and there is a
(% %) sequence {Hi}}_, such that
Hi = {s|se St&3s'3q(s' € H;_, 8. g€ Q& s = 6(s', (p;, 9)) & Sat (g, €., B;_y))
= true} # 0, and Next;(Bi) = Hi, i=1,..,n, Ho= {s).

From the construction of Ea and Ee we can identify Ea with Fe and therefore
L(Ea) with L(Ee) too, so L(Ea)=L(Ee)=L(M).

Now we prove that (*) iff (# %) for any Bn. This is shown by induction on n.

(1) It is easy to see that the statement holds for n=1.

(2) Assume that the statement holds for n.

(*)=(* x). Suppose that (%) holds for n+1. Then (% %) holds for n. We
have yet to prove that H,,,7#0, and Next;(B,+1)=H,;,.

By Fact2 we have a sequence {el(k)}i*], ei=(p, q;, V&, ATg), such that
el(k)>...>e"*1(k,,1), and ei(k)eMi, i=1,...,n+1. Therefore according to
Statement 1 there is a u for which el(k,)...e"* (k, ., )uc L(E) which implies that
there is a v such that el...el+'v€ L(Ea). Since L(Ea)=L(M) thus there exists a
sequence {s;)7%2 such that 5;=6(s;_,, €'), where e'=(p;, q)), i=1,...n+1. Itis
easy to see that for all i=n+1, Sait(q;, €., B;_;)=true (from the definition of
Matche, Matchs, interpretation I, Sat(q, 1) and Sat(q, e, B)). So by Fact 6 we have
s, EHi, i=1,...,n+1, thatis H,,,50. Since (* ) holds for nthus Next;(Bn)=Hn
and, by Fact 4, Valid,(Bn)=true. Therefore from the definition of the Semantics
of Implementation Valid;(B,,,)=true which implies that Next;(B,,,) is defined
andis H,,.

(* *)=(%). Assume that (* %) holds for n+1._Then (%) holds for n. We
have yet to prove that M, ,,#0 and Nextg(B,:1)=M, ;.

According to Fact 5 we have the sequence {s;}7*3 and {¢'}i2} for which s;€ Hi,
5;=06(8i-1, &), Sat(g;, €., B;_;)=true, and e&'=(p;, q;), i=1,...,n+1. Then, by
Restriction, there is a u for which e'...e**'u¢ L(M)= L(Ea) which implies that
there are a v and a sequence {k;}?*1 for which el(k,)...e2+'(k,,)vEL(E), =
={pi, qi, Vg, ATg). It is easy to see that for each i=n+1 there is an interpreta-
tion I for which Matche(el, e, I) and Sat(g;, I)=true (again from the defini-
tion of Matche, Matchs, Interpretation I, Sat(q,I) and Sat(q, e, B)). Therefere,
by Fact3, e.(k)eMi, i=1,...,n+1. So M,,,#0. Since (%) holds for n, thus
Nextg(Bn)=Mn and, by Fact 1, Valid,(Bn)=true, therefore according to the defini-
tion of semantics of EBESs we have Validg(B, . ,)=true which implies that Next;(B,, 1)
is defined and is M, ..
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V1. Reduction of EBEs

Now we give some rules for reducing EBEs.
Statement 2. Let E1, E2 and E3 be EBEs. Then

(1) El+El=~El

(2) E1+E2=~ E2+E]

(3) (E1+E2)+E3 ~ E1+(E2+E3)

@ (ELl;E2); E3=~El; (E2;E3)

(5) El;(E2+E3)=~ El; E2+El; E3
(6) (E1+E2); E3=~El; E3+FE2; E3
(7) E14E2 ~ E24E]1

(8) (E14E2)AE3 ~ E1A(E24E3)

(9) E14(E2+E3)~ E14E2+E14E3

10 A plal~ 2 (Pulasls -5 Pl
= pcrmut:m?n
of {a, ..
where “~” means semantical equivalence. This is followed from Theorem 2. -
Similarly to EBEs we also define the syntactical and semantical equivalence of

Implementions.

Definition. Two Implementations I (M ) and I’(M’) are syntactically equtvalent
if L(M)=L(M’), and semantically equivalent if B(I)=B(I’).

Definition. An Implementation I(M) is minimal if the automaton M has a
minimum number of states.

Theorem 5. There exists an algorithm by means of which we can transform
any Implementation /(M) to a minimal Implementation I’ (M ) so that I(M) and
I’(M’) are semantically equivalent.

Proof. It is known that there is an algorithm by means of which we can reduce
any automaton M to a minimal automaton M’ such that L(M)=L(M’). The
semantical equivalence of I(M) and I'(M’) is then followed from the following
statement.

Statement 3. If /(M) and I’(M") are Implementations such that L(M)c L(M’),
and for any u€ L(M’)\L(M) there are v€ L(M) and w for which v=uw, then
I(M) and I’(M’) are semantically equivalent.

Proof. Let M=(Z, St, 84,8, F) and M’'=(%’, St’, 53, &', F").
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By Fact 4 it is sufficient to prove that for any Bn=e!...e? the following holds:
(Matchs (cou;, f,, fi» Bi_1), i =1, ..., n, and there is a
sequence {Hi}}-, such that

= {5135’ 3q(s'€ H;_, & g€ Q & s = 6(’, (p, q))&Sat(q, el, B;_)) = true} = f,
kand Next;(Biy=Hi, i =1, ...,n, Ho = {so}." '

Mg

iff
(Matchs (cou;, f, f,, Bi-1), i =1, ..., n, and there is a sequence {H'i}l,
such that ' v .
H] ={s|3s’ 3q(s€ H/_1 8 q€Q&s = & (5, (i, 9)) & Sat (g, €., B;i_)) = true} = 9,
land Next;, (Bi) = Hi, i=1, ...,n, H'o = {s;}- '

This is proved by induction on n.

1) It is easy to see that the statement holds for n=1.

2) Assume that the statement holds for n, we prove that it holds for n+1, too.

(1)=(2). Suppose that (1) holds for n+1. Then (2) holds for n. We have yet
to prove that H,,,70 and Nexty(B,.1)=H,+;. By Fact5 we have the sequences
{s Ji4l, and {e'}i*} for which s,€Hi, 5;=6(s;_y, €), Sat(g;, €., B;_))=true, &'=

o g, i=1, ...,n+1. Then according to Restriction there is a u for Wthh
e’.. e"tluc L(M ). Since L(M)c L(M’) thus there is a sequence {s;}{*¢ for which
s{=0'(si_4,€). So by Fact6 sjeH’i, i=0,...,n+1, that is H,.,#0. Since (2)
holds for n, thus Next, (Bn)= H’n and, by Fact4, Valid,.(Bn)=true, so Valid; (B, +1)=
true (according to the definition of the semantics of Implementation) which implies
that Next;(B,+1) is defined and is H, .

(2)=(1). Suppose that (2) holds for n+1. Then (1) holds for n. We have yet
to prove that H,,,#0 and Next,(B,,+1) H,, ]

By Fact 5we have the sequences {s,} 1and {e,}{‘ ! for which s, H' i, s,= &’ (s, €'),
Sat(q;, e, B;_,)=true, &'={(p;, q;), i=1,...,n+1L Then according to Restriction
there is a u for which el...e"*luc L(M ’) We have two cases:

either e'... e"ttucL(M)
or el... etluc L(M)N\L(M).

In the second case there is #’ for which et...e*t uu’ EL(M ). So in both cases, we
have the sequence {si}r2d for which si=06(si=y, €'), i=1, ..., n+1. Therefore, by
Fact 6, sj€Hi, i=0,1, . n+1 that is H,,.,#0. Now by the same argument seen
above we get Next;(B +1) H,,,.

@

Abstract

A language, called EBE, for specifying the expected behavior of programs during debugging
is presented. EBE is an extended version of GPE (Generalized Path Expressions) {1] with the operator
shuffle. The syntax and semantics of EBE is formally defined. Some properties of EBEs are dis-
cussed. Then an implementation of EBE is presented. Correctness of implementation is also proved.
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Some remarks on the algorithm of Lucchesi and Osborn

Ho THUAN
Let S=(Q, F) be a relation scheme, where Q={4;, 4, ..., 4,} is the uni-
verse of attributes and
F= {Izl g RilLi9 Ri g 9, i= ], 2, very m}

is the set of functional dependencies. In [2] C. L. Lucchesi and S. L. Osborn provided
a very interesting algorithm to determine the set of all keys for any relation scheme
S=(Q, F). Following our notation, the algorithm has time complexity

O(IF 135l 12151+ 121),
i.e. its running time is bounded by a polynomial of |Q|, [F| and |#5|, where
|F| is the cardinality of F, and
Ay is the set of all keys for S.

We reproduce here this algorithm with some modifications in accordance with our
notation.

Algorithm OL1. Set of all keys for S=(Q,F);

Comment. A5 1s the set of keys being accumulated in a sequence which can
be scanned in the order in which the keys are entered;

As ~ {Key (2, F, Q);*
for each K in X do
for each FD(L; —~ R;) in F do
T ~ L;U(K\R);
test < true;
for each J in X do

1 Tet Key (£, F, X) be the algorithm Minimal Key in [2], which determines a key for S that is
a subset of a specified superkey X.
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if 7 includes J then test « false;
if test then A « KU {Key(Q, F, T)}
end
end;
return X

The following simple remarks, in some cases can be used to improve the per-
formance of the algorithm of Lucchesi and Osborn.

Remark 1. Let L, R, H be defined as: R=\J R;, L= L; H= |J K,.
i=1 i=1 KX
To find the first key for S=(Q, F), instead of Q it is better to use the sjupesrkey
(Q\R)U(LNR) and Algorithm 1 in [1], and instead of the algorithm Key (2, F, T)
it is better to use Algorithm 2 in [1] for finding one key for S included in a given
superkey T.

Remark 2. In [1] it is shown that
R\L € O\H,

ie. R\L consists only of non-prime attributes. Therefore, if R;S R\ L then

R,NK=0, vKe A, and L,U(K\R;)2K. That means, when computing 7'=L;U

U(K\R;), we can neglect all FDs (L;~R;) with RRCR\L for every KeJX5.
Let us denote '

F=F\{L,~ R|L;~RcF and R;C R\L}.

Remark 3. With a fixed K'in 5, it is clear that if KN R;=0 then L;U(K\R;)2K.
In that case, it is not necessary to continue to check whether T includes J for each
J in As. So, it is better to compute 7" by the following order

T = (K\R,)UL‘.

Remark 4. The algorithm of Lucchesi and Osborn is particularly effective when
the number of keys for S=(, F) is small. But on what basis can we conclude
that the number of keys for S is small? There is no general answer for all cases,
and it is shown in [3] that the number of keys for a relation scheme S=(, F)

can be factorial in |F| or exponential in |2}, and that both of these upper bounds
are attainable. However, it is shown in ([1], Corollary l) that

|51 = Cpp

where h is the cardinality of LN R. Thus, if LNR has a few elements only, then
it is a good criterion for saying that S has a small number of keys. In the
case I)Lﬂ R=9, Q\R is the unique key for S=(Q, F) as pointed out in ([1], Corol-
lary 4).
Example. We take up the example in [2], Appendix 1):
Q@={a,b,c,d,ef g h}

F={a—~b,c~d, e—~f, g~ h}.
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It is clear that for this relation scheme
LOR =40,

and it has exactly one key, namely Q\ R=aceg.
Taking Remarks 1—3 into account, the algorithm of Lucchesi and Osborn
now can be presented as follows:

Algorithm OL2. Set of all keys for S=(Q, F);
Ay < {Algo. 1(@, F, (@\RU(LNR))};?
for each K in X do
for each FD(L; ~ R;) in F such that K\ R; # K do
T <« (KN\R)UL;;
test < true;
for each J in X5 do
if T includes J then test < false;
if test then X5 < A5U{Algo.2(Q, F, T)}
end
end;
return X,
Remark 5. The time complexity of Algorithm OL2 is
0() 51121 (| A5|1F| 41 FI|L N R])).

Abstract

In [1]) we have proposed two algorithms (Algorithm 1 and Algorithm 2) for finding one key
of the relation scheme S={(£2, F) included in a given superkey. In this paper, we show that, using
these algorithms and some simple remarks, the performance of the algorithm of Lucchesi and
Osborn[2), in general, can be improved.
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Strong dependencies and s-semilattices

Vu Duc Tai

1. Introduction

The full family of functional dependencies was first axiomatized by W. W, Arm-
strong [1]. Different kinds of functional dependencies have also been investigated
in relational data base theory. The full family of strong dependencies has been
introduced and axiomatized [2], [3], [4].

In this paper s-semilattices and strong operations are defined. We investigate
connections between full families of strong dependencies, s-semilattices and strong
operations. We prove that there are one-to-one correspondences between them,
and s-semilattices completely determine both full families of strong dependencies
and strong operations. We give a necessary and sufficient condition for an arbitrary
family of sets to be a full family of strong dependencies. A necessary and sufficient
condition for a relation to represent a given full family of strong dependencies
is also given. Finally, we show that for a given s-semilattice I, we can construct a
concrete relation R, the full family of strong dependencies of which is deter-
mined by 1. :

We start with some necessary definitions formulated in [3].

Definition 1.1. Let R={h,, ..., h,} be a relation over the finite set of attributes
Q,and 4, B& Q. We say that B strongly depends on 4 in R (denoted A%—*B) iff

(V i, he R)((Fac A)(h; (a) = hj(a)) > (V€B)(hy(b) = h;(b))).

Let Sg={(4, B): Ax>B}. Sgis called the full family of strong dependencies of R.

Definition 1.2. Let Q be a finite set; and denote by P() its power set. Let
YCS P(R2)X P(R2). We say that Y is a full family of strong dependencies over Q if
forall 4,B,C, DS R, acQ,
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ot

S1 ({a}, {a))eY;

S2 (4, B)CY, (B,C)EY, B#0 (4, C)Y;
S3 (4,B)cY, CS A4, DS B~ (C,D)EY;

S4 (4, B)€Y, (C,D)EY —(4UC, BND)cY;
S5 (4, B)eY, (C,D)€Y —(ANC, BUD)cY.

Definition 1.3. Let /S P(Q). We say that [ is a N-semilattice over  if Q¢
and A4, BeI-ANBcl. Let MC P(2). Denote by M * the set {NM’: M'SM).
Then we say M generates I if M*=1

J. Demetrovics in [3] showed that for a given (M-semilattice I, there is exactly
one family N which generates I and has minimal cardinality.

Lemma 1.4. ([3]). Let IS P(2) be a N-semilattice over Q. Let
N = {d¢I: YB,C€I: A=BNC ~ A= B or A=C}).

Then N generates I and if N’ generates I, then NS N’. N is called the minimal
generator of I. (It is obvious that Q€N.)

It can be seen that if N;(N,) is the minimal generator of I, (l;) and I,=1,,
then N;#N, holds.

2. The results

Definition 2.1. Let IS P(Q). We say that I is an s-semilattice over Q if I
satisfies

(1) Iis a N-semilattice,
(2) for all AeN\Q
(acA)(VBEN\Q)(4 ¢ B) ~ a¢ B),
where N is the minimal generator of 1.

Definition 2.2, The mapping F: P()—P(£2) is called a strong operation over
Q if for every a,beQ and A€ P(R), the following properties hold:

O F@=29,
@ acF({a}),
@) beF({a}) ~ F({b}) S F({a}),
@ F)= aQA F({a}).
It is easy to see that the set {F({a}): acR} determines the set {F(4): A€ P(Q)}.

The following theorem shows that there is an one-to-one correspondence between
s-semilattices and strong operations.
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Theorem 2.3. Let F be a strong operation over Q. Let Ip={F(4): A¢P(2)}.
Then I is an s-semilattice over Q. Conversely, if I is an s-semilattice over £, then
there is exactly one strong operation F so that Irp=1, where F(§)=Q, and for
all acQ,

M A; if 34;: acA4,(N is the minimal generator of I),
acA;

F({a)) = { 46
Q otherwise.

Proof. 1t is clear that for arbitrary strong operation F
VA, BEP(Q): F(AUB) = F(A)NF(B), F(®) = 2

and ASB~F(B)S F(A). Consequently, Ir={F(A): Ac P(Q)} is a N-semilattice

over Q. Denote by Ny the minimal generator of Ip. For all A€ N\ @ if there isno

attribute a such that F ({a})=A, then if A=F(B)(]B|=2) holds, then, according

to the definition of strong operation, A= () F({b;}). This contradicts the defini-
b,€EB

tion of minimal generator. Consequentl);, there is an attribute a€Q so that
F({a})=A. 1t is obvious that a€A4. It is clear that A4, BENy implies A=B, and
by (3) in the definition of strong operation, for all AEN\Q:

(BacA)((VBENAQ)(A ¢ B) ~ a§ B).

Consequently, I is an s-semilattice over Q.
Conversely, we now suppose that I is an s-semilattice over Q. Denote by N
the minimal generator of I. We define the following operation F:

F®) =Q,
and for all b,
m A,- if BAi: bEAi,

b4,

F({b}) =} aienNe
Q otherwise.

It can be seen that for all A€ N\ R, where Jac4: A6 N\Q and Ad¢ A4~
—~a¢ A;, we have F({a})=A. For all different elements 4(4€ N\ Q) it is easy to see
that there is an a€ 4 so that F({a})= 4. Consequently, YA€ N\ Q: JacQ: F({a})=A.
We now show that F is a strong operation over Q. It can be seen that be F({b}),
and if there is an 4,6 N\ such that béd;, then F({b})eN*+. If acF({b})
holds, then

F({a)) = ag 4; bg 4; = F({b}).

A,eNNQ PRI

On the other hand, it can be seen that the set {F({b}): b€ Q} determines the set
{F(A): A¢ P(Q)}. Consequently, F is a strong operation over Q. It is easy to see
that I={F(A): AcP(Q)}. If we suppose that there is a strong operation F’ such
that Ip.=1I then for all a€Q 3b€Q: F({a})=F'({b}). It obvious that a€F’({b}).
Consequently, F’({a})S F({a}). On the other hand, there is an attribute ¢ so that
F'({a))=F({c}). Clearly, F({a}))S F’({a}) by a€F({c}). Consequently, for all
A€ P(Q), F'(A)=F(A). The proof is complete.
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Based on Theorem 2.3, it is easy to see that s-semilattices determine the strong
operations, and for arbitrary s-semilattice / over £, |N|in not greater than | 2|+ 1. Cle-
arly, there is an algorithm to decide for a given family of sets NS P(Q) whether N is
the minimal generator of some s-semilattice or not. The following theorem gives
necessary and sufficient conditions for an arbitrary family of sets to be a full family
of strong dependencies over Q.

Theorem 2.4. Let YC P(2)X P(R). Y is a full family of strong dependencies
over 2 if and only if there is a family {E;: i=1, ..., I; iLiJlE,: 2} of subsets of Q
such that

(i) for all 4 € Q, (B, A)€Y,

(i) for any A, BS |J E;,— (4,B)€Y,
ENA#=O

(ii) ((C, D)€Y, CNE; = #) ~ D C E,.

Proof. First we suppose that Y is a full family of strong dependencies over Q.
Then by (S1), (S3), (S5) for each a€Q we can construct an E; (E;S Q) so that
({a}, E))¢Y, and VE’: ECE’ implies ({a}, E')4Y. It is obvious that a€E,, and we

obtain n such E;’s, where n=|Q|. Thus, we have the set E={E;:i=1, ..., n; Lnj E=0}.
i=1

It is easy to see that for all ASQ we have (0, 4)¢Y. We now assume that
A={ay, ..., a:a;€Q,j=1, ..., k}>P and B, is a set such that (4, B,)¢Y, VB,: B,C B,
implies (4, B,)¢Y. According to the construction of E, it is clear that for each a;

k k
there is an E;€E so that ({a;},E;)€Y. By (S4) we have (U a;, N E;)=
j=1 = j=1

_ HY l]:
hand, by (4, B)EY and by (S3), we have ({a;}, B)EY for all j (j=i, ..., k).
k k
Consequently, B,S () E;, holds, i.e. B;=[) E;,. It is obvious that [\ E;S
j j=1

=1 ENA=D
k
N E,,. Thus, forall B(BS () E;): BSB,. Hence (4, B)EY holds. If (C, D)<Y,
j=1 ENA=g
CNE;#9, then we assume that @,€CNE;. On the other hand, suppose that a
is an attribute such that ({a}, E;)cY, and VE’: E;cE’ implies ({a}, E')¢Y. By
a,€E; and by (S3), ({a}, {a,})€Y holds. By (S3) and a,€C we obtain ({a,}, D)CY.
Consequently, by (S2), ({a}, D)€Y holds: According to the definition of E we
have DCE;. : .

The proof of the reverse direction is easy, and so it is omitted. The proof is
complete.

k k
=(4, N E,I)GY. By the definition of B, we obtain () E;, &B,. On the other
je=1

Based on Theorem 2.4 we prove the following result, which shows that between
full families of strong dependencies and strong operations there exists a one-to-one
correspondence.

Theorem 2.5. Let Y be a full family of strong dependencies over Q. We define
the mapping Fy: P(£2)~P(Q) as follows:
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Fy(A)={acQ: (4, {a})cY}.

Then Fy is a strong operation over Q. Conversely, if F is an arbitrary strong
operation over £, then there is exactly one full family of strong dependencies Y so
that Fy=F, where

= {(4, B): 4, BEP(Q): B C F(4)}.

Proof Suppose that Y is a full family of strong dependenc1es over Q. It is
obvious that Va€Q: a€ Fy({a}). By Theorem 2.4 we have (C, D)cY, CNE;#§
imply DCE,;. It can be seen that in Theorem 2.4, for any ac®,

Fy({a))e{Ei: i=1,..,n; |Q] = n; ‘L_JlEiz Q).

Consequently, ({b}, Fy({b}))€Y, beFr({a}), ie. bNFy({a})=# implies Fy({b})S
S Fy({a}). By (iii) in Theorem 2.4 we obtain (A, Fy(A))€Y, Yac A:ANFy({a})=0
imply Fy(A4)C Fy({a}). Thus, Fy(4)ES ﬂ Fy({a}). On the other hand, by (S5)

in the definition of full family of strong dependenmes we have va€4: ({a}, Fy({a)))eY
implies (4, ﬂ Fy({a}))ey, ie. ﬂ Fy({a}) S Fy(4). Consequently, Fy(4)=

= ﬂ Fy({a}) holds Conversely, assume that F is a strong operation over £, and

Y= {(A B): BCF(4)). We have to show that ¥ is a full family of strong
dependencies. By Theorem 2.4 we set E ={F({a}): acQ, |Q= }. By the
definition of Y and by ﬂ F({a}=SF(A4), it is obvious that BE

S N F({a) 1mp11es (A B)EY On the other hand, if (C, D)€Y and
Fa)N Ao

CNF({a})>0, then we assume that beCNF({a}), hence by (iii) in the definition
of strong operation b€ F({a}) implies F({b})S F({a}). It is obvious that DZ
CF(C)= ﬂ F({d}). By beC, and ﬂ F({d})SF({b}) we obtain DZ F({a}).

It is clear that VYAS Q: (0, A), (A, Q)EY It can be seen that F=Fy. Now, we
suppose that there is a full family of strong dependencies Y’ so that Fy.=F. By
the definition of ¥ and F we obtain Y'SY. If (4, B)€Y holds, then BC F(4)=
= Fy.(A4) holds. By the definition of F, we have (4, B)¢Y’. Consequently, Y'=Y
holds. The proof is complete.

Remark 2.6. Clearly, if F; and F, are strong operations over Q (F; #Fz) then
Y,#Y,, where Y;={(4, B): BCF,(4)},i=1,2

Based on Theorem 2.3 and Theorem 2.5 the next corollary is obvious.

Corollary 2.7, Let Y be a full family of strong dependencies over Q. We define
the mapping F: P(Q)—~P(Q) as follows:

Fy(4): {acQ: (4, {a))eY}.

Let Iy={Fy(A): Ac P(Q)}. Then Iy is an s-semilattice over Q. Conversely, if I is
an arbitrary s-semilattice over Q, then there is exactly one full family of strong

6 Acta Cybernetica VIII/2
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dependencies Y such that I,=1I, where
Y = {(4,B): A,BEP(Q), A #0,IAEN\Q: 4,N4#0,BS () , Nisthe

ANA=S
A, 6N\

minimalgenerator of 7}U
U{(4, B): 4=9 or TACN\Q: 4N4 =0, BEP(Q)).

Corollary 2.7 shows that between full families of strong dependencies and
s-semilattices there is a one-to-one correspondence and the s-semilattices determine
the full families of strong dependencies.

It is proved (see [2], [3], [4]) that if ¥ is a full family of strong dependencies over
Q, then there exists a relation R over R so that Sp=7Y.

With the aid of the concept of s-semilattice we can construct for a given full
family of strong dependencies Y a simple concrete relation R such that Sz=Y.

The equality sets of the relation are defined in [4] as follows:

Definition 2.8. Let R={h,, ..., h,} be a relation over Q. For 1=i<j=m
denote by E;; the set {a€Q: h,(a)=h;(a)}.

Definition 2.9. Let Y be a full family of strong dependencies over 2. We say
that a relation R represents Y iff Sg=7Y.

We now prove the following theorem which gives a necessary and sufficient
condition for a relation to represent a given full family of strong dependencies:

Theorem 2.10. Let Y be a full family of strong dependencies, and R={h,, ..., h,,}
be a relation over . Then R represents Y iff for each a€Q,

! m E’J if HEU: aEE,-j,
Fy({a}) = 2™ )

Q otherwise,

where Fy(4)={acQ: (4, {a})cY}, and Ej; is the equality set of R.

Proof. By Theorem 2.5, Sg=Y if and only if Fs,=F holds. Consequently,
first we show that Fg ({a})= (O E;; if 3E;; acE;;, andin other case Fy ({a})=Q
ack,

holds. Clearly, Fs ({a})={b¢ Q: {a}=~ {b}}. According to the definition of strong
dependency we know that for any a€ Q,

{a} & B+ {a} %~ B,
where a#®, and {a}—‘I'T»B denotes that B functionally depends on {a} in R, i.e.
(V by, B € R)(hy(a) = h;(a) ~ (VbEB)(hy(b) = h;(b)))
(see [4]). Let us denote by T the set {E;;: acE;;}. It is obvious that if T=0, then
{a}%' Q, ie. Fg ({a))=2 holds. If T0 holds, then we set 4= () Ej;.

acEy,
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If T=E (E s the set of all equality sets of R), then it is obvious that {a}—{r A.
If TCE then for E;: E;¢T we obtain h;(a)=h;(a). Consequently, we have
also {a}Tfp A. Denote by A’ the set with the following properties:

@ {4 4,
(i) A’c A" implies {a} {v A", ie. A” does not functionally depend on {a}.

It can be seen that 4’=A4. According to the definition of F_, we obtain Fg,({a})=
= () E;;. Thus, if Sg=Y then we have (1). Conversely, if Fy satisfies (1), then

acE,
accorclljlng to the above considerations, for any a€Q we have Fy({a})=Fs,({a}).
Because Fy and Fg, are strong operations over £, and by Theorem 2.5 we obtain

VAS Q: Fs5 (A)=F;s,(A4). Consequently, Fy= FSR holds. The proof is complete.

Definition 2.11. Let R be a relation, and F a strong operation over Q. We say
that the relation R represents F iff Fgs =F.

By Theorem 2.10 the next corollary is obvious.

Corollary 2.12. Let F be a strong operation and R a relation over . Then R
represents F iff for all acQ,

Pl ={

Q otherwise.

Clearly, from a relation R we can construct the set of all equality sets of R. Con-
sequently, the following corollary is also obvious.

Corollary 2.13. Let R be a relation and F a strong operation over Q. Then
there is an algorithm which decides whether R represents F or not. This algorithm
requires time polynomial in the number of rows and columns of R.

Based on Theorem 2,10 the next proposition is straightforward and so its proof
will be omitted.

Proposition 2.14. Let Y be a full family of strong dependencies over Q. Denote
N the minimal generator of s-semilattice 7.

Suppose that N—Q={B,, ..., B;}. We set

R={hy, hy, ..., by} as follows:

for all a€Q: hy(a) =0,

0 if a€B;,

for each i (i=1,...,1), h;(a) = {i otherwise.

Then Sz=Y holds.

6*
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Clearly, Proposition 2.14 shows that from a given s-semilattice I we can con-
struct a simple concrete relation R such that /=I5 . Because between ()-semi-
lattices and minimal generators there is a one-to-one correspondence, it can be
seen that (based on Theorem 2.3, Corollary 2.7, and Proposition 2.14) from the
minimal generators of s-semilattices we can construct suitable full families of strong
dependencies, strong operations, and relations.
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A finite axiomatization of flowchart schemes

M. BArTHA

1. Introduction

An equational axiomatization of flowchart schemes and their behaviours, being
the syntax and semantics of flowchart algorithms, was given by Bloom and Esik
in [B—Es]. This paper is another approach toward the same goal, characterizing
the algebra of schemes with a different set of operations. We use separated sum
and a constant ¢ instead of the pairing operation, and replace iteration by an opera-
tion called the feedback. The advantage of using this operation is that vector itera-
tion can be done simply by a repeated application of the feedback. This advantage
comes out apparently in the form of the axioms that are much simpler than those
listed in [B—Es].

Since the algebra of flowchart schemes is sorted by the infinite set NXN (N
denotes the set of all nonnegative integers), to describe our system of axioms we
use a scheme of axioms rather than a set of ordinary equational axioms where
both sides of the equations are terms built up from constants and variable symbols
of fixed sort with the given operations. In our sense such a scheme consists of equa-
tion patterns of the following form. The terms on the left and right side are built
up from variables of variable sort and subterms denoting algebraic constants. These
subterms, however, are allowed to depend on the sort of the variables so that they
are uniquely determined by a fixed choice of the sorts of the variables occuring in
the whole term. A scheme of axioms is called finite if the number of equation pat-
terns is finite. In this sense the scheme of axioms developed in [B—Es] is infinite.
It turns out, however, that a more careful treatment of algebraic constants yields a
finite scheme.

As the scheme algebra operations of Bloom and Esik are easy to derive from
our ones (and vice versa), it is possible to approve our scheme of axioms by proving
the equivalence of the two axiom systems remaining strictly within the framework
of equational logic. This, however, would require a tremendous amount of com-
putation. Instead, we follow the way of constructing suitable normal forms of
terms (as it was done also in [B—Es]), which is easy to illustrate by schematic proof-
diagrams.
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2. The axiomatization of flowchart schemes

We shall consider three classes of (NX N)-sorted algebras, called P, M and
S-algebras, respectively. If A is such an algebra, then A(p, q) denotes the under-
lying set of A corresponding to sort (p, ). The notation f: p—gq is introduced with
the meaning f€ A(p, q) if A is understood.

A P-algebra is an (NX N)-sorted algebra equipped with the following opera-
tions and constants.

Composition: a binary operation which maps A(p, )X A(q,r) into A(p,r)
for each triple p, q, r€ N. Composition is usually denoted by juxtaposition or - if
it is intended to be emphasized. Composition is in fact a collection of binary opera-
tions - (,,q,», but the subscript (p, g, r) is omitted for simplicity.

Separated sum: also a binary operation mapping A(p,, ¢)XA(py, ) into
A(p,+ps, g1 +4q,) for each choice p,, ¢;, ps, g, of nonnegative integers. Separated
sum is denoted by +.

There are three constants: 1€ 4(1, 1), 0¢.4(0,0) and xcA(Q2,2).

Terms constructed from these constants with the above operations are called
base P-terms. Clearly, every base P-term is of sort (p,p) for some peN. For
each n€N let t(n) denote the base P-term defined recursively as follows.

(@ if n=0 or n=1, then t(n)=n,
i) trn+D=tm+1 f n=1.
However, we shall write n instead of #(n) if there is no danger of confusion.

Definition 1. A permutation algebra is a P-algebra satisfying the following
equational axioms:

Pl:f-(g-h)=(f-g)-h forall fip—>gq, g:q—-r, h:r-—s;

P2 f+(g+h) = (f+g)+h forall f: pi—qi, g Pa— s h:Ps—~ gs;

P3: p-f=f and f-g=f forall f:p-g;

P4: f+0=f and O+f=f for all f:p-—gq;

P5: (fi-g)+(fe 8 = (i+/f)(g1+ge) for all fii p—~q, g g~y
i=12;

P6*: x-x =2;

P7*: (14+x)(x+1D(A+x) = (x+ DA +x)(x+1).1

For each pair (p,q)¢ NXN let II(p,q) denote the set of all p-ary permuta-
tions if p=gq, else let II(p, 9)=@. Define composition and separated sum over
the sets II(p, g) in the usual way, and let 1 and O be the unique elements of II(1, 1)
and I7(0, 0), respectively. Interpreting x as the transposition 22 we get a P-algebra
I1, which is clearly a permutation algebra.

1 P6* and P7* will be replaced by a single axiom called the block permutation axiom. In fact
P6* and P7* are the weakest special cases of this axiom that are enough to prove that the P-algebra
of all permutations is the initial permutation algebra.
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A base P-term is called simple if it is equal to k for some k€N, or it is of the
form (i—1)+x+(n—i) for some n=1, i€[n]={1,2,..,n}). (In the latter case if
(i—1) or (n—i) is 0, then it is omitted according to P4.) The term (i— 1)+ x+(n—i)
will be denoted by x,(i). Let P denote the collection of axioms Pl, ..., P7. The
following remark can be easily proved using only the “magmoid identities” (cf.
[AD)) P1, ..., P5.

Remark. For every base P-term ¢ there exists a base P-term ¢’ which is the
composite of a number of simple base P-terms (called the factors of ') and P—t=t¢’,
i.e. the identity t=t¢" is provable from P. ¢’ is said to be in split normal form (s.n.f:
for short).

Lemma 1. Let n=1 and i€[n—1] ((0]=9). Then
5p(D%,2) o+ %y (D Fn (D) = X i+ DX (D2, 2) oo ()
is provable from P.
Proof. (See also Fig. 1 for the case n=3, i=1.)
X, (D%, (2) - ... x,(Wx, () = x,(V)- ... - x, (D) x,(+ Dx, (D) x,(+2)- ... - x,(n) =
=(by P7) = x,(1)- ... - x,(i—Dx, i+ Dx,)x,(+1) ... - x,(n) =
= x,(i+Dx, (1) ... x,(n).

-

Fig. 1. Proof of Lemma 1 on an example

In two steps of the above derivation we used the obvious identity x,(k)x,(/)=
=x,()x,(k), where 1=k<]/—1<n.

For a base P-term ¢ let |¢]| denote the value of ¢ in IT. (In other words | | is the
unique homomorphism of the initial P-algebra into I1.) Since every permutation is
expressible as a composite of permutations of the form |x,(i)|, the following prop-
osition says that the initial permutation algebra is II.

Proposition 1. Let ¢ and ¢’ be base P-terms. If |t|=|¢'], then Pt=1¢".

Proof. By the Remark we can assume that ¢ and ¢’ are both in s.n.f. Listing
the factors of ¢ in reverse order we get a term ¢~ such that Pt '¢=n for appro-
priate neéN. If we can prove t’t~'=pn, then we get the required proof: t'=
=¢'(t71t)=(t"t ~Y)t=t. Hence it is enough to show that if |t|=|n| for some base
P-term t in s.n.f, then Prt=n. We follow an induction on n. If n=1, then the
statement is trivial. Let n=2. If none of the factors of ¢ is equal to x,_,(1), then
t=1-+1t’, and the induction hypothesis works for ¢, If x,_,(1) occurs in ¢, then
assume indirectly that Pt+¢=n, and the length of ¢ (i.e. the number of the factors
of ¢) is minimal. Split ¢t=ox,_;(1)f so that x,_;(1) should not occur in a. By
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Lemma 1 and the assumption that the length of ¢ is minimal we get that
Prx,_ (DB=yx,_1(Dx,_1(2)- ... - x,_1(J) for some je[n—1], where x,_,(1) does
not occur even in y. We conclude that Pit¢=ayx,_;(1)...x,_,() which is a con-
tradiction, since in this case Jt](D)=j+1=1.

Corollary 1. The initial permutation algebra is II.

In the light of Proposition 1, when working in permutation algebras we identify
a base P-term ¢ with the permutation |¢].

The following definition is adopted from [B—Es]. Let s be a finite sequence
(ny, ..., n,) - of nonnegative integers and suppose that «: r—r is a permutation.
Let n be the sum of the numbers #;.

Definition 2. a4 s: n—~n is the permutation which takes a number in [n] of
the form
4 ... +m+j,
where j€[n, 4], to the number y+j, where 3 is the sum of all numbers r; such that
a()<a(k+1).
From now on we drop the axioms P6* and P7*, replacing them by the stronger
block permutation axiom of [ES]:

P6; fit+fe = x % (P, po) (fa+ /) x % (g2, q;) for all
f px ia l: 1 2

Assume that x#(p,, pz) and x#(qz, ql) are represented in P6 by base P-terms
in a minimal length s.n.f. Then we see that P6* and P7* are indeed consequences
of P6. (Take fi=f=1 in the case of P6, and fi=x, fo=1 for P7.) Since P6 is
also valid in I7, IT remains initial. Now the following lemma is true in every permuta-
tion algebra.

Lemma 2. Let «: r—r be a permutation and f;: p;—~q; for each i€[r]. Then

‘é;fi = () (é'l' fay) (@ AS2),

where 5;=(py, ..., p,) and $,=(q,q); --+> Jatr)-

Proof. Easy induction on the length of a base P-term in s.n.f. representing o
An M-algebra is an (NX N)-sorted algebra having all the operations and con-
stants of P-algebras and two further constats: ¢ of sort (2, 1) and 0, of sort (0, 1).
As in the case of P-algebras, base M-terms are those built up from the constants
using the given operations. Define base M-terms ¢, and 0, for each n€ N as follows.

(i) =0, &=1, g=¢ 0,=0, 0,=0,40;;
() if n=2 then ¢,y =0(,+1-¢ 0,,,=0,40,.

Definition 3. A mapping algebra is an M-algebra satisfying the identities belong-
ing to P and the following ones.
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M1 (e+D-e=(14+¢) -¢; .
M2: x-g=c¢;
M3: (140)-e=1.

For (p, )¢ NXN let 0(p,q) be the set of all mappings of [p] into [g]. Let
0, and ¢ be the unique elements of 6(0,1) and 6(2, 1), respectively, and interpret
the P-algebra operations and constants over the sets 0(p, q) as an obvious extension
of their interpretation in II. In this way we get the M-algebra 8, which is clearly a
mapping algebra as well.

A base M-term is called simple if it is a simple base P-term, or it is one of the
forms

(i (—D+0,+(n—i), or
G) ((—-D4+et+(@-9)

for some n=z=1, i€[n]. Let M denote the collection of axioms M1, M2, M3. As in
the case of base P-terms, for every base M-term ¢ these exists a base M-term ¢” such
that ¢’ is the composite of simple base M-terms and Prit=t’. Moreover, by P6
it is possible to rearrange the factors of ¢” in such a way that PUM —t'=aff, where
a is a base P-term in s.n.f., but none of the factors of § is a simple base P-term (exept
when f=k for some ke N) But then PUM-f=¢g;,+...+¢; for some non-
negative integers m, ji, ..., J

For a base M-term ¢ let |¢] denote the value of ¢ in 8. The above reasoning
together with Proposition 1 yields the following result.

Proposition 2. Let-¢ and ¢* be base M-terms. If |¢|=]|¢’|, then PUMt=¢"
Equivalently, the initial mapping algebra is 0.

As in the case of permutation algebras, when working in mapping algebras
we identify a base M-term ¢ with the mapping |¢].

Let a: p—~¢ be a mapping and BC|[q]. We say that « is onto B if a~1(j)=0
for any jeéB. If «;: p;—~q, i=1,2 are mappings, then define their pairing
(5 )1 prtpa—>q as

o, () if i€[p]

<a1’ a2>(i) = {dg(i -.pl) if IE[P1 +p2] —[pll

An S-algebra has one further unary operation beyond the M-algebra opera-
tions and constants. This operation will be called the feedback and denoted by 1.
In an S-algebra the feedback maps A(1+p, 14+¢) into A(p,q) for each pair
(p, P)ENXN.

Let X be a doubly ranked set. (Recall from [B—Es] that

Z = {Z(p, 9l(p, )ENXN},
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where the sets Z(p, q) are pairwise disjoint.) A Z-flowchart scheme with p begins
and q exist consists of:

(i) A finite nonempty set ¥ of labelled vertices, where the labels belong to the
union of four, pairwise disjoint sets:

(UD)U{bilielp)yU{ex ljelqlyU{L ).

For each i€[p] and j€[q] there exists exactly one vertex labelled by b,, called the
i-th begin vertex, and exactly one vertex labelled by ex;, the j-th exit vertex. More-
over, exactly one vertex, the loop vertexis labelled by | . Foreach v€¥V denote v;, and
vou the following sets of so called ““signed vertices™. Let o bethelabel of v. If a€ Z (7, 5),

then
via = {(v, DIi€[r]} and v,y = {(v, J)| j€[51}-

If a=ex; or a= 1, then v;,,={(»,1)} and v,,=0, else (ie. if a=b;) v;,,=0
and vou,— {(v, 1)}. Signed vertices belonging to begin, exit and loop vertices will be
identified with their label.

(ii) A mapping E of V= U(vlv€V) into V,=U(v,|v€V). E represents
the edges of the scheme, and in this sense we consider X-flowchart schemes as
directed graphs.

Define the S-algebra operations on Z-schemes as follows.

— The composition of schemes F: p—~g and G: g—r is constructed in
three steps.

1) Take the dlS_]Olnt union of the graphs of F and G.

2) Direct each edge of F ending in any exit vertex of F, say ex; to the signed
vertex pointed by E(b;) in G.

3) Identify the lopp vertices of F and G, and delete the exists of F as well as
the begins of G (together with all the incoming and outgomg edges, of course).
— The sum of schemes F,: p,—~¢q, and F,: p,—~¢q, is taken as follows.

1) Take the disjoint union of F; and F,

2) Relabel each begin vertex of F, from b to bp +; and each exit vertex of F,
from CX to exq1+1 (l€[P2], J€[‘I2])

3) Identlfy their loop vertices.

— If Fis a scheme 1+p—1+g¢g, then {F is constructed as follows.

1) Direct each edge of F ending in ex, to E(b,) if E(b))7ex,, elseto L.

2) Delete vertices b, and ex,, and relabel b;,, and ex;,, as b; (resp. ex;) for

i€lpl, €lg). | , , _
— The interpretation of the constants is shown by Fig. 2.

by by b
1: ; 0 ;& >./ 0,: @
o (o)

Fig. 2. Interpretation of the constants as schemes
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The loop vertex is omitted on the figure (exept for 0).

Definition 4. A scheme algebra is an S-algebra satisfying the identities PUM
and the following ones (the collectlon of these identities will be denoted by PMS)

S MAHD = thth for fii Lepy~14d1, fui pamas -
82: t((x+p)f) = W(f(x+q) for f: 24p—2+g; '
S3: 4(f(1+g)=0Ufg for f: 1+p—~1+gq, g:q—r;.

S4: 1((1+g)f) g ff for f 1+q->1+r, g P—q;
S$5:41=0 and e _|__ L+1, where =1e;

w N

S6: tx=1.

It is easy to see that X-schemes together with the operations and constants
defined above form a scheme algebra, which will be denoted by Sch (Z).

Lemma 3. If «: 14+p—~1+4g is a mapping with «(1)>1, then there exists
a mapping f: p—~q such that PMS{a=p.

Proof. Split « into the form
(1+8)G+n)(1+Bo),
where B,: p—~1+r and B,: 1+r—q are appropriate mappings. Then
ta =(by S3 and S4) =B, -t(x+r)B, = (by S1 and S6) = B, B;.

Claim. The following identities are valid in every scheme algebra.
S1*: Y(fi+f) =tfi+fa for firl+p, ~14+qy, foi P2— ¢

(1 denotes the I-fold application of 1.)
S3*: t(fU+g)=Wf)-g for f:l+p—~1l+gq, g:g-r.
S4*: t((+g)f)=g-t'f for fil+q—~1+r, g p~gq.
Proof. Trivial.

t{(@+p)f(e~+q) =t'f for f:l+p-1+q and permutation a.
Proof. Put « into s.n.f,, and apply S2 with §3* and Sé}:k fepeatedly.
X2: fu+h (b4 #(la, p)+p) A+ (L +x #(q1, 1D+ g2) =

=thfy+1bf, for fii Li+p;—~ i+4q;,i=12.

Proof. A schematic derivation is shown by Fig. 3.



210 M. Bartha

L L PP

|

1"'”’( I fa )”;s“ th ( f1 fz) =

1 % | [ 10 1IN

-e([A] [# Yo (&) (4] |5 1A ] L2

S1* Pe

Fig. 3. Schematic proof of X2
The same proof formally:

thette (4 # s, p)+PI D (43 #(a0, 1)+ 0) =

= th(th (L +x 4z, p)+P) (L ) L +x #(g1, L)+ 42)) = (54%)
= th((x # (I, p) +po) - th (L) (h+ x #(q1, I+ g2))) = (S3%)

= th((x #(l2, P+ P2 - th (L +HD (X (g1, L)+ g2)) = (S1%)

= th((x #(lz, )+ P 1+ (x #(q1, l) +45)) = (P6)

= th((ly+ % #(p1, ) La+11f) (U +x #(gs, ¢1))) = (S4%, $3%, S1*)
= (x #(py, P)) (tafe +111)(x #(g2, 91) = (P6) = tif, +1hf;.

In the sequel we shall omit the tedious formal proofs restnctmg ourselves to the
corresponding schematic ones.

X3a: t4(x #(p, )+ 1) (f+g)) = (f+Dg for
fip~4q g gqtl-r

X3b: t((g+N(x #(r, 9)+D) =f(g+D for
frp~qtl gig-r

Proof. Both cases a and b can be proved in a similar way, so we only prove
X3a. (Dotted lines.indicate composition in Fig. 4.)

X4: {(fe+ @) = t2((e+p)f). for f:il+p—+2+gq.
Proof. See Fig. 5.



|

]|

A finite axiomatization of flowchart schemes

1"(7f‘

- e - —

L[]
= P r )=
(Q%U
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Lemma 4. Let a: r—1+p and B: 1+g—+s be mappings, f: p—~q. In every
scheme algebra we have

a) if a(l)=1 and (1)1, then '
Ha(1+N)B) = L (1+N)F';
b) if f()=1 and a(l)=1, then’
t@(1+)B) = t@"fB");
o) if a()=p(1)=1, then
(a(l _l_f)ﬂ) = 1((1,”(_1_ +f')ﬂm)
for appropriate mappings - oc a”, a”, B’y B”, B”; moreover a”(1)=1.

Proof.
Case a: By assumntlon o can be written in the form a=( 1+a')(s+ p). Then

05(1 +f)ﬂ = (1+&)E+p)A+NB = (1+)2+f)(E+9)p =
= (AN E+ DB

Ha(1+B) = L(1+£) - 1((e+9) B).
Since B(1)#1, Lemma 3 says that #((s+¢)f)=p" for some mapping f’.

Case b: In this case f can be written in the form

B=(Q1+p)(e+s-1),

te(+NHB) = t({@(1+NB"(e+s~1) = (by X4)
= 12((e+r—Da(d+N1+) = t({t(e+r = Da(l+/87)) = (by S3)
= 1(t((e+r—1)a)fB”) = (by Lemma 3) = +(«"fB").
Case c: As in the previous case we have .

a1+ B) = t( (e +r—1)a)fB")

Hence by S4:

R o]

but now
(e+r—Da=(+r-DI+a)(e+p) = (1+1)2+) (et p);
t((e+r—1a) = (by S4) = (1+a)M(es+p) = 1 +a) (- L +p) =
=(1+a)e+p) (L +p).
Putting a”=(1+4+0a')(e+p) and B”=B" we get:

@ +NF) =Ha"(L +2)fB") =1 (L £N)B").

We call Z-terms those S- terms that are built up from the_elements of % con-
sidered as -atomic terms (recall that.X is a doubly ranked alphabet) and from the
constants, using the given operations. Since the S-algebra of X-terms is freely .gen-
erated by Z, each homomorphism of it into the algebra.- Sch(X) is uniquely deter-
mined by its restristion to Z. Let | | be the homomorphism determined by the mapping
shown by Fig. 6.
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bs b

Nt

lo} = c

1 q
Fig. 6. c€X(p, q) as an atomic scheme

A Z-term ¢ is said to be in weak normal form (w.n.f) if

t = ta(a;+...+a,)p),
where

(1) a;€Z or a;=1 or a;= 1 foreach i€[n],

and there exists at least one jé€[n] such that a;= 1.
(ii) o and 8 are mappings of appropriate sort.

Lemma 5. For each X-term ¢ there exists a Z-term ¢’ in w.n.f. such that t=¢’
is provable from PMS.

Proof. Induction on the structure of ¢. If ¢ is a constant, then its simplest w.n.f.
is one of the following: 1=(1+0)(1+ 1), 0=0,- L, x=(x+0)(2+ 1), 0,=
=0;- 1 -0;, e=(e+0)(1+ L). Theseidentities are easy to prove. If t=c€Z(p, q),
then its w.n.f. is (p+0)(6+ L). Let t=¢ opt,, where op=+or-, and let ¢
and ] be some w.n.f.-s of ¢, and ¢,, respectively. If op=+, then we get a w.n.f.
of ¢ by applying X2 for fi=t; and fy=¢;. If op=-, then apply X3 with /=0
(both cases a and b are appropriate), and then X2 together with $3* or S4* to get
the required w.n.f. of ¢. For t=#t’ the induction step is trivial.

Definition 5. A I-term ¢: p—g is said to be in normal form (n.f) if

t= Tl((“1+0k+15“2>'(§0i+ 1L +k)- (B, 0,+By)),
where

() n=0,0,6Z(r;,s;) for each i€[n],

én=n j&=u
i=1 i=1
(ii) &, oz, B, and B, are mappings such that
o: I-r+1 and f;: k- g are injective and monotonic,
o: p—~r+1+k is onto [r+1+Kk}—[r+1];
Bs: s = l4+q is onto [I].

Lemma 6. For each I-term ¢: p-q there exists a I-term ¢’ in n.f. such that
t=t' is provable from PMS. ‘
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Proof. By Lemma 5 we can assume that ¢ is in w.n.f., i.e. t={"{a(aq,+...+a,)B).
Moreover, by P6 and S5 we can assume that for some n<m we have: ;€% if
i€[n), a,;,= L and a;=1 for each n+1=j=m. Let k=m—n—1. We prove by
induction on the number k+/ If k+I/=0, then we have nothing to prove. For
k+1=>0 we distinguish two cases. By assumption, a: /+p—~r+1+k and f:s+k—~
—~1+q for some r,s€N.

Case a: 1>0 and one of conditions (), (# %) or (% % %) below is satisfied:
Suppose that for some j€[k]

(@=1(r+ 14 jHUB(s+))NIN = 8. (%)
By P6 and X1

t=t A +ay+...+a;-1+a; 1 +... +a,)B)

is provable for some a’ and § such that «’(1)=1 or p’(1)=1. Using Lemma 4
we obtain a simpler w.n.f. of ¢ by decreasing the number k or /, which makes the
induction hypothesis applicable. If this type of reduction cannot be applied, i.e.
condition (%) does not holds for any n+1<j=m, then « and B can be written in

the form
a =y +041,05) and B = (B, 0;+py),

where a,: I-r+1, ay: p>r+1+k, B, k—~q and B,: s—I+gq are appropriate
mappings. Now suppose that there are distinct integers

1=i, <iy;=1 such that a,(i,) = o;(ip). (% %)

By X1 we can assume that i,=1 and #,=2. Using X4 we can decrease / making
the induction hypothesis applicable. In this way «; can be made injective. It is also
easy to see that if

B is not onto [I], (% * %)

then the feedback counter I can be decreased again,

Case b: I=0 or none of (%), (% %) and (* * %) is satisfied.

In this case if a0, were not onto [r+1+4k]—[r+1], then k could be decreased
trivially, moreover any duplication of B, could be “lifted”” to o, causing again the
number k to be decreased.

Thus, we have seen that in any case when the induction hypothesis cannot be
applied we have all the conditions of the n.f. satisfied, except monotonicity of a;
and B,. However, this can also be adjusted by the application of X1 and P6, so the
proof is complete.

Theorem 1. Let ¢ and ¢’ be Z-terms. If [¢[=]t’|, then ?=¢" is provable from
PMS.

Proof. By Lemma 6 we can assume that ¢ and ¢’ are in n.f. Normal form of
Z-terms was defined in such a way that if # and ¢’ were not identical, then the only
difference between them should appear in the order of the atomic terms occuring

n
in the sum  g,. In this case, however, an application of Lemma 2 with an appro-
i=1
priate permutation « will make them identical.



A finite axiomatization of flowchart schemes 215

This theorem and the following corollary are the main results of the paper.

Corollary 2. Sch(Z) ‘is the free scheme algebra generated by Z.

3. Connections to the same result of [B—Es]

~ In [B—Es] schemes are axiomatized as algebras equipped with the following
operations and constants.

Composition, - : A(n, P)XA(p, q) ~ A(n, q);
Pairing, ¢, ): A(n, )X A(p, 9) ~ A(n+p, 4);
Iteration, t: A(n,n+p) > A(n, p);
nh€A(1,p) for each peEN, i€[pl;
0,64(0,p) for each pEN.

Let us call algebras of hist type BS-algebras, and to make a temporary distinction call
the BS-type scheme algebras of [B—Es] B-scheme algebras.

In an arbitrary scheme algebra 4 we can introduce the BS-algebra operations
as derived ones in the following way.

Composition : adopted as a basic operation;

Pairing: for f: n—+q and g: p—~q let

(i 8) = (f+2) - wa(9),

where w,(q): kg—q is the mapping which takes (j—1)g+i to i for each jc[k],
i€[ql;
Iteration: for f: n—-n+p let

[t =t"(wa(m)f);
nl, = 0;_,+1+0,_; and O, is adopted.

It is straightforward to check that if A4 is a free scheme algebra, then the above
derived interpretation of the BS-algebra operations coincides with their original
interpretation considering 4 as a free B-scheme algebra. From well-known results
of universal algebra it follows that every scheme algebra equipped with these BS-
algebra operations becomes a B-scheme algebra.

Now let 4 be a B-scheme algebra. We can derive the S-algebra operations in
A as follows.

1=gal; x= i, ndy; &= (nl,n}); O0,: adopted;

Composition: adopted;

Sum: for fi: pr—~qy, foi Pa—~q: let

fl +f2 = <f3‘l<7t5111+qa’ tree n3:+qz>’f2<ng}i;2’ rees ng:ig§>> >
Feedback: for f: 14p—1+4q let
tf = O +p)(f(1+0,+ g))".

7 Acta Cybernetica VIII/2
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Repeating the previous argument for free algebras we can see that A4 equipped
with the above defined S-algebra operations becomes a scheme algebra. Thus, we
can state

Theorem 2. The equational class of all scheme algebras is equivalent to that
of all B-scheme algebras.

4. Algebraic and iteration theories

Roughly speaking an algebraic theory (theory for short) is a BS-algebra without
iteration satisfying the following equational axioms.

THY: f-(g-hy=(-¢+h forall fin—-p, g:p—~gq, h:iq-—r,

TH2: p-f=f=f.q forall f:p-g (p denotes the term (n}, ..., nB)),
s {figh by ={f,{g,h)y forall fim—gq, gin—gq, hip—gq,
TH4: (f,0)=f=(0,,f) forall f:p—gq,

THS: nilfi, ...y =/ forall fi,.. f,: 1—-gq, i€[p],

TH6: (n.f,...n8fy=f foral f: p-gq.

We would like to extend our system of axioms PMS in such a way that in the cor-
responding smaller equational class each algebra should derive a B-scheme algebra
which is a theory. We claim that the following two axioms are sufficient.

Thl: 0,-f=0, forall f:1-gq,

TH

w

Th2: wy(p)-f= (él'f)-w,,(q) for all f: p—~q

(recall that w,(q): pg—~q takes (j—1)g+i to i for each je[p], i€[q]). Indeed,
the derived correspondents of TH1—TH4 follows already from PUM, so we
only have to prove THS5 and TH6. The derived form of THS5 in S-algebras in the

following:
(Oi—1+ 1 +0p—i)(./i+ vee +_f;,)wp(q) :f;.
By Thl the left-hand side reduces to
O -1g F+/i 00—y Wo(q),

which is clearly equal to f;.
Concerning TH6 we have to prove that

((1+0,-)f+ ...+ 0+ Df)wp(g) = 1.
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Manipulating the left-hand side using Th2 we obtain:

(3 (Omat 140,01 wy(@) = (3 Oumst 140,03 )wy(a) =

= (2 Ouat 140, ))w, () = 1

Unfortunately I did not succeed in an essential simplification of Esik’s “com-
mutativity” axioms (cf. [Es]) for iteration theories:

IT: (% 0f(e1+D), -... mhef (entp))t = o(fle+P),

where f: n—-m+p, ¢: m—n is a surjective mapping and g;: m—m are also
mappings satisfying ¢;0=¢. In our sense I7 is an infinite scheme of axioms, more-
over, Esik has proved that it cannot be replaced by any finite scheme, see [Esl].
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O BEPOSATHOCTHBIX METOJAX OIITUMM3ALINU
HA TUCKPETHBIX MHOXECTBAX

C. B. IkoBnes

Ilycth X IUCKpeTHOE MHOXECTBO, HA KOTOPOM oOIpelelicH (yHKIHOHAI
%x: X—~R'. TpeOyercs HaiiTu
x* = arg min x(x) N
x€X

PanpomusupyeM 3amavy (1). OToXIeCTBUM IIPOCTPAHCTBO 3JIEMEHTAPHEIX COOBI-
THii ¢ X. Ilycth By — o-anreGpa moaMHOXecTB X (B YaCTHOCTH BO3MOXHO Hx=2%),
a Py — BeposrHOCTHas Mepa Ha %By. Torma x(x) ecthb ciiydaiiHas BeSAYAHA Ha
BEPOSTHOCTHOM npocTpancTBe (X, By, Px).

B nanHOI cTaThe HpeAsIarajoTCcad METONB! CTATUCTHYECKOH ONTHMHU3AIAH, OCHO-
BaHHEBIE HAa MCIIOJB30BAHMH CBOMCTB CIy4ailHOH BEeJIMYMHEL x(X) JUIf HCCleXOBAHHS
NOBEACHHA MUHUMH3HPYeMOTO (GYHKIHOHANa Ha MHOXeCTBE X M ero IOJMHO-
*ecTBax. B manpHeiiieM, YTOOB OTJIMYATH, HACT pPedb O QYHKOUOHANE WK O CIIy-
yaifHoM BejuuMHE, OyIeM WCHOJNB30BATH COOTBETCTBEHHO 0003HadeHHR x(x) H
x#(x): x¢Y, ykaspiBag TeM CaMbIM MHOXECTBO, Ha KOTOPOM 33aJaHa BepPOSTHOCT-
Has Mepa.

Hyctes t={Y}}, i=1, n—1, j=1,n; Takas CHCTEMa MHOXECTB, 4TO
i 4 pitl 1 1 1+1 :
Yic U Y,,:; , =X, m=1, cardY;>card¥;*!, Vj,k,
1=1
.e ]
rae ;= {n¥, ..., n} } — Taxue nogmuoxecTBa MuOXecTBa N;= {1, 2, ..., > n;;}, 9TO
j=1
ny —_—
-UIHiJ=Ni’ H,-jﬂﬂik=ﬂ V_],kz 1, n,-.
J=
s onmpenesieHHOCTH 3aHyMeEpyeM, HAIPEMEDP, MHOXECTBA CHCTEMBL T TaK, YTOOHI

]
a
i)
Y}C U Yli+1,
I=a;_1+1
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rae

k
a6=0, a’i‘ =12 nij, k= s M.
=1

ScHO, 9TO ANs TOCTpPOEHHst T HOCTAaTOYHO, HAMPAMED, OCYILECTBHTL pa3bHeHue
HCXOJHOTO MHOXeCTBA X Ha MOAMHOXECTBa, 3aTEM KaxJ0e U3 MOAMHOXECTB CHOBa
pa3bHT, Ha nogMHOXecTBa WM T. 4. OAHAKO 3aMETHM, YTO YCJIOBHE HONAapHOIO
HellepeceueHnss MHOXKECTB ¢ OMAHAKOBHIM BEPXHAM HHAEKCOM He sBIfeTca obd3a-
TeAbHBIM.

Ha pomMHOXecTBaX CHCTeMHB T OydeM 3alaBaTb BepPOSTHOCTHYIO Mepy. Tem
CaMbIM [IOJTy4¥M COBOKYIHOCTb CIIy9aiiHbIX BeTHIHH x(x): x€ Y€1. Onnoli u3 Baxk-
HEHIIMX XapaKTepUCTHK CIydailHOH BeMMIAHE! siBNisfeTcs (GYHKIOHA ee pacmpenene-
mns. Unmew wcnonb3oBaHust (YHKOHMH pacnpeieiieHHs CIy4YaiHOM BeIHYWHBL 1A
ONTHMU3AIAK JeTEPMUHUPOBAHHOTO QyHKIMOHATIA paccMaTpHBAIACh, HAIIPAMED, B
paborax [l1,2]. 3amermM, uTO B oOImeM ciydae BAA (YHKIMH pacHpelescHAS
F(v) cnyuaitaoii Benuuunbl %(x): x€Y He m3BecTeH. OQHEAKO MOXHO YTBEDKEATH
cremyomee. ’

Bo-mepsrix, F(x(x*))=0, a mma moboro &>0: F(x(x*)+g)=0.

Bo-BTOpEIX, ecllH MHOXECTBO X KOHETHO, a N(g) eCTb MHOXECTBO TeX 3HAaUe-
HU x€X, mua Kotopeix x(x)<x(x*)4¢, To

card N(g)
card X

B-TpeTrux, pyrkmus F(v) crynepdaTtas. Bmecre ¢ TeM ee MOXHO amIpOKCH-
MHpPOBATh HENpepHBHOM (yHKOHel, BOCIOIb3OBABIIACH, B YaCTHOCTH, Pa3iIoie-
HueM F(v) B psj o HOpMaJIbHEIM pacupezesieHustM. Ilpa paznoxeHnd Heo6xoauMo
3HaTh MOMEHTHI Ciay4aiiHOil BeawumHBL. [l 3TOro MOXHO HpEJIOKHTh HMX BEHI-
6opounbie oneHkd. OHAKO ONEHKA MOMEHTOB BBICOKHX HOPAIKOB IOPOXIAFOT 601b-
mye morpemEoctH. IToaTtoMy Takoit momxon neirecoobpaseH, xorpa F(v) xoporo
npubnmkaeTcs 2—3 4ieHaMH psJa B Pa3NoXcHHH.

Ins BekoTOpBIX XKnMaccos (GYHKOHOHAJIOB OUCKPETHBIM XapaKkTep MHOXeCTBa X
MO3BOJISIET MOAyYaTh TOYHbIE 3HAYeHHsI MOMEHTOB. B 4acTHOCTH, A 331249y Ha3HA-
vyeHds B paboTe [3] DmojydeHB! TOYHBIE CpelHEE W IACHEPCHS, KaK OIpeZiesicHHbIE
GYHKIIME OT 3JIEMEHTOB MaTpPHIE! CTOMMOCTH (3TH pe3ylbTaThl MOXHO IE€PEHECTH
Ha MOMEHTEI GoJiee BEICOKHX mopsaakoB). Kpome Toro, caM B MAHHMH3UPYEMOIO
¢yuknuoHana x(x) HHOIIOa II03BOJ'DIeT TOBOpHTb O (YHKUMH pacupeneicHAs

F(u(x*)+e) =

#(x): x€Y. Tax, ecnmu x(x)= Z' ¢;X;, TO TIDY BHINOJHEHHH JOCTATOYHO OOIIAX

ycJIoBHi cnyyailHas BenMYAHA x(x) x€Y acAMOTOTHYECKH (m—eoo) HOpMAJIbHA.
OyHKnOAIO pacupeleneHAs MOXHO TaKXke OINEHHBATHL C HOMOIbIO KPHTEPHEB COIJIa-
cHi H T. JI.

B nambHeiimeM OyneM IpeAmnoJiaraTsh, 910 BHX (GyEKnuA pacnpenencHus F(v)
H3BeCTeH C TOYHOCTLIO J0 mapaMeTpoB 6 M moJyib3oBaThcid obo3madeHneM F(v, ).

Ha3zoBeM HCIBITaAHEEM TeHEPAIHIO TOUKH X W3 MHOXecTBa Y€71. Jlnsg omeEK:n
BekTopa mapameTpoB 6(Y) ¢yHkmum pacnpenenernst F(v, 0(Y)) ciyuaiinoii Benn-
quHBl %{Xx): X€Y npouW3BeleM CepHI0 HMCHHITAHW (T.e. chopMHpYeM BBHIOODKY
{se(xy), ..., 2 (x9}, x;€Y, i=1,s. Hammenbinee BEIGOpOYHOE 3HAYeHHE HIPH 3TOM
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MOXHO PacCMAaTpHBATh Kak IpHOIMKeHWe K onTAMyMY QyHKOWOHANA (x). 3Has
¢byHKOMIO pacHpeneneHnsd ¥ 3KCTpeMaTbHOe BEIOOPDOUHOE 3BaueHHe, MOKHO OIEHH-
BATh BEPOATHOCTb T€HEpPAUHWH TOYEK X, KOTOPBIM COOTBETCTBYIOT 3Ha4cHWs (yHK-
IHOHA a MeHbIIAE, YeM MOJIy4eHH paHee. TeM caMBIM MOXKHO OCYLIECTBISTD TAKOM
HAIpABJICHHDNI IepebOp TOYeK MHOXKECTBA X, IPH KOTOPOM BEPOSTHOCTH YMCHB-
IIeHns 3HaYeHWH GyHKIEOHAIA PACTET.

Crenyronmii anTOpATM OCHOBAH HA YKa3aHHBIX Bhmie coobpaxenusx. Iloma-
Taercs, 4To It ONEHKW MapaMeTpoB GyHKIWH PACIpPENCICHAN H SKCTPEMATBHOTO
BHIGOPOYHOrO 3HAYCHHA HPOU3BOIUTCS CepHs U3 § MCHBITaHAMN, @ CYMMapHOE YHUCIIO
HMCOBITAHMN OTPaHWYeHO M paBHO S.

Aaropemv 1

Iz 1. TlonaraeM i=j=18=S~s,f=af_,, p=1,n-1, g=1, n,.'enepupyem
TOYKH Xp, ..., X; U3 MHOXecTBa X. o BEIGOpPKE %(Xy), ..., #(x;) ompe-
nensteM x(x*)=min {x(x,), ..., #(xy)} ¥ oleHMBaeM mapamerpsr 0(Y})
$yHKOUE pacTpeeleHus cayyadHo Beaudmmbl x(x): x€Yi. Ilepexo-
MM K piary 2.

Hlaz 2. Ecnu i=n, mepexoAuM X mwary 6; uHade — K IIary 3.

IMaez 3. Monaraem li=Ii+1, k=Ii. Ecia k>0}, nepexoquM K mary 6; uHaye
-— K miary 4.

IlTaz 4. TeHepUpyeM TOUKH X, ..., X, M3 MHOXeCTBa Yitl, Brramensem x(x%) =
=min {x(x%, %(xy), ..., %(xs)} ® oleHnBaeM napametprl O(YitY) dymxk-
IUH pacnpenclieHns cnyanHou BeMIMHBL %(x): x€Yi+L.

Ilaz 5. OnpepenseM Takue p ¥ ¢, i1 KOTOPHIX 3HaveHue F (% (%), 0(Y P)) wan-
GoJiblliee U3 BCEX PACCMOTPEHHBIX MHOXeCTB Yi. IMonaraeM i=p, j=q,
S§=8—5 u mepexoauM K miary 2.

Ilaz 6. T'enepupyeM TOUKH X, ..., Xs U3 MHOXectBa Yi. Touxy x° u Beim-
ygry 3(x%)=min {(x°), % (xy), ..., %(xs)} prIHyIMaeM 3a npubmixe-
HHE K ONTHMyMy.

CrenaeM HEKOTOpBIE 3aMedaHud. AJNTOPUTM JOINyCKaeT HECHOXHble Impeobpa-
30BAHMS B CJIydae €CIM 4HUCJIO UCOBITaHWit § (00BheM BBHIOOpDKH) Ha KaXXIOM IHare
pasnmmuHoe. Ecnim cyMMapHOe YmCIio uchBITaHmit S He GrKcHpOBaHO, TO B KAUECTBE
S MOXHO B34Thb JOCTATOYHO OOJNBLIOE YKCIO0. B 3TOM ciydae, eciu OyIeT noiy4eHo
yMeHbHIeHue 3Hadenns QyHkouonana x(x°) (war 6), ciemyeT BepHYThCS K Imary 5
H aJITOPATM TPOJIOIKHT paboTy.

CornacHo airopuT™Ma Mocie KaxIoW CepHy MCHBITAHWN HeOOXOAMMO IepecHu-
THIBATh BeTHIHHEL F(x(x°), 0(Y}) nust Bcex pacCMOTPEHHBIX paHee MHOXecTB. Ho
ectn 3Haderre x(x") HE M3MEHWIOCH, YKA3AHHBIC BEIMYHHBI TAKXKE OCTAHYTHCS
TIPEXXIHAMH, T. €. BEMUCIATE F(x(x?), B(Y})) TpebyeTca ToABKO Ui HOBOro chop-
MHpPOBAHHOTO MHOXECTBA.

O6001IeHAEM TIPEUIOKEHHOTO aITOPATMa MOXHO CYATATDH AJTOPUTMEL, B KOTO-
PBHIX Ha KaXJOM IHare BepOATHOCTHAS Mepa 3ajaeTcs He Ha Y/, a ma Bcem X. Ilpu
3TOM CTPYKTYpa BEPOATHOCTHOH MEPEI TAKOBA, YTO BEPOATHOCTH TeHEepamun TOUEK,
»0JIM3KUX" K PEKOPAHOMU, YBEIHUMBACTCH.
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IIpn peanmsanmm anroput™a 1 BEA dyRKIAM pacnpeaeneRns Ciy4aTiHBIX BEIH-
amH x(x): x€Y}! 3ajmaerca aupuOpHO WM oneHmMBaercs. KpoMe TOro HeoGXOmMAMO
NOJIy9aTh BHIGOPOYHBIC OLIEHKH HapaMeTpoB (QyHKImA pacmpegeneHus. Bce 3To
MOPOXIAET OUpejielieHAble NOrPEIIHOCTH BEPOSTHOCTHOM MOJEIH.

Crenyronmii aJTOPATM OCHOBAaH HAa HeMapaMeTPHYECKOM HOMAXOJ€ K ONEHKE
BEPOSTROCTH YJIy9IE¢HHEH H MOCTPOEH C ACIOJb30BaHIEM CXeMBI He3aBHCHMEIX HCIIBI-
TaHHit (cxema BepHysy).

IIpegmonoxuM, 4TO K HAYaly oOdYepeJHOH CepHU HCHBITAHWHA peKOpAHOE 3HA-
yenre ¢pyExkmuoHana paBHO x(x?). ITycTe A-ciy4aitHoe coGBITHE, COCTOSILLEE B TeHe-
panun Touxd x€Y}, Takoit 4to x(x)<x(x?). ITonoxmM, YTO BEPOATHOCTH COOEI-
THS A paBHA p. PacCMOTpHM CJI0XHOE HCOBITAHAE, COCTOSAIIEE B M-KPAaTHOM OBTO-
PEHHH OPOCTOTO HCILITAHHSA (TeHepaNuy TOUKH B3 Y). Yncno A mosBneHni coGbITHS
A TpH m-KpaTHOM NOBTOPEHAM HE33aBACHMEIX IPOCTHIX MCIBITAHWN IIONYHHAETCH
OHHOMHANbHOMY 3aKOHY pacupelelieHHs BepOATHOCTEMH

.. « my -

P{r=m} = UJP"'U —p)y @
Wrak, BeIMYAHA p — 3TO BEPOSTHOCTH yiydlleHwi. Eciiu B cepud M3 s WCHELITA-
HAUH nojxydeHo [ yiaydmieHu#, TO p COCTOATENHHO OUEHMBAETCA OTHOLIEHWEM Ifs.
B gactHOCTH, ecnm ymyuymende (coObitwe A) NpoH30ULIO HA Kk-M HCOLITAHHH, TO
p=1/k. 3Has omeHky p, a Taxxke 3HayeHHs A 1 P{A=m}, u3 BeipaxeHus (2) He- -
CNOXHO OLECHUTh JIMHY CCPHH WCIBITAHMI OO HOJYYeHHS A yIydiueHumi (ycrmexos).

Asropatm 2

Hlaz 1. Monaraem i=j=I=1, v,=v*=10. 3amaem (una oneHHBaeM) NJIHHY
CepHH HCHBITAHMM § U BeHYHHY OXHUAAEMBIX YCHELIHBIX HCIBITAHH A.

a2z 2. ®opMupyeM MHOXeCTBO Y! W 3aiaeM BEpPOSATHOCTHOE paclpeleseHHe
Ha HeM. Ilomaraem k=0, m=0. Ilepexogmm K mary 3.

Iaz 3. TlonaraeM k=k+1. Ecnm k=>s, nepexoguMm k mary 8; ubHaue —
K mary 4.

Hlaz 4. TenepupyeM Touky x€Yi u BorauciusieM x(x). Ecau (x)<v,, mona-
raeM x’=ux, vy=x(x"). IlepexommMm K mary 5.

Maz 5. Ecna  »x(x)<v*, momaraeM m=m+1. Ecnmm m-<J1, nepexomuM K
mary 3; wgade- mojaraeM »*=v, W IepexoiuM K mary 6.

HMlaz 6. Tlonaraem j=I, /=o},,+1 u mepexoaum K mary 7.

Mgz 7. Mlonaraem i=i+1. Ecam i<n, nepexomguM K Inary 2; WHaYe —
K mary 9.

HMaz 8. Ecne I<a}, nomaraeM /=I/+1 u nmepexoium K wary 2; wHade —
Iepexo UM K mary 6.

IMaz 9. Touxy x° u BenmwumHy %(x°) TmpuHAMMAaeM 3a mpHOIMXEHHE K ONTH-
MyMmy.
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B pamMkax OpHBEIEHHOTO aJTOPHTMa MOXHO BapbHpOBATH YACIOM OXHIae-
MBIX YCHOEMIHLIX HCOBITAHMA, yMeHbmasg A mpu ymenbweHnmn card Yf. Tot dakr,
YTO Ha HAavYaJIbHBIX 3Tamax 4ucio A nerecoobpasHo Opath GonmpmmM, oGBACHAETCH
HeOOXOMUMOCTRIO Ooilee TIATENBHOr'O ,,JIPOCMOTPA’’ MHOKECTBA Y} I ompene-
JIeHHs MEPCTIEKTABHOTO HATPABIICHAS JANBHEHIIErO MOKCKa,

3aMeTHM, YTO KaK B IEpBOM, TaK H BO BTOPOM alTOPHTMAX BaXHOE 3HAYECHHE
AMeEET IMPaBHIO BEIOOpA HOBOrO MHOXeCTBa Y}. ECTECTBEHHO 3TO MHOXECTBO BhI-
6dparh Tak, 4ToGBI pekopaHas Touka x° eMy mpuHaUIexana. Ecmm Takoe MHO-
KECTBO yXe pacCMOTPEHO, BHIOHpaeTcs MHOXKECTBO, KOTOPOMY IPHHAIIEKHAT Onm-
xaiimas (o 3HAYeHHIO (PYHKOIHOHAJA) TOYKA W T. X. B IpWBeNeHHBIX aJropHTMax
YKQ3aHHBIA AT ONyIMeH B HENAX NIPOCTOTH H3JIOXEHHHA, HO Takad HpOUeAypa
JIETKO peasu3yeTcs MyTeM COOTBETCTBYIOIIEH IepEeHYMEPALIMA MHOXKECTB CHCTEMBI 7.

B 3apmavax onTEMu3alEd BaxHOE 3HAYeHME HMeeT moBeAcHHe (GYHKIHOHAIA
%(x) B OKpeCTHOCTH IJI0GANBHOTO 9KCTpeMyMa. B TepMUHAX BepOSTHOCTHON MOJEIH
3TO COOTBETCTBYET NOBEMEeHAIO PyHKIUK pacnpeneienns F(v) caydaiinoil BenmIaHbL
x(x): x€Y Ha ,xBocTax”. Ilockonbky ¢yHKIHOHAN %(X) orpaHm4eH Ha Y CHH3Y,
TO TOJIOKHB

ny = inf % (x),
MOXHO YTBEPKIATH, ITO
F(ny) =0, F(ny+36)#0 Vé=0. 3)

3apamumcsa gucnoM ¢=>0. IlocraBuMm ¢ynkmum pacupenenenns F(v), yIoBieT-
BOpSIOLIEi yciosmto (3), B cooTBeTCTBHE GYHKUMIO pacupeneienns F* (v) Takylo, 4T0
IUTSL HEKOTOPOIO UHCHA Hy HMEET MeCTO:

F*(n3) =0, F*(43+06)#0 V6=0, [py—nyl <e.

Torga mapameTp #7 SABISIETCA CTATHCTHYECKOM OLEHKOM omTMMyMa (yHKIHOHAJIA
%(x) Ha Y. B xavectBe F*(») MOIyT BEICTYNaTh HpeelIbHOE paclpeielicHHe Cly-
waiiHoil BenmumHBL X(X): X€Y, a Takke IpeJefbHOE pacmpeneiicHEe ee SKCTpe-
MAaNIbHEIX 3HAYeHHHd. B mocriemHeM ciyyae TOUHBIA BHA HCXOOHOTO paclpeelie-
s F(v) Hac He nHTepecyeT. BaxHo, 4TOGH OHO YAOBJICTBOPSIIO MOCTYJIATY YCTOM-
quBOCTH [4]. :

IIpu craTmcTHYECKOH OIEHKE OOTHMYMa MOXHO HMCIONB30BATH W HemapaMeT-
pHEYeCKHH HOIXO0, B OCHOBY KOTOPOTO ITOJOXEHBI DJIEMEHTHI TCOPHM MOPSIKOBBIX
CTATHCTHK. PaccCMOTpUM He3aBHCHMEIE peanmsamum x(X,), ..., x(x,) ciyuaitHoit
BenEIEHEL %(x): X€Y. OOo3HAYMM depe3 #(;)=... =t MOPAIKOBBIC CTATHCTHKH,
COOTBETCTBYIOIHE JaRHOH BHIGOpKe. BhibepeM k kpaifHWX HOpSAAKOBBIX CTATHCTHK
H PacCMOTPHM BEJIHYAHY

k
i(Y) = igl' aNy-

TIpasuimo Buibopa k£ W 3maveHWd kodddummentos a;, i=1, k npmeenens: B (2, 5].
3amernM, uro Beamumea f)(Y) cocToATenbHO ougHWMBaeT fy. Bo3MoxHOCTH cra-
THCTHYECKOTO OLEHHWBAHMS ONTHMyMa (yHKIMOHANA ¥(x) Ha MHOXecTBax Y} mos-
BOJISIET MPEAJIOKHTH TPYIIY aJTOPHTMOB, HOCTPOESHHBIX AHAJIOTHIHO METONY BeT-
Beil @ rpaHwWi.
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Auropatm 3.

gz 1. TlonaraeM i=j=1, v,=10', lp=1, p=0,_n. 3amaemMcs nONyCTAMOM
IIOTPEIIHOCTHIO ONEeHKA £=().

IMaz 2. TenepapyeM TOYKH X, ..., X, H3 MHOXecTBa Y. Ilonaraem v,=
min {vy, %(xy), ..., #(x)}. BBMHCIAAEM CTATHCTHYECKYIO OLEHKY OITH-
myma fi(Y)). Ecma A(Y])>x(x")—&, mnepexomum x mary 4; waave —
K mary 3.

Iaz 3. TlonaraeM j=oj,_;, i=i+1. Ecniu i>n, mepexoiuM K wIary 5; weade
— K mary 4. :

Hlaz 4. Tonaraem j=j+1, ;=j. Ecnn j=oj !, mepexoauM k mary 2; wHaue
— K mary 5.

Waz 5. Mlonaraem i=i—1, j=I;. Ecmm i=1, nepexommMm Kk mary 7; mHa49e —
K mary 6.

Hlaz 6. Ecmu f(Y}) >x»(x")—&, nmepexomwM K mary 5; wHade — k mary 4.
IIaz 7. Touky x° m BenmwunHy » (x°) DprHEMAaeM 32 pOOIHKEHNE K ONITEAMYMY.

Kak BunHO 13 IpHBEAEHBOrO a1rOpHTMa, OH COCTOUT U3 HPSIMOTO X012, KOorJa
BBIYACIAIOTCS CTATHCTUYECKHE OLECHKM, M OOpAaTHOTO XOZa, KOTJa 3TH OUEHKH
HCIoNb3yloTcs Ans oTceveHuid. IIpsMoil xon onpenensercs maramu 2—4, a oGpar-
HBlf — maramMu 5, 6. ITorpeliHOCTE € OLEHKH MOXKET 3aJaBaThCs alpHOPHO, 9TO
OyneT coOTBETCTBOBATh HEKOTOPOMY YPOBHIO BEPOSITHOCTH, JIMOO BEMMHCIATHCSA C
ydeToM QYHKIHK pacmpefeneHus Ciydaiioi Bemudunsr A(Y ).

3aMmeTnM, 4TO HEOOXOAUMOCTH MHOTOKPATHOH CTATHCTHYECKOU OIEHKH OLTH-
MyMa Ha HOJIMHOXKECTBaX Y} yBeIniHBaeT BEPOATHOCT YTEPH MHOXECTBA Y7, KOTO-
pOMy NpHHANEKHAT II00aNbHBIL SKCTpeMyM. OIHAKO MOXHO HCIOJB30BATSH JONOJI-
HHTeJIbHBIE CPECTBA B IPOIECCE MOHCKA.

HMmeerca B Buny cnenyromee. Ecom Y, Y,;, TO

. —
il‘éllllll x(x) = :Icrél}p, %#(x).

TaxuM 06pazoM BMeCTO HemocpelcTBeHHOM omerkH f)(Y;) H A(Y,) MoxHO npose-
puth tEOOTedy Hy: f(Y)—A(Y)=Ef npm amsTepHaTHBe H,: A(Y,)—H(Y,)=¢.
JlpyruMe CHOBaMH, IPOBepsAETCS TANOTe3a, IPHHAUICKAT JIH MCKOMOE IpHOIIKe-
HHE K ONTEMYMY IOJAMHOXECTBY MHOXECTBA, COAEPXKAIIETO 3TO TpHOIMKEHHe.

Asroparm 4.

Iaz 1. Tlonaraem i=j=1, v,==10'. 3amaemcsa norpemwHEOCTEI0 &= 0.

"Illaz 2. TemepupyeM TOYKH Xy, ..., X,€Y1. BorncnseMm
’10=ﬁ(Y})’ 7)0=mln {'003 x(xl)’ eeny %(xs)}'

HIaz 3. Tlonaraem j=“§,-1’ i=i+1. Ecmm i>n, nepexomwMm K mary 8; mHaue
— K 1mary 4.
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IMaz 4. TeHepupyeM TOYKH X, ..., X,€ Yi{. BouHCNsSEM CTAaTHCTHYECKYEO
ouenky onrtumyma A(Y)) B vy=min {vy, 3% (xy), ..., 2(xz)}.

Ma: 5. TposepsieM rumotesy H,: fi(Yi)—n° =& npm amstepraTHBe Hy: fi(Y])—
—n° >§. Ecnn rumoTe3a NPHAMMAETCA, TIEPEX0JUM K INary 3; mHade —
K mary 6.

Maz 6. Tlonaraem j=j+1, ;=j. Ecrm jéa,ﬂj, nepexoanM K mary 4; wrade
— x mary 7.

MMaz 1. Tlonaraem i=i—1, j=/;. Ecmm i=1, mepexoamMm K miary 4; AHa49e —
K mary 8.

IMaz 8. Touky x° ¥ BenwunHY x%(x°) MPUHAMAaEM 32 HAYAJBLHOE TPHOIWKEHHE
X ontumyMy. Ecnu i>n, BaNbHEHNIAN NOKCK OCYIICCTRIISCTCS HA MHO-

xecrBe Y ..
n—1

k

3ameTaAM, YTO NPHU OTCYICTBMH NOrpemHOCTEH BHIYHCAEeHUS, ecna YC | Y,

i=1
TO CyHIECTBYeT Takoe j=1,k, 4T0 ny=1ny,. OIBaKO BEPOATHOCTHLIA XapakTep
oneHok fj(¥Y;) MoxeT OpHBECTH K ToMy, u9To Jng Bcex j=1,k: H(Y)—H(¥Y)=E.
IoatoMy Ha ulare 7 anropATMa NO-CYINECTBY OCYILECTBIAETCS BO3BPAT K YK€
PacCMOTPEHHOMY paHee MHOXKECTBY H HepecdeT oneHku #(Y}).

CpaBHEHHE CTATHCTHYECKAX ONEHOK ONTHMYMOB MOXET OCYIIECTBIISTHCA HE
TOJILKO OTHOCHTEILHO MCXOIHOIO MHOXECTBA X, a M OTHOCHTENHHO MHOXKECTBA,
NOJTY9eHHOTO Ha MpeAblAylleM 3Tame. B 3ToM ciysae mpoBepseTcs IHnoTe3a
Hy: A(Y)—A(¥iH>E.

Bo Bcex NIpHBEAeHHBIX B CTaThe ANTOpATMAX OOIIMM SBJISETCA UCIOIB3OBA~
HHE CTATHCTHMYECKHMX CBOMCTB ¢yHKIMOHANA »(X) Ha TOAMHOXECTBAX MHOKECTBA
X nns onpexaeseRds HapaBJleHHs NOUCKA ONTAMyMa. OTH aJITOPATMBL MOTYT OBITh
TaK MK HHAYE MOOHGHNAPOBAHE! NIPHMEHUTEIBHO K KOHKPETHO PEIIaeMOMY KNaccy
3a1a4. B wacTHOCTH, 0COGEHHOCTH NIPAMEHEHUS AJITOPUTMOB B 3ajjayax pasMelile-
H¥sI, KBAAPATAYHOTO HA3HAYEHHUS, KOMIOHOBKH, 6ajlaHCHPOBKA M T. A, PaccMOT-
pers! B [6—10]. OOmupHLLi BEMUCIATENBHEI SKCOEPUMEHT ONHKCaH B [2].

B 3aKiioueHRe OTMETHM, UTO KJIACC MPEJIONKEeHHBIX aJTOPHTMOB OOBeOWHEH
oOLIMM Ha3BaHHEM — METOJI TOCIIEN0BATELHON CTATHCTHYECKOH onTHMU3aumH [2].
Hauano pa3pa6GoTkaM IOJOXKEHO 4JIEHOM-KOPPECIOHACHTOM AH YCCP, npodec-
copoM IO. T". CrosaoM [11]. TeopeTrieckne acoekTsl 0G0CHOBAHAS METOAA HAILIH
orpaxenue B [2, 12]. Bonee noapobuyio 6mbnmorpadnio Taxxe MoxHO Halite B [2].

AsTop BBIpaxaeT GmaromapHocTh 1O. I. CTOsiHY 3a IIOCTOSSHHOEe BHAMAaHHE H
noMoink B pabore.
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