
Tomus 8. Fasciculus 1.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETI CARUM HUNGARICUM

F U N D A V I T : L. KALMÁR

R E D 1 G I T : F. G É C S E G

COMMISSIO REDACTORUM

A. ÁDÁM
M. ARATÓ
S. CS1BI
B. D Ö M Ö L K I
B. K R E K Ó
Á. MAKAY
D. M U S Z K A
ZS. NÁRAY

F. OBÁL
F. PAPP
A. P R É K O P A
J. SZELEZSÁN
J. S Z E N T Á G O T H A 1
S. SZÉKELY
J. SZÉP
L. VARGA
T. VÁMOS

SECRETAR1US COMMISSION«

J. C S I R I K

Szeged, 1987
Curat: Univer&itas Szegediensis de Attila József nominata

8. kötet 1. füzet

ACTA
CYBERNETICA

A HAZAI KIBERNETIKAI KUTATÁSOK
KÖZPONTI PUBLIKÁCIÓS FÓRUMA

A L A P Í T O T T A : K A L M Á R LÁSZLÓ

F Ő S Z E R K E S Z T Ő : G É C S E G F E R E N C

A SZERKESZTŐ BIZOTTSÁG TAGJAI

ÁDÁM A N D R Á S
ARATÓ MÁTYÁS
CSIBI S Á N D O R
D Ö M Ö L K I B Á L I N T
K R E K Ó BÉLA
MAKAY ÁRPÁD
MUSZKA D Á N I E L
NÁRAY ZSOLT

O B Á L F E R E N C
P A P P F E R E N C
P R É K O P A A N D R Á S
S Z E L E Z S Á N J Á N O S
S Z E N T Á G O T H A I J Á N O S
SZÉKELY S Á N D O R
S Z É P J E N Ő
VARGA LÁSZLÓ
VÁMOS TIBOR

A SZERKESZTŐ BIZOTTSÁG TITKÁRA

C S I R I K JÁNOS

Szeged, 1987. április
A Szegedi József Attila Tudományegyetem gondozásában

A note on zero-congruences

STEPHEN L . BLOOM, RALPH TINDELL

In this note, a theorem is proved about zero-congruences in iteration theories.
If T is an iteration theory (see [BEW1], [BEW2], [Es] and 9 is a theory congruence
(not necessarily a dagger congruence), we call 9 a zero congruence if f9g for all mor-
phisms / , g: 1—0 in T. Recall that a theory congruence 6 on J1 is a family of equiv-
alence relations 9„tP on T(n,p), 0, which are preserved by composition and
source pairing. A theory congruence 9 is a dagger congruence i f p 9g* whenever f6g.

1. Theorem. For any iteration theory T, the least zero congruence is a dagger
congruence.

The proof is constructive in the sense that the least zero congruence is described
explicitly. The theorem is of interest for the following reason. For any set A, let
Pfn (A) denote the iteration theory whose morphisms n—p are the partial functions
AX[n]^-AX.[p]. Let PFN denote the variety of all iteration theories generated by
those theories of the form Pfn (A). In a forthcoming paper by Bloom and Esik, it is
shown that for any ranked set T, there is an iteration theory freely generated by f in
the variety PFN. This theory may be described as the quotient of the theory f t r
freely generated by f in the variety of all iteration theories by the least zero congruence.
In the course of the study of that argument, it was discovered that the least zero
congruence on Z"tr automatically preserved dagger. We wondered if this was a general
phenomenon. The theorem shows that it is.

2. Definition. Let e=Qn,P be the family of binary relations on T(n,p) defined as
follows: for any morphisms f,f':n-»p, fQn,pf if there are morphisms g:n—k+p
and b, 0 in T such that f=g • (b+ lp) and f'=g • (b'+ lp).

Note that Q is symmetric. Let Q* denote the reflexive, transitive closure of Q,
which is to say that /<?*/' iff there is a finite sequence / i , / 2 , . . . , /„ with f=f\,f'—f„,
and fiQfi+i for l s f s n — l . w s l .

3. Lemma. I f f , f , g, g' are morphisms in T with the appropriate sources and tar-
gets, and i f f q f , gQg\ then

a)

b)

(/> g) 6 (/ > g'X

f-gQf'-g\

1 Acta Cybernetica VIII/1

2 S. L. Bloom—R. Tindell

and
c) Peg*
Proof of a). Suppose that

f=F.(b + \ j , f' = F.(b' + lp),

where F:n—k+p and b, b': 0. Suppose further that

g = G-(c + lp), g' = G.(? + l j ,

where G:m-+r+p and c, c':r—0. Then

<f,g) = H-(b + c + lp) and (f ' , g ') = H.(b' + c' + lp),
where H=(F-(x+lp), G-(A+1P)>, x = l t + 0 r , and A=0 4 +l r .

Proof of b). We assume

f=F'(b + lp), f = F-(b'-i-lp) and g = G'(c + ls), g' = G-(c'-\-)s),

where F:n-*k+p and G:p-*r+s. Then

f . g = F' (b+ lp) • G-(c + ls) = F.(lk+G)-(b + c + 1J
and

f . g ' = F-(lk + G)-(b'+c'+ls).

Proof of c). Suppose that f= F-(b+ lp+„) and g=F-(b'+ lp+„), where
F:n-k+p+n and b,b':k-~0 in r . Then p=F^-(b+lp) and * t = i p) .

It follows immediately from Lemma 3 that q* is a theory congruence.

4. Lemma, Q* is the least zero congruence.

Proof. Let 6 be any zero congruence. It is clear that if feg, then f6g. Thus fg*g
implies/%. If 6 is the least zero congruence, the converse also holds (i.e. i f f O g , then
fe*g)-

The proof of the theorem follows from the preceding two facts.

a
/ I \

1 a ±
/ I \

1 a b-±
/ I \

I a b2-±.

a
/ \ \

1 a b"-L

Figure 1

A note on zero-congruences 3

5. Remark. Aside from the fact that iteration theories are algebraic theories, the
only property of iteration theories used in the above proof is the validity of the iden-
tity

[F.(h + lp+JY = Fi-(b + lJ,
for any F: n-»k+p+n, b: k-<-0. Since this identity is also valid in all iterative
theories, and in all (ordered) rational theories [ADJ], the theorem holds for these
theories as well.

6. Example. Let T be the iteration theory of all T-trees (not just those of finite
index [EBT]). Let a : 1 — 3, 6 : 1 — 1, _L : 1 - 0 be atomic. Let / b e the infinite tree
indicated in Figure 1. Note t ha t / ha s infinitely many subtrees 1—0. If g is the tree
indicated in Figure 2, then g is h\ where h=a-(12+ J .) : 1—2. Note that / and g are
not congruent by the least zero congruence, since clearly / is not related by q* to g.
Among the trees related by Q* t o / a r e those indicated in Figure 3.

a
/ I \

a ±
/ \ \

a X
/ \ \

a X

Figure 2

a
/ \ \

1 a _L
/ J \

1 a X
>n times

a
/ I \

1 a 1
/ i \

1 a bn-L
/ I \

1 a bn+1-±

Figure 3

DEPARTMENT OF COMPUTER SCIENCE
STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NJ

1»

4 S. L. Bloom—R. Tindell: A note on zero-congruences

References

[A D J] J. B . WRIGHT, J. W . THATCHER, E . G . WAGNER, " R a t i o n a l a l g e b r a i c t h e o r i e s a n d fixed-point
solutions", Proceedings 17th IEEE Symposium, Foundations of Computing, Houston
(1976).

[B E W 1] S . L . BLOOM, C . C . ELGOT, J. B . WRIGHT, " S o l u t i o n s o f t h e i t era t ion e q u a t i o n a n d e x t e n s i o n s
of the scalar iteration operation", SIAM J. Computing, 9 (1980), 25—45.

[B E W 2] S . L . BLOOM, C . C . ELGOT, J. B . WRIGHT, " V e c t o r i t era t ion i n p o i n t e d i t erat ive theor ie s" ,
S I A M J. C o m p u t i n g , 9 (1980) , 5 2 5 — 5 4 0 .

[EBT] C. ELGOT, S. L. BLOOM, R. TINDELL, "On the algebraic structure of rooted trees", Journal
of Computer and System Sciences, 16 (1978), 362—399.

[Es] Z. £SIK, "Identities in iterative and rational theories", Comput. Linguistics and Comput.
Languages XIV (1980) 183—207.

(Received Febr. 26, 1986)

On the expected behaviour of the NF algorithm
for a dual bin-packing problem

J. CSIRIK, G . GALAMBOS

Introduction

The following version of dual bin-packing problems was first studied by Ass-
mann et al [1]: there is given a list L= {a1, a2, ..., a„} of items (elements) and a size

for each item. Let us denote C as a positive constant, C ^ max s(at). The aim la/gn
is to pack the elements into a maximum number of bins so that the sum of the sizes
in any given bin is at least C. (The name "dual" originates from the "classical" bin-
packing problem, where the elements have to be packed into the minimum number of
bins in. such a way that the sum of the sizes of the elements in any given bin is at most
C). This problem is NP-hard and hence the investigation of the performance of ap-
proximation algorithms is important. Without loss of generality, we may assume
that C = 1 and 0 < j (a ,) ^ l ; if is real, then s(ai)=ai.

The worst-case behaviour of the well-known heuristic algorithms Next-Fit (NF)
and Next-Fit Decreasing (NFD) was analysed in [1]. The NF algorithm places a1 into
the first bin (B^. Let us suppose that at, 1, is to be packed, and let B 7 0 '= 1) be
the highest indexed non-empty bin. The algorithm places a{ into Bj if the sum of
elements in this bin (so far) is smaller than 1; otherwise it closes the bin BJ} opens a
new bin (Bj+1) and places the element into this newly-opened bin. The NFD
algorithm differs from NF only in preordering the elements. The worst-case behav-
iour of an approximation algorithm may be characterized by means of the asymp-
totic worst-case ratio. To define this, let OPT(L) be the maximum possible number of
bins for a given instance L. For a given approximation algorithm A, let A(L) denote
the number of bins used by A to pack L. Let

R%=min {A(L)/OPT(L): L is an instance with OPT(L)=N}.

The asymptotic worst-case ratio for A is then defined as

RX = lim inf ^
Assmann et al proved that

P"NF = Pnfd = 1/2

In the last part of that paper the average-case behaviour of these (and other) algo-

6 J. Csirik—G. Galambos

rithms was investigated. The behaviours of the algorithms were compared in randomly
generated instances, where the elements of L were drawn from different distributions.
In the conclusion of the paper it was suggested that the expected performance of
these algorithms should be examined analytically as well. In [3] this analysis has been
carried out for both algorithms. Csirik et al [3] showed that if the elements of L=
—(o!,a2, ...,a„) are identically distributed and drawn independently from a uniform
distribution on (0, 1 ¡k] (k is a positive integer), then

k = 1 k = 2 k = 3 k = 4

R%f 0.735 0.8564 0.900 0.923

and R%pd 0.710 0.840 0.891 0.918

On the other hand, Knodel [4] showed that the first-fit (FF) algorithm is asymp-
totically optimal for the "classical" bin-packing problem if the elements of the input
list are drawn independently from the following distribution:

d: -
1/3 with probability 1/3,
2/3 with probability 1/3,

1 with probability 1/3.

(In the FF algorithm we try to pack the element a ; into all opened bins, i.e. into
Bi, Bt, ...,Bi, and open a new bin only if none of them has enough room for it.)

Csirik [2] generalized this result for the input sequence:

with probability 1/2,
b with probability 1/2, ^

where 0 1 / 2 and it was proved that the FF is asymptotically optimal for these
sequences, too.

In this note we investigate the expected behaviour of the NF algorithm at se-
quence (I) for the dual version of the bin-packing problem.

Results

First we present our method for special lists. Let the elements of L=(a1, a2,..., a„)
be chosen independently of the following distribution:

_ i 1/3 with probability 1/2,
fli - [2/3 with probability 1/2. U)

Let us denote by En the expected number of full bins for the lists L=
— (flu <h, •••) an) (the elements are drawn independently from (1)), and by E„tk the
expected number of bins for lists with a number k of 2/3 elements (and so a number
(n—k) of 1/3 elements) if we pack L by NF. Then

On the expected behaviour of the NF algorithm for a dual bin-packing problem 7

On the other hand, in the packing of L by NF the first bin will be full after packing
ax and a2 if at least one of them is a 2/3 element. If both of them are 1/3 elements, then
the first bin is full after the packing of a s . Thus, we have the following recursion:

E„ ,. = Hk-l) e i , , n . fc(w-fc) ^ (£„-2,fc_2+1) + 2 ^ (£ „ _ 2 > + 1) + n(n-

(n—k)(n—k—l)(n — k—2 „ k r \ .. J , ,
+ , ¿ - 1) l f " = 3 a n d k = L

(3)
It is easy to see that ¿sn>0=|w/3j, £ ' l j l =0, E2-1= 1, E2,2= 1.

Using (3), from (2) we get:

En = j E n . t + j E n _ z + 1 (4)

and we know that E„=0, £'1=0, E2=3/4.
Let us search E„ in the following form:

Then from (4) we have

En = j(l-A)-£„ (5)

B„ = jBn_2 + jBn.s + j(l-9A) (6)

Our aim is to give the asymptotic behaviour of E„. From (5) it would be enough
to choose an appropriate A so that \B„\<T, where T is a constant. If now 4̂ = 1/9,
then from (6)

3 1 Bn = -^Bn-i + ^ B n - z (7)
and from (4) and (5)

« _ 4 » _ 5 • R _ 1
B*~36' Bs~J

By induction on i", we can prove from (7) that for all i ' s4

5/36 Bi ^ 4/9

and hence Bt is bounded. But then from (5) we have the following

Lemma.

lim A - = 8/9 n-°°, n/2..

We now generalize our result for the following input sequences: let the elements
of L={ax, a2, ..., a„) be independent, identically distributed, random variables
with distribution (I). Let lx= f l j b l . We use the notation E„ in the above sense, and
let E„ik denote the expected number of bins for the lists L=(fli, a2, ..., a„) with

8 J. Csirik—G. Galambos

a number k of elements l — b. Then (2) is true for these sequences as well, and our
lemma is valid for /x=3.

In the packing L by NF we have two cases:
1. If 1—b, then the first bin is always full after the packing of a2.
2. If ax=b, then the first bin is full with the first element l—b in the sequel

a2, a3, ..., ¿¡ij-i- If all of a2, ..., a^^ are equal b, then the first bin is full after
packing of the element atl.

Similarly to (3), from these two cases we have

E"-k = It-1) 1) + 2 « (« - 1) +

(n-k){n-k-\)ktI! , n , , {n-k)(n-k-\)... (n-k-h + 3)k „
+ n(n-\)(n-2) n(n-l)...(n-h + 2) X

W l , , ^ , (w - f c) (n - f c + l) . . . (B - f c - f > + 2) w
XCA,-i1 + i .»-i+l)+ „ („ _ !) . . . („_Z 1 + 2) X

(TI-FC-ZJ + L k „ "J
(8)

and hence from (2)

3 1 1 1

We look for £"„ again in the form given in (5). Then

3 1 1 1

P

(3 2 1 3 1 4 _ J _ / 1 - 1 1 n

_ 3 R + 1 « + + 1 « + 1 R , 2 ' 1 " 2 ~ 1 , 2'» + 2'i~2— 1

(10)
If we now choose

a 2ti~a — 1
2'i + 2 ' i - 8 — 1

then
3 l l i

On the expected behaviour of the NF algorithm for a dual bin-packing problem 9

and thus B„ is again a bounded sequence. Accordingly, we have proved our main
result:

Theorem. Let the elements of L—(a1,a2, ...,an) be independent, identically
distributed, random variables with distribution

where 1/2. Let l1=rl/b~\. If we pack the list L by the NF algorithm and if
E„ denotes the expected number of filled bins, then

[1] ASSMANN, S . F . , JOHNSON, D . S . , KLEITMAN, D . J. , LEUNG, J. Y . T . : O n a d u a l ver s ion o f t h e o n e -
dimensional Bin-packing problem, Journal of Algorithm, 5 (1984), 505.

[2] CSIRIK, J.: Bin packing as a random walk: a note on Knodel's paper, Op. Res. Letters, 5
(1 9 8 6) , 161 .

[3] CSIRIK, J. , FRENK, J. B . G . , GALAMBOS, G . , RINNOOY KAN, A . H . G . : E x p e c t e d p e r f o r m a n c e o f
simple algorithms for a dual bin-packing problem, to be publised.

[4] KNODEL, W.: liber das mittlere Verhalten von On-Line Packungs Algorithmen, EIK 19 (1983),
4 2 7 .

_ (b with probability 1/2,
ai-\l -b with probability 1/2, Í

I. 2 ' i + 2 ' i - 2 - l

J. CSIRIK
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF SZEGED
ARADI VßRTANÜK TERE 1.
SZEGED
HUNGARY

G. GALAMBOS
KALMÁR LABORATORY
OF CYBERNETICS
ÁRPÁD TÉR 2.
SZEGED
HUNGARY

References

(Received Apr. 6, 1986)

On the supplement of sets in functional systems

V . B. KUDRYAVTSEV

Introduction

One of the main problems for functional systems (f.s.) [1] is that of completeness.
It consists in indicating all subsets whose functions make a complete set of the func-
tions of a given f.s. by means of f.s. operations. Such subsets are called complete.
This problem is closely related to a supplementation problem, i.e. to the question of
comparison of representable possibilities of two sets of functions under considera-
tion. The problem is to find out when one of the sets is extended to a complete set
"more easily" than the other, and when they behave identically in this sense. The
paper consists of three sections. Section 1 deals with the problem on supplement for
the systems &>= (P, /) of a general type where P is a set and / is a closure operator
determined on the subsets of the set P. In Section 2 the results of Section 1 are applied
to the supplementation problem for finite f.s. Section 3 deals with an analysis of
two-valued logics. For major notions see [1, 2].

§ 1. Supplementation problem for the system &

Let us consider a pair (P, I) or & in brief. P is here a nonempty set, lis a closure
operator determined on the set J ' (P) of all subsets of P i.e. / possesses the properties
that J (f i) i g , I(KQ))=I(Q) and / (e x) i / (&) if ftia for all Q, QltQ£Q{P).
The set I(Q) is called the closure of Q, the set Q is called closed if I(Q)= Q and is
called complete if I(Q)=P• The completeness problem for ^ consists in finding all
complete sets. As mentioned above this problem is the main one for 0>. It may be
interpreted in a broader sense. Namely, to find out Q' for a given Q what supple-
ments Q' make it a complete set. In the case when Q is empty we have a complete-
ness problem. The treatment leads to the following question. Let Qx and Q2 be given,
we are to know which of them is "nearer" to being complete, or to be more precise,
when with equal supplements Q' the completeness of Q1UQ / will follow from the
completeness of Q2UQ'. We shall denote this relation by <2i • 62 • It is easy to see
that it is equivalent to I(Qi)Ol(Q2), therefore we can consider Q to be closed sets.
Let us denote by 38(3?) the set of all closed subsets from P and consider the relation
• on SS(d"). It is clear that this relation is reflexive and transitive, and as a relation

12 V. B. Kudryavtsev

of preorder it reduces to the equivalence relation % on 38(3?) determined by both
Q^nQi and £?2D2I and to the partial order relation -< on the factor set 34(3?)
of the set 38(3?) with respect to this equivalence. The relation -< is determined as
follows. Let Qi, Q,2£08(&) and Q1, Q2 be the corresponding equivalence classes.
Suppose Qi<Q2 if QiDQ2- Thus the study of the relation • is reduced to one of
the relation R; on 38(3?) and -< on 38(3?). We shall call the description of the relation
supplementation problem. Its solution enables us to determine which sets are "more
complicated" and which are "simpler" by completing them in the same manner, and
which sets have similar behaviour under these conditions. In considering the problem
it is natural to use the properties of the inclusion lattice formed by 38(3?). Let us first
recall some facts concerning the completeness problem. From [1] we know that its
solution may be obtained by constructing a so-called criterial system. Namely,
0Q33 (¿P) is a criterial system, if for any set Q ^ P its completeness is equivalent to
non-entry of Q as a subset in every set from 9. Criterial systems are known [1] to
exist for I (Q)^P among them we may choose such a system which can be repre-
sented as (3?) where 6± (3?) is the set of all precomplete classes in 3? and
62(&>) is the set of all elements Q, Q^P, from 38(3?) such that no precomplete class
has Q as a subset. Let us remind that Q£33(S?) is called a precomplete class if I(Q) ?£ P
but I(QU {a})=.P holds for any a£P\Q. According to [1] we have in the general
case that 6^(3?)^ and 0 2 (^)=0 , 0^(3?)^ and 91(&)=0 and
62(0>)^W, 91(&>)=Q and d2(3?)=<d. The last situation holds when 7(0)= P. Further
we shall assume that this condition is not fulfilled for 3? and the pair 3? for which
the additional condition 92(3?)=& holds is correct.

Theorem 1. If Q1} Q2i@(3?) then the relation Q iUQ 2 holds if and only if
either Q2=P or if QZ^P then 1(Q1DQ')£38{P} is valid for any
Q'd38(3?)\{P} such that fi'ig,.

Proof. If Q2=P or Q29£P and the above conditions are fulfilled, then Q1OQ2
is obvious. Let Q2^P, QidQ2 and Q2QQ' hold for any Q'£38(3?)\{P}. Con-
sider the set I(Q}UQ'). If / (Q i U Q ') ^ ^ then our statement is valid. If /(£>iL!Q')=
= P then by virtue of the relation QiUQ2 there must be I(Q2UQ')=P but
I(.QzVQ')=Q',Q'?iP, what disproves the assumed equality I(QiUQ')=P. The
theorem is proved.

Corollary 1.1. Different precomplete classes from 38(3?) are not comparable
with respect to • .

The theorem, if symmetrically used, gives a criterion of equivalence
of two sets. It also demonstrates an obvious sufficient condition of equivalence of
two sets. Let Q1, Q2£38(3?), Q^Q2 and for any QsiS8(3?) such that Q ^ Q s if
8 3 i 62 then Q3^Q2. In this case we shall write QiWQi- It is clear that this re-
lation will hold for Q1DQ2- The converse does not, generally speaking.

Proposition 1. If Qlt Q2£38(&) and Q^Q2, Q i * P then Q^Q2.

Proof Since by definition Qi^Q2 then Q1DQ2- Now we prove that Q2nQi-
Let Q'€3g(3?)\{P} and then, because of Qi$Q2 we have either Q'QQ2
or Q'=?Q2. In the first case we have I(Q2\JQ')=Q2 in the second case we have

On the supplement of sets in functional systems 13

J(QsUQ')=Q' i-e- H82UQ')^P. Hence by theorem 1 we arrive at Q2UQX.
Consequently, Qx % Q2 the proposition is proved.

Moreover the class of equivalence with respect to « is also characterized by the
following obvious proposition.

Proposition 2. If Q^Q2i®(SP) and Q ^ Q 2 then /(Qi U g 2) » g i •

Theorem 1 also permits to describe the relation • in a different form using the
notion of type of a set. Let and 1>(g) be a set of all precomplete classes
each of which contains Q as a subset; xs,(Q) will be called the type of the set Q.
Obviously, x3,(0)=01(0>) and t# (P)=0 .

We have

Theorem 2. If then for Q1OQ2 we have t,(Qj)2t,(QJ.

Proof. If Q2—P or x¡?(Q2)=0 then the statement is valid. Now let Q2^P
and T<j.(Q2)7i0. Consider n£tp(Q2). Since QiC\Q2 and n ^ Q 2 we have by theorem
1 that / (¿1 (&)\{P). Hence by virtue of the precompleteness of n we have
Q ^ n and thereby *>?(Qi)=?*<?(Q2). The theorem is proved.

Corollary 2.1. If a , and Q^Q2 then x3>(Q1)=x3,(Q2).

Note that the statements reverse to theorem 2 as well as to corollary 2.1 are
wrong, generally speaking. They may not hold even for SP such that How-
ever for correct HP we have

Theorem 3. If Qlt and 0> is a correct system, then Q^UQ2 if and
only if vAQd^MQ*) -

Proof. The "only if" part follows from theorem 2. Now let x^(Q1)^x^(Q2)
hold. We shall prove that QiUQ2. If xp(Q2)=& we have in view of SP being correct
that Q2=P and, therefore, Q1UQ2. Let and suppose that the relation
QiOQ2 does not hold. By theorem 1 it means that for some Q'£33{2P)\{P} we
have Q'^Q2 and I(QiUQ')=P. Consider x»(Q'). It is obvious that

2) and in view of SP being correct we have x L e t Since
7i^Q' we get / (g 1 U n) = P .

It follows that n for any ti'^t:s,(Q1) what is contrary to the relations
T *(f i i)= T »(6 ') a n d ^ (6 0 ^ 0 - So, the assumption concerning the incorrectness of
the relation Qi • Q2 is false. The theorem is proved.

Corollary 3.1. If Qx, Q2^S$(SP) and 0> is a correct system, then Q ^ Q 2 if and
only if xp(Q1)=x3>(Q2).

Theorem 3 and corollary 3.1 permit to describe the relation • when 2P is a cor-
rect system. If x (Q) is known for Q^SS(SP) then the class of all sets equivalent to the
set Q consists of all Q' such that x(Q')=x(Q) i.e. this class is uniquely determined by
the value of x. We denote it by Kx. Then the relation KX<KX. on 38 (J?) is equiv-
alent to x'Qx.

Let \A\ be the cardinality of the set A. Consider \tk(S?)\. It characterizes the
variety of systems in the supplementation problem. By corollary 1.1 we prove the
validity of the following statement.

14 V. B. Kudryavtsev

Proposition 3. We have

According to [1] may take any value xs2l p l depending on P and /
thus is majorized from below by the same values. In particular, the equiality

= 2lpl is possible which implies extremely great variations of cardinality of
the class 3B(0>).

§ 2. Supplementation problem for functional systems

A functional system (f.s.) is such a system = (P , I) in which the set P is a set of
functions, and I is the closure operator given by the automation. If P consists of
functions defined on the collections from the subsets of a natural series with values of
the very functions taken from the natural series, then the f.s. is called a truth func-
tional system (t.f.s.). If P consists of lexicographic functions, then the functional
system is called a sequential functional system (s.f.s.). Typical examples of f.s. are
many-valued logics (examples of t.f.s.) and algebras of automata (examples of s.f.s.).
An important class of t.f.s. is formed by finite t.f.s; (f.t.f.s.). They are defined as fol-
lows. Let Ek— {0, 1, ..., k— 1}, k> 1, U={uL,u2, ...} be the alphabet of the vari-
ables um whose values are the elements from Ek, let Pk be a set of all functions
/(w f l, ..., M;J with values from Ek, MkQPk and let be a special closure operator
called a finite automaton-given operator. is specified by a collection Q of finite-
place operations co given by the automaton over the elements from Mk which falls
into two parts and Q2. The collection Q± gives the closure operator correspond-
ing to the closure of the subsets M' ^Mk with respeet to taking all the superpositions
of functions from M'. The collection Q2 is finite. The system Jik—{Mk, 1$) is called
a finite t.f.s. Consider the partial order -< on the factor set 88{Jtk) in the form of an
oriented graph. The elements of will be points in space. Any two points a and b
are connected with an oriented edge from a to b if b<a and there is no point c
distinct from a and b such that b<c<a. The graph obtained is denoted by G{Jik)
and the number of its vertices is denoted by \G(^k)\. It is to the description of this
graph that the supplementation problem is reduced for f.t.s.f. We introduce some
notions to characterize f.t.f.s. Jik. Let MQPk and M(n) be a set of all functions
from M which depend only on variables from the alphabet U„={u1,u2, ..., «„},

f!
let pkn) be a number of elements in P^. It is clear that p(

k
n) = ^ Ci-kk'. Let

¡=1
S(Pin)) be a set of functions from P^n) each of them is equal to u„ i= 1, 2, ..., n for
some/. For the finite set M'QPk, we shall use m(M') for the greatest index of the
variable of the functions from M'. Let Q2= {a>i, co2, •••, <wr} hold in the f.t.f.s. Jlk.
Let the value of coj(f1,f2, ..., fSj) be defined and

mj = m({/i./2> •••>/5j> cojW^fi, ...,fsj)}), j = 1, 2, ..., r.
Since mj depends only on (Oj then we can introduce the notation |coj| for rttj. Let
m(i22)=max {ImJ, |cu2|, ..., |ct)r|}. \iJ(k is finitely generated and Mk is a set of finite
M' *=Mk such that I0(M')-Mk then let m0= inf # m(M') and s= max (m0,m(Q2))-

On the supplement of sets in functional systems 15

Let the nonempty set Af£P fc
(s>fW fc be called R-set if I^(M)f\P{

k
s)=M and M^

r±PPC\M k . We denote it by R. Let @=(R\JS(PP), R). We shall say that the
function f(x1,x2,...,x„) from Pk retains Sk if f (glf g2, ..., g„)£R holds for any
collection of functions gi,g2, •••,£„ from R[JS(Pk

s)). The class of all functions
from Mk with 01 will be denoted by U (52). We will call the R-set R maximal unless
there exists an R-set R' such that U (R') 5 U (R), R^R'. Let, for f.t.f.s. Jik, R be
the set of all maximal i?-sets, and let R be a set of all pairs 0t for which R£ R.

Theorem 4. If an f.t.f.s. Jik={Mk, I®) is finitely generated, then the following
statements are true:

1) \G(Jtk)\ ^ 22Pk(s)

holds for the graph G(J?k);
2) the graph G(J(k) can be constructed effectively.

Proof. We start from some given finite set MQMk such that I0(M)—Mk.
According to [1] the finitely generated f.t.f.s. Jik is correct, s and R can be found by M
effectively, U (R) coincides with the set of all precomplete classes in Jik and
|U (R) | ^2^ S > .Le t St2, and U f = / = 1 , 2 , . . . , / . Consider

t
the set I whose elements are expressions of the form 21— & U,^ where ir < ir> and

j=i
Uiy ^ Ui.„ for i s 0 . The formula of 91 is interpreted as a set of functions
which is equal to the intersection of the sets which form 31. This set is denoted by
21. For / = 0 we have an empty conjunction 2l0 which by definition generates the
whole set Mk. Let T(5I)=T(91). We introduce a partial preorder relation on I putt-
ing 21 < S if and only if T(91) ¡ 2 T (S) , r(J^k) being an empty set by definition. It is
obvious that this preorder coincides on I (by the above interpretation) with the rela-
tion • , and is reduced to the equivalence relation % and the relation of partial order
-< on the factor set I of the set X with respect to this equivalence. Represent this
partial order as a graph (5 (JPk) in the same way as it was done in constructing the
graph G(J?k). Now establish a connection between these graphs. We see that for any

(J f k) the following holds: if, in the graph G (J/k) and © (J?k) there exists a vertex
which denotes a class of sets of a given type T (a vertex of type T), then this vertex is
unique, and both graphs have such vertices simultaneously. Let us establish the cor-
respondence between the vertices of the graphs G(J(k) and (5 (J/k) by the property of
coincidence of their types t . Since it is a one-to-one correspondence, then / S

«p.(s)
S \G(S/k)\^2 holds and thereby relation 1) is established. Now, if we extend the
correspondence between the graphs to the correspondence between the edges con-
necting the corresponding vertices, we can see that these graphs are isomorphic, so,
to establish property 2) it is suffices to show that the graph G>(Jtk) can effectively be
constructed and the types of its vertices can effectively be determined. For this pur-
pose we first establish that the relations: (1) « l i S I z and (2) a i i ^ g S I ^ are equiv-

s p
alent if 2Ils and q=kk 2 k . This results from relation (1) being a con-
sequence of (2). Now let us prove it. Suppose MQPk. Let A?00 denote a set of all
functions from M(n) depending exactly on all the variables from Un. We construct a
pair ^ = (R / s) U S (P ^) (s) , Rls)) corresponding to ^ ¡= (« ,US(P i s)) , Rt) and

16 V. B. Kudryavtsev

introduce a set U 032,) by analogy with the set U (^¡). We see that U U (5?,-)
holds. For a set R['> US(i^ s)) (s) we construct a matrix pair 71, as follows. Let all
h l t h 2 , . . . , h r be the functions from i?/s) and all A2, . . . , A, be the functions from
S(PPY S \ Their choice can be represented by the summary table

«1 w2 • .. us />2 .. K x2 . • A,

«11 Ol2 • .. au fell &12 .. blr C11 c12 . • CU

Oct •• acs b02 •• b„ cvl cp2 . • Cos

a*»i av2 • V l bk'2 ... bk.r ck'l Ck'2 • • Ck',
Let us single out two of its matrices

' 1- I L U11 U12 ••• 01, Cji t12

n =
,bk'i bks2 ... bk'r cksy ck*2

bu b12 ... bkr

<-ls

rp/f
J i

AS1 bk'2 ... bks,

and consider the pair Ti=(T(, T"). We shall say that f(x1, x2,
retains Tt if for any matrix

T =
d,o ... d,,

dk'i dk-2 ••• dksm

whose columns are all taken from the matrix T- the column

(f (d n . d12, ...,dlm)\
f(T) =

\f(dk'i> dk'2, ••., dksm)J

xm) from Pk

will be the column of the matrix T". Let U (Tt) be the set of all functions from Mk
retaining T. We see that U (T,-)= U Now we introduce an operation with
Tespect to the matrices A and B. C=A B, if C consists exactly of all such columns
7 which result from placing the column a of A on top of the column /? of B.

We denote by Ar the result of multiplication of A by itself r times. For the expres-
sion <&= L U,-., / > 0 we shall construct a pair T(3i) = (T("H), 7 "(91)) where

1

7"(91) = Tl'1 • T'^ • ... • T''t,

T'(91) = T p - C - - - C ' . 2 rw = 2P"(s)

On the supplement of sets in functional systems 17

and rw=~0 for all w. By introducing a set U (7X21)) by analogy with the set. U (2])

we can see that U(T(2i))= f | U (T.) and hence U (r (9 I)) = C
l=i

As established in [1] the relation Uj(?) holds. Therefore in the course of
proving relation (1) to be a consequence of (2) we may assume that and 9I2 are
distinct from 9I„.

Now suppose that relation (2) holds whereas relation (1) does not. It means that
in Sti there is a function/such that / $ 2I2. It is clear that it must depend on v variables
and v>q. Notice that by construction the matrices T'(91) and 7""(21) have columns
of the same length equal to ks • 2p,,(s) for any 21 from I , 2t ̂ 2I0. Thus, these matrices
have not more than q different columns. By assumption / does not retain r(2i2).
This means that there is a matrix T consisting of the columns of the matrix T'(2l2)
such that f(T)$ T"(2l2). The matrix T has not more than'¿7 different columns, so,
we may assume without loss of generality that it is formed by successive groups of
equal columns. In accordance with these groups we divide the variables o f / i n t o the
same groups and in / replace every variable of the y'-th group by the variable Xj,
1 ̂ j = q . As a result we g e t / ' from 1&i9) not retaining T(2I2) either, what is at variance
with relation (2). Thus, relation (1) is a consequence of relation (2).

Let now 2I62T\{210}. Construct 7X21). According to [1] we can effectively
construct the set M$> and, consequently, the set U (r(2I))(«)=(2t)(«). Since (1) is a
consequence of (2) we can effectively define all precomplete classes U; such that

and thereby estimate t(2i). Knowing these values and the value of T(2I0)
we can construct the graph ®(JKk) and, consequently G(J/k). The theorem is proved.

It is known from [1] that f.t.f.s. 3Pk=(Pk, Isp) is finitely generated and for the
number |0i(0*)| of precomplete classes in it we have

| 0 i ~ «5(k) • k • 2c*-~i1 / ! I for k - -

where d(k)—2 if A: is even, and <5(/c)= 1 if A: is odd. By this we arrive at

Corollary 4.1. The graph G (^) can effectively be constructed and

S(k) • k • < \G(0>k)\ < 2i<-k>k-*Cik-~lim for k - 00.

§ 3. Supplementation problem for Post classes

Let us consider the supplementation problem for the f.t.f.s. JK2=(M2, Isp)
where M 2 § P 2 . E. Post is known to have described all the closed classes M2 [2]. He
established that the set of these classes is countable and that they are finite-generated.
He constructed an inclusion lattice formed by these classes. The set of the classes in
question is reduced to the following: C f , At, Dj, Lk., Oh Sr, P'r, Fs", where
i = 1, 2, 3, 4, j= 1, 2, 3, k'= 1, 2, 3, 4, 5, / = 1, 2, ..., 9, r = 1, 3, 5, 6, s= 1,2, ..., 8,
n=2, 3,

The class Cx contains all the functions of the algebra of logic and coincides with
P2. C2 consists of all / (* ! , x2,..., x„) such that C3 consists of all f(x1,x2,,x„)
such that C 4 = C 2 n C 3 . The class Ax comprises all monotone functions; A2—

A3—C3fl^4i; Ai—A2OA3. The class D3 consists of all functions

2 Acta Cyberoetica V1II/1

18 V. B. Kudryavtsev

f(x1,x2,..., x„) s uch tha t f (x u x2,..., xj=f(xlt x2, ..., *„)• The function
/*(*!, x2, ..., xn)=f(x1, x2, ...,xn) being called dual with respect t o / a n d the set
9ft* consisting of all functions dual with respect to the functions of 9ft is called dual
with respect to 9JI; the class 9ft is called self-dual if 9ft=3ft*; H ^ Q f l f i j ; Z>2=
=A1C\D3.

The class L^ consists of all functions f(x1,x2, ...,xn) such that f(xi,x2,...,xn)=

= jt xt+d(mod2); L2=C2DA; I^CaO!*; L4=L2f)L3; L^D^I^. 06 i-1
comprises all the functions essentially depending on not more than one variable;
08=A1D09; 04=D3(10B; 05=C2I)09; 06=C3D09; O ^ C ^ D O « , ; 07 c o n s i s t s
of all constant functions; 02=05H07; 03=0ECL07. The class S6 consists of all
functions / (* ! , x2, ..., x„)=x1Vx2V ...Vxn and all constants; S 3 = C 2 i l S 6 ; S5—
—C 3HS 6 ; S^SsClSs. The class P'6 consists of all functions f(xx,x2, ..., x„)—
=x1&x2&...&xn and all constants; P 5 '=C 2 nP^; P 3 = C 3 n P ' e ; P ^ P ^ D P ^
A function is said to satisfy the condition a", r . s 2 if any r. collections in which it is
equal to 0 have a common coordinate equal to 0. Analogously, with the replacement
of 0 by 1 we introduce the condition A". The class F4 consists of all functions with
property a"; f?=C4nf4

B; F ^ A ^ F ? ; F£= F?P\F£-, FG consists of all functions
with property A"; Fj=C 4 i lF s"; F^-A3DFG; F6" = flf7". A function is said to
satisfy the condition a°° if all the collections in which it is equal to zero have a common
coordinate equal to zero. Again by replacing 0 by 1 we introduce the property AM.
The class F f consists of all functions with property ; F f = C 4 D F | ° ; = f I F 4 ~ ;

= FT Pi F3°°; F|° consists of all functions with property A°°; FR=C1F]FF;
F~.=AZC\F8; FE=FFF)FF. The above inclusion lattice formed by these classes
is given in Fig. 1. In this figure classes are represented by points. Two points are
connected by an arc if the underlying point denotes a class contained immediately in
the top class (i.e. there are no intermediate classes between them). The lattice has an
axis of symmetry. Self-dual classes are represented by points on the axis; classes dual
with respect to each other are represented symmetrically with respect to the axis.
The self-dual classes are CLT C4, AX, A4, D1, D2, D3, L4, LH, 01, 04, 07, 08, 09.
For other classes we have

r< — c* A — A* T — T* P' — V* P' — P' C* *-2 — » 2 — -"3 > 2 — 3 9 rl — » r3 — "3i 5 — °5 >

Pe = 56*, 05 = 0t, 02 = 0*, F? = (F5")*, F2 = (FS)*,

PS = •(*?)*. Fl = (PS)*, F? = (F?)*, F2 = (F6~)*,

F,= (FD*, F? = (Ft)*.
Thus, the supplementation problem for any f.t.f.s. Jt2 is reduced to considering

such f.t.f. s. J(2 for which M2 coincides with one of the classes of the set

Z = {C1} C„ C4, A1, A3, A4, D1,D2, D3, Lri, L3, L4, L5,

Fl, Fg, Ft , FS, F?, F?, F,~, F8~, P[,P'3,P'b,PJ, Ot, Oz, 04, Ob, 07, Os, 09}.

By virtue of theorem 3 and corollary 3.1, the solution of the supplementation prob-
lem, under, condition that M2€Z, is as follows. By the. aid of a Post lattice we cal-
culate tje(M') for every closed class M'QM2. The set of all classes of the same type
of T is declared the class K t . On the set of these classes we introduce the relation of

On the supplement of sets in functional systems

partial order which coincides with the relation of inclusion for types of classes. As
already mentioned the attributing of closed classes to a single class Kx corresponds to
%. In this way we construct the relation • over Now we give the Post
lattice and the results of calculations for the graph G(J(2). There turned out to be
eleven graphs of this kind accurate to isomorphism. They are given in Fig. 2—8 with
the edges oriented from top to bottom. Now let us describe the values of the
parameters Kt for different graphs and classes M2.

2*

22 V. B. Kudryavtsev

Fig. 2

In Fig. 2 we have the graph G (Сi). Here

Ko — {Q}, Kx — (C2, F*, Fl, ..., F¡, ..., F™},

= {Qj Fit •••> FS,...,F?}, K3 = {Alt P'B, S's},

K, = {Da}, Kb = {Lx, O0},

* I 2 = {C 4 , F I , F I , . . . , FE , F R , F Í , FL, . . . , F . . . , F F } ,

•̂ 23 = {-̂ 3> F l l F l i "4 > F " , 1S5, P3},

= {^sj ..., F f , Fi, S3}, К1Ъ = {L2},

Kx = {0i,01}, K2b = {L3}, Ki& = {Ls, 04},

•̂ 123 = F f , . . . , Fő, Fi, Fi, ..., F2~, PÍ, Sj},

^124 = = {05, 02}, ^235 = {^e, 03},

-̂ 1234 = {^2)1 ^1245 = 1̂2345 ~ {^l}'

On the supplement of sets in functional systems 23

Fig. 3

In Fig. 3 we have the graph G(s/j). Here
K0 = {^1}. Kx — {A2, F | , F | , ..., F£"},

K2 = {Aa, F | , ..., F?}, K3 = {S6}, K, = {P^},
^12 = {Ai, F | , F | , ..., F|°, Ff , Ff , ..., F|°,D2},

K1S = {S^}, K23 = {S5}, Ku = {Pg},
KM = {Pa}> ^34 = {0», 07}, K123 =

^134 = {Fi}, Kj24 = {Os, 02}, K2Si = {Oe, 03},
1̂234 = {Oi}.

Fig. 4

22 V. В. Kudryavtsev

In Fig. 4 we have the graph G(C3). Here

Кг = {A3, Ss}, K3 = {L3}, K, = {F¡, Fi, ..., Fr),
= Ff , F f , . . . , F~, ЛГ13 = {L4},

^14 = {^5 > . •••> ^24 = {-F?» •••> , P3},

•̂ 124 = {Ff, F i , ..., F ~ , Pi,D2), Kçai = {Oe, 03}, AT,234 = {C^}.

Fig. 5

In Fig. 5 we have the graph G (2i). Here

A0 = {¿1}) ^ = {¿J, A'a = {¿3}, Кг = {Ьй}, КА = {09,08,07),

Кы = {05, 02}, = {0в,03}, = Klis = {L,}, К1гм = {Ót}.

Ffc. 6

On the supplement of sets in functional systems 23

In Fig. 6 we have the graph G(C4). Here

*„ = {C4}, K, = {Ff, F®,..., Ff}, K2 = {Dlt L4}, K3 = {A4},

Kt = {F|, F f , . . . , F~}, K13 = {F|, F f , . . . , F2~, S j ,

^34 = F | , . . . , F6~, Pi}, Ar1234 = {Z)2, OJ .

FI^. 7

In Fig. 7 we have the graph B"). Here

K0= {FS}, = { F t 1 , Fg+ 2 , . . . , F|°}, A:2 = {F6
n}, = {F7"},

= {Fg+1, F T 2 , Fg°}, = {F"+1, F" + a , . . . , F7~ Pa, O., Os},

= («>2), ^23 = {F|,Z)2} (n = 2),

K123 = {F8"+1, F6"+2,..., FT, Pi, OJ.

Fig. 8

24 V. В. Kudryavtsev

In Fig. 8 we have the graph G (J Q where
M2€{A3,P'e}.

For M2=A3 we have Ао={Л3}. Ff, F¡, ..., F?}, K2={S5}, K3=
= {Fl Fl ...,Fr, P3}, K ^ i S j , Ka = {FS, Fl, .„, Fe~, PÍ,D2), ^={0,}, K123 =
= Ш

For M2=P'6 we have К0 = {Р'а}, K^W), K2={07,0S), K3={P'3), Kí2=

= {02,0S}, K23={03,06}, K13={Pi), к1а={оху

Fig. 9

In Fig. 9 we have the graph G(Jt2) where

M2e{F?, FT, Fi, Fi, F f , Pl Pl Dlt D3, At, L3, Lb, Os).

For M2=F? we have K0 = {F!¡}, KX={F¡, Z)2} for n = 2, and Кг = {Fe"} for

2, K2={F?*\ F r \ F r , P3,06,03}, K12={FS+\ ..., F|°, P l 5 Oj}.

For M2=F7~ we have *i={FT}, К2={Р'3, Ов, 03}, К12={Р[,01}.

For M2=F¡ we have K0={F¡), ^ = * 2 ={Ff , F | , . . . , F6~, Pi}, K12=

= {Oi).

For M2=F5" we have K0={F£), ^ 1 = {F5
n+1, F | + 2 , F s ~ } , ^2={F| ,Z)2}

for n = 2 and K2={Fg} for и>2, K12={FS+1, Fe"+2, ..., Fe~, P¿, OJ.

For M2=F8~ we have ^0={F8-}, Кг = {F~ ,P 3 ,O e , 03}, tf2={F5~},

= {F|°, Fi, Oj).

For ЛГ2=Р3 we have ^ i={0 e , 0 3 } , ^2={Pi}, / ^ { O j .

For M2=P'& we have {^ib K2={Os), K12^{0t}.

For M2=D1 we have ^{L,}, K2={D2), /:12={01}.

For MS=D3 we have K0={D3), K1={D1, D2), К2={Ьь,04}, K12={Lt, OJ .

On the supplement of sets in functional systems 25

For M2=A4 we have K0={A4}, K^{Fl F f , ..., Si}, K2={F$, F%, ...

,F?,P[}, K12={D2,Ox).

For M2=L3 we have K0={L3}, K{=\lJ, K2={03,06), ^1 2={01>.

For M 2 = U we have K0={L5), K1={Li}, A"2={04}, / ^ { O j } .

For M2=Oa we have K0={Os}, Kx= {02, 06}, K2= {03, Oe), ^={0^.

Fig. 10

In Fig. 10 we have the graph G (Jt2) where

6s
For M2=Os we have K0={O6), ^={0,}, K2={03}.

For M 2 = 0 7 we have K0={07}, Kx={02), K2={03).

For M2=09 we have K0={O9}, ^={0^0,}, K2={02,03,07,0S}.

Fig. U

In Fig. 11 we have the graph G(J(2) where

M2£{Pi, D2,L4, F f , Fg, F?, 04} where «>2 .

For M2=P[we have /:0={Pi}, * i={0i} .

For M2=D2 we have KQ={D2), / ^ { O j } .

For M2=L4 we have K0={Li), K1={01}.

For M2=F? we have K0={P500}, AT1={Fi°, Pi, Oj}.

For M 2 =F£ we have *0={F6
n}, ^ = P? + 2 , . . . , P6~, Pi , Oj}.

For M2=F6~ we have /sr0={F6-}, * i = { P i , Oi}.

For M2=04 we have Ao={04}, ^ { C ^ } .

26 V. B. Kudryavtsev::On the supplement of sets in functional systems

In Fig. 12 we have the graph G(JQ where M2£ {<9X, 03}. It has one vertex cor-
responding to Ko which coincides with {Ox} or {03}.

Fig. 12

KATEDRE DISCRETE MATHEMATICK
MEH-MAT FACULTET
M G U
MOSCOW

References

HI KUDRYAVTSEV, V. B., Functional Systems, 158 pages, Moscow State University, 1982.
12] YABLONSKY, S. V., GAVRILOV, G. P., KUDRYAVTSEV, V. B-, func t ions of the Algebra o f Logic and

Post Classes, 120 pages, Moscow, Nauka, 1966.

(Received Febr. 3,1986J

Formal properties of literal shuffle

B . BERARD

Abstract

We introduce the literal shuffle operation, that is a more constrained form of the
well-known shuffle operation. In order to describe concurrent processes, the shuffle
operation models the asynchronous case, while the literal shuffle operation corresponds
to a synchronous behaviour.

The closure properties of some classical families of languages under literal shuffle
are studied and properties of families of languages defined by means of literal shuffle
are given.

Introduction

The shuffle operation naturally appears in several problems, like concurrency of
processes ([9], [10], [11]), or multi-point communication, where all stations share
a single bus ([5]). That is one of the reasons of the large theoretical literature about
this operation (see for instance [1], [3], [6], [7]). In the latter example, general shuffle
operation models the asynchronous case, where each transmitter uses asynchronously
the single communication channel. If the hypothesis of synchronism is made (step-
lock transmission), the situation is modeled by what can be named "literal" shuffle.
Each transmitter emits, in turn, one elementary signal. The same remark holds for
concurrency, where general shuffle corresponds to asynchronism and literal shuffle to
synchronism.

There are no specific studies of literal shuffle. One of the reasons is perhaps that,
when adding the full trio operations, literal shuffle is as powerful as general shuffle.
Nevertheless, when a more precise approach is made, literal shuffle appears as satisfy-
ing specific properties. In the present paper, we study the literal shuffle operation,
particularly in relation with the classical families of languages : regular sets, context-
free languages, context-sensitive languages and recursively enumerable sets. The
paper is divided in three sections. The first one contains some specific definitions about
shuffle and literal shuffle, and some basic properties of these operations. In the second
section, we study the closure properties of the families Rat, tff, and MS under
literal shuffle and we show that the family of recursively enumerable sets is the! smallest
full trio closed under iterated literal shuffle, thus extending a result of M. Jantzen [6]
about the shuffle operation.

28 B. Berard

In the third section, we give some properties of the language families obtained
by using literal shuffle, in the same way as the families Shuf and y S were studied in
[6]. The main purpose of this section is to state that the two families obtained that
way and SP8 are incomparable.

Notations and basic definitions

Let X be an alphabet. X* is the free monoid generated by X, and e will denote
the empty word in X*.

L e t / b e a word in X*, | / | is the length of / and i f / is not the empty word,/ (i >

is the Ith letter o f / , \f\x is the number of occurrences of the letter x in / .
A word g in X* is a subword o f / i f / = ugv, for some, u, v in X*. If u is the empty

word, g is a prefix of / .
Fin, Rat, my , 0t§ will respectively denote the family of finite sets, regular

sets, context-free languages, context-sensitive languages, recursively enumerable
sets. Let X and Y be two alphabets. A homomorphism h from X* into Y* is said
to be: non erasing if h(X)<gY+, where r + = y * - { s } ,

alphabetical . if A ^ g r U i e } ,
a coding if h(X)QY,
an isomorphism if h and h-1 are codings. In that case, Y is called a copy
of Zand if Z- is a language in X*, h(L) is called a copy of L.

i f is the class of all homomorphism and ^ f - 1 is the class of all inverse homomor-
phisms.

A full trio is a family of languages closed under homomorphisms, inverse homo-A A
morphisms and intersections with regular sets. will denote the
full trio operations, where A ^ is the class of intersections with regular sets. D[* is
the resticted Dyck set over the alphabet {a, b) generated by the context-free gram-
mar with productions:

S-aSb+ SS+ s (see [4] and [3] for details).

Part 1 — Shuffle and literal shuffle

The shuffle operation will be denoted by the symbol m and is defined for lan-
guages L and M in X* by

LmM — {/= «JÜ!... u„va, u¡,v¡ in X*, ux...un$.L, vj_... va£M).

The iterated shuffle will be denoted by in*. Let L be a language in X*, then Lm*=
= U Lh where L0= {e} and Li+l=L¡mL. The families Shuf and i f g were intro-

i t o
duced by M. Jantzen [6]: Shuf = (u , m, m*)(Fin) is the least family of languages
including Fin and closed under union, shuffle and iterated shuffle. SfS=(u, •, *, m,
m*)(Fin) is the least family of languages including Fin and closed under union,
product, Kleene star, shuffle and iterated shuffle.

We give now the specific notations of this paper and make the ideas more precise
about literal shuffle.

Formal properties of literal shuffle 29

Let / a n d g be two words in X* with the same length p. The interleaving I of the
words,/, g is defined by:

7(e, e) = e if p = 0,

/(/> g) =f(1} g(1) •••fip)gip> if P> 0.

Let L and M be languages in X*, we define:

1) The initial literal shuffle iUj :

iuijAf = { / (/ i , / 2) g\fi,f2,g in X*, l / l = |/2|,

(/ ig€L and feM) or (/ ^ L and / 2 g6M)} .

2) TTjf //fera/ shuffle ui2 :

Lm2M = {//(gx , g2)/j | / , g,,g2, h in Jf*, |gx| = |g2|,

(fgih£L and g2€Af) or

(gi€£ and fg2h£M) or

(/g^Z. and g2h£M) or

{gihdL and fg2£M)}.

Example: L=a* and M—b*

LmtM — (ab)* (a* U b*),

Lw2M = (a* U b*) (ab)*(a* U b*).

3) The iterated initial literal shuffle m* and the iterated literal shuffle m 2 :
Lm* = U L^ where L0 = {s} and Li+1 = Lim1L,

iso

Lm* = IJ L^ where L0 = {s} and Li+1 = Lt m2 L.
¡so

We then define four families of languages :

jS?1y/i = (u ,n i 1 , uij) (Fin)

S S f h = (u, m2, m2)(Fin)

sex y g = (U, . , *, III!, mi) (Fin)

2 ST 8 = (u, •, *, m2, iu2)(Fin).

At the end, we summarize some basic properties of the initial literal shuffle and the
literal shuffle.

Proposition 1.1. Let X be an alphabet and A, B languages in X*.

a) The initial literal shuffle and the literal shuffle are not associative operations.
b) The literal shuffle is commutative but the initial literal shuffle is not commu-

tative.

30 B. Berard

c) AB g Am2B, AmxB g AmzB Q AuiB.

d) X* = Xm' = Xm**.

e) Let/ , g, h be words in X* such that h=fmig or hZ/m^g, then \h\ = \ f \ + \g\.

Recall ([1]) that D[*=(ab)m*; we have:

Proposition 1.2.

a) (ab)m* = {E, ab}Ua2(ab)*b\

b) (ab)m** = Di*.

The initial literal shuffle seems then to be less powerful than both shuffle and literal
shuffle. However, we will see that even a very simple language like ((ab)m ')m* is not
context-free. Furthermore, the three families ¡ f $, ^ S ^ S and are pairwise
incomparable.

Proof.
a) The proof is straightforward.
b) From the definition, we can write (ab)m* = | J Lp, where

pSO

L0 = {e> and Lp+i = Lpm2{ab).

Since Am2BQAmB (Proposition 1.1.c), it is easy to verify that

Am* Q Am\ thus (ab)m*> Q D'*.

For the converse inclusion le t /be in Di* with \f\=2p. An induction argument proves
that / is in Lp.

The basis when p— 1 is trivial.
Induction step. Assume the result for words of length 2p and consider a w o r d /

in Di* of length 2(p+\). There are two possibilities:

Case 1. f=(ab)p+1. By the induction hypothesis, (ab)p is in Lp, thus/belongs to
Lp{ab). Since Lp{ab}QLpw2{ab} (Prop, l.l.c), f£Lp+1.

Case 2. / = / 1 / 2 / 3 , where / 2 is a word of D[, the set of restricted Dyck primes,
with | / , | s 4 .

Let «0=6,«!, ..., u2k=f2, be the sequence of prefixes of f2, and let
ll"jll = \uj\a— \uj\b be the height of the word Uj. If i is the greatest integer such that \\ut\\
is maximum, then there exists a letter x in {a, b} and a word v in {a, b}* with / 2 =
= Ui-2xabbv. We define g=f1ui-2, v1 = xb, v2=ab, h—vf. f = gl{v1, v2)h, thus

/ i s in gv1hui2ab. Since gvxh is a word in D[* of length 2p, gvth is in Lp by induction
hypothesis. Consequently,/is

Formal properties of literal shuffle 31

Part 2 — Closure properties of the families Rat, ^Sf and MS under
literal shuffle

We first show that, when adding the full trio operations, literal shuffle is a power-
ful as shuffle.

Recall ([3]) that a full trio is closed under shuffle if and only if it is closed under
intersection.

Proposition 2.1. Let i f be a full trio. The following properties are equivalent:
a) i f is closed under shuffle.
b) i f is closed under literal shuffle.
c) i f is closed under initial literal shuffle.

Proof. The result is easily obtained from the two following facts. Let L and M
be languages respectively in Z* and Y*.

Fact 1. Assume that Z a n d Y are disjoint alphabets; we define regular languages
in (ZUF)* by:

= (Z7)*(Z* U Y *) and R2 = (X* U Y *)(XY)*(Z* U Y *).
Then

LmxM = (LmM)f]R1 and Lm2M = (LuiM)f]R2.

Fact 2. If $ is a new letter and if h is the homomorphism from (ZU rU{$})*
onto (ZU7)* defined by:

h(z)=z, for each z in Z U Y, and h($)=e,
then

LmM = /i[/i_1(Z,)m1/i_1(M)] = hlh-^mth-^M)].

Proposition 2.2. Let L be a language in Z*, let $ be a letter not in Z and let h be
the homomorphism from (ZU{5})* onto X* defined by: h(x)=x if x is in Z,
h($)—e. Then,

Z T = h[(h-i(L))™ï] =

Proof. Using Proposition 1.1.c, we can get

Furthermore, if q> is an arbitrary homomorphism and if A, B are languages, then

cp(AwB) g (A)mcp(B).

Therefore, we have the following inclusions :

h l(h~HL))m*l Q h g Lm*.

Conversely, we use the definition of iterated shuffle and initial literal shuffle :

Lm* = U L„, L0 = {e}, Ln+1 = LnwL
nfe o

and
(h-HL))m*> = U Mn, M0 = {e}, Mn+1 = M^h-HL).

ns 0

32 B. Berard

We prove that for each integer 0, L„Qh(Mn). If « = 0 or n= 1, the result
is immediate. Assume n S 2 and let m be a word in w1m...mM)l, where u.-fL. There
exists an integer 1 such that

p

" = II (uu ••• in = ",m ••• "¡,p-
y=i

We define a sequence of words /¡, l S / S / i , by:

/« = fi.i - f i . P , f i j = " u tf"', with:
r i , ; = 0

ru = 2 , - , (| a 1 J + ... + |« i_1J),
S1.J = \Ui,j\ + — +\"n,j\

s,.j = (2 i _ 2 —1) I + 2 ' - 2 (|u i + l t j \ + ... + |M„i7|), i ^ 2.

Clearly, / j belongs to h -1 (L), 1 ^ / S n ,

|/xl = |u| and \ft\ = 2 ' - 21«| for each i S 2.
Define:

g i = / i and for l s i i n - 1 , g i + i = g.mi/i+i-

Obviously, g, is in Mi, l s i ^ n . Further, |g i| = |/i+il = 2'~1M for l s i ' s « , and
lg„l = 2"-1 |«|.

Then, we can write g . ^ g ; , ! . . . g i l P , where \g,J = \fi+1,j\, l==i<«, and
Ign.yl=2|/„,j|. It is easy to prove by induction on i"s2 that:

Sij = i l j where t u = su + \ui+1J
and

h(gi,j) = "i
For i=n , we obtain:

gn = g B , l -g„ .p> h(g„,j) = ultJ...u„fJ,
hence h(g)=u and u is in h(M„).

From LnQh(M„), we have Lm*Q/i[(/i-1(L))mi], and the proof is complete.

We now state the closure properties of the families Rat, ^ i f and 913 under
literal shuffle. They can be obtained by easy machine constructions.

Proposition 2.3.

a) The families Rat, ^Sf and are closed under ruj and m a .
b) Moreover, the families and 018 are closed under mjf and inj .

Corollary 1. The families <£x£fg and are both contained in the family of
context-sensitive languages.

We will see in the next section that there are, in fact, proper containments.
Using Propositions 2.2 and 2.3 together with a result of M. Jantzen ([6]): M i =

(J(in*)(Fin), we can show:

Formal properties of literal shuffle 33

Corollary 2. The family of recursively enumerable sets is the least family of lan-
guages including the finite sets and closed under the full trio operations and the iter-
ated literal shuffle.

The same result holds with the iterated initial literal shuffle :

MS = (J , nij) (Fin) = (M, nig) (Fin).

Property 2.3.a) does not remain true for context-free languages : let L and M
be two different copies of the restricted Dyck set over the disjoint alphabets {a, b}
and {c, d}, respectively. Then, neither L I I ^ M nor Lm2M are context-free languages.

We mention a strong result of M. Latteux about the shuffle operation :

Proposition 2.4. ([7]) Let L and M be two languages over disjoint alphabets Z a n d
Y respectively. LmM is a context-free language if and only if either L or M is a regular
language.

This result does not extend to the initial literal shuffle : Let G be the context-free,
non regular language over the alphabet {a, b} defined by :

G = {an'b...a"b\k^l, « ¡SO, 31 jt «¡}.

(G is known as the Goldstine's language.) If G is a copy of G over the alphabet
{¿j, 5}, we have :

Proposition 2.5. GniiG is a context-free language.

Scheme of the proof. Let $ be a new letter and let ô be the following language in
({a,b, 5}X{a, b, $})*:

< ? = { [^] , /€<?, g€G and p + \f\ = ç+lgl}".

Let h be the homomorphism from {{a, b, 5}X {a, b, 5})* into {a, b, â, B}* de-
fined by :

= if * , * { « , * } , h{[$
$]) = s,

= * if x€{a,b} and *([y]) = j? if
 ytta>bl

Clearly enough, /i(G)=Gni!G. Then, it suffices to prove the context-freeness of
G, and we build a pushdown automaton recognizing Ô. We will use two different
versions of non-deterministic pushdown automata recognizing G (by final states).

First version. The underlying idea of how this automaton works is the following :
let w be a word in {a, b}*. Non-deterministically, a block of a's is chosen. The b's
preceding this block are pushed into the stack. Then, each a in the chosen block makes

1) If x , y e { a , b, $}* with \x\ = \y\ = n, we write [*] for [y»] • • • [/") '] • \ :

3 Acta Cybernetica VUI/1

34 B. Berard

a b to be popped from the stack. The word w is accepted if the number of a's in the
chosen block does not match the number of b's in the stack. (Initially, the stack con-
tains a single b.)

Second version. It allows to keep in the stack, after checking, the rank of the
chosen block of a's. It is based upon the fact that G is also defined by:

G = {a"lb ... an"b |«i ^ 1 or there exists a k,

• such that nk+1 ^ «*+l}.

The automaton first checks wether or not ^ = 1 or chooses a block of a's. (Let k+2
be its rank.) In the second case, the first k b's are pushed into the stack, then the a's
of the following block (their number is nk+1) are also pushed into the stack. The b is
skipped and it is then checked if the number of a's in the following block is different
of + 1 (by using the nk+1 a's on the top of the stack). If this test is positive, the
word is accepted and the rank of the current block can be retrieved from the
stack (number of b's plus 2).

Now we can describe a non-deterministic pushdown automaton recognizing G.

As long as couples of letters j ^ j or are encountered, the automaton works as in

the second version. As soon as a couple ¿ j or is encountered (involving that
one of the upper and lower words is then known to be in G), the automaton uses the
a's at the top of the stack for determining which word is in G (say the upper word).
Using the b's in the stack and switching for first version, the automaton checks then
that the other word (here the lower one) does belong to G.

Clearly, no problem appears if the first encountered couple of different letters is

[$}or [y\ x, yÇ. {a, b}.

Open question: Do there exist two non regular languages L and M over disjoint
alphabets, such that Lw2M is context-free?

Property 2.3b) does not hold for Rat or <6f. We use Proposition 2.2 with the
language L—{abc}. It is easy to see that Lm* is not context-free. M—h~\L)=
= $*a$*b$*c$* is a regular language and since Lm*=h(Mm*)-h(Mm») is not in
<6f, neither M m i nor Mm* is a context-free language.

However, regular languages or context-free languages can be obtained in some
very particular cases:

Proposition 2.6. Let F be a finite set. Fm* is a regular language.

Proposition 2.7. Let F be a finite set such that for any word/ in F, the length of /
is less than or equal to 2. Then, Fm» is a context-free language.

Proof of Prop. 2.6. The proof consists of a construction of a left linear grammar
such that L(G)=Fm*.

Formal properties of literal shuffle 35

Since 0m* = {e} and for any language A, (^U{e})m*=^4m*, we may assume
that F is not the empty set and does not contain the empty word; F={f1, ..., fk},
k ^ l . If X is the alphabet of F, we set p—card (Z), /=max {\fj\, l s / ^ k } and we
consider the set X' of words in X* with length t: X'={gx, . . . ,gm} where m—pt.
We can write

FM* = U U, L0 = {e}, LI+1 = LTUII F.
/so

Let «0 be the smallest integer greater than or equal to k, such that for each word /
inL„0 , \ f \ ^ t .

Since F, the words in LT are strictly shorter than the words in LI+1 and such
an integer n0 can be found.

We define: R= | J LU R is a finite set,
/ S N 0 - 1

J(i) = { f ^ L J g i is a prefix of /} , 1 == i =S m,

7={ie{l,...,m}lJ(i)^0}

and for each id I, ¿7;=card (/(/)), so that

J{i) = {Ki>—'hi,) w i t h hr = 8iui,r for some uUr in X*,

l^r^qi,

K . = U / (0 -

For each (i,j), 1 S / S m , l ^ j s k , there exists a unique integer s(i,j) in {1, ..., m)
and a unique word vitJ in X* such that:

gi W l f j = gs(i,j) »¡J-
Now we can finish the proof by constructing a grammar G=(X, N, S, P); N=
= {S, ..., Dm}, where S, Z>l5 ..., Dm are new letters. The rules of P are the fol-
lowing :

(i) S—w for each word W in R;

(ii) S—DiUUr for each r, for each / i n / ;

(iii) Dt — gi, I S i S m ;

(iv) D i - D s (l j) v i j , l s j s k , 1 s i =§ m.

G is left linear and it is easy to see that L(G, S)= Fm*.

Proof of Prop. 2.7. Let F be a finite set in X* and L= Fm*. If every word in F is
of length less than or equal to 1 and if X is of minimal cardinality, then L—X* is a
regular language. Since (A U {e})111* =Amt for any language A, we may assume that F
does not contain the empty word.

We define a sequence of languages F„, n £ l , inductively by: F 1 = F ,
Fn+1= {/^Z*|there exists a word g in F„ such that:

either g=gig2, g^t and f—g^yg^, where y is a word of length 1 in F,

3*

36 B. Berard

or g=gixgz, for some x in Zand f=gi)>ixy2g2, wherey ry2 is a word
of length 2 in F.}

For each « S i , the set F„ is contained in L, therefore the language M defined by
M— (J F„ is also contained in L. It is straightforward to verify that L is a submonoid

n £ l
of X*; it follows that M*QL. The converse inclusion also holds; the argument is an
induction on the length of a word in L.

Since L=M*, it suffices to show that M is a context-free language. Thus, we
construct a context-free grammar G=(X, N, S, P) such that L(G, S)=M.

We consider the fixed alphabet X={alt ...,ap} and we define: N—
= {S, 7\ , ..., Tp}, where S, Tx, ..., Tp are new letters; the homomorphism h from
X* into N* such that /1(0,)=^, IsSnSp;

/ = {i€{l,...,/>}|<i,€f}

and wJ=aJlaJ,a, l s / ^ f c , the words of length 2 in F.
The productions of P are the following:

(i i e i

S^ThTJt, lasj^fc

(, ,) T-T^TT^,1, 1 S j si Jk,} f o r a n y variable Tt{Tlt ..., Tp)

(iii) T, -~a„ l s i i p.

Clearly, this grammar generates M.

Part 3 — Properties of the families ^ i f S and ¡eSfg

, We do not mention in this part specific properties of the families and
i fSfh ; however, we state two useful results about some particular languages in these
families.

Proposition 3.1. The language N=((aô)m*)m* (in Sg^SfK) is not context-free.

Proof, (the details are omitted)

a) L e t / b e a word in {a, b}*. The height o f / i s \\f\\ = \f\a-\f\b and PR («)
denotes the set of all prefixes g of the words in the language N, satisfying :) g\ s n.

We define, for each integer « ë 0 , # («)=Max {||g||, PR(n)}. By induction
on n ^ 2, we can obtain the following inequality :

#(«)=§ 6 log2(«).

b) A sequence fk, of words in N can be constructed* such that: fk=
=gkb3k+i, for some word gk in {a, b}*.

c) We suppose now that the language N is context-free and, using the Iteration
Theorem, [4], we will obtain a contradiction. Let N0 be the integer from the Iteration
Theorem and let h=fNo be the word of N, obtained as in b): h=gNo b3N»+i, where

Formal properties of literal shuffle 37

the last 3iV0+4 b's are distinguished. There exists a factorization h=aufivy, such
that hp=aupPvpy£N, for any p^O. The height of hp is 0, for any p^O, and v is a
subword ofb3No+i. Thus, ||m||>0 and, using a), we obtain a sequence au of prefixes
of N, such that ||a|| +/»||tt|| S 6 log2(|a| +/J|M1), which is impossible. Hence, N is not
context-free.

Proposition 3.2. The language P={ab, cd}m> (in <?Sfh) is a generator of the
family of context-free languages.

Proof. We define the words a=am + n , f}=bn(ac)p, y=(bd)"bm and ô=ab, where
m, n a n d p are integers, p^2, n^p+l. We then define a regular set K recog-
nized by the transition system ([4]) of the figure below:

At the end, we introduce the context-free language A, generated by the grammar with
productions: T—aTfiTy +<5.

We shall prove that Pf)K=A. Since {a, /?, y, <5} is a code2), it proves that P
is a generator of /([2]).

We will say that a word / i s directly reduced in a word g if f=f'axbf" or / =
=f'cxdf" and g=f'xf", for some letter x in Z a n d some w o r d s / ' , / " in X*. We
will write f—g and will denote the reflexive and transitive closure of —. I f f—*g ,
we say that / is reduced in g.

a) It can be shown by induction on that, i f / i s a word in A, \f\^k, then
/ is reduced in ab. This gives the inclusion AQP.

b) It is easy to see, by induction on the length of a word in A, that AQK.
c) So far, we have obtained the inclusion AQPDK. To get the converse inclu-

sion, we need two facts:
Fact 1: L e t / b e a word in P, neither a<5y nor fiSfi is a subword o f / .

Fact 2: Let f^faSfidyf" be a word in P. T h e n / i s reduced in f'Sf", and this
reduction is the only one which can concern the subword ocSfiSy o f f . Let / be a word
in Pf)K. The argument is again an induction on the length o f f .

Case 7. a is not a subword o f / . Since/is in K, it can be written as: /=(<5/'y?)...
...(5yr"P)5yk+'. Since/is in P, | / | 0 = | / | 6 , therefore k=0 and rk+1=0; hence

f=ab is in A.

Case 2. a is a subword of f . We then consider the last occurrence of a in / , so that
f—f'oLf", « is not a subword o f f " . Since / is in K and in P, using Fact 1, we obtain:

A

2) A subset C in X + is a code if C* is a free monoid with base C.

38 B. Berard

/"—SpSyh, f—f'aópóyh is reduced in g—f'8h. Obviously, g is in K and, using Fact
2, it turns out that g is in P, too. By induction hypothesis, g belongs to A, and we
consider the place where the rule T— <5 has been applied in a derivation for
g: TX m'Tm"=>m'bm"^> g, where f and m"^>h. Since T=> m'Tm"^> * *
=>• m'aTpTym" => f / belongs to A. At the end, we have A—POK and the proof
is complete.

Before comparing the families SH^S, 3?Sf§ and we provide some neces-
sary conditions for a language to belong to one of them. Recall ([6]) that every infi-
nite language in y g contains an infinite regular set. Using Proposition 2.6 and
an inductive proof, we can extend this property :

Lemma 3.1. Every infinite language in or in contains an infinite
regular set.

Proposition 3.3.
a) The language {cfb"\n^0} is not in ¿C^g
b) the language { a 2 > £ 0 } is not in <exSf$\lSiSfg.
Proposition 3.3 b) gives the proper inclusions:

Corollary 1. ^ y g ^ S f , <£<f£%céy>.

Using proposition 3.3 a) and the preceding results, we have:

Corollary 2. Each of the families $£x¥h, ££S/>h, <exSfg and SeSfg is incompa-
rable with the family of context-free languages.

Proposition 3.4. The families <££fg and !£ (EDTOL) are incomparable.

Proof. The language {a2"|nsO} is in <£ (EDTOL) ([11]) and does not belong to
^ 8 . The language P= {ab, cc / } m í is in but it does not belong to £? (EDTOL),

since it is context-free generator ([8], Proposition 3.2).
Lemma 3.2. Let L be a language in X*, where X is of minimal cardinality,

then
either L is regular,
or for each letter x in X, for each integer p^O, there exists a word / i n L, such

that xp is a subword o f f .
Lemma 3.3. Let L be a language in X*, L$_S£Sfg. Then, either L is regular or the

two conditions hold:
(i) there exists a letter x in Zand an integer n0 such that, for each integer />S0,

a word f=gh can be found in L, where \g\^n0+p and xp is a subword of g.
(ii) there exists a letter yinX such that, for each integer />S0, a word f—gh can

be found in L, where \ g\^p andy p is a subword of h.
We now consider languages over a fixed ordered alphabet X= ,, a„}

with n=2, satisfying:
(*) There exist integers klt ..., in Z, such that for each word / in L,

Formal properties of literal shuffle 39

Lemma 3.4. Let L be a language in X*, satisfying the propeity (*) above.
a) if L is in SfS, then Lf\alat...a* is a finite set,
b) If L is in S£SfS and then LClaf at...a* is a finite set.

We can now state the main result of this section :

Proposition 3.5.

The families ££XS£S, S£SfS and SfS are pairwise incomparable.
The famihes <£xSfh, 2? Of h and Shuf are pairwise incomparable.

Proof.
— The language L— (abc)m* is in SCSPh and it is easy to see that L is not regular.

Moreover, if b" is a subword of a word in L, then p^ 3. Using Lemma 3.2, we obtain :
Li ses.

— The language M=(abc)m* is in Shuf and Mf)a*b*c* is equal to
Since M has property (*), we can use Lemma 3.4 a) and b). Thus M

is neither in ^ S f S nor in :VPS.
— The restricted Dyck set D[* is in the families Shuf and ££Sfh, (Proposition

1.2. b)), and D'* has the property (*). By Lemma 3.4. a), we have: D[* does not be-
long to the family S e ^ S .

— The language N= ((aè)m i)m i is in and is not regular (Proposition 3.1).
Using Lemma 3.2 and Lemma 3.3 we can show that N is not in SSSfS and N is not
in ses.

8, BD DE l'HÔPITAL
75 005 PARIS — FRANCE

References

[1] ARAKI, T. and N. TOKURA, Flow languages equal recursively enumerable languages, Acta Infor-
mática 15, 209—217, (1981).

[2] BEAUQUIER, J., Générateurs algébriques et systèmes de paires itérantes, Theoretical Computer
S c i e n c e 8, 2 9 3 — 3 2 3 , (1979) .

[3] GINSBURG, S., Algebraic and Automata-Theoretic Properties of Formal Languages, North-Hol-
land(1975).

14] HARRISON, M. A., Introduction to Formal Language Theory, Addison Wesley (1978).
[5] IWAMA, K., Unique decomposability of shuffled strings; a fromal treatment of asynchronous

time-multiplexed communication, 5th ACM Symp. on Theory of Comput., 374—381, (1983).
[6] JANTZEN, M., The power of synchronizing operations on strings, Theoretical Computer Science

14, 127—154, (1981).
[7] LATTEUX, M., Cônes rationnels commutatifs, Journal of Computer and System Sciences 18,

307—333, (1979).
[8] LAITEUX, M., Sur les générateurs algébriques et linéaires, Publication du Laboratoire de Calcul

de l'Université de Lille I, n° I. T. 11—79, (1979).
[9] NIVAT, M., Behaviours of synchronized systems of processes, L.I.T.P. Report n° 81—64,

Université de Paris 7, (1981).
[10] OGDEN, W . F . , W . E . RIDDLE a n d W . C. ROUNDS, C o m p l e x i t y o f express ions a l l o w i n g c o n c u r -

rency, 5th ACM Symp. on Principles of Programming Languages, 185—194, (1978).
[11] ROZENBERG, G. and A. SALOMAA, The Mathematical Theory of L Systems, Academic Press,

(1980).
[12] SHAW, A. C., Software descriptions with flow expressions, IEEE Trans. Engrg., SE-14, 242—254,

(1978).
(Received Dec. 27,1985)

A note on a* -products of aperiodic automata

Z . ESIK a n d J . VIRAGH

One of the most celebrated results in the field of compositions of automata is the
Krohn—Rhodes decomposition theorem. A detailed presentation can be found e.g.
in [1]. It has, sometimes implicitly, inspired a great deal of research on various notions
of compositions culminating in a series of interesting papers. For references and
most recent results, see [2].

The system given by the Krohn—Rhodes theorem has a peculiar lack of sym-
metry. While it contains all group-like automata on simple groups, all aperiodic
automata are in the meantime realized with cascade compositions of a single aperi-
odic automaton, the two state identity-reset automaton U.

If we want to realize a subclass of permutation automata we need exactly those
simple groups which are divisors of characteristic groups of automata from the given
subclass. Consequently, there is a continuum of different subclasses of permutation
automata closed under cascade compositions, subautomata and homomorphic im-
ages. On the other hand, if we are given a subclass of aperiodic automata, we do not
need the whole strength of U either. The reason is that there are numerous subclasses
of aperiodic automata closed under cascades, subautomata and homomorphic im-
ages. In this note we are going to show that the exact number of these subclasses is
continuum even for aj-products. The notion of the aj-product due to F. Gecseg
in [3] is an abstract generalization of the cascade composition.

Although we are using standard automata theoretic concepts we intend to give
a very brief account on the notions and notations to be followed throughout the
paper.

N and P denote the set of all positive natural numbers and the set of primes
p?±l in N, respectively. We set N0=N\J {0}.

X* is the free monoid with identity A generated by a set X. We write v to
mean that u is a proper prefix of v, i.e., «<» if and only if there exists a word
Ux^X*— {X} so that uu^v.

Take an ordinary finite automaton A = (A , X, <5) with state set A, input set X
and transition function S: AXX—A. (We use the same <5: AXX*-»A for the usual
extension of <5.)

The characteristic semigroup of A is the factor semigroup X*/qA where the con-
gruence QA is defined by UQaV if and only if 8(a, u)=8(a, v) for all a£A. An auto-
maton A is said to be aperiodic if X*/qA contains only trivial subgroups.

Next we recall the notion of the aj-product from [3]. Let A j = (A j , Xj, dj),
I s j s n , be arbitrary automata, l a finite nonvoid set and take a system of feedback

42 Z. foik—J. Vir&gh

functions (Pji A1X...XAj_1XX-*AJ, l S / S « . The -product A ^ . - . X An[X, (p]
of these automata Aj with respect to X and cp is (AxX ...XA„, X, 5), where

<5((ai> •••> fln). x) = ax, i/i), ..., S„(an, «„)),

Uj = q>j(alt

for all ax, ..., an£A, x€X, lsj^n. We put for an arbitrary class J f of automata
P*0(Jf): all aj-products of automata from X,
S(JT) : all subautomata of automata from X ,
H(X) : all homomorphic images of automata from X .

Let X be a class of automata. X is called closed under H, S and P*0 i f H (X) ,
S (J f) and P*0(X) are all subclasses of X . Given X , HSP*(X) is the smallest class
containing X and closed under H, S and P*0. Thus, X is closed under H, S and P*0
if and only if H S P i 0 (J f) g j T . The Krohn—Rhodes theorem gives that the class
of all aperiodic automata is closed under H, S and P*0.

We now define a special aperiodic automaton Ap for every p£ P.

Ap = ({0, l,...,2p}, {x,y}, dp),
fi + 1 if 1 — i — 7?,

5 p (i ' X) = I 0 otherwise,

i + l if p+\ i ^ 2p-\,
1 if i = 2p,
0 in all other cases.

The following statement enlists some pecularities of Ap . In this statement u and v
denote arbitrary words in {x, _>>}*, i is a natural number 1S/S2/?, and

Kp-t+iypxi-i i f i g j g ^
w,

rx"-'^ y" x'-1

V> — |j,2p-'+l XP y'-P-l if p + \ ^ i ^ 2 p .
Claim.

(la) Sp(i,u)^0 i f a n d o n l y i f u=wfux where M1<wi and k£N0.
(lb) 5p(i, u)=i i f andon ly i f w=wf for an integer k£N0.
(2a) 5p(i, Wj)=0 if i^j.
(2b) If ux contains both x and y, ux<Wj then

5„(i, uf) = 0 for every i ^ j.

(3) <5P(/, if)=i implies Sp(i, u)=i for every k£N.

(4) If q£N, q^ l a n d q^p then Sp(i, iflvq)—i implies §p(i,u)—8p(i,v)=i.

Proof, (la), (lb), (2a)&(2b): Observe that there exists a single cycle
1 ^ - 2 ^ \JUp + 2^ 2p^ 1

which does not pass through the 'trapped state' 0. Thus we have to move along this
cycle if we want to avoid that state.

A note on a J -products of aperiodic automata 43

(3) By (la) we have u=wfult i ^ o v ; , mZN0. Assume that u^X. Since
őp(i, m1wí)=0 by (2a) we obtain m=0. From (lb) it follows that for some
l£N. However, this is clearly impossible, thus we have mx=A. We can conclude
using (lb).

(4) We get u—Wi'ui and v=wl
jv1 from (la), where wi<w,-, v x m , l £ N 0

and j=őp(i, uq). If i—j we are ready by (3). Supposing i ^ j we have u^X, v^X
by (lb). If m>0 , then by (2a) ő„(i, u1wi)=0, which would imply Sp(i, uqvq)=0.
Thus, m=0, and similarly, l— 0. By (2b), cannot contain both x's and j ' s , and
the same holds for Vj.By^lb), uqvq=ufvl=w' i for some or even, /=1 , and
1=1' or i=p+1. Suppose that i '=l , the case i—p+l can be handled likewise.
Then u1=xr so that rq=p. Sincep is a prime and q^ 1, q^p, this gives a contra-
diction.

As an immediate consequence of Claim (3) we get the following:
Corollary. Ap is aperiodic for every P. (Or even, since we did not use the fact

that p is a prime in the proof of Claim (3), Ap is aperiodic for every natural number
PZN)

Theorem. The class of all aperiodic automata contains a continuum of different
subclasses closed under H, S and P*0.

Proof. Let Q be a non-void subset of P. Put J f Q = {As|^€ő}- We show that for
qeP, A4€HSP :0(JT c) only if q£Q.

Supposing A9eHSP*0(JfQ) there is an ajj-product B=APlX...XA J ,1[{x,y}, cp]
of automata from Jf Q such that Aq is a homomorphic image of a subautomaton
C=(C, {x, .y}, S) of B under a homomorphism h: C-*At. We can choose / minimal
with this property. Further, it can be assumed that no subautomata of C other than
itself can be mapped homomorphically onto Aq. Let c£A - 1(l) . Obviously, c gen-
erates C, and <5(c, (xqyq)m)—c for some m£N. Since the class of all aperiodic auto-
mata is closed under aj-products and subautomata we have ö (c, xqyq)=c as well.

Let us now suppose to the contrary q$Q. Put c=(/1 , ...,/,), w=<pi(x), v—
= <p1(y). (Observe that />0.) From the definition of the aj-product we then have

m4^®)—h which by Claim (4) gives öpi(i1,u)=őpí(i1,v)=i1. Since c generates
C it follows that the only state of APl appearing as the first component of a state of C
is i1. However, this implies that a subautomaton of an a®-product AP 2X...XAP l
[{x, y}, i¡i\ can be mapped homomorphically onto Aq contradicting the minimal-
ity of /.

A. JÓZSEF UNIVERSITY
BOLYAI INSTITUTE
ARADI V. TERE 1.
SZEGED, HUNGARY
H—6720

References

[1] ARBIB, M. A. (Éd.), Algebraic Theory of Machines, Languages and Semigroups, Academic
Press, 1968.

[2] GÉCSEG, F-, Products of automata, Springer-Verlag, 1986.
[31 GÉCSEG, F., On products of abstract automata, Acta Sci. Math. 38 (1976), 21—43.

(Received Jan. 27, 1986)

Loop products and loop-free products

Z . ESIK

We introduce loop products of automata and show that, in the presence of input
signs inducing the identity state transformation, loop products followed by loop-free
products, (i.e. a0-products) are just as stong as the most general product. See [3] for
notations and unexplained concepts. Most recent results on a0-products can be found
in [2].

Take a g*-product A=A xX ...X An(X, cp) of automata At—(A,,Xt,dt),
t—l,...,n, We call A an/^-product (i.e. generalized loop product) if for every
/>1, (pMx, ...,a„,x) ((al5 ..., a„)£A1X...XA„, x£X) only depends on x and
a,-!, and q>i only depends on an and x. In the special case that i>f(fli, ..., a„, x)£
CZU{/.} ((?,(ai, ...,an,x)£X) we speak about an /^-product (/-product, i.e., loop
product).

Let K be a class of automata. We put

P*(K): all /""-products of automata from K,
P? (K): all /^-products of automata from K,
P, (K): all /-products of automata from K.

Further, we write Pi,(K) (Pi(K), Pj,(K)) for the class of all ^-products (/¿-products,
/-products) with a single factor of automata from K.

Our result is the following statement.

Theorem. HSP„0 Pj1 (K)=HSP^ Pf (K)=HSP* (K) for every class K.

Proof. The inclusions from left to right are obvious. To see that

HSP*(K) g HSP^ Pi (K),
by P£0(K) = P ^ P ^ K) , it suffices to show that HSP* (K) g HSP^0 P,A (K).

If K contains only monotone automata, then HSP£ (K)=ISP£0(K) by the proof
of Theorem 4 in [3] and the inclusion holds. Suppose that K contains an automaton
which is not cycle-free. We claim that HSP^0Pf (K) is the class of all automata. To
this, by Corollary 2 in [3], we have to show the following:

(i) P* (K) is not counter-free.
(ii) A0€ HSP«0 Ft (K).
(iii) For every finite simple group G there exists an automaton A£P,;-(K) such

that G is a homomorphic image of a subgroup of 5(A).

46 Z. £sik

Proof of (i). There is an automaton A£K containing a nontrivial cycle, i.e.,
a cycle with length n > l . Obviously, a counter with length n is in SP1{(K), there-
fore, Pi (K) is not counter-free.

Proof of (ii). By Lemma 3 in [3], A0iHSP^(K). However,

HSPa\(K) = H S P ^ P U K) = H S P ^ ^ (K) g H S P ^ P ^ K) .

Proof of (iii). We show that for every integer 3 there are an automaton
B6(5, Y, 5')£V}-(k) and a subset B'={b!, ...,bn}QB so that every such permuta-
tion of B' which fixes b„ can be induced by a word in Y*. Of course, it is enough to
prove for transpositions (¿afes+1)with l S i ^ n - 2 .

Let AZ(A, X, <5)£K be an automaton containing a nontrivial cycle, i.e. a
sequence of states 0 , 1 , . . . , p — \ (p=2) and input signs x l 5 ..., x0 with
¿(0, Xi)=l, ...,8(p—2, Xp_^=p— 1, <5(/>-l,x0)=0. In the case that p=2
the result follows by the proof of Theorem 2 in [1] (observation due to J. VMgh).
Hence we assume p > 2 .

Define B to be the /A-power A"(Y, <p) with

Y = {y(k, i,j) |1 =£ k == n, OS i j ^ p-1}
and

(Xj if t = k and a = i,
cpt(a,y(k, U)) = (A otherwise>

where l S i S a , a£A, y(k, i,j)£Y.
Put

b, = o,-1ion-',
t= 1, . . . ,«. (We use the shorthand ^...a,, for the elements of B.) Fix an integer
s, l^sSn—2. In five steps we shall construct a word u=u1...us£Y* such that

S'(b„ u) = b, if t ^ s, 5+1,

S'(bs, u) = i>s+1,

S'(bs+1,u) = bs.
(The construction is indicated in the Figure for p=3, n=6 and 5=3. Blank entries
are meant 0.)

Step 1.
"i = j (s + l , 1, l) . . . j>(s+l, l , / > - l) -

y(s+2,p-\, \)...y(s+2,p-\,p-\)-

y(n,p-1, \)...y(n,p-\,p-\)-
y(l,p-l, I)... y(n, p — l, p-l)-.

y(s-l,p-l, l)...y(s-l,p-l,p-l)-
y{s,p-\,2)...y(s,p-\,p-\).

Loop products and loop-free products

We have

Step 2.

We have

<50„ "i) = b, if t ^ s ,

Hbt,uO = (p-iy.

"2 = 7(5 + 3, 1,1). ..y(n, 1,1).

y(l,l,l)...y(s,l,l).

S(blt uLu2) = I S " 1 LOO"- 1 - 1

S(b2, utu2) = 01 s-2100"-5-1

m i W 2) = O * - 2 1 1 0 0 " _ s _ 1

Hbs, "i«2) = (/ > - i) s - 1 (/ > - i) 0 > - i) Q > - i y - s - 1

¿ (b s + 1 , M 1 M 2) = 0 s - 1 0 1 0 " - s - 1

S(bs+2, uiu2) = 101—

S(bs+3, uiu2) = I s-11001"- s-2

Step 3.
S(b„, ut u2) = Is-1 lOO"-"-21.

We have

«3 = 7(s+1 ,0 ,2) . . . j (s + l ,0 , p - l) y (s + 1 , 0 , 0) •

y (s + l , p ~ l , 0) y (s - h l , p - l , l)y(s,0, l) y (s , p - l ,

ö(b„ «! «2 u3) = (bt, ux uj, t s, s +1,

S(bs, uiu2uz) = (/j-iy-iOlO-l)"-5-1

S(bs+1, Ul u2 k3) = 0 s - 1 lOO"-*-1.
Step 4.

We have

«4 = j (s - l , J p - l , 0) . . . j (l , j P - l , 0) .

y(n,p—l, 0)... j (s + 3, p — l, 0)^(s-(-2, 1,0).

ö (b,, «! u2 M3 w4) = ö (b„ ux m2 u3), t ^ s,

S(bs, u^uzu^ = 0s-1010n-s-1.

48

Step 5.

We obtained :

This ends the proof.
s

Z. Ésik: Loop products and loop-free products

M5 = y(ß, 1 , 2 l t p - l) y (s , 1 ,0) .

>"0> 2) ...7(1, \,p — \)y(\, 1,0)-
y(n, l,2)...y(n, l,p-l)y(n, 1,0)-

j (s + 3 , l ,2) . . . j / (s+3, hp-1)y(s + 3, 1,0).

ö(bt, u) - b„ t s, s + 1,

S(bs, u) = bs+1,

¿(bs+1, =

1 1 1 1 1
1 1 1 1

I S t e p ^ > 2 2 2 2 2 2 Step 2 > 2 2 2 2 2 2

1
S t e p ^ >

1 1
1 1 1 1 1 1 1

1 1 1 1 1 1

Step^>

1 1 1
1 1

2 2 0 1 2 2
1 0

1 1 1 1 1
1 1 1 1

Step

1 1 1
1 1

0 0 0 1 0 0
1 0

1 1 1 1 1
1 1 1 1

Step

1 0 0
I 0

0 1
I 0

0 0 0 1 0
0 0 0 1

BOLYAI INSTITUTE
A. JÓZSEF UNIVERSITY
ARADI V. TERE 1
SZEGED, HUNGARY
H—6720

References

[1] DÖMÖSI, P. a n d IMREH, B . , On v r p r o d u c t s of a u t o m a t a , A c t a Cybernet . , 6 (1983) , 149—162 .
[2] ÉSIK, Z. and DÖMÖSI, P., Complete classes of automata for the a0-product, Theoret. Comput. Sei.,

47 (1986) , 1—14.
[3] ÉSIK, Z. and VIRÄGH, J., O n products o f automata with identity, A c t a Cybernet. , 7 (1986) , 2 9 9 —

311.

(Received Feb. 10, 1986).

Results on compositions of deterministic root-to-frontier
tree transformations

Z . FÜLÖP a n d S . VÁGVÖLGYI

Introduction

In this paper we examine the class of deterministic root-to-frontier tree transfor-
mations and some of its usual subclasses such as linear, nondeleting, homo-
morphism and so on. We present some equalities and inclusions between the compo-
sitions of different classes and, as an application, show that 3>3%2=Ql&l"- ,for,reaclfc,

We also study all the classes which can be written in the form jr1oV..ojfn where
each J f j is 3)01 or one of its subclasses. We pick out a finite number of these classes
and show that every class JfjO . . .ojfn either equals to one of them or has a rather
special form.

1. Notions and notations

For an arbitrary set Y, we denote by and ^ (F) the cardinality and the power
set of Y, respectively. If Y is a singleton, then we identify it with its unique element. Y*
is the free monoid generated by Y with empty word X.

The set of nonnegative integers is denoted by N. For every n^N, [«] denotes the
set {1, ..., rt}, especially [O]=0.

By a ranked alphabet we mean an ordered pair (F, v) where F is a finite set and
v: F—N is the arity function. Elements o f i 7 are considered as operational symbols,
more exactly, if f£F and v(F)=n then / i s an w-ary operational symbol. We use
the notation F= (J F„ where the sets F„=v - i (n) are pairwise disjoint.

Now let F be a ranked alphabet and Y a set. The set of all terms or trees over Y
of type F is defined as the smallest set TF(Y) satisfying

(a) F U F0QTF(Y) a n d ,
(b) f (P l , ...,p„)£TF(Y) whenever/€F„(«€iV) and p£TP(Y) (/£[«]).

If Y=& then TF(Y) is simply written as TF.
We define the height h(p)£N, frontier fr(p)QY* and the set of subtrees

sub(p)QTF(Y) of a tree p€TF(Y) by induction:

4 Acta Cybernetica VIII/1

50 Z. Fûlôp—S. Vâgvôlgyi

(a) if p£F0 then h(p)=0, fr(p)=l and sub(p)={p}\
(b) if p£Y then h(p)—Q, fr(p)=p and sub(p)={p}i
(c) if p=f(j>x,...,p„) then h(j,)=l+max {hipùMn]}, fr(p)=fr(Pl)...fr(Pn)

and sub(p)— U sub(pi)U{p}.
¡e№

We shall need a countably infinite set X= , x2, ...}, elements of which
are considered as auxiliary variables. The set of the first n elements xly ..., x„ of X
is denoted by X„.

Letting Y=X„ we have the set TF(XJ. Here, the elements of X„ can be used to
point out places in the frontier of a tree p€TF(X„). There is a distinguished subset
fF(X„) of TF(Xn) defined as follows: pZfF{X„) iff p£TF(X„) and fr(p) is a per-
mutation of X„, in other words, each element*of Xn appears exactly once in p.

Now let p£TF(Xn) and ylt ...,ynÇY. We denote by p(ylt • ••,.}>„) the tree
obtained by substituting all the occurrencès of xt in p by j>f for each /'€ [n], Note that
p(yi, y„) is an element of TF(Y).

By a tree transformation r we mean a relation from TF to TG where F and G are
arbitrary ranked alphabets, that is we have r QFFXTG. In this way, the identical
relation iF= {{p, p)\piTF) is clearly a (tree transformation. The class of all identical
tree transformations is denoted by J. The restriction x\T of T to a subset T of TF is
defined by

. ~ . AT = {{p, q)\(p, and p£T}.
For any tree transformations rQTFXTG and AÇZTGXTH the domain (dom T)

range (range T) of T and the composition (TO a) of T and a are defined as usual in the
case of relations.

Let J f j and Jf 2 be two classes of tree transformations. By their composition
Jf ioX 2 we mean fao-t^x^X and x2Ç.X2}. For any class JT of tree transforma-
tions and n£N weput if n= 1 and X n = X n ~ x o X if «>1. We say that J f
is closed under composition if X 2 Q j f holds. If y Q X , as with most of the rea-
sonable classes J f , then obviously iff JT2=JT.

In this paper we are interested only in tree transformations which can be induc-
ed by deterministic root-to-frontier tree transducers.

By a deterministic root-to-frontier tree transducer (or shortly DR transducer)
we mean a system

21 = (F, A, G, P, a0), where (1)
(a) F and G are ranked alphabets ;
(b) A is a ranked alphabet — disjoint with F and G — consisting of unary op-

erational symbols, the state set of 21;
(c) a0 is a distinguished element of A, the initial state;
(d) P is a finite set of productions (or rewriting rules) of the form

afixj,, ...,xj - q, (2)

where a£A, mëO, f£Fm and q£Tc(AXXm). To guarantee 21 a deter-
ministic behaviour, any two different productions of P are required to have
different left-hand sides.

Throughout the paper terms of the form a(p) (aÇA and p is a term) are written
simply as ap. If we need to specify a production (2) in a more detailed form, then we
can write (2) as

af(xx, ..., xm) - qiaiXit, anxJ (3)

Results on compositions of deterministic root-to-frontier tree transformations 51

for a suitable n^O, q£fG(X„), a£A, xtj£Xm (/€[«]), or as

a/Oi, •••,xm)^q(all xm,---,amn xm) (4)

for some «¡^0, ah£A, (i£[m],j£ [«,]) and q£fG(Xn) where n=n1+ ... + nm. '
Productions of P can be used to transform (or rewrite) terms of AXTF to terms

of TG, by defining the relation (called direct derivation) on the set Ta(AX TF (X))
in the following way: for p, q£TG(AXTF(X)) we say that p^q iff q can be ob-
tained f r o m p by replacing an occurrence of a subtree af(plt ..., pm) of p by the tree
q(alPh, ...,a„pin) provided the rule (3) is in P. Denoting the reflexive-transitive

*

closure (i.e. the iterated application) of the direct derivation by , the tree transfor-
mation Tffl(a) induced by with state a£A is defined by

*«(<,) = {(/>> <1)\P€TF, q£TG and ap^ q).

By the tree transformation r a induced by 21 we mean T<jI(0o) , i.e.,

To ={(/>, q)\p£TF, q£TG and a0p^> q).
We say that a tree transformation t^TfXTg can be induced by a DR transducer
if t= ts i for some DR transducer 21.

Next we introduce some restrictions on DR transducers. A DR transducer (1)
is totally defined if for each A and / £ F there is a rule (2) in P. (1) is called a hom-
omorphism (H) transducer if it is totally defined and has only one state, i.e. A =
— {a„}. Moreover, we say that (1) is

(a) linear (L) if for every rule (4) of P and i£ [m], «; ̂ 1,
(b) nondeleting (N) if for each rule (4) of P and i'€[m], «¡^ 1,
(c) linear nondeleting (LN) if it is both linear and nondeleting.

The subclasses L, N and LN of H transducers are defined in a similar way.
If K is some subclass of the class of all DR transducers defined above, then

the class of all tree transformations that can be induced by K transducers is denoted
by X . For example Z£3)0l denotes the class of all tree transformations that can be
induced by LDR transducers. Finally, we present a diagram showing the inclusion
relations among the classes 2®, JfQiSk, J V J f ® ® , 3V, jVJC, J .

99t

4*

52 Z. Fûlôp—S. Vâgvôlgyi

2. Equalities and inclusions

By one of the earlier results QiSH is not closed under composition (see [4]). This
means that, in general, we cannot give a DR transducer C, for any two DR trans-
ducers 21 and S such that ta—z^o t<B . However, we can define a DR transducer
2Io© called the syntactic composition of 21 and S with a series of useful properties.
This was also stated, in an implicit form, in [3].

Definition 1. Let 21= (F, A, G, P, a0) and S = (G, B, H, P', b0) be DR trans-
ducers. By the syntactic composition of 21 and © we mean the DR transducer 2Io©=
= (F, BXA, H, P", (b0, a0)) where P" is defined in the following manner: the rule

(b, a)/(xl5 ...,xmq'{(bix,a^xtl, ...,{ble ,a^xh, ...,

(bni,a„)xin, . . . ^ b ^ a j x j

is in P" for some vfiN, bj^B, [n], fcefy]) and q'eTG(Xv) (v=vi+... + v„) if
and only if there is a rule (3) in P and a state b£B with

'bq=£ q'ib^xt, ...,blvtxi, ...,bnix„, ...,bn^xn).

(We let 3 work on q as long as it can.)

Lemma 2. Under the notations of the above definition, for any a£A, b£B,
p£TF and q£TH

(3 r£TG) (ap | rhbr (b, d)p¿^ q. (5)

The proof, as usual, can easily be performed by induction on h(p). •

Now we can make the following observations.
(a) We cannot converse (5) because 93 may be deleting, therefore there may be

a tree p£TF such that 2lo© can transformp to a tree q£TH by deleting some sub-
,treep' o f p but 21 can not transformp' with any state ad A. Thusp may be in dom rMo®
but not in dom xa hence not even in dom (Tm°T<B). It can be seen that we can elimi-
nate this problem by requiring 21 to be totally defined (see also in [4]) or © to be
nondeleting.

(b) Moreover, (5) can also be conversed if p is in dom xa since in this case
21 can always transform p' with some state a£A.

(c) 2to© inherits any property 21 and © have, where property means one of the
following: completely defined, one-state, L, N, LN.

We give a summary of the above observations:

Lemma 3. For any DR transducers 21 and S the following hold:
(a) if 21 is totally defined or S is nondeleting then Taoa=TaoT®,
(b) Tfflos|dom Tg^TaOT»,
(c) if 21 and S are x then 2Io© is also x where A=completely defined, one-

state, L, N, LN. •

Results on compositions of deterministic root-to-frontier tree transformations 53

/ o M = (6) XoX =

Sex 0 = 201 (7) XoJfX = X
JfXoQ)® = QSl (8) tfo ££ — X

se xo se srn = ses>0 ? (9) J f X o X = X
jrxojfoiM = jrm ? (10) sexox = X

JTXoJTX - J f X

sexosex = sex

From the above lemma we have a series of equalities some of which were stated
in different works.

(11)
(12)

(13)

(14)

(15)

(16)
(17)

These follow from the fact that an H(LH, NH) transducer is always completely de-
fined.

Moreover, we also obtain

QimojfQiSb = sum (18)

gsskosejfQ!®. = (19)

g&oJfX = <3)9t (20)

jV2>@ojVQi0t = (21)

Jf®gtoS£Jfg>9t=JfQ!0l (22)

j v 3) ® o j / - j e = j f o i m (23)

segstosejfgigi = ses»9t (24)
Sejf9l0loJV3i0l = JVQ)® (25)

SejfQ>®o<£Jf3)® = <£Jf®0t (26)

Here we used that the second components are all noiideleting.
A frequently quoted equality is

Xo:<£9)0l = (27)

which can be found in [1] and [2]. From the proof of (27), it turns out that we may also
declare it in the form

J f X o S e ® 0 t = 9 ® (28)

moreover, if we consider only H transducers we get

JiXoSeX = X. (29)

By lemma 3, SeXoJf and it is not difficult to see the conversed, inclu-
sion shown by the following lemma.

Lemma 4. X^SeXoJfX.

54 Z. Fûlôp—S. Vâgvôlgyi

Proof. Let us be given an H transducer 31=(F, a, G, P, a). Obviously, each
production can be taken in the following form:

af(x1,...,x^^q(axll,...,axti)' (30)

where m g 0 , / € F m , l s i ^ c . . .< i„S«i and q is a suitable tree from TG(X„) contain-
ing at least one occurrence of Xj for every For each production (30) take a new
operational symbol / witharity n and put F_= { / | / € F}. Now we can introduce the H
transducers S = (F , b, F, P', b) and <E=(F, c, G, P", c) as follows: whenever a pro-
duction (30) is in P let the productions bf(xx, ..., xm)-*f(bxh, ...,bxin) and
cf(x1, ..., jcn)-~?(c*i> ..., cx„) be in P' and P", respectively. Clearly, SB is an LH and
£ is.an NH transducer, moreover the equivalence

$ * *

ap ^ q <=> (3/>€ 7 » {bp r A cr => q)

can be proved, for each pdTF and q£TG, by induction on h(p). Hence we have our
lemma and the equality:

g j e o j f j e = j r . (3i)

Our next lemma follows from exercise 2 on p. 213 of [3]. This states that dom t a
can always be recognized by some DR recognizer (for definition see also [3]) for any
DR. transducer However, we mention that the following correction is needed in
the definition of the DR recognizer in [3]: the realisation of an operational symbol
of arity 0 must be considered as a subset of the state set and not as an element of it.

Lemma 5. For any given DR transducer 91=(F, A,G, P,a0) there exists an
LNDR transducer 2 t '=(F , 3?(A), F, P', {«„}) such that = i f | dom T«.

Proof. Let P' be constructed as follows: for any B~ ..., ak}£0'(A), m£N
and / € F m the rule Bf(xl5 ..., xm)^f(B1x1, ...,Bmxm) is in P' if and only if the
next conditions hold:

(a) for each /£[&] there is a production

aj(x1,...,xj^qi(a[1xi,...,a\ x1,...,al1xm, ,::,dm xm) -l m
in P where H15 0 (depend on i), a)k£A,

(j£[m],ki[nj]\qi<ifG{Xn), (n = +nj;

(b); " ' " Bj= U {a'Jx, . • • / < } , Mm]. 1

i€W 1

Then we can verify the following statement: for any •

B = {a l5 ...', ak}ii?(A) and p<LTj,

B p ^ p o (V j€W)OqeT G) (a jp 4 q) . n «1 tu
Now let 9t and © be two arbitrary DR transducers. Then, by lemmas 3 and 5 we

have
T«OTB = T a o B |dom TH = (if |dom Ta)ota<jS ==T9,VoTao<B -

Results on compositions of deterministic root-to-frontier tree transformations 55

from where
o>m2 = <ejfo>@, o2&® (32)

and, if 21 and © are LDR transducers then

gO)®* = Seji^MoSSQlM. (33)

We are ready to prove one of our main results.

Theorem 6. For any n S 2

20T = SfJiQlMoQiM and (34)

se®®." = s e j f 2 M o s e 2 ® (35)
Proof. We follow an induction on n. The case n=2 is already proved, the

induction step of (34) (and similarly that of (35)) is shown by the following computa-
tion : •

9W+1 S? <ejf®mo3i®" ~ s£jf<ai0iosejr^Mo2 m S

seji2Mo2M. •

Consequence 7. For every 2

2Mn = OsS/P and (36)

S£2Mn = Se®®?. (37)

We shall also need the following result.

Lemma 8.

SSt Q Mo S£X (38)

Proof. Let 2l=(F, A,G,P,a0) be a DR transducer. We construct an NDR
transducer S and an LH transducer £ such that z^o T® . To this end, consider
an arbitrary but fixed order of the productions from P and number them from 1 to
|P| in the following form

i: af(xi, ...,xm) xl> •••> alni
xl> •••» amixm> •••> am„m

xm)> (39)
where

nj SO, ajh€A, (j€[m],k£[nj]) and qiTG(Xn),

(n=n1+ ...+nm). We mention that the symbols used in the specification. of the i-th
production depend on i. Now, for each /£[|P|] and [m] define Uj by ;

{ fij if itj >*0 1 ^ nj = 0

and take a new operational symbol f&F with arity u=ux+ ...+um. Then con-
struct the DR transducer. 93=(F, A U {b}, F', P\ a0) where .

56 Z. Fûlôp—S. Vâgvôlgyi

(a) F ' = FU{/j | i€ |P |};
(b) b$A is a new state;
(c) P' is defined as follows: the rule

af(xlt .-,xm) -*ft(bllx1, ..., &iBiXi, ...,bmixm, ...,bmumxm) (40)

is in P' iff the conditions

(i) the i-th production of P is of the form (39) and

(a,.,..., a, if n, > 0
(ii) ^ ^ K A b ^ if 4 = C) ^

hold, moreover the rule bf(xxm)—f(bxi, ..., bxm) is in P' for each
m^O, fZFu.

Next, introduce the H transducer G=(F' , c, G, P", c) where the rule

c/i(*l, - " J *U) "*• # (C * 1 > •••>
 CXlti> •••>

 CXUi+ . . . + U M _ ! + 1» - " 5 C J C U L + . . . + U M _ 1 + NM) (41)
is in P" iff the z-th production of P is (39), moreover, to make (£ totally defined, let the
rule c f f r i , ...,xm)—q be in P" with an arbitrary q£Ta({c}XXm) for each mS0,

First note that © is nondeleting since 1, 0'€[w]), t®(b)\TF=iF a n d d is lin-
ear. To prove Ta=TsOTa: it is enough to show that for each a£A, p£TF and
q€TG the equivalence

a P % 9 (42)
if and only if

(3rdTF.)(ap^rAcr^ q) (43) V (l
holds. We proceed by induction on h(p).

If h(p)=0, that is p=f£F0, then af^q£P iff there exists an z'£[|P|] for which
* f a n d cfi—qdF'. Now let h(p)=-0, that is P=f(Pl, ...,pm), where w>0 .
Suppose that the production applied at the first step of (42) is (39). Then

a j*Pj^<i j k 0'€[m], ke[nj]) (44)

under some qJk£TG for which q=q(qllt ..., gi^, ..., qmi, ..., q„n) holds. From
here, by induction hypothesis we have

(3r'jh<iTF,)(aJkpj~ r'jkAcr'j^ qJk) (j*€[«,]) (45)

moreover, by the construction of S and C, (40) and (41) are in P' and P", respec-
tively. Letting

= U if n j = 0 * [m] >

and taking into consideration that T B (J ,) | 7 > = I f we get that

rA' fe€[«;])AcrA4 qjk (j£[m], /c<E[«J) (46)

Results on compositions of deterministic root-to-frontier tree transformations 57

from where (43) follows with

r=fi(ru, ..., r1(i , ..., rmi, -,rmuJ. (47)

Conversely, suppose that r in (43) is of the form of (47). Then the productions used in
the first step of the derivations of (43) are (40) and (41), respectively. Therefore (39)
is in P. Moreover, (46) implies (44), by induction hypothesis, hence we have (42). •

We note that if 91 is linear in the above lemma then so is S . Hence we also
obtain:

Consequence 9.
s e a » i s e j f ® M o s e x . (48)

Applying our last two results we have two further interesting identities.

Theorem 10. For each 2
= JfSiMoSeX (49)

seat®" = sejfoiMosex (50)

(38)
Proof. sejfQiMog® g se^2Moj/-g)Mosex(WLj/~aiskosex and in

the same way we get (50). •

By the above results we can easily verify the equality

= JfXoSejTQ>0loS£X, (51)

namely, we have 2 M ^ J i 3 i M o S e X ^ M o S e X ^ J T X o S e S i M o S e X ^ J i X o
sejT®® o sexo sextBjrxo sejr^Mo sex g

The equalities (49), (51), (32) are able to produce the class as a composition
of two or three simpler classes of tree transformations. Using them we obtain some
additional presentations for the class summarized by the following lemma.

Lemma 11.

(a) For any and <&£{&X,X,£e2iM,®M}

3£o <y=9gp (52)

(b) For any 30$. { J f X , {SejiQiM, JfQ)®,, SeSiM, and

%^{sex, x, sejf®m,

9Co<&o2£ = (53)

(c) SeOlMoQiM = (54)

(d) For arbitrary 9CZ {Sejf®®, and {S£X, SeO}®,}
%o<y = se®gp (55)

Proof. We prove the case (a) only, since (b), (c) and (d) can be verified in the same
way applying (51), (32) and (50), respectively.

1 = JfifiMoSeX Q 2To<3/Q ,

58 Z. Fûlôp—S. Vâgvôlgyi

3. On mixed composition of different subclasses

We now investigate the set of all classes of tree transformations being a compo-
sition of finitely many ones introduced in Section 1. To be more precise we need some
further notions and notations. Let S= {2)2%, JfQ)3l, <£3)01, £ejT2>®, tf, J f t f ,
and denote by [5] the set of all classes of tree transformations generated by S with
composition, that is

[S] = { j r 1 o . . . o j f 1 1 | / i S 1, j r ^ S } .

One of the most important questions concerning [5] is that whether [S] is infi-
nite. We know, by consequence 7, that 'ëQQ®2, for any however, in spite
of this, [5] may be infinite. In this paper we do not answer this question, instead, we
present a theorem which, we hope, gives a deep insight into the structure of [5].

First define the classes for each k^O as follows

(a) <#0 =

to Jf#e if k = 2m 3t it k = 2m
(b) = ^ o S j r a g t k = 2m + l. (m ~ 0)

Moreover, we shall use Table 1 in the following sense. Each row and each column of
the table is marked by a class of tree transformations. Their composition, in row-
column order, is written in the corresponding square of the table. To get the depicted
form of this composition, the equalities and inclusions the serial numbers of which
appear in the lower part of the square can be used. If no serial number is indicated,
then the form of the corresponding composition is meant by definition. For example,

se^spojfM' seji90to g t f o jrx = sejr®® o ¿e.

Now we can prove our last theorem.

Theorem 12. There are two finite subsets Sx and S2 of [S] such that for any ele-
ment if of [S] one of the following conditions holds

(a) V€Slt
(b) there exist a and a k^O such that <£=<#'0^,
(c) for some k^O.

Proof. Define Sx and S2 by

Sj. = gQigiojvgim, setus/p, <eo>®ojfje, wo jf®®, ojfgm,

and

For any there exists a minimal number n £ l such that <^=jf1o.. .ojTn
for some jf.G S. We prove the theorem by induction on this number n.

If c e=t f x for some JiT^S then, by case (a) holds.
Now let <g'=jf1o. . .ojrn + 1 under a minimal « s i and some J f ^ S . Then,

since our theorem is supposed to hold for ...o jiTn, three main cases are possible.

Results on compositions of deterministic root-to-frontier tree transformations 59

S
Sfcj» «s r-

(5
2)

 (3
6)

3)

01
*

(5
2)

 (5
4)

 (3
6)

CI
I B
S i £ g i s

SjCi

su
m*

(5

2)
 (6

)
Q

stf
t1

(5
2)

 (5
4)

 (3
6)

o

s

Si
I -

5! o
s $
Si

ro
«

«
> m

o a
S $ Si

OCT t o
98 s
$
Si

s f u
^ <N o ^

Si

o

* I S «s??
<5*2-

oiT *
o «

? w
is

Co m

CM
w

Oio

95 S

Si

^ o « S
S -

Co ro o w

N cs

o

s ? 1 «
S j ^

s
o

a? o o
K Si '

S

n M

U (S
$
Si

OS? S
^ <N

a

%

Si

«
$ Si

M _ «
$ Si

s » Ci-
s

Co ci fO
« X

r-i

<N m a

» »

m

is 1/1

(S

fN

CN

?
S

O «
f* S*

s ?
o *

S - Ow.
o 2

1?»

« •

f Si

i
?
o M «

Si

s
?
o®

f*

Si

o ^

s

P S
S $ Si

S

Si
Co "S Co

Ï
M
S

CI M _ CJ ^

fN| in

so M
! g

«

'w'

« s

<s m

« rs

s
S «

Si

s ?
* S

£ s* 1 ©

? o «

Si

1
Si

o

Si
s o *

O « «
Si

o
?

60 Z. Fûlôp—S. Vâgvôlgyi

Case (a). There exists a <£"6Si such that Xxo ...oX^^", thus <8=<S"otfn+1.
Here can be given in one of the following three forms, verifying our theorem:

= <r'o<<?0 if and Xn+1 = SejfQ>®\

<g = <ex if <e" = sejf3>@. and xn+l = Jrx-,
(0

(ii)

(iii) ^dSi in any other cases, by Table 1.

Case (b). There exist and /fcsO for which

X1o...oXtt = m"o%, so <8 = <<g"o<gkoXn+1.

Now seven subcases detailed from (i) to (vii) can be raised proving again our theorem,

(i) (€=2>0fl if Xn+1 = S>®, by (32);

(u)V = V"o^SatSx if X„+1 = -VS>®, by (10), (25) and table 1;

(iii) <g =

¡sea®2 if xn+1 = sfast, k = o and = sex,
by (33) and (9)
if Xn+1 = Sea®, and k s 1 or ^ SeX
since in this case S®2 = JTXo S£JfQ>®o Sex g
g <$"o<&koXn+1 g .

f* if Xn+1 = SejfS® and k = 2m, by (26)
(m S O)

(v) V = <

'k+1 if Xn+1 = SeJfS® and k = 2m -f 1;

if Xn+1 = X , <6" jt Sex or k s 2 because
s®2 ^ jrxo sejis®o sex g m"o^koxn+1 g s®2

sejfa®ox if Xn+1 = X , = sex and fc = 0,1 since
in both cases S e j f 2 ® o X g
sexosejrs®ox g ses>®2 ox ^se/r®® o
osexo x £2 sejfs®o x ;

(vi) * = W'o^
'k+i

(vii) <e =

if Xn+1 = J f X and k = 2m
if Xn+1 = J f X and k = 2m +1, by (16);

if xn+1 = sex, <e" * sex or k s 2,
similarly as in (v)
if Xn+1 = sex, <T' = sex and k = 0,
by (50) and (9)

SejfS>®oX if Xn+1 = sex, <€" = JSfJf and k=l,
see as in (v).

(" •SO)

Case (c). j f 1 o . . . o j f I I = < g ' (t for some fcsO, so 1?=(£koXl,+1. This case can be
handled similarly to the case (b), the detailed proof is omitted. •

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGY1 U. 7.
SZEGED, HUNGARY
H—6720

Results on compositions of deterministic root-to-frontier tree transformations 61

References

[1] BAKER, B. S., Composition of top-down and bottom-up tree transductions, Inf. and Control,
v. 41, 1979, pp. 186—213.

12] ENGELFRIET, J., Bottom-up and top-down tree transformations — A comparison, Math. Syst.
Theory, v. 9, 1975, pp. 198—231.

{3] GÉCSEG, F. and M. STEINBY, Tree automata, Akadémiai Kiadó, Budapest, 1984.
C4] ROUNDS, W. C., Mappings and grammars on trees, Math. Syst. Theory, v. 4,1970, pp. 257—287.

(Received Jan. 27, 1986)

The invertibility of tree transducers

IMRE NEUMULLER

Every finite automaton can be considered to be a finite algebra equipped with
unary operations. In this setting, automata process unary polynomial symbols. This
observation led to introducing tree automata by dropping the unary requirement.
Basically, tree automata are finite universal algebras, and tree automata process poly-
nomial symbols, i.e. trees. Similar generalization when applied to sequential machines
leads to the concept of tree transducers. In the first section of the present paper we
recall some basic definitions on tree transducers and prove a few simple propositions.
The invertibility of frontier-to-root tree transducers is discussed in the second section.
Namely, we give a necessary and sufficient condition describing frontier-to-root tree
transducers posessing an inverse. In addition, an algorithm is given for constructing
inverse transducers. Similar results are formulated in the last section for root-to-
frontier tree transducers. -.•>••

1. Notions and notations

In this section we recall concepts and results in connection with trees and for-
ests.

Definition 1.1. An operation domain F is a disjoint union of sets F„ indexed by
nonnegative integers. F„ is the set of w-ary operational symbols. A finite operation
domain is called ranked alphabet.

Definition 1.2. Let X„ be a set of n variables. An ¿-"-polynomial symbol over X„
is called an F-tree over Xn. A set TQ TF(X„) is called an F-forest over X„.

Let X be a finite set of variables and pd TF(X).

Definition 1.3. The set of all subtrees of p, denoted sub (p), is defined as follows:

(1) if pdF0UX, then sub (p) = {/>},

(2) if p =f(,Pi,P2,. • •, Pm) (/6F m , m > 0), then

sup (p) = {/>}U(sub 0 ,) ; i = 1, . . . , m).

64 I. Neumuller

Definition 1.4. The root of p, denoted root (p), is given by the following two
conditions:

(1) if p£F0UX, then Toot(p)=p-,

(2) if p=f(pi,...,pm) (f£Fm, m > 0), then root (p) =/.

Definition 1.5. The height h(j>) of p is defined by

(1) if pdF0(JX, then h(p) = 0,

(2) if p =f{pi, ...,Pm) (/€F 0 , m > 0), then

h(p) = max {h(j>,y, i = 1,..., m}+1.

Definition 1.6. Let F be a ranked alphabet, and X a finite set of variables. The
system A=(9l , X, A') is called an zi-ary F-automaton, where

(1) 51=(A, F) is a finite F-algebra,
(2) J5f: X—A is the initial assignment,
(3) A'QA is the set of final states.

Let TF(X)^91 denote the homomorphic extension of JS?, where TF(X) is now
considered to be the absolutely free F-algebra generated by X. The forest recognized
by A is defined by:

T(A) = {pdTF(Xy, pJ?£A'}.

A forest T is called recognizable (regular) if there is an F-automaton A with T(A)= T.
In defining tree transducers we shall make use of a set Z = {z1, z2, ...} of aux-

iliary variables. We set Z„—{z1, ..., z„} (n»0). Z is supposed to be disjoint with every
other set.

Definition 1.7. A system A=(7>(J\rn), A, TG(Ym), A', P) is called a frontier-to-
root tree transducer (F-transducer), where

(1) F and G are ranked alphabets,
(2) A is a. ranked set containing only unary operational symbols, the state set of

A. (It is assumed that A is disjoint with all other sets in the definition of A, expect A'.)
(3) A'QA is the set of final states,
(4) P is a finite set of rewriting rules of the following two types:

(i (x ^ , ad A, qdTG(Yj) and

(»)/(ai(zi), ...,ak(zk)) - a(q(z1, ...,zkj) (f£Fk\ fesO; a^ a£A;

zx,..., zkdZk\ q(z1,..., zk)dTc(Ym{JZk)).
In what follows, if. a£A and t is a tree, instead of a(t) we shall use the notation at.
Accordingly, we write AT for the set AT= {at\a£A; T) if T is any forest.

Let A be the above defined F-transducer. It is said that A is
— linear, if every z ^ Z occurs at most once on the right side of a rewriting

rule,
— nondeleting, if in every rewriting rule, all the variables zt occurring on the

left side occur on the right side, too,

The invertibility of tree transducers 65

— completely defined, if for every l{=0), f (£ F(), and, at(£A)
there are a rewriting rule with left side xt and a rewriting rule with left the side

We are now going to define the tree transformation induced by an F-transducer
A. Let p, q£TF(X„{J ATG(Ym[JZ)) be arbitrary trees, and A the tree transducer
given in Definition 1.7. We say that p directly derives q in A, if q can be obtained
from/?

(i) by substituting oq for an occurrence of Xi in p provided that x^aq is a rew-
riting rule in P,

(ii) or by substituting aq(plt ...,pk) for an occurrence of a subtree of the form
f(alp1, ..., akpk), provided that f(a1z1, ..., akzk)^aq(z1, ...,zk) is a rewriting rule
in P. We use the notation => for direct derivation. The reflexive-transitive closure of

* * ^
=>• is denoted => . If p=> q we say that p derives q in A.

A A A

Definition 1.8. The F-transformation induced by the F-transducer A is the fol-
lowing relation Ta :

= {(P, q)\piTF(Xn), q€TG(Ym), p=> a q, at A'}.
A

Definition 1.9. The system A ^ T ^ , ,) , A, TG(Ym), A', P) is called a root-
to-frontier tree transducer, ^-transducer for short, if

(1) F, G and A are as in Definition 1.7,
- (2) A ' ^ A is the set of initial states,

(3) P is a finite set of rewriting rules of one of the following two forms:

(i) aXi - q (Xi£X„, aeA, q£TG(Ym)) and

(ii) af(zi,...,zk)+q (feFk; k^ 0; a£A; z1 ? . . . , zk£Zk, q£TG(YmU AZk)).
Linear, nondeliting and completely defined ^-transducers are defined in a way
analogous to the F-transducer case.

To define the transformation induced by the above i?-transducer we define the
direct derivation => in A for trees p, q£TG(ATF(X„UZ){J Ym) as follows: p=>q

A A •
if and only if either

(i) q is obtained from p by substituting q for an occurrence of a subtree axt in p
provided that ax^q is a rewriting rule in P, or

(ii) q is obtained from p by substituting q(pi, •••,pk) for an occurrence of a
subtree af(Pl, ...,pk)€sub (p) provided that af(z1, ..., zk)-*q is a rewriting rule
in P.

* *

The reflexive transitive closure of => is again denoted => . If p=> q, we say
that p derives q in A. A A A

Definition 1.10. The root-to-frontier tree transformation (^-transformation)
induced by A is the binary relation :

ta = {(P, q)\p<iTF(Xn)-, q£TG(Ym); ap4 q- a£A')}.
A

5 Acta Cybernetica VIII/1

66 I. Neumuller

Definition 1.11. Let A and B be /^-transducers (F-transducers). It is said that A
is equivalent to B if Ta=Tb .

Definition 1.12. An F-transducer A (R-transducer) is called bounded, if xx\q)
is a finite set for every (p , q)dTa .

Let A be an arbitrary F-transducer. A state ad A is accessible if there is a tree
p£TF(X„) with p=>aq for some qdTG(Ym). In this case we also say p leads to a.

A

Similarly, we say that a state a'dA is accessible from a state ad A if there are
/»eiXAr.UZO and q d T d Y ^ Z ,) with p i a z z a ' q . A

Definition 1.13. An F-transducer is called biaccessible if every state a is acces-
sible, and for every state a there is a final state a' such that a' is accessible from a.

*

(In other words, this means that every state occurs in a derivation /?=> aq where
pdTF(Xn), q€T6(YJ and ad A'.)

It is easily seen that for every F-transducer A there is an equivalent biaccessible
F-transducer provided that TA?i 0.

Let A be an arbitrary R-transducer. A state ad A is called essential if there are
pdTF(X„) and qdTG(Ym) with ap^>q. A rewriting rule

af(zt, ..., zk) - r (1)
*

is called essential if there are plt • ••, pkdTF(Xn) and qdTG(Ym) with af (/?l5 • • •, pk)=> q
A

such that in the course of the derivation the first rule applied is (1).

Definition 1.14. An ^-transducer A is called biaccessible if its states and rewriting
*

rules are essential, further, every state occurs in a derivation ap=>q where

PZTF{X„), qdT0(Ym) and at A'.
Again, it is straightforward to prove that for every ^-transducer A there is an

equivalent biaccessible ^-transducer provided that rA ^ 0.

Definition 1.15. Let A be an F-transducer. A state ad A is said to be of &-type
for k = 0 , if there are exactly k distinct trees leading to a.

Lemma 1.16. Let A be a biaccessible F-transducer. There exists a biaccessible
F-transducer B which is equivalent to A and such that every state of B is either of
1-type or of oo-type.

Proof. Since A is biaccessible A does not have 0-type states. If A has only 1-type
or oo-type states set B=A. Assume that ad A is of /c-type with 1 There are
Pi,..;Pk(Pi£TF(Xn)^ i= 1, ..., k) and qn, ...,qJtj (qjtdTG(YJ j=l,...,k;
1= 1, ..., tj) with Pj=>aqji. (The treesPj and qjt can be determined in an effective
way.) Let A~ [p{,p], ('"=!» k) denote the set of subtrees of pt. In what

The invertibility of tree transducers 67

follows, Pi and p{ will denote states. Take the following sets of rewriting rules P,
(/=1, ..., k): (Let r be an arbitrary tree in TG(Ym).)

if Af = {/?,} then v - Piqim£Pi <=• v = pt; vdX„{JF0

m = 1, ..., ti}

if Ai ^ {pf} then v - p{rdPi ov=p{; vdX„l)F0;

fhiPi1 • ••> p{h zh) if and only if fh(p{\...,pi
i
h)=pt

fh(Pl...,Pihzh)~piqIM£PI if and only if /„(/>/* ...,p{h)=pi

h =>0; m = 1, ...,jhd{ 1, s£}.
Let P* consist of all those rules of P not containing an occurrence of the state a as
well as the rules formed in the following way: If a rule in P contains an occurrence of
a then substitute Pi(i= 1, ...,k) for a in every possible way. Take the /-"-transducer
C=(TF(X„), C, TG(YJ, C', P'), where

It is easy to see that A is equivalent to C and C has fewer states of type k, 1 <)fc< «>,
than A. In a finite number of steps we arrive at the transducer B with the required
property.

We continue by introducing a few concepts to be used later. Let A be an arbi-
trary ¿-"-transducer. A rewriting rule is called jumping provided that it is of the form

A state ad A is called
— deleting state, if there is a rule containing azi on the left side but zt does not

occure on the right side,
— multiplying state, if there is a rule containing azt on the left side and zt occurs

at least twice on the right side,
— jumping state, if there is a jumping rule containing azf on the left side, and the

right side is of the form bzt for some b, i.e., the right side contains the variable cor-
responding to a on the left side of the rule.

A chain alt a2, ..., ak (£>0) of states is called a jumping cycle if for every / =
= 1, .. . , k there is a jumping rule containing at on the left side and such that its right
side is ai+1Zj where z} is the variable corresponding to a, on the left side of the rule.
If i—k, ai+1=ay. For the sake of simplifying the treatment, if the left side of a rule
contains a state a of A:-type, then the auxiliary variable corresponding to a is called of
/c-type, too.

Let A be an arbitrary /?-transducer. A rewriting rule is called a jumping rule
provided that it is of the form a / (z l 5 ..., zk)—a'z{. A state a is said to be i-

— jumping state, if there is a jumping rule whose left side contains a. A chain
Oj,..., ak is a jumping cycle if for every i there is a jumping rule with left side contain-
ing a, and right side containing ai+1. Again, ak+1=at.

C = AUA1\J...UAk-{a]

A', if a$A'

A'U{Pl,...,pk}-{a}, if adA'

P' = p^-.yjp^p*.

f(axzx,..., akzk) - azi (0 < i ^ k).

5»

68 I. Neumuller

Later we shall use the following notation: A (a,) is the /^-transducer obtained
from A by letting a(to be the unique initial state.

The proof of the next result can be found in [3].

Theorem 1.17. For every linear nondeleting /"-transducer there is an equivalent
linear nondeleting /{-transducer and conversely.

Definition 1.18. Let A be an arbitrary F-transducer (^-transducer). An F-trans-
ducer (R-transducer) B is called an inverse of A, if T^—^B •

2. The invertibility of F-transducers

In what follows we shall always assume that the F-transducers to be considered
are biaccessible with states 1-type or oo-type. By the previous section this assumption
does not restrict the generality of the treatment except for the induced transformation
is the empty relation — however, in this case the inverse is obviously inducable.

First let us discuss some necessary conditions of invertibility.

Theorem 2.1. Let A be an arbitrary F-transducer. Then the domain of rA is
regular and r^ 1 preserves regularity.

The proof of the above result can be found in [3].

Lemma 2.2. Let A be a biaccessible F-transducer. If A is invertible then xA
preserves regularity.

Proof. The statement is obvious by Theorem 2.1.

Lemma 2.3. Let A be a biaccessible F-transducer. If A is invertible then A is
bounded.

Proof. If A is not bounded then there are an infinite number of trees mapped to the
same tree .<7 under Ta. Thus, q has an infinite number of images under T a \ This con-
tradicts the invertibility of A.

Lemma 2.4. Let A be an arbitrary biaccessible F-transducer. A is bounded if and
only if

(1) A has no jumping cycle of states and
(2) A has no deleting state of «-type.

Proof. Let A=(TF(Xn), A, TG(Ym), A', P). Assume that a£A is a deleting state
of oo-type. Let r±,r2, ... be distinct trees in TF(X„) with /•¡=>agJ(i= 1,2, . . .) ,
q£TG(Ym). As A is biaccessible, there are p£Tf(X„), q£Ta(YJ such that
(p, <7)6ta, and in the derivation of q f romp we go trough the state a at a stage where
the subtree r belonging to a is deleted. Let us replace the subtree r in p by rlt r2, ...,
respectively. For the trees pi,p$, obtained in this way we have (p t , q)£rA.

Suppose now that a1} ..., ak(k>0) is a jumping cycle of states, and let ..., sk
be the corresponding jumping rules. Put rx=z, where z£Z is an auxiliary variable.
Having defined rt (/=1, ..., £); form r!+1 in the following way. Let st be the rule

The invertibility of tree transducers 69

/ (a 1 ^ , ..., atz, ..., auzu)-+al+1z. (Of course, ak+1=aj) Take a tree t'£TF(Xn)
with /;=>£JV where qi£TG(Ym) for every i—l,...,u. Put

rl+i=f(t1,...,rl,...,f) l = \,...,k.

Denote by p* the tree rk+1. Obviously, h(p*)>0. Since A is biaccessible there are
p£TF(Xn), q£TG(Ym) with (p, q)£rA, and such that a derivation of q from p goes
through ax. Denote by p that subtree of p leading to . Put

P o = P,

Pi +1 =P*'zPi,

where •z denotes the z-product of trees. Substitute for p in p, and let pt
(i— 0, 1, ...) be the resulting tree. Obviously (ph <?)6Ta, ending the proof of the
necessity.

Conversely, if both (1) and (2) are satisfied by A, then for every (p, q)£rA it
holds that h(q)>(h(p)—m)/(k+1), where w = max {h(r); r^aq, q£TG(Ym), a£A
is a deleting state}, and k is the cardinality of the state set. From this, A is easily seen
to be bounded.

Next we try to construct an inverse transducer by "inverting the rules", if it is
possible.

Definition 2.5.

—• The inverse of a rule x^aq or f0^aq(f0£ F0) is a finite set of rules ensuring
* * q=>axi or q=>af0.

— The inverse of a rule / (a ^ , ..., akzk)^aq k>0, {q£TG(YmUZft) q^zt
(i~ 1, ..., k) is a finite set of linear rules in which none of the auxiliary variables
occure (the auxiliary variables are denoted e.g. by v1, v2, ...), and such that these
rules realize a derivation qia^, ...,ak zk)=> af(rlf ... ,rk) where the variables zi occure
with the same multiplicity and with the same states as in the original rules and

rz; if (¡i is of °=-type
r ' Ip t if at is of 1-type and Pi leads to

— Further, we say that some occurrences of the variables zx, ..., zt meet at the
same vertex in a tree q£TG(Ym\JZ) if q has a vertex such that there is a path in q
from that vertex to every given occurrence of the variables Zj(j— 1, . . . , /) and there
is no edge in q belonging to two different such paths.

Lemma 2.6. Suppose that the states occuring in the rules are of 1-type or of
°=-type and none of them is an °°-type deleting state. Then

(1) all the rules x^aq, f0--aq {fo£F„; q£TG(Ymj) are invertible.
(2) a linear rule f(a1z1,...,akzk)-~aq(k>0; q£Ta(YmUZk)-, q^z,', /=!,..., k)

is invertible if and only if all °°-type auxiliary variables in q meet at same vertex,
(3) a nonlinear rule f(axzx, ..., akzk)-*-aq (/c>0; q£TG(YmUZk)) is invertible

if and only if each °°-type auxiliary variable in q has an occurrence such that these
occurrences meet at the same vertex.

70 I. Neumuller

Proof. Suppose that a rule is invertible. There is a uniquely determined vertex in
q such that we get back the given occurrence of the symbol / during the derivation
process. Of the arguments o f / , all °°-type auxiliary variables occur. Since none of the
auxiliary variables z-t occurs in the rules realizing the inverse of the rule, the vertex
in question has an outgoing path to an occurrence of every °°-type auxiliary variable
and no edge belongs to more than one such path. We have proved the necessity in
case of conditions (2) and (3).

(1) In the same way as in the proof of Lemma 1.16 we can construct an F-trans-
ducer transforming a given tree to a given tree. Let us replace in this transducer every
occurrence of the final state by a, the resulting set of rules is the inverse of the rule
given in (1).

(2) Further on the symbols z;(/= 1, ..., k) will not be considered to be auxiliary
variables. The auxiliary variables will be denoted by v. Denote by S= ...,
the set of all those vertices of q(zt, ..., zk) from which there are paths leading to
oo-type zf's. Let R= {rl, .../•,} be the set of those subtrees of q(zl, ...,zk) whose
roots are directly attached to vertices in S and which does not contain vertices of S.
(Different occurrences are treated separately.) Let t£TF{Xn) be an arbitrary tree.
For every j(j=l, •••,/) there is an F-transducer BY with T B J — {(FY, 0 } - Let Pj be the
set of rules of BY. If z; occurs in a rule then replace all occurrences of the state appear-
ing on the right side with a f . Delete those rules containing an occurrence of one of the
symbols z;. Denote by P' the union of the sets of rules obtained in this way, and let
cx, ..., c, be the final states. If Sis empty then R={q}. In this case put t=f(p1,...,ph)
where leads to at, and replace with a everywhere — the proof is done. Otherwise,
let e denote the vertex where the °°-type zf's meet, if there is only one such zf let e
be the root. Let us assign to each a state di (i=l, ...,n) as follows: If is the root
then d~a, otherwise let dt be a new state. Let g(qi, ... qa) be the subtree correspond-
ing to the vertex st. We construct a rule to every vertex J,- in S. If the vertex is differ-
ent from e then the rule is:

(j— 1, ..., a) and vu is the auxiliary variable corresponding to the unique d occurring
on the left side. If the vertex coincides with e then

g (b i b a va) - di vu where

f cfi, if qj = rp

\dk, if <7y has root sk

Cp, if qj = rp

dk, if <7y has root sk

gCfei»!, ..., bava) - dif(rx, ...,rk) where

jcy,, if qj = rp

ld„, if qu has root s,

0 = 1 , - - , «)

u

(Pj, if dj is of 1-type and pj leads to a
luu, if Zj is of o=>-type and occurs in qu

0 = I , . . . , f c) .

The invertibility of tree transducers 71

Take the union of all the sets of rules costructed. Obviously, this set is an inverse of
the original rule.

(3) Choose an occurrence of every oo-type z,- in such a way that these occurrences
meet at the same vertex, and consider these occurrences as oo-type z,'s. The proof is
finished as in (2).

The proof of the next two theorems can be found in [4].

Theorem 2.7. Let A be an arbitrary F-transducer. rA preserves regularity if a h -
only if A is equivalent to a linear F-transducer.

Theorem 2.8. Let A be a biaccessible F-transducer. Then A is equivalent to a
linear F-transducer if and only if A is linear or its multiplying states are of finite type
(i.e. of ¿-type with fc«»).

Lemma 2.9. Let A be a biaccessible F-transducer. If A is invertible then its non-
jumping rules are invertible.

Proof. Assume to the contrary that A is invertible and has a non-jumping rule
which is not invertible. On the basis of the previous results we may assume that A is
biacessible, linear, and its states are of 1-type or of °°-type. Denote by B an inverse
of A. Let

f(a1z1, ...,akzk) - aq{z1, ...,zk) (1)

be a non-invertible rule. By Lemma 2.6, the oo-type auxiliary variables do not meet at
a single vertex. Because of biaccessibihty, there are p£TF(X„) and q(zTa(Ym) such
that (p , <7)£ta and the rule is used in the course of deriving q from p. Let e denote that
vertex of p where the rule (1) is used. Let ztl, ..., z{j be all the oo-type auxiliary
variables in q with corresponding oo-type states ah, ..., atj. Obviously, _/>• 2. Let
ch, ...ci] denote those verteces in p which are direct descendants of e (i.e. there are
edges from e to them) and such that in the course of the derivation we obtain oo-type
states after processing the subtrees belonging to them. The auxiliary variables z f l , . . . ,
. . . ,z{ j correspond to these vertices c i l5 . . . ,c } j . Let dit(t= 1, ...,j) denote the root
vertex of the image of the subtree belonging to cit.

Since atl,...tai are of oo-type, for every t there are distinct trees p"
{u— 1, 2, ...; t= 1, ...,j) leading to ait. Replacing the subtrees belonging to the
vertices ch, ...,ctj by pll, respectively, the trees pn («—1, 2, . . .) can be
transformed to trees q„ "similar" to q:q„ is obtained from q by replacing the subtrees

72 I. Neumuller

at ..., d^ with images of the trees replacing the subtrees at c(l, ..., ctj in p.
By Lemma 2.3, the set of these trees q„ is infinite, and (</„,/>„)6 t B by assumption.
Classify the vertices of the trees qn as follows. The vertices of the subtrees replacing
the subtrees at dh, ..., dtj in q belong to O l5 ..., Oj, resp. All other vertices form
a singleton class. It is plain to see that a "similar" classification is obtained for every
n. Since (q„, pn)£xB for all n, therefore every tree q„ has a unique vertex whose trans-
lation in B gives back that occurrence of the symbol / which is the label of e in p.
The above classification is finite, therefore, there is a class containing the vertex in
question for infinitely many q„. With this we have designated an infinite subset of the
trees pn, as well. It is easily seen that there is a class such that the corresponding trees
pn satisfy the following: for each c,t there is an infinite number of subtrees at cit.
In what follows we restrict ourselves to this class. Suppose it is one of the singleton
classes, i.e. a concrete vertex. If this vertex is not on the paths from the root to one of
the dit's then the same tree belongs to this vertex in every q„. Consequenly, B should
translate an infinite number of trees from this very same tree, which is impossible.
If the vertex is located on a path to one of the vertices dh, ..., dtJ then, by assump-
tion, at most j— 1 edges lead from this vertex in the direction of dh, ..., dtj. Since
the designated trees pn are such that infinitely many independent trees are at-
tached to each of the vertices ch, ..., C;., this case leads to a contradiction, too. If
the class in question is one of the classes Ol9 ...,Oj then B is not bounded. This
derives from the fact that, if e.g. 01 is the particular class, then an infinite number of
trees may be attached to each of the vertices dh, ..., dtj but the subtree belonging to
this vertex is already obtained during the translation of the subtree belonging to dix.
It is also impossible because B has inverse, namely A.

Lemma 2.10. Let A be a biaceessible, bounded ^-transducer such that Ta pre-
serves regularity. If the non-jumping rules of A are invertible then A is inver-
tible.

Proof. We may assume that every state of A is of 1-type or of °°-type and that A
is linear. By boundedness, A does not contain deleting states of °°-type and jumping
cycles. If P has a jumping rule then form all the state chains a l 5 ...,ak (/:> 1) satis-
fying the following condition: a1, ..., ak_l are jumping states, a unique jumping
rule leads from at to ai+1 (i— 1, ..., k— 1). In a similar way as we assigned a tree to
jumping cycle in the proof of Lemma 2.4 let us assign a tree to every chain in question,
as well. We do this in all possible ways. Of course, it may happen that more then one
tree is assigned to the same chain (if there are more jumping rules from at to ai+1).

Let «j, ..., ak be a state chain with corresponding tree r. Choose a non-jumping
rule leading to ax , say it is

f(a1z1,...,a'z,) + a1q. (1)

Of course, it can be of the form Xi -*axq, too. Form the following formal transition
rule:

r-Ji^Zi, ...,a'zt) - akq, (2)

where q is the tree appearing an the right side of (1). Take all possible formal transition
rules (2). The inverse of a formal transition rule is meant a finite set of linear rules not
containing the auxiliary variables z1; (the auxiliary variables are denoted by
v) and such that they realize the derivation q(a1z1, ..., afz,)=>r • : f (s ± , ..., st),

The invertibility of tree transducers 73

where the z;'s (i = l , . . . , ') occure with the same multiplicity and with the same
states as in (2), and

fz, if a' is of °o-type,
S ' ~ if a' is of 1-type and pt leads to at.

Obviously, we get a finite set of rules and if (1) is invertible then so is (2).
Let B=(Ta(YJ, B, TF{Xn), B', P') be the F-transducer where B=A(JA,
A is the set of the states which are obtained in the inversion process of non-jum-

ping and formal rules,
B'=A',
P' is the set of the rules which are obtained in the inversion process of non-

jumping and formal rules. It suffices to show that

p^aqoq\ap a£A; peTF(X„); q£Tc(Ym).
A i>

Proof of =>. If h(p)~0 the implication holds by the invertibility of the rules.
We proceed by induction of h(p). Suppose the claim for h(p)<m and let h(p)=m.

*
If the rule applied for the last time in the derivation p^-aq is not a jumping rule

A
then p =f(p1, ..., pk) 0) and

/ (a jZj , ...,akzk)^ aq£P, q = q(qlt ..., qk), q ^ zf (i = 1, ..., k)

and p j =>aj<lj 0 ' = 1 , f c)

for some states a l 5 ..., akÇ.A. Thus,

P = /Oi, •-,Pk)=>Lf(.ai<3i, •••,akqk)=^aq(q1, ..., qk) = aq.

By the induction hypothesis, q}^>a}p} (/'= 1, ...,k). Since all the non-jumping
rules of A are invertible,

q = q{q:, ..., 5(a 1^1, •••> akPù\afiPx, • ;Pk) = ap•
B J>

If the rule applied for the last time is a jumping rule then we have "used" a formal
rule at the end of the derivation. In this case the derivation can be written as

P = P (f (P i P k)) =» p(f(aiqu--,akqk)) =•

p{a'q(ql, ..., qk)) 4 aq(<li, - , 9k) = aq,
A

where the rule applied in the second part is non-jumping and all the rules applied in
the third part are jumping. In this case there is a formal rule H / (a i z i > ..., akzk))-~
- •aq(z i , ..., zk). Formal rules are invertible, therefore,

q = qk)\q(aiPi> •••, akpk)\ap.

74 I. Neumuller

Proof of <=. The proof is accomplished by induction on h{q). Suppose h(q)=0.
Then, by the construction of the rules in P', either h(p)=Q and p—aq£ P, or p=

=f(j>i, ...,pk) (A:>0) and f{axz^ ..., akzk)~aq£P; p^>a}q}, (j= 1, ...,k)

where a,• is 1-type. But then p^>aq. Suppose that the proof is done for h(q)<m, and A
let h(q)=m. Take the graph representation of q. Let us mark those verteces in the
graph at which the derivation gets into a state belonging to A. Denote it by q*. Denote
by q' the maximal connected subgraph of q* containing the vertex which corresponds
to the root of q but not containing any other marked vertex. Let q denote that part of
q corresponding to q'. We have

9 = qd\q(fliPi, •••> akpk)\ap(p1, ...,pk) = ap ax, ..., ak,a£A.
D IS

After the first part we will not get back to a state in A only at the root. The inversion
of the rule was done in such a way that we introduced new states at each stage, and
with the new rules, we could get to a state belonging to A only at the root of the right
side of the original rule. From this it follows that either p(a1z1, ..., akzk)-^
—aq(zx, ...,zk)£P or there is a formal rule with left side p z 1 , ...,akzk) and
right side aq(zt, ..., zk). This ends the proof.

The main results of this section easily follows from Lemmas 2.2, 2.3, 2.9, 2.10.

Theorem 2.11. A biaccessible /-"-transducer A is invertible if and only if A is
bounded, the non-jumping rules of A are invertible and Ta preserves regularity;

Theorem 2.12. The invertibility of /"-transducers is decidable. There is an effec-
tive procedure for constructing inverse /"-transducers.

3. The invertibility of R-transducers

Again, we only treat biaccessible R-transducers. The proof of the following
theorem can be found in [3].

Theorem 3.1. Let A be an R-transducer. Then the domain of Ta is regular and
Ta

 1 preserves regularity.

Lemma 3.2. Let A be a biaccessible R-transducer. If A is invertible then rA pre-
serves regularity.

Proof. The statement is trivial by Theorem 3.1.

Lemma 3.3. Let A be a biaccessible R-transducer. If A is invertible then A is
bounded.

Proof. Similar to that of Lemma 2.3.

Lemma 3.4. Let A be an arbitrary biaccessible R-transducer. A is bounded if and
only if:

(1) A has no jumping cycle of states,
(2) A is nondeleting.

The invertibility of tree transducers 75

Proof. The proof is similar to that of Lemma 2.4.

Theorem 3.5. Let A be an arbitrary biaccassible ^-transducer. A is invertible if
and only if:

(1) Ta preserves regularity,
(2) A is bounded,
(3) the rewriting rules are of one of the following three types :

(a) op - q a€A; p£XnU F0\ q£TGoUGi(Ym),

(b) af(Zl) - q aeA'feF.i q£TGl(AZJ,

(c) a/(z l 5 ..., zk) - q; a£A;f£Fk (fc > 1);

q^TG{{v})-vgk(ri, ...,rk), where gk£Gk; rieTCl(AZk) (i = 1, ..., k).

Proof. The necessity of the first two conditions directly comes from Lemmas 3.2
and 3.3. Suppose B is an inverse of A. Then both A and B are nondeleting. Let
(p, q)£xA be arbitrary. Let n(p) (n(q)) denote the number of those vertices of p (q)
whose label is an operation symbol with arity at least 2. Since A and B are nondelet-
ing and (p, q)£?A, (q,p)€*B> we have n(p)~ n(q). From this it follows that the
rules of A are of one of the three types as indicated.

For the converse, suppose that A satisfies all the conditions (1), (2), (3). Observe
that this assumption implies that A is linear and nondeleting. By Theorem 1.14, there
is a linear nondeleting F-transducer C equivalent to A. By the assumptions and the
construction given in the proof of Theorem 1.17 the auxiliary variables meet at the
same vertex in right side of the rules of C. Therefore, we can consider all the states of
C and all the auxiliary variables to be of °°-type. Let f(c1z1, ...,ciz{)->q (/>0) be
a rule in C. Then, again by the construction given in the proof of Theorem 1.17 and
our assumptions, the frontier of q only consists of auxiliary variables. Thus, C is
invertible. Let us invert the rules in such a way that every auxiliary variable is taken
«°-type. The inverse obtained is a linear nondeleting F-transducer. By Theorem 1.17,
it has an equivalent linear nondeleting R-transducer. This ends the proof.

To obtain a complete solution we would need to describe ^-transducers equiv-
alent to linear ^-transducers. For our purposes, we may confine ourselves to bounded
regularity preserving ^-transducers.

Lemma 3.6. Let A= (TF(Xn), A, TG(Ym), A', P) be a biaccessible R-transducer.
Suppose that A is nonlinear. Let o f f a , ..., z ,) — . . . , a,Zjni)£F; a¡£A"i,
(/ = 1 , . . . , /) be a multiplying rule. Especially, a1=(fli, ..., ani). Let T=
= fl{dom(TA(0())|/= 1 , . . . , t i j } and 7";=TA (a ()(F) (/= 1,..., «0, where d o m (T A (A I)) is
the domain of the transformation TA(a(). Thus, to every multipying rule there are cor-
responding forests T and T(. If for every T at most one of the associated T-s is
infinite then rA preserves regularity.

Proof. Let A—{alt ...,ak} be the state set of A. Denote by 7" the union of the
finite Tt's. T' is finite, say T'= {qx, ..., q,} i = l , ..., t. Denote by
Tij (¡'=1, ..., k \ j - 1, ..., t) the set of those trees p£TF(Xn) with OiP^qj . The
forests Tij are regular, consequently, there are tree automata A i y = A ' y)

76 I. Neumuller

with Ttj— T(Aij). Let V denote the set of all vectors of dimension kt over the set
{0,1}. Let / /^Z/oU/ZiU ... be a new ranked alphabet where H0=F0; H,=F,XV'
(/>0). Take the /"-transducer B=(7>(Z„), B, TH(Xn), B', P') with

B = AnXA12X ... XAklX ... XAkt, where Ai} is the state set of Au,

B' = B

P':

(i) x^(x^11,...,x£Ckt)xeP', x£Xn,

where i = (/ M & i . ! , . . . , blA), Kb)), and let 0<asA:, 0
Vij= 1 if and only if b,jdAxp, where j~(a— l)t+p. rB is a linear nondeleting R-
transformation by Theorem 1.17.

Let C=(T H (X„) , A, TG(Ym), A', P") where A and A' are the same as in A,
and P" is obtained in the following way.

In case of nonlinear rules:

(1) Let af(z1, ..., z,)—r(a1z1, ..., a 'z,)cP be nonlinear. Take all possible rules
a(f vlt ..., V[)(zx, ..., z,)—f, where v^V (/=1, . . . , /) and r is obtained from r as
follows: Let 0 < a S k , 0 I f 1 (7= (a— l)t+0) and z; occurs in r with
state ax 0 = 1 , ..., /), then substitute qf for aaz{ in r. Let P" contain those rules
"(/> vi> •••> vi)(zi> •••> which are linear and such that r contains an auxiliary
variable if and only if it occurs in r.

In case of linear rules:

(2) af{z1, ..., z;) — r £ P if and only if

a(f, Vl, ..., o ^ , . . . , z,) - r€P" ; »¡€K (i = 1, /).

(3) ap^r£P i fandonlyif ap-*rdP"', pdTFo(Xn).VJe have T A = T B O T c , yielding
that rA preserves regularity.

Corollary 3.7. If A is nondeleting then so is C. It is known that the composition
of linear nondeleting P-transformations is a linear P-transformation. Thus, Ta is
a linear P-transformation if A is nondeleting, further, one can effectively construct an
equivalent linear P-transducer.

Lemma 3.8. Let A be a biaccessible bounded nonlinear P-transducer. Let a non-
linear rule of A be af(z1, ..., z,)-»g(a1zi, ..., a,z?>). Suppose that this rule multiplies
z1; i.e. K>1. Put a 1—(a1,...;au). Denote by T the forest T— Pi {dom (T A (A ()) ;
i= l , . . . , t / } . If t a preserves regularity then T is finite.

Proof. Since A is bounded so are A (a,) and A(a)(i— 1, ..., u). If t A preserves regu-
larity then TA(0f) preserves regularity as well. Therefore, it is enough to deal with
the transducer A (a) instead of A. Suppose that T is infinite although the assump-

(ii)

(iii) fib^!,..., bfr) - b (f , vu ..., UJXZJ, ..., Z,)€P'

f€F,-, I > 0; b, bx,..., v£V (i = 1, ..., i);

The invertibility of tree transducers 77

tions are fulfilled. Since T is a finite intersection of domains, T is regular. Let
TF(Xn U Z,) be a tree in which zx occurs exactly once. Then

s s • Zls • Z l . . . • Zls.
/-times

Since T is infinite and regular, there is an r£T such that r~r1 (r2(r3)) where
r3£TF(Xn), / • 1 , r 2 e r f (Z „ U Z 1) , h(r2)>0 and for every k, r^=ri{4{r3))£T. Then
T'= {rm; k= 1, 2, ...} is an infinite regular subset of T. Since T'QT, T—XA^T')^

(i '=l, ...,M), and by the boundedness, Ti is infinite. Since Tapreserves regu-
larity by supposition, all the forests T{ are regular. Let p2, ...,pi£TF(Xn) be trees
with ai}pi=>qij i=2, . . . , / and / = 1, Let p=f(z1,p2,...,pl). It holds

that ap^qia^,...^^). Set T"=p • ZlT' (={p(rM(r3))),k= 1,2, ...}). T" is
regular, and so is K=xA(T"). Let B be a tree automaton recognizing K. Since all
the forests 71; are regular, there is a qdK, q=q(a1,s2, ..., su), with s^Ti (i— 1, ...,u)
such that /i(Ji), h(st) are greater than the number of states of B. Then (/= 1, 2)
can be written in the form ^(^(J , - ,)) such that h(sh)>0 and t[k)=s^sf^s^tTi
for every k. We have q=q(t[k), t{

2\ s3, ..., su)£K. Let rti denote the number of states
of A, and n2 the maximum of the heights of the trees occurring on the right side of the
rules in P. Choose t[k) and tip as follows:

> n2h(p(r)) +1,

W) > " 2 + n2(ni + l) fc (9(zi,s„)).

Let q* = q(t[k), s3, ..., su), where t\k\ t[l) are the trees given above. It is obvious
that q*£K. There is a p„£T" {p„=p(r1(.4(r3)))) with apj>q*. Denote by dx

and d2 the root of /1
(t) and tP, resp. There are vertices c1, c2 in p„ such that dt (i= 1, 2)

is obtained when the translation process arrives at c ;. The lengths of the paths from
the root to c1 and c2 cannot exeed (nx+ l)h(q(zl5 z2, s3, ..., su)) because A does not
have jumping cycles. Let r; (i— 1, 2) denote the subtree belonging to ct. The subtree
r3 cannot contain cx and c2, or even, cx and c2 are located on the path to the root of r3.
(The reason is the height of the trees t(

2
l>.) Thus, either rx is a subtree of f2 or

conversely.
Suppose first that r1 £ sub (r2). Then

h(r2) < h(r1) + (n1+l)h(q(z1, z2, s3, ..., s j)

because r1 is a subtree of r2 and that part of r2 not contained by cannot be higher
than («!+ l)/i(q(z l5 z2, s3, ..., su). Since is translated to t(k) and rx is a subtree of
r2, an upper bound for the height of the trees that can be translated from f 2 is

«,(«!+l)(/i(if>) + Mg(zi, z2, s3, ..., s„))).

However, this is impossible by the choice of the trees and tip.
If ^ s u b ^) then /i(r2)</i(r1). Thus, a tree translated from r1 is at least as

high as a tree translated from r2 . Since 4° is translated from r2, h(r2)>-h(lP)/n2,
and a tree translated from ^ is at least h(r2)/(n1+ 1) high. It follows that the trees

78 I. Neumüller: The invertibility of tree transducers

translated from rx are at least h(t'1k))+h(q(z1, z2, s3,..., su)) high. This contradicts
the choice of t§K

From our result we immediately obtain.

Theorem 3.9. It is decidable for a bounded P-transducer A if A preserves regu-
larity.

Theorem 3.10. It is decdiable if an Л-transducer is invertible, and the inverse, if
exists, can be effectively constructed.

Further results on regularity preserving i?-transducers can be found e.g. in [1].

DEPT. OF COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY
ARADI V. TERE 1
SZEGED, HUNGARY
H—6720

References

[1] ÉSIK, Z., Decidability results concerning tree transducers II., Acta Cybernet., 6 (1983), 303—314.
[2] GÉCSEG, F., M. Steinby Algebraic theory of tree automata I., Matematikai lapok 26 (1975),

169—207, in Hungarian.
[3] GÉCSEG, F., M. Steinby, Algebraic theory of tree automata II., Matematikai lapok 27 (1976),

283—336, in Hungarian.
[4] GÉCSEG, F., Tree transformation preserving recognizability, Colloquia Mathematica Societatis

János Bolyai 28. Finite Algebra and Multiple-Valued Logic, 251—273..

(Received May 6,1986)

Syntactic pattern recognition in the HLP/PAS system

T . GYIM6THY AND J . TOCZKI

Abstract

In this paper a syntactic pattern recognition application of the HLP/PAS sys-
tem is presented. The system has originally been developed for compiler generation.
It can generate both one-pass and multi-pass compilers from attribute grammar spe-
cifications. The generated compilers use LL (1) or LALR (1) parsing methods. How-
ever, in many cases, patterns can be described only with ambiguous grammars. For
this reason the HLP/PAS system was extended with a backtrack parser generator.
The generated backtrack parsers use the LL (1) parsing tables to eliminate some of the
unnecessary backtracks. Another characteristic of these parsers is that the parsing can
be controled by the evaluated attributes. As an illustration, an attribute grammar
description is presented for normal ECG waveforms.
key words: attribute grammars, syntactic pattern recognition, attribute evaluation.

1. Introduction

So far there have been several attempts for describing patterns by attribute
grammars [8], [9], [11]. It is not surprising as both the context-free and the context-
sensitive characteristics of the patterns can be described by attribute grammars. The
numerical data of the patterns can conveniently be computed by semantic rules so
attribute grammars can create a connection between syntactic and statistic methods of
the pattern recognition.

While there are several complete compiler generator systems based on attribute
grammars [4], [7], to our knowledge, there is no such a system for pattern recognition
tasks. In a complete system a metalanguage is needed for the specification of the at-
tribute grammars. It is practical if the primitives of the patterns can be described as
lexical tokens in this metalanguage. The parser of the metalanguage has to check the
formal correctness of the specifications e.g. the consistent using of the attributes. The
system must generate a parser and an attribute evaluator, too. In contrary to the
usual complier generators, in a pattern recognition system, the construction of back-
track parsers is needed. Therefore, the HLP/PAS system [5], [10], which has origi-
nally been developed for compiler generation, was extended with a backtrack parser
generator. In this paper we give a description of this extended system. In more detail,

\

50 T. Gyimothy—J. Toczki

section 2 gives a short description of the original system, section 3 contains the spec-
ification of the ECG grammar. In section 4 the structure of the generated backtrack
parsers is described, while section 5 contains some observation about further research
of this topics. Finally we give a short summary of the paper.

2. The HLP/PAS system

As it was already mentioned, the HLP/PAS system was originally developed for
•compiler generation. There are two metalanguages in the system for the lexical and
syntactic-semantic descriptions of grammars. The lexical units (tokens) can be de-
fined by regular expressions in the lexical metalanguage. In programming languages
the usual tokens are identifiers, numbers etc. In the pattern descriptions the "primi-
tives" [2] are the lexical units. The system generates finite automata to recognize these
tokens. The generated lexical analyzer is a procedure of the complete compiler. The
specification of an attribute grammar can be described in the syntactic-semantic met-
alanguage of the system. The semantic assignments in the description of an attribute
grammar are Pascal-like expressions and procedure callings as the generated compil-
ers are complete Pascal programs. An attribute grammar definition in the HLP/PAS
system begins with the declaration of these procedures. After this the names and the
types of the synthesized and inherited attributes can be defined. Both standard Pascal
and user defined types can be used as the types of these attributes. Then the nonter-
minal declaration part follows, in which the nonterminals and the names of the
attributes associated with them are described. After this the tokens and the terminals
of the grammar are defined. Finally, in the last part of the specification, the syntactic
rules and the semantic assignments are described. There are conditional statements
which can be associated with the rules of the grammar. These statements can be ap-
plied to send messages during the compilation by means of evaluted attributes and are
also used to control the generated backtrack parsers (see 4). The code generator state-
ments generate the target code in the constructed compilers. Of course these state-
ments also use the evaluated attributes. The evaluation time of a conditional state-
ment is determined only by attribute dependencies while the evaluation sequence of
the code-generator statements can be prescribed by the user. The system contains
a simple error-recovery method which can be influenced by the definition of the
grammar. If a set of terminal or token symbols (SKIP-set) is connected to a nonter-
minal and there is a syntactic error in the "subtree" rooted in this nonterminal during
the parsing then the parser reads the input until it finds an element of the SKIP set.
This symbol will be the next input symbol and the corresponding subtree is deleted
(Panic method). The parser of the metalanguage always checks the formal correctness
of a specification e.g. the name conflicts, the existence of superflous nonterminals,
the consistence of the attribute assignments etc. The system can automatically gener-
ate so called copy rules for the simple transport of attribute values if the assignment
is determined unambiguously. Finally, from a correct specification the parser of the
metalanguage constructs files for other moduls of the system. As we mentioned earlier,
both one-pass and multi-pass compliers can be generated. The one-pass compilers
use LL (1) parsing method and L-attribute evaluation strategy [1]. In the multi-pass
compilers LALR (1) parsing method and a modified version, MOAG [4] of the OAG
[6] attribute evaluation method are applied.

Syntactic pattern recognition in the HLP/PAS system 81

3. An attribute grammar for normal ECG waveforms

On the basis of [9] an attribute grammar is presented for the description of nor-
mal ECG waveforms in the HLP/PAS system. TTiis grammar is used to illustrate the
backtrack parsing in the system. The first step in a description of a pattern is to
determine the set of the primitives. These primitives are the terminal symbols of the
grammar. First an ECG waveform is approximated with line segments [3]. The line
segments are partitioned into pieces nearly of the same size (these are the primitives).
This partition is carried out by using a UNIT segment (see Figure 1). A slope symbol
is associated with each primitive as follows:

were (¡i>P is the angle of the line segment SP with the horizontal axis and vH, vS) v, are
predefined constant angles. Each primitive in a segment has the same size and if the
UNIT not too large then there is not large difference between the size of the prim-
itives of different segments. Moreover each primitive has a duration which is the pro-
jection of the primitive to the time axis (Figure 1.).

if vfl < (pp =S v s

if vs < <pP S VJ

if (pP = - VJ

then SP
then IP
then LP
then SN
then IN
then LN
then HP

i f - v H = - < p P S = T - V S

if — v s > (pp = - V /

if <pP < —V/

time
Figure 1

6 Acta Cybernetics v n i / 1

50
T. Gyimothy—J. Toczki

In Figure 1 the dashed lines indicate the pieces of a waveform and the solid lines
are the segments. We can see that the duration of the primitives Sn, S12 is 1 and
3/4 of the primitives S21, S22, S23, S2i. If the vH=10°, v s=30° angle constants are
used then the waveform can be coded as follows

(SP, 1)(SP, 1)(IP, 0.75)(IP, 0.75)(IP, 0.75)(IP, 0.75).

In Appendix A a grammar is given for the description of normal ECG. In the de-
scription X" denotes X...Xn times. The grammar is ambiguous. For example consider
the rules

11. T — FGH; 12. F - K 4 | K 3 | K 2 ; 13. G - I 3 | I 2 | I | e ;

16. K — IP ^ DIG| SP DIG| ^ HP DIG and

17. I — ^ HP ^ DIG| ^ S P ^ DIG| SN 7i DIG;

Starting from the nonterminal T both the

T - FGH — K4 GH — K 4 I H . . . and the

T — FGH — K3 GH — K 3 I 2 H ...

derivation leads to the (^ HP DIG)5 string. The grammar in Appendix A is aug-
mented with attributes and semantic assignments. These assignments compute the
durations of the cardiac cycles from that of the primitives and determine the maximal

durations of cycles (maxdur, mindur). An ECG is normal if m a x < ^ u r raindur >0.1.
maxdur

In Appendix B the description of the augmented ECG grammar is presented in the
metalanguage of the HLP/PAS system. The description does not contain the complete
grammar, only the most important parts of the specification are given. Of course
using more attributes in the description further characterictics of ECG waveforms
can be analysed.

4. The generated backtrack parsers

As it was already mentioned, the one-pass compiler generator part of the HLP/
PAS was extended with a backtrack parser generator. First the structure of the one-
pass compilers generated originally is outlined. For each nonterminal of the grammar
a Pascal procedure is constructed. The inherited and synthesized attributes of a non-
terminal are the input and output parameters of the procedure corresponding to this
nonterminal. For example consider the following rules:

•^0 Xu X,2... X^-

•^0 _>" Xq2 • • • Xqilii

Syntactic pattern recognition in the HLP/PAS system 83

The structure of the generated procedure is:
procedure X0$(/(X0); var S(X0));

record Xn declaration of A(Xn); end

record Xq„q declaration of A (XqnJ; end
begin
if SY$€ Si then begin

eval (I(ZU)); Xlt S(I(ZU); S(Xn));

S(/(Xlai); S(XUl)); end else

if SYSe Sq then begin
eval (/(Z s l)); Xql $ (l(Xql); S(Xql));

eval (l(Xq„q)); Xq„9$ (l(Xqn^; S(Xq„^));

end else error;

eval(S(A-0));

end of procedure ZQS;

where-I(X t J), S(Xij), A^Xy) denote the inherited, synthesized and the all attributes
of the nonterminal Xi}, respectively. For each different right-hand side nonterminal
a record structure is generated. The variable SYS contains the current input symbol.
The corresponding alternative is determined by the condition SY$£Si, where S ~
=FIRST1(A r

i l, ...,Z in ()©1FOLLOW1(A r
0). In the blocks of the alternativies, eval

(/(Zy)) denotes the evalution of the inherited attributes of the nonterminal Xi}.
The places of the conditional and code generator statements in the alternativies are
determined by attribute dependencies and the prescriptions of the user (see 2. sec-
tion). The callings of the lexical procedure are also in the blocks of the alternatives.
Instead of building the parse tree, only recursive procedure callings are executed
during the parsing.

In the backtrack version of the generated compilers the instances of the proce-

6*

50
T. Gyimothy—J. Toczki

The greatest sequence number of the instances is stored in the global variable
NUMS. In each procedure there is a local variable (NUMX) to store the number of
the actual instance in the calling sequence. The TRUE value of the global Boolean
variable BTRACK denotes that the parser is in backtracking mode. During the
parsing a global stack is handled. The /-th element of this stack gives the number of
the alternative chosen in the 7-th instance. A flag denotes if another alternative with
greater number can be chosen in this instance. Of course only those alternatives are
considered for which the condition SY$£ Si is true. In the global variable LPOINT
the number of an instance is stored. In backtracking mode the new alternative will be
chosen from this instance. Finally in each procedure there is a pointer (PT) to denote
the position of the current input symbol at the entry of the corresponding instance.
If there is an error in the K-th instance then BTRACK=TRUE and this instance
is terminated. In the recursive calling structure the procedure instances are terminated
until the condition NUMX> LPOINT is true. If NUMX< LPOINT then using
the NUMX, NUMX+1, LPOINT-1 elements of the stack and the pointers PT
the necessary part of the parsing is reconstructed. In the instance indicated by
LPOINT the new alternative is chosen. The assignments NUM$=NUMX,
BTRACK= FALSE are executed and in the variable LPOINT the new backtracking
point is stored. In [8] a backtrack parser was presented for pattern recognition. The
main advance of the parser presented in this paper against that of [8] is that using
the LL (1) conditions a lot of useless backtracks can be eliminated. Of course there is
a cost of the computation of the LL(1) tables but this computation happens only
ones in meta-compiling time.

To illustrate the backtrack parser consider the following structure of the ECG
grammar: ST-I10|I9|I8|I7|I6.

It can be described with the following three rules:

i) ST=I_LIST;
DO
I _ LIST. length :=0;
END

ii) I_LIST=I I_LIST;
DO
dur :=I. dur+I_LIST: dur;
I_LIST. length :=length+1;
COND
if I_LIST.lengths10 then BACKTRACK;
END

iii) I_LIST=I;
COND
if lengths6 then BACKTRACK;
END

The inherited attribute length is used to count the I elements. The backtrack is
controled by this attribute. For example if the rule ii) was applied ten times then
a backtrack is executed for the nonterminal I_LIST and the alternative iii) is chosen
instead of ii). On the other hand if in the rule iii) the condition length < 6 is true then
after several backtracks the instance öf the nonterminal ST is terminated in back-

Syntactic pattern recognition in the HLP/PAS system 85

tracking mode. These redundant steps can also be eliminated if the number of I
elements is stored in a synthesized attribute of ST and the condition length is
applied in the rule i). This solution can be seen in Appendix C.

5. Further research

The backtrack parsers presented in this paper use L-attribute evaluation method.
This method can be applied to languages the elements of which depend on their left-
hand side environments. It often holds in the case of programming languages but not
in the case of pattern descriptions. A subpattern usually depends on both its left- and
right hand side environments. Hence multi-pass attribute evaluators are needed. In
such type parsers, attributed parsing trees are constructed to store the value of the
evaluated attributes and the structure of the parsing. As we mentioned it earlier,
in many cases the patterns can conveniently be described only by ambiguous grammars.
Therefore the development of a multi-pass, backtrack parser generator in the HLP/
PAS system would be needful. Because such type parsers work usually very slowly,
in our opinion, a combination of the pass-directed and the dinamic attribute evalu-
ation strategies is needed. When backtrack, some attribute values have to recom-
pute. In these cases the appliement of the dinamic attribute evaluation method is
efficient. Only those attributes must be recomputed the values of which are changed
during the backtrack. In the other part of the grammar (and usually it is the larger
part) a pass-directed evaluation method can be used e.g. MO AG [4].

6. Conclusions

In this paper a syntactic pattern recognition system was presented. The input
of the system is a complete description of a pattern by attribute grammar. From this
specification the recognizer of the pattern is generated. In the description of patterns
ambiguous grammars can also be used. The generated parsers use the LL (1) tables so
a lot of redundant backtracks can be eliminated. Further characteristic of the gen-
erated parsers is that the parsing can be influenced by the evaluated attributes. Calling
the start symbol of an ambiguous grammar repeatedly the all possible derivations of
the grammar can be constructed for a given input. The complete system was imple-
mented on Pascal language on IBM—370 and IBM XT compatible computers.

Acknowledgements

We wish to thank Árpád Makay and Zoltán Fülöp for their constructive com-
ments on this paper.

Appendix A

1. S=NORMAL_ECG
2. NORMAL_ECG=CARDIAC_CYCLE NORMAL.ECG
3. NORMAL_ECG=R
4. CARDIAC_CYCLE=RS ST T TP P PR Q

50
T. Gyimothy—J. Toczki

5. R = C D
6. R S = C D E
7. C = ? i L I V DIG C M L P ^ D I G
8. D = ^ L M ^ DIG D|?iLM?i DIG
9. E= ^LP^ DIG E l ^ n v DIG E I ^ L P ^ D I G M I P ^ DIG|s

10. ST=I10|I9|I8|I7|I6

11. T = F G H
12. F=K 4 |K 3 |K 2

13. G=I3 | I2 | I |e
14. H=M4 |M3 |M2 |M|e
15. D I G M S M ^ DIG
16. K = ^ I P j t DIGMSP?5 D I G I ^ H P ^ D I G
17. I = ^ H P D I G I ^ S P ; * DIGI^SMt^DIG
18. TP=I14|I13|I12|I11|I10|I9|I8

19. P = T
20. PR=I4 |I3 |I2 |I|£
30. Q=L3|L2|L|fi
31. L=?iIM?iDIG |7 iLM?iDIG
32. DIG=NUMBER

Appendix B

ATTRIBUTE GRAMMAR ECG
(* B + BACKTRACK OPTION IS ON *)
PASCAL DECLARATIONS ARE

PROCEDURE BF (a, b: INTEGER; VAR c: BOOLEAN);
BEGIN
I F (a - b) / a > 0.1 THEN c :=TRUEELSE c:=FALSE;
END;
PROCEDURE MAXF (VAR a: INTEGER; c, b: INTEGER);
BEGIN IF b > c THEN a : = b ELSE a : = c ; END;
PROCEDURE MIN (VAR a: INTEGER; b, c: INTEGER);
BEGIN
IF b > c THEN a : = c ELSE a: = b;
END;

SYNTHESIZED ATTRIBUTES ARE
maxdur, mindur, dur :INTEGER;
fl: BOOLEAN; val:INTEGER;

INHERITED ATTRIBUTES ARE
length: INTEGER;

NONTERMINALS ARE
ECG HAS fl;
NORMAL_ECG HAS maxdur, mindur;
CARDIAC_CYCLE, R, RS, ST,T,TP, P, PR, Q, C, D, E, DIG, F, G, H HAVE
dur;
LP_PAIR, LM_PAIR, IP_PAIR, IM.PAIR, HP_PAIR, SP.PAIR, SM-PAIR

HAVE dur;

Syntactic pattern recognition in the HLP/PAS system 89

I_SET, K_SET, M.SET, L_SET HAVE dur;
Il _LIST, I2_LIST, I3_LIST, I4_LIST, L_LIST, K_LIST, M_LIST HAVE

length, dur;
TOKENS ARE
NUMBER HAS val;
TERMINALS ARE

"LP", "LM", "IP", "IM", "HP", "SP", "SM";
PRODUCTIONS ARE
ECG= NORMAL_ECG ;

DO
fl< — BF (NORMAL_ECG. maxdur, NORMAL_ECG. mindur, fl);
END

NORMAL_ECG=CARDIAC_CYCLE NORMAL_ECG ;
DO

maxdur < - M A X F (maxdur, CARDIAC_CYCLE. dur, NORMAL_ECG.
maxdur) ;
mindur < - M I N F (mindur, CARDIAC_CYCLE. dur, NORMAL_ECG.
mindur) ;

END
NORMAL_ECG=R ;

DO
maxdur :=0;
mindur :=0;

END
CARDIAC_CYCLE= RS ST T TP P PR Q;

DO
dur := RS. dur + ST. dur+T. dur+TP. dur + P. dur + PR. dur + Q. dur ;

END

Appendix C

i) ST=I_LIST
DO
I_LIST. length :=0;
COND
IF I_LIST.slength < 6 THEN BACKTRACK;
END

ii) I_LIST=II_LIST;
DO
dur:= I. dur+1 _ LIST. dur;
I_LIST. length :=length+1;
slength=I_LIST. slength-f 1;
COND
IF I_LIST.length > 10 THEN BACKTRACK;
END

88 T. Gyimóthy—J. Toczki: Syntactic pattern recognition in the HLP/PAS system

iii) I_LIST=I;
DO
slength := 1;
END

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7.
SZEGED, HUNGARY
H—6720

References

[1] BOCHMANN, G. V., Semantic evaluation from left to right, Commun. Ass. Comput. Mach., vol
19, pp. 55—62, Feb. 1976.

[2] Fu, K. S., (ed), Syntactic pattern recognition, applications, Springer-Verlag, Hew York/Berlin
1977.

[3] GRITZALI, F. and G. PAPAKONSTANTINOU, A fast piecewise linear approximation algorithm,
Signal Processing, vol. 5, pp. 221—227, 1983.

[4] GYIMÓTHY, T., E. SIMON and A. MAKAY, An implementation of the HLP, Acta Cybernetica,
Tom 6, Fasc. 3, pp. 315—327.

[5] GYIMÓTHY, T . , K o c s i s , F . , MAKAY, Á . , SIMON, E . a n d TOCZKI, J., T h e c o m p i l e r g e n e r a t o r
HLP/PAS, Computer and Automation Institute, Hungarian Academy of Sciences, Report, to
be published.

[6] KASTENS, U., Ordered Attribute Grammars, Acta Informática 13, 229—256, 1980.
[7] KoSKiMtES, K. and PAAKKI, J., HLP84~Semantic metalanguage and its implementation, Univer-

sity of Helsinki, Report C—1983—69.
[8] PAPAKONSTANTINOU, G., An interpreter of attribute grammars and its application to the wave-

form analysis, IEEE Transactions on Software Engineering, vol. SE-7, No. 3, pp. 279—283,
May 1981.

[9] SKORDALAKIS, E. and PAPAKONSTANTINOU, G., Toward an attribute grammar for the description
of ECG waveforms, 7-th International Conference on Pattern Recognition, 1984.

[10] TOCZKI, J., et al., On the Pascal implementation of the HLP, Proc. of 4th Hungarian Computer
Science Conference, Gyór, 1985, 12 pp.

[11] You, K. C. and Fu, K. S., A syntactic approach to shape recognition using attributed grammars,
IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-9, Ño. 6, pp. 334—345, 1979.

(Received May 6,1986)

Software Specification Methods and Attribute Grammars

GUENTER RIEDEWALD, PETER FORBRIG

1. Introduction

An important problem of modern computer science is the development of qual-
ity software. The necessary design of large systems in the 1980s requires other methods
than the design of smaller systems in the 1960s and becomes more and more an engi-
neering problem.

There are many different methods to cope with this problem. These methods
range for example from data driven program development by Jackson [Jac 75] to
information hiding or data encapsulation by Parnas [Par 72].

Computer science calls for programming development systems, which support
the programming development process by the computer itself.

After a short suvery of the fundamentals of software specification we want to
illustrate the use of attribute grammars in commercial data processing. It will be pre-
sented how the well known methods of data driven programming and data encap-
sulation, usually classified as contrary concepts, can be combined by using attribute
grammars with abstract data types.

Such attribute grammars represent specifications in a clearly readable form. The
grammatical definition formalism is used only to the necessary extend. Many imple-
mentation details are encapsulated in abstract data types.

2. Software Specification

2.1. Life Cycle Model

We will use the life cycle model for demonstrating the problems of software de-
sign in different stages of its development. Our point of view is demonstrated in Fig-
ure 1.

The arrows in Figure 1 represent possible relations between components of the
life cycle.

The first problem in software design is to define the exact task of a programming
system. In all other phases of development the corresponding specifications have to be
compared and verified with this requirement specification.

90 G. Riedewald—P. Forbrig

7
Requirement Specification

Documentation

\\\ '
\ \ Problem Specification

The task of the software is described in the language of the cus-
tomer. An important aspect is the in-/output behaviour.

<Y Pro]

The structure of the software and the interfaces of the components
are fixed.

Program Specification
\ / I The data structures and their relations are described.

\ / Y * \ I /Implementation Specification

^ J J ^ T h e software is coded in a computer language and implemented.

Maintenance •«- Use of the Software The application
of the software
is still saved.

The programming system undertakes the desired task.

Application of the Software is Finished

Figure 1- Life Cycle Model of Software

Figure 1 also demonstrates that the development of software is not finished after
its implementation. Maintenance of software is of utmost importance. Experiences in
software engineering have shown, that maintenance costs can be higher than all ear-
lier development costs.

If programming systems are not developed in a good manner according to main-
tenance, the application of the software becomes more and more complicated.

According to Figure 1 software maintenance can influence all specifications of
a project. The simplest modifications may have an influence on implementation only.
More complex changes are even more difficult and it is possible, that not all specifi-
cations are updated in the right way.

In this case different descriptions contain contradictions and the application of
the project is very difficult.

The same problems may occur during adaptation of software for further cus-
tomers, which is. necessary from the economic point of view.

Therefore, modern software engineering requires methods proving the different
descriptions of software and tools generating one specification from the other auto-
matically or in a dialogue with the sotware engineer.

Software Specification Methods and Attribute Grammars 91

2.2. Specification Methods

2.2.1. Fundamentals of Specification Methods

Nowadays, some methods well known from semantic definition of programming
languages can be found in software specification reports. This is not surprising be-
cause an exact semantic definition of a programming language will also define the
semantics of all its programs. Therefore, it is logical to use well known sematic defini-
tion methods for describing software.

Beside specification in natural languages, algebraic, logical and denotational
specifications are the fundamentals of many methods.

To illustrate the principles of these methods we will use a simple example, the
modified telegram problem. The original problem was already studied in [Heh 83],
[Jac 75], [Noo 75] and [Rec 84].

2.2.2. Natural Language Specification

Specifications in natural languages are easily understood, whereas formal lan-
guages are more difficult to understand. But natural languages have the disadvantage,
that they are ambiguous. Therefore it is very difficult to write down a precise speci-
fication in a natural language.

Natural Language Specification of a Simple Telegram Problem

A program is required to process a stream of telegrams. This stream is available as
a sequence of words and spaces. The stream is terminated by the occurrence of the
empty telegram. Each telegram is delimited by the symbol * * The tele-
grams are to be processed to determine for each telegram the number of words with
more than twelve and the number of words with less than twelve characters. The
telegrams together with the statistics have to be stored on an outputfile by eliminating
all but one space between the words. The longest possible word has twenty charac-
ters. For simplicity telegram streams containing telegrams with words longer than
twenty characters are omitted.

2.2.3. Logical Specification

Algebraic specifications conceive programs as being abstract data types arid
therefore heterogeneous universal algebras. According to.the static character of
algebras the specification of a program means to define the structure of input and
output data and the ralations between them. For this purpose sorts representing data
types, operation symbols describing the "rough" structure of data and auxiliary oper-
ation symbols describing "details" of data are introduced.

Properties of operations assigned to operation symbols in concrete algebras, and
therefore properties of data, are described by axioms (systems of term equations).

92 G. Riedewald—P. Forbrig

Auxiliary operation symbols and axioms are also used for describing the depend-
encies between input and output data.

We can get a shorter description using a method known from the definition of
programming languages (see e.g. [Rie 85]). Then the input telegram stream is con-
sidered as a program. The concrete semantic meaning is the output telegram stream.
In this case the structure of the input telegram streams is defined only. By axioms all
input streams are grouped into equivalence classes. Each class represents the abstract
semantic meaning of the elements of the class. Therefore the axioms must be such that
a class contains all input telegram streams differing only by the number of spaces
between the words. Furthermore a class must be defined containing all erroneous
input telegram streams.

Fundamental work was done by Goguen and Thatcher [Gog 74] and also by
Guttag [Gut 75]. The shown approaches are not the only ones. Other possible alge-
braic approaches are proposed for example by Guttag and Horning [Gut 78] using
routines or by Mallgren [Mai 80] using event algebras.

Algebraic Specification of the Simple Telegram Problem Sorts

c - Character Data Type
w = Word Data Type
WS - Word Sequence Data Type
T = Input Telegram Data Type
TS = Input Telegram Sequence Data Type
s — Input Telegram Stream Data Type
OT - - Output Telegram Data Type
OTS — Output Telegram Sequence Data Type
OS — Output Telegram Stream Data Type
p Program Data Type
N — Integer Data Type
B - Boolean Data Type

Operation Symbols

Formally only operation symbols are defined here. But our comments will al-
ready give an interpretation to increase the readability of the definitions.

char: — char
{char £{A, ..., Z, a, ..., z, 0, ..., 9}
constructs the corresponding character.}

dig: - dig
{dig £{0, ..., 9}}

bool: — bool
{bool € {true, false}}

sword: C W
{Constructs a simple word consisting of one character only.}

word: fVXC — W
{Constructs a word by concatenating a word and a character.}

Software Specification Methods and Attribute Grammars 93

sseq: W - WS
{Constructs a simple word sequence consisting of one word only.}

seq: WSXW - WS
{Constructs a word sequence by concatenating a word sequence, a space
and a word.}

eseq: WS - WS
{Constructs a word sequence by appending one space to a word sequence.}

tel: WS -+ T
{Constructs from a word sequence a telegram by appending * * * " . }

stseq: T TS
{Constructs a simple telegram sequence consisting of one telegram only.}

tseq: TSXT - TS
{Constructs a telegram sequence by appending one telegram to a tele-
gram sequence.}

stream: TS — S
{Constructs from a telegram stream an input stream by appending

the empty telegram.}
outtel: WSXNXN OT

{Constructs an output telegram by composing a word sequence with the
integers for short and long words.}

sotseq: OT -> OTS
{Constructs a simple output telegram sequence consisting only of one
output telegram.}

outseq: OTSX OT - OTS
{Constructs an output telegram sequence by appending one output tele-
gram to an output telegram sequence.}

outstream: OTS - OS
{Constructs from an output telegram sequence an output telegram
stream.}

prog: SXOS^P
{Composes an input telegram stream and an output telegram stream to a
program.}

length: W-+N_
{For a given word the number of characters is delivered.}

succ: N — N
add: NXN —• N
eq: NXN — B
le: NXN B

{These are the well known successor, addition, equal and less or equal
operators.}

Auxiliary operation symbols

isword:
isws:
istel :
ists:
iss:

W ^ B
WS - B

T — B
TS-B

S-+B

94 G. Riedewald—P. Forbrig

isotel:
isots:
isos:
isprog:

isderts:

isderws:

is:

isshort:

OT
OTS

OS p

B
B
B
B

{These operators deliver the value true if the corresponding word, word-
sequence, telegram, telegram sequence, telegram stream, output telegram,
output telegram sequence, output telegram stream or program are well
formed; otherwise false is delivered.}

TSXOTS - B
{If the output telegram stream is derivable from the telegram stream true
is delivered otherwise false}

WSXWS^B
{If the first wordsequence is derivable from the second one then true
otherwise false is delivered.}

V/XW- B
{If the two words are identical the operation delivers true otherwise
false.}

W - B
{If the number of characters of the word is less or equal twelve then true
otherwise false is delivered.}

Axioms:

{JSTs means a variable of sort S.}
isprog (stream (XT S) , outstream (A'ors))=iss (stream (XS)T)

& isos (outstream (XOTS))
& isderts (X T S , X0TS)
{A program is well formed if the input telegram stream and the output telegram
stream are well formed and the output telegram sequence is derivable from the
input telegram sequence.}

iss (stream (Z r s))=its (XTS)
{A telegram stream is well formed if the corresponding telegram sequence is well
formed.}

ists (tseq (XTS, Ar
T))=ists (X r s) & istel (XT)

ists (stseq (AV))=istel (XT)
{A telegram sequence is well formed if it consists of a telegram sequence and a
telegram and both are well formed. It is also well formed if it consists of one well
formed telegram only.}

istel (tel (AVs))=isws (Xw^)
{A telegram is well formed if the corresponding word sequence is well formed.}

isws (eseq (AVs))=isws (AVS)
isws fseq {Xws, Ay))=isws (^Vs) & is word (Xw)
isws (sseq (AV)=isword (Xw)

{A word sequence is well formed if it consists of a well formed word sequence
followed by a space. It is also well formed if it consists of a word sequence and
a word and both are well formed.
If it consists of a word only and this word is well formed the word sequence is
well formed too.}

Software Specification Methods and Attribute Grammars 95

isword (length (Xw), succ20 (0))
{A word is well formed if its length is less than or equal to twenty.}

length (sword (Xc))=succ (0)
length (word (Xw, X c)=add (length (X w ,) succ (0))

{The length of the simple word consisting only of one character is one and the
length of a word consisting of a word followed by a character is the length of
this word plus one.}

isos (outstream (To r s))=isots (X0TS)
{An output telegram stream is well formed if the corresponding output telegram
sequence is well formed.}

isots (sotseq (Xor))=isotel (XOT)
isots (otseq (XOTS, X0T))=isots (X0TS) & isotel (XpT)

{An output telegram stream is well formed if it consists of one well formed output
telegram only. It is also well formed if it consists of an output telegram sequence
and an output telegram and both are well formed.}

isotel (outtel (sseq (Xw,) XN, 7^)=isshort (Xw) & eq (X, succ (0))
& isword (Xw) & eq (YN, 0)
{If the output telegram consists of one short word only then the number of short
words is one and the number of long words is zero.}

isotel (outtel (sseq (Xw), XN, 7W)=(~| isshort (Xwj) & isword (Xw)
& eq(XN, 0) & eq m (YN, succ (0))
{If the output telegram consists only of one word, which is a well formed word
but not a short word, then the mumber of short words is zero and the number of
long words is one.}

isotel (outtel (seq {Xws, Xw), add (XN, succ (0)), YN)-
isotel (outtel {Xws, XN, YN) & isshort (Xw) & isword (Xw)
{If an output telegram consists of a word sequence and a short word and the
telegram of the word sequence is a well formed output telegram then the number
of short words of the whole telegram is equal to the number of short words of this
telegram plus one. The number of long words is the same in both telegrams,

isotel (outtel (seq (Xws, Xw), XN, add (YN, SUCC (0)))=
isotel (outtel (Xws, XN, YN) & ("1 isshort (Xw))
& isword (Xw)

isotel (outtel (eseq (Xws), XN, Fw))=false
{An output telegram cannot contain more than one space between the words.}

isotel (outtel (seq (X w s , Xw), 0, 0))=false
{An output telegram composed of a word sequence and a word cannot have zero
short and zero long words.}

isshort (AV)=le (length (Xw), succ12 (0))
{A word is short if it has less than or equal to twelve characters.}

isderts (stseq (tel (AVs)), sotseq (outtel (Yws, XN, YN))=
, isderws (Xws,

isderts (tseq (XTS, tel (AVs)), otseq (X0TS, outtel
isderts (XTS, XOTS) & isderws (Xws, Yws)

isderts (tseq (XTS, XT), sotseq (Z0T))=false
isderts (stseq (XT), otseq (XOTS, XOT))=false

{An output telegram stream is derivable from a telegram stream if both consists
of one telegram only and the corresponding word sequences are derivable. It is

96 G. Riedewald—P. Forbrig

also derivable if both streams consist of a telegram stream and a word sequence
and they are derivable correspondingly. But an output stream is not derivable from
an input stream if one of them is a sequence and the other one is a simple se-
quence.}

isderws (sseq (Xw), sseq (iV))=is (Xw, Yw)
isderws (seq (AVs, Xw), seq (Yws, IV))=isderws *VS)

& is (X w , Yw)
isderws (eseq (AVS), 1VS)=isderws (Xws, Yws)
isderws (seq (AVs> Xw), sseq (IV)=false
isderws (sseq (Xw), seq (IVS , IV)=false

{An output word sequence is derivable from an input word sequence if both
consist of one word only and these words are identical. It is also derivable if both
sequences consist of a word sequence and a word and the word sequences are
derivable and the words are identical. If an output word sequence is derivable
from an input word sequence then the output sequence is also derivable from the
input word sequence followed by a space. If one sequence is a simple sequence
and the other is a sequence then the output sequence is not derivable from the
input sequence.}

Because of readability the axioms for "is" are omitted. They can be built straight-
forward. "eq", "le", "succ" and "and" are assumed to be standard operations.

2.2.3. Logical Specification

Logical specifications are based on predicate calculus. Well known approaches
are the axiomatic approach introduced by Hoare [Hoa 69] to define the semantics
of programming languages and the logical programming using the programming
language PROLOG [Kow 74].

Hoare's axiomatic approach

To define the semantics of a programming language Hoare uses specifications.
A specification is a string of the form

{¿}P{B},
where p is a part of a program, and A and B are formulas which can be interpreted as
assertions. Therefore the above specification could be read as:

"If A is valid before execution of p and p is finished then B is valid after execu-
tion of p (partial correctness)."

To specify a programming language one needs a finite system of specifications
consisting of axioms and rules of inference.

In the case of our simple telegram problem we consider a stream of input tele-
grams as a program. The semantics of this program is defined by the corresponding
stream of output telegrams. Such a "program" consists of elements from the set

C = {"A",..., "Z", "a",..., "z", "0", ..., "9", " # " , " * * * * " }
(# represents one space,
^ * * represents the end of a telegram)

Software Specification Methods and Attribute Grammars 97

and of the (invisible) concatenation operator which concatenates a part of an input
stream with an element into a new part of an input stream.

For the definition of the semantics we need some auxiliary variables:

output — Part of the output stream corresponding to the treated part of the input
stream,

length — Actual number of characters in the actually treated word,
short — Actual number of short words in the actually treated telegram,
long — Actual number of long words in the actually treated telegram,
telno — Number of already treated telegrams.

length = — 1 means the last telegram of the input stream was treated, length = 0
means the end of a word was treated. The quintuple (output, length, short, long, telno)
represents "evaluation" states of our "programs". That means a component of a
given input stream of telegrams transforms a given quadruple into a new one. Partic-
ularly, a given input stream of telegrams transforms the quintuple (empty, 0, 0, 0, 0)
into a quintuple with the sought output telegram stream as its first component.

In the following system of axioms and rules of inference we omit axioms and
rules for formulas supposing that all formulas are well defined.

Axioms:

A = output = o & length = /&/ sr 0

B = output = o.c & length = 1 + 1

ce{"A", ..., "Z", "a", ..., V , "0",.. . , "9"}

The last telegram has not been treated. Therefore the output stream is concate-
nated with the new element c. ("." means concatenation)

{ ¿ l } # { i ? l }

{A2} #{£2}

{,43} #{£3}

Al = 12<lengths 20 & long= / & output= o
B1 - length=0 & long= / + 1 & output=o. #
A2=0<lengths 12 & short=s & output=o
J32=length=0 & s h o r t = i + 1 & output=o. #
A3-lengths 0
53=length=0

These axioms count the number of short and long words in the actually treated
telegram. The last axiom secures that only one space occurs between words of the
output stream.

{/41}* * * *{51}

{,42}* * * * {52}
7 Acta Cybernetica VIII/1

98 G. Riedewald—P. Forbrig

,41 = (short =»0 or long>0) & length=0 & output=o
&te lno=i

51 = short=0 &long=0 & t e l n o = / + l
&output=o. .short. # .long. #

^42=short=0 & long=0 & length=0 & output=0
& telno notequal 0

jB2=output=o. .0. # .0. # & length = — 1

In the first axiom the actual telegram is finished. For this telegram the number of
short and long words is concatenated to the output stream.

In the second axiom the last telegram is treated and output contains the output
telegram stream.

Rule of inference:
{P)p\{Q\}, {Q\}p2{Q}

{P}p\p2{Q}

where p i is a part of an input stream and

p2e{"A",..., "Z", "a",..., "z", "0",..., "9", " # " , " * * * *"}.

This rule enables the composition of specifications and thereby the construction
of specifications for input streams of telegrams.

Specification of the simple telegram problem using predicate calculus

For the definition of the simple telegram problem we use now a finite system of
Horn clauses (see e.g. [Loy 84]). A Horn clause is a string of the form

B^A1,...,A„, (*)

where B, Alt ..., A„ are atoms.
An atom consists of a n-ary predicate symbol followed by a list of n terms inserted

in paranthesis. Let x1,...,xK be the only variables occurring in the terms of
B, Au ..., A„. Then (*) means

(Vx1,...,xk)(A1&...&An=>B).

By usual interpretation of formulas we get: _
For all values of the variables JC1; ..., xk such that all Ak are valid B is valid too
(Ai and B are assertions arising from A{ and B respectively).

For the definition of facts one uses a special kind of Horn clauses:

B

Horn clauses for the simple telegram problem (For simplicity we omit the de-
finition of some clauses referring to natural numbers and the concatenation operation
in terms.):

To achieve better readability of the clauses we will first give an interpretation of
the atoms.

Software Specification Methods and Attribute Grammars 99

sum (X, Y,Z) — Z is the sum of X and Y.
greater (X, Y) — X is greater than Y.
lessequal (X, Y) — X is less than or equal to Y.
character (X) — X is a character,
word {X, L) — X is a word of length L.
telegram (X , Y) — Y is the output telegram corresponding to the input

telegram X.
telegramstream

(X, Y) — Y is the output telegram
[telstr (X, F)] stream corresponding to the input telegram steream.

character (X) - . Xd{"A", ..., "Z" , "a", ..., "z", "0", ..., "9"}
word {X, 1) — character (X).
word (AT, LI) — character (X), word (Y, L), sum (L, 1, XI).
telegram (# X, F)—telegram (X, F).
telegram (X # F , X # Z # , S # L 1 #) - word (X , L0),

tel(F, Z # S # L #) ,
greater (L0, 12),
lessequal (L0, 20),
sum (L, 1, LI).

telegram (X # F, X # Z # S 1 # . L #) - word (X, L0),
tel (Y,Z#S#L#),
lessequal (L0, 12),
sum (S, 1, SI).

tel # 0 # 0 #) — .
tel (X, F)- telegram (X, F).
telegramstr * * * * # 0 # 0 #) - .
telegramstr (XI, YO) - telegram (X, F),

telegramstr (I, O).
telegramstream (XI, YO) — telegram (X, F)

telegramstr (I, O).

For a given input telegram stream Ti the corresponding output telegram stream
is determined (if it exists) beginning from the goal telegramstream (Ti, F). This is
done by constructing a prove for the goal with the Horn clauses. The variables of the
Horn clauses are suitably substituted. The determined value of the variable F in the
goal is the sought output telegram stream.

2.2.5. Denotational Specification

The objective of denotational specification is to think of programs as being func-
tions which transform input values into output values. However unlike a program
which specifies how to compute the function, the denotational specifications merely
indicate which function the program should compute.

The fundamentals of this theory were developed by Scott and Strachey [Sco 71]
to define the semantics of programming languages. They were further developed by
Stoy [Sto 77].

7»

100 G. Riedewald—P. Forbrig

To specify our simple telegram problem we will use the meta-language of the
Vienna Development Method, (see e.g. [Bj0 78])

Analogously to the axiomatic approach the starting point is to consider an input
telegram stream as a program. The semantic meaning of this program is the corre-
sponding output telegram stream. Now, the denotational approach requires the de-
finition of syntactical and semantical domains and the definition of functions deter-
mining the semantic meaning of program parts. Furthermore, we need some functors
for "pasting together" semantic functions.

Denotational Specification of the Simple Telegram Problem Syntactic Domains:

Program = Prog.
Prog: :Stream Endword.
Stream=Tel | Telseq.
Tel::Wordseq Endword.
Telseq: rStream Tel.
Wordseq= Word | Words.
Word: :Charstr Spaces.
Words: rWordseq Word.
Charstr=Character | Characters.
Character=A\...\Z\a\... |z|0|... |9.
Characters: rCharstr Character.
Spaces=Space| Spaceseq.
Space = # .
Spaceseq::Spaceseq Space.
Endword = * * * * .

Sematic Domains:
OUTTELSTREAM: :OUTTEL*
OUTTEL: :WORD* END SPACE INT SPACE INT SPACE
WORD: ¡CHARACTER* SPACE
CHARACTER = {A, ..., Z, a, ..., z, 0 , . . . , 9}
INT={0, 1,2,3, ...}
S P A C E = #
END= * * * * *

Elaboration Functions:
type: eval-program: Program — OUTTELSTREAM
type: eval-orog: Prog - OUTTELSTREAM
type: eval-stream: Stream - OUTTELSTREAM
type: eval-tel: Tel - OUTTEL
type: eval-wordseq: Wordseq — OUTTEL
type: eval-word: Word - INTxINT
type: eval-charstream: Charstream — INT
type: eval-characters: Characters — INT

eval-program (p) A eval-prog (p)
{The result of the function eval-program (p) is the result of the function eval-
prog (/>).}

Software Specification Methods and Attribute Grammars 101

eval-prog (mk-prog (s, e))A

let z>l=eval-stream (5)
v2=

in vl.v2

{A program p consists of a stream s and an end word e. The result of eval-prog
(p) is equivalent to the result of eval-stream (s) concatenated by the empty
telegram.}

eval-stream (st) A

cases st: mk-tel (WJ, e) eval-wordseq (WJ),
mk-telseq (s, t) -»-let vl = eval-stream (s),

«2=eval-tel (t)
in vl.v2

{If the stream st consists of a word sequence ws and the end word e the result of
eval-stream (st) is the result of eval-wordseq (WJ).
But if st consists of a stream s and a telegram t eval-stream (st) is equal to the
concatenation of the results of eval-stream (s) and eval-tel (t).}

eval-tel (mk-tel (WJ, e)) A eval-wordseq (ws)

{A telegram consists of a word sequence ws and an end word e. The result of
eval-tel (?) is equal to the result of eval-wordseq (ws).}

eval-wordseq (ws) A

cases wj: mk-word (w) — let (x, >>)=eval-word (w)
in

mk-words (sw, w) - • l e t
(u, v)=eval-word (w),

* * # z # = eval-wordseq (JW)

{If the word sequence ws consists of one word w only the result of eval-wordseq
(wj) is the composition of w and the result of eval-word (w).
If wj consists of a wordseqimce JW and a word w the result of eval-wordseq (WJ)
is a composition of the results of eval-word (W) and eval-wordseq (JW).}

eval-word (mk-charstr (cs, s))A
if eval-charstr (cs)s 12

then (1, 0)
else
if eval-charstr (cs)s 20

then (0, 1)
else undefined

{A word consists of a character stream cs and a space sequence s. The result of
eval-word (w) is equal to (1,0) or (0,1) depending on the result of eval-chararstr

102 G. Riedewald—P. Forbrig

eval-charstr (cs) A

cases cs: mk-character (c) — 1,
mk-characters (c)—eval-characters (c)

{If the character stream cs consists of a character c the result of eval-charstr (cs)
is equal to one.
If cs consists of characters c then the result of eval-charstr (CJ) is equal to the
result of eval-characters (c).}

eval-characters (mk-characters (cs, c))A

let x—eval-charstr (cs)
in x+1

{Characters ca consist of a character stream cs and a character c. The result of
eval-characters (ca) is equal to the result of eval-charstr (cs) plus one.}

2.2.6. Relations Between Fundamentals of Problem, Program
and Implementation Specification

A selection of some references related to the topic is given in Figure 2.
According to the methods for problem and program specification there are many

tools for implementation specification, which are also influenced by mathematics.
Figure 2 also presents a classification of some of these tools.

There is no fixed way from program specification to programming. The software
engineer can choose all programming methods for every specification.

But modern methodologies of software engineering try to unify the descriptions
during the whole life cycle. Especially the implementation specification attains a
higher level of abstraction and has the form of program or. problem specification.

There is a good success in logical programming (e.g. PROLOG), in programming
by grammars (e.g. CDL, HFP) and in programming on a very high level (e.g.
MODEL).

All modern methods have in common, that the software engineer is not con-
fronted with all implementation details. In many cases he does not know them.

He can concentrate upon the main design principles. The details are generated
automatically (artificial intelligence) or are already implemented (abstract data
types).

In our opinion programming by grammar will be more important in future. Watt
and Madsen [Wat 81] have shown for example, that algebraic, logical and denota-
tional specification can be expressed by extended attribute grammars.

2.2.7. Grammatical Specification of the simplified telegram problem

First, we will informally introduce the notion of attribute grammars on the basis
of grammars of syntactic functions [Rie 83].
An attribute grammar is a contextfree grammar

G = (V, T, S, P)

Software Specification Methods and Attribute Grammars 103

Program Specification

Natural
Languages

Algebraic Spec.

Burstall 81
Ganzinger 82
Gogolla 82
Goguen 77
Guttag 75
Reichel 80
Riedewald 79,
Liskov 75
Wulf 76

85

Other Methods

Logical Spec.

Apt 82
Bibel 75
Colmerauer 78
Hoare 69
Kowalski 74
Pereira 80
Robinson 77
Szeredi 77
Warren 82

Denotational Spec.

Allison 83
Bj orner 82
Cleavelend 80
Jones 82
Lucas 82
Manna 74
Scott 71
Stoy 77
Tennent 75

Algorithmic
Languases

A L G O L 60/68
COBOL 61
F O R T R A N 54
PASCAL 71

Programming
with Abstr.
Data Types

Logical .
Programming

Programming
on Very
High Level

ADA 79 P L A N N E R 69 L U C I D 77
A L P H A R D 76 P R O L O G 75 M O D E L 83
BLISS 73
CLU 73
SIMULA 67

Implementation Specification

VAL 79

Programming
by Grammars

C D L 76
ELSA 83
H F P 81

Other Methods

Figure 2. Classification of Problem, Program and Implementation Specification
Methods and Tools

F-vocabulary, T-set of terminals, N-set of nonterminals
V=NUT,' 5-start element, P-set of production rules

augmented with parameters, auxiliary syntactic functions and semantic functions.
Auxiliary syntactic functions are necessary to describe the static semantic.

The rules have the form

f(pi,.--,pi,)::=f1(pi\..:,p/n})..-fr(pi'>..-,pfn'f) . ,

(Pi1 ,-,p"l,)...Hk (p ï " p %) .

104 G. Riedewald—P. Forbrig

Hlt..., Hk£ {auxiliary syntactic functions} U {semantic functions}, set of para-
meters, x, y, r, k£ set of integers.

The telegram problem can be specified in different ways by a grammar. The
following two methods are possible:
1. The input and output telegram streams are described by parameters. The start

symbol has the input telegram stream as input parameter and delivers the output
telegram stream as the value of the output parameter.

2. The input telegram stream is described by a context-free grammar and this gram-
mar is augmented by parameters and functions in such a way that the start element
of the grammar delivers the output telegram stream as the value of the parameter
of of the start symbol.

The first method would result in a grammar very similar to our specification
using Horn clauses. Therefore we will omit this example here. The interested reader
will very easily get such a grammar.

Let us demonstrate the second method in full detail.

Grammatical Specification of the Simple Telegram Problem
(using the second method)

I. Semantic functions

— CATC (|SI, \S2, t S)
This function concatenates S2 to 51 and delivers S.

— CAT3(|S1, JS2, JS3, tS)
This function delivers 51 S2. # S 3 . # in S.

— COUNT (|L, \Longl, \Short\, \ Long, \ Short)
IF L < 12 THEN Long Long I; Short:= Shortly \

ELSE Long := Longl +1; Short := Shortl
FI

— ADD (M, |B, \C)
C:=A+B

II. Auxiliary Syntactic functions

— OVERLENGTH (IL)
The actions of the parser are influenced by this function. The application of the
corresponding rule is possible if L is less or equal to 20 only.

III. Production rules

1. Program (f Outstream): :=Telegramstream (t Out)
" # " Endsymbol
CAT3 (10«/,\ "0", TO",\Outstream).

2. Telegramstream (t O): :=Telegram (t 0).

Software Specification Methods and Attribute Grammars 105

3. Telegramstream (tO)::=Telegramstream (\01)
Telegram (i02)
CAT2 (iOl, |02 , tO).

4. Telegram (fO)::= Wordsequence (fOl, tShort, tLong)
Endsymbol
CAT3 0O1, \ Short, [Long, \0).

5. Wordsequence(fO, \Short, \Long)::=
Word (tO, f Length)
OVERLENGTH (\Length)
COUNT 0Length, 1"0", |"0", \Short, \Long).

6. Wordsequence (fO, \ Short, \Long)::=
Wordsequence (fOl, \ Short I, \Long\)
Word (t02, f Length)
OVERLENGTH (¡Length)
COUNT (¡Length, \Shortl, \Long\,

t Short, \Long
CAT2(|01, \02, tO).

7. Word(\Word,\L)-.:— Charactersequence (ffFoni, \L)
Spacesequence.

8. Charactersequence (\C, t"l")::=Character (fC).
9. Charactersequence (\Char, 1 Length): :=

Charactersequence (\Charl,] Length I)
Character (\Char 2)
CAT2 (\Char\, \Char2, \Char)
ADD (\Length\, fLength).

10. Character(f"A")::="A".

35. Character (f "Z") : :="Z" .
36. Character (t " f l ") : := 'V .

51. Character (t 'V ') : :="2" .
52. Character (t"0"): :="0".

62. Character (f"9") : :="9".
63 Endsymbol::= .
64. Spacesequence : : = " # " .
65. Spacesequence ::= Spacesequence " # " .

2.3. Programming with Production Rules

The relations of methods, which were developed independently for using pro-
duction rules in programming, are the result of current research.

Figure 3 shows some interesting relations between attribute grammars and logical
programming.

The world wide interest in logical programming and the relations of Figure 3
support our opinion to study applications of attribute grammars in software engi-
neering. ? '

106 G. Riedewald—P. Forbrig

Programming with Production Rules

Programming with
Attribute Grammars

Attribute Grammars
Knuth 68

Two-Level Grammars
van Wijngaarden 68

I
I

Grammars of Syntactic
Functions

Riedewald 71

Affix Grammars
Köster 71

Programming with
Logical Rules

Thè Semantics of
Predicate Logic as
Programming Language

Kowalski 74

PROLOG
Roussel 75

Grammars and Predicate Logic
Koch 81

A Version of PROLOG
Based on the Notion
of Two-Level
Grammar

Mahiszynski 82

Beyond PROLOG:
Software
Specification
by Grammar

Wilson 82

I I

Implementation of
an Attribute
Grammar with PROLOG

Logrippo,
Skuce 83

Figure 3. Some Relations Between Programming Methods Using Production Rules

2.4. Some Software Development Methods and Tools with
Different Use of Data and Information

. We want to discuss some other arguments supporting the application of attrib-
ute grammars in software development. Let us first have a look at some methods and
tools supporting the use of data and information in different kinds. Figure 4 is an
attempt to classify some methods and tools. Such tools can also be used in another
way, of course, but they were mainly designed for this purpose.

Software Specification Methods and Attribute Grammars 109

Programming Method

Data Encapsulation

Attribute
Grammars

Languages
with .Abstract
Data Types

ADA 79
ALPHARD 76
BLISS 73
CLU 77
SIMULA 67

Rechenberg 84 ^ -
Forbrig 84

Data Driven Programming

Attribute
Grammars

CDL76
Hehner 83
Hughes 79
Logrippo 83
Noonan 75

Very High
Level
Languages

I
MODEL 83
LUCID 77
VAL 79

Rechenberg 84 {with data
Forbrig 84 • encapsulation}'

Problem Driven Programming
{without data encapsulation}

Attribute
Grammars

Maluszytiski 82

Algorithm Driven Programming
{without data encapsulation}

Programming in
Predicate Calc.

PROLOG 75
PLANNER 69

/
Attribute
Grammars

I
CDL 76
ELSA 83
HFP 81

Functional Programming
Backus 78

•Algorithmic
Languages

ALGOL 60/86
COBOL 61
FORTRAN. 54
PASCAL 71
PL/I 67

Figure 4. Classification of some Programming Methods and Tools

The following results can be obtained from Figure 4:
1. Attribute grammars are applied in all classified fields.
2. The programming language CDL can be used in a data driven and algorithm

driven way. 5'
3. Attribute grammars can be combined with data encapsulation.
4. Attribute grammars can be used to combine data driven programming and data

encapsulation.
The method of data driven programming by attribute grammars with abstract

data types was discussed in Rostock in [For 84 a]. Some similar results can be found
in [Rec 84]. Rechenberg proposes attribute grammars mainly as a tool for program
specification. The implementation is suggested by top-down programming.

We will mainly use attribute grammars as input for a translator writing system.
Examples of data driven data processing using attribute grammars with abstract data
types will be presented in the following section.

108 G. Riedewald—P. Forbrig

2.5. Data Driven Programming with Abstract Data Types

2.5.1. Attribute Grammars and Abstract Data Types

We will extend the definition of an attribute grammar by abstract data types. The
context-free grammar is not only augemented with parameters, semantic functions
and syntactic functions but also with functions of abstract data types.

That means
•Hi, ..., Hk£{semantic functions} U{syntactic functions} U{functions of abstract
data types}.

These grammars are more effective to implement, because not all information
has to be transfered a long way via parameters.

In our opinion attribute grammars with abstract data types are better to read and
write. They can better be maintained.

2.5.2. Examples

2.5.2.1. Grammatical Specification of the Simple Telegram Problem

I. Abstract data types

* File of output telegram stream with statistics
— OPEN-OUTFILE, CLOSE-OtiTFILE
. These functions open and close the file.

— OUTWORD (iWord, \Length)
The "Word" with given length is stored on the file.

— OUTCOUNT ([Short, \Long)
The number of long and short records of the current telegram are stored on
the file according to the specification. Short. #Long. #)

II. Semantic functions

We use the semantic functions of our example in section 2.2.7.

III*. Aixitiary syntactic functions

We use the syntactic functions of the example in section 2.2.7.

IV. Production rules

1.. Program ::=Begin Stream CLOSE-OUTFILE.
.2. Begin ::=OPEN-OUTFILE.
3. Stream::=Telegramstream. " # " Endsymbol

OUTCOUNT 0"0" , J"0"). .
-4. Telegramstream: :=Telegram.
5. Telegramstream::=Telegramstream Telegram. • -

Software Specification Methods and Attribute Grammars 109

6. Telegram ::=Wordsequence (t Short, \Long)
Endsymbol
OUTCOUNT (\Short, \Long).

7. Wordsequence (f Short, \ Long): := Word (t Word, t L)
OVERLENGTH (J i)
COUNT (\L, J"0", r '0" , \ Short, fLong)
OUT WORD ([Word, \L).

8.Wordsequence (t Short, \ Long): :=
Wordsequence (\Shortl, ¡Longl)

Word (\Word, \L)
OVERLENGTH (\L)
COUNT (|L, ¡Short], [Longl, \Short, fLong)
OUTWORD (¡Word, \L).

9. Word (t Word, t L): :=Charactersequence (t Word, \L)
Spacesequence.

10. Charactersequence (fC, t "!")::=Character (|C).
11. Charactersequence (f C, t L) : :=

Charactersequence (fCl, f Z.1)
Character (fC2)
CAT2 (JC1, \C2, tC)
ADD ([L\, |"1", tL) .

12. Character (f"A") : :="A".

37. Character (f " Z ") : : = " Z " .
38. Character (t "a"): :="a".

53. Character (t"z"): "z".
54. Character (f"0") :="0".

64. Character (f"9")::= "9".
65. Endsymbol:
66. Spacesequence : :=" # " .
67. Spacesequence ::=Spacesequence " # " .

If standard technices are used as subprograms for lexical analysis only the first
eight production rules of the grammar are necessary.

2.5.2.2. Grammatical Specification of a Very Little Commercial Project

The following task has to be fulfilled by a computer: A special master file con-
tains data of all wage-earners of an enterprise. Another file contains monthly data of
working time and wages. These two files have to be used to produce pay slips, to
remit the money through the bank and to report about working time. There is a lot of
possibilities of monthly data. Therefore, every item has a key and the file contains
only items different from zero. According to the four kinds of taxes used in the GDR
the total sum on the pay slip is broken up into four groups. This very little commercial
project can be descibed by the following attribute grammar.

110 G. Riedewald—P. Forbrig

I. Abstract data types

a) Master file with the functions:
— OPEN-MASTER-FILE, CLOSE-MASTER-FILE

These functions open and close the file.
— MASTER-DATA ([Number, \Group, \ Place, iBank)

This function delivers for a given number of a wage-earner his number of
the bank account, his working place and his group of professional classi-
fication. The master file data of this worker are prepared open for other
functions.

— MASTER-WAGES (tMoney)
For the current wage-earner the money per hour is delivered from the
master file.

b) File of working time statistics:
— OPEN-TIME, CLOSE-TIME
— TIME-BEGIN ([Group, [Place)

For a given group and working place the entry of statistical data is pre-
pared.

— TIME-KEY ([Key, [Hours)
For a group and working place fixed above the given hours are added
according to the key.

c) File of data for the bank:
— OPEN-BANK, CLOSE-BANK
— BANK-REMIT ([Bank, [Amount)

The amount is transfered to the given bank account.

d) File of pay slips:
— OPEN-PAY-SLIP, CLOSE-PAY-SLIP
— PAY-SLIP-BEGIN ([Number, 1Place)

An entry of data is prepared for number and place.
— PAY-SLIP ([Ami, [Ami, [Am3, [Am4, [Sum)

The given data are entered on the file.

II. Semantic functions

— ADD2 ([SI, [S2, tSum)
Sum := 51 + S2

— ADD (J51, |52, 153, lS4, \Sum)
Sum := 51 + 52+ 53 + 54

— MULT ([Fl, [F2, t Product)
Product :=F*F2

— DEC 0D1, [D2, [D3, |£>4, [D5, \Value)
Value:=(((Dl * 10+£>2)* 10+Z>3)* 10+£>4)* 10+ £>5

III. Auxiliary syntactic functions

Auxiliary syntactic functions are not necessary for our example.

Software Specification Methods and Attribute Grammars 111

IV. Production rules

1. Project-run ::=Begin Records CLOSE-MASTER-FILE
CLOSE-TIME CLOSE-BANK CLOSE-PAY-SLIP.

2. Begin: :=OPEN-MASTER-FILE OPEN-TIME OPEN-BANK
OPEN-PAY-SLIP.

3. Records ::= Record.
4. Records::= Records Record.
5. Record ::=Head (\Bank) Items (\Amount)

BANK-REMIT (|Bank, \Amount).
6. Head (\Bank): "NO" Earn-No (\ Number)

MASTER-DATA (¡Number, \Group, \Place, tBank)
TIME-BEGIN (|Group, \ Place)
PAY-SLIP-BEGIN (JNumber, \Place).

7. Items (tAmount): :=Amount 1 ('[Ami) Amount2 (\Am2)
Amount3 (tAm3) Amount4 (\Am4)
ADD4(\Aml, \Am2, \Am3, \AmA, fSum)
PAY-SLIP (\Aml, \Am2, \Am3, \Am4,
\Surri).

8. Amountl (Mml)::=Amountsl (\Aml).
9. Amountl (t"0")::=.

10. Amounts 1 (\Aml)::=Aml(iAml).
11. Amountsl (\Aml): :=Amounts 1 (\Am2) Ami (\Am3)

ADD2 (\Am2, \Am3,\Aml).
12. Ami (t^ml): :="H01" Hours (\H) "M01" Money (\M)

MULT (\H,\M,\Aml) TIME-KEY "01", \H).
13. Ami (Mml)::="H01" Hours (\H) MASTER-WAGES (\M)

MULT (\H, |M,\Aml) TIME-KEY (|"01", \H).
14. Ami (Mml)::="FM01" Money (t^wl) .
15. Ami (t^ml) : :="FM02" Money (Mml).
16. Earn-No (\Number): :=Number5 (\Number).
17. Hours (tH): :=Number5 (\H).
18. Money (tM)::=Number5 (\M).
19. Number5 (tK)::=Digit (\Dl) Digit (\D2) Digit (\D3)

Digit (|Z)4) Digit (\D5)
DEC (\Dl, \D2, \D3, \DA, j£>5, \V).

20. Digit (t"0")::="0".

30. Digit(t"9")=::"9".

With respect to simplicity the rules of Amount2, Amount3 and Amount4 were
omitted. They can be formulated similarly to the rules of Amountl.

According to rule 1 and 2 the project run consists of opening all abstract data
types, interpreting a sequence of records and closing all abstract data types.

Every record has head data and items (rule 5).
The head data consist of key "NO" followed by the number of a wage-earner

(rule 6). With the help of this number, data are obtained from the master file and the
entry of data for statistics and the pay slip are prepared.

112 G. Riedewald—P. Forbrig

The items consist of four groups (rule 7). Every group can be a sequence of data
(rule 11). The empty sequence is possible (rule 9).

If there are data about hours and money, multiplication is performed and the
hours are reported for statistics (rule 11).

If there are only hours the money per hour is taken from the master file (rule 13).
It is also possible to get money per month (rule 14,15).

Everybody familiar with attribute grammars can easily get this information from
the grammar. Therefore, it is an exact document of the project and it supports the
implementation.

3. Summary

After a short survey of the fundamentals of software engineering we have dis-
cussed some classifications of methods and tools. As a result, the combination of data
driven programming and data encapsulation, usually classified as contrary concepts,
was developed by using attribute grammars.

This method was demonstrated by a very little commercial data processing sys-
tem. The advantages of the method presented can be summarized as follows.

1. Attribute grammars are a good document for design and implementation.
2. Modularization is supported.
3. Maintenance can be performed relative easily and locally.
4. Syntactic analysis of data is automated and the software engineer can concentrate

upon the main principles of his system.
5. Grammars can already be tested at very early development phases and the com-

pleteness of the system can be checked.
6. Simulations can be performed without total implementation of all functions.
7. Developed projects are broken up into many parts in a natural manner, which

can run in parallel.
8. Functions have not to be designed in the same manner. A system of existing

modules can be composed by using this method.
9. The method supports the use and design of so called knowledge bases (e.g. as

abstract data types).
10. Syntactic analysis algorithm in translator writing systems will be much more ef-

fective than most hand written algorithms.
11. Automatic error recovery methods can be used (e.g. [For 84 b]).

Of course, this method is not intended to be applied to all problems of software
engineering. The application of data driven programming, however, is very well
supported by a grammar. We think this method to be useful especially in the field of
commercial data processing.

Only a short list of references can be given here. A more complete list with about
300 references related to the topic of software specification can be obtained from the
authors.

WILHEM PICK UNIVERSITAET ROSTOCK
SEKTION INFORMATIK
D D R 2500 ROSTOCK
ALBERT EINSTEIN STRASSE 21

Software Specification Methods and Attribute Grammars 113

References

[Aba 82] ABAFFY, J., KRAFFT, W., XHELF: An Aid for Developing Computer Programs, Proc. o f
the Conference on System Theoretical Aspects in Computer Science, Hungary, 1982.

[Bac 78] BACKUS, J., Can Programming be Liberated from the von Neumann Style? Comm. of the
ACM 21 (8) 1978.

[Bj0 78] BJ0RNER, D., JONES, C. B., The Vienna Development Method: The Meta-Language, Lec-
ture Notes in Computer Science, Vol. 61,1978.

[Cle 80] CLEAVELAND, J. C., Mathematical Specification, SIGPLAN Notices, 15 (12) 1980.
[Clo 81] CLOCKSIN, W. F., MELLISH, C. S., Programming in PROLOG, Springer Verlag, 1981.
[Col 81] COLEMAN, D., HUGHES, W., POWELL, M. S., A Method for the Syntax Directed Design of

Multiprograms, IEEE Trans, on Software Eng., 7 (2) 1981.
[Des 83] DESPEYROUX, J., An Algebraic Specification of a PASCAL Complier, SIGPLAN Notices,

18 (12) 1983.
[Fib 84] FIBY, R., MOLNAR, S., WEIGL, I., Is the Idealised Logic Programming Feasible? Proc.

IMYCS 84, Smolenice, CSSR, 1984.
[For 84a] FORBRIG, P., Attributierte Grammatiken und Softwarespezifikation, Seminar attr. Gr.,

Rostock 84.
[For 84b] FORBRIG, P., A New Error Recovery Method for Optimized LR Parsers, Proc. IMYCS

84, Smolenice.
[For 85] FORBRIG, P., Kombination der datengesteuerten Programmierung nach Jackson mit der

Methode der Datenabstraktion nach Parnas, Rostock, Rep. 7/85.
[Gog 74] GOGUEN, J. A., THATCHER, J. W., Initial Algebra Semantics, IEEE Symp. on Switching and

Autom. 74.
[Gut 75] GUTTAG, J. V., The Specifications and Application to Programming of Abstract Data Types,

University of Toronto, Report CSRG-59, 1975.
[Gut 78] GUTTAG, J. V., HORNING, J. J., The Algebraic Specification of Abstract Data Types, Acta

Informática 10 (1) 1978.
[Gyi 83] GYIMÓTHY, T . , SIMON, E . , MAKAY, A . , A n I m p l e m e n t a t i o n o f H L P , A c t a Cybernet ica ,

3 (6) 1 9 8 3 .
[Heh 83] HEHNER, E. C. R., SILVERBERG, B. A., Programming with Grammars: An Exercise in

Methodology-Directed language Design The Computer J. 26 (3) 1983.
[Hug 79] HUGHES, J. W., A Formalization and Explication of the Michael Jackson Method of Pro-

gram Design, Software Practice & Experience, 9 (2) 1979.
[Hoa 69] HOARE, C. A. R., An Axiomatic Basis for Computer Programming, Comm. of the ACM,,

12 (10) 1969.
[Jac 75] JACKSON, M., Principles of Program Design, Academic Press, 1975.
[Kat 81] KATAYAMA, T., HFP: A Hierarchical and Functional Programming Based on Attribute

Grammars, Proc. 5th Int. Conf. on Software Engineering, 1981.
[Knu 82] KNUTH, E., NEUHOLD, E. J., Specification and Design of Software Systems, Proc. of the

Conference of Operating Systems, Hungary, 1982.
[Kow 74] KOWALSKI, R. A., Predicate Logic as a Programming Language, Information Processing

74, North Holland, 1974.
[Lae 84] LAEMMEL, U-, Specification of Dialogue Systems Using Attributed Grammars, Proc.

IMYCS 84.
[Lin 83] LINDSEY, C. H., ELSA — An Extensible Programming System, IFTP — TC 2, Dresden,

1983.
[Log 83] LOGRIPPO, L., SKUCE, D. R., File Structures, Program Structures and Attribute Grammars,

IEEE Trans, on Software Engineering, 9 (3) 1983.
[Loy 84] LOYD, J. W., Foundations of Logic Programming, Springer Verlag, Heidelberg—New

York—Tokio 1984.
[Mad 80] MADSEN, O. L., On Defining Semantics by Means of Extended Attribute Grammars,

Lecture Notes in Computer Science, Vol. 94,1980, p. 259—300.
[Mai 80] MALLGREN, W. R., Formal Specification of Graphical Data Types, University of Washing-

ton, Technical Reprt No. 80—04—04, 1980.
[Mai 82] MAIUSZYNSKI, J., NILSSON, J. F. A Version of PROLOG Based on the Notion of Two-

Level Grammars, International PROLOG Workshop, Linkoeping, 1982.
[Noo 75] NOONAN, R. E., Structured Programming and Formal Specification, IEEE Trans. on S.

Eng., 1 (4) 1975.

8 Acta Cybernetica Vin/1

114 G. Riedewald—P. Forbrig: Software Soecification Methods and Attribute Grammars

[Par 72] PARNAS, D. L., On Criteria to be Used in Decomposing Systems into Modules, Comm.
ACM, 15 (12) 1972.

[Ree 84] RECHENBERG, P., Attributierte Grammatiken als Methode der Softwaretechnik, El.
Rechenanl., 26 (3) 84.

[Rie 83] RIEDEWALD, G., MALUSZYNSKI, J., DEMBINSKI, P., Formale Beschreibung von Program-
miersprachen, Akademie Verlag Berlin, 1983. also Oldenbourg Verlag, Wien—Muenchen,
1983.

[Rie 85] RIEDEWALD, G., Ein Modell fuer Programmiersprachen und Compiler auf der Basis uni-
verseller Algebren, Elektronischen Informationsverarbeitung und Kybernetik, 21 (3)
1985.

[Sco 71] SCOTT, D., STRACHEY, C , Towards a Mathematical Semantics for Computer Languages,
Proc. of the Symp. on Computer and Automata 1971..

[Sto 77] STOY, J. E., Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, MIT Press 1977.

[Sze 77] SZEREDI, P., PROLOG: A Very High Level Language Based on Predicate Logic, Proc. 2nd
Hungarian Computer Science Conference, 1977.

[Wat 79] WATT, D. A., MADSEN, O. L., Extended Attribute Grammars, Aarhus Univ., Rep. DAIMI
PB-105,1979.

[Watt 83] WATT, D. A., MAUSEN, O. L., Extended Attribute Grammars, The Computer Journal,
26(2)1983.

[Wil 82] WILSON, W. W., Beyond PROLOG: Software Specification by Grammars, SIGPLAN
Notices, 17 (9) 1982.

(Received Dec. 18, 1985)

Bibliographie

Barbara Liskov, John Guttag: Abstraction and Specification in Program Development. XVI+469
pages, The MIT Press, McGraw-Hill Book Company, 1986.

Abstraction is a key concept in modern programming methodology. This book provides the
first unified treatment of techniques of abstraction and specification in program development.
Three kinds of abstractions, procedural, iteration and data abstraction are discussed in the book.
The authors place particular emphasis on the use of data abstraction to produce highly modular
programs. Various aspects of data abstraction used in program construction are dealt with: require-
ment analysis, design, specification, verification and implementation. One chapter is devoted to pre-
sent a language for writing formal specifications. We believe that all students of programming should
acquire at least a reading knowledge of formal specifications and that such knowledge can be a great
help in writing informal specifications.

There are many examples of abstractions throughout the text. Most sample implementations
in the book are written in CLU, a programming language which was designed to support the meth-
odology of this book. Sufficient material is included, however, to allow the reader to work in Pascal
as well. Complete reference manual of the CLU language is included in the appendix.

This very clearly written book can be recommended as a text for both an undergraduete labora-
tory course and a graduete-level course for professional programers and analysts.

Gy. Horváth

F. Gecseg: Products of Automata (EATCS Monographs on Theoretical Computer Science, vol. 7),
VIII+ 107 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986.

Both theoretical and practical considerations motivate the representation of objects as certain
compositions of simpler ones. In the theory of automata this observation led to the concepts of prod-
ucts and complete systems of automata. Although numerous concepts of products are known,
there are only a few results as regards them. One of the exceptions is the hierarchy of a,-products
introduced by the author 10 years ago. This hierarchy contains a product for any non-negative integer i.
In an a,-product the index set of the component automata is linearly ordered and the input of each
automaton may only depend ont he states of those automata preceding it and on the states of the
next f—1 automata, including itself The monograph consisting of five chapters deals with a,-products
and gives a systematic summary of results concerning this hierarchy.

The first chapter contains the necessary concepts and results from the theories of automata and
universal algebras.

Chapter 2 deals with homomorphic representations of automata with respect to the a,-products.
After studying certain special questions concerning homomorphic representations by a0-and <*i-prod-
uct, a deep characterization ofhomomorphically complete systems is given with respect to the a,-prod-
ucts, where / S 2 . Using this characterization, it is shown that from i—2 the arproduct is homo-
morphically equivalent to the general product, while for /=0 , 1, 2 the hierarchy is proper. After-
wards, those automata are determined which are simple in the sense that whenever they can be repre-
sented homomorphically by an a,-product then a single-factor a,-power of one of its components
represents them homomorphically. This chapter ends with a decision problem.

Chapter 3 is devoted to isomorphic representations. It contains a description of isomorphically
complete systems with respect to the a,-products. It is shown that as regards isomorphic represen-

8*

116 Bibliographie

tation the a,-products form a proper hierarchy, and from i = 1 they are equivalent to each other
with respect to isomorphic completeness.

Chapter 4 concerns with isomorphic and homomorphic simulations with respect to a generaliza-
tion of <x,-products. Comleteness results are proved as regards both isomorphic and homomorphic
simulations. The chapter ends with some camparison results.

Chapter 5 deals with infinite products and representations of automaton mappings in finite
lengths. It is shown that in this representation the a0-product is as powerful as the general product.

The monograph is very well-written. It contains a rich and deep material, which is well-arran-
ged. The proofs are clear. It may be recommended as an excellent summary of results concerning
a,-products. It may be very useful for researchers and graduates with interest in automata or switch-
ing theory and may also be useful for everybody working in computer design and universal algebra.

B. Imreh

K. Nickel (Editor): Interval Mathematics 1985, (Lecture Notes in Computer Science Vol. 212),
V I + 227 pages. Springer-Verlag, Berlin—Heidelberg—New York—Tokio, 1986.

This book provides a collection of selected papers of the International Symposium on Interval
Mathematics held in Freiburg i. Br. (Germany) from September 23 to 26, 1985.

Interval arithmetic is a new programming tool for automatic estimation and control of computa-
tional errors caused by approximation of real numbers by machine representable numbers. Interval
analysis, interval algebra and interval topology, i.e. the interval mathematics are engaged in elab-
oration of the theoretical base of interval arithmetic. Lately more and more papers are published
on diverse aspects of interval mathematics.

The contens of the book are the following: H. Engels, D. an May: Interpolation of an Interval-
Valued Function for Arbitrarily Distributed Nodes; H. Fischer: Acceptable Solutions of Linear
Interval Integral Equations; Y. Fujii, K. Ichida, M. Ozasa: Maximization of Multivariable Functions
Using Interval Analysis; E. Gardenes, H. Mielgo, A. Trepat: Modal Intervals: Reason and Ground
Semantics; J. Garloff: Convergent Bounds for the Range of Multivariate Polynomials; T. Giec:
On an Interval Comutational Method for Finding the Reachable Set in Time-Optimal Control
Problems; H. Kolacz: On the Optimality of Inclusion Algorithms; R. Krawczyk: Interval Operators
and Fixed Intervals; F. Kriickeberg: Arbitrary Accuracy with Variable Precision Arithmetic;
S. Markov, R. Angelov: An Interval Method for Systems of ODE; A. Neumaier: Linear Interval
Equations; K. Nickel: How to Fight the Wrapping Effect; M. S. Petkovic, Z. M. Mitrovic, L. D.
Petkovic: Arithmetic of Circular Rings; L. B. Rail: Improved Interval Bounds for Ranges of Func-
tions; J. Rohn: Inner Solutions of Linear Interval Systems; K. D. Schmidt: Embedding Theorems
for Cones and Applications to Classes of Convex Sets Occuring in Interval Mathematics; Shen Zuhe:
Interval Test and Existence Theorem; P. Thiekr: Technical Calculations by Means of Interval Math-
ematics; You Zhaoyong, Xu Zongben, Liu Kunkun: Generalized Theory and Some Specializations
of the Region Contraction Algorithm I — Ball Operation.

The book covers various fields of interval analysis, the majority of papers deal with numerical
problems. This well edited interesting volume presents the state of the art in interval mathematics.
It is recommended for those people interested in the latest results of the field.

T. Csendes

G. Rozenberg, A. Salomaa (Editors): The book of L, XV+471 pages, Springer-Verlag, Berlin—
Heidelberg—New York—Tokyo, 1986.

The book is dedicated to Artistid Lindenmayer who introduced language-theoretic models in
biology referred to as L systems. It contains about 40 articles showing a continuous interest in the
topic. Most of them are up-to-date research papers concerning different classes of L systems (e.g.
OL, DOL, DTOL) from formal language theoretical point of view.

"A OL scheme is a pair (X, a) with X a finite alphabet ad a a finite substitution of X into the
free monoid X*. It is deterministic (a DOL scheme) if a (a) is a singleton set for each a£X, and in
this case <r can be considered anendomorphism of X* AOL system is a triple (X , a, co) such that

Bibliographie 117

(X, a) is a OL scheme and CD£X* is the axiom of the system. For a OL system G=(X, a, co) one con-
siders the languages

People interested in applications of L systems find articles in developmental biology, trans-
plantation and software technology.

Shuji Tasaka: Performance Analysis of Multiple Access Protocols, XX+263 pages, The MIT
Press, 1986.

This book is included in the Computer Systems Series, Research Reports and Notes, edited by
Herb Schwetman. The objective of this book is to describe a unified approach to the performance
evaluation problem by means of an approximate analytical technique called equilibrium point
analysis. Six multiple access protocols of satellite networks and two of local area networks are ana-
lyzed. The book is divided into three parts.

Part I (chapters 1—2) gives the foundations, These are the principles of various multiple
access protocols, the states of the performance evaluation and a description of the equilibrium point
analysis.

Part II (chapters 3—9) is the main part of the book. It studies the performance (throughput,
and average message delay) of S-ALOHA, R-ALOHA, ALOHA-Reservation, TDMA-Reservation
SRUC and TDMA protocols of satellite networks. A performance comparison of the six multiple
access protocols is given.

Part III (chapters 10—11) deals with CSMA—CD and BRAM protocols of local area networks
and compares their performances.

The book is clearly written, many figures help in understanding the models and their behaviors;
it can be recommended to readers interested in the performance of protocols, as researchers in com-
puter science, system analysts and network designers.

'{co} if i = 0
{<r'(ca)} if i > 0.

The language of G is the set L(G)= U ¿.(G)." (H. Jurgensen, D. E. Metthews)

Ä. Makay

M. Bohus

A SZERKESZTŐ BIZOTTSÁG CÍME:

6720 SZEGED
SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED
SOMOGYI U. 7.
HUNGARY

Information for authors

Acta Cybernetica publishes only original papers in the field of computer sciences mainly in
English, but also in French, German or Russian. Authors should submit two copies of manuscripts
to the Editorial Board. The manuscript must be typed double-spaced on one side of the paper only.
Footnotes should be avoided and the number of figures should be as small as possible. For the form
of references, see one of the articles previously published in the journal. A list of special symbols used
in the manuscript should be supplied by the authors.

A galley proof will be sent to the authors. The first-named authoi will receive 50 reprints free
of charge.

INDEX—TARTALOM

S- L. Bloom—R. Tindell: A note on zero-congruences 1
J. Csirik—G. Galambos: On the expected behaviour of the 7VF algorithm for a dual bin-packing

problem 5
V. B. Kudryavtsev: On the supplement of sets in functional systems 11
B. Berard: Formal properties of literal shuffle 27
Z. Esik—J. Viragh: A note on aj-products of aperiodic automata 41
Z. Esik: Loop products and loop-free products 45
Z. Fulop—S. Vagvolgyi: Results on compositions of deterministic root-to-frontier tree transfor-

mations 49
I. Neumuiler: The inveriibility of tree transducers 63
T. Gyimothy—J. Toczki: Syntactic pattern recognition in the HLP/PAS system 79
G. Riedewald—P. Forbrig: Software Specification Methods and Attribute Grammars 89

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érke7ett: 1986. július 1.

Megjelenés: 1987 április
Teriedelem: 10,5 (A/5) lv

Készült monószedéssel, íves magasnyomással
az MSZ 5601 és az MSZ 5602—55 szabvány szerint

86-2846 — Szegedi Nyomda — F. v.: Surányi Tibor igazgató

