
Tomus 7. Fasciculus 4. 

TA 
CYBERNETICA 

FORUM CENTRALE PUBLICATIONUM 
CYBERNETICARUM HUNGARICUM 

F U N D A V I T : L. KALMÁR 

R E D I G I T : F. GÉCSEG 

COMMISSIO REDACTORUM 

A. Á D Á M 
M. ARATÓ 
S. CSIBI 
B. D Ö M Ö L K I 
B. K R E K Ó 
Á. MAKAY 
D. M U S Z K A 
ZS. N Á R A Y 

F. OBÁL 
F. P A P P 
A. P R É K O P A 
J. S Z E L E Z S Á N 
J. S Z E N T Á G O T H A I 
S. S Z É K E L Y 
J. S Z É P 
L. VARGA 
T. VÁMOS 

SECRETARLUS C O M M I S S I O N S 

J. C S I R I K 

Szeged, 1986 
Curat: Universitas Szegediensis de Attila József nominata 



7. kötet 4. füzet 

ACTA 
CYBERNETICA 

A HAZAI KIBERNETIKAI KUTATÁSOK 
KÖZPONTI PUBLIKÁCIÓS FÓRUMA 

A L A P Í T O T T A : KALMÁR LÁSZLÓ 

F Ő S Z E R K E S Z T Ő : GÉCSEG F E R E N C 

A SZERKESZTŐ 

Á D Á M A N D R Á S 
ARATÓ MÁTYÁS 
CSIBI S Á N D O R 
D Ö M Ö L K I B Á L I N T 
K R E K Ó B É L A 
MAKAY ÁRPÁD 
M U S Z K A D Á N I E L 
N Á R A Y Z S O L T 

BIZOTTSÁG TAGJAI 

O B Á L F E R E N C 
P A P P F E R E N C 
P R É K O P A A N D R Á S 
S Z E L E Z S Á N J Á N O S 
S Z E N T Á G O T H A I J Á N O S 
S Z É K E L Y S Á N D O R 
S Z É P J E N Ő 
V A R G A L Á S Z L Ó 
VÁMOS T I B O R 

A SZERKESZTŐ BIZOTTSÁG TITKÁRA 

C S I R I K J Á N O S 

Szeged, 1986. augusztus, szeptember 
A Szegedi József Attila Tudományegyetem gondozásában 



Tomus 7. 

ACTA 
CYBERNETICA 

FORUM CENTRALE PUBLICATIONUM 
CYBERNETICARUM HUNGARICUM 

F U N D A V I T : L. KALMÁR 

R E D I G I T : F. GÉCSEG 
COMMISSIO REDACTORUM 

A. A D A M 
M. A R A T Ó 
S. C S I B I 
B. D Ö M Ö L K I 
B. K R E K Ó 
Á. M A K A Y 
D. M U S Z K A 
ZS. N Á R A Y 

F. O B A L 
F. P A P P 
A. P R É K O P A 
J. S Z E L E Z S Á N 
J. S Z E N T Á G O T H A I 
S. S Z É K E L Y 
J. SZÉP 
L. V A R G A 
T. V Á M O S 

SECRETARIUS COMMISSIONIS 

J. C S I R I K 

Szeged, 1986 
Curat: Universitas Szegediensis de Attila József nominata 





INDEX 

Tomus 7. 

S. L. Bloom: Frontiers of one-letter languages 1 
E. Gombás and M. Bartha: A multi-visit characterization of absolutely noncircular attribute 

grammars 19 
R. Parchmann, J. Duske, J. Specht: Indexed LL(к) Grammars 33 
F. Gécseg: On v, -products of commutative automata 55 
B. Imreh: On finite definite automata 61 
M- Ito and J. Duske: On involutorial automata and involutorial events 67 
T. Legendi and E. Katona: A solution of the early bird problem in an и-dimensional cellular space 81 
E. Simon: Language extension in the HLP/SZ system 89 
Ho Thuan and Le Van Bao: Some results about key of relational schémas 99 
Б. Тальхайм: Зависимости в релационных структурах данных 115 
J. Sztrik: A queueing model for multiprogrammed computer system with different I/O times . . . 127 
L. Szabó: Characterization of clones acting bicentrally and containing a primitive group 137 
Ésik Z. : On the weak equivalence of Elgot's flow-chart schemata 147 
Gombás É., Bartha M.: Atomic characterizations of uniform multi-pass attribute grammars... 155 
Zachar Z. : On the equivalence of the frontier-to-root tree transducers 1 173 
Zachar Z. : On the equivalence of the frontier-to-root tree transducers II 183 
Peeva K.: Systems of linear equations over a bounded chain 195 
Gécseg F.: Metric representations by i;(-Products 203 
Ecsedi-Tôth P.: A partial solution of the finite spectrum problem 211 
Pává I.: The analysis od signal flow graph containing sampled-data elements 217 
Burattini E., Marra G., Sforza A.: Network design problem: structure of solutions and domi-

nance relations 225 
Csirik, J.—Máté, E. : The probabilistic behaviour of the NFD Bin Packing algorithm 241 
Do Long Van: Langages écrits par un code infinitaire. Thérorème du défaut 247 
Ádám, A.: On the congruences of finite autonomous Moore automata 259 
Katsura, M.: On Complexity of Finite Moore Automata 281 
Ésik, Z.: Varieties and general products of top-down algebras 293 
Ésik, Z.—Virágh, J.: On products of automata with identity 299 
Dombi, J- : Properties of the fuzzy connectives in the light of the general representations theorem 313 
Iványi, A. M-—Sotnikow, A. N.: On the optimization of library information retrieval systems . 323 
Sztrik, J.: A probability model for priority processor-shared multiprogrammed computer sys-

tems 329 
Szép, A.: An Iterative Method for Solving JV//G/l//iV-type Loops with Priority Queues 341 
S. L. Bloom: The alternation number and a dot hierarchy of regular sets 355 
V. D. Thi: Minimal keys and antikeys 361 
J. Pecht: On the index of concavity of neighbourhood templates 373 
A. Varga: Optimization of multi valued logical functions based on evaluation graphs 377 
K. Engel—H.-D. O. F. Gronau: An Erdős—Ko—Rado Type Theorem II 405 
R. A. Gil: Giving mathematical semantics of nondeterministic and parallel programming struc-

tures by means of attribute grammars 413 
E. Simon: A new programming methodology using attribute grammars 425 
S. S. Lavrov: Problem solving based on knowledge representation and program synthesis 437 
5. Vágvölgyi: On the compositions of root-to-frontier tree transformations 443 



86-286 — Szegedi Nyomda — F. v.: Surányi Tibor igazgató 



The alternation number and a dot hierarchy of regular sets 

STEPHEN L . BLOOM 

In this note we introduce a property of languages we call the alternation number. 
This property is used to deduce several facts about regular languages in particular. 
One of these facts is related to what might be called the "generalized dot height" 
of a regular language. The complexity of regular expressions is usually determined 
by their "star height" [E], although other complexity measures have also been consi-
dered [EK], In all of the papers we know of, a nontrivial argument is needed to 
establish that the complexity of 'regular expressions' must grow in order to name all 
regular sets. (Our definition of 'regular expression' allows an atomic name for each 
finite set, see below.) In the present note, we give a simple proof that the "dot height" 
(or depth of concatenation signs) of a regular expression also must grow. (The 
"dot-depth" considered in [BK] is unrelated to our dot height.) The dot height is 
related to the alternation number. We will show that if the alternation number of a 
regular language L is n, then any regular expression which denotes L contains 
(roughly) at least log« dots. 

Define a function / from the set of nonnegative integers N to collections of 
regular subsets of I* (for some fixed alphabet I ) as follows : 

/(0) = all finite languages; 

f(n+1) = /(«) U {L: L = L,+L2, L = L2, L=L*, £,€/(«)}. 

Thus a language is regular iff it belongs to f(n) for some n. We will show first that for 
each n, there is a language in f(n + l)—f(n). The truth of this fact follows easily 
from the well-known star-height hierarchy theorem (see [DS] for one proof). The argu-
ment given here shows that the hieararchy of regular languages depends also on the 
operation of concatenation. As a corollary we will obtain the dot height hierarchy. 
Lastly, we mention an automaton characterization of the alternation number. 

First we assume that I has at least two letters, say a and b. A language L admits 
alternations of size n if: for each 0 (or, equivalently, for infinitely many 
there is a word w in L of the form 

w(k) = u0x0...x0u1x1...x1u2...unxn^.x„u„+1 

1 Acta Cybernetica VU/4 
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where 
1. «„, «J, ..., wn+1 are arbitrary words in Z*; 
2. x, are letters in I , and for each /<», x, and xi+1 are distinct; 
3. there are k consecutive occurences of the letters xh i=0, 1, . . . , n. (We will 

say that a word of the form w(k) has "n alternations of length at least £".) We say 
a language admits alternations of size 0 if it admits no alternations. For example, 
finite languages admit no alternations, {a}*, {¿}* admits alternations of size 1, as 
does L • {a}* • L' • {¿>}* • L", for any nonempty languages L, L' and L". Note that if L 
admits alternations of length n +1, then L also admits alternations of length n. 

Definition. The alternation number of L, a(L), is n if L admits alternations of 
size n but not of sizen+1. Let a(L)=«> if for each n, L admits alternations of size«. 

Proposition 1. Assume a(JL)=x, and a(K)—y, where x, >'€NU Then 

a(L + K) = m&x(x,y);x+ySa(L-Ky, if a{L*) > 0, (1.1) 

then a(L*)=co. 

a(L-K) ^ x+y+l; (1.2) 

(Of course, n < » and n+°°=°° , for all n€N.) 

Proof. We prove only the last part of 1.1. If a(L*)>0, for each k, there is a 
word w in L* which has 1 alternation of length at least k. But then ww has at least 3 
alternations of length at least k, and www has at least 5 alternations of length at least 
k, etc. Thus a(£*)=<~. 

The proof of 1.2 is longer. Assume that L • K admits alternations of size s. We 
will show s^a(K)+a(L)+l. For each k>0 there is a word in L • K of the form 

w(k) = u0x0...x0u1x1...xiu2...usxs...xsus+1 

as described above. We may factor each word w(fc) as l(k) • v(k), with l(k)£L 
and v(k)£K. Suppose that i{k) is the greatest integer /, — 1 s / s s , such that 

U0Xo." "i 

is an initial segment of l(k) (i(k)= — 1 if there is no such initial segment). Thus at 
least one of the integers between — 1 and s is the value of i(k) for infinitely many k; 
let n be the maximum of these integers, so that for infinitely many values of k, i(k)=n. 
(If n— — 1 or n=s, then we may easily show that s — a n d s^a(L), 
respectively, so that from now on, we assume 

For infinitely many values of k (say k£l) we may write 

l(k) = u04-.unxkJ'(k), 

where l'(k)l"(k)=un+14+i. 
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Case 1... For infinitely many values of k, say k in / ' , l'(k) is an initial segment 
of un+1. Then, for k in / ' . we may write 

so that s—{n + \)^a{K)\ also, n^a{L), so that s—i^a(K)+a(L), as claimed. 

Case 2. Otherwise. Then, for infinitely many k, un+1 is an initial segment of 
l'(k). Hence, for these values of k there is a number h(k) for which 

v(k) = h„+2... us^us+1. 

We now have two further subcases. 

Case 2a. The numbers h(k) are unbounded. Then, we may write 

v(k) = wwn+2x*„n... 

for infinitely many k, which shows that s—(n + l)^a(K)', clearly, n^a(L), so that 
again, s—l^a(L)+a(K). 

Case 2b. Otherwise. In this case, the numbers k—h(k) are unbounded, so that 
for infinitely many k, 

Since the numbers k—h(k) are unbounded, ?i + 1 s.a(L); clearly, s—(n+2)Sa(K), 
so that s— 1 ^=a(L)+a(K), completing the proof. 

Lemma 2. For each n£N define 

g(n) = max {a (L): Ldf(n) and a(L)<°o}. 

Then g (0 )=g( l )=0 ; g(2)=l and for «>0, g(n)=2<-n~1)-I. 

Proof. All languages in/(0) are finite, so that g(0)=0; the sum and product of 
finite languages are finite, and a{L*) is either 0 or so that g ( l ) = 0 also. Clearly 
g(2) is at least 1 and by Proposition 1, g(2) is at most 1. Assume g(n)=2"~1 — \. 
If L£f(n +1) and then using the proposition, the largest a(L) can be is 
2g(n)+1 = 2[2"-1 —1] + 1 =2" —1. But it is easy to see that <g(n +1) is not less than 
2g(»)+1 also, completing the induction. 

Theorem 3. For each positive w(EN, there is a language in /(«)—/(« — 1). 

Proof. Let L be a language in f(n) with a(L)—g(n). Then, if «>1, L is not in 
f(n — 1), since g(n — l)<g(n). The statement is trivial for n=1. 

What about the case that I is a singleton, say {a}, so that I * may be identified 
with N? In this case, if L is an ifinite regular set, there is a finite set F and a fixed in-
teger n and numbers k\, ..., kt such that 

L — jFU{a*1}• {a"}*U{a*2}• {a"}*U... U {a"'}• {a"}* = F U { a k \ ..., a"}• {a"}*. 

Hence all regular subsets of N are in /(3). 
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In order to avoid the trivial cases, we assume that the regular expressions (over 
Z) are built from the atomic letters (i.e. a symbol for each finite subset of Z*) and the 
function symbols + , •, and * in the usual way. (Thus, a finite set of words may be 
denoted by a regular expression with none of the function signs + , •, *.) Let |a| 
be the language denoted by the regular expression a. If a is a regular expression, 
let the 'dot height of a', dh (a), be 0, when a is an atomic letter; dh (<*+/?) = 
=max (dh (a), dh (ft)); dh (a*)=dh (a), and lastly, 

dh (a • ft) = 1 + max (dh (a), dh (ft)). 

Let R(n) denote the family of regular expressions a with dh (a)</7. 

Proposition 4. Suppose that n >0, that L is a language denoted by a, a£R(n) 
and that a(L)<°°. Then 

a(L)^g(n). 

Proof. By induction on n. If n = ! and L is denoted by a regular expression a 
having no dot symbols, then either a is an atomic symbol or has the form 

ft + a, or ft* 

for some other regular expressions ft, a with dot height 0. By induction on the structure 
of a, one sees that either a(L)=<=° or a (L)=0=g( l ) . 

Now assume that the proposition holds for n and that L is a language denoted 
by a regular expression in R(n + 1)—R(n) and a(L)<°°. If a is of the form ft + a 
or ft*, it is easily seen by induction on the structure of a that a(L)^g(n +1). If a 
is of the form ft • a then dh (ft), dh (<r)<«. Thus, by the induction hypothesis, 
a(\ft\) and a(|<x|) are at most g(n), and by proposition 1, a(L) is at most 2g(«) + 1 = 
=g(n + 1), completing the proof. 

Corollary 5. (The 'dot height' hierarchy). For each «>0, there is an infinite 
regular language L not denoted by a regular expression in R{n). 

Proof Any regular language L with g(«)<a(Z,)«=°° will do, by Proposition 2. 

The alternation number of a regular language may be described by certain pro-
perties of a finite automaton which accepts it. Let M=(Q, i, F) be a finite Z-auto-
maton (with state set Q, initial state i and final states F; we denote the action of a word 
u in X* on the state q by q • u). A state q in Q is "accessible" if q=i-u, for some word 
u in E*. If x is a letter in Z, we call a state q x-stable if q • u — q, where u is some posi-
tive power of x (i.e. u=x or xx or xxx, etc.); q is stable if q is x-stable for some letter 
x. The "behavior ofq", \q\, is the set {u£Z*: q-u£F}. 

We now define by induction the notion of an "«-state", for OS/;. 

Definition, a) The state q will be called "a 0-state via the letter x" if 
1. is nonempty; 

.2. q is x-stable. 
b) q is an "n-t-1 state via x" if 

1. q is x-stable; 
2. there is some word v such that q • v is an «-state via y, for some letter y^x; 
A state is an "«-state" if it is an «-state via x, for some letter x. 
The easy proof of the next fact is omitted. 
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Lemma 6. Let M = ( 2 , /', F) be an automaton which accepts the language L. 
Then, for I ^ h , L admits alternations of size « iff there is some accessible «-state 
in Q. 

Corollary 7. Let M=(Q, i, F) be an automaton which accepts the language L. 
Then, for n >0, a(L)=n iff Q contains an accessible «-state but no accessible 
fc-state with k>n. If Q has m states, then a{L)=<=° iff there is an accessible w-state 
in Q. 

Proof. We need only prove that if the cardinality of Q is m, and Q has an acces-
sible «¡-state, say q0, then a(Z,)=°°. But, there is a sequence of words u0, u1, ..., um 
such that if f ° r ' = 0 , 1, ...,m, then qt is an rn—i state via x.-, with 
x^xi+1; since the states qt cannot all be distinct, let s and t, t>0, be least such that 
qs = qs+t. It is easy to see that qs is also an n—s+kt state, for all k>0; hence 
a(L)=<x>. 

Corollary 8. There is an algorithm to determine, given a regular language L, 
what the alternation number of L is. 

Proof. Suppose one is given an accessible finite automaton with « states which 
accepts L. First one finds all the 0-states, by considering only paths of length ^n, 
then 1-states, etc. until one knows all the «-states. Then one applies the previous 
Corollary. 

Questions: Is there an algorithm to determine, given a regular language L, the 
least n such that L€/(«)? Is there an algorithm to determine the dot height of a regu-
lar language? 
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Minimal keys and-antikeys 

By V. D. THI 

§ 1. Introduction 

The relational model, defined by E. F. Codd [3] is one of the most investigated 
data base models of the last years. Many papers have appeared concerning combina-
torial characterization of functional dependencies, systems of minimal keys and anti-
keys. A set of minimal keys and a set of antikeys form Sperner-systems. Sperner-sys-
tems and sets of minimal keys are equivalent in the sense that for an arbitrary Sperner-
system S a family of functional dependencies F can be constructed so that the mini-
mal keys of Fare exactly the elements of S (cf. [4]). 

In the present paper we propose some combinational algorithms to determine 
antikeys and minimal keys. In the second part of the paper, we are going to study 
connections between minimal keys and antikeys for special Sperner-systems. 

We start with some necessary definitions. 
Definition 1.1. Let £2 be a finite set, and denote P(Q) its power set. The mapping 

F: P(i3)—P(i2) is called a closure operation over Q if, for every A, BQ Q, 
(1) AQF(A) (extensivity), 
(2) AQB implies F(A)QF(B) (monotonity), 
(3) F(A)=F(F(A)) (idempotency). 
In few cases Q is represented by the set {1, ..., n} or by the set of columns of an 

mXn matrix M. If we use the second representation, a special closure operation FM 
can be defined over the set of the columns of M: 

The i-th column of M belongs to FM(A) if and only if for any two rows of M 
which are identical on A they are equal on the i-th column, too. • 

It is easy to see, that FM(A) is a closure operation. It is known (see [1]) that any 
closure operation F over a finite set £2 can be represented by an appropriate matrix 
M, that is we can choose M and represent Q by the set of the columns of M so that F 
coincides with Fm-

Definition 1.2. Let F be a closure operation over Q, and AQQ. We say that 
— A is a key of F, if F(A)=Q. 
— A is a minimal key of F, if A is a key of F and for any BQ A, F(B)= Q 

implies B=A, i.e. no proper subset of A is a key of F.. 
Let us denote by KF the set of all minimal keys of F. It is clear that KF forms a 

Sperner-system. 
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If K is a Sperner-system over Q, let us define S(K) as 5(A')=min {m: K=KPhf: 
M is an mXn matrix representation of i2}. For a Sperner-system K, we can define 
the set of antikeys, denoted by K ~ \ as follows: 

K~1 = {A<^Q: (B£K)^(B%A) and (AczC) =>(3B£K) (B g C)}. 

It is easy to see that K " 1 is the set of subsets of Q, which does not contain the elements 
of /Tand which is maximal for this property. They are the maximal non-keys. Clearly, 
K~x is also a Sperner-system. 

In this paper we assume thatSperner-systems playing the role of the set of mini-
mal keys (antikeys) are not empty (do not contain the full set Q). 

§ 2. Connection between minimal keys and antikeys 

The following important result was proved in [I], [5]: 

Remark 2.1. If K is an arbitrary Sperner-system, then there exists a closure 
operation F, for which K=KF and a closure operation F', for which K—Kf,1. 

Let us given an arbitrary Sperner-system K={B1, ..., Bm) over Q. We are 
now going to construct the set of antikeys K-1. Let us follow the algorithm described 
below: 

Let JT1={i2\{a}: a^B^. It is easy to see that K1={B1}-1. 
Let us suppose that we have constructed Kq= {Bx, ..., Bq}~x for q<m. We 

assume that Xl, ..., Xp are the elements of Kq containing Bq+1. So Kq=Fq\J {Xt, ... 
...,XP), where Fq={A£Kq: Bq+1%A). For all i (/=1,... ,/?), we construct the 
antikeys of {Bi+j} on Xi in the analogous way as which are the maximal subsets 
of Xi not containing Bq+1. We denote them by A[, ..., A\. (/= 1, ..., p). 

Let 
1 Kq+1 = {A't: A£Fq => A\ <$: A, 1 s= i ^ p, 1 ̂  t ^ t J . 

We have to prove, that A9+-1={J?1, ..., Bq+l}~1. For this using the inductive 
hypothesis Kq={B!, ...,i?9}_1 we show that 

a) if AdKq+1 then A is the subset of Q not containing B, ((= 1, ...,q +1) 
and being maximal for this property, i.e. A£{Bt, ..., i?9+1} -1, 

b) every AQQ not containing the elements B, (t=1, ...,q+1) and being maxi-
mal for this property is an element of Kq+1 . First we prove the validity of (a). Let 
A£Kq+1. If A£Fq then A does not contain the elements Bt (t= 1, ..., q) and A is 
maximal for this property and at the same time Bq+1£A. Consequently, A is a 
maximal subset of Q not containing B, (<=1, ..., <7+1). 

Let AdKq+1\Fq. It is clear that there is an A1, (1 si^p and 1 such 
that A—Aj. Our construction shows that B,A\ for all / ( /= 1, ..., qr+1). Because 
A\ is an antikey of {i?9+i} for Xt we obtain y 4 j = f o r some b£Bq+l. It is 
obvious that Bq+1QAi,(j{b}. If a£Q\Xi then, by the inductive hypothesis, for 
Ai

tU{a,b}=XiU{a} there exists Bs (s=l,...,q) such that Bs<gA\\J{a,b). X, 
does not contain Bu...,Bq by X£Kq. Hence a£Bs. If then 
BsQA't\J{a}. For every Bs (1 ^s^q) with ^ U f a } and BS%A} we have 
b(LBs. Hence Bs\{a, b}^Al

t. Consequently, there exists an A^Fq such that; 
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AjcA^. This contradicts A£Kq + l\Fq. So there is a Bs (1 Ss^q) such that 

Next we turn to the proof of (b). Suppose that A is the maximal subset of £2 not 
containing Bt (1 1). By the inductive hypothesis, there is a Y£Kq such that 
AQY. 

The first case: If Bq+1^Y then Ydoes not contain Bt, ..., Bq+l. Because A is 
the maximal subset of Q not containing B, (1 +1) we obtain A=Y. Bq+1%Y 
implies A£Fq. Consequently, we have A£Kq+1. 

The second case: If Bq+1c Y then Y=Xt holds for some i in {1, ...,p} and 
AQA} holds for some t in {1, ...,-r,}. If there exists an A1^Fq such that Ai

tcA1, 
then we also have AcAt. By the definition of Fq it is clear that A1 does not contain 
Bi, ..., Bq+1. This contradicts the definition of A. Hence A't£Kq+1. It is easy to see 
that A\ does not contain Bl, ..., Bq+1. By the definition of A we obtain A = A\, 
i.e. Kq+1={Bt, ..., 2? i+1}-1. 

By the above proof it is clear that Km={Blt ..., Bm}~1. Thus we have 

Theorem 2.2. K ^ K ' 1 . 

Because AT and are uniquely determined by each other, the determination of 
K_1 based on our algorithm does not depend on the order of Bl, ...,Bm. 

Now we assume that the elementary step being counted is the comparison of two 
attribute names. Consequently, if we assume that subsets of Q are represented as sor-
ted lists of attribute names, then a Boolean operation on two subsets of Q requires 
at most |i2| elementary steps. 

Let K0 = {O}. According to the construction of our algorithm we have Kq= 
^ i ^ U l Z j , ..., X, }, where l^q^m—l. Denote lq the number of elements of Kq. 
It is clear that for constructing Kq+1 the worst-case time of algorithm is 0(n2(lq— 
-tq)tq) if tq<lq and 0(n2tq) if 1q = tq- Consequently, the total time spent by the 
algorithm in the worst cases is 

It is obvious that, if Fq—Q, then lq=tq. 
It can be seen that when there are only a few minimal keys (that is m is small) 

our algorithm is very effective, it does not requires exponential time in In cases 
for which lq^lm (Vq: l S g S m - l ) it is obvious that our algorithm requires a 
number of elementary operations which is not greater than 0(n2|Z||Ar_1|2). Thus, 
in these cases our algorithm finds К i n polynomial time in |i2|, and 

After Theorem 2.12 we shall give an example to show that our algorithm requires 
exponential time in | Q \. On the other hand Kq in each step of our algorithm is obviously 
a Sperner-system. It is known ([4]) that the size of arbitrary Sperner-system over Q 

can not be greater than ([„/2])' w ^ e r e ([и/2]) asymptotically equal to 

Ш-1 
o(n2 2 ',«,)» w h e r e I = n -

4 = 1 
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2" + l/2 
. Consequently, the worst-case time of our algorithm can not be more than 

( n - n f 2 

exponential in the number of attributes. 
Let K~1={A1, ..., A,} be a set of antikeys. Let R={h0, hx, ..., h,} be a rela-

tion over Î2 given as follows: for all aÇQ, h(a)=0 

f o r ; ( 1 i s I), / I , (a ) = { . 
0 if a£A„ 

if a Ç Q \ A r 

If we consider R as a matrix, then R represents K (see [5]). Thus, based on our algo-
rithm, for an arbitrarily given Sperner-system K, we can construct a matrix which 
represents K. 

Example 2.3. Let Q = {1, 2, 3, 4, 5, 6} and K= {(2, 3, 4), (1, 4)}. According to 
the above algorithm we have ^ = { ( 1 , 3,4, 5, 6), (1, 2, 4, 5, 6)} U F1, where Fx= 
= {(1,2,3,5,6)}, and A, = {(3, 4, 5, 6), (2, 4, 5, 6), (1,2, 3, 5, 6)}. It is obvious 
that K~X=K2. 

We consider the following matrix: 
The attributes: 

1 2 3 4 5 6 
'0 0 0 0 0 0' 

M = 1 1 0 0 0 0 
2 0 2 0 0 0 

LO 0 0 3 0 0. 
It is clear that M represents K. 

Now we describe the "reverse" algorithm: for given Sperner-system considered 
as the set of antikeys we construct its origin. The following definitions are necessary 
for us. 

Let F be a closure operation over Q. Set 

Z(F) = {A g Q: F(A) = A) 

and T(JF) = {A a Q: A£Z(F) a n d AczB=> F(B) = Q. 

The elements of Z(F) are called closed sets. It is clear that T(F) is the family of 
maximal closed sets (except Q). Now we prove the following lemma. 

Lemma 2.4. Let .Fbe a closure operation over Q, and KF the set of minimal keys 
of F. Then KF

1=T(F). 

Proof. Let A be an arbitrary antikey and suppose that AcF(A). Hence 
F(F(A))—F(A)=Q. Consequently, A is a key. This contradicts \/B^KF\ B%A. 
If there is an A' such that Ac: A' and / f eZ(F) \{ i2} , then A' is a key. This con-
tradicts A'<zQ. 

On the other hand, if A is a maximal closed set and there is a 2? (B£KF) such 
that BQA, then F(A)=Q, which conflicts with the fact that AczQ. If AaD(DQ 
Q Q), then it can be seen that F(D)= Q (because A is the maximal closed set). Con-
sequently, A is an antikey. The lemma is proved. 
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Now we construct an algorithm for finding a minimal key. 
Let i f be a Sperner-system and Q<{H. We take a B (B£H) and an a£Q\B. 

We suppose that B={bx, ...,bm}. Let G={B,£H: a$Bt} and T0=B\J{a). define 

_ (Tq\{bq+1) if V ^ i i X G : Tq\{bq+1} i B„ 
TQ+1 I TQ otherwise. 

Theorem 2.5. If His a set of antikeys, then {ro, 7\, ..., rm} are the keys and 
Tm is a minimal key. 

Proof. By Remark 2.1 there exists a closure F such that H=Kp1: We prove 
the theorem by the induction. It is clear that T0 is a key. If Tq and —Tq, then 
it is obvious that Tq+1 is a key. If Tq+1=Tq\{bq+1} and F{Tq+1)^Q then, by 
Lemma 2.4, there is a B£H such that F(Tq+1)QBt. Hence Tq+1QB„ which 
conflicts with the fact MB£H: Tq+1<£Bt. Consequently, Tq+1 is a key. 

Now suppose that A is a proper subset of Tm. If a$A, then, clearly, F(A)^Q. 
If at: A, then there exists a bqeB such that bq£ Tm\A (1 ^q). By the given algorithm 
there exists a B£H\G such that T^^bjQB,. We obtain rm \{fc9}g 
g r f . 1 { 6 l } g j ( by TmQTq (O^q^m-l). Hence F(A)^Q. Consequently, Tm 
is a minimal key. The theorem is proved. 

Remark 2.6. Theorem 2.5 is also true if r 0
= {^ i s is a n arbitrary key. 

At this time define 
= (Tq\{bq+1} if VBtH: Tq\{bq+1} ^ B,, 

q+1~\Tq otherwise. 

— It is clear that the worst-case time of the algorithm is 0(«2 • where 
n=|i2|, \H\ is the number of elements of H. 

— It is best to choose B such that |B | is minimal. 
— If there is a B such that \/B£H\{B}: B,C\B=® and a£ | J B, 

BtiH\{B) 
then a\Jb is a minimal key (\/b£B). 

— If (£2\ (J B,)^0, then a£Q\ (J B, is a minimal key. 
Bt<LH B,£H 

— Let Y= U S, If B \ V ^ 0 , then it is best to choose T0= 
B f ff 

= ( J e n r ) U { a } U { 4 where b£B\Y. 

Remark 2.7. Let H be a Sperner-system (Q$H) and AcQ. We can give an 
algorithm (which is analogous to the above one) to decide whether A is a key or not. 
If A is a key, then this algorithm finds an A' such that A'Q A and A' is a minimal key. 

Remark 2.8. In the paper [5] the equality sets of the relation are defined as 
follows: Let R={A l5 ..., HM} be a relation over Q. For I^J, we denote by EIS 
the set {a€i2: hi(a)=hJ(a)}, where l S / S m , l ^ ' s m . Now we define M = 
= {ETJ : 3EPQ such that EI} c:EPi}. Practically, it is possible that there are some ETJ 

which are equal to each other. We choose one EU from M. According to Lemma 2.4 
it can be seen that M is the set of antikeys of KFR (we consider R as a matrix). 
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Example 2.9. Let (2= {1, 2, 3, 4, 5, 6} and R be the following relation: 

Ó I 0 0 1 0 
1 0 1 0 0 1 
2 0 0 1 2 2 
0 1 2 2 0 3 
3 2 1 0 3 0 

It can be seen that M = {(1, 2), (3, 4, 5), (4, 6)}, where £ U = { 1 , 2}, £ 1 5={4, 6} 
and ¿r25= {3, 4, 5}. By Theorem 2.5 and Remark 2.6, it is clear that {1, 3}, {1, 4}, 
{1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6} are the minimal keys. We use the algorithm 
(Theorem 2.5) with J 0 = {3, 4, 6} and T0= {4, 5, 6}, then it can be seen that {3, 6} 
and {5, 6} are minimal keys. Thus, based on this algorithm for an arbitrarily given 
relation R we can find a minimal key of R. 

Let K be ah arbitrary Sperner-system. The following theorem has been proved 
in [21. 

Theorem 2.10. 

( ^ j ^ l A r - M s S W - l . 

- Denote by the family of all ^-element subsets of Q. Let Fk(n)=max {S(/Q: 

Theorem 2.11. ([6]) 

Fk(n)^f2(\k_/J 

We define the function f2k-1- N—N for 2k—\ s « by 
(2k— \Yiek-» 

if « = 0 (mod(2fc-l)) , 

[n/(2*-2)] 

(i 
— iMw/<2fc—i)]—i (2k-U 

l f e - l j X [ fc-1 
+P\ J if n = p ( m o d ( 2 f c - l ) ) 

and 

_ \\lnl(2k-1)] 

(t-.'I ] > < ( f e - l ) i f " = p (mod ( 2 f c - l > ) 
and k ^ p ^2k-2, 

and the function /2(i_2 for 2k—2^ n by 

/ ¡ a - a O ) = < 

[ f e _ j J if « = 0 (mod(2fc—2)), 

= < U - l J x ( fc-1 J l f n = P ( m o d ( 2 f c - 2 ) ) 
and 1 S p S fc — 1, 

f2k-2Y n '< 2 t - 2 ) 1 i f ) , , 
t it — I J x U - l J l f " = P ( m o d ( 2 f c - 2 ) ) 

and k ^ p s 2 k - 3 , 
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where N denotes the set of natural numbers. Let us take a partition Q—Xx U... 

...UXmUW, where aw = J and \Xi\ = 2k-l (1 g f e r a ) . 

Let 

K = {B: \B\ = k,BQ Xt, V/} if \IV\ = 0. 

K = {B: |B | = k,B g Xt (1 ^ i s i m - 1 ) a n d B g XmUW} if 

K= {B\ = k, B g Xi (1 s? / si m) and B g W} if 2k-2. 

It is clear that 

K'1 = {A: \AC]Xi\ = Jk —1»Vi> .if \ fV \=0 . 

K~L = {A: \AnXi\ = fe-1 (1 S i S m - 1 ) a n d \A(~)(Xm{JW)\ = / c - 1 } 

if 1 ^ \W\ ^ k—1. 

K-1 = {A: 1/4 0*11 = (1 S / S m) and \ADW\ = k-1} 

if k^\W\^2k-2. 

It can be seen that fik_1(n)=\K~1\. If we take, a partition: Q=X1U... UA^U W; 

where m~\2k—2] anc^ l^il =2k~2, in an analogous way we 

K={B: \B\ = k,BQXi,\fi} if \W\ = 0. 

K= {B-. | 5 | = k,B g Xi (1 ss / m - 1 ) a n d 5 g XmUW} if 

K={B: | S | = k,BQX; (1 s i s m ) and BQW} if k^\W\s2k-3. 

It is clear that 
/ a - a ( " ) = and / a _ g ( n ) = J 

\lnl( 2fc—2)] 

Theorem 2.12. Let £2= {1, ...,«}. 
If « = 0 (mod(2A:-2)(2A:-l)), then f2 k-i(n)^f2 k-2(n)- For a fixed A:, 

llim /2<fe"-1 - - -

Proof. If k=2, then it is easy to prove that V«: /3(n)S/2(n). If « = 6 or 
n^8 , then /3(n)>/»(«). Let 

^ _ I fc—l J _ ( ~ T ~ J 

U - l J U - l J 
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It is known that n\ = fhin ^jj"xea" / ( 1 2 n ) , where O<0„<1. So 

" ~ 2 f c J p 
2"/ (a- i ) . ( c | ( e | 

I ]/7t(fc — 1) J I ]/n(k-2) ) 

For this E we obtain, that 

l n £ = ¿ T ( l n i 1 - 4 ) + 2 F I 2 ( i l n («<*" 1 » " 2 4 ( F r T ) ) ] 
and by 

I t . \l 

we have 
n 

¿ 2 (T1"<*<*" ^ " M f i b l ) ) " ¿ I ) ' 2k—1 

It can be seen that if k=3, then 

and, for every 

Hence 

2 ^ (T1" ^ " 1 - 2 4 ^ 1 ) ) - ¿ T > 

Consequently, if n = 0 (mod (2k—2)(2k — l)), then /•¡,k-i(n)^'fik_2(n). Now let n 
be an arbitrary natural number. It can be seen that, for a fixed k, there exists a number 

0 such that 
(2k-\+p\ ( p \ 

— L - k - i i - m V-1* < m 

U - i J U - u 
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Hence In E—°°. Consequently, F-*«>. Thus, 
B-̂ eo ' Tl-*•<&> 

fik-ljn) 
ftk-M °°' 

n-t- 00 

(It is easy to see that k=2 is also true.) The theorem is proved. 
As a consequence of Theorem 2.12 and Theorem 2.10 we have 

Corollary 2.13 
FM S i2fik.1(n). 

Example 2.14. In Theorem 2.12 let k=2. Then we have n-\r=\K\^n + 2 
and 3(B/4)</^(n), where n=\Q\., i.e. 3(n/4)<|AT_1|. Thus, we always can construct 
an example, in which the number of K (minimal keys) is not greater than n+2, but 
the size of (antikeys) is exponential in the number of attributes. 

§ 3. Some special Sperner-systems 

In this section we investigate connections between the minimal keys and antikeys 
for some special Sperner-systems. 

The notion of saturated Sperner-system is defined in [7], as follows : 
A Sperner-system K over Q is saturated if for any AQQ, ATU {A} is not a 

Sperner-system. 
An important result in [7] has been proved; if K is a saturated Sperner-system 

then K=KF uniquely determines F, where F is a closure operation. 
Now we investigate some special Sperner-systems which are strictly connected 

with saturated Sperner-systems. 

We consider the following example. 

Example 3.1. Let Q = {1, 2, 3, 4, 5, 6} and N= {(1, 2), (3, 4), (5, 6)} be a 
Sperner-system. It can be seen that iV - 1 ={(l , 3, 5), (1, 3, 6), (1,4, 5), (1,4, 6), 
(2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)}. Let K^NUN'1. It is clear that K is saturated. 
We use the algorithm which finds a set of antikeys. Then K_1= {(1, 3), (1, 4), (1, 5), 
(1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}. 

By the fact that K~iU{ 1, 2} is a Sperner-system it is obvious that K-1 is not 
saturated. Thus, we have 

Corollary 3.2. There is a K so that K is saturated and K-1 is not saturated. 
Now we define the following notion. 

Definition 3.3. Let K be a Sperner-system over Q. We say that K is embedded, 
if for every AÇ.K there is a BÇ.H such that AczB, where H~1=K. We have 

Theorem 3.4. Let K be a Sperner-system over Q. K is saturated if and only if 
K~l is embedded. 
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Proof. Let A' be a saturated Sperner-system. According to the definition of AT-1 

it is clear that K~ l is embedded. Assume that K i s an embedded Sperner-system, 
but Kis not saturated. Consequently, for K there exists an AczQ such that K(J{A} 
is a Sperner-system. It can be seen that, for every C£K, we have C c Q (because of 
Q$K). Hence we can construct B such that AQB, K\J {/?} is a Sperner-system and, 
for every B'(B<^B'), there is a C£K with CQB'. It can be seen that B^K'1. 
This contradicts the fact that K~1 is embedded. The proof is complete. 

Now we define an. inclusive Sperner-system. 

Definition 3.5. Let K be a Sperner-system over £2. We say that K is inclusive, 
if for every A£K, there exists a BdK-1 such that BczA. We have 

Theorem 3.6. K is an inclusive Sperner-system if and only if K~x is a saturated 
one. 

Proof. Now, assume that K is an inclusive Sperner-system but A"-1 is not 
saturated. By the definition of K~\ there is a ¿ e C ^ - 1 ) - 1 such that A:_1L!{£} 
is a Sperner-system. By Remark 2.1, for AT there is a closure operation F such that 
K=KP. If F(B)czQ, then by Lemma 2.4 there exists an A^K^1 with F(B)<^A 
(the set of antikeys is family of the maximal closed sets), which conflicts with the 
fact that AT-1U {.B} is a Sperner-system. Consequently, B is a key. If we use the 
algorithm which finds a minimal key in Theorem 2.5, then it can be seen that there 
exists a B'(B'<gB) such that B'£K, and it is clear that K~l\J{B'} is a Sperner-
system. This contradicts the definition of K. Thus, AT-1 is saturated. 

On the other hand by the definition of K~x and by the assumption that K"1 

is saturated it is clear that K is an inclusive Sperner-system. The theorem is proved. 
Now, we have the following corollary by Theorem 3.4 and Theorem 3.6. 

Corollary 3.7. Let K be a Sperner-system over Q. Denote H a Sperner-system, 
for which H~1 = K. The following facts are equivalent: 

(1) AT is saturated, 
(2) K - 1 is embedded, 
(3) H is inclusive. 

Proposition 3.8. There exists a Sperner-system K such that 
(1) AT is saturated, but K~1 is not saturated. 
(2) K is saturated, but H is not saturated. 
(3) K is embedded, but is not embedded. 
(4) K is embedded, but H is not embedded. 
(5) K is inclusive, but is not inclusive. 
(6) K is inclusive, but H is not inclusive, 

where H denotes a Sperner-system for which H~1=K. 

Proof. From Example 3.1 we have (1). By Theorem 3.4, (AT-1)-1 is not embedded 
in this example. Hence we have (3). By Theorem 3.6, in Example 3.1 H is inclusive, 
where H~1=K. Now, we suppose that, if AT is inclusive, then the set of antikeys of K 
is also inclusive. Consequently, in Example 3.1, H is inclusive, and AT is an inclusive 
Sperner-system. From Theorem 3.6, K~l is saturated. This constradicts the fact that 
AT-1 in Example 3.1 is not a saturated Sperner-system. Hence we have (5). (2) can be 
proved as follows: Let AT be a Sperner-system. Let K1=K and, for define 
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JC by the equality (Kn)~1=Kn~1. We know that the number of the Sperner-systems 
over Q is finite (at most 22'"'). On the other hand, AT and K~x are determined uniquely 
by each other. Consequently, there exists a number m ( 2 ^ m s 2 2 ' a l ) such that 
Km=K and Km~1=K~1. If we suppose that K is saturated, then H is also saturated, 
where H~~l=K. This means that for every p with Kp is also saturated. 
This contradicts Corollary 3.2. Thus, there is a Sperner-system A" such that A" is satu-
rated, but H is not saturated. By similar arguments we have also (4) and (6). The 
proposition is proved. 
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On the index of concavity of neighbourhood templates 

J. PECHT 

Abstract 

In automatic image analysis with parallel algorithms or parallel processors successive Min-
kowski-operations (like erosions and dilatations) with a given neighbourhood template (also referred 
to as structuring element), T, play an important role. It can be shown that, after a certain number of 
such steps, the neighbourhood template E, which contains only the extreme points of T, can be used 
instead of T. This number of steps is called the index of concavity of T. In bit-plane oriented parallel 
processors this fact can be used to speed-up pattern recognition algorithms. The speed-up is only 
assymptotical and its practical performance depends upon whether the index of concavity is low or 
high. In this paper it is shown that for the practical cases of convex or small templates the index is 
Very small, namely at most 2 or 3 resp. which ensures speed-up for this type of templates. As against 
to this result it is, however, also shown that, theoretically, arbitrary high indices of concavity can be 
achieved for appropriately chosen (exotic) templates. 

1. Introduction 

Minkowski-operations play an important role in automatic image analysis, parti-
culary in optical material control. Herein, after thresholding the video image (from 
camera) appropriately a binary image, b, (usually 256 X256 or 512x512 pixels) is 
produced, b is also called a bit-plane. The bit-plane b is eroded repeatedly and after 
each step of erosion a measurement of area, boundary length and/or number of 
particles is done. Assembling these numbers in one (or 3) feature vector(s), conveni-
ent statistical classification procedures can be applied to get final decision of certain 
material properties. Depending on the material properties to be jugded upon va-
rious neighbourhood templates must be chosen (1, 2). 

In bit-plane oriented parallel array processors (so called: bitplane processors) 
(3, 4, 5, 6) a straight forward implementation of this operations needs Ct elementary 
parallel bitwise logical operations where t is the number of elements in :T(1, 2). There 
it is also shown that in case of convex, symmetric templates CM/2 operations are suf-
ficient where is the number of boundary points of T. In (7) this result was improved 
be showing that, for any template T, assymptotically already Ce operations are also 
sufficient where e is the number of extreme points of T. This result relies on the fact 
that, after a certain number of steps, the Minkowski-operation with Tcan be replaced 
by the same operation using only the template E which contains just the extreme 

2» 
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points of T. This number depends on T and is called the index of concavity of T. It 
is denoted n(T).It is clear that the assymptotic speed gain is only achieved if p(T) 
is low. It is the intent of this paper to show that for the practically important cases of 
small (i.e. 3 x 3 ) templates or (possibly big) convex templates the index of concavity 
does not exceed 3 or 2 (resp.). On the other hand, exotic templates (with some few 
and, however, wide spread points) can yield arbitrarily high indices of concavity. 

After presenting some necessary mathematical definitions and facts in chapter 2 
we derive our claim as cited above in chapter 3. 

2. Basic definitions and facts 

Definition 1. Let Z denote the set of integers. Any finite subset T of Z2 is called 
a neighbourhood template. Between two templates T and U the sum T® U is defined 
as {t+u/t£T and w£U} (4- is here the usual componentwise vector sum). For any 
template Tthe sequence (kT)kiN (N={0,1, 2, ...}) is recursively defined by 

o r = { o } , (1) 

(k+\)T=kT®T ( l i s 0). (2) 

Here, 0=(0, 0) is the 2-dimensional origin in Z2. x£T is called an extreme point 
of T, if any representation x— 2 att w'th a r=0, and 2 at=^ implies 

rgr t(T 
ax= 1, and a,=0 for t^x. The set of extreme points of T is denoted E or E(T). 

Proposition 1. (7) For any template T there is a such that 

kT®T=kT@E ( fcsfc 0 ) . (3) 

Definition 2. For any template T let fi(T) denote the minimal k0 such that 
Proposition 1 holds. fi(T) is called the index of concavity of T. 

Definition 3. For any template T let T denote the convex hull of T (in R2), 
formally: _ 

T : = { 2 a t t / a t ^ 0, at€R, ^ a, = 1} (4) 
tgr t e r 

and f : = r n z 2 . A template Tis called convex if T=t. The norm | | r | | of Tis the 
maximal absolute value of all occuring coordinates of all elements of T. T is 
called small, if | |T | |S l . 

Equipped with these preliminaries we proceed to prove our claims. 

3. The index of concavity of certain classes of templates 

Theorem 1. For any k£N, there is a neighbourhood template T with || T|| ^ 
W/(A:/3)+5 such that n(T)^k. 

Proof. Let k£N, and consider the template T={x1, x4} with x t =(« , 0), 
(0, / i - l ) , x 3=(—(n-2) , — (« —2)), and x 4 =(0 ,0) where n is the greatest odd 
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natural number less than or equal to Y(k/3)+5. Note that, in all cases, n is odd and 
not smaller than 5. Let hT®E=hT®T. We show that h^k. Because 

0 = (0, 0)6hT®T, 0£hT®E. 

Thus where kx, k2, k3^0 and (kt, k2, 
fc3£N). So at least one k{ is greater than 0 and k1n~k3(n—2)=k3(n—2)~k2(n — l). 
Because n, n — 1 and n—2 have no common divisor except unity we conclude that 
k1^(n-l)(n-2), k,^(n-2)n, and k3^n(n-1). Thus h + l & 3 ( « - 2 ) 2 s 3 ( V ^ / 3 ) + 
+ 5 —2)2 S k+ 1. 

Q.E.D. 
Theorem 2. For any small template we have 3. 

Proof. The validity of this claim was checked by an appropriate computer 
program: For all small templates, T, their sets of extreme points, E, were computer 
and the first k were searched for which kT®E=kT© T. One proves easily that these 
k equal ju(T). 

Q.E.D. 

Theorem 3. For any convex template T we have /¿(T)s2. 

Proof. A proof can be obtained by combining some partial results of (8) and (9). 
In (8) it is shown that (d+\)T=dT®E for any (¿/-dimensional) template T which 
yields, for our case d=2, the claim 3T=2T®E. In (9) it is shown that kT=kT 
for all 2-dimensional convex templates and any k^O. Thus, we get 

3T=3T= 2T®E = 2 T®E. (5) 

This proves our theorem. 
Q.E.D. 

In case of rectangular convex templates we get even lower indices: 

Theorem 4. For the rectangular template T= {n,n +1, . . . ,«+/} X {m, m +1, ... 
...,m+j}, we have n(T)= 1. 

Proof. Let x=(xlt x2)£2T. Then 2n^x1^2n+2i and, consequently, nS 
g ( x 1 - n ) S H + 2 i . If ^ - « > / 1 + / then n—i^x1—(n+i)=;n+i and n^x1 — 
—(n+i)^n+i. A similar argument shows that either m^x2—(jn+j)^m+j or 
m^sx2 —m^m+j. This proves our theorem because E(T)={n, n+i}x{m, m+j}. 

Q.E.D. 

4. Summary 

In a former paper (7) the author had proved that, for any neighbourhood tem-
plate T, there is a number, n(T), such that kT®T=kT®E (k^n(T)) where E is 
the template containing only the extreme points of T. y.{T) is called the index of con-
cavity of T. In image analysis with bit-oriented parallel computers this fact can be 
used to speed-up pattern classification algorithms which make excessive use of 
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Minkowski-operations like erosion, dilation, opening and closing by appropriately 
chosen neighbourhood templates. This speed-up is only achieved if ¡i(T) is low. In 
this paper, it is shown that this is, in fact, true for all practically important templates, 
i.e., for (arbitrary) convex ones and small ones. Nevertheless, exotic templates can be 
derived having arbitrarily high indices of concavity. 

Acknowledgement 

The author thanks Ms. I. Mayer for writing the program for the proof of Theo-
rem 2 and Dr. D. Vollath for some useful editorial hints. 

INSTITUT F Ü R MATERIAL- U N D 
FESTKÜRPERFORSCHUNG III 
K E R N F O R S C H U N G Z E N T R U M K A R L S R U H E 
POSTFACH 3640 
B—75 K A R L S R U H E ! 
WST-G ER MANY 

Literature 

[1] SERRA, J., Introduction a la morphologie mathématique,.Le cahier du Centrede Morphologie 
Mathématique de Fontainbleau, Fascicule 3, 1969. 

[2] VOLLATH, D., The image analysing system PACOS, Praktische Metallographie 19, 7—23 and 
94—103, (1979). 

[3] BATCHER, K . E. , Bit-serial parallel processing systems, I E E E Transactions on Computers, C-31, 
5, May 1982, 377—384. 

[4] PARKINSON, D., An introduction to array processors, Reprint from Systems International, Nov 
1977. 

[5] BABENHAUSERHEIDE, M., PECHT, J., PPSTAR. A FORTRAN IV software package to support the 
development of portable image processing software, Proceedings of the 6th International Con-
ference on Pattern Recognition, Munich, October 1982, p. 1204. 

[6] PECHT, J., VOLLATH, D. and GRUBER, P., A fast bit-plane processor for quantitative image proces-
sing in a minicomputer environment, hardware and software architecture, in: Schüßler, H. V., 
(editor): Signal Processing II: Theory and Applications, EUSIPCO 1983, pp. 809—812. 

[7] PECHT, J., Speeding-up successive Minkowski-operations with bit-plane computers. 
Pattern Recognition Letters 3 (1985), pp. 113—117. 

[8] SZWERINSKI, H., Zellularautomaten mit symmetrischer lokaler Transformation, Dissertation, TU 
Braunschweig (FRG), 1982 pp. 72—77. 

[91 PECHT, J. , Ein weiterer Ansatz zur Mustertransformation und -erkennung in zellularen Räumen, 
Dissertation, TU Braunschweig (FRG), 1980, pp. 206—213. 

(Received July 31, 1985.) 



Optimization of multi valued logical functions 
based on evaluation graphs 

A . VARGA 

Dedicated to Professor K. Tandori on his 60th birthday 

Abstract 

In this paper we discuss simplifications of multi valued logical functions. The simplification is 
carried out in the following way. We associate tree graphs with the disjunctive or conjunctive normal 
forms of the functions. Under certain conditions some vertices of these trees can be omitted. This 
cancellation will correspond to reduction of terms or variables in the original function. 

After all possible simplifications a normal form, which is equivalent to the function in question, 
is obtained. 

1. Definitions, notations 

Let 2) be a natural number and efc the set {0, 1, 2, ..., k~\). Any function 
/ : £t is called a A:-valued logical function of «-variables where eg denotes the 
Cartesian product of « copies of sk. These functions are often given by their 
truth-tables and they will also be denoted by/(X") or f(X")=f(X1, X2, ..., Xn). The 
set of k-valued logical function will be denoted by Pk. Several properties valid in the 
theory of ordinary two-valued logic remain true in the theory of k- valued logic as well. 
But in the case k ^ 3 certain characteristics are essentially different from those in 
ordinary logic. 

A major problem is the definition of negation, since it can be defined in several 
ways. 

Definition 1. Let A£{0, 1, ..., fc-1}, / = 1 , 2 , . . . , « ; «S2 . Then the opera-
tors defined by 

AlAA
2
A...AAn = min (Alt As, ..., An) 

and 
AtV A^J ...VA„ = max (Ax, Az, ...,A„) 
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are called the conjunction and disjunction of the variables Alt A2, ..., A„, respecti-
vely. 

The following identities can easily be proved: 

I. AAB = BAA, 

A\JB = B\JA, for every A, B. 

I I . AA(BAC) = (AAB)AC, 

: Ay (By C) = (AyB)y C, for every A, B,C. 

IH. AA(ByC) = (AAB)y(AAC), 

Ay(BAC) = (AyB)A(Ay C), f o r every A, B, C. 

IV. Ay A = A, 

AAA = A, for every A. 

V. AA(k-\) = A, 

Ay0 = A, for every A. 

Below we give two types of negation: one for logical constants and one for logi-
cal variables. 

Definition 2. Let A<=ck. Then 

A = (k-l)-A. 

Definition 3. If X is a variable then X denotes that function the actual value of 
which is the negation (in the sense of Definition 2) of the actual value of X. Let us 
introduce the following unary operator 

(k-1, if a ^ X ^ b , 
"Xb = i 10 elsewhere, 

where a,b,X£ek and a^b are fixed. It should be noticed that "Xb is two-valued. 
By Definition 3, the negation of "Xb is 

fO, if a ^X^b, aXb=\ Ik—1 elsewhere, 

where a, b, Xdek and aSb are fixed. The formulae in the theory of fc-valued logic, 
similarly to those of two valued logic, will be given by recursive definition. 

Definition 4. 

(0) The elements of ek are k-valued logical formulae; 
(1) Z l 5 X2, ...,Xn,a'Xb\°*Xb\ ...,a"XK arc_/c-valued logical formulae; 
(2) If Fis a valued logical formula, then F is a ¿-valued formula; 
(3) If Fand G are k-valued logical formulae, then FyG, FAG are fc-valued logical 

formulae; 
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(4) Every A> valued logical formula can be obtained by a repeated application of 
CO)—(3). 

In what follows the letters f g , ... will denote functions and the capital letters F,G, ... 
will denote formulae. By a function of «-variables we mean a fc-valued logical func-
tion of «-variables 

Value assignement.The ordered «-tuple (Xx,X2, ..., X\Ai, ..., Xn) is called a value 
assignement of the /-th variable. If every variable has value simultaneously, then the 
ordered «-tuple (X"|A")=(Z1|/i1, X2\A2,..., X„\A„) is simply called a value assigne-
ment. 

Let /(X") be a function. Then 
f (X" |A") =f(X1\A1, X2\A2, ..., X„\An) 

denotes the fact that Xt is replaced by At, where /=1, 2, ..., «. The value 
f(Xx\Alf X2\A2, ..., X„\A„) is called the value of/(X") under the value assignement 
(X^Ax, X2]A2, ..., X„\A„). Be low t h e va lue a s s ignement (X^Ax, X2\A2, ...,X„\An) 
and the value f(Xt\Ax, X2\A2, ..., X„\A„) will be denoted simply by (Ax, Az, ..., A„) 
and f(Ax, Ao, ..., A„), respectively. One can define value assignements for formulae 
as well. 

Definition 5. Let f g£Pk. If the value of g does not exceed that of / (in any 
position of the truth-table), then we say that g implies / and write #->-/. 

Definition 6. Formulae F and G are said to be equivalent if the corresponding 
functions / a n d g are equal. In this case we write F=G. 

An easy computation gives 

Lemma 1. Let f(X")=f(Xx, X2, ..., X„), Then for every / = 1,2,.. . , 

f(Xx,X2,..., X-t, ..., X„) = k \ l [ f ( X x , ..., X^x, nU Xn)/\jX{]. 
j=o 

Remark. Below the conjunction will be denoted by • (sometimes it will be omit-
ted) or, in the case of several variables, by II, and the disjunction will be denoted by 
+ or I . The following lemma can easily be verified. 

Lemma 2. Let /(X")=/(Z l 5 X2, ..., X„), «1=2. Then the relation ; 

f(Xx, X2, ..., Xn) = 2 "lXax^X£...a»X:,"f(ax,a2, ..., a„) 
(«!,« , " „ ) 

holds, where Zis taken over all the possible ordered «-tuples, and ai£ek, i— 1, 2,..., n. 
Definition 7. By a superposition of the A>valued logical functions f(Xx, X2, ... 

..., Xt, ..., Xn) and g(Xx, X2, ..., Xn) we mean the function f{Xx, X2, ..., g(Xt, X2, ... 

..., X„), ..., Xn) which is obtained by substituting the function g for the /-th argu-
ment Xi of / . 

Definition8. The set of functions {fx,A, is called a basis-set for Pk 
if every elements of Pk can be expressed by (/=1, 2, ...,«) and the functions 
fx,f2, ...,/„ applying superpositions finitely many times. It is customary to say that 
the elements of a basis set form a functionally complete function system. 
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By virtue of Lemma 2 we get that the system {0, 1, ..., k-\, 1X1, ... 
..., k~1Xk~1, min (Xt, X2), max JQ} is complete in Pk. 

Definition 9. The expression 

2" ' • • • °"X°n"f(ai, a2, ...,a„) 
(°i>oi "O 

is called the full disjunctive normal form f v { X 1 , X2, ..., X„) of the function/. 
Since a£sk, / = I, 2, ..., «, the number of all different «-tuples (a1, a2, ..., an), 

is k f . Denoting the value f(a[J\ a2
J), ..., a(„J)), concerning they'-th /2-tuple (in a fixed 

ordering) (a[J\akJ>, ..., a(
n
J>) by ay and the corresponding conjunction 

"LO) vb,U) a,O) A„Ü) V"„U) y\ J o . . . ^ r t 

by E" the full disjunctive normal form belonging to /(X") can be written in the form 

j=o 

Ejn) is called a min term of «-variables. We will require some further formulae which 
can easily be verified. 

"Xc+iXb = 
"Xb if, a =£ d c si b, 
dX" if, d ^aSc^ b, 
:+iXd-i i f ; a^c<d^b,a,b,c,d,X<iek. 

where 

0 if, a ^ c < d ^ b, 
»Xc-iXb = dXc if, a == <i S c b, 

dXb if, a =á d á b ^ c, a,b,c,d,X£ek. 

ayb _ 

"A'"-1 = 0 if a = 0 , fc+^-^O if b = k-l, a,b,X£ek 

°Xk~1 = k-l. 

"Xb+°Fb = k-l, a,b, X£ek. 

a "'X?' a'XZ'... a"Xb
n" = 5 + a'Xil + a'X2' +...+"" 

where 
a + " 'At + "*X<y + ... + a»Xb„" = ä a'X?' a'X2'...a"Xb", 

Xi,a¡,b¡€ek, i =1,2, ...,«. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6.a) 

(6.b) 

Formulae (6a) and (6b) are the de Morgan's identities in the theory of multi-
valued logic. 

The full conjunctive normal form can be defined in a similar manner. 
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Definition 10. By the full conjunctive normal form of a valued function 
/(X") we mean the formula 

j = 0 

where E" can be obtained from E] by the de Morgan's identities and denotes the so 
called max terms. Using the usual rules of the theory of two-valued logic the full 
normal forms can immediately be found from the truth-table. Every conjunction 
term and disjunction term of the full conjunctive and disjunctive normal forms con-
tains the expression "'X*1, "2Xt', . . . , a"Xh

n" of the variables Xx, X2, ..., X„. 

The full disjunctive and conjunctive normal forms can be written in the following 
ways 

FV(X") = F1 + F.2+...+Fk_l = Ft, 
;=1 

and 

Fa(X") = F;FL..fl1 = k j j Fj, 
j=i 

where Ft (Fj) is the sub-formula consisting only of min terms (max terms) which 
determine the /-th O'-th) value of the function. 

Definition 11. Let F be a disjunctive normal form of f£Pk, and let G be a con-
junction term of F. We say that G is an implicant o f / i f G—f. G is called prime impli-
cant if, for every G- obtained by omitting any variable of G, G'-^f holds. 

Remark. The above defined min and max operations are mutually distributive 
(see identity III). Using this fact and the duality of the two operations we can treat 
the disjunction terms in a conjunctive normal form in the same way as we treat the 
conjunction terms in a disjunctive normal form. A normal form is called irredundant 
if the following properties hold: 

(1) each of its terms is a primimplicant, and 
(2) no expression obtained by omitting any term in the normal form implies the 

original function. 
A normal form is called redundant if it is not irredundant. 

2. Representation of formulae of functions. 

The tree-construction procedure 

We will work with a fixed order of our variables, which will be denoted by S. We 
agree that if we write / ( X " ) ^ ^ , Z2 , ..., X„) then S=(Xt,X2, ..., Xn). Thesimpli-
fication procedure we are going to discuss depends on S, therefore to some of the 
objects in the procedure we will affix S. By successive evaluation we mean successi-
ve evalution determined by 5"(i.e. we change first the first variable for logical valu-
es then the second one etc.) 
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Let /(Xn) and S=(Xt, X2, Xn) be given, and let 

f(X")=f(X1,X2,...,Xn)=f0il 

f(0,X2,...Xn)=f1A 

f(l,X2....Xn)=f1<2 

f(i> = fl,i + l 

f(k-l,X2, ...,XJ=fut 

f(0,0,X3,...,Xn)=f2A 

f(0,k-l,X3,...,Xn)=f2,k 

f(l,0, X3, ..., X^) = f2tk+1 

f(k-\,k-\,X3,...,X„)=f2,k* 

f(k-l,k-U...,k-l,X„)=fn_uk»-z 

f(k—l, k—\, ..., /< — 1, 0) =/njl 

f(k-l,k-l,...,k-l,k-l) =f„,kn 

Using the results of Lemma 1, the following arrangement can be given (Fig. 1). 

The functions f0tl,fltl, •••,f„,kn are called level-functions. Every function fm j 
( 0 1 ^j^k™) determines k new functions on the (m+l)-th level in the follow-
ing way: 

/m + l,j)t-(i-(&-l))( " ' X j , . . . ) =fm,j(..., i, •••). 

So there are kf+1 level-functions on the (m+l)-th level. The ' X j s (/=0, 1, ..., k-1, 
j= 1, 2, ..., n) appearing at the edges of the tree above indicate that the variable X} 
is replaced by the constant /. The functions f„ti_, being on the rc-th level, are logical 
values. 

This way we can associate a k-ary tree with every function /(X"). 
The tree which has just been obtained will be denoted by (notice that the 

construction depends on the fixed order S of the variables). Since <PS contains all 
the possible level functions, <PS will be called complete. 



0 . l e v e l 

Fig. 1 
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Notion of endpoint and path 

By endpoints we mean the "leaves" of the tree (the vertices on the lowest, w-th 
level). Any sequence of edges joining the root with some endpoint will be called a 
path. Some more notations: 

Let <PS be a tree belonging to/(X"), and let S s f t , X2, ..., Xn) be fixed. Sup-
pose that the edge denoted by "Xf+1 connects the level functions fuj and fi+lyi. 

Below / ¡ j and / i + l j- will be called the start-point and the endpoint of the edge 
"Xf+j^, respectively. Obviously there is a one-to one correspondence between the eva-
luations of a function /(X") and the paths of the corresponding tree <£s. If we know 
the tree <PS corresponding to a function /(X") then it is easy to determine the Fw (X") 
full disjunctive and FA (X") full conjunctive normal forms of/(X"). To obtain Fy (X") 
we have to take the conjunction of the variables }X{ along paths together with the 
logical value of the endpoint of the path and take the disjunction of all these expres-
sions for every possible paths. If we interchange here "disjunction" and "conjunc-
tion" and "variable" for "negation of variable" we obtain F (X'"). 

This method shows that the tree <fs is a representation of the formulae Fv 
and JPA. It can also be seen that <PS is equivalent to the truth-table of the function, 
the difference between them is that <PS can be obtained by successive evaluation 
while the truth-table is given by simultaneous evaluation. 

Theorem I. Let f(X")£Pk, S=(X1,X2, ..., X„). Then the tree-construction 
procedure associates a uniquely determined k-ary tree to f . 

Proof. The level function /n + 1 J k_ ( i_ ( ( [_1 ) ) has fewer variables than fm J. 
Since f0> x contains a finite number of variables, the procedure must necessarily stop 
after the construction of a finite number of levels, which gives the existence of the 
tree. The unicity can be obtained from the equivalence of simultaneous and successive 
evaluations. 

Definition 12. Any function/with domain D(f)<ZE% is called a partially defined 
function. Those places where/is not defined will be marked by (*) in the truth-table 
and at the "leafs" of the tree. 

In the process of simplification we can assign any value to these places, which, 
in certain cases, yields a simpler representation. 

3. The simplification procedure 

Let /(X")€Pk and let S be fixed. In order to construct an irredundant equivalent 
of/(X") first we construct the tree <PS and choose that subtrees <P'S (t—0, 1, ..., A:—1) 
of which consists of those paths of <PS that have t at their end. 

Definition 13. Those points of <P'S ( i=0, 1, ..., k—1) from which exactly k 
edges start will be called complete branching points, and the k edges starting from 
such a point will be called a complete edge-system. A complete branching point of a 
subtree is called /«-multiple complete branching point if the subtree has altogether 
m total branching points with the same complete edge-system as the given point 
(more precisely the variables attached to the complete edge systems must be the same). 
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L e t p be an arbitrary path of <P'S ( /=0, 1, ..., k—1) and let n be the number of 
its edges. 

Let 

if belongs to p, 
* v * _ if rX„ belongs to p, 

rtj . J . . ' . . . 
k~1x!i~1 if "^XH'1 be longs t o p, (1 ^ nJ_l < tij n, 2 S j S m) 

and 
{*K> *K> ->*X»J = X = ni> ' " > 

some edges of p. _ 
Those edges of p (if there is any) which do not belong to X will be called connect-

ing sequences of X (relative to p) and will be denoted x = {x1,x2, 
Let $'s be given, and let p be a path of <P'S. A subtree <P'S' of <P'S will be called 

maximally simplifiable subtree of order m (below briefly MSST) if 
(1) <P'S' contains p, _ _ 
(2) there exists such an edge set X=X{p, rtj, m) ISjSm) 

of p taken in the fixed order determined by S that the edges marked by 
*X*.+t (/'=0, 1, ..., m — 1) belong to ^''-multiple total edge s y s t e m s _ o f , 
and i fp' is any_other path of <!>$ then the connecting sequences of X=X{p, 
iij,m} and X'—X'{p',nj,m} relative to p and p' are the same (more 
precisely, are marked in order with the same variables "Xfj. 

(3) There exist no subtree of <P'S' that has properties (1) and (2) and which 
has more than m total branching points. 

The structure of an MSST of order m is shown on Fig. 2. 

Remark. is the sequence of edges between *X*_, and *X* in the order deter-
mined by S. If « ;=«;_!+1 then is empty. If m=0 then <P's'=p- It is obvious 
that if a tree <P'S and its path p are given then there exists at least one MSST contain-
ing p. 

Theorem 2. Let f(Xn)£Pk, (t=0, 1, ..., k-1) a tree belonging to a fixed S, 
p a path of <P'S and 9JI an MSST of p. Let the «-term conjunction of variables along the 
paths of 5DI be: px,p2, ..-,Pk' (1 = /=« ) , and the (variables at the) connecting se-
quence Xx, x2, ..., xm. Then 

2pj= Il'-i 
1 i=1 

holds. 

Proof. 9Ji contains k1 paths, so there are k°, k\ ..., kfn~1 total branchings on the 
different levels. In other words the formula Ft corresponding to <P'S does not depend 
on the variables appearing in the total branchings because it takes the value t inde-
pendently of these variables, so they can be omitted. 

This theorem shows that every 9JI yields one term. The term which is obtained by 
the method above is called the simplified formula of SR. The disjunction of such sim-
plifications of MSST's is the simplified formula of the function. 
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4. Irredundaiit coverings 

Definition 14. A set of MSST-s of a tree $'s ( /=0, 1,..., Jfc-1) is called a co-
vering if each path of the tree belongs to at least one of the MSST-s of the set. 

A covering is called irredundant if any MSST in it contains at least one pat!» 
belonging only to this MSST. 

Theorem 3. Let represent the disjunctive normal form of an f(X")£Ps, 
( t=0 ,1 , . . . , k— 1), together with one of its irredundant coverings. Let i V denote 
the disjunction of simplified formulae obtained from the elements of the set of MSST- s 
giving the irredundant covering in question. T h e n . i s irredundant. 

Proof. Suppose that Fy is redundant. Then there exist two cases. . 
(1) some disjunction term of Fy can be .omitted; ...,' 
(2) at least one variable can be _omitted from some conjunction term of jPy ," 
First suppose that a term i r (1) of Fv can be omitted. Since every MSST gives pnly 

one conjunction term, omitting this is equivalent to omitting the MSST from the 
covering, but taking into account the irredundancy, this is impossible. 

Secondly we note that, if an i^O c a n be replaced by an obtained from F<'> 
by omitting some variables, then the MSST giving /"(i> contains the MSST which 
gave but this contradict the definition of MSST. 

Remark. Theorem 3 is formulated for full disjunctive normal forms, but because 
of the principle of duality it is true for full conjunctive normal forms as well. 

5. Simplifiable paths, simplification algorithm 

Definition 15. Let ^ (/=0, 1, ..., k—1) be given, and take a path p of <P'S, 
— pis called singular if the MSST coincides with P-
— p is called simply covered if p is covered by one and only one MSST. ' ' 
— p is multiply covered if it is covered by at least two MSST-s. 

Theorem 4. Let f(X")dPk be given by either its disjunctive or conjunctive full 
normal forms. I f / i s given by its full disjunctive normal form Fy and some max term 
EF is simultaneously represented by formulae FT_M, Fi_ ra+1, ..., F j_ m + t >then 

min (FT — — m +1» • • • ? ^l-m + i) — $} — m• (1) 

I f / is given by the full conjunctive normal form FA and some max term E" is 
simultaneously represented by formulae FT_M, F (_m + 1 , ..., F,_M+I, then 

max(F,_m, Fi_m+1 , ..., F,_m+i) = F,_M+I. (2) 

The statement can easily be proved taking into account the definitions of the 
min and max operators. 

Formula (1) means that the simplification procedure of a function / (or tree <t>s 
which is representing the function and is written from the disjunctive normal form) 
value (for example in case ek= {0,1,..., fc—lj with After the first step of the» 
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simplification the endpomts'marked'with(fc — 1) can be considered of (* Rvalue, that 
is undefined, in the tree Let us introduce the following notations: 

(i) - : = 

(ii) = ^ - ( ' - D . + U ^ - ' ( i > 2 ) 

where-/=fc—y and ( * ) is written on the places By virtue of Theorem 4, there 
are subtrees which may give more favourable conditions for simplifiction. 

On the other hand relation (2) shows in case of tree of functions given by full 
conjunctive normal form that simplification has to be started with the simplification 
of that subtree determined by the path "with smallest logical value and'we have to 
apply the method above. Below the procedure will be shown only for functions given 
by their full disjunctive normal forms. The case of full conjunctive normal forms can 
be treated in a similar way. 

Now we can give the simplification procedure. 

6. Simplification algorithm for representations of irredundant formulae 

(1) Let ••••/=1. Mark the paths with endpoint i=k—1 in the tree <PS (that is we 
start from the subtree #s_1). If in the tree <PS originally there are endpoints marked 
with (*), then we begin with 

We choose a path and an MSST containing it. We take a record of the simplified ! 
formulae corresponding to this MSST and mark the paths in it. 

(2) We choose an unmarked path and determine an MSST covering it, prefe-
rably with unmarked endpoints (this will speed up the algorithm). This way such an 
MSST is chosen which is necessary for an irredundant covering. The simplified 
formula belonging to the MSST we have just obtained will be taken record of and 
the so far unmarked paths of the MSST will be marked. 

, Repeat step 3 until we can find unmarked paths in 
If there is ho" unmarked path, then let /'=/'+1. If then consider the sub-

tree $s~u* and carry out the above steps (1), (2), (3). If i—k the algorithm is over. 
Finally the simplified formula of the function /(X") can be determined as fol-

lows: 
Let 

ck-l fk-l pk-1 

r i - 2 rk-2 JTfc-2 * »,1 ' 1 S,2 5 •• • > r S, i j 

denote-the simplified formulae obtained from the subtrees <$s~%, ^ 
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respectively. Then the formula: 

(fc-1); ( F t i 1 + n * 1 + - + n T l
1 ) H k - 2 ) - ( F t i 2 + n i 2 + ••• + *?.7,2) + -

+ 2 • + + 1 . ( F ^ + F ^ + . - . + F ^ J 

corresponds to an irredundant covering of 0 S . 
All these can be summarised in the following theorem. 

Theorem 5. Every tree 4>s has at least one irredundant covering. 

7. Some demonstrative examples 

I. Consider the function 

P(X, Y,Z) = 11(1,4, 7, 10,11,13, 14, 19, 22, 25)+21 (6, i5, 16, 17, 24) 

given by its full disjuntive normal form (here we use the conventional notation of 
binary logic; only the numbers in brackets should be considered as numbers in the 
number system with base k instead of 2). We will simplify the function f3 (X, Y, Z). 
Let S=(X, Y, Z) be the order of evaluation. Fig. 3 gives the coinplete tree of / 3 

With k=2 pick the tree i>| and let us analyse it (Fig. 4). 

Fig. 4 Fig. J 
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( 1 5) ( 1 E>) (17) 

Fig. 6 

Let us investigate the paths of this tree moving from the left to the right 
1. There is no singular path. 
2. Simply covered paths: (6), (16), (17). The MSST belonging to (6) is (6—15— 

24) (Fig. 5). The next path is (16) and the corresponding MSST is (15—16—17) 
(Fig. 6). 

The simplified formulae 

l y l 2y2 

3. There is no more unmarked path. 
We write ( * ) instead of 2 and consider * with k=\. (Fig. 7) 

1. There is no singular path. 
2. Simply covered paths are: 

(1) and the corresponding MSST is (1—4—7—10—13—16—19—22—25) 
(Fig. 8), (11) and the MSST is (11—14—17) (Fig. 9). 
The simplified formulae are: 

xZl 

1X1 • 2Z2 

The simplified irredundant formula is: 
2 QX12r2+2y 2 °Z°) + 1 cz1+2Z2). 
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(1!) (14* (17) 

Fig. 9 

II. Consider the following function 

f \ X , y) = 11(3,4, 6 ,7 )+2I ( l , 5, 13) + 3I(9, 10, 11, 14) 

and let S=(X, Y). Simplify this function. 

1. Singular paths are: (9), (10), (11), (14) and the formulae belonging to these 

2J^2 l y l 2J^2 2 y 2 2 j^2 3 y 3 2 y 2 

2. There is no more unmarked path. 

We write (* ) instead of 3 and let k—2. 

1. There is no singular path. 
2. Simply covered path is: (1) and the MSST is (1—,5—9—13) (Fig. 13) 
3. There is no more unmarked path. 

The simplified formula is 1Y1. 
We write instead of 2 and 3 now (*•) and let k= 1. 

1. Singular path is: (3) and the corresponding formula is: 3F3 

2. Simply covered path is (4) and the MSST is (4—5—6—7) (Fig. 15). 

The simplified formula is: 1X1 
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^ (X.V) 

3 3 3 3 
(9) (10). (11) \ (14) 

Fig. II 

3. The simplified function is: 

3 (2X21Yl+2X2 2Y2+2X2 3 Y 3 + 3 X 3 2Y2)+2XF1 + 1 (°X° 3Y3+UT1). 

Remark. The irredundant formula we have just obtained can be transformed 
by virtue of indentities treated above. 

For example: 

3 (2X2 071+3K3)+2Y2(*X2+3X3))+2^1 +1 (°X° 3Y3+XJH = 

=3 (2X2 *Y3+2Xa 2Y2) -f 2V1 +1 (°X° 3Y/+ xXl). 

III. Let p(X, Y, Z) be given by its truth-table (Figf 16). Simplify this function 
Let S=(X, Y, Z) • <PS(X, Y, Z) is sketched in Fig. 17; For the endpoints marked 
with k=2 and * we have: 

1. There is no singular path. 
2. Simply covered paths are: 
(i) (13) and the corresponding MSST is (4—13—22) (marked with + ) (Fig. 17). 
The simplified formula is: 1Y11Z1; 
(ii) (21), the MSST is (21—22—23) (marked with o) and the simplified formula 
i s s Z 2 i y i 

(iii) (24), the MSST is (18—21—24) (marked with " = ") and the simplified 
formula is tXi0Z°. 
3. There is no more unmarked path with endpoint 2. Consider now the subtree 

with endpoints k= 1, 2 = * and * 
1. There is no singular path. 
2. Simply covered paths are: 
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Fig. 13 

(0), the MSST is (0—3—6—9—12—15—18—21—24) (marked with • ) and the 
simplified formula is: °Z°; (10), the MSST is (9—10—11) (marked with •), the 
formula is W Y ° ; (16) MSST: (15—16—17) (marked with X), the formula is: 

3. There is no more unmarked path with endpoint 1. 

The simplified formula of the function is: 

2(1Y1 lZl + 2X21Y1 + 2X2aZa) +1 (aZ° + xXl oyo + i^i *Y2) = 

=2Cy1 W + '-X21Y1 + 2X2 0Z0)+1(0Z° + 1X1 iy2). 
IV. Let 

f \ X , Y) = 11(5, 8, 9, ll) + 2Z(2, 6, 10) + 3I(13, 14)+ * I (1 , 12, 15) 

and S=(X, Y). Simplify this function 

For the paths with endpoints k=3 and * : 
1. There is no singular path, 
2. Simply covered paths are: 

(13) MSST: (12—13—14—15) (marked with 0) (Fig. 18) the simplified 
formula: 3A'3. 

3. There is no more path with endpoint k=3. 
For the paths with endpoints k=2, 3 = * and * : 

1. There is no singular path. 
2. Simply covered paths are: 

(2) MSST: (2—6—10—14) (marked with + ) the simplified formula is 2Y2. 
3. There is no more unmarked path with endpoint k—2. 



* 
( I ) 

I . 

(3) (4) (5) (6) (7) 

Fig. 14 
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(4) (5) (6) (7) 

Fig. 15 

X Y Z P X Y Z P X Y Z / 3 

0 0 0 1 1 0 0 1 2 0 0 * 

0 o 1 0 1 0 1 t 2 0 1 0 

0 0 2 3 1 0 2 2 0 2 0 

0 1 0 1 1 1 0 1 2 1 0 2 

0 1 1 3 1 1 1 2 2 1 1 2 

0 1 2 0 1 I 2 0 2 I 2 2 

0 2 0 1 1 2 0 1 2 2 0 2 

0 2 1 0 1 2 1 1 2 2 1 0 

0 2 2 » 1 2 2 1 2 2 2 0 

Fig. 16 

For the paths with endpoints k=\, 2 = * , 3 = * , and *. 
1. There exists no singular path. 
2. Simply covered paths : 

(5) MSST: (1—5—9—13) (marked with • ) the formula: ^ 
(8) MSST: (8—9—10—11) (marked with X) and the formula: 2X2. 

3. There is no unmarked path with endpoint k=\. 
The simplified formula is: 

33X3+22Yz+l(2X2+1Y1). 



• 



0 * 2 0 0 1 2 0 1 1 2 1 ... 3 3 

X • X X 0 0 0 

• + • • • + 

C o ) о ) U ) Ы ( * ) t 5 ) С 6 ) ( 7 ) ( ^ X"' ( 1 0 ) (11) ( 1 2 ) (13) (14) 

Fig. 18 
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An Erdős—Ko—Rado type theorem II 
v B y K . ENGEL a n d H . - D . O . F . GRONAU 

1. Introduction and results 

Let R denote the interval [1, r ] of the first r positive integers. Let k be an integer 

with 0 = k^r. The set of all ¿-element subsets of R will be denoted by . The aim 
of this paper is to present the 

Theorem 1. -Let /1=4 and v^4 be integers. If F ^ j ^ j , 

— - i - ' l i f c s ^ i ( r - l ) , (1) 
- V \ - • H 

and F satisfies 

^ n ^ n . - . n ^ Ji 0 for all X1}X2,..., X„eF, (2) 

as well as 

X1\JXiU,,.ÖXv ^ R for all Xlt Xt,..., XV£F, (3) 

then 

•• • . This is best possible. The families x£X,y§.X^, 
..... where x and y are different fixed elements of R, are maximal. 

This theorem was proved, for and vS6 and for some partial cases of k if 
/1=4,5 or v=4,5, in Gronau [2]. Our proof here uses the same method but in a 
refined version. 

Condition (1) is natural. For all other k's one of the conditions (2) or (3) is satis-
fied automatically, and the problem reduces to the generalized Erdős—Ko—Rado 
theorem by Franki [1]. For another simple proof, see Grohau [3]. 

4* 
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Theorem 2. (generalized Erdos—Ko—Rado theorem) 

Let /1^2 be an integer. If FQ^ ^ )» OSfcS-^—and F sa-

tisfies (2), then 

i i - ( i l l ) -
Turning to the complements we obtain a dual version. 

Theorem 2'. Let v ^ 2 be an integer. If F g ^ j , andF satisfies (3), 

then 

i f - 1 V I 

2. Some reductions 

Let [i, v=s4, k and be given such that (1), (2) and (3) hold. If 

or |J Xr±R then 
X € F X € F V * L F 

follows by Theorem 2 or 2' immediately. Since the described families FXt y have cardi-
nality ) a r ,d satisfy (2) as well as (3), the proof of Theorem 1 will be comple-
ted by proving 

Theorem 3. Let ^ 4 and vS4 be integers. If F g ^ j and F satisfies (2) and 
(3) as well as f ) Z = 0 and (J X=R, then 

X € F X€P 

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3 

only for /¿=v=4. Furthermore, we may restrict ourselves to fcs-^-in the proof 

since follows by duality. We make use of some results from [2]. 

Proposition 1. ([2, Lemma 1]). 

. S 3 , 

|Zin^anZ3|&2 for all XltXt,X£F. 
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Proposition 2. We may suppose that for all X£F it holds: If i$X, j£X and 
í I i / </, then (X- 0">) U {'}€ F. 

TTie last proposition is a consequence of Lemma 4 in [2], by the Erdős—Ko—Rado 
exchange operation. , 
i : , Finally we prove Theorem 3 for small k, similarly to [2], by a short argument. 
; r 3 

Lemma 1. Theorem 3 is true for + — . 

Proof. By Theorem 6 in [2], Hence, 

|F| ^ ( k - 3 ) 1 r ( r - l ) ( k - l ) ( k - 2 ) 
(r-k+3)(r-k+2)(r-k+l)(r-k) -

16 r r—1 r + 2 r — 2 
27 2 2 r+2 r—2 

T r ~ J 

1. • 

• 1 i 

3. An upper bound for |F| 

- r 3 r Suppose that /"satisfies the suppositions of Theorem 3, and —+ . We 

decompose F into F,, F2, and F3 according to 

Fx = { Z € F : { 1 , 2 } g X}, 

F2 = {X£F: l£X, 2iX), 

; F3= {XeF: 1$*}. 

i) Let F ^ p T : jrU{l ,2}€F l 5 { l , 2 } n X - 0 } . Then F{ is a family of (fc-2)-
element subsets of the (r—2)-element set {3,4,.. . , r} satisfying (3) for v=4. Since 

+ y j —2= r ^ ' , we may apply Theorem 2' and obtain 

= (4) 

In order to estimate |Fa| and |F3| we use the description of the families by walks in 
the plane. We associate with every a certain walk. We start from (0,0). 
If we are after i moves at point (a, b) then we turn to (a, b +1) or (a+1, b) depending 
on whether i + i e X or / + 1 $ S o every set of ^ j is associated with a walk 
from (0,0) to (r—k, k) and vice versa. 
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Let F2' and F-j denote the. set of walks associated with Fg and Fs,respectively. 
By the definition of F2 and F3, every walk of F» starts with (0, 0)—(0, 1)—(1, 1) 
whereas every walk of F~ starts with (0,0)—(1, 0). . 

ii) Every walk of F'z meets the line y=2x+2, since otherwise, by "Proposition'?; 
F2 would-contain theset; ^ = { 1 , 3,4, 6, 7,9, 10, i..}. Forthe Samereason^F^vould 
contain X2= {1, 2, 4, 5, 7, 8, 10, .,.} and X3= {1, 2, 3, 5, 6, 8, 9, ...}. But p^D 
n ^ f l A ' a ^ K l } ^ ! , contradicting Proposition. 1... ' .... : 

If a walk meets the line j>=2x+2 the first time at (/', 2/+2), i s l , then this 
walk passes through (/', 2/ — 1), too. Hence the number of these walks is not greater 
than :'' ' -•'..-•-; vii >-v. 

( 3 i - 3 W V - 3 i ' - 2 ï 
i f— 1 J \k—2i—2) ,) 

since j*) is the total number of walks from (1, 1) to (/, 2i—;1), whereat 2) 

is the total number of walks from (i, 2i+2) to (ri—k, &).) ponseq^eqtly, . using 1, 
we obtain • , . 

Hi) Every walk of F3 meets the line _v=3x+l.. This follows by the same argu-
ments as in the preceding case recalling (2). Thus, 

By (4), (5), and (6) we obtain 

^ . L - 2 ) + Â U - 1 J U - 2 r - 2 J + ^ I i -1 J b r 1}, C7> 

. 4. Some lemmas 

In order to estimate (7) we need the following lemmas. 

Lemma 2. For any natural numbers n and i with n 

(n(i+\)\ ..... 
{ i+1 ) n" 
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Proof • . • - . . . . .V; ; 
(n(i + \)\ 
{ I ' + l J = ( # i ( i - t - l ) ) l i i ( ( « - l ) Q ! j n ( i + l y . f f ni+j 

p j ( ¿ + l ) ! ( ( n - l ) 0 + l ) ) ! ( m ) ! ^ I t+V../Jx ( n - i ) i + j 

' " - 1 n !.' - ', n" i : ( • 0 

.> V • 
Lemma 3. For integers r, k, i satisfying k^-—, and 1 we have 

; .« 2- v. !• 

\k-2i-4) ^ 2 
Yr—31—21 ~ 
Xk^liVV, 

U-3/-4J '„ 1 
C r - 4 i - n _ 16 
U - 3 . - 1 J , , 

, v — , .. . k-4 
a ) v- - " = T 'f 

, , , . . . fc-4 
b) „ ¿ ^ u 'f — 

Proof Since, for positive oc.and [3; — ^ - J , and k ^ — , we have 

(r-3i-5\ 
{k-2i-4) ( r - 3 i - 5)! (k - 2i— 2) !(/• - k - i)! 

a) ( V - 3 i - 2 ) (k-2i-4)l(r-k-i- 1)! (r — 3/ — 2)! 
U - 2 / ' - 2 j 

<• Yr—3»' —3\2 

(/c — 2i — 2) (fc — 2i — 3) (r — k — i) • .2 I . 2 J 
(r — 3 i — 2).(r — 3 i — 3) (r — 3 / — 4) " r - 3 i - 4 ( r - 3 i - 3 ) 

1 r — 4 / — 4 1 

i2 — 

6) 

~ 8 r —3/—4 ~ 8 " • ' f ' ' 

f r - 4 i - 5 ) 
[k~3i-4) _ (r—4i —5)[(/e —3»'— l)!(r —fc —»')! 
p - 4 i - n ~ —3/ —4)!(r —& —/ — 1)!(/• —4J — 1)! 
U-3/-1J 

_ (k — 3i — l)(k — 3i — 3)(k — 3i — 2)(r — k — i) ^ 
. ~ ( r - 4 i - 3 ) ( r - 4 i . - ^ 4 ) X r - 4 / - l ) ( r . ^ 4 i - 2 ) ~ 

r v 1 r (r-4i-2\2 

r-4i-3: r-4i— 4 ( r - 4 i - 2 ) 2 f . J ' 

1 r—.6i—2 r—6i—6 1 _ •,.. , 
— f o r , r ^ i.: . • 

- I6.r—4/— 3 r - 4 i - 4 " ' 16 
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Immediate induction consequences of our lemmas are 

RKIMH"'* <•* 
and 

m-liFC-i) » M 
Finally, by (8), with n—3 and 4 we. have 

p\ (9) H2) 

¿ p - ^ i r 1 - i + M + U i + M + i i l + " i k U - l J U J - + 8 + 8 2 + 83 + 8 4 + 

and 

, , 3 15 84 495 3003 1 
= 6 4 + 5T2+ 4096 + 32768 ^ 2"481' <"> 

32 

81 (12 

• j i i l i - l M ! 6 j ~ 16 + 16« + 169 + 

f l6) 
L U J i-5i4*V"*i1 V"6l 4 28 220 1820 1 

+ V U b f J y j = 1 + 7 6 + 2 5 6 + 4096+65536, 16 < L 4 8 2 -
' " 2 7 

5. Proof of Theorem 3 

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10), 
(11), and (12) we get 

< ( i : 3
2 ) + ( 2 . 4 8 . + i . 4 8 2 , ( - 5

4 ) , ( ; : 3
2 ) + 4 ( r 4 
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r 
Furthermore, recalling k s - ^ , 

1*1 _ ( f c - 2 ) [ ^ ( i c - 4 ) = fc-1 | 4 (k— l ) ( f c — 2 ) ( f c — 3 ) 
| r - 2 j r —2 (r—2)(r —3)(r—4) 

r 
• v . ( t - ' ) ( H M . 2 + 4 » ' J _ r—2 (r—2)(r—3)(r—4) 2 8 ( r - 3 ) ( r - 4 ) 

This completéis the proof. • 
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Giving mathematical semantics of nondeterministic 
and parallel programming structures 

by means of attribute grammars 

By R. ALVAREZ GIL 
• . . tt . u ' • 

1. Introduction • 

A formal definition of the semantics of the programming languages is a prere-
quisite for the verification of specific implementations. The definition pf the; semap-* 
tics of a programming language can be formulated in different ways. Knuth [8] has 
introduced attribute grammars for this purpose; Scott and Strachey{l€] has develo-
ped a mathematical method.^ . . . . , . . ••: , v .... . 

Many papers has been published about the relation between attribute grammars 
and mathematical semantics. Mayoh [ 9 J h a s shown that for any attribute grammar it 
is possible to find an equivalent mathematical semantics. The reverse affirmation is 
true only with several restrictions [3]. 

In this paper after the introduction of the used notations and the concept of 
attribute grammar we give an example to show how it is possible to describe the 
mathematical semantics of programming languages with the help of attribute gram-
mars in section 3. . • ; . ... . | 

In section 4 we describe the nondeterministic structures introduced by Dijkstra 
[2] and give-their mathematical semantics by means of attribute grammars. For this 
purpose it is sufficient to employ the notion of the possible states used in the descrip+ 
tion of the semantics of sequential programs, but many-valued functions are necessary 
to give the semantics of statements and programs. In section 5 we have to extend the 
notion of the possible states, too, to give the mathematical semantics of a parallel 
programming language allowing communication of sequential processes through 
Hoare's monitors. ' ; 
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2. Attribute grammars 

In this section we will follow in general the notations used in [7]. 
An attribute grammar is defined by a 4-tupel 

AG = (CFG, A, SR, SC) 

where CFG=(N, T, P, S) is a reduced context-free grammar (N is the set of non-
terminal symbols, T is the set of terminal symbols, P is the set of productions or 
syntactical rules and S is the start symbol), A is a finite set of attributes, SR is the set 
of semantic rules and SC is the set of semantic conditions. 

A production p€P is denoted by p:X0::—X1X2...Xn , where np^0, X0£N 
and X£NUT for all / (1 =§/==«„). 

For each X£N there is a subset A(X) of A. The set of attributes A is partitioned 
into two disjoint subsets As and AT, the set of synthesized attributes and the set of 
inherited attributes: A=AsUAr and AsClA,=0. Thus A(X) is partitioned into 
two disjoint subsets AS(X) and At(X), so that AS(X)Q As, Al(X)^Al and 
A(X)=AS(X)UA,(X). 

If p:X0::=X1Xi...X„p€P is a production, X£N occurs in p and a£A(X), 
then X-a denotes the attribute occurrence of a in p associated to X. The set Ap 

"p 
of attribute occurrences of a production p is defined by Ap= Q Ap(XI), where 

Ap(Xd={Xra:a£A(Xd} if Xt£N, and A,(X^=9 if X£T. Theset OAp of out* 
put attribute occurrences of a production p is defined by 

OAp = {Xra£Ap: (f = 0 and a£As(Xd) or 

(i > 0 and X£N and a£A,(Xi))}, 

and the set IAP of input attribute occurrences of a production p is defined by 

IAP = {Xra£Ap: (i = 0 and a^A,^)) or 

(i > 0 and X£N and a £/l s (*,))} = Ap\OAp. 

For each p€P there is a subset SRP of SR and a subset SCP of SC, the set of 
the production semantic rules and the set of the production semantic conditions, so 
that 

SR= (J SRP and SC = U SCP. 
P I P P € P 

For each production p£P, for each attribute occurrence X-, • ag OAp there is 
one and only one semantic rule /£ SRp which determines the value of X-, - a, and each 
semantic rule fcSRp determines the value of some output attribute occurrence 
Xra£OAp. 

Let s be a sentence of L(CFG) derived by 

S xYy -¡j* xuXvy-j* xuwuy s 

A node Kx represents the symbol X in the derivation tree ts corresponding to that deri-
vation and it is called an instance of X. For each attribute occurrence X-a an attri-
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bute instance Kx • a is associated to Kx. The values of the inherited attribute instan-
ces associated to Kx are defined by rules in SFg, and the values of the synthesized 
attribute instances associated to Kx are defined by rules in SFr. 

( K Y 

i ( / l \ 
u Kx v 1 ' I w 

A derivation tree augmented with the attribute instances is called an attributed 
derivation tree. An attribute evaluations strategy is an algorithm to calculate the 
value of each attribute instance. The single natural condition for the application of a 
semantic rule / £ SR is that the value of the attribute instances which appear as ar-
guments of / were calculated previously. This condition generates a dependence 
relation on the attribute instances of the attributed derivation tree. 

An attribute grammar is well defined if and only if for each attributed deriva-
tion tree the graph belonging to the generated dependence relation is noncircular. 
A well defined attribute grammar is also called noncircular. The problem of the deci-
sion of attribute grammars noncircularity is NP-complete [5], but subclasses of the 
class of noncircular attribute grammars have been introduced in which we can decide 
in polynomial time whether an attribute grammar belongs to the subclass. Such 
subclasses are for example the LR [1], the ASE [6] and the OAG [7] attribute gram-
mars. 

3. Giving mathematical semantics by means of attribute grammars 

As usual in the mathematical semantics we consider a program as a function on 
the set of the possible states 

sP = {{Oi, k),..., (v„, t„)}-. i^r;,..., iner;„} 

where vx, ...,v„ are all the variables which appear in the program, T'0i=TV(U {unva-
lued, undefined}. Te. is the set from which the variable vt takes its values. The variable 
Vi in a state is unvalued if it has no value and is undefined, if its name is not valid in 
that state. Later in section 5 we have to extend and consequently redefine the notion 
of the possible states. 

The semantics of the statements and a program p too are functions fp: SP-*S„. 
In this section we define such functions for the programs of a very simple sequential 
language. For this purpose we need the following attributes: 
Synthesized attributes: 

name — to give a unique identifier for each variable of the program 
T— to give the type of each variable and arithmetical expression 
V — to give the set of declared variables and their types 
S — to give the set of the possible states 
g — a function g: S—T' to give the value of an arithmetical expression in a 

given state, where T' is the type of the arithmetical expression 
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h — a function h: S—ftrue, false} to give the value of a logical expression in 
a given state 

/ — a function / : S— S to give the semantics of the statements and the pro-
grams of the language. 

Inherited attributes: 
V — to give the variables valid in the environment and their types 
S' — to transmit towards the levels of the tree the set of the possible states 

Nonterminal symbols and their attributes: 
program.has V, S,f 
declarations-statement has F , / . 
declaration list has F 
declaration has F 
variable_iist has F . 
variable has name 
type has T 
statement list has F, / , V', S' 
statement has F,/ , V, S' 
expression has g, T, V, S' 
bool expression has h, V, S' 

Syntactical rules and their semantic rules and semantic conditions: 
(In a production X0::=X1X2...X„p (npsO) we will omit the semantic rules of the 
form X0- a=Xr a if there is no Xs (1 and /Vy) which has the 
synthesized attribute a, and we will omit the semantic rules of the form Xt • a= 
=X0-a (1 

i) program::=begin declaration statement; statement list end 
program. V— declaration statement . F U statement list. F 
program. S ={{(v, Q\(v, T)6program. V}: tv£TU{unvalued, 

undefined}} 
program ./(¿)=statement list ./(declaration statement f(s)) 
statement list. F ' =declaration statement. F 
statement list. S'—program. S 

ii) declaration statement ::=var declaration list 
declaration statement . / ( j)={(«, j(u)): there is not (w1? 7\)6 

decIaration_list. F for which 
«!=i;}U{(«, unvalued): there is («l5 7\)6 
declaration list. F for which vx=v) 

iii) declaration—list!::= declaration; declaration list2 
declaration listj. • F = declaration. FUdeclaration list2. V 
condition: if (vlt 7\)6declaration.Fand 

(v2, declaration list2. F then 
iv) declaration list ::= declaration 
v) declaration: := variable_Jist of type 

declaration. V={(v, type. T): (v, 0)6variable list. V} 
vi) variable Iistx ::= variable, variable_list2 

variable list!. V— variable_list2. FU {(variable. name, 0)} 
condition: if («?, 0)6variable list2. F then:variable. 

n a m e ^ « 
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vii) variable list: := Variable 
variable list. V= {(variable. name, 0)} 

;viii) statement—listi::=statement; statemenfc_list2 
statement listx. V— statement. VUstatement_list2. V 
statement listx .f(s)=statement list2 ./(statement./( ¿)) 
condition: if (vt, Ii)€statement. V and (v2, T2)£ 

statement list2. V then v^v'i 
ix) statement—list ::= statement 
x) statement : := variable :=expression 

statement. F = 0 
statement .f(s)={(v, v ^ variable. name} U 

{ (variable. name, expression. g(s))} 
condition: there is (v, 7V) € statement. V for which 

v=variable.name and Tx=expression.T 
xi) statement ::=if bool expression then statement2 else 

statement3 fi 
statementx. V= statements. FUstatement3. V 

statement2./(j), if bool expression. 
A(j)=true 

statement3./(j), if bool—expression. 
h(s)=false 

xii) statement: :=while bool-expression do statement^ od 

statement! ./(statement2./( s) ), 

statementj ./(i') = 

statement!./( s) ==• 
if bool expression. h( s)= 
true 

s, if bool expression -h(s)=false 

xiii) statement ::=begin statement—list end 
. xiv).statement::=begin declaration statement; statement list end 

statement. V= declaration statement. FUstatement list. V 
statement./(s)={ (v, statement—list ./(declaration statement. 

As))(v)): 
there is not (c ls 7i)6declaration statement. V 
for which ^i=«}U{(v, undefined): there is 
(vlt Ti)£ declaration statement. V for which 
Vi=v} 

statement—list. V=statement. V U declaration—statement. V 
condition: if (vly 7\) £ declaration statement. V and (v2, T2)d 

statement—list. V then v^v^' 
It is easy to show that the attribute grammar given above is well defined (non-

circular), but we do not deal with this in our paper. 
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4 Semantics of nondeterministic structures 

The syntax of the nondeterministic programming structures introduced by Dijk-
stra can be given by a context-free grammar as follows: 

i) statement ::=alternative—construct 
ii) statement::=repetitive construct 

iii) altemative_construct::=if guarded_command set fi 
iv) repetitive_construct::=do guarded command set od 
v) guarded command set: :=guarded command • guarded_commancL_jset 
vi) guarded command set: :=guarded command 

vii) guarded command: :=guard ^guarded list 
viii) guard ::=bool_expression 

ix) guarded list::=statement list 

From the context-free grammar given above it is clear that Dijkstra introduced 
two new statements: the alternative construct and the repetitive construct, based on 
the concept of guarded commands. The semantics of these statements was given by 
Dijkstra in [2] with the following words: "The alternative construct is written by 
enclosing a guarded command set by the special bracket pair if ...fi. If in the initial 
state none of the guards is true, the program will abort; otherwise an arbitrary 
guarded list with a true guard will be selected for execution. The repetitive construct 
is written down by enclosing a guarded command set by the special bracket pair 
do...od. Here a state in which none of the guards is true will not lead to abortion but 
to proper termination; the complementary rule, however, it will only terminate in 
a state in which none of the guards is true: when initially or upon completed exe-
cution of a selected guarded list one or more guards are true, a new selection of a 
guarded list with a true guard will take place, and so on. When the repetitive construct 
has terminated properly, we know that all its guards are false". 

In the case of nondeterministic structures to give the semantics of the alternative 
construct and the semantics of the repetitive construct it is necessary to use functions 
f: Sp -»2sp which can be obtained as synthesized attributes. It is clear that for non-
deterministic statements it is not sufficient to use functions of the type f: SP-*SP 
because the state valid at the beginning of the execution of a nondeterministic state-
ment do not determine a unique state valid at the termination of the statement, that 
is more than one state can be the real state when the program finished the execution of 
the nondeterministic statement. 

Now we give an attribute grammar to obtain as synthesized attribute the func-
tions which give the semantics of the nondeterministic statements: 

Synthesized attributes: 
f — to give the function / : Sp-*2sP which describes the semantics 
h — a function h: Sp—{true, false} to give the value of a logical expression in 

a given state 

Inherited attributes: 

Nonterminals and their attributes: 
statement has / 
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alternative^_construct has / 
repetitive_construct has / 
guarded_command set has / 
guarded command has / 
guarded list has / v, 
statement list has / 
guard has h 
bool_expression has h 

Syntactical rules and their semantic rules: 
i) statement ::=alternative construct 

statement./= alternative construct./ 
ii) statement ::=repetitive construct 

statement . / = repetitive construct./ 
iii) alternative_construct::=if guarded command_set fi 

alternative_construct . /=guarded_command_set . / 
iv) repetitive construct ::=do guarded command set od 

U repetitive_construct./(jO 

repetitive 
construct .f(s)~ 

guarded command 
__set./(j) 
if guarded command 
_set./(.v)?i0 
s, if guarded_command se t . / ( j )=0 

v) guarded command seti: :=guarded command • guarded command 
_set2 
guarded command setx -f(s)=guarded command ,f(s) U 

guarded—command set2./( s) 
vi) guarded command set: :=guarded command 

guarded command se t . /= guarded command./ 
vii) guarded_command: :=guard —guarded list 

guarded list./O), if 
guarded_command./(i)= guard, ft ( j )= t rue 

[0, if guard.h(s)=false 
viii) guard::=bool expression 

guard. h=booh^expression. h 
ix) guarded list ::= statement list , 

guarded list . /= statement list./ 

Note: it is easy to see that the program aborts in an alternative construct if and 
only if the alternative construct is executed in such a state s for which the funct ion/ 
associated with the synthesized attribute to the alternative construct takes the empty 
set 0 as its value. Furthermore this occurs if and only if all the guards in the guarded 
command set of the alternative construct are false. 

5 Acta Cybemetica Vn/4 
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_ 5. Mathematical semantics of.parallel programs and monitors 

We will deal with parallel programs which have the following structure: 
begin 

(definition of the monitors); 
process!: process var i^, 

. (statements of the process,) 

end of processx 
and 

. (description of the process2, ..., processm_1) 
and 
process,»: process var •vg,....,vm ; 

. (statements of the process J 

end of process^ 
end 

The processes communicate with each other through Hoare's monitors [4]. A 
monitor is a collection of local data and procedures and has the following structure: 
monitor_lname: monitor 

begin 
(declaration of data local to the monitor) 

procedure proc_name (...formal parameters ...); 
begin 

. (procedure body) 

end; 
(declaration of other procedures local to the monitor); 

(initialization of local data of the monitor) 
end 
To call a procedure of the monitor, it is necessary to give the name of the moni-

tor and the name of the desired procedure: 
monitor_name.proc_name (... actual parameters ...) 

The procedures of a monitor are common to all existing processes, any process 
can at any time attempt to call such a procedure. However, it is essential that only 
one process at a time can be executing a procedure body, and any subsequent call 
must be iield up until the previous call has been completed or has been held up. A pro-
cess in executipn.cah be.held up by a wait statement and can. be resumed by a signal 
statement. The structures of these statements are: 

cond variable.wait; cond_variable.signal 
The cond variable is a new type of variable, a condition variable, which is sui-

table to differentiate the reason for waiting. In practice, a condition variable is an 
initially empty queue of processes which are waiting on the condition. 
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A signal operation is followed immediately by resumption of a waiting process, 
without the possibility of an intervening procedure call from a third process. Wait 
operation is followed immediately by resumption of a process delayed by a signal 
instruction. New procedure can be executed only if there are not processes delayed 
by signal. •"•'•; 

: Now, after this short and necessary introduction, we will define the set of the 
possible program states by 

SP = {{(fl, t\), ..., O, .. .,(v?, C), -, (Cm> (1, qi), (m, qm)} : 

A,..., t f r t»£T and qi, ...,qm{ (J ( Z ' X M C f ) 

where T — is the type of the variables (for simplicity all the variables have the same 
type), 

M is the set of declared monitors, 
Z] is the set of the possible states of the monitor j, 

MCJ is the set of the possible monitor calls relative to the monitor j. 
For each monitor j we define a function gji MCJ->~2ZJ which is obtained as a 

synthesized attribute and is the function which gives the semantics of the monitory. 
The gj is a many-valued function because in the general case, for the termination of 
a monitor call the execution of other monitor calls are necessary which can not be 
predetermined, and furthermore the calculation of gj have to be started from all pos-
sible states of thé monitor j in which the call might occur. To each process / we asso-
ciate a function / j : Sp-+ 2sp which is also obtained as a synthesized attribute. 

Let e : j 'jk(v')£MCs be a monitor call in the process /", where j is the called 
monitor,^ is the called procedure and v the actual parameter. We associate to this 
monitor call statement a function fe: Sp-*2S

P which is defined by 
fe(s)=S'QSp and. s'tS' .if and only if: 

a) s'(v)=s(v) f o r v (v9ivr) 
b) s'(p)=s(p) for all p (l^p^m, p^i) 
c) s'(v')=z'j ( p a r a m e t e r of jk) 
d) s'(i)=s{i)oz'j (call) 
e) z'jdgjie) -

where Zj- (parameter of jk) gives the value of the parameter of the procedure jk at the 
state z'j of the monitor j, and z] (call) gives the execution sequence of monitor calls 
which leads to z'} and the monitor states in which the monitor calls were executed. 
Because of this it is clear that in the elements of Z> there is a pair of the form (call, x), 
where x£(ZJxMCJ)*. 

It is necessary to introduce the pairs (/', q,) for 1 ^i^m in the set of possible 
program states because it is possible to decide whether a program state is really a 
possible program state only by the comparision of the sequences qt ( l ë / ' â /n ) . 
Only when the sequences qt are in correspondence with each other the program state 
is really a possible program state. The condition for this correspondence is that it is 
possible to find a sequence a1a2...a„Ç.{ [J (ZjXMC1))* for which the following 

iiM 

sentences are true: 

s* 



422 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations 

i) if a,tZJxMCJ (1 Si'Sn), then a£qj . : . 
ii) if b appears in qt (l^/ '^/w), then b appears in a1a2...an 

iii) if b precedes c in qt, then b. precedes c in a^...an 
iv) if b precedes c immediately in q„ and b and c belong to the same monitor call 

of the process /; then b precedes c in a^z.••(!„, and if b precedes d and d 
precedes c in a^... an then the monitor called in d is different from the moni-
tor called in b or c. 

v) if b is the first i n a ^ - - - a „ which belongs to (ZJ X MCJ), then the first compo-
nent of b is the initial state of the monitory. 

We do not give the attribute grammar for monitors and parallel processes be-
cause it is very long and can be constructed from the principles given in this section 
and the method described in the preceding sections. 

6, Conclusions 

In our opinion the attribute grammars are a powerful tool to give the mathe-
matical semantics of programming languages in the case of nondeterministic program-
ming structures or in the case of parallel processes communicating through Hoare's 
monitors too. 

Attribute grammars give a mechanizable method to obtain for any program of 
the language the function described by the program; and consequently an attribute 
evaluation strategy can be viewed as a "compiler" which translates the program 
into a mathematical function. 
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Abstract 

Attribute grammars have been constructed for describing the static semantics of programming 
languages and have been shown useful in a wide variety of automatic compiler generations. This 
paper presents a new application of attribute grammars to specify hierarchical and functional pro-
grams. An algorithm to evaluate attribute grammars is demonstrated. Several attributes can be evalu-
ated in parallel too. A simple model for generating PASCAL like programs is given. A new meta-
language PLASTIC is introduced as an adequate tool for specifying hierarchical and functional 
programs. A simple PLASTIC program is presented to help attain the new programming metho-
dology. 

1. Introduction 

Over the last decade there has developed an acute awareness of the need to 
introduce abstraction and mathematical rigour into the programming process. This 
increased formality allows for the automatic manipulation of software, increasing 
productivity, and, even more importantly, the managebility of complex systems. 
Along those lines, attribute grammars (AG) of Knuth [6] constitute a formal mecha-
nism for specifying translations between languages [2, 8, 11]. By automatically gene-
rating the inverse translators we would be able to translate any program written for 
one processor into the command language of any other processor [13]. There are some 
methods for incremental evaluation of AG to produce so called incremental compi-
lers [3]. An essential question is how to verify the correctness of the AG specification. 
In contrast with the attribute evaluation problem, this has not been studied well 
and only a few results have beep reported up to now [1, 5]. 

Although several efforts have been made to obtain efficient evaluators, the 
first good algorithm for attribute evaluation has been proposed by T. Katayama [4]. 
Principally this algorithm accepts absolutely noncircular AG although extension to 
general noncircular AG is straightforward. In the model nonterminal symbols are 
considered to be functions which map their inherited attributes to their synthesized 
attributes and associate procedures to realize these .functions with the nonterminal 



426 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations 

symbols. The entire AG is then transformed into a set of mutually recursive proce-
dures. When applied to an AG whose attribute evaluation process can be performed 
in a single pass from left-to-right, the algorithm can generate an evaluator which can 
be combined with the top-down parsers to result in the so-called recursive-descendent 
compilers if the underlying CF grammars are LL(fc). However data dependency 
sometimes allows several attributes be evaluated parallel supposing that we have 
associated one procedure for each synthesized attribute. 

As it is widely recognized, hierarchical specification techniques are the most 
promising methods in constructing complex and large softwares in well structured 
way, and in fact they are the most successfully used ones in practice as it is represented 
for example by SYCOMAP [10]. In these methodologies softwares are hierarchically 
decomposed into modules and they are successively refined until concrete and machine 
executable programs are obtained from their abstract specifications cf. CDL2. 
Although they are extremely natural and useful the current states seems to be that 
automatic program generation from the specifications and their verification are pre-
vented due to the lack of strict formalization. 

The hierarchical and functional programming methodology presented in this 
paper is based on attribute grammars. Applying the results of [4], we obtain a new 
program specification technique which stands mechanical program generation. 
In our approach we consider a program specification as an AG where program modu-
les are represented by nonterminal symbols of the grammar, module decompositions 
correspond to production rules, input and output data of the modules correspond to 
attributes of the nonterminal symbols and computations done in the modules are 
specified by the semantic rules. Our methodology has the following three desirable 
properties. It allows hierarchical descriptions of complex functional programs in a 
very natural way. We have means to mechanically generate efficient procedural type 
programs from the descriptions and verification of their correctness can also be per-
formed hierarchically. 

In this paper we give our formalism and then the metalanguage PLASTIC is 
stated. Before presenting the program generation algorithm a simple example is 
shown. The PLASTIC system, implemented in PASCAL is now under development. 
The PLASTIC compiler is specified in HLP/PASCAL metalanguage [12]. 

2. Formal description 

Essence of our approach is to use a mechanism based on the Khuth's attribute 
grammar [6] to describe programs. Therefore a hierarchical and functional program 
(or simply HFP) is a 6-tuple 

(.M,m0,A,D,V,F) 
where 

(1) M is a set of modules. We assume that M contains the special modul called a 
null module which is used to terminate decomposition. The null modul is denoted 
by null symbol. 

(2) m0£M .is an initial module. 
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(3) A is a set of input and output attributes of modules. With any modul except the 
null module, there is associated a set of input and output data called attributes 
and the set of attributes of X£M is denoted by A[X]. A[X] is a disjoint union of 
the set IN[Z] of input attributes and the set OUT [A"] of output attributes. They 
are called inherited and synthesized attributes, respectively, in the AG termi-
nology. 

(4) DcMxM* is a finite set of module decompositions. An element d£D is called 
a decomposition and is denoted by 

d: X0 - X1X2...X„ cond Cd 

for X0, ...,X„£M. We say that the module X0 can be decomposed into modules 
Xly X2, ..., Xn if a decomposition condition Cd is satisfied. Cd specifies the condi-
tion in terms of input attributes of X0. When a is an attribute of Xk, that is, 
a£A[Xk], Xk • a is called an attribute occurrence of the decomposition d. It is 
called an input occurrence (by an alternative denotation Xk\a) if £z6lN[Xt] 
and an output occurrence (Xk\a) if a£OUT[ArJ. 

(5) V is a set of value domains of attributes. 
(6) Fis a set of attribute mappings for describing functional equalities among attribu-

tes. Let d be a decomposition X^X^X^^.X^D. For each output occurrence 
v=Xf>\a with ad OUT [X0] and input occurrence v—Xk\a with a£ IN [Xk], l^k^n, 
there exists a function/^ „ to compute the value of v from the values of other attri-
bute occurrences vt, ..., vm in d. The set Ddv—{vl5 ..., vm} is called dependency 
set o f f d v . If we denote the value domain of v by domain (v),fdv is a mapping 
domain (v^X...Xdomain (vm)— domain (v). 

That is, in every decomposition functions are specified to compute the values of out-
puts for main module and inputs to submodules. 

Let us define a decomposition tree which shows the result of all decompositions 
applied to the initial module m0. It corresponds the derivation tree of CF grammars 
and is defined recursively by the following 
(1) the null module is a decomposition tree, and 
(2) if 7\, ..., T„ are decomposition trees with the root module X±, ..., X„, respecti-

vely, and X0->-X1...Xa cond C is a decomposition, then the tree 

r„] 

which consists of the root X0 and the subtrees Tls ..., T„ is a decomposition tree. 
A computation tree T is a decomposition tree whose nodes are labelled by attri-

bute values in such a way that for any module X0 in T and the decomposition 
d\ X0—X1...X„ cond Cd applied at the module the following conditions are satisfied 

(i) the decomposition condition Cd is true, 

(ii) for any output occurrence v of X0 or input occurrence v of Xk l^k^n, 
the following functional equality holds 

v =fdlV(v1,..., v j where DdtL, = K , ..., vm}. 

It should be noted that a computation tree represents a particular execution of 
an HFP corresponding to the particular values of input data fed to the initial module. 
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3. The PLASTIC metalanguage 

PLASTIC is a new metalanguage designed to support the use of abstractions in 
program construction. Work in programming methodology has led to the realization 
that three kinds of abstractions — procedural, control, and especially data abstrac-
tions — are useful in the programming process. Among these, only the procedural 
abstraction is supported well by conventional languages, through the procedure or 
subroutine. ALPHARD [9] and CLU [7] provide, in addition to procedures, novel 
linguistic mechanisms that support the use of data and control abstractions. In con-
tradiction to these languages the PLASTIC system is altogether based on a few 
results of AG. In the module specifications, control abstraction is realized by the 
semantic functions and decomposition conditions. Data types can be refined successi-
vely as the decomposition proceeds. 

A PLASTIC program consists of five parts. We first define some global data 
types for the procedures and functions. The auxiliary functions and procedures that 
are used in decomposition rules are declared in procedure declarations. The allowed 
primitive functions and procedures form a subset of those of PASCAL, since both the 
procedure type and the parameter types are restricted to allowed input-output attri-
bute types. The interpretation of procedures and functions is the same as in PASCAL. 
Comments are indicated by the character %, whose appearance outside a proper 
string means that the rest of the line is interpreted as a comment and is skipped by 
the system. The strings belonging to the token class IDENTIFIER begin with a letter 
which is followed by letters or digits or underscores. 

Before the module specifications the name of the initial module is given. The 
values of the input attributes of the initial module are assigned by read operations. 
The main part of a PLASTIC program is the module specification. We associate a set 
of input and output data with each module X. Computations done in the module X0 is 
specified decompositionwise by giving a set of functional equalities which hold among 
attributes of X0 and its submodules Xx, ..., X„, and thus they are reduced to the com-
putations done in submodules. Repeating the module decomposition process until 
terminal modules are reached completes the program design. If there are recursive 
modules or if there are modules whose decompositions are not unique there may 
occur numbers of trees each of which corresponds to a specific computation. We have 
attached declarations for data types of attributes to decompositions. They are refined 
successively as the decomposition proceeds. Different decompositions for a module 
are separated to versions. The input attribute occurrence can be denoted by J while the 
output occurrence by t. In the attribute occurrences the name of the module to be 
decomposed must not be specified. 

Simple copy rules of the form " X - a : = Y - b " can often be left unwritten by apply-
ing the so-called elimination principle, if so desired. It is applicable in two situations. 
First, if a is an output attribute, then A'must be the left-hand side of the decomposition 
and Y must be the only module on the right-hand side of the decomposition having 
an occurrence of attribute a. Alternatively, if a is an input attribute, then Y must be 
the left-hand side of the decomposition and X can be any of the modules on the 
right-hand side of the decomposition. In both cases the nonexistence of a rule for 
X- a is an indication to the PLASTIC system to include the copy rule in the decom-
position. In the module and submodule specification the input and output attributes 
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are separated by semicolon. The keywords "description", "specification", "mo-
dule", "submodule", "version", "condition", etc. can be abbreviated to "descr", 
"spec", "mod", "submod", "vers", "cond" etc. We assumed that a PLASTIC prog-
ram is deterministic, that is, decomposition conditions of distinct decompositions 
with the same left-hand side module do not become true simultaneously for any value 
of its input attributes. 

In the last part of a PLASTIC description the user can prescribe the implemen-
tation commands. As we shall see data dependency sometimes allows several attribu-
tes to be evaluated simultaneously. In our system these attributes are evaluated in a 
single procedure call, because this reduces overheads due to procedure activations 
and increases chances of parallel execution. The keyword "parallel" stands for these 
output attributes which have to be evaluated simultaneously if it is possible. The 
default option for attribute evaluation is sequential. One of the major goals of PLAS-
TIC is to provide a mechanism to support the use of good programming methodology. 
To meet this goal, we must provide more than just the language mechanism for the 
generator: we must also provide a way to specify their effects. A natural means of 
doing this for implementation is to specify how to realize the evaluation of an attri-
bute. There are three different kinds of realization. The default option is procedural. 
In this case for each module Zand output attributes a single procedure will be genera-
ted. The keyword "macro" stands for those output attributes which are evaluated by 
executing a macro call. If there are same precompiled procedures for so caljed null 
modules, they can be activated by a call "statement". 

The problem of data abstraction and its detailed discussion is beyond the scope 
of this paper except giving a comment that every hierarchical specification metho-
dology should be equipped with a hierarchical data abstraction mechanism and in 
the case of PLASTIC the algebraic abstraction would be most appropriate. 

Figure 1 shows a PLASTIC solution of binary conversion. Suppose we have a 
file containing record of binary characters. In order to verify the conversional algo-
rithm we have to compute the value of binary number b=b1b2...b„ in two ways. 
Design a program that reads the character file and compute the binary numbers vail 
and val2. The initial modul is START. We have attached declarations for data types 
of attributes to decompositions. We have assumed the existence of several functions 
on primitive data types, which are denoted by bold-face type letters. Their meaning will 
be selfexplanatory from their names. The common declarations for types, symbols 
and rule are written in the head of module descriptions. Copy-rules should not be 
specified, because they are generated automatically by the system. 
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4. Translation of PLASTIC program 

Besides its static description, one of the outstanding features of PLASTIC speci-
fication technique is that we have means to translate mechanically the specification 
into machine executable forms. This is called attribute evaluation in the attribute 
grammar theory. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

%%%% PLASTIC description for computing the value of binary %%%% 

%%%% number 6 = b\b2...bn in two ways given by %%%% 

%%%% vail (6162.,.6n).= M * 2 f ( » - 1) + vail (bl...bn) %%%% 

%%%% val2 (6162... Zw) = 2 # val2 (bl...bn—l) + bn %%%% 

% % % % val 1 0 = val2 Q = 0 % % % % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

begin description bin conv 
common data types 
vail, val2, pos: integer; neg: boolean; 
procedures 
procedure read (var input: file of elem); ...; 
function last (input: file of elem); elem; ...; 
function remain (input: file of elem): boolean; ...; 

initial module is start 
specifications 
%%1%% 
module start (|input; tvall, tval2); 
types input: file of elem; 
submodule sign ((elem; tneg); 

list ((input, (pos; tvall, |val2); 
version: 1 
rule start=sign list; 
do input< =read (input); 

list |pos:=0; 
vail :=if signtneg then -listtvall else listfvall; 
val2:=if signtneg then -listtval2 else listtval2; 
sign|elem:=head (input); 
list|input:=tail (input); 

cond not empty (input); 
version: 2 
rule start = ; do vail :=0; val2:=0; 
cond always; 
end start; 
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%%2%% 
module signQelem; tneg); 
types elem: character; 
rule sign = ; ;,. 
version: 1 
doneg:=true; 
cond elem = "—"; 
version: 2 
do neg:=false; cond e l e m = " + " ; end sign; 
%%3%% 
module list (jinput, jpos; tvall, tval2); 
submodule list, digit (jinput, Jpos; vail, tval2); 
version: 1 
rule list=digit; 
do % digit jpos:=pos; copy-rule 
% digit|input:=input; copy-rule 
% vail :=digittvall; copy-rule 
% val2:=digittval2; copy-rule 
% copy-rule will be generated without specification 
cond empty (remain (input)); 
version: 2 
rule list=list digit; 
do digit}input:=last(input); 

list|input :=remain(input); 
list|pos : = p o s + l ; 
vail " :=listtvall+digittvall; 
val2 :=2*listtval2+digittval2; 

cond always; 
end list; 
%%4%%' 
module digit (Jelem, pos; tvall, val2); 
types elem: character; 
rule digit = ; 
version: 1 
do vail :=0; val2:=0; 
cond elem="0"; 
version: 2 
do vail :=2**pos; val2:-1 ; 
cond elem="1"; 
end digit; 
implementation 
vail, val2: parallel; 
% : statement; 
sign, digit: macro; 
start, list : procedure; 
end description bin_conv. 

Figure 1 
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4.1. Notations 

Let d: X0-~XíXi...X„ be a decomposition. A dependency graph DG d /or the de-
composition d, which gives dependency relationship among attribute occurrences 
of d, is defined by 

D G d = ( D V d , D E i ) 

where the node set DVd is the set of all attribute occurrences of d and the edge set 
DEd is the set dependency pairs for d. Formally 

DVd = {Xk.a\k = 0, . . . , n and «€¿№1} 

DEd = {(Vl, ' o j l ^ D i , J . 

When a computation tree J is given a dependency graph DGX for the computation 
tree T is defined to represent dependencies among attributes of nodes in T. DGX 
is obtained by merging together DGd 's according to the decompositions in T. 

Let T be a computation tree with root node X£M. DGT determines an IO 
graph IO[X, T] of A'with respect to T. It gives an I/O relationship among attributes 
of X, which is realized by the decomposition tree T. That is 

IO[* ,T] ={A[X],Em) 

when an edge (/', J) is in JE ,
I0cIN[Ar]xOUT[Ar] iff there is in DGT a path connecting 

the attribute occurrences X\i and Afa of the root T. 
For general PLASTIC programs there may be finitely many IO graphs for 

X£M and we denote the set of these IO graphs by IO(X), that is 

IO(Ji0= {IO [X, T] | T is a computation tree}. 
Let IO(.JQ = {K)i, ...,ION} where Ek). A superposed IO graph 
IO[AT] is defined by 

lO[X] = (A[X],E), £=\JEk k = l 
to represent possible IO relationship. 

In order to define a set of attributes to be evaluated in parallel, let us'introduce 
an 01 graph the dual concept of IO graph, which specifies how the values of inherited 
attributes are effected by other attributes. .SIOMSS* 

Let T be a computation tree which contains X£M asJ one bf its leaf n'ódes. 
An OI graph OI[X, J ] of X with respect to T is given by 

OI[*, T] = (A[X], E0l[T]), Eol[T] c= A[X]XIN [AT] 

where (a, i)£E0i[T\ iff there is in DGT a path from va to vt, where v„ and vi are 
nodes for attributes a and i of the leaf node X. A superposed OI graph is defined in a 
similar way as IO [Jf]. 

We further define a dependency graph DG [A^ of the modulé A' as the union of IO 
graph and OI graph, that is 

D G M = ( ¿ t n ; £ I O U £ o i ) . 
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For an absolutely noncircular PLASTIC description D a set O c O U T p f ] of 
output attributes is said evaluable in parallel iff no sx, s2dO are connected in 
D G [ * ] -

An augmented dependency DG£ for the decomposition if is 

DGi = (DVJ, DEJ) 

where DVJ=DVd , the set of attribute occurrences in d, and e^DEJ iff e€DEd 
or e=(Xk'i, Xk-s) for some (/, i )6 lO[ZJ and k—\,...,n. DGd represents a 
relationship among attribute occurrences in d which is realized partly by attribute 
mappings and partly by computation trees. 

A PLASTIC description is said to be absolutely noncircular [2] iff DGJ does not 
contain cycles for any d£D. For an output attribute s of a module X of a PLASTIC 
program, its input set in [J, X] is defined to be a set of input attributes which are 
required to evaluate s, that is 

in [s, X] = {i |(i, s) is an edge of IO [A']}. 

We extend the function in [j, X] to allow such O as its first argument 

i n [ 0 , * J = U i n [ s , n «to 

4.2. Translation algorithm 

Let X be a module of an absolutely noncircular PLASTIC description 
P=(M, m0, A, D, V, F) and s an output attribute of X. We associate with each pair 
X, s a procedure 

where ...,vm are parameters corresponding to the input attributes in / = in [j, X] 
and v is a parameter for j . It should be noted that input and output parame-
ters are separated by semicolon. This procedure is intended to evaluate the output att-
ribute when supplied the. values of input attributes in /. 

When given the value of the inherited attribute /0 of the initial module m0 we 
begin to evaluate the output attribute i0 of m0 by executing the procedure call state-
ment 

SO 

where u0 and v0 are variables corresponding to /„ and J0, respectively. 
Now we are ready to describe how to construct the procedure Rx,s(vi> •••> vm> v)-

The first thing the procedure RXt s must do in its body is to know the decomposition d 
which is applicable to the module X and perform a sequence HdfS of statements to 
Compute the value of attribute occurrences in d, therefore RX s is constructed in the 
following form, 

procedure ...,vm; v) 
if Cdl then H i l tS else 
if Cdl then H^>s else 

end 
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where dx, d2, ... are decompositions (versions) with left side module X. We have 
assumed that the PLASTIC description is deterministic, that is decomposition condi-
tions of disctinct decompositions with the same left side module do not become simul-
taneously true for any value of its input attributes. 

The sequence Hdts is obtained in the following steps. 
(1) Make the augmented dependency graph DGJ . 
(2) Remove from DGJ nodes and edges which are not located on any path leading 

.to for / = in [i, A^].. Denote the resulting graph by 

' DGÎM = {V, E). 
(3) To each attribute occurrence x£ V'— V— {A'0j/|/ÇlN[Ar

0]} assign a statement 
st[x] for evaluating X as follows. 
Case 1. If x=Xk\i for some /ÇIN[-Vt] and k=\,...,n or x=X„is( = v) 
for the attributes J-ÇOUTfA,)], then st [JC] is the assignment statement 

* : = /d,x(zl> zr) 

where :fdx is the attribute mapping for the attribute occurrence x and 
Dd,x={zi,...,zr}. 
Case 2. If x=Xk\t for some / Ç O U T ^ ] and k=\, ..., /?, then st[x] is the 
procedure call statement 
c a l l ^ . i w j , ..., wk; x) 

where wx..,wk — {Xk\i|in[/, A^]}. 

(4) Let xx, ...,xN be elements in V which are listed according to the topological 
ordering determined by E, i.e., if (xa, xb)£E then a<b. Then Hj s becomes as 
follows. 

st [ x j ; st [xN] 

Note that statements in Hds satisfy thé single assignment rule. It is easy to see 
that the.ordering xx, ..., xN ensures values of attribute occurrences are determined 
consistently if the PLASTIC description is absolutely noncircular. 

We first construct the procedure Rmo, ^ by the algorithm we have stated. Body of 
i?mo, So may contain calls for other procedures Rx;s's and they âre constructed in the 
same way. Repeat this process until no more new procedures appear. 

In the case of parallel evaluation we assign a single procedure 

uy, ..., u„) 

to each set O which is évaluable in parallel instead of assigning n procedures, where 
M15 ..., un are parameters corresponding to output attributes in O and vx, ..., vm are 
those for attributes in in [0, X]. 

Construction of Rx,0 parallels to that of RXtS except a few points. As in the case 
of RXtS, the procedure Rx,o has the following form, 

procedure R ^ . o K , «!, . . . , m„) 
if Cdl then Hiu0(vlt ..., vm\ w1; ..., «„) else 
if Cd, then Hdl<0(vi, ..., vm; ux, ..., u„) else 

end 
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For a decomposition X0-»X1X2...Xn and 0€S[Xo] which is évaluable in 
parallel, construction of statement sequence Hi 0 proceeds in the following steps. 
(1) Make DGJ. 
(2) Make DG t [0]=(V , E) by removing from DGJ nodes and edges which are not 

located on any path leading to X0\s for s€ O. 
(3) For each k=l, ...,n decompose the set 

such that each Okj is evaluable in parallel. When the decomposition is not unique, 
we should choose a maximal decomposition, that is, one where the number v 
becomes minimum, to attain high efficiency of evaluation. 

(4) Let DG'd[0]=(V, E') be a graph obtained from DG%[0] by grouping elements 
of each OkJ into a single node vkJ£ V. Formally 

(5) To each element x in V0= V — {X0 • /|/6lN[Jro]} assign a statement stf*] as fol-
lows. 

Case 1. If X— Xk\i for some and k=\, ..., n, or X=X0\s then 
st[jc] is the assignment statement 

OUT* [Xk] = OUT [Xk] n {t \Xk • 16 V} 

into a set of mutually disjoint subsets 

Okl j Oki > • • • J Okr 

V = {g[v)\v£V} 

E' = {(«[«], g[t>])|(«, 

where g is a function defined by 

{vkJ if v = Xk- s for some s, k and j such that s£0, 
v otherwise. 

where 
* : — fd,x(zl> •••> zr) 

A i = izi, •••, zr}-

Case 2. If X—vkj then st[x] is the procedure call statement 

calIjRjrfc>Oiy(wi, xlt ...,xc) 
where 

( 0 { W l , ...,wh}= { l ^ i l K i n l O y , * - » ] } 

and 

(2) {Xl,...,xc) = {Xk\t\t£Ok]}. 

(6) Same as 4. for H i t , in the sequential case. 

6 Acta Cybernetics vn/4 
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Translation of the entire attribute grammar into the corresponding program is 
similar to the one given in this section; Let 0 be a set of output attributes of the initial 
modul. We start from constructing the procedure R s 0 and then proceed to procedu1 

res which are called in it. - ; 
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Problem solving based on knowledge representation 
and program synthesis 

S. S. LAVROV 

Computers cannot solve problems, they are only able to execute programs. A 
man can solve problems if he has necessary knowledge and experience. In informa-
tics to solve a problem means to find and to describe a sequence of computing ope-
rations leading to the intended result. If a problem is solved in that sense then a 
program capable to get an answer to that single problem is created. Possibly the 
program can supply solutions of a number of problems differing however only in 
their input data. 

A man can usually do more than this. He knows the field of his activity — an 
object area as we shall call it. He is able to solve many essentially different problems 
in this area. 

From this standpoint a challenging problem arises — how to transfer human's 
knowledge and experience to a computer, how to make it capable to solve a large 
class of problems, not just one, in a specific area. The problem is by no means a new 
one. It is known a number of ways to solve it. 

These traditional ways are: program packages (if one takes an algorithmic 
approach), data bases (when an informational approach is preferable), expert systems. 
Every program package or expert system usually has its own built-in control device. 
In the case of data bases this role is played by a data base management system. Such 
a system enables us to create different data bases oriented to different object areas. 
A similar approach is known in connection with expert systems. 

There exist also systems based on more abstract form of knowledge represen-
tation. Among them the language PROLOG [1] and its implementations and applica-
tions should be mentioned first of all. 

However in all these cases we have one large program or- system which directly 
uses a computer to solve various problems. The system does not try to generate a 
program for each specified problem. In other words all these systems are rather inters 
pretive than compilative by their nature. 

Only one form of knowledge representation is used in every kind of system. This 
form is: a computing procedure or a program module in the case of a program pac-
kage, a table in the case of a data base, a rule of the form "condition—action" in the 
case of an expert system, a Horn clause in the case of a PROLOG program. 

It occurs sometimes that two very similar application systems having almost the 
same purpose and possibilities are classified differently by their authors, e.g. as an 
expert system and a data base, depending on the authors' tastes and points of view: 

6« 
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A very interesting problem solving system called PRIZ was developed in Tallinn 
by E. H. Tyugu and his colleages as early as the first half of 60-ies [2—4]. The system 
has very much progressed since then of cause. The work which will be reported here 
was inspired in many aspects by this system. 

The approach adopted in the informatics division of our institute is intended to 
overcome the drawbacks and the restrictions mentioned above. In our system called 
SPORA ("СПОРА") we wanted to develop a unified approach combining the prin-
ciples accepted by the designers of many application systems. On the other hand we 
tried not to mix up different concepts. Moreover our intention was to find the most 
appropriate place in the system for every independent concept known. We wanted 
to use any such concept with maximal effect. 

Similarly we tried to take the greatest possible advantage of different experience 
and tastes of different people working in any chosen area. There are always people 
with strong mathematical attitude and a good mathematical education. There are 
people also who like computer programming and are eager to contact, to cooperate 
with a computer. Surely most people are using computers only by necessity because 
without them they could not reach the desirable result. 

Starting from all these considerations we have built our system in the following 
way. 

The main part of the system is a knowledge base. We distinguish at least three 
kinds of knowledge: conceptual, algorithmic and factual ones. Conceptual knowledge 
is a set of terms (words) naming the basic concepts or notions of a given object area 
together with their properties and relationships. All this is expressed on the most 
abstract level. A description of an object area on this level is called conceptual model 
of the area. Abstraction is made from physical representation of entities (i.e. from 
their measurement units), from their programming representation (possible data types 
in some algorithmic language) and even from their mathematical representation. E.g. 
we prefer to write the Ohm law in the form 

Ohm (voltage, current, resistance) 
or 

voltage=times (current, resistance) 
where the word "times" denotes a map with no predefined mathematical properties 
instead of the usual u=i*r. 

A conceptual model contains some entity types and functional dependencies 
(maps) called primary. They are just names and on the abstract level do not posses 
any directly stated properties. However we consider the possibility to add a sort of 
axiomatics describing such properties to a model. 

The model also contains secondary types and maps which are described in a 
relational manner. The components of an object, i.e. the attributes of a type or the 
arguments and the result of a map should be explicitly listed. In addition to this the 
dependencies between the components should be described. 

There are tree kinds of dependencies. A functional dependency has the form 
v:=t where v is a component of an object, t is a functional term constructed from 
such components. Such a dependency prescribes the value of v to be computed as a 
result of the term t evaluation. 



Problem solving based on knowledge representation and program synthesis 439 

An equational dependency (or simply an equation) having the form 
prescribes values of functional terms tt and t2 to be equal. 

A relational dependency looks like this: 

isRi(v h = f i , . . . , vik = tk) 

where Rx is another type described elsewhere, vtl, ..., vik are some of the attributes of 
.Rj and ti,..., tk are functional terms constructed from the components of the currently 
defined object. Such a dependency allows one to use the dependencies associated 
with the type Rx in the actual definition. It means that an object with the components 
vh, ..., vik having values supplied by the terms ..., tk must belong to the type Rv 

There is a possibility for an object to have optional components and conditional 
dependencies between them. The definition of either a type or a map may be recursive. 

This approach has his pros and cons. The main gain is that abstraction from 
many details usually opens the shortest and the most natural way to a solution of the 
given problem. The main drawback is that a solution (if one is found) is an abstract 
one and cannot be directly used for computation. Another difficulty arises from the 
fact that equational dependencies cannot be resolved on the abstract level. This is so 
because on that level we abstract from the mathematical representation of primary 
maps and cannot use their mathematical properties. 

Therefore an abstract conceptual model of an object area needs an algorithmic 
and informational support. At this point two other kinds of knowledge mentioned 
above step on the scene. 

Algorithmic knowledge is a collection of ways to represent each entity as an 
object of some algorithmic language and each map as a procedure written in such a 
language. Such a representation is needed only for the entities of primary types and 
for primary maps. The secondary types and maps have a standard representation 
based on their desription sketched above. The algorithmic languages used for the 
representation of algorithmic knowledge are called base languages of the system. 
Currently base languages are Pascal, FORTRAN and ALGOL 60. The system it-
self is written mainly in Pascal and partially in the assembly language of the BESM 
6 computer. 

Factual knowledge is a set of values and qualitative characteristics of objects 
under consideration. The most natural way to represent the factual knowledge is to 
put it in a data base. The data manipulation language of the data base is also con-
sidered as a base language of the system. 

Thus the whole knowledge base consists of a conceptual model, a program 
modules package forming the algorithmic support of the model and a data base 
forming its informational support. Certainly an interface between these three parts of 
the knowledge base should be described. We consider both the program package and 
the data base equally important parts of the knowledge base having equal rights 
and status. 

Our problem solving system has a number of input languages oriented to dif-
ferent needs and to different classes of users. 

The most complicate and still rather simple language is the language for object 
area description. People using this language to construct conceptual models should 
be experts in the object area. They must be mathematically educated as well. We 
call them model designers. They are working in close contact with (if not being the 
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same) people creating algorithmic and informational support of the model; i.e., 
program packages and data bases. . .. > 

To describe the interface between the model and its support one uses another 
input language called representation language or more exactly — primary types and 
maps representation language. This language is essentially a kind of universal macro-
language. For each primary data type one has to describe a way to translate a name 
of an object having this type into a base language construction. For each primary 
map a way to call corresponding procedure should be described; 

Users of the representation language should be good programmers first of all. 
Their main task is to describe the interface between the conceptual model and its 
algorithmic and informational support. Both program modules and contents of a 
data base included in the support may be written by other people. The use of a macro-
language allows one to include arbitrary modules or data collections in the concept 
tual model support. 

A knowledge base of an object area being constructed, it,is a rather simple task 
to specify a problem from the area. Essentially one has to list all.the input quantities 
and the desirable result, in other words, to point out the places which these data 
occupy in the model. Additionally if the data base part does not contain the numeri? 
cal values of some input quantities one has to supply the systém with these values; 

All this information may be expressed in a rather simple language called request 
language and oriented to the most numerous category of users, viz. terminal ones. 

A closer consideration reveals however a gap between the conceptual model and 
a problem specification existing in that scheme of problem solving. In fact, there may 
be no places for the input data and the result of a problem in the model. Let ùs take 
geometry as an example of an object area. Its model contains siich notions as a point, 
a straight line, a triangle, a circle, a distancé, an angle and so on, such relations as thé 
incidence of a point and a line, the tangency of a line to a circle etc. To state a problem 
howevèr oneneeds a collection of objects having various relationships between them-
selves to be described or drafted. The conceptual model of geometry cannot contain 
all such interited collections; • 

Therefore before stating a problem one has to describe a more or less concrete 
object on which the problem will be stated. We meet here another kind of knowledge 
which may be called a constructive one. Constructive knowledge is a set of rules and 
methods allowing one; to describe an object under investigation on the basis of a 
conceptual model. A number of problems may be posed with respect to the object; 

In our system we have a device useful by itself which can serve this purpose. 
The device is that of submodels related to a given: model. Indeed the means to des-
cribe an investigated object are essentially the samé as those used in the description 
of any secondary object: 

. To conclude a couple of words about the system functioning Should be said. 
A problem specification together with the model of the corresponding object 

area (or part of the model) is translated into a logical language. The result of the 
translation is an existence théorem foi" a solution of the given problem. Then the 
system tries to prove the theorem. Front theproof if one is found the system extracts 
an algorithm leading to a solution of the-problem. We call this algorithm an abstract 
program because it is expressed in terms of the conceptual model. 
; ' Next the abstract program is translated into one of the base languages of thé 
system. The interface between the model: and its support is also: used; on this stage; 
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The resulting base language program can be compiled into machine code and 
then be executed by computer. The input data for the computation can be either 
taken from the data base or given by the author of the problem specification. 

Variants of the scheme just described are possible. The abstract program can 
be printed for examination by the user instead of being processed further. If the 
problem stated is of a rather general nature then the abstract program can be added 
to the conceptual model while its translation into a base language is added to the 
algorithmic support of the model. The compiled program can be included into a 
library. Thus not only the final result of computation but all the intermediate ones 
starting from the abstract program can be considered as a solution of the problem. 

When one of the steps described above fails the user gets a diagnostic message. 
The first version of the system SPORA was written in 1977—82. Recently the 

second version was developed and tested. 
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On compositions of root-to-frontier tree transformations 

B y S . VÁGVÖLGYI 

0. Introduction 

It is well known that the family of (nondeterministic) root-to-frontier tree 
transformations is not closed with respect to the composition, see [2]. In this paper we 
introduce the notion of ^-synchronized root-to-frontier tree transducer. Transducers 
of this type are capable of inducing all the relations which are compositions of k 
root-to-frontier tree transformations. Conversely, we shall show that any relation 
induced by a ^-synchronized tree transducer is a composition of k root-to-frontier 
tree transformations. We mention that similar results are obtained by M. Dauchet 
in his dissertation [1] using the theory of magmoids. 

1. Preliminaires 

In this chapter we shall review the basic notions and notations used in the paper 
and give a reformalized notation of root-to-frontier tree transducers. 

Definition 1.1. An operator domain is a set G together with a mapping v: G-~ 
— {0,1, 2, ...} that assigns to every g£G an arity, or rank, v(g). For any mSO, 

G m ={g€G|v(g )=m} 
is the set of m-ary operators. 

From now on, by an operator domain we mean a finite one, that means G is a 
finite set. The letters F and G always denote operator domains. 

Definition 1.2. Let Y be a set disjoint from the operator domain G. The set 
TG(Y) of G-trees over Y is defined as follows: 

(1) G » U r g r c ( y ) , 

(2) g(Pi, ...,pJeTc(Y) whenever m^I, 
geGm and px, ...,pm£TG(Y), and 

(3) every G-tree over yean be obtained by applying the rules (1) and (2) a finite 
number of times. 
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The set TQ TC(Y) is called a G-forest over Y. 

Definition 1.3. Let TC(Y) be a (7-tree over Y. The set sub (p) of subtrees of 
p is defined by the following rules: 

(1) sub(p) = {p> if p£G°\JY, 
m 

(2) sub (p) = {p} U IJ sub (p^ if 
/=i 

Pi, ...,pm£TG(Y). . .., .t.AV- • ...; 

Definition 1.4. Let p£TG(Y) be a tree. The root root (p) and height h(p) are 
defined as follows: 

(1) If p£G°UY, then root (p)=p, h(p)=0. 
(2) If p=g(pi, •••, p j (/w>0), then root (/>) = e and h(p) = ma.x (h(p:)\i= 

= 1, ..., m) + l. .. . .. .. 1 . 

» Definition 1.5. Let uZN* be a word over the set of natural numbers: The word' 
u induces.a partial:function u: TG(Y)~-TG(Y): in the;following way: • v ' " 

(1) If u=e then u(p)=p for every p£T0{Y), where e denotes the empty word. 
(2). If ,u=iv, ieN, «76 jy* a n d ; P £ T G ( Y ) , then •• 

, V ^ / P - 'g(PI, ••:,PM\g£Gm, \ r i >» V 
l e i s e undefined. . : :

 ! , . • 

The elements of TC(Y) may be visualized as tree like directed ordered labelled 
graphs. In this case every path from the root to a given node in the graph is determined 
by a word over N. For every word if there exists a node r such that u is the 
path from the root of p to r, then u(p) denotes the subtree (subgraph) with root r. 

'' Definition 1.6. Let Y be a set disjoint from G. We may assume without1 loss of 
generality that N*r\TG(Y)=Q and GC\N*=& hold in the rest of the paper. The set 
PG(7).of quasi. G-trees. over Y is defined by the following rule: ; 

PG(Y) = '{p£TG(Y\jN*)Wu£N* if u(p)£-N* then u(p) = «}. : 

Definition 1.7. The mapping S: 'PG(Y)^2n* assigns a subset S(p) of N* to 
every quasi t reep which is defined by .!.; 

} "••'•"•'' S(p) = {u(p)\u£N*}nN*. 7..' 

It is clear that S(p) is a finite set for every p£PG(Y). The set S(p) is alsodenoted 
by Sp . Members of Sp are called arguments of p. . , 

Definition 1.8. Let Z be an arbitrary set and let q>: Sp-~Z be a given function 
for a given quasi tree p£PG(Y). Replacing every element u of Sp by (p(u) iii the tree 
p we obtain a G-tree over YUZ, which is denoted by p[Sp, <p\. ,-. • . 

Example. Let G={g1,g2} be an operator domain with v i g j ^ l, v(g 2 )=2 and 
let The quasi tree. p ^ g ^ g i O O . ^ s ^ U j i ) ) * may be xvisualizeid by 
the graph on Fig. 1. i : ]; : 
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1 1 

\ 
9 2 

Figure J Figure 2 

Let us define the mapping (p: {11, 21}— {y2, j>3} as follows: 

</>(H) = }'2,(p(2\) = >'3. 

The quasi tree <p] may be visualized by the graph on Fig. 2. 

Binary relations zQTF(X)xTC(Y) are called tree transformations. The com-
position tjOTj of the tree transformations r a ( Q T F ( X ) X T G ( Y ) ) and T2(QTG(Y)X 
XT„(Zj) is defined by 

The composition T 1 O T 2 O . . . O T j | /= 3) of the tree transformations i i , t a , . . . , r ( is 

Definition 1.9. A state set A is an operator domain consisting of unary operators 
only. If A is a state set and D is an arbitrary set then AD will denote the forest 

AD = {a(d)\a£A, d£D}. 

Moreover, if a£A and ddD then we generally write ad ior a(d). 
If Ax, ..., Aj are state sets (y'€ N) then Aj... ^.denotes the state set AjX...XAt 

which is the Cartesian product of the sets At ( l s / ^ y ) . 
Elements of Aj... are denoted by sequences where a ^ A ^ /=1, ...,/'. 
For every non-negative integer /, {1, ..., /} denotes the set { / | l s / s / } . 

Definition 1.10. A root-to-frontier tree transducer (/?-transducer) is a system 
91=(F, X, A, G, Y, A', Z), where . . . . . . 
(1) /" and G are operator domains. 
(2) A is an operator domain consisting of unary operators, the State set of 91. 

(It will be assumed that Ar\TF(X)=<b and that ^ n r c ( y ) = 0.) 
(3) X and Y are finite sets. 
(4) A'QA is the set of initial states. 
(5) 1 is a finite set of productions (rewriting rules) of the following two types: 

(i) ax — q(a£A,x£X, q£TG(Y)), ...... 

(ii) af-q[Sq,<p]{q£PG(Y)j£F\ q>.: Sq-A{\,...1m}). : 

T̂ oTo = {(/?, q)\(p, r)eru (r, q)£t2 for some /•}. 

defined by 
T1Ot2O...OT| = (XxO ... o t ^ j J o t , . 
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91 is said to be a deterministic il-transducer if A' is a singleton and there are no 
distinct productions in L with the same left-hand side. 

Definition 1.11. Let 9 1 = ( F , X , A , G , Y , A', I ) be an ^-transducer and let 
PI,P2€TG(YUN*UATF(XUN*)) be trees. We say that px directly derives p2 in 91, 
in symbols PI=>&PZ, if PI can be obtained from px by 

(1) replacing an occurrence of a subtree ax(£AX) in px by the right side q of 
a production ax—q in I , or by 

(ii) replacing an occurrence of a subtree 
a/(l , . . . ,m)[{l, . . . , /w},a](/6Fm , a: {1, ..., ™}-~7>(*UAr*)) in P l by 

<l[SqtP\, where af-q[Sq, cp] is in I and 0 is a mapping ft: Sq-ATP(XUN*) 
such that for each s£Sq if <p(s)=ct(c£A, {1, ..., /w}) then f}(s)=ca(t). 

Each application of steps (i) and (ii) is called a direct derivation in 91. 
The reflexive-transitive closure of =>ffl is denoted by 
Using the notation =>-* the transformation zn induced by a root-to-frontier tree 

transducer 9l=(F, X, A, G, Y, A', I) is defined by: 

?*={(p,<l)\P<iTF(X), q£TG(Y), ap=>*q for some a£A'}. 

The range of a mapping <p: A—B is denoted by rg(<p). Let U0, Ut, ..., Ut 
be sets, and let V be a subset of the set (¡70 X tfi X.. . X E/,) U ((/,, X t/i X... X t/,_,) U ... 
...U(£/oX£/i)U{/0, where U0XU1X...XUl the Cartesian product of the sets U, 
( 0 S / ^ / ) . Then for an index j, (O^y'ss/) [V]j denotes the set 

{«>|B(W«, ..., Uj, ..., u„)ev, O S n ^ l , 0 S j ^ f l ) } . 

Definition 1.12. Let u be an element of N*. The mapping cou: Ta(YUN*) — 
-TC(YUN*) is defined as follows: 

(1 ) G>n(P) = P jf P = y(£Y) o r P = / ( 6 G « ) , 

(2)cou(j>) = up if p£N*, 

(3) <ou(p) =f(mu(Pi), ...,tD»0,)) if 

P =f(Pi, ...,p,),f£Gl, I 1, Pi£TG(YUN% i = 1, ..., /. 

2. Derivation sequences 

In this chapter we shall deal with the description of derivations according to 
root-to-frontier tree transducers. 

In the.rest of the paper k denotes a natural number, not less than two, moreover 
let 9I i=(G i_1, AH G;, YH A[, 2Ta ) be ^-transducers, 1 ^ i ^ k . 

Now we give a procedure P. The input of P is a derivation in the form 

:(1) a j p j . , =>*/>,- (oj^Aj, Pj-idTcj ^Yj-x), PjtTGj(Yj)) 

for some ...,/:} and a decomposition 

PJ-I = RJ-DSRJ^ VJ-I] (RJ-XTPGJ.SYJ-J, <PJ I: SRJ_1— TC/^IYJ-J). 
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The procedure P produces two derivations denoted by (2) and (3) which are 
defined by induction on the height of RJ_1{£TGJ^.(J^-iO-iV*)). The derivations 
(2) and (3) will have the following forms: 

(2) a j r j ^ S , ^ , cpj-i] =>^rj [Sry, (pj\ = pJy 

fa: Srj - Aj rg (cpj-J, <pj: Srj - TGJ(Yj)), 
for each 

, 4>j(Sj) =>lj <Pj(Sj) 
holds, 

(3) ajrj_1 rj[Srj, iJ/j], Srj - AjSrjJ, 

and for each Sj£ Srj if rj/j(sj)=ajsj_1 then ij/j(Sj)=aj_i(Sj_holds. 
Let h(rJ_1)=0. 

Case 1. /-,_!=/, In this case S =0 , (pj-^0 and ry_1[S'0_ l , 
<Pj-i]=f- Thus ajf+pjiZn , where Pj£TGJ(YJ). Let r—pj, thus Srj=Q. Let 
<pj=9, ^ = 0 , i]/j=9. Thus the derivation (1) takes the following forms: 

(2) ajrj^iSrj^, (pj-t] =>3(J r} i f f j ] =>^rj[Srj, q>jl 

(3) a j r j ^ ^ r ^ S ^ , ¡¡/j]. 

Case 2. Yj-j). This case is the same as Case 1. 

Case 3. rj_1=e(£N*). In this case <pj-1(e)=rj-1[Srj_l, Let r}=e, 
thus ST= {c}. Let the mappings 

-A,.: SRJ - AJTG._1(YJ_1), SRJ -*AJSRJL 

and 
cpy. SRJ - TG](YJ) 

be defined as follows: 

'Aj(e) = ajTj^lS^^, (pj-j], $j(e) = a}e, q>j(e) = Pj. 
Thus 

rj[Srj, tl/j] = ajrj-dSrj^, <Pj-i], rj[Srj, = aje. 

Thus we have obtained the desired derivations (2) and (3), and 

= aje, ij/j(e) = ajcpj.^e), where Srj = {e}. 

We have proved the basic step of the induction. Let 

rj-i = /(¡PI, Pi) =f{(o
1
(p

1
),..., (o,(p,)) 

(p
1
,-,P£PGj.l(Yj-1),Srj_1=l.SPl(J2-SP3U...Ul-Sl!i, 

where 
¿•SP( = {is|s€SP(}, i = l , ...,/)• 

rj-i[S
rj
_
lt
 <pj-i] =f(p1[SPl, Aij], ...,p,[SPl, At,]), 

where for each i£'{ 1, .. . ,/}, and s£SPt holds. The production app-. 
lied in the first step in derivation (1) must be of the form ajf-*q[Sq, e], where 
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q€-PGj(Y'j)*>"f€Gj-i for some /, e: Sq —¿/{I, ..:,/}. Consequently derivation (1) 
can be written-in the following form: 

Cj fj—ij-1' «Py- i l^a j e ] T] 

- Aj rg (<?;_,), T : Sq— TGj(Yj)), 

where the mapping q satisfies the following formula: for every s£Sq if e(s) = bjt 
(1 st^l,bj£Aj) then e(s)=bjPt[SPt, n,]. This implies that e(s)=bJp,(SPt, i4=>*t 
=>ffljT(J) holds. The desired derivations will take the following forms: 

where 
x: Sq - TgAYjUAjTg^JYj.J), 

T: Sq-TCj(Yj). 
j 

(3) ajf((o1 ( p j , (p,)) =>aj q , <?] =>*j q[S,, x], 

where 

e: - A j TGj _ 1 (Yj _! U iV *), x: Sq - T^Y^AjS,.^. 

We shall define the mappings x, q, x. For each s£ Sq let us consider the derivation 

(4) g (s) = bj p, [Spt, ft] T (s), 

where s(s) = bjt holds. 

Since h (/>,)< h (rj^j) we may apply the induction hypothesis to derivation (4) and 
decomposition />,[5^, ft]. The derivations (5) and (6) are obtained by applying 
procedure P to (4) and decomposition p,[SPt, ft]. 

(5) bj p, [S;,, ft] =>^qs [Sqs, t]s] =>*t qs [5IS, &] = T (S), 

(istPojiYj), SqM - Aj TgQi,), is: Sqs - T0j(Yjj), 

such that for every v£Sqt,tis(v)=>%ijt;s(v) holds. 

(6) bj p, =>*nj qs [5,,, fjs] (tjs: S,. - Aj SPt), 

and for every Sg5 if fjs(v)=bjZ for some bj^Aj and z£SPt then 
ns(v)=bjH,(z). 

In this case x, q, x are defined by 

* ( « ) - = VslSg,, risl e(s) = a),(bjp,), 

x(s) = (o,(qs[Sqi,fjs]). 

The derivation ' s ^ e same as derivation (5). 
/ The derivation e G O ^ a , * ^ ) is obtained from derivation (6) by applying the 

mapping: io,, to each step of derivation (6). 
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We give a procedure S. The input of S is a derivation sequence D=DX , • . Dk 
given in the following form: 

Di aiPoz=>i1Pi, (Po£TGo(Y0), a^Ai, p^Tc^Yj), 

D2: a2p!=>l2p2, {a2£A2,p2£TGi(Y^), 

Dk-akPk-i=*%kPk{ak£Ak,Pk£TGk(Yk)) 

and a decomposition /70=r0[S,
ro, <p0], ^produces two derivation sequences denoted 

by £YO=D{O, D\O, ..., DR
KO and Z)ro= D2°, ..., DR

K°. The derivation sequences 
fr* and Dro will have the following forms: 

D\°\ a^ [Sro, ^ o ] ^ ! rdSri, iAi]=>a, r J S ^ , <px] = 

= Pi ('•i€PGl(71))lA1: A¡rg (cp0), cp,: Sn - TGl(Yj)) 

and for each Sri the derivation <Ai ( ^ ( ̂ i) is valid, 

Dr
2K a ^ J S ^ , (p^ =>*h r2[S,2, ij/2] =>*2 r2[S,2, cp2] = 

= Pi {r^PaAY2\ ijs2: S,2 - Atrgfo), (p2: TCt(YJ) 

and for each s2<E Srn the derivation i/'2(s2) =̂ 11, ^2^2) is valid, 

Dk"'. ftkTk-AS,k_x, (pk-i]=>wk
rk[Srk, <pk] = 

= Pk(rkePGk(Yk), i/v Srk - Ak rg <Pk: S,k *TGk(Ykj) . 

and for each skÇ_STk the derivation il/k(sk)=^-^k(pk(sk) is valid. 

D l ^ r o ^ r d S , ^ ] ^ : A^,,), • 

Dr
2°: a2 rt =•*, r2[Sn, fo] (fo: Sri — A2 Sri), 

Dr
k°: akrk^*krk[Srk, $k]$k: S,k - AkSri). 

For every and Sj£S if $ j (s J )=bjSj_ 1 for some bj£Aj and 
Sj-i£S r j l then \j/j(Sj)=bj(Pj-iiSj_j). Applying the procedure F to the derivation 
Z>x and the decomposition P o ^ o t ^ <Po] we obtain the derivations D[°, D^. 

Assume that the derivations Drf>_are constructed for an index7(2^)'^&). 
Then the derivations DFRD'F are obtained by applying the procedure P to DJ and 
decomposition Pj-x=r)-i[S, l_ l,<Pj--i\, where the decomposition /•J_i[S'rj_1, 
<Pj_i] of P j - i is given in the derivation 

Let 2I{=((?!_!, Y,-!, A, G„ Yh A'„ 0 = 1, k) be ^-transducers. Let-
us denote the arity function of the operator domain.-G0 by v. We fix these notations 
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for this chapter. Let D=DX, ..., Dk be the following derivation sequence: 

Dx: (p0eTGa(V0), p^TGl(Yd, ai€A'0), 

Pk (PktTCk(Yk), ak£A'k), 
moreover, we assume that p 0

= 9o y0] holds for some 

q^Pca{Y0\ )V Sqa-TGo(Y0). 

Applying the procedure S to the derivation sequence^ D and decomposition 
/J0=^0[S(Jo, (pd\ we obtain derivation sequences Dq» and Dq». 

Df>: ax?<,[£,„, yd ^ <hlSqi, <*i] =>gdSqi, Vi] = Pi, 

(fce^GtCi), «1= Sqi - rg (y0), V l: Sqi - TGl(Y$), 

and for every s ^ S q i , ^ ( jO^aiVi i^ i ) holds. 

Dp: a2 q2[Sqi, a2] q2[Sqi, y2] = p2, 

{q£PGi(n), Sqs - A2rg(y1), y2: Sqs - T0t(YJ), 

and for every s2£Sq i , a 2 ( s 2 )^ s y 2 ( s2) holds. 

Dp: ak q ^ d S ^ , yk-i] =>£k qt[Sqk, ak] =>*k qk[S9k, yk] = pk, 

(lk£Pck(Yk), ak: Sqk - Akrg(yk.^, Vjk: Sqk - TGk(Yk% 

and for every sk£Sqk, ak(sk)^kyk(sj holds. 

52°: fi<}o h®il> (®i: S9l - AtSJ, 
Df : a2 q , ^ q2[Sqt, a8], (a2: S9a - A2Sqi), 

Dp: ak qk.x =*-*k qk[Sqk, ak], (a*: Sqk - AkS^), 

and for every j£ {1, ...,&} and Sj£Sqj if 

dij(sj) = bjSj-x for some b f iA j , S j . ^ S ^ ^ , 
then 

aJ(sj) = ¿jry-iCsy-i). 

We shall define a set Z (Dj io) and mappings 

and 
^(D.io): Sqk — At... Ax TGo(Y0) 
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in the following way: 

Z(D,q0) — {(So, Sl> ••••> Sj)lSo€'S'4o5
 S l £ Sqi, . . . , SjZSgj, 

l^j^k and (j=k or (J<k and there are no 
SJ+itSqj+i and bj+1eAJ+1suchthatoij+1(sj+1)=bj+1Sj)) 
and «¡(^=¿>¡^-1 (bi£Ai) for / = 1, ...,j}. 

For every ( j 0 , sx, ..., ss) € Z ( A ,o) 

i2(D,4o)((So> «i, ..., Sj)) = bj... b^ois,,) 

iff a¡(s,) = biS;_! for i = 1, ...J. 

For every sk£S9k, OiDt9<i)(sk)=(s0, st, sk) iff 

a ¡(si) = biSi-xibidA,) f o r i = 1, ..., k. 

For each sk£S9k, tl/iDl9ri)(sk)=bk...b1y0(s0) iff 

0(D,q„)(Sk) = (S0i Sl> •••5 Sk) 
and 

Q(D,9o)((s0,s1,...,sk)) = bk...b1y0(s0). 

One can see the equality </'(o,«„)= ^(D,3„)° ^(D,«») holds. 
For the derivation sequence D and a decomposition 

Po = go[Squ, To] {q<£PGo(Y0), y0: Sqo - TGo(Y0)) 

we can determine the configuration 
K(0,4o) : (ik f ^ k > ^(D, go)]' 6(D, go) > Z(D, q0) ' «„))• 

For the sake of a unified formalism, in the sequel we use the following convention. 
Let G be an operator domain with arity function v, and let Y be a set disjoint with G. 
If u£G°UY then w(l, ..., v(u)) means the CP-tree u over Y, moreover, 
w(l, ..., v(w))[{l, ..., v(w)}, 3] means u for arbitrary 3. 

We continue the analysis of derivation sequence D. For each Sqo the tree 
yoOo) can be written in the following form: 

?o(so) = "o(L> V(M0))[{1, ..., v ( « 0 ) } 9 0 ] , 

where Z/0£<J ( iU Y0 and S
0
: {1, ..., v(w0)}—rGo(yo). There are two cases. 

1. Case Z(D.,o) = 0. Take the quasi tree r0£PGo(Y0) defined by r0=^0[5'9o, 
where the mapping c0: Sqo-+TGo(Y0UN*) is determined by the following formula: 
for each 

So£S9o £„(%) = aSo(u0( 1, ..., v(w0))) if y0(s0) = "o(l, V(M0»[{1, ..., v(«0)}, 9,] 

(«0€G0UF0 ,S0: {1, ..., v(u0)} - TGo(Y0)). 

One can see K (Di9o)=K (D>ro) holds. 

2. Case Z(D> Using these decompositions of the trees y0(s0) we obtain the 
derivation sequence E=E1, ..., Ek from D. For every {1, ..., k} the derivation Et 

J Acta Cybernetica VII/4 
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is the same as Df disregarding the order of direct derivations in Dt. We shall introduce 
the derivation sequence E=E1,...,Ek too. 

Ei- ai <7o[ S„0, y0] <7i , a,} =>*, qx [S , , , ft] =>*x 

i i fS« , y j ( f t€/ 'c 1(I i ) . «1= - ^ rg (y0), 

ft: - TOXY^A.T^Y,)), T l : S 9 l - 7 ^ ( 7 0 ) . 

Ei.: io] 

(«„: SQA - r C o ( y 0 U i V + ) , ft: 5 ? l - T ^ U ^ j V * ) ) . 

¿;0 is defined by the following formula: for each 

s0£Sqo if 7o(«o) = "o(l> K«o))[{U •••> v(«0)}, S0] 

for some w06C?0Ur0 and mapping 

3 0 : { 1 , . . . , V ( M 0 ) } - T C O ( 7 0 ) then £0(s0) = COSo(M0(1, ..., v(u0))). 

We shall define the mappings ft and ft. For every Sqi let us consider the sub-
derivation 

(1) « i f e ) ^ * ^ ) of D. 

Let us assume that a1( j1)=61^0 and 

<*I(SI) = hyo(so) = hu0(l, •••> V(M0))[{1, V ( M 0 ) } , 9 0 ] , 
where 

s0€Sao, B^ALT U0£G0UY0, 90: {1, . . . , V ( M 0 ) } - TGO(Y0). 

Applying procedure P to derivation (1) and decomposition 

yoOo) = «o(l> v(«0))[{1, ..., v(t/0)}, 50] 

we obtain derivations (2), (3). 

(2) i>i«o(l , - ,v(i /o))[{l , . . . ,v(M 0)},90]=>9 l l«1[Su l ,51]^1 

=>sl
Mi[,SuI5 = 7i(si)> where u ^ P ^ Y J , 

V SUI - ^IFCO(R0), 5I: - T^IYJ, 

and for each 

V i t S ^ S A v J ^ W v J holds. 

(3) Mo( l> . . . , V C M , , ) ) ^ « ! ^ , Jx], where 

h - SUl - -4X{1,..., v(w0)} and for each v ^ S ^ if 

<5i0>i) = . M o ( c i i ^ i , i„€{l, ..., v(u0)}) then S^vJ = cx90(/0). 

In this case ft and ft are defined by 

&(*,).= "i[5U l , f t] , ft(si) = a) i0(«i[SUl,ft]). 
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Let / be an index of thé transducers in consideration such that The deriva-
tions Et and Et are the following: 

E,: ai^i-i[S41_lS Vi-i] =>4 ail <h[Sqi, ft] =4, qt[Sqi, y,] 

(qitPa.iY,), «,: Sq, - rg 

ft : - ^ ( ^ U ^ T G , y , : Sqi - rCl(r,)). 

£ , : fljfc-alVi.Éi-J^î.fcl^.A] 

V i ^ ^ t t - i U J V * ) , 

A : 

iz-i is defined by the following formula: for every st_1çSqi_1 if ft_1(j,_1)= 
^i-J the11 t i - i ( s i - i ) = œ s , . 1 ( u i - i ) - We shall define the mappings ft 

and ft. For every Sqi let us consider the subderivation 

(1) a,(sd=>*ty,(sd of D,. 

Let us assume that 

5,(s,) = bt s,_, and a,(s,) = b ^ ^ s ^ = b, «i-ifS«,.,, 
where 

S i - i e S , , . , , " / - i Ç F c ^ Q V O , 

and the decomposition y/_1(i,_L)=wi_1[5'Ur_1, of 7 (_i(jj_i) is the same as 
in . Applying the procedure P to derivation (1) and decomposition y )_1(i ,_1)= 
=K,_1[S,

1II_1, 9 ,_J we obtain derivations (2), (3). 

(2) M z - i K , , ^ «,[$,„ <5j] =>-<£, «,[5„„ 9,] = y,(s(), 

where 

UiZPaSXd, ««: S . , - A x T a ^ i Y , . ^ 9,: S m - F c , ( y ( ) , 

and for every wi€«S'lll the derivation ¿i(v,)^ t9,(vi) is valid. 

(3) ¿>, «,_!=•£, «,[$,„ 5il, where S,: -

and for each vt£SUl if 

then 

8, (v, ) = c, V J O , 

In this case ft and ft are defined by 

; ft(s,) = [SUl, 5J, pi (s,) = ^ . „ ( w , [S„, 5,]). 

7» 
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Take the quasi-tree r0£PCo(Y0) defined by r0=q0[Sqo,£0], where the mapping 
W- Sqo-TGl)(Y0\JN*) as in £ t . Let A0: Sro-TGo(Y0) be the mapping such that 

A0(s0/) = 90(i) if 7o(s0) = t/0(l, ..., v(w0))[{l, ..., v(i/0)}, 90], 
where 

S 0 € 5 I O , MoCGoUn, V 0 , v(t/„)} - TGo(Y0), I 6 { L , . . . . V ( M 0 ) } . 

For these r0 and A0 we have that Vo] = ''o[5'ro' ¿0] holds. We take the quasi 
tree r ^ P G l ( Y d which is defined by r1=?1[S'9l, § J , ^ - ^ ( ^ U A ^ ) , for 
every s^S^, £iOi)=w

S l(w i) if Pi(sJ = u1[SUl, 5J. It can be seen that 

Sn = { s i ' i M V = h£Sul} 

holds. Let us define the mappings r^: Srj — A^c^Yo), T]x: Sn — A1Sro and / n : 
S^ — Tc^YJ as follows: for each s ^ S r i let us consider its unique decomposition 

= where .s^CS^, a1(s1) = ois0 for some ¿ i c A and 

S 0 £ S Q O , ^ ( S X ) = COSI(MJ), H £ S U L , / ? L ( 5 1 ) = I I ! [ S U L , <5,], 

AOi) = ®
s
„("i[S

Ul
, 5J), Vi(

5

i) = "i[S
UI
, 

and a 1 , p 1 , P 1 , y 1 , 8 1 , S 1 , 9 1 as in E
x
, E

x
. 

Let /;1(j1i1)=51(/1), f j ^ t J ^ c o ^ i O d ) , ¿ l i ^ t ^ S ^ : The derivation 
¿1(;1)=>.*i91(/1) holds, which implies that the derivation f/iJX is 
valid. Thus we obtain the derivations E[ and E[ from E

i
 and £ 1 ; respectively. 

• E(: ai r0[S,B, A0] =>th r, [Sri, /,,] r, [5r i, A,], 

fli/o^i-JS,,,//,], 

and for each v^S^ if rji(v1) = c\v0 for some cl£A1,v0d Sro, then t]1(v1) = c1?.(j(v0). 
For each l^l^k we take the quasi trees r,£PGi(Y,) which is defined by 

rl = q,[Sqi,i;l],Zl:Sqi-~TGl(YlUN% 
for every 

s£S
qi
, Z,(s,) = co

Sl
(u,) if P,(s,) = z<,[SUl, <5,]. 

It can be seen that 
5;, = {S,/<|$,(S|> = co«,(«i), 

holds. Let us define the mappings >/,: S n — f j , : Sn-~A,Sri_t and 
A,: Sn — TGl(Y,) as follows: for each Sn let us consider its unique decomposition 

s, = s,f (, where s,£Sqi, ¿¡¡(s,) = ajSl(u,), t,£Stt:, 

Pi (si) = «,[$,„ <5/1, &(»,) = 2/,[5„„ 5,], y, (s,) = u,[SUl, 9,], 

(«i, Pi, fin h, <>i> S:, 9, as in .£/,£,) and a , ( j , )=b i s l i 1 f o r s o m e b,€A, and 
•^i-it Sqi-i- 1° this case rjt, and A, are defined by til(sitl)=5l(tl), rjt(s,i,)=^ 
= oSi i(5 t(/,)), A,(j(/,) = 9,(i,). The derivation S,(t,)^9,(t,) holds, which implies 
that the derivation / / ( ( V i l ^ A C ^ ' ; ) is. valid. Thus we obtain the derivations 
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E{ and E\ from ET and £,, respectively. 
E(: AI R , ¿ < - I ] =>•», RIIS,,, H] =>•«, 

£,': a, 0 - 1 = 4 , >'i[Sn , nil 

and for each v,£Sn if >ji(vi) = clv,-1 for some ct£A,, vt_x£Sn i , then t]t(s,) = 
= c,Xl_x(v,_x). 

For the sequence of root-to-frontier tree transducers 91!, ..., 2It we shall define 
the sets 1(1) and V„ (O^l^k) in the following way: 

1(0) = KK€G 0 UY 0 } , 

y0 = m ; 

= {(bi, M0, UiK,, <px], gx, WX, T1)\b1 u0 - Ml[SUl, (pjelaj, 

«16^0,(^1). <P1- SUl-AxSUo, 

wx = {(/„, h)\<Pi(h) = cxt0, CX£AX}, 

QX: SU1*WX, ei(h) = (to, h) if cpAh) = cj/0 , 
xx: Wx-~AxSUo; Tx((t0, tx)) = cxt0 if (px(tx) = cxt0}. 

It can be seen that for each t ^ S ^ , Ti(ei('i))> that is, <px = QiOzx holds 
We say that the element (bx, w0, «i[5Ul, cpx], Qx, WX, rx) of Ti l ) is generated by the 
production bxu0-»ux[Sul, <px]. 
Vi={(uo, ^(0), ax£ and the second component of ax is w0}. 

Let j be an index such that and assume that for each i (1 =i<j) the 
sets -•£(/) and Vt are defined, and that for each ai=(bi...b1, u0, M,[SU(, <pj, 
fVj, T;)(€ 2^,(0) (pi=Qi°~i holds. We shall define I (J) and Vj as follows: 

Z(j) = {(bj... bx, H0, Uj[SUj, <pj], Qj, Wj, zj)\ 

(fe,_i... bx, u0, uJ_x[SUj_1, (pj-x], Qj—X, Wj-X, 1)£Z(j-l), 

bj Uj_x =>£j Uj[S1^, £j] holds, where Uj£PGj(Yj), 

<py. SUJ - Aj Aj_ j... Ax {1, ..., v(«0)}; 

<PJ(TJ) = CJCJ_L...E1T0 i f SJ(TJ) = CJTJ_X a n d 

9j-i(tj~i = Cj_x...cxt0, 

Wj = {(/„, ..., O- i , tj)\Sj(tj) = cjtj-1. Gy-i(0-i) = Co, . . . , 0 - i ) ) U 

U {(i0, ..., t j-x)€Wj-x \ there are no tj in SUJ and CjZAj such that 

£j(tj) = Cjtj-x}{J 

ey. SUJ - Wj- Oj(tj) = (r0 , . . . , tj_x, tj) if 

r.j(tj) - cJtj_l and Qj-iCj-i) = ('0, 0-i)> 
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tj.: Wj~Aj...A1{\,...,viu„)}; 

tj\frJnwJ_1 = Tj-iliFjfiiKj., and 

if (t0,...,tJ.1,tj)£WJ and ej{tj) = cJtJ.1 

then Tj((t0, ..., tj_1, tj)) = CjTj.^to, ..., O- i ) ) } -

We say that the element ( ô y . . . è l 5 u0, Uj[SUJ,<pj], Qj, W j , Tj) o f E(J) is generated by 
the derivation b1Uj^x=>^ l ju ][Su , ej] and element 

( b j . 1 . . . b 1 , u 0 , U j . 1 [ S U j . l , ( P j - i ] , Q j - i , W j . 1 , Z j . 1 ) o f I G ' - 1 ) -

It can be seen that for each element (bJ...b1,u0,uJ[SUj,(pJ], Qj, W j , Ty) o f I (J), 
( p j = Q j o i j hold. 

Vj = {("o, •••> <*j-i, <7,-)l(«o> ox, •••, <tj-1 

has the form {bj_l...b1,UQ,uj_1[Sil. (pj-J, q}-i, ?j-i), o} has the 
form (bj...¿>!, w0, MjfS'^, cpj], Qj, W/, Tj) and <Jj is generated by the derivation 
b j u j - i ^ v j u j [ s u j > £ j ] and (Ty.J. 

We define mappings [Z ( D ? o ) ] ; -* I ( i ) for 0 ^ ¿ 0 k . Let s0£[Z(D_9o)]0, 
which means s0£Sq0. x 0 ( s 0 ) is defined by 

"o(so) = root (}>oOo)) = m0 if 

Vo(so) = "o(U - , V(M0))[{1, . . . , v(w0)}, 3 0 ] ( 3 0 : { 1 , . . . , v(w0)} - R C O ( 7 0 ) ) . 

Let JI€ [Z ( d „)]! , that is, Let us consider the decomposi t ion a 1 ( j J ) = 
= M o ( 1, . . . , 'v( W o ) ) [{ l , . . . , v(«0)}, 9 0 ] (U0ÇG0{JY0, 90: {1, V(u0)}-TCo(Y0)). 

Applying the procedure P to the subderivation (1) a i ( - 0 =^71(^1) o f DX and 
decomposit ion w0( 1, . . . , V(M0))[{1, . . . , V(K0)}, 9„] w e obtain derivations (2) and (3). 

(2) M o ( l , . . . , vOo))[{l, ..., v(w0)}, S 0 ] ^ « i [ 5 U l , «5J 

= y1(s1), where u^Pg^Yj), 

Si; SUI - A,TGo(Y0), 9,: SUl - TGl(YÙ, 

and for each 

vy 6 SUl, ¿i Oi) =><£, 9i fa) holds. 
(3) Z»iMo^si!"it5«!, where S ^ - i ^ l , ..., v(w0)} and for each v^S^ 

if (c1£A1, /„€{1, ..., v(w0)}), t h e n ¿ i ( v 1 ) = c 1 9 0 ( O -

. M s i ) = " i [ S U l , ¿1], M h ) = œS 0 ("i[5U l , 5 j ) 
for fi1, fix given in derivations EUE1. 

Let Xj(jj) be the element of 2(1) generated by the production £1 Wo^wJS^, c^]. 
Assume that x t is defined for every O S / ^ j — 1. Then the mapping 

is defined in the fol lowing w a y : for each ¿ / ( € [ Z ( D ) 9 o ) ] y = S 9 j ) , <Xj(Sj)=bJSj-1 for 
some bjtAj and Î M Ç ^ J J - ! . Thus <Xj(.Sj)=b'Jyj-.1(sj_i). X j - i U j - d has the 
form ( b j - 1 . . . b 1 , u 0 , U j _ 1 [ S U J _ l , q ) j _ 1 ] , Q j _ 1 , W j _ 1 , X j _ 1 ) e Z i B ( j - l ) - Let us consi-
der the decomposi t ion yj-1(.sj_i)=uj~i[suj_1, 9J_1] o f V j - i f ^ - i ) which is the 
same as in Ej_ 
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Applying the procedure P to the subderivation 
(1) a j ( s j ) ^ . y j ( s j ) of Dj and decomposition 1[5„j l , S ^ ] we obtain 
derivations (2) and (3). 

(2) bjUj_i[SUi l , Uj[SUj, Uj[SUj, 9j] = 7j(SJ), 

where 

UJIPOJIYJ), SJ: SUJ - AJT6j_x(YJ-J, 9/. SUJ - TGJ(YJ), 

and for every Vj£SUj the derivation Sjfv^^^&jivj) is valid. 
(3) bjUj^^jUjlS ,5j], w h e r e SUJ-^AjSUJ l a n d f o r e a c h vfiSUj if 

Sj(vj) = cjtj_1 (CjZAj, O - i ^ . J t hen ¿j(vj) = cJ9J_1(tj_i). 
Let Xj(sj) be the element of S(j) generated by derivation (3) and 
( e r O - D ) . 

We associate the configuration 

K(D, r0) = {rk[Srk-> •/'(D.ro)]' @(D,r0)> Z(D,r0)' ®(D,r0)) 

with the derivation sequence D and decomposition />o=/'o['S'1.0, A„]. 
Using the derivation sequences E[ and E\ we shall show the connection between 

the configurations K(DT ,o) and K(D ,O). 
(1) rk=qk[S9k, which was established in Ek, moreover we know that for 

each sk£Sqk,^k(sk)=a>Sk(u^, where 

y-k(sk) = (bk...b l5 M0, uk[SUk, cpk], Qk, Wk, Tk). 

(2) (̂D,r
0
)

 =

 {(
s

ô o>
 5

i•••>
 s

j
Z

j)l(
s

0 5
 s

i> •••> sdeZ
(D
_

qo) 

for some I ( l ^ j ^ l ^ k ) and 

X,(s,) = (bt... V u0, i<i[SUi, <pil, q„W„ T,) a n d (F0, , . . . , tj)£W,}. 

(3) For every sk£S,k let us consider its unique decomposition sk=sktk, where 
sk£Sqk,xk(sk) has the form 

xk(sk) = (bk... bx, u0, uk[SUk, <pk], Qk,Wk, zk), 

£k(Sk) = (oSk(uk) a n d tk£SUk. 

If 6(D,qo)(sk) = (s0,h, -,sk) a n d gk(tk) = (t0,t1,...,tk) t hen 

r0) Ok) — (S0 f0' S1 fl> •••> Sk h)-

(4) Let be arbitrary, and consider its unique decomposition sk=sttk, 
where sk£Squ, xk(sk) has the form 

**(sfc) = (bk...b1,u0, uk[SUk, <pk], Qk, Wk, zk), Zk(sk) = coSk(uk) 

a n d tk<zSUk. T h e n if (pk(tk = ck...c1t0 a n d 

f(D,qo)(.h) = "o(L> •••> V ( M 0 ) ) [ { 1 , . . . , V ( M 0 ) } , 3 0 ] 

(u0eG0U Y0, V {1,..., v(«0)} - TCo(Y0)), then 

^(D,r„)(S(t tk) = Ck ••• Ci 90(t0). 



458 S. Vágvölgyi: On the compositions of root-to-frontier tree transformations 

(5) From the definition of Z(D>ro) it follows that for every (s0, s l5 ..., Sy)£Z(0 ,o) 
there is a vector (s0,slt ..., s^Z{Dqa) for some / ( £ / ) such that 

(si) = (b,... bly m 0 , ut[SUl, <pt], Qi, Wt, t(
), 

and 

So = S0t0, Sx = Sxtx, ..., Sj = Sj tj 

hold for some (/„, t±,..., tj)£W 

If *i{(to,.ti, •••,tj))=cj...c1tQ and 
Q(D,ia){(so, slt ..., s,)) = bl... M o ( l , • • • , V(m0))[{1, • • • , v ( w 0 ) } , 3 0 ] 

for some t/0£G0U Y0 and 90: {1, ..., v(M0)}-rGo(yo), then 

"(D,r0)((5Oi sl> •••» Sy)) = Cj ... Ci90('<>)• 

3. ¿-synchronized ^-transducers 

In this chapter we shall introduce the notion of a ¿-synchronized ^-transducer 
and prove that the relations induced by this type of transducers are exactly those 
relations which can be obtained by compositions of k relations induced by root-to-
frontier tree transducers. 

Definition 3.1. A ¿-synchronized /^-transducer is a system 

33 = (G 0 , GI, . . . , GK, Y0, YLT ..., YK, AI5..., AK, AX, ..., AK, V), 

where 
(1) 
(2) G0, GI, ..., GK are operator domains, 
(3) Alt ...,Ak are state sets, for / = 1, ..., k, 

AI...AINTGO(Y0) = Q, a n d AK... A,C) T0K(YK) = 0. 

(4) A^QAJ,, ..., A'KQAK are the sets of initial states, (5) XJJ is a finite set of productions, which is a disjoint union 

r B = Z8(0)UI iB(l)U...UrSB(fc), 

V=V0UV1U...UVk, where F0=r f f l(0), and for z = l , ...,k, 
F j g r > t ( 0 ) x r a ( l ) x . . . x £ „ ( / ) and [FL=I S ( / ) . 
r n 0) = {«0|w0€G0U Yq) a n d the members Cy of the production sets 
( j 'S 1) have the form: 

a, = (bj... V u0, Uj[SUj, tpj], Qj, WJ, ty), w h e r e 

b£Ai for i = l , . . . , j , ¡i0GG0Uy0, 

u,ZPgj(Yj), <Pj• SUJ - AJ.-.ARIU v(«0)}, 
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. Wj is a finite subset of (jV*)2U...U(N*)J+1 , where (N*)l=N* and for 
each / S i , ( N * y + 1 = (N*)'XN*. 

e,: SUj -»- Wj, ty. Wj^(Aj...AtA1U...UAtAlUA1)[fVj]0j 

and the following requirements are satisfied: 
a) 7 = 1 

0 Wx= {(/„, 0)l'i€SUl, (pAh) = Ci<o for some c^Aj, 
ii) for every t^SUl if <pi(tl) = c1t0 then e i ( i j )=( 'o . '0 , 

iii) (p1 = e1or1, 
iv) J^ = {(m0, ffOlwoÇGoUlo» a n d the second component of ^ ( Ç ^ O ) ) 

is t/0}. 
b ) y > l if (w0, (Ti, ..., ffj-!, <Jj)£Vj and (Tj-! has the form (bj-i...b1, u0, 

U j - d S u j - ^ V j - i b Q j - i ' W j - i ' i j - i ) then (u0, a1 , ..., and 
there is a mapping e,-: Su.-<- Aj[Wj-1]J-1 such that i)—iv) hold: 

0 Wj = {(/„, .... O-i' tj)\ej('j) = cjtj-u CjdAj, tjtS,,., tj.^S,,.^, 

Qj-i(tj-i) = C o , - , t j - i , 0 ) } U 

U{(i„, ...,f,)6W5-i|l ^ l ^ j - 2 } U 

U{(?0, ..., tj-JZWj-jl there are no tj£SUj and CjÇAj 

such that Sj (tj) = c} tj _ J . 
ii) F o r 

x j , Tj\yyJr\tyJ.l = r j-i\w Jnw J_ l and 

if (t0,...,tj-i,tj)£Wj, ej(tj) = cjtj^, (cjdAj, O - i € [ » 0 - i ] j - i ) a n d 

*j-i((to, •••> tj-i)) = Cj-!... c ^ o then t j((t0, ..., O - i , tj)) = cj...cxta. 

iii) For each tj£SUj if 

Sj(tj) = C j t j ^ C j d A j , and 

ey-i(O-i) = ('o, tj-i) then Qj(tJ) = (t0,...,tj.l,tj). 
¡y) Çj = QjOTj. 

( O n e c a n see t h a t f o r each tj£SUj, sJ(tJ) = cJtJ_1 (cj£Aj, tJ_1£SUj_) iff 
8j(tj)=(t0, . . . , 0 - n t j ) a n d Tj((t0, ..., O - i * tj))=cj...c1t0.) 

In the rest of the paper we shall denote the arity function of G0 by v. 

Definition 3.2. Let S be a ^-synchronized J?-transducer as in Definition 3.1. 
A configuration of © is a system (gt-S1,, \j/], 0, Z, £2), where qÇ.PGk(Yd, 
•*Ak...A1rGo(Y0), 0: Sq-*Z; f o r each sk£Sq, 0(sk)=(so, ..., sk_lt sk) f o r s o m e 

Z is a' finite subset of (N*f U.. . U (N*)kU(N*)k+1 such that the following two 
conditions hold: 

i) for j=0,...,k and arbitrary sJt Sj€[Z]; if Sj=SjSj, then Sj=Sj and 
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ii) for each sk£Sq ©(J^) is the only element of Z which has the form (J0, ..., 
..., jjt) for some s0, ..., sk_i£N*. 

Q: Z—(AkAk_l...A1UAk_1...A1U...UAi)TGo(Y0) is a mapping such that tp = 
= 0oQ holds, that is, the diagram in Figure 3 is commutative. 

r . . A 1 U A k . r . . A 1 U . . . U A 1 ) T G ( Y q ) 

tigure 3 

A configuration (gfS, , ij/], 0, Z, i2) is said to be a starting configuration, if q 
is the quasi tree e£N* (empty word) and ip(e)£A'k... A^TGo(Y0), moreover 
Z={(e,...,e)}. 

k times 

Definition 3.3. Let Kx= VI Z\ Q1) and K2=(q2[Sqt, V], 
Z2, Q2) be configurations of a ¿-synchronized ^-transducer S=((7 0 , Gx, ..., Gk, 
y0, Ylf ..., Yk, Alt ..., Ak, A[, ..., A'k, V). It is said that there is a transition 
from Kx to Ko in 93 which is denoted by if there are mappings y.j: [Z1],— 
- 1 , 0 * ) f ° r 7 = 0 , 1, ..., k such that the following requirements hold: 

(1) For each (s0, Sl, ..., s^Z1 (l^jrsk) if 

^ ( ( S , , , s l s ..., I J ) ) = bj...b1 M 0 ( 1 , . . . , V ( M 0 ) ) [ { 1 , . . . , V(H0)}, &0] for some 

u0£G0\JY0,bj...b1£Aj...A1 and {1, ..., V ( M 0 ) } - TGo(Y0) then 

*oOo) = "o> X;(s,) = (bi... blt u0, Ui[Su., (Pi], Qi, Wi, T;) 

for some uh Qi} Wt and r, ( /=1, 2, . ,.,j), and (x0(i0), ^ ( j j ) , . . . , tCj(sj))€ Vj. 
(2) q2=q1[Sqi, £] for the mapping Sqi~TGk(YkUN*) which is defined by 

the following , formula: for every 
sk£Sqi, £(sk) = coSk(uk) if xk(sk) = (bk . . . bx, m0, wJ5Ulc, cpk], Qk,Wk, zk). 

(3) Z2={(s0t0, s ^ , . . „ J ^ Z 1 for some /, (l^j^l^k) and 
Xi(.s,)= (bl...b1, u0, ut[SUl, <PJ, Qt, Wu T,) and (I0, tl7 ..., tj)e W,}. 

(4) For each sk=Sqi consider its unique decomposition sk—sktk, where 
sk€Sqi, xk(sj has the form xk(sk) = (bk...b1, u0, uk[SUk, p j , gk, Wk, zk), 
£ * 0 * ) a n d tk£SUk. If 0 1 ( i t ) = ( i o , i - 1 , ...,sk) and Qk(tk)= 
=(/„, tlt O then ^ ( S ^ K V O . - M I . 

(5) Let SkaSq: be arbitrary and consider its unique decomposition sk=sktk, 
where sk£Sqx, xk(sk) has the form xk(sk)= (bk ...bx, u0, uk[SUt, <pk], qk, Wk> 
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T t) , Çk(Sk)=oSk(itk) a n d tk£SUk. I f (pk(tk)=ck...Clt0 a n d 

r ( * k ) = «o(l, v(«0))[{l. »., v(«o)}, U 

(u0£G0UY0, 90: {1, ..., v(«0)} - rCo(F„)), 

then \j/2(s^)=ck...c190(t0). 
(6) For every (s„, s u ..., Sj)€Z2 there is a vector ( i , , ^ , . . . . i ^ Z 1 for 

some / (1 ̂ j^l^k) such that y.l(sl) = (bl...bl, "0, « i f ^ , <p,], q,, WU t ( ) , 
and S0=S0I0I S^SXTI, ...,Sj=SJTJ hold for some (70, f,, ..., WX. 
If' ...,tj)) = cJ...c1t0 and 

fi1^«'5!' •••>«/)) = v(«o))[{l, ...,V(H0)}, 90] 
for some w0€G0U y0 and 90: {1, ..., v(«0)}—TGo(Y0) then 

Î22((s0, s l5 ..., Sj)) = Cj... Ci 90(t0). 

Notice, that given configuration Kx and mappings yH, for ¿=0, ..., k satisfying con-
dition (1), uniquely determine configuration K2. 

The reflexive and transitive closure of relation between configurations is 
denoted by =>•£. 

Definition 3.4. Take a /¿-synchronized ^-transducer 

© = (G0, Gi, ..., Gk, y05 •'••> Yk, Ai, ..., Ak, Alf..., Ak,E#, V). 

Then the relation 

T 9={(F,q)\pZTGa(YJ,qZTGk(YJ, 

K> = (e[{e}, bp], 0°, Z°, £29) =>l (q, 0,0, 0) 

for some starting configuration AT0} 

is called the transformation induced by S . 
Configurations of the form (q, 0, 0, 0), where q£TGk(Yk), are said to be final. 

Theorem 3.5. Let 'iii={Gi l , Yt^, At, Gif Ff, A't, Z&) ( /=1, ..., k, k^2) be 
/{-transducers. Then there is a ¿-synchronized R-transducer S such that 
Ts,=T9,io...oTai|t. 

Proof: We construct a ¿-synchronized /^-transducer S as follows : 

© = (G0, Gx, ..., Gk, Yq, Y1, ..., Yk, A±, ..., Ak, A[,..., A'krZ9, V), 
where r f f l(0)= 1(0), ..., ZB(k)= E(k) for the sets Z(i), which are defined in the 
previous chapter. V= V0UVtU ... UVk, where the sets V0, Vt, . . . , Vk are defined in 
the previous chapter. We may assume without loss of generality that 
A . . . A n r C l t ( r * ) = 0 and that, for i=l,...,k, ^ i . . . / i i n r G o ( y o ) = 0 . Thus © sa-
tisfies requirement (3) of Definition 3.1. 

First we shall prove the inclusion 

T a i l o . . . o T 9 I f c g r a . 
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Assume that (p0, A)€"i,a1oTajo...oTafc. Then there are initial states 
ax£A[, ...,ak£A'k a n d the re is a der iva t ion sequence D: aip0=>^pi, aiPi=*%2Pi, ••• 

akPk-i=>*kPk, where p£T C i (Y^ for /=0, ...,'Ar. 
Take an arbitrary decomposition p0 = q0iSqo,y0] of the tree p0, where 

q^P r ,a(Yo) and y0: S^—TCtl(Y0). We have constructed a configuration 

9o) = ' ^(D, ,„)]> 0 ( D , q0) > 90) ' ?o)) 

for £> and <70 in Chapter 2. 
One can see that is a configuration of the ¿-synchronized transducer S . 

Let r0=q0[Sqo, c0] for the mapping £„: Sqa-~TGo(Y0UN*) which is defined by 
£0(j0)=coso(i/0(l, ..., v0/o))) for each s0£Sqo, where 

7o(so) = "o(U v(u 0 ) ) [ { l , . . . , v(u0)}, 30], 

(«„€C?0Uy0 , {1, . . . . v(w0)} - TCo(Y0j). 

KiD.r0) is again a configuration of 
It follows from the definition of the relation that 

K(D,qo) = ^(D,r0) or K(Dt 9oj =>3 K(Bt ro) 
holds. 

Let p°,p1 , ..., p'£Pc,0(Yc) be quasi trees for l=!t(p) + l such that for every / 

(0 = ' = /), Po = P'[SP<, y'l (y1: Spi - r G o ( r 0 ) ) , 
where 

i) p°=e, y°(e)=p0, a n d 
i i) /7 i + 1=p i[5p i , i i + 1 ] for the mapping <f+1: S p i - r C o (y 0 UW*) such that 

for every Sp< 
£ I + 1 ( S I ) = FTJsi(K0(l, . . . , V ( M 0 ) ) ) , 

where 
y'(s'") = «„(I,. . . , v(«0))[{l, ..., v(«0)}, 90] 

for some i/0£G0U 70 and 90: {1, ..., v(w?)}—Ic?(y0). In this case every 
Spi+i has a unique decomposition si+1=s't', 

S'€Spi, y'(s') = «0(1, v(w0))[{l,..., V ( M 0 ) } , 9 0 ] 

for some 

u 0 €G 0 Ur 0 ,9 0 : {1, ..., v(w0)} - T G i ( Y 0 ) and t'e {1, ..., v(w0)}. 

Then y i + 1(i i + 1)=9o(/ i)-
We know that K(D_pi)=K(D>pi+i) or K ( D t ^ ^ K ^ p i + i ) holds for /=0 , ...,/—1. 
It has remained to prove that KiDt p0) is a starting configuration and K(D pn is a final 
configuration of S . The first part of the statement trivially holds. Since p —p0 and 
Pot TGa(70), Sp 1 must be the empty set, thus K(D_pn=(pk, 0, 0,0). We have proved 
that (p0,pk)£T<B-

We shall prove the reverse inclusion: 
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Let Ko^-qK^q...be a sequence of transitions in 93, where n ^ l , K0= 
= (e[{e}, ip°], 0°, Z°, Q°) is a starting configuration and i//'], Z\ Q') 
for 1=1, ..., n. Assume that ip°(e)=ak...a1p. Let p°,pl, . . . , p 'be the sequence of 
quasi trees constructed in the first part of the proof, where p'=p. It can be seen that 
nSl. Then there is a derivation sequence D=Dla ...,Dk, 

Di- W ^ p A S ^ IJJ, (pxtPGW,*!!-- S n - A V ) . 

D2: a2 Pl =•*„ p2 [S P 2 , >]2], (p2iPr„(Yz), 12 Sn,, - A2 Spi), 

Dk- akPk-i Pk[SPk, 1k],(pk€Pc,SYk)> r,k: SPk- AkSPk_y 

such that the following equalities hold: 

i) Pk = 1", 

ii) D,P") = 

iii) 7" — 7 — (D, p") ! 
iv) = < W > ' 
v ) P" ~ ^-i".p")- ' ' •. 

where the sets Z^D pn), 0(D pn) and the mappings 

>I'(d, p") : SPk - (Ak ...A2A1U...\JA2A1UA1)Spn, 

®(D,pny Z{D,p") - ( A :.. A2A,U... UA^UAJrgCy") 

are defined as follows: 

(1) ZiDtPn)={(s0,s1,.:.,Sj)\s0£Sp«,s1£SPL,::.,Sj£SPj, 1 = j = k, 

and ( j = k or (j<k and there are no and 
bj+1eAJ+1 such that ijj+1(Sj+1) = bj+1Sj)) and = 
= bisi_1 (biZAt) f o r / = 1 , . . . J } . 

(2) F o r every ( j „ j I , . . . , i J - ) 6 Z ( 1 ) i P , ) (1 ^j^k), Q(DtPn((s0, su ..., Sj)) = 
= bJ...b1y"(sn) iff f!i(si) = bisi-1(bieAi) f o r / = 1 , .. . . ./ . 

(3) For every sk£Sqn, 6>(D,pn)(^) = Oo, •••, sk) iff 

/j,(s ;) = b i S i - i i b i t A i ) f o r i = l,...,k. 

( 4 ) ' •/'(D.p") = 0 ( D , p " ) o i 2 ( D , p " ) - . 

We proceed by induction on n. Let «=1 . In this case />1 = w0(l;, ..., v(w0)), 
Uq=root (p). From the definition of the transition in © it follows that there are map-
pings x,: {e} — .(/=0, 1, ..., k) such that x0(e)=u0, 

= («i> "o, uASul, <Pi], Qi, Wi, ti), 
and so on, 

*k(?) = K ••• «1,Mo:, »k[S„t» <Pk\, Qk,Wk,T*), 
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and (x0(é), xx(e), ..., xk(é))£Vk, and configuration K0 and mappings xt (/ = 0, ..., k) 
determine the configuration AT,. 

According to the construction of the transducer © and the definition of the 
transition in S , there is a derivation sequence D=Dx, Dk, 

Dy. fliKoO, v(w0))=>-a, t*i[SUl, (Pi], 

A : « ¡ " ¡ - i = 4 , «;[£„.>'/.•] 
for some 

1i: ~~ SUi_t, (i = 2, ..., k) 

such that the following equalities hold: 

i) II £ 

ii) r , 

* " / z l = wk = Z - -

iv) &1 = 8k --= ®(D,pl)-

V) ai = xk = = ^(D.pl)-

The proof of the basic step is complete. 
Assume that the statement is true for n — 1. It means that there is a derivation 

sequence 

A ; ai/>"-1^i1 JPi[sp l , r,i] (p^Pg^Yi), m- spi -

Z>2: a 2 p x p 2 [ S „ „ t/2] {p2£PG2(Y2), r\t: SP2- A2SP^, 

Pk[SPk, ifc] (pk£PGk(Yk), t,k: SPk - AkSPkJ 

such that the following equalities hold: 

i) Pk = q n ~\ 

ii) •/W"-») = 

iii) Zn~x = Z ^ - ^ , 

iv) 0 " - i = 0 ( D > P » - . , , 

v) or-1 = a i D i f - i y 

Because of the transition AT„_1=>-9,Ar„ there are mappings [Z"""1],—rs(/) 
(/'=0, ...,&) which satisfy condition (1) in Definition 3.3. 

Take the sequence r0, ..., rk of quasi trees given as follows: 

r0 = p", for i = 2, ..., k let fi — Pi[SPii £,*]» 

where £f: SPi-*rCi(yjLW*) such that for every s£S„., ei(s) = (os(ui) holds, where 
«j[SM), <Pj] is the third component of 

ki(s) = (bi :.. b , , uQ, <p,] Qi, W t, T,.). 
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Let Sr i^-AiSr i l (/'€ {1, ..., A;}) be the mapping satisfying the following requi-
rements: we know that for each Srt there is a unique decomposition ¿—¿¡i, 
of s^ where s£SPi, (/>;... ¿>1, u0, «¡[5,,., q>i\, Qt, fVh t ; ) and /¡6S„t. 
If Bt0d=0o. • - ' « - i . 0 (Co, 4)6 and -T,((r0, . . . , i | - i , 0 ) = 
=c i . . .c1 i0 for some c ^ ^ , ..., and »/¡(•ri)=Mi--i f° r s o m e •si-i€'S'Pi_1 
then ^i(siti)=clsi-1ti.1. We obtain that for /=1 , ..., Et: as^^r^S^, 
holds. 

From the definition of the transition in S and from the definitions of rk, 
z(E,pn), @(E,p»), Q(e, p»), "A(E, p") it follows that 

i) rk = l", 

ii) >A(£,p») = 
iii) •Z" = Z(E_ pi), 

iv) 

V) Q" = {2(£pny 

Assume that ( p , q ) € T h e n there are configurations K0, ..., K„ ( « S i ) such 
that K0 is a starting configuration, K0= (e[{e}, \J/°], 0°, Z°, Q°) where \j/°(e)= 
=alt...a1/> for some ak£A'k, ..., ax£Ai, Kn is a final configuration, K„=(q, 0,0, 0), 
moreover, /sf1_1=>SJ.K; holds for / = 1, ..., n. 

According to the above proposition there is a derivation sequence 

D=D1,...,DK, 

£>i - nMp^PoSY^ m: Spi - A.S^, 

^2 : Sp3 ^2 Spj), 

A: «TPT-I ^ P J ^ , T]K: SPK - A ^ . , ) 

such that the following equalities hold: 
i) Pk = 

") « /W") = V = 0, 

iii) Z" = Z(D,pn(, 

iv) 0 " = 0(Dfi>n), 

v) Q n = Q(D,pny 

Thus Z ( D p n ) = 0 , 0 ( f l p n )=0, i2(DjPn)=0. According to the definition of Z(DTPN), 
S pI=[Z(D i ( ,4 for i = l, ..., Thus p£TGi(YÙ for i=\,...,k. One can see that 
aiPn[Spr>, y"]^nxPi holds. Thus (/>"[SP„, yn], The proof of 
the theorem is complete. 

Theorem 3.6. Let S = ( G 0 , GLT ..., GK, Y0, YLT ...,YK, Alf ..., AK, A[, ..., A'K, 
¿•¡B, V) be. a ¿-synchronized /{-transducer. Then there are ^-transducers 5l l 5 . . . , 
such that t s = Taiio...oT9I|t. 
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Proof. The production sets Z s ( / ) for / = 1, ...,k—1 are considered to be operator 
domains with arity function v': Xa(/) —{0, 1, 2, ...} as follows: for 1 ^ /^ /c— 1, 

a = (bi...b1, i/0, Ui[Sa,, <?>,], Qi,Wi, 

let v'(ff)= | Sa.|, where | S J denotes the cardinality of the set SUt. 
Remember, the arity function of the operator domain G0 is denoted by v. 

Convention: Let SQN*. If 5 ^ 0 , then S-S denote the identity 
function. If S = 0 then S—S denote the empty function. 

For every j (l^j^k) if S ^ 0 then S - { 1 , ..., |S |} denotes the function 
whose value on S is the ordinal number of s in S with respect to the lexicographic 
ordering. If S = 0 then S—S denotes the empty function. Thus always 
denotes a bijective function which is determined by its domain. 

Take the /^-transducer 

STi = (G0 , 7 0 , A , I 8 ( l ) , 0, < ) , 
Where 

2«, = (Mo - •••> v 1 ^ ) ) « ! , vHffi)}, M 

ffi has the form (b1, w0, <pj, qu JV1, T1)€2's,(1), 
(cr0, (bu i/Q, uASUl, <pj, Si, W±, t^V Vx and the mapping 
Px: {1, ..., v 1 ^)}—A 1 {1 , ..., r(o-0)} is defined as follows: 
Let £„: {1, . . . ,v(»n)}^{l, ...,v(Mo)}, . . . , |5a i |}. 
For each t&S^, A(£iOi))=ci£o(>o) iff g1(/1)=(/0,>i) and ^ ( f t , , / , ) )= 
=C l? 0 . (Thus for each t^S^, iff <Pi(̂ i) = c1/0 .)} 

F o r j=2, ...,k—\ cons ide r the /^ - t ransducer 21,-= 1), 0, As, Zm(J), 0, 
, /ij), where the production set is defined as follows: 

ZVj = { I b j O j - V J ' ( < 7 ; ) ) [ { 1 , . . . , W(<R,.)}, P j ] I 

There is an element (<r0, ..., Oj-i, <7j)6 K such that Oj^ has the form 
(bj-i.-.bi, u0, J , H^j-i, Ty-x), 
ffj h a s t h e f o r m (bj...bL, u0, iij[SUJ, (pj], Qj, WJ, t ; ) . 

" There is a mapping ey: S U j ^Aj[Wj_ l ] j _ 1 such that conditions i)—iv) in 
part (5).b of Definition 3.1 hold. 
The mapping /?,-: {1, ..., vJ(aj)}-<-Aj {1, ..., v J _ 1 (a J_ 1 )} is defined as follows: 
Let ^ - { 1 , SUj-{l,...,\SUJ\}. F o r every tj£SUj, 

i f f 0 y (O )=( / o . . O - i ' O ) a n d 

(Thus for every ' , - i € iff 

Take the/?-transducer = (Zs(k — 1), 0, y t , Zmk, A'k) where the production 
set Z^k is defined as follows: 

£sfc = {ak^k-i-*uk[SUk, pk]\ 
There is an element (<r0, ..., ak^j, V such that has the form 
(¿>*-i- A> wo, uk-ASUk-v •Pfc-i], T*-i), 
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<rk has the form u0, uk[SUk, <pk], gk, Wk,zk). There is a mapping 
£k: SUk^Ak[Wk_1]k_ l such that conditions i)—iv) in part (5).b of Definition 
3.3 hold. The mapping pk: SUk—Ak{ 1, ..., v ^ C t - i ) } is defined as follows: 
Let SUk_~{l,...,\SUkJ}, Çk: SUk^SUk. For every tk£SUk, 
Pk(.tk) = ckÇk_xOfc-j) iff QkOk) = Oo, h-i, Q and Tk((i0, ..., tk_lt tk)) = 
= ck...c1t0. (Thus for every tkeS„k, Pk(tk) = ckÇk_1(tk_i)(ckeAk, t ^ t S ^ ) 
iff e*('*) = c * i * - i . ) } 

We may assume without loss of generality that for 

z = 2, . . . , f c - l ^ j n r l 8 ( i . 1 ) ( 0 ) = 0, 4 - n r w ( 0 ) = 0 

and that ^ i n r Z s ( O ) ( 0 ) = 0, AKfl r I s B ( t_1 )(0)=0. 
Thus ..., satisfy requirement (2) of Definition 1.10. 
We shall prove that T<B=TSHIO...OT9,I[. Let (£ be the ¿-synchronized i?-trans-

ducer that can be obtained from 2Ii, ..., by the construction of Theorem 3.5. 
In this case 

G = (Go, Z « ( l ) , . . . , ZB(k-1), Gk, Y0, ft^JJ, Yk, ALT..., AK, A{, ..., A'k, V). 
k—1 times 

We may assume without loss of generality that for / = 1, ..., k, Ai...Air\TGo(Y^)=@ 
and that Ak...A1f)TGk{Yk)=0. Thus G satisfies the requirements of Definition 3.1. 

By Theorem 3.5, Te=ta, ioTa2o...oTa,k, so it is sufficient to prove that =r ( £ . 
In order to prove this equality we shall introduce bijective mappings y} : — 
for j=0, ..., ¿—1 and a surjective mapping yk: I^k)-»Zçik), and we shall show 
that for j=0, ..., k the mappings y0, ..., yj satisfy assumption (1) and that for 
j—0, ..., k the mapping y} satisfies assumption (2). 

(1) There are two cases. _ 
Case 1. OSy'Sfc—1. In this case if (<r0, ..., <X/)€F} then (y0(a0X 7j(o"y))€ F,-, 

and if ( i 0 , ..., ffj)€Vj then (yôHâ^, y / 1 (<?/))£ Vy 

Case_ 2. j=k. In thjs case if (<70, ..., ak)£ Vk then ("/oOo), •••,yk(vk))£Vk> 
and if ((T0,..., fffc-i, ff/i)€ Vk then there is a unique ok£. such that yk{a^ — ok 
and (vo - 1^)- - , y*-1i(fft-i), <tk)£ Vk-

(2) There are three cases. 

Case 1. j=0. In this case Za(0)= £<b(0) and y0 is the identity function. 

Case 2. Let (aQ,..., Vj and c0=w0 . Assume that u, (1 = / = / ) 
has the form (£, . . . i i , u0, ut[SUl, <P,], q„ WU T,). Let £0: {1,..., V ( M 0 ) } = [ W ^ ] 0 -

-{l , . . . ,v(w0)}, Ç,: 5 U l = [ f f J . ] , - { l , . . . , | 5 J } for 1 = 1 , . . . J . Then yy(c7;) has the 
form yj(cJ)=(bJ...b1, Mo,ff/(l, ...,v>(oj))[{l, ...,VJ(OJ)},(pj], QJ, Wj,Zj), and the 
following hold: 

0 [Wj]0 = [Wj]0 and for i = 1 7 - 1 , [Wj]t = {1,..., \\Wj],\} = {1, ..., \SUt\) = 

= rg(fi). 

ii) (/„, h,..., tt)iWj iff (£0(/0), Uh),.... ^QtieWj (1 S I =j) 

(toZN^hZN*,...,^*). 

8 Acta Cybemettca Vn/4 
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iii) For every 

tj£SUj, q> j (tj) = cj...c1t0 iff (Pj{£j(tj)) = Cj ... Ci^Oo), 

(to€Su0> CxC^i, CjZAj). 

iv) For each 

*j£SUJ, QjOj) = (/o, H, .... t j ) iff e&M = (£0(/0), 4(0, ..., ̂ (/,))• 
v) For every 

Co, O (1 ^ / ^ j ) , Tj((t0, i l 5 . . . , i,)) - c , . . . cxi0 iff 

i/((fo('a)> 4 ( 0 , 4('i))) = c,... c^oi/o), 
(I 0€{l , . . . , V ( M 0 ) } , c^Ai, ...,c,eAi). 

Case 3. j=k. Let (<x0, er l5..., trt)6 Vk and cr0=u0. 
Assume that a l (1 ̂ l ^ k ) has the form 

( b , . • • , "o , ut[£„,, cpt], Q„Wt, r , ) . 
Let 

to'- {1, v(m0)} = [Wk]0 - {1,..., v(w0)}, 

£«: S„, = P n W l , - , | S J } for I = 1, ..., fc-1, SUk = [Wk]k - SUk. 
Then yk(ok) has the form yk(crk) = (bk...b1, u0, uk[SUk, (pk], Qk, Wk, fk) and the 

following hold: 

i) [Wk]0 = [Wk]„, for i = 1,..., fc-1, [Wk]( = {1,..., [Wkl} = {1, ..., ISUl\} = rg (4) 

and [Wk]k = [Wk]k = SUk = rg (4) . 
ii) (i0, tx,..., t,)£Wk iff (4(O, 4(0, ..., 4(0)^* 

iii) For every 

hiSUk, cpk(tk) = ck...c1t0 iff <pk(4(tk)) = ck...c1£o(/0), 

( 'oeSuo.CieA, ...,ck£Ak). 
iv) For each 

tkesUk, 6k(tk) = (t0, ..., tk) iff e,(4(0) = (4(0, 4(0,' 4(0). 
v) For every 

i.t0,h,...,t^Wk (l^l^k),Tk((t0,t1,...,tl)) = cl...c1t0 iff 

i*((£o(0, £i('i)> 4 ( 0 ) ) = c,... Mo, 
( /06 { 1 , . . v ( M 0 ) } , Ax,..., A,). 

We shall define mappings >>_,•: E^U) ^aU) according to the construction of 
and 91,-

/ 
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Let 7 = 0 . Since r(E(0) = ^ (O) , let y0 be the identity mapping. 
Let 7=1. In this case 

£« (1 ) = "o, <Ti(i , . . . , v H O M O , v^ffi)}, <Pil e i , W l t f i ) | 

i) («o, V such that ax has the form (bx, u0, t/i[5'„l, <jjJ, glt Wlt Zj). 
ii) y0(Mo) = Mo> the production 

M o - ffi(i, vH-T^Ki,..., vHo-i)}, 
where the mapping {1,... ,v1(a1)}—A1 {1,..., v(w0)} is defined as follows: 
Let 

SO.: { 1 , V ( « „ ) } - { I , . . . , V ( M 0 ) } , ^ - { 1 , . . . , \SUl\}. 

For each 

h £ s u i , &(&(*,)) = o(/o) iff Qdh) = (to, h) and ^((to, O) = Cxi0. 

(Thus for each ft (&(/,))=Ci£0('o) iff Pi( 'i)=Ci'o-) 

iii) (p1 = p i , 

iv) ex.: {1, • ; V 1 ( < j J } - W 1 ; 

for every 

4(ix)€{l, . . . . v 1 ^ )} , if h { U h ) ) = c i U h ) (cxi^x, i0€{l, ..;V(u0)}) then 

¿ i ( 4 ( i i ) ) = ( £ o ( i o ) , 

v) fx: 

for every 

(4>('o),4('i))€iFi, if j8x(4(0) = C x 4 ( 0 (c i^ i , io€{l , . . . ,v(«o)}) then 
ii((io('o). £i(h))) = Cx4(io)-} 

It can be seen that 
Vx = {(y0(cr0), ffx)[o-0 = wo€l®(0), ffxE^il)) has the form 

(bx, u0, <Tx(l, ..., vHo-x^Kl,..., vHo-i)}, Vi], ei, fx) 
and <7x is generated by the production 

M o - <7x(l, ..., vK<7i))[{l,..., vHO}, 
We define y^. I a , ( l ) -^r ( E( l ) as follows: 

Let ff1=(b1,u0,u1[SUl,<p{[,Q1,lV1,z1)£liS(l), then by the construction of 
Six and (£ there is a unique production ¿^«„ - -^ ( l , . . . , V1(OTX))[{1, . . . , V 1 ^ ) } , 

which generates a unique o^-EeO)- We define •y1(<T1) to be One can see by the 
definition of that is onto, hence is bijective. 

It is routine work to check according to the construction of Six and r c ( l ) that 
y 0 , s a t i s f y condition (1) and that yy satisfies condition (2). 

Let j be an index between 2 and k—1. We can assume that ^(O) , r f f ( l ) , . . . 
..., Ea(j—1) and y0,... ,7y_x are defined such that y0,..., yj-i satisfy condition (1) 
and that y}_x satisfies condition (2). 

8* 
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We know that E a(J) is the set 

2 E O ) = {(bj - h, u0, Oji 1 , . . . , V ; ( < 7 , . ) ) [ { 1 , vJ((Jj)}, CPjl QJ, Wj, T,.) | 

i) There is an element (cr0,..., <Jj_i, V such that er0=«0, Gj-i has the 
form 

( b j _ ! ... ft, W„, « y - i t ^ . , , <Pj-lh Qj-1, W j - l , 

oj has the form (¿>;---ft, uQ, UJ[SUJ, Qj, WJ, t ; ) . There is a mapping 
Sji Saj-»Aj[fVj_1]J_1 such that conditions i)—iv) in part (5).b of De-
finition 3.1 hold. 

- I I ) Y , - I ( < 0 - I ) = ( f c Y _ I . . . ft, u0, < 7 Y _ ! ( 1 , . . . , V - ' - 1 ( < T / _ 1 ) ) [ { 1 , . . . , v J _ 1 ( O - > - i ) } , <Py-J, 

e j ^ W j ^ r j . ^ I ^ Q - l ) 

and the production 6y(7J_1-<-<Ti(l,..., vJ(co))[{l, ..., vJ(o7)}, ft] is in where 
the mapping 

ft: {1,..., vJ(ffj)} - ^ { 1 , . . . , v-'-1(ffJ_1)} 

is defined as follows: 
Let ^ - { 1 , I S ^ J } , ^ - { 1 , . . . , For every 

i f f ••• .O-i 'O) a n d 

tj((t0,..., tj/J))=cJ....c1/0. (Thus for each 0€SUJ, ft(£y(0))=c/£/-i('/-i) 
iff ej(,tj) = cjt j_!•) 
iii) - {(*„,.. . . ^ - i Cy-i), i / O ) ) 1 ^ ( ^ ( 0 ) ) = 0 ^ - 1 ( 0 - 1 ) . 

= (?„,. . . . 0 - 2 , £ , - i ( 0 - i ) ) } U 

U{(?0, there are no ij in {1,..., 1^(07)} and 

CjtAj such that ft(o) = CjO-i}U 

iv) Qji {1,..., v^Cy)}-»^- satisfies the following requirement: for every 

tjiSUj if P j ^ j ( t j ) ) = cj^.1(tj-i) and 

e j - i (Z j - i i t j - d ) = (ZoOo),.... ^ - i ( O - i ) ) then 

( W o ) , •••» fj-iOj-D, WJ and 

= (foto) . « / 0 » -
v ) F o r TJ-: ^ - ^ . . . ^ { L , . . . , V(M0)}, 

•fjlwjnTTj., = ij-ilfTjnTFj., and if 

ftfofy)) = c^y- i (O- i ) and e . - i f o - i i O - i ) ) = (i0, -,'tj-2, iy - i (O - i ) ) 

then i,((70 , . . . , 0 - 2 , ^ - i ( O - i ) . ^ (0) ) ) = • ••> 0 - 2 , ^ - i (O- i ) ) ) -
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vi) <Pj = eyor,..} 

It can be seen that 

Vj = {OoOo), dj)I for i = 0, ...,j-1 

a^Z^i), (y0(a0), . . . ^y - i i o - j - i ^eF j , ! , 

<7„ has the form u0, and (T j^ has the form (bJ-1...b1, u0, uJ_1[SUj_1, q>j_J, 
q } t j - i ) - There is an element 

(Tj = (bj... bx, u0, uj[suj, <pj], Qj, Wj, -CjKZvU) 

such that (<r0, ..., (Tj-i, AJ)Z Vj, and there is a mapping e,-: SUJ— 
A j l W j ^ j ^ such that conditions i)—iv) in part (5).b of Definition 3.1. hold. 

dj = (bj, ..., bu u0, <rj( 1, . . . , vJ '(ffj))[{l, . . . , vJ(a% <pj], qJ} WJ, TJ) 

satisfies the requirements ii)—vi) of T e ( j ) -} 

We define y}: ( j ) — Ze(j) as follows: Let us consider the set 

r} = {y: ZB(j) - rE0')l for each c^Z^U), y(<Tj) = dj 

has the form 

(bj ... b,, u0, Oj(\, ..., V((X,))[{1,..., (Pjl Qj, Wj, Tj) 

and there is a vector (cr0, ..., Oj-i, Vj such that a0 has the form u0, aj^ 
has the form (bj^ ...blt u0, Uj^S^^, <pj_J, x a } has the 
form (bj.-bi, w0, Uj[SUj, (pj], Qj, Wj, Tj), and there is a mapping SUJ— 
- A j l W j ^ j ^ such that conditions i)—iv) in part (5).b of Definition 3.1 hold, 
and d j satisfies the requirements ii)—vi) of 

One can see that if y j£Fj then y} is injective and yj satisfies condition (2) be-
cause of the construction of 21,- and Z^ij) . Using this fact one can see that | r y | = 1. 
Let yj be the only element of F j . One can see that yj is bijective, and y0) ... 
..., y j—\, yj satisfy condition (1). 

Let j=k. We can assume that 2^(0), r t t ( l , ) ..., Z^k—1) and y0, ..., y t_1 
are defined such that y0) ..., yk-x satisfy condition (1) and that y)t_1 satisfies condi-
tion (2). 

We know that Zs(k) is the set 

2<t(fc) = {(h ••• K H0, Uk[SUk, <Pki, ek, Wk, 

i) there is an element (cr0, ..., ak_ ak)£ Vk such that a0=u0, <rJt_1 has the form 
(bk_1...b1,u0,uk_1[SUk_1,(pk-.1\,Qk_1,Wk_1,Tk_1), ak has the form {bk...bt, 
"o, " t f ^ , <Z>J, Qk, Wk,Tk). There is a mapping ek: SUk-~Ak[Wk_Jk_x such 
that conditions i)—iv) in part (5).b of Definition 3.1 hold. 

") Vfc-iO*-i) = (bk-1 ••• K, «o, •••, vfc-1(<7k_1))[{l. v*_1(ffk-i)}, 9k-1], 

Qk-u 
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and the production 

1 ^ "t [Suk>Pkl is in Ig,k, 
where the mapping 

is defined as follows: Let 

For every 

= iff ek(h) = (.to, -,h-i,h) and 

(Thus for each iff £*('*)=£* w ) 

iii) = {(f 0 , h-2, Zk-iOk-il ZkOkWkitkOk)) = c ^ - i O i c - . ) , 

= (to, h-2, 

u{(io,...,h-s,tk-iKtrk-ii 

there are no t^S,^ and ck£Ak such that Pk(tk) = cktk_1}U 

iv) . gk: SUlc~*Wk satisfies the following requirement: for every 

UeSUk\ if pk(^(tk)) = c ^ A t k - t ) and 

QkSk-i(tk-i)) = (fo, h-2, £*-i('*-i))> then 
and 

•el{Zk(tk)) = (*o, h-2, Zk-i(h-i), &('»))• 

v) For 

, fk• Wk~ (Ak...A2A1U...UA2AlUA1){l, ..., v(w0)}, xJk|WrfcnWrfc_i = f f t - x l ^ n ^ . , 

and if 

(f0, . . . ,h -2 ,Zk- i (h- i lZk(hj )£W k , = and . . 

ek-i{Zk-i(h-i)) = ('o> •••> h-2, Zk-iOk-i)) then 

' • MOo, •••> h-2, Gk-i(h-i), €k(h)) = ckTk-i(Oo> h-2, €k-i(h-i)))-

X Ji c. 1 .S (.. , 

It can be seen-'that.f. .. 

/ (yo(°o)> Vfc-i(«-fc-i))€Ffc_t, cr0 has the form uj,)„.;: •(, ,. . . . . 
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and fjt—i has the form {bk^...bx, u0, uk_x[SUk<p*_J, e*-!, Wk_t, z ^ ) . 
There is an element ak=(bk...b1, u0, uk[SUk, <pk], gk, Wk, zk)£Zv(k) such 
that (<70, ..., C/Jd Vk, and there is a mapping ek: SUk^Ak[Wk_l]k_1 such 
that conditions i)—iv) in part (5).b of Definition 3.1 hold, and 
dk=(bk...bl, u0, w*[SUk, <pk], Qk, Wk, zk) satisfies the requirements ii)—vi) 
of r e(*).} 

We define yk\ ZK(k)-*ZK(k) as follows: Let us consider the set 

r k = {?: r»(fc) - Iff(fe)| for each fft€£e(fc), y(ak) = ak 

has the form (bk...bx, u0, uk[SUk, Wk, zk) and there is a vector 
(<r0, ..., <rt_i, Vk such that tr0 has the form w0, ak_x has the form 

(bk_!... bl7 u0, uk-il/SKk_1, (pk-x], Qk- 1,Wk-1, zk_j), 

ak has the form (bk---b1, u0, uk[SUk, (pk], gk, fVk, zk) and there is a mapping 
ek: SUk-+ Ak[Wk_1]k_1 such that conditions i)—iv) in part (5).b of Definition 3.1 
hold, and 5k satisfies the requirements ii)—vi) of rff(A:)}. 

One can see that if yk€Tk then yk satisfies condition (2) because of the constructions 
of 9lk and Z^ik). Using this fact one can see that \Tk\ = 1. Let yk be the only element 
of rk. One can see that yk is surjective. Using the fact that yk satisfies condition (2), 
one can easily prove that the mappings y0, ..., yk satisfy condition (1). 

Finally we shall prove, using the fact that for 7=0, ..., k the mappings y0, ..., ys 
satisfy condition (1) and for 7 = 0 , ..., k the mapping satisfies condition (2), that 
T» = T«r • 

Assume that K0=(e[{e), ip0: e—bp], 0°, Z°, £2°) is a starting configuration of 
93 and that for a configuration ATj=(9l[S i t, i//1], 0\ Z\ Q1), K0=>*K, holds. Then 
K„ is a starting configuration of (E as well. We shall show that there is a configuration 

K1 = (q1[$1i,n e\ Z\ D1) 
of G with bijective correspondences 

a0: [Zi]0 - [Zl]0 

( * ) I 
a,: [Z\ - [Z']k 

such that a0 and xk is the identity function and Kn=>*K, holds, moreover 
i) for every sk£S„01(sj=(so, sx sk) iff 01(<xk(sk))= (OL0(S0), a,(ji), ... 

•••,**(>*)) and 
ii) (s0, Sj,..., s ^ Z 1 iff (oc0(s0), aiisO,..., a / s ^ e Z 1 

( l S j S k, (s0, Si,..., Sj)e(N*y) and 

iii) for every 

(s0, Si, Sj)€Z' ( l g j S k), ^((So, S i , s j ) ) = fl^aofso), M O , . . . , a,(s,))). 
Conversely, if K0=>£K1 holds then there is a configuration K, of © and there are 

bijective functions (* ) such that a0 and <nk are identity functions and i), ii), iii) hold. 
Hence if K, is final then Kx is final and vice versa, thus z3)=ze follows. 
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First we shall prove the first part of the statement, the second part can be proved 
similarly. We prove by induction on the length of the transition A^0=>*A'1. 
a) The length of K0=>*K! is zero, (K^K0). Trivial. _ 
b) Assume that the statement is true for K^^K^, KQ=>^K! and for the functions 

( * ) and that AT1=»sA^=(9i[5(I, № 0 2 , Z 2 , Q 2) holds. 
By the definition of the relation =>ffl, there are mappings xt: [Z1],—ZS(/) for 
/'=0, 1, ...,k such that for every (i0>^i> .••,sJ)£Z1 ( l ^ j ^ k ) if 

Q1((s0,s1, ...,sj)) = ft...fti/0(l, V(M0))[{1, ..., V ( M 0 ) } , 9 0 ] 

(bj€Aj,..., biZAi, « 0 E G 0 U Y „ 90: { L , . . . , V ( K 0 ) } - TCo(Y0)) 

then x0(s0)=u0, x^si) has the form (¿¡ . . . f t , u0, M,[5Ui, <pj, q(, Wt, t()_ for 
i=l, ...J, moreover (x0(.y0), x^sj, ..., Xj(sj))£Vj. Take the mappings xt: [Z1]^ 
-~Z<s{iy for i"=0, ..., k defined by xi(ai(si))=yi(xl(si)) for each s^Z1]^ Notice, 
that xt is well defined, because a,- and ft are bijective. By the induction hypothesis for 
each ( i 0 , JL . . . . i j J eZ 1 (l^j^k), Q 1 ^ , slt ..., i J))=Q1((a0( j0) , ax(Ji), ... 
...,0Cj(Sj))). Since xg=x0 and for each ¿^[Z1]; the first two components of X;(s/) 
are equal to the first two components of ^¡(«¿(sj) for / = 1 , ..., £,_moreover for 
every (ff0,er1,...,<Tj)eVj (l^J^k), (y0(<r0), Vifai), ..., Yj(<Tj))e Vj it follows 
that the mappings xt ( /=0 ,1 , ..., k) satisfy condition (1) in Definition 3.3. The 
mapping^ Xj (i=0, 1, ..., k) uniquely determine a configuration K t = ( q 2 [ S p , ip2], 
Q2,Z2,Q2) of C such that K^K* holds. First we show that q2[Sqt, ij/2] = 

By the transition we know that q2—^1[iS,
4i, 5], where 

8: Sqi-»,TGk(YkUN*) satisfies the following formula: for each sk^Sql if xk(s^) = 
= (bk...b1u0, "k[SUk> <Pkl_8k, then 8(sk)=coSk(u^. By the induction hypot-
hesis and the transition Kx^Ki we obtain that q2=q1[Sqi,S], where S: Sqi — 
-~TGk(YkUN*) satisfies the. following formula: for every skdSqi if xk(sk) = 
= (bk...b1, u0, uk[SUk, cpk], gk, Wk, xk)_ and 8(sk)=coSk(uk) thenjf ) [(a ) k(.y t))=xk(sk) = 
yk(^k{sk)) = (bk...b1, m0, uk[SUk, qk, Wk, fk) for some gk, Wk and xk, moreover 
Ksk) = °>sk(uk) = Hsk), thus q2=q2. 

Again by the transition K ^ ^ K ^ and K ^ ^ K ^ we have that ip2 and \J/2: 
Sq2-*Ak... A1TCo(Y0) satisfy the following conditions: 

Let sk£Sqi be arbitrary and consider its unique decomposition sk=sktk, where 
sk£Sq,, 8(sk)=a>Sk(uk) for some uk(£PGk(Yk)), tk£SUk and xk(sj has the form 

«0» "kts^ , e*. Wfc, TK). Then if <pk(tk)=ck...Clt0, (ck... 
...cr<iAk...Ax, I 0 6 { 1 , . . . , V(M0)}) and tl/1(^=u0(l, ..., v(w0))[{L, ..., v ( W 0 ) } , 3 0 ] , 

(M 06G 0Uy 0 ,9 0 : {1, . . . ,v(M0)}-rCo(y0)) then rp2(skQ=ck...Cl90(t0). 
We know that sk has the same decomposition_using 5=8 and xk, because 

xk(sk) has the form ( f t . . . f t , u0, uk[S„k, <pk], gk, Wk, TA Since <pk(tk)=ck---cxt0 
and \j/1(sk)=u0(l, . . . , V ( M 0 ) ) [ { 1 , • • • , V ( « 0 ) } , 9 0 ] thus V2(sktk) = ck...c190(t0). We 
have obtained that I¡/2=^/2. 

Z2 = {(s0t0, ...,sjtj)\(s0, ...,s,)<iZl, j^l^k, 

*i(si) = (b'i... ft, "o, u,[SUl, (p,], qu Wu t() and (t0, /ls ..., tj)eW,}. 

Z2 = {(a0(s0)?0, oij(sj)lj)\(a0(s0), ..., «,(*,))€ Z1, j ^ l ^ k , 

and (r„, •••, Ij) is a member of the fifth component of S ((a,(ji)).} ..-: 1 
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N o w w e d e f i n e t h e m a p p i n g s a ? : [Z 2 ] ¡ —[Z2]¡, ( / = 0 , ...,k) a s f o l l o w s : L e t ag 
a n d a | b e i d e n t i t y m a p p i n g s , a n d f o r i=\, ...,k—1 t a k e a n a r b i t r a r y e l e m e n t 

w h e r e xi(si)=(bi...b1, u0, u¡[SU{, q>¡\, g¡, JV¡, r¡), t h e n w e d e f i n e oc?(s¡t¡) 
t o b e cc¡(s¡)^i(íi), w h e r e 4 : S „ ( - { 1 , . . . , | S J } . 

W e h a v e t o s h o w t h a t f o r / = 1 , k — 1 a? is a b i j e c t i v e f u n c t i o n . L e t s¡t¡= 
= s , Z i ( € Z f ) a n d a s s u m e t h a t s¡ . T h e n o n e o f í ¡ o r s¡ is a p r o p e r i n i t i a l s e g m e n t 
o f t h e o t h e r o n e , w h i c h c o n t r a d i c t s t h e d e f i n i t i o n o f t h e c o n f i g u r a t i o n , t h u s a? i s a 
we l l d e f i n e d f u n c t i o n . 

A s s u m e t h a t d¡(sit¡)=ct2(sií¡) s u c h t h a t s¡ ^ s¡ o r t¡ t¡. I f s¡ s¡ t h e n 
aÁsJ^oCifa) a n d 4 is a f u n c t i o n w h o s e r a n g e is N t h u s a¡(04(/,)^a¡(s¡)4(/¡). 
I f j ¡ = sf a n d / ¡ ^ i i t h e n a? O ; = « ¡ 0 ¡ ) C¡ ( O ^ « ¡ ( O 4 f t ) = « 2 ( s ¡ r¡) s i nce 4 ( 0 ^ 

t h u s w e o b t a i n e d t h a t af is i n j ec t ive . 

L e t S j i ^ f Z 2 ] ; , t h e n t h e r e is a n e l e m e n t ( s 0 r 0 , . . . , s¡ t¡ , . . . , S j l J ^ Z 2 , w h e r e 
j ^ i . B y t h e c o n s t r u c t i o n o f Z 2 , ( s 0 , . . . , s¡ , . . . , s s , . . . , s ^ Z 1 f o r s o m e s + 1 , . . . 

5,(€JV*), l S / ^ / ^ A : , a n d 

_ (•(&,.. . d i . iTo , WfO v ' ( f f i )} , ft], e „ f , ) if / 3= k, 
y"1 S' ~ \(bk... by, <7„, kJS^ , ét, wk, fk) if I = k, 

a n d (Z0, . . . , í ¡ , . . . , tj)£ W¡. B y t h e i n d u c t i o n h y p o t h e s i s t h e r e is a n e l e m e n t 
(¿o, ...,s¡, ...,Sj, ...,s¡) o f Z 1 s u c h t h a t 

( a 0 ( s 0 ) , . . . , «;(>;), . . . , <XJ(SJ), . . . , CC,(S,)) = (S0 , ..., S¡, ..., Sj, ..., s¡). 

Since xt(s¡) = y¡ (x,(s,)) b y d e f i n i t i o n , w e c a n a p p l y c o n d i t i o n (2) (ii) s t a t e d f o r y,, w h i c h 
tel ls u s t h a t (i0, . . . , t„ . . . , lj)£W, iff t h e r e is a ^ ( O , Z^Q,), tTl(W)t wi 
f o r ~ 4 , • ••> 4 defined in t h e c o n d i t i o n . T h u s 

m o r e o v e r 
a ¡ ( s ¡ 4 - 1 & ) ) - « i i s d U Z r H h ) ) = « ¿ s d h = 5,1 

h e n c e af is s u r j e c t i v e ( / = 1 , . . . , k — 1). T h u s w e h a v e p r o v e d t h a t a? is b i j e c t i v e 
( / = 0 , . . . , * ) . 

L e t sk£Sq2 b e a r b i t r a r y a n d c o n s i d e r i t s u n i q u e d e c o m p o s i t i o n sk=sktk w h e r e 
sk€Sqi, xk(sk) h a s the_ f o r m {bk...bx, uQ, uk[SUk, <pk], gk, Wk, ik), d(sk) = coSk(uJ, 

I n t h i s c a s e xk(sk)(=yk(xk(sk))) h a s t h e f o r m ( ^ . . . ¿ j , u0, uk[SJk, cpk], 
Qk, Wk, x fc). U s i n g c o n d i t i o n (2) ( iv) s t a t e d f o r yk, gk(tk) = (t0, /l5 ..., tk) iff gk(tk) = 
= ( 4 ( 0 . 4 ( 0 , • • • , 4 ( 0 ) f o r 4 , 4 , . . . , 4 d e f i n e d in t h e c o n d i t i o n . 

U s i n g t h e i n d u c t i o n h y p o t h e s i s 01(sk)=(jo, s1} ..., sk) iff 01(sk)= (a0(s0), 
a1(s1), ..., a k ( s k ) ) . B y t h e d e f i n i t i o n o f 02 a n d 02 w e o b t a i n t h a t 

0 2 ( O = ( S 0 t 0 , S i íx , . . . , S t O iff 

0 2 ( O = W O 4 ( 0 , « i ( 0 4 ( 0 , ••;, « < ¿ ( 0 4 ( 0 ) = 

= ( a o ( s o O , « i ( s i O , •••, af(SfcO)-

T h u s w e h a v e p r o v e d t h a t c o n d i t i o n i) h o l d s f o r t h e m a p p i n g s a k . 
L e t (s0t0, ...,Sjtj)€Z2 b e a r b i t r a r y , w h e r e l^j^k a n d ( J 0 , . . . , Sj, . . . , s¡)dZl 

fo r s o m e sJ+1, . . . , st€(N% (J^lsk), m o r e o v e r xl(sl)=(bl...b1,it0, u¡[Su¡, q>¡\, 
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et, Wi, T/-) and;(/0, t^W,. By the induction.hypothesis, (ào(50),....,aJ(.j,))€Z1. 
By the definitionof jï,, - (a( ( J,) ) = y, (x, (J,) i.e, • . ••• •••:.•;,. 

, 'i(*>,...ft, «o, ..., v ' ( f f , ) ) [ { l , v'(a,)}, y,], q^W,;^) if I k, 

_buUo.t uk[SUk;cpk], Q k i f / = fc.' - / 
We cati apply condition (2) (ii) stated'for y, which tells'us that (ZoOo), -••> 
iff (t0, .".:, tj)Ç_ JV, for the mappings £0', ...', Çj defined in thé condition. Thus 

Conversely, let (¿o„..., Vj)€Z2,be,arbitrary: By the construction of the set Z 2 there 
are'two vectors (s0, . . . , S j , s^ÇZ1

 ( 1 ^ j r à l ^ s k ) and',00, ..., ty)€ ((W*y) such that 
v—s^i for /=0 , . . . J , and (t0, ..., ïj) is in the fifth component of s,). By the 
induction hypothesis, ( a f - 1 ^ ) , a / 1 ^ ) ; ..., af1(s,))çZ1. We know that x,(s,) = 
=y,(/i,(ai

_1(si))). According- to condition (2)(ii) stated for y, we obtain that 
(fcHioX • • ¿ j r l(ô)) ' s i n the fifth component of for the mappings ..., 
defined in, the condition. Thus ( a j " 1 ^ ) ^ 1 ^ ) , ..., a J1 (sj) t,J 1(tJ))ÇZ-, moreover 

for . i = 0, ...J. 

We have proved that condition ii) holds-for the mappings ..., a | . 
It has remained to prove that condition iii) holds for ..., a | . Let ••• 

..., Sjlj)£Z2 be arbitrary, where l ^ j ^ k , (s0, ..., Sj, ..., s^dZ1 for some sJ + 1, ... 
j'SlSk; and *,(/,) = (b\ .'.'.ft , u0, u,[SUl, <p,], g„ W„ T() and (t0, ... 

..:.,;/;)£ fV,, j! We J.know )that1;1i2i((i'ôv . . . , S j , ..., s,))=bl...b1u0(l, ..., V(m0))[{1, ... 
•••W(m0)}, 90], for; - s o m e . . : (1:, v:(w0)}^rCo(yo), and r,((/0, ..., tj)) = cj...c1t0 
for some cfiAj, ..., t0£ {1, ..., ,v («„)}, thus Q2((s0t0, ..., Xj tj) ) = e , . . . c, 90 (/„). 
By the induction hypothesis, (a0(^o)> • ••> <xi(sj), •••, ^ IO I ) )^^ 1 and 

(b, . . . f t , u0, u,[SUl,(p,], Qi,W„zi) if l = k, 
(f t L A , «o, x,(s,)( 1, ..., v'(x,(s()))[{l,..., v'(x,(s,))}, <p,l 

¿ „ W , , * , ) if l ^ k . A i " 1 ; J 

We can apply condition 2(v) stated for y, which tells us that T , ( ( / 0 , . . . , tj)) = Cj... t0 
iff ^/((Co(/0),:-'• • /^jlCO))) = • •• Ci<?0('o) for the mappings defined in the 
condition: ' ' V " 

Zoi'o) holds. By the induction hypothesis, 
flH^W « / ( ^ » M i - M o O * v(w0))[{U .... v(«0)}, 3 J . By the 
definition of fl2 arid' a? ( /=0, ..., k), 

S2((a0(s0)i0(/0), aj(sj)Zj{tj))) = 

= O2((a
2(s0/o), *2j(Sjtj))) = cj ... cM0). 

Thus fi2((Vo, •••,sJtj))=Q2((a2
0(s0ti)), ..., a)( j , / , ) ) ) holds. The proof of the first 

part of the statement is complete. The second par tof the statement can be proved by 
induction on the length j>f the transition K0=>^K1. 
a) The length, of is zero, (K^KQ ) . Trivial. 
b)i Assume, that thejtatement is true for K ^ * ^ and for the functions 
(V) and;that 'K1^|K'2 holds. By the definition of the relation there are mappings 
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: [Z1];—Xffl(i) for i = 0 , 1, ..., k such that for every (s0, Si, ..., s^C-Z1 (1 ^ j ^ k ) if 
^ ( ( S O , S L 5 sj))=bj...b1u0(}, . . . , V ( M 0 ) ) [ { 1 , . . . , V ( M 0 ) } , 9 0 ] (bj€AJ,..., b^A^ W 0 € 

€G 0UF 0 , 3„: {1, ..., v (« 0 )}- r 0 o (7 0 ) ) then x0(s0) = u0, for /=1 , ...,j, x ^ 
has the form • 

(bt... bi, M0, (7;(1, vV) ) [{ l , Vfo)}, ft], ft, Wi, f () if 1 S i ^ fc-1, 
(b* . . . Mq, wJS^, Qk, Wk, Tk) if i = k, 

moreover (>?0(s0), • ••, K-
Take the mappings xt: [Z1];—£s(<) for /=0 , ...,k — 1 defined by xi(si) = 

=vr1(xi(<Zi(si))) f ° r each i i€[Z1] i . Notice that is well defined, because a ; and y,-
arebijective. According to Definition 3.2foreach s^CfZ1]^, &1(sk) is the only element 
of Z 1 which has the form (s0, s t _ l 5 sk) for some s0, ..., We know that 
(x0(s0), . . . ,xk_i(s t_i), We can apply condition (1) stated for y0, ... 
• ••, 7 t - i , 7t, which tells us that there is a unique a ^ E ^ k ) such that yk((rk) = xk(sk) 
and (y^H^oi-So)), •••, 7 ^ 1 ( ^ - 1 ( ^ - 1 ) ) , Let x t(sk) be crfc. By the induction 
hypothesis for each (s0, st, J^GZ1 (1 ^j^k), Q1((s0,s1, ..., sJ)) = Q1((a0(s0) 
« 1 ( 0 , •••,<Xj(sJ))). Since x 0 =x 0 and for each i^ fZ 1 ] ; the first two components of 
Xi(si) are equal to the first two components of xi(a1(.s,

i)) for /=1 , ..., k, 1 moreover 
for every ( j 0 , ..., s ^ZZ 1 (1 S/Sfc), (X0(j0), •••, Vj it follows that 
the mappings xt ( /=0, 1, ..., k) satisfy condition (1) in the Definition 3.3. 

The mappings xt ( /=0 ,1 , k) uniquely determine a configuration K2 = 
= {q2[Sqi, VI 0\ Z2 , £22) such that K x ^ K 2 holds. 

From now on the proof of the second part of the statement is similar to the 
proof of the first part. 

_ The proof of the theorem is complete. 

4. Example 

Let us consider the folloving two ^-transducers: 

«1 = (G0, Y0, AX, GT, Yi, A{, ZMl), where 

G0 = GJ = {g0}, Y0 = {x0}, 

Gx = G2 = {gi}, Yx={xx , y i } , 

AX = {FLI, BX, CI}, A\ = {FLI}, 

~ yit bxX0 — Xi, 

«igo^gi(l,2)[{l,2}, <pxx. 1>— bil; (Pxi. 2>-—bx2], 

fligo^gi(l,2)[{l,2}, (p12: 1 — b i l ; <p 12: 2 —^2]}. 

T«! = {(go(*o, *o), giO>i, Ji)), (go(*o, *o), gi(*i, *i))> 

(g0(x0, x0), g i f e , jO), (go(*o, *o), gi(^i, *i))}-

3I2 = (Gi, Yi, A2, G2, Y2, A'S, IMT), where 
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G2 . = G\ = {g2}, y2 = {x2, y2, z2}, 

¿2 = {a2, b2}, A2 = {a2}. 

Z*2 = {a2gi-* g2(l ,2)[{l ,2}, <p21: 1 — < p 2 2 ; 2 — V ] , 

i>2 *1 ^ ^2, f>2 *1 - Z2, b2 J i - X2}. 

One can see that 

t9j,°t<h2 = {(go(*o, *o), g2(*2, x.j), (g0(*0, x0), g2(y2, y2)), 

. (go(*o, x0), g2(y2, z2)), (g0(x0, x0), g2(z2, y2)), 

(g0(x0,x0), g2(z2, z2))}. 

We construct the 2-synchronized ^-transducer © according to the Theorem 3.5: 

93 = (G0,G.1,Y0,Y1,A1,As,A'1,A'i, ZS,V), where 

2.(0) .= K = G„Uy„, 

Z s ( l ) = {ffi, <r2, as, where = (bt, x0, yx, 0 ,0,0) , 

<72 = (bx,Xo,Xx,0, 0, 0), 

= ("i> go, gi0> 2)[{1, 2}, cp3: 1 — V ; <p3;. 2 — M ] , 

1 - (1, 1); e3: 2 - (2, 2), {(1,1), (2, 2)}, 

R 3 : ( 1 , 1 ) - V ; T 3 : (2,2)~bx2), 

a* = (ai, go, gi0,2)j[{l,2}, [<p4: ¿jl; <p4: 2 — ^2], 

04: 1 - (1, 1); 04: 2 - (2, 2), {(1,1), (2, 2)}, 

r4: ( 1 , 1 ) - M ; ( 2 , 2 ) — c x 2) . 

= {(*o, ^l), (*o, 0"2), (go, (go, ^4)}-

^®(2) = {(Ts,ca,<r7,a8,a0}, where = ( M i , x0, x2, 0, 0, 0), 

<?6 = ( M i , x0, y2, 0, 0, 0), <r7 = (b2£>1; x0, z2, 0, 0, 0), 

<r8 = (a2fli, go, g2(l, 2)[{1, 2}, <pg: 1 — M i l ; <p8: 2 — M i 1 ] , 

1-(1,1,1); g8; 2 K- (1,1, 2), {(1,1,1), (1,1, 2), (2, 2)}, 
r8: (1, 1, 1) — M i l ; t 8 ; (1, 1 , 2 ) — M i l ; T8: (2, 2) — 

<r9 = (a2at, go, g 2 ( l , 2 ) [ {1 ,2 } , <pg: l>-+b2bxl; <pg: 2 — M i l ] , 

f?9: 1 - ( 1 , 1 , 1 ) ; ¡?9: 2 - ( 1 , 1 , 2), { ( 1 , 1 , 1 ) , ( 1 , 1 , 2), (2, 2)}, 

r9: ( 1 , 1 , 1 ) — M i l ; T 9 : ( 1 , 1 , 2 ) — b2 ; T 9 : ( 2 , 2 ) — C O ) , 

= {(*o, ffs), (*o, ff2, fe), (*o, 02, <̂ 7), (go, c3 , <Tg), (go, ff4, <r9)}. 
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Let us consider configurations K0, Klt K2, K3, K6 of S , where K0 is a 
starting configuration, K2, K3, Kt, K5, Ka are final configurations. 

K0 = (a2algfl(x0, x0), 0„: e (e, e, e), {(e, e, e)}, Î20: (e, e, e) >->- a2«igo(*o, *o)), 

* i = ( g 2 ( M i * o , hbiXo), ex: 1 ^ ( 1 , 1 , 1 ) ; Oy. 2 — (I , 1 ,2) , . 

{(1, 1, 1), (1, 1, 2), (2, 2)}, Qy. (1, 1, 1) - M i * « ; 

( 1 , 1 , 2 ¿ » ¡ ¡ f t * , , ; Qy. ( 2 , 2 ) — 

K2 = (g2(x2,*2), 0, 0, 0), 

K3= (g2(j2,yz), 0 , 0 , 0 ) , 

k* = UiCy«, * « ) . 0 , 0 , 0 ) , 

K5 = (g2(z2,y2), 0,0,0) , 

= (g2<>2, 0, 0, 0). 

All the transitions from configuration Ka in © which are ended by final configura-
tion are the following: 

Kq = > 8 K± = > 5 5 K
3
, 

K0 =>-55 =>B K4, 

Ko =^8 K-i =><B K5, 

Ko =>8 K± =>a Ka. 

The 

transition K(, =>^Kl is determined by the mappings: 

x0: {e} - I s (0) ; x0(e) = g0, 

xx\ {e} - r B ( l ) ; x1(e) = <r3, 

x2: {e} - I s ( 2 ) ; x2(e) = <rs. 

The 

transition Ki =>-aK2 is determined by the mappings: 

*(>: { 1 , 2 } - ¿"»(O); x 0 ( l ) = x0-, x0(2) = x 0 , 

xj: {1, 2} - I®(1) ; % t(l) = <Ti, x x (2 ) = c 2 , 

x2: { 1 , 2 } - * r B ( 2 ) ; x2(l) = <75; x2(2) = a5. 

The 

transition K t ^ K 3 is determined by the mappings: 

x0: {1, 2} - r s ( 0 ) ; x 0 ( l ) = x 0 ; x0(2) = x 0 , 

x i - {I , 2} - ¿ '»( l ) ; * i ( l ) = ff2; x t ( 2 ) = ffi, 

x2: { 1 , 2 } — T B (2 ) ; x2(l) = <7„; x2(2) = tr8. 
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The transition K l='SK l l is determined by the mappings: 

x0: {1, 2 } - r s ( 0 ) ; x0(l) = x 0 ; x0(2) = x0, 

x,: {1, 2} - I s ( l ) ; XJO) = ff2; ^(2) = <72, 

x 2 : { 1 , 2 } ~ 1 . ( 2 ) ; * 2 (1 ) = ff6; x , ( 2 ) = a 7 . 

The transition Ki=>3jK5 is determined by the mappings: 

x0: {1, 2} - I»(0); x0(l) = *0 ; x0(2) = x„, 

xi:. {1, 2} - Z 8 ( l ) ; x t ( l ) = <r2; xx(2) = a2 , 

x2: {1, 2} - Z s(2); x2(l) = <r7; x2(2) = <r6. 

The transition K ^ ^ K ^ is determined by the mappings: 

x0: {1, 2} - rB(0); x0(l) = x0\ x0(2) = x0, 

xx\ {1, 2} - I s O ) ; xx(l) = <r2; Xj(2) = ff2, 

x2: {1, 2} - £¿(2); x2(l) = a7 ; x2(2) = <r7. 

One can see that zia = Tmiorai... 
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Bibliographie 

Franco P. Preparata, Michael Ian Shamos, Computational Geometry, An introduction (Texts an 
Monographs in Computer Science) XIII+ 390, Springer-Verlag, 1985 

"The objective of this book is a unified exposition of the wealth of results that have appeared-
mostly in the past decade — in Computational Geometry. This young discipline — so christened in 
its current connotation by one of us, M. I. Shamos — has attracted enormous research interest, and 
has grown from a collection of scattered results to a mature body of knowledge. This achieved matu-
rity, however, does not prevent computational geometry from being a continuing source of problems 
and scientific interest." 

The book is divided into eight chapters. 
Chapter 1 starts with a short historical survey and contains the necessary concepts of the geo-

metry of convex sets, metric and combinatorial geometry, the theory of algorithms, complexity 
theory and data structures. Some special data structures are introduced, such as the segment tree 
and the doubly-connected-edge-list. Here can be found the famous Ben-Or theorem about the depth 
of an algebraic decision tree that solves the membership problem in a subset of E". This theorem will 
be the basic tool for proving lower bound results. 

Chapter 2 develops the basic methods of geometric searching that will be used in the succeeding 
chapters to solve rather formidable problems. Two types of questions are considered. The first one is 
to determine whether a given point is internal to a simple or a convex polygon. These questions can 
be answered in 0(N) time (for an /V-gon) without preprocessing, but in 0(log N) time if given O(N) 
space and 0(N) preprocessing time. The generalization of this problem is to locate a point in a pla-
nar subdivision generated by a planar straight-line graph. There are several efficient algorithms for 
this question, such as the planar-separator method and the triangulation method. 

The second class of problems is the range searching problems, which may be viewed as dual, in 
some sense, of the previously discussed point-location problems. Some quite interesting and clever 
methods are illustrated for these problems. 

Chapter 3 deals with one of the central questions of computational geometry: the determination 
of convex hull. Ben-Or's result is applied to give a lower bound Q(N\og N) and then optimal 
algorithms are considered in two dimension, such as Graham's scan, Jarvis's march, divide-and-con-
quer and dynamic algorithms. For the more complicated higher-dimensional cases the gift-wrapping 
and beneath-beyond methods are presented with complexity 0(N

l d n i

*
1

). However, very surprisingly, 
in the most important three-dimensional case the problem can be solved in optimal time O (N log N). 

Chapter 4 is devoted to the discussion of extensions and applications of the convex hull algo-
rithms. The average case analysis of Jarvis's algorithm gives the 0 (N) expected time, and an appro-
ximation algorithm for convex hull is presented which is quite efficient for statistical problems. The 
remaining part of the chapter deals with the applications. Their variety should convince the reader 
that the hull problem is important both in practice and as a fundamental tool in computational geo-
metry. 

Chapter 5 is concerned with proximaty problems: closest pair, all nearest neighbors, euclidean 
spanning tree, triangulation. After proving the S2(N log N) lower bound for these problems a divide-
and-conquer scheme is presented to solve the closest pair problem in 0(/Vlog N) time. The main 
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objective of this chapter is to develop the quite fruitful concept of the Voronoi diagram, which con-
tains all of the proximity information defined by the given set. The algorithmic construction of the 
Voronoi diagram is given and is then applied to obtain optimal algorithms for the first two of the 
above — mentioned problemes. 

In Chapter 6, continuing the discusson of the Voronoi diagram, an afficient triangulation me-
thod is presented and this gives optimal algorithms for the euclidean spanning tree problem and 
approximate solutions for the euclidean travelling salesmen and euclidean matching problems. In 
the remaining part several generalizations of the Voronoi diagram are obtained and further appli-
cations can be found. 

Chapter 7 starts the study of intersection problems by selecting some applications from various 
fields to motivate these questions. These are the hidden-line and hidden-surface problems, pattern 
recognition, wire and component layout and linear programming. Efficient algorithms are given for 
the intersection of convex polygons, star-shaped polygons and line segments in the planar case, while 
the intersection of convex polyhedra in three dimensions can be determined by a good algorithm, 
although it is not known whether it is optimal or not. 

Chapter 8 is denoted to the study of the geometry of rectangles, which has not only theorethical 
interest but is the fundamental ingredient of a number of applications, such as Very—Large—Scale— 
Integration and concurrency controls in data-bases. Using the results of the previous chapters, effi-
cient algorithms are given to determine the measure perimeter, contour, closure and external con-
tour of a union of rectangles and intersections of rectangles. 

The book is written in a nice style. Each section is followed by additional notes and comments and 
a collection of interesting exercises. At the end of the book, very good up-to-date references can be 
found. 

This excellent book is recommended to mathematicians intending to specialize in computationa 
geometry, and also to non-specialists who are interested in the recent advances in computational 
geometry. 

J. KINCSES 

J. P. Tremblay, P. G. Sorenson: The theory and practice of compiler writing XIX+ 796 pages, 
McGraw-Hill Book Company, 1985. 

The book deals with all aspects of compiler writing, mainly from a practical point of view. The 
reader familiar with basic notions of programming languages and grammars can use the chapters 
independently as a reference book in designing compiler modules. In the discussion of the dif-
ferent technics, after a short overview of motivation and the theoretical background, the algorithms 
are given in full detail textually. The language used to formulate the algorithms is easy to read. Nu-
merous exercises serve the self-study in compiler design. Each chapter contains an appropriate 
bibliography. 

The main chapters are: programming language design (with an overview of ADA as an example); 
scanners (regular grammars and finite-state acceptors); top-down parsing (SLL(l), LL(1) parsers); 
bottom-up parsing (operator precedence, simple precedence grammars, LR(0), SLR(l), LALR(i), 
LR(1) parsers); compile-time error handling; symbol-table handling; sum-time storage organization; 
semantic analysis; code generation and optimization; compiler-compilers. 

A. MAKAY 

William A. Foley, Robert D. Van Valin, Jr.: Functional Syntax and Universal Grammar. Cam-
bridge University Press, 1984. 416 p. 

This book is the result of an effort to develop a grammar which is based on the function of lan-
guage. As the title suggests, the authors have made an attempt to construct a theory of syntax which 
is wide enough to cover linguistic phenomena in a great number of languages. 

•The approach represents a combination of analysis from different levels: the authors view lan-
uage in function not as a set of isolated simple sentences, but rather as a piece of discourse consti-

tuted by complex expressions. These expressions are made up of a number of clauses linked together 
in various ways. This linkage is chosen as the starting-point for the integration of linguistic phenome-
na from different levels. Thus, the main concern of this book is the investigation of the relationship 
of "clause-internal morhosyntax to clause linkage and cross-caluse reference-tracking mechanisms". 
The authors argue that the morphosyntactical analysis of the clause must proceed from an interclau-
sal and ultimately discourse perspective. 
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The investigation of discourse function in carried out within the theory of Role and Reference 
Grammar (RRG), which W. Foley and R. Van Valin have been developing since the publication of 
its preliminary sketch in 1980. 

If the evolution of linguistics is marked by the antagonism of formalism and functionalism, then 
it is the latter school of thought to which this monograph adheres. And if we view formalism as an 
orientation based on the assumption that language is a potentially infinite set of structural descriptions 
of sentences, then functionalism must be assumed to deal with language in relation to its role in 
human communication. This is the theoretical distinction which is made clear in Chapter 1. 

The remaining six chapters are devoted to an exploration of the means which languages use to 
code participants and situations in (narrative) discourse, particularly the tracking of participants 
across clause sequences. 

Chapter 2 is concerned with predicate semantics, and Chapter 3 deals with case marking follow-
ing Silverstein's basic assumptions. Chapter 4 is a presentation of passivization and antipassivi-
zation, whereas Chapter 5 goes beyond the confines of clause-internal syntax, discussing a number of 
issues pertaining to complex sentences. Chapter 6 is an extension of the investigation into clause 
linkage with a discussion of nexus, a term referring to the relations that hold between clauses in 
complex sentences. Chapter 7 is an analysis of reference-tracking in discourse. 

It should be noted that functionalism as an orientation alongside and, to some extent, against 
linguistic formalism represented by such outstanding theoreticians as N. Chomsky or R. Montague, 
has attracted much attention for the past two or three years. This is probably due to an ever-growing 
interest in discourse analysis, which has now become an integral part of present day functional gram-
mars, as evidenced both by the book at hand and by M. A. K. Halliday's recent monograph. If the 
latter is an introduction to functional grammar based on English, then Functional Syntax and Uni-
versal Grammar is a book with a rich illustrative material from a wide variety of languages. 

It is the reviewer's contention that all those interested in the theory and use of language will 
find this book valuable and stimulating. 

L BÉKÉSI 

M. Berger: Computer graphics with Pascal. XVII+347 pages, The Benjamin/Cummings Pub-
ishing Company, Inc. 1986. 

The book is published in the Benjamin/Cummings Series in Computing and Information 
Sciences. 

"The text begins with a description of the history and applications of computer graphics which is 
followed by an introduction to the hardware and software components of a graphics system. Included 
are hardcopy output and input devices, CRT technology, raster-scan and random-vector systems, 
the display processor, and scan conversion. In Chapter 2 the student begins to draw images using the 
screen coordinates. The difficulties in drawing basic figures such as lines and circles are explored. 
The next chapter introduces the reader to the worlds coordinate system and the viewing transfor-
mation. Chapter 4 uses the concepts presented in the previous chapter to create business and artistic 
graphics. 

Chapter 5 describes the fundamentals of two-dimensional geometric transformations. Chapter 6 
implements the concept of display file segmentation. 

Chapter 7 examines the requirements of a user-friendly graphics program. After an initial dis-
cussion of the problems inherent in running graphics programs on a minicomputer, the reader is led 
through a detailed decription of error-handling and menu-generating routines. Chapter 8 treats 
interactive techniques, while Chapter 9 extends these concepts to animation. 

Chapter 10 provides frame buffer and scan conversion algorithms for polygon and area filling. 
Chapter 11 introduces the coordinate systems and transformations needed for three-dimensional 
viewing. Chapter 12 describes the generation of realistic images using curves and surfaces, and Chap-
ter 13 extends this realism by implementing hidden-surface removal. 

The appendix describes the fundamental features of the two-dimensional graphics standard 
GKS." 

This very clearly written book can be recommended as a text for an introductory course in 
computer graphics. 

J. CSIRIK 
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G. Reinelt: The Linear Ordering Problem: Algorithms and Applications. XI - 158 pages. Helder-
mann Verlag Berlin, 1985. (Research and exposition in mathematics; Vol. 8) 

The book gives a new algorithm for the linear ordering problem. This problem may be formulated 
as follows: 

"We are given the complete digraph D„ — (V„, A J on n nodes and arc weights Cu for each 
arc (i,j)(zAn. The linear ordering problem now consists in finding a spanning acyclic tournament 
in D„ such that the sum of the weights of its arcs is as large as possible. This problem is interesting 
from a theoretical point of view, and moreover, it has several practical applications in economics, 
scheduling, sports, and social sciences. In this treatise we solve a number of real-world problems 
of this type. 

In Chapter 1 some basic mathematical definitions and results from graph theory, polyhedral 
theory and computational complexity theory are surveyed. This introduction is not meant to be com-
prehensive but is intended to provide the reader with the basic concepts and notations. In Chapter 2 
the linear ordering polytope P ío is defined, various classes of facet defining inequalities for this 
polytope are derived, and in addition some remarks concerning adjacency and diameter arc made. 
The chapter ends with the partial description of P10 by a set of nonredundant inequalities and equa-
tions. This theoretical investigation is a central part of this monograph and lays the foundation of an 
algorithm for the solution of linear ordering problems whichis discussed in Chapter 3. The computa-
tional results of the algorithm when applied to the so-called triangulation problem for input-output 
tables are reported in Chapter 4. Statistical data such as computing times, number of generated 
cutting planes or sizes of the linear programs involved are given, the optimization process is illus-
trated and several cutting plane generation strategies are compared. Since the triangulation problem 
for input-output tables is an important one in economics (there is a great variety of publications 
dealing with this problem) we discuss several aspects of it in Chapter 5. We focus attention on how 
knowledge of "true" optimum solutions can influence or refine previous interpretations and applica-
tions made in the literature which were often based on suboptimal solutions. A review of previous 
algorithms and approaches to the solution of the linear ordering problem is given in Chapter 6. 
Some more examples of applications of the linear ordering problem are considered in Chapter 7 and 
complete this tract." 

The book is self-contained, and the material is well-arranged. The book can be recommended 
to everyone interested in combinatorial optimization problems. 

J. CSIRIK 

The Carnegie-Mellon Curriculum for Undergraduate Computer Science (Edited by Marv Shaw) 
X + 198 pages, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985 

"This book is a result of a three-year effort by the Carnegie-Mellon Computer Science Depart-
ment to develop a unified undergraduate computer science curriculum. The study, conducted by an 
eight-member Curriculum Design Group, responds to this rapidly changing field by emphasizing a 
balanced blend of fundamental conceptual material which the student can adapt to new situations, 
with examples drawn from the current practice. This integration of theory and practice is a theme of 
virtually every course described, recognizing that students must be able to use their theoretical know-
ledge to generate cost-effective solutions to real problems. This comprehensive redesign of the tradi-
tional curriculum reflects the structure of modern computer science. As a result, concepts traditionally 
distributed over several courses often form the basis for new courses. The book outlines 30 computer 
science courses along with requirements for an udergraduate major based on this curriculum." 

The book is warmly recommended to people dealing with computer science education. 

GY. HORVÁTH 
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