FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMÅR

REDIGIT: F. GÉCSEG
COMMISSIO REDACTORUM
A. $\AA \bar{D} \AA M$
F. OBÁL
M. ARATÓ
F. PAPP
S. CSIBI
A. PRÉKOPA
B. DÖMÖLKI
J. SZELEZSÁN
B. KREKÓ
J. SZENTÁGOTHAI
Á. MAKAY
S. SZÉKELY
D. MUSZKA
J. SZÉP
ZS. NÁRAY
L. VARGA
T. VÁMOS
secretarius commissionis
J. CSIRIK

Szeged, 1986
Curat: Universitas Szegediensis de Attila József nominata

ACTA CYBERNETICA

A HAZAI KIBERNETIKAI KUTATASOK KÖZPONTI PUBLIKÁCIÓS FÓRUMA

ALAPÍTOTTA: KALMÁR LÁSZLÓ

FŐSZERKESZTŐ: GÉCSEG FERENC

A SZERKESZTÓ BIZOTTSAG TAGJAI

ÁDÁM ANDRÁS
ARATÓ MÁTYÁS
CSIBI SANDOR
DÖMÖLKI BÁLINT
KREKÓ BÉLA
MAKAY ARPÁD
MUSZKA DÁNIEL
NARAY ZSOLT

OBÁL FERENC
PAPP FERENC
PREKOPA ANDRÁS
SZELEZSÁN JÁNOS
SZENTÁGOTHAI JÁNOS
SZÉKELY SÁNDOR
SZÉP JENŐ
VARGA LÁSZLÓ
VÁMOS TIBOR

A SZERKESZTÓ BIZOTTSAG TITKARA CSIRIK JÁNOS

Szeged, 1986. augusztus, szeptember
A Szegedi József Attila Tudományegyetem gondozásában

ACTA CYBERNETICA

FORUM CENTRALE PUBLICATIONUM CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMÁR

REDIGIT: F. GÉCSEG

COMMISSIO REDACTORUM
A. ÁDÁM
F. OBÁL
M. ARATÓ
F. PAPP
S. CSIBI
A. PRÉKOPA
B. DÖMÖLKI
J. SZELEZSÁN
B. KREKÓ
J. SZENTÁGOTHAI
Á. MAKAY
S. SZÉKELY
D. MUSZKA
J. SZÉP
ZS. NÁRAY
L. VARGA
T. VÁMOS

SECRETARIUS COMMISSIONIS

J. CSIRIK

Szeged, 1986
Curat: Universitas Szegediensis de Attila József nominata

INDEX

Tomus 7.

S. L. Bloom: Frontiers of one-letter languages 1
E. Gombás and M. Bartha: A multi-visit characterization of absolutely noncircular attribute grammars 19
R. Parchmann, J. Duske, J. Specht: Indexed LL(k) Grammars 33
F. Gécseg: On v_{i}-products of commutative automata 55
B. Imreh: On finite definite automata 61
M. Ito and J. Duske: On involutorial automata and involutorial events 67
T. Legendi and E. Katona: A solution of the early bird problem in an n-dimensional cellular space 81
E. Simon: Language extension in the HLP/SZ system 89
Ho Thuan and Le Van Bao: Some results about key of relational schemas 99
Б. Тальхайм: Зависимости в релационньх структурах данньх 115
J. Sztrik: A queueing model for multiprogrammed computer system with different I/O times 127
L. Szabo: Characterization of clones acting bicentrally and containing a primitive group 137
Ésik Z.: On the weak equivalence of Elgot's fow-chart schemata 147
Gombás E., Bartha M.: Atomic characterizations of uniform multi-pass attribute grammars 155
Zachar Z.: On the equivalence of the frontier-to-root tree transducers I. 173
Zachar Z.: On the equivalence of the frontier-to-root tree transducers II. 183
Peeva K.: Systems of linear equations over a bounded chain 195
Gécseg F.: Metric representations by v_{i}-products 203
Ecsedi-Toth P.: A partial solution of the finite spectrum problem 211
Pávó I.: The analysis od signal flow graph containing sampled-data elements 217
Burattini E., Marra G., Sforza A.: Network design problem: structure of solutions and domi- nance relations 225
Csirik, J.-Máté, E.: The probabilistic behaviour of the NFD Bin Packing algorithm 241
Do Long Van: Langages écrits par un code infinitaire. Thérorème du défaut 247
Ádám, A.: On the congruences of finite autonomous Moore automata 259
Katsura, M.: On Complexity of Finite Moore Automata 281
Ésik, Z.: Varieties and general products of top-down algebras 293
Esik, Z.-Virágh, J.: On products of automata with identity 299
Dombi, J.: Properties of the fuzzy connectives in the light of the general representations theorem 313
Iványi, A. M.-Sotnikow, A. N.: On the optimization of library information retrieval systems 323
Sztrik, J.: A probability model for priority processor-shared multiprogrammed computer sys- tems 329
Szép, A.: An Iterative Method for Solving $M / G / 1 / / N$-type Loops with Priority Queues 341
S. L. Bloom: The alternation number and a dot hierarchy of regular sets 355
V. D. Thi: Minimal keys and antikeys 361
J. Pecht: On the index of concavity of neighbourhood templates 373
A. Varga: Optimization of multi valued logical functions based on evaluation graphs 377
K. Engel-H.-D. O. F. Gronau: An Erdős-Ko-Rado Type Theorem II 405
R. A. Gil: Giving mathematical semantics of nondeterministic and parallel programming struc- tures by means of attribute grammars 413
E. Simon: A new programming methodology using attribute grammars 425
S. S. Lavrov: Problem solving based on knowledge representation and program synthesis 437
S. Vagoölgyi: On the compositions of root-to-frontier tree transformations 443

The alternation number and a dot hierarchy of regular sets

Stephen L. Bloom

In this note we introduce a property of languages we call the alternation number. This property is used to deduce several facts about regular languages in particular. One of these facts is related to what might be called the "generalized dot height" of a regular language. The complexity of regular expressions is usually determined by their "star height" [E], although other complexity measures have also been considered [EK]. In all of the papers we know of, a nontrivial argument is needed to establish that the complexity of 'regular expressions' must grow in order to name all regular sets. (Our definition of 'regular expression' allows an atomic name for each finite set, see below.) In the present note, we give a simple proof that the "dot height" (or depth of concatenation signs) of a regular expression also must grow. (The "dot-depth" considered in [BK] is unrelated to our dot height.) The dot height is related to the alternation number. We will show that if the alternation number of a regular language L is n, then any regular expression which denotes L contains (roughly) at least $\log n$ dots.

Define a function f from the set of nonnegative integers \mathbf{N} to collections of regular subsets of Σ^{*} (for some fixed alphabet Σ) as follows:

$$
\begin{gathered}
f(0)=\text { all finite languages; } \\
f(n+1)=f(n) \cup\left\{L: L=L_{1}+L_{2}, L=L_{1} \cdot L_{2}, \quad L=L_{1}^{*}, L_{i} \in f(n)\right\} .
\end{gathered}
$$

Thus a language is regular iff it belongs to $f(n)$ for some n. We will show first that for each n, there is a language in $f(n+1)-f(n)$. The truth of this fact follows easily from the well-known star-height hierarchy theorem (see [DS] for one proof). The argument given here shows that the hieararchy of regular languages depends also on the operation of concatenation. As a corollary we will obtain the dot height hierarchy. Lastly, we mention an automaton characterization of the alternation number.

First we assume that Σ has at least two letters, say a and b. A language L admits alternations of size n if: for each $k>0$ (or, equivalently, for infinitely many $k>0$) there is a word w in L of the form

$$
w(k)=u_{0} x_{0} \ldots x_{0} u_{1} x_{1} \ldots x_{1} u_{2} \ldots u_{n} x_{n} \ldots x_{n} u_{n+1}
$$

where

1. $u_{0}, u_{1}, \ldots, u_{n+1}$ are arbitrary words in Σ^{*};
2. x_{i} are letters in Σ, and for each $i<n, x_{i}$ and x_{i+1} are distinct;
3. there are k consecutive occurences of the letters $x_{1}, i=0,1, \ldots, n$. (We will say that a word of the form $w(k)$ has " n alternations of length at least k ".) We say a language admits alternations of size 0 if it admits no alternations. For example, finite languages admit no alternations. $\{a\}^{*},\{b\}^{*}$ admits alternations of size 1, as does $L \cdot\{a\}^{*} \cdot L^{\prime} \cdot\{b\}^{*} \cdot L^{\prime \prime}$, for any nonempty languages L, L^{\prime} and $L^{\prime \prime}$. Note that if L admits alternations of length $n+1$, then L also admits alternations of length n.

Definition. The alternation number of $L, a(L)$, is n if L admits alternations of size n but not of size $n+1$. Let $a(L)=\infty$ if for each n, L admits alternations of size n.

Proposition 1. Assume $a(L)=x$, and $a(K)=y$, where $x, y \in \mathbb{N} \cup\{\infty\}$. Then

$$
\begin{gather*}
a(L+K)=\max (x, y) ; x+y \leqq a(L \cdot K) ; \text { if } a\left(L^{*}\right)>0, \tag{1.1}\\
\text { then } a\left(L^{*}\right)=\infty . \\
a(L \cdot K) \leqq x+y+1 ; \tag{1.2}
\end{gather*}
$$

(Of course, $n<\infty$ and $n+\infty=\infty$, for all $n \in N$.)
Proof. We prove only the last part of 1.1. If $a\left(L^{*}\right)>0$, for each k, there is a word w in L^{*} which has 1 alternation of length at least k. But then $w w$ has at least 3 alternations of length at least k, and $w w w$ has at least 5 alternations of length at least k, etc. Thus $a\left(L^{*}\right)=\infty$.

The proof of 1.2 is longer. Assume that $L \cdot K$ admits alternations of size s. We will show $s \leqq a(K)+a(L)+1$. For each $k>0$ there is a word in $L \cdot K$ of the form

$$
w(k)=u_{0} x_{0} \ldots x_{0} u_{1} x_{1} \ldots x_{1} u_{2} \ldots u_{s} x_{s} \ldots x_{s} u_{s+1}
$$

as described above. We may factor each word $w(k)$ as $l(k) \cdot v(k)$, with $l(k) \in L$ and $v(k) \in K$. Suppose that $i(k)$ is the greatest integer $i,-1 \leqq i \leqq s$, such that

$$
u_{0} x_{0}^{k} \ldots u_{i} x_{i}^{k}
$$

is an initial segment of $l(k)(i(k)=-1$ if there is no such initial segment). Thus at least one of the integers between -1 and s is the value of $i(k)$ for infinitely many k; let n be the maximum of these integers, so that for infinitely many values of $k, i(k)=n$. (If $n=-1$ or $n=s$, then we may easily show that $s-1 \leqq a(K)$ and $s \leqq a(L)$, respectively, so that from now on, we assume $0 \leqq n<s$.)

For infinitely many values of k (say $k \in I$) we may write

$$
\begin{gathered}
l(k)=u_{0} x_{0}^{k} \ldots u_{n} x_{n}^{k} l^{\prime}(k) \\
v(k)=l^{\prime \prime}(k) u_{n+2} x_{n+2}^{k} \ldots x_{s}^{k} u_{s+1}
\end{gathered}
$$

where $l^{\prime}(k) l^{\prime \prime}(k)=u_{n+1} x_{n+1}^{k}$.

Case 1.. For infinitely many values of k, say k in $I^{\prime}, l^{\prime}(k)$ is an initial segment of u_{n+1}. Then, for k in I^{\prime}, we may write

$$
v(k)=v^{\prime}(k) x_{n+1}^{k} u_{n+2} x_{n+2}^{k} \ldots x_{s}^{k} u_{s+1}
$$

so that $s-(n+1) \leqq a(K)$; also, $n \leqq a(L)$, so that $s-i \leqq a(K)+a(L)$, as claimed.
Case 2. Otherwise. Then, for infinitely many k, u_{n+1} is an initial segment of $l^{\prime}(k)$. Hence, for these values of k there is a number $h(k)$ for which

$$
\begin{aligned}
& l(k)=u_{0} x_{0}^{k} \ldots x_{n}^{k} u_{n+1} x_{n+1}^{k-h(k)} \\
& v(k)=x_{n+1}^{k(k)} u_{n+2} \ldots u_{s} x_{s}^{k} u_{s+1}
\end{aligned}
$$

We now have two further subcases.
Case $2 a$. The numbers $h(k)$ are unbounded. Then, we may write

$$
v(k)=x_{n+1}^{h(k)} u_{n+2}^{\prime} x_{n+2}^{h(k)} \ldots u_{s}^{\prime} x_{s}^{h(k)} u_{s+1}^{\prime}
$$

for infinitely many k, which shows that $s-(n+1) \leqq a(K)$; clearly, $n \leqq a(L)$, so that again, $s-1 \leqq a(L)+a(K)$.

Case $2 b$. Otherwise. In this case, the numbers $k-h(k)$ are unbounded, so that for infinitely many k,

$$
l(k)=u_{0}^{\prime} x_{0}^{k-h(k)} u_{1}^{\prime} \ldots x_{n}^{k-h(k)} u_{n+1}^{\prime} x_{n+1}^{k-h(k)}
$$

Since the numbers $k-h(k)$ are unbounded; $n+1 \leqq a(L)$; clearly, $s-(n+2) \leqq a(K)$, so that $s-1 \leqq a(L)+a(K)$, completing the proof.

Lemma 2. For each $n \in \mathbf{N}$ define

$$
g(n)=\max \{a(L): L \in f(n) \quad \text { and } \quad a(L)<\infty\}
$$

Then $g(0)=g(1)=0 ; g(2)=1$ and for $n>0, g(n)=2^{(n-1)}-1$.
Proof. All languages in $f(0)$ are finite, so that $g(0)=0$; the sum and product of finite languages are finite, and $a\left(L^{*}\right)$ is either 0 or ∞, so that $g(1)=0$ also. Clearly $g(2)$ is at least 1 and by Proposition 1, $g(2)$ is at most 1 . Assume $g(n)=2^{n-1}-1$. If $L \in f(n+1)$ and $a(L)<\infty$, then using the proposition, the largest $a(L)$ can be is $2 g(n)+1=2\left[2^{n-1}-1\right]+1=2^{n}-1$. But it is easy to see that $g(n+1)$ is not less than $2 g(n)+1$ also, completing the induction.

Theorem 3. For each positive $n \in \mathbf{N}$, there is a language in $f(n)-f(n-1)$.
Proof. Let L be a language in $f(n)$ with $a(L)=g(n)$. Then, if $n>1, L$ is not in $f(n-1)$, since $g(n-1)<g(n)$. The statement is trivial for $n=1$.

What about the case that Σ is a singleton, say $\{a\}$, so that Σ^{*} may be identified with \mathbf{N} ? In this case, if L is an ifinite regular set, there is a finite set F and a fixed integer n and numbers $k 1, \ldots, k t$ such that

$$
L=F \cup\left\{a^{k 1}\right\} \cdot\left\{a^{n}\right\}^{*} \cup\left\{a^{k 2}\right\} \cdot\left\{a^{n}\right\}^{*} \cup \ldots \cup\left\{a^{k t}\right\} \cdot\left\{a^{n}\right\}^{*}=F \cup\left\{a^{k 1}, \ldots, a^{k t}\right\} \cdot\left\{a^{n}\right\}^{*}
$$

Hence all regular subsets of \mathbf{N} are in $f(3)$.

In order to avoid the trivial cases, we assume that the regular expressions (over Σ) are built from the atomic letters (i.e. a symbol for each finite subset of Σ^{*}) and the function symbols,$+ \cdot$, and $*$ in the usual way. (Thus, a finite set of words may be denoted by a regular expression with none of the function signs,$+ \cdot$, ..) Let $|\alpha|$ be the language denoted by the regular expression α. If α is a regular expression, let the 'dot height of α ', dh (α), be 0 , when α is an atomic letter; $\mathrm{dh}(\alpha+\beta)=$ $=\max (\operatorname{dh}(\alpha), \operatorname{dh}(\beta)) ; \operatorname{dh}\left(\alpha^{*}\right)=\operatorname{dh}(\alpha)$, and lastly,

$$
\operatorname{dh}(\alpha \cdot \beta)=1+\max (\operatorname{dh}(\alpha), \operatorname{dh}(\beta)) .
$$

Let $R(n)$ denote the family of regular expressions α with $\mathrm{dh}(\alpha)<n$.
Proposition 4. Suppose that $n>0$, that L is a language denoted by $\alpha, \alpha \in R(n)$ and that $a(L)<\infty$. Then

$$
a(L) \leqq g(n)
$$

Proof. By induction on i. If $n=1$ and L is denoted by a regular expression α having no dot symbols, then either α is an atomic symbol or has the form

$$
\beta+\sigma, \text { or } \beta^{*}
$$

for some other regular expressions β, σ with dot height 0 . By induction on the structure of α, one sees that either $a(L)=\infty$ or $a(L)=0=g(1)$.

Now assume that the proposition holds for n and that L is a language denoted by a regular expression in $R(n+1)-R(n)$ and $a(L)<\infty$. If α is of the form $\beta+\sigma$ or β^{*}, it is easily seen by induction on the structure of α that $a(L) \leqq g(n+1)$. If α is of the form $\beta \cdot \sigma$ then $\mathrm{dh}(\beta), \mathrm{dh}(\sigma)<n$. Thus, by the induction hypothesis, $a(|\beta|)$ and $a(|\sigma|)$ are at most $g(n)$, and by proposition $1, a(L)$ is at most $2 g(n)+1=$ $=g(n+1)$, completing the proof.

Corollary 5. (The 'dot height' hierarchy). For each $n>0$, there is an infinite regular language L not denoted by a regular expression in $R(n)$.

Proof. Any regular language L with $g(n)<a(L)<\infty$ will do, by Proposition 2.
The alternation number of a regular language may be described by certain properties of a finite automaton which accepts it. Let $\mathbf{M}=(Q, i, F)$ be a finite Σ-automaton (with state set Q, initial state i and final states F; we denote the action of a word u in Σ^{*} on the state q by $q \cdot u$). A state q in Q is "accessible" if $q \doteq i \cdot u$, for some word u in Σ^{*}. If x is a letter in Σ, we call a state $q x$-stable if $q \cdot u=q$, where u is some positive power of x (i.e. $u=x$ or $x x$ or $x x x$, etc.); q is stable if q is x-stable for some letter x. The "behavior of q ", $|q|$, is the set $\left\{u \in \Sigma^{*}: q \cdot u \in F\right\}$.

We now define by induction the notion of an " n-state", for $0 \leqq n$.
Definition. a) The state q will be called " $a 0$-state via the letter x " if

1. $|\boldsymbol{q}|$ is nonempty;
2. \boldsymbol{q} is x-stable.
b) q is an " $n+1$ state via x " if
3. q is x-stable;
4. there is some word v such that $q \cdot v$ is an n-state via y, for some letter $y \neq x$; A state is an " n-state" if it is an n-state via x, for some letter x.
The easy proof of the next fact is omitted.

Lemma 6. Let $\mathbf{M}=(Q, i, F)$ be an automaton which accepts the language L. Then, for $1 \leqq n, L$ admits alternations of size n iff there is some accessible n-state in Q.

Corollary 7. Let $\mathbf{M}=(Q, i, F)$ be an automaton which accepts the language L. Then, for $n>0, a(L)=n$ iff Q contains an accessible n-state but no accessible k-state with $k>n$. If Q has m states, then $a(L)=\infty$ iff there is an accessible m-state in Q.

Proof. We need only prove that if the cardinality of Q is m, and Q has an accessible m-state, say q_{0}, then $a(L)=\infty$. But, there is a sequence of words $u_{0}, u_{1}, \ldots, u_{m}$ such that if $q_{i+1}=q_{i} \cdot u_{i}$, for $i=0,1, \ldots, m$, then q_{i} is an $m-i$ state via x_{i}, with $x_{i} \neq x_{i+1}$; since the states q_{i} cannot all be distinct, let s and $t, t>0$, be least such that $q_{s}=q_{s+t}$. It is easy to see that q_{s} is also an $n-s+k t$ state, for all $k>0$; hence $a(L)=\infty$.

Corollary 8. There is an algorithm to determine, given a regular language L, what the alternation number of L is.

Proof. Suppose one is given an accessible finite automaton with n states which accepts L. First one finds all the 0 -states, by considering only paths of length $\leqq n$, then 1 -states, etc. until one knows all the n-states. Then one applies the previous Corollary.

Questions: Is there an algorithm to determine, given a regular language L, the least n such that $L \in f(n)$? Is there an algorithm to determine the dot height of a regular language?

Acknowledgements

Abstract

It is a pleasure to thank Douglas Bauer and Klaus Sutmer for several helpful conversations. The author especially thanks Zoltan Esik for carefully reading the manuscript, correcting several errors and suggesting several improvements.

DEPARTMENT OF COMPUTER SCIENCE
STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NJ 07030
U.S.A.

References

[BK] J. A. Brzozowski and R. Knast, "The dot-depth hierarchy of star-free languages is infinite", J. Comp. and System Sci., 16 (1978) 37-55.
[DS] F. Dejean and M. P. Schutzenberger, "On a question of Eggan", Information and Control vol. 9 (1966) 23-25.
(E) L. C. EgGAN, "Transition graphs and the star-height of regular events", Michigan Math. J. 10 (1963) 385-397.
[EZ] A. Ehrenfeucht and P. Zeiger, "Complexity measures for regular expressions", J. Comp. System Sci., 12 (1976) 134-146.

Minimal keys and antikeys

By V. D. Thi

§ 1. Introduction

The relational model, defined by E. F. Codd [3] is one of the most investigated data base models of the last years. Many papers have appeared concerning combinatorial characterization of functional dependencies, systems of minimal keys and antikeys. A set of minimal keys and a set of antikeys form Sperner-systems. Sperner-systems and sets of minimal keys are equivalent in the sense that for an arbitrary Spernersystem S a family of functional dependencies F can be constructed so that the minimal keys of F are exactly the elements of S (cf. [4]).

In the present paper we propose some combinational algorithms to determine antikeys and minimal keys. In the second part of the paper, we are going to study connections between minimal keys and antikeys for special Sperner-systems.

We start with some necessary definitions.
Definition 1.1. Let Ω be a finite set, and denote $P(\Omega)$ its power set. The mapping $F: P(\Omega) \rightarrow P(\Omega)$ is called a closure operation over Ω if, for every $A, B \subseteq \Omega$,
(1) $A \subseteq F(A)$ (extensivity),
(2) $A \subseteq B$ implies $F(A) \subseteq F(B)$ (monotonity),
(3) $F(A)=F(F(A))$ (idempotency).

In few cases Ω is represented by the set $\{1, \ldots, n\}$ or by the set of columns of an $m \times n$ matrix M. If we use the second representation, a special closure operation F_{M} can be defined over the set of the columns of \mathbf{M} :

The i-th column of \mathbf{M} belongs to $F_{M}(A)$ if and only if for any two rows of \mathbf{M} which are identical on A they are equal on the i-th column, too.

It is easy to see, that $F_{\mathrm{M}}(A)$ is a closure operation. It is known (see [1]) that any closure operation F over a finite set Ω can be represented by an appropriate matrix \mathbf{M}, that is we can choose \mathbf{M} and represent Ω by the set of the columns of \mathbf{M} so that F coincides with F_{M}.

Definition 1.2. Let F be a closure operation over Ω, and $A \subseteq \Omega$. We say thạt
$-A$ is a key of F, if $F(A)=\Omega$.

- A is a minimal key of F, if A is a key of F and for any $B \subseteq A, F(B)=\Omega$ implies $B=A$, i.e. no proper subset of A is a key of F.
Let us denote by K_{F} the set of all minimal keys of F. It is clear that K_{F} forms a Sperner-system.

If K is a Sperner-system over Ω, let us define $S(K)$ as $S(K)=\min \left\{m: K=K_{F_{M}}\right.$: M is an $m \times n$ matrix representation of $\Omega\}$. For a Sperner-system K, we can define the set of antikeys, denoted by K^{-1}, as follows:

$$
K^{-1}=\{A \subset \Omega:(B \in K) \Rightarrow(B \subseteq A) \quad \text { and } \quad(A \subset C) \Rightarrow(\exists B \in K)(B \subseteq C)\}
$$

It is easy to see that K^{-1} is the set of subsets of Ω, which does not contain the elements of K and which is maximal for this property. They are the maximal non-keys. Clearly, K^{-1} is also a Sperner-system.

In this paper we assume that Sperner-systems playing the role of the set of minimal keys (antikeys) are not empty (do not contain the full set Ω).

§ 2. Connection between minimal keys and antikeys

The following important result was proved in [1], [5]:
Remark 2.1. If K is an arbitrary Sperner-system, then there exists a closure operation F, for which $K=K_{F}$ and a closure operation F^{\prime}, for which $K=K_{F^{\prime}}^{\boldsymbol{F}^{\mathbf{1}}}$.

Let us given an arbitrary Sperner-system $K=\left\{B_{1}, \ldots, B_{m}\right\}$ over Ω. We are now going to construct the set of antikeys K^{-1}. Let us follow the algorithm described below:

Let $K_{1}=\left\{\Omega \backslash\{a\}: a \in B_{1}\right\}$. It is easy to see that $K_{1}=\left\{B_{1}\right\}^{-1}$.
Let us suppose that we have constructed $K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$ for $q<m$. We assume that X_{1}, \ldots, X_{p} are the elements of K_{q} containing B_{q+1}. So $K_{q}=F_{q} \cup\left\{X_{1}, \ldots\right.$ $\left.\ldots, \dot{X_{p}}\right\}$, where $F_{q}=\left\{A \in K_{q}: B_{q+1} \Phi A\right\}$. For all $i(i=1, \ldots, p$), we construct the antikeys of $\left\{B_{i+1}\right\}$ on \dot{X}_{i} in the analogous way as K_{1}, which are the maximal subsets of X_{i} not containing B_{q+1}. We denote them by $A_{1}^{i}, \ldots, A_{\tau_{i}}^{i}(i=1, \ldots, p)$.

Let

$$
K_{q+1}=F_{q} \cup\left\{A_{i}^{i}: A \in F_{q} \Rightarrow A_{t}^{i} \nsubseteq A, 1 \leqq i \leqq p, 1 \leqq t \leqq \tau_{i}\right\}
$$

We have to prove, that $K_{q+1}=\left\{B_{1}, \ldots, B_{q+1}\right\}^{-1}$. For this using the inductive hypothesis $K_{q}=\left\{B_{1}, \ldots, B_{q}\right\}^{-1}$ we show that
a) if $A \in K_{q+1}$ then A is the subset of Ω not containing $B_{t}(t=1, \ldots, q+1)$ and being maximal for this property, i.e. $A \in\left\{B_{1}, \ldots, B_{q+1}\right\}^{-1}$,
b) every $A \subseteq \Omega$ not containing the elements $B_{t}(t=1, \ldots, q+1)$ and being maximal for this property is an element of K_{q+1}. First we prove the validity of (a). Let $A \in K_{q+1}$. If $A \in F_{q}$ then A does not contain the elements $B_{t}(t=1, \ldots, q)$ and A is maximal for this property and at the same time $B_{q+1} \Phi A$. Consequently, A is a maximal subset of Ω not containing $B_{t}(t=1, \ldots, q+1)$.

Let $A \in K_{q+1} \backslash F_{q}$. It is clear that there is an $A_{t}^{i}\left(1 \leqq i \leqq p\right.$ and $\left.1 \leqq t \leqq \tau_{i}\right)$ such that $A=A_{t}^{i}$. Our construction shows that $B_{l} \Phi A_{i}^{i}$ for all $l(l=1, \ldots, q+1)$. Because A_{t}^{l} is an antikey of $\left\{B_{q+1}\right\}$ for X_{i} we obtain $A_{t}^{i}=X_{i} \backslash\{b\}$ for some $b \in B_{q+1}$. It is obvious that $B_{q+1} \subseteq A_{i}^{i} \cup\{b\}$. If $a \in \Omega \backslash X_{i}$ then, by the inductive hypothesis, for $A_{t}^{i} \cup\{a, b\}=X_{i} \cup\{a\}$ there exists $B_{s}(s=1, \ldots, q)$ such that $B_{s} \subseteq A_{t}^{i} \cup\{a, b\}$. X_{i} does not contain B_{1}, \ldots, B_{q} by $X_{i} \in K_{q}$. Hence $a \in B_{s}$. If $B_{s} \backslash\{a\} \subseteq A_{t}^{i}$ then $B_{s} \subseteq A_{i}^{i} \cup\{a\}$. For every $B_{s}(1 \leqq s \leqq q)$ with $B_{s} \subseteq X_{i} \cup\{a\}$ and $B_{s} \subseteq A_{i}^{i}$ we have $b \in \bar{B}_{s}$. Hence $B_{s} \backslash\{a, b\} \subseteq A_{q}^{i}$. Consequently, there exists an $A_{1} \in F_{q}$ such that
$A_{i}^{i} \subset A_{1}$. This contradicts $A \in K_{q+1} \backslash F_{q}$. So there is a $B_{s}(1 \leqq s \leqq q)$ such that $B_{s} \subseteq A_{t}^{i} \cup\{a\}$.

Next we turn to the proof of (b). Suppose that A is the maximal subset of Ω not containing $B_{t}(1 \leqq t \leqq q+1)$. By the inductive hypothesis, there is a $Y \in K_{q}$ such that $A \subseteq Y$.

The first case: If $B_{q+1} \Phi Y$ then Y does not contain B_{1}, \ldots, B_{q+1}. Because A is the maximal subset of Ω not containing $B_{t}(1 \leqq t \leqq q+1)$ we obtain $A=Y . B_{q+1} \subseteq Y$ implies $A \in F_{q}$. Consequently, we have $A \in K_{q+1}$.

The second case: If $B_{q+1} \subseteq Y$ then $Y=X_{i}$ holds for some i in $\{1, \ldots, p\}$ and $A \subseteq A_{t}^{i}$ holds for some t in $\left\{1, \ldots, \tau_{i}\right\}$. If there exists an $A_{1} \in F_{q}$ such that $A_{i}^{i} \subset A_{1}$, then we also have $A \subset A_{1}$. By the definition of F_{q} it is clear that A_{1} does not contain B_{1}, \ldots, B_{q+1}. This contradicts the definition of A. Hence $A_{t}^{i} \in K_{q+1}$. It is easy to see that A_{t}^{i} does not contain B_{1}, \ldots, B_{q+1}. By the definition of A we obtain $A=A_{t}^{i}$, i.e. $K_{q+1}=\left\{B_{1}, \ldots, B_{q+1}\right\}^{-1}$.

By the above proof it is clear that $K_{m}=\left\{B_{1}, \ldots, B_{m}\right\}^{-1}$. Thus we have
Theorem 2.2. $K_{m}=K^{-1}$.
Because K and K^{-1} are uniquely determined by each other, the determination of K^{-1} based on our algorithm does not depend on the order of B_{1}, \ldots, B_{m}.

Now we assume that the elementary step being counted is the comparison of two attribute names. Consequently, if we assume that subsets of Ω are represented as sorted lists of attribute names, then a Boolean operation on two subsets of Ω requires at most $|\Omega|$ elementary steps.

Let $K_{o}=\{\Omega\}$. According to the construction of our algorithm we have $K_{q}=$ $=F_{q} \cup\left\{X_{1}, \ldots, X_{t_{q}}\right\}$, where $1 \leqq q \leqq m-1$. Denote l_{q} the number of elements of K_{q}. It is clear that for constructing K_{q+1} the worst-case time of algorithm is $O\left(n^{2}\left(l_{q}-\right.\right.$ $\left.\left.-t_{q}\right) t_{q}\right)$ if $t_{q}<l_{q}$ and $O\left(n^{2} t_{q}\right)$ if $l_{q}=t_{q}$. Consequently, the total time spent by the algorithm in the worst cases is

$$
\begin{gathered}
O\left(n^{2} \sum_{q=1}^{m-1} t_{q} u_{q}\right), \text { where }|\Omega|=n, \\
u_{q}=\left\{\begin{array}{ccc}
l_{q}-t_{q} & \text { if } & l_{q}>t_{q}, \\
1 & \text { if } & l_{q}=t_{q} .
\end{array}\right.
\end{gathered}
$$

It is obvious that, if $F_{q}=\emptyset$, then $l_{q}=t_{q}$.
It can be seen that when there are only a few minimal keys (that is m is small) our algorithm is very effective, it does not requires exponential time in $|\Omega|$. In cases for which $l_{q} \leqq l_{m}(\forall q: 1 \leqq q \leqq m-1)$ it is obvious that our algorithm requires a number of elementary operations which is not greater than $O\left(n^{2}|K|\left|K^{-1}\right|^{2}\right)$. Thus, in these cases our algorithm finds K^{-1} in polynomial time in $|\Omega|,|K|$ and $\left|K^{-1}\right|$.

After Theorem 2.12 we shall give an example to show that our algorithm requires exponential time in $|\Omega|$. On the other hand K_{q} in each step of our algorithm is obviously a Sperner-system. It is known ([4]) that the size of arbitrary Sperner-system over Ω can not be greater than $\binom{n}{[n / 2]}$, where $n=|\Omega| \cdot\binom{n}{[n / 2]}$ is asymptotically equal to
$\frac{2^{n+1 / 2}}{(\pi \cdot n)^{1 / 2}}$. Consequently, the worst-case time of our algorithm can not be more than exponential in the number of attributes.

Let $K^{-1}=\left\{A_{1}, \ldots, A_{t}\right\}$ be a set of antikeys. Let $R=\left\{h_{0}, h_{1}, \ldots, h_{t}\right\}$ be a relation over Ω given as follows: for all $a \in \Omega, h(a)=0$

$$
\text { for } i(1 \leqq i \leqq t), \quad h_{i}(a)=\left\{\begin{array}{lll}
0 & \text { if } & a \in A_{i} \\
i & \text { if } & a \in \Omega \backslash A_{i}
\end{array}\right.
$$

If we consider R as a matrix, then R represents K (see [5]). Thus, based on our algorithm, for an arbitrarily given Sperner-system K, we can construct a matrix which represents K.

Example 2.3. Let $\Omega=\{1,2,3,4,5,6\}$ and $K=\{(2,3,4),(1,4)\}$. According to the above algorithm we have $K_{1}=\{(1,3,4,5,6),(1,2,4,5,6)\} \cup F_{1}$, where $F_{1}=$ $=\{(1,2,3,5,6)\}$, and $K_{2}=\{(3,4,5,6),(2,4,5,6),(1,2,3,5,6)\}$. It is obvious that $K^{-1}=K_{2}$.

We consider the following matrix:
The attributes:

$$
\mathbf{M}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0
\end{array}\right)
$$

It is clear that \mathbf{M} represents K.
Now we describe the "reverse" algorithm: for given Sperner-system considered as the set of antikeys we construct its origin. The following definitions are necessary for us.

Let F be a closure operation over Ω. Set

$$
\begin{gathered}
Z(F)=\{A \subseteq \Omega: F(A)=A\} \\
\text { and } T(F)=\{A \subset \Omega: A \in Z(F) \text { and } A \subset B \Rightarrow F(B)=\Omega .
\end{gathered}
$$

The elements of $Z(F)$ are called closed sets. It is clear that $T(F)$ is the family of maximal closed sets (except Ω). Now we prove the following lemma.

Lemma 2.4. Let F be a closure operation over Ω, and K_{F} the set of minimal keys of F. Then $K_{\boldsymbol{F}}{ }^{1}=T(F)$.

Proof. Let A be an arbitrary antikey and suppose that $A \subset F(A)$. Hence $F(F(A))=F(A)=\Omega$. Consequently, A is a key. This contradicts $\forall B \in K_{F}: B \subseteq A$. If there is an A^{\prime} such that $A \subset A^{\prime}$ and $A^{\prime} \in Z(F) \backslash\{\Omega\}$, then A^{\prime} is a key. This contradicts $A^{\prime} \subset \Omega$.

On the other hand, if A is a maximal closed set and there is a $B\left(B \in K_{F}\right)$ such that $B \subseteq A$, then $F(A)=\Omega$, which conflicts with the fact that $A \subset \Omega$. If $A \subset D(D \subseteq$ $\subseteq \Omega$), then it can be seen that $F(D)=\Omega$ (because A is the maximal closed set). Con-: sequently, A is an antikey. The lemma is proved.

Now we construct an algorithm for finding a minimal key.
Let H be a Sperner-system and $\Omega \notin H$. We take a $B(B \in H)$ and an $a \in \Omega \backslash B$. We suppose that $B=\left\{b_{1}, \ldots, b_{m}\right\}$. Let $G=\left\{B_{t} \in H: a \notin B_{t}\right\}$ and $T_{0}=B \cup\{a\}$. define

$$
T_{q+1}=\left\{\begin{array}{l}
T_{q} \backslash\left\{b_{q+1}\right\} \text { if } \quad \forall B_{i} \in H \backslash G: T_{q} \backslash\left\{b_{q+1}\right\} \subseteq B_{i} \\
T_{q} \text { otherwise } .
\end{array}\right.
$$

Theorem 2.5. If H is a set of antikeys, then $\left\{T_{0}, T_{1}, \ldots, T_{m}\right\}$ are the keys and \dot{T}_{m} is a minimal key.

Proof. By Remark 2.1 there exists a closure F such that $H=K_{F}^{-1}$. We prove the theorem by the induction. It is clear that T_{0} is a key. If T_{q} and $T_{q+1}=T_{q}$, then it is obvious that T_{q+1} is a key. If $T_{q+1}=T_{q} \backslash\left\{b_{q+1}\right\}$ and $F\left(T_{q+1}\right) \neq \Omega$ then, by Lemma 2.4 , there is a $B_{t} \in H$ such that $F\left(T_{q+1}\right) \subseteq B_{i}$. Hence $T_{q+1} \cong B_{t}$, which conflicts with the fact $\forall B_{r} \in H: T_{q+1} \subseteq B_{t}$. Consequently, T_{q+1} is a key.

Now suppose that A is a proper subset of T_{m}. If $a \notin A$, then, clearly, $F(A) \neq \Omega$. If $a \in A$, then there exists a $b_{q} \in B$ such that $b_{q} \in T_{m} \backslash A(1 \leqq q)$. By the given algorithm there exists a $B_{t} \in H \backslash G$ such that $T_{q-1} \backslash\left\{b_{q}\right\} \subseteq B_{t}$. We obtain $A \subseteq T_{m} \backslash\left\{b_{q}\right\} \subseteq$ $\subsetneq T_{q-1}\left\{b_{q}\right\} \subseteq B_{t}$ by $T_{m} \subseteq T_{q}(0 \leqq q \leqq m-1)$. Hence $F(A) \neq \Omega$. Consequently, T_{m} is a minimal key. The theorem is proved.

Remark 2.6. Theorem 2.5 is also true if $T_{0}=\left\{b_{1}, \ldots, b_{m}\right\}$ is an arbitrary key. At this time define

$$
T_{q+1}=\left\{\begin{array}{l}
T_{q} \backslash\left\{b_{q+1}\right\} \text { if } \forall B_{i} \in H: T_{q} \backslash\left\{b_{q+1}\right\} \Phi B_{i}, \\
T_{q} \text { otherwise. }
\end{array}\right.
$$

- It is clear that the worst-case time of the algorithm is $O\left(n^{2} \cdot|H|\right)$, where $n=|\Omega|,|H|$ is the number of elements of H.
- It is best to choose B such that $|B|$ is minimal.
- If there is a B such that $\forall B_{t} \in H \backslash\{B\}: B_{t} \cap B=\emptyset$ and $a \in \underset{B_{t} \in H \backslash\{B\}}{\bigcup} B_{t}$ then $a \cup b$ is a minimal key $(\forall b \in B)$.
- If $\left(\Omega \backslash \bigcup_{B_{t} \in H} B_{t}\right) \neq \emptyset$, then $a \in \Omega \backslash \bigcup_{B_{t} \in H} B_{t}$ is a minimal key.
- Let $Y=\bigcup_{B_{t} \in H} B_{t}\left(B_{t} \neq B\right)$. If $B \backslash Y \neq \emptyset$, then it is best to choose $T_{0}=$ $=(B \cap Y) \cup\{a\} \cup\{b\}$, where $b \in B \backslash Y$.

Remark 2.7. Let H be a Sperner-system $(\Omega \notin H)$ and $A \subset \Omega$. We can give an algorithm (which is analogous to the above one) to decide whether A is a key or not. If A is a key, then this algorithm finds an A^{\prime} such that $A^{\prime} \subseteq A$ and A^{\prime} is a minimal key.

Remark 2.8. In the paper [5] the equality sets of the relation are defined as follows: Let $\mathbf{R}=\left\{h_{1}, \ldots, h_{m}\right\}$ be a relation over Ω. For $i \neq j$, we denote by $E_{i j}$ the set $\left\{a \in \Omega: h_{i}(a)=h_{j}(a)\right\}$, where $1 \leqq i \leqq m, 1 \leqq j \leqq m$. Now we define $\mathbf{M}=$ $=\left\{E_{i j}: \exists E_{p q}\right.$ such that $\left.E_{i j} \subset \mathrm{E}_{p q}\right\}$. Practically, it is possible that there are some $E_{i j}$ which are equal to each other. We choose one $E_{i j}$ from \mathbf{M}. According to Lemma 2.4 it can be seen that \mathbf{M} is the set of antikeys of $K_{F_{\mathbf{R}}}$ (we consider \mathbf{R} as a matrix).

Example 2.9. Let $\Omega=\{1,2,3,4,5,6\}$ and \mathbf{R} be the following relation:

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 2 & 2 \\
0 & 1 & 2 & 2 & 0 & 3 \\
3 & 2 & 1 & 0 & 3 & 0
\end{array}\right)
$$

It can be seen that $\mathbf{M}=\{(1,2),(3,4,5),(4,6)\}$, where $E_{14}=\{1,2\}, E_{15}=\{4,6\}$ and $E_{25}=\{3,4,5\}$. By Theorem 2.5 and Remark 2.6, it is clear that $\{1,3\},\{1,4\}$, $\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\},\{2,6\}$ are the minimal keys. We use the algorithm (Theorem 2.5) with $T_{0}=\{3,4,6\}$ and $T_{0}=\{4,5,6\}$, then it can be seen that $\{3,6\}$ and $\{5,6\}$ are minimal keys. Thus, based on this algorithm for an arbitrarily given relation \mathbf{R} we can find a minimal key of \mathbf{R}.

Let K be an arbitrary Sperner-system. The following theorem has been proved in [2].

Theorem 2.10.

$$
\binom{S(K)}{2} \geqq\left|K^{-1}\right| \geqq S(K)-1
$$

Denote by $\binom{\Omega}{k}$ the family of all k-element subsets of Ω. Let $F_{k}(n)=\max \{S(K)$: $\left.K \subseteq\binom{\Omega}{k} ;|\Omega|=n\right\}$.

Theorem 2.11. ([6])

$$
F_{k}(n) \geqq \sqrt{2}\binom{2 k-2}{k-1}^{1 / 2 \cdot[n /(2 k-2)]}
$$

We define the function $f_{2 k-1}: N \rightarrow N$ for $2 k-1 \leqq n$ by

$$
f_{2 k-1}(n)= \begin{cases}\binom{2 k-1}{k-1}^{n /(2 k-1)} & \text { if } n \equiv 0(\bmod (2 k-1)), \\ \binom{2 k-1}{k-1}^{[n /(2 k-1)]-1} \times\binom{ 2 k-1+p}{k-1} & \text { if } n \equiv p(\bmod (2 k-1)) \\ \binom{2 k-1}{k-1}^{[n /(2 k-1)]} \times\binom{ p}{k-1} \text { if } n \equiv p(\bmod (2 k-1)) \\ & \text { and } k \leqq p \leqq 2 k-2\end{cases}
$$

and the function $f_{2 k-2}$ for $2 k-2 \leqq n$ by

$$
f_{2 k-2}(n)= \begin{cases}\binom{2 k-2}{k-1}^{n /(2 k-2)} & \text { if } n \equiv 0 \quad(\bmod (2 k-2)), \\ \binom{2 k-2}{k-1}^{[n /(2 k-2)]-1} \times\binom{ 2 k-2+p}{k-1} \text { if } n \equiv p \quad(\bmod (2 k-2)) \\ \binom{2 k-2}{k-1}^{[n /(2 k-2)]} \times\binom{ p}{k-1} \text { if } n \equiv p \quad(\bmod (2 k-2)) \\ \quad \text { and } k \leqq p \leqq k-1,\end{cases}
$$

where N denotes the set of natural numbers. Let us take a partition $\Omega=X_{1} \cup \ldots$ $\ldots \cup X_{m} \cup W$, where $m=\left[\frac{n}{2 k-1}\right]$ and $\left|X_{i}\right|=2 k-1 \quad(1 \leqq i \leqq m)$.
Let

$$
K=\left\{B:|B|=k, B \subseteq X_{i}, \forall i\right\} \text { if }|W|=0
$$

$K=\left\{B:|B|=k, B \leqq X_{i}(1 \leqq i \leqq m-1)\right.$ and $\left.B \leqq X_{m} \cup W\right\} \quad$ if $\quad 1 \leqq|W| \leqq k-1$.

$$
K=\left\{B:|B|=k, B \leqq X_{i}(1 \leqq i \leqq m) \text { and } B \leqq W\right\} \quad \text { if } \quad k \leqq|W| \leqq 2 k-2
$$

It is clear that

$$
K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1, \forall i\right\} \quad \text { if } \quad|W|=0
$$

$$
\begin{gathered}
K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1(1 \leqq i \leqq m-1) \text { and }\left|A \cap\left(X_{m} \cup W\right)\right|=k-1\right\} \\
\text { if } 1 \leqq|W| \leqq k-1 . \\
K^{-1}=\left\{A:\left|A \cap X_{i}\right|=k-1(1 \leqq i \leqq m) \text { and }|A \cap W|=k-1\right\} \\
\vdots \quad \text { if } k \leqq|W| \leqq 2 k-2 .
\end{gathered}
$$

It can be seen that $f_{2 k-1}(n)=\left|K^{-1}\right|$. If we take a partition: $\Omega=X_{1} \cup \ldots \cup X_{m} \cup W$; where $m=\left[\frac{n}{2 k-2}\right]$ and $\left|X_{i}\right|=2 k-2$, in an analogous way we

$$
K=\left\{B:|B|=k, B \subseteq X_{i}, \forall i\right\} \quad \text { if } \quad|W|=0
$$

$K=\left\{B:|B|=k, B \leqq X_{i}(1 \leqq i \leqq m-1)\right.$ and $\left.B \subseteq X_{m} \cup W\right\} \quad$ if $\quad 1 \leqq|W| \leqq k-1$.

$$
K=\left\{B:|B|=k, B \leqq X_{i}(1 \leqq i \leqq m) \text { and } B \subseteq W\right\} \quad \text { if } \quad k \leqq|W| \leqq 2 k-3
$$

It is clear that

$$
f_{2 k-2}(n)=\left|K^{-1}\right| \quad \text { and } \quad f_{2 k-2}(n) \geqq\binom{ 2 k-2}{k-1}^{[n /(2 k-2)]}
$$

Theorem 2.12. Let $\Omega=\{1, \ldots, n\}$.
If $n \equiv 0(\bmod (2 k-2)(2 k-1))$, then $f_{2 k-1}(n)>f_{2 k-2}(n)$. For a fixed k,

$$
\lim _{n \rightarrow \infty} \frac{f_{2 k-1}^{(n)}}{f_{2 k-2}^{(n)}}=\infty
$$

Proof. If $k=2$, then it is easy to prove that $\forall n: f_{3}(n) \geqq f_{2}(n)$. If $n=6$ or $n \geqq 8$, then $f_{3}(n)>f_{2}(n)$. Let

$$
F=\frac{\binom{2 k-1}{k-1}^{n /(2 k-1)}}{\binom{2 k-2}{k-1}^{n /(2 k-2)}}=\frac{\left(\frac{2 k-1}{k}\right)^{n /(2 k-1)}}{\binom{2 k-2}{k-1}^{n /(2 k-2)(2 k-1)}}
$$

It is known that $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \times e^{\theta_{n} /(12 n)}$, where $0<\theta_{n}<1$. So

$$
F \geqq \frac{\left(\frac{2 k-1}{k}\right)^{n /(2 k-1)}}{2^{n /(2 k-1)} \cdot\left(\frac{e^{\theta_{n} /(12(2 k-2))}}{\sqrt{\pi(k-1)}}\right)^{n /(2 k-2)(2 k-1)}} \geqq \frac{\left(1-\frac{1}{2 k}\right)^{n /(2 k-1)}}{\left(\frac{e^{1 /(24(k-1))}}{\sqrt{\pi(k-2)}}\right)^{n /(2 k-2)(2 k-1)}}=E .
$$

For this E we obtain, that

$$
T=\ln E=\frac{n}{2 k-1}\left(\ln \left(1-\frac{1}{2 k}\right)+\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)\right)
$$

and by

$$
\left|\ln \left(1-\frac{1}{2 k}\right)\right| \leqq \frac{1}{2 k-1}
$$

we have

$$
T \geqq \frac{n}{2 k-1}\left(\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}\right) .
$$

It can be seen that if $k=3$, then

$$
\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}>0
$$

and, for every $k \geqq 4$,

$$
\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}>1 .
$$

Hence

$$
\frac{1}{2 k-2}\left(\frac{1}{2} \ln (\pi(k-1))-\frac{1}{24(k-1)}\right)-\frac{1}{2 k-1}>0 .
$$

Consequently, if $n \equiv 0(\bmod (2 k-2)(2 k-1))$, then $f_{2 k-1}(n)>f_{2 k-2}(n)$. Now let n be an arbitrary natural number. It can be seen that, for a fixed k, there exists a number $M>0$ such that

$$
\begin{gathered}
\frac{\binom{2 k-1+p}{k-1}}{\binom{2 k-1}{k-1}^{1+(p l(2 k-1))}}<M, \frac{\binom{p}{k-1}}{\binom{2 k-1}{k-1}^{p /(2 k-1)}}<M, \\
\frac{\binom{2 k-2+p}{k-1}}{\binom{2 k-2}{k-1}^{1+(p l(2 k-2))}}<M \text { and } \frac{\binom{p}{k-1}}{\binom{2 k-2}{k-1}^{p /(2 k-2)}}<M .
\end{gathered}
$$

Hence $\ln \underset{n \rightarrow \infty}{E \rightarrow \infty}$. Consequently, $\underset{\substack{F \rightarrow \infty \\ n \rightarrow \infty}}{ }$. Thus,

$$
\frac{f_{2 k-1}(n)}{f_{\substack{2 k-2 \\ n \rightarrow \infty}}(n)} \rightarrow \infty .
$$

(It is easy to see that $k=2$ is also true.) The theorem is proved.
As a consequence of Theorem 2.12 and Theorem 2.10 we have
Corollary 2.13

$$
F_{k}(n) \geqq \sqrt{2 f_{2 k-1}(n)} .
$$

Example 2.14. In Theorem 2.12 let $k=2$. Then we have $n-1 \leqq|K| \leqq n+2$ and $3^{(n / 4)}<f_{3}(n)$, where $n=|\Omega|$., i.e. $3^{(n / 4)}<\left|K^{-1}\right|$. Thus, we always can construct an example, in which the number of K (minimal keys) is not greater than $n+2$, but the size of K^{-1} (antikeys) is exponential in the number of attributes.

§ 3. Some special Sperner-systems

In this section we investigate connections between the minimal keys and antikeys for some special Sperner-systems.

The notion of saturated Sperner-system is defined in [7], as follows:
A Sperner-system K over Ω is saturated if for any $A \subseteq \Omega, K \cup\{A\}$ is not a Sperner-system.

An important result in [7] has been proved; if K is a saturated Sperner-system then $K=K_{F}$ uniquely determines F, where F is a closure operation.

Now we investigate some special Sperner-systems which are strictly connected with saturated Sperner-systems.

We consider the following example.
Example 3.1. Let $\Omega=\{1,2,3,4,5,6\}$ and $N=\{(1,2),(3,4),(5,6)\}$ be a Sperner-system. It can be seen that $N^{-1}=\{(1,3,5),(1,3,6),(1,4,5),(1,4,6)$, $(2,3,5),(2,3,6),(2,4,5),(2,4,6)\}$. Let $K=N \cup N^{-1}$. It is clear that K is saturated. We use the algorithm which finds a set of antikeys. Then $K^{-1}=\{(1,3),(1,4),(1,5)$, $(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)\}$.

By the fact that $K^{-1} U\{1,2\}$ is a Sperner-system it is obvious that K^{-1} is not saturated. Thus, we have

Corollary 3.2. There is a K so that K is saturated and K^{-1} is not saturated. Now we define the following notion.

Definition 3.3. Let K be a Sperner-system over Ω. We say that K is embedded, if for every $A \in K$ there is a $B \in H$ such that $A \subset B$, where $H^{-1}=K$. We have

Theorem 3.4. Let K be a Sperner-system over $\Omega . K$ is saturated if and only if K^{-1} is embedded.

Proof. Let K be a saturated Sperner-system. According to the definition of K^{-1} it is clear that K^{-1} is embedded. Assume that K^{-1} is an embedded Sperner-system, but K is not saturated. Consequently, for K there exists an $A \subset \Omega$ such that $K \cup\{A\}$ is a Sperner-system. It can be seen that, for every $C \in K$, we have $C \subset \Omega$ (because of $\Omega \nsubseteq K$). Hence we can construct B such that $A \subseteq B, K \cup\{B\}$ is a Sperner-system and, for every $B^{\prime}\left(B \subset B^{\prime}\right)$, there is a $C \in K$ with $C \subseteq B^{\prime}$. It can be seen that $B \in K^{\mathbf{- 1}}$. This contradicts the fact that K^{-1} is embedded. The proof is complete.

Now we define an inclusive Sperner-system.
Definition 3.5. Let K be a Sperner-system over Ω. We say that K is inclusive, if for every $A \in K$, there exists a $B \in K^{-1}$ such that $B \subset A$. We have

Theorem 3.6. K is an inclusive Sperner-system if and only if K^{-1} is a saturated one.

Proof. Now, assume that K is an inclusive Sperner-system but K^{-1} is not saturated. By the definition of K^{-1}, there is a $B \in\left(K^{-1}\right)^{-1}$ such that $K^{-1} \cup\{B\}$ is a Sperner-system. By Remark 2.1, for K there is a closure operation F such that $K=K_{F}$. If $F(B) \subset \Omega$, then by Lemma 2.4 there exists an $A \in K^{-1}$ with $F(B) \subseteq A$ (the set of antikeys is family of the maximal closed sets), which conflicts with the fact that $K^{-1} \cup\{B\}$ is a Sperner-system. Consequently, B is a key. If we use the algorithm which finds a minimal key in Theorem 2.5 , then it can be seen that there exists a $B^{\prime}\left(B^{\prime} \subseteq B\right)$ such that $B^{\prime} \in K$, and it is clear that $K^{-1} \cup\left\{B^{\prime}\right\}$ is a Spernersystem. This contradicts the definition of K. Thus, K^{-1} is saturated.

On the other hand by the definition of K^{-1} and by the assumption that K^{-1} is saturated it is clear that K is an inclusive Sperner-system. The theorem is proved. Now, we have the following corollary by Theorem 3.4 and Theorem 3.6.

Corollary 3.7. Let K be a Sperner-system over Ω. Denote H a Sperner-system, for which $H^{-1}=K$. The following facts are equivalent:
(1) K is saturated,
(2) K^{-1} is embedded,
(3) H is inclusive.

Proposition 3.8. There exists a Sperner-system K such that
(1) K is saturated, but K^{-1} is not saturated.
(2) K is saturated, but H is not saturated.
(3) K is embedded, but K^{-1} is not embedded.
(4) K is embedded, but H is not embedded.
(5) K is inclusive, but K^{-1} is not inclusive.
(6) K is inclusive, but H is not inclusive,
where H denotes a Sperner-system for which $H^{-1}=K$.
Proof. From Example 3.1 we have (1). By Theorem 3.4, $\left(K^{-1}\right)^{-1}$ is not embedded in this example. Hence we have (3). By Theorem 3.6, in Example 3.1 H is inclusive, where $H^{-1}=K$. Now, we suppose that, if K is inclusive, then the set of antikeys of K is also inclusive. Consequently, in Example 3.1, H is inclusive, and K is an inclusive Sperner-system. From Theorem 3.6, K^{-1} is saturated. This constradicts the fact that K^{-1} in Example 3.1 is not a saturated Sperner-system. Hence we have (5). (2) can be proved as follows: Let K be a Sperner-system. Let $K^{1}=K$ and, for $n \geqq 2$, define
K^{n} by the equality $\left(K^{n}\right)^{-1}=K^{n-1}$. We know that the number of the Sperner-systems over Ω is finite (at most $2^{21 \Omega 1}$). On the other hand, K and K^{-1} are determined uniquely by each other. Consequently, there exists a number $m\left(2 \leqq m \leqq 2^{2^{1 \Omega 1}}\right)$ such that $K^{m}=K$ and $K^{m-1}=K^{-1}$. If we suppose that K is saturated, then H is also saturated, where $H^{-1}=K$. This means that for every p with $2 \leqq p<m, K^{p}$ is also saturated. This contradicts Corollary 3.2. Thus, there is a Sperner-system K such that K is saturated, but H is not saturated. By similar arguments we have also (4) and (6). The proposition is proved.

Acknowledgement

The author would like to take this opportunity to express deep gratitude to Professor J. Demetrovics and L. Hannák for their help, valuable comments and suggestions.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
KENDE U. 13-17.
BUDAPEST, HUNGARY
H-1502

References

[1] Armstrong, W. W., Dependency Structures of Data Base Relationships, Information Processing 74, North-Holland Publ. Co. (1974) 580-583.
[2] Békéssy, A., Demetrovics J., Hannák L., Katona G. O. H., Franki P., On the number of maximal dependencies in data relation of fixed order. Discrete Math., 30 (1980) 83-88.
[3] Codd, E. F., Relational model of data for large shared data banks. Communications of the ACM, 13, (1970) 377-384.
[4] Demetrovics, J., On the equivalence of candidate keys with Sperner systems. Acta Cybernetica 4 (1979) 247-252.
[5] Demetrovics, J., Relációs adatmodell logikai és strukturális vizsgálata. MTA SZTAKI Tanulmányok, Budapest, 114 (1980) 1-97.
[6] Demetrovics J., FÜredi Z., Katona G. O. H., Minimum matrix representation of closure operations. Preprint of the mathematical institute of the Hungarian academy of sciences, Budapest, 12 (1983) 1-22.
[7] Demetrovics J., FÜredi Z., Katona G., A függōségek és az individumok száma közötti kapcsolat összetett adatrendszerek esetén. Alkalmazott Matematikai Lapok 9 (1983) 13-21.
(Received April 2, 1985.)

On the index of concavity of neighbourhood templates

J. Pecht

Abstract

In automatic image analysis with parallel algorithms or parallel processors successive Min-kowski-operations (like erosions and dilatations) with a given neighbourhood template (also referred to as structuring element), T, play an important role. It can be shown that, after a certain number of such steps, the neighbourhood template E, which contains only the extreme points of T, can be used instead of T. This number of steps is called the index of concavity of T. In bit-plane oriented parallel processors this fact can be used to speed-up pattern recognition algorithms. The speed-up is only assymptotical and its practical performance depends upon whether the index of concavity is low or high. In this paper it is shown that for the practical cases of convex or small templates the index is very small, namely at most 2 or 3 resp. which ensures speed-up for this type of templates. As against to this result it is, however, also shown that, theoretically, arbitrary high indices of concavity can be achieved for appropriately chosen (exotic) templates.

1. Introduction

Minkowski-operations play an important role in automatic image analysis, particulary in optical material control. Herein, after thresholding the video image (from camera) appropriatelly a binary image, b, (usually 256×256 or 512×512 pixels) is produced. b is also called a bit-plane. The bit-plane b is eroded repeatedly and after each step of erosion a measurement of area, boundary length and/or number of particles is done: Assembling these numbers in one (or 3) feature vector(s), convenient statistical classification procedures can be applied to get final decision of certain material properties. Depending on the material properties to be jugded upon various neighbourhood templates must be chosen (1, 2).

In bit-plane oriented parallel array processors (so called: bitplane processors) $(3,4,5,6)$ a straight forward implementation of this operations needs $C t$ elementary parallel bitwise logical operations where t is the number of elements in $T(1,2)$. There it is also shown that in case of convex, symmetric templates $\mathrm{Cu} / 2$ operations are sufficient where u is the number of boundary points of T. In (7) this result was improved be showing that, for any template T, assymptotically already $C e$ operations are also sufficient where e is the number of extreme points of T. This result relies on the fact that, after a certain number of steps, the Minkowski-operation with T can be replaced by the same operation using only the template E which contains just the extreme
points of T. This number depends on T and is called the index of concavity of T. It is denoted $\mu(T)$.It is clear that the assymptotic speed gain is only achieved if $\mu(T)$ is low. It is the intent of this paper to show that for the practically important cases of small (i.e. 3×3) templates or (possibly big) convex templates the index of concavity does not exceed 3 or 2 (resp.). On the other hand, exotic templates (with some few and, however, wide spread points) can yield arbitrarily high indices of concavity.

After presenting some necessary mathematical definitions and facts in chapter 2 we derive our claim as cited above in chapter 3.

2. Basic definitions and facts

Definition 1. Let \mathbf{Z} denote the set of integers. Any finite subset T of \mathbf{Z}^{2} is called a neighbourhood template. Between two templates T and U the sum $T \oplus U$ is defined as $\{t+u / t \in T$ and $u \in U\}$ (+ is here the usual componentwise vector sum). For any template T the sequence $(k T)_{k \in N}(N=\{0,1,2, \ldots\})$ is recursively defined by

$$
\begin{gather*}
0 T=\{0\} \tag{1}\\
(k+1) T=k T \oplus T \quad(k \geqq 0) . \tag{2}
\end{gather*}
$$

Here, $0=(0,0)$ is the 2-dimensional origin in $\mathbf{Z}^{2} . x \in T$ is called an extreme point of T, if any representation $x=\sum_{t \in T} a_{t} t$ with $a_{t} \geqq 0, a_{t} \in \mathbf{R}$ and $\sum_{t \in T} a_{t}=1$ implies $a_{x}=1$, and $a_{t}=0$ for $t \neq x$. The set of extreme points of T is denoted E or $E(T)$.

Proposition 1. (7) For any template T there is a $k_{0} \in N$ such that

$$
\begin{equation*}
k T \oplus T=k T \oplus E \quad\left(k \geqq k_{0}\right) . \tag{3}
\end{equation*}
$$

Definition 2. For any template T let $\mu(T)$ denote the minimal k_{0} such that Proposition 1 holds. $\mu(T)$ is called the index of concavity of T.

Definition 3. For any template T let \bar{T} denote the convex hull of T (in \mathbf{R}^{2}), formally:

$$
\begin{equation*}
\bar{T}:=\left\{\sum_{t \in T} a_{t} t / a_{t} \geqq 0, a_{t} \in \mathbf{R}, \sum_{t \in T} a_{t}=1\right\} \tag{4}
\end{equation*}
$$

and $\dot{\bar{T}}:=\bar{T} \cap \mathbf{Z}^{2}$. A template T is called convex if $T=\dot{\bar{T}}$. The norm $\|T\|$ of T is the maximal absolute value of all occuring coordinates of all elements of $T . T$ is called small, if $\|T\| \leqq 1$.

Equipped with these preliminaries we proceed to prove our claims.

3. The index of concavity of certain classes of templates

Theorem 1. For any $k \in N$, there is a neighbourhood template T with $\|T\| \leqq$ $\leqq \sqrt{(k / 3)}+5$ such that $\mu(T) \geqq k$.
$\therefore \quad$ Proof. Let $k \in \mathbf{N}$, and consider the template $T=\left\{x_{1}, x_{2} ; x_{3}, x_{4}\right\}$ with $x_{1}=(n, 0)$, $x_{9}=(0, n-1) ; x_{3}=(-(n-2),-(n-2))$, and $x_{4}=(0,0)$ where n is the greatest odd
natural number less than or equal to $\sqrt{(k / 3)}+5$. Note that, in all cases, n is odd and not smaller than 5. Let $h T \oplus E=h T \oplus T$. We show that $h \geqq k$. Because

$$
\mathbf{0}=(0,0) \in h T \oplus T, \quad \mathbf{0} \in h T \oplus E
$$

Thus $0=k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}$, where $k_{1}, k_{2}, k_{3} \equiv 0$ and $h+1 \geqq k_{1}+k_{2}+k_{3}>0\left(k_{1}, k_{2}\right.$, $\left.k_{3} \in \mathbf{N}\right)$. So at least one k_{i} is greater than 0 and $k_{1} n=k_{3}(n-2)=k_{3}(n-2)=k_{2}(n-1)$. Because $n, n-1$ and $n-2$ have no common divisor except unity we conclude that $k_{1} \geqq(n-1)(n-2), k_{2} \geqq(n-2) n$, and $k_{3} \geqq n(n-1)$. Thus $h+1 \geqq 3(n-2)^{2} \geqq 3(\sqrt{(k / 3)}+$ $+5-2)^{2} \geqq k+1$.
Q.E.D.

Theorem 2. For any small template we have $\mu(T) \leqq 3$.
Proof. The validity of this claim was checked by an appropriate computer program: For all small templates, T, their sets of extreme points, E, were computer and the first k were searched for which $k T \oplus E=k T \oplus T$. One proves easily that these k equal $\mu(T)$.
Q.E.D.

Theorem 3. For any convex template T we have $\mu(T) \leqq 2$.
Proof. A proof can be obtained by combining some partial results of (8) and (9). In (8) it is shown that $\overline{(d+1) T}=\dot{\overline{d T}} \oplus E$ for any (d-dimensional) template T which yields, for our case $d=2$, the claim $\dot{\overline{3 T}}=\dot{\overline{2 T}} \oplus E$. In (9) it is shown that $\dot{\overline{k T}}=k T$ for all 2 -dimensional convex templates and any $k \geqq 0$. Thus, we get

$$
\begin{equation*}
3 T=\dot{3}=\dot{2}=\dot{2 T} \oplus E=2 T \oplus E \tag{5}
\end{equation*}
$$

This proves our theorem.
In case of rectangular convex templates we get even lower indices:
Theorem 4. For the rectangular template $T=\{n, n+1, \ldots, n+i\} \times\{m, m+1, \ldots$ $\ldots, m+j\}$, we have $\mu(T)=1$.

Proof. Let $x=\left(x_{1}, x_{2}\right) \in 2 T$. Then $2 n \leqq x_{1} \leqq 2 n+2 i$ and, consequently, $n \leqq$ $\leqq\left(x_{1}-n\right) \leqq n+2 i$. If $x_{1}-n>n+i$ then $n-i \leqq x_{1}-(n+i) \leqq n+i$ and $n \leqq x_{1}-$ $-(n+i) \leqq n+i$. A similar argument shows that either $m \leqq x_{2}-(m+j) \leqq m+j$ or $m \leqq x_{2}-m \leqq m+j$. This proves our theorem because $E(T)=\{n, n+i\} \times\{m, m+j\}$.
Q.E.D.

4. Summary

In a former paper (7) the author had proved that, for any neighbourhood template T, there is a number, $\mu(T)$, such that $k T \oplus T=k T \oplus E(k \geqq \mu(T))$ where E is the template containing only the extreme points of $T . \mu(T)$ is called the index of concavity of T. In image analysis with bit-oriented parallel computers this fact can be used to speed-up pattern classification algorithms which make excessive use of

Minkowski-operations like erosion, dilation, opening and closing by appropriately: chosen neighbourhood templates. This speed-up is only achieved if $\mu(T)$ is low. In this paper, it is shown that this is, in fact, true for all practically important templates, i.e., for (arbitrary) convex ones and small ones. Nevertheless, exotic templates can be derived having arbitrarily high indices of concavity.

Acknowledgement

The author thanks Ms. I. Mayer for writing the program for the proof of Theorem 2 and Dr. D. Vollath for some useful editorial hints.

INSTITUT FÜR MATERIAL- UND
FESTKORPERFORSCHUNG III
KERNFORSCHUNGZENTRUM KARLSRUHE
POSTFACH 3640
D-75 KARISRUIIE 1
WST-GERMANY

Literature

[1] Serra, J., Introduction a la morphologie mathematique,.Le cahier du Centre de Morphologie Mathematique de Fontainbleau, Fascicule 3, 1969.
[2] Vollath, D., The image analysing system PACOS, Praktische Metallographie 19, 7-23 and 94-103, (1979).
[3] Batcher, K. E., Bit-serial parallel processing systems, IEEE Transactions on Computers, C-31, 5, May 1982, 377-384.
[4] Parkinson, D., An introduction to array processors, Reprint from Systems International, Nov 1977.
[5] Babenhauserheide, M., Pecht, J., PPSTAR. A FORTRAN IV software package to support the development of portable image processing software, Proceedings of the 6th International Conference on Pattern Recognition, Munich, October 1982, p. 1204.
[6] Pecht, J., Vollath, D. and Gruber, P., A fast bit-plane processor for quantitative image processing in a minicomputer environment, hardware and software architecture, in: Schüßler, H. V., (editor): Signal Processing II: Theory and Applications, EUSIPCO 1983, pp. 809-812.
[7] Pecht, J.. Speeding-up successive Minkowski-operations with bit-plane computers. Pattern Recognition Letters 3 (1985), pp. 113-117.
[8] Szwerinski, H., Zellularautomaten mit symmetrischer lokaler Transformation, Dissertation, TU Braunschweig (FRG), 1982 pp. 72-77.
[9] Pecht, J., Ein weiterer Ansatz zur Mustertransformation und -erkennung in zellularen Räumen, Dissertation, TU Braunschweig (FRG), 1980, pp. 206-213.
(Received July 31, 1985.)

Optimization of multi valued logical functions based on evaluation graphs

A. Varga
Dedicated to Professor K. Tandori on his 60th birthday

Abstract

In this paper we discuss simplifications of multi valued logical functions. The simplification is carried out in the following way. We associate tree graphs with the disjunctive or conjunctive normal forms of the functions. Under certain conditions some vertices of these trees can be omitted. This cancellation will correspond to reduction of terms or variables in the original function.

After all possible simplifications a normal form, which is equivalent to the function in question, is obtained.

1. Definitions, notations

Let $k(>2)$ be a natural number and ε_{k} the set $\{0,1,2, \ldots, k-1\}$. Any function $f: \varepsilon_{k}^{n} \rightarrow \varepsilon_{k}$ is called a k-valued logical function of n-variables where ε_{k}^{n} denotes the Cartesian product of n copies of ε_{k}. These functions are often given by their truth-tables and they will also be denoted by $f\left(\mathbf{X}^{n}\right)$ or $f\left(\mathbf{X}^{n}\right)=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. The set of k-valued logical function will be denoted by P_{k}. Several properties valid in the theory of ordinary two-valued logic remain true in the theory of k-valued logic as well. But in the case $k \geqq 3$ certain characteristics are essentially different from those in ordinary logic.

A major problem is the definition of negation, since it can be defined in several ways.

Definition 1. Let $A_{i} \in\{0,1, \ldots, k-1\}, i=1,2, \ldots, n ; n \geqq 2$. Then the operators defined by

$$
A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n}=\min \left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

and

$$
A_{1} \vee A_{2} \vee \ldots \vee A_{n}=\max \left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

are called the conjunction and disjunction of the variables $A_{1}, A_{2}, \ldots, A_{n}$, respectively.

The following identities can easily be proved:
I.

$$
\begin{aligned}
& A \wedge B=B \wedge A \\
& A \vee B=B \bigvee A, \text { for every } A, B
\end{aligned}
$$

II.

$$
A \wedge(B \wedge C)=(A \wedge B) \wedge C
$$

$$
A \vee(B \vee C)=(A \vee B) \vee C, \text { for every } A, B, C
$$

III.

$$
A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)
$$

$$
A \vee(B \wedge C)=(A \vee B) \wedge(A \vee C), \text { for every } A, B, C
$$

IV.

$$
A \vee A=A
$$

$$
A \wedge A=A, \quad \text { for every } A
$$

V.

$$
A \wedge(k-1)=A
$$

$$
A \vee \emptyset=A, \quad \text { for every } A
$$

Below we give two types of negation: one for logical constants and one for logical variables.

Definition 2. Let $A \in \varepsilon_{k}$. Then

$$
\bar{A}=(k-1)-A .
$$

Definition 3. If X is a variable then \bar{X} denotes that function the actual value of which is the negation (in the sense of Definition 2) of the actual value of X. Let us introduce the following unary operator

$$
{ }^{a} X^{b}=\left\{\begin{array}{l}
k-1, \text { if } a \leqq X \leqq b \\
0 \text { elsewhere }
\end{array}\right.
$$

where $a, b, X \in \varepsilon_{k}$ and $a \leqq b$ are fixed. It should be noticed that ${ }^{a} X^{b}$ is two-valued. By Definition 3, the negation of ${ }^{a} X^{b}$ is

$$
\overline{{ }^{a} X^{b}}=\left\{\begin{array}{l}
0, \quad \text { if } \quad a \leqq X \leqq b, \\
k-1 \quad \text { elsewhere },
\end{array}\right.
$$

where $a, b, X \in \varepsilon_{k}$ and $a \leqq b$ are fixed. The formulae in the theory of k-valued logic, similarly to those of two valued logic, will be given by recursive definition.

Definition 4.

(0) The elements of ε_{k} are k-valued logical formulae;
(1) $X_{1}, X_{2}, \ldots, X_{n},{ }^{a_{1}} X^{b_{1}},{ }^{a_{2}} X^{b_{2}}, \ldots,{ }^{a_{n}} X^{b_{n}}$ are k-valued logical formulae;
(2) If F is a k-valued logical formula, then \bar{F} is a k-valued formula;
(3) If F and G are k-valued logical formulae, then $F \vee G, F \wedge G$ are k-valued logical formulae;
(4) Every k-valued logical formula can be obtained by a repeated application of (0)-(3).

In what follows the letters f, g, \ldots will denote functions and the capital letters F, G, \ldots will denote formulae. By a function of n-variables we mean a k-valued logical function of n-variables ($k \geqq 3$).

Value assignement. The ordered n-tuple $\left(X_{1}, X_{2}, \ldots, X_{i} \mid A_{i}, \ldots, X_{n}\right)$ is called a value assignement of the i-th variable. If every variable has value simultaneously, then the ordered n-tuple $\left(\mathrm{X}^{n} \mid \mathbf{A}^{n}\right)=\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)$ is simply called a value assignement.

Let $f\left(\mathbf{X}^{n}\right)$ be a function. Then

$$
\mathbf{f}\left(\mathbf{X}^{n} \mid \mathbf{A}^{n}\right)=f\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)
$$

denotes the fact that X_{i} is replaced by A_{i}, where $A_{i} \in \varepsilon_{k} i=1,2, \ldots, n$. The value $f\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)$ is called the value of $f\left(\mathbf{X}^{n}\right)$ under the value assignement $\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)$. Below the value assignement $\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)$ and the value $f\left(X_{1}\left|A_{1}, X_{2}\right| A_{2}, \ldots, X_{n} \mid A_{n}\right)$ will be denoted simply by $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $f\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, respectively. One can define value assignements for formulae as well.

Definition 5. Let $f, g \in P_{k}$. If the value of g does not exceed that of f (in any position of the truth-table), then we say that g implies f and write $g \rightarrow f$.

Definition 6. Formulae F and G are said to be equivalent if the corresponding functions f and g are equal. In this case we write $F=G$.

An easy computation gives
Lemma 1. Let $f\left(\mathrm{X}^{n}\right)=f\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geqq 2$. Then for every $i=1,2, \ldots$,

$$
f\left(X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{n}\right)=\bigvee_{j=0}^{k-1}\left[f\left(X_{1}, \ldots, X_{i-1}, X_{i} \mid j, X_{i+1}, \ldots, X_{n}\right) \wedge^{j} X_{i}^{j}\right]
$$

Remark. Below the conjunction will be denoted by - (sometimes it will be omitted) or, in the case of several variables, by Π, and the disjunction will be denoted by + or Σ. The following lemma can easily be verified.

Lemma 2. Let $f\left(\mathbf{X}^{n}\right)=f\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geqq 2$. Then the relation

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{ }^{a_{1}} X_{1}^{a_{1} a_{2}} X_{2}^{a_{2}} \ldots{ }^{a_{n}} X_{n}^{a_{n}} f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

holds, where Σ is taken over all the possible ordered n-tuples, and $a_{i} \in \varepsilon_{k}, i=1,2, \ldots, n$.
Definition 7. By a superposition of the k-valued logical functions $f\left(X_{1}, X_{2}, \ldots\right.$ $\left.\ldots, X_{i}, \ldots, X_{n}\right)$ and $g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ we mean the function $f\left(X_{1}, X_{2}, \ldots, g\left(X_{1}, X_{2}, \ldots\right.\right.$ $\left.\ldots, X_{n}\right), \ldots, X_{n}$) which is obtained by substituting the function g for the i-th argument X_{i} of f.

Definition 8. The set of functions $\left\{f_{1}, f_{2}, \ldots, f_{l}\right\}$ is called a basis-set for P_{k} if every elements of P_{k} can be expressed by $X_{i}(i=1,2, \ldots, n)$ and the functions $f_{1}, f_{2}, \ldots, f_{n}$ applying superpositions finitely many times. It is customary to say that the elements of a basis set form a functionally complete function system.

By virtue of Lemma 2 we get that the system $\left\{0,1, \ldots, k-1,{ }^{0} X^{0},{ }^{1} X^{1}, \ldots\right.$ $\left.\ldots,{ }^{k-1} X^{k-1}, \min \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{2}\right)\right\}$ is complete in P_{k}.

Definition 9. The expression

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{ }^{a_{1}} X_{1}^{a_{1} a_{2}} X_{2}^{a_{2}} \ldots{ }^{a_{n}} X_{n}^{a_{n}} f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

is called the full disjunctive normal form $F_{v}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of the function f.
Since $a_{i} \in \varepsilon_{k}, i=1,2, \ldots, n$, the number of all different n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$), is k^{n}. Denoting the value $f\left(a_{1}^{(j)}, a_{2}^{(j)}, \ldots, a_{n}^{(j)}\right.$), concerning the j-th n-tuple (in a fixed ordering) ($a_{1}^{(j)}, a_{2}^{(j)}, \ldots, a_{n}^{(j)}$) by α_{j} and the corresponding conjunction

$$
{ }_{1}^{a_{1}(j)} X_{1}^{b_{1}(j) a_{2}(j)} X_{2}^{a_{2}(j)} \ldots{ }^{a_{n}(j)} X_{n}^{a_{n}(j)}
$$

by E_{j}^{n} the full disjunctive normal form belonging to $f\left(\mathbf{X}^{n}\right)$ can be written in the form

$$
F_{\mathrm{V}}\left(\mathbf{X}^{n}\right)=\sum_{j=0}^{k^{n}-1} \alpha_{j} E_{j}^{n} .
$$

$E_{j}^{(n)}$ is called a min term of n-variables. We will require some further formulae which can easily be verified.

$$
\begin{gather*}
{ }^{a} X^{c}+{ }^{d} X^{b}=\left\{\begin{array}{lll}
a \\
{ }^{d} X^{b} & \text { if, } & a \leqq d \leqq c \leqq b, \\
\frac{X^{b}}{}{ }^{c+1} X^{d-1} & \text { if } & d \leqq a \leqq c \leqq \\
{ }^{a} X^{c} \cdot{ }^{d} X^{b}= & a \leqq c<d \leqq b, a, b, c, d, X \in \varepsilon_{k} . \\
\begin{array}{lll}
0 & \text { if, } & a \leqq c<d \leqq b, \\
d^{c} & \text { if, } & a \leqq d \leqq c \leqq b, \\
{ }^{d} X^{b} & \text { if, } & a \leqq d \leqq b \leqq c, a, b, c, d, X \in \varepsilon_{k} .
\end{array} \\
\bar{a} \overline{X^{b}}={ }^{0} X^{a-1}+{ }^{b+1} X^{k-1},
\end{array}\right. \tag{1}
\end{gather*}
$$

where

$$
\begin{gather*}
{ }^{0} X^{a-1}=0 \text { if } a=0,{ }^{b+1} X^{k-1}=0 \quad \text { if } b=k-1, a, b, X \in \varepsilon_{k} \\
{ }^{0} X^{k-1}=k-1 . \tag{4}\\
\overline{a^{a} X^{b}+\bar{a} X^{b}}=k-1, a, b, X \in \varepsilon_{k} . \tag{5}\\
\overline{\alpha^{a_{1}} X_{1}^{b_{1} a_{2}} X_{2}^{b_{2}} \ldots{ }^{a_{n}} X_{n}^{b_{n}}}=\bar{\alpha}+{ }^{a_{1}} X_{1}^{b_{1}}+\overline{a_{2}} X_{2}^{b_{2}}+\ldots+{ }^{a_{n} X_{n}^{b_{n}}} \tag{6.a}\\
\overline{\alpha+{ }^{a_{1}} X_{1}^{b_{1}}+{ }^{a_{2}} X_{2}^{b_{2}}+\ldots+{ }^{a_{n}} X_{n}^{b_{n}}}=\bar{\alpha} \overline{a_{1}} X_{1}^{b_{1}} \overline{a_{2}} X_{2}^{b_{2}} \tag{6.b}\\
\overline{a_{n}} X_{n}^{b_{n}}
\end{gather*}
$$

where

$$
X_{i}, a_{i}, b_{i} \in \varepsilon_{k}, \quad i=1,2, \ldots, n
$$

Formulae (6a) and (6b) are the de Morgan's identities in the theory of multivalued logic.

The full conjunctive normal form can be defined in a similar manner.

Definition 10. By the full conjunctive normal form of a k-valued function $f\left(\mathbf{X}^{n}\right)$ we mean the formula

$$
F_{\wedge}\left(\mathbf{X}^{n}\right)=\prod_{j=0}^{k^{n}-1}\left(\alpha_{j}+\bar{E}_{j}^{n}\right)
$$

where \bar{E}_{j}^{n} can be obtained from E_{j}^{n} by the de Morgan's identities and denotes the so called max terms. Using the usual rules of the theory of two-valued logic the full normal forms can immediately be found from the truth-table. Every conjunction term and disjunction term of the full conjunctive and disjunctive normal forms contains the expression ${ }^{a_{1}} X_{1}^{b_{1}},{ }^{a_{2}} X_{2}^{b_{2}}, \ldots,{ }^{a_{n}} X_{n}^{b_{n}}$ of the variables $X_{1}, X_{2}, \ldots, X_{n}$.

The full disjunctive and conjunctive normal forms can be written in the following ways

$$
F_{V}\left(\mathbf{X}^{n}\right)=F_{1}+F_{2}+\ldots+F_{k-1}=\sum_{i=1}^{k-1} F_{i}
$$

and

$$
F_{\wedge}\left(\mathbf{X}^{n}\right)=F_{1}^{\prime} F_{2}^{\prime} \ldots F_{k-1}^{\prime}=\prod_{j=1}^{k-1} F_{j}^{\prime}
$$

where $F_{i}\left(F_{j}^{\prime}\right)$ is the sub-formula consisting only of min terms (max terms) which determine the i-th (j-th) value of the function.

Definition 11. Let F be a disjunctive normal form of $f \in P_{k}$, and let G be a conjunction term of F. We say that G is an implicant of f if $G \rightarrow f$. G is called prime implicant if, for every G^{\prime} obtained by omitting any variable of $G, G^{\prime}+f$ holds.

Remark. The above defined \min and max operations are mutually distributive (see identity III). Using this fact and the duality of the two operations we can treat the disjunction terms in a conjunctive normal form in the same way as we treat the conjunction terms in a disjunctive normal form. A normal form is called irredundant if the following properties hold:
(1) each of its terms is a primimplicant, and
(2) no expression obtained by omitting any term in the normal form implies the original function.
A normal form is called redundant if it is not irredundant.

2. Representation of formulae of functions.

The tree-construction procedure

We will work with a fixed order of our variables, which will be denoted by S. We agree that if we write $f\left(\mathbf{X}^{n}\right)=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ then $S \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. The simplification procedure we are going to discuss depends on S, therefore to some of the objects in the procedure we will affix S. By successive evaluation we mean successive evalution determined by S (i.e. we change first the first variable for logical values then the second one etc.)

Let $f\left(\mathrm{X}^{n}\right)$ and $S \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be given, and let

$$
\begin{gathered}
f\left(\mathbf{X}^{n}\right)=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=f_{0,1} \\
f\left(0, X_{2}, \ldots X_{n}\right)=f_{1,1} \\
f\left(1, X_{2}, \ldots X_{n}\right)=f_{1,2} \\
\vdots \\
\vdots \\
f\left(i, X_{2}, \ldots, X_{n}\right)=f_{1, i+1} \\
\vdots \\
\vdots \\
f\left(k-1, X_{2}, \ldots, X_{n}\right)=f_{1, k} \\
f\left(0,0, X_{3}, \ldots, X_{n}\right)=f_{2,1} \\
\vdots \\
\quad \vdots \\
f\left(0, k-1, X_{3}, \ldots, X_{n}\right)=f_{2, k} \\
f\left(1,0, X_{3}, \ldots, X_{n}\right)=f_{2, k+1} \\
\vdots \\
\quad \vdots\left(k-1, k-1, X_{3}, \ldots, X_{n}\right)=f_{2, k^{2}} \\
\vdots \\
\\
f\left(k-1, k-1, \ldots, k-1, X_{n}\right)=f_{n-1, k^{n-2}} \\
f(k-1, k-1, \ldots, k-1,0)=f_{n, 1} \\
\vdots \\
f(k-1, k-1, \ldots, k-1, k-1)=f_{n, k^{n}}
\end{gathered}
$$

Using the results of Lemma 1, the following arrangement can be given (Fig. 1).
The functions $f_{0,1}, f_{1,1}, \ldots, f_{n, k^{n}}$ are called level-functions. Every function $f_{m, j}$ ($0 \leqq m<n, 1 \leqq j \leqq k^{m}$) determines k new functions on the ($m+1$)-th level in the following way:

$$
f_{m+1, j k-(i-(k-1))}\left(\ldots, X_{j}, \ldots\right)=f_{m, j}(\ldots, i, \ldots)
$$

So there are k^{m+1} level-functions on the ($m+1$)-th level. The ${ }^{i} X_{j}^{i} s(i=0,1, \ldots, k-1$, $j=1,2, \ldots, n$) appearing at the edges of the tree above indicate that the variable X_{j} is replaced by the constant i. The functions $f_{n, 1}$, being on the n-th level, are logical values.

This way we can associate a k-ary tree with every function $f\left(\mathbf{X}^{n}\right)$.
The tree which has just been obtained will be denoted by Φ_{S} (notice that the construction depends on the fixed order S of the variables). Since Φ_{S} contains all the possible level functions, Φ_{s} will be called complete.

Fig. 1

Notion of endpoint and path

By endpoints we mean the "leaves" of the tree (the vertices on the lowest, n-th level). Any sequence of edges joining the root with some endpoint will be called a path. Some more notations:

Let Φ_{S} be a tree belonging to $f\left(\mathbf{X}^{n}\right)$, and let $S \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be fixed. Suppose that the edge denoted by ${ }^{a} X_{i+1}^{a}$ connects the level functions $f_{i, j}$ and $f_{i+1,1}$.

Below $f_{i, j}$ and $f_{i+1, j}$ will be called the start-point and the endpoint of the edge ${ }^{a} X_{i+1}^{a}$, respectively. Obviously there is a one-to one correspondence between the evaluations of a function $f\left(\mathbf{X}^{n}\right)$ and the paths of the corresponding tree Φ_{S}. If we know the tree Φ_{s} corresponding to a function $f\left(\mathbf{X}^{n}\right)$ then it is easy to determine the $F_{V}\left(\mathbf{X}^{n}\right)$ full disjunctive and $F_{\wedge}\left(\mathbf{X}^{n}\right)$ full conjunctive normal forms of $f\left(\mathbf{X}^{n}\right)$. To obtain $F_{V}\left(\mathbf{X}^{n}\right)$ we have to take the conjunction of the variables ${ }^{j} X_{i}^{j}$ along paths together with the logical value of the endpoint of the path and take the disjunction of all these expressions for every possible paths. If we interchange here "disjunction" and "conjunction" and "variable" for "negation of variable" we obtain $F\left(\mathbf{X}^{"}\right)$.

This method shows that the tree Φ_{S} is a representation of the formulae F_{V} and F_{λ}. It can also be seen that Φ_{S} is equivalent to the truth-table of the function, the difference between them is that Φ_{S} can be obtained by successive evaluation while the truth-table is given by simultaneous evaluation.

Theorem 1. Let $f\left(\mathbf{X}^{n}\right) \in P_{k}, \quad S \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Then the tree-construction procedure associates a uniquely determined k-ary tree to f.

Proof. The level function $f_{m+1, j k-(i-(k-1))}$ has fewer variables than $f_{m, j}$. Since $f_{0,1}$ contains a finite number of variables, the procedure must necessarily stop after the construction of a finite number of levels, which gives the existence of the tree. The unicity can be obtained from the equivalence of simultaneous and successive evaluations.

Definition 12. Any function f with domain $D(f) \subset \varepsilon_{k}^{n}$ is called a partially defined function. Those places where f is not defined will be marked by ($*$) in the truth-table and at the "leafs" of the tree.

In the process of simplification we can assign any value to these places, which, in certain cases, yields a simpler representation.

3. The simplification procedure

Let $f\left(\mathbf{X}^{n}\right) \in P_{k}$ and let S be fixed. In order to construct an irredundant equivalent of $f\left(\mathbf{X}^{n}\right)$ first we construct the tree Φ_{S} and choose that subtrees $\Phi_{s}^{t}(t=0,1, \ldots, k-1)$ of Φ_{S} which consists of those paths of Φ_{S} that have t at their end.

Definition 13. Those points of $\Phi_{s}^{t}(t=0,1, \ldots, k-1)$ from which exactly k edges start will be called complete branching points, and the k edges starting from such a point will be called a complete edge-system. A complete branching point of a subtree is called m-multiple complete branching point if the subtree has altogether m total branching points with the same complete edge-system as the given point (more precisely the variables attached to the complete edge systems must be the same).

Let p be an arbitrary path of $\Phi_{S}^{t}(t=0,1, \ldots, k-1)$ and let n be the number of its edges.

Let
${ }^{*} X_{n_{j}}^{*}=\left\{\begin{array}{cccc}{ }^{0} X_{n_{j}}^{0} & \text { if } & { }^{0} X_{n_{j}}^{0} & \text { belongs to } p, \\ { }^{1} X_{n_{j}}^{1} & \text { if } & { }^{1} X_{n_{j}}^{1} & \text { belongs to } p, \\ \vdots & \vdots & \vdots & \vdots \\ { }^{k-1} X_{n_{j}}^{k-1} & \text { if } & { }^{k-1} X_{n_{j}}^{k-1} & \text { belongs to } p, \quad\left(1 \leqq n_{j-1}<n_{j} \leqq n, 2 \leqq j \leqq m\right)\end{array}\right.$
and

$$
\left\{{ }^{*} X_{n_{1}}^{*},{ }^{*} X_{n_{2}}^{*}, \ldots,{ }^{*} X_{n_{m}}^{*}\right\} \equiv \bar{X}\left\{p, n_{j}, m\right\}
$$

some edges of p.
Those edges of p (if there is any) which do not belong to \bar{X} will be called connecting sequences of \bar{X} (relative to p) and will be denoted $\chi=\left\{\varkappa_{1}, \varkappa_{2}, \ldots, \varkappa_{s}\right\}$.

Let Φ_{s}^{t} be given, and let p be a path of Φ_{S}^{t}. A subtree $\Phi_{S}^{\prime t}$ of Φ_{s}^{t} will be called maximally simplifiable subtree of order m (below briefly MSST) if
(1) $\Phi_{S}^{\prime t}$ contains p,
(2) there exists such an edge set $\bar{X}=\bar{X}\left\{p, n_{j}, m\right\}\left(1 \leqq n_{j-1}<n_{j} \leqq n, 2 \leqq j \leqq m\right)$ of p taken in the fixed order determined by S that the edges marked by ${ }^{*} X_{n_{i+1}}^{*}(i=0,1, \ldots, m-1)$ belong to k^{i}-multiple total edge systems of $\Phi_{s}^{\prime t}$, and if p^{\prime} is any other path of $\Phi_{S}^{\prime t}$ then the connecting sequences of $\bar{X}=\bar{X}\{p$, $\left.n_{j}, m\right\}$ and $\bar{X}^{\prime}=\bar{X}^{\prime}\left\{p^{\prime}, n_{j}, m\right\}$ relative to p and p^{\prime} are the same (more precisely, are marked in order with the same variables ${ }^{u} X_{v}^{u}$).
(3) There exist no subtree $\Phi_{S}^{\prime \prime t}$ of $\Phi_{S}^{\prime t}$ that has properties (1) and (2) and which has more than m total branching points.
The structure of an MSST of order m is shown on Fig. 2.
Remark. x_{i} is the sequence of edges between ${ }^{*} X_{n-1}^{*}$ and ${ }^{*} X_{n_{i}}^{*}$ in the order determined by S. If $n_{i}=n_{i-1}+1$ then χ_{i} is empty. If $m=0$ then $\Phi_{S}^{\prime t}=p$. It is obvious that if a tree Φ_{S}^{t} and its path p are given then there exists at least one MSST containing p.

Theorem 2. Let $f\left(\mathbf{X}^{n}\right) \in P_{k}, \Phi_{S}^{t}(t=0,1, \ldots, k-1)$ a tree belonging to a fixed S, p a path of Φ_{S}^{t} and \mathfrak{M} an MSST of p. Let the n-term conjunction of variables along the paths of \mathfrak{M} be: $p_{1}, p_{2}, \ldots, p_{k^{t}}$ ($1 \leqq l \leqq n$), and the (variables at the) connecting sequence $\varkappa_{1}, \varkappa_{2}, \ldots, x_{m}$. Then

$$
\sum_{j=1}^{k^{1}} p_{j}=\prod_{i=1} x_{i}
$$

holds.
Proof. \mathfrak{M} contains k^{1} paths, so there are $k^{0}, k^{1}, \ldots, k^{m-1}$ total branchings on the different levels. In other words the formula F_{t} corresponding to Φ_{S}^{t} does not depend on the variables appearing in the total branchings because it takes the value t independently of these variables, so they can be omitted.

This theorem shows that every $\mathfrak{P l}$ yields one term. The term which is obtained by the method above is called the simplified formula of \mathfrak{M}. The disjunction of such simplifications of MSST's is the simplified formula of the function.
A. Varga

4. Irredundant coverings

Definition 14. A set of MSST-s of a tree $\Phi_{S}^{t}(t=0,1, \ldots, k-1)$ is called a covering if each path of the tree belongs to at least one of the MSST-s of the set.

A covering is called irredundant if any MSST in it contains at least one path belonging only to this MSST.

Theorem 3. Let Φ_{S}^{t} represent the disjunctive normal form of an $f\left(\mathbf{X}^{n}\right) \in P_{s}$, ($t=0,1, \ldots, k-1$), together with one of its irredundant coverings. Let \tilde{F}_{V} denote the disjunction of simplified formulae obtained from the elements of the set of MSST-s giving the irredundant covering in question. Then \tilde{F}_{V} is irredundant:

Proof. Suppose that \tilde{F}_{V} is redundant. Then there exist two cases.
(1) some disjunction term of \widetilde{F}_{V} can be omitted;
(2) at least one variable can be omitted from some conjunction term of \tilde{F}_{V};

First suppose that a term $F^{(1)}$ of \tilde{F}_{V} can be omitted. Since every MSST gives only one conjunction term, omitting this is equivalent to omitting the MSST from the covering, but taking into account the irredundancy, this is impossible.

Secondly we note that, if an $F^{(i)}$ can be replaced by an $F^{(i)}$ obtained from $F^{(i)}$ by omitting some variables, then the MSST giving $\boldsymbol{F}^{(i)}$ contains the MSST which gave $F^{(i)}$, but this contradict the definition of MSST.

Remark. Theorem 3 is formulated for full disjunctive normal forms, but because of the principle of duality it is true for full conjunctive normal forms as well.

5. Simplifiable paths, simplification algorithm

Definition 15. Let $\Phi_{S}^{t}(t=0,1, \ldots, k-1)$ be given, and take a path p of Φ_{S}^{t}, $-p$ is called singular if the MSST coincides with p.
$-p$ is called simply covered if p is covered by one and only one MSST.

- p is multiply covered if it is covered by at least two MSST-s.

Theorem 4. Let $f\left(\mathbf{X}^{n}\right) \in P_{k}$ be given by either its disjunctive or conjunctive full normal forms. If f is given by its full disjunctive normal form F_{V} and some max term E_{j}^{n} is simultaneously represented by formulae $F_{l-m}, F_{l-m+1}, \ldots, F_{l-m+i}$, then

$$
\begin{equation*}
\min \left(F_{l-m}, F_{l-m+1}, \ldots, F_{l-m+i}\right)=F_{l-m} . \tag{1}
\end{equation*}
$$

If f is given by the full conjunctive normal form F_{\wedge} and some max term \bar{E}_{j}^{n} is simultaneously represented by formulae $F_{l-m}, F_{l-m+1}, \ldots, F_{l-m+i}$, then

$$
\begin{equation*}
\max \left(F_{l-m}, F_{l-m+1}, \ldots, F_{l-m+i}\right)=F_{l-m+i} \tag{2}
\end{equation*}
$$

The statement can easily be proved taking into account the definitions of the \min and max operators.

Formula (1) means that the simplification procedure of a function f (or tree Φ_{S} which is representing the function and is written from the disjunctive normal form) value (for example in case $\varepsilon_{k}=\{0,1, \ldots, k-1\}$ with Φ_{S}^{k-1}). After the first step of the

[^0]simplification the endpoints'marked with $(k-1)$ can be considered of (*)-value, that is undefined, in the tree $\boldsymbol{\Phi}_{\boldsymbol{S}}$. Let us introduce the following notations:
(i)
$$
\Phi_{S}^{k-2, *}=\Phi_{S}^{k-1} \cup \Phi_{S}^{k-2}
$$
and
(ii)
$$
\Phi_{S}^{k-i, *}=\Phi_{S}^{k-(i-1), *} \cup \Phi_{S}^{k-i} \quad(i>2)
$$
where $l=k-j$ and (*) is written on the places $j<i$: By virtue of Theorem 4, there are subtrees which may give more favourable conditions for simplifiction.

On the other hand relation (2) shows in case of tree of functions given by full conjunctive normal form that simplification has to be started with the simplification of that subtree determined by the path with smallest logical value and we have to apply the method above. Below the procedure will be shown only for functions given by their full disjunctive normal forms. The case of full conjunctive normal forms can be treated in a similar way.

Now we can give the simplification procedure.

6. Simplification algorithm for representations of irredundant formulae

(1) Let $i=1$. Mark the paths with endpoint $t=k-1$ in the tree Φ_{S} (that is we start from the subtree Φ_{S}^{k-1}). If in the tree Φ_{S} originally there are endpoints marked with (*), then we begin with $\Phi_{S}^{k-1} \cup \Phi_{S}^{*}$.

We choose a path and an MSST containing it. We take a record of the simplified formulae corresponding to this MSST and mark the paths in it.
(2) We choose an unmarked path and determine an MSST covering it, preferably with unmarked endpoints (this will speed up the algorithm). This way such an MSST is chosen which is necessary for an irredundant covering. The simplified formula belonging to the MSST we have just obtained will be taken record of and the so far unmarked paths of the MSST will be marked.

Repeat step 3 . until we can find unmarked paths in Φ_{S}^{k-1}.
If there is no unmarked path, then let $i=i+1$. If $i<k$, then consider the subtree
$\Phi_{S}^{k-1, *}$ and carry out the above steps (1), (2), (3). If $i=k$ the algorithm is over.
Finally the simplified formula of the function $f\left(\mathbf{X}^{n}\right)$ can be determined as follows:

Let

$$
\begin{gathered}
\boldsymbol{F}_{s, 1}^{k-1}, \boldsymbol{F}_{s, 2}^{k-1}, \ldots, \boldsymbol{F}_{s, i_{1}}^{k-1} \\
\boldsymbol{F}_{s, 1}^{k-2}, \boldsymbol{F}_{s, 2}^{k-2}, \ldots, \boldsymbol{F}_{s ; i_{2}}^{k-2} \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
$$

respectively. Then the formula:

$$
\begin{aligned}
(k-1) \cdot & \left(F_{s, 1}^{k-1}+F_{s, 2}^{k-1}+\ldots+F_{s, i_{1}}^{k-1}\right)+(k-2) \cdot\left(F_{s, 1}^{k-2}+F_{s, 2}^{k-2}+\ldots+F_{s, i_{2}}^{k}\right)+\ldots \\
& +2 \cdot\left(F_{s, 1}^{2}+F_{s, 2}^{2}+\ldots+F_{s, k-2}^{2}\right)+1 \cdot\left(F_{s, 1}^{1}+F_{s, 2}^{1}+\ldots+F_{s, i_{k-1}}^{1}\right)
\end{aligned}
$$

corresponds to an irredundant covering of Φ_{S}.
All these can be summarised in the following theorem.
Theorem 5. Every tree Φ_{S} has at least one irreduñdant covering.

7. Some demonstrative examples

I. Consider the function

$$
f^{3}(X, Y, Z)=1 \Sigma(1,4,7,10,11,13,14,19,22,25)+2 \Sigma(6,15,16,17,24)
$$

given by its full disjuntive normal form (here we use the conventional notation of binary logic; only the numbers in brackets should be considered as numbers in the number system with base k instead of 2). We will simplify the function $f^{3}(X, Y, Z)$. Let $S \equiv(X, Y, Z)$ be the order of evaluation. Fig. 3 gives the complete tree of f^{3} With $k=2$ pick the tree Φ_{S}^{2} and let us analyse it (Fig. 4).

Fig. 4
Fig. 5

Fig. 6
Let us investigate the paths of this tree moving from the left to the right

1. There is no singular path.
2. Simply covered paths: (6), (16), (17). The MSST belonging to (6) is (6-15-
24) (Fig. 5). The next path is (16) and the corresponding MSST is (15-16-17) (Fig. 6).
The simplified formulae

$$
\begin{gathered}
{ }^{2} Y^{2} \cdot{ }^{0} Z^{0} \\
{ }^{1} X^{12} Y^{2}
\end{gathered}
$$

3. There is no more unmarked path.

We write (*) instead of 2 and consider $\Phi_{S}^{1, *}$ with $k=1$. (Fig. 7)

1. There is no singular path.
2. Simply covered paths are:
(1) and the corresponding MSST is (1-4-7-10-13-16-19-22-25)
(Fig. 8), (11) and the MSST is (11-14-17) (Fig. 9).
The simplified formulae are:

$$
{ }^{1} Z^{1}
$$

$$
{ }^{1} X^{1} \cdot{ }^{2} Z^{2}
$$

The simplified irredundant formula is:

$$
2\left({ }^{1} X^{12} Y^{2}+{ }^{2} Y^{2}{ }^{0} Z^{0}\right)+1\left({ }^{1} Z^{1}+{ }^{1} X^{1}{ }^{2} Z^{2}\right)
$$

Fig. 9
II. Consider the following function

$$
f^{4}(X, y)=1 \Sigma(3,4,6,7)+2 \Sigma(1,5,13)+3 \Sigma(9,10,11,14)
$$

and let $S \equiv(X, Y)$. Simplify this function.

1. Singular paths are: (9), (10), (11), (14) and the formulae belonging to these are:

$$
{ }^{2} X^{2}{ }^{1} Y^{1},{ }^{2} X^{2}{ }^{2} Y^{2},{ }^{2} X^{2}{ }^{3} Y^{3},{ }^{3} X^{3}{ }^{2} Y^{2}
$$

2. There is no more unmarked path.

We write (*) instead of 3 and let $k=2$.

1. There is no singular path.
2. Simply covered path is: (1) and the MSST is (1-5-9—13) (Fig. 13)
3. There is no more unmarked path.

The simplified formula is ${ }^{1} Y^{1}$.
We write instead of 2 and 3 now ($*$) and let $k=1$.

1. Singular path is: (3) and the corresponding formula is: ${ }^{0} X^{0}{ }^{3} Y^{3}$
2. Simply covered path is (4) and the MSST is (4-5-6-7) (Fig. 15).

The simplified formula is: ${ }^{1} X^{1}$

Fig. 11
3. The simplified function is:

$$
3\left({ }^{2} X^{2} Y^{1}+{ }^{2} X^{2}{ }^{2} Y^{2}+{ }^{2} X^{2}{ }^{3} Y^{3}+{ }^{3} X^{3}{ }^{2} Y^{2}\right)+2^{1} Y^{1}+1\left({ }^{0} X^{0}{ }^{3} Y^{3}+{ }^{1} X^{1}\right)
$$

Remark. The irredundant formula we have just obtained can be transformed by virtue of indentities treated above.

For example:

$$
\begin{gathered}
3\left({ }^{2} X^{2}\left({ }^{1} Y^{1}+{ }^{3} Y^{3}\right)+{ }^{2} Y^{2}\left({ }^{2} X^{2}+{ }^{3} X^{3}\right)\right)+2^{1} Y^{1}+1\left({ }^{0} X^{0}{ }^{3} Y^{3}+{ }^{1} X^{1}\right)= \\
=3\left({ }^{2} X^{2} Y^{3}+{ }^{2} X^{3}{ }^{2} Y^{2}\right)+2^{1} Y^{1}+1\left({ }^{0} X^{0}{ }^{3} Y^{3}+{ }^{1} X^{1}\right) .
\end{gathered}
$$

III. Let $f^{3}(X, Y, Z)$ be given by its truth-table (Fig. 16). Simplify this function Let $S \equiv(X, Y, Z) \cdot \Phi_{S}(X, Y, Z)$ is sketched in Fig. 17, For the endpoints marked with $k=2$ and * we have:

1. There is no singular path.
2. Simply covered paths are:
(i) (13) and the corresponding MSST is (4-13-22) (marked with +) (Fig. 17). The simplified formula is: ${ }^{1} Y^{11} Z^{\mathbf{1}}$;
(ii) (21), the MSST is (21-22-23) (marked with o) and the simplified formula is ${ }^{2} X^{2}{ }^{1} Y^{1}$.
(iii) (24), the MSST is (18-21-24) (marked with " $=$ ") and the simplified formula is ${ }^{2} X^{2}{ }^{0} Z^{0}$.
3. There is no more unmarked path with endpoint 2. Consider now the subtree with endpoints $k=1,2 \equiv *$ and
4. There is no singular path.
5. Simply covered paths are:

Fig. 13
(0), the MSST is ($0-3-6-9-12-15-18-21-24$) (marked with $\square)$ and the simplified formula is: ${ }^{0} Z^{0} ;(10)$, the MSST is ($9-10-11$) (marked with \bullet), the formula is ${ }^{1} X^{10} Y^{0}$; (16) MSST: (15-16-17) (marked with X), the formula is: ${ }^{1} X^{12} Y^{2}$.
3. There is no more unmarked path with endpoint 1.

The simplified formula of the function is:

$$
\begin{gathered}
2\left({ }^{1} Y^{1}{ }^{1} Z^{1}+{ }^{2} X^{2}{ }^{1} Y^{1}+{ }^{2} X^{2}{ }^{0} Z^{0}\right)+1\left({ }^{0} Z^{0}+{ }^{1} X^{10} Y^{0}+{ }^{1} X^{1}{ }^{2} Y^{2}\right)= \\
=2\left({ }^{1} Y^{1}{ }^{1} Z^{1}+{ }^{2} X^{2}{ }^{1} Y^{1}+{ }^{2} X^{2}{ }^{0} Z^{0}\right)+1\left({ }^{0} Z^{0}+{ }^{1} X^{1}{ }^{1} Y^{2}\right) .
\end{gathered}
$$

IV. Let

$$
f^{4}(X, Y)=1 \Sigma(5,8,9,11)+2 \Sigma(2,6,10)+3 \Sigma(13,14)+* \Sigma(1,12,15)
$$

and $S \equiv(X, Y)$. Simplify this function
For the paths with endpoints $k=3$ and *:

1. There is no singular path,
2. Simply covered paths are:
(13) MSST: (12-13-14-15) (marked with Ø) (Fig. 18) the simplified formula: ${ }^{3} X^{3}$.
3. There is no more path with endpoint $k=3$.

For the paths with endpoints $k=2,3 \equiv *$ and $*$:

1. There is no singular path.
2. Simply covered paths are:
(2) MSST: (2-6-10-14) (marked with +) the simplified formula is ${ }^{2} Y^{2}$.
3. There is no more unmarked path with endpoint $k=2$.

Fig. 15

X	Y	Z	f^{3}	X	Y	Z	f^{a}	X	Y	Z	f^{3}
0	0	0	1	1	0	0	1	2	0	0	$*$
0	0	1	0	1	0	1	1	2	0	1	0
0	0	2		1	0	2	$*$	2	0	2	0
0	1	0	1	1	1	0	1	2	1	0	2
0	1	1	$*$	1	1	1	2	2	1	1	2
0	1	2	0	1	1	2	0	2	1	2	2
0	2	0	1	1	2	0	1	2	2	0	2
0	2	1	0	1	2	1	1	2	2	1	0
0	2	2	$*$	1	2	2	1	2	2	2	0

Fig. 16

For the paths with endpoints $k=1,2 \equiv *, 3 \equiv *$, and $*$.

1. There exists no singular path.
2. Simply covered paths:
(5) MSST: (1-5—9—13) (marked with \square) the formula: ${ }^{1} Y^{1}$;
(8) MSST: (8-9-10-11) (marked with X) and the formula: ${ }^{2} X^{2}$.
3. There is no unmarked path with endpoint $k=1$.

The simplified formula is:

$$
3^{3} X^{3}+2^{2} Y^{2}+1\left({ }^{2} X^{2}+{ }^{1} Y^{1}\right)
$$


```
JOZZSEF A. UNIVERSITY
BOLYAI INSTITUTE
SZEGED
ARADI VERTANÚK TERE 1.
```


References

[1] Computer science and multiple-valued logic (theory and applications) ed. David C. Rine (Nort-Holland, Amsterdam 1977.) p. 262-282.
[2] S. Y. H. Su and A. A. Sarris, 'The Existence of Multivalued Algebra with Circuit Implementations IEEE. Comp. G. Repository R-70-114.
[3] S. Y. H. Su and A. A. Sarris, Relationship betwen Multivalued Switching Algebra and Boolean Algebra under Definitions of Complement. IEEE. Trans. Comp. vol C-21. May 1972.
[4] P. Varga Katalin, Módszerek Boole-függvények minimális vagy nem redundáns $\{\vee, \wedge, \Gamma\}$ vagy \{NOR\} vagy \{NAND\} bázisbeli, zárójeles vagy zárójel nélküli formuláinak elóallítására. MTA SZTAKI Tanulmányok, 1/1973.
[5] P. Varga K., On Some Minimizing Algorithms of Boolean functions. Acta Techn. Budapest 77. 419.
[6] Varga A., Hatékony eljárás Boole-függvények irredundáns normálformáinak elôállítására (doktori értekezés) Szeged, 1979, p. 101.

An Erdős-Ko-Rado type theorem II

Bỳ K. Engel and H.-D. O. F. Gronau

1. Introduction and results

Let R denote the interval $[1, r]$ of the first r positive integers. Let k be an integer with $0 \leqq k \leqq r$. The set of all k-element subsets of R will be denoted by $\binom{R}{k}$. The aim of this paper is to present the

Theorem 1: Let $\mu \geqq 4$ and $v \geqq 4$ be integers. If $F \subseteq\binom{R}{k}$,

$$
\begin{equation*}
\frac{r-1}{v}+1 \leqq k \leqq \frac{\mu-1}{\mu}(r-1) \tag{1}
\end{equation*}
$$

and F satisfies
$X_{1} \cap X_{2} \cap \ldots \cap X_{\mu} \neq$ for all $X_{1}, X_{2}, \ldots, X_{\mu} \in F$,
as well as
$X_{1} \cup X_{2} \cup \ldots \cup X_{v} \neq R$ for all $X_{1}, X_{2}, \ldots, X_{v} \in F$,
then
$|F| \equiv\binom{r-2}{k-1}$.
This is best possible. The families $F_{x, y}=\left\{X \in\binom{R}{k}: x \in X, y \in X\right\}$, where x and y are different fixed elements of R, are maximal.

This theorem was proved, for $\mu \geqq 6$ and $\nu \geqq 6$ and for some partial cases of k if $\mu=4,5$ or $v=4,5$, in Gronau [2]. Our proof here uses the same method but in a refined version.

Condition (1) is natural. For all other k 's one of the conditions (2) or (3) is satisfied automatically, and the problem reduces to the generalized Erdös-Ko-Rado theorem by Frankl [1]. For another simple proof, see Gronau [3].

Theorem 2. (generalized Erdös-Ko-Rado theorem) Let $\mu \geqq 2$ be an integer. If $F \subseteq\binom{R}{k}, \quad 0 \leqq k \leqq \frac{\mu-1}{\mu} r$, and F satisfies (2), then

$$
|F| \leqq\binom{ r-1}{k-1}
$$

Turning to the complements we obtain a dual version.
Theorem 2'. Let $v \geqq 2$ be an integer. If $F \subseteq\binom{R}{k}, \frac{r}{v} \leqq k \leqq r$, and F satisfies (3), then

$$
|F| \leqq\left(\frac{r-1}{k}\right)
$$

2. Some reductions

Let $\mu, v \geqq 4, k$ and $F \subseteq\binom{R}{k}$ be given such that (1), (2) and (3) hold. If

$$
\bigcap_{X \in F} X \neq \emptyset \quad \text { or } \quad \bigcup_{x \in P} X \neq R \quad \text { then } \quad|F| \leqq\binom{ r-2}{k-1}
$$

follows by Theorem 2 or 2^{\prime} immediately. Since the described families $F_{x, y}$, have cardinality $\binom{r-2}{k-1}$ and satisfy (2) as well as (3), the proof of Theorem 1 will be completed by proving

Theorem 3. Let $\mu \geqq 4$ and $v \geqq 4$ be integers. If $F \subseteq\binom{R}{k}$ and F satisfies (2) and (3) as well as $\bigcap_{X \in F} X=\emptyset$ and $\bigcup_{X \in F} X=R$, then

$$
|F|<\binom{r-2}{k-1}
$$

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3 only for $\mu=\nu=4$. Furthermore, we may restrict ourselves to $k \leqq \frac{r}{2}$ in the proof since $k>\frac{r}{2}$ follows 'by duality. We make use of some results from [2].

Proposition 1. ([2, Lemma 1]).

$$
\begin{aligned}
& \left|X_{1} \cap X_{2}\right| \geqq 3 \\
& \left|X_{1} \cap X_{2} \cap X_{3}\right| \geqq 2 \text { for all } X_{1}, X_{2}, X_{3} \in F
\end{aligned}
$$

Proposition 2. We may suppose that for all $X \in F$ it holds: If $i \notin X, j \in X$ and $i<j$, then $(X-\{j\}) \cup\{i\} \in F$.

The last proposition is a consequence of Lemma 4 in [2], by the Erdös-Ko-Rado exchange operation.

Finally we prove Theorem 3 for small k, similarly to [2], by a short argument.
Lemma 1. Theorem 3 is true for $k \leqq \frac{r}{4}+\frac{3}{2}$.
Proof. By Theorem 6 in $[2],|F| \leqq\binom{ r}{k-3}$. Hence,

$$
\begin{gathered}
\frac{|F|}{\binom{r-2}{k-1}} \leqq \frac{\binom{r}{k-3}}{\binom{r-2}{k-1}}=\frac{r(r-1)(k-1)(k-2)}{(r-k+3)(r-k+2)(r-k+1)(r-k)} \leqq \\
\leqq \frac{r(r-1)\left(\frac{r}{4}+\frac{1}{2}\right)\left(\frac{r}{4}-\frac{1}{2}\right)}{\left(\frac{3}{4} r+\frac{3}{2}\right)\left(\frac{3}{4} r+\frac{1}{2}\right)\left(\frac{3}{4} r-\frac{1}{2}\right)\left(\frac{3}{4} r-\frac{3}{2}\right)}=\frac{16}{27} \frac{r}{r+\frac{2}{3}} \frac{r-1}{r-\frac{2}{3}} \frac{r+2}{r+2} \frac{r-2}{r-2}<1 .
\end{gathered}
$$

3. An upper bound for $|\mathbf{F}|$

Suppose that F satisfies the suppositions of Theorem 3 , and $\frac{r}{4}+\frac{3}{2}<k \leqq \frac{r}{2}$. We decompose F into F_{1}, F_{2}, and F_{3} according to

$$
\begin{aligned}
& F_{1}=\{X \in F:\{1,2\} \subseteq X\}, \\
& F_{2}=\{X \in F: 1 \in X, 2 \notin X\}, \\
& F_{3}=\{X \in F: 1 \notin X\} .
\end{aligned}
$$

i) Let $F_{1}^{\prime}=\left\{X: X \cup\{1,2\} \in F_{1},\{1,2\} \cap X=0\right\}$. Then F_{1}^{\prime} is a family of $(k-2)$ element subsets of the $(r-2)$-element set $\{3,4, \ldots, r\}$ satisfying (3) for $v=4$. Since $k-2>\left(\frac{r}{4}+\frac{3}{2}\right)-2=\frac{r-2}{4}$, we may apply Theorem 2^{\prime} and obtain

$$
\begin{equation*}
\left|F_{1}\right|=\left|F_{1}^{\prime}\right| \leqq\binom{ r-3}{k-2} . \tag{4}
\end{equation*}
$$

In order to estimate $\left|F_{2}\right|$ and $\left|F_{3}\right|$ we use the description of the families by walks in the plane. We associate with every $X \in\binom{R}{k}$ a certain walk. We start from $(0,0)$. If we are after i moves at point (a, b) then we turn to $(a, b+1)$ or $(a+1, b)$ depending on whether $i+1 \in X$ or $i+1 \notin X$. So every set of $\binom{R}{k}$ is associated with a walk from $(0,0)$ to $(r-k, k)$ and vice versa.

Let F_{2}^{\prime} and F_{3}^{\prime} denote the set of walks associated with F_{8} and F_{3}; respectively. By the definition of F_{2} and F_{3}, every walk of $F_{2}^{\prime \prime}$ starts with $(0,0)-(0,1)-(1,1)$ whereas every walk of F_{3}^{\prime} starts with $(0,0)-(1,0)$.
ii) Every walk of F_{2}^{\prime} meets the line $y=2 x+2$, since otherwise, by Proposition'2; F_{2} would contain the set $X_{1}=\{1,3,4,6,7,9,10, \ldots\}$ For the same reason; ; F would contain $\quad X_{2}=\{1,2,4,5,7,8,10, \ldots\}$ and $X_{3}=\{1,2,3,5,6,8,9, \ldots\}$. But $\mid X_{1} \cap$ $\cap X_{2} \cap X_{3}|=|\{1\}|=1$, contradicting Proposition 1 :

If a walk meets the line $y=2 x+2$ the first time at $(i, 2 i+2), i \geqq 1$, then this walk passes through ($i, 2 i-1$), too. Hence the number of these walks is not greater than

$$
\binom{3 i-3}{i-1}\binom{r-3 i-2}{k-2 i-2}
$$

since $\binom{3 i-3}{i-1}$ is the total number of walks from $(1,1)$ to $(i, 2 i-1)$, whereas $\binom{r-3 i-2}{k-2 i-2}$ is the total number of walks from $(i, 2 i+2)$ to $(r-k, k)$ Consequeptly, using $\binom{0}{0}=1$, we obtain

$$
\left|F_{2}\right|=\left|F_{2}^{\prime}\right| \leqq \sum_{i=1}^{\left[\frac{k-2}{2}\right]}\binom{3 i-3}{i-1}^{\prime}\left(\begin{array}{c}
\binom{-3 i-2}{k-2 i-2} \tag{5}
\end{array}\right]
$$

iii) Every walk of F_{3}^{\prime} meets the line $y=3 x+1$. This follows by the same arguments as in the preceding case recalling (2). Thus,

$$
\begin{equation*}
\left|F_{3}\right|=\left|F_{3}^{\prime}\right| \leqq \sum_{i=1}^{\left[\frac{k-1}{3}\right]}\binom{4 i-4}{i-1}\binom{r-4 i-1}{k-3 i-1} . \tag{6}
\end{equation*}
$$

By (4), (5), and (6) we obtain

$$
\begin{equation*}
|F| \leqq\binom{ r-3}{k-2}+\sum_{i=1}^{\left[\frac{k-2}{2}\right]}\binom{3 i-3}{i-1}\binom{r-3 i-2}{k-2 i-2}+\sum_{i=1}^{\left[\frac{k-1}{3}\right]}\binom{4 i-4}{i-1}\binom{r-4 i-1}{k-3 i-1} \tag{7}
\end{equation*}
$$

4. Some lemmas

In order to estimate (7) we need the following lemmas.
Lemma 2. For any natural numbers n and \boldsymbol{i} with $\boldsymbol{n} \geqq 2$,

$$
\frac{\binom{n(i+1)}{i+1}}{\binom{n i}{i}} \leqq \frac{n^{n}}{(n-1)^{n-1}}
$$

Proof

$$
\begin{gathered}
\frac{\binom{n(i+1)}{i+1}}{\binom{n i}{i}}=\frac{(n(i+1))!i!((n-1) i)!}{(i+1)!((n-1)(i+1))!(n i)!}=\frac{n(i+1)}{i+1} \prod_{j=1}^{n+1} \frac{n i+j}{(n-1) i+j} \leqq \\
\vdots
\end{gathered}
$$

Lemma 3. For integers r, k, i satisfying $k \frac{r}{2}$ and $i \geqq 1$ we have
a) $\frac{\binom{r-3 i-5}{k-2 i-4}}{\binom{r-3 i-2}{k-2 i-2}} \leqq \frac{1}{8} \quad$ if $\quad i \leqq \frac{k-4}{2}:$
b) $\frac{\binom{r-4 i-5}{k-3 i-4}}{\binom{r-4 i-1}{k-3 i-1}} \leqq \frac{1}{16} \quad$ if $i \leqq \frac{k-4}{3}$.

Proof. Since, for positive $\alpha^{\text {s. }}$ and $\beta \cdot \beta \cdot\left(\frac{\alpha+\beta}{2}\right)^{2}$, and $k \leqq \frac{r}{2}$, we have
а) $\frac{\binom{r-3 i-5}{k-2 i-4}}{\binom{r-3 i-2}{k-2 i-2}}=\frac{(r-3 i-5)!(k-2 i-2)!(r-k-i)!}{(k-2 i-4)!(r-k-i-1)!(r-3 i-2)!}=$

$$
\begin{aligned}
& =\frac{(k-2 i-2)(k-2 i-3)(r-k-i)}{(r-3 i-2)(r-3 i-3)(r-3 i-4)} \leqq \frac{\frac{r}{2}-2 i-2}{r-3 i-4} \frac{\left(\frac{r-3 i-3}{(r-3 i-3)^{2}}\right)^{2}}{(r-3} \\
& \leqq \frac{1}{8} \frac{r-4 i-4}{r-3 i-4} \leqq \frac{1}{8} .
\end{aligned}
$$

b) $\frac{\binom{r-4 i-5}{k-3 i-4}}{\binom{r-4 i-1}{k-3 i-1}}=\frac{(r-4 i-5)!(k-3 i-1)!(r-k-i)!}{(k-3 i-4)!(r-k-i-1)!(r-4 i-1)!}=$

$$
\begin{aligned}
& =\frac{(k-3 i-1)(k-3 i-3)(k-3 i-2)(r-k-i)}{(r-4 i-3)(r-4 i-4)(r-4 i-1)(r-4 i-2)} \leqq \\
& \leqq \frac{\frac{r}{2}-3 i-1}{r-4 i-3} \frac{\frac{r}{2}-3 i-3}{r-4 i-4} \frac{\left(\frac{r-4 i-2}{2}\right)^{2}}{(r-4 i-2)^{2}}
\end{aligned}
$$

$$
\leq \frac{1}{16} \frac{r-6 i-2}{r-4 i-3} \frac{r-6 i-6}{r-4 i-4} \leq \frac{1}{16}, \text { for } 1 \geqq 1 .
$$

Immediate induction consequences of our lemmas are

$$
\begin{gather*}
\binom{n i}{i} \leqq\binom{ n \gamma}{\gamma}\left[\frac{n^{n}}{(n-1)^{n-1}}\right]^{i-\gamma} \text { if } i \geqq \gamma \\
\binom{r-3 i-2}{k-2 i-2} \leqq\left(\frac{1}{8}\right)^{i-1}\binom{r-5}{k-4} \text { if } 1 \leqq i \leqq\left\lfloor\frac{k-2}{2}\right\rfloor, \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\binom{r-4 i-1}{k-3 i-1} \leqq\left(\frac{1}{16}\right)^{i-1}\binom{r-5}{k-4} \quad \text { if } \quad 1 \leqq i \leqq\left[\frac{k-1}{3}\right] \tag{10}
\end{equation*}
$$

Finally, by (8), with $n=3$ and 4 we. have

$$
\begin{gather*}
\sum_{i=1}^{\sim}\binom{3 i-3}{i-1}\left(\frac{1}{8}\right)^{i-1} \leqq 1+\frac{\binom{3}{1}}{8}+\frac{\binom{6}{2}}{8^{2}}+\frac{\binom{9}{3}}{8^{3}}+\frac{\binom{12}{4}}{8^{4}}+ \\
+\frac{\binom{15}{5}}{8^{5}}\left[\sum_{i=6}^{\infty}\left(\frac{3^{3}}{2^{2}}\right)^{i-6}\left(\frac{1}{8}\right)^{i-6}\right]= \\
=1+\frac{3}{8}+\frac{15}{64}+\frac{84}{512}+\frac{495}{4096}+\frac{3003}{32768} \frac{1}{1-\frac{27}{32}}<2.481 \tag{11}
\end{gather*}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{\infty}\binom{4 i-4}{i-1}\left(\frac{1}{16}\right)^{i-1} \leqq 1+\frac{\binom{4}{1}}{16}+\frac{\binom{8}{2}}{16^{2}}+\frac{\binom{12}{3}}{16^{3}}+ \tag{12}\\
+\frac{\binom{16}{4}}{16^{4}}\left[\sum_{i=5}^{\infty}\left(\frac{4^{4}}{3^{3}}\right)^{i-5}\left(\frac{1}{16}\right)^{i-5}\right]=1+\frac{4}{16}+\frac{28}{256}+\frac{220}{4096}+\frac{1820}{65536} \frac{1}{1-\frac{16}{27}}<1.482
\end{gather*}
$$

5. Proof of Theorem 3

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10), (11), and (12) we get

$$
\begin{aligned}
|F| \leqq & \binom{r-3}{k-2}+\left\{\sum_{i=1}^{\infty}\binom{3 i-3}{i-1}\left(\frac{1}{8}\right)^{i-1}+\sum_{i=1}^{\infty}\binom{4 i-4}{i-1}\left(\frac{1}{16}\right)^{i-1}\right\}\binom{r-5}{k-4}< \\
& <\binom{r-3}{k-2}+\{2.481+1.482\}\binom{r-5}{k-4}<\binom{r-3}{k-2}+4\binom{r-5}{k-4}
\end{aligned}
$$

Furthermore, recalling $k \leqq \frac{r}{2}$,

$$
\begin{aligned}
& \frac{|F|}{\binom{r-2}{k-1}}<\frac{\binom{r-3}{k-2}}{\binom{r-2}{k-1}}+4 \frac{\binom{r-5}{k-4}}{\binom{r-2}{k-1}}=\frac{k-1}{r-2}+4 \frac{(k-1)(k-2)(k-3)}{(r-2)(r-3)(r-4)} \leqq \\
& \cong \frac{\frac{r}{2}-1}{r-2}+4 \frac{\left(\frac{r}{2}-1\right)\left(\frac{r}{2}-2\right)\left(\frac{r}{2}-3\right)}{(r-2)(r-3)(r-4)}=\frac{1}{2}+4 \frac{1}{8} \frac{(r-4)(r-6)}{(r-3)(r-4)}<1 .
\end{aligned}
$$

This completes the proof.

ERNST-MORITZ-ARNDT-UNIVERSITAT
SEKTION MATHEMATIK
DDR-2200 GREIFSWALD
FRIEDRICH-LUDWIG-JAHN-STR. 15 A

WILHELM-PIECK-UNIVERSITȦT

SEKTION MATHEMATIK
DDR-2500 ROSTOCK
UNIVERSITÁTSPLATZ 1

References

[I] Frankl, P., On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A v. 20, 1976, pp. 1-11.
[2] Gronau, H.-D. O. F., An Erdós-Ko-Rado type theorem, Finite and Infinite Sets (Proc. 6th Hung. Colloq. on Combinatorics, Eger 1981), pp. 333-342, Colloq. Math. Soc. J. Bolyai, 37, North-Holland, Amsterdam, 1985.
[3] Gronau, H.-D. O. F., On Sperner families in which no k sets have an empty intersection III, Combinatorica, v. 2, 1982, 25-36.

$\therefore \because \cdot .,:$

Giving mathematical semantics of nondeterministic and parallel programming structures by means of attribute grammars

By R. Alvarez Gil

1. Introduction

A formal definition of the semantics of the programming languages is a prerequisite for the verification of specific implementations. The definition of the semantics of a programming language can be formulated in different ways. Knuth [8] has introduced attribute grammars for this purpose; Scott and Strachey'[10] has develdped a mathematical method.

Many papers has been published about the relation between attribute grammars and mathematical semantics. Mayoh [9] has shown that for any attribute grammar it is possible to find an equivalent mathematical semantics. The reverse affirmation is true only with several restrictions [3].

In this paper after the introduction of the used notations and the concept of attribute grammar we give an example to show how it is possible to describe the mathematical semantics of programming languages with the help of attribute grammars in section 3.

In section 4 we describe the nondeterministic structures introduced by Dijkstra [2] and give their mathematical semantics by means of attribute grammars. For this purpose it is sufficient to employ the notion of the possible states used in the descrip + tion of the semantics of sequential programs, but many-valued functions are necessariy to give the semantics of statements and programs. In section 5 we have to extend the notion of the possible states; too, to give the mathematical semantics of a parallel programming language allowing communication of sequential processes through Hoare's monitors.

2. Attribate grammars

In this section we will follow in general the notations used in [7].
An attribute grammar is defined by a 4 -tupel

$$
A G=(C F G, A, S R, S C)
$$

where $C F G=(N, T, P, S)$ is a reduced context-free grammar (N is the set of nonterminal symbols, T is the set of terminal symbols, P is the set of productions or syntactical rules and S is the start symbol), A is a finite set of attributes, $S R$ is the set of semantic rules and $S C$ is the set of semantic conditions.

A production $p \in P$ is denoted by $p: X_{0}::=X_{1} X_{2} \ldots X_{n_{p}}$, where $n_{p} \geqq 0, X_{0} \in N$ and $X_{i} \in N \cup T$ for all i ($1 \leqq i \leqq n_{p}$).

For each $X \in N$ there is a subset $A(X)$ of A. The set of attributes A is partitioned into two disjoint subsets A_{S} and A_{I}, the set of synthesized attributes and the set of inherited attributes: $A=A_{S} \cup A_{I}$ and $A_{S} \cap A_{I}=\emptyset$. Thus $A(X)$ is partitioned into two disjoint subsets $A_{S}(X)$ and $A_{I}(X)$, so that $A_{S}(X) \subseteq A_{S}, A_{I}(X) \subseteq A_{I}$ and $A(X)=A_{S}(X) \cup A_{I}(X)$.

If $p: X_{0}::=X_{1} X_{2} \ldots X_{n_{p}} \in P$ is a production, $X \in N$ occurs in p and $a \in A(X)$, then $X \cdot a$ denotes the attribute occurrence of a in p associated to X. The set A_{p} of attribute occurrences of a production p is defined by $A_{p}=\bigcup_{i=0}^{n_{n}} A_{p}\left(X_{i}\right)$, where $A_{p}\left(X_{i}\right)=\left\{X_{i} \cdot a: a \in A\left(X_{i}\right)\right\}$ if $X_{i} \in N$, and $A_{p}\left(X_{i}\right)=\emptyset$ if $X_{i} \in T$. The set $O A_{p}$ of out put attribute occurrences of a production p is defined by

$$
\begin{gathered}
O A_{p}=\left\{X_{i} \cdot a \in A_{p}:\left(i=0 \text { and } a \in A_{s}\left(X_{i}\right)\right)\right. \text { or } \\
\left.\left(i>0 \text { and } X_{i} \in N \text { and } a \in A_{i}\left(X_{i}\right)\right)\right\},
\end{gathered}
$$

and the set $I A_{p}$ of input attribute occurrences of a production p is defined by

$$
\begin{gathered}
I A_{p}=\left\{X_{i} \cdot a \in A_{p}:\left(i=0 \text { and } a \in A_{I}\left(X_{i}\right)\right)\right. \text { or } \\
\left.\left(i>0 \text { and } X_{i} \in N \text { and } a \in A_{S}\left(X_{i}\right)\right)\right\}=A_{p} \backslash O A_{p} .
\end{gathered}
$$

For each $p \in P$ there is a subset $S R_{p}$ of $S R$ and a subset $S C_{p}$ of $S C$, the set of the production semantic rules and the set of the production semantic conditions, so that

$$
S R=\bigcup_{p \in P} S R_{p} \text { and } S C=\bigcup_{p \in P} S C_{p} .
$$

For each production $p \in P$, for each attribute occurrence $X_{i} \cdot a \in O A_{p}$ there is one and only one semantic rule $f \in S R_{p}$ which determines the value of $X_{i} \cdot a$, and each semantic rule $f \in S R_{p}$ determines the value of some output attribute occurrence $X_{i} \cdot a \in O A_{p}$.

Let s be a sentence of $L(C F G)$ derived by

$$
S \xrightarrow{*} x Y y \underset{g}{\rightarrow} x u X v y \underset{r}{\longrightarrow} . \mathrm{cuwuy} \xrightarrow{*} s
$$

A node K_{X} represents the symbol X in the derivation tree t_{s} corresponding to that derivation and it is called an instance of X. For each attribute occurrence $X \cdot a$ an attri-
bute instance $K_{X} \cdot a$ is associated to K_{X}. The values of the inherited attribute instances associated to K_{X} are defined by rules in $S F_{g}$, and the values of the synthesized attribute instances associated to K_{X} are defined by rules in $S F_{r}$.

A derivation tree augmented with the attribute instances is called an attributed derivation tree. An attribute evaluations strategy is an algorithm to calculate the value of each attribute instance. The single natural condition for the application of a semantic rule $f \in S R$ is that the value of the attribute instances which appear as arguments of f were calculated previously. This condition generates a dependence relation on the attribute instances of the attributed derivation tree.

An attribute grammar is well defined if and only if for each attributed derivation tree the graph belonging to the generated dependence relation is noncircular. A well defined attribute grammar is also called noncircular. The problem of the decision of attribute grammars noncircularity is NP-complete [5], but subclasses of the class of noncircular attribute grammars have been introduced in which we can decide in polynomial time whether an attribute grammar belongs to the subclass. Such subclasses are for example the LR [1], the ASE [6] and the OAG [7] attribute grammars.

3. Giving mathematical semantics by means of attribute grammars

As usual in the mathematical semantics we consider a program as a function on the set of the possible states

$$
S_{p}=\left\{\left\{\left(v_{1}, t_{1}\right), \ldots,\left(v_{n}, t_{n}\right)\right\}: t_{1} \in T_{v_{1}}^{\prime}, \ldots, t_{n} \in T_{v_{n}}^{\prime}\right\}
$$

where v_{1}, \ldots, v_{n} are all the variables which appear in the program, $T_{\nu_{i}}^{\prime}=T_{v_{i}} \cup$ \{unvalued, undefined $\}. T_{v_{i}}$ is the set from which the variable v_{i} takes its values. The variable v_{i} in a state is unvalued if it has no value and is undefined, if its name is not valid in that state. Later in section 5 we have to extend and consequently redefine the notion of the possible states.

The semantics of the statements and a program p too are functions $f_{p}: S_{p} \rightarrow S_{p}$. In this section we define such functions for the programs of a very simple sequential language. For this purpose we need the following attributes: Synthesized attributes:
name - to give a unique identifier for each variable of the program
T - to give the type of each variable and arithmetical expression
V - to give the set of declared variables and their types
S - to give the set of the possible states
g - a function $g: S \rightarrow T^{\prime}$. to give the value of an arithmetical expression in a given state, where T^{\prime} is the type of the arithmetical expression
$h-a$ function $h: S \rightarrow\{$ true, false $\}$ to give the value of a logical expression in a given state
$f-$ a function $f: S \rightarrow S$ to give the semantics of the statements and the programs of the language.
Inherited attributes:
V^{\prime} - to give the variables valid in the environment and their types
S^{\prime} - to transmit towards the levels of the tree the set of the possible states

Nonterminal symbols and their attributes:

program has V, S, f
declaration statement has V, f.
declaration_list has V
declaration has V
variable_list hàs V.
variable has name
type has T
statement_list has $V, f, V^{\prime}, S^{\prime}$
statement has $V, f, V^{\prime}, S^{\prime}$
expression has $g, T, V^{\prime}, S^{\prime}$
bool_expression has $h, V^{\prime}, S^{\prime}$
Syntactical rules and their semantic rules and semantic conditions:
(In a production $X_{0}::=X_{1} X_{2} \ldots X_{n_{p}}\left(n_{p} \geqq 0\right)$ we will omit the semantic rules of the form $X_{0} \cdot a=X_{i} \cdot a\left(1 \leqq i \leqq n_{p}\right)$ if there is no $X_{j}\left(1 \leqq j \leqq n_{p}\right.$ and $\left.i \neq j\right)$ which has the synthesized attribute a, and we will omit the semantic rules of the form $X_{i} \cdot a=$ $\left.=X_{0} \cdot a\left(1 \leqq i \leqq n_{p}\right)\right)$.
i) program: $:=$ begin declaration_statement; statement_list end program. $V=$ declaration_statement. $V \cup$ statement_list. V program. $S=\left\{\left\{\left(v, t_{v}\right):(v, T) \in\right.\right.$ program. $\left.V\right\}: t_{v} \in T \cup\{$ unvalued, undefined $\}\}$
program. $f(s)=$ statement_list. $f($ declaration_statement.$f(s))$ statement_list $. V^{\prime}=$ declaration_statement.V statement_list. $S^{\prime}=$ program. S
ii) declaration_statement $::=$ var declaration_list declaration_statement. $f(s)=\left\{(v, s(v))\right.$: there is not $\left(v_{1}, T_{1}\right) \in$ declaration_list. V for which $\left.v_{1}=v\right\} \cup\left\{(v\right.$, unvalued $)$: there is $\left(v_{1}, T_{1}\right) \in$ declaration_list. V for which $\left.v_{1}=v\right\}$
iii) declaration_list ${ }_{1}::=$ declaration; declaration__list $_{2}$ declaration_list ${ }_{1} \cdot V=$ declaration.$~_{V} \cup$ declaration_list $_{2} . V$ condition: if $\left(v_{1}, T_{1}\right) \in$ declaration. V and
$\left(v_{2}, T_{2}\right) \in$ declaration_list $_{2} . V$ then $v_{1} \neq v_{2}$
iv) declaration_list::=declaration
v) declaration ::= variable_list of type
declaration. $V=\{(v$, type.$T):(v, \emptyset) \in$ variable_list. $V\}$
vi) variable_list ${ }_{1}::=$ variable, variable_list ${ }_{2}$ variable_-list ${ }_{1} . V=$ variable_-list ${ }_{2} . V \cup\{($ variable. name, $\emptyset)\}$ condition: if $(v, \emptyset) \in$ variable_list ${ }_{2} . V$ then: variable. name $\neq v$
vii) variable_dist: $:=$ variable
variable_list. $V=\{($ variable. name,$\emptyset)\}$
viii) statement list $_{1}::=$ statement ; statement $_{\sim}$ list $_{2}$
statement_list ${ }_{1} . V=$ statement. $V \cup$ statement_-list $_{2} . V$
statement_ list $_{1} . f(s)=$ statement__list $_{2} . f($ statement.$f(s))$
condition: if $\left(v_{1}, T_{1}\right) \in$ statement. V and $\left(v_{2}, T_{2}\right) \in$ statement_list ${ }_{2} . V$ then $v_{1} \neq v_{2}$
ix) statement list $::=$ statement
x) statement $::=$ variable $:=$ expression
statement. $V=\emptyset$
statement. $f(s)=\{(v, s(v)): v \neq$ variable. name $\} \cup$ $\{($ variable.name, expression. $g(s))\}$
condition: there is $\left(v, T_{1}\right) \in$ statement. V^{\prime} for which $v=$ variable. name and $T_{1}=$ expression. T
xi) statement ${ }_{1}:=$ if bool__expression then statement ${ }_{2}$ else statement t_{3}
statement $_{1} . V=$ statement $_{2} . V \cup$ statement $_{3} . V$
statement ${ }_{1} \cdot f(s)=\left\{\begin{array}{c}\text { statement }_{2} . f(s), \text { if bool_expression. } \\ h(s)=\text { true } \\ \text { statement }_{3} . f(s), \text { if bool_expression. } \\ h(s)=\text { false }\end{array}\right.$
xii) statement $_{1}::=$ while bool-expression do statement ${ }_{2}$ od
statement $_{1} \cdot f(s)=\left\{\begin{array}{c}\text { statement }_{1} \cdot f\left(\text { statement }_{2} . f(s)\right), \\ \text { if bool_expression } . h(s)= \\ \text { true }\end{array}\right.$
xiii) statement $:=$ begin statement_list end
xiv). statement $::=$ begin declaration_statement; statement__list end
statement. $V=$ declaration_statement. $V \cup$ statement_list. V
statement. $f(s)=\{(v$, statement_list. $f($ declaration_statement.
$f(s))(v)):$
there is not $\left(v_{1}, T_{1}\right) \in$ declaration_statement. V for which $\left.v_{1}=v\right\} \cup\{(v$, undefined $)$: there is $\left(v_{1}, T_{1}\right) \in$ declaration_statement. V for which $\left.v_{1}=v\right\}$
statement_list. $V^{\prime}=$ statement.V^{\prime} Udeclaration_statement. V condition: if $\left(v_{1}, T_{1}\right) \in$ declaration_statement. V and $\left(v_{2}, T_{2}\right) \in$

$$
\text { statement list. } V \text { then } v_{1} \neq v_{2}
$$

It is easy to show that the attribute grammar given above is well defined (noncircular), but we do not deal with this in our paper.

4 Semantics of nondeterministic structures

The syntax of the nondeterministic programming structures introduced by Dijkstra can be given by a context-free grammar as follows:
i) statement $:=$ alternative_construct
ii) statement $::=$ repetitive_construct
iii) alternative_construct: :=if guarded_command_set fi
iv) repetitive__construct::=do guarded_command_set od
v) guarded_command_set::=guarded_command \square guarded_command_set
vi) guarded_command_set $::=$ guarded_command
vii) guarded_command::=guard \rightarrow guarded_list
viii) guard $::=$ bool_expression
ix) guarded_list::=statement__list

From the context-free grammar given above it is clear that Dijkstra introduced two new statements: the alternative construct and the repetitive construct, based on the concept of guarded commands. The semantics of these statements was given by Dijkstra in [2] with the following words: "The alternative construct is written by enclosing a guarded command set by the special bracket pair if...f. If in the initial state none of the guards is true, the program will abort; otherwise an arbitrary guarded list with a true guard will be selected for execution. The repetitive construct is written down by enclosing a guarded command set by the special bracket pair do...od. Here a state in which none of the guards is true will not lead to abortion but to proper termination; the complementary rule, however, it will only terminate in a state in which none of the guards is true: when initially or upon completed execution of a selected guarded list one or more guards are true, a new selection of a guarded list with a true guard will take place, and so on. When the repetitive construct has terminated properly, we know that all its guards are false".

In the case of nondeterministic structures to give the semantics of the alternative construct and the semantics of the repetitive construct it is necessary to use functions $f: S_{p} \rightarrow 2^{S_{p}}$ which can be obtained as synthesized attributes. It is clear that for nondeterministic statements it is not sufficient to use functions of the type $f: S_{p} \rightarrow S_{p}$ because the state valid at the beginning of the execution of a nondeterministic statement do not determine a unique state valid at the termination of the statement, that is more than one state can be the real state when the program finished the execution of the nondeterministic statement.

Now we give an attribute grammar to obtain as synthesized attribute the functions which give the semantics of the nondeterministic statements:

Synthesized attributes:
f - to give the function $f: S_{p} \rightarrow 2^{S_{p}}$ which describes the semantics
h - a function $h: S_{p} \rightarrow\{$ true, false $\}$ to give the value of a logical expression in a given state

Inherited attributes:
Nonterminals and their attributes:
statement bas f

```
alternative__construct has f
repetitive_construct has f
guarded_command_set has f
guarded_command has f
guarded_list has f
statement_list has f
guard has h
bool_expression has h
```

Syntactical rules and their semantic rules:
i) statement::=alternative_construct
statement. $f=$ alternative_construct.f
ii) statement $::=$ repetitive_construct
statement. $f=$ repetitive_construct. f
iii) alternative_construct $::=$ if guarded_command__set fi
alternative_construct. $f=$ guarded_command_set.f
iv) repetitive_construct $::=$ do guarded_command_set od
repetitive

- construct $. f(s)=\left\{\begin{array}{l}U \text { repetitive_construct } . f\left(s^{\prime}\right) \\ s^{\prime} \in \text { guarded_command } \\ \text { set. } f(s) \\ \text { if guarded_command } \\ \text { set. } f(s) \neq \emptyset \\ s, \text { if guarded_command_set. } . f(s)=\emptyset\end{array}, \quad\right.$.
v) guarded_command__set $1_{1}:=$ guarded_command \square guarded_command
$-\mathrm{set}_{2}$
guarded_command_set ${ }_{1} \cdot f(s)=$ guarded_command.$f(s) \cup$
guarded_command_set.$f(s)$
vi) guarded_command__set::=guarded_command
guarded_command_set. $f=$ guarded_command. f
vii) guarded_command: :=guard \rightarrow guarded_list
guarded_command $f(s)=\left\{\begin{array}{l}\text { guarded_list. } f(s), \text { if } \\ \quad \text { guard. } h(s)=\text { true } \\ \emptyset, \text { if guard } . h(s)=\text { false }\end{array}\right.$
viii) guard::=bool_expression
guard. $h=$ bool_expression. h
ix) guarded__list::=statement__list
guarded_list. $f=$ statement_list. f

Note: it is easy to see that the program aborts in an alternative construct if and only if the alternative construct is executed in such a state s for which the function f associated with the synthesized attribute to the alternative construct takes the empty set 0 as its value. Furthermore this occurs if and only if all the guards in the guarded command set of the alternative construct are false.

- 5. Mathematical semantics of.parallel programs and monitors

We will deal with parallel programs which have the following structure: begin
(definition of the monitors);
process $_{1}$: process var $v_{1}^{1}, \ldots, v_{n_{1}}^{1}$;
. (statements of the process ${ }_{1}$)
end of process ${ }_{1}$
and
. (description of the process $_{2}, \ldots$, process $_{m-1}$)
and
process $_{m}$: process var $v_{1}^{n}, \ldots, v_{n_{m}}^{m}$;
\therefore (statements of the process ${ }_{m}$)
end of process ${ }_{m}$
end
The processes communicate with each other through Hoare's monitors [4]. A monitor is a collection of local data and procedures and has the following structure: monitor name: monitor

begin

(declaration of data local to the monitor)
procedure proc _name (...formal parameters ...);
begin
: (procedure body)
end;
(declaration of other procedures local to the monitor);
(initialization of local data of the monitor)
end
To call a procedure of the monitor, it is necessary to give the name of the monitor and the name of the desired procedure:
monitor__name.proc_name (... actual parameters ...)
The procedures of a monitor are common to all existing processes, any process can at any time attempt to call such a procedure. However, it is essential that only one process at a time can be executing a procedure body, and any subsequent call must be held up until the previous call has been completed or has been held up. A process in execution can be held up by a wait statement and can be resumed by a signal statement."The structures of these statements are:
cond_variable.wait; cond_variable.signal
The cond_variable is a new type of variable, a condition variable, which is suitable to differentiate the reason for waiting. In practice, a condition variable is an initially empty queue of processes which are waiting on the condition.

A signal operation is followed immediately by resumption of a waiting process, without the possibility of an intervening procedure call from a third process. Wait operation is followed immediately by resumption of a process delayed by a signal instruction. New procedure can be executed only if there are not processes delayed by signal.

Now, after this short and necessary introduction, we will define the set of the possible program states by

$$
\begin{gathered}
S_{p}=\left\{\left\{\left(v_{1}^{1}, t_{1}^{1}\right), \ldots,\left(v_{n_{1}}^{1}, t_{n_{1}}^{1}\right), \ldots ;\left(v_{1}^{m}, t_{1}^{m}\right), \ldots,\left(v_{n_{m}}^{m}, t_{n_{m}}^{m}\right),\left(1, q_{1}\right), \ldots,\left(m, q_{m}\right)\right\}:\right. \\
\left.\cdots t_{1}^{1}, \ldots, t_{n_{1}}^{1}, \ldots, t_{1}^{m}, \ldots, t_{n_{m}}^{m} \in T \text { and } q_{1}, \ldots, q_{m}\left(\bigcup_{j \in M}\left(Z^{j} \times M C^{j}\right)\right)^{*}\right\}
\end{gathered}
$$

where T - is the type of the variables (for simplicity all the variables have the same type),
M is the set of declared monitors,
Z^{j} is the set of the possible states of the monitor j,
$M C^{j}$ is the set of the possible monitor calls relative to the monitor j.
For each monitor j we define a function $g_{j}: M C^{j} \rightarrow 2^{Z^{j}}$ which is obtained as a synthesized attribute and is the function which gives the semantics of the monitor j : The g_{j} is a many-valued function because in the general case, for the termination of a monitor call the execution of other monitor calls are necessary which can not be predetermined, and furthermore the calculation of g_{j} have to be started from all possible states of the monitor j in which the call might occur. To each process i we associate a function $f_{i}: S_{p} \rightarrow S_{p}$ which is also obtained as a synthesized attribute.

Let $e: j \cdot j_{k}\left(v^{\prime}\right) \in M C^{j}$ be a monitor call in the process i, where j is the called monitor, j_{k} is the called procedure and v^{\prime} the actual parameter. We associate to this monitor call statement a function $f_{e}: S_{p} \rightarrow 2^{S_{p}}$ which is defined by
$f_{e}(s)=S^{\prime} \subseteq S_{p}$ and $s^{\prime} \in S^{\prime}$ if and only if:
a) $s^{\prime}(v)=s(v)$ for all $v\left(v \neq v^{\prime}\right)$
b) $s^{\prime}(p)=s(p)$ for all $p(1 \leqq p \leqq m, p \neq i)$
c) $s^{\prime}\left(v^{\prime}\right)=z_{j}^{\prime} \quad$ (parameter of j_{k})
d) $s^{\prime}(i)=s(i) \circ z_{j}^{\prime}$ (call)
e) $z_{j}^{\prime} \in g_{j}(e)$:
where z_{j}^{\prime} (parameter of j_{k}) gives the value of the parameter of the procedure j_{k} at the state z_{j}^{\prime} of the monitor j, and z_{j}^{\prime} (call) gives the execution sequence of monitor calls which leads to z_{j}^{\prime} and the monitor states in which the monitor calls were executed. Because of this it is clear that in the elements of Z^{j} there is a pair of the form (call, x), where $x \in\left(Z^{j} \times M C^{j}\right)^{*}$.

It is necessary to introduce the pairs $\left(i, q_{i}\right)$ for $1 \leqq i \leqq m$ in the set of possible program states because it is possible to decide whether a program state is really a possible program state only by the comparision of the sequences $q_{i}(1 \leqq i \leqq m)$. Only when the sequences q_{i} are in correspondence with each other the program state is really a possible program state. The condition for this correspondence is that it is possible to find a sequence $a_{1} a_{2} \ldots a_{n} \in\left(\bigcup_{j \in M}\left(Z^{j} \times M C^{j}\right)\right)^{*}$ for which the following sentences are true:
i) if $a_{i} \in Z^{j} \times M C^{j}(1 \leqq i \leqq n)$, then $a_{i} \in q_{j}$
ii) if b appears in $q_{i}(1 \leqq i \leqq m)$, then b appears in $a_{1} a_{2} \ldots a_{n}$
iii) if b precedes c in q_{i}, then b precedes c in $a_{1} a_{2} \ldots a_{n}$.
iv) if b precedes c immediately in \dot{q}_{i}, and b and c belong to the same monitor call of the process i; then b precedes c in $a_{1} a_{2} \ldots a_{n}$, and if b precedes d and d precedes c in $a_{1} a_{2} \ldots a_{n}$ then the monitor called in d is different from the monitor called in b or c.
v) if b is the first in $a_{1} a_{2} \ldots a_{n}$ which belongs to ($Z^{j} \times M C^{j}$), then the first component of b is the initial state of the monitor j.
We do not give the attribute grammar for monitors and parallel processes because it is very long and can be constructed from the principles given in this section and the method described in the preceding sections.

6. Conclusions

In our opinion the attribute grammars are a powerful tool to give the mathematical semantics of programming languages in the case of nondeterministic programming structures or in the case of parallel processes communicating through Hoare's monitors too.

Attribute grammars give a mechanizable method to obtain for any program of the language the function described by the program; and consequently an attribute evaluation strategy can be viewed as a "compiler" which translates the program into a mathematical function.

Acknowiledgement

The author wants to thank Dr. Árpád Makay for valuable discussions and suggestions.

Abstract

This paper describes attribute grammars for the description of the mathematical semantics of programming languages. It concentrates on the nondeterministic programming structures introduced by Dijkstra and parallel programming structures in which sequential processes communicate through Hoare's monitors.

References

[1] Bochman, G. V., Semantic evaluation form Left to Right. CACM 19, 2, (February, 1976), 55-62.
[2] Dukstra, E. W., Guarded Commands, Nondeterminancy and Formal Derivation of Programs. CACM 18, 8, (August, 1975), 453-457.
[3] Ganzinger, H., Transforming denotational semantics into practical attribute grammars. In Lecture Notes in Computer Sciences 94, 1980, 1-69.
[4] Hoare, C. A. R., Monitors: An Operating Systems Structuring Concept. CACM 17, 10, (October, 1974), 549-557.
[5] Jazayeri, M., Ogden, W. F. and Rounds, W. C., The intrinsically exponential complexity of the circularity problem for attribute grammars. CACM 18, 12, (December, 1975), 697-721.
[6] Jazayeri, M. and Walter, K. G., Alternating Semantic Evaluator. In Proc. of ACM 1975 Ann. Conf., 230-234.
[7] Kastens, U., Ordered Attributed Grammars. Acta Informatica 15, 1980, 229-256.
[8] Knuth, D. E., Semantics of context-free languages. Math. Systems Theory 2, 1968, 127-145.
[9] МАҮOH, B. H., Attribute grammars and mathematical semantics. SIAM J COMPUT. 10, 3, (August, 1981), 503-518.
[10] Scott, D. and Strachey, C., Towards a mathematical semantics for computer languages. Tech. Mon. PRG-6, Oxford U. Comp. Lab., 1971.
(Received Sept. 13, 1985.)

A new programming methodology using attribute grammars

E. Simon

Keywords: attribute grammars, automatic program generation, modular decomposition, programming methodology, program specification.

Abstract

Attribute grammars have been constructed for describing the static semantics of programming languages and have been shown useful in a wide variety of automatic compiler generations. This paper presents a new application of attribute grammars to specify hierarchical and functional programs. An algorithm to evaluate attribute grammars is demonstrated. Several attributes can be evaluated in parallel too. A simple model for generating PASCAL like programs is given. A new metalanguage PLASTIC is introduced as an adequate tool for specifying hierarchical and functional programs. A simple PLASTIC program is presented to help attain the new programming methodology.

1. Introduction

Over the last decade there has developed an acute awareness of the need to introduce abstraction and mathematical rigour into the programming process. This increased formality allows for the automatic manipulation of software, increasing productivity, and, even more importantly, the managebility of complex systems. Along those lines, attribute grammars (AG) of Knuth [6] constitute a formal mechanism for specifying translations between languages $[2,8,11]$. By automatically generating the inverse translators we would be able to translate any program written for one processor into the command language of any other processor [13]. There are some methods for incremental evaluation of AG to produce so called incremental compilers [3]. An essential question is how to verify the correctness of the AG specification. In contrast with the attribute evaluation problem, this has not been studied well and only a few results have been reported up to now $[1,5]$.

Although several efforts have been made to obtain efficient evaluators, the first good algorithm for attribute evaluation has been proposed by T. Katayama [4]. Principally this algorithm accepts absolutely noncircular AG although extension tò general noncircular AG is straightforward. In the model nonterminal symbols are considered to be functions which map their inherited attributes to their synthesized attributes and associate procedures to realize these functions with the nonterminal
symbols. The entire AG is then transformed into a set of mutually recursive procedures. When applied to an AG whose attribute evaluation process can be performed in a single pass from left-to-right, the algorithm can generate an evaluator which can be combined with the top-down parsers to result in the so-called recursive-descendent compilers if the underlying CF grammars are LL(k). However data dependency sometimes allows several attributes be evaluated parallel supposing that we have associated one procedure for each synthesized attribute.

As it is widely recognized, hierarchical specification techniques are the most promising methods in constructing complex and large softwares in well structured way, and in fact they are the most successfully used ones in practice as it is represented for example by SYCOMAP [10]. In these methodologies softwares are hierarchically decomposed into modules and they are successively refined until concrete and machine executable programs are obtained from their abstract specifications cf. CDL2. Although they are extremely natural and useful the current states seems to be that automatic program generation from the specifications and their verification are prevented due to the lack of strict formalization.

The hierarchical and functional programming methodology presented in this paper is based on attribute grammars. Applying the results of [4], we obtain a new program specification technique which stands mechanical program generation. In our approach we consider a program specification as an AG where program modules are represented by nonterminal symbols of the grammar, module decompositions correspond to production rules, input and output data of the modules correspond to attributes of the nonterminal symbols and computations done in the modules are specified by the semantic rules. Our methodology has the following three desirable properties. It allows hierarchical descriptions of complex functional programs in a very natural way. We have means to mechanically generate efficient procedural type programs from the descriptions and verification of their correctness can also be performed hierarchically.

In this paper we give our formalism and then the metalanguage PLASTIC is stated. Before presenting the program generation algorithm a simple example is shown. The PLASTIC system, implemented in PASCAL is now under development. The PLASTIC compiler is specified in HLP/PASCAL metalanguage [12].

2. Formal description

Essence of our approach is to use a mechanism based on the Knuth's attribute grammar [6] to describe programs. Therefore a hierarchical and functional program (or simply HFP) is a 6-tuple

$$
\left(M, m_{0}, A, D, V, F\right)
$$

where
(1) M is a set of modules. We assume that M contains the special modul called a null module which is used to terminate decomposition. The null modul is denoted by null symbol.
(2) $m_{0} \in M$ is an initial module.
(3) A is a set of input and output attributes of modules. With any modul except the null module, there is associated a set of input and output data called attributes and the set of attributes of $X \in M$ is denoted by $A[X] . A[X]$ is a disjoint union of the set $\mathrm{IN}[X]$ of input attributes and the set OUT $[X]$ of output attributes. They are called inherited and synthesized attributes, respectively, in the AG terminology.
(4) $D \subset M \times M^{*}$ is a finite set of module decompositions. An element $d \in D$ is called a decomposition and is denoted by

$$
d: X_{0} \rightarrow X_{1} X_{2} \ldots X_{n} \text { cond } C_{d}
$$

for $X_{0}, \ldots, X_{n} \in M$. We say that the module X_{0} can be decomposed into modules $X_{1}, X_{2}, \ldots, X_{n}$ if a decomposition condition C_{d} is satisfied. C_{d} specifies the condition in terms of input attributes of X_{0}. When a is an attribute of X_{k}, that is, $a \in A\left[X_{k}\right], X_{k} \cdot a$ is called an attribute occurrence of the decomposition d. It is called an input occurrence (by an alternative denotation $X_{k} \mid a$) if $a \in \mathbb{I N}\left[X_{k}\right]$ and an output occurrence ($X_{k} \hat{a} a$) if $a \in \mathrm{OUT}\left[X_{k}\right]$.
(5) V is a set of value domains of attributes.
(6) F is a set of attribute mappings for describing functional equalities among attributes. Let d be a decomposition $X_{0} \rightarrow X_{1} X_{2} \ldots X_{n} \in D$. For each output occurrence $v=X_{0} \uparrow a$ with $a \in \operatorname{OUT}\left[X_{0}\right]$ and input occurrence $v=X_{k} \nmid a$ with $a \in \operatorname{IN}\left[X_{k}\right], 1 \leqq k \leqq n$, there exists a function $f_{d, v}$ to compute the value of v from the values of other attribute occurrences v_{1}, \ldots, v_{m} in d. The set $D_{d, v}=\left\{v_{1}, \ldots, v_{m}\right\}$ is called dependency set of $f_{d, v}$. If we denote the value domain of v by domain $(v), f_{d, v}$ is a mapping domain $\left(v_{1}\right) \times \ldots \times$ domain $\left(v_{m}\right) \rightarrow$ domain (v).

That is, in every decomposition functions are specified to compute the values of outputs for main module and inputs to submodules.

Let us define a decomposition tree which shows the result of all decompositions applied to the initial module m_{0}. It corresponds the derivation tree of CF grammars and is defined recursively by the following
(1) the null module is a decomposition tree, and
(2) if T_{1}, \ldots, T_{n} are decomposition trees with the root module X_{1}, \ldots, X_{n}, respectively, and $X_{0} \rightarrow X_{1} \ldots X_{n}$ cond C is a decomposition, then the tree

$$
X_{0}\left[T_{1}, \ldots, T_{n}\right]
$$

which consists of the root X_{0} and the subtrees T_{1}, \ldots, T_{n} is a decomposition tree.
A computation tree T is a decomposition tree whose nodes are labelled by attribute values in such a way that for any module X_{0} in T and the decomposition $d: X_{0} \rightarrow X_{1} \ldots X_{n}$ cond C_{d} applied at the module the following conditions are satisfied
(i) the decomposition condition C_{d} is true,
(ii) for any output occurrence v of X_{0} or input occurrence v of $X_{k} \quad 1 \leqq k \leqq n$, the following functional equality holds

$$
v=f_{d, v}\left(v_{1}, \ldots, v_{m}\right) \text { where } D_{d, v}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

It should be noted that a computation tree represents a particular execution of an HFP corresponding to the particular values of input data fed to the initial module.

3. The PLASTIC metalanguage

PLASTIC is a new metalanguage designed to support the use of abstractions in program construction. Work in programming methodology has led to the realization that three kinds of abstractions - procedural, control, and especially data abstractions - are useful in the programming process. Among these, only the procedural abstraction is supported well by conventional languages, through the procedure or subroutine. ALPHARD [9] and CLU [7] provide, in addition to procedures, novel linguistic mechanisms that support the use of data and control abstractions. In contradiction to these languages the PLASTIC system is altogether based on a few results of AG. In the module specifications, control abstraction is realized by the semantic functions and decomposition conditions. Data types can be refined successively as the decomposition proceeds.

A PLASTIC program consists of five parts. We first define some global data types for the procedures and functions. The auxiliary functions and procedures that are used in decomposition rules are deciared in procedure declarations. The allowed primitive functions and procedures form a subset of those of PASCAL, since both the procedure type and the parameter types are restricted to allowed input-output attribute types. The interpretation of procedures and functions is the same as in PASCAL. Comments are indicated by the character \%, whose appearance outside a proper string means that the rest of the line is interpreted as a comment and is skipped by the system. The strings belonging to the token class IDENTIFIER begin with a letter which is followed by letters or digits or underscores.

Before the module specifications the name of the initial module is given. The values of the input attributes of the initial module are assigned by read operations. The main part of a PLASTIC program is the module specification. We associate a set of input and output data with each module X. Computations done in the module X_{0} is specified decompositionwise by giving a set of functional equalities which hold among attributes of X_{0} and its submodules X_{1}, \ldots, X_{n}, and thus they are reduced to the computations done in submodules. Repeating the module decomposition process until terminal modules are reached completes the program design. If there are recursive modules or if there are modules whose decompositions are not unique there may occur numbers of trees each of which corresponds to a specific computation. We have attached declarations for data types of attributes to decompositions. They are refined successively as the decomposition proceeds. Different decompositions for a module are separated to versions. The input attribute occurrence can be denoted by \downarrow while the output occurrence by \uparrow. In the attribute occurrences the name of the module to be decomposed must not be specified.

Simple copy rules of the form " $X \cdot a:=Y \cdot b$ " can often be left unwritten by applying the so-called elimination principle, if so desired. It is applicable in two situations. First, if a is an output attribute, then X must be the left-hand side of the decomposition and Y must be the only module on the right-hand side of the decomposition having an occurrence of attribute a. Alternatively, if a is an input attribute, then Y must be the left-hand side of the decomposition and X can be any of the modules on the right-hand side of the decomposition. In both cases the nonexistence of a rule for $\boldsymbol{X} \cdot \boldsymbol{a}$ is an indication to the PLASTIC system to include the copy rule in the decomposition. In the module and submodule specification the input and output attributes
are separated by semicolon. The keywords "description", "specification", "module", "submodule", "version", "condition", etc. can be abbreviated to "descr", "spec", "mod", "submod", "vers", "cond" etc. We assumed that a PLASTIC program is deterministic, that is, decomposition conditions of distinct decompositions with the same left-hand side module do not become true simultaneously for any value of its input attributes.

In the last part of a PLASTIC description the user can prescribe the implementation commands. As we shall see data dependency sometimes allows several attributes to be evaluated simultaneously. In our system these attributes are evaluated in a single procedure call, because this reduces overheads due to procedure activations and increases chances of parallel execution. The keyword "parallel" stands for these output attributes which have to be evaluated simultaneously if it is possible. The default option for attribute evaluation is sequential. One of the major goals of PLASTIC is to provide a mechanism to support the use of good programming methodology. To meet this goal, we must provide more than just the language mechanism for the generator: we must also provide a way to specify their effects. A natural means of doing this for implementation is to specify how to realize the evaluation of an attribute. There are three different kinds of realization. The default option is procedural. In this case for each module X and output attributes a single procedure will be generated. The keyword "macro" stands for those output attributes which are evaluated by executing a macro call. If there are same precompiled procedures for so called null modules, they can be activated by a call "statement".

The problem of data abstraction and its detailed discussion is beyond the scope of this paper except giving a comment that every hierarchical specification methodology should be equipped with a hierarchical data abstraction mechanism and in the case of PLASTIC the algebraic abstraction would be most appropriate.

Figure 1 shows a PLASTIC solution of binary conversion. Suppose we have a file containing record of binary characters. In order to verify the conversional algorithm we have to compute the value of binary number $b=b_{1} b_{2} \ldots b_{n}$ in two ways. Design a program that reads the character file and compute the binary numbers vall and val2. The initial modul is START. We have attached declarations for data types of attributes to decompositions. We have assumed the existence of several functions on primitive data types, which are denoted by bold-face type letters. Their meaning will be selfexplanatory from their names. The common declarations for types, symbols and rule are written in the head of module descriptions. Copy-rules should not be specified, because they are generated automatically by the system.

4. Translation of PLASTIC program

Besides its static description, one of the outstanding features of PLASTIC specification technique is that we have means to translate mechanically the specification into machine executable forms. This is called attribute evaluation in the attribute grammar theory.
$\% \%$

$\% \% \% \%$	PLASTIC description for computing the value of binary	$\% \% \% \%$
$\% \% \% \%$	number $b=b 1 b 2 \ldots b n$ in two ways given by	$\% \% \% \%$
$\% \% \% \%$	vall $(b 1 b 2 \ldots b n)=b 1 * 2 \uparrow(n-1)+\operatorname{vall}(b 2 \ldots b n)$	$\% \% \% \%$
$\% \% \% \%$	val2 $(b 1 b 2 \ldots b n)=2 * \operatorname{val2}(b 1 \ldots b n-1)+b n$	$\% \% \% \%$
$\% \% \% \%$	vall $0=\operatorname{val2} 0=0$	$\% \% \% \%$

$\% \%$

```
begin description bin__conv
common data types
vall, val2, pos: integer; neg: boolean;
procedures
procedure read (var input: file of elem); ...;
function last (input: file of elem); elem; ...;
function remain (input: file of elem): boolean; ...;
initial module is start
specifications
%%1%%
module start (\downarrowinput; {vall, {val2);
types input: file of elem;
submodule sign (\downarrowelem; {neg);
    list (\downarrowinput, \pos; {val1, \uparrowval2);
version: 1
rule start = sign list;
do input < = read (input);
    list }\ddaggerpos:=0
    vall := if sign\daggerneg then -list\uparrowvall else list\uparrowval1;
    val2:=if sign\uparrowneg then -list\uparrowval2 else list\uparrowval2;
    signłelem:=head (input);
    list\downarrowinput := tail (input);
cond not empty (input);
version: }
rule start =; do val1 :=0; val2:=0;
cond always;
end start;
```

```
\% \% 2 \% \%
module sign( \(\downarrow\) elem; \(\uparrow\) neg);
types elem: character;
rule sign =;
version: 1
do neg: =true;
cond elem ="-"";
version: 2
do neg \(:=\) false; cond elem \(=\) " + "; end sign;
\% \% 3 \% \%
module list ( \(\downarrow\) input, \(\downarrow\) pos; \(\uparrow\) val1, \(\uparrow\) val2);
submodule list, digit (łinput, łpos; vall, †val2);
version: 1
rule list \(=\) digit ;
do \% digit \(\downarrow\) pos \(:=\) pos; ' . copy-rule
\% digit \(\downarrow\) input: \(=\) input; copy-rule
\% vall \(:=\) digit \(\uparrow\) vall; copy-rule
\(\%\) val2:=digit \(\uparrow\) val2; \(\quad\). copy-rule
\% copy-rule will be generated without specification
cond empty (remain (input));
version: 2
rule list = list digit;
do digit \(\downarrow\) input \(:=\) last(input);
    list \(\downarrow\) input \(:=\) remain(input);
    list|pos \(:=\operatorname{pos}+1\);
    vall \(\quad:=\) list \(\uparrow\) vall + digit \(\uparrow\) vall;
    val2 \(:=2^{*}\) list \(\uparrow\) val2 + digit \(\uparrow\) val2;
cond always;
end list;
\% \% 4 \% \%
module digit (telem, pos; ¡vall, val2);
types elem: character;
rule digit \(=\);
version: 1
do val1 \(:=0\); val2 \(:=0\);
cond elem \(=\) " 0 ";
version: 2
do val1:=2**pos; val2:=1;
cond elem \(=\) " 1 ";
end digit;
implementation
val1, val2: parallel;
\% : statement;
sign, digit : macro;
start, list : procedure;
end description bin-conv.
```

Figure 1

4.1. Notations

Let $d: X_{0} \rightarrow X_{1} X_{2} \ldots X_{n}$ be a decomposition. A dependency graph DG_{d} for the decomposition d, which gives dependency relationship among attribute occurrences of d, is defined by

$$
\mathrm{DG}_{\mathrm{d}}=\left(\mathrm{DV}_{\mathrm{d}}, \mathrm{DE}_{\mathrm{d}}\right)
$$

where the node set DV_{d} is the set of all attribute occurrences of d and the edge set DE_{d} is the set dependency pairs for d. Formally

$$
\begin{aligned}
& \mathrm{DV}_{\mathrm{d}}=\left\{X_{\mathrm{k}} \cdot a \mid k=0, \ldots, n \text { and } a \in A\left[X_{\mathrm{k}}\right]\right\} \\
& \mathrm{DE}_{\mathrm{d}}=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in D_{\mathrm{d}, v_{2}}\right\} .
\end{aligned}
$$

When a computation tree T is given a dependency graph DG_{T} for the computation tree T is defined to represent dependencies among attributes of nodes in $T . \mathrm{DG}_{\mathrm{T}}$ is obtained by merging together DG_{d} 's according to the decompositions in T.

Let T be a computation tree with root node $X \in M . \mathrm{DG}_{\mathrm{T}}$ determines an $I O$ graph $\mathrm{IO}[X, T]$ of X with respect to T. It gives an I / O relationship among attributes of X, which is realized by the decomposition tree $T:$ That is

$$
\mathrm{IO}[X, T]=\left(A[X], E_{\mathrm{oo}}\right)
$$

when an edge (i, s) is in $E_{10} \subset \mathrm{IN}[X] \times \mathrm{OUT}[X]$ iff there is in DG_{T} a path connecting the attribute occurrences $X \nmid i$ and $X \dagger s$ of the root T.

For general PLASTIC programs there may be finitely many IO graphs for $X \in M$ and we denote the set of these IO graphs by $I O(X)$, that is

$$
\mathrm{IO}(X)=\{\operatorname{IO}[X, T] \mid T \text { is a computation tree }\} .
$$

Let $\mathrm{IO}(X)=\left\{\mathrm{IO}_{1}, \ldots, \mathrm{IO}_{\mathrm{N}}\right\}$ where $\mathrm{IO}_{k}=\left(A\left[X_{k}\right], E_{\mathrm{k}}\right)$. A superposed 10 graph $\mathrm{IO}[X]$ is defined by

$$
\mathrm{IO}[X]=(A[X], E), \quad E=\bigcup_{k=1}^{N} E_{k}
$$

to represent possible IO relationship.
In order to define a set of attributes to be evaluated in parallel, let us'introduce an OI graph the dual concept of IO graph, which specifies how the values of infierited attributes are effected by other attributes.

Let T be a computation tree which contains $X \in M$ as one of leaf nodes. An OI graph $\mathrm{OI}[X, T]$ of X with respect to T is given by

$$
\text { OI }[X, T]=\left(A[X], E_{\mathrm{OI}}[T]\right), E_{\mathrm{OI}}[T] \subset A[X] \times \mathrm{IN}[X]
$$

where $(a, i) \in E_{\mathrm{OI}}[T]$ iff there is in DG_{T} a path from v_{a} to v_{i}, where v_{a} and v_{i} are nodes for attributes a and i of the leaf node X. A superposed OI graph is defined in a similar way as IO $[X]$.

We further define a dependency graph $\mathrm{DG}[X]$ of the module X as the union of IO graph and OI graph, that is

$$
\mathrm{DG}[X]=\left(A[X], E_{\mathrm{IO}} \cup E_{\mathrm{OI}}\right) .
$$

For an absolutely noncircular PLASTIC description D a set $O \subset O U T[X]$ of output attributes is said evaluable in parallel iff no $s_{1}, s_{2} \in O$ are connected in DG $[X]$.

An augmented dependency $\mathrm{DG}_{\mathrm{d}}^{*}$ for the decomposition d is

$$
\mathrm{DG}_{\mathrm{d}}^{*}=\left(\mathrm{DV}_{\mathrm{d}}^{*}, \mathrm{DE}_{\mathrm{d}}^{*}\right)
$$

where $\mathrm{DV}_{\mathrm{d}}^{*}=\mathrm{DV}_{\mathrm{d}}$, the set of attribute occurrences in d, and $e \in \mathrm{DE}_{\mathrm{d}}^{*}$ iff $e \in \mathrm{DE}_{\mathrm{d}}$ or $e=\left(X_{k} \cdot i, X_{k} \cdot s\right)$ for some $(i, s) \in \mathrm{IO}\left[X_{k}\right]$ and $k=1, \ldots, n$. $\mathrm{DG}_{\mathrm{d}}^{*}$ represents a relationship among attribute occurrences in d which is realized partly by attribute mappings and partly by computation trees.

A PLASTIC description is said to be absolutely noncircular [2] iff $\mathrm{DG}_{\mathrm{d}}^{*}$ does not contain cycles for any $d \in D$. For an output attribute s of a module X of a PLASTIC program, its input set in $[s, X]$ is defined to be a set of input attributes which are required to evaluate s, that is

$$
\text { in }[s, X]=\{i \mid(i, s) \text { is an edge of } \mathrm{IO}[X]\}
$$

We extend the function in $[s, X]$ to allow such O as its first argument

$$
\text { in }[O, X]=\bigcup_{s \in O} \text { in }[s, X] \text {. }
$$

4.2. Translation algorithm

Let X be a module of an absolutely noncircular PLASTIC description $P=\left(M, m_{0}, A \cdot D, V, F\right)$ and s an output attribute of X. We associate with each pair X, s a procedure

$$
R_{X, s}\left(v_{1}, \ldots, v_{m} ; v\right)
$$

where v_{1}, \ldots, v_{m} are parameters corresponding to the input attributes in $I=$ in $[s, X]$ and v is a parameter for s. It should be noted that input and output parameters are separated by semicolon. This procedure is intended to evaluate the output attribute when supplied the values of input attributes in I.

When given the value of the inherited attribute i_{0} of the initial module m_{0} we begin to evaluate the output attribute s_{0} of m_{0} by executing the procedure call statement

$$
\text { call } R_{m_{0}, s_{0}}\left(u_{0} ; v_{0}\right)
$$

where u_{0} and v_{0} are variables corresponding to i_{0} and s_{0}, respectively.
Now we are ready to describe how to construct the procedure $R_{X, s}\left(v_{1}, \ldots, v_{m} ; v\right)$. The first thing the procedure $R_{X, s}$ must do in its body is to know the decomposition d which is applicable to the module X and perform a sequence $H_{d, s}$ of statements to compute the value of attribute occurrences in d, therefore $R_{X, s}$ is constructed in the following form,
procedure $R_{X, s}\left(v_{1}, \ldots, v_{m} ; v\right)$

```
if \(C_{d_{1}}\) then \(H_{d_{1}, s}\) else
if \(C_{d_{2}}\) then \(H_{d_{2}, s}\) else
...
end
```

where d_{1}, d_{2}, \ldots are decompositions (versions) with left side module X. We have assumed that the PLASTIC description is deterministic, that is decomposition conditions of disctinct decompositions with the same left side module do not become simultaneously true for any value of its input attributes.

The sequence $H_{d, s}$ is obtained in the following steps.
(1) Make the augmented dependency-graph $\mathrm{DG}_{\mathrm{d}}^{*}$.
(2) Remove from DG_{d}^{*} nodes and edges which are not located on any path leading to $X_{0} \uparrow s$ for $i \in I=$ in $\left[s, X_{0}\right]$. Denote the resulting graph by

$$
\mathrm{DG}_{\mathrm{d}}^{*}[s]=(V, E)
$$

(3) To each attribute occurrence $x \in V^{\prime}=V-\left\{X_{0}|i| i \in \mathrm{IN}\left[X_{0}\right]\right\}$ assign a statement st $[x]$ for evaluating X as follows.
Case 1. If $x=X_{k} \downarrow i$ for some $i \in \operatorname{IN}\left[X_{k}\right]$ and $k=1, \ldots, n$ or $x=X_{0} \uparrow s(=v)$ for the attributes $s \in \operatorname{OUT}\left[X_{0}\right]$, then $\operatorname{st}[x]$ is the assignment statement

$$
x:=\hat{f_{d}, x}\left(z_{1}, \because . ., z_{r}\right)
$$

where $f_{d, x}$ is the attribute mapping for the attribute occurrence \dot{x} and $D_{d, x}=\left\{z_{1}, \ldots, z_{r}\right\}$.
Case 2. If $x=X_{k}\left\langle t\right.$ for some $t \in \mathrm{OU} \cdot \mathrm{T}\left[X_{k}\right]$ and $k=1, \ldots, n$, then $\operatorname{st}[x]$ is the procedure call statement
call $R_{X_{k}, t}\left(w_{1}, \ldots, w_{k} ; x\right)$
where $\quad w_{1}, \ldots, w_{k}=\left\{X_{k}+i \mid i \in\right.$ in $\left.\left[t, X_{k}\right]\right\}$.
(4) Let x_{1}, \ldots, x_{N} be elements in V^{\prime} which are listed according to the topological ordering determined by E, i.e., if $\left(x_{a}, x_{b}\right) \in E$ then $a<b$. Then $H_{d ; s}$ becomes as follows.

$$
\text { st }\left[x_{1}\right] ; \ldots ; \text { st }\left[x_{N}\right]
$$

Note that statements in $H_{d, s}$ satisfy the single assignment rule. It is easy to see that the ordering x_{1}, \ldots, x_{N} ensures values of attribute occurrences are determined consistently if the PLASTIC description is absolutely noncircular.

We first construct the procedure $R_{m_{0}, s_{0}}$ by the algorithm we have stated. Body of $R_{m_{0}, s_{0}}$ may contain calls for other procedures $R_{X, s}$'s and they are constructed in the same way. Repeat this process until no more new procedures appear.

In the case of parallel evaluation we assign a single procedure

$$
R_{X, o}\left(v_{1}, \ldots, v_{m} ; u_{1}, \ldots, u_{n}\right)
$$

to each set O which is evaluable in parallel instead of assigning n procedures, where u_{1}, \ldots, u_{n} are parameters corresponding to output attributes in O and v_{1}, \ldots, v_{m} are those for attributes in in $[O, X]$.

Construction of $R_{X, o}$ parallels to that of $R_{X, s}$ except a few points. As in the case of $R_{X, s}$, the procedure $R_{X, o}$ has the following form.
procedure $\mathrm{R}_{X, o}\left(v_{1}, \ldots, v_{m} ; u_{1}, \ldots, u_{n}\right)$
if $C_{d_{1}}$ then $H_{d_{1}}, o\left(v_{1}, \ldots, v_{m} ; u_{1}, \ldots, u_{n}\right)$ else
if $C_{d_{2}}$ then $H_{d_{9}}, o\left(v_{1}, \ldots, v_{m} ; u_{1}, \ldots, u_{n}\right)$ else

```
    end
```

For a decomposition $X_{0} \rightarrow X_{1} X_{2} \ldots X_{n}$ and $O \in S\left[X_{0}\right]$ which is evaluable in parallel, construction of statement sequence $H_{d, o}$ proceeds in the following steps.
(1) Make $\mathrm{DG}_{\mathrm{d}}^{*}$.
(2) Make $\mathrm{DG}_{\mathrm{d}}^{*}[O]=(V, E)$ by removing from $\mathrm{DG}_{\mathrm{d}}^{*}$ nodes and edges which are not located on any path leading to $X_{0} t s$ for $s \in O$.
(3) For each $k=1, \ldots, n$ decompose the set

$$
\text { OUT }^{*}\left[X_{k}\right]=\operatorname{OUT}\left[X_{k}\right] \cap\left\{t \mid X_{k} \cdot t \in V\right\}
$$

into a set of mutually disjoint subsets

$$
O_{k 1}, O_{k 2}, \ldots, O_{k r}
$$

such that each $O_{k j}$ is evaluable in parallel. When the decomposition is not unique, we should choose a maximal decomposition, that is, one where the number v becomes minimum, to attain high efficiency of evaluation.
(4) Let $\mathrm{DG}_{\mathrm{d}}^{\prime}[O]=\left(V^{\prime}, E^{\prime}\right)$ be a graph obtained from $\mathrm{DG}_{d}^{*}[O]$ by grouping elements of each $O_{k j}$ into a single node $v_{k j} \in V$. Formally

$$
\begin{gathered}
V^{\prime}=\{g[v] \mid v \in V\} \\
E^{\prime}=\{(g[u], g[v]) \mid(u, v) \in E\}
\end{gathered}
$$

where g is a function defined by

$$
g[v]=\left\{\begin{array}{l}
v_{k j} \text { if } v=X_{k} \cdot s \text { for some } s, k \text { and } j \text { such that } s \in O_{k j} \\
v \text { otherwise. }
\end{array}\right.
$$

(5) To each element x in $V_{0}=V^{\prime}-\left\{X_{0} \cdot i \mid i \in \mathrm{IN}\left[X_{0}\right]\right\}$ assign a statement st $[x]$ as follows.

Case 1. If $X=X_{k}+i$ for some $i \in \operatorname{IN}\left[X_{k}\right]$ and $k=1, \ldots, n$, or $X=X_{0}+s$ then st $[x]$ is the assignment statement
where

$$
x:=f_{d, x}\left(z_{1}, \ldots, z_{r}\right)
$$

where

$$
D_{d, x}=\left\{z_{1}, \ldots, z_{r}\right\}
$$

Case 2. If $X=v_{k j}$ then $s t[x]$ is the procedure call statement

$$
\text { call } R_{x_{k}, o_{k j}}\left(w_{1}, \ldots, w_{h} ; x_{1}, \ldots, x_{c}\right)
$$

where

$$
\begin{equation*}
\left\{w_{1}, \ldots, w_{h}\right\}=\left\{X_{k}+i \mid i \in \operatorname{in}\left[O_{k j}, X_{k}\right]\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{x_{1}, \ldots, x_{c}\right\}=\left\{X_{k} \uparrow t \mid t \in O_{k}\right\} \tag{2}
\end{equation*}
$$

(6) Same as 4. for $H_{d, s}$ in the sequential case.
A. Translation of the entire attribute grammar into the corresponding program is similar to the one given in this section: Let O be a set of output attributes of the initial modul. We start from constructing the procedure $R_{S, o}$ and then proceed to procedures which are called in it.

RESEARCH GROUP ON THEORY OF AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI B. U. 7
H-6720, SZEGED

References

[1] Deransart, P., Logical attribute grammars, In: Information Processing' 83, E. Mason ed., North-Holland, 463-470.
[2] Gyimótity, T., E: Simón, and A. Makay, An implementation of the HLP, Acta Cybernetica 6, 3. (1983), 316-327.
[3] Jalili, F., A general incremental evaluator for attribute grammars, Science of Computer Programming 5,1 (1985), 83-96.
[4] KAtayama, T:, Translation of attribute grammar into procedures, Department of Comp. Science, Tokyo Institute of Technology, TR CS-K8001.
[5] Katayama, T., and Y. Hoshino, Verification of attribute grammars, Department of Comp. Science, Tokyo Institute of Technology, TR CS-K8003.
[6] Knuth, D. E., Semantics of context-free languages, Math. Syst. Theory 2, 2 (1968), 127-145.
[7] Liskov, B., et al, Abstraction mechanisms in CLU, CACM 20, 8 (1977), 564-572.
[8] RÄíÄ, K-J., et al, Revised report on the compiler writing system HLP78, Department of Comp. Science, University of Helsinki, TR A-1983-1.
[9] Shaw, M., et al, Abstraction and verification in ALPHARD: Defining and specifying iteration and generators, CACM 20, 8 (1977), 553-563.
[10] Simon, E., Formal definition of the SYCOMAP system, In: Preprints of the Second Hungarian Computer Science Conference, Budapest, 1977, 738-759.
[11] Simon, E., Language extension in the HLP/SZ system, Acta Cybernetica 7, 1 (1984), 89-97.
[12] Toczki, J., et al., On the PASCAL implementation of the HLP, to be published In: Proc. of 4th Hungarian Computer Science Conference, Gyôr, 1985 (to appear).
[13] Yellin, D., and Eva-Maria. M. Mueckstein, Two-way translators based on attribute grammar inversion, to be published In: Proc. of 8th International Conference on Software Engineering, $1985,17 \mathrm{pp}$.
(Received Aug. 27,1985.)

Problem solving based on knowledge representation and program synthesis

S. S. Lavrov

Computers cannot solve problems, they are only able to execute programs. A man can solve problems if he has necessary knowledge and experience. In informatics to solve a problem means to find and to describe a sequence of computing operations leading to the intended result. If a problem is solved in that sense then a program capable to get an answer to that single problem is created. Possibly the program can supply solutions of a number of problems differing however only in their input data.

A man can usually do more than this. He knows the field of his activity - an object area as we shall call it. He is able to solve many essentially different problems in this area.

From this standpoint a challenging problem arises - how to transfer human's knowledge and experience to a computer, how to make it capable to solve a large class of problems, not just one, in a specific area. The problem is by no means a new one. It is known a number of ways to solve it.

These traditional ways are: program packages (if one takes an algorithmic approach), data bases (when an informational approach is preferable), expert systems. Every program package or expert system usually has its own built-in control device. In the case of data bases this role is played by a data base management system. Such a system enables us to create different data bases oriented to different object areas. A similar approach is known in connection with expert systems.

There exist also systems based on more abstract form of knowledge representation. Among them the language PROLOG [1] and its implementations and applications should be mentioned first of all.

However in all these cases we have one large program or system which directly uses a computer to solve various problems. The system does not try to generate a program for each specified problem. In other words all these systems are rather interpretive than compilative by their nature:

Only one form of knowledge representation is used in every kind of system. This form is: a computing procedure or a program module in the case of a program package, a table in the case of a data base, a rule of the form "condition \rightarrow action" in the case of an expert system, a Horn clause in the case of a PROLOG program.

It occurs sometimes that two very similar application systems having almost the same purpose and possibilities are classified differently by their authors, e.g. as an expert system and a data base, depending on the authors' tastes and points of view:

A very interesting problem solving system called PRIZ was developed in Tallinn by E. H. Tyugu and his colleages as early as the first half of 60 -ies [2-4]. The system has very much progressed since then of cause. The work which will be reported here was inspired in many aspects by this system.

The approach adopted in the informatics division of our institute is intended to overcome the drawbacks and the restrictions mentioned above. In our system called SPORA ("СПОРА") we wanted to develop a unified approach combining the principles accepted by the designers of many application systems. On the other hand we tried not to mix up different concepts. Moreover our intention was to find the most appropriate place in the system for every independent concept known. We wanted to use any such concept with maximal effect.

Similarly we tried to take the greatest possible advantage of different experience and tastes of different people working in any chosen area. There are always people with strong mathematical attitude and a good mathematical education. There are people also who like computer programming and are eager to contact, to cooperate with a computer. Surely most people are using computers only by necessity because without them they could not reach the desirable result.

Starting from all these considerations we have built our system in the following way.

The main part of the system is a knowledge base. We distinguish at least three kinds of knowledge: conceptual, algorithmic and factual ones. Conceptual knowledge is a set of terms (words) naming the basic concepts or notions of a given object area together with their properties and relationships. All this is expressed on the most abstract level. A description of an object area on this level is called conceptual model of the area. Abstraction is made from physical representation of entities (i.e. from their measurement units), from their programming representation (possible data types in some algorithmic language) and even from their mathematical representation. E.g. we prefer to write the Ohm law in the form

Ohm (voltage, current, resistance)
or
voltage $=$ times (current, resistance)
where the word "times" denotes a map with no predefined mathematical properties instead of the usual $u=i * r$.

A conceptual model contains some entity types and functional dependencies (maps) called primary. They are just names and on the abstract level do not posses any directly stated properties. However we consider the possibility to add a sort of axiomatics describing such properties to a model.

The model also contains secondary types and maps which are described in a relational manner. The components of an object, i.e. the attributes of a type or the arguments and the result of a map should be explicitly listed. In addition to this the dependencies between the components should be described.

There are tree kinds of dependencies. A functional dependency has the form $v:=t$ where v is a component of an object, t is a functional term constructed from such components. Such a dependency prescribes the value of v to be computed as a result of the term t evaluation.

An equational dependency (or simply an equation) having the form $t_{1}=t_{2}$ prescribes values of functional terms t_{1} and t_{2} to be equal.

A relational dependency looks like this:

$$
\text { is } R_{1}\left(v_{i_{1}}=t_{1}, \ldots, v_{i_{k}}=t_{k}\right)
$$

where R_{1} is another type described elsewhere, $v_{i_{1}}, \ldots, v_{i_{k}}$ are some of the attributes of R_{1} and t_{1}, \ldots, t_{k} are functional terms constructed from the components of the currently defined object. Such a dependency allows one to use the dependencies associated with the type R_{1} in the actual definition. It means that an object with the components $v_{i_{1}}, \ldots, v_{i_{k}}$ having values supplied by the terms t_{1}, \ldots, t_{k} must belong to the type R_{1} :

There is a possibility for an object to have optional components and conditional dependencies between them. The definition of either a type or a map may be recursive.

This approach has his pros and cons. The main gain is that abstraction from many details usually opens the shortest and the most natural way to a solution of the given problem. The main drawback is that a solution (if one is found) is an abstract one and cannot be directly used for computation. Another difficulty arises from the fact that equational dependencies cannot be resolved on the abstract level. This is so because on that level we abstract from the mathematical representation of primary maps and cannot use their mathematical properties.

Therefore an abstract conceptual model of an object area needs an algorithmic and informational support. At this point two other kinds of knowledge mentioned above step on the scene.

Algorithmic knowledge is a collection of ways to represent each entity as an object of some algorithmic language and each map as a procedure written in such a language. Such a representation is needed only for the entities of primary types and for primary maps. The secondary types and maps have a standard representation based on their desription sketched above. The algorithmic languages used for the representation of algorithmic knowledge are called base languages of the system. Currently base languages are Pascal, FORTRAN and ALGOL 60. The system itself is written mainly in Pascal and partially in the assembly language of the BESM 6 computer.

Factual knowledge is a set of values and qualitative characteristics of objects under consideration. The most natural way to represent the factual knowledge is to put it in a data base. The data manipulation language of the data base is also considered as a base language of the system.

Thus the whole knowledge base consists of a conceptual model, a program modules package forming the algorithmic support of the model and a data base forming its informational support. Certainly an interface between these three parts of the knowledge base should be described. We consider both the program package and the data base equally important parts of the knowledge base having equal rights and status.

Our problem solving system has a number of input languages oriented to different needs and to different classes of users.

The most complicate and still rather simple language is the language for object area description. People using this language to construct conceptual models should be experts in the object area. They must be mathematically educated as well. We call them model designers. They are working in close contact with (if not being the
same) people creating algorithmic and :informational support of the model; i.e., program packages and data bases.

To describe the interface between the:model and its support one uses another input language called representation language or more exactly - primary types and maps representation language. This language is essentially a kind of universal macrolanguage. For each primary data type one has to describe a way to translate a name of an object having this type into a base language construction. For each primary map a way to call corresponding procedure should be described:

Users of the representation language should be good programmers first of all. Their main task is to describe the interface between the conceptual model and its algorithmic and informational support. :Both program modules and contents of a data base included in the support may be written by other people. The use of a macrolanguage allows one to include arbitrary modules or data collections in the conceptual model support.

A knowledge base of an object area being constructed, it is a rather simple task to specify a problem from the area. Essentialiy one has to list all the input quantities and the desirable result, in other words, to point out the places which these data occupy in the model. Additionally if the data base part does not contain the numeri: cal values of some input quantities one has to supply the system with these values:

All this information may be expressed in a rather simple language called request language and oriented to the most numerous category of users, viz. terminal ones.

A closer consideration reveals however a gap between the conceptual model and a problem specification existing in that scheme of problem solving. In fact. there may be no places for the input data and the result of a problem in the model. Let us take geometry as an example of an object area. Its model contains süch notions as a point; a. straight line, a triangle, a circle, a distance; an angle and so on, such relations as the incidence of a point and a line, the tangency of a line to a circle etc. To state a problem however one needs a collection of objects having various relationships between themselves to be described or drafted. The conceptual model of geometry cannot contain all such intented collections.

Therefore before stating a problem one has to describe a more or less concrete object on which the problem will be stated. We meet here another kind of knowledge which may be called a constructive one. Constructive knowledge is a set of rules and methods allowing one to describe an object under investigation on the basis of a conceptual model. A number of problems may be posed with respect to the object:

In our system we have a device useful by itself which can serve this purpose. The device is that of submodels related to a given model. Indeed the means to describe an investigated object are essentially the same as those used in the description of any secondary object:

To conclude a couple of words about the system functioning should be said.
A problem specification together with the model of the corresponding object area (or part of the model) is translated into a logical language. The result of the translation is an existence theorem for a solution of the given problem. Then the system tries to prove the theorem. From the proof if one is found the system extracts an algorithm leading to a solution of the problem. We call this algorithm an abstract program because it is expressed in terms of the conceptual model.

Next the abstract program is translated into one of the base languages of the system. The interface between the model:and its support is also used on this stage:

The resulting base language program can be compiled into machine code and then be executed by computer. The input data for the computation can be either taken from the data base or given by the author of the problem specification.

Variants of the scheme just described are possible. The abstract program can be printed for examination by the user instead of being processed further. If the problem stated is of a rather general nature then the abstract program can be added to the conceptual model while its translation into a base language is added to the algorithmic support of the model. The compiled program can be included into a library. Thus not only the final result of computation but all the intermediate ones starting from the abstract program can be considered as a solution of the problem.

When one of the steps described above fails the user gets a diagnostic message.
The first version of the system SPORA was written in 1977-82. Recently the second version was developed and tested.

References

[1] Van Emden, M. E., Kowalsky R. A., The semantics of predicate logic as a programming language. - J. of the ACM, 1976, v. 23, N 4, p.p. 23-32.
[2] Tyugu, E. H., A data base and problem solver for computer-aided design. - In. Information Processing 71. - North-Holland Publ. Co., 1972, p.p. 1046-49.
[3] Tyugu, E., Towards practical synthesis of programs. - In: Information Processing 80. - NorthHolland Publ. Co., 1980, p.p. 207-19.
[4] Тыугу Э. Х. Концептуапиное программирование. - Москва, изд-во „Наука", 1984.
(Received Sept. 26, 1985.)

On compositions of root-to-frontier tree transformations

By S. VÁgvölgyi

0. Introduction

It is well known that the family of (nondeterministic) root-to-frontier tree transformations is not closed with respect to the composition, see [2]. In this paper we introduce the notion of k-synchronized root-to-frontier tree transducer. Transducers of this type are capable of inducing all the relations which are compositions of k root-to-frontier tree transformations. Conversely, we shall show that any relation induced by a k-synchronized tree transducer is a composition of k root-to-frontier tree transformations. We mention that similar results are obtained by M. Dauchet in his dissertation [1] using the theory of magmoids.

1. Preliminaires

In this chapter we shall review the basic notions and notations used in the paper and give a reformalized notation of root-to-frontier tree transducers.

Definition 1.1. An operator domain is a set G together with a mapping $v: G \rightarrow$ $\rightarrow\{0,1,2, \ldots\}$ that assigns to every $g \in G$ an arity, or rank, $v(g)$. For any $m \geqq 0$,

$$
G^{m}=\{g \in G \mid v(g)=m\}
$$

is the set of m-ary operators.
From now on, by an operator domain we mean a finite one, that means G is a finite set. The letters F and G always denote operator domains.

Definition 1.2. Let Y be a set disjoint from the operator domain G. The set $T_{G}(Y)$ of G-trees over Y is defined as follows:
(1) $G^{0} \cup Y \subseteq T_{G}(Y)$,
(2) $g\left(p_{1}, \ldots, p_{m}\right) \in T_{G}(Y)$ whenever $m \geqq 1$, $g \in G^{m}$ and $p_{1}, \ldots, p_{m} \in T_{G}(Y)$, and
(3) every G-tree over Y can be obtained by applying the rules (1) and (2) a finite number of times.

The set $T \subseteq T_{G}(Y)$ is called a G-forest over Y.
Definition 1.3. Let $p \in T_{G}(Y)$ be a G-tree over Y. The set sub (p) of subtrees of p is defined by the following rules:
(1) $\operatorname{sub}(p)=\{p\}$ if $p \in G^{0} \cup Y$,
(2) $\operatorname{sub}(p)=\{p\} \cup \bigcup_{i=1}^{m} \operatorname{sub}\left(p_{i}\right) \quad$ if

$$
\begin{aligned}
& \ddot{p}=\ddot{g}\left(\ddot{p}_{1}, \cdots, p_{m}\right), \quad g \in \dot{G}^{m} \text { and } \\
& p_{1}, \ldots, p_{m} \in T_{G}(Y) .
\end{aligned}
$$

Definition 1.4. Let $p \in T_{G}(Y)$ be a tree. The root root (p) and height $h(p)$ are defined as follows:
(1) If $p \in G^{0} \cup Y$, then root $(p)=p, \quad h(p)=0$.
(2) If $p=g\left(p_{1}, \ldots, p_{m}\right)(m>0)$, then $\operatorname{root}(p)=g$ and $h(p)=\max \left(h\left(p_{i}\right) \mid i=\right.$ $=1, \ldots, m)+1$.

Definition 1.5. Let $u \in N^{*}$ be a word over the set of natural numbers. The word u induces a partial function $u: T_{G}(Y) \rightarrow T_{G}(Y)$ in the following way:
(1) If $u=e$ then $u(p)=p$ for every $p \in T_{G}(Y)$, where e denotes the empty word.
(2) If $u \neq i v, i \in N ; v \in N^{*}$ and $: p \in T_{G}(Y)$, then

$$
u(p)=\left\{\begin{array}{l}
v\left(p_{i}\right) \text { if } p=g\left(p_{1}, \therefore, p_{m}\right), g \in G^{m}, 1 \leqq i \leqq m \\
\text { else undefined }
\end{array}\right.
$$

The elements of $T_{G}(Y)$ may be visualized as tree like directed ordered labelled graphs. In this case every path from the root to a given node in the graph is determined by a word over N. For every word $u \in N^{*}$, if there exists a node r such that u is the path from the root of p to r, then $u(p)$ denotes the subtree (subgraph) with root r.

Definition 1.6: Let Y be a set disjoint from G. We may assume without loss of generality that $N^{*} \cap T_{G}(Y)=\emptyset$ and $G \cap N^{*}=\emptyset$ hold in the rest of the paper. The set $P_{G}(Y)$., of quasi G-trees over Y is defined by the following rule;

$$
P_{G}(Y)=\left\{p \in T_{G}\left(Y \cup N^{*}\right) \forall u \in N^{*} \text { if } u(p) \in N^{*} \text { then } u(p)=u\right\}
$$

Definition 1.7. The mapping $S: P_{G}(Y) \rightarrow 2^{N *}$ assigns a subset $S(p)$ of N^{*} to every quasi tree p which is defined by

$$
S(p)=\left\{u(p) \mid u \in N^{*}\right\} \cap N^{*}
$$

It is clear that $S(p)$ is a finite set for every $p \in P_{G}(Y)$. The set $S(p)$ is also denoted by S_{p}. Members of S_{p} are called arguments of p.

Definition 1.8. Let Z be an arbitrary set and let $\varphi: S_{p} \rightarrow Z$ be a given function for a given quasi tree $p \in P_{G}(Y)$. Replacing every element u of S_{p} by $\varphi(u)$ in thé tree p we obtain a G-tree over $Y \cup Z$, which is denoted by $p\left[S_{p}, \varphi\right]$.

Example. Let $G=\left\{g_{1}, g_{2}\right\}$ be an operator domain with $v\left(g_{1}\right)=1, v\left(g_{2}\right)=2$ and let $Y=\left\{y_{1}, y_{2}, y_{i}\right\} \cdot \cdot$ The quasi tree $p=g_{2}\left(g_{1}(11), g_{2}\left(21 ; y_{1}\right)\right)$, may be visualized by the graph on Fig. 1.

Figure 1

Figure 2

Let us define the mapping $\varphi:\{11,21\} \rightarrow\left\{y_{2}, y_{3}\right\}$ as follows:

$$
\varphi(11)=y_{2}, \dot{\varphi}(21)=y_{3} .
$$

The quasi tree $p\left[S_{p}, \varphi\right]$ may be visualized by the graph on Fig. 2.
Binary relations $\tau \subseteq T_{F}(X) \times T_{G}(Y)$ are called tree transformations. The composition $\tau_{1} \circ \tau_{2}$ of the tree transformations $\tau_{1}\left(\cong T_{F}(X) \times T_{G}(Y)\right)$ and $\tau_{2}\left(\cong \bar{T}_{G}(Y) \times\right.$ $\left.\times T_{H}(Z)\right)$ is defined by

$$
\tau_{1} \circ \tau_{2}=\left\{(p, q) \mid(p, r) \in \tau_{1},(r, q) \in \tau_{2} \text { for some } r\right\}
$$

The composition $\tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{l} \mid l \geqq 3$) of the tree transformations : $\tau_{1}, \tau_{2}, \ldots, \tau_{l}$ is defined by

$$
\tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{l}=\left(\tau_{1} \circ \ldots \circ \tau_{l-1}\right) \circ \tau_{l}
$$

Definition 1.9. A state set A is an operator domain consisting of unary operators only. If A is a state set and D is an arbitrary set then $A D$ will denote the forest

$$
A D=\{a(d) \mid a \in A, d \in D\}
$$

Moreover, if $a \in A$ and $d \in D$ then we generally write $a d$ for $a(d)$.
If A_{1}, \ldots, A_{j} are state sets $(j \in N)$ then $A_{j} \ldots A_{1}$ denotes the state set $A_{j} \times \ldots \times A_{1}$ which is the Cartesian product of the sets $A_{i}(1 \leqq i \leqq j)$.

Elements of $A_{j} \ldots A_{1}$ are denoted by sequences $a_{j} \ldots a_{1}$, where $a_{i} \in A_{i}, i=1, \ldots, j$.
For every non-negative integer $l,\{1, \ldots, l\}$ denotes the set $\{i \mid 1 \leqq i \leqq l\}$.
Definition 1.10. A root-to-frontier tree transducer (R-transducer) is a system $\mathfrak{H}=\left(F, X, A, G, Y, A^{\prime}, \Sigma\right)$, where
(1) F and G are operator domains.
(2) A is an operator domain consisting of unary operators, the state set of \mathfrak{A}.
(It will be assumed that $A \cap T_{F}(X)=\emptyset$ and that $A \cap T_{G}(Y)=\emptyset$.)
(3) X and Y are finite sets.
(4) $A^{\prime} \subseteq A$ is the set of initial states.
(5) Σ is a finite set of productions (rewriting rules) of the following two types:
(i) $a x \rightarrow q\left(a \in A, x \in X, q \in T_{G}(Y)\right)$,
(ii) $a f \rightarrow q\left[S_{q}, \varphi\right]\left(q \in P_{G}(Y), f \in F^{m}, \quad \varphi: \because S_{q} \rightarrow A\{1, \ldots, m\}\right)$.
\mathfrak{A} is said to be a deterministic R-transducer if \boldsymbol{A}^{\prime} is a singleton and there are no distinct productions in Σ with the same left-hand side.

Definition 1.11. Let $\mathfrak{A}=\left(F, X, A, G, Y, A^{\prime}, \Sigma\right)$ be an R-transducer and let $p_{1}, p_{2} \in T_{G}\left(Y \cup N^{*} \cup A T_{P}\left(X \cup N^{*}\right)\right)$ be trees. We say that p_{1} directly derives p_{z} in \mathfrak{A}, in symbols $p_{1} \Rightarrow p_{2}$, if p_{2} can be obtained from p_{1} by
(i) replacing an occurrence of a subtree $a x(\in A X)$ in p_{1} by the right side q of a production $a x \rightarrow q$ in Σ, or by
(ii) replacing an occurrence of a subtree
$a f(1, \ldots, m)[\{1, \ldots, m\}, \alpha]\left(f \in F^{m}, \quad \alpha:\{1, \ldots, m\} \rightarrow T_{F}\left(X \cup N^{*}\right)\right)$ in p_{1} by $q\left[S_{q}, \beta\right]$, where $a f \rightarrow q\left[S_{q}, \varphi\right]$ is in Σ and β is a mapping $\beta: S_{q} \rightarrow A T_{F}\left(X \cup N^{*}\right)$ such that for each $s \in S_{q}$ if $\varphi(s)=c t(c \in A, t \in\{1, \ldots, m\})$ then $\beta(s)=c \alpha(t)$.

Each application of steps (i) and (ii) is called a direct derivation in \mathfrak{A}.
The reflexive-transitive closure of $\Rightarrow_{\mathfrak{q I}}$ is denoted by $\Rightarrow_{\mathbb{I}}^{*}$.
Using the notation \Rightarrow_{q}^{*} the transformation $\tau_{\mathfrak{g}}$ induced by a root-to-frontier tree transducer $\mathfrak{U}=\left(\bar{F}, \boldsymbol{X}, \boldsymbol{A}, \vec{G}, \vec{Y}, \boldsymbol{A}^{*}, \Sigma\right)$ is defined by:

$$
\tau_{q \mathrm{I}}=\left\{(p, q) \mid p \in T_{F}(X), q \in T_{G}(Y), a p \Rightarrow_{\Psi}^{*} q \text { for some } a \in A^{\prime}\right\}
$$

The range of a mapping $\varphi: A \rightarrow B$ is denoted by $\operatorname{rg}(\varphi)$. Let $U_{0}, U_{1}, \ldots, U_{t}$ be sets, and let V be a subset of the set $\left(U_{0} \times U_{1} \times \ldots \times U_{i}\right) \cup\left(U_{0} \times U_{1} \times \ldots \times U_{i-1}\right) \cup \ldots$ $\ldots \cup\left(U_{0} \times U_{1}\right) \cup U_{0}$, where $U_{0} \times U_{1} \times \ldots \times U_{l}$ the Cartesian product of the sets U_{i} ($0 \leqq i \leqq l)$. Then for an index $j,(0 \leqq j \leqq l)[V]_{j}$ denotes the set

$$
\left.\left\{u_{j} \mid \exists\left(u_{0}, \ldots, u_{j}, \ldots, u_{n}\right) \in V, \quad 0 \leqq n \leqq l, \quad 0 \leqq j \leqq n\right)\right\}
$$

Definition 1.12. Let u be an element of N^{*}. The mapping $\omega_{u}: T_{G}\left(Y \cup N^{*}\right) \rightarrow$ $\rightarrow T_{G}\left(Y \cup N^{*}\right)$ is defined as follows:
(1) $\omega_{n}(p)=p$ if $p=y(\in Y)$ or $p=f\left(\in G^{0}\right)$,
(2) $\omega_{u}(p)=u p$ if $p \in N^{*}$,
(3) $\omega_{u}(p)=f\left(\omega_{u}\left(p_{1}\right), \ldots, \omega_{u}\left(p_{l}\right)\right)$ if

$$
p=f\left(p_{1}, \ldots, p_{1}\right), f \in G^{l}, l \geqq 1, p_{i} \in T_{G}\left(Y \cup N^{*}\right), \quad i=1, \ldots, l .
$$

2. Derivation sequences

In this chapter we shall deal with the description of derivations according to root-to-frontier tree transducers.

In the rest of the paper k denotes a natural number, not less than two, moreover let $\mathscr{N}_{i}=\left(G_{i-1}, Y_{i-1}, A_{i}, G_{i}, Y_{i}, A_{i}^{\prime}, \Sigma_{\mathfrak{q}_{i}}\right)$ be R-transducers, $1 \leqq i \leqq k$.

Now we give a procedure P. The input of P is a derivation in the form
(1) $a_{j} p_{j-1} \Rightarrow_{d}^{*} p_{j}\left(a_{j} \in A_{j}, p_{j-1} \in T_{G_{j-1}}\left(Y_{j-1}\right), p_{j} \in T_{G_{j}}\left(Y_{j}\right)\right)$
for some $j \in\{1, \ldots, k\}$ and a decomposition

$$
p_{j-1}=r_{j-1}\left[S_{r j-1}, \varphi_{j-1}\right]\left(r_{j-1} \in P_{G_{j-1}}\left(Y_{j-1}\right), \varphi_{j-1}: S_{r_{j-1}} \rightarrow T_{G_{j-1}}\left(Y_{j-1}\right)\right)
$$

The procedure P produces two derivations denoted by (2) and (3) which are defined by induction on the height of $r_{j-1}\left(\in T_{G_{j-2}}\left(Y_{j-1} \cup N^{*}\right)\right)$. The derivations (2) and (3) will have the following forms:
(2) $a_{j} r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right] \Rightarrow_{\mathscr{A}_{j}}^{*} r_{j}\left[S_{r_{j}}, \psi_{j}\right] \Rightarrow_{\mathscr{A}_{j}}^{*} r_{j}\left[S_{r_{j}}, \varphi_{j}\right]=p_{j}$,

$$
\left(\psi_{j}: S_{r_{j}} \rightarrow A_{j} \operatorname{rg}\left(\varphi_{j-1}\right), \varphi_{j}: S_{r_{j}} \rightarrow T_{G_{j}}\left(Y_{j}\right)\right)
$$

for each

$$
s_{j} \in S_{r j}, \psi_{j}\left(s_{j}\right) \Rightarrow_{\mathfrak{A l} j}^{*} \varphi_{j}\left(s_{j}\right)
$$

holds,
(3) $a_{j} r_{j-1} \Rightarrow_{\mathbb{I n}_{j}}^{*} r_{j}\left[S_{r_{j}}, \bar{\psi}_{j}\right],\left(\bar{\psi}_{j}: S_{r_{j}} \rightarrow A_{j} S_{r_{j-1}}\right)$,
and for each $s_{j} \in S_{r_{j}}$ if $\Psi_{j}\left(s_{j}\right)=a_{j} s_{j-1}$ then $\psi_{j}\left(s_{j}\right)=a_{j} \varphi_{j-1}\left(s_{j-1}\right)$ holds.
Let $h\left(r_{j-1}\right)=0$.
Case 1. $r_{j-1}=f, f \in G_{j-1}^{0}$. In this case $S_{r_{j-1}}=\emptyset, \varphi_{j-1}=\emptyset$ and $r_{j-1}\left[S_{r_{j-1}}\right.$, $\left.\varphi_{j-1}\right]=f$. Thus $a_{j} f \rightarrow p_{j} \in \Sigma_{Q_{j},}$, where $p_{j} \in T_{G_{j}}\left(Y_{j}\right)$. Let $r_{j}=p_{j}$, thus $S_{r_{j}}=\emptyset$. Let $\varphi_{j}=\emptyset, \psi_{j}=\emptyset, \bar{\psi}_{j}=\emptyset$. Thus the derivation (1) takes the following forms:
(2) $a_{j} r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right] \Rightarrow{ }_{2 l j}^{*} r_{j}\left[S_{r_{j}}, \psi_{j}\right] \Rightarrow{ }_{2 l j}^{*} r_{j}\left[S_{r_{j}}, \varphi_{j}\right]$,
(3) $a_{j} r_{j-1} \Rightarrow_{\mathbb{M}_{j}} r_{j}\left[S_{r_{j}}, \Psi_{j}\right]$.

Case 2. $r_{j-1}=y\left(\in Y_{j-1}\right)$. This case is the same as Case 1.
Case 3. $r_{j-1}=e\left(\in N^{*}\right)$. In this case $\varphi_{j-1}(e)=r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right]$. Let $r_{j}=e$, thus $S_{r_{j}}=\{e\}$. Let the mappings

$$
\psi_{j}: S_{r_{j}} \rightarrow A_{j} T_{G_{j-1}}\left(Y_{j-1}\right), \bar{\psi}_{j}: S_{r_{j}} \rightarrow A_{j} S_{r_{j-1}}
$$

and

$$
\varphi_{j}: S_{r_{j}} \rightarrow T_{G_{j}}\left(Y_{j}\right)
$$

be defined as follows:

$$
\psi_{j}(e)=a_{j} r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right], \psi_{j}(e)=a_{j} e, \varphi_{j}(e)=p_{j}
$$

Thus

$$
r_{j}\left[S_{r_{j}}, \psi_{j}\right]=a_{j} r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right], r_{j}\left[S_{r_{j}}, \mathcal{\psi}_{j}\right]=a_{j} e .
$$

Thus we have obtained the desired derivations (2) and (3), and

$$
\bar{\psi}_{j}(e)=a_{j} e, \psi_{j}(e)=a_{j} \varphi_{j-1}(e), \quad \text { where } \quad S_{r_{j}}=\{e\} .
$$

We have proved the basic step of the induction. Let

$$
\begin{gathered}
r_{j-1}=f\left(\bar{p}_{1}, \ldots, \bar{p}_{l}\right)=f\left(\omega_{1}\left(p_{1}\right), \ldots, \omega_{l}\left(p_{l}\right)\right) \\
\left(p_{1}, \ldots, p_{l} \in P_{G_{j-1}}\left(Y_{j-1}\right), S_{r_{j-1}}=1 \cdot S_{p_{1}} \cup 2 \cdot S_{p_{2}} \cup \ldots \cup l \cdot S_{p l}\right.
\end{gathered}
$$

where

$$
\begin{gathered}
\left.i \cdot S_{p_{t}}=\left\{i s \mid s \in S_{p_{1}}\right\}, i=1, \ldots, l\right) \\
r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right]=f\left(p_{1}\left[S_{p_{1}}, \mu_{1}\right], \ldots, p_{l}\left[S_{p_{1}}, \mu_{l}\right]\right)
\end{gathered}
$$

where for each $i \in\{1, \ldots, l\}$, and $s \in S_{p_{1}} \mu_{i}(s)=\varphi_{j-1}(i s)$ holds. The production applied in the first step in derivation (1) must be of the form $a_{j} f \rightarrow q\left[S_{q}, \varepsilon\right]$, where
$q \in P_{G_{j}}\left(Y_{j}\right)_{;} f \in G_{j-1}^{\prime}$ for some $l ; \varepsilon: S_{q} \rightarrow A_{j}\{1, \ldots, l\}$. Consequently derivation (1) can be written in the following form:

$$
\begin{aligned}
& a_{j} r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right] \Rightarrow_{\mathfrak{I}_{j}}^{*} q\left[S_{q}, \varrho\right] \Rightarrow_{\mathfrak{I}_{j}}^{*} q\left[S_{q}, \tau\right] \\
& \left(\varrho: S_{q} \rightarrow A_{j} \operatorname{rg}\left(\varphi_{j-1}\right), \tau: S_{q} \rightarrow T_{G_{j}}\left(Y_{j}\right)\right),
\end{aligned}
$$

where the mapping ϱ satisfies the following formula: for every $s \in S_{q}$ if $\varepsilon(s)=b_{j} t$ ($1 \leqq t \leqq l, b_{j} \in A_{j}$) then $\varrho(s)=b_{j} p_{t}\left[S_{p_{t}}, \mu_{t}\right]$. This implies that $\varrho(s)=b_{j} p_{t}\left(S_{p_{t}}, \mu_{t}\right] \Rightarrow{ }_{q i t}^{*}$, $\Rightarrow{ }_{91}^{*} \tau(s)$ holds. The desired derivations will take the following forms:
(2)

$$
a_{j} f\left(p_{1}\left[S_{p_{1}}, \mu_{1}\right], \ldots, p_{l}\left[S_{p_{1}}, \mu_{l}\right]\right) \Rightarrow_{\mathscr{H}_{j}} q\left[S_{q}, \varrho\right] \Rightarrow_{\mathfrak{A}_{j}}^{*} q\left[S_{q}, x\right] \Rightarrow_{\mathscr{H}_{j}}^{*} q\left[S_{q}, \tau\right]
$$

where

$$
\begin{aligned}
& \varkappa: S_{q} \rightarrow T_{G_{j}}\left(Y_{j} \cup A_{j} T_{G_{j-1}}\left(Y_{j-1}\right)\right), \\
& \tau: S_{q} \rightarrow T_{G_{j}}\left(Y_{j}\right)
\end{aligned}
$$

$$
\begin{equation*}
a_{j} f\left(\omega_{1}\left(p_{1}\right), \ldots, \omega_{l}\left(p_{l}\right)\right) \Rightarrow_{\mathfrak{G}_{j}} q\left[S_{q}, \bar{\varrho}\right] \Rightarrow_{\mathscr{A}_{l}}^{*} q\left[S_{q}, \bar{x}\right] \tag{3}
\end{equation*}
$$

where

$$
\bar{\varrho}: S_{q} \rightarrow A_{j} T_{G_{j-1}}\left(Y_{j-1} \cup N^{*}\right), \quad \bar{x}: S_{q} \rightarrow T_{G_{j}}\left(Y_{j} \cup A_{j} S_{q_{j-1}}\right) .
$$

We shall define the mappings $\chi, \bar{\varrho}, \bar{\chi}$. For each $s \in S_{q}$ let us consider the derivation

$$
\begin{equation*}
\varrho(s)=b_{j} p_{t}\left[S_{p_{t}}, \mu_{t}\right] \Rightarrow_{\mathscr{A}_{j}}^{*} \tau(s) \tag{4}
\end{equation*}
$$

where

$$
\varepsilon(s)=b_{j} t \quad \text { holds }
$$

Since $h\left(p_{t}\right)<h\left(r_{j-1}\right)$ we may apply the induction hypothesis to derivation (4) and decomposition $p_{t}\left[S_{p_{t}}, \mu_{t}\right]$. The derivations (5) and (6) are obtained by applying procedure P to (4) and decomposition $p_{t}\left[S_{p_{t}}, \mu_{t}\right]$.

$$
\begin{align*}
& b_{j} p_{t}\left[S_{p_{t}}, \mu_{t}\right] \Rightarrow_{\mathscr{Q}_{j}}^{*} q_{s}\left[S_{q_{s}}, \eta_{s}\right] \Rightarrow_{\mathscr{q}_{j}}^{*} q_{s}\left[S_{q_{s}}, \xi_{s}\right]=\tau(s), \tag{5}\\
& \left(q_{s} \in P_{G_{j}}\left(Y_{j}\right), \eta_{s}: S_{q_{s}} \rightarrow A_{j} \operatorname{rg}\left(\mu_{t}\right), \xi_{s}: S_{q_{s}} \rightarrow T_{G_{j}}\left(Y_{j}\right)\right),
\end{align*}
$$

such that for every $v \in S_{q_{s}}, \eta_{s}(v) \Rightarrow \mathscr{N}_{1} \xi_{s}(v)$ holds.

$$
\begin{equation*}
b_{j} p_{t} \Rightarrow_{\mathbb{A}_{j}}^{*}, q_{s}\left[S_{q_{s}}, \bar{\eta}_{s}\right]\left(\bar{\eta}_{s}: S_{q_{s}} \rightarrow A_{j} S_{p_{t}}\right) \tag{6}
\end{equation*}
$$

and for every $v \in S_{q_{s}}$ if $\bar{\eta}_{s}(v)=b_{j} z$ for some $b_{j} \in A_{j}$ and $z \in S_{p_{t}}$ then $\eta_{s}(v)=b_{j} \mu_{t}(z)$.
In this case $x, \bar{\varrho}, \bar{x}$ are defined by

$$
\begin{aligned}
& \varkappa(s)=q_{s}\left[S_{q_{s}}, \eta_{s}\right], \quad \bar{\varrho}(s)=\omega_{t}\left(b_{j} p_{t}\right), \\
& \bar{\varkappa}(s)=\omega_{t}\left(q_{s}\left[S_{q_{s}}, \bar{\eta}_{s}\right]\right) .
\end{aligned}
$$

The derivation $\varrho(s) \Rightarrow{ }_{q_{i}}^{*} x(s) \Rightarrow{ }_{\mu_{j},}^{*} \tau(s)$ is the same as derivation (5).
The derivation $\bar{\varrho}(s) \Rightarrow_{{ }_{\mathrm{g}}^{\mathrm{j}}}^{*} \bar{x}(s)$ is obtained from derivation (6) by applying the mapping: $\omega_{\boldsymbol{z}}$ to each step of derivation (6).

We give a procedure S. The input of S is a derivation sequence $D=D_{1},!!, D_{k}$ given in the following form:

$$
\begin{aligned}
& D_{1}: a_{1} p_{0} \Rightarrow{ }_{\mathfrak{A}_{1}}^{*} p_{1},\left(p_{0} \in T_{G_{0}}\left(Y_{0}\right), a_{1} \in A_{1}, p_{1} \in T_{G_{1}}\left(Y_{1}\right)\right), \\
& D_{2}: a_{2} p_{1} \Rightarrow{ }_{\mathfrak{A}_{2}}^{*} p_{2},\left(a_{2} \in A_{2}, p_{2} \in T_{G_{2}}\left(Y_{2}\right)\right), \\
& \vdots \\
& D_{k}: a_{k} p_{k-1} \Rightarrow \Rightarrow_{\mathscr{N}_{k}}^{*} p_{k}\left(a_{k} \in A_{k}, p_{k} \in T_{G_{k}}\left(Y_{k}\right)\right)
\end{aligned}
$$

and a decomposition $p_{0}=r_{0}\left[S_{r_{0}}, \varphi_{0}\right]$. S produces two derivation sequences denoted
 $D^{r_{0}}$ and $\bar{D}^{r_{0}}$ will have the following forms:

$$
\begin{aligned}
& D_{1}^{r_{0}^{0}}: a_{1} r_{0}\left[S_{r_{0}}, \varphi_{0}\right] \Rightarrow_{\mathscr{N}_{1}}^{*} r_{1}\left[S_{r_{1}}, \psi_{1}\right] \Rightarrow_{\mathfrak{N}_{1}}^{*} r_{1}\left[S_{r_{1}}, \varphi_{1}\right]= \\
= & p_{1}\left(r_{1} \in P_{G_{1}}\left(Y_{1}\right), \psi_{1}: S_{r_{1}} \rightarrow A_{1} r g\left(\varphi_{0}\right), \varphi_{1}: S_{r_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)\right)
\end{aligned}
$$

and for each $s_{1} \in S_{r_{1}}$ the derivation $\psi_{1}\left(s_{1}\right) \Rightarrow_{\mathscr{N}_{1}}^{*} \varphi_{1}\left(s_{1}\right)$ is valid,

$$
\begin{aligned}
& D_{2}^{r_{2}}: a_{2} r_{1}\left[S_{r_{1}}, \varphi_{1}\right] \Rightarrow_{\mathscr{2 1}_{2}}^{*} r_{2}\left[S_{r_{2}}, \psi_{2}\right] \Rightarrow_{2_{2}}^{*} r_{2}\left[S_{r_{2}}, \varphi_{2}\right]= \\
= & p_{2}\left(r_{2} \in P_{G_{2}}\left(Y_{2}\right), \psi_{2}: S_{r_{2}} \rightarrow A_{2} \operatorname{rg}\left(\varphi_{1}\right), \varphi_{2}: S_{r_{2}} \rightarrow T_{G_{2}}\left(Y_{2}\right)\right)
\end{aligned}
$$

and for each $s_{2} \in S_{r_{2}}$ the derivation $\psi_{2}\left(s_{2}\right) \Rightarrow_{\mathscr{H}_{2}}^{*} \varphi_{2}\left(\dot{s}_{2}\right)$ is valid,

$$
\begin{aligned}
& D_{k}^{r_{0}^{0}}: a_{k} r_{k-1}\left[S_{r_{k-1}}, \varphi_{k-1}\right] \Rightarrow_{\mathscr{N}_{k}}^{*} r_{k}\left[S_{r_{k}}, \psi_{k}\right] \Rightarrow{ }_{\mathscr{N}_{k}}^{*} r_{k}\left[S_{r_{k}}, \varphi_{k}\right]= \\
& =p_{k}\left(r_{k} \in P_{G_{k}}\left(Y_{k}\right), \quad \psi_{k}: S_{r_{k}} \rightarrow A_{k} \operatorname{rg}\left(\varphi_{k-1}\right), \varphi_{k}: S_{r_{k}} \rightarrow T_{G_{k}}\left(Y_{k}\right)\right)
\end{aligned}
$$

and for each $s_{k} \in S_{r_{k}}$ the derivation $\psi_{k}\left(s_{k}\right) \Rightarrow_{\mathscr{H}_{k}}^{*} \varphi_{k}\left(s_{k}\right)$ is valid.

$$
\begin{aligned}
& \bar{D}_{1}^{r o} \vdots a_{1} r_{0} \Rightarrow{ }_{\mathscr{I}_{1}}^{*} r_{1}\left[S_{r_{1}}, \bar{\psi}_{1}\right]\left(\bar{\psi}_{1}: S_{r_{1}} \rightarrow A_{1} S_{r_{0}}\right), \\
& \bar{D}_{2}^{r_{0}}: a_{2} r_{1} \Rightarrow_{\tilde{I}_{2}}^{*} r_{2}\left[S_{r_{2}}, \bar{\psi}_{2}\right]\left(\bar{\psi}_{2}: S_{r_{2}} \rightarrow A_{2} S_{r_{1}}\right),
\end{aligned}
$$

$$
\bar{D}_{k}^{r_{0}}: a_{k} r_{k-1} \Rightarrow_{2_{k} k}^{*} r_{k}\left[S_{r_{k}}, \bar{\psi}_{k}\right]\left(\bar{\psi}_{k}: S_{r_{k}} \rightarrow A_{k} S_{r_{k}}\right) .
$$

For every $j \in\{1, \ldots, k\}$ and $s_{j} \in S_{r,}$ if $\bar{\psi}_{j}\left(s_{j}\right)=b_{j} s_{j-1}$ for some $b_{j} \in A_{j}$ and $s_{j-1} \in S_{r_{j-1}}$ then $\psi_{j}\left(s_{j}\right)=b_{j} \varphi_{j-1}\left(s_{j-1}\right)$. Applying the procedure P to the derivation D_{1} and the decomposition $p_{0}=r_{0}\left[S_{\mathrm{ro}}, \varphi_{0}\right]$.we obtain the derivations $D_{1}^{r_{0},} \bar{D}_{1}^{r_{0}}$.

Assume that the derivations $D_{j-1}^{r_{0}}, \bar{D}_{j-1}^{r_{0}}$ are constructed for an index $j(2 \leqq j \leqq k)$. Then the derivations $D_{j}^{r^{0}}, \bar{D}_{j}^{r_{0}}$ are obtained by applying the procedure P to D_{j} and decomposition $\ddot{p}_{j-1}=r_{j-1}\left[S_{r_{j-1}}, \varphi_{j-1}\right]$, where the decomposition $r_{j-1}\left[S_{r_{j-1}}\right.$, φ_{j-1}] of p_{j-1} is given in the derivation $D_{j-1}^{r_{0}^{0}}$.

Let $\mathfrak{X}_{i}=\left(G_{i-1}, Y_{i-1}, A_{i}, G_{i}, Y_{i}, A_{i}^{\prime}, \Sigma_{\mathfrak{q}_{i}}\right)(i=1, \ldots, k)$ be R-transducers. Let us denote the arity function of the operator domain G_{0} by ν. We fix these notations
for this chapter. Let $D=D_{1}, \ldots, D_{k}$ be the following derivation sequence:

$$
\begin{aligned}
& D_{1}: a_{1} p_{0} \Rightarrow_{\mathfrak{M}_{1}}^{*} p_{1}\left(p_{0} \in T_{G_{0}}\left(Y_{0}\right), p_{1} \in T_{G_{1}}\left(Y_{1}\right), a_{1} \in A_{0}^{\prime}\right), \\
& D_{2}: a_{2} p_{1} \Rightarrow_{a_{2}}^{*} p_{2}\left(p_{2} \in T_{G_{2}}\left(Y_{2}\right), a_{2} \in A_{2}^{\prime}\right), \\
& \vdots \\
& D_{k}: a_{k} p_{k-1} \Rightarrow_{\mathscr{T}_{k}}^{*} p_{k}\left(p_{k} \in T_{G_{k}}\left(Y_{k}\right), a_{k} \in A_{k}^{\prime}\right),
\end{aligned}
$$

moreover, we assume that $p_{0}=q_{0}\left[S_{q_{0}}, \gamma_{0}\right]$ holds for some

$$
q_{0} \in P_{G_{0}}\left(Y_{0}\right), \gamma_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0}\right)
$$

Applying the procedure S to the derivation sequence D and decomposition $p_{0}=q_{0}\left[S_{q_{0}}, \varphi_{0}\right]$ we obtain derivation sequences $D^{q_{0}}$ and $\bar{D}^{q_{0}}$.

$$
\begin{gathered}
D_{1}^{q_{0}}: a_{1} q_{0}\left[S_{q_{0}}, \gamma_{0}\right] \Rightarrow_{\mathbb{I}_{1}}^{*} q_{1}\left[S_{q_{1}}, \alpha_{1}\right] \Rightarrow_{\mathscr{q}_{1}}^{*} q_{1}\left[S_{q_{1}}, \gamma_{1}\right]=p_{1} \\
\left(q_{1} \in P_{G_{1}}\left(Y_{1}\right), \alpha_{1}: S_{q_{1}} \rightarrow A_{1} \mathrm{rg}\left(\gamma_{0}\right), \gamma_{1}: S_{q_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)\right)
\end{gathered}
$$

and for every $s_{1} \in S_{q_{1}}, \alpha_{1}\left(s_{1}\right) \Rightarrow_{\mathbb{g}_{1}}^{*} \gamma_{1}\left(s_{1}\right)$ holds.

$$
\begin{gathered}
D_{2}^{q_{0}}: a_{2} q_{1}\left[S_{q_{1}}, \gamma_{1}\right] \Rightarrow_{\mathbb{q}_{2}}^{*} q_{2}\left[S_{q_{2}}, \alpha_{2}\right] \Rightarrow_{\mathbb{q}_{2}}^{*} q_{2}\left[S_{q_{2}}, \gamma_{2}\right]=p_{2} \\
\left(q_{2} \in P_{G_{2}}\left(Y_{2}\right), \alpha_{2}: S_{q_{2}} \rightarrow A_{2} \operatorname{rg}\left(\gamma_{1}\right), \gamma_{2}: S_{q_{2}} \rightarrow T_{G_{2}}\left(Y_{2}\right)\right),
\end{gathered}
$$

and for every $s_{2} \in S_{q_{2}}, \quad \alpha_{2}\left(s_{2}\right) \Rightarrow_{q_{2}}^{*} \gamma_{2}\left(s_{2}\right)$ holds.

$$
\begin{gathered}
D_{k}^{q_{0}}: a_{k} q_{k-1}\left[S_{q_{k-1}}, \gamma_{k-1}\right] \Rightarrow_{\mathfrak{q}_{k}}^{*} q_{k}\left[S_{q_{k}}, \alpha_{k}\right] \Rightarrow_{\mathscr{q}_{k}}^{*} q_{k}\left[S_{q_{k}}, \gamma_{k}\right]=p_{k} \\
\quad\left(q_{k} \in P_{G_{k}}\left(Y_{k}\right), \alpha_{k}: S_{q_{k}} \rightarrow A_{k} \operatorname{rg}\left(\gamma_{k-1}\right), \gamma_{k}: S_{q_{k}} \rightarrow T_{G_{k}}\left(Y_{k}\right)\right),
\end{gathered}
$$

and for every $s_{k} \in \dot{S}_{q_{k}}, \cdot \dot{\alpha}_{k}\left(s_{k}\right) \Rightarrow{ }_{\mathfrak{q}_{k}}^{*} \gamma_{k}\left(s_{k}\right)$ holds.

$$
\begin{aligned}
& \bar{D}_{1}^{q_{0}}: a_{1} q_{0} \Rightarrow{ }_{\mathscr{q}_{1}}^{*} q_{1}\left[S_{q_{1}}, \bar{\alpha}_{1}\right],\left(\bar{\alpha}_{1}: S_{q_{1}} \rightarrow A_{1} S_{q_{0}}\right), \\
& \bar{D}_{2}^{q_{0}}: a_{2} q_{1} \Rightarrow{ }_{\mathbb{q}_{2}}^{*} q_{2}\left[S_{q_{2}}, \bar{\alpha}_{2}\right],\left(\bar{\alpha}_{2}: S_{q_{2}} \rightarrow A_{2} S_{q_{1}}\right), \\
& \vdots \\
& \bar{D}_{k}^{q_{0}}: a_{k} q_{k-1} \Rightarrow_{q_{k}}^{*} q_{k}\left[S_{q_{k}}, \bar{\alpha}_{k}\right],\left(\bar{\alpha}_{k}: S_{q_{k}} \rightarrow A_{k} S_{q_{k-1}}\right),
\end{aligned}
$$

and for every $j \in\{1, \ldots, k\}$ and $s_{j} \in S_{q}$ if
then

$$
\bar{\alpha}_{j}\left(s_{j}\right)=b_{j} s_{j-1} \quad \text { for some } \quad b_{j} \in A_{j}, s_{j-1} \in S_{q,-1}
$$

$$
\alpha_{j}\left(s_{j}\right)=b_{j} \gamma_{j-1}\left(s_{j-i}\right)
$$

We shall define a set $Z_{\left(D, q_{0}\right)}$ and mappings
and

$$
\begin{gathered}
\Omega_{\left(D, q_{0}\right)}: Z_{\left(D, q_{0}\right)} \rightarrow\left(A_{1} \cup A_{2} A_{1} \cup \ldots \cup A_{k} \ldots A_{1}\right) \operatorname{rg}\left(\gamma_{0}\right) \\
\theta_{\left(D, q_{0}\right)}: S_{q_{k}} \rightarrow Z_{\left(D, q_{0}\right)}
\end{gathered}
$$

$$
\psi_{\left(D, q_{0}\right)}: S_{q_{k}} \rightarrow A_{k} \ldots A_{1} T_{G_{0}}\left(Y_{0}\right)
$$

in the following way:

$$
\begin{aligned}
Z_{\left(D, q_{0}\right)}=\{ & \left(s_{0}, s_{1}, \ldots, s_{j}\right) \mid s_{0} \in S_{q_{0}}, s_{1} \in S_{q_{1}}, \ldots, s_{j} \in S_{q_{j}}, \\
& 1 \leqq j \leqq k \text { and }(j=k \text { or }(j \leq k \text { and there are no } \\
& \left.\left.s_{j+1} \in S_{q q_{1+1}} \text { and } b_{j+1} \in A_{j+1} \text { such that } \bar{\alpha}_{j+1}\left(s_{j+1}\right)=b_{j+1} s_{j}\right)\right) \\
& \text { and } \left.\bar{\alpha}_{i}\left(s_{i}\right)=b_{i} s_{i-1}\left(b_{i} \in A_{i}\right) \text { for } i=1, \ldots, j\right\} .
\end{aligned}
$$

For every $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z_{\left(D, q_{0}\right)}$
iff

$$
\begin{gathered}
\Omega_{\left(D, q_{0}\right)}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=b_{j} \ldots b_{1} \gamma_{0}\left(s_{0}\right) \\
\bar{\alpha}_{i}\left(s_{i}\right)=b_{i} s_{i-1} \text { for } i=1, \ldots, j
\end{gathered}
$$

For every $s_{k} \in S_{q_{k}}, \quad \theta_{\left(D, q_{0}\right)}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ iff

$$
\bar{\alpha}_{i}\left(s_{i}\right)=b_{i} s_{i-1}\left(b_{i} \in A_{i}\right) \text { for } i=1, \ldots, k .
$$

For each $s_{k} \in S_{q_{k}}, \psi_{\left(D, q_{0}\right)}\left(s_{k}\right)=b_{k} \ldots b_{1} \gamma_{0}\left(s_{0}\right)$ iff

$$
\theta_{\left(D, q_{0}\right)}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)
$$

and

$$
\Omega_{\left(D, q_{0}\right)}\left(\left(s_{0}, s_{1}, \ldots, s_{k}\right)\right)=b_{k} \ldots b_{1} \gamma_{0}\left(s_{0}\right)
$$

One can see the equality $\psi_{\left(D, q_{0}\right)}=\theta_{\left(D, q_{0}\right)} \circ \Omega_{\left(D, q_{0}\right)}$ holds.
For the derivation sequence D and a decomposition

$$
p_{0}=q_{0}\left[S_{q_{0}}, \gamma_{0}\right]\left(q_{0} \in P_{G_{0}}\left(Y_{0}\right), \gamma_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)
$$

we can determine the configuration

$$
K_{\left(D, q_{0}\right)}:\left(q_{k}\left[S_{q_{k}}, \psi_{\left(D, q_{0}\right)}\right], \theta_{\left(D, q_{0}\right)}, Z_{\left(D, q_{0}\right)}, \Omega_{\left(D, q_{0}\right)}\right)
$$

For the sake of a unified formalism, in the sequel we use the following convention. Let G be an operator domain with arity function \bar{v}, and let Y be a set disjoint with G. If $u \in G^{0} \cup Y$ then $u(1, \ldots, \bar{v}(u))$ means the G-tree u over Y, moreover, $u(1, \ldots, \bar{v}(u))[\{1, \ldots, \bar{v}(u)\}, \vartheta]$ means u for arbitrary ϑ.

We continue the analysis of derivation sequence D. For each $s_{0} \in S_{q_{0}}$ the tree $\gamma_{0}\left(s_{0}\right)$ can be written in the following form:

$$
\gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\} \vartheta_{0}\right]
$$

where $u_{0} \in G_{0} \cup Y_{0}$ and $\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$. There are two cases.

1. Case $Z_{\left(D, q_{0}\right)}=\emptyset$. Take the quasi tree $r_{0} \in P_{G_{0}}\left(Y_{0}\right)$ defined by $r_{0}=\dot{q}_{0}\left[S_{q_{0}}, \xi_{0}\right]$; where the mapping $\xi_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0} \cup N^{*}\right)$ is determined by the following formula: for each

$$
\begin{gathered}
s_{0} \in S_{q_{0}} \xi_{0}\left(s_{0}\right)=\omega_{s_{0}}\left(u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\right) \text { if } \gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \\
\left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right) .
\end{gathered}
$$

Dne can see $K_{\left(D, q_{0}\right)}=K_{\left(D, r_{0}\right)}$ holds.
2. Case $Z_{\left(D, q_{0}\right)} \neq \emptyset$. Using these decompositions of the trees $\gamma_{0}\left(s_{0}\right)$ we obtain the derivation sequence $E=E_{1}, \ldots, E_{k}$ from D. For every $i \in\{1, \ldots, k\}$ the derivation E_{i}
is the same as D_{i} disregarding the order of direct derivations in D_{i}. We shall introduce the derivation sequence $\bar{E}=\bar{E}_{1}, \ldots, \bar{E}_{k}$ too.

$$
\begin{gathered}
E_{1}: a_{1} q_{0}\left[S_{q_{0}}, \gamma_{0}\right] \Rightarrow_{q_{1}}^{*} q_{1}\left[S_{q_{1}}, \alpha_{1}\right] \Rightarrow_{\mathbb{q}_{1}}^{*} q_{1}\left[S_{q_{1}}, \beta_{1}\right] \Rightarrow_{q_{1}}^{*} \\
\Rightarrow \Rightarrow_{q_{1}}^{*} q_{1}\left[S_{q_{1}}, \gamma_{1}\right]\left(q_{1} \in P_{G_{1}}\left(Y_{1}\right), \alpha_{1}: S_{q_{1}} \rightarrow A_{1} \mathrm{rg}\left(\gamma_{0}\right),\right. \\
\beta_{1}: S_{q_{1}} \rightarrow \\
\left.T_{G_{1}}\left(Y_{1} \cup A_{1} T_{G_{0}}\left(Y_{0}\right)\right), \gamma_{1}: S_{q_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)\right) . \\
\bar{E}_{1}: a_{1} q_{0}\left[S_{q_{0}}, \xi_{0}\right] \Rightarrow \Rightarrow_{q_{1}}^{*} q_{1}\left[S_{q_{1}}, \bar{\beta}_{1}\right] \\
\left(\xi_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0} \cup N^{*}\right), \bar{\beta}_{1}: S_{q_{1}} \rightarrow T_{G_{1}}\left(Y_{1} \cup A_{1} N^{*}\right)\right) .
\end{gathered}
$$

ξ_{0} is defined by the following formula: for each

$$
s_{0} \in S_{q_{0}} \text { if } \gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]
$$

for some $u_{0} \in G_{0} \cup Y_{0}$ and mapping

$$
\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right) \text { then } \xi_{0}\left(s_{0}\right)=\omega_{s_{0}}\left(u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\right) .
$$

We shall define the mappings β_{1} and $\bar{\beta}_{1}$. For every $s_{1} \in S_{q_{1}}$ let us consider the subderivation
(1) $\alpha_{1}\left(s_{1}\right) \Rightarrow{ }_{\mathscr{M}_{1}}^{*} \gamma_{1}\left(s_{1}\right)$ of D.

Let us assume that $\bar{\alpha}_{1}\left(s_{1}\right)=b_{1} s_{0}$ and

$$
\alpha_{1}\left(s_{1}\right)=b_{1} \gamma_{0}\left(s_{0}\right)=b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right],
$$

where

$$
s_{0} \in S_{q_{0}}, b_{1} \in A_{1}, u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)
$$

Applying procedure P to derivation (1) and decomposition

$$
\gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]
$$

we obtain derivations (2), (3).
(2) $b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \Rightarrow_{\mathscr{N}_{1}} u_{1}\left[S_{u_{1}}, \delta_{1}\right] \Rightarrow_{\mathscr{N}_{1}}^{*}$

$$
\begin{aligned}
& \Rightarrow{\mathscr{\mathscr { I } _ { 1 }}}_{*}^{u_{1}}\left[S_{u_{1}}, \vartheta_{1}\right]=\gamma_{1}\left(s_{1}\right), \quad \text { where } \quad u_{1} \in P_{G_{1}}\left(Y_{1}\right), \\
& \delta_{1}: S_{u_{1}} \rightarrow A_{1} T_{G_{0}}\left(Y_{0}\right), \vartheta_{1}: S_{u_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)
\end{aligned}
$$

and for each

$$
v_{1} \in S_{u_{1}}, \delta_{1}\left(v_{1}\right) \Rightarrow_{\mathfrak{I}_{1}}^{*} \vartheta_{1}\left(v_{1}\right) \text { holds. }
$$

(3) $b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right) \Rightarrow_{2_{1}} u_{1}\left[S_{u_{1}}, \delta_{1}\right]$, where
$\delta_{1}: S_{u_{1}} \rightarrow A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$ and for each $v_{1} \in S_{u_{1}}$ if

$$
\delta_{1}\left(v_{1}\right)=c_{1} t_{0}\left(c_{1} \in A_{1}, t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}\right) \text { then } \delta_{1}\left(v_{1}\right)=c_{1} \vartheta_{0}\left(t_{0}\right)
$$

In this case β_{1} and $\bar{\beta}_{1}$ are defined by

$$
\beta_{1}\left(s_{1}\right)=u_{1}\left[S_{u_{1}}, \delta_{1}\right], \bar{\beta}_{1}\left(s_{1}\right)=\omega_{s_{0}}\left(u_{1}\left[S_{u_{1}}, \bar{\delta}_{1}\right]\right)
$$

Let l be an index of the transducers in consideration such that $2 \leqq l \leqq k$. The derivations E_{l} and \bar{E}_{l} are the following:

$$
\begin{gathered}
E_{l}: a_{l} q_{l-1}\left[S_{q_{l-1}}, \gamma_{l-1}\right] \Rightarrow_{\mathscr{N}_{l}}^{*} q_{l}\left[S_{q_{l}}, \alpha_{l}\right] \Rightarrow{ }_{\mathscr{M}_{l}}^{*} q_{l}\left[S_{q_{l}}, \beta_{l}\right] \Rightarrow_{\mathscr{U}_{l}}^{*} q_{l}\left[S_{q_{l}}, \gamma_{l}\right] \\
\quad\left(q_{l} \in P_{G_{l}}\left(Y_{l}\right), \alpha_{l}: S_{q_{l}} \rightarrow A_{l} \mathrm{rg}\left(\gamma_{l-1}\right),\right. \\
\beta_{l}: S_{q_{l}} \rightarrow \\
\left.T_{G_{l}}\left(Y_{l} \cup A_{l} T_{G_{l-1}}\left(Y_{l-1}\right)\right), \gamma_{l}: S_{q_{l}} \rightarrow T_{G_{l}}\left(Y_{l}\right)\right) . \\
\bar{E}_{l}: a_{l} q_{l-1}\left[S_{q_{l-1}}, \xi_{l-1}\right] \Rightarrow_{\mathscr{q}_{l}}^{*} q_{l}\left[S_{q}, \bar{\beta}_{l}\right] \\
\left(\xi_{l-1}: S_{q_{l-1}} \rightarrow T_{G_{l-1}}\left(Y_{l-1} \cup N^{*}\right),\right. \\
\left.\bar{\beta}_{l}: S_{q_{l}} \rightarrow T_{G_{l}}\left(Y_{l} \cup A_{l} N^{*}\right)\right) .
\end{gathered}
$$

ξ_{l-1} is defined by the following formula: for every $s_{l-1} \in S_{q_{l-1}}$ if $\beta_{l-1}\left(s_{l-1}\right)=$ $=u_{l-1}\left[S_{u_{l-1}}, \delta_{l-1}\right]$ then $\xi_{l-1}\left(s_{l-1}\right)=\omega_{s_{l-1}}\left(u_{l-1}\right)$. We shall define the mappings β_{l} and $\bar{\beta}_{l}$. For every $s_{l} \in S_{q_{1}}$ let us consider the subderivation
(1) $\alpha_{l}\left(s_{l}\right) \Rightarrow_{श_{1}}^{*} \gamma_{l}\left(s_{l}\right)$ of D_{l}.

Let us assume that

$$
\bar{\alpha}_{l}\left(s_{l}\right)=b_{l} s_{l-1} \quad \text { and } \quad \alpha_{l}\left(s_{l}\right)=b_{l} \gamma_{l-1}\left(s_{l-1}\right)=b_{l} u_{l-1}\left[S_{u_{l-1}}, \vartheta_{l-1}\right],
$$

where

$$
s_{l-1} \in S_{q_{l-1}}, b_{l} \in A_{l}, u_{l-1} \in P_{G_{l-1}}\left(Y_{l-1}\right)
$$

and the decomposition $\gamma_{l-1}\left(s_{l-1}\right)=u_{l-1}\left[S_{u_{l-1}}, \vartheta_{l-1}\right]$ of $\gamma_{l-1}\left(s_{l-1}\right)$ is the same as in E_{l-1}. Applying the procedure P to derivation (1) and decomposition $\gamma_{l-1}\left(s_{l-1}\right)=$ $=u_{l-1}\left[S_{u_{l-1}}, \vartheta_{l-1}\right]$ we obtain derivations (2), (3).
(2) $b_{l} u_{l-1}\left[S_{u_{l-1}}, \vartheta_{l-1}\right] \Rightarrow_{\mathscr{N}_{l}}^{*} u_{l}\left[S_{u_{l}}, \delta_{l}\right] \Rightarrow_{श_{l}}^{*} u_{l}\left[S_{u_{l}}, \vartheta_{l}\right]=\gamma_{l}\left(s_{l}\right)$,
where

$$
u_{l} \in P_{G_{l}}\left(Y_{l}\right), \delta_{l}: S_{u_{l}} \rightarrow A_{l} T_{G_{l-1}}\left(Y_{l-1}\right), \vartheta_{l}: S_{u_{l}} \rightarrow T_{G_{l}}\left(Y_{l}\right),
$$

and for every $v_{l} \in S_{u_{l}}$ the derivation $\delta_{l}\left(v_{l}\right) \Rightarrow{ }_{थ_{l}}^{*} \vartheta_{l}\left(v_{l}\right)$ is valid.
(3) $b_{l} u_{l-1} \Rightarrow_{थ_{l}}^{*} u_{l}\left[S_{u_{l}}, \bar{\delta}_{l}\right]$, where $\delta_{l}: S_{u_{l}} \rightarrow A_{l} S_{u_{l-1}}$
and for each $\dot{v}_{l} \in S_{u_{i}}$ if

$$
\bar{\delta}_{l}\left(v_{l}\right)=c_{l} t_{l-1}\left(c_{l} \in A_{l}, t_{l-1} \in S_{u_{l-1}}\right)
$$

then

$$
\delta_{l}\left(v_{l}\right)=c_{l} \dot{\vartheta}_{l-1}\left(t_{l-1}\right) .
$$

In this case β_{l} and $\bar{\beta}_{l}$ are defined by

$$
\beta_{l}\left(s_{l}\right)=u_{i}\left[S_{u_{1}}, \delta_{l}\right], \bar{\beta}_{l}\left(s_{l}\right)=\omega_{s_{l-1}}\left(u_{l}\left[S_{u}, \bar{\delta}_{l}\right]\right)
$$

Take the quasi-tree $r_{0} \in P_{G_{0}}\left(Y_{0}\right)$ defined by $r_{0}=q_{0}\left[S_{q_{0}}, \xi_{0}\right]$, where the mapping $\xi_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0} \cup N^{*}\right)$ as in \bar{E}_{1}. Let $\lambda_{0}: S_{r_{0}} \rightarrow T_{G_{0}}\left(Y_{0}\right)$ be the mapping such that

$$
\lambda_{0}\left(s_{0} i\right)=\vartheta_{0}(i) \quad \text { if } \quad \gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right],
$$

where

$$
s_{0} \in S_{q_{0}}, u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right), \quad i \in\left\{1, \ldots, v\left(u_{0}\right)\right\} .
$$

For these r_{0} and λ_{0} we have that $q_{0}\left[S_{q_{0}}, \gamma_{0}\right]=r_{0}\left[S_{r_{0}}, \lambda_{0}\right]$ holds. We take the quasi tree $r_{1} \in P_{G_{1}}\left(Y_{1}\right)$ which is defined by $r_{1}=q_{1}\left[S_{q_{1}}, \xi_{1}\right], \xi_{1}: S_{q_{1}} \rightarrow T_{G_{1}}\left(Y_{1} \cup N^{*}\right)$, for every $s_{1} \in S_{q_{1}}, \xi_{1}\left(s_{1}\right)=\omega_{s_{1}}\left(u_{1}\right)$ if $\beta_{1}\left(s_{1}\right)=u_{1}\left[S_{u_{1}}, \delta_{1}\right]$. It can be seen that

$$
S_{r_{1}}=\left\{s_{1} t_{1} \mid s_{1} \in S_{q_{1}}, \xi_{1}\left(s_{1}\right)=\omega_{s_{1}}\left(u_{1}\right), t_{1} \in S_{u_{1}}\right\}
$$

holds. Let us define the mappings $\eta_{1}: S_{r_{1}} \rightarrow A_{1} T_{G_{0}}\left(Y_{0}\right), \bar{\eta}_{1}: S_{r_{1}} \rightarrow A_{1} S_{r_{0}}$ and λ_{1} : $S_{r_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)$ as follows: for each $\bar{s}_{1} \in S_{r_{1}}$ let us consider its unique decomposition $\bar{s}_{1}=s_{1} t_{1}$, where $s_{1} \in S_{q_{1}}, \bar{\alpha}_{1}\left(s_{1}\right)=b_{1} s_{0}$ for some $b_{1} \in A_{1}$ and

$$
\begin{gathered}
s_{0} \in S_{q_{0}}, \xi_{1}\left(s_{1}\right)=\omega_{s_{1}}\left(u_{1}\right), t_{1} \in S_{u_{1}}, \beta_{1}\left(s_{1}\right)=u_{1}\left[S_{u_{1}}, \delta_{1}\right], \\
\bar{\beta}_{1}\left(s_{1}\right)=\omega_{s_{0}}\left(u_{1}\left[S_{u_{1}}, \bar{\delta}_{1}\right]\right), \gamma_{1}\left(s_{1}\right)=u_{1}\left[S_{u_{1}}, \vartheta_{1}\right]
\end{gathered}
$$

and $\alpha_{1}, \beta_{1}, \bar{\beta}_{1}, \gamma_{1}, \delta_{1}, \bar{\delta}_{1}, \vartheta_{1}$ as in E_{1}, \bar{E}_{1}.
Let $\eta_{1}\left(s_{1} t_{1}\right)=\delta_{1}\left(t_{1}\right), \quad \bar{\eta}_{1}\left(s_{1} t_{1}\right)=\omega_{s_{0}}\left(\delta_{1}\left(t_{1}\right)\right), \lambda_{1}\left(s_{1} t_{1}\right)=\vartheta_{1}\left(t_{1}\right)$. The derivation $\delta_{1}\left(t_{1}\right) \Rightarrow_{\mathscr{H}_{1}}^{*} \vartheta_{1}\left(t_{1}\right)$ holds, which implies that the derivation $\eta_{1}\left(s_{1} t_{1}\right) \Rightarrow_{\mathscr{A}_{1}}^{*} \lambda_{1}\left(s_{1} t_{1}\right)$ is valid. Thus we obtain the derivations E_{1}^{\prime} and \bar{E}_{1}^{\prime} from E_{1} and \bar{E}_{1}, respectively.

$$
\begin{gathered}
E_{1}^{\prime}: a_{1} r_{0}\left[S_{r_{0}}, \lambda_{0}\right] \Rightarrow \Rightarrow_{\mathscr{N}_{1}}^{*} r_{1}\left[S_{r_{1}}, \eta_{1}\right] \Rightarrow_{\mathbb{1 1}_{1}}^{*} r_{1}\left[S_{r_{1}}, \lambda_{1}\right], \\
\bar{E}_{1}^{\prime}: \dot{a}_{1} r_{0} \Rightarrow_{2 l_{1}}^{*} r_{1}\left[S_{r_{1}}, \bar{\eta}_{1}\right],
\end{gathered}
$$

and for each $v_{1} \in S_{r_{1}}$ if $\bar{\eta}_{1}\left(v_{1}\right)=c_{1} v_{0}$ for some $c_{1} \in A_{1}, v_{0} \in S_{r_{0}}$, then $\eta_{1}\left(v_{1}\right)=c_{1} \lambda_{0}\left(v_{0}\right)$. For each $2 \leqq l \leqq k$ we take the quasi trees $r_{l} \in P_{G_{l}}\left(Y_{l}\right)$ which is defined by

$$
r_{l}=q_{l}\left[S_{q_{t}}, \xi_{l}\right], \xi_{l}: S_{q_{t}} \rightarrow T_{G_{l}}\left(Y_{l} \cup N^{*}\right)
$$

for every

$$
s_{l} \in S_{q_{l}}, \xi_{l}\left(s_{l}\right)=\omega_{s_{l}}\left(u_{l}\right) \quad \text { if } \quad \beta_{l}\left(s_{i}\right)=u_{l}\left[S_{u_{l}}, \delta_{l}\right]
$$

It can be seen that

$$
S_{r_{l}}=\left\{s_{l} t_{l} \mid \xi_{l}\left(s_{l}\right)=\omega_{s_{l}}\left(u_{l}\right), t_{l} \in S_{u_{i}}\right\}
$$

holds. Let us define the mappings $\eta_{l}: S_{r_{l}} \rightarrow A_{l} T_{G_{1-1}}\left(Y_{l-1}\right), \quad \bar{\eta}_{l}: S_{r_{l}} \rightarrow A_{l} S_{r_{t-1}}$ and $\lambda_{i}: S_{r_{i}} \rightarrow T_{G_{l}}\left(Y_{i}\right)$ as follows: for each $\bar{s}_{l} \in S_{r_{i}}$ let us consider its unique decomposition

$$
\begin{aligned}
\bar{s}_{l} & =s_{l} t_{l}, \quad \text { where } \quad s_{l} \in S_{q_{l}}, \xi_{l}\left(s_{l}\right)=\omega_{s_{l}}\left(u_{l}\right), t_{l} \in S_{u_{i}} \\
\beta_{l}\left(s_{l}\right) & =u_{l}\left[S_{u_{l}}, \delta_{l}\right], \bar{\beta}_{l}\left(s_{l}\right)=u_{l}\left[S_{u_{l}}, \bar{\delta}_{l}\right], \gamma_{l}\left(s_{l}\right)=u_{l}\left[S_{u_{l}}, \vartheta_{l}\right],
\end{aligned}
$$

$\left(\bar{\alpha}_{l}, \beta_{l}, \bar{\beta}_{l}, \gamma_{l}, \delta_{l}, \bar{\delta}_{i}, \vartheta_{l}\right.$ as in $\left.E_{l}, \bar{E}_{l}\right)$ and $\bar{\alpha}_{l}\left(s_{l}\right)=b_{i} s_{l-1}$ for some $\dot{b}_{l} \in A_{l}$ and $s_{l-1} \in S_{q_{1-2}}$. In this case $\eta_{l}, \bar{\eta}_{l}$ and λ_{l} are defined by $\eta_{l}\left(s_{l} t_{l}\right)=\delta_{l}\left(t_{i}\right), \bar{\eta}_{l}\left(s_{l} t_{l}\right)=$ $=\omega_{s_{l-1}}\left(\bar{\delta}_{l}\left(t_{l}\right)\right), \quad \lambda_{l}\left(s_{l} t_{l}\right)=\vartheta_{l}\left(t_{l}\right)$. The derivation $\delta_{l}\left(t_{l}\right) \Rightarrow{ }_{g_{l}}^{*} \vartheta_{l}\left(t_{l}\right)$ holds, which implies that the derivation $\eta_{l}\left(s_{l} t_{l}\right) \Rightarrow{ }_{\operatorname{H}_{l}}^{*} \lambda_{l}\left(s_{l} t_{0}\right)$ is: valid. Thus. we obtain the derivations
E_{l}^{\prime} and \bar{E}_{l}^{\prime} from E_{l} and \bar{E}_{l}, respectively.

$$
\begin{gathered}
E_{l}^{\prime}: a_{l} r_{l-1}\left[S_{r_{l-1}}, \lambda_{l-1}\right] \Rightarrow{ }_{\mathscr{N}_{l}}^{*} r_{l}\left[S_{r_{i}}, \eta_{l}\right] \Rightarrow \mathfrak{\mathscr { V }}_{l} r_{l}\left[S_{r_{l}}, \lambda_{l}\right], \\
\bar{E}_{l}^{\prime}: a_{l} r_{l-1} \Rightarrow{ }_{\mathfrak{N}_{l}}^{*} r_{l}\left[S_{r_{l}}, \bar{\eta}_{l}\right],
\end{gathered}
$$

and for each $v_{l} \in S_{r_{l}}$ if $\bar{\eta}_{l}\left(v_{l}\right)=c_{l} v_{l-1}$ for some $c_{l} \in A_{i}, v_{l-1} \in S_{r_{i-1}}$, then $\eta_{l}\left(s_{l}\right)=$ $=c_{l} \lambda_{l-1}\left(v_{l-1}\right)$.

For the sequence of root-to-frontier tree transducers $\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{k}$ we shall define the sets $\Sigma(l)$ and $V_{l},(0 \leqq l \leqq k)$ in the following way:

$$
\begin{aligned}
\Sigma(0)= & \left\{u_{0} \mid u_{0} \in G_{0} \cup Y_{0}\right\} \\
V_{0}= & \Sigma(0) ; \\
\Sigma(1)= & \left\{\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right) \mid b_{1} u_{0} \rightarrow u_{1}\left[S_{u_{1}}, \varphi_{1}\right] \in \Sigma_{\mathfrak{M}_{1}},\right. \\
& u_{1} \in P_{G_{1}}\left(Y_{1}\right), \varphi_{1}: S_{u_{1}} \rightarrow A_{1} S_{u_{0}}, \\
& W_{1}=\left\{\left(t_{0}, t_{1}\right) \mid \varphi_{1}\left(t_{1}\right)=c_{1} t_{0}, c_{1} \in A_{1}\right\} \\
& \varrho_{1}: S_{u_{1}} \rightarrow W_{1} ; \varrho_{1}\left(t_{1}\right)=\left(t_{0}, t_{1}\right) \text { if } \varphi_{1}\left(t_{1}\right)=c_{1} t_{0}, \\
& \left.\tau_{1}: W_{1} \rightarrow A_{1} S_{u_{0}} ; \tau_{1}\left(\left(t_{0}, t_{1}\right)\right)=c_{1} t_{0} \text { if } \varphi_{1}\left(t_{1}\right)=c_{1} t_{0}\right\} .
\end{aligned}
$$

It can be seen that for each $t_{1} \in S_{u_{1}}, \varphi_{1}\left(t_{1}\right)=\tau_{1}\left(\varrho_{1}\left(t_{1}\right)\right)$, that is, $\varphi_{1}=\varrho_{1} \circ \tau_{1}$ holds We say that the element $\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right)$ of $\Sigma(1)$ is generated by the production $b_{1} u_{0} \rightarrow u_{1}\left[S_{u_{1}}, \varphi_{1}\right]$.
$V_{1}=\left\{\left(u_{0}, \sigma_{1}\right) \mid u_{0} \in \Sigma(0), \sigma_{1} \in \Sigma(1)\right.$ and the second component of σ_{1} is $\left.u_{0}\right\}$.
Let j be an index such that $2 \leqq j \leqq k$, and assume that for each $i(1 \leqq i<j)$ the sets $\Sigma(i)$ and V_{i} are defined, and that for each $\sigma_{i}=\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}\right.$, $\left.W_{i}, \tau_{i}\right)\left(\in \Sigma_{\mathfrak{B}}(i)\right) \quad \varphi_{i}=\varrho_{i} \circ \tau_{i}$ holds. We shall define $\Sigma(j)$ and V_{j} as follows:

$$
\Sigma(j)=\left\{\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right) \mid\right.
$$

$$
\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right) \in \Sigma(j-1)
$$

$$
b_{j} u_{j-1} \Rightarrow_{\mathbb{N}_{j}}^{*} u_{j}\left[S_{u_{j}}, \varepsilon_{j}\right] \text { holds, where } u_{j} \in P_{G_{j}}\left(Y_{j}\right)
$$

$$
\varepsilon_{j}: S_{u_{j}} \rightarrow A_{j} S_{u_{j-1}}
$$

$$
\varphi_{j}: S_{u_{j}} \rightarrow A_{j} A_{j-1} \ldots A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}
$$

$$
\varphi_{j}\left(t_{j}\right)=c_{j} c_{j-1} \ldots c_{1} t_{0} \quad \text { if } \quad \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1} \quad \text { and }
$$

$$
\varphi_{j-1}\left(t_{j-1}=c_{j-1} \ldots c_{1} t_{0}\right.
$$

$$
W_{j}=\left\{\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \mid \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}, c_{j} \in A_{j}, \quad \varrho_{j-1}\left(t_{j-1}\right)=\left(t_{0}, \ldots, t_{j-1}\right)\right\} \cup
$$ $\cup\left\{\left(t_{0}, \ldots, t_{j-1}\right) \in W_{j-1} \mid\right.$ there are no t_{j} in $S_{u_{j}}$ and $c_{j} \in A_{j}$ such that $\left.\varepsilon_{j}\left(t_{j}\right)=c_{j} \dot{t}_{j-1}\right\} \cup$

$$
\cup\left\{\left(t_{0}, \ldots, t_{l}\right) \in W_{j-1} \mid 1 \leqq l \leqq j-2\right\},
$$

$$
\varrho_{j}: S_{u_{j}} \rightarrow W_{j} ; \varrho_{j}\left(t_{j}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \text { if }
$$

$$
\varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1} \quad \text { and } \quad \varrho_{j-1}\left(t_{j-1}\right)=\left(t_{0} ; \ldots, t_{j-1}\right)
$$

$$
\begin{aligned}
& \tau_{j}: W_{j} \rightarrow A_{j} \ldots A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\} \\
& \tau_{j}\left|W_{j} \cap W_{j-1}=\tau_{j-1}\right| W_{j} \cap W_{j-1} \text { and } \\
& \text { if }\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \in W_{j} \text { and } \varepsilon_{j}\left(t_{j}\right)=\dot{c}_{j} t_{j-1} \\
& \text { then } \left.\tau_{j}\left(\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right)=c_{j} \tau_{j-1}\left(\left(t_{0}, \ldots, t_{j-1}\right)\right)\right\} .
\end{aligned}
$$

We say that the element $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$ of $\Sigma(j)$ is generated by the derivation $b_{j} u_{j-1} \Rightarrow_{\mu_{j}}^{*} u_{j}\left[S_{u j}, \varepsilon_{j}\right]$ and element

$$
\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right) \text { of } \Sigma(j-1)
$$

It can be seen that for each element $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$ of $\Sigma(j)$, $\varphi_{j}=\varrho_{\rho} \circ \tau_{j}$ hold.
$V_{j}=\left\{\left(u_{0}, \sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \mid\left(u_{0}, \sigma_{1}, \ldots, \sigma_{j-1}\right) \in V_{j-1}, \sigma_{j-1}\right.$
has the form $\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-i}}, \varphi_{i-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right), \sigma_{j}$ has the form $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$ and σ_{j} is generated by the derivation $b_{j} u_{j-1} \Rightarrow{ }_{\mathbb{q}_{j}}^{*} u_{j}\left[S_{u_{j}}, \varepsilon_{j}\right]$ and $\left.\sigma_{j-1}\right]$.
We define mappings $x_{i}:\left[Z_{\left(D, q_{0}\right)}\right]_{i} \rightarrow \Sigma(i)$ for $0 \leqq i \leqq k$. Let $s_{0} \in\left[Z_{\left(D, q_{0}\right)}\right]_{0}$, which means $s_{0} \in S_{q_{0}} . x_{0}\left(s_{0}\right)$ is defined by

$$
\begin{gathered}
x_{0}\left(s_{0}\right)=\operatorname{root}\left(\gamma_{0}\left(s_{0}\right)\right)=u_{0} \quad \text { if } \\
\gamma_{0}\left(s_{0}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]\left(\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right) .
\end{gathered}
$$

Let $s_{1} \in\left[Z_{\left(D, q_{2}\right)}\right]_{1}$, that is, $s_{1} \in S_{q_{1}}$. Let us consider the decomposition $\alpha_{1}\left(s_{1}\right)=$ $=b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \quad\left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)$.

Applying the procedure P to the subderivation (1) $\alpha_{1}\left(s_{1}\right) \Rightarrow{ }_{\theta_{1}}^{*} \gamma_{1}\left(s_{1}\right)$ of D_{1} and decomposition $u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$ we obtain derivations (2) and (3).
(2) $b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \Rightarrow_{\mathscr{\mu}_{1}} u_{1}\left[S_{u_{1}}, \delta_{1}\right] \Rightarrow_{\mathscr{q}_{1}}^{*}$
$\Rightarrow{ }_{\mathfrak{g}_{1}}^{*} u_{1}\left[S_{u_{1}}, \vartheta_{1}\right]=\gamma_{1}\left(s_{1}\right)$, where $u_{1} \in P_{G_{1}}\left(Y_{1}\right)$,
$\delta_{1}: S_{u_{1}} \rightarrow A_{1} T_{G_{0}}\left(Y_{0}\right), \vartheta_{i}: S_{u_{1}} \rightarrow T_{G_{1}}\left(Y_{1}\right)$,
and for each
$v_{1} \in S_{u_{1}}, \delta_{I}\left(v_{1}\right) \Rightarrow_{\mathscr{N}_{1}}^{*} \vartheta_{1}\left(v_{1}\right) \quad$ holds.
(3) $b_{1} u_{0} \Rightarrow_{\mathbb{I}_{1}} u_{1}\left[S_{u_{1}}, \delta_{1}\right]$, where $\delta_{1}: S_{u_{1}} \rightarrow A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$ and for each $v_{1} \in S_{u_{1}}$ if $\delta_{1}\left(v_{1}\right)=c_{1} t_{0}\left(c_{1} \in A_{1}, t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}\right)$, then $\delta_{1}\left(v_{1}\right)=c_{1} \vartheta_{0}\left(t_{0}\right)$.
$\beta_{1}\left(s_{1}\right)=u_{1}\left[S_{u_{1}}, \delta_{1}\right], \bar{\beta}_{1}\left(s_{1}\right)=\omega_{s_{0}}\left(u_{1}\left[S_{u_{1}}, \delta_{1}\right]\right)$
for $\beta_{1}, \bar{\beta}_{1}$ given in derivations E_{1}, \bar{E}_{1}.
Let $\chi_{1}\left(s_{1}\right)$ be the element of $\Sigma(1)$ generated by the production $b_{1} u_{0} \rightarrow u_{1}\left[S_{u_{1}}, \delta_{1}\right]$.
Assume that x_{i} is defined for every $0 \leqq i \leqq j-1$. Then the mapping \varkappa_{j} ($2 \leqq j \leqq k$) is defined in the following way: for each $s_{j}\left(\in\left[Z_{\left(D, q_{0}\right)}\right]_{j}=S_{q_{j}}\right), \bar{\alpha}_{j}\left(s_{j}\right)=b_{j} s_{j-1}$ for some $b_{j} \in A_{j}$ and $s_{j-1} \in\left[Z_{\left(D, q_{0}\right)}\right]_{j-1}$. Thus $\alpha_{j}\left(s_{j}\right)=b_{j} \gamma_{j-1}\left(s_{j-1}\right) . x_{j-1}\left(s_{j-1}\right)$ has the form $\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right) \in \cdot \Sigma_{\mathfrak{B}}(j-1)$. Let us consider the decomposition $\gamma_{j-1}\left(s_{j-1}\right)=u_{j-1}\left[S_{u_{j-1}}, \vartheta_{j-1}\right]$ of $\gamma_{j-1}\left(s_{j-1}\right)$ which is the same as in E_{J-1}.

Applying the procedure P to the subderivation
(1) $\alpha_{j}\left(s_{j}\right) \Rightarrow_{\mathscr{2},}^{*} \gamma_{j}\left(s_{j}\right)$ of D_{j} and decomposition $u_{j-1}\left[S_{u_{j-1}}, \vartheta_{j-1}\right]$ we obtain derivations (2) and (3).
(2) $b_{j} u_{j-1}\left[S_{u_{j-1}}, \vartheta_{j-1}\right] \Rightarrow_{\mathscr{q}_{j}}^{*} u_{j}\left[S_{u_{j}}, \delta_{j}\right] \Rightarrow_{\mathscr{A}_{j}}^{*} u_{j}\left[S_{u_{j}}, \vartheta_{j}\right]=\gamma_{j}\left(s_{j}\right)$,
where
$u_{j} \in P_{G_{j}}\left(Y_{j}\right), \delta_{j}: S_{u_{j}} \rightarrow A_{j} T_{G_{j-1}}\left(Y_{j-1}\right), \vartheta_{j}: S_{u_{j}} \rightarrow T_{G_{j}}\left(Y_{j}\right)$,
and for every $v_{j} \in S_{u_{j}}$ the derivation $\delta_{j}\left(v_{j}\right) \Rightarrow_{\mathscr{q}_{j}}^{*} \vartheta_{j}\left(v_{j}\right)$ is valid.
(3) $b_{j} u_{j-1} \Rightarrow_{q_{j}}^{*} u_{j}\left[S_{u^{\prime}}, \bar{\delta}_{j}\right]$, where $\delta_{j}: S_{u_{j}} \rightarrow A_{j} S_{u_{j}-1}$ and for each $v_{j} \in S_{u_{j}}$ if $\delta_{j}\left(v_{j}\right)=c_{j} t_{j-1} \quad\left(c_{j} \in A_{j}, t_{j-1} \in S_{u_{j-1}}\right)$ then $\delta_{j}\left(v_{j}\right)=c_{j} \vartheta_{j-1}\left(t_{j-1}\right)$.
Let $x_{j}\left(s_{j}\right)$ be the element of $\Sigma(j)$ generated by derivation (3) and $x_{j-1}\left(s_{j-1}\right)$ $(\in \Sigma(j-1))$.

We associate the configuration

$$
K_{\left(D, r_{0}\right)}=\left(r_{k}\left[S_{r_{k}}, \psi_{\left(D, r_{0}\right)}\right], \Theta_{\left(D, r_{0}\right)}, Z_{\left(D, r_{0}\right)}, \Omega_{\left(D, r_{0}\right)}\right)
$$

with the derivation sequence D and decomposition $p_{0}=r_{0}\left[S_{r_{0}}, \lambda_{0}\right]$.
Using the derivation sequences E_{l}^{\prime} and \bar{E}_{l}^{\prime} we shall show the connection between the configurations $K_{\left(D, q_{0}\right)}$ and $K_{\left(D, r_{0}\right)}$.
(1) $r_{k}=q_{k}\left[S_{q_{k}}, \xi_{k}\right]$, which was established in E_{k}^{\prime}, moreover we know that for each $s_{k} \in S_{q_{k}}, \xi_{k}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$, where
$x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$.
(2) $\dot{Z}_{\left(D, r_{0}\right)}=\left\{\left(s_{0} t_{0}, s_{1} t_{1}, \ldots, s_{j} t_{j}\right) \mid\left(s_{0}, s_{1}, \ldots, s_{l}\right) \in Z_{\left(D, q_{0}\right)}\right.$
for some $l(1 \leqq j \leqq l \leqq k)$ and

$$
\left.x_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right) \text { and }\left(t_{0}, t_{1}, \ldots, t_{j}\right) \in W_{l}\right\}
$$

(3) For every $\bar{s}_{k} \in S_{r_{k}}$ let us consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$, where $s_{k} \in S_{q_{k}}, x_{k}\left(s_{k}\right)$ has the form
$x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$,
$\xi_{k}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$ and $t_{k} \in S_{u_{k}}$.
If $\Theta_{\left(D, q_{0}\right)}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ and $\varrho_{k}\left(t_{k}\right)=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ then
$\Theta_{\left(D, r_{0}\right)}\left(\bar{s}_{k}\right)=\left(s_{0} t_{0}, s_{1} t_{1}, \ldots, s_{k} t_{k}\right)$.
(4) Let $\bar{s}_{k} \in S_{r_{k}}$ be arbitrary, and consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$, where $s_{k} \in S_{q_{k}}, x_{k}\left(s_{k}\right)$ has the form
$\chi_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right), \xi_{k}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$
and $t_{k} \in S_{u_{k}}$. Then if $\varphi_{k}\left(t_{k}=c_{k} \ldots c_{1} t_{0}\right.$ and
$\psi_{\left(D, q_{0}\right)}\left(s_{k}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$
$\left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)$, then
$\psi_{\left(D, r_{0}\right)}\left(s_{k} t_{k}\right)=c_{k} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$.
(5) From the definition of $Z_{\left(D, r_{0}\right)}$ it follows that for every $\left(\bar{s}_{0}, \bar{s}_{1}, \ldots, \bar{s}_{j}\right) \in Z_{\left(D, r_{0}\right)}$ there is a vector $\left(s_{0}, s_{1}, \ldots, s_{l}\right) \in Z_{\left(D, q_{0}\right)}$ for some $l(\geqq j)$ such that
$x_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)$,
and
$\bar{s}_{0}=s_{0} t_{0}, \bar{s}_{1}=s_{1} t_{1}, \ldots, \bar{s}_{j}=s_{j} t_{j}$
hold for some $\left(t_{0}, t_{1}, \ldots, t_{j}\right) \in W_{l}$.
If $\tau_{l}\left(\left(t_{0}, t_{1}, \ldots, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$ and

$$
\Omega_{\left(D, q_{0}\right)}\left(\left(s_{0}, s_{1}, \ldots, s_{l}\right)\right)=b_{l} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]
$$

for some $u_{0} \in G_{0} \cup Y_{0}$ and $\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$, then

$$
\Omega_{\left(D, r_{0}\right)}\left(\left(\bar{s}_{0}, \bar{s}_{1}, \ldots, \bar{s}_{j}\right)\right)=c_{j} \ldots c_{1} \vartheta_{0}\left(t_{0}\right) .
$$

3. k-synchronized R-transducers

In this chapter we shall introduce the notion of a k-synchronized R-transducer and prove that the relations induced by this type of transducers are exactly those relations which can be obtained by compositions of k relations induced by root-tofrontier tree transducers.

Definition 3.1. A k-synchronized R-transducer is a system

$$
\mathfrak{B}=\left(G_{0}, G_{1}, \ldots, G_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}, A_{\mathrm{i}}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, \Sigma_{\mathfrak{B}}, V\right),
$$

where
(1) $k \geqq 2$,
(2) $G_{0}, G_{1}, \ldots, G_{k}$ are operator domains,
(3) A_{1}, \ldots, A_{k} are state sets, for $i=1, \ldots, k$,
$A_{i} \ldots A_{1} \cap T_{G_{0}}\left(Y_{0}\right)=\emptyset, \quad$ and $A_{k} \ldots A_{1} \cap T_{G_{k}}\left(Y_{k}\right)=\emptyset$.
(4) $A_{1}^{\prime} \subseteq A_{1}, \ldots, A_{k}^{\prime} \subseteq A_{k}$ are the sets of initial states,
(5) $\Sigma_{\mathfrak{F}}$ is a finite set of productions, which is a disjoint union
$\Sigma_{\mathfrak{B}}=\Sigma_{\mathfrak{g}}(0) \cup \Sigma_{\mathfrak{B}}(1) \cup \ldots \cup \Sigma_{\mathfrak{B}}(k)$,
$V=V_{0} \cup V_{1} \cup \ldots \cup V_{k}$, where $V_{0}=\Sigma_{\mathfrak{g}}(0)$, and for $i=1, \ldots, k$,
$V_{i} \subseteq \Sigma_{99}(0) \times \Sigma_{99}(1) \times \ldots \times \Sigma_{\mathfrak{9}}(i)$ and $[V]_{i}=\Sigma_{\mathfrak{9}}(i)$.
$\left.\Sigma_{\mathfrak{g},} 0\right)=\left\{u_{0} \mid u_{0} \in G_{0} \cup Y_{0}\right\}$ and the members σ_{j} of the production sets $\Sigma_{\mathfrak{B}}(j)$
($j \geqq 1$) have the form:
$c_{i}=\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$, where
$b_{i} \in A_{i}$ for $i=1, \ldots, j, u_{0} \in G_{0} \cup Y_{0}$,
$u_{i} \in P_{G_{j}}\left(Y_{j}\right), \varphi_{j}: S_{u_{j}} \rightarrow A_{j} \ldots A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$,
W_{j} is a finite subset of $\left(N^{*}\right)^{2} \cup \ldots \cup\left(N^{*}\right)^{j+1}$, where $\left(N^{*}\right)^{1}=N^{*}$ and for each $l \geqq 1, \quad\left(N^{*}\right)^{l+1}=\left(N^{*}\right)^{l} \times N^{*}$.
$\varrho_{j}: S_{u j} \rightarrow W_{j}, \tau_{j}: W_{j} \rightarrow\left(A_{j} \ldots A_{2} A_{1} \cup \ldots \cup A_{2} A_{1} \cup A_{1}\right)\left[W_{j}\right]_{0}$,
and the following requirements are satisfied:
a) $j=1$
i) $W_{1}=\left\{\left(t_{0}, t_{1}\right) \mid t_{1} \in S_{u_{1}}, \varphi_{1}\left(t_{1}\right)=c_{1} t_{0}\right.$ for some $\left.c_{1} \in A_{1}\right\}$,
ii) for every $t_{1} \in S_{u_{1}}$ if $\varphi_{1}\left(t_{1}\right)=c_{1} t_{0}$ then $\varrho_{1}\left(t_{1}\right)=\left(t_{0}, t_{1}\right)$,
iii) $\varphi_{1}=\varrho_{1} \circ \tau_{1}$,
iv) $V_{1}=\left\{\left(u_{0}, \sigma_{1}\right) \mid u_{0} \in G_{0} \cup Y_{0}\right.$, and the second component of $\sigma_{1}\left(\in \Sigma_{\mathfrak{B}}(1)\right)$ is $\left.u_{0}\right\}$.
b) $j>1$ if $\left(u_{0}, \sigma_{1}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \in V_{j}$ and σ_{j-1} has the form $\left(b_{j-1} \ldots b_{1}, u_{0}\right.$, $\left.u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right)$ then $\left(u_{0}, \sigma_{1}, \ldots, \sigma_{j-1}\right) \in V_{j-1}$ and there is a mapping $\varepsilon_{j}: S_{u_{j} \rightarrow A_{j}}\left[W_{j-1}\right]_{j-1}$ such that i)—iv) hold:
i) $W_{j}=\left\{\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \mid \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}, c_{j} \in A_{j}, t_{j} \in S_{u_{j}}, t_{j-1} \in S_{u_{j-1}}\right.$,

$$
\begin{aligned}
& \left.\varrho_{j-1}\left(t_{j-1}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right\} \cup \\
& \cup\left\{\left(t_{0}, \ldots, t_{l}\right) \in W_{j-1} \mid 1 \leqq l \leqq j-2\right\} \cup \\
& \cup\left\{\left(t_{0}, \ldots, t_{j-1}\right) \in W_{j-1} \mid \text { there are no } t_{j} \in S_{u_{j}} \text { and } c_{j} \in A_{j}\right.
\end{aligned}
$$

such that $\left.\varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}\right\}$.
ii) For
$\tau_{j},\left.\tau_{j}\right|_{W_{j} \cap W_{j-1}}=\left.\tau_{j-1}\right|_{W_{j}} \cap W_{j-1} \quad$ and
if $\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \in W_{j}, \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}\left(c_{j} \in A_{j}, t_{j-1} \in\left[W_{j-1}\right]_{j-1}\right)$ and
$\tau_{j-1}\left(\left(t_{0}, \ldots, t_{j-1}\right)\right)=c_{j-1} \ldots c_{1} t_{0}$ then $\tau_{j}\left(\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$.
iii) For each $t_{j} \in S_{u_{j}}$ if

$$
\begin{aligned}
& \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}\left(c_{j} \in A_{j}, t_{j-1} \in\left[W_{j-1}\right]_{j-1}\right) \text { and } \\
& \varrho_{j-1}\left(t_{j-1}\right)=\left(t_{0}, \ldots, t_{j-1}\right) \text { then } \varrho_{j}\left(t_{j}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) .
\end{aligned}
$$

iv) $\varphi_{j}=\varrho_{j} \circ \tau_{j}$.
(One can see that for each $t_{j} \in S_{u_{j}}, \varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}\left(c_{j} \in A_{j}, t_{j-1} \in S_{u_{j-1}}\right)$ iff
$\varrho_{j}\left(t_{j}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)$ and $\left.\tau_{j}\left(\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}.\right)$
In the rest of the paper we shall denote the arity function of G_{0} by v.
Definition 3.2. Let \mathfrak{B} be a k-synchronized R-transducer as in Definition 3.1. A configuration of \mathfrak{B} is a system $\left(q\left[S_{q}, \psi\right], \Theta, Z, \Omega\right)$, where $q \in P_{G_{k}}\left(Y_{k}\right), \psi: S_{q} \rightarrow$ $\rightarrow A_{k} \ldots A_{1} T_{G_{0}}\left(Y_{0}\right), \Theta: S_{q} \rightarrow Z$; for each $s_{k} \in S_{q}, \Theta\left(s_{k}\right)=\left(s_{0}, \ldots, s_{k-1}, s_{k}\right)$ for some $s_{0}, \ldots, s_{k-1} \in N^{*}$.
Z is a finite subset of $\left(N^{*}\right)^{2} \cup \ldots \cup\left(N^{*}\right)^{k} \cup\left(N^{*}\right)^{k+1}$ such that the following two conditions hold:
i) for $j=0, \ldots, k$ and arbitrary $s_{j}, \bar{s}_{j} \in[Z]_{j}$ if $s_{j}=\bar{s}_{j} \bar{s}_{j}$, then $s_{j}=\bar{s}_{j}$ and $s_{j}=e$,
ii) for each $s_{k} \in S_{q} \Theta\left(s_{k}\right)$ is the only element of Z which has the form (s_{0}, \ldots, \ldots, s_{k-1}, s_{k}) for some $s_{0}, \ldots, s_{k-1} \in N^{*}$.
$\Omega: Z \rightarrow\left(A_{k} A_{k-1} \ldots A_{1} \cup A_{k-1} \ldots A_{1} \cup \ldots \cup A_{1}\right) T_{G_{0}}\left(Y_{0}\right)$ is a mapping such that $\psi=$ $=\Theta \circ \Omega$ holds, that is, the diagram in Figure 3 is commutative.

Figure 3

A configuration $\left(q\left[S_{q}, \psi\right], \Theta, Z, \Omega\right)$ is said to be a starting configuration, if q is the quasi tree $e \in N^{*^{*}}$ (empty word) and $\psi(e) \in A_{k}^{\prime} \ldots A_{1}^{\prime} T_{G_{0}}\left(Y_{0}\right)$, moreover $\boldsymbol{Z}=\{\underbrace{(e, \ldots, e)}_{k \text { times }}\}$.

Definition 3.3. Let $K_{1}=\left(q^{1}\left[S_{q^{1}}, \psi^{1}\right], \Theta^{1}, Z^{1}, \Omega^{1}\right)$ and $K_{2}=\left(q^{2}\left[S_{q^{2}}, \psi^{2}\right], \Theta^{2}\right.$, $\left.Z^{2}, \Omega^{2}\right)$ be configurations of a k-synchronized R-transducer $\mathfrak{B}=\left(G_{0}, G_{1}, \ldots, G_{k}\right.$, $Y_{0}, Y_{1}, \ldots, Y_{k}, A_{1}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, \Sigma_{\mathfrak{F}}, V$. It is said that there is a transition from K_{1} to K_{2} in \mathfrak{B} which is denoted by $K_{1} \Rightarrow_{\mathfrak{B}} K_{2}$ if there are mappings $\varkappa_{j}:\left[Z^{1}\right]_{j} \rightarrow$ $\rightarrow \Sigma_{\mathfrak{g}}(j)$ for $j=0,1, \ldots, k$ such that the following requirements hold:
(1) For each $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1}(1 \leqq j \leqq k)$ if
$\Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=b_{j} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$ for some
$u_{0} \in G_{0} \cup Y_{0}, b_{j} \ldots b_{1} \in A_{j} \ldots A_{1}$ and $\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$ then
$x_{0}\left(s_{0}\right)=u_{0}, x_{i}\left(s_{i}\right)=\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}, W_{i}, \tau_{i}\right)$
for some $u_{i}, \varrho_{i}, W_{i}$ and $\tau_{i}(i=1,2, \ldots, j)$, and $\left(\varkappa_{0}\left(s_{0}\right), \varkappa_{1}\left(s_{1}\right), \ldots, \varkappa_{j}\left(s_{j}\right)\right) \in V_{j}$.
(2) $q^{2}=q^{1}\left[S_{q^{1}}, \xi\right]$ for the mapping $\xi: S_{q^{1}} \rightarrow T_{G_{k}}\left(Y_{k} \cup N^{*}\right)$ which is defined by the following. formula: for every $s_{k} \in S_{q^{1}}, \quad \xi\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right) \quad$ if $\quad x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$.
(3) $Z^{2}=\left\{\left(s_{0} t_{0}, s_{1} t_{1}, \ldots, s_{j} t_{j}\right) \mid\left(s_{0}, s_{1}, \ldots, s_{l}\right) \in Z^{1}\right.$ for some $l,(1 \leqq j \leqq l \leqq k)$ and $x_{l}\left(s_{l}\right)=\left(b_{l}, \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)$ and $\left.\left(t_{0}, t_{1}, \ldots, t_{j}\right) \in W_{l}\right\}$.
(4) For each $\bar{s}_{k}=S_{q^{2}}$ consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$, where $s_{k} \in S_{q^{1}}, x_{k}\left(s_{k}\right)$ has the form $x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$, $\xi_{k}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$, and $t_{k} \in S_{u_{k}}$. If $\Theta^{1}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ and $\varrho_{k}\left(t_{k}\right)=$ $=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ then $\Theta^{2}\left(\bar{s}_{k}\right)=\left(s_{0} t_{0}, s_{1} t_{1}, \ldots, s_{k} t_{k}\right)$.
(5) Let $\bar{s}_{k} \in S_{q^{2}}$ be arbitrary and consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$, where $s_{k} \in S_{q^{1}}, x_{k}\left(s_{k}\right)$ has the form $x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}\right.$,
$\left.\tau_{k}\right), \quad \xi_{k}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$ and $t_{k} \in S_{u_{k}}$. If $\varphi_{k}\left(t_{k}\right)=c_{k} \ldots c_{1} t_{0}$ and
$\psi^{1}\left(s_{k}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$.
$\left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)$,
then $\psi^{2}\left(\bar{s}_{k}\right)=c_{k} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$.
(6) For every $\left(\bar{s}_{0}, \bar{s}_{1}, \ldots, \bar{s}_{j}\right) \in Z^{2}$ there is a vector $\left(s_{0}, s_{1}, \ldots, s_{l}\right) \in Z^{1}$ for some $l(1 \leqq j \leqq l \leqq k)$ such that $x_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)$, and $\bar{s}_{0}=s_{0} t_{0} ; \bar{s}_{1}=s_{1} t_{1}, \ldots, \bar{s}_{j}=s_{j} t_{j}$ hold for some $\left(t_{0}, t_{1}, \ldots, t_{j}\right) \in W_{l}$.
If $\tau_{l}\left(\left(t_{0}, t_{1}, \ldots, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$ and
$\Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{l}\right)\right)=b_{l} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$
for some $u_{0} \in G_{0} \cup Y_{0}$ and $\dot{\vartheta}_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$ then
$\Omega^{2}\left(\left(\bar{s}_{0}, \bar{s}_{1}, \ldots, \bar{s}_{j}\right)\right)=c_{j} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$.
Notice, that given configuration K_{1} and mappings \varkappa_{i}, for $i=0, \ldots, k$ satisfying condition (1), uniquely determine configuration K_{2}.

The reflexive and transitive closure of relation $\Rightarrow_{\mathfrak{F}}$ between configurations is denoted by $\Rightarrow{ }_{\mathfrak{B}}^{*}$.

Definition 3.4. Take a k-synchronized R-transducer

$$
\mathfrak{B}=\left(G_{0}, G_{1}, \ldots, G_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}, A_{1}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, \Sigma_{\mathfrak{B}}, V\right)
$$

Then the relation

$$
\begin{aligned}
& \tau_{\mathfrak{B}}=\left\{(p, q) \mid p \in T_{G_{0}}\left(Y_{0}\right), q \in T_{G_{k}}\left(Y_{k}\right),\right. \\
& K_{0}=\left(e\left[\{e\}, \psi_{0}: e \mapsto b p\right], \Theta^{0}, Z^{0}, \Omega^{0}\right) \Rightarrow{ }_{\mathfrak{B}}^{*}(q, \emptyset, \emptyset, \emptyset)
\end{aligned}
$$

for some starting configuration K_{0} \}
is called the transformation induced by \mathfrak{B}.
Configurations of the form $(q, \emptyset, \emptyset, \emptyset)$, where $q \in T_{G_{k}}\left(Y_{k}\right)$, are said to be final.
Theorem 3.5. Let $\mathfrak{A}_{i}=\left(G_{i-1}, Y_{i-1}, A_{i}, G_{i}, Y_{i}, A_{i}^{\prime}, \Sigma_{\mathbb{q}_{i}}\right)(i=1, \ldots, k, k \geqq 2)$ be R-transducers. Then there is a k-synchronized R-transducer \mathfrak{B} such that $\tau_{\mathfrak{F}}=\tau_{\mathfrak{I I}_{1}} \circ \ldots \circ \tau_{\mathfrak{I I}_{k}}$.

Proof: We construct a k-synchronized R-transducer \mathfrak{B} as follows:

$$
\mathfrak{B}=\left(G_{0}, G_{1}, \ldots, G_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}, A_{1}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, \Sigma_{\mathfrak{F}}, V\right)
$$

where $\Sigma_{\mathfrak{B}}(0)=\Sigma(0), \ldots, \Sigma_{\mathfrak{g}}(k)=\Sigma(k)$ for the sets $\Sigma(i)$, which are defined in the previous chapter. $V=V_{0} \cup V_{1} \cup \ldots \cup V_{k}$, where the sets $V_{0}, V_{1}, \ldots, V_{k}$ are defined in the previous chapter. We may assume without loss of generality that $A_{k} \ldots A_{1} \cap T_{G_{k}}\left(Y_{k}\right)=\emptyset$ and that, for $i=1, \ldots, k, A_{i} \ldots A_{1} \cap T_{G_{0}}\left(Y_{0}\right)=\emptyset$. Thus \mathfrak{B} satisfies requirement (3) of Definition 3.1.

First we shall prove the inclusion

$$
\tau_{\mathfrak{R 1}_{\mathfrak{1}}} \circ \ldots \circ \tau_{\mathfrak{R}_{k}} \subseteq \tau_{\mathfrak{B}}
$$

Assume that $\left(p_{0}, p_{k}\right) \in \tau_{\mathrm{II}_{1}} \circ \tau_{\mathrm{II}_{2}} \circ \ldots \circ \tau_{\mathrm{Iq}_{k}}$. Then there are initial states $a_{1} \in A_{1}^{\prime}, \ldots, a_{k} \in A_{k}^{\prime}$ and there is a derivation sequence $D: a_{1} p_{0} \Rightarrow{ }_{\mathfrak{q}_{1}}^{*} p_{1}, a_{2} p_{1} \Rightarrow{ }_{\mathbb{1 1}_{2}}^{*} p_{2}, \ldots$ $\ldots, a_{k} p_{k-1} \Rightarrow_{\mathfrak{g}_{k}}^{*} p_{k}$, where $p_{i} \in T_{G_{i}}\left(Y_{i}\right)$ for $i=0, \ldots, k$.

Take an arbitrary decomposition $p_{0}=q_{0}\left[S_{q_{0}}, \gamma_{0}\right]$ of the tree p_{0}, where $q_{0} \in P_{G_{0}}\left(Y_{0}\right)$ and $\gamma_{0}: S_{q^{0}} \rightarrow T_{G_{0}}\left(Y_{0}\right)$. We have constructed a configuration

$$
K_{\left(D, q_{0}\right)}=\left(q_{k}\left[S_{q_{k}}, \psi_{\left(D, q_{0}\right)}\right], \Theta_{\left(D, q_{0}\right)}, Z_{\left(D, q_{0}\right)}, \Omega_{\left(D, q_{0}\right)}\right)
$$

for D and q_{0} in Chapter 2.
One can see that $K_{\left(D, q_{0}\right)}$ is a configuration of the k-synchronized R-transducer \mathfrak{B}. Let $r_{0}=q_{0}\left[S_{q^{0}}, \zeta_{0}\right]$ for the mapping $\zeta_{0}: S_{q_{0}} \rightarrow T_{G_{0}}\left(Y_{0} \cup N^{*}\right)$ which is defined by $\xi_{0}\left(s_{0}\right)=\omega_{s_{0}}\left(u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\right)$ for each $s_{0} \in S_{q_{0}}$, where

$$
\begin{aligned}
& \gamma_{0}\left(s_{0}\right)=\dot{u_{0}}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right], \\
& \left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right) .
\end{aligned}
$$

$K_{\left(D, r_{0}\right)}$ is again a configuration of \mathfrak{B}.
It follows from the definition of the relation $\boldsymbol{F}_{\mathfrak{F}}$ that
holds.

$$
K_{\left(D, q_{0}\right)}=K_{\left(D, r_{0}\right)} \quad \text { or } \quad K_{\left(D, q_{0}\right)} \Rightarrow_{\mathfrak{B}} K_{\left(D, r_{0}\right)}
$$

Let $p^{0}, p^{1}, \ldots, p^{i} \in P_{G_{0}}\left(Y_{0}\right)$ be quasi trees for $l=h(p)+1$ such that for every i

$$
(0 \leqq i \leqq l), \quad p_{0}=p^{i}\left[S_{p^{i}}, \gamma^{i}\right] \quad\left(\gamma^{i}: S_{p^{i}} \rightarrow T_{\mathrm{G}_{0}}\left(Y_{0}\right)\right),
$$

where
i) $p^{0}=e, \gamma^{0}(e)=p_{0}$, and
ii) $p^{i+1}=p^{i}\left[S_{p^{i}}, \xi^{i+1}\right]$ for the mapping $\xi^{i+1}: S_{p^{i}} \rightarrow T_{G_{0}}\left(Y_{0} \cup N^{*}\right)$ such that for every $s^{i} \in S_{p^{i}}$
where

$$
\xi^{i+1}\left(s^{\prime}\right)=\omega_{s^{\prime}}\left(u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\right)
$$

$$
\gamma^{i}\left(s^{i}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]
$$

for some $u_{0} \in G_{0} \cup Y_{0}$ and $\vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$. In this case every $s^{i+1} \in S_{p^{i+1}}$ has a unique decomposition $s^{i+1}=s^{i} t^{i}$,

$$
s^{i} \in S_{p^{i}}, \gamma^{i}\left(s^{i}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]
$$

for some

$$
u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right) \text { and } t^{i} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}
$$

Then $\gamma^{i+1}\left(s^{i+1}\right)=\vartheta_{0}\left(t^{i}\right)$.
We know that $K_{\left(D, p^{i}\right)}=K_{\left(D, p^{i+1}\right)}$ or $K_{\left(D, p^{i}\right)} \Rightarrow{ }_{9 \mathbb{P}} K_{\left(D, p^{i+1}\right)}$ holds for $i=0, \ldots, l-1$. It has remained to prove that $K_{\left(D, p^{0}\right)}$ is a starting configuration and $K_{\left(D, p^{l}\right)}$ is a final configuration of \mathfrak{B}. The first part of the statement trivially holds. Since $p=p_{0}$ and $p_{0} \in T_{G_{0}}\left(Y_{0}\right), S_{p^{1}}$ must be the empty set, thus $K_{\left(D, p^{1}\right)}=\left(p_{k}, \emptyset, \emptyset, \emptyset\right)$. We have proved that $\left(p_{0}, p_{k}\right) \in \tau_{\mathfrak{g}}$.

We shall prove the reverse inclusion:

$$
\tau_{\mathfrak{B}} \subseteq \tau_{\mathfrak{I}_{1}} \circ \tau_{\mathfrak{I}_{2}} \circ \ldots \circ \tau_{\mathfrak{I}_{\boldsymbol{k}}} .
$$

Let $K_{0} \Rightarrow_{9} K_{1} \Rightarrow_{\mathfrak{B}} \ldots \Rightarrow_{9_{9}} K_{n}$ be a sequence of transitions in \mathfrak{B}, where $n \geqq 1, K_{0}=$ $=\left(e\left[\{e\}, \psi^{0}\right], \Theta^{0}, Z^{0}, \Omega^{0}\right)$ is a starting configuration and $K_{i}=\left(q^{i}\left[S_{q^{i}}, \psi^{i}\right], \Theta^{i}, Z^{i}, \Omega^{i}\right)$ for $i=1, \ldots, n$. Assume that $\psi^{0}(e)=a_{k} \ldots a_{1} p$. Let $p^{0}, p^{1}, \ldots, p^{l}$:be the sequence of quasi trees constructed in the first part of the proof, where $p^{\prime}=p$. It can be seen that $n \leqq l$. Then there is a derivation sequence $D=D_{1}, \ldots, D_{k}$,

$$
\begin{aligned}
& D_{1}: a_{1} p^{n} \Rightarrow_{थ_{1}}^{*} p_{1}\left[S_{p^{1}}, \eta_{1}\right],\left(p_{1} \in P_{G_{1}}\left(Y_{1}\right), \eta_{1}: S_{p_{1}} \rightarrow A_{1} S_{p^{n}}\right) \\
& D_{2}: a_{2} p_{1} \Rightarrow_{श_{2}}^{*} p_{2}\left[S_{p_{2}}, \eta_{2}\right],\left(p_{2} \in P_{G_{2}}\left(Y_{2}\right), \eta_{2}: S_{p_{2}} \rightarrow A_{2} S_{p_{1}}\right), \\
& \vdots \\
& D_{k}: a_{k} p_{k-1} \Rightarrow_{\mathfrak{N}_{k}}^{*} p_{k}\left[S_{p_{k}}, \eta_{k}\right],\left(p_{k} \in P_{G_{k}}\left(Y_{k}\right), \eta_{k}: S_{p_{k}} \rightarrow A_{k} S_{p_{k}-1}\right)
\end{aligned}
$$

such that the following equalities hold:
i) $p_{k}=q^{n}$,
ii) $\psi_{\left(D, p^{n}\right)}=\psi^{n}$,
iii) $Z^{n}=Z_{\left(D, p^{n}\right)}$,
iv) $\Theta^{n}=\Theta_{\left(D, p^{n}\right)}$,
v). $\Omega^{n}=\Omega_{\left(D, p^{n}\right)}$,
where the sets $Z_{\left(D, p^{n}\right)}, \Theta_{\left(D, p^{n}\right)}$ and the mappings

$$
\begin{gathered}
\psi_{\left(D, p^{n}\right)}: S_{p_{k}} \rightarrow\left(A_{k} \ldots A_{2} A_{1} \cup \ldots \cup A_{2} A_{1} \cup A_{1}\right) S_{p^{n}}, \\
\Omega_{\left(D, p^{n}\right)}: Z_{\left(D, p^{n}\right)} \rightarrow\left(A_{k} \ldots A_{2} \dot{A}_{1} \cup \ldots \cup A_{2} A_{1} \cup A_{1}\right) \mathrm{rg}\left(\gamma^{n}\right)
\end{gathered}
$$

are defined as follows:

$$
\begin{align*}
Z_{\left(D, p^{n}\right)}= & \left\{\left(s_{0}, s_{1}, \ldots, s_{j}\right) \mid s_{0} \in S_{p^{n}}, s_{1} \in S_{p_{1}}, \ldots, s_{j} \in S_{p_{j}}, 1 \leqq j \leqq k,\right. \tag{1}\\
& \text { and }\left(j = k \text { or } \left(j<k \text { and there are no } s_{j+1} \in S_{q_{j+1}}\right.\right. \text { and } \\
& \left.\left.b_{j+1} \in A_{j+1} \text { such that } \eta_{j+1}\left(s_{j+1}\right)=b_{j+1} s_{j}\right)\right) \text { and } \eta_{i}\left(s_{i}\right)= \\
& \left.=b_{i} s_{i-1} \quad\left(b_{i} \in A_{i}\right) \text { for } i=1, \ldots, j\right\} .
\end{align*}
$$

(2) For every $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z_{\left(D, p^{n}\right)} \quad(1 \leqq j \leqq k), \quad \Omega_{\left(D, p^{n}\right.}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=$ $=b_{j} \ldots b_{1} \gamma^{n}\left(s_{0}\right)$ iff $\eta_{i}\left(s_{i}\right)=b_{i} s_{i-1}\left(b_{i} \in A_{i}\right)$ for $i=1, \ldots, j$.
(3) For every $s_{k} \in S_{q^{n}}, \Theta_{\left(D, p^{n}\right)}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ iff

$$
\eta_{i}\left(s_{i}\right)=b_{i} s_{i-1}\left(b_{i} \in A_{i}\right) \quad \text { for } \quad i=1, \ldots, k .
$$

(4) : $\psi_{\left(D, p^{n}\right)}=\Theta_{\left(D, p^{n}\right)} \circ \Omega_{\left(D, p^{n}\right)}$.

We proceed by induction on n. Let $n=1$. In this case $p^{1}=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)$, $u_{0}=\operatorname{root}(p)$. From the definition of the transition in \mathfrak{B} it follows that there are mappings $\varkappa_{i}:\{e\} \rightarrow \Sigma_{\mathfrak{Y}}(i)(i=0,1, \ldots, k)$ such that $\varkappa_{0}(e)=u_{0}$,
and so on,

$$
\varkappa_{1}(e)=\left(a_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right)
$$

$$
x_{k}(e)=\left(a_{k} \ldots a_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)
$$

and $\left(\varkappa_{0}(e), \varkappa_{1}(e), \ldots, \varkappa_{k}(e)\right) \in V_{k}$, and configuration K_{0} and mappings $\varkappa_{i}(i=0, \ldots, k)$ determine the configuration K_{1}.

According to the construction of the transducer \mathfrak{B} and the definition of the transition in \mathfrak{B}, there is a derivation sequence $D=D_{1}, \ldots, D_{k}$,

$$
\begin{gathered}
D_{1}: a_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right) \Rightarrow_{q_{1}}^{*} u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \\
D_{i}: a_{i} u_{i-1} \Rightarrow_{q_{1}}^{*} u_{i}\left[S_{u i}, \eta_{i}\right]
\end{gathered}
$$

for some

$$
\eta_{i}: S_{u_{i}} \rightarrow A_{i} S_{u_{i-1}}, \quad(i=2, \ldots, k)
$$

such that the following equalities hold:
i) $\boldsymbol{q}^{1}=u_{k}$,
ii) $\psi_{\left(D, p^{1}\right)}=\psi^{1}$,
iii) $Z^{1}=W_{k}=Z_{\left(\bar{D}, p^{i}\right)}$,
iv) $\Theta^{1}=\varrho_{k}=\Theta_{\left(D, p^{1}\right)}$,
v) $\Omega^{1}=\tau_{k}=\Omega_{\left(D, p^{1}\right)}$.

The proof of the basic step is complete.
Assume that the statement is true for $n-1$. It means that there is a derivation sequence

$$
\begin{aligned}
& D_{1}: a_{1} p^{n-1} \Rightarrow_{\mathscr{A}_{1}}^{*} p_{1}\left[S_{p_{1}}, \eta_{1}\right]\left(p_{1} \in P_{G_{1}}\left(Y_{1}\right), \eta_{1}: S_{p_{1}} \rightarrow A_{1} S_{p^{n-1}}\right), \\
& D_{2}: a_{2} p_{1} \Rightarrow_{\mathscr{A}_{2}}^{*} p_{2}\left[S_{p_{2}}, \eta_{2}\right]\left(p_{2} \in P_{G_{2}}\left(Y_{2}\right), \eta_{2}: S_{p_{2}} \rightarrow A_{2} S_{p_{1}}\right), \\
& \vdots \\
& D_{k}: a_{k} p_{k-1} \Rightarrow_{\mathscr{I}_{k}}^{*} p_{k}\left[S_{p_{k}}, \eta_{k}\right]\left(p_{k} \in P_{G_{k}}\left(Y_{k}\right), \eta_{k}: S_{p_{k}} \rightarrow A_{k} S_{p_{k-1}}\right)
\end{aligned}
$$

such that the following equalities hold:
i) $p_{k}=q^{n-1}$,
ii) $\psi_{\left(D, p^{n-1}\right)}=\psi^{n-1}$,
iii) $Z^{n-1}=Z_{\left(D, p^{n-1}\right)}$,
iv) $\Theta^{n-1}=\Theta_{\left(D, p^{n-1}\right)}$,
v) $\Omega^{n-1}=\Omega_{\left(D, p^{n-1}\right)}$.

Because of the transition $K_{n-1} \Rightarrow_{\mathfrak{9}} K_{n}$ there are mappings $x_{i}:\left[Z^{n-1}\right]_{i} \rightarrow \Sigma_{\mathfrak{F}}(i)$ ($i=0, \ldots, k$) which satisfy condition (1) in Definition 3.3.

Take the sequence r_{0}, \ldots, r_{k} of quasi trees given as follows:

$$
r_{0}=p^{n}, \text { for } i=2, \ldots, k \text { let } r_{i}=p_{i}\left[S_{p_{i}}, \varepsilon_{i}\right]
$$

where $\varepsilon_{i}: S_{p_{i}} \rightarrow T_{G_{i}}\left(Y_{i} \cup N^{*}\right)$ such that for every $s \in S_{p_{i}}, \varepsilon_{i}(s)=\omega_{s}\left(u_{i}\right)$ holds, where $u_{i}\left[S_{u_{i}}, \varphi_{i}\right]$ is the third component of

$$
\varkappa_{i}(s)=\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right] \varrho_{i}, W_{i}, \tau_{i}\right)
$$

Let $\xi_{i}: S_{r_{i}} \rightarrow A_{i} S_{r_{i-1}}(i \in\{1, \ldots, k\})$ be the mapping satisfying the following requirements: we know that for each $\bar{s}_{i} \in S_{r_{i}}$ there is a unique decomposition $\bar{s}_{i}=s_{i} t_{i}$ of \bar{s}_{i}, where $s_{i} \in S_{p_{i}}, \quad x_{i}\left(s_{i}\right)=\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}, W_{i}, \tau_{i}\right)$ and $t_{i} \in S_{u_{i}}$. If $\varrho_{i}\left(t_{i}\right)=\left(t_{0}, \ldots, t_{i-1}, t_{i}\right) \quad\left(\left(t_{0}, \ldots, t_{i-1}, t_{i}\right) \in W_{i}\right) \quad$ and $\quad \tau_{i}\left(\left(t_{0}, \ldots, t_{i-1}, t_{i}\right)\right)=$ $=c_{i} \ldots c_{1} t_{0}$ for some $c_{i} \in A_{i}, \ldots, c_{1} \in A_{1}$, and $\eta_{i}\left(s_{i}\right)=b_{i} s_{i-1}$ for some $s_{i-1} \in S_{p_{i}}$ then $\xi_{i}\left(s_{i} t_{i}\right)=c_{i} s_{i-1} t_{i-1}$. We obtain that for $i=1, \ldots, k, E_{i}: a_{i} r_{i-1} \Rightarrow_{\mathbb{G}_{i}}^{*} r_{i}\left[S_{r_{i}}, \xi_{i}\right]$ holds.

From the definition of the transition in \mathfrak{B} and from the definitions of r_{k}, $Z_{\left(E, p^{n}\right)}, \Theta_{\left(E, p^{n}\right)}, \Omega_{\left(E, p^{n}\right)}, \psi_{\left(E, p^{n}\right)}$ it follows that
i) $r_{k}=q^{n}$,
ii) $\psi_{\left(E, p^{n}\right)}=\psi^{n}$,
iii) $Z^{n}=Z_{\left(E, p^{n}\right)}$,
iv) $\Theta^{n}=\Theta_{\left(E, p^{n}\right)}$,
v) $\Omega^{n}=\Omega_{\left(E, p^{n}\right)}$.

Assume that $(p, q) \in \tau_{\mathfrak{g}}$. Then there are configurations $K_{0}, \ldots, K_{n}(n \geqq 1)$ such that K_{0} is a starting configuration, $K_{0}=\left(e\left[\{e\}, \psi^{0}\right], \Theta^{0}, Z^{0}, \Omega^{0}\right)$ where $\psi^{0}(e)=$ $=a_{k} \ldots a_{1} p$ for some $a_{k} \in A_{k}^{\prime}, \ldots, a_{1} \in A_{1}^{\prime}, K_{n}$ is a final configuration, $K_{n}=(q, \emptyset, \emptyset, \emptyset)$, moreover, $K_{i-1} \Rightarrow{ }_{\mathfrak{g}} K_{i}$ holds for $i=1, \ldots, n$.

According to the above proposition there is a derivation sequence

$$
\begin{gathered}
D=D_{1}, \ldots, D_{k}, \\
D_{1}: a_{1} p^{n} \Rightarrow_{थ_{1}}^{*} p_{1}\left[S_{p_{1}}, \eta_{1}\right],\left(p_{1} \in P_{G_{1}}\left(Y_{1}\right), \eta_{1}: S_{p_{1} \rightarrow A_{1}} S_{p^{n}}\right), \\
D_{2}: a_{2} p_{1} \Rightarrow{ }_{थ_{2}}^{*} p_{2}\left[S_{p_{2}}, \eta_{2}\right],\left(p_{2} \in P_{G_{2}}\left(Y_{2}\right), \eta_{2}: S_{p_{2}} \rightarrow A_{2} S_{p_{1}}\right), \\
\vdots \\
D_{k}: a_{k} p_{k-1} \Rightarrow{ }_{थ_{2} k}^{*} P_{k}\left[S_{p_{k}}, \eta_{k}\right],\left(p_{k} \in P_{G_{k}}\left(Y_{k}\right), \eta_{k}: S_{p_{k}} \rightarrow A_{k} S_{p_{k-3}-3}\right)
\end{gathered}
$$

such that the following equalities hold:
i) $p_{k}=q$,
ii) $\psi_{\left(D, p^{n}\right)}=\psi^{n}=\emptyset$,
iii) $Z^{n}=Z_{\left(D, p^{n}\right)}$,
iv) $\Theta^{n}=\Theta_{\left(D, p^{n}\right)}$,
v) $\Omega^{n}=\Omega_{\left(D, p^{n}\right)}$.

Thus $Z_{\left(D, p^{n}\right)}=\emptyset, \Theta_{\left(D, p^{n}\right)}=\emptyset, \Omega_{\left(D, p^{n}\right)}=\emptyset$. According to the definition of $Z_{\left(D, p^{n}\right)}$, $S_{p^{i}}=\left[Z_{\left(D, p^{n}\right)}\right]_{i}$ for $i=1, \ldots, k$. Thus $p_{i} \in T_{G_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, k$. One can see that $a_{1} p^{n}\left[S_{p^{n}}, \gamma^{n}\right] \Rightarrow{ }_{\mathfrak{I}_{1}}^{*} p_{1}$ holds. Thus $\left(p^{n}\left[S_{p^{n}}, \gamma^{n}\right], q\right) \in \tau_{\mathfrak{I n}_{1}} \circ \tau_{\mathfrak{I}_{2}} \circ \ldots \circ \tau_{\mathscr{I}_{k}}$. The proof of the theorem is complete.

Theorem 3.6. Let $\mathfrak{B}=\left(G_{0}, G_{1}, \ldots, G_{k}, Y_{0}, Y_{1}, \ldots, Y_{k}, A_{1}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}\right.$, $\Sigma_{\mathfrak{B}}, V$) be a k-synchronized R-transducer. Then there are R-transducers $\mathfrak{V}_{1}, \ldots, \mathfrak{X}_{k}$ such that $\tau_{\mathfrak{g}}=\tau_{\mathscr{H}_{\mathfrak{k}}} \circ \ldots \circ \tau_{\mathfrak{H}_{k}}$.

Proof. The production sets $\Sigma_{\mathfrak{9}}(i)$ for $i=1, \ldots, k-1$ are considered to be operator domains with arity function $v^{i}: \Sigma_{\mathfrak{g}}(i) \rightarrow\{0,1,2, \ldots\}$ as follows: for $1 \leqq i \leqq k-1$,

$$
\sigma=\left(b_{i}, \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}, W_{i}, \tau_{i}\right) \in \Sigma_{\mathfrak{z}}(i)
$$

let $v^{i}(\sigma)=\left|S_{u_{i}}\right|$, where $\left|S_{u_{i}}\right|$ denotes the cardinality of the set $S_{u_{i}}$.
Remember, the arity function of the operator domain G_{0} is denoted by v.
Convention: Let $S \subseteq N^{*}$. If $S \neq \emptyset$, then $\xi_{0}, \xi_{k}: S \rightarrow S$ denote the identity function. If $S=\emptyset$ then $\xi_{0}, \xi_{k}: S \rightarrow S$ denote the empty function.

For every j ($1 \leqq j \leqq k$) if $S \neq \emptyset$ then $\xi_{j}: S \rightarrow\{1, \ldots,|S|\}$ denotes the function whose value on $s \in S$ is the ordinal number of s in S with respect to the lexicographic ordering. If $S=\emptyset$ then $\xi_{j}: S \rightarrow S$ denotes the empty function. Thus ξ_{j} always denotes a bijective function which is determined by its domain.

Take the R-transducer

$$
\mathfrak{Y I}_{1}=\left(G_{0}, Y_{0}, A_{1}, \Sigma_{\mathfrak{B}}(\mathrm{l}), 0, \Sigma_{\mathfrak{Q 1}_{1}}, A_{1}^{\prime}\right),
$$

where

$$
\Sigma_{\mathfrak{I}_{1}}=\left\{b_{1} u_{0} \rightarrow \sigma_{1}\left(1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right)\left[\left\{1 ; \ldots, \nu^{1}\left(\sigma_{1}\right)\right\}, \beta_{1}\right]\right.
$$

σ_{1} has the form $\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right) \in \Sigma_{\mathfrak{g}}(1)$,
$\left(\sigma_{0},\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right)\right) \in V_{1}$ and the mapping
$\beta_{1}:\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\} \rightarrow A_{1}\left\{1, \ldots, v\left(\sigma_{0}\right)\right\}$ is defined as follows:
Let $\xi_{0}:\left\{1, \ldots, v\left(u_{n}\right)\right\} \rightarrow\left\{1, \ldots, v\left(u_{0}\right)\right\}, \xi_{1}: S_{u_{1}} \rightarrow\left\{1, \ldots,\left|S_{u_{1}}\right|\right\}$.
For each $t_{1} \in S_{u_{1}}, \quad \beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)$ iff $\varrho_{1}\left(t_{1}\right)=\left(t_{0}, t_{1}\right)$ and $\tau_{1}\left(\left(t_{0}, t_{1}\right)\right)=$
$=c_{1} t_{0}$. (Thus for each $t_{1} \in S_{u_{1}}, \beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)$ iff $\left.\left.\varphi_{1}\left(t_{1}\right)=c_{1} t_{0}.\right)\right\}$
For $j=2, \ldots, k-1$ consider the R-transducer $\mathfrak{A}_{j}=\left(\Sigma_{\mathfrak{F}}(j-1), \emptyset, A_{j}, \Sigma_{\mathfrak{g}}(j), \emptyset\right.$, $\left.\Sigma_{\mathfrak{g}_{j}}, A_{j}^{\prime}\right)$, where the production set $\Sigma_{\mathfrak{a}_{j}}$ is defined as follows:
$\Sigma_{\mathfrak{g}_{j}}=\left\{b_{j} \sigma_{j-1} \rightarrow \sigma_{j}\left(1, \ldots, v^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, v^{j}\left(\sigma_{j}\right)\right\}, \beta_{j}\right]\right.$
There is an element $\left(\sigma_{0}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \in V$ such that σ_{j-1} has the form $\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right)$,
σ_{j} has the form $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$.
There is a mapping $\varepsilon_{j}: S_{u_{j}} \rightarrow A_{j}\left[W_{j-1}\right]_{j-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold.
The mapping $\beta_{j}:\left\{1, \ldots, v^{j}\left(\sigma_{j}\right)\right\} \rightarrow A_{j}\left\{1, \ldots, v^{j-1}\left(\sigma_{j-1}\right)\right\}$ is defined as follows: Let $\xi_{j-1}: S_{u_{j-1}} \rightarrow\left\{1, \ldots,\left|S_{u_{j-1}}\right|\right\}, \xi_{j}: S_{u_{j} \rightarrow}\left\{1, \ldots,\left|S_{u_{j}}\right|\right\}$. For every $t_{j} \in S_{u_{j}}$, $\beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right)\left(c_{j} \in A_{j}, t_{j-1} \in S_{u_{j-1}}\right)$ iff $\varrho_{j}\left(t_{j}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)$ and $\tau_{j}\left(\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$.
(Thus for every $t_{j} \in S_{u}, \quad \beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right)\left(c_{j} \in A_{j}, t_{j-1} \in S_{u_{j-1}}\right)$ iff $\left.\left.\varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}.\right)\right\}$
Take the R-transducer $\mathfrak{Y}_{k}=\left(\Sigma_{\mathfrak{9}}(k-1), \emptyset, A_{k}, G_{k}, Y_{k}, \Sigma_{\mathfrak{g}_{k}}, A_{k}^{\prime}\right)$ where the production set $\Sigma_{\mathfrak{I}_{k}}$ is defined as follows:

$$
\begin{aligned}
\Sigma_{\mathfrak{1}_{k}}= & \left\{a_{k} \sigma_{k-1} \rightarrow u_{k}\left[S_{u_{k}}, \beta_{k}\right]\right. \\
& \text { There is an element }\left(\sigma_{0}, \therefore, \sigma_{k-1}, \sigma_{k}\right) \in V \text { such that } \sigma_{k-1} \text { has the form } \\
& \left(b_{k-1} \ldots b_{1}, u_{0}, u_{k-1}\left[S_{u_{k-1}}, \varphi_{k-1}\right], \varrho_{k-1}, W_{k-1}, \tau_{k-1}\right),
\end{aligned}
$$

σ_{k} has the form $\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$. There is a mapping
$\varepsilon_{k}: S_{u_{k}} \rightarrow A_{k}\left[W_{k-1}\right]_{k-1}$ such that conditions i) iv) in part (5).b of Definition
3.3 hold. The mapping $\beta_{k}: S_{u_{k}} \rightarrow A_{k}\left\{1, \ldots, v^{k-1}\left(\sigma_{k-1}\right)\right\}$ is defined as follows:
Let $\xi_{k-1}: S_{u_{k-1}} \rightarrow\left\{1, \ldots,\left|S_{u_{k-1}}\right|\right\}, \xi_{k}: S_{u_{k}} \rightarrow S_{u_{k}}$. For every $t_{k} \in S_{u_{k}}$,
$\beta_{k}\left(t_{k}\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right)$ iff $\varrho_{k}\left(t_{k}\right)=\left(t_{0}, \ldots, t_{k-1}, t_{k}\right)$ and $\left.\tau_{k}\left(t_{0}, \ldots, t_{k-1}, t_{k}\right)\right)=$
$=c_{k} \ldots c_{1} t_{0}$. (Thus for every $t_{k} \in S_{u_{k}}, \beta_{k}\left(t_{k}\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right)\left(c_{k} \in A_{k}, t_{k-1} \in S_{u_{k-1}}\right)$
iff $\left.\left.\varepsilon_{k}\left(t_{k}\right)=c_{k} t_{k-1}.\right)\right\}$

We may assume without loss of generality that for
$i=2, \ldots, k-1, A_{i} \cap T_{\Sigma_{\mathfrak{g}}(i-1)}(\emptyset)=\emptyset, \quad A_{i} \cap T_{\Sigma_{\mathfrak{B}}(i)}(\emptyset)=\emptyset$
and that $A_{1} \cap T_{\Sigma_{\mathfrak{B}}(0)}(\emptyset)=\emptyset, \quad A_{k} \cap T_{\Sigma_{\mathfrak{B}(k-1)}}(\emptyset)=\emptyset$.
Thus $\mathfrak{N}_{1}, \ldots, \mathfrak{U}_{k}$ satisfy requirement (2) of Definition 1.10.
We shall prove that $\tau_{\mathfrak{B}}=\tau_{\mathfrak{M}_{1}} \circ \ldots \circ \tau_{\mathfrak{I}_{k}}$. Let \mathbb{C} be the k-synchronized R-transducer that can be obtained from $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{k}$ by the construction of Theorem 3.5.

In this case

$$
\mathfrak{C}=(G_{0}, \Sigma_{\mathfrak{B}}(1), \ldots, \Sigma_{\mathfrak{B}}(k-1), G_{k}, Y_{0}, \underbrace{\emptyset, \ldots,}_{k-1 \text { times }} \emptyset, Y_{k}, A_{1}, \ldots, A_{k}, A_{1}^{\prime}, \ldots, A_{k}^{\prime}, \Sigma_{\mathbb{C}}, \widetilde{V}) .
$$

We may assume without loss of generality that for $i=1, \ldots, k, A_{i} \ldots A_{1} \cap T_{G_{0}}\left(Y_{0}\right)=\emptyset$ and that $A_{k} \ldots A_{1} \cap T_{G_{k}}\left(Y_{k}\right)=\emptyset$. Thus \mathbb{C} satisfies the requirements of Definition 3.1.

By Theorem 3.5, $\tau_{\mathbb{G}}=\tau_{\mathfrak{I}_{1}} \circ \tau_{\mathfrak{I}_{2}} \circ \ldots \circ \tau_{\mathfrak{I 1}_{k}}$, so it is sufficient to prove that $\tau_{\mathfrak{F}}=\tau_{\mathbb{C}}$. In order to prove this equality we shall introduce bijective mappings $\gamma_{j}: \Sigma_{\mathfrak{B}}(j) \rightarrow \Sigma_{\mathbb{C}}(j)$ for $j=0, \ldots, k-1$ and a surjective mapping $\gamma_{k}: \Sigma_{\mathfrak{g}}(k) \rightarrow \Sigma_{\mathfrak{C}}(k)$, and we shall show that for $j=0, \ldots, k$ the mappings $\gamma_{0}, \ldots, \gamma_{j}$ satisfy assumption (1) and that for $j=0, \ldots, k$ the mapping γ_{j} satisfies assumption (2).
(1) There are two cases.

Case 1. $0 \leqq j \leqq k-1$. In this case if $\left(\sigma_{0}, \ldots, \sigma_{j}\right) \in V_{j}$ then $\left(\gamma_{0}\left(\sigma_{0}\right), \ldots, \gamma_{j}\left(\sigma_{j}\right)\right) \in \bar{V}_{j}$, and if $\left(\bar{\sigma}_{0}, \ldots, \bar{\sigma}_{j}\right) \in \bar{V}_{j}$ then $\left(\gamma_{o}^{-1}\left(\bar{\sigma}_{0}\right), \ldots, \gamma_{j}^{-1}\left(\bar{\sigma}_{j}\right)\right) \in V_{j}$.

Case 2. $j=k$. In this case if $\left(\sigma_{0}, \ldots, \sigma_{k}\right) \in V_{k}$ then $\left(\gamma_{0}\left(\sigma_{0}\right), \ldots, \gamma_{k}\left(\sigma_{k}\right)\right) \in \bar{V}_{k}$, and if $\left(\bar{\sigma}_{0}, \ldots, \bar{\sigma}_{k-1}, \bar{\sigma}_{k}\right) \in \bar{V}_{k}$ then there is a unique $\sigma_{k} \in \Sigma_{\mathfrak{B}}(k)$ such that $\gamma_{k}\left(\sigma_{k}\right)=\bar{\sigma}_{k}$ and $\left(\gamma_{0}^{-1}\left(\bar{\sigma}_{0}\right), \ldots, \gamma_{k-1}^{-1}\left(\bar{\sigma}_{k-1}\right), \sigma_{k}\right) \in V_{k}$.
(2) There are three cases.

Case 1. $j=0$. In this case $\Sigma_{\mathfrak{G}}(0)=\Sigma_{\mathfrak{B}}(0)$ and γ_{0} is the identity function.
Case 2. $1 \leqq j \leqq k-1$. Let $\left(\sigma_{0}, \ldots, \sigma_{j}\right) \in V_{j}$ and $\sigma_{0}=u_{0}$. Assume that $\sigma_{l}(1 \leqq l \leqq j)$ has the form $\left(b_{l}, \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)$. Let $\xi_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\}=\left[W_{j}\right]_{0} \rightarrow$ $\rightarrow\left\{1, \ldots, v\left(u_{0}\right)\right\}, \xi_{l}: S_{u_{l}}=\left[W_{j}\right]_{l} \rightarrow\left\{1, \ldots,\left|S_{u^{\prime}}\right|\right\}$ for $l=1, \ldots, j$. Then $\gamma_{j}\left(\sigma_{j}\right)$ has the form $\gamma_{j}\left(\sigma_{j}\right)=\left(b_{j} \ldots b_{1}, u_{0}, \sigma_{j}\left(1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, v^{j}\left(\sigma_{j}\right)\right\}, \bar{\varphi}_{j}\right], \bar{\varrho}_{j}, \bar{W}_{j}, \bar{\tau}_{j}\right)$, and the following hold:
i) $\left[\bar{W}_{j}\right]_{0}=\left[W_{j}\right]_{0}$ and for $i=1, \ldots, j-1,\left[\bar{W}_{j}\right]_{i}=\left\{1, \ldots,\left|\left[W_{j}\right]_{i}\right|\right\}=\left\{1, \ldots,\left|S_{u_{i}}\right|\right\}=$ $=\operatorname{rg}\left(\xi_{i}\right)$.
ii) $\left(t_{0}, t_{1}, \ldots, t_{l}\right) \in W_{j}$ iff $\quad\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{l}\left(t_{l}\right)\right) \in \bar{W}_{j}(1 \leqq l \leqq j)$

$$
\left(t_{0} \in N^{*}, t_{1} \in N^{*}, \ldots, t_{l} \in N^{*}\right) .
$$

iii) For every
$t_{j} \in S_{u_{j}}, \varphi_{j}\left(t_{j}\right)=c_{j} \ldots c_{1} t_{0} \quad$ iff $\quad \bar{\varphi}_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \ldots c_{1} \xi_{0}\left(t_{0}\right)$, $\left(t_{0} \in S_{u_{0}}, c_{1} \in A_{1}, \ldots, c_{j} \in A_{j}\right)$.
iv) For each
$t_{j} \in S_{u_{j}}, \varrho_{j}\left(t_{j}\right)=\left(t_{0}, t_{1}, \ldots, t_{j}\right)$ iff $\bar{\varrho}_{j}\left(\xi_{j}\left(t_{j}\right)\right)=\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{j}\left(t_{j}\right)\right)$.
v) For every
$\left(t_{0}, t_{1}, \ldots, t_{l}\right) \in W_{j} \quad(1 \leqq l \leqq j), \quad \tau_{j}\left(\left(t_{0}, t_{1}, \ldots, t_{l}\right)\right)=c_{l} \ldots c_{1} t_{0} \quad$ iff
$\bar{\tau}_{j}\left(\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{l}\left(t_{l}\right)\right)\right)=c_{l} \ldots c_{1} \xi_{0}\left(t_{0}\right)$,
$\left(t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}, c_{1} \in A_{1}, \ldots, c_{l} \in A_{l}\right)$.
Case 3. $j=k$. Let $\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{k}\right) \in V_{k}$ and $\sigma_{0}=u_{0}$.
Assume that $\sigma_{l}(1 \leqq l \leqq k)$ has the form

Let

$$
\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)
$$

$$
\begin{gathered}
\xi_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\}=\left[W_{k}\right]_{0} \rightarrow\left\{1, \ldots, v\left(u_{0}\right)\right\}, \\
\xi_{l}: S_{u_{l}}=\left[W_{k}\right]_{l} \rightarrow\left\{1, \ldots,\left|S_{u_{l}}\right|\right\} \text { for } l=1, \ldots, k-1, \xi_{k}: S_{u_{k}}=\left[W_{k}\right]_{k} \rightarrow S_{u_{k}} .
\end{gathered}
$$

Then $\gamma_{k}\left(\sigma_{k}\right)$ has the form $\gamma_{k}\left(\sigma_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \bar{\varphi}_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$ and the following hold:
i) $\left[\bar{W}_{k}\right]_{0}=\left[W_{k}\right]_{0}$, for $i=1, \ldots, k-1,\left[\overline{W_{k}}\right]_{i}=\left\{1, \ldots,\left[W_{k}\right]_{i}\right\}=\left\{1, \ldots,\left|S_{u_{i}}\right|\right\}=\operatorname{rg}\left(\xi_{i}\right)$ and $\left[\bar{W}_{k}\right]_{k}=\left[W_{k}\right]_{k}=S_{u_{k}}=\operatorname{rg}\left(\xi_{k}\right)$.
ii) $\left(t_{0}, t_{1}, \ldots, t_{l}\right) \in W_{k}$ iff $\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{l}\left(t_{l}\right)\right) \in \bar{W}_{k}$ $\left(1 \leqq l \leqq k, t_{0}, t_{1}, \ldots, t_{l} \in N^{*}\right)$.
iii) For every

$$
\begin{aligned}
& t_{k} \in S_{u_{k}}, \varphi_{k}\left(t_{k}\right)=c_{k} \ldots c_{1} t_{0} \quad \text { iff } \quad \bar{\varphi}_{k}\left(\xi_{k}\left(t_{k}\right)\right)=c_{k} \ldots c_{1} \xi_{0}\left(t_{0}\right), \\
& \left(t_{0} \in S_{u_{0}}, c_{1} \in A_{1}, \ldots, c_{k} \in A_{k}\right) .
\end{aligned}
$$

iv) For each

$$
t_{k} \in S_{u_{k}}, \varrho_{k}\left(t_{k}\right)=\left(t_{0}, t_{1}, \ldots, t_{k}\right) \quad \text { iff } \quad \bar{\varrho}_{k}\left(\xi_{k}\left(t_{k}\right)\right)=\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right) ; \ldots, \xi_{k}\left(t_{k}\right)\right) .
$$

v) For every

$$
\begin{aligned}
& \left(t_{0}, t_{1}, \ldots, t_{l}\right) \in W_{k} \quad(1 \leqq l \leqq k), \tau_{k}\left(\left(t_{0}, t_{1}, \ldots, t_{l}\right)\right)=c_{l} \ldots c_{1} t_{0} \quad \text { iff } \\
& \bar{\tau}_{k}\left(\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{l}\left(t_{l}\right)\right)\right)=c_{l} \ldots c_{1} t_{0} \\
& \left(t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}, c_{1} \in A_{1}, \ldots, c_{l} \in A_{l}\right) .
\end{aligned}
$$

We shall define mappings $\gamma_{j}: \Sigma_{\mathfrak{B}}(j) \rightarrow \Sigma_{\mathbb{C}}(j)$ according to the construction of $\Sigma_{\mathfrak{B}}(j)$ and \mathfrak{U}_{j}.

Let $j=0$. Since $\Sigma_{\mathbb{~}}(0)=\Sigma_{\mathfrak{F}}(0)$, let γ_{0} be the identity mapping.
Let $j=1$. In this case
$\Sigma_{\mathbb{C}}(1)=\left\{\left(b_{1}, u_{0}, \sigma_{1}\left(1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right)\left[\left\{1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right\}, \bar{\varphi}_{1}\right], \bar{\varrho}_{1}, \bar{W}_{1}, \bar{\tau}_{1}\right) \mid\right.$
i) $\left(u_{0}, \sigma_{1}\right) \in V$ such that σ_{1} has the form $\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right)$.
ii) $\gamma_{0}\left(u_{0}\right)=u_{0}$, the production

$$
b_{1} u_{0} \rightarrow \sigma_{1}\left(1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right)\left[\left\{1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right\}, \beta_{1}\right] \in \Sigma_{\mathbb{M}_{1}}
$$

where the mapping $\beta_{1}:\left\{1, \ldots, \nu^{1}\left(\sigma_{1}\right)\right\} \rightarrow A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$ is defined as follows:
Let

$$
\xi_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow\left\{1, \ldots, v\left(u_{0}\right)\right\}, \quad \xi_{1}: S_{u_{1}} \rightarrow\left\{1, \ldots,\left|S_{u_{1}}\right|\right\} .
$$

For each
$t_{1} \in S_{u_{1}}, \beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)$ iff $\varrho_{1}\left(t_{1}\right)=\left(t_{0}, t_{1}\right) \quad$ and $\quad \tau_{1}\left(\left(t_{0}, t_{1}\right)\right)=c_{1} t_{0}$.
(Thus for each $t_{1} \in S_{u_{1}}, \beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)$ iff $\varphi_{1}\left(t_{1}\right)=c_{1} t_{0}$.)
iii) $\bar{\varphi}_{1}=\beta_{1}$,
iv) $\bar{\varrho}_{1}:\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\} \rightarrow \bar{W}_{1}$;
for every
$\xi_{1}\left(t_{1}\right) \in\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\}$, if $\beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)\left(c_{1} \in A_{1}, t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}\right)$ then $\bar{\varrho}_{1}\left(\xi_{1}\left(t_{1}\right)\right)=\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right)\right)$.
v) $\bar{\tau}_{1}: \bar{W}_{1} \rightarrow A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$;

for every

$\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right)\right) \in \bar{W}_{1}$, if $\beta_{1}\left(\xi_{1}\left(t_{1}\right)\right)=c_{1} \xi_{0}\left(t_{0}\right)\left(c_{1} \in A_{1}, t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}\right)$ then $\left.\bar{\tau}_{1}\left(\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right)\right)\right)=c_{1} \xi_{0}\left(t_{0}\right).\right\}$
It can be seen that

$$
\begin{aligned}
\bar{V}_{1}=\left\{\left(\gamma_{0}\left(\sigma_{0}\right),\right.\right. & \left.\left.\bar{\sigma}_{1}\right) \mid \sigma_{0}=u_{0} \in \Sigma_{\mathfrak{B}}(0), \bar{\sigma}_{1} \in \Sigma_{\mathbb{\mathbb { E }}}(1)\right) \text { has the form } \\
& \left(b_{1}, u_{0}, \sigma_{1}\left(1, \ldots, v^{1}\left(\sigma_{1}\right)\right)\left[\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\}, \bar{\varphi}_{1}\right], \bar{\varrho}_{1}, \bar{W}_{1}, \bar{\tau}_{1}\right)
\end{aligned}
$$

and $\bar{\sigma}_{1}$ is generated by the production

$$
\left.b_{1} u_{0} \rightarrow \sigma_{1}\left(1, \ldots, v^{1}\left(\sigma_{1}\right)\right)\left[\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\}, \bar{\varphi}_{1}\right] \in \Sigma_{\mathfrak{B}}(1) .\right\}
$$

We define $\gamma_{1}: \Sigma_{\mathfrak{B}}(1) \rightarrow \Sigma_{\mathbb{C}}(1)$ as follows:
Let $\sigma_{1}=\left(b_{1}, u_{0}, u_{1}\left[S_{u_{1}}, \varphi_{1}\right], \varrho_{1}, W_{1}, \tau_{1}\right) \in \Sigma_{\mathfrak{B}}(1)$, then by the construction of \mathfrak{U}_{1} and \mathbb{C} there is a unique production $b_{1} u_{0} \rightarrow \sigma_{1}\left(1, \ldots, v^{1}\left(\sigma_{1}\right)\right)\left[\left\{1, \ldots, v^{1}\left(\sigma_{1}\right)\right\}, \beta_{1}\right] \in \Sigma_{\mathfrak{I}_{1}}$ which generates a unique $\bar{\sigma}_{1} \in \Sigma_{\mathbb{C}}(1)$. We define $\gamma_{1}\left(\sigma_{1}\right)$ to be $\bar{\sigma}_{1}$. One can see by the definition of $\Sigma_{\mathbb{C}}(1)$ that γ_{1} is onto, hence γ_{1} is bijective.

It is routine work to check according to the construction of \mathfrak{U}_{1} and $\Sigma_{\mathbb{C}}(1)$ that γ_{0}, γ_{1} satisfy condition (1) and that γ_{1} satisfies condition (2).

Let j be an index between 2 and $k-1$. We can assume that $\Sigma_{\mathbb{C}}(0), \Sigma_{\mathfrak{C}}(1), \ldots$ $\ldots, \Sigma_{\mathbb{\varangle}}(j-1)$ and $\gamma_{0}, \ldots, \gamma_{j-1}$ are defined such that $\gamma_{0}, \ldots, \gamma_{j-1}$ satisfy condition (1) and that γ_{j-1} satisfies condition (2).

We know that $\Sigma_{⿷}(j)$ is the set
$\Sigma_{\mathbb{C}}(j)=\left\{\left(b_{j} \ldots b_{1}, u_{0}, \sigma_{j}\left(1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right\}, \bar{\varphi}_{j}\right], \bar{\varrho}_{j}, \bar{W}_{j}, \bar{\tau}_{j}\right) \mid\right.$
i) There is an element $\left(\sigma_{0}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \in V$ such that $\sigma_{0}=u_{0}, \sigma_{j-1}$ has the form

$$
\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right)
$$

σ_{j} has the form $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$. There is a mapping $\varepsilon_{j}: S_{u_{j} \rightarrow A_{j}}\left[W_{j-1}\right]_{j-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold.
-ii) $\gamma_{j-1}\left(\sigma_{j-1}\right)=\left(b_{j-1} \ldots b_{1}, u_{0}, \sigma_{j-1}\left(1, \ldots, \nu^{j-1}\left(\sigma_{j-1}\right)\right)\left[\left\{1, \ldots, \nu^{j-1}\left(\sigma_{j-1}\right)\right\}, \bar{\varphi}_{j-1}\right]\right.$, $\left.\bar{\varrho}_{j-1}, \bar{W}_{j-1}, \bar{\tau}_{j-1}\right) \in \Sigma_{\mathbb{C}}(j-1)$
and the production $b_{j} \sigma_{j-1} \rightarrow \sigma_{j}\left(1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right\}, \beta_{j}\right]$ is in $\Sigma_{\mathbf{q}_{j}}$, where the mapping

$$
\beta_{j}:\left\{1, \ldots, v^{j}\left(\sigma_{j}\right)\right\} \rightarrow A_{j}\left\{1, \ldots, v^{j-1}\left(\sigma_{j-1}\right)\right\}
$$

is defined as follows:
Let $\quad \xi_{j-1}: S_{u_{j-1}} \rightarrow\left\{1, \ldots,\left|S_{u_{j}-1}\right|\right\}, \quad \xi_{j}: S_{u_{j}} \rightarrow\left\{1, \ldots,\left|S_{u j}\right|\right\}$. For every $t_{j} \in S_{u_{j}}, \beta_{j}\left(t_{j}\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right) \quad$ iff $\quad \varrho_{j}\left(t_{j}\right)=\left(t_{0}, \ldots, t_{j-1}, t_{j}\right) \quad$ and $\tau_{j}\left(\left(t_{0}, \ldots, t_{j-1}, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$. (Thus for each $t_{j} \in S_{u}, \beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right)$ iff $\varepsilon_{j}\left(t_{j}\right)=c_{j} t_{j-1}$.)
iii) $\bar{W}_{j}=\left\{\left(\bar{t}_{0}, \ldots, \bar{I}_{j-2}, \xi_{j-1}\left(t_{j-1}\right), \xi_{j}\left(t_{j}\right)\right) \mid \beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right)\right.$, $\left.\bar{\varrho}_{j-1}\left(\xi_{j-1}\left(t_{j-1}\right)\right)=\left(\bar{t}_{0}, \ldots, \bar{i}_{j-2}, \xi_{j-1}\left(t_{j-1}\right)\right)\right\} \cup$ $\cup\left\{\left(\bar{t}_{0}, \ldots, \bar{t}_{j-1}\right) \in W_{j-1} \mid\right.$ there are no \bar{t}_{j} in $\left\{1, \ldots, v^{j}\left(\sigma_{j}\right)\right\}$ and $c_{j} \in A_{j}$ such that $\left.\beta_{j}\left(\bar{t}_{j}\right)=c_{j} \bar{I}_{j-1}\right\} \cup$ $\cup\left\{\left(\bar{t}_{0}, \ldots, \bar{t}_{l}\right) \in W_{j-1} \mid 1 \leqq l \leqq j-2\right\}$.
iv) $\bar{\varrho}_{j}:\left\{1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right\} \rightarrow \bar{W}_{j}$ satisfies the following requirement: for every $t_{j} \in S_{u j}$ if $\beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right)$ and
$\bar{\varrho}_{j-1}\left(\xi_{j-1}\left(t_{j-1}\right)\right)=\left(\xi_{0}\left(t_{0}\right), \ldots, \xi_{j-1}\left(t_{j-1}\right)\right)$ then
$\left(\xi_{0}\left(t_{0}\right), \ldots, \xi_{j-1}\left(t_{j-1}\right), \xi_{j}\left(t_{j}\right)\right) \in \bar{W}_{j}$ and
$\bar{\varrho}_{j}\left(\xi_{j}\left(t_{j}\right)\right)=\left(\xi_{0}\left(t_{0}\right), \ldots, \xi_{j-1}\left(t_{j-1}\right), \xi_{j}\left(t_{j}\right)\right)$.
v) For $\bar{\tau}_{j}: \bar{W}_{j} \rightarrow A_{j} \ldots A_{1}\left\{1, \ldots, v\left(u_{0}\right)\right\}$,
$\bar{\tau}_{j}\left|W_{J} \cap W_{j-1}=\bar{\tau}_{j-1}\right| W_{j} \cap W_{j-1} \quad$ and if
$\left(t_{0}, \ldots, t_{j-2}, \xi_{j-1}\left(t_{j-1}\right), \xi_{j}\left(t_{j}\right)\right) \in \bar{W}_{j}$,
$\beta_{j}\left(\xi_{j}\left(t_{j}\right)\right)=c_{j} \xi_{j-1}\left(t_{j-1}\right) \quad$ and $\quad \bar{\varrho}_{j-1}\left(\xi_{j-1}\left(t_{j-1}\right)\right)=\left(\bar{t}_{0}, \ldots, \bar{t}_{j-2}, \xi_{j-1}\left(t_{j-1}\right)\right)$
then $\quad \bar{\tau}_{j}\left(\left(\bar{t}_{0}, \ldots, \bar{t}_{j-2}, \xi_{j-1}\left(t_{j-1}\right), \xi_{j}\left(t_{j}\right)\right)\right)=c_{j} \bar{\tau}_{j-1}\left(\left(\bar{t}_{0}, \ldots, \bar{t}_{j-2}, \xi_{j-1}\left(t_{j-1}\right)\right)\right)$.
vi) $\bar{\varphi}_{j}=\bar{\varrho}_{j} \circ \bar{\tau}_{j}$.\}

It can be seen that

$$
\begin{aligned}
\bar{V}_{j}= & \left\{\left(\gamma_{0}\left(\sigma_{0}\right), \ldots, \gamma_{j-1}\left(\sigma_{j-1}\right), \bar{\sigma}_{j}\right) \quad \text { for } i=0, \ldots, j-1\right. \\
& \sigma_{i} \in \Sigma_{\mathfrak{G}}(i),\left(\gamma_{0}\left(\sigma_{0}\right), \ldots, \gamma_{j-1}\left(\sigma_{j-1}\right)\right) \in V_{j-1},
\end{aligned}
$$

σ_{0} has the form u_{0}, and σ_{j-1} has the form $\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right]\right.$, $\left.\varrho_{j-1}, W_{j-1}, \tau_{j-1}\right)$. There is an element

$$
\sigma_{j}=\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right) \in \Sigma_{\mathfrak{B}}(j)
$$

such that $\left(\sigma_{0}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \in V_{j}$, and there is a mapping $\varepsilon_{j}: S_{u_{j}} \rightarrow$ $A_{j}\left[W_{j-1}\right]_{j-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1. hold.

$$
\bar{\sigma}_{j}=\left(b_{j}, \ldots, b_{1}, u_{0}, \sigma_{j}\left(1, \ldots, v^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, v^{j}\left(\sigma^{j}\right)\right\}, \bar{\varphi}_{j}\right] ; \bar{\varrho}_{j}, \bar{W}_{j}, \bar{\tau}_{j}\right)
$$

satisfies the requirements ii)-vi) of $\left.\Sigma_{\mathbb{E}}(j).\right\}$
We define $\gamma_{j}: \Sigma_{\mathfrak{B}}(j) \rightarrow \Sigma_{\mathfrak{c}}(j)$ as follows: Let us consider the set

$$
\Gamma_{j}=\left\{\gamma: \Sigma_{\mathfrak{B}}(j) \rightarrow \Sigma_{\mathbb{C}}(j) \mid \text { for each } \sigma_{j} \in \Sigma_{\mathfrak{B}}(j), \gamma\left(\sigma_{j}\right)=\bar{\sigma}_{j}\right.
$$

has the form

$$
\left(b_{j} \ldots b_{1}, u_{0}, \sigma_{j}\left(1, \ldots, \nu^{j}\left(\sigma_{j}\right)\right)\left[\left\{1, \ldots, \nu^{j}\left(\sigma^{j}\right)\right\}, \bar{\varphi}_{j}\right], \bar{\varrho}_{j}, \bar{W}_{j}, \bar{\tau}_{j}\right)
$$

and there is a vector $\left(\sigma_{0}, \ldots, \sigma_{j-1}, \sigma_{j}\right) \in V_{j}$ such that σ_{0} has the form u_{0}, σ_{j-1} has the form $\left(b_{j-1} \ldots b_{1}, u_{0}, u_{j-1}\left[S_{u_{j-1}}, \varphi_{j-1}\right], \varrho_{j-1}, W_{j-1}, \tau_{j-1}\right), \sigma_{j}$ has the form $\left(b_{j} \ldots b_{1}, u_{0}, u_{j}\left[S_{u_{j}}, \varphi_{j}\right], \varrho_{j}, W_{j}, \tau_{j}\right)$, and there is a mapping $\varepsilon_{j}: S_{u_{j}} \overrightarrow{ }$ $\rightarrow A_{j}\left[W_{j-1}\right]_{j-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold, and $\bar{\sigma}_{j}$ satisfies the requirements ii)-vi) of $\left.\Sigma_{⿷}(j).\right\}$

One can see that if $\bar{\gamma}_{j} \in \Gamma_{j}$ then $\bar{\gamma}_{j}$ is injective and $\bar{\gamma}_{j}$ satisfies condition (2) because of the construction of \mathfrak{Q}_{j} and $\Sigma_{\mathbb{G}}(j)$. Using this fact one can see that $\left|\Gamma_{j}\right|=1$. Let γ_{j} be the only element of Γ_{j}. One can see that γ_{j} is bijective, and γ_{0}, \ldots $\ldots, \gamma_{j-1}, \gamma_{j}$ satisfy condition (1).

Let $j=k$. We can assume that $\Sigma_{\mathbb{C}}(0), \Sigma_{\mathbb{C}}(1,) \ldots, \Sigma_{\mathbb{C}}(k-1)$ and $\gamma_{0}, \ldots, \gamma_{k-1}$ are defined such that $\gamma_{0}, \ldots, \gamma_{k-1}$ satisfy condition (1) and that γ_{k-1} satisfies condition (2).

We know that $\Sigma_{\mathbb{c}}(k)$ is the set
$\Sigma_{\mathbb{C}}(k)=\left\{\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right) \mid\right.$
i) there is an element $\left(\sigma_{0}, \ldots, \sigma_{k-1}, \sigma_{k}\right) \in V_{k}$ such that $\sigma_{0}=u_{0}, \sigma_{k-1}$ has the form $\left(b_{k-1} \ldots b_{1}, u_{0}, u_{k-1}\left[S_{u_{k-1}}, \varphi_{k-1}\right], \varrho_{k-1}, W_{k-1}, \tau_{k-1}\right), \sigma_{k}$ has the form $\left(b_{k} \ldots b_{1}\right.$, $\left.u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$. There is a mapping $\varepsilon_{k}: S_{u_{k}} \rightarrow A_{k}\left[W_{k-1}\right]_{k-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold.
ii) $\gamma_{k-1}\left(\sigma_{k-1}\right)=\left(b_{k-1} \ldots b_{1}, u_{0}, \sigma_{k-1}\left(1, \ldots, v^{k-1}\left(\sigma_{k-1}\right)\right)\left[\left\{1, \ldots, v^{k-1}\left(\sigma_{k-1}\right)\right\}, \bar{\varphi}_{k-1}\right]\right.$,

$$
\left.\bar{\varrho}_{k-1}, \bar{W}_{k-1}, \bar{\tau}_{k-1}\right) \in \Sigma_{\mathfrak{B}}(k-1)
$$

and the production
$b_{k} \sigma_{k-1} \rightarrow u_{k}\left[S_{u_{k}}, \beta_{k}\right]$ is in $\Sigma_{\mathfrak{q f}_{k}}$,
where the mapping
$\beta_{k}: S_{u_{k}} \rightarrow A_{k}\left\{1, \ldots, v^{k-1}\left(\sigma_{k-1}\right)\right\}$
is defined as follows: Let
$\xi_{k-1}: S_{u_{k-1}} \rightarrow\left\{1, \ldots,\left|S_{u_{k-1}}\right|\right\}, \xi_{k}: S_{u_{k}} \rightarrow S_{u_{k}}$.

For every

$t_{k} \in S_{u_{k}}, \beta_{k}\left(t_{k}\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right)$ iff $\varrho_{k}\left(t_{k}\right)=\left(t_{0}, \ldots, t_{k-1}, t_{k}\right)$ and
$\tau_{k}\left(\left(t_{0}, \ldots, t_{k-1}, t_{k}\right)\right)=c_{k}^{\prime} \ldots c_{1} t_{0}$.
(ThüS for each $t_{k} \in S_{u_{k}}, \beta_{k}\left(\xi_{k}\left(t_{k}\right)\right)=c_{k} \xi_{\dot{k}-1}\left(t_{\bar{k}-1}\right)$ iff $\varepsilon_{k}\left(t_{k}\right)=c_{k} t_{k-1}$.)
iii) $\quad \bar{W}_{k}=\left\{\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right), \xi_{k}\left(t_{k}\right)\right) \mid \beta_{k}\left(\xi_{k}\left(t_{k}\right)\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right)\right.$,

$$
\begin{aligned}
& \left.\bar{\varrho}_{k-1}\left(\xi_{k-1}\left(t_{k-1}\right)\right)=\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right)\right)\right\} \cup \\
& \cup\left\{\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \bar{t}_{k-1}\right) \in W_{k-1} \mid\right.
\end{aligned}
$$

there are no $t_{k} \in S_{u_{k}}$ and $c_{k} \in A_{k}$ such that $\left.\beta_{k}\left(\bar{t}_{k}\right)=c_{k} \bar{I}_{k-1}\right\} \cup$ $\cup\left\{\left(\bar{\tau}_{0}, \ldots, \bar{t}_{l \sim 1}, \bar{i}_{l}\right) \in W_{k-1} \mid 1 \leqq l \leqq k-2\right\}$.
iv) $\bar{\varrho}_{k}: S_{u_{k}} \rightarrow \bar{W}_{k}$ satisfies the following requirement: for every
$t_{k} \in S_{u_{k}}$ ', if $\beta_{k}\left(\xi_{k}\left(t_{k}\right)\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right)$ and
$\bar{\varrho}_{k-1}\left(\xi_{k-1}\left(t_{k-1}\right)\right)=\left(\bar{t}_{0} ; \ldots, \bar{i}_{k-2}, \xi_{k-1}\left(t_{k-1}\right)\right)$, then
$\left(I_{0}, \ldots, \tilde{I}_{k-2}, \xi_{k-1}\left(t_{k-1}\right), \xi_{k}\left(t_{k}\right)\right) \in W_{k}$ and
$\bar{e}_{k}^{\prime}\left(\xi_{k}\left(t_{k}\right)\right)=\left(\dot{t}_{0} ; \ldots, \bar{i}_{k-2}, \xi_{k-1}\left(t_{k-1}\right), \xi_{k}\left(t_{k}\right)\right)$.
v) For
$\bar{\tau}_{k}: \bar{W}_{k} \rightarrow\left(A_{k} \ldots A_{2} A_{1} \cup \ldots \cup A_{2} A_{1} \cup A_{1}\right)\left\{1, \ldots, v\left(u_{0}\right)\right\},\left.\bar{\tau}_{k}\right|_{W_{k} \cap W_{k-1}}=\bar{\tau}_{k-1} \mid W_{k} \cap W_{k-1}$ and if
$\left(\bar{i}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right), \xi_{k}\left(t_{k}\right)\right) \in \bar{W}_{k}, \quad \beta_{k}\left(\xi_{k}\left(t_{k}\right)\right)=c_{k} \xi_{k-1}\left(t_{k-1}\right), \quad$ and
$\bar{\varrho}_{k-1}\left(\xi_{k-1}\left(t_{k-1}\right)\right)=\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right)\right)$ then
$: \bar{\tau}_{k}\left(\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right), \xi_{k}\left(t_{k}\right)\right)=c_{k} \tau_{k-1}\left(\left(\bar{t}_{0}, \ldots, \bar{t}_{k-2}, \xi_{k-1}\left(t_{k-1}\right)\right)\right)\right.$.
vi) $\left.\varphi_{\vec{k}}=\overline{\underline{\rho}}_{k} \circ \bar{\tau}_{k \cdot}\right\}$

It can be seenithat 1.
$\bar{V}_{k}:=\left\{\left(\gamma_{0}\left(\sigma_{0}\right), 2, \gamma_{k^{\prime}-1}\left(\sigma_{k}-1\right) ; \bar{\sigma}_{k}\right) \mid\right.$ for $^{3}: ~ i=0 ; \ldots, k-1, \quad \sigma_{i} \in \Sigma_{\mathfrak{g}}(i)$,
, $\quad\left(\gamma_{0}\left(\sigma_{0}\right), \ldots, \gamma_{k-1}\left(\sigma_{k-1}\right)\right) \in V_{k-1}, \sigma_{0}$ has the form $\left.u_{0}^{\prime}\right)_{\ldots}$ (,
and σ_{k-1} has the form $\left(b_{k-1} \ldots b_{1}, u_{0}, u_{k-1}\left[S_{u_{k-1}}, \varphi_{k-1}\right], \varrho_{k-1}, W_{k-1}, \tau_{k-1}\right)$. There is an element $\sigma_{k}=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right) \in \Sigma_{\mathfrak{B}}(k)$ such that $\left(\sigma_{0}, \ldots, \sigma_{k}\right) \in V_{k}$, and there is a mapping $\varepsilon_{k}: S_{u_{k}} \rightarrow A_{k}\left[W_{k-1}\right]_{k-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold, and $\bar{\sigma}_{k}=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \bar{\varphi}_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$ satisfies the requirements ii)-vi) of $\left.\Sigma_{\mathbb{E}}(k).\right\}$
We define $\gamma_{k}: \Sigma_{\mathfrak{Y}}(k) \rightarrow \Sigma_{⿷}(k)$ as follows: Let us consider the set
$\Gamma_{k}=\left\{\gamma: \Sigma_{\mathfrak{B}}(k) \rightarrow \Sigma_{\mathbb{C}}(k) \mid\right.$ for each $\sigma_{k} \in \Sigma_{\mathfrak{B}}(k), \gamma\left(\sigma_{k}\right)=\bar{\sigma}_{k}$
has the form $\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$ and there is a vector $\left(\sigma_{0}, \ldots, \sigma_{k-1}, \sigma_{k}\right) \in V_{k}$ such that σ_{0} has the form u_{0}, σ_{k-1} has the form

$$
\left(b_{k-1} \ldots b_{1}, u_{0}, u_{k-1}\left[S_{u_{k-1}}, \varphi_{k-1}\right], \varrho_{k-1}, W_{k-1}, \tau_{k-1}\right),
$$

σ_{k} has the form ($b_{k} \cdots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}$) and there is a mapping $\varepsilon_{k}: S_{u_{k}} \rightarrow A_{k}\left[W_{k-1}\right]_{k-1}$ such that conditions i)-iv) in part (5).b of Definition 3.1 hold, and $\bar{\sigma}_{k}$ satisfies the requirements ii)-vi) of $\left.\Sigma_{\mathbb{C}}(k)\right\}$.
One can see that if $\bar{\gamma}_{k} \in \Gamma_{k}$ then $\bar{\gamma}_{k}$ satisfies condition (2) because of the constructions of $\mathscr{\Re}_{k}$ and $\Sigma_{\mathbb{C}}(k)$. Using this fact one can see that $\left|\Gamma_{k}\right|=1$. Let γ_{k} be the only element of Γ_{k}. One can see that γ_{k} is surjective. Using the fact that γ_{k} satisfies condition (2), one can easily prove that the mappings $\gamma_{0}, \ldots, \gamma_{k}$ satisfy condition (1).

Finally we shall prove, using the fact that for $j=0, \ldots, k$ the mappings $\gamma_{0}, \ldots, \gamma_{j}$ satisfy condition (1) and for $j=0, \ldots, k$ the mapping γ_{j} satisfies condition (2), that $\tau_{\mathfrak{B}}=\tau_{\mathbb{C}}$.

Assume that $K_{0}=\left(e\left[\{e\}, \psi_{0}: e \rightarrow b p\right], \Theta^{0}, Z^{0}, \Omega^{0}\right)$ is a starting configuration of \mathfrak{B} and that for a configuration $K_{1}=\left(q_{1}\left[S_{q_{1}}, \psi^{1}\right], \Theta^{1}, Z^{1}, \Omega^{1}\right), K_{0} \Rightarrow{ }_{\mathfrak{B}}^{*} K_{1}$ holds. Then K_{0} is a starting configuration of \mathbb{C} as well. We shall show that there is a configuration

$$
\bar{K}_{1}=\left(q^{1}\left[S_{q^{1}}, \psi^{1}\right], \bar{\Theta}^{1}, \bar{Z}^{1}, \bar{\Omega}^{1}\right)
$$

of \mathfrak{C} with bijective correspondences

$$
\begin{aligned}
& \alpha_{0}:\left[Z^{1}\right]_{0} \rightarrow\left[\bar{Z}^{1}\right]_{0} \\
& \vdots \\
& \alpha_{k}:\left[Z^{1}\right]_{k} \rightarrow\left[\bar{Z}^{1}\right]_{k}
\end{aligned}
$$

such that α_{0} and α_{k} is the identity function and $K_{0} \Rightarrow{ }_{\mathbb{C}}^{*} \bar{K}_{1}$ holds, moreover
i) for every $s_{k} \in S_{q^{1}}, \Theta^{1}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ iff $\Theta^{1}\left(\alpha_{k}\left(s_{k}\right)\right)=\left(\alpha_{0}\left(s_{0}\right), \alpha_{1}\left(s_{1}\right), \ldots\right.$ $\left.\ldots, \alpha_{k}\left(s_{k}\right)\right)$ and
ii) $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in \boldsymbol{Z}^{1}$ iff $\left(\alpha_{0}\left(s_{0}\right), \alpha_{1}\left(s_{1}\right), \ldots, \alpha_{j}\left(s_{j}\right) \in \bar{Z}^{1}\right.$
$\left(1 \leqq j \leqq k,\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in\left(N^{*}\right)^{j}\right)$ and
iii) for every
$\left.\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1}(1 \leqq j \leqq k), \Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=\bar{\Omega}^{1}\left(\alpha_{0}\left(s_{0}\right), \alpha_{1}\left(s_{1}\right), \ldots, \alpha_{j}\left(s_{j}\right)\right)\right)$.
Conversely, if $K_{0} \Rightarrow{ }_{\mathbb{C}}^{*} \bar{K}_{1}$ holds then there is a configuration K_{1} of \mathfrak{B} and there are bijective functions ($*$) such that α_{0} and α_{k} are identity functions and i), ii), iii) hold. Hence if K_{1} is final then \bar{K}_{1} is final and vice versa, thus $\tau_{\mathfrak{g}}=\tau_{\mathbb{C}}$ follows.

First we shall prove the first part of the statement, the second part can be proved similarly. We prove by induction on the length of the transition $K_{0} \Rightarrow_{9}^{*} K_{1}$.
a) The length of $K_{0} \Rightarrow_{9}^{*} K_{1}$ is zero, ($K_{1}=K_{0}$). Trivial.
b) Assume that the statement is true for $K_{0} \Rightarrow{ }_{s}^{*} K_{1}, K_{0} \Rightarrow{ }_{\mathbb{d}}^{*} \bar{K}_{1}$ and for the functions (*) and that $K_{1} \vec{g}_{9} K_{2}=\left(q^{2}\left[S_{q^{2}}, \psi^{2}\right], \Theta^{2}, Z^{2}, \Omega^{2}\right)$ holds.
By the definition of the relation $\Rightarrow_{\mathfrak{9}}$, there are mappings $x_{i}:\left[Z^{1}\right]_{i} \rightarrow \Sigma_{\mathfrak{F}}(i)$ for $i=0,1, \ldots, k$ such that for every $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1}(1 \leqq j \leqq k)$ if

$$
\begin{array}{r}
\Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=b_{j} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \\
\left(b_{j} \in A_{j}, \ldots, b_{1} \in A_{1}, u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)
\end{array}
$$

then $x_{0}\left(s_{0}\right)=u_{0}, \quad x_{i}\left(s_{i}\right)$ has the form $\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}, W_{i}, \tau_{i}\right)$ for $i=1, \ldots, j$, moreover $\left(\varkappa_{0}\left(s_{0}\right), x_{1}\left(s_{i}\right), \ldots, x_{j}\left(s_{j}\right)\right) \in V_{j}$. Take the mappings $\bar{x}_{i}:\left[\bar{Z}^{1}\right]_{i} \rightarrow$ $\rightarrow \Sigma_{\mathbb{C}}(i)$ for $i=0, \ldots, k$ defined by $\bar{x}_{i}\left(\alpha_{i}\left(s_{i}\right)\right)=\gamma_{i}\left(x_{i}\left(s_{i}\right)\right)$ for each $s_{i} \in\left[Z^{1}\right]_{i}$. Notice, that $\bar{\gamma}_{i}$ is well defined, because α_{i} and γ_{i} are bijective. By the induction hypothesis for each $\quad\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1} \quad(1 \leqq j \leqq k), \quad \Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=\bar{\Omega}_{1}\left(\left(\alpha_{0}\left(s_{0}\right), \alpha_{1}\left(s_{1}\right), \ldots\right.\right.$ $\left.\ldots, \alpha_{j}\left(s_{j}\right)\right)$). Since $\chi_{0}=\bar{x}_{0}$ and for each $s_{i} \in\left[Z^{1}\right]_{i}$ the first two components of $x_{i}\left(s_{i}\right)$ are equal to the first two components of $\bar{x}_{i}\left(\alpha_{i}\left(s_{i}\right)\right)$ for $i=1, \ldots, k$, moreover for every $\quad\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{j}\right) \in V_{j} \quad(1 \leqq j \leqq k), \quad\left(\gamma_{0}\left(\sigma_{0}\right), \gamma_{1}\left(\sigma_{1}\right), \ldots, \gamma_{j}\left(\sigma_{j}\right)\right) \in \bar{V}_{j}$ it follows that the mappings $\bar{x}_{i}(i=0,1, \ldots, k)$ satisfy condition (1) in Definition 3.3. The mappings $\bar{x}_{i}(i=0,1, \ldots, k)$ uniquely determine a configuration $\bar{K}_{2}=\left(\bar{q}^{2}\left[S_{\bar{q}^{2}}, \bar{\psi}^{2}\right]\right.$, $\overline{\boldsymbol{\Theta}}^{2}, \bar{Z}^{2}, \bar{\Omega}^{2}$) of \mathbb{C} such that $\bar{K}_{1} \Rightarrow_{\mathbb{C}} \bar{K}_{2}$ holds. First we show that $q^{2}\left[S_{q^{2}}, \psi^{2}\right]=$ $=\bar{q}^{2}\left[S_{\bar{q}^{2}}, \psi^{2}\right]$. By the transition $K_{1} \Rightarrow_{\mathfrak{9}} K_{2}$ we know that $q^{2}=q^{1}\left[S_{q^{1}}, \delta\right]$, where $\delta: S_{q^{1}} \rightarrow, T_{G_{k}}\left(Y_{k} \cup N^{*}\right)$ satisfies the following formula: for each $s_{k} \in S_{q^{1}}$ if $\varkappa_{k}\left(s_{k}\right)=$ $=\left(b_{k} \ldots b_{1} u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$ then $\delta\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$. By the induction hypothesis and the transition $\bar{K}_{1} \Rightarrow_{\mathbb{C}} \bar{K}_{2}$ we obtain that $\bar{q}^{2}=q^{1}\left[S_{q^{1}}, \delta\right]$, where $\delta: S_{q^{1}} \rightarrow$ $\rightarrow T_{G_{k}}\left(Y_{k} \cup N^{*}\right)$ satisfies the following formula: for every $s_{k} \in S_{q^{1}}$ if $x_{k}\left(s_{k}\right)=$ $=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$ and $\delta\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$ then $\bar{x}_{k}\left(\alpha_{k}\left(s_{k}\right)\right)=\bar{x}_{k}\left(s_{k}\right)=$ $\gamma_{k}\left(x_{k}\left(s_{k}\right)\right)=\left(b_{k}, \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$ for some $\bar{\varrho}_{k}, \bar{W}_{k}$ and $\bar{\tau}_{k}$, moreover $\bar{\delta}\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)=\delta\left(s_{k}\right)$, thus $q^{2}=\bar{q}^{2}$.

Again by the transition $K_{1} \Rightarrow_{\mathfrak{B}} K_{2}$ and $\bar{K}_{1} \Rightarrow_{\mathbb{C}} \bar{K}_{2}$ we have that ψ^{2} and ψ^{2} : $S_{q^{2}} \rightarrow A_{k} \ldots A_{1} T_{G_{0}}\left(Y_{0}\right)$ satisfy the following conditions:

Let $\bar{s}_{k} \in S_{q^{2}}$ be arbitrary and consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$, where $s_{k} \in S_{q^{1}}, \delta\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$ for some $u_{k}\left(\in P_{G_{k}}\left(Y_{k}\right)\right), t_{k} \in S_{u_{k}}$ and $x_{k}\left(s_{k}\right)$ has the form $x_{k}\left(s_{k}\right)=\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u k}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right)$. Then if $\quad \varphi_{k}\left(t_{k}\right)=c_{k} \ldots c_{1} t_{0},\left(c_{k} \ldots\right.$ $\left.\ldots c_{1} \in A_{k} \ldots A_{1}, \quad t_{0} \in\left\{1, \ldots, v\left(u_{0}\right)\right\}\right)$ and $\psi^{1}\left(s_{k}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$, $\left(u_{0} \in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)$ then $\psi^{2}\left(s_{k} t_{k}\right)=c_{k} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$.

We know that \bar{s}_{k} has the same decomposition using $\delta=\delta$ and \bar{x}_{k}, because $\bar{x}_{k}\left(s_{k}\right)$ has the form $\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$. Since $\varphi_{k}\left(t_{k}\right)=c_{k} \cdots c_{1} t_{0}$ and $\psi^{1}\left(s_{k}\right)=u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$ thus $\psi^{2}\left(s_{k} t_{k}\right)=c_{k} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$. We have obtained that $\psi^{2}=\psi^{2}$.

$$
\begin{aligned}
Z^{2}= & \left\{\left(s_{0} t_{0}, \ldots, s_{j} t_{j}\right) \mid\left(s_{0}, \ldots, s_{l}\right) \in Z^{1}, j \leqq l \leqq k,\right. \\
& \left.x_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right) \text { and }\left(t_{0}, t_{1}, \ldots, t_{j}\right) \in W_{l}\right\} . \\
\bar{Z}^{2}= & \left\{\left(\alpha_{0}\left(s_{0}\right) \bar{t}_{0}, \ldots, \alpha_{j}\left(s_{j}\right) \bar{t}_{j}\right) \mid\left(\alpha_{0}\left(s_{0}\right), \ldots, \alpha_{l}\left(s_{l}\right)\right) \in \bar{Z}^{1}, j \leqq l \leqq k,\right. \\
& \text { and } \left.\left(\bar{t}_{0}, \ldots, \bar{t}_{j}\right) \text { is a member of the fifth component of } \bar{x}_{l}\left(\alpha_{l}\left(s_{l}\right)\right) \cdot\right\}
\end{aligned}
$$

Now we define the mappings $\alpha_{i}^{2}:\left[Z^{2}\right]_{i} \rightarrow\left[\bar{Z}^{2}\right]_{i},(i=0, \ldots, k)$ as follows: Let α_{0}^{2} and α_{k}^{2} be identity mappings, and for $i=1, \ldots, k-1$ take an arbitrary element $s_{i} t_{i} \in\left[Z^{2}\right]_{i}$, where $\chi_{i}\left(s_{i}\right)=\left(b_{i} \ldots b_{1}, u_{0}, u_{i}\left[S_{u_{i}}, \varphi_{i}\right], \varrho_{i}, W_{i}, \tau_{i}\right)$, then we define $\alpha_{i}^{2}\left(s_{i} t_{i}\right)$ to be $\alpha_{i}\left(s_{i}\right) \xi_{i}\left(t_{i}\right)$, where $\xi_{i}: S_{u_{i}} \rightarrow\left\{1, \ldots, \mid S_{u_{i}}\right\}$.

We have to show that for $i=1, \ldots, k-1 \alpha_{i}^{2}$ is a bijective function. Let $s_{i} t_{i}=$ $=\bar{s}_{i} \bar{t}_{i}\left(\in Z_{i}^{2}\right)$ and assume that $s_{i} \neq \bar{s}_{i}$. Then one of s_{i} or \bar{s}_{i} is a proper initial segment of the other one, which contradicts the definition of the configuration, thus α_{i}^{2} is a well defined function.

Assume that $\alpha_{i}^{2}\left(s_{i} t_{i}\right)=\alpha_{i}^{2}\left(\bar{s}_{i} \bar{t}_{i}\right)$ such that $s_{i} \neq \bar{s}_{i}$ or $t_{i} \neq \bar{t}_{i}$. If $s_{i} \neq \bar{s}_{i}$ then $\alpha_{i}\left(s_{i}\right) \neq \alpha_{i}\left(\bar{s}_{i}\right)$ and ξ_{i} is a function whose range is N thus $\alpha_{i}\left(s_{i}\right) \xi_{i}\left(t_{i}\right) \neq \alpha_{i}\left(\bar{s}_{i}\right) \xi_{i}\left(\bar{i}_{i}\right)$. If $s_{i}=\bar{s}_{i}$ and $t_{i} \neq \bar{t}_{i}$ then $\alpha_{i}^{2}\left(s_{i} t_{i}\right)=\alpha_{i}\left(s_{i}\right) \xi_{i}\left(t_{i}\right) \neq \alpha_{i}\left(s_{i}\right) \xi_{i}\left(\bar{t}_{i}\right)=\alpha^{2}\left(\bar{s}_{i} \bar{t}_{i}\right)$ since $\xi_{i}\left(t_{i}\right) \neq$ $\neq \xi_{i}\left(\bar{t}_{i}\right)$ thus we obtained that α_{i}^{2} is injective.

Let $\bar{s}_{i} \bar{t}_{i} \in\left[Z^{2}\right]_{i}$, then there is an element $\left(\bar{s}_{0} \bar{t}_{0}, \ldots, \bar{s}_{i} \bar{i}_{i}, \ldots, \bar{s}_{j} \bar{t}_{j}\right) \in Z^{2}$, where $j \geqq i$. By the construction of $Z^{2},\left(\bar{s}_{0}, \ldots, \bar{s}_{i}, \ldots, \bar{s}_{j}, \ldots, \bar{s}_{l}\right) \in Z^{1}$ for some \bar{s}_{j+1}, \ldots $\ldots, \bar{s}_{l}\left(\in N^{*}\right), \quad 1 \leqq j \leqq l \leqq k$, and

$$
\bar{x}_{l}\left(\bar{s}_{l}\right)=\left\{\begin{array}{l}
\left(b_{l} \ldots b_{1}, \sigma_{0}, \sigma_{l}\left(1, \ldots, v^{l}\left(\sigma_{l}\right)\right)\left[\left\{1, \ldots, v^{l}\left(\sigma_{l}\right)\right\}, \bar{\varphi}_{l}\right], \bar{\varrho}_{l}, \bar{W}_{l}, \bar{\tau}_{l}\right) \text { if } l \leqq k \\
\left(b_{k} \ldots b_{1}, \sigma_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right) \text { if } l=k
\end{array}\right.
$$

and $\left(\bar{t}_{0}, \ldots, \bar{t}_{i}, \ldots, \bar{t}_{j}\right) \in W_{l}$. By the induction hypothesis there is an element $\left(s_{0}, \ldots, s_{i}, \ldots, s_{j}, \ldots, s_{l}\right)$ of Z^{1} such that

$$
\left(\alpha_{0}\left(s_{0}\right), \ldots, \alpha_{i}\left(s_{i}\right), \ldots, \alpha_{j}\left(s_{j}\right), \ldots, \alpha_{l}\left(s_{l}\right)\right)=\left(\bar{s}_{0}, \ldots, \bar{s}_{i}, \ldots, \bar{s}_{j}, \ldots, \bar{s}_{l}\right)
$$

Since $\bar{\chi}_{l}\left(s_{l}\right)=\gamma_{l}\left(\varkappa_{l}\left(s_{l}\right)\right)$ by definition, we can apply condition (2) (ii) stated for γ_{l}, which tells us that $\left(\bar{t}_{0}, \ldots, \bar{t}_{i}, \ldots, \bar{t}_{j}\right) \in \bar{W}_{l}$ iff there is a $\left(\xi_{0}^{-1}\left(\bar{t}_{0}\right), \ldots, \xi_{i}^{-1}\left(\bar{t}_{i}\right), \ldots, \xi_{j}^{-1}\left(\bar{t}_{j}\right)\right) \in W_{l}$ for $-\xi_{0}, \ldots, \xi_{j}$ defined in the condition. Thus

$$
\left(s_{0} \xi_{0}^{-1}\left(\bar{t}_{0}\right), \ldots, s_{i} \xi_{i}^{-1}\left(\bar{t}_{i}\right), \ldots, s_{j} \xi_{j}^{-1}\left(\bar{t}_{j}\right)\right) \in Z^{2}
$$

moreover

$$
\alpha_{i}^{2}\left(s_{i} \xi_{i}^{-1}\left(\bar{t}_{i}\right)\right)=\alpha_{i}\left(s_{i}\right) \xi_{i}\left(\xi_{i}^{-1}\left(\bar{t}_{i}\right)\right)=\alpha_{i}\left(s_{i}\right) \bar{t}_{i}=\bar{s}_{i} \bar{t}_{i}
$$

hence α_{i}^{2} is surjective $(i=1, \ldots, k-1)$. Thus we have proved that α_{i}^{2} is bijective $(i=0, \ldots, k)$.

Let $\bar{s}_{k} \in S_{q^{2}}$ be arbitrary and consider its unique decomposition $\bar{s}_{k}=s_{k} t_{k}$ where $s_{k} \in S_{q^{1}}, \varkappa_{k}\left(s_{k}\right)$ has the form $\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right), \delta\left(s_{k}\right)=\omega_{s_{k}}\left(u_{k}\right)$, $t_{k} \in S_{u_{k}}$. In this case $\bar{x}_{k}\left(s_{k}\right)\left(=\gamma_{k}\left(x_{k}\left(s_{k}\right)\right)\right.$ has the form $\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right]\right.$, $\left.\bar{\varrho}_{k}, \bar{W}_{k}, \bar{\tau}_{k}\right)$. Using condition (2) (iv) stated for $\gamma_{k}, \varrho_{k}\left(t_{k}\right)=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ iff $\bar{\varrho}_{k}\left(t_{k}\right)=$ $=\left(\xi_{0}\left(t_{0}\right), \xi_{1}\left(t_{1}\right), \ldots, \xi_{k}\left(t_{k}\right)\right)$ for $\xi_{0}, \xi_{1}, \ldots, \xi_{k}$ defined in the condition.

Using the induction hypothesis $\Theta^{1}\left(s_{k}\right)=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ iff $\bar{\Theta}^{1}\left(s_{k}\right)=\left(\alpha_{0}\left(s_{0}\right)\right.$, $\left.\alpha_{1}\left(s_{1}\right), \ldots, \alpha_{k}\left(s_{k}\right)\right)$. By the definition of Θ^{2} and $\bar{\Theta}^{2}$ we obtain that

$$
\Theta^{2}\left(\bar{s}_{k}\right)=\left(s_{0} t_{0}, s_{1} t_{1}, \ldots, s_{k} t_{k}\right) \quad \text { iff }
$$

$$
\begin{gathered}
\bar{\Theta}^{2}\left(\bar{s}_{k}\right)=\left(\alpha_{0}\left(s_{0}\right) \xi_{0}\left(t_{0}\right), \alpha_{1}\left(s_{1}\right) \xi_{1}\left(t_{1}\right), \ldots, \alpha_{k}\left(s_{k}\right) \xi_{k}\left(t_{k}\right)\right)= \\
=\left(\alpha_{0}^{2}\left(s_{0} t_{0}\right), \alpha_{1}^{2}\left(s_{1} t_{1}\right), \ldots, \alpha_{k}^{2}\left(s_{k} t_{k}\right)\right) .
\end{gathered}
$$

Thus we have proved that condition i) holds for the mappings $\alpha_{0}^{2}, \ldots, \alpha_{k}^{2}$.
Let $\left(s_{0} t_{0}, \ldots, s_{j} t_{j}\right) \in Z^{2}$ be arbitrary, where $1 \leqq j \leqq k$ and $\left(s_{0}, \ldots, s_{j}, \ldots, s_{l}\right) \in Z^{1}$ for some $s_{j+1}, \ldots, s_{l} \in\left(N^{*}\right),(j \leqq l \leqq k)$, moreover $x_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right]\right.$,
$\left.\varrho_{l}, W_{l}, \tau_{l}\right)$ and $\left(t_{0}, \ldots, t_{j}\right) \in W_{l}$. By the induction hypothesis, $\left(\alpha_{0}\left(s_{0}\right), \ldots, \alpha_{l}\left(s_{l}\right)\right) \in \bar{Z}^{1}$. By the definition of $\bar{x}_{l}, \bar{x}_{l}\left(\alpha_{l}\left(s_{l}\right)\right)=\gamma_{l}\left(x_{l}\left(-s_{l}\right)\right)$, i.e,

$$
\bar{x}_{l}\left(\alpha_{l}\left(s_{l}\right)\right)=\left\{\begin{array}{l}
\left(b_{l}, \ldots b_{1}, u_{0}, \sigma_{l}\left(\dot{1}, \ldots, v^{l}\left(\sigma_{l}\right)\right)\left[\left\{1, \ldots, v^{l}\left(\sigma_{l}\right)\right\}, \bar{\varphi}_{l}\right], \bar{\varrho}_{l}, \bar{W}_{l}, \bar{\tau}_{l}\right) \text { if } l<k \\
\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}} ; \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right) \cdot \text { if } l=k .
\end{array}\right.
$$

We cann apply condition (2) (ii) stated for γ_{l} which tells us that $\left(\xi_{0}\left(t_{0}\right), \ldots, \xi_{j}\left(t_{j}\right)\right) \in \overline{W_{l}}$ iff $\left(t_{0}, \ldots, t_{j}\right) \in \dot{W}_{l}$ for the mappings ξ_{0}, \ldots, ξ_{j} defined in the condition. Thus

$$
\left(\alpha_{0}^{2}\left(s_{0} t_{0}\right), \ldots, \alpha_{j}^{2}\left(s_{j} t_{j}\right)\right)=\left(\alpha_{0}^{j}\left(s_{0}\right) \xi_{0}\left(t_{0}\right), \ldots, \alpha_{j}\left(s_{j}\right) \xi_{j}\left(t_{j}\right)\right) \in Z^{2} .
$$

Conversely, let $\left(v_{0}, \ldots, v_{j}\right) \in Z^{2}$ be arbitrary: By the construction of the set Z^{2} there are two vectors $\left(\bar{s}_{0}, \ldots, \bar{s}_{j}, \ldots, \bar{s}_{t}\right) \in Z^{1}(l \leqq j \leqq l \leqq k)$ and $\left(\bar{i}_{0}, \ldots, \bar{t}_{j}\right) \in\left(\left(N^{*}\right)^{j}\right)$ such that $v_{i}=\bar{s}_{i} \bar{i}_{i}$ for $i=0, \ldots, j$, and $\left(\bar{i}_{0}, \ldots, \bar{i}_{j}\right)$ is in the fifth component of $\bar{x}_{i}\left(\bar{s}_{l}\right)$. By the induction hypothesis, $\left(\alpha_{0}^{-1}\left(\bar{s}_{0}\right), \ldots ; \alpha_{j}^{-1}\left(\bar{s}_{j}\right) ; \ldots, \alpha_{l}^{-1}\left(\bar{s}_{l}\right)\right) \in Z^{1}$. We know that $\bar{\gamma}_{l}\left(\bar{s}_{l}\right)=$ $=\gamma_{l}\left(\mu_{l}\left(\alpha_{l}^{-1}\left(\bar{s}_{i}\right)\right)\right)$. According to condition (2)(ii) stated for γ_{l} we obtain that $\left(\xi_{0}^{-1}\left(\bar{t}_{0}\right), \ldots, \xi_{j}^{-1}\left(\bar{t}_{j}\right)\right)$ is in the fifth component of $\chi_{i}\left(\bar{s}_{l}\right)$, for the mappings ξ_{0}, \ldots, ξ_{j} defined in. the condition. Thus $\left(\alpha_{0}^{-1}\left(\bar{s}_{0}\right) \xi_{0}^{-1}\left(\bar{t}_{0}\right), \ldots, \alpha_{j}^{-1}\left(\bar{s}_{j}\right) \xi_{j}^{-1}\left(\bar{t}_{j}\right)\right) \in Z^{2}$, moreover

$$
\alpha_{i}^{2}\left(\alpha_{i .}^{-1}\left(\bar{s}_{i}\right) \xi_{i}^{-1}\left(\bar{t}_{i}\right)\right)=\bar{s}_{i} \bar{i}_{i} ; \text { for } i=0, \ldots, j
$$

We have proved that condition ii) holds for the mappings $\alpha_{0}^{2}, \ldots, \alpha_{k}^{2}$.
It has remained to prove that condition iii) holds for $\alpha_{0}^{2}, \ldots, \alpha_{2}^{k}$. Let $\left(s_{0} t_{0}, \ldots\right.$ $\left.\ldots, s_{j} t_{j}\right) \in Z^{2}$ be arbitrary, where $1 \leqq j \leqq k,\left(s_{0}, \ldots, s_{j}, \ldots, s_{l}\right) \in Z^{1}$ for some s_{j+1}, \ldots $\ldots, s_{l}\left(\in N^{*}\right), j \leqq l \leqq \dot{k}$, and $\dot{x}_{l}\left(s_{l}\right)=\left(b_{l} \ldots b_{1}, u_{0}, u_{l}\left[S_{u_{l}}, \varphi_{l}\right], \varrho_{l}, W_{l}, \tau_{l}\right)$ and $\left(t_{0}, \ldots\right.$ $\left.\therefore, t_{j}\right) \in W_{1}!$ We e_{i} know that $\boldsymbol{\Omega}^{\mathbf{1}}\left(\left(s_{0 ;} \ldots, s_{j}, \ldots, s_{j}\right)\right)=b_{l} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)[\{1, \ldots$ $\left.\left.\ldots \therefore v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$ for some . $\vartheta_{0}:\left\{1 ; \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)$, and $\tau_{l}\left(\left(t_{0}, \ldots, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$ for some $c_{j} \in A_{j}, \ldots, c_{1} \in A_{1}, t_{0} \in\left\{1, \ldots ; v\left(u_{0}\right)\right\}$, thus $\Omega^{2}\left(\left(s_{0} t_{0}, \ldots, s_{j} t_{j}\right)\right)=c_{j} \ldots c_{1} \vartheta_{0}\left(t_{0}\right)$. By the induction hypothesis, $\left(\alpha_{0}\left(s_{0}\right), \ldots, \alpha_{j}\left(s_{j}\right), \ldots, \alpha_{l}\left(s_{l}\right)\right) \in Z^{1}$ and

We can apply condition $2(v)$ stated for γ_{l} which tells us that $\tau_{l}\left(\left(t_{0}, \ldots, t_{j}\right)\right)=c_{j} \ldots c_{1} t_{0}$ iffin $\tilde{\tau}_{l}^{\prime \prime}\left(\left(\xi_{0}^{\prime}\left(t_{0}\right), \ldots, \xi_{j}^{\prime}\left(t_{j}\right)\right)=c_{j} \ldots c_{1} \xi_{0}\left(t_{0}\right)\right.$ for the mappings ξ_{0}, \ldots, ξ_{j} defined in the condition:

Thús $\bar{\tau}_{l}\left(\left(\xi_{0}\left(\dot{t}_{0}\right) ; \xi_{j}\left(t_{j}\right)\right)\right)=c_{j} \ldots c_{1} \xi_{0}\left(t_{0}\right)$ holds. By the induction hypothesis, $\Omega^{1}\left(\left(\alpha_{0}\left(s_{0}\right) ; \ldots, \alpha_{j}\left(s_{j}\right), \ldots, \alpha_{l}\left(s_{l}\right)\right)\right)=b_{l} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right]$. By the definition of $\bar{\Omega}^{2}$ and $\alpha_{i}^{2}(i=0, \ldots, k)$,

$$
\begin{gathered}
\bar{\Omega}^{2}\left(\left(\alpha_{0}\left(s_{0}\right) \xi_{0}\left(t_{0}\right), \ldots, \alpha_{j}\left(s_{j}\right) \xi_{j}\left(t_{j}\right)\right)\right)= \\
=\bar{\Omega}^{2}\left(\left(\alpha_{0}^{2}\left(s_{0} t_{0}\right), \ldots, \alpha_{j}^{2}\left(s_{j} t_{j}\right)\right)\right)=c_{j} \ldots c_{1} \vartheta_{0}\left(t_{0}\right) .
\end{gathered}
$$

Thus $\Omega^{2}\left(\left(s_{0} t_{0}, \ldots, s_{j} t_{j}\right)\right)=\bar{\Omega}^{2}\left(\left(\alpha_{0}^{2}\left(s_{0} t_{0}\right), \ldots, \alpha_{j}^{2}\left(s_{j} t_{j}\right)\right)\right)$ holds. The proof of the first part of the statement is complete. The second part of the statement can be proved by induction on the length of the transition $K_{0} \Rightarrow{ }_{\mathbb{C}}^{*} \bar{K}_{1}$.
a) The length. of $K_{0} \Rightarrow{ }_{\mathbb{c}}^{*} \bar{K}_{1}$ is zero, $\left(\bar{K}_{1}=K_{0}\right)$. Trivial.
b) A'ssume that the statement is true for $K_{0} \Rightarrow{ }_{\mathbb{C}}^{*} \bar{K}_{1}, K_{0} \Rightarrow_{\mathbb{P}}^{*} K_{1}$ and for the functions (${ }^{*}$) and that $\cdot \bar{K}_{1} \Rightarrow{ }_{\mathbb{C}}^{*} \bar{K}_{2}$ holds. By the definition of the relation $\Rightarrow_{\mathbb{C}}$ there are mappings
$\overline{\bar{x}}_{i}:\left[\bar{Z}^{1}\right]_{i} \rightarrow \Sigma_{\mathfrak{w}}(i)$ for $i=0,1, \ldots, k$ such that for every $\left(\bar{s}_{0}, \dot{s}_{1}, \ldots, \bar{s}_{j}\right) \in \bar{Z}^{1} \quad(1 \leqq j \leqq k)$ if $\bar{\Omega}^{1}\left(\left(\bar{s}_{0}, \bar{s}_{1}, \ldots, \bar{s}_{j}\right)\right)=b_{j} \ldots b_{1} u_{0}\left(1, \ldots, v\left(u_{0}\right)\right)\left[\left\{1, \ldots, v\left(u_{0}\right)\right\}, \vartheta_{0}\right] \quad\left(b_{j} \in A_{j}, \ldots, b_{1} \in A_{1}, u_{0} \in\right.$ $\left.\in G_{0} \cup Y_{0}, \vartheta_{0}:\left\{1, \ldots, v\left(u_{0}\right)\right\} \rightarrow T_{G_{0}}\left(Y_{0}\right)\right)$ then $\bar{x}_{0}\left(s_{0}\right)=u_{0}$, for $i=1, \ldots, j, x_{i}\left(s_{0}\right)$ has the form

$$
\left\{\begin{array}{l}
\left(b_{i} \ldots b_{1}, u_{0}, \sigma_{i}\left(1, \ldots, v^{i}\left(\sigma^{\prime}\right)\right)\left[\left\{1, \ldots, v^{i}\left(\sigma_{i}\right)\right\}, \bar{\varphi}_{i}\right], \bar{\varrho}_{i}, \bar{W}_{i}, \bar{\tau}_{i}\right) \text { if } 1 \leqq i \leqq k-1, \\
\left(b_{k} \ldots b_{1}, u_{0}, u_{k}\left[S_{u_{k}}, \varphi_{k}\right], \varrho_{k}, W_{k}, \tau_{k}\right) \text { if } i=k,
\end{array}\right.
$$

moreover $\left(\bar{\chi}_{0}\left(\bar{s}_{0}\right), \ldots, \bar{x}_{j}\left(\bar{s}_{j}\right)\right) \in \bar{j}_{j}$.
Take the mappings $x_{i}:\left[Z^{1}\right]_{i} \rightarrow \Sigma_{\mathfrak{P}}(i)$ for $i=0, \ldots, k-1$ defined by $\chi_{i}\left(s_{i}\right)=$ $=\gamma_{i}^{-1}\left(\bar{\chi}_{i}\left(\alpha_{i}\left(s_{i}\right)\right)\right.$) for each $s_{i} \in\left[Z^{1}\right]_{i}$. Notice that x_{i} is well defined, because α_{i} and γ_{i} are bijective. According to Definition 3.2 for each $\overline{\boldsymbol{s}}_{k} \in\left[Z^{1}\right]_{k}, \Theta^{1}\left(s_{k}\right)$ is the only element of \bar{Z}^{1} which has the form ($\bar{s}_{0}, \ldots, \bar{s}_{k-1}, \bar{s}_{k}$) for some $\bar{s}_{0}, \ldots, \bar{s}_{k-1} \in N^{*}$. We know that $\left(\bar{x}_{0}\left(\bar{s}_{0}\right), \ldots, \bar{x}_{k-1}\left(\bar{s}_{k-1}\right), \bar{x}_{k}\left(\bar{s}_{k}\right)\right) \in \bar{V}_{k}$. We can apply condition (1) stated for γ_{0}, \ldots $\ldots, \gamma_{k-1}, \gamma_{k}$, which tells us that there is a unique $\sigma_{k} \in \Sigma_{\mathfrak{s}}(k)$ such that $\gamma_{k}\left(\sigma_{k}\right)=\bar{\chi}_{k}\left(\bar{s}_{k}\right)$ and $\left(\gamma_{0}^{-1}\left(\chi_{0}\left(s_{0}\right)\right), \ldots, \gamma_{k-1}^{-1}\left(\chi_{k-1}\left(s_{k-1}\right)\right), \sigma_{k}\right) \in V_{k}$. Let $\chi_{k}\left(\bar{s}_{k}\right)$ be σ_{k}. By the induction hypothesis for each $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1}(1 \leqq j \leqq k), \Omega^{1}\left(\left(s_{0}, s_{1}, \ldots, s_{j}\right)\right)=\bar{\Omega}^{1}\left(\left(\alpha_{0}\left(s_{0}\right)\right.\right.$ $\left.\alpha_{1}\left(s_{1}\right), \ldots, \alpha_{j}\left(s_{j}\right)\right)$. Since $\chi_{0}=\bar{\chi}_{0}$ and for each $s_{i} \in\left[Z^{1}\right]_{i}$ the first two components of $x_{i}\left(s_{i}\right)$ are equal to the first two components of $\bar{x}_{i}\left(\alpha_{i}\left(s_{i}\right)\right)$ for $i=1, \ldots, k$, moreover for every $\left(s_{0}, s_{1}, \ldots, s_{j}\right) \in Z^{1}(1 \leqq j \leqq k),\left(x_{0}\left(s_{0}\right), \chi_{1}\left(s_{1}\right), \ldots, \chi_{j}\left(s_{j}\right)\right) \in V_{j}$ it follows that the mappings $\chi_{i}(i=0,1, \ldots, k)$ satisfy condition (1) in the Definition 3.3.

The mappings $x_{i}(i=0,1, \ldots, k)$ uniquely determine a configuration $K_{2}=$ $=\left(q^{2}\left[S_{q^{2}}, \psi^{2}\right], \Theta^{2}, Z^{2}, \Omega^{2}\right)$ such that $K_{1} \Rightarrow_{\mathbb{d}} K_{2}$ holds.

From now on the proof of the second part of the statement is similar to the proof of the first part.

The proof of the theorem is complete.

4. Example

Let us consider the folloving two R-transducers:

$$
\begin{aligned}
\mathfrak{Q}_{1}= & \left(G_{0}, Y_{0}, A_{1}, G_{1}, Y_{1}, A_{1}^{\prime}, \Sigma_{\mathfrak{q}_{1}}\right), \text { where } \\
G_{0}= & G_{0}^{2}=\left\{g_{0}\right\}, Y_{0}=\left\{x_{0}\right\}, \\
G_{1}= & G_{1}^{2}=\left\{g_{1}\right\}, Y_{1}=\left\{x_{1}, y_{1}\right\}, \\
A_{1}= & \left\{a_{1}, b_{1}, c_{1}\right\}, A_{1}^{\prime}=\left\{a_{1}\right\}, \\
\Sigma_{\mathfrak{I 1}_{1}}= & \left\{b_{1} x_{0} \rightarrow y_{1}, b_{1} x_{0} \rightarrow x_{1},\right. \\
& a_{1} g_{0} \rightarrow g_{1}(1,2)\left[\{1,2\}, \varphi_{11}: 1 \mapsto b_{1} 1 ; \varphi_{11}: 2 \mapsto b_{1} 2\right], \\
& \left.a_{1} g_{0} \rightarrow g_{1}(1,2)\left[\{1,2\}, \varphi_{12}: 1 \mapsto b_{1} 1 ; \varphi_{12}: 2 \mapsto c_{1} 2\right]\right\} . \\
\tau_{\mathscr{U}_{1}}= & \left\{\left(g_{0}\left(x_{0}, x_{0}\right), g_{1}\left(y_{1}, y_{1}\right)\right),\left(g_{0}\left(x_{0}, x_{0}\right), g_{1}\left(x_{1}, x_{1}\right)\right),\right. \\
& \left.\left(g_{0}\left(x_{0}, x_{0}\right), g_{1}\left(x_{1}, y_{1}\right)\right),\left(g_{0}\left(x_{0}, x_{0}\right), g_{1}\left(y_{1}, x_{1}\right)\right)\right\} . \\
\mathfrak{H}_{2}= & \left(G_{1}, Y_{1}, A_{2}, G_{2}, Y_{2}, A_{2}^{\prime}, \Sigma_{2_{2}}\right), \text { where }
\end{aligned}
$$

$$
\begin{aligned}
G_{2}= & G_{2}^{2}=\left\{g_{2}\right\}, Y_{2}=\left\{x_{2}, y_{2}, z_{2}\right\}, \\
A_{2}= & \left\{a_{2}, b_{2}\right\}, A_{2}^{\prime}=\left\{a_{2}\right\} . \\
\Sigma_{\mathfrak{g}_{2}}= & \left\{a_{2} g_{1} \rightarrow g_{2}(1,2)\left[\{1,2\}, \varphi_{21}: 1 \mapsto b_{2} 1 ; \varphi_{22}: 2 \mapsto b_{1} 1\right],\right. \\
& \left.b_{2} x_{1} \rightarrow y_{2}, b_{2} x_{1} \rightarrow z_{2}, b_{2} y_{1} \rightarrow x_{2}\right\} .
\end{aligned}
$$

One can see that

$$
\begin{aligned}
\tau_{\mathscr{I}_{1}} \circ \tau_{\mathscr{I}_{2}}= & \left\{\left(g_{0}\left(x_{0}, x_{0}\right), g_{2}\left(x_{2}, x_{2}\right)\right),\left(g_{0}\left(x_{0}, x_{0}\right), g_{2}\left(y_{2}, y_{2}\right)\right),\right. \\
& \left(g_{0}\left(x_{0}, x_{0}\right), g_{2}\left(y_{2}, z_{2}\right)\right),\left(g_{0}\left(x_{0}, x_{0}\right), g_{2}\left(z_{2}, y_{2}\right)\right), \\
& \left.\left(g_{0}\left(x_{0}, x_{0}\right), g_{2}\left(z_{2}, z_{2}\right)\right)\right\} .
\end{aligned}
$$

We construct the 2 -synchronized R-transducer \mathfrak{B} according to the Theorem 3.5:

$$
\begin{aligned}
& \mathfrak{B}=\left(G_{0}, G_{1}, Y_{0}, Y_{1}, A_{1}, A_{2}, A_{1}^{\prime}, A_{2}^{\prime}, \Sigma_{\mathfrak{g}}, V\right), \text { where } \\
& \Sigma_{\mathfrak{B}}(0)= V_{0}=G_{0} \cup Y_{0}, \\
& \Sigma_{\mathfrak{F}}(1)=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}, \text { where } \sigma_{1}=\left(b_{1}, x_{0}, y_{1}, \emptyset, \emptyset, \emptyset\right), \\
& \sigma_{2}=\left(b_{1}, x_{0}, x_{1}, \emptyset, \emptyset, \emptyset\right), \\
& \sigma_{3}=\left(a_{1}, g_{0}, g_{1}(1,2)\left[\{1,2\}, \varphi_{3}: 1 \mapsto b_{1} 1 ; \varphi_{3}: 2 \mapsto b_{1} 2\right],\right. \\
& \varrho_{3}: 1 \mapsto(1,1) ; \varrho_{3}: 2 \mapsto(2,2),\{(1,1),(2,2)\}, \\
&\left.\tau_{3}:(1,1) \mapsto b_{1} ; \tau_{3}:(2,2) \mapsto b_{1} 2\right), \\
&=\left(a_{1}, g_{0}, g_{1}(1,2)\left[\{1,2\},\left[\varphi_{4}: 1 \mapsto b_{1} 1 ; \varphi_{4}: 2 \mapsto c_{1} 2\right],\right.\right. \\
& \varrho_{4}: 1 \mapsto(1,1) ; \varrho_{4}: 2 \mapsto(2,2),\{(1,1),(2,2)\}, \\
&\left.\tau_{4}:(1,1) \mapsto b_{1} ; \tau_{4}:(2,2) \mapsto c_{1} 2\right) . \\
&=\left\{\left(x_{0}, \sigma_{1}\right),\left(x_{0}, \sigma_{2}\right),\left(g_{0}, \sigma_{3}\right),\left(g_{0}, \sigma_{4}\right)\right\} . \\
& V_{1}=\left\{\sigma_{5}, \sigma_{6}, \sigma_{7}, \sigma_{8}, \sigma_{9}\right\}, \quad \text { where } \quad \sigma_{5}=\left(b_{2} b_{1}, x_{0}, x_{2}, \emptyset, \emptyset, \emptyset\right), \\
& \Sigma_{\mathfrak{B}}(2)=\left(b_{2} b_{1}, x_{0}, y_{2}, \emptyset, \emptyset, \emptyset\right), \sigma_{7}=\left(b_{2} b_{1}, x_{0}, z_{2}, \emptyset, \emptyset, \emptyset\right), \\
& \sigma_{6}=\left(a_{2} a_{1}, g_{0}, g_{2}(1,2)\left[\{1,2\}, \varphi_{8}: 1 \mapsto b_{2} b_{1} 1 ; \varphi_{8}: 2 \mapsto b_{2} b_{1} 1\right],\right. \\
& \sigma_{8}=\varrho_{8}: 1 \mapsto(1,1,1) ; \varrho_{8}: 2 \mapsto(1,1,2),\{(1,1,1),(1,1,2),(2,2)\}, \\
&\left.\left.\tau_{8}:(1,1,1) \mapsto b_{2} b_{1} ; \tau_{8}:(1,1,2) \mapsto b_{2} b_{1}\right] ; \tau_{8}:(2,2) \mapsto b_{2} 1\right), \\
&=\left(a_{2} a_{1}, g_{0}, g_{2}(1,2)\left[\{1,2\}, \varphi_{9}: 1 \mapsto b_{2} b_{1} 1 ; \varphi_{9}: 2 \mapsto b_{2} b_{1} 1\right],\right. \\
& \varrho_{9}: 1 \mapsto(1,1,1) ; \varrho_{9}: 2 \mapsto(1,1,2),\{(1,1,1),(1,1,2),(2,2)\}, \\
&\left.\tau_{9}:(1,1,1) \mapsto b_{2} b_{1} 1 ; \tau_{9}:(1,1,2) \mapsto b_{2} b_{1} 1 ; \tau_{9}:(2,2) \mapsto c_{1} 1\right), \\
&=\left\{\left(x_{0}, \sigma_{1}, \sigma_{5}\right),\left(x_{0}, \sigma_{2}, \sigma_{6}\right),\left(x_{0}, \sigma_{2}, \sigma_{7}\right),\left(g_{0}, \sigma_{3}, \sigma_{8}\right),\left(g_{0}, \sigma_{4}, \sigma_{9}\right)\right\} .
\end{aligned}
$$

Let us consider configurations $K_{0}, K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}$ of \mathfrak{B}, where K_{0} is a starting configuration, $K_{2}, K_{3}, K_{4}, K_{5}, K_{6}$ are final configurations.

$$
\begin{aligned}
K_{0}= & \left(a_{2} a_{1} g_{0}\left(x_{0}, x_{0}\right), \Theta_{0}: e \mapsto(e, e, e),\{(e, e, e)\}, \Omega_{0}:(e, e, e) \mapsto a_{2} a_{1} g_{0}\left(x_{0}, x_{0}\right)\right), \\
K_{1}= & \left(g_{2}\left(b_{2} b_{1} x_{0}, b_{2} b_{1} x_{0}\right), \Theta_{1}: 1 \mapsto(1,1,1) ; \Theta_{1}: 2 \mapsto(1,1,2),\right. \\
& \{(1,1,1),(1,1,2),(2,2)\}, \Omega_{1}:(1,1,1) \mapsto b_{2} b_{1} x_{0} ; \\
& \left.\Omega_{1}:(1,1,2) \mapsto b_{2} b_{1} x_{0} ; \Omega_{1}:(2,2) \mapsto b_{1} x_{0}\right), \\
K_{2}= & \left(g_{2}\left(x_{2}, x_{2}\right), \emptyset, \emptyset, \emptyset\right), \\
K_{3}= & \left(g_{2}\left(y_{2}, y_{2}\right), \emptyset, \emptyset, \emptyset\right), \\
K_{4}= & \left(g_{2}\left(y_{2}, z_{2}\right), \emptyset, \emptyset, \emptyset\right), \\
K_{5}= & \left(g_{2}\left(z_{2}, y_{2}\right), \emptyset, \emptyset, \emptyset\right), \\
K_{6}= & \left(g_{2}\left(z_{2}, z_{2}\right), \emptyset \emptyset \emptyset \emptyset\right) .
\end{aligned}
$$

All the transitions from configuration K_{0} in \mathfrak{B} which are ended by final configuration are the following:

$$
\begin{aligned}
& K_{0} \Rightarrow{ }_{\mathfrak{B}} K_{1} \Rightarrow_{\mathfrak{B}} K_{2}, \\
& K_{0} \Rightarrow \Rightarrow_{\mathfrak{B}} K_{1} \Rightarrow_{\mathfrak{B}} K_{3}, \\
& K_{0} \Rightarrow \Rightarrow_{\mathfrak{B}} K_{1} \Rightarrow_{\mathfrak{B}} K_{4}, \\
& K_{0} \Rightarrow_{\mathfrak{B}} K_{1} \Rightarrow_{\mathfrak{B}} K_{5}, \\
& K_{0} \Rightarrow{ }_{\mathfrak{B}} K_{1} \Rightarrow_{\mathfrak{B}} K_{\mathfrak{b}},
\end{aligned}
$$

The transition $K_{0} \Rightarrow_{\mathfrak{F}} K_{1}$ is determined by the mappings:

$$
\begin{aligned}
& x_{0}:\{e\} \rightarrow \Sigma_{\mathfrak{B}}(0) ; x_{0}(e)=g_{0}, \\
& x_{1}:\{e\} \rightarrow \Sigma_{\mathfrak{B}}(1) ; x_{1}(e)=\sigma_{3}, \\
& x_{2}:\{e\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; x_{2}(e)=\sigma_{8} .
\end{aligned}
$$

The transition $K_{1} \Rightarrow_{93} K_{2}$ is determined by the mappings:

$$
\begin{aligned}
& x_{0}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(0) ; x_{0}(1)=x_{0} ; x_{0}(2)=x_{0}, \\
& x_{1}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(1) ; x_{1}(1)=\sigma_{1} ; \varkappa_{1}(2)=\sigma_{2}, \\
& x_{2}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; \varkappa_{2}(1)=\sigma_{5} ; x_{2}(2)=\sigma_{5} .
\end{aligned}
$$

The transition $K_{1} \Rightarrow_{\mathfrak{F}} K_{3}$ is determined by the mappings:

$$
\begin{aligned}
& x_{0}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(0) ; x_{0}(1)=x_{0} ; x_{0}(2)=x_{0}, \\
& x_{1}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(1) ; x_{1}(1)=\sigma_{2} ; x_{1}(2)=\sigma_{1}, \\
& x_{2}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; x_{2}(1)=\sigma_{6} ; x_{2}(2)=\sigma_{6} .
\end{aligned}
$$

The transition $K_{1} \dot{\rightrightarrows}_{93} K_{4}$ is determined by the mappings:
$\chi_{0}:\{1,2\} \rightarrow \Sigma_{\mathcal{B}}(0) ; \chi_{0}(1)=x_{0} ; \chi_{0}(2)=x_{0}$,
$\chi_{1}:\{1,2\} \rightarrow \Sigma_{\mathfrak{g}}(1) ; \varkappa_{1}(1)=\sigma_{2} ; \varkappa_{1}(2)=\sigma_{2}$,
$\varkappa_{2}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; \varkappa_{2}(1)=\sigma_{6} ; \varkappa_{2}(2)=\sigma_{7}$.
The transition $K_{1} \Rightarrow_{93} K_{5}$ is determined by the mappings:
$\chi_{0}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(0) ; \chi_{0}(1)=x_{0} ; x_{0}(2)=x_{0}$,
$\varkappa_{1}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(1) ; \varkappa_{1}(1)=\sigma_{2} ; \chi_{1}(2)=\sigma_{2}$,
$\varkappa_{2}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; \varkappa_{2}(1)=\sigma_{7} ; \varkappa_{2}(2)=\sigma_{6}$.
The transition $K_{1} \Rightarrow_{\mathfrak{3}} K_{6}$ is determined by the mappings:
$\chi_{0}:\{1,2\} \rightarrow \Sigma_{\mathfrak{g}}(0) ; \chi_{0}(1)=x_{0} ; \chi_{0}(2)=x_{0}$,
$\chi_{1}:\{1,2\} \rightarrow \Sigma_{\mathfrak{g}}(1) ; \chi_{1}(1)=\sigma_{2} ; \chi_{1}(2)=\sigma_{2}$,
$\varkappa_{2}:\{1,2\} \rightarrow \Sigma_{\mathfrak{B}}(2) ; x_{2}^{\prime}(1)=\sigma_{7} ; x_{2}(2)=\sigma_{7}$.
One can see that $\tau_{\mathfrak{B}}=\tau_{\mathrm{MI}_{1}} \circ \tau_{\mathfrak{g l}_{2}}$.
DEPT. OF. COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY

ARADI VÉRTANƯK TERE 1
SZEGED, HUNGARY
H-6720

References

[1] Dauchet, M., Transduction de forêts, bimorphismes de magmoides. - Thèse de doctorat, Universite de Lille I (1977).
[2] Gécseg, F., Steinby, M., Tree automata, Akadémiai Kiadó, Budapest, 1984.
(Received Sept. 20, 1985.)

Bibliographie

Franco P. Preparata, Michael Ian Shamos, Computational Geometry, An introduction (Texts an Monographs in Computer Science) XIII + 390, Springer-Verlag, 1985

"The objective of this book is a unified exposition of the wealth of results that have appearedmostly in the past decade - in Computational Geometry. This young discipline - so christened in its current connotation by one of us, M. I. Shamos - has attracted enormous research interest, and has grown from a collection of scattered results to a mature body of knowledge. This achieved maturity, however, does not prevent computational geometry from being a continuing source of problems and scientific interest."

The book is divided into eight chapters.
Chapter 1 starts with a short historical survey and contains the necessary concepts of the geometry of convex sets, metric and combinatorial geometry, the theory of algorithms, complexity theory and data structures. Some special data structures are introduced, such as the segment tree and the doubly-connected-edge-list. Here can be found the famous Ben-Or theorem about the depth of an algebraic decision tree that solves the membership problem in a subset of E^{n}. This theorem will be the basic tool for proving lower bound results.

Chapter 2 develops the basic methods of geometric searching that will be used in the succeeding chapters to solve rather formidable problems. Two types of questions are considered. The first one is to determine whether a given point is internal to a simple or a convex polygon. These questions can be answered in $O(N)$ time (for an N-gon) without preprocessing, but in $O(\log N)$ time if given $O(N)$ space and $O(N)$ preprocessing time. The generalization of this problem is to locate a point in a planar subdivision generated by a planar straight-line graph. There are several efficient algorithms for this question, such as the planar-separator method and the triangulation method.

The second class of problems is the range searching problems, which may be viewed as dual, in some sense, of the previously discussed point-location problems. Some quite interesting and clever methods are illustrated for these problems.

Chapter 3 deals with one of the central questions of computational geometry: the determination of convex hull. Ben-Or's result is applied to give a lower bound $\Omega(N \log N)$ and then optimal algorithms are considered in two dimension, such as Graham's scan, Jarvis's march, divide-and-conquer and dynamic algorithms. For the more complicated higher-dimensional cases the gift-wrapping and beneath-beyond methods are presented with complexity $O\left(N^{1^{d / 2}+1+1}\right)$. However, very surprisingly, in the most important three-dimensional case the problem can be solved in optimal time $O(N \log N)$.

Chapter 4 is devoted to the discussion of extensions and applications of the convex hull algorithms. The average case analysis of Jarvis's algorithm gives the $O(N)$ expected time, and an approximation algorithm for convex hull is presented which is quite efficient for statistical problems. The remaining part of the chapter deals with the applications. Their variety should convince the reader that the hull problem is important both in practice and as a fundamental tool in computational geometry.

Chapter 5 is concerned with proximaty problems: closest pair, all nearest neighbors, euclidean spanning tree, triangulation. After proving the $\Omega(N \log N)$ lower bound for these problems a divide-and-conquer scheme is presented to solve the closest pair problem in $O(N \log N)$ time. The main
objective of this chapter is to develop the quite fruitful concept of the Voronoi diagram, which contains all of the proximity information defined by the given set. The algorithmic construction of the Voronoi diagram is given and is then applied to obtain optimal algorithms for the first two of the above - mentioned problemes.

In Chapter 6, continuing the discusson of the Voronoi diagram, an afficient triangulation method is presented and this gives optimal algorithms for the euclidean spanning tree problem and approximate solutions for the euclidean travelling salesmen and euclidean matching problems. In the remaining part several generalizations of the Voronoi diagram are obtained and further applications can be found.

Chapter 7 starts the study of intersection problems by selecting some applications from various fields to motivate these questions. These are the hidden-line and hidden-surface problems, pattern recognition, wire and component layout and linear programming. Efficient algorithms are given for the intersection of convex polygons, star-shaped polygons and line segments in the planar case, while the intersection of convex polyhedra in three dimensions can be determined by a good algorithm, although it is not known whether it is optimal or not.

Chapter 8 is denoted to the study of the geometry of rectangles, which has not only theorethical interest but is the fundamental ingredient of a number of applications, such as Very-Large-ScaleIntegration and concurrency controls in data-bases. Using the results of the previous chapters, efficient algorithms are given to determine the measure perimeter, contour, closure and external contour of a union of rectangles and intersections of rectangles.

The book is written in a nice style. Each section is followed by additional notes and comments and a collection of interesting exercises. At the end of the book, very good up-to-date references can be found.

This excellent book is recommended to mathematicians intending to specialize in computationa geometry, and also to non-specialists who are interested in the recent advances in computational geometry.
J. KINCSES
J. P. Tremblay, P. G. Sorenson: The theory and practice of compiler writing XIX +796 pages, McGraw-Hill Book Company, 1985.

The book deals with all aspects of compiler writing, mainly from a practical point of view. The reader familiar with basic notions of programming languages and grammars can use the chapters independently as a reference book in designing compiler modules. In the discussion of the different technics, after a short overview of motivation and the theoretical background, the algorithms are given in full detail textually. The language used to formulate the algorithms is easy to read. Numerous exercises serve the self-study in compiler design. Each chapter contains an appropriate bibliography.

The main chapters are: programming language design (with an overview of ADA as an example); scanners (regular grammars and finite-state acceptors); top-down parsing (SLL(1), LL(1) parsers); bottom-up parsing (operator precedence, simple precedence grammars, LR(0), SLR(1). LALR(1), LR(1) parsers); compile-time error handling; symbol-table handling; sum-time storage organization; semantic analysis; code generation and optimization; compiler-compilers.

A. MAKAY

William A. Foley, Robert D. Van Valin, Jr.: Functional Syntax and Universal Grammar. Cambridge University Press, 1984. 416 p.

This book is the result of an effort to develop a grammar which is based on the function of language. As the title suggests, the authors have made an attempt to construct a theory of syntax which is wide enough to cover linguistic phenomena in a great number of languages.
-The approach represents a combination of analysis from different levels: the authors view lanuage in function not as a set of isolated simple sentences, but rather as a piece of discourse constituted by complex expressions. These expressions are made up of a number of clauses linked together in various ways. This linkage is chosen as the starting-point for the integration of linguistic phenomena from different levels. Thus, the main concern of this book is the investigation of the relationship of "clause-internal morhosyntax to clause linkage and cross-caluse reference-tracking mechanisms". The authors argue that the morphosyntactical analysis of the clause must proceed from an interclausal and ultimately discourse perspective.

The investigation of discourse function in carried out within the theory of Role and Reference Grammar (RRG), which W. Foley and R. Van Valin have been developing since the publication of its preliminary sketch in 1980.

If the evolution of linguistics is marked by the antagonism of formalism and functionalism, then it is the latter school of thought to which this monograph adheres. And if we view formalism as an orientation based on the assumption that language is a potentially infinite set of structural descriptions of sentences, then functionalism must be assumed to deal with language in relation to its role in human communication. This is the theoretical distinction which is made clear in Chapter 1.

The remaining six chapters are devoted to an exploration of the means which languages use to code participants and situations in (narrative) discourse, particularly the tracking of participants across clause sequences.

Chapter 2 is concerned with predicate semantics, and Chapter 3 deals with case marking following Silverstein's basic assumptions. Chapter 4 is a presentation of passivization and antipassivization, whereas Chapter 5 goes beyond the confines of clause-internal syntax, discussing a number of issues pertaining to complex sentences. Chapter 6 is an extension of the investigation into clause linkage with a discussion of nexus, a term referring to the relations that hold between clauses in complex sentences. Chapter 7 is an analysis of reference-tracking in discourse.

It should be noted that functionalism as an orientation alongside and, to some extent, against linguistic formalism represented by such outstanding theoreticians as N. Chomsky or R. Montague, has attracted much attention for the past two or three years. This is probably due to an ever-growing interest in discourse analysis, which has now become an integral part of present day functional grammars, as evidenced both by the book at hand and by M. A. K. Halliday's recent monograph. If the latter is an introduction to functional grammar based on English, then Functional Syntax and Universal Grammar is a book with a rich illustrative material from a wide variety of languages.

It is the reviewer's contention that all those interested in the theory and use of language will find this book valuable and stimulating.
I. BÉKÉSI
M. Berger: Computer graphics with Pascal. XVII +347 pages, The Benjamin/Cummings Pubishing Company, Inc. 1986.

The bo 3 k is published in the Benjamin/Cummings Series in Computing and Information Sciences
"The text begins with a description of the history and applications of computer graphics which is followed by an introduction to the hardware and software components of a graphics system. Included are hardcopy output and input devices, CRT technology, raster-scan and random-vector systems, the display processor, and scan conversion. In Chapter 2 the student begins to draw images using the screen coordinates. The difficulties in drawing basic figures such as lines and circles are explored. The next chapter introduces the reader to the worlds coordinate system and the viewing transformation. Chapter 4 uses the concepts presented in the previous chapter to create business and artistic graphics.

Chapter 5 describes the fundamentals of two-dimensional geometric transformations. Chapter 6 implements the concept of display file segmentation.

Chapter 7 examines the requirements of a user-friendly graphics program. After an initial discussion of the problems inherent in running graphics programs on a minicomputer, the reader is led through a detailed decription of error-handling and menu-generating routines. Chapter 8 treats interactive techniques, while Chapter 9 extends these concepts to animation.

Chapter 10 provides frame buffer and scan conversion algorithms for polygon and area filling. Chapter 11 introduces the coordinate systems and transformations needed for three-dimensional viewing. Chapter 12 describes the generation of realistic images using curves and surfaces, and Chapter 13 extends this realism by implementing hidden-surface removal.

The appendix describes the fundamental features of the two-dimensional graphics standard GKS."

This very clearly written book can be recommended as a text for an introductory course in computer graphics.
J. CSIRIK
G. Reinelt: The Linear Ordering Problem: Algorithms and Applications. XI +158 pages, Heldermann Verlag Berlin, 1985. (Research and exposition in mathematics; Vol. 8)

The book gives a new algorithm for the linear ordering problem. This problem may be formulated as follows:
"We are given the complete digraph $D_{n}=\left(V_{n}, A_{n}\right)$ on n nodes and arc weights $C_{i j}$ for each $\operatorname{arc}(i, j) \in A_{n}$. The linear ordering problem now consists in findong a spanning acyclic tournament in D_{n} such that the sum of the weights of its arcs is as large as possible. This problem is interesting from a theoretical point of view, and moreover, it has several practical applications in economics, scheduling, sports, and social sciences. In this treatise we solve a number of real-world problems of this type.

In Chapter 1 some basic mathematical definitions and results from graph theory, polyhedral theory and computational complexity theory are surveyed. This introduction is not meant to be comprehensive but is intended to provide the reader with the basic concepts and notations. In Chapter 2 the linear ordering polytope $P_{L O}^{n}$ is defined, various classes of facet defining inequalities for this polytope are derived, and in addition some remarks concerning adjacency and diameter arc made. The chapter ends with the partial description of $P_{L o}^{n}$ by a set of nonredundant inequalities and equations. This theoretical investigation is a central part of this monograph and lays the foundation of an algorithm for the solution of linear ordering problems whichis discussed in Chapter 3. The computational results of the algorithm when applied to the so-called triangulation problem for input-output tables are reported in Chapter 4. Statistical data such as computing times, number of generated cutting planes or sizes of the linear programs involved are given, the optimization process is illustrated and several cutting plane generation strategies are compared. Since the triangulation problem for input-output tables is an important one in economics (there is a great variety of publications dealing with this problem) we discuss several aspects of it in Chapter 5. We focus attention on how knowledge of "true" optimum solutions can influence or refine previous inter pretations and applications made in the literature which were of ten based on suboptimal solutions. A review of previous algorithms and approaches to the solution of the linear ordering problem is given in Chapter 6. Some more examples of applications of the linear ordering problem are considered in Chapter 7 and complete this tract."

The book is self-contained, and the material is well-arranged. The book can be recommended to everyone interested in combinatorial optimization problems.

J. CSIRIK

The Carnegie-Mellon Curriculum for Undergraduate Computer Science (Edited by Mary Shaw) X + 198 pages, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985
"This book is a result of a three-year effort by the Carnegie-Mellon Computer Science Department to develop a unified undergraduate computer science curriculum. The study, conducted by an eight-member Curriculum Design Group, responds to this rapidly changing field by emphasizing a balanced blend of fundamental conceptual material which the student can adapt to new situations, with examples drawn from the current practice. This integration of theory and practice is a theme of virtually every course described, recognizing that students must be able to use their theoretical knowledge to generate cost-effective solutions to real problems. This comprehensive redesign of the traditional curriculum reflects the structure of modern computer science. As a result, concepts traditionally distributed over several courses of ten form the basis for new courses. The book outlines 30 computer science courses along with requirements for an udergraduate major based on this curriculum."

The book is warmly recommended to people dealing with computer science education.
GY. HORVÁTH

'A SZERKESZTÕ̃ BIZOTTSÁG CfME:

6720 SZEGED

SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED

SOMOGYI U. 7.

HUNGARY

Information for authors

Acta Cybernetica publishes only original papers in the field of computer sciences mainly in English, but also in French, German or Russian. Authors should submit two copies of manuscripts to the Editorial Board. The manuscript must be typed double-spaced on one side of the paper only. Footnotes should be avoided and the number of figures should be as small as possible. For the form of references, see one of the articles previously published in the journal. A list of special symbols used in the manuscript should be supplied by the authors.

A galley proof will be sent to the authors. The first-named author will receive 50 reprints free of charge.

INDEX－TARTALOM

S．L．Bloom：The alternation number and a dot hierarchy of regular sets 355
V．D．Thi：Minimal keys and antikeys 361

Y．Pecht：On the index of concavity of neighbourhood templates

Y．Pecht：On the index of concavity of neighbourhood templates 373 373
A．＇Varga：Optimization of multi valued logical functions based on evaluation graphs
A．＇Varga：Optimization of multi valued logical functions based on evaluation graphs 377 377
雨里
雨里 \therefore K．Engel－H．－D．O．F．Gronau：An Erdōs－Ko－Rado Type Theorem II \therefore K．Engel－H．－D．O．F．Gronau：An Erdōs－Ko－Rado Type Theorem II 405 405
．$: R_{i}$ A．Gil：Giving mathematical semantics of nondeterministic and parallel programming struc－
Yures by means of attribute grammars 413
E：Stmon：A new programming methodology using attribute grammars 425
i：$S . S$ Lavrov：Problem solving based on knowledge representation and program synthesis． 437
＇S．Wäguälgyi：On the compositions of root－to－frontier tree transformations 443

[^0]: 3 Acta Cybernetica VII/4

