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The alternation number and a dot hierarchy of regular sets =~~~

STEPHEN L. BLoOM

In this note we introduce a property of languages we call the alternation number.
This property is used to deduce several facts about regular languages in particular.
One of these facts is related to what might be called the “generalized dot height”
of a regular language. The complexity of regular expressions is usually determined
by their “star height” [E], although other complexity measures have also been consi-
dered [EK]. In all of the papers we know of, a nontrivial argument is needed to
establish that the complexity of ‘regular expressions’ must grow in order to name all
regular sets. (Our definition of ‘regular expression’ allows an atomic name for each
finite set, see below.) In the present note, we give a simple proof that the ““dot height”
(or depth of concatenation signs) of a regular expression also must grow. (The
“dot-depth’ considered in [BK] is unrelated to our dot height.) The dot height is
related to the alternation number. We will show that if the alternation number of a
regular language L is n, then any regular expression which denotes L contams
(roughly) at least log n dots.

Define a function f from the set of nonnegative integers N to collections of
regular subsets of 2* (for some fixed alphabet ) as follows:

f(0) = all finite languages;
fn+1) = f(mU{L: L = L, +L,,L = L;-L,, L=L}, L&f(n)}

Thus a language is regular iff it belongs to f{(xn) for some n. We will show first that for
each n, there is a language in f(n+1)—f(n). The truth of this fact follows easily
from the well-known star-height hierarchy theorem (see [DS] for one proof). The argu-
ment glven here shows that the hieararchy of regular languages depends also on the
operation of concatenation. As a corollary we will obtain the dot height hierarchy.
Lastly, we mention an automaton characterization of the alternation number.

First we assume that X has at least two letters, say @ and b. A language L admits
alternations of size n if: for each k=0 (or, equlvalent]y, for infinitely many k=>0)
there is a word w in L of the form

w(k) = UgXp... Xothy Xq .. Xy Ug oo Uy X e XUy 41

1 Acta Cybernetica VII/4



356 S. L. Bloom

where

1. uy, ty, ..., Uy are arbitrary words in z*;

2. x; are letters in Z, and for each i<n, x; and x;,, are distinct;

3. there are k consecutive occurences of the letters x;, i=0,1, ..., n. (We will
say that a word of the form w(k) has “n alternations of length at least k’.) We say
a language admits alternations of size 0 if it admits no alternations. For example,
finite languages admit no alternations. {a}*, {b}* admits alternations of size 1, as
does L-{a}*-L’-{b}*-L”, for any nonempty languages L, L’ and L”. Note that if L
admits alternations of length n+1, then L also admits alternations of length ».

Definition. The alternation number of L, a(L), is n if L admits alternations of
size n but not of sizen+1. Let a(L)=e~ if for each n, L admits alternations of size .

Proposition 1. Assume a(L)=x, and a(K)=y, where x, yéNU{e}. Then
a(L+K) = max(x,y); x+y = a{L-K); if a(l*) =0, (LD

then a(L*) =co.
a(L-K) = x+y+1; ' (1.2)

(Of course, n<e and n+o =, for all n¢N.)

Proof. We prove only the last part of 1.1. If a(L*)=>0, for each k, there is a
word w in L* which has 1 alternation of length at least k. But then ww has at least 3
alternations of length at least k, and www has at least 5 alternations of length at least
k, etc. Thus a(L*)=<.

‘The proof of 1.2 is longer. Assume that L - K admits alternations of size s. We
will show s=a(K)+a(L)+1. For each k>0 there is a word in L- K of the form

w(k) = ugXg... XgUy Xy ... Xy Us ... UgXg ... XgUgyq

as described above. We may factor each word w(k) as J(k)-v(k), with [(k)€L
and »(k)€K. Suppose that /(k) is the greatest integer /, —1=i=s, such that

uy xE... u;xk

is an initial segment of /(k) (i(k)=—1 if there is no such initial segment ). Thus at
least one of the integers between — 1 and s is the value of i(k) for infinitely many k;
let n be the maximum of these integers, so that for infinitely many values of k, i(k)=n.
(If n=—1 or n=s, then we may easily show that s—1=a(K) and s=a(L),
respectively, so that from now on, we assume 0§n<s.)

- For infinitely many values of k (say k€I) we may write

(k) = upxg... u, i ' (K),
v(k) = U"(KYttp 2 Xk 400 XEUUsy,
where I'(kK)l"(k)=u, ;1 xX4y.
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Case 1..For infinitely many values of &, say k in I’, I’(k) is an initial segment
of u,,,. Then, for k in I’, we may write

v(k) = v/ (K) Xk 4y Uy s Xh 42 - XEUsss, .
so that s—(r+1)=a(K); also, n=a(L), so that s—i=a(K)+a(L), as claimed.

Case 2. Otherwise. Then, for infinitely many k, u,,, is an initial segment of
I’ (k). Hence, for these values of k there is a number 4 (k) for which

1(k) = uoX§ ... xXEthy 41 X510
v(k) = b B o ugxbugy,.
We now have two further subcases.
Case 2a. The numbers h(k) are unbounded. Then, we may write
v(k) = xhQ up o xh ¥ ug b Pug,

for infinitely many k&, which shows that s —(n+1)=a(K); clearly, n=a(L), so that
again, s—1=a(l)+a(X).

Case 2b. Otherwise. In this case, the numbers k—#(k) are unbounded, so that
for infinitely many k,

1(k) = ugxf ™ ®u .o MO ug k.
Since the numbers k — (k) are unbounded, n+1=a(L); clearly, s—(n+2)=a(K),
so that s—1=a(L)+a(K), completing the proof.
Lemma 2. For each n€N define
g(n) = max {a(L): LEf(n) and a(L)<o=}.
Then g(0)=g(1)=0; g(2)=1 and for n=0, gn)=2¢-Y—-1.

Proof. Alllanguages in f(0) are finite, so that g(0)=0; the sum and product of
finite languages are finite, and a(L*) is either 0 or <, so that g(1)=0 also. Clearly
g(2) is at least 1 and by Proposition 1, g(2) is at most 1. Assume g(n)=2""1—-1.
If Lef(n+1) and a(L)<ee, then using the proposition, the largest a(L) can be is
2¢(n)+1=2[2""1—1]+1=2"—1. But it is easy to see that .g(n+1) is not less than
2g(n)+1 also, completing the induction.

Theorem 3. For each positive n€N, there is a language in f(n)—f(n—1).

Proof. Let L be a language in f(n) with a(L)=g(n). Then, if n>1, Lis notin
Sf(n—1), since g(n—1)<g(n). The statement is trivial for n=1.

What about the case that ¥ is a singleton, say {a}, so that £* may be identified
with N? In this case, if L is an ifinite regular set, there is a finite set F and a fixed in-
teger n and numbers k1, ..., k¢ such that

L = FU{a"}- {a"}*U{a*?}- {a"}*U...U{a"}. {a"}* = FU{a", ..., a"}-{a"}".
Hence all regular subsets of N are in 103)..

b L4
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In order to avoid the trivial cases, we assume that the regular expressions (over
%) are built from the atomic letters (i.e. a symbol for each finite subset of £*) and the
function symbols +, -, and # in the usual way. (Thus, a finite set of words may be
denoted by a regular expression with none of the function signs +, -, *.) Let |o
be the language denoted by the regular expression a. If a is a regular expression,
let the ‘dot height of «’, dh (), be 0, when « is an atomic letter; dh(a+f)=
=max (dh (@), dh (B)); dh (@*)=dh («), and lastly,

dh («- f) = 1+max (dh (), dh (B)).
Let R(n) denote the family of regular expressions a with dh (¢)<n.

Proposition 4. Suppose that n>0, that L is a language denoted by «, a€ R(n)
and that a(L)<e. Then
a(L) = g(n).

Proof. By induction on i. If n=1 and L is denoted by a rezular expression a
having no dot symbols, then either « is an atomic symbol or "has the form

B+o, or B*

for some other regular expressions B, ¢ with dot height 0. By induction on the structure
of a, one sees that either a(L)=< or a(L)=0=g(1).

Now assume that the proposition holds for » and that L is a language denoted
by a regular expression in R(n+1)—R(n) and a(L)<eo. If a is of the form f+o
or % it is easily seen by induction on the structure of « that a(L)=g(n+1). If a
is of the form f-o6 then -dh (B), dh (6)<n. Thus, by the induction hypothesis,
a(|p]) and a(|a|) are at most g(n), and by proposition 1, a(L) is at most 2g(n)+1=
=g(n+1), completing the proof.

Corollary 5. (The ’dot height hierarchy). For each n=0, there is an infinite
regular language L not denoted by a regular expression in R(n)

Proof. Any regular language L with g(n)<a(L)<e will do, by Proposition 2.

The alternation number of a regular language may be described by certain pro-
perties of a finite automaton which accepts it. Let M=(Q, i, F) be a finite Z-auto-
maton (with state set Q, initial state / and final states F; we denote the action of a word
uin Z* on the state g by ¢ - u). A state g in Q is ““accessible” if q=i-u, for some word
win Z*. If x is a letter in Z, we call a state g x-stable if q-u=gq, where u is some posi-
tive power of x (i.e. u=x or xx or xxx, etc.); q is stable if g is x-stable for some letter
x. The “behavior of q”, |q|, is the set {u€Z*: q-ucF}..

We now define by induction the notion of an “n-state”, for 0=n.

Definition. a) The state g will be called “a O-state via the letter x” if

l. |g| is nonempty;
2. gq is x-stable.

b) ¢q is an “n+1 state via x if

l. g is x-stable;

2. there is some word v such that g-v is an n-state via y, for some letter y=x;
A state is an “n-state” if it is an n-state via x, for some letter x.

The easy proof of the next fact is omitted.
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Lemma 6. Let M=(Q, /7, F) be an automaton which accepts the language L.
Then, for 1=n, L admits alternations of size n iff there is some accessible n-state

in Q.

Corollary 7. Let M=(Q, 7, F) be an automaton which accepts the language L.
Then, for n=>0, a(L)=r iff Q contains an accessible n-state but no accessible
k-state with k=n. If Q has m states, then a(L)=< iff there is an accessible m-state

in Q.

Proof. We need only prove that if the cardinality of Q is m, and Q has an acces-
sible m-state, say q,, then a(L)=<. But, there is a sequence of words u,, 1, ..., u,,
such that if g;,,=¢;-1u;, for i=0,1, ..., m, then q; is an m—i state via x;, with
X;#X; 415 since the states g; cannot all be distinct, let s and 7, =0, be least such that
g,=d,+,- It is easy to see that g, is also an n—s+kt state, for all k>0; hence
a(L)=eco.

Corollary 8. There is an algorithm to determine, given a regular language L,
what the alternation number of L is.

Proof. Suppose one is given an accessible finite automaton with » states which
accepts L. First one finds all the 0-states, by considering only paths of length =n,
then l-states, etc. until one knows all the n-states. Then one applies the previous
Corollary.

Questions: Is there an algorithm to determine, given a regular language L, the
least #n such that Lef(n)? Is there an algorithm to determine the dot height of a regu-
lar language?
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Minimal keys and. antikeys

By V. D. Tax

§ 1. Introduction

The relational model, defined by E. F. Codd [3] is one of the most investigated
data base models of the last years. Many papers have appeared concerning combina-
torial characterization of functional dependencies, systems of minimal keys and anti-
keys. A set of minimal keys and a set of antikeys form Sperner-systems. Sperner-sys-
tems and sets of minimal keys are equivalent in the sense that for an arbitrary Sperner-
system S a family of functional dependencies F can be constructed so that the mini-
mal keys of F are exactly the elements of S (cf. [41).

In the present paper we propose some combinational algorithms to determine
antikeys and minimal keys. In the second part of the paper, we are going to study
connections between minimal keys and antikeys for special Sperner-systems.

We start with some necessary definitions.

Definition 1.1, Let Q be a finite set, and denote P(L) its power set. The mapping
F: P(Q)—~P(Q) is called a closure operation over  if, for every A, BSQ,

(1) AS F(A) (extensivity),

(2) ASB implies F(4)C F(B) (monotonity),

(3) F(A)=F (F(4)) (idempotency). o

In few cases Q is represented by the set {1, ..., n} or by the set of columns of an
mXn matrix M. If we use the second representatlon, a special closure operation Fy
can be defined over the set of the columns of M:

The i-th column of M belongs to Fy(4) if and only if for any two rows of M
which are identical on A4 they are equal on the i-th column, too. .

It is easy to see, that Fy(4) is a closure operation. It is known (see [1]) that any
closure operatlon F over a finite set Q2 can be represented by an appropriate matrix
M, that is we can choose M and represent Q by the set of the columns of M so that F
comcrdes with Fy.

Definition 1.2. Let Fbe a c105ure operatlon over €, and AE Q We say that
— A is a key of F, if F(A)=2. :
~— A is a minimal key of F,if Ais a key of F and for any BS 4, F(B)= Q
implies B=4A, i.e. no proper subset of 4is a key of F..
- Let us 'denote by K the set of all minimal keys of F.1t is clear ‘that KF forms a
Sperner-system. - e
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If K is a Sperner-system over @, let us define S(K) as S(K)=min {m: K=Kp,,:
M is an mXn matrix representation of Q}. For a Sperner-system K, we can define
the set of antikeys, denoted by K~1, as follows:

K'={4CQ: (BcK)=>(BE A) and (4cC)=(3BEK)(BS C)}.

It is easy to see that K ~Lis the set of subsets of @, which does not contain the elements
of K and which is maximal for this property. They are the maximal non-keys. Clearly,
K~ is also a Sperner-system.

In this paper we assume that’ Sperner-systems playing the role of the set of mini-
mal keys (antikeys) are not empty (do not contain the full set Q).

§ 2. Connection between minimal keys and antikeys

The following important result was proved in {1, [5]:

Remark 21. If K is an arbitrary Sperner-system, then there exists a closure
operation F, for which K=K and a closure operation F’, for which K=Kz
. Let us given an arbitrary Sperner-system K={B, ..., B,} over Q. We are
now going to construct the set of antikeys K 1. Let us follow the algorithm described
below:’
"~ Let Ky={@\({a}: a€B,}. Tt is casy to see that K;= {BI}'I.
Let us suppose that we have constructed K,= {Bl, s By}t for g<m. We
assume that X;, ..., X, are the elements of K, contamrng 1 So K,=FU{x,, ..
X,), where F {AEK B, E 4} For all i i=1,...,p), we construct the
antlkeys of {B,+1} on X; in the analogous way as Kl, Wthh are the maximal subsets
of X; not containing B, .,. We denote them by 4i, ..., 4L (i=1, ..., p).
¢ K

1= FU{dl: A€F,=>Aj¢ A, 1si=p 1=t=1)

We have to prove, that K .;={B,, ..., B;4+,}~*. For this using the inductive
hypothesis K,={B,, ..., B,}"* we show that
©oa)if AEK 1 then A is the subset of Q not containing B, (t=1, ...,q9+1)
and being maxrmal for this property, 1e. A¢{B,, ..., Bq+1} 1

b) every AC Q not containing the elements B, (1=1, ..., q+ 1) and being maxi-
mal for this property is an element of K ;. Frrst we prove the validity of (a). Let
" A€K,,,. If ACF, then A does not contain the elements B, (t1=1, ...,q) and 4is
maximal for this property and at the same time Bq“gA. Consequently, Ais a
maximal subset of € not containing B, (=1, ..., ¢+1).

"~ Let A€K . \F,. Itis clear that there is an 4} (1=i=p and 1=¢=1;) such
that A=A4}. Our construction shows that B,gA' for all I (I=1,..., q+1). Because
Alis-an antlkey of {B,1} for X; we obtain Aj=X\{b} for some bEB,,,. It is
obv1ous that B “_A U {b}. If ac O\ X; then, by the inductive hypothesrs for
AlU{a, b}= XU{a} there exists B, (s=1,...,q) such that B,C A4!U{a, b}. X,
does not contain B,,...,B, by X, €K, Hence acB,. If B,\{a}CA‘ then
B,C 4iU{a}. For every B (l =s=q) with B XU{a} and B, 4! we have
beB,. Hence B\ {a, b}C A‘ Consequently, there exists an 4,€F, such that
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Aic 4,. This contradicts A€K,,,\F,. So there is a B; (1=s=gq) such that
B.C AiU{a}. :

Next we turn to the proof of (b). Suppose that A is the maximal subset of Q not
containing B, (1=t=q+1). By the inductive hypothesis, there isa Y€K, such that
ACY.

The first case: If B,,, & Y then Y does not contain By, ..., B,,,. Because 4 is
the maximal subset of 2 not containing B, (1=t=¢g+1) we obtain 4=Y. B, EY
implies A€ F,. Consequently, we have A€K,,,.

The second case: If B,,,SY then Y=LX; holds for some /in {l, ..., p} and
ACS 4} holds for some ¢in {1, ..., 7;}. If there exists an A4,€ F, such that 4iC4,,
then we also have AC 4,. By the definition of F, it is clear that 4, does not contain
B, ..., B,,,. This contradicts the definition of 4. Hence Aj€K,.,. It is easy to see
that A} does not contain B,, ..., B,,;. By the definition of 4 we obtain A=4;,
ie. Kyp1={By, ..., By}

By the above proof it is clear that K,={B,, ..., B,}~*. Thus we have

Theorem 2.2. K, =K.

Because K and K ~! are uniquely detérmined by each other, the determination of
K~ based on our algorithm does not depend on the order of By, ..., B,,.

Now we assume that the elementary step being counted is the comparison of two
attribute names. Consequently, if we assume that subsets of © are represented as sor-
ted lists of attribute names, then a Boolean operation on two subsets of £ requires
at most |Q| elementary steps.

Let K,={Q}. According to the construction of our algorithm we have K =
=F,U{X;, ..., X, }, where 1=g=m—1. Denote /, the number of elements of K,.
It is clear that for constructing K, ., the worst-case time of algorithm is O(nz(lq—
—t)t,) if t,<l, and O(n?t) if I,=t,. Consequently, the total time spent by the
algorithm in the worst cases is

m—1
o(n® 3 tyu,), where |Q]=n,
q=1

{lq—tq if 1> 1,

MEL i =1,

q

It is obvious that, if F,=0, then /,=¢,.

It can be seen that when there are only a few minimal keys (that is m is small)
our algorithm is very effective, it does not requires exponential time in |Q|. In cases
for which /,=1, (Vgq: 1=¢g=m—1) it is obvious that our algorithm requires a
number of elementary operations which is not greater than O(n*K||K~'}). Thus,
in these cases our algorithm finds K~ in polynomial time in |2}, |K| and |K~Y|.

After Theorem 2.12 we shall give an example to show that our algorithm requires
exponential time in |Q|. On the other hand K, in each step of ouralgorithm is obviously
a Sperner-system. It is known ([4]) that the size of arbitrary Sperner-system over Q

can not be greater than " , where n=]Q|. "l is asymptotically equal to
[n/2] (n/2] P _
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n+1/2

(7[ . n)1/2 *
exponential in the number of attributes.

Let K~'={4,, ..., A} be a set of antikeys. Let R={h,, h,, ..., h;} be a rela-
tion over 2 given as follows: for all acQ, h(a)=0

Consequently, the worst-case time of our algorithm can not be more than

if a€Ad;,

0
fori(l=i=1, ha) {i if acO\U,.
If we consider R as a matrlx, then R represents K (see [5]). Thus, based on our algo-
rithm, for an arbitrarily given Sperner-system K, we can construct a matrix whlch
represents K.

Example 2.3. Let Q={1,2, 3,4, 5,6} and K={(2, 3, 4), (1, 4)}. According to
the above algorithm we have K,={(l, 3,4, 5, 6), (1, 2,4, 5, 6)}UF,, where F,=
={(1,2,3,5,6)}, and K,={(3,4,5,6),(2,4,56),(1,2,3,56)}. It is obvious
that K'=K,.

We consider the following matrix:

The attributes:

123456
000000
M=]110000
202000
0600300

It is clear that M represents K.

Now we describe the “reverse” algorlthm for given Sperner-system considered
as the set of antikeys we construct its origin. The following definitions are necessary
for us. ,

Let F be a closure operation over Q. Set

Z(F) = {4 S Q: F(4) = 4}
and T(F)={AC Q: ACZ(F) and AcB= F(B)=Q

The elements of Z(F) are called closed sets. It is clear that T'(F) is the family of
maximal closed sets (except ). Now we prove the following lemma.

Lemma 2.4. Let F be a closure operation over £, and K; the sét of minimal keys
of F. Then Kgl=T(F). .

Proof Let 4 be an arbitrary antlkey and suppose that Ac F(A). Hence
F(F(4))=F(4)=Q. Consequently, A is a key. This contradicts VBcK;: BE 4.
If there is an 4’ such that Ac A’ and A'€Z(F)\{Q}, then A’ is a key. This con-
tradicts A'C Q.

On the other hand, if 4 is a maximal closed set and there i$ a B (B€Kg) such
that BC 4, then F(A)=Q, which conflicts with the fact that ACQ. If AcD(DS
€ Q), then it can be seen that F(D)=Q (because 4 is the maxxmal closed set). Con-
sequently, A is an antikey. The lemma is proved.
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Now we construct an algorithm for finding a minimal key. :
Let H be a Sperner-system and Q¢ H. We take a B (BEH) and an ae Q\B
We suppose that B={by, ..., b,}. Let G={B,€H: a¢B} and To=BU {a}. define

~ {Tq\{bq“} if VBEHN\G: T\{b,+1} € B;

“\T, otherwise.

- Theorem 2.5. If His a set of antikeys, then {T,, Tl, ..., Ty} are the keys and
T,, is a minimal key i

Proof. By Remark 2.1 there exists a closure F such that H= Kp We prove
the theorem by the induction. It is clear that T is a key. If T, and T,,,=T,, then
it is obvious that T,,, is akey. If T, =T, \{bq,,l} and F( +1)¢Q then, by
Lemma 2.4, there is a B,6H such that F(7,,,)SB,. Hence T 4+1SB,, which
conflicts with the fact VBEH: T,,,EB,. Consequently, T,:, is a key.

Now suppose that 4 is a proper subset of T,,,. If aq 4, then, clearly, F(4)> Q.
If a€ A, then there exists a b,€ B such that b€ T,\ A (1=q). By the given algorithm
there exists a B,HN\G such that 1\{b VS B,. ‘We obtain AST,\{b,}CS
ET,..{b}CB, by T,&T, (0<q<m 1). Hence F(A)#Q Consequently, 7,
is a minimal key The theorem is proved.

Remark 2.6. Theorem 2.5 is also true if To={b,, ..., b,,} is an arbitrary»key.
At this time define !

_ {Tq\{bq+1} if VBeH: Tq\{bq+1} < B;,
+1

T, 1= .
T, othérwise.

q

— It is clear that the worst-case time of the algorithm is O(n2- |H]|), where
n=|Q|, |H| is the number of elements of H. .

— It is best to choose B such that [B]| is minimal.

— If there is a B such that VB<H\({B}: BOB § and a¢ U B,

B c H\{B}
then aUb is a minimal key (VbEB).
— If (&\ U B)#@, then acQ\ |J B, isa minimal key.'
B.cH
— Let Y— U B, (B,#B). If B\Y#0, then it is best to choose T,=

=(BN Y)U{a}U{b} where beB\ Y.

Remark 2.7. Let H be a Sperner-system (2¢ H) and AcC Q. We can give an
algorlthm (which is analogous to the above one) to decide whether 4 i is a key or not.
If Ais a key, then this algorithm finds an A" such that 4’ 4 and Ais a minimal key.

Remark 2.8. In the paper [5] the equality sets of the relanon are defined as
follows: Let R={h,, ..., h,} be a relation over Q. For i#j, we'denote by E;
the set {acQ: h(a)=h;(a)}, where I=i=m, 1=j=m. Now we define M=
= {E, ;;: JE,, such that E;;CE,). Practically, it is possible that there are some E;;
which are equal to each other We choose one E, from M. According to Lemma 2.4
it can be seen that M is the set of antikeys of KFR (we consider R as a matrix).



366 V. D. Thi

Example29 Let Q2={1,2,3,4,5,6} and R be the following relation:

01001 0]
101001
2001 2 2
012203
321030

It can be seen that M={(1,2), (3,4, 5), 4, 6)}, where E,,={1,2}, E;=1{4, 6}
and E,;={3, 4, 5}. By Theorem 2.5 and Remark 2.6, it is clear that {1, 3}, {1, 4},
{1, 5}, {1, 6}, {2 3}, {2, 4}, {2, 5}, {2, 6} are the minimal keys. We use the algorithm
“(Theorem 2.5) with To={3,4, 6} and T,={4, 5, 6}, then it can be seen that {3, 6}
and {5, 6} are minimal keys. Thus, based on this algorithm for an arbitrarily given
relation R we can find a minimal key of R.

" Let K be an arbitrary Sperner-system. The following theorem has been proved
in 21

=i

Theorem 2.10.
(S(zK)) =K Y= S(K)-1.
.Denote by [g) the family of all k-element subsets of Q.-Let F,(n)=max {S(K):
QY .
k(7); 1@1=n}
Theorem 2.11. ([6])
F(n) = ﬂ

We define the function fy,_,: N—~N for 2k—1=n by

— 1\n/(2k—1) .
BT i amo (ot

(2k 2]1/2 [n/(2k—2)]

2 — 1\E-DI-1 (o) ] .
k—1 X( k_i*-p) if n=p (mod(2k—1))

f%—l(n)z{( and 1=p=k-1,

2 — [\in/@k—D)] )
(k——l) X(kfll if n=p (mod (2k-1))

and k=p=2k—2,

and the function f,,_, for 2k—2=n by
nf(2k—2)
(2:' _ 12 ) if n=0 (mod(2k-2)),

2k —2\kE=D1-1 Dk 2 .
[ ) x( k_f”’] if n=p (mod(2k—2) -

oo Nk

f?k—%(n)—< A [ and 1=p=k-1,
2k — 2\ln/(2k~2)] .
[k—l] _ X(kfl) if n=p (mod(2k-2))

and k =p=2k-3,
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where N denotes the set of natural numbers. Let us take a partmon Q=X U..
LUX,UW, where m—[2k 1] and |X;|=2k—1 (I1=i=m).

Let
K= {B: |Bl=k,BE X;,vi} if W|=

={B:|Bj=k,BSX;(l=i=m—-1)and BC X,,UW} if 1=s\W|=k-
K={B:|Bl=kBSX,(1=i=m)and BEW) if k=|W|=2k-2

It is clear that
K1={4:|ANX}| = k-1Vvi} if W|=0.

K'={4: [ANX)| =k—-1 (1 =i=m—-1) and [ANX,,UW)| = k—-1} -
if 1

[IA

Wwi=k-—1.
K1={4:{ANX]=k—-1 (1 =i=m) and [ANW| =k—-1}
' if k=W|=2%k-2.
It can be seen that f5,_,(n)=|K~|. If we take.a partition: Q=X,U...UX,UW;
where m:[an—__z and |[X;|=2k—2, in an analogous way we
K={B: |B|=k BCS X,Vi} if W|=0.
K={B:|Bl=k,BS X, (I=i=m—1) and BS X,UW} if | =|W|=k-
K={B:|Bl=k,BCX;(1=i=m)and BCW} if k=|W|=2k-3.
It is clear that '
2 — 2YInf(2k—2)]
fueatd = 1K and fuat= ()

Theorem 2.12. Let Q={1, ..., n}.
If n=0 (mod (2k—2)(2k—1)), then fy,_i(n)>fe—2(n). For a fixed k,
f(n) ‘

(n, =
2k L2

Proof. If k=2, then it is easy to prove that Va: fy(n)=f,(n). If n=6 or
n=8, then fy(n)>f:(n). Let

(Zk_ 1]n/(zk—1) (Zk_ 1)nl(2k~l)
F .

flim

nesco

k—1. k

= VG D - (2k —2\iICk—DEk—1) *
(=) (=)
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It is known that n!=}2nn (%] X where 0<6,<1. So

(Zk— I]n/(u-l) (l 1 ]nl(Zk—l)
k T2k
F= A 9/ (12(2k —2)) | nf(2k —2)(2k—1) = el/(@1(k—1)) \nf(2k—2)(2k—1) =E.
Yr(k—1) [ Vr(k—2) ]

For this E we obtain, that

n L 1 (1 1
T=hE=57 [l“ (I_E'E)+2k—2 [71“ (”(k“l))'m(k—l)]]
and by

I s Ry 1
I — =
‘“ll k)| = k=1

we have

n 1 1 1 1
T=5%1 [2k—2 (7]“("(k_l))_24(k—1)]'2k—1}'
It can be seen that if k=3, then

Lo(1 1 1
2k—2[7]n(n(k—l))_24(k—l)]—2k—1 >0

and, for every k=4, .

1 1
—2—11'] (ﬂ(k—l))—m = 1.
Hence
1

1 i 1
2k—2 (7'“ ("(k‘l))"u(k— I)J_2k—l >0

Consequently, if » =0 (mod 2k—2)(2k—1)), then f5, _,(n)>fo_2(n). Now let n
be an arbitrary natural number. It can be seen that, for a fixed k&, there exists a number
M=0 such that

()
k—1 ' k—1
2k — 1 \1+GiEk—1) <M, 2k —1\pieE—D M,
k—l] ' k—l] ’
) )

adnd <M and k-l =M.

2k —2\1+i(2k—2)) 2k —2)pl(2k~2)
1) (=)
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Hence In E—~~. Consequently, F—c. Thus,

n—oco’ n—+co

fuar®)
)

n-roco

(It is easy to see that k=2 is also true.) The theorem is proved.
As a consequence of Theorem 2.12 and Theorem 2.10 we have

Corollary 2.13
Fi(n) = V2fya(n)-

Example 2.14. In Theorem 2.12 let k=2. Then we have n—1=|K|=n+2
and 3"/ <f,(n), where n=|[Q|., i.e. 3*M<|K~1|. Thus, we always can construct
an example, in which the number of K (minimal keys) is not greater than n+2, but
the size of K ! (antikeys) is exponential in the number of attributes.

§ 3. Some special Sperner-systems

In this section we investigate connections between the minimal keys and antikeys
for some special Sperner-systems.
" The notion of saturated Sperner-system is defined in [7], as follows:

A Sperner-system K over  is saturated if for any 4SQ, KU{4} is not a
Sperner-system.

An important result in [7] has been proved; if X is a saturated Sperner-system
then K=Ky uniquely determines F, where F is a closure operation.

Now we investigate some special Sperner-systems which are strictly connected
with saturated Sperner-systems.

We consider the following example.

Example 3.1. Let 2={1,2,3,4,5,6} and N={(1,2),(3,4),(56)} be a
Sperner-system. It can be seen that N'={(l, 3, 5), (], 3, 6), (1, 4, 5), (1, 4, 6),
(2,3,5),(2,3,6),(2,4,5),(2,4,6)}. Let K=NUN1 Itis clear that X is saturated.
We use the algorithm which finds a set of antikeys. Then K—*={(1, 3), (1, 4), (1, 5),
(1, 6), 2, 3), 2,4, 2, 5, 2, 6), 3, 5, (3, 6), 4, 5), (4, 6)}.

By the fact that K~ 1U{1, 2} is a Sperner-system it is obvious that K1 is not
saturated. Thus, we have

~ Corollary 3.2. There is a K so that K is saturated and K ™! is not saturated.
Now we define the following notion.

Definition 3.3. Let K be a Sperner-system over . We say that K is embedded,
if for every A€K there is a B€EH such that ACB, where H '=K. We have

Theorem 3.4. Let Kbea Sperner-system over Q. K is saturated if and only if
K1 is embedded. .
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Proof. Let K be a saturated Sperner-system. According to the definition of X1
it is clear that K ! is embedded. Assume that KX ~! is an embedded Sperner-system,
but Kis not saturated. Consequently, for X there exists an A< Q such that KU {4}
is a Sperner-system. It can be seen that, for every C€K, we have Cc Q (because of
Q¢ K). Hence we can construct B such that AC B, KU {B} is a Sperner-system and,
for every B’(BCB’), thereis a CeK with CSB’. It can be seen that B€K L.
This contradicts the fact that K1 is embedded. The proof is complete.

Now we define an. inclusive Sperner-system.

Definition 3.5. Let K be a Sperner-system over Q. We say that K is inclusive,
if for every A€K, there exists a B€K ! such that BC A. We have

Theorem 3.6. K is an inclusive Sperner-system if and only if K= is a saturated
one. :

Proof. Now, assume that K is an inclusive Sperner-system but K~! is not
saturated. By the definition of K7, there is a Be{K™")™' such that K~'U{B}
isa Sperner-system By Remark 2.1, for X there is a closure operation F such that
K=K;. If F(B)cQ, then by Lemma 2.4 there exists an A€K ! with F(B)S A4
(the set of antikeys is family of the maximal closed sets), which conflicts with the
fact that K~'U{B} is a Sperner-system. Consequently, B is a key. If we use the
algorithm which finds a minimal key in Theorem 2.5, then it can be seen that there
exists a B’(B’< B) such that B’€K, and it is clear that K~U{B’} is a Sperner-
system. This contradicts the definition of K. Thus, K ! is saturated.

On the other hand by the definition of K~ and by the assumption that K-
is saturated it is clear that K is an inclusive Sperner-system. The theorem is proved.
Now, we have the following corollary by Theorem 3.4 and Theorem 3.6.

Corollary 3.7. Let K be a Sperner-system over Q. Denote H a Sperner-system,
for which H =K. The following facts are equivalent:

(1) K is saturated,

(2) K1 is embedded,

(3) H is inclusive.

Proposition 3.8. There exists a Sperner-system K such that
(1) K is saturated, but X! is not saturated.
(2) K is saturated, but H is not saturated.
(3) X is embedded, but X! is not embedded.
(4) K is embedded, but H is not embedded.
(5) K is inclusive, but K~' is not inclusive.
(6) KX is inclusive, but H is not inclusive,
where H denotes a Sperner-system for which H~!=K.

-Proof. From Example 3.1 we have (1). By Theorem 3.4, (K )~ is not embedded
in this example. Hence we have (3). By Theorem 3.6, in Example 3.1 H is inclusive,
where H~1=K. Now, we suppose that, if K is inclusive, then the set of antikeys of K
is also inclusive. Consequently, in Example 3.1, H is inclusive, and K is an inclusive
Sperner-system. From Theorem 3.6, K 1 is saturated. This constradicts the fact that
K~in Example 3.1 is not a saturated Sperner-system. Hence we have (5). (2) can be
proved as follows: Let K be a Sperner-system. Let K'=K and, for n=2, define
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K™ by the equality (K")"*=K"-. We know that the number of the Sperner-systems
over Q is finite (at most 22'®"). On the other hand, K and K ~* are determined uniquely
by each other. Consequently, there exists a number m (2=m=22'""") such that
K™"=K and K™"~'=K"'. If we suppose that K is saturated, then H is also saturated,
where H~!=K. This means that for every p with 2=p<m, KP is also saturated.
This contradicts Corollary 3.2. Thus, there is a Sperner-system K such that X is satu-
rated, but H is not saturated. By similar arguments we have also (4) and (6). The
proposition is proved.
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On the index of concavity of neighbourhood templates

J. PECHT

Abstract

In automatic image analysis with parallel algorithms or parallel processors successive Min-
kowski-operations (like erosions and dilatations) with a given neighbourhood template (also referred
to as structuring element), T, play an important role. It can be shown that, after a certain number of
such steps, the neighbourhood template E, which contains only the extreme points of T, can be used
instead of 7. This number of steps is called the index of concavity of T. In bit-plane oriented parallel
processors this fact can be used to speed-up pattern recognition algorithms. The speed-up is only
assymptotical and its practical performance depends upon whether the index of concavity is low or
high. In this paper it is shown that for the practical cases of convex or small templates the index is
very small, namely at most 2 or 3 resp. which ensures speed-up for this type of templates. As against
to this result it is, however, also shown that, theoretically, arbitrary high indices of concavity can be
achieved for appropriately chosen (exotic) templates.

1. Introduction

Minkowski-operations play an important role in automatic image analysis, parti-
culary in optical material control. Herein, after thresholding the video image (from
camera) appropriatelly a binary image, b, (usually 256256 or 512X 512 pixels) is
produced. b is also called a bit-plane. The bit-plane b is eroded repeatedly and after
each step of erosion a measurement of area, boundary length and/or number of
particles is done. Assembling these numbers in one (or 3) feature vector(s), conveni-
ent statistical classification procedures can be applied to get final decision of certain
material properties. Depending on the material properties to be jugded upon va-
rious neighbourhood templates must be chosen (1, 2).

In bit-plane oriented parallel array processors (so called: bitplane processors)
(3, 4, 5, 6) a straight forward implementation of this operations needs C# elementary
parallel bitwise logical operations where ? is the number of elements in 7' (1, 2). There
it is also shown that in case of convex, symmetric templates Cu/2 operations are suf-
ficient where u is the number of boundary points of 7. In (7) this result was improved
be showing that, for any template T, assymptotically already Ce operations are also
sufficient where e is the number of extreme points of 7. This result relies on the fact
that, after a certain number of steps, the Minkowski-operation with T can be replaced
by the same operation using only the template E which contains just the extreme

pid
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points of 7. This number depends on T and is called the index of concavity of T. 1t
is denoted u(T).1t is clear that the assymptotic speed gain is only achieved if u(T)
is low. It is the intent of this paper to show that for the practically important cases of
small (i.e. 3 X3) templates or (possibly big) convex templates the index of concavity
does not exceed 3 or 2 (resp.). On the other hand, exotic templates (with some few
and, however, wide spread points) can yield arbitrarily high indices of concavity.

After presenting some necessary mathematical definitions and facts in chapter 2
we derive our claim as cited above in chapter 3.

2. Basic definitions and facts

Definition 1. Let Z denote the set of integers. Any finite subset T" of Z? is called
a neighbourhood template. Between two templates T and U the sum T@U is defined
as {t+uft¢T and uc U} (+ is here the usual componentwise vector sum). For any
template T the sequence (AT en (N={0,1,2,. }) is recursively defined by

oT = {0}, 6))
(k+1)T = kTOT (k = 0). %))

Here, 0=(0,-0) is the 2-dimensional origin in Z2. x€T is called an extreme point
of T, if any representation x= 2’ a,t with a,=0, a,€R and Za,—l implies

a,=1, and a,=0 for t=x. The set of extreme points of T is denoted E or E(T).
Proposition 1. (7) For any template T there is a k€N such that
kT®T = kT®E (k = ky). 3)

Definition 2. For any template T let u(T) denote the minimal k, such that
Proposition 1 holds. u(T) is called the index of concavity of T.

- Definition 3. For any template T let T denote the convex hull of T (in R?),
formally
T:={>ata,=0, acR, Ja=1} 'e)
teT teT .

and T:=TNZ2 A template T is called convex if T=T., The norm || T| of T is the
maximal absolute value of all occuring coordinates of all elements of T. T is
called small, if |T]=1. ‘

Equipped with these preliminaries we proceed to prove our claims.

"3 The index of concavity of certain classes of templatés

_ Theorem 1. For any k€N, there is a nelghbourhood template T with |T|| =
s}/(k/3)+5 such that u(T)=k.

: Proof Let k€N, and consider the template T= {xl, Xa; X3, x4} with x,=(n, 0),
x,=(0,n=1); x3=(—(n—2), —(n—2)), and x,=(0, 0) where n is the greatest odd
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natural number less than or equal to ¥ (k/3) +5. Note that, in all cases, # is odd and
not smaller than 5. Let hTéBE hT®T. We show that A=k. Because

0 = (0,0chTHT, 0chTOHE.

Thus 0=k, x;,+ksxs+ksx;, where k,, ks, k3=0 and h+ 1=k +ks+ks=0 (ky, ks,
k,€N). So at least one k; is greater than 0 and kyn=ky(n—2)=ks(n—2)=k,(n—1).
Because n, n—1 and n—2 have no common divisor except unity we conclude that
ky=(n—1)(n—2), ky=(n—2)n, and ky=n(n—1). Thus h+1=3(n—-2*=3(Y(k/3)+
+5-22 =k+1.
Q.E.D.
Theorem 2. For any small template we have p(7T)=3.

Proof. The validity of this claim was checked by an appropriate computer
program: For all small templates, T, their sets of extreme points, E, were computer
and the first k were searched for which kT@® E=kT® T. One proves easily that these
k equal u(T).

Q.E.D.

Theorem 3. For any convex template T we have u(T)=2.

Proof. A proof can be obtained by combining some partial results of (8) and (9).
In (8) it is shown that (d+1)T=c—1_1—'€BI:J for any (d-dimensional) template T which

yields, for our case d=2, the claim 3T=2T®E. In (9) it is shown that kT=kT
for all 2-dimensional convex templates and any k=0. Thus, we get

3T = 3T = 2T®E = 2TOE. 5)

This proves our theorem.
_ Q.E.D.
~ In case of rectangular convex templates we get even lower indices:

Theorem 4. For the rectangular template T={n,n-+1, ..., n+i}xX{m, m+1, ...
. m+j}, we have p(T)=1.

Proof. Let x=(x;, x;)€2T. Then 2u=x,=2n+2/ and, consequently, n=
=(,—n)=n+2i. X x,—n=>n+i then n—i=x;—n+i)=n+i and n=x,—
—(n+i)=n+i. A similar argument shows that either m=x,—(m-+j)=m+j or
m=x,—m=m+j. This proves our theorem because E(T)={n, n+i}x{m, m+j}.

Q.ED.

4, Summary

In a former paper (7) the author had proved that, for any neighbourhood tem-
plate T, there is a number, pu(T), such that kAT®@T=kT®E (k=p(T)) where E is
the template containing only the extreme points of T. u(T) is called the index of con-
cavity of T. In image analysis with bit-oriented parallel computers this fact can be
used to speed-up pattern classification algorithms which make excessive use of
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Minkowski-operations like erosion, dilation, opening and closing by appropriately.
chosen neighbourhood templates. This speed-up is only achieved if u(T) is low. In
this paper, it is shown that this is, in fact, true for all practically important templates,
1.e., for (arbitrary) convex ones and small ones. Nevertheless, exotic templates can be
derived having arbitrarily high indices of concavity.

.
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Optimization of multi valued logical functions
based on evaluation graphs

A. VARGA
Dedicated to Professor K. Tandori on his 60th birthday

Abstract

In this paper we discuss simplifications of multi valued logical functions. The simplification is
carried out in the following way. We associate tree graphs with the disjunctive or conjunctive normal
forms of the functions. Under certain conditions some vertices of these trees can be omitted. This
cancellation will correspond to reduction of terms or variables in the original function.

After all possible simplifications a normal form, which is equivalent to the function in question,
is obtained.

1. Definitions, notations

Let k(=2) be a natural number and ¢, the set {0, 1, 2, ..., k—1}. Any function
f: et—~¢, is called a k-valued logical function of n-variables where & denotes the
Cartesian product of »n copies of g. These functions are often given by their
truth-tables and they will also be denoted by f(X") or AX)=f(X;, X5, ..., X;). The
set of k-valued logical function will be denoted by P, . Several properties valid in the
theory of ordinary two-valued logic remain true in the theory of k-valued logic as well.
But in the case k=3 certain characteristics are essentially different from those in
ordinary logic.

A major problem is the definition of negation, since it can be defined in several
ways.

Definition 1. Let A4,6{0,1,...,k—1}, i=1,2,...,n; n=2. Then the opera-
tors defined by
ANAN ... NA, = min (4;, A5, ..., A,)
and
AN AV ..V A, = max (4;, 4s, ..., 4,)
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are called the conjunction and disjunction of the variables 4;, 4,, ..., 4, respecti-
vely.

The following identities can easily be proved:

I AAB = BAA,
AV B = BV A, for every A4, B.
1I. AN(BAC) = (AAB)AC,
-AV(BVC) = (AVB)VC, for every 4,B,C.
1II. ANBVC) = (AABYW(AAC),
AV(BAC) = (AVBYA(AVC), for every A, B, C.
1v. AVA = A,
AANA = A, for every A.
V. ANK—-1)= 4

AV@ = A, for every A.

Below we give two types of negation: one for logical constants and one for logi-
cal variables.

Definition 2. Let Acg,. Then
A= (k—1)—A.

Definition 3. If X is a variable then X denotes that function the actual value of
which is the negation (in the sense of Definition 2) of the actual value of X. Let us

introduce the following unary operator
k-1, if a=X=b,
a Xb — {
0 elsewhere,
where a, b, Xcg, and a=b are fixed. It should be noticed that °X? is two-valued.
By Definition 3, the negation of °X? is
— (0, if a=X=b,
a Xb — {
k—1 elsewhere,
where a, b, Xcg, and a=b are fixed. The formulae in the theory of k-valued logic,
similarly to those of two valued logic, will be given by recursive definition.
Definition 4.

(0) The elements of &, are k-valued logical formulae;
1) Xy, X, .., X, X0, %X O xte are_k-valued logical formulae;
(2) If Fis a k-valued logical formula, then F is a k-valued formula;

(3) If Fand G are k-valued logical formulae, then FVG, FAG are k-valued logical
formulae;
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(4) Every k-valued logical formula can be obtained by a repeated appllcatlon of
©0)—03).

In what follows the letters f;, g, ... will denote functions and the capital letters F, G, ...
will denote formulae. By a function of n-variables we mean a k-valued logical func-
tion of n-variables (k=3).

Value assignement. The ordered n-tuple (X3, Xs, ..., X;|4;, ..., X,)is called a value
assignement of the i-th variable. If every variable has value simultaneously, then the
ordered n-tuple (X"|A")=(X1|4,, X2|Au, ey X5|4,) 1s simply called a value assigne-
ment.

Let f(X") be a function. Then

f(X|A") = f(X,|4:, Xal4s, ..., X,|A)

denotes the fact that X; is replaced by 4;, where A4;cg, i=1,2,...,n. The value
JXq) 4y, XolA4,, ..., X,]4,) is called the value of f(X") under the value assignement
(Xy|4y, X,|4s, ..., X,]4,). Below the value assignement (Xi|4,;, Xa|4s, ..., X,|4,)
and the value f(Xi|4,, X,|4s, ..., X,|4,) will be denoted simply by (4;, 43, ..., 4,)
and f(4,, 4, ..., A,), respectively. One can define value assignements for formulae
as well.

Definition 5. Let f, g€ P,. If the value of g does not exceed that of f (in any
position of the truth-table), then we say that g implies £ and write g—f.

Definition 6. Formulae F and G are said to be equivalent if the corresponding
functions f and g are equal. In this case we write F=G.
An easy computation gives

Lemma 1. Let f(X")=f(X,, X,, ..., X,), n=2. Then for every i=1,2, ..,

f(X13X2"" iy = n)— v [f(Xla Af; laX‘.h 1+13--'3Xn)/\j‘1/;j]'

Remark. Below the conjunctlon will be denoted by - (sometimes it will be omit-
ted) or, in the case of several variables, by II, and the disjunction will be denoted by
+ or X. The following lemma can easily be verified.

Lemma 2. Let f(X")=f(Xy, X, ..., X,), n=2. Then the relation
X, X, X)) = 3 XX X" f(as, ag, .5 ay)

(a,,ay,...,a,)

holds, where Z is taken over all the possible ordered n-tuples, and a,€¢,7=1,2,...,n

Definition 7. By a superposition of the k-valued logical functions f(X7, X5, ...

s Xiy s Xp) and g(Xy, Xz, .., X)) wemeanthefuncnonf(Xl, X5 . 8(X1, X, .

s X, X ) which is obtalned by substituting the function g for the i-th argu-
ment X; of r

Definition 8. The set of functions {f},fs,...,f;} is called a basis-set for P,
if every elements of P, can be expressed by X; (/=1,2, ...,n) and the functions
fisJes -.» [, applying superpositions finitely many times. It is customary to say that
the clements of a basis set form a functionally complete function system.
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" By virtue of Lemma 2 we get that the system {0, 1, ..., k—1,°X° X .
., F71X =1 min (X;, X;), max (X;, X,)} is complete in P,.

Definition 9. The expression
( > ’J“’Xf' X3t .. "X fay, as, ..., a,)
@450y, ..., 0

is called the full disjunctive normal form F, (X, X, ..., X,) of the function f.

Since a;€g, i=1, 2, ..., n, the number of all different n-tuples (ay, as, ..., a,),
is k", Denoting the value f(a{?, a{?, ..., a\?), concerning the j-th n-tuple (in a fixed
ordering) (a(, a{), ..., a¥?) by a; and the corresponding conjunction

a,(j) X{"U) a,(i) Xg"*(j) el X,‘,"'(j)

by E? the full disjunctive normal form belonging to f(X") can be written in the form

k=1

Fy(X™ = go o, El.

E™ is called a min term of n- varnables We w111 require some further formulae which
can easily be verified.
axt if, a=d=c=0b,
Cayeqpdyb 14X if, d=a=c=b, ')
cHlyd-1t f g=c<d=b,a,b,cd Xcg,.
0 if, asc<d=b,

syc.dxb =Jdyc if g=d=c=b, )
9X* if, a=d=b=c,a,b,cd, Xcg,.

axyb — Oya—14 b+1yk-1 (3)
where
Oxal=0 if g=0, PHX*1=0 if b=k—1, a, b, X€¢,
Oxk-1 — [ 1. 4)
sxbpaxb = k—1, a,b, X€¢,. )
PR ¢ ¢ G I B G WL ¢ CNERIL.) G A3 (6.2)
PRI G ) LIS R 5 6L D o8 (6.b)
where

X,a,bcg, i=1,2,...,n

Formulae (6a) and (6b) are the de Morgan’s identities in the theory of multi-
valued logic.
The full conjunctive normal form can be defined in a similar manner.
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Definition 10. By the full conjunctive normal form of a k-valued function
J(X") we mean the formula
Kn—1

Fox) = IT 5+ B,

where E" can be obtained from E} by the de Morgan’s identities and denotes the so
called max terms. Using the usual rules of the theory of two-valued logic the full
normal forms can immediately be found from the truth-table. Every conjunction
term and disjunction term of the full conjunctive and disjunctive normal forms con-

tains the expression Gxh G xd: | 9XPn of the variables X;, Xz, ..., X,.
The full disjunctive and conjunctive normal forms can be written in the following
ways

' k=1
FyX") = F+F+...+F_, = Z F;.
i=1

and

k—1
F\(X) = F F..F., = [ F},
Jj=

where F; (Fj) is the sub-formula consisting only of min terms (max terms) which
determine the #-th (j-th) value of the function.

Definition 11. Let F be a disjunctive normal form of f€P,, and let G be a con-
junction term of F. We say that G is an implicant of fif G—f. G is called prime impli-
cant if, for every G’ obtained by omitting any variable of G, G’-+f holds.

Remark. The above defined min and max operations are mutually distributive
(see identity IIT). Using this fact and the duality of the two operations we can treat
the disjunction terms in a conjunctive normal form in the same way as we treat the
conjunction terms in a disjunctive normal form. A normal form is called irredundant
if the following properties hold:

(1) each of its terms is a primimplicant, and

(2) no expression obtained by omitting any term in the normal form implies the

original function.
A normal form is called redundant if it is not irredundant.

2. Representation of formulae of functions.

The tree-construction procedure

We will work with a fixed order of our variables, which will be denoted by S. We
agree that if we write f(X")=f(X;, Xs, ..., X,) then S=(X3, X;, ..., X,). The simpli-
fication procedure we are going to discuss depends on S, therefore to some of the
objects in the procedure we will affix S. By successive evaluation we mean successi-
ve evalution determined by S(i.e. we change first the first varlable for logical valu—
es then the second one etc.) .
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Let f(X") and S=(X;, X,, ..., X,;) be given, and let
S = f(Xy, Koy s X)) = fon

JO, X5, ... X)) =fi,

f(L, X, ... X)) = f,e

f(ls X2’ LR ] Xn) =.f1,i+1

f(k_l9 X2a --'9Xn) =.f1,k
10,0, X,, ..., X)) = fos

SO k-L X5, .., X,) = fou
f(la Oa X3, -~-’Xn) =.f2,k+1

f(k—]9 k_la X3, "':Xn) =.f2,k3

f~1Lk=1, . k=1,X) = fo_y -z
flk~1,k=1, .., k=1,0) = f, ,

Jk=1L, k-1, k=1L, k=) =f ;»
Using the resulfs of Lemma 1, the following arrangement can be given (Fig. 1).

The functions fy1, /1,15 ---» fo,i are called level-functions. Every function f, ;
(0=m=<n, 1=j=k™) determines k new functions on the (m+ 1)-th level in the follow-
ing way:

fm+1,jk—(i—(k—l))("" X_p ) =fm,j("" i, )

So there are k™ +1 level-functions on the (m+1)-th level. The ‘X}s (:=0,1,...,k—1,
Jj=1,2, ..., n) appearing at the edges of the tree above indicate that the variable X;
is replaced by the constant /.- The functions f, ;, being on the #-th level, are logical
values. '~

This way we can associate a k-ary tree with every function f(X").

The tree which has just been obtained will be denoted by &g (notice that the
constructionn depends on the fixed order S of the variables). Since &g contains all
the possible level functions, @ will be called complete.
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Notion of endpoint and path

By endpoints we mean the “leaves” of the tree (the vertices on the lowest, n-th
level). Any sequence of edges joining the root with some endpoint will be called a
path. Some more notations:

Let &g be a tree belonging to f(X"), and let S=(X;, X, ..., X,) be fixed. Sup-
pose that the edge denoted by °X7,, connects the level functions f; ; and f,, ;.

Below f; ; ‘and f;,,; will be called the start-point and the endpoint of the edge
2Xg, ,, respectively. Obviously there is a one-to one correspondence between the eva-
luations of a function f(X”") and the paths of the corresponding tree @5. If we know
the tree @ corresponding to a function f(X") then it is easy to determine the Fy (X")
full disjunctive and F, (X") full conjunctive normal forms of f(X"). To obtain Fy (X")
we have to take the conjunction of the variables /X7 along paths together with the
logical value of the endpoint of the path and take the disjunction of all these expres-
sions for every possible paths. If we interchange here ““disjunction” and “‘conjunc-
tion’ and “variable” for “negation of variabie™ we obtain F (X7).

This method shows that the tree @ is a representation of the formulae Fy
and F,. It can also be seen that @y is equivalent to the truth-table of the function,
the difference between them is that @g can be obtained by successive evaluation
while the truth-table is given by simultaneous evaluation.

Theorem 1. Let f(X"€P,, S=(X;, X,, ..., X,). Then the tree-construction
procedure associates a uniquely determined k-ary tree to f.

Proof. The level function f,.4 jk—G-@—1y has fewer variables than f, ;.
Since fy,; contains a finite number of variables, the procedure must necessarily stop
after the construction of a finite number of levels, which gives the existence of the
tree. The unicity can be obtained from the equivalence of simultaneous and successive
evaluations.

Definition 12. Any function f with domain D(f)Ce} is called a partially defined
function. Those places where fis not defined will be marked by () in the truth-table
and at the “leafs” of the tree.

In the process of simplification we can assign any value to these places, which,
in certain cases, yields a simpler representation.

3. The simplification procedure

Let f(X")EP,; and let S be fixed. In order to construct an irredundant equivalent
of f(X") first we construct the tree &5 and choose that subtrees & (¢=0, 1, ..., k—1)
of &g which consists of those paths of @g that have ¢ at their end.

Definition 13. Those points of &, (t1=0,1,...,k—1) from which exactly &
edges start will be called complete branching points, and the k edges starting from
such a point will be called a complete edge-system. A complete branching point of a
subtree is called m-multiple complete branching point if the subtree has altogether
m total branching points with the same complete edge-system as the given point
(more precisely the variables attached to the complete edge systems must be the same).
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Let p be an arbitrary path of &5 (¢=0, 1, ..., k—1) and let » be the number of
its edges.
Let
%%y if °X,(,)’, belongs to p,

ny
Ay* o IX,,lj if lX,,lj belongs to p,
ny : N : -
k=lyk-tof "'IX,’,‘J—1 belongs to p, (l=n;_y<n;=n, 2=j=m)
and ’ '
{(*X0, *Xn, .., " Xp } = X = X{p, n;, m}
some edges of p. B
Those edges of p (if there is any) which do not belong to X will be called connect-
ing sequences of X (relative to p) and will be denoted = {x,, %;, ..., %s}.
Let &% be given, and let p be a path of &%. A subtree &g of P! will be called
maximally simplifiable subtree of order m (below briefly MSST) if

(1) &¢ contains p, o
(2) there exists such an edge set X=X {p,n;, m} (1=n;_y<n;=n, 2=j=m)
of p taken in the fixed order determined by S that the edges marked by
*X,... G=0,1,...,m—1) belong to k*-multiple total edge systems of g,
and if p’ is any other path of &g then the connecting sequences of X=X {p,
nj,m}y and X'=X'{p’,n;, m} relative to p and p’ are the same (more
precisely, are marked in order with the same variables “X¥).
(3) There exist no subtree @3 of P that has properties (1) and (2) and which
_has more than m total branching points.

The structure of an MSST of order m is shown on Fig. 2.

Remark. x; is the sequence of edges between *X*_, and *X in the order deter-
mined by S. If n;=n;_,+1 then »; is empty. If m=0 then &g=p. It is obvious
that if a tree ®% and its path p are given then there exists at least one MSST contain-
ing p.

Theorem 2. Let f(XMeP,, &% (t1=0,1, ..., k—1) a tree belonging to a fixed S,
p a path of &% and I an MSST of p. Let the n-term conjunction of variables along the
paths of M be: py, ps, ..., pr (1=I=n), and the (variables at the) connecting se-
quence x;, ®a, ..., ®,. Lhen _

kl
2 pi= I«
Ji=1 i=1
holds.

Proof. It contains k* paths, so there are k% k2, ..., k™~ total branchings on the
different levels. In other words the formula F, corresponding to &% does not depend
on the variables appearing in the total branchings because it takes the value ¢ inde-
pendently of these variables, so they can be omitted.

This theorem shows that every I yields one term. The term which is obtained by
the method above is called the simplified formula of M. The disjunction of such sim-
plifications of MSST’s is the simplified formula of the function.
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4 Irredundant covermgs

Definition 14. A set of MSST-s of a tree @5 (=0, l , k—1) is called a co-
vering if each path of the tree belongs to-at least one of the MSST-s of the set.

A covering is called irredundant if any MSST in it contains at least one path
belonging only to this MSST. Co . .

Theorem 3. Let ¢% represent the disjunctive normal form of an f(X")eP,,
(t=0,1,..,k-1), together with .one of its irredundant coverings. Let 'F, denote
the d1s1unct10n of simplified formulae obtained fromthe elements of the set of- MSST—s
giving the irredundant covering in question. Then: F, is irredundant.

Proof Suppose that Fy is redundant Then there exist two cases.

(1) some disjunction term of F, can be omitted;

(2) at least oné variable can be omitted from some conjunctlon term of Fy,

First suppose that a term F® of Fv can be omitted. Since every MSST gives only.
one conJuncnon term, omitting this is equivalent to omlttmg the MSST from the
covering, but taking into account the irredundancy, this is impossible.

Secondly we note that, if an F® can be replaced by an F'¥) obtained from F®
by omitting some variables, then the MSST giving F contains the MSST which
gave FO, but. this contradict the definition of MSST. oL .

Remark. Theorem 3 is formulated for full disjunctive normal forms, but because
of the principle-of duality it is true for full conjunctive normal forms as well.

S. Simpliﬁahle paths; simpli_ﬁeation algorithm

Definition 15. Let 9§ (=0, 1, ...,k—1) be given, and take a path D of 455‘
— pis called smgular if the MSST coincides with p. .
— p is called simply covered if p is covered by.one and only one MSST

— p is multiply covered if it is covered by at least two MSST-s.

Theorem 4, Let f(X")EP,; be given by either its disjunctive or conjunctive full
normal forms. If fis given by its full disjunctive normal form F, and some max term
E" is simultaneously represented by formulae Fy_,., F,_,,,“, . F,_,,,+,, .then

min (E—m& E—m+1’ Fl—m+t) = ITl—m _ (l)

If f is given by the full conjunctive normal form F, and some max term E7 is
simultaneously represented by formulae F,_,,, Fi_p415 .-y Fi—pm+;, then

max(lrl—ma.l;‘l-l-lm+la"'.s E—m+i = L-m+i- (2)

The statement can easily be proved taking into account the definitions of the
min and max operators.

Formula (1) means that the s1mphﬁcatlon procedure of a function f (or tree &g
which is representing the function and is written from the disjunctive normal form)
value (for example in case & ={0; 1, ..., k—1} with @%1). After the first step of the

3 Acta Cybernetica VII/4
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simplification the endpoints'marked-with-(k — 1) can be considered of (#)-value, that
is. undeﬁned in the tree 453 Let us mtroduce the followmg notatlons
o e

(ll) ¢k—l. ¢k (i-1), *U@—l (,> 2)
where I=k- - and (*) is wntten on the places Jj=<i. By virtue of Theorem 4, there
are subtrees which may give more favourable conditions for sxmphﬁctlon

On the other hand relation (2) shows in case of tree of functions given by full
conjunctive normal form that simplification has to be started with the simplification
of that subtree determined by the path with smallest logical value and we have to
apply the method above. Below the procedure will be shown only for functions given
by their full dlSjunctnve normal forms. The case of full conjunctive normal forms can
be treated in.a similar way.

Now we can glve the s:mplnﬁcatnon procedure

6. Simplification algoritlirn for representations of irredundant formulae

(1) Let-i=1. Mark the paths with endpoint t=k—1 in the tree &g (that is we
start from the subtree %-1). If in the tree &g originally there are endpoints marked
with (%), then we begin with &% U &%,

We choose a path and an MSST containing it. We take a record of the simplified
formulae corresponding to this MSST and mark the paths in it.

(2) We choose an unmarked path and determine an MSST covering it, prefe-
rably with unmarked endpoints (this will speed. up the algorithm). This way such an
MSST is chosen which is necessary for an irredundant covering. The simplified -
formuld belonging to the MSST we have just obtained will be taken record of and
the so far unmarked paths of the MSST will be marked. -

, Repeat step 3.until we can find unmarked paths in %"

~ If there is no unmarked path, then let i=;+1. If z<k then cons:der the sub—_
tree %1% and carry out the above steps (1), (2), (3). If i=k the algorithm is over.
| Fmally the simplified formula of the function f(X") can be determined as fol-
lows: - . :

Let
S Fg;l,F:‘.;‘,.. F§.l‘

EA

Fy®, FRg?, . F" w2

: 1 1
5,1y Fs2’ .Fe F

!lk 1’

denote the sxmphﬁed formulae obtamed from the -subtrees ﬁfl,' @572,,'*,- L, PR
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(92) (sz) (vz) (€7} (ze) (17) (oz} (1) (81)

£ 3d

(L) (o) (s1) (wyden) {2y 1y (o0 (6) (8 (&) (&) (9 (v () (2 0 (0)

(Z°K'X) we

3+
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respectively. ‘Then the formula:
(k—=1) - (FE'+ Fig'+ A FED+(k=2) -« (FiT+ Fiz?+ .+ FEgD) + ...
A2 (FE +Fi g+ .+ FE )+ - (F+ Flo+ . +FL )

corresponds to an irredundant covering of @s.
All these can be summarised in the following theorem.

Theorem 5. Every tree &g has at leastbone.irrec.h.n_ldant covering.

7. Some demonstrative examplég

1. Consider the function .

XY, 2Z) = 1X(1, 4,7, 10, 11, 13, 14, 19, 22, 25)+22(6, 15, 16, 17, 24)

given by its full disjuntive normal form (here we use the conventional notation of
binary logic; only the numbers in brackets should be considered as numbers in the
number system with base k instead of 2). We will simplify the fuaction f*(X, Y, Z).
Let S=(X, Y, Z) be the order of évaluation. Fig. 3 gives the complete tree of f3

With k=2 pick the tree 2 and let us analyse it (Fig. 4).

2 2 2 2
(6) (15)(16) (t7) (2%)

ing-. 4
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(15)(16) (17)

Fig. 6

Let us mvestlgate the paths of this tree movmg from the left to the right

1. There is no singular path.

2. Simply covered paths: (6), (16), (17). The MSST belonging to (6) is (6—15—
24) (Fig. 5). The next path is (16) and the corresponding MSST is (15—16—17)
(Fig. 6).

The simplified formulae
: 2y2,070

IXI 2Y2

3. There is no more unmarked path. v

We write (%) instead of 2 and consider &} * with k=1. (Fig. 7)

1. There is no singular path.
2. Simply covered paths are:
(1) and the corresponding MSST is (1—4—7—10—13—16—19—22—25)
(Fig. 8), (11) and the MSST is (11—14—17) (Fig. 9).
The simplified formulae are:
. lzl

1y1,272
The simplified irredundant formula is:

2(1X1 2Y2+2Yé OZO)+ i (IZI+IX1 2Z2)'



@
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' Fig. 7
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2,2 0,0 E \2,2
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(25)

(22)

(19)

L16)

" Fig. 8

(i0) (13)

(¢

“)

-
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N
[X3

(an T (17)

Fig. 9 ~

L. Consider the following function ‘
X, y) = 12(3,4, 6, T)+22(1, 5, 13)+3Z(9, 10, 11, 14)

and let S= (X Y). Simplify this function.
1. Smgular paths are: (9), (10), (11), (14) and the formulae belongmg to these are:

2X2 lyl, 2X2 2Y2’ 2X2 3Y3’ 3X3 2Y2.
2. There is no more unmarked path.
We write (;ae) instead of 3 and let. k=2.

1. There is no singular path. :
2. Simply covered path is: (1) and the MSST is (1—5——9—13) (Fig. 13)
3. There is no more unmarked path.

The simplified formula is 'Y*. :
We write instead of 2 and 3 now (*) and let k 1.

1. Singular path is: (3) and the correspondmg formula is: 0X03y3
2. Simply covered path is (4) and the MSST is (4—5—6—7) (Fig. 15).

The snmpllﬁed formula is: 1x1



0 T 0 o
) ) (2) (3)

X 3.3

0.0 3.3 0.0 3.3 0,0 3.3

[ 2 ¢ t 0 3 3 3 0 2 3 0
(4) (3 (6) AP €-) B €] (10} () (12) (13 (14) (15)

Fig. 10
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3 ..
e (.\.\)

N

@ oy, un (14)

Fig. 11

3. The simplified function is:
(2X2 IYl + 2X2 2Y2 + 2X2 3Y3 + 3X3 2Y2) + 21Yl + l (OXO 3Y3 IXI)

Rema:k The irredundant formula we have just obtamed can be transformed
by virtue of indentities treated above.
For example:

3 (2X2 (IYI + 3Y3) + 2Y2(2X2 3X3)) + 21Y1 + 1 (OXO 3Y3 + IXI) —
=3 (ZX" 1Y8 + 2X3 BYZ) +21Y1 + 1 (OXO 3Y3 le)

III. Let f3(X, Y, Z) be glven by its truth-table (Fig. 16) Simplify this function
Let S=(X,Y,2Z) - &5(X, Y, Z) is sketched in Fig. 17 For the endpoints marked
with k=2 and * we have:

1. There is no singular path.

2. Simply covered paths are:

(i) (13) and the corresponding MSST is (4—13——-22) (marked with +) (Fig. 17).

The simplified formula is: 1Y11Z?;

(i) (21), the MSST is (21—22—23) (marked with 0) and the simplified formula

is2X21y1,

(iii) (24), the MSST is (18—21—24) (marked with “="") and the simplified

formula is 2X29Z°.

3. There is no more unmarked path thh endpoint 2. Consider now the subtree
with endpoints k=1, 2=x% and *

1. There is no singular'path.

2. Simply covered paths are:
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o~
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(14)

(e (13)

(10)

1))

Fig. 12

(5)

(1) .
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S 6)) : (9)

Fig. 13 -

(0), the MSST is (0—3—6—9—12—15—18-—21—24) (marked with £1) and the
simplified formula is: °Z°; (10), the MSST is (9—10—11) (marked with e), the
formula is 1X*°Y°; (16) MSST: (15—16—17) (marked with X), the formula is:
le 2Y2‘ ’

3. . There is no more unmarked path with endpoint 1. '

The simplified formula of the function is:
2(1Y1 121+2X2 1Y1+2X2 OZO)+ l (GZO_}_IXI 0Y0+1X1 2Y2) —

=207 121+ 221y 42X20Z0) 4 | (0Z041X1 1Y2),
IV. Let

X, Y)=12(58,9, 11)+22(2, 6, 10)+32(13, 14)+ x Z(1, 12, 15)

and S=(X, Y). Simplify this function

For the paths with endpoints k=3 and =:
1. There is no singular path,
2. Simply covered paths are: ,
(13) MSST: (12—13—14—15) (marked with @) (Fig. 18) the simplified
formula: 3X3. )
3. There is no more path with endpoint k=3.
For the paths with endpoints k=2, 3=% and *:
1. There is no singular path.
2. Simply covered paths are:
(2) MSST: (2—6—10—14) (marked with +) the simplified formula is 2Y2.
3. There is no more unmarked path with endpoint k=2.
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For the paths with endpoints k=1, 2=%,3=%, and =*.

1. There exists no singular path.
2. Simply covered paths:

(5) MSST: (1—5—9—13) (marked with D) the formula: 'Y?;
(8) MSST: (8—9—10—11) (marked with X) and the formula: 2X 2

3. There is no unmarked path with endpoint k=1.

The simpliﬁed formula is:

PKO422Y 24 1 (BX2H1YY),

400 A. Varga
x|y |lz|r|lx| v | z| 0| x Y z | g
o | o o 1 1 | o 0 1 2 0 0 .
ol o 1| o |1 0 1 1 2 0 1 0
o | o | 2| = 1 | o 2 . 2 0 2 )
o | 1| o] 1 1 i 0 1 2 1 0 2
o | 1 1 3 1 1 2 2 1 1 2
o 1| 2] 01 1 2 0 2 1 2 2
o | 2| 0| 1 1} o2 0 1 2 2 0 2
o | 2110 1] 2 1 1 2 2 1 0
o | 2 2| |1 2 2 1 2 2 2 0

Fig. 16
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An Erdos—-Ko—-Rado type theorem II
"By K. ENGEL and H.-D. O. F."GRONAU" -

1. Introduction and results

Let R denote the interval [1, r] of the first r positive integers. Let k be an integer

with 0=k=r. The set of all k-element subsets of R will be denoted by { k) Theaim
of this paper is to present the

Theorem 1. : Let p=4 ‘and v=4 be integers. If F_E_[;:)',

r—-l'~'< n—1 ) .
o 5 + =_1f§ m (r—1, )

" and ' F satz.sﬁes '

EleXZD nX #Q for all Xl,Xz,...,XI‘EF, | (2)
X,UX,U,..UX, = R for all X,,X,, ..., X,€F, -
then
; r—2
A= [k_l].

ST _...._ -This ‘is best possible. The families F, y={X€[§):‘ x€X, ye{X},
; where x and y are different fixed elements of R, are maximal.

This theorem was proved for =6 and v=6 and for some partlal cases of k if
u=4,5 or v=4,5 in Gronau [2]. Our proof here-uses the same method but in a
refined version. '

Condition (1) is natural. For all other &’s one of the conditions (2) or (3) is satis-
fied automatically, and the problem reduces to the generalized Erdds—Ko—Rado
theorem by Frankl [1]. For another simple proof, see Gronau [3}.

4'
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Theorem 2. (generalized Erd3s—Ko-—Rado theorem)
Let pu=2 be an integer. If Fg[j:), O0=k= #;l r, and F sa-
tisfies (2), then

|F| = (;:1 ]

Turning to the complements we obtain a dual version.

Theorem 2°, Let v=2 be an integer. If FC (II:), —E—ékér, and F satisfies (3),
then

|F| = (rzl).

2. Some reductions -

Let pu,v=4, kand F& (I]:) be given such that (1), (2) and (3) hold. If
N X9 or U X=R then |F| g(,’c'j
‘ X¢F XEF . _
follows by Theorem 2 or 2" immediately. Since the described families F,, , have cardi-

nality (;c__%] and satisfy (2) as well as (3), the proof of Theorem 1 will be comple-
ted by proving ‘

Theorem 3. Let u=4 and v=4 be integers. If FC (I;] and F satisfies (2) and
() as well as () X=0 and |J) X=R, then
X€F

XEF
r—2

Observe that here is no restriction on k. Therefore, it is sufficient to prove Theorem 3

only for p=v=4. Furthermore, we may restrict ourselves to k=L in the proof

2
since k> -% follows by duality. We make use of some Tesults from 21
Proposition 1. ([2, Lemma 1]).
AXGNX = 3,

XNXNXe| =2 for all X, Xy, XsEF.
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Proposntlonz We may suppose that for-all XcF it holds: If- NIX j€X and
(. .. 1 i<j,-then. (X-— {_]})U{l}éF

The last proposmon isa consequence of Lemma 4 in [2], by the Erdé’s—Ko-Rado
exchange operation. ..

Flnally we prove. Theorem 3 for small k, similarly to [2], by a short argument.

I.emma 1 Theorem 3 is true for k=7+§

Proof By Theorem 6 in [2], |F|<(k 3] Hence,

\F] (k 3] ‘ rr— 1)k 1 (k—2)
k——l) (k ] k+3)(r—k+2)(f—k+1)(r—
r(r_l)(%;,-?)(—‘i—”?) 16 r r—1t r+2r-2

= = 5% <10
(i,+.§.](i,+_‘_](;"_,_i](3 ,__3_‘) 7T 2 222
4 72T T2 2T 7)o 3773

'3, An upper bound for [F|

“Suppose that Fsatisfies the suppositions of Theorem 3, and — ; + ; <k= 2 ( We

decompose F into Fy, Fz, and F3 accordmg to
{XEF {1,2} & X}
= {XGF 1€X, 24X},

= {X€F: 14X).

i) Let F1 {x: XU{l 2}€F,, {Q, Z)OX-‘-Q} Then Fj is a family of (k—2)-

element subsets of the (r 2)-element set {3, 4, ..., r} satisfying (3) for v=4. Since
3

k— 2>( 4 2] 2_

, we may apply Theorem 2’ and obtain

, r—3
1Rl = 151 = (£ 23)- @
In order to estimate | F,| and lFal we use the description of the families by walks in
- the plane. We associate thh every X¢€ k] a certain walk We start from (0, 0).
If we are after / moves at point (g, b) then we turn to (@, b+1) or (a+1, b) depending

on whether i+ 1€X or 1+1<{X So every set of ﬁ) is associated with a walk
from (0, 0) to (r—k, k) and vice versa.
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. . Let F; and F; denote the set of walks associated with. F; and. F;,: tespectively.
By the definition of F, and F;, every walk: of. F; starts with. (0 0—©0, D—(1,1)
whereas every walk of F’ starts w1th , 0)—(1 O)

i O R N R
i) Every walk of F; meets the lme y=2 +2 since otherwxse, by‘Proposmoh 2;
F, would:contain the'set ' X;=1, 3,4, 6, 7,9, 10, :..}. Forthé sanie‘réison;: Fwould
contain X,={1,2,4,5,7, 8 10, ...} and X,,—{l 2,3,5,6,8, 9 -} But IXl
NXNXsl={{1}|=1, contradxctmg Proposition 1.... - voa
If a walk meets the line y=2x+2 the first time at (1 21+2) l>l then this
walk passes through (7, 2/ —1), too. Hence the number of these walks is not greater

than ) EAIRTH B T
3i—' r—31—
- 1—1 k 21—2

since [ _1 ] is the total number of walks from (1, 1) to (1, 20~ l) whereas [ k— 2, 2)
NG

is the total number of walks from (l, 2i+2)to (r‘ k, k) } Consequently, using [O)

we obtam
T 31—-3 r—31-— L
VFol = Fi| = ; (,_l [k s ) 's)
i) Every walk of Fj meets-the line . y=3x+1: This follows by the same argu-

ments as in the precedmg case recallmg (2) Thus,

S &,;.:,., S o 1T WRPT e T
' lh IJ 4i —4, (l—é}r—l) bR engen

lFsl—lFal— Z; r—l E—3i1
By (4). (5), and (6) we obtain :

a5 2‘311) R ). o

o .
4. Some lemmas :
In order to estimate (7) we need the followmg lemmas.
"Lemma 2 For any natural numbers n and i wzth n>2 e T
T R R n("l'l) T B S I S T SIS DR |
' ' i+1 n" ’

LeatoLToL L T (n‘) = '("—l)"’l P R TR S LT 1S S

i
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Proof
n(i+1)
i+1 ) (G ((n=1i)!  (nG+1) = nitj -
(ni) T EEDH((=-DEFD) M) L i1 (n=1i+j T
i .
. e — na",: 3
- IJ —1 ooy 8
Lemma 3. For integers r, k, i sat’is'fying kéé and i= | 'we have
3l AN AN .
). k—2i—4 - 5;4 s il ’ g
(r=3i=2) © -2 o
k= 21L ; o
K 3:— k-4
b) _"—W:E if l:—s—.
k=3i—1) . ¢ y
Proof. Since, for positive a‘and ﬁ, o ﬁ{[ +B] and ké—z-, we have

r—=3i . .
D) [k—2i_—‘4J,~_ (r=3i=51(k=2i=2)!(r—k—i)! -

[r—3i—2) S T2 k=i~ D32
k—2i-2)

. . . roo.. r—3i—
(k—2i—2)(k —2i—3)(r—k—1i) <—~§_~2§_2-(», ) )

(r—3i-D(—3i-3)(r—3i—8) ~ +—3i—4 (F-3i—3F

<lr —4i—4 i

7—31—'58'

l—l) k=3i—-)(r—k—i—D'(r—4i—1)! ~
k 3i—1

(r 41-—] T - - h
b) \k-3i—4 (r—4i—-S5)1(k=3i— ) (r—k—-i)!

 (k=3i=1)(k=3i—3)(k~3i=2)(r—k—i) _
B (r—4i—3)(r—4i,-.-4)(r-—4i—1)(r.r4i=-2) =

r—4i-2
v 7—31—[ —2——-31—3 (—)

r—4i-3 r—4i—41 (r—4i-2F é T

Llﬁ_—.@#Z r—6g—6 - ! . for N I O
T16r—4i-3r—4i-4T 167" T T

e
e
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Immediate induction consequences of our lemmas are

()= (") [grm] ™ it 12,
=) () == ®

i—1 1 y! r—=5Y . C k-1
(k 3:-1]£(T€) (k—4 if l§’=[ 3 ] (10)

Finally, by (8), with n=3 and 4 we have

-, 0.60.68 (9,

and

l+\l+\

Liseren-

3. 15 84 - 495 3003 1

= g+ 3+ e e 2 = 2481, {an
| 32
-and
L)L G, ('2)
= (4i— - 1
LA 2 12y
2 ;—1)(16) 16 162 (2

(s)
i-5
-220 1820 1
16‘ [2( ) (16) ] l+16 256 4096+65536 16 = 1.482.

-5

5. Proof of Theorem 3

Now we are able to prove the Theorem 3. Starting with (7) and using (9), (10),
(11), and (12) we get

|F|%(;:;)+{, 2. ,'_1)( ) ) 4;'——14](16) }(k 4)=

r-3 r—>5 r—3 r—=5
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Furthermore, recalling k= 2

r—3] (1—5
|F) k-2 4 k-4 __k——l_’_4 (k— l)(k —-2)(k—3)

(;—2} ( }+ (Z—_-Zl T r=2 -2)(r-3)(r—9

(2 )52 (5 ) WL O=90-6

= =

r—2 r-2)(r—-3)(r—4) 8 (r—3)(r—4)
This complete’s the proof. 0O
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- 'leing'mathematical semantics of nondeterministic -
and parallel programming structures
by means of attribute grammars

By R. ALVAREZ GIL

1. Introduction M dnkt Tk

A formal definition of the semantics of the programming languages is a preré:
quisite for the verification of specific implementations. The definition of the seman-
tics of a prograraming language can be formulated in different ways. Knuth [8] has
introduced attribute grammiars for thlS purpOSe Scott ‘and Strachey'{lﬂ] has develé)-
ped a mathematical method. -

Many papers has been published about the relatlon between attnbute grammars
and mathematical semantics. Mayoh [9] has shown that for any attribute grammar it
is possible to find an equivalent mathematical semantics. The reverse affirmation is
true only with several restrictions [3].

In this 'paper after the introduction of the “used notations ‘and the concept’ of
attribute grammar we give an example to show how it is possible to describe the
mathematical semantics of programmmg languages with the help of attribute gram-
mars in section 3. - )

In section 4 we descrlbe the nondetermmlstlc structures introduced by Dijkstra
[2] and give'their mathematical semantics by means of attribute grammars. For this
purpose it is.sufficient to employ the notion of the possible states usedin:the:descrip+
tion of the semantics of sequential programs, but many-valued functions are necessary
to give the semantics of statements and programs. In section 5 we have to extend the
notion of the possible states, too, to give the mathematical semantics of a parallel
programming language allowmg commumcatlon of sequcntlal processes through
Hoare s momtors

AR
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2. Attribute grammars

In this section we will follow in_general the notations used in [7].
An attribute grammar is defined by a 4-tupel

= (CFG, A, SR, SC)

where CFG=(N, T, P, S) is a reduced context-free grammar (N is the set of non-
terminal symbols, T is the set of terminal symbols, P is the set of productions or
-syntactical rules and S is the start symbol), A is a finite set of attributes, SR is the set
of semantic rules and SC is the set of semantic conditions.

A production p€P is denoted by p:X,::= X X,...X,,, where n,=0, X, N
and X,6NUT for all i (1=i=n).

For each X€N thereisa subset A(X) of A. The set of attributes A is partitioned
into two disjoint subsets A and A;, the set of synthesized attributes and the set of
inherited attributes: A=AsUA4; and AgN A,=@. Thus A(X) is partitioned into
two disjoint subsets 4s(X) and A, (X), so that A(X)S 4s, 4 (X)S A4, and
A(X)=As(X)U 4,(X). X

If p:X,::=X,X,...X, €P is a production, X€N occurs in p and a€A(X),
then X -a denotes the attribute occurrence of @ in p associated to X. The set A4,

of attribute occurrences of a production p is defined by A4,= U A,(X), where

A,(X)={X;-a:a€cA(X)} if X;EN, and A, (X)=9 if X;eT. 'I'he set OA, of out’
put attribute occurrences of a production p is defined by _

04,={X;-acA4,: (i = 0 and a€A4s(X)) or
(i >0 and X;€ N and-a€ 4,(X))},
and the set 14, of input attribute occurrences of a production p is defined by
IA,={X;-ac4,: (i=0 and acA4,(X)) or
(i >0 and X;€N and a€As(X))} = 4,\04,.

For each p€P there is a subset SR, of SR and a subset SC, of SC, the set of
the production semantic rules and the set of the production semantic conditions, so
that

‘SR= {J) SR, and SC= U SC,.

~pEP pEP

For each productlon pEP, for each attribute occurrence X;-acOA4, there is
one and only one semantic rule f€ SR, which determines the value of X;-a, and each
semantic rule f€ SR, determines the value of some output attribute occurrence
X;-a€ OA

Let s be a sentence of L(CFG) derived by

S—*»nyT> xuXvy— cuwuy = s

A node K represents the symbol X in the derivation tree ¢, corresponding to that deri-
vation and it is called an instance of X. For each attribute occurrence X - @ an attri-
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bute instance Ky -a is associated to Kx. The values of the inherited attribute instan-
ces associated to Ky are defined by rules in SF,, and the values of the synthesized
attribute instances associated to Ky are defined by rules in SF,. ,

{/l\

. u K, x U
r { |
w

A derivation tree augmented with the attribute instances is called an attributed
derivation tree. An attribute evaluations strategy is an algorithm to calculate the
value of each attribute instance. The single natural condition for the application of a
semantic rule f€ SR is that the value of the attribute instances which appear as ar-
guments of f were calculated previously. This condition generates ‘a dependence
relation on the attribute instances of the attributed derivation tree.

An attribute grammar is well defined if and only if for each attributed deriva-
tion tree the graph belonging to the generated dependence relation is noncircular.
A well defined attribute grammar is also called noncircular. The problem of the deci-
sion of attribute grammars noncircularity is NP-complete [5], but subclasses of the
class of noncircular attribute grammars have been introduced in which we can decide
in polynomial time whether an attribute grammar belongs to the subclass. Such

subclasses are for example the LR [1], the ASE [6] and the OAG [7] attribute gram-
mars.

3. Giving mathematical semantics by means of attribute grammars

As usual’in the mathemat1cal semantxcs we consxder a program asa functlon on
the set of the possible states

S = {{(vl, tl)’ - Uy n)} tleTvp iada4 tneTv’..}

where vy, ..., v, are all the variables which appear in the program, T, =T;{unva-
lued, undeﬁned} T,, is the set from which the variable »; takes its values. The variable
¥, in a state is unvalued if it has no value and is undefined, if its name is not valid in
that state. Later in section 5 we have to extend and consequently redefine the notion
of the possible states.

The semantics of the statements and a program p too are functions f,: §,—~S,.
In this section we define such functions for the programs of a very simple sequcntlal
language. For this purpose we need the following attributes:
Synthesized attributes:

name — to give a unique identifier for each variable of the program
T — to give the type of each variable and arithmetical expression
¥ — to give the set of declared variables and their types .
S — to give the set of the possible states .
g — a function g: ST’ to give the value of an arithmetical express1on in a
given state, where T is the type of the arithmetical expression
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h —:a-function h: S- {true false} to nge the value of a logxcal expressmn m
‘a given state :
f — a function f: §-§ to glve the semantics of the statements and the pro-
grams of the language.
Inherited attributes:
¥V’ — to give the variables valid in the-environment and their types
S§’ — to transmit towards the levels of the tree the set of the possible states

Nonterminal symbols and their attnbutes :
program has ¥V, S, f
declaratlon_statement has V,f .
declaration_list has V' ‘
declaration has V'

variable__list has V'

variable has name

type has T _
statement__list has V’ f v,Ss’
statement has V, f, V', 8’
expression has g, T, V’ S’
bool__ expressxon has h, V’, §’

Syntactlcal rules and their semantlc rules and semantic conditions:
(In a production X,::=X,X,...X,, (n,=0) we will omit the semantic rules of the
form X,-a=X;-a (1=i=n,) if there is no X; (1=j=n, and i#j) which has the
synthesized attribute a, and we will omit the semantic rules of the form JX;-a=
=Xp-a (1=i=n))).
i) program::=begin declaration__statement; statement__list end
program. V=declaration_statement. ¥ Ustatement_list.. ¥
program. S ={{(v, 2,):(v, T)€program. V} t,€ TU {unvalued,
undefined}
program . f(s)=statement__list f(declaranon_statement S())
statement__list. V' =declaration__statement. ¥’
statement__list. ' =program. S
) decla:atxon_statement :=var declaration__list
declaration_statement . f(5)={ (v, 5(v)): there is  not (v, TE
declaration__list. V. for which
‘ vl—v}U{(v, unvalued): there is (v,, T€
: declaration__list. V' for which » =2} -
iii) declaration_list, ::=declaration; declaration__list,
. declaration__list, - ¥=declaration. VU declaratlon_hstg
condition: if (v, T})€declaration.V and
(v,, Tp)€declaration_list,. V' then o, #v,
iv) declaration__list::=declaration
v) declaration::= variable__list of type
declaration. V={(v, type.T): (v, Q)Evanable_llst v}
vi) variable__list,::= variable, variable_list,
variable__list, . V=variable_list,. ¥ U{(variable.name, 0)}
condmon if (v, @)Cvariable__list,. V then: varlable
. name>v. :
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vii) variable__list::= variable C
variable__list. V—{(varlable name, ﬂ)}
cviii) statement_list,::=statement; statement.-list, :
statement.__list, . ' =statement. VUstatcment_hst.‘x
statement.__list, . f(s) =statement__list, . f(statement . f(s))
condition: if (v, Ty)€statement. ¥ and (v,, T)€
statement_hst2 V then v,=vs -
ix) statement__list::=statement :
x) statement ::= variable: —expressnon
statement. V=0
statement . f(s)={(v, 5(v)): v >variable. name} U
(variable.name; expression. 2())}
condition: there is (v, T))€statement. ¥V’ for whlch
v=variable.name and T,=expression.T
xi) statement,::=if bool__expression then statement, else
: statement, fi
statement, . V=statement,. V'statementy. V'

statement,. f(s), if bool_expression.
h(s)=true

statements . f(s), if bool _expression.
h(s)=false

statement, .f(s)=

xn) statement1 :=while bool-expression do statement, od

statement, f (statement,.£(s)),
if bool_expression.A(s)=
true

s, if bool_expression.(s)="false

statement, .f(s)=

xiii) statement::=begin statement_list end
Xiv) statement::=begin declaration__statement; statement__list end
statement . V=declaration__statement. ¥'Ustatement__list. ¥V
statement S()= {(v) )s(ta)t)ement_hst f(dec]aratxon_statement
f(s
there is not (v, Tl)Edeclaratlon_statement 14
for which v, =v}U{(v, undefined): there is
(v,, Ty)€declaration_statement. V' for which
D=0
statement__list. V" =statement. V" Udeclaration__statement. ¥V’
condmon if (vy, Tl)Edeclaratlon_statement V and (vz, T D€
. ~-statement.__list. ¥ then vl#vz
It is easy to show that the attribute grammar given above is well defined (non-
circular), but we do not deal with this in our paper.
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4 Semantics of nondeterministic structures

The syntax of the nondeterministic programming structures introduced by Dijk-
stra can be given by a context-free grammar as follows:

i) statement::=alternative..construct
1i) statement::=repetitive__construct
iii) alternative_construct::=if guarded__command._set fi
iv) repetitive__construct::=do guarded_command__set od
v) guarded__command__set::=guarded__command {(Jguarded__command__ set
vi) guarded__command__set::=guarded_command
vii) guarded__command::=guard —~guarded__list
viii) guard::=bool__expression
ix) guarded__list::=statement__list

From the context-free grammar given above it is clear that Dijkstra introduced
two new statements: the alternative construct and the repetitive construct, based on
the concept of guarded commands. The semantics of these statements was given by
Dijkstra in [2] with the following words: “The alternative construct is written by
enclosing a guarded command set by the special bracket pair if ...fi. If in the initial
state none of the guards is true, the program will abort; otherwise an arbitrary
guarded list with a true guard will be selected for execution. The repetitive construct
is written down by enclosing a guarded command set by the special bracket pair
do...od. Here a state in which none of the guards is true will not lead to abortion but
to proper termination; the complementary rule, however, it will only terminate in
a state in which none of the guards is true: when initially or upon completed exe-
cution of a selected guarded list one or more guards are true, a new selection of a
guarded list with a true guard will take place, and so on. When the repetitive construct
has terminated properly, we know that all its guards are false”.

In the case of nondeterministic structures to give the semantics of the alternative
construct and the semantics of the repetitive construct it is necessary to use functions
f: Sp—~25 which can be obtained as synthesized attributes. It is clear that for non-
determlmstxc statements it is not sufficient to use functions of the type f: S,~S,
because the state valid at the beginning of the execution of a nondeterministic state-
ment do not determine a unique state valid at the termination of the statement, that
is more than one state can be the real state when the program finished the execution of
the nondeterministic statement.

Now we give an attribute grammar to obtain as synthesized attribute the func-
tions which give the semantics of the nondeterministic statements:

Synthesized attributes:
J — to give the function f: S,~25, which describes the semantics
h — a function h: S, {true, false} to give the value of a logical expression in
a given state

Inherited attributes:

Nonterminals and their attributes:
statement has f
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alternative._construct has f

repetitive__construct has f

guarded__command__set has f -

guarded__command has f RS
guarded_list has f ‘ S
statement__list has f o . -
guard has A

bool_expression has A

Syntactical rules and their semantic rules:
1) statement::=alternative_construct
statement . f=alternative__construct.f
ii) statement::=repetitive__construct
statement . f=repetitive__construct.f -
iii) alternative_construct::=if guarded__command_set fi
alternative__construct . f=guarded__command_set f *
iv) repetitive__construct::=do guarded,_command__set od
- {U repetitive__construct .f(s")
it s’¢ guarded__command
repetitive ’
_Eonstruct J(5)= T_set S9)
. ) if guarded__command
_set. f(s)=0
s, if guarded_command_set f(s) 9 -
v) guarded_command_setl = guarded_command[]guarded command
—sety
guarded__command__set,. f(s) guarded_command f(s)U
guarded__command__set,.f(s)
vi) guarded__command__set::=guarded__command
guarded__command__set.f=guarded__command.f
vii) guarded__command::=guard ~guarded__list

guarded__list . f(s), if
guarded__command.f(s)={ - guard.h(s)=true
0, if guard.h(s)=false

viii) guard::=bool__expression
guard.h=bool_expression. h

ix) guarded_list::=statement_list .
guarded__list f—statement_hst J

Note: it is easy to see that the program aborts in an alternative construct if and
only if the alternative construct is executed in such a state s for which the function f
associated with the synthesized attribute to the alternative construct takes the empty
set @ as its value. Furthermore this occurs if and only if all the guards in _the guarded
command set of the alternative construct are false. :

5 Acta Cybernetica VII/4
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- 5. Mathematical semantics of.parallel programs and menitors

We will deal with parallel programs which have the following structure:
(definition of the monitors);
process,: process var o}, ..., v} ;

(statements of the process,)

end of process;
and ;

(descrlptron of the processs, ..., process, ;)
and :
Process,,: process var of,...., g

.. (statements of the process,)

end of process,,
end

The processes communicate with each other through Hoare’s monitors [4]. A
monitor is a collection of local data and procedures and has the following structure:
momtor_name momtor

(declaratlon of data local to the monitor)
procedure proc_name (...formal parameters ...);
. T by ;

. (procedure body).

“end;
(declaratlou of other procedures local to the monitor);

(mmallzatlon of local data of. the monitor)

end

To call a procedure of the monitor, it is necessary ‘to glve the name of the moni-
tor and the name of the desired procedure: :

monitor__name.proc__name (... actual parameters )

The procedures of a monitor are common to all ex1stmg processes, any process
can at any time attempt to.call such a procedure. However, it is essential that only
one process at a-time can be executmg a procedure body, and any subsequent call
must be held up untll the previous call has been completed or has.been held up. A pro-
cess in execution. «can be held up by a wait statement and can be resumed by a -signal
statement. The structures of these statements are: . - : A

cond__variable.wait; cond__variable.signal '

The cond__variable is a new type of variable, a condition variable, which is sui-
table to differentiate the reason for waiting. In practice, a condition variable is an
initially empty queue of processes which are waiting on the-condition.
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A signal operation is followed unmedlately by resumption of a waiting process,
without the possibility of an intervening procedure call from a third process. Wait
operatlon is followed immediately by resumption of a process delayed by a signal
instruction. New procedure can be executed only if there are not processes delayed
by sngnal

- Now, after thlS short and necessary mtroductmn we will define. the set of the
possnble program states by

B S = {{(vl, A, . ,(v,,l, t,l,l e (vm tm) (p:'m, t:'m), a,q), ..., (m, q,,,)}:
TR -.tl, . t,l,!,:...‘, 2, ..,meT and @ - 4 (U (ZF X MCP))*} '
JEM . .

j

where T — is the type of the variables (for simplicity all the variables have the same
type),
M is the set of declared monitors,
ZJ is the set of the possible states of the monitor j,
".-MC7 is the set of the possible monitor calls relative to the monitor j.

For each monitor j we define a function g;: MC/—~2%' which is obtained as a.
synthesized attribute and is the function which gives the semantics of the monitor.j.
The g; is a many-valued function because in the general case, for the termination of
a monitor call the execution of other monitor calls are necessary which can not be
predetermined, and furthermore the calculation of g; have to be started from all pos-
sible states of thé monitor j in-which the call might occur. To each process / we asso-
ciate a function f;: S,—~25 which is also obtained as a synthesized attribute.

-‘Let e: j-j (»)EMC! be a monitor call in the process 7, where j is the called
monitor, j; is the called procedure and »” the actual parameter. We associate to this
monitor call statement a function f,: S,—~25 which is defined by

 J(s)=S5"S S, and s'€S” if and only if:

a) s’ (v)=s(®) for all ) (v#v’) '
b) s (p)—s(p) for all p (1=p=m, p¢z)
¢) s’(v')=z; (parameter of j)
d) ()= s(t')oz’ (cal])
DR AS- A0 L

where zJ (parameter of ],‘) nges the value of the parameter of the procedure Ji at ‘the
state z; of the monitor j, and zj (call) grves the execution sequence of monitor calls
which leads to z; and the monitor states in which the monitor calls were executed.
Because of this 1t is clear that in the elements of Z/ there is a pair of the form (ca]l x),
where xE(ZJ X MCH*.

It is necessary to introduce the pairs (i, ¢) for 1=i=m in the set of poss;ble
program states because it is possible to decide whether a program state is really a
possible program state only by the comparision of the sequences g; (1=i=m).
Only when the sequences g; are in correspondence with each other the program state
is really a possible program state. The condition for this correspondence is that it is
possible to find a sequence a,a,...a,6( | (Z/X MC?))* for which the following

jem

sentences are true:

L
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i) if a€ZJ><MC' (1=i=n), then agq; . .
- -11) -if b appears in 9 (1=i=m), then b appears in: a1a2 .a,
- i) if b precedes ¢ in g;, then b precedes c in a,4;. ..a, : :
. iv)-if b precedes ¢ immediately in ¢;, and b-and ¢ belong to the same momtor call
of the process 7; then b precedes c in a,a, .. -4y, and if b precedes d and d
precedes ¢ in a, a, ... a, then the monitor called in d is dlﬂ'erent from the moni-
tor called in b or c.
v) if b is the first in g, a, ... a, which belongs to (Z’ X MC’) then the first compo—
nent of b is-the initial state of the monitor j.
We do not give the attribute grammar for monitors and parallel processes be-
cause it is very long and can be constructed from the principles given in this section
and the method described in the preceding sections.

6. Conclusions

In our opinion the attributé grammars are 'a powerful tool to give the mathe-
matical semantics of programming languages inthe case of nondeterministic program-
ming structures or in the case of parallel processes communicating through Hoare s
momtors too.

- Attribute grammars give'a mechamzable method to obtain for any program of
the -language the function described by the program; and consequently an attribute
evaluation strategy can be viewed as a compiler” which translates the program
into a mathematical ‘function. ’ T .
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This paper describes attribute grammars for the description of the mathematical semantics of
programming languages. It concentrates on the nondeterministic programming structures introduced
by Dijkstra and parallel programming structures in which sequentlal processes communicate through
Hoare’s monitors. . . Lo
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A new programming methodology using attribute grammars - *

E. SimoN

Keywords: attribute grammars, automatic program generation, modular decomposition,
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Abstract

Attribute grammars have been constructed for describing the static semantics of programming
languages and have been shown useful in a wide variety of automatic compiler generations. This
paper presents a new application of attribute grammars to specify hierarchical and functional pro-
grams. An algorithm to evaluate attribute grammars is demonstrated. Several attributes can be evalu-
ated in paraliel too. A simple model for generating PASCAL like programs is given. A new meta-
language PLASTIC is introduced as an adequate tool for specifying hierarchical and functional
programs. A simple PLASTIC program is presented to help attain the new programming metho-
dology. -

1. Introduction

Over the last decade there has developed an acute awareness of the need to
introduce abstraction and mathematical rigour into the programming process. This
increased formality allows for the automatic manipulation of software, increasing
productivity, and, even more importantly, the managebility of complex systems.
Along those lines, attribute grammars (AG) of Knuth [6] constitute a formal mecha-
nism for specifying translations between languages [2, 8, 11]. By automatically gene-
rating the inverse translators we would be able to translate any program written for
one processor into the command language of any other processor [13]. There are some
methods for incremental evaluation of AG to produce so called incremental compi-
lers [3]. An essential question is how to verify the correctness of the AG specification.
In contrast with the attribute evaluation problem, this has not been studied well
and only a few results have been reported up to now [1, 5].

Although several efforts have been made to obtain efficient evaluators, the
first good algorithm for attribute evaluation has been proposed by T. Katayama [4].
Principally this algorithm accepts absolutely noncircular ‘AG although extension to
general noncircular AG'is straightforward. In the model nonterminal symbols are
considered to be functions which map their inherited attributes-to their synthesized
attributes and associate procedures to realize these functions with: the nonterminal
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symbols. The entire AG is then transformed into a set of mutually recursive proce-
dures. When applied to an AG whose attribute evaluation process can be performed
in a single pass from left-to-right, the algorithm can generate an evaluator which can
be combined with the top-down parsers to result in the so-called recursive-descendent
compilers if the underlying CF grammars are LL(k). However data dependency
sometimes allows several attributes be evaluated parallel supposing that we have
associated one procedure for each synthesized attribute.

As it is widely recognized, hierarchical specification techniques are the most
promxsmg methods in constructing complex and large softwares in well structured
way, and in fact they are the most successfully used ones in practice as it is répresented
for example by SYCOMAP [10]. In these methodologies softwares are hierarchically
decomposed into modules and they are successively refined until concrete and machine
executable programs are obtained from their abstract specifications cf. CDL2.
Although they are extremely natural and useful the current states seems to be that
antomatic program generation from the specifications and their verification are pre-
vented due to the lack of strict formalization. :

The hierarchical and functional programming methodology presented in this
paper is based on attribute grammars. Applying the results of [4], we obtain a new
program specification technique which stands mechanical program generation.
In our approach we consider a program specification as an AG where program modu-
les are represented by nonterminal symbols of the grammar, module decompositions
correspond to production rules, input and output data of the modules correspond to
attributes of the nonterminal symbols and computations done in the modules are
specified by the semantic rules. Our methodology has the following three desirable
properties. It allows hierarchical descriptions of complex functional programs in a
very natural way. We have means to mechanically generate efficient procedural type
programs from the descriptions and verification of their correctness can also be per-
formed hierarchically.

In this paper we give our formalism and then the metalanguage PLASTIC is
stated. Before presenting the program generation algorithm a simple example is
shown. The PLASTIC system, implemented in PASCAL is now under development.
The PLASTIC compiler is specified in HLP/PASCAL metalanguage [12].

-2. Formal description

Essence of our approach is to use a mechanism baséd on'the Knuth’s attribute
grammar [6] to describe programs. Therefore a hierarchical and functional program
(or s1mply HFP) is a 6-tuple :

(M, mg, A,D,V, F)
where

(1) M is a set. of modules. We assume that M contains the special modul called a
. null module which is used to termmate decomposmon The nu]l modul is denoted
by null symbol. _
(2) mye M _is an initial module.
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(3) Ais a set of input and output attributes of modules. With any modul except the
null module, there is associated a set of input and output data called attributes
- and the set of attributes of X€M is denoted by A[X]. A[X] is a disjoint union of
the set IN[X] of input attributes and the set OUT[X] of output attributes. They
are called inherited and synthesized attributes, respectlvely, in the AG -termi-
nology.
(4) DcMXM* is a finite set of module decompositions. An element d¢D is called
a decomposition and is denoted by -

d: Xy - X1 X,... X, cond C,;

for X, ..., X,€ M. We say that the module X, can be decomposed into modules
X1, Xz, ..., X, if a decomposition condition C, is satisfied. C, specifies the condi-
tion in terms of input attributes of X;. When a is an attribute of X, that is,
ac A[X,], X,-a is called an attribute occurrence of the decomposition d. It is
called an input occurrence (by an alternative denotation Xila) if acIN[X;]
and an output occurrence (Xda) if acOUT[X,].

(5) Vis a set of value domains of attributes.

(6) Fis a set of attribute mappings for describing functional equalities among attribu-
tes. Let d be a decomposition’ Xy,—~X; X, ... X,€D. For each output occurrence
v=Xgta with acOUT[X,] and input occurrence v= X ja with a€IN[X;], 1 =k=n,
there exists a function f; , to compute the value of » from the values of other attri-
bute occurrences vy, ..., v, in d. The set D, ,={v,, ..., v,} is called dependency
set of f ,. If we denote the value domain of v by domam (), f;,, is a mapping
‘domain (v) X ... Xdomain (v,)-domain (v).

That is, in every decomposition functions are specified to compute the values of out-
puts for main module and inputs to submodules.

Let us define a decomposition tree which shows the result of all decompositions
applied to the initial module m,. It corresponds the derivation tree of CF grammars
and is defined recursively by the following
(1) the null module is a decomposition tree, and
(2) if Ty, ..., T, are decomposition trees with the root module X;, ..., X,, respecti-

vely, and X,—~X;...X, cond C is a decomposition, then the tree

XO[Tla sy Tn]

which consists of the root X, and the subtrees T3, ..., T, is a decomposition tree.

A computation tree T is a decomposition tree whose nodes are labelled by attri-

bute values in such a way that for any module X, in T and the decomposition

d: Xy—~X,...X, cond C, applied at the module the following conditions are satlsﬁed
() the decomposmon condition C, is true, :

(ii) for any output occurrence » of X, or input occurrence » of X,; 1=k=n,
the following functional equality holds '

0 = f3,(v15 -es v,,,)" where D, , = {v, ..., U}

It should be noted that a computation tree represents a particular execution of
an HFP corresponding to the particular-values of input data fed to the initial module.
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-3. The PLASTIC metalanguage

PLASTIC is a new metalanguage designed to support the use of abstractions in
program construction. Work in programming methodology has led to the realization
that three kinds of abstractions — procedural, control, and especially data abstrac-
tions — are useful in the programming process. Among these, only the procedural
abstraction is supported well by conventional languages, through the procedure or
subroutine. ALPHARD [9] and CLU [7] provide, in addition to procedures, novel
linguistic mechanisms that support the use of data and control abstractions. In con-
tradiction to these languages the PLASTIC system is altogether based on a few
results of AG. In the module specifications, control abstraction is realized by the
semantic functions and decomposition conditions. Data types can be refined successi-
vely as the decomposition proceeds.

A PLASTIC program consists of five parts. We first define some global data
types for the procedures and functions. The auxiliary functions and procedures that
are used in decomposition rules are declared in procedure declarations. The allowed
primitive functions and procedures form a subset of those of PASCAL, since both the
procedure type and the parameter types are restricted to allowed input-output attri-
bute types. The interpretation of procedures and functions is the same as in PASCAL.
Comments are indicated by the character %, whose appearance outside a proper
string means that the rest of the line is interpreted as a comment and is skipped by
the system. The strings belonging to the token class IDENTIFIER begin with a letter
which is followed by letters or digits or underscores.

Before the module specifications the name of the initial module is given. The
values of the input attributes of the initial module are assigned by read operations.
The main part of a PLASTIC program is the module specification. We associate a set
of input and output data with each module X. Computations done in the module X, is
specified decompositionwise by giving a set of functional equalities which hold among
attributes of X, and its submodules X;, ..., X,, and thus they are reduced to the com-
putations done in submodules. Repeating the module decomposition process until
terminal modules are reached completes the program design. If there are recursive
modules or if there are modules whose decompositions are not unique there may
occur numbers of trees each of which corresponds to a specific computation. We have
attached declarations for data types of attributes to decompositions. They are refined
successively as the decomposition proceeds. Different decompositions for a module
are separated to versions. The input attribute occurrence can be denoted by} while the
output occurrence by t. In the attribute occurrences the name of the module to be
decomposed must not be specified.

Simple copy rules of the form “X - a:=Y - b” can often be left unwritten by apply-
ing the so-called elimination principle, if so desired. It is applicable in two situations.
First, if a is an output attribute, then X must be the left-hand side of the decomposition
and ¥ must be the only module on the right-hand side of the decomposition having
an occurrence of attribute a. Alternatively, if a is an input attribute, then ¥ must be
the left-hand side of the decomposition and X can be any of the modules on the
right-hand side of the decomposition. In both cases the nonexistence of a rule for
X -a is an indication to the PLASTIC system to include the copy rule in the decom-
position. In the module and submodule specification the input and output attributes
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are separated by semicolon. The keywords “description”, ‘“‘specification”, “mo-
dule”, “submodule”, “version”, “‘condition”, etc. can be abbreviated to “descr”,
“spec”, “mod”, “submod”, “vers”, “cond” etc. We assumed that a PLASTIC prog-
ram is deterministic, that is, decomposition conditions of distinct decompositions
with the same left-hand side module do not become true simultaneously for any value
of its input attributes. ‘

In the last part of a PLASTIC description the user can prescribe the implemen-
tation commands. As we shall see data dependency sometimes allows several attribu-
tes to be evaluated simultaneously. In our system these attributes are evaluated in a
single procedure call, because this reduces overheads due to procedure activations
and increases chances of parallel execution. The keyword ‘‘parallel” stands for these
output attributes which have to be evaluated simultaneously if it is possible. The
default option for attribute evaluation is sequential. One of the major goals of PLAS-
TIC is to provide a mechanism to support the use of good programming methodology.
To meet this goal, we must provide more than just the language mechanism for the
generator: we must also provide a way to specify their effects. A natural means of
doing this for implementation is to specify how to realize the evaluation of an attri-

‘bute. There are three different kinds of realization. The default option is procedural.
In this case for each module X and output attributes a single procedure will be genera-
ted. The keyword “macro” stands for those output attributes which are evaluated by
executing a macro call. If there are same precompiled procedures for so called nuil
modules, they can be activated by a call “statement™.

The problem of data abstraction and its detailed discussion is beyond the scope
of this paper except giving a comment that every hierarchical specification metho-
dology should be equipped with a hierarchical data abstraction mechanism and in
the case of PLASTIC the algebraic abstraction would be most appropriate.

Figure 1 shows a PLASTIC solution of binary conversion. Suppose we have a
file containing record of binary characters. In order to verify the conversional algo-
rithm we have to compute the value of binary number b=b;b,...b, in two ways.
Design a program that reads the character file and compute the binary numbers vall
and val2. The initial modul is START. We have attached declarations for data types
of attributes to decompositions. We have assumed the existence of several functions
on primitive data types, which are denoted by bold-face type letters. Their meaning will
be selfexplanatory from their names. The common declarations for types, symbols
and rule are written in the head of module descriptions. Copy-rules should not be
specified, because they are generated automaticaily by the system.
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4. Translation of PLASTIC program

‘Besides its static description, one of the outstanding features of PLASTIC speci-
fication technique is that we have means to translate mechanically the specification
into machine executable forms. This is called attribute evaluation in the attribute

grammar theory.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%_%%

%% % %
% % % %
% % % %
% %% %

%% %%

PLASTIC description for computing the value of binary

number b = b162...bn in two ways given by
vall (b1b2...bn) = bl % 2(n— 1)+ vall (b2...bn)
val2 (b1b2...bn) = 2xval2 (bl...bn— 1)+ bn
vall() =val2() =0

%%% %
%% %%
%% %%
%%% %
%% %%

%6% % % % % % % % %0 % % % % % % % %6 % % % % % % % % % % % % % % % % % % % % % % % %% % % % %

begin description bin__conv
common data types
vall, val2, pos: integer; neg: boolean

procedures

procedure read (var input: file of elem); ...;
function last (input: file of elem); elem; ...;
- fanction remain (input: file of elem): boolean; ...;

initial module is start

- specifications
% %1 % %

modaule start (}input; {vall, tval2);
types input: file of elem;
submodule sign (jelem; tneg);

version: 1

list (Jinput, jpos; tvall, tval2);

rule start=sign list;

do input < =read (input);
list}pos:=0;
vall :=if signineg then -list{vall else listtvall ;
val2:=if signtneg then -list}val2 else listival2;
signjelem:=head (input);
list}input :=tail (input);

cond not empty (input);

version: 2

rule start=; do vall :=0; val2:=0;

cond always;
end start;
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% %2 % %
module sign(jelem; tneg);
- types elem: character
‘rule’ 51gn =

version: 1

do neg:=true;

cond elem =*“—"";

. .version: 2

‘do negi=false; cond elem=*+""; end sign;
% %3 % % o

module list (jinput, }pos; tvall, tvai2);
submodule list, digit (input, {pos; vall, 1va12)
version: |

rule list=digit;

- do % digitjpos:=pos; - . copy-rule
% digit{input:=input; copy-rule
% vall :=digittvall; copy-rule
% val2:=digittval2; -copy-rule

% copy-rule will be generated w1thout spemﬁcatlon
cond empty (remain (input));

version: 2

rule list =list digit;

- do digitjinput :=last(input); -

listjinput :=remain(input);

listypos  :=pos+1;

vall " =listtvall +d1g1tfva11
val2 :=2*1isttval2 + digittval2;
cond always; '
end list;
% %4 % %

module digit (jelem, pos; ivall, val2);
types elem: character;
rule digit =

version: 1

do vall :=0; val2:=0;

cond elem=*0"";

version: 2

~ do vall :=2"*pos; val2:=1;
cond elem=*‘1";

end digit;

implementation

~ vall, val2: parallel;

% " : statement;

" sign, digit: macro;

_start, list : procedure;

end description bin__conv.

Figure |
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4.1. Notations

Let d: Xy— X, X, ... X, be a decomposition. A dependency graph DGy for the de-
composition d, which gives dependency relationship among attribute occurrences
of d, is defined by

DG4 = (DV4, DEy)

where the node set DV is the set of all attribute occurrences of d and the edge set
DE, is the set dependency pairs for-d. Formally

DV, = {X,- alk— 0,...,n and aEA[X.]}
DE, = {(v;, vz)lvleDd vz}

When a computation tree T is given a dependency graph DGT Sfor the computaaon
tree T is defined to represent dependencies among attributes of nedes in T. DGy
is obtained by merging together DGy’s according to the decompositions in T.

Let T be a computation tree with root node X€M. DGy determines an IO
graph TIO[X, T] of X with respect to T. It gives an 1/O relationship among attributes
of X, which is realized by the decomposition tree T: That is

10 [Xa T] = (A [X]’ EIO)

when an edge (7, s) is in E,oCIN[X] X OUT[X] iff there is in DGy a path connecting
the attribute occurrences X}i and Xts of the root T. -

For general PLASTIC programs there may be finitely many 10. graphs for
XeM and we denote the set of these 10 graphs ‘by I0(X), that is

IOX)={IO[X, TI|T is a computation tree}.

Let 1I0(X)={I0,, ..., IOy} where I0,=(A[X,], E;). A superposed 10 graph
IO[X] is defined by '

I0[X] = (4IXLE), E= UE
k=1

to represent possible IO relationship. a

In order to define a set of attributes to be evaluated in parallel, let us‘intfoduce
an OI graph the dual concept of IO graph, which specifies how the values of mhented
attributes are effected by other attributes. Atk

Let T be a computation tree which contains Xe€M as-one of its' ]eaf nodes
An OI graph OI[X, T] of X with respect to T is given by

OI[X, T] = (A[X], Eqi[T1]), Ex[T] AIX)XIN[X]

where (a, )€ Eqi[T] iff there is in DGy a path from v, to v, where v, and 2; are
nodes for attributes a and 7 of the leaf node X. A superposed or graph is deﬁned ina
similar way as IO[X]. o

We further define a dependency graph DG[X] of the module X as the umon of 10
graph and OI graph, that is

DG [X] = (41X}, EoUEo).
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For .an absolutely noncircular PLASTIC description D a set OCOUT{X] of
output attributes is sa1d -evaluable in paral]el 1ff no sl,s2€0 are connected in

DG[X].
An augmented dependency DG} for the decomposmon dis

DG} = (DV;, DE})

where DV}=DV,, the set of attribute occurrences in d, and e¢DE} iff e€DE,’
or e=(X,-i, X,-s) for some (i, s)€IO[X,] and k=1,...,n. DG} represents a
relationship among attribute occurrences in d which is realized partly by attribute
mappings and partly by computation trees. »

A PLASTIC description.is said to be absolutely noncircular [2] iff DG} does not
contain cycles for any de D. For an output attribute s of a module X of a PLASTIC
program, its input set in [s, X] is defined to be a set of input attributes whlch are
required to evaluate s, that is

in[s, X1 = {i|(i, s) is an edge of 10[X]}.
We extend the function in [s, X] to allow such O as its first argument

in[0, X]1= |J inls, X].
2€0

4.2, Translation algorithm

“Let- X be a module of an absolutely noncircular PLASTIC description\
P=(M;mqy, A, D, V, F) and s an output attribute of X. We associate with each pair
X, s a procedure _

RX.,s(vl’ cees Ups U)

where #,, ..., v,, are parameters corresponding to the input attributesin /=in[s, X]
and v is a. parameter for s. It should be noted that input and output parame--
ters are separated by semicolon. This procedure is intended to evaluate the output att-
ribute when supphed the. values of -input attributes in I..

When given the value of the inherited attribute i, of the initial module m, we
begin to evaluate the output attrlbute s, of m, by executing the procedure call state-
ment

call R, o (up; o)

where u, and v, are varlables corresponding to #, and so, respectively.
- Now we are ready to describe how to construct the procedure Ry (vy, ..., Op; ).
The first thing the procedure Ry, , must do in its body is to know the decomposmon d
which is applicable to the module X and perform a sequence H, ; of statements to
compute the value of attrlbute occurrences in d, therefore Ry, is constmcted in the
following form, - : a

procedure Rx,s(vl, s O} v) T o

if C; them H, , else

if C,, then H, , else

end
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where 'd,, d;, ... ate decompositions (versions) with left side module X. We have
assumed that the PLASTIC description is deterministic, that is decomposition condi-
tions of disctinct decompositions with the same left side module do not become sunul-
taneously true for any value of its input attributes.
The sequence H, , is obtained in the following steps.
(1) Make the augmented dependency-graph DG}.
(2) Remove from DG} nodes and edges which are not located on any path leading
to Xots for iel=in [s Xl - Denote the resultmg graph by

DG?[s] = (V, E).

(3) To each attribute occurrence x¢ V’=V— {XoH|i€ IN[Xo]} assign a statement
- st[x] for evaluating X as follows. '
Case 1. If x=Xi - for. some IEIN[XL] and k=1, ...,n or x=Xygs(= v)
for the attributes s€ OUT[X,], then st[x] is the assngnment statement :

x :‘:Jd,x(zli ey Zr)

where . f; . -is the . attribute mapping for the attribute occurrence: x- and
Dy =4z, ..., z).

Case 2. It x=X\t for some tcOUT[X] and k=1, ..., n, then st[x] is the
procedure call statement

call Ry, ,(wy, ..., w; X)

where Wys oo W = {Xbi]i€in[t, Xk]}

(4) Let x5, ..., x5 beielements in ¥’ which are listed according to the topological
ordermg determmed by E, i.e., if (x,, x,,)EE then a<b. Then H, becomes.as
follows. :

stlxy]; ... st [xn]

"Note that statements in H, , satisfy the single assignmient rule. It is easy to see
that ‘the. ordering x,, ..., xy ensures values of attribute occurrences are determined
consistently if the PLASTIC -description is absolutely nonéircular.-

We first construct the procedure R, , by the algorlthm we have stated. Body of
R, s, may contain calls for other procedures Ry’.’s and they are constructed in the
same way. Repeat this process until no more new procedures appear.

In the case of parallel evaluation we assign a single procedure

RX 0(01: ces Ups Uys ooy ll,,)

to each set O which is evaluab]e in parallel instead of assigning n procedures where
u, ..., U, ate parameters corresponding to output attrlbutes in O and ,, ..., v, are
those for attributes in in[0, X].

Construction of Ry, , parallels to that of Ry except a few points. As in the case
of RX s» the procedure Ry, , has the following form.

procedure Ry (v, ..., v, ty, ..., U,)
if Cy then H,; o(vy, ..., vps 4y, ..., u,) else
if C,, then H; o(v,, ..., v Wy, ..., u,) else

end



A new programming methodology using attribute grammars o . 435

For a decomposition X,—~X;X,...X, and O€S[X,] which is evaluable in .

. parallel, construction of statement sequence Hjy, o proceeds in the following steps.

(1) Make DG}.

(2) Make DG* [O]=(V, E) by removing from DG} nodes and edges which are not
located on any path leading to Xgis for s€ 0.

(3) For each k=1, ...,n decompose the set

into a set of mutually disjoint subsets

Okl, 0k2a “ecy Okr

such that each O,; is evaluable in parallel. When the decomposition is not unique,
we should choose a maximal decomposition, that is, one where the number »
becomes minimum, to attain high efficiency of evaluation.

(4) Let DG;[0)=(V’, E’) be a graph obtained from DG}[O] by grouping elements
of each O,; into a single node »,;€ V. Formally

V' = {glv]|vcV}
E’" = {(glu), glv])l(u, )EE}
where g is a function defined by

v; if v=DX,-s for some s,k and j such that s€0,;

-g[v]={

v otherwise.

(5) To each element x in Vo=V’ — {X,-ilicIN[X,]} assign a statement stx] as fol-
lows.

Case 1. If X—-Xku for some zEIN[Xk] and k=1,..,n, or X=Xys then
st[x] is the assignment statement

X :=f:i,x(zl’ LRRE ] Zr)

Dd.x = {Zl, eeny Z'}.

where

Case 2. If X=uw,; then st[x] is the procedure call statement

call Ry, o, (W15 .- Wp3 X1, oees X)

where
[6)) Wi, -or Wi} = {Xibili€in[Oy;, X, ]}
and
2 {x15 s X} = { X1 2|t€0)-

(6) Same as 4. for H, , in the sequential case.

6 Acta Cybernetica VII/4
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~iTranslation of:the entire attribute grammar into the corresponding program is
similar.tothe one given in this section: Let.O be a set of output attributes of the initial
modul. We start from constructmg the procedure RS o and then proceed to procedu:
res which are called in it. - - ;
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Problem solving based on knowledge representatlon
and program synthesis

S. S. Lavrov

Computers cannot solve problems, they are only able to execute programs. A
man can solve problems if he has necessary knowledge and experience. In informa-
tics to solve a problem means to find and to describe a sequence of computing ope-
rations leading to the intended result. If a problem is solved in that sense then a
program capable to get an answer to that single problem is created. Possibly the
program can supply solutions of a number of problems differing however only in
their input data.

A man can usually do more than this. He knows the field of his activity — an
object area as we shall call it. He is able to solve many essentially different problems
in this area.

From this standpomt a challenging problem arises — how to transfer human’s
knowledge and experience to a computer, how to make it capable to solve a large
class-of problems, not just one, in a specific area. The problem is by no means a new
one. It is known a number of ways to solve it.

These traditional ways are: program packages (if one takes an algorlthmxc
approach), data bases (when an informational approach is preferable), expert systems.
Every program package or expert system usually has its own built-in control device.
In the case of data bases this role is played by a data base management system. Such
a system enables us to create different data bases oriented to different object areas.
A similar approach is known in connection with expert systems. ;

There exist also systems based on more abstract form of knowledge represen-
tation. Among them the language PROLOG [1] and its implementations and applica-
tions should ‘be mentioned first of all. -

However in all these casés we have one large program or- system which directly
uses a computer to solve -various problems. The system does not try to generate a
program for each specified problem. In other words all these systems are rather inter-
pretive than compilative by their nature.

) On]y one form of knowledge representation is used in every kind of system. This
form is: a computing procedure or a program module in the case of a program pac-
kage, a table in the case of a data base, a rule of the form “condition ~action” in the
case of an expert system, a Horn clause in the case of a PROLOG program.

It occurs sometimes that two very similar application systems having almost the
same purpose and ‘possibilities are classified differently by their authors, e.g. as an
expert system and a data base, depending on the authors’ tastes and points of view:

6*
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A very interesting problem solving system called PRIZ was developed in Tallinn
by E. H. Tyugu and his colleages as early as the first half of 60-ies [2—4). The system
has very much progressed since then of cause. The work which will be reported here
was inspired in many aspects by this system.

The approach adopted in the informatics division of our institute is intended to
overcome the drawbacks and the restrictions mentioned above. In our system called
SPORA (“CITIOPA”) we wanted to develop a unified approach combining the prin-
ciples accepted by the designers of many application systems. On the other hand we
tried not to mix up different concepts. Moreover our intention was to find the most
appropriate place in the system for every independent concept known. We wanted
to use any such concept with maximal effect.

Similarly we tried to take the greatest possible advantage of different experience
and tastes of different people working in any chosen area. There are always people
with strong mathematical attitude and a good mathematical education. There are
people also who like computer programmmg and are eager to contact, to cooperate
with a computer. Surely most people are using computers only by necessity because
without them they could not reach the desirable result.

Starting from all these considerations we have built our system in the following
way. .
. “The main part of the system is a knowledge base. We distinguish at least three
kinds of knowledge : conceptual, algorithmic and factual ones. Conceptual knowledge
is a set of terms (words) naming the basic concepts or notions of a given object area
together with their properties and relationships. All this is expressed on the most
abstract level. A description of an object area on this level is called conceptual model
of the area. Abstraction is made from physical representation of entities (i.e. from
their measurement units), from their programming representation (possible data types
in some algorithmic language) and even from their mathematical representation. E.g.
we prefer to write the Ohm law in the form

Ohm (voltage, current, resistance)
or
I voltage times (current, resistance)

where the word “times” denotes a map with no predeﬁned mathematical properties
instead of the usuval u=ix%r.

A conceptual model contains some entity types and functional dependencies
(maps) called primary. They are just names and on the abstract level do not posses
any du'ectly stated properties. However we consider the possxblhty to add a sort of
axiomatics describing such properties to a model. :

The model also contains secondary types and maps which are described in a
relational manner. The components of an object, i.e. the attributes. of a type or the
arguments and the result of a map should be explicitly listed. In addition to this the
dependencies between the components should be described.

There are tree kinds of dependencies. A functional dependency has the form
v:=t where v is a component of an object, ¢ is a functional term constructed from

-such components. Such a dependency prescribes the value of » to be computed asa-
result of the term ¢ evaluation.
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An equational dependency (or simply an equation) having the form ll—to
prescribes values of functional terms ¢, and 7, to be equal.
A relational dependency looks like this:

iSRl(vl] =150 vlk - tk)

where R, is another type described elsewhere, v, ...; v; are some of the attributes of
R,and ¢4, ..., ; are functional terms constructed from the components of the currently
defined object. Such a dependency allows. one to use the dependencies associated
with the type R, in the actual definition. It means that an object with the components
;5 ..., ¥;, having values supplied by the terms #,, ..., #, must belong to the type R;:

There is a possibility for an object to have optional components and conditional
dependencies between them. The definition of either a type or a map may be recursive.

This approach has his pros and cons. The main gain is that abstraction from
many details usually opens the shortest and the most natural way to a solution of the
given problem. The main drawback is that a solution (if one is found) is an abstract
one and cannot be directly used for computation. Another difficulty arises from the
fact that equational dependencies cannot be resolved on the abstract level. This is so
because on that level we abstract from the mathematical representation of primary
maps and cannot use their mathematical properties.

Therefore an abstract conceptual model of an object area needs an algorithmic
and informational support. At this point two other kinds of knowledge mentloned
above step on the scene.

Algorithmic knowledge is a collection of ways to represent each entity as an
object of some algorithmic language and each map as a procedure written in such a
language. Such a representation is needed only for the entities of primary types and
for primary maps. The secondary types and maps have a standard representation
based on their desription sketched above. The algorithmic languages used for the
representation of algorithmic knowledge are called base languages of the system.
Currently base languages are Pascal, FORTRAN and ALGOL 60. .The system it-
self is written mainly in Pascal and partially in the assembly language of the BESM
6 computer.

Factual knowledge is a set of values and qualitative characteristics of objects
under consideration. The most natural way to represent the factual knowledge is to
put it in a data base. The data manipulation language of the data base is also con-
sidered as a base language of the system.

Thus the whole knowledge base consists of a conceptual model, -a program
modules package forming the algorithmic support of the model and a data base
forming its informational support. Certainly an interface between these three parts of
the knowledge base should be described. We consider both the program package and
the data base equally important parts of the knowledge base having equal rlghts
and status.

Our problem solving system has a number of input ]anguages oriented to dnf-
ferent needs and to different classes of users. -

The most complicate and still rathér simple language is the language for ob_ject
area description. People using this language to construct conceptual models should
be experts in the object area. They must be mathematically educated as well. We
call them model designers. They are working.in close contact with (if not ‘being the
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same) people ‘Creating algorithmic and - mformatronal _support of the model
program packages and data bases. . - .- ey

To describe the interface between: the model and its support one uses- another
input language called representation language or more exactly — primary types and
maps representation language. This language is essentially a kind of universal macro-
language. For each primary data type one has to describe a way to translate a name
of an object having this type into a base language construction. For each prrmary
map a way to call correspondmg procedure should be described: .

Users of the Tepresentation language should be good programimers. first- of. all
Their main task is to describe the interfacé between .the conceptual model .and its
algorithmi¢ and informational support. :‘Both program modules. and contents of a
data base included in the support may be written by other people. The use of a macro-
language allows one to include arbltrary modules or data collectrons in the concep-
tual model support.

A knowledge base of an’ object area being constructed itisa rather srmple task
to specify a problem from the area. Essentially one has to list all. the input quantities
and the desirable result, in other words, to point’out the places which these: data
occupy in the model. Additionally if the data base part does not contain the numeri-
cal values of some input quantities one has to supply. the systém with these values:

All this information may be expressed in a rather simple language called request
language and oriented to.the most numerous category of users, viz. terminal ones.

. A closer consideration reveals however a gap between the conceptual model and
a problem specification existing in that scheme of problem solving. In fact.there may
be no. places for-the input data and the result of a problem in-the model. Let us take
geometry as-an example of an object area. Its model-contairis siich notions as a point;
a.straight line, a triangle, a circle, a distance; an-angle-and so on, such relations as the
incidence of a point and a line, the tangency of a‘line'to a circle etc. To state a problem
however oneineeds a collection of objects having various.relationships between them-
selves to-be described or drafted. The conceptual model of geometry cannot contam
all such interited collections: :

* Therefore before stating a problem ‘one has to descrrbe a more .or less concrete
object on which the problem will be stated. We meet here another kind of knowledge
which may be called a constructive one.. Constructive knowledge is-a set of rules and
methods allowing -one:to describe -an. object under-investigation on the basis of-a
conceptual model. A’ number-of problems may be posed: with respect to the object:

In our system we have a device useful by itself which can serve this- purpose.
The device is.that of submodels related to a given:model. Indeed the means to des-
cribe an investigated ob_]ect are essentlally the same -as-those used in the descrlptlon
of any .secondary object: “a

. To conclude a couple of words about the system functlonmg should be said.

A problem specification together with the model of the corresponding object
area (or part of the model) is translated into a logical language. The result of the
translation is an existence theorem for-a solutiont of the given problém. Then the
system tries to prove the theorem. Fromrthe'proof if one is found the system extracts
an algorithm- leadmg to a solution:of thi&:problem. We call this algorrthm an abstract
program because it is expressed in terms: of the conceptual model. - :

" Next the abstract program i$-translited . into- 6ne of the: base languages of the
system. The interface between the model:and. its:support is-also: used::on.this. stage:
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The resulting base language program can be compiled into machine code and
then be executed by computer. The input data for the computation can be either
taken from the data base or given by the author of the problem specification.

Variants of the scheme just described are possible. The abstract program can
be printed for examination by the user instead of being processed further. If the
problem stated is of a rather general nature then the abstract program can be added
to the conceptual model while its translation into a base language is added to the
algorithmic support of the model. The compiled program can be included into a
library. Thus not only the final result of computation but all the intermediate ones
starting from the abstract program can be considered as a solution of the problem.

When one of the steps described above fails the user gets a diagnostic message.

The first version of the system SPORA was written in 1977—82. Recently the
second version was developed and tested.
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On compositions of root-to-frontier tree transformations

By S. VAGVOLGYI

0. Introduction

It is well known that the family of (nondeterministic) root-to-frontier tree
transformations is not closed with respect to the composition, see [2]. In this paper we
introduce the notion of k-synchronized root-to-frontier tree transducer. Transducers
of this type are capable of inducing all the relations which are compositions of k&
root-to-frontier tree transformations. Conversely, we shall show that any relation
induced by a k-synchronized tree transducer is a composition of k root-to-frontier
tree transformations. We mention that similar results are obtained by M. Dauchet
in his dissertation [1] using the theory of magmoids.

1. Preliminaires

In this chapter we shall review the basic notions and notations used in the paper
and give a reformalized notation of root-to-frontier tree transducers.

Definition 1.1. An operator domain is a set G together with a mapping v: G-+
~{0, 1,2, ...} that assigns to every g€G an arity, or rank, v(g). For any m=0,
G™ = {g€Glv(g) = m}

is the set of m-ary operators.

From now on, by an operator domain we mean a finite one, that means G is a
finite set. The letters F and G always denote operator domains.

Definition 1.2, Let Y be a set disjoint from the operator domain G. The set
T4(Y) of G-trees over Y is defined as follows:

(1) CUYSTL(Y),

() g(pss ..., P)ETG(Y) whenever m=1,
g€G™ and py, ..., pn€Te(Y), and

(3) every G-tree over Y can be obtained by applying the rules ( l) and (2) a finite
number of times.
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The set TS T;(Y) is called a G-forest over Y.

Definition 1.3. Let pcT4(Y) be a G-tree over Y. The set sub (p) of subtrees of
p is defined by the following rules:

(1) sub(p) = {p} if peG°UY,
@ sub(p) = {pU U sub(py) if

P By REGMTENGT e b
pl: . 7pm€TG(Y) .‘,Y.-

Definition 1.4. Let peT;(Y) be a tree. The root root (p) and height A(p) are
defined as follows:
(1) If peG®UY, then root (p)=p, h(p)=0.
(2} If p=g(py, ..., pw (m=0), then root (p)=g and h(p)=max (h(p,-)lt‘z
m)+1 . . ;

Deﬁmtlon 1.5. Let u¢ N x be a word over the sét of natural numbers The word
u mduces a ‘partial-function u: T (Y)—Te(Y): in the:following way:- -
(D) I u=e then u(p)=p forevery. pe To(Y), whereedenotes the empty word
(2) If u=ry, [EN; v€N* and".p€Ts(Y), then-

( ) {U(p) lf p_ g(plyj ’pm)3 g€G"' -!‘.é én a
else undeﬁned N T e

i

The elements of T;(Y) may be vrsualrzed as tree lrke dlrected ordered labelled
graphs. In this case every path from the root to a given node in the graph is determined
by a word over N. For every word .4€ N, if there exists a node r such that u is the
path from the root of p to r, then u(p) denotes the subtree (subgraph) with root r.

+* Definition-1.6. Let 'Y 'be a set disjoint from'G. We may assume- withouit' loss of
generality that N*NT;(Y)=0 and GNN*=9 holdin therest of the paper “The' sét
Ps(Y). of quasi G-trees, over Y is defined by . the followmg rule .

C Pg(Y) = {pETG(YUNMVue N* if u(p)EN* then u(p) = ul

Definition 1.7. The mapping - S: PG(Y)——ZN* ass1gns a subset S(p) of N* to
every quasr treep which i is defined by R R

P ' S(p>—{u(p)|uEN*}ﬂN*“

Itis clear that S(p)isa ﬁmte set for every p€Pg(Y). The set S(p) is also denoted
by S,. ‘Members of S, are called arguments of p. B .

Definition 1.8. Let Z be an arbitrary set and let ¢: S -7, be a. grven functlon
for a given quasi tree p€Pg(Y). Replacmg every element u of S by @(u) in thé tree
p we obtain a G-tree over YUZ, which-is denoted. by "p[S,, (p] L)

i

Example. Let G= {g,, g} be an operator domainwith v(gl)—l v(gz) 2 and
let Y={pi,»2; ya}.- ' The quasi tree p= g.,(gl(l 1),g:(21, y,)) may be vrsualrzed by
the graph on Fig. 1. _ R RTTI
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: Flgure 1 thure 2

Lct us deﬁne the mappmg Q: {11 21} { Ve y3} as: follows
| o) =y, 0Q1) = .
The quasi tree p[S,, ¢] may be visualized by the graph on,_Fig. 2.

.. Binary relations 1STp(X)X76(Y) are called tree transformations. The. com-
position 7,07, of the tree transformations (S TF(X)xTG(Y)) and 12(C TG(Y)><
XTH(Z)) is defined by _ : ,

1,072 = {(p, PI(P, r)E 1, (7, q)€12 for some’ r}

The composition 7;07;0...017; |/=3) of the tree transformations’ 14, 17,, ..., 7, is
~ defined by

" 140740...07; = (140...0T;=1)0T;.

Definition 1.9. A state set A4 is an operator domain consisting of unary opérators
only. If 4 is a state set and D is an arbitrary.set then 4D will denote the forest

AD = {a(d)|ac 4, deD}.

Moreover, if ac 4 and deD then we generally write ad for a(d). v
If Ay, ..., A;are state sets (JEN). then A;... 4, denotes the state set A; X.. XAy
which is the Cartes1an product of the sets A (1 =/=/). ‘
Elements of 4;... 4, are denoted by sequences a;...a, where a;£4;, i=1, ..., j.
For every non- negatlve integer I, {1,...,1} denotes the set {i|l=i=l}.

Definition 1.10. A root-to—frontler tree transducer (R-transducer) is a system

NA=(F, X, A4,G, Y, A, X%), where . .

(1) Fand G are operator domains. '

(2) A is an operator domain consisting of unary operators, the State set of A
"(It will be assumed that - AﬂTF(X) 0 and that AﬂTG(Y) 0)

(3) X and .Y are finite sets.

(4) A’S A4 is the set of initial states. ' :

(5) Z is a finite set of productions (rewriting rules) of the following two types:

(1) ax — q(aEAs.xEX’ qETG(Y)), - : .
(i) af —~ q[S,, ©)(gEP(Y), fEF™,: @1 S, ~ A{l,...,m}). . -



446 ; © 8. Vagvolgyi

A is said to be a deterministic R-transducer if A4’ is a singleton and there are no
distinct productions in X with the same left-hand side. -

Definition 1.11. Let UA=(F, X, A4,G,Y, A’, Z) be an R-transducer and let
P1, P T(YUN*U AT (XUN™)) be trees. We say that p, directly derives p, in U,
in symbols p,=p., if p; can be obtained from p, by
(i) replacing an occurrence of a subtree ax(€ AX) in p, by the right side g of
a production ax—q in Z, or by
(ii) replacing an occurrence of a subtree .
af (L, ... m{l, ..., m}, a}(fEF™, a: {1,. - m}=Tg(XUN®)) in p, by
q[S,, B), where af—»q[S,,(p] isin X and B is a mapping B: S,~AT(XUN?Y)
such that for each s€S, iIf @(s)=ct(c€4, 1€{1, ..., m}) then B(s) ca(t).

Each application of steps (i) and (ii) is called a direct derivation in 9.

The reflexive-transitive closure of = is denoted by =3.

Using the notation =, the transformation 74 induced by a root-to-frontier tree
transducer U=(F, X, A,G,Y,A,Z) is defined by:

ta={(p, 9)Ip€ Te(X), qcT(Y), ap=4q for some acA’}.

" The range of a mapping ¢: A—~B is denoted by rg(¢). Let Uy, Uy, ..., U,
be sets, and let ¥ be a subset of the set (Up X Uy X... X UDUUpX Uy X... XU U ..
(U X Up)UU,, where UyXU;X...XU, the Cartesian product of the sets U
(0§i§1). Then for an index j, (0=j=/) [V]; denotes the set

{ul3(ug, ..., uj, ..., )EV, 0=n=1 0=j=n)

Definition 1.12. Let » be an element of N*. The mapping w,: Te(YUN*)~
—Tg(YUN™) is defined as follows:

M w,@=p if p=y(EY) or p=f(€G),

(® w,(p)=up if peN*,

() @.(p) = f(@P); ---» @ (PD)) _
p=f(Pr,.... D), fEG!, 1 =1, p€T,(YUNY, i=1,..,1L

2. Derivation sequences

In this chapter we shall deal with the description of derivations according to
root-to-frontier tree transducers.
- Intherest. of the paper k denotes a natural number, not less than two, moreover
let A, (G 1> Yie1, 4, G, Y5, A, Eg,,) be R-transducers, 1=i=k.
Now we give a procedure P. The input of P is a derivation in the form
(Y Ca;pii =g p; (8,€A4;, pj1€TG, ,(Y;-1), pi€Tg,(Y))
for some j€{l, ..., k} and a decomposition -

Pj-x = j—l(sr,_-l,' ®j-1l (rj-IEPG,_,(Y):-l)s ‘pj;-l':l'sr,_;-_’ ch;l(y;’—l))-
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The procedure P produces two derivations denoted by (2) and (3) which are
defined by induction on the height of rj_l(e T, j_l(Y,-_IU-N *)). The derivations
(2) and (3) will have the following forms:

2 a, rJ'—l[Sr/-v (Pj—l] =>;;j Fj [S'J’ ‘IIJ] =>;‘;J rf[S’J’ q)f] =Py
(l//j: S,J g AJ g ((0,'—1), q’j: Srj - TGJ(YJ'))’

 5€S,,, Y;(s) =g, 9505 !

for each

holds,

(3) ajrj—1=>:[j rj[srjs ';j], (lpj: Srj ng Aer,-l): )
and for each s;€S,, if ¥,(s)=a;s;_; then y¥;(s)=a;p;_,(s;—)) holds.
Let h(r;—)=0.

Case 1. r;_,=f, f€Gj-,. In this case S, =0, ¢, ,=0 and r, ,[S, |,
@j—1]=f Thus a;f-p;€ 2y, where pjeTG!(YJ). Let r;=p;, thus S, =0. Let
¢;=0, ¥;=0, ¥;=0. Thus the derivation (1) takes the following forms:

(2) ajrj_l[S,j_l, (Pj—I] 3:11 r, [Srj’ 2k]] 3;:,"1[&,, (Pj]7

(3) q; Fi-1=a, "j[S.-,-, *pj}

Case 2. rj_,=y(€Y;_p. This case is the same as Case 1.

Case 3. r;_y=e(eN™). In this case @;_,(e)=r;4[S,,_,, ¢;-1]. Let r;=e,
thus S, ={e}. Let the mappings

oo Y S, AT, (Yo, ¥y S, ~4; S,
and
0;: S,

i

- T, Gj(Yj)
be defined as follows:

' 'pj(e) =a; "j—l[Sr,_,, (Pj—1]s ’;j(e) = aje, q’j(e) =Dj.
Thus
"j[Sr,, lPj] = a; rj—l[Sr,..p ‘Pj—l]a "j[Sr,: ‘71] =a;e.
Thus we have obtained the desired derivations (2) and (3), and
J;(e) = aje,y;(e) = a;p;_1(e), where S, = {e}.
We have proved the basic step of the induction. Let
Ti-1 = S, s D) =f(w1(l71), cees wl(pl))

nere (P1s -0 PEPG, (Y1), S,,_, = 1:8,,U2-5,U...UI.§,,
W,
i8S, ={islseS,}), i=1,..1D.

ry-1lSr,_» 050 = (P1[Sps ], - PiLS,, 1)),

where for each i€{l, ..., !}, and s¢S, u(s)=¢;_,(is) holds. The production app-
lied in the first step in derivation (1) must be of the form a;f—q[S,, ¢}, where
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g€Pg (Y)), feG' -for -some - I e 8, —-A {1 .., I}. Consequently derivétio'n‘(l)
can be writtenrin thc following form: - S B
aj rj—l[Sr_,_ls (pj—I] :;j q[sq’ Q] :9*11 q[s ’ T]
(e: S;—~A4;18(9;-1), 1: S~ T, (Y)),
where the mapping ¢ satisfies the following formula: for every s¢ S, if e(s) b;t
(lStSI bjcA;) then o(s)=b;p,[S,,, 1,). This implies that g(s)= b,p,( e ;1,]=>m’
=g,7(s) holds. The desired derivations will take the following forms: :
@ a;f(pll l,ull,--‘,pz[ Sy ) =w, 4[S,, 0123, 9[S,, x1=4, (S, 1),

where

#. Sq - TGJ(YJ'UAJ.TG_,'—I(Y['—I))’

T 8, —-TGJ(Y-‘.

(3) ajf(wl(p1)9 wl(pl)):ﬂj q[ g \]:> q[ i]a
where
é: Sq - AjTGj-i(Yj—IU N*), % Sq - TGj(YjUAquj_l)'

We shall define the mappings x, g, #. For each s€ S, let us consider the derivation

(4) Q(S) = bjpt [Sp,s #r] ﬁ;'Klj‘c(s)’
where .
g(s) = b;t holds.

Since h(p)<h(r;_,) we may apply the induction hypothesis to derivation (4) and
decomposition p,[S, , u]. The derivations (5) and (6) are obtained by applymg
procedure P to (4) and decomposition p,[S,, , u,]-

(5) bjpt[ De? ﬂt] =>§Ij qs[S o ns] :>Elj qs[ gs? fs] = T(S)3
(qse PG;(Yj): 'lsf Sq, g Afrg (ﬂt): és: Sq, - TG}(Yj))s
such that for every vE Su r]s(v)=>;;j€s(v) holds.

(6) b~pt=>;;qu[ "’s] (r's q. 1 p.)

and for every .v€S, if f,(v)=b;z for some b;€A; and z€S, then

- n@)=b;u(2).”
In this case =, g, % are deﬁned by

;g(s): Qs[Sq,a "s]’ é(S) = wf(b,lﬂpt),
#(s) = 0(4.[S,,, 7i])-

The derivation Q(S):>QI (8= t(s) is the same as derivation (5).
: The derivation Q(s):-~>QI x(s) is obtained from derlvatlon (6) by app]ymg the‘
mappmg ,.to each 'step of derivation (6). :
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We give:a procedure S. The input of S'is a- derlvatlon sequence - D=Dy, ':., D,
given in the followmg form B

\

Dl Qs Po = 911 P1» (PoE TGO(YO) a1€A1, Ple TGl(Yl))
Dy axpy =’s|2 Dq, (02€A2, J S TGz(YZ))a

Dy: aypi-1=5, pk(ake Ay, Pk,e T6, (YD)

and a decomposition py=ro[S,,, @ol- S produces two derivation sequences denoted
by D'o=Djs, Db, ..., Do and D’o=D}o, Di, ..., Djo.. The derivation sequences
Dro and Do will have the followmg forms:

D o W7o [Sre> @0l =5, 1S,y l//1] =a, NS, (P1] =
=p (r1€ P, (Y1), Y1t S, = A1 18 (90); 911 Sy, ~ T, (1))
and for each 5€S,, the derivation y¥,(s))=¢, @:(sy) is valid,
-~ Dy az"l[ s P =0, T2[S0,, Wal =4, 12[S,,, @2] =
= 2 (ra€ Pe, (Y2 Vi Sy~ Aut (0), @21 S, T, Gg(Yz))
and for each s,€S,, the derivation 11/2(s2) =5, a(s2) is valid,

Dr° ak "k 1 [Srk v Pr- 1] :>q1,‘ LS, oo Vil=4, 7S, 4] =
= pk(rkéka(Yk)s Vs S, —~ Ay rg ((Pk 1> Pt S, _TGk(Yk)) .

and for each s,€S,, thederivation. 1//k(sk):>9,k_<pk-(sk) is valid.
Dioi.a;ry =5, 1S5 'A% Sy~ A1S,),
D 0 a2 rl =>212 r2[ roo ‘pzl (JZ re A2Srl),

1 O

Dpe: Oy~ 1=>mk7'k[ rk,'pk](!pk »l‘akSr)

For every jec{l,. k} and 5;E8, if v; (s) blsl 1 for some b;cA4; and
§j-1€8S,,_, then 'P J( s)=b;p;_ 1(s _]j_. Applymg the procedure P to the derlvatlon
D1 and’ the decomposmon po—ro[S,o, @o] .we obtain the derivations Die, Dje.
Assume that the derivations D7 ;, D%, are constructed for an index j (2= j<k)
Then the derivations Djo, Do are obtamed by applying the procedure P to D; and
decomposmon p, 1——r _1[ rio1s Qi .}, where the decomposition -_l[S,
@j—1] of p,_1 is ngen in the derivation D}2,.
Let —(Gl 15 Yic1, A;, Gy, Y3, A, Em) (z——l ., k) be R-transducers. Let
us denote the arity function of the operator domam _G,o by v. We fix these notations

j-12
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for this chapter. Let D=D,, ..., D, be the following derivation sequence: -
Dy: a,py ?;, y 21 (PoE TGo(Yo)a 213 TG;(YL)7 01€A6)'
Dy azp, =;;, De (Pze TG,(YZ)’ as€ Aé)’

Dy apyy ::1,‘ Px (Pke TGk(Yk)’ akEA;)y
moreover, we assume that p,=g,[S,,, 7o] holds for some
-qo€ P Go(Y o) Yo: Sqo - TGO(YO)'

Applying the procedure S to the derivation sequence D and decomposition
Po=4,[S,,» ®] we obtain derivation sequences D% and D%.

Die: a, 40[ g0° Yo) =’m 4 S, 220 %] 3;, ql‘[qu Y1 = P1»
(qIGPGl(Yl) 0y S — A, 18 (¥0)s Y1 Sql - TGl(Yl))!
and for every s5,€S8,,, oa(s)=¢,7:(s) holds.
DP: ay g[S, 11l =>u, 4:[S,,, %] =, 921S,,, 72] = P2,
(9:2€ Po, (Ya), ta: Sy, —~ A218 (10, Y21 Sy, = T, (Ya))s
and for every s,¢€S,,, az(s2)=>my2(sg) holds.

Die: ax gy [qu_,, Ye-1] =>:1k Gk [Sq," o] =>;1,‘ 9k [qu’ Vel = Pk
(‘Ike PGk(Yk) o Sg > A T8 (7R Sa ~ TGk(Yk)),
and for every s,€S,,, o(s)=% v:(s) holds.
Dge: ay g, =a @1lSq» @), (@0 Sy, ~ 415,),

Dg" azq, =>g, q:[S, gs? @], (& qu - A2qu)’

Die: a, q—1 =5, 9i[Sq,> @ @i Sq ~ A Sy, ),
and for every je{l, ...k} and s;€S,, if
oc,(s) = b;s;-, forsome b;€A4;,5;-,€S,
a;(s;) = b;y5-1(s;-1)
We shall define a set Zp, . and mappings
Q(D,QD): Z(D,do) - (A UA»AIIU...'UAk s Al) Ig (’yo),

then

0(p,00)" Sax ™ Z(D,q0)
l/’(‘D.qo): qu - Ak . Al TGo(YO)

and
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in the following way: _ _
Z(quo) = {(SO’ S], cucy s-)ISo€ 4o SIESq1’ . S €qu,

l=j=k and (j=k or (1<k and there are no
J+1€S 1 al’ld b +1€AJ+1 SUCh that aj+1(SJ+1) bJ+1sJ))
and (s)= bs_1 (; EA,) for i=

For every (sg,51, .. )€Z(D a0
Q(D,qo)((sm 815 eees sj)) =b;... b1 70(s0)
iﬂ' &i(s,') = b,-si_l for i = 1, ...,j

For every €S8, 0w, g(s)=(s0> 51, ... s iff
% (s) = bisi_l(biéAi) for i=1,..k
For each 5,68, , Y (p, ¢y(50)=by...by7e(sp) iff
0(p,a0)(5) = (S05 515 -+ S1)

Q(D,qO)((SO’ Sl, - Sk)) = bk cae bl’yo(S()). ’

One can see the equality Y(p, 4= 0(p, 49° L, 40 holds.
For the derivation sequence D and a decomposition

Do = QO[ g0 Yol (quP(;o(Yo), Yo' Sgy TGo(YO))
we can determine the configuration

and

Kv,q0° (@[Ss> ¥ 0,90} Op,000s Z(D, 000> LD, a00)-

For the sake of a unified formalism, in the sequel we use the following convention:
Let G be an operator domain with arity function ¥, and let Y be a set disjoint with G.
If ueG°UY then u(l,..,v(#)) means the G-tree u over Y, moreover,
u(l, ..., v@)I{1, ..., (@)}, 9] means u for arbitrary 9.

We continue the analysis of derivation sequence D. For each s,€ S,
vo(so) can be written in the following form:

Yo(s0) = ue(L, ..., v(u) [{L, ..., v(uo)} S} |
where u,€G,UY, and 3¢: {1, ..., v(up)}~T;,(¥y). There are two cases.

1. Case Zp, 45 =9. Take the quasi tree o€ Pg (Y,) defined by ro=qo[S,,, &ol,
where the mapping &y: S,,—~ T, (Y, UNY) is determined by the following formula:
for each

Soésq,, &o(so) = a’so(uo(la ceey V(uo))) lf Yo(S0) = uo(l, caey V(uo))[{l, ooy V(“o)}s 9]

(“o€ GoUY,, 9: {L ooy V(uo)} - TGO(YO))' .
One can see Kp 49=K(p,; holds.

20 the tree

2. Case Zp, ,»#9. Using these decompositions of the trees yo(so) we obtam the
derivation sequence E=E,, ..., E, from D. For every i€{l, ..., k} the derivation E;

7 Acta Cybernetica VII/4
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is the same as D; disregarding the order of direct derivations in D;. We shall introduce
the derivation sequence E=E,;, ..., E, too.
E;: a1 5] Sgp Y01 =3, 11[Sy,s 0l =5, &[S, Bl =a,
=8 01[Sgys 111 (01€P6, (YD), &y Sy, —~ Ay g (o),
Br: Spy =~ Te,(YaU A, T, (Yo)), 11: S, — T6,(¥1))- -
E: a, 48, 90° &o) =’m AN @ Al
(Eo: Sgo— Teo(YoUN™), Brz S, —~ Tg,(Y,UANY)).
o is defined by the following formula: for each
50€S,, I 90(s0) = uo(L, ..., v(u)) [{1, ..., (1)}, S0l
for some uE€G,UY, and mapping

3q: {1 .3 "(”o)} nd TGO(YO) then {y(s0) = SO(uo(l, ey V(“o)))-

We shall define the mappings f, and ;. For every s,€S,, let us consider the sub-
derivation

(1) ai(s) =5, 7050 of D.
Let us assume that &(s,)=b,5, and
ay(s1) = byyolse) = byuo(l, ..., v(ue)) [{L, ..., v(uo)}, Sl
o D€A4s, € G UY,, 9o {1, ..., v(up)} ~ Tg, (Yo)-
Applying procedure P to derivation (1) and decomposition
v Yo(So) = uo(1, ..., v(up) [{1, -... ()}, 3]
we obtain derivations (2), (3).
@ b uy(1, s v(up)) {1, ..., v(uo)} Dl=aq, 1 [S,,, 6:1]1=4,
=g, 4 [S,,, K1 = 11(s0), where u,€ Pg (Y)),
9: S, > A, T, (Yo), 841 S, — T, (YD),
and for .each
0,€8,,, 0, (vl) =5, 91(v) holds.
(3) by uy(1, ..., v(up)) =>er, 14, [S,,, 8,1, where
80 S, ~ Ay{l, .., v(u)} and for each v€S,, if
51(01) =yl (clEAl, 1€ {l, ..., v(u)}) then &;(v;) = ¢ 94(to)-
In this case B, and B are defined by

Bu(s) = 11Su, 611 Buls) = o (4[S.,, 1),

where
So€ S,
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Let /'be an index of the transducers in-consideration such that 2=/=k.. The derlva-
tions E; and.E, are the following: . :
Ey: 01,21 (S, s Vi-a] =0, @1lSy,» al =4 01lS,, Bl =a, 4:1S;,, vl
- (@€ P, (YD, 02 Sy~ A, rg_('}’z—l),
. By: Sg TG;(}’{UAITGI_I(YI—I))’ Yi: Sg > TG,(YI))'
. Eﬁ a ql—'l[Sq,_la [P | =>;1, ql[Sq’ Bz]
(51-15 Spor = T, , (Y- UN™),
Bi: S, —~ T, (Y,UA4, N™).

€i—y is defined by the following formula: for every s,_,€S, _, if B 1(s,_l)—
=u;_4[S,,_,»> 61—1] then &_,(s_)= o, ,(u_;). We shall define the mappings B,
and B;. For every s€S,, let us consider the subderivation

(D a(s)=g7(s) of Dy
Let us assume that

&G(s) =bysi.y and  o(s) = byy,_1(si-1) = b, ut-1[su,_,, LY

where
51-1€8,, _» b€ A, wy_1€ P, (YY),

‘and the decbfnboﬁition Yi—1(Si—D) =11 [Sy,_,» $-1] of y,_1(s;—,) is the same as
in E;_,. Applying the procedure P to derivation (1) and decomposition y;_,(s,_,)=
=u_4[S,,_,> %-1] we obtain derivations (2), (3).
@) bitg_1[S,_p» Sl =% wS,,, 8]1=% wlS,,. 8] = 1.(s),
where
MIEPG;(YI s Oy Sy, > AlTG,_,(Yl—l)a 9 Su, - TG,(YI)s
and for every #,€S,, the derivation ,(v)=49,(v) is valid.
) b, ”1—1=’;1, [S,,, 8], where &;: Sy~ A1 S, _,
.and for each p€S, if
3, (v) = c;ti_1 (i€ Ay, 1,_4€S,,_)
then .
8y (v) = ;91 (ti-1)-
In this case B, and’ B, are deﬁned by
ﬁl(st) = uz [Su,a A Bl(sl) = s,_.(“x [S., 51])

7*
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Take the quasi-tree ’oEPGo(Yo) defined by ro=qo[S,,, &ol, where the mapping
Eo: Sgu—~TG,(YoUN™ as in E,. Let X S, ~Tg(Y,) be the mapping such that

Ao(sgi) = 3o (D) if yo(so) = "o(la ooy V(ub))[{l, coes V(Ug)}, S,
$0€ Sy o€ GoU Y, Jo: {1, ..., v(u)} ~ T6,(Yo)s i€ {l, ..., v(uo)}-

where

For these ry and 4, we have that g,[S,,, 7l=r0[S,,> 0] holds. We take the quasi
tree rléPGl( Y,) which is defined by r,=¢,[S,,, 61] &y —T¢, (YLUN%), for
every €8S, &(s)=w,@) if /31(51) u[S,,, 6,]. It can be seen that

S, = {s11l81€Sy,, Ei(s) = o5, (1)), HLES,,}

holds. Let us define the mappings n,: S, —4 TG.,(Yo) m: S, —~A4, S, and 4;:

S,,—~T5,(Y7) as follows: for each sleS let us consider its unique decomposition
§y=8;t;,, where 5€85,, a;(s)=5,5, for some 5,€4, and :

So€S 20° &ulsy) = wn(ul) 11€S,,1, ﬂl(sl) = “1[ ") 04},
ﬁl(sl) - So(ul [Su19 1]): 1 (51) =i [Sul’ 91]
and o, ﬁla ﬁ13 Y15 519 51, 91 as in Ela .
Let m(sit)=061(t), (sit)= (050(61(11)) a(s:2)=8,(¢t): The . derlvatlon

8,(1)=%,9,(t,) holds, which implies that the derivation n,(si7)=4A(s17) i
valid. Thus we obtain the derivations E/ and E; from E, and E,, respectively.

E{:a,rol roa)“O]:‘lll "1[ ’71]:&111’1[ r17'11]*
E1 alroz’ml’l[ r15'11]’

and for each »,€S,, if 7;(v))=c¢,9, for some c,€4,,.%,£S,,, then n(v)=¢, o(vo)
For each 2=/=k we take the quasi trees r,€Pg (Y;) which is defined by

"1—‘]1[ Sgs Gl &1t Sg, T, (Y,UNY),

$€8,,, &i(s)= ws,(“l) it Bi(s )— L] [Sun 51]
It can be seen that

for every

S, = {sit)&(s) = o, (uy), HES,;)

holds. Let us define the mappings #;: S, ~A,Tq,_,(Yi-D, #;: S,,—A4S,,_, and
2 S, =T, (Y) asfollows: for each 5€S,, let us consnder its umque decomposmon

§=sit,, where s§E€8,,¢&(s)= ws,(“l)a ’zES
Bi(s) = w[S,,, 611, Bi(s) =y [S..» ), n (51) = “t [Su,, 3,

@y, Bi> Bi» 71, 61,5, 9, as in E;, E) and &(s)=b;s,., Tor some bicA, and
Si- 1ESql . In this case 7,7, and 2, are defined by n(s;2)=98,(t), M(st)=

o, ‘(5,(t,)) 2 (s;t)=9,(t)). The derivation 6,(t,)=>g,,9,(t,) holds, which implies
that the derivation #,(s;t)=% 2 (s1) is: valid. Thus we. obtain the derivations
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E/ and E] from E, and E,, respectively.
E/: ajry [Sr,_., A1) =’:1kx, r [S.-,, ml =>;‘1. S, 4,
El,: a; ’_'1—1 ::x, 1S, ], »
and for each v€S,, if fi(v)=cv,_, for some ¢;€4;, v,_4€S,,_,, then n(s)=

=qh_1(v-1)-
. . For the sequence of root-to-frontier tree transducers %j, ..., 2, we shall define
the sets X(/) and ¥;, (0=I/=k) in the following way:

Z(0) = {uolup€ Go U Yy},
Vo =.2(0);
Z(1) = {(by, ug> w1 [S,y> @1ls 01, Wy, T)Ib1ttg — 14, [S,ys 91]€ 2y,
WEPG (Y1), @0 S, ~ AL S,,,
Wy = {(to, tl)lfl’l(ﬁ) = Gl ¢:€4,}, _
0 Sy, Wi aa() =, 1) If @i(f) = 11,
Ty: Wi~ A1 8,5 T1((fes 1) = erte if @1(1y) = 110}

It can be seen that for each #€S,, ¢, (t)=1,(0:(t)), thatis, ¢,=g,07, holds
We say that the element (by, uo, 4,[S,,, @il, 01, W1, 1) of Z(1) is generated by the
production b, uy~u,[S,,, ¢4]. -
V= {(ug, 6)|us€ Z(0), 6,€ Z(1) and the second component of o, is uy}.

Let j be an index such that 2=j=k, and assume that for each 7 (1=/<j) the
sets - Z(f) and V; are defined, and that for each "o;=(b;...bs, uy, w;[S,,, ¥il, 0;,
W, ©)(€ Z5(0)) @i=g;0t; holds. We shall define X(j) and V; as follows:

() = {(bj - b g, w;[Suy> @51 055 W ;)|
(bj—y..- by, uo,'uj_l[S,,j_l, Q-1 0j-1, Wi—1,T,-1)E€2(G —1),
bju;_1=%,u1S,,,¢;] holds, where u,€ Pg,(¥),
;1 S, ~A4;S,,
@1 Sy~ AjA;_y . A{L, ., v}
®;(t;) = cjc;_y C1Afo if e;(t;)=c;t;_; and
Qj-1(tj-r = cj_l...é,to, -
Wi={(to, ..., tim1, tle; () = ¢t 1, €€ 45, 0j-1(ti1) = (fos - s 1D} U
U{(t, ..., t;—1)EW;_,| there are no ¢; in S, and c;€4; such that
8(t)) = ¢;;_1}U |
U{te, ... EW; 4l = 1 =j=2},
g Sy, Wj;"'gj(tj) =(tg, ..., tj_ys ty) if

(1) = Cjtj—ll and  @;_(t;-1) = (o, --s 15-1)»
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10 Wi~ A;. AL, ., v(ug));
Tjlw,aw,_, = Tiaalw,nw,_, and-
if (t, ..., tj—1, 1)EW; and egft;) =¢;t;_,
then t;((fo, ---» tj—1, 1)) = ¢;Tj=2((tos s i-D))}- ' ,
We say that the element (b;... 5y, uy, %;[S,,,¢,1; @j» W;, 7;) of Z(j)is generated by
the derivation b;u;_ =g u[S, ,¢] and element :
(bj-1-.. by, up, u;_1[Su, 1 @j-1)s @5-1s W15 t;-,) of Z(-—1).
It can be seen that for each element (b;...5s, 4y, 4;[S,,, @1, ¢, W;,1;) of Z(j),
@;=e;0t; hold. ] »
V; = {(tp, 615 ...» 61, 5)| (49, 0q, ..., aj_l)EVj_lA, 6j-1
has the form (b;_;...by, g, #;_4[S, .. c_o_,-_J, Qi-1» W,-I_.l,, rj_;), o; has the

form (b;...by, to, 4;[S,, ;) 0;, W;, 1;) and o; is generated by the derivation
bju;_1=g,u;[S,,, €] and o;_,}. '
We define mappings 3x;: [Zp oli~ () for O0=isk. Let so€[Zp, 4o
which means 50€ S,,. %,(s0) is defined by '
X o #5(Sp) = 100t (Yo(s0)) = 1 if
Yo(s0) = (L, oy V(UD{L, ---» v(u)}, )0 {1, .., v(uo)} = T, (¥o))-

Let $€[Zp,qph, that is, 5€S,. Let us consider the decomposition a;(s))=

='bluo(l, s v(uo))[{l, vees (1)}, 6] (uoEG;,‘U Yo, % {1, ..., v(u,,)}—-TGo(K,)).
" “Applying the procedure P to the subderivation (1) a,(s)=>gy:(sD) of D, and
decomposition uy(1, ..., v(ue) )[{L, ..., v(up)}, 3] we obtain derivations (2) and (3).

2 b, ”o(l, cees V(uo))[{l, ey V(uo)}, ol =a, “1[Su,a 1] =’;1
=% h[S,, %] =1:1(s), where u,€Pg (¥y),
Oy Sul -4, TGO(YO)v 9i: Sy~ TG,(Y1)s
and for each
0€S,,, 6:(v) =5, 91 (v) holds.

(3 byug=q,u[S,,, 8,], where 8,: S, -4, {1, ...,v(u)} and for each v,€S,,
if 8, (s)=city (€41, TE{L .. ¥(u)}), then & (o)=c;9(fo).
ﬁl(sl);ul [Sup 51]! Bl(sl) = c@’so(ul [Sup 51]) )
for B, B, given in derivations E,, E,.

Let %,(s,) be the element of X(1) generated by the production b,uy—u[S,,, 8;].

Assume that x; is defined for every 0=i=j—1. Then the mapping »; (2=j=k)

is defined in the following way: for each s;(€[Z(p,opl;=S,,), &;(s)=b;s;_1 for
some b;€4; and 5;_1€[Zp, o));-1- Thus a;(s;)=b;7;-1(5;-1). #;_,(5;_1) has the
form (B, by» tigs t; 1[S, s @l ;1> Wj—1, j-2)E E5(i—1). Let us consi-
der the decomposition y;_,(s;_)=u;4[S,,_,»8;-1) of p;_,(s;-;) which is the
same as in E;_,. :
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Applying the procedure P to the subderivation
(1) a;(s))=g,y;(s) of D; and decomposition u;_,[S, ,,9;1] we obtain
derivations (2) and (3).

#) bjuj—l[Suj_p 9; 41 =’«u, uj[Su_,a d;] 3;, uj[Suj’ 31= Yj(sj),

where
u'EPGJ(Y') 5 Su g AJTGJ 1( -1 91. TGJ(Y)
and for every v;€S,, the derivation 8; (v )=g,9;(v;) is valid.

(3) bju; 1=, u,[S,,,S,] where §;: S,, A S,,_, and for each v,cS, if

S o) =c;t;y (€A, 1, 4€S,,.) then 8,(v)=c;8;_,(t;_p.

Let %;(s;) be the element of 2(_1) generated by derlvatlon 3) and 2;_1(8;-1)
(€x(=D).

We associate the configuration

Kp,ry = (1e[Sres Yo, rp)ls O ,1035 Z,r0)s p,ro))

with the derivation sequence D and decomposition py=ry[S,,, ).
Using the derivation sequences E; and E; we shall show the connection between
the configurations Kp, . and Kp ,

(D

(2)

(3)

@

0)*
ne=q,[S, a2 &), which was established in E;, moreover we know that for
each s5.€8,,, &(s)=w, (u), where

xk(sk) = (bk bla Uy, Uy [Suka (pk]a Q> Wka Tk)-
Z(D vy = {Goto, S1tss ooy S| (S0 815 s SDEZ(p, g0y -
for some | (I1=j=Il=k) and
s (s) = (by... by, uy, w[S,,, @11, 01, W1, 1) and (&, 4y, ..., LYEW).

For every 5,€S,, let us consider its unique decomposition §,=s#,, where
5:€Sq,.» %(51) has the form

1 (5i) = (bk - by, U, “k[su,‘, oy 0> Wi Tk)9

&5 = wsk(uk) an_d HES,,-

If @@ gy (5) = (505 81, --»8) and  @u(ty) = (o, 11, ..., ) then
O(p,r) Gr) = (Solos 1115 -5 Sk T)-

Let §.€S, Dbe arbitrary, and consider its unique decomposition §y=sy%,
where s,‘e 0> ¥ (%) has the form

#(5) = (bk woby, g, [Suk’ o, ox, Wi, Tk)a Eu(sy) = ws,‘(“k)
and #€S,, . Then if @ (f=cc...c;% and

YD, q0 ) = (1, ooy V) [{1, .., v(u0)}, 9]

(4€Go U Yy, 99: {1, .., v(up)} ~ Tg,(Yy)), then

V0, re) Sk 1) = k.. €1 (%)
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(5) From the definition of Z,; ,, it follows that for every (5, 5;, ..., §)€Zp ,
there is a vector (sq, 5y, ..., S)€Z(p, 4, for some /(=/j) such that
#(sp) = (by... by, ug, w[S,,, @), 01, Wi, 1)
and
S0 = Soly, 51 =S111,...,85; = 5; Y
hold for some (4, t;, ..., L,)EW.
I t((te,. tys -5 £)))=¢;...c1t, and
Q0,40 ((S0s 515 - 5)) = by ... byuo(1, .., v(u)) [{1, ..., v(ug)}s Sl
for some u,€G,UY, and 94: {1, ..., v(ug)}~ T, (Yo), then

- frz = 3 — ~ s+
Q(D,,o)\(bo, Oy rnves SJ)) =L 9190(;0).

3. k-synchronized R-transducers

In this chapter we shall introduce the notion of a k-synchronized R-transducer
and prove that the relations induced by this type of transducers are exactly those
relations which can be obtained by compositions of k relaticns induced by root-to-
frontier tree transducers.

Defivition 3.1. A k-synchronized R-transducer is a system
% = (GO’ G]_, eey Gk’ Yo, Yl’ ey Yk’ Ai, Y Ak’ A;, ey A’:, 25, V),

where -
(1) k=2,

@) G,, Gy, ..., Gy are operator domains,

(3) 4., ..., A, are state sets, for i=1, ..., k,

Ai...Aln Ibo(Y(]) = 0, and Ak"' AlﬂTGk(Yk) = ﬂ.

(4 A;SA4,,..., A4S 4, are the sets of initial states,
(5) Zgis a finite set of productions, which is a disjoint union

g =Zg(UZg(DU...UZg(k),

V=V,UVU...UV,, where V,=2X4(0), and for i=1, .., k,

V.S Zo(0) X Zo(1) X... X Zg(i) and [V]=Zg().

2g.0)= {uoluy€ G, U Yy} and the members o; of the production sets Zg(J)
(j=1) have the form:-

;= (bj... by, ug, u;[S,,, 01, 0, W;, 1;), where
biEAi for i:],...,j, lloEGoUYo,
“,EPGJ(YJ'), (pl S"j ind Aj.-.Al{l, “eey V(uo)},
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. W; is a finite subset of (N*)2U...U(N*)/*1, where (N*)!=N* and for
" each I=1, (N*)H1=(N*)'XN*
QI: Sllj - Wj, Tj: i - (Al' A2A1U UA2A1UA1)[W_,]0,
and the following requirements are satisfied:
=]
1) W= {(to, WIHES,,> p1(t)=c1ty for some ¢ €4},
ii) for every #,€S, if o,(t)=cty then g,(t)=(1, 1),

iii) @,=g,01,,
iv) ¥i={(up, 0)le€G,UY,y, and the second component of a;(€Z5(1))

1S Up}.
b) j=1 if (4,041, ...,0;_1,0,)€V; and o;., has the form (b;_;1...by, 14,
J—I[Su, 13¢] 1],91 —1 W—-—ls J 1) then (UQ, Gy, - 361 I)EV and
there is a mapping ¢;: S, —»A[ —1]j-1 such that 1)—1v) hold:

]) VK = 1(to, ey tj—1> tj)lel(tJ) = C-tj_l, C‘EAJ', fJES“ 2 tj_lES,,j_l,

0j-1(tj—1) = (tos v’ tj—y1, 1)U
U{(to, ..., )WLl = 1= j-2}U
U{(to> -.-> t;-1)€W;_,| there are no #;,£S,, and c;€4;
such that ¢;(t))=c;t;-4}.
i} For o
T, TjIW,nW,_, = Tj—ﬂW,nWj_, and
if (fos oos tjmus 1)EW;, €;(t) = ct;-4 (c;€A4;, t;—1€[W;_1];-1) and
Tjo1((fos s tj=1)) = €jor.o.Caty then T;((fo, ...r tj=1, 1)) = ¢j ... C1lq.
iii) For each £;,€S, if
g;(t) = c;tj_1(c;€A;, t; 1€[W;_4];-1) and
0j—1(tj—1) = (to, ..., t;—1) then @;(t) = (to, ..., tj-1, £)).

iv) @; = g;o1;
(One can see ‘that for each ¢ €8, &(t)=c;t;y (c;€4;, j—lE Sy, iff
Qj(t_]) (t09 cvey _1—1’ ) and Tj ((to, LaRe] tJ 1s ])) C Clto

In the rest of the paper we shali denote the arity functlon of G, by v.

. Definition 3.2. Let B be a k-synchronized R-transducer as in Definition 3.1.

A configuration of B is a system (q[S,, V], ©, Z, Q), where q€P (Y, ¥: S -

~A... A TGO(YO) O: S,~Z; for each 58S, @(Sk) (505 ..vs S—1, S) for some
So5 - ask IEN

Z is a finite subset of (NFRU.LUWHEUN™ L such that the followmg two

conditions hold:

i) for j=0,...,k and arbitrary s;,5;€[Z]; if s;=5;5;, then s5;=§; and

Sj=e,
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it) for each 5,€S, ©(sy) is the only element of Z which has the form (505 -o-»
s Sk—155%) for some Sgs +-es Sg_1€EN*.
Q: Z——(A,‘A,‘ 1 AUA . 4 U.UAY T (Y) is a mapping such that ¢=
=0of holds, that is, the dlagram in Figure 3 is commutative.

Ak K — 1...A.IUA ...ATU...UAAl)TG (Y

——a( k-1 . o)
\A

Figure 3

A conﬁguratlon (q[Sq, Y], ©, Z, Q) is said to be a starting configuration, if ¢
is the quasi tree e€N* (empty word) and Y(e)€4;... 4T (Y,), moreover
Z={(e, ..., 9}. :

——(

k times

Definition 3.3. Let K,=(q'[S,,¥',0%2Z%, QY and K,=(q%[Sp, ¥, 62,
Z%, Q?) be configurations of a k-synchromzed R-transducer B= (Go, Gy, ..., Gy,
Yo, Yi, .., Yy, Ay oo Ay, A1, .5 Af, Zg, V). Tt is said that there is a transition
from K, to K,inB which is denoted by K;=4K, if there are mappings x;: [Z'];—
—+Zy(j) for j=0,1, ..., k such that the following requirements hold:

(1) For each (s, %, ...,s)€Z (1=j=k) if

QY((So» S15 > 8)) = b; ... by ug(1, ..., v(ue))[{1, ..., v(up)}, 8] for some
u€GUYy, b;...b1€A4;... 4, and 84: {1, ..., v(up)} ~ T¢,(Yy) then

%0(S) = ug, 3;(sp) = (bi coo by, g, ui[Su.-9 @i, 0i, Wi, Ti)

forsomeu;, g;, W;andt, (i=1,2, ..., j), and (%0(50)> #1 (51, - ,x,( $))EV;.

() ¢*=q*[Sp, &] for the mapping ¢: Sp~Tg, (Y,UNY) which is defined by
the followmg formula: for every
sk6 ql s é(sk) - ws;‘(uk) if xk(sk) (bk bl’ Uy, Uy [Suk’ q’k]a Ok Wka Tk)

€)] Zz—{(soto,sltl,. 5t (S0, $1, -..r SHEZ* for some I, (1=j=I=k) and

%1(51) (b b].’ Up, ul[Sup (pl]’ Ql: Wl’ Tl) and (th Lyy cos J)E Wl}

(4) For each s,‘—S = consider its unique decomposition §.=s,f,, where
€S8, %.(s5) has the form (5= (by... by, tg, w [S,. . Oil, 0ks Wis Th)s
Esd=o s, and #€S, . If "0 (s)=(s, 51, ....,5) and ()=
_(th tla .. tk) then @2(8,‘) (SOtOs sltl’ . 9sktk)

(5) Let 5€S, be arbitrary and consider its unique decomposition sk—sktk,
where 5,€S,, %,(sy) has the form x,(s)= (by... b1, to, 4 [S,,., @:); x> Wi,
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%), &(s)=0, ) and 4€S, . If o (t)=c...city and
T Y(s) = uo(l’ cees V(uo))[{l: ---, V(“o)}, 3]
(uOEGoUYo, o1 {1, ..., v(ug)} ~ TGO(YO))9 L
then Y3(S)=cy...c;96(t)-. '
(6) For every (5p,5, ..., s)EZ2 there is a vector (so,sl,..,s,)EZ1 for
some [ (lsj=l=k) such that "z(st) (By... b1, ug, wIS,,, @1, 01, Wi, ),

and S,=Soly; 5 =811y, ..., 5;=5;t; hold for some (4,1, ..., ,)EW,
If- Tl((to, tl’ veny tj))=Cj...clto aﬂd :

QY ((Sos 515 --» D) = by e byttg(1,ooes VU [{L, .. v(te)}> 9]
for some u€G,UY, and 9,: {1; coes V(ig)} > T, (¥Y) then
Qz((50, 815 -e0s 5])) =Cj... 0 8y (2y). '

Notice, that given configuration K, and mappings »;, for i=0, ..., k satlsfymg con-
dition (1), uniquely determine configuration K.

The reflexive and transitive closure of relation =4 between conﬁguratlons is
denoted by =g.

Definition 3.4. Take a k-synchronized R-transdicer

% = (Go, Gl’ aeny Gk’ YO’ Yl’ Jeey Yk’ A17 cany Ak’ A;, vevy A;,Zg, V).
Then the relation

75 = {(p; DIp€ T(}o(Yo), q€Tg, (Y)),
Ko = (el{e}, Yo: e bpl, ©°, Z° ) =% (g, 0, 0, 0)
for some starting configuration Ky}

is called the transformation induced by B.
Configurations of the form (g, 8, @, ), where g€ T, (Y)), are said to be final.

Theorem 3.5. Let 2,=(Gi_,, Yi_y, 4;, G, Y3, A}, Zy) (G=1, ...,k k=2) be
R-transducers. Then there is a k-synchronized R-transducer B such that
Tp=Tg,0...OTqy, -

Proof We construct a k-synchronized R-transducer B as follows:
= (GO’ Gl’ vy Gka YO, Yl’ veey Yk’ Al’ .. Ak’ Als seey Ak’, 223, V),

where 22},(0)= 2(0), ..., Zg(k)= Z(k) for the sets- (i), which are defined in the
previous chapter. V=V,UWKU ...UV¥V,, where the sets ¥,,¥;, ..., ¥, are defined in
the previous chapter. We may assume without loss of generality that
A4, NTe (Y)=9 and that, for i=1,..,k, 4;...4,NT; (Yy)=0. Thus B sa-
tlsﬁes requlrement (3) of Definition 3.1.
First we shall prove the inclusion

Tg,0...0Tg, & Ta.
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Assume that (py, p)€7q,07q,0...07g,. Then there are initial states
@€ AL, ..., ;< A; and there is a derivation sequence D: a,py=g D1, 2D1=>5,Pa, ---
ces QPr—1=>5 Pr» Where p€Tg (Y) for i=0, .., k. '
. Take an arbitrary decomposition py=qo[S,,, 7] of the tree p,, where
9o€ P, (Yo) and y: Sp—~Tg,(Yy). We have constructed a configuration

Kip, 4 = (9S> Y 0,00) O 0,000 Zi0, 100> A, 000)

for D and g, in Chapter 2.

" One can sce that K(p ,, is a configuration of the k-synchronized R-transducer B.
Let rg=go[Sp, &) for the mapping &y: S, —~Tg,(YoUN*) which is defined by
Eo(so) =, (uo(1, ..., v(1g))) for each s,€S,,, where

:')’o(so) = “‘o('l’ cers "(uo))l[{la ooy V(“o)}, 3o},
(UOEG()UYo, 90: {l, ey v(uo)} g TGQ(YO))‘
Kip,ry Is again a configuration of B.

It follows from the definition of the relation =4 that

Kip,q0 = Kin,ry O Kp,39y=5 K(p,ry)
holds. )
Let p°, p, ..., p'€ P; (Y) be quasi trees for I=/(p)+1 such that for every {

(0 =i= l)a Po= p'[Spia yl] «('Y': Spi - TGo(YO))a
where
1) p’=e, y°(e)=p,, and
ii) pPti=piS,, &*1] for the mapping &*': S,—T;,(Y,UN*) such that
for every s'€S,

ER(N) = wg(up(l, ..., v(up)),
¥(s) = up(1, ..., v(u))[{L; ..., v(up)}, 99]

for some w,€G,UY, and 9y: {1, ..., v(up)}>Tg,(Yo). In this case every
§'*1¢ S .1 has a unique decomposition s'*1=s'r,

$'€8,0, ¥ () = up(1, ..., v(ug) [{1, .., v (1)}, o)

where

for some
€ GoUYy, 9g: {1, ..., v(up)} ~ Te,(¥o) and re{l, ..., v(ug))-
Then y'*+1(s+)=9,(). ‘
We know that Kp, =K, pi+1y of Kp, ,5=aK(p, s+ holds for /=0, ..., I—1.
It has remained to prove that K(p, ,0) is a starting configuration and Kp, ,n is a final
configuration of B. The first part of the statement trivially holds. Since p'=p, and
po€ T, (Yy), S, must be the empty set, thus Kip, =(ps, 9, 9, §). We have proved

that (po, P)€Tg- ) )
We shall prove the reverse inclusion:

Tg & Ta, OTgp,©.- OTqy, -
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Let K,=uK;=4...=5K, be a sequence of transitions in B, where n=1, K,=
= (e[{e}, ¥°), @°, Z°, Q) is a starting configuration and . K;=(¢‘[Sy, ¥, &', Z}, Q')
for i=1,...,n. Assume that ¥°(e)=aq,...a,p. Let p% p', ..., p':be the sequence of
quasi trees constructed in the first part of the proof, where p'=p..Tt can be seen that
n=I. Then there is a derivation sequence D=D, ..., Dy,

D;:a,p :;;, D: [Spl,? ml, (plEPGl(Yl)a.’h:'Spl - 4, Sp")’
D,: a,py :’;;2 y 23 [Sp._., 2], (PzEPGg(Ys)’ N2 S,, = A Sm),

Dy: ak!’k—1=>§kxk Px [Spk3 il (pkEPG,;(YIIc)’..rlA;': Spk - -AI; Sp,,._,).‘

such that the following equalities hold:

) p=4q"

i) Yp, =V

i) Z"=Zp, -

v) O"=0p ),

V) 2= Q0 S
where the sets Zp, ), Op, ,my and the mappings
Y,y Spe— (Ao As AU ... UA, 4,UA4) S,
Qoo Ziopy = (Ag . Ay AU Udg AU ) rg (37)

are defined as follows:

(l) Z(D,pn) = {(SO, s’]_, ..V., Sj)ls‘)EASp", SleSPL’ .‘.-., ;sjESp_,-’ 1 éj § k, o
and (j=k or (j<k and there are no sj'-ﬂe qu;x and
bj1€4;.1  such that  17;,:(5;4)=b;115)) and n(s)=
:bisi—l (blEA,) for i=], ...,j}. ) ,

(2) For every (so,51, - S)EZp pm (1=/=K), Qp, (50> 515 -r5))=
=bj...b1'y"(S0) iff r[i(s,-)=b,-s,-_1(b,~€A,-) for i=1, ,_] X
(3) For every s,€5,., Op, pmy(5:)=(505 $15 ---» i) iff

r’l.(si) = bisi—l(bieAi) fOl‘ i= 1, saesy k‘
® Yo, = Ow, 020, - ' ‘

We proceed by induction on n. Let n=1. In this case P=u(l, ...,,v,(uo)):
uy=root (p). From the definition of the transition in B it follows that there are map-
pings s;: {e}—+Zg() (#=0,1,...,k) such that sxy(e)=u,,

xl(é) = (al » Ugs Uy [Su-p ¢1], €1» Wl) Tl)a ;
and so on,

A () ='-(ak oo @y, U, Uy [Suk9 o)y 0, Wi »Tk)'
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and (xo(€), #,(e), ..., %, (€))€V;, and configuration K, and mappings x; (i=0, ..., k)
determine the conﬁguratlon K,.

Accordmg to the construction of the transducer B and the definition of the
transition in B, there is a derivation sequence D=0D,, ..., D;,

Dy: a, “o(] " V(“o)):g, u, [S, up» 901],

Di: a;u;y =>q;,u [Sun ”i]
for some

i Sy~ A Su_s (=2, ...,k)

u
such that the following equalities hold:
) g'= dka

ii) lf’(b p) = ¥,
iy Z'=W,=Zy, 5>
iv) O'= g, = O, p1y»
V) Q' =1,=Q¢p pny

The proof of the basic step is complete.
_Assume that the statement is true for n—1. It means that there is a derivation
" sequence .

Dy: a,p"! =’;11 pl_[Spl’ M) (P1€PGI(Y1)’ M: Spl —~ A, Sp"")?
Dy: axp, =>;|2 p2[Sp2’ 2] (Pze PG,(Yz)a Np: Sp, —~ A Sp;_)’

Dy: ay py_y =%, PilSpes i) (Pi€ P6, (Y)s i Sp, — Ak Sy, _,)
such that the following equalities hold:
) pe=q""Y
) Y-y =Y"""
i) Z"'=Zp -y,
iv) @""1= O pn-3),
V) Q7= Qp, -1y

Because of the transition K, _,=gK, there are mappings 3x;: [Z");,—~ Zg()
(/=0, ..., k) which satisfy condition (1) in Definition 3.3.
Take the sequence ry, ..., r;, of quasi trees given as follows:

ro=p" for_‘ i=2,...k let r,=plS,, el

where ¢;: S, —T; (Y;UN") such that for every s€S,,, &(s)=w () holds, where
4;[S,,. @;] is the third component of

ki(s) = (bl '-"'bl’ uOs ui[Su,-a (0,] Qis Wi, ti)‘
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Let. &: S, ~ A4S, , (i€{t, ..., k}) be the mapping satisfying the following requi-
rements: we know that for each 5,€S, there is a unique decomposition 5;=s5;1;
of §i, where 5;€ Spi’ *; (sl) (b bI’ Uy, U; [Su s (P;] Qu i Ti) and tiE Su,'
I ()=, os iy 8 ((fos -0 tic1, £)E W) and - 1((t, ..., iy, )=
=¢;...city for some c;€4;, ...,¢€A4;, and n(s)=b;s;_, for some s;_,€S, _
then &(s;t)=c;5;_1t;_;. We obtain that for i=1, ...k, E; ar_I:,‘r[S,‘, é,]
holds. -

From the definition of the transition in B and from the definitions of r,,

Z(E, ) O, ) Q(E’ ) I/I(E, pn) it follows that
D orn=4q"
i) Y, =Y
i) Z"=Zg
v) O"=0g
V) Q"= Qg m.

Assume that (p, g)€14. Then there are configurations K,, ..., K, (n=1) such
that K, is a starting configuration, K,=(e[{e}, V"], @, Z°, Q°) where ¥°(e)=
=gq,...q;p for some a,€A4;, ...,aq,€A;, K, is a final configuration, K,=(g, 0, 9, 9),
moreover, K;_;=gK; holds for i=1, ... n .

According to the above proposition there is a derivation sequence

D = Dl’ vvey ‘Dk’
Dy: a,p" =y, 11[S;,> ml (P1€ P, (YD), m: Sy, ~ Ay Sp")’
D,: a,p, 3;2 Do [sz, AN (p2€PGz(Y2)’ UPY Sp, -~ Ay Sp,)a

Dy: ayp_ :;lkpk[Spk’ nk]’(pkEPthYk)’ Mt S, — Ax Spk_.)
such that the following equalities hold:
) p=4q,
i) Yp,,my=y"=90
i) Z"=Zp, s
v) 0"= 0y,
V) Q"= Qp .
Thus Zp, =0 Op, m=0, Qp, =9 According to the definition of Zyp, n,
‘,‘—[Z(D p,.)], for i=1, ..., k. Thus Pi€Tg (Y) for i=1, ..., k. One can see that

a;0"[Spns Y1=8P1 holds Thus (P"[Spm> ¥ q)E‘L'g,lo‘::glz .0Ty,. The proof of
the theorem is complete.

Theorem 3.6. Let B=(Gy, Gy, ..., Gy, Yo, ¥y, ..., Yy, Ay ...y Ay, A1, ..., AL,
Zg, V) be a k-synchronized R-transducer Then there are R-transducers AqA,, .., A,
such that Ta=1g,0...0Ty, . -
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Proof. The production sets Zg(/) for i=1, ..., k—1 are considered to be operator
domains with arity function v': Zg()—~{0,1,2, ...} as follows: for l1=i=k-1,

o= (bi - by, ug, “.'[Su;a @il 00, Wi, Ti)EEs(i)

let vi(6)=|S,|, where |S,| denotes the cardinality of the set Sy -
Remember, the arity function of the operator domain G, is denoted by v.

Convention; Let SCN*. If S0, then &, &: S—S denote the identity
function. If S=0 then &, : S—S denote the empty function, '

For every j (1=j=k) if S#0 then ¢;: S——{l, ..., | S|} denotes the function
whose value on s€ S is the ordinal number of s in S with respect to the lexicographic
ordering. If S=@ then ¢;: S—S denotes the empty function. Thus ¢; always
denotes a bijective functlon which is determined by its domain.

Take the R-transducer

A = (Go, Yy, Ay, 25(1), 0, Zy,, A,’),
where

Ty, = {battg ~ a1(1, <., V(@) {1, ..., v (@)}, Bl

o, has the form (bn g,  [S,,5 @1l €1, Wi, T1)€ Em(l)

(%a (b1, g, 1 [Sys @4ls 015 Wn ) €V1 and the mapping

Bi: {1, ..., v (o)}~ 4. {1, ..., v(op)} is defined as follows:

Let & {1 v(u,,)}—-{l S ¥(ug))y &Sy~ {1, .., IS, ]}

For each tlesula B1(51(f1)) e &olty) 1ff Ql(tl) (fo: 4) and 71((to’ tl))—

=c4y. (Thus for each #€S,, Bi(E.(t))=c &o(ty) iff @ (f)=c1t. )}
For j=2,..,k—1 consider the. R-transducer UA;=(Zg5(j—1),9, 4;, Z5()), 0,
Zy,, 4] H) where the production set Zy is defined as iollows

Zay = {b;05-1= 0,(L - VO L, s V(o) B

There is an e]ement (9¢5 ..., 0;_1,0)€V such .that o;_, has the form
(b] -1 bh Ug, U Jj— ][Suj 19 (p1—1]7 Q) 1s WJ_]JTJ 1)9

o; has the form (bj..-by, ug, 1S, , 04l 05, W;, 1)

There is a mapping ¢;: S, ~A4;(W;_]; 4 such that conditions 1)—iv) in
part (5).b of Definition 3.1 hold.

The mapp1n<7 Bi: {1, .., vi(a)}~A4;{1, ..., v ~(o;_))} is defined as follows:

Let &;_y: -{l, .. ,| - 1|} & S, —»{1 ,|S ,|}- For every tES,,j,
B(é rj)) IS C,_l(t, l)(c €A, t;_ IES‘,] l) iff Q,(t,) (to, ... tj—1, t;) and
' (to, ..., tj— 1,t‘,)) ¢j...c1ly. '
(T(m)xs for every 1€S,, ﬁ,(c,(r,))_c c, W) (€4, 1;4€8,, ) iff
£ A

Take the R-transducer ‘Hk;(Eg(k 1), Q) 4, Gy, YL, Xg, . A;) where the productlon
set Zy, is defined as follows:

Zy, = {ako-k—}"“k[suks B . _ ' o
- There is'an element (g, ..., 6,_q, 6)€V such that ¢, _, has the form
(bk—l by, t, 1 4 [S e -1° Pr— b 0k—1s Wiy, T 1), -
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0y has the form (by...by, ty, 4[S,,, Pul, 0k, Wi, Ti). There is a_mapping
&: S, =~ A[Wi_1lk—1 such that conditions 1)—1v) in part (5).b of Definition
3.3 hold. The mapping ﬁk S, = AL, ..., v 1(ak v} is defined as follows:
Let &yt S, ,—~{L ... ,,k_ll}, ék S~ S, For every t€S,,
ﬂk(tk)=ckfk—1(’k—1) iff e (t)=Co, --s t—1, &) “and T((tos oor 15 1)) =
=Gy Cyly. (Thus for every 4€S,,, Bk(tk) S (A l)(c,‘EA,‘, t—1€S,,_)
iff & (t)=city—s-)}
We may assume without loss of generality that for

i= 2, aeey k—l, Aiﬂng(,-_l)(ﬂ) = 0, 14|'r11‘},'$(i)(g)=ﬁ

and that 4,N Tyy)(9)=0, Akatg(k—l)(g)zg'
Thus 9A,, ..., A, satisfy requirement (2) of Definition 1.10.
We shall prove that Tg=14,0...07yq,. Let € be the k-synchronized R-trans-
ducer that can be obtained from U, ..., Y, by the construction of Theorem 3.5.
In this case

G = (Go, Zm(l), ceey Zg(k—l), Gk, Yo, ﬂ, very Q, Yk’ Al’ ceey Ak’ Ai, ceey A,:, ZC? V)-

“.
k—1 times

We may assume without loss of generality that for i=1, ..., k, 4;...4,N T (Y;)=0
and that 4,...4,NT; (Y,)=0. Thus C satisfies the requxrements of Definition 3.1.

By Theorem 3.5, Tg=Tq,0Tq,0...0Ty,, SO it is sufficient to prove that Tg=r1g.
In order to prove this equahty we shall introduce bijective mappings y;: Zg(j) > Z¢(j)
for j=0, ..., k—1 and a surjective mapping 7;: Zg(k)—~Z¢(k), and we shall show
that for '= ., k the mappings 7,, .. -» 7; satisfy assumption (1) and that for
Jj=0, .. k the mappmg y; satisfies assumption (2).

( 1) "There are two cases. _

Case 1. 0=j=k—1. In this case if (oy, ..., aJ)EV then (yo(00), ..., 7;(6,))€ ¥},
and if (Gy, ..., 6,)€V; then (yg1(Gy), ..., ¥} 1(crj))e

Case 2. j=k. In this case if (g, ...,0)€V; then (v0(60), - ,yk(a,‘))EVk,
and if (G, ..., Gy_1, G)€ Vi then there is a unique 6,€ Z4(k) such that yk(0) =0y

and (y5(80), ---» 71 (Gi—n) 04 )E Vi
(2) There are three cases.

Case 1. j=0. In this case Zg(0)=25(0) and yp, is the identity function.

Case2. 1=j=k—1. Let (ay,...,0))€V; and o,=u,. Assume that o, (1<lsj)
bas the form (.. bl, Uy, wy[S,, qo,], o1 W,,‘r,) Let & {1, ...,v(u)}=[W
{1, ..., v(up)}, f: w=IW1~{1,...,|S,l} for I=1,...,J. Th en )’ i(a;) has the
form y,(aj) (Bj... by, ug, _,(1 LV (a,))[{l , v (a,)} @, e, W, J) and the
following hold:

D [Wh=Wl andfor i=1..,j=L[W]={l,...|[Wl}={L..|S/]}=
=rg (&)

ii) (fo, ty, ..., t)EW; iff (éo(to)a &, ..o ft(tz))EWj A=1l=)
(tEN*, HLEN™, ..., LEN™).

8 Acta Cybernetica VII/4
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iii) For every
€S, 0;(t) =cj...eity if (&) =c,...c1&5(k),
(10€ Sy 1€ A1, ... €;€4)).
iv) For each
€S, 0;(1) = (to, trs s 1)) HfF 2;(E;(1))) = (Lote)s Ex (1D, -..s (1))
v) For every
(tos tys s )EW; (1 =1=)), t((fo, tyy s ) = ¢ponecrty iff
‘Ej((fo(to)a &), s ft(tl))) =¢;... 1 &o(t0),
(t€{L, ..., (1)}, c1€ 4y, ..., i€ A)).

Case 3. j=k. Let (o0y, 61, ...,0)€V, and o6y=u,.
Assume that o, (1=/=k) has the form

(bl bl: uo: ul[Sun (PI]’ Ql’ I'Vl’ Tl)'

&t {L ., v(u)} = Wido — {1, - v(ug)}s
S, =W~ {1, ..., |S,,,[} for I1=1,..,k=1,¢&: S, =Wk~ Sus

Then Yk(a-k) haS the form ’Yk(ak)= (bk bl’ Uy, uk[ g ? (pk]s Qka VVks Tk) and the
following hold:

D) Wl =Wilo, for i=1,... k=1 [Wl={l,... W} = {L, ..., IS,,[]} = rg (&)
and [Wk]k =Wk = Suk =1Ig (ék)'
) (o, s o Wy I (Eoll)y E4(1), ooy E(D)E T
A=l=kit,t,. . ,ENT.
iii) For every
LES,, ou(t) = cp...crty iff (_ﬁk(fk(tk)) = ¢j... 61 &o(to),
(1€ Syys 1€ A1, ..., GEAY).
iv) For each .
HES,, > a(t) = (f, s o ) iff -Q-k(ék(tk?) = (&(to), E1(t)s5 -y & (1)-
v) For every
(tos try s )EW, (1 = 1=K, 0((to, s oy D)) =€y Cr 8y ifE
fk((ﬁo(to), 1 () N él(tl))) =¢ ... C1lp,
({1, ..., v(u)}; 1€ 4,4, ..., c,€4).

We shall define mappings 7;: Zg(j)~>Z¢(j) according to the construction of
Zy(j) and ;.

Let
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Let j=0. Since X (0)=Z25(0), let y, be the identity mapping.
Let j=1. In this case
EC(I) = {(bls uO) 0'1(1, ey VI(O'I))[{I, svy vl(al)}’ (ﬁl]s él, WI, f1)[

i) (uy, 6)€V such that ¢, has the form (by, 4o, w3 [S,, @1, 01, W1, T1).
ii) po(ug)=u,, the production

byuy —~ 0'1(1, ‘e Vl(o'l)) [{1, eees V1(0'1)}s ﬂl]ezﬁh,
where the mapping B,: {1, ...,v1 (6D} ~4; {1, ..., v(up)} is defined as follows:

Let
Eo: {1, .., v} = {1, ..., v(up)}, &t S~ {L, .., IS}
For each
HES,,, ﬂl(fl(tl)) = ¢, &(t0) iff o.(t) = (%, 1) and Tl((th tl)) = k.
(Thus for each #€S,, ﬂ1(51(t1))=c1€o(to) iff ¢’1(t1)=01t0-)
iii) @, = By,
iv) g1 {l, ..., vi(a)} ~ Wy;
for every
&@De{l, ..., v (o)}, if ﬁl(fl(tl)) = ¢, &(t)) (c1€4y, 1,E{L, ..., v(14)}) then
01(& (1)) = (%o (t0), &u ().
V) 3 Wi—A4, {1, ..., v(u)};
for every
(éo(to), E(R))EW,, if ﬂl(él(ﬁ)) = ¢;8(t0) (clEAI’ 10€{L, ..., v(up)}) then
‘El(@o(to)a él(tl))) =0 fo(to)-}

It can be seen that

V1 = {(10(00), G1)loo = € 25(0), 1€ Z¢(1)) has the form
(b19 Uy, 0-1(1’ s Vl(O'l))[{l, ceey Vl(O’l)}, 61]5 éla WI’ f1)
and &, is generated by the production
byuy — Ul(la ooy V1(01))[{1’ ees Vl(a'l)}, ‘—ﬁl]EEB(I)-}

We define y;: Zg(1)—Z(1) as follows:
Let o;=(by, o, 41[S,,, @1, 01, Wi, 7,)€ Zg(1), then by the construction of
U, and € there is a unique production b, uy—~0,(1, ..., vi(aD)[{l, ..., v} (60}, BiI€ Zq,
which generates a unique ,€ Zg(1). We define y,(o,) to be &,. One can see by the
definition of Zg(1) that vy, is onto, hence y, is bijective.

It is routine work to check according to the construction of U, and Zg(1) that
Yo, 71 satisfy condition (1) and that y, satisfies condition (2).

Let j be an index between 2 and k—1. We can assume that Zg(0), Zg(1), ...
ey Zg(j—1) and yp,, ... ,y;-, are defined such that y,, ..., y,;-, satisfy condition (1)
and that y;_, satisfies condition (2).

8
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We know that X;(j) is the set
Ze() = {(b;--- b1, 40> 0,1, .., V(G ){L, ... V(o)) @)1, 855 W, T)|

i) There is an element (oy, ...,0;_1, 6;)€V such that g,=uy, 6;_, has the
form
(bj —1.0- by, Uy, Uj- 1[Su, 1 Pi- i) o Qj- 1,Wj—1,7j-1)s

o) has the form (b;...by, uo, 4;[S,,, @), 05, W;, 7;)- There is a mapping
& Sy~ A;[W;1)j-1 such that conditions 1)—1v) in part (5.b of De-
finition 3. 1 hold.

'il) Yj—l(a'—l) = (bj—l. b.h Up, 0'_,-_1(1, cevy vj_l(a'—l))[{I’ LAt vj_l(o"—l)}9 (5]—1]’
éj—n Wj—ls 'Fj-l)EZc(j_‘l)

and the production b;6;_,—+0;(1,...,v/(6))[{1, ..., v/(e)}, B} is in Zq,, where
the mapping '

Bi: {1, ... V(op)} = A4;{1, ..., v"1(5;-1)}
is defined as follows

Let &t S, ,~{L...1S,_I} & S,~{l,....|1S,|}. For every
€8, Bi(t)=c;&; ~1(t - i Q; (t)—(to, t,_l, t) and
T;((tgs +ves tj—15 z,)) ..y ty. (Thus for each 7, €8, B; (é (t))=¢;&;1(t;—)

iff gi(t)=cjt;
iii) W; = {(o5 -+ Fj—25 E5m1 (15205 E;UD)BAE (1) = ¢5&5-1(2;-0),
5-1(85-1(t;-0) = (fo5 s B2, &5-1 (1 D)} U
U{(fo, cees [j_1)EW;_,| there are no ¥; in {l,...,4/(s;)} and
c;€A; such that B;(#) =c;i;_,}U
U{(fs, ..., T)EW ;I = 1 = j-2}.
iv) g;: {1, ..., v/ (o))} ~W,; satisfies the following requirement: for every
€8, if Bi(&;(t)) = ¢;¢;-1(t;-) and
éj—1(§j—1(tj—1)) = (éo(fo)a oo éj—l(t‘—l)) then
(8olte); s &5-1(t)-1), €;(t))€W; and
éj('fj(tj)) = (éo(to)a s §521 (820, éj(tj))'
v) For 7;: Wy—A;... 4/{1, ..., v(u)},
Tlw,aw,_, = Tj-alw,aw,_, andif
(fos -oos tjm2s &2 (ti-1), &5 (1))EW,
Bi (&) = ¢;&i-1(t;—) and  g,-1(&;-1(ty-2) = (Fos s Fj—2s &5 105~ 1))
then  T;((Fo, ..» Bj—2s &jma(ty=), E;(1)) = ¢;T;-1((Fos -5 Fjmas Ej=n (¢ 1)))
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It can be seen that
Vj = {(Yo(ao), cees ¥i-1(07-2), 51')' for i=0,...,j—1
6:€Z5(i), (Yo(00)s - .- ')’j—l(‘fj—l))EV'—x,
gy has the form uy, and o;_, has the form (b;_,...by, uo, u; 4[S,, _,, ©;-4),
0j-1, Wj_1,7;_1). There is an element
O‘i = (b bl’ Uy, u'[Sup (Pj]’ Qj’ W" T])EZg(j)

such that (oo, ..., a._l, 6)EV;, and there is a mapping ¢
A j[W —1lj—1 such that conditions 1)—1v) in part (5).b of Definition 3 1. hold

(bJ’ covs by, uo’ 1(1 -5V (0'1))[{1 v’("")} ‘Pj]s Q_p _,)
satlsﬁes the requirements ii)—vi) of Zg(j).}
We define y;: Zg(j)—>Z¢(j) asfollows: Let us consider the set

ry={r: Zg() ~ Zc()| 'for each o0;€Z5(j),y(0) = G;
has the form

(bj o bl’ Uy, 0'}(1, trre vj(aj))[{1$ secs vj(o-l)}’ 6]]’ éj’ W', fj) .

- andthere is-a vector (gy, ..., 0;_;, 6;,)E¥; such that 00 has the form u,, 6;_,
has the form (b;_;...by, g, #;_1[S,, 1> @51l 051, Wjoa, T 7j-1), 0 has the
form (b;...5,, uy, 4; [ ups @il Q15 Wi, 'c,), and there is a mapping ¢; S -
- A;[W; 1] -1 such that conditions 1)—iv) in part (5).b of Definition 3 1 hold
and G; satisfies the requirements ii)—vi) of Z¢().}

One can see that if §;€I'; then ¥; is injective and 7; satisfies condition (2) be-
cause of the construction of U; and Z(5). Using this fact one can see that |I'}]=1.
Let y; be the only element of I';. One can see that y; is bijective, and y,, ...

> V51, ¥; satisfy condition (1). 4

Let j=k. We can assume that Z(0), Z¢(1,) ..., Zg(k—1) and 7, ..., Va1
are defined such that y,, ..., 7,—; satisfy condition (1) and that y,_, satisfies condi-
tion (2).

We know that Zg(k) is the set -

Zg(k) = {(bk e bys 1y, uk[Suk5 @, &, Wi, ’Ek)|

i) there is an element (o, ..., 65_1, 6,)€ V. such that 6,=u,, 0,_, has the form
(bk —1--bys g, 4 [S,, s (Pk 1l Qk—1> Wi- 1> Te— 1) O has the form (bk by,
uO’uk[Suks @il Qs k,‘fk) There is a mapping &: S, ~A[W,_ii—y such
that conditions i)—iv) in part (5).b of Definition 3.1 hold

ii) ')’k-l(o'k—x) = (bk-l o byy ug, 041, 1, vk_l(ak-l))[{la eeey Vk_l(o'k—ﬂ}: Pr-1)s
Gk-15 Wk-n ‘fk—l)ezm(k—l) '
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and the production
byoy—1 = u [S,,> Bi] is in Zg,,
where the mapping
Bi: Su. —~ A{l, ..., V¥ 7Y (o, 1)}
is defined as follows: Let
&1t Sugy = {1 oo 1Suealb &t Sup = S
For every
=-tk€Suk, Bk(tk) = ckék 1(’1 v iff e () =(t, ..., -y, ) and
-.Tk((to, s b1 tk)) = Cph.. Cy Lg- '
(Thus for each #€S,,, Al&ltd)=climi(tD I g (R)=cutio )
i) W, = {(fm coos Tmzs e (tec)s gk(tk))lﬁk(fk(tk)) = ¢ &po1(te-1)s
Oc-1(&-1(te-)) = (Tas o> Fr—2s fk-l(tk—l))}u
U{(fos -» Te—2s B-D)EWi
there are no €S, and ¢4, such that B,(%) = ¢l -1} U
UlGor - fimgs IEW, |1 = 1= k=2),
iv) . @x: S, —W, satisfies the following requirement: for every
" -“ltk_E‘S_‘uk‘a if Bu(&i(8)) = cxdi-r{te-r) and
B Bi-1(G-1(ti=1) = (f3 - Ta=g» &—1(t=1)), then
' (Fos s Begs Exm1(te-r), E(1D)EW, and ‘
: ’ @k(fk(fk)) = (fo; s B2y Shm1(fh-1)s &x(1))-
-v)- For - ’
AT W Ay A AU U 4, UA) (L, -, v} Tulwoow, ., = Tcalwenw,
“and lf . ’ . .
(io, coos Tz Epm1(Be=n)s SD))EW, ﬁk('fk(tk)) = ;&1 (t-1), and
Ox- 1(5:‘ 1{t- 1)) = (fg, -.es Tg—2s &k Z1(t-1)) -then
o }Tk((tm O PRY SR (/SR fk(tk)) = ¢, Ty—1((Fos s Tugs [SURY (1Y)
Vl) i = ij’fk } B ’
It can be seen,that' o _
Vielm{(ro(@0)s 05 ema(on i@l mfor's i =05, k=1, 0,€ 2y (i),
s (76(00)s s Vem1(84-1))€Vio1, 6 has the form ug).. o, ..., . -
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and o6, has the form (by_;...by, tg, Up_1[S,, s Px—1l, G—1> Wiy, Tys).
There is an element o,=(by...by, ty, w[S, , Pil, 0k, Wi, T )€ Zg(k) such
that (o, ..., 6 )€V, and there is a mapping &: S, ~A4[W,_ i}, such
that conditions i)—iv) in part (5).b of Definition 3.1 hold, and
Gv=(by... by, tg; w[S,, . Pil, Ou, Wi, T,) satisfies the requirements ii)—vi)
of Zg(k).}
We define y,: Zy(k)— Ze(k) as follows: Let us consider the set

I, = {y: Zg(k) ~ Zg(k)| for each 6,€Zg(k), y(0x) = G

has the form (by...by, ug, u[S,, . il 0k, Wi, 7,) and there is a vector
(09, .., Ox_1, G )€ V. such that ¢, has the form u,, 6,_; has the form

(bk—l coo byy gy o [S, s Pk—1)s k-1 Wi—1, Tk—1)a

o, has the form (bk---bl, Uy, u[S,,» Pul, 0xs Wi, 7,) and there is a mapping

&: S, ~ Ax[Wy_1]k—1 such that conditions i)—iv) in part (5).b of Definition 3.1

hold, and &, satisfies the requirements ii)—vi) of Z¢(k)}.
One can see that if €I, then 7, satisfies condition (2) because of the constructions
of A, and Zg(k). Using this fact one can see that |I'y|=1. Let y; be the only element
of T',.. One can see that y, is surjective. Using the fact that 7, satisfies condition (2),
one can easily prove that the mappings y,, ..., ¥ satisfy condition (1).

Finally we shall prove, using the fact that for j=0, ..., k the mappings y,, ..., 7;
satisfy condition (1) and for j=0, ..., k the mapping y; satisfies condition (2), that
Tg=Tg.

Assume that K,=(e[{e}, ¥o: e—~bp], @° Z° °) is a starting configuration of
B and that for a configuration K,=(g,[S,,, ¥, 6%, Z*, Q'), K,;=%K; holds. Then
K, is a starting configuration of € as well. We shall show that there is a configuration

K, = (¢'[Sa. v, 6%, Z', Q")
of € with bijective correspondences
%2 [Zo ~ [2']
() :
ou: [Z) -~ [Z');

such that o, and , is the identity function and K,=2K, holds, moreover
i) for every s,€Sa, O s)=(5, 51, ...5) if O ((5))= (2(50), 11 (5, ..
oo 2 (s53)) and

i) (Sg5 S15 -00s S)EZY AT (g(Se)s 21 (51)s .., &t (5;)€ 22
(1 =j =k, (s, 515 ..., s)E(N*)) and
iii) for every
(Sos 515 ++-» SEZY (1 = j = k), Q((So5 $15 +00s 7)) = @ (to(50), A1 (51, -5 #;(5)))).

Conversely, if K,=K; holds then there is a configuration K; of 8 and there are
bijective functions (*) such that a, and o, are identity functions and i), ii), iii) hold.
Hence if K; is final then K, is final and vice versa, thus ty=1¢ follows.



474 S. Vagvolgyi

First we shall prove the first part of the statement, the second part can be proved
similarly. We prove by induction on the length of the transition K;=gK;.
a) The length of Ky=3K, is zero, (K;=K,). Trivial.
b) Assume that the statement is true for Ky=3K;, K,=¢K, and for the functions
(%) and that K,=gK,=(q2[S,, ¥?), O2, Z2, Q%) holds.
By the definition of the relation =g, there are mappings 2x;: [ZY],~ Z4(i) for
i=0, 1, ..., k such that for every (so,$1,...,5)€2Z (1=j=k) if

Ql((SO, sl, ceey s")) = bJ ene bl uo(l, cevy V(uo))[{l, eeey v(uo)}, \90]
(bJGAj, seny b1€A1, uoéGouYo, \90: {l, cesy V(uo)} ind TGo(YO))

then 3,(so)=up, 2,(s) has the form (b;...by, uy, u[S,,. @, 0;» Wy, 7;) for
i=1, ...,j, moreover (xy(so), #1(sy; ..., %;(s;))EV;. Take the mappings %:[ZY),—~
—+Zg(i) for i=0, ..., k defined by x;(x;(s))=7:(»,(s)) for each s,€[Z"],. Notice,
that % is well defined, because o; and ¥; are bijective. By the induction hypothesis for
eaCh (s09 S5 eees sj)EZ1 (l §]§k)’ Ql((SOS 815 -ees sj))=gl((a0(s0)! al(sl)’ ver
s a;(5;))). Since x,=%, and for each s;€[Z%; the first two components of x,(s;)
are equal to the first two components of #(x;,(s)) for i=1, ..., k, moreover for
every (04, 015 s 6)EV; (1=j=k),  (v0(00), 110D, --., ¥i(0))EV; it follows
that the mappings x; (=0, 1, ..., k) satisfy condition (1) in Definition 3.3. The
mappings %; (i=0, 1, ..., k) uniquely determine a configuration K,=(g2[Sz, ¥,
62,72, Q%) of € such that K;=¢K, holds. First we show that g3[S,., %=
=g2[Sz, Y*]. By the transition K,=>4K; we know that ¢*=q'[Sp, 6], where
6: Sp—,T6, (Y,UN?Y) satisfies the following formula: for each s5,€S, if %.(s)=
=(by...by g, w[S,,, @), 0> Wy, ) then d(s)=w, (4. By the induction hypot-
hesis and the transition K,=K, we obtain that §>=g[S,:, 8], where &: S, —
-T6 (Y,UNY) satisfies the following formula: for every s,€S8, if %.(s)=
=(by.... by, tg, 4 [Sy> O, 0k, Wiy ) and 8(s)=w,, (u) then (o (s))=3.(s)=
V(3 (5))=(bg ... bs, g, (S, , ), @, Wi, T;) for some g, W, and 7,, moreover
5(5) =0, ()= 3(s, thus =g

Again by the transition K,=¢K, and K,=¢K., we have that y® and ¥2:
Spa—~Ay... A4, T (Y,) satisfy the following conditions: _

Let §,€S,. be arbitrary and consider its unique decomposition §,=s,#,, where
€S, 8(s)=w, () for some u,(€Pg, (Y,)), €S, and %(s) has the form
”k(sk)=(bk---b1, g, U[Su;s @ils Qs Wes fk)- Then if  @u(t)=c...c1t, (Ck---
i C€ Ay Ay, LE{L L v(u}) and Y (s)=up(L, ..., v(u)){L, ..., v(up)}, S,
(1€ GoU Yo, 85 {1, ..., v(ug)}~T,(Yy)) then Y2(spt)=cy...c;9(%).

We know that §; has the same decomposition using =3 and %,, because
#.(s) has the form (b,...by, uy, w[S,., 0, 8¢, Wi, f‘%). Since @ (t)=c,-- 1ty
and  Yi(s)=uo(1, ..., v JI{L, ..., v(up)}, Jo] thus Y2(sct)=ci...c19(t). We
have obtained that y2=y2.

Z2={(sotos -os S; I (S5 --» SPEZY, j=1lsk,
#i(s) = (by ... by, g, [y 04, @1 I'Vl.’ 1) and (o, b, ..o 1)EW).
Z® = {(2o(50) T ---» aj(sj)ij)l(ao(so), wooy(s))EZY, j=l=k,
and (7, ..., {;) is a member of the fifth éomponent of % (a,A(s,)).}
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Now we define the mappings of: [Z2),~[Z?;, (=0, ..., k) as follows: Let a2
and «f be identity mappings, and for i=1, ...,k—1 take an arbitrary element
5;4,€[Z%);, where %, (s)=(b;...by, ug, u;[S,,, ), 0;, Wi, 7;), then we define a2(s;t)
to be a;(s)¢&; (1), where &2 S, ~{1,...,|S,|}.

We have to show that for i=1,...,k—1 of is a bijective function. Let s;¢,=
=5,1;,(€Z?) and assume that s;5;. Then one of s; or §; is a proper initial segment
of the other one, which contradicts the definition of the configuration, thus of is .a
well defined function.

Assume that of(s;2)=07(5;f) such that 5,55 or £,=§. If s5;%#5 then
o (s)#0;(5) and &; is a function whose range is N thus o;(s)¢;(2)# o (5) & ().
If 5,=5; and 1,7, then of(s;5)=0;(s)&(E) = (s)Ei(F)=a2(;T) since &(r) 7
#&,(f) thus we obtained that of is injective.

Let 5;7,€[Z?];, then there is an element (S, ..., 5if;, ..., 5;£)€Z% where

j=i. By the construction of Z2%, (5, ..., §;, ..., §;, ..., 5)€Z* for some 5.1, ...
s S(END), 1=j=l=k, and

2 (5) = {(b, by, 00, 00, V(@)L ..V (0)) @ 8, W, T) if 1=k,
e = (bk bla Go» uk[Suk’ (pk]a éka Wka fk) lf l = k,

and (%, ..., %, ..., [;)EW,. By the induction hypothesis there is an element
(Sos «vos Sis ovvs 855 ..0n 8) Of Z1 such that

(%0 (50)s -5 03 (5s w5 (875 -y (8D)) = B - Sty ves B oves §))-

Since #,(s;) =7:(%¢:(s;)) by definition, we can apply condition (2) (ii) stated for y,, which
tells us that (%, ..., &;, ..., L)W, iff there is a (&571(), ..., &2 (), .., E72(ED)EW,
for ¢, ..., ¢; defined in the condition. Thus -

(5056'1(?0), LR ] siéi—l(il’)a ey sjéj_l(ij))ezzs
“?(si fi—l(fi)) = a;(s) Ei(fi—l(ii)) = o;(s)f; = 5,1,

hence of is surjective (f=1, ..., k—1). Thus we have proved that o} is bijective
@=0, ..., k).

Let 5,£S,. be arbitrary and consider its unique decomposition §,=s,# where
Skesqh %k(sk) has the form (bk"'bl’ Uy, uk[Suk, (pk]9 @ Wk’ Tk)a é(sk)zwsk(uk)s
€S, In this case #,(s)(=7.0a(s))) has the form (b;...by, uy, 1,[S,,., @il,
i> Wi, 7). Using condition (2) (iv) stated for y,, 0,(t)=(to, ts, --., &) iff G(t)=
=(&(to), E1(t), ... &(1)) for &, &, ..., & defined in the condition.

Using the induction hypothesis @(s)=(sp, 51, ... 5) Iff @1(s5)={(otp(50),
#,(sy), ..., %(s;)). By the definition of ®2 and @2 we obtain that

O%(5) = (Sotos S1tys s i 1y) iff
e}5) = (%(So) &), an (s) €1 (2, cees O (S5) fk(’k)) =
= (a%(so to)s 03(S1 1) ..., 03 (S, tk))'

Thus we have proved that condition i) holds for the mappings of, ..., «.
Let (soto, ..., 5;2)€Z? be arbitrary, where 1=j=k and (s, ..., 5}, ..., S€Z*
for some s;.q,..,5€(N¥), (j=I=k), moreover x,(s)=(b;...by, tty, u[S,,, @il

moreover
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01, Wy, 7p)-and; (1, ..., 1;)€W,. By the induction. hypothesns (ao(so), a,(s,))e A
By the’ deﬁmtlon of %, % (% (s))= y,(zc,(s,)), ie, - . . ,

{(bl b17 Up, 0'1(1 " (‘71))[{1 , ¥ (0'1)} ‘Pl]a Qh Wl, Tl) if l =< k
A‘(a’(s’)) (b bla Uy, Uy [Suk, ¢k] (4 Wk: Tk) if 1=k..

We can apply condmon (2) (u) stated for 3 1 ‘which tells us that (§o(to) , Ei(1))EW,
iff (15, ..., t))€ W, for the mappings &,, .. SE; ‘definied in the condmon Thus

‘ (ao(sofo) ‘12(51 J)) (ao(so)go(to), (S)f ( ))622

Conversely, let (1,0,, , ¥ J)E Z~ be arbltrary By. the constructlon of the set Z? there
are two vectors (3,, .. . s,)EZ1 (I=) <l<k) and (o, ..., ;)€ (N*)?) such that
v;=5;1; for i=0, .. ,j, and (to, .. i) is in the fifth component of %,(5). By the
induction hypothe51s (52 (Go)s - 1(sj), s 07 1(5))EZY. We know that #%,(5)=
=4 (27 2(5))). Accordmg to. condmon (2)(11) stated for y, we obtain that
(&1, ..., E71(T) is in the fifth component of /,(s,) for the mappings &, ..., ¢;
deﬁned 1n the cond1tlon Thus (ao 1(s(,) Eo (to) - O 715 &574(F;))€Z3, moreover

2(oz 1(s){ 1(t))=§i for i=0,...,j.

‘We have proved that condition ii) holds for ‘the mappings a:('*;, ey O,
It has remained to prove that condition iii) holds for oZ, ..., ak. Let (soto,
.- 8;1,)€Z* be arbitrary, where 1=j=k, (so, ..., Sj5 ..., SD€EZ? for SOME Sjyq, .
SI(EN*) Jj=I=k; and 'fl(st) (bl -by; U, ut[Su,a (PI] Q> Wta'ft) and (t()a
sl )E W We rknow, y thati;)- Q1 ((s(,,. o S8js e SD))=by L brug(1, L, v(ug) J{L, -
()}, 9g). forsome. 9q: {I; .3 v(ug)}—~ TGO(YO) and ‘c,((to, s ,))—c clto
for some c;i€A;, .. . €Ay, LE{L, . ,,v(uo)} thus Q%((soZp» ..., 5; J))—c clso(to)
By the induction hypothes1s (%(So) 0 (87), ., ou4(s))EZY and

(b bl? Up, ul[Sun (pl]’ Q- VV!: Tl) lf I - k

/l(“z (Sl)) = l’z(/l(sl) = (bl by, u, 41(51)(1 -5V (”t(sl)))[{] l("‘1(51))} @
, e TR BN QUVVI’TI) if |l <k. :

We can apply condltlon 2(v) stated for y, which tells us that 7,((zo, ..., £)))=¢;...c1 4o
iff’ f,((éo(to) " ’c,_( ))) ¢;...c&o(ty) for the mappings &, ..., &; defined in the
condmon

ThusM t,((«fo(to), A é () =c;...c1&o(tp) holds. By the induction hypothesis,
Ql((oz0 ENN-REN g a,(s,))) b Shyug(1, o, ()L, ... v(u)}, o). By the
deﬁnmon of Q and o} (=0, ,k),

02((0o(50) Eo (to)s > 2 () ;1)) =
= Q*((63(So o) ---» 05(5;2))) = €j-- €1 90(t0)-

Thus  Q2((solo, - ;1)) =25 (So o), .., % (s ;1)) holds. The proof of the first
part of the statement is complete. The second part of the statement can be proved by
induction on the length of the transition K,=>¢K,.

a) The length.of K,=&K, is zero, (K,=K,). Irivial.

b Assume. that the statement is true for K,=g¢K;, Ky=>gK, and for the functions
(%) andithat- K, =¢K, holds. By the definition of the relation = there are mappings
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#%;: [ZY,—~Z4() for i=0,1, ..., k such that for every (5, 5, ..., §)€Z' (1=j=k)if
QY (55 S1 -0 5))=0;...byue(l, ..., V)L, ..., v(u)}, S0l (BjE€EA;, ..., b€ 41, uyE
€GoUY,, 99t {1, ..., v(u)}~T5(Yy)) then Z(s))=uy, for 7=1,..,j, »(s)
has the form , . R -

{(bi...bl, g, 0i(1, o VDL, - V(0 B 80 Wy T) if 1= im k-1,
(bk"' bl’ Uy, uk[Suk, ¢k]’ [ Wk, Tk) if i= k,

moreover (%(3o), ..., %;(5;) )€ V;. - . ) : .

Take the mappings x;: [Z];—~Z4(/) for i=0,..,k—1 defined by x;(s)=
=74 (%,(¢;(s;))) for each s,€[ZY);. Notice that x; is well defined, because «; and y;
are bijective. According to Definition 3.2 for each 5,€[Z1],, @ (s, is the only element
of Z! which has the form (5, ..., 5,_1, 5;) for some 3, ..., §x_1,€ N*. We know that
(3%Go), ---» Fr—1(k—1), % (5) )€ V. We can apply condition (1) stated for - 7y,, ...
eevs Pk—15 Y&, Which tells us that there is a unique o€ Zg(k) such that y,(c)=5%.(5)
and  (yg10¢o(s50))s - Viti(Pk—1(sk—1)s 64 )EV;. Let %,(5,) be ;. By the induction
hypothesis for each (sq, 51, ..., s)€Z* (1==k), Q1 (S5 515 ---» 5;)) =2 ((eto(50)
(1) ..., a;(s;)). Since x,=%, and for each 5,€[Z"]; the first two components of
%;(s) are equal to the first two -components of x;((s;)) for i=1, ..., k, moreover
for every (o, 815 ..., SHEZY (1=j=k), (%(50), %1(8D); ..., %;(5;))EV; it follows that
the mappings »; (=0, 1, ..., k) satisfy condition (1) in the Definition 3.3.

The mappings x; (=0, 1, ..., k) uniquely determine a configuration K,=
=(q2[Sp, Y2, @2 Z2, Q) such that K;=¢K, holds. o

From now on the proof of the second part of the statement is similar to the
proof of the first part.

_ The proof of the theorem is complete.

4. Eﬁ(ample

Let us consider the folloving two R-transducers:
Ay = (Gy, Yo, 43, Gy, Y1, 45, Zy,)), where
Go = Gy={go}, Yo= {xo}; A
G, = Gi={g} V1= {x1, m}
Ay = {a1, by, c1}, A7 = {a,},
Zg, = {b1Xo~> y1, biXo~ X,
as g~ &1, 2)[{1’ 2}, ot 1—=byl; @ 2+ b,2),
a; 8o~ &1(1, [{1, 2}, @321 1> by1l; @11 2+, 2]}
{(go(xo’ xo), 81(¥1» J’1)), (go(xo, Xo), g1(%1, xl))."
(80(xo, Xo); 810x1, Y1) (80 (X0, X0, 82 (1, X))}
A, = (Gy, Y1, 4, Gs, Yo, A, Zy,), where

i

Tgh
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A2
[l

- G§= {g2}’ Y2 = {xz, Y2, 22}1
= {a;, b3}, 45 = {a,)}.
Zay = {281~ g(L, D[{1, 2}, ¢21: 1 byl @pp: 20— by1],

by Xy =~ ys, bexy — 23, by Y —~ xz}-

BN
o
I

One can see that

Tq, OTgq, = {(go(xo, Xo)s 82 (%2, xz)), (80 (Xo» Xo)> g2(¥2> J’z))a
. (20(%0 X0)s 82325 22))s (20(%o, X0 82(225 ¥2),
(go(xo’ Xo)s 82(22, zz))}
' We construct the 2-synchronized R-transducer B according to the Theorem 3.5:
B = (Gy, Gy, Yy, Ys, Ay, A, A7. A3, 2, V'), where
Z6(0) = ¥y = GUY,, \
Zg() = {01, 6., 0;,6,), where o, = (b, X0, y1, 9, 0, 0),
g, = (by,x9,%:,0,0,0),
a5 = (1> 20> £1(1, D1, 2}, @3: 1> byl; @5: 2> b, 2],
0a: L—>(1,1); @3t 2~(2,2), {(1, 1), (2, 2)},
730 (1, 1) = byl 150 (2,2) — by2),
G4 = (a1, 80> £1(L, D1, 2}, [@a: 1415 @g: 2>, 2],
ot 1> (1,1)5 04t 2(2,2), {(1,1), (2, D)},
70 (1, D)= b1; 148 (2,2) = ¢, 2)

Vi = {(x0, 61), (o> 62); (80> G3)> (&0 60}

Zg(2) = {05, 04, 04, 05, 05}, Where o, = (byby, X, X2, 0, 9, 9),
os = (b2by, %o, 12, 0,0,0), 07 = (b by, X0, 23, 0, 0, 0),

o5 = (a2a1, 8o, 82(1, 2)[{1, 2}, @g: 1> byby1; @g: 2 byb,1],

0 1—=(1, 1,1); gs: 2—(1,1,2), {(1, 1, 1), (1, 1,2), (2, 2)},

750 (I, L, 1) = bybil; g (1, 1,2) = by by 15 740 (2,2) — byl),
o, = (201, 8. 82(1, 2)[{1, 2}, @o: 1> baby1; @41 2+ byby1],

2: L—(1,1,1); 0o: 2—(1,1,2), {(1, 1, 1),(1, 1,2),(2, 2)},

79t (1, 1, ) > byby1; 191 (1,1,2) > by byl 191 (2,2) = 4l):

Ve = {(xm 01, 05)s (X0, 02, Gg); (Xo, 03,.05), (80, O3, 0g), (8o, 04, oy)}-
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Let us consider configurations K, K, K;, K3, K, K5, K; of B, where K, is a
starting configuration, K,, K;, K, K;, K; are final configurations.

Ko = (aza,8o(X0, Xo), Op: e (e, &, ), {(e; ¢, &)}, Qo (e, €, €) — asa, go(x0, X)),
K, (g«_.(bzblxo, bybyxg), @1: 1 —~(1,1,1); ©,: 2—~(1,1,2),
{L L, D,1,1,2),2,2)} 9 (1,1, 1) — by by X,
Q,: (1, 1,2) — bybyxg; Q1 (2,2) — by xy),
Ky = (g2(x2, x2), 9, 0, 9),
K; = (gz()’z’ ¥2), 9,9, 0)’
= (gz(.Vz, z5), 9, 0, 0),
K; = (82(2'2, V2), 0, 0, ﬁ),
Ko = (g2(22, 22, 9, 0, 9)-

All the transitions from configuration K| in B which are ended by final configura-
tion are the following:

&
|

Ky =g Ky =g K,

Ko=g Ky =g K3,

Ky =g K, =g Ky,

Ky=g K, =24K;,

Ky=g K, =4 K;.

The transition 'K0=>‘BK1 is determined ‘by thé mappings:
#o: {e) > Zu(0); %0() = 2o, |

ny: {e} — Zg(1); 21(e) = o3,

#: {e} —~ Zg(2); %:(e) = ay.

The transition K;=4K, is determined by the mappings:
%o: {1, 2}~ Z5(0); #o(1) = xq5 #,(2) = X0,

% {1, 2} = Zg(1); % (1) = 015 :1(2) = 0,

u2: {1,2} = Z5(2); #:(1) = 055 #2(2) = a5.

The transition K,;=>¢K; is determined by the mappings:
%ot {1, 2} ~ Zg(0); 20(1) = xo5 %0(2) = xo,

1y {1, 2} = Zg(1); (1) = 055 #,(2) = 7y,

%yt {1,2} > Z5(2); #,(1) = a4; #:(2) = ay.
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The transition K,=4K, is determined by the mappings:
%o {1, 2} = Z5(0); %o(1) = xo; 0(2) = xo,

{1, 2} = Za(1); (1) = 033 2(2) = 05,

20t {1,2) ~ £ %(1) = 055 (2) = 0.

The transition K,=¢K; is determined by the mappings:'
%00 {1,2} = Z5(0); (1) = Xo; %,(2) = xo,

2y {1,2} = Zg(1); (1) = 025 (2) = 0y,

#g: {1, 2} = Z5(2); #2(1) = 055 %:(2) = 0.

The transition K,=4K, is determined by the mappings:
xo: {1,2} - Z5(0); 20(1) = xo; %#0(2) = Xo,

x: {1, 2} = Zg(1); (1) = 625 #(2) = 05,

et {1,2} = Z5(2); %:(1) = 673 #:(2) = 0.

One can see that T4="Ty,0Ty,-
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Franco P. Preparata, Michael Ian Shamos, Computational Geometry, An introduction (Texts an
Monographs in Computer Science) XIII+390, Springer-Verlag, 1985

“The objective of this book is a unified exposition of the wealth of results that have appeared-
mostly in the past decade — in Computational Geometry. This young discipline — so christened in
its current connotation by one of us, M. I. Shamos — has attracted enormous research interest, and
has grown from a collection of scattered results to a mature body of knowledge. This achieved matu-
rity, however, does not prevent computational geometry from being a continuing source of problems
and scientific interest.”

The book is divided into eight chapters.

Chapter 1 starts with a short historical survey and contains the necessary concepts of the geo-
metry of convex sets, metric and combinatorial geometry, the theory of algorithms, complexity
theory and data structures. Some special data structures are introduced, such as the segment tree
andthe doubly-connected-edge-list. Here can be found the famous Ben-Or theorem about the depth
of an algebraic decision tree that solves the membership problem in a subset of E™. This theorem will
be the basic tool for proving lower bound resuits.

Chapter 2 develops the basic methods of geometric searching that will be used in the succeeding
chapters to solve rather formidable problems. Two types of questions are considered. The first one is
to determine whether a given point is internal to a simple or a convex polygon. These questions can
be answered in O(N) time (for an N-gon) without preprocessing, but in O (log N) time if given O(N)
space and O(N) preprocessing time. The generalization of this problem is to locate a point in a pla-
nar subdivision generated by a planar straight-line graph. There are several efficient algorithms for
this question, such as the planar-separator method and the triangulation method.

The second class of problems is the range searching problems, which may be viewed as dual, in
some sense, of the previously discussed point-location problems. Some quite interesting and clever
methods are illustrated for these problems.

Chapter 3 deals with one of the central questions of computational geometry: the determination
of convex hull. Ben-Or’s result is applied to give a lower bound £2(Nlog N) and then optimal
algorithms are considered in two dimension, such as Graham’s scan, Jarvis’s march, divide-and-con-
quer and dynamic algorithms. For the more complicated higher-dimensional cases the gift-wrapping
and beneath-beyond methods are presented with complexity O (N'#/21+1), However, very surprisingly,
in the most important three-dimensional case the problem can be solved in optimal time O (N log N).

Chapter 4 is devoted to the discussion of extensions and applications of the convex hull algo-
rithms. The average case analysis of Jarvis’s algorithm gives the O(N) expected time, and an appro-
ximation algorithm for convex hull is presented which is quite efficient for statistical problems. The
remaining part of the chapter deals with the applications. Their variety should convince the reader
that the hull problem is important both in practice and as a fundamental tool in computational geo-
metry.

Chapter 5 is concerned with proximaty problems: closest pair, all nearest neighbors, euclidean
spanning tree, triangulation. After proving the (N log N) lower bound for these problems a divide-
and-conquer scheme is presented to solve the closest pair problem in O(Nlog N) time. The main
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objective of this chapter is to develop the quite fruitful concept of the Voronoi diagram, which con-
tains all of the proximity information defined by the given set. The algorithmic construction of the
Voronoi diagram is given and is then applied to obtain optimal algorithms for the first two of the
above — mentioned problemes.

In Chapter 6, continuing the discusson of the Voronoi diagram, an afficient triangulation me-
thod is presented and this gives optimal algorithms for the euclidean spanning tree problem and
approximate solutions for the euclidean travelling salesmen and euclidean matching problems. In
the remaining part several generalizations of the Voronoi diagram are obtained and further appli-
cations can be found.

Chapter 7 starts the study of intersection problems by selecting some applications from various
fields to motivate these questions. These are the hidden-line and hidden-surface problems, pattern
recognition, wire and component layout and linear programming. Efficient algorithms are given for
the intersection of convex polygons, star-shaped polygons and line segments in the planar case, while
the intersection of convex polyhedra in three dimensions can be determined by a good algorithm,
although it is not known whether it is optimal or not.

Chapter 8 is denoted to the study of the geometry of rectangles, which has not only theorethical
interest but is the fundamental ingredient of a number of applications, such as Very—Large—Scale—
Integration and concurrency controls in data-bases. Using the results of the previous chapters, effi-
cient algorithms are given to determine the measure perimeter, contour, closure and external con-
tour of a union of rectangles and intersections of rectangles.

The book is written in a nice style. Each section is followed by additional notes and comments and
a collection of interesting exercises. At the end of the book, very good up-to-date references can be
found,

This excellent book is recommended to mathematicians intending to specialize in computationa
geometry, and also to non-specialists who are interested in the recent advances in computational
geometry.

J. KINCSES

J. P. Tremblay, P. G. Sorenson: The theory and practice of compiler writing XIX+ 796 pages,
McGraw-Hill Book Company, 1985.

The book deals with all aspects of compiler writing, mainly from a practical point of view. The
reader familiar with basic notions of programming languages and grammars can use the chapters
independently as a reference book in designing compiler modules. In the discussion of the dif-
ferent technics, after a short overview of motivation and the theoretical background, the algorithms
are given in full detail textually. The language used to formulate the algorithms is easy to read. Nu-
merous exercises serve the self-study in compiler design. Each chapter contains an appropriate
bibliography.

The main chapters are : programming language design (with an overview of ADA as an example);
scanners (regular grammars and finite-state acceptors); top-down parsing (SLL(1), LL(1) parsers);
bottom-up parsing (operator precedence, simple precedence grammars, LR(0), SLR(1), LALR( )
LR(1) parsers); compile-time error handling; symbol-table handling; sum-time storage organization;
semantic analysis; code generation and optimization; compiler-compilers.

A. MAKAY

William A. Foley, Robert D. Van Valin, Jr.: Functional Syntax and Umversal Grammar. Cam-
bridge University Press, 1984, 416 p.

This book is the result of an effort to develop a grammar which is based on the function of lan-
guage. As the title suggests, the authors have made an attempt to construct a theory of syntax which
is wide enough to cover linguistic phenomena in a great number of languages.

The approach represents a combination of analysis from different levels: the authors view lan-
uage in function not as a set of isolated simple sentences, but rather as a piece of discourse consti-
tuted by complex expressions. These expressions are made up of a number of clauses linked together
in various ways. This linkage is chosen as the starting-point for the integration of linguistic phenome-
na from different levels. Thus, the main concern of this book is the investigation of the relationship
of “‘clause-internal morhosyntax to clause linkage and cross-caluse reference-tracking mechanisms”.
The authors argue that the morphosyntactical analysis of the clause must proceed from an interclau-
sal -and ultimately discourse perspective.
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The investigation of discourse function in carried out within the theory of Role and Reference
Grammar (RRG), which W. Foley and R. Van Valin have been developing since the publication of
its preliminary sketch in 1980.

If the evolution of linguistics is marked by the antagonism of formalism and functionalism, then
it is the latter school of thought to which this monograph adheres. And if we view formalism as an
orientation based on the assumption that language is a potentially infinite set of structural descnptxons
of sentences, then functionalism must be assumed to deal with language in relation to -its role in
human communication. This is the theoretical distinction which is made clear in Chapter 1.

The remaining six chapters are devoted to an exploration of the means which languages use to
code participants and situations in (narrative) discourse, particularly the tracking of participants
across clause sequences.

Chapter 2 is concerned with predicate semantics, and Chapter 3 deals with case marking follow-
ing Silverstein’s basic assumptions. Chapter 4 is a presentation of passivization -and antipassivi-
zation, whereas Chapter 5 goes beyond the confines of clause-internal syntax, discussing a number of
issues pertaining to complex sentences. Chapter 6 is an extension of the investigation into clause
linkage with a discussion of nexus, a term referring to the relations that hold between clauses in
complex sentences. Chapter 7 is an analysis of reference-tracking in discourse.

It should be noted that functionalism as an orientation alongside and, to some extent, against
linguistic formalism represented by such outstanding theoreticians as N. Chomsky or R. Montague,
has attracted much attention for the past two or three years. This is probably due to an ever-growing
interest in discourse analysis, which has now become an integral part of present day functional gram-
mars, as evidenced both by the book at hand and by M. A. K. Halliday’s recent monograph. If the
latter is an introduction to functional grammar based on English, then Functional Syntax and Uni-
versal Grammar is a book with a rich illustrative material from a wide variety of languages.

It is the reviewer’s contention that all those interested in the theory and use of language will
find this book valuable and stimulating. .

L BEKESI

M. Berger: Computer graphics with Pascal. XVII+347 pages, The Benjamin/Cummings Pub-
ishing Company, Inc. 1986.

The bosk is published in the Benjamin/Cummings Series in Computing and Information
‘Sciences.

“The text begins with a description of the history and applications of computer graphics which is is
followed by an introduction to the hardware and software components of a graphics system. Included
are hardcopy output and input devices, CRT technology, raster-scan and random-vector systems,
the display processor, and scan conversion. In Chapter 2 the student begins to draw images using the
screen coordinates. The difficulties in drawing basic figures such as lines and circles are explored.
‘The next chapter introduces the reader to the worlds coordinate system and the viewing transfor-
mation. Chapter 4 uses the concepts presented in the previous chapter to create business and artistic

raphics.
€ Chapter 5 describes the fundamentals of two-dimensional geometrlc transformatlons Chapter .6
implements the concept of display file segmentation.

Chapter 7 examines the requxrements of a user-friendly graphics program After an initial dis-
cussion of the problems inherent in running graphics programs on a minicomputer, the reader is led
through a detailed decription of error-handling and menu-generating routines, Chapter § treats
interactive techniques, while Chapter 9 extends these concepts to animation.

"~ Chapter 10 provides frame buffer and scan conversion algorithms for polygon and area filling.
Chapter 11 introduces the coordinate systems and transformations needed for three-dimensional
viewing. Chapter 12 describes the generation of realistic images using curves and surfaces, and Chap-
ter 13 extends this realism by implementing hidden-surface removal.

The appendix describes the fundamental features of the two-dimensional graphics standard
GKS.”

This very clearly written book can be recommended as a text for an introductory course in
computer graphics.

J. CSIRIK

9 Acta Cybernetica VII/4
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G. Reinelt: The Linear Ordering Problem: Algorithms and Applications. XI + 158 pages, Helder-
mann Verlag Berlin, 1985. (Research and exposition in mathematics; Vol. 8)

The book gives a new algorithm for the linear ordering problem. This problem may be formulated
as follows:

“We are given the complete digraph D,=(V,, 4,) on n nodes and arc weights C;; for each
arc (i, j)€ A,. The linear ordering problem now consists in finding a spanning acyclic tournament
in D, such that the sum of the weights of its arcs is as large as possible. This problem is interesting
from a theoretical point of view, and moreover, it has several practical applications in economics,
scheduling, sports, and social sciences. In this treatise we solve a number of real-world problems
of this type.

In Chapter 1 some basic mathematical definitions and results from graph theory, polyhedral
theory and computational complexity theory are surveyed. This introduction is not meant to be com-
prehensive but is intended to provide the reader with the basic concepts and notations. In Chapter 2
the linear ordering polytope Ppo is defined, various classes of facet defining inequalities for this
polytope are derived, and in addition some remarks concerning adjacency and diameter arc made.
The chapter ends with the partial description of P7, by a set of nonredundant inequalities and equa-
tions. This theoretical investigation is a central part of this monograph and lays the foundation of an
algorithm for the solution of linear ordering problems whichis discussed in Chapter 3. The computa-
tional results of the algorithm when applied to the so-called triangulation problem for input-output
tables are reported in Chapter 4. Statistical data such as computing times, number of generated
cutting planes or sizes of the linear programs involved are given, the optimization process is illus-
trated and several cutting plane generation strategies are compared. Since the triangulation problem
for input-output tables is an important one in economics (there is a great variety of publications
dealing with this problem) we discuss several aspects of it in Chapter 5. We focus attention on how
knowledge of “‘true” optimum solutions can influence or refine previous interpretations and applica-
tions made in the literature which were often based on suboptimal solutions. A review of previous
algorithms and approaches to the solution of the linear ordering problem is given in Chapter 6.
Some more examples of applications of the linear ordering problem are considered in Chapter 7 and
complete this tract.”

The book is self-contained, and the material is well-arranged. The book can be recommended
to everyone interested in combinatorial optimization problems.

J. CSIRIK

The Carnegie-Mellon Curriculum for Undergraduate Computer Science (Edited by Mary Shaw)
X +198 pages, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985

“This book is a result of a three-year effort by the Carnegie-Mellon Computer Science Depart-
ment to develop a unified undergraduate computer science curriculum. The study, conducted by an
eight-member Curriculum Design Group, responds to this rapidly changing field by emphasizing a
balanced blend of fundamental conceptual material which the student can adapt to new situations,
with examples drawn from the current practice. This integration of theory and practice is a theme of
virtually every course described, recognizing that students must be able to use their theoretical know-
ledge to generate cost-effective solutions to real problems. This comprehensive redesign of the tradi-
tional curriculum reflects the structure of modern computer science. As a result, concepts traditionally
distributed over several courses often form the basis for new courses. The book outlines 30 computer
science courses along with requirements for an udergraduate major based on this curriculum.”

The book is warmly recommended to people dealing with computer science education.

GY. HORVATH
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