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The probabilistic behaviour of the NFD Bin Packing 
algorithm 

B y J . CSIRIK a n d E . M A T E 

Introduction 

In the classical one-dimensional bin-packing problem we are given a list L= 
=(fli, a2, a„) of numbers (items) in the interval (0,1], which must be packed into 
a minimum number of unit-capacity bins (i.e. bins that can contain items totalling 
at most 1). It is well known that this problem is NP-hard [4], and accordingly a 
number of approximation algorithms have been developed for its solution. Johnson 
et al. analysed the best-known heuristics from a worst-case point of view [6]. Their 
analysis of approximation rules concentrated on the derivation of worst-case bounds 
of the form 

A(L) ^x-OPT(L)+p 

where a and ft are constant and A(L) and OPT(L) are the numbers of bins required 
to pack L by algorithm A and an optimization rule, respectively. The multiplicative 
constant is an asymptotic bound on A(L)/OPT(L) and it is the main focus of the 
analysis. The least constant gives the tight bound of the algorithm. 

Two of the best-known heuristics are First Fit (FF) and Next Fit (NF). In FF, 
we place in bin 1, and treat the remaining items in order, placing each in the first 
bin that still has enough room for it (if no opened bin has enough room, then we 
start a new bin). In NF we similarly place ax in bin 1, and if a-t will fit into the last-
opened bin, then we put it in this bin; otherwise, we start a new bin (which will be 
the last-opened bin). FFD (First Fit Decreasing) and NFD (Next Fit Decreasing) 
differ from FF and NF only in that the list is initially sorted so that 

a, s a2 

Johnson proved that the tight asymptotic bound for FF is 17/10, for FFD is 
11/9, and for NF is 2. Baker [1] showed that the sum 

where b1=l and bi+1=bi(bi+1) for i s 1, is a tight asymptotic bound for NFD. 

1 Acta Cybernetica VH/3 



242 J. Csirik—E. M&te 

Numerous results have been achieved on a second line of research: analysis 
of the expected behaviour of a heuristic algorithm. In this approach, one assumes 
a density function for the items and establishes probabilistic properties of the heuris-
tic, such as their expected performance. In the special case, lists consist of items 
independently and uniformly distributed in the interval (0,1]. Frederickson [3] 
showed that the FFD rule is asymptotically optimal. Recently, Bentley [2] proved 
the unexpected result that FF is also asymptotically optimal. Hofri [5] and Ong [7] 
showed that for NF 

E (NF) = l/6+2n/3 

in this case, where E (NF) denotes the expected number of bins for the NF rule. 

Results 

Let we now assume that the items of L = ( a l , a l , •••,a„) are independently 
and uniformly distributed in the interval (0, ]]. We then have 

Lemma 1. 

n-°° n/2 16 ) 

Proof. Let us sort the elements of L so that 

ah 

Let the number of elements in the interval 

(ttt'T] i = ••• 
be k,. 

Let us define the sliced NFDr (SNFD,) algorithm as follows: we pack the elements 

> i in accordance with the NFD rule; we then complete the last-opened bin so 

that it will have at most (/•—1) elements; and finally, from the remaining items, 
we always pack r together. Clearly, for all L: 

SNFD,(L) s NFD(L) 
and 

lim SNFDr (L) = NFD (L). T-fOo 

Let Kr = k,+kr+1 + .... 

Then, for the packing of L by SNFD,, we need at most 

• ko kw __ 1 Km 
2 r—1 r 
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bins. Hence, for the expected value of bins with the SNFDr (for list L = 
=(a1,a2,...,aB)): 

E(SNFDr(L)) 2 HK, h,..., k,-!, jq• 

(, k2 A, ^ 

where 
P(k1, /c2,..., k r _i , A,) = 

\Kr 

Then 

= n! ( H 1 (_Tp i _ L f " ( i | r 

E(SNFD,(L)) ^ ' ¿ b 2 h,..., kr_l5 Kr) + 
i=1 » k1+k1 + ...+kr_l+Kr=n 

2 P(kt,k2, ...,k,-L,Kr)+r = kl+kl + ...-tK-l + Kr-n 

= n 2 l 1 - ( " ~ 1 ) ! 
i f i J i(i + l) k1lktl...k,-1\(k,-l)\ki+1\...k^1lKr\ ' 

( y ) (e") -(TO+I)) - ( T ) +nT7ki+kt+...£_1+Kr„, 

k1\...kr-1l(Kr-l)l U J U J ' " l ( r - l ) r j 1/-J + r _ 

n/2 ~Z\6 ) 

Thus fim ~ ^ — w h i c h completes the proof of Lemma 1. 

If we now fix r and pack the list L=(ax,a2, ..., a„) with the NFD rule so that 
we do not count the bins which contain elements of two different intervals of type 

(-r—r > 4-1 or element < —, then / + 1 / J r ' 

E(NFD) ^ 2 P(ki, k2,..., kr-x, Kr) • kt+k, + ...+kr_l+Kr=n 

And hence for a fixed r 

m E ( S N F D ^ 

1* 
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From this, in a similar way as in Lemma 1, we get 

E(NED) ^ n ( i 1 - 1 + - ( r - 1 ) . 

Thus, for a fixed r: 
E ( N F D ) . i" ' - 1 1 \ 2 

llffl — - S 2 2 u _ . 
„-oo \iti I ) r 

2 
The right side is a monotonously increasing function of r and 

ssftl̂ 'KMH-' 
This leads to 

Lemma 2. 

n . 1 6 ) 

Then, from Lemma 1 and Lemma 2 : 

Theorem 1. 

lim = 2 ß - l ) » 1,29. 
n-~ n \0 ) 

Let we now assume that the items of L=(a1, a2, ..., a„) are independently 
and uniformly distributed in the interval (0, a] ( 0 < « S 1), and let A be an integer 
such that 

1 1 
< a S A + l ~~ A 

7Í ' 0C 

In this case, E(OFT(L))Ä—— and, in a totally similar way as for a— 1, 

we can get 

Theorem 2. 

m. a \i=A+i I2 A J 
T 
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Langages écrits par un code infinitaire. 
Théorème du défaut 

B y D o LONG V A N 

1. Notations et définitions 

Soit A un alphabet non-vide. On note A* le monoïde libre engendré par A, 
i.e. l'ensemble de tous les mots finis sur A, y compris le mot vide noté e, muni de 
l'opération de concaténation. La longueur d'un mot / de A* est noté | / | , et pour 
tout it, f(ri) désigne la w-ième lettre du mot f . L'ensemble des mots 
infinis sur A est noté A10. Chaque mot u de A'" est de longueur |w|=cu=Card N 
et est un application « = N + —A qu'on écrit souvent sous la forme M=M(1)W(2).... 
On pose A°°=A*UA(0 et on appelle langage infinitaire (resp. fini taire, purement in-
finitaire) toute partie X de A°° (resp. A*, A°). Si XQ A*, Xa désigne l'ensemble 
des mots infinis de la forme xt x2... avec xtÇX ( /=1 ,2 , . . . ) . En particulier, 
pour f(L A*, {/}* = / / . . . . Pour rendre plus clair, dans la suite on notera souvent par 
f , g , h,... les mots finis, par u,v,w,... les mots infinis, et par a, /?, y,... les mots 
dont la longueur est finie ou infinie. 

On munit A°° d'un produit prolongeant celui de A* de la manière suivante : 

V w Ç ^ V a Ç ^ " : ua = u; 

. , „ r w x P O U r 
yu£Aa:(fu)(n) =] . .... ... 

l « ( n - | / | ) pour / i > | / | . 

On vérifie sans peine que A~ est alors un monoïde. 
Pour toute partie X de A°° on note Xfin=XC\A*, Xinf=Xf]Aa et on définit: 

* ( 0 ) = {e}, 
X(1> = X, 
XW = X f ^ X « - » , fcs 2. 

Alors, pour fcël, X^k) =XfinUX},~1 Xlnf, et par conséquent chaque élément a de 
Xik) peut se présenter sous l'une des deux formes : 

(i) a = ... xk avec x£X/in (i = 1 , . . . , k); 

(ii) a = *! . . .*» avec x£Xfin (i = 1 , . . . , fc-1), x^X^. 
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Comme d'habitude on note X* le sous-monoïde de A°° engendré par X et pose 
~X+ = X* — {s}. On a évidemment 

X+ = G Xw. 
i 

Une partie X de ,4°° est un code infinitaire sur A (cf. [3]) si chaque élément a de 
X+ peut se présenter uniquement sous l'une des deux formes (i) et (ii) pour un cer-
tain k, on, d'une façon équivalente, si pour tous x1...x„€A'("), xi...x'mÇ.Xw, l'éga-
lité 

... x„ = xx... xm 

implique n=m et x~xi ( / = ] , . . . , « ) . Dans la suite, sauf spécification contraire, 
le mot « code » désignera un code infinitaire. 

On appele quasi-libre (cf [4]) tout sous-monoïde M de A°° engendré par un code. 
Le code qui engendre M est appelé la base de M. L'ensemble de tous les sous-monoï-
des quasi-libres est noté QL. 

Étant donné un sous-monoïde M de A°° nous introduisons sur Minf une rela-
tion linéaire transitive, notée « -< », de la manière suivante : 

u < v <=> 3fÇ.(Mfin—s): v = fu. 

Si u<u nous disons que u est contenu dans v ou v contient u. Un élément u de Minf 
est dit maximal s'il n'existe aucun élément v de Minf tel que u<v. On dit que le 
sous-monoïde M satisfait à la condition de maximalité si tout élément non-maximal 
de Min[ est contenu dans un certain élément maximal de MinS. On appelle chaîne 
toute suite croissante Î/1<W2<... d'éléments de Minf ordonnée par « < ». Une 
chaîne peut être finie ou infinie. On dit que le sous-monoïde M satisfait à la condition 

» de chaîne finie si toute chaîne d'éléments de Mlnf est finie. La condition de chaîne 
finie implique évidemment celle de maximalité, mais l'implication inverse est fausse 
([6], Exemple 2). 

Un ensemble générateur d'un monoïde M est minimum s'il est inclus dans tout 
ensemble générateur de M. L'ensemble générateur minimum d'un monoïde, s'il 
existe, est clairement unique. 

On appelle distincte toute partie X de A" telle que Xinf fl X/inXinf=0. Claire-
ment sont distinctes toute partie finitaire ainsi que tout code infinitaire. 

2. Langages écrits par un code infinitaire 

Étant donnée une classe C de codes on dit qu'un langage X est écrit par un code 
de la classe C ou C-éctit par un code s'il existe un YÇ.C tel que XQY*. Dans le 
cas ou C coïncide avec la classe de tous les codes on dit simplement que X est écrit 
par un code. 

Tout langage finitaire est clairement écrit par un code tandis qu'il existe des 
langages infinitaires qui ne peuvent écrit par aucun code. L'exemple d'un tel langage 
est A°° pour A non-vide (cf [5], Corollaire 2). Nous caractérisons dans cette section 
les langages qui sont écrits par un code (code préfixe, code suffixe, code bipréfixe, 
code normal). 
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Rappelons que pour toutes parties X et Y de A°° on définit 

Y~1X = {aÇ/l~|3j3<EF: (/?a€Jr)&(|j8| = co - a = s}, 

XY-1 = {KiA~}3p<iY: 

Maintenant, pour toute partie X de A", on pose 

LB(X) = X^XDXX-1; 

UD(X) = X^X; 

UG(X) = XX~1; 

£(/(X) = X-1XUXX~1. 

Un sous-monoïde M de A" est par définition libérable (resp. unitaire à droite, 
unitaire à gauche, biunitaire) ssi LB(M)QM (resp. UD(M)QM, UG(M)QM, 
BU(M)QM). Notant par LB (resp. UD, UG, BU) la classe de tous les sous-mo-
noïdes libérables (resp. unitaires à droite, unitaires à gauche, biunitaires) on a donc 

MdZ o Z(M) g M pour Z£ {LB, UD, UG, BU}. 

On vérifie sans peine que, pour toute famille /£/} de parties de A" et pour 
tout ZÇ {LB, UD, UG, BU}, Z ( f | i f l Les classes de sous-monoïdes 

LB, UD, UG, BU sont donc fermées par intersection. Comme A°° est biunitaire 
et par conséquent unitaire à droite, unitaire à gauch, libérable, il existe donc, pour 
toute partie X de A°°, un plus petit sous-monoïde libérable (unitaire à droite, unitaire 
à gauche, biunitaire) de A°° contenant X qu'on note par LB(X) (resp. UD(X), UG(X), 
BÏÏ(X)). 

On associe maintenant à chaque Z de {LB, UD, UG, BU} et chaque partie 
X de A°° une suite croissante Mz (X) de sous-monoïdes de A°° ainsi définie : 

Mg(X) = X*, M?+1(X) = [Z(MÏ(X))Y, n^o. 
Posons: 

M\X)= U A № ) . 
«so 

Proposition 2.1. Pour tout Z£ {LB, UD, UG, BU} et pour toute X de A'», 
on a : 

Mz(X) = Z(X). 

Preuve. On a Mz(X)QZ(X) pour tout n. En efifet, ceci est évident pour 
n—0. Puis, si Mz(X)QZ(X), on a : 

M„z
+1(X) = [Z(MÏ(X))Y g [Z(Z(X))Y g [2(x)f = z(x) 

car Z(X)£Z. *Donc Mz(X)QZ(X). D'autre part, comme la suite MZ(X) est 
croissante, on a : 

Z{MZ(X)) = U Z(MÏ(X)) Q U [Z(MÏ(X))Y = U MÏ+1(X) = M\X), 
nSO rtèO »50 

ce qui montre que Mz(X)Ç.Z. Par minimalité de Z(X), il en resuite Z(X)Q 
ÇMZ(X). Ainsi Mz(X)=Z(X). 
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Maintenant, si un langage X est écrit par un code, alors, du fait que QL est 
fermée par intersection ([6], Corollaire 6), on peut parler du plus petit sous-monoïde 
quasi-libre contenant X que l'on note QL(X). 

Le théorème suivant caractérise les langages qui sont écrits par un code : 

Théorème 2.2. Pour tout langage infinitaire X, les conditions suivantes sont 
équivalentes : 

(i) X est écrit par un code ; 
(ii) Il existe QL(X) et QL(X)=MLB(X) ; 

(iii) MLB(X) satisfait à la condition de chaîne finie ; 
(iv) MLB(X) satisfait à la condition de maximalité ; 
(v) MLB(X) possède un ensemble générateur minimum distinct. 

Preuve. (i)=>(ii) : supposons que X soit écrit par un code. Comme il a été dit 
plus haut, il existe QL(X). QL(X) est alors libérable car tout sous-monoïde quasi-
libre est libérable ([6], Proposition 2). Utilisant la Proposition 2.1 avec Z=LB 
et la minimalité de LB(X) on a MLB(X)=LB(X)g QL(X). Mais alors, par le 
Corollaire 4 en [6], MLB(X) est quasi-libre. Par minimalité de QL(X) on en déduit 
QL(X)QMLB(X). Ainsi QL(X)=MLB(X). 

(ii)=Kiii) puisque tout sous-monoïde quasi-libre satisfait à la condition de 
chaîne finie ([6], Proposition 3). 

(iii)-o-(iv)<=Kv) est immédiat du Corollaire 1 en [6] et du fait que MLB(X), 
par la Proposition 2.1, est libérable. 

(v)=>(i) : Supposons MLB(X) possède un ensemble générateur minimum dis-
tinct. En vertu du Théoréme 1 en [6], MLB(X) est quasi-libre. X est donc écrit par 
un code qui est la base de MLB(X). 

Une partie X de A°° est préfixe (suffixe) si aucun mot de X n'est facteur gauche 
(resp. facteur droit) propre d'un mot de X. La partie X est bipréfixe si elle est à la 
fois préfixe et suffixe. Toute partie préfixe (suffixe, bipréfixe) X?£ {e} est un code 
appelé code préfixe (resp. suffixe, bipréfixe). 

Un code .X est normal si Xfln Xinf H Xfîn=0. Sont normaux évedemment tout 
code finitaire ainsi que tout code préfixe. 

Un sous-monoïde M de A" est dit régulier si MinfC\Mfin=<d. Tout sous-mono-
ïde régulier satisfait à la condition de chaîne finie, mais la réciproque n'est pas vraie 
(cf. [6], Exemple 4 (suite)). 

Si un langage X est écrit par un code préfixe (suffixe, bipréfixe, normal), alors, 
parce que la classe des sous-monoïdes engendrés par codes préfixes (suffixes, bi-
préfixes, normaux) est fermée par intersection, on peut parler du plus petit sous-
monoïde de cette classe qui contient X. Celui-ci est noté P(X) (resp. S(X), BP(X), 

Remarque. Pour toute partie X de A* on a 

LB(X) = QL(X) = N(X) = L(X)-, 

~UD(X) — P(X) = RF(X); ~ÛG(X) = S(X) = SF(X); 

BU(X) = BP(X) = BPF(X), 
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où L(X) est le plus petit sous-monoïde libre contenant X ; Pp(X) (resp. SF(X), 
BPF(X)) est le plus petit sous-monoïde qui est engendré par un code finitaire préfixe 
(resp. suffixe, bipréfixe) et qui contient X. 

Théorème 2.3. Pour tout langage infinitaire X, les conditions suivantes sont 
équivalentes : 

(i) X est écrit par un code normal ; 
(ii) Il existe N(X) et N(X)=MLB(X) ; 

(iii) MLB(X) est régulier. 

Preuve. (i)=>(ii) : si % e s t écrit par un code normal, alors il existe N(X) qui, 
par le Théorème 2 en [6], est libérable. Par la Proposition 2.1 et par minimalité de 
LB(X), Mlb(X)=LB(X)QN,(X) d'où, par le Corollaire 8 en [6], MLB{X) est 
aussi engendré par un code normal. Donc N(X)=MLB(X). 

(ii)=*(iii) est évident. 
(iii)=>(i) : supposons MLB(X) régulier. Par la Proposition 2.1, MLB(X) est 

libérable. En vertu du Théorème 2 en [6], MLB(X) est engendré par un code nor-
mal. Donc X est écrit par un code normal qui est la base de MLB(X). 

Théorème 2.4. Pour tout langage infinitaire X, les conditions suivantes sont 
équivalentes : 

(i) X est écrit par un code préfixe (bipréfixe, suffixe) ; 
(ii) Il existe P(X) (resp. BP(X), S(*)) et P(X)=MVD(X) (resp. BP(X)= 

=MBV(X), S(X)=MVG(X)) ; 
(iii) MUD(X) (resp. MBV(X)) est régulier ; 
(iv) MUD(X) (resp. MBV(X), MVG(X)) satisfait à la condition de chaîne finie ; 
(\) MVD(X) (resp. MBV(X), MVG(X)) satisfait à la condition de maximalité ; 

(vi) MVD(X) (resp. MBV (X), MUG (X)) possède un ensemble générateur minimum 
distinct. 

Preuve. Nous ne traitons que le cas de codes préfixes. 
(i)=>(ii) : si X est écrit par un code préfixe, il existe P (X) qui, par le Théorème 3 

en [6], est unitaire à droite. En vertu de la Proposition 2.1 et de la minimalité de 
ÛD(X), MUD(X)=ÏÏD(X)QP(X). Alors, par le Corollaire 10 en [6], MVD(X) 
est aussi engendré par un code préfixe. D'où P(X)=MVD(X). 

(ii)-o-(iii) est immédiat du Théorème 3 en [6]. 
(iii)-t>(iv)-o-(v)<=>-(vi) résulte immédiatement du fait que MVD(X), par la Pro-

position 2.1, est unitaire à droite et du Corollaire 9 en [6]. 
(vi)=>(i) : supposons que MVD(X) possède un ensemble générateur minimum 

distinct. Alors, étant unitaire à droite, MVD(X), par le Théorème 3 en [6], est engendré 
par un code préfixe. Par conséquent X est écrit par un code préfixe. 

3. Théorème du défaut 

On montre dans cette section que le théorème du défaut énoncé sous la forme 
du Théorème 3.2 en [1] est encore valide pour le cas des langages et codes infinitaires. 

Nous avons besoin du lemme suivant : 

Lemme 3.1. Soit X un langage infinitaire écrit par un code et soit Y la base 
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de QL (A"). Alors tout élément de Y est initiale et terminale d'au moins un mot dans 
X ; c'est a dire que l'on a ; 

y g ^ y ^ n ® - 1 ! . 

Preuve. Démontrons Supposons l'inclusion fausse, et prenons 
un y ^ Y - i Y f ^ X . Posons 

z _ J y * ( Y - y ) si M<û>, 
— l Y—y si |j>| = CD. 

Il est facile de vérifier Z+ = Yfin(Y-y). D'où XQZ*^Y*. Montrons que Z est 
un code. En effet, chaque élément a de Z + possède une factorisation unique en élé-
ments de Y : 

<x = y1...y„ avec ^ . . j ^ F 1 " ' et yn ^ y. 

Par conséquent, selon que ou \y\—a>, a se présente uniquement sous la 
forme 

a = yp,yiypiy'2 ••• yPry'r avec y[yi ... y'MY-yYr\ 
(i=l, ...,r) où 

a = • • • yn avec y1... (Y-y)M, 
c'est à dire a se factorise uniquement en éléments de Z. Donc Z* est aussi un sous-
monoïde quasi-libre contenant X, contrairement à la minimalité de QLÇX)—Y*. 
L'inclusion YÇ^XiY*)'1 est démontrée d'une façon similaire en posant Z—(Y—y)y*. 

Théorème 3.2 (Théorème du défaut). Soit X un langage infinitaire écrit par 
un code et soit Y la base de QL(X). Si X n'est pas un code, alors 

Card (F) S Card (X) — 1. 

Preuve. Traitons tout d'abord le cas ou e $ X. Soit a : X— Y l'application dé-
finie par : 

<x(x) = y si x£yY*. 

Elle est partout définie parce que XQ Y*, et elle est univoque car Y est un code. 
Le Lemme 3.1 dit alors que a est surjective. X n'étant pas un code, il existe donc 
Xi.-.X^ZW, .x;...x;n€X<m> vérifiant 

. . • XN — XJ . . . X M , X-±. 

On en tire a(x1)=a(xi), donc a n'est pas injective, ce qui prouve l'inégalité annoncée. 
Si E£X, on pose X'=X-S. Clairement QL(X)=QL(X'). Si X' est un code, 

alors X' = Y et on a Card Y=Card X'=Card X— 1 ; si X' n'est pas un code, 
alors par dessus Card Y^Card X' — l <Card X— 1. 

Corollaire 3.3. Soit X= {xx, x2} un langage infinitaire composé de deux mots. 
Alors X n'est pas un code ssi ou tous les deux mots de X sont puissances d'un même 
mot : 

Xi = yp, = y" (P, q ^ 0), 
ou Fun déux est puissance a> de l'autre : 

Xx = X? où X2 = X?. 



Langages écrits par un code infinitaire. Théorème du défaut 253 

Preuve (<=) est évidente. Démontrons (=>). Supposons que X ne soit pas un 
code. Trois cas sont possibles : 

a) Au mois l'un des deux mots de X, disons xx, est e. Alors en prenant pour 
y le mot x2 on a 

= y0, = y-

b) xx et x2 sont des mots finis non-vides. Alors X est écrit par un code, donc 
la base Y de QL(X), par le Théorème 3.2, se compose d'un seul mot, Y={y}. 
Nous avons donc 

Xi = y", X2 = y" 
pour certains p,q> 0. 

c) L'un des deux mot de X, disons x2, est un mot fini non-vide et l'autre est 
un mot infini. Alors x1=x$x1 pour un m>0, d'où x1=x2. 

4. Cas des langages infinitaires reconnaissable 

Une partie X de A°° est reconnaissable s'il existe un morphisme <p : — F 
de sur un monoïde fini F qui sature X : 

<?->(*) = X, 

ou, d'une façon équivalente, s'il existe une congruence d'index fini 0 de A°° qui sature 
X: X est union de classes de 6. 

Le but de cette section est de montrer que si une partie infinitaire reconnaissable 
est écrite par un code, elle est aussi écrite par un code reconnaissable. Plus préci-
sément nous établissons le résultat suivant qui est généralisation du Théorème 6.1 
en [1] : 

Théorème 4.1. Soit X une partie de A°° qui est écrite par un code et soit Y la 
base de QL(X). Alors, si X est reconnaissable, Y l'est encore. 

La démonstration du Théorème 4.1 repose sur certaines propositions. 

Proposition 4.2. Si M est un sous-monoïde de Am qui possède un ensemble 
générateur minimum distinct Y, et en particulier, si M est un sous-monoïde quasi-
libre avec la base Y, alors M est reconnaissable ssi Y l'est encore. 

Preuve. Rappelons que la famille de parties reconnaissables de A°° est fermée 
par les opérations booléennes, par le produit et l'étoile (cf [2]). Donc M est recon-
naissable si 'Y l'est. Pour démontrer la réciproque nous utilisons le Théorème 3 en 
[5] d'après lequel Y=(M—s)—(Mfi„—e)(M—e). Il est facile de vérifier que pour 
toute X de A", Xfin est reconnaissable si X l'est. Enfin {e} est clairement reconnais-
sable. Donc Y est reconnaissable si M l'est. 

On associe maintenant à chaque partie Z de A°° deux parties Uz et V7 ainsi 
définies : 

U0 = V0 ={e}; Uj+1 = U^ZUZ-Wj; Vj+1 = ZVj-iUVjZ-* j == 0 

Uz = U Uj, 
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Une congruence 0 de A est standard si 

VaÇA~ (a6s - a = e). 

À chaque congruence t de A°° on associe une congruence standard notée t définie 
par 

f = rfl/i , 

où n est la congruence dont les classes sont {e} et A°° — {e}. 

Proposition 4.3. Soient Z une partie de A°° et 0 une congruence standard 
de A°°. Si Z est saturée par 0, alors Uz et Vz sont également saturées par 0. 

Preuve. Montrons tout d'abord que pour toutes parties Z et 7 de A°°, si X 
est saturée par 9, alors Y~1X et A T - 1 le sont encore. En effet, soient aQfi et 
ct£Y~1X. Montrons fi£Y~1X. D'après la définition, il existe y£Y tel que 

ytxÇX et |y| = co — a = e. 

Comme X est saturée par 0 et 0 est standard, il en résulte 

yp£X et |y| = co - J? = e, 

ce qui signifie Donc Y~*X est saturé par 6. Pour XY-1 le raisonnement 
est similaire. 

Évidemment U0, V0 sont saturés par 6. Par récurrence, 

Uj+1 = U^ZUZ-Wj et Vj+1 = ZVj^UVjZ'1 ( j 0) 

sont saturés par 8. Par conséquent 

Uz= U Uj et Vz = (J Vj 
js0 js 0 

sont saturés par 0. 
La proposition suivante dont la démonstration fait appel à plusieurs lemmes 

sera démontrée dans la section prochaine 
Proposition. 4.4 Si Z est une partie de A°° qui contient le mot vide e, alors 

[LB(Z*)f = (UZC)VZ)*. 

Demonstration du Théorème 4.1 : Notons ix la congruence syntactique de X. 
Construisons une suite Xt de parties de A°° comme suit : 

= UXtClVXt, ië 0. 

Alors, par la Proposition 4.4, X?=Mf-B(X). 
En vertu de la Proposition 4.3, chaque Xt est union de classes de la cong-

ruence standard rx. Si X est reconnaissable, alors xx est d'index fini. Par consé-
quent le nombre des parties Xi différentes est fini. Donc il existe un n tel que 
MLB(X)=M%B(X)=X*. D'où, par le Théorème 2.2, Y*=X*. En vertu de la Pro-
position 4.2, il en résulte que Y est reconnaissable. 
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5. Démonstration de la Proposition 4.4 

Nous donnons d'abord quelques règles de calcul qui seront utilisées constam-
ment dans la suite : 

Lemme 5.1. Soient R, S, T des parties de A°°, et soit M un sous-monoïde 
de A°°. Alors 

RQ S=> T~*R Q T~*S, R~lT Q S~XT (1) 

R(ST)-* = (RT~1)S'1 (2) 

(RS)~1T= S^iR-1)! si ses . (3) 

(R-1S)T~1 = R-1(ST-1) si £ £T (4) 

(M-1 M)-1 M = M-1 M = (M-^M)M (5) 

RMDSM'1 g ( i ?nSM _ 1 )M; MRO M-1 S g M ( / ? n M _ 1 S ) (6) 
Preuve. Prouvons par exemple la formule (3). Soit a Ç ^ S ) - 1 ? . Ceci, par la 

définition, équivant à 

3p£R3y£S: (Py)<x€T & (\Py\ = <oa = e). 

Deux cas sont possibles : 
a) \P\<(o. Alors la formule dernière implique 

37(3P£R: PW)£T) & (|y| = œ - a = s) 
ce qui équivant à 

3y£R: (yocÇR^T) & (\y\ = co - a = s) 

ce qui signifie que a ÇS~1(R~1T). 
b) \P\—co. Alors la formule indiquée plus haut implique <x£R~1T. Puisque 

£6S, ceci signifie que a £ S ~ 1 ( R ~ 1 T ) . 
Réciproquement, soit a^S~1(R~1T). Il est facile de vérifier 

atS-^R-iT)** 30£S: (paÇR^T) & (\fi\ = a> - a = e) 

O 3PdS: (3y£R: y(P«)ÇT) & (|y| = œ - Pot = s) 

& (\P\ = 03 - a - fi) 

=» 3P£S3y£R: (yp)a€T & (\yp\ = m a = e) 

o aeiRsyiT. 

Posons, pour alléger l'écriture, 

M = Z*; Uj = I / 0 U UiU.-.UUj; V} = ^ U ^ U . . . U V j . 

Lemme 5.2. Pour tout ./=0, 

U j + 1 Q ( U j M ) ^ Z et V j + 1 Q Z ( M V j y \ 

Preuve._?&T récurrence s u r / Pour j= 0, l'inclusion est vraie puisque U1—ZQ 
<^M~1Z={U0M)~1Z. Si y>0 , alors, par l'hypothèse d'induction et les formules 



256 Do Long Van 

(1), (3), on a 

uJ+1 = u^zuz-Wj g ujlz{jz-%ûj^My^z) = 
= U ẐKMjÛĵ MZyi-Z = (UjUUj^MZ^Z g 
g (UjMUUj^M)-^ = (TJjM)-lz, 

ce qui prouve la première inclusion. La deuxième se démontre de la même façon 
en utilisant (2) au lieu de (3). 

Lemme 5.3. On a 
UZ = M~1UZ, VZ = VZM~\ 

M'1 M = UZM, MM-1 = MVZ. 

Preuve. Par définition, Z~1UjQUj+1 pour y'sO, donc Z~1Uz
(gUz. De 

la même manière, UjlZQ UJ+l (J=0) implique 
UZ'Z Q Uz. (7) 

De l'inclusion Z _ 1 t / z g Uz, on obtient par récurrence sur n en utilisant (3) et (1). 

(Z("+1>)~lUz = (Zln>)~l(Zfi,} Uz) g ( Z « ) - 1 UZQUZ n 0, 

d'où, puisque M=Z*= (J Z<">, on a M'W^Ut L'inclusion UZ^M~1UZ 
nSO 

résulte de ce que e£M. La deuxième se démontre de la même façon. 
Pour établir la troisième formule, nous vérifions par récurrence les inclusions 

Uj g M'1 M, j 0. 

Le cas / = 0 étant evident. Par le Lemme 5.2 et par l'hypothèse d'induction, on 
obtient _ 

uj+1 g (UjMy^z g ((m~im)m)-iz. 
Par (5) et (1) 

uJ+1 g ((M"1M)M)~1z = (m^m)-^ g (M"1M)~1M = m~xm. 

D'où. i / 2 g M - W . Par conséquent 

UZM g (M~1M)M = M-1 M. 

Pour démontrer l'inclusion inverse M_1MQ UZM nous vérifions tout d'abord 
l'inclusion (M"W)/;„g UZM. Supposons en effet fÇ_(M 1M)j-in. Alors il existe 
mÇM tel que 

mf = m'£M et (|m| = co) — (/ = e). 

Puisque s(iUzM on peut supposer f ^ s ce qui implique |m|<œ. 
Nous vérifions par récurrence sur \mm'\ que / £ U Z M . Si |/r;w'|=0, / £ M g 

g UZM ; si \mm'\^0, alors, puisque M—Z*, il existe h, h' tels que 

m = m^i, f = h'm2 avec tn1,tn2Ç.M, hh'Ç_Z. 

Alors h£(M~1M)fi„ avec |nww1|<|/jwn'|. Par l'hypothèse d'induction, hd UZM. 
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En utilisant (3) et (7) on obtient 

h'^UzM)-1^ = M-^U^Z) g M~lUz = Uz. 

Par conséquent / = Zi'mÇ UZM. 
Nous vérifions maintenant ( M _ 1 M ) i n / g £/zM. Soit u£(M~1M)i„f. Il existe 

alors m£Mfin tel que mu£M. D'une façon similaire au dessus, il existe h, h' tels 
que 

m = ntih, u = h'm2 avec m l 5 maÇM, hh'dZ. 

Alors h£(M~1M)fin ce qui implique h£UzM. D'une façon similaire au dessus 
on a h'£Uz, par conséquent u=h'miÇ.UzM. 

Démonstration de la Proposition 4.4. 
D'après le Lemme 5.3, 

Uzf\Vz g UZMC\MVZ = M - 1 MPI M M - 1 —LB(M) = LB(Z*). 

Donc (t/z fl VZ)* g [LB (Z*)]*. 
Réciproquement, 

LB(M) = M ^ M f l M M " 1 = UzMDMM-1 g (U^MM-^M. 

Puis, par les formules deuxième et quatrième du Lemme 5.3 et par (6), on a 

Uz n MM" 1 =UZC\ MVZ = M'1 Uz D MVZ g M (M-1 Uz C\VZ) = M( Uz n Vz). 

D'où LB(M) g M(UZ fl VZ)M. Comme ZQUzf]Vz, MQ(Uzf]VzT, par 
LB(M)Q(UZDVZ)*. Donc [LB(Z*)]*Q(Uzr\Vz)*. 
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On the congruences of finite autonomous 
Moore automata 

B y A . ÁDÁM 

1. Introduction 

By a congruence of an automaton, a partition n of the set of its states is meant 
such that n is compatible both with the transition function and with the output 
function. The general problem of describing the congruences of finite Moore auto-
mata seems to be a very difficult question. 

In the present paper, the congruences of (possibly non-connected) finite Moore 
automata which have only one input sign are presented by a recursive construction. 
After introducing the most important notions, the question is elucidated in three 
phases. (The first and third phases are almost trivial.) First, an overview of the 
congruences of cyclic automata1 is given in Section 3. The second phase is the single 
stage of the procedure which requires labour; in this phase the congruences posses-
sing the following property are obtained by a construction: whenever a is a cyclic 
state, then the congruence class containing a intersects every connected component 
of the automaton (Section 4). This result can easily be extended into a complete 
solution of the main problem of the paper (Section 5). 

The considerations of Section 4 are illustrated by an example in Section 6. 
The final section of the paper gives a broad survey of several problems concerning 

the congruences of finite Moore automata; some related earlier investigations are 
referred to here, too. If the reader wants first to get a comprehensive overview of a 
variety of problems, and thereafter to narrow down his interest to the particular 
question analyzed actually, then he can be recommended to begin the study of the 
paper with Section 7. 

The author wishes to express his gratitude to the referee, Dr. G Y . POLLAK, 
for his various suggestions which made the considerations clearer at several places 
of the paper, primarily in section 4. 

1 The attribute "cyclic" is used in the sense that the graph of the automaton is a (directed) 
cycle. (In some articles, the same attribute is used to mean that the automaton has a state which 
constitutes a one-element generating system.) 

2* 
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2. Terminology 

We shall use the standard terminology of automaton theory and certain basic 
notions in graph theory without explicit definitions.2 We shall consider automata 
so that no state is distinguished in them as an initial one, and (if not otherwise stated) 
we do not pose any connectivity restriction. 

A finite Moore automaton A=(A, X, Y, 5, X) is called autonomous if the 
input set X consists of a single element x. The automata, studied in this paper, are 
thought to be autonomous (unless otherwise stated). The graph-theoretical struc-
ture of these automata is described by the (simple but important) well-known theo-
rem of Ore ([8], § 4.4; [1], Chapter I). Denote the connected components of A by 
A l5 A2, . . . ,A t . Ore's theorem implies that 

(i) each connected component A; (where 1 S / S i ) contains exactly one 
cycle Zi5 

(ii) A,- has no other circuit than Z f , 
(iii) an edge of A; which does not belong to Zf is directed towards Z ;. 
A state a is called cyclic if a belongs to the cycle of the connected component 

containing a. In the contrary case, a is called an acyclic state. 
Let a, b be two states of an automaton. Define %{a, b) as the smallest non-

negative number i such that <5(a, x')=b. (Possibly %(a, b) is undefined.) 
Connected components and cycles are, obviously subautomata of A. Let a be 

a state; we denote by A [a] the connected component containing a and by Z[a] the 
cycle of A [a]. 

The next evident assertion yields a recursive description of the subautomata of A. 

Proposition 1. Let A be an (autonomous) automaton. Then 
(i) the union of an arbitrary number ( s i ) of cycles is a subautomaton of A, 

(ii) whenever B=(B, {x}, Y, <5, A) is a subautomaton and a is a state of A 
such that 

a & <5(a, x)£B, 

then C=(BU {a}, {*}, Y, 5, A) is a subautomaton, 
(iii) each subautomaton of A can be obtained by applying (i), (ii) (where (ii) is 

applied several—possibly zero — times). 
Let a be an arbitrary state of A. The smallest i such that S(a, x') belongs to 

Z [a] is called the height of a. We denote by Mi the set of all states of height i. (Hence 
M0 is the set of cyclic states; M„UM1U...UMy constitutes a subautomaton for 
each 0).) 

A partition 7i of the state set A of an (autonomous) automaton A is called a 
congruence (of A) if a=b (mod n) implies 

S(a, x) = S(b, x) (mod7t) 
and 

A(a) = A(b). 

' In particular, "cycle" is understood as a directed graph and the word "circuit" is used if we 
do not take orientation into account. 
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For each congruence я, we can introduce the factor automaton А/я so that A¡n is 
the state set of А/я and the functions д, A are defined in А/я in the natural manner. 

The minimal partition о of A is always a congruence. The automaton A is 
called simple (or reduced) if A has no other congruence than the minimal partition 
of A. It is easy to see that, for an arbitrary automaton A, there exists a maximal 
congruence3 ягаа,, moreover, А/я is simple precisely in the case я = я т „ . 

An isomorphism between automata is understood as a state-isomorphism, an 
analogous agreement holds for homomorphisms. 

Let us define a partition nc of A such that two states a, b are in a common class 
modulo я exactly if they are in the same connected component. nc fails to be a con-
gruence in general. 

A partition я of the state set of an automaton A is called extensive if each class 
modulo я which contains at least one cyclic state meets every connected component. 
(In other words, more explicitly: я is said extensive if, whenever to a pair a, b of 
states there exists a positive number j satisfying xJ)=a, then there is a state 
с which fulfils a=c (mod я) and b=c (mod irt).) 

Consider two connected components Af, A¡ of A. Denote the maximal con-
gruences of the cycles Z¡, Zy by n¡ and n¡, respectively. If Zjn^ and Zjlitj are iso-
morphic automata, then we call A¡ and A j similar components. The similarity is an 
equivalence relation in the set of all connected components of the automaton. An 
automaton A is called pan-similar if every pair of connected components of A is 
similar. (A connected automaton is trivially pan-similar.) 

3. The congruences of cyclic automata 

Consider an automaton A such that A is a cycle. (See Fig. 1.) Denote the number 
of states (i.e., the length of the cycle) by v. Suppose that the states of A are denoted 
by a1} a2, ..., av so that 

S(alfx) = a2, d(a2,x) = a3, ..., <5(iJK_a, *) = S(av,x) = ax. 

Fig. 1. 

3 The maximality means that each congruence n is a refinement of 7rm„. In general, nm u x is not 
equal to the maximal partition t of A. 
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Let s be the smallest number4 such that the v equalities 

A(ax) = A(a1+S), A(a2) = A(a2+s)>...,A(a„_s) = A(a„), 

A (a._.+ I) = A(flj), A(a„_s+2) = A(a2), ..., A (a,,) = A(aJ (3:i) 

are true, s is called the periodicity number of A. We have clearly 1 S iS i ) . The cycle 
is called primitive or imprimitive according as s=v or s<v holds. 

It is obvious that the periodicity number s is a divisor of the cycle length v. 

Construction I. Choose an integer d such that Introduce the partition 
7Td of A by 

a, = cij (mod nd) <=> d\j — i 
(where l ^ i S v , l ^ j ^ v ) . 

The index of nd is d. Each class modulo nd has v/d elements. 

Theorem 1. A partition n of the state set A of a cyclic automaton A is a 
congruence of A if and only if there exists a number d such that and) n = nd. 

Proof Sufficiency is evident. — Consider an arbitrary congruence n of A. If 
we define d as the smallest positive number such that a=b (mod n) for suitable 
states satisfying x(a,b)=d, then it is easy to see that n = nd. 

Corollary 1. The congruence lattice of A is isomorphic to the lattice of divisors 
of v/s. 

Proof. Let d* be an arbitrary divisor of v/s, let us assign to d* the congruence 
nvjd,. It is easy to see that this assignment is an isomorphism. 

The following assertions are immediate consequences of our former considera-
tions : 

Corollary 2. The maximal congruence of A is ns. Among the factor automata 
A/nd (where d runs through the numbers fulfilling s\d\v) only A/ns is reduced. 
A is reduced if and only if A is a primitive cycle. 

4. The extensive congruences of pan-similar automata 

4.1. introductory considerations 

Let A be a pan-similar automaton. Consider an arbitrary state a of A, let i be 
the height of a. There is a state b, determined by a uniquely, such that b belongs to 
Z [a] and 

8(b, x!) = 5 (a, x'). 

We shall denote b by a (a). Thus we have defined an idempotent mapping a of the 
set of all states onto the set of cyclic states. It can be seen easily that o(p(a, x)) — 
=5(a(a), x). 

4 The existence of s follows from the fact that the formulae (3.1) are valid for v (instead of s). 
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Denote by D=(D, {*}, Y, <5, A) the largest subautomaton of A which satisfies 
the implication 

a£D =>• A (a) = A(a(a)). 

The following statements are obvious. 

Lemma 1. 
(I) D exists and includes all the cycles of A. 

(II) D can be obtained also as the smallest subset of A fulfilling the following 
two requirements: 

(A) Every cyclic state belongs to D. 
(B) If a is acyclic, d(a,x)£D and A(a)=A(<r(a)), then a£D. 

(III) The formulae a^D and a=o(a) (mod^max) are equivalent (where a£A 
and 7cmax is the maximal congruence of A). 

Since we have supposed that A is a pan-similar automaton, there exists a cyclic 
automaton Z such that Z is isomorphic to each Zk/nk where nk is the maximal 
congruence of the cycle Zk of the connected component Ak of A. (k runs from 1 to t, 
where t is the number of components.) Z is primitive. For each choice of k, there is 
exactly one homomorphism rk from Zk onto Z. 

Denote the number of states of Z by s and, for any choice of k, the number 
of states of Zk by vk. (Clearly j|wt.) 

Lemma 2. Let a,b be two elements of D. Define k and m by Zk—Z[a], 
Zm=Z[b]. If xm(a(a))=Tk{a{b% then X{a)=X(b). 

Proof. We have 

A(a) = A (a (a)) = k*(xk(a(aj)) = A*(tm(ff(6))) = X(a(bj) = A(fe), 

where A* is the output function of Z. Indeed, the first and fifth equalities are valid 
by the definition of D, the second and fourth ones hold because zk, zm are homo-
morphisms. 

4.2. Recursive description of the extensive congruences 

Construction II. 

Step 1. Choose a subautomaton G0=({?„, {x}, Y, 5, A) of A such that G0 
is included in D and each cycle Zk is included in G0. 

Step 2. Define an ascending sequence 

GO.GLG, , . . . 

of subautomata of A so that5 a£Gi+1 if and only if d(a, x)£G¡. (The sequence is 
finished when A is entirely exhausted.) 

Step 3. Choose a number d such that s\d and ¿ i s a common divisor of the 
cycle lengths vlt v2, ..., vt. Choose, furthermore, a sequence zl, z2, ..., z, of 

6 Of course, Gi is here the set of states of G, . 
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states such that zk belongs to the cycle Zk (1 sk^t) and the equalities 

f i (zi) = T2(Z2) = . . . = T,(Z,) 
hold. 

Step 4. Introduce a sequence of partitions 7t(0), n(1), n(2),... in the following 
(recursive) manner: 

(I) Each 7i(i) is a partition of G;. 
(II) Two elements a, b of G0 are congruent modulo 7t(0) exactly if 

zk) = x(b, zm) (mod d), 

where k and m are defined by Zk=Z[a] and Zm=Z[b]. 
(III) Suppose that 7t(i) has already been defined. Introduce 7t(i+1) so that 

the following three rules be observed: 
(a) If a^Gi and ¿>£G;, then a=b (mod 7i(i+1)) holds precisely when a=b 

(mod 
(fi) If a£Gi and b^Gi+1-Gh then a^b (mod 7t<i+1>). 
(7) If a and b belong to G i + 1 - G f and a=b (mod 7t(i+1)), then X(a)=X(b) 

and ¿(a, x)=5(b, x) (mod 7i(i)). 
(It is clear that (7) admits a certain liberty in partitioning the elements of' 

Gj+!—G,- into classes.) 
Step 5. Denote by n the partition 7i<i*) with the largest possible superscript 

i*. (Obviously, n is a partition of Git=A.) 

Lemma 3. If a=b (mod n), then /. (a)=X (b). 

Proof. Suppose a=b (mod n). There exists a subscript i such that a, b belong 
to G ; but (if />0) they are not contained in Gj_x. The proof proceeds by induction 
on i. 

Let a, b be elements of G 0 ( g D ) , recall (II) in Step 4 of Construction II. 
We have 

y.{a(a), zk) = x(a, zk) = x(b, zm) = x{a(b), zm) (mod d) 

(the first and third congruences are clearly true modulo vk,vm, resp., this implies 
their validity modulo d), hence xk(a(a))=xm(a(b)), thus X(a)=X(b) by Lemma 2. 

Assume that the lemma is valid for i. Let a, b be elements of G i + 1 — Gt such 
that they are congruent modulo n. Then they are congruent also modulo n ( i + 1 ) . 
A(a)=A(b) follows from the rule (7) in the item (III) of Step 4 of Construction II. 

Lemma 4. n is a congruence. 

Proof. After the preceding lemma, it suffices to show that a=b (mod n) implies 
S(a, x)=d(b, x) (mod ri). 

Let a=b (mod 7t) hold. There is an i as in the previous proof. Again, we use 
induction. First we consider the case /=0 . Use the short notations a'=S(a, x) 
and b'=5(b, x), recall item (II) of Step 4 of Construction II. We have 

X(a', zk) = x(a, zk)~ 1 = x(b, z j - l = l(b;zm) (mod d), 

where the second congruence follows from a = b (mod 71), the first and third congru-

M 
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ences are valid6 because d is a divisor of the lengths of the cycles containing zk and 
zm. Hence d=b' (mod n). 

If i is positive, then the inference 

a - - b(mod 71) =>• a = b (mod 7t(i)) => 8(a, x) = 5(b, x) (mod 7 t ( i - 1 ) ) => 

=> 8 (a, x) = 8(b, x) (mod 71) 

is valid according to item (III) of Step 4 of the construction. 
Theorem 2. A partition it of A is an extensive congruence of A if and only 

if it can be obtained by Construction II. 

Proof. 

Suff ic iency. Having Lemma 4, we are going to show the extensivity of a 
congruence % obtained by the construction. Assume that a belongs to Zk and b be-
longs to Am, we want to find a c(£Am) with a=c (mod n). The choice c=S(zm, xx) 
is convenient, where / stands shortly for x(zk, a). 

Necessi ty . Let an extensive congruence it of A be considered. Our next aim 
is to determine the circumstances (more precisely: the choices of d, z l5 z2, . . . ,z ( , 
(?„, 7t(0), (?!, i tw , G2,7i(2), ...) under which just the prescribed n is obtained by 
Construction II. 

Let G0 be the set of states a(£A) for which there is a cyclic state c such that 
a=c (mod n). Let Gi+1 (where i can be 0,1, 2, ...) be the set of states a satisfying 
5 (a, Let 7t(i) be the restriction of it to the set Gf. 

Let z l5 z2, ..., z, be arbitrary states in the cycles Zx, Z2, ..., Z(, respectively, 
such that they are pairwise congruent modulo n. 

Choose a cyclic state z and denote by d the smallest positive number which 
satisfies z=8(z, xd) (mod n). It can be seen that d does not depend on the choice 
of z. 

Let 7t* be the congruence which is yielded by Construction II with the para-
meters introduced above and with a suitable application of (III/y) in Step 4. We 
want to show n*=n. Consider two states a,b; we are going to get that they are 
congruent modulo it* exactly when they are congruent modulo it. 

Suppose first a£G0 and b£Ga. Consider the three statements 

, a = b (mod TT*), 

X(a, za) = x(b, zb) (mod d), 

a = b (mod 7t). 

It can be seen that the second statement is equivalent both to the first and the third 
one. 

We turn to the case a£Gh b£Gi+l—GL. With this choice of a and b, we have 
a^b (mod 71*). On the other hand, a=b (mod 7:) would imply 

8(b, x i+d) = 8(a, xi+<i) = 8(a, x') = 8(b, x1) (mod it) 

' Except the possibility a=zk, the equality x(a', zk)=x(a, zk) — i is also true (and analo-
gously for b). 
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(the second congruence follows from 5(a, xi)€G0), and this is impossible since 

¿(¿.xOGGJ-G,,. 
By getting a contradiction, a b (mod ri) is verified. 

Finally, assume that a and b belong to the same G i+1—Gf. The equivalence of 
a=b (mod n) and a=b (mod n*) follows from the fact that we have defined 7 t ( i + 1 ) 

as the restriction of n. It remained still dubious whether or not the sequence 

(as we have derived it from 7t) satisfies (Ill/y) in Step 4 of Construction II. This 
holds, however, because n is a congruence. 

By analyzing Construction II and Theorem 2, we get the following result: 

Corollary 3. The maximal congruence 7tmaj[ of A is extensive, and just nmax 
is obtained when we apply Construction II in the following manner: d is chosen as 
equal to s; G0 is chosen as equal to D; for each possible value of i, let a=b (mod 
7 t ( , + 1 ) ) hold precisely when both ).(a)=X(b) and 

5(a,x) = S(b,x)(mod 7i(i)) 

are true (where a and b belong to Gi+1—Gf): 

4.3. The question of unicity 

Construction I has yielded uniquely the congruences of cycles. (Also Construc-
tions III, IV will prove to be unique.) It may happen, however, that two different 
applications of Construction II lead to the same extensive congruence. More nearly: 
if we modify either G0 or d or the 7i(i,'s, then the obtained congruence n is necessarily 
altered; but it is possible that two different systems of form zx, z2, ..., z, give the 
same congruence. 

Proposition 2. Let two realizations of Construction II be considered. Suppose that 
d, G0,7i(0), G±, 7t(1), G2,7t(2), ... are common in them. Denote the states which represent 
the cycles by zlt z2, ..., z, in the first execution, and by z[, z2, ..., z[ in the second 
one. Denote the obtained congruences by n and n, respectively. Then n=n' if and 
only if the numbers 

X(zi, 4), X(z2, z0, . . . , x(zt, z't) 

are congruent to each other modulo d. 
Next we show two lemmas. 

Lemma 5. First apply Construction II with the system zlt z2, ..., z„ and then 
modify the application in such a way that the system of the z?s is replaced by the 
system 

z* = 5(z±, x), z\ = <5(Z2, X), . . . , z%
t = 8(z,, x). 

Both realizations of Construction II give the same congruence. 

I 
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Proof. The statement is implied by the construction (especially, item (II) of 
Step 4) and the deduction 

X(.a, 4) = X(a, zk) +1 = x(b, zm) +1 = *(£>, z*) (mod d). 
Lemma 6. Apply Construction II with the system z l5 z2, ..., z„ select a number 

i (1 ^iSt) and modify the application in such a way that z{ is replaced by zf — 
=S(Zi, xd). Both realizations give the same congruence. 

Proof. It is easy to see that 

X ( a , zt) = x(a, z.) (mod d) 

for each state a of Af; hence the statement follows immediately. 

Proof of Proposition 2. 

Su f f i c i ency . Consider the system zu z2, ..., zt. First apply Lemma 5 
x(zi >ZD times, thus we get a system zjf ,z2 , ..., z* such that z*=z^ and dfx(z*, z\) 
for each i (ISi^t). We can obtain the system z[, z2, ..., z't by applying Lemma 6 
(several times, in a straightforward manner). 

Necess i ty . Suppose 
Z(z;, z'i) ^ x(zj, zj) (mod d) 

for a suitable pair i,j (1 si^t, 1 sj^t). Then zf and Zj are congruent modulo n, 
and it is easy to see that they are incongruent modulo n'. Hence n ^ n ' . 

4.4. Considerations on how certain subautomata can be generated 

Construction II relies upon the subautomata of D containing all the cyclic 
states. From a theoretical point of view, Proposition 1 gives a good survey of these 
subautomata. 

This survey has the practical disadvantage that a subautomaton is handled 
as the set of all states of it. It would be more useful, to characterize the subautomata 
in terms of certain sets which consist of a relatively small number of states. The 
present subsection is devoted to this subject. 

Let B—(B, {x}, Y, 5, X) be a subautomaton of A such that B includes each 
cycle. Denote by I?(B) the set of states a satisfying the condition 

a£B & (\/b)[b£B => 5(b, x) ^ a]. 

/?(B) is called the minimal generating system of B. Each element of JR(B) is an acyclic 
state. (If, in particular, B is the union of all cycles, then I ? ( B ) = 0 . ) 

It is evident that a state b belongs to B if and only if either b is cyclic or there 
is an a(£R(B)) and a number /(SO) such that S(a,x ' )=b. 

Proposition 3. If Bx and B2 are different subautomata of A which contain all 
the cyclic states, then RiB^^RiB^). 

Proof. If R(B1)=R(B2), then BX equals B2 in consequence of the sentence 
before the proposition. 
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Proposition 4. Let R be a (possibly empty) set of acyclic states. The following 
statements (A), (B) are equivalent: 

(A) There exists a subautomaton B c / A such that B contains all the cyclic states, 
B is a subautomaton of D and R(B)=R. 

(B) R is a subset of D and whenever a£R and i is a positive number, then 
S(a,xi)$R. 

Proof. ( A ) = > ( B ) is evident. — If a set R satisfies ( B ) , then it is easy to see that 
a is acyclic and R=R(B) holds for the subautomaton B which is defined by the 
following rule: b£B if and only if either b is cyclic or there is an a(£R) and a non-
negative number i such that <5 (a, x')=b. 

Construction III. The construction consists of an initial step and an arbitrary 
number ( ^0 ) of general steps. 

Initial step. Let Rx be an arbitrary non-empty subset of M^D. 

General step. Consider a set R{ such that Rt has been obtained by the preceding 
step of the construction, RiQM1UM2[J ...UMt and R^M^®. Choose a 
non-empty subset Q of RiC)Mi such that 5~1(q)ClD9i& for each choice of 
q£Q, where <5_1(<?) is the set of states a satisfying 5(a,x)=q. Choose for each 

Q) anon-empty subset 0(q) of §~1(q)C\D. Let us form the set 

i m = № - e ) u ( u « ( ? ) ) . 
9€Q 

Construction III can be finished after an arbitrary step. It breaks up necessarily 
when there is no possibility for the non-empty choice of Q. 

Proposition 5. The realizations of Construction III give pairwise different sets. 
A set R is obtainable by Construction III if and only if R=R(B) with some sub-
automaton B such that B contains all the cyclic states, B is included in D, and 
B has at least one acyclic state. 

Proof. The first assertion follows from the requirements that certain sets must 
be non-empty in Construction III. The second assertion is an easy consequence of 
the characterization of the sets R(B) stated in Proposition 4. 

5. Overview of the congruences in the general case 

Let A be an arbitrary finite autonomous Moore automaton. Denote by nh the 
partition of A such that a=b (mod nh) holds precisely if the connected components 
which contain a and b are similar. Evidently, ncQnh. 

Construction IV. 

Step 1. Let a partition n* of A be chosen such that ncQn*Qnh. Denote by 
A J , A 2 , . . . , A 4 the (pan-similar) subautomata of A which are determined by the 
classes Alt A2, ..., Aq modulo n*, respectively, (q is the index of 7t*.) 

Step 2. For each choice of i (1 Si^q), let us consider a partition 7r; of A which 
satisfies the following assertions: 
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(i) AlUA2U...UAi-1{JAi+1U...UAq is (precisely) one class modulo n^ 

(ii) The restriction of n{ to At is an extensive congruence of A,. 

Step 3. Let us form the partition 

% = Jt1flwin...ri7ts of A. 

Theorem 3. A partition n of A is a congruence of A if and only if n can be 
obtained by Construction IV. fi 

Proof. Sufficiency is evident. — Consider a congruence n of A. If we take %* 
as nUnc and define each 7rf so that 7t, coincides with n on Ah then it is clear that 
Construction IV gives n. g 

An easy consequence of the previous considerations of Section 5 is: 

Corollary 4. The maximal congruence of A is obtained when we choose (in 
Construction IV) 7i* as equal to nh and we determine each ni so that its restriction 
to At should be the maximal congruence of A;. 

Proposition 6. An automaton A is reduced if and only if the following three 
assertions hold: 

(i) Each cycle of A is primitive. 
(ii) The cycles of A are pairwise non-isomorphic. 
(iii) There is no pair of different states a, b in A such that S (a, x)=S (b, x) 

and X(a)=X(b). 

Proof. 
Necess i ty . If (i) does not hold, then we get a nontrivial congruence so that 

we select an imprimitive cycle Z and we define n so that a=b (mod n) if either 
a=b or a, b are states of Z which satisfy s\%(a,b). 

If (ii) is not true, then we can choose two different cycles and an isomorphism 
a between them; the following partition n is a nontrivial congruence: a=b (mod TC) 
is either a=b or one of a, b is the image of the other under a. 

If (iii) is not valid, then let us choose a pair a, b fulfilling X(a)=X(b) and 
8(a, x)=8(b, x); the following partition is a nontrivial congruence: {a, b} is one 
of the classes and all other classes consist of one element. 

Suff ic iency. Suppose that (i), (ii), (iii) are fulfilled. It is clear that n c =n h . Let 
us recall the considerations of Section 4 in case of an arbitrary connected compo-
nent A; of A. D consists of the cyclic states only. Corollary 3 and the last sentence 
of Corollary 2 imply that the maximal congruence of At equals its minimal congru-
ence, i.e., At is simple. Taking Corollary 4 into account, we get that also A is reduced. 

Remark 1. Consider the conditions (i), (ii) in Proposition 6. (i) & (ii) can be 
formulated in the following manner (equivalently): 

(iv) Whenever Z l 5 Z2 are cyclic subautomata of A and there is an isomorphism 
a of Zx onto Z2, then (ZX=Z2 and) a is the identical automorphism of Zx. 

Remark 2. The sufficiency of the conditions in Proposition 6 can be proved 
also by using the following idea (without any reference to the previous results): 
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we start with a congruence n and two different states such that a=b (mod n), and 
we strive to show by studying the sequences 

a, 5{a, x), ¿(a,*2), ... 
and 

b,S(b,x),5(b, x2),... 

that either (i) or (ii) or (iii) is violated. 
The question may arise when two congruences, obtained either by Construc-

tion II or by Construction IV, are related in such a way that one is a refinement of 
the other. The answer is given in the next results which can be verified by routine 
inferences. 

Proposition 7. Consider two realizations of Construction II (concerning .the same 
automaton A). Distinguish them from each other by the sub-or superscripts a and ¡i; 
in particular, let the obtained congruences be na and respectively. The relation 
n^Ttp holds if and only if the following four conditions are satisfied: 

(A) G l ^ G l 
(B) d,\da. 
(C) The numbers 

are congruent to each other modulo dp. 
(D) Whenever two different states a and b are congruent mod na in conse-

quence of (Ill/y) in Step 4 of the (first execution o f ) Construction II and they are not 
contained in G(¡, then a and b belong to the same Gf + 1 and they are in a common 
class mod (in course of Step 4 of the second realization). 

Proposition 8. Consider two realizations of Construction IV (concerning the 
same automaton A). Distinguish them from each other as in the preceding proposi-
tion. The relation holds if and only if the following conditions (I), (II) are 
fulfilled: 

(i) 
(II) The implication 

a = b (mod nf) =* a = ft (mod n1-) 

is valid for every i (lS/S^J, where j (ISj^q^) is the number determined by 
A f s A j . 

6. Example 1 

6.1. Exposition of the example 

In Section 6 we give an example to demonstrate how the extensive congruences 
of a pan-similar automaton can be constructed. 

Fig. 2 shows the graph of an autonomous automaton A (with |v4|=33 and 
|F | = 3). A has two connected components and is pan-similar. The simple homo-
morphic image of the cycles of A can be seen in Fig. 3. For the sake of brevity, we 
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Fig. 3. 

Table 1 

I 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 

a{f) 13 14 13 14 15 15 15 15 16 16 17 31 32 32 33 

denote a state simply by i instead of at. We make a perspicuous distinction between 
the output signsyx, y2, y3 so that we draw a circle, a square or a triangle, respectively. 

Table 1 shows the values of a on the acyclic states. D consists of the states 2, 5,. 
7, 9, 10, 11 and the eighteen cyclic states. 
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6.2. The realizations of Construction III 

The initial step of the construction can be applied in three different ways; we 
get the sets 

*ix) = {5}, *f> = {ll}, *i3 ) = {5, 11}. 
After an initial step, we have eleven possibilities for applying a general step; 

the resulting sets are 

* i» = {2}, RM = {9}, R p = {10}, R ^ = {9, 10}, R ^ = {2, 11}, 

*<«> = {5, 9}, R P - {5, 10}, R(
2
8) = {5, 9, 10}, R™ = {2, 9}, 

= {2,10}, J?<u> = {2,9,10}. 

(If we start with we get RgK The sets Ri3 \ R£4\ R£5) are obtained if we start 
with i?}2). The remaining seven sets are derived from i?i3).) 

If one ofR<s>, Rl«\ Rg>\ Ri9\ J?|u> is considered, we can execute a second 
general step. In this manner we arrive to the following six sets: 

Ri1] = {7}, = {7, 10}, ^3> = {5,7}, 

Ri» = {5, 7, 10}, R ^ = {2, 7}, ^ = {2,7,10}. 
We have exhausted all possibilities for performing Construction III. We have 

got that there are twenty-one choices for the subautomaton occurring in Construc-
tion II. (Twenty of these are generated by the constructed sets, respectively; among 
them, Ri,G) generates the whole sub-automaton D. A further subautomaton con-
sists of the cyclic states only.) 

6.3. The possibilities for choosing d, zx, z% 

Now we turn to how Construction II can be performed for the automaton A. 
We have two possibilities for choosing d: either d— 3 or d=6. As we have seen 
earlier, B can be selected in 21 manners. 

If d=6, then there are two essentially different7 possibilities for the choice 
of the pair {zl5 z2}. The first of these is zx= 12, z3=22; the other is zx= 12, z2—25. 
If d= 3, then we have only one possibility (apart from non-essential changes): 
zx= 12, z2=22. 

In the previous considerations, we have seen that the number of possibilities 
for choosing the parameters B,d,zltz2 is 63 (=21.(2+1)). In fact, A has more 
than 63 extensive congruences, because Step 4 (III/v) of Construction II is not strictly 
determined. 

6.4. Some notational conventions 

Before dealing with the extensive congruences of A in a somewhat (but not fully) 
detailed manner, it is appropriate to introduce how the partitions of the state set of 
A can be denoted shortly. We agree that, e.g., 

<1,4|2,3,1116, 19) 

' "Essentially different" is meant in sense of Proposition 2. 
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denotes the partition in which the three sets {1,4}, {2,3,11}, {6,19} are classes 
and each one of the remaining states forms a one-element class. If it is already known 
that H= {2,11}, then we can write 

< l , 4 | f f , 3 | 6 , 19) 
instead of the above formula, too. 

Let another notation also be introduced in the following way (for sake of con-
ciseness) : the formula 

<1,8, 11 | 3,9 || (2, 10), (4, 7)> 

will mean the system consisting of the four partitions 
<1,8, 11 | 3,9), 

<1,8, 11 | 3,9 | 2, 10>, 
<1,8, 11 | 3,9 14, 7), 

<1,8, 11 ¡3,9 12, 10|4,7>. 

6.5. Study of the extensive congruences obtained through certain 
subautomata 

We have seen in Subsection 6.2 that there are 21 possibilities for choosing G0. 
Among these, now we consider the subautomata generated by 

0, R ? \ R ? \ R ? \ 
and we are going to discuss the congruences obtained with these G0's. (The discus-
sion of any of the remaining 16 possibilities resembles to one or another of these.) 

Introduce the sets (of cyclic states) 
= {12, 15, 22, 25, 28,31}, 

H2 = {13, 16, 23, 26, 29, 32}, 
H3 = {14, 17, 24, 27, 30, 33}, 

K t = {12, 22, 28}, 
K2 = {13, 23, 29}, 
Ks = {14, 24, 30}, 
K,= {15, 25,31}, 
K5 = {16, 26, 32}, 
Ks = {17, 27, 33}, 
In. = {12, 25,31}, 
L2 = {13, 26, 32}, 
Ls = {14, 27, 33}, 
L4 = {15, 22, 28}, 
L6 = {16, 23, 29}, 
Le = {17, 24, 30}. 

3 Acta Cyberoetica VII/3 

L 
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Let us study first the case when G„ contains the cyclic states only. If d= 3 
(and z1 = 12, z2=22), then two congruences are obtained with these parameters: 

<//1 |i/2 |//3ll(9, 10)). 

Analogously, if d=6, zx=12, zz=22, then 

{KX\K2\K3\K,\K5\K,\\(9, 10)) 

are got; when d=6, Zj = 12, zz=25, then 

( L ^ L ^ L ^ L ^ , 10) ) 

are. Altogether, we have obtained six congruences for the smallest possible G 0 . 
If we start with the subautomaton generated by R[l) (as G0), then we get four-

teen congruences 
(Hlt 5\H2\H3\\(9, 10)), 

< ^ , 5 1 ^ 3 1 4 , 21||(3,19), (9, 10», 

(K^K^Kt, 5 № J ( 9 , 10)) , 

(L^L^L,, 5|X5|£6||(9, 10)>, 

<Z,1|JL2|i3|i4, 5|L5|Z6|4, 211|(3, 19), (9, 10)). 

With the subautomaton generated by R^3), three congruences are obtained: 

{H,\H2, 10|tf3, 11>, 

{ L ^ L ^ L A L s , 10|L6, 11). 

With the subautomaton generated by R2\ we get seven congruences: 

{Hi, 5\H2, 10|^3, 11), 

(Hu 5\H2, 10|#3, 11|4,21||(3, 19)), 

<tf|tf2 | tf3 |*4,5|*5 ,10|*6 , 11), 

(LJL^lLt, 5\Lb, 10\L6, 11), 

(L^LslLi, 5\LS, 10|L6, 11|4, 21||(3, 19)). 

Finally, the discussion of the subautomaton generated by Rleads to twelve 
congruences: 

(HJH, , 9, 10|tf3, l l | / i4 | t f6 |#. | | (5, 7), (6, 8)), 

<№1*31*41*5, 9, 10|̂ T8, 111|(5, 7), (6, 8)), 

9, 10|A, 1111(5, 7), (6, 8)). 

I 
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6.6. Short overview of the extensive congruences of A 

Out of the 21 basic sets, five ones were examined in Subsection 6.5. Now we 
cast a glance to the other 16 ones. The generating sets /?i2), behave simi-
larly to the smallest G0 (each of them leads to six congruences). R&2) and R^w) be-
have analogously to R a n d respectively. The behaviour of the eleven gene-
rating sets not yet mentioned is analogous to /q1 ' . 

Consequently, the number of extensive congruences of A is 

233 =(4.6+2.12+2.7+12.14+1.3). 

6.7. Maximal and minimal extensive congruences 

The maximal congruence of A is 

(Hlt 5, 7|H2 , 9, 10\H3, 2, 11|3, 19|4, 21|6, 8); 

it can be obtained from Rand d— 3. 
The question arises whether, for an arbitrary pan-similar automaton, there 

exists a minimal congruence among the extensive ones. The analysis of A shows 
that the answer is negative (in general). Indeed, let the extensive congruences 

nK = (K^K^K^K,), 

(got with the smallest G0 and d=6) be considered. The system {nK, nL} is minimal 
in the following weak sense: each extensive congruence n satisfies at least one of 
the relations n K ^ n and n L ^n . None of nK, nL is a refinement of the other, 
their intersection is not extensive. 

7. Appendix (Outlook) 

7.1. Theoretical considerations 

Let now A — ( A , X , Y , 5 , X ) be an arbitrary (not necessarily autonomous) 
finite Moore automaton. A partition n of the state set A was called a congruence if 
a=b (mod n) implies 

(A(a) = 1(b)) & (S(a, x) = S(b, x) (mod «))' (7.1) 

for every choice of a(€A), b(£A) and x(£X) (cf. Section 2). The question to 
which the present paper is devoted is a particular case of the following general one: 

Basic problem. Describe the congruences of an arbitrary automaton A. 

A satisfactorily explicit solution of this problem is, of course, hopeless in full 
generality. The importance of the basic problem (in spite of the fact that it seems 
to be an imaginary question) is that it can be considered as a common source of 
other problems. More explicitly, it admits several particularizations (into vairious 

3 * 
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directions) so that these particular questions are interesting and their solution lies 
already (more or less) within the limits of real possibilities. We can pose certain 
specializations of the basic problem so that one or another of the following con-
straints is accepted (possibly combined with each other): 

(A) A is autonomous, i.e., |Af| = l. 
(B) A is initially connected, i.e., a state ^ ( d A ) is distinguished and it is pos-

tulated that to each a(£A) there-is an input word p (depending on a) such that 
<5(ao> P)=a. 

(C) We are not interested in obtaining all congruences of the automata but we 
want to separate the simple automata from the non-reduced ones. (The results in 
this direction are considered to be valuable in so far as the method of separation 
is of constructive character.) 

(D) We are not interested in the output function of the automata. (This ap-
proach is, strictly spoken, the particular case of the basic problem when we restrict 
ourselves to the case | Y | = 1.) 

(E) The definition of congruence is strengthened by requiring 8 (a, xL)=S(b, x2) 
(mod 7i) in the second term of (7.1) faZX, xz£X). (From a rigidly formal point 
of view, this is not a particular case of the basic problem. However, this strengthen-
ing of the definition implies that the set of congruences of an automaton becomes 
narrower.) 

The specializations (A) and (A) & (E) are the same. If we accept both (D) and 
(E), we arrive at a purely graph-theoretical problem. 

In the paper [4], a (natural and easy) solution of the particular case (A) & (B) 
& (C) of the basic problem was stated (Section 3) and the constructive aspects of 
the question were dealt with (Sections 4—5). 

In [5], the case (A) &(D)[=(A) &(D) &(E)] was discussed (Chapter II) 
and these considerations were expanded into an elucidation of the case (D) & (E) 
for a large class of directed graphs (Chapter III). 

In the present paper, a treatment of the case (A) is contained. Thus the theory 
elaborated now is a common generalization of Section 3 of [4] and Chapter II of [5]. 

Among the articles whose subject is more or less related to the present paper, 
let [9], [6], [10] and the most recent publication [7] be mentioned. A number of further 
references can be found in [10] and [5]. 

In the author's opinion, the most exciting subproblem of the entire domain 
of questions is the case (B) & (C). Unfortunately, the topic seems to become terribly 
more intricate when the autonomousness of the automata is abandoned. 

My intention with the papers [2], [3] was that they should be the first steps 
towards a constructive treatment of the subproblem (B) & (C). As far as it can be 
predicted, each further step in this direction will require to surmount immense 
difficulties. 

7.2. Examples 2 and 3 

Let us finish our paper with two examples which show the difficulties of handling 
the non-autonomous case. 

Statement 1. Let A=(A, X, Y, 3, X) be an automaton, consider the n auto-
nomous automata A t =(A, {xj, Y, 8h X) where n=\X\, xt runs through the elements 
of X and 8{ is the restriction of 5 to the case when the second argument is xt. 
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Table 2 

at 5{a,, JC,) <5(0i, Had 

fli a% a3 yi 

a, at yi 

03 05 a% yi 

«4 a. yi 

Oj a, yi 
a2 ya 

Denote by n^ the maximal congruence of A;. If fl n^ f].. . H equals the 
minimal partition o of A, then A is simple. 

Statement 1 is almost trivial. It may be asked whether the conversion of (the 
last sentence of) Statement 1 is valid. 

Example 2. Analyze the automaton A determined by Table 2 (see Fig. 4) (with 

( 1 
f 1 f s \ 

vV w Vy 
Y- . y 

•»« 

f f o 6 
vV y% 

Fig. 4 

n—2 and v—\A\=6). Form the autonomous automata Ax and A2. We get that 
the maximal congruence of Ax is 

a2 , «3, «sKI««). 
and the maximal congruence of A2 is 

<a1; a2, a3, o4, fl5|a6>; 

hence ng^. On the other hand, the automaton A itself is reduced. 
This means that the condition in Statement 1 is (sufficient but) not necessary 

for the simplicity. If we take into account the connection between the distinguisha-
bility of states and the simplicity8, then it becomes clear that whenever a pair of 
different states which are congruent modulo n i ^ f l i i S , is considered — e.g., a, 

' Cf. [2], Section 5. 
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and a2 —, then they are not distinguishable by any word of form xj1 or x£ (ms0) , 
but there is a "mixed" input word which distinguishes them, for example, 

X(8(aL, *2*i)) = ¿fas) = J i ^ Jz = -'•(as) = A(<5(a2, x ^ ) ) . 

Statement 1 has contained a sufficient condition for the simplicity of an auto-
maton. The next statement asserts that another condition is sufficient for non-simpli-
city. (We shall see later that also Statement 2 does not allow a conversion.) 

Statement 2. Let A=(A , X, Y, 8, X) be an automaton, consider two sub-auto-
mata Aj and A2 of A.9 Suppose that there is an isomorphism a of Ax onto A2 
such that a differs from the identical mapping of the state set of Ax. Then A is 
not reduced. 

Table 3 

Oi 8 (a,, *2) A (a,) 

dl a2 a3 yi 

"i at >t 

a3 «5 y2 

as ae .Vs 

«5 «7 "•> yi 

űo a* di y* 

a? a3 ax yt 

Proof There is a state a of Ax such that a and cf are different. It is easy to see 
that a and cf are undistinguishable, hence they are congruent for the maximal con-
gruence of A. 

Example 3. Consider the automaton A determined by Table 3 (see Fig. 5). 

9 It is permitted that A, Ai , As be not pairwise different (even all of them can coincide). 
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Thus the condition of Statement 2 does not apply for A. However, A is not reduced, 
its maximal congruence nmax is 

<ai|a2. a5\a6, a7). 
Consequently, the (sufficient) condition in Statement 2 is not necessary. 
The fact that A is not simple but this cannot be shown by use of Statement 2 is 

in connection with the phenomenon that the partial sub-automaton over the state 
set {a2, a4, a6} is isomorphic to the partial sub-automaton over {as, a5, a7}. It can 
also be observed that there exists no chain 

О — Щ d 7Г6 с % с л 4 = 7Гтах 

in A such that я4, я5, я„, л7 are congruences whose indices (i.e., numbers of classes) 
are 4, 5, 6, 7, respectively. (Indeed, A has no other non-trivial congruence than л т а х .) 
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On Complexity of Finite Moore Automata 

B y MASASHI KATSURA 

The concept of complexity of finite Moore automata is introduced by Ádám [1]. 
In this paper, we obtain relationships among complexity and cardinalities of state 
set, input set and output set of a Moore automaton. 

1. 

For a finite set Z, the cardinality of Z is denoted by \Z\. Z* is the free monoid 
generated by Z. N is the set of positive integers and № is the set of nonnegative in-
tegers. For t, A:,€№, we set [t: k] = {i£N°\t^i?sk}. 

By a Moore automaton, we mean a 5-tuple A—(A, X, Y, ő, X), where A, X, Y 
are finite nonempty sets called a state set, an input set and an output set, respectively. 
6 is a mapping of A X X into A called a state transition function («5 is extended as 
usual to a mapping of AXX* into A). X is a mapping of A onto Y called an output 
function. 

Let A = ( A , X , Y , Ö , X ) be a Moore automaton. If X(ö(a,p))^X(ó(b,p)) 
holds for a,b£A and p£X*, then we say that p distinguishes between a and b. 
coA (a, b) is the minimal length of p which distinguishes between a and b. If there 
is no word which distinguishes between a and b, then we write coA(a, b)=°°. The 
complexity Í2(A) of the Moore automaton A is defined by í2(A)=max {coA(a, b) 
\a, b£A, a^b). If |yi| = l then fl(A)=0. 

A Moore automaton A = ( A , X, Y, Ő, X) is said to be initially connected if a 
distinguished state a0£A, called the initial state of A, is given and the following 
condition is satisfied: For any a£A, there exists a p£X* such that 5(a0,p)=a. 

Let v, n£N and w(|№U{°°}. If there exists an (initially connected) Moóre 
automaton A = ( A , X , Y , S , X ) such that \A\=v, \X\=n and i2(A)=w, then the 
triple (v, n, w) is said to be realizable by (initially connected) Moore automata. 

We have the following theorem by summarizing the results of Ádám in [2], 
[3], [4]. 

Theorem 1. For sny v, find H?£№Lj{°° }, the following three statements 
are equivalent: 

(1) (v, n, w) is realizable by Moore automata. 

(2) (v, n, w) is realizable by initially connected Moore automata. 

(3) (3.1) wsát>-2, or 
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(3.2) v = 1, w = 0, or 

(3.3) » a 2 , w = • 

When we realize a triple (v, n, w) for a small w, a large output set is needed, 
and vice versa. We wish to take consideration on cardinalities of output sets, too. 

Let v,n,m£N and w£№U{°°}. If there exists an (initially connected) Moore 
automaton A=(A, X, Y, 5, A) such that \A\=v, \X\=n, \Y\=m and i2(A)=w, 
then the 4-tuple (v, n, m, if) is said to be realizable by (initially connected) Moore 
automata. 

In this paper, all realizable 4-tuples are completely determined. Section 2 gives 
a sufficient condition. Section 4 is a preparation to show that the sufficient condition 
given in Section 2 is necessary. In Section 5, the main result is stated and proved. 
Section 6 illustrates some examples. In Section 3, we prove a conjecture posed in [3]. 

2. 

Let X and Y be finite nonempty sets and let / £№. By F,(X, Y) we denote the 
t 

set of all mappings of (J Xk into Y. 
k = o 

The following lemma is evident. 

Lemma 1. \F,(X, y ) | = | r | i + m + m s + - + l * l ' for any * e № . • 

Let A=(A, X, Y, <5, A) be a Moore automaton. For each a(zA, let A*(a) be 
a mapping of X* into Y defined by 

(A*(a))(/>) = k(8(a,p)). 

For / £№, A(,)(a) is an element of F,(X, Y) which is the restriction of A*(a) to 

U Xk. Hence Af0)=A if we identify F0(X, Y) with Y. 
k = 0 

For each № , let t],(A) be a partition of A defined as follows: a and b are 
congruent modulo F/,(A) iff coA(a, F/,(A) is introduced and investigated in 
[2], [4]. The number of F/T(A)-classes is denoted by |»/,(A)|. The following three 
lemmas indicate fundamental properties of the partition t],(A). 

Lemma 2 [4]. i f o (A) i i / 1 (A) i i i > (A) i . . . . • • 

Lemma 3 [4]. If F / R _ 1 ( A ) = ^ T ( A ) then > / , ( A ) = ^ ( + 1 ( A ) . • 

Lemma 4. Let Then i2(A)=w iff tjW(A)2»JW+1(A) and | F / W + 1 ( A ) | = 
= \A\. • 

By using the mapping A(i)(a), the partition tj,(A) is characterized as follows: 

Lemma 5. a and b are congruent modulo t]t+1(A) iff A(0(a)=A(0(6). • 
Hence we have: 

Lemma 6. |ij,+1(A)| = |{A«(fl)€Fr(Ar, Y)\aiA}\ for any • 
Expecially, we have: 
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Lemma 7. ¡/7l+1(A)|=s|yji+l*l + l*P+---+mt for any /<=№. • . 
On the other hand, a lower bound of the number of f/t(A)-classes is given as 

follows: 

Lemma 8. Let /£№. If t^Q(A) then \r],+1(A)\^\Yl + t. 

Proof. By Lemmas 2, 3 and 4, we have rh(A)p>/2(A)^...pr/,(A)p|f/ (+1(A), 
i.e., | i /1(A)|<| f ,2(A)|<.. .<W t(A)|<| f / t + 1(A)| . Hence | / ; ( + 1(A)|^ |^(A)| + t. By 
Lemma 6, we have |f/i(A)| = |T|. • 

Now, we have the following desired result. 

Proposition 1. Let v,n,m£ N and w>€№. If the 4-tuple (v, n, m, vv) is realizable 
by Moore automata then m + w ^ v ^ m 1 + n + " ' + "+ny". 

Proof. Let A—(A, X, Y, <5,1) be a Moore automaton such that \A\=v, \X\—n, 
\Y\~m and fl(A)=w. By Lemma 4, |f7«,+i(A)|=v. By Lemmas 7 and 8, we have 
m + w ^ [^w+1(A)j^m1+n+"2+"" fn>v. • 

3.. 

Ádám posed three conjectures in [3]. Conjectures 1 and 2 are solved in Theorem 
1. However, Conjecture 3 is not yet solved. In this section, we settle this conjecture. 
(This result is not used in what follows). 

Let A = ( A , X , Y , S , X ) be a Moore automaton such that 1^Í2(A)<°°. Put 
Q(A)=w. Take a,b£A such that coA(a, b)=w. Then there exists a q£Xw such 
that X(ö(a,q))?iX(ö(b,q)). Let q=q'x with q'eX"'1 and x^X. Let B be the 
jj2(A)-class containing ö(a, q'), i.e., B={c£A\X(S(c, p))=X(ö(a, q'p)) for any 
p£XU {<?}}, where e is the identity of X*. 

Define A'—(A, X, Y', ő, X') as follows: 
(i) Y'=Y U {y} where y is not in Y. 

(ii) X'(c)=y for any cdB. 
(iii) X'(c)=X(c) for any c€A-B. 

Since X(ö(a, q'x))^X(6(b, q'x)), we have ő(b, q ) <f B. Hence X'(ö(b,q')) = 
—X(ő(b, q'))=X(S(a, q')). Consequently, X' is surjective. Moreover, we have: 

Lemma 9. (1) ?/((A)i>/((A') for any 
(2) r,w(A)^r,w(A'). 
(3) f/w_1(A') is not the identity partition. 

Proof. (1) It is obvious that for any c, d£A, if X{c)^X{d), then X'(c)^X'(d). 
It follows from this fact that mA,(c, d)^(oA(c, d) for any c, d£ A. 

(2) Since X'(ö(a,q'))?iX(ö(a,q')) = Á(ö(b,q')) = X'(ő(b,q% we have coA.(a,b) 
S w - 1 . Hence a and b are congruent modulo »7*, (A), but not congruent modulo 
^wiA'). 

(3) It suffices to show that coA.(a, b)—w — \. When w= 1, the conclusion is 
w—2 

obvious. Assume and coA.(a, b)^w—2. Then there exists a pd{J Xk 

k = 0 
such that X'(8(a,p))^X'(ö(b,pj). Since X(ö(a,p)) = X(ö(b,p)), we have ö(a,j>)£B 
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and ô(b,p)$B, or vice versa. In other words, ô(a,p) and ô(b,p) are not congruent 
w-l 

modulo tii(A). For any p'Ç.X\J{e), we have pp'€\J Xk. Hence X(S(a, pp')) = 
k=0 

=X(ô(b,pp')) for any p'£XU{e}. This means that <5(a,/>) and ô(b,p) are congruent 
modulo t]2(A). This is a contradiction. Hence we have coA.(a, b)=w— 1. • 

Proposition 2 ([3] Conjecture 3). Let A = ( A , X , Y , 5 , X ) be a Moore automa-
ton such that 1 s i2(A)<°°. Then there exists a Moore automaton A'=(A, X, Y', S, 
A') such that | r | = |F| + l and i2(A)- lë i2(A' )ë i2(A) . 

Proof. Let A' be the Moore automaton constructed as above. Lemma 9 (1) 
implies that Q(A')^Q(A). Lemma 9 (3) means that i2(A' )s i2(A)- l . • 

As pointed out in [3], we get an automaton of complexity 0 by at most \A\ — |F | 
times application of Proposition 2. Hence we have another proof of the left hand 
side inequality of Proposition 1. 

4. 

In this section, we prepare for showing the converse of Proposition 1. Throu-
ghout this section, we assume that X={xl9 ..., x„}, Y={y1, ..., jm} and m s 2 . 
F,(X, Y) is simply denoted by Ft. means the singleton set consisting of the 
empty mapping, i.e., the mapping whose definition domain is the empty set. 

Let and f£Ft. We define f , / r j l , ...J^F,^ as follows: 
(-1 

f is the restriction of / to IJ Xk, 
*=o 

f r . j ( p ) = J ( X j P ) f o r a n y Pt | J 0 € [ 1 : « ] ) . 
k=0 

Hence for / € F 0 , / , and fnJ are the empty mappings, / is said to be the left factor 
o f / , and f r j is its j-th right factor. 

The following lemma can be shown by a straightforward verification. 

Lemma 10. Let № and g € / w Then \ { f ^ F , \ f i = g } \ = \ { f ^ , \ f r , j = g } \ = 

\Ft\l\Ft-i\ = mnt• • 

Let A=(A, X, Y, ô, X) be a Moore automaton. Consider the mapping A(,) 

of A into F,. The assumption that A is surjective is equivalent to: 

(i) For any y'£[l:n], there exists an a£A such that ( A ( , ) ( A ) ) ( E ) —yj, where 
e is the identity of X*. 

If ¿(a ,x J )=b, then (Aw(a)) r>.,=(;i ( , )(% Hence we have: 
(ii) For any a£A and /€[ l :n ] , there exists a b£A such that (A(,)(a))r ,= 

Q(A)=t is equivalent to : 
(iii) Aw is injective, and (A^0(a)),=(A<f>(&))/ for some a, b^A with a^b. 

Conversely, assume that a mapping r of A into F, which satisfies (i) and (ii) 
is given. Define a Moore automaton At=(A, X, Y, ô, A) as follows: 
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(iv) X(a)—(x(a))(e) for any a^A. 
(v) Let a£A and : n\. By (ii), there exists a b£A such that x(a)rJ=x(b),. 

Se t S(a, XJ)—b. 

Then it can easily be seen that ttt)(a)=x(a) holds for any a£A. A, is not 
unique in general. The collection of all At coincides with all Moore automata 
A = ( A , X, Y, <5, A) which satisfy A ( , )=t. The partitions TJq(AX), fh(Ar), ..., f?,+1(At) 
are independent of the choice of b in (v), i.e., they depend only on the mapping x. 

To show the converse of Proposition 1, it suffices to give a mapping x of A into 
F, which satisfies (i), (ii)and (iii) for each finite set with m+/S | ^ |Hsm 1 + n + " 2 + - + " t . 
However, we wish to prove the converse of Proposition 1 in case of initially connec-
ted Moore automata. Related problem is: 

Let x be a mapping satisfying (i) and (ii) (and (iii)). What conditions are required 
so that we can make At to be initially connected? What is a method to construct an 
initially connected A t , when it exists? 

In general, this problem seems to be difficult. In what follows, we construct a 
special type of mapping x, and construct a special type of initially connected Moore 
automaton A t. 

Let /£№, j £N and let n be an injection of [1: j] into F,.If the following four 
conditions are satisfied then it is called an op-mapping of degree (t, J) (with respect 
to X and Y). 

(a) For any g g F , ^ , there exists an /£[1: i] such that n{i)i—g. 
(b) For any /€[1: m], there exists an i£[l: i] such that (n(i)) (e)=yj. 
(c) 7r(i)r,i=rc(/+l)i for any /€[1:^-1] . 

t 
(d) There exists an z„6[l:.y—1] such that (n(in))(p)=y1 for any p£ U Xk. 

*=o 
(Since 7t is injective, i„ is uniquely determined). 

When t^l, the assertion (b) is implied by (a). When t—0, the assertions (a) 
and (c) are always satisfied, and the assertion (b) means that n is surjective. Hence 
an op-mapping n of degree (0, s) is considered as a bijection of [1: i] onto Y such 
XhsXn{i)=y1 for some /£[1: s— 1]. Thus we have: 

Lemma 11. There exists an op-mapping of degree (0, s) iff s=m. • 

Lemma 12. Let t, s(i N. If there exists an op-mapping n of degree (f, s) then 
ml+n+na + ...+nt-i_j_ j g^g^jl+n+na + .-.+nt 

Proof. Since 7i is injective, we have s S |F,|. We have n(i„)i=n(/„),,Since 
[1: s - 1 ] , we have 4 + l 6 [ l : i] and 7t(i'n+l),=7t(/„)r>1 = 7t(/J,. From this fact 

and by the assertion (a), it follows that i^ lF^xl - l - l . • 

Now we shall construct an op-mapping of degree (t, s) for any t, ¿£N with 
m l + „ + n ! + . . . + n . - 1 + l g ^ m i + n + „ ! + . - + » ' i J o this end, we provide the following two 
lemmas. 

Lemma 13. Let n be an op-mapping of degree (t, s). Then the following state-
ments are equivalent: 

(1) There exists an op-mapping n' of degree (t, 1) which is an extension of n. 
(2) There exists an / £ F , - {n(i) \ i£[l: i]} such that fi=n(s)ril. 
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Proof. (l)=>-(2). By the assertion (c), we have n'(s+ l)i=n'(s)rtl=n(s)rtl. 
Since it' is injective, 7t'(i+l)6f,—{rc(0 | /£[1: i]}. 
(2)=>(1). Let n'(s+\)=f and n'{i)=n(i) for any /£[1: j]. Then n' is an op-mapping 
of degree (/, s+1). • 

Lemma 14. Let n be an op-mapping of degree (t, s). Assume that there exists 
no op-mapping n' of degree (t, s+1) which is an extension of 7t. Then 7 t 7 t ( l ) / . 

Proof. If t=0 then 7t(s)r?1 and 7t(l), are the empty mappings. Hence the concl-
usion holds obviously. Assume that /£N. Let 

/={ i€ [ l : s ] | 7 i (0 , = jr(s)r.1} and 
^ = { / € [ l : s ] | TTÜ),.i = »(*),.i}-

• 

Suppose that |/|<m"'. Then, by Lemma 10, there exists an f$Ft— {7i(í)|/6[l: J]} 
such that fi = n(s)f!l. It contradicts the assumption by Lemma 13. Hence we have 
|/|=m"'. By Lemma 10, we have | / | s | / | . By the assertion (c), we have: 

If /€/-{1}, then i - l £ / . 

If j € / -{ s} , then j + 16/. 

Hence |/-{1}| = |7—{j}|. Since s£J, we have 

| / | S | / | = | / - { S } | + 1 = | / - {1} | + 1. 
Thus, we have 16/, i.e., 7r(l)j=7r(j)r>1. • 

There exists an op-mapping of degree (0, rri) (Lemma 11). Hence to construct 
an op-mapping of degree (t, s) for each t,s£N with m 1 + n + n i + - ' + ' , t " 1 + l S j g 
^m 1 + n +" 2 + ' -+ n ' , it suffices to give construction methods for the following two 
cases : 

(I) Let f€N and s=m1+"+n2+-+'"~1+L Assume that an op-mapping n of 
degree (t—1, s— 1) is given. Construct an op-mapping %' of degree (/, s). 

(II) Let and m i + » + » I + - + » , - » + 2 A s s u m e that an 
op-mapping 7r of degree (t, s— 1) is given. Construct an op-mapping n' of degree (t, s). 

Case (II) is divided into the following two subcase's: 

(II. 1) There exists an f£Ft—{n(i) | / £ [ 1 : 1 ] } such that fi = n(s— l)r>1. 
(II.2) There exists no f£F,-{n(i) | /£[1: j -1]} such that / ,=7c(5-l) r ) 1 . 

Construction (I), (i) Define a mapping a of [2: i] into F,_x as follows: 

(7(2) = 7t(i„), (7(3) = *(/«+ 1),..., ff(s-i, + l) = 7t(s-l), 

ff(s-i,+2) = 7l(l),<j(s-i,l + 3)=7l(2), ...,ff(s) = Jl(i ,-1) 

where /„ is determined in the assertion (d). (By Lemmas 11 and 12, TC satisfies the 
assumption of Lemma 14. Hence it(s— I)r>1=7i(l)/. Thus, we have o'(i)f,i=o'(i+1)( 
for any í6[2:í—1].) 
(ii) Define a mapping n' of [1: j] into Ft as follows: 

(n'0))(/>) = Ji for any />£ Ú Xk-*=o 
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Let /£[2:J -1] . Take an f£F, such that ft=a(i) and /r>1=<x(i'+l). (The 
existence of such an/fol lows from <j(i)rtl=o(i+1)/). Set n'{i)=f. 

Take an f£F, such that ft = tr(s). (The existence of such an / is evident.) 
Set if(s)=f. 

Then it is not difficult to verify that %' is an op-mapping of degree (t, s). 

Construction (II.l). Take an f£Ft-{n(i) | /£[1: j - 1 ] } such that ft=n(s-1) 
Set 7 t ' ( s ) = f and n'{i)=n(i) for any ¡£[1: s— 1]. Then gn' is an op-mappin 
of degree (/, s). 

Construction (II.2). (i) Take an f£F,- {tt(/) | i€[l: s-1]}. 
(ii) Take an i„€[l: i— 1] such that /¡ = 7t(/0)(. (The existence of such an i0 follows 
from the assertion (a). If z'0= 1, then ft = n(i)i=n(s— l)r>1 which contradicts the 
assumption. Hence we have i06[2: s— 1].) 
(iii) Define a mapping n' of [1: s] into F, by 

N ' O ) = «(¿O). Jt'(2) = n ( I 0 + 1 ) , ..., Jt'(s-io) = t c ( S - I ) , 

j t ' ( s - i 0 + l ) = n ( l ) , . . . , jE ' ( s - l ) = n ( i o - l ) and n'(s)=f. 

By Lemmas 13 and 14, we have 7t'(j—/0)p>1 = ^(j—l) r>1 = 7t(l),=7t'(i—/0+l) (. 
By the assertion (c), we have n'(s— l)r,i=rc0'o— 1 )P,x=7t(t0)i =7t'(j)£. It can 
easily be seen that %' satisfies the other assertions for an op-mapping of degree (/, s). 

We have shown the following. 

Proposition 3. Let /, J£N. Then there exists an op-mapping of degree (t,s) 
iff + D 

Remark. Ito and Duske [5] shows the following: 
Let Y be a finite nonempty set and let /£N. Then there exists a p£Y* whose 

length is — 1, and which contains every element of Y* as a subword (such a 
word p is called a merged word of F')-

With a little change of the proof, we have Proposition 3 in case |-X1=1. Our 
above constructions are done along the line of Ito and Duske. • 

Let n be an op-mapping of degree (/, s) and let /•£№. Define an automaton 
A(n, r)=(A, X, Y, 8, X) as follows: 

(e) A={au ...,as,b!, ...,br). Put ba=a^ and br+1=aijt+1. 
(f) Had=(n(i))(e) for any 
(g) X(bi)=y1 for any i£[l:/-]. 
(h) S(ab x]L)=ai+1 for any /€[1: ^ - l ] - { i j . 
(i) S(bh Xj)=bi+1 for any /£[0: r] and /£[1: «]. 
(j) Let 0' ,7 ')€([l:j]-{U)X[2:n]U{(5,1)}. By the assertion (a), there exists 

a : s] such that n(i)rtJ=n(k)t. Set 5(ai,xJ)=ak. 
A(n, r) is not unique in general. (If we take the least k in (j), then A(7t, r) is 

uniquely determined.) 
It follows from the assertions (b) and (f) that X is surjective. For any c£A, 

there exists a « £ № such that S(alt x") =c. Hence A(7t, r) is an initially connected 
Moore automaton with initial state a t . 

L 
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Lemma 15. ).<-')(ai)=n(i) for any and (Xi,)(b,))(p)=yl for any 

i'€[l: r] and p£ U 
k=0 

Proof. For each: «€[0: /], we consider the following two conditions: 

CO (Aw(a,))(p) = {n(i)){p) for any i<E[l: s]-{ia} and p(i U X*. k = 0 

m (A(,) (&,))(/>) = V l for any ¡€[0: r] and p£ U X\ 
k = 0 

(if0) and {%) follow directly from (f) and (g). Let w£[l : t\ and assume that 
(0u_i) hold. Let p£X". Then p=xfl for some 76[1: n] and q^X»-1. Let 
6 [ 1 : j ] - { / J and d(ab Xj) =ak. Then n(k)l=n(i)riJ by (h), (c) and (j). We have 

(AW(a,))CP)=(a,, = , 

= ( « ( 0 ) ( * j ? ) = ( « 0 ) ) ( / > ) • 

Hence we have (#„). Let i€[0:r]. Then X{8(bi, p))=X(8(bi+1 q))= 
¡+i))(i)=>'i • Hence we have (3>u). Consequently, we have (%) and (¿2,) 

by induction. • 

Lemma 16. Let n be an op-mapping of degree (t,s) and let /•£№. For a 
Moore automaton A(n, r)=(A, X, Y, 8, A), we have: 

|iio(A(7t, r))| - 1, 

|^I(A(TT, r ) ) | = m , 

|ih(A (n, r))| = m1+", 

|ifc(A(jr, r))| = m1 + n + n*+-+ ' f~1 , 

|»/i+i(A(jr, r))\ = s = \A\-r, 

\r,t+2(A(n,r))\ = \A\-(r-l), 

|i/t+r(A(n,r))| = \A\-l, 

|ifc+r+1(A(«,r))| = \A\. 

>]0(A(n, r))[= 1 is evident. Let u£[l:f]. By the assertion (a) and by 
'or any g£F u - 1 5 there exists an /£[!:$] suchthat A ( u - 1 ) ( ö , ) = g . Hence 

Proof. 
Lemma 15, 
by Lemmas 6 and 1, we have 

|«,.(A(«, r))\ = IF.^I = mi+»+»•+...+«"". 

Since n is injective, it follows from Lemmas 15 and 5 that any two elements of 
. . . ,a s} are not congruent modulo t]l+1(A(n, r)). Moreover by Lemmas 15 

and 5, any two elements of {60, bx, . . . ,b r} are congruent modulo t]l+1(A(n, r)). 
Thus we have |f/t+1(A(7i, r))| =s. 

1 
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Next let 2: / +1]. By the assertions (c) and (d), we have (n(i„+ l))(/?)=^i 
r - i 

for any p£ 1J Xk. Since an op-mapping is injective, we have 
k=o 

Hence (n(iK + f o r some q^X1. Notice that br+1=ain+1. By the first 
part of Lemma 15, we have A(5(6r+1>p))=(A(,)(&,+1))(p)=7R(I„+l)(p)=^i for 

any pt'\JXk, and («5 (br+l, q))=(A(0 (br+0) (<?)=* 0„ +1) (?) ̂  for some 
t=o 

t+r-i 
q£X*. Hence for any ¡£[0: /-+1], ).(5(bhp'))=yl for any p'£ (J Xk and 

*=o 
X(d(bhq'j)7iy! for some q'eX,+r+1-i. It follows easily from this fact that {b0, ... 
..., 2>r+i_u} is an t],+u(A(n, r))-class, and any other element of A is congruent only 
to itself. Hence we have |/j(+u(A(7r, r))|= \A\—(r+1 —u). • 

Proposition 4. Let n be an op-mapping of degree (t, s) and let #•€№. Then 
A (rt, r) is an initially connected Moore automaton with Q(A(n, r)) = t+r. 

Proof. By Lemmas 16 and 4. • 

Remark. By Lemmas 7, 8 and 16 we have the following: For every i£N°, the 
number of rh(A(n, /-))-classes takes the maximal value among all Moore automata 
A-(A, X, Y, 8', A') with Q(A)=r+t. • 

5. 

Now we can determine all realizable 4-tuples. 

Theorem 2. Let v,n,m£ N and w€№U{°°}. The following three assertions 
are equivalent: 

(1) (v, n, m, w) is realizable by Moore automata. 

(2) (v, n, m, w) is realizable by initially connected Moore automata. 

(3) (3.1) m+w sa v s mi+«+«2+-+"~, or 

(3.2) w = oo, m ^ v — 1. 

Proof. (2)=>(1). Obvious. 
(1 )=>(3). If then we have (3.1) by Proposition 1. If \A\ = \Y\ in a 

Moore automaton A = ( A , X , Y, S, A), then it is evident that i2(A)=0. Hence we 
have (3.2). 

(3.1)=>-(2). If m= 1 then (3.1) implies that v=\ and vv=0. For any n£N, 
there actually exists a Moore automaton A = ( A , X, Y, S, A) such that j/4j = | 7 | = 1 
and 1^1=«. Obviously, A is initially connected and fl(A)=0. 

Next assume that Put o c ( - l ) = m - l and a(A:)=/n 1 + n + n 2 +"+ n k - fc 
for any &£№. Our assumption is 

(i) m S v—w a(w). 

Since m = a ( 0 ) < a ( l ) < a ( 2 ) < . . . , there exists a unique / £ № such that 

(ii) a ( / - l ) + l v-w =§ a(i). 

4 Acta Cybernetica VII/3 

L 



290 M. Katsura 

Let X={xlt ...,x„} and Y={y!, • ••,ym}. If 1=0 then (ii) means that v—w=m. 
Hence (t, v—w+0=(0> m)- ®y Lemma 11, there exists an op-mapping n of degree 
(t,v—w+t) with respect to X and Y. If t^ 1 then (ii) means that 

ml+n+n'+...+n>-t^.2 s V — w + i S rn1+n+"'+ - +n'. 

Hence by Proposition 3, there exists an op-mapping n of degree (t,v — w+t) with 
respect to X and Y. By (i) and (ii), it can easily be seen that iSw. Consider an ini-
tially connected Moore automaton A(TT, w—t)—(A, X, Y, <5, X). We have \A\ = 
=(y—w + t)+(w—t)=v, \X\=n, \Y\=m and, by Proposition 4, i2(A(n, w—t)) = 
=/+(w-t)=w. 

(3.2) =>(2). Define a Moore automaton A=(A, X, Y, d, X) as follows: 

(i) A = {a1,...,av},X={x1,...,x„} and Y = {yt,..., ym}. 

(ii) l ( a f ) = : ^ ( i € [ l : m - l ] ) and /.(a,) = ym(i£[m: »]). 

(iii) <5(a, Xj) = fli+iO'€[l: y-1]) and S(av,Xj) = aa for any ;€ [ 1: /?]. 

Then it can easily be seen that A is initially connected and «¿(a,,-!, av)=°°. Hence 
i2(A)=°°, and thus we have (2). • 

6. 

Let X= {xj, x2} and Y= {1,2}. (Instead of Y={y1,y2}, we use F = { 1 , 2 } 
for simplicity). We shall construct op-mappings according to the Constructions (I) 
and (II) in Section 4. An op-mapping of degree (/, s) is denoted by nUs. 

For i=0 , 7t0,2 is uniquely determined by (7t0 2(l))(e)= 1 and (7i0j2(2))(e)=2. 
For t= 1, n1>s exist for 2 + To obtain nli3 we use Construction (I). 
a is given by (a(2))(e)= 1 and (<x(3))(e)=2. n1>3 is obtained (for example) by the 
first three rows of Table 1, and 7rlj4,7:1>5, n l : 6 are represented by the first 4, 5, 6 rows 
of Table 1. These op-mappings are obtained by Construction (II. 1), i.e., to satisfy 
the following conditions: 

(i) The xx-component of the /-th row equals the e-component of the (/'+ l)-th 
row. 

(ii) All rows are distinct. 

We can not continue this procedure to give n l t 1 . Because two rows, i.e., two 
elements of Fx(X, F), which are not yet used are (2, 2, 1) and (2, 2, 2), and we can 
not determine the 7th row so as to satisfy (i) and (ii). This means that we are in case 
(II.2). As shown in Lemma 14, the ^-component of the 6th row is equal to the 
e-component of the first row. We make a cyclic exchange of 6 rows for example 
in Table 2. Then we can add the 7th and 8th rows to satisfy (i) and (ii). In this way, 
we have n1%7 and n l t 8 which are the first 7 and 8 rows of Table 2. 

For t'=2, n2>s' exist for 2 1 + 2 + 1 S J S 2 1 + 2 + 4 . TO construct 7i2i9, first obtain 
a from 7r1>g. a is shown in Table 3 which is derived by cyclic exchange of Table 2 
so that the top row is (1, 1, 1). The first 9 rows of Table 4 are constructed i.. :ows: 

(i) All components of the first row are 1. 
(ii) The e-, xx- and x2-components from the 2nd to the 9th rows are coincident 

with those of a. 

A 
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(iii) The and xxx2-components of the /-th row are equal to the jq- and 
x2 -components of the (/+ l)-th row (/£[2:8]). 

(iv) The x2xx- and x2x2-components from the 2nd to the 9th rows are arbitrarily 
chosen. The x ^ - and xxx2-components of the 9th row are also arbitrarily chosen. 

In this way we have 7r2>9 by using Construction (I). To obtain TT2>s for s = 
= 10,11, ..., we add new rows one by one so that the following conditions are 
satisfied (Construction (II. 1)). 

(i) The xlx1 - and XjX2-components of the ¡'-th row are equal to the xx- and 
x2-components of the (/+ l)-th row. 

(ii) All rows are distinct. 
In the case when we can not continue this procedure (Case (II.2)), we make a 

cyclic exchange of rows and continue the procedure. In such a way, we can obtain 
n2<s for all J€[9: 27]. Table 4 shows n2>s for j<E[9: 16]. 

Table 1 

e Xl Jf2 

1 1 1 1 
2 1 2 1 
3 2 1 1 
4 1 1 2 
5 1 2 2 
6 2 1 2 

Table 2 

e Xi 
1 2 1 1 
2 1 1 2 
3 1 2 2 
4 2 1 2 
5 1 1 1 
6 1 2 1 
7 2 2 1 
8 2 2 2 

Table 3 

e Xi Xi 
2 1 1 1 
3 1 2 1 
4 2 2 1 
5 2 2 2 
6 2 1 1 
7 1 1 2 
8 1 2 2 
9 2 1 2 

Table 4 

e 

1 1 1 1 1 1 1 l 
2 1 1 1 2 1 1 l 
3 1 2 1 2 1 1 l 
4 2 2 1 2 2 2 l 
5 2 2 2 1 1 2 2 
6 2 1 1 1 2 1 2 
7 1 1 2 2 2 1 1 
8 1 2 2 1 2 1 2 
9 2 1 2 1 1 1 2 

10 1 1 1 1 2 1 2 
11 1 1 2 2 2 1 2 
12 1 2 2 2 2 2 2 
13 2 2 2 1 2 1 2 
14 2 1 2 2 2 1 2 
15 1 2 2 1 1 1 1 
16 2 1 1 1 1 1 1 

Next we shall see two examples of realization of 4-tuples (v, n, m, w). 
Let (v, n, m, w)=(10, 2,2, 4). Since 2 + 4 s l 0 ^ 2 1 + 2 + 2 3 + 2 4 , (10, 2, 2, 4) is reali-

zable by initially connected Moore automata. The unique solution of 2 1 + 2 + " +2t"' + 
+ 2 s l 0 — 4 + i ^ 2 1 + 2 + 2 2 + ' " + 2 t is t=\. Hence A(jr1>7, 3) realizes (10, 2, 2, 4). In 
Fig. 1, an example of A(7rlj7, 3) is depicted, which is obtained by using Table 2. 

4 » 

h. 
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Let (i>, «, m, w)=(17, 2, 2, 5). Since 2 + 5 s l 7 s 2 1 + 2 + 2 S + 2 4 + 2 5 , (17, 2, 2, 5) is 
realizable by initially connected Moore automata. The unique solution of 
2 1 + 2 + • + 2 ' - ' + 2 s l 7 - 5 + / s 2 1 + 2 + 2 2 + "+ 8 t is t=2. Hence A(7r2>14,3) realizes 
(17, 2, 2, 5). A(7t2,i4> 3) is illustrated in Fig. 2. 

a ^ a x - ^ a t ^ b — . a t ^ a ^ a ^ c D ^ t S ^ S 
o, *i a, *1 Oj a{ *1 o, = fr0 *, fc, *1 b, *i 6, *i b,=a, *i a, 

/ 
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Varieties and general products of top-down algebras 

B y Z . ESIK 

Unrestricted, i.e. both finite and infinite general products of unoids were treated 
in [2]. It has been shown that the unoid varieties arising with general products are 
exactly those classes of unoids which have equational presentation in terms of so-
called /^-identities. In addition, these type independent varieties coincide with the 
varieties obtainable with the more special a0 -products. In other words this means 
that the unrestricted general product is homomorphically as general as the a0-prod-
uct. Although unoids do have certain specialities as shown in [1] and [2], using 
a new method, the above mentioned results have been extended to arbitrary algebras 
in [1]. Due to the specific nature of unoids, all type-independent varieties of unoids 
have been described in [2]. No similar description is attainable for the general case 
of algebras at present. 

The aim of this paper is to give similar results for top-down algebras, a less 
well-known type of algebraic structures originating from tree automata theory. 
Top-down algebras are elsewhere called root-to-frontier algebras or ascending' 
algebras as eg. in [3] and [4], due to a converse visualization of trees. The' whole 
treatment will be done parallel with [1]. 

1. Top-down algebras and general products 

Let R be a nonvoid subset of the natural numbers N={ 1, 2, ...}. R is called 
a rank type and will be fixed throughout the paper. A type of rank type R is a collect 
tion F= U (Fn| n£N) so that if and only if n£R. In the sequel every type 
Fis supposed to belong to the fixed rank type R. A top-down F-algebra is an ordered 
pair 'il=(A, F) with A a nonvoid set and a realization f : A—A" for each opera-
tional symbol / £ F„. The class of all top-down F-algebras is denoted KF. KR = 
= U (Kr\F has rank type R). 

Suppose we are given two top-down F-algebras <U=(A, F) and © = (5, F). 
A mapping (p: A-+B is called a homomorphism 9I-»S if <pfpri=fpri(p for every 
/€F„ and i£[n] = {l, ...,«}, where prt denotes the /-th projection and functional 
composition is written juxtaposition from left to right. If <p is onto, 93 is a homo-
morphic image of 91. Further, 91 is called a subalgebra of S if AQB and the natural 
inclusion is a homomorphism 9I-»S. 

Let K be an arbitrary class of top:down algebras (of rank type R). Then J f ( K ) 
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and y(K) will respectively denote the class of all homomorphic images and the class 
of all subalgebras of top-down algebras from K. 

Now we are going to introduce general products of top-down algebras. To this, 
take types F and F' (idl) as well as top-down F'-algebras 21 ¡=(Ah F') (idl). Let 
cp be a family of feedback functions n(Ai\idI)XF-~Fi. The <p('s must preserve 
the rank, i.e., 

(a,f)<p£F> 

if fdF„, adn(A,\idI). The general product of the 9l,'s w.r.t. <p and F i s that top-
down F-algebra 

9i = (A, F) = II(%\idI, F, (p) 
satisfying 

A=n(A,\i£I), 
afPrj Pr t = aPrtf' Prj 

where adA,fdF„, idl, jd[n] and / '=(a,/)<p ; . A general product of a finite number 
of top-down algebras is denoted II(Hi, ..., 9In|<p, F). 

Two restricted forms of the general product will be of particular interest. These 
are the a0-product and the direct product. The general product defined above is an 
a0-product if the index set I is linearly ordered, and for every id I, the feedback 
function (pi assigning value in Fl to ((af|i'£/), f)dn(Aj\idI)XF is independent of 
the a/s with y's/. In case of an a0-product we shall indicate only those variables 
of cpi on which it may depend. Index sets [«] are supposed to have the natural or-
dering. 

The concept of the direct product easily comes by specialization, too. A general 
product Vi=(A, F)—I7(91(1/6/, <p, F) is a direct product if all factors 9lf are top-
down F-algebras and (a, /)<?,=/, idI,fdF, ad A. 

Take a class K of top-down algebras. The operators S?g, 3Paa, & and 3Pfaii 
are defined by the following list: 

¿?g(K): all general products of factors from K, 
&Xo(K): all a0-products of factors from K, 
^ (K) : all direct products of factors from K, 
&>/AO(K): all a0-product of finitely many factors from K. 

According to the universal algebraic analogy (see also the next section), classes 
K g K F closed under the operators JC, S^and & are called varieties. However, the 
main interest will be in type-independent varieties. By definition, a type-independent 
variety is a class K Qj KR closed under the operators J f , Sf and 2Pg. 

2. Varieties of top-down algebras 

Top-down algebras of rank type 2?={1} will be called unoids. Since in a unoid 
(A, F) every operation is a function f:A—.A, unoids are ordinary algebras. 

Let 4i=(A, F) be a top-down F-algebra. There is a simple way to associate 
a unoid 9Р=(Л, Fu) with 91: put a(f,i)=afpri for every ad A and ( / , z")€ F". 
Here the unary type F" consists of all pairs ( / , i) with Д F„ and г"€[и]. It is obvious 
that every homomorphism from a top-down F-algebra 91 into a top-down F-algebra 

A 
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58 becomes a homomorphism 91"—93", and the resulting functor is an isomorphism 
of the category of all top-down F-algebras onto the category of all F"-unoids. Vari-
eties are preserved under this transition, if V S K F is a variety, then so is V"= 
= {9l"|5l€V}, and conversely. Anyway, this simple transition allows us to adapt 
well-known concepts and facts from universal algebra to our top-down algebras, 
e.g., for any class K g K F , J f ^ ^ ( K ) is least variety containing K. 

The concept of an identity also extends to our case in an obvious way. An 
F-identity is either a formal equation xp=xq or xp=yq, where x and y are different 
variables, p and q are words over the alphabet F", i.e., p, q£(F")*. Expressions 
zp with z£ {x,y} and p£(Fu)* are called polynomial symbols. The number of 
letters appearing in zp is called the length of zp and is denoted \zp\. The set pre(zp) 
is defined by pre (zp)={zq\\zq\<-\zp\, Br qr—p). An F-identity is satisfied by an 
F-algebra 91 if it is satisfied by the unoid 91" in the ordinary sense. In this case we 
also say the F-identity holds in 91. 

For a class K g K F , Id(K) denotes the set of all identities satisfied by every 
9l£K. Further, if E is a set of F-identities, then Mod ( I ) is the class of all top-down 
F-algebras satisfying every F-identity in E. We write I | = A to mean that Mod (E) Q 
g Mod (A). 

With these concepts in mind one can easily reformulate Birkhoff's Theorem 
for top-down algebras. A class K g KF is a variety if and only if K=Mod (E) for a set 
of F-identities E. E can be chosen Id (K). Consequently, J f y ^ ( K ) = M o d (Id (K)) 
for any class K. 

A crucial point in the universal algebraic proof of Birkhoff's Theorem is the 
existence of all free algebras in a variety. Free algebras exist in varieties of top-down 
algebras, too. If V g K F is a variety of top-down algebras then a free algebra 91= 
—(A, F)£V with free generator ad A has the following property. An F-identity 
xp=xq holds in V if and only if ap=aq. Similarly, if 91 £V is freely generated 
by alt a2£A, an F-identity xp=yq belongs to Id(V) if and only if aip=a2q. 

3. Type-independent varieties 

In this section we are going to develop a theory of type-independent varieties 
of top-down algebras similar to the theory of varieties exhibited in the previous one. 
To start with notice 

Statement 1. For every class K, ^ ^ ^ ( K ) is the least type-independent variety 
containing K. 

To show that type-independent equational classes also have equational charac-
terizations we now introduce the notion of a ^-identity. There are 3 types of /»-iden-
tities, namely 

(i) (w, T>) = (M, W), 

(ii) (H, z l 5 v) = (w, z 2 , w), 

(iii) v = w 

where u, v, w are possibly void words in {(«, i)\n£R, /£[«]}*, and z l5 z2€{(«, i)\n£R, 
/£[«]}. In more detail, say u=(ll, h)...(lr, ir), v=(m1,j1):..(ms,jj, w=(n1,k1)..; 
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...(n,,kt), z1=(d,i) and z2=(d,j). It is required that i^j. Given a type F, each 
of these /»-identities induces a set of F-identities. These are given by the formulae 
below: 

00 xPh = xpq2, 

(»') xp ( / , i)qx = xp ( / , j)q2, 
(iii') xqx = yq2 

where p=(f1,h)...(f„ir), ?i=teiJi) •••(&>./,)» q2=(hi, k j ,..(h„ k,), further, 
/ i € F ( l , . . . , / r 6F, r , gi£Fmi, ...,gs£Fms, hdFni, ..., h£F„t, and finally, f£Fd. 
A /»-identity is said to be satisfied by a top-down F-algebra 91 if all its induced F-
identities are satisfied by 2T. Alternatively, this is expressed by saying the /»-identity 
holds in 91. 

Let Q be a set of /»-identities. The set of F-identities induced by /»-identities 
from Q is denoted QF. Q* denotes the class of all top-down algebras satisfying every 
member of Q. Further, if K is an arbitrary class of top-down algebras, K* is the set 
of all /»-identities which hold in every 5l€K. 

The following proposition easily comes from the definitions. 

Statement 2. =K* holds for every class K. 

The clue in our treatment is 

Lemma 1. If K is a type-independent variety then Id K£|=Id (KflKF). 

Proof. Assume to the contrary there exists an F-identity in Id (K f) KP) which 
is not a consequence of K£. Among these there is one having minimum weight. 
The weight of on F-identity xp=yq is defined card (pre (xp) U pre (xq)). Simi-
larly, the weight of xp=yq is just card (pre (xp) U pre (yq)). We shall restrict our-
selves to the case this minimum weight F-identity is xp=xq. The other case can 
be handled likewise. 

Take a free algebra 91—(A, F) in the variety K f l K F with free generator a. 
We are going to show that whenever xr, xs(i pre (xp) U pre (xq) and ar=as, then 
xr and xs coincide. Thus, suppose xr, xs£pre (x/?)Upre (xq) and ar=as. We may 
choose xr and xs so that |xr| = | ; tJ |^j;a | provided that x/£pre (xp)Upre (xq) 
and ar=at(=as). Let us substitute xr for xs if xs^pre (xp), and apply the same 
substitution for xq. Denote the resulting polynomial symbols by xp and xq, respec-
tively. If xr is different from xs then both F-identities xp—xq and xr=xs have 
weight strictly less than that of xp—xq. On the other hand, ar=as and ap=ap= 
—aq=aq yield xr=xs, xp=xq£ld (KOKF). By the choice of xp—xq we have 
K F |= {xr=x?, xp=xq}, while {xr—xs, xp—xq)\={xp=xq} follows via the con-
struction. Therefore, KF | = {xp=xq). This contradiction arose from the assumption 
xr is different from xs, hence, xr and xr coincide. 

Write xp and xq in more detail as 

xp = * ( / l , i'l) •••(/,, ¿ r)(glJ l ) ... (gs,js), 

xq = x ( f l t h) ...(/„ ir)(h, fci) ... (h„ kt), 

where fcFh, . . . , / ,€F, r , Fm i , ...,gs£Fmi, h^F^, ..., h£F„t and (glt 
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^(fci, kt) if s,t>0. First suppose that gx^K if s, f>0 . Since K£|= {xp=xq}, 
xp=xq^Kp. Consequently, the /»-identity 

((/j, /0 ... (/P, /r), (wii, j\) ... (ws / ) ) = ((/i, h) »,), ("i, ... («„ /c,)) 

is not in K*. This means that there exist a top-down F'-algebra © = (5, F')€K, 
operational symbols fi£F'H, ...,f^F[r, g{iF'mi, ..., g'^F'^, h[€F'ni, ..., h',£F'„t, 
and an element b£B with 

bp' = &(/,', h)... ( / / , >r)(gi, A) ••• (g5', js) * 

* W , ¿0 ... ( / / , OW, fci) - W, kt) = bq'. 
Now define an a0-product £ = i7(9C, ©|<p, F) SO that (p^. F—F is the identity 
function and q>2: AxF—F' is any function with 

(«C/i> 'i) ••• (/u, '„)> f»+i)<Ps = / « ' + m = 0, ..., r - 1 , 
(a(/a, h) ... ( / r , i r)(gi, A) ... (gu,juX g»+i)<P2 = g«+i> 

u = 0, ..., s - 1 , 

(a( / l 5 ij) ... ( / r , i , ) (V fei) ... (hu, fc„), fcu+1)<?>2 = 

w = 0, ..., t-\. 

The first part of the proof garantees the existence of such an a0-product. It is easy 
to check that 

(a, b)ppr2 = bp' bq' = (a, b)qpr2, 

thus xp=xqi Id ({if}). Since ^ K f ] K F , this gives a contradiction. 
The second case, i.e. when s, / > 0 and g1=h1 yields a similar contradiction 

just take the /»-identity 

((h, h) ••• (h, Q, Ji), (™2,j2)... (ms,js)) = 

= (Ql, h) ••• (KJr), («1, fci), («2, fe2) ••• (nt, k,)). 
Remark. Since only a0-products were used in the previous proof, the statement 

of Lemma 1 holds even if closure under ^ is supposed instead of closure under 2?g. 
Furthermore, closure under and Sf is not strictly required. 

Lemma 2. Id (&>Xo (K) fl K f )= Id (&>fao (K) D K f) holds for every class K and 
type F. 

Proof. This statement has been proved for ordinary algebras in [1]. The same 
idea applies here. However, it should be noted that [4] also contains the proof. 

We are ready to prove the main result: 

Theorem. For any class K of top-down algebras, K * * = ( K ) = ( K ) = 

Proof is valid by Statement 2. Inclusions 
2 M S f ® ^ ( K ) i ( K ) are trivial. follows by Lemma 1 
and the Remark. Finally, Jetf&'&j^ (K) 2 ^ i f S ? ^ (K) is valid by Lemma 2. 
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Corollary. The following three statements are equivalent for every class K: 

(i) K is a type independent equational class, 
(ii) K=i2* for a set £2 of /»-identities, 

(iii) K=K**. 

Note. Equations jffSf&g ( K ) = ¿ f ( K ) = ¿ e y g P P ; ^ (K) have already been 
established in [4]. 
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On products of automata with identity 

B y Z . ESIK a n d J . VIRAGH 

In spite of the fascinating Krohn—Rhodes theory the homomorphically com-
plete classes of automata have not yet .been satisfactorily characterized for the a0-
product. Recently there has been keen activity in finding nice homomorphically 
complete classes. Continuing the work which was begun by N. V. Evtusenko [6], 
P. Domosi gave a very interesting homomorphically complete class for the a0-product 
consisting of automata having 3 input signs (cf. [3]). His idea was to use not only 
permutation automata for the homomorphic realization of permutation automata. 
He applied a technique combining shiftregisters with permutation automata, and 
in a sense his use of shiftregisters originates in [4]. It was apparent for us that Domosi 
did not completely exploit the advantages of this method. The present paper is a 
collection of a few remarks immediately obtainable just by simple generalization. 

The basic idea behind the use of shiftregisters is this. Let a part of the product 
automaton work in an absolutely free way by sections, and if enough information 
has been accumulated try to have this information govern the next move simulating 
the behaviour of the automaton to be realized homomorphically. Not surprisingly 
this has something to do with generalized products, i.e. products allowing an input 
sign to be coded with an input word of arbitrary length. Namely, this shiftregister 
technique can be used for converting generalized products to ordinary products. 
Unfortunately this conversion can not always be carried out. But the presence of 
input signs inducing the identity mapping on the state set does make the conversion 
possible under wide circumstances. 

1. Preliminaries 

We shall be using standard automata theoretic notions. An automaton is meant 
a system A = ( A , X, S), where A and X are finite nonvoid sets, the state set and the 
input alphabet, and the transition function 5 maps AxX into A. Denoting by X* 
the free semigroup with identity A generated by X, the transition function extends 
to a map AxX*->-A as usual. Given a word p£X*, the length of p is denoted |/>|. 
Every word p£X* induces a translation t j :A->-A of the state set: t$(a)=8(a, p) 
for all ad A. If no confusion may arise, we write tp instead of All translations 
tp,p£X*, form a semigroup with respect to function composition. This semigroup 
5(A) is called the characteristic semigroup of A. 

For every automaton A = ( A , X , 5 ) , we define the automata Ax and A* as 
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follows: A*=(A,{t$,t$\x£X},8x), A*=(A, 5(A), <5*), where 8\a,t*)=tlt(a)=a, 
8x(a,t$)=t$(a), and 8*(a, tf)=tj(a) for any a£A, x€X, p£X*. Notice that 
5 ( A ) = S ( A X ) = S ( A * ) . For a class X of automata put 

JT1 = {Ax\Adtf}, 

X * = {A*|A €Jf}. 

Let A=(A, X, 8) and B-(B, Y, 8') be two automata. A is called an X sub-
automaton of B, if AQB, XQ Y, and 3 is the restriction of 5' to AXX. If X= Y, 
we speak about a subautomaton. Take two mappings h1: A-*B and h2: Y. 
This pair of functions is said to be an J-homomorphism A—B if /^(¿(¿z, x)) = 
=8'(h1(a), h2(x)) for every ad A, x£X. If in addition both ht and h2 are bijective, 
we call the pair (h1, h2) an X-isomorphism, and A Z-isomorphic to B. Letting X= Y 
and h2 the identity map X^Y,hx becomes a homomorphism A—B. B = ( B , X, 8') 
is a homomorphic image of A if there is a surjective homomorphism A—B. Bijec-
tive homomorphisms are called isomorphisms. 

Take a class J f of automata. Then S(j?f), H ( J f ) and I ( j f ) will respectively 
denote the classes of all subautomata, homomorphic images and isomorphic images 
of automata from X . 

Now we recall the concept of general products of automata. Let A¡— 
= (Aj, Xj, 8j), y€["] = {l, -.., "}, «SO be arbitrary automata and take a system 
of so called feedback functions (pj". AxX •••XAnXX—Xj, /£[«], where X is any 
alphabet. The automaton A—(A1X...XA„, X, 8) will be called the general product 
(g-product, for short) of automata A j with respect to (p and X, provided that 

<5((al5 ...,a„), x) = (S1(a1,x1), ..., 8„(an, xn)), 

Xj = (Pjia-L, ...,an,x) 

forevery a^Ax, ..., a„£A„, x£X and /£[«]. We use the notation A2X.. .XAn((p, X) 
for general products. If all the A/s coincide, we speak about a power. 

Take the general product above, and let i s 0 be an arbitrary integer. If none 
of the feedback functions cpj depends on the state variables ak having indices k>j+ 
+ /—1, the g-product is called an a rproduct. In case of an a;-product. we shall 
indicate only those variables of a feedback function on which it may depend. 

We shall make use of an interesting generalization of g-products. Take the 
automata Ay as in the definition of a g-product but now let cpj\ AtX... XAnXX—X*, 
j€.[ri\. The g*-product AjX-.-XAn(X,<p) is defined on exact analogy of the g-pro-
duct with the exception that 

<5(al5 ...,a„,x) = (81(a1,p1), ...,8„(an,pn)), 

where pj=(pJ(a1, ..., an, x), j€[ri\. Allowing only words of length not.exceeding 
1 in the ranges of the feedback functions, we get the notion of a gA-product, or general 
A-product. Note that g-products are special g-products, and gA-products are special 
cases of the g*-product. The concept of an a*-product or that of an a*-product is 
derived in the same way as af-products were obtained. 

Take a class X o f automata. We put 

P9 ( J f ) : all g-products of automata from J f , 
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P a i ( j f ) : all a rproducts of automata from j f , 
P* ( j f ) : all g*-products of automata from J f , 
P* ( ( j f ) ; all a*-products of automata from ¿T, 
Vg ( j f ) : all gA-products of automata from J f , 
P^.(Jf): all a'-products of automata from J f . 

Observe that the following are identities: 

= Pg(X*\ F*(K) = P j j f * ) , 

PJ-W = P9{*% PJ;(K) = 
Our principal interest will be in operators HSP where P is any of the product 

operators above. We shall give a sufficient condition for having HSP*0(jf ) = 
—HSP^0(X), as well as a necessary and sufficient condition assuring HSP^ ( J f ) = 
=HSP^(^f ) . As regards <xrproducts with /==2, we show that H S P ^ ( J f ) = 
=HSP* (JT) is identically valid. These are the main results. In addition, we shall 
discuss homomorphically complete classes. Recall that a class JT is homomorphi-
cally complete for the g-product if HSPg ( J f ) is the class of all automata. Isomorphic 
completeness and homomorphic completeness with respect to other types of the 
product are similarly defined. We end the paper by presenting a class of automata 
which is homomorphically complete for the a0-product and contains automata 
having only 2 input signs. 

The concept of g-products was introduced by V. M. Gluskov in [10]. The hier-
archy of (¡¡¡-products is due to F. Gecseg [8]. The a„-product was called loop-free 
product or /t-product earlier. Or even, the formation of a0-products is equivalent 
to the iterated quasi-superposition. Generalized products appear in F. Gecseg [7]. 
Some elementary properties of the products will be used in the sequel without any 
reference. 

We are indebted to Prof. F. Gecseg for inspiring conversations. His new book 
{9] is an excellent summary of recent results on products of automata. 

2. Homomorphic realization 

The reason for introducing the (Xj -products was to decrease the complexity 
of the general product. On the other hand, it made possible the investigation of 
deeper structural properties of automata and, at the same time, gave a framework 
for achieving deep results. The cruical example is the Krohn—Rhodes theory. 
F. Gecseg observed how to translate this theory into the scope of a j -products. His 
achievements will be summarized in Theorem 1. In this theorem, as well as throughout 
the paper, A0 denotes the two-state reset automaton ([2], {x, y}, ¿0), ¿„(1, x)= 
=<50(2, *)=1, 80(i,y)=5Q(2,y)=2. The automaton Aj} can be identified with 
([2], {x0, x, y), <5£), where 5'0 coincides with <50 on [2] X {x, y}, and x0 induces the 
identity. 

Theorem 1. A class J f of automata is homomorphically complete for the a £ -
product if and only if the following are valid: 

(i) There is an automaton in j f whose characteristic semigroup contains a sub-
semigroup isomorphic to S(Ao). 
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(ii) For every finite simple group G, there exists an automaton such 
that G is a homomorphic image of a subgroup of 5(A). 

Consequently, there exists no minimal homomorphically complete class of 
automata for the a£-product. 

Combining the proof with the Krohn—Rhodes theory one gets: 

Corollary 1. Let X be a class satisfying (i) above, and take an automaton A. 
Then A£HSP*0(Jf) if and only if whenever a simple group G is a homomorphic 
image of a subgroup of 5(A), there is an automaton for which a subgroup 
of 5(B) can be mapped homomorphically onto G. A part of this holds for any class 
j f . Namely, whenever a simple group G is a homomorphic image of a subgroup 
of 5(A) and A£HSP*0(Jf), then a subgroup of 5(B) can be mapped homomorphi-
cally onto G for an automaton B£ J f . 

We think the above theorem clearly justifies the importance of generalized prod-
ucts. Our present purpose is to show that generalized products can be replaced 
by A-products in most cases as far as homomorphic realization is concerned with. 
Theorem 1 will be our starting point for <XQ -products, and we shall make an attempt 
to combine it with a technique used by P. Domosi in [3]. 

First of all we need a few concepts. Automata C„ = ({a1? ..., an}, {x}, <5) satis-
fying 5(ahx)=ai+1 (i= 1, ..., n— 1), 8(a„,x)=a1 will be called counters. Count-
ers of one state are said to be trivial. An automaton A = ( A , X, 8) is called counter-
free if and only if, whenever a counter C is an A'-subautomaton of A, it follows 
that C is trivial. In other words this means that 5(a1, x)=a2, ..., S(an_1, x)=a„, 
S(a„,x)=a1 implies n— 1 for all x£X and different states ...,a„6A. A class 
Jf of automata is counter-free if every A£ is counter-free. 

Besides counters we shall be using shiftregisters. Let X be an alphabet. A shift-
register over X of length n^ 1 is an automaton (X",X,8) with transitions 
¿(xj...xn, x)=x2...xnx, xx...x„£.Xn, xd.X. 

Let X and Y be arbitrary alphabets and take a mapping r: X"—Y", « s i . 
Following the ideas of P. Domosi we put RT— {(p, q)£X*X T*|l \q\^n, 
\p\ + \q\~n+1} and define the automaton RZ=(RZ, X, ¿r) as follows: 

e// \ \ i(.PX,q) if I p\*n, 
, r (p)) if | , | = „, 

where x£X, (p,yq)C_Rz with y£Y. 

Lemma 1. Let C„ be an «-state counter. Then R t6HSPao ({C„, A0}). 

Proof. The proof is a slight modification of Domosi's construction." 

Let A1=C„=([n],_{x0}, be an «-state counter, A2=(X",X,52) a shiftregis-
ter, and set A3=(F", YnUY, <53), where Y={y\y£Y} and 

¿aCVi — yn,y)=y* •••yny^ 

A 
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all y1...yn^Y", ...zn£ Y", y£Y. Form the <x0-product A=A1XA2XA3(<P, X) 
with 

<P l(x) = Xg, 

<p2(i, x) = x, 
_ J T ( X I . . . X „ ) if i ^ n 1 

{arbitrary y£Y if i * n, 
xtX, i€[»], xi...xH^X". 

It is easy to check that the assignment (i, x1...xn,y1...yn)-+(xB-i+1...x„, 
j i g i v e s a homomorphism A—RT. On the other hand, both A2 and A3 
are definite automata of degree n. Recall that an automaton (B, Z, S) is called defi-
nite of degree n, if and only if 8(b, vv)=S(c, w) holds for every b, c£B and iv£Z". 
Thus, A2, A3elSPao ({A0}) by a result of B. Imreh (cf. [11]). (Note that also the 
Krohn—Rhodes theorem helps in establishing A2, A3£HSPao ({A<>}) what would 
be enough for our purposes in this section.) Since A2, A3£ISPao ({A0}) and R t6 
€HSP«0({A1 ,A i ,A i}), it follows that R ^ H S P ^ ({C„, A0}). 

Lemma 2. If HSP^0 ( J f ) contains a nontrivial counter then HSP^0 ( j f ) con-
tains an infinite number of counters of different lengths. 

Proof. This statement was proved in [3]. 

The following theorem will bear fundamental importance in our discussions. 

Theorem 2. Suppose that X is not counter-free and A0£HSPA
0(jf) . Then 

Proof. Take an automaton A = ( A , X , S ) £ J f . Then whence 
we may assume that there is a s ignx 0 6^ inducing the identity mapping A-+A. 
We are going to show that A *=(A, 5(A), <5*)€HSPA

A
0(,?F). Let 5(A)= ..., 

— Y, where px, ... pk are words in X*. Since x0 induces the identity mapping 
A-+A, the words pt can be picked out so that \pi\ = ... = \pk\=n. Or even, the pre-
vious lemma makes possible to choose n in such a manner that an «-state counter 
is in HSPj 0 (Jf) . Obviously, there exists a mapping T: Y"-*X" satisfying the equa-
tion /£,* = for every wd Y". We form an a0-product of Rz and A and show 
that A* is a homomorphic image of this product. Since R t £HSPj 0 (X) , this yields 
A*€HSPa

A
0(Jf). 

Take the a0-product RtXA(<p, Y) with <Pi(y)=y and <p2((p, xq),y)=x, and 
define the mapping h: RtXA—A by h((p,q),a)=8*(5(a,q),p). Then h is a homo-
morphism of the product onto A*, ending the proof of Theorem 2. 

Theorem 3. Suppose that a class X of automata is not counter-free and the 
reset automaton A0 is in HSP£,(jf) . Then HSP^0 ( j f )=HSP* 0 (Jf) . Further, 
an automaton A is in HSP^0 ( JT) if and only if, whenever a simple group G is a ho-
momorphic image of a subgroup of 5(A), then G is a homomorphic image of a 
subgroup of 5(B) for an automaton 

Proof. The inclusion HSP^, ( J f ) g HSP*0 ( j f ) is obviously valid. Con-

1 For a word yi...y„€ Y", yi...yn=y1...yn. 
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versely, HSPi ( JO=HSP« D ( j r* ) iHSP ( l 0 HSPi ( j r )=HSP* 0 ( j r ) follows by The-
orem 2. The second statement is a consequence of the first one and of Corollary 1. 

Corollary 2. A class JT of automata is homomorphically complete for the 
ao-product if and only if the following conditions hold: 

(i) № is not counter-free, 
(ii) A06HSPi0(Jf), 

(iii) for every finite simple group G, there exists an automaton such 
that G is a homomorphic image of a subgroup of S(A). 

Proof. The sufficiency follows by Theorem 3. The necessity of condition (ii) 
is trivial, while the necessity of (iii) comes from Theorem 3. P. Domosi proved in [2] 
that no counter-free class can be homomorphically complete for the a0 -product. 
The reason is that only the trivial counters are in HSPao (Jf) if J f is counter-free. 

Example 1. For every w s l , let A„ be an automaton whose characteristic 
semigroup is isomorphic to the symmetric group S„ of all permutations [«]—[«]. 
The class consisting of AQ and these automata A„ ( n ^ l ) is homomorphically com-
plete for the ao-product. Consequently, 3CX is homomorphically complete for the 
a„ -product. Since S„ can be generated by 2 permutations, there exists a homo-
morphically complete class of automata for the a<) -product which contains automata 
having 2 input signs. On the other hand no class Jf consisting of automata having 
a single input sign can be homomorphically complete for the -product since every 
automaton in X would be commutative. Consequently, S(A) would be commu-
tative for each A£ J f , henceforth neither condition (ii) nor (iii) of Corollary 2 could 
be satisfied by X. Or even, every homomorphically complete class for the OCQ-
product must contain an infinite number of automata having at least 2 input signs. 

Corollary 3. There exists no minimal homomorphically complete class of 
automata for the ao -product. 

Proof. Suppose that X is homomorphically complete for the a^ -product. 
Then X contains an automaton B0 which is not counter-free, and there are B l5 ... 

such that A06HSP^0({B,, ...,B„}). Since every simple group is iso-
morphic to a subgroup of a larger simple group, also X — {B} is homomorphically 
complete for the «q -product for any B£j f— {B0, ..., B„}. 

Corollary 4. There exists a class of automata which is homomorphically com-
plete for the (XQ -product but not homomorphically complete for the a0 -product. 
Similarly, there is a homomorphically complete class for the aj-product which 
is not homomorphically complete for the a^ -product. 

Proof. By a result of P. Domosi, there exists a minimal homomorphically 
complete class of automata for the a„ -product (cf. [1]). Thus, the first statement 
follows by comparing this result with the previous corollary. To prove the second 
statement, we give a class JT homomorphically complete for the aj-product but 
not homomorphically complete for the a^ -product. 

For every integer n s 2 , let A„=([2«]U {2'}, {xlt x2, x3, x4}, <5„) be the auto-
maton with transitions dn(i, 1 if i is odd, S„(i, x2)—i+1 mod 2n if i is 
even, <5n(l, x3)=2, 5n(2, x4)=3, Sn(3,x3)=2', S„(2',xj=l, and finally,5„(i,x)=i, 
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5„(2',x)~2' in all remaining cases. Put X = {A 0}U{A>sl} . To show that tf 
is homomorphically complete for the a£-product observe that all automata B„= 
=([«], [x1; x2, x3}, S'„) ( n s i ) are in I S P ? A ( ) ( J F ) 2 where S'„ is defined so that Xj, 
induces the cyclic permutation (12...n), y the transposition (12), while x3 induces 
the identity permutation (1). Thus, H S P * ( X ) = H S P * ({A0) B I , B 2 , . . .} ) is the 
class of all automata. On the other hand X is counter-free, hence X is not homo-
morphically complete for the a«-product. 

Before turning to -products we need a few definitions. 
Acycleinan automaton (A, X, 5) is a sequence of pairwise distinct states ax,..., a„ 

so that 5(ah xt)-ai+1 (i = l, ..., n - 1 ) and 8(a„,xn)=a1 for some xu xn£X. 
The integer n is called the length of the cycle. Cycles of length 1 are called trivial, 
and an automaton is said to be monotone if and only if it contains only trivial cycles. 
An automaton (A, X, S) will be called discrete if S(a, x)~a for every ad A, x€X. 
Finally, one-state automata will be referred to as trivial automata. 

In the sequel we shall need 

Lemma 3. Suppose that an automaton A = ( A , X , 3 ) contains a cycle of length 
at least 2. Then A 0 € H S P A ( { A } ) . 

Proof. Let us assume that A contains the nontrivial cycle alt ..., a„ so that 
d(at,Xi)=al+i (z'=l, ..., n~l) and 5(a„,x„)=a1 for some x, , ..., x„dX. 

Construct the ai-product B=A"+2(<p, {x, ;>}), where 

<¡"¡(^1, •••, Ci, x) = 
Xj if Cj = a j a l t 

xx if C[ = at and cm ax when I s m 
X in all other cases, 

<Pi(c 1, •••> C[, y) 

Xj if c( = aj ax, 
X] if cl = czx and cm = ct = aL for some I s m I < i, 
X in all other cases. 

Taking the subset 
C={(clf..., c„+2)|{a2, ..., an}cz{cu ..., c„+2} and ax is contained exactly 3 times in 
the system {q, ..., c„+a}}, the automaton C=(C, {x, ;>}, 5B) is a subautomaton of 
B. Lastly, it can easily be verified that the reset automaton A0 is a homomorphic 
image of C under the mapping h: C->-[2] defined by 

h(cx, ..., cII+2) = 

fl if a2 preceeds at least two occurrences of in (c,, ...,cn+2), 
— (.2 in all other cases. 

Theorem 4. Suppose that X contains an automaton which is not monotone, 
and let A be an arbitrary automaton. Then A€HSP^(Jf ) (AeHSP^CO) if and 
only if, whenever a simple group G is a homomorphic image of a subgroup of S(A), 
there exists an automaton B e P i ^ W (B€P*«i(•*")) such that a subgroup of 5(B) 

1 -Pia/-5^) denotes the class of all single factor a,"-products of automata from X . The oper-

ators P1Xt and P U i are defined similarly. 

5 Acta Cybcrnetica VII/3 



306 Z. Esik and. J. Viragh 

can be mapped homomorphically onto G. Otherwise, i.e. if c/C consists of monotone 
automata, equation HSP^ (Jf)=HSP*, (X) is universally valid, and 3 cases 
arise. 

(i) If there is a nondiscrete automaton in j f , then HSP£(,3f) is the class of all 
monotone automata. 

(ii) If every automaton from X is discrete but X contains a nontrivial auto-
maton, HSP^(J f ) is the class of all discrete automata. 

(iii) Finally, if Jf contains only trivial automata, then HSP^C^T) is the class 
of all trivial automata. 

Proof. Assume that Jf contains a nonmonotone automaton. Then P^ ( j f ) 
is not counter-free and Ao€HSP*(Jf)- Since HSP* ( j f ) = H S P J P ^ ( j f ) = 
=HSP^Pio,! (X), the first statement of Theorem 4 follows by Theorem 3 for 
products. As regards a? -products, the proof is similar just use equation HSP* ( j f ) = 
=HSP^0Pictl (X). 

Now suppose that Xs contains only monotone automata. Then the same holds 
for j f* . and by HSP8*pf)=HSP f f(jf*), even for HSP*(^f). 

If there is a nondiscrete automaton in J f , then the elevator E=([2], {x, y}, 8) 
having transitions <5 (1, x) = 1, <5 (1, y) = <5 (2, x)=S (2, y)=2 is in IPx

A
ao (ct). By a 

result in [7], every monotone automaton is already in ISPao({E}). Hence we have 
HSP*(Jf)=HSP*(Jf)=HSP4(X)=ISPK oPiC I 0(X)=ISPio(Jf) is the class of 
all monotone automata. 

The proof in the remaining two cases is obvious. We have HSP* (Jf)=ISPao (jf). 
Corollary 5. There exists an algorithm to decide for a finite class X and an 

automaton A whether AeHSPa\(Jf) (A^HSP^ (X)). 

Corollary 6. Since HSP^ ( j f ) gj HSP* (Jf) always holds, HSP4(X)= 
^HSP^Cyf) if and only if one of the following 2 conditions is valid. 

(i) Jf consists of monotone automata. 
(ii) There is a nonmonotone automaton in J f , and whenever a simple group 

G is a homomorphic image of a subgroup of S(A) for an automaton A g P ^ j f ) , 
there is an automaton B£Piai(jT) such that a subgroup of 5"(B) can be mapped 
homomorphically onto G. 

Corollary 7. A class C/f of automata is homomorphically complete for the ai-
product (a*-product) if and only if, for every simple group G, there exists an automa-
ton A€Pi a i ( j f ) (A€ Pi* x (•#•)) so that a subgroup of 5(A) can be mapped homo-
morphically onto G. 

Corollary 8. There exists no minimal homomorphically complete class for the 
ai-product (a*-product). 

Now we present a new proof for a part of a nice result of F. Gecseg [7]. 

Theorem 5. The following 3 statements are equivalent for every class X of 
automata. 

(i) Jf is homomorphically complete for the a*-product. 
(ii) For every integer n g 1, there exists an automaton A„=(A, X, <5)gJf 
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having at least n different states ax, ..., a„€A such that for every /',/€[«], there is 
a word p£X* satisfying 6{ai,p)—a]. 

(iii) Xis isomorphically complete for the ajf-product. 

Proof. We prove that (i) implies (ii). Suppose that X is homomorphically 
complete for the ajf -product. It is enough to prove (ii) for n prime. Take the cyclic 
group Z„. Since Z„ is simple, there are an automaton A'n—(A, X', 8')^P*Xl(X) 
and a subgroup H of S(A'„) such that Z„ is a homomorphic image of H. Note that 
H is isomorphic to a permutation group of a subset A'^A. Since Z„ has an element 
of order n, there must be a translation tp£H of order kn for an integer Hence-
forth, there are different states a l 5 ..., aln£A' (/ = 1) for which 8(ahp)=ai+1 mod ln 
(i£[kn]). Taking a1,...,a„ we see that A'„ satisfies condition (ii). Let A„=(A, X, <5)6 
€ X be an automaton such that A^6Piai(A„). Clearly, also A„ satisfies (ii) with 

For the sake of completeness we recall from [7] that every n-state automaton 
is already in ISPiai ({A„}), while (iii)=>(i) is trivial. 

Suppose we are given n s l boxes B1,...,B„ and k ^ n pebbles numbered 
from 1 to k. In addition, k boxes, say Bh, ..., Bik, are distinguished so that 
. . .<4- Initially Bi} contains the pebble numbered /, j— 1, ..., k. The game goes 
on as follows. At each step we take out the pebbles from the boxes and put all pebbles 
which were in B{ back into B{ or put all of them into box Bi+1. The pebbles from 
Bn go into B„ or Bx. After a number of steps the pebbles get back into the distinguished 
boxes, each distinguished box Bit containing a pebble numbered j„ t£[k]. Clearly, 
(A•••A) is a power of the cyclic permutation (1 ...k). This proves our 

Observation. Let C„ be a counter, A6Piai(C„). Then every subgroup of S(A) 
is isomorphic to a subgroup of a cyclic group Zk with ksn, whence cyclic. 

Corollary 9. There exists a class of which is homomorphically complete for 
the ol* -product but not homomorphically complete for the -product. 

Proof. Take a class Jf consisting of a counter C„ for each n s l . X is homo-
morphically complete for the a.f -product by Theorem 5. Since every subgroup of 
S(C„) ( n ^ l ) is cyclic, but there are noncyclic finite simple groups, J f is not homo-
morphically complete for the a*-product. -

We do not know whether there exists a class X which is homomorphically 
complete for the a*-product but not homomorphically complete for the <xx -product3. 
It is clear that there exists a class X such that HSP4 l(Jf) is a proper subclass of 
H S P i ( J O , take e.g. X={{[2], {*}, ¿)}, 5(1, x)=8(2, x)=2. 

Now we turn our attention to the -product and the g^-product. 

Theorem 6. HSP^(Jf)=HSP*(Jf) for every class X. Furthermore, four 
cases arise. If X contains a nonmonotone automaton, then HSP*2 ( X ) is the class 
of all automata. If X consists of monotone automata one of which is not discrete, 
then HSP^2 ( X ) is the class of all monotone automata. If X consists of discrete 
automata and contains a nontrivial automaton, then HSP*2 ( X ) is the class of all 

3 Recently £sik has shown the existence of such a class. 
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discrete automata. Finally, if every automaton contained by X is trivial, then 
H S P ^ ( j f ) is the class of all trivial automata. 

Proof. First we recall a result proved in [4]. If J f is a class of automata such 
that there is an automaton (A, X, 8)dX having a state ad A, signs x, y£X and 
words p,qdX* with <5(a, (a, y) and S(a, xp)=S(a,yq)—a, then HSP a >(Jf) 
is the class of all automata. 

Now suppose that X contains an automaton which is not monotone. Then Xv 

is homomorphically complete for the a2-product. Hence, HSP^2 (X)=HSPa2 {Xk) 
is the class of all automata, and since HSPA

2 ( J f ) g HSP^ (X), the same is true for 
H8PJ(JT). 

For the proof of the remaining cases see Theorem 4. 

Corollary 10. There exists an algorithm to decide for a finite class X and an 
automaton A if A€HSP£(j f ) . 

Now we come to the point of comparing the strengths of our various products 
with respect to homomorphic realization. The following figure gives a summary. 
The figure is to be interpreted as follows. If two operators, say P and Q label the 
same node, then this expresses that P and Q are homomorphically equivalent, i.e. 
HSP (X)=HSQ (X) for every class X. If there is a directed path from a node 
labeled P to a node labeled Q then Q is homomorphically more general than P. 
This means that HSP(JOg HSQ(Jf) for every X , but there exists a class for. 
which the inclusion is proper. Further on this situation will be denoted by P < Q . 
The index i denotes an arbitrary integer exceeding 2. 

To justify the correctness of this figure first observe that all equivalences have-
been proved previously except for that the a2-product is homomorphically equivalent» 
to the general product. But this is the main result of [5]. On the other hand, all: 
relations P-=Q appearing in the diagram have been established in this paper or 
in several papers earlier (cf. e.g. [7], [8], [9]), the only exception being P* 0 <P^ . 

To prove HSP*0 ( X ) g HSP^ ( X ) for arbitrary X , let us distinguish 3 cases. 
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Case 1. X contains a nonmonotone automaton. Then the inclusion follows 
by Corollary 1 and Theorem 4. 

Case 2. o f consists of monotone automata, one of which is not discrete. In 
•this case we have HSPJ0 ( J f ) = H S P ^ (Jf ) equals the class of all monotone auto-
mata. (Hint ran automaton in IS(JfA) is ^-isomorphic to E.) 

Case 3. Jf consists of discrete automata. Now we have ISP a o (X)=HSP*(X ), 
thiis, HSPa*0 ( j f ) = H S P ^ ( j f ). 

On the other hand, HSP* (JF) is properly contained by HSP a(JT) e.g. for 

It should be noted that no more arrows could be added to the diagram. 

3. A homomorphically complete class for the a„ -product 

It was pointed out in Example 1 that there exists a class of automata having 2 
input signs homomorphically complete for the aà-product. Our principal goal in 
this section is to show that this result can be strengthened. Such a class does exist 
for the a0-product as well. This is interesting because we do not know any direct 
way for proving that the class of all automata with 2 input signs is homomorphically 
complete for the a„-product. 

Let A = ( A , X, <5) be an arbitrary automaton, and take a subsemigroup 5 of 
5(A) containing an identity element. Put A s = ( A s , S , S s ) , where As— 
= {b£A\ 3aeA, t£S b=t(a)} and Ss(a, t) = t(a) for any a£As, t£S. Observe 
that letting 5 = 5 ( A ) we get back the definition of A*. 

The following generalization of Theorem 2 is straightforward. 

Theorem 7. Let A=(A,X,ô) be an automaton, 5 a subsemigroup of 5(A) 
containing identity element. Assume that there exists an integer « s i satisfying 

Then As<=HSPao({C„, Ao, A}). 

The characteristic semigroup of As is isomorphic to 5. Let B=(B, Y, ô) be 
an arbitrary automaton. We may construct the automaton B'=(5(B), Y, ô') with 
transitions <5'(i®,y)=t*y, p£Y*, y£Y. It is well-known that B' is isomorphic 
to a subautomaton of a direct power of B. Henceforth B'€HSPao({B}), and we have 

Corollary 11. Under the assumptions of Theorem 7 it follows that As== 
=(5, 5, «5s)<EHSPi0({Cn, Ao,A}) where <5^ , J1)=J1J„ slfs^S. 

Suppose now a class X of automata satisfies the following list of conditions. 
(i) Ao€HSP^(JT). 

(ii) There exist an automaton B0£JF, a subsemigroup 5 0 g 5(B0) isomorphic 
to 5(Ao) so that for some «, an «-state counter C„ is in HSPao(Jf ) and, at the same 
time, all elements of 50 are induced by words of length «. 

(iii) For every finite simple group G there exist an automaton B c € J f , a sub-
group HgQS(Bg), and an integer « s ! satisfying 

(iiix) HG can be mapped homomorphically onto G, 
(i i i2) C ^ H S P ^ X ) , 
(iiis) every element o f # G is induced by a word of length«. 
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Set J f '={A ? 0 , AHc\G is a finite simple group}. Since X' is obviously not 
counter-free, ASo is Z-isomorphic to AQ, finally, the characteristic semigroup of Ag 
is isomorphic to H a , Corollary 11 yields that HSP*, (Jf) is the class of all automata0 

Since every automaton belonging to J f has an input sign inducing the identity 
state-map, HSP^0 ( J f ) = H S P a o (JT). However HSPao is a closure operator, thus 

is homomorphically complete for the K0-product. This is the basis of our last 
result. 

Theorem 8. There exists a class of automata having 2 input signs which is 
homomorphically complete for the a0-product. 

Proof. Let B0=([2], {x,y}, <5„) be the automaton with transitions <S0(1, x)=2, 
So(l,y)=S0(2,x)=50(2,y)=\. Translations t% ty, forrnia subsemigroup s'0 
of 5"(B0) isomorphic to S(A{;) under the correspondence ty^t^, 
In addition, for every odd integer «i=3, take the automaton B„=([«], {x, ŐJ 
so that x induces the transposition (12) and y induces the cyclic permutation (1 ...n). 
Besides, since n is odd, there exists an odd integer m satisfying ^„—{ipnl/JC {x, j^H. 
As a matter of fact, there is an m' such that every permutation of [n] can be induced 
by a word of length at most m'. Put m the least odd integer not less than m'+n; 
Let t=t%„, \p\=k^m'. If m-k is even, put q=pym~k. If m—k is odd, take 
q=pxnym-(-k+"\ We have t=fln in both cases. 

Now set 
JÍT = {A0, B0, B„|n ^ 3 is odd}. 

Since all counters of odd length as well as C2 are obviously in HSP^ (X) and every 
finite simple group is isomorphic to a subgroup of Sn for odd n, X is homomorphic-
ally complete for the a0-product. It should be noted that from the proof of Lemma 3 
we have that Ag can be omitted from J f . 

Corollary 12. The class X consisting of A^ and automata A„=([n], {x, ;>}, <5„) 
(ns3) with ^ = ( 1 ...n), iy=(12) is homomorphically complete for the a0-product. 
Recall that the main result of Dömösi's paper is the homomorphic completeness 
of for the a0-product. 
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Properties of the fuzzy connectives in the light 
of the general representations theorem 

B y J . DOMBI 

Introduction 

A number of papers deal with the operators of fuzzy logic. All of these publi-
cations assume associativity, isotonicity, continuity, and the validity of the perma-
nence principle. The representation theorem of the class of such operators were 
examined only under assuming strict isotonicity in the literature [2], [6], [7], [8]. 
"Here we shall consider properties of the operator class supposing isotonicity only, 
with conditions under which De Morgan identity holds; first for the case with 
Archimedean properties, and then for the general one. The properties of the limes 
operators of operator series will be studied, too. Finally, the distributive class is 
determined. 

Preliminaries and basic results 

Concerning the conjunction c(x,y) and disjunction d(x,y) featuring if fuzzy 
logic, • we assume that the mappings c: [0,1]X[0,1] —[0,1] and d: [0,1]X[0, 1] — 
- [ 0 , 1 ] are: 

(i) associative: 
c(x, c(y, zj) = c(c(x, y), z), (1) 

d(x, d(y, z)) = d(d(x, J), Z). 

(ii) isotonic, i.e. if xSlx!, then for áll y: 

c(x, y)^c(x\ y), d(x, y)^d(x,' y), (2) 

c(y,x)^c(y,x 0, d(y,x)^d(y,x/). (3) 

(iii) the principle of permanence holds: 

c(0,0) = c(0, l) = c(l ,0) = 0, c ( l , l ) = l, (4) 

d ( l , l ) = d(0 , l ) = d ( l , 0 ) = l , d(0,0) = 0. (5) 

(iv) continuous. 
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Since the theorems related to the conjunctive operator can be proved in an 
analogous way as those related to the disjunction, the theorems below are proved 
only for conjunctive operators. 

Theorem 1. For a conjunctive operator (disjunctive operator) satisfying con-
ditions (i—iv) it holds that 

c(x, 1) = c(l, x) = x, d(x, 1) = d( 1, x) = 1, (6) 
c(x, 0) = c(0, x) = 0, d(x,0) = d(0,x) = x. (7) 

Proof. [3]. 

Definition. The conjunctive operator c(x, y) (disjunctive operator d(x,y)) is 
Archimedean if c(x,y)<x and d(x,y)>x for x£(0, 1). 

Definition. The pseudo-inverse of a strictly monotonously decreasing function 
f-[a,b]-~[f(a),f(b)] is 

b if x Sf(b), 
/<-!>( , )= / - i ( x ) if / ( p J S M 

a if f(a) S x. ( J 

Theorem 2. For an Archimedean conjunctive operator (disjunctive operator) 
with properties (i—iv) there always exists a strictly monotonous function fc ( f d ) , 
for which 

/c( 1) = 0, /,(0) = 0, 9) 
/c(0) = rc, / d ( l ) = r„, (10) 

where rc and rd may be or — and is such that 

c(x, y) =fc'-»»UM+XW), d(x, y) =/«,<-1>(/i(*)+/iOO) 

where, apart from a factor a ^ 0 , fc{x) (fd(x)) is uniquely defined. 
The function f c (x) (fd(x)) will be called "the additive generator of the function 

c(x,y)(d(x,y))". 

Proof. [9]. 

Consequence. All such operators are commutative. 

Definition. The operator c(x,y)(d(x,y)) is reducible with respect to both sides 
if, in the case (f, w]€(0,1] ((/, w]e[0,1)) c(t, u)=c(t, v) or c(u, w)=c(v, w) (d(t, u)= 
=d(t,v) or d(u, w)=d(v, w)) holds if and only if, u=v. If c(x, y) (d(x, y)) is 
continuous, then the reducibihty is equivalent to the strict isotonicity. 

In the particular case when the operation c(x, y)(d(x,y)) is strictly isotonic, 
we may obtain from Theorem 2 the theorem of Acz61 [lj, and then rc= — °o or 
rc=°=-

A consideration of this special case is to be found in [3]. Let us subsequently 
assume that rc ± °o5 rd ̂  ± 

Theorem 3. For the monotonously decreasing additive generator fc(x) (fd(x)) 
of c(x, y) (d(x, y)), there always exists a strictly monotonously increasing additive 
generator of c(x, y). 
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Proof. Since the additive generator fc(x) is determined up to a constant multiple 
factor a 5^0, let us select a = —1 and define 

L(x)=-fc(x); 

this Jc will then satisfy the statement of the theorem. 
We restrict our considerations below to monotonously decreasing generator 

when we are speaking on conjunctions, and to monotonously increasing additive 
one in the case of disjunctions, that is, we shall suppose that 

0 < r c < ° ° (0<r d <°o) 

Theorem 4. For the additive generator fc(x)(fd(x)) of the operation c(x, y) 
(id(x,y)) we can give a multiplicative generator fc(x) (fd(x)), where fCr(x): [0,1] — 

Fig. 2 
Generator functions of conjunctive and disjunctive operators for the multiplicative representation 

case 
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1], / , (*): [0,1J - [1, 

c(x, y) = / c ' - " ( / c W / c W ) , d(x, y) = ftKLWf*GO)- ( 1 0 

Proof. The proof is obvious if we put 

/e(*) = « p (/«(*)), so:/«<-»(*) =/e<~« (In (*)) 
and 

/ / - ' ( / . W / c W ) = /c ( _ 1 ) ( ' n ( e xP (/cW)) • exp (fc(y))) = /c ( _ 1 )( / ,W+/.(>'))• 

3. The De Morgan class of fuzzy operators 

For investigation of De Morgan identity we need a mapping, the so called 
negation n: [0,1]—[0,1]. We shall assume the usual properties: 

(1) n decreases strictly monotonously, 
(2) n is continuous, . 
(3) the principle of permanence holds for n 

\ tj(1) = 0 and n(0) = 1 . 

Below, we distinguish two forms of De Morgan identity, the conjunctive form 

h{c(x,y)) = d{n(x),n(y)) (12) and the disjunctive form 
n(d(x,y)) = c(n(x),n(y)). (13) 

The theorems will be stated and proved only for the conjunctive form. 

Theorem 5. For a given conjunctive (disjunctive) operator c(x, y) (d(x, y)) and 
a negation operator n(x), it is possible to construct a disjunctive (conjunctive) ope-
rator satisfying the conjunctive (disjunctive) De Morgan identity. 

Proof Let fc(x) be the generator function of c(x, y). Let us define 

: (m) 

where a > 0 is an optional real number. The function d(x,y) generated by fd(x) 
will in fact be a disjunction,,since/j(x) satisfies the conditions which ensure that 
fd(x) is a generator function of.a disjunctive operator. Furthermore, 

= »(/[
(-I)o(/i("W)+/i(»ffl) = ft1\fM(x))+fi(n{y))) = d(n(x), n(y)) 

where we have made use of the fact that «( / c
( - 1 ) (ax))=/d

(_1) (x), and thus the theo-
rem is proved. 

Theorem 6. Let c(x,y) be a conjunction, and d(x, y) a disjunction. A negation 
n(x) can then always be given such that the conjunctive (disjunctive) De Morgan 
identity holds. 
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Proof. Let 

« ( x ) / c ( x ) ) = f t » ( ^ / c ( * ) ) = / / - > / < ( * ) ) . 

As concerns the n(x) defined in this way it can be seen that 

a) it is bimorphous, since — /.(*)€[0, rd], 
r c 

b) it decreases strictly monotonously, because of the monotonicity of fc(x) and 

c) >i(x) is continuous, since fc(x) and fd
 X(x) are such too, 

d) it satisfies the conjunctive De Morgan identity. 

From the substitution x=n~1(y) we obtain 

a 
from which the statement follows. 

Theorem 7. Let c(x, y) be a conjunctive, cl(x, y) a disjunctive operator and n(x) 
a negation. The conjunctive De Morgan identity holds if and only if 

Proof. The sufficiency has already been seen. From the conjunctive De Morgan 
identity we have 

d(x, y) = n-t (c(n~i(x), n-i(y))). (15) 

The conjunctive operator is associative 

c(c(x, y), z) = c(x, c(y, zj), and so 
n(c(c(x, 7), z)) = n(c(x, c(y, z))). 

Using the conjunctive De Morgan identity 

d(n(c(x, j)), n(z)) = d(n(x), n(c(y, z))). 

Using again the conjunctive De Morgan identity 

d(d(n(x), n(y)), n(z)) = d(n(x), d(n(y), n(z)j). 

Replacing n(x), n(y), n(z) by x,y,z, we find that d{x,y) is associative. 

d(x, y) is isotonic. If y y ' , then n(y)^n(y'),c(x, y) is isotonic, hence 

c(n(x), n(y)) §r c(n(x), «(/)). 

As n~1(x) is strictly monotonous 

d(x, y) = n-^cinix), « 0 ) ) ) =£ « - ^ ( « ( x ) , « ( / ) ) ) = d(x, y'). 
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The continuity of d(x, y) is a consequence of those of c(x, y) and n(x). 
d(x, j>) is Archimedean since 

c(n(x), n(x)) < n(x) x£(0, 1), 
and so 

d(x, x) = n~l{c(n(x), n(x))), n(n(x)) = x. 

d(x, y) satisfies the permanence principle: 

c(x, 1) = c(l, x) = x, 

c(x, 0) - c(0, x) = 0, 
and so 

d(x, 0) = « - ^ ( « ( x ) , n(0))) = n-^nix)) = x, 

d(x, 1) = n-^cCnix), n( 1))) = M-HO) = 1. 

Thus, for d(x, y) there exists a generator function fd(x) which is determined uniquely, 
apart from a constant factor. We have seen that (14) is a generator function, and 
since its constant factor too is of such a form, we have proved the theorem. 

If H ( H ( X ) ) = X holds, then the conjunctive and disjunctive De Morgan identities 
are the same. 

Let us now consider the non-Archimedean case. On the basis of the represen-
tative theorem of [9], there exists a finite or (uncountably) infinite series of discrete 
intervals Mt = (ah bt) such that 

The De Morgan class is constructed so that the conditions required in the 
Archimedean case hold for the generator functions in the corresponding (a,, bt). 

be a non-continuous conjunctive or disjunctive operator. 

Theorem 8. All conjunctive (disjunctive) operators satisfying conditions (i—iv) 
have the following properties: 

Proof. By definition we have tc(x,y)=0, c(x, provided that x, ^€[0, 1) 
and /c(l, x)=tc(x, l )=c( l , x)=c(x, l )=x , thus 

(16) 

4. Limes operators of the operator class 

An important role is played below by the following definition [6]. 
Definition: Let 

x if j> = 1, 
tc(x,y)= y if x = l , 

0 otherwise, 

x if y = 0, 
tAx,y)= y if * = 0, (17) 

0 otherwise, 

tc (x, y) = c (x, y) s= min (x, y); max (x, y)sd (x, j ) td (x, y). (18) 

tc(x, y) ^ c(x, y). 
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Moreover, let us assume that xSy. Utilizing the fact that fc(x) and / c
< - 1 )(x) de-

crease strictly monotonously, we have 

c(x, y) =ft1)(fc(x)+fc(y)) ^ / / - » ( / , ( 1 ) ) = x = min (x, y). 

Theorem 9. Let A>0 be a real. If fc(x)(fd(x)) is the generator function of a 
conjunctive (disjunctive) operator c(x, y) (d(x, y)), then 

/ / ( * ) ( / / (* ) ) (19) 
are also the generator functions of some conjunction and disjunction denoted by 
cAx, y) (dx(x, y)). 

Proof. If fc(x) is the generator function of the conjunctive operator, then 
/ c(x) too satisfies the properties of the generator function. Thus 

y) = / c ( _ 1 ) ( ( / / ( * ) +feiy)fIX); 

dx(x, y) =fl~1)((f/(*)+//G0)1/A). 
Theorem 10. Let A, cx (x, y), dk (x, y) be the same as above. Then the following 

relations are true. 

1. lim cx(x, y) = min (x, y), lim dx(x, y) = max (x, y), (20) 
^FCO A-.00 

2- lim c>.{x, j>) = tc(x, y), lim dx(x, y) = td(x, j>), (21) 

Proof. 1. Let us assume that xSy; then min (x, y)=x. Since it holds that 
cA(x, .y)=min (x, y), we have 

min (x, y) s lim cx(x, y) ^ \\mft»{(2fcx{x))iix) = l i m / ¿ - « ( 2 ^ (/<(*))) = 
/-»CO A-*oo 

= x — min (x, y). 

2. If y= 1, then cA(x, l) = x. Similarly, if x = l , then c(\,y)=y. 
Let us assume that x < l , y < 1 and Since 

0 ^ lim cx(x, y) = /c
(_1)((//(*) +fc(y))1,x) = lim / / " « ( ^ / c W ) = 0, 

we have 
c0 (x, j>) = tc (x, y), d0 (x, y) = td (x, y), 
c°o(x, y) = min (x, y), d„(x, y) = max (x, y). 

Example. Let / c ( x ) = 1—x. We then obtain the operator of Yager [10] by 
constructing c(x, .y). 

Definition. c(x, y) (d(x, y)) has the classification property, if c(x, n(x))=0 
(d(x, «(«)) = 1) for every negation n(x). 

Theorem 11. Let c(x, y) (d(x, y)) be any mapping such that it is isotonic, 
and satisfies c(l, x)=c(x, l ) = x (d(0, x)=d(x, 0)=x). 

(i) c(x,3>)(d(x,7)) is idempotent if and only if 
c (x, y)=min (x, y) (d(x, y)=max-(x,-y)), 
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(ii) c(x, y) (d(x, ;>)) has the classification property if and.only if 

C (x, y) = tc (x, y), d (x, y) = t„ (x, y). 

Proof. The sufficiency is obvious. 

(i) Let us assume that c(x, y) is idempotent and x^y. Then 

x = c(x, x) S c(x, y) ^ c(x, 1) = x i.e. 

c(x, y) = x = min (x, y). 
(ii) If x = 1 or y—1, then the statement is obvious. If x 0 < l , j 0 < 1 , then 

there is a negation n{x) for which x<,=n{y0). Since c(x, y) has the classification 
property we have c(x0, y0)=c(x0, n(x0)) = tc(x0,y0). 

Hence, we have characterized the operators c0(x,y), cm(x,y) algebraically, 
too. 

5. The distributive operator class 

We wish to describe operators satisfying properties (i)—(iv) which are distributive 
with respect to each other, i.e. 

c(x, d(y, z)) = d(c(x, y), c(x, z)), (22) 

d(x,c(y,z)) = c(d(x,y),d(x,z)). (23) 
o 

Theorem 12. The operators c(x, y) and d(x, y) are distributive with respect to 
each other if and only if: 

c ( * , » = min (x, y), d(x, y) = max (x, y). (24) 

Proof. On the basis of theorem 1, boundary conditions (6) and (7) hold. Utilizing 
the distributivity: 

x=d(x , 0)=d(x, c(0, 0))=c(d(x, 0), d(x, 0))=c(x, x) 

we have that is c(x, y) is idempotent. On the basis of theorem 11, for an 
idempotent, isotonic conjunctive (disjunctive) operator satisfying the boundary 
conditions 

c(x, y) = min (x, y). 

6. Discussion 

The properties of monotonous fuzzy operators (interpreted on sets) satisfying 
associativity have been examined. 

Ax Strictly monotonous operators, 
A2 Archimedean operators, 
A3 Monotonous operators 

A necessary and sufficient condition on generator functions was formulated 
which ensures that De Morgan identity is true. The distributivity holds if and only 
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As: tc(x,y), min (;*:,}>) 

A, : max (0, j c + y - 1) 

Ax\ x-y 

Fig. 3 
Hierarchic order of operators 

if the operator is the min or max. By means of operator series associated to the 
operators we obtained lower and upper limits of the operators, as limes. The algebraic 
characterization of these operators was also given. 

A further examination is necessary to establish the classification property of 
the operators and the relation of the (not strictly monotonous) negations. 
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On the optimization of library information 
retrieval systems 

B y A . M . IVANYI a n d A . N . SOTNIKOW 

Introduction 

In some information retrieval systems (e.g. in many library ones) the content 
of documents (books, papers, patents, computer programs etc.) and the content of 
user's questions are characterized by using a given set of key-words (so called des-
criptors). The aim of the retrieval is to find all the documents whose content is charac-
terized by the descriptors in the question and, may be, by other descriptors too. 

Of course, the sequential retrieval represents a slow method, which is satis-
factory only in small systems. 

A more effective method is proposed by G. Salton [1]. According to this method 
the set of documents is decomposed into disjoint subsets (so called clusters) consis-
ting of "similar" documents, and the retrieval is organized in a hierarchical manner. 
Recently an excellent review was publicated by S. T. March on the different retrieval 
methods [2]. 

According to Salton's proposition [3] the efficiency of the retrieval system is 
characterized by the expected waiting time of the users, therefore the aim of the 
optimization is to minimize this time choosing suitable parameters (number of 
clusters, sizes of clusters, distribution of documents among the clusters). 

At first in § 1 we describe a mathematical model of such systems [1], then in 
§ 2 the mentioned expected time is computed for some values of parameters, later 
in § 3 this time is analysed as a function of the different parameters, and finally in 
§ 4 some practical conclusions are made. 

§ 1. The mathematical model 

Let m, n, r and z be positive integers, <5 = {AD ..., JD;, •••, A.-i} — documents, 
...,Kj, ...,Km— key-words, <?={Ôo> ..., Qp,..., Qr-J — possible 

questions of users, a={A0,..., Ap,..., — the corresponding answers of the 
information retrieval system, where Qp^x, Ap\i<5 for />=0, ..., r— 1. 

The content of documents is characterized by the document description matrix 
D=[<y„xm> where d u = l , if Kj characterizes Du and d u = 0 otherwise. The con-
tent of questions is characterized by using the question description matrix Q=[qPj},xm, 

6 * 
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where qp~ 1, if Kj characterizes Q,„ and qpJ=0 otherwise. The /-th row d( of D 
represents the description of Dh and the /;-th row qp of Q represents the description 
of Qp. In the case of the question Q„ we have to find the documents Dh for which 

The set 5 is decomposed into disjoint clusters C0, ..., C\, ..., The de-
composition is defined using the decomposition matrix Y=[y t k]H X Z , where ^ = 1 , 
if D£Ck and yik-0 otherwise. The content of clusters is described by using the 
characteristic matrix V=[ukJ]2>tm, where ukj=0 if for any D£Ck, dtJ~0, and 
w t .= l otherwise. The k-th row ufc of U is called the characteristic vector of Ck. 

1 The retrieval consists of two levels: on the first level the description qp of the 
question Qp is compared with the characteristic vectors ufc for k=0, ..., z - 1 . On 
the second level a sequential retrieval is realized in the relevant clusters: a cluster 
C„ is relevant to Qp iff u4£qp (uktj^qpj for j=0,1, ..., m-1 ) . 

As a time unit (and as a cost unit, too) let us choose the time required to com-
pare two m-dimensional vectors. Then in the case of a decomposition matrix Y the 
met SI)Y of the answer Ap to a question Qp is defined by 

SPY = z+'2\Ck\Ltf+t'2LkP, 
k=0 k=0 

where Lkp- 1, if Ck is relevant to Qp and Lkp=0 otherwise, t is a nonnegative real 
parameter (the time, required to prepare a new cluster to the processing). The effi-
ciency of a given decomposition algorithm A, resulting a decomposition matrix 
Y^ is denoted by M(Y4) and defined by the average cost of answers to all possible 
questions 

' p = 0 

For example, let m=2, n=r-4, z=2, t=0, 

'0 0 ' 'O O' 

D = 
0 

1 

1 

0 
and Q = 0 1 

1 0 

,1 1. 1, 

Then the corresponding answers are A0={D0, Du Da, D3}, A1—{D1, 
A2={D%, D3} and A = {Dai-

Let us assume that we construct two different decompositions defined by the 
matrices 

'1 0] '1 cf 
1 0 and Y2 = 0 1 1 0 and Y2 = 0 

1 0 1 0 1 
.0 1, ,1 0, 

Then the corresponding characteristic matrices Ux and U2 are as follows; 

* - ( » } ) and * _ ( } J). 
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If all the four possible questions are put once, then we have eight comparisons 
on the first level for both decompositions; the second decomposition requires 4 x 4 = 
= 16 ones on the second level, while the first needs only 2 x 4 + 2 x 2 = 1 2 , there-

20 24 
fore, M(YX)= — =5, while M(Y2)= — = 6. 

§ 2. Efficiency of a decomposition algorithm 

Let m be fixed, n=r—2m. Let us suppose, that the descriptions of the docu-
ments (the rows of the matrix D) and the descriptions of the questions (the rows of 
the matrix Q) are different, that is 1 implies d ^ d , , and 
=r— 1 implies qpT^qp. In this case we have 2m possible different documents and 
also 2m different questions. For the simplicity let us suppose, that the descriptions 
as binary numbers give the corresponding indices, that is 

m — 1 m — 1 
i = 2 d t j l " - 1 - ' , p = z qPJ2m-1-j 0, p = 0, . . . , 2 m - l ) . 

J=0 j=0 

Let us suppose that x is a nonnegative integer and |CJ=2'x for k~0, 1, ... 
...,2—1. In this case we have z=2m~x and O^xSm. 

For this special values of parameters the decomposition algorithm S [4] is defined 
as follows: 

ck = { A t - 2 * , . . . , X ) f c . 2 x + 2 * _ i } ( k = 0 , 1, . . . , 2m~x—l). 

Now we can give the efficiency of S as a function of parameters x, m and t [4]. 
Theorem 1. If x,m are positive fixed integers, n=r=2m, t is a nonnegative 

real number, implies d ^ d j , 0 ^ / ; i m p l i e s q p ^q P , then 

M(YS) = 2m-x+22x-m2,m-x + t-2x- 'n3m-x . • (1) 

Proof. According to the definition M(YS) we have 

M(YS) = ^ [22m~x + 2x 2 2 1 + ' 2 1]. 
^ * = 0 qpsak k = 0 q p s u k 

In this expression the sum ^ 1 is equal to the number of questions for 

which (qP;o, ..., = 
Considering ufc as a binary number bk according to the grouping rule of S we 

get 
m - 1 

bt= 2 ukJ2'»-j-i = (k+l)2x-l 
o 

(the first m—x digits determine k, the last x digits are l's). 
If u t contains w l's on the first m—x places, then we have 2W-2X questions 

with Therefore, using the equality 
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we get 
m—x (m — 

M(Ys)=2m-x+(2x~m + t-2-m) 2 w \T"2X= 
w=0 V W t 

§ 3. Analysis of the influence of the continuous parameters 

According to the Theorem 1 the cost M(YS) depends on x, m and t as 

M = M(x, t,m) = e">>'e-xb + em^-b)ex(2b-c) + (tem(c-b)e^x(c-b)^ 

where b=In 2% 0,69314718 and c=ln 3 ^ 1,09861229, t is a nonnegative real 
parameter, m is a positive integer parameter, and x represents the independent 
variable being integer and 0 S x 5 f f l . 

In the practice the number of key-words m equals 10—1000 [4, 5], the time of 
preparation of a new cluster to the processing t is about 0—109 time units (may be, 
it is necessary to put new disc or magnetic tape). 

In the analysis of the function M = M (x, i, m) its continuous variant R = 
=R(x, t, in), plays an important role, where x, t and m are real variables with 
x € ( - ~ , ( • -» , +oo), m£(-co, +°o). 

Lemma 1. If and m are fixed real numbers, then the function R = R(x, t, m) 
as a function of x is convex, it has one local minimum and this minimum represents 
an absolute one too. • 

Proof. Differentiating R(x, t, m) by x we get 

R x =-b.embe-bx+(2b-c)em(c-b)e*(2b-c)-(c-b)t-em(c-b'>e-xic-''\ 

Since .Rx is a monotone increasing continuous function of x (its members are 
increasing) and its limit is + ° ° f o r x—+ <=o and — °° for x— — °°, so R* has a 
unique zero-place x0 and R j < 0 for x < x 0 , R ^ O for x > x 0 . Therefore R(x, t, m) 
is convex, and it has an absolute minimum at x0 . • 

Lemma 2. For a fixed m the function x 0=x 0 ( f , m) is a monotone increasing 
function of t. • 

Proof. From R t = 0 we get 

For a fixed m the function /(x0, m) is a iiionotone increasing one of x0 for 
x0€( — s o it has a monotone increasing inverse x0=x0(t, m). • 

Lemma 3. For fixed the function x 0=x 0 ( i , m) is a monotone increasing 
f u n c t i o n Of /77. • 

. 2b-c 
t = t(x0, m) = ——r-

c — b 
b 

em(_2J>-c)e-x0(2b~c) 
c-b 
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Proof. It follows from R*=0 that 

m = ^ J — In ^ . ( ¡a-oj 
2b-

According to Lemma 1 for given t and m there exists a corresponding x0 , there-
fore the expression in the square brackets has to be positive (otherwise m has no 
meaning). 

Now we have 

(3fc_c)e(»-«*. Kc-b)(2b-c) eXQ(ib_c) 

dm b b 
dXo (2b -c) «».(»-o] 

The expression in the numerator is greater than the one in the square brackets 
of the denominator (the positive member is multiplied by 3b—c, the negative one by 

2b—c), therefore > 0 and so the derivative - also is everywhere positive 

and x0 is an increasing function of m. • 

Theorem 2. If and in are fixed real numbers, then 

f = 0 m + y , if t = 0, 
Xo\>fim+y, if / > 0 , 

In 2 
ln -

where p= «0,29330495 and y = / " f / 3 « 0,89657440. • In 8/3 In 8/3 

Proof. Lemma 1 and the equation R t = 0 at the condition t = 0 imply x 0 = 
= jSm+y, and then Lemma 2 gives the remaining part of the theorem. • 

§ 4. Conclusions 

In the previous paragraph we considered x, t and m as continuous parameters. 
In the practice x and in have positive integer values. 

According to Lemma 1, R(x, t, m) as a function of x is a convex function, 
therefore Theorem 2 implies for the optimal size-parameter xopt the assertion: if 
t - 0, then 

lpm+y) *opt ^ \pm+y). 

If 0 then we have a lower bound xop t^[Pm+y\ due to Lemma 2. 
Analysing the function M(x, t, m) one can see that for small values of t the 

third member of (1) has a relatively weak influence on the value of xop„ and so in 
the first approximation is neglectable. 

We propose the following approximate formula: 

xopt « 10,29330495m+0,89657440]. (2) 
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Table 1. Summary of the numerical results 

m t •̂ OPT 7П t •̂ OPT Xa 
20 1W> 7 7 80 10° 24 24 

10» 8 7 10s 24 24 
104 14 7 104 24 24 
10е 20 7 10« 24 24 

40 10" 13 13 100 10° 30 30 
102 13 13 102 30 30 
104 14 13 104 . 30 30 
10е 20 13 10® 30 30 

60 10° 19 19 
102 19 19 
10* 19 19 
106 21 19 

The following table shows some numerical results of a BASIC-program, run-
ning on a personal computer Commodore-64. 

In this table xopt represents the optimal integer value of „v and xa is the value 
resulted by the approximate formula (2). 

According to the presented numerical data formula (2) results good approxi-
mations of the optimal size parameter for m>20 and 1000000. 

The authors are indebted to Dr. Péter Simon at Eötvös Loránd University of 
Budapest for the consultation and valuable remarks. 
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A probability model for priority processor-shared 
multiprogrammed computer systems 

B y J . SZTRIK 

1. Introduction 

Queueing models have been widely used in the analysis of time-shared compu-
ter systems. In these systems an arriving job competes for the attention of the single 
CPU. It is forced to wait in a system of queues until it is permitted a quantum Q 
of service time. When this quantum expires, it is then required to join the system 
of queues to await its required service time. By allowing Q to shrink to zero, pro-
cessor-sharing (PS) models are obtained, which provides a share of the CPU to 
many jobs simultaneously and equally. 

Following Kleinrock [6] in a priority round-robin system the jobs are divided 
into n separate priority groups. A program belonging to the z'-th priority group 
gets i\Q unit of service each time, where quantities rt are called service weights, 
/•¡>0, i '=l , ..., n. In the limit as 0 this model reduces to a processor-shared 
one with priority structure wherein a job from priority group i receives a fraction 
ft of the total capacity, where f-l=ri\lrinj, here iij is the number of jobs from group 
j in the system at time t. This kind of service discipline is referred to as PPS one. 
The PS model is a particular case /•;= 1 for all z", z'= 1, ..., n. 

We observe that the two processor-shared models are ideal in the sence that 
the swap-time is assumed to be zero. 

The present paper deals with a multiprogrammed computer system in which 
a number of n jobs are permitted to circulate among the peripheral devices and the 
CPU. The system is assumed to have enough peripheral devices, so no queueing for 
I/O operations occurs. Under PPS service discipline the jobs are supposed to be 
stochastically different, the z'-th program is characterized by exponentially distributed 
I/O time with parameter kt, exponentially distributed processing time with rate 
and service weight rh z'=l, . . . ,«. All random variables are assumed to be inde-
pendent of each other. 

The purpose of the paper is to generalize the PS model treated by Asztalos [1], 
Csige—Tomko [4], Cohen [3]. In steady state the main operational characteristics, 
such as CPU utilization, expected CPU busy period length, mean response times, 
waiting ratio, throughput, average number of jobs staying at the CPU are given. 

Furthermore, a system of linear equations for L—S transform of response time 
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for program / and CPU busy period length is obtained, respectively, which can be 
solved by the algorithm offered. For the moments of the random variables mentioned 
before another system of linear equations is derived which can be solved iterative. 

Finally, numerical examples illustrate the problem in question and performance 
measures under different service disciplines, such as preemptive resume priority 
(PR), PS are compared with the PPS one. 

For further probabilistic models for multiprogrammed computer systems the 
interested reader is referred to among others: Avi—Itzhak and Heyman [2], Cohen 
[3], Kleinrock [5], Lehoczky and Gaver [7], Sztrik [8]. 

The theoretical basis of the paper can be found in Tomko [9]. 

2. Mathematical description of the model 

Let the random variable v(t) denote the number of jobs at the CPU at time t, 
and let (oti(0> •••> avO)(0) indicate their indexes ordered lexicographically. Intro-
duce the process 

2f ( 0 — ( v ( 0 > a i ( 0 > . . . , a v ( 0 ( i ) ) . 

Since all distributions are exponential the process (x(i),/sO) is a stochastically 
• 

continuous, finite state, continuous time Markov chain with state space (J Ck + {0}, 
k = 1 

where Ck denotes the set of all combinations of order k of the integers 1, ..., n 
in lexicograpic order and {0} indicates the state that the CPU is idle. 

Let us introduce some notations 
n 

A .-„= 2 A =2xj> 
it J = 1 

k J k 
Rix, = 2 '-¡p = « 2 '-¡jVij+An j=i "k j=I 

For the distribution of x (/) consider the functions given below 
P0(0 = p(v(0 = o), 

ph ik(0 = P{v(t) = k; ax(0 = h,..., ak{t) = ik), (1) 
(1 == k «,(/!,..., y e c j ) . 

It is easy to see that functions (1) satisfy the Kolmogorov-differential equations 

P'o(.t)=-AP0(t)+2HjPj(t), 
j=i 

K J 0 = 2 k p h ..^(O-o-^ ikph i fc(0+ (2) 

+ 2 NrJ 

Pi,2 „ ( 0 = 2 ¿¡Pi ( 0 - f f i nPi „ ( 0 , 
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where i[, ...,/¿+1 denotes the lexicographic order of integers ..., ik,j. Then 
we have : 

Theorem 1. If Xh //¡>0, i = l , ..., n then the Markov chain (x(i), f=0) 
possesses unique stationary distribution 

P0 = lim/>„(/), 

f-*-oo 

pu = J™ ph ,.k(0, 

(il h)£Q, k = l,...,«, 

which is the solution to the following system of linear equations 
AP0= ZHjPj, 

j=i 

G'n, ifc 2 ^/i^i'i, ...,¡,-1,11 + 1, ..., ifc"l" 2 H j f j •p.' 
i = l 

'k . R. 'f-'k+i' (3) 

°1 n^l, ...,n — 2 ....1-1,1 + 1, ...,n> 
1=1 

satisfying the norming condition 

Po+2 2?h = 
k = 1 , 

(4) 

Proof. Since (x(t), iSO) is a continuous time finite state Markov chain with 
positive intensities, it is irreducible and all states are ergodic. In this case the stationary 
distribution exists and can be obtained as the solution to the Kolmogorov equations 
satisfying (4). As t-+ <=° from (2) we get (3). 

If all /'¡=1, ?'=1, . . . ,», the solution of (3) is 

Pn ,k=PoK\ IlhlHiJ, j=1 
(cf. Csige—Tomko [4], Asztalos [1]). 

In the following we give an algorithm for calculating the stationary distribution 
(P0,Ph, ...,ik, (ia, ...,4)€CZ, k = 1, ...,»). 

Let Yk be the vector 
[Pi * 

p. ii,..., ik 

n-k + l n. 

of dimension ^ j . The components Ph, ..., ik are listed in the lexicographic order 
of their indexes, k= 1, ..., n. Notice that eq. (3) can be written in the following 



332 J. Sztrik 

neat form 

Yo = BoS, 

Yl = A ^ + B x S , 

I t = —1 + l > 

Yn ~ 

where matrix Ak is of order X ^ j j k — l,...,n, Bk is of order X ^ ^ j j 
k=0, 1, ..., n— 1, Y0=P0. The elements of Ak, B* can be determined by the help 
of eq. (3). The solution to (5) can be obtained by an iterative manner F t = F t . y t _ 1 , 
k=\, . . . ,«. To verify this let F„=A„, furthermore assume that Yj,+1 = ¥kYk. 
Let us consider equation After substituting we get 
(1— B^F*+1)Yk=AkYk_! then 

Yk = (l-Bk¥k+1)^AkYk^. 
Let 

Ffc = ( l -B t F 4 + 1 ) - l A f c , 

so Y,[=Ffc7fc_1, k=l, ..., n. Starting with any Y0 after norming the stationary 
distribution is given. 

3. Performance measures 

In the following (x(t), t^O) is supposed to be in equilibrium. 
(i) CPU utilization. Using renewal-theoretic arguments it is well-known that 

P0 = ( lM)(lM+M<5)-\ 

where Mb denotes the mean CPU busy period length and IIA is its average idle 
period length. If the CPU utilization, which is the long-run fraction of time the CPU 
is busy, is denoted by U we have 

U=l-P0 = (M8)(llA+Md)-\ 
Consequently, 

Mb = (1 —P0)/AP0. 

(ii) Mean response times. During the execution a job is served by the CPU and 
takes I/O operations. If these periods are considered as cycles, then in steady state 
these cycles lengths are identically distributed but not independent random variables. 

Let P(,) denote the stationary probability that job i is in compute period and 
let the average response time be designated by R{. Furthermore, let Hi be the event 
that the program i is under service. Introduce the function 

rl if x W H i , 
to otherwise. 
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By the virtue of Theorem 1 and 3 in Tomko [9] we have 

l i m y / z ^ O * = 

Since P ^ can be easily evaluated as 

P(i)=2 2 P., 

for the expected response time of job i we obtain 

r. = pm/A, ( l -P«) . 

It is clear that ZZBl(t) gives the number of jobs statying at the CPU at time t. Thus 
in equilibrium the mean number of programs processed by the CPU is n = ZPV\ 
In addition, the Little's formula is valid 

r A , ( l - P w ) R t = ZP({> = n. 

(iii) Waiting ratio. Defining the waiting ratio for job i by W,=fii(R,—i/p,) 
the system waiting ratio can be obtained as 

W = EWi = ZfitRt-n. 

(iv) Throughput .-Denote by T the throughput of the system, which is the mean 
number of jobs serviced in unit time. If T, denotes the throughput for job i, we have 

T, = ^¡(1 -P(i>). 
Thus, we get 

T=ZTi = ZXi(l-P°>). 

4. L—S transform of the CPU busy period and response times 

Let us denote by t]x a random variable distributed exponentially with rate a. 
If rja and fy are independent, then min (rjx, rip)=rj<x+p which is a well-known fact. 
Furthermore, let the notation 0/«,=»/^+ ...+„,) mean the event that min (t]Xi, ... 

s 
..., rjx )=t]Xl, probability of which is a,/ a,, where ^ > 0 , i=l, ...,s. 

]=* i 
Let x(A) denote the characteristic function of event A, i.e. 

r 1 if A occurs, 
otherwise. 

(i) CPU busy period length. Let the random variable 5 a , ...,ik denote a busy 
time interval of the CPU initiated by state (ilf..., ik), (ilt ..., ik)£Ck, k=\,..., n. 
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Similarly to Csige—Tomkö [4] the following recursive relations hold 

<5, = t]a-i + 2 $i',i'X(nx, = Wi), 

(6) 

K b. = i » + 2 K ¡ j - 1 . i j + 1 , : . i k x U R i j r , j = n o h J + 
J = 1 r >k ' 

+ 2 . ^'i' - 's+i xOh, — i j , 

" ( U . f . "l 
¿1 n = Iff 1 n + 2 S 1 J - l . J + 1 .)( 1 o J J • >?gl, . . . ,J 

J=1 V „ 

where = denotes that the equality is meant in distribution. Introducing the L—S 
transform 

gilt...,ik(s) = Me~si>t s 
from (6) we get 

««(«) = - r ^ L f t + Z ^ i f t M ' C » ) ] . 4-T-Oj ¡¡ei 

£•1 >k I n 1 £¡1, + l ¡k(S) + 
¡k l Ä i l <"k 

(7) 

+ , „ . 2 . 4 « * i t l ( « ) ] . "'•l 'k 

gl - .00 = J J . 

Finally, 

Let Gk (s) be the vector 

Si, ...,j-l,J + l n(s)-

i=l ^ 

&1 I*(s) 

&. -* + l B(s) 

of dimension The components g l l 5 . . . , ik(s) are listed in the lexicographic 
order of their indexes (zl5 ..., /t). Thus (7) can be expressed as 

Gx(S) = A 1 ( S ) G 0 + B 1 ( S ) G 2 ( S ) , 

G»(s) = A* 0)0^(5)+B*Gk + 1(s) , 

& ( « ) = A b (S)G„_ 1 (S) , 

(8 ) 
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where G 0 =( / / i , . . . , the matrix Ak(s) is of order ^ ) x ( j f c— ])> •••> n 

B t( j ) is of order ( f c } X 1 ) ' ^=0» 1, J. The elements of Ak(s), B k (s) 
can be readily determined with the aid of eq. (7). It is easy to see that the solution 
to (8) can be evaluated in the same way as in (5), that is 

&(s ) = F t(s)Sk_1(s), (9) 
where 

F„(s)= A„(s), F t(s) = (1 — B t(s)Ffc+i(s))~1 Ak(s), k = 1, ..., n~ 1. 

Finally, 

The moments of busy period <5 can be obtained from eq. (8) by differentiating 
and setting s=0 . If A ( , )(j) denotes the i-th derivate of matrix A(s), which is meant 
by elements, then it is easy to see that 

(A(s)B(*))«> = i ( ; ) A « ) ( s ) B C - ' > ( S ) . 

If we define and M^ by 

M<"') • — ( IV ^ g i l 
1 } ds« ,_„' 

and 
M i 0 = ( - i y g i ° ( 0 ) , 

then 

Q i H 0 ) = ¿ o ( ¡ ) Ai'>(0)CiL- 1 '>(0)+ i ( j ) B ^ i o m - S i o ) , 

which yields 

Mi° = i (-1)' ( j ) A(
k
l) (OMi'-f + i ( - 1 ) ' (I) B<<> (0) M f c 0 - (10) 

Introducing 

A F = A<0) (0), B<<> = B<°>(0), Cf> = I ( - 1)' ( J ) [A<<> (0 )Mi ' - i ) +B<<> (0)M№] 

(10) can be written as 

= A<;) M £ > l + B p Mtfl 1+C* < 0 -

Thus, the equations for the i-th moment of the busy period in matrix form are 

= BPMi'i+QP, 

M " = A ^ M ^ x + B ^ M ^ i + G S 0 * ( i i ) 

MP = ¿¡PM&i+cSP.. 

k 
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In the following we show that the solution to (11) can be obtained as 

MP = F^Mih+QP-

To derive this, define and Z>P by 

F « = A<'), DP = C<>>. (12) 

Assuming that M $ 1 = F $ . 1 M i ° -hD^h, after substituting to (11) we get 

(1 - B ^ ' F i ' ^ M " = APMi'h+BPVtti+Ci0, 

which yields 

F P = (1 - B W F « ^ - 1 ^ , ^ = (1 - B W F ^ - K B M ' ^ + C « ) . (13) 

Concluding M i ° = 

where matrix and vector D P are defined by (12), (13). Finally, 

MSV) = 2 ~T MSf'K (14) A L. 

In particular, if i= 1, (14) reduces to equations found in Tomko [10]. 

(ii) Response times. Let {tk, fcs0} denote the instants of consecutive changes 
of states in Markov chain (x (/), fsO). Let us consider the following imbedded 
Markov chain (Y„, msO) defined by Y„=X(rm+0). If we define by 

(?o> ?it »»)€«!, k = 1, ..., ri) (15) 
the stationary distribution of (£„,, msO) then it is clear that 

A/\ i=x cn <Ttu .... tl) 

K fc = (16) 
°ii I* I V. 1=1 c? ah h ) 

k=l,...,n, (cf. Tomko [9]). 
From (16), for (15) we get the following system of linear equations 

Po 
q o p z l ] + 2 Z - ^ - q h = 0 

\ A ) i c? u 

V 2
 V ^ q * 1H * = 0 . n ' cP.Ci! i , ) ^ ik) U 

which can be solved by standard methods. 
Let Ff'!...,ik denote the event that at the arrival epoch of job i programs with 

i n d e x e s . . . , i k ) are processed by the CPU, (ilt ...,ik)£C2, h^i, ...tik9±i, Isi^n, 
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Osfesn—1. In addition, let denote the response time of job i if event Egl„t,h 

occurs. Denote by qfH..,ik the steady-state probability of •E^. . Then similarly 
to Csige—Tomko [4], for we have 

< = ik = In 
A ah fk 

where <2(i) can be determined from the norming condition by 

* czah ¡J 

Using the results derived by Tomko in [9] the following iterative relations can be 
written 

Mi 

= Wh i + 2 XOlh = .•„,.•) + 

+ Z v l S . . . . , ^ » J n ^ - = J > (17 ) 

viil-.i-i.i+i,» = wi n+ 2vi?...j-i.j+i nX = wi J , 
J=1 V n ' 

Introducing the L—S transform 

»1?, ...,ik(s) = Me S 
from (17) we get 

(s) = -J- |>, + 2 (IB) S + ffj 

' i [ i / r ^ e . . . , , - , ^ 2 ; l 7 = l ifc.i M v - - , l k
 J 

« - i . « « - W - T X T •¿•^-^....J-uj* i . (»)• J + 0 I » }=1 

Finally, the L—S transform of the response time for job i can be easily obtained by 

««(5) = gpuPisH "2 
* = 1 cj 

Notice that eq. (18) can be treated in the same way as eq. (7). 

7 Acta Cyberaetica VH/3 
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5. Numerical results 

The algorithm generating these performance measures were implemented in 
PL/1 in the Computer Centre of University of Debrecen. Some sample results for 
different input parameters A ; , f i h n (i= 1, . . . ,«) are shown in Tables 1—4. In Table 
1 and 2 some comparisons are made with PS and PR disciplines, while in Table 3 
and 4 we give the characteristics under PPS discipline. 

Table. 1. Homogeneous I/O and CPU times 

Parameters: ^ = ¿ , = ¿ , = 0 . 3 , ^ = ^ = ^ = 0 . 7 

R< T, w , U MS n W T 

PR 1.428 0.21 0 
3.177 1.27 2.658 

PR 
2.413 
4.242 

0.17 
0.13 

0.689 
1.969 

0.74 3.177 1.27 2.658 0.51 

PS 2.450 0.17 0.715 
3.177 1.27 2.145 

PS 
2.450 
2.450 

0.17 
0.17 

0.715 
0.715 

0.74 3.177 1.27 2.145 0.51 

PPS weights 
0.026 125 1.467 0.21 0.026 

1.27 2.460 0.51 5 2.559 0.16 0.791 0.74 3.177 1.27 2.460 0.51 
1 3.776 0.14 1.643 

1000 1.437 0.21 0.005 

10 2.485 0.17 0.739 0.74 3.177 1.27 2.512 0.51 
1 3.955 0.13 1.768 

125 000 1.428 0.21 0.000 

50 2.396 0.17 0.677 0.74 3.177 1.27 2.561 0.51 
1 4.120 0.13 1.884 

1 000 000 1.428 0.21 0.000 
2.568 0.51 100 2.383 0.17 0.668 0.74 3.177 1.27 2.568 0.51 

1 4.143 0.13 1.900 

Table 2. Heterogeneous I/O and CPU times 

Parameters: Ai=0.5, As=0.3, Aa=0.2 
f i=0.9, ßi=0.1, ^8=0.5 

PR 1.125 0.32 0 
2.619 0.16 0.833 0.77 3.34 1.34 3.014 
6.363 0.08 2.181 

PS 1.885 0.25 0.697 
2.526 0.17 0.768 0.76 3.21 1.33 2,252 
3.574 0.11 0.787 

PPS 
1 2.056 0.24 0.850 
1 2.745 0.16 0.921 0.75 3.15 1.33 2.266 
2 2.990 0.12 0.495 
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Table 3. Homogeneous I/O times 

I'arameters: A 1 =A 2 =A,=0 .2 , / / ,=0 .4 , /¿<¡=0.6, / / s =0 .8 

weights 

1 4.831 0.10 0.932 
5 2.498 0.13 0.499 0.675 3.472 1.028 1.453 0.394 

125 1.277 0.15 0.021 

1 4.965 0.10 0.986 
10 2.407 0.13 0.444 0.675 3.472 1.024 1.435 0.395 

100 1.256 0.15 0.004 

1 5.100 0.09 1.040 
100 2.304 0.13 0.382 0.675 3.472 1.020 1.423 0.395 

1 000 000 1.250 0.15 0.000 

Table 4. Heterogeneous 1/0 and CPU times 

Parameters: 2, A„=3, Ai=4, A5= 5, A„=6 
/IL=6, HI — 5, №,=4. AU=3, HI = 2, / / e = l 

weights 

1 3.008 0.24 17.048 
2 1.834 0.42 8.170 
3 1.543 0.53 5.172 0.999 289.350 5.070 38.795 2.525 
4 1.549 0.55 3.647 
5 1.853 0.48 2.706 
6 3.052 0.31 2.052 -

36 0.329 0.75 0.974 
25 0.435 1.06 1.175 
16 0.659 1.00 1.636 0.999 94.777 4.145 33.764 3.775 
9 1.233 0.65 2.699 
4 3.379 0.27 5.758 
1 22.522 0.04 21.522 

Conclusion 

In this paper we have modelled a multiprogrammed computer system as finite-
source single server queueing system with different types of customers under priority 
processor-shared service discipline. The system performance measures were nume-
rically evaluated using an algorithmic approach. 

Acknowledgement. The numerical results were obtained by A. Pósafalvi whom . 
I am very grateful. My thanks are also due to Prof. M. Arató for several helpful 
comments. 

Abstract 

This paper deals with a heterogeneous multiprogrammed computer system under priority 
processor-shared (PPS) service discipline introduced by Kleinrock. The jobs are characterized by 
exponentially distributed input-output (I/O) and central processing unit (CPU) times. In steady 
state the main performance measures, such as CPU utilization, expected CPU busy period length, 
mean response times, waiting ratio, throughput of the jobs and throughput of the system, are given. 

7 • 

k 



340 J. Sztrik 

In addition, a system of linear equations for Laplace—Stieltjes (L—S) transform of the response 
times and the C P U busy period length is obtained. Finally, by numerical examples characteristics 
under different service disciplines are compared with the PPS one. 

Keywords: I/O times, C P U times, utilization, mean response time, waiting ratio, throughput. 
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Iterative Method for Solving M/G/l//N-type 
Loops with Priority Queues 

B y ANDRÁS SZÉP 

1. Introduction 

The range of applicability of queueing models increases every year. Here, 
closed queueing systems with general service time distributions and several priority 
dispatching rules are of special interest. However, existing solution methods such 
as [1] for a special case of exponential servers are cumbersome and cannot be appli-
cable to cases of general distributions. On other hand, an original algorithm [2] 
to solve M/G/l///V-type loops with FCFS (first-come-first-served) queues has been 
recently suggested. Through combining this solution technique with an effective 
method of decompositions of general servers into exponentials [3] a really well-work 
method can be synthetized. It would be of practical significant if this technique 
could be applicable to cases of priority dispatching rules at queues. 

In this paper an iterational method is suggested for performance evaluation of 
closed queueing systems with preemptive resume and non-preemptive priority 
queues and general service time distributions. 

2. Preemptive resume priority queues 

Consider a closed queueing system consisting of two service centers, at one of 
which there is exponential service time distribution and an infinite number of servers 
(i.e. simple delay type service center), and the other is a Coxian collection replace-
ment for an arbitrary non-exponential server with preemptive resume queueing 
discipline (see fig. 1). Assume that customers belong to one of R priority classes and 

(i) class p customers have priority over class r customers at phase / if lSp 

(ii) customers whithin the the same priority class follow the FCFS queueing 
discipline at phase I. 

At second phase all customers are served simultaneously due to an infinite 
number of servers but service rates for different classes' customers may vary. 

For convenience, we define 
R — number of customers classes, 
np — number of customers in class p (l^p^R), 
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Fig. 1 
An MIG/il/N-type loop with priority queueing discipline 

n* — total number of customers in first p classes, 

n * = ¿ n r , for p = 1 , 2 , . . . * , (1) 

p — mean service rate at phase I, 
a — standard deviation of service time at phase I, 
Tp — mean service time of customers of class p at phase II, ( l s p s l ? ) , 
T* —aggregate mean service time of customers of first p classes at phase II , 

(lSp^R), 
Xp — throughput of customers of class p, (l^p^R), 
A* — aggregate throughput of customers of first p classes 

ZK, for p= 1 , 2 , . . . * , (2) r=l. 
qf — average number of customers of class p at phase I, 
q* — aggregate average number of customers of first p classes at phase I, 

q*P=2<lr, for p = 1, 2, . . . R, (3) 
r = l 

tp — average elapsed time of customers at phase I for class p, (l^pSR), 
t* — aggregate mean elapsed time of customers of first p classes at phase I, ( I s 

^p^R). 
The method suggested in this paper is based on the approach described in [4]. 

Thus, Little's rule [5] may be applied to the queueing system being considered 

qp = lpt„, for p = \,2,-..R. (4) 

M 
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Several authors (e.g. Jaiswal [6]) noted that aggregate performance characteristics 
such as mean response time etc. do not depend on the queueing discipline. More-
over, in case of preemptive resume priority disciplines performance characteristics 
of servicing low priority customers (/•) have no effect on servicing high priority 
customers (p) (1 =/> < >'=#). Therefore, Little's rule may be applied to the aggregate 
characteristics 

q* = Xp*, for p = 1,2,... R. (5) 

Having made some simple transformations on (1)—(5) we obtain 
i * /* j* 

tP= for , = 1 , 2 , . . . * , (6) 

assuming 4 = 0 and /£=0. 
The last expression shows the way of successive computation of serving charac-

teristics for customers at all levels of priorities. To attain this it is enough to compute 
aggregate serving characteristics for the same queueing system as given but with 
FCFS serving discipline at phase I. 

There are well known methods and formulas for performance evaluation of 
closed queueing system with exponential servers. Recently an effective algorithm 
has been suggested to solve Af/G/1 //2V-type loops with FCFS queueing discipline 
in [2]. 

The above mentioned problem can be solved though difficulties arise. The 
quantities Xp and t*p are given by Little's formula (5): 

At = ~~TT' for /> = 1 ,2 , . . .* , (7) 

and 

for p = 1,2, ...R. (8) 

Since tp does not depend on Ap linearly, an iterational method can be suggested. The 
following algorithm contains two embedded iteration processes. 

Algorithm 1. 

Step 1. Input data — R, 

a n d 1« ! , « 2 , . . . «1,1, I k , T2 , . . .T S | | , 

Step 2. Initial values p+- 0, 

and / t f - 0 , A * - 0, 0. 

Step 3. Get next class p*-p+l, 

take w* ->- n*_!+«p, 
n. 

and first approximation tp -< . 
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Step 4. Compute 

and X* X*-x+Xp, 
n* 

and first approximation t* — -jj-. 

n* Step 5. Find next approximation 

Step 6. Knowing np, Tp, p and a find a solution of M/G/l//2V-type loop with 
FCFS queues by the method suggested in [2] and obtain new value for t*'. 

Step 7. If \t*/-tp\>e then take fp+-t*„' and go to step 5., else compute t'f 
by formula (6). 

Step8.lt \tp — tp\>e then take tp*-t'p and go to step 4., else compute qp^kp.tp. 

Step 9. If p<R then go to step 3., else output results — 

J*,... A„||, ||ii, k,... tR\\, lift, gt,... grR|| and stop. 

(e — means the error's bound) 
It is easy to prove that both iterational processes of this algorithm converge 

(see fig. 2. and Appendix A). The number of elementary operations required for 
computation is equal to a i^ , f3, N), where 

2 ¿np, 
r = l p= 1 

and /l5 /2-means the number of iterations. 
For e=0.1% the total number of iterations (zl5 z2) in most cases did not exceed 

30, therefore the suggested method for the performance evaluation of closed queueing 
systems with priorities looks much more efficient than the methods based on calculations 
of all steady-state probabilities of the system. Note that the number of states of 
such systems is around 

3. Computation speed 

A further study of iterational processes in Algorithm 1 indicates that although 
in most cases they converge rapidly, in case of heavy traffic a relatively large number 
of iterations may be required ( > 100). Therefore we expect it to increase the speed of 
convergence. This can be achieved by several ways. First, if one chooses a better 
first approximation, secondly by using more powerful solution searching methods 
(dichotomic, gradient etc.), and at last by merging two iteration processes. Experi-
ments show that the simultaneous implementation of first and third principle pro-
vides the maximum increase of computation performance. Implementation of the 
second way causes an additional consumption in use of computer resources. 

The next algorithm for better convergence was derived for getting performance 
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example of convergence 

of closed queueing loops with generalized service time distribution and preemptive 
resume priority dispatching rules. 

Algorithm 2. 

Step 1. Input data — R, 

and K , nu ... nR||; ||r ls T2, ... XR\], <S. 
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Step 2. Initial values p->-0, 

and nt ^ 0, 0, t% 0. 

Step 3. Get next class p*-p +1, ; 

and take //£ + i 

Step 4. Find first approximation for tp knowing np, xp, p and & by the method 
of [2], and let t*p^tp. 

Step 5. Compute 

and T 

Step 6. Knowing iip, T*, p and a compute t*p by the method of [2]. 

Step 7. Compute t'p by the formula (6). 

Step 8. If \t'p — tp\>£ then let tp^-t'p and go to step 5., else compute qp — kptp. 

Fig. 3 
Dependence of the mean elapsed times of customers upon the service rates at phase I for an 

M/G/l//N-type preemptive resume system 

A 



An Iterative Method for Solving M/G/l//jV-type Loops with Priority Queues 347 

Step 9. If p<R then go to step 3., else output results — 

||AX, A2, . . . Ajjfl, | | / i , . . . ijjfl, 1?! , ? 8 , . . . <?*| 
and stop. 

The study of convergence of the above algorithm indicates that 1—10 iterations 
are sufficient for £=0.1% even in the most extreme cases. Note that for the case 
of exponential distribution of service times at phase / the mean elapsed times t* 
can be found by mean-value analysis (MVA) methods (see [7]) at step 6., of Algo-
rithm 1., and at steps 4. and 6., of Algorithm 2. 

4. Non-preemptive priority queues 

A common approach for solving closed queueing systems with non-preemptive 
priority queueing discipline is similar to that applied to solve systems with preemptive 
resume priorities. But it differs since in non-preemptive priority queues the service 
of customers cannot be interrupted by the arrival of customers with higher priority 
and they must await releasing of the server. Let us define the mean residual life-time 
Wp as the mean time which remains until the end of actual service of customer in 
class p. Then [6] 

= for p = 1, 2, ... R, (9) 

where X2 — means the second moment of the service time distribution. It is clear 
that the aggregate mean elapsed time of customers in the first p classes at phase I 
is equal to the aggregate service time of customers in the first p classes in the system 
with preemptive resume priorities plus the mean residual life-time of all priority 
classes with number greater than p, i.e., 

(A* —J*)X2 

t* (non-preemptive) = t* (preemptive) + v R — , for p = 1,2,... R (10) 

where (Ar—A*) means the aggregate customers throughput of classes p +1, p-f2,... 
..., R. Note that ).*R (non-preemptive) = A£ (preemptive), and the aggregate 
throughput AR does not depend on queueing discipline and can be calculated although 
neither troughputs nor residual lifetimes are known. 

The next algorithm is suggested to calculate the performance of closed queueing 
loops with generalized service time distribution and non-preemptive priority queueing 
discipline on the basis of Algorithm 2. 

Algorithm 3. 

Step 1. Do all the claculations of Algorithm 2, and define A£. 

Step 2. Do once more all the calculations of Algorithm 2 with the exception 
of a correction at step 6, where to the computed value of t* the residual life-times 
are added 

¡ I - ( P = h2,...R). ' 
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Fig. 4 
Dependence of the mean elapsed times upon the number of customers in the second class 

This algorithm has the same advantages as the previous one. 
In conclusion note that if service rates at phase I for all classes are equal then 

the suggested method and described algorithms will ensure obtaining theoretically 
accurate results. If service rates are different for different classes of customers then 
the aggregate service rates have to be evaluated by 

p 
ZKtr n n 

f o r P=\,2,...R. 

Although this way allows for systematic errors in the results of computations, usu-
ally evaluated quantities of modelled systems remain within the range of applica-
bility and errors do not exceed 10% [4]. 

5. Conclusion 

Simple algorithms for computing exact mean elapsed times, queue lengths and 
throughputs of individual customers classes in A//G/l//iV-type closed preemptive 
resume and non-preemptive priority systems have been presented for the case when 
all customers classes have equal mean service times at the non-exponential phase 
and different at the other phase. It has been shown that algorithms based on the 
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suggested iterational method converge rapidly and they have unique solutions. 
For the case of unequal service times an approximation technique has been sugges-
ted. The described method and algorithms are efficient for solving large scale appli-
cation problems. 
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Appendix A 

Proof of the convergence of iterational processes and the uniqueness of solution. 
On fig. 2, the dependence of elapsed times at phase I upon serving times at phase 

II is shown. Because the linearity in Little's formula for the convergence of our ite-
dt* rations and uniqueness of the solution it is sufficient to prove that > — 1. 
OTp 

The proof will be carried out by induction. 
According to MVA (see [7]) 

(l H 

- i l ' + T p ^ h i ^ - 1 ] " 

It is obvious that 
dt*p( 0) 

K 

1 + -
1 

I + ' J C - I ) 

= 0 : 1. 

Let us suppose that • 

K( 0 
K 

K o - i ) . 
K 

i-1 

- 1 then 

dr*p 

(t*p(i-l) + x*f 

i - 1 ^ ( ¿ - 1 ) + T ; i - 1 

n ( ? p ( i - l ) + T * ) 2 

because T* 

which gives 

KG-0 
K 

i - l But / i O - D + r ^ ^ ^ and ! * ( / ' - l ) ^ / t 

K 
> - 1 . • 
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Abstract 

Based on Little's formula an iterational method was derived for the solution of M/G/ l / / iV-type 
closed queueing systems with preemptive resume and non-preemptive priority queues at the general 
server. Efficient algorithms are outlined and described in detail. Convergence of iterations and 
uniqueness of solution was proved and also an approximation technique was suggested for the 
case when service rates differ for different classes of customers at the general server. 
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tive priorities, iterational method, mean-value analysis. 
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P. Massie: Programming IBM Assembly Language & Instructor's Manual To Accompany 
"Programming IBM Assembly Language", X I I I + 342 & 1 + 1 4 9 pages, Burgess Communications 
1985. 

The first book is a comprehensive introduction to IBM assembler language programming. 
Unlike many books on the subject, it is not a reference manual. "It is designed to carefully 
balance concepts with practical applications at a level that students will find most useful. 
Normally students will have completed at least one course in programming before the assembler lan-
guage course, and will be familiar with many of the basic concepts involved. With this book, experi-
ence is not absolutely necessary, since programming steps are presented fully in a logical, building-
block sequence. To help build confidence and mastery of the central concepts, students are encour-
aged to run programs early". 

The first book is divided into six parts and twenty-four chapters. 
PART ONE, "INTRODUCTION", covers the basic concepts necessary for assembler language 

programming, but different from high-level languages. Operating system interfaces can be a complex 
topic, and the initial presentation in this section is done in a simple fashion. This allows the student 
to begin writing programs quickly, without a full understanding of these interfaces. Dumps are ini-
tially used to obtain output from the programs, so the student becomes familiar with reading and 
understanding dumps at an early stage. 

PART TWO, "REGISTER-BASED INSTRUCTIONS", presents register instructions in a 
simple format designed for easy comprehension by the beginner student. In addition, this section 
includes a chapter on the simpler methods of developing loops in assembler language. Although struc-
tured programming involves much more than simply reducing branch statements in programs, it 
is important to introduce the basic concepts of structured programming early. 

PART THREE, "CHARACTER PROCESSING", covers the different data formats available, 
the normal I/O macros, and simple character-processing instructions. With the building-blocks of 
the earlier parts of the book, students should be ready to handle these more complex subjects. The 
I/O chapter does not present I/O macros exhaustively, but at a level such that students can run 
programs. 

PART FOUR, "PACKED DECIMAL", covers the packed decimal instructions. This is a 
major family of arithmetic-processing instructions different in concept from the fixed-point binary 
instructions covered earlier. 

PART FIVE, "GENERAL TOPICS", is a carefully-selected collection of chapters on distinct 
subjects, which can be covered in connection with other chapters, or completely omitted. Many of 
these topics are advanced, and can be assigned in accordance with the level and interest of the student. 

PART SIX, " A D V A N C E D TOPICS", covers macros and conditional assembly. The intention is 
to provide an overview of these advanced features of the IBM assembler. 

The APPENDICES also contain a sample JCL, the complete instruction set, and a glossary of 
selected terms necessary for assembler language programming. 

To help students master concepts and to reinforce the logical bulding-block structure of the book, 
each chapter contains a series of important learning aids. 

- KEY CONCEPTS opens each chapter and focus student attention on what is to be learned. 
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— INTRODUCTIONS provide an overview of each chapter and summarize their centra! 
concepts. 

— KEY TERMS are presented in boldface when introduced, and full definitions are provided in 
the glossary. 

— EXAMPLES are presented in colored boxes to ensure student engagement. 
— EXERCISES are introduced thoughout each chapter to help students assess their mastery of 

the material. 
— PROGRAMS, both partial and complete sample listings, are set off by horizontal rules to 

focus student attention. 
— CHAPTER SUMMARIES review terms and concepts, and provide students with study 

devices in preparation for classroom discussions and examinations. 
•— the GLOSSARY of terms of the end of the book fully defines terms, and provides an additional 

study aid for mastery of the material. 
The second book, the Instructor's Manual, offers complete support for the instructor's classroom 

presentations. The manual provides the instructor with the following aids: 
— Complete chapter summaries 
•— Chapter objectives 
— Answers to chapter exercises 
— Multiple choice and true/false examination questions. 
The Instructor's Manual provides as much assistance as possible to the instructor of the course. 
These very well-written books can be recommended to students, instructors and everyone inter-

ested in programming IBM assembly language. 
K. Dévényi (Szeged) 

D. F. Stubbs and N. W. Webre, Data Structures with Abstract Data Types and Pascal, ,XVIII+ 
+ 4 5 9 pages, Brooks/Cole Publishing Company, Monterey, California, 1985. 

"This text represents a fresh approach to a first course in data structures. During the past several 
years, researchers have developed a new method of designing data structures, the new forms of wich 
are called abstract data types. In the original research papers, abstract data types are quite formal and 
unsuited to the beginning student. When the formality is removed, however, there remains a basic 
and easily understood essence. 

Our major challenge in writing this book was to make the notion abstract data types an integral 
part of the study of data structures. At the end of the course, we want students to have knowledge of 
'classical' data structures, as well as skills in the use of abstraction, specification, and program 
construction using modules, or packages. These skills prepare students to make use of the data 
abstraction facilities of languages such as Ada, Modula 2, and Mesa. They are also an excellent 
complement to the techniques of top-down design and structured programming. This text prepares 
students for advanced courses in which the methods are more formal. In addition, it will serve as an 
important first step toward object-oriented programming." 

I certainly recommend the book as a possible text for a first course in data structures. 

Gy. Horváth (Szeged) 

S. Grier, Pascal for the 80s, XVI-t-540 pages, Brooks/Cole Publishing Company, Monterey, 
California, 1985. 

This book is designed to serve as an introductory text in programming for college students. It 
does not attempt to teach a complete knowledge of Pascal, nor to make any student a mature or 
expert programmer. Advanced topics in Pascal as sets, pointers and recursion are briefly discussed. 
This text provides an understandig of very simple algorithms. The main emphasis is on the concept 
of teaching problem-solving in parallel with the programming language. 

The book is recommended for people who are interested in teaching programming at a non-
academic level. 

Gy. Horváth (Szeged) 
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Natural language parsing. Psychological, computational, and theoretical perspectives (Edited by 
D . R. Dowty , L. Karttunen, A. M. Zwicky) X I I I + 4 1 3 pages, Cambridge University Press, 1985. 

The volume is a collection of papers written by leading researchers in experimental psychology, 
theoretical linguistics, and artificial inteligence. The contributions are: Introduction (Lauri Karttunen 
and Arnold M. Zwicky), Measuring syntactic complexity relative to discourse context (Alice Davison 
and Richard Lutz), Interpreting questions (Elisabet Engdahl), H o w can grammars help parsers? 
(Stephen Crain and Janet D e a n Fodor, ) Syntactic complexity (Lyn Frazier), Processing of sentences 
with intrasentential code switching (Aravind K. Joshi), Tree adjoining grammars: H o w much con-
text-sensitivity isrequired t o provide reasonable structural descriptions? (Aravind K. Joshi), Parsing in 
functional unification grammar (Martin Kay), Parsing in a free word order language (Lauri Karttunen 
and Martin Kay), A new characterization of attachment preferences (Fernando C. N . Pereira), O n 
not being led up the garden path: the use of context by the psychological syntax processor (Stephen 
Crain and Mark Steedman), and D o listeners compute linguistic representations? (Michael K . 
Tanenhaus, Greg N . Carlson, and Mark S. Seidenberg). 

The book is warmly recommended to linguists, psycholinguists and computer scientists. 

F . Gécseg (Szeged) 

Victor J . Law: Standard Pascal; an Introduction to Structured Software Design, X V I I + 5 5 8 pages, 
W m . C. Brown Publishers, Dubuque Iowa, 1985. 

"It is well recognized that an introductory course in computing should do more than teach the 
syntax of a high-level language. The course described as CS1,Introduction to Programming Metho-
dology, in C A C M , October 1984, lists the important topics that should be covered in early computing 
courses. This text melds these non-language issues and the Pascal language into a cohesive presen-
tation of modern programming methodology for beginning students." 

This text is designed t o satisfy two major objectives. One goal is t o introduce modern principles 
of programming, which can be used for small and large programming projects. The other objective 
is t o introduce the Pascal language as a vehicle for implementing algorithms designed with the soft-
ware life cycle approach. 

Chapters are segmented into three parts. The first part introduces new concepts. A sample prob-
lem is then posed, a specification is written, and an algorithm design is presented. A relatively new 
algorithm design tool , the structured chart, is used for all of the designs. The second part covers any 
new Pascal features required to implement the new concepts as introduced in the first part. The third 
part contains complete programming examples where the new topics are featured. Each example 
includes requirements, specification, algorithm, design, Pascal code, and testing. Each chapter ends 
with review questions, self-test exercises, and programming problems. Advanced problems are ex-
cluded. The appendixes include, among others, answers to selected self-tests, a summary of Pascal 
syntax using syntax diagrams, and a comparision of common Pascal dialects. 

This book is recommended as a text for an introductory course in computing. 

Gy. Horváth (Szeged) 

N . Wirth: Programmieren in Modula-2, X I V + 2 2 0 Seiten, Springer-Verlag, Berlin Heidelberg 
N e w York Tokyo, 1985. 

D a s Buch ist die Übersetzung der englischen Original-Ausgabe: Programming in Modula 2, 
Third corrected Edition, Springer-Verlag, 1985. 

Als Handbuch für die Programmierung in Modula-2 überdeckt der Text praktisch alle Eigen-
schaften dieser Sprache. Teil 1 umfaßt die elementaren Begriffe Variable, Ausdruck, Zuweisung, 
bedingte und Wiederholungs-Anweisung sowie die Datenstruktur des Arrays. Teil 2 führt in das 
wichtige Konzept der Prozeduren bzw. Unterprogramme ein. Beide, Teil 1 und Teil 2 umfassen im 
Wesentlichen den Stoff eines Einführungskurses in die Programmierung. Teil 3 befaßt sich mit Daten-
typen und Strukturen. Dies entspricht im Kern dem Inhalt eines weiterführenden Programmierkur-
ses. Teil 4 führt den Begriff des Moduls ein, eines fundamentalen Konzeptes sowohl für den Entwurf 
großer Programmsysteme als auch für das Arbeiten in einem Team. Als Beispiel für Module werden 
einige häufig verwendete Hilfsprogramme für Ein- und Ausgabe dargestellt. Teil 5 schließlich besch-
reibt Möglichkeiten der Systemprogrammierung, Gerätebehandluflg und der Multiprogrammierung. 
Weiterhin werden praktische Hinweise gegeben, wie und wann die einzelnem Hilfsmittel einzusetzen 
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sind. Dies ist als Richtschnur für den Erwerb eines anständigen Stils der Programmierung und der 
Systemstrukturierung zu verstehen. 

Empfohlen werden kann das Buch all denen, die an Programmierung in irgendeiner Weise interes-
siert sind. 

J. Csirik (Szeged) 

' H. Bunke: Modellgesteuerte Bildanalyse, VIII-t-301 Seiten (Reihe: Leitfäden der angewandten 
Informatik), B. G. Teubner, Stuttgart 1985. 

Das Buch befasst sich mit der automatischen Analyse von Bildern und Bildfolgen mittels eines 
Digitalrechners. Es gliedert sich in zwei Teile: im ersten Teil werden die Grundlagen der wissens-
basierten Bildanalyse angegeben, und der zweite Teil beschäftigt sich mit einem speziellen wissens-
basierten Bildanalysesystem, das an der Universität Erlangen-Nürnberg entwickelt wurde. 

Bei der wissensbasierten Bildanalyse (im ersten Teil des Buches) werden drei größere Gebiete 
angesprochen: 

— Methoden zur Extraktion elementarer Bestandteile, 
— Wissensdarstellung, 
— Wissensnutzung. 
Das Material jedes einzelnen Gebietes wird durch einführende Beispiele und durch einen sehr 

breiten und ausführlichen Literaturüberblick ergänzt. Dies und der logische Aufbau des Textes 
machen diesen Teil des Buches zu einer beispielhaften Einführung in die wissensbasierte Bildanalyse. 

Im zweiten Teil der'Arbeit wird ein wissensbasiertes System zur Analyse nuklearmedizinisch 
gewonnener Bildfolgen des menschlichen Herzens detailliert vorgestellt. Das Hauptziel dabei ist: 
die automatische Ableitung einer Diagnose aus einer Bildfolge. Das System ist modular aus den 
folgenden Komponenten aufgebaut: Modell, Instanzen, Methoden, Kontrolle und Dialog. Dabei 
werden die grundlegenden Ideen ausführlich beschreiben und das Konzept der Arbeit übersichtlich 
vorgestellt. Auch die ersten Ergebnisse des klinischen Einsatzes sind gegeben. 

Das Buch passt sehr gut zu den Zielen der Reihe "Leitfäden der angewandten Informatik". 
Ich empfehle es sowohl für Fachleute eines anderen Gebietes als auch für Informatiker, die auf die-
sem Gebiet tätig werden wollen. 

J. Csirik (Szeged) 

Varrel C. Grout: Programming with BASIC, XIII+362 pages, Wm. C. Brown Publishers, Dubu-
que, Iowa, 1985. 

This book is written for high-school graduates who have had no previous experience with com-
puters or BASIC programming, but it is useful even for advanced programers and teachers. 

The book is more than simply a BASIC text-book. It provides information about how to define 
problems and design algorithms in order to solve them efficiently. 

The book consists of 13 chapters. The first 3 chapter provides a textual and pictorial introduction 
to computers and programming. Fundamental BASIC statements and structures are described in 
the following five sections. Chapters 9 through 13 can be used to provide information about data 
file processing, printed output designing, arrays and special matrix statements. Each section contains 
some exercises and useful self-assessment tests. The author emphasizes the advantages of structured 
programming and the efficiency of modular design. Indeed, every program example is designed and 
developed in a structured way. 

The author's aim was to give information about the fundamentals of modern problem-solving, 
such as the stepwise refinement procedure for designing algorithms, modularity, etc. 

An other advantage of the book is the choice of the form of BASIC language. The Microsoft 
BASIC used in the book is a widespread form of BASIC language. 

L. Czinköczki (Szeged) 
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