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Linear deterministic attributed transformations 

By M . BARTH A 

Introduction 

This paper is based on and continues our earlier work [2] in the subject. Our 
point of view .is close to that of the authors' of [3] inasmuch as we, too, translate 
an attribute grammar (or transformation) into a system of recursive definitions. 
Our aim was to define attributed transformations as homomorphisms between 
suitable algebras that can be constructed from well-known ones in a natural way, 
Rational algebraic theories (cf. [13]) and magmoids (cf. [1]) turned out to be the 
most appropriate for this purpose. Two questions may arise in connection with 
our new definition. 

1. Why do we use these complex many sorted algebras if our aim is to map 
Ts, the free T-algebra, into a certain attributed structure? It would be enough to 
define an appropriate i-algebra on this structure. 

Beyond the notational convenience and elegance of proofs there is one more 
reason. Investigating one specific attributed transformation it is generally easier 
to deal with Z-algebras only. However, if we investigate e.g. the composition pro-
perties of these transformations (tree transformations here), the process of "trans-
lating" into a Z-algebra becomes rather tedious and affected. In this case the main 
advantage is that we can get rid of the alphabet I . 

2. Wouldn't it be enough to use algebraic theories only instead of magmoids? 
It is true that most of the results in [4] concerning top-down tree transforma-

tions could be formulated within the framework of projective magmoids, i.e. non-
degenerate algebraic theories. An attributed transformation, however, is defined 
by a homomorphism h: f(Z)^DR[k, 1} (for the precise definitions see later), 
i.e. a homomorphism between (decomposable) magmoids. One might say that the 
homomorphism Th: T(S)-*TDR[k, I] is already between algebraic theories. This 
is true, but it turns out that homomorphisms of T(S) into TDi?[fc, /] generally 
define more complex transformations, called macro transformations (cf. [7]). 

For simplicity we assume that the set of possible values is the same for all 
the attributes. A natural way to generalize our definition could be the introduction 
of "many sorted" rational theories. 

1 Acta Cybernetica VI/2 



126 M. Bartha 

1. Preliminaries 

In this section we recall the basic concepts and definitions from [2] concerning 
attributed transformations. 

A magmoid M=({M(p, q)\p, g£0}, ., + , 1, 10) is a special many-sorted al-
gebra whose sorting set consists of all pairs of nonnegative integers. . and + de-
note binary operations called composition and separated sum (*ensor product), 
respectively. Composition (rather denoted by juxtaposition) maps M(p, q)xM(q, r) 
into M(p, r), and separated sum maps M(pl, q1)xM(p.i,, q2) into M(p1+p2, q1 + q2). 
l € M ( l , 1) and l o €M(0, 0) denote nullary operations. The following axioms must 
be valid in M. 

(i) (ab)c=a(bc) for any composable pairs {a, by and <6, c>; 
(ii) (a+b)+c=a+(b+c)-, 

(iii) (ab) + (cd)=(a+c)(b+d)-
n 

(iv) a\p=\qa=a if a£M(p,q) and 1„= for « ^ 1 ; 
i=l 

(v) a + l p = l 0 + i z = a . 
Due to (i) and (iv) M becomes a category whose objects are the nonnegative 

integers and the identities are the elements 1„ (n s0 ) . (For a complex categorical 
definition of magmoids see [11].) Therefore, a^M(p, q) is often written as a: p-*q 
if M is understood. 

Let 0(p, q) denote the set of all mappings of [/>] = {1, ...,/?} into [q\. Defining 
the composition and separated sum of mappings as it. is usual, and taking the 
identity map of [«] for 1„ we get the magmoid &. We denote the unique element of 
0 (0 , q) by 0, (0o= 10), and the injection 1—/? which picks out i from [p] by n'p 
(or 7Tj if p is understood). For an arbitrary 6^0(p, q), iO stands for the image of 
ii[p] under 0. 

A magmoid M is called projective if it contains a submagmoid 0M isomorphic 
to <9, and the following holds for every a,b£M(p,q). If 7r,iZ=n'i6 for each i£[p], 
then a=b. Generally we shall assume that 0M=0, to be able to use the same 
notations in M as in 0. It can be proved that for any tfl5 . . . , ap\ 1 -+q there exists 
a unique a: p-+q such that •nia=ai for each /£[/>]. This element will be denoted 
by ... , We shall use <Cand> (source-tupling) as a derived operation, 
extending it to the case a t : Pi—q in the usual way. (In this case .. . , a p > : p 

2 ^ w a s pointed out in [1] that every projective magmoid is in fact a non-
¡=i 
degenerate algebraic theory and vice versa, depending on whether separated sum, 
or source tupling and the injections are considered as basic operations. 

It is well-known that for every ranked alphabet 1 = (J I n there exists a free nSO 
projective magmoid generated by I , which we denote by T(I). T(Z) has a represen-
tation by finite I-trees on the variables X={x1,x.i, ...} (cf. [1]). Viewing o£Zn 
as a(x1; . . . , x„) 6 T(I) (1,«) (which makes I a subsystem of 7(1)), T(I) has the 
property that any ranked alphabet map h: Z^-M into a projective magmoid M 
has a unique homomorphic extension E: T(Z)->-M. In particular, if Z is the void 
alphabet, then T(Z) = 0. 

T(Z) has an important subsystem f(Z) defined as follows. t£T(Z)(p, q) iff 
the frontier of t, i.e. the sequence of variables appearing at the leaves of t, is exactly 
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xlt ...,xq. f ( I ) ( l , 0) = r ( I ) ( 1 , 0) will be denoted by T1. T(I) is a submagmoid 
of T(F), and it is the free magmoid generated by I. It has the property that every 
1£T(J) can be uniquely written in the form TB with f ( I ) and 9£6>. 

Let <9 denote the submagmoid of all injective mappings in 0. t^ T(I) is called 
linear if by the decomposition t—t!) above. Clearly, the linear elements 
also form a submagmoid of T(I), which we denote by T(I). 

T(F) is free in the important subclass of decomposable magmoids, too. A 
magmoid M is called decomposable if the following two conditions are satisfied: 

(i) for every a: p—q (p=2, q=0) and i(L[p\ there exists exactly one integer 
qt and at: 1 —qt such that a=ax +...+ap\ 

(ii) M(0,0) = {1„}. 
Any magmoid M can be made decomposable by the application of the functor 

D. D operates as follows: 
(i) VM{\,q) = M(\,q) if q^O, 

1 = 1M) 
DM(0, q) = if q = 0 then {0} else 0, 
if ps?2, then DM(p,q)Q([J M(l,r)Y such that <al5 ..., ap}£BM(p, q) 

rao 
p 

with a t : 1 iff ~Zqi=q\ 
¡=i 

(ii) <ax, ..., aPiy + <J}lf ...,bp^ = <a1, ...,6P2>; 
(iii) if a=(at, ..., ap}: p—q with at: 1 —qt and b = (b1, ..., bq}: q—r, then 

where b^=[q2 L i , and f<0 = % q} (if_[p+]})', 

(iv) if h: M—M' is a homomorphism, then 

DA««!, ..., cip}) = <h(aj, ...,h(ap)>. 

There is a natural homomorphism ( : D M - M for which C«ai, . . . , f l p » = 
=a1 + ...+ap. 

Any decomposable magmoid M can be made projective by the application 
of the functor T which operates as follows: 

(i) TM(p, q)= U ( M ( p , q')X0(q', q)\q'^0), 
l = <ljf, le>, lo = <Oo)M,(lo)e>; 

(ii) (flj, 31> + <fl2) 92} = (a1+a2, 
(iii) let a: p—q',!}: q'— q, b = (b1, ..., bq}: q—r with ¿»¡: 0'€[?]) and 

qo: r'—r. <p can be uniquely written in the form ..., (pq>, where for each 
i<i[q}<Pi- r,-r. Now <«, S>.<6, (p} = <a(.)M(bi&, ...,bq,9}, ..., (pq.s>y, 

(iv) if h: M—M' is a homomorphism between decomposable magmoids, 
then Th((a, 3»=<A(a),S>. 

We shall also use a restriction of T denoted by T. (A, 9>£TM iff BCQ. it is 
easy to see that T M is a submagmoid of TM, so T is also a functor. It is well-known 
that T ( f ( r ) ) s r ( i ) and T(f (2J) )^ f ( I ) . 

Let M be a magmoid and k an arbitrary natural number. Ar-clil M denotes the 
magmoid for which (k-di\ M)(p, q)=M(kp,kq), \=(\k)M, — and the 

K 
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further operations are performed in it just as in M. Clearly, the operator £-dil can 
also be extended to a functor. Let r]k denote the inclusion function: fc-dil M—M. 
tjk is not a homomorphism, it is only a so called A:-morphism. To avoid ambiguity, 
M=k-dil 0 will be the only exeption when we distinguish 0M from 0, using the 
unique embedding ik: 0—¿-dil 0 . 

Rational algebraic theories were introduced in [13]. To remain in circles of 
magmoids we define this concept by means of projective magmoids, thus excluding 
the trivial degenerate rational theory. A rational theory R is a projective magmoid 
equipped with a new unary operation t; R(p, p+q)—R(p, q), called iteration. 
The carrier sets and the operations are required to satisfy the following conditions: 

(i) for each p, q^O, R(p, q) is partially ordered with minimal element _LPI9 
(_LP if q is understood); 

(ii) separated sum and composition are monotonic, and the latter is left strict, 
i.e. l p i 5 a = J_P>P for a: 

(iii) let a: p-»p+q, and construct the sequence p — <jr|iS0) as follows 

a„ = ± P y q , a i + 1 = for ¡ S O . 

Then U at exists and equals ar; 
iSO 

(iv) composition is both left and right continuous. 
Since rational theories are ordered algebras, a homomorphism between them 

is required to preserve the ordering, too. It was shown in [13] that for every ranked 
alphabet Z the free rational theory generated by I exists. This theory R(Z) has 
a representation by infinite Z± -trees on X, where Z± = Z U { j_} and _L is a new 
symbol with rank 0. Reg ( I ) will denote the rational theory of all regular forests 
of finite I-trees on X. 

Definition 1.1. Let R be a rational theory, integers. Define R[k, I] = 
= ({R[k,l](p,q)\p,q^0}, ., + , 1, 10) to be the following structure. (We do not 
use the subscript M to indicate the magmoid in which the operations are performed 
if only one M is reasonable from the context.) 

(i) R[k,l](p,q)=R(kp + lq,kq+lp), 
1=(1*+Z)R> lo — (1O)R> 

(ii) if aiR[k, l](pu qt), bzR[k, l](pt, q2), then 

a + b = + + ví,"2
23> • (a + b). + , + 

where fi% (pi„ if m is understood) = l„+0m , v"m (vm if n is understood)=0„-t-lm; 
(iii) if aíR[k, l](p, q), btR[k, l](q, r), then a.b = <pkp, vlr>. bq»\ 

where 9 = + q>=0kp+ Aq
q+{k+l)r>+% (see also Fig. 1). 

In [2] we proved that R[k, I] is a magmoid. Let R—R' be a homomorphism 
between rational theories. Clearly, £ defines a homomorphism £,{k, /]: R[k, /]— 
-+R'[k, /], and so the operator [k, I] becomes a functor. 

Definition 1.2. An attributed transducer (a-transducer) is a 6-tuple A = 
=(Z, R, k, I, h, S), where 

(i) Z is a finite ranked alphabet, S$Z; 
(ii) R is a rational theory, /SO are integers; 

(iii) h: Zs->-DR[k, /] is a ranked alphabet map, where 2 ' s=2' U {5} with S 
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kg lp 

= t 

kp 

kr !q 

F i g . 1 

having rank 1. h(S) is required to be a synthesizer, i.e. h(S)=a+0, for some 
azR(k+l, k). 

Extend h to a homomorphism h: T(Z)—HR[k, / ] . T A : JTJ— I ? ( l , 0 ) , the trans-
formation defined by A is the following function. xK(t)=a, where n\h{S{t))= 
=a+0,. 

Let J be a ranked alphabet, and consider the homomorphism ba: i?(J)—Reg (A) 
for which = ..., *„)} if Let QA denote the congruence relation 
induced by eA. For simplicity we shall identify each T£.T(A) with its class [t\&A. 

Definition 1.3. A deterministic attributed tree transducer (a-tree transducer) 
from I into A is an «-transducer A = ( Z , R(A)/0A, k, I, h, S). In this case we 
consider t a Q T x X a s a relation 

Further on a deterministic cr-tree transducer from Z into A will rather be denoted 
by the 6-tuple (Z, A, k, I, h, S). 

A = ( Z , A, k, I, h, S) is called total if h(a)£T(A) for each <x€ls. Determin-
ism, totality and linearity of tree transducers will be denoted by d, t and /, respec-
tively. Since A>dil T(A) is a submagmoid of R(A)[k, 0], every dta-tree transducer 
with s-attributes only ( /=0) is in fact a dt-top-down tree transducer and vice 
versa. 

_Let t£R(A)[k, l](p, q). It is convenient to consider t as the image of a tree 
u£T(Z)(p,q) under a suitable homomorphism ft: T(Z)—R(A)[k, /]. To underline 
the attributed feature of t we introduce the following notations 

The intuitive meaning of these items is the following. 
t(r,i): the value of the i-th synthesized attribute (s-attribute) of the r-th root; 
t ( j , m): the value of the m-th inherited attribute (¡-attribute) of the y'-th leaf; 
x(j,i): reference to the z'-th s-attribute of the y'-th leaf; 
y(r,m): reference to the m-th i-attribute of the r-th root. 

Ta = {<>, w>W(MS(0)) = k + 0 , and uiTA). 

t(r, i) = nk(r.1)+lt if r£[p], i£[k]; 

t(j, m) = if M q l m m ; 
x(j> 0 = xku-i)+i if 

y(r, m) m if r€[p], m m -m 

( 
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Naturally, the roots and leaves above belong to u that we never mention ex-
plicitely. If p = 1, then t(i) and y(m) stand for /(1, i) and y(l, m), respectively. 
We shall use these notations for aÇ_R[k, I](p, q), too, after defining the concept 
of dependence on a variable in an arbitrary rational theory. 

2. The composition of a dtla-tree transformation and an arbitrary 
a-transformation 

Linear top-down tree transducers can be defined in two different ways. The 
original definition in [5] requires all the rules of the transducer be linear in the sense 
that no variable occurs more than once on the right-hand side of a rule. If we 
represent the transducer by a fc-morphism of magmoids, say h: T(E)->-k-dil T(A) 
(the transducer is taken dt for simplicity), then h (a) (ai I ) resumes all the rules 
above in which a appears on the left-hand side. However, the meaning of the 
variables in h (a) differs from that of the variables occuring in the rules. Therefore, 
if we require for all a el h (a) not contain two different occurences of the same 
variable, which is the second way to define linearity, the transducer need not be 
linear in the original sense, and vice versa. 

Unfortunately, the original definition cannot be carried out in the case of 
a-tree transducers (even if the transducer is described by a set of rules as in [9]), 
but the second one can be adopted quite naturally. 

Definition 2.1. t£R(A)[k, /](1, q) is called linear if tef(A±).t£T)R(A)[k, l](p, q) 
is linear if i = l 0 , or i = i 1 + . . . + /p and each 1— qt (i €[/>]) is linear. A = 
=(I, A,k,l,h, S) is linear if h (a) has a linear représentant for every aÇls. 

Let L±(A)[k, I] denote the system of all linear elements in /], and 
L(A)[k, /] that of all linear and total ones. 

Lemma 2.2. Lx(A)[k, I] and L(A)[k, I] are submagmoids of T)R(A)[k, 1]. 

Proof. It is enough to prove the lemma for L(A)[k, /]. Indeed, let <p: R(A±).^ 
-+R(A) be the homomorphism extending the identity map A±-^A U {_)_}. If 
L(A±)[k, I] is a submagmoid, then so is LL(A)[k, I], which is the image of it under 
the embedding D(p[k, I]. 

Let t£R(A)[k, /.](1, q) be arbitrary, and construct the directed graph G, as 
follows. The nodes of G, are 

{rs(0, ri(m), is(j, /), liO", m)\i£[k], m£[l], y'£[<?]} 

(s, i, r and 1 suggest synthesized, inherited, root and leaf, respectively). There is 
an arc from rs(/) to ls( /, /")(ri(w)) iff t(i) contains an occurence of x( j, i') (y(m), 
resp.). Similarly, there is an arc from li(y, m) to Is(7", /)(ri(m')) iff t ( j , m) contains 
an occurence of x(j", i)(y(m'), resp.). G, has no more arcs than those listed above. 
Gt is called a dependency graph. Unfortunately, the direction of the arcs is just 
the opposite of the direction used in most of works concerning attribute grammars 
(e.g. [8], [9], [12]). However, this direction is more natural from the point of view 
that t: k+lq^kq+lcR(A), where the arrow leads from the "components" to 
the "variables". . 
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Clearly, t^L(A)[k,l] iff 
0) teT(A); 

(ii) there is at most one arc entering each of the nodes 

{IsO", i), ri(m)|i6[/c], m6[/], j£[q]} 

in G, (i.e. G, is a forest). 10 
Let q0s=0 and for each 0 t s £ L ( A ) [ k , l](l, qs) with Z 1s=<l- K 

s = 1 
In 

suffices to prove that t = t0. £ tsCL(A)[k, /](1, q). Construct the graphs G,s for 
S = 1 

each O S i ^ ^ o , marking the nodes of G,s with a subscript s. For each i£[k], m£[l], 
y'£[<70] identify the node ls0( /', i) with rs^ i ) and li0O', m) with ri^(m) to get the 
graph G. This graph fully describes the dependence relation of the attributes while 

performing the composition t0. Z,ts. Therefore it is easy to see that G,=G+\Nin, 
s=1 

where G+ denotes the transitive closure of G and 

Nin = { ls 0( j , 0 ( = rs ;(0), HoO", m)(= rij(m))\ie[k], m€[q, M<7o]}-

Let us remark that, by construction, there is at most one arc entering each node 
of G, moreover, no arc enters the nodes 

{rs0(j), li5(j, m)\i£[k], mm, s€[<?o] J£[<7J}-

This implies that the connected subgraphs starting from these nodes are trees, so 
t is finite and G, is a forest, which was to be proved. 

Observe that the connected subgraphs starting from the nodes of Nin might 
be circles. This means that circularity might appear if we want to achieve the result 
of the composition by computing the value of all the concerning attributes, but this 
"inside" circularity does not affect the value of the important attributes. 

Now we generalize the notion of "dependence on a variable" to projective 
magmoids. 

Lemma 2.3. Let M be a projective magmoid with M( 1 ,0 )^0 . For any 
a£M(p, q) let a = a'9, where a': p-*q', $ £Q(q', q) and q' is minimal. The image 
of 9, Im (9) is then uniquely determined. 

Proof. Suppose the decompositions a=a/
1!)1=a'2i)2 both satisfy the condi-

tions of the lemma and Im ( S ^ ^ I m (92), e.g. i6 Im (.9J but /(f Im (32). Let 
i f A i ( l , 0 ) , and consider the element q = 1 ; - !+ _L +0 X +1 9 _ ; : q—q. Since 
/$Im(9 2 ) , we have 92£>=92, thus, a=a'1B1g. Observe that 5 1 0 = ( 1 J _ 1 + _L 4-
+ 0 1 + 19 ,_ j)91 , where i=j$ 1. On the other hand 

1,-1 + J- +01+19-_J- = ( 1 ; - ! + _L + l a . - j ) ( l j - l + 0 1 + l , , _ j ) , 
that is 

aiSii? = (« i ( ly - i+ J- + 1 4 - j ) ) ( 1 j - - I + 0 1 + 19._ j.)91. 

This is a contradiction,, since q' was supposed to be minimal. 
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We shall say that a: p-*q depends on jc,- (/£[#]) if i£ lm(9) by the decom-
position a=d 9 above. 

Let R be a rational theory, and extend the homomorphism ( : Di?[A:, /] 
- £ [ £ , / ] to a mapping TDi?[A:, l]—R[k, I] as follows. For 9 €©(/>, q) let 

№) = <»/*0t(S))+0/p) 0kq+<p>, 
where (p: lq—lp satisfies 

^U-D+mV = if 7S im(9) and j = /9 then nl(i.1)+m else 

for each j£[q] and Now, for any a: n-+p and 9: p-»q let l((a, 9 » = 
=Ua).t(9). ^ 

Intuitively, C«a, 9 » can be obtained as follows (for simplicity let R = R(A) 
and a: 1 -*p). Starting from ((a), any reference to an s-attribute of a leaf (say the 
i-th) must be pointed to the corresponding s-attribute of the /9-th leaf. References 
to i-attributes of the root remain unaltered (though the corresponding variable 
indices may be shifted), but the values of the i-attributes of the leaves must also 
be rearranged according to 9. The value of all the i-attributes of a "Active" leaf 
is set to _L. 

The following example shows that, contrary to our expectations, £ is not a 
homomorphism. 

Let R=R(A) with A—Ax= {¿}, k=l=l. Consider the elements a= 
=S(y(l)): 1 - 0 and ¿ = < ± , ¿ ( ^ ( 1 ) ) ) : 1 - 1 of 1]. Then 

U(a, Oj.ib, 1» = C«a, 0!» - <5(j( l )) , ±> , 

but t «a ,0 J ) .U<!> , 1 » = <5( .K1)) ,5U)>. 
However, it must be noticed that the only difference is between the values 

of the i-attrbutes of the "Active" leaf. 
Let R[k, l]QR[k, I] be the following system. ae£[k, l](p, q) iff there exists 

a system 1= |/•£[/>]} of pairwise disjoint subsets of [q] for which the 
following two conditions are satisfied: 

(i) if a(r, i) depends on x ( j , i') r£[p], ji[q], i, /'€[&]), then j£l(r), more-
over, if a(r, i) depends on y(r',m) (/•'€[/>], m€[/]), then r=r 

(ii) if a(j, m) depends on y(r, m'), then j£l(r), moreover, if a(j, m) depends 
on x(j',i), then for each r£[p] we have: j£l(r) iff j'£l(r). 

For a fixed adR[k, l](p, q) there might be several systems I satisfying (i) 
and (ii) above. There exists, however, a minimal one I a , in which for every 
r£[/?], Ia(r) is the least subset of [q] satisfying the following two conditions: 

(i) if a(r, i) depends on x ( j , /"), then j£la(r) i 
(ii) if a(j, m) depends on x(j", i) for some; j£la(r), then j'£la{r), too. 
Define the binary relation W on R[k, I] as follows. For every a, b: p-*q, 

aWb iff 
0) h=h\ 

(ii) a(r, i) = b(r, i) for each /€[&]; 
(iii) a(j,m)^B(j, m) implies that y$ / ? ( r ) for any r£[p\. We shall see that 

A[k, /] is a submagmoid of R[k, /] and f is a congruence relation. It could also 
be proved that t'F: TDi?[k, l\-+R[k, /]/!? is already a homomorphism. 
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Let us start with two easy observations. 

Proposition 2.4. 1. For any appropriate a£DR[k, /] and 9£0, 9 » 6 /]• 
2. If £,: R—R' is a homomorphism and aWb holds in A[k, /], then 

£[k, l](a) 'Fi[k, l](b) holds in R'[k, 1]. 
The first statement is trivial, while the second follows from the fact that the 

components of {[A:,/] (a) and £[k, l](b) depend on at most the same variables as 
the corresponding components of a and b do. 

Let and for each q^O define the bijections gq and g'q as follows 

6q = hr + *0„. + <Z №, 2 Hu->, 
j=i ./'=i 

e',= <Z№+i¿vS'+o^+h^-1. j=i j=i 
See also Fig. 2. 

Definition 2.5. a^R[k'k+l'l,k'l+l'k](l,q) is called [k,l]-linear if eqag'qe 
^A[k',l'](k+lq,kq+l). Generally, a^DR[k'k+l'l, k'l+l'k] is [k, /]-linear if 
a= 10, or a=a1 + ...+ap and for each z £[/>], a{: 1 -*qt is [k, /]-linear. 

Let a, b£T>R[k'k+l'l, k'l+l'k] be [k, /]-linear elements, a= ¿a„b = 
P ¡=I 

= Z b i w i t h b^ 1 -?((/€[/>]). Define a<t>b iff Qqaie'q'FQqbiQ'q for each i£[p]. 
i=1 

Lemma 2.6. The [k, /]-linear elements form a (decomposable) submagmoid 
of BR[k'k+l'l, k'l+l'k] and <P is a congruence relation on it. 

The proof of this lemma will be given in the Appendix because of the great 
amount of computation it needs. The submagmoid of [k, /]-linear elements will 
be denoted by L[k, l]DR[k'k+l'l, k'l+l'k]. Taking k = 1 and 1=0 in the lemma 
we get that R[k', I'] is a submagmoid of R[k', V] and W is a congruence relation, 
as we stated it before. 
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Let h: T(A)—R[k', / ' ] be a homomorphism, and define the mapping h[k, /]: 
L(A)[k,l]-*L[k,l]T>R[k'k + l'l, k'l+l'k] as follows (the notation fi[k, I] is some-
what abusing here): 

(i) for tiL(A)[k,l](l,q)(=fT(A)(k + lq,kq + l j ) 
fl[k,l](t) = e-1t(jh(t))Q'q-1-, 

(ii) for t = t1 + ... + t„eL(A)[k,l](p,q) (/,: l - 9 ( ) 
h[k, l]{t) = h[k, l](tl) + ...+h[k, l](tp). 

Lemma 2.7. h[k,l]4>: L(A)[k,l]~L[k,l]DR[k'k+l'l,k'l+rk]/<P is a homo-
morphism. 

This lemma, too, will be proved in the Appendix. 
Now we are ready to prove the main result of this section. 
Theorem 2.8. Let A1 = ( I , A, k, 1, h1, S^) be a dtla-tree transducer, A2 = 

= (A, R, k', /', h2, S2) an arbitrary c-transducer. Then T A I O T A 2 is also an «-trans-
formation. 

Proof. By Lemma 2.2, is in fact a homomorphism of T(ZSl) into L(A)[k, /]. 
Let Es s = .£U{Si , 52}, where ^ and S2 both have rank 1, and extend hx to 

_ t+ i - i 
a homomorphism of f(ISl,S2) into L(As,)[k, I] by A1(52) = 5,

27ri+ ^ <5„+0,. 
i=i 

<50 is an arbitrary element of A0. (We can suppose that <50 exists, because A0=& 
would imply T A I = T A I O T A 2 = 0.) Let S be a new symbol, and define the ranked 
alphabet map h: Is^BR[k'k+l'l, k'l+l'k] as follows: 

(i) h{a) = fi2[k,l\{h1{a)) if 
(ii) h(S)=h(S2)h(S1). 

We claim that the transducer A = ( r , R, k'k+l'l, k'l+l'k, ft, S) satisfies r A = 
= T A I O T A 2 . Viewing h as a homomorphism of T(ZSi,s) into L[k,l]DR[k'k + l'l, 
k'l+l'kj the following diagram commutes: 

h/L{As.)[k,l] 

l]DR[k'k + l'l, k'l+Vk]/<P. 
Now, for any 

h(S(t)) = h{S2)h{S1)h{i)<Ph2[k, " j ^ o + O,].^^^))) = 

= h2[k, / ] ( s 2 t : ^ 1 ( 5 1 ( 0 ) + 2 1 <5„) = e o - ' c f f ^ ^ . ^ C O ) , 0,> + J ^ , O o ) ) ) ^ - ^ 

- t«h2(S2{TAl(t))), 0,»+2'1 l«h2(50), 0o>). t=i 
By the definition of <P, 

h(S(t)) = n\.k + /-j (C ((h2(S2(rAl (/))), 0,)) + 

+ 2 1 T « H 2 ( D 0 ) , 0 „ » ) = 0 , , , + ( 4 . / I 2 ( 5 2 ( T A I ( / ) ) ) ) + 0 , , , , ^ , = T A 2 ( T A I ( 0 ) + OFI+J'FC 
¡=1 

which was to be proved. 
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REMARK. The intuitive meaning of the above construction is the following. 
The attributes of the transducer A can be devided into four classes. These are 
s—s, i—s, s—i and i—i containing k ' k , k ' l , l ' k and I ' l attributes, respectively. To 
interpret the value of the four kinds of attributes let t £ Tz and a a node in t. Sup-
pose that the value of the i-th s-attribute (m-th i-attribute) of a under h± appears 
as a subtree below the node fa (ym, resp.) in S2(tAi(î))- The following table describes 
the value of all the attributes of a under the composite transformation. 

Attribute Index Class Type Related node 
i n -^OA.O) 

Value 

k ' ( i - \ ) + V s —s synthesized A s (A,/') 

k'k + l ' l + k ' { m - \ ) + i' i - s inherited ym 

</, m') k'k + l ' l + k ' l + l ' ( i - \ ) + m' s —i inherited A i (&,»>') 

( m , m') k'k + l'(m— \) + m' i - i synthesized y m i ( y m , m ' ) 

In the last column, e.g. s(/?;,;") denotes the value of the /'-th s-attribute of under 
h 2 . If "related node in 5 2 (T A I (Z ) ) " does not exist, then the value of the corresponding 
attribute is undefined or unimportant (see the congruence <P). It is rather surprising 
that , the attributes of class i—i can be computed in synthesized way. 

Theorem 2.9. The class of all dtla-tree transformations is closed under com-
position. 

Proof. Let A2 be a dtla-tree transformation from A into T in Theorem 2.8. 
Then the composite transducer A is obviously dl, but in general not total. Let us 
remark, however, that for each g £ I s there exists a total representant in [h(a]] <£. 
For example, it is enough to replace the _L components of h(a) (which in fact corre-
spond to the values of the i-attributes of the Active leaves of /jx(<t) under h2) by an 
arbitrary y 0 £r 0 . Clearly, this modification does not change the transformation 
t a , so we are through. 

Example 2.10. Let k = l=k' = l'= 1, I0 = A0 = {a), Zj = {«}, A1= { f g } , Z = 
= 2 ' 0 U r i , A =A0\JA1 and T — A. Define hx and h2 as follows 

= h2(S2) = <x(l), a>; 

K(a) = h2(f) = < / ( * ( 1)), g( j ( l ) )>; 

h^a) =h2(a) = j ( l ) ; 

fc2(g) =<g(* ( i ) ) , /CKi ) )>-

Clearly, TAloTA2={<a" a , / n g " / " g n « ) [ " = 0 } (parenthesis are omitted for short). 
Following the construction of Theorem 2.8 we get the transducer A=(Z, T, 2,.2, h, S), 
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where 

h(S) = [<x(l), J_, *(2), â><x(l), ± , x(2), y(2))]0r = 

= [<*(1), ±,x(2), â)]0r = <*(1), S, x(2), S>(<P); 

h (a) = </(*(l)) , /(*(2)), g ( j ( l ) ) , g(^(2))>; 

fc(fl) = 0 ' ( l ) ,y(2)>. 
It is easy to check that, indeed, T A = T A I O T A 2 . 

Let v(A) denote the minimal value of the natural number K for which A, a 
da-tree transducer, is K visit (for the definition of visits see e.g. [8], [12]). The 

[c(A)l 

Now, let A-i and A2 be dtla-tree transducers with C(A,-) = C; (/ = 1, 2), and construct 
the transducer A defining TA IOTA 2 . It can be proved that c(A)^clc2+cl + c2 and 
this is the best possible upper bound. 

3. The composition of a dla-tree transformation and an arbitrary 
a-transformation 

Let A = ( Z , A, k, /, h, S) be a dla-tree transducer. We define a homomorphism 
Ch: T(ZS) — L±(fi)[k + l, k + l] (called the trace of h) having the property that for 
every t£Tz and /£[&] 

N I + , C H ( S ( 0 ) = tf 4HS(0) = - L I . I then ±lfJt+, else 4 + / -

(Obviously, C h ( 5 ) is not a synthesizer here.) 
Instead of presenting a formal description we illustrate Ch via an example. 

Let a£(Zs)„ and t the linear représentant of h (a) having the fewest nodes. Con-
struct the graph G, as in Lemma 2.2. For example, let k=l=n=2. On Fig. 3 
s- and i-attributes are represented by o-s and • -s, respectively, in the order from 
left to right. The mark X indicates a _L-valued attribute. 

{rs(0, ri(m)|i, m€[2]} 

* • {Is(y, i), l i ( j , m)\j, i, me[2]} 

ig.3 

Associate to each s-attribute a new ¡-attribute and to each i-attribute a new s-one. 
On Fig. 4 the nodes denoting these new attributes are placed below the corresponding 
old ones. The predicate, whether the value of an attribute a under h is x or not 
will be expressed by : the value of a under Ch is _L or the same as the value of the 
associated new attribute a'. This can be achieved by checking the value of all the 
attributes a depends on, tracing them one after the other in an arbitrary order. 
In our example Ch (a) can be represented by the graph of Fig. 4. 
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{rs(i), ri(m)|z, m£[2]} 
{ri'(i), rs'(m)]/, wg[2]} 
{Is (7, /), li(y, m)\j, i, w€[2]} 
{li'(j, i), Is'(7, m)\j, i, m£[2]} 

Fig. 4 

To get the required result we only have to order the (old and new) attributes so that 
the z'-th s-attribute and the z'-th i-attribute (/€[&]) should be the /-th old s-attribute 
and its associated new i-attribute, respectively. 

There is a natural embedding R[k, l]xR[k', l']-~R[k+k', l+l'] defined 
as follows. a®b=<p(a+b)\\i, where a,b:p—q and 

<P = UP+<$,>TTÈP* + U'9, 

It is easy to check that ® is indeed a 1 — 1 homomorphism. 

Lemma 3.1. Let A A, k, I, hj^, S) be a dla-tree transducer, A 2 = 
= {I, R,k',l',h2, S) an arbitrary ¿(-transducer. t a J D t A i (the restriction of rM to 
the domain of rAl) is an ¿(-transformation. 

Proof. Let AS=(ZS , R, k + l+k', k + l+l', hs, S') be the following «-trans-
ducer: 

(i) As(ff)=Ch1(ff)®A2(<T) for 
(ii) hs(S') = <71!, ±k+l+k'-1, nk+l+1, J_*+,+,,_!>. Observe that for every 

*a,(S(0) = if tdDzKl then xM(t) else ±,.0. 
Now, consider the «-transducer A=(Z, R, k+l+k', k+l+l', h, S), where h(a) = 
=hs(<r) for aÇ.1 and h(S)=hs(S')hs(S). Clearly, T A = T A 2 | Z ) T A I . 

Remark 3.2. If A2 is a dla-tree transducer, then so is A. 

Theorem 3.3. Let A1=(I, A, k, I, hlt 5X) be a dla-tree transducer, A 2 = 
—{.A, R, k', /', h2, S2) an arbitrary «-transducer. Then TAIOTA2 is also an a-trans-
formation. 

Proof. Choosing _ any linear représentant of h^a) (a Ç TSi) we get a 
homomorphism h[: f(ISl)-»L±(A)[k, 1]. Since L±(A)[k, l\^éL{A±)[k, I], we can 
use hi to define the dtla-tree transducer Ai=(I, A±, k, I, h[, S^. Extend h2 to 
Ax by h2(l_) = ±k',i" Theorem 2.8 implies that T A JOT A . ,=T a for an appropriate 
«-transducer A. Clearly, T A |Z>T A I =T A I OT A 2 , so the statement of the theorem follows 
from Lemma 3.1. 

Corollary 3.4. The class of all dla-tree transformations is closed under com-
position. 

Proof. If A2 is a dla-tree transducer in Theorem 3.3, then so is the composite 
transducer A. Thus, the corollary follows from Remark 3.2. 



138 M. Bartha 

4. dla-tree to string transformations 

Let T be a (string) alphabet and let CF (T) denote the rational theory of all 
context free languages over TK3X (cf. [13]). CF (T) is in fact the " f ront" theory 
of Reg (I) , supposing Z0= T. L=(^L1, ..., Lp}£CF (T)(p, q) is called linear de-
terministic if each Li (/€[/>]) contains at most one string and no variable occurs 
more than once in L. 

Definition 4.1. A dla-tree to string transducer from Z into T* (T is finite) is 
an a-transducer (Z, CF {T), k, I, h, S), where h(q) is linear deterministic for each 
o£Zs. 

By Lemma 2.2 the linear deterministic elements form a submagmoid of 
CF (T)[k, I] which will be denoted by LCF (T)[k, /]. If A is a dla-tree to string 
transducer from Z into T*, we consider t a as a relation, t a Q T^x T*. 

Theorem 4.2. Let A = ( I , CF (T), k, /, h, S) be a dla-tree to string transducer. 
Then xA=(<p, K, \jj), where K is a regular forest, <p is a relabeling tree homomorph-
ism (injective on K) and i// is a dtl-top-down tree to string transformation. (Recall 
f rom [4] that the transformation defined by the bimorphism (q>, K, i/0 is 
{<<?('), tmttK}-) 

Proof. Let ¿;: CF ( r )—CF (0) denote the homomorphism defined by the 
unique homomorphism of T* into 0* = {1}. Let ^ o g L C F (0)[yt, /] (1, 0) such that 
a€A0 iff nla = {X) and for each / € [A:]. Since LCF (0)[&,/] is a finite 
magmoid, the pair {hol; [k,l], A0) can be considered a deterministic finite state 
bottom-up tree automaton working on TIs, where ^ = LCF (0)[fc, /](1, 0) is the 
set of states, (ho^[k, /](cr)|<r£Zs) describes the transitions and A0 is the set of 
final states. Let Q denote the relabeling transducer defined by this automaton. 
Q marks each node of a tree t£TIs by a new label, which is a pair consisting of 
the old label <r£(Zs)„ and a vector of states <cr0, . . . , a„> in which the automaton 
passes through the node and its sons, respectively, during the recognition (or refuse) 
of t. Let Z's denote the ranked alphabet of these new labels. 

Define K=tQ(FS)QT1-S, where FS={UITZS\U=S(t) for some I ^ } . 
Furthermore, let <p: T(Z'S)-T(Z) be such that <p«.S, (a0, a}))=xl and 
<p«<7, <a0, . . . , «„ ) ) )=a if Obviously, K is regular, (p is injective on K and 
<p(K) = DxA. 

We describe ip as a homomorphism of T{Z'S) into LCF {T)[k+l, 0], i.e. ip will 
be a (&+/)-state dl-top-down tree to string transformation. To avoid ambiguity 
we shall use the variables Z = {z1, z2, ...} (ZflT—0) instead of X in the definition 
of <J/. Let $ be a distinguished symbol in T and # a new symbol not in T. Take 
an arbitrary a£A. If a=(uly ..., uk}, then let a = u1#... where u-t = if w; = 0 
then $ else (/'(;[/:]). Let n denote the number of all the # - s and y(m)-s (m£[/]) 
— called separating symbols — in a. Clearly n ^ k + l . Define the mapping rja: 
( ( r U Z ) * ) t + ' - L C F ( r U Z ) [ A : , / ] ( l , 0 ) as follows. If w = <w1, . . . , w t+I>, then 
1a(w) — (vi> •••> vk)> where for each /€[&] 

(i) if Ui-%, then d ,=0; 
(ii) if Ui—X, then t),=)vJ+1, where the # preceding u( is the y'-th separating 

symbol in a. 
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(iii) if ui=y(iJ)...y(iJ+n), where y(ij) is the y-th separating symbol in a 
(from left to right), then vt = Wjy(ij)wj+i...y(iJ+„)wJ+„. + v 

Taking the inverse of some element under r)a we shall assume that the unnecessary 
components of ^ « U i , .. . , vk}) = (w1, ..., wk+l} (which do not take part in (ii) 
and (iii)) are set to $. 

Now, if <(j, <a0, . . . , a n »£(Zs ) B , then let 

i¡/{(a, <a0, ..., a„>>) = J/"1 (h(o ) • 2 

iJ/ is obviously linear, so it is enough to prove that for every T£K with root( i ) = 
= <S, <a0, a » *P(t) = ria0

1(h((p(t)))- This follows from the following induction. 
If <a0, . . . , a „ » £ ( Z 0 „ (n^O), t £ T f s with root ( 0 = < - , . . . » and 

'Hti)=rial
1(h((p(ti))), then for t = <a, <a0, ..., aB»(ti} ..., tn) we have iK0 = 

= ria0
1{H<p(t)))- Really, 

¡=i 

= i K o , <«0, ••• ,0» |>(* + i>( f - i )+y - t j ^ c o i i e w , Mk+ift = 

= ¿ ^ W ^ ) ) ) ) ) = fi^(h(<p{t))). 

Corollary 4.3. The surface sets of dla-tree to string transformations are the 
same as that of dtl-top-down tree to string transformations. 

This class of languages was investigated e.g. in [10]. 

5. Problems 

The existence of the trace homomorphism Ch described in section 3 raises 
the following problem. Given any regular forest FQTI, is it possible to find a 
homomorphism f : T(Z)-L±(0)[k, I] such that for any t£Tz,n1i,{t) = if t£F 
then else J^? The answer is positive if Z is a unary alphabet (Z = X0UI'1), al-
though a negative answer is more likely in the general case. It is also open whether 
it is possible to define deterministic finite state bottom-up or look-ahead tree trans-
formations (cf. [6]) by attributed tree transducers. However, it can be shown that 
the classes of deterministic attributed and macro tree transformations coincide 
in the monadic case (i.e. if both the domain and range alphabets are unary). The 
proof of this result will be given in a forthcoming paper. 

Appendix 

To prove Lemmas 2.6 and 2.7 we need a preliminary observation. 
An infinite tree t£R(A)(p, q) is called local if it is determined by the sequence 

pd(A[JXqy of its roots and a "successor" function which for every S£A„ (n^O) 
specifies the sequence of labels of the sons of any node in t labeled by 5 (i.e. / (¿)€ 
£(A\JXq)n). In this case we write t=(P,x). 
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Let Q and A be finite ranked alphabets, T£T(Q)(p, q) an ideal (i.e. utT^Xj 
for any /£[/>], ji[q\) such that any two distinct nodes of T have different labels. 
This allows us to identify a node of T by its label. Let nds (T ) denote the set of 
nodes (labels) of T, and for co£nds (T), co££2n, let <a>(0), . . . , co(n)) denote the 
sequence of nodes obtained by enumerating the father of co followed by the sons 
of £0. Take co(0)=i if to is the root of n-t T. Furthermore, let x: f ( i2) -D^( / i ) [Ar , /] 
be a homomorphism such that 

x(co) = co),..., a(k, co), 5(1, co), ...,a(ln, co)*, 

where wsO, co£i2n and {a(i, co), a(j, to)|/e[A:], j£[ln]}QAkn+l. 

It is routine to check that t(x(T))=(P, y)£R(A)[k, l](p, q) is the following 
local tree: 

(0 P = <A(l),...,A(kp), 5(1), ...,B(lq)}, (1) 
where Vr£[p], Vi£[k] 
i 

A(k(r-l) + i) = g(i,co) if r = co( 0), 

and Vje[q], Vmd[l] 

B(l(j — l) + m) = a(l(s—l) + m, co) if Xj = co(s) 

for some co£i2n, j€M; 
(ii) if tuends (T), co£Q„, then V/£[/:], V _/€[/«] 

X(a(i, co)) = X(a(J, ©)) = <¿(1), .~,A(kn), B( 1), ..., 2?(Z)>, 

where Vi€[n], Vi6[fc] 

A(k(s—l)+i) = Case co(s) of co'(^Q): a(i, co')', xj:x(j,i); 

and V »»€[/] 

B(m) = Case <o(0) of a/(€i2): a(l(s — l) + m, co'), where co'(s) = co; 

r(t[p]):y(r,m). 

Moreover, if &£@(q,q'), then l(Tx{T9))=(P', / ' ) is the following: 

(0 P = <i4(l), ...,A(kp), B\ 1), ..., J?'(Z?0>, 

where A(i) and B(j) (i£[kp], j€[lq]) are as in (1), and V j'£[q'], Vm€[/] 

5 ' ( / 0 " - l ) + m ) = if / € I m ( 9 ) and j' = then B(l(j-l) + m) else J_; 

(ii) for each 

^6{a(i,co),aO',co)Knds(r), co£Qn, i£[k], j€[/«]} 

/(A) = x(.A)[x(j, i) - x(j', i)\ii[k], j£[lq], =/]. 
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Proof of Lemma 2.6. It is enough to prove the following two statements: 
1. if tfoisO and for each Qtks^kq0, ws£L(k, l)Y)R[k'k+l'I, k'l+l'k]{\, qs) 

10 
with 2 1s=1, then 

S = 1 

«0 
w0- 2 ws^L[k, T\DR[k'k + Vl, k'l + l'k]( 1, q); 

2. if ws<Pw's for every 0 S s S q 0 , then 

<?0 90 
W = w0- 2 ws • 2 w's = w'-

s = l S = 1 

Let e(w5) stand for QqwsQqs, and let 

W - {Zs(l)> . . . .£ (*) , 4(1), . . . , 1 M } 

with m m = Q s ( i ) , \ \ W ) \ \ = n s U ) and kqs+l-\\\JIe(wJ=ns (i^kl j£[lqs]). 
Choose injective mappings 9s(i), 5s(j) and 9S, which map Jns(z')], [ns(y')] and [ns] 
into [kqs+l] such that Im (Ss(i)) = l j i ) , Im (9s(j)) = I , ( j ) and Im (9S) = 
=[kqs+l]\UIe(Ws). Let Q consist _of the symbols {Ts(i), Ts(j)\0rss^qo, /€[£], 

j£[lqs]}, where J s ( 0 £ ̂ mo and Ts(j)dQns(J). Define A as the least ranked 
alphabet satisfying the following conditions: 

(i) for every o j £ Q „ ( « S O ) 

{g(i\ co), a ( / , oj)\i'd[k'lfe[l'n]} g Ak,,n+V; 

(ii) for each 0 ^ s ^ q 0 

{ a ( f , s), a ' ( f , s)!/€[/'«J} c Ak,„s. 

Construct local trees WS,WS' and H-f ( 0 o f R(A)[k'k+l'l,k'l+ 
+l'k](l,q^) as follows. fVs=(fis,/J with 

(i) 1), ..., A(k'k), 5(1), ..., B(l'l), C(l , 1), ..., C(l , k'l), D( 1, 1), ... 
...,D(\,l'k), ..., C(qs, 1), ..., C(qs,k'l),D(qs, 1), ..., D(qs, l'k)\ where V/£[fc], 
V/'e[ k'] 

A(k'{i-i) + i') = a{i', Ts(0), 
Vw€[/], Vw'€[/ '] 

B(l\m-l) + m') = Case kqs+m of (2) 

n5sU):-±a(V(n-l) + m', (./)); 
n $ s : / \ s ) ; 

V76[9S], Vm€[/], Vi'€[*'] 

C(y, fe'(m—1)+/') = T s ( / ( 7 - l ) + m)), 

and V j'e[qs], Vr(E|Tt], Vw'€[/ '] £ ( / > l'(r-l)+m') is of the form (2) [kqs+m~ 
—k(j'-l)+r], i.e., (2) with kqs+m replaced by k(j'—l)+r; 

2 Acta Cybernetica VI/2 
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- (iia) ViG[fr], 

v « ' É [ n v / c [ / ' « s (/)] 

X.(őG', J . ( 0 ) ) = x W f > Ts(>))) = <-4(1), . . . , A ( k ' n s ( i ) \ 5(1), . . . , 5(/ ' )>, 

where V/"€[£'], V«6[í?,(0] 

A(k'(n—l) + i') = Case nS,(i) o / k ( / - l ) + r ( / £ f e ] , r€[k]): * ( / , fc(r-l)-H'); 

fc?s+m(me[/]): j ( k ' ( m - l ) + i'); (3) 

and Vw'€[/ '] B(k,Bl(i)+m/)=y(k'l+I'(i~l)+m/); 

(iib) Vy€[/?s], 
v / ' e i n v y €[/%(/>] 

*,(<?(*', 7;(y))) = T.C/))) - ...,A{k'nsU% 5(1), . . . , 5(Z')>, 
where Ví"€[*'], V«€[«,(./)] ^ ( / c ' ( « - l ) -M ' ) is of the form (3) [ & ( / ) - S s ( j ) ] , 
and Vwi'€[/'] B(m') = x ( j ' , k'k+!'(m-l) + m') if j = l ( j ' - l ) + m for some 
/ ' e [ ? d , «<=[/]; 

(iic) v / € [ / ' « , ] Z , ( s a ' , j ) )=< i4 ( l ) , where \/i'í[k'], V «€[»,] 
yá( i t ' (« - l )+7 ' ) is of the form (3) [S,(i)-í>,]. 

We get Ws and W^ from Ws by replacing the symbols a(j',s) (j'£[l'ns]) 
occuring in it by a'(j',s) and _L, respectively. 

By construction, for any and i£[k' k + l' l+(k' l+l' k)qs], iiiWs and 
iiiWs depend on all those variables which 7T;WS or 7tjw£ may depend on. Therefore, 
if niWs

i''>=l(p for some A£A and <pt&, then t^ iv^ =a.9, where Im ( 9 ) ^ I m (cp). 
Define the ranked alphabet.map £,'. A-<-R by £(/,)=a9cp~l, where cp-1 is an ar-
bitrary right inverse of (p. £ is correct, since for every there exists exactly 
one s, i and (p such that n¡Wj-^—Acp. Obviously 9q9~1<p = 9, thus £(Ws) = ws 
and i(Ws') = w's hold by the extension of (, to a homomorphism of i?(/l) into R. 

Let y. \ r(i2)—D5(/1)[A;',/'] be the homomorphism extending the following 
ranked alphabet map. For every co6i3„ 

x ( o j ) = < a ( l , co), . . . , a(k', to), a ( l , co), . . . , a(l' n, co)>. 

Consider the elements 

Ts = *£(1)S , (1) , . . . . £ (* )&(* ) , 7,(1)5,(1), ...,Ts(lqs)5s(lqs)> 

of L(Q)[k, /](1, qs), and observe that 

. ?(T«(r,)) = eW-)Vem-

To complete the proof it is enough to show that 

e (»"'>)Q W R ) ) - Z H ( f x ( T0 • J T s)j . ( 4 ) 

Indeed, (4) .shows that both W and W' are. 7]-linear (see Proposition 2.4/1) and 
W<PW'. Thus, by Proposition 2.4/2, w<Pw'. 
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10 

First we compute T= T0 • 2 Ts. Following the proof of Lemma 2.2 it is easy 
S = 1 

to see that T&L(Q)[k, /](1, q) is the following finite fi-tree. With the notations of 
our preliminary observation 

(i) V /€•[*] 
Zo(0(0) = h 

VB€[BO(0] 

T0(i)(n) = Case n90(i) of k(s-l) + r(se[q0], r£[fc]): 7 » ; 

kq0+m{m €[/]): y(m); (5) 
VS€[<7„], Vm([/] 

T0(l(s-i) + m)(0) = Case kqs+m of n9_s(i): Ts(i); n5s(j)- W ) l 

n&s: T„(/(s—1) + m) (£nds (T); 

Vn€[n0(y')] %(j)(n) is of the form (5) [ 9 0 ( 0 - 5 s ( . / ) ] ; 

(ii) Vseteo], 
Vi€W 

£ ( i ) ( 0 ) = Case k(s-i) + i of n9„(r): 7 » ; nB0(j): %(j); 

n90: 7^(0inds(T); 

Ts(i)(n) = Case n9s(i) of 

kqs + m(m£[l]): %(l(s-l) + m); 

(6) 

V y e f e l 
TsUm = 

V«€[n s( i)] Ts(j)(n) is of the form (6) 
Computing C(Tx(T)) we get a local tree (/?, / ) for which 

(i) P = < ¿ ( 1 ) , . . . , A(k'k), C ( l , 1), . . . , C ( l , ¿ 7 ) , . . . , C(<?, 1), . . . , C(<?, ¿ 7 ) , 

D(l, 1), I'k), ...,D{q, 1), ...,D(q, Vk), B{ 1), ...,B(l'l)), (7) 

where Vi'6[fc], Vi'€[k'] 

k'(m—l) + i') = a(i', T 5 ( Z ( y - l ) + m)) , 
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Vie[*],Vm'€[/'] 

D{qM+j,l'(i-l) + m') = Case k ( j - l ) + i of (8) 

n U r ) - \ / I s i r ) ) \ 

n5s(/) : \ й(/ '(n - 1 ) + m', T s ( / ) ) ; 
n9s: ± ; 

Vm€[/], Vm'Ç[/'] 

5(Z' (m - 1 ) + m') = Сада +™ of (9) 

п 9 о ( 0 : ч / l o ( O ) ; 

п90\ ± ; 
(iia) V/6[/c], 

V i ' e í n V7'e[/'ao(i)] 

z(ő(i', Io(0)) = х ( 5 ( / , Го(0) = <Ж1), ...,A(k'n0(ï)l 5(1), ..., 5 ( D ) , 

where Vi'€[£'], Vn£[n0(0] 

^ ( k ' ( n - l ) + ' 0 = Case n90(i) of fc(s-l) + r(sÇ[?0], rÇ[fc]): a{i', 7 » ) ; 

+ ™ (™€[ф: x(kq+m, i'); (10) and Чт'£[Г], B(m')=y(i,m'); 

(iib) У М Ы , 
v / ' e m vy'e[/'«o(7)] 

z(s(i',ToC/))) - x { H f , ПШ) = < ¿ 0 ) . ...,A(k'ñ0U)), 5(1), 5 ( 0 > , 

where Vi'€[*'], V/»€[ñ0(./)] ( л - 1 ) + / ' ) is of the form ( 1 0 ) [9 0 ( / ) -3 0 O)] , 
and if j=l(s—l)+m for some m€[/], then 

5(m') = Case kqs+m of 

пШ: £ ( 0 ); 
n 5 s ( / ) : ^ â ( / ' ( » - l ) + m', — T s ( j ' ) ) ; 

n9s : T0(j)$ nds (Г); 

(iic) Vi€[g0], Vi€[*], 
y i m v / e M 

z(s(i, L(0)) = * ( « ( / . ZJ(0)) - <-4(1), ...M(k'ns(0), 5(1), ..., 5 (0) , 

where V/'€[*'], Vn€[ns(i)] 

i l(fc'(fi- l) + i ,) = Cflse «9,(0 of kU'~i) + r ( j ' M r£[k]): x(k(q^+j') + r, i'); 

kqs+m(mÇ[q): a ( i ' ,T 0 ( l ( s - l ) + m)); (11) 
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and V «!'€[/'] 

B(mr) = Casek(s-\)+i of 

n90(r): /loir))', 
n§o(j): — a(l'(n—i) + m', ¿-T0U))l 

n90: £(i)$nds(r); 
(iid) VJ€faJ, V7€[/?s], 

v i ' i t n v / c ^ o ' ) ] 

x(a(i',Ts(j))) = x(Hf,Ts(j))) = <A(l), ..., A(k'ns(jj), B{ 1), ...,B(l')>, 

where \/i'£[k'], V«€[ns(j')] .4(&'(n-l) + 0 is of the form (11) [^(z) ~ 5s(./)]> and 
Vm'£[r]B(m')=y(k+lq^+j-l,m'). 

io 
Now we compute W=W0 • 2 WS. The result is (j?', •/), the foliowmg local tree: 

(i) P' — (A(\), ..., A(k'k), B(l),...,B(l'l), C ( l , l ) , ... ,C(l,fc'Z), 

D( 1, 1), ...,D( 1, Z'fc), ..., C(<7, 1), ..., C(q, k'l), D(q, 1), ...,D(q, Vk)>, 

where all the symbols in /?' are the same as the corresponding ones under (7), 
exept that in (8) and (9) _L must be replaced by a(l'(n-\)+m', j) and a(/ '(«—1)+ 
+m' , 0), respectively. 

(iia) For each symbol occuring in both W and t(Tx(T)) we get /'(A) from 
x(A) by the following variable transformation: 

VjCM, Vi€[fc], V W ] , Vm£[Z], Vm'6[H 

x(k(j-l) + i, /') - x(j, k'(i-l) + i'), x(kq+m, 0 - y(k'(m-l) + i'), 

y(i, m') - y(l'(i-i) + m'), y(k+l(j-l) + m, m') - x(j, k'k+l'(m-l) + m'y, 

(iib) V 0 M < 7 o , V / € [ / ' « , ] 

x'(aU',s)) = <A(l),...,A(k'ns)}, 

where \/i'£[k'], V«€[ns] A{k'(n-\)+i') is of the form (9) [9 0 ( i ) -9 0 ] or (10) 
[9S(/) —9S] depending on s = 0 or 

Finally, as it is obvious, we get W from W by replacing a(j', s) by a'(j', s) 
for each 0 j ' € [ l ' n s ] . 

It is now easy to check that (4) is true, so the lemma is proved. 

Proof of Lemma 2.7. Let qQ=0, and for each let 

t s = «?S(1)9S(1), . . . , l ( k ) $ s ( k ) , fs( 1)3S(1), . . . , f M S M * 

be an element of L(A)[k, /](1, qs) with t s ( i ) £ f(A){\, ns(i)\ fs(j)£T(A)(l,Jis(j)) 
('€[&], j€[lqs])- Construct the alphabets Q and A, the homomorphism x: T(Q) — 
-DR(A)[k',l'] and the trees {T^OSiS?,,} as in the proof of Lemma 2.6. It 
is clear that any component of fi[k, /](is) depends on at most the same variables 
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as the corresponding component of %[k, / ] ( r s ) does. Therefore there exists a homo-
morphism £: R{A)~* R such that 

£(A[fc, Z](rs)) = fi[k, l](ts). 

Let ¡i\ T(Q) — T(A) be the homomorphism by which n(Xs(i))=U(.0 and 

n(Ts(j)) = Fs(j) for every i£[k], j£[lqs]. Since T is a functor and f ( i2 ) 
is free, the following diagram commutes: 

f(Q) TDR (A) [k\ V], 

TM 

Г (A) —TDi? 

TD ДО', I'] 

к', V] 

t h i s implies that for every T£L(Q)[k, /](1, q) 

h[k, Ц{ЫТ)) = ф[к, l](T)). 

Thus, by (4), we get that 

Пк,Ц(i0) • 2 h[k, I](ts) = h[k, Z](Tfi(T0)) • 2 H k , Z](Гц(T s)) = 
S = 1 S = 1 

= ц(т0) • J m , ч [ m , n (r„. J rs)) = 

= h [k, l] ( r 0 • J r s j ) = ft [k, Z] (i„ • J i s ) , 

what was to be proved. 

Abstract 

We define an interesting subclass of deterministic attributed tree transducers. The importance 
of this subclass lies in its nice closure properties with respect to composition. It is proved that a deter-
ministic and linear attributed tree transformation can be composed by any attributed transformation 
without leaving the class of attributed transformations. Moreover, the class of linear deterministic 
attributed tree transformations is closed under composition. Finally we show that the surface sets 
of linear deterministic attributed tree to string transformations are the same as the surface sets of 
linear deterministic top-down ones. 
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On vf-products of automata 

B y P . DOMOSI* a n d B . IMREH** 

In this paper we introduce a family of compositions and investigate it from 
the point of view of isomorphic completeness. Using results concerning well-known 
types of compositions, we give necessary and sufficient conditions for a system 
of automata to be isomorphically complete with respect to these products. 

By an automaton we mean a finite automaton without output. For any non-
void set X let us denote by X* the free monoid generated by X. Furthermore, 
denote by X+ the free semigroup generated by X. Considering an automaton 
A=(X, A, 5), the transition function 5 can be extended to AxX* —A in the 
following way: 5(a,X)=a and 5(a, p)=S(S(a, p'), x) for any a€A,p= p'x£X*, 
where X denotes the empty word of X*. Further on we shall use the notation apA 
for S(a,p). If there is no danger of confusion then we omit the index A in apA. 
Let M be an arbitrary nonvoid set. Denote by P(M) the set of all subsets of M. 

Let A,=(Xt, A,, 5,) 0 = 0 , ...,n—1) be a system of automata. Moreover let 
A' be a finite nonvoid set, cp a mapping of A0 X ... X A„ X X into J 0 X . . . X i , - i and 
y a mapping of {0, . . . , « — 1} into _P({0, ...,n — 1}) such that cp can be given in 
the form 

cp(a0,..., la„_i, x) = (cp0(a0, i, *), •••, <Pn-i(a<>, •••> a„-i> *)) 

where each cp, ( 0 ^ / S n —1) is independent of states, which have indices not con-

tained in the set y(t). We say that A = \X, J] A,, S\ is a vrproduct of A, 
\ t = 0 ' 

(t=0, —, n — 1) with respect to X, cp and y if ( t=0 , . . . , « — 1) and for 
n-l 

any (a0,..., an_i)€ ]J A, and x£X 
i=0 

8((a0, ...,a„_1),x) = 

= (<5oOo> <Po(ao> •••, an-1, •••> <>n-i(a„-i, (Pn-i(a0, •••, an-I, *)))• 
n-l 

For this product we use the notation JJ At(X, cp, y). 
f = 0 

It is clear that the v0-product is the same as the quasi-direct product. There-
fore, we consider the case / ̂  1 only. Furthermore, it is interesting to note that 
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if n=2, /=1 , v(0) = {l}, y(l) = {0} then we obtain the cross product (see [2]) as 
a special case of the vx-product. Finally, observe that the v,-product is rearrangable, 

n—i 
i.e. changing the order of components of a v,-product JJ A,{X, (p, y) and choosing 

1=o 
suitable mappings <p', y' we get such a v rproduct which is isomorphic to the 
original one. 

Let I be a system of automata. I is called isomorphically complete with re-
spect to the v( -product if any automaton can be embedded isomorphically into 
a vj -product of automata from I. Furthermore, I is called a minimal isomorphically 
complete system if I is isomorphically complete and for arbitrary the system 
I \ { A } is not isomorphically complete. 

For any natural number n ^ l denote by D n = ( X „ , {1, ...,«}, 5n) the auto-
maton for which X„— {xrs: l i r , i S n } and 

r i if t = r, 
S„0, *„) = otherwise 

for any . . . ,«} and xrs£X„. 
The following theorem holds for the vf-products if i fe l . 

Theorem 1. A system I of automata is isomorphically complete with respect 
to the v;-product (z'^l) if and only if for any natural number n ^ 1, there exists 
an automaton such that D„ can be embedded isomorphically into a v r 
product of A with a single factor. 

Proof. Theorem 1 can be proved in. a similar way as the corresponding state-
ment for the a,-products in [4]. The sufficiency follows from Theorem 2 in [4], 
but it is not difficult to see directly. In order to prove the necessity we show that 
for any n s 1 if D„ can be embedded isomorphically into a V;-product of automata 
from I then there exists an automaton A such that D 1 + , can be embedded 

[ № 
isomorphically into a v,-product of A with a single factor, where [ / « ] denotes 

£ + 1 
the largest integer less than or equal to f n . 

If n = 1 then the statement is obvious. Now let 1 and assume that D„ 
k 

can be embedded isomorphically "into a v rproduct B = JJ A,(X„, <p, y) of auto-
<=o 

mata A , = ( X , \ A„ St)£E (t=0, ..., k). Let us denote by p. such an isomorphism 
and for any f£{l , . . . ,«} denote by (a,0 , . . . , a,k) the image of t under fi. We dis-
tinguish two cases depending on the sets y(t) ( /=0 , .. . , k). If y(t)=0 for all 
i£{0, . . . , k} then B is a quasi-direct product. Since the quasi-direct product can 
be considered as a special a,-+i-product we have that D„ can be embedded iso-

k 
morphically into an a i + 1-product JJ A,(X„, <p) of automata from I. From this, 

t= i 
by the proof of Theorem 2 in [4], it follows that there exists an automaton A£2" 
such that D j t l can be embedded isomorphically into an a i + 1-product of A with 

I ' 
a single factor. Since an a i+1-product with a single factor is a v,-product with a 
single factor we have proved the statement for this case. 
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Now assume that for some 0, ..., fc}. By the rearrangability of 
v ¡-products, without loss of generality we may suppose that We show 
that D„ can be embedded isomorphically into a v i+1-product of automata from 
{A„, .. . , Afe} with at most i + l factors. If k ^ i then we are ready. Assume that 
k>i. We may suppose that there exist natural numbers r^s (1 = r , s=n) such 
that a r 0 ^ a i 0 since otherwise D„ can be embedded isomorphically into a v;-
product of automata from {A0, . . . , A J with k factors. Let y(0) = {y'j, . . . , jw). 
By the definition of the v,-product, we have that w ^ i and 

k 
(p0(a0, ...,ak,x) = (p0(ah, ...,ajw,x) for any (a0, ...,ak)£ JJ A, and x£Xn. 

( = 0 

We prove that the elements (ctl0, 
ath'•••'a'jJ 0 = 1, . . . ,«) are pairwise different. 

Indeed, assume that auQ=avn and au,=avt(t =j\, ...,jw) for some u^v (1S«, v^n). 
Then <p0(auh, ..., aujw, x) = (p0(avJl, ...,aVJw,x) for any x£Xn. Therefore, in the 
v(-product B the automaton A0 obtains the same input signal in the states a M 
and aco for any x£X„. Since fi is isomorphism, u^v and au0=av0, thus the 
automaton A0 goes from the state aM into the state czt0 and from the state ao0 
it goes into the state av0 for any xu,(t = 1, ...,ri). This implies av0=a,0(t = 1, ...,«) 
which contradicts our assumption a r0 ^ as0. Therefore, we have that the elements 
(at0, a,h, ..., a,jj (i = l,...,n) are pairwise different. Now take the following 
v i+1-product C = A 0 X A ; 1 X . . . X A J w { x „ , \ j / > y ) where for any i£{0, ..., w} y(t) = 
= {0, 1, ..., w) and 

(p0(ar0, ..., ark, x) if / = 0 and there exists l S r ^ n 
such that b0 = ar0, bs = arJs (s = l w), 

(pJt(ar0, ..., ark, x) if t ^ 0 and there exists 1 S r ^ n 
such that b0 = ar0, bs = arJs (s = 1, . . . , w), 

otherwise arbitrary input signal from X i f 
t = 0 and from X/t if t ^ 0, . 

ip,(b0, ..., bw, x) =< 

for all (b0, ..., bH,)€A0xAj.X...XAJsv and x£X„. It is not difficult to see that the 
correspondence n': t-*(at0, atjl, ..., atJJ) (i = l , ...,n) is an isomorphism of D„ 
into C. Therefore, we have that D„ can be embedded isomorphically into a v i+1-
product of automata from {A0, ..., Ak} with at most / + 1 factors. But a v i+1-
product with at most z + l factors is an a,+1-product and thus, in a similar way 
as in the first case, we obtain that D i + 1 can be embedded isomorphically into 

1 № 
a v rproduct of A, with a single factor for some 0 ̂ t s k . This ends the proof of 
Theorem 1. 

Observe that Dm can be embedded isomorphically into a v0-product of D„ 
with a single factor for any Using this fact, by Theorem 1, we get the following 

COROLLARY. There exists no system of automata which is isomorphically 
complete with respect to the v rproduct (i s 1) and minimal. 

In [1] F, Gecseg has introduced the concepts of the generalized a,-product and 
the simulation and characterized the isomorphically and homomorphically complete 
systems with respect to them. Further on we shall introduce the concept of the gene-
ralized v rproduct and investigate the isomorphically complete systems with respect 
to this product and the simulation. 
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We say that an automaton A~(X, A, §) isomorphically simulates B=(Y,B, S') 
if there exist one-to-one mappings p:B—A and x: Y-+X+ such that p(d'(b, y))= 
=5(p(b), x(y)) for any b£B and y£Y. The following obvious observation holds 
for the isomorphic simulation. 

Lemma 1. If A can be simulated isomorphically by B and B can be simulated 
isomorphically by C then C isomorphically simulates A. 

Let A,=(X,, A,, 5,) (t=0, . . . ,« —1) be a system of automata. Moreover let 
I be a finite nonvoid set, (p a mapping of A 0X.. . X ^ - i X l into 
and y a mapping of {0, ..., w —1} into P({0, ..., n — 1}) such that cp can be given 
in the form 

where each —1) is independent* of states, which have indices not contain-

ed in the set y(i). We say that A = |A', [J A,, <51 is a generalized v¡-product of 
V ( = 0 / 

A, (i =0, . . . , n—1) with respect to X, cp and y if |y(i)|=z ( i = 0 , ..., n—1) and for any 
n — 1 

(a0, ..., a„_i)€ IJ A, and x£X S((a0, ..., an^), x)=(80(a0, cp0(a0, ..., an_lt *)), ... 
t=o 

..., ¿„-i(a„-i, (p„-i(a0, ..., «„_!, x))). 
A system I of automata is called isomorphically S-complete with respect to the 

generalized -product if any automaton can be simulated isomorphically by a gene-
ralized Vj-product of automata from I . 

Observe that in the definitions of the simulation and the generalized v;-product 
all input words are different from the empty word. Therefore, further on, by an 
input word we mean a nonempty word. Also the following notation will be used. 
If k, s are integers and / is a natural number then k+s (mod /) denotes the least 
nonnegative residue of k + 5 modulo?. Furthermore, for any ra^l denote by 
Tn—(T„, {0, ..., n — 1}, <5„) the automaton for which T„ is the set of all transforma-
tions of {0, ..., n— 1} and S„(k,t) = t(k) for any ..., rc-1} and t£Tn. 

Lemma 2. If T„ can be simulated isomorphically by a generalized a0-product 
k 

]JAt(X,(p) then T„ can be simulated isomorphically by Aj for some {0, ..., k}. 
r=o 

Proof. Lemma 2 follows from the proof of Theorem 1 in [1]. Now we give 
another proof. Obviously it is enough to prove the statement for the generalized 
a0-product of two factors. Indeed, assume that T„ can be simulated isomorphically 
by the generalized a0-product A x B ( J , <p) under p and T. Let us denote by 
(a,,b,) the image of t under p (i =0 , ..., n — 1). If a0=a, for all t£ {1, ..., n — 1} 
then the elements bt (t — 0, . . . ,« — 1) are pairwise different. Now define the mapping 
x' in the following way: for any tu£Tn x'(tu) = cp^, y\)...cp^, ys) if x(tu) = y1...ys. 
Let us denote by p' the mapping determined by p'(t)=b, (t =0 , . . . ,« —1). It is 
not difficult to see that B isomorphically simulates T„ under p' and x'. Now 
assume that there exist natural numbers r^s (0=r, s=n~ 1) such that aT^as. 
In this case we show that the states a, (t = 0 , ..., n — 1) are pairwise different. 
Suppose that au=av for some u^v (0SM ,I )S«-1) . Let us denote by ti} the 
element of T„ for which ?;//) = j and tu(k) — k if k^i (&=0, 1, ..., n — 1) for all 



On v ¡-products of automata 153 

i,j Now let iv£{0, ...,«— 1} be arbitrary. Then tuw(u) — w and 
tuÁv)=v. By isomorphic simulation, (au, bu)x(tuw)=(aw, bw) and (av,bv)x(tuw) = 
=(av,bv). Let x(tuw) = y1...ym. Then au<p0(y1)...<pQ(ym)=aw and av<p0(y1)...(p0(ym) = 
=av. Therefore, by au=a„, we obtain aw=aD. Since w was arbitrary we got 
that a,=av for all {0, ..., n — 1} which contradicts our assumption ar^as. 
Now we have that the states a, 0 = 0 , . . . ,« —1) are pairwise different. In this 
case it is not difficult to see that A isomorphically simulates T„ under p.' and T' 
where n'(t)=at (t =0 , ..., n - 1 ) and for any tu6 T„ x'(tu)=<p0 OO • • • <Po 0 0 if T(í„) = 
= yi-ys-

Lemma 3. If T„ can be simulated isomorphically by a generalized vx-product 
k r 

JJAt(X, (p, y) then T„ can be simulated by a generalized v rproduct JJB,(X, cp', y') 
1=0 1=0 
where r^k, Bt<E{A0, ..., Ak} and y'(t) = {t-l (mod (r+1))} for any i€{0, ...,r}. 

Proof. We proceed by induction on the number of components of the generalized 
Vi-product. If k = 0 then the statement is obvious. Now let 0 and assume that 
the statement is valid for any / less than k. Moreover, suppose that T„ can be 

k 
simulated isomorphically by a generalized v^product JJ A,(X, (p,y). Define the 

1 = 0 

binary relation g on the set {0, ...,k} as follows: igj if and only if i=j or 
y(/) = {j} or y(j) = {;} for any {0, ..., k). Denote by q the transitive closure 
of q. Then q is an equivalence relation on {0, ..., k). Depending on q, we shall 
distinguish three cases. 

First assume that the partition induced by § has at least two blocks. Let us 
denote by q(j) the block containing j. By the rearrangability of the v.-product, 
we may assume that g(0) = {0, ..., m — 1}. From this, using the fact that | J y(s) g 

í £ Í (0 
k 

Q g(t) holds for any i€{0, ..., k— 1}, we obtain that J] A,(X, <p, y) is isomorphic 
( = 0 

to a quasi-direct product of two automata C2 and. C2 where Cj is a generalized 
Vj-product of A0, ..., Am_x and C2 is a generalized v rproduct of Am, ..., Ak. 
Therefore, by Lemma 1, Lemma 2 and our induction hypothesis, we get that the 
statement is valid. 

Now let us suppose that the partition induced by § has one block only and 
k 

there exists an «6{0, ..., k} with u$\Jy(t). By the rearrangability of v.-product, 
( = 0 

k 
we may suppose that u=k. Then observe that [J A,(X, q>, y) is isomorphic to 

( = 0 

a generalized a0-product of two automata Cx and Ak where Cx is a generalized 
Vj-product of A0, ..., Afc_1. From this, by Lemma 1, Lemma 2 and induction 
hypothesis, the statement follows. 

k 
Finally, assume that the partition induced by q has one block only and (J y(t) = 

<=o 
= {0, ..., k}. Consider the mapping / determined as follows: for any i€{0, ...,k} 

f(t)=j if and only if j£y(t)- By the definition of g and our assumption on g, 
it can be seen that / is a cyclic permutation of the set (0, ..., k}. Now rearrange 
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k k 
JJAt(X,(p,y) in the form J] Afk-,-i(X, cp', y'). Then, by the rearrangability 

1=0 <=o l0> 

of Vj-product and Lemma 1, we obtain that T„ can be simulated isomorphically 
k 

by JJAfk-c-i(X, q>', y'). On the other hand, it is not difficult to see that 
k 

J ] Ajk-t-i(X, q>\ y') satisfies the condition of our statement. This ends the proof of 

Lemma 3. 

Now we are ready to study the generalized v^product. We have 
Theorem 2. A system I of automata is isomorphically S-complete with 

respect to the generalized v rproduct if and only if one of the following three con-
ditions is satisfied by I : 

(1) for any natural number n > 1 there exists an automaton in I having 
n different states a, (t =0 , ..., n — 1) and input words q, (t = 0 , . . . , « — 1) such that 
a,qt=ai+i(modn) (*=0, . . . ,« —1), 

(2) I contains an automaton which has two different states a, b and input 
words p,q,r such that ctp=br=a and aq=bp=b, 

(3) there exists an automaton in I which has two different states a, b and 
input words p,q,r such that ap^bp, apq=bpq=a and ar=b. 

Proof. In order to prove the sufficiency of conditions (1)—(3) we use the follow-
ing observation. 

For any automaton A=(X, A, ó), A can be simulated isomorphically by 
T„ with n ^ m a x (2, |,4|). Therefore, by Lemma 1, if for any n ^ 2 the automaton 
T„ can be simulated isomorphically by a generalized Vj-product of automata from 
I then I is isomorphically ¿'-complete with respect to the generalized Vj-product. 
On the other hand, take the following elements tl312 and t3 of T„ 

t^k) = k+l (modrc) (k=0, ..., n—1), 

m = 1, í2(l) = 0, t2(k) = k (k=2, ..., n - 1 ) , 
i3(0) = i3(l) = 0 and t3(k) = k (k=2, . . . , « - l ) . 

It can be proved (see [3]) that the mappings h,t2, ts generate the complete trans-
formation semigroup over the set {0, . . . ,n — 1}. Therefore, the automaton T„ 
can be simulated isomorphically by the automaton 12, t3}, {0, ..., n — 1}, 5'n) 
where <5¿=<5n|(0 n-i}x{t1,r2,í3}- From this we obtain that if for any n ^ 2 the 
automaton T¿ can be simulated isomorphically by a generalized vrproduct of auto-
mata from I then I is isomorphically S-complete with respect to the generalized 
Vi-product. 

First suppose that I satisfies (1). Then it is not difficult to see that for any 
automaton A there exists an automaton such that A can be simulated 
isomorphically by a generalized vrproduct of B with a single factor. 

Now assume that I satisfies (2) by Ad I . Let n S 5 be arbitrary and take the 
generalized vrproduct A"{X, q>, y) where 

X = {W(: 1 S i < n} U 

U{v¡: 0 S i < n}U{x¡: 1 < i < l s i < « - l }U{y , x, y, z, w} 
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<Pt(a> yd = P, <p,(b,yd = { 

and the mappings y and <p are defined in the following way: for any {0, . . . ,« -

y(t) = l (mod n), 

cPl(a,ui) = p, (pt(b, u.) = (i=1)...;„_1); 

rr if t = i, f r if 0 < i < i, 
= otherwise, otherwise (i = 0, ..., n-1), 

fr if i S i S / l - 1 , 
V,ia,xd = P. <Pt(b,x,) = {p otherw.se ( . = 2) 

<PoO, J;) = P. <Po(&> J.) = <1, 

(r if 1 ^ t < i, i 2, 

Ip otherwise (i = 1, ..., n — 2 and / S i ) 

f r if l S i S n - 2 , 
„ , ( « , « > ) = / > , < P t ( M ) = j p o t h e r w i s e > 

<p0(a,x)=p, <p0(b, x) = r, cpt{a, x) = (p,(b, x) = p (t ^ 1), 

<p0(a, z) = p, (Po(,b, z) = r, <Pi(a, z) = r, ^ ( b , z) = p, 

<p2(a, z) = (p2(b, z) = p, <pt(a, z) = p, (p,(b, z) = r [t > 2), 

<p0(a, w) = q, <p0(b, w) = p, <p,(a, w) = p, (p,(b,w) = r (i ^ 1), 

«¡Co(a. JO = <Po(b, y) = (P,(a, y) = V,(b, y) = P (t ^ 1). 

Take the mappings 
0 - ( 6 , a, . . . , a ) , 

fi: \ 
n - 1 - (a, a, ..., b), 

^ - ft. ... 
T: ?2 - M3 ... M^^ jZMi . . . » „ - i ^ M s ... u n ^ v 0 x a u 2 . . . w„_ij>x2; 

/3 - u3... «„-jj/iZ«!... «„.xw, 
where 

ft = «J . . . M„_2t>„-XM1 ••• 

q2 = Mi... w„_3i>„_2i;o«i... H„_2;t,1_1;>„_2M„_1j', 

1i = U1 ••• un-i-lvn-iv0xn-i + 2un-i + 3 ••• un-lxxn-i + 3Un-i+2 ••• Un-1 

U1 ••• un-iXn-i + lUn-i + 2 ••• un-iyn-ixn-i + 2un-i + l ••• Un-iy 

if 4 ^ i < n — 1 and 

= ... u ^ x x ^ ... un^v^xzu2... uB^yx2. 
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Now we show that T'„ can be simulated isomorphically by A"(X, <p, y) under 
p and r. The validity of the equations p(S'„(j, td)—8A"(p(j), t(/,)) ( / = 2 , 3 ) 
(j=0, . . . ,« — 1) can be checked by a simple computation. 

Introduce the following notation 

uf = 

b if j = /, j ^ n — i — 1 or / = 1 , j>n — i — 1 
or t > n — i — 1, / > j , 

a otherwise, 

lSi '<n—2, OSi —1 and O^y'Sn—1. It can be proved by induction on i that 
f iO ' )? i - f c=(Hj?>- .« i? - i ) f o r a n y y'6{0, . . . , n - l } and l S i < n - 2 . On the 
other hand (u%~3\ ..., M}r? ))?„-2i„-i=/i(7+1 (mod n)) for any {0, ..., n-1}. 
Therefore, rfS'JU, 1 (mod«))=(M<r3 ) , . . . ,u%Z?)?.- 2?. - i = • • • - i = 
—8An(fi(j), T(ix)) for any y€{0, . . . ,« — 1}. This ends the proof of the sufficiency 
of condition (2). 

Now suppose that £ satisfies (3) by A<E I . Then there exist states a^A of 
A and input words />, <7, r such that ap^bp, apq=bpq=a and ar=b. Observe 
that it is enough to prove the sufficiency of (3) for the case a $ {ap, bp}. Indeed, 
assume that a£{ap, bp}. We distinguish two cases. If b £ {ap, bp} then p is a per-
mutation of the set {a, b} and thus the automaton A has the property required 
in (2). If b${ap, bp} then introducing the notations a'=b, b'=a, p'=p, q'=qr, 
r'=pq we obtain that a'p'^b'p', a'p'q'=b'p'q'=a', a'r'=b' and a' i 
$ {a'p', b'p'}. Therefore, without loss of generality we may assume that a $ {ap, bp}. 
Now let « ^ 6 be arbitrary and take the generalized Vi-product A"(X, <p, y) where 
X={xu ..., x8} and the mappings y, <p are defined in the following way: for any 
i€{0 n-1} 

7(0 = { i - l ( m o d n)} 

(Pt(<*, = P1> <Pi(b,x1) = r, 

f p if t — 1, fp if t = 2, 
Vti.0, x i ) — [pgp otherwise, = 1 r p otherwise, 

<P,(ap, xs) = q, <p,(bp, x3) = qr, 

(pq if t = 1, 
1 p otherwise. 

(qp if b ap, (r if t = 1, 

a 
<P,{a,Xi) = p, cpt(blXi) = \ p otherwise> 

fqp if b ^ ap, ( 
(p,(a, x5) = if b = ap

 < p , ^ a p ' = q' Xs) = [ 

( q if t = 2, 
<p,(a, xe) = p, <p,(b,xB) = | 

qr if t j i 1, 

.p otherwise, 

(pq if b ap, (pq 
<p,(ap, x6) = ^ otherwise) <P,(bP, = Xe) 

if b = ap, 
otherwise, 
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(p,(a,x7) 

P 
qp 
rp 
VP 

if b 5*= ap, 
if b ap, 
if b = ap, 
if b = ap, 

<pt(ap, x j = q, <pt(bp, x,) = i 

<P,(ß>*8)={ P 

M P 

<p,(ap,x8) = 

<PÁbp,xs) = 

if t = 3, 
otherwise, 

(P,(b,xs) 

t = 3, 

Í = 3, 
3, 

if / = 2, 
otherwise, 

qp if t = 3, 
p if í = 4, 

rp otherwise, 

<?rp if ap, i = 4, 
p if i ^ ap, / = 5, 

(pt(b, x8) if ft = ap, 
an arbitrary input word otherwise, 

qrp if b = ap, t = 4, 
p if b = ap, t = 5, 

<Pt(b, x8) if b 5* ap, 
an arbitrary input word otherwise, 

and in all other cases cp, is defined arbitrarily. Take the following mappings 

0 (b, a, ..., a) k "*" 
¿I • I T * XJ ,XG X 3 XJ 

n - 1 — (a, ..., a, b) t3 • Xf X'j X™ 

Distinguishing the cases b=ap and b^ap it can be seen easily that 
№«U) ,h )=SA- tyU) ,< td ) for any j 6 (0 , . . . , n - l } and /£{1,2,3} which yields 
the sufficiency of (3). 

In order to prove the necessity assume that none of conditions (1)—(3) is 
satisfied by Z and I is isomorphically ^-complete with respect to the generalized 
Vj-product. Since I does not satisfy (1) there exists a natural number 2 such 
that I does not contain an automaton having the property required in (1) for any 

n^m. Let n>rrv-2' be an arbitrary fixed natural number. By the assumption 
on the isomorphic ^-completeness of I , there exists a generalized v^product 

B = n tp, y) of automata from I such that T„ can be simulated isomor-
i = 0 

phically by B under suitable p and T. By Lemma 3, we may suppose that y(t) = 
= {t—1 (mod &)} (t = 0 , . . . , k — 1). Let us denote by (a10, ..., a^ - i ) the image 
of / under p for any /£ {0, ..., n — 1}. Consider an arbitrary nonvoid subset 

k-1 
r={j\, ..., jr} of the set {0, ..., k—\). Define a relation nr on ]J At in the 

f=o 
following way: (a0, ..., ctk_j)nr(b0, ..., ¿>fcix) if and only if a, s_ ( r ) +„ ( m o d f c ) = 

3 Acta Cybernetica VI/2 
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= bi.-(?)+u(moAk) ( « = ! . •••> ( 2 ) ) , (•*=!, •••>'•) for any (a0, 
* - l k-1 

£ /7 A,. It is clear that nr is an equivalence relation on 77 Now let us de-
r=o _ 1=0 _ _ 

note by B the set {(¿r/0, x): and let nr=nrn(BxB). 
We shall show that (a0, ..., ak_x)nr (b0, ...,bk_1) implies (a0, ..., ak_1)z(t)nr, 

k-1 
(¿>o, . . . A - i M O for any tcT„ and (a0, ..., ^ . j ) , (b0, ..., 77 where 

<=0 
r' = {js+ |T(i)|(mod k): 1 ^ i S r } . Indeed, assume that (a0, ..., a t _ x ) nr(b0, ..., bk_1) 
and let t£T„ be arbitrary. Since Tn can be simulated isomorphically by B there 
exist tx, t2, t3£T„ such that 

(a„, . . . .a fc .OTiOrCi! ) = (b 0 , . . . , ^ - i ) T ( O T O I ) , 

(a0, ..., «»-iMOTfoMfg) = (¿o, ..., bk.J, 

(b 0 , . . . , ¿t-^TCOTCOtCig) = (a 0 , . . . , flt.j). 

Let R(F) = * I . T ( / 1 ) = X j + 1 . . . X j + u , = and T(/3) = Z1...Zh,. In t roduce 
the following notations 

q™ = <p,(«t-i(mod*), *i) 0 = 0, . . . , k - 1 ) , 

= ^(a.-Umodkl^-Kmodfe) ••• ^-Ir-Mmodk), *f) 0 = 0, . . . , k~ 1), (2 3a I S j + u), 

qiP = <p,(bt-Hmodk), x j (t = 0, .. . , k-1), 

q{P = <p,(b,_ 1 ( m o d k )qif l 1 ( m o d k ) . . . 9i (- i<-i(mod*/) 0 = 0 , . . . , k - 1 ) , (2 = Z =• j + u), 

Pit = <P, (a<-l(modk)<7l?-l(modfc) ••• <7j + ur-l(modfi)> -Vl) = °> •••> k~l), 

Pit — tyt fat — l(mod kytyu — l(mod k) ••• <7j + ut-l(modfc)i?lt-l(modfc) ••• Pi - It - l(mod k) > J'l) 
(t = 0, . . . , / c - l ) , (2 S l S D ) , 

rlt = tytiPt — l(modfc)l(mod fc) ••• + ut-1 (mod 10 > z l ) ( ' = 0, ..., Zc — 1), 
rlt = 'Pi (^r — 1 (mod/c)(7lf— l(modk) ••• t l j + tit-l(modk)rlt-l(modk) ••• '*i-lr-l(modfc)> zl) 

0 = 0, . . . , / c - l ) , ( 2 S / S W ) . 

Then, by the above equations, we have that for any ¿€{0, ..., k — 1} 

(i) atq<£> ...q?lM = biq™ ...qflut, 

0 0 a t q ^ .. . q?lu ,Vu . . . p t t t = b „ 

(iii) b,q{? ... qf}m rlt... rwt = a,. 

Now let us denote by ..., (b^, ..., the states (a0, ..., ak_x), 
(¿0, and (a«'», ...,4^), the states (a0, ..., ak_1)xl...xi, 
(bo, ..., bk_i)xl...xi (/ = 1, respectively. To prove our statement we show that 
(#o> •••, tf/i-i) 7ir(b0, ...,bk^) implies (<#>, ..., a^l^n^b^, ..., ¿¿'20 for any 
0 w h e r e r , = {./ s+j (mod k): l S s S r } . We proceed by induction on /'. 
(fif^0), ..., afc-iW0(6o0), ..., ¿ f J i ) obviously holds. Now assume that our statement 
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has been proved for / - 1 ( l ^ i ^ j ) . Then from ( 4 i _ 1 ) , •••, ... 
it follows that 

fli,-Cr) + / + i - l ( m o d f c ) — ^ - ( J ' t + Z + i - l f m o d / c ) ( ' = ! > • • • > ( " ) ) > fa == 1» ••• , r ) -

Therefore, by the definition of we have that 

f y , - ( £ " ) + / + i - l fmodk) = - + / + i - l(mod fc) ( ' = 2 , . . . , ( ? ) + l ) , ( i = l , . . . , r ) 

and thus a^_(T)+l+Kmoik) = b^_0+l+Kmoik)(l = l, ( s = l , r ) . 
Now, if aj|)+i(modt)=^+i(modt) for all l ^ s ^ r then we get that 

(¿4°, •••,<tkld7lri{boi), •••,Hii1) and so we are ready. In the opposite case there 
exists an index s€{ l , ...,/•} such that afs\i(modk)^b(/Jf i ( m o d k ) . Let us denote by 
/ the index js+i (mod k). Then ajl) ^bp. From this, by qi})=q\f, it follows 
that a}1-1)¿¿by-1* and a}'-1'»qf}>¿¿b}'-1)q\}\ Now let A = min (j+u-i, ( i r ) - l ) . 
Then, by 4-(D+/<modk)=fc/-(r>+i<mod*) = •••» ( " ) - ! )» w e have that q$lf = 
=<? ,%( / = 1, . . . , ( ? ) - 1 ) . Therefore, Now we show 
that aPq$lf...q}l\f=b}i)q$lf...qil\f. Indeed, if h = i+u-i then we get the 
required equality from (i). If h=($) — 1 then let us consider the sets Ml ( / = 0 , ...,h) 
defined by M0= {a}», £/>} and Ml=Ml_xq^ls (/ = 1, ..., h). If |Af,| = l for some 
/€{1,.. . ,A> then a P q V l f . . . q \ % = b P q { % . . . q \ % and thus 
=b}')4i+if---4i+hf • Therefore, it is enough to consider the case for which |M, |=2 
for all ¡e{0, ..., h). If Mg=Mt for some sh then Mgp=Ml where 

=<7'+9+1/-••?;+//• But in this case it can be seen easily that the automaton Ay-
has the property required in (2) which is a contradiction. Now consider the case for 
which \Mt\=2 for all /6{0, ..., h) and the sets M, ( / = 0 , ..., h) are pairwise differ-

h 
ent. It is not difficult to see that from (ii) and (iii) it follows that for any a, b£ | J Ml 

1=0 
there exists an input word p of Ay with ap=b. From this, by the definition m, 

h 
we obtain that (J Mt =m'<m. Thus we got that a set with cardinality m'(-^m) 

1=0 
has (J1) pairwise different subsets of two elements which is a contradiction. There-
fore, we have proved that a}** q$lf...q$hf=b}i) q$lf...q$hf. In this case, by 
(i), (ii), (iii), it can be seen easily that the automaton Ay with the states ¿ / i - 1 ) 

has the property required in (3) which is a contradiction. So we get a contradiction 
from the assumption a<ji>+i(modk)^b'ji]+i<moik) for some s£ (1, ..., r}. Therefore, 
aji)+K««i-*)=^)

+i(mod») for all s£{ 1, . . . , r} and thus («#>, ..., af*ljitri(bif>, ...,&£>,). 
From this, by i=j we obtain that (a0, ..., ak_1)x1...xJTirj(b0, ..., bk_1)x1...xj i.e. 
iaa, ...,ak^x(t)nrJb0, ...,bk^x(t). On the other hand (a0, ..., ak^1)x{t), 
(b0, ..., bk_1)z(t)£B and thus (a„, ..., ak^1)x(t)nr, (b0, ..., ¿>fc_1)r(i) which ends the 
proof of the statement. 

Since there exists a subset rQ {0, ..., k — 1} such that n 
where AB denotes the identity relation on B. Therefore, the set C = {i: f Q 
£{0 , ..., k — 1}, 7 V 0 , nr^AB} is nonempty. Then let us denote by r={j1,...,jr} 
such an element of C for which \r\ is maximal. Since n r 7 i A B there exist u ^ 

. . . ,« — 1} with p(u)nrp(v). Consider the element tx£Tn defined by t1(u)=v, 
h{v) = u and ?i(/)=/ if /6{0, ..., n —1}\{«, v}. By the isomorphic simulation, 

3' 
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we have that n(u)x(t1) = li(v), A<(uMOj=/i(") and n(l)x(tl)=n(l) j f / € { 0 , . . . , « - l } \ 
\{u, u}. On the other hand ¡i(u)nrp(v) and thus / (w)i(/1)7tr, ^(d)t(O , where 
^ = +11(01 (mod k): l^s^r}. Therefore, n(u)Tfr p(v). It is clear that the 
mapping ft:|r(OI(mod (/ = 0 , . . . , k — 1) i f , a permutation of the set 
{0, . . . ,A:-1} and thus \r\ = \r ' \ . By the maxima lit/ of \r \ we have that f ' Q f 
and thus r = T ' . This means that the mapping ft fixes the set F, i.e. ft(r) = F, 
where ft(F) denotes the set {f t ( i ) : igT}. On the other hand it is not difficult to 
see that ft fixes a subset M of the set {0, ..., fc — 1} i f a n d o n l y i f 

M = {/, /+11(01(mod k),...,/+(/-l)|r(OI(mod *)} 

for some z'£ {0, 1 , ..., g.c.d. (k, | T ( 0 | ) —1} or M is equal to an union of such sets, 
where g.c.d. (k, | t (O I ) denotes the greatest common divisor of the numbers k, | t ( 0 | 
and f=k/g.c.d(k, KOI)- Furthermore, it is clear that the considered sets m , = 
= {/, z'+|T(OI(mod k), ..., i + (/— 1) | t ( 0 I (mod k)} form a partition of {0, 1}. 

9 _ 
Thus assume that r = \ J m i t . Now consider the set B\{n(u), p(v)}. Since « S 3 

i = i 
there exists an element wg {0, . . . ,« — 1} such that n(w)£B\{fi(u), p(v)}. Let us 
denote by t2 a cyclic permutation from T„ with t2(u)=v and t2(v)=w. By the 
isomorphic simulation we have that /i(u)x(t^)=p(v) and n(v)x(t2)=fi(w). On the 
other hand pi(u)nr fi(v). Therefore, fi(u)x(t2) nr, ¡x(v)x(t2) where F ' = { J S + | T ( 0 | 

(mod k): l S i ^ r } . Since the mapping ft: t—1+ | f ( 0 | ( m o d k) (t = 0 , ..., k—1) 
is a permutation of {0, ..., k — 1} we obtain that | r | = | r ' | . Now we distinguish 
two cases. 

First assume that r = r ' . Then it is not difficult to see that ¡i (u) n r ¿¿(/) holds 
for any l£{0, . . . ,« — 1} which contradicts the maximality of | r | . 

g 
Now assume that F ^ T ' . Observe that r ' = \ J ()2(mit) and ft («?,-,) = 

r=i 
= /Mi t + |t«2)i(modg.c.d.(ifc,|t(r1)|)- Therefore, from | r | = | r ' | and J V r ' it follows that 
there exists an index ./£{0, ..., g.c.d. (k, | t (OI ) — 1} with rrijOF—Q and rrij Q F'. 
On the other hand p(v)nr,p(w) and thus p(v)x(O^r-Kw)T(0 where r " = f t ( r ' ) . 
By fi(v)x(tj)=fi(u) and n(w)x(t1)=fi(w) we obtain that n(ii)nT., //(w). Since 
ft fixes the sets mt (z' = 0, ..., g.c.d. (k, | x ( O I ) - l ) we have that rrijgF". Then 
jer' and j£F" and thus 

avj-(™) + l(modk) — aH7-(J")+/(mod/t) ( ! = 1> •••> («))> 

flW/-(£•)+/(modJfc) ~ a«/-(J') + /(modfc) ( ' = 1, •••, (")) . 

From this it follows that j £ r which is a contradiction. This ends the proof of the 
necessity. 

The next theorem holds for the generalized v r product if / > 1 . 

Theorem 3. A system I of automata is isomorphically ¿'-complete with respect 
to the generalized vf-product ( z > 1) i f a n d o n l y i f I contains an automaton which 
has two different states a, b and input words p,q such that ap=b and bq=a. 

Proof. The necessity is obvious. Conversely, assume that I satisfies the con-
dition of Theorem 3 by A. Let « S 3 be arbitrary and take the generalized v2-product 
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A \X ,q>,y) where X = {xlt ..., x6} and the mappings y, <p are defined in the 
following way: for any i€{0, ..., n — 1} 

7(0 = {t, i - l ( m o d n ) } , 

(p,(a, a, = pq, cpt{a, b, x j = q, (p,(b, a, x j = p, 

<p0(a, a, x2) = (p0(b, a, x2) = p, cp0(a, b, x2) = q, cp^a, a, x2) = pq, <px{a, b, x2) = q, 

fpq if v = a, 
[qp if v = b, (i = 2, ..., n - 1 ) , 
i f 

(pi(b, a, x2) = p, (pt(u, v, x2) = \ 

<p,(u, v, x3) = I 
pq if v = a, 

<P,(u, v, x3) = 

qp if v = b, (t = 0,1), 

p if v = a, u= b, 
pq if v = a, u = a, 
qp if v a (t = 2, ..., n — 1), 

(po(a, a, x4) = <pa(b, a, x4) = pq, (p0(a,b, x4) = qp, (p0(b, b, x4) = q, 

fpq if v = a, 
q>t(u, v, x4) = 1 

I qp if v = b, {t = 1, ... ,n — 1), 

(p,{u, V, x5) = r 
t<5 

rpq if v = a, 
[qp if v = b, (t = 0,1), 

q if u = v = b, 
(pt{u, v, x5) = qp if u = a, v = b, 

pq if v = a, (t = 2, ...,n-\), 
<p0(a, a, Xq) = (Po(b, a, x6) = p, <p0(a, b, x6) = qp, 
(piia, a, x6) = (px(b, a, x6) = pq, <px(a, b, xe) = q, 

pq if v = a, 
qp if v = b, (t = 2, ..., n — 1). 

cp,{u, v, xe) = I 

In the remaining cases <pt{u, v, Xj) is an arbitrary input word from {p, q). Now 
consider the mappings: 

0 - {b, a, ..., a), t1-"X1, 
¡x\ 1 —(a,b,...,a), r: t2 x2x3~3x4x5, 

• t3 - xexn
3

 3 X 4 X 5 . 

n - 1 — (a, a, ..., b), 
It is not difficult to see that the automaton T„ can be simulated isomorphically by 
An(X, cp, y) under p and T. 
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Decomposition results concerning X-visit attributed 
tree transducers 

B y Z . F U L O P 

The concept of attributed tree transducer was introduced in [1], [4] and [6]. 
On the other hand, the 1-visit, pure if-visit and simple K-visit classes of attributed 
grammars were defined in [3] and [5]. In this paper, we formulate these properties 
for deterministic attributed tree transducers defined in [6] and prove some de-
composition results. Namely, we show that each tree transformation induced by a 
pure A"-visit attributed tree transducer can be induced by a bottom-up tree transdu-
cer followed by an 1-visit attributed tree transducer. Here, the bottom-up tree trans-
ducer can be substituted by a top-down one. Moreover, each tree transforma-
tion induced by a simple A"-visit attributed tree transducer can be induced by a 
deterministic bottom-up tree transducer followed by an 1-visit attributed tree trans-
ducer. 

1. Notions and notations 

By a type we mean a finite set F of the form F= IJ F„ where the sets F„ 
11 - (;> 

are pairwise disjoint and 
For an arbitrary type F and set S the set of trees over S of type F is the 

smallest set TF(S) satisfying: 
(i) F0U SQTF(S), 

(n)f(Pi, -,Pn)6TF(S) whenever f£Fn,Pl, ...,PneTF(S) (n>0). If 5 = 0 
then TF(S) is written TF. 

The set of all positive integers is denoted by N. Let N* denote the free monoid 
generated by N, with identity A. 

For a tree p(£TF(S)) the depth (dp (p)), root (root (/?)), the set of subtrees 
(sub (p)) of p and paths (path (p)) of p as a subset of N* are defined as follows: 

(i) dp (p)=0, sub (p) = {p}, root ( p ) = p , path (p) = {A} if p € F 0 U S , 
(ii) dp (p) = 1 +max {dp (/Oil Si^n}, root (p)=f, sub (p) = {/>}U(U(sub (p ;)| 

11 ^ z = ")). Path (p) = {A} U {w 11S / S n, i; € path (/?;)} if P=f(Pl, ...,p„) (n>0,fzF„). 
Subtrees of height Oof a tree p(€TF(S)) are called leaves of p. 
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For each p(£TF(S)), w(£pa th (p ) ) there is a corresponding label lbp(w) 
(6 .FUS) and a subtree strp (w) (6 sub (p)) in p which are defined by induction 
on the length of w: 

(i) lbp(w)=root(/0, strp(w)=/> if w=X, 
(ii) lbp(vv)=lbp,(o), strp(vv)=strpi(i>) if w=iv, p=ftpi, ...,p„), 1 
In the rest of this paper, F, G and H always mean types, moreover, the set of 

auxiliary variables Z = {z0,z1, ...} and its subsets Z„ = (z1, ..., zn} (n=0,1,...) 
are kept fixed. Observe that Z o = 0 . Let n s O and p£TF(Z„). Substituting the 
elements sl3 ..., s„ of a set S for z1 ; ...,z„ in p, respectively, we have another 
tree, which is in TF(S) and denoted by p(sl} ..., sn). There is a distinguished 
subset tf(Z„) of 7>(Z„) defined as follows: p£fF(Zn) if and only if each zf 
( l ^ / S n ) appears in p exactly once. 

We now turn to the definition of tree transducers. The terminology used here 
follows [2]. 

Subsets of TFXTG are called tree transformations. The domain of a tree trans-
formation r(<=TFx TG) is denoted by dom r and defined by dom T = {p £ TF\(p, q)£ t 
for some Q£TC}. The composition t^ota of the tree transformations tx( QTFX TG) 
and T2(QTgXTH) is defined by T 1 O T 2 = { ( / > , q)\(p, R ) € T X , (r, q)£?2 for some r). 
If and are classes of tree transformations then their composition ^ o ^ 
is the class {T1o?i\Ti€.'81, T2e<^2}. 

By a bottom-up tree transducer we mean a system A=(F, A, G, A', P) where 
A is a nonempty finite set, the set of states, A'(QA) is the set of final states, moreover, 
P is a finite set of rewriting rules of the form f{axzx, ..., akzk)-*aq where k^O, 

f£Fk, a, au ...', ak£A, qdTG(Zk). A is said to be deterministic if different rules in 
P have different left sides. P can be used to define a binary relation => on the 

* 

set TF(AXTG). The reflexive, transitive closure of => is denoted by => and 
A A 

called derivation. The exact definition can be found in [2]. The tree transformation 
induced by A is a relation x A C^T F xT G ) defined by 

= {(P> f o r s o m e a ( £ A % A 

A top-down tree transducer is again a system A = ( F , A, G, A', P) which 
differs from the bottom-up one only in the form of the rewriting rules. Here, 
P is a finite set of rules of the form af(zx, ..., zk)-^qfaz^,..., atzh) where k, 1^0, 
f£Fk, a, ax, ..., at€A, 1==^, ..., q£fG(Z,). Moreover, A' is called the set 
of initial states. The relation => can now be defined on the set TG(AxTF) and 

A 
* 

its reflexive, transitive closure is again denoted by => (c.f. [2]). The tree transforma-
A 

tion induced by A is a relation t A (QT F XT G ) defined by 

U = {(P> q)\aPTQ f o r s o m e 
A 

The following concept of attributed tree transducer was defined in [6]. We repeat 
this definition, .with a slightly different formalism, because this new one seems to be 
simpler. Moreover, we allow not only the completely defined but the partially 
defined case as well. : ; . 
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= C 

By a deterministic attributed tree transducer, or shortly DATT, we mean a 
system A=(F, A, G, a0, P, rt) defined as follows: 

(a) A is a finite set, the set of attributes, which is the union of the disjoint sets 
As and Ai where As is called the set of synthesized attributes, At is called the 
set of inherited attributes; 

(b) a0eAs; 
(c) rt is a partial mapping from At to TG; 
(d) P is a finite set of rewriting rules of the form 

a f ( z 1 , ... ,zk) - q(a1 Zjj, • ••, a t z j ) (1) 

where k,l^0,f£Fk, q£TG(Z,), a£As, OS.j l t ar£At if jr=0 and arf_As 
if ( r = \ , . . . , / ) as well as rules of the form 

«(zj,f)-q(a1zjl,...,alzs,) " (2) 

where f£Fk for some fc(3?l), 0, a£Ai} 1 tkjsk, q^fG(Zd, ..., j^k 
and ar is the same as above (V=l, ...,/)• Any two different rules of P are re-
quired to have different left sides. 

From now on, for the sake of convenience we shall use the following notation 
for each element x of the set N U {0} 

if x£N 
if x = 0. 

Let p£TF. We can define the relation <== on the set TG (A X path (p)) 
P, A 

in the following way. For q, r[£TG(AXTpa.th(p)) q <== r if r is obtained from 
q by substituting the tree q((aly Vj), ..., (ah v,)) for some leaf (a, Xpath (p)) 
of q if either the condition (a) or (b) holds: 

(a) (i) a£As, 
(ii) lb„(w)=f(eFk for some kss0), 
(iii) the rule (1) is in P, 
(iv) vr = wj, (r=\, ...,/); 

(b) (i) a e A h 
(ii) w=vj for some j(£N), 

(iii) ]bp(v)=f(eFk for some k^X), 
(iv) the rule (2) is in P, 
(v) vr = v]r (r— 1, ..., /). 

Observe that a leaf of q which is in AtX {A} can never be substituted because, 
for such a leaf, neither (a) nor (b) can hold. Therefore we define the relation 
"<== concerning r t" which contains -<== in the following manner: q <== r 

p, A p, A p, A 
concerning rt if either q <== r or r is obtained from q by substituting rt(a) 

P, A 
(if it exists) for a leaf (a, ?,)(£AiX{/-}) of q. Let the n-th power, transitive closure, 

n + * reflexive, transitive closure of <== be denoted by < = = , <== , •<==, respectively, 
p, A p, A p, A p, A 

and similarly for the relation <== concerning rt. We can now define the tree 
p, A 
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transformation rA(QTf X TG) induced by A in the following way 

Ta = {{p, q)\(a0, A) <== q concerning rt}. 
p, A 

* 

An example for a DATT can be found in [6]. The relation <== is called 
p, A 

* 
derivation. The length It (a) of a derivation a=q<==r is defined as the integer n 

P. A 
n 

for which q <== r. 
P , A 

In the rest of this paper, by a DATT we always mean a noncircular DATT 
(see [6]). ' 

Before going on, we make an observation which will often be used without 
reference. Let p£TF, wgpath (p), / s 0 , q£fc(Z,), a£As, al, . . . , a^A, and let 
strp(w) be denoted by P w . 

Suppose that 
(a, w) <== q((au w), ..., (a„ w)) (3) 

p, A 

and there is no step in (3), in which, a leaf in /);X{w} is substituted. Then 

(a, A) ^ = 9 ( ( f l l , ; . ) , . . . , ( f l | , A ) ) 
P W.A 

and the converse also holds. 
The classes of all tree transformations induced by top-down tree transducers, 

(deterministic) bottom-up tree transducers, deterministic attributed tree transducers 
are denoted by ST, respectively. 

2. K-visit attributed tree transducers 

Let A(=(F, A, G, a0, P, rt)) be a DATT and let -K(s l ) be an integer. 
By a partition of A we mean a sequence ((/1; S^), ..., (/,, 5,)) where Ij (S}) 

are pairwise disjoint subsets of At (As) whose union is At (AJ. Let <PK(A) 
denote the set of all partitions of A with / ^ K. 

Now let f£Fk (/c=0), e'£>PK(A) with e<=((/{, S{), ..., (/, ' , 5,',)) ( / = 0 , 1, ..., k). 
The oriented graph Df(e°, e1, ..., ek) is defined as follows. Its nodes are the symbols 
I f , Sj (J — l, ..., A,) and the symbols I j , Sj (/ = 1, ..., k, j = ..., /,). Edges are 
oriented for each 

( i ) 7 ( = l , ...,/0) from I j to Sj; 
( i i ) ; ( = l , . . . , / 0 - l ) from Sj to 7/+1; 

(iii) /(= 1, ..., k), j(= 1, ..., /,) from Ij to Sy, 
(iv) i ( = l , ..., k),j(=i, . . . , / ; - 1 ) from S) to 7j+ 1 ; 
(v) j(= 1, . . . J o ) , a(eSj) from x]> to Sj if there is a rule af(zu ..., 

~-q{axzh, ...,ctizh) in P for which as£\'*> under some s(= 1, . . . , / ) , r ( = l , . . . , / , ), 

(vi) /(=1, ..., k), J(=i, ..., /¡), a(€/ j ) from AVS to / j if there is a rule 
a(zi, f)<-q(a1zil, ..., atZ;) in P with as£X}' under some s,r, X defined as in (v). 
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The graph Df(e°, e1, ..., ek) corresponds to the concept of partition graph for 
a production of an attribute grammar, which concept was introduced in [5]. 

Let p(=f(pi, •••,pk))dTF (k>Q,f£Fk) and consider a mapping n: path (p) — 
*4>K(A). The mappings 7i': path (p,)-*-^k(-4) are defined by n'(w) = Ti(iw) 
(/ = 1, ..., k, wepathOi)). 

Now, let again p^TF and n: path (p)^<PK(A). The oriented graph Dp(n) 
is defined by induction on dp (p): 

(i) if p = / ( € F 0 ) with n(X) = e then Dp(n) = Df(e)-
(ii) i f p = f ( p 1 , ...,pk) (k>0, fdFk) w i t h jt(A) = e, 7i(i)=e' (i = 1, . . . , k) t h e n 

Dp(n) = Df(e, e1, ..., efc)U(U(ZJ^C71'")11 = ' =£)) where D'Jiz') is obtained from D^n') 
by "multiplying its nodes by /"', that is, the nodes of D'p.(n'), are the symbols Xj.w 

where X™ are nodes of Dp.(n'), moreover, there is an edge from Xiw to Y's" 
in D'pi(nl) iff there is an edge from X? to Ys

v in Dp.(n'). Nodes and edges of 
graphs are combined as sets. 

Definition 1. We say that A is pure AT-visit, if for each dom t a ) there 
exists a 7t: path (p) — <PK(A) with acyclic Dp(n). 

To support this definition, the following observation can be made. If Dp(n) 
is acyclic then a computation sequence (see in [5] for attribute grammars) can be 
constructed, which induces a AT-visit tree-walking attribute evaluation strategy on p. 

Definition 2. Suppose that to each f(£F) there corresponds an element 
ef of ^k (A ) and let TlK = {ef\f^F}. A is said to be simple K-visit concerning 
IIK if for each / > ( 6 d o m T a ) there exists a 7r: path (p)—77K for which the following 
two conditions hold: 

(i) if lbp(vv)= / then n(w) = e f (w£ path (p)), 
(ii) Dp(ji) is acyclic. 

A is simple A-visit, if it is simple Af-visit concerning some i IK . 
The classes of all tree transformations induced by pure, simple' K visit DATTs 

are denoted by 3>sdPK, respectively. Observe, that <P1(A) = {(Ai, As)} so, in 
the particular case K = 1, the two properties defined above are identical. There-
fore and they can be denoted by Q)siv 

Theorem 3. For each A"(sl), M p j c f o ® ^ . 

Proof. Let A(=(F, A, G,a0,P, rt)) be a pure A'-visit DATT. Consider the 
bottom-up tree transducer B(=(F, B, F, B', P )) where 

(a) B=B'=<PK(A); _ 
(b) for each TO(SO), Fm is defined as follows < / ; e, e1, ..., ek}£ Fm if and only if 
(i) f£Fk for some k(^0), 

(ii) e,e\...,ek€0K(A), 
(iii) m = /1 + ... +lk where is the number of components of e' (/ = 1, ..., k), 
(iv) Df(e, e1, ..., e*) is acyclic; 
(c) for each 0), < / ; e, e1, ..., ek> (£Fm) the rule 

times l k times 

/ ( e ^ j , ...,ekzk) - e < / ; e, e1 ek)(Zl, ...,Zl, ..., zk, ..., zk) 

is in P'. 
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Moreover, let the DATT C = ( F , C, G, c0, P", rt") be defined as follows 
(a) CS=AS, Ci = Ah c0 — a0, rt" = rt; 
(b) P " is constructed in the following way. Let тшО, < / ; e , e1, ..., e t>£Fm 

with е=(( / 1 э S J , . . . , ( / „ Sd) and ¿={(Jl, S{), ...,(//,, S{)) ( I s j ^ k ) . For 
each a(eC s) let the rule a < / ; e, e1, ..., e*> (z,, ..., z j - ^ z ^ , a sz i t) be in 
P" if the following conditions hold: 

(i) af(zl,...,zk)~-qKZj4, ..., asZj)eP, 

• _ p V ( = 0 ) if ar€A, (r = l,...,s) 

' ' ~ [k+.-. + l^-i + n if a£Sl* for some n ( = 1, . . . , lJr). 

Moreover, for each j ( = l , . . . , k ) , n(= 1, ..., /,•), a^OlU...KJIl) let the rule 
a(zh < / ; e, e1, ..., ^ » - i ^ z , - , . . . , asZt) be in P" if 

(0 a(zj, f ) - q{axzh,...,aszJt)£P, 

(ii) i = h+... + lj-г + п, 

ш = 0 ) if ar£A, (r = 1, . . . ,S) 
r _ I / i + .-. + ^ - i + M if for some и = (1, . . . , lJr). 

The 1-visit property of С can be shown in the following manner. In [3], it was 
proved that an attributed grammar is 1-visit iff each of its brother graphs is acyclic. 
We can formulate the concept of the brother graph for DATTs and can easily show 
that each brother graph of С is acyclic. 

The proof of the next lemma can be performed by a simple induction on dp (p) . 
* _ _ Lemma 4. Let p£TF,e£B. Then p=>eq for some TF) if and only 
В 

if there exists а л: path (р) — Фк(А) with 71(A)=e and acyclic Dp(n). 

Lemma5. Let p£TF, q£TF, qefG(Zs), ..., а.€Л„ e£B with e = ( ( / l 5 ... 
. . . ,( /[ , ¿¡)) and let a £ S j for some ; ' ( = 1 , . . . , / ) . Suppose that a n d 

(a, A) <=*= q((au A), ..., (as, A)). Then au . . . , a ^ A U . . . U/,-. 
p , A 

Proof. It follows from the previous lemma that there exists а л: path (p) — 
-*ФК(А) with я(А) = е and acyclic Dp(n). Suppose that, say, a ,£ l k where k>j. 
Then, by the definition of Dp(n), there is a path from Ik to Sj in Dp(n) due 
to the dependency edges of Dp{n). On the other hand, there is a path from Sj to 
Ik in Dp(n) because k>j, which contradicts the fact that Dp(n) is acyclic. 

Lemma 6. Let a£As, p£TF, q£TF, ?еГ с (Л ; х{А}) , eg5 . Suppose that 
* * _ * 

(a, A) <== q and p=> eq. Then (a, A) <== q. 
p , А В q, С 

Proof. The proof can be performed by induction on dp (p). 
(a) Let dp (/>)=() i.e. p=f(£F0). Then by supposition, af~-q'(a1z0, ...,aszc)£P 

(s^0,_q'£tG(Zs), au ..., as£A;), q=q'{(a1, A), ..., (a„ A)), moreover, f - e ( f ; e)£P' 
and q = (J\ e>. Therefore, by the definition of С, а < / ; e> — q X ^ z 0 , ..., asz0)£P". 
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* 
(b) Now let dp ( p ) > 0 that is p=f(p1, ...,/?*) (k>0,f£Fk). Here, p=> eq 

B 
can be written in the form 

P=f(Pi, •••> Pk) ̂ /^ft, --,ekqk) => 
IS 15 

/, times lk times 

e < / ; e, e1, . . . , e*>(ft, ft, . . . , qk, ...,qk) = eq 
with 

eJ' = (№', W j , SQ) ( j = 1, . . . , 7 c ) . 

First we can prove the following 
STATEMENT. Let 1 ^ j ^ k , 1 ^ n ^ / , • , b 61{U. . . U Pn, t£ TG{A¡X {!}) and suppose * * 

that the relation P=(b, j ) -<== t holds. Then (b, /) <== t where i=lx + ...+l,_1+n. 
p, A G, C 

The proof of this statement can be done by an induction on It (/?). When 
ltQ?) = l then b(zj,f)~-t'(b1z0,...,bsz,)iP ( i ^O, t'£Ta{Zs), blt ..., b.£A,) and 
t=t'((b1,X),...,(bs,X)) so, by the definition of C, b(zi,f)~-t'(blzn, ..., bsz0)£P". 

When It (/i) > 1 then /? can be written in the following form 

(b,j) <== A), •••, (¿v, D ) <== t'(h, 0 = t p, A p , A 

where 

i^o, i'^foCZ,),^, ...,b.£A, ix, . . . i ^ r e ^ i X W ) ^ ^ , / ) - « ' ^ - •••,bsZj)eP 

Then, by the definition of C, b{zt, < / ; e, e1, ..., e*» — ? ' ^ ! ^ , •••» bszis)£P" where 

j r ( = 0) if br£At (r = 1, . . . , s ) 

Zj-I-...+ / J r_ 1 + t; if br£Sjr for some t>(= 1, . . . , /jV). 

Now let r ( = l , ...,s) be such an index for which br£S'j and so 1 ^ j r ~ k . Then 
* * 

the relation (br, ]r) <== tr can be written in the form (b r , j r ) <== f / u c j , jr), ... 
p, A p,A 

(c„,7r)) <=*= tr'Oi, ~Q = tr for some « 0 0 ) , i r '(e fG(Z„)), c1 ; ..., c u ( € ^ i ) J i , ••• p, A 

..., i„(G (^i X {/}) and we can suppose that the derivation (br,jr) <== t'r ((cx, jr), ... 
p,A 

..., (cu,jr)) has no such a step, in which, a leaf in AiX{j r} substituted. Then 
(br, / ) <== i / f tc j , A), ..., (cu, A)) so, by the induction hypothesis concerning dp (p), PJR,A 

we have (br, X) <== i/((c1; 2), ..., (c„, A)) which means that (br, ir) <== / r '((cj, ;'r), ... 
8JR.C 4, C 

..., (cu, /r)) because lb5(/ r)=q j V . On the other hand, by Lemma 5, c1( ..., Cu^Z/'U ... 
* 

...U/¡/ r, moreover, the length of each of the derivations -<== r l5 ... 
p, A 

(c„,7r) <== fu is less than It (/?) so we have ( q , zr) <=== ..., (c„, /',) <== 7„, PI A 9, C q, C 

that is (br, ir) <== ..., tu) = tr. q, C 
If r is such an index for which and so 7 r = 0 then tr=(br, X), therefore 

I 
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* 
(bT, lr) <== tr again. All that means that 

q, C 

(b, i) /'((¿i. y,..., (bs, isj) <=*== ..., ts) = t 

. proving our statement. 
* 

Now we return to the induction step of the lemma. The relation (a, A) <== q 
P, A 

can be written in the form 

{a, A) <== q,((a1,]1), ..., (a„]s)) <== q\ql5 ..., qs) = q 
p, A P. A 

where jSO , q'^fG(Zs), au ...,as£A, qu ..., {A}) and af(zlt ...,zk)^ 
*-q'(a1zjl, ..., asZj) is in P. Then, by the definition of C, the rule a < / ; e , e1, ..., e ' ) 
(zi, zj^-qfaz'^, ..., oszis) is in P" where w = /1 + ...+/ )£ and 

17r(= 0) if a £ A i ( r = 1, . . . , s ) 
' r ~ { / ! + . . . + / J r_1 + n if for some n(= 1, ..., lu) . 

Let r ( = l , ..., J) be an index for which ar£SJ
n

r for some n ( = l , . . . , / J r) and 
* 

so 1 Then the relation (ar, j,) <== qr can be written in the form 
P, A 

+ * y. 

(ar, jr) <== q',((.b1, 7r), ..., (Z>„, 7,)) < = = q'Mi, •••, for some mSO, q'r£TG(Zu), 
P. A p,A 

¿1, •••,bu£Ai,q1, ...,qu£TG(AiX{l}). We can again suppose, that there is no step 
in the derivation (a r , j r ) <== q'r{{b1Jr), ..., (buJr)), in which, a leaf in P. A 

is substituted. Therefore {ar, A) <== q'jUbi,, A.), ..., (bu, A)) from which, by Lemma 5, 
Pjr, A 

• ••> ¿ u €/ i r U. . . U/i r and, by the induction hypothesis on dp (p), we get 
(a„ A) <== q'r{(by, A), ..., (ba, A)) that is (ar, ir) <== ^ ' ( ( f t , i,), ..., (¿>u, /,)). On the qj , C fl, C 

* — * _ other hand, by the statement, we have (bl9 ir) /r) <== qu which 
C 

means that (a,, /,) <== q'r(qu ...,qu)=qr. q,C 

If r (=1 , ..., j) is such an index for which ar£Ai and so jr=0 then it is clear 
that qr—(ar, A), therefore (ar, lr) <== qr again. The two cases of r and 9. c 

a < / ; e, e1, ..., efc> (z1( ..., ..., cfszfs)6P" together prove that 

(a, A) q'fai, h), (a„ U) <=== tf'fai, -,qs)=q-q, t- C-This ends the proof of Lemma 6. 
The proof of the next lemma is essentially the converse of the previous one. 
Lemma 7. Let a£As, p£TF, qdTF, q£T0(AiX {A}), e£B. Suppose that p =>• eq 

B 
* * and (a, A) «== q. Then (a, A) <== q. 

q,C p, A 
Now we are ready to prove our theorem. Suppose that (p,q)€rA that is 

* . . . _ 
(fl0, A) -<== q concerning rt. Because A is A-visit, by Lemma 4, there exist q£TF 
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* _ * and e£B with p=>eq, therefore, by Lemma 6, (a09 A) <== q concerning rt", hence 
B q, C 

* 

(p,q)€TBOTc. Conversely, by (p, < 7 ) € T B O T c we have a q£TF for which p=>eq 
i B 

* under some e(€fi) and (a0, X) <== q concerning rt". Then, by Lemma 7, we have 
q, c 

* 
(cr0, A) <== q concerning rt. The fact, that the inclusion is strict follows from the 

P , A 

proof of Theorem 4.1 of [6]. This ends the proof of Theorem 3. 
After studying the proof of the previous theorem two observation can be made. 

On the one hand, instead of the bottom-up tree transducer B we can have a top-
down one which can be constructed by reversing the rewriting rules of B. Although 
this top-down one does not induce the same tree transformation as B, the following 
will be valid. 

Corollary 8. S i « c 9~o9)stx. 

On the other hand it also seems that if A is simple AT-visit then a deterministic 
bottom-up tree transducer can be constructed, so we have 

Corollary 9. c SiSSoQisf^ 
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On a representation of deterministic uniform 
root-to-frontier tree transformations 

B y F . G E C S E G 

_ The concepts of products and complete systems of finite automata can be 
generalized for ascending algebras in a natural way (see [4]). Results in finite auto-
mata theory imply that for most types of products there are no finite complete 
systems of ascending algebras. Therefore, it is reasonable to investigate a weaker 
form of completeness to be called /«-completeness when tree transformations are 
represented up to a finite but not bounded height. In this paper we give necessary 
and sufficient conditions under which a system of ascending algebras is m-complete 
for the class of all . deterministic uniform root-to-frontier tree transformations with 
respect to different kinds of products. Moreover, we show the existence of such 
finite m-complete systems. 

1. Notions and notations 

The terms "node of a tree" and "subtree at a given node of a tree" will be used 
in an informal and obvious way. 

The symbol R will stand for a nonvoid finite rank type with 0$R. 
By a path of rank type R we mean a word over U(R) = U({(m, 1), ..., (m, m)}\ 

\m£R). The set of all paths with rank type R will be denoted by pt (R). 
Take a ranked alphabet I of rank type R, a tree p£Fx(x^) and a path 

w£pt (R). Then the realization u(p) of u in p (if it exists) is defined in the follow-
ing way: 

1. if u=e then u(p)=e and u ends in p at the root of p, 
2. if u^ujim, i), ux(p) exists, ux ends in p at the node d of p labelled by 

a and <J£ Im then u(p)=u1(p)(o, i) and u ends in p at the i , h descendent of d. 

F o r UQpt(R) a n d T<gFx{X^ (n^ 1) le t U(T) = {u(p)\u£U, p£T}. O n e 
can easily see, that for arbitrary n s l , pt (R)(F£(X„)) =U(Z)*, where U(£) = 
= U({(<7, 1), . . . , {a , m ) } \ ( y £ l m , m > 0 ) . 

Let I be an operator domain with i o = 0 . A (deterministic) ascending I-
algebra si is a pair consisting of a nonempty set A and a mapping that assigns 

Acta Cybernetics VI/2 
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to every operator er£ I an w-ary ascending operation a**: A-~Am, where m is 
the arity of a. The mapping a —a* will not be mentioned explicitely, but we 
write si={A, I). If I is not specified then we speak about an ascending algebra. 
The ascending Z-algebra si is finite if both A and I are finite. Moreover, 
si has rank type R if I is of rank type R. The class of all finite ascending I-
algebras of rank type R will be denoted by K(R). If there is no danger of con-
fusion then we omit si in o*. 

In this paper by an algebra we mean a finite deterministic ascending algebra. 
A (deterministic) root-to-frontier IX„-recognizer or a (Z))J?IA'n-recognizer, for 

short, is a system A = { s i , a0, X„, a), where 

(1) si=(A, I ) is a finite I-algebra, 
(2) a0£A is the initial state, 
(3) a = 04(1>, ..., A(n))eP(A)n is the final-state vector. 

Next we recall the concept of a tree transducer. 
A root-to-frontier tree transducer (R-transducer) is a system 9l = (£, Xn, A, (2, 

Ym,A',P), where 

(1) I and Q are ranked alphabets, 
(2) X„ and Ym are the frontier alphabets, 
(3) Aha ranked alphabet consisting of unary operators, the state set of 21. 

(It is assumed that A is disjoint with all other sets in the definition of 91, except A'.) 
(4) A'QA is the set of initial states, 
(5) P is a finite set of productions of the following two types: 
(i) axi-*q (a£A, x£Xn, q£Fn(Ym)), 

(ii) ao~q (a£A, a£l„ / s O , q^F^UAE,)). (S = f 2 , ...} is the set of 
auxiliary variables.) 

The transformation induced by 91 will be denoted by t9, . 
The ^-transducer 91 is deterministic if A' = {a0} is a singleton and there are 

no distinct productions in P with the same left side. Moreover, the ^-transducer 
91 is uniform if each production ao-~q(a£A, / ^ 0 , q£Fn(Ym{JAS^) can be 
written in the form c k t — . . . f o r some q£F n (Y m ( jSi ) . In this paper 
by a transducer we shall mean a deterministic uniform ^-transducer. One can easily 
see that for every transducer 9 l = ( I , X„, A, Q, Ym,a0, P) there exists a transducer 
© = (£, Xn, B, Q', Ym, b0, P') such that (i) for arbitrary b£B and o£Zm with 
wi>0 there is exactly one production in P' with left side bet, and (ii) Tffl=t91. 
In the sequel we shall confine ourselves to transducers having property (i) and £ o =0-

To a transducer 91=(Z, X„, A, Q, Ym,a0, P) we can correspond an RIXn-
recognizer A=(si, a0, X„, a) with si=(A, I ) and a = ( A W , ..., A(n)), where 

(1) for arbitrary / > 0 , a€l,, a£A and (ax, ..., a)£Al if (alt ..., at) = as/(a) 
then aa-^qia^, ..., atQ£P for some q£Fa(Ym\jE,), 

(2) ( 1 ^ / = " ) if and only if ax^q£P for some q£Fn(Ym). 
The class of all recognizers obtained from 91 in the above way will be denoted 

by rec (91). 
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Now take an 7? ¿^„-recognizer A = {stf, a0, X„, a) with s/ — (A, I ) and 
a = (A^\ Define a transducer <& = (Z, X„, A, Q, Ym, a0, P) by 

P = {aXi - q^\a£A<'\ q^eFn(Ym), i = 1, . . . , N}U 

U{aa ...,a^)\a£A, at!,, Z > 0, 

( f l l , ..., a,) = a* {a), q^°KF0(Ym\JSfi, 
where the ranked alphabet Q, the integer m and the trees on the right sides of the 
productions in P are fixed arbitrarily. Denote by tr (A) the class of all trans-
ducers obtained f rom A in the above way. Obviously, for arbitrary transducer 
•51 and Agree (11) the inclusion l l g t r (A) holds. Therefore, we have 

Statement 1. For every transducer 21 there exists a recognizer A such that 
9l€tr(A). 

Next we recall the concept of a product of ascending algebras (see [4]). 
Let I , I1, ..., Ik be ranked alphabets of rank type R, and consider the 

P-algebras ^¡=(Ah £') (i = 1, ..., k). Furthermore, let 

4> = {¡l/m: A1X...XAkXZm-Z1
mX...XXk

m\rn£R} 

be a family of mappings. Then by the product of ..., slk with respect to i¡> 
we mean the ¿-algebra i¡/(s^!, ..., s/k, Z) = s/ = (A, Z) with A = A1X-..XAk 
and for arbitrary m£R,cr£Zm and a £ A 

a) = ((pFl (of^pr, (a))), . . . , p f l (af-(prk (a)))), ... 

• • •, (Prm « > (pri (a))), . . . , prm ( o f - (prfc (a))))), 
where (cTj, ..., ak) — \l/m(a, o) and pr ;(a) (1 Sz S/c) denotes the ; t h component of a. 

To define special types of products let us write \j/m in the form iAm=(i¡/£\ ..., t / ^ ) 
where for arbitrary a £ A and o"€ ¿ m , i//,„(a, a)=(<j/^ )(a, a), ..., <r)). We say 
that si is an «¡-product (i = 0 , 1 , . . . ) if for arbitrary j (1 ^ j =k) and m£R, ip(J) 

is independent of its ulh component if i+j^u^k. If Il=... = Ik= I and 
•/'„(a, ff) = (ff, ..., <r) for arbitrary mdR, a£lm and a £ A then si is the direct 
product of sir, ..., sik. In the case of an (¡(¡-product in we shall indicate only 
those variables on which i//^' may depend. 

One can see easily that the formation of the product, a0-product and direct 
product is associative. (This is not true for the a^-product with / > 0 . ) 

Let 9 r = ( r , Xu, A, Q, Yv, a0, P) and » = ( £ , Xu, B, Q, Yv, b0, P') be two 
transducers and m S O an integer. We write = zs if zsa(p)=x3s(p) for every 
p£Fj?(Xu), where F?(XU) denotes the set of all trees from Fx(Xu) with height 
less than or equal to m. 

Take a class K of algebras of rank type R. We say that K is metrically 
complete (m-complete, for short) with respect to the product (oc.-product) if for 
arbitrary transducer <il=(Z, Xu, A, Q, Yv, a0, P) and integer m g O there exist 
a product (a f-product) I ) of algebras from K, an element b0£B and 

a vector b£P(B) U such that ta i = r s for some ©£t r (B), where B=(SS, b0, Xu, b). 
Let s/ = (A, I ) be an arbitrary algebra from K(R). We correspond to srf 

a semiautomaton s(si)=(I^, A, 5J), where Is/=U(Z) and for arbitrary a£A 
and (a, Sj(a, (a, i))=pr i(<rJ'(a)). 
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Take a I-algebra si=(A, Z)£K(R), an element a£A and an integer m s 0 . 
We say that the system (si, a) is m-free if the initial semiautomaton s(si, d)= 

A, a, 5 J) is m-free. (For the definition of m-free semiautomata, see [1]. 
In [1] initial semiautomata are called initial automata. Moreover, here it is not 
supposed that s(si, a) is connected.) 

For the system (si, a) and integer m s 0 set Aim)={5sf(a,p)\p£l^, \p\sm), 
where denotes the length of p. Moreover, bs3(a,e)=a and p(a, ;')) = 

P), (o-. 0 ) (pOZ, (a, 
Let (si, a) and (39, b) be two systems with si=(A,Z), 38=(B, Z)iK(R). 

A mapping q> of A{
a
m) onto B'bm) is an m-homomorphism of (si, a) onto (81, b) 

if it satisfies the following conditions: 
(1) <p(a)=b, 
(2) q{a"( f i )) = a a W ) ) i f l ' e £ Z „ />0) . 

If the above cp is also one-to-one then we speak about an m-isomorphism-
and say that (si, a) and (38, b) are m-isomorphic. In notation, (si, a) S (38, b). 

One can easily prove the following statements. 

Statement 2. Let s/ = (A, Z), 38 = (B, Z)£K(R) and a£A, b£B be arbitrary. For 
an integer m ^ 0 , (38, b) is an m-homomorphic image of (si, a) if and only if 
s(38, b) is an m-homomorphic image of s(si, a). 

Statement 3. Let (si, a) and (38, b) be the systems of Statement 2. For ar-
bitrary m g 0, 

(1) if (si, a) is m-free then (38, b) is an m-homomorphic image of (si, a), 
(2) if (si, a) is m-free and m-isomorphic to (38, b) then (38, b) is also 

m-free, and 
(3) if both (si, a) and (38, b) are m-free then they are m-isomorphic. 

The. next statement is also obvious. 

Statement 4. Take two systems (si, a) and (38, b) (si=(A, Z), 38 = (B, Z)£K(R), 
a£A,b(iB). Moreover, let m ^ 0 be an integer. If (38, b) is an m-homomorphic 
image of (si, a) then for arbitrary wsO, b£P(B)u, b, Xu, b) and 33 = 
=(Z,Xu,B,Q,Yv,b,P')£tr(B) there exist an a£P(A)u, an A = (si, a, Xu, a) 
and an Qi=(Z, Xu, A, Q, Yv, a, P)£tr (A) such that T®^ T91. 

Let (si, a) be a system with si=(A, Z)dK(R) and a£A an element. We say 
that for an integer m s O the algebra 38—(B, Z) m-isomorphically represents (si, a) 
if there exists a b£B such that (si, a) ~ (38, b). 

The a,--product and the o^-product 0) will be called metrically equivalent 
(m-equivalent) provided that a system of algebras is w-complete with respect to the 
a ; -product if and only if it is m-complete with respect to the a^-product. The in-
equivalence between an a f-product and the product is defined similarly. 

Finally, we shall suppose that every finite index set I ~ {i\, . . . , ik} is given 
together with a (fixed) ordering of its elements. Furthermore, for arbitrary system 
{aJijZ/}, (at\ij£l) is the vector (ak, au,..., aik) if is the ordering 
of I. 

For terminology not defined here, see [2] and [3]. 
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2. Metrically complete systems 

In this section we give necessary and sufficient conditions for a system of 
ascending algebras to be w-complete with respect to the af-products ( / = 0 , 1, ...) 
and the product. We shall see that the «¡-products are m-equivalent to each other 
and they are m-equivalent to the product. 

We start with 

Theorem 1. A system KQK(R) is /«-complete with respect to the product 
(a;-product) if and only if for every each m-free system (¿/, a) with 
can be represented m-isomorphically by a product («¡-product) of algebras from K. 

/ Proof. The sufficiency is obvious by Statements 3 and 4. 
To prove the necessity take an arbitrary /«-free system («s/, a0) with stf = 

=(A, Z)eK(R). Consider the transducer 2 1 = ( I , X„, A, Q, AxX„, a0, P), where 
« > 1 is an arbitrary natural number, Qt=AxZt ( />0) and P consists of the 
following productions: 

(1) axi—(a, x,)(a£A, x^XJ, 
(2) ac-(a, a) (a^, ..., (a£A, / > 0 , os*(a)=(a1, ..., a,)). 

Let 88={B, I ) be a product (a ;-product) of algebras from K such that for 

a 9 3 = ( 2 ' , X„, B, Q, AxX„, b0, P')€tr (B) we have TAI = TJ,, where b0, X„, b) 
(b0£B, b£P(B)n). We show that b0) is w-free. This, by Statement 3, will 
imply that (s/, a0) ™ (S3, b0). 

First of all obseive that 91 is a totally defined, linear, nondeleting transducer 
inducing a one-to-one transformation. Moreover, in a tree %(/>) with h ( p ) ^ m 
no subtree occurs more than once. Therefore, by tg, = T<b, all productions occur-
ring in a derivation b0p=>*q (p£F£(Xn), q£Fa(X„XA)) with h(p)^m are linear 
and nondeleting. Thus, we have the following relation between derivations in 
91 and 23. Let i/€pt (R) b e a p a t h w i t h \u\^m. Takea t r ee p£FE(X„) with h(p)^m, 
and assume that u(p) is defined, it ends in p at the node d,p' is the subtree of 
p at d, is obtained from p by replacing the occurrence of p' at d by 

u(pj)=a and <5^(60, u(p))=b. Then the following derivations are valid: 

a0p = a0p(p') qi(ap') =>$ qi(q') = q 
and 

b0p = b0p(p') =>s 9i(bp') =>1 q2(q") = q, 
where a<,K£i) =>aUi(«£i), b0p(Q q2(b^) (q1, q^F^AxX^J^)) and ap'=>£q', 
bp'=>®q" {q',q"€.Fn(AxXJ)). (Observe that ^ occurs exactly once in qx and q2.) 
Furthermore, if v1 £ pt (R) is the path such that v^q^ ends in qx at the node 
labelled by and v2 £ pt (R) is the path for which v2(q2) ends in q2 at the node, 
labelled by ^ then v2(q2) is a subword of v^q^. 

Now assume that (38, b0) is not w-free, that is there are two distinct words 
u,v£l®(=I%) such that \u\,\v\-^.m and 5ss(b0,u) = 5m(b0,v)=b. Let u, v£pt(R) 
be paths and PkP^F^XJ trees such that u(p1)=u, v(p2)-v, h(p2)^m, 
u ends in px at the node d1 and v ends in p2 at the node d2. Replace in px and 
p2 the subtrees at d1 resp. d2 by x l 5 and denote by P l resp. p2 the resulting 
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trees. Moreover, let w)=f t and S^(a0, v)=a2. (Note that a17ia2 since 
U9±v and (si, a0) is m-free.) Then, by the choice of 21, if ft, ft (i Fn(A XX„) 
are obtained by the derivations tf0/>i =>h <7i and a0p2 =>a q2 then «(ft) ends in ft 
at a node labelled by ( f t , and v(q2) ends in q2 at a node labelled by (a2, x^). 
Moreover, by T j j ^ t a , , ¿0Pi=>s<7i and b0p2=>£q2 hold also. From this, taking 
into consideration our observation concerning the relation between derivations 
in 21 and 23, we get that at the ends of w(ft) and v(q2) the same label should 
occur which is a contradiction. 

The next theorem gives necessary conditions for a system of ascending algebras 
to be /«-complete with respect to the product. 

Theorem 2. Let KQK(R) be a system which is /«-complete with respect to the 
product. Then the following conditions are satisfied: 

(i) for arbitrary integer /nsO, path u £ p t ( R ) with \u\=m, rank l£R and 
natural number Isi^l there exist an si=(A, Z')£K, an a0€A, a1, a2£ Z't and 
a M€M(Fi,(A'1)) such that d^(a0, ufa, u(a2, ij), _ 

(ii) for arbitrary integer mSO, pa thu g p t ( R ) with \u\=m, rank l£R ( />1) 
and integers l ^ / c y ' S / there exist an si = (A, Z)£K, an a0£A, a a£Zt and a 
uef^F^X,}) such that S^(a0, u(o, ij)^Ss/(a0, u(a,jj)-

Proof. We start with the necessity of (i). Assume that there are m^O, u£pt(R) 
with \u\=m, l£R and l^i^l such that for arbitrary si=(A, I') £ K, a0£A, a1,a2£Z\ 
and u£u(FI,(X1j) the equation u(a1, ij)=8^(00, u(a2, ij) holds. Take 
a ranked alphabet Z of rank type R such that Zt contains two distinct elements 
a and a'. Moreover, consider a product 38 = (B, Z)=\l/(si1, ..., sik, Z) (sit= 
=(Ai} I')GAT, i = l, ...,k) and an element b0£2?. We show that the system (38, b0) 
is not ( m + l)-free. 

First of all let us introduce a notation. Consider the above product 38 and 
define the mappings \p': BxFx(X„)^-Fp(X„) (i = 1, ..., k; n s O ) in the following 
way: for arbitrary b £ B and p ^ F ^ X ^ 

(1) if p=xj ( l ^ j ^ n ) then ,p)=xj, 
(2) if p=a(p1, ...,p,) then ¡¡/'(b, p)=oi(ip'(b1, p j , ..., ^'(b,, p,)), where 

(<r1; ..., ak) = \l/,(b, a) and (b1; ..., bJ) = ff«(b). 

One can see easily that for arbitrary b£B, p£ Fr(X„) and ¿¡dpt(R) the equation 
5m{b, «(p))==(^1(pr1 (b), u(r(b,p))), ^ k ( p r k (b), u(\pk(b, p)j)) holds._ 

Now take two trees p,q£Fz(X^) such that (u(l,ij)(p) = u(a,i) and (u( l , i ) ) (q ) = 
= u(a',i). For every j(=\,...,k) let (u(l, i))(ip}(b0, p)) = u/pU>, i) and 
(u(l, i))(\pJ(b0, q))=Vj(oa\ i). By the definition of the product, the equations 
Uj=Vj ( j = l, ..., k) obviously hold. Moreover, 

<5«(V u(a, ij) = (ps/1 (prx (b0), ft(<r(1), i)), . . . , ¿^(pr* (b0), uk(a(k\ i))) 
and 

<5,8(b0, u(a\ ij) = (<5^t(pri (b0), 0), •••, ^k(pr*(b0) , uk(d(k\ i))). 
But, by our assumptions, djtj (prj(b0), Uj(a(i\ i ) ) = 5 ^ ( p r , (b0), Uj(du\ ij) for 
every j ( l s j ^ k ) , i.e., ¿a,(b0, u(a, i))=<5i0(bo, u(a, ij). Therefore, (38, b0) is 
not (m + l)-free which, by Theorem 1, implies that K is not m-complete with 
respect to the product. 
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The necessity of (ii) can be shown in a similar way. 

Theorem 3. If a system KQK(R) satisfies the conclusions of Theorem 2 then 
K is m-complete with respect to the a0-product. 

Proof. Let Z be a fixed ranked alphabet of rank type R. We shall show by 
induction on m that for every integer m^O there are an a0-product 3S = (B, I ) 
of algebras from K and an element such that (38, b) is m-free. This, by 
Theorem 1, will end the proof of Theorem 3. 

If m = 0 then our claim is obviously valid. Let us suppose that our statement 
has been proved for an m^O, and take a product sd = (A, Z) of algebras from 
K and an element a£A such that (si, a) is m-free. By our assumption, for every 
u=u1(l, i) («j6pt(i?), l£R, 1 =£/==/) there are an I(a))£K, an a(a)£A("\ 
two operators ox, <r26 I j a ) and a M1£u1(/r

i(A'1)) such that 5^(a)(aw, u^O!, i ) ) ^ 
^ ¿ ^ ( a ® , u-^Oz, /'))• Moreover, for arbitrary u=u,(7, i), v=u1(l, j) (ii1£pt(R), 
l£R,l> 1, 1 jr^l) there are an 'ji("'D)=(A("'D>, 2>~.5>), an ">£A(U-s), 
a ux € a ^ i X , ) ) and a d€ If*s> such that ¿^(a, s)(a(B- B\ u^a, i)) ^<5^(8, s)(a(s> u^d, j)). 
Consider an index set I consisting of all pairs (u, v) where u, v£U(Z)*, u^v, 
\u\=m+\ and |U |Sm+l . For the pair (u, v) with M=M'(O', 0€M(Fi(A'1)) and 
v = v'(o*,j) if u'^v' or a^a* take the a0-product si(u'v) = ii(u<v\si, s4(i), £) = 
= (A Z), where \j/(u-v) is defined in the following way. For every s£R, i/^"-"«1» 
is the identity mapping on Zs. If w = w1(o', j) (a'£ Zk) is a proper subword of 
u' and w' = w[(a", j) is the subword of ux with |w'| = |w| then let 

In all other cases, except ^¡u'v)(2)(5si(a, u'), <r), (s£R) is given arbitrarily 
in accordance with the definition of the a„-product. Since u V » ' or a ^ a * and 
(si, a) is m-free ")((a, a(">), v) is defined. Now let 

Mu>vK2)(tAa, W), a) = 

ffj if 8^(.u.v)((a, a(a)), v) = (a l 5 a2) 
and dtf(u) (a(s>, u^a^, i)) ^ a2 

G„ otherwise. 

Obviously, (sH"<v\ fl'"'")) with aSu'v)=(a, a(a)) is m-free and ( 5 ^ , u ) ^ 

Now assume that u' — v' and o = a*\ that is u = u'(o, i)£u(FI(X1)) and v = 
= u(o,j)<£v(F1(X1)). Take the a0-product si{"'v) = ̂ u<v\si, s i ^ \ Z) = (A("-,'\ Z), 
where ijj iu 'v) is given as follows. Again for every s£R, \p^u-v>(1> is the identity 
mapping on Zs. If w = wl(o', t) (o'£Zk) is a proper subword of u' and w' = 
= wi(o",t) is the subword of ut with |vv'[ = |w| then let iAlu '")(2)(Ma, ^i), a') = 
=a" . Moreover, \plu-vK2)(8^(a,«'), a) = a. In any other cases i//^'"«2» (s£R) 
is given arbitrarily in accordance with the definition of the a„-product. Since (si, a) 
ism-free si(u'v) is well defined. Again, (si("-"\ a(u'&)) with a("'"> = (a, is 
m-free and 5^u.v)(a^-v\ v). 

Finally, take the direct product 0&=(B, Z)=Fl(siiu'v)\(u, v ) f j ) and the vector 
b=(a("'")|(M, v)£l). Then b) is (m + l)-free. Indeed, for two different words 
u,v£U(Z)* if |m|, \v\<m+] then 5m(b, w)#<5a(b, v) since they differ in all of 
their components, and if \u\=m+\ and \v\Sm + \ then 6m(b,u) and ¿^(b, v) 
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are different at least in their (u, u)th components. Since the direct product is a 
special a0-product and the formation of the a0-product is associative 38 is an 
a0-product of algebras from K. 

From Theorems 2 and 3 we get 

Corollary 4. For arbitrary /,7 SO the a f-product and the ay-product are 
/«-equivalent to each other and they are /«-equivalent to the product. 

We now give an algorithm to decide for a finite KQK(R) whether K is in-
complete with respect to the product. 

Take an algebra st = (A, Z)£K. For arbitrary l£R and 1 set A<-'-i} = 
= {a£A\pri(of(aj)?±pri(of(a)) for some o^, o2£Z,}. Moreover, for every a£A 
let be the language recognized by the automaton =(/,*, A, a, A(l,i)). 
Furthermore, let = and lSl-l>= For ar-
bitrary l i R ( />1) and 1 define iS'-'-n in a similar way with A <'•'••>> = 
= {a£A\pri(as'(a))?ipTj(oJ'(a)) for some a£Z,} instead of A^'K Finally, denote 
by Z the union of all ranked alphabets belonging to algebras from K, and take 
the language homomorphism <p: U(Z)*— U(R)* given by (p(a, /)=(&, / ) (a£Z, r{p) = 
=k), where r(a) denotes the rank of a. Then, by Theorems 2 and 3, K is in-
complete with respect to the product if and only if 

(1) for arbitrary l£R and 1 (p{L^l'i)) = U{R)*, 
(2) for arbitrary l£R ( />1) and 1 j (p(L(,'i-j>) = U(R)*. 

The validity of these equations is decidable effectively. 
Finally, for a given rank type R we give a one-element system which is m-

complete with respect to the product. Let Z be a ranked alphabet of rank type 
R such that for every l£R, Z,= {tr}0, ff^0}. Assume that the greatest natural number 
in R is n. Take the ^-algebra —(A, Z), where A = {a0, ..., an), ^''(a,-) = 
= ta+l(modn + l)> •••> a i + l (modn + l ) ) ( f € R , i = 0 , 1 , . . . , « ) , O ^ ( f l „ ) = ( a n , , . . . , a „ _ l + 1 ) 

(l£R) and for arbitrary IdR and at with ¡V«, ail)(ad is defined arbitrarily. 
( /+1 (mod « + 1) denotes the least residue of i + l modulo /2 + 1.) One can see 
easily that the system K= {si} satisfies the conclusions of Theorem 2. 
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On cofinal and definite automata 

B y M . I T O * a n d J . D U S K E * * 

1. Introduction 

Cofinal or directable automata were introduced in [1] and further investigated 
in [2, 7, 8, 9]. Cofinal automata are automata whose states can be directed to a single 
state by a suitable input word. We will call a cofinal automaton definite if there is 
an integer n such that all input words of length greater than or equal n direct 
the state set to a single state. Perles et al. [10] investigated definite events and definite 
automata. In particular they used shift registers, a special type of definite automata, 
in their discussion of the synthesis problem. Moreover, Stoklosa [12, 13] investigated 
these automata from an algebraic point of view. In section 2 of this paper we will 
prove a graph theoretic property of shift registers, namely that the transition diagram 
of a shift register contains a hamiltonian circle. In section 3 we apply this result 
in order to investigate the determination whether an arbitrary automaton is cofinal 
or not. In section 4 we determine the structure of all strongly definite automata 
with the aid of shift registers. Finally, in section 5, we characterize the general 
structure of definite automata. Let us give precise definitions first. 

Definition 1.1. An automaton (more exactly, an X-automaton) A, denoted by 
A"), consists of the following data: (i) S is a nonempty finite set of states. 

(ii) X is a nonempty finite set of inputs, (iii) There exists a function MA of SxX* 
into S, called a state transition function, such that MA(s,pq) = MA(MA(s,p),q) 
and MA(s,e)=s for all s£S and all p, q£X*, where X* is the free monoid 
over X and e is its identity. 

Note that in the following spA will often be used to denote MA(s, p). 
Definition 1.2. An automaton A =(S, X) is said to be cofinal (or directable 

in [1,2]) if there exists p£X* such that S} is a singleton. 

Definition 1.3. An automaton A=(S, X) is called a definite automaton if 
there exists an integer n^O such that \SpA\ = 1 holds for all p£X* with \p\^n. 
If A is a definite automaton, then the least integer n such that the above condition 
holds is called the degree of A and denoted by d(A). 

A definite automaton is cofinal. The class of definite automata A with d(A)=0 
is exactly the class of all one-state automata. Furthermore, if d(A)=n^ 1 for 
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a definite automaton A, then there exists a q£X* with \q\=n— 1 and 
A definite automaton A = (S,X) is called a strongly definite automaton if it is 
strongly connected, i.e., if for all s,s'£S there exists p£X* such that spA=s' 
holds. If 1^1 = 1 for a strongly definite automaton, then |S | = 1 holds too. 

Definition 1.4. Let n be a nonnegative integer, X a finite set and X" the set 
of all words over X of length n. Then the automaton A(n)=(X", X) whose 
state transition function is defined by (yp)xA<-n)=px for all (y, p, x)£XxXn~1xX 
if n S l and exA(n>=e for all x£X if « = 0 is called an n-stage shift register without 
feedback (or briefly an nSR). 

Obviously, n-stage shift registers are strongly definite automata. 

2. A graph theoretic property of nSR's 

The purpose of this section is to prove the following theorem. (For the notion 
of a hamiltonian circle in a directed graph see [5].) 

Theorem 2.1. There exists a hamiltonian circle in the state transition diagram 
of an nSR. 

Note that the state transition diagram of an nSR is the directed graph whose 
vertices are states and where there is a directed edge from p to q, labelled by x, 
iff pxAW = q for (p,x,q)eX"XXxXn. If n = 0, the theorem holds trivially. 
Therefore we assume n ^ l for the rest of this section. Before proving the theorem, 
we need the following definition. 

Definition 2.1. Let r s l . A sequence pt, p2, ..., pr of distinct elements of 
X" with pixf<-n)=pi+j with x^X for l^i^r— 1 is called a chain of length 
r-1 and denoted by P* T* — * Pr-—- Pr (or briefly px-
-*Pz -~P3 — Pr-1 —/>,)• 

Now we first provide some lemmata. 

Lemma 2.1. Let px — p2 — . . . ^ p r with P i=y i q i , ( y i , q i )€XxX' '~ 1 , for 1 S / i r , 
be a chain of length r— 1. Then there exists a p(X" such that —/>2 —••• — 
-~pr—p iff there exists an x£X such that qrx$ p2, ..., pr_±, pr}. 

The proof is easy and thus omitted. 

Lemma 2.2. Let A—/>2 —•••—/V If there is no p£X" such that p1—p2 — ---
• ••—Pr-i-*Pr-*'P holds, then there exists some x£X such that Pi, i.e.,we 
have a circle (px,p2, ...,/?r_i,/>r> in the state transition diagram of A(n). 

Proof. Let Pi=yiqi with (yit qjCXxX"'1 for and Pi^+Pi+i 
for l ^ / S r — 1 . By Lemma 2.1, we-have qrx£{pi, p2, ..., pr} for all x£X. This 
means that qrX= {qrx\x£X}Q{p1, p2, ..., pr}. Let Xqr={xqr\x£X}. It is obvious 
that |<7rA'| = |Xi7r| = |A'| holds. Now assume = yyql^qrX. This implies qrXQ 

p2, ...,pr}. Furthermore we have Pi = yiqi£q rX iff pi-1 = yi-1qi-iZXqr for all i 
with 2 = i ^r. Therefore the set {p\, p2, •••,pr-\} contains \qrX\ elements of 
Xqr. Together with pr£Xqr we obtain = 1 in contradiction to the 
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fact \Xqr\ = \qrX\. Hence px£qrX. Since pr=yrqr, there exists some x£X such 
that prirpl. 

Lemma 2.3. Let Pi—p2—.-—pr and p2, ..., p^^X". Then there exists 
a .-p'r-p'r + i such that {Pl, p2, ...,pr}Q{pi,p'2, ..., p'r,p'r+1}. 

Proof. If we have pi—p2 — ... -*Pr-i^-P,^P for some p£X", there is nothing 
to do. Now, assume that there does not exist such p£Xn. By Lemma 2.2, we have 
a circle (Pi, p2, ..., pr> in the state transition diagram of A(n). Let p£Xn — 
~{Pi,Pi, • Pr}- Then it is easy to see that ppt(n)=p\- From this it can easily 
be shown that there exist some p',p"£X*,x£X and i with l ^ i ^ r such that 
p1=p'xp",pp'AW£Xn-{p1, p2, ...,/?,} and (pp'Mny)xA{n'>=pi. It is obvious that 
in this case we have PP'A(n)^Pi-*Pi+i-*••• -» Pi-~P2-~ ••• -~Pi-2~*Pi-i a n d 
{Pi, p2, ..., pr}<={pp'Mn\ Pi, pi+i, •••, Pi, p2, •••, Pi-i}- This completes the proof 
of the lemma. 

Now we are ready to prove Theorem 2.1. 

Proof of Theorem 2.1. Let Pi—p2 — ...—pr be one of the longest chains in the 
transition diagram of A(n). Then, by Lemma 2.3, we have X"={p1, p2, ...,pr}. 
Moreover, by Lemma 2.2, {Pl, p2, ..., pr} forms a circle </>l5 p2, ...,pr_1, pr\ • 
i.e., the state transition diagram of A(n) has a hamiltonian circle. 

Remark 2.1. Note that the previous results provide an algorithm for obtaining 
a hamiltonian circle in the state transition diagram of an nSR. 

3. Cofinal automata and cofinal congruences 

We will now apply the foregoing theorem to investigate the determination 
whether an arbitrary automaton is cofinal or not and to give a characterization of the 
minimal cofinal congruence of an arbitrary automaton. In this section all automata 
are assumed to be automata over a fixed alphabet X. Let us first give 

Definition 3.1. Let « be a positive integer and s/(ri) = {A = (S, X)\ 
and A is cofinal}. Then by <5(n) we denote the value max min {\p\ 

Austin) 

•S\=n 
P£X* 

and 15/^1 = 1}. 
In [1,11], S(n) is investigated. Cerny et al. [1] conjectured that 8(n)=(n—l)2. 

However at present only (n—l)2^d(n)^0(n3) is known. The following result 
is obvious. 

Proposition 3.1. Let A=(S, X) be an automaton such that 151=«. Then 
A is cofinal iff there exists a peX6(n) such that |S>A| = 1. (Xsw is the set of all 
words over X with length <5(«).) 

To test whether or not an automaton ^4=(5, Z) with n states is cofinal, 
we have to check whether or not SpA is a singleton for each p£X i {n ) . Another 
more economical method would be to merge all p£XS(n) in a single word w and 
to check the property "cofinal" with this word w. We first introduce some notions. 
Let u,w£X*. u is called a subword of w iff w=u'uu" for some u',u"£X*. 
Now let w£X* such that every u£Xsw is a subword of w. Then w is called a 
merged word of A^"'[3]. Obviously we have: 
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Proposition 3.2. Let A=(S,X) be an 'automaton with | S | = n . Then A is 
cofinal iff |5H)/'| = 1, where w is a merged word of X s w . 

It can easily be seen that the length of a merged word of X > w is greater than 
or equal to \X\sw+S(n) — \. Moreover, with the aid of Theorem 2.1, we can show: 

Lemma 3.1. There exists a merged word w of Xs<-n) such that = + 
+<5(/i)-l . 

Proof. By Theorem 2.1, the state transition diagram of A(8(n))=(Xs^>, X) 
has a hamiltonian circle (p1,p2, •••,/>,> with r = \X\"-n). Let px —<- p2—~ ... x l x 2 x 3 
... Pr-i Pr and put w=p1x1x2...xr_2xr_1. This proves the lemma. 

xr - 2  xr - 1 

Now we can state the following: 

Theorem 3.1. There exists a W£X* satisfying the following conditions: 

(i) |w| = | JT | a W+5(«) - l . (ii) For each automaton A=(S,X) with ¡ 5 | = n , A is cofinal iff |5,w/1| = l . 

Remark 3.1. In [3], Domosi discussed a general method to obtain the shortest 
merged word w of L, where L is a finite subset of X*. 

We will now use Lemma 3.1 to characterize the minimal cofinal congruence 
of an arbitrary automaton. To this end, we first recall the following notions. Let 
A=(S, X) be an automaton. An equivalence relation g on S is called congruence 
on A if (s, s')£g implies (sxA,s'xA)£g for all s,s'£S and x£X. Let g, g' be 
congruences on A. Then gAg' and gV g\ the product and sum of g and g', 
are defined as usual (see e.g. [6]). R(A), the set of all congruences on A, forms 
a lattice w.r.t. A and V . We now define: 

Definition 3.2. Let /1 = (5', X) be an automaton. A congruence g on A is 
said to be cofinal if for all s,s'£S there exists a p£X* such that ( s p A , s ' p A ) £ g 
holds. 

Let ne denote the partition of S induced by g and ne(s) the block of ne 
containing s£S. We have: 

Lemma 3.2. Let A=(S, X) be an automaton and g a congruence on A. 
Then g is cofinal iff there exist a piX* and an s0£S with SpAQne(s0). 

Proof. The "if par t " is obvious. Conversely, let Q be cofinal and T a maximal 
subset of S such that there exist a *p£X* and an JOGS' with TpAclne(s0). Assume 
7 V S and let s£S—T. Then we have (spA, s0) $ o. Since g is cofinal, there exists 
a p'tX* such that ( sp A p ' A , s0p'A)£g. Since g is a congruence, we have 
( T U {s})(pp')AQne(s0p'A). This contradicts the minimality of T, hence S=T. 

By RCI(A) we denote the set of all cofinal congruences on A. Let <?, Q'£RC{(A). 
By Lemma 3.2, there exist p,p'£X* such that (spA,s'pA)£g and (sp'A, s'p'A)£g' 
for all s,s'£S. This implies {s(pp')A, sXpp')A)£gKg' for all s,s'£S. Therefore, 
gAq'£Rq((A). gVg'£Rcr(A) can be shown in a similar way. Thus RCF(A) forms 
a sublattice of R(A). We now give 

Definition 3.3. Let X) be an automaton. The minimal element of 
RCF(A), denoted by gcr, is called the minimal cofinal congruence on A. 

Now we will characterize gc [ . 
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Theorem 3.2. Let ^ = (5, X) be an automaton with = n and g a con-
gruence on A. Let w be a merged word of XS(n>. Then g = gcS iff g is the mini-
mal congruence on A such that SwAQite(s0) for some j0 6 S. 

Proof. The assertion follows from Proposition 3.2 and the fact that g is 
cofinal iff the quotient automaton A/g is cofinal. 

Remark 3.2. We can develop further properties of cofinal congruences and 
their quotient automata along the line of [4], where similar notions for commutative 
congruences were introduced. 

4. The structure of strongly definite automata 

in this section we consider homomorphic images of nSR's in order to charac-
terize strongly definite automata. We have: 

Theorem 4.1. Let A = (S, X) be an automaton and let n be a positive integer. 
Then A is a strongly definite automaton with d(A)^n iff A is a homomorphic 
image of A(m) = (Xm,X) for all integers m with m^n. 

Proof. It is easy to see that A(m) is a strongly definite automaton of degree m. 
Let A be a homomorphic image of A(m). Then A is a strongly definite automaton 
with d(A)Sd(A(m))=m. This completes the proof of the " i f " part. Now let A be 
a strongly definite automaton with degree d(A)Sn and m^n. Let h be the 
following mapping of Xm into S:h(p) = SpA for all p£Xm. Since d(A)^m, 
this mapping is well defined. Note that a singleton SpA is considered as an element 
of S. We prove that h is surjective. Let s£S and p'£Xm. Since A is strongly 
connected, there exists a q£X* such that (Sp'A)qA=s. Let p'q=p"p with pdXm. 
Then we have s = S(p' q)A= S(p"p)A = (Sp"A)pA= SpA. Finally, we prove that 
h is a homomorphism of Aim) onto A. Let p = x'p' with x ' Z X , p ' a n d 
x£X. Then we have h{pxA(m)) = h((x'p')xA^)=h(p'x) = S(p'x)A = Sx'A(p'x)A = 
= S(x'p')AxA=(SpA)xA=h(p)xA. This completes the proof of the "only i f " part. 

Remark 4.1. We can prove that the homomorphism h in the above proof is 
the unique homomorphism of A(rri) onto A. In general, if there exists a homo-
morphism of a strongly cofinal automaton onto another automaton, it is uniquely 
determined. For this, see [8]. 

The following corollary is obvious. Note that the inequality I S I ^ i i ^ + l 
follows directly from Theorem 7 of [10]. _ _ 

Corollary 4.1. Let A be a strongly definite automaton. Then we 
have \X\d(A)^1=d(A) +1. Moreover, • iff A is iso- Y / V 
morphic to A(d(A)). T^V 

Example 4.1. Let A be given by the diagram of Fig. 1. If A Fig. 1 
is a strongly definite automaton, then 2 d ^ A ^ 3 ^ d ( A ) +1 , hence 
d(A) = 2. On the other hand, we have {1,2, 3}(xx)A = 3, {1,2, 2}(xy)A = 
= 1, {1, 2, 3}(yx)A=2 and {1, 2, 3}(yy)A= 1. This shows that A is really a strongly 
definite automaton with degree 2. Furthermore, A is not isomorphic to A(2). 
Finally, the homomorphism h of A(2) onto A is given as follows: h{xx) = 3, 
h{xy)= 1> h(yx) = 2 and h(yy) = l. 
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Remark 4.2. In Theorem 2.1 we proved that the state transition diagram of 
a shift register has a hamiltonian circle. Moreover, in Theorem 4.1 we proved that 
the set of all homomorphic images of shift registers coincide with the set of all 
strongly definite automata. It seems to be interesting to consider the following 
problem: Under what conditions may the state diagram of a strongly definite auto-
maton have a hamiltonian circle? 

5. The structure of definite automata 

In [10], Perles et al. discussed the synthesis problem of definite automata. 
In this section we will also deal with this problem. Strongly definite automata are 
given as homomorphic images of shift registers, and a method to obtain all homo-
morphic images of a given automaton is well known [6]. Therefore it remains to 
determine the structure of definite automata which are not necessarily strongly 
connected. Let us first give 

Definition 5.1. Let A=(S,X) be a definite automaton. Then the subset 
U={SpA\peXd^} of 5 is called the core of S. 

Lemma 5.1. For all x£X we have UxAQU. 

Proof The lemma obviously holds for d(A)=0. Assume d(A)^ 1 and let 
self. Then there exists a p£Xd(A) such that s=SpA. Let p=x'p with x'^X 
and p'eXd(A)-\ Then, for all x£X, we have sxA = (SpA)xA = (Sx'Ap'A)xA = 
=(Sx'A)(p'x)A = S(p'x)A, where p'x£Xd{A). Consequently, we have sxA£U. 

Lemma 5.2. Let C=(U,X), where sxc=sxA for all (s,x)£UxX. Then 
C is a strongly definite automaton and d(C)Sd(A). 

Proof Let s£U. There exists a p£Xd(A) such that s=SpA. Therefore s = 
= SpA=UpA=Upc. This shows that C is a strongly connected automaton. Ob-
viously, C is definite with d(C)^d(A). 

Definition 5.2. C=(U,X) is called the core of A. Moreover, d(C) is the 
radius of the core and denoted by rc(A). 

Definition 5.3. Let A=(S,X) be a definite automaton and C =(U, X) its 
core. Then S—U is called the shell of S. Moreover, max {|/7x||j6«S'— U, p£X*, 
x£X,spA£S—U and s(px)A£U} is called the thickness of the shell and denoted by 
ts(A). 

The following result is obvious. 
Proposition 5.1. ts(A)^d(A)^ts(A) + rc(A) and rc(A)^d(A). 

We characterize definite automata by means of rc(A) and tJA). 
Let /4=(5', X) be a definite automaton and C={U,X) its core. Let T0 = U 

and T1={S£S\SXa£T0 f o r all x£X). We h a v e : 

Lemma 5.3. T^Ty and if then 

Proof. T0QTX is obvious. Suppose that for all s£S—U we have 7 \ . 
Then for all s£S—U there exists some such that sxA $_T0=U. Since 
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Q 
sx?£S—U, by the same reason as above, there exists some x2£X such that 
(sx?)xA £T0=U. By continuing this procedure, we have an infinite sequence xlt x2, ... 
...,xk,... of elements of X such that x2... xk)A $ U for any positive integer k. 
This contradicts the definiteness of A. Hence — 

Now suppose that Tt is defined and Ti_1 Q 7,. Set Ti+1 = {s£S\sxA£Ti 
for all x£X). Then, by the same way as in the proof of the above lemma, we obtain: 

Lemma 5.4. TtQTi+l and if S-T¡^0 then T^-T^Q. 

It is obvious that there exists some positive integer i such that Tt = Ti+1 
and Tk = Tt for all This means that in the case S—U^Q there exists a mini-
mal positive integer n such that T 0 c r 1 c 7 ,

2 c . . . c 7 , „ _ 1 c r „ = r „ + 1 = ... and 
S=T„. 

Definition 5.4. Let A=(S, X) be a definite automaton and {T^O^i ^n) 
the set defined as above. Let £,¡=7^—T^i for all / with l S / S w . Then 
{Lf| 1 Sz is called the set of layers of the shell. 

Lemma 5.5. The number of layers coincides with ts(A). 

Proof. Let s£S — U. Then there exists some i with l S z ' S n such that 
It is obvious that spA£U holds for all p£X'. This means that ts{A)S.n. Now let 
s£L„. Then, by the definition of L„, there exists some x„£X such that sxA£L„_r. 
By the same way as above, there exists some x„_1£X such that (sxA)xA_1£Ln_2. 
By the same procedure, we have a sequence x„, x„_±, x„_2, ..., x2, xx of elements 
in X such that s(x„x„_1x„_2... xk+1xk)A$ U for l^k^n and s(x„... x2x^A£U. 
Consequently we have ts(A)^n. Thus ts(A)=n. 

Now we are ready to prove the following theorem. 

Theorem 5.1. Let A=(S,X) be a definite automaton with (rc(A), ts(A)) = 
=(r, t). Then S can be partitioned in {t/(=L0)> L;[ 1 ̂ ist} such that: 

(i) C=(U, X) is a strongly definite automaton with degree r, where sxc=sxA 

for all (s,x)£UxX. 
(ii) sxA£UUL1UL2U...ULi_1 for all (s,x)£LiXX with l S / S i . 

(iii) For all s£Lt with l S / S Z there exists an xt£X such that sx^£Li_1. 

Conversely, let C=(U,X) be a strongly definite automaton with degree r and 
let {i/(=L0), Li\ 1 ^ / S i } be a partition of a finite set S. Then each automaton 
A=(S,X) whose state transition function satisfies the above conditions (i)—(iii) 
is a definite automaton with (rc(A), ts(A))~(r, t). 

Proof. Let C =(£/, X) be the core of A and { Z , ; | l S / S i } the set of layers 
fo the shell. The first part of the theorem is now obvious. The second part is 
obvious too. 

In Proposition 5.1 inequalities were given. We show that there is no relation-
ship among d(A), rc(A) and ts(A) beside these inequalities. 

Proposition 5.2. Let d,r and t be nonnegative integers such that t^d^t + r 
and r^d. Then for all alphabets X with \X\^2 there exists a definite automaton 
^ = (5, X) such that d = d(A), r = rc(A) and t=ts(A). 
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Proof. Let S be the disjoint union S = F U K ( 1 > U . . . U F « U t 2 , ..., tn). 
Here V=Xr, F(i> = {t)(0| v£V} are copies of V for l S i ' S / and t}, ..., tn are 
n=d—r additional states. Choose x0£X and define the state transition function 
of A as follows: 

(i) For all (v,x)£VxX=XrxX set vxA = vxA^. 
(ii) For all x£X and set tixA = ti_1 and furthermore set t1xA = 

= xr = x^ x0£Xr. 
(iii) For all ( V , x ) e v x x and set i;<i>;c/1=(t;;t'4(r))(i-1) and further-

more set v w x A = v x A ( r \ 

This situation is depicted in Fig. 2. Obviously, A is a definite automaton. Let us 
first show d=d(A). The case d=0 is trivial. Let d^l. If now r—0, then 

V = {e}, n = t=d and d=d(A). If now f = 0 , then 
r=d, n = 0 and d=d(A). Hence we can assume t,d, 
r s l . If now /2=0, then d=r. Since 1X1^2, we have 
d=d(A). Let now n S l and p=p'x£X" with p'^X"'1, 
x£X and x = x 0 . Then there exists a p'^X'"1 such 
that ({i„} U Xr)pA i {xj} U {p"x}. It is easy to see that 
l ( W } U { / / ' ; t } V | ? i l for all q £ X ' - \ Consequently, 

This means that d(A)>\pq\=n + r — \ = 
=d-1. Now let p£Xd. Then p=p'p" with p'£Xn 

and p"eXr. From this ({i l 512 , ..., tn}UV)pAQVp"A=p" 
follows. On the other hand, since d ^ t , we have 
V^pA = VpA=p" for all i with l^ist. Therefore 
SpA=p". This means that d(A)^d. Hence d(A)=d. 

Fig, 2 The core of A coincides with A(r), hence rc(A)=r, 
and since n=d—r^t, we have ts(A) = t. 
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Basic theoretical treatment of fuzzy connectives 

B y J . DOMBI* a n d Z . VAS** 

Introduction 

One of the most interesting problems in the theory of fuzzy sets is the choice 
of the fuzzy connective operations, i.e. the union and the intersection. 

Definition 1. The fuzzy set p is an arbitrary function 

p:X-[0,l] (1) 

interpreted on the non-empty universal discourse X. 
In such a sense, the characteristic function of the common sets is a special 

fuzzy set. 
Zadeh (1965) [24] extended the intersection and union of the subsets of the 

common sets in the following way 

PALIB(X) = max(fiA(x), PB(x)) for all x£X and 

PAnB(x) = min (nA(x), pB(x)) for all x£X, (2) 

where fiAUB and pAnB are the fuzzy sets corresponding to AUB and AC\B, 
respectively. 

Below we shall survey in broad outlines the development of the views relating 
to fuzzy operations. Historical survey of fuzzy operations: 

Besides operations (1), others also have been proposed for the generalization 
of the operations in set theory [24], [17]. Some examples are 

PAHB(x) = HA(X) • fiB(X) a n d 

PAUB 0 0 = HA (X) + nB (X) - pA (x) • PB (x) (3) 
or ' 

HAC\B(X) = max (jiA ( x ) + f i B 0 0 — 1, 0) and 

PAUB(X) = min (¡xA(x)+/iB(x), l ) . (4) 
All this reveals the arbitrary nature of the definitions. This arbitrariness can be 

resolved with a basis on the axiom system general in mathematics. Strivings in this 
direction were first made in defence of the min and max operations [3], [12], [9]. 

5» 
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In effect, this merely involved the characterization of operations (1) with other 
properties. 

Subsequently, other axiom systems were created [11], [12], [14], which were not 
represented by operations (1); there were publications in which algebraic structures 
were investigated without representation [2], [13], [15]. Here the emphasis was on 
the rational establishment of the axioms. 

A whole series of axiomatic examinations arose for the most varied operations; 
however, these were unable to unify the views relating to the operations, but rather 
made the problem more ramified. Study of the mutual interrelations between the 
axiom systems might have led to a solution, but very great difficulty was caused by 
the fact that it was impossible to compare the axioms. Only one such study has 
been made [10]. 

One possibility was to return to the bases, i.e. to base the rational nature of the 
axioms not on opinions, but on empirical examinations. The first such examina-
tion did not relate exactly to this, but to the question of whether the created opera-
tions correspond to practice [21]. The result was that they do not. 

Further, it is not advisable to make a mathematical theory dependent on narrow 
empirical examinations; rather, operation classes must be produced from which 
the appropriate operation can be selected in a manner adequate to the practical 
requirements. 

The operations should if possible be made flexible. Parameter-dependent opera-
tion series were produced by Yager [23] and by Hamacher [11], but these were as 
individual as the earlier operations. Although operation classes were defined, 
a practical interpretation of the parameters did not materialize. 

The next period was characterized by the appearance of monographs on opera-
tions and axiom systems [6], [22]. 

These works ensured a possibility for the discovery of the common properties 
of operations and axiom systems and for the selection of a minimal axiom system [4]. 
However, only a narrow range of the examined operations could be characterized 
with these axiom systems. 

The axioms of this minimal system are the strict monotonity of the operations, 
the holding of the correspondence principle, associativity and continuity. The 
adoption of these axioms can be based rationally in the following way: 

The correspondence principle is satisfied by all fuzzy operations, i.e. their 
restriction to the characteristic function is a classical set-theory operation. The 
associativity holds for every operation examined so far, and in addition a possibility 
is created for the extension of two-variant operations to multi-variant ones. The 
lack of continuity terminates the homogeneous effect of the operation. 

Strict monotonity is not satisfied by every operation; its condition rather served 
the realization of the representation. However, the condition of monotonity exists 
for all operations. 

Thus, it is advisable to carry out an examination of not strictly monotonous 
operations. Hence, we must obtain, for example, (4) and (1). 

The main result in the paper is the giving of representations of all operations 
of such type, as functions of various conditions. 

The study relies on the theory of ordered semigroups [8], [20] and the associative 
function equations [1]. 
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1. Fuzzy algebra 

Let I be the closed interval [0, 1] of the real numbers. This notation partly 
serves to simplify the description, and partly refers to the generalizability of the 
theorems and definitions. 

The set of all the fuzzy sets (1) is 

F(X) = {n\ti: X - I } (5) 
(we shall denote F(X) briefly by F). Let Ch be a set of common characteristic 
functions. 

Definition 2. The fuzzy sets ¡x and v are said to be equal if 

/¿(jc) = v(x) for all xdX. (6) 

The fuzzy set fi precedes the fuzzy set v if 

fi(x) =§ v(x) for all x£X. (7) 

Theorem 1. The relation s is a partial ordering on F. Let us consider an 
n-ary algebraic operation 

*: F"-F (n = 1,2, ...) (8) 
on the set F of fuzzy sets. 

Definition 3. The operation * is isotonic (antitonic) if it follows from the 
( inequalities 

HiTSVi (i = 1, 2, ..., n) 
that 

fj,1*...*fi„Sv1*...*v„ (ji1*...*n„^v1*...*vn) (9) 

for all (Hi, ..., [!„), (v1; ..., v„)£F". The isotonic and antitonic operations together 
are said to be monotonic. 

The ordering relation s interpreted on the fuzzy sets is a generalization of the 
partial ordering defined by the entailment interpreted on the common sets. 

Definition 4. By fuzzy algebra [5] (the algebra of fuzzy sets) we understand all 
those algebraic structures interpreted on F for which it holds that 

(Al) all of its operations are monotonic. 
Fuzzy algebra is said to be "ordinary" if the following condition also holds: 
(A2) the restriction of all of its algebraic operations to Ch agrees with some 

set-theory operation with the same number of variables. 
In our work we shall examine those ordinary fuzzy algebras <F, # ) (in the 

following simply fuzzy algebra) which satisfy the following conditions: 
(F l ) * is a binary connective operation, i.e. its restriction to Ch is either inter-

section interpreted on the normal sets, or union. 
Let us consider those fuzzy algebraic operations for which there is a function 

/ : 7 X / - 7 such that 

(H*v)(x) = f{n{x), v(x)) for all x€X. (10) 

The attribution * — / is mutually unambiguous. Let us denote the set of fuzzy al-
gebraic operations with this property by Z. 
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(F2) Let * be an operation belonging to Z. 

Theorem 2. Let * : FxF—F be an operation in Z. The algebraic structure 
< f , *> satisfying condition F1 is fuzzy algebra if, and only if, it holds for the func-
tion / ascribed to * that 

(i) / is monotonic in the sense agreeing with * ; 
(ii) / (0 , 0)=0, / (1 , 1) = 1, and further, if the restriction of the operation * to 

Ch is intersection (union); then / (0 , 1)=/(1, 0 ) = 0 (/(0, 1)=/(1 , 0) = 1). 

Proof. Let <F, *> be the fuzzy algebra satisfying condition F l . 
(i) Let us assume that * is isotonic. Let xx, x2, ylt y2dl, so that x^x2 

and _)'] ^ y2 • Let us consider the fuzzy sets 

Hi(x) = Xj_, n2{x) = x2, vx(x) = yu v2(x) = y2 for every x£X. 

For these it holds that 
^ fi2 and V[ S v2. 

It follows from the isotonity of operation * that 

Taking F2 into consideration: 

f(jh(x), Vl(x))^f(^(x), v2(x)) for all x£X. 

It therefore follows from Xi=*2 and y ^ y 2 that 

fix^yd ^f(x2,y2), 

i.e. / is isotonic. The postulate can be demonstrated similarly for the antitonic case. 
(ii) The postulate arises simply from consideration of A2 or F l and F2. 

' Proof of the inverse of the postulate is likewise simple. 
Consequence: with the operation / ascribed to * I is an ordered algebraic 

structure. 
Theorem 2 ensures that study of the representations of the algebraic structure 

determined by the operation / ascribed to the operation * is sufficient for examina-
tion of the representations of the fuzzy algebras <F, *> satisfying conditions F l 
and F2. 

As concerns / , let us assume that 
(F3) / is associative; 
(F4) / is continuous on IX I. 
It can readily be seen that the operation * determined by such / is associative 

and continuous from point to point, i.e. if the series of fuzzy sets {¿/„} and {v„} 
converge from point to point to the fuzzy sets n and v, then the series of fuzzy 
sets {p„*v„} converges from point to point to the fuzzy set n*v. 

In the following section postulates will be given for the case when the restriction 
to Ch of the operation * determined by / is the normal set-theory intersection. 
In this case we denote the determining function by c. The function corresponding 
to the union is denoted by d. The postulates for c and their proofs can be applied 
appropriately to d. 
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2. Representation theorem 

Let us first summarize the properties having by the function c: Ixl—I defined 
in section 2. 

(Tl) c is monotonous ; 
(T2) c(0, 0)=0, c(l, 1) = 1, c(0, l ) = c ( l , 0 )=0 ; 
(T3) c is associative; 
(T4) c is continuous. 

Theorem 3. If Tl and T3 hold for c, then 
(Tl ') c is isotonic [8]. 

Thus, the set I forms a semigroup completely ordered with operation c. 

Definition 5. The function h is said to be Archimedean in the interval [a, b\ if 

h(x, x)<x for all x£(a,b). (11) 
The representation theorem relating to the Archimedean case was proved by 

Ling [16] by means of elementary analysis. The theorem can be derived from the 
earlier result of Mostert and Shields [18]. 

We shall make use of this theorem in the following. 

Theorem 4. Let J be a closed interval [a, b] of real numbers, and h the func-
tion h:JxJ-*J- h has the properties that 

(i) h is monotonous ; . 
(ii) h is associative; 

(iii) h is continuous ; 
(iv) h(a, a)=a, h(b, b)=b, h(b, x)=h(x, b)=x (xfEJT); (12) 
(v) h is Archimedean 

it and only if there exists a continuous, strictly monotonously decreasing function g, 
mapping the interval [a, b\ into the interval [0, for which g(b)=0 such that 
h may be represented in the form _ 

h(x,y) = g^(g(x) + g(y)) (13) 

where g ( _ 1 ) is the pseudo-inverse of g 

, 1 ) r . j g - H * ) if g ( b ) - * s g ( a ) , 

where is the normal inverse of function g in [g(6), g(a)]. 
Function g is termed the additive generator of the Archimedean operation h, 

and g is unambiguously determined apart from a positive constant, i.e. a -g ( a>0) 
likewise generates h. 

It should be noted that the theorem can also be stated in such a way that the 
generator function g' maps the interval [a, b] into [ — 0], it increases strictly 
monotonously, and g(b)=0. In this case the definition of the pseudo-inverse is 
modified appropriately. 

Function c with properties Tl—T4 satisfies conditions (i)—(iv) of Theorem 4. 
In the following we shall not restrict our considerations to the Archimedean case. 
Mostert and Shields have carried out similar examinations relating to semigroups [18]. 
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Let us consider the set of the idempotent points of the interval / 

N = {x|x67, c(x, x) = x}. (15) 

Theorem 5. N is a closed set. 

Proof. We see that N contains every accumulation point. Let x0 be an 
optional accumulation point of N. A point series x„ may then be selected from 
N such that 

lim x„ = x0 . 
/1—CO 

Since x„£N for every n, we have c(x„, x„)=x0 , and c is continuous (T4), so that 

c(x0, Xq) = lim c (x„ ,x„ )= lim x„ = x0 , 
xn~~x0 X" ' X0 

and thus x0£N. 
Let M=I\N. M is a restricted and open point set. Let us assume that M is 

not empty. 

Theorem 6. M can be constructed as the combination of a finite or infinitely 
large number of open intervals, not projecting into one another in pairs, the end-
points of which do not belong to M [21]. 

Therefore M has the form 
M = \J Mi (16) 

i£P 

where P is a finite or an infinite index set and M ; £ , • ) , for which, if x£(a f , ¿»¡), 

c(x, x) x, (17) 

while c ( a i , a ^ = a i and c(bi,bi)=bi. 
Let us select an optional region [ft, 6,]X[tff, ¿¡]. In this region it holds too 

that c is isotonic (Tl'), associative (T3) and continuous (T4). For determination 
of the properties corresponding to T2, let us consider the following theorems: 

Theorem 7. For every x£[a„bl\: 
(i) c(a f , x) = c(x, af) = a,-, (18) 

(ii) c(bi,x) = c(x, bt) = x. (19) 
Proof. First, we see that 

c( l , x) = c(x, 1) = x for all x£I . (20) 

On the basis of (T2), c(0, 1)=0 and. c(l, 1) = 1, and with consideration of the 
continuity (T4) the function c(x, 1) therefore maps I on /. Then,, for any y £ l 
there exists an x £ / such that c(x, = Utilizing this fact and the associativity (T3). 

c(y, 1) = c(c(x, 1), 1) = c(x, c( 1,1)) = c(x, 1) = y for all y£I. 

Part (i) of the theorem is a simple consequence of the isotonity (Tl ') and (20) 

ai = c(ai, at) ^ c(x, a,) S c ( 1, a,) = a,. 

The proof of part (ii) is the application of that of (20) to [at, ¿»¡]. 
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Theorem 8. For every x£(a f , b,), c(x, x ) < x . 

Proof. As a consequence of the isotonity (Tl ' ) and (19) 

c(x, x) S c(bi, x) = x for all x€[a ; , bt]. 

If x£(ah bi), then c(x, x)^x, so that 

c(x, x) < x for all x£ (a(, b-). 

Theorem 9. For every (x, y)€[cti, 6,]X[a,-, bt] 

c(x, y) s min (x, y). (21) 

Proof As a consequence of (19) 

c(x, j ) S c(x, b,) = x and c(x, y) S c(bi, y) = y, 
therefore, 

c(x, y) S min (x, y). 

Theorem 10. Let 7 / = / 2 \ ( J Mf. Then 
HP 

c(x, y) = min (x, y) for all (x, y)£H. (22) 

Proof. Let us assume that x^y. Let (x, y)£H. 

(i) If x£N and y f J , then 

x = c(x, x) S c(x, y) = c(x, 1) = x. 

(ii) If x6(a,-, bf)QM and then 
x = c(x, bf) =5 c(x, j ) S c(x, 1) = x. 

In both cases c(x, j>)=x=min (x, j ) . 
Let cf be the restriction of the function c to the region [ah ¿>;]X[a;, b,\. 

As a consequence of the equalities c(cr;, and c(b,,bt)=bt as well as the 
isotonity (Tl ' ) and continuity (T4) of c, ct maps the region [ah ¿>,]x[6i,-, Z>;] on 
fa, bi\. 

To summarize, c{ satisfies conditions T l ' , T3, T4 and T2' 

(T2') c,(a ; , a f) = a ; , c f(b ( , bt) = bt, 
ci(ai> bi) = CI(bi, at) = di 

and by Theorem 8 it is Archimedean. From the Ling theorem, therefore, for every 
i£P there exists a generator function gt additive in [ah ¿>;] to c ;. 

Thus, the following theorem holds for c: 

Theorem 11. Let c be the function c: / X / — / . c satisfies conditions Tl—T4 
if and only if c has the form 

_ J ^""(fcto+ftOO). if (*•?)€ AT,' = (a„ bif i£P 
c ( * ' 7 ) - l m i n ( x , 7 ) , if ( * , > o a 2 \ u M ? 

i€P 
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where {Af,}ie P is the sum of a finite or infinitely large number of open intervals 
belonging to /, not projecting into one another in pairs. is a function mapping 
the closed interval [at, b,] into the interval [0, =»], which is a continuous, strictly 
monotonously decreasing function, and gj(6,)=0. g ( - 1 ) is the pseudo-inverse of 
(It should be noted that P may be empty.) 

Proof, (i) Let us assume that T1—T4 hold for the function c : / X / — / • If every 
point of / is idempotent, i.e. I=N, then on the basis of Theorem 10, c(x, y) = 
= min(x, y) for all (x, y)£P. If Nczl, then as a consequence of Theorems 5 
and 6 in P there are regions , 6,] X[tf,, bt] not projecting into one another in 
pairs, in which the functions cf satisfy the conditions of Theorem 4 (Ling) by 
Theorems 7—10. In the given region, therefore, there exist generator functions 
g t additive for c,-s. Outside such regions, from Theorem 10: c(x, ^ ) = m i n (x, j ) . 

(ii) Let us assume that the function c : / X / — / exists in the form (23). If 
P is empty, then c(x, y)=min (x, y) for all (x, y ) f j 2 . Therefore T1—T4 hold. 

If P is not empty, then by Theorem 4 (Ling) the function c is isotonic, as-
sociative and continuous separately both in the regions {A/?} (i£P) and outside 
these regions. 

Because of (12), at the limit of the regions M c ( x , ^ )=min (x, y), and 
c therefore has no breakpoint. Thus, c is continuous (T4) in P. T2 similarly 
follows from these arguments. 

The proof of the isotonity (Tl ' ) and the associativity (T3) is lengthy, and ac-
cordingly we do not present it here. 

Without proof, we list some of the consequences of Theorem 11. 

Theorem 12. Every function c: Ixl-*I satisfying conditions T l—T4 is 
commutative. 

Definition 6. The function t: / X / — / is said to be a t norm [19] if 
(i) I ( 0 , 0 ) = 0, t(x, 1) = /(1,JC)=JC f o r all * € / , 

(ii) t is isotonic, 
(iii) t is commutative, and 
(iv) t is associative. 

Definition 7. The function t: / X / — / is said to be a strict t norm if (i) and 
(iv) hold, and 

(v) t is continuous, and 
(vi) t is strictly isotonic, i.e. 

t(xlf )>) < t(x2, y) if 0 < X i < X 2 S l , 

t(x, < t(x, y2) if 0 < yx < y2 ^ 1. 

Theorem 13. Every function c: / X / — / satisfying conditions T l—T4 is 
a continuous t norm. 

If we assume strict monotonity instead of Tl for function c, then it is a strict 
t norm and Archimedean in I. 

Studies relating to continuous t norms have been performed by Schweizer and 
Sklar [19], [20]. 

Finally, let us examine the possibility of constructing the min (x, y) function 
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by means of a generator function. By Theorem 4 (Ling) there is no additive generator 
of form (13), as it is not Archimedean. Ling studied this problem in some detail [16]. 

Theorem 14. Let J be the closed interval [a, b] of the real number straight 
line. If c(x, y) = min (x, y) for all (x, y)£[a, A]X[a, b], then there does not exist 
a continuous function g: [a, ¿>] — [0, such that c can be represented in the form 

min (x, y) = g*(g(x) +g(y)) (24) 
where it holds for (the not unconditionally continuous) g* that g*(g(x))=x 
for all x€[a, b]. 

Theorem 15. Assume that J and c satisfy the conditions of Theorem 14. 
Then, there does not exist a strictly monotonously decreasing function g: [a, b\ — 
—[0, <=°] such that c can be represented in the form 

min (x, y) = g*(g(x)+g(y)) 
where g* is the function defined in Theorem 14. 

A connection may be created between the generator functions and min (x, y) 
from another aspect. Let g(x) be the additive generator function of c(x, y). 

Theorem 16. gA(x) ( / > 0 ) also has the properties of the generator functions. 
Theorem 17. If cA(x, y) is an operation determined by the generator function 

then 
lim c^(x, y) = min (x,y). 

Theorems 16 and 17 for strictly monotonous functions c(x, y) have been 
proved by Dombi [4]. 

3. Examples 
(i) Zadeh [24] 

(ii) Lukasievicz [17] 

c(x,y) = min (x, y), 
(c(x, x) = x, *€•/). 

c{x,y) = max (x+y — 1, 0) 
L— x, if x S 1, 

g ( x ) - if 

(not strictly monotonous, Archimedean). 
(iii) [24] 

c(x, y) = x-y, 
g(x) = log x 

(strictly monotonous). 
(iv) Dubois [7] 

x-y x-y 
c(x, y) = max (x, y, A) 

if A > x, y, 

min (x, otherwise, 
x g(x) = -log — , if x > 0, 
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(v) Harnacher [12] 

c(x, y) = 
X • x • y 

g(x) = - l o g 
X-x 

l + ( A - l ) - x ' 
(vi) Yager [23] 

(*, y) = { 
l - ( ( l - * ) A + ( l - j ' ) , ) l M » if ( l - x ) A + ( l - j > ) A < 1, c 0, otherwise, 

f (1 —jc)a, if X < 1 , 
lO, if x = 1. 

(vii) Dombi [4] 

c(x, y) = 
1 

4. Conclusion 

The objective outlined in the Introduction has been attained. The square 
resolution existing in the general case is based on the non-Archimedean nature. 
If we do not desire such a resolution, then the operations must be restricted to the 
Archimedean case. 

Modification of other conditions means the possibility of a further step in the 
investigations. An example is the study of the non-continuous case, e.g. 

which otherwise satisfies Tl—T3. 
Setting out from the generator functions, another research area is the charac-

terization of the possible operation classes, or the study of the connection between 
various operations, e.g. generalization of the DeMorgan laws. 

The question still remains of what connection exists between the empirical 
examinations and the fuzzy algebraic operations. The research up to date has not 
provided a satisfactory answer to this. 

* RESEARCH G R O U P ON THEORY OF AUTOMATA •* KALMÁR LABORATORY OF CYBERNETICS 
HUNGARIAN ACADEMY OF SCIENCES A. JÓZSEF UNIVERSITY 
SOMOGYI U. 7. ÁRPÁD TÉR 2. 
SZEGED, H U N G A R Y SZEGED, H U N G A R Y 
H—6720 H—6720 

X , if y = 1, 
t(x, y)= y, if X = 1 , 

0, if X jt 1 and y 1, 
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Run length control in simulations and performance 
evaluation and elementary Gaussian processes 

B y M . A R A T O 1 

1. Introduction 

This paper discusses some statistical problems which arise in analyzing the 
results of experiments involving the measurement evaluation and comparison of 
the performance of computing systems, and simulation of such processes, as well. 
These sequences are generally correlated and in most cases contain a portion which 
is nonstationary. It is widely accepted that a computer system is operating under 
a stochastic load and generates stochastic response sequences which are assumed 
stationary. Such sequences include system response times, utilizations, throughputs 
(measured e.g. in transactions/sec.), device waiting times, etc. The properties of 
these output sequences are unknown and the system is being measured in order to 
estimate characteristics of the specific sequences. As an example the experimenter 
might be interested in the mean, covariance function of the response times (or even 
in the response time distribution) and in the utilizations of the major system com-
ponents (CPU, memory, disks, etc.). Furthermore, the experimenter is often interested 
in estimating the above quantities as a function of some input parameter such as 
the number of terminals or transaction rate and in comparing these estimated func-
tions for alternative system configurations. The output sequences are correlated 
(often strongly) and hence the usual statistical procedures which assume independent 
observations do not apply. 

Let us consider a database system (see e.g. [8], [9]), where transaction response 
time and transaction rate are particularly important. These have been chosen as 
the major criteria for evaluating an alternative system. There were made modi-
fications to the operating system so that certain supervisory functions which account 
for a substantial amount of processor utilization are executed on a separate processor. 

A typical time series of transaction response times and its sample correlation 
function is given in Figure 1. 

1 Visiting Professor, System Science Department, University of California, Los Angeles. 
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Fig. 1 
Sample covariance function of transaction response time 

The problem of getting confidence intervals for the mean of a stationary output 
sequence from a discrete event simulation has an upgrowing literature and program 
packages (see e.g. [9], [10], [12] and [14]). This problem is connected with a run 
length control procedure which is designed to terminate the simulation when a 
confidence interval of a prespecified relative width has been generated or to continue 
the run to a maximum length. 

This paper is concerned with the above mentioned problems for the following 
practical point of view. Instead of using the spectral analysis techniques, which 
assume indirectly the asymptotic normality, we are using the stochastic difference 
and differential equation method, which enables us to calculate the confidence 
limits in advance, to get exact results in the Gaussian case and, at the same time, 
good approximations for non-Gaussian sequences. 

The results are in good agreement with those of the simulation (see [9], [10]), 
though the calculations can be carried out on a small calculator, using the tables 
of the known exact distribution of the maximum likelihood estimator of the damping 
parameter of an autoregressive (AR) process. 

There exist many approaches to the problem of generating confidence intervals 
for the mean of dependent sequences of random variables and for determining 
the length of a steady-state simulation. In our method we get the same results 
by simple calculations based on the concept of sufficient statistics and on the approxi-
mation of discrete time process by continuous time process. It is remarkable that 
explicit results can be gotten and carried out only in the continuous time case. 

The main novelty in our method is not only its simplicity, but in the direct 
estimation of the correlation and giving sufficient statistics. Indeed, instead of the 
tedious calculations of spectral densities we are using only the first covariances and 
the boundary random variables which keep the storage requirements of the method 
extremely low. 

Using two estimates 

Y — ^ "v Y Y — /1\ a N — ZJ o 2 w 
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for the unknown mean n = E X i in the correlated case it is not known which of 
them is better. Let, for simplicity, Xt be the following time series Xt=J>,+/I, 
where 

y, = W i - i + 8 f , ( £ S i = o, <7? = ( i - e 2 K ) . (2 ) 

Then XN js not uniformly, in 0 < e < l , a better estimate than X0, in the sense 
that Var XN^Var X0, if (see [3], [4]) and compare with (10) below. 

Finally, let us point out that in constructing confidence bounds by the spectral 
method and by the normal approximation, one can find a gap in the earlier proofs, 
because the authors do not care about the question of uniform (in 0 < / x ( 0 ) < ° ° , 
where fx(X) is the spectral density of process x) normal approximation when the 
number of observations Nevertheless, it can easily be seen that uniform 
approximation does not hold even in the above mentioned special case (2), if 

(see [2], [4]). 

2. Preliminary results 

The sample covariance functions of waiting time and response time experiments 
show an exponentially decaying and never an oscillating character, which allows 
us not to be interested in checking hidden periodicities. In this case, all the roots 
of the characteristic equation of a higher order AR process are real and negative 
(in the continuous time case), or less than, in moduli, 1 (in the discrete time case). 

This makes possible to assume that the process or one of his derivatives has 
a simple structure. Our method can be used for higher order autoregressive schemes 
too, after simple transformations and assuming that the roots of the characteristic 
polynomial are real. 

On the basis of the sample covariance function we may assume that the sequence 
of observations X(l) , X(2), ... forms a realization of a one dimensional stationary, 
Markovian and Gaussian process %(ri) (called elementary Gaussian), with unknown 
paramete r s n=E£(ri), c\=D2£,{n) = Var {(/j) and 

corr (f (n), £ (n - 1 ) ) = q, i.e., 

( i ( n ) - A t ) - e ( « ( n - i ) - / 0 + e (n) , O ) 

where e(n) is a Gaussian white noise with Ee(n) =0, a\ =(1 —Q2)O\. 
We are interested for instance in the construction of confidence limits for the 

parameter ¡x, or if we denote the process of the base system by ¿^(n) and the 
alternative system, after certain functional redistribution by £2(«) then the main 
question is that whether the difference of sample means 

differs significantly from 0 or not. N is the sample size and 

*».! = 4 i *,(»). i = 1.2. (4) jV „=1 

6 Acta Cybernetica VI/2 
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Let us recall the following results (see e.g. [4] or [13]). The spectral density 
function, /.(A), of the process £(/?) has the form 

f a . i i ( 5 ) 
) 2n \l-ee~a\2 2n (l — Q cos A)2+g2 sin2A ' v ' 

/ « m — 

If Q and A\ are known the maximum likelihood estimator of /x is the following 

(X +X N "I 

where — ^ — 2 f ° r m a system of sufficient statistics J , JV-l 
*i+*w+(i-e) 2 xi 

(6) 2 + ( l - e ) ( J V - 2 ) ' 

which is normally distributed with parameters 

^ ^ 2 + ( l - g K J V - 2 ) ) - ( 7 ) 

Assuming that £(«) is the discrete variant of the continuous process £(i) with 
the differential 

dZ{t)=-tf(t)dt+ow-dw(t), Q = e~Xit, (8) 

where w(t) is the standard Wiener process, then it is known that aw can be estimated 
exactly and 2Xo\=a\. The damping (or decaying) parameter A (and so Q, too) 
can be estimated poorly and this is the reason why n has fairly wide confidence 
intervals. The maximum likelihood estimator of A is approximately normally 
distributed if A T ^ 1000. Tables of the distribution of the maximum likelihood 
estimator of the parameter A can be found in [4], or [5], [6]. In the continuous 
time case the sufficient statistics of the unknown parameter ¡j, are ^(0)+<^(r), 

T 
J £(t)dt and the maximum likelihood estimator has the form 

£ ( 0 ) + S ( j ) + A f W)dt 

* = — — W • (9> 

with variance 2o\l(2+XT). Note that for T=\,ol=\ we have. 

^ ( i f f i + M J . i ^ ^ ^ i f f l A j . i i ^ i . if , « 2 ( ,0 , 

i.e., depending on XT the mean of two observations can be a better estimate for 
1 J 1 N (Ti\ 

H than — f £(t)dt, and of course better than — — - 2 £ ni7 • 
1 * 7V + 1 I = 0 \ly J 
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The sufficient statistics for I are 

and the maximum likelihood estimator has the form (0%=1) 

, - [ s l - T / 2 ] + Y[sl-T/2r+Tsl I 

3. Confidence interval construction 

Using advantage of the table given in [5] (or [6]) and the approximate variance 
of fi getting from (7) 

(13) 
N I - Q ' U ; 

the following approximate confidence intervals can be used for /i/cr?, having the 
upper g,95 and lower £.os confidence bounds for g at the levels 0.95 and 0.05 

< 1 4 ) 

and a ¿(0.9) we call the half confidence interval width at the level />=0.9. 
Table 1 contains the lower and upper estimates of g for different sample size 

and the half confidence interval width at level /7=0.9 and for all the values Q, Q.9s, g.05. 
From Table 1, one can get estimation for the run length control too, in the 

sense that the required half-width is attained or not. At given q and e (half-width) 
with £>.05 one can get the maximum value N(g) for which 

_ L 6 4 5 № £ r = - - <"> 
and the minimal value N(g) 

1 
e.g. for g = .99 = 1 — j ^ - and 2=0.33 (when iV = 5000) one can get 

4 - W ) = 432o> N i i - i k ) = m o -
Note that in the case when g, a, m are all unknown, it does not exist such 

a statistic with known distribution as Student's t in the independent observation 
case. With this respect we recall the following results (see [2], [3], [4]). 

Let us assume for simlicity that T = 1 and <rw= 1. Let us take a positive func-
tional x(£) for the lower confidence limit of A, and //(£) real-valued func-
t iona l as upper and lower confidence limits for p. We assume that all these func-

6* 
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N " 100 500 

M. Arato 

Table 1 

1000 5000 10000 50000 

1010.14 
0.981 
0.979 

0.979 
0.075 
0.071 

Q = 0.99 
X 1.010 5.025 10.050 50.252 100.50 502.52 
e.os 0.9999* 0.9993 0.9976 9.9934 0.9924 0.9911 
3 .05 0.9750 0.9816 0.9841 0.9869 0.9879 0.9891 

£.9(0) 2.321 1.038 0.734 0.328 0.232 0.104 
£.9(0.95) 23.263* 3.032 1.501 0.404 0.266 0.110 
£ . 9 ( 0 . 0 5 ) 1.426 0.763 0.581 0.287 0.211 0.099 

q = 0.995 
X 0.5012 2.506 5.013 25,063 50.125 250.63 
e.95 0.9999* 0.9999 0.9996 0.9973 0.9967 0.9959 
e.ot 0.9852 0.9893 0.9908 0.9928 0.9934 0.9942 

£ . 9 ( 0 ) 3.286 1.469 1.039 0.465 0.329 0.147 
£ . 9 ( 0 . 9 5 ) 23.263* 23.263 3.678 0.633 0.405 0.162 
£ . 9 ( 0 . 0 5 ) 1.905 1.003 0.765 0.387 0.286 0.136 

Q= 0.998 
X 0.202 1 . 0 0 1 2.002 10.010 20.020 100.10 
0.95 0.9999* 0.9999* 0.9999 0.9995 0.9991 0.9985 
3 .05 0.9925 0.9950 0.9955 0.9968 0.9971 0.9975 

£ . 9 ( 0 ) 5.199 2.325 1.644 0.735 0.520 0.233 
£ . o ( 0 . 9 5 ) 23.263* 23.263* 23.263 1.471 0.775 0.269 
£ . 9 ( 0 . 0 5 ) 2.681 1.469 1.095 0.581 0.432 0.208 

q = 0.999 
X 0.100 0.500 1 . 0 0 1 5.003 10.005 > 50.03 
0.95 0.99999* 0.99999* 0.99999* 0.99993 0.99976 0.99933 
3.05 . 0.99700 0.99710 0.99748 0.99815 0.99840 0.99869 

£ . 9 ( 0 ) 7.35 3.289 2.326 1.040 0.735 0.329 
£ . 9 ( ^ . 9 5 ) 73.566* 73.566* 73.566* 3.932 1.502 0.402 
£ . 9 ( 3 . 0 5 ) 4.244 1.931 1.410 0.765 0.581 0.287 

The half confidence interval width &„(Q) = 1.645 Y(l + iO/W(l — (?) at level p for p / f f t • ¿ e 
means the /? level confidence bound of Q, g=e~A/N, X= —N log Q, N is the sample size. 

X 2.020 
0.85 0.9996 
0.05 0.956 

£.9 (0) 1.673 
£ . 0 ( 0 . 9 5 ) 11.630 
£ . 9 ( 0 . 0 5 ) 1.097 

0 = 0.98 
10.101 20.203 
0.995 0.991 
0.969 0.971 
0.732 0.518 
1.469 0.774 
0.586 0.429 

101.014 202.03 
0.985 0.984 
0.976 0.977 

0.231 0.164 
0.268 0.183 
0.211 0.153 

* In the cases marked by * the upper confidence bound for Q is equal to 1 and the confidence 
interval width is ~ (see section 4). 

I 
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tionals are continuous on R( -in the C[0, 1] metric, but n and ¡i may assume 
values + and — °=>. The continuity of functionals assuming infinite values is to be 
understood as continuity induced by the topology of the real line, closed by points 
— co and First we have the following assertion, which says that no nonzero 
lower limit can be constructed for the parameter X with any degree of confidence. 

Theorem 1. Let /?>0, and let £) be a positive functional defined in the space 
R( and continuous in the C[0, 1] metric, with the property that x(¿;) — °° if 
sup |£(i)| — L e t it satisfy for any n and X the condition P Then 

P{x(0=0}^g(X,P) (17) 

where the positive function g( •) does not depend on the choice of functional and 
g(X,P)^l as A-0. 

For parameter p the following statement says that if p, X are unknown it is 
impossible to construct finite confidence intervals using continuous functions. 
We assume that p. and p has the property that for a real value c 

p^ + c) = p(0 + c, p(Z + c) = KO + c. (18) 

Theorem 2. Let P > 1/2, and let fi(£) be real valued functionals (which 
may assume values — °° or on the space which are continuous in the 
C[0, 1] metric and which satisfy the conditions 

P{p S At©} S p, 

P{p < №} ^ P, 

for any p and A ( — A > 0 ) . Then 

P{p(0 = «>} sf(X,p), 

P{p(Z)=-«>}^f(X,p), 

(19) 

(20) 

where f(X, P) does not depend on the choice of these functionals, and f(X, /?) —1/2 
as A—0. 

Simulation results were given in [6] to illustrate the situation and to have a 
picture on the function g(X, P), where the following estimators (T=\, a%= 1) 
were taken: 

1 N J 

m2, %2 the maximum likelihood estimators, 

£(0) + £(l) , 2 

N 

mo -
( { ( D - a o ) ) 8 
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where ^ = (i = l, 2, ..., N), ¿;o=£(0). N was taken between 60 and 100 
and n (the number of samples) was 1000. We have the following approximations: 

g(X, 0.05) % 1 if ¿<0.5, (i.e., P(x(O=0) = 1 if As0.5 on level /5=0.05), 
g(l, 0.05) « 1 if A<4, 
«(A, 0.9) « 1 if A<9, 
g(A, 0.95) % 1 if A<12. 

It seems that 

but this statement is not proved. 
Theorem 2 can be reworded as follows: When the parameters p and A of 

a stationary Gaussian Markov process are unknown, it is impossible to construct 
finite confidence intervals for p. using continuous functionals. 

From the proof provided in [2] it can be seen that for any e > 0 there exists 
a /1(e) such that for small values of A 

Running a simulation less than its length would not provide the information 
needed, while running it longer would be a waste of time, so it has great practical 
meaning for the experimenter to have some preliminary estimation about the 
accuracy requirements. We shall assume further, that this accuracy requirement 
is specified by the half-width of the. confidence interval of the mean value, p, 
devided by the standard deviation, of the process £(/). In this section we will 
describe the incorporation of the method of sections 2 and 3 into a sequential esti-
mation procedure. We shall show that one possible approach is that, when using 
the approximation with continuous time we estimate the decay parameter A (and 
so g) by given accuracy. This procedure uses the same amount of storage required 
earlier but uses some new random time moments (the Markov moments) and 
requires only a small amount of computing per output element. 

Let us denote by e the required relative half-width of the ratio ¿u/o^, and by 
p = 1 — p the given confidence level, and the 1 — 0?/2)-quantile of the Gaussian 
distribution. 

For given a, where 1—a means the confidence level for Q, to make small 
the difference 

g(A, P) % e-c«A, when A - 0, 

s u p P ^ M O ^ t i ^ 1/2 +A. W » - ' . 

4. Run length control and sequential estimation 

(21) 

we shall take advantage of sequential estimation of Q. For given a and c let us 
take H in such a way that (XX denotes the a quantile of normal distribution). 
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Further, let us denote by 
( 

X(H) = inf F i2(s)ds^H(e, a)}, (23) 
0 

the Markov moment and take 

w - l f M - ^ ; ^ . 04) 
0 2 f £2(t)dt 

0 

Then the following statement is true (see LIPTSER, SHIRYAEV [13], ARATÓ [4]) . 

Theorem 3. The sequential estimator X(H) is normally distributed with 
parameters 

EXX(H) = X, D*(?.(H)) = J 7 , ( 2 5 ) 

and it is efficient, i.e., it has minimal variance. 
The calculated H depends on C, a and from the realization getting r ( H ) 

for given s1 ; p it is possible to check (compare with (21)). 

XP 

A G H ) 
1 +Öl-to/2) 1 / 1 + g«/2 

1 — ö l - (a /2) ' @a/2 . 
(26) 

where ¿>=e~XAlN, X, _ (A/2)=X(H)+X1_(A/2)/YH. After the fulfilment of (26) one can 
construct confidence limits for the unknown mean p. 

To get some approximations for T(H) one has to turn to the papers of NOVIKOV 
[ 1 5 ] — [ 1 7 ] (see also LIPTSER—SHIRYAEV [13]) . 

Theorem 3 remains valid (under some natural conditions on a(t, £)) if we 
regard the process 

df (0 = Ia(t, Z(t))dt+dw(t), 

( see LIPTSER—SHIRYAEV [13] § 17 .5) . 
A natural question arises whether the advantages of sequential estimators are 

consequences of a rather long mean observation time EX(X(H)). For general a(t, 
this question is unsolved. The following statement is true (see NOVIKOV [17]) . 

Theorem 4. For AsO as T-+ 

P ^ ( H ) - T ) = 4 ( ^ ) 1 / 2 E X P { - ^ - G + ^ } ( L + 0 ( L ) ) , ( 2 7 ) 

EKX(H)^2[_XH+2)/H] + } / 8 ( X 2 H 2 + 4XH)+2H. ( 2 8 ) 

Further, if X2H-~ then 

E M H ) = 2 X H [ L + ^ ] } + O [ ± I ) ) , ( 29 ) 

and if X2H—0, then 

E^(H) = H1'2 [ 2 .09 + 0 . 8 5 6 1 I / 1 / 2 + o (X2H)\. ( 3 0 ) 



212 M. Arató: Run length control 

Note that remarkable fact that these results are in good agreement of those 
simulation results which are published in HEIDELBERGER, W E L C H [9] , [ 1 0 ] or 
H E I D E L B E R G E R [ 8 ] . 

Tables based on Theorems 3 and 4, one can construct easily. 

Abstract 

This paper intends to show that the method proposed by Kolmogorov in constructing confi-
dence limits for diffusion type processes gives a more simple and straightforward tool in run length 
control of output sequences of stationary series than the spectral method. There exists an upgrowing 
literature of the spectral method for construction confidence limits (see e. g. the survey paper HEIDEL-
BERGER, WELCH [9]), and even software program packages were constructed on this basis. We show 
that the Gaussian processes, when the computational requirements and storage remain low, can be 
used as good approximations with the advantage that instead of simulation one can get exact formu-
las. The connection between run length control and sequential estimation methods are found and 
some results of Novikov can be used. 
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A Theory of Finite Functions, Part I. 
On finite trees associated to certain finite functions 

B y P . ECSEDI-TÖTH 

1. Introduction 

1.1. Let A be a set of cardinality /, l£a>, / For n, m£a> we set 0(J¡-m) = 
= { / I / : A"-*Am} and 0<T> = (J 0<£-m\ Certain subsets of 0<j"\ in particular, 

i n€o 
of 0<¿\ are interesting for the very different mathematical theories of algebra, 
logic and computer science. For example, the celebrated result of I. Rosenberg 
picks up some subsets when enumerating maximal closed classes of O ^ [9]. Several 
special types of functions such as monotone (unate) and symmetric ones play a role 
in the theopr of logic design [10], and in other applications of finite functions (cf. 
e.g. Dedekind's problem on freely generated lattices generated by finitely many 
generators). In the common part of logic and computer science, e.g. in the theory 
of theorem-proving and of semantics for programming languages, certain restric-
tions to logical formulae with prescribed forms seem to help in increasing efficiency [8]. 

1.2. One possible method for investigation the properties of these subsets is 
to associate special finite algebras (or more precisely finite graphs and trees) to the 
elements of 0(J"K There is a very common way of doing this: let the "parse tree" 
be associated to each function. By this correspondence several remarkable results 
have been established. The parse tree, however, mirrors mostly the syntactical 
features of the function at hand and very little can be learnt about the "semantics" 
of the mapping by the parse tree only. Here we suggest another tree-representation 
of finite functions — the valuation tree — and show the use by examples. Valuation 
trees are compressed forms of valuation tables (generalized truth tables) of functions 
(for 1=2, see [5]). It should be mentioned that a more compact representation in 
graph forms can also be given, cf. [1] for 1 = 2. Trees, however, seem to be more 
tractable in spite of or thanks to their redundancies. Clearly, valuation trees are 
completely semantically oriented and designed to contain all information about 
the action of a function. 

1.3. The natural question arises what kinds of trees are associated to certain 
interesting subsets of Our main contribution in this first part of a series of 
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papers is to present a uniform graphical property, the level-homogenity, to answer 
this question. As an illustration we apply the method for three well-known pre-
primal subsets of O^K In this paper we do not assume any algebraic structure 
on A except the ordering relation. From the second part, however, we shall endow 
some more operations to A, in fact, we suppose that A is a Post-algebra of order 
I and apply the results obtained in Part I to this case. Actually, we shall develop 
some optimization techniques for synthesizing Post formulae. Later parts are 
devoted partly to complexity questions where several estimates are established 
concerning the methods of Pait I and II, and partly to different problems concerning 
finite functions. 

1.4. The organization of this paper is as follows. In Section 2, we overview 
the notations used in this series of papers. In Section 3 we deal with trees and intro-
duce several notions and notations concerning them. Some notions of this section 
will be used only in later parts, but is presented here for the sake of uniformity. Key 
notion of these considerations, the level-homogeneous tree, will be introduced in 
Section 4. This section deals with some auxiliary concepts, too. Finite functions 
enter in Section 5 where, after a general representation theorem, we investigate 
degenerate, order-preserving, value-preserving and permutation-preserving functions 
in terms of trees. 

We note that this paper is selfcontained, i.e. no preliminary knowledge is assumed. 

2. Préliminaires 

2.1. Let a> be the set of finite ordinals, 0 is the empty set. If m£to, then we 
make use of the following notations: {m}= {0, 1, ..., m — 1}, [m\={\,2, ...,m}, 
[O] = 0, [eo] = {l, 2, ...}. Weshallfix n, m£a> andthese t A of cardinality/. 
Since A is finite, it can be identified with {/}. We shall usually use this identification. 
From now on, the letters /, m, n, A will always refer to these fixed sets. Let < be 
the well-known total ordering on {/} (and thus on A). We extend < to the elements 
of {/}" (hence to A") componentwise. The elements of the set 0(J-m>={f\f : A"^Am} 
will be called «-ary ^-functions with m output. We make this concept independent 
of arity by setting 0(

A
m)= t j 0(

A
n'm>. If feO(

A
m>, then 

n € CD 

/ = ( / i , - , / J where for all i€[m]; i.e. 0%» = ( 0 « ) m . (1) 

If S $ and g is a function (a meta-function) of n arguments, then 
e1e2...e„g will denote the application of g to the arguments e1; e2, ..., e„. This 
is to be distinguished from any application of a function which will be 
displayed as fel... e„. 

Let By f(xja) we mean a function in O^1-1'1* which is obtained 
from / by substituting a. for each occurrence of provided x{ occurs in / , 
otherwise let f(xja) = f , (and hence in f*(x1/aL, ..., xjan) denotes the 
value of / under substituting its variables Xj, by a l 5 ...,«„ in due course. 
In Part II we shall give a more detailed method for computing this value (by assuming 
that A is a Post algebra). 

/ 
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Af f€0%,m), then we always assume that an ordering of variables occurring 
in f say Xj, x2, ..., x„, is fixed. This convention will be essential from Section 5. 

Let fdO% , m ) . Then, for every « ! > « , / can be considered as a function of 
«i variables, i.e. (cf. subsection 5.2). 

The cardinality of a set H is denoted by card H. 8PH is the powerset of H. 
If / is a function defined on H and H'czH, then f\H' is the restriction of / 
onto H'. R a n g e / and D o m / denote the range and domain of the function / , 
respectively. 

We shall omit all indices without any remark unless confusion can occur. In this 
paper 0(£-m) will be denoted by 0[",m) to emphasize that no algebraic operations 
are present on A. All considerations apply for arbitrary m > 0 , however, for the 
sake of simplicity, we often give definitions and assertions in the case m = 1, only. 
If generalization for larger m is not straightforward then we shall explicitly discuss it. 

3. Trees 

3.1. Let F be an arbitrary set and Q: F—{/+1}. The pair (F, o) is called 
an /-ary pretree (ranked set). We set EVe = {(u, z) |u€FAz'6[i;g]}. The function 
Q is the rank function of the pregraph; VQ is the rank of v in (F, Q) provided 
v£V. EV q is the set of edges. 

The triplet T=((V, Q), a, (EX, ..., em)) is an m-rooted l-ary tree if and only if 
(F, Q) is an /-ary pretree; a\ E-+V; £,, ..., em£V and the following (Peano-like) 
conditions are satisfied: 

(i) a is a bijection. 
(ii) Range aC\ {ei|/£[»j]} = 0. 

(iii) If F ' c F is such that {£i|/6[w]}c= K' and [ F ' ] f f c F , where [V']a denotes 
the closure of V under a, then F ' = F . 

The elements of F are called points of T\ the point £; (Z'€[»J]) is the z'-th root 
and a is the successor function of T. 

Note, that m=0 implies F = 0. We shall use the name leaf for an element 
of Og - 1 (of a given tree), where ag~l denotes the total inverse of Q on a. 
Clearly, card F^[co] entails 0 F r o m now on, we always assume that 
card F€[a>] and m^O. 

We remark, that m-rooted trees are usually defined in a different way (cf. [2]). 
The definition presented here is originated from C. C. Elgot et al. and is proved 
equivalent to the more common one used in the literature in [6]. 

3.2. We define the immediate successors vD\ and the successors vDT of 
» i n T as follows: 

vD\ = {v'\v'£VA3i(ie[vQ]Av' = (t>, ; > ) } (2) 
and 

vDT = {v'\v'£VA(3n£co, 3 / : [n+1] - F ) ( l / = vA(n+l)f= v'A 

A ( [ « ] ) ((j+1) /€ ( j f ) ̂ V))} • (3) 
In particular, v£vDT, i.e. e p r o v i d e d z£[w], and for all v£V, there exists 
a unique i£[M\ such that V£EIDt. The following assertion is immediate by defini-
tions. 
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Lemma 1. Let T be a tree and £,€ V, i£[m], furthermore assume that v££tDT. 
Then, there exist exactly one n (M£CO) and exactly one f such that 

1 / = e,A(n + l ) / = «A(V./€[«])((. /+l)/€(;/)/)1r) (4) 
holds. 

If the conditions of Lemma 1 are fulfilled for v, then n and f determined 
uniquely by (4) and the remark preceeding the assertion, are called the level of v 
and the derivation function of v, respectively. We shall use the notations, vXT for 
the level of v and vdT for the sequence (1/, 2/, . . . ,(« +1) / ) , the derivation of 
v in T. By a path we mean a derivation of a leaf v£0g_1. We shall denote the 
set of all paths of T by PT. Clearly, card PT=card For each p=(\f,2f ... 
..., (/i+1 )f)€.Pr, there exist a unique i and a sequence (/cl5 ..., kn) such that \f 
and for all >€[«], ( j f , kj)a~(j+ \)f hence we can use the pair (/, (klt ..., k„)) 
to identify paths. Note, that the set of paths in T completely determines T, thus 
PT and T can be identified and is,actually done at several points of this paper. 

3.3. We define TX, the level of T, as follows: 

TX = n (VueOe-^^oAr si fOAtBueOg-^CuAr = «)) 

i.e., TX is the least element of ft) such that every leaf of T has level less than 
or equal to n. The tree T is exactly of level n if and only if 

( V i ^ O e " 1 ) ^ = n). 

3.4. The m-rooted /-ary tree T exactly of level n is complete if and only if 
(VveV)(vg=l). It follows that in an m-rooted /-ary complete tree T, 

card Pr = m • /". 

The following observation is trivial but very useful. ' 

Lemma 2. Let Tt and T2 be arbitrary m-rooted l-ary complete trees of level n. 
Then T1 and T2 are isomorphic. 

Let T be an m-rooted /-ary tree of level n and let h£[n]. We say that T is 
complete on level h if and only if (y v£VT)(vX=h=>vg=l). 

3.5. Let Tx and T2 be two m-rooted /-ary trees exactly of level n. We say 
7\ is a subtree of T2 i fandonlyi f PTl<^PT„ andfora l l p=(lf, I f ..., (n+\)f)ePTl, 
if for some i£[m], (n-{-l)f^8jDf2, then {n-\-Y)f£.EiDf1. Note, that if is a sub-
tree of T2, then it may well happen that 7\ is not a subalgebra of T2, and vica 
versa. If there is a subtree T' in T2 such that T' is isomorphic to 7\ , then we 
say 7i is embeddable in T2. Obviously, every m-rooted /-ary tree exactly of level 
n is embeddable in an (m-rooted /-ary) complete tree. The embedding is, up to 
isomorphism, unique by definition and Lemma 2. 

3.6. Let T be an m-rooted/-ary tree exactly of level n and let PczPT. P de-
fines, in the natural way, an m-rooted /-ary tree exactly of level n which is a subtree 
of T, the subtree of T determined by P. This subtree is unique and we denote it 
by TV. 
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Let T be an m-rooted /-ary tree exactly of level n. Let p=(i, (ky, ..., kn))£PT, 
?=(/'» (Ai, ...,hnj)£PT. We let p s £ [ n ] ) (ks=hs). Clearly, ~ is an equi-
valence relation. Set p={q\q£PTNp~q) and PT= {p\p£PT}- The 1-rooted/-ary 
tree exactly of level n determined by PT is named the compressed form of T and 
is denoted by T°. Let PcPT, then the subtree T§. of Tc determined by P is 
called the compressed-subtree of T determined by P. Note, however, that this name 
is a somewhat misleading: Tp is not a subtree of T in the very sense of 3.5. 

3.7. Let T=((V, Q), a, (el5 ..., em)) be an m-rooted /-ary tree of level n, v^Og*1. 
Let us suppose that vXT=h, h<n. Let Fx be a set of new points with cardinality 

2 IThe tree TV
E=((FUFX, g'), a', (e1; ..., e j ) is defined as follows: g'W = g, 

and for all w€F l 5 wg' = l; a'\V=a and a' is extended to Vx in such a way that 
TE is a tree {f\H denotes the restriction of the function of / to the set H). 
Roughly speaking, the tree Tf is obtained from T by identifying the root of 
a 1-rooted /-ary complete tree of level n—h to v. Let ..., u J c O g - 1 be that 
set of leaves, the level of which is strictly less than n. Let T0=T and for every 
r£[s],Tr = (Tr_^)E

r. Then, Ts is unique up to isomorphism and is called the extended 
form of T, in notation TE. Clearly, TE is an m-rooted /-ary tree exactly of level n. 

3.8. Let Г be a complete m-rooted /-ary tree of level n and define the index 
function 8:PT-*{ml"} by the formula ^ 

P 5 = ( i - l ) / " + Z k j - l n ~ j (5) 
j e w 

where p is determined by the pair (/, ..., k„j). Clearly, 5 is a bijection, hence 
for each kd {m • /"}, there exists p£PT such that pd=k. If p is determined by 
the pair (г, (кг, ..., k„j) then we shall make use of the following notations p=k8~1, 
(/, (кг, ..., kn))A =k, kA~1=(i, (к1г кг, ..., kn)). We use also the compressed index 
function <5C: PT^{1") defined by 

p 8 c = 2 k j l » - J . (6) 

If T is not complete but is exactly of level n, then 8=8'\PT, where 8' is the 
index function defined on the complete tree in which T is embeddable. It is obvious, 
that PT determines a unique subset of {m-/"}; the notations introduced above 
apply in the natural way. If T is of level n but is not exactly of level n, then we 
extend 8 as follows: bE\PT~0>{mln}\ for p=(\f, I f ..., (h + \)f)£PT, let 
p8E={p'8\p'£PTEAp'=(s1,s2, ...,sn+1) such that for all j£[h +1], SJ=jf}. It 
follows, that if h=n, then p8E=p8. 

8E, the extended index function, is well defined since 8 is a bijection. It follows 
that 8E is injective as well and thus we can employ the natural generalizations of 
(<5£)-1, A A to those к which are in the range of 8E. 

3.9. Let T be an m-rooted /-ary tree. The pair (T, т) is called a terminated 
(m-rooted, /-ary) tree if and only if т: {/}. 

3.10. Let us define the following function £ ( , ): со—со'-1; for k£co let k ^ l ) = 
=(£i()> •••> £i(-i) where i£[l— 1] is the number of occurrences of i in 
the /-ary expansion of k. Let T be an m-rooted /-ary tree exactly of level n. The 
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pair (T , 0 is called a augmented (w-rooted, /-ary) tree if and only if PT-~co,~1 

is defined by p£=(p5c)^'K The following assertion can be proved by an easy 
induction. 

Lemma 3. Let (T,£) be a ¡^-augmented m-rooted l-ary tree, p=(\f, ...,(« + l ) / )£ 
£PT and Then, for all st[l-1], card {0 / , * ) № ] K j f = 
=(J+1)/} = 4 (0- In other words, if p=(;', (k1, ..., kn)), then <i;s(,) gives the number 
of kj such that kj=s. 

4. Homogeneous trees 

4.1. Let T be a 1-rooted /-ary tree exactly of level n; _/€[«]. T is called 
A -homogeneous (to shorten the term level-homogeneous) on level j if and only if 

(V«x, v2€V, Vh, fr(E[/])(M = v2X =JAv1 * v2A(Vl, h)€£) => 

=>((v„k)€Eok = h)). (7) 

An equivalent formalization of (7) is the following 

(v®i, v2ev, vfce[q)(M = V2A =jhv1 * v2) =» 

=>{(Vl,k)£Eo(v2,k)£E)). (8) 

T is X-homogeneous if and only if, for all /€[«], T is A - h o m o g e n e o u s on level j. 
Clearly, any path p£PT considered as a tree, any complete tree and any tree exactly 
of level 1 is A - h o m o g e n e o u s . 

Let r be a binary relation on {/} and T a 1-rooted/-ary tree exactly of level n. 
We can extend r to paths of T by defining (p, q)£ro for all _/€[«], ( P j , qj)£r, 
where p = (pl3 ...,pn), q = (q1, ...,qn)£PT. 

The following assertion, although it is trivial, gives some insight into the very 
nature of A - h o m o g e n e o u s trees. 

Lemma 4. Let r be an arbitrary binary relation on {/}, let T be a \-rooted 
l-ary tree exactly of level n, and let r denote the extension of r to PT defined 
as above. Then for every p£PT, the set {p'\p'£PT/\(p, p')£r) uniquely determines 
a X-homogeneous subtree of T. 

Proof. It follows that {p'\p'€PTA(p,p')€r} defines a unique subtree of T; 
let Tr.p denote this subtree, and let p = (k1, ..., kn). Let us suppose, that vl,v2£VTrp 
such that vx^v2 and vxX = v2X=h for some h£\n\. Then, v1g = viQ and for all 
. M M , O w )€£<=>(/, kh)£ro(v2,j)£E. But then { f a , j)£E^(v2,j)£E)o(j, kh)£r, 
hence Tr p is A - h o m o g e n e o u s on level h. Being h arbitrary, we have that Tr p 
is A - h o m o g e n e o u s . 

If r is nonempty and total (i.e. Vx3>((x, y)£r)), then Tr p is not empty. 
We also note, that the converse of the lemma is not true; more precisely, if 7\ is 
a A - h o m o g e n e o u s subtree of T, then it may well happen that there is no binary 
relation r on {/} such that 7,

1 = 7'r>1, for an appropriate p£PT. 
In particular, if r is a partial ordering or is a non-trivial equivalence or 

r={(x, 7ix)|jct{/}} where it is a permutation of {/} with l/q cycles of the same 
prime length q, then Trp is A - h o m o g e n e o u s by Lemma 4. All of these relations 
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are total so if r^Q, then for any p£PT. This observation establishes 
some links between ¿-homogeneous trees and (three) types of maximal closed classes 
exhibited by Rosenberg's completeness theorem. The main interest of this paper 
is, however, to use ¿-homogeneous subtrees of a tree to portrait some elementary 
properties of the function to which the tree at hand is associated by Theorem 13 
below, hence we do not provide similar results for the other (three) types of maximal 
closed classes. Instead, we study fuither 1-homogeneous trees. The following 
lemmata are immediate. 

Lemma 5. Let T be a l-rooted l-ary tree exactly of level n. If Tx is a k-homo-
geneous subtree of T, then there exists a maximal X-homogeneous subtree T2 of 
T containing Tr; i.e. P^cP^cP,. and T2 is not a subtree of any X-homogeneous 
subtree of T containing Tx other than T2. 

Note, that T2 is not unique in general. 

Lemma 6. Let T be a l-rooted l-ary tree exactly of level n, let r be a non-
empty reflexive binary relation on {/}. Then, for every p£.Pj, the tree Tr>p is the 
unique maximal X-homogeneous subtree of T which contains p. 

Proof. Since r is reflexive, p£PTr p. A-homogenity and uniqueness follow 
from Lemma 4. It remains to prove that Tr p is maximal. It is, however, trivial 
by definition since if for some p'£PT, (p, p')£r then p'£PTrp, hence no ^-homoge-
neous subtree of T exists which contains p and Trp properly. 

4.2. Let T be a terminated w-rooted /-ary tree and let / c {/}. T is said to be 
x-homogeneous with respect to (in short w.r.t.) t if and only if (V pdPT)(px£t). 
T is called quasi x-homogeneous w.r.t.- t if and only if 

(3piPT)(p^tM\ip'£PT)(p'xit^p = p')). . 

In particular, if ?£{/}, then T is r-homogeneous w.r.t. t if and only if ( y p £ P T ) 
(px = t) and T is quasi T-homogeneous w.r.t. i if and only if for all but one p in 
PT,px = t. 

Let T be a terminated m-rooted /-ary tree and let r be a partial ordering on 
{/}; r is the expansion of r to PT. T is x-increasing w.r.t. r if and only if 

( V p , p O ( C P . P 0 6 r = > ( p T , p ' T ) e r ) . 

Lemma 7. Let T be a l-rooted l-ary terminated tree exactly of level n. Let 
Tl be a X-homogeneous subtree of T which is x-homogeneous w.r.t. some /c {/}. 
Then there exists a maximal X-homogeneous subtree of T which contains Ty and 
is x-homogeneous w.r.t. t. 

Lemma 8. Let T be a 1 -rooted l-ary terminated tree exactly of level n; let 
r be a partial ordering on {/}. Then, for every p£PT, there exists a maximal 
X-homogeneous subtree 7\ of T such that 

(i) p£PTlc:PTr pcPT, 
(ii) 7 \ is x-increasing w.r.t. r. 

Lemma 9. Let T be a l-rooted terminated l-ary tree exactly of level n; let 
r be a nontrivial equivalence relation on {/}. Then, for every p£PT, there exists 
a maximal X-homogeneous subtree Tx of T such that 

j 
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(i) p£PTl<zPTr pcPT, 
(ii) T1 is x-homogeneous w.r.t. r; i.e. (Yp,p'€PTl)((p,p')if=>(px,p'x)er). 

Note, that 7\ is not unique in general in either of the above three lemmata. 
Proofs are immediate by finiteness of trees. 

Lemma 10. Let T be a l-rooted l-ary terminated tree exactly of level n. Let 
T1 be a X-homogeneous subtree of T which is x-homogeneous w.r.t. some t£ {/}, 
and assume that for some v£VTl, vX — j and for k2£ {/}, kx^k2, we have both 
(v,k^ETl and (v, k2)e£Tl- Let p = (b1, ..., bj_lt klt bJ+1, ..., bn) and q = 
= (¿1, ..., bj_x, k2,bj+1, ..., bn). Then, p^P^g^Pr,-

Proof Let v1,v2£VTl,v1X = v2X=h. Let p=(\f2f ...,(n+l)f), q = 
=(lg,2g, ..., (H + 1)#). Let us suppose that, hf=vlt hg=v2. Let the root of the 
tree be e. Then lf=e = lg, moreover for j, hf=hg by simple induction. 
For h=j, we have vx=v2 and ( t ^ , k 1 ) £ E T l , (v2, k2)£ETl by assumption. For 
h>j, we have (i^, bh)£ETi<=>(v2, bh)£ETi by A-homogenity. 

Lemma 11. Let T be a l-rooted l-ary terminated tree exactly of level n. Let 
7\ be a X-homogeneous subtree of T which is x-homogeneous w.r.t. some t£{l} 
and is complete on level j for some j£[n]. Then every path of the form ..., bj_y, 
k, bJ+1, ..., b„) with fixed blt ..., bJ_1, bJ+1, ..., bn£{l} and arbitrary kt{l} is 
in PTl. 

Proof It follows from Lemma 10 by an easy induction. 
Let / c {/} and define r, by 

( V / x , / , € { / } ) I J i r . o h i t A h U ) . 

Clearly, r, is an equivalence relation. The following assertion is immediate. 

Lemma 12. Let T be a l-rooted l-ary tree exactly of level n. Let us fix tcz {/} 
and let p£PT,q£PT. Then Trt<p= T,tt qo(p, q) £r,. 

It follows from Lemmata 4, 5, 12, that r, determines a unique maximal 
A-homogeneous subtree of T. We shall denote it by Trt. 

4.3. Let T be a terminated ¿¡-augmented m-rooted /-ary tree. T is <!;-homo-
geneous if and only if 

( V f l e t B ' ^ X B f e i / J X a ^ c / T - 1 ) . 

4.4. Some further considerations concerning different types of homogenity will 
appear in later parts. In particular, the notions of anti-A-homogeneous trees and 
of combs will be introduced and investigated. 

5. Representation of finite functions by terminated trees 

5.1. Let / £ 0 / " ' m ) and let T be an m-rooted /-ary complete tree of level n. 
We define a terminated tree for f Tf=(T,x), as follows. Let k£ {ml") be 
arbitrary and kA~1=(i, (ku ..., k„)). Then, let 

- . (kd-i)x=f*(x1lk1,...,xnlkn). (9) 
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By Lemmata 1, 2, the definition (9) is correct. 

Theorem 13. Let /£0, (n ,m) . Then every m-rooted l-ary complete terminated 
tree Tf=(T,x)f for f is isomorphic to a terminated tree Tf = (T', x')f with 
FcO)"'1'. 

Proof. It follows from Lemma 2 that any two m-rooted /-ary complete termi-
nated trees of level n for / are isomorphic. It is sufficient therefore to prove that 
there exists a terminated tree (T',x')f for / with F c 0 / n , 1 ) , which is m-rooted, 
/-ary, complete and of level n. We define (T', T') by recurrence. Let z'6[m] and 
£i=fi(xi . •••> *») where f is the z'-th component of / . If g(xjku ..., xh_1/kh_1)xh 
xh+i ••• xn i s defined as a point of VCleiDT on level h, then let 

g{xjkx, ..., xh_Jkh_1)xhxh+1 ... X„Q = 1 and g(xJk^ ..., xh_1/kh_1)xhxh+1...x„D1
T,= 

= {#(*xh_1/kh_1, xh/k)xh+1 ... x„\k£{l}} 

and for all &£{/}, 

{g(xl/kli •••> xh-l/kh-l)xhxh + l ••• xn> = g ( x • • • > xhlk)xli + l ••• *n-

We stop this recursion on level n, where no point depends on any variables; i.e. 
eveiy points on level n is of the form g(x1/k1, ..., x„/kn). The leaves of the tree 
obtained are the points on level n. If p is a path in this tree, then px' is defined 
by (9). It is not hard to see that V hence T'=((V, Q), a, (el5 ...,£m)) are well 
defined. Clearly, T' is m-rooted, /-ary complete tree of level n, and (T', x') is 
for / . 

The terminated tree 7}', defined uniquely up to isomorphism by Theorem 13 
is called the tree associated to f (recall that 7}' is defined after fixing an ordering 
of the variables of / ; it is clear that Tf depends heavily on this ordering). In the 
sequel we simply write Tf to denote the tree associated to / . 

From now on in this section we shall assume that m = 1. The general case can be 
treated in a similar way at the expense of some complication of technical details. 

5.2. Let fdO\n'vK f x t . . . Xj ... xn is partially degenerate in Xj if and only if 
for arbitrary blt . . b J + 1 , ..., b„£ {/}, there exist kltk:2£{/}, kx^k2 such 
that f*b1...bj_1k1bj+1...bn=f*b1...bj_1k2bj+1...bn. If for all * „ * , € { / } 
this equation holds, then / is called degenerate in Xj. Let PDjn ,1 ) and Djn ,1 ) 

denote the sets of functions (in 0,(n,1)) partially degenerate and degenerate in xJt 
respectively. The set of nondegenerate functions is defined by ND("-1'> = 0\n'1) — 
- U D f - V . 

J€[n] 

Theorem 14. Let f ^ O ^ and let (T,x) = T f . Then, the following two assertions 
are equivalent. For 7'6[«], 

( i ) fiPDY'V. 
(ii) For every maximal k-homogeneous subtree 7\ of T f , which is x-homogeneous 

w.r.t. some ?€{/}, there exist k1,k2£{l), k^k2 such that 7\ contains 
the edges (v, k j and (v,k2) for all v£VTl, vk=j. 

Proof. Let f£PD)n,1) and assume that 7i is a maximal 1-homogeneous 
subtree of Tf which is r-homogeneous w.r.t. some t£ {/}. By definition, for all 
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p, p'£PTl, we have f*(p)=f*(p'). Let p=(bu .... bj, ..., 6n)€/>
Tl- Since / is 

partially degenerate in Xj and 7\ is maximal, there exists an {/} such that 
a=bj and p'= (b1, ..., a, ..., b„)£PTl. Let k1=bJ,k2 = a. Then we obtain, that 
for some v on level j, (v, kx) and (v, k2) are in ETl. Tx is /-homogeneous, hence 
for all v'£VTl, v'X=j we have (v',kl)£ETl and (v',k^£ETl. 

Conversely, assume that for every maximal ¿-homogeneous subtree Tx of 
T which is t-homogeneous w.r.t. some /€{/}, there exist ArlsA:2£{/} such that 
kx^k2 and ETi contains (v, kx) and (v, k2) for all v£VTl on level j. Let p — 
=(b1, ...,bj, ..., b„)£PT/ be arbitrary. By Lemma 7, there exists a maximal ¿-homo-
geneous subtree 7\ of T which is t-homogeneous w.r.t. px. By assumption, there 
exist k1,k2£{l) such that k^k2 and (v, k^£ETi, (v, k2)£ETs for all VTi 
on level j. By Lemma 10, p'=(bi, ..., klt ..., b„) and />" = (¿>1, ..., k2, ..., b„) 
are in PTl. Then, by T-homogenity, f*b1...k1...bn=f*b1...k2...bn, hence fePDf^. 

Theorem 15. Let /eO/"'1' and let (T, r) = T f . Then, the following two assertions 
are equivalent. For j£[n], 

(i) 
(ii) Every maximal ¡^-homogeneous subtree Tx of T which is T-homogeneous 

w.r.t. some td {/} is complete on level j. 

Proof. Let Then, by definition, for arbitrary fixed bx, ..., bj_i, 
bJ+1, ...,bn£{l}, and for all kt, k2e{l}, kx^k2 we have f*b1...k1...bn=f*b1...k2...b„. 
Consider all paths of the form ..., k, ..., b„) where k varies over {/}. It is 
easily seen, that these paths gives rise to a ¿-homogeneous subtree 7\ of T which 
is complete on level j. Clearly, any maximal ¿-homogeneous subtree T2 of T 
containing Tj is again complete on level /, hence those maximal ¿-homogeneous 
subtrees of T which are t-homogeneous w.r.t. some i€{/}, namely w.r.t. 
f*b1...k1...b„ and contain Tx are complete on level j. Since bx, b2, ..., b j ^ , 
bJ+1, ..b„ are chosen arbitrarily, it follows that every maximal ¿-homogeneous 
subtree 7\ of T which is t-homogeneous w.r.t. some t£ {/} is complete on level /. 

Conversely, assume that every maximal ¿-homogeneous subtree 7\ of T 
which is t-homogeneous w.r.t. some. /€{/} is complete on level j. Consider all 
paths of the form (blt ..., k, ..., b„) for fixed ..., ¿>y_i, bJ+1, ..., b„£ {/} and for 
all &€{/}• These paths form a ¿-homogeneous subtree 7i of T which is complete 
on level j. But 7\ is contained in a maximal ¿-homogeneous subtree of T which 
is t-homogeneous w.r.t. some t and complete on level j by Lemma 11. It follows, 
that f*b1...bj_1kbj+,...b„ = t for all &€{/}. 

Corollary 16. Let f£0("'V) and let (71, t)=.T}. Then, the following two asser-
tions are equivalent: 

(i) feNDW. 
(ii) No naximal X-homogeneous subtree Tx of T exists such that 7\ is T-homo-

geneous w.r.t. some /6 {/} and complete on some level j,j€[n]. 

Degenerate and partially degenerate functions will be investigated further in the 
next part [3]. 

5.3. Let Let r be a partial ordering on {/}. fxx ... x} ... x„ is 
r-preserving in Xj if and only if for arbitrary bt, ..., bj+1, ..., &„€{/} and 
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for all ku k2£{l}, (klfk^€.r entails 

(/*£>! ... bj_1k1bj+1 ... bn,f*bx ... bj^1k2bJ+1 ... b„)£r. k2b 

If I c { x j , ..., *„}, then we say that / is r-preserving in X if and only if / is 
r-preserving in Xj for all Xj£X. f is called r-preserving if and only i f / i s r-preserving 
in {x,, ..., x„}. We shall denote by Mr

(n>1), the sets of functions 
which are r-preserving in Xj, in X and in xx, ...,x„, respectively. 

Theorem 17. Let f£Oi
l
n'l) and let r be a partial ordering on {/}. Then, the 

following two assertions are equivalent. For j£[ri], 
(i) / G M j , V > . 

(ii) For every p = (pi, •--, Pj, ..., p„)£PT/, the subtree generated by {q\q = 
= (Pi, j, •••,Pn)A(Pj,qj)£rAqJ£{l}} is z-increasing w.r.t. r. 

Proof. Trivial. 

Theorem 18. Let /gO/"-1 ' , I c { x 1 , ..., x„}, X = {x^, ..., xJk) and let r be 
a partial ordering on {/}. The following two assertions are equivalent: 

(i) f€M(
x
n;V. 

in) For every p = (pu • Pj.-u Pj,,Pj1+i, •••, Pjk-i, Pj*, PJk+i, ...,pJePTf, the 
subtree generated by {q\q = iPi, •••, ph-i, qh, PJl+l, • ••,PJk-1, qjk, qJk+1, ••• 

Pn)Aqh, ...,qJk£{l}A(\/s£[k]) ((pjs,qj)£r)} is z-increasing w.r.t. r. 

Proof. It follows from Theorem 17, by easy induction. 

Theorem 19. Let f£Oin,1) and let r be a partial ordering on {/}. Then, the 
following two assertions are equivalent: 

(i) f £ M ^ \ 
(ii) For every pf_PTf, the (unique) maximal /-homogeneous subtree of Tf 

generated by p and r is z-increasing w.r.t. r. 

Proof. By Lemma 4, Tr p is ¿-homogeneous and is obviously maximal. 
Taking X = {xj, ..., x„}, Theorem 19 follows from Theorem 18 since if p = 
=(Pi, ->Pn), then TriP={q\q = (qi, ...,q„) A(Vi£[n]) (q{£ {/} A(Pi, q,)£r). 

This characterization of r-preserving functions will be used later to estimate 
the cardinality of Mr

(n,1) [4]. 

5.4. Let i c { / } and define 

the set of t-valued functions. We have immediately: 

Theorem 20. Lei f£0\n-l), t<z{l}. Then, the following two assertions are 

(ii) Tf is %-homogeneous w.r.t. t. 

Theorem 20 will be used in later parts to establish strong decidability of some 
finite-valued sentential calculi in which the elements of t are designated and, using 
some additional arguments, to prove the strong completeness of some finite-valued 
predicate logics. , 

nn'X) = {f\f£0^>A(Va)(ra£t) (10) 
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Let tc {/}, and define 

Q!n-1} = {f\f£0,r1>AOae{iy)(f*a^t)A(\fbe{lY)(f*bit^b = a)} 

the set of quasi t-valued functions. Elements of Q,(n,1) are natural generalizations 
of functions associated to conditional sentences (Horn sentences, or quasi-equations) 
of the two-valued propositional logic. They have almost all of the nice properties 
of the two-valued functions associated to Horn sentences and hence it is of some 
interest to characterize them by trees. We have immediately 

Theorem 21. Let f£0\"A) and /c{/}. Then, the following two assertions are 
equivalent: 

(i) №\nA>-
(ii) Tf is quasi z-homogeneous w.r.t. r. 

Let t(z {/} and r, be the equivalence relation generated by t. We set 

P,'"^ = { f \ f i O ^ A ( y a , ¿6 {/}")((«, b)£r, =><J*a, f*bKr,)}, 

the set of t-preserving functions. The following claim is trivial. 

Theorem 22. Let /CO/"'1* and tcz {/}. Then, the following two assertions are 
equivalent: 

(i 
(ii) Trt, the subtree of Tf determined by r, is z-homogeneous w.r.t. rt. 

5.5. Let / € 0 / n , 1 ) and n be a permutation of the set [«]. / preserves n if 
and only if for all ..., a„€{/}, we have f*ax... a„ =f*a„(1)... an ( n ) . Let 

£(".!) = {f\fdO[n,1) and / preserves all permutations n of the set [n]}. 

Theorem 23. Let f£0\n,1) and let (T,z) be a terminated ^-augmented \-rooted 
l-ary tree associated to f . Then the following two assertions are equivalent: 

(i)/€S(M). 
(ii) (T, T) is ^-homogeneous. 

Proof The theorem follows immediately f rom the well-known fact [7], that 

/ E S ^ 1 ' (VAE (0l~\ VPX, Patat-^faT = p2z). 
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