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On the role of blocking in rewriting systems

By H. C. M. KLEUN*, G. ROZENBERG*, R. VERRAEDT**

Introduction

A rewriting system G generates a set of sentential froms sent G (see, e.g., [9]).
If G is “pure” (see. e.g., [5]), i.e. it does not use nonterminals, then sent G forms
also the language of G, denoted L(G). In this sense every sentential form of G is
successful. If G is not pure, i.e. it uses nonterminals, then the language of G consists
of only those sentential forms that do not contain nonterminal symbols. In this case
a sentential form is (potentially) successful if it can be rewritten (perhaps in a number
of steps) into an element of L(G). '

Thus, naturally, sent G gets divided into “blocking’ and “nonblocking’’ (hence
successful) sentential forms.

The possibility of having blocking sentential forms in a grammar is often use-
ful. In a particular derivation of a word w, G may “guess” a property of a senten-
. tial form currently rewritten and if the guess was incorrect G will take care of the
fact that the derivation is dead-ended. This is a typi.al way of programming a lan-
guage through a context- sensitive grammar (see, e.g., [9]). Also the synchronization
mechanism in E(T)OL systems (see for example [7] and [8]) is a typical example of
the use of a blocking mechanism.

In this paper we investigate the role that this blocking mechanism plays in re-
writing systems. In particular, we do this for the grammars of the Chomsky hierarchy
(Section II), EOL systems (Section II) and ETOL systems (Section 1V).

I. Preliminaries and basic definitions

We assume the reader to be familiar with the rudiments of formal language
theory as, e.g., in the scope of [7] and [9]. In order to fix our notation we recall some
basic notions now.

For a word x, |x| denotes its length and alph x denotes the set of letters occur-

ring in x. For a language K, alph K= U alph x. The empty word is denoted by A.

Let X2, and Z be alphabets such that 2,C X. Then the homomorphism
Pres; ;, from I* into Z} is defined as follows. If a¢ZX,, then Presy ;, a=a
and if a€ 2\ X, then Prﬁ 5,5, a=A. To avoid cumbersome notation we often
write Presy instead of Presy 5 , whenever X is understood from the context.

1 Acta Cybernetica V/4
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390 H. C. M. Kleijn, G. Rozenberg, R. Verraedt

The mappmg mir from Z* into X* is defined by: 1f w=xy, with xe2* and
y€Z, then mir w=y mir x; mir A=4.

Definition I.1. (i) A grammar is an ordered quadruple G=,Z,P,09),
where V is a finite non-empty alphabet, the rotal alphabet of G, ZCV is the ter-
minal alphabet of G,V\Z is the nonterminal alphabet of G, SeV\Z is the
axiom of G and P is a finite subset of V*(P\2Z)W*XV*; the elements of P are
called the productions of G and for (a, f)eP we write a—pf.

(i) A word veV* directly derives a word weV* according to G, denoted
v=>w if there are x, y, a, ﬂEV* such that v=xay, w=xBy and oz—»ﬁ 1S a pro-

ductlon of G. We write x=>x for every x¢V* and for nz=1, x=>y if for some
G

G
n—1 + * =m

t
zeV¥, x:z=>y We write x=y (x=y, x=y, respectively) if x:>y for some
G G G

mteger t>0 (=0, t=m, respectlvely) If no confusion is p0551ble we use, =,
* n =n n =n
=, =, =, = rather than :> => =, :> =,
G
(ii1) The set of sentennal froms of G, denoted sent G, is defined by sent G=

——{WEV* S=>w}

(iv) The language of G, denoted L(G) is defined by L(G)= {wE I*: S:>w}_
=sent G 2*.

Definition 1.2. Let G=(, X, P, S) be a grammar.
(1) G istermed regular, if a—fcP implies acV\ 2 and e Z(V\Z) or fcZ.
(ii) G is termed context-free, if a—BcP implies acV\ 2 and BeV+.
(ii) G is termed context-sensitive (monotonic) if a—fc¢P implies |cx]<|[3|
The families of languages generated by regular, context-free, context-sensitive
and arbitrary grammars will be denoted by ¥ (Reg), Z(CF), #(CS) and ¥ (RE)
respectively.

Definition 1.3. (i) An ETOL system is an ordered quadruple H=(V, X, 2, w),
where V, ¥ and F\ T are as in the definition of a grammar, w<V * is the axiom
of H and & is a finite non-empty set of tables P,, ..., P,,n=1. A table P;, 1=
=i=n, is a finite subset of ¥V XV'*, such that for each acV there exists a. BeV*
with (o, f)€P;. An element («, B) of P;, | =i=n, is called a-production and is usu-
ally written as a—f -a—f is called an a-production and the fact that a—pf belongs
to P;,1=i=n, respectively to £, is often abbreviated as o—f, respectively

a—»b’

(i) A word veV* dlrectly derives a word ueV™* according to H, denoted

v=u, if v=o,... 00, a,cV for 1=i=k, u=p,...5;, picV* for 1=i=k, and
H - :

P,

0
there exists a je{l, ..., n} such that o;—f;, for all ic{l, ..., n}. We write x=x
P; H
n n—1
for every xeV* and for n=l,x=y if for some zeV* x=z=>y. We write
H H H
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+ * =m t
x=y(x=>y, x=y, respectively) if x=p for some integer ¢=0(r=0,1=m,
H H H H

+ * n =n
respectively). If no confusion is possible we use =, =, =, =, = rather than
+ * n =n

(iii) The set of sentential forms of H, denoted sent H, is defined by sent H=
={veV*: co:> v}.

(iv) The language of H, denoted L(H) is defined by L(H)={veZ*: w=> v}=
=sent HN Z*.

* Definition 1.4. Let H=(, X, #,0) be an ETOL system, with 2=
={Py, ..., P,}.
(1) If 2 consists of one table only, say Z={P}, then -H is termed an EOL
system and denoted H=(V, Z, P, w).
(i) If, for every oc—»B B6V+, then H is termed a propagating ETOL system,

denoted EPTOL system
(i) If for all ie{l, ..., n}, a—»ﬂ and oc—»y implies f=y, then H is termed -

a deterministic ETOL system, denoted EDTOL system.

(iv) If =V, then H is termed a TOL system.

From the above definition it follows that we consider OL, POL, DOL, PDOL,
TOL, PTOL, DTOL, PDTOL, EOL, EPOL, EDOL, EPDOL, ETOL, EPTOL,
EDTOL and EPDTOL systems. The family of languages generated by X systems,
where X stands for one of the above mentioned abbreviations, will be denoted
by £ (X).

Let H be an ETOL system. If the sequence D=(x,, X, ..., X,) 1S such that

x;=X;4+1, 0=i<n, then each occurrence of a letter in every word from x,, ..., x,_
- .

has a unique contribution to x,. If A4 is an occurrence of a letter in x;, 0=i<n,
then we use ctrp, , 4 to denote this contribution.

Two languages L, and L,, are considered to be equal if L,U{A}=L,U{4}.
We consider two families of languages, %, and .Z,, to be equal if they differ at most
by {A}. Two language generating devices G and H are said to be equivalent if
L(G)=L(H).

Definition 1.5. Let H=(V, X, P, w) be an EOL system. If there exists a
subset ®S¥\Z such that for all «cZU®, oz—»B implies fe®*, then H is

called a syachronized EOL system, abbreviated sEOL system. @ is called the set of
synchronization symbols of H.
The following result is well known, see, e.g., [3].

Lemma I.1. For every EOL system, there exists an equivalent SEOL system.
The following is the central notion of this paper.

Definition 1.6. (i) A grammar G={, X, P, S) is nonblockzng if for every

word veésent G there exists a word wueZ* such that u:>u
G

1*
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(i) An ETOL system H=(V, X, ?,w) is nonblocking if for every word

*
vesent H there exists a word w¢ZX2*, such that v=uw.
H
REMARK. Note that if G is a nonblocking grammar or a nonblocking ETOL

+
system, then either L(G)\{4}#8 or S=A and L(G)={A}.
G

The families of languages generated by nonblocking regular, nonblocking
context-free, nonblocking context-sensitive, nonblocking arbitrary grammars or by
nonblocking X systems (where X stands for ETOL or one of its subclasses) will te
denoted by #(nbReg), £ (nbCF), £ (nbCS), £ (nbRE) and Z(nbX), respectively.

Lemma 1.2. If Xe{Reg, CF, CS, RE} or X stands for ETOL or one of its
subclasses, then £ (nbX)C 2L (X).

II. The Chomsky hierarchy

In this section we impose the nonblocking condition on regular, context-free,
context-sensitive and arbitrary grammars.

We start by recalling a well known fact concerning the first two types of gram-
mars. )

Lemma II.1. For every context-free (regular) grammar genefating a non-empty
language, there exists an equivalent nonblocking context-free (regular) grammar.

Proof. Since for every context-free (regular) grammar, there exists an equiva-
lent context-free (regular) grammar in which every nonterminal is useful (see, e.g.,
[9], otherwise the generated language is empty) the lemma holds. O3

Thus we get the following result.

Theorem IL1. (i) .#(nbReg)=.%(Reg).
(i) & (nbCF)=2(CF).

For context-sensitive grammars generating non-empty languages we have a
similar situation. However, the proof is much more involved. For this reason we give
only an intuitive description of the proof. For a formal, detailed proof, we refer the
interested reader to the Appendix.

Lemma 1.2, For every context-sensitive grammar, generating a non-empty
language there exists an equivalent nonblocking context-sensitive grammar.

Proof. Let KC X* be a non-empty language, generated by a context-sensitive
grammar. We distinguish two cases.

(i) K is finite. Then, obviously, the context-sensitive grammar (XU{S}, Z,
P, S) with P={S—x:xeK} is nonblocking and generates K.

(i) K is infinite. Let X'={[a, b,c,d]):a,b,c,deZ}U{[a,b,c]: a, b, ce Z}U
U{[a, b]: a, b Z}U{[a): ac Z}; let h be the homomorphism from Z’* into Z* de-
fined by Ah(la,b, ¢, d))=abcd, h([a, b, c))=abc, h([a, b])=ab and Ah({a])=a. Let
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K’ ={lay, as, a3, a]...[a4—3> Qipmzs Qgu_1, gn): =2, @y...05, € K}U
{la,, az, a5, ay].. (4,3, Qan—2, Qaq_1, Aga)[Aan 1] NE2, ay...04 41 €K}U
{lay, as, a3, a4).. [A4n—35 Ban—2> Cano1s Can)[Bant1s Qani2l: BZ2, 01,04y 42€KFU

{[a1, a3, a3, @4)...[Q4, 3, Gan_2> Qsn—1s B4n)[Bans1> Qtny2s Qgnas]:
n=2,a,...85,.3€K}.

Clearly K’ is context-sensitive, say it is generated by a context-sensitive grammar
G'=WV’', 2, P, S"). Moreover I(K)=K\{x€K:|x|<8}. Now we can construct
a nonblocking context-sensitive grammar G=(V, Z, P, §) generating K. It works
as follows.

() S»x is in P for x¢K with |x|<8.

(2) P'CP.

(3) S directly derives S’ surrounded by markers. Hence K’ can be derived,
surrounded by these markers. A successful derivation in G terminates by rewriting
elements of X’ into elements of X (after it was checked by markers that a current sen-
tential form consists of letters from X”) and making the markers disappear. (The
deletion of markers and rewriting symbols of X’ into symbols of X is paired together
s0 that the monotonicity of the productions is guaranteed).

(4) From the above it follows that KC L(G).

(5) At any stage in the derivation process of a word from K’ (modulo markers)
a “dead” symbol N can be introduced. Then all symbols (except the leftmost and
rightmost marker) in the current sentential form can (and will) eventually be re-
placed by N; to the right of the rightmost marker (which now also changes into N)
the axiom S’ of G’, surrounded by markers, will be introduced again. This process
may be repeated an arbitrary number of times. '

(6) If from S’ a word w of K’ is derived, then termination can take place if w
is long enough (K’ is infinite!) to “absorb” all dead symbols and markers, when the
symbols of X’ are rewritten into symbols of X. Again, during this termination proc-
ess, there still is a possibility to change all symbols of the current sentential forms
into N’s and to place §’, surrounded by markers to the right of this string. In this
case the derivation process ‘‘switches™ again into state (5).

(7) Now (5) and (6) imply that L(G)ZS K, G is nonblocking and monotonic.
This together with (4) implies -the result. [J °

Corollary II.1. For every arbitrary grammar, generating a non-empty language,
there exists an equivalent nonblocking grammar.
Thus we have the following result.

Theorem IL.2. (i) £ (nbCS)=2Z(CS).

(ii) £ mbRE)=2(RE).

Although it follows from Lemma II.2 that for any context-sensitive grammar,
generating a non-empty language, there exists an equivalent nonblocking context-
sensitive grammar, the proof of this fact was not effective; it is well known that it
is not effectively decidable whether or not the language generated by a context-
sensitive grammar is finite (see, e.g., [9]). Moreover, there is no algorithm which,
given an arbitrary context-sensitive grammar G (generating a non-empty language)
yields an equivalent nonblocking context-sensitive grammar. We also show that
it is undecidable whether or not an arbitrary context-sensitive grammar G itself is
nonblocking.
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We prove the above two statements using Post’s Correspondence Problem (see,
e.g., [9)).

Definition I1.1. An instance of Post’s Correspondence Problem over an alpha-
bet X is a pair (4, B), where A={a,, ..., 0}, B={B,, ..., B}, n=1 with ;€ X+ and
picx+, for 1=i=n. (4, B) is said to have a solution if there exists a non-empty
finite sequence of indices {i,, ..., i}, i;€{1, ..., n} for 1 =j=k, such that a;...0; =
= ﬂil een ﬂik .

Theorem IL.3. There is no algorithm to decide whether or not an arbitrary

instance of Post’s Correspondence Problem over a two letter alphabet has a so-
lution.

Theorem II.4. There is no algorithm that given an arbitrary context-sensitive
grammar generating a non-empty language constructs an equivalent nonblocking
context-sensitive grammar.

Proof. Let (A, B) be an arbitrary instance of Post’s Correspondence Problem,
A={ay, ..., 0,} and B={B,, ..., B}, with n=1, o;c{a, b}* and Bic{a, b}*, for
1=i=n. The context-sensitive grammar G is defined as follows. G=(V, {c, d}, P, S),
where V={S,Z, a,b, A?, A?, ﬁa, 117,,, Ma, A?,,, Q,N,c,d} and P is given in (1)
through (9).

(1) S—c. .

(2) S—»co;Zmir Bic, for 1=i=n, and Z—-,Z mirf;, for 1=i=n.

(3) Z—~Ma.

(4 aM—»Ma for ae{a, b,d}, and cM—»cM

&) Moc—»cM for a€fa, b}, and Md—»dQ

©) MB—»[?M,, for Be{a,b,d), and M,c—~M,c, for ae{a b}.

(7) aM,~Mec, for o€ {a, b}.

(8) BM,—~Nc, for a, Bef{a, b} and o=p.

(9) Qa—~Nc, for ac{a,b} and Qc—cc.

It is rather easy to see that L(G)={c} if (4, B) has no solution and that L(G)

is infinite otherwise.
Assume that we could effectively construct an equlvalent nonblocking grammar

G=W’, {c,d), P’, S") for G. Let ny=min {jw|: S=>w and |w|=2}. Obviously

we can effectively decide whether or not #, exists because G’ is monotonic. Since G’
is nonblocking, if n, exists then L(G")=L(G) contains a word of length at least two
- and so (4, B) has a solution. If n, does not exist, then L(G")=L(G)={c} and hence
(4, B) has no solution.

Hence if the algorithm in question exists then Post’s Correspondence Problem
is decidable; this contradicts Theorem 11.3. O

Theorem II.5. Tt is undecidable whether or not an arbitrary context-sensitive
grammar generating a non-empty language is nonblocking.

Proof. Let (A, B) be as in the proof of Theorem 11.4. Let H=(V, {c,d}, P, S)
be the context-sensitive grammar which is defined as follows. ¥ and S are as in the
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grammar G=(V, {¢, d}, P, S) defined in the proof of Theorem IL.4. P is defined
by (1) through (8) as stated there and additionally by:

(9) Qu—aQ and aQc-—>Nce for ac{a, b} and

(10) aN—Nc, for wacia, b}, dN—~Nd and cN-—cc.
Hence L(H)#9 {ccL(H)) and H is nonblocking if and only if (4, B) has no so-
lution.

Thus, if we would have an effectlve decision procedure for the nonblocking
property of context-sensitive grammars, then Post’s Correspondence Problem would
be decidable. This contradicts Theorem I1I1.3. [

We conclude this section with the following observations.

For an arbitrary grammar generating a non-empty language, there exists an
effective procedure to construct an equivalent nonblocking grammar. This is a conse-
quence of the possibility of using length-decreasing productions for the markers
and the dead symbols (as used in the proof of Lemma I1.2). Hence we do not need
arbitrarily large words to “‘absorb™ all those garbage symbols. Consequently, it
is not needed anymore to distinguish between the case of a finite and the case of an
infinite language (which made the proof of Lemma I1.2 ineffective).

It is well known that it is not decidable whether an arbitrary context-sensitive
grammar generates the empty language (see, e.g. [9]). Consequently it is not decid-
able whether or not an arbitrary context-sensitive grammar has an equivalent non-
blocking context-sensitive grammar. Note that in the case of context-free grammars
these questions are decidable: finiteness and emptiness are decidable for those gram-
mars.

III. Systems without tables

We will now investigate the effect that the nonblocking condition has on the
language generating power of E(P)(D)OL systems.

First we compare EOL and nbEOL systems.
It turns out that the nonblockmg restriction is a real restriction. This result should
be compared with the results of the previous section.

Lemma HI.1. & (EPOL)\,? (nbEOL) 0.

Proof. We will prove that K= {a®}U {a*": n=0}¢ % (EPOL)\ % (nbEOL).
(i) Let G be the EPOL system which is defined by

= ({5, 4, N, a}, {a}, {S~a® S—~4, A~AA, A~a,a—~N, N~N}, 5).

Obviously L(G)=K. Thus Ke¢ ¥ (EPOL).

(ii) The fact that K¢ Z(nbEOL) is proved by a contradiction. Assume that
- Ke#(nbEOL). Then there exists a nbEOL system H=(V, Z, P, w) such that
L(H)=K or L(H)=KU{A}.

Since H is nonblockmg for every veK, v=>v "ea* holds. Since H is an EOL
system, it must be that v:>v ‘ea* holds for all veK.
In particular a3=>a for some k¢e{0,3}U{2": n=0}.
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(1) Assume that a";A. Hence a;A. Then for each a€V such that
a;xea“’ it holds that aiA where ¢ equals the cardinality of V. Choose r such
that 2"=max ({j: ozétsaf aEV}U{O 3). Thus a¥*'¢L(H) and by the choice
of r we may write w=>x1ax2=>ylzy2—a2'“ such that oceV XIX2€V » hye€at,

a=>z and 1=|z|<2". On the other hand we have w=>x1ax2=>y1y2€a+ and
201 _2r=2"< |y, ¥o| <2"*'; a contradiction.
+

t
(2) Assume that a®*=a’ Hence there exists a ¢ such that a=sa. Consider
the ™ speed up H of H, L(H)=L(H). (See, e.g., [7]). Hence H must have a produc-

tion @—a. This implies L(H)c¥(CF) (see. e.g., [7]); a contradiction.
+ +
(3) Assume that a;=a?". If n=1, then a=A which yields a contradiction

+ +
as in (1). Hence n=2. This implies that a=a’ for some i=>1. Hence a3=a%¢
¢ KU{A}; a contradiction. [J

It follows from the above that there are EOL languages that are not nbEOL
languages. However the following theorem demonstrates that there is only a “small
difference” between nbEOL and EOL languages.

Theorem III.1. Let K¢ #(EOL) and let § be a symbol, §¢alph K. Then
KU§* ¢ # (nbEPOL).

Proof. Let K and § be as in the statement of the theorem. Let G=(V, Z, P, S)
be an sEPOL system such that §¢V, SeV\ 2 and L(G)=K. Moreover assume
without loss of generality that N is the synchronization symbol of G,a—~N for

P
each a€V, and a—N is the only a-production for a€ ZU{N}. Then let G=
=(V,Z, P, S) te the EPOL system which is defined as follows.
(1) W={[p]: peP}, WNWU{§)H=0, and V=VUWU{§}.
(i) Z=2zU{§).
(1ii) }_’={cx—>[p]:p=oc;»x}U{[p]—»x:p=a:x}U{a—>§:aEV}U{§—>N,§—>NN}.

(1) We first show that L(G)=KU§*. Let x€L(G) and let D: S=x,=
G

_ e
=X,=...=Xx,=x€X% be a derivation in G.If xcX*, then clearly n is even
¢ G @
and all productions used in D belong to {x-[p]: p=a—x}U{[p]—>x: p=a—x}.

P P

G
§calph x, n must be odd and consequently (the form of P implies that) xc§*.

Thus L(G)S KU§*. Since each derivation step in G can be simulated in two steps
in G,KSL(G). Moreover S=>§=>N2=>§2=>N3 ..., yields §* S L(G). Thus
¢ a
KU§*SL(G). Hence L(G)= KU§+ N
(2) Next we show that G is nonblocking. Let xesent G. A close inspection of
P yields that either x¢V*+ or xe(WUED*. If xe(WU{§)* then x=>yEV+

Hence D': S=x,=x,=...=>x,=x is a derivation in G and thus xeK. If
G G G
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=2 — ) —
If xeV* and |x|=k then x=§. Thus x=zc§* for all xesent G. Hence G
G G

is nonblocking.

We now turn to the comparison of the language families Z(EXOL),
Z(nbEXOL), £(XOL) where X denotes e¢ither P, D, PD or the empty word. We
need the following lemmas.

Lemma N1.2. (i) £(EDOL)C . (nbEOL), and
(ii) £(EPDOL)C % (nbEPOL).

Proof. (i) Our first observation is that every EDOL system generating an in-
finite language can be considered as an ntEOL system. Every finite non-empty
language K with alph K=2X can be generated by a nbEOL system, namely G=

=({S}UZ, Z, {S—x: xeK}U {a—»a:ac X}, S).
The two observations from the above conclude the proof of (i).
(i) Analogous to (i). O

Lemma IIL3. #(DOL)\.Z (nbEPOL)>0.

Proof. We will prove that K={ab}U {a®"bc: n=1}¢ £ (DOL)\.Z (nbEPOL).

() Let G be the DOL system which is defined by G=({a, b, ¢}, {a, b, c},
{a—~a? b—bc, c—~A}, ab). Obviously L(G)=K. Thus K¢#(DOL).

(i) The fact that K¢ . (nbEPOL) is proved by a contradiction. Assume that
Ke #(nbEPOL). Then K=L(H) for an nbEPOL system H=(V, Z, P, w).

Since H is nonblocking, for each veK, u-_—>v "¢K. Thus azbc:xEK for a positive
H
integer ¢. Since H is propagating, |x|=4. Moreover X cannot equal a®bc because th]S

would imply that K is context-free. Thus azbc:az"bc for an n=2. Clearly a=>y
H H

implies yeca™*, thus a:>a" for an i=0. b::»a"b (b:>a" respectively), k=0 is
H H H

t t
impossible because then ab=-a'*+*b (ab=a'** respectively) which contradicts the
H H

1 t
fact that L(H)=K. Hence we must have a=d' i>1 and b=b. But then
H H

ab;a"b which again contradicts the fact that L(H)=K. Thus K¢.#(nbEPOL).
Th[én (i) and (i1) yield the lemma. O
Lemma 11L4. £ (POL)\.#(EDOL) 0.
Proof. Let K={a": n=1}. Itis proved in [6] that K¢ (POL)\ ¥ (EDOL). [J
Lemma 1IL5. % (EPDOL)\.% (nbEDOL) 9.

Proof. We will prove that K={a?b? b'(ac)?}¢ £ (EPDOL)\¥ (nbEDOL).
(i) Let G be the EPDOL system which is defined by G=({4, a, b, ¢}, {a, b, ¢},
{4—~A,a~b* b—~ac, c~ A}, a*h?). Obviously L(G)=K. Thus KeZ(EPDOL). -
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(i1) The fact that K¢ £ (nbEDOL) is proved by a contradiction. Assume that
KeZ(bEDOL). Then K=L(H) for an nbEDOL system H=(V, X, P, w).

t
Since H is deterministic there exists a positive integer 7 such that either a2b2=5b*.
H

t t t
«(6c)? or b'(ac)>=a*b% The latter implies b= A and (ac)®>=a?b? which is clearly
H H H

t
impossible. Hence azb2=>b4(ac)2. There are three cases to consider.
H

(a) a:>A Then however b"=>b“(ac)2 which contradicts the fact that H is
H H

deterministic.
t t
(b) a=b. Then however b*=b%*(ac)* which contradicts the fact that-H is
H H
deterministic

. t
() a:b2 Then b2=>(ac)2 The fact that H 1s deterministic vields b=dac.
: H
Observe that

* * t
(HIL.1)... a=>x implies |x|=1, and b=>x implies |x|=1. Clearly a?b>=b*.
H H : H

t t
- (ac)?=(ac)* (b%x, 2= (b2 x)* ((ac)® x. 2=z for some X, x,€V*
H H .
Now the form of z and (IIL1) yield that
*
(I11.2)... for all words v such that z=uv, [v|=12. Since the longest word of
H

L(H)=K has length 8, (II1.2) contradicts thé fact that H is nonblocking. Having
established a contradiction for all possible cases, we get that K¢.%(nbEDOL)
which concludes the proof of (ii).

Hence the lemma holds. O

Lemma [IL6. % (nbEPDOL)\ % (OL) 0.

Proof. We will prove that K= {a®"b: n=0}U {a®"**c: n=0}e £(nbEPDOL)\_
¥ (OL).
(i) Let G be the nbEPDOL system which is defined by G=({4, B, C, a, b, ¢},

{a, b, c}, {4—~c, B~C, C—»b,a—»aa, b—~A4, c—~B} ,ab). Obviously L(G)=K. Thus

Ke& (nbEPDOL)

(if) The fact that K¢ ¥ (OL) is proved by a contradiction. Assume that K¢
€ (OL). Then K=L(H) for a OL system H=(V,V, P, w). Without loss of
generality we can assume that V= {a, b, c}.

(ii.1) Clearly a~>,\ implies x¢€a*, b—»x implies an*bba ¢; and c—»x

implies xea*hUa*c (otherw1se L(H) would contain words not telonging to K ).
(1.2) The set P contains only one a-production. For assume to the contrary
that there exist two different a-productions in P, say a—4' and a—a’,i=>j. Let

b-—x be an arbitrary b-production of P. Then for all n=0, a® b=>a*"ix and
‘ H
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a® " b=a®"i-itix, Thus for all n=0,4*"'x and a®"~+i/x belong to L(H)

H
which (for n large enough) contradicts the fact that L(H)=K.

(ii.3) The only a-production of P cannot be a—A otherwise L(H) would be
finite, a contradiction.

(ii.4) Analogously to (ii.2) we can prove that P contains only one b-pro-
duction and one c-production.

Now (ii.1) through (ii.4) yield that H must be a PDOL system.

Hence ab=a c=>a32b There are four cases to consider.
H

(@) a=a and b=>a3 ¢. Then however a32b=>a35c, a contradiction.
H

(b) a=a* and b:>a~c Then however (z32b:>a‘*6 ; a contradiction.
H H

(¢) a=a® and b:>ac Then however a3°b:>a97c, a contrad1ct10n
H

(d) a=a* and b:»c Then a'c=a®b, a:>a" and the fact that H is deter-
H H

H
ministic yield c:a’eb Then however alzsc:amb a contradiction.

Having estabhshed a contradiction for‘all possible cases, we get K¢ .Z(OL).
Then (i) and (ii) yield the lemma. O .

We are now ready to state the main result of the section. As expected, if X
denotes either P, D, PD or the empty word, we have that £ (XOL)c £ (nbEXOL)C
c Z(EXOL).

Theorem 11I.2. The following diagram holds: _
Z(EOL) = Z(EPOL)

4
Z(nbEOL)
) ZL(EDOL)
£ (nbEDOL) . & (nbEPOL)
: %(EPDOL)
Z(nbEPDOL) * :
Z(OL)
Z£(DOL) £ (POL)
Z(PDOL)

where, if there is a directed chain of edges in the diagram leading from a class X
to a class Y then XCY; otherwise X and Y are incomparable but not disjoint.

Proof. 1t is well known that ¥ (EOL)=%(EPOL) (see, e.g., [7]). Inclusions
follow from the definitions and Lemma II1.2; strict inclusions and incomparabilities
follow from Lemma III.1 and Lemmas IIL.3 through HI.6. O
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1V. Systems with tables

In the case of E(P)TOL systems the nonblocking restriction turns out to be no
restriction with respect to the language generating power. This contrasts the results
of the previous section.

Theorem 1V.1. £ (nbEPTOL)=¥(nbETOL)=¢(EPTOL)=<(ETOL).

Proof. We shall show that Z(ETOL)E #(nbEPTOL). The theorem then
follows from the definitions. Let K¢.%(ETOL). Then (see [6]) there exists a PTOL
system G=(V,V, {P;, P, ..., P,},w), k=] and a A-free homomorphism h:
V*—Z* such that #(L(G))=K. Without loss of generality assume that VN Z=
=0. For I=isk let Q;=PU{a—a:acZ}. Let Q={a—h(e): acV}U{a—a:
a€Z}. Finally define the EPTOL system G by G=(FUZ, 2, {Q,, O, -.., O,
0}, w). Clearly G is nonblocking and L(G)=K. Thus K¢ (nbEPTOL). Hence
#(ETOL)S £ (nbEPTOL). O

Even in the case of E(P)DTOL systems the nonblocking condition has no con-
sequences for the generating power of those systems. We first prove the following -
lemma.

Lemma IV.1. #(EPDTOL)C & (nbEPDTOL).

Proof. Let G=(V, X, 2, S) be an EPDTOL system where #={P,, P,, ...,
.., Py}, k=1, Without loss of generality assume that S¢V\Z, L(G)»#@ and
alph L(G)=Z. Let V={a: o€V}, VNV=0 and let h be the homomorphism on

V* defined by h(x)=a for a€V. For each @=XCV let wy be a fixed word such
that alph wy=2X and each letter occurs precisely once in wy. Furthermore let Gy=

=V, Z, 2, h(wy)) be the ETOL system which is defined as follows. V'=V U7,
and #'={P’: Pc?} where for P¢2?, P'=PU{h(e)~x:a—~x}. Then SUC(G)=

={0=XCV: L(Gx)=9}, in other words for a weV *, @;ESUC(G) if and only
if there exists a w’€ X* such that w;w’. For X¢SUC(G) we define next X=I
={i: P;eP, wy=1y, alph yeSUC(G) gr alph y£.Z}. Now we will construct an
nbEPDTOL sl)}isten_l——H such that L_(Ez_L(H). We proceed aé follows.
P={sS}Uz xesgc«;) {le, X];: acalph X, ienext X}, PN(V\({S}UZ2))=0. For

i€next {S}, define Oy, ;={S~[S, {S}1}U{a—~a: ae P\{S}}. For XeSUC(G),
wx=y, alph y=Y¢SUC(G) and jenext Y define ’
P; -

QX.i,i={[a’ X]i_’[ﬁla Y]j[ﬁ?: Y]j"'[ﬂma Y]j: an: a;ﬂlﬁ2"'ﬁma mél’ ﬂIEV
for 1=l=m}U{a—a:ac P\{IB, X];: BeX}}.
For Xc¢SUC(G), wy=y, alph yS X define
P, T

Qx.icin={lo, X];—~2: aeX, oz—;z}U{a—»a: ae PN\{[B, X)i: BeX}}.

i
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Let P={Q;, ;: icnext {S}}U{Qx,J XeSUC(G), wx=>y alph y=YeSUC(G)
and jenext y}U{Qx, i rin: X€SUC(G), wy=>y, alph YC E}
P,

Finally let H be the EPDTOL system defined by H=(V, %, #, S). First we
show that L(H)=L(G). For XeSUC(G) and ienext X the homomorphism
hyx ; on V* is defined by hy (a)=[a, X]; if acl; furthermore the homomorphism
g on V* is defined by g()=a if ae{S}UZX and g([e, X])=0o if Xe¢SUC(G),

a€X and icnext X. Let x¢L(G), thus S= x0:>x1=>x2=> =x,=x,nz=l, i, ...,
p.

<osig€{l, ..., k}. Then obviously, if for 0<l<n ‘we denote alph x=X,
S = hxo,il(xo) = hy, (o) =>... = hx,,_,,i,,(xn—l) = Xp = X.
Qin,i, QX ,iy,i Ox, _g.in_1sin QX,_q,infin

Consequently x¢L(H). Hence L(G)SL(H).
Conversely let xc¢ L(H) and let D: S=x=x,=>X,=...=X,=Xx be a shortest
H H H

derivation of x in H. Thus, if for 0=/=n we denote ;_Ithg(x,):X,,
D:S=xy =2 x; =2 xp=.. = Xp-1 = X, = X,
Qn,i, X,,ip,i, X, _prin_nsiney 92X, - 1yin_1, fin
n=2 and i, ...,i{,_1€{l, ..., k}. Consequently
S = Xo = g (%) = = g(x,- 1)P=> glx,) = x
i ig Inog e

and thus x€L(G). Hence L(H)Z L(G).

We end the proof of the lemma by showing that H is nonblocking. Let xesent H.
Then there are three possible cases: x=S8 or x€Xt or x=/hy (v), veV +, X¢
¢SUC(G) and ienext X. Since L(H)=L(G)=0 it suffices to consider sentential
forms of the third kind. Thus x=hy ;(v), veV'*, X¢SUC(G) and icnext X.

*
Hence there exist v* and v” such that v=v'=v”€¢ Z+. Then inspecting the proof
P, G

*®
of L(G)SL(H) one can easily see that x=/hy ;(v)=v” which shows that H is
. i
nonblocking. O
As a corollary we obtain the answer to an open problem stated in [6].

Definition IV.1. A language L is contained in #Z(NPDTOL) if and only if
there exists a PDTOL system H and a non-erasing homomorphism / such that
L=h(L(H)).

Corollary 1V.1. Z(NPDTOL)=2(EPDTOL).
Proof. We will use the notation from the proof of Lemma IV.1. Fix a ueX+
+ + .
such that S=u, and for each X¢SUC(G) let Dy: wy=uycZ+ be a fixed deri-

G G
vation. Then define the A-free homomorphism % on V* as follows: (S)=us,
h(a, X])=ctrp, o if XeSUC(G), acalph X and icnext X, and h()=oa if
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acZX. Let H’ be the PDTOL system defined by H =, 17 2, S). Clearly L(G)=
=h(L(H"). Hence Z(EPDTOL)S #(NPDTOL). Since also % (NPDTOL)S
S Z(EPDTOL) (see {6]), the corollary holds. {1

For the deterministic case we obtain a result analogous to the statement of
Theorem IV.1.

Theorem IV.2. #(nbEPDTOL)=2(nbEDTOL)=%(EPDTOL)=%(EDTOL).

Proof. From the definitions we get £ (nbEPDTOL)E .Y (nbEDTOL)C
C Z(EDTOL). It is well known- (see, e.g., [1]) that Z(EDTOL)=%(EPDTOL).
From Lemma IV.1 we get Z(EPDTOL)S #(nbEPDTOL). Combining the above
results, the theorem immediately follows. [J

Let X and Y denote P, D, PD or the empty word. Then Theorem IV.1 and
Theorem 1IV.2 show that ZL(mbEXTOL)=2(EXTOL). Thus comparing
Z (MmbEXTOL) and £ (YTOL) is the same as comparing Z(EXTOL) and £(YTOL).
For completeness only we present here the diagram in the case of tabled L systems.
The proof is given using well known results from the literature.

Theorem IV.3. The following diagram holds:

Z(ETOL) = £(nbETOL) =
= $(EPTOL) = #(nbEPTOL)

Y(EDTOL) = £(nbEDTOL) =
= Z(EPDTOL) = £(nbEPDTOL)

where, if there is a directed chain of edges in the diagram leading from a class X
to a class Y then XcY; otherwise X and Y are incomparable but not disjoint.

Proof. Inclusions follow from the definitions, equalities follow from Theorem -
IV.1 and Theorem IV.2. Strict inclusions and incomparabilities follow from the fol-
lowing three observations.

(i) {pa?": n=0}U}bc¥": n=0}e¢ £ (DTOL)\Z (PTOL) (see, e.g., [3]).

(i) {we{a, b}*: |w|=2" for some n=0}¢ £ (PTOLN\ Z (EDTOL) (see e.g., [7])

(iif) All finite languages are in & (EDTOL) and there are finite languages which
are not TOL languages (see, e.g., [3]). O

Since emptiness is a decidable property for ETOL systems (see, e.g., [7]) and
since all constructions used in this section are effective, it follows that for every sys-
tem, considered in this section, generating a non-empty language, there exists ef-
fectively an equivalent nonblocking system. This contrasts Theorem II.4. Moreover
it turns out that nonblocking is a decidable property for ETOL systems. This result
should be compared with Theorem IL.S.
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Theorem 1V.4. Let G be an ETOL system. Then it is decidable whether or not
G is nonblocking.

Proof. Let G=(V, X, ?, w) be an ETOL system. Let V={&: acV}, VNV =0
and let /i be the homomorphism on ¥V * defined by h(x)=a for acV. For each
0AXCV let wy be a fixed word such that alph wx=X and each letter occurs

precrsely once in wy. Furthermore let Gy=(V", X, P, h(wy)) be the ETOL system
which is defined as follows. V’'=V UV, and = {P’: PcP} where for Pe2,
P'=PU{h(®)>x:a—~x}. Let &f={Gy:sent GN{xeX*: alphx=X}=0}. Ob-

P
viously G is nonblocking if and only if &0 and for each He¢sd, L(H)#®. The
decidability of the latter question follows from the closure properties of Z(ETOL),
the effectiveness of the construction of &/ and the decidability of the emptmess prob-
lem for ETOL systems. Hence the theorem holds. O

Discussion

In this paper we have mvestlgated the effect that the nonblocking restriction
has on the language generating power of various classes of rewriting systems. Since
the blocking facility forms a typical “programming tool” in generating a language,
we believe that our results shed some light on the nature of the generation of languages
by grammars.

The research started in this paper can be continued in several directions.

(1) The class of languages generated by the “nonblocking subclass™ of a class
X of rewriting systems should be often investigated on its own (whenever the non-
blocking restriction influences the language generating power of the class X). Such
a typical candidate to investigate is % (nbEOL); for example the closure properties
and the combinatorial properties of languages in this class. Also the decidability
status of the question ‘“Does an arbitrary EOL system generate a language in
£ (bEOL)?” forms an interesting open problem

(2) The role of the nonblocking restriction in classes of rewriting systems dlf-
ferent from those investigated in this paper should also be investigated.

(3) Clearly the way that we have formally defined the nonblocking of a rewriting
system is only one of several possibilities. Other possibilities should also be investi-
gated.

(4) A nonblocking condition can be also defined for various types of automata,
for example one could require that for every state of an automaton there exists a
computation that leads from this state to an accepting state. (Conditions of this
type are often considered in the theory of Petri-nets (see, ¢.g., [2]), where they are
referred to as “liveness conditions”.) The effect of nonblocking on the generative
"power of various classes of automata should be investigated.
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Appendix

Here we give the full proof of Lemma 11.2.
For every context-sensitive grammar, generating a non-empty language there
exists an equivalent nonblocking context-sensitive grammar.

Proof. Let KC Z* be a non-empty language generated by a context-sensitive
grammar.

1) If K is finite, then let G=(ZU{S}, Z, P, S) be the context-sensitive grammar
with P={S—+x:x€cK}. Obviously; G is a nonblocking context-sensitive grammar
and L(G)=K.

2) If X is infinite, we proceed as follows. Let X'={[a, b, ¢, d]: a, b, ¢, de Z}U
Ulla, b, c}: a, b, cc Z}U{[a, b): a, be Z}U{[a): ac Z} with Z'NZ=0.

Let K'={[a,,a:, a3, a,)...[sn—3, Gyp—3, apn—1, Q4n): 1=2, a;€ X, for 1 =i=4n, and
a,ay...a, EKYU{[ay, ay, a5, a}) . [Ggn—3, Qan—s, Qan—15 Qall@an41]: =2, a;€ 2, for 1 =i=
=d4n+1, and a1a,...04, 1 €KYU{[a1, 02, a3,45) ... [@an—35 Fan_2, Tan-15 Bn)[Ban 41, Ban 2]
in=2,a,€2, for 1=i=4n+2, and @,a;...04,:6K}U{[ay, a,, as, a,]...
o [Aan—3s Qan—2> Aan-1> Ap){@an+1> Aansa> Ganis): =2, a;€ X, for 1=i=4n+3, and
28y 84y 36K

Let / be the homomorphism from X* into 2* defined by h({ay, a,, a;, a,])=
=a,a,a30,, h([a, a5, a;))=a,a:a,, h((ay, a;))=a,a, and h(a]D=a,, for qg;cZ,
1=i=4. Clearly h(K')=K\{x€K:|x|<8} and hence K’'c¢Z(CS). (See, e.g.,
[4]) Let G'=(V"’, 2’, P’, §’) be a context-sensitive grammar, such that (F"\ 2)N
NXZ=0 and L(G’)=K’. Without loss of generality we assume that no termmals
occur in the left-hand side of any production of P’.

The context-sensitive grammar G=(V, X, P, S) 1s deﬁned as follows V=

=VUV’U3, where V={S,L,R,Ly, R, N, Ny, N, B, B, My, My, M,, M,, My,

My, My, My, Xy, X;} and VN(V'UZ)=0.
P consists of the following productions.

(1) S—x,_if x€K and |x|<8.
(2) S—LM,S'R.
(3) All productions from P’.
4 Moa—»aMo, if aeX’.
(5) M(,—>B N
(6) [ay, a5, a5, a)M, R ”’Moa1aza3a4,
[a,, az, a5, a4][as]MoR"Moalazasa405,
[a;, a5, a5, a)las, a(,]M0 ~M, ot Asasa.a5a, and
[al, dg, 43, alla;, ag, a7]11_/.70R—>M0a102a3a4a5a6a,, for a;e 2, 1=i=17.
(1) aB~BN, if acV’UZU{N, L;, N, My, My},
(8) LE~N,F and N B—N,B.,_
(9) [a,, as, a5, as][as, a5, a3, as]Mo"[ala as, a3, a4]Moa aga;ag for a;cZ,
1=i=8.
(10} L(ay, a, a,, a4]M0—»a1a2a3a4, for aq;eX, 1=i=4.
(11) B«—~NB, if acV’'U{N},

4
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(12) BR—~NL,M,S’R, and BR,—~NL,M,S'R,.

(13) Mlcx—»onl, if aeZ’.

(14) Ml—»B

(15) M,R,~M,R,.

(16) a by~ Mo, if acZ’.

(17) L, M, ~NM,.

(18) NMy—~M,N.

(19) N M,—~N, M,.

(20) Na—aN, if acZ.

21) N[al, as, a,, a4]—»a1a2a3a4, for a; EZ 1=i=4.

(22) N[al, ag,as]—»BN N[al, az]»BN N[al]eBN and NRI—»BNRI, for

g€, 1=i=3.

(23) Mza»aMz, if aeZ.

(24) Mz[al, a,, a;, a4]—»a1a2a3a4M3, for a; EZ 1_154

(25) Malay, as, as)~BN, M[a,, a;)~BN, M,ja,)~BN and M,R,~BNR,, for

a X, 1=i=3.

(26) A’Ia[an as, d3, a4]—>M3[al, ag, 4, a4], for a;€ Z I=i=4.

(27) M,[a,, ay, @)~ BN, Msla,, a;)~ BN, My[a,]~BN and M,R—~BNR,, for

a€el, 1=i=3,

(28) a0, if a€ .

(29) N, M,~XX,.

(30) X, Xpa—aX,X,, if acZ.

(3) XiXzlay, a;, a3, allas, as, a;, as]"alazaaa4X1X2[as, as, a7, ag], for a;€2,

1=i=8.

(32) Xy X,lay, ay, a;, a)as, ag, a;1 Ry ~a,0,a5a,a5a,a;,

X1 X,[ay, ay, a3, ay][as, ag) Ry ~a,a,a3a,a;a,,
XiXelay, a5, a3, as)[as) Ry —~a,a:a;5a,a5 and
X1X;lay, as, a5, a,) R, —~a,a,a5a,, for a;c 2, 1=i=7.

First we show that L(G)S K. Starting from the axiom S only productions
from (1) and (2) can be applied, resulting either in a word x€K, |x]<8, orin a word
of sent G of type 4, i.e. of the form LxM,yR, with x¢X* and xyesent G

" The productions, applicable to words of sent G which are of type 4 belong to
(3), (4), (5) and (6). If a production from (3) or (4) is applied to a word of type 4,
the resulting word again is of type A.

If a production from (5) is __applied to a word of sent G of type 4, we get a word
of type B, i.e. of the form LxByR, with xye(V"U{N}*. If a production from (6)
is applied to a word of type 4, the resulting word is of type C, i.e. of the form LxA?o Vs
with xeZ'*, yeZ*, h(x)yeK and |h(x)y|=8.

The productions, applicable to words of type B come from (3), (7) or (8). Appli-
cation of productions from (3) and (7) to a word of type B again yields a word of
type B, whereas application of productions from (8) yields a word of type D, i.e.
of the form N, N*BxR or N N*BxR,, xe(V'U{N}*.

The productions, applicable to words of type C belong to (9) or (10). Applica-
tion of a production from (9) to a word of type C yields a word of the same type,
-whereas application of a production from (10) yields a word of K.

2 Acta Cybernetica V/4
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The productions, applicable to words of type D belong to (3), (11) or (12). The
application of a production from (3) or (11) to a word of type D results in a word
of the same type; the application of a production from (12) yields a word of type E,
i.e. of the form N, N*L,xM,yR,, x¢Z’*, xyesent G’

The productions, applicable to a word of type E come from (3), (13), (14) or (15).
Application of a production from (3) or (13) to a word of type F yields a word of
the same type. Application of a productlon from (14) to a word of type E yields

a word of type F, i.e. of the form NLxBle with xye(V’"U{L;, N})*. Application

ofa productlon from (15) to a word of type E yields a word of type G, i.e. of the form
NNt leMlle with xye X'+, h(xy)EK and |h(xy)|=8.

' The productions, appllcable to a word of type F come from (3), (7) or (8), and

if applied, yield words of type F, type F and type D respectively.

The productions, applicable to a word of type G, belong to (16) or (17), and,
if applied, yield respectively words of type G and type H, ie. of the form
N N*M,({NYUX)*2’*R,, and furthermore if a word has this form, then also
h(Presyyy w)=w'€K with .|w’|=8.

The productions, applicable to a word of type H belong to (18),-(19), (20), (21)
or (22) and then yield words of type H, type I, type H, type H or type J respectively,
where type I and type J are defined as follows.

A word w is of type I if weN, Z*M,({N}U 2)*2*R, and h(Pressns, w)=
=w'eK, with |w'|=8. - R

A word is of type J if it is of the form N, N*M,xBN * R, with xe(ZU{N, N}*,
or N Z*M,yBN*+R,, with ye(SU{N, N))*, or N Z*BN*R,.

The productions, applicable to words of type I belong to (20), (21), (22), (23),
(24) or (25) and then yield words of type I, type I, type J, type I, type L or type J
respectively, where type L is defined as follows.

A word is of type L if it is of the form N, xM, yR,, with xe Z*, ye '+, xh(y)eK
and |xh(y)|=8.

The productions, applicable ‘to words of type J telong to (7), (8), (18), (19),
(20) or (23) and then yield either a word of type J or type D. :

The productions, applicable to words of type L come from (26) or (27) and then
yield words of type M or J respectively, where type M is defined as follows. A word
is of type M if it is of the form N_xM,yR, with xeZ* yeZX’'+, xh(y)eK and
|xh(y)|=8.

The only productlons applicable to a word of type M come from (28) through
(32) and they<_l_ead in a deterministic way to xA(y) if the word, they were applied-
to, was NpxM;yR,.

The above reasoning shows that L(G)S K.

That KS L(G) can be seen as follows.

If x¢K and |[x|[<8, then S=x and hence x¢L(G).
G

If x¢K and [x|=8, say x=a,...q,,a,cZ for 1=i=k and k=8, then
— * —_ — * — *
S=>LM,S'R=>LM,yR, with yeK’ and h(y)=x and LM,yR=>LyM,R=
G G G G

* - ¥
=LyM,R=x. Thus x€¢L(G). We conclude K& L(G).
G G
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We end the proof by showing that G is nonblocking. To this aim we have to
*

show that for each wesent G, there exists a weL(G) such that w=w. From the
G

proof that L(G)Z K it should be clear that it suffices to prove that each word of
sent (G) which is of type 4 through M can lead to a terminal word. For words of
types C and M this was already proved in the above. Inspecting the productions of
G, we make the following observations. Let wesent G.

*
If wis of type 4, then w=w" for a w’ of type B.
G

%
If w is of type B, then w=w’ for a w" of type D.
G

*

If w is of type E, then w=w’ for a w’ of type F.
G
*

If wis of type F, then w=w" for a w’ of type D. '

G
*

If wis of type G, then w=w" for a w’ of type H.

G
*

If w is of type H, then w=w" for a w’ of type I
— G

*
If wis of type I, then w=w" for « w of type J or L.
G

*
If wis of type J, then w=w’" for a w’ of type D.
G

* .
If wis of type L, then w=w" for a w’ of type J or M.
G

Hence for each wesent G of type 4, B, D through M, there exists a w’¢sent G

- %
such that w=w" and w’ is either of type D or of type M.
Since each word of sent G of type M can derive a word of K, it remains to show
that each word of sent G of type D can derive a terminal word.
This is seen as follows. Let wesent G and w is of type D. Then

’ * — . . . . . . . .
w=Ny N'L;M,S’R, for some i>0. Since K is infinite, KX’ is also infinite. Hence there
G

is a word x=a,...q, with a;¢Z’, 1=j=k, such that x€K’ and k=i+4. Then
o * ) - * . —- * . — *
N.N'L,M,S’Ry = N N'Ly,M,xR, = N N'L,xM,R, = N N'L,xM,R, =
G G G G
* L e * . * B :
= NLNlLlMlx.R1=> NLN1+1M2xR1 = NLM2N1+1a1a2...ai+1ai+2ai+3...akR1
G G : G :
* * .
? NLMZh(al-"a'i+1)ai+2ai+3"'ale:(;’ NLM3h(ay...0;41)8;420;45... a3 Ry

* * ’

< vl —
= Nph(a;...a;4)Mya;420;45...0, Ry = N h(ay...a;,9)Msa;.5...a, R,
G G

2%
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* - * — )

_—: Noh(ay...a;,9)Mza;,5...a, Ry ? N, M h(a,...a;,5)0;,5...a, R,

* * *

= XiXoh(ay...a;49)0;45...0, Ry =G> h(ay...a; . ) X1 Xa;,5...a, R, =G> h(a,...ay).

Since a,...4,€K’, h(a,...a)¢K and hence w derives a word of K.
Thus G is a nonblocking context-sensitive grammar such that L(G)=K. Hence
the lemma holds. O
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Abstract

A rewriting system G is called nonblocking if every sentential form of it can be rewritten into
a word of the language of G; otherwise G is called blocking. The blocking facility is often used in
generating languages by rewriting systems (for example in context-sensitive grammars and EOL
systems). This paper initiates the formal investigation of the role that the nonblocking restriction
has on the language generating power of various classes of rewriting systems. We investigate gram-
mars of the Chomsky hierarchy as well as context independent L systems with and without tables.
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An algebraic definition of attributed transformations
By M. BARTHA

1. Magmoids and rational theories

The concept of magmoid was introduced in [1]. A magmoid M=({M,scS},
-, ®,e,¢e), is amany sorted algebra with sorting set S, the set of all pairs of non-
negative integers. Further on we shall write M? instead of M, g4 . Binary operatlons

-and ® are called composition and tensor product, respectively. The following axioms

must be valid in M:

() «: MEXMZ—~MP is associative.

(i) ®: M“I’:XM”2 M,‘,"“'2 is associative. .

(iii) (@, -b) ® (a,- 2) (a1®a2) (by®by) for all composable pairs {a, b;),
(ay, by .
i (iv) ec Mi, e,e M, and if e, denotes ¢®...®e (n=1), then for each p=0,

T times

g=0,aeM}: e,-a=a-e,=aQe,=¢,Qa=a.

An element acM} will often be denoted by a:p—q if M is understood.

Let Z=[JZ, be a finite ranked alphabet, and define the structure T(X)=

n=0
- =({T(2)E p,q=0}, -, ®, e, e,) as follows:
For arbitrary p=0 and ¢=0, T(2)!={(g; t, ..., t,)| for each 1<t<p,
is a finite X-tree over the variables X1, . ,xq} {q; )ET(E)O will be denoted by 0,.

Gty sty s uy, oy gy = sy, o ug), o Uy, o, 4],

where [...] denotes the composition of trees;

<q1’ tl! e p1>®<q2, Uy ooy up2> = <41+42, tla Ters tpl, ui, Ty u;;2>’

where uf =u;[x, 11, -5 Xg4q.]s €=(1; X1), €,=0.

We shall omit the component g of {q; fy, ..., tpy if it is understood. Moreover,
we leave {...) if p=1. Itis known that T(2) is a magmoid. T(2) is a submagmoid of
T(2) such that t={g; ty, ..., t,y¢ T(Z)? if and only if the sequence of variables
labelmg the leaves of 1, .. ,t,,, read from left to the right, is exactly x, ..., x,.
T(2) is the free magmoid generated by Z, that is, every ranked alphabet map
h: £-M" into a magmoid M has a unique homomorphic extension h: T(Z)—~M.
. (Viewing ¢€ZX, as (n;0(xy, ..., x,YeT(2)}).



410 M. Bartha

Another important magmoid is 6, in which 62 is the set of all mappings of
[p}={1, ..., p} into [g]. Composition is that of mappings, and for 9;e03, i=1, 2

() if Jjelpd,

1® 2(.]) 92(_]'_p1)+ql if P <J = DPe.

e and e, are the unique elements of 6} and 609, respectively. e, will be denoted by id,
if n=1. The elements of  are usually called torsions or base moprhisms.

A magmoid is called projective if it contains a submagmoid isomorphic to 6
and every a: p—q is uniquely determined by its “projections”, i.e. by the sequence
(n,, a|1515p) i, denotes the 1somorph1c image of the map #,:[1]—-[p] that
picks out the mteger i of [p]. T(Z) is projective, and it is the free pro;ectlve magmoid
generated by X. PpT(Z) will denote the magmoid in which (PrT(2))?={g; 4,, ..

Ap)| for each i¢[p], A; is a finite set of Z-trees over the variables x, ..., x, }
(For the mterprltatlon of the operations see [2].) PrT(Z) is also projective. I_et M
be a projective magmoid, .4, ..., a,€ M}. ‘ay, ...,a,% will denote the unique

element of M} whose sequence of prOJectlons is (al, ..., @,). This source-tupling
can be viewed as a derived operation in M, and it can be extended as follows. Let
@,:p1—~q,d;: ps—~q. Then <a,a,%= 4:7‘::1 a, ..., “ly, M, g, ..., TH2 A3 .

Rational theories were introduced in [3], based on the concept of algebraic
theory. However, the only difference between nondegenerate algebraic theories and
projective magmoids is that in algebraic theories source-tupling is a basic operation
(and tensor product is a derived one). So, if we introduce rational theories by means
of projective magmoids, we get a definition equivalent to the original one excluding
the trivial degenerate rational theory. -

A-rational theory is alsoa many sorted algebra R= ({R%|p, q=0}, -, ®, e, ¢, T),
where apart from *, R is a projective magmoid, the sets R? are partxally ordered,
and *:RP, —~R? is a-new operation. For f:p—p+gq, f+ “is the least fixpoint of
/, and some further conditions must hold concerning the ordering and the opera-
tions, that we do not list here.

Add a new symbol | wi‘h rank 0 to X, to get the ranked alphabet %, . There
exists a rational theory T..(2X) for which T-(2)f={g; t1, .-, 1,)| for each
i€[p],t is a possibly infinite X', -tree over the variables x,, ..., x } For the inter-
pretation of the operatlons see [3]. It 1s known that R(X), the free rational theory
generated by Z, is the smallest subtheory of T..(Z) that contains T(Z) as a submag-
moid. .

Let ¢=0, X,={x;, ..., X}, X,: Z—»(EUX)* such that for each o¢¢Z,,
length (xq(a))—n “An mﬁmte tree t€R(Z)? is called local of type y, if the follow-
ing holds. If an interior node of ¢ is labeled by o€ ZX,, then its direct descendants are
labeled by y,(0). If so, we will denote ¢ by (w, x,), where w=root (1) (ZUX)".
Rec (2) will denote the smallest rational theory in PT(ZX) that contains Py T(Z)
as a submagmoid.
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2. The magmoid R(k, /)

Definition 2.1. Let R be a rational theory, k=1,/=0 integers.

Rk, )=({R(k,D|p, g=0}, -, ®,e,e) to be the following structure:
(@) Rk, Dy = REBILE;
(i) if acR(k,1)f, beR(k, 1)}, then
ab=«p P vk £a- 300 b Ypgr P Y,

where .
ur(=p" if m is understood)=id, ®0,¢0",.,,

Vi (=v, if n is understood)=0,®id,c0™, .,
3

— ykep+l k+1)r
par = Vg q®vl(-p ) )

— k+1).g+1 1.
l1bp,q,r - 0k-p® < vl£~r+ )2+ r’ ”k-%+(k+l)-r b4 ®Ol-p'

See also Fig. 1.

(i) if aeR(k,1)Er, beR(k, [)P2, then

q1°

411

Define

a®b =<« ”lq1l®”lqz > lq1l®v 2% -(a®b)- « y{‘g; ®/‘1P2’ 1pi®v FH S

- (i) e=1dk+,, €o=0y.

(We shall never add any distinctive mark to the sign of the operations when working
in different magmoids in the same time, because only one interpretation is reason-

able anywhere in the context.)

k-g /-1)
Ipart
kep l-glk-glli-r
lpll,(],l':
ker l-q
Fig. 1 .

Theorem 2.2. R(k,!) is a magmoid.

Proof. All the requirements can be proved by the same method, so we only show

the associativity of composition. Let
Q=4 Gy erer Gps Ays ey Ar.g F ER(K, D2,
b =<4 by, s Bigs By ooy Byy 3 €R(K, DY,
€= € € ovs Chors Co» ooes Cpg > ER(K, DY

M
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We must prove that (a-b)-c=a-(b-c). Both sides of this equation can be considered
as a polynomial in R over the variables g;, a;, ..., ¢;, ¢;. Since R is arbitrary, we have
to show that these polynomials are identical. Let X be the smallest finite ranked al-
phabet satisfying the following conditions: :
(i) for arbitrary i€[k-p] and j€[l-q], Ai, A;€ Xy q01.ps
(i) for arbitrary i€[k-q] and je¢[l-r), B;, B;€ Z; ..,
(iit) for arbitrary i¢[k-r] and je[l.s], C;, C;€ Xy i,

Change the small letters to capital ones in (1), to obtain the elements A, B, C of
R(Z). Clearly, it is enough to show that (4-B).-C=4-(B-C) holds in R(Z)(k, ).
However, it is easy to check that (4-B)-C=A.(B-C)=(w, x,), where n=k.s+/.p
and

w = </_11’ AR Ak'ps éla tees Cl~s>1

Zn(éi) = Zn(/—i/) = <§1, seey ék-qs Xk-s+1s <=+ -xk~s+l-p>’
Zn(gi) = XII(BJ) = <gl9 ’gk'n Zl, ey Zl-q>,
Xn(.c_i) = ln(é_;) = <x1’ LA ] xk~s9 319 ey El-r>

for any appropriate choise of the integers { and j.

Let &: R—R’ be a homomorphism between rational theories. Clearly, £ defines
a homomorphism &(k,1): R(k,!1)—-R'(k,1), and so the operator (k, /) becomes a
functor.

v

3. Attributed transformations

Definition 3.1. An attributed transducer is a 6-tuple UA=(Z, R, k, [, h, S),
where

(i) Z is a finite ranked alphabet, S¢ZX;

(ii) R is a rational theory, k=1,/=0 are integers;

(i) h: Zg—R(k, /) is a ranked alphabet map, where Xs=2XU{S} with S
having rank 1, and A(S)=a ®0, for some ac Ri*!. We say that A(S) is a synthesizer.

tq: T(Z)—R}, the transformation induced by 2, is the following function:
ta(t)=a, where mi-h(S(t))=a®0,. It is clear that 1y4(f) is uniquely determined
by this imlicit form. (As it is usual, we denoted the unique homomorphic extension
of h also by A.)

Definition 3.2. An attributed tree transducer is a 6-tuple U=(Z, 4, k, /, , S),
where X, k, ! and S areas in the previous definition, 4 is a finite ranked alphabet,
h: Zg—~PrT(4) is such that h((Zy),)SPrT(AEELT and A(S)eP:T(4)i+. To
define the transformation 74, consider the attributed transducer B={(Z, Rec (4),
k,1,h, S). B is correct, since PrT(4d)SRec(4) and h(S) is a synthesizer. Now

ta = {{t, w)te T(D, ucts(t)).

A is called deterministic if for arbitrary n=0 and o€ (Zs), all the components of
h(o) contain at most one element.

1
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Example 3.3. Let k=/=2,
= Z'OLJ 217 20: {a}’ le{f}’ A:AOUA15 AOZ{E}’ Al:{f; g}’
h(f):<4;f(x1),f(x2), g(x3), g(x4)>, /1(§)=<2; X1, xz): h(S):<4§ X1, 4, xz, a>-

(Braces enclosing singletons, are omitted.) Then W=(ZX, 4, %,/ h, S) is a deter-
ministic attributed tree transducer, and it is easy to see that for all =0

() = (45 (), £1(x), 8(Xa), (X))
Hence, A(f"(a@))=(2; f"g"(x,), f"g"(x»)), and
v = {(f"@), f"g"1"g"(@)n=0).

Definition 3.2 might be interpreted as follows. Let t¢T(X)!, a a node in ¢
having some label o¢X,. A component of A(s) descrites how to compute the value
of a synthesized attribute of « (the first k£ components), or an inherited attribute of
an immediate descendant of « (the last /-»n components) as a function (polynomial)
of the synthesized attributes of the immediate descendants (the variables x, ..., x;.,)
and the inherited attributes of « itself (the variables x, 411, .., Xi.o+1)- The role of
the synthesizer 4(S) is to produce the final result of the computatlon

It will be convenient to identify the nodes of a tree reT(Z)} with the set
nds (1) SN*X(ZUX,), and the leaves of ¢ with lvs () SN*X X, as follows:

() if t=x,, then nds @O =lvs ()={4, x1)};

(i) if t=t,- (1dp_1®a(x1, wo X)®id,_,) with £,eT(2)}, g=1, pelg], n=0,

oeX, then nds(f)= UV,, where

Vi={w, J)[je[p—l] and (w,x;yelvs (1)},

Vo={(w, x;)|j=p+n and (w, x;_,1)€lvs (1)},

Va={(Wj, X, ;_j€[n] and (w, x,)€lvs ()},

Vy=nds (t,)\lvs (),

Vs={(w, 0)}, where (w,x,)€lvs (z,).

lvs (1)=V,UV,UV,
It is easy to verify that nds (+) and lvs (¢) are uniquely defined by the above con-
struction, and for each w¢N* there exists at most one a¢nds (#) having w as its
first component. Clearly, |nds (¢)||=r(¢), the number of nodes in 7.

Let W=(ZX, A, k,I,h, S) be an attributed tree transducer, fixed in the rest of
the paper, reT(Z)L,

Z, = {x(x, i, y(o, m)|wends (¢), ic[k], me[l]}

a set of variable symbols. Construct a system E, ; of nondeterministic 4-equations
over the variables Z, as follows

E, w={E, »(a i)axends (¢)\lvs (2), ic[k]}U
AJ{E,, 1 (o, m)eends (2)\ {(4, root (¢))}, me[l1},

where
(i) if x={(w,0) with ¢€¢Z, and
A }1(0') = <Tla '--,'Tk, Ql: seey Ql-n)} (2)
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then the equation E,(a, i) is of the form
X(d, 1) = Ti [xk-(r—1)+p e X(dr, p)’ Xkn+s = y(a, s)|p€[k],r€[n], SE[I]]’

where <« denotes variable substitution, «,énds (¢t} is the unique node having wr
as first component. (We omitted the index /4, whizh is fixed.)

(i) If a=(wj,ay with a€¢ZUX,, then consider the unique node &=(w, o),
where o¢Z,, n=j, and the nodes &, re[n]. (Naturally &;=a.) Let A(o) be as (2)
above. Then the equation E («, m) looks as

y(d, m) = Ql~(j—1)+m[xk~(r—1)+p e X(&,, p)’ Xints )’(0_‘, S)IPE[IC], re["]? SG[I]]
The variables
Z! = {x(o, Dlaclvs (1), ic[kPJU {y ({2, root (¢)), m)|me[l]}

do not occur on the left-hand side of these equations, so they are considered as para-
meters. On the other hand, the variables

Z2 = {x((4, root (1)), i)lie[k]}U{y (o, m)|xelvs (¢), me[!]}

do not occur on the right-hand side of the equations. If we identify the elements of
Z, with the variables xi, ..., X4 1.y by a bijection ¢: Z,~[(k+1)-r(t)] so that
the variables Z! get the highest and Z? the lowest indices, we get an ®’(t,¢,):
k+D-r(t)—(k-q+D)~>(k+1)-r(t)eRec (4) for which w’(t,e)=0;,;.,90(1,¢)
and (w’(t,e))*=E} (with respect to ¢). E} denotes the solution of E,.

Lemma 3.4. Let R be a rational theory, k=1,1=0, g=1,n=0, pc[q] integers,

acR(k, D}, beR(k, )}. Then -
A a- (ep—1®b®eq—p) = Hl‘-*—l.(ll_l-+-")'(Ok+l~(q—1+n)®
®(gq,p,n' {a'r’q,p,nkb'Cq,p,n}))-l-’ (3) R
where A

Qapn = £ XD, v Oy, U ImPH Oy oy ®pt $
k+l-(p—1D+1-n+l-(q—p)+k+1 - k+1-(p=D)+1+1-(g—p)+k+1-n,
fapon = € Yelo-1> Bikprn F ®VEl—p 4t
k-(p—1)+k+k-(g—p)+! ~k+I1+k-(p—D)+k-n+k-(g—p)+1,
Cavon = 0@ € ViEFPD 4l o _10my P @0k e pyas
ken+l - k+l+k-(p—D+k-n+k-(g—p)+1

(The left-hand side of (3) is a polynomial in R(k, /), while the right-hand side is a
polynomial in R.)

Instead of presenting a complete proof we only remark that it would be enough
to prove the lemma for one special free rational theory, analogously to the proof of
Theorem 2.2. Then the proof reduces to an easy computation that we do not preform
here. The following lemma can be proved in the same way
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Lemma 3.5. Let R be a rational theory; ny, ny, 1y, py, ps, P3, m, r, s nonnega-
tive integers,

fim+mtns+s—s+p,+r+p;eR,

g:r+n,—p,+meR.

Then
#"1+”2+n3 * (On1+ng+n3®(g RS #"l+m+"3 * (0n1+m+n3®f)+ /P C))+ =

= ,u"1+"2+"3-(0,,1+,,2+,,3®(Qs- 4: f' rlss g'Cs }))-*.’ . (4)
where

0=ty Vy,, Op 4 m@ustr, 0,,1®/1'” F:mtnetngt+r+m->n+m+tns+rtns,
0s = € p™, Vngs 0"1+m®un3+s+r, 0n1®ll'" %
m+ns+ng+s+r+m-—-m+m+ng+s+ritn,,
n=KVytm > ®VEL P+ F 4y > R S A Y )
(=0, % Vitir, up i p, 3 ®0,.0 patm — r+m+pi+patps, (= 0,0

Lemma 3.6. Let ¢=0,7e¢T(2)}, t5x,. There exists a bijection ¢:Z,—~
—[(k+1)-r(¢)] such that _

(A) for arbitrary ic[k], j€[q),.m€[l] and appropriate weN*

&(x((%, root (1)), i))=1,

e(y((w, x;), m))=k+1-(G—1+m,

e (e ((w, X0, D) =r () =k - g+ D +k- (= 1)+,

&(y ({4, root (1)), m))=r(t)—I+m;

(B) 1 0110 @0 (1, 2))* (D),

Proof. If t=0(xy, ..., x,) for some ocZX,, then g is completely determined
by (A). Obviusly, w(t, &)= h(t), so (B) is trivially satisfied. Now let 7=1,-(id,_; ®
@0 (xy, ..., x,) ®id, - ), where g=1, pelql, 1,6 T(Z)}, to=x;, n=0, 0¢ %,, and sup-
pose the lemma is true for 7,. Let s=(k+/)- llnds (to)\Jvs ()| —(k+1). Using
the sets V,, ..., V5 introduced in the construction of nds (¢), we define ¢, as follows
If acV,,a= (w, x;, then for arbitrary icfk] and me[l]

e(x (o, N=k+1-(p—D+l-n+l-(g—p)+s+k+I+k-(G—1)+1i,
e(y(e, m))=k+I1-(j—1)+m.
If aeVl,, a:(w X, - then

ex(a, i))=
=k+l-(p=1D)+l-n+l-(g—p)+s+k+I+k-(p—1)+k-n+k-(j—1)+i,
ey, m)=k+1-(p—D+l-n+l-(j—1)+m.

If aeV;, a=(wj, x,j_s), then

e(x(, ))=k+1-(p=D)+1-n+1-(q=p)+s+k+I+k-(p—D+k-(j—D+i,
&y m)=k+I1-(p=D+I-(j—1+m.
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If eV, and a={4 root(t)), then

g(x(a, 0))=i,
&(y(a, m)=
=k+I.-(p—D)+l-n+l-(g—p)+s+k+i+k-(p—1)+k-n+k-(g—p)+m,
Ise
) & (x(@, i))=g,(x(o, i)+l n—1,
&,(y (o, m)) =g, y(o, m))+1-n—1.

If aeV;, then a=(w,o) and _

ex(a, i))=k+l-(p—D+1-n+1-(g—p)+s+i,
e(y(a, m))=k+I1-(p—1)+Il-n+l-(g—p)+s+k+m,

It is easy to see that ¢, is a bijection and satisfies (A). To prove (B), apply Lemma
3.6 for R=Rec (4), f=w(ly, &,), g=h(0), m=k+I-(p—1), n,=I-n, ny=1-(qg—p),
m=I1, r=k, py=k-(p—1), po=k-n, p;=k-(q—p), (and s=s). Observe that
0s° €S 15, g, =w(t, &), and the right-hand side of (4) equals to p*+t@-1+m.
“(Ops1.(g-14m®@w(t, &))*. So we must prove that the left-hand side of (4) equals
to A(t). By the inductive hypothesis pm*m*m.(0, ..., ®f)*=h(t), so we have

to see that .
h(t) = h(t)) - (6,1 @h(6) ®e,_,) =
=#k+['(q_1+")‘(0k+1-(q—1+n)®(9‘ < h(ty) -n, h(o) 'C}))+'

This is exactly the statement of Lemma 3.5, so we are through.
Replacing 2 by Z, we get

Corollary 3.7. For each 1 T(Z), tu(f) equalsto the x((4, S), 1) component
of Egy,, .

’l(”})lis result links our work to [4], where the same technic was used to define the
semantics of attribute grammars.

Now we turn our attention to the domain of 7q, that is the set Dry= {tc T(Z)}|
for some ue T(A)§(t, uyety}. Let G(k,!) be the following finite set

Gk, D)={(G; V1,1, V1,2, Vo1, V2, 2)IG=(V, E) is a directed acyclic bipartite

graph, and

@) V=V,UV,, V=[k+I], V,=[k], V,=V\V,1, E=E|UE,, dom (E)ZSV,,
dom (Ep) EV,;
(ll) Vl_Vl 1UV1 2 Vl lmVI 2—0 V2_V2 1U V2 2> V2 an2 Z_Q
(iii) for each ]EV2 1 there exists an i€V, ‘such that (z _]>€E1 and the vertices
V1.:UV, . are isolated.}

(A vertex is called isolated if there are no edges entering or leaving it.)

We construct a finite state top-down tree automaton B that operates nondeter-
ministically on 7'(Z)! with states A=G(k, /). Let t€¢ Dtg, « anode in ¢ and suppose
that B passes through a in state (G;V;,;, ..., V5 2). The synthesized (inherited)
attributes of « are represented as the nodes in V1 Vs, respectlvely) Vi, UV,
will contain the indices of those attributes that take part in the computation of
t9(?). The edges of G will show how these “useful” attributes depend on each other.
A similar construction was used in [5] for testing circularity of attribute grammars.
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The fact that, starting from state a,, B is able to reach the vector of states

*
(@, ..., @) on input re¢T(Z)} will be denoted by aot:t(al, .y a). If for some

*
0€Z,, t=0(xXy, ..., X,), we simply write a0 0(a,, ..., a}).

B
Let 0€(Zg),, 1(0)=(Ty, ..., Tuyrn)s 1s={i€[k+1-n)|T;=0}. The set of alter-
natives of ¢ is

Alel={t1, ..., tirrap| if i€l then ;= 1, else 1;,€T;}.

We say that c€ A[S] realizes the initial state a=(G,; V{,, ..., V'§ o) if the following
conditions are satisfied:
(a) If jeV§,, then (j,iyeES if and only if x; occurs in ¢;.
(b) V£.20=/{ie[k]|x; occurs in t;}, and for each i€V \Q there exists an
+ T+

i’€Q such that i’t+i-+ denotes the transitive closure of I =E°.

G, G, G
() Vi 2{j=kljels).
Define the set of initial states of B as A,={acA|a is realized by some ccA[S]}.
. Let n=0,0¢Z,, 4y, ...,0,6A4, a,=(G,; V{1, ..., V) for each 0=m=n,
and c¢=(ty, ..., liy1.np€A[6). Construct the graph Glc, a,, ..., a,] by adding the
edges Elc, ay, ..., a,] to the disjoint union of graphs G,,,0=m=n. An edge ({i, m,),
{j, mo)Y€ETc, ay, ..., a,) if and only if one of the following conditions is satisfied:
(1) my=my=0,icV?,, j=k and X, ,._x occurs in f;
(i) my=0,myz=1, ieV?,, jsk and X, (m-1); OCCurs in t;
(ii}) my=1, mp=0, icV M, j=k and X ,i(—xy OCCUTS N fiy (mi—1)+(imk)>
(iv) mz1, my=1, eV, j=k and X.(po—1)4; OCCUTS IN Iy if(mi—1)4(ik)-

=

<

G'lc, a5 .-, ;) can be obtained from Gic, g, ...,a,] by leaving the edges
E?U( U Eg"] We say that ¢ realizes the transition ay0t-0(ay, ..., a,) if the follow-
m=1 8

ing conditions are satisfied. (The mark [c, 4y, ..., «,] will be omitted from the right
of G, G’ and E.) :

(A) Let icl,. If i=k, then ieV?],, else if for some me[n] and k<j=k+],
i=l-(m—1)+j, then jeV,. _

(B) For each me¢[n], ieV{"; if and only if there exists an i"¢¥?, such that

@, o>§<i, m).

+ +

(C) For each 0=m=n, +|G,=1+.
¢ Gom

Now for each 6¢ X, ayot-0(ay, ..., a,) if and only if this transition is realized
B

by some c€A[o].

Let ¢=0,1e¢T(Z);. A deterministic part of Eg, can be chosen as follows.
Replace the equations of the form z=0 by z=z, then for each z¢Zgs,\Z5,
replace the right-hand side of the equation z=7T, by an arbitrary ¢,¢7,. Further
on DEg, will always denote a deterministic part of Eg(,. For each zeZg)\Z}(,,
n(z) - Esy,y#9 if and only if there exists a DEg, such that n(z)-DEg,,#9. (n(2).
means the selection of the component z.) Let - DEg,, denote the dependence rela-
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tion among the variables Zs(,) in a deterministic part of Eg,y, that is, z; - DEg,z,
if and only if z, occurs m t.,. It is clear that n(z).DEg,,#0 if and only if

‘zl—DEs(,) z’ implies z’ };‘DES(,V .
For each ne¢[l] take a new symbol y,, and construct the ranked alphabet

r= UF with I',={y,}. Let ¢=0, tET(Z)q, ay, .. @€ A, a;=(Gj; Vi, ..., Vi)
for each Jjelg). By Ela,, ..., a,] we mean the following system of equations

E[ah q] - {X((W x}) l) - }’ (y(<w’ xJ> ml)a . ,y((W x1> mn))l
Jelql, (w, x;)€lvs(t), ic[k] and m,, ..., m, are all the possible
values of such an m for which (i, k+m>eEf}

Lemma 3.8. Let ¢=0,7eT(5)}, a,...,a,64 and for each j¢[g), a;=
g

=(Gj; Vi1 .- Vi o) There exists an a€4, for which at \- 1(ay, ..., a,) if and only
- 3

if a DEg, can be chosen such that
) ﬁ(x(() S), 1))-(DEsyUE[ay, ..., a )" #9;

+
(i) for each jelgl, (w, x;) € lvs (S(1)), i€[k], x((4, S), Y x({w, x;),i) holds
in DEgpUE\][a,, ...,a,} if and only if zEV1 1

+
(iii) for each m+keVi ,, y((w, x;), m) }— x({w, x;), 1) if and only if m+k | i.

G,
Proof. Only if: If t=x,, then a=a,<A4,. In this case Eg is the same as i(S),
written in the form of equations, so (i), (i) and (iii) follow from the conditions (a),
(b) and (c) that must hold for acA,. Let g=1, pe[q], n=0, o€ Z,, t,¢ T(Z). and

+
t=ty- (id,_1 Q0 (xy, ..., X,)Qid,_,). If at1(d,...,a" Y a4y, ..., 4, 0", ..., &),
B

.
then there exists an a,€A4 such that ary  #(d, ..., a7, a,, a?*1, ..., a%) and
B

b

a,0 + o(ay, ..., a,). Suppose the Only if partis true for t, and states 4, ..., aP~?
B
ay, @P*1, ..., a% and the transition a0 0 (a,, ..., a,) is realized by ¢={t, ..., ly11.,)
8

€A[o]. Then there exists an appropriate DEg,, satisfying the three conditions.
For all i¢[k] and me[l], replace the variables x((w, x,),i) and y((w, x,), m)
in DEg(, by x((w, 6),i) and y((w o), m), respectively, and add the set of
equations

{x(<W, O'>, l) = tl'[xk~(j—1)+r hn x(<Wj, xj+p—1>’ T),

Xgonts y((w, 0>> S), 1~ x((w, 6>9 l)l]E[n]’ relkl, SE[l]]llE[k]}U

U{}’«Wj, xj+p—1>’ m) = livtG-1+m [xk-(u—1)+r - x«WU, xu+p—1>’ r,

xk‘n+s hn y(<W, U>a S), L ‘"Y(<WJ, xj+p-1>s m)IME[n]a rE[k], SE[l]]I]E["], mé[l]}
to obtain DEgy. For O0=m=n let a,¢ends (S(r)) such that o,=(w,0c) if
m=0, else o,=0vm, X, ,_1). If ic[k+!], then z({i,m)) will denote the
following variable of Zg,

. x(om, 1) if €[kl

2(, m)) = {y(oz,,,, i—k) if i=>k
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By the inductive hypothesis and conditions (A), (B), (C) imposed on the transitions
of B we have

. .
™ (il,m1>|;—(i2,m2> if and only if for j=1,2,i;e(¥{UV;4) and

+
2({iy, m)) - DEgnUE,[a*, ..., a" "', &y, ..., a,, a”*, ..., a®] z((i,, my)) are both sat-
isfied (G=Glc, ay, ..., a,]) '

* +
To prove (i) suppose that x((4, S), 1)tz and zlz hold in DEg,U
UE[a, ...,a" Y, ay, ..., a,,a®*1, ..., a?] for some ze€Zg,. By the inductive hy-
pothesis we can assume that z= z((z m)) for some z€[k+l], 0=m=n. Using
(*) and (C) we conclude that G,, contains a cycle, which is a contradiction.
Let a=(u, x,)elvs (S(t)) By (B) and (*),ieV{, if and only if there exists
a j'¢lg] and an i’€¥Vy{,; such that

*
x(aj, i) = DEsy U Efa, ..., """ a4y, ..., a,, a1, ..., d¥]x(a, 0),

where a;=(w,o) if j'=p, else a;=a Let &, =(w, x,) if j—p, else

&;=o. By the inductive hypothesxs i"eV{, if and only if x((4, S5, l)l—x( i)
holds in DEg, JE,[a,...,a"™, a, a?*t, ..., a%], which is equivalent to

. .
x((%, S)) - DEgyUE[d, ...,a" %, ay, ..., a,, a**1, ..., a¥] x(0;., 1)

+ .

Thus, i€V, if and only if x((4, S), I)I-x(a, i), which proves (ii).

Let us remark that (iii) is already proved for p=j<p+n as a special case of
(M. It is easy to prove it for other values of j, too.

If: The case t=x; is again trivial. Let t=t,-(id,_; ®0(xy, ..., X,) ®id,_,)
as above, and suppose the If part 1s true for t, and any appropriate states by,..., b,
Let DES\,) and the states a', ..., a*"%, q,, ..., a,, a’*?, ..., a? satisfy (i), (i) and (111)
Split DEg, into DEg,, and a part that can be derlved from c=(t;, ..., ty11.n)€
€d[o]. Let a,=(Gy; V7., ..., V2:) be the following state ‘

+
ieV, if and only if -x({(4 S), DFx((w,0),i) holds in -DEg,U
UE[d, ...,a" %, a,, ..., a,, a®*1, ..., a], where wis the first component of the node
(w, x,) in g3

+
(i, JyeEY if and only if ieV), and x((w,0) i)-y(w,0), j—=k),
V2,={j| for some icVy (i, jYcE};

G iYeES if and only if JjePE, and  y((w, o) j—K)Ex((w, o) ).
It is clear that DEg and states a*, a"‘1 dg, a1, ..., af satisfy (i), (ii) and (i),
hence, by the inductive hypothesis atoi—to(a L APl ay, aPt L., af) for some
acA,. On the other hand it can easily be checked that a,0 l— o(ay, ..., a,) is realized

by ¢, so we are through.
Taking g=0 in the lemma we get
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Theorem 3.9. The domain of attributed tree transformations is a regular tree
language.

However, Lemma 3.8 is worth some further considerations. It can be seen that
Lemma 3.8 remains valid if we require the states of B not contain any redundant
edges. (An adge {(i,j) is redundant if there is another path from i to j containing
more than one edge.) Let A be deterministic, and suppose the states of B satisfy
the above additional requirement. The following statement can be proved by a bot-
tom-up type induction combined with Lemma 3.8.

Proposition 3.10. Let 1¢Dty, t=t,-u with IOET (2% There exists a unique
ac A such that for some a,€A4, we have aotol—to(a) and aul—-u This unique
a=(G; V1,1, ..., Vo) 1is the following: V, IUV2 1=Z,= {zEZS(,)l the “node”
index of z is a=root(¥) and x({4, S), l)l—DEs\,)z} and I; I—DES(,)IZG.

(Obviously, DEg, is unique in this case.)

As an application of Proposition 3.10 we finally show how to decide the K-visit
property for deterministic attributed tree transducers. (Alternative proofs can be
derived from [6] and {7].) Let t¢Dty, aends (¢). Proposition 3.10 shows that the
state a=(G,; Vi1, ..., V22 in which B passes through a during the recognition
of ¢ is uniquely determined, and it describes the dependence relation among the use-
ful attributes of «. If p is a path in G, (pepath (G,)), then let v,=|{icV{,|p passes
through i}||, v,=max {v,|p€path (G,,)} v, shows how many times we must “enter”
the subtree havmg root « to ask for the value of certain attributes. (Supposing an
optimal, maximally paralleled evaluation of the useful attributes.) Define

vy = max {v,Jaends (t) for some t€Dty}.

Since this set is finite, it is easy to give an algorithm that computes vy, and obvi-
ously, 2 is K-visit if and only if vy=K. Moreover, it follows from the con-
struction that

ifl <k, then vy =I[+1, else vy = k.

A trivial consequence of this statement is the known fact that every deterministic
attributed tree transducer is K-visit for some K.

Abstract

A general concept of attributed transformation is introduced by means of magmoids and ration-
al theories. It is shown that the domain of attributed tree transformations is a regular tree language,
and an alternative proof is given for the decidability of the K-visit property of deterministic attrib-
uted tree-transducers.
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Simple deterministic machines
By N. T. KHANH

§ 1. Introduction

Classes of formal languages are frequently characterized by different types of
accepting automata. It is interesting to note that deterministic languages, i.e., lan-
guages accepted by deterministic automata are very difficult to characterize by oth-
er properties. However, as it will be shown in this paper, if we restrict ourselves to
the so called simple deterministic machines then the corresponding language classes
can be characterized by the prefix-free property. A language L is called prefix-free
if and only if for every pair of words (x,y): xeéL and xy¢L jointly imply y=A4,
where A is the empty word. The hierarchy of simple deterministic machines will thus
correspond to the intersections of the classes of deterministic languages in the
Chomsky hierarchy with the family of all prefix-free languages. Simple machines
introduced by E. P. FRIEDMAN in [3] will be compared with our simple deterministic
pushdown machines and we show that the class of languages accepted by the former
ones constitute a proper subset of those accepted by the latter machines. This means
that although the languages accepted by Friedman’s simple machines are prefix-free,
they do not include every prefix-free deterministic language. The classes of languages
characterized by our simple deterministic machines have different closure properties
under the usual operations. We also define some specific operations with respect
to the prefix-free property. The usefulness of our simple deterministic machines
can be seen also from the properties of the corresponding language classes.

§ 2. Prefix-free languages

Definition 2.1. A language L is said to be prefix-free if for every pair of words
(x,): x€L and. xycL imply y=A. The family of all prefix-free languages is denot-
ed by £,. We can prove that %, is closed under intersection and concatenation, but
it is not closed under complementation and union.

Definition 2.2. Let L,, L, be two languages over the alphabet X.

a) For x,y in X*, write x<y if y=xz for some z in X*—{i}.
b) The p-quotient of L, by L, is defined by

LipL,={yeL,/ if x<y then x¢L,}.

3*
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¢) The p-union of two languages L, and L, is defined by

L,V pL2 =(L,pLy) U(LypL,y).

It is easy to see that

LU, Ly=L,ULy,—{y,€L,/ there is an x<y, with x¢L,}
—{y.€Ly/ there is an x<y, with xeL}.

Theorem 2.1. The family %, is closed under p-quotient and p-union.

Proof. Let L,, L, be prefix-free languages. It should be clear that L,pL, is pre-
fix-free. We now prove that L, U L, is prefix-free. Assume on the contrary that there
isan x¢L,U,L, with xyeL,U L, for some y#A. Let xeL,pL,. (The case where
x€L,pL, is similar.) Since L, is prefix-free and .y, it suffices to consider the case
where xycL,pL,. But, by Definition 2.2, we can easily see that if xyeL,pL, for
y#2 then x¢L,, ie, x¢L,pL, and the contradiction arises. [J

Definition 2.3. Let X and 4 be two disjoint alphabets, and w any fixed string
in 4*. We deﬁne the homomorphlsm h,: Z*—(ZUA4)*, such that

a) h, (V)=

b) A, (@)= aw for all acZ,

¢) h{(PQ)=h,(P)h,(Q) forall P,QcZ*
For a language L over X, we define

hy(L) = {h,(P)/PeL}.

Theorem 2.2. A language LC Z* is prefix-free if and only if h,(LyS(ZUA*
is prefix-free.

Proof. The case where w=2 is trivial, so we assume that w=gq,...a, for some
a, ..., 3,€ 2 with n=1. Similarly, we can assume that L {1}.

Part 1. LeZ,~h,(L)eZ,. ’

Let xeh (L) and xy¢h,(L), then there are P¢L and PQEL such that
x=h,(P), xy=h,(PQ)=h,,(P)h,(Q). Since L is prefix-free, Q=4. Consequently,
y=hw(Q)=hw(l)=/1, Thus £, (L)¢Z,.

Part 2. h(L)eZ,~Le,.

Assume on the contrary that there are x¢L and xy¢L for some y=A. Itis
clear that P=h,(x)¢h, (L), PQ=h,(xy)eh, (L) and Q=h,(y)=A. Thus, h,(L)
is not prefix-free and the contradiction arises. O -

§ 3. Simple finite deterministic machines

In this section first we investigate a special kind of finite deterministic automata
called simple finite deterministic machines (abbreviated SFD-machines), and prove
that the family of all languages accepted by SFD-machines is the intersection of the
two families %5 and &,. Further, we note that this family is not closed under comple-
mentation and union, but it is closed under concatenation, intersection, p-quotient,
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p-union and homomorphisim #,,. The proofs of these facts will not be presented in
this paper.

Let us consider the standard definition of a finite deterministic automaton (ab-
breviated FD-automaton, see [1]). That is: Let M=(X, Z, d,q,, H) be an FD-
automaton, where K is the set of states, X is the set of inputs, ¢, is an element of K
(the initial state), H is a subset of K (the set of final states), and 6 is a mapping from
KX Z to K.

Notation. Given an FD-automaton M let — be the relation on KX ZX*
M

defined as follows. For acX, weZXZ* q,peK
gaw +pw iff 6(q, @)=p.
We let |— denote the transitive closure of }— Finally, we define the language ac-

cepted by M to be
. *
L(M) = {weZ*/gowip for some pcH}.
M

Definition 3.1. a) A simple finite deterministic machine (abbreviated SFD-
machine is a 5-tuple M=(K, %, 4, q,, H), where K, X, q,, H are the same as in
the definition of an FD-automaton and ¢ is a mapping from (K—H)XZX to K.
Similarly, we define the language accepted by an SFD-machine M to be

*
L(M) = {weZ*/qywi—p for some peH}.
M

b) A language L is said to be a simple finite deterministic language (abbreviated '
sfd-language), if L=L(M) for some SFD-machine. The family of all sfd-languages
is denoted by Z4s.

Remark. For simplicity of Definition 3.1 we have restricted the definition of
the mapping & to K—H, so & is not complete. By the following theorem we shall
see that the SFD-machine is a special kind of the FD-automaton.

Theorem 3.1. Let L be any language over the alphabet Z. L is an sfd-language
if and only if L is prefix-free and L¢.%;.

Proof Part 1. LeZyu—~Le¥,NYs.

Let L=L(M) for an SFD- machine M= (X, Z, 6, qo,H) Since the domain
of 6 is K— H, we can easily see that Le.%,. We now prove that Le.%;.

Construct an FD-automaton M’ from M as follows: Let M’ =(KU({g}, z,
&, qe, H), where g¢K and ¢ is defined so that

1) for every qeK—H,acX:6 (q; a)=06(yg, a),

2) for all peHU{g), acZ: 8 (p, a)=3.
It is clear that L(M")=L(M). Thus, Le%,N%,.

Part 2. LEL; N L, ~LEL 3.
By Theorem 3.3 in [1], we may assume that L=L(M), where M=(X, %, 4,
go» H) is an FD-automaton. We construct an SFD-machine M’ from M as follows,
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Let M'=(K, X,0’, g4, H), where ¢ is defined so that

1) for every qcK—H, ac XZ: &' (g, @)=6(q, a),

2) for all pcH,acX: 6 (p,a) is undefined.

We now prove that L(M")=L(M).

(E). By the definition of §’, we can easily see that if we L(M’) then weL(M).

{2). We shall prove that if w¢ L(M") then w¢ L(M). We now have two cases
to consider:

*
Case 1. Let w=wyaw, for acZX, w,, wo,€ Z*, and gow,awyt paw, for some
1 2 1 2 1 ZM’ 2

pEH.
*
It is easy to see that g,w,—p for p€ H. Thus, w,€ L(M). Since L(M) is pre-
M
fix-free and y=aw,#i, w=w,y¢ L(M).

*
Case 2. Let g,w—g for some qg¢H.
M7

* ' : .
1t is clear that gowigq for q¢ H. Thus, w¢éL(M). O
M

§ 4. Simple deterministic pushdown machines

In this section we investigate a special kind of deterministic pushdown automata
known as simple deterministic pushdown machines (abbreviated SDP-machines)
and prove that the family of all languages accepted by SDP-machines is the inter-
section of %, and the family of all deterministic context-free languages. Furthermore,
we can prove that this family is fiot closed under intersection, complementation and
union, but it is closed under concatenation, homomorphism h,,,and L,pL,, L,U L,
are accepted by SDP-machines if L, is accepted by an SDP-machine and L, is an
sfd-language. In this paper, however, we do not present all these proofs.

Let us consider the standard definition of a deterministic pushdown automaton
(abbreviated DP-automaton, see [2]). That is: Let M=(K, X, T, d, gy, 24> H) be
a DP-automaton, where K'is the set of states, X is the input alphabet, I is the push-
down alphabet, g€ K is the initial state, z,€I' is the initial pushdown symbol,
HEK is the set of final states, and 6 is a mapping from KX(ZU {A)XT to KXTI*
satisfying the following conditions: for each g€k, z¢I' either (i) (g, 2, z) is unde-
fined and 4(g; a, z) contains exactly one element for all a€ Z, or (ii) 6(q,) z) con-
tains exactly one element and (g, g, z) is undefined for all a€ Z.

Notation. Given a DP-automaton M let - be the relation on KX X*xI'*
defined as follows _ " ‘
for gq,peK,acZU {2}, we Z*, z€T, a, eI,
(g, aw, az) ;(p’ w,af) iff 6(g, a, 2)=(p, B).

* . .
Let — denote the transitive closure of . Finally, we define the language accepted
M M
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by M to be

*
L(M)={we 2*/(qy, w, o) --(p, A, &) for some p€H,acl™}.
M

Alanguage L is said to be deterministic context-free if L=L(M) for some DP-auto-
maton M. The family of all deterministic context-free languages is denoted by Zy,.

Definition 4.1. a) A simple deterministic pushdown machine (abbreviated
SDP-machine) is a 7-tuple M=(K, X, T, 6, gy, 20, H), where K, Z, T, 4o, 7, and
H are the same as in the definition of a DP-automaton, and § is a mapping from
(K-H)X(ZU{APXT to KXTI'* satisfying the following conditions: for each
geK—H, zeT either (i) (g, 4, z) is undefined and (g, a, z) contains exactly one
element for all g€ X or (ii) 6(g, A, 2) contains exactly one element and 6(g, a, z) is
undefined for all acZ. _

b) An input string is accepted by the SDP-machine M when the entire tape has
been processed and the actual state is a final state. That is

. .
L(M)={w€ Z*/(qe> ws zo) - (ps 2, ) for some pEH}.
- M
Fd

A language L is said to be simple deterministic context-free (abbreviated sdc-language)
if L=L(M) for some SDP-machine M. Finally, the family of all sdc-languages is
defined by Z.-

Theorem 4.1. Let L be any language over the alphabet 2. L is an sdc-language
if and only if L is deterministic context-free and prefix-free.

Proof. Part 1. LEL g~ LeL N L.

Let L=L(M) for an SDP-machine M=(X, %, T, 4, g, 2o, H). By the defi-
nition of &, we can easily see that L is prefix-free. We now prove that Le %,;,. Con-
struct a deterministic pushdown automaton M’ from M as follows.

Let M=(KU{g}, Z, I, &', gy Zos H), where g¢K and &’ is defined as

1) for every q€K—H,ac XU {4}, zeT, &' (g, a, 2)=5(g; &, z),

2) for all pe HU{g}, zel', &' (p, 4, 2)=(q, A).

It is clear that L(M")=L(M). Thus, LeZL,;,,N%Z,.

Part 2. LEZL N L, ~LEL 4.

Let L=L(M) for a DP-automaton M= (K, Z’ T, d, g4, zg, H). Construct
an SDP-machine M’ from M as follows.

Let M'=(K, 2, T,?&,q,, zy, H), where & is deﬁned 50 that

1) for every q€K—H, zcT', ac ZU {1}, 8(q, @, 2)=5(q, a, 2),

2) for all peH,zel',ac ZU {4}: 6’(p, a, z) is undefined.

We now prove that L(M")=L(M).

(S). By the construction of §’, we can easily see that if we€L(M’) then
weL(M).

(2) We shall prove that if w¢L(M’) then we{L(M) We now have threg
cases to consider; .
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Case 1. Let w=w,aw, for a€ X, w;, wo€ ¥, and (qo,w,awz,zo)r—(p, aw,, o)
for some p€H.

It is clear that (g, wl,zo)l—(p, /,a) for pcH. Consequently, w,cL(M).
M
Since L(M) is prefix-free and y=aw,4, w¢ L(M).
*
Case 2. Let w=w,w,, where w;, w,€ Z*, and (qg,, w,w2,zo))—(q, w,, A) for

some qEK H.
It is clear that (go, Wyw,, zo)}—(q, Was )) for g¢ K—H. Thus, w¢ L(M).

Case 3. Let (gq, w, zo)}—(q, 2, az) forsome g€ K— H, z¢I such that (g, 4, z)
M7

is undefined.
It is easy to see that w¢L(M). O

In the following part we want to deal with a subfamily of simple deterministic
context-free languages known as simple context-free languages (E. P. Friedman
1977).

Definition 4.2. (Deﬁnition 2.1 in [3]). a) A simple machine is a 4-tuple M=
=(2, T, d, z,), where Z is a finite input alphabet, I' is a finite pushdown alphabet,
Zo€I is the initial pushdown symbol, & is the partial transition function from
(ZU{APXT to I'* satisfying the following conditions: for each z€I' either (i)
d(4, z) is undefined and &(a, z) contains exactly one element for all a€X; or (ii)
d(4, z) contains exactly one element and §(a, z) is undefined for all a€ Z.

- Let }— be the relation on Z*XF * defined as follows: for each ac XU {4},

we ¥, zél’ a, BeT™*, (aw, az)l—(w,oz,B) if 8(a, 2)=8.

Let }—— denote the transitive closure of . Finally, we define the language accept-
M M

*
ed by the simple machine M to be L(M)={weZ*/(w, zy)+ (4, 1)}
M

b) A language L is said to be simple context-free (abbreviated sc-language)
if L=L(M) for some simple machine M. It is easy to see that if L is an sc-language
then L must be prefix-free. The family of all sc-languages is denoted by %,..

Theorem 4.2. a) For every SFD-machine M, there is a simple machine M’
such that L(M")=L(M).
b) There is a simple machine M; such that L(M))¢ % ,.

Proof. a) Let M=(K, X, d, qq, H) be an SFD-machine. We now construct
the simple machine M’ from M as follows.
Let M’'=(X,I',¢,z,), where I''={z,/qc¢K} and 6 is defined so that
1) for each gcK—H,acZ, if d(q,a)=p then &(a, z))=2z,,
2) for all peH:6"(A, z,)=4.
It is clear that L(M")=L(M). »
™ b) To- prove the second statement, we reconsider the non-regular language
(which is not an sfd-language), first seen in [2] L={a"b"/n=1}.
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We now provide a simple machine M, which accepts this language M,=({a, b},
{Z,, A, E}, 8, Z,), where &, is defined so that

l) 51(61, Zo)zA,

2) 6,(a, A)=AA,

3) 60(b, A)=1,

4) 6,(b, Zy)=E,

5) 6.0 E)=E. O

Theorem 4.3. a) For every sixﬁple machine M, there is an SDP-machine M’
such that L(M")=L(M).
b) There is an SDP-machine M, such that L(M,) is not sc-language.

Proof. a) Let M=(Z, T, 4, Z,) be asimple machine. Without loss of generality,
‘we may assume again that for arbitrary a€ ZU {1} and Z¢rI if 6(a, Z)=o then
a€(I' —{Z,})*. In the opposite case we can introduce a new initial pushdown symbol
Z, and take the new machine M=(Z, 'U{Z,}, 3, Z,), where 8(a, Zy)=5(a, Z,)
and 8(a, Z)=06(a, Z) for each Zer, ac ZU {i}.

Construct an SDP-machine M’ from M as follows. Let M’'=(K, X, I"”, &, q,,
Zy, {q4})s where K={qq, q,}, T=T'U{Z,} for Zy4T', and & is defined so that
for each ac ZU{A), ZeI—{Z,}

D) if é(a, Z))=a then & (qys a5 Zo)=(qy> Zo2),
2) if 6(a, Z)=a then &(gy> a, Z)=(qo, %),
3) 0"(qos A5 Zo)=(gn» 4)- ~

* .
First by induction on the length of we€ Z* we can easily prove that (w, Zg)+ (4, a)
M

. *
iff (g9, Ws Zo) - (gy» 7, Zo). Now, let we Z*, then
M/
*
wEL(M) «— (w, Zy) + (4, 4)
M

* %
(g0, W, Zo) = (Qo> 7 Zo) = (G, 20 1)
M’ M’

—weL(M").

b) To prove the second statement, we reconsider the non sc-language first seen
in [3] L={a'ba’'b/i=1}U {dca’c/i=1}. We can easily check that the following
SDP-machine M, accepts this language.

Let M, = (K, {a,b ¢}, T's 015 Go» Zo» {qs})s Where K={qo> 41, 42> §» q,,} r={z,, A}
and §; is defined so that

1) 1.a) 6,(qo> @ Zy) = (90> ZyAA),
1.b) 6,(gy> a, A) = (o, AA),
1.c) 6,(q0> b, A) = (q1> 4)s
1.d) 6,(qo, . A) = (g5 7),
1.e) 61(q0, by Zy) = 6:(qo> ¢, Zo) = (g, 1);
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2) 2.2) 6,(qy>a, A) = (g1, 2),
2.b) 6,(q:, b, A) = (g, ),
2.¢) 6.(qusc, A) = (G, 2),

2.d) 6,(d1. b, Z0) = (gu» ;

3) 3.a) 0,(gssa, A) = (g2, ),
3b) 6.(qss ¢, A) = (g, 2,
3.0 6.1(gz> b, A) = (7, 1),
3.d) 61(92> & Zy) = (gn> A);

4) 61(&’ ;"’ ZO) = 51(‘7’ )"a A) = (‘7: ;~) D

Theorem 4.4. There exists a prefix-free context-free language which is not an
sdc-language.

1|

Proof. Let Z be a finite nonempty alphabet. By Corollary 1 to Theorein 3.5 in
[2], we can easily see that L= {ww®/w€ Z*} is a context-free language which is not
deterministic context-free, where w® is the mirror image of w. Let ¢ be a symbol
not is Z, and set L;=L -{c}={wwRc/w€ Z*}. Tt is easy to sce that L,€%,N.Z,.
We now prove that L;§.%,. Assume on the contrary that L,€.%,,. By Corollary
to Theorem 3.4 in [2], if L,=L -{c} is deterministic context-free then L is determi-
nistic context-free, and the contradiction arises. Consequently, L,={wwRc/x¢ Z*}
is a prefix-free context-free language which is not an sdc-language. O

§ 5. Simple deterministic linear bounded machines

In this section we investigate a special kind of deterministic linear bounded
automata called simple deterministic linear bounded machines (abbreviated SDLB-
machines), and prove that the family of all languages accepted by SDLB-machines
is the intersection of the family %, and the family of all deterministic context-sensi-
tive languages. Furthermore, we mention without proof that this family is closed
under concatenation, intersection, p-quotient, p-union and homomorphism #4,;
but it is not closed under complementation and union.

Let us consider the standard definition of a deterministic linear bounded auto-
maton (abbreviated DLB-automaton, see [7]). That is: Let M=(I, K, $, q,, H)
be a DLB-automaton, where I' is the tape alphabet, K is the set of states, ¢,€K
is the initial state, HE K 1is a set of final states and 6: KXI'-KX(I'U{R, L))
is the mapping satisfying the condition: for arbitrary g€ K and x¢TI, 8(g, x) con-
tains exactly one element.

Notation. An instantaneous configuration is a word of the form wigw,,
where g€k, wy, wo€I'™* and wyw,¢2. Given a DLB-automaton M let — be the
M

relation on configurations of M defined as follows. For ¢, p€K, x, y€I', wy, wo€T *
wigxwy = wipyw, it (g, x) = (p, y),
M
wigxwy = wixpw, iff 8(q, x) = (p, R),
M

Wy pgxw, = wipyxw, iff (g, x) = (p, L).
M
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.
Let — denote the transitive closure of . Finally, we define the language accepted
M Mo

*
by a DLB-automaton M to be L(M)={w€X*/gowi-op for some p€H}, where
. o |

FCT. A language L is said to be deterministic context-sensitive (abbreviated dcs-
language) if L=L(M) for some DLB-automaton M. The family of all dcs-languages
is denoted by %, .

Lemma 5.1. Let L be a dcs-language over the alphabet 2. Then there is a DLB-
automaton M’'=(I"", K’, &, q;, H) such that

iy L=L(M"),

i) 8: K'XI"~K’ X ((I''— Z)U{R, L}) is the mapping satisfying the following
condition: for arbitrary g€ K’ and a€ X, thereis a z€I"— 2 such that ¢'(g, @)=
=(p, 2), i.e., there are no forms J(g, a)=(p, R) or d&(q, a)=(p, L)..

Proof. Let L=L(M) for a DLB-automaton M=(T', K, é, q,, H). We now
construct a DLB-automaton M’ from M as follows. Let M'=(I"", K’, &', g5, H'),
where I'"'=I'U{d’jac L}, K'=K, g4=q,, H'=H and ¢’ is defined so that

1) for arbitrary a€ X and €K, d(q, a)= (q,a)

2) for arbitrary x€I'—-X and g€k

2.) if 8(g, x)=(p,i) for an i€{R, L} then &(q, x)=(p, 1),
2.b) if (g, x)=(p,y) then &(q, x)=(p,y), where

_ {y if yel—-2,
YTy it yes,
3) for arbitrary g€K and a€ZX.

3.a) if 6(g, @)=(p,i) for an i€{R,L} then (g, a)=(p,i),
3.b) if (g, @)=(p,y) then &'(q,a")=(p,y), where

. {y if yer-2z,
Y=y if yer

It is clear that L(M")=L(M) and the condition ii) is satisfied. O

Definition 5.1. a) A simple deterministic linear bounded machine (abbreviated
SDLB-machine) is a 6-tuple M=(I', K, X, 8, q,» H), where I' is the tape alphabet,
K is the set of states, X is the input alphabet for N I'=§, g€ K is the initial state,
HCK is a set of final states, and §: KX(I'U 2)~KX(I'U{R, L}) is the mapping
satisfying the following conditions

1) for arbitrary g€ K—H and x¢I'U Z: 6(g, x) contains exactly one element,

ii) for every p€H:d6(p, a) contains exactly one element if g€I" and it is unde-
fined if a€Z.

*
b) An instantaneous configuration and the relation  are defined as in the case

M
of a DLB-automaton. We define the language accepted by a SDLB-machine M to be

L(M) = {w€Z*/gowi-ap for some pcHY).
Aw
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A language L is said to be simple deterministic context-sensitive (abbreviated sdcs-
language) if L=L(M) for some SDLB-machine M. The family of all sdcs-languages
is denoted by L.

Theorem 5.2, Let L be any language over the alphabet Z. L is an sdcs-language
if and only if L deterministic context-sensitive and prefix-free.

Proof. Part 1. LEZ ~LeLnNZ,.

Let L=L(M) for an SDLB-machine M=(I, K, Z, 6, q4, H). By condition
it) of §, we can easily see that if M is an SDLB-machine then L(M) must be prefix-
free. We now prove that Le¥,,. Construct a DLB-automaton M’ from M as fol-
lows.

Let M'=(I",K’,&,q,, H), where I''=I'UZ, K’'=KU{g} for g¢K, and
¢’ is defined so that

1) for every qe K—H:98(q, x)=04(q,x) for all xcI'UZ,

2) for every p€eH

6(p,a) if acl,
s a={ "
g, R if acZ,

3) 6'(g, x)=(g, R) for all xeI'UZ.

It is clear that L(M")=L(M). Thus Le&L,NZ,.

Part 2. LeSyNF,~LEF .

Without loss of generality, we may assume that L=L(M) for a DLB-automa-
ton M=(T, K, d, qy, H) satisfying condition ii) of Lemma 5.1. We now construct
an SDLB-machine M’ from M as follows. Let M'=(I"", K, X, &, q,, H), where
I'=r—Zx,§ is defined so that

1) for every qg¢ K—H: (g, x)=6(q, x) for all xerrvz,

2) for every p€H

5 {5(p, a) if aer”,
(p, a) = undefined if ac¢Z.
We now prove that L(M")=L(M).

* -
(S). Let weL(M’), ie., gowlap for some pc€H. By the definition of &,
M7

3 B
we obtain: gowiop for p€H. Thus weL(M).

M
(2). We shall prove that if w¢ L(M’) then w¢ L(M). There are two cases to
consider:

Case a) Let w=w,aw, for acZ, w,, w, Z* and q(,wlaw21~*—e:z1mw2 for some
pEH. "

It is clear that qowlliap for pc H. Since L is prefix-free and y=aw,=4, we
obtain: w=w,y¢ L(M). "

*
Case b) Let g,wag for some g€K—H.
M2

*
It is clear that gowi-ag for g¢ H. Thus w¢ L(M). O
M
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Theorem 5.3. a) For every SDP-machine M, there is an SDLB-machine M’
such that L(M"}=L(M).

b) There is an SDLB-machine M, such that L(M)¢ % .

Proof. a) Part a) holds, due to Theorem 5.2 and the following statement

(Theorem 3 in [5]) “A context-free language is accepted by a deterministic linear
bounded automaton”.

b) To prove part b), we reconsider the non context-free language
L = {a"b"c"/n=1}
(which is not an sdc-language either), first seen in [1], [4], [7].

We now construct an SDLB-machine M; whichaccepts this language. Let M;=
=(I'y, Ky, {a, b, c}, 6,5 qo» {gn}), where

ry={4,B,CX, Y}’ Ky = {qos 41 G2 > Gu1s G125 @5 Gi}s

0, is defined so that:

D 61(q0, @) = (40, 4), 01(9o> A) = (41 R), 01(q1» @) = (g1, X),
01(q1> X) = (g1, R), 01(41, b) = (g1, B), 01(¢1, B) = (92, R),
01(g2, b) = (g3, ¥), 01(gz> Y) = (2> R).

2) 61(gas ¢) = (g5, C); 0,(q2> C) = (g5, L), 01(95, Z) = (g5, L),
for Ze{Y, B, X}.

3) 8,(qs, A) = (94, R), 01(qs, X) = (g5 A)» 0,(qs> A)=(g55 R),
4 (qu B) = (6112, R)

4) 0,(g55 X) = (g5 R), 01(q5> B) = (9> R).

5) 01(qes ¥) = (g3, X)s 0,1(qg, Z) = (g4, R)  for Ze {B’ X}

6) 06,(q7, X) = (g, R), 01(q:, Y) = (g X).

7 6:(gs> X) = (gs, L), 0,(qs, B) = (95 B), 0:(g9s X) = (g4, B),

6,(g9> B) = (q10> R).
8) 6,(qi0> X) = (qu> B),  91(q10> C) = (q10> R)-
9)  61(ga1s ©) = (gs> O)s 01(qs, C) = (gss L),  0,(qu1> Z) = (qu1> R)

for zZel{x, C}.
10) 8,(g10> ©) = (G125 C)s

01(g12, C) = (gs, R).

11) 6,(3,2)=(3, 4) for  Zze(I'—{4)U{a, b, c},
51(qh’ Z) = (fi, A) fOI' Z_€F19 51(6: A) = (q’ R)
12) In all other cases for arbitrary ¢€K,—{g,q,} and x€I'Ul{a, b,c},
6,(¢> x) = (g, A).

It is easy to see that if w¢€ {a, b, c}*—{a"b"c"/n=1}— {1}, then

gow — aq’, where «¢I'f, and
e

q, f w=a",
qg =19, if w=a"b"
g otherwise.
Consequently, w¢ L(M,).
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We now check that w=a"b"c"¢ L(M,) for all n=1. Indeed, for rn=1

* *
qgoabc+— ABg, C\—qs ABC+ Aq, BC+ ABq,, C+— ABCy,.
M, M, M,

1 Ml
Similarly, for all n=1
%o a"“b"“c"“}—AX"BY"qch }__An-HBXn 1q XCc"

Ml

An+1Bn+1qu oc}—A"“B"“C"q 2C‘_ An+1Bn+1cn+1

Ml l

Consequently, a"b"c*¢L(M,) for all n=l.

§ 6. Simple deterministic Turing-machines

In this section we investigate a special kind of deterministic Turing-machines
known as simple deterministic Turing-machines, (abbreviated SDT-machines), and
prove that the family of all languages accepted by SDT-machines is the intersection
of the two classes &, and £ ,. Furthermore, we can prove that this family is closed
under concatenation, intersection, p-quotient, p-union, and homomorphism #,;
but it is not closed under complementation and union. In this paper we do not prove
these statements.

Definition 6.1. a) A deterministic Turing-machine (abbreviated DT-machine)
is a 6-tuple M=(K,T, X, 9, q,, H), where K is the set of states, I is the set of tape
symbols, one of these, usually denoted by B, is the blank, XCI'—{B} is the set of
input .symbols, ¢,£K is the initial state, HS K is the set of final states, and 4:
KXT—~KX(I'—{B})X{R, L} is the mapping satisfying the following condition: -
for arbitrary g€ K and z€rl, 6(q,z) contains exactly one element. °

b) We denote a configuration of the DT-machine M by wyqw, or qgBw for
ws wy, w6 (F—{BP* and wyw,=A. Let }— be the relation on configurations of M

- given as follows. For arbitrary ¢€K, x, yEF {B} and w,, wze(l’ {BY*
1) wygxwyt-wyzpw, if é(q, x) = (p, z, R),
2) W1yqxwzlbi WiPyZW, if 0(¢, x) = (p, 2, L),
3) qxw2 l- szw2 if (g, x) = (p,z, L),
4)  gqBw, k— 2pWw, if (g, B) = (p» 2, R),
S) quZ}; pBzw, if (g, B) = (p, z, L).

. .
Let + denote the transitive closure of . Finally, define the language accepted by
M M R

*
the DT-machine M to be L(M)={we X*/gowi-op for some pcH,ac(I'—{B})*}.
. M

Remark. In this definition the tape of the Turing-machine is infinitely exten-
sible to the left, but is totally bounded to the right by the end of the tape. By a carry
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forward algorithm to the left (M. Davis, 1958, [6]), we can prove that thisis the equiv-
alent of Turing-machine definition in [1] such that its tape is totally bounded to the
left by the end of the tape.

Lemma 6.1. Let L be a type-0 language over the alphabet X. Then there is a
DT-machine M’'=(K’,TI’, £, &, 4§, H") such that

i) L=L(M"),

ii) the mapping 6’ satisfies the following condition: for arbitrary g€ K’ and
xel” if &(g, x)=(p, z,i) for an i€{R, L} then z¢ Z".

Proof. By the Theorem 6.3 in [1], we may assume that L=L(M) for a DT-
machine M=(K, T, %, 6, q,, H).

We now construct a DT-machine M’ from M as follows. Let M’'=(K’,I"’,
2, 8,q,, H), where K'=K,I'=I'U{d jac 2}, gi=4q,, H'=H, and & is defined
so that

1) for arbitrary g€ K and x€I': if (g, x)=(p, z,i) for i€{R, L} then &'(g, x)=
=(p, z,i), where

7 =

z if zel—Z—{B},
{z’ if zeZ,

2) for arbitrary ¢€K and a€X:d'(g, a)=0'(g, a).
It is clear that L(M')=L(M) and the condition ii) is satisfied. [

Definition 6.2. a) A simple deterministic Turing-machine (abbreviated SDT-
machine), is a 6-tuple M=(K, I, X, d, q¢, H), where K is the set of states, I' is the
set of tape symbols; one of these, usually denoted by B, is the blank, X is the set of
input symbols for which 2 NIr=#, and &:KxX('U E)»Kx(l’ {BHX{R, L}
is the mapping satisfying the following conditions

i) for arbitrary g¢ K—H and x€I'U X: (g, x) contains exactly one element,

i) for each pc€ H: 8(p, a) is undefined if a€ X, and it contains exactly one ele-
ment for all acl.

b) The relation }— is defined as in the case of a DT-machine. Finally we define

the language accepted by an SDT-machine M to be L(M)= {wE Z*/q(,w}—ap for

some p€H,ac(—{B})*}. A language L is said to be simple determlnlstlc type-0
(abbreviated sdO-language) if L=L(M) for some SDT-machine M. The family
of all sd0-languages is denoted by Z4,.

Theorem 6.2. Let L be any language over the alphabet . L is an sd0- language
if and only if L is prefix-free and Le%,.

- Proof. Part . LEZLy—~LEL,NYL,.
Let L=L(M) for an SDT- machine M= (K, T, %, 6, go, H). By the defini-
tion of J, we can easily see that LE.%,. On the other hand, it is easy to see that an
SDT-machine is a Turing-machine. Consequently, LMeg,NZ,.

Part 2. LEgomgp»LE,gsdo.
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By Lemma 6.1, we may assume that L=L(M) for a DT-machine M=
=(K, T, %, 6, q, H) satisfying the condition ii) of Lemma 6.1, i.e., for arbitrary
geK and x€I if 8(q, X)=(p, z,i) then z¢ X, where i€{R, L}. We now construct
the SDT-machine M’ from M as follows. Let M’'=(K,I’, X, 6’,q,, H), where
I"=r—=Zx,6 1is defined as

1) for arbitrary g€ K—H and xeI'UZ: 8(g, x)=45(g, x),

2) for each peH

o(p, a) if acel’,
&(p,a) = { .
undefined if acZ.
We prove that L(M)=L(M).
* *
(S). Let weL(M), ie., gowtap for some p€H. It is clear that: gowHap
M/ M

for pcH. Thus, weL(M).
(2). We shall prove that if w¢L(M") then w¢ L(M). We have two cases to
consider:

-Case 1. Let w=w,aw,, for acZ,w;, w,€ Z*, and qowlawz:ocpaw2 for some
PEH. "

It is easy to see that: qowlliap for peH, ie., weL(M). Since L(M) is
prefix-free and y:aw2¢).,w=w}1uy&£L(M). '

Case 2. Let qowi-,ap for some g€K—H.

" :
It is clear that: gowroag for q¢ H. Thus, wé¢L(M). O
M

Theorem 6.3. a) For every SDLB-machine M, there is an SDT-machine M’
such that L(M’)=L(M). _
b) There is an SDT-machine M, such that L(M,) is not an sdcs-language.

Proof. a) Part a) is implied, by Theorems 5.2., 6.2 and the following statement
“A context-sensitive language is of type-0. '

b) By Theorem I11/9.4 in [7], there is a type-0 language L€ {a, b}* which is
not context-sensitive. Without loss of generality, we may assume that A4 L.

First, we can easily check that L,=L -{c}={wc/weL}c¥,N¥,. Conse-
quently, L,€%,4. We now prove that L,¢.%, (i.e., L, is not an sdcs-language
either). Assume on the contrary that L,€.%,. We consider the following homo-
morphism k: {a, b, c}*—~{a, b}* such that

h(A) =2, h(aey=a, hb)=0b, h(c)=.

It is clear that if x€L,=L -{c}, then lg (h(x))=Ig(x)—1 (where lg(x) denotes
the length of x). On the other hand, it can be easily seen that if x¢ L, then Ig (x)=2.
Consequently, for all x€L,:21g (h(x))=2(1g (x)—1)=lg (x), ie., h is termed a
2-linear erasing with respect to L, (this definition can be found in [7]). By Theorem
111/10.4 in [7], if L,€%, then L=h(L)€#,, and the contradiction arises. Thus,
L is an sd0O-language which is not an sdcs-language. OJ



Simple deterministic machines 437

In the final part we wish to deal with the two memory simple machine that is
the equivalent of an SDT-machine.

Definition 6.3. a) A two memory simple machine (abbreviated TS-machine)
is a 6-tuple M=(Z, I, I, 9, zy, z;), where X is the set of input symbols, I and I'’
are two sets of pushdown symbols zo€l', zy€I'" are two initial symbols of two push-
down stores, and the mapping d: I'X(ZU {A}) X I'" ~I'* X I"’* satisfies the following
conditions: for arbitrary z€I' and, z'€I” either (i) (z, 4, z’) is undefined and
é(z, a, z’) contains exactly one element for all a€ZX; or (i) 6(z, 4,z") contains
exactly one element and 6(z, a, z") is undefined for all a€ Z.

b) A configuration of M is a triplet (x, w, a’), where w¢€ZX*, acI™, o’cI'"*.
We define the operator — on configurations of M as follows. For arbitrary

M
ac LU {4}, we Z*, zell, Z’€I”, a, BEI™* and o', p'el"™: (az, aw, a’z)(af, w, ')
M

3 ~
if 6(z,a,z)=(B, p’). Let  denote the transitive closure of . Finally, we shall
M

M
be concerned with the acceptance of an input tape by empty pushdown stores. Ac-
cordingly, we define the language accepted by a TS-machine M to be

LOM) = {we 2z, w, 21 0n 20 A

Theorem 6.4. Let L be any language over the alphabet Z. L is an sd0-language
if and only if L is accepted by some TS-machine M.

Proof. Part 1. Let L=L(M) for an SDT-machine M=(X, T, X, 4, gy, H).
Without loss of generality, we may assume again that: for arbitrary ¢¢K, and
acZU {1} if 8(g, a)=(p,z, i) then p=gq,, where ic{R,L}. We now construct
the TS-machine M, from M as follows. Let M,=(X,TI,, I} 15 01> qg. $), where
. I=KUru{s}, Fl-—(K {goHUIrU{8} for $¢ KUT, and &, is defined so that

1) For arbitrary g¢K—H—{q,} and a€ZX:
a) if d(ge, @) = (p, x, R) then 01(q0>a, $) = (Bxp, $),
b) if d(g; @) = (p,x, L)  then  6,(go, a, $) = (B, $xp),
C) lf 5(4, a) - (p’ Xy R) then 51(4, a, ) = (xP’ $)
dyif d(g a) =(p,x, L) then d,(g, a, $) = (4, $Sxp).
2) For arbitrary p€H and yel' —{B}:

a—) 51(17’ A’ $) = ()N, $)9
b) &:(», 4, 8) = (As $),
¢) 6,(B, A, 8) = (4, ).

3) For arbitrary g€ K—{q,} and z€rl:
a)if 6(g;2) =(p, x, R) then  &,(g, 4 z) = (xp, %),
b) if &(g,2) = (p, x, L) then 0,(g, 4, 2) = (4, xp),
C) 51(q09 }hs }’) = ($’ $) fOf all yEF
4) For arbitrary y€I'—{B} and gq€K—{g,}:
a) 6.(»: % q) = (¢, »),
b) 51(Bs )"’ 9) = (Bq’ B)
5) For arbitrary y, €I’ and y,€I:6,(yy, 4 y2)=($, $).
6) For arbitrary ¢,€K and g,€ K—{go}: & (ql, L, g2)=(8, 8).
7) For each z&l,=(K—{go) UT'U {8}: 8,(5, 7, 2)=(3, 9).

4 Acta Cybernetica V/4
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It is easy to see that

*
weL(M)« gow  ap for some peH
M

*
~{(90, W, $) - (Bap, 2, $) for pcH
Ml

“ *
l_ (Qa’ )“’ $) "_ (B’ A’: $) I_ ()"’ )‘5 }”)}
M M, M,

«~ we L(M,).

Thus, L=L(M,) for the TS-machine M,.

Part 2. Let L=L(M) for a TS-machine M.

By the acceptance of an input tape by empty pushdown stores, it can be easily
seen that L is prefix-free. On the other hand, by the Church’s thesis, L€.%,. Conse-
quently, L€Zq40. O

Finally, we prove that every sd0-language equals to a homomorphic image of
the intersection of two simple deterministic context-free languages.

Theorem 6.5. Every sd0-language L can be expressed in the form L=h(L,; N L,),
where # is a homomoprhism and L,, L, are simple context-free languages.

Proof. By Theorem 6.4, we may assume that L=L(M), where M=(Z,T,
I, 8, zy, zg) is a TS-machine. First, we set:

3y = {xp fz€l, Z€l"}, T = {[z, Z'}/z€T, Z’€T"}.

We now construct two simple machines M,; and M, from M in the following way.
Let M,=(2", 3,0, 20 My=(Z', Iy, 85, 2,), where X'=XUZX,,[=T"UrU{S),
T,=r'Uruf{s}, and 4,,9d, are defined as follows: -

1) For arbitrary y,z€I’ and y’,z'¢I”:

[z,2] f y=z

a) 01(*x1y, 2115 2) = {s if y+#z

i [z,2] if y =2,
b) 62(x[z '] Z) = {$ if y/ = Z,,

& 6,(a,2) =S8, 6(a,z)=$ for all acZ.

2) For arbitrary zéI' and z'¢I”:
a) The case where d(z, 4, z’) is defined.
If 8(z, 4, 2")=(r, ') then &,(A [z, ZY=a, d,(4, [z, Z’P=a.
b) The case where d(z, 4, z’) 1s undefined.
For every acZ, if 6(z,a,2)=(x, &) then &,(a, [z, z)=ua, d,(a, [z, ') =2,
and &,(b, [z, Z])=8, 8:(b, [z, z’)=8 for all b€ Z;.
3) 51(19 $)=$9 52(19 $)=$
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Let A be the homomorphism of X’ into X defined by

" {a if acZ,
@D=1, it aex,.

We now prove that L(M)=h(L,NL,) for L,=L(M,) and L,=L(M,). First,
we can easily check that for arbitrary a¢ X, z€T, z’€I”’, a, ay €I'*, B, BT,

there is u€ X¥ such that

*
(ua, az) + (4, a;) and
Ml

*
(xz, a, Bz’) &= (o1, 4, By) iff (6.5.1)
M *
(uas ﬂZ’) l_ ('1, ﬁl)
M,
Then, we prove by induction on the length of w=aq,...q,€ Z* that
[ there are uy, ..., u,€ZF such that
*
*
(Zo, @y 0y, Z0) b (o, 2, B) iff !(”1“1"' Uaa: 2 1 (o) and g o)
M

*
(way...u,a,, z5) + (4, B).
My

Indeed, the case where w=a€ZX is trivial.

Assume that statement (6.5.2) is valid for all we Z* with lg (w)<n. We now
consider the word w=ay...q,_;4,; and let wy;=a,...a, ;. Since 'Ig (w)<n,
statement (6.5.2) is true and we have

A

there are u,, ..., u,_,€%,; such that

*
v (20: Wi, Z(l)) I;; ((XIZ, /1, Blz/) lﬂ- (ulal"- Uy 1851, ZO) }1:{-1 (’la (le)

*
{(ulal“' Uy-18,-1, 20) = (4, B, 2).
M,
On the other hand, by statement (6.5.1), we can easily see that

there is u,€ X} such that

*
(unan’ alz) = (A, (X), and
M

(042, a, B 2) b (0, 4 B) iff { ,
|

*
U,ay,, Blzl) = ()“, B)
M,

4%
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Thus, statement (6.5.2) holds. Finally, for w=a,...aq,¢x*
*
w=a,...a,¢ L(M) iff (zy,0,...,0,,z) — (4,2, 2)
M

[there are u,,..., u, €%, such that

*

lff ! (ulal'“ upa,, ZO) }1;1 ()‘9 )»)
*

I(ulal"' unar‘n 26) = ()"1 ;')
M,

there are u,, ..., 4,€Zy such that
iff ywa,..u,a,¢L,NL, and
h(ua,...ua,)=ay...a,ch(LyNLy). O

Corollary 6.6. Every sd0-language can be expressed in the form L=h(L,NL,),
where h is 2 homomorphism, and L,, L, are two sdc-languages.
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Maximal families of restricted subsets of a finite set
By H.-D. O. F. GroNAU and CHR. PROSKE

1. Introduction

Let R be the set of the first » natural numbers, i.e. R={l1,2, ...,r}. Further-
more, let a and b be integers with 0=a=b=r, ar, b0V, Finally let & be an
n-tuple (X;, X,, ..., X,) of subsets of R satisfying a=|X;!=b (i=1,2, ..., n).

An ordered pair (X, Y) of subsets of R has the property

— A if and only if there is a v€R:v¢ X, v€Y,
— B: if and only if there is a v€R:vEX,v¢Y,
— C: if and only if there is a v€R:v¢X,v4Y,
— D: if and only if there is a v€R:v€X,v€Y.

Let P=P(A,B,C,D) be an arbitrary Boolean expression of A,B,C,D. & is
said to be a P-family if and only if all ordered pairs (X;, X;), 1=i<j=n, satisfy
the condition P. If there is a maximal value of », we will denote this by n, (P, 7).
Many well-known results in extremal set theory can be expressed in our concept.
We will only mention the following two classical theorems.

1) SPERNER’s theorem [13]: (B, )=y )

2) ErbpBs-Ko-Rapo-Theorem [3]: no, x(ABD, r)= (Irc: %] if k=r/2.

In [5} the first-named author considered all 2'® possible Boolean expressions P,
found those P’s for which r, (P, r) ¥ eixsts, and determined in all these cases
ny, (P, r) exactly ¥. In the present paper we consider the same problem for all P’s
andn, ,(P, r).

The results in Sections 2 and 3 are close to the corresponding results for n(P, r).
Thus, the proofs are sketched only or are omitted.

v For simplification we exclude the pathological cases a=r resp. b=0.

2> AB will be used in place of AAB and A denotes non A.

® In [5] the notation n(P, r) is used for no , (P, r).

4> With exception of only one case, where bounds and the asymptotic are found.
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2. Existence of n, ,(P, r)

We set 7, ;(0,r)=1 for all a, b, where 0 denotes the empty condition. In all
what follows let P0.

Then there is a nonempty canonical alternative normal form CANF(P) of P-
If A’ is an elementary conjunction of {A,B, C,D}, then A’€CANF(P) means
that A” is one of the conjunctions of CANF(P).

Since no pair (X, Y) satisfies ABCD and the only pairs satisfying ABCD or
ABCD are (R, R) or (@, 9), respectively, it follows

Lemma 1.
(i) na,b(ABgl_)’_Q: ls
n,s(PVABCD, r)=n, ,(P, r),

(ii) n, ,(ABCD, r)=1 ifb<r,
n,,(PVABCD, r)=n, (P, r),
(iii) n, ,(ABCD, r)=1 - if0<a,

n, »,(PVABCD, r)=n, ,(P, r).
Theorem 1. n, ,(P, r) does not exist if and only if
(i) ABCDECANF(P) or
(ii) ABCDECANF(P) and b=r or
(iii) ABCD€CANF(P) and a=0.

Hence, if n,,(P,r) exists, ABCD, ABCD, and ABCD can be omitted in
CANF(P).
3. Some reductions

The following table gives an equivalent description of some conditions P in
terms of ordered pairs (X, Y).

P o X, Y)

ABCD (», R)
ABCD (R, 0)
ABCD ®,2) : )
ABCD Z,9) -
ABCD (Z,R)
ABCD (R, Z)

where Z C R, Z#, Z#R. The remaining 6 conditions ABCD, ABCD,ABCD, ABCD,
ABCD, ABCD are conditions for pairs (X, Y) with {X, Y}N {9, R}=9.

If a=0 and b=r we refer to [5]. Let a=0 or b<r.

Then no pair (X,Y) can satisfy ABCD or ABCD and we may omit these
conjunctions in P. Let P=P’VP”, where P” contains exactly those conjunctions
which are in (1).
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Theorem 2.
P'=0 P'=0
™ " | tta,1(P",N+1 if ABCDECANF(P") or
Z : ? n,,.P,r) = 1 .orher- ar(Por) = { ABCD € CANF(P™)
wise Haor -1 (P, 7) otherwise
i m,»(P',r)+1 if ABCDECANF(P”) or
b=p [or®n= {1 other- Mo.s (Byr) = { ABCD ¢ CANF(P")
wise 5 (P, 1) otherwise
=0 | ma®n=1 Haro®, 1) = 1, (@, 1)

@ jf ABCDECANF(P”) or ABCD ¢ CANF(P");
“» if ABCDECANF(P”) or ABCD€CANF(P”).

Hence, we have to consider only alternatives P over {ABCD, ABCD ABCD,

ABCD, ABCD, ABCD} and we may assume a=>0, b<r.

Lemma 2.
(i) n,,(P(A,B,C,D),r)=n,,(P(B, A, C,D),r),

(ii) n,,(P(A, B, C, D), r)=n,_, ,-.(P(A, B, D, C), r),
(i) n, ,((ABVAB)P’(C, D), r)=n, ,(ABP’(C, D), r),
(i) n, »((AVB)P'(C, D), r)=n, ,(AP’(C, D), 7),
(v) n, ,(P"VABCDVABCD, r)=n, ,(P"VABCD, r),
(vi) n,,,(P"VABCD, r)=n, ,(P”"VABCD, r),

(vii) 7,,(B”, 1)=n,_p .- (P”, ),

(viii) n, ,(P”VABCD, r)=n,_, ,_,(P”VABCD, r),
(ix) na’b(P”’VABCD VABCD, r)=n,_,,,,_,,(P’”\/ABCD VABCﬁ, r),

where P’ is an arbitrary Boolean function in 2 arguments,

P” is any alternative over {ABCD, ABCD, ABCD, ABCD}, and
'~ P” is any alternative over {ABCD, ABCD, ABCD}

4. n, ,(P, r) for the reduced P’s

For simplification we use MNVMN=M and MVYMN=M. Now we

sider the three general cases:
1) a=b<r/2,

2) a=r[2=b,
3) r)2<a=b.

con-
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The third case may be reduced to the first one using Lemma 2, (ii). If a=b<r/2,
then obviously no pair (X, Y) of # can satisfy ABCD or ABCD, i.e., these two con-
junctions may be omitted, or if CANF(P) has only conjunctions of these ones,
n, (P, r)=1 follows immediately.

Case 1. a=b<r[2. CANF(P) contains only conjunctions of {ABCD, ABCD,
ABCD)}. Thus, only 7P’s are possible (P=0 was excluded at the beginning).

No. I P n, (P, r) | reference/remark
.11 ABCD b—a+1 F forms a chain.
r—1 Erp6és, Ko, Rapo [3] or
1.2 ABCD ( b 1) GREENE, KATONA, KLEITMAN
[4]).
i3 ABCD [L ] : The sets of & have to be dis-
a joint.
b(r—1 -
14 ACD z i1 HiLton [7].
iza
2r—]r/bl ifa=1
=Y r—(a—1D]r/b[ ifa=2,
1.5 ABCDY a=r—b(rbl—1) | see Section 5.
VABCD C—a+DArbl-1) if a = 2,
a=>r-bQqribl-1)
: LUBELL [9],
1.6 ABC (Z MESHALKIN [10],
Y aMamoTo [14].
' » Every pair (X, Y),
17 ﬁ%‘{) 3 (f] a=|X|=|Y|=b, satisfies the
i=a condition.

Case 2. a=r[2=b.

Using the statements of Lemma 2 we may reduce all possible conditions to 23
types. More precisely, by Lemma 2 (v) and (vi), we may omit ABCD if ABCD¢
€CANF(P) or replace ABCD by ABCD if ABCD4CANF(P). Furthermore, if
ABCDE¢CANF(P) and ABCD ¢ CANF(P), ABCD can be replaced by ABCD accord-
ing to Lemma 2 (viii). This procedure is the same as in [5]. We also use this notation.
Many results are well-known, others are very simple. But there are some really new
problems.

Most of them have been solved. The proofs are given in Sections 5 and 6. Finally
some open problems are presented in Section 7.
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No. P n,. (P, r) reference/remark
2.1 ACD ? see Section 7.
SPERNER [13],
¥ LuBeLL [9],
22 AB ([’/2]) MESHALKIN [10], or
Yamamoro [14].
, MILNER [11] or
2.3 ABC ([(r__ 1 /2]] GREENE, KATONA,
KLEITMAN {4].
A 1 KATONA [8],
2.4 BCD [ _ ScHONHEM [12], or
[(=2)/2] GRONAU [6].
AB -
2.5 A [[(,’_ 1)1/2]] CLemenTs, GroNaU [1].
r/2 2
i_E [l] if r is even
ABCvV (r-1y/2 ,.} ( r—1
26 VACDY 2 () (on)
VABD if risodd
ifasr-b see Section 6.
? ifa>r—b see Section 7.
2.7 ABCD 2 clear.
2.8 ABCD b—a+1 F forms a chain.
29 ABCDY { 2 ifa=b=rp2 It follows by 2.7
’ VABCD b—a+1 otherwise and 2.8.
2.10 ABD [r/a]
The sets of & are disjoint.
= frial if a # /2
2.11 ABCD { 1 ifa=rp2
212 ABCY (rfcl, ¢ = min(a, r—b) In [5] it was proved that ZF
VABD satisfies ABC (ABCD) or #
_ satisfies ABD (ABCD).
213 ABCDYV { tifa=b=r/2 2.10 resp. 2.11 implies the
: VABCD [r/c]l, ¢ = min(a, r—b) otherwise| result.
r-b-1{p 1 b r
£ ()5 A ()
i=a H 2isr-b{{
214 VA“SISDVV ifa=sr—~b & contains no set and its
: VACD complement.

1 r—afy b r
El:“;z [f +i=r—z:1+l(f)

I
l ifa=r-b
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No. P n,,,(P,r) reference/remark
= 0 if r is odd
< X (] +{ r—13. i .
2.15 ABCvY t=a \ (,/ _ 1) r is even | see Section 6.
. VACD ifa=r-»b
b
s [’71] ifa>r—b| HiLton [7].
i=a
2.16 ABvV b (r Every pair satisfies
. VACD ;=Z,, i this condition.
F satisfies AB too.
217 ABCY [ r ] Indeed, &F ={X: XCR,
. VABD (/2] |X|=[r/2]} has that
cardinality.
Omitting complements &
ggtisﬁes ABCD (see 2.4).
ABCDYV r—1 F={X: XS R, vEX,
2.18 - 2 [ - ] 1X|=[r/2} U {X: XS R,
VABLD [¢=2)/2] p€ X, IX[={IC+ D21},
where v€R is fixed, has the
desired cardinality.
— 2r-2 ifa=1
2.19 ABCDYV r—2a+2if2=as=r—>b see Section 5.
VABD b—a+1 if2=a=>r-b
— 2r—3 ifa=1
2.20 ABCDY r=2a+1if2=a-<r-b see Section 5.
VABCD b—a+l if2=az=r-b
- 2r-3 ifa=1o0rb=r-1
ABCDYV r—2a+lifaz=2, b=r-2,
2.21 VABCDYV a=r—b | see Section 3.
: VABCB 2b—r+1ifa=2, b=r-2,
az=r—b
ABCDV 4r—6 ifa=1b=r—-1
= r+2b-2 ifa=1b<r-1 .
2.22 VABC_V ¥—2a—2 ifa= lb=r—1 see Section 5.
VABD 2—a+)ifa> l,b<r—1
2.23 ACD—V— ? see Section 7.
VABCD

5. Proofs of 1.5, 2.19, 2.20, 2.21, 2.22

In order to give examples of maximal families we use the following notations

@1=§X: X={t},1=t=r},
P,={X: R\X<2,}, ' ,
Dy(ps 4, )={X: X={p+1,p+2, ..., p+1}, q=St=s, p+i=r},
Du(p, ={X: X={t+1,t4+2, ..., r}, t=p,p—1,p=2, ..., q}.
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For all these conditions we have
(P, r) = ny (B, r)+r. 2
Thus, na,b(P, r), a=2, "implies an upper bound for u, ,(P, r).
5.1. Let P=ABCDVABD (2.19, 1.5).

Denote by & a maximal (ABCDVABD)-family with a=|X |§b for all
Xc¢#. Then for every pair (X,Y) of & we have XcY or XNY=p. Hence,
there is a unique subfamily ¥(F)S F satisfying A

— XNY=p for all pairs (X,Y) with X, Yc%(F),

— for all XeF\Z(F) there is an element Y€% (%) with XCY.
If Xc%(F), then #(X)={Y:YeZF,YCX)}. Thus,

— F=9F)J U #X),

X€H(F)_ _

— H#(X) satisfies ABCDVABD, and .

— all YeH(X) satisfy a=|Y|={X|-1.
Then — — »

7| = [9(F)+ 3 n,ix-1(ABCDVABD, |X)). 3
X€c9(F)

Now we prove
Lemma 3. n, ,_,(ABCDVABD, r)=r—a for 3=a+1=r.
Proof. The proof is given by induction on r for arbitrary, but fixed a, r=a+1.

1. r=a+1. The statement is true, clearly.
2. We obtain for every maximal family &, by (3),

Fl=19P)|+_ 2 (X|-a).
. XE9(#)
If |9(F)| =1, then 2 |X|=r—1 and |F|=r—a.
XcE (%) .

If |9(F)| =2, then 2 |X|=r and
Xe¥(#)

Fl=r—@-N¥%&F)| =r-2@@-1)=r—a.
Indeed, 2,(0,a,r—1) is a (ABCDV ABD)-family with the desired cardinality. (3
Now we return to the general a, b-case. '
Lemma 3 and (3) yield for a maximal (ABCDVABD)-family &

IZ|=_ 2 [X|-(a-DIgF)|
Xe9(#F)

If [%(F)=)r/b[—1, then |X|=b implies

|Z] = (b—a+DI9(F)| = (b—a+1)(r/b[-1). @
If |9\ zlrbl, then 3 |X|=| U X|=r
Xecw(#) X €Y (F)

and
|F] = r—(a— D)% (F)| = r—(a—D)r/b]. ®)
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Simple verification shows that the upper estimation of (4) is not smaller than that
one of (5) iff

a = r—b(r/b[-1).
Indeed, %;(a, b)= U Dq4(bt, a,b) confirms in both cases that these upper

t=0
bounds are the des1red Tesults. Thus, 1.5 is proven if a=2 remarking that C is
always satisfied. The case a=1 follows by (2) and the example 2,U2;(1, b).
Moreover, 2.19 is proven, note lr/b[=2 for b=r/2. Also here the case a=1
follows by (2) and the example 2,U2,(l, b).

5.2. Let P=ABCDVABCD (2.20).
In analogy to the preceding case a special subfamily % (%) exists and we obtain
for a maximal family &

7| = 9(F)+ 2 n,x-(ABCDVABD, |X]). (6)
Xe9(#)

We remark that #(X) satisfies ABCDVABD, not necessarity ABCDVABCD.

Lemma 3 implies
17| = 2 [X|—(a—DIg(F)|.

Xco(#
If |4(#)|=1, then > |X|=b and |./|§b—a+1.
XE€Y9(F)

If |[9(F)=2, then J |X|=r—1 (since (&) contains no complementary
Xe9(#)

sets) and |F|=r—-1-2(a—1)=r—-2a+1.
If |9(#)|=3, then 3 [X|=r and
XE9(%)

(Fl=r—-3@—1)=r—2a+1.
Hence,
i _— {b—a+1 if a=r—b,
[#1=max(b—atl,r—2a+1) = r—2a+1 if a<r—b.
Indeed, _
2500, a, b) if a=2a=r—b,
40, b) = { .
240, a, )UD4(b,a,r—b—1) if a=2,a<r—>b
is an example which confirms that the upper bound is the desired result for a=2.
(2) and 2,U%(1,b) yield the result for a=1.

5.3. Let P=ABCDVABCDVABCD (2.21).

53.1. asr—b.
If # is a maximal family, consider
[ X  ifXe&F, |X|<r/2,
gy X i xeF X =218 x,
TIRNX if XeZ, | X|=1r/2,1€X,
l R\X if XeZ,|X| = r/2
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Since & contains no complementary sets, |F'{=|%|=n, (P, r). Obviously, #’
satisfies ABCDVABCDVABCDVABCD. No pair of & satisfies ABCD. By Lemma
2 (v), we have now that & satisfies ABCDVABCD. Thus a maximal -family of
2.20 is also.a maximal family here. Hence, 2.21 follows by 2.20 if a=r—b,a=1 or
az=2.

5.3.2. a=r—b. Then r—b<r—(r—a.

We apply Lemma 2 (ix) and the results of 5.3.1, and get

n,,(ABCDVABCDVABCD, r) =

2r—3 if r—b=1,

="r—b,r—a(AECDVABCﬁ"):{r—z(r—b)ﬂ if r—b=2

5.4. Let P=ABCDVABCVABD (2.22).
If # is a maximal family, we split # into two subfamilies &, and &, by

if Xe#F, RRX4¢ZF, then XeF,,

if Xe&, RNX¢#, then Xe¢F,, NXCF, or XecF,, RNXcF,. _
Then &, and %,, respectively, satisfy ABCDVABCDVABCD. Since X¢#,
R\X¢Z can hold only if ¢=|X|=r—c¢, c=max(a, r—b). We obtain immediately

|#,] = n,,(ABCDVABCDVABCD, r)

and
|#,| = n,,- . (ABCDVABCDVABCD, r).
Hence,
_ {r~2a+1+r—2(r—b)+1 if a=r—»,
F1=0b—rb 14 r—2a41 if a=>r—b,
ie.

|F| =2(b-a+1).
Similarly, it follows by (2)

r+2b—-2 if a=1, b=r-2,
[#F|=13r—2a-2 if a=2, b=r—1,
4r—6 if a=1, b=r-1.

Finally, we complete the proof by following examples

D.(a, b)=93(0, a, HYUD,(r—a,r—>b) if a=2,b=r-2,

2,U2,(1, b) if a=1,b=r-2,
Dy(a, r—1HUD, if a=2, b=r—1,
2,U2,(1,r- 1)U, if a=1, b=r—1.

Remark. A family satisfying ABCDVABCVABD may be interpreted as a
family without qualitatively independent sets (see also KaTtonA [8]).
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6. Proofs of 2.6 and 2.15

6.1, Let P=ABCVACD (2.15) and let a=r—b.
Let & be an arbitrary maximal family. Then & contains no complementary
sets, i.e.

-

r~b—1 r 1 b r
#1="3 (1, 2,0)
i=a i=r—b \l

An example for a maximal family, is
{X: XS Ria=|X|<r2 or (|X|=r2 and 14¢X)}.

6.2. Let P=ABCVACDVABD (2.6) and let a=r—b.
If # is a maximal family, then we split & into two subfamilies &, and &,
by the same procedure as in Section 5, 4. Thus, &, satisfies ABCVACD, ie.

\Z1| = n, ,(ABCVACD, r).

F, satisfies ABCVACD. Moreover, for arbitrary sets X, Y€&F, also (R\JX, Y),
(X, R\Y),and (R\JX, R\Y)satisfly ABCVACD=ABCDVABCDVABCD. Hence,
(X, Y) satisfies ABCDVABCDVABCD as well as ABCDVABCDVABCD, ie.
ABCD. 2.15 implies
i] 0 if v is odd,
— 2 r r‘—l r_l

n, ,(ABCVACDVABD, r) = .Z,: (i)+([r/2]—1]+[( r/2) if r is even.
Indeed, {X: XC R, a=|X|{=r/2 and, if r is odd, |X|=[r/2]4+1,1¢X} is a maxi-
mal family.

7. Open problems
“In this section we give explicitely the open problems in usual notation. Also some
estimations are presented.

1. Problem (2.1) n, ,(ACD,r)=?
Remember that ACD means (XNY#Z)A(XUY=R) for all X,YeZF. It is
known only that

,Zb’(rzl] if a=r—b,

b(r—2 i=a
S |i=1) = mas@CD, ) =177
>(iC) v oa=r-s

by 2.15 and Lemma 2 (viii).
Equality occurs, for example,.in the left hand side if a=r~b=1, and in the
right hand side if a=b=r/2.

2. Problem (2.6, a=r—b) n, ,(ABCVACDVABD, r)=? if a=r—b.
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Remember that this condition means that & contains no not-complementary
sets with union R. The investigations in the case a=r—b yield immediately

n, ,(ABCVACD, r) = n, ,(ABCVACDVABD, r)

|

(1A

n,,»(ABCVACD, r)+([r;£ 1 1].

3. Problem (2.23) n, ,(ABCVABCD, r)="?
In this case also n, ,_,(P, r) is unknown. Bounds are in analogy to [5] given by

n,(ACD, r) = n, ,(ACDVABCD, r) = n, ,(ACD, r)+([r7£ii 1).
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A note on the interconnection structure of cellular networks

By 1. H. DEFEt

Using the concept of the structure automaton it is proved that every cellular
automaton may be simulated by a cellular automaton realized by a cellular network
of semigroup-type.

1. Introduction

The interconnection structures of infinite cellular automata, called also tessela-
tion automata [3], are usually taken to be networks based on direct sum of infinite
cyclic groups. Such networks have a great degree of uniformity [4]. Realizations of
finite and infinite cellular automata by various types of uniform networks were de-
scribed in [2]. It was shown there that such realizations may be described by the use
of the theory of groups. The structure of cellular automata realized by nonuniform
cellular networks has not been investigated because of the lack of the proper de-
scription method for such networks. In this paper a step in this direction is presented
using the concept of the structure automaton. It is proved that every cellular automa-
ton may be simulated by a cellular automaton realized by a cellular network of
semigroup-type.

2. Preliminaries

Definition. A cellular network is a system A=(C,S, d,f) where C — is a count
able set of cells, S — is a finite set of cell-states, 6: S*—~S — is a cell transition
function, f: C—~C* — is the neighbourhood function.

Definition. The cellular automaton (CA) realized by a cellular network 4 is a
pair o/ (AN)= (SC F) where S€={hlh: C~S} — is the set of CA configurations
F: S€~S8¢ is the global map defined by V F(h(c))=6-H-f(c) where

ceC

B (eys €5 ooy €)= (R(cy), h(co), ..., h(c)).

Let A#1=(Cy, S;,6:, /1) and A,=(C,, S;, 5, /5) be two cellular networks
with fi: C,—~C¥ and fa: C,—~C%. A network A is a realization of the network A4}
when there exists a pair offunctions (¢, ¥), ¢: C,—~C,, (p(C1)=C2, Y: S-S, such

that V ¢k(f1(cl))—ﬁ.>.(¢(cl)) and v V610515 S35 nns 5= 52(W(51)’ Y (s2),

51489, +.-SE €S
xp(sk)) These equalities mean that (z(p, :Z/) is a homomorphism of A} onto A;.
In [2] the following theorem was proved.

5 Acta Cybernetica V4
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Theorem 1. If a cellular network 4] realizes the cellular network .4, then the
cellular automaton &/ (A",) simulates the cellular automaton &/(A4,)1.e. a function H

from S{* onto Si® exists such that

V  H(F,(s%) = F,(H(s%).

s°€ Sfl

Simulations of CA realized by various types of cellular networks having a high degree
of uniformity were described in [2). It was shown there that the simulation of CA re-
alized by such networks is essentially a problem of the group homomorphism and, in
some cases, a problem of permutation groups generators.

No attempts were reported on the simulation of CA realized by nonuniform
networks. Particularly interesting question is whether there is an algebraic structure
for the description similarily as the theory of groups in the case of uniform networks.
The answer for this question is given here. It states that simulations of all CA may be
described by the use of the theory of semigroups.

3. Results

Let /=(C, S, d,f) be a cellular network defined 'as above. For notational con-
venience we label cell inputs 1, 2, ..., k of the cells in A'by x,, Xg, ..., X;.

Definition. A structure automaton of the cellular network 4 is a triple A =
=(X, C, ) where X — is the imput alphabet of cell input labels, C — is a countable

set of cells of ¥ w: XX C—C is a transition functiondefinedby VvV V w(x;, )=
x;€Xc €C

=c,< the i-th component of the neighbourhood function value f(c) is equal to c,.

It is easy to see that every cellular network may be described by some siructure
automaton. Classical results [1] obtained in the theory of autcmata may be now
applied to the description of cellular networks. For example we can generalize the
classification of networks as follows: (For the notions below [1] may be consulted).

1. Connected networks described by connected structure automata.

2. Strongly connected networks described by strongly connected structure au-
tomata.

3. Balanced networks [2] described by connected permutation automata.

4. Uniform networks [2] described by quasi-perfect automata.

5. Arrays [2] described by perfect automata.

The enumeration above is done according to the generality of specific class of
networks. The first two classes are important from the point of information flow
in CA. In the cellular network described by the connected structure automaton there
are some parts from (or to) which information flows in only one direction, and there
are no such parts in the cellular network described by the strongly connected struc-
ture automaton.

Definition. A cellular network A is of semigroup-type if there is ono-to-one cor-
respondence o between the set of cells C and certain semigroup J with operation
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% such that for some subset L={/,/,, ..., [}/,

EVcac"(f(c)) = (h*a(c), L*a(e), ..., [ xa(c)).

Theorem 2. If 4" is a cellular network described by the strongly connected
structure automaton .4/, then there exist a cellular network .# of semigroup-type
such that the CA /() simulates the CA & (A).

Proof. By Theorem 1, it is sufficient to consider cellular network realizations.
Let A,=(X, C, w). With every imput symbol x; we can associate a transformation
Oz, C—»C by taking w(xi, ¢) for all ¢€C. Let J be the transformatlon semigroup
generated by all o, for xicX.

We define the following structure automaton #;=(Q,J, m), where
Q={w,|x;€X} — input alphabet m(wy,, )=y, j — transmon function defined
as a composition of mappings in J.

Let H:J—-C be a function defined by V H(j)=j(c,) for some fixed ¢,cC.

H is onto C because the semigroup J is transmve We shall prove that H is a homo-
morphism of the structure automaton .#;(Q, J, m) onto the structure automaton
N=(X, C, w). We have
V ¥V H(m(wy,))) = H(w,,+j) = 0,-j) = o(x,H()))
oy, €RJ€T

From Theorem 1 it follows that the CA realized by the semigroup-type network .#
described by the structure automaton .#; simulates the CA realized by the network
A0

Now, we will extend Theorem 2 to cellular networks described by connected
structure automata. In this case the transformation semigroup J is not transitive.

An extension of the semigroup J will be defined in two steps. First, when there
is no identity, we add an identity e to the semigroup J obtaining the semigroup
JUe=J,. Let C <C be the set (pos51bly with the smallest cardinality) such that

J.(C, '

In the second step, let the elements of Cy be numbered ¢,, ¢,, ..., ¢;, .... For
each element c¢;€C, a set of vectors is constructed

[7.I; = {[0,0, ..., 0, j,,0,..]} for all j,eJ

where j, is on the i-th ;;osition and O is an element such that 0.0=0./,=/,-0=0,
Let [J.]=UIJ/.)i- It is easy to see that the set [J.] together with component-

wise multiplication forms a semigroup.
Let H, be a function H,:J,—~C such that for each ¢;¢C,, H([J,],) is defined

H([O’ 0’ L] O’je, 09 ]) =J(cl)

H is onto C becausc of the definition of the set C, and vector semigroup [/,].
From these constructions we finally have

as

Theorem 3. Any cellular automaton may be simulated by a cellular automaton
realized by a cellular network of semigroup-type.

St
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4. Conclusion

It was proved that semigroupe-type cellular networks are universal in the sense
that any cellular automaton may be simulated by a network of such type. This result
may compared with the simulation power of the group-type and Abelian group-type
networks [2]. Note, that in the case of connected networks with infinite number of
cells the semigroup for simulation may be not finitely generated, which gives a new
level of complexity in the theory of cellular automata. Further investigation is needed
in two directions. First, on the computational capability of the cellular automata
realized by semigroup-type networks comparing to tesselation automata. Second,
in the finite case, on the algebraic characterization of the structure of finite cellular
automata using finite structure automata.
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Binary addition and multiplication in cellular space

By E. KATONA

Cellular automata are highly parallel bitprocessors, so they are suitable for the
bitparallel execution of distinct computational tasks. In this paper powerful bitpar-
allel algorithms are given for fixed point binary addition and multiplication, taking
into account the cellprocessor architecture developed by T. LEGENDI [1]. For this
architecture there have been constructed more then 100 cellular algorithms solving
different computational tasks [6]. In a large cellular space a high number of cellular
adders, multipliers and other processing elements may be embedded, and more com-
plex tasks may be computed in parallel, as matrix multiplication [4], certain data
processing tasks [5], etc.

1. Introduction

- A cellular automaton is a highly parallel processor, but the economical pro-
gramming of such a processor is not an easy task. If macro-cells are applied (a cell
works as a microprocessor), then the programming of the cellular structure is some-
what easier [7], but the architecture has lower flexibility (fixed operations, fixed
word length, etc.) and in general the bitparallel execution of the operations is impos-
sible.

If micro-cells are applied (having maximum 16 states) with variable transition
functions, then the cellprocessor has high flexibility and a totally 9itparallel process-
ing is possible. In [3], [4], [5], [6] and in this paper it is shown that a cellprocessor
consisting of micro-cells is economically programmable, and the speed of the cellu-
lar algorithms is wordlength-independent in most cases. '

The cellprocessor architecture proposed in [1] is based on the micro-cell concep-
tion, and has — from the point of view of this paper — the following characteristic
properties:

‘(i) The cellular space is a two-dimensional rectangle-form cell-matrix which is
bounded by dummy-cells (the dummy cells have no transition funtion, but their
states can be set from the outside world). In the cellular net the von Neumann neigh-
bourhood is assumed.

(ii) The cells do not have a fixed transition function, but receive commands
(microinstructions) from a central control (CCPU), and arbitrary local transition
function may be realized by the execution of a certain sequence of microinstructions.
This implies that the cellprocessor can work with an arbitrary local transition func-

_tion, and — moreover — it can work with ‘time-varying transition function.
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(iii) The cellular space is inhomogeneous, that is, the individual cells may work
with different transition functions at the same time. To ensure this property, each
cell has an internal state. The cells having different internal states may work with
different transition functions. So, if there are n different internal states, then maxi-
mum #n different transition functions may work in parallel. The internal states are
set at t=0, and during the working of the cellprocessor they are unchanged.

The transition functions will be defined according to [2] by microconfiguration
terms. A microconfiguration term has the form:

the state of a group the required state of (another)
of cells at time ¢ group of cells at time ¢+1

Each cell on the right side occurs on the left side, too, and is marked by double
frame for the identification. Because of the inhomogeneity a microconfiguration term
may describe more transition functions together.

The notation [x; x,_, ...x;] will be used often in the text, which means a k-digit
binary number having the digits x,, Xy_y, ..., X3 (x;€{0, 1}).

2. Binary addition

Binary addition- is the most fundamental arithmetic operation. The cellular al-
gorithm descrited telow is applied in many further cellular processing elements (see
the cellular multiplier in this paper, and [4], [5], [6))-

The cellular binary addition is tased on the ‘“carry save” addition algorithm.
Let x=[x,...x,), y=[¥s...»1] and z=[z...z;] be binary numters of k digits to be
.added. In the first step x and y are added in a parallel way: a (partial) sum
s=[s¢...5;] and a carry vector c¢=[c...c;] is computed as follows

[eis]:=x;+y;  for any i. (1)
In the second step the number z can be added to s and ¢ by the formula
[cisi] := zitsiteia for any i. . (2)

(The sign ’ serves for the distinction between the old and new values of s and ¢.)

If there are more numbers to be added, then they can be added to s and c also
by formula (2). The complete sum of the operands should te computed from the last
s and ¢ in k—1 steps applying the formula

[cisi] := s;+¢;y for any i. 3)

On the basis of the described parallel addition algorithm it is easy to construct
a cellular automaton for binary addition. It consists of k& adder cells, each contain-
ing a sum bit S and a carry bit C (4-state cells). A dummy cell is connected to each
adder cell as upper neighbour (Fig. 1).
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Fig. 1

At ¢t=0 the bits S and C are 0, and the bits 7 contain the first number to be
added. In any further step a new number will be written into the bits 7 and the adder
cells work with the transition function:

1

S S, ry —
—lc|~|c where [C’S’]=S+C+1

After the input of the last operand the dummy cells are set into 0 and after k—1
steps the complete sum of the operands is computed in the bits S of the cell-row.
(In this way the above transition function includes the formulas (1), (2), (3).)

The addition of » numbers each consisting of k bits, needs n+k—1 steps, so
the parallel addition algorithm is economical for many operands.

Remark. To prevent the overflow, for » operands a cellular adder consisting of
k+log, n cells should be used. If only k cells are applied, then the leftmost cell needs
a special overflow-watching transition function (inhomogeneity).

The above cellular adder has many simple applications, as the binary counter,
the computation of certain number-rows (e.g. Fibonacci-numbers), vector addition,
etc. [6]; but the most important application is the binary multiplication discussed in
the next point.

3. The multiplication of two binary numbers

The cellular multiplication algorithm is based, as usual, on the addition: the
partial products will be generated in a special cell-row, and another cell-row under
it works as an adder (Fig. 2).

A
Bl

N

1IN

S
C

Qun

|
Q

|
|
|

Fig. 2
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The partial products are generated in an overlapped manner. Between the digits
of the multiplicand a=l[a,...a,] and the multiplier b=[b,...5,] zero digits are
inserted, and in such a form they move step by step one against another in the upper
cell-row (Fig. 3).

a,0a;0a,0a,
step | ‘ b,0b,05,0b,

adder

a,0a;0a,0a,
step 2 by 0b;05,00,

adder

. a,0a;04a,0a,
step 3 ' b,06;05,08,

adder

Fig. 3
Cellular algorithm for binary multiplication in the case k=4.

The products of the operand digits staying on the same position are summed by
the adder (on Fig. 3 in the first step a,b,, in the second step @, b, and a,b; are summed).
Fig. 3 shows well that in steps 1, 2, 3 and 4 the bit b, is multiplied by. q,, a,, g3 and
a,, thus the partial product [a,a;a,4,] - b, is generated for the adder. The partial pro-
ducts corresponding to b;, b, and b; are computed in a similar way, and each is
created on the appropriate position.

The two rows of the cellular multiplier have distinct transition functions, ‘which
may be defined together as follows:

4| 4 A,
|| Bl | By B,
[ | -« | where [C’S']=S8S+C+4-8B.
S S’
— | C C’

If £-bit numbers are multiplied, then the product has 2k bits, therefore an adder
of length 2k should be used. Thus the multiplier needs 4k 4-state cells.

If at 1=0 the configuration of Fig. 3 (step 1) is assumed, then at r=2k-1
all the partial products are generated. It is easy to see that at r=2k the rightmost
k cells of the adder have zero carry bits. Therefore to compute the complete product
further k steps are needed, thus the whole muitiplication process uses 3k steps.
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Remark. If between the digits of a and b the digits of further two k-bit numbers
x and y are written (instead of the zeros), then the multiplier computes the expression
a-b+x-y! The cellular multiplier may te used for vector-multiplication in a similar
way [4].

4. Multiplication of more then two numbers

In this section a cellular algorithm is given to compute the product x;...x,
where x; is a k-bit number and 0=x;<1 holds for any i (the leftmost digit of x;
has the positional value 271). To solve this task the cellular multiplier of section 3
will be modified: 3-bit cells (i.e. 8-state cells) will te used where the third bits in the
adder cells serve for control (Fig. 4).

B|—|B{—: - —|B
A A A
1 T 1.
s| |s| S
Cl—| Cl—--—C \
V | 4 V
Fig. 4

Cellular multiplier for more then two numbers. The control bits are marked by V.

5

At t=0 the number x; is stored in the bits “S”’ of the adder. The numbers x,, ..., x,
come from the outside world and go left on the bits “B”. Before each number x;
a control signal of value 1 is sent, which goes left on the control bits and copies the
bits “S” into the bits “A” (at the same time the adder is cleared). Thus the number x;
coming from the outside world is multiplied by the product x;-...-x;_;, and the

process may be repeated until it is necessary.

According to the above principle, the transition functions of section 3 should
be modified as follows.

If the adder cell contains a control signal 0:

Ay
| | | - | where [C’S’|=S+C+A4-B.

©
“
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If the adder cell contains a control signal 1:

—| B, B,

S

| | -1
S 0
— 0
1 14 1%

The multiplication process is demonstrated on a simulation example (see List-
ing). The product of x;=0.1001, x,=0.1101 and x;=0.1110 will be computed
by an 8-bit multiplier. The multiplier is displayed in 4 rows, according to Fig. 4,
but in the third row the bits S and C are printed together in the form [CS] (that is,
for example the value 2 means C=1 and S§=0). The points medn insignificant
zeros in each row.

At t=0, x, is stored in the adder, and a control signal marked by “<" starts
on the right end of the multiplier. Between t=1 and ¢=8§ the number x, is copied
into the bits “A4”” and it is shifted right (hereby zeros are inserted between the digits).
The number x, comes from outside and will be multiplied by x,. At r=10 the
rightmost digit of x, x, is computed. Already at this moment a new control signal
may be started which ensures the multiplication of x;x, by x,, thus an overlapping
is possible between the consecutive multiplications.

For the multiplication of n numbers (2k+2)(n—1)+2k =~ 2kn steps are
required, and the modified multiplier consists of 4k 8-state cells. The product con-
tains 2k digits (the leftmost digit has the positional value 2~%) and the first
2k —log, k—log, n bits are always correct.

5. Concluding remarks

In this paper three fundamental cellular processing elements have been discus-
sed, each designed for the same cellprocessor architecture [1]. Each processing element
is based on a bitparallel cellular algorithm where nearly all cells work effectively in
each time-step. By the interconnection of such simple processing elements more
complex tasks may be solved in bitparallel by a cellprocessor.
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AureGpandeckuii NOAX0X K ONEpauaM Ha 3JIEMEHTAX
0a36I JaHHBIX

C. JIebenenBa

ba3a naHHBIX mpeacTaBjieHa B KayecTBe (opMalu3HpPOBAHHON CHCTEMBl; Npen-
CTaBJIEHO TIOCTYJATHI 3TOM CHUCTEMBI, ITOAAHO OIpeJeICHHA omnepaliii HAa HAaHHBIX
N npuMephl IpUMeHeHHs 3TUX omepauuit. ITokazaHo npakTHieckoe NPUMEHEHHE
TIPeACTABACHHOR CHCTEMBI OIS KOHKPETHOM 3aJayM: MHOTOCTEIIEHHON HaeHTH(U-
Kanud oObexTa. YKaspIBaeTCs CBiA3b MEXAy aiarcbpanmveckuMu ONEpALUsMH Ha
IaHHBIX M MHCTpyKuusaMu S3pika MaummynupoBauust Jaunemvy. Onepanpy Ha
JaHHBIX CPaBHMBAKOTCI C OMEpalMsMH HAa OTHOLIEHHAX B PEJSUMOHHBIX 0asax
JaHHBIX. 7

1. BBeaenne

Bo Bpems pa3paGoTku 6a3bl JAHHBIX IJII MHOTOCTEHEHHOTO 3KCIIEpUMEHTA
[1]1 nosBuiack HeoOGxOOMMOCTL (OPMAJIM3ANUH HEKOTOPBIX ITPOO/IEM, CBS3aHHBIX
¢ 0a30ii MAaHHBIX U MaHUNYJIHPOBaHWEM NaHHBIMU. BaBa HaHHBIX IJII MHOTOCTE-
MNEHHOIO 3KCIEPUMEHTA H CIOCO6 €€ MCMOJIb30BaHHS UMEIOT P 0COOSHHOCTEH.
BomepBbix, 6a3a OaHHBIX UMEET YHCJIEHHBIH XapakTep: 3/MeMeHTaMH 0a3bl JaHHbIX
SBJISFOTCS IBYMEPHbBIE MATPHIILI, BEKTOPHI, CHCTEMBI BEKTOPOB M OT/IC/IbHBIE YHCIIA.
Bo-BTOpHIX, 251eMeHTaMu 6a3bl JAHHBIX SBJAIOTCA PETyJIIPHBIE CTPYKTYPHI [5] uau
XK€ CTPYKTYPHI, IOJIyYEHHBIE IPH TTOMOLIM OTEpalHii Ha NAHHBIX M3 PErYJISIPHBIX
CTPYKTYp. B-TpeTbHUX, B Ipoliecce IKCHEPHMEHTA 3KCIIEPUMEHTATOP MOXET NPUHSATH
peleHre 00 YBEMYECHHH YHCIIA U3MEPEHHH, WJIM JX€ MOJXET MOSBUTHCA HeoOXomu-
MOCTE MCHOJIb30BAHMSA HM3MEPEHHH, IOJYYEHHBIX B HpYyrux JabopaTopusx, HTO
NoBJIEYET 3a coBOil He TOJIBKO YBEJMYEHME KOJIMYECTBA NAHHBIX, HO Takke HEoO-
XOOUMOCTh OOBEIUHEHHS NAHHBIX, HAXOAAIIMXCS B PAa3HBIX (U3MYECKHX 00JIACTAX.

Ionyyuennrle pe3yapTaTHl MMEIOT JOBONBLHO OO XapakTep M CIPaBeHBBI
I Jo6BiXx 0a3 JaHHBIX ¢ MEPAPXHUYECKUMH M CETEBBIMM CTPYKTYDaMHU.

2. SI3pik. IlepBHvHbIE MOHATHA H MOCTYJIATHI

0603HaYMM cUMMBOJIOM N CY8THOe MHOXECTBO 4UMEH NAHHBIX 6a3bl JaHHBIX.
DaeMeHTHI MHOXecTBa MMEH OyneM 0003HaYaTh CUMBOJIAMH 1y, Mg, Hg, ..., JJIEMEH-
THI MHOX€ECTBA 3HAYEHHH-CUMBOJAMH ¥, Uy, ¥y, .... B MHOXECTBe V BBIICINM He-
KOTOpOE TIOJMHOXECTBO Vg cmpyxmypnbix 3nuaquenuii. IlpeamonaraeM, 4YTo Ha MHO-
xectBe N omnpeneieHo oToOpaxeHde f, 3HAYEHUs KOTOPOTO TPHHAJJIEkKAT MHO-
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*ecTBY V. MHOXeCTBO BCeX YNOPSAOYEHHBIX Nap (7, v) BBUIOJHSAIOWIMX YCJIOBHE
neN,v€V u v=f(n) GyneM Ha3bIBaTh OaHHLIMU, MHOXECTBO BCEX JAHHBLIX 0003-
HaydM CHMBOJOM D. DieMeHTH MHoxecrBa D 6yneM o003HayacTs CAMBOJIAMH
d dy,d,, ... CumBoNaMu -, [, # 0603Ha4YMM HEKOTOPHIE ONEPALUH, ONPEAcAEHHbIE
Ha MHOXecTBe MMEH. Omepanuu -, /, # NO3BOJAIOT NOJNYYaTh HOBbIE MMEHA M3
AMEH, NpUHaMJIeXanmx MHOXecTBY N. IlpeanonaraeM, YyTo Ha MHOXeCTBE HMEH
ONpeJesieH0 OTHOLICHHE YAaCTHYHOTO YNOpsjoyeHuss <. CHMBOJAMHM ~, A H =
OyneM 0003HAYaTh JIOTMYECKHE CBA3KH: HEralio, KOHBIOHKUMIO H HMILUIMKALHIO
COOTBETCTBEHHO, CHMBOJL V 0003HayaeT KBaHTOp OOLIHOCTH, CHMBOJI 3 — KBaH-
TOp CYLIECTBOBaHHSA. YTJIOBbIE “CKOGKH ( M ) 0603HAHAIOT TOCIENOBATENLHOCTD
nanppix. CpoyicTea 6a3bl JaHHBIX ‘onmcHIBaoT mocTtyaatel P1—P14 [3].

Pl1  VY(neN)3@weV){f(n) ’= v}

P2 VY(ny,ng) {ny =ny=f(n)=f(ny)}
P3  Y(ny,n€N) {n,-nEN}

P4 (ny-ny)-ng=ny-(ny-ny)

P5 V(ny,n€N) {n#n,€N}

P6  V(ny,n€N) {ny/n,€ N}

P7  f(ny-ny) = (f(n), f(n2))

P8 f(m#ny) = (11, f(n)), (n2,f(nr)) .
P9  (n,0)eD e neNAveVAf(n)=v
P10 deV;

P11 vy, 0,€V5 = {vy,0:)€V5

P12 d=(nv)Av={d,,...,d)Ndcv=>d; <d
P13 d,<d,Ady; <d;=d, <d, g
P14 ~(d<d)

B cuny noctynatoB P1—P2 na MuoxecTe MMEH onpenesnieHo otobGpaxenue f 3Ha-
YyeHHs] KOTOPOro NpHHalJIexkaT MHOXeCTBY 3HaveHu# V. Ilocrynatmt P3—P6 on-
pele/II0T HEKOTOpble OTHOUIEHHMS Ha HMeHax. Onepanuio - OygeM HasbIBaTh
coeQuHenuem UMEH, OTICPALIHIO [— ébiuumanuem UMEH, OTIEPAlNIO 3 — KOHCIPYK-
yueii UMEH.

HNocrynater P7 1 P8 onpenenaioT oTobpaxeHue / O COCQUHEHHA M KOHCTPYK-
uuu UMEH cooTBeTcTBEHHO. ITocTynat P9 sBnsieTca HEOOXOAMMEBIM H OCTaTOYHBIM
yCIIOBHEM IPHHAJIEXKHOCTH JaHHOTO MHOXECTBY HAHHBIX Ga3wl maHHbIXx. ITocty-
natel P10—P11 onmceiBaloT cBOMCTBA MHOKECTBA CTPYKTYPHBIX 3HAYEHMI{, U3 HO-
crynatoB P12—P14 cnexyer, 4To Ha 3M€MEHTaX JAHHBIX 0a3bl JAHHBIX ONpPEIEJICHO
OTHOLLEHHE YaCTUYHOro ymopsaoyeHMs <. OTHOLIEHMe - OyaeM Ha3blBATH OT-
HOlleHNeM npepuiecTsoBanmsa. M3 noctyiaros P9, P1 n P2 ceitvac xe cnenyer.

Caencreue 2.1. dy = (ny, v;)Ady = (g, v5) = (1 = ny = v, = vy).
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Crnencreue 2.1 rapaHTHpyeT, 4To B 0ase NAaHHBIX HeT ABYX AAHHBIX, HMeEHa
KOTOPBIX MJCHTHYHBI, & 3HAYCHHUS Pa3HbIE.

JaHHple, 3HaYeHHUS KOTOPBIX MPHHAANEKAT MHOXECTBY CTPYKTYDHBIX 3HAYEHUA
Vs, OymeM Ha3bIBATH CJIOKHBIMH AaHHBIMH, JAHHbIC, 3HAYCHUSA KOTOPHIX HpPHHAI-

nexar MHOXecTBY V[V — [OaHHBIMM 3JeMEHTApPHBIMH. MHOXECTBO CJIOXHBIX
JaHHBIX 0003HAYNM CHMBOJOM Dg, MHOXECTBO 3JIEMCHTAPHBIX HAHHBIX — CHM-
BOJIOM Dp.

3. Onepannu Ha 3nemenTax 6a3bl JaHHLIX

OCHOBHBIMU ONEPAIMAMH Ha 3eMeHTaX 6a3bl NAHHEIX SBIISIOTCS CIIEAYIONIHE
OTepalMK: OTepalMs f usgleuenus 3HauUeHUA ' 0QHHO20, ONEPAUUS & SKCMpaKyuu
WA U3BAEUEHUA OAHHO20 U3 HEKOMOPO20 NOOMHONCECMEA OAHHBIX OICPALUS #
Koncmpykyuu Oannvix (5], omepanys © KonkameHayuu (COEIUHEHWS NAHHBIX), OTe-
pamMs ¢ 02paHuyeHH020 BbIYUMAHUA OHHBIX, OIEPALHA y U3MEHeHUA SHAUEHUA OaH-
Hozo [3, 4].

Onpenestenne 3.1. [lycte d=(n, v) — maHHOe, Tle n — UMS, a v — 3HAYCHHE
nannoro d. Torma
B(n,v) = ».

Onepauus M3BJCYEHUS 3HAYEHUS JAHHOTO f§ CTABHT B COOTBETCTBHE KaXIOMY
JAHHOMY €0 3HAYCHHE. BBINOJIHUMOCTb ONMEpaliK H3BJICYCHHUS 3HAYEHWS TapaHTH-
pyeT noctyjaT Pl, 01HO3HAYHOCTh ONEpalyH ciaeayeT u3 ciaedctsust 2.1. 3ameTim,
YTO pE3YJABTAT ONEPAlMKM HM3BJICUEHUS 3HAYEHHs, BOOOLIE TOBOps, HE JAHHOE, a
3NEMEHTAPHOE 3HAYEHHE WJIM NOCIEA0BATEIBHOCTE HaHHKX. Hanpumep, momycruM,
yt0 nammbte d;=(usMepense 3,1.05) u dp=(koopauHaTel TouKM @, {(koopamHaTa
x,3.5), (xoopamumarta y, 5.0))). Torma f(d)=1,5; B(dy)=((xoopmunarta x,3.5),
(xoopauHaTa y, 5,0)). -

Onepanuust § 3KCTPAHUMM WJIM U3BJICYEHHS JIAHHOIO M3 HEKOTOPOTO IMOJMHO-
JKECTBA OAHHBIX 6a3bl JAHHBIX ITO3BOJISET HOJYMHTbh HaHHoe d=(n,v), eCnM HaM
M3BECTHO MMSL 3TOTO JAHHOTO M MM [IOAMHOXKECTBA JAHHBIX, JJIEMCHTOM KOTOPOTO
sBJsieTcs maHHoe d. Onepammst § 3aBHCHT OT J(ByX apTYMEHTOB: IIEPBBIM apryMeH-
TOM SIBJIAETCS MMA # OAHHOTO d, BTOPLIM apryMEHTOM — HMs TIOJMHOXecTBa X.

Onpepenenne 3.2, [Tycts n — uMa naHuoro d=(n, v), X — uUMs NOIMHOXKECTBA
JAaHHBIX 6a3bl JaHHBIX, KOTOPOMY NpuHAIIEXUT AaHHoe d. Toraa

é(n, X) = (n, v).

Onepauust § ornpefesieHa HAa OCHOBaHMM mocTyjlaTa Pl, oIHO3HavYHOCTbL omepaunn
crenyer u3 cnencreud 2.1. Ilycte X 6yneT MMeHEM MHOXECTBA BEKTODOB 6; =

“(BCK 1, <(x1, D, (y:, 2)>) 32—(BCK 2, <(x2, 3), (32, L. 5))) 63=(BeK 3, <(x3, 5), (s,
2.5))), MMeHA 3THX BEKTOPOB COOTBETCTBEHHO Bek 1, Bek 2, Bek 3, 3HAUCHHAMH
ABJIAIOTCS IOCTIEI0BATENPHOCTH JaHHBIX {(X;, 1), (¥, 2)) {(x35 3), (¥a, 1.5)), {(x3, 5),
(¥1. 2.5)) THe x; ¥ y;-MMeHa KOMIOHEHT BeKTopa Bek;, i=1,2,3. Toraa

6 (sexk 1, X):(BCK L, ((x1, 1), (31, 2)))
d (Bex 2, X)=(Bex 2, (X3, 3), (32, 1.5)))
8.(Bex 3, X)=(Bex 3, {(x3, 5), (ys, 2.5))).
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Cynepnozunus onepauyi 3KCTPAaKUMM U M3BJECUCHMS 3HAYEHUS NAHHOTO HAET
BO3MOXHOCTh IIOJIYYATh 3Ha4Y€HHE JIFOOOr0o JaHHOrO M3 JroDOro MHOXeCTBa [IaH-
HbIX. JIJIsT ONMCAaHHOTO BBILE IPHMepa MBI NOJIyYaeM 3Ha4€HWsl NAaHHBIX NPHHAA-
JleXalMX MHOXECTBY JaHHBIX C HMEHEM X:

B8 (mex 1, X)) = {(x1, 1), 0, 2))
B(8(Bex 2, X)) = {(x2, 3), (2, 1.5))
B (6 (ex 3, X)) = (x5, 5), (y5, 2.5))
Bx,, )=18(x,2)=2,8(x,3)=3,(2.1.5=15u 1. 1.

OnpenennM onepaiuu, MO3BOJAIOLME CO3aBaTh HOBBIE INAHHBIE U3 3JeMEH-
TOB MHOXECTBA NaHHBIX D: onepauuio @ COeIUHCHWS [AHHBIX (KOHKaTEeHAIMM),
ONEPAlMI0 ¥ KOHCTPYKIMH JAHHBIX M ONEPALMI0 [/ — OTPAHHYCHHOTO BBHIYMTA-
HUs JAHHBIX.

Onpeneaenne 3.3. Ecnu dy=(n,, v)) u dpy=(n,,v5), TO

(ny-ng, {v1,05)) A dy, dy€Ds
(ny - ny, dy, dy)) nna dy, dy€Dg
(ny-ny, vy, dyy)- mas d,€Ds, dy€Dg
(1, - ny, {dy, vp)) mns dy€Dg,dr€Ds.

BrimonsuMoCTh onepanyn © rapantapylot nocryiarsl P3, P7, P10 u P11, oamxos-
HAaYHOCTH Omepauuu caexyeT w3 cneactsus 2.1. U3 mocrynatoB P7-—P10 cnenyer,
4TO pe3yJIbTATOM oOllepalldd O sB/sieTcs HaHHoe. Omepanus © aCCOLUATHBHA.

IMpuBenéM npuMepHl omepauud coeluHeHHMs AaHubix. Ilycrs Aanuble d)=
=(x,2) u dy=(y,3) GynoyT 3jicMeHTapHbLIMH JaHHBIMH. B pe3ynbrare CoequHEHHS
JaHHBIX d; ¥ dy MBI TIOJIyYMM HEKOTOphIf Bektop d=(x-y,{(x,2),(y,3))), rnme
X My — WMEHa, a 2 U 3 — 3HAYeHHA KOMIOHEHT 3Toro BekTopa. IlycTes maHHbIE
(ceplm 1’ <(H3MCPCHHC la <(X1, 1)’ (}’1, 3)’ (Zli 5)>)9 (H3Mepe1me 2’ <(x2’ 1): (y2’ 5),
(2, 8))))) m (cepust 2, ((mameperme 3, ((x3;2), (s, 4), (23, 8))), (M3mepenue 4,
<(X4, 3)’ (y4’ 1), (Z49 7)>)’ (H3MepeHKe 5: <(x57 4)’ (y5a 8)’ (253 1)>)> — IOBYMCPHBIC
MaTpUIpl, YHCIO CTPOK IIEPBOM MaTpHLIBI — ABA, BTOpoi — Tpu. Ha3oBEM
pe3ynbTaT COeAMHEHH HMMEH «cepHd 1» « «cepus 2» MMeHeM «CepHs WU3MepeHHit»,
T. €. «cepus 1» H «cepHst 2»=«cepus H3MepeHul». Torma B pe3ynbTaTe KOHKaTe-
HAU¥M MBI TIOJIyYMM JaHHOe (Cepyis M3MEpeHMI,

((m3mepenne 1,{(x;, 1), (1, 3), (21, 5))),
(m3mepenwe 2, ((x,, 1), (72, 5), (22, 8))),
(m3mepenme 3, ((x3, 2), (Vs, 4), (23, 8))),
(m3mepenne 4, (x4, 3), (¥4, 1), (24, 7))),
(m3meperme 5, (x5, 4), (¥s, 8), (z5, DY),

KOTOpOe npelAcTaBisieT co0OM MAaTpHlly, COCTOALIYIO M3 IIATH CTPOK.

ledz =

Onpenenemue 3.4. Ecm dy=(n,,v) u dy=(n,, v,), TO
dy % dy = (4 0y, (dy, dy)).
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BBIMONIHMMOCTD ONEpPALMU ¥ TapaHTHPYIOT moctynater PS5, P10 u P11, ogHo3Hau-
Hocts — ciiencTBue 2.1. IlpeamonoxuM, 4To B 6a3e HAHHBIX XPaHSATCS MATPHIIHL
SABIAFOILIMECS BXOOHBIMH M BBIXOJHBIMHU HU3M PEHUSIMH HEKOTOPOIO IKCIIEPUMEHTA.
VIMeHa 9THX MATpPHI[ COOTBETCTBEHHO — «BXOAHBIE U3MEPEHUS» H «BBIXOIHBIE U3-
M peHusi». B pe3ynbraTe omepauuy KOHCTPYKIMH AAHHBIX MBI TMOJYYHM JaHHOE,
MMs. KOTOPOTO — «BXOJHBIE H3MEPEHHA 3 BBIXOJHBIC H3M2PEHUS», a 3HAYCHHE —
HOCJIeAOBATEJIEHOCTh MATPHI] BXOJHBIX M BBIXOAHBIX HM3M-peHHH. MHOTOKpaTHOE
NpAMZHEHHE ONEPAMH KOHKATEHAIHWH M KOHCTPYKUHMH K 3jeMeHTaM 0a3bl JaHHBIX
JejaeT BO3MOXHBIM CO3JAHWE HOBBIX MHOXECTB HaHHBIX. MHOXECTBO IaHHBIX
MOXHO HHTEPIPETHPOBATH KAaK NAHHOE, 3HAYCHHEM KOTOPOTO SIBJIAETCA MOCIIEHO-
BATEJBHOCTH 3JIEMEHTOB 3TOro MHOXecTBa. Omepaiys KOHCTPYKIMH COXpPaHSeT
OTHOLICHHE HpPeALIECTBOBAHMS.

Onepanueir 0OpaTHON OTHOCUTENHHO ONEpalldl KOHCTPYKIHH SBJIAETCS OTe-
pauyst OTpaHMYEeHHOTO BhIYHTAaHHS ¢ . Ilepen onpenesieHHeM 3TOl onepanuy BBeAEM

K

MOHSTHE OTHOIICHHA HEMOCPEJCTBEHHOTO IpPEHIECTBOBAHHS ~.
* *
Onpenenerne 3.5. d)<d,ody<d,A~3A(d){d,<dNd<d,} wnanpamep, ecmm

* *
d=(n,{d,, dy)), 10 dy<d n dy<d.
Telephs MOXHO ONPEHETHTH ONMEPALMI OFPAHHYEHHOTO BBHIYMTAHMSA IAHHBIX:

Onpenenenne 3.6. Ecna d=(n,v),v={d,, d, ..., d,ynd;=(n;, v),i=1,2, ..., n, 10
dzdl = (n/ni’ <d1, d21~--, di—l, di+la ey dn>)
3aMeTHM, YTO OMEepalst ¢ OMpefeNieHa He A BCeX [ap AAHHBIX, 8 TOIbKO s
*

Takux map dy,d;, OIS KOTOPHIX BBHIMOJHEHO YCIOBUE d;~dj,. BHIMONIHAMOCTL M
OAHO3HAYHOCTDL ONepanii rapaHTUpYIoT nocryaatel P1, P2, P7, P11 u P9. IToka-
*eM [ HCTBHE ONepaluy ¢ Ha AAHHBIX M3 MpeAsiaylero npuMepa. Iycts uMenamMn
JAHHBIX d, d; ¥ dy 6yIyT COOTBETCTBEHHO HMEHA «BXOMHBIE M3MEPEHHST 3 BHIXOJ-
Hble H3M2PEHHsD», «BXOAHbIE H3MEPEHUI», «BbIXOOHBE K3MepeHus». Toraa pesyiib-
TaThl onepanuu d7d, Gymer naHHOe d,, MMs KOTOPOIO «BXOMHBIE H3MEPEHHS»
a 3HaYeHUe — MATPMLA 3HAa4eHMH BXOIHBIX M3MepeHMit. Onepaiust ¢ sBIseTCS
M30GBITOYHOI omepanueil, NaHHOE d), MOXeT OBITH MOJNYUeHO U3 HAHHOTO d IpPH Io-
MOIIM OTNlepallii SKCTPaKUMK. Booblre, kKax/Ioe JaHHOE MOJIYYEHHOE IIPH MOMOIIH
onepalyy OrpPaHUYeHHOTO BBIYMTAHWSA MOXeT OBITh TOJYYEHO TpH MOMOIIH Cy-
MEPHO3UIHM ONEPAIUM SKCTPAKIWH, KOHCTPYKIUH U KOHKATEHANMH. DTa Omepalds
BBE/IEHA TOJILKO Ui yaoOcTBa mojb3oBaTelsiss. Omepanusi y U3MEHEHWS 3HAYCHHS
JAHHOTO MpHUCBaMBaeT AaHHOMY d=(n,v) HOBOe 3HAYCHHE V.

Onpenenienne 3.7. Ecmn (n,v)€D u 0,V TO
Y((n7 U), Ul) = (n’ vl)‘

Onepanust M3MEHEHHMST 3HAYEHHSl MOXET H3MEHHTb CTPYKTYpY 6a3bl OaHHBIX.
YUto6sl 3TOr0 U30ekaTh, MOXHO MOTPeOOBaTh, YTOOGHI CTApOE M HOBOE 3HAYECHHS
OB OAMHAKOBBHI B CTPYKTYPHOM OTHOILEHHH, B Cilyyae, Koraa o6a 3HAYEeHHS olpe-
nenenbl. ITocrynaret P1—P14 He mpenycMaTpuBaroT cilyyasi, KOTJA 3HAYCHME HaH-
Horo He ompeneneHo. Ho Takas curyanus MoxeT AMeTh MecTo. Hanpumep, mo1b30-

6 Acta Cybérnetica Vi4
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BaTeNlb BBOAMT B 6a3y JaHHbIX AMEHA MaTpHH, HHPOPMAIMIO OTHOCHTENLHO YUC/IA
¢Tpok ¥ cron6mos. CucreMa ynpasieHHs 0a30# JaHHBIX pe3epBHPYET MECTO IJIA
3andcH 3HaveHuid. Jlo MOMeHTa BBejieHMA JaHHOTO B 0a3y AaHHLIX, 3HAYeHHe AaH-
HOro He ompejesieHo. UTOObI YYECTh 3Ty CHTYalHIO JOMYCTHM CYLIECTBOBaHHME Bbl-
JeNneHHOro 3JjieMeHTa @ MHoOXecTBa 3HadeHMH V.

P15 o¢V.

Ecnu f(n)=&, TO 3HaYeHHe NAHHOTO HE OmpejesieHo. Pesyabrat omepauuit
KOHKATCHAUMM ¥ KOHCTPYKIMY IS Ciy4as, KOTAA 3HAYSHWE OAHOIO U3 apryMeHTOB
He OmpelencHo, ompenensaioT Gopmyasr (3.1)—(3.2)

(n1, v)) 0 (ny, D) = (ny, D)0 (ny, vy) = (N1, vy) 3.1)
(ny, v) E*: (n2, @) = (ny, D) @ (11, vy) = (04, v9) 3.2)

Pe3ynbTaTOM KOHKaTEHAWH WM KOHCTPYKIMH JI060ro JaHHOIO d ¢ JaHHBIM, 3Ha-
YeHUE KOTOPOTO He ONpelejieHO, ABJETCS AaHHOEe d, CeoBaTeNIbHO NaHHOe, 3Ha-
YeHHEe KOTOPOTO He ONpedeNieHO ABAAETCS HE HTPAJILHBIM 3JI€ MEHTOM OTHOCHTEIBLHO
omepanyii KOHKaTeHALMH M KOHCTPYKIHM. YacTHBIM Clly4aeM OIepaldd HM3MeHe-
HAS 3HAYEeHHs SIBJIAETCA ONEPALUA NpUCausanua 3HaueHuA JAHHBIM y*. Onepanus
y* omnpenensiercs popMmynaoi

y*(n, ®), ) = (n, v). (3.3)

B pesynbTaTte omepanWHM NpHCBaWBaHWSA 3HAYEHHS 3HAYEHHE NAHHOTO CTAHOBHUTCH
ONpPEEAEHHBIM.

4. YlpakTnyeckoe mpumeHeHne

Cucrema 6a3bl JaHHBIX, YAOBJeTBOpsioniast nocrynataM P1—P1S 6buia pas-
paboTaHa MJis ClENMAJNbHOH 3aJa4H: MHOTOCTENEHHOTO 3KCMEPHMEHTa (MHOIOCTE-
neHHOH HaeHTHGHKAUMH 00BbekTa). OTIHYATEILHON YepTO 6a3bl AAHHBIX IJ1 MHO-
TFOCTENEHHOr0 3KCHEPHMEHTA SBJIAETCI €€ TUHAMMYECKHH XapaKTep: YHCIO NAHHBIX
B 0a3e JaHHBIX ITOCTOSHHO BO3pacTaeT [l, 2]. DkcriepyMeHTaTOPY MOXET IOHAJO-
‘6UTbCS MAaTpHILIa U3MEPEHHUH, IPOBOAWMBIX B PA3HOE BPeMs H 3alIHCAHHBIX B Pa3HBIX
¢du3ndecknx o6JacTsX, 3Ty MOTPeGHOCTL YAOBIETBOPSIOT ONEPALMH KOHKATEHANMMU
M KOHCTPYKIMH. DKCIIEPHMEHTATOPY MOXeT NOHaJOOHTLCS TOJIBKO YaCTb MATPHIILL
BXOJHBIX (MJIM BBHIXOAHBIX) H3MEPEHUH, 3T0 Tpt DOBaHAE BBHIMONHAETCSA NPH MOMOLIH
oliepaiMH OTPRHMYEHHOTO BBIYMTAHMA HIIH CYIEPIO3HIMH ONepauuii SKCTPaKIHH
M KOHCTPYKIMH. 3aMeTHM, YTO OHepauys OrPpaHUueHHOrO BEIYMTaHHs GbLIa BBecHA
TOMBKO 1151 yIo6cTBa nmoab3opaTend. CucreMa Ynpasienus Baszoit Jaunwix (CYB]I)
pe3epBUpYET MECTO IJIA JaHHBIX HOJb30BaTeNs W COHEPKUT NPOUELYPHI, ABJISIO-
IHeCS peajin3alusiMU TIEPEUYHCIIEHHBIX OTePALIHii.

HocTtyn 10 6a3pl JaHHBIX U ONepallMy Ha JAHHBIX H MHOXECTBAaX JaHHBIX pealid-
syer S3px ManmnysiupoBauns JawabiMu (IMMO). Mucrpykmun SAMI MoxHO
mofenTh Ha nBe rpynmbl: HAcTpykunm Tuna WRITE ocyuiecTBasgiolne 3amuch
mHbopManwu B 6a3y JaHHBIX M HMHCTpykuum tHna READ, ocyuiecTeisrolie BBe-
nenve wHbOpMAaNuy, HaxonmAuKiica B 0a3e NAaHHBIX, B OMEPATHUBHYIO HaMsaATh [4].
Hncrpykuur TEHma WRITE sBILTIOTCS peand3alldsMM ONEpALHi NPHCBAMBAHUS
3HaYeHHs IJAHHBIM M WM3MEHCHUS 3HaucHHMs JaHHbIX. WMucTpykumu tuna READ
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peaiu3yIoT ONepalMi U3BJICHEHMs] 3HA4YEHWSA NAHHOIO, CYHEPNO3HLIUIO OIepaiuii
9KCTPAKIHH M W3BJICYEHHE 3HAYEHHS, OMEPALMM KOHKATEHAIMH, KOHCTPYKIHH, Or-
PAHWYEHHOTO BBLIYMTAHWS M CYNEPNO3HUOWH 3THX ornepanuii. OnucaHuble onepanun
rapaHTHPYIOT He3aBUCHMOCTh HaHHbIX. [Tosb3oBaTeNbs MOJIKEH 3HATH TOJLKO HMs
JAHHOTO M MMS MHOXECTBa, KOTOPOMY NPHHAJICKHT 3TO HaHHOe, (u3HuecKas
opraumn3anusi 6a3bl JAHHBIX W (hU3HUECKHE ajpeca NAHHBIX T0JB30BATEJI0 HEU3-
BECTHBI.

OnucanHas cucTteMa 0a3bl JAHHBIX SABJIACTCA OCHCTBYIOLICH CHCTEMOM, OHa
BHeapena B JlaGopatopun Texuuueckoit Mexanuku BpoIUIaBCKOTO TONMTEXHHYEC-
koro wHcTHTYTa HAa OBM ODRA-1325.

5. 3ak/mouHTE ILHbIE 3aMeYAHAS

[IpencraBiicHHBIE ONEpanMU HE UCUYEPNBIBAIOT BCEX ONEPALMiA, KOTOPHIE MOXKHO
NPOU3BOJUTE HA 3JIeMeHTax 0a3bl NaHHBIX. BaXHblif KJAaCC ONEpAlHii COCTABJAIOT
onepauyn BBIOOPKH NAHHBIX, BBHINOJHAIOLIME HEKOTOPOE JIOTHYECKOE YCJIOBHE, Ha-
IPHMeED, HYXHO BbIGpATh BCe M3MEPEHHs], 3HAYEHHS KOTOPHIX HAXOAATCA B ONpeae-
JIEHHOM HHTepBaJie ¥ T. 1. Jloruveckue yciuoBus OOBIMHO 3aBHCAT OT KOHKPETHOIO
TpuMeHeHMs. B HaCTOAIEM COOBLICHHH ONEPALHH, PEallM3yIOLIMe BHIGOPKY AAHHBIX
MO 3aJaHHOMY KPHTEpHIO, He OOCYXOaloTCsl.

B 3aknrovyeHHe HECKOJLKO CJIOB O CPaBHEHHMH MPEACTABJIEHHON MoJAesd 0a3bl
JAHHBIX C pelsuMoOHHOM Mopeyibio Komma. M3sectHO, 4TO §a3bl AaHHBIX C OPEBO-
BHAHEIMUA M TPOCTHIMH CETEBBIMH CTPYKTYPaMH MOXHO IpeoOpa3oBaTh B peJis-
THOHHYFO 6a3y HaHHBIX (C HEKOTOPO# M3OBITOYHOCTHIO). 3aMETHM, YTO MPH TAKOM
npeo6pa3oBaHuK B 06lIeM Cllydae He COXpAHSeTCS OTHOLUeHHe nopsaaxa. HeTpyaHo
3aMETHTD, 4TO CYLIECTBYET K OOPATHBIA MEPEXOM OT PeNANMOHHON MoJeNH K ceTe-
BOj cTpykType. JeHCTBUTEIBHO, 3JIeMEHTAMH PESIHOHHON Ga3bl JAHHBIX SBISIIOT-
csi IBYMepHBbIe TaOJIMIEI, NTO3TOMY peJIAIUOHHBIE 0a3Bl IAHHBIX BBIMOJIHAKOT MOC-
Tyaathl P1—P14 npu wHTepnpeTanu OTHOLIEHUS (TAOJIMIBI) M CTPOKH TaOIIHIIBI
KaK CJIOXKHOTO JJAHHOTO W 2jieMeHTa Tabnuuel (4, g) roe A — ums atpubyra, g —
KOHKPETHOE 3HaueHue aTpUOyTa) XaK JaHHOTO 3jieMeHTapHoro. OCHOBHBIE Onepalnyu
PeNAUMOHHOM 0a3bl OAHHBIX. — 005e0UHeHUe OMHOWeHU U NPOeKyUA BBHIIIOJIHUMBI
B IpeACcTaBJIeHHOH Mojenu. Onepanus oObeauHeHWMs] OTHOILLIECHWH BBITOJIHSETCS
TIPH TMIOMOIUM ONEPAIHHA KOHKATEHAIIWH, ONEepauys MPOeXIUH — MPH MOMOIIM IKC-
Tpakiuu (ecIM HAaM HYX€H OJIHH CTOJ0EL OTHOLLUEHUS) WK XK€ TIPH MOMOILY CyNep-
TIO3HIMK OTEPAIHid SKCTPAKIMHM, KOHCTPYKIMH M KOHKATEHAIMH.

INpencraBieHnbie MOCTYIATH HEMPOTUBOPEYHMBLI, CYLIECTBYET IPOCTas HHTEp-
apeTanys 3THX IOCTYJATOB B TeOpuM MHOXecTs. IlpeacramieHHas Mogeib 6a3pl
JAHHBIX OOHO3HAYHA (Pe3yJIbTATHI ONepauuii OAHO3HAYHH), TIOJHA B TOM CMBbICTIE,
9TO NPHA NOMOILKM KOHEYHOrO YHCJIA ONepandii MoXeT OBITh IOJyYyeHO JrobGoe
3JIEMEHTAPHOE HWJIM CTPYKTYPHOE NaHHOE, 4 TakKkKe 3aMKHYTa. 3aMKHYTOCTh COCTOUT
B TOM, YTO Pe3yJbTaThl BCEX ONEpALWil HA 3JleMeHTaXx 0a3bl AAHHBIX NpUHAIIEKAT
6a3e IaHHBIX.

BPOLUUTABCKHI TNOJMTEXHAYECKUN UHCTUTYT
UHCTUTYT TEXHUYECKOV KUBEEPHETHUKU
JIABOPATOPUSL CUCTEM VIIPABJIEHUA

TIOJIBILA
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Onucanue 0JHOro KJjacca npenejbHbIX pacnpene.ﬂeﬂm‘i B
OJHOKAHAJIBHBIX NPHOPHTETHBIX CHCTEMAX

D.A. lannensan

1°. BypHOe pa3BUTHE BBIYMCIMTENIbHON TEXHHKH NPEABSABISET K COBPEMEHHON
TEOPHM MacCOBOro 00C/IyKMBaHHUS HOBBle TpeboBanus. leno B TOM, YTO MATEMATH-
YeCKHE MOMENHM IPOXOXAcHHs mporpaMMm Ha OBM sensrorcs rpyosiMu mpubim-
KEHMSAMH ¥ TIO3TOMY He MOTYT LEJIMKOM OIBICHIBATH PeajibHble IPOLECCH, BO3HU-
KaJoILUe IpH OBCITYKMBAHUY BHIYMCIUTENLHON TexHuKH. K ToMy Xe, TOUHBIE pe3yJib-
TATEI, TOJlydaeMble JAake MJIT IPOCTHIX CHCTEM, NMOPOH HACTOJNBKO CJIOXKHBI, 4YTO
YaCTO MAJIOMPHIOHHBI AJis NPAKTHYECKUX IPUMCHEHHH.

B TeopHy IPHOPHTETHBIX CUCTEM IOYTH BCE TOYHBIE Pe3YJIbTAThi MOJIYYaloTCA
B TepMuHax mpeobpasosanuii Jlanmaca—Cruntbeca (I1JIC). OmHako Ha npakTHke
yno6Hee onepapoBaTh UX 0OpALIEHASIMH, HOJLYYeHHE KOTOPHIX NIPEACTaBIeT co6oi
TPYAHYIO 3ajady.

Hacrosmas pabora mocesiieHa OOpPAIIEHHIO TOYHBIX (HOPMYJ I COBMECT-
HOTO TPeJeNIbHOTO PacIpee/IeHHs. BpEMEH OXUAAHHS B CIEAYIOLICH NTPHOPUTETHOM
MOZeNM. -

2°, B OJHOKAHANBHYIO CHCTEMY MAacCOBOTO OOCIyXHMBaHUA C OXHIAHHUEM
MOCTYNAIOT HE3ABACHMBIE IIyaCCOHOBCKHME HOTOKM 1-BBI3OBOB, ..., F-BbI30BOB. Ilpu
pukcupoBanusix Gyukomsax pacnpepesienns (PP) mmmrenbHOCTEH 00CTyKHUBAHUS
¢ KOHEYHBEIMH TEPBBIMH ABYMsI MoMeHTamu, B TepMuHax [1JIC B ycnoBHAX KPUTH-
vyeckoil 3arpy3ku B [1] monyyeH Knacc IpeAesbHBIX paclpeneieHuit IJI BEKTOpa
CTALMOHAPHBIX BpeMeH OXHUIAHUS B CILyYae JUCIUILTUH aOCOIIOTHOTO M OTHOCUTEIb-
Horo mpuoputera. PabGore [1] mpemiuectBoBamm paGotsl [2, 3).

B [1] Bompoc o6paleHHsi MHOTOMEPHBIX INPENEJIbHBIX pAcTpelesicHuil pelieH
MIOJIHOCTBIO JIMIUb NpH r=3.

Mycts wi(i=1, r)-crannonapHoe BpeMsA OXHUOAHHs [-BBI30BAa, @;;-3arpy3Ka
cucreMbl 1, i-Bbi3oBaMH (1-BBI3OBAMY, ..., i-BBI30BaMW) M CYILECTBYIOT IpEAEIIbL:

¢; =lm ¢;(¢; = 0i/0i-1, 0; = 101, 0o = 1).
e, il

W3 WHOEKCOB 1, r BHIZENSEM Te M TONBKO Te 1=p,(=p)<py<...<p,=r,
LIS KOTOPHIX &, =0 (i=1, m), 1 pa30o6beM NOTOKHK Ha rpynmbl Pi={j: pi1=j<pi},
Pm+1: {.] .]>pm}
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Torna [1} cyuiecrsyeT mpemen (g,441)
limP {w} < x;(j = 1,7) = ]] lim P{w; < x;(jE€PL}, - ¢

rae wi=w; (JEP), wi=w;/Mw; (j§¢ P,), M-3HaK MaTeMaTHYeCKOrO OXHIAHWs, a
npenesLHoe pacnpenenelme OMIHO M TO e I OVCHMIIMH OTHOCHTESILHOTO M a6-
COJIFOTHOTO TIPHOPHTETA.

Hacrosuas pa6orta mocBAlIeHa OMHCAHHIO TIPOLEAYPHI TIOJLYYeHUS NPEAETbHBIX
pacmpefieNieHuit rpynn P; (i=2) u ocHoBaHa Ha ToM, 4To B [1] lim P{w} <x;(j€P))}
3aBUCHT TOJIBKO OT KOHCTAHT C; TPymmbl P;.

3°. B cujly BBIIIECKA3aHHOTO, C LEJAbK0 HaXOXAeHNs [1] mpenaraeTcs H3Y4HTh
cnyvaii. TACOUILIAHB! aOCOJIIOTHOTO NPHOPUTETA C J00OCHYKHBAHUEM M YIIPOCTUTH
CACTEMY M3MEHEHHSIMH HAYaJbHBIX JaHHBIX, COXPAHAIOWMMH B Npe/ierie HEU3MEH-
HBIMH OTHOUIEHMS «HEAOTPY30K» C; IJsl JAHHOM TpYIIILL

IIycts rpynma ¢uMKCHpOBaHA M COJEPXKHUT K IMOTOKOB C KOHCTaHTaMH &;=0,
¢y >0, ..., ¢,>0. Ilporpamma ympollenuit TakoBa.

1. TIprpaBHATh HYJIO HapaMeTPHL NOTOKOB M3 INOCACAYIOLIMX I'DYIIIL

2. [MoToku MpeAbIAYILIMX IPYIN OOBSIMHUTE C IIEPBBIM IIOTOKOM Hallieil Tpym-
bl ¥ CYATATH nemeM TIOTOKOM Hallleil IPYMIIbI, YTO He MeHSeT KOHCTAHTHI HalIeH
TPYIIBL

3. }Inmenbuoc*m obciyxuBaHMs BCeX BBI30BOB CUHTATH MOKa3aTeJILHO pac-
TipeIeJIEHHBIMA C €OUHUYHBIM NIapaMeTpOM.

4. Tlonoxurts

a; = (G;_16)e(e = 1,6 = Cp...Ci, i= 2, k; 0 = 1—ay),

' IOe g;-mapaMeTp i-ro MOTOKZ Hallell IPyNmbL.
Toraa mpefesl OTHOLIEHHH «HemOrpy3ok» paseH (o40)

lim (I—O'i)/(l—a'i_l) = Ei (G’i = a1+...+di, i = 1, k, O-O = 0, g = O-k)-
H3yunM mosiyueHHYI0 TIPHOPHTETHYIO CHCTEMY.

4. Tlycts pi(n) (n=(ny, .. nk)) CTaUHOHAPHASL BEPOSITHOCTh HANUYMUS B CHC-
TeMe B MOMEHT ¢ n; 1-BBI30BOB, ..., 1, A-BLI30BOB;

P(2)= 2 p(m)zit...zx z=(z1, ..., z).
BBéneHreM OIOJHHTEILHOTO COOBITUS BBIBOIWM

P(D{o—azli+1—z"} = (11— Uk)(l—zk D+ Z' P02 (=277, (D)

roe

[a—-az]{ = zl'(am_amzm)s (sz) = (O’ ] 05 Zjg1s oo Zr).
m=i —— -
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U3 (2) naxommuM (zi=(z;, ..., z)) ypasHerue
i
Pk(ztiz)‘{o'i(l‘zi)“'[a—az] 11—z} -~ Pk(oz) (Z»+1 )= .
k-1

=(-o0(-z0+ 2 P02,

npaBas 4acTh KOTOPOTO HE 3aBHCHT OT Zz;. HOJ_ICTaBJIﬂeM eTO B JICBYIO 4aCTb

2= @ = Qo) {o;+1+[a—azlf,,— V(o +1+[a— aZ] Fi)?—4ay),

OTKyJa cieayeT ypaBHeHne st P(0 z), xoropoe mo3BONAET U3 (2) BHIMMCIUTH
Py (2):
(z—DA—00) *=' z,—0u

P.(2) = . 3
+(2) z(o—az+1)—1 ;21 Zj41—Qu )
M3 (3) sruiTekaeT dpopmyna (j=1,k—1)
Pele) = Rint. 5700 p ey @
’ R;  zj1—; J , .

e : .

5°. B panoueiimeM BexTop (-, ..., -,) 0b603HadaeTCs .
TonoxuMm (i=1, k; 5;,=0):

i ' .
@0 (3) = Mexp{— s Wi}, w(3) = Mexp{— Zsjwj},
. j=i

i=1

IJie W;-yCIOBHOE CTALHOHADHOE BPEMs OXHMIAHHs [-BHI30BA HPH YCIOBHHM IIPEK-
pAILIEHNs ¢ MOMEHTA €€ OTCYeTa MMOCTYILUICHUH, a w; -6e3ycnonnoe

ScHo, uto (i=1, k; 5;=0):

k ‘g N » »
@i (3) = Mexp{ {')W - 2 st} (W_i“wjﬂ)}: Py (uiu) ga’kt(g{'}),

J=i+1
rae
sW=g4 .. s, u; = (1458,
B cuny (4) . o '
@ (3;) = Ti(ﬁm) T (5{'}) * D418 +1)s &)
i (]

T 1 (§{i}) = Ri+ 2 (’7;‘+1)/ R (ﬁi),
T, (E{i} ) = (ui — @i (H; 4 1))/ (“i +1— Pui(i; 4 1))

Moxuo moka3ats, uro (i=1,k; 5;=0) 0,()=0u), tme oy, ...,q 3a-
HAFOTCA PEKYPPEHTHO

oy = s t+0ay, o = yl(--'(yi—l(si+y?(+1)-'-), Yis1 =0, yi= Yi+1(si+Y?+1)-
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3nech

yi(s) = s—i—-;;_—{ai—s—l-i— V(s+ai+1)2—$;}.
i

Torma Ha ocHOBe (5) momydaeM (j=1,4k—1)
wkj(s'j) = Tl(&j)'TZ(&j)wkj+1(§j+l)- ©)

6°. Jlnst BoIYACIEHHA Npefenos lim P{wj/ij<xj(j=rE)} BBOOMM O0GO3Ha-
yeuns (a€ (0, 1); j=2, k):

. 1 1
A1) = I/ 7 =5 4() = ar+(1—a)A (), s ] = s,

wit = 5, + w2, Wit = &1 d(sF+v;41), wh+1 = Q, w; = wiit —wl+1
rae v, (m=3,k) onpeneisIOTCA PEKYPPEHTHO

Uy = Em-lAEm-l(s::"‘Umu), V41 =0.
ITonaras sf=s;/Mw;, npousseneM upu {0 BeKIagku (i=1,k; j =2, k;
siEO): )

Mwy ~@71, Mw; ~ (&;-1-C;09)7,

J’7+1(§j+1) = 51?-192”,'“(1 +09(1)), of = “j(g}‘) = QW(j)(1+09(1)),

k
D0+ =~ g fen+ W= 3 (6 1= epw)(1-+0,(1).
' d=k+1

. IIpuBeneHHBIE ACHMOTOTHYECKHE COOTHOLIEHHS IMO3BOJIIOT YCTAHOBHTH CY-
wecTBoBaHme mpenestoB: lim T;(a¥) (j=1, 2), mpuyem

52

w‘i+1’+(c”i/2)+1/qi+c—i
7.

WO+@/2) + Vet @D

1&9 T (o) To(e) = L3, (N

rae

k
= 2 51—1(1—5j)'wm-
j=it+1

Haxonen, ob6o3naune oy (5;)=lim w,;(37), monyuaem
d)kj(sj) = Ij(gj)'@kjﬂ(sju)-
TakuM o06pa3oM, BONpPOC MOJIY4eHHS TMPEAETBHOTO PACHpENeNIeHHsI TPYMHbI

cBoAMTCS K Bompocy obpawennst dymkumit 7;(3;) (j=1, k), Bemmcannoro B (7)
B TepMHHAX BenuuunH whl,
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7°. Mpousseas nmepeobo3HayeHUs

{+1) ~2 (i _ ypli+1}
, w ¢i 1 _ W w
rj = 5]. sV = Jé-}z (1—Cj), Hi = —T_—s
nojy4aeMm
L= [ ew=dCi(x), ®)
[1]
rae

Ci(x) = exp{—x(ki+%+ I/ j§1v12j+%]}.

Bocnonb3zobabikcs GopMysioit obpawienus (23.91) u3 [4]

e~ wn = f e~ # ¥ (u, v)dv, ¥(u,v) = ad

0 ZUVE

exp (— u?/4v),

HMEEM

bt k—1 1
Cix) = e=4% [ e—xIZexp{—(Z v,.,l,.+z] u} W (x, v) dv,
0 j=i

YTO NyTeM IpeoOpa3oBaHMl CBOUUTCA K MHOIFOMEPHOMY MHTETpasLy

oo oo k—1 v—x
Ci(x) = v,.-lf...f exp{— > ljtj}x(ti =x)d,,...d, fe” 5}
0 0 J=i

[E—
ki

¥ (x,vi*(0=x)x(v;  _min (vj't;) >v—x)dv},

i+1sj<k-+1
rae
( Lu=v,
Z Uu=>"v)=
) 0, u=nv.

Toacrasnas mocnennee Boipaxenue 1 C;(X) B npaByro yacTh (8), mocne 3a-
MeH !]=t;-+x, ;_1X=1%/_; C WCIOJbL30BAHHEM DABEHCTBA ¢&; A,_;=g;+4;, moiy-
4aeM :
»

S’ je=i—1
k—i+ =t

~ o~ k-1
L=[..[ eXP{_ > ajzjﬂ}d,i...d,;p(z,.),
1
roe
1 e -1 Citi v = -1 : -1
(1) Z‘f. Vi X\~ Y(Cit;s vi U)X(Vi‘.+fzfg}15k(vj-1tj)>U)dv'
0 i ==

IMpousseneno oGpaiwuenue I; mpu ycnosuu, yro napamerpamu IIJIC cnyxat
BEJMUHHDI A; (=1, k).
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8°. Obparum I;, cuutas mapamerpamua IIJIC v; (j=i+2, k).

d,..d, = —vi‘l{exp [- t‘;‘;l]dtiﬂ}.

K Vs
{d,[e-Cam Y (Et;, Vi_lti“)]}'{ II,4, [X (tj - I‘vaj_l]]}'
j=ite i

ITocsie HECJIOXHBIX NPeoOpa30BaHHUIl HAXOAUM

I, = f f exp {— Zs}‘_lzj}exp{— Z'vjz]}tbl(i,-)dz,-... dz,,
0 0 J=i U =i

raoe

x+y Wiy
+ V-
o (Z)=¢ 41* [ e‘"a 2 ]]e vi (y'l,zj)].
x=0 y

Vi

d, {e—m DY (@x, vt )}y dy.
9°, Tak xak ‘

/ 1 1 _ - -
V; = ﬂj—l'(sf+vj+1)+'}’j—1'{l/ s}(+vj+1+z_5} (Yj = cj(l_cj)s ﬁj = Cf),

TO
k o o« k
expy— D v;z;r = [ ...] ex v.t-_}tp 2, 1)), A
p{ ,é:“} Sl p{,-%l“‘ (1) ©)
[S——
k—i+1
k
exp {—jZ (tj+ﬂj_lzj)sf} d,...d,,
=1
rae
- k —t-(zjﬂ _1+1)+'yj_,z,
Dy (2, 1) = J[e VT4 2 W(o1z, 1.

j=i

B cuny (9) mpocto mpoBepsieTcs, 4TO

k k
exp {— 2”;2;} Mexp{ 2 }*W}(E,-)},
U= i
rie BEKTOP-TIPOLECC _ _ ‘
Wi(Zi) =(Wil(2i): ey Wl:(Zi))

OIpeAeIISIETCS. PEKYPPEHTHO CleAyIomuM 06pazom
Wi(Z) = (0, Wi (YO () + Ei(2) + Y (2)
3neck Wiyi(iivl) HE 3aBH(;HT ot Wi(z),
N - Ei(zi) = (ﬁi—lzif vy Br-121),
Yi(2) = (FO@), K@) @0E) = TG, ..., YiaG)

UMeeT TIOTHOCTh Py(Z;, 1))
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Mocnennee BiieyeT 32 coOOH cleAYIOLLYIO DEKYPPEHTHYIO CBA3b

X ~By 1 2,0 had et
AJ(ZJ; 551) = f dtk f ...f AI+1(tJ; ey tk—'l; Xis ...,xk_.l)
. t=0 0 0
Kl .
By(2,; 1) dty ... dty s,
roe .
A ) = PW(E) < 7},

OTKyJda BBIBOOAUM

= f f exp{—Zs}‘_lzj}dia(f,-)dz,....dz
0 0 j=i
3nech

B (2) = [ ... [ ®(E=Fdy,... d, Ai(Z— 5 %),
0 0

ITpouenypa obpauenus TIOJIHOCTHIO OGPHCOBAHA.

Description of a class of limit distributions in single server priority queues -

- E. A. DANIELIAN

1In a single server queuing system with waiting room r streams of customers are arriving. It is
supposed that the first two moments of the serving distribution functions are finite.

Let w;(i=1,r) be the stationary waiting time of the i-th stream’s customers, and g, be
the traffic intensity of customers of the first 7 streams.

It is known that in the case of FIFO and LIFO priority disciplines and ¢,,11 the joint distri-
bution function of w; (z-—l r) under some normalization has a limit, which is found in terms of a
multidimensional Laplace—Stiltjes transform.

In the paper a procedure for finding the corresponding multidimensional distribution function
is described.
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Definition of global properties of distributed computer systems
by the analysis of system components method

By J. R. Just

1. Introduction

A distributed computer system (abbr. DCS) consists of a number of distinct and
logically connected communicating asynchronous sequential processes. A task reali-
zation in a DCS is the result of these process activities. During the task realization
a user of a system creates a virtual network of processes. The virtual network of
processes consists of a set of logically connected coprocesses. Each of the coprocesses
for a given virtual process is executed in another processor of a DCS.

To gain a theoretical understanding of such systems, it is necessary to find a
mathematical model which reflects essential features of these systems while abstract-
ing irrelevant details away. Such the model allows problems to te stated precisely
and make them amenable to mathematical analysis.

In the papers Just [3, 4] it has been introduced a mathematical model of a dis-
tributed computer system and a mathematical model of their input/output behaviour.
We use the concept process as a basic unit in our description of a DCS, and by a
mathematical model of the process we shall mean a finite-control (FC-) algorithm
of MAZURKIEWICZ, PAWLAK [5]. Formally, our model is based on a notion of so
called vector of coroutines. This notion has been introduced by Janickr [I, 2], in
order to describe the semantics of programs with coroutines.

The main purpose of this paper is to define the global properties of distributed
computer systems by the analysis of system components (coprocesses). We would
like to answer the following questions. What can we say about all possible behaviours
of the whole system, if we only know the local behaviour of all particular components
of a DCS? Is it possible to analyse each component independently, and then to
assemble all local properties in order to get the global semantics of the virtual proc-
ess executed in a DCS?

To solve these problems, we extend the theory in JusT [4), and adapt some ele-
ments of the theory from Jawickr [1}.
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2. The model of a distributed computer system

The mathematical model of a distributed computer system has been introduced
in the paper JusT [3). In this chapter basic facts, important to the problem examined
in this paper, will te presented. For more details the reader is advised to consult
Just [3, 4].

Forevery n=1, 2, ..., let [n]={1, 2, ..., n}. For each alphabet Xlet *= UZ‘

=%z r=3U {s} where ¢ is the empty word. The remaining notation of the
paper is standard.
By a model of a DCS we shall mean a 3-tuple

DCS = (5, MP, AL)
where .
S is the structure of the system, -
MP is the set of processes in the system,
AL is a mapping AL: MP-S.

2.1. Structure of DCS. By -the structure of DCS we mean a directed graph

: S = (N, ny, LT)
where
N is the set of nodes (interpreted as stations of computer network),
ny€ N is the initial node,
LTENXN is the set of edges (mterpreted as transmission lines).

2.2. Processes in DCS. In order to describe the set of processes in DCS we shall
introduce a mathematical object, called a matrix of coprocesses.

2.2.1. Matrix of coprocesses.. By a matrix of coprocesses we mean a system

MP = (o, I,)
where
= {Aij}geim], Iye[m]X[n}.

A;; is a coprocess, and I indicates the start process The set of can be interpreted as
a matrix .

Ay eos Arn
o = .
Aps s Apn
Each lme in the above matrix represents one process. 4;; is a 4-tuple which repre-
sents the j-th coprocess in the i-the process.

- (ZU: V|]3 al]’ Pu) or Aij = (@, 03 {8}3 ﬂ)
where
1) Z;; is an alphabet (of action symbols),
2) V;; is an alphabet (of control symbols of 4;)),
3) oy;€V;; is the start symbol of 4;;,
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4) P;; is a finite subset of the set
{GIXAmIX[Y X P XV )X Zy;.

This means that P;; is a finite set of 4-tuples of the form (i—r, j—s, a—~b, R) where
i~re{i}xX[m), j-se{j}x[nl, a—-becVXV-, RcZ;). P is called the set of instruc-
m n
tions of 4;;. Let P=J U P;;.
i=1j=1
Each instruction consists of four varts:
1) i—r indicates the process which wiii be active after the execution of the
instruction (the r-th process will be active);
2) j—s indicates the coprocess which will be active after the execution of the
instruction;
3) a—-b indicates the way of execution of the component 4;,. This part of the
instruction indicates the current and next point of the component 4;;.
4) R is the action of the instruction. It is an action name. R — because of its
abstract character — will mean the program, the part of the program or an activity of
the opertating system.

Every matrix of coprocesses can be represented graphically by means of graphs

i,Jj
a—»ba:>b a-— b -
R R R

to denote instructions (i—i,j—j, a—~b, R), (i—i,j—s,a~b, R) and (i—r,j—s,
a—b, R), respectlvely

Put = U Z;;. The set X is called the set of action names of the matrix MP.
1 11 1

Let ms = )( )( Vi (X is the cartesian product) The set MS = [m]X[n]Xms
is called the set of control states of MP.

Let co:[m]x[n] Xms— U U V;; be the function such that, for a€ms and
i=1j=1 ,

@€V, co (i, j, m)=ay;.

Each (i—r,j—s, a—b, R) can be regarded as a relation on the set Rel(MS)
defined in the following way

yl(i_’raj_»sa d-'b, R) yZQ(Ea’ BEmS) M = (i’j: (X), Yo = (r5 S, ﬁ)

and co (i, j, ®)=a, co (r, s, B)=b.

The set MT={(, j, x)eMS| co (i, j, ®)=¢} is called the set of terminal control
states of MP. The set ST=MSX X* is the set of states of MP..

Let TS STXST be the relation defined by the equivalence

(1, u) T (32, uz)@[(a(i*r,jés, a—b, R)EP) (1, ¥)EMS & u2=u1R].
We put yo=(o,Jo, %), Wwhere "

o;; for A;;,=0,
co(ijcx):{ Y !
7o ¢ for 4;;,=0

(0 denotes the empty coprocess of form (9, 9, {e}, 9)).
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Put
LMP) = weZ*|(3yeMT)(y,, &) T*(y, w)}.

L(MP) is called the language generated by the matrix of coprocesses MP. The lan-
guage L(MP) represents the structure of a virtual network of processes, whereas
each Z;; represents a set of names of actions (procedures) that should be executed
in the framework of the (7, j)-th component of the system. This language is interpreted
as a description of the semantics of the matrix MP.

Proving properties of the system of processes (in our model) is the same as
proving properties of the language L(MP). Properties of this language can be ana-
lysed by means of fixed-point methods (see Just [3]). These methods of analysis of
the matrix of coprocesses need the knowlage about the form of all components prior
to the analysis. All components must be analysed together. There is a question if it
is possible to analyse each component independently, and then to get the global
semantics of the matrix of coprocesses. We are going to discuss this main problem
of our paper in section 3.

ExampLE 1. Consider the system which consists of two processes, and the
first process consists of two coprocesses. Let this system be represented by the follow-
ing flowdiagram. .

on (%! Gy
E

H
F

[
&

4 1,2 l
l

It can be proved that L(MP)=ABCD((EFUGB)D)*EH. (A method is given in
Just [4)]).

2.3. Mapping AL. The mapping AL specifies an allocation of a process.

3. From local to global properties of DCS

Proving properties of a system of processes (in our model) is the same as prov-
ing properties of the language L(MP). But the language L(MP) does not contain
much information about the structure of the matrix of coprocesses. If we know this
language only, we do not know anything about the number and the form of compo-
nents. Now we define a language which gives L(MP), the number of components,
and sublanguages defined by components. Note that every component can be inter-
preted as certain right-linnear grammar.
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Let MP=(«, I,), where
o = {A;j}icim > Lo € [m] X [n]
jemn

and
Ay =Zy, Vijyoi, Py) (=1, ... .mj=1,...,n)

is the matrix of coprocesses.
We define the following alphabets

A = {has > A b — {Aads Al’c = AU{4}
i,r€[m], j,s€[n] and k=(,j), 1=(s).
4= U 44U {}*ko}9 A= U A& (ko = (imfo))-

k& [m]Xin] k€lmix[n]

for

Let

The set A in our model represents the set of names of actions of transmissions.
Let A(MP) be the matrix of coprocesses defined as follows

.)‘(PM) = ("dl’ ]0), Where M {Au}l€[m]a IOE[m]X[n]

Ai):i = (ZijUAijsI/ijU{a;j}s o}, Pf'j
and
Ph={i—-rj—s,a—bRy|i—~rj—~sa—~b REP;&k = I}U

U{i—-r,j—s,a=b,RI|i—rj—sa—~b REP;&k=1U
UG =i, j—=j, 01~ 0 if G, j)=1, then p=27, elsewhere p=e}.

The language L(A(MP)) contains all the necessary informations about the
structure of the matrix MP.
Let h : (ZUAY* >Z2* be the following homomorphism

if ReZ,

R
(YReZUAY R (R) = {8 if R¢Z.

Corollary. L(MP)=# A(L(A(MP)))
For arbitrary i=1,...,m,j=1,..,n and k=(i,j) let

)~(Aij) = (ZijUAl’cs V.{_,', Ufja Qij):
where
V”.I = V’lU {G:j}’ l]& ijs
={a—~Rb|3(—~r,j—~s, a~b, R)GP{IJ- U {0';{,- g )'kaij}-
Note that A(4;)) is a right-linnear grammar.

ExampLE 2. These grammars for our matrix of coprocesses (see Example 1)
can be described by the following graphs.

7 Acta Cybernetica V/4
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Let L(A(4;;)) denote the language generated by these grammars. Note that the lan-
guage L(A (4;))) not only contains an information on “‘actions” (elements of X))
of the component 4;;, but also on points of resumptions of another components, and
an information on ‘“‘actions of transmissions” as well.

For arbitrary i, r€[m], j, s€[n] and (i—r, j—s, a—b, R) let num: [m]X[n]—
—~[m-n] be defined in the following way: num (i, j)=(@—1)-m+j and for A,¢cA,
k=num (i, j), I=num (r, s). Let g=m-n.

ExaMmpLE 3. Languages L(A(4, ;) generated by grammars given in Example 2
are the following - '

L(MAp)) = M ABMy((heUho B) hyo)* Das,
L (/1 (Alz)) = /12 CD}*m ((Glm U 223 221) Dly )* /123 s
L(l(Azl)) = 13(EF232 U 8)* EH.

Let 4y, ..., 45 Ty, ..., T, be sets defined in the following way
(VkelgD) 4= {Alk: Y PREPTAY PTIRI /14},

q
r,= U @UA4)-4,.

t#=k,1=1
For arbitrary k,l€[g] and k#l let I';; be the following set
Iy = Zf (A=) T (4 U {eH U 2] 4, U ST

Let : (ZUA)—~2@UaY be the substitution of languages defined in the following
way
R if ReXU{4,},
(VReZUAYR) = 4,54, if R=2 & ke[g]—{ko},
‘lel lf R = )‘kl & k # l.
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The function ¥ is called the basic semantic function. This function has been defined
by Janicki [1] in order to describe the local semantics of a vector of coroutines.

A component A4;; of MP is called final if there exists an instruction (i-r, j—s,
a—b, R) such that b=¢. The set of all final components of MP will be denoted by

FIN;. We restrict our attension to the matrix of coprocesses with the property
card (FINyp)=1.

Theorem. For every matrix of coprocesses (of form defined in this paper)

LGMP) = () ¥ (4 LGAD),
where
Ak = Anum(i,j) (Aij is in MP: ’E[m]aJE[n])

The proof of the above theorem follows from considerations which have been de-
scribed in [1, 2].

ExaMmpLE 4. Let us consider the distributed computer system which consists
of three processors, connected over a communication system. These processors
execute particular parts (coprocesses) of the virtual process. We know these coproc-
esses only. In our model they are given in the form of components of the matrix
of coprocesses (see Example 1), and can be interpreted as certain right-linear gram-
mars (see Example 2). The languages generated by these grammars, are given in
Example 3.

On the basis of these languages and by taking into consideration the Theorem,
we can obtam the following language

L(A(MP)) = 2, AB21gCD2g; (Agz Ao EF gy Ry U Ay GAgy B) 2y Dy )13 A EH.

This language describes all possible behaviours of our distributed computer system
— both computations and transmissions.

From this and from Corollary 1 it follows that L(MP)=h,(L(A(MP)))=
—ABCD((EF U GB)D)*EH In our model this language is interpreted as a descrip-
tion of the semantics of the matrix of coprocesses (the semantics of the virtual net-
work of processes).

4. Final comment

Treating distributed systems as the superposition of sequential subsystems is
the natural way of analysis and synthesis of systems. This paper is an attempt to
give a formal approach to this problem. Similar problems are considered in [1, 2, 3, 4],
and from a different point of view in [6].
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